United States
Environmental Protection
Agency
Environmental Research
Laboratory
Corvalhs OR 97330
EPA-600/3-78-089
September 1978
Research and Development
CALIBRATION OF A
PREDICTIVE MODEL FOR
INSTANTANEOUSLY
DISCHARGED DREDGED
MATERIAL

-------
                RESEARCH REPORTING SER8ES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology  Elimination  of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are.

      1.   Environmental  Health Effects Research
      2.   Environmental  Protection Technology
      3   Ecological  Research
      4.   Environmental  Monitoring
      5.   Socioeconomic Environmental Studies
      6   Scientific and Technical Assessment Reports (STAR)
      7   Interagency Energy-Environment Research and Development
      8   "Special" Reports
      9   Miscellaneous Reports

This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and  materials Problems  are assessed for their long- and short-term influ-
ences  Investigations  include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the technical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
   .i. document is available to the public through the National Technical Informa-
   i  Sen/ice, Springfield, Virginia 22161

-------
                                         EPA-600/3-78-089
                                         September 1978
   CALIBRATION OF A PREDICTIVE MODEL FOR
INSTANTANEOUSLY DISCHARGED DREDGED MATERIAL
                    by
              Gary W. Bowers
                    and
           Marin K. Goldenblatt
        JBF Scientific Corporation
     Wilmington, Massachusetts  01887
                R-804994
              Project Officer

              Lorin R. Davis
  Ecosystems Modeling and Analysis Branch
Corvallis Environmental Research Laboratory
         Corvallis, Oregon  97330
CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U.S. ENVIRONMENTAL PROTECTION AGENCY
         CORVALLIS, OREGON  97330

-------
                                 DISCLAIMER









     This report has been reviewed by the Corvallis Environmental Research




Laboratory, U.S. Environmental Protection Agency and approved for publication.




Approval does not signify that the contents necessarily reflect the views




and policies of the U.S. Environmental Protection Agency, nor does the mention




of trade names or commercial products constitute endorsement or recommendation




for use.
                                       11

-------
                                FOREWORD






     Effective regulatory and enforcement actions by the Environmental




Protection Agency would be virtually impossible without sound scientific




data on pollutants and their impacts on an environmental stability and




human health.  Responsibility for building this data base has been




assigned to the EPA's Office of Research and Development and its 15 major




installations, one of which is the Corvallis Environmental Research




Laboratory (CERL).




     The primary mission of the Corvallis Laboratory is research on the




effects of environmental pollutants on terrestrial, fresh water and marine




ecosystems; the behavior, effects and control of pollutants in lake systems;




and development of predicted models on the movement of pollutant in the




biosphere.




     This report describes the efforts of JBF Scientific and their EPA




Grant R-804994 to modify, simplify and calibrate a model for the prediction




of the short-term fate of instantaneously dumped dredged material discharged




into estuarine and coastal environment.
                                     111

-------
                               PREFACE










     For years the oceans have been considered the best depository for




men's waste materials.  The sheer size of the ocean led to the belief




that any harm to the aquatic environment caused by the dumping of waste




material was inconsequential.  However, as the magnitude of the volume




of material discharged has risen, so has concern over the impact the




procedure has on the local environment.




     The study presented in this report represents the work JBF Scientific




performed in improving a model originally developed by R.C.Y. Koh and Y.C.




Chang for predicting the fate of dredge material in an aquatic environment




The effort included the use of laboratory and field experience to both




improve the model's predictive capabilities and simplify its use.  As a




result of JBF's efforts the model can now more accurately describe the




dynamics of a wider range of dredge materials and because of simplifica-




tions in its use be accessable to a wider range of users.
                                     IV

-------
                                 ABSTRACT









     This report describes JBF Scientific's modifications to a computer




model originally developed by R.C.Y. Koh and Y.C. Chang for predicting




the physical fate of dredged material instantaneously released into a




water column.  Changes to the simulation include the calibration and




varification of the program's models based upon experimental laboratory




data as well as simplification of the model's use.  Inputs to the model




include initial material characteristics and dynamics, ambient charac-




teristics and dynamics, and site geometry.  Outputs include material




concentration and position while in the water column and material mound




height and concentration after bottom impact.




     Included in this report are a description of the model's structure,




the changes made to the program, information on field sampling and




laboratory procedures needed to develop input values, and examples of




model operation.  The model has three versions, exercising various levels




of input/output complexity and computer storage requirements.  A complete




listing of the input variables necessary to exercise each version is pre-




sented as well as the outputs to be expected when the program is run with




a representative data set.




     This report was submitted in fulfillment of grant R-804994 by JBF




Scientific under sponsorship of the U.S. Environmental Protection Agency.




This report  covers a period from August 1976  to December 1977 and was




complete as  of August 1978.

-------
                                CONTENTS


Foreword                                                            iii

Preface                                                              iv

Abstract                                                              v

Figures                                                             vii

Tables                                                               ix

1.   Introduction                                                     1

2.   Background:  Previous Observations of Dredged Material
        Dispersion                                                    3

3.   Model Modifications and Calibration                             16

     A.   Model Selected                                             16
     B.   Model Input Simplification                                 17
     C.   Modification of Convective Descent Equations               32
     D.   Modification of Dynamic Collapse Equations                 51
     E.   Modification of Long Term Diffusion Equations              54
     F.   Model Output Simplifications                               56

4.   Model Verification                                              58

5.   Conclusions and Recommendations                                 64

References                                                           66

Appendix A - Example of Model Execution - Long Version               67

Appendix B - Example of Model Execution - Simplified Version        130
                                   vii

-------
                                   FIGURES
Number

  1       Percent moisture effect during descent phase for silt
  2       Percent moisture effect on collapse and bottom flow
          for silt
  3       Percent moisture effect on mounding and deposit of silt
  4       Maximum mound height as a function of percent moisture
  5       Maximum mound height as a function of multiple of liquid
          limit
  6       Grain size distribution of representative clay-type
          materials
  7       Grain size distribution for Mississippi River sediment
  8       Grain size distribution for Ambrose Channel sediment
  9       Grain size distribution for Rochester Harbor sediment
 10       Grain size distribution for Houston Ship Channel sediment
 11       Grain size distribution for Baltimore Harbor sediment
 12       Grain size distribution for Galveston Channel sediment
 13       Liquid limit versus median grain size
 14       Liquid limit versus organic content
 15       Schematic of parameters defining cloud properties and
          behavior
 16       Effect of multiple of liquid limit on entrainment
          coefficient
 17       Cloud growth during descent: model predictions and
          tank data at moderate MLL
 18       Cloud growth during descent:
          data at high MLL
 19       Cloud growth during descent:
          data at low MLL
 20       Drag coefficient versus multiple of liquid limit
 21       Cloud centroid depth versus time for tank tests and
          various model predictions
 22       Effect of multiple of liquid limit on virtual mass
          coefficient
 23       Cloud depth versus time: model predictions and tank
          data at moderate MLL
 24       Cloud depth versus time: model predictions and tank
          data at low MLL
 25       Cloud depth versus time: model predictions and tank
          data at high MLL
 26       Cloud front location versus time for model predictions
          and tank data
 27       Cloud front location versus time for model predictions
          at tank data
 28       Fall velocity versus concentration for a representative
          cohesive sediment
model predicitons and tank

 model predictions and tank
 9
11

12
15
15

18

26
27
28
29
30
31
33
34
38

39

41

42

43

44
46

47

48

49

50

52

53

55
                                   Vlll

-------
                              FIGURES (cont.)
Number
 29       Verification of model entrainment predictions at high           59
          MLL: modified and unmodified model predictions and
          Fall River silt tank test data
 30       Verification of model velocity predictions at high MLL:         "0
          modified and unmodified model predictions and Fall River
          silt tank test data
 31       Verification of model entrainment predictions at low MLL:       61
          modified and unmodified model predictions and Thames
          River silt tank test data
 32       Verification of model velocity predictions at low MLL:          62
          modified and unmodified model predictions and Thames
          River silt tank test data
                                     IX

-------
                                 TABLES


Number                                                             Page

  1.      Input Data Set for 8-Component Simulation.                 20

  2.      Input Data Set for 3-Component Simulation.                 21

  3.      Cloud Configuration During Convective Descent and          22
          Collapse for 8-Component Simulation.

  4.      Cloud Configuration During Convective Descent and          23
          Collpase for 3-Component Simulation.

  5.      Final Material Accumulation for 8-Component Simulation.    24

  6.      Final Material Accumulation for 3-Component Simulation.    25

-------
                                  SECTION 1




                                INTRODUCTION





     The subject of dredged material dispersion has received considerable




attention in recent years as concern has grown for the environmental




impact of disposal of dredge materials.  While extensive efforts have been




directed toward developing mathematical and physical models, these studies




have historically been handicapped by lack of sufficient experimental data




with which to adequately calibrate and verify results.  As a result the




models developed have not been universal, but rather have been limited in




application for disposal situations similar to that used for the model's




development.




     Accordingly, the U.S. Environmental Protection Agency, Corvallis




Environmental Research Laboratory, sponsored the project reported herein,




an effort by JBF Scientific Corporation to improve the predictive




capability and to simplify the use of the Koh - Chang mathematical model.




Previous work by JBF and by the U.S. Army Corps of Engineers had ascer-




tained that this was the most applicable model available for predicting




the physical fate of dredged material dumped in open water.  The original




model by Koh and Chang (1) was modified under the Corps' Dredged Material




Research Program by Tetra Tech Inc.  This modified model (2) was taken as




the starting point for this project.




     Two overall tasks were included in this program.  One task was to




improve the model's dynamic phase predictive capability through a program




of calibration and model testing.  That task is the subject of this report,

-------
     The second task was to prepare the user's manual portion of ref.  3




which gives details on the application and operation of the computer  code




along with a complete matrix of sample runs.  These runs can be used  to




approximate dredged material dumping by persons looking for a quick answer




and  those without access to the computer code.




     The program of calibration and model testing was based on a set  of




data previously developed by tank tests at JBF, relating the behavior  of




dumped dredged material to the material's physical properties.  These




tests were performed at depths up to 9 feet.  The data yielded correla-




tions which were incorporated into the model, improving the model's




representation of the behavior of a cloud of dredged material dumped  in




water.




     In conjunction with improving the model's capabilities through cali-




bration the model was modified in a manner that simplified its use.




Unnecessary inputs and outputs were eliminated so that a user interested




not  in modifying the model but rather in exercising it solely to obtain




data on material dynamics will be able to do so with relative ease.

-------
                                 SECTION 2

     BACKGROUND:  PREVIOUS OBSERVATIONS OF DREDGED MATERIAL DISPERSION


     The computer simulation developed by Koh and Chang (1) in 1973 was

an attempt to model the dispersion and settling behavior of barge disposed

wastes in an open aquatic environment.  The model was based on theoretical

and experimental studies and for limited applications satisfactorily pre-

dicted material behavior.  However, the model did have limitations both in

the modeling techniques employed and computer code developed.  For example,

the program was unable to model estuaries, and on some specific runs did

not appear to maintain conservation of mass.  The intent of this study was

to identify the model's limitations and correct them where possible.

Included in these changes were simplification of the computer input/output

format.  All modeling changes were based upon experimental data with the

final model verified through independent laboratory data.   Problem areas

still remaining with the model were identified and recommendations for

future work developed.

     Early in this study, the modified Koh-Chang model was published by

the Corps of Engineers Waterways Experiment Station (WES).  Because

this updated model removed several of the deficiencies in the original

Koh-Chang model, it was taken as the starting point for this effort.  To

simplify nomenclature in this report, the following terms will be applied

to the various developmental stages of the Koh-Chang model:

          Description                        Term Used in this Report

          Original Koh-Chang model (1)            Koh-Chang model

          Updated Koh-Chang model                 WES model
          published by Corps of Engineers'
          Waterways Experiment Station (WES)

-------
          Model resulting  from  this study         CERL model
          for  EPA's Corvallis Environmental
          Research Lab  (CERL)

      The WES model's  approach to  the  simulation  of dredged material  dis-

 persion is  to  assume  that  the material  consists  of two components:   solid

 and liquid.  The  solid  component  describes both  the bulk  properties  of

 the material and  the  properties of the  discrete  material  components  which

 are assumed to act independently  of each other.  For  example,  each dredged

 material considered has a  set of  parameters describing the behavior  of

 the bulk material.  Similarly,  the individual  solid components that  make

 up the bulk material  have  a  set of parameters  describing  their individual

 behavior.  In  this manner  the dynamics  of the  material cloud  can  be

 modeled while  accounting for the  settling of component materials  to  the

 bottom.

      Dispersion properties of the dredged material are divided into  three

 sequential  phases by  all of  the models  under consideration.   The  first

 phase (convective descent) models the dynamics of the dredged material

 that are dominated by the  initial material momentum and buoyancy.  The

 second  phase (dynamic collapse) models  cloud behavior resulting from

 bottom  impact  or  from reaching a  point  of neutral buoyancy.   Momentum

 changes from vertical descent to  horizontal spreading in  this phase.

 The  third phase (long term diffusion) models the period where cloud

 behavior  is essentially  controlled by ambient  dynamics.

     JBF's early use  of  the  Koh-Change  model,  and their comparisons  of

its prediction to field  data and  tank tests, revealed several conceptual

inaccuracies in the model.

-------
     The cohesive properties of fine sediments were not adequately




represented in the Koh-Change model.  It has been demonstrated through




tank testing and through field observations that fine sediments can




behave as a cohesive mass rather than as individual particles, profoundly




influencing the behavior of all phases descent, collapse, mounding, flow,




and long-term dispersion.




     Entrainment coefficients are another complex area in which the




Koh-Change and WES models appeared oversimplified.  (We wish to emphasize




the difference between simplicity of some of the model structure, which




is noted here as a liability, and simplicity of use, which of course is




an asset).  In the earlier models the entrainment coefficient, a, is con-




stant.  However, dumping experiments in tanks at JBF (4) indicated that




a is a function of percent moisture and cohesion for each material




dumped.  At low moisture content, cohesive materials (silts and clays)




fell to the bottom of the tank with no entrainment, as would a "solid"




mass.  The greater percent moisture (PCM), in turn, allowed a higher




entrainment coefficient and thus a faster entrainment and dilution of




the cloud.  As a  result of these observations, it was believed that




an accurate description of entrainment must explicitly include functional




dependence on percent moisture and liquid limit of the dredged material.




An error in specifying the entrainment coefficient results in significant




computational errors in cloud radius, descent velocity,  impact velocity,




and other important aspects of material fate.




     Similarly, JBF's use of the model revealed mathematical  and  program-




ming problems with the computer simulation.   Some  of these problems were




programming errors and fairly simple to rectify;  others  related  to the

-------
basic modeling approach.  The first area to be discussed is the original




form of output for the long-term dispersion phase.  The complex diffusion




equations for this phase were solved by the Aris method of moments  (1).




This method yielded only moments of the concentration distribution  as a




function of time - not the distribution itself.  Therefore, it was  impos-




sible to determine material concentrations at points in the water column




or amount of material deposited at points on the ocean floor without




assuming a distribution.  It should be noted that the first two model




phases  (convective descent and dynamic collapse) do not use the method




of moments and, therefore, give actual concentrations in the water  column




during  those two model stages.




     A  second important problem was the programming of the ambient  velocity




profile and its effect on calculated entrainment during the collapse phase.




The Koh-Chang model was found incapable of accommodating a horizontal




velocity of any realistic magnitude.  During one project in which JBF




used the Koh-Chang model, it was found necessary to specify a zero  ambient




velocity.  When non-zero velocities were input, the cloud very rapidly




grew to enormous  (and obviously incorrect) dimensions.  The model was not




designed for dump situations in which the waste cloud becomes flattened




on the bottom.  The model used the entire cloud surface area for entrain-




ment calculations and an entraining velocity equal to the net velocity




vector of the cloud relative to the ambient.  In this case, when the




cloud has flattened on the bottom, the only significant velocity of the




cloud with respect to the ambient was the horizontal velocity.  At  the




same time,  the cloud had rapidly flattened to a pancake shape with  a




large horizontal diameter and little height.  Thus the surface area of

-------
the cloud becomes very large compared to its volume while the net velocity




used in calculating entrainment is largely parallel to the cloud surface.




Because the true entrainment velocity would not be perpendicular to this




large surface area, the amount of entrainment was considerably overesti-




mated by the program.




     Another problem encountered in operating the model with an ambient




current was that conservation of momentum did not appear to be satisfied.




This was illustrated by running the model with an ambient current in, say,




the x-direction and releasing a dump having an initial velocity also in




the x-direction and at the same magnitude as the current velocity.




Under these conditions the dump should move downstream with the current




at constant velocity (the current velocity) while it sinks.   In fact,




in such a run the dump decelerated and did not keep up with the current.




The problem was traced to an inconsistent accounting of the momentum of




the cloud and of its added mass.




     The final conceptual shortcoming identified was the model's handling




of bottom topography.  The Koh-Chang model assumed a flat ocean bottom,




with an allowance for a roughness coefficient.  The literature related




to density currents makes the point repeatedly that bottom topography is




an important determinant of the path of a density current.  In addition,




a sensitivity analysis of the Koh-Chang model (4) showed that the model




output was insensitive to clearly another area requiring improvement.




     The model used as the basis for this project was the latest




available version of the WES model.  The above problems, as well as some




more minor shortcomings, had been substantially solved during development




of that version of the model.  However, during that refinement of the

-------
model, no attempt was made  to relate material properties, such as moisture




content of the material, to the  dynamics  of the disposed dredged material.




     JBF performed  a  sensitivity analysis of the  original Koh-Chang model




(4).  This analysis consisted  of a parametric  variation of  inputs, with




examination  of resultant outputs to  identify  the  input parameter varia-




tions to which the  model was most sensitive.   Only the variations  in




entrainment  coefficient and particle settling  velocity were found  to




affect output results dramatically.   The model was found  to be  moderately




sensitive  to other  input parameters,  such as virtual mass  and drag coeffi-




cient, and quite insensitive  to  variations in  many other  input  parameters.




These results showed  that  a simplified version of the model which  would




make the model  easier to use  and less expensive to run was  distinctly




possible.




      The  data used in support of this study were  developed  by dropping




 San Francisco Bay and New England harbor dredged  materials  in tanks with




 water depths of 18",  2', 4' and 9'.   In these studies the method of




 release,  quantity of material released, material type and material




 characteristics were controlled and  data was collected which described




 their effects on cloud descent, bottom mounding  and bottom flow charac-





 teristics.




      For example,  the  effect  of moisture content upon entrainment coeffi-




 cient for a  silt material is  shown  in Figure  1.   As  the material's




 moisture content increased its  entrainment coefficient also increased




 until the material started to behave as  a fluid  and  the entrainment




 coefficient approached  the entrainment coefficient of  a fluid  cloud.




 The effect of moisture  content, and  consequently, cloud entrainment on

-------
                             	 x 	  Average Descent Velocity Versus PCM
erage Descent Velocity (ft/sec)
O 1— ' K> OJ J>-
" tntrainment uoetticxent (a) Vers











"™" •







-*•







—


<
^ —
X


— — .


i
	 ' A



- ^,


/




>B

X














^- ^
















** ~~ -1- ~















!-» ra. ..







- 	







	














»
X







—







— «, m_







- _.










ooo oo oo o o c
Mho LOJ^ LnCT\ ~-j OO
^
Entrainment Coefficient (a) s
            100
 200            300
Percent Moisture (PCM)
400
                                                                     500
Figure 1.  Percent moisture effect during descent  phase  for  silt.

-------
descent velocity can also be seen in Figure 1.  As expected, increased




cloud entrairanent results in a decrease in descent velocity.




     The material behavior on the bottom was also found to be strongly




dependent on moisture content.  Figure 2 illustrates the effect of




moisture content on the rate of horizontal flow of material along the




bottom after impact, and Figure 3 shows mounding characteristics as a




function of moisture content  (both for a silt material).  It is apparent




that for the material shown, between moisture contents of 100 and 200




percent moisture (PCM) there is a transition range from high cohesiveness




and little bottom flow to low cohesiveness and rapid bottom flow of




materials.  Below 100 PCM this material mounds in a clump at the impact




point while above 200 PCM most of it spreads in a bottom flow.




     On  the basis of these and other observations that were made for




both clay and  silt materials, it was hypothesized that dumping charac-




teristics  (for clay and silt) fall into two distinct modes.  The "solid"




mode is  a characteristic of materials with low percent moisture and in




this mode the  dumped volume falls as a solid block and does not spread




much on  the bottom.  In the "liquid" mode, characteristic of materials




with a high moisture content, the dumped material falls as a liquid




cloud and spreads like a fluid on the bottom.  These modes can be iden-




tified by relatively well defined PCM ranges although the cut-off PCM




values for each are dependent upon the size and depth of the dump.  The




"solid"  range  includes all PCM values below a certain transition point




(upper bound of solid range).  The "liquid" range includes all PCM




values above a somewhat higher transition point  (lower  bound of liquid




range).  The PCM range between these two points is a transition range




where dumping  characteristics vary rapidly with change  in PCM and dumps
                                      10

-------
0
QJ
w
4J
•H
0)
>

JS
O
                                                 Velocity Ratio  (Initial Bottom Flow

                                                 Velocity/Impact Velocity)

                                                 Bottom Flow Rate  (Average Over First

                                                 Six Feet)

                                                                                   .7
                                                                                   .6


                                                                                   •5


                                                                                   •*

                                                                                   .3
                   100
                                 200           300

                               Percent Moisture  (PCM)
400
500
                                                                                      5
                                                                                      0
                                                                                      o
Figure 2.  Percent moisture effect on collapse and bottom flow for silt,

-------
                                                 Maximum Mound Depth

                                                 Average Deposition in the Space from
                                                 Two Feet to Six Feet from Impact Point
y
CO
01
•£ 6
0 °
.^< S
.£
« 3
§ 0
O *•
6 1
g '
•H n
v u
Cti f
y. C








)

— ^.





•M








y



•^^




	
10







X
0



\
\


/




(
1
\
\



X
^
^ X



s
20


• —




^^
0


•---








• — w









-




3C



^•^




)0













"^" -








*^.
~-»



4C




xV



)0





"^"'








•^








• — ^


5C






^ -^

0
/
CM
6 U
u o
CSl
4 g
bO
o a
£• o
•H
1 -H
0
0 &
P
                               Percent Moisture  (PCM)
Figure 3.  Percent moisture effect on mounding  and  deposit  of  silt.

-------
show characteristics of both modes.  Although there is some variation in




dumping characteristics by PCM within each mode, the differences between




modes are much greater and the transition between these modes takes place




over a relatively narrow transition range of PCM.




     The "solid" dump mode is characterized by a very rapid descent phase,




little cloud growth and little spread of the material on the bottom after




impact.  During descent the material falls like a dense block trailing a




turbidity plume behind it.  It rapidly reaches its equilibrium velocity




and does not decelerate before impact.  Entrainment is negligible in the




solid mode so that the main cloud has little shape change during descent.




Most of the descent energy is absorbed on impact and does not contribute




to spreading material along the bottom.  Thus, the bottom flow is low in




suspended solids and is slow moving.  Most of the dump material is deposited




in a mound at the impact point.




     The "liquid" dump mode is characterized by a slower descent phase with




the cloud expanding due to entrainment, and by a rapid flow of material




along  the bottom after impact.  During descent entrainment is significant




and the cloud grows rapidly, decelerating while it does so.  Impact velocity




may not be as high as for equivalent "solid" dumps.  Most of the impact




energy is redirected to a horizontal momentum that drives the cloud rapidly




across the bottom.  There is little or no mounding of dumped material at




the impact point and most deposited material is carried in a rapidly moving




bottom flow.




     One very interesting trend  to  emerge from  the mounding data suggests




a relationship  to a simple property of the  soil,  the liquid limit, which  is




the moisture content in percent  of  dry material as the mixture just begins
                                      13

-------
to flow.  Figures 4 and 5 show this trend.  Figure 4 shows maximum mound




height as a function of percent moisture for a clay and a silt from San




Francisco Bay, based on tests in 28-gallon aquaria.  This figure indicates




differing behavior between the two materials.  However, when the liquid




limit is divided into PCM, the resultant multiple of liquid limit  (MLL)




appears to have an important effect, common to the two materials,  as  shown




in Figure 5.  This observation indicated one promising area for simplifying




dredged material characterization:  cohesive behavior as a function of MLL.




     It was clear that moisture content and cohesive characteristics  are




significant variables that have a major influence on the behavior  of




dumped  dredged material - both before and after bottom impact.  The Koh-




Chang and WES models did not provide any capability for modeling this




important effect.
                                      14

-------
                    50
 40
33
29
              e
              G
              4-1
              £1
              Ml
              •H
              0)
              PC
               C

               o
              •H
               X
               cti
                    100
 150        200
Percent Moisture
           250
Figure 4.  Maximum mound height  as  affected  by percent  moisture.
                            1         2        3

                            Multiple of Liquid Limit
 Figure  5.  Maximum mound height as affected by multiple of liquid limit
                                 15

-------
                                 SECTION 3




                    MODEL MODIFICATIONS AND CALIBRATION





A.   MODEL SELECTED




     An extensive literature  search was undertaken by JBF  to obtain  the




latest version of the Koh-Chang model.  Since  the model was being  exten-




sively used  it was reasonable to expect portions of  the model  had  been




modified and improved.   The most extensive modification found  had  been




performed for the Corps  of Engineers  (WES) (2).  These changes included a




complete revision of the long-term diffusion model.   Rather  than the




method of moments originally  modeled  by Koh and  Chang, the new model




uses a convolution method developed by H.  Fisher and obtains material




 concentrations  directly.




      The long-term  diffusion  model originally  developed by Koh and




 Chang (1)  assumed horizontally uniform, steady currents,  and no horizon-




 tal boundaries  were allowed.   The  WES model was  developed in order




 to be able to simulate non uniform currents, horizontal boundaries and




 unsteady flow.   As  a consequence  the  method of moments was no  longer




 applicable,  resulting  in the  need  to  reprogram the  long term diffusion




 stage.   The approach selected could handle the above options and was




 still economical and efficient to  run on  the  computer.




      Because the program no  longer calculated  the moments of  the cloud's




 distribution the original computer output had  become obsolete.  The




original output  forms  were modified  in the WES model to  reflect the




concentration data.




      The resulting model was  subsequently modified  by the U.S.  Army




Engineer Waterways Experiment Station (WES)  to eliminate  some  programming




errors in the program's  long  term  diffusion computer subroutines.  It
                                      16

-------
is this latest version of the model that JBF selected as the baseline




model from which to work.




B.   MODEL INPUT SIMPLIFICATION




     The original input format for the model was extensive and required




the user to have a knowledge not only of the process being simulated but




also the formulation of the computer simulation itself.  For instance,




the first three input cards are keys which produce results internal to




the program, but which are not related to the physics of the dump.  Other




quantities, such as a user specified long term time step, or the number




of transition levels from short term to long term diffusion, require a




knowledge of the program structure to estimate accurately.  The initial




effort undertaken by JBF was to simplify the input/output formats so that




a user could set up his problem in terms of known material and water




column characteristics.




     As a first step in the format simplification procedure a telephone




survey was conducted with marine biologists to determine input parameters




that can be easily identified and output parameters of primary importance.




As a result of these conversations it was decided to reduce the input




data required by eliminating theoretical coefficients and parameters




that only control mathematical procedures.  Output data was reduced by




eliminating output not related to material position, concentration, and




deposition on the bottom.




     Further, the program requires a description of the  solid components




that make up the material to be studied.  The program can handle  up to




thirteen solid components.  A study was performed to identify the sensi-




tivity of model results to the number of components used  to simulate  a




material.  Figure 6 is a grain size distribution curve  for  a representative





                                      17

-------
        100
00
        80
        60
     x
     o
     >-
     ta
        40
        20h
             I  I I  I   T
           J_L
         100
	  Clay Barrel  //I


	  Clay Barrel  #2


	 Clay Barrel  #3



m     3 Component


•     8 Component

             I I I i  i , I
                             10
                               i

                        GRAIN  SIZE MILLIMETERS
                                                                    0.1
                                                                                      0.01
                                                                                                         0.001

GRAVEL
COARSE
FINE
SAND
.OARSE
MEDIUM
FINE
SILT OR CLAY
                  Figure  6.   Grain size distribution of representative clay-type materials.

-------
material.  The material was described using 3 and 8 solid components.




The resulting two input data sets  for this model can be seen on Tables 1




and 2.  All other parameters remained constant.




     Tables 3 and 4 represent  the  model's output of material position and




size for the two runs.  As expected  the results are identical for the con-




vective descent and collpase phases.  Final results from the long term




diffusion simulation  can be seen in  Tables 5 and 6.  Comparing the amount




of material deposited on the bottom  there was more material deposited on




the bottom at 1000 seconds for the 8 components case than the three




component case.  The  cause of  this effect is that the coarser grain sizes




modeled in the eight  component case  drop to the bottom quickly.  Since




the three component case had to assume average grain sizes, the amount




of material on the bottom for  this case will usually be less than a case




with higher components.  Tables 5  and 6 show that at the 1000 second




mark the eight component case  had  approximately 10% more material on the




bottom than the three component case.  Since 10% is within experimental




and model uncertainty levels,  the  difference between the two cases can




be assumed not important.  Hence,  only 3 sediment components are required




as input if the simplified input format is selected.




     A further input  reduction explored was the development of a charac-




teristic curve which  could be  modified to reflect the material being




simulated.  Figures 7 to 12 are typical gradation curves developed by




the Corps of Engineers  for various dredged materials.  The differences




between the curves did  not lend themselves  to  the development of a




typical or representative gradation  curve.   It was  concluded  that  indi-




vidual gradation  curves for each material  studied  should be developed.
                                      19

-------
             TABLE  1.   INPUT DATA SET FOR 8-COMPONENT SIMULATION


TWO VELOCITY FRCFILES  SPECIFIED IN X AND Z DIRECTIONS FOR —QUICK  LOOKS-
DEPTH  ASSUMED CONSTANT AND  VELOCITIES CONSIDERED STEADY IN TIME
VELOCITY  PROFILE  PARAfFTEFS FOLLOVi...
DU1 =     1.00     DU2  =     2.00     UU1  =    0.       UU2 =     0.
OW1 =     1.00     OH2  =     2.00     HM1  =    0.       WW2 =     0.
TIME PARAMETERS  FOLLOW...
TIME CF CU^F =        0.00  SECONDS AFTER START OF TIDAL CYCLE
DURATION OF SIMULATION  =     1000.00 SECONDS AFTER OUMF
LCNG TERM TIPE STEP  (DTD  =       50.00 SECONDS
DISCHARGE PARAMETERS...
INITIAL RADIUS CF CLHUD,  "B  =    .552^630
IMTIAL DEPTH OF CLOUD CEf-TROID,  D9EL =
INITIAL CLCLO VELOCITIES. ..CU(1)  -    0.
                                            .2500
                                                   CV(1» =
                                                                           CM(1) =
                                                                                      0.
BULK
DENSITY, ROC =
AGGREGATE VOIDS
LIQUID LIMT =
                   1.272200
                 RATIO,  BVOID  =
                   78.00
                                    7100
AVERAGE SPECIFIC GRAVITY  =
                               2.650
THERE ARE  8 SOLI~OS,  PARAMETERS  FOLLOW
DESCRIPTION  rENSITY(GMXCC)   CONCENTR AT ION (CUFT/CUFT )   FALL  VELOCITY CFT'/SEC)
100-90
90-80
80-70
70-60
60-50
50-<»0
40-30
.LT. 30
2.650
2.650
2.650
2.650
2.650
2.650
2.650
2.650
                                      .1650E-01
                                      .1650E-01
                                      .1650E-01
                                      .1650E-01
                                      .1650E-01
                                      .1650E-01
                                      .1650E-01
                                                                  .
-------
                 TABLE 2.   INPUT DATA SET FOR 3-COMPONENT SIMULATION
TWO VFLOCITY PROFILES  SPECIFIED IV X AND Z DIRECTIONS  FOR  —5UI2K LOOKS —
DEPTH ASSUMED CONSTANT AND  VELOCITIES COMSIDEREJ STE4QY  IN  TIME
VELOCITY PROFIL?: PARftNLTERS  FOLLOW...
DU1 =    1.00      OJ2  =     2.00     UUi =    0.        UU2  =    0.
OH1 =    1.00      3W2  =     2.00     HW1 =    0.        WHS  =    0.
TIME PARAMETERS  FOLLOW...
TIME OF DUMP  =        O.OC  SECONOS AFTER START 3F TIBAL CYCLE
DURATION  OF SI1JLATION =    10QU.OO SECONOS AFTER OUM3
LONG TEP.1  TIME  STEP  (DTD  =      50.00 SECONOS


DISCHARGE  PARAMETERS...
INITIAL RADIUS  3F  CLOU3, R3 =    .552^630
INITIAL 3FPTH 3F CLOUD CENTROIO, 3REL =    .2500
INITIAL CLOUD tfELOCITIES..,CU<1) =    0.          Ctf11) =     0.           CM(1» =    0.

