EPA-660/3-75-037
JUNE 1975
                                   Ecological  Research Series
Improving the Statistical  Reliability of
Stream  Heat Assimilation  Prediction

SB.
                                                   01
                                                   O
                                    National Environmental Research Center
                                     Office of Research and Development
                                     U.S. Environmental Protection Agency
                                            Corvallis, Oregon 97330

-------
                      RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development,
U.S. Environmental Protection Agency, have been grouped into
five series.  These five broad categories were established to
facilitate further development and application of environmental
technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in
related fields.  The five series are:

        1.   Environmental Health Effects Research
        2.   Environmental Protection Technology
        3.   Ecological Research
        4.   Environmental Monitoring
        5.   Socioeconomic Environmental Studies

This report has been assigned to the ECOLOGICAL RESEARCH STUDIES
series.  This series describes research on the effects of pollution
on humans, plant and animal species, and materials.  Problems are
assessed for their long- and short-term influences.  Investigations
include formation, transport, and pathway studies to determine the
fate of pollutants and their effects.  This work provides the technical
basis for setting standards to minimize undesirable changes in living
organisms in the aquatic, terrestrial and atmospheric environments.

                       EPA REVIEW NOTICE

This report has been reviewed by the Office of Research and
Development, EPA, and approved for publication.  Approval  does
not signify that the contents necessarily reflect the views and
policies of the Environmental Protection Agency, nor does  mention
of trade names or commercial products constitute endorsement or
recommendation for use.

-------
                                   EPA-660/3-75-037
                                   JUNE 1975
     IMPROVING THE STATISTICAL RELIABILITY OF

        STREAM HEAT ASSIMILATION PREDICTION
                         by

                  Richard W.  McLay
                 Mahendra S.  Hundal
                 Kathleen R.  Lamborn
               Contract      68-03-0439
              Program Element    1BA032
              ROAP/Task No.    21  AJH/35

                   Project  Officer

                 Bruce A. Tichenor
Pacific Northwest Environmental  Research Laboratory
     National Environmental Research Center
               Corvallis, Oregon  97330
       NATIONAL ENVIRONMENTAL RESEARCH CENTER
          OFFICE OF RESEARCH  AND DEVELOPMENT
         U.S.  ENVIRONMENTAL PROTECTION AGENCY
               CORVALLIS,  OREGON  97330

             For sale by the Superintendent of Documents, U.S. Government
                  Printing Office, Washington, D.C. 20402

-------
                          ABSTRACT

In response to an increased interest in water quality
by the public, a large effort has been mounted to develop
mathematical models for predicting heat assimilation in
bodies of water.  The accuracy of these models has recently
come under scrutiny due to the need for temperature
predictions within 1 °C of the ambient.  This work is
an evaluation of existing, one-dimensional stream tem-
perature prediction techniques for accuracy and precision.
The approach is through error estimates on a general
model that encompasses all of the models presently used.
A sensitivity analysis of this general model is used
in conjunction with statistical methods to determine the
solution errors.  Data taken in 1973 at the Vernon, Vermont
nuclear plant are used as a data base.  These data are
used in conjunction with Burlington, Vermont airport
weather station data to 1) gain insight into the orders-
of-magnitude of the various errors and 2) carry out a
detailed data analysis to establish the probabilities
of meeting given error requirements.  This report contains
the model descriptions for the general stream model, the
sensitivity analysis model, and the data analysis models;
a description of the Vernon, Vermont site; the data for
four problems from the Vernon nuclear plant; an order-
of-magnitude error study; and the results of the four data
analyses.  The four appendices contain 1) a description
of the input FORMAT specifications, 2) the input data
for the four problems, 3) program listings, and 4)  the
theory of the sensitivity analysis.

This report was submitted in fulfillment of Contract
68-03-0439 by Richard W. McLay, P.E., Essex Junction,
Vermont, under the partial sponsorship of the Environmental
Protection Agency. Work was completed as of May 1975.

-------
                           CONTENTS




Section                                                  Page




  I  CONCLUSIONS                                          1




 II  RECOMMENDATIONS                                      2




III  INTRODUCTION




         PURPOSE                                          3




         SCOPE                                            3




 IV  MODEL  DESCRIPTIONS




         THE GENERAL  STREAM MODEL                        5




         THE SENSITIVITY ANALYSIS MODEL                  7




         THE DATA ANALYSIS MODELS                        8




  V  STUDY  AREA AND METHODOLOGY




         THE VERNON NUCLEAR PLANT                       ""*




         DATA BASE DESCRIPTION                          14




         EXAMPLE PROBLEMS                               17




 VI  DISCUSSION OF RESULTS                              18




         ORDER OF MAGNITUDE ERROR ANALYSIS               18




         RESULTS OF DATA ANALYSES                       20




VII  REFERENCES                                          25




VIII SYMBOLS AND VARIABLE NAMES                         26




 IX  APPENDICES




     A.  FORMAT SPECIFICATIONS                          28




     B.  INPUT DATA                                      34




     C.  PROGRAM LISTINGS                               77




     D.  THEORY OF THE  SENSITIVITY ANALYSIS            150
                            iii

-------
                           FIGURES
No.                                                   PagjS
 1  Control Volume for Stream Model                    6
 2  Six Primary Meteorological and Site Variables     10
 3  Model Using Site Water Temperature Data           11
 U  Model Using Site and Station 7 Temperature Data   12
 5  The Vernon Nuclear Plant-Temperature Sampling
                                      Stations        15
                              IV

-------
                            TABLES
No.                                                    Page

 1  Probabilities of Meeting Given Error Requirements    21
   by an Observer at the Vernon Site Averaging One
   Day and Predicting One Day Ahead at a Distance of
   25,000 Feet(7620 Meters) Downstream.

 2  Probabilities of Meeting Given Error Requirements    22
   by an Observer at the Vernon Site Averaging Two
   Days and Predicting One Day Ahead at a Distance of
   25,000 Feet(7620 Meters) Downstream.

 3  Probabilities of Meeting Given Error Requirements
   by an Observer at Station 7 One Day Ahead at the
   Vernon Site(Same Position as for Table 2).           22

-------
                          SECTION I

                         CONCLUSIONS

1.   One-dimensional stream temperature models are effective
    for predicting average temperatures over a short period
    of time.

2.   Predictions made using site data averaged over a day
    will be within 2 °F (1.11 °C)  of the actual average
    temperature of the following day over 90 percent of
    the time.

3.   The water temperature at the Vernon site is the most
    important factor in the analysis.  The Vernon study
    indicates that meteorological factors affect the
    Connecticut river predictions results very little.
    Travel time thus appears to be a major factor since a
    knowledge of the initial temperature is essential to
    accurate predictions.

4.   Seasonal effects on prediction accuracy are minor.

-------
                          SECTION II

                       RECOMMENDATIONS

The results of this study indicate that, in this case,
water temperature at the site is the most important
variable in the prediction of the downstream Connecticut
river temperature.  In order to minimize the errors of
prediction, it is recommended that temperatures be
monitored upstream of the site and predictions be made
over as short a period of time as possible, i.e., average
the previous day's data to predict the following day's
average temperature.  This is motivated   by the need to
know the initial temperature in the analysis for the entire
travel time of water through that portion of the stream
being simulated.

These predictions are useful to a plant operator making
day-to-day decisions as opposed to a planner predicting
conditions to occur several years in the future using an
historical weather data base.

This work indicates that for the Vernon plant such pre-
dictions will have error within 2 °F (1.11 °C)  90 percent
of the time.  Smaller streams may have greater effects from
meteorological parameters, which were not found from the
Vernon problems.  It is also recommended that similar
sensitivity analyses be performed for two-dimensional models
used for predicting temperatures in lakes, estuaries, and
cooling ponds.

-------
                      SECTION III

                     INTRODUCTION

PURPOSE

Stream temperature is an important factor in water quality.
The temperature of the stream directly controls the types
and amounts of plant and animal life native to it.  In
recent years there has been an increased interest in
water quality by the public.  In response to this interest
a very large effort has been mounted to develop mathe-
matical models for predicting heat assimilation in
bodies of water.

Models have been developed for predicting temperatures
in streams, cooling ponds, reservoirs, estuaries, and
large lakes (See, for example, the review by Policastro
and Tokar  [1972]).  Usually, a stream model assumes a
one-dimensional problem with uniform mixing and with
various modes of heat transport at the air-water inter-
face simulated by semi-emperical expressions.  In addition,
the problem is generally treated as one in a steady-state
condition, i.e., the formulation involves a relationship
between the flow rate and the position downstream from
an initial point,  x , allowing the independent variable
to be chosen as the variable  x  while the time variable
becomes implicit to the problem.  While the development
of stream models is straight-forward, their use is
subject to a great deal of interpretation and judgement
(See, for example, Asbury [1970]).

The purpose of this study is to determine the effects
of variations in initial temperature and meteorological
data on results of mathematical models for predicting
stream temperatures.

SCOPE

Three principal problems inherent in model use to predict
heat assimulation are:

     1.  The extrapolation of weather station meteoro-
         logical data to the site under study is subject
         to considerable variance.

-------
     2.  There is usually a lack of data from which to
         compute the evaporation and other heat transfer
         rates for a stream.

     3.  The temporal variations of the data cause large
         variations in short-term predictions.

In addition to these, we find that the spatial and temporal
variations of temperature in the environment without the
addition of a heat load may be greater than either the
requirements set by a regulatory agency or the errors in-
herent in the model, i.e.,  there is a question as to what
the ambient values really are.  Local variations in topog-
raphy and/or tree cover can shade the stream and cause
effective incoming and outgoing radiation areas to be
reduced.  The accuracy of instruments used to measure
the various physical quantities is always subject to review.
Ground water advection can be an influential transport
process, but it is almost impossible to measure.  Finally,
the large amount of data taken for any site provides a
good probability for human error in recording or trans-
position.

This study considered the three principal problems listed
above by using a sensitivity analysis of a general, one-
dimensional stream model.  This was combined with data
analysis techniques to compute the probabilities of meeting
given error requirements.  Data from the Vernon, Vermont
nuclear plant and the Burlington, Vermont weather station
were used to form a data base, from which four example
problems were obtained and evaluated.

-------
                      SECTION IV

                  MODEL DESCRIPTIONS

THE GENERAL STREAM MODEL

The stream model used for the study is one-dimensional with
the independent variable being the distance downstream, x .
This model is simple enough that a general version of it
can be considered that encompasses all one-dimensional
models now in existence.  A discussion of this concept
is given in Appendix D.

