United States
Environmental Protection
Agency
Environmental Research
Laboratory
Corvalhs OR 97330
EPA-600/3-78-089
September 1978
Research and Development
CALIBRATION OF A
PREDICTIVE MODEL FOR
INSTANTANEOUSLY
DISCHARGED DREDGED
MATERIAL
-------
RESEARCH REPORTING SER8ES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are.
1. Environmental Health Effects Research
2. Environmental Protection Technology
3 Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6 Scientific and Technical Assessment Reports (STAR)
7 Interagency Energy-Environment Research and Development
8 "Special" Reports
9 Miscellaneous Reports
This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials Problems are assessed for their long- and short-term influ-
ences Investigations include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the technical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
.i. document is available to the public through the National Technical Informa-
i Sen/ice, Springfield, Virginia 22161
-------
EPA-600/3-78-089
September 1978
CALIBRATION OF A PREDICTIVE MODEL FOR
INSTANTANEOUSLY DISCHARGED DREDGED MATERIAL
by
Gary W. Bowers
and
Marin K. Goldenblatt
JBF Scientific Corporation
Wilmington, Massachusetts 01887
R-804994
Project Officer
Lorin R. Davis
Ecosystems Modeling and Analysis Branch
Corvallis Environmental Research Laboratory
Corvallis, Oregon 97330
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CORVALLIS, OREGON 97330
-------
DISCLAIMER
This report has been reviewed by the Corvallis Environmental Research
Laboratory, U.S. Environmental Protection Agency and approved for publication.
Approval does not signify that the contents necessarily reflect the views
and policies of the U.S. Environmental Protection Agency, nor does the mention
of trade names or commercial products constitute endorsement or recommendation
for use.
11
-------
FOREWORD
Effective regulatory and enforcement actions by the Environmental
Protection Agency would be virtually impossible without sound scientific
data on pollutants and their impacts on an environmental stability and
human health. Responsibility for building this data base has been
assigned to the EPA's Office of Research and Development and its 15 major
installations, one of which is the Corvallis Environmental Research
Laboratory (CERL).
The primary mission of the Corvallis Laboratory is research on the
effects of environmental pollutants on terrestrial, fresh water and marine
ecosystems; the behavior, effects and control of pollutants in lake systems;
and development of predicted models on the movement of pollutant in the
biosphere.
This report describes the efforts of JBF Scientific and their EPA
Grant R-804994 to modify, simplify and calibrate a model for the prediction
of the short-term fate of instantaneously dumped dredged material discharged
into estuarine and coastal environment.
111
-------
PREFACE
For years the oceans have been considered the best depository for
men's waste materials. The sheer size of the ocean led to the belief
that any harm to the aquatic environment caused by the dumping of waste
material was inconsequential. However, as the magnitude of the volume
of material discharged has risen, so has concern over the impact the
procedure has on the local environment.
The study presented in this report represents the work JBF Scientific
performed in improving a model originally developed by R.C.Y. Koh and Y.C.
Chang for predicting the fate of dredge material in an aquatic environment
The effort included the use of laboratory and field experience to both
improve the model's predictive capabilities and simplify its use. As a
result of JBF's efforts the model can now more accurately describe the
dynamics of a wider range of dredge materials and because of simplifica-
tions in its use be accessable to a wider range of users.
IV
-------
ABSTRACT
This report describes JBF Scientific's modifications to a computer
model originally developed by R.C.Y. Koh and Y.C. Chang for predicting
the physical fate of dredged material instantaneously released into a
water column. Changes to the simulation include the calibration and
varification of the program's models based upon experimental laboratory
data as well as simplification of the model's use. Inputs to the model
include initial material characteristics and dynamics, ambient charac-
teristics and dynamics, and site geometry. Outputs include material
concentration and position while in the water column and material mound
height and concentration after bottom impact.
Included in this report are a description of the model's structure,
the changes made to the program, information on field sampling and
laboratory procedures needed to develop input values, and examples of
model operation. The model has three versions, exercising various levels
of input/output complexity and computer storage requirements. A complete
listing of the input variables necessary to exercise each version is pre-
sented as well as the outputs to be expected when the program is run with
a representative data set.
This report was submitted in fulfillment of grant R-804994 by JBF
Scientific under sponsorship of the U.S. Environmental Protection Agency.
This report covers a period from August 1976 to December 1977 and was
complete as of August 1978.
-------
CONTENTS
Foreword iii
Preface iv
Abstract v
Figures vii
Tables ix
1. Introduction 1
2. Background: Previous Observations of Dredged Material
Dispersion 3
3. Model Modifications and Calibration 16
A. Model Selected 16
B. Model Input Simplification 17
C. Modification of Convective Descent Equations 32
D. Modification of Dynamic Collapse Equations 51
E. Modification of Long Term Diffusion Equations 54
F. Model Output Simplifications 56
4. Model Verification 58
5. Conclusions and Recommendations 64
References 66
Appendix A - Example of Model Execution - Long Version 67
Appendix B - Example of Model Execution - Simplified Version 130
vii
-------
FIGURES
Number
1 Percent moisture effect during descent phase for silt
2 Percent moisture effect on collapse and bottom flow
for silt
3 Percent moisture effect on mounding and deposit of silt
4 Maximum mound height as a function of percent moisture
5 Maximum mound height as a function of multiple of liquid
limit
6 Grain size distribution of representative clay-type
materials
7 Grain size distribution for Mississippi River sediment
8 Grain size distribution for Ambrose Channel sediment
9 Grain size distribution for Rochester Harbor sediment
10 Grain size distribution for Houston Ship Channel sediment
11 Grain size distribution for Baltimore Harbor sediment
12 Grain size distribution for Galveston Channel sediment
13 Liquid limit versus median grain size
14 Liquid limit versus organic content
15 Schematic of parameters defining cloud properties and
behavior
16 Effect of multiple of liquid limit on entrainment
coefficient
17 Cloud growth during descent: model predictions and
tank data at moderate MLL
18 Cloud growth during descent:
data at high MLL
19 Cloud growth during descent:
data at low MLL
20 Drag coefficient versus multiple of liquid limit
21 Cloud centroid depth versus time for tank tests and
various model predictions
22 Effect of multiple of liquid limit on virtual mass
coefficient
23 Cloud depth versus time: model predictions and tank
data at moderate MLL
24 Cloud depth versus time: model predictions and tank
data at low MLL
25 Cloud depth versus time: model predictions and tank
data at high MLL
26 Cloud front location versus time for model predictions
and tank data
27 Cloud front location versus time for model predictions
at tank data
28 Fall velocity versus concentration for a representative
cohesive sediment
model predicitons and tank
model predictions and tank
9
11
12
15
15
18
26
27
28
29
30
31
33
34
38
39
41
42
43
44
46
47
48
49
50
52
53
55
Vlll
-------
FIGURES (cont.)
Number
29 Verification of model entrainment predictions at high 59
MLL: modified and unmodified model predictions and
Fall River silt tank test data
30 Verification of model velocity predictions at high MLL: "0
modified and unmodified model predictions and Fall River
silt tank test data
31 Verification of model entrainment predictions at low MLL: 61
modified and unmodified model predictions and Thames
River silt tank test data
32 Verification of model velocity predictions at low MLL: 62
modified and unmodified model predictions and Thames
River silt tank test data
IX
-------
TABLES
Number Page
1. Input Data Set for 8-Component Simulation. 20
2. Input Data Set for 3-Component Simulation. 21
3. Cloud Configuration During Convective Descent and 22
Collapse for 8-Component Simulation.
4. Cloud Configuration During Convective Descent and 23
Collpase for 3-Component Simulation.
5. Final Material Accumulation for 8-Component Simulation. 24
6. Final Material Accumulation for 3-Component Simulation. 25
-------
SECTION 1
INTRODUCTION
The subject of dredged material dispersion has received considerable
attention in recent years as concern has grown for the environmental
impact of disposal of dredge materials. While extensive efforts have been
directed toward developing mathematical and physical models, these studies
have historically been handicapped by lack of sufficient experimental data
with which to adequately calibrate and verify results. As a result the
models developed have not been universal, but rather have been limited in
application for disposal situations similar to that used for the model's
development.
Accordingly, the U.S. Environmental Protection Agency, Corvallis
Environmental Research Laboratory, sponsored the project reported herein,
an effort by JBF Scientific Corporation to improve the predictive
capability and to simplify the use of the Koh - Chang mathematical model.
Previous work by JBF and by the U.S. Army Corps of Engineers had ascer-
tained that this was the most applicable model available for predicting
the physical fate of dredged material dumped in open water. The original
model by Koh and Chang (1) was modified under the Corps' Dredged Material
Research Program by Tetra Tech Inc. This modified model (2) was taken as
the starting point for this project.
Two overall tasks were included in this program. One task was to
improve the model's dynamic phase predictive capability through a program
of calibration and model testing. That task is the subject of this report,
-------
The second task was to prepare the user's manual portion of ref. 3
which gives details on the application and operation of the computer code
along with a complete matrix of sample runs. These runs can be used to
approximate dredged material dumping by persons looking for a quick answer
and those without access to the computer code.
The program of calibration and model testing was based on a set of
data previously developed by tank tests at JBF, relating the behavior of
dumped dredged material to the material's physical properties. These
tests were performed at depths up to 9 feet. The data yielded correla-
tions which were incorporated into the model, improving the model's
representation of the behavior of a cloud of dredged material dumped in
water.
In conjunction with improving the model's capabilities through cali-
bration the model was modified in a manner that simplified its use.
Unnecessary inputs and outputs were eliminated so that a user interested
not in modifying the model but rather in exercising it solely to obtain
data on material dynamics will be able to do so with relative ease.
-------
SECTION 2
BACKGROUND: PREVIOUS OBSERVATIONS OF DREDGED MATERIAL DISPERSION
The computer simulation developed by Koh and Chang (1) in 1973 was
an attempt to model the dispersion and settling behavior of barge disposed
wastes in an open aquatic environment. The model was based on theoretical
and experimental studies and for limited applications satisfactorily pre-
dicted material behavior. However, the model did have limitations both in
the modeling techniques employed and computer code developed. For example,
the program was unable to model estuaries, and on some specific runs did
not appear to maintain conservation of mass. The intent of this study was
to identify the model's limitations and correct them where possible.
Included in these changes were simplification of the computer input/output
format. All modeling changes were based upon experimental data with the
final model verified through independent laboratory data. Problem areas
still remaining with the model were identified and recommendations for
future work developed.
Early in this study, the modified Koh-Chang model was published by
the Corps of Engineers Waterways Experiment Station (WES). Because
this updated model removed several of the deficiencies in the original
Koh-Chang model, it was taken as the starting point for this effort. To
simplify nomenclature in this report, the following terms will be applied
to the various developmental stages of the Koh-Chang model:
Description Term Used in this Report
Original Koh-Chang model (1) Koh-Chang model
Updated Koh-Chang model WES model
published by Corps of Engineers'
Waterways Experiment Station (WES)
-------
Model resulting from this study CERL model
for EPA's Corvallis Environmental
Research Lab (CERL)
The WES model's approach to the simulation of dredged material dis-
persion is to assume that the material consists of two components: solid
and liquid. The solid component describes both the bulk properties of
the material and the properties of the discrete material components which
are assumed to act independently of each other. For example, each dredged
material considered has a set of parameters describing the behavior of
the bulk material. Similarly, the individual solid components that make
up the bulk material have a set of parameters describing their individual
behavior. In this manner the dynamics of the material cloud can be
modeled while accounting for the settling of component materials to the
bottom.
Dispersion properties of the dredged material are divided into three
sequential phases by all of the models under consideration. The first
phase (convective descent) models the dynamics of the dredged material
that are dominated by the initial material momentum and buoyancy. The
second phase (dynamic collapse) models cloud behavior resulting from
bottom impact or from reaching a point of neutral buoyancy. Momentum
changes from vertical descent to horizontal spreading in this phase.
The third phase (long term diffusion) models the period where cloud
behavior is essentially controlled by ambient dynamics.
JBF's early use of the Koh-Change model, and their comparisons of
its prediction to field data and tank tests, revealed several conceptual
inaccuracies in the model.
-------
The cohesive properties of fine sediments were not adequately
represented in the Koh-Change model. It has been demonstrated through
tank testing and through field observations that fine sediments can
behave as a cohesive mass rather than as individual particles, profoundly
influencing the behavior of all phases descent, collapse, mounding, flow,
and long-term dispersion.
Entrainment coefficients are another complex area in which the
Koh-Change and WES models appeared oversimplified. (We wish to emphasize
the difference between simplicity of some of the model structure, which
is noted here as a liability, and simplicity of use, which of course is
an asset). In the earlier models the entrainment coefficient, a, is con-
stant. However, dumping experiments in tanks at JBF (4) indicated that
a is a function of percent moisture and cohesion for each material
dumped. At low moisture content, cohesive materials (silts and clays)
fell to the bottom of the tank with no entrainment, as would a "solid"
mass. The greater percent moisture (PCM), in turn, allowed a higher
entrainment coefficient and thus a faster entrainment and dilution of
the cloud. As a result of these observations, it was believed that
an accurate description of entrainment must explicitly include functional
dependence on percent moisture and liquid limit of the dredged material.
An error in specifying the entrainment coefficient results in significant
computational errors in cloud radius, descent velocity, impact velocity,
and other important aspects of material fate.
Similarly, JBF's use of the model revealed mathematical and program-
ming problems with the computer simulation. Some of these problems were
programming errors and fairly simple to rectify; others related to the
-------
basic modeling approach. The first area to be discussed is the original
form of output for the long-term dispersion phase. The complex diffusion
equations for this phase were solved by the Aris method of moments (1).
This method yielded only moments of the concentration distribution as a
function of time - not the distribution itself. Therefore, it was impos-
sible to determine material concentrations at points in the water column
or amount of material deposited at points on the ocean floor without
assuming a distribution. It should be noted that the first two model
phases (convective descent and dynamic collapse) do not use the method
of moments and, therefore, give actual concentrations in the water column
during those two model stages.
A second important problem was the programming of the ambient velocity
profile and its effect on calculated entrainment during the collapse phase.
The Koh-Chang model was found incapable of accommodating a horizontal
velocity of any realistic magnitude. During one project in which JBF
used the Koh-Chang model, it was found necessary to specify a zero ambient
velocity. When non-zero velocities were input, the cloud very rapidly
grew to enormous (and obviously incorrect) dimensions. The model was not
designed for dump situations in which the waste cloud becomes flattened
on the bottom. The model used the entire cloud surface area for entrain-
ment calculations and an entraining velocity equal to the net velocity
vector of the cloud relative to the ambient. In this case, when the
cloud has flattened on the bottom, the only significant velocity of the
cloud with respect to the ambient was the horizontal velocity. At the
same time, the cloud had rapidly flattened to a pancake shape with a
large horizontal diameter and little height. Thus the surface area of
-------
the cloud becomes very large compared to its volume while the net velocity
used in calculating entrainment is largely parallel to the cloud surface.
Because the true entrainment velocity would not be perpendicular to this
large surface area, the amount of entrainment was considerably overesti-
mated by the program.
Another problem encountered in operating the model with an ambient
current was that conservation of momentum did not appear to be satisfied.
This was illustrated by running the model with an ambient current in, say,
the x-direction and releasing a dump having an initial velocity also in
the x-direction and at the same magnitude as the current velocity.
Under these conditions the dump should move downstream with the current
at constant velocity (the current velocity) while it sinks. In fact,
in such a run the dump decelerated and did not keep up with the current.
The problem was traced to an inconsistent accounting of the momentum of
the cloud and of its added mass.
The final conceptual shortcoming identified was the model's handling
of bottom topography. The Koh-Chang model assumed a flat ocean bottom,
with an allowance for a roughness coefficient. The literature related
to density currents makes the point repeatedly that bottom topography is
an important determinant of the path of a density current. In addition,
a sensitivity analysis of the Koh-Chang model (4) showed that the model
output was insensitive to clearly another area requiring improvement.
The model used as the basis for this project was the latest
available version of the WES model. The above problems, as well as some
more minor shortcomings, had been substantially solved during development
of that version of the model. However, during that refinement of the
-------
model, no attempt was made to relate material properties, such as moisture
content of the material, to the dynamics of the disposed dredged material.
JBF performed a sensitivity analysis of the original Koh-Chang model
(4). This analysis consisted of a parametric variation of inputs, with
examination of resultant outputs to identify the input parameter varia-
tions to which the model was most sensitive. Only the variations in
entrainment coefficient and particle settling velocity were found to
affect output results dramatically. The model was found to be moderately
sensitive to other input parameters, such as virtual mass and drag coeffi-
cient, and quite insensitive to variations in many other input parameters.
These results showed that a simplified version of the model which would
make the model easier to use and less expensive to run was distinctly
possible.
The data used in support of this study were developed by dropping
San Francisco Bay and New England harbor dredged materials in tanks with
water depths of 18", 2', 4' and 9'. In these studies the method of
release, quantity of material released, material type and material
characteristics were controlled and data was collected which described
their effects on cloud descent, bottom mounding and bottom flow charac-
teristics.
For example, the effect of moisture content upon entrainment coeffi-
cient for a silt material is shown in Figure 1. As the material's
moisture content increased its entrainment coefficient also increased
until the material started to behave as a fluid and the entrainment
coefficient approached the entrainment coefficient of a fluid cloud.
The effect of moisture content, and consequently, cloud entrainment on
-------
x Average Descent Velocity Versus PCM
erage Descent Velocity (ft/sec)
O 1 ' K> OJ J>-
" tntrainment uoetticxent (a) Vers
""
-*
<
^
X
.
i
' A
- ^,
/
>B
X
^- ^
** ~~ -1- ~
!-» ra. ..
-
»
X
«, m_
- _.
ooo oo oo o o c
Mho LOJ^ LnCT\ ~-j OO
^
Entrainment Coefficient (a) s
100
200 300
Percent Moisture (PCM)
400
500
Figure 1. Percent moisture effect during descent phase for silt.
-------
descent velocity can also be seen in Figure 1. As expected, increased
cloud entrairanent results in a decrease in descent velocity.
The material behavior on the bottom was also found to be strongly
dependent on moisture content. Figure 2 illustrates the effect of
moisture content on the rate of horizontal flow of material along the
bottom after impact, and Figure 3 shows mounding characteristics as a
function of moisture content (both for a silt material). It is apparent
that for the material shown, between moisture contents of 100 and 200
percent moisture (PCM) there is a transition range from high cohesiveness
and little bottom flow to low cohesiveness and rapid bottom flow of
materials. Below 100 PCM this material mounds in a clump at the impact
point while above 200 PCM most of it spreads in a bottom flow.
On the basis of these and other observations that were made for
both clay and silt materials, it was hypothesized that dumping charac-
teristics (for clay and silt) fall into two distinct modes. The "solid"
mode is a characteristic of materials with low percent moisture and in
this mode the dumped volume falls as a solid block and does not spread
much on the bottom. In the "liquid" mode, characteristic of materials
with a high moisture content, the dumped material falls as a liquid
cloud and spreads like a fluid on the bottom. These modes can be iden-
tified by relatively well defined PCM ranges although the cut-off PCM
values for each are dependent upon the size and depth of the dump. The
"solid" range includes all PCM values below a certain transition point
(upper bound of solid range). The "liquid" range includes all PCM
values above a somewhat higher transition point (lower bound of liquid
range). The PCM range between these two points is a transition range
where dumping characteristics vary rapidly with change in PCM and dumps
10
-------
0
QJ
w
4J
H
0)
>
JS
O
Velocity Ratio (Initial Bottom Flow
Velocity/Impact Velocity)
Bottom Flow Rate (Average Over First
Six Feet)
.7
.6
5
*
.3
100
200 300
Percent Moisture (PCM)
400
500
5
0
o
Figure 2. Percent moisture effect on collapse and bottom flow for silt,
-------
Maximum Mound Depth
Average Deposition in the Space from
Two Feet to Six Feet from Impact Point
y
CO
01
£ 6
0 °
.^< S
.£
« 3
§ 0
O *
6 1
g '
H n
v u
Cti f
y. C
)
^.
M
y
^^
10
X
0
\
\
/
(
1
\
\
X
^
^ X
s
20
^^
0
---
w
-
3C
^^
)0
"^" -
*^.
~-»
4C
xV
)0
"^"'
^
^
5C
^ -^
0
/
CM
6 U
u o
CSl
4 g
bO
o a
£ o
H
1 -H
0
0 &
P
Percent Moisture (PCM)
Figure 3. Percent moisture effect on mounding and deposit of silt.
-------
show characteristics of both modes. Although there is some variation in
dumping characteristics by PCM within each mode, the differences between
modes are much greater and the transition between these modes takes place
over a relatively narrow transition range of PCM.
The "solid" dump mode is characterized by a very rapid descent phase,
little cloud growth and little spread of the material on the bottom after
impact. During descent the material falls like a dense block trailing a
turbidity plume behind it. It rapidly reaches its equilibrium velocity
and does not decelerate before impact. Entrainment is negligible in the
solid mode so that the main cloud has little shape change during descent.
Most of the descent energy is absorbed on impact and does not contribute
to spreading material along the bottom. Thus, the bottom flow is low in
suspended solids and is slow moving. Most of the dump material is deposited
in a mound at the impact point.
The "liquid" dump mode is characterized by a slower descent phase with
the cloud expanding due to entrainment, and by a rapid flow of material
along the bottom after impact. During descent entrainment is significant
and the cloud grows rapidly, decelerating while it does so. Impact velocity
may not be as high as for equivalent "solid" dumps. Most of the impact
energy is redirected to a horizontal momentum that drives the cloud rapidly
across the bottom. There is little or no mounding of dumped material at
the impact point and most deposited material is carried in a rapidly moving
bottom flow.
One very interesting trend to emerge from the mounding data suggests
a relationship to a simple property of the soil, the liquid limit, which is
the moisture content in percent of dry material as the mixture just begins
13
-------
to flow. Figures 4 and 5 show this trend. Figure 4 shows maximum mound
height as a function of percent moisture for a clay and a silt from San
Francisco Bay, based on tests in 28-gallon aquaria. This figure indicates
differing behavior between the two materials. However, when the liquid
limit is divided into PCM, the resultant multiple of liquid limit (MLL)
appears to have an important effect, common to the two materials, as shown
in Figure 5. This observation indicated one promising area for simplifying
dredged material characterization: cohesive behavior as a function of MLL.
It was clear that moisture content and cohesive characteristics are
significant variables that have a major influence on the behavior of
dumped dredged material - both before and after bottom impact. The Koh-
Chang and WES models did not provide any capability for modeling this
important effect.
14
-------
50
40
33
29
e
G
4-1
£1
Ml
H
0)
PC
C
o
H
X
cti
100
150 200
Percent Moisture
250
Figure 4. Maximum mound height as affected by percent moisture.
1 2 3
Multiple of Liquid Limit
Figure 5. Maximum mound height as affected by multiple of liquid limit
15
-------
SECTION 3
MODEL MODIFICATIONS AND CALIBRATION
A. MODEL SELECTED
An extensive literature search was undertaken by JBF to obtain the
latest version of the Koh-Chang model. Since the model was being exten-
sively used it was reasonable to expect portions of the model had been
modified and improved. The most extensive modification found had been
performed for the Corps of Engineers (WES) (2). These changes included a
complete revision of the long-term diffusion model. Rather than the
method of moments originally modeled by Koh and Chang, the new model
uses a convolution method developed by H. Fisher and obtains material
concentrations directly.
The long-term diffusion model originally developed by Koh and
Chang (1) assumed horizontally uniform, steady currents, and no horizon-
tal boundaries were allowed. The WES model was developed in order
to be able to simulate non uniform currents, horizontal boundaries and
unsteady flow. As a consequence the method of moments was no longer
applicable, resulting in the need to reprogram the long term diffusion
stage. The approach selected could handle the above options and was
still economical and efficient to run on the computer.
Because the program no longer calculated the moments of the cloud's
distribution the original computer output had become obsolete. The
original output forms were modified in the WES model to reflect the
concentration data.
The resulting model was subsequently modified by the U.S. Army
Engineer Waterways Experiment Station (WES) to eliminate some programming
errors in the program's long term diffusion computer subroutines. It
16
-------
is this latest version of the model that JBF selected as the baseline
model from which to work.
B. MODEL INPUT SIMPLIFICATION
The original input format for the model was extensive and required
the user to have a knowledge not only of the process being simulated but
also the formulation of the computer simulation itself. For instance,
the first three input cards are keys which produce results internal to
the program, but which are not related to the physics of the dump. Other
quantities, such as a user specified long term time step, or the number
of transition levels from short term to long term diffusion, require a
knowledge of the program structure to estimate accurately. The initial
effort undertaken by JBF was to simplify the input/output formats so that
a user could set up his problem in terms of known material and water
column characteristics.
As a first step in the format simplification procedure a telephone
survey was conducted with marine biologists to determine input parameters
that can be easily identified and output parameters of primary importance.
As a result of these conversations it was decided to reduce the input
data required by eliminating theoretical coefficients and parameters
that only control mathematical procedures. Output data was reduced by
eliminating output not related to material position, concentration, and
deposition on the bottom.
Further, the program requires a description of the solid components
that make up the material to be studied. The program can handle up to
thirteen solid components. A study was performed to identify the sensi-
tivity of model results to the number of components used to simulate a
material. Figure 6 is a grain size distribution curve for a representative
17
-------
100
00
80
60
x
o
>-
ta
40
20h
I I I I T
J_L
100
Clay Barrel //I
Clay Barrel #2
Clay Barrel #3
m 3 Component
8 Component
I I I i i , I
10
i
GRAIN SIZE MILLIMETERS
0.1
0.01
0.001
GRAVEL
COARSE
FINE
SAND
.OARSE
MEDIUM
FINE
SILT OR CLAY
Figure 6. Grain size distribution of representative clay-type materials.
-------
material. The material was described using 3 and 8 solid components.
The resulting two input data sets for this model can be seen on Tables 1
and 2. All other parameters remained constant.
Tables 3 and 4 represent the model's output of material position and
size for the two runs. As expected the results are identical for the con-
vective descent and collpase phases. Final results from the long term
diffusion simulation can be seen in Tables 5 and 6. Comparing the amount
of material deposited on the bottom there was more material deposited on
the bottom at 1000 seconds for the 8 components case than the three
component case. The cause of this effect is that the coarser grain sizes
modeled in the eight component case drop to the bottom quickly. Since
the three component case had to assume average grain sizes, the amount
of material on the bottom for this case will usually be less than a case
with higher components. Tables 5 and 6 show that at the 1000 second
mark the eight component case had approximately 10% more material on the
bottom than the three component case. Since 10% is within experimental
and model uncertainty levels, the difference between the two cases can
be assumed not important. Hence, only 3 sediment components are required
as input if the simplified input format is selected.
A further input reduction explored was the development of a charac-
teristic curve which could be modified to reflect the material being
simulated. Figures 7 to 12 are typical gradation curves developed by
the Corps of Engineers for various dredged materials. The differences
between the curves did not lend themselves to the development of a
typical or representative gradation curve. It was concluded that indi-
vidual gradation curves for each material studied should be developed.
19
-------
TABLE 1. INPUT DATA SET FOR 8-COMPONENT SIMULATION
TWO VELOCITY FRCFILES SPECIFIED IN X AND Z DIRECTIONS FOR QUICK LOOKS-
DEPTH ASSUMED CONSTANT AND VELOCITIES CONSIDERED STEADY IN TIME
VELOCITY PROFILE PARAfFTEFS FOLLOVi...
DU1 = 1.00 DU2 = 2.00 UU1 = 0. UU2 = 0.
OW1 = 1.00 OH2 = 2.00 HM1 = 0. WW2 = 0.
TIME PARAMETERS FOLLOW...
TIME CF CU^F = 0.00 SECONDS AFTER START OF TIDAL CYCLE
DURATION OF SIMULATION = 1000.00 SECONDS AFTER OUMF
LCNG TERM TIPE STEP (DTD = 50.00 SECONDS
DISCHARGE PARAMETERS...
INITIAL RADIUS CF CLHUD, "B = .552^630
IMTIAL DEPTH OF CLOUD CEf-TROID, D9EL =
INITIAL CLCLO VELOCITIES. ..CU(1) - 0.
.2500
CV(1» =
CM(1) =
0.