3ULK PARAMETERS...
DENSITY,  ROD  =     1.272200
AGGREGATE  VOIDS RATIO, BV3I3 =     .7800
LIQUID LIMIT  =     78.00
AVERAGE SPECIFIC GRAVITY =     ?.650


THERF ARr   3  SOLIDS,   PARAMETERS F3LLOW	

DESCRIPTION   OENSIfY«GM/CCI  C ONCE NTRAT ION I CUFT t C JFT>  FALL VEL3C I TY ( FT/SEC*    I/3IDS RATIO

 Ql              2.650                 .55UOE-01                   .6880E-03        .7SOO
 Q2              2,650                 .550CE-01                   .3060E-OI*        .7500
 Q3              2.650                 .55QOE-01                   .^2505-05
 FLUID           .9999                 .8350                       Q.
PERCENT  MOISTURE  CONTENT =   19U.9663,    2.^^33     TIMES LIQUID  LIMIT
CALCULATED  tNTUINHENT  COEFFICIENT =    .27^212

-------
TABLE 3.    CLOUD  CONFIGURATION DURING  CONVECTIVE  DESCENT AND  COLLAPSE
                             FOR 8-COMPONENT  SIMULATION
                          PLOT OF COLLAPSING CLCUO CHARACTERISTICS


                          INDE°LSOEKT VARIABLE IS TIME OVER 
-------
TABLE 4.    CLOUD  CONFIGURATION  DURING CONVECTIVE DESCENT AND COLLAPSE
                             FOR 3-COMPONENT SIMULATION
                         PLOT OF COLLAPSING ~LO'JD ^HARA^TE}! 3TICS


                         TNOtPENOENT VAUAHLE IS TI1C 0
-------
TOTAL  ACCUMULATED  SOUC VOLUMf  ON 90TTOM  ICUFT/GKIQ  SQRI,     1000.00  SECONDS  AFTER DUMP
.. .MULTIFL1"
H N= 1 2
1 OCCOCOCC
2 COCO 4
7 CCCO t
l( CCCO 4
5 CCCO
6 OCCO
1 OOCO
» OOCO
9 ncco
10 OCCO
11 ocro
12 OCCO
13 CCCO
li( OCCO
15 OCCO
16 CCCO
17 OOCO
ie ccco
19 OCCO
20 OOCO
21 COCO
22 CCCO
73 OCCO
71( CCCO
25 OCCO
26 OCCO
27 OCCO
2" OOCO
29 CCCO
30 CCCO
4
.01
.01
.02
. 02
.03
. 03
.03
. 03
. 03
. 03
.03
.03
.03
. 03
.03
.02
.02
.01
.01
4
4
4
4
4
OISFLAVFO VALUES
3 . a
7.3
7.5
7.6
7.6
7 .6
7 .6
7 .6
7.6
7 .6
7.6
7 .6
7.5
7.3
6.8
5.9
1.5
.61
. 21.
. 09
. 03
.01
(LEGtND.
12 13
COCOOOOOI
.03 .03
.09 .09
. 2ii .21.
.62
1.5
5.8
6.9
7 .3
7 .5
7 .6
7 .6
7 .6
7.6
7.6
7.6
7 .6
7.6
7 .6
7 .5
7 .3
6.9
5.8
1.5
.62
. Zk
.09
.03
.01
.62
1 .5
5.8
6 .9
7 .3
7 .5
7 . 5
7 .0
7.6
7 .6
7.6
7.6
7 .6
7.0
7 ,b
7.5
7 .3
6.9
5.8
1.5
.62
. 09
. 03
. Ul
. . 4
1
H
§
0
F>
CO
1
n
o
o
w
H
I
1
H
H
i

 31 OCCOCO"OCOOCCCCCCCCOCO"0

-------
TOTAL ACCUMJLATEB SOLED VOLUNE ON BOTTOH
.1.MULTIPLY DISPL»VEQ  VALUES  BY   .IOOOE-
 HN=123



)000(
30


;
i

s
h

5
5
5

5
5
5

5

5
5
5

5
5

5
it
3
1
<


•


30
031

0 1
0 6
.2

.8
.7

.0
.1
.1

.1
.1
.1

.1

.1
.1
. 1

.1
.1

.0
.7
.9
.2
3tt
n h
u o
n 1
U 1


001
30000000(

.01 .02
• 08 .09
.003C
)OOOI

a 0 2
.09
.1,8
1.7

5.1
6.1,

6.8
6.9
6.9

6.9
6.9
6.9

6.9

6.9
5.9
6.9

6.9
6.9

6. It
6.1,
5.1
1.7
.1*S
.09
.02



loooc
30001

. 0 2
.09
.1,8
1.7

5.1
5.1,

5.8
0.9
6.9

6.9
6.9
6.9

5.9

5.9
5. 9
o.9

6.9
5.9

i.9
5.1,
5.1
1.7
.1*8
o 0 9
.02



JOOOC
30001

.02
.09
1.7

5.1
6.1*

6.8
6.9
5.9

6.9
6.9
6.9

6.9

5.9
5.9
5.9

6.9
6.9

3.8
b.l,
5.1
1.7
.1,8
a 0 9
a 0 2



JOOOC
30

'

1

5
6

6
6
6

5
6
6

5

5
6
6

b
6

6
6
5
1
.





10
oo:

C2
09
.7

,1
. 1,

.8
.9
.9

.9
.9
.9

.9

.9
.9
.9

.9
.9

.3
.<.
.1
.7
1,8
09
02



OOC
30001

. fl 2
.09
1.7

5.1
6.1*

6.8
6.9
6.9

6.9
6.9
6.9

5.9

6. 9
6.9
6.9

6.9
6.9

6.3
6..
5.1
1.7
.1*8
.09
a 0 2



)000(
3000

.32
. 09
.43
1.7

5.1
6.1,

6.8
6.9
6.9

5.9
5.9
5.9

6.9

6.9
6.9
6.9

6.9
6.9

6.3
6.1,
5.1
1.7
.1,8
• 09
ny
a Uc


3000
OOOO

a 0 ?
.09
.1*8
1.7

5.1
6.1,

6.8
'6.9
6.9

6.9
6.9
6.9

6.9

6.9
6.9
6.9

6.9
6.9

6.3
6.1,
5.1
1.7
.1,3
.09
n 7
• u c


ooooc
oooo

.02
.09
.i,?
1.7

5.0
5.3

5.?
5.3
5.3

5 .3
5.3
o .3

5.3

6.3
6.3
5.3

5.3
6.3

6.7
5.3
5.0
1.7
.<.?
.09
a 02



1000!
oooo

.01
.08
.1*1*
1.6

i*.7
5.0

5.3
5 .1,
D.I*

6.1,
5. l.
5 .*

5. i.

5.1,
o.l,
5.1,

5.1,
5.1,

6.1
5.0
It. 7
1.6
„!,.
.03
n ,
a U 1


50001
OOOO

* 0 1
.05
.3",
1.2

3.8
+ .7

5. 0
5.1
5.1

5.1
5.1
5.1

5.1

5.1
5 .1
5.1

5.1
5.1

5. a
,.7
3.3
1.2
.31,
• 0 &
n 1
a U L

V
loaoi
oooo


.11*
.51*

1.2
1.5

1.7
1.7
1.7

1.7
1.7
1.7

1.7

1.7
1.7
1.7

1.7
1.7

1.7
1.6
1.2
.5V
.11,
.01




30001
00031


* 0 1
.01*
.IV

.31,
.1*4

.1,7
.1*8
.1*8

.1,8
.1,8
. V3

.1,8

.1,8
.1,3
.1,3

.1*3
.1*8

.1*7
.VV
.3it
.1'+
.0%
n i
• U I



33000
)0000(


.01
.03

.06 .
.03 .

.09 .
.09 .
.09 .

.09 .
.09 .
.09 .

.09 .

.09 .
.09 .
.09 .

.09 .
.09 .

.09 .
.08 .
.06 .
.03
.01
. _



V
160 oo a
)000


,
t

01
01

02
02
02

02
02
02

02

02
02
02

02
02

02
01
01
t
t





lOOOl
000300000000003


+ + +0003
+ + +0003

+ + +0003
+ + +0003

+ + +0033
+ + +0003
t t +0003

t t +0003
+ + +0003
+ + +0003

+ + +0003

t + +0033
+ + +0033
+ » +0003

+ + +0033
» + +0003

» t +0003
+ + +0003
» + +0003 "
» t +0003
+ + +0003




+ . . 01553
300060006000603
H
[H
M
o^
*
H
1
H
g;
H
W
H
F
>
O
O
g
>•
H
M
O
23

O
U5
1
O
O
tg
o
w
K
H
C/3
i
C
H
O





-------
   100
at
WJ
Z
2
LU
U
    20 -
    100
                                      GRAIN SIZE MILLIMETERS
                                                                                    0.01
                                                                                                       0.001

GRAVEL
COARSE I FINE
SAND
COARSE | MEDIUM
FINE
SILT OR CLAY
                  Figure  7.   Grain  size distribution for Mississippi River sediment.

-------
       100
        80
        60
    I

    O
    DC
    iu

    Z
    z
t-O   iu
        40
        20
         100
             TT
                                                    TT
                 J—L
                                       I  I    L
                              10
                                                                                          0.01
                                                                                                              0.001
                                            GRAIN SIZE  MILLIMETERS


GRAVEL


FINE 1
SAND
1 -PARSE |
MEDIUM 1
1 	 ™H 	 1
SILT

OR

CLAY

                        Figure 8.   Grain  size distribution for  Ambrose  Channel sediment.

-------
        100
     I
     o
f-J
00
2
UJ
U
          100
                                                                       0.1
                                            GRAIN  SIZE  MILLIMETERS
                                                                                          0.01
                                                                                                              0.001

GRAVEL
COARSE
FINE
SAND
-OARSE
MEDIUM
FINE
SILT OR CLAY
                       Figure  9.   Grain  size distribution  for Rochester Harbor  sediment.

-------
   100
    80
O
UJ
5
    40
    20
         1 I  I  I  I
                           I I I I  I  I  I  _ I
                                                                                       I I I  I I  I   I 	I
     100
                         10
       1
GRAIN  SIZE MILLIMETERS
                                                                 0.1
                                                                                     0.01
                                                                                                        0.001

GRAVEL
COARSE | FINE
SAND
.OARSE | MEDIUM | FINE
SILT OR CLAY
                Figure  10.   Grain  size distribution for  Houston Ship Channel  sediment.

-------
        100
     I
     o
Lo
O
         100
                              10
                                                    1
                                            GRAIN SIZE MILLIMETERS
          Lt
	GRAVE!.	

 COARSE   |      FINE
                                       SAND
.OARSE     MEDIUM
                           FINE
                                                                                            0.01
                                                                                                0.001
                                                   SILT OR CLAY
                       Figure 11.   Grain  size distribution for  Baltimore Harbor sediment.

-------
   100
    80
    60
x
o
    40
Z
UJ

U
    20
       I I I I  I  I  I
                            I I I  I  I  I
                                               I I I I  I  I  I
                                                                             I	I
                                                                                       I I
                                                                                            111
     100
                         10
       1

GRAIN  SIZE  MILLIMETERS
                                                                 0.1
                                                                                    0.01
                                                                                                        0.001

GRAVEL
COARSE | FINE
SAND
COARSE | MEDIUM | FINE
SILT OR CLAY
                 Figure 12.  Grain size  distribution for Galveston Channel sediment.

-------
     Another avenue examined for the simplification of the input format




was  to attempt to find a relationship between material liquid limit and




some easily defined characterization parameter such as median grain size




or organic content.  Figures 13 and 14 show that while trends can be




identified in the effects of median grain size and organic content on




liquid limit, data scatter precludes a quantitative correlation which




would be useful  in the computer model.




C.   MODIFICATION OF CONVECTIVE DESCENT  EQUATIONS




     In the formulation  of the Koh-Chang mathematical model,  several




empirically derived coefficients  are used  to  describe physical  phenomena




occurring during the convective descent  phase.   For  example,  a  drag




coefficient is used to express  the drag  forces  experienced by a de-




scending cloud of dredged material,  as a function  of  the cloud  and the




ambient characteristics.   Similarly an entrainment coefficient  expresses,




as a function of cloud dynamics,  the rate  of  entrainment of ambient




fluid into a descending  cloud  of  fluid or  mud.   Entrainment in  turn




affects the cohesive behavior  of  the cloud because higher moisture




content indicates greater  interparticle  distance and  consequently




greater spread of the cloud  in  the water column.




     The procedure adopted for  deriving  estimates  of  these coefficients




based upon the laboratory  tests previously mentioned  was first  to make




photographic records (movies) of  the dump  tests.   The movie data were




then used to develop time histories of the  dumped  cloud  size  and posi-




tion during descent.




     Next,  data  representing predictions of time histories of dumped




cloud size and position during descent  were generated using  the  WES






                                     32

-------
 160
 140
 120
 100
  80
  60
  40
  20
      I I  I I   I  )    T
                        I I I I  I   I
                                               •   • w  •     •
                                                        •
                                •  ,  •
                             •       ••
                                  •
ll I I  I t  I   I
                                                           I   I    I
                          .1                     .01

                           Median Grain Size (mm)
                                            .001
Figure 13.  Effect of median grain size on liquid limit  (Source:  Reference 5)

-------
  140
  120
  100
   80
a
•H
•H

3
•H  60
   40
   20
                                                      10
                                                                              15
                                 Organic  Content (%)




  Figure 14.  Effect of organic  content on  liquid limit (Source:  Reference 5)

-------
and CERL versions of the computer model.  These data were then compared




to the laboratory data graphically.  In order to calibrate the model




properly, the predictions of the model had to be made to correspond as




closely as possible to the actual tank test data.  This involved deter-




mination of the physical properties of the cloud which are most important




during the convective phase, and the parameters in the model which affect




these properties.  Variation of the controlling parameters to produce




the best agreement between the model predictions and test tank data




consitituted calibration of the model.




     The quantities determined to be of import for the convective descent




phase were radius of the cloud and velocity on termination of the con-




vective descent phase.  The parameters controlling these quantities, to




which the model is moderately sensitive, are entrainment coefficient,




drag coefficient, and virtual mass coefficient.




     In order to determine entrainment coefficient, the radius of the




cloud was plotted against depth.  The slope of this curve at any time is




the entrainment coefficient, and the average slope is the average entrain-




ment coefficient.  Hence, the entrainment coefficient was changed in the




model until the slope of radius versus depth best matched the tank test




data.  This procedure was carried out over a variety of moisture contents,




in order to produce agreement between model predictions and tank data over




the range of conditions encountered during the testing procedure.




     When the model predictions of entrainment appeared to match the tank




data as closely as possible, attention was turned to velocity, or depth




versus time.  Data for depth versus time were plotted, and comparisons




made between the two model predictions and the tank test data.  The  drag






                                      35

-------
and virtual mass coefficients were then modified to produce the best

agreement between velocity (the slope of the depth versus time curve)

of the cloud as observed in the test tank and as predicted by the model.

When these slopes were in agreement, the drag and  virtual mass coeffi-

cients were assumed  correct.

     The entrainment coefficient  (a)  is defined by the following

relationship :

                          E = 2Hb2aV                                 (1)

                where     E is entrainment (volume per unit time)

                          b is cloud radius

                          V is cloud velocity


                Values for a could therefore be estimated from
                the movie data by the following equation:
                           a =
                                  211 b V


                 where E = change in cloud volume per unit time


                 E = | n(b22 r2 - bx2 r1) / ('2 - fcl)               (3)


                    V = velocity of cloud = (d2 - dl) / (t2 - tl)    (4)


                with b and r the horizontal and vertical cloud radii
                respectively

                    d = the cloud depth

                    t = time  since start  of  the drop

                and  the subscripts refer  to  values at  the  start and
                end  of  a  small  time  increment.


By substituting Equations  3 and 4 into Equation 2, and using the average

face area of:

                                     36

-------
               Average Area = •=- (b,  + b? )
the entrainment coefficient can be estimated by:
                             2(b V - b 2r )
               a  -    	22  2    1  *	                   (5)
                          3(b1  + b^)(d2 - d1)
Using the above information, entrainment coefficients were calculated

for a series of tank tests of dredged material dispersion.  Representative

configurations used to calculate entrainment coefficient from movie data

are shown in Figure 15.  It was found that the MLL has a profound effect

on the entrainment coefficient.  If a material's MLL was below 1.2, the

material behaved as a solid, and did not entrain any fluid.  If the PCM

was several times the liquid limit, (MLL  3), the material behaved as a

liquid cloud and its entrainment was higher than that originally predicted

by Koh and Chang.  The values found for entrainment coefficient are plotted

in Figure 16 as a function of MLL.  A polynomial regression was fitted to

the data points and the following  equations for a as a function of MLL

were defined:


          a = 0                                      MLL < 1.22


          a = .285 +  .00493  (MLL-2.9)                MLL < 2.9        (6)


          a = -.002185(MLL)4 +  .0441(MLL)3           1.22 < MLL <  2.9

              -.3119(MLL)2 +  .9184(MLL) -  .67273


The above entrainment-versus-MLL  curve was  incorporated into  the  latest

version of the computer model,  whose output  then was compared against

several tank tests that were not  used  in developing Figure 16.  Using


                                     37

-------
                                water
                                surface
                                   b = horizontal cloud radius (ft)
                                   r = vertical cloud radius (ft)
                                   d = depth (ft)
                                   t = time from start of drop (sec)
Figure 15.  Schematic of parameters defining cloud properties  and  behavior.
                                     38

-------
  0.4
   0.3  -
(D
•H
O
•H
M-i
4H
0)
O
U
 C
 0)
 e
 c
•H
 cd
 C
 W
   0.2 _
   0.1 _
= .285 + .00493  (MLL -  2.9)
                                   3456

                                     Multiples of Liquid  Limit
       Figure 16.   Effect of multiple of liquid  limit  on  entrainment coefficient.

-------
equations (6) to define oi resulted in somewhat better comparisons at




moderate and high MLL (Figures 17 and 18), and greatly better comparisons




at low MLL  (Figure 19), between computer predictions for cloud radius at




various depths and experimental data.




     The computer predictions presented are  those  from both  the  unmodi-




fied and modified models.   The unmodified model  is that  developed for




the Waterways Experiment  Station  (2)  to alleviate  some  shortcomings




in the  original  Koh-Chang model.   The modified model is  that developed




by calibration  using tank test  data.




     The tank  test  data plotted  are the  average of major and minor axes




for  the cloud,  which was generally an ellipsoid.  Multiplying values by




v2/2 will  produce the radius of  the equivalent hemispherical cloud, the




output  of  the  model prediction.




     Drag  Coefficient




     Attention  was  then turned  to the centroid depth versus  time.  Changes




were made  in drag coefficient (C  ) in order  to produce  velocities in the




model output comparable to those  in the laboratory tests.  At low MLL,




the material behaved as a solid and it was felt  that drag  coefficient to




be used should  be that  for a cube or  a flat  plate.   At high  MLL,  the vor-




ticity  present  in the cloud tends to  reduce  drag,  so the drag coefficient




for a sphere at  high Reynolds number  was used.   In the MLL region in




between, a  hyperbolic tangent function approximation is  used to  give a




good fit which  is asymptotic to the proper limits.   The  C  versus MLL




curve developed  is  shown  in Figure  20.




     Changes in  the  drag  coefficient  did not  greatly influence the




predicted centroid depth  versus time  (Figure  21).  For example, a varia-




tion of C   by 33 1/3% produces a  2.7% variation  in time required  to





                                      40

-------
          1.0
       J-J
       0)
       tn
          2.0
        P-,
        0)
       O
          3.0
Prediction of
Model Before
Modification
                                                        PCM = 191
                                                        MLL =2.45
                     Prediction of Model with
                     Equation 6 Incorporated
                                               Tank Data
                                  1.0
                                       2.0
                                       Radius  (Feet)
Figure 17-  Cloud growth during descent:  model predictions  and  tank  data  at
intermediate MLL.
                                        41

-------
                 0.0
                 2.0
               0)
               0)
               4-1
               PL,
               0)
               P
     4.0
                 6.0
                 8.0
                                   Prediction of
                                   Model with
                                   •'Equation 6
                                   Incorporated
                                       PCM
                                       MLL
                                                Tank Data
207
4.4
        —Prediction of
          Model Before
          Modification
                    0.0
                 1.0        2.0         3.0
                            Radius  (Feet)
     4.0
              5.0
Figure 18.
high MLL.
Cloud growth during descent:  model predictions and tank data at
                                        42

-------
         0.0
         1.0
        0)
        01
       52.0
        0)
        Q
          3.0
Prediction of
Model with
Equation 6
Incorporated
                                                       PCM =  95
                                                       MLL =1.22
                                                            Prediction  of
                                                            Model  Before
                                                            Modification
            0.0
                   0.5                    1.0
                         Radius  (Feet)
Figure 19.  Cloud growth during descent:  model predictions and tank data at
low MLL.
                                       43

-------
-P-
-P-

                   t>o
 1.2




 1.1




 1.0



 0.9

^

 0.8
I


 0.7



 0.6




 0.5
                  M-l
                   0)

                   °0.4
                    0.3



                    0.2




                    0.1



                      0
                                  C  = 0.7 - 0.5 tan h[3.2(MLL -  1.875)]
                                               1                        2

                                           Multiple  of Liquid Limit (MLL)
                       Figure 20.  Effect  of  multiple of liquid limit on drag coefficient.

-------
reach a given depth (Figure 21).  However, variation of the added mass



coefficient by 33 1/3% produces a 13.6% variation.  To improve predictions



of centroid depth versus time, the virtual mass coefficient was varied to



produce agreement between the model and experimental results.



     As a body (or cloud) moves through the water column, it displaces



water.  The displacement of water results in kinetic energy being present



in the fluid.  The total kinetic energy of the system can be expressed as:





K.E. = 1/2MBVB-VB + 1/2 |Jj p V.V.d(Vol) + l/2(Mg + M^V^
Where:

>

V  is the velocity of the falling body



VL is the mass of the body



M  is the virtual mass
 A

>

V is the velocity of a fluid particle



p is the density of the fluid particle



Vol is the fluid volume



(1, is the virtual mass coefficient
 M




The variation of virtual mass with MLL showed the same form as C  versus



MLL and entrainment versus MLL  (Figure 22).



     Representative comparisons between centroid depth versus time curves



for both the originally suggested Koh-Chang descent parameters and JBF



values and experimental values  are shown  in Figures 23 through 25.  The



new coefficients resulted in improving the model's predictive capabilities.
                                      45

-------
                          0.5
 1.0         1.5
Time (Seconds)
2.0
2.5
Figure 21.  Effect of time on cloud centroid depth for tank tests and various
model predictions.
                                      46

-------
  2.0
                                                          • Tank  Data
c
0)
•H
a
•H
M-l
U-l
QJ
O
U

cn
en
1.0
C  = 1.075 -  .675  tan h[3.2(MLL - 1.875)]
 M
3
4-J
                                           Multiple of Liquid Limit


           Figure  22.   Effect of multiple of liquid limit on virtual  mass coefficient.

-------
                0.5
                1.0
                1.5
                2.0
                2.5
                3.0
                3.5
Prediction of
Modified Model
                               Tank Data
                   0.0        0.5
                                                   PCM = 191
                                                   MLL =2.45
                                                     Prediction of Model
                                                     Before Modification
                 1.0        1.5
                Time  (Seconds)
                                                             2.0
2.5
Figure 23.  Effect of time on cloud centroid depth;
tank data at moderate MLL.
                              model predictions and
                                      48

-------
0.0
                                           PCM
                                           MLL
                               I

                              95
                              1.22
                      Prediction of Modified Model
                                     Tank Data
                                     Prediction of Model
                                     Before Modification
   0.0
0.5
                                                1.5
                                              1.0
                                        Time (Seconds)
Figure 24.  Effect of time on cloud centroid depth:  model predictions and tank
data at low MLL.
                           49

-------
            0.0
                                                i    r
                                    Prediction of Model
                                    Before Modification
             8.0 -
                     I     I     I    I     I    t     I    i
                0.0 1.0  2.0 3.0  4.0 5.0  6.0 7.0  8.0
                              Time  (Seconds)
Figure 25.  Effect of time on cloud centroid depth:   model predictions
and tank data at high MLL.
                                   50

-------
D.   MODIFICATION OF DYNAMIC COLLAPSE EQUATIONS




     As the cloud of material descends through the water column it gains




mass and momentum by the entrainment of fluid.  As a consequence the hori-




zontal velocity of the cloud loses its own identity and approaches that




of the ambient.  The cloud will maintain its vertical velocity until either




neutral buoyancy is reached or the bottom is encountered.  In either case,




the vertical velocity will be driven to zero and the cloud will begin to




collapse upon itself while spreading out in the horizontal plane.  The




program assumes that the cloud's horizontal spreading velocity is always




due to the collapse of the cloud.  The driving force for collapse is




always assumed to be the difference in density gradient between the cloud




and the ambient.  No consideration is given to transfer of momentum from




the vertical to the horizontal upon impact with the bottom.




     JBF studied films of laboratory drops of dredged material and com-




pared the horizontal spreading in the tank to that predicted by the model.




In all cases the laboratory material spread significantly farther than




predicted by the model.  Figures 26 and 27 are typical of the results ob-




served.  Note that the computer simulation predicted the material to settle




within the confines of the tank when in reality the material completely




blanketed the tank bottoms and very quickly impacted tank walls.  These




inconsistencies between laboratory data and simulation results that the




program does not adequately model the dynamic behavior of dredged




material during the collapse phase.




     During some drops observed for comparisons during the collapse phase,




the bulk of the material settled out in the immediate vicinity of the




impact point.  However, a thin turbidity cloud could be  seen to propogate
                                      51

-------
    6.0
    5.0
  4-J
  
-------
                                                Model Prediction
                                  Time (Seconds)
Figure 27. Effect of time on cloud front location for model predictions and tank
data.
                                       53

-------
away from the impact point.  This led to speculation that, perhaps, a




dense mud flow occurred in the vicinity of the impact point, and was




masked by the surrounding, lighter turbidity cloud.  No conclusions could




be drawn on this important point, because no concentration profiles were




available.




     An additional problem encountered was  that,  in many  cases,  the




collapsing cloud hit  the  tank walls.  This  artificially  terminated the




extent of the collapsing  cloud  in the tank,  and  limited  the usefulness




of the tank data in calibrating the  collapse phase of  the model.




     These data shortcomings precluded a  reformulation of the collapse




phase during  this  study.




E.   MODIFICATION  OF  LONG TERM  DIFFUSION  EQUATIONS




      Silt and clay size particles tend to clump  together  due to  inter-




particle  attractive forces.  These forces are  ionic in nature, and are




more prevalent  in  salt water than in fresh.




      Clumps,  or  flocules  of  fine sediment,  have  fall velocities  which




 are higher  than  those of  the individual particles.  As the  particles




 begin to  floe together, the  fall velocity of the finer particles will




 change to those  of the many-particle floes.




      The  WES  version  of the Koh-Chang model made no provision for varia-




 tions  in  fall velocity.  Only  one fixed fall velocity  was allowed for a




 sediment  component.   However,  the CERL version of the  model allows the




user to  select  a  single fall velocity  for each sediment  component, or to




select a  concentration-dependent fall velocity.




      The  value of  fall velocity for  a  given concentration is found from




an analytical function generator (Figure  28).   This function generator,
                                      54

-------
Ul
Ln
                 a
                 ai
                 o
                 o
                    .05
                    .04
                    .03
                    .02
                    .01
                        V Fall

                        0.017
                                                                                V Fall =  .047
                       A /•}
V Fall = 0.00713 s cone    / 304.8
                                50       100       150      200       250      300

                                             Sediment Concentration (mg/ft)
                           350      400
           Figure 28.   Effect of concentration on fall velocity for a representative cohesive sediment,

-------
developed by WES and incorporated into the latest version of the program




is intended to be representative.  The generator follows a 4/3 power




law dependence of fall velocity on concentration.  This relationship has




been found to be valid over a wide variety of cases, but the actual upper




and lower limits of fall velocity will depend on the individual sediment




type.




     In general, the surest way to ascertain that  the  long  term diffusion




phase properly models settling would be  to extract sediment from  the pro-




posed dredged material, and ascertain the fall  velocities of  the  sediment




components in water from the dump site.  These  fall velocities will vary




from sediment to sediment, and will be a function  of concentration of




sediment, minerological properties, water salinity and temperatures, etc.




     Since no general fall velocity-concentration  relation  exists for




cohesive sediments, no attempt was made  to modify  the  WES equations  in




 the model.   They are  included in  the CERL model as an  example of  the




 state-of-the-art,  but should not  be taken as a  universal model of fall




velocity for cohesive sediments until verification is  accomplished.




 F.  MODEL OUTPUT  SIMPLIFICATIONS




     Modifications to the output  format  parallel those of the input




 format.   Hence,  there are now two versions of output format selected




by the same  key which selects the input  format. A complete discussion




 of options available, input requirements and examples  of use  are  found




 in ref.  (3).




     On  the  first,  or long version, the  output  format  remains nearly




identical to that  employed formerly in the model as developed for WES.




A full range of options is available in  this version,  and the user




must be  familiar with the model  structure as well  as the ambient  and
                                      56

-------
dredged material characteristics to properly exercise these options.




A typical listing of output produced from this version is shown in




Appendix A.




     The second, or short version, allows the user to exercise most




of the options relating to material and ambient characteristics while




simplifying the printout.  This version corresponds to the simplified




input format detailed previously.  Output consists of a single-page




printout of input data values, followed by graphs of material during




convection descent and collapse.  Next, the long term diffusion results




are  shown in tabular form  for  each long term time step.  For user con-




venience, the  contributions of individual components are summed, and




only the total contribution is shown.  A typical listing is shown in




Appendix B.
                                      57

-------
                               SECTION 4




                         MODEL VERIFICATION





     Calibration of the model, as described in Section 3, was performed




to ensure the best fit between model results and existing tank test data.