All one-dimensional models take a basic form as shown
in Figure 1 and are described by the equation:

uA dT
~T dx     [QRad ~ QRef ~ QBack ~ QEvap ~ QConv + QMis]

                                                        (1)
where the variables are as defined in Section VIII, Symbols
and Variable Names, and the water is fully mixed at each
cross section.  Any departure from the form of equation (1)
due to direct integration, approximations to the heat
fluxes  Q , etc., can be shown by a Taylor's expansion to
be proportional to some power of the mesh size.  (See
Appendix D)-  Put simply, as the number of stations or
data points in the models are increased they will all
produce results converging toward the same solution, pro-
vided that total heat fluxes and the heat transfer coeffi-
cients are the same.  The fundamental heat flux expressions
used in this work are taken from Laevastu [1960], where the
processes are linearized in  T .  Not all authors use
linearized expressions  (See for example Jaske  [1971]).
However, numerical experience shows that if the temperature
variations are small, i.e., small with respect to absolute
temperatures, and of course they always will be, it is
justified to linearize the expressions, including the
fourth power terms in the back radiation fluxes.

The concept of using a simple, general model was considered
essential in this work, since it reduced the study from
a huge data handling problem for many models to the study
of a single, general model whose error analysis applies
equally well to all models in question, provided a con-
vergent mesh size (station length) is specified.

The expressions for the heat fluxes from Laevastu  [1960]
are:

-------
                                     UA
Figure 1.  Control voluma for stream model

-------
      Q^, .   = 1.9 sin a  (1 - 0.0006 C3) (0.061)
       Solar

  Q          = 1 Q      (0.061)   ,
   Reflected   _  Solar
               a
             =  (1.0 - 0.765 CM14.38 - 0.09  (   (T - 32)
                      (0.35)(1.0 + 9.8 x 10~3 W2)(ew - e )   ,
n            =  	
 Evaporation    240

 Q       .    =  39.0(T - Ta)(0.26 + 0.077 W,) i (0.061)
  Convection              a                2  9
                                                         (2)
The definitions are given in Section VIII.  It should be
noted here that the coefficients from these terms are
largely based on empirical data and in many cases will vary
considerably.  However, as is seen in Section VI, the
sensitivity analysis reveals little change in temperature
decay rates with considerable change in these flux expres-
sions for the Connecticut River.  For smaller streams, this
would not be the case.

THE SENSITIVITY ANALYSIS MODEL

In order to study the errors in stream temperature produced
by the errors in input data, it is necessary to develop
certain error expressions from equation  (1).  These are
developed in view of the two fundamental definitions from
Rosko [1972]:

     1.   Accuracy is defined as conformity of fact.

     2.   Precision is defined as sharpness of definition.

In the case of this work then, accuracy refers to the con-
vergence of the solution to the actual stream temperature.
Similarly, precision refers to the rate of convergence.

The sensitivity, or error, analysis required for the work
was developed from equation (1) by making a small change,
or variation, in the variables.  Equation (1) can be
rewritten symbolically as

-------
A variation of both sides of this equation yields
                               Au
where it is assumed that the flow rate and stream width are
known and that the process described is linear in its varia-
tion.  If the error in temperature,  6T(o) , is known at
the initial point, it is apparent that, given the errors in
the heat fluxes,  6Q , the error at any given point down-
stream can be computed from equation (4) by a direct
computation.

It is important to note that, if approximate values of the
coefficients in equation (4) are obtained as constants,
the equation can be solved in closed-form,
              6T  =  A exp[-ax] + I C.j_
                                  i
Results of an analysis of this type are presented in
Section VI.

THE DATA ANALYSIS MODELS

Previous sections have described the mathematical model
studied and the sensitivity analysis model.  The first of
these models, or close variations of it, has been used
extensively to predict the mean temperatures of streams.
The sensitivity analysis model has the capability of pre-
dicting the error in the mean temperature at a point down-
stream, given the corresponding errors in the mean initial
condition for temperature and the mean meteorological con-
ditions.  Thus, the mathematical models were available for
a study, setting the stage for the data analysis.

The philosophy of the data analysis emerged from the con-
cepts of probability.  As has been shown by Hogan et al.
[1972J, it is unrealistic to establish the error in the
estimate of the mean temperature deterministically.
Rather, the statement must read to the effect:

     If the errors in the heat fluxes   \&Q\  and the
     error in initial mean temperature   |6T(o)|  are
     constrained in size to given values, then the
     probability that the error in mean stream tem-
     perature  |6T|  <_ 1/n °C  will be  P-J , |6T| <_ 1 °C
     will be P2 (?2 > P1)

-------
Put simply, for given errors in the initial mean temperature
and the meteorological data, it is possible to determine
the probability of meeting a given error requirement.  This
can be done by using the sensitivity analysis model, which
appears to be a very realistic approach to assessing the
effects of the introduction of a heat load.

The methods employed in the data analysis are best visualized
by using Figure 2, where the six primary variables are il-
lustrated.  The effect of errors in these variables is shown
schematically in the figure, where the initial error  6T  is
seen to decrease with increasing  x .  By collecting a data
base of these variables over a period of several months, it
was possible to make use of the sensitivity analysis to
compute the error in temperature for a number of trials,
based on moving averages.  With an increasing number of
trials the probability,  P , that  |<5T|  is less than some
given error in temperature can be estimated from:


        _._  Number of trials with |6T| < given value
                  Total number of trials              '  ( '

Figures 3 and 4 illustrate the methods for utilizing the
data base to evaluate equation (5).  Figure 3 shows
schematically the data base at an airport weather station
remote to the site, in this case the Burlington, Vermont
weather station.  These data are collected together with the
stream temperatures at the site every three hours, eight
points per variable per day.  These data are averaged over
a specified number of previous days,  then compared with the
respective averages over the day following to form the errors
in the input variables, 6 , etc.  The sensitivity analysis
is then used to predict the errors in temperature down-
stream.  These are then compared with the given temperature
error requirement and the components of equation (5) com-
puted.  It should be noted here that this model simulates
the errors of an observer at the site attempting to predict
the temperature several days ahead.

Figure 4 shows schematically the second data analysis model,
where the data base includes 1)  the remote weather station
data, 2) the stream temperatures at the site, and 3) the
average daily stream temperature above the site  (See
Figure 5, station 7).  In this case the daily average of
the station 7 temperature is compared with the following
day's daily average temperature at the site.  Meteorological
data are averaged in an analogous manner, i.e., daily
averages compared for two consecutive days.  These form the
errors in the input variables.  The sensitivity analysis
is then used to predict the errors in temperature downstream,
these are compared with the given temperature error require-
ments, and the components of equation  (5) computed.  This

-------
                   I Cloud \
                   ^ Cover/
  Relative
\ Humidity/
                                             'Air
                                          W(Wind)
   (Initial
\
   V Temperature/
T 1.
/Stream \
1 Temper-)
\ tore /

tsi ( Error in \
\ Stream Temperature/
Figure 2. Six primary meteorological  and  sit* variables
                      10

-------
Process movts through all of data
      Average  Over
      Several Day*
Compart  With
Average Over Day
Following
"Airport Data and
 Stream Temperature*
                           1
                  leverage  Over Several Days |
                              =
                  [Average Over Doy Followlng|

                            w        "
                     [compare Average*|


                    Compute 8T Downstream
                                                 Numerator of
                                                  .,  Probability
                    COMPUTE AND
                    PRINT PROBABILITIES
       Figure  3.  Model using site water tenperature data
                           11

-------
    	  I
  	L
Compare T»aly~Av«rage
With Vernon  Average
                                     r.    ,  ^Airport Data and
                                     I - 1    Stream Temperatures
                                  Average Vernon
                                  Data
                   Average Over A Day|
Compare With Vernon Average
\
r
                 Compute 6T Downstream
                                            Numerator of Probability
                 COMPUTE  AND
                 PRWT PROBABILITIES
Figure 4. Model using site  and station  7  temperature  data
                          12

-------
model simulates the errors of an observer remote to the
site attempting to predict the site stream temperature
one day ahead.
                          13

-------
                       SECTION V

              STUDY AREA AND METHODOLOGY

THE VERNON NUCLEAR PLANT

A program of ecological studies of the Connecticut river in
the vicinity of Vernon, Vermont was initiated in  1967, prior
to the operation of the Vermont Yankee Nuclear Powerplant.
The preoperational studies were enlarged in scope in sub-
sequent years and were continued after the plant became
operational in October 1972.  The location of the plant is
shown in Figure 5, where the positions of short-term and
long-term sampling stations are shown.  The particulars of
these sampling stations are as follows:

Station No.   Location Relative to Vernon Dam       Type
    1         6.45 Miles (10.4 Km) South        Short-term
    2         4.70 Miles (7.56 Km) South        Short-term
    3         0.65 Miles (1.05 KM) South        Long-term
    4         0.55 Miles (0.89 Km) North        Short-term
    5         1.25 Miles (2.01 Km) North        Short-term
    6         4.10 Miles (6.60 Km) North        Short-term
    7         4.25 Miles (6.84 Km) North        Long-term
    8         8.70 Miles (14.0 Km) North        Short-term

Stations 3 and 7 are permanently emplaced below and above
the site respectively.  Stations 3 and 7 yielded the water
temperature data used in the study while meteorological data
were obtained from instruments at the plant and in Keene,
New Hampshire.

DATA BASE DESCRIPTION

The data base used in the project was taken from four
sources:

     1)  Measured water temperatures at the site
        (See Aquatec  [1974]),

     2)  Measured meteorological data at the site
        (Personal communications) ,

     3)  Meteorological data from Brattleboro, Vermont
        and Keene, New Hampshire  (U.S. Weather Service),

     4)  Meteorological data at the Burlington, Vermont
        weather station (U.S. Weather Service).
                          14

-------
            CHESTERFIELD
                              r
                                    Q  l/fe   I      2

                                     SCALE IN MILES
                      NEW HAMPSHIRE
    iNUCLEAR PLANT*
            VERNON DAM
VERMONT
                 WINDHAM CO.          U CHESHIRE CO.