BULK
DENSITY, ROC =
AGGREGATE VOIDS
LIQUID LIMT =
1.272200
RATIO, BVOID =
78.00
7100
AVERAGE SPECIFIC GRAVITY =
2.650
THERE ARE 8 SOLI~OS, PARAMETERS FOLLOW
DESCRIPTION rENSITY(GMXCC) CONCENTR AT ION (CUFT/CUFT ) FALL VELOCITY CFT'/SEC)
100-90
90-80
80-70
70-60
60-50
50-<»0
40-30
.LT. 30
2.650
2.650
2.650
2.650
2.650
2.650
2.650
2.650
.1650E-01
.1650E-01
.1650E-01
.1650E-01
.1650E-01
.1650E-01
.1650E-01
.
-------
TABLE 2. INPUT DATA SET FOR 3-COMPONENT SIMULATION
TWO VFLOCITY PROFILES SPECIFIED IV X AND Z DIRECTIONS FOR 5UI2K LOOKS
DEPTH ASSUMED CONSTANT AND VELOCITIES COMSIDEREJ STE4QY IN TIME
VELOCITY PROFIL?: PARftNLTERS FOLLOW...
DU1 = 1.00 OJ2 = 2.00 UUi = 0. UU2 = 0.
OH1 = 1.00 3W2 = 2.00 HW1 = 0. WHS = 0.
TIME PARAMETERS FOLLOW...
TIME OF DUMP = O.OC SECONOS AFTER START 3F TIBAL CYCLE
DURATION OF SI1JLATION = 10QU.OO SECONOS AFTER OUM3
LONG TEP.1 TIME STEP (DTD = 50.00 SECONOS
DISCHARGE PARAMETERS...
INITIAL RADIUS 3F CLOU3, R3 = .552^630
INITIAL 3FPTH 3F CLOUD CENTROIO, 3REL = .2500
INITIAL CLOUD tfELOCITIES..,CU<1) = 0. Ctf11) = 0. CM(1» = 0.
3ULK PARAMETERS...
DENSITY, ROD = 1.272200
AGGREGATE VOIDS RATIO, BV3I3 = .7800
LIQUID LIMIT = 78.00
AVERAGE SPECIFIC GRAVITY = ?.650
THERF ARr 3 SOLIDS, PARAMETERS F3LLOW
DESCRIPTION OENSIfY«GM/CCI C ONCE NTRAT ION I CUFT t C JFT> FALL VEL3C I TY ( FT/SEC* I/3IDS RATIO
Ql 2.650 .55UOE-01 .6880E-03 .7SOO
Q2 2,650 .550CE-01 .3060E-OI* .7500
Q3 2.650 .55QOE-01 .^2505-05
FLUID .9999 .8350 Q.
PERCENT MOISTURE CONTENT = 19U.9663, 2.^^33 TIMES LIQUID LIMIT
CALCULATED tNTUINHENT COEFFICIENT = .27^212
-------
TABLE 3. CLOUD CONFIGURATION DURING CONVECTIVE DESCENT AND COLLAPSE
FOR 8-COMPONENT SIMULATION
PLOT OF COLLAPSING CLCUO CHARACTERISTICS
INDE°LSOEKT VARIABLE IS TIME OVER
-------
TABLE 4. CLOUD CONFIGURATION DURING CONVECTIVE DESCENT AND COLLAPSE
FOR 3-COMPONENT SIMULATION
PLOT OF COLLAPSING ~LO'JD ^HARA^TE}! 3TICS
TNOtPENOENT VAUAHLE IS TI1C 0
-------
TOTAL ACCUMULATED SOUC VOLUMf ON 90TTOM ICUFT/GKIQ SQRI, 1000.00 SECONDS AFTER DUMP
.. .MULTIFL1"
H N= 1 2
1 OCCOCOCC
2 COCO 4
7 CCCO t
l( CCCO 4
5 CCCO
6 OCCO
1 OOCO
» OOCO
9 ncco
10 OCCO
11 ocro
12 OCCO
13 CCCO
li( OCCO
15 OCCO
16 CCCO
17 OOCO
ie ccco
19 OCCO
20 OOCO
21 COCO
22 CCCO
73 OCCO
71( CCCO
25 OCCO
26 OCCO
27 OCCO
2" OOCO
29 CCCO
30 CCCO
4
.01
.01
.02
. 02
.03
. 03
.03
. 03
. 03
. 03
.03
.03
.03
. 03
.03
.02
.02
.01
.01
4
4
4
4
4
OISFLAVFO VALUES
3 . a
7.3
7.5
7.6
7.6
7 .6
7 .6
7 .6
7.6
7 .6
7.6
7 .6
7.5
7.3
6.8
5.9
1.5
.61
. 21.
. 09
. 03
.01
(LEGtND.
12 13
COCOOOOOI
.03 .03
.09 .09
. 2ii .21.
.62
1.5
5.8
6.9
7 .3
7 .5
7 .6
7 .6
7 .6
7.6
7.6
7.6
7 .6
7.6
7 .6
7 .5
7 .3
6.9
5.8
1.5
.62
. Zk
.09
.03
.01
.62
1 .5
5.8
6 .9
7 .3
7 .5
7 . 5
7 .0
7.6
7 .6
7.6
7.6
7 .6
7.0
7 ,b
7.5
7 .3
6.9
5.8
1.5
.62
. 09
. 03
. Ul
. . 4
1
H
§
0
F>
CO
1
n
o
o
w
H
I
1
H
H
i
31 OCCOCO"OCOOCCCCCCCCOCO"0
-------
TOTAL ACCUMJLATEB SOLED VOLUNE ON BOTTOH
.1.MULTIPLY DISPL»VEQ VALUES BY .IOOOE-
HN=123
)000(
30
;
i
s
h
5
5
5
5
5
5
5
5
5
5
5
5
5
it
3
1
<
30
031
0 1
0 6
.2
.8
.7
.0
.1
.1
.1
.1
.1
.1
.1
.1
. 1
.1
.1
.0
.7
.9
.2
3tt
n h
u o
n 1
U 1
001
30000000(
.01 .02
08 .09
.003C
)OOOI
a 0 2
.09
.1,8
1.7
5.1
6.1,
6.8
6.9
6.9
6.9
6.9
6.9
6.9
6.9
5.9
6.9
6.9
6.9
6. It
6.1,
5.1
1.7
.1*S
.09
.02
loooc
30001
. 0 2
.09
.1,8
1.7
5.1
5.1,
5.8
0.9
6.9
6.9
6.9
6.9
5.9
5.9
5. 9
o.9
6.9
5.9
i.9
5.1,
5.1
1.7
.1*8
o 0 9
.02
JOOOC
30001
.02
.09
1.7
5.1
6.1*
6.8
6.9
5.9
6.9
6.9
6.9
6.9
5.9
5.9
5.9
6.9
6.9
3.8
b.l,
5.1
1.7
.1,8
a 0 9
a 0 2
JOOOC
30
'
1
5
6
6
6
6
5
6
6
5
5
6
6
b
6
6
6
5
1
.
10
oo:
C2
09
.7
,1
. 1,
.8
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.3
.<.
.1
.7
1,8
09
02
OOC
30001
. fl 2
.09
1.7
5.1
6.1*
6.8
6.9
6.9
6.9
6.9
6.9
5.9
6. 9
6.9
6.9
6.9
6.9
6.3
6..
5.1
1.7
.1*8
.09
a 0 2
)000(
3000
.32
. 09
.43
1.7
5.1
6.1,
6.8
6.9
6.9
5.9
5.9
5.9
6.9
6.9
6.9
6.9
6.9
6.9
6.3
6.1,
5.1
1.7
.1,8
09
ny
a Uc
3000
OOOO
a 0 ?
.09
.1*8
1.7
5.1
6.1,
6.8
'6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.3
6.1,
5.1
1.7
.1,3
.09
n 7
u c
ooooc
oooo
.02
.09
.i,?
1.7
5.0
5.3
5.?
5.3
5.3
5 .3
5.3
o .3
5.3
6.3
6.3
5.3
5.3
6.3
6.7
5.3
5.0
1.7
.<.?
.09
a 02
1000!
oooo
.01
.08
.1*1*
1.6
i*.7
5.0
5.3
5 .1,
D.I*
6.1,
5. l.
5 .*
5. i.
5.1,
o.l,
5.1,
5.1,
5.1,
6.1
5.0
It. 7
1.6
!,.
.03
n ,
a U 1
50001
OOOO
* 0 1
.05
.3",
1.2
3.8
+ .7
5. 0
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5 .1
5.1
5.1
5.1
5. a
,.7
3.3
1.2
.31,
0 &
n 1
a U L
V
loaoi
oooo
.11*
.51*
1.2
1.5
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.2
.5V
.11,
.01
30001
00031
* 0 1
.01*
.IV
.31,
.1*4
.1,7
.1*8
.1*8
.1,8
.1,8
. V3
.1,8
.1,8
.1,3
.1,3
.1*3
.1*8
.1*7
.VV
.3it
.1'+
.0%
n i
U I
33000
)0000(
.01
.03
.06 .
.03 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.09 .
.08 .
.06 .
.03
.01
. _
V
160 oo a
)000
,
t
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
01
01
t
t
lOOOl
000300000000003
+ + +0003
+ + +0003
+ + +0003
+ + +0003
+ + +0033
+ + +0003
t t +0003
t t +0003
+ + +0003
+ + +0003
+ + +0003
t + +0033
+ + +0033
+ » +0003
+ + +0033
» + +0003
» t +0003
+ + +0003
» + +0003 "
» t +0003
+ + +0003
+ . . 01553
300060006000603
H
[H
M
o^
*
H
1
H
g;
H
W
H
F
>
O
O
g
>
H
M
O
23
O
U5
1
O
O
tg
o
w
K
H
C/3
i
C
H
O
-------
100
at
WJ
Z
2
LU
U
20 -
100
GRAIN SIZE MILLIMETERS
0.01
0.001
GRAVEL
COARSE I FINE
SAND
COARSE | MEDIUM
FINE
SILT OR CLAY
Figure 7. Grain size distribution for Mississippi River sediment.
-------
100
80
60
I
O
DC
iu
Z
z
t-O iu
40
20
100
TT
TT
JL
I I L
10
0.01
0.001
GRAIN SIZE MILLIMETERS
GRAVEL
FINE 1
SAND
1 -PARSE |
MEDIUM 1
1 H 1
SILT
OR
CLAY
Figure 8. Grain size distribution for Ambrose Channel sediment.
-------
100
I
o
f-J
00
2
UJ
U
100
0.1
GRAIN SIZE MILLIMETERS
0.01
0.001
GRAVEL
COARSE
FINE
SAND
-OARSE
MEDIUM
FINE
SILT OR CLAY
Figure 9. Grain size distribution for Rochester Harbor sediment.
-------
100
80
O
UJ
5
40
20
1 I I I I
I I I I I I I _ I
I I I I I I I I
100
10
1
GRAIN SIZE MILLIMETERS
0.1
0.01
0.001
GRAVEL
COARSE | FINE
SAND
.OARSE | MEDIUM | FINE
SILT OR CLAY
Figure 10. Grain size distribution for Houston Ship Channel sediment.
-------
100
I
o
Lo
O
100
10
1
GRAIN SIZE MILLIMETERS
Lt
GRAVE!.
COARSE | FINE
SAND
.OARSE MEDIUM
FINE
0.01
0.001
SILT OR CLAY
Figure 11. Grain size distribution for Baltimore Harbor sediment.
-------
100
80
60
x
o
40
Z
UJ
U
20
I I I I I I I
I I I I I I
I I I I I I I
I I
I I
111
100
10
1
GRAIN SIZE MILLIMETERS
0.1
0.01
0.001
GRAVEL
COARSE | FINE
SAND
COARSE | MEDIUM | FINE
SILT OR CLAY
Figure 12. Grain size distribution for Galveston Channel sediment.
-------
Another avenue examined for the simplification of the input format
was to attempt to find a relationship between material liquid limit and
some easily defined characterization parameter such as median grain size
or organic content. Figures 13 and 14 show that while trends can be
identified in the effects of median grain size and organic content on
liquid limit, data scatter precludes a quantitative correlation which
would be useful in the computer model.
C. MODIFICATION OF CONVECTIVE DESCENT EQUATIONS
In the formulation of the Koh-Chang mathematical model, several
empirically derived coefficients are used to describe physical phenomena
occurring during the convective descent phase. For example, a drag
coefficient is used to express the drag forces experienced by a de-
scending cloud of dredged material, as a function of the cloud and the
ambient characteristics. Similarly an entrainment coefficient expresses,
as a function of cloud dynamics, the rate of entrainment of ambient
fluid into a descending cloud of fluid or mud. Entrainment in turn
affects the cohesive behavior of the cloud because higher moisture
content indicates greater interparticle distance and consequently
greater spread of the cloud in the water column.
The procedure adopted for deriving estimates of these coefficients
based upon the laboratory tests previously mentioned was first to make
photographic records (movies) of the dump tests. The movie data were
then used to develop time histories of the dumped cloud size and posi-
tion during descent.
Next, data representing predictions of time histories of dumped
cloud size and position during descent were generated using the WES
32
-------
160
140
120
100
80
60
40
20
I I I I I ) T
I I I I I I
w
,
ll I I I t I I
I I I
.1 .01
Median Grain Size (mm)
.001
Figure 13. Effect of median grain size on liquid limit (Source: Reference 5)
-------
140
120
100
80
a
H
H
3
H 60
40
20
10
15
Organic Content (%)
Figure 14. Effect of organic content on liquid limit (Source: Reference 5)
-------
and CERL versions of the computer model. These data were then compared
to the laboratory data graphically. In order to calibrate the model
properly, the predictions of the model had to be made to correspond as
closely as possible to the actual tank test data. This involved deter-
mination of the physical properties of the cloud which are most important
during the convective phase, and the parameters in the model which affect
these properties. Variation of the controlling parameters to produce
the best agreement between the model predictions and test tank data
consitituted calibration of the model.
The quantities determined to be of import for the convective descent
phase were radius of the cloud and velocity on termination of the con-
vective descent phase. The parameters controlling these quantities, to
which the model is moderately sensitive, are entrainment coefficient,
drag coefficient, and virtual mass coefficient.
In order to determine entrainment coefficient, the radius of the
cloud was plotted against depth. The slope of this curve at any time is
the entrainment coefficient, and the average slope is the average entrain-
ment coefficient. Hence, the entrainment coefficient was changed in the
model until the slope of radius versus depth best matched the tank test
data. This procedure was carried out over a variety of moisture contents,
in order to produce agreement between model predictions and tank data over
the range of conditions encountered during the testing procedure.
When the model predictions of entrainment appeared to match the tank
data as closely as possible, attention was turned to velocity, or depth
versus time. Data for depth versus time were plotted, and comparisons
made between the two model predictions and the tank test data. The drag
35
-------
and virtual mass coefficients were then modified to produce the best
agreement between velocity (the slope of the depth versus time curve)
of the cloud as observed in the test tank and as predicted by the model.
When these slopes were in agreement, the drag and virtual mass coeffi-
cients were assumed correct.
The entrainment coefficient (a) is defined by the following
relationship :
E = 2Hb2aV (1)
where E is entrainment (volume per unit time)
b is cloud radius
V is cloud velocity
Values for a could therefore be estimated from
the movie data by the following equation:
a =
211 b V
where E = change in cloud volume per unit time
E = | n(b22 r2 - bx2 r1) / ('2 - fcl) (3)
V = velocity of cloud = (d2 - dl) / (t2 - tl) (4)
with b and r the horizontal and vertical cloud radii
respectively
d = the cloud depth
t = time since start of the drop
and the subscripts refer to values at the start and
end of a small time increment.
By substituting Equations 3 and 4 into Equation 2, and using the average
face area of:
36
-------
Average Area = =- (b, + b? )
the entrainment coefficient can be estimated by:
2(b V - b 2r )
a - 22 2 1 * (5)
3(b1 + b^)(d2 - d1)
Using the above information, entrainment coefficients were calculated
for a series of tank tests of dredged material dispersion. Representative
configurations used to calculate entrainment coefficient from movie data
are shown in Figure 15. It was found that the MLL has a profound effect
on the entrainment coefficient. If a material's MLL was below 1.2, the
material behaved as a solid, and did not entrain any fluid. If the PCM
was several times the liquid limit, (MLL 3), the material behaved as a
liquid cloud and its entrainment was higher than that originally predicted
by Koh and Chang. The values found for entrainment coefficient are plotted
in Figure 16 as a function of MLL. A polynomial regression was fitted to
the data points and the following equations for a as a function of MLL
were defined:
a = 0 MLL < 1.22
a = .285 + .00493 (MLL-2.9) MLL < 2.9 (6)
a = -.002185(MLL)4 + .0441(MLL)3 1.22 < MLL < 2.9
-.3119(MLL)2 + .9184(MLL) - .67273
The above entrainment-versus-MLL curve was incorporated into the latest
version of the computer model, whose output then was compared against
several tank tests that were not used in developing Figure 16. Using
37
-------
water
surface
b = horizontal cloud radius (ft)
r = vertical cloud radius (ft)
d = depth (ft)
t = time from start of drop (sec)
Figure 15. Schematic of parameters defining cloud properties and behavior.
38
-------
0.4
0.3 -
(D
H
O
H
M-i
4H
0)
O
U
C
0)
e
c
H
cd
C
W
0.2 _
0.1 _
= .285 + .00493 (MLL - 2.9)
3456
Multiples of Liquid Limit
Figure 16. Effect of multiple of liquid limit on entrainment coefficient.
-------
equations (6) to define oi resulted in somewhat better comparisons at
moderate and high MLL (Figures 17 and 18), and greatly better comparisons
at low MLL (Figure 19), between computer predictions for cloud radius at
various depths and experimental data.
The computer predictions presented are those from both the unmodi-
fied and modified models. The unmodified model is that developed for
the Waterways Experiment Station (2) to alleviate some shortcomings
in the original Koh-Chang model. The modified model is that developed
by calibration using tank test data.
The tank test data plotted are the average of major and minor axes
for the cloud, which was generally an ellipsoid. Multiplying values by
v2/2 will produce the radius of the equivalent hemispherical cloud, the
output of the model prediction.
Drag Coefficient
Attention was then turned to the centroid depth versus time. Changes
were made in drag coefficient (C ) in order to produce velocities in the
model output comparable to those in the laboratory tests. At low MLL,
the material behaved as a solid and it was felt that drag coefficient to
be used should be that for a cube or a flat plate. At high MLL, the vor-
ticity present in the cloud tends to reduce drag, so the drag coefficient
for a sphere at high Reynolds number was used. In the MLL region in
between, a hyperbolic tangent function approximation is used to give a
good fit which is asymptotic to the proper limits. The C versus MLL
curve developed is shown in Figure 20.
Changes in the drag coefficient did not greatly influence the
predicted centroid depth versus time (Figure 21). For example, a varia-
tion of C by 33 1/3% produces a 2.7% variation in time required to
40
-------
1.0
J-J
0)
tn
2.0
P-,
0)
O
3.0
Prediction of
Model Before
Modification
PCM = 191
MLL =2.45
Prediction of Model with
Equation 6 Incorporated
Tank Data
1.0
2.0
Radius (Feet)
Figure 17- Cloud growth during descent: model predictions and tank data at
intermediate MLL.
41
-------
0.0
2.0
0)
0)
4-1
PL,
0)
P
4.0
6.0
8.0
Prediction of
Model with
'Equation 6
Incorporated
PCM
MLL
Tank Data
207
4.4
Prediction of
Model Before
Modification
0.0
1.0 2.0 3.0
Radius (Feet)
4.0
5.0
Figure 18.
high MLL.
Cloud growth during descent: model predictions and tank data at
42
-------
0.0
1.0
0)
01
52.0
0)
Q
3.0
Prediction of
Model with
Equation 6
Incorporated
PCM = 95
MLL =1.22
Prediction of
Model Before
Modification
0.0
0.5 1.0
Radius (Feet)
Figure 19. Cloud growth during descent: model predictions and tank data at
low MLL.
43
-------
-P-
-P-
t>o
1.2
1.1
1.0
0.9
^
0.8
I
0.7
0.6
0.5
M-l
0)
°0.4
0.3
0.2
0.1
0
C = 0.7 - 0.5 tan h[3.2(MLL - 1.875)]
1 2
Multiple of Liquid Limit (MLL)
Figure 20. Effect of multiple of liquid limit on drag coefficient.
-------
reach a given depth (Figure 21). However, variation of the added mass
coefficient by 33 1/3% produces a 13.6% variation. To improve predictions
of centroid depth versus time, the virtual mass coefficient was varied to
produce agreement between the model and experimental results.
As a body (or cloud) moves through the water column, it displaces
water. The displacement of water results in kinetic energy being present
in the fluid. The total kinetic energy of the system can be expressed as:
K.E. = 1/2MBVB-VB + 1/2 |Jj p V.V.d(Vol) + l/2(Mg + M^V^
Where:
>
V is the velocity of the falling body
VL is the mass of the body
M is the virtual mass
A
>
V is the velocity of a fluid particle
p is the density of the fluid particle
Vol is the fluid volume
(1, is the virtual mass coefficient
M
The variation of virtual mass with MLL showed the same form as C versus
MLL and entrainment versus MLL (Figure 22).
Representative comparisons between centroid depth versus time curves
for both the originally suggested Koh-Chang descent parameters and JBF
values and experimental values are shown in Figures 23 through 25. The
new coefficients resulted in improving the model's predictive capabilities.
45
-------
0.5
1.0 1.5
Time (Seconds)
2.0
2.5
Figure 21. Effect of time on cloud centroid depth for tank tests and various
model predictions.
46
-------
2.0
Tank Data
c
0)
H
a
H
M-l
U-l
QJ
O
U
cn
en
1.0
C = 1.075 - .675 tan h[3.2(MLL - 1.875)]
M
3
4-J
Multiple of Liquid Limit
Figure 22. Effect of multiple of liquid limit on virtual mass coefficient.
-------
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Prediction of
Modified Model
Tank Data
0.0 0.5
PCM = 191
MLL =2.45
Prediction of Model
Before Modification
1.0 1.5
Time (Seconds)
2.0
2.5
Figure 23. Effect of time on cloud centroid depth;
tank data at moderate MLL.
model predictions and
48
-------
0.0
PCM
MLL
I
95
1.22
Prediction of Modified Model
Tank Data
Prediction of Model
Before Modification
0.0
0.5
1.5
1.0
Time (Seconds)
Figure 24. Effect of time on cloud centroid depth: model predictions and tank
data at low MLL.
49
-------
0.0
i r
Prediction of Model
Before Modification
8.0 -
I I I I I t I i
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time (Seconds)
Figure 25. Effect of time on cloud centroid depth: model predictions
and tank data at high MLL.
50
-------
D. MODIFICATION OF DYNAMIC COLLAPSE EQUATIONS
As the cloud of material descends through the water column it gains
mass and momentum by the entrainment of fluid. As a consequence the hori-
zontal velocity of the cloud loses its own identity and approaches that
of the ambient. The cloud will maintain its vertical velocity until either
neutral buoyancy is reached or the bottom is encountered. In either case,
the vertical velocity will be driven to zero and the cloud will begin to
collapse upon itself while spreading out in the horizontal plane. The
program assumes that the cloud's horizontal spreading velocity is always
due to the collapse of the cloud. The driving force for collapse is
always assumed to be the difference in density gradient between the cloud
and the ambient. No consideration is given to transfer of momentum from
the vertical to the horizontal upon impact with the bottom.
JBF studied films of laboratory drops of dredged material and com-
pared the horizontal spreading in the tank to that predicted by the model.
In all cases the laboratory material spread significantly farther than
predicted by the model. Figures 26 and 27 are typical of the results ob-
served. Note that the computer simulation predicted the material to settle
within the confines of the tank when in reality the material completely
blanketed the tank bottoms and very quickly impacted tank walls. These
inconsistencies between laboratory data and simulation results that the
program does not adequately model the dynamic behavior of dredged
material during the collapse phase.
During some drops observed for comparisons during the collapse phase,
the bulk of the material settled out in the immediate vicinity of the
impact point. However, a thin turbidity cloud could be seen to propogate
51
-------
6.0
5.0
4-J
-------
Model Prediction
Time (Seconds)
Figure 27. Effect of time on cloud front location for model predictions and tank
data.
53
-------
away from the impact point. This led to speculation that, perhaps, a
dense mud flow occurred in the vicinity of the impact point, and was
masked by the surrounding, lighter turbidity cloud. No conclusions could
be drawn on this important point, because no concentration profiles were
available.
An additional problem encountered was that, in many cases, the
collapsing cloud hit the tank walls. This artificially terminated the
extent of the collapsing cloud in the tank, and limited the usefulness
of the tank data in calibrating the collapse phase of the model.
These data shortcomings precluded a reformulation of the collapse
phase during this study.
E. MODIFICATION OF LONG TERM DIFFUSION EQUATIONS
Silt and clay size particles tend to clump together due to inter-
particle attractive forces. These forces are ionic in nature, and are
more prevalent in salt water than in fresh.
Clumps, or flocules of fine sediment, have fall velocities which
are higher than those of the individual particles. As the particles
begin to floe together, the fall velocity of the finer particles will
change to those of the many-particle floes.
The WES version of the Koh-Chang model made no provision for varia-
tions in fall velocity. Only one fixed fall velocity was allowed for a
sediment component. However, the CERL version of the model allows the
user to select a single fall velocity for each sediment component, or to
select a concentration-dependent fall velocity.
The value of fall velocity for a given concentration is found from
an analytical function generator (Figure 28). This function generator,
54
-------
Ul
Ln
a
ai
o
o
.05
.04
.03
.02
.01
V Fall
0.017
V Fall = .047
A /}
V Fall = 0.00713 s cone / 304.8
50 100 150 200 250 300
Sediment Concentration (mg/ft)
350 400
Figure 28. Effect of concentration on fall velocity for a representative cohesive sediment,
-------
developed by WES and incorporated into the latest version of the program
is intended to be representative. The generator follows a 4/3 power
law dependence of fall velocity on concentration. This relationship has
been found to be valid over a wide variety of cases, but the actual upper
and lower limits of fall velocity will depend on the individual sediment
type.
In general, the surest way to ascertain that the long term diffusion
phase properly models settling would be to extract sediment from the pro-
posed dredged material, and ascertain the fall velocities of the sediment
components in water from the dump site. These fall velocities will vary
from sediment to sediment, and will be a function of concentration of
sediment, minerological properties, water salinity and temperatures, etc.
Since no general fall velocity-concentration relation exists for
cohesive sediments, no attempt was made to modify the WES equations in
the model. They are included in the CERL model as an example of the
state-of-the-art, but should not be taken as a universal model of fall
velocity for cohesive sediments until verification is accomplished.
F. MODEL OUTPUT SIMPLIFICATIONS
Modifications to the output format parallel those of the input
format. Hence, there are now two versions of output format selected
by the same key which selects the input format. A complete discussion
of options available, input requirements and examples of use are found
in ref. (3).
On the first, or long version, the output format remains nearly
identical to that employed formerly in the model as developed for WES.
A full range of options is available in this version, and the user
must be familiar with the model structure as well as the ambient and
56
-------
dredged material characteristics to properly exercise these options.
A typical listing of output produced from this version is shown in
Appendix A.
The second, or short version, allows the user to exercise most
of the options relating to material and ambient characteristics while
simplifying the printout. This version corresponds to the simplified
input format detailed previously. Output consists of a single-page
printout of input data values, followed by graphs of material during
convection descent and collapse. Next, the long term diffusion results
are shown in tabular form for each long term time step. For user con-
venience, the contributions of individual components are summed, and
only the total contribution is shown. A typical listing is shown in
Appendix B.
57
-------
SECTION 4
MODEL VERIFICATION
Calibration of the model, as described in Section 3, was performed
to ensure the best fit between model results and existing tank test data.
However, the ability of the model to predict the behavior of an instan-
taneously discharged cloud of dredged material had not been verified.
In order to perform a verification of the model's predictive
capability, the model results were compared against tank test data which
had not been used in the calibration process. The comparison procedure
was identical to that used in Section 3, i.e. the cloud size was plotted
against depth, and the slopes of the resultant curves examined to deter-
mine agreement in entrainment coefficient. The cloud depth was then
plotted against time, and these slopes compared for agreement in velocity,
which was governed by the drag and virtual mass coefficients.