However, the ability of the model to predict the behavior of an instan-




taneously discharged cloud of dredged material had not been verified.




     In order to perform a verification of the model's predictive




capability, the model results were compared against tank test data which




had not been used in the calibration process.  The comparison procedure




was identical to that used in Section 3, i.e. the cloud size was plotted




against depth, and the slopes of the resultant curves examined to deter-




mine agreement in entrainment coefficient.  The cloud depth was then




plotted against time, and these slopes compared for agreement in velocity,




which was governed by the drag and virtual mass coefficients.




     Agreement between the model prediction, based on the data put




forth in Section 3, and these independent tank test data verified that




the predictive capability of  the model had been improved.  Although




the data used for verification were  independently developed, the simu-




lated environment of laboratory tanks was the same for calibration and




verification.  Field verification remains necessary.




     Figures 29 to 32 compare the program results after the changes




detailed in Section 3 were implemented to the results made using




the original model and to tank tests made with Fall River and Thames River




sediment.  For high PCM material figures 29 and 30 show that the model




exhibits a nominal improvement in its ability to predict  cloud  velocity
                                     58

-------
          0.0
          1.0
        4-J
        a)
        0)
        4J
        ex
        0)
        n
          2.0
          3.0
                                                 Tank Data
              Prediction of Model
              Before Modification
                                                        PCM = 500
                                                        MIL = 4.31
                             Prediction of Model with
                             Equation  6 Incorporated
            0.0
1.0
2.0
                                       Radius  (Feet)
Figure 29.  Verification of model  entrainment  predictions  at  high MIL:
modified and unmodified model predictions  and  Fall River silt tank  test  data,
                                         59

-------
                0.0
                1.0
                2.0
                3.0
                                              PCM
                                              MLL
                                       Tank Data
                      500
                      4.31
                                             Prediction of Model
                                             Before Modification
                     Prediction
                     of Modified
                     Model
                                           I
                   0.0
0.5        1.0
      Time (Seconds)
1.5
2.0
   Figure 30.  Verification of model velocity predictions at high MLL:
modified and unmodified model predictions and Fall River silt tank test data.
                                        60

-------
            0.0,
            1.0
         0)
         0)
           2.0
         4-1
         ex
           3.0
                                   Tank Data
                                                         PCM = 115
                                                         MLL = 1.32
                                       Prediction of Model Before
                                       Modification
                            Prediction  of
                            Modified Model
             O.TT
1.0
2.0
                                        Radius  (Feet)
Figure 31.  Verification of model entrainment predictions  at  low MLL:   modified
and unmodified model predictions and Thames River  silt  tank test data.
                                        61

-------
                              Prediction of
                              Modified Model
                    PCM = 115
                    MLL = 1.32
              0)
              0)
              fn
              4J
              a
              01
              Q
                    Prediction of
                    Model Before
                    Modification
                3.0 -
                  0.0
0.5        1.0
     Time (Seconds)
1.5
2.0
  Figure 32.  Verification of model velocity predictions at  low MLL:
modified and unmodified model predictions and Thames River silt tank  test data,
                                      62

-------
and size.  However, the model exhibits a vastly improved velocity predic-




tive capability for low PCM drops  (figures 31 and 32).  The reason for




the great improvement for low PCM  drops can be traced to the original model's




assumed constant value for entrainment regardless of material properties.




     For high PCM drops the output results did not vary greatly with PCM




since the material was acting like a liquid cloud and the assumed entrain-




ment coefficient was close to that for a liquid cloud.  However, for low




PCM drops the material acts more like a solid and drops rapidly to the




bottom.  Unless the user specifically knows how to calculate the entrain-




ment coefficient for his particular material he could experience results




significantly in error when trying to exercise the program.  The new




program requires liquid limit  (a material property) as an input and




calculates the entrainment coefficient internally.  As can be seen from




the figures, significant improvements in the program capabilities can




be realized by accurately modeling entrainment.




     An actual listing of the  computer program has not been included in




this report due to its length.  Those interested may obtain a listing by




writing  the Corvallis Research  Laboratory, Corvallis, Oregon, 97330 for




CERL report 047-
                                      63

-------
                               SECTION 5




                   CONCLUSIONS AND RECOMMENDATIONS





     The changes made to the latest version of the Koh-Chang model have




produced better agreement between model predictions and laboratory tank




test data during the convective descent phase.




     In addition to the laboratory test data, the above changes should




be verified against field data.  One possible shortcoming of the




laboratory data may be the shallow depth.  Since most of the drops were




in only 4 feet of water, average values of entrainment, drop, and added




mass were calculated for the entire run.  In very deep water, where the




moisture content of the material undergoes a pronounced change, the




governing coefficients may also undergo a change with depth.




     Due to the small bottom area of the test tanks used, little work




was done on the collapse phase.  However, it was evident in most of the




drops  observed that the material hit the bottom with considerable




velocity, and also considerable excess buoyancy.  The model assumes




that the same conditions hold for collapse whether it occurs in the




water  column or on the bottom.  These conditions include neutral buoyancy,




and hence a driving force due to the difference in density gradient




between the cloud and the ambient.  In actuality, it appears that the




density difference may be the driving force during collapse on tfee bottom.




This may require modification to the model, and will certainly require




laboratory and field testing.




     A function generator for fall velocity vs. concentrations for




cohesive particles has been incorporated into the model.  This function




generator is intended to be exemplary, and should not be considered
                                     64

-------
universal.  The user should plan, if possible, to make settling tests




on cohesive particles of the material to be dredged, using water from




the dump site as the aqueous medium.  Care should be taken in choosing




the long term grid step size, and time step for long term diffusion.




Knowledge of the turbulent structure of the water column is necessary




to make an accurate estimate of  these quantities.  The program considers




any eddies smaller than a grid spacing in size as part of the background




turbulence.  Hence, the grid spacing should be equal to the maximum




turbulent eddy size to be expected  at the dump site.  In addition,




given a characteristic velocity  U and grid spacing size L for the




turbulent flow field, the time step should be selected as:





                         T = L/U




in order  to produce the most accurate calculations during long term




diffusion.  This phase also needs extensive laboratory and field




verification.
                                   65

-------
                           REFERENCES
1.   Koh, R.C.Y. and Chang, Y.C., "Mathematical Model for Barged
     Ocean Disposal of Wastes," Environmental Protection Technology
     Series EPA 660/2-73-029, December, 1973, U.S. EPA, Washington,
     D.C.

2.   Brandsma, M.G. and Divoky, D.J., "Development of Models for
     Prediction of Short-Term Fate of Dredged Material Discharged in
     The Estuarine Environment," Contract Report D-76-5, May 1976,
     U.S. Army Engineer Waterways Experiment Station, Vicksburg,
     Mississippi.

3.   Goldenblatt, M., Bowers, G., and Davis, L.R., "Workbook/User's
     Manual, Prediction of Instantaneously Dumped Dredged Material,"
     Corvallis Environmental Research Laboratory, U.S. EPA, to be
     published.

4.   JBF Scientific Corporation, "Dredging Technology Study - San
     Francisco Bay and Estuary," Contract Report DACW07-75-C-0045,
     San Francisco District, U.S. Army Corps of Engineers, San
     Francisco, California, 94102.

5.   Unpublished waterways Experiment Station Data.
                                     66

-------
                              APPENDIX A




               EXAMPLE OF MODEL EXECUTION - LONG VERSION






     This appendix contains a tabulation typical of that which would be




obtained from exercising the complete output file version of the model.




A full range of input/output options is available for use if this ver-




sion is selected.




     Output generated for this version of the modified model consists




of an echo of the required input data, followed by tabular and/or




graphical data representing material location and dynamics during the




three phases of simulation:  convective descent, collapse, and long




term diffusion.  The reader is referred to the user's manual (3) for




a full explanation of all possible inputs required.




     During the convective descent simulation, tabular information




detailing the deployment of the sediment cloud and its dynamics and/or




a graph of cloud size, centroid depth, and horizontal position may be




selected as output.  Graphs of concentrations may be selected as addi-




tional output during this phase.  The simulation may, if the user




desires, be terminated at the end of the convective descent phase.




     Output selection options during the collapse phase are similar




to those present in convective descent.  Tabular and/or graphical data




and extra graphs of concentrations are available.




     Long term diffusion output follows the history of each individual




sediment component during the passive diffusion phase.  First, the




transition from short-term simulation to long-term diffusion is detailed




by tabulation of the small clouds created to simulate diffusion of




each component.  Next, at each long-term time step, the  amount of material
                                67

-------
still in the water column, in the long term grid, and remaining in the




small clouds as well as the amount of material deposited on the bottom




are all tabulated.




     Plots of bottom accumulations of sediment, thickness of bottom




accumulation, concentration of material (or fluid) remaining in the




cloud, thickness of the cloud, and position of the cloud top surface




for each grid square are presented at each selected print time.  If




no selection is made, the plots are made at four equal time increments




during the run.  Finally, at the end of the simulation the total




thickness and total of all accumulated volume in each long-term grid




square are plotted.
                                 68

-------
STORAGE ALLOOAflOri PARAMETERS FOLLOW...
SMAX MflftX    NS   NVL  NSC    NEED
 31   31     
-------
          0£»rH 3RIZ) FOLLOH5 ,
'  6
  7
  9
"" 9
 10
 11
 12
 13
 lit
'15
 16
 ir
 13
 19
 20
 23
 2k

 26
' 27

 29
 3C
 31
1~
t.
If.
If.

It.
If.
It.
t, .
It.

It.
If.

It.
It.


It.
It.
It.

If .

4.

4 .
4 «

It.
4 .
4 .
4 .

4 ,
4 .

4 •
4 •

,
4 .
4 .
It.
4 .
4 .
if.
It .


3

>t.


'4 .
4.
(4.
It.


" 4.

It.
It.


k.
I*.
If.
I*.



It

It.


If .
It.
4.


" It.

If.
It.


It.
If.
It.
If.



5

it.


it.
it.
it.
it.

(f .
If. "

it.
it.


if.
<*.
it.
it.



6

it.


it .
it .
(t.
it.


' 4.

It.
If.


it.
4.
4.
It.
If.
If .


"" 7




it.
it.
it.
r.
it.


it.

4.
4.


If.
4 .
If.
If.



3

It.

J*"
ft.
it.
4.
4.


4.

4.
4.


It.
4.
If.
If.
It.



9

it.


it.
it.





it.
it.


it.
it.
it.
it.
it.



10










if.
it.


it.
4.
If.
If.
If.
u .


11


-------
FATE OF DREDGE3 MATERIAL DEPOSITEO IN AN ESTUAU BV DUMPING
EX£CUTIO>* PARA1£TE*S FOLLDrf...

-------
                          1
                       '	2
                          3
                          It
                          5
                          o
                          7
                       	3
                          9
                         10
                       ~ 11
                         12
                         13
                       "~" 15
                         15
                         16
                       ~ 17
                         18
                         19
~-J                      ~~ 70
                         il
                         >2
                       -  23
                         2if
                         25
                       ""25
                         27
                         28
                       ~ 29
                         30
                       ;  31
<=25 2b.
t.
it.
It.
It.
4.
It.
It.
28
it.
.... ^



-------
         C3DED  AR34Y  F3LLOH3,..



        SftMGE OF  N  IS   i TO  31
3
3
3
3
• 3
3
-t
— " 3
3
T




3
3
7
3




-I
' 3
3
3
3 3
I
1 1
1 1


















33333
1111




















3









1









I

3 3
1








1 1









1 1

3









I









i

333333333





















3





















333333


1 1 1 1 1 I




1 L 1 1 L













333

113



11 7




1 1 3










333333333333333353333333333J333
              0- GRID >OIMT5 WITHIN  ESIJft^lT =
 EXAMPLE  OUTPUT OF MODEL EXECUTION - LONG VERSION  (5  of  61)

-------
         I'M  =     30.00       Z3A*;: (FTJ  =    J3.3B


                     	4HGIENT lONOiriONS	
      DE'TH  (FTI         0.           it.DiJO
AM3IENT
3EN3ITY (3M/CC)         l.OOD        1.000
 INTERPOLATED OiTH AT DUMP  100*DISATES,  1  *     i».003      FT.
 THO VELOCITY POFILES SPECIFIES  IS  X  AND  I  DIRririCHS  FO^  --aUlCK LOCKS —
 3E°TH 4SSUMED GONSfaNT  AND  VELOCITIES  COSSIDERID  Sr£40Y  IN TIME
 VELOCITY PKOFILi PARAMETERS FOLL3-(...
 DUI =    i.oo     3'J2 =     ^.03     uui =     o.        uua  =    o.
 DHl =    l.CU     DW2 =     3.OH     HH1 i     0.        HWa  =    0.  "
 THE PA^IMEIERS FOLLOW...
 THE OF 3'JMP =       Q.iiO SECONDS AFTER  START  OF  TI3AL  Cf^LE
 DURATION OF SIMULATION =     600.03 SECONDS  AFTER  DJM3
 LONS TER'I TIME 3TE? (OTL) =      15.00 SECONDS
         E PARA1ETERS. . .
 INITIAL RA3IJS DF SLOUQ, ^B -    .5568003
 INITIAL DEPTH OF CL3UO CENTROI3, D^EL =     .Z530             '  ""   " ...............
 INITIAL :LOUO /ELo;iTiES...;u  =     o.           CHID  =

 3'JLK PA^HKETERS. ..                                                             '
 JLMSITf, ROO =    1.113000
 aGS^EGATE VOIDS RATIO, BV3ID =    .7800
 LliUIO LIMIT =    116.0
 AVERAGE SPECIFIC; GRAVITY =    e.5io
 THERE 4RE  '•« S3LIUS,  PARAMETERS F3LLOH
    EXAMPLE OUTPUT OF MODEL  EXECUTION -  LONG VERSION  (6  of 61)

-------
3E5CRI'TION  OE ^SITST ( GM/CCI  CONCENTRAiT ION C CUFT fGJFTI  FALL  VELOCITY {.- IYSECJ
                                                                             VDIDS "RATIO
100-93
90-80
80-30
 • LT. 33
FLUID
550
550
530
550
                                   .72!>&E-a2
             l.OOu
.3623E-01
.217i»E-01
.9275
                                                                 .ifOOOI-01
                                                                 .25CJOE-01
                                                                 .1330E-01
                                                                 .5000E-03
                                                                 0.
                                                                               .7300
                                                                               .7300
 .	  >niSTU?E CONTENT =   500.3280,    4.3103
 ALCULATE3 ENmiNMENT COEFFICIENT =    .29195>!».
                                                  TIME3  LIQUID  LIMIT
EXAMPLE  OUTPUT OF MODEL EXECUTION - LONG VERSION (7 of  61)

-------
J 1 1 l**\.i    A • u u u */ UA.l^ac    1 « w u U U
4LPH40     .2350 OEFA    0.0000 31    1.0000 CD     .5000
SA1A       .25   CORAG   1.00    3F*IC  .010  C33    .10 C0<»  1.00 »LPH»C     .0310
FRICTN     .0100 Fl     .1000
AL4MOA     .0050 A
-------
                INOIHTO*S FOLLOH...
                 Tt       IPLJNS NJML IST£P
     i   .18839015           t     0    19
     Z   .23H500J5E-01       1     J   11.3
  X »Na Z ARE NE>SUR£i) W'R TO 8A«5E 'OSITION
riKE     X       f       Z      a      V     K
0.00    0.90     .25    0.00  0.00  0.000   0.00
  Oil-OIF
.1130E<-00
RADIUS  OH   YOU.
 .67   1.33  0.0000
Furo con;.  SOLIO-VO..
.927SE*03
 .05    0.30     .2?    0.00   0.00   .IS!   0.00    .1125£fOO     .67    l.n   O.DDOO    .9239E»00
 ,10    0.00     .26    0.00   0.00   .306  0.00    .UlZEtUO     .67    1.3'*   0.0000    .3133EI-00
 ,1U    0.00     .28 ~  0.00  0.00   .l,i«9  0.00    .IOJ1E*00     .57    1.15   0.0000    ,3962E»00
 .19    0.00     .31    0.00  0.10   .580   0.00    .10&l.E»00     .59    1.36   0.0009    ,3735EfOO
 .2".    0.00     .31,    0.00   0.00    .697   0.00    .1031E»00     .69    1.37   0.0000    ,8l.6S£t-00
                                                                                                .2250E-01
                                                                                               '.1350E-OL
                                                                                                .I.1.93E-0!

                                                                                                .1350E-01
                                                          ".721.5E-02"
                                                          .72l>5£-02
                                                          .3623E-01

                                                          .7205E-02

                                                          .J6C3E-31'
                                                          .2165E-01
                                                                                                .2249E-OL
                                                                                                .1350E-01
                                                                                                .135GE-01"
                                                                                                .1.1.93E-0'
                                                                                                .22
                                             . J21.9E-OL
                                             • 1350E-01 '
                                                                                                .l.ii93E-0!
 .52    O.OQ     .61    1/.09   0.00  1.112   0.90    .791DE-01     .7?    1.50  0.0090   .oV95£>03
 .57    0.00     .66    Q.OO   0.00  1.11.2   0.00    .752^6-01     .76    1.55   0.0000    .6173E»00
                                                                                                .1350E-01
                                                                                                .I.1.98E-02
                                                                                                .22l,9t-0l
                                                                                                ,iil,95£-0»
                                                                                                . J ?. i, n L - a I
                                              .313i£-01
                                              .1913E-01
                                              .6111E-0!
                                              .&121E-02
                                              . 506U-31

                                              .58I.9E-02

                                              .2929S-0t
                                              .1753E-31

                                              .5593E-02
                                              .2797E-01

                                              .532U-02
                                              .5330E-02
                                              . 2665£-n
                                              .1599£-J1
                                                                                                            .2537E-01
                                                                                                            .1522E-01
    EXAMPLE  OUTPUT OF  MODEL  EXECUTION - LONG  VERSION  (9  of  61)

-------
oo

.62 J.JO '172 0.00 0.00 1.16". 0.00


.67 . 0.00 .77 0.03 0.00 1.179 D.BO
""'''"- ' — 	 •
• ' • ' '"»
1
.72 0.30 .83 0.03 0.00 1.190 0.00



.75 O.DO .89 0.00 0.00 1.196 O.DO
r i •


.31 D.OO .9<» . 0.00 0.00 1.199 0.00
— . .- _


.96 0.00 I. 00 0.00 0.00 1.199 0.00


_. 	 . . — .
.31 0.00 L.06 1.00 0.03 1.195 0.00


.95 D.OO 1.11 0.00 0.00 1.190 O.QQ
. . — i . — _


1.00 0.00 1.17 3. 03 0.00 l.lftit O.DO


	 "•" ~ -- .-. 	 	 -
1.05 3.0D 1.23 0.03 0.00 1.177 0.00


l.lu O.liO 1.28 0.03 0.00 1.169 0.00



1.11, 0.00 l.3i> 0.00 0.00 1.160 0.00


_
1.19 0.00 1.39 0.00 0.00 1.150 0.00



1.214 0.30 1.45 0,00 Q. 00 1.11.0 0.00
. _ _
.1 . . ^ '

1.29 O.BO l.SD 0.00 0.00 1.130 0.00
*

_ . _ .
1.3833E-3l .79 J..5J 0.0000 .5586E1-OB



.6l>71E-01 .30 1.61 0.0000 .5313EfOO



.6153E-01 .32 1.63 0.0003 .5055E1-00



.586 0.0009 .3501EI-00



.4093E-01 -34 1.87 0.0300 ,3355EtOO



.3926E-01 .95 1.39 0.0009 .!223E»00
••:


• 3772E-01 . 3t> 1.92 0.0003 .3B97EtCO



.3S27E-01 .97 1.95 0.0009 .2973E»00



.JI(91E-01 .99 1.37 O.OOOD ,J366E*00
. 1350E-01
.1.U91E-0!
.I.1.93E-0!
.1J5DE-01
,l»".9tE-0!
.I.I.38E-02
.221.9E-01
. 135DE-OL
,i>i>91E-D2
.I+U98E-02
.22>.9E-oi
. 1350E-01 ~
. 't'+g IE- 0!
• 1+lt96E-OJ
i22"t3E-[il
.1350E-01
.I.1.91E-02
.H93E-02 ~
.221.9E-01
.1350E-01
.'.'(31E-02
.I»t49flE-02
.22I.9E-DI
;i350E-Ol "'
.<>
. 22l*9E- OL
.1350E-01 -
. 1*1*3 IE- 0!
.I.I.98E-02
.22I.9E-OL
. 1350E-D1
. u"»91E-02
.i»i»93E-02
.22li9E-OL
.1350E-01
. U"t91E-0!
. <*^93E-02
. 221.9E-01
.1350E-OI. ""
. fc^giE-o?
.it".95E-0!
. 22t*9E-Ol
. 1350E-01
,»9E-OL
. 1350E-01
.^oir-o!
.l'*l»3E-31 ~
,»581£-OZ
.'4553J-02
. 1377E-31
.i.35b£-32
.'.363E-02'
.2182E-01
* 1303£-31
.41t»3£-02
.4150E-02
.2C75E-C1
. 12i»5E-0 t
. 3943E- J 2
.39I.3E-02
,1975c-3l '
.11832-01
. 3755E-32
.3761£-02 ~
.1680£-01
.1123E-01 •
. 3573£-32 '
. 358iȣ-02
. 1792E-01
.1075E-CI
.31.13E-02
. 17C9E-D1
.1D2>£-31
.3253E-02
.3263E-32 "
. 1632E-01
.9793E-02
,3113£-D2
. 3117£-32
.1553E-31
.935*E-C2
. 2977£-D2
.2981E-02
.li»9tE-31
.235JE-02
.235'.E-32
.1">27E-31
.356l»E-02
. 2730E-0 2
.2733i-02
.1367E-01
. 820SE-02
.2613E-32
.2623E-32
. 1311£-3l
.7S70E-02
.25HE-32
. 2513E-02
.1253E-01
•7534E-3'
.ZM5E-C2
.21.13E-32
.1210£-0l
.7253£-J2
. 2322E-02
.232i£-02.
. U63E-OL
. i')90£-D2
. 2 J 3 ; ; - o !
                          EXAMPLE OUTPUT OF MODEL EXECUTION  -  LONG VERSION (10 of 61)

-------
        0.00    1.66    0.00  0.00  1.099   0.00    .5353E-01    1.00    2.00   0.0000
        O.JO    L.71    0.00  0.00  1.089  0.00    ,32I.2E'-01    1.01    2.02   0.000]    .2662EfOO
1.53    0.03    1.77    O.DO  0.00  1.079  0.00    .3128E-01    1.02   2.09   0.0000   .256JEI-00
1.37    0.00    1.32    0.00  0.00  1.069  0.00    .20201-01    1.01.    2.07   0.0000
1,52    0.00    L.37    0.00  0.00  1.059  0.00    .23L3E-D1    1.05    2.09   0.0000   .239&E*00
1.67    J.00    1.92    0.00  0.00  1.01.9  0.00    .2821S-01    1.05    2.12   0.0000
1.72    0.00 '  1.97    0.00  0.00  1.039  0.00    .27JOE-01    1.07    2.U   0.0000  ~ \221.lEt-03
1.76    0.00    2.02    0.00  0.00  1.029  0.00    .26<<3E-01    1.08    2.16   0.0000    .2170E<-00
1.31    0.30    2.07    0.00  0.00  1.020  0.00    ,25olE-01    1.09    2.13   U.OOOO    .2103E<-00
1.36    0.00 ~   2.11    0.00  0.00  1.010   0.00    .2I.32E-01    1.19    2.21   0.0000    .ZC33E«00
1.31    Il.DO    2.16    0.00  0.00  1.001   O.DO    ,2<»08E-01    1.12    2.23   0.0000    .1377E»00
1.96    0.00    2.21    0.00  0.00   .992   0.00    .2337E-01    1.13    2.25   0.0000    .1919EfOO
2.00    0.00    2.26 ' ' 0.00  0.00   .983   O.DO    .2270E-01    1.1".    2.23   0.0000    ,1863E»00
2.05    0.00    2.30    0.00  0.00   .975   0.00    .2205E-01    1.15    2.30   0.0000    .UUEt-00
2.10    0.00    2.35    0.00  0.00   .966  0.00    .21<>i.i-01    1.15    2.32   0.0000    ,1760EtOO
2.15    0.00    2.'.O    0.00  0.00   .958  0.00    ,2t   0.0000    .1712E»00
                                                                                                 .22U3E-OL
                                                                                                 .1350E-OL
                                                                                                 .i»9E-OL
.1350E-OL
.1.1.91E-02
.<.l.9flE-02
.22I.3E-OL
.1350E-01
.1.1.91E-02
.I.I.98E-02 "
.22I.9E-OL
.1350E-OL
. I.1.93E-0!

.1350E-t,l

.".".gSE-O!

.1350E-01

.".I.9SE-0:
• 22i«9E-Ol
.1350E-01
.

.IBOJi-JJ"

.5i.29 = -02

. L75U-02

.5253E-D2 ~
.1692£-02
.1595E-02
.SV75E-02 •

.16<.0£-02

.3212E-02

.1583E-32 '
.1532E-32
.7951E-32
.«777£-32
.151.2E-C2
.151..E-02
.7722E-32
.".63.£-02

.11.93E-02 -
,7i.3f.£-02

.11.53E-OJ

.7273£-]2
.'.367E-32 "
.H12E-02
.UUE-32
.7071E-J2

.1373E-02
.1375E-02

.1.125E-02
,133i£-02
   EXAMPLE  OUTPUT  OF MODEL  EXECUTION - LONG  VERSION  (11  of  61)

-------

•2.19 0.00 ».M> 0.00 0.60 .950

' • ' •

2.2<* 0.00 2.1)9 0.00 0.00 .91)2
- - .


2.29 0.00 2.53 0.00 0.00 .93")


	 - -- -
2.3l> 0.00 2.58 0.00 0.00 .927



Z.39 0.00 2.62 • 9.00 0.30 .919
— 	 	 	 .
1 .

2^3 9.30- 2.66 • 0.03 0.00 .912


2.<3 0.00 2.71 0.03 0.00 .905



Z.53 0.00 2.75 0.00 0.00 .893
_-- . .


2.58 0.10 ' Z.79 ~ 0.00 0.00 .891



2.62 0.00 2. S3 0.00 0.00 .88V


2.57 O.CO 2.88 0.00 0.00 .878



2.72 0.00 2.92 0.00 0.90 .871

. •
	 — . 	
2.77 0.00 2.96 0.00 0.00 .865



2.31 0.00 3.00 8.00 0.00 .659



2.36 0.00 3.0<4 0.00 0.00 .853


•
2.31 0.00 !.08 O.OJ 0.00 .91)7

- • ' ' '' ~ ' '

Z.36 0.00 1.12 11.00 0.00 .DM

0.00 .Z023E-01 1.19 2.35



o.oo ,i9r;E-ai 1.19 z.3i



0.00 .192<)£-01 l.ZO 2. Ill



0.00 .1875£-01 1.21 2.1)3



0.00 .1923E-01 1.22 2.1)5
- - -- - • —
- i - t

0.00 .17S2E-01 1.23 2.1)7


0.00 .1733E-01 1.21) 2.k3

-

0.00 .1637E-01 1.25 2.51
— .