                          FRANKLIN  C0.\
MASSACHUSETTS
        Figure 5. The Vernon nuclear plant-temperature
                          sampling stations
                        15

-------
The data base variables and dates for the Vernon plant
example problems are as follows:

     1.  Burlington, Vermont Weather Station data and Vernon,
         Vermont water temperature data:

         Variables

              Cloud cover, air temperature, relative humidity/
         wind speed, water temperature from stations 3 and 7.

         pates of Available Data

         a)  May 1, 1973 to June 20, 1973

         b)  August 15, 1973 to August 31, 1973 and September
             12, 1973 to September 26, 1973.

         c)  October 1, 1973 to October 3, 1973, October 17,
             1973 to October 24, 1973, and October 27, 1973
             to October 29, 1973.

         d)  October 17, 1973 to October 24, 1973, October 27,
             1973 to October 29, 1973, and November 1, 1973
             to November 14, 1973.

     2.  Vernon, Vermont  (and vicinity) site meteorological
         data:

         Daily Average Variables

              Cloud cover, air temperature, relative humidity,
         wind speed.

         Dates of Available Data

              June 21, 1973

              September 27, 1973

              October 30,  1973

              November 15, 1973
                          16

-------
EXAMPLE PROBLEMS

Four example problems were constructed from the data base
previously discussed.  They represented spring, summer, fall
and winter conditions at the Vernon Nuclear Plant.  The days
studied were June 21, September 27, October 30, and November
15, 1973.  The dates of the data blocks were as labeled a),
b), c) and d) above in the previous section "Dates of Avail-
able Data."  Computations were carried out to a point 25000
feet  (7620 meters) downstream from the initial point in the
model (x = 0).
                         17

-------
                      SECTION VI

                 DISCUSSION OF RESULTS

In addition to the analyses described in Section  IV,  the
Data Analysis Models, an order-of-magnitude error analysis
was carried out using the closed-form solution  developed
from equation (4).

ORDER-OF-MAGNITUDE ERROR ANALYSIS

In order to gain insight into the  solution of equation (4),
it was logical to simplify the form  of  the equation and
obtain a closed-form solution


                  6T  =  A e~ax +    Z  Ci    ,           (6)
                                     i

where the  C.;  are the respective  particular  solutions
associated with the errors  <5 , etc.,  and the  constant  A
is related directly to the error in  water temperature  6T(o)
at the site,  x = 0  .  The coefficient  a  then reveals the
rate of decay of the error in temperature with  distance.
The June 21, 1973 averaged data were taken as an example
problem:

     uA  (Rate of flow)       =  13,503  ft3/sec    ,

     El  (River width)        =  400  ft    ,

     C   (Cloud cover)        =  8  tenths   ,

     cT  (Sun angle)           =  59°   ,

       (Relative humidity)   =  71 percent    ,

     W2  (Wind speed)         =  10 MPH    ,

     Tair  (Air temperature)  =  75 °F    .                (7)

These data were compared with the  averaged data of May 31,
1973 to obtain the errors in the variables between these
two days.  This was done arbitrarily to examine the
order-of-magnitude of the resulting  errors in temperature.
The input errors are:
                          18

-------
     6C  (Error in cloud cover)        =  2 tenths    ,

     6a  (Error in sun angle)          =  5°    ,

     6<|>  (Error in relative humidity)  =  29 percent    ,

     6W2 (Error in wind speed)        =  5.2 MPH   ,

            (Error in air temperature) =  1 6 °F    .       (8)
Thus, the problem will yield approximate errors for predicting
the water temperature on June 21, 1973 given the meteoro-
logical data from May 31, 1973.  Of interest are the solutions
Cj^  of equation  (6) , which are due to the respective errors
in equation (8).  They are found from equation  (4) and
Appendix D to be
1.
2.

3.
4.
5.

6 TCp
6T
aP
6V
6Tw2P
6TT
airP
10.2 °F
1.71 °F

0.357 °F
1.33 °F
19.63 °F

                                                         (9)
Similarly, from the same source the coefficient  a  can be
found:

                  a  =  0.947 x 106    .                 (10)

The corresponding value of  x  where the value of  6T  falls
below 5 percent of the original value  at  x = 0.  is

                x  =  3,170,000 feet    ,

                      (966,000 meters)


                   =  600 miles
                                                        (11)
                      (966 kilometers)

This order-of-magnitude study indicates important facts
associated with the Vernon site:
                         19

-------
     1.   Modeling the Connecticut river, which has a large
         flow rate in comparison with its width, produces
         a solution that will have errors decaying over a
         very long distance.  This means that the error in
         temperature will remain virtually constant near
         x = 0 .

     2.   The computations are far less sensitive to the
         environmental factors than thought previously.

     3.   Since the error in temperature is nearly constant
         near x = 0 , the variable of primary concern is
         the initial error in temperature  6T(o) .  Thus, it
         appears that records of upstream temperatures in the
         Connecticut river would be useful for projecting
         average temperatures downstream.

     4.   Since  a  is inversely proportional to the volume
         flow  Au  it is possible to compute the value of
         a.  for the various flow rates, given a known flow-
         rate  A^U-|       and associated  a ,  a-) :
                           a  = a
                                 1
         This expression will yield the stream flow for
         which a given decay rate will exist.

RESULTS OF DATA ANALYSES

The results of the four data analyses are presented in the
form of probabilities for meeting given error requirements
with the variables averaged over a given number of prior
days.  Tables I, II, and III contain results from all four
problems.  It should again be emphasized that these results
relate to a plant operator making decisions as to the
operating conditions of a given plant as opposed to a site
planner predicting conditions several years in advance.
As indicated on the tables, the river temperatures and the
meteorological parameters are averaged over one and two
days respectively.

Results in Table I indicate that an observer at the site
attempting to predict the average stream temperature the
following day at a position 25,000 feet  (7,620 meters)
downstream by averaging the previous day's meteorological
data and stream temperature data would compute an
                          20

-------
Table 1. PROBABILITIES OF MEETING  GIVEN  ERRO'R REQUIREMENTS BY AN OBSERVER AT
         THE VERNON SITE AVERAGING ONE DAY AND PREDICTING ONE DAY AHEAD AT A
         DISTANCE OF 25,000 FEET (7620 METERS)  DOWNSTREAM
Error Requirement F (°C)

June 21 , 1973
September 27, 1973
October 30, 1973
November 15, 1973
1°F (0
0.
0.
0.
0.
.56°C)
6
613
769
75
2°F (1
0.
0.
0.
1 .
.11°C)
9
935
923
0
3°F (1
0.
0.
0.
1 .
.67°C) I
94
963
923
0
(4°F (2
1 .
0.
0.
1 .
.22
0
968
923
0
°0





-------
Table 2. PROBABILITIES  OF  MEETING GIVEN ERROR REQUIREMENTS BY AN OBSERVER AT
         THE VERNON  SITE AVERAGING TWO DAYS AND PREDICTING ONE DAY AHEAD AT A
         DISTANCE  OF 25,000  FEET (7620 METERS)  DOWNSTREAM
Error Requirement °F (°

June 21 , 1973
September 27, 1973
October 30, 1973
November 15, 1973
3F (0.56°C)
0.469
0.533
0.5
0.522
2°F (1
0.
0.
0.
0.
.11°C)
694
867
833
957
3°F (1
0.
0.
0.
1 .
C)
.67°C)
898
933
833
0

4°F (2
0.
0.
0.
1 .

.22°C)
980
967
917
0
Table 3. PROBABILITIES OF MEETING  GIVEN ERROR REQUIREMENTS BY AN OBSERVER AT
         STATION 7 ONE DAY AHEAD AT THE VERNON SITE(SAME POSITION AS STATED
         FOR TABLE 2)
Error Requirement °F (°C)
T
June 21 , 1973
October 30, 1973
°F (0.56°C)
0.520
0.846
9o M nio v
<£ r (, I . I I t_;
0.800
0.923
3°F (1.67°C)
0.880
0.923
4°F (2:22°C)
0.960
0.923

-------
approximate stream temperature within an error of 2 °F
(1.11 °C) between 90 and 100 percent of the time.  He would
compute an approximate stream temperature within an error
of 1 °F  (0.56 °C) between 60 and 77 percent of the time.

Table II shows that the same observer at the site making
the same prediction of an average temperature as made in
Table I but using the average of two prior days' data
would  compute an approximate stream temperature within an
error of 1 °F (2.22 °C) between 92 and 100 percent of the
time.  He would predict within an error of 3°F  (1.67 °C)
between 83 and 100 percent of the time.  Similarly, a 2 °F
(1.11 °C) error would be obtained between 69 and 96 percent
of the time.  Finally a 1 °F (0.56 °C) error would be ob-
tained between 47 and 53 percent of the time.

Table III shows that an observer using data from station 7
above the Vernon dam, attempting to predict stream tem-
peratures at the Vernon site by averaging a day's station
7 water temperature would compute an approximate stream
temperature within an error of 4 °F (2.22 °C) between 92
and 96 percent of the time.  He would predict within 3 °F
(1.67 °C) between 88 and 92 percent of the time, within
2 °F (1.11 °C) between 80 and 92 percent of the time.
Finally, he would predict within 1 °F  (0.56 °C) between
52 and 85 percent of the time.

Thus, it is seen that predictions made at the site (with a
daily average) a short period of time into the future are
accurate over 90 percent of the time for a 2 °F  (1.11 °C)
allowable error.  Averaging data over a two day period of
time reduces the probability of meeting the 2 °F (1.11 °C)
error to around 80 percent, which appears to be a primary
influence of the travel time through this portion of the
Connecticut river system, one  to two days.  These studies
indicate that it is important to have good records of up-
stream temperatures from a site.  With these it will be
possible to predict an average temperature within 2 °F
(1.11 °C).  It is important to note, however, that short
term fluctuations are not predictable by these methods as
used in the project.  Finally, the effects of season do
not appear to make appreciable differences in predictions.
                          23

-------
                    SECTION VII

                    REFERENCES
Aquatec, Inc. 1974. Ecological Studies of the Connecticut
River Vernon/Vermont, Report Hi Prepared for Vermont Yankee
Nuclear Power Corporation, Rutland, Vermont.

Asbary, J.G. 1970. Effects of Thermal Discharges on the
Mass/Energy Balance of Lakp. Michigan  Argonne National
Laboratories, Argonne, Illinois Report No. ANL/ES-1.

Hogan, C.M., L.C.Patmore and H. Seidman 1973. Statistical
Prediction of Equilibrium Temperature from Standard Meteor-
ological Data Bases U.S. Environmental Protection Agency,
Corvallis, Oregon. Report No. EPA-660/2-73-003.

Jaske, R.T. 1971. Use of Simulation in the Development of
Regional Plans for Plant Siting and Thermal Effluent Manage-
ment  Paper 71-WA/PWR-3, Presented at the Winter Annual Meeting
of the American Society of Mechanical Engineers.