Agreement between the model prediction, based on the data put
forth in Section 3, and these independent tank test data verified that
the predictive capability of the model had been improved. Although
the data used for verification were independently developed, the simu-
lated environment of laboratory tanks was the same for calibration and
verification. Field verification remains necessary.
Figures 29 to 32 compare the program results after the changes
detailed in Section 3 were implemented to the results made using
the original model and to tank tests made with Fall River and Thames River
sediment. For high PCM material figures 29 and 30 show that the model
exhibits a nominal improvement in its ability to predict cloud velocity
58
-------
0.0
1.0
4-J
a)
0)
4J
ex
0)
n
2.0
3.0
Tank Data
Prediction of Model
Before Modification
PCM = 500
MIL = 4.31
Prediction of Model with
Equation 6 Incorporated
0.0
1.0
2.0
Radius (Feet)
Figure 29. Verification of model entrainment predictions at high MIL:
modified and unmodified model predictions and Fall River silt tank test data,
59
-------
0.0
1.0
2.0
3.0
PCM
MLL
Tank Data
500
4.31
Prediction of Model
Before Modification
Prediction
of Modified
Model
I
0.0
0.5 1.0
Time (Seconds)
1.5
2.0
Figure 30. Verification of model velocity predictions at high MLL:
modified and unmodified model predictions and Fall River silt tank test data.
60
-------
0.0,
1.0
0)
0)
2.0
4-1
ex
3.0
Tank Data
PCM = 115
MLL = 1.32
Prediction of Model Before
Modification
Prediction of
Modified Model
O.TT
1.0
2.0
Radius (Feet)
Figure 31. Verification of model entrainment predictions at low MLL: modified
and unmodified model predictions and Thames River silt tank test data.
61
-------
Prediction of
Modified Model
PCM = 115
MLL = 1.32
0)
0)
fn
4J
a
01
Q
Prediction of
Model Before
Modification
3.0 -
0.0
0.5 1.0
Time (Seconds)
1.5
2.0
Figure 32. Verification of model velocity predictions at low MLL:
modified and unmodified model predictions and Thames River silt tank test data,
62
-------
and size. However, the model exhibits a vastly improved velocity predic-
tive capability for low PCM drops (figures 31 and 32). The reason for
the great improvement for low PCM drops can be traced to the original model's
assumed constant value for entrainment regardless of material properties.
For high PCM drops the output results did not vary greatly with PCM
since the material was acting like a liquid cloud and the assumed entrain-
ment coefficient was close to that for a liquid cloud. However, for low
PCM drops the material acts more like a solid and drops rapidly to the
bottom. Unless the user specifically knows how to calculate the entrain-
ment coefficient for his particular material he could experience results
significantly in error when trying to exercise the program. The new
program requires liquid limit (a material property) as an input and
calculates the entrainment coefficient internally. As can be seen from
the figures, significant improvements in the program capabilities can
be realized by accurately modeling entrainment.
An actual listing of the computer program has not been included in
this report due to its length. Those interested may obtain a listing by
writing the Corvallis Research Laboratory, Corvallis, Oregon, 97330 for
CERL report 047-
63
-------
SECTION 5
CONCLUSIONS AND RECOMMENDATIONS
The changes made to the latest version of the Koh-Chang model have
produced better agreement between model predictions and laboratory tank
test data during the convective descent phase.
In addition to the laboratory test data, the above changes should
be verified against field data. One possible shortcoming of the
laboratory data may be the shallow depth. Since most of the drops were
in only 4 feet of water, average values of entrainment, drop, and added
mass were calculated for the entire run. In very deep water, where the
moisture content of the material undergoes a pronounced change, the
governing coefficients may also undergo a change with depth.
Due to the small bottom area of the test tanks used, little work
was done on the collapse phase. However, it was evident in most of the
drops observed that the material hit the bottom with considerable
velocity, and also considerable excess buoyancy. The model assumes
that the same conditions hold for collapse whether it occurs in the
water column or on the bottom. These conditions include neutral buoyancy,
and hence a driving force due to the difference in density gradient
between the cloud and the ambient. In actuality, it appears that the
density difference may be the driving force during collapse on tfee bottom.
This may require modification to the model, and will certainly require
laboratory and field testing.
A function generator for fall velocity vs. concentrations for
cohesive particles has been incorporated into the model. This function
generator is intended to be exemplary, and should not be considered
64
-------
universal. The user should plan, if possible, to make settling tests
on cohesive particles of the material to be dredged, using water from
the dump site as the aqueous medium. Care should be taken in choosing
the long term grid step size, and time step for long term diffusion.
Knowledge of the turbulent structure of the water column is necessary
to make an accurate estimate of these quantities. The program considers
any eddies smaller than a grid spacing in size as part of the background
turbulence. Hence, the grid spacing should be equal to the maximum
turbulent eddy size to be expected at the dump site. In addition,
given a characteristic velocity U and grid spacing size L for the
turbulent flow field, the time step should be selected as:
T = L/U
in order to produce the most accurate calculations during long term
diffusion. This phase also needs extensive laboratory and field
verification.
65
-------
REFERENCES
1. Koh, R.C.Y. and Chang, Y.C., "Mathematical Model for Barged
Ocean Disposal of Wastes," Environmental Protection Technology
Series EPA 660/2-73-029, December, 1973, U.S. EPA, Washington,
D.C.
2. Brandsma, M.G. and Divoky, D.J., "Development of Models for
Prediction of Short-Term Fate of Dredged Material Discharged in
The Estuarine Environment," Contract Report D-76-5, May 1976,
U.S. Army Engineer Waterways Experiment Station, Vicksburg,
Mississippi.
3. Goldenblatt, M., Bowers, G., and Davis, L.R., "Workbook/User's
Manual, Prediction of Instantaneously Dumped Dredged Material,"
Corvallis Environmental Research Laboratory, U.S. EPA, to be
published.
4. JBF Scientific Corporation, "Dredging Technology Study - San
Francisco Bay and Estuary," Contract Report DACW07-75-C-0045,
San Francisco District, U.S. Army Corps of Engineers, San
Francisco, California, 94102.
5. Unpublished waterways Experiment Station Data.
66
-------
APPENDIX A
EXAMPLE OF MODEL EXECUTION - LONG VERSION
This appendix contains a tabulation typical of that which would be
obtained from exercising the complete output file version of the model.
A full range of input/output options is available for use if this ver-
sion is selected.
Output generated for this version of the modified model consists
of an echo of the required input data, followed by tabular and/or
graphical data representing material location and dynamics during the
three phases of simulation: convective descent, collapse, and long
term diffusion. The reader is referred to the user's manual (3) for
a full explanation of all possible inputs required.
During the convective descent simulation, tabular information
detailing the deployment of the sediment cloud and its dynamics and/or
a graph of cloud size, centroid depth, and horizontal position may be
selected as output. Graphs of concentrations may be selected as addi-
tional output during this phase. The simulation may, if the user
desires, be terminated at the end of the convective descent phase.
Output selection options during the collapse phase are similar
to those present in convective descent. Tabular and/or graphical data
and extra graphs of concentrations are available.
Long term diffusion output follows the history of each individual
sediment component during the passive diffusion phase. First, the
transition from short-term simulation to long-term diffusion is detailed
by tabulation of the small clouds created to simulate diffusion of
each component. Next, at each long-term time step, the amount of material
67
-------
still in the water column, in the long term grid, and remaining in the
small clouds as well as the amount of material deposited on the bottom
are all tabulated.
Plots of bottom accumulations of sediment, thickness of bottom
accumulation, concentration of material (or fluid) remaining in the
cloud, thickness of the cloud, and position of the cloud top surface
for each grid square are presented at each selected print time. If
no selection is made, the plots are made at four equal time increments
during the run. Finally, at the end of the simulation the total
thickness and total of all accumulated volume in each long-term grid
square are plotted.
68
-------
STORAGE ALLOOAflOri PARAMETERS FOLLOW...
SMAX MflftX NS NVL NSC NEED
31 31
-------
0£»rH 3RIZ) FOLLOH5 ,
' 6
7
9
"" 9
10
11
12
13
lit
'15
16
ir
13
19
20
23
2k
26
' 27
29
3C
31
1~
t.
If.
If.
It.
If.
It.
t, .
It.
It.
If.
It.
It.
It.
It.
It.
If .
4.
4 .
4 «
It.
4 .
4 .
4 .
4 ,
4 .
4
4
,
4 .
4 .
It.
4 .
4 .
if.
It .
3
>t.
'4 .
4.
(4.
It.
" 4.
It.
It.
k.
I*.
If.
I*.
It
It.
If .
It.
4.
" It.
If.
It.
It.
If.
It.
If.
5
it.
it.
it.
it.
it.
(f .
If. "
it.
it.
if.
<*.
it.
it.
6
it.
it .
it .
(t.
it.
' 4.
It.
If.
it.
4.
4.
It.
If.
If .
"" 7
it.
it.
it.
r.
it.
it.
4.
4.
If.
4 .
If.
If.
3
It.
J*"
ft.
it.
4.
4.
4.
4.
4.
It.
4.
If.
If.
It.
9
it.
it.
it.
it.
it.
it.
it.
it.
it.
it.
10
if.
it.
it.
4.
If.
If.
If.
u .
11
-------
FATE OF DREDGE3 MATERIAL DEPOSITEO IN AN ESTUAU BV DUMPING
EX£CUTIO>* PARA1£TE*S FOLLDrf...
-------
1
' 2
3
It
5
o
7
3
9
10
~ 11
12
13
"~" 15
15
16
~ 17
18
19
~-J ~~ 70
il
>2
- 23
2if
25
""25
27
28
~ 29
30
; 31
<=25 2b.
t.
it.
It.
It.
4.
It.
It.
28
it.
.... ^
-------
C3DED AR34Y F3LLOH3,..
SftMGE OF N IS i TO 31
3
3
3
3
3
3
-t
" 3
3
T
3
3
7
3
-I
' 3
3
3
3 3
I
1 1
1 1
33333
1111
3
1
I
3 3
1
1 1
1 1
3
I
i
333333333
3
333333
1 1 1 1 1 I
1 L 1 1 L
333
113
11 7
1 1 3
333333333333333353333333333J333
0- GRID >OIMT5 WITHIN ESIJft^lT =
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (5 of 61)
-------
I'M = 30.00 Z3A*;: (FTJ = J3.3B
4HGIENT lONOiriONS
DE'TH (FTI 0. it.DiJO
AM3IENT
3EN3ITY (3M/CC) l.OOD 1.000
INTERPOLATED OiTH AT DUMP 100*DISATES, 1 * i».003 FT.
THO VELOCITY POFILES SPECIFIES IS X AND I DIRririCHS FO^ --aUlCK LOCKS
3E°TH 4SSUMED GONSfaNT AND VELOCITIES COSSIDERID Sr£40Y IN TIME
VELOCITY PKOFILi PARAMETERS FOLL3-(...
DUI = i.oo 3'J2 = ^.03 uui = o. uua = o.
DHl = l.CU DW2 = 3.OH HH1 i 0. HWa = 0. "
THE PA^IMEIERS FOLLOW...
THE OF 3'JMP = Q.iiO SECONDS AFTER START OF TI3AL Cf^LE
DURATION OF SIMULATION = 600.03 SECONDS AFTER DJM3
LONS TER'I TIME 3TE? (OTL) = 15.00 SECONDS
E PARA1ETERS. . .
INITIAL RA3IJS DF SLOUQ, ^B - .5568003
INITIAL DEPTH OF CL3UO CENTROI3, D^EL = .Z530 ' "" " ...............
INITIAL :LOUO /ELo;iTiES...;u = o. CHID =
3'JLK PA^HKETERS. .. '
JLMSITf, ROO = 1.113000
aGS^EGATE VOIDS RATIO, BV3ID = .7800
LliUIO LIMIT = 116.0
AVERAGE SPECIFIC; GRAVITY = e.5io
THERE 4RE '« S3LIUS, PARAMETERS F3LLOH
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (6 of 61)
-------
3E5CRI'TION OE ^SITST ( GM/CCI CONCENTRAiT ION C CUFT fGJFTI FALL VELOCITY {.- IYSECJ
VDIDS "RATIO
100-93
90-80
80-30
LT. 33
FLUID
550
550
530
550
.72!>&E-a2
l.OOu
.3623E-01
.217i»E-01
.9275
.ifOOOI-01
.25CJOE-01
.1330E-01
.5000E-03
0.
.7300
.7300
. >niSTU?E CONTENT = 500.3280, 4.3103
ALCULATE3 ENmiNMENT COEFFICIENT = .29195>!».
TIME3 LIQUID LIMIT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (7 of 61)
-------
J 1 1 l**\.i A u u u */ UA.l^ac 1 « w u U U
4LPH40 .2350 OEFA 0.0000 31 1.0000 CD .5000
SA1A .25 CORAG 1.00 3F*IC .010 C33 .10 C0<» 1.00 »LPH»C .0310
FRICTN .0100 Fl .1000
AL4MOA .0050 A
-------
INOIHTO*S FOLLOH...
Tt IPLJNS NJML IST£P
i .18839015 t 0 19
Z .23H500J5E-01 1 J 11.3
X »Na Z ARE NE>SUR£i) W'R TO 8A«5E 'OSITION
riKE X f Z a V K
0.00 0.90 .25 0.00 0.00 0.000 0.00
Oil-OIF
.1130E<-00
RADIUS OH YOU.
.67 1.33 0.0000
Furo con;. SOLIO-VO..
.927SE*03
.05 0.30 .2? 0.00 0.00 .IS! 0.00 .1125£fOO .67 l.n O.DDOO .9239E»00
,10 0.00 .26 0.00 0.00 .306 0.00 .UlZEtUO .67 1.3'* 0.0000 .3133EI-00
,1U 0.00 .28 ~ 0.00 0.00 .l,i«9 0.00 .IOJ1E*00 .57 1.15 0.0000 ,3962E»00
.19 0.00 .31 0.00 0.10 .580 0.00 .10&l.E»00 .59 1.36 0.0009 ,3735EfOO
.2". 0.00 .31, 0.00 0.00 .697 0.00 .1031E»00 .69 1.37 0.0000 ,8l.6S£t-00
.2250E-01
'.1350E-OL
.I.1.93E-0!
.1350E-01
".721.5E-02"
.72l>5£-02
.3623E-01
.7205E-02
.J6C3E-31'
.2165E-01
.2249E-OL
.1350E-01
.135GE-01"
.1.1.93E-0'
.22
. J21.9E-OL
1350E-01 '
.l.ii93E-0!
.52 O.OQ .61 1/.09 0.00 1.112 0.90 .791DE-01 .7? 1.50 0.0090 .oV95£>03
.57 0.00 .66 Q.OO 0.00 1.11.2 0.00 .752^6-01 .76 1.55 0.0000 .6173E»00
.1350E-01
.I.1.98E-02
.22l,9t-0l
,iil,95£-0»
. J ?. i, n L - a I
.313i£-01
.1913E-01
.6111E-0!
.&121E-02
. 506U-31
.58I.9E-02
.2929S-0t
.1753E-31
.5593E-02
.2797E-01
.532U-02
.5330E-02
. 2665£-n
.1599£-J1
.2537E-01
.1522E-01
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (9 of 61)
-------
oo
.62 J.JO '172 0.00 0.00 1.16". 0.00
.67 . 0.00 .77 0.03 0.00 1.179 D.BO
""'''"- '
' ' '"»
1
.72 0.30 .83 0.03 0.00 1.190 0.00
.75 O.DO .89 0.00 0.00 1.196 O.DO
r i
.31 D.OO .9<» . 0.00 0.00 1.199 0.00
. .- _
.96 0.00 I. 00 0.00 0.00 1.199 0.00
_. . . .
.31 0.00 L.06 1.00 0.03 1.195 0.00
.95 D.OO 1.11 0.00 0.00 1.190 O.QQ
. . i . _
1.00 0.00 1.17 3. 03 0.00 l.lftit O.DO
"" ~ -- .-. -
1.05 3.0D 1.23 0.03 0.00 1.177 0.00
l.lu O.liO 1.28 0.03 0.00 1.169 0.00
1.11, 0.00 l.3i> 0.00 0.00 1.160 0.00
_
1.19 0.00 1.39 0.00 0.00 1.150 0.00
1.214 0.30 1.45 0,00 Q. 00 1.11.0 0.00
. _ _
.1 . . ^ '
1.29 O.BO l.SD 0.00 0.00 1.130 0.00
*
_ . _ .
1.3833E-3l .79 J..5J 0.0000 .5586E1-OB
.6l>71E-01 .30 1.61 0.0000 .5313EfOO
.6153E-01 .32 1.63 0.0003 .5055E1-00
.586 0.0009 .3501EI-00
.4093E-01 -34 1.87 0.0300 ,3355EtOO
.3926E-01 .95 1.39 0.0009 .!223E»00
:
3772E-01 . 3t> 1.92 0.0003 .3B97EtCO
.3S27E-01 .97 1.95 0.0009 .2973E»00
.JI(91E-01 .99 1.37 O.OOOD ,J366E*00
. 1350E-01
.1.U91E-0!
.I.1.93E-0!
.1J5DE-01
,l»".9tE-0!
.I.I.38E-02
.221.9E-01
. 135DE-OL
,i>i>91E-D2
.I+U98E-02
.22>.9E-oi
. 1350E-01 ~
. 't'+g IE- 0!
1+lt96E-OJ
i22"t3E-[il
.1350E-01
.I.1.91E-02
.H93E-02 ~
.221.9E-01
.1350E-01
.'.'(31E-02
.I»t49flE-02
.22I.9E-DI
;i350E-Ol "'
.<>
. 22l*9E- OL
.1350E-01 -
. 1*1*3 IE- 0!
.I.I.98E-02
.22I.9E-OL
. 1350E-D1
. u"»91E-02
.i»i»93E-02
.22li9E-OL
.1350E-01
. U"t91E-0!
. <*^93E-02
. 221.9E-01
.1350E-OI. ""
. fc^giE-o?
.it".95E-0!
. 22t*9E-Ol
. 1350E-01
,»9E-OL
. 1350E-01
.^oir-o!
.l'*l»3E-31 ~
,»581£-OZ
.'4553J-02
. 1377E-31
.i.35b£-32
.'.363E-02'
.2182E-01
* 1303£-31
.41t»3£-02
.4150E-02
.2C75E-C1
. 12i»5E-0 t
. 3943E- J 2
.39I.3E-02
,1975c-3l '
.11832-01
. 3755E-32
.3761£-02 ~
.1680£-01
.1123E-01
. 3573£-32 '
. 358iȣ-02
. 1792E-01
.1075E-CI
.31.13E-02
. 17C9E-D1
.1D2>£-31
.3253E-02
.3263E-32 "
. 1632E-01
.9793E-02
,3113£-D2
. 3117£-32
.1553E-31
.935*E-C2
. 2977£-D2
.2981E-02
.li»9tE-31
.235JE-02
.235'.E-32
.1">27E-31
.356l»E-02
. 2730E-0 2
.2733i-02
.1367E-01
. 820SE-02
.2613E-32
.2623E-32
. 1311£-3l
.7S70E-02
.25HE-32
. 2513E-02
.1253E-01
7534E-3'
.ZM5E-C2
.21.13E-32
.1210£-0l
.7253£-J2
. 2322E-02
.232i£-02.
. U63E-OL
. i')90£-D2
. 2 J 3 ; ; - o !
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (10 of 61)
-------
0.00 1.66 0.00 0.00 1.099 0.00 .5353E-01 1.00 2.00 0.0000
O.JO L.71 0.00 0.00 1.089 0.00 ,32I.2E'-01 1.01 2.02 0.000] .2662EfOO
1.53 0.03 1.77 O.DO 0.00 1.079 0.00 .3128E-01 1.02 2.09 0.0000 .256JEI-00
1.37 0.00 1.32 0.00 0.00 1.069 0.00 .20201-01 1.01. 2.07 0.0000
1,52 0.00 L.37 0.00 0.00 1.059 0.00 .23L3E-D1 1.05 2.09 0.0000 .239&E*00
1.67 J.00 1.92 0.00 0.00 1.01.9 0.00 .2821S-01 1.05 2.12 0.0000
1.72 0.00 ' 1.97 0.00 0.00 1.039 0.00 .27JOE-01 1.07 2.U 0.0000 ~ \221.lEt-03
1.76 0.00 2.02 0.00 0.00 1.029 0.00 .26<<3E-01 1.08 2.16 0.0000 .2170E<-00
1.31 0.30 2.07 0.00 0.00 1.020 0.00 ,25olE-01 1.09 2.13 U.OOOO .2103E<-00
1.36 0.00 ~ 2.11 0.00 0.00 1.010 0.00 .2I.32E-01 1.19 2.21 0.0000 .ZC33E«00
1.31 Il.DO 2.16 0.00 0.00 1.001 O.DO ,2<»08E-01 1.12 2.23 0.0000 .1377E»00
1.96 0.00 2.21 0.00 0.00 .992 0.00 .2337E-01 1.13 2.25 0.0000 .1919EfOO
2.00 0.00 2.26 ' ' 0.00 0.00 .983 O.DO .2270E-01 1.1". 2.23 0.0000 ,1863E»00
2.05 0.00 2.30 0.00 0.00 .975 0.00 .2205E-01 1.15 2.30 0.0000 .UUEt-00
2.10 0.00 2.35 0.00 0.00 .966 0.00 .21<>i.i-01 1.15 2.32 0.0000 ,1760EtOO
2.15 0.00 2.'.O 0.00 0.00 .958 0.00 ,2t 0.0000 .1712E»00
.22U3E-OL
.1350E-OL
.i»9E-OL
.1350E-OL
.1.1.91E-02
.<.l.9flE-02
.22I.3E-OL
.1350E-01
.1.1.91E-02
.I.I.98E-02 "
.22I.9E-OL
.1350E-OL
. I.1.93E-0!
.1350E-t,l
.".".gSE-O!
.1350E-01
.".I.9SE-0:
22i«9E-Ol
.1350E-01
.
.IBOJi-JJ"
.5i.29 = -02
. L75U-02
.5253E-D2 ~
.1692£-02
.1595E-02
.SV75E-02
.16<.0£-02
.3212E-02
.1583E-32 '
.1532E-32
.7951E-32
.«777£-32
.151.2E-C2
.151..E-02
.7722E-32
.".63.£-02
.11.93E-02 -
,7i.3f.£-02
.11.53E-OJ
.7273£-]2
.'.367E-32 "
.H12E-02
.UUE-32
.7071E-J2
.1373E-02
.1375E-02
.1.125E-02
,133i£-02
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (11 of 61)
-------
2.19 0.00 ».M> 0.00 0.60 .950
' '
2.2<* 0.00 2.1)9 0.00 0.00 .91)2
- - .
2.29 0.00 2.53 0.00 0.00 .93")
- -- -
2.3l> 0.00 2.58 0.00 0.00 .927
Z.39 0.00 2.62 9.00 0.30 .919
.
1 .
2^3 9.30- 2.66 0.03 0.00 .912
2.<3 0.00 2.71 0.03 0.00 .905
Z.53 0.00 2.75 0.00 0.00 .893
_-- . .
2.58 0.10 ' Z.79 ~ 0.00 0.00 .891
2.62 0.00 2. S3 0.00 0.00 .88V
2.57 O.CO 2.88 0.00 0.00 .878
2.72 0.00 2.92 0.00 0.90 .871
.
.
2.77 0.00 2.96 0.00 0.00 .865
2.31 0.00 3.00 8.00 0.00 .659
2.36 0.00 3.0<4 0.00 0.00 .853
2.31 0.00 !.08 O.OJ 0.00 .91)7
- ' ' '' ~ ' '
Z.36 0.00 1.12 11.00 0.00 .DM
0.00 .Z023E-01 1.19 2.35
o.oo ,i9r;E-ai 1.19 z.3i
0.00 .192<)£-01 l.ZO 2. Ill
0.00 .1875£-01 1.21 2.1)3
0.00 .1923E-01 1.22 2.1)5
- - -- -
- i - t
0.00 .17S2E-01 1.23 2.1)7
0.00 .1733E-01 1.21) 2.k3
-
0.00 .1637E-01 1.25 2.51
.
0.00 .1657E-01 1.26 2.53
0.00 .1619E-01 1.27 2.55
0.00 .1532E-01 1.28 2.57
0.00 .15l>S£~01 1.29 2.5)
0.00 .1512E-01 1.30 2.61
0.00 .IW9E-01 1.31 2.63
0.00 .1">!>7E-01 1.32 2.o5
0.00 .ll)liE-Ul 1.33 2.66
U.UO . lll&E-Ol I.JI. 2.1)9
0.0000 .166bE»00
0.0003 .1622E»00
0.0003 .1590E»03
0.0000 .1339E»00
0.0003 .ISOlEfOO
0.0009 .1!>63E*00
0.0003 .li>23E»00
0.0000 .139l)EfOO
_
O.OODO .1361E<-00
0.0300 ,13Z9E«-00
U.OOOO .1S99E1-00
0.0000 .1269E«-00
0.0000 .1Z">1E»00
0.0000 IZl^Et 03
0.0000 .1138E*00
0.0000 .1162EtOO
0.0003 .U3.1i:il)0
.1350E-OL
. i><»91E-02
.">i.93E-0>
. 22V9E-OL'
.1350E-01
.i>'.91E-02
".li")98E-02
«22()3E-OL
.1350E-01
,m31E-02
,ltt,98E-02
,22it9E-CL
. 1350E-01
. Vti91E-0 I
. 4')9 8 E- 0'2
. 22V 9E- OL
. 1350E-01
. t*<)9 IE-02
.t)')98E-02
.22V9E-OL
.1350E-01
V^giE-O !
.ttt+gsE-O!
. 22i)3E-Ol
135GE-OL
»')')96E-02
.22i*9E*OL
. 1350E-CL
. i)i)91E-02
" ,1)<)93E-0!
.221.9E-OL
. 1350E-01
. "+491E-02
.£)'*9BE-02
.ZZ">9t-.Ol
;i350£-01
.i)98E-0!
.22^9E-Ol
.1350E-01
,ii()91E-G2
, I)493£-Q>
.22')3E-OL
.1350E-01
. l)l>91E-0!
.<||>99E-02
.221.9E-01
'.1350E-01
.i)i)91E-02
.">i)98E-0!
. Z2">9£-01
.1350E-01
i l^ q , c n j
;i)")93E-02
. 22U9E-01
. 1350E-01
.')')91E-02
.()ti98E-02
,22li3E-OL
. 1350E-01
.'.'.91E-02
. ()i)9 3E-0 y.
. 22>)9E-OL
. 1350E-01
. i|l)'IL|.-0!
. U012S-32 "
. 1293E-02
.l3Cl£-:2
.5505E-32
,390^E-32
.1265£-32
1267£-02
,633' 7 £ - 3 2
.2909E-02
.3l)81E-;3
.^7')1E-02
.28I.5E-02
.3262E-03
.9277E-J3
.1.633E-32
.273+E-32
.3055E-BJ
.9079E-03
.I^5^0£-C2
.?721»E-32
. « :i f ' ,. - 0 J
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (12 of 61)
-------
.22<»3E-01
.1350E-01
3.01 0.00 J.16 0.00 0.00 .335 0.00 .1357E-01 1.35 2.70 0.0000 .111<*E*00 . <*i491E-02, .363lc-03
-' - -J - .1350E-OL .2612£-32
3.05 0.00 J.20 0.00 0.00 .830 0.00 ,13JOE'-01 1.36 2.72 0.0000 .1332E + 00 .it<»9lE-02 .3513£-33
[-02 .3527E-33
.1350E-01 .2553£-32
3.10 0.00 3.2t 0.00 0.00 .32
-------
?L3T OF JLOU3 »ATH AND RADIUS AS SEEN FROM POIU OF *E.LEASE
IH3EPE.SD£NT'VARIABLE 13 TI1£ IStJ) OVER ?ANGE
3.1*106
3t'ENOENT VARIABLES, ALL NORHALIZEO FOR PLOTTH3 3N U^4lf 4XIS
r B X
MAX PUTTED
in PLDITEO
3E1ARK3
0.
3EPTH
l.'.Z'+S
0.