0.00 .1657E-01 1.26 2.53



0.00 .1619E-01 1.27 2.55


0.00 .1532E-01 1.28 2.57



0.00 .15l>S£~01 1.29 2.5)



0.00 .1512E-01 1.30 2.61



0.00 .IW9E-01 1.31 2.63



0.00 .1">!>7E-01 1.32 2.o5



0.00 .ll)liE-Ul 1.33 2.66



U.UO . lll&E-Ol I.JI. 2.1)9

0.0000 .166bE»00



0.0003 .1622E»00



0.0003 .1590E»03



0.0000 .1339E»00



0.0003 .ISOlEfOO
	


0.0009 .1!>63E*00


0.0003 .li>23E»00



0.0000 .139l)EfOO
_


O.OODO .1361E<-00



0.0300 ,13Z9E«-00


U.OOOO .1S99E1-00



0.0000 .1269E«-00


—
0.0000 .1Z">1E»00



0.0000 • IZl^Et 03



0.0000 .1138E*00



0.0000 .1162EtOO



0.0003 .U3.1i:il)0
.1350E-OL
. i><»91E-02
.">i.93E-0>
. 22V9E-OL'
.1350E-01
.i>'.91E-02
".li")98E-02
«22()3E-OL
.1350E-01
,m31E-02
,ltt,98E-02
,22it9E-CL
. 1350E-01
. Vti91E-0 I
. 4')9 8 E- 0'2
. 22V 9E- OL
. 1350E-01
. t*<)9 IE-02
.t)')98E-02
.22V9E-OL
.1350E-01
• V^giE-O !
.ttt+gsE-O!
. 22i)3E-Ol
•135GE-OL
»')')96E-02
.22i*9E*OL
. 1350E-CL
. i)i)91E-02
" ,1)<)93E-0!
.221.9E-OL
. 1350E-01
. "+491E-02
.£)'*9BE-02
.ZZ">9t-.Ol
;i350£-01
.i)98E-0!
.22^9E-Ol
.1350E-01
,ii()91E-G2
, I)493£-Q>
.22')3E-OL
.1350E-01
. l)l>91E-0!
.<||>99E-02
.221.9E-01
'.1350E-01
.i)i)91E-02
.">i)98E-0!
. Z2">9£-01
.1350E-01
i l^ q , c n j
;i)")93E-02
. 22U9E-01
. 1350E-01
.')')91E-02
.()ti98E-02
,22li3E-OL
. 1350E-01
.'.'.91E-02
. ()i)9 3E-0 y.
. 22>)9E-OL
. 1350E-01
. i|l)'IL|.-0!
. U012S-32 "
. 1293E-02
.l3Cl£-:2
.5505E-32
,390^E-32
.1265£-32
• 1267£-02
,633' 7 £ - 3 2
.2909E-02

.3l)81E-;3
.^7')1E-02
.28I.5E-02
.3262E-03
.9277E-J3
.1.633E-32
.273+E-32
.3055E-BJ
.9079E-03
.I^5^0£-C2
.?721»E-32
. « :i f '• ,. - 0 J
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (12  of  61)

-------
                                                                                                    .22<»3E-01
                                                                                                    .1350E-01
  3.01     0.00     J.16    0.00  0.00    .335   0.00    .1357E-01   1.35   2.70  0.0000    .111<*E*00   . <*i491E-02,    .363lc-03
  -' -     -J	                                               -                                  .1350E-OL    .2612£-32
  3.05     0.00     J.20    0.00  0.00   .830   0.00    ,13JOE'-01   1.36   2.72  0.0000    .1332E + 00   .it<»9lE-02    .3513£-33
                                                                                                          [-02    .3527E-33
                                                                                                    .1350E-01    .2553£-32
  3.10     0.00     3.2t    0.00  0.00    .32
-------
                                  ?L3T OF JLOU3 »ATH AND RADIUS AS SEEN FROM POIU OF *E.LEASE
                                  IH3EPE.SD£NT'VARIABLE 13 TI1£ IStJ)  OVER ?ANGE
                                                                         3.1*106
                                  3t'ENOENT VARIABLES,  ALL NORHALIZEO FOR PLOTTH3 3N U^4lf 4XIS

                                                     r                  B               X
                                  MAX PUTTED
                                  in PLDITEO
                                  3E1ARK3
                         0.
                        3EPTH
 l.'.Z'+S
 0.
R10IUS
DIST(CX)
 D.
 0.
HOR DISTCZ)
                        ~MAX,1IN,ISC,  OF ISD.VAR.
                                5.0000000            3
                                               .1000Q003Et03
oo
N3
MAX.IIN.IN:, OF DEP. VA?.
       i.ooooooa           o.
      10QOQ003E-01
                             EXAMPLE OUTPUT OF  MODEL EXECUTION - LONG  VERSION  (14  of 61)

-------
          0.0                  .2                  .4                   ,3                   .5                  1.0
           I	1	c	1	1	1	1	1	1	!	1	1	1	1	1	1	1	1	I-	1--.--I
           IZ      Y                                      33
           IZ       Y                                      8
       .. ..  iz        YY                                    B
           IZ          Y Y                                  B3
           iz             r  Y                                 B
                             Y Y                                3B      . ,                                -....-.
           IZ                   Y Y                               83
           IZ                     Y Y                              83
           IZ    ,                      YY                             B3                        "
i.oooo     i?—i	i—i	1	1	lY-y-t	1	1	1	1	IBB—:	1	1	1	1	r	r	1
       .. ..   IZ                                Y YY                         B3
           IZ                                     r  r                       3B
           iz                                       r  Y                      BB
           IZ  '                                        r  t                     BB                           __
       :.    iz      ....                             y r                    B      .		        ~
           IZ                                                Y Y                  83
           IZ                                                   Y Y                 33
           IZ                                                      Y Y                B           ' -  '-    	—
           IZ                                                         YY               33
2.0000     I?	1	1	1--.-I----i- — -I	r	1	1	1 —"I	!--₯«	1	1---81	I-..-I ——1-..-1
 . , .        IZ                                                              Y YY           3B3
'".'.  iz                                                                  Y r            a
           IZ            '                                                        YY          S3
           iz                                                                        YY         B   	
           IZ                                                                          YY        33
     '--,-  IZ    •    '                            ,;,-.,                                   TV        3
 --"-    IZ  •	-—	     -          	      •-      -- • •        ••  ••     YY      88
           IZ                                                                                  YY     BB
           IZ                                                                                    YY    3
3.8080     If	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	*T	31----"I
           IZ                                                                                         Yt BB
           IZ                                                                                           YYY33
           IZ			    	    .-    -   fr3	
           IZ                                                                                                Y3
           IZ
• -      -    I                                                                         	  --    		—
           I
           I
       ' "   I
tt.0060     I	1	I	1	1- — I	1	-I	1	1	1	1	1	1 —-I	1	I	1----1	1	I
           I
           I
           I
           I
           I"                                        "       '  "               ............    	
           I
           I
...-_.   I              - -                                                                           -
           I
5.0000     I	1	1 —-i-- —I——i	1	1	1	1——I	1-- —I	1	1	1	1	1	1	1	x
          EXAMPLE OUTPUT  OF MODEL EXECUTION - LONG VERSION  (15 of  61)

-------
                                HOLLA'S! "HAS; OF UOJO
                                          INDI:ATORS
                           NTRIAL    Of     IPLUNS  lUTRL'  ISTE!"  I3EB   ILEAI£
00
1 .Z389E-01 1 3 517 11.3 999
X »ND t 1EASUR-3 FROli 3AR5E P05ITI3H
TIME < f Z J V H BEN-OIF
2.39' ' 3.00. ..I.1*?. 0. 0.00 ,793 0.00 .1159E-01



3 » 53 w.OQ 3.56 0. 0.00 .527 0.00 .1157E-Q1
~" " •' """ 	 "
3.67 . 0.00 3. 62 0. 0.00 .377 O.Ot) .US'.E-Ol



'3.82 	 "0.00 "" 3.67 0. "" " 0.00 .283 0.00 .U50E-01



3.96 .,0.00 3.76 0. 0.00 .221 0.00 .UI.6E-01


it.U ; 0.00 3.73 0.. . 0.00 .177 0.00 .ll 0.00 . 1109E-01


"5.10 	 ~'O.OD ' 3.83 0. 3.40 .058 0.00 .1102E-01


5.25 0.00 3. Oil 0. 0.00 .J51 0.00 .1095E-U?


44 85 FLOID C3NJ. SOLI3-V3L
l.'»2 2.8m .951BE-01 .l»lt91E-C!
.I.U9SE-0!
.22I.9E-01
.1350E-OL

.1350E-01
1.01 3.387 .95UE-01 .l^^^!>E-0!
,i».3c-OL
.55 It. 213 -" .9520E-01 " .I.233E-D2
. 1.338E-0!
.22BBE-01
.131.9E-01
.SO l(.387 .95J3E-01 .<<130£-0!
.I.301E-0!
.2196E-CI
.56 ^.551 .3320E-01 .U118E-02
.U261E-02
.2135E-OL
.13I.8E-01
.32 *.705 	 .9521E-01 '" ,i«053£-02
. t*219t-02
.2171.E-OL
.13i<8E-Ol
.'•9 l».852 .9521E-01 .3985E-0!
.I.17I.E-0:
.3162E-01
.13I.8E-01
.'«6 '».991 .9521E-01 .SgiVE-O"
.21
-------
oo
01

5.34 0.00 3.85 0. 0.00 .01*5 0,00 .1099E-01
., 	


5.53 ~ 0.00-3.46 0. " 0.00 ~ .fti 0.00 .1080E-01



5.S8 0.00 3.86 0. 0,00 .937 0,90 .1073E-01

	 - •-- 	 --- - -- - -

5.82 0.00 1.97 0. 0.00 .033 0.00 .1065E-01



"" 5.9i "0.00 " 3.87 0. 	 0,90 .330 0.00" .1057E-01


6.11 0.00 3.87 0. 0.00 .327 0.00 .10ME-01

— - 	 • • 	 	 — • 	 	

6.25 0.00 3.93 0. 0.00 .021) 0.00 .101.01-01



6.39 U.OO 3.99 U. - 0.00" .022 0.00 '.1032E-01


- - - . . .
6.53 0.00 3.83 0. 0.90 .020 0.00 .1023E-01

----- _ — 	 	 	 	 -- — -

6.63 0.00 3.99 0. 0.00 .319 0.00 .1Q15E-01



— 5.92 	 0,00 	 3.99" 0. 	 " " 0.80 .917 0.00 " .1906E-01



6.95 0.00 3.89 0. 0.00 .015 0.00 .9975E-02

.... .- - — 	

7.11 0.00 3.99 0. 0.00 .Oil) 0.00 .9B97E-02
- —


"-7;J5 	 O.DO ' 3.90 0." ~ ". 0.00 .013 0.00 .9799E-02


7.39 0.00 3.90 0. 0.00 .012 0.00 .4711E-02



7.5V O.DO 3.90 0. 0.90 .011 0.00 .9623E-02




.tO 5.369 .3523E-D1
	 - -


" " .38 5.I.82 .9bii3t-Ul



.37 5.590 .9524E-01

	 .-_ 	 . ... 	

.36 5.693 .9521.E-01



	 .3* 5.791 .9525E-01~


.33 5.993 .9525E-01

— 	 	

.32 5.971 .9526E-01
. _ . _ -


.31 b.0b5 .9525E-01


. . .
.31 5.134 .9527E-01

— 	 _ ..

.30 5.203 .9527E-01
~


	 .29 0.279 	 .9528E-01"



.29 S.31.5 .9528E-01

	 — 	 —

.28 0.1.09 .9529E-01
~ -


.28 b.l(59 - .9529E-01


.27 5.525 .9530E-01



.27 6.578 .9530E-01



,13<47E-Ol
.3696E-02
•3976E-02 '
.ZIOoa-Ol
,1JI|6E-01
.3606E-02
.3922E-02
. 203LE-01
. 131.6E-OL
.3525E-02
,3866£-o:
.2075E-01
.13I.6E-01.
.3I.1.3E-02
.39C3E-02
. 2059E-01
. 1345E-OL
.3359E-02
•3752E-0!
,20lt2E-OL
.3275E-02
.3693E-02
.2025E-CL
. 131.1.E-OL
.3191E-02
.3633E-02 ""
.2008E-01
.13"(iiE-Cl
. 31C6E-02
.3572E-02
. 1990E-OL
, I3(f t»E-OL "
. 3021E-02
.351LE-0!
.1972E-OL ~"
.13"t3E-Ol
.2937i-02
.31.50E-02
.1953E-01
.131.3L-01
.2853E-02 "~"
. 33S3E-02
.193I.E-01
.131.2E-01
.2770E-02
. 3325E-02
.1915E-OL "•'
.131.2E-01
.2687E-02
.3263E-02
. 189->E-OL
.13HE-OL
.2b05E-02 "
. 3201E-02
.1877E-OL
.2525E-C2
. 3133E-0!
.1857E-01
. 13%OE-Ol
• 2t*46£- 02
. 3077E-02
. 1833E-01
. IJi.OE-Ol
.2227E-02
.509VE-D3
.5573£-05
. 31.83E-32
.222SE-02
.5963E-03
. S^S^E-OS
. 31.53E-32
.2225E-32
.5823£-OJ
.5393E-03
,3(f32E-02
.2225E-02
.5693£-03
• 330 3 E-0 3 '
. 31.05E-02
.2225E-3?
.55551-33
. 5 2 C '4 E!"- 0 3
.3377E-02
. 5"tl5E-B!
.610r£-03
.33^3E-C2
.2223£-32
.5277E-35
.S003E-33
.3320E-02
. 2223£-32
. 5137E-33
.5903E-OJ
.3291E-02
.2222E-D2
.^993E-33
.5803E-03
.3261E-02 "
.2222E-02
. iS53£-03
.570i£-35
.3231£-02
.2221E-02
.I.720E-03 "
. 560*1-05
.32COE-02
.2220E-02
.i.532£-03
.55C1E-OS
.3169E-02-
.2220E-02
.i.i.i.iE-33
. 5393£-3 3
.3137E-02
.2219E-02
..311E-03 -
. 5295E-33
.3105E-02
'. 2213E-D2 "
. .173E-33
.51331-03
. 3073E-32
. 2217£-32
«!tOtt7E-Q3
.509li-03
. lonr-jj
. 22I7E-32
                      EXAMPLE  OUTPUT  OF  MODEL EXECUTION - LONG VERSION (17 of 61)

-------
00
                                     r.82
                                               0.00    1.90  0.
                                               0.00     J.90  0.
                                                                         . CO   .010
                                                                                            .9536E-02    .!6
                                                                                                                          .9S31E-01
                                                                        O.DO   .109  0.00   .91.1.SE-02    . J £>  5.67'*
                                     7.97
                                               0.00    J.90   0.
                                                                        0.00   .009
                                                                                            .9361E-02    ,lf>  J.T18
                                               0.00     1.91 —t.          0.00   .008  0. 00 "".927!|E-02 	.?5  6.759
                                    g.e;
                                   '4.5*
                                   "8.37
                                               o.oo     >.9i   o.
                                               0.09     I.9L   0.
                                               0.00  -- 3.91~~0.
                                               0.00     3.91   0.
                                               0.00     3.91   0.
                                              0.00 ------- J.91   0.
                                              11.00     3.91   0.
                                              O.DO     3.91   0.
                                                                        0.00   .007  0.00   .9188E-02    .25
                                                                        0.00   .907  0.00   .9102E-02    .25  5.633
                                                                               .006  0.08   .9017E-02 ^~ .2l«  5.887'
                                                                        0.00    .006  0.00   .3932E-02
                                                                                     0.00   .89U9E-02    .><<  i.925
                                                                        0.00"   .005  O.DO "~.3766E-02  ~ .2"i  j.955
                                                                        0.00    .001.  O.OD   .868i>E-02
                                                                                                              i.991
                                                                        0.10
                                                                                     0.00   .S603E-02    .2".  7.D05
                                    9.5'4
                                    9.68
                                              O.DO
                                              0.00    3.91   0.
                                              0.09    3.91   a.
                                   -9.83	O.tU  - 3.91  0.
                                              0.00    3.91  0.
                                                                        0.00    .001.  O.BO --.5523E-OZ '-.23  /•.027'
                                                                        0.90    .00'.   0.00   .91»<«<.E-02    .23  7.01)7
                                                                        0.00    .903  0.00   .6366E-02    .23  7.066
                                                                        0.30    .003   0.00   .928JE-02    .23  7.094
                                                                        0.00    .003  O.OD   .92121-02    .23  7.101
                                                                                                                          •9532E-01""
                                                                                                                          .9333E-01
                                                                                                                          .953I.E-01
                                                                                                                          .9531.E-01-
                                                                                                                          .9535E-01
                                                                                                                          .9535E-01
                                                                                                                          ;9536E-01
                                                                                                                           .9535E-01
                                                                                                                           .9537E-01
                                                                                                                           .9537E-01"
                                                                                                                           .9533E-01
                                                                                                                           .9533E-01
                                                                                                                           .9539E-01
.1JtUt-IH
.2368E-02
.3015E-C!
.1813E-01
.1339E-OL
.2291E-0!
'.2953E-0!
. 1798E-OL"
.133BE-01
.2216E-02
.2893E-D2
. 1778E-OL
.1338E-01
.21it2E-D2
.2832E-02
.1759E-01
.1337E-OL
.2070E-02
•2772E-02
•1739E-01
.1337E-DI
.2000E-0!
.2713E-02
.1719E-OL
.1336E-01
.19312-0:"
.39HE-01
.V9B3E-3!
.3791E-3!
.'«885E-D!
.2975E-02-
.2215E-J2
.3667E-33
.1699E-OL
.1336E-OL
.1861.E-0!
.2597E-02
.1679E-OL
.1335E-OL
                                                                                                                                       .2539E-0!
                                                                                                                                       .1659E-OL
                                                                                                                                       .133I.E-01
                                                                                                                                       .1736E-0?
                                                                                                                                       . 16I.OE-01
.1620E-01
•1333E-01
. 16H.E-02
.237JE-02
.1601E-01
•1333E-01
.1556E-02
•2319E-02
.1581E-DI
.1332E-01
.1500E-02
.2267E-0!
.1562E-OL'
.1331E-OL
.2215E-02
.15I.3E-OL
.1331E-01
.1392E-D2
.216UE-02
. 152ifE-Ol
.1330E-01
. 13I.1E-0!
. 29UE-52
.2213E-32'
.31.27E-03

.28ME-32"
.221SE-32
.3310E-03
.'. '-t 3 i E - 0 3 -
.281.5E-32
•2212E-02
.2812E-02

.30S5E-03
.1.299E-0 J
.2783E-02'
.2210E-02
.2973E-JS
.2209E-02
. 287I.E-33-

.2715E-02
.22J3E-02
.2772E-OI

.26B3E-02•
.22C7E-02
.2673E-03

.2650E-02
.2207E-02
.2577E-03
. J3!.IE-3J
.2613E-32
.220JE-D2

.3753E-3J
.2587E-02-
.2205E-32
.233-.E-C3
.36E3E-03
.2555E-J2
.220I.E-02
.2305E-03 '
.3533E-33
.252iE-32
.ZZSJi-0!
.2221E-03
                                       EXAMPLE  OUTPUT OF  MODEL EXECUTION  -  LONG  VERSION   (18  of  61)

-------
oo
io.il o.oo 3.91 o. o.oo .003 o.oo .9U7E-02
10.26' 0.00 3.91 0. ~ ~" " 9.00 ' .002 O.DO .80631-02
10. 'O 0.00 3.92 0. O.DO .002 0.00 .7990E-02
10.51) it. Hi !.92 0. 3.00 .002 a. 00 .7918E-02
10.63 O.UU 3.92 0. 0.1)0 .002 0.00 .78lf3£-U2
10.33 0.00 3.92 0. O.JO .002 0.00 .7778E-02
10.97 8.00 3.92 0. 0.00 .002 O.Oo"" .'7709E-02
— 11.11 	 0.00 3.92 ~ 0. 	 0. 90 "".001 0. 00 """' .751*1 E-02:"
11.26 O.OD 3.92 0. 0.00 .001 0.00 .7575E-02
ll.itG 0.00 3.92 0. 0.00 .001 0.00 .7509E-OZ
	 11. 5i 	 ~ 0.00 ~5.92"0. 	 3.00 .001 0.00 .7»i»5E-OZ <"'
11,65 0.00 3.92 0. 0.00 .001 '0.00 ..7381E-02
11.83 0.00 3.92 0. 0.00 .001 0,00 .7319E-02
""11.97" 	 O.CO 3.92" 0. 	 0.00 .001 0.00 .7257E-02
12.12 0.00 3.92 0. 0.99 .001 0.00 .7197E-02
12.26 O.DO 9.92 0. 0.00 .001 0.00 .71.J7t.-02
" — i 1505E-01"
.1330E-01
.23 7.114 .9539E-01 .1292E-0!
.11.S6E-01
.1329E-01
".23 T.130 " .95i»OE-01 .12"ti)E-02
• 2013E-02
. H68E-OL
.1323£-0t
.23 f.llilt .95I.OE-01 .1198E-02
.1969E-02
•'•••' ' . 1329E-01
.23 7.156 .95HE-01 .1153E-02
.1923E-02
.H.31E-OL
.1327E-01
.22 f.ibl .Jjltlb-Ul .lllUt-Oi
.1877E-02
.ml3E-Ot
"" " ' 	 .1326E-OL
.22 7.178 ,95lt2E-Oi .106SE-02
.1833E-02
. IJ'-Jbt-UL
.1326E-01
.22 7. 1ST .9542E-01 .1028E-OJ
' . 1789E-02
. 1377E-OL
.1325E-CI
".22 7.196 i95l)3E-Ot .9888E-05
.1360E-01
	 .132"iE-OL
.22 7.205 .95l)3E-01 .9513E-03
. 1705E-0!
.1 -5E-33
.2253E-02
.'l57b£-33
.28Z3E-OJ
•2223E-02
.2131.E-02
.1517E-33
.2753E-D3
.2195E-02
.2193E-02
.H53E-33 -
.2692E-03
. 2163E-02
.2192E-02
.HOSE-OS
.2623E-3I
.21liOE-02 "
.2191E-02
.135DE-33
.2563E-33
.2113£-J2
.2190E-02
.L233E-C3
.2503E-03
. 2085E-02
.2183E-32 -
.12"«3E-03
.2053E-02
.2183E-02
.1201E-OS
.235I.E-33
.2033E-32
- 7 1 fl 7 -" - T >
                           EXAMPLE OUTPUT OF MODEL EXECUTION  - LONG  VERSION (19 of  61)

-------
                                  'PL3T OF'SOLLAPJINGSLOUD  CHARACTERISTICS
                                  INDEPENDENT VAUA9LE  IS  TI.1E OVE*  RANGE
                                               0.
                                                                                            13.330
""DEPENDENT  VARHBLEi ALL  NORMALIZED  FOR  PLOTTING  OM  JNIT  AXIS

                                        o              ;
                                  'SY'IOOL
                                  lax PLDITTEO
                                  MI^I PLOITEO
                                  REMARKS
                      A
                   1.3973
                   0. '
                      SIZE
                               r
                            3.9U7
D.             0.            0 .
   SIZ;    CDNCENfRATIDM   0£PfH
oo
oo
                                  .S:, OF HD.VAR.
                                15.000000         '0.
                         MAX,1IN,INCi OF OiP. VA?.
                                1.0000000           0.
                                         .3000000)
                                         .10030003E-01
                             EXAMPLE  OUTPUT OF MODEL EXECUTION - LONG VERSION (20 of  61)

-------
CD
VD
0.}
I
1C
•lV I :
I
I
	 --••• .: I - -
I
I
- I i
I
IS
I
I
I
I
I
I
I
_.. --•._-.- T
I
I
-'.V-'"', n, i -,
I
I
"• " 	 I • -
I
I
I
I
	 I -
I
I
I
I
I
._. ... x _..
I
IY
I
I
I "
I
I
... . . j
I
.2 .»
rr g
r Y 3 s
•;; • Y
83 r Y C
3 C Y
.;: • I 33B
C 2 8 B
C 9
"•". T . "" . "CC" ' " 38 ,
CC 63
C 3
C . '
-- - c "
C A A
3 . A
C AA
: 4
S . • A4
3 A
C A4
. : ' -.C ' 4
: . *
C A
	 • C 'A
C A
a A
: A
C A
....... c R
; 1
C A
C A
C A
C A
	 - c A -
C 4
. r 	 r— 	 1 	 1 	 I 	 1 	 r- ---r-.
.4 .« 1.3
AA :
A A C S
; A
; A A
A
1 r u A 	 —
Y Y A A
r A
: Y T 	 - A A '
Y Y »
r A
,38 4 A Y f
.4 84 3 YY
A 3 -— - - 	 r 	
33 rr
B r
3 3 ' fY 	
s r
88 " 	 YY 	
8 Y
33 Y
3 -- r 	
88 Y
B Y
---------- 3 y
83 Y
B Y
) Y
33 Y
	 ~ 3 Y "••
33Y
3Y
3r
Y
Y
	 	 	 Y 	
r
..-r 	 T 	 T 	 r 	 r 	 r 	 r 	 r 	 r 	 T 	 r-.-.r
                        EXAMPLE OUTPUT OF MODEL EXECUTION  -  LONG  VERSION (21 of 61)

-------
          JE&tN'lOU TJR*' JINULAJKW OF FAFiOF  100-98
"NEK CLOJT C^EATEJ, NTCU «     I
   TISECI      :  TX          rz         rstoE         TOP
    t.Zlfc       JO.00       50.19       1.6M        1.77V
                                                               TTMK        MASS         Fcl»«S
                                                               .I.S6SE-01   . 80»'«E-»5   t.
                                                                                     MEHT
                                                                                      5>
                                                                                                                -AST
                                                                                                                 1
J(EX ;LOJO CREATED. NTC15 «     t
   T(SEC)      '  TX          TZ  	   TStOE        TOP
    J.6"«9       la. 01  " "JO.00 "  '   Z.9&5       J.90J
                                                               ITHK        TH»35     '    TiNJS
                                                               .97JIE-01   .5875E-OI|   0.
                                                                                     NEXT'
                                                                                     15'.
                                                                                                               ".4ST"
                                                                                                                >2
     ILOUO SHEATiJ, NTOL3 »     Z
                 T«          rZ          TSIO:        TO?
                33.00     '  30.09    "    "..Jl.!       3.951
                                                               TTHX        TMOSS         TEH15
                                                               . ".S65E-01   .".rLOE-03   ' 0.
                                                                                     NEXT
                                                                                     Z05
                                                                                                                 AST
  EJ IIOUO C*E»T£D, STCL) »     3
   T
-------
   "OUTPUT "SUPPRESSED I>J LOCATIONS "rflTH  S3  1ATERI4L  PRESENT
    SJMMARY ..QF-1 00-30   .  DISTRIBUTIONS  AFTER       30.03  SEC.

   .TOTAL S'JSPESDEO HATEUAL • i J'JFT)  =      ,80<»38E-05
   'SUSPENDED MATERIAL IN LONG TER1  GRID  UJFTJ  =      0.
    SUSPENDED MATERIAL IN SHALL CLOU3S  (SJFH  -      .80<»38£-05
    TOTAL MATERIAL SETTLED TO BOTTOM ICUFT) =      ,i»E-OE

   .-OUTPUT SUPPRESSED IV LOCATIONS *ITH .N3 1ATERHL  PRESENT
    SUSMA.
-------
aorro.i Ac:u>iuLArr3N  or too-9o
  .1ULJ1PLY BtS»L«YE3 VHJES BY
         SOUA9EI      60.00  SECONDS AFT-R 3JMP
•lOODi-03     (LEGEND...  * * .U7. .01   .  a .LT. .0001   0  • .LF. .0000011
• M
1
2
-• 3
__<•
y
— 6
7
3
— 9
10

11
"17
It
13
1*.

15
15
17
13
20
"31
22
23
2<,
25
26
27
28
29
13
N= 1
00000
oooo
0000
oood
0003
3000
oooo
0300'
0003
0003

0300
0003
OOOO

OOOO
oooo
0303'
0003
0303
30007
0003
OOOO
OOOO
0000"
0300
0300
OOOO
OOOO
0003
OOOO
J
000
9
a
0
g
3
0
•vo
g
0
-- '
0
0
0
0

g
0
g
0
0
•g
9
3
0
9
0
0
3
*
0
9
3
00001
0
0
• '9
g
3
0
•' 9
- o
g

. g
n
9
9
•c ' ,
0
0
o •
0
0
"' 9
0
0
0
g
g
0
0
0
0
0
i)
30000(
a
o •
.."•'
0
0
0
-o-
• o • •
0
• - - - •
0
n
0
0

0
o
9
0
9
' • o
0
0
9
0
a
0
0
0
g
9
5
)030
0
9 '
;r
' o
9
g
3
1 9'
g

3
3
0

]
)
' 9
g
3
g
3
g
0
3
9
0
3
0
g
o 7
000000000
0 0
• o ' 9
0 9
0 ' 9
0. 9
0 0
g •' o
• g g-
u g
-- - 1 1
9 0
0 D
g o
g 9
• > i ' '
g g
0 0
0 ' 9
0 0
o g
g o •
o g
9 9
g g
o g
9 9
9 0
0 0
0 9
0 0
0 9
i
0001
0
0
0
0
a
9
' g
g
g

g
9
9

a
g
9
0
0
0
a
0
g
0
0
0
0
0
0
3
OOOO
0
g
g
0
0
0
0
0
0

0
n
3
0

0
g
0
g
0
0
0
0
0
9
0
3
9
J
g
10 11
00000000
o g
9 0
9 0
0 0
g g
0 0
3 0
g o
0 0

i g
On
U
0 0
o g

g o
3 ' 0
0 0
]n
U
3 0
o g
0 0
0 9
o a
0 0
9 0
0 0
9 0
9 0
3 9
g o
12 IS 1"4
300000300001
g 3 o
g 3 g
0 3 9
0 D 9
0 3 0
0 3 0
0 3 0-
0 3 0
0' 3 0
1
o i o
<• 1.0 1.0
* 1.3 3.1

* 1.9 3.1
f 1.3 1.0
o 3 g
g 3 o
0 3 0
3 i g
o 3 g
0 3 0
0 3 0
0 3 0
g 3 o
o 3 g
0 3 0
0 3 0
is i& ir
3000000000000
9 3 9
.999
g 9 9
9 9 9
g o o
000
0 J 0
000
o g g

0 9 0
i.o i.a i.o
I.I 3.1 1.0

3.2 3.1 1.0
1.0 1.0 1.0
0 9 0
o o o •
0 0 0
o g o
0 0 9
0 0 0
o g o
0 0 3
o g 9
000
0 0 3
o g o
19
0030
g
g
3
0
9
0
a
0
0

3
f
^

*

9
• 3
0
3
0
3
0
0
3
0
3
g
19
OOOO
3
9
0
0
g
D
3
g
g

0
0
0
0

0
g
0
9
0
0
3
0
g
g
3
g
0
0
o
20 21 22
000000000000
0 0 Q
0 0 0
0 9 9
0 } 9
999
g 3 g
0 3 D
0 0 9
o o g
—
o g o
000
g g o
000

D 0 0
000
g g o
On n
u u
0 0 0
00 9
g o g
9 D g
990
g g 9
9 o g
0 0 3
0 0 0
000
o 3 g
g o o
23
3300
9
0
g
g
g
0
0
0
0

0
0
0
g

0
0
0
0
g
0
0
0
0
0
0
g
g
0
o
2
-------
TMUKKESS (CT> OF 100-93 HCJUMJLUE) iv aorron
...1ULII'LT alS'HYEO VtLUES BY .1000E-33 (LEGEND.
" 'H N» 1 2 3 l| J 6 7 8 9 10 11 12 U
_ 1
2
" 3
__>_
s
— 6
7
8
" 9
13
11
13
U
' 15
16
ir
13
19
20
21
22
23
2V
25
26
2f
28
29
30
0000
0303
0000
0000
0000
0000
0000
0300
0003
0000
0000
0000
3000
0003
0000
OOUO
0003
0000
0000
0003
0300
0000
0000
0000
0003
0000
0300
3003
00 00
0000
0000000000000003301
3390
0009
9003
0393
9 9 0 0
010)
3900
900)
3193
3903
9 0 0 9
399)
9003
000)
0 0 13 3
0303
3303
0999
0003,
900)
9003
3303
0009
000)
899)
3099
0003
g o o o
0900
DOOOC
9
0
0
a
0.
0
D
0
0
0
0
0
0
0
0
9
0
D
9
0
0
0
0
3
9
a
0
9
0
1000001
0 0
0 0
0 9
0 0
o a
0 0
9 0
0 3
9 0
0 3
0 0
3 0
0 0
9 9
0 3
0 3
1 0
0 0
0 9
0 0
0 0
0 9
0 0
0 0
0 0
9 0
0 9
0 1
9 9
3000033001
3 0
0 0
0 0
0 9
0 )
9 9
0 3
0 0
0 9
0 0
0 0
0 3
6 3
0 9
9 9
0 9
0 9
o g
0 0
9 9
o a
9 3
9 9
9 0
9 )
0 9
9 0
0 0
0 3
0000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000031
0 )
o g
0 0
0 3
a 3
0 3
0 3
0 9
0 3
0 3
i- .!»;
* 4
-------
     BE3IN LONG TER1 SIHJLATION OF PAT;  OF  90-80
~NEH CLOUO
T(SEC)
3. 6". 9
VEH 3LOJD
T(SEC)
if. 855
NEH CLOUD
T(SEC)
~ 6.082
•JEH CLOUD
T(SEC)
7.299
NEW CLOUD
SEH CLOUD
J 9.731
1
--1EH CLOUD
;T (SEC)
10.95
NEH CLOUO
MSEC)
NEH CLOUO
TISECI
~ 12.31 ~
CREATES. STCL3 =
TX
30. DO
CREATED, NTCL) «
T<
30.00
CHEATED. NTCL3 =
TX
30.00
J i
CREATED, NTCL) =
TX
20.00
1 1
CREATED, NTCL3 =
30.00
CREATED, NTCL3 =
rx
30.00
CREATED, .1TCL3 ' =
" TX - '
30.00
CREATED, HTCLJ =
TX
30.00
CREATED, NTCL3 =
TX
30.00 • -
TZ
10.00
1
TZ 	
30. 00
I
TZ
30.00 •-
I
TZ
20. 00
1
TZ '
30.00
1
rz
30.00
TZ
30.00
1
TZ
30.00
TZ
30.00 '
2.3f>5

Tsm
TSI3E
5.201
rsn:
5.753
TSI3E
6. an
fSIDE
6.253
S?BS
TSIDE
6.1.20
TSI3E
TOP
3.903

TOP
3.973
TOP
3.970
rop
3.973
1 TOP'
3.973
TOP
3.97:
TOP
3.970
TOP
3.973
TOP
3.777
rrn<
.9123E-01

TTHK
.30<.1E-01
TTH<
• .301.1E-01
TTH<
.30iflE-01
TTHK'
.3QitlE-01
TTHK
1 - .30I.1E-01
TTHK '
.301.1E-01
TTH<
.30i»lE-01
TTHK
.2229
fMASS
.3733E-0*

TMAS3
.3025E-C3
!^E-03
TMAS3
.5225E-03
TMASS
.5159E-03
TNAS3
;i»66iE-03
TMAS3
.".OUJE-03
TMA33
.33!»3E-03
TMASS
.li*i2E-02
TE1AS
0.