Laevastu, T. 1960. Factors Affecting the Temperature of the
Surface Layer of the Sea  Commentationes Phvsica-Mathematical
XXV, 1, Societas Scientiarum Fennica, Centraltryckeriet
Helsingfors, Helsinki.

Policastro, A.J. and J.V. Tokar 1972. Heated-Effluent Disper-
sion in Large Lakes: State-of-the-Art of Analytical Modeling
Part 1, Critique of Model Formulations  Argonne National Lab-
oratories, Argonne, Illinois Report No. ANL/ES-11.

Rosko, J.S. 1972. Digital Simulation of Physical Systems
Addison-Wesley: Reading, Massachusetts p.2.

Salvador!, M.G. and M.L. Baron 1961. Numerical Methods in
Engineering  Prentice-Hall, Inc.: Englewood Cliffs, New
Jersey.
                         25

-------
                  SECTION VIII
         SYMBOLS  AND  VARIABLE  NAMES
VARIABLE NAMES
a - General integration  limit.
A - Stream cross-sectional  area.
A,A - Amplitude of exponential  decay function.
C - Cloud cover.
Cj_ - Constants.
c - Specific heat.
DT - Allowable error  in  stream  temperature.
f - Function of several  variables.
f - Derivative of f(  f = df/dx)/
h - Integration step.
!•] , 12 - Integrals.
KJ_ - Kernel function.
H, EL - Stream width.
n - Integer number.
O(-) - Of order(Order of magnitude).
P, Pj_ - Probability of occurence.
Q - Total heat flux.
°-i' Q-ij ~ Particular  heat fluxes.
Q-Back ~ Back radiation heat flux.
°-Conv Qconvection ~  Convective heat flux.
°-Evap' °-Evaporation ~ Evaporative heat  flux.
°-Mis(c) ~ Miscellaneous  heat flux.
Q-Rad' °-Solar ~ Radiative solar  heat flux.
Q-Ref' QReflective ~ Reflective  heat flux.
T - Stream temperature.
To - Initial stream temperature.
U,u - Average stream  flow velocity.
W, W2 - Wind speed.
x - Distance downstream.
X-L - Particular position.
                        26

-------
x - Particular value of x.
xmax ~ Maximum value of x.
y - General function.
y - Derivative of general function.
y(0), yo - Initial value of general function.
Yj_ - Value of function at x-^.
z - Dummy variable of integration.

GREEK SYMBOLS

a - Decay rate coefficient.
a, a - Sun angle.
SC - Error in cloud cover.
SQ - Error in total heat flux.
6T - Error in stream temperature.
6T(0) - Initial error in stream temperature.
STair - Error in air temperature.
6Taj_rp - Particular solution for air temperature error.
6TCp - Particular solution for cloud cover error.
&Tj_ - Particular solution.
      ~ Particular solution for wind speed error.
6T~  - Particular solution for sun angle error.
6T(i)p - Particular solution for relative humidity error.
6W,6W2 - Error in wind speed.
6a - Error in sun angle.
6<(> - Error in relative humidity.
Ax - Increment in downstream distance.
<|> - Relative humidity in percent.
p - Density.
£ - Position.
                        27

-------
                      APPENDIX A

                 FORMAT SPECIFICATIONS

This appendix presents the procedures required for using the
three codes developed during the course of the project:

     1.  The general stream model code, STREAM.

     2.  The sensitivity analysis code, SENSIT.

     3.  The data analysis code, MONT.

STREAM

The digital computer code STREAM performs all the necessary
computations to predict the stream water temperature at any
distance downstream from a given initial station.  The
principle of conservation of energy is applied to the stream
under steady-state, steady-flow conditions.  Heat transfer
to and from the water in the various heat transfer modes is
computed.  Numerical integration is used to compute the
stream temperature, with a choice of four algorithms
available to the user.  A listing of the STREAM code is
given in APPENDIX C.

INPUT REQUIREMENTS TO STREAM

STREAM accepts the following information:

INTC:  (1, 2, 3 or 4)  in 6110 FORMAT.  This parameter
     respectively chooses Euler, Modified Euler, Runge
     Kutta or Adams-Moulton integration routines.

X, DX, DXPR, XEND:  in 6E10.0 FORMAT.  These parameters are,
     respectively, the initial value of the distance down-
     stream in feet (usually 0.), the integration interval
     in feet, the print interval in feet, and the final value
     of the distance downstream in feet.

ERR0R, DXMAX:  in 6E10.0 FORMAT.  These parameters are used
     by the integration routine only and represent the error
     in the function in °F and the maximum integration step
     size in feet allowed.

TEMP, U,  AREA, EL:  in 6E10.0 FORMAT.  These parameters are,
     respectively, the initial value of the temperature in
     °F,  the average velocity of the stream in ft/sec, the
     cross-sectional area of the stream in ft^, and the
     stream width in feet.
                           28

-------
RHO, WMPH, TAIR, CLD, RH, ALBAR:  in 6E10.0 FORMAT.  These
     are, respectively, the density of the water (62.U
     #/ft3, here), the wind speed in MPH, the air temperature
     in °F, the cloud cover in tenths, the relative humidity
     in percent, and the average sun angle in degrees.

The final information is read in a loop of 10 sets:

PTBL(I), TTBL(I), HFGTB(I) in 6E10.0 FORMAT.  These tables
     are, respectively, the water saturation pressure table
     in PSI, the water temperature table in °F, and the
     latent heat of evaporation table in BTU/pound, all
     corresponding and in order.  This information is
     extracted from standard   steam tables for the temperature
     range 32 to 120 °F.

The code then computes the stream temperature downstream
from a given point.  The output proceeds at each print
position with the position  X  itself, the integration step
DX , the stream temperature TEMP, and the derivative of
the stream temperature with respect to the position variable
DTEMP.  Following this, other auxilliary variables are
printed out:  EW, EVAP, HE, HFG, H0, EBR, and HC.  These are
only important for diagnostics, not the solution itself.
SENSIT

The digital computer code SENSIT performs all necessary
computations to predict the error in the stream water
temperature (due to the difference between the actual and
approximate input data) at any distance downstream from a
given initial station.  The variation in the original
equation is coded to examine the effects of errors of the
input variables.  Numerical integration is used to compute
the error in stream temperature, with a choice of four
algorithms available to the user.  A listing of the SENSIT
code is given in APPENDIX C.

INPUT REQUIREMENTS TO SENSIT

SENSIT accepts the following information:

INTC:  In 6110 FORMAT.  This variable is the integration
     routine to be used (See STREAM for description).
                           29

-------
X, DX, DXPR, XEND:  In 6E10.0 FORMAT  (See STREAM for
     description).

ERROR, DXMAX:  In 6E10.0 FORMAT  (See  STREAM for description).

DT, U, AREA, EL:  In 6E10.0 FORMAT.   The initial temperature
     error DT is read in at this point  (other variables are
     described in STREAM).

RHO, WMPH, TAIR, CLD, RH, ALBAR:  In  6E10.0 FORMAT  (See
     STREAM for variable description).

PTBL(I), TTBL(I), HFGTB(I):  In  6E10.0 FORMAT  (See  STREAM
     for variable description).

DALP, DCLD, DRH, DTAIR, DWMPH:   In 6E10.0 FORMAT.   These
     variables are the errors in the  respective values of
     the sun angle in degrees, the cloud cover in tenths,
     the relative humidity in percent, the air temperature
     in °F, and the wind velocity in  MPH.

NTEMP:  In 6110 FORMAT.  This is the  number of temperatures
     given downstream.

STTBL(I), XTBL(I):  In 6E10.0 FORMAT.  These tables are,
     respectively, the water temperature and the position
     downstream in NTEMP sets.

The code then computes the error in the stream temperature
downstream from a given point.   The output proceeds at each
print position with the position  X   itself, the integration
step  DX , the stream temperature TEMP, the error in the
stream temperature DT, and the derivative of the error in
stream temperature  DDT  .

Following this some auxilliary variables are also printed
out:  EW, DEW, EWAP, HE, HFG, H0B, HC, HLYMN, and HD, which
are important for diagnostics, not for the solution itself.
MONT

The digital computer code MONT performs all the necessary
calculations to obtain the probabilities for meeting a given
temperature requirement.  The code takes prepared data and
makes a series of trials, forming data differences, and
uses the sensitivity analysis code, SENSIT, to obtain the
stream temperature difference at a prescribed distance
downstream  (in this case 25,000 feet  [7620 meters]).  The
code makes three studies:
                           30

-------
     1.  Computes the probability of meeting given error
         requirements given in both initial water tempera-
         ture and meteorological data at the site.

     2.  Computes the probabilities of meeting given error
         requirements given errors from water temperature
         and meteorological time averaged data at the site.

     3.  Computes the probabilities of meeting given error
         requirements given errors from water temperature
         and meteorological data at a remote site, in the
         case of this study, at station 7 above the nuclear
         plant.  A list of the MONT code is given in
         APPENDIX C.

INPUT REQUIREMENTS TO MONT

MONT accepts the following information:

NLN, LOG1:  In 6110 FORMAT.  The first variable is the number
     of lines of data (taken every 3 hours, 8 data points per
     day, each day always complete); the second variable is
     0  if no time averaged data appears, not zero if time
     averaged data appears.

Following these integer variables the major part of the data
is read for the remote airport and the site water temperature
in a loop of NLN lines as follows:

C(I), TA(I), PHI(I), W(I), TW(I):  In 6F10.3 FORMAT.  The
     variables are:  1)  the cloud cover in tenths, 2) the
     air temperature in °F, 3) the relative humidity in
     percent, 4) the wind speed in knots, and 5) the site
     water temperature in °F.

Next, the average data for the actual site and the particular
day are input:

UA, EL, CC, TAIR:  In 6F10.3 FORMAT.  These variables are 1)
     the flow volumes of the river in ft3/sec, 2) the river
     width in ft, the cloud cover in tenths, and the air
     temperature in °F.

TWA, RH, WSP:  In 6F10.3 FORMAT.  These variables are 1)
     the water temperature in °F, 2) the relative humidity
     in percent and 3)  the wind speed in knots.
                           31

-------
If LOG1 = 0 the next two sets of data are not necessary.   If
LOG1 ^ 0 the next two sets of data for the dates of past years
prior to the date in question (the time-averaged data).

NTA:  In 6110 FORMAT.  This value is the number of lines of
     time averaged data.