R10IUS
DIST(CX)
D.
0.
HOR DISTCZ)
~MAX,1IN,ISC, OF ISD.VAR.
5.0000000 3
.1000Q003Et03
oo
N3
MAX.IIN.IN:, OF DEP. VA?.
i.ooooooa o.
10QOQ003E-01
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (14 of 61)
-------
0.0 .2 .4 ,3 .5 1.0
I 1 c 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 I- 1--.--I
IZ Y 33
IZ Y 8
.. .. iz YY B
IZ Y Y B3
iz r Y B
Y Y 3B . , -....-.
IZ Y Y 83
IZ Y Y 83
IZ , YY B3 "
i.oooo i?i ii 1 1 lY-y-t 1 1 1 1 IBB: 1 1 1 1 r r 1
.. .. IZ Y YY B3
IZ r r 3B
iz r Y BB
IZ ' r t BB __
:. iz .... y r B . ~
IZ Y Y 83
IZ Y Y 33
IZ Y Y B ' - '-
IZ YY 33
2.0000 I? 1 1 1--.-I----i- -I r 1 1 1 "I !--₯« 1 1---81 I-..-I 1-..-1
. , . IZ Y YY 3B3
'".'. iz Y r a
IZ ' YY S3
iz YY B
IZ YY 33
'--,- IZ ' ,;,-., TV 3
--"- IZ - - - -- YY 88
IZ YY BB
IZ YY 3
3.8080 If 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *T 31----"I
IZ Yt BB
IZ YYY33
IZ .- - fr3
IZ Y3
IZ
- - I --
I
I
' " I
tt.0060 I 1 I 1 1- I 1 -I 1 1 1 1 1 1 -I 1 I 1----1 1 I
I
I
I
I
I" " ' " ............
I
I
...-_. I - - -
I
5.0000 I 1 1 -i-- Ii 1 1 1 1I 1-- I 1 1 1 1 1 1 1 x
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (15 of 61)
-------
HOLLA'S! "HAS; OF UOJO
INDI:ATORS
NTRIAL Of IPLUNS lUTRL' ISTE!" I3EB ILEAI£
00
1 .Z389E-01 1 3 517 11.3 999
X »ND t 1EASUR-3 FROli 3AR5E P05ITI3H
TIME < f Z J V H BEN-OIF
2.39' ' 3.00. ..I.1*?. 0. 0.00 ,793 0.00 .1159E-01
3 » 53 w.OQ 3.56 0. 0.00 .527 0.00 .1157E-Q1
~" " ' """ "
3.67 . 0.00 3. 62 0. 0.00 .377 O.Ot) .US'.E-Ol
'3.82 "0.00 "" 3.67 0. "" " 0.00 .283 0.00 .U50E-01
3.96 .,0.00 3.76 0. 0.00 .221 0.00 .UI.6E-01
it.U ; 0.00 3.73 0.. . 0.00 .177 0.00 .ll 0.00 . 1109E-01
"5.10 ~'O.OD ' 3.83 0. 3.40 .058 0.00 .1102E-01
5.25 0.00 3. Oil 0. 0.00 .J51 0.00 .1095E-U?
44 85 FLOID C3NJ. SOLI3-V3L
l.'»2 2.8m .951BE-01 .l»lt91E-C!
.I.U9SE-0!
.22I.9E-01
.1350E-OL
.1350E-01
1.01 3.387 .95UE-01 .l^^^!>E-0!
,i».3c-OL
.55 It. 213 -" .9520E-01 " .I.233E-D2
. 1.338E-0!
.22BBE-01
.131.9E-01
.SO l(.387 .95J3E-01 .<<130£-0!
.I.301E-0!
.2196E-CI
.56 ^.551 .3320E-01 .U118E-02
.U261E-02
.2135E-OL
.13I.8E-01
.32 *.705 .9521E-01 '" ,i«053£-02
. t*219t-02
.2171.E-OL
.13i<8E-Ol
.'9 l».852 .9521E-01 .3985E-0!
.I.17I.E-0:
.3162E-01
.13I.8E-01
.'«6 '».991 .9521E-01 .SgiVE-O"
.21
-------
oo
01
5.34 0.00 3.85 0. 0.00 .01*5 0,00 .1099E-01
.,
5.53 ~ 0.00-3.46 0. " 0.00 ~ .fti 0.00 .1080E-01
5.S8 0.00 3.86 0. 0,00 .937 0,90 .1073E-01
- -- --- - -- - -
5.82 0.00 1.97 0. 0.00 .033 0.00 .1065E-01
"" 5.9i "0.00 " 3.87 0. 0,90 .330 0.00" .1057E-01
6.11 0.00 3.87 0. 0.00 .327 0.00 .10ME-01
-
6.25 0.00 3.93 0. 0.00 .021) 0.00 .101.01-01
6.39 U.OO 3.99 U. - 0.00" .022 0.00 '.1032E-01
- - - . . .
6.53 0.00 3.83 0. 0.90 .020 0.00 .1023E-01
----- _ -- -
6.63 0.00 3.99 0. 0.00 .319 0.00 .1Q15E-01
5.92 0,00 3.99" 0. " " 0.80 .917 0.00 " .1906E-01
6.95 0.00 3.89 0. 0.00 .015 0.00 .9975E-02
.... .- -
7.11 0.00 3.99 0. 0.00 .Oil) 0.00 .9B97E-02
-
"-7;J5 O.DO ' 3.90 0." ~ ". 0.00 .013 0.00 .9799E-02
7.39 0.00 3.90 0. 0.00 .012 0.00 .4711E-02
7.5V O.DO 3.90 0. 0.90 .011 0.00 .9623E-02
.tO 5.369 .3523E-D1
- -
" " .38 5.I.82 .9bii3t-Ul
.37 5.590 .9524E-01
.-_ . ...
.36 5.693 .9521.E-01
.3* 5.791 .9525E-01~
.33 5.993 .9525E-01
.32 5.971 .9526E-01
. _ . _ -
.31 b.0b5 .9525E-01
. . .
.31 5.134 .9527E-01
_ ..
.30 5.203 .9527E-01
~
.29 0.279 .9528E-01"
.29 S.31.5 .9528E-01
.28 0.1.09 .9529E-01
~ -
.28 b.l(59 - .9529E-01
.27 5.525 .9530E-01
.27 6.578 .9530E-01
,13<47E-Ol
.3696E-02
3976E-02 '
.ZIOoa-Ol
,1JI|6E-01
.3606E-02
.3922E-02
. 203LE-01
. 131.6E-OL
.3525E-02
,3866£-o:
.2075E-01
.13I.6E-01.
.3I.1.3E-02
.39C3E-02
. 2059E-01
. 1345E-OL
.3359E-02
3752E-0!
,20lt2E-OL
.3275E-02
.3693E-02
.2025E-CL
. 131.1.E-OL
.3191E-02
.3633E-02 ""
.2008E-01
.13"(iiE-Cl
. 31C6E-02
.3572E-02
. 1990E-OL
, I3(f t»E-OL "
. 3021E-02
.351LE-0!
.1972E-OL ~"
.13"t3E-Ol
.2937i-02
.31.50E-02
.1953E-01
.131.3L-01
.2853E-02 "~"
. 33S3E-02
.193I.E-01
.131.2E-01
.2770E-02
. 3325E-02
.1915E-OL "'
.131.2E-01
.2687E-02
.3263E-02
. 189->E-OL
.13HE-OL
.2b05E-02 "
. 3201E-02
.1877E-OL
.2525E-C2
. 3133E-0!
.1857E-01
. 13%OE-Ol
2t*46£- 02
. 3077E-02
. 1833E-01
. IJi.OE-Ol
.2227E-02
.509VE-D3
.5573£-05
. 31.83E-32
.222SE-02
.5963E-03
. S^S^E-OS
. 31.53E-32
.2225E-32
.5823£-OJ
.5393E-03
,3(f32E-02
.2225E-02
.5693£-03
330 3 E-0 3 '
. 31.05E-02
.2225E-3?
.55551-33
. 5 2 C '4 E!"- 0 3
.3377E-02
. 5"tl5E-B!
.610r£-03
.33^3E-C2
.2223£-32
.5277E-35
.S003E-33
.3320E-02
. 2223£-32
. 5137E-33
.5903E-OJ
.3291E-02
.2222E-D2
.^993E-33
.5803E-03
.3261E-02 "
.2222E-02
. iS53£-03
.570i£-35
.3231£-02
.2221E-02
.I.720E-03 "
. 560*1-05
.32COE-02
.2220E-02
.i.532£-03
.55C1E-OS
.3169E-02-
.2220E-02
.i.i.i.iE-33
. 5393£-3 3
.3137E-02
.2219E-02
..311E-03 -
. 5295E-33
.3105E-02
'. 2213E-D2 "
. .173E-33
.51331-03
. 3073E-32
. 2217£-32
«!tOtt7E-Q3
.509li-03
. lonr-jj
. 22I7E-32
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (17 of 61)
-------
00
r.82
0.00 1.90 0.
0.00 J.90 0.
. CO .010
.9536E-02 .!6
.9S31E-01
O.DO .109 0.00 .91.1.SE-02 . J £> 5.67'*
7.97
0.00 J.90 0.
0.00 .009
.9361E-02 ,lf> J.T18
0.00 1.91 t. 0.00 .008 0. 00 "".927!|E-02 .?5 6.759
g.e;
'4.5*
"8.37
o.oo >.9i o.
0.09 I.9L 0.
0.00 -- 3.91~~0.
0.00 3.91 0.
0.00 3.91 0.
0.00 ------- J.91 0.
11.00 3.91 0.
O.DO 3.91 0.
0.00 .007 0.00 .9188E-02 .25
0.00 .907 0.00 .9102E-02 .25 5.633
.006 0.08 .9017E-02 ^~ .2l« 5.887'
0.00 .006 0.00 .3932E-02
0.00 .89U9E-02 .><< i.925
0.00" .005 O.DO "~.3766E-02 ~ .2"i j.955
0.00 .001. O.OD .868i>E-02
i.991
0.10
0.00 .S603E-02 .2". 7.D05
9.5'4
9.68
O.DO
0.00 3.91 0.
0.09 3.91 a.
-9.83 O.tU - 3.91 0.
0.00 3.91 0.
0.00 .001. O.BO --.5523E-OZ '-.23 /.027'
0.90 .00'. 0.00 .91»<«<.E-02 .23 7.01)7
0.00 .903 0.00 .6366E-02 .23 7.066
0.30 .003 0.00 .928JE-02 .23 7.094
0.00 .003 O.OD .92121-02 .23 7.101
9532E-01""
.9333E-01
.953I.E-01
.9531.E-01-
.9535E-01
.9535E-01
;9536E-01
.9535E-01
.9537E-01
.9537E-01"
.9533E-01
.9533E-01
.9539E-01
.1JtUt-IH
.2368E-02
.3015E-C!
.1813E-01
.1339E-OL
.2291E-0!
'.2953E-0!
. 1798E-OL"
.133BE-01
.2216E-02
.2893E-D2
. 1778E-OL
.1338E-01
.21it2E-D2
.2832E-02
.1759E-01
.1337E-OL
.2070E-02
2772E-02
1739E-01
.1337E-DI
.2000E-0!
.2713E-02
.1719E-OL
.1336E-01
.19312-0:"
.39HE-01
.V9B3E-3!
.3791E-3!
.'«885E-D!
.2975E-02-
.2215E-J2
.3667E-33
.1699E-OL
.1336E-OL
.1861.E-0!
.2597E-02
.1679E-OL
.1335E-OL
.2539E-0!
.1659E-OL
.133I.E-01
.1736E-0?
. 16I.OE-01
.1620E-01
1333E-01
. 16H.E-02
.237JE-02
.1601E-01
1333E-01
.1556E-02
2319E-02
.1581E-DI
.1332E-01
.1500E-02
.2267E-0!
.1562E-OL'
.1331E-OL
.2215E-02
.15I.3E-OL
.1331E-01
.1392E-D2
.216UE-02
. 152ifE-Ol
.1330E-01
. 13I.1E-0!
. 29UE-52
.2213E-32'
.31.27E-03
.28ME-32"
.221SE-32
.3310E-03
.'. '-t 3 i E - 0 3 -
.281.5E-32
2212E-02
.2812E-02
.30S5E-03
.1.299E-0 J
.2783E-02'
.2210E-02
.2973E-JS
.2209E-02
. 287I.E-33-
.2715E-02
.22J3E-02
.2772E-OI
.26B3E-02
.22C7E-02
.2673E-03
.2650E-02
.2207E-02
.2577E-03
. J3!.IE-3J
.2613E-32
.220JE-D2
.3753E-3J
.2587E-02-
.2205E-32
.233-.E-C3
.36E3E-03
.2555E-J2
.220I.E-02
.2305E-03 '
.3533E-33
.252iE-32
.ZZSJi-0!
.2221E-03
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (18 of 61)
-------
oo
io.il o.oo 3.91 o. o.oo .003 o.oo .9U7E-02
10.26' 0.00 3.91 0. ~ ~" " 9.00 ' .002 O.DO .80631-02
10. 'O 0.00 3.92 0. O.DO .002 0.00 .7990E-02
10.51) it. Hi !.92 0. 3.00 .002 a. 00 .7918E-02
10.63 O.UU 3.92 0. 0.1)0 .002 0.00 .78lf3£-U2
10.33 0.00 3.92 0. O.JO .002 0.00 .7778E-02
10.97 8.00 3.92 0. 0.00 .002 O.Oo"" .'7709E-02
11.11 0.00 3.92 ~ 0. 0. 90 "".001 0. 00 """' .751*1 E-02:"
11.26 O.OD 3.92 0. 0.00 .001 0.00 .7575E-02
ll.itG 0.00 3.92 0. 0.00 .001 0.00 .7509E-OZ
11. 5i ~ 0.00 ~5.92"0. 3.00 .001 0.00 .7»i»5E-OZ <"'
11,65 0.00 3.92 0. 0.00 .001 '0.00 ..7381E-02
11.83 0.00 3.92 0. 0.00 .001 0,00 .7319E-02
""11.97" O.CO 3.92" 0. 0.00 .001 0.00 .7257E-02
12.12 0.00 3.92 0. 0.99 .001 0.00 .7197E-02
12.26 O.DO 9.92 0. 0.00 .001 0.00 .71.J7t.-02
" i 1505E-01"
.1330E-01
.23 7.114 .9539E-01 .1292E-0!
.11.S6E-01
.1329E-01
".23 T.130 " .95i»OE-01 .12"ti)E-02
2013E-02
. H68E-OL
.1323£-0t
.23 f.llilt .95I.OE-01 .1198E-02
.1969E-02
'' ' . 1329E-01
.23 7.156 .95HE-01 .1153E-02
.1923E-02
.H.31E-OL
.1327E-01
.22 f.ibl .Jjltlb-Ul .lllUt-Oi
.1877E-02
.ml3E-Ot
"" " ' .1326E-OL
.22 7.178 ,95lt2E-Oi .106SE-02
.1833E-02
. IJ'-Jbt-UL
.1326E-01
.22 7. 1ST .9542E-01 .1028E-OJ
' . 1789E-02
. 1377E-OL
.1325E-CI
".22 7.196 i95l)3E-Ot .9888E-05
.1360E-01
.132"iE-OL
.22 7.205 .95l)3E-01 .9513E-03
. 1705E-0!
.1 -5E-33
.2253E-02
.'l57b£-33
.28Z3E-OJ
2223E-02
.2131.E-02
.1517E-33
.2753E-D3
.2195E-02
.2193E-02
.H53E-33 -
.2692E-03
. 2163E-02
.2192E-02
.HOSE-OS
.2623E-3I
.21liOE-02 "
.2191E-02
.135DE-33
.2563E-33
.2113£-J2
.2190E-02
.L233E-C3
.2503E-03
. 2085E-02
.2183E-32 -
.12"«3E-03
.2053E-02
.2183E-02
.1201E-OS
.235I.E-33
.2033E-32
- 7 1 fl 7 -" - T >
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (19 of 61)
-------
'PL3T OF'SOLLAPJINGSLOUD CHARACTERISTICS
INDEPENDENT VAUA9LE IS TI.1E OVE* RANGE
0.
13.330
""DEPENDENT VARHBLEi ALL NORMALIZED FOR PLOTTING OM JNIT AXIS
o ;
'SY'IOOL
lax PLDITTEO
MI^I PLOITEO
REMARKS
A
1.3973
0. '
SIZE
r
3.9U7
D. 0. 0 .
SIZ; CDNCENfRATIDM 0£PfH
oo
oo
.S:, OF HD.VAR.
15.000000 '0.
MAX,1IN,INCi OF OiP. VA?.
1.0000000 0.
.3000000)
.10030003E-01
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (20 of 61)
-------
CD
VD
0.}
I
1C
lV I :
I
I
-- .: I - -
I
I
- I i
I
IS
I
I
I
I
I
I
I
_.. --._-.- T
I
I
-'.V-'"', n, i -,
I
I
" " I -
I
I
I
I
I -
I
I
I
I
I
._. ... x _..
I
IY
I
I
I "
I
I
... . . j
I
.2 .»
rr g
r Y 3 s
;; Y
83 r Y C
3 C Y
.;: I 33B
C 2 8 B
C 9
"". T . "" . "CC" ' " 38 ,
CC 63
C 3
C . '
-- - c "
C A A
3 . A
C AA
: 4
S . A4
3 A
C A4
. : ' -.C ' 4
: . *
C A
C 'A
C A
a A
: A
C A
....... c R
; 1
C A
C A
C A
C A
- c A -
C 4
. r r 1 1 I 1 r- ---r-.
.4 .« 1.3
AA :
A A C S
; A
; A A
A
1 r u A
Y Y A A
r A
: Y T - A A '
Y Y »
r A
,38 4 A Y f
.4 84 3 YY
A 3 - - - r
33 rr
B r
3 3 ' fY
s r
88 " YY
8 Y
33 Y
3 -- r
88 Y
B Y
---------- 3 y
83 Y
B Y
) Y
33 Y
~ 3 Y "
33Y
3Y
3r
Y
Y
Y
r
..-r T T r r r r r r T r-.-.r
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (21 of 61)
-------
JE&tN'lOU TJR*' JINULAJKW OF FAFiOF 100-98
"NEK CLOJT C^EATEJ, NTCU « I
TISECI : TX rz rstoE TOP
t.Zlfc JO.00 50.19 1.6M 1.77V
TTMK MASS Fcl»«S
.I.S6SE-01 . 80»'«E-»5 t.
MEHT
5>
-AST
1
J(EX ;LOJO CREATED. NTC15 « t
T(SEC) ' TX TZ TStOE TOP
J.6"«9 la. 01 " "JO.00 " ' Z.9&5 J.90J
ITHK TH»35 ' TiNJS
.97JIE-01 .5875E-OI| 0.
NEXT'
15'.
".4ST"
>2
ILOUO SHEATiJ, NTOL3 » Z
T« rZ TSIO: TO?
33.00 ' 30.09 " "..Jl.! 3.951
TTHX TMOSS TEH15
. ".S65E-01 .".rLOE-03 ' 0.
NEXT
Z05
AST
EJ IIOUO C*E»T£D, STCL) » 3
T
-------
"OUTPUT "SUPPRESSED I>J LOCATIONS "rflTH S3 1ATERI4L PRESENT
SJMMARY ..QF-1 00-30 . DISTRIBUTIONS AFTER 30.03 SEC.
.TOTAL S'JSPESDEO HATEUAL i J'JFT) = ,80<»38E-05
'SUSPENDED MATERIAL IN LONG TER1 GRID UJFTJ = 0.
SUSPENDED MATERIAL IN SHALL CLOU3S (SJFH - .80<»38£-05
TOTAL MATERIAL SETTLED TO BOTTOM ICUFT) = ,i»E-OE
.-OUTPUT SUPPRESSED IV LOCATIONS *ITH .N3 1ATERHL PRESENT
SUSMA.
-------
aorro.i Ac:u>iuLArr3N or too-9o
.1ULJ1PLY BtS»L«YE3 VHJES BY
SOUA9EI 60.00 SECONDS AFT-R 3JMP
lOODi-03 (LEGEND... * * .U7. .01 . a .LT. .0001 0 .LF. .0000011
M
1
2
- 3
__<
y
6
7
3
9
10
11
"17
It
13
1*.
15
15
17
13
20
"31
22
23
2<,
25
26
27
28
29
13
N= 1
00000
oooo
0000
oood
0003
3000
oooo
0300'
0003
0003
0300
0003
OOOO
OOOO
oooo
0303'
0003
0303
30007
0003
OOOO
OOOO
0000"
0300
0300
OOOO
OOOO
0003
OOOO
J
000
9
a
0
g
3
0
vo
g
0
-- '
0
0
0
0
g
0
g
0
0
g
9
3
0
9
0
0
3
*
0
9
3
00001
0
0
'9
g
3
0
' 9
- o
g
. g
n
9
9
c ' ,
0
0
o
0
0
"' 9
0
0
0
g
g
0
0
0
0
0
i)
30000(
a
o
.."'
0
0
0
-o-
o
0
- - -
0
n
0
0
0
o
9
0
9
' o
0
0
9
0
a
0
0
0
g
9
5
)030
0
9 '
;r
' o
9
g
3
1 9'
g
3
3
0
]
)
' 9
g
3
g
3
g
0
3
9
0
3
0
g
o 7
000000000
0 0
o ' 9
0 9
0 ' 9
0. 9
0 0
g ' o
g g-
u g
-- - 1 1
9 0
0 D
g o
g 9
> i ' '
g g
0 0
0 ' 9
0 0
o g
g o
o g
9 9
g g
o g
9 9
9 0
0 0
0 9
0 0
0 9
i
0001
0
0
0
0
a
9
' g
g
g
g
9
9
a
g
9
0
0
0
a
0
g
0
0
0
0
0
0
3
OOOO
0
g
g
0
0
0
0
0
0
0
n
3
0
0
g
0
g
0
0
0
0
0
9
0
3
9
J
g
10 11
00000000
o g
9 0
9 0
0 0
g g
0 0
3 0
g o
0 0
i g
On
U
0 0
o g
g o
3 ' 0
0 0
]n
U
3 0
o g
0 0
0 9
o a
0 0
9 0
0 0
9 0
9 0
3 9
g o
12 IS 1"4
300000300001
g 3 o
g 3 g
0 3 9
0 D 9
0 3 0
0 3 0
0 3 0-
0 3 0
0' 3 0
1
o i o
< 1.0 1.0
* 1.3 3.1
* 1.9 3.1
f 1.3 1.0
o 3 g
g 3 o
0 3 0
3 i g
o 3 g
0 3 0
0 3 0
0 3 0
g 3 o
o 3 g
0 3 0
0 3 0
is i& ir
3000000000000
9 3 9
.999
g 9 9
9 9 9
g o o
000
0 J 0
000
o g g
0 9 0
i.o i.a i.o
I.I 3.1 1.0
3.2 3.1 1.0
1.0 1.0 1.0
0 9 0
o o o
0 0 0
o g o
0 0 9
0 0 0
o g o
0 0 3
o g 9
000
0 0 3
o g o
19
0030
g
g
3
0
9
0
a
0
0
3
f
^
*
9
3
0
3
0
3
0
0
3
0
3
g
19
OOOO
3
9
0
0
g
D
3
g
g
0
0
0
0
0
g
0
9
0
0
3
0
g
g
3
g
0
0
o
20 21 22
000000000000
0 0 Q
0 0 0
0 9 9
0 } 9
999
g 3 g
0 3 D
0 0 9
o o g
o g o
000
g g o
000
D 0 0
000
g g o
On n
u u
0 0 0
00 9
g o g
9 D g
990
g g 9
9 o g
0 0 3
0 0 0
000
o 3 g
g o o
23
3300
9
0
g
g
g
0
0
0
0
0
0
0
g
0
0
0
0
g
0
0
0
0
0
0
g
g
0
o
2
-------
TMUKKESS (CT> OF 100-93 HCJUMJLUE) iv aorron
...1ULII'LT alS'HYEO VtLUES BY .1000E-33 (LEGEND.
" 'H N» 1 2 3 l| J 6 7 8 9 10 11 12 U
_ 1
2
" 3
__>_
s
6
7
8
" 9
13
11
13
U
' 15
16
ir
13
19
20
21
22
23
2V
25
26
2f
28
29
30
0000
0303
0000
0000
0000
0000
0000
0300
0003
0000
0000
0000
3000
0003
0000
OOUO
0003
0000
0000
0003
0300
0000
0000
0000
0003
0000
0300
3003
00 00
0000
0000000000000003301
3390
0009
9003
0393
9 9 0 0
010)
3900
900)
3193
3903
9 0 0 9
399)
9003
000)
0 0 13 3
0303
3303
0999
0003,
900)
9003
3303
0009
000)
899)
3099
0003
g o o o
0900
DOOOC
9
0
0
a
0.
0
D
0
0
0
0
0
0
0
0
9
0
D
9
0
0
0
0
3
9
a
0
9
0
1000001
0 0
0 0
0 9
0 0
o a
0 0
9 0
0 3
9 0
0 3
0 0
3 0
0 0
9 9
0 3
0 3
1 0
0 0
0 9
0 0
0 0
0 9
0 0
0 0
0 0
9 0
0 9
0 1
9 9
3000033001
3 0
0 0
0 0
0 9
0 )
9 9
0 3
0 0
0 9
0 0
0 0
0 3
6 3
0 9
9 9
0 9
0 9
o g
0 0
9 9
o a
9 3
9 9
9 0
9 )
0 9
9 0
0 0
0 3
0000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000031
0 )
o g
0 0
0 3
a 3
0 3
0 3
0 9
0 3
0 3
i- .!»;
* 4
-------
BE3IN LONG TER1 SIHJLATION OF PAT; OF 90-80
~NEH CLOUO
T(SEC)
3. 6". 9
VEH 3LOJD
T(SEC)
if. 855
NEH CLOUD
T(SEC)
~ 6.082
JEH CLOUD
T(SEC)
7.299
NEW CLOUD
SEH CLOUD
J 9.731
1
--1EH CLOUD
;T (SEC)
10.95
NEH CLOUO
MSEC)
NEH CLOUO
TISECI
~ 12.31 ~
CREATES. STCL3 =
TX
30. DO
CREATED, NTCL) «
T<
30.00
CHEATED. NTCL3 =
TX
30.00
J i
CREATED, NTCL) =
TX
20.00
1 1
CREATED, NTCL3 =
30.00
CREATED, NTCL3 =
rx
30.00
CREATED, .1TCL3 ' =
" TX - '
30.00
CREATED, HTCLJ =
TX
30.00
CREATED, NTCL3 =
TX
30.00 -
TZ
10.00
1
TZ
30. 00
I
TZ
30.00 -
I
TZ
20. 00
1
TZ '
30.00
1
rz
30.00
TZ
30.00
1
TZ
30.00
TZ
30.00 '
2.3f>5
Tsm
TSI3E
5.201
rsn:
5.753
TSI3E
6. an
fSIDE
6.253
S?BS
TSIDE
6.1.20
TSI3E
TOP
3.903
TOP
3.973
TOP
3.970
rop
3.973
1 TOP'
3.973
TOP
3.97:
TOP
3.970
TOP
3.973
TOP
3.777
rrn<
.9123E-01
TTHK
.30<.1E-01
TTH<
.301.1E-01
TTH<
.30iflE-01
TTHK'
.3QitlE-01
TTHK
1 - .30I.1E-01
TTHK '
.301.1E-01
TTH<
.30i»lE-01
TTHK
.2229
fMASS
.3733E-0*
TMAS3
.3025E-C3
!^E-03
TMAS3
.5225E-03
TMASS
.5159E-03
TNAS3
;i»66iE-03
TMAS3
.".OUJE-03
TMA33
.33!»3E-03
TMASS
.li*i2E-02
TE1AS
0.
TEHA3
0.
TEMA3
o.
TEHA3
0.
TEHA3
0.
TENA3
0.
TEM43
0.
TEHAS
0.
TEHA3
' " 0.