TEHA3
0.
TEMA3
o. — 	
TEHA3
0.
TEHA3
0.
TENA3
0.
TEM43
0.
TEHAS
0.
TEHA3
' " 0.
NEHT
15*

NEHT
265
NEHT
255
NErfT
307
NEHT
353
NEHT
1.09
SEHT
1.60
MEKT
511
NEHT
517
.AST
1

L5>>
-AST
	 13 5 ~
LAST
	 'LAST"
537
)
.AST
' - J56
-AST
	 .AST"
ISO
-AST
	 ;il ---
SUMHARr  OF 90-9
                  '   DISTRIBUTIONS AFTiR
                                            15.03  SEC.
TOTAL SUSPENDED MATERIAL  (CJFT) =     .10203E-02
SJS°E'40iD  MATERIAL IN LONG  TERM GRID (CJFT) =     0.
SJSr»ENUEO  MATERIAL IN SMALL CLOJJS (CJrD  =     .10203E-02
F3TAL MATERIAL SETTLED T3 30TT01 ICUFT)  =     .3i»790E-02

3UT»Ur 3UPPIESSEO I>l LOCATIONS 
-------
                           SUMMARY OF 90-38      DISTRIBUTIONS AFTER      30.0) SES.

                           TOTAL SJSPENOIO HAHUAL (C'JFT) =     0.
                           SUSPENDED MATERIAL I "I LONG TER^J 3RIO C3JFT) a     0.
                           SJS°END£D MATERIAL IN SMALL CL3U3S 
-------
aorroM «c:inut.Arr3N OF 93-ao
                                      SQUASEI
...ULTIPcY DISPLAYED VALUES BY
" .1 X = 1 2 3 It ' ' 5 5 7
1
2
-- 3
5
~ 6
7
5
3
10
11
" 12
13
i'-t
~ 15
15
17
-18
19
20
"21
22
23
2*
25
25
27
23
29
30
0000001
0300
0000
0000. .
0300
0000
0000
3000
0000
oooo
0300
oooo "
0003
oooo
oooo -
0003
oooo
OOOO"
0300
0003
oooo .
oooo
oooo
0003
0300
oooo
0303
0003
OOOO
oooo
3000
0
0
3
0
0
g
3
0
0
0
0
0
0
9
9
0
9
9
3
0
0
0
0
0
0
0
9
0
0
00
0
0
0
3
0
g
3
0
0
0
0
0
0
0
0
0
0
3
0
a
3
3
1
9
9
3
0
0
0
oooc
0
0
0
0
0
0
0
0
0
9
- o
0
0
0
0
0
- -o
0
g
- a
0
0
0
0
0
0
0
0
9
10003301
0
9
3
9
0
0
3
3
9
3
3
9
0
0
3
3
--B -
3
3
9 "
_ '...-
9
3
)
9
J
3
9
3
3030
0
0
0
9.
0
0
0
0
0
0
g
0
0
0
g
0
0
0
0
0
0
0
0
0
0
i
0
0
oooc
, g
0
0 ,
0
0
0
0
9 "
0
0
0
g
0
0
0
0
0
9
0
0
0
g
0
0
0
0
0
0
0
.1000E-
8 9
10000
9
0
9
0
0
0
8
0
9
9
0
0
0
0
0
9
0
g
g
0
0
0
0
0
0
9
D
0
0
000
9
9
0
9
0
0
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
0
0
9
0
0
0
0
0
03
10
3330
0
0
0
0
0
0
J
0
0
0
g
0
i
9
0
0
0
0
0
0
9
0
0
9
9
g
3
0
0
11
0001
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0
(LEGEND.
12 11
30000003
0 3
0 3
0 0
0 0
0 1
0 3
0 9
0 3
0 0
0 3
0 .01
.01 1.2
.01 1.'
.01 1.2
.01 i.;
.01 l.J
0 .01
0 3
0 0
0 3
9 3
0 9
0 3
0 )
0 0
0 )
0 3
0 0
0 3
• . *
lit
OOOO
9
9
0
0
0
a
9
g
0
0
.01
1.2
2.7
2.7
2.7
1.2
.01
0
a
- 9
. 9
0
0
9
9
0
9
0
0
= .LT. .01 . =
15 16 17 13
300000000000000001
0900
0093
0 0.0 0,
0030
0030
0009
0030
OOOO
0 0 li 9
0033
.01 .01 .01 0
1.2 1.2 1.2 .01
2.7 2.7 1.2 .01
2.7 2.7 1.2 .01
2.7 2.7 1.2 .01
1.2 1.2 1.2 .01
.01 .01 .0,1 0
oooo
oooo
oooo
oooo
oooo
0030
0090
oooo
oooo
oooo
oooo
9000
.LT. .0001 0
19 20 21 22
330000003000303C
0333
0030
9 0,09
0090
OOOO
OOOO
9000
OOOO
0330
3900
OOOO
0030
9000
OOOO
0031
3090
OOOO
0033
OOOO
OOOO
9030
0030
0030
9039
0030
0003
0093
0003
3030
23
10301
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
a
a
D
0
0
0
0
0
0
0
.T. .000001)
Z\ 25 25 2T 28 29
300003000000300
0 3 0
300
.00 0
0 0 0
0 3 0
0 0 0
0 3 3
0 0 - D "
0 3 D
0 3 0
0 0 0 "-"
a o o
0 0 0
000
0 0 0
0 9 0
o 9 a
0 3 D
000
0 0 0
0 3 0
000
000
0 3 0
000
000
0 0 0
0 3 0
0 3 0
333000033
3 0 0
3 9 0
3 0 3
3 o a
3 - 0 " " 0
3 0 3
3 a o
3 " 0"' " 0
3 0 3
3 0 3
3 0 ' 0
) 0 3
3 0 0
3 0 0
3 0 3
3 0 0
3 0 0
3 0 3
3 0 3
3 0 3
3 0 0
3 0 0
3 0 ' 0
3 0 D
3 0 0
3 0 0
3 0 0
3 0 3
) 0 3
-'33 31-
00030003
30003
30003
00003
3 0003
"~ 30003"
30003
30033
"" 3 0003"
30003
30003
- 00003
30D03
30003
"""" 00003 "
30033
30003
30003
30003
30003
30003
30033
00033
30003
30033
00033
3 0003
30003
3 0003
3 0003
       EXAMPLE OUTPUT OF  MODEL  EXECUTION -  LONG  VERSION (28  of 61)

-------
rm:
M
i
2
3
i,
5
" 6
7
3
9
10
11
12
13
11.
15
_i&
i;
" 13
13
20
21
22
23
2-
25
25
27
29
23
30
KNEiS <*TI 3F 90-8
HULIIPLY DISPLAYED
0000000000
OOOO 0
OOOO 3
OOOO 0
0003 0
OOOO 0
0003 0
0000 0
oooo q
0000 0
OOOO J
OOOO 3
OOOO 0
OOOO 0
OOOO 9
0303 0
OOOO 0,
OOOO 3
OOOO 3
OOOO 3
0300 1
0300 3
OOOO 0
OOOO 3
OOOO 3
0003 0
OOOO 3
oooo a
0003 3
OOOO 0
03000000
0 3
0 0
1) 0
0 0
0 0
3 0
0 0
0 0
D 0
1 3
0 0
J 0
3 3
0 0
0 0
o g
3 0
3 3
3 g
0 8
0 0
0 0
0 3
9 0
0 0
t 0
0 0
0 0
o a
0 . ACCUMJLATE3 ON BOTTOM,
VUUES BY .1000E-OJ (LEGEND.
; & r a 3 13 11 12 is
0000000000000000000330000000000003
3 0 0
9 0 0
9 0 0
0 0 0
3 0_ 0
0 0 0
3 g g
3 0 0
0 0 0
3 D 9
3 0 0
g o o
] 0 0
8 0 0
poo
o a o
3 0 0
3 D 0
0 0 0
309
3 o g
9 0 0
3 D 0
0 0 0
303
3 i 9
9 D 0
3 0 0
3 0 0
0
1
0
9
0
0
9
0
0
0
0
0
0
a
0
0
9
0
a
9
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
9
g
0
0
0
0
0
0
0
0
0
3
0
0
0
0
9
g
0
0
3
9
9
9
3
0
3
0
0
0
3
0
0
0
3
0
g
0
3
3
9
3
0
0 0
0 0
0 0
0 0
11 D
D 0
0 3
0 0
0 0
0 0
0 0
0 *
0 . »
0 »
3 >
0 «•
0 0
0 0
0 0
0 0
0 0
0 3
0 0
0 0
0 0
0 0
0 0
0 0
0 0
3
3
1
3
3
3
)
3
3
3
.5k
.55
.5!
.55
.5*
3
g
i
i
9
g
i
3
1
1
3
3
30.
0000
0
0
0
0
0
. 0
0
0
0
0
.55
1.2
1.2'
1.2
.»
9
0
0
0
0
0
a
0
g
0
0
0
00 SE331US Hf.
* .(.T. .01
15 16 IT
0000000000000
0
0
a
0
0
0
0
0
0
0
•55
1,2
1.2
1.2
.55
0
13
0
11
0
0
0
0
9
0
0
0
0
0
0
0
0
0
g
0
0
0
.55
1.2
1.2
1.2
.55
0
0
0
0
0
0
0
a
0
0
a
0
3
0
0
0
0
3
3
3
9
3
.51.
.55
.55
.55
.51.
9
0
0
0
0
9
0
3
0
3
0
0
TE*
19
0000
0
9
0
0
3 .
)
0
3
0
0
t
..-
t
f
f
0
0
0
0
0
3
3
9
3
0
0
3
OJ1I>
.UT
13
OOOO
0
3
9
3
0
3
3
9
0
0
0
0
3
0
9
0
0
0
9
3
9
0
0
3
0
9
0
0
9
. .0001
20 21
00000300
0
0
0
0
0
0
0
0
9
0
0
0
D
0
0
0
g
0
0
g
0
0
0
0
0
9
0
0
0
3
3
0
0
0
0
q
3
0
0
0
3
0
3
3
3
0
9
)
0
3
3
0
3
3
0
3
0
0
22
OOOO
0
a
0
0
0
a
0
0
0
0
0
0
0
3
g
0
0
3
0
0
0
3
3
0
3
3
D
0
0
« .Lf. ,
23 21.
00000001
g
0
0
0
0
0
0
0
0
9
0
9
0
9
0
P
D
0
0
0
0
0
0
0
g
0
0
0
g
3
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
1,
,0000011
25 26
300000003
3
g
9
3
0
0
3
3
0
0
o -
3
0
3
g
g
0
0
0
3
0
0
g
0
0
0
0
0
0
0
0
9
0
0
3
g
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
D
0
0
Z' 28 23
0033000000000
3 0
3 0
3 D
3 3
3 0
) 0
3 0
3 ' '0
1 0
3 0
3 ' 0
3 0
3 0
) 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
1 0
1 0
3
0 "
0
3
- li-
ft
0
o
3
0
- o -
3
0
	 3 --
0
0
- • j —
3
0
3
0
0
9
9
3
0
0
0
0
33 31-
1000033
30033
30033
30003
30003
"00003
30003
30003
00003"
3003)
30003
30003"
30003
90003
30003 ~
30003
30003
30003
30003
00003
30003
30003
30003
30033
00003
30001
80003 -
00003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (29 of 61)

-------
                                        3ESIN LONG TER1 SIMJLATION OF FATE OF 80-30


                                                             1
"NEH CLOJO CREATED,  NICLJ
   TISEC)         TX      '
    3.01.3        30.09
 rz         rsm
JO. DO        2.353
                                                                                  TOP
                                                                                 3.951
                                    TTHK         TI1ASS        TEMAS
                                    .".853E-OL    .1010E-OJ   9.
NEHT
15 '4
'.AST
 1
                               EK CLOJO CUATiO, 1TCL)
                                TISEC)        TX
                                 1..S6J       30. ill
 rz         TSI3£         TOP
30.01        14.3.!        3.984
                                   TTriK        TMASS        TEMAS'
                                   .16UE-01   .82UE-03   0.
                                                                                                     NEHT
                                                                                                     20;
                              NEK CLOUD CREATE-), NTCLJ
VD
00
6.082
"NEH :LOJD
7.399

NEH jLOUD
NEH CLOUD
TISEC)
' 9.731
NEH ;LOJO
' TISEC)
13.95
NEH :LOJO
TISEC)
' 12.15
NEH CLOJO
TISEC)
TX '
3u.OO
CREATE3, NTCL3
TX
30.00
J i
CREATED, NTCL)
r< '
30.09
CREATE}, NTCL)
TX
30. 03
CHEATED, NTCL)
IX
30.09
CREATED, NTCL3
rx
30.00 '
C*EAT£0, NTCL)
rx
70.00
rz
30.00
TZ
30.09

= 1
rz "
30.00
= 1
rz
30.09
rz
39.00
= 1
rz
30.90
= 1
rz
30.09
Tsn-
5.201
TSI3E
5.753

Tsm
6.931
TSI3i
TSI3E
6.365
Tsnr
6.4?0
TSDi
6,>>24
3.99V
TOP
3.98V

TOP'
3.984
TOP
3.9SV
rop
3.984
TOP
J.98i
TOP
3.773
                                                                                             TFHK         TMA35         IZH\S
                                                                                             .1618E-OL    .1294E-OZ  '  0.
                                                                                             TTHK         rMA55         TEHAS
                                                                                                                2    o.
                                                                                             TTHK        T1A53         TJMAS
                                                                                             .1613E-01   .1681E-02    0.
                                   TTHK        rMASJ        TEMA3
                                   -.1613E-01   .1657E-OZ   0.
                                                                                             TTHK         TMA33         T£N»S
                                                                                             .1613E-01    .ISilC-dZ    0.
                                                                                             TfHK         TMA33         T
                                                                                             .1619E-01    .1143'iE-gZ    9.
                                                                                            TTH<         THASS         T
                                                                                            .2212        .1237E-01    0.
                                                                                                                                  NErfT
                                                                         NEUT
                                                                         tor
                                                                         NEHT
                                                                         35J
                                                                                                     NEXT
                                                                                                     1.0?
                                                                                    -AST
                                                                                   '235
                                                                                                                -AST
                                                                                                               !56
                                                                                                                                   1*60
                                                                         NEdT
                                                                         511
                                                                         NEXT
                                                                         517
                                                                                                                                              -AST'
                                                                                    -AST
                                                                                   158
                                                                                    -AST
                                                                                    >39
                                                                                                                -AST
                                                                                                               tiO
                                                                                                                -AST
                                                                                                               III
                                  S'JMHARY OF 30-39
                                                        DISTRIBUTES  AFf£R
                                                                                 15.03  SEC.
                                  TOTAT. SUSPESOED MATi^IAL  ICUFTI  =      .10367E-01
                                  SJSPENDEO MATERIAL tN  LON3  TER1  JRIO  C'JFTI  =      0.
                                  SJS'ENJEJ MATERIAL IN  S1ALL  CL3JDS  (CJFT)  =      .10!=7i-01
                                  TOTAL MATERHL  SETTLED TJ  BOTT3M (CJFT)  -      .12129E-01

                                  DJTPUT SUPPRESSED IH  LOIATIONS HUH X3 1ATERHL  PRESENT
                                    EXAMPLE  OUTPUT OF MODEL  EXECUTION  - LONG VERSION  (30  of  61)

-------
 SUMHARY OF 80-30       CJISTRI BUT IONS  AFTER       30.00  S£C.

'TOT4L SJSPEN3£0  MATERIAL  JCJFT)  =      0.
 SUSPENDED MATERIAL  IN LONS  fER1  GRID CJFT!  a      0.
 SUSPENDED MATERIAL  IN SMALL CLO'JJS  (CJFD  =      0.
 TOTAL MATERIAL SETTLED TO B3TTOM (DUFTI  =
.OUTPUT 3UPPIE3SEO l^  LOCATIONS  HITH  ^3  MATERIAL  PRESiNT
          FOR 3B-30   "   TERMINATED  ftT       30.00   SiS.  ELAPSED  TIME. .. MATERIAL ' SETTLED  TD% BOTTOM
   EXAMPLE OUTPUT OF  MODEL EXECUTION - LONG VERSION (31 of 61)

-------
sorro.1 4Cjl>iuLAriON OF j)-30

  .1JLTIPLT  DISPLAYED VUJES 3V
                                                                       SQ'JA      30.00 SE:ON3S AFT£R 3JMI>

                                                             .1000E-92     ILEJENU... f » .LT. .01   . * .LC. .0001   0 » .LT.  .0000011
o
o
~ M 1> 1
1 0000
2 0000
~" 3 0000
i^OOOO
5 0000
6 0000
7 0000
3 0000
~ 9 0000
10 0000
11 0000
' iZ 0003
13 0000
1*» 00 00
15 0000
16 0000
17 0000
13 0000
19 0000
20 0000
21 0000
22 0000
23 0000
Zli OOOD
25 0000
2o 0000
J7 0000
23 OO'bo
23 0000
TO 0000
• t
000000
0
0
0
0
0
__5
0
0
0
9
0
0
0
0
0
•0
0
1)
0
0
0
0
3
0
g
0
0
0
g
3
00001
0
0
_0
.,- ....

0
3_
0
0
0
0
0
3
0
3
9
0
0
0
0
g
g
0
3
9
g
3
0
9
0
i
3000
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
g
0
0
0
g
0
0
0
0
0
0
0
5
0000
9
0
9
3
0
)
3
3
3
0
g
0
0
g
3
0
3
g
g
g
9
J
0
0
3
0
0
0
g
b
00'
0
0
0
3
0.
0
0
0
0
0
0
0
0
0
g
g
0
0
0
0
II
g
g
9
0
0
0
0
0
7
OOOOOOi
0
0
0 ^
0
0
g
3
a
0
0
g
0
0
g
0
0
0
g
D
0
0
0
0
9
9
• 9
0
0
0
3
OOOi
3
0
0
0
0
0
0
0
0
0
g
9
0
0
g
a
0
a
g
g
g
0
a
0
0
0
0
g
0
9
0000
i
g
0
0
0
0
g
0
0
0
0
0
0
0
0
a
0
0
0
3
0
g
0
0
g
o
g
9
0
13
0000
3
g
3
0
g
g
g
g
3
0
0
3
0
0
3
0
0
0
3
3
0
g
g
0
3
0
9
3
0
11
OOOI
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
30001
0
0
0
0
0
0
0
0
0
0
g
.01
t 0 1
.01
.01
.01
0
g
0
0
0
0
0
0
0
g
g
0
0
13
30001
3
9
0
3
3
3
3
3
J
3
.01
.73
.72
.72
.70
.01
0
3
)
3
3
D
3
3
3
3
3
3
m is
300030001
3 0
0 0
0 9
3 0
0 0
0 0
o a
g o
0 0
a o
.01 .01
.72 .72
l.l 1.1
1.1 1.1
.72 .72
.01 .01
0 J
0 0
g o
0 0
o g
g g
0 0
0 0
0 0
0 ll
0 0
0 0
16
30001
3
0
0
0
0
0
0
0
0
0
.01
.72
1.1
1.1
.72
.31
0
0
t
a
0
9
0
0
a
0
0
0
if
30001
3
9
9
0
0
0
0
0
9
a
.01
.70
• 72
.72
.72
.70
.01
0
0
9
0
0
0
g
0
0
3
3
0
18
30030
0
0
0
0
0
3
0
0
0
0
0
.01
• 0 1
.01
.01
.01
J
0
0
o
0
0
0
0
g
0
0
3
0
19 20 21
OD3000330000
9 3 0
900
000
> • . i J '• •
3 0 0
0 0 0
0 3 0
0 9 0
0 0 3
3 0 3
000
0 0 0
3 0 0
J D Q
0 0 3
9 a 3
0 3 0
3 D 3
000
0 0 3
309
000
3 0 0
0 0 0
0 0 0
3 3 3
3 0 9
3 0 0
3 0 J
g o o
22 23
0030300C
3 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 D
0 0
9 D
o o
0 0
g 3
0 0
3 0
0 0
0 0
0 D
0 0
0 0
3 0
0 0
0 0
0 9
0 0
2< 23
J0000003C
3 3
D 0
D 0
3 3
0 0
0 0
0 3
0 0
3 3
0 3
0 3
0 3
0 0
o g
0 9
0 0
0 3
0 3
J) 0
0 3
0 . 0
3 g
0 0
g g
3 3
0 0
0 3
3 3
0 0
2& Z' 28 23
1000000330000000
0)00
0300
0303
0303
o 3 • ~ n - o
0)03
0300
0 3 — a"" D
0)03
0000
0 — - 3 0 - - 0
0300
0 ] Q Q
0303
0300
g 3 o g
0)00
0)00
0)00
0)00
o 3 a g
0)00
0300
0309
9303
0303
0303
0)00
0 3 0 g
33 3l/~
00030003
30003
•30003 	
30003
30003
— 30003 	
)0033
30003
—"30003 —
30003
30003
J0003 —
30003
30003
' 30003 ' —
30003
30003
30003 	
30003
30003
30003
90003
30003
30003 	
30003
30003
30003 	
30003
30003
30003
                                    EXAMPLE OUTPUT  OF  MODEL  EXECUTION - LONG  VERSION  (32 of  61)

-------
r«l;
-------
      BEJIN LONG  TEK1  SIMJLATION OF FATE OF  .LT.  30
T(SEC)
I..565
HEH CLOUD
' T(SECI
5.052
SEH CLOUD
T(SECI
" " T.298
NEH 3LOUO
T (SEC)
J.51*
•60
                                                                                                511
                                                                                                NEHT
'.AST
 1
                                                                                                          !35
                                                                                                           -AST
                                                                                                           LAST
          'LAST
          S5S
                                                                                                           .AST
           -AST
          • in
         •  -AST
          Ul
        OF  .LT.  30   OISTHIBUTIONS  AFfiR
                                               15.09 StC.
TDTAL SJ3PEVDED HATi^IAL  CUFTI  *
SUS'ENDiD MSTE^IAL IN LOUG  TER.1  G<10  CJFT)  =      0.
S'JSPEMOED MATHIAL IH SHALL 1.LOJDS  CJ'FI  =      .131171-11
TOTAL MATERIAL SETTLED TO BDTTDH «CUFT)  =      .38113E-03

OUTPUT SUPPRESSED II  LOiAItONS /(ITH N3  1ATERHL  PRESiNf
SUMMARY OF  .LT.  30   DISTRIBUTIONS  AFTER       30.03 SEC.

TOTAL SJSPE^OEO HATJIIAL  (CJFTI  «      .U117C-01
  EXAMPLE  OUTPUT OF  MODEL  EXECUTION  -  LONG  VERSION  (34  of  61)

-------
                          'SUSPENDED MATERIAL  H  SMALL CL3J3S C3J-TI  a     0.
                           TOTAL MATERIAL  SETTUSJ TO  30TTOH (CUFT)  =      .3811SE-03

                           OUTPUT SUPPRESSED  IN LOCATI3NS KITH N3 1AVERIAL PRESENT
                           SUMMARY  OF   .LT.  30    DISTRIBUTIONS  AFTER      i»5.0)  SEC.

                           TOTA'L  SJSPE1QED /MATERIAL  ISUFT)  =      .13117E-01
                           SJSPENDEO MATERIAL IN  LOM3  TER1  3^13 .OJF.T)  =     .I31ir£-01
                           SUSPENDED MATERIAL IN  SHALL CLOJ3S  tCU=TJ  =      0.
                           fOTAl.  MATERIAL  SETTLED TO 83TTOS iCJFD  =     .381UE-03

                           3UTPUT SUPPRESSED IiH LOCATIONS  WITH  N3 MATERIAL PRE3EMT
                           SUMHftRY  OF   .LT.'jb'   OISTRIBUFIOMS  4Ff£R      60.00  SEC.
i-1
g                      —  TOTAL  SJSPENOEO  MATERIAL  tCUFT)  E      .13iirE-OI
                           SUS3£N3EO MATERIAL  IS  LOM3  TER1  GRID J3JFD  s     .L3117E-01
                       ..  SUSPENDED-MATERIAL;IN  SMALL'CLOJOS  (CUFT)  =      Q9
                       "-•T3TAL  MATERIAL SETTLED T3 B31TOf4 (CJFT)  =     .38113E-03

                           OUTPUT SUPPRESSED  IN LOCATIONS  WITH  NO MATERIAL PRESENT
                           SUMMARY  OF   .LT.  30    01SfRIBUTIONS  AFTER      75.03  SEC.

                          /TOTAL  SJSPEN1JED  MATERIAL . CCUFT)  =      .13117E-01
                          • S'JSPENOiO MATERIAL  EN  LONG-TERM' GRID (DJFTJ  =      .L3117E-01
                           SUSPENDED MATERIAL  IN  SMALL  CLOUDS  C5J-H  =      0.
                           TOTAL  MATERIAL SETTLES TO B3TTOM <3JFTI  =     .3811JE-03

                          ,OUTPUT SUPP^ESSiO IN LOSAriONS  HITH  N3 MATERIAL PRESENT
                             EXAMPLE OUTPUT OF MODEL  EXECUTION  -  LONG VERSION (35 of 61)

-------
 SUMMARY OF  .LT.  30    DISTRIBUTIONS  AFTER      90.00  SEC.

 TOTAL  SJSPENOEO  MATERIAL  (CUFT)  =     .13H7E-01
 SUSPENDED MATERIAL IN LONG  TER1  GRID CUFT)  =     .L3117E-01
 SUSPENDED HHT£^IAL IS Sf-ULL CLOJJS  ICJFM  =      0.
 TOTAL  MATERIAL  SETTLED TO BOTTOM (CJFT)  =      .381UE-03

 OUT.°UT SUPPRESSED IM  LOCUTIONS WITH  NO 1ATERIHL PRESENT
 SUMMARY  OF   .LT.  30    DISTRIBUTIONS  AFTER     105.00  SEC.
 TOTAL  SJSPESOED  *AT£*IAL  CCJFT)  =     .13117E-01
 SJSPES3iO 1AT£RIftL IN LON3  TER1  GRIO CUFT)  =      .
      <3iQ HftTWIftl H SlfiLL CLOJOi  !CJff!  5      5;
       M4TtRl4L  SETTLSD TO D3TT01 (LJJFT)  =      ,38113£-03

        SUPP?ESS£0 I>l LOIAriONS ^ITH  NO •lArERIAL  PRESENT
SUMMARY OF   .LT. 30   DISTRIBUTIONS  AFfiR      120.OD  SEC.

TOTA.L SJSPEMDED MAT-RIAL  (CJFT»  s      .13117E-01
SUS°ENO£-3 MATERIAL IN-LONG TERM  3RIO  I3JFTJ  -      .13117E-01
          MSTEXIAL IM SMALL  CLOJOS  (DUFT)  *      0.    ••'•-•'
TOTAL MATERIAL SETTLED TO 33TTOH (CJFT)  =      .3811JE-33

OUTPUT SUPPRESSED 1^ LOCATIONS WITH  NO  MATERIAL  PRESENT
SUMMARY OF  .LT. 30   DISTRIBUTIONS AFTER      135.OJ  SEC.

TOTAL S'USPESDED MATERIAL (CUFT) =     .13117E-01
SUS?ENOEO MATERIAL1IN LONG TERM GRID  dUFT) =      .I31ir£-01
SJSPENOiD M4TE3IAL IS SflALL CLOJ3S ISJ^TJ =0.
TOTAL MATERIAL SETTLED TO BOTTOH  (CJFT) =      .38113E-03

OUTPUT SUPPRESSED I* LO;ATIONS WITH NO MATERIAL PRES-NT
  EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (36 of 61)

-------
                             SUM1ARY  DF   .LI".  30   DISTRIBUTI3NS  AFTER     150.03  SEC.

                             iTOTAL SJSPENDED MATERIAL  ICUFT)  -      .13117E-01
                             SJS?ESO£0 14TERIAL IN LONG  TERM  GRID CJJFT)  =     .L3117E-01
                             SUSPESDED M4TERIAL IX SMALL  CLO'JOS  (DJFT»  =      0.
                             TOTAL MATERIAL SETTLID  TO 3DTiT3!1 ICJFT)  =     .381UE-03

                             OUTPUT  SUPPRESSED IN LOCATIDNS  WITH  NO 1AIERIAL  PRESENT


                        FALLO=       .OOQ5DO
o
Ln
                             EXAMPLE OUTPUT OF MODEL EXECUTION - LONG  VERSION  (37  of 61)

-------
JONJENT^HTIONS  OF  ,LT. BO
  ..1ULIIPLT DISPUTED VUUES
(VOUH£ R4M3I IN IH: CLOU)
BY   .1000E-02     ILESENO..
  153.00 SECONDS AFTER
<  • .LT. .01   . *  ..T.  .0001
H N- 1
1 03000
2 OOOO

- 3 OOOO
it OOOO"
5 0300
' 5 0300
7 0003
3 OOOO
— 900 00
10 OOOO
11 OOOO

• 12 OOOO
13 OOOO
lit 0003
1? 000 D
la 0300
17 OOOO
13 OOOO
19 0003
20 OOOO
21 OOOO
22 OOOO
23 OOOO
21. 0003
25 OOOO
25 0300
27 OOOO
29 OOOO
29 0300
30 OOOD
2
oooc
0

0
9
0
3
9
]
- g
0.
_
o-
- -
9
0
0
0
3
3
o •
3
0
0
Q
g
3
3
3
3
0
3
3
3
)OOOI
J
r
3
0
0
0
0
g
Q
Q
. 3 '
r - •
D
0
0
0
3
3
- -o
3
3
3
g
0
3
0
0
0
'o
3
3
k i
330000030
0 0

0 3
, a g .
0 3
0 .3
g 3
g 3
0 0
On >
u
: 3 0
• J
0 3
a o
0 3
0 0
o g
0 0
0 3
3 3
0 0
0 0
0 3
0 3
3 0
0 9
g 3
3 3
g o
0 1
0 0
6
oooc
g

0
0
3 •
0.
0
g
n

0 i

0
0
0
i
0
0
g
0
0
g
0
3
0
0
0
0
0
0
r
10000
g
i
0
0
0
0
3
o
g
Q
0

0
0
0
g
g
g
0
g
0
g
0
0
g
0
0
0
0
g
9
oooo
g

3
0
0
g
3
o


.•g

.
,
•

.
.
0
3
0
Q
0
g
g
9
0
0
0
0
9
OOOO
g

3
g
9
0
0
g
n



«
*
*
,.
*
.
•
g
g
0
3
0
0
0
0
0
0
19
3)31
0

9
0
3
3
3
g
g

*

*
f
f
t
»
I-
*

g
3
3
3
0
0
3
3
0
11
3000
0

g
0
0
g
0
g


t

.01
.05
.06
.06
.05
.01
t

g
0
0
0
g
0
0
0
3
I I.C. J
12
OOOO
0

0
0
g
g
3



.01

.09
.27
.31.
.31.
.27
.03
.01


0
0
0
0
3
0
3
0
CHU *
u
000)
3

9
.0
3
3
3



.05

.27
.73
1.9
1.3
.79
.27
.115


3
J
1
3
3
3
1
3
"u
30001
0

3
a
3
0
3



.05

.31.
1.0
1.3
1.3
1.0
.31.
.05


3
0
3
0
g
3
3
• 0
» . u i .
15 16
)0300000<
0 0

0 0
- ,0 0
o g
o g
0 3



.06 .06

.36 .31.
1.0 1.0
1.3 1.3
1.3 1.3
1.0 1.0
.36 .31.
.06 .06


g g
g g
0 0
0 0
0 0
0 0
9 0
0 0
• y 1
17
30001
j

0
3
0
0
0



.05

.27
.79
1.3
1.0
.7*
.27
.05


0
0
a
0
0
0
3
0
13
3000<
9

D
9
3
9
9



.01

.09
.27
.31.