Following this NTA lines of data are read in as follows:

CTA(I), TATA(I), PHITA(I), WTA(I), TWTA(I):  In 6F10.3
     FORMAT.  The variables are 1) the cloud cover in  tenths,
     2) the air temperature in °F, 3) the relative humidity
     in percent, 4) the wind speed in knots, and 5) the
     water temperature in °F.

Following this, the data describing the analysis are read  in:

NCAS:  In 6110 FORMAT.  This is the number of cases of
     temperature to be used in the trials.

DELT(I), 1=1, NCAS:  In 6E10.3 FORMAT.  These are input in
     sequence, the first six values of allowed temperature
     on the first line, the second six on the second line, etc.

NDAS:  In 6110 FORMAT.  This is the number of day cases to
     be tried.

IDAS(I), 1=1, NDAS:  In 6110 FORMAT.  These are the number of
     days of data to be averaged in each day case.  They are
     input in sequence, six values per line.

Following this, 10 lines of data are input for the sensitivity
analysis program, which is a subroutine in this case.

PTBL(I), TTBL(I), HFGTB(I):  In 6E10.3 FORMAT  (See STREAM  for
     variables description).

The next data to be input are 1) the number of days since
March 21 (the vernal equinox) which is required to estimate
the coefficient involved with the sun heating effect,  and  2)
the latitude of the plant in degrees:

DM21, BETA:  In 6E10.0 FORMAT.

The last data to be input are the daily average of the water
temperature at the remote site:

T7(I), 1=1, Number of Days in 6E10.3 FORMAT.
                           32

-------
The code then computes the errors in the stream temperature
downstream from a given point considering the days to be
averaged as requested.  Three sets of input errors are
examined:

     1.  The airport meteorological data and stream temperature
         against itself (simulating values at a site).

     2.  The time-averaged meteorological and stream tempera-
         ture data against the site data.

     3.  The airport meteorological data and the remote site
         water temperature data against the site data
         water temperatures (simulating predictions from a
         distance).

These are compared to the requirements on temperature for
each case.  The number of cases for which the requirements
are satisfied are recorded and printed out in the form of
probability values.
                           33

-------
                      APPENDIX B

                      INPUT DATA

This Appendix contains the input for the four example
problems.

EXAMPLE PROBLEM INPUT

The input for the four example problems has the  following
format:

     1.  The number of lines of data, 8 lines per day
         (3 hour intevals).

     2.  The time averaged data logic parameter  (1 means
         time averaged data appears, 0 means no  time
         averaged data appears).

     3.  The data now appears by line as follows:

         a)  Cloud cover in tenths.

         b)  Air temperature in °F.

         c)  Relative humidity in percent.

         d)  Wind speed in knots.

         e)  Water temperature °F.

     4.  The average data (over a day) for the plant site
         then is:

         a)  The flow volume, UA, ft^/sec.

         b)  The river width, EL, ft.

         c)  The cloud cover at the site in tenths.

         d)  The air temperature °F

         e)  The water temperature °F.

         f)  The relative humidity in percent.

         g)  The wind speed in knots.

-------
     5.  If time-averaged data appears the following then
         is required:

         a)  The number of time-averaged data lines.

         b)  The lines of data as follows

             1)  Cloud cover in tenths.

             2)  Air temperature °F.

             3)  Relative humidity in percent.

             4)  Wind speed in knots.

             5)  The water temperature in °F.

     6.  The control data for the data analysis is next.

         a)  The number of cases of error in temperature.

         b)  The allowed errors in temperature.

         c)  The number of cases for days of data to be
             averaged.

         d)  The actual number of days of data to be
             averaged.

     7.  The tables of vapor pressure and latent heat  (no
         changes except for very unusual conditions).

     8.  The days to the date in question past March 21.

     9.  The latitude of the site in degrees.

    10.  The daily averages of the water temperatures  at
         the remote site.  In this case station 7.

PRINTOUT FOR THE FOUR EXAMPLE PROBLEMS
                           35

-------
JUNE 21, 1973
MAY 1 to JUNE 20, 1973
RUM
NUMBER &F
i_._ ._. CLD CQVER
.000
8.000
8.000
9.000
1C. 000
__ 	 10.000
10,000
10,000
10*000
10.000
10. 000
_ 	 5.000
10.00.0
10.000
_ lo.ooo
10*000
10*000
.10*000
8.000
- — • • - 10.000
10,000
10.000
10.000
10,000
10.000
DATA LINES' 4
AIRTEIP REL._
35*000
33*000
39.000
56.000
56.00C
61.000.
53.000
54.000
56.000
55.000
56.000
66.000
72.000
73.000
68.000
61*000
64*000 ~
65.000
63.000
70.000
75.000
55.000
50.000
50.000
48.000

0«TIM£ AV
HUM .WIND
92.000
96.000
93.000 .
60.000
57.000
52.000
80.000
96.000
... 90*000.
90*000
87.000
68.000
57.000
55.000
68.000
90.000
"~84,OCO
78.000
90.000
" 73,000
54.000
100,000
93.000
80.000
68.000
36

. L8GIC*
SPD. , WATER
4.000
3. COO
...4.000
b.OOO
4.. COO
. 4.000
4.000
b.OOO
	 .7.000 ..
8.000
12,000
14.000.
14.000
9.000
9*000
4*000
4*000
10*000
11*000
8.COO
10. COO
7.000
i o.coo
4. COO
b.OOO

0
TtMP
48«000
48*000
48*200
48*500
48*500
48*700 . ._.. ......
49« 000
49*000
49*200
49*200
49*500
..50*000 . 	
50*500
51*000
51*000
51*000
51*200
51*500
51*700
52*200
52*700
53*000
52*500
52*200
52*000

-------
1
t
9
' 9.000
i
'' 10*000
c.
" 10*000
1
10*000
10*000
10.000
10*000
	 _ 10.000
lo.ooo
10.000
10.000
10.000
10,000
10,000
10*000
lo.ooo
10*000
10*000
	 8.000
9.000
9.000
2.000
.000
.000
*000
; 	 	 	 .000
j .000
\
.000
6,000


46*000
45.000
49.000
50.000
51.000
48.000
46.000
43.000
42.000
42.000
45.000
47.000
45.000
43.000
43*000
43*000
43*000
45*000
53.000
55*000
56.000
53.000
45.000
37*000
32.000
39.000
54.000
58.000
62.000


71*000
80.000
66.000
59,000
_ 52.000
63*000
58.000
76,000
76.000
89,000
77.000
66.000
80.000
89.000
93.000
96,000
93.000
93.000
62,000
51,000
bl.COO
57,000
65.000
89.000
96.000
93.000
53.000
44.000
34.000
37


2.000
5. COO
6. COO
8. COO
	 6.000_
4. COO
3. COO
	 3.000
2*000
3.000
6.QOO
7.000
4\COO
3.000
3.000
4. COO 	
5.000
9.000
10.000
12.000
11. COO
6.000
4.000 	
• COO
.COO
	 .000 	
11.000
14,000
10.000


52*000
52.000
52*200
52.500
52*700 	
52*500
52*500
52*200 	
52*000
52*000
52*000
52*000
52*200
52*200
52*000
51*700 "" " " 	 """
51*500
51*500
51*700
52.000
52.500
52*200
52*000 _ 	 __ 	 _
51*500
51 '200
51*000
51.000
51*700
53.000

-------
I.
2,000
.000
	 	 1*000
4.000
5.000
10.000
10.000
10.000
. 	 10.000
10*000
10*000
_ 	 10*000
10.000
10.000"
10.000
10.000
10.000
10*000
10.000
10.000
7.000
10.000
	 "10.000
10.000
10*000
10.000
10*000
10.000

55.000
43,000
33,000
35,000
53,000
63,000
68,000
63,000
57,000
54.000
49*000
50.00G
50.000
55.000
56.000
57.000
55.000
53,000
54,000
55.000
58,000
64.000
71,000
75,000
68*000
62.000
57.000
57.000

47.000
83.000
..89,000 . .
92,000
69.000
48,000
41,000
40.000
5,7.000.
69.000
93.000
.96.000
96.000
	 ~937bbo~ ""
93.000
83.000
86.000
93.000
90.000
^o.OOO
87.000
75.000
64.000 ~
50,000
63.000
67.000
100.000
93.000
38
4,000
2.0CO
.. *ooo 	
3,000
14. COO
14.000 ..
15.000
16.000-
6»ooo..
12.000
9,000
3,000
4.000
7. "bob"
8.000 ..
9.000
5.000
6.000
5.000
y.coo
8.000.
13.000
' ~12.000""~
12.000
5.000
" ""18.000 	
8,000
12*000

53*200
52*700
.52*500 .._. 	 	 _,
52*000
52*000
.. 52*200. .._ ._ . .....
52*700
53*500
53*700
53*500
53*500
53.000
53*000
"52.700"
52*700
53.000
53*200
53*200
53*200
53*000
52*500
52*500
"53*000
54*000
54*000
54*000
54*000
54*200


-------
1
I
1
<"""" 10*000
' _ 10*000
fll
ii. 7.000
li
r"~" 8.000
	 _ 	 _ 9.000
7.000
10.000
9.000
9.000
10.000
. 	 10.000
10.000
7.000
9.000
10.000
10.000
_ iO.OOO
lo.ooo
10.000
10.000
10.000
8.000
7.000
9.000
10.000
10.000
! lo.ooo
10.000
8.000


56.000
57.000
52.000
56.000
56.000
54.000
52.000
46.000
43*000
57.000
55.000
51.000
53.000
49.000
48.000
45.000
46.000
50.000
52.000
51.000
51.000
48.000
45.000
42.000
46.000
50.000
bO.OOO
51.000
49.000


93.000
.93,000
33.000
83.000
	 80.000
72.000
69,000
80.000
80.000
69,000
__77.000
100.000
93.000
	 86.000
39.000
86,000
80.000
69,000
b9.000
64.000
t>7.0GC
66,000
71.000
83,000
77.000
69.000
69. COO
64,000
71.000
39


11.000
	 10. COO.
8. COO
5. COO
4.000. 	
b.CCO
9.000
3,000
11,000
13.000
	 S.COQ 	
4.000
" "5.000 ~
	 4. COO 	
3.000
b.OOO
__10.000 	
13.000
13.000
10,000
6.000
b.OGO
4.000
b.COO
3. COO
10. COO
7. COO
8.000
4.000