NEHT
15*
NEHT
265
NEHT
255
NErfT
307
NEHT
353
NEHT
1.09
SEHT
1.60
MEKT
511
NEHT
517
.AST
1
L5>>
-AST
13 5 ~
LAST
'LAST"
537
)
.AST
' - J56
-AST
.AST"
ISO
-AST
;il ---
SUMHARr OF 90-9
' DISTRIBUTIONS AFTiR
15.03 SEC.
TOTAL SUSPENDED MATERIAL (CJFT) = .10203E-02
SJS°E'40iD MATERIAL IN LONG TERM GRID (CJFT) = 0.
SJSr»ENUEO MATERIAL IN SMALL CLOJJS (CJrD = .10203E-02
F3TAL MATERIAL SETTLED T3 30TT01 ICUFT) = .3i»790E-02
3UT»Ur 3UPPIESSEO I>l LOCATIONS
-------
SUMMARY OF 90-38 DISTRIBUTIONS AFTER 30.0) SES.
TOTAL SJSPENOIO HAHUAL (C'JFT) = 0.
SUSPENDED MATERIAL I "I LONG TER^J 3RIO C3JFT) a 0.
SJS°END£D MATERIAL IN SMALL CL3U3S
-------
aorroM «c:inut.Arr3N OF 93-ao
SQUASEI
...ULTIPcY DISPLAYED VALUES BY
" .1 X = 1 2 3 It ' ' 5 5 7
1
2
-- 3
5
~ 6
7
5
3
10
11
" 12
13
i'-t
~ 15
15
17
-18
19
20
"21
22
23
2*
25
25
27
23
29
30
0000001
0300
0000
0000. .
0300
0000
0000
3000
0000
oooo
0300
oooo "
0003
oooo
oooo -
0003
oooo
OOOO"
0300
0003
oooo .
oooo
oooo
0003
0300
oooo
0303
0003
OOOO
oooo
3000
0
0
3
0
0
g
3
0
0
0
0
0
0
9
9
0
9
9
3
0
0
0
0
0
0
0
9
0
0
00
0
0
0
3
0
g
3
0
0
0
0
0
0
0
0
0
0
3
0
a
3
3
1
9
9
3
0
0
0
oooc
0
0
0
0
0
0
0
0
0
9
- o
0
0
0
0
0
- -o
0
g
- a
0
0
0
0
0
0
0
0
9
10003301
0
9
3
9
0
0
3
3
9
3
3
9
0
0
3
3
--B -
3
3
9 "
_ '...-
9
3
)
9
J
3
9
3
3030
0
0
0
9.
0
0
0
0
0
0
g
0
0
0
g
0
0
0
0
0
0
0
0
0
0
i
0
0
oooc
, g
0
0 ,
0
0
0
0
9 "
0
0
0
g
0
0
0
0
0
9
0
0
0
g
0
0
0
0
0
0
0
.1000E-
8 9
10000
9
0
9
0
0
0
8
0
9
9
0
0
0
0
0
9
0
g
g
0
0
0
0
0
0
9
D
0
0
000
9
9
0
9
0
0
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
0
0
9
0
0
0
0
0
03
10
3330
0
0
0
0
0
0
J
0
0
0
g
0
i
9
0
0
0
0
0
0
9
0
0
9
9
g
3
0
0
11
0001
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0
(LEGEND.
12 11
30000003
0 3
0 3
0 0
0 0
0 1
0 3
0 9
0 3
0 0
0 3
0 .01
.01 1.2
.01 1.'
.01 1.2
.01 i.;
.01 l.J
0 .01
0 3
0 0
0 3
9 3
0 9
0 3
0 )
0 0
0 )
0 3
0 0
0 3
. *
lit
OOOO
9
9
0
0
0
a
9
g
0
0
.01
1.2
2.7
2.7
2.7
1.2
.01
0
a
- 9
. 9
0
0
9
9
0
9
0
0
= .LT. .01 . =
15 16 17 13
300000000000000001
0900
0093
0 0.0 0,
0030
0030
0009
0030
OOOO
0 0 li 9
0033
.01 .01 .01 0
1.2 1.2 1.2 .01
2.7 2.7 1.2 .01
2.7 2.7 1.2 .01
2.7 2.7 1.2 .01
1.2 1.2 1.2 .01
.01 .01 .0,1 0
oooo
oooo
oooo
oooo
oooo
0030
0090
oooo
oooo
oooo
oooo
9000
.LT. .0001 0
19 20 21 22
330000003000303C
0333
0030
9 0,09
0090
OOOO
OOOO
9000
OOOO
0330
3900
OOOO
0030
9000
OOOO
0031
3090
OOOO
0033
OOOO
OOOO
9030
0030
0030
9039
0030
0003
0093
0003
3030
23
10301
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
a
a
D
0
0
0
0
0
0
0
.T. .000001)
Z\ 25 25 2T 28 29
300003000000300
0 3 0
300
.00 0
0 0 0
0 3 0
0 0 0
0 3 3
0 0 - D "
0 3 D
0 3 0
0 0 0 "-"
a o o
0 0 0
000
0 0 0
0 9 0
o 9 a
0 3 D
000
0 0 0
0 3 0
000
000
0 3 0
000
000
0 0 0
0 3 0
0 3 0
333000033
3 0 0
3 9 0
3 0 3
3 o a
3 - 0 " " 0
3 0 3
3 a o
3 " 0"' " 0
3 0 3
3 0 3
3 0 ' 0
) 0 3
3 0 0
3 0 0
3 0 3
3 0 0
3 0 0
3 0 3
3 0 3
3 0 3
3 0 0
3 0 0
3 0 ' 0
3 0 D
3 0 0
3 0 0
3 0 0
3 0 3
) 0 3
-'33 31-
00030003
30003
30003
00003
3 0003
"~ 30003"
30003
30033
"" 3 0003"
30003
30003
- 00003
30D03
30003
"""" 00003 "
30033
30003
30003
30003
30003
30003
30033
00033
30003
30033
00033
3 0003
30003
3 0003
3 0003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (28 of 61)
-------
rm:
M
i
2
3
i,
5
" 6
7
3
9
10
11
12
13
11.
15
_i&
i;
" 13
13
20
21
22
23
2-
25
25
27
29
23
30
KNEiS <*TI 3F 90-8
HULIIPLY DISPLAYED
0000000000
OOOO 0
OOOO 3
OOOO 0
0003 0
OOOO 0
0003 0
0000 0
oooo q
0000 0
OOOO J
OOOO 3
OOOO 0
OOOO 0
OOOO 9
0303 0
OOOO 0,
OOOO 3
OOOO 3
OOOO 3
0300 1
0300 3
OOOO 0
OOOO 3
OOOO 3
0003 0
OOOO 3
oooo a
0003 3
OOOO 0
03000000
0 3
0 0
1) 0
0 0
0 0
3 0
0 0
0 0
D 0
1 3
0 0
J 0
3 3
0 0
0 0
o g
3 0
3 3
3 g
0 8
0 0
0 0
0 3
9 0
0 0
t 0
0 0
0 0
o a
0 . ACCUMJLATE3 ON BOTTOM,
VUUES BY .1000E-OJ (LEGEND.
; & r a 3 13 11 12 is
0000000000000000000330000000000003
3 0 0
9 0 0
9 0 0
0 0 0
3 0_ 0
0 0 0
3 g g
3 0 0
0 0 0
3 D 9
3 0 0
g o o
] 0 0
8 0 0
poo
o a o
3 0 0
3 D 0
0 0 0
309
3 o g
9 0 0
3 D 0
0 0 0
303
3 i 9
9 D 0
3 0 0
3 0 0
0
1
0
9
0
0
9
0
0
0
0
0
0
a
0
0
9
0
a
9
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
9
g
0
0
0
0
0
0
0
0
0
3
0
0
0
0
9
g
0
0
3
9
9
9
3
0
3
0
0
0
3
0
0
0
3
0
g
0
3
3
9
3
0
0 0
0 0
0 0
0 0
11 D
D 0
0 3
0 0
0 0
0 0
0 0
0 *
0 . »
0 »
3 >
0 «
0 0
0 0
0 0
0 0
0 0
0 3
0 0
0 0
0 0
0 0
0 0
0 0
0 0
3
3
1
3
3
3
)
3
3
3
.5k
.55
.5!
.55
.5*
3
g
i
i
9
g
i
3
1
1
3
3
30.
0000
0
0
0
0
0
. 0
0
0
0
0
.55
1.2
1.2'
1.2
.»
9
0
0
0
0
0
a
0
g
0
0
0
00 SE331US Hf.
* .(.T. .01
15 16 IT
0000000000000
0
0
a
0
0
0
0
0
0
0
55
1,2
1.2
1.2
.55
0
13
0
11
0
0
0
0
9
0
0
0
0
0
0
0
0
0
g
0
0
0
.55
1.2
1.2
1.2
.55
0
0
0
0
0
0
0
a
0
0
a
0
3
0
0
0
0
3
3
3
9
3
.51.
.55
.55
.55
.51.
9
0
0
0
0
9
0
3
0
3
0
0
TE*
19
0000
0
9
0
0
3 .
)
0
3
0
0
t
..-
t
f
f
0
0
0
0
0
3
3
9
3
0
0
3
OJ1I>
.UT
13
OOOO
0
3
9
3
0
3
3
9
0
0
0
0
3
0
9
0
0
0
9
3
9
0
0
3
0
9
0
0
9
. .0001
20 21
00000300
0
0
0
0
0
0
0
0
9
0
0
0
D
0
0
0
g
0
0
g
0
0
0
0
0
9
0
0
0
3
3
0
0
0
0
q
3
0
0
0
3
0
3
3
3
0
9
)
0
3
3
0
3
3
0
3
0
0
22
OOOO
0
a
0
0
0
a
0
0
0
0
0
0
0
3
g
0
0
3
0
0
0
3
3
0
3
3
D
0
0
« .Lf. ,
23 21.
00000001
g
0
0
0
0
0
0
0
0
9
0
9
0
9
0
P
D
0
0
0
0
0
0
0
g
0
0
0
g
3
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
1,
,0000011
25 26
300000003
3
g
9
3
0
0
3
3
0
0
o -
3
0
3
g
g
0
0
0
3
0
0
g
0
0
0
0
0
0
0
0
9
0
0
3
g
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
D
0
0
Z' 28 23
0033000000000
3 0
3 0
3 D
3 3
3 0
) 0
3 0
3 ' '0
1 0
3 0
3 ' 0
3 0
3 0
) 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
1 0
1 0
3
0 "
0
3
- li-
ft
0
o
3
0
- o -
3
0
3 --
0
0
- j
3
0
3
0
0
9
9
3
0
0
0
0
33 31-
1000033
30033
30033
30003
30003
"00003
30003
30003
00003"
3003)
30003
30003"
30003
90003
30003 ~
30003
30003
30003
30003
00003
30003
30003
30003
30033
00003
30001
80003 -
00003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (29 of 61)
-------
3ESIN LONG TER1 SIMJLATION OF FATE OF 80-30
1
"NEH CLOJO CREATED, NICLJ
TISEC) TX '
3.01.3 30.09
rz rsm
JO. DO 2.353
TOP
3.951
TTHK TI1ASS TEMAS
.".853E-OL .1010E-OJ 9.
NEHT
15 '4
'.AST
1
EK CLOJO CUATiO, 1TCL)
TISEC) TX
1..S6J 30. ill
rz TSI3£ TOP
30.01 14.3.! 3.984
TTriK TMASS TEMAS'
.16UE-01 .82UE-03 0.
NEHT
20;
NEK CLOUD CREATE-), NTCLJ
VD
00
6.082
"NEH :LOJD
7.399
NEH jLOUD
NEH CLOUD
TISEC)
' 9.731
NEH ;LOJO
' TISEC)
13.95
NEH :LOJO
TISEC)
' 12.15
NEH CLOJO
TISEC)
TX '
3u.OO
CREATE3, NTCL3
TX
30.00
J i
CREATED, NTCL)
r< '
30.09
CREATE}, NTCL)
TX
30. 03
CHEATED, NTCL)
IX
30.09
CREATED, NTCL3
rx
30.00 '
C*EAT£0, NTCL)
rx
70.00
rz
30.00
TZ
30.09
= 1
rz "
30.00
= 1
rz
30.09
rz
39.00
= 1
rz
30.90
= 1
rz
30.09
Tsn-
5.201
TSI3E
5.753
Tsm
6.931
TSI3i
TSI3E
6.365
Tsnr
6.4?0
TSDi
6,>>24
3.99V
TOP
3.98V
TOP'
3.984
TOP
3.9SV
rop
3.984
TOP
J.98i
TOP
3.773
TFHK TMA35 IZH\S
.1618E-OL .1294E-OZ ' 0.
TTHK rMA55 TEHAS
2 o.
TTHK T1A53 TJMAS
.1613E-01 .1681E-02 0.
TTHK rMASJ TEMA3
-.1613E-01 .1657E-OZ 0.
TTHK TMA33 T£N»S
.1613E-01 .ISilC-dZ 0.
TfHK TMA33 T
.1619E-01 .1143'iE-gZ 9.
TTH< THASS T
.2212 .1237E-01 0.
NErfT
NEUT
tor
NEHT
35J
NEXT
1.0?
-AST
'235
-AST
!56
1*60
NEdT
511
NEXT
517
-AST'
-AST
158
-AST
>39
-AST
tiO
-AST
III
S'JMHARY OF 30-39
DISTRIBUTES AFf£R
15.03 SEC.
TOTAT. SUSPESOED MATi^IAL ICUFTI = .10367E-01
SJSPENDEO MATERIAL tN LON3 TER1 JRIO C'JFTI = 0.
SJS'ENJEJ MATERIAL IN S1ALL CL3JDS (CJFT) = .10!=7i-01
TOTAL MATERHL SETTLED TJ BOTT3M (CJFT) - .12129E-01
DJTPUT SUPPRESSED IH LOIATIONS HUH X3 1ATERHL PRESENT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (30 of 61)
-------
SUMHARY OF 80-30 CJISTRI BUT IONS AFTER 30.00 S£C.
'TOT4L SJSPEN3£0 MATERIAL JCJFT) = 0.
SUSPENDED MATERIAL IN LONS fER1 GRID CJFT! a 0.
SUSPENDED MATERIAL IN SMALL CLO'JJS (CJFD = 0.
TOTAL MATERIAL SETTLED TO B3TTOM (DUFTI =
.OUTPUT 3UPPIE3SEO l^ LOCATIONS HITH ^3 MATERIAL PRESiNT
FOR 3B-30 " TERMINATED ftT 30.00 SiS. ELAPSED TIME. .. MATERIAL ' SETTLED TD% BOTTOM
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (31 of 61)
-------
sorro.1 4Cjl>iuLAriON OF j)-30
.1JLTIPLT DISPLAYED VUJES 3V
SQ'JA 30.00 SE:ON3S AFT£R 3JMI>
.1000E-92 ILEJENU... f » .LT. .01 . * .LC. .0001 0 » .LT. .0000011
o
o
~ M 1> 1
1 0000
2 0000
~" 3 0000
i^OOOO
5 0000
6 0000
7 0000
3 0000
~ 9 0000
10 0000
11 0000
' iZ 0003
13 0000
1*» 00 00
15 0000
16 0000
17 0000
13 0000
19 0000
20 0000
21 0000
22 0000
23 0000
Zli OOOD
25 0000
2o 0000
J7 0000
23 OO'bo
23 0000
TO 0000
t
000000
0
0
0
0
0
__5
0
0
0
9
0
0
0
0
0
0
0
1)
0
0
0
0
3
0
g
0
0
0
g
3
00001
0
0
_0
.,- ....
0
3_
0
0
0
0
0
3
0
3
9
0
0
0
0
g
g
0
3
9
g
3
0
9
0
i
3000
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
g
0
0
0
g
0
0
0
0
0
0
0
5
0000
9
0
9
3
0
)
3
3
3
0
g
0
0
g
3
0
3
g
g
g
9
J
0
0
3
0
0
0
g
b
00'
0
0
0
3
0.
0
0
0
0
0
0
0
0
0
g
g
0
0
0
0
II
g
g
9
0
0
0
0
0
7
OOOOOOi
0
0
0 ^
0
0
g
3
a
0
0
g
0
0
g
0
0
0
g
D
0
0
0
0
9
9
9
0
0
0
3
OOOi
3
0
0
0
0
0
0
0
0
0
g
9
0
0
g
a
0
a
g
g
g
0
a
0
0
0
0
g
0
9
0000
i
g
0
0
0
0
g
0
0
0
0
0
0
0
0
a
0
0
0
3
0
g
0
0
g
o
g
9
0
13
0000
3
g
3
0
g
g
g
g
3
0
0
3
0
0
3
0
0
0
3
3
0
g
g
0
3
0
9
3
0
11
OOOI
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
30001
0
0
0
0
0
0
0
0
0
0
g
.01
t 0 1
.01
.01
.01
0
g
0
0
0
0
0
0
0
g
g
0
0
13
30001
3
9
0
3
3
3
3
3
J
3
.01
.73
.72
.72
.70
.01
0
3
)
3
3
D
3
3
3
3
3
3
m is
300030001
3 0
0 0
0 9
3 0
0 0
0 0
o a
g o
0 0
a o
.01 .01
.72 .72
l.l 1.1
1.1 1.1
.72 .72
.01 .01
0 J
0 0
g o
0 0
o g
g g
0 0
0 0
0 0
0 ll
0 0
0 0
16
30001
3
0
0
0
0
0
0
0
0
0
.01
.72
1.1
1.1
.72
.31
0
0
t
a
0
9
0
0
a
0
0
0
if
30001
3
9
9
0
0
0
0
0
9
a
.01
.70
72
.72
.72
.70
.01
0
0
9
0
0
0
g
0
0
3
3
0
18
30030
0
0
0
0
0
3
0
0
0
0
0
.01
0 1
.01
.01
.01
J
0
0
o
0
0
0
0
g
0
0
3
0
19 20 21
OD3000330000
9 3 0
900
000
> . i J '
3 0 0
0 0 0
0 3 0
0 9 0
0 0 3
3 0 3
000
0 0 0
3 0 0
J D Q
0 0 3
9 a 3
0 3 0
3 D 3
000
0 0 3
309
000
3 0 0
0 0 0
0 0 0
3 3 3
3 0 9
3 0 0
3 0 J
g o o
22 23
0030300C
3 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 D
0 0
9 D
o o
0 0
g 3
0 0
3 0
0 0
0 0
0 D
0 0
0 0
3 0
0 0
0 0
0 9
0 0
2< 23
J0000003C
3 3
D 0
D 0
3 3
0 0
0 0
0 3
0 0
3 3
0 3
0 3
0 3
0 0
o g
0 9
0 0
0 3
0 3
J) 0
0 3
0 . 0
3 g
0 0
g g
3 3
0 0
0 3
3 3
0 0
2& Z' 28 23
1000000330000000
0)00
0300
0303
0303
o 3 ~ n - o
0)03
0300
0 3 a"" D
0)03
0000
0 - 3 0 - - 0
0300
0 ] Q Q
0303
0300
g 3 o g
0)00
0)00
0)00
0)00
o 3 a g
0)00
0300
0309
9303
0303
0303
0)00
0 3 0 g
33 3l/~
00030003
30003
30003
30003
30003
30003
)0033
30003
"30003
30003
30003
J0003
30003
30003
' 30003 '
30003
30003
30003
30003
30003
30003
90003
30003
30003
30003
30003
30003
30003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (32 of 61)
-------
r«l;
-------
BEJIN LONG TEK1 SIMJLATION OF FATE OF .LT. 30
T(SEC)
I..565
HEH CLOUD
' T(SECI
5.052
SEH CLOUD
T(SECI
" " T.298
NEH 3LOUO
T (SEC)
J.51*
60
511
NEHT
'.AST
1
!35
-AST
LAST
'LAST
S5S
.AST
-AST
in
-AST
Ul
OF .LT. 30 OISTHIBUTIONS AFfiR
15.09 StC.
TDTAL SJ3PEVDED HATi^IAL CUFTI *
SUS'ENDiD MSTE^IAL IN LOUG TER.1 G<10 CJFT) = 0.
S'JSPEMOED MATHIAL IH SHALL 1.LOJDS CJ'FI = .131171-11
TOTAL MATERIAL SETTLED TO BDTTDH «CUFT) = .38113E-03
OUTPUT SUPPRESSED II LOiAItONS /(ITH N3 1ATERHL PRESiNf
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER 30.03 SEC.
TOTAL SJSPE^OEO HATJIIAL (CJFTI « .U117C-01
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (34 of 61)
-------
'SUSPENDED MATERIAL H SMALL CL3J3S C3J-TI a 0.
TOTAL MATERIAL SETTUSJ TO 30TTOH (CUFT) = .3811SE-03
OUTPUT SUPPRESSED IN LOCATI3NS KITH N3 1AVERIAL PRESENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER i»5.0) SEC.
TOTA'L SJSPE1QED /MATERIAL ISUFT) = .13117E-01
SJSPENDEO MATERIAL IN LOM3 TER1 3^13 .OJF.T) = .I31ir£-01
SUSPENDED MATERIAL IN SHALL CLOJ3S tCU=TJ = 0.
fOTAl. MATERIAL SETTLED TO 83TTOS iCJFD = .381UE-03
3UTPUT SUPPRESSED IiH LOCATIONS WITH N3 MATERIAL PRE3EMT
SUMHftRY OF .LT.'jb' OISTRIBUFIOMS 4Ff£R 60.00 SEC.
i-1
g TOTAL SJSPENOEO MATERIAL tCUFT) E .13iirE-OI
SUS3£N3EO MATERIAL IS LOM3 TER1 GRID J3JFD s .L3117E-01
.. SUSPENDED-MATERIAL;IN SMALL'CLOJOS (CUFT) = Q9
"-T3TAL MATERIAL SETTLED T3 B31TOf4 (CJFT) = .38113E-03
OUTPUT SUPPRESSED IN LOCATIONS WITH NO MATERIAL PRESENT
SUMMARY OF .LT. 30 01SfRIBUTIONS AFTER 75.03 SEC.
/TOTAL SJSPEN1JED MATERIAL . CCUFT) = .13117E-01
S'JSPENOiO MATERIAL EN LONG-TERM' GRID (DJFTJ = .L3117E-01
SUSPENDED MATERIAL IN SMALL CLOUDS C5J-H = 0.
TOTAL MATERIAL SETTLES TO B3TTOM <3JFTI = .3811JE-03
,OUTPUT SUPP^ESSiO IN LOSAriONS HITH N3 MATERIAL PRESENT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (35 of 61)
-------
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER 90.00 SEC.
TOTAL SJSPENOEO MATERIAL (CUFT) = .13H7E-01
SUSPENDED MATERIAL IN LONG TER1 GRID CUFT) = .L3117E-01
SUSPENDED HHT£^IAL IS Sf-ULL CLOJJS ICJFM = 0.
TOTAL MATERIAL SETTLED TO BOTTOM (CJFT) = .381UE-03
OUT.°UT SUPPRESSED IM LOCUTIONS WITH NO 1ATERIHL PRESENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER 105.00 SEC.
TOTAL SJSPESOED *AT£*IAL CCJFT) = .13117E-01
SJSPES3iO 1AT£RIftL IN LON3 TER1 GRIO CUFT) = .
<3iQ HftTWIftl H SlfiLL CLOJOi !CJff! 5 5;
M4TtRl4L SETTLSD TO D3TT01 (LJJFT) = ,38113£-03
SUPP?ESS£0 I>l LOIAriONS ^ITH NO lArERIAL PRESENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFfiR 120.OD SEC.
TOTA.L SJSPEMDED MAT-RIAL (CJFT» s .13117E-01
SUS°ENO£-3 MATERIAL IN-LONG TERM 3RIO I3JFTJ - .13117E-01
MSTEXIAL IM SMALL CLOJOS (DUFT) * 0. '-'
TOTAL MATERIAL SETTLED TO 33TTOH (CJFT) = .3811JE-33
OUTPUT SUPPRESSED 1^ LOCATIONS WITH NO MATERIAL PRESENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER 135.OJ SEC.
TOTAL S'USPESDED MATERIAL (CUFT) = .13117E-01
SUS?ENOEO MATERIAL1IN LONG TERM GRID dUFT) = .I31ir£-01
SJSPENOiD M4TE3IAL IS SflALL CLOJ3S ISJ^TJ =0.
TOTAL MATERIAL SETTLED TO BOTTOH (CJFT) = .38113E-03
OUTPUT SUPPRESSED I* LO;ATIONS WITH NO MATERIAL PRES-NT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (36 of 61)
-------
SUM1ARY DF .LI". 30 DISTRIBUTI3NS AFTER 150.03 SEC.
iTOTAL SJSPENDED MATERIAL ICUFT) - .13117E-01
SJS?ESO£0 14TERIAL IN LONG TERM GRID CJJFT) = .L3117E-01
SUSPESDED M4TERIAL IX SMALL CLO'JOS (DJFT» = 0.
TOTAL MATERIAL SETTLID TO 3DTiT3!1 ICJFT) = .381UE-03
OUTPUT SUPPRESSED IN LOCATIDNS WITH NO 1AIERIAL PRESENT
FALLO= .OOQ5DO
o
Ln
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (37 of 61)
-------
JONJENT^HTIONS OF ,LT. BO
..1ULIIPLT DISPUTED VUUES
(VOUH£ R4M3I IN IH: CLOU)
BY .1000E-02 ILESENO..
153.00 SECONDS AFTER
< .LT. .01 . * ..T. .0001
H N- 1
1 03000
2 OOOO
- 3 OOOO
it OOOO"
5 0300
' 5 0300
7 0003
3 OOOO
900 00
10 OOOO
11 OOOO
12 OOOO
13 OOOO
lit 0003
1? 000 D
la 0300
17 OOOO
13 OOOO
19 0003
20 OOOO
21 OOOO
22 OOOO
23 OOOO
21. 0003
25 OOOO
25 0300
27 OOOO
29 OOOO
29 0300
30 OOOD
2
oooc
0
0
9
0
3
9
]
- g
0.
_
o-
- -
9
0
0
0
3
3
o
3
0
0
Q
g
3
3
3
3
0
3
3
3
)OOOI
J
r
3
0
0
0
0
g
Q
Q
. 3 '
r -
D
0
0
0
3
3
- -o
3
3
3
g
0
3
0
0
0
'o
3
3
k i
330000030
0 0
0 3
, a g .
0 3
0 .3
g 3
g 3
0 0
On >
u
: 3 0
J
0 3
a o
0 3
0 0
o g
0 0
0 3
3 3
0 0
0 0
0 3
0 3
3 0
0 9
g 3
3 3
g o
0 1
0 0
6
oooc
g
0
0
3
0.
0
g
n
0 i
0
0
0
i
0
0
g
0
0
g
0
3
0
0
0
0
0
0
r
10000
g
i
0
0
0
0
3
o
g
Q
0
0
0
0
g
g
g
0
g
0
g
0
0
g
0
0
0
0
g
9
oooo
g
3
0
0
g
3
o
.g
.
,
.
.
0
3
0
Q
0
g
g
9
0
0
0
0
9
OOOO
g
3
g
9
0
0
g
n
«
*
*
,.
*
.
g
g
0
3
0
0
0
0
0
0
19
3)31
0
9
0
3
3
3
g
g
*
*
f
f
t
»
I-
*
g
3
3
3
0
0
3
3
0
11
3000
0
g
0
0
g
0
g
t
.01
.05
.06
.06
.05
.01
t
g
0
0
0
g
0
0
0
3
I I.C. J
12
OOOO
0
0
0
g
g
3
.01
.09
.27
.31.
.31.
.27
.03
.01
0
0
0
0
3
0
3
0
CHU *
u
000)
3
9
.0
3
3
3
.05
.27
.73
1.9
1.3
.79
.27
.115
3
J
1
3
3
3
1
3
"u
30001
0
3
a
3
0
3
.05
.31.
1.0
1.3
1.3
1.0
.31.
.05
3
0
3
0
g
3
3
0
» . u i .
15 16
)0300000<
0 0
0 0
- ,0 0
o g
o g
0 3
.06 .06
.36 .31.
1.0 1.0
1.3 1.3
1.3 1.3
1.0 1.0
.36 .31.
.06 .06
g g
g g
0 0
0 0
0 0
0 0
9 0
0 0
y 1
17
30001
j
0
3
0
0
0
.05
.27
.79
1.3
1.0
.7*
.27
.05
0
0
a
0
0
0
3
0
13
3000<
9
D
9
3
9
9
.01
.09
.27
.31.