.27
.03
.01


0
9
0
0
3
0
0
g
• * . < <
19
)0300(
0

0
g
9
0
0
Q


t

.01
.0;
.05
.05
.09
.01
f

3
0
9
0
0
0
0
3
0
> « U U U L u '
20 21 22
3000900030001
0 3 3

g g g
0 9 0
0)3
0 9 9
0 9 3
099
o g o
T fl
• J U
«• . g

* . .
* «• .
* * .
» *
* * •
<• . .
* . 0
.30
990
g Q g
0 3 0
o g o
0 9 g
D 0 9
000
0 0 0
030
000
k • *. 1
23
30001
0

0
3
3
0
0
3
g
g
0

3
3
0
g
0
0
0
0
0
n
g
0
g
0
0
0
0
0
0
21. 25
1000000
0 3

0 0
3 3
3 3
0 0
0 0
3 3
0 9
0 0
9 0

0 0
0 3
0 0
0 0
0 3
0 0
g o
0 0
0 9
o g
o g
0 3
9 3
9 0
0 3
9 9
0 0
0 3
0 0
26 2
0000000
9

0
0
0
0
0
0
g -
g
I)

3
g
g
g
g
g
0
0
G
g
0
g
0
0
0
0
0
0
f 28 29 3
330000000000
3 0 3

3-0 o -
3 0 3
3 0 0
3 0 " "9
3 13 0
3 0 3
3 ~- Q — g —
303
3 0 0

j- — g 3—
3 0 9
3 0 0
3 Q " 0 "
3 0 9
3 0 9
3 0 0
3 0 0
309
l n n ~
J U U
909
3 3 3
3 0 3
3 g o
3 g 3
3 0 0
3 0 3
3 0 0
3 a 9
13 ~3l~"
13003)
3003)

90003 -
3000)
3000)
S0003~
30003
9 000)
3 0003"
30003
90003

3 0003 ~
30003
90003
3 000 J
30003
30003
3000)
3000)
3000)
00033
9000)
3000)
3000)
3003)
3000)
30033
3000)
3 0033
9003)
      EXAMPLE  OUTPUT  OF MODEL EXECUTION  - LONG  VERSION  (38  of  61)

-------
* • .
M '
1
2
3
d
5
b
7
•
9
10
i ,
11
1 9
1C
13
* [.
m
15
15
17
1 3
19
20
21
22
23
a*
25
26
ZT
29
29
3J
1JL t if
J» 1
00000
0003
0003
0000
0000
0300
3000
00 00
0000
0000
00 00

03 00
0000
m n i
U J U J
00 00
0000
0000
00 00
ODOO
0000
0000
0000
0000
0000
0000
0000
0003
0000
0000
0000
LT IJA
2
00300
0
3
g
g
0
3
Q
0
g
J

0
0

Q
0
•0
0
g
3
g
d
g
0
0
g
0
0
9
3
b'LAT LU
3 l>
00000000
0 0
3 9
9 9
0 0
g o
} 0
0 9
g g
0 0
h n
u u
g o
3 0
On
u
9 g
9 0
9 0
0 0
0 9
art
\t
9 0
9 3
3 0
0 0
0 3
0 0
3 0
9 9
0 9
3 0
VULU
7
0000
g
0
9
g1
i
0

J
Q

Q
4
J

0
0
3
3
3
g
0
3
3
9
9
3
g
3
Lb t
a
000(
g
0
g
g
0.
a

g
9
\

0
Q
0
0
0
0
0
g

0
0
0
0
0
0
g
0
0
0
JT
1
1001
9
0
9
0
g
g

g
0

0
0
0
0
Q
0
0
0

D
0
0
0
0
0
0
9
9
0
1. UUU
3 )
000000001
9 g
0 0
g g
o g
9 0
g g
On
U
g g
o g

3« 8 3*3


3*9 3*8
3.3 3.3
3.8 3.3
30 •* a
* 0 >i» 0
9 3.8
On
J
0 0
0 0
0 9
g g
g g
9 g
0 0
9 0
8 0
g o
ILtbl
10 11 12
3000000000001
g g 0
g o g
i g o
g g g
o g g
g o g

9 3.6 3.8
3.8 3.8 3.3




3.* 3.1 3.9
3. 9 3.8 3.6
3.3 3.8 3.8
30 -1 • J •
.3 3 t ft J.O

3 03*6
o g g
o o g
3 0 0
000
9 9 0
3 9 9
9 0 0
3 0 0
1NU. . • +
IS l
-------
                          tHi: .LT. .gggOOll
21 22 23 Z't
30000000000001
3 g 9
9 9 9
g 9 g
g g g
g g g
3 g 9
9 9 9
999
3 9 9
9.1 9 g
3.1 9.1 9
9.1 3.1 9
9.1 9.1 9
3.1 3.1 9
9.1 9.1 0
9.1 o g
9 9 0
o o g
g g o
g o g
3 g g
990
3 g g
3 g o
990
093
399
30001
g
3
g
3
g
9
g
9
9
a
0
g
g
g
g
g
9
0
9
9
9
9
9
9
0
g
g
9
3
25 25 2' 26 23 33 31
300000000033000000000030003
39)99 30033
39)99" 30003 	
00193 30003
3 9 ) g 9 30003
g g ) 9 •• g ~~ 00003
g g 3 g 9 30033
39)99 30003
9 9 3 • -g - 0 " a 0003 	
39)99 30033
99399 30033
g o -)— O~B — 30003 	
39)00 30003
99390 30003
30)09 )0033
9 0 3 0 g 90003
99)00 30003
00)09 30003
9 9 ) 0 3 30003 	
99)99 90003
9 g ) 9 0 30003
3 9 3 9 ' 3 3003) 	
90)03 90003
00)03 30003
9 0 ) 0 9 • 30003 	
9 0 ) 0 ' 0 30003
3 0 3 g 3 30003
30)09 30003
                              EXAMPLE OUTPUT OF MODEL EXECUTION -  LONG VERSION  (40 of  61)

-------
aorroi ojuiJuanoN OF .irJ'ao PI;JFT^U
. .. fJLTIPir DIS'L«VEO VXLUES 31 .I0u0£-
~H1=iZJiiSSr t 1
1
2
- 3
l>
5
— 6
t
9
" 9
13
11
~ 12
13
1".
15
i
ir
13
19
20
21
22
23
-zi,
25
25
27
28
29
JO
oooooo:
oooo
0003
oooo
oo oo
oooo
oooo
oooo
oooo
3000
oooo
OOOO ""
0003
0003
oooo
oooo
0100
oooo
oooo
oooo
0003
0003
oooo
oooo
oooo
oooo
oooo
oooo
oooo
0003
I0000003C
0 0
9 0
0 9
0 0
0 0
J J
0 t
0 0
0 9
o o
o o
0 0
ft 3
g o
9 3
0 9
0 9
g o
0 0
0 0
0 3
3 0
0 0
ti 3
9 9
0 9
0 0
0 0
3 0
10000000
o o
0 1
t 0
0 3
0 3
9 i
0 )
g 9
0 0
0 3
0 )
0 >
0 9
9 1
o o
0 )
0 0
0 1
0 0
0 0
0 3
9 0
0 0
0 0
0 0
b o
0 0
0 0
0 0
000000000000000
o o g o
oooo
1009
oooe
0. 0 0 0
0900
oooo
0000
oooo
0 0 0 ' 0
0 0 '-9 0
0 0-9 9
0 0 '• 0 9
o o --o •• o •
o o ' • o o
II 9 '• 0 9
o g •• o o
0999
9000
0009
0909
g o o o
oooo
0900
oooo
oooo
0930
0009
0009
3".
19
3030
9
J
g
9
0
9
0
0
1
' 0
• o
' 0
0
••6
0
• o
0
0
9
g
3
3
g
0
0
0
g
g
3
SQUAKtl HI
ILEGtND... f
11 12 11 111
0000000
0 0
0 0
0 9
0 0
0 0
0 0
0 0
id o
0 • 0
0 0
• 0 9
9 0
' 0 0
0 0
o g
0 0
0 9
0 0
Q 0
0 3
0 0
0 0
9 0
9 0
9 0
0 0
0 0
00030000
0 0
3 0
3 0
3 0
3 0
3 0
: 1 g
' 3 0
•3 0
0 0
' 1 -0
1.1 2.1
l.L 2.1
1.1 2.1
3 0
9 0
3 0
g o
3 0
! 9
3 0
9 9
3 9
) 0
3 9
3 0
3 ' 9
.00 SE30N3S AFTER
= .LT. .01 . a
15 16 If 19
3000
0
0
0
0
0
0
'• 0
0
•0
'• 9
'• 0

2.1
2.1
0
' 0
0
11 0
0
0
0
g
0
g
0
0
0
OOOOi
0
0
0
g
g
0
0
•0
0
0
0
2.1
2.1
2.1
0
0
0
• o
- o
0
0
0
0
0
0
6
0
00000
0
0
0
3
0
0
• 0
'•9
• 9
0
0
1.1
1.1
l.t
1.1
0
9
0
0
0
0
0
0
0
g
0
0
9
oooo
9
0
0
9
9
3
• 0
• 0
• 0
3
9
-9
9
• g
9
• g
• g
9
' 9
' 0
g
g
g
9
3
9
0
0
.Lt
13
OOOO
0
9
0
3
0
0
0
•• o
• 0
g
9
1 g
• 0
-j
g
0
0
9
3
0
9
9
9
0
1
3
9
3
0
. .0001
29 21
0001
0
9
9
0
0
0
0
0
'-0
• 0
0
•• 0
- o
0
0
0
9
g
g
g
9
g
0
0
0
0
9
9
9
30000
g
g
3
g
9
0
0
0
3
•- o
'• 0
' 3
• 3 •
1 g
9 '
'- 0
9
'• 9
9
g
0
9
0
3
9
3
g
0
3
0
22
OOOO
0
0
0
0
0
0
0
0
0
0
0
• 0
0
'• 0
• o
0
g
0
g
g
g
0
0
0
0
0
3
g
j
i .Lf. .0000011
23 2'4 2; Z-> Z> 26 29 33 31
OOOO
0
0
g
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
3
0
0
000000000
3 3
0 3
g 3
g g
g o
o g
0 0
0 0
g o
0 0
0 3
o g
9 0
o g
0 0
0 0
0 9
g g
9 3
g. g
0 0
0 9
g o
D 3
0 0
3 g
0 0
g g
Q ]
0000033000303300000003
9)03 30003
9303 30003-
0100 00003
0300 90003
0 3 0 ' g 30003 •
0309 30003
0)03 90003
o i — g " - g - 30003 ~
g 1 g g 30003
0)03 30003
0 3 - 0 ~ 0 30003
0 3 0 3 30003
0303 30303
0)00 30003 -
0300 00003
9300 30003
0)00 30003
0300 30003
0)00 90003
0300 30003
0)09 30003
0)90 30003
0 ) 0 g ' 30003 '
0303 30003
0103 3000}
0)0] 30033
0)90 30033
0300 30003
9)03 30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (41 of 61)

-------
 SJMMARY OF  .LT.- 30   DISTRIBUTIONS AFTER     165.OJ SES.

 TOTAL SUSPENDED,MATERIAL (CUFT) a     .1J117E-01
 SUSPENDED MMEUAL IN LONG TERM GRID UJFT) =     .I3ltri-01
 SUS^NDEO MATERIAL IN S1ALL CLOUDS CJFT) =     0.
 TOTAL MATERIAL SETTLED T3 33TT01 (G'JFT)  »     .381HE-03

 OUTPUT 3UPPIESSEO IN LOCATIONS HITH NO MATERIAL PRESENT
"SUMMARY  DF  .LT.  30   DISTRIBUTIONS AFTER     180.03 SE3.
                    I
 TOTAL SJSPENOEO MATERIAL CUFT)  =     .131UE-01
 SJS'tNDEO MATERIAL IN LONG TER1  GRID CJFTI  =     .13117E-01
 SJSPE.S050 MATERIAL IM SMALL CLOUUS (CUFT) =     0.
 TOTAL MATtRIAL SETTLED TO BOTTOM (CJFTI  =     .381UE-03

 OUT»UT SUPPRESSED IS  LOCATIONS HITH NO 1ATERI4L PRESENT
 SUMMARY-3F :.LT.  30-   DISTRIBUTIONS AFTER     195.03 SEC.
 TOTAL  SJSPESDcO ^MATEUAL (CJFT»  =     .13117E-01
 SUS^EMOEO MATERIAL IN LONG TtRM  GRID CJFT)  =     .L3117E-01
 SUS?ENO£0 MATERIAL IN SMALL CLOUDS CUFTI  =      0.
 TOTAL  MATERIAL  SETTLED TO BOTTOM (CJFT)  =      .J8115E-03

 OUTPUT  SUPPSESSEO  IN  LOCATIONS HITH NO 1ATERHL PRESENT
 SUMMARY  OF   .LT.  30    DISTPIBJTIONS  AFTER     E10.03 SEC.

 TOTAL'f'JSPEf
-------
SUMMARY OF  .LT. 30   01STRIBUTIONS AFTER     335.00 SEC.

TOTAL SUSPENDED MATERIAL ICUFT) =     .13117E-Q1
SUSPENDED MATERIAL IN LONG TERM 3RID OJFT) =     .IJ117E-01
SUSPENDED MATERIAL IN SMALL CLOJDS (JJFD =     0.
TOTAL MATERIAL SETTLED 13 3DTT01 (CJFT) =     .38113E-03

OUTPUT SUPPRESSED IN LOCATIONS WITH NO MATERIAL PRtSENT
 SUMMARY OF  .LT. 30   DISTRIBUTIONS AFTER      ZkQ.OJ  SEC.

 TOTAL SJSPESDED MATERIAL ISUFT) =     .1311/E-01
 SJS'ESOED MATERIAL IN LOMG TERM GRI3  CJFT) =     .1J1UE-01
 SJSPESDEO MATERIAL H SMALL CLOJQS (CJrD =     0.
 TOTAL MATERIAL SETTLED TO BOTTOM (CJFD  =      .3811JE-03

 O'JT'UT SUPPRESSED 1^ LOCATIONS WITH ND MATERIAL PRESENT
 SUMMARY OF  .LT. 30  'DISTRIBUTIONS AFTER     255.00 SEC.

 TOTAL SJSPESOEO MATERIAL (CUFTJ s     .13117E-01
 SUSPENDED MATERIAL IN LONG TERM SRID CJFT) =     .1311TE-01
 SUS°ENDED MATERIAL IN SMALL CLOUDS 13JFTI =     0.
 TOTAL MATERIAw SETTLSJ TO BOTTOM tCUFT)  =     .38115E-0?

 OUTPUT SUPPRESSED IN LOCATIONS WITH ND MATERIAL PRESENT
 SJMMARY OF  .LT. 30   DISTRIBUTIONS AFTER     270.03 SEC.

 TOTAL SJSPENDED MATERIAL CCUFTJ =     .12995E-01
 SJSPEMOEO MUERIAL'IN LONG TER"! GRI3 CJrT) =     .12995E-01
 SJSPE'JDEO MATERIAL IS SMALL CLOUDS CUFF! =     0. '
 TOTAL MATERIAL SETTLED TO BOTTOM ICUFTI  =     .50275E-03

 OUTPUT SUPPRESSED 11 LOCATIONS HITH NO MATERIAL PRESENT
    EXAMPLE OUTPUT OF  MODEL EXECUTION - LONG VERSION (43 of  61)

-------
SUMHAijr-OF  .IT. 30   DISTRIBUTIONS AFTER     385.0) SEC.

TOTAL.SJSPESOED MATERIAL (C'JFTI =     .11919E-01
S'JS?EHOEO MATERIAL IN LONG TER1 SRID CJFT> =     .11919E-01
SJSPEMOiO MATERIAL IN S1ALL CLOD3S ICJ^D =     0.
TOTAL MATERIAL SSTTLiQ TD B3TT3t1 (CUFTI =     .15791E-OZ

OUTPUT 3UPPIE3SEO IS LOCATIONS WITH U3 HATERHL PRESENT
SUMMARY OF  ,LT. 30   DISTRIBUTIONS AFTIR     300.00 SEC.

TOTAL SJSPENDED MATERIAL (CUFT) =     .135UZE-01
SLJSP^SOiO MATERIAL IN LON5 TERM GRI3  CJFTI s      .IJB^aE
SUSP£N3£0 HATtRIAL tN SMALL CLO'JJS CJrTt  =      0.
TOTAL MATERIAL SETTLED T3 B3TT3M -(^JFT)   =     .2b555E-03

OUTPUT SUPP^ESSEQ IS LOCATIONS '-JITH NO IftTfcRHL  PRESENT
  EXAMPLE OUTPUT OF  MODEL EXECUTION - LONG VERSION  (44 of 61)

-------
iOSOENTrtUUNS OF .IT. 30 (VOLUtr RUflOl
• •..•iJLIIPir DISPUTED
N
1
2
3
_".
5
&
7

a
10
11
12
13

11-

lS
IS
17
13
19
20

22

2-
25
26
27
23
29
JO
N» 1
030001
0003
0003
OOOO
0300
0003
0000:
OOOO
oooo
oooo
oooo
oooo
0003

0003

oooo
00 00
OOOO •:
oooo
oooo
oooo
oooo . .
0303
oooo
oooo
0003
0003
0303
OOOO
OOOO'
oooo •
2
30001
1
t
I
0
0
• 0 •

1 -
9
9
0
0

9

3 -
• Q •
0
0
0
.-.:.
• 0 " '
0
1
0
9
0
0
o"
0
3 .
3 l|
103000001
0 r g
0 0
0 0
0 0
0 0
0 . T J
9 0 •
9 ' 9 ' '
9 0
0 0
0 0
9 9
. i i -
0 9

0 9
n 0
0 0
9 0
0 0
0.. i 0
Oft ' •
u <
On
U
9 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0 '
VUJES 31 ' .1000E-02
5679
30030000000000031
J 0 , , 0 0
1 0 '0 0
0 .0 , ,9 0.
1000
3 0. 0 0
i ) 9,9 •• 9 •
1 3 • 0 0 0
]n , n «
U . U U '
300.
'o o .
3 0 . »
0 0 . »
v . : r
9 . . *
i " .1
J . . »
i 0 • 0 , i .• - . f •
0 0 . »
00..
- . o o . i o i . .
• 3 Q ' ' 9 9
In n n
U U U
oooo
OOOO
3000
3003
3000
3099
3000
1000
9
3001
0
0
0
0
0
o


*
t
*
*

f-

*
t
t
fr
t

3
0
0
0
9
3
0
b
10
30301
0
0
3
0
0
3


t
f
.31
.92

.91

.35
.16
.9,


.
0
0
0
g
0
0
16
30001
0
0
0
0
•


.03
.15
. .ir. .0001
19
30031
0
0
a
0
0


.01
.05
.16
.32

.".2

•"5
.32
.13
.0?
.01


9
0
3
0
0
0
0
19
3000
a
0
9
0
0


f
.01
.05
.11

.15

.IS
.11
.95
.01
f


9
9
3
0
9
0
3
20
00000
0
0
1
0
0
o


t
t
.01
.02

.03

.04
.02
.01
*
-

g
0
0
0
0
0
9
9
21
000
a
0
g
g
g
g


,.
t-
*
f

t-

1-
>
t
*
t

g
g
9
0
9
3
0
0


0 • .LT. .
22 23
000000000
0 0
0 0
0 9
0 0
0 0
0 0
9(1
U
On
U
0
.
* .
,.
- , _ .
+ .

* .
«• .
f ,
.
0
On
D
On
U
0 0
0 0
9 9
0 0
0 0
9 9
0 0
0 0
24
oooo
9
0
9
0
0
0


0
0
3
0

.

•
0
0
0
3
0
0
[J
0
0
9
0
0
0
0





000001)
2;
3030
0
0
3
0
0
o


3
0
0
3 '
0
••
0

0
3
0
0
0
0
0
g
0
3
0
0
3
0
0
25 zr
0003003
0 3
0 1
0 }
g 3
0 1
9 )
01
i
01
i
0 )
D )
• 0 - 3
0 1

0 )

0 	 3
0]
i
0 1
0 )
0 1
0 1
0 1
0 )
0 1
0 3
0 )
g 3
0 )
0 )
0 )
0 }
2»
300030
0
0
0
0
0
0

	
0
0
- o —
0

0


0
0
0
0
0
0
n
(I
0
9
0
0
0
0
2}
03
3
a
0
0
0
3


g
9
'0
0

0

3
9
0
0
0
0
0

9
3
D
3
9
9
9
33 31
30330003
10003
" J0003 	 	
30003
30003
' 10003, —
3 0003
1 nnn i
J UUU J
~ i nn "\ i — ' —
i UU J J
30033
30003
"~ 30003
30003

30003

"" 00003
j 000 5
30003
~ 30003 "
30033
00033
0 0003
3 0003

9 000 3
30003 	
30003
30003
30003 —
30033
90003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (45 of 61)

-------
"OSITI01 OF TOP OF .LT. 30
.'.MULTIPLY ois»L»rEO VV.UES
' M N= 1 I 3 
0000000300001
0 3 0
g ) o
g 3 o
9 3 9
0 : 3.9
J.9 3.3 3.9
5.9 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.9 3.3
3.9 3.3 3.9
3.9 3.3 3.9
1.9 3.9 3.9
3.9 3.3 3.9
3.9 3.3 3.3
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.3 3.3
3.9 3.3 3.9
0 3 3.9
0 0 0
D ) 0
0 3 0
0 0 0
•g 3 o
0 3 0
300.00 SEC013S AFTtR 3JH>
* .LT. .01 . = .LT. .0001
15 16 17 18 19 20 21
3000
0
0
0
0
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
0
0
0
0
0
0
OOOOl
0
0
g
3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
a
g
0
9
0
l)
000300001
0 0
0 0
g o
0 3
0 9
3.3 3.3
3.3 3.3
3.9 3.3
3.3 3.3
3.3 3.9
3.9 3.3
3.3 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.9
3.9 3.3
3.9 3.3
3.9 3.3
3.9 3.3
9 3
0 9
) 0
0 0
0 9
0 0
0 0
OOOOl
0
9
0
0
1
3.3
3.3
3.9
3.3
3.3
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
0
9
0
0
0
9
9
OOOOl
g
0
g
0
g
g
3.3
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3
g
9
0
0
0
9
0
30001
3
0
0
3
0
0
0
3.3
3.3
3.9
3.9
3.3
3.3
3.9
3. 3
3.9
3.3
3.9
3.9
3.9
0
3
1
0
3
9
0
3
g
o = .i_r. .000001)
ZZ 23 Z'* 25 2o Z' Zt 29 '33 31 '
30000000000000
o g g
g g g
g g o
0 0 0
o o g
009
993
g g o
3.9 g g
3.9 3.3 0
3.9 3.9 0
3.9 3.9 0
3.3 3.9 3.9
3.9 3.3 3.9
3.9 3.9 3.9
3.9 3.3 0
3.9 3.3 0
3.9 5.9 g
3.3 0 g
o g o
o o g
g g g
9 9 g
g o g
000
000
g g o
300
g g o
0301
3
0
9
3
g
g
3
g
g
0
0
9
3
0
0
0
g
g
0
3
g
g
g
g
0
0
3
3
3
30000033000300300000003
g i g o 30033
o ) g • g 30003 —
0300 30003
0)09 )0003
o 3 -g • o 00003 —
0)09 30003
g } 0 0 30003
g 9 - • a - g - 00003 —
0)00 30003
0)03 90033
0)00 30003 '"
0 ) g 9 30003
0309 30003
0300' 30033 —
0300 30033
0 3 0 0 00003
0300 90003 -~
0300 30033
0300 30003
0303 30033 "
0 3 g 3 90003
0300 30303
0)00 30003 "
o 3 a g 00003
0300 30003
o 3 g o 30003 •-•
0300 30033
0303 30003
0)03 30033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION (46 of 61)

-------
THi;iciess OF  .IT. jo
...TJLTIPLV 3ISPL4YS3 VXLUSS 3T
1
2
" 3
_i.
5
6
7
6
- 3
11
12
13
Ik
15
16
17
ID
19
20
21
22
23
»«,
25
26
27
23
29
30
OOOOOOC
0003
0300
0000
0300
0000
0000
0000
0000
3000
0300
0000 '
0000
0003
0300
0300
0000
0000
0003
0000
0003
0003
0000
0000
0300
0000
0003
0000
0000
0000
1000
g
g
a
g
g
9
1
g
g
0
9
0
g
g
g
9
9
g
g
0
3
g
g
3
g
9
0
3
10003301
} 0
o g
go
3 0
o g
g g
o g
g g
9 0
9 '
g o
g g
0 0
g g
o a
g g
0 0
o g
g o
1 0
g g
0 0
g o
g g
g o
g g
o g
3 g
300000000000
3 0 0
g g o
go o
) g g
} 0. 0
g i g
o g o
0 0 0
3 i g
1 0 7.5
3 0 7.5
3 g 7.5
3 7.5 7.5
3 7.5 7,5
0 7.5 7.5
0 0 7.5
0 0 7.5
) 0 7.5
390
3 g g
3 o q
3 i g
300
300
g o o
g o g
000
o g o
goo
fc C. 1 1
. 1000E
0000!
0
g
g
0
g
0
0
0
7.5
7.5
7.5
7.5
7.5
r. 5
7.5
7.5
7.5
g
0
0
0
g
g
g
g
0
0
30001
0
g
g
g
0
0
0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
0
g
0
.0
g
0
g
JU U 1
-01
10
30301
0
g
0
g
0
3
7.9
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.3
7.5
0
g
g
g
3
g
0
0
1 U U .
11
30001
g
g
0
g
0
7.5
7.5
T.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
0
0
g
g
g
3 & U V ^ J O
(LEjENO.
12 U
3000'
0
g
g
0
g
7.5
7.5
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
0
0
g
0
0
g
0003
l
j
3
3
3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
9
3
)
3
9
Hr I c
. • f
1".
0000
g
g
0
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
r.s
7.5
7.5
g
0
0
0
g
9
T, U i* n r
• .LT.
15 16
0000
0
g
g
g
r.s
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
g
g
g
0
u
0000
g
0
g
a
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
T.y
7.5
0
a
0
a
g
0
.01
17
0003
0
g
g
g
g
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
g
0
3
0
g
19
0003
0
g
0
g
a
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
1 .,
?.5
7.5
7.5
7.5
g
0
9
0
g
0
0
* .ir. .
19 20
0000
0
0
g
0
g
7.5
7.3
7.5
7.5
7.5
7.5
7.5
7,5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
3
0
3
g
3
g
0000'
0
0
g
0
g
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
0
g
g
9
0
g
g
000 I
21
0000
0
0
g
g
0
g
g
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
g
g
g
g
g
g
0
0
)
0
22
0300
0
9
g
g
0
0
0
a
7.5
7.5
7.5

7.5
7.5
7.5
7.5
7.5
7.5
0
0
g
0
3
0
0
g
0
g
* .LT. .
23 2'4
3000<
g
9
g
0
0
g
g
0
9
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
0
g
g
0
g
g
0
0
0
0
0
aoooo
g
0
0
g
0
0
g
g
g
g
0
0
7.5
7.5
7.5
g
9
g
0
0
g
g
g
g
g
g
g
g
0
0000011
25 25
3030
3
g
0
g
0
g
g
3
3
0
g
g
0
9
0
9
g
3
g
9
g
g
g
3
0
g
g
g
)
000
g
g
g
0
0
g
g
0
g
0
0
0
0
g
0
g
g
0
0
0
0
g
g
g
g
0
g
0
g
zr 28
30033000
3 0
3 0
3 g
i g
3 0
3 g
i g
3 - - o
3 o
l g
- 3^" g
i g
3 g
3 0
) 0
3 o
) 0
3 g
3 0
3 0
3 0
3 0
3 g
) 0
3 0
3 o
3 9
3 0
] 0
23 - 33 -31-
300330330003
3 30003
" 0 30003
g 30003
0 30003
' 0~- 30003
3 30003
3 30033
— 0 	 30033
g 30003
g 30003
	 0 	 30003"
3 30033
g 30003
' 0 ~ 30003
0 30003
0 30003
3 00003
0 30033
g 30033
.0 90033
g 90003
0 30003
3 - 30003
3 30003
g 90003
3 30003
9 30003
0 00031
3 30003
      EXAMPLE OUTPUT OF MODEL  EXECUTION -  LONG VERSION  (47 of 61)

-------
sofroi ACJLMULAUON OF .
.1.1ULTIPLY DISPUTED V»L
K. N= 1 2 3 t. J
1
t
- 3
<4
5
' 6
r
3
9
to
ii
12
13
1*
i;
16
17
15
19
20
21
22
23
2
)
3
J
0
3
3
3
300
i . +
It
10001
0
0
9
0
9

f
.02
.09
.25
.61.
.92
.97
.92
.6k
.92
.97
.92
.51.
.26
.09
.02


0
0
0
0
0
0
0
30031
0
3
11
0
9


.01.
.07
.20
.51
.6'*
.61
.6k
.51
.29
.or
.01


0
3
0
0
0
.9
0
DOOOI
3
3
1
3
9


t
.03
.19
.20
.25
.28
.25
.20
.13
.03
t
t

9
9
3
9
0
0
0
}03000000(
3 9
0 9
9 9
1 9
0 0
• o o

f f
.01 <•
.03 > '
.17 .01 '
.09 .02
.99 .02
.03 .02
.or .01
.03 t
.01 » '
f t
»
9 D
0 0
0 0
3 0
9 0
0 0
0 9
0 9
130030001
0 9
9 9
0 0
3 9
9 9
0 0
0 0

f .
f ' t
• * I-
«• • f
t »
- * f -
• t »
f f
» ' .
9
0 0
3 0
-9 0
1 9
b }
9 0
9 0
0 0
0 0
10001
0
b
0
0
0
0
0
0
9
0

.
.
.
.
.
•'
•o
0
D
9
0
0
0
0
0
0
0
0
30000030I
a 9
9 3
0 0
o a
0 0
0 0
9 3
0. 0
0 0
0 0
0 0
0 0
• o o
0 0
0 0
0 0
a o
0 0
9 0
0 0
0. 0
0 3
0 0
D a
3 3
0 0
0 0
a o
0 D
30030033000300
0 3 0
0 3 0
b 3 9
0 3 0
090
0 ) 9
0 3 0
0 1 O —
0 3 0
0 1 0
0 ' 1 0 -
0 1 0
0 3 0
DID
0 } 0
0 3 0
0 3 0
0 1 0
0 j 0
0 3 0
b 3 0
0 ) 0
0 } 0
0 ) 0
0 3 0
0 ) 0
0 3 0
0 1 0
0 1 0
3
0
9
0
a
0
3
9
0
9
0
0
0
0
3
9
3
0
a
a
0
3
3
a
9
i
9
0
a
3
S3 31
0000000)
1 0003
300DV
30033
30003
90033
90003
90003
- 30003'
30003
30033
- 30033 '
30003
30003
30003
00033
30003
" 30003
90003
30003
30003
90003
30003
90003
30003
30003
00003
30003
30003
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (48 of 61)

-------
SJMMARY OF  .LT. 30   DISTRIBUTIONS AFTER     J9U.O)  SEC.
TOTAL SJSPENOEO MATERIAL (C'JFT) =     . i»38<»OE-02
SUSPENDED MATERIAL IN LONG TERM GRI 3  CJFT) =      ,!»33<»OE-02
SUSPENDED MATERIAL IN S.1ALL CLOU3S CCJFT) =     0.
TOTAL MATERIAL SETTtiD TO B3TT01 13UFT) =     .91133E-02
       SUPP^E^SEO IN LOIATIONS ^IITH ND MATERIAL PRESENT
SUMMARY OF  .LT. 30   DISTRIBUTIONS AFT-R     <»05.00 SEC.