54*500
54.500
54*700
55*000
..55.000
55*000
55 « 200
55.000
55*000
55.500
56«200_
56.700
56.500
_ 56* 200
56.000
"55.700
__55*500_
56«000
56.200
56-700
56*500
56.000
56*000
55*500
55«200
55*200
55.700
56«000
56*000

-------
i
'! .000
4:
c; .000
I'.
"; 	 	 _ 3.000
5.000
9.000
10,000
10*000
	 10.000
10. COO
10.000
	 	 10.000
7.000
2.000
	 " "''""4. GOO
	 	 1.000
l.COO
1,000
._ 	 8.000
8.000
" 	 " 5,000
7.ooo
6.000
10.000
10.000
10.000
( l o.ooo
l__ lo.ooo
10.000

40.000
37.000
33.000
40*000
56.000
55,000
52*000
49.000
48.000
46.000
45.000
47.000
54.000
60.000
62.000
59.000
55.000
54.000
54*000
55.000
64.000
68.000
52.000
45.000
43.000
42.UOO
42.000
48*000

93.000
96*~60~0
100.000
96*000
60.000
64,000
83.000
96.000
100.000
100.000
93.000
71.000
49,000
~~ 39~.000
38,000
42,000
47TOOO
49.000
55,000
b7.000
47.000
39.000
74,000
86.000
93.000
96.000
100.000
83.000
40
2* COO
• 000
_..3«000
3.000
3. COO
. 10.000....
9.000
b.COO
4. COO
4.000
9.000 ~
7»000
b.COO
~ 	 "13." COO
10.000
8.000
7. COO
11.000.
10.000
10*000
13.000
10.000
14VCOO"
9.000
9. COO
'b.coo
4.000
10.000

55*500
55*000
_.54»500
54*500
54.500
54.700
55*000
55*000
55*000
54*700
~~54 * 700 	 ~~
54*200
54*500
""55*000 ' "
55*200
55*000
55*000
. 55*000
54*700
54*500
54*500
54*700
55*000
54*700
54*700
54*700
54*700
54*700


-------
10.000
10.000
10.000
	 " "lo.ooo
10.000
10.000
"" 	 lo.ooo
10.000
10.000
10.000
10.000
10.000
10.000
	 10. poo
10.000
6.000
5,000
9. COO
10.000
10.000
10.000
10,000
10.000
10.000
10. COO
	 	 10,000
10.000
10. COO
10,000
43.000
49.000
51.000
49.000
42.000
42.000
41,000
42.000
45.000
46.000
46.000
46.000
47.000
49.000
48.000
50.000
60,000
67.000
63,000
60.000
53.0CO
51.000
bl.OOO
50.000
b2.CCO
51.000
49.0UO
48,000
47.000
86.000
. 89.000
77.000
83.000
96.000.
100.000
100. OCO
96.000
93.000
93.000
	 93.000 ..
93.000
86.000
... 77.000.
80.000
80.000
62,000
49.000
50,000
65,000
90.000
100.000
100.000,.
100.000
100.000
96.000
96.000
96,000
100.000
41
4.000
-.._. *»«COO
5*000
b.COO
7.000
10. COO
10. COO
.10. COO
13.000
10.000
8.000
9.QOO
7. COO
.... . 7-000...
b.OOO
3,000
3. COO
4.000
10.000
3.000
3.000
b.OOO
6.000
11. CCO
13.000
_.14.COO
Ib.COO
14.000
13. COO
54*700
54-7CO
54.500
54.000
53*700
53»OUO
52*500
52.500
52.500
52*500
__.52«500
52-500
52.500
...51.-700
51«500
51.200
	 51*000
51.000
5LOOO
51-000
51« 000
51« 000
51*000
50«700
50-500
50*200
50-200
50-200
50*200

-------
V lOtOOO
t
l:. 1 Ot 000
\' ,
",_ lOtOOO
1
10*000
io.ooo
7.000
6*000
.000
.000
.000
.000
2.000
8. COO
8". 000
9.000
9.000
.000
.000
3.000
"4.000
4,000
3,000
3.000
3.000
2.000
	 " 10. coo'
i
|. 10.000
3.000
47.000
47*000
47.000
50.000
54.000
58.000
56. COO
43. COO
39.000
37.000
45.000
60.000
67.000
68.000
63. COO
52.000
47.000
42.000
51.000
60.000
67,000
68,000
63.000
52.000
45.000
46.00C
47.000
54.000
100*000
100*000
100.000
86.000
75.000
65.000
62.000
96.000
100.000
100.000
100.000
. 70.000
40.000
'36.000 ""
43.000
74.000
89.000
96.000
90.000
70. COO "
55,000
51,000
50.000
83.000
96.000
100.000 "
100.000
86,000
8. COO
7*000
.. 2*000 ._ ..
7.000
8. COO
10. COO
4. COO
2*000
3* COO
2. COO
3. COO
3. COO
6.000
7idob
7. CCO
4*000
7. COO
2*000
6. COO
8*000
12, COO
13.000
6. COO
3*000
2. COO
~"bi"oOO
b.COO
8.000
50*200
50.200
.. 50»000
50*000
50*200
50*500
51«000
51*000
50*500
50.000
50*000
50*000 „.
50*500
"51.200"
51*500
51*700
51*500
51*500
51*500
"51*700
52.000
52.700
"53*500
53*500
53*500
53*700
53*700
53*700

-------
', ' 1.000
1
i! 2.000
i
4.000
' "~ " "" 6.000
	 2.000
8.000
7.000
	 9.000
7,000
2.000
8.000
8.000
6.000
10.000
1.000
5,000
	 3.000
1.000
9.000
9.000
10.000
10,000
10.000
10.000
10.000
!. 10.000
10*000
10,000
10.000

64.000
66.000
63.000
55.000
50.000
50*000
55.000
58.000
62*000
64*000
61.000
55.000
54.000
51.000
55.000
60.000
65.000
63.000
63.000
57.000
54.000
52.000
51.000
54.000
57.000
58.000
6C.OOO
61.000
63*000

65.000
51.000.
65.000
80.000
	 83.000 	
86.000
75.000
67.000 .
58.000
54.000
	 58.000....
ao.ooo
75.000
	 AQ.ooo
75.000
62.000
bV.PQO
49'. 000
60.000
72. 000. _
80.000
90.000
96.000
100,000
93,000
90.000.....
93.0CO
97*000
97.000
43
a. coo
3. COO
6. COO
7. COO
_._ 3. COO
6. COO
7. COO
	 7.QOO
b.COO
4. COO
4. COO
7. COO
10. COO
	 7.000 	
8*000
1 b.COO
10. COO
13.000
6.000
7.000
7 . COO
10. COO
10. COO,
11. COO
9.000
. . lu.coo 	
13.000
10.000
10.000

54*000
54*000
54.000
54*000
54*000.
54*000
53*700
53*700
53«500
53.500
_53«500
53*500
53*500
_53_*..500.
53*500
53*700
54*000
54*500
54 • 700
54.700
54*700
54*700
55*000
55-200
55*500
55*700
b5«500
55*200
55*200


-------
'. 10.000
[
81 ~~~" 	 10.000
11
' 	 __ 	 10.000
8.000
7,000
10,000
10.000
10.000
10.000
10.000
10.000
9.000
10.000
3.000
10.000
10.000
~ 10.000"
10*000
lo.ooo
10.000
10.000
10.000
3.000
1.000
.000
,: " 9.000 "
f 9.0CO
10.000

62*000
61*000

62*000
69.000
72.000
60.000
58.000
57.000
55.000
56.000
62.000
68*000
64*000
63.000
58*000
56.000
56.000
56.000
59.000
60*000
64.000
62.000
58.000
56.000
54.000
60*000
64*000
62*000

97,000
100.000

100.000
73.000
"57.000
87,000
93.000
93.000
100.000
96.000
"""75.000
55.000
54.000
65*000
90.0CO
96,000
100,000"
100.000
100.000
84.000
73.0CO
73.000
81,000
80.000
80,000
70*000
68*000
75*000
44
4. COO
8.0CO

6.0CO
9.000
8. COO
b.OOO
6*000
• COO
.000
3. COO
2.000
b.OGO
5.000
.000
3.000
3.000
4,000
.000
4.000
1C. COO
4.QGO
4, COO
6. COO
10.000
8,000
"""13*000
14.000
9*000

55*500
55*500

55*500
56*500
57*200
57*700
57*700
57*700
57*700
57*500
57*700
58*000
58*200
58*200 "
58*500
58*500
58*500 ~
59*000
59*000
59*500
60*000
60*000
60*000
60*200
60*200
60*700
61*500
62*000


-------
9.000
	 10.000
10.000
_ 2.000
6. COO
3.000
	 " 2. COO
1.000
• 00
."000
tOOO
• COO
""" 	 ".ooo
	 	 .000
.000
.000
4. COO
8.000
6,000
6.000
10.000
10.000
10.000
10. COO
10.000
10.000
1C. COO
10.000
10. boo

66*000
56.000
53.0CO
47.000
41.000
47*000
51.000
57.000
59.000
56.000
43.000
39.000
36.000
47.000
62.000
68.000
70.000
65.000
53.000
49.000
53.000
58.000
57.000
60.000
64.000
63,000
62,000
60.000
60.000

65.000
	 90.000
96<000
83.000
96.000
68.000
46.000
44.000
44.000
45.000
83.000
93.000
96,000
	 83.000..
41,000
33.000
36.000
52.000
86.000
89,000
s-6-.o-e^
84.000
96.000
100.000
97.000
100.000
100.000
100,000
100,000
45
5. COO
	 8*OCO
6.QOO
5.000
4.000
12. COO
10.000
12. COO
10.000
5.000
3,000
3.000
• 000
3,000..
10.000
5.000
8.000
2.000
a. obo
3.000
4-. OOO
9.000
6.000
• 000
5. COO
4.000
3. COO
3.000
3.QOO

61«700
	 61*500 	 . 	 	
61-000
61.000
61.000
60«700
60«700
61.500
61*700
61,500
. 61.200
61,000
60.700 	 ~~~~
	 60« 700 	 /_
61*000
61*200
61*500
61.500
"61*200
	 61*000
61« 000
61«000
61.200
61»500
~ ""62.000
62«000
61.500
61*200
61*200