.27
.03
.01
0
9
0
0
3
0
0
g
* . < <
19
)0300(
0
0
g
9
0
0
Q
t
.01
.0;
.05
.05
.09
.01
f
3
0
9
0
0
0
0
3
0
> « U U U L u '
20 21 22
3000900030001
0 3 3
g g g
0 9 0
0)3
0 9 9
0 9 3
099
o g o
T fl
J U
« . g
* . .
* « .
* * .
» *
* *
< . .
* . 0
.30
990
g Q g
0 3 0
o g o
0 9 g
D 0 9
000
0 0 0
030
000
k *. 1
23
30001
0
0
3
3
0
0
3
g
g
0
3
3
0
g
0
0
0
0
0
n
g
0
g
0
0
0
0
0
0
21. 25
1000000
0 3
0 0
3 3
3 3
0 0
0 0
3 3
0 9
0 0
9 0
0 0
0 3
0 0
0 0
0 3
0 0
g o
0 0
0 9
o g
o g
0 3
9 3
9 0
0 3
9 9
0 0
0 3
0 0
26 2
0000000
9
0
0
0
0
0
0
g -
g
I)
3
g
g
g
g
g
0
0
G
g
0
g
0
0
0
0
0
0
f 28 29 3
330000000000
3 0 3
3-0 o -
3 0 3
3 0 0
3 0 " "9
3 13 0
3 0 3
3 ~- Q g
303
3 0 0
j- g 3
3 0 9
3 0 0
3 Q " 0 "
3 0 9
3 0 9
3 0 0
3 0 0
309
l n n ~
J U U
909
3 3 3
3 0 3
3 g o
3 g 3
3 0 0
3 0 3
3 0 0
3 a 9
13 ~3l~"
13003)
3003)
90003 -
3000)
3000)
S0003~
30003
9 000)
3 0003"
30003
90003
3 0003 ~
30003
90003
3 000 J
30003
30003
3000)
3000)
3000)
00033
9000)
3000)
3000)
3003)
3000)
30033
3000)
3 0033
9003)
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (38 of 61)
-------
* .
M '
1
2
3
d
5
b
7
9
10
i ,
11
1 9
1C
13
* [.
m
15
15
17
1 3
19
20
21
22
23
a*
25
26
ZT
29
29
3J
1JL t if
J» 1
00000
0003
0003
0000
0000
0300
3000
00 00
0000
0000
00 00
03 00
0000
m n i
U J U J
00 00
0000
0000
00 00
ODOO
0000
0000
0000
0000
0000
0000
0000
0003
0000
0000
0000
LT IJA
2
00300
0
3
g
g
0
3
Q
0
g
J
0
0
Q
0
0
0
g
3
g
d
g
0
0
g
0
0
9
3
b'LAT LU
3 l>
00000000
0 0
3 9
9 9
0 0
g o
} 0
0 9
g g
0 0
h n
u u
g o
3 0
On
u
9 g
9 0
9 0
0 0
0 9
art
\t
9 0
9 3
3 0
0 0
0 3
0 0
3 0
9 9
0 9
3 0
VULU
7
0000
g
0
9
g1
i
0
J
Q
Q
4
J
0
0
3
3
3
g
0
3
3
9
9
3
g
3
Lb t
a
000(
g
0
g
g
0.
a
g
9
\
0
Q
0
0
0
0
0
g
0
0
0
0
0
0
g
0
0
0
JT
1
1001
9
0
9
0
g
g
g
0
0
0
0
0
Q
0
0
0
D
0
0
0
0
0
0
9
9
0
1. UUU
3 )
000000001
9 g
0 0
g g
o g
9 0
g g
On
U
g g
o g
3« 8 3*3
3*9 3*8
3.3 3.3
3.8 3.3
30 * a
* 0 >i» 0
9 3.8
On
J
0 0
0 0
0 9
g g
g g
9 g
0 0
9 0
8 0
g o
ILtbl
10 11 12
3000000000001
g g 0
g o g
i g o
g g g
o g g
g o g
9 3.6 3.8
3.8 3.8 3.3
3.* 3.1 3.9
3. 9 3.8 3.6
3.3 3.8 3.8
30 -1 J
.3 3 t ft J.O
3 03*6
o g g
o o g
3 0 0
000
9 9 0
3 9 9
9 0 0
3 0 0
1NU. . +
IS l
-------
tHi: .LT. .gggOOll
21 22 23 Z't
30000000000001
3 g 9
9 9 9
g 9 g
g g g
g g g
3 g 9
9 9 9
999
3 9 9
9.1 9 g
3.1 9.1 9
9.1 3.1 9
9.1 9.1 9
3.1 3.1 9
9.1 9.1 0
9.1 o g
9 9 0
o o g
g g o
g o g
3 g g
990
3 g g
3 g o
990
093
399
30001
g
3
g
3
g
9
g
9
9
a
0
g
g
g
g
g
9
0
9
9
9
9
9
9
0
g
g
9
3
25 25 2' 26 23 33 31
300000000033000000000030003
39)99 30033
39)99" 30003
00193 30003
3 9 ) g 9 30003
g g ) 9 g ~~ 00003
g g 3 g 9 30033
39)99 30003
9 9 3 -g - 0 " a 0003
39)99 30033
99399 30033
g o -) O~B 30003
39)00 30003
99390 30003
30)09 )0033
9 0 3 0 g 90003
99)00 30003
00)09 30003
9 9 ) 0 3 30003
99)99 90003
9 g ) 9 0 30003
3 9 3 9 ' 3 3003)
90)03 90003
00)03 30003
9 0 ) 0 9 30003
9 0 ) 0 ' 0 30003
3 0 3 g 3 30003
30)09 30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (40 of 61)
-------
aorroi ojuiJuanoN OF .irJ'ao PI;JFT^U
. .. fJLTIPir DIS'L«VEO VXLUES 31 .I0u0£-
~H1=iZJiiSSr t 1
1
2
- 3
l>
5
6
t
9
" 9
13
11
~ 12
13
1".
15
i
ir
13
19
20
21
22
23
-zi,
25
25
27
28
29
JO
oooooo:
oooo
0003
oooo
oo oo
oooo
oooo
oooo
oooo
3000
oooo
OOOO ""
0003
0003
oooo
oooo
0100
oooo
oooo
oooo
0003
0003
oooo
oooo
oooo
oooo
oooo
oooo
oooo
0003
I0000003C
0 0
9 0
0 9
0 0
0 0
J J
0 t
0 0
0 9
o o
o o
0 0
ft 3
g o
9 3
0 9
0 9
g o
0 0
0 0
0 3
3 0
0 0
ti 3
9 9
0 9
0 0
0 0
3 0
10000000
o o
0 1
t 0
0 3
0 3
9 i
0 )
g 9
0 0
0 3
0 )
0 >
0 9
9 1
o o
0 )
0 0
0 1
0 0
0 0
0 3
9 0
0 0
0 0
0 0
b o
0 0
0 0
0 0
000000000000000
o o g o
oooo
1009
oooe
0. 0 0 0
0900
oooo
0000
oooo
0 0 0 ' 0
0 0 '-9 0
0 0-9 9
0 0 ' 0 9
o o --o o
o o ' o o
II 9 ' 0 9
o g o o
0999
9000
0009
0909
g o o o
oooo
0900
oooo
oooo
0930
0009
0009
3".
19
3030
9
J
g
9
0
9
0
0
1
' 0
o
' 0
0
6
0
o
0
0
9
g
3
3
g
0
0
0
g
g
3
SQUAKtl HI
ILEGtND... f
11 12 11 111
0000000
0 0
0 0
0 9
0 0
0 0
0 0
0 0
id o
0 0
0 0
0 9
9 0
' 0 0
0 0
o g
0 0
0 9
0 0
Q 0
0 3
0 0
0 0
9 0
9 0
9 0
0 0
0 0
00030000
0 0
3 0
3 0
3 0
3 0
3 0
: 1 g
' 3 0
3 0
0 0
' 1 -0
1.1 2.1
l.L 2.1
1.1 2.1
3 0
9 0
3 0
g o
3 0
! 9
3 0
9 9
3 9
) 0
3 9
3 0
3 ' 9
.00 SE30N3S AFTER
= .LT. .01 . a
15 16 If 19
3000
0
0
0
0
0
0
' 0
0
0
' 9
' 0
2.1
2.1
0
' 0
0
11 0
0
0
0
g
0
g
0
0
0
OOOOi
0
0
0
g
g
0
0
0
0
0
0
2.1
2.1
2.1
0
0
0
o
- o
0
0
0
0
0
0
6
0
00000
0
0
0
3
0
0
0
'9
9
0
0
1.1
1.1
l.t
1.1
0
9
0
0
0
0
0
0
0
g
0
0
9
oooo
9
0
0
9
9
3
0
0
0
3
9
-9
9
g
9
g
g
9
' 9
' 0
g
g
g
9
3
9
0
0
.Lt
13
OOOO
0
9
0
3
0
0
0
o
0
g
9
1 g
0
-j
g
0
0
9
3
0
9
9
9
0
1
3
9
3
0
. .0001
29 21
0001
0
9
9
0
0
0
0
0
'-0
0
0
0
- o
0
0
0
9
g
g
g
9
g
0
0
0
0
9
9
9
30000
g
g
3
g
9
0
0
0
3
- o
' 0
' 3
3
1 g
9 '
'- 0
9
' 9
9
g
0
9
0
3
9
3
g
0
3
0
22
OOOO
0
0
0
0
0
0
0
0
0
0
0
0
0
' 0
o
0
g
0
g
g
g
0
0
0
0
0
3
g
j
i .Lf. .0000011
23 2'4 2; Z-> Z> 26 29 33 31
OOOO
0
0
g
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
3
0
0
000000000
3 3
0 3
g 3
g g
g o
o g
0 0
0 0
g o
0 0
0 3
o g
9 0
o g
0 0
0 0
0 9
g g
9 3
g. g
0 0
0 9
g o
D 3
0 0
3 g
0 0
g g
Q ]
0000033000303300000003
9)03 30003
9303 30003-
0100 00003
0300 90003
0 3 0 ' g 30003
0309 30003
0)03 90003
o i g " - g - 30003 ~
g 1 g g 30003
0)03 30003
0 3 - 0 ~ 0 30003
0 3 0 3 30003
0303 30303
0)00 30003 -
0300 00003
9300 30003
0)00 30003
0300 30003
0)00 90003
0300 30003
0)09 30003
0)90 30003
0 ) 0 g ' 30003 '
0303 30003
0103 3000}
0)0] 30033
0)90 30033
0300 30003
9)03 30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (41 of 61)
-------
SJMMARY OF .LT.- 30 DISTRIBUTIONS AFTER 165.OJ SES.
TOTAL SUSPENDED,MATERIAL (CUFT) a .1J117E-01
SUSPENDED MMEUAL IN LONG TERM GRID UJFT) = .I3ltri-01
SUS^NDEO MATERIAL IN S1ALL CLOUDS CJFT) = 0.
TOTAL MATERIAL SETTLED T3 33TT01 (G'JFT) » .381HE-03
OUTPUT 3UPPIESSEO IN LOCATIONS HITH NO MATERIAL PRESENT
"SUMMARY DF .LT. 30 DISTRIBUTIONS AFTER 180.03 SE3.
I
TOTAL SJSPENOEO MATERIAL CUFT) = .131UE-01
SJS'tNDEO MATERIAL IN LONG TER1 GRID CJFTI = .13117E-01
SJSPE.S050 MATERIAL IM SMALL CLOUUS (CUFT) = 0.
TOTAL MATtRIAL SETTLED TO BOTTOM (CJFTI = .381UE-03
OUT»UT SUPPRESSED IS LOCATIONS HITH NO 1ATERI4L PRESENT
SUMMARY-3F :.LT. 30- DISTRIBUTIONS AFTER 195.03 SEC.
TOTAL SJSPESDcO ^MATEUAL (CJFT» = .13117E-01
SUS^EMOEO MATERIAL IN LONG TtRM GRID CJFT) = .L3117E-01
SUS?ENO£0 MATERIAL IN SMALL CLOUDS CUFTI = 0.
TOTAL MATERIAL SETTLED TO BOTTOM (CJFT) = .J8115E-03
OUTPUT SUPPSESSEO IN LOCATIONS HITH NO 1ATERHL PRESENT
SUMMARY OF .LT. 30 DISTPIBJTIONS AFTER E10.03 SEC.
TOTAL'f'JSPEf
-------
SUMMARY OF .LT. 30 01STRIBUTIONS AFTER 335.00 SEC.
TOTAL SUSPENDED MATERIAL ICUFT) = .13117E-Q1
SUSPENDED MATERIAL IN LONG TERM 3RID OJFT) = .IJ117E-01
SUSPENDED MATERIAL IN SMALL CLOJDS (JJFD = 0.
TOTAL MATERIAL SETTLED 13 3DTT01 (CJFT) = .38113E-03
OUTPUT SUPPRESSED IN LOCATIONS WITH NO MATERIAL PRtSENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER ZkQ.OJ SEC.
TOTAL SJSPESDED MATERIAL ISUFT) = .1311/E-01
SJS'ESOED MATERIAL IN LOMG TERM GRI3 CJFT) = .1J1UE-01
SJSPESDEO MATERIAL H SMALL CLOJQS (CJrD = 0.
TOTAL MATERIAL SETTLED TO BOTTOM (CJFD = .3811JE-03
O'JT'UT SUPPRESSED 1^ LOCATIONS WITH ND MATERIAL PRESENT
SUMMARY OF .LT. 30 'DISTRIBUTIONS AFTER 255.00 SEC.
TOTAL SJSPESOEO MATERIAL (CUFTJ s .13117E-01
SUSPENDED MATERIAL IN LONG TERM SRID CJFT) = .1311TE-01
SUS°ENDED MATERIAL IN SMALL CLOUDS 13JFTI = 0.
TOTAL MATERIAw SETTLSJ TO BOTTOM tCUFT) = .38115E-0?
OUTPUT SUPPRESSED IN LOCATIONS WITH ND MATERIAL PRESENT
SJMMARY OF .LT. 30 DISTRIBUTIONS AFTER 270.03 SEC.
TOTAL SJSPENDED MATERIAL CCUFTJ = .12995E-01
SJSPEMOEO MUERIAL'IN LONG TER"! GRI3 CJrT) = .12995E-01
SJSPE'JDEO MATERIAL IS SMALL CLOUDS CUFF! = 0. '
TOTAL MATERIAL SETTLED TO BOTTOM ICUFTI = .50275E-03
OUTPUT SUPPRESSED 11 LOCATIONS HITH NO MATERIAL PRESENT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (43 of 61)
-------
SUMHAijr-OF .IT. 30 DISTRIBUTIONS AFTER 385.0) SEC.
TOTAL.SJSPESOED MATERIAL (C'JFTI = .11919E-01
S'JS?EHOEO MATERIAL IN LONG TER1 SRID CJFT> = .11919E-01
SJSPEMOiO MATERIAL IN S1ALL CLOD3S ICJ^D = 0.
TOTAL MATERIAL SSTTLiQ TD B3TT3t1 (CUFTI = .15791E-OZ
OUTPUT 3UPPIE3SEO IS LOCATIONS WITH U3 HATERHL PRESENT
SUMMARY OF ,LT. 30 DISTRIBUTIONS AFTIR 300.00 SEC.
TOTAL SJSPENDED MATERIAL (CUFT) = .135UZE-01
SLJSP^SOiO MATERIAL IN LON5 TERM GRI3 CJFTI s .IJB^aE
SUSP£N3£0 HATtRIAL tN SMALL CLO'JJS CJrTt = 0.
TOTAL MATERIAL SETTLED T3 B3TT3M -(^JFT) = .2b555E-03
OUTPUT SUPP^ESSEQ IS LOCATIONS '-JITH NO IftTfcRHL PRESENT
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (44 of 61)
-------
iOSOENTrtUUNS OF .IT. 30 (VOLUtr RUflOl
..iJLIIPir DISPUTED
N
1
2
3
_".
5
&
7
a
10
11
12
13
11-
lS
IS
17
13
19
20
22
2-
25
26
27
23
29
JO
N» 1
030001
0003
0003
OOOO
0300
0003
0000:
OOOO
oooo
oooo
oooo
oooo
0003
0003
oooo
00 00
OOOO :
oooo
oooo
oooo
oooo . .
0303
oooo
oooo
0003
0003
0303
OOOO
OOOO'
oooo
2
30001
1
t
I
0
0
0
1 -
9
9
0
0
9
3 -
Q
0
0
0
.-.:.
0 " '
0
1
0
9
0
0
o"
0
3 .
3 l|
103000001
0 r g
0 0
0 0
0 0
0 0
0 . T J
9 0
9 ' 9 ' '
9 0
0 0
0 0
9 9
. i i -
0 9
0 9
n 0
0 0
9 0
0 0
0.. i 0
Oft '
u <
On
U
9 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0 '
VUJES 31 ' .1000E-02
5679
30030000000000031
J 0 , , 0 0
1 0 '0 0
0 .0 , ,9 0.
1000
3 0. 0 0
i ) 9,9 9
1 3 0 0 0
]n , n «
U . U U '
300.
'o o .
3 0 . »
0 0 . »
v . : r
9 . . *
i " .1
J . . »
i 0 0 , i . - . f
0 0 . »
00..
- . o o . i o i . .
3 Q ' ' 9 9
In n n
U U U
oooo
OOOO
3000
3003
3000
3099
3000
1000
9
3001
0
0
0
0
0
o
*
t
*
*
f-
*
t
t
fr
t
3
0
0
0
9
3
0
b
10
30301
0
0
3
0
0
3
t
f
.31
.92
.91
.35
.16
.9,
.
0
0
0
g
0
0
16
30001
0
0
0
0
.03
.15
. .ir. .0001
19
30031
0
0
a
0
0
.01
.05
.16
.32
.".2
"5
.32
.13
.0?
.01
9
0
3
0
0
0
0
19
3000
a
0
9
0
0
f
.01
.05
.11
.15
.IS
.11
.95
.01
f
9
9
3
0
9
0
3
20
00000
0
0
1
0
0
o
t
t
.01
.02
.03
.04
.02
.01
*
-
g
0
0
0
0
0
9
9
21
000
a
0
g
g
g
g
,.
t-
*
f
t-
1-
>
t
*
t
g
g
9
0
9
3
0
0
0 .LT. .
22 23
000000000
0 0
0 0
0 9
0 0
0 0
0 0
9(1
U
On
U
0
.
* .
,.
- , _ .
+ .
* .
« .
f ,
.
0
On
D
On
U
0 0
0 0
9 9
0 0
0 0
9 9
0 0
0 0
24
oooo
9
0
9
0
0
0
0
0
3
0
.
0
0
0
3
0
0
[J
0
0
9
0
0
0
0
000001)
2;
3030
0
0
3
0
0
o
3
0
0
3 '
0
0
0
3
0
0
0
0
0
g
0
3
0
0
3
0
0
25 zr
0003003
0 3
0 1
0 }
g 3
0 1
9 )
01
i
01
i
0 )
D )
0 - 3
0 1
0 )
0 3
0]
i
0 1
0 )
0 1
0 1
0 1
0 )
0 1
0 3
0 )
g 3
0 )
0 )
0 )
0 }
2»
300030
0
0
0
0
0
0
0
0
- o
0
0
0
0
0
0
0
0
n
(I
0
9
0
0
0
0
2}
03
3
a
0
0
0
3
g
9
'0
0
0
3
9
0
0
0
0
0
9
3
D
3
9
9
9
33 31
30330003
10003
" J0003
30003
30003
' 10003,
3 0003
1 nnn i
J UUU J
~ i nn "\ i '
i UU J J
30033
30003
"~ 30003
30003
30003
"" 00003
j 000 5
30003
~ 30003 "
30033
00033
0 0003
3 0003
9 000 3
30003
30003
30003
30003
30033
90003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (45 of 61)
-------
"OSITI01 OF TOP OF .LT. 30
.'.MULTIPLY ois»L»rEO VV.UES
' M N= 1 I 3
0000000300001
0 3 0
g ) o
g 3 o
9 3 9
0 : 3.9
J.9 3.3 3.9
5.9 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.9 3.3
3.9 3.3 3.9
3.9 3.3 3.9
1.9 3.9 3.9
3.9 3.3 3.9
3.9 3.3 3.3
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.3 3.3
3.9 3.3 3.9
0 3 3.9
0 0 0
D ) 0
0 3 0
0 0 0
g 3 o
0 3 0
300.00 SEC013S AFTtR 3JH>
* .LT. .01 . = .LT. .0001
15 16 17 18 19 20 21
3000
0
0
0
0
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
0
0
0
0
0
0
OOOOl
0
0
g
3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
a
g
0
9
0
l)
000300001
0 0
0 0
g o
0 3
0 9
3.3 3.3
3.3 3.3
3.9 3.3
3.3 3.3
3.3 3.9
3.9 3.3
3.3 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.3
3.9 3.3
3.9 3.3
9 3
0 9
) 0
0 0
0 9
0 0
0 0
OOOOl
0
9
0
0
1
3.3
3.3
3.9
3.3
3.3
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
0
9
0
0
0
9
9
OOOOl
g
0
g
0
g
g
3.3
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3
g
9
0
0
0
9
0
30001
3
0
0
3
0
0
0
3.3
3.3
3.9
3.9
3.3
3.3
3.9
3. 3
3.9
3.3
3.9
3.9
3.9
0
3
1
0
3
9
0
3
g
o = .i_r. .000001)
ZZ 23 Z'* 25 2o Z' Zt 29 '33 31 '
30000000000000
o g g
g g g
g g o
0 0 0
o o g
009
993
g g o
3.9 g g
3.9 3.3 0
3.9 3.9 0
3.9 3.9 0
3.3 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.3 0
3.9 3.3 0
3.9 5.9 g
3.3 0 g
o g o
o o g
g g g
9 9 g
g o g
000
000
g g o
300
g g o
0301
3
0
9
3
g
g
3
g
g
0
0
9
3
0
0
0
g
g
0
3
g
g
g
g
0
0
3
3
3
30000033000300300000003
g i g o 30033
o ) g g 30003
0300 30003
0)09 )0003
o 3 -g o 00003
0)09 30003
g } 0 0 30003
g 9 - a - g - 00003
0)00 30003
0)03 90033
0)00 30003 '"
0 ) g 9 30003
0309 30003
0300' 30033
0300 30033
0 3 0 0 00003
0300 90003 -~
0300 30033
0300 30003
0303 30033 "
0 3 g 3 90003
0300 30303
0)00 30003 "
o 3 a g 00003
0300 30003
o 3 g o 30003 -
0300 30033
0303 30003
0)03 30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (46 of 61)
-------
THi;iciess OF .IT. jo
...TJLTIPLV 3ISPL4YS3 VXLUSS 3T
1
2
" 3
_i.
5
6
7
6
- 3
11
12
13
Ik
15
16
17
ID
19
20
21
22
23
»«,
25
26
27
23
29
30
OOOOOOC
0003
0300
0000
0300
0000
0000
0000
0000
3000
0300
0000 '
0000
0003
0300
0300
0000
0000
0003
0000
0003
0003
0000
0000
0300
0000
0003
0000
0000
0000
1000
g
g
a
g
g
9
1
g
g
0
9
0
g
g
g
9
9
g
g
0
3
g
g
3
g
9
0
3
10003301
} 0
o g
go
3 0
o g
g g
o g
g g
9 0
9 '
g o
g g
0 0
g g
o a
g g
0 0
o g
g o
1 0
g g
0 0
g o
g g
g o
g g
o g
3 g
300000000000
3 0 0
g g o
go o
) g g
} 0. 0
g i g
o g o
0 0 0
3 i g
1 0 7.5
3 0 7.5
3 g 7.5
3 7.5 7.5
3 7.5 7,5
0 7.5 7.5
0 0 7.5
0 0 7.5
) 0 7.5
390
3 g g
3 o q
3 i g
300
300
g o o
g o g
000
o g o
goo
fc C. 1 1
. 1000E
0000!
0
g
g
0
g
0
0
0
7.5
7.5
7.5
7.5
7.5
r. 5
7.5
7.5
7.5
g
0
0
0
g
g
g
g
0
0
30001
0
g
g
g
0
0
0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
0
g
0
.0
g
0
g
JU U 1
-01
10
30301
0
g
0
g
0
3
7.9
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.3
7.5
0
g
g
g
3
g
0
0
1 U U .
11
30001
g
g
0
g
0
7.5
7.5
T.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
0
0
g
g
g
3 & U V ^ J O
(LEjENO.
12 U
3000'
0
g
g
0
g
7.5
7.5
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
0
0
g
0
0
g
0003
l
j
3
3
3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
9
3
)
3
9
Hr I c
. f
1".
0000
g
g
0
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
r.s
7.5
7.5
g
0
0
0
g
9
T, U i* n r
.LT.
15 16
0000
0
g
g
g
r.s
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
g
g
g
0
u
0000
g
0
g
a
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
T.y
7.5
0
a
0
a
g
0
.01
17
0003
0
g
g
g
g
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
g
0
3
0
g
19
0003
0
g
0
g
a
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
1 .,
?.5
7.5
7.5
7.5
g
0
9
0
g
0
0
* .ir. .
19 20
0000
0
0
g
0
g
7.5
7.3
7.5
7.5
7.5
7.5
7.5
7,5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
3
0
3
g
3
g
0000'
0
0
g
0
g
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
g
g
9
0
g
g
000 I
21
0000
0
0
g
g
0
g
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
g
g
g
g
0
0
)
0
22
0300
0
9
g
g
0
0
0
a
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
g
0
3
0
0
g
0
g
* .LT. .
23 2'4
3000<
g
9
g
0
0
g
g
0
9
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
g
g
0
g
g
0
0
0
0
0
aoooo
g
0
0
g
0
0
g
g
g
g
0
0
7.5
7.5
7.5
g
9
g
0
0
g
g
g
g
g
g
g
g
0
0000011
25 25
3030
3
g
0
g
0
g
g
3
3
0
g
g
0
9
0
9
g
3
g
9
g
g
g
3
0
g
g
g
)
000
g
g
g
0
0
g
g
0
g
0
0
0
0
g
0
g
g
0
0
0
0
g
g
g
g
0
g
0
g
zr 28
30033000
3 0
3 0
3 g
i g
3 0
3 g
i g
3 - - o
3 o
l g
- 3^" g
i g
3 g
3 0
) 0
3 o
) 0
3 g
3 0
3 0
3 0
3 0
3 g
) 0
3 0
3 o
3 9
3 0
] 0
23 - 33 -31-
300330330003
3 30003
" 0 30003
g 30003
0 30003
' 0~- 30003
3 30003
3 30033
0 30033
g 30003
g 30003
0 30003"
3 30033
g 30003
' 0 ~ 30003
0 30003
0 30003
3 00003
0 30033
g 30033
.0 90033
g 90003
0 30003
3 - 30003
3 30003
g 90003
3 30003
9 30003
0 00031
3 30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (47 of 61)
-------
sofroi ACJLMULAUON OF .
.1.1ULTIPLY DISPUTED V»L
K. N= 1 2 3 t. J
1
t
- 3
<4
5
' 6
r
3
9
to
ii
12
13
1*
i;
16
17
15
19
20
21
22
23
2
)
3
J
0
3
3
3
300
i . +
It
10001
0
0
9
0
9
f
.02
.09
.25
.61.
.92
.97
.92
.6k
.92
.97
.92
.51.
.26
.09
.02
0
0
0
0
0
0
0
30031
0
3
11
0
9
.01.
.07
.20
.51
.6'*
.61
.6k
.51
.29
.or
.01
0
3
0
0
0
.9
0
DOOOI
3
3
1
3
9
t
.03
.19
.20
.25
.28
.25
.20
.13
.03
t
t
9
9
3
9
0
0
0
}03000000(
3 9
0 9
9 9
1 9
0 0
o o
f f
.01 <
.03 > '
.17 .01 '
.09 .02
.99 .02
.03 .02
.or .01
.03 t
.01 » '
f t
»
9 D
0 0
0 0
3 0
9 0
0 0
0 9
0 9
130030001
0 9
9 9
0 0
3 9
9 9
0 0
0 0
f .
f ' t
* I-
« f
t »
- * f -
t »
f f
» ' .