TOTAL SUSPENDED MATiUAL  =     .J3076E-02
SUSPENDED MUE^IAL IS SMALL CLOUDS CJFT) =     0.      '  '"
TOTAL MATERIAL SETTLED TD 30TTOM 
-------
                          SJMMARY  OF   .LT.  30    DISTRIBUTIONS  AFTER      
-------
           OF   .LT!.  30    DISTRIBUTIONS  AFTER      350.03  SEC.

   TOTAL' SUSPENDED MATERIAL CUFTJ  =      .55368E-oz
   SJS'ENDE9 MATERIAL  IN  LON3  TERM  3RIO CJFT)  =      .>5363E-OZ
-'SUSPENDED MATERIAL  II  SMALL CLOJ3S  (CJFT)  =      0.
 ,  TOTAL  MATERIAL  SETTLED TO BOrtOI  (CJFD  =      .69611E-02

 '  3JT»UT SUPPRESSED IX LOCATIONS HITH  NO  MATERIAL  PRESENT
:-  SUBMA^Y'OF   .LT» 30-  OISTRIQUTIDNS AFTER      375.00  SEC.

   TOTAL  SJSPEMOED MATERIAL  (C'JFT)  =      .5it60i»E-02
   SJSPENOEO MATERIAL  IN LONG  TER1  3RI3  CJFT)  =      .5
-------
OON3ESTR4TT3NS OF   .LI. 3D
...^ULTI'LY  OIS'UYEO VlLUtS
(V3LUHE Rari3) IN  THE CLOJ3     1)50.00  SECONDS  AFTER OJM'
3Y  .1000E-32     ILEGENO... »  > .LT.  .01   .  « .LT.  .0001
  '   t   9   10 11  12  13  II)  15  18 17  13  19  29  21
                                                                               3 i .LT. . 0000011
                                                                              22  23  21)  25  26  2T
                                                                                                   28  25
31 -
2
- 3
_.'
5
— ' f,
j
•
9
19
11
12
13
10
15
16
17
13
19
20
21
22
y»
c.y
25
26
27
29
29
30
0000
0000
0000
0000
0300
3300
00 00
0300
0000
0300
0000
0003
0003
0300
0300
0000
0003
0000
0000-
0003
0000
ni nn
U J \J(J
0000
0303
0000
0300
0300
0000
0000
0'
D
3
0
o
0 ""
3 -
0
3
0
3
0
o"
3
0
0
3
0
-.0 .
0
0
0
Q
3

0
D
9
" 0
H
0
0
g
0
0
• • g -
0
0
0
0
0
0
g
0
g
0
0
0 ,
0

Q
Q
a
. L
0
0
0
0
0 9 •
0 ' 0
0 3
O 3
0 )
i 0 r 0
0 ' 0
0 9
9 0
0 0
0 3
0
'b ' .
o - .
0 .
0
0 3
g o
0 3
0 0
01
J
0 3
0 0
0 0
g )
0 3
o g
0 0
0 0
o • o-
0 0
0 0
g o
0 0
g ' g '
01 n
1 U
00
Q
. *
. f
. t
. 4

• ' * '
.. *
• «•
. *
0 .
0 0
On
U
On
U
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
0
0
o
J



'f
*
-
*
4-
»
»
*
»
+
-


Q
o
0
0
D
0
Q
D
0
0
o
o


,
f
>
-
.01
.02
.02
.02
.01
»
1-
-
*
Q
g
g
0
0
0
0
6
0
0
0
o
[I


t
.
.01
.0!
.05
.07
.97
.07
.35
.0!
.01
f
f

Q
3
0
0
0
0
3
0
0
0
g



»
.01
.01.
.09
.15
.20
.21
.20
.15
.09
.0<)
.01
*


Q
0
0
0
0
0
g
0
0
g



f
. 02
.09
.19
.33
.13
.".7
.03
.33
.19
.09
.03
t


o
0
0
0
0
0
3
0
g




.01
.05
.lj
.35
.55
.72
.73
.72
.55
.33
.15
.05
.01



)
9
g
3
3
0
0
D




.02
.07
.20
.1.3
.72
.90
1.0
.90
.72
.03
.20
.97
.02



0
0
0
0
0
0
0
0




.02
.07
.21
.07
.78
1.0
1.1
1.0
.78
.07
.21
.07
.02



0
0
0
0
3
9
0
0




.02
.07
.20
.03
.72
.90
1.9
.90
.72
.03
.20
.07
.02



0
0
9
0
0
g
0
0




.01
.0;
.15
.33
.55
.72
.78
.72
.55
.33
.15
.05
.01



3
0
3
g
a
g
9
0
fl



>
.03
.09
.19
.33
.03
.07
.03
.33
.19
.09
.0!
t


g
0
0
0
0
J
g
a
g
g



t
.01
.90
.39
.15
.23
.21
.29
.15
.39
.00
.01
*


g
0
0
3
9
9
0
3
0
g
g


f
f
.01
.03
.05
.07
.07
.07
.05
.03
.01
t
*

Q
g
0
0
0
0
0
3
3
9
g
g


*
••
f
*
.01
.02
.02
.03
.01
t-
h
*
*•

Q
Q
a
j
0
3
J
0
0
0
o
o



t
fr
f-
f
f
*
f
f
f
f
-
•
Q
0
g
Q
0
0
0
0
g
0
g
0
0
0
g
n
0
.
f
*
*
t
t
+
t
f
*
.
0
0
g
g
0
0
0
0
0
0
0
0
0
0
g
g
0
a
.

.
.
.

•
.
•
9
0
0
0
g
g
0
0
0
0
0
0 0
3 0
0 0
g o
0 0
g g
0 0
3 0
0 0
D 0
a o
0
0
0
0
9
0 D
0 0
o g
0 0
0 0
On
U
0 D
0 0
g o
0 0
3 0
D 0
0 9
)
J
)
J
3
j
j
._ j
)
3
3 "
3
3
3
3
]
3
1
)
1
3
]
j
j
3
3
3
3
3
0
0
0
0
0
Q
g
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
g
g
0
0
0
0
0
0
3 •
a
0
• j --
g
g

9
3
--J —
9
0
0 ~
9
0
0
0
3
0
g
9
3
0
o -
3
3
3
30033
30033 "
30003
90003
J0033"
30003
30003
30003"
30003
10003
30003"
90003
30003
30003
10003
30003
30003
30003
30003
30003
3 0033
3 0003
00003
3 0003'
30003
30003
30003
00003
30033
      EXAMPLE  OUTPUT OF MODEL EXECUTION  - LONG  VERSION  (52  of  61)

-------
        OF TOP OF  •.i.r.
...SJLIIPLT DIS'LiUED VV.
 N N=  1   2   3      25  26   2'
                                                                                                   23  23  33  31
1
^
3
i>
5
6
7
3
9
10
11
12
13
1U
15
Ib
17
13
13
20
21
22
23
21.
25
2o
27
23
23
JO
000003000!
0000 0
oooo a
0003 0
0000 0
0000 0
ODOO 3
0303 3
0303 0
0003 0
0000 0
0300 0
0000 0
oooo a
0300 9
0300 3
OOOO 0
03U3 0
0003 0
OOOO 0
0003 0
0003 0
OOOO 3
OOOO 3
OOOO 0
OOOO 3
OOOO 0
OOOO 0
uooo )
0003 0
0000030
3 0
i a
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0
0 0
0 0
0 0
0 0
9 0
0 0
0 0
g o
0 0
0 0
0 0
0 0
000300000000
J 0 0
) O 1
0 0 0
) 0 0
) 0. 0
0 0 0
3 0 0
1 0 0
3 0 3,9
i 3.9 3.9
3 3.9 3.9
3.) 3.9 3.9
3.3 3.9 3.3
3.3 3.9 3.9
3.3 3.3 3.3
3.9 3.9 3.9
0 3.3 3.9
3 3.9 3.9
0 0 3.9
3 0 0
0 0 0
0 0 0
3 0 0
0 0 0
0 0 0
3 0 0
3 0 0
o g i
3 0 0
00001
0
3
D
0
0
o
0
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.3
3.3
3.9
0
a
0
0
0
0
0
3
0
300000331
0 3
a 3
0 0
0 0
0 3
0 3.9
3.3 1.3
3. 9 3.3
3.9 3.3
3. 3 3.3
3.9 3.3
3. 9 3.3
3.9 3.9
3.9 3.3
3.3 3.3
3. 3 3.9
3. 9 3.3
3.3 5.9
3.9 3.9
3.3 3.3
3.9 3.3
0 3.9
0 3
0 0
0 0
U 0
0 0
3 0
0 0
OOOO
I)
0
0
0
3.9
J.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
J.9
3.9
3.9
3.9
3.9
3.9
0
0
0
0
0
0
oooo
0
0
a
3
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3 .9
3.3
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
0
0
0
0
0
0
3003
0
3
a
3. )
3.3
3.3
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3.3
3.3
3.9
3.3
3.3
3.3
3.J
3.3
3.3
3.3
3.3
3
3
)
)
)
OOOO
9
0
o
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
0
3
0
0
0
3000
0
0
0
3.9
3.9
3.9
3.9
3.3
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
0
3
3
0
0
OOOO
0
0
0
3.9
3.9
3.3
3.9
3.9
3.^
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9
J
0
0
0
0
oc



3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3





100
9
0
0
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.3
.9
.9
.9
.9
.3
.9
.3
0
0
0
1
a
oc




3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3






103
Q
0
0
0
.3
.3
.9
.9
.9
.9
.9
.3
.9
.9
.9
.3
. 9
.3
.3
.3
.3
.3
.3
0
0
0
0
)
3
0030
0
9
0
0
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
3.3
3.9
3.9
3.9
3.9
3.9
3.9
3.3
3.9
3.3
0
0
0
0
a
0
oooo
0
0
0
0
0
3.9
3.3
3.3
3.3
3.3
3.9
3.9
3.3
3.9
3.9
3.9
3.9
3.3
3.9
3.9
3.9
3.3
0
0
a
0
0
0
0
oooo
0
0
0
0
0
0
3. 3
3.9
3.3
3.9
3. 9
3. 9
3.9
3.3
3. 9
3. 3
3. 3
3.9
3.3
3. 3
3. 3
J
0
0
0
3
0
)
0
oooo
0
0
0
9
a
0
9
3.3
3.9
3.9
3.9
3.3
3.9
3.3
3. 9
3.9
3.9
3.9
3.3
3.3
0
0
a
a
0
0
0
3
0
oooo
0
0
0
0
0
0
3
0
3.3
3.9
3.9
3.3
3.9
3.9
3.3
3.9
3.3
3.3
3.3
0
0
0
0
0
0
0
0
3
0
000000030
0 0
0 0
0 0
0 9
0 1
0 3
3 3
a o
0 0
3.9 0
3.9 0
3.9 3.3
3.9 3.9
3.9 3.9
3.9 3.3
3.9 3.3
3.9 :
3.9 3
0 0
o :
0 0
0 0
o a
0 0
0 0
g o
0 3
0 3
0 0
00030033300300300300003
0100 30003
0)00 30033 '
0300 30033
0303 30003
0)00 30033
0)03 30003
0)03 3003)
0 ) 0 0 ~ 30003
0300 30003
0)03 30003
0 ) 0 ~0 ~ 30033-
0)003 0003
0300 30003
0 ) 0 ' 3 30033 '
0)00 30033
0)00) 0033
0 ) 0 0 * 30033
0)00 30003
3)03] OOOD
0)00 10003
0)00 00003
0)00 )0003
0100 30003
0)00 30003
0)03 30003
0)00 3000:
3300 30033
0)03 30033
0)00 90033
      EXAMPLE OUTPUT  OF  MODEL  EXECUTION  - LONG  VERSION  (53  of  61)

-------
rm; 23
103033003003C
a o o
3 0 0
000
000
3 0 0
0 0 0
5.45.4 0
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.4 5.4
5.4 5.r 28 2
33300000C
) 0
) 0
] 0
1 0
1 0
3 0
3 0
1 0
3 0
) 0
3 0
} 0
) 0
3 0
) 0
J 0
3 0
] 0
) 0
3 0
) 0
) 0
3 0
3 0
3 0
) 0
) 0
) 0
1 0
:3 3
10000
9
0
0
J
J
0
g
0 '
0
0
0
0
0
0
a
0
0
0
3
0
3
3
g
0
0
a —
a
3
3
3 3L
00003
3 0003
30003
3 0003
30003
30003
30003
30003
3 0003
00003
30003
3 OOOO
30003
3 0003
30003
30003
J0003
3 0003
3 0003
30003
30003
3 0003
3 0003
00003
J0003
30033
30003
30033
30003
3 0033
      EXAMPLE OUTPUT OF MODEL EXECUTION  - LONG  VERSION (54 of  61)

-------
                             BOTTOM  ASJinULATION'oF  .Lf.'30
                             .;;1ULTI°Lr DISPUTED VUJES 3t
<3JFlVGiU3 SQJAUI
.1000--03     UtGENO..
 9   3  13  11  12  II
.00 SS;ON3S AFTER DUMP
 * .It.  .01   .  * .IT.  .0001
 15  16 17  19  19 20  21
                                                                                                          0 * .LT. .0000011
                                                                                                          ZZ  23  2»  25  26
                                                                                                                           E'  28  29  33   31
N5
OJ
1
i
3
It
3
6
-j
j
- 9
10
il
12
13
It
15
16
17
13
19
20
21
22
23
2lt
25
25
27
23
29
30
0000'
0300
0000
0000
0000
0000
nn n T
uu u j
0000
0000
0000
0303
0000
0300
0000
0000
03J3
0000
0300
0000
0000
0000
0000
0003
0003
0000
0000
0000
0003
0000
0000
0000
0
0
0
0
o
Q
J
0
9
0
0
i
9
9
3
D
0
0
0
J
0
0
0
0
3
0
0
0
g
00000000000001
g ii g
g o 3
a g g
3 9 3
g o g
0(1 i
u j
303
090
0 D 0
9 0 3
o g o
0 0'3
0 fl J ' •
3 D '• :
i g
0 i • 3
3 0 0
0 0 3
a o 1
090
309
Q 0 3
0 0 3
0 0 3
t 0 4
3 9 9
D g o
9 0 1
g g g
3000000000000001
agog
9009
0 0 D 0
o o o g
Q. 0 0 0
On ft n
u u u
o g 3
o g • , *
0 f f
- ; i- + f
. " t t .01
. 'f > .03
• . ' • t • »• .01.
1 . ' • » ' * .05
: ' • t t .gi>
. ' • » • * .03
. " f ' l- .01
. •» * *
0 . '* I-
9 9 . f
0 0 0 *
0000
1300
0000
0090
0000
0000
0000
0000
3030
a
D
0
3
3


f
*
.03
.03
.U
.19
.21
.19
.1.
.03
.05
f
f

0
0
0
0
0
9
a
00001
a
0
0
0



t
.03
.10
.26
.".3
.63
.68
.63
.1.8
.26
.10
.03
fr

.
a
0
0
0
0
u
30000003
0 3
0 3
0 D
1 )



.01 .01
.03 .IV
.26 .<>J
.66 1.1
1.1 2.2
1.5 2.9
1.6 3.1
1.5 2.9
1.1 2.2
.66 l.L
.26 .1.3
.08 .1'*
.01 .03

. .
0 3
a 3
0 3
0 3
0 3
0 3
0000
0
0
0
.



.on
.19
.63
1.5
2.9
3.9
• t
.26 .10 .03 f
.66 .25 .Si .01
1.1 .1.3 .Ik .03
I.? .63 .19 .0'<
1.3 .63 .21 .0;
l.i .53 .19 .04
1.1 .!i» .lit .03
.66 .23 .03 .01
.25 .10 .03 *
.06 .03 i- t
.01 t t t

0 0
0390
9 3 0 a
0000
0 0 0 3
3300
0990
00300000
g 3
a o
0 0
9 0
0 0

0 0
g o
0
•• .
i f
* +
t- t
* »
f f-
f f
f +
f f
t- t
f .
0
On
U
Q 0
0 0
9 0
0 0
a o
0 0
a o
9 0
00000000
0 3
0 0
0 0
3 9
0 0
Of]
u
0 3
o g
3 0
0
0
3
•
. ".
.
•o
3
0
0 0
0 0
On
u
0 0
0 0
0 3
3 3
0 0
0 0
0 3
0 0
0000003
0 3
0 3
0 3
9 3
0 3
01
J
Q 3
0 3
9 3
0 1
o - j
0 1
9 1
0 3
D 3
0 3
0 3
0 3
0 1
0 1

0 3
0 3
0 1
0 1
0 1
0 3
0 3
0 )
3000000000000003
9 1 30003
o a 30003
0 9 90003
0 9 30003
0 0 00003

0 3 30003
9 9 30003
0 9 30003
0 0 30003
0 9 30003
3 •- 3 3 0003
0 9 30303
0 D 00003
0 0 " 30003 *
0 0 30033
0 0 30003
0 3 30003
0 3 30003
0 3 30033
0 3 30033
9 3 90003
0 0 30033
0 0 30033
0 0 10003
0 0 30003
0 0 30033 '
0 0 30033
0 0 30033
0 0 30033
                                   EXAMPLE  OUTPUT  OF  MODEL  EXECUTION  - LONG  VERSION  (55  of  61)

-------
THI3KNESS (FT) OF .IT. SO AC:uHJUTEO OS BOTT01, !
. . .1'JLTIPLY DISPLAYED VALUES Bt .1000E-03 (LEGEND.
H N= 1 2 3 it 5 6 1 t 9 10 11 12 13
1 0000
2 0003
3 0000
", 0000
5 0000
6 0300
7 0003
S 0000
9 0000
10 0000
11 0000
12 0000
13 0000
14 0300
15 0003
16 0300
17 0300
13 0000
13 0000
20 0000
21 0000
22 0000
23 0003
21. 0300
25 0000
26 0000
27 0003
23 0003
29 0000
30 0003
000000
3
3
0
0
3
0
a
0
0
0
3
3
0
3
0
0
0
i
0
0
0
3
3
a
0
0
3
a
0
00
3
3
0
3
3
0
3
ti
3
3
3
3
3
a
1
3
3
3
3
0
0
3
3
0
3
0
3
0
0
00000
3
a
0
0
0
3
3
0
0
0
0
g
0
0
3
0
0
0
0
3
a
0
3
0
9
0
0
0
a
003J
3
3
1
3
3
3
3
3
0
3
0
D
3
3
3
3
0
0
0
D
3
3
3
3
3
3
3
3
0
00000000
3 3
i 3
0 0
0 0
0 0
0 6
1 9
3 0
0
•
. *
.._..*-
, +
„ t
, t
• *
e t
•
0
3 0
9 3
0 3
3 0
3 g
3 0
9 0
0 0
3 3
0 0
0001
0
3
0
0
0
0
3
*
f
f
t-
*
»
»
*•
f
f
*
0
0
0
0
9
0
0
0
0
30001
0
0
0
3
3
0
f
t
t-
f
.31
.02
.32
.32
.01
t
>
f
f
0
0
3
0
0
0
3
D
33331
0
3
0
3
0
t
>
.01
.03
.05
.09
.09
.0)
.06
.03
.01
-
^

0
3
3
9
t
3
3
30001
0
0
0
0
•
+
.01
.04
.11
.21
.28
.30
.28
.21
.11
.01.
.01
*


0
0
3
0
0
0
3000
0
0
G
0


f
.03
.11
.29
. 53
.73
.75
.73
.53
.29
.11
. 03
t


0
0
0
»
0
0
0003
3
3
3
'


.01
.05
.21
.5!
1.3
I.I
l.V
1.3
1.3
.53
.21
.Oi
.01


3
I
0
)
1
0
.65.00 SE:ONDS SFTE*
. . + = .LT. .01 . •
lit 15 16 17 18
00001
3
0
0
0


.32
.03
.28
.70
1.3
1.7
1.3
1.7
1.3
.70
.28
.03
.02


0
0
0
3
9
0
30001
0
3
0
3


.02
.09
.30
.75
l.'t
1.3
2.3
1.8
t.t
.75
.30
.09
.02


0
0
0
0
0
0
30001
0
3
0
3


.02
.03
.28
.73
1. 3
1.7
1.3
1.7
1.3
.70
.28
.03
.02


0
0
0
0
0
0
30001
3
0
3
3


.01
.05
.21
.53
1.0
1.3
l.k
1.3
1.0
.53
.21
.05
.01


0
9
0
0
0
0
30001
0
3
3
3


t
.01
.11
.23
.53
.70
.75
.73
.53
.29
.11
.33
t-


0
3
3
3
3
3
DJ1P
« .LT. .0001
19 20 21
30001
0
3
3
3


*
.01
.3'.
.11
.21
.23
.39
.23
.21
.11
. 0'.
.01
1-


3
)
3
0
3
3
3000000001
3 0
9 0
0 3
3 9
0 3

t f
t- t-
.91 t
.03 »
.05 .01
.08 .02
.09 .02
.OS .02
.06 .01
.03 >•
.01 >
t t
t t-

9 3
0 3
0 3
0 0
0 0
0 3
0 0
0 = .LJ. .0000011
22 23 2>t 25 25 2' 23
30000000;
0 0
0 3
3 9
3 3
3 3
3 0
3 D
0
f .
f .
t t
t f
f f
t- *
t t
t t
t t-
t- .
t- .
3
0 3
0 9
0 3
3 3
0 9
D 0
0 3
0 0
0 0
)0000t
3
9
0
3
0
0
0
0
9
•
.
•
•
•
•
•
.
•
0
0
0
0
0
3
3
0
0
0
0
300000001
3 3
3 9
3 0
3 0
3 0
0 0
3 3
3 0
0 3
3 0
3 0
3 0
0 0
0 0
3 3
3 0
3 0
3 0
0 0
3 9
0 0
0 D
0 0
3 0
3 0
0 0
: G
3 0
0 0
333300
) 0
3 0
3 9
1 0
1 0
3 0
) 0
3 D
3 0
3 0
30
3 0
3 0
3 - 0
3 0
3 0
3 0
3 0
3 0
3 D
3 0
3 0
3 0
1 0
3 0
3 0
) 9
1 0
3 0
' 29
3003
3
9
3
0
0
9
9
' 0
3
3
0
3
3
~- 3
0
0
9
9
3
3
9
3
3
3
3
3
a
3
0
33 31"
30030003
30033
~ 300&3~
30033
3 0033
3 0003
00003
3 0003
30033
30003
30003
" 30033
30033
30033
" 30003
3 0003
30003
30003
30003
3 0003
30033
30003
30003
30033
30033
30003
30003
3 0033
30033
30003
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (56 of 61)

-------
                           SUMMARY OF  .LT. 30   DISTRIBUTIONS AFTER     U55.03 SEC.

                           TOTAL SJSPESDiD MAT-RIAL (CUFT)  =     0.
                           SUS?E>JOiO MATERIAL IN LO^G TERM  SRI3 CJFO  =     0.
                           SUSPENDED MATERIAL IN S1ALL CLOJ3S (CJ-D  =      0.
                           T3TAL MATERIAL SETTLED TO B3TT3H IGUFT)  =     .13
-------
SOT
H
1
2
• it
>i
5
5
7
8
9
13
11
12
13
111
15
16
17
13
19
20
21
23
25
25
27
23
29
30
TOH 4::uijLflri3N OF .LT. 30
•ULTIPLT DIS'UYED Vl.JES 3Y
000003
0003
0300
0000
0000
0003.
0000
0000
0000
0003
0000
0000
0300
0003
0000
0000
0000
0000
0000
0000
0000
0000
0303
0303
0000
0000
0003
0000
0000
0000
000
J
o •
0
0
0
9
0
0
J
)
3
1
0
0
0
0
3
9
1
0
3
0
0
0
0
0
3
0
0
0000
0
0
0
0
D
0
0
0
0
0
0
D
0
3
0
3
0
0
0
3
3
0
0
0
0
0
0
9
'
0000
9
0
0
0
0,
0
0
0
0
• o
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00300
i
0
rl
3
g
0
3
0
9
1
0
9
.
.
.
0
1
0
1
9
1
9
3
0
1
0
9
9
1
0001
0
0
0
0
(L.
0
0
0
3
.
.
•
•
.
.
.
.
.
0
0
0
0
0
0
0
0
0
0
0
300
a
0
9
0
0
g
9
0
.
>
1-
*
4-
*
-
+
+
-
•
0
0
9
e
0
0
0
g
D
0
CJFTf
. 1DOO£
00000000
0 0
0 D
0 0
0 0
0 0
o g
. »
f f
* f
i .01
t .03
> .04
.31 .05
i .04
» .03
* .01
f f
t fr
. f
0
0 3
0 0
0 0
0 0
3 0
9 g
0 0
0 0
-03
10
00331
0
0
0
0
0
,
f
.03
.03
.14
.13
.21
.13
.14
.08
.03
-
f

0
0
0
0
g
0
0
S QU i
11
3000
0
0
0
0


+
.03
.10
.26
.48
.61,
.69
.64
.48
.26
.10
.03
*


0
D
0
0
0
0
H?E)
(lEGENJ.
12 1J
00000003
9 1
0 3
0 0
0 )


.01 .03
.08 .1'4
.26 .4i
.66 l.L
1.1 2.2
1.5 2.3
1.7 3. L
1.5 2.3
1.1 2.2
.56 l.L
.26 .4)
.08 .14
.01 .03


0 1
0 )
0 1
0 1
0 1
0 0
463.00 SH30I
.. * = .ur. .
1* 15 lo
0000300000001
0 0 0
0 0 0
0 0 0


.04 .05 .94
.19 .21 .19
.64 .69 .54
1.5 1.7 1.5
2.9 3.1 2.9
3.9 4.2 3.9
4.2 4.5 4.2
3.9 4.2 3.9
2.9 3.1 2.9
1.5 1.7 1.5
.64 .o9 .64
.13 .21 .19
.04 .05 .Ol>


. . .
000
000
0 0 0
000
000
.01 ."= .LT. .0001 0 » .LT. .000001)
17 1» 13 20 21 22 23 24 25 25
3003 00 0000330000000 030000000000 000030 00 OC
0 0
0 0
0 0
0 0


.03 .01
.Ik .03
.43 .26
1.1 .66
2.2 l.L
2.3 1.5
3.1 1.7
2.3 1.5
2.2 1.1
1.1 .66
.4J .2i
.Ik .09
.03 .01


0 0
0 0
9 3
9 1
9 0
0 0
9
0
3
9


I
.03
.10
.25
.49
.54
.59
.54
.43
.25
.10
.31
*


0
3
0
0
0
0
300003
033003
030001
000000
000000
00000
f f . 0 0 0
I t t . 3 3
.03 f «• t . 3
.08 .01 * i- . 3
.14.03 » » . 9
.13 .04 » f
.21 .05 .01 i
.13.04 + ••
.14 .03 f * . 0
.08 .01 f >• . 0
.03 f i t . ]
i- t t . 0 3
t- t . 0 0 0

000003
031033
000003
000000
000901
000000
033000
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2T 28
10033000
) 0
) 0
) 0
) 0
3 0
3 D
) 0
) 0
3 0
3 0
~ 1 " 0
1 0
1 0
1 0
9 0
1 0
1 0
1 0
1 0
D 0
1 0
1 0
) 0
1 0
1 0
1 0
3 0
1 0
1 0
23 33 31
303000000003
0 30003
3 30003"
0 30003
0 00003
9 10003
9 30003
0 90003
"" 0 " 30003
0 30003
3 30003
" 3 •" 3 0003
9 00003
3 30003
""" D - 30003
0 00033
3 30003
0 30003
0 30003
0 30003
0 30003
3 10003
0 30003
3 30003
3 30003
0 30003
3 30003
0 10003
0 00003
0 10033
EXAMPLE OUTPUT OF MODEL EXECUTION - LONG VERSION  (58 of 61)

-------
FINAL DISTRIBUTIONS  OF  TOT4L SETTLED MATERIAL ~ OLLO rf. .-. ,•.
    EXAMPLE  OUTPUT OF MODEL  EXECUTION - LONG VERSION (59 of 61)

-------
TOTSL ACCUNJLATEO SOLID YOLJ1E ON BOTTOM CJFT/dRID S9RI,
                                                 600.00 SE30N35 AFTER DUHP
...MULTIPLY DISPLAYED
1 0000
2 0300
3 0000
ii 0000
5 0000
b 0000
7 0000
8 0000
' 9 0003
10 3000
11 0300
12 0000
13 0000
11. 0000
~15 0000
16 0000
17 0000
13 0000
19 0000
20 3000
21 0000
22 0000
23 0000
2"i 0000
25 0000
26 0000
27 0000
23 0300
29 0000
3t> 0000
00000
1
0
g
0
0
0
0
0
0
0
0
3
0
D
g
0
0
9
0
1
0
0
0
0
0
0
0
0
0
oooo:
0
0
0
o
0
0
0
0
0
g
g
0
0
0
0
3
g
g
0
g
0
i
3
0
g
3
3
0
0
1000
o
g
0
0
0
0
o
0
3
0
3
0
0
0
0
3
0
0
0
D
0
0
0
0
0
g
0
0
VUUES BY
003300000000
3 0 3
3 0 0
g o o
3 0 0
0 0 0
300
) 0 0
o g g
3 3
g g
g
g . »
g . <•
3 . »

3 0
3 0
) 0 0
300
3 3 0
o g o
3 0 0
o o g
o g o
) 0 0
3 0 0
3 0 0
.1000E-32
a 9 10 11
0000
3
0
0
3
0
0
0
.
f
-
*
f
*
f
t
•
0
0
0
0
0
0
0
0
0
00000300000
0 3 0
000
000
0 0 0
o g o


t f f
f 1- .01
f f .02
<• .01 .06
f .02 .06
» .11 .06
* I- .02
f t- .01
* t- +


0 0 0
g o o
0 3 3
o g o
0 0 0
0 0 0
0 0 0
(LEGEND.
12 11
00000003
0 )
0 3
0 0
0 )
• •


» .01
.02 .01.
.06 .li
.18 1.2
.19 1.2
.18 1.2
.06 . 1 .
.02 . 0<
t- .01



0 3
0 )
0 0
0 3
0 3
U 1
.. > i .LT. .01 . * .LT. .0001 0 = .tf. .000001)
l<» 15 IS IT 11 13 20 21 22 23 2k 25 26
0000
0
0
0
0
•


.01
.06
. 18
2.1
2.1
2.1
.13
.06
.01



0
3
0
0
0
0
00001
0
13
0
0
•


.02
.06
.19
2.1
2.2
2.1
.19
.06
.02



0
0
0
0
0
0
3000000000000033000001
30000
00000
0000-0
03030
0 0


.01.01 f f f
.06 . Oi .02 .01 f
.18 .11. .05 .02 f
2.1 1.2 .13 .05 .01
2.1 1.2 .19 .05 .02
2.1 1.2 .13 .05 .01
.18 .Ik .05 .02 f
.05 • 0» .02 .01 f
.01 . 01 ^ t ^



00000
00000
00000
03000
03000
00030
3033300003000000:
3 ) 0 3
3000
3000
3000
3000
0000

t . . 0
f t . 0
i- t . .
*• f t .
t- f t .
f f I- .
f f
f » . 0
f . . 0
0 0
0 0 0
o g g g
g o o o
oooo
oooo
oooo
3000
o o o g
oooo
100000001
3 0
0 0
i g
o g
0 C
3 0
0 0
0 0
3 g
g o
0 0
o g
0 0
D 0
g o
0 D
0 D
0 0
0 0
3 0
0 0
g o
D 0
g o
3 0
D 0
3 3
3 0
0 0
2' 28 23
30330000000
] 0 0
3 0 3
3 0 0
) 0 0
3 0 0
3 o g
1 0 0
3 0 0
3 0 0
) 0 D
3 0 ' 3
3 0 0
I 0 0
3 "" 0 " ~"0
3 0 0
3 0 0
) 0 0
3 0 0
) 0 3
3 0 0
3 0' 3
1 0 0
3 0 0
3 0 3
3 0 0
3 0 0
3 0 3
3 0 0
3 0 3
33 3t~
00000003
30003
10033
3 0003
30033
• ' 3 0033
00003
00003
'- 3 0003
30003
30003
•~ 3 0003"
3 0003
30003
"•" 30003
00003
30003
30003
30003
3 0003
30003
30003
30003
30003
30033
30003
30003
3 0003
30003
30003
     EXAMPLE  OUTPUT OF  MODEL EXECUTION - LONG VERSION (60 of  61)

-------
fOTSL THIIMESS (FT) OF >JE/( NUTERHL ON BJrfOMt
...1JLTIPLY OIS°L4Y£D VALUES BY .1000E-03
M N* 1 2 3 "i 3 5 r t 9 10 11
1
Z
3
<-
6
7
3
9
10
11
12
13
K,
15
i =
17
18
13
20
21
22
23
25
25
-27
28
29
80
OOOOOC
0000
0000
0000
0000
0000
0000
0300
0000
0000
0000
0000
0003
0000
0003
0000
0000
0000
0000
0300
OTOO
0000
0003
3003
0000
0300
0000
0000
0000
0000
jooooooo:
0 0
0 0
0 0
3 0
o a
0 ,0
a 0
0 0
0 3
0 11
0 0
3 0
0 3
0 0
0 0
0 0
0 0
0 3
o a
0 0
0 0
0 0
0 3
0 0
0 0
0 3
o o
0 3
0 0
30000033000000001
0000
0300
0 0 0 U
0030
0 3 0. 0
0000
0300
0300
000.
93..
03.+
0 0 . +
00.+
03.+
0 0 . t
0 3 . »
0 0 . t
00..
030.
0300
0000
0 3 U 0
0000
0900
0000
0 '3 0 0
0300
0300
0000
300000000331
0 3 3
0 0 3
0 0 0
0 0 3
000
0 0

+ + f
+ t .01
+ + .03
> .01 .35
+ .02 .03
+ .02 .09
+ .02 .03
+ .01 .06
+ > .33
* t .01
+ + t
. I" *
0 0
0 9 3
0 0 3
0 0 0
000
0 0 3
000
000
30001
0
0
0
0
•
+
.01
.01.
.11
.21
.28
.30
.28
.21
.11
.0
-------
                              APPENDIX B




            EXAMPLE OF MODEL EXECUTION - SIMPLIFIED VERSION







     This appendix contains a tabulation typical of that which would be




obtained from exercising the short version of the model.  A limited




range of the model's input/output options is available in this version,




in order that the program's operation may be simplified.