-------
8.000
" 6*000
10.000
10.000
"~ 9.000
8.000
8.000
10.000
10.000
7.000
7.000
	 10,000
7.000
7.000
10.000
8.000
._ lQt000
8.000
7.000
4.000
.000
.000
" 	 .000
1.000
8.000
5.000
8.000
7.000
65.000
77*000
80*000
76.000
76.000
68.000
67.000
71.000
74.000
78,000
85.000
71.000
72.000
72.000
72. QUO
70.000
70*000
76,000
79.000
80*000
75.000
61.000
56.000
bS.OOC
68,000
77.000
81.000
84.000
100.000
7^*000
65.000
76.000
76.000
87.000
87.000
"81,000
76.000
71.000
61.000
90.000
84.000
76.000
82.000
84.000
84.000
66.000
52,000
41.QOO
45.000
75,000
93,000
93.000
68.000
56.000
bl.OOO
46.000
3.000
12*000
... 12*000
4.000
7. COO
	 b.OOO
8.000
1U.OOO
7.000
13.000
12*000
7.000
b.OOO
10.000
.13.000
16.000
14. COO
13.000
8.000
13.000"
8.000
b.OOO
"3. COO"
3.000
10.000
11.000
12. COO
10.000
61*000
61*000
61*500
61*700
61*700
62*000
62*000
62»2OO
62*200
62.700
63*000
63*100
63*500
63*000
62*700
62*700
62*500
.,62*700
63*000
64*000
64*bOO
64*700
64*500
64*200
64*000
64*000
. 64*700
65*200

-------
<"" """ 	 ~ 8.000
' 2.000
3.000
f~~~ 	 " 5.000
10.000
10.000
9.000
3.000
7. COO
2,000
2.000
2.000
" 	 """ 5.000
1.000
8.000
6.000
	 1 C . 000
7.000
10.000
10.000
10*000
8. COO
2.000
6.000
10,000
10.000
| 2.000
tu 	
8,000
4.000

79.000
71.000
73.000
71*000
71.000
72.000
79.000
82.000
77.000
72.000
67.000
61.000
64.000
71,000
76,000
79.000
70.000
63.000
64*000
66.00C
72.000
73.000
86.000
86.000
78.000
67,000
66,000
66,000
73,000

58,000
64.000
57.000
61.000"
66.000
68.000
62.000
._ . 43.000
50.000
50.000 "
53.000
67.000
68.000
49.000
43.000
41,000
	 71,000 	
93,000
90,000
78,000
66,000
62,000
55.000
bO, 000
62.000
	 90,000_ 	 _
93.000
93.000
82.000
47
7. COO
8.000
i
-------
5.000
g.OOO
: lOtGOO
lOtOOO
8.000
_ 	 _ . 5. COO
10*000
10.000
10.000
10.000
6.000
4.000
• 000
	 	 8,000
8.000
2.000
3.000
8.000
3.000
5.000
.000
.000
	 2.000
9.000
10,000
10,000
10,000
10.000

78.000
"85.000
70.000
68.000
66.000
64.000
64.000
68.000
71.000
66.000
70.000
71.000
61.000
""" 61.000
57*000
62.000
70.000
73.000
75.000
70.000
61.000
53.000
50.-000
55.000
55.000
57.000
58.000
55.000

79.000
"bit odd""
93.000
100.000
100.000
100,000
100.000
93.000
90.000
100.000
76~.000'~"
68.000
90.000
84.000~
96.000
87.000
"53,000 ~
41,000
34.000
38.000
33,000
64.000
" 71,000
51,000
55,000
60,000
55.000
59,000
48
11.000
Tit'dbo"
6.000
6. COO
• coo
... 3.000
4.000
3. COO
5.000,
6.000
5.000
5. COO ._
3. COO
5, COO"
3. COO
3.000
7.000
11, COO
14,000
13.000
13,000
8.000
8.000
12.000
8.000
6. COO
7. COO
6.000

70*200
"YitOOO
72*500
72.200
72*000
.71 • 700
71.700
72*000
72*000
72*000
71*500
72*000
72*200
"""72 • 000 '"
72*000
71*700
71*700
71*700
71*500
71*500
70*500
70*000
69* 500 ~ 	
68.700
68*500
68*700
68*500
68*500


-------
t"~
t
' 	 10.000
I 	 lo.ooo
10. COO
	 lo.ooo
10. COO
10.000
10.000
10.000
10. COO
10.000
	 . _5.000 .
3.000
6.000
	 	 4,000 .....
3.000
3,000.
5,000
7,000
8.000
10,000
10,000
10,000
8.000
10.000
2,000
	 	 _. .000
; 10.000
T..
10,000
10.000
51.000
49,000
48,000
50.000
52.000
52.000
53.000
52.000
52.000
49.000
45.000
51.000
57.000
62.000
65.000
62.000
49.000
45.000
43.000
50.000
61.000
62. COO
65.000
59.000
55.000
55.000
55. COO
57.UOO
65.000
80.000
	 89.000
96.000
96,000
	 96.000
IOC, 000
100-000
100.000
100.000
100.000
96.000
90.000
72.000
58.000
50.000
b4,0'00
93.000
100,000
100.000
93.000
75.000
73.000
61,000
75,000
90,000
93,000
96.000
93.000
78.000
49
2.000
	 4,000.
4. COO
7. cor
	 7.pOO__.. _
5. COO
' 6,000
	 11, COO
12, COO
4. COO
	 b*COO. 	
a. coo
	 ~~a«ooo~
	 11.000 	
1C. COO
8. COO
	 3.000
2.000
3.000
4 . 000
1U.COO
11,000
	 12,000
10.000
5. 000
	 b.OOO 	
2. COO
3.000
b.OOO
68*500
68*000.
67*500
67*000
67*000
67*500
68*500
68*500
68*500
67*700
_ 67*500
67*000
67*000
..67.* 200..
67*700
67*500
66*500
65*700
65*000
63*500
62*200
62*200
62*700
62*700
62*200
^61*200.
60*200
59*500
59*000

-------
Ul
o
10.000
10.000
4,000
3,000
7.000
10.000
10.000
2. COO
8.000
8.000
3.000
3,000
13503
W*TER
71.000
74.000
72.000
63,000
59.000
64.000
63*000
76.000
83.000
83.000
78.000
73.000
.OOOK WIDTH"
• " 62*OCO«EL."
66,000
60*000
64,000
84,000
93.000
90.000
87.000
66.000
46,000
51,000
62.000
76.000
3*000
6*000
3,000
b.OOO
3,000
4,000
10,000
12.000
16,000
11.000
8.000
/•ooo
400.000CLD COVER-
HUM"
71.000WIND
59*000
59«000
59*000
Sg.OOO
58*700
58*500
58*200
58*500
59*500
60*000
60*200
.60*200
8«OOOTEMP AIR"
SPEED- 8*700
         UA«   13503,OOOK  WIDTH*    4oo.ooocLD  CQVER-      S'OOOTEMP   AIR»      75.000

         TEMP

-------
 \UMdER OF CASES-    4

 ALLOWED QTS

   •looroouE 01

   tSOOCOOOE 01

   •3000000E 01

   •400POOOE 01

 NUMBER OF DAYS  AVEKAGED«

 DAYS AVERAGED

     1

     8

 PTBL1    TTBL1     HFGTB1
•b85E-01
 122E OP
                02  '108E.
                02  «107E
•178E 00  «5UOE 02  tl07E
«256E 00  »60CE 02  «106E
•363E 00  »700E 02  -105E
•507E 00
•698E 00
•949E OC
•127E 01
t!69E 01
          t800E 02
          •900E 02
          »10GE 03
          •11GE 03
          t!2GE 03
•105E 04
• 104E 04
• 104E 04'
•103E 04
•103E 04
 DAYS SINCE MARCH 21«
                           41.QOOBETA"
                        45^000

-------
ADDITIONAL DATA FOR STATION 7 ABOVE THE DAM
TEMPERATURES AT STATION 7, °F, DAILY AVERAGES,  MAY  1-JUNE 21
48.9, 50.7, 52.3, 52.4, 52.0, 51.8, 51.9, 52.9,
53.0, 53.1, 54.5, 55.2, 55.0, 54.5, 54.2, 54.2,
53.6, 52.4, 51.4, 50.8, 51.0, 50.6, 52.3, 53.9,
53.7, 54.1, 53.8, 54.3, 55.3, 56.3, 57.9, 59.0,
59.4, 58.8, 58.9, 60.0, 60.9, 62.3, 63.3, 64.6,
65.2, 66.8, 69.2, 69.3, 69.0, 67.3, 66.9, 66.1,
62.4, 59.3, 59.9
                             52

-------

NUMBER 6F
CLD C9VE.R
	 5.000
5.000
10.000
'' 10.000
9.000
10*000
10.000
4.000
.000
" " 9.000
_____ 	 10*000
10*000
1.000
1.000
.000
.000
.000
1.000
8.000
8.000
8.000
7.000
.. .. 	 9.000
9. COO
5. COO
5.000
ocr ir,n.
AUGUST
DATA LINES'
AIRTE^P REL
66*000
64*000
66*000
70.000
75.000
75.000
71.000
66*000
62*000
62*000
62*000
67*000
77.000
79.000
75.000
65*000
62*000
59.000
62* COO
75.000
82.000
83.000
79.000
68.UOC
66,000
64.000
DTK ii, it/j
15 to 31
256TJME AV
HIH rtlND
87.000
90.000
90.000
84.000
69.000..
66.000
76.000 "
.....87.000...
93.000
97*000
100.000
93,000.
62.000
47.000
b'8.000
87.000 ""
93.000.
97.000
97,000
71.000
55,000
bl.OOO
65,000
93*000
93.000
97.000
and SEPTEMBER
, L8GIC-.
SPD WATER
"b.COO
6. COO
7. COO
8*000
_..iq*ooo
10. COO
6*000
	 ...5*000
3. COO
3*000
. ...*»coo
4.000
b.OOO
9.000
3.000
3.000
3.000
4. COO
4. COO
b.COO
b.COO
7. COO
4. COO
3*000
3. COO
3*000
12 to 26
0 	 	
TEMP
78*000
77*500
77*200
77.500
77*200 _ 	 _
77*000
77*000
77« 000
76«700
76*700
	 76*000 .___ 	 	
75*700
75*700 "" " 	 "
76*500
77*000
76*500
76«200
76*500
76«bOO
76*500 	 	 _.
76.500
77*500
77*700
77t200
76*700
76»700
53

-------
t
t1"
r
i
t
t
 I
t
3.000
8.000"
8.000
9.000
~' "10, COO
8.000
3.000
8.000
5.000
7.000
""" 5.000
9.000
9,000
"" 4.000""
3.000
3.000
.000
.000
4.000
2.000
1,000
.000
',000'
.000
.000
4,000
8.000
8,000