9
0 0
3 0
-9 0
1 9
b }
9 0
9 0
0 0
0 0
10001
0
b
0
0
0
0
0
0
9
0
.
.
.
.
.
'
o
0
D
9
0
0
0
0
0
0
0
0
30000030I
a 9
9 3
0 0
o a
0 0
0 0
9 3
0. 0
0 0
0 0
0 0
0 0
o o
0 0
0 0
0 0
a o
0 0
9 0
0 0
0. 0
0 3
0 0
D a
3 3
0 0
0 0
a o
0 D
30030033000300
0 3 0
0 3 0
b 3 9
0 3 0
090
0 ) 9
0 3 0
0 1 O
0 3 0
0 1 0
0 ' 1 0 -
0 1 0
0 3 0
DID
0 } 0
0 3 0
0 3 0
0 1 0
0 j 0
0 3 0
b 3 0
0 ) 0
0 } 0
0 ) 0
0 3 0
0 ) 0
0 3 0
0 1 0
0 1 0
3
0
9
0
a
0
3
9
0
9
0
0
0
0
3
9
3
0
a
a
0
3
3
a
9
i
9
0
a
3
S3 31
0000000)
1 0003
300DV
30033
30003
90033
90003
90003
- 30003'
30003
30033
- 30033 '
30003
30003
30003
00033
30003
" 30003
90003
30003
30003
90003
30003
90003
30003
30003
00003
30003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (48 of 61)
-------
SJMMARY OF .LT. 30 DISTRIBUTIONS AFTER J9U.O) SEC.
TOTAL SJSPENOEO MATERIAL (C'JFT) = . i»38<»OE-02
SUSPENDED MATERIAL IN LONG TERM GRI 3 CJFT) = ,!»33<»OE-02
SUSPENDED MATERIAL IN S.1ALL CLOU3S CCJFT) = 0.
TOTAL MATERIAL SETTtiD TO B3TT01 13UFT) = .91133E-02
SUPP^E^SEO IN LOIATIONS ^IITH ND MATERIAL PRESENT
SUMMARY OF .LT. 30 DISTRIBUTIONS AFT-R <»05.00 SEC.
TOTAL SUSPENDED MATiUAL = .J3076E-02
SUSPENDED MUE^IAL IS SMALL CLOUDS CJFT) = 0. ' '"
TOTAL MATERIAL SETTLED TD 30TTOM
-------
SJMMARY OF .LT. 30 DISTRIBUTIONS AFTER
-------
OF .LT!. 30 DISTRIBUTIONS AFTER 350.03 SEC.
TOTAL' SUSPENDED MATERIAL CUFTJ = .55368E-oz
SJS'ENDE9 MATERIAL IN LON3 TERM 3RIO CJFT) = .>5363E-OZ
-'SUSPENDED MATERIAL II SMALL CLOJ3S (CJFT) = 0.
, TOTAL MATERIAL SETTLED TO BOrtOI (CJFD = .69611E-02
' 3JT»UT SUPPRESSED IX LOCATIONS HITH NO MATERIAL PRESENT
:- SUBMA^Y'OF .LT» 30- OISTRIQUTIDNS AFTER 375.00 SEC.
TOTAL SJSPEMOED MATERIAL (C'JFT) = .5it60i»E-02
SJSPENOEO MATERIAL IN LONG TER1 3RI3 CJFT) = .5
-------
OON3ESTR4TT3NS OF .LI. 3D
...^ULTI'LY OIS'UYEO VlLUtS
(V3LUHE Rari3) IN THE CLOJ3 1)50.00 SECONDS AFTER OJM'
3Y .1000E-32 ILEGENO... » > .LT. .01 . « .LT. .0001
' t 9 10 11 12 13 II) 15 18 17 13 19 29 21
3 i .LT. . 0000011
22 23 21) 25 26 2T
28 25
31 -
2
- 3
_.'
5
' f,
j
9
19
11
12
13
10
15
16
17
13
19
20
21
22
y»
c.y
25
26
27
29
29
30
0000
0000
0000
0000
0300
3300
00 00
0300
0000
0300
0000
0003
0003
0300
0300
0000
0003
0000
0000-
0003
0000
ni nn
U J \J(J
0000
0303
0000
0300
0300
0000
0000
0'
D
3
0
o
0 ""
3 -
0
3
0
3
0
o"
3
0
0
3
0
-.0 .
0
0
0
Q
3
0
D
9
" 0
H
0
0
g
0
0
g -
0
0
0
0
0
0
g
0
g
0
0
0 ,
0
Q
Q
a
. L
0
0
0
0
0 9
0 ' 0
0 3
O 3
0 )
i 0 r 0
0 ' 0
0 9
9 0
0 0
0 3
0
'b ' .
o - .
0 .
0
0 3
g o
0 3
0 0
01
J
0 3
0 0
0 0
g )
0 3
o g
0 0
0 0
o o-
0 0
0 0
g o
0 0
g ' g '
01 n
1 U
00
Q
. *
. f
. t
. 4
' * '
.. *
«
. *
0 .
0 0
On
U
On
U
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
0
0
o
J
'f
*
-
*
4-
»
»
*
»
+
-
Q
o
0
0
D
0
Q
D
0
0
o
o
,
f
>
-
.01
.02
.02
.02
.01
»
1-
-
*
Q
g
g
0
0
0
0
6
0
0
0
o
[I
t
.
.01
.0!
.05
.07
.97
.07
.35
.0!
.01
f
f
Q
3
0
0
0
0
3
0
0
0
g
»
.01
.01.
.09
.15
.20
.21
.20
.15
.09
.0<)
.01
*
Q
0
0
0
0
0
g
0
0
g
f
. 02
.09
.19
.33
.13
.".7
.03
.33
.19
.09
.03
t
o
0
0
0
0
0
3
0
g
.01
.05
.lj
.35
.55
.72
.73
.72
.55
.33
.15
.05
.01
)
9
g
3
3
0
0
D
.02
.07
.20
.1.3
.72
.90
1.0
.90
.72
.03
.20
.97
.02
0
0
0
0
0
0
0
0
.02
.07
.21
.07
.78
1.0
1.1
1.0
.78
.07
.21
.07
.02
0
0
0
0
3
9
0
0
.02
.07
.20
.03
.72
.90
1.9
.90
.72
.03
.20
.07
.02
0
0
9
0
0
g
0
0
.01
.0;
.15
.33
.55
.72
.78
.72
.55
.33
.15
.05
.01
3
0
3
g
a
g
9
0
fl
>
.03
.09
.19
.33
.03
.07
.03
.33
.19
.09
.0!
t
g
0
0
0
0
J
g
a
g
g
t
.01
.90
.39
.15
.23
.21
.29
.15
.39
.00
.01
*
g
0
0
3
9
9
0
3
0
g
g
f
f
.01
.03
.05
.07
.07
.07
.05
.03
.01
t
*
Q
g
0
0
0
0
0
3
3
9
g
g
*
f
*
.01
.02
.02
.03
.01
t-
h
*
*
Q
Q
a
j
0
3
J
0
0
0
o
o
t
fr
f-
f
f
*
f
f
f
f
-
Q
0
g
Q
0
0
0
0
g
0
g
0
0
0
g
n
0
.
f
*
*
t
t
+
t
f
*
.
0
0
g
g
0
0
0
0
0
0
0
0
0
0
g
g
0
a
.
.
.
.
.
9
0
0
0
g
g
0
0
0
0
0
0 0
3 0
0 0
g o
0 0
g g
0 0
3 0
0 0
D 0
a o
0
0
0
0
9
0 D
0 0
o g
0 0
0 0
On
U
0 D
0 0
g o
0 0
3 0
D 0
0 9
)
J
)
J
3
j
j
._ j
)
3
3 "
3
3
3
3
]
3
1
)
1
3
]
j
j
3
3
3
3
3
0
0
0
0
0
Q
g
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
g
g
0
0
0
0
0
0
3
a
0
j --
g
g
9
3
--J
9
0
0 ~
9
0
0
0
3
0
g
9
3
0
o -
3
3
3
30033
30033 "
30003
90003
J0033"
30003
30003
30003"
30003
10003
30003"
90003
30003
30003
10003
30003
30003
30003
30003
30003
3 0033
3 0003
00003
3 0003'
30003
30003
30003
00003
30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (52 of 61)
-------
OF TOP OF .i.r.
...SJLIIPLT DIS'LiUED VV.
N N= 1 2 3 25 26 2'
23 23 33 31
1
^
3
i>
5
6
7
3
9
10
11
12
13
1U
15
Ib
17
13
13
20
21
22
23
21.
25
2o
27
23
23
JO
000003000!
0000 0
oooo a
0003 0
0000 0
0000 0
ODOO 3
0303 3
0303 0
0003 0
0000 0
0300 0
0000 0
oooo a
0300 9
0300 3
OOOO 0
03U3 0
0003 0
OOOO 0
0003 0
0003 0
OOOO 3
OOOO 3
OOOO 0
OOOO 3
OOOO 0
OOOO 0
uooo )
0003 0
0000030
3 0
i a
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0
0 0
g o
0 0
0 0
0 0
0 0
000300000000
J 0 0
) O 1
0 0 0
) 0 0
) 0. 0
0 0 0
3 0 0
1 0 0
3 0 3,9
i 3.9 3.9
3 3.9 3.9
3.) 3.9 3.9
3.3 3.9 3.3
3.3 3.9 3.9
3.3 3.3 3.3
3.9 3.9 3.9
0 3.3 3.9
3 3.9 3.9
0 0 3.9
3 0 0
0 0 0
0 0 0
3 0 0
0 0 0
0 0 0
3 0 0
3 0 0
o g i
3 0 0
00001
0
3
D
0
0
o
0
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.3
3.3
3.9
0
a
0
0
0
0
0
3
0
300000331
0 3
a 3
0 0
0 0
0 3
0 3.9
3.3 1.3
3. 9 3.3
3.9 3.3
3. 3 3.3
3.9 3.3
3. 9 3.3
3.9 3.9
3.9 3.3
3.3 3.3
3. 3 3.9
3. 9 3.3
3.3 5.9
3.9 3.9
3.3 3.3
3.9 3.3
0 3.9
0 3
0 0
0 0
U 0
0 0
3 0
0 0
OOOO
I)
0
0
0
3.9
J.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
J.9
3.9
3.9
3.9
3.9
3.9
0
0
0
0
0
0
oooo
0
0
a
3
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3 .9
3.3
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
0
0
0
0
0
0
3003
0
3
a
3. )
3.3
3.3
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3.3
3.3
3.9
3.3
3.3
3.3
3.J
3.3
3.3
3.3
3.3
3
3
)
)
)
OOOO
9
0
o
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
0
3
0
0
0
3000
0
0
0
3.9
3.9
3.9
3.9
3.3
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
0
3
3
0
0
OOOO
0
0
0
3.9
3.9
3.3
3.9
3.9
3.^
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
J
0
0
0
0
oc
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
100
9
0
0
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.3
.9
.9
.9
.9
.3
.9
.3
0
0
0
1
a
oc
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
103
Q
0
0
0
.3
.3
.9
.9
.9
.9
.9
.3
.9
.9
.9
.3
. 9
.3
.3
.3
.3
.3
.3
0
0
0
0
)
3
0030
0
9
0
0
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.3
0
0
0
0
a
0
oooo
0
0
0
0
0
3.9
3.3
3.3
3.3
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
0
0
a
0
0
0
0
oooo
0
0
0
0
0
0
3. 3
3.9
3.3
3.9
3. 9
3. 9
3.9
3.3
3. 9
3. 3
3. 3
3.9
3.3
3. 3
3. 3
J
0
0
0
3
0
)
0
oooo
0
0
0
9
a
0
9
3.3
3.9
3.9
3.9
3.3
3.9
3.3
3. 9
3.9
3.9
3.9
3.3
3.3
0
0
a
a
0
0
0
3
0
oooo
0
0
0
0
0
0
3
0
3.3
3.9
3.9
3.3
3.9
3.9
3.3
3.9
3.3
3.3
3.3
0
0
0
0
0
0
0
0
3
0
000000030
0 0
0 0
0 0
0 9
0 1
0 3
3 3
a o
0 0
3.9 0
3.9 0
3.9 3.3
3.9 3.9
3.9 3.9
3.9 3.3
3.9 3.3
3.9 :
3.9 3
0 0
o :
0 0
0 0
o a
0 0
0 0
g o
0 3
0 3
0 0
00030033300300300300003
0100 30003
0)00 30033 '
0300 30033
0303 30003
0)00 30033
0)03 30003
0)03 3003)
0 ) 0 0 ~ 30003
0300 30003
0)03 30003
0 ) 0 ~0 ~ 30033-
0)003 0003
0300 30003
0 ) 0 ' 3 30033 '
0)00 30033
0)00) 0033
0 ) 0 0 * 30033
0)00 30003
3)03] OOOD
0)00 10003
0)00 00003
0)00 )0003
0100 30003
0)00 30003
0)03 30003
0)00 3000:
3300 30033
0)03 30033
0)00 90033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (53 of 61)
-------
rm; 23
103033003003C
a o o
3 0 0
000
000
3 0 0
0 0 0
5.45.4 0
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.r 28 2
33300000C
) 0
) 0
] 0
1 0
1 0
3 0
3 0
1 0
3 0
) 0
3 0
} 0
) 0
3 0
) 0
J 0
3 0
] 0
) 0
3 0
) 0
) 0
3 0
3 0
3 0
) 0
) 0
) 0
1 0
:3 3
10000
9
0
0
J
J
0
g
0 '
0
0
0
0
0
0
a
0
0
0
3
0
3
3
g
0
0
a
a
3
3
3 3L
00003
3 0003
30003
3 0003
30003
30003
30003
30003
3 0003
00003
30003
3 OOOO
30003
3 0003
30003
30003
J0003
3 0003
3 0003
30003
30003
3 0003
3 0003
00003
J0003
30033
30003
30033
30003
3 0033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (54 of 61)
-------
BOTTOM ASJinULATION'oF .Lf.'30
.;;1ULTI°Lr DISPUTED VUJES 3t
<3JFlVGiU3 SQJAUI
.1000--03 UtGENO..
9 3 13 11 12 II
.00 SS;ON3S AFTER DUMP
* .It. .01 . * .IT. .0001
15 16 17 19 19 20 21
0 * .LT. .0000011
ZZ 23 2» 25 26
E' 28 29 33 31
N5
OJ
1
i
3
It
3
6
-j
j
- 9
10
il
12
13
It
15
16
17
13
19
20
21
22
23
2lt
25
25
27
23
29
30
0000'
0300
0000
0000
0000
0000
nn n T
uu u j
0000
0000
0000
0303
0000
0300
0000
0000
03J3
0000
0300
0000
0000
0000
0000
0003
0003
0000
0000
0000
0003
0000
0000
0000
0
0
0
0
o
Q
J
0
9
0
0
i
9
9
3
D
0
0
0
J
0
0
0
0
3
0
0
0
g
00000000000001
g ii g
g o 3
a g g
3 9 3
g o g
0(1 i
u j
303
090
0 D 0
9 0 3
o g o
0 0'3
0 fl J '
3 D ' :
i g
0 i 3
3 0 0
0 0 3
a o 1
090
309
Q 0 3
0 0 3
0 0 3
t 0 4
3 9 9
D g o
9 0 1
g g g
3000000000000001
agog
9009
0 0 D 0
o o o g
Q. 0 0 0
On ft n
u u u
o g 3
o g , *
0 f f
- ; i- + f
. " t t .01
. 'f > .03
. ' t » .01.
1 . ' » ' * .05
: ' t t .gi>
. ' » * .03
. " f ' l- .01
. » * *
0 . '* I-
9 9 . f
0 0 0 *
0000
1300
0000
0090
0000
0000
0000
0000
3030
a
D
0
3
3
f
*
.03
.03
.U
.19
.21
.19
.1.
.03
.05
f
f
0
0
0
0
0
9
a
00001
a
0
0
0
t
.03
.10
.26
.".3
.63
.68
.63
.1.8
.26
.10
.03
fr
.
a
0
0
0
0
u
30000003
0 3
0 3
0 D
1 )
.01 .01
.03 .IV
.26 .<>J
.66 1.1
1.1 2.2
1.5 2.9
1.6 3.1
1.5 2.9
1.1 2.2
.66 l.L
.26 .1.3
.08 .1'*
.01 .03
. .
0 3
a 3
0 3
0 3
0 3
0 3
0000
0
0
0
.
.on
.19
.63
1.5
2.9
3.9
t
.26 .10 .03 f
.66 .25 .Si .01
1.1 .1.3 .Ik .03
I.? .63 .19 .0'<
1.3 .63 .21 .0;
l.i .53 .19 .04
1.1 .!i» .lit .03
.66 .23 .03 .01
.25 .10 .03 *
.06 .03 i- t
.01 t t t
0 0
0390
9 3 0 a
0000
0 0 0 3
3300
0990
00300000
g 3
a o
0 0
9 0
0 0
0 0
g o
0
.
i f
* +
t- t
* »
f f-
f f
f +
f f
t- t
f .
0
On
U
Q 0
0 0
9 0
0 0
a o
0 0
a o
9 0
00000000
0 3
0 0
0 0
3 9
0 0
Of]
u
0 3
o g
3 0
0
0
3
. ".
.
o
3
0
0 0
0 0
On
u
0 0
0 0
0 3
3 3
0 0
0 0
0 3
0 0
0000003
0 3
0 3
0 3
9 3
0 3
01
J
Q 3
0 3
9 3
0 1
o - j
0 1
9 1
0 3
D 3
0 3
0 3
0 3
0 1
0 1
0 3
0 3
0 1
0 1
0 1
0 3
0 3
0 )
3000000000000003
9 1 30003
o a 30003
0 9 90003
0 9 30003
0 0 00003
0 3 30003
9 9 30003
0 9 30003
0 0 30003
0 9 30003
3 - 3 3 0003
0 9 30303
0 D 00003
0 0 " 30003 *
0 0 30033
0 0 30003
0 3 30003
0 3 30003
0 3 30033
0 3 30033
9 3 90003
0 0 30033
0 0 30033
0 0 10003
0 0 30003
0 0 30033 '
0 0 30033
0 0 30033
0 0 30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (55 of 61)
-------
THI3KNESS (FT) OF .IT. SO AC:uHJUTEO OS BOTT01, !
. . .1'JLTIPLY DISPLAYED VALUES Bt .1000E-03 (LEGEND.
H N= 1 2 3 it 5 6 1 t 9 10 11 12 13
1 0000
2 0003
3 0000
", 0000
5 0000
6 0300
7 0003
S 0000
9 0000
10 0000
11 0000
12 0000
13 0000
14 0300
15 0003
16 0300
17 0300
13 0000
13 0000
20 0000
21 0000
22 0000
23 0003
21. 0300
25 0000
26 0000
27 0003
23 0003
29 0000
30 0003
000000
3
3
0
0
3
0
a
0
0
0
3
3
0
3
0
0
0
i
0
0
0
3
3
a
0
0
3
a
0
00
3
3
0
3
3
0
3
ti
3
3
3
3
3
a
1
3
3
3
3
0
0
3
3
0
3
0
3
0
0
00000
3
a
0
0
0
3
3
0
0
0
0
g
0
0
3
0
0
0
0
3
a
0
3
0
9
0
0
0
a
003J
3
3
1
3
3
3
3
3
0
3
0
D
3
3
3
3
0
0
0
D
3
3
3
3
3
3
3
3
0
00000000
3 3
i 3
0 0
0 0
0 0
0 6
1 9
3 0
0
. *
.._..*-
, +
t
, t
*
e t
0
3 0
9 3
0 3
3 0
3 g
3 0
9 0
0 0
3 3
0 0
0001
0
3
0
0
0
0
3
*
f
f
t-
*
»
»
*
f
f
*
0
0
0
0
9
0
0
0
0
30001
0
0
0
3
3
0
f
t
t-
f
.31
.02
.32
.32
.01
t
>
f
f
0
0
3
0
0
0
3
D
33331
0
3
0
3
0
t
>
.01
.03
.05
.09
.09
.0)
.06
.03
.01
-
^
0
3
3
9
t
3
3
30001
0
0
0
0
+
.01
.04
.11
.21
.28
.30
.28
.21
.11
.01.
.01
*
0
0
3
0
0
0
3000
0
0
G
0
f
.03
.11
.29
. 53
.73
.75
.73
.53
.29
.11
. 03
t
0
0
0
»
0
0
0003
3
3
3
'
.01
.05
.21
.5!
1.3
I.I
l.V
1.3
1.3
.53
.21
.Oi
.01
3
I
0
)
1
0
.65.00 SE:ONDS SFTE*
. . + = .LT. .01 .
lit 15 16 17 18
00001
3
0
0
0
.32
.03
.28
.70
1.3
1.7
1.3
1.7
1.3
.70
.28
.03
.02
0
0
0
3
9
0
30001
0
3
0
3
.02
.09
.30
.75
l.'t
1.3
2.3
1.8
t.t
.75
.30
.09
.02
0
0
0
0
0
0
30001
0
3
0
3
.02
.03
.28
.73
1. 3
1.7
1.3
1.7
1.3
.70
.28
.03
.02
0
0
0
0
0
0
30001
3
0
3
3
.01
.05
.21
.53
1.0
1.3
l.k
1.3
1.0
.53
.21
.05
.01
0
9
0
0
0
0
30001
0
3
3
3
t
.01
.11
.23
.53
.70
.75
.73
.53
.29
.11
.33
t-
0
3
3
3
3
3
DJ1P
« .LT. .0001
19 20 21
30001
0
3
3
3
*
.01
.3'.
.11
.21
.23
.39
.23
.21
.11
. 0'.
.01
1-
3
)
3
0
3
3
3000000001
3 0
9 0
0 3
3 9
0 3
t f
t- t-
.91 t
.03 »
.05 .01
.08 .02
.09 .02
.OS .02
.06 .01
.03 >
.01 >
t t
t t-
9 3
0 3
0 3
0 0
0 0
0 3
0 0
0 = .LJ. .0000011
22 23 2>t 25 25 2' 23
30000000;
0 0
0 3
3 9
3 3
3 3
3 0
3 D
0
f .
f .
t t
t f
f f
t- *
t t
t t
t t-
t- .
t- .
3
0 3
0 9
0 3
3 3
0 9
D 0
0 3
0 0
0 0
)0000t
3
9
0
3
0
0
0
0
9
.
.
0
0
0
0
0
3
3
0
0
0
0
300000001
3 3
3 9
3 0
3 0
3 0
0 0
3 3
3 0
0 3
3 0
3 0
3 0
0 0
0 0
3 3
3 0
3 0
3 0
0 0
3 9
0 0
0 D
0 0
3 0
3 0
0 0
: G
3 0
0 0
333300
) 0
3 0
3 9
1 0
1 0
3 0
) 0
3 D
3 0
3 0
30
3 0
3 0
3 - 0
3 0
3 0
3 0
3 0
3 0
3 D
3 0
3 0
3 0
1 0
3 0
3 0
) 9
1 0
3 0
' 29
3003
3
9
3
0
0
9
9
' 0
3
3
0
3
3
~- 3
0
0
9
9
3
3
9
3
3
3
3
3
a
3
0
33 31"
30030003
30033
~ 300&3~
30033
3 0033
3 0003
00003
3 0003
30033
30003
30003
" 30033
30033
30033
" 30003
3 0003
30003
30003
30003
3 0003
30033
30003
30003
30033
30033
30003
30003
3 0033
30033
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (56 of 61)
-------
SUMMARY OF .LT. 30 DISTRIBUTIONS AFTER U55.03 SEC.
TOTAL SJSPESDiD MAT-RIAL (CUFT) = 0.
SUS?E>JOiO MATERIAL IN LO^G TERM SRI3 CJFO = 0.
SUSPENDED MATERIAL IN S1ALL CLOJ3S (CJ-D = 0.
T3TAL MATERIAL SETTLED TO B3TT3H IGUFT) = .13
-------
SOT
H
1
2
it
>i
5
5
7
8
9
13
11
12
13
111
15
16
17
13
19
20
21
23
25
25
27
23
29
30
TOH 4::uijLflri3N OF .LT. 30
ULTIPLT DIS'UYED Vl.JES 3Y
000003
0003
0300
0000
0000
0003.
0000
0000
0000
0003
0000
0000
0300
0003
0000
0000
0000
0000
0000
0000
0000
0000
0303
0303
0000
0000
0003
0000
0000
0000
000
J
o
0
0
0
9
0
0
J
)
3
1
0
0
0
0
3
9
1
0
3
0
0
0
0
0
3
0
0
0000
0
0
0
0
D
0
0
0
0
0
0
D
0
3
0
3
0
0
0
3
3
0
0
0
0
0
0
9
'
0000
9
0
0
0
0,
0
0
0
0
o
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00300
i
0
rl
3
g
0
3
0
9
1
0
9
.
.
.
0
1
0
1
9
1
9
3
0
1
0
9
9
1
0001
0
0
0
0
(L.
0
0
0
3
.
.
.
.
.
.
.
0
0
0
0
0
0
0
0
0
0
0
300
a
0
9
0
0
g
9
0
.
>
1-
*
4-
*
-
+
+
-
0
0
9
e
0
0
0
g
D
0
CJFTf
. 1DOO£
00000000
0 0
0 D
0 0
0 0
0 0
o g
. »
f f
* f
i .01
t .03
> .04
.31 .05
i .04
» .03
* .01
f f
t fr
. f
0
0 3
0 0
0 0
0 0
3 0
9 g
0 0
0 0
-03
10
00331
0
0
0
0
0
,
f
.03
.03
.14
.13
.21
.13
.14
.08
.03
-
f
0
0
0
0
g
0
0
S QU i
11
3000
0
0
0
0
+
.03
.10
.26
.48
.61,
.69
.64
.48
.26
.10
.03
*
0
D
0
0
0
0
H?E)
(lEGENJ.
12 1J
00000003
9 1
0 3
0 0
0 )
.01 .03
.08 .1'4
.26 .4i
.66 l.L
1.1 2.2
1.5 2.3
1.7 3. L
1.5 2.3
1.1 2.2
.56 l.L
.26 .4)
.08 .14
.01 .03
0 1
0 )
0 1
0 1
0 1
0 0
463.00 SH30I
.. * = .ur. .
1* 15 lo
0000300000001
0 0 0
0 0 0
0 0 0
.04 .05 .94
.19 .21 .19
.64 .69 .54
1.5 1.7 1.5
2.9 3.1 2.9
3.9 4.2 3.9
4.2 4.5 4.2
3.9 4.2 3.9
2.9 3.1 2.9
1.5 1.7 1.5
.64 .o9 .64
.13 .21 .19
.04 .05 .Ol>
. . .
000
000
0 0 0
000
000
.01 ."= .LT. .0001 0 » .LT. .000001)
17 1» 13 20 21 22 23 24 25 25
3003 00 0000330000000 030000000000 000030 00 OC
0 0
0 0
0 0
0 0
.03 .01
.Ik .03
.43 .26
1.1 .66
2.2 l.L
2.3 1.5
3.1 1.7
2.3 1.5
2.2 1.1
1.1 .66
.4J .2i
.Ik .09
.03 .01
0 0
0 0
9 3
9 1
9 0
0 0
9
0
3
9
I
.03
.10
.25
.49
.54
.59
.54
.43
.25
.10
.31
*
0
3
0
0
0
0
300003
033003
030001
000000
000000
00000
f f . 0 0 0
I t t . 3 3
.03 f « t . 3
.08 .01 * i- . 3
.14.03 » » . 9
.13 .04 » f
.21 .05 .01 i
.13.04 +
.14 .03 f * . 0
.08 .01 f > . 0
.03 f i t . ]
i- t t . 0 3
t- t . 0 0 0
000003
031033
000003
000000
000901
000000
033000
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2T 28
10033000
) 0
) 0
) 0
) 0
3 0
3 D
) 0
) 0
3 0
3 0
~ 1 " 0
1 0
1 0
1 0
9 0
1 0
1 0
1 0
1 0
D 0
1 0
1 0
) 0
1 0
1 0
1 0
3 0
1 0
1 0
23 33 31
303000000003
0 30003
3 30003"
0 30003
0 00003
9 10003
9 30003
0 90003
"" 0 " 30003
0 30003
3 30003
" 3 " 3 0003
9 00003
3 30003
""" D - 30003
0 00033
3 30003
0 30003
0 30003
0 30003
0 30003
3 10003
0 30003
3 30003
3 30003
0 30003
3 30003
0 10003
0 00003
0 10033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (58 of 61)
-------
FINAL DISTRIBUTIONS OF TOT4L SETTLED MATERIAL ~ OLLO rf. .-. ,.