     Output generated for this version of the model consists of an




echo of required input data, followed by graphical data representing




the convective descent and collapse phases,  and plots of the long-term




diffusion phase.  The simulation will automatically proceed through




long term diffusion if this version of the model is selected.




     During convective descent, a graph is presented representing cloud




size, cloud depth and horizontal location of the cloud.  The output of




the collapse phase is similar, being composed of a graph of horizontal




and vertical size of the cloud, cloud depth in the water column, and




cloud concentration.




     The telephone survey mentioned in Section 3B indicated that out-




put for individual sediment components was of little use to many users.




Hence, in this version of the model, only plots of total material




characteristics are presented.  These plots are generated for the total




cloud at three time increments and detail the concentration, bottom




accumulation, thickness, top surface position, and thickness of bottom




accumulation for the total cloud at each grid square.  Upon termination




of the simulation, the total accumulation and thickness at each grid




square are presented.
                               130

-------
u>
                               VERIFICATION *U^ •• FALL RJVER SILT -- 500 PCM

                          / P v :. • • /

                          GRID -SPACING (3X) =      <*.0000)


                          f': .''•••             ---4MBIENT CONDITIONS---
                               DEPTH (FT)         0.          14.000
                         AMBIENT
                         DENSITY  (GM/CC)    .     l.COO       1.000
                          INTERPOLATED DEPTH AT  3UMP ; OORO I NATES, H s    I».OOD     FT.
                          TWO  VELOCITY  PROFILES SPECIFIED IN X AND Z DIRECTIONS FOR --QUICK LOOKS--
                          OEPTH  ASSUMED iONSTAST ANO l/ELO^ITIES CONSIDERED STEADY IN TIME
                          VELOCITY  PROFILE  PARAMETERS FOLL.OH...
                          OU1  i     1.00     DU2 =     2.00     UU1 =    0.       UU2 =    0.
                          OH1  =     1.00     D(<2 =     2.CO     HW1 =    0.       HH2 =..  0.
                          TIME  PARAMETERS  FOLLOW...
                          TIME  OF  DUMP =       0.00  SECONDS AFTER START OF TIDAL CYCLE
                          DURATION OF  SIMULATION =     => 0 J . 0 0 SECONDS 4FTER DUMP
                          LONG  TERM TIME STEP  (DTD  =      15.00 SECONDS


                          DISCHARGE PARAMETERS...
                          INITIAL  RADIUS OF DLDUD, RB =    ,66&800ii
                          INITIAL  DEPTH OF CLOUD CENTROIO,  OREL =    .3500
                          INITIAL  CLOUD V ELOS I T I -. S ., . ; U (1)  =    0.          CV{1)  =    0.

                          SULK  PARAMETERS...
                          DENSITY, ROO =    1.U30CO
                          AGGREGATE VOIDS  RATID, 3VOI3 =    .7800
                          LI3UID LIMIT =    llo.J
                          AVERAGE  SPECIFIC GRAJITY =     2.5bO


                          THERE  ARE  3 SOLIDS,   'ARAMETERS  FOLLOW	

                          DESCRIPTION   OENSITY(GIXCC)  CO.MCEN TRA TION( CUFT/CUFTJ   FALL VELOCI TY ( F T/SE C )    VOIDS RATIO
                           Ql              Z.5JO                 .a^lSE-Ol                  .3253E-01
                           Q2              Z.SbO                 .2i»15E-31                  .1330E-01        .7800
                           QJ              E.5SO                 .2"tl5E-Ol                  .5aOOE-03        .7800
                           FLUID           1.003                 .9275                      t.
                           EXAMPLE OUTPUT OF  MODEL EXECUTION -  SIMPLIFIED VERSION  (1 of  24)

-------
                                   PLOT OF CLOUD'PATH AND RADIJS A3 SEEN FROM POINT  OF  RELEASE


                                   INDEPENDENT VA*IA3L;'I3 TIM;  
-------
           0.0                  .2                  .<<                  .6                  -3                 1*0
            I	1	1	1	j	1	1	z	x	x	1	1	j	1	1	1	1	1	-I	I	I
            IZ      Y                                  B
 - •-   -      iz       YYY                               BBB
      ." ' -  IZ  •. •;:•   '  ' YY ,Y                             BB
            IZ               1 Y y                          D 83
            iz                     YY 1                         933
      fi .. -iz   . i    • : ••     -          YYY                      BBS
            iz                               y y                       99
            iz                                   Y YY                    BSB
            IZ                                        Y Yy                  BE33
 1.0000      It —I	1	1	1	1	1	1	1	I-ft-l	1	1	I-333I	1	1	1	1	1	1
      *<•••  IZ                                                  V V              338
            IZ                                                      Y YY             BBB
      ••-.-.  -'IZ. r:.       <•                                                YY             8
	   i:    iz                                                             Y yy          BBB
            iz                                                                  yyy         BBS
            IZ                                                                      YYY       3BB
            IZ                                                                          YYY       3i3B
            IZ                                                                             Y YY    633
            IZ                                                                                 YY Y    3B
"3.0000      12 —-I	I	1	1	I	1	1	1	1	1 —--I	1	1	1	1	1	I-VV-I-BB-I —-I
            IZ    .  • •                                                                               YYY BSB
            IZ           ?•                                                                             YYY 33
            IZ                                                                                             YYBB
            IZ                                                                                                Y8
n.":.-:.-.."   ^Y
            I
            I
            I
	   I
 3.0000      I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 —-I	1	1 —— I	1
            I
            j
            I
            I
	 -  -     I
            I
            I
	 '     I
            I
 tf.OCOO      I — I	1	1	1	I	1	1	I	1	1	1	1	1	1	1	1	1	1	1—-I
            I
            I
            I
 	 _. .-   J
            I
            I
	    J
            I
            I
-5.0000      I—"I	1-"-I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1—-I	1
        EXAMPLE OUTPUT  OF MODEL EXECUTION -  SIMPLIFIED VERSION  (3 of  24)

-------
         PLOT OF COLLAPSiNG''Cl.OJD CHARACTERISTICS
         INDEPENDENT VARIABLE 13 TIM£ OV£R RANGE
           0.
         DEPENDENT VARIABLEt 4L. NORMALIZED FOR PLOTTING ON UNIT AXIS
         SYMBOL             A
         MAX PLOTTED     1,571*1
         MIN PLOTTED     0.
         REMARKS        VERT SIZE
    8             C             Y
 8.6363        .9275ft        3.9193
 o.             a.             o.
HOR SIZE    CONCENTRATION   DEPTH
             OF INDiVARi i - ' •-
       15.0000.00           0.
     .3000COOO
MAX,MIN,INC,  OF OEP.  VAR.
       l.COQOCOO           0.
     .10000000E-C1
 EXAMPLE OUTPUT OF MODEL EXECUTION  -  SIMPLIFIED  VERSION  (4  of 24)

-------
Ul
I—
I
I
I
I
I
I
I
I
I
— - "I
I
I
I
I
I
I
I
— I
I
I
— I
I
I
I
I
i
I
I
I
I
I
	 -- - I
IY
	 I
I
I
I
I
I
I
I
YY Y 33 AA A
Y BbYB Y C A
6C1 CY Y YC
C C COB Y Y Y
C C C B3b
CCC Odo
c i>a
CC BbB
C OB
C A A
C A
C A A
C A
C A A
C A
C AA
C AA
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A
C A


._T 	 . T 	 I — --I 	 T 	 r 	 T 	 T 	 T 	 I-
...... I----I----I----i----i----i----i----i---- I----
C C
AC ;
AAA
AAA
Y Y Y AAA
Y Y Y AAA
Y If A A
Y Y r A A
4 A Y Y
i 8 YY
3 Y
33 Y
3 Y
B B Y
3 Y
83 Y
88 Y
B
8
88
B
33
B
88
B
3
6
B
B
8


	 T 	 r 	 T 	 T 	 T 	 T 	 T 	 T 	 T 	 T
                            COMPUTATIONS FOR Ql        TERMINATED AT      Su.iC  j£G. ELAPStD T I Me . . . MAT EK IA L  SETTLED TO iSOTTOM









                            COMPUTATIONS FOR. Q2        TERMINATED AT      8 J . (. L,  SLO. EIAPS<_0 TI IE . . . MAT LMAL  SETTLED TO BOTTOM
                             EXAMPLE OUTPUT  OF MODEL  EXECUTION  - SIMPLIFIED VERSION (5  of 24)

-------
CONCENTRATIONS  OF  TOTAL
(VOLUME  RATIO)  IN  THE CLOUD
150.00  SECONDS AFTER
..MULTIPLY DISPLAYED VALUES 3Y .1GCDE-C3
1 N = 1 2 3 - - 1» • - - 5 - • & - • f 8 9 10
1 0000000000000000000000000003000000003000
2
3
*
5
6
7
8
9
0000
0000
0000
0000
0000
0000
0000
0000
0
*
«•
.01
4-
4-
0
0
* *
» .03
.03 .31
.15 1.2
.03 .31
-+ .03
4- 4-
0
.01 * f
.13 .03 t
1.2 .31 .03
•<».2 1.2-.15
1.2 .31 .03
.15 .03 f
.01 » ••
» . )
0
4
4
.01
4-
4
0
0
00000
03003
.0000
40000
.0000
00000
00000
00000
                   (LLGtNO... «• = «LT. • 0 1
                                                                             LT. .0001
                                                             U  =  .IT
                                                                                                   000001)
"10"0000000000000000000000000003000000000000
              EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION  (6  of  24)

-------
BOTTOM ACCUMULATION,^? TOTAL
(CJFT/3RIO SQUARE)
150.00 SEGtMDS AFTER DUMP
..MULTIPLY DISPLAYED V4LUE5 3Y .1000E-03
1 N= 1 2 3 i» 5 6 7 3 9 10
1 0000000000000000000000000000000000003000
2
3
-<.

-------
LO
00
           POSITION-OP 'TOP' OF'TOTAL1 '"'-••   C-OUO'(FE£r  BELOH  SURFACE)     -150.00 SECONDS AFTER 3U1P
                     V  DISPLAYED  V4LJE3  3r    1.000          U£G£NO... * = «LT. .31   . = .LT. .0001   0 = .LT.  .COOQUl)
           ~ 1  0000000000000000000000030303000000003000

             2  0000    0  3.2  3.2  3.2  3.2  3.2    0    00000

             3  0003  3.2  3.2  3.2  3.2  3.2  3.1  3.2    UOOOO

             V0003  3.2  3.2  3.2  3.2  3.2  3.2  3.2  3.20000

             5  0000  3.2  3.2  3.2  3.2  3.2  3.2  3.2  3.20000

             6  0003  3.2  3.2  3.2  3.2  3.2  3.2  3.2  3.23000

            "t  0003  3.2  3.2  3,2  3.2  3.2  3.J  3.2    03000

             8  0003    0  3.2  3.2  3.2  3.2  3.Z    0    03000

             9  0000    0    0  3.2  Z.I  3.2    3    0    03000

           iO  0000000000000000000000030303000000000000
                         EXAMPLE  OUTPUT OF MODEL EXECUTION  -  SIMPLIFIED VERSION (8 of  24)

-------
OJ
          THICKNESS OF TOTAL i <,:  .CLOJO <-EET)      150.00  SECONDS  AFTER DUMP
          ...MULTIPLY  DISPLAYED VALUES  BY    i.OOfl          ILEGENO...  *  « .LT.  .01    .  i  ,LT.  .0001    0  «  .LT
           MNa123^5ar    89   ID

         ~'~ 1 0000000000000000000000000303000000300000

            2 0003    0 .72  .72  .72  .72  .72    D   00000

            3 0003  .72 .72  .72  .72  .72  .71  .72   00000

         — i» 0003  .72 .72  .72  .72  .72  .72  .72  .723000

            5 0003  .72 .72  .72  .72  .72  .7J  .72  .720000

            6 0000  .72 .72  .72  .72  .72  .72  .72  .723000

         — 7 0003  .72 .fZ  .72  .72  .72  .72  .72   00003

            fl 0000    0 .7Z  .7Z  .11  .72  .72   0   03003

            9 0000    0   0  .72  .72  .72   3   0   03000

         ~ 10 00000000000000000000000003OD000000303003
                        EXAMPLE  OUTPUT OF MODEL  EXECUTION -  SIMPLIFIED VERSION (9 of 24)

-------
THICKNESS (FTJ  OF-TOTAL
ACCUMULATED  ON  BOTTOM,
150.00  SECONDS  AFTER DUMP
... MULTIPLY DISPLAYED VALUES 3Y
MN*123i»5&?
1
2
3
— -k
5
6
7
8
9
«lCOJ£-0 .01
•+ .01 .75
- f .08 1.7
. + .01 .75
* .01
0 . . *
0 0 • .
. . +
.03
1.7
8.5
1.7
.08
f
f
,» .
.01 '»
.75 .CL
1.7 .0)
.75 .01
.01 t
f .
3
C 03000
03000
* .0000
* *0000
* .0000
. 00000
0 00000
0 03000
    0000000000000000000000000003000000000000
                   (LEGEND...
                                                               LT«  .01
                                                >LT.  .0001
                                                                                         0 = .LT. .OCOiOl)
             EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION  (10  of 24)

-------
CONCENTRATIONS  OF  TOTAL
(V3LUHE .RATIOJ  IN THE CLOUD
300.03  SECONDS  AFTER  JUMP
..MULTIPLY DISPLAYED VALUES 3Y .100CE-03
1 N= 1 2 3  .02
.1^.05 f
.02 ^ *
*• t .
.0000
40000
fOOOO
43000
43003
43003
.0000
03000
"10  0000000000000000000000030303000000303003
                                               (LEGiNO...  f  «  .LT.  .01
                                                 LT.  .0001
                                  •LT.  .000031)
              EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION (11 of  24)

-------
BOTTOM ACCUMULATION OF- TOTAL '     (CJFT/JRIO
"..".MULTIPLY DISPLAYED  VALUES 3Y   .1JDOE-02
 MN»123<45&7   89  lu

  1 0000000000000000000000000003000000300000
  2  0000    .    *    4    +    4-    4

  3  0000    »  •  4-  .01  .03  .01    f

  <»  OOOD  : "*  .Cl  .12  .29  .12  .CiL

  5  0003    4-  .03  .29  1.1  .2?  .0?

  6  0000  •  *  .01  .12  .29  .12  .CL

  7  0000    *  •  +  .01  «C3  ,01  -  *•

  8  0000    ^    *  •  +  •  »    *    »

  9  oooo    e    •    *    *    *    i
                                       00000

                                       .0000

                                       4-0000

                                       ••0000

                                       4-0000

                                       .0000

                                       0:000

                                       00000
         300.00-SS83MOS 'AFTER  DUMP
(LEO-NO...  4-  ±  ,LTt  .Oi    .  -  .LT.
                                                                                           0  =  .LT.  .OOOiiOl)
"lO'OOOOOOOOOOOOOOOOOOOOOOODODOJOOOOD0000000
              EXAMPLE OUTPUT OF  MODEL EXECUTION - SIMPLIFIED VERSION  (12 of 24)

-------
 POSITION  OF.TOP'OF.  TOTAL       C.OUD (FEET  DELOU SURFACE)      300.03  SECONDS AFTER DUtfP
 ...MULTIPLY  OISPLArED VALUES  BY   1.003          JD...  + = .LT.  .31   . * .LT. .QOul   D * ,LT. .GGOOiJi)
  MNal23<»5&r    89  10

 " 1  0000000000000000000000030303000030303000

   2  0000  3.3 3.3  3.3  3.3  3.3  3.3  3.3  3.30000

   3  0000  3.3 3.3  3.3  3.3  3.3  3.!  3.3  3.30000

""""«»  OOOD  3.3 3.3  3.3  3.3  3.3  3.5  3.3  3.33000

   5  0003  3.3 3.3  3.3  3.3  3.3  3.3  3.3  3.33000

   6  0003  3.3 3.3  3.3  3.3  3.3  3.3  3.3  3.33000

~ 7  0000  3.3 3.3  3.3  3.3  3.3  3.3  3.3  3.33000

   8  0003  3.3 3.3  3.3  3.3  3.3  3.3  3.3  3.30000

   9  0003  3.3 3.3  3.3  3.1  3.3  3.3  3.3   03000

"10  00000000000000000000OOOD0003000000303000
               EXAMPLE OUTPUT OF  MODEL EXECUTION - SIMPLIFIED VERSION  (13 of 24)

-------
	THICKNESS OF TOTAL > -!>.  CLOJO (-EET)i'    300.00  SECOMOS AFTER DUMP
  ...MULTIPLr DISPLAYED V4LJE3 3Y   l.OOC          ILEGENP... * = .LT. .01   . = .LT. .0001   0 = .IT. .000001)
   MN=ia3"»5678913

    1 000000000000000000000003000300 COO 0003000

    2 0000 .65 ^65 .65 .65 .65 .63  ,65  .550000

    3 0003 .65 .65 .65 .65 .65 .65  .65  .650000

    1» 0003 .65 .65 .65 .65 .65 .65  .65  .553000

    5 0000 .65 .65 .65 .65 .65 .65  .65  .653000

    6 0000 .65 .65 .65 .65 .65 .63  .65  .550000

"~ 7 0000 .65 .65 .65 .65 .65 .63  .65  .550000

    9 0000 .65 .65 .65 .65 .55 .63  .65  .550000

    9 0000 .65 .65 .65 .65 .65 .63  .65    00000

	10 0000000000000000000000000000000000300000
                 EXAMPLE  OUTPUT OF MODEL  EXECUTION -  SIMPLIFIED VERSION (14 of 24)

-------
THICKNESS (FTI !OP'TOTAL
,ACCUMULATED ON  BOTTOM,
                                                        300.00 SECONDS AFTE*  3UMP
 ...MULTIPLY  DISPLAYED  VALUES 3Y    .1003E-03
  MN*i23<»5are9io

   1  OOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOO

   2  0003  .«, +  .+   t  . + . I-

   3  0003  • +  • +  .01 .Qi»  .01 ' >

"~k  0000   *  .01  .13 .32  .13 .01

   5  0003  • *•  .Ci*  .32 1.2  .32 .0'+

   6  0003  • +  .01  .13 .32  .13 .01

— 7  0003  . *  . +  .01 .0*  .01 • »

   8  0000  ,..,. +  ,  + ,+   t   »•

   9  0000  . .0  ...*••*.*•   .

~ 10  0000000000000000000000000000000000000000
4
+
+
*
+
*
•
0
03000
.3000
+ 3000
+ 0000
+ 0000
.3000
00000
00000
(LECiNO...  «•  «  .LT.  .01
                                                                            * .IT. .3001
                                                                   .LT.  .DOJCOif
                 EXAMPLE OUTPUT OF  MODEL EXECUTION  - SIMPLIFIED VERSION  (15  of  24)

-------
 CONCENTRATIONS  OF  TOTAL       *  0000  .05  .21 .55 .83  .55  .21  .05 ,010000

   5  0003  .08  .32 .63 1.2  .83  .3Z  .u8 .C13000

   6  0003  .OS  .21 .55 .83  .55  .21  .05 .013000

	7  0000  .02  .58 .21 .32  .21  .09  .02   +3000

   8  0000   *  .C2 .05 ,C8  .05  .02   *   +0000

   9  0000   »    + .01 .Cl  .01   »   +   +3000

~~10  0000000000000000000000000303000000303000
                EXAMPLE OUTPUT  OF MODEL EXECUTION - SIMPLIFIED VERSION  (16  of 24)

-------
BOTTOM ACCUMULATION OF .TOTAL
...MULTIPLY DISPLAYED VALUES  3Y
 MN=123
1.2
.40
.07
.01
. f
«• . f +
.03 > »
.16 .05 f
.43 .0^ .01
.19 .,0) +
.03 «• *
f f »
. «• > 4
.0000
••3000
oooo
0000
+ 0000
+ 0000
.3003
.3000
                                                                                          0  *  .LT.  .OOOuOi)
~10  0000000000000000000000000003000003300000
                EXAMPLE OUTPUT  OF MODEL EXECUTION - SIMPLIFIED VERSION (17 of  24)

-------
oo
       __ POSITION  OF: TOP OF TOTAL.:    C.OUQ..IFEET BELOW  SURFACE)      1*50.03  SECONDS AFTER DUMP
         ...MULTIPLE  DISPLAYED VALUES BY   i.36!          (LEGcSO...  «•  =  «LTe  .01   • = «LT. .0001   C  *  «LT
          MN*123455f   89  10

       ~  i OOOOOOOOOOOOOOOOOOOOOOOOOOODOOCOOOOOOOOO

       __  Z 0000  3.i»  3.
-------
 THICKNESS OF  TOTAL       CLOJO  ("EET)     i»50.00 SECONDS AFTER DUMP
 ...MULTIPLY  DISPLAYED  VALUES 3Y    1.903         (LtGiNd... f = .LT. .01   . * .LT. .0001   u * .LT, .OCJGQ1!
  HN*123<»5&7891C

   1 0000000000000000000000000003000000303000

   2 0000  .57  .57  .57  .57 .57 .57  .57  .570000

   3 0000  .57  .57  .57  .57 .57 .5T  .57  .573000

' •"• i» 0000  .57  .57  .57  .57 .57 .57  .57  .570000

   5 0003  .57  .57  .57  .57 .57 .57  .57  .573000

   6 0000  .57  .57  .57  .57 .57 .57  .57  .573000

—7 0000  .57  .57  .57  .57 .57 .57  .57  .573000

   8 0003  .57  .57  .57  .57 .57 .57  .57  .373000

   9 0000  .57  .57  ,57  .57 .57 .57  .57  .573000

~10 0000000000000000000000000303000000003000
                EXAMPLE  OUTPUT OF MODEL  EXECUTION - SIMPLIFIED VERSION  (19  of 24)

-------
  THICKNESS  (FT)  OF TOTAL '< ;-  ACIUMULUEO ON BOTTOM,      <»50.00  SECONDS  AFTE3  DUMP
~~7;.MULTIPLY  DISPLAYED V4LU£5  BY   .10COE-03     (LtO£ND...  +  *  .LT.  .31   . *  .LT.  .0001    0
  MN»123i»56?8910

    1 00000000000000000000OOOOOOOD000000003000

_   2 0000  . +  ,  +  .+  .01   +  .  f    +    .3000

    3 0000  . +  .01  .03  .09 .03  .01    +    +3000

—~<« 0003  - +  .03  .21  .«•!» .31  .03    +    +3000

_  5 0000  .01  .08  .<•<»  l.l» .<*'4  .03  .01    +3000

    6 0000  . ';•*  .03  .21  .k'4 .21  .0!  •  +    +3000

	T "OOOD ""+'  .01  .03  .03 .03  .01    +    +3000

    8 0000  .»,+-+  .01   +    »    +    .3000

    9 oooo  .';<•.  +  ..+  -+   +  •  *    .    ,0000

	10 0000000000000000000000000003000030300000
                                                                               .LT. .GCOQOl)
EXAMPLE OUTPUT OF  MODEL EXECUTION - SIMPLIFIED VERSION (20 of 24)

-------
FINAL DISTRIBUTIONS OF TOTA. SETTLED  MATERIAL FOLLOW	
                 EXAMPLE OUTPUT  OF MODEL EXECUTION - SIMPLIFIED  VERSION (21 of 24)

-------
TOTAL ACCUMULATED SOLID VOLJMt  3N  BOTTOM   .LT. .Ci
                                                                                  .0001
                                                                                               LT.
               EXAMPLE OUTPUT OF MODEL EXECUTION  -  SIMPLIFIED VERSION (22 of 24)

-------
TOTAL THICKNESS (FT)  OF NEW  MATERIAL  ON  30TTOM,

...MULTIPLY DISPLAYED VALUES 3Y    .10GOE-C2
 MN=123<*5&r8913
                                                              613.00 SiSONOS 4?TER OUM'

                                                            (LEG£NO.->. + = .LT. .01   . = .LT. .OGG1
.LT. .CudOOil
              1 0000000000000000000000000003000000303000
z
3
*
5
6
7
9
0003
0000
OOOD
0003
0000
0000
A A Art
OOOQ
0000
+ +
4- +
+ .01
f +
+ +
. +
+
.30
.37
.30
+
+
.01
.37
1.1
.37
.01
f
» t
.30 f
.37 .01
.33 t
+ *
+ *
»• +3003
+ +0000
f +3000
+ +0000
+ +0000
.0000
Ln
CO
             "ID 0000000000000000000000000303000000000000
                          EXAMPLE OUTPUT  OF  MODEL EXECUTION - SIMPLIFIED VERSION (23 of  24)

-------
RUN.COMPLETEO.oCPU;TIME *:..IH.M9 SE
          EXAMPLE OUTPUT OF MODEL EXECUTION - SIMPLIFIED VERSION  (24  of 24)

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
  REPORT NO.
  EPA-600/3-78-089
                                                            3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
       CALIBRATION OF A PREDICTIVE MODEL FOR
     INSTANTANEOUSLY DISCHARGED  DREDGED MATERIAL
             5. REPORT DATE
              September 1978
             6. PERFORMING ORGANIZATION CODE
 . AUTHOR(S)

    Gary W.  Bowers and Martin  K.  Goldenblatt
                                                            8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS

    JBF  Scientific Corporation
    Wilmington, Massachusetts   01887
                                                            10. PROGRAM ELEMENT ,JO.
                    1BA608
             11. CONTRACT/GRANT NO.

                    R-804994
12. SPONSORING AGENCY NAME AND ADDRESS
    Corvallis Environmental  Research Laboratory
    Office  of Research and  Development
    U.S.  Environmental Protection  Agency
    rnvx/allic  Qyonnn
                                                            13. TYPE OF REPORT AND PERIOD COVERED
                                                             Final - Oct. 1976  -  Dec.  1977
             14. SPONSORING AGENCY CODE
                    EPA/600/02
15. SUPPLE'MENTARY NOTE
16. ABSTRACT
    This  report describes modifications to a computer model  originally developed  by
    R.C.Y.  Koh and Y.C. Chang,  for predicting the physical  fate of dredged material
    instantaneously released  into a water column.   Changes  to the simulation  include
    the calibration and verification of the program's coefficients based upon  experi-
    mental  laboratory data  as well as simplification of  the model's use.  Inputs  to
    the model  include initial material  characteristics and  dynamics.  Outputs  include
    material  concentration  and  position while in the water  column and material mound
    height  and concentration  after bottom impact.   Included in the report are  a des-
    cription  of the model's structure,  the changes  made  to  the program, information
    on field  sampling and laboratory procedures needed to develop input values, and
    examples  of model operation.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                               b.lDENTIFIERS/OPEN ENDED TERMS
                           c. cos AT I Field/Group
    Dredged material disposal
    Waste  Disposal
    Mathematical models
       Dredge  Spoil
13-B
18. DISTRIBUTION STATEMENT


    Unlimited
19. SECURITY CLASS (This Report)
    Unclassified
                                                                          21. NO. OF PAGES
20. SECURITY CLASS (This page)

    Unclassified
                           22. PRICE
 EPA Form 2220-1 (Rev. 4-77)
              «U.S. GOVERNMENT PRINTING OFFICE: 1978—798-079/4
                                             155

-------