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (59 of 61)
-------
TOTSL ACCUNJLATEO SOLID YOLJ1E ON BOTTOM CJFT/dRID S9RI,
600.00 SE30N35 AFTER DUHP
...MULTIPLY DISPLAYED
1 0000
2 0300
3 0000
ii 0000
5 0000
b 0000
7 0000
8 0000
' 9 0003
10 3000
11 0300
12 0000
13 0000
11. 0000
~15 0000
16 0000
17 0000
13 0000
19 0000
20 3000
21 0000
22 0000
23 0000
2"i 0000
25 0000
26 0000
27 0000
23 0300
29 0000
3t> 0000
00000
1
0
g
0
0
0
0
0
0
0
0
3
0
D
g
0
0
9
0
1
0
0
0
0
0
0
0
0
0
oooo:
0
0
0
o
0
0
0
0
0
g
g
0
0
0
0
3
g
g
0
g
0
i
3
0
g
3
3
0
0
1000
o
g
0
0
0
0
o
0
3
0
3
0
0
0
0
3
0
0
0
D
0
0
0
0
0
g
0
0
VUUES BY
003300000000
3 0 3
3 0 0
g o o
3 0 0
0 0 0
300
) 0 0
o g g
3 3
g g
g
g . »
g . <
3 . »
3 0
3 0
) 0 0
300
3 3 0
o g o
3 0 0
o o g
o g o
) 0 0
3 0 0
3 0 0
.1000E-32
a 9 10 11
0000
3
0
0
3
0
0
0
.
f
-
*
f
*
f
t
0
0
0
0
0
0
0
0
0
00000300000
0 3 0
000
000
0 0 0
o g o
t f f
f 1- .01
f f .02
< .01 .06
f .02 .06
» .11 .06
* I- .02
f t- .01
* t- +
0 0 0
g o o
0 3 3
o g o
0 0 0
0 0 0
0 0 0
(LEGEND.
12 11
00000003
0 )
0 3
0 0
0 )
» .01
.02 .01.
.06 .li
.18 1.2
.19 1.2
.18 1.2
.06 . 1 .
.02 . 0<
t- .01
0 3
0 )
0 0
0 3
0 3
U 1
.. > i .LT. .01 . * .LT. .0001 0 = .tf. .000001)
l<» 15 IS IT 11 13 20 21 22 23 2k 25 26
0000
0
0
0
0
.01
.06
. 18
2.1
2.1
2.1
.13
.06
.01
0
3
0
0
0
0
00001
0
13
0
0
.02
.06
.19
2.1
2.2
2.1
.19
.06
.02
0
0
0
0
0
0
3000000000000033000001
30000
00000
0000-0
03030
0 0
.01.01 f f f
.06 . Oi .02 .01 f
.18 .11. .05 .02 f
2.1 1.2 .13 .05 .01
2.1 1.2 .19 .05 .02
2.1 1.2 .13 .05 .01
.18 .Ik .05 .02 f
.05 0» .02 .01 f
.01 . 01 ^ t ^
00000
00000
00000
03000
03000
00030
3033300003000000:
3 ) 0 3
3000
3000
3000
3000
0000
t . . 0
f t . 0
i- t . .
* f t .
t- f t .
f f I- .
f f
f » . 0
f . . 0
0 0
0 0 0
o g g g
g o o o
oooo
oooo
oooo
3000
o o o g
oooo
100000001
3 0
0 0
i g
o g
0 C
3 0
0 0
0 0
3 g
g o
0 0
o g
0 0
D 0
g o
0 D
0 D
0 0
0 0
3 0
0 0
g o
D 0
g o
3 0
D 0
3 3
3 0
0 0
2' 28 23
30330000000
] 0 0
3 0 3
3 0 0
) 0 0
3 0 0
3 o g
1 0 0
3 0 0
3 0 0
) 0 D
3 0 ' 3
3 0 0
I 0 0
3 "" 0 " ~"0
3 0 0
3 0 0
) 0 0
3 0 0
) 0 3
3 0 0
3 0' 3
1 0 0
3 0 0
3 0 3
3 0 0
3 0 0
3 0 3
3 0 0
3 0 3
33 3t~
00000003
30003
10033
3 0003
30033
' 3 0033
00003
00003
'- 3 0003
30003
30003
~ 3 0003"
3 0003
30003
"" 30003
00003
30003
30003
30003
3 0003
30003
30003
30003
30003
30033
30003
30003
3 0003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (60 of 61)
-------
fOTSL THIIMESS (FT) OF >JE/( NUTERHL ON BJrfOMt
...1JLTIPLY OIS°L4Y£D VALUES BY .1000E-03
M N* 1 2 3 "i 3 5 r t 9 10 11
1
Z
3
<-
6
7
3
9
10
11
12
13
K,
15
i =
17
18
13
20
21
22
23
25
25
-27
28
29
80
OOOOOC
0000
0000
0000
0000
0000
0000
0300
0000
0000
0000
0000
0003
0000
0003
0000
0000
0000
0000
0300
OTOO
0000
0003
3003
0000
0300
0000
0000
0000
0000
jooooooo:
0 0
0 0
0 0
3 0
o a
0 ,0
a 0
0 0
0 3
0 11
0 0
3 0
0 3
0 0
0 0
0 0
0 0
0 3
o a
0 0
0 0
0 0
0 3
0 0
0 0
0 3
o o
0 3
0 0
30000033000000001
0000
0300
0 0 0 U
0030
0 3 0. 0
0000
0300
0300
000.
93..
03.+
0 0 . +
00.+
03.+
0 0 . t
0 3 . »
0 0 . t
00..
030.
0300
0000
0 3 U 0
0000
0900
0000
0 '3 0 0
0300
0300
0000
300000000331
0 3 3
0 0 3
0 0 0
0 0 3
000
0 0
+ + f
+ t .01
+ + .03
> .01 .35
+ .02 .03
+ .02 .09
+ .02 .03
+ .01 .06
+ > .33
* t .01
+ + t
. I" *
0 0
0 9 3
0 0 3
0 0 0
000
0 0 3
000
000
30001
0
0
0
0
+
.01
.01.
.11
.21
.28
.30
.28
.21
.11
.0
-------
APPENDIX B
EXAMPLE OF MODEL EXECUTION - SIMPLIFIED VERSION
This appendix contains a tabulation typical of that which would be
obtained from exercising the short version of the model. A limited
range of the model's input/output options is available in this version,
in order that the program's operation may be simplified.
Output generated for this version of the model consists of an
echo of required input data, followed by graphical data representing
the convective descent and collapse phases, and plots of the long-term
diffusion phase. The simulation will automatically proceed through
long term diffusion if this version of the model is selected.
During convective descent, a graph is presented representing cloud
size, cloud depth and horizontal location of the cloud. The output of
the collapse phase is similar, being composed of a graph of horizontal
and vertical size of the cloud, cloud depth in the water column, and
cloud concentration.
The telephone survey mentioned in Section 3B indicated that out-
put for individual sediment components was of little use to many users.
Hence, in this version of the model, only plots of total material
characteristics are presented. These plots are generated for the total
cloud at three time increments and detail the concentration, bottom
accumulation, thickness, top surface position, and thickness of bottom
accumulation for the total cloud at each grid square. Upon termination
of the simulation, the total accumulation and thickness at each grid
square are presented.
130
-------
u>
VERIFICATION *U^ FALL RJVER SILT -- 500 PCM
/ P v :. /
GRID -SPACING (3X) = <*.0000)
f': .'' ---4MBIENT CONDITIONS---
DEPTH (FT) 0. 14.000
AMBIENT
DENSITY (GM/CC) . l.COO 1.000
INTERPOLATED DEPTH AT 3UMP ; OORO I NATES, H s I».OOD FT.
TWO VELOCITY PROFILES SPECIFIED IN X AND Z DIRECTIONS FOR --QUICK LOOKS--
OEPTH ASSUMED iONSTAST ANO l/ELO^ITIES CONSIDERED STEADY IN TIME
VELOCITY PROFILE PARAMETERS FOLL.OH...
OU1 i 1.00 DU2 = 2.00 UU1 = 0. UU2 = 0.
OH1 = 1.00 D(<2 = 2.CO HW1 = 0. HH2 =.. 0.
TIME PARAMETERS FOLLOW...
TIME OF DUMP = 0.00 SECONDS AFTER START OF TIDAL CYCLE
DURATION OF SIMULATION = => 0 J . 0 0 SECONDS 4FTER DUMP
LONG TERM TIME STEP (DTD = 15.00 SECONDS
DISCHARGE PARAMETERS...
INITIAL RADIUS OF DLDUD, RB = ,66&800ii
INITIAL DEPTH OF CLOUD CENTROIO, OREL = .3500
INITIAL CLOUD V ELOS I T I -. S ., . ; U (1) = 0. CV{1) = 0.
SULK PARAMETERS...
DENSITY, ROO = 1.U30CO
AGGREGATE VOIDS RATID, 3VOI3 = .7800
LI3UID LIMIT = llo.J
AVERAGE SPECIFIC GRAJITY = 2.5bO
THERE ARE 3 SOLIDS, 'ARAMETERS FOLLOW
DESCRIPTION OENSITY(GIXCC) CO.MCEN TRA TION( CUFT/CUFTJ FALL VELOCI TY ( F T/SE C ) VOIDS RATIO
Ql Z.5JO .a^lSE-Ol .3253E-01
Q2 Z.SbO .2i»15E-31 .1330E-01 .7800
QJ E.5SO .2"tl5E-Ol .5aOOE-03 .7800
FLUID 1.003 .9275 t.
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (1 of 24)
-------
PLOT OF CLOUD'PATH AND RADIJS A3 SEEN FROM POINT OF RELEASE
INDEPENDENT VA*IA3L;'I3 TIM;
-------
0.0 .2 .<< .6 -3 1*0
I 1 1 1 j 1 1 z x x 1 1 j 1 1 1 1 1 -I I I
IZ Y B
- - - iz YYY BBB
." ' - IZ . ;: ' ' YY ,Y BB
IZ 1 Y y D 83
iz YY 1 933
fi .. -iz . i : - YYY BBS
iz y y 99
iz Y YY BSB
IZ Y Yy BE33
1.0000 It I 1 1 1 1 1 1 1 I-ft-l 1 1 I-333I 1 1 1 1 1 1
*< IZ V V 338
IZ Y YY BBB
-.-. -'IZ. r:. < YY 8
i: iz Y yy BBB
iz yyy BBS
IZ YYY 3BB
IZ YYY 3i3B
IZ Y YY 633
IZ YY Y 3B
"3.0000 12 -I I 1 1 I 1 1 1 1 1 --I 1 1 1 1 1 I-VV-I-BB-I -I
IZ . YYY BSB
IZ ? YYY 33
IZ YYBB
IZ Y8
n.":.-:.-.." ^Y
I
I
I
I
3.0000 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -I 1 1 I 1
I
j
I
I
- - I
I
I
' I
I
tf.OCOO I I 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1-I
I
I
I
_. .- J
I
I
J
I
I
-5.0000 I"I 1-"-I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-I 1
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (3 of 24)
-------
PLOT OF COLLAPSiNG''Cl.OJD CHARACTERISTICS
INDEPENDENT VARIABLE 13 TIM£ OV£R RANGE
0.
DEPENDENT VARIABLEt 4L. NORMALIZED FOR PLOTTING ON UNIT AXIS
SYMBOL A
MAX PLOTTED 1,571*1
MIN PLOTTED 0.
REMARKS VERT SIZE
8 C Y
8.6363 .9275ft 3.9193
o. a. o.
HOR SIZE CONCENTRATION DEPTH
OF INDiVARi i - ' -
15.0000.00 0.
.3000COOO
MAX,MIN,INC, OF OEP. VAR.
l.COQOCOO 0.
.10000000E-C1
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (4 of 24)
-------
Ul
I
I
I
I
I
I
I
I
I
I
- "I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
-- - I
IY
I
I
I
I
I
I
I
I
YY Y 33 AA A
Y BbYB Y C A
6C1 CY Y YC
C C COB Y Y Y
C C C B3b
CCC Odo
c i>a
CC BbB
C OB
C A A
C A
C A A
C A
C A A
C A
C AA
C AA
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
._T . T I --I T r T T T I-
...... I----I----I----i----i----i----i----i---- I----
C C
AC ;
AAA
AAA
Y Y Y AAA
Y Y Y AAA
Y If A A
Y Y r A A
4 A Y Y
i 8 YY
3 Y
33 Y
3 Y
B B Y
3 Y
83 Y
88 Y
B
8
88
B
33
B
88
B
3
6
B
B
8
T r T T T T T T T T
COMPUTATIONS FOR Ql TERMINATED AT Su.iC j£G. ELAPStD T I Me . . . MAT EK IA L SETTLED TO iSOTTOM
COMPUTATIONS FOR. Q2 TERMINATED AT 8 J . (. L, SLO. EIAPS<_0 TI IE . . . MAT LMAL SETTLED TO BOTTOM
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (5 of 24)
-------
CONCENTRATIONS OF TOTAL
(VOLUME RATIO) IN THE CLOUD
150.00 SECONDS AFTER
..MULTIPLY DISPLAYED VALUES 3Y .1GCDE-C3
1 N = 1 2 3 - - 1» - - 5 - & - f 8 9 10
1 0000000000000000000000000003000000003000
2
3
*
5
6
7
8
9
0000
0000
0000
0000
0000
0000
0000
0000
0
*
«
.01
4-
4-
0
0
* *
» .03
.03 .31
.15 1.2
.03 .31
-+ .03
4- 4-
0
.01 * f
.13 .03 t
1.2 .31 .03
<».2 1.2-.15
1.2 .31 .03
.15 .03 f
.01 »
» . )
0
4
4
.01
4-
4
0
0
00000
03003
.0000
40000
.0000
00000
00000
00000
(LLGtNO... « = «LT. 0 1
LT. .0001
U = .IT
000001)
"10"0000000000000000000000000003000000000000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (6 of 24)
-------
BOTTOM ACCUMULATION,^? TOTAL
(CJFT/3RIO SQUARE)
150.00 SEGtMDS AFTER DUMP
..MULTIPLY DISPLAYED V4LUE5 3Y .1000E-03
1 N= 1 2 3 i» 5 6 7 3 9 10
1 0000000000000000000000000000000000003000
2
3
-<.
-------
LO
00
POSITION-OP 'TOP' OF'TOTAL1 '"'- C-OUO'(FE£r BELOH SURFACE) -150.00 SECONDS AFTER 3U1P
V DISPLAYED V4LJE3 3r 1.000 U£G£NO... * = «LT. .31 . = .LT. .0001 0 = .LT. .COOQUl)
~ 1 0000000000000000000000030303000000003000
2 0000 0 3.2 3.2 3.2 3.2 3.2 0 00000
3 0003 3.2 3.2 3.2 3.2 3.2 3.1 3.2 UOOOO
V0003 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.20000
5 0000 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.20000
6 0003 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.23000
"t 0003 3.2 3.2 3,2 3.2 3.2 3.J 3.2 03000
8 0003 0 3.2 3.2 3.2 3.2 3.Z 0 03000
9 0000 0 0 3.2 Z.I 3.2 3 0 03000
iO 0000000000000000000000030303000000000000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (8 of 24)
-------
OJ
THICKNESS OF TOTAL i <,: .CLOJO <-EET) 150.00 SECONDS AFTER DUMP
...MULTIPLY DISPLAYED VALUES BY i.OOfl ILEGENO... * « .LT. .01 . i ,LT. .0001 0 « .LT
MNa123^5ar 89 ID
~'~ 1 0000000000000000000000000303000000300000
2 0003 0 .72 .72 .72 .72 .72 D 00000
3 0003 .72 .72 .72 .72 .72 .71 .72 00000
i» 0003 .72 .72 .72 .72 .72 .72 .72 .723000
5 0003 .72 .72 .72 .72 .72 .7J .72 .720000
6 0000 .72 .72 .72 .72 .72 .72 .72 .723000
7 0003 .72 .fZ .72 .72 .72 .72 .72 00003
fl 0000 0 .7Z .7Z .11 .72 .72 0 03003
9 0000 0 0 .72 .72 .72 3 0 03000
~ 10 00000000000000000000000003OD000000303003
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (9 of 24)
-------
THICKNESS (FTJ OF-TOTAL
ACCUMULATED ON BOTTOM,
150.00 SECONDS AFTER DUMP
... MULTIPLY DISPLAYED VALUES 3Y
MN*123i»5&?
1
2
3
-k
5
6
7
8
9
«lCOJ£-0 .01
+ .01 .75
- f .08 1.7
. + .01 .75
* .01
0 . . *
0 0 .
. . +
.03
1.7
8.5
1.7
.08
f
f
,» .
.01 '»
.75 .CL
1.7 .0)
.75 .01
.01 t
f .
3
C 03000
03000
* .0000
* *0000
* .0000
. 00000
0 00000
0 03000
0000000000000000000000000003000000000000
(LEGEND...
LT« .01
>LT. .0001
0 = .LT. .OCOiOl)
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (10 of 24)
-------
CONCENTRATIONS OF TOTAL
(V3LUHE .RATIOJ IN THE CLOUD
300.03 SECONDS AFTER JUMP
..MULTIPLY DISPLAYED VALUES 3Y .100CE-03
1 N= 1 2 3 .02
.1^.05 f
.02 ^ *
* t .
.0000
40000
fOOOO
43000
43003
43003
.0000
03000
"10 0000000000000000000000030303000000303003
(LEGiNO... f « .LT. .01
LT. .0001
LT. .000031)
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (11 of 24)
-------
BOTTOM ACCUMULATION OF- TOTAL ' (CJFT/JRIO
"..".MULTIPLY DISPLAYED VALUES 3Y .1JDOE-02
MN»123<45&7 89 lu
1 0000000000000000000000000003000000300000
2 0000 . * 4 + 4- 4
3 0000 » 4- .01 .03 .01 f
<» OOOD : "* .Cl .12 .29 .12 .CiL
5 0003 4- .03 .29 1.1 .2? .0?
6 0000 * .01 .12 .29 .12 .CL
7 0000 * + .01 «C3 ,01 - *
8 0000 ^ * + » * »
9 oooo e * * * i
00000
.0000
4-0000
0000
4-0000
.0000
0:000
00000
300.00-SS83MOS 'AFTER DUMP
(LEO-NO... 4- ± ,LTt .Oi . - .LT.
0 = .LT. .OOOiiOl)
"lO'OOOOOOOOOOOOOOOOOOOOOOODODOJOOOOD0000000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (12 of 24)
-------
POSITION OF.TOP'OF. TOTAL C.OUD (FEET DELOU SURFACE) 300.03 SECONDS AFTER DUtfP
...MULTIPLY OISPLArED VALUES BY 1.003 JD... + = .LT. .31 . * .LT. .QOul D * ,LT. .GGOOiJi)
MNal23<»5&r 89 10
" 1 0000000000000000000000030303000030303000
2 0000 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.30000
3 0000 3.3 3.3 3.3 3.3 3.3 3.! 3.3 3.30000
""""«» OOOD 3.3 3.3 3.3 3.3 3.3 3.5 3.3 3.33000
5 0003 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.33000
6 0003 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.33000
~ 7 0000 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.33000
8 0003 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.30000
9 0003 3.3 3.3 3.3 3.1 3.3 3.3 3.3 03000
"10 00000000000000000000OOOD0003000000303000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (13 of 24)
-------
THICKNESS OF TOTAL > -!>. CLOJO (-EET)i' 300.00 SECOMOS AFTER DUMP
...MULTIPLr DISPLAYED V4LJE3 3Y l.OOC ILEGENP... * = .LT. .01 . = .LT. .0001 0 = .IT. .000001)
MN=ia3"»5678913
1 000000000000000000000003000300 COO 0003000
2 0000 .65 ^65 .65 .65 .65 .63 ,65 .550000
3 0003 .65 .65 .65 .65 .65 .65 .65 .650000
1» 0003 .65 .65 .65 .65 .65 .65 .65 .553000
5 0000 .65 .65 .65 .65 .65 .65 .65 .653000
6 0000 .65 .65 .65 .65 .65 .63 .65 .550000
"~ 7 0000 .65 .65 .65 .65 .65 .63 .65 .550000
9 0000 .65 .65 .65 .65 .55 .63 .65 .550000
9 0000 .65 .65 .65 .65 .65 .63 .65 00000
10 0000000000000000000000000000000000300000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (14 of 24)
-------
THICKNESS (FTI !OP'TOTAL
,ACCUMULATED ON BOTTOM,
300.00 SECONDS AFTE* 3UMP
...MULTIPLY DISPLAYED VALUES 3Y .1003E-03
MN*i23<»5are9io
1 OOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOO
2 0003 .«, + .+ t . + . I-
3 0003 + + .01 .Qi» .01 ' >
"~k 0000 * .01 .13 .32 .13 .01
5 0003 * .Ci* .32 1.2 .32 .0'+
6 0003 + .01 .13 .32 .13 .01
7 0003 . * . + .01 .0* .01 »
8 0000 ,..,. + , + ,+ t »
9 0000 . .0 ...**.* .
~ 10 0000000000000000000000000000000000000000
4
+
+
*
+
*
0
03000
.3000
+ 3000
+ 0000
+ 0000
.3000
00000
00000
(LECiNO... « « .LT. .01
* .IT. .3001
.LT. .DOJCOif
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (15 of 24)
-------
CONCENTRATIONS OF TOTAL * 0000 .05 .21 .55 .83 .55 .21 .05 ,010000
5 0003 .08 .32 .63 1.2 .83 .3Z .u8 .C13000
6 0003 .OS .21 .55 .83 .55 .21 .05 .013000
7 0000 .02 .58 .21 .32 .21 .09 .02 +3000
8 0000 * .C2 .05 ,C8 .05 .02 * +0000
9 0000 » + .01 .Cl .01 » + +3000
~~10 0000000000000000000000000303000000303000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (16 of 24)
-------
BOTTOM ACCUMULATION OF .TOTAL
...MULTIPLY DISPLAYED VALUES 3Y
MN=123
1.2
.40
.07
.01
. f
« . f +
.03 > »
.16 .05 f
.43 .0^ .01
.19 .,0) +
.03 « *
f f »
. « > 4
.0000
3000
oooo
0000
+ 0000
+ 0000
.3003
.3000
0 * .LT. .OOOuOi)
~10 0000000000000000000000000003000003300000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (17 of 24)
-------
oo
__ POSITION OF: TOP OF TOTAL.: C.OUQ..IFEET BELOW SURFACE) 1*50.03 SECONDS AFTER DUMP
...MULTIPLE DISPLAYED VALUES BY i.36! (LEGcSO... « = «LTe .01 = «LT. .0001 C * «LT
MN*123455f 89 10
~ i OOOOOOOOOOOOOOOOOOOOOOOOOOODOOCOOOOOOOOO
__ Z 0000 3.i» 3.
-------
THICKNESS OF TOTAL CLOJO ("EET) i»50.00 SECONDS AFTER DUMP
...MULTIPLY DISPLAYED VALUES 3Y 1.903 (LtGiNd... f = .LT. .01 . * .LT. .0001 u * .LT, .OCJGQ1!
HN*123<»5&7891C
1 0000000000000000000000000003000000303000
2 0000 .57 .57 .57 .57 .57 .57 .57 .570000
3 0000 .57 .57 .57 .57 .57 .5T .57 .573000
' " i» 0000 .57 .57 .57 .57 .57 .57 .57 .570000
5 0003 .57 .57 .57 .57 .57 .57 .57 .573000
6 0000 .57 .57 .57 .57 .57 .57 .57 .573000
7 0000 .57 .57 .57 .57 .57 .57 .57 .573000
8 0003 .57 .57 .57 .57 .57 .57 .57 .373000
9 0000 .57 .57 ,57 .57 .57 .57 .57 .573000
~10 0000000000000000000000000303000000003000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (19 of 24)
-------
THICKNESS (FT) OF TOTAL '< ;- ACIUMULUEO ON BOTTOM, <»50.00 SECONDS AFTE3 DUMP
~~7;.MULTIPLY DISPLAYED V4LU£5 BY .10COE-03 (LtO£ND... + * .LT. .31 . * .LT. .0001 0
MN»123i»56?8910
1 00000000000000000000OOOOOOOD000000003000
_ 2 0000 . + , + .+ .01 + . f + .3000
3 0000 . + .01 .03 .09 .03 .01 + +3000
~<« 0003 - + .03 .21 .«!» .31 .03 + +3000
_ 5 0000 .01 .08 .<<» l.l» .<*'4 .03 .01 +3000
6 0000 . ';* .03 .21 .k'4 .21 .0! + +3000
T "OOOD ""+' .01 .03 .03 .03 .01 + +3000
8 0000 .»,+-+ .01 + » + .3000
9 oooo .';<. + ..+ -+ + * . ,0000
10 0000000000000000000000000003000030300000
.LT. .GCOQOl)
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (20 of 24)
-------
FINAL DISTRIBUTIONS OF TOTA. SETTLED MATERIAL FOLLOW
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (21 of 24)
-------
TOTAL ACCUMULATED SOLID VOLJMt 3N BOTTOM .LT. .Ci
.0001
LT.
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (22 of 24)
-------
TOTAL THICKNESS (FT) OF NEW MATERIAL ON 30TTOM,
...MULTIPLY DISPLAYED VALUES 3Y .10GOE-C2
MN=123<*5&r8913
613.00 SiSONOS 4?TER OUM'
(LEG£NO.->. + = .LT. .01 . = .LT. .OGG1
.LT. .CudOOil
1 0000000000000000000000000003000000303000
z
3
*
5
6
7
9
0003
0000
OOOD
0003
0000
0000
A A Art
OOOQ
0000
+ +
4- +
+ .01
f +
+ +
. +
+
.30
.37
.30
+
+
.01
.37
1.1
.37
.01
f
» t
.30 f
.37 .01
.33 t
+ *
+ *
» +3003
+ +0000
f +3000
+ +0000
+ +0000
.0000
Ln
CO
"ID 0000000000000000000000000303000000000000
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (23 of 24)
-------
RUN.COMPLETEO.oCPU;TIME *:..IH.M9 SE
EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (24 of 24)
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
EPA-600/3-78-089
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
CALIBRATION OF A PREDICTIVE MODEL FOR
INSTANTANEOUSLY DISCHARGED DREDGED MATERIAL
5. REPORT DATE
September 1978
6. PERFORMING ORGANIZATION CODE
. AUTHOR(S)
Gary W. Bowers and Martin K. Goldenblatt
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
JBF Scientific Corporation
Wilmington, Massachusetts 01887
10. PROGRAM ELEMENT ,JO.
1BA608
11. CONTRACT/GRANT NO.
R-804994
12. SPONSORING AGENCY NAME AND ADDRESS
Corvallis Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
rnvx/allic Qyonnn
13. TYPE OF REPORT AND PERIOD COVERED
Final - Oct. 1976 - Dec. 1977
14. SPONSORING AGENCY CODE
EPA/600/02
15. SUPPLE'MENTARY NOTE
16. ABSTRACT
This report describes modifications to a computer model originally developed by
R.C.Y. Koh and Y.C. Chang, for predicting the physical fate of dredged material
instantaneously released into a water column. Changes to the simulation include
the calibration and verification of the program's coefficients based upon experi-
mental laboratory data as well as simplification of the model's use. Inputs to
the model include initial material characteristics and dynamics. Outputs include
material concentration and position while in the water column and material mound
height and concentration after bottom impact. Included in the report are a des-
cription of the model's structure, the changes made to the program, information
on field sampling and laboratory procedures needed to develop input values, and
examples of model operation.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. cos AT I Field/Group
Dredged material disposal
Waste Disposal
Mathematical models
Dredge Spoil
13-B
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (Rev. 4-77)
«U.S. GOVERNMENT PRINTING OFFICE: 1978798-079/4
155
------- |