66.000
~ 76*000
85*000
85*000
67.000
66.000
65.000
63.00C
63.000
74.000
~ 80.000
69.000
72.000
67.000
63.000
60*000
63.000
74.000
79.000
81.000
73.000
67.000
63.000
61.000
62.000
75.000
80.000
80.000

97.000
71.000"
57«000
51.000
87.000
93.000
93.000
97.000
100.000
84.000
67.000
84,000
34,000
"93Tcbo"
97,000
97.000
97.000
71.000
60.000
54.000
69.000
84,000
90.000
93,000
97.000
69.000
49,000
56.000
54
3. coo
6*000
4*000
9* COO
11.000
5. COO
5. COO
6~.OGO
.. *«coo
4. COO
"" 4,OOG~
9.000
5.000
5.000
3.QOO
5.000
4.000
10. COO
5.QOO
5.000
6.00C
3.000
6.000
7. COO
3.000
11.000
1U.COO
10.000

76*700
~ 76*700
77*200
77*000
77*000
76*700
76*500
76*500
75*700
76*000
76*700
77*200
77*200
76*500
76*200
75*700
75*700
76*000
76*200
76*700
77.200
76.500
76*200
76*200
75*200
75*500
76*000
76*500


-------
i
r 	 "~" 10.000
r
10.000
«[*
ui 10.000
V
: 	 10.000
10. 000
10. COO
" 10.000
	 lo.ooo
8. COO
1.000
	 	 2.000
.000
.000"
.000
9.000
7.000
9.000
lo.ooo
" 	 ~ ' lo.ooo
10. COO
1.000
,000
,000
.000
1.000
.000
i .000
f
.000
• 000


70*000

63*000

69*000

67*000
66*000
65*000
61*000
_ 61*000
61*000
54.000
51.000
47.000
50.000
64.000
68.000
70.000
67.000
67.000
65.000
64.000
60.000
64.000-
68.000
71.000
65.000
55.000
52.000
49.000
51,000


79.000

	 84,000 	

76.000 *

73.000
81.000
84,000
93.000
	 90,000 	
75,000
90.000
93.000 	
100.000
100.000
65.000
55.000
49,000
66,000 	
61.000
73,000
75,000
81,000
58.000
49.000
48.000
61,000
90.0CO
93.000
96.000
100.000
55

6, COO

5. COO _

8.000

13.000
13.000
11.000
10. COO
_8.0QO 	
f.OOO
4.000
3.000
3.000
5.000"
6.000
9.000
5.000
4.000
3.000
8.000
b.QOO
/•COO
8.000
6. COO
8.000
4.QOO
5,000
3.000
t.QOO
5.000


76*700

76*500

75*500

75*200
75*000
75*000
75*200 	 "
_76*000 	 	 	
76«000
76 • 000 "
75.500
74.500
73.500
73.500
74*000
75*000
75.000
74*500
73*700
73.500
73*200
73»200
73*500
74.500
75*000
74*500
73*700
73*500
73*200


-------
1.000
-. -6(000
9.000
8*000
7.000
10.000
10.000
10.000
_ 	 10.000
10.000
10.000
10,000
10.000
10.000
10.000
10.000
^000
6.000
6.000
" " 	 " 4.000
5.000
10.000
10.000
9.000
4.000
2.000
.000
10.000

69.000
76 •000"
77*000
69.000
"63.000
61.000
62.000
64.000
65.000
75.000
76.000
72.000
70.000
" 68.000
66.000
67.000
79.000
84.000
86.000
81*000
78.000
77.000
68.000
68.000
76.000
" 83.000
85.000
77.000

68.000
48*. 000
48.000
73.000
""90.6"60~~"
97.000
93,000
"90.000
93.000
69.000
"" 66 ,000
34.000
90.000
93.000
100.000
97,000
77.000"
65.000
63,000
79,000
88.000
88,000
93,000
100,000
97,000
74,000
b3.000
64.000
56
6.000
9.000
, 8. COO.
b.OOO
4.000
4.000
4.000
&.QOO
. 5*000 ..
b.COO
6.000
4.000
4.000
5.000
4. COO
4.000
8. COO
4. COO
4.000
4.QOO
9.000
9. COO
b.COO~~
4. COO
^•000
~ Ib.COO""""
9.000
b.OOO

73*200
74*000
74*000
73*500
73.000
.72*700
72*700
'72*700
73*<500
74*000
74*000
73*700 .
73*500
73*500
73*500.
73*500
"74*000 ~"
74*500
75*000
75*000
75*500
75*500
75*200
75*000
75*500
76*000
76*500
77*000


-------
" " " 5.000
: 	 .coo
, .000
II
" "" 	 3.000
__4.000 __
2.000
	 " 2.000"
5.000
3.000
	 3.000
	 9.000
10.000
__ 8.000 ~
9.000
5.000
'10.000
	 4,000
2.000
9.000
5.000
2.000
4*000
.... „ 	 10.000
10. COO
10*000
	 _ 10.000
5.000
T..
a, ooo
7,000
69.000
64.000
61.000
63.000
77.000
85.000
87,000
81.000
76.000
72,000
73.000
75,000
84,000
90,000
91,000
' 79.000
74.000
70,000
68,000
69,000
83,000
88.000
74.000
74.000
71.000
60.000
56.000
b6,000
60,000
81.000
93.000
97.000
100,000
.__7*.000
61,000
57.000
79,000
82,000
93.000
87.000
85.000
67.000
56.000
bO.OOO
69.000
82,000
93,000
10-0.000
100,000
67.000
61.000
82.000
82.000
90.000
67.000
75.000
75.000
62,000
57
4.000
	 3.000 ._
3.000
4, COO
	 8*000 _
11.000
b.OOO
	 5 .000
5. COO
3.000""
	 _ 	 4*000 	
b.QCO
9.000
9«000
10. COO
8. COO
4. COO
3.000
4.000
b.COO
b.COO
b.OOO
12. COO
3.000
7.000
7.000
6. COO
7.000
9,000
76,500
76 • 000 _ _ 	 	 	 __
75^700
75,500
75*500 	 __
76«000
77«000 	 ""
77 • 000 	 	
77«000
76*500
76«200
76«000
76«200
77«000
77*500
77«700
77.200
76*700
77*000
77«000
77«500
77*500
78*500
79*000
79*000
71.200 	
70.700
70*200
70*500

-------
10.000
10*000
10.000
10.000
~i o.ooo
4.000
9.000
5.000
9*000
4. COO
9.000
10.000
10.000
10.000
10.000
10*000
1 0.000
10.000
10.000
10.000
10.000
10.000
10.000
10,000
10.000
8.000
9.000
10.000

62.000
62»000
60.000
56.000
54.000
51.000
51.000
61.000
63.000
64*000
57.000"
52.000
51.000
50,000
51*000
59.000
59.000
55.000
54.000
54.000
54.000
54.000
54.000
55.000
57.000
59.000
57*000
57*000

48.000
50*000
58*000
?8*000
83.000 ~
90.000
93.000
58.000
.46.000
47.000
~ 69.000"
83,000
86.000
86.000
90.000
70.000
75.000
90.000
93.000
96.000
96*000
96.000
96.000
100.000
96.000
93*000
93.000
96.000
58
9.000
~" 8*000
6*000
3. COO
3. COO
3.000 ..
3.000
Ifch.COO
b.COO
8*000
3VOOO"
3. COO
6.000
4.000
7. OOP 	
8.000
5*000
5*000
8*000
4*000
6.QOO
4. COO
6.000
3.000
8*000
b.COO
5*000
7*000

70*500
70*500
70*500
70*500
70»200
70*000
69*500
6**5tfO
70*200
70*500
71*"000~~
70*500
70*200
69*700
69*500
69*500
68*500
68*200
68*000
68*000
68*000
67*700
67*500
67*700
67*700
67*700
67*700
67*700


-------
10*000
10.000
10*000
	 ~ 9tOOO
9*000
9*000
6*000
	 . 9.000
10*000
.000
• 000
4.000
8.000
	 6.000
10. COO
1 0.000
10*000
10*000
10.000
10.000
1C. 000
10*000
10.000
2.000
8.000
	 4.000
9.000
2.000
.000

58.00C
58.000
56*000
54*000
54*000
53*000
51*000
51*000
50*000
42.000
41.000
52*000
55.000
56.000
50.CQO
48.000
50.000
50.000
52.000
52.000
54.000
51.000
51.000
47.000
41.000
39.000
40.000
54.000
61*000

93*000
90.000
83.000
'75.000
69.000
72*000
69.QOO
...71*000
71,000
86.000
96.000
55.000
53.000
_ 51.000
74.00.0
93.000
93,000
96.000
96,000
96.000
96.000
96.000
23.000
93.000
96.000
100.000
100.000
90,000
72.000
59
11*000
.._„ 1.1*000
12. COO
~ 13.QOO
12. COO
12*000
9*000
	 11*000...
10.000
3.000
4.000
8.000
11.000
5. COO.
4.C.OO
7.000
10.000
8.000
12.000
4. COO
6.000
13.000
13.000
4.000
3.000
	 3.000
3. COO
8.000
10*000

67*500
	 67*200_
67*000
67*000
67*000
67*000
66*700
	 66*700 ..._
66*500
66*000
65*500
66*000
66*700
	 __.66*700
66*200
66*000
65*700
65*700
65*000
65*000
65*500
65*200
64*700
64*200
64*000
_ 63«500
63*700
64*500
64*700


-------
V.
2.000
	 i.ooo
6. COO
10.000
.._ "10.000
10.000
10.000
10.000
9.000
5.000
.000
•000
5.000
.000
2.000
5.000
4.000
3.000
.000
.000
.000
10.000
10.000
10.000
10.000
10.000
10.000
9.000

63*000
55*000
55.000
54.000
54.000
54*000
55.000
55.000
51.000
47.000
43.000
35.000
33.000
34.000
48.000
53.000
54.000
44.000
38.000
35.000
34.000
41.000
44.000
48.000
51.000
54.000
57*000
58.000

60.000
69.000
62.000
64,000
~ 67~,000~
69.000
75.000
80.000
90*000
74*000
73.000
85.000
92,000
96.000
66.000
45,000
42.000
71.000
86.000
89.000
92.000
86.000
80.000
93.000
93.000
100.000
100.000
100.000
60
13.000
7. COO
12.000
11.000
13.~OC"0
16, COO
14.000
8. COO
. 12*000
9*000
6,000
.4,000
4.000
4.QOO
4. COO
6,000
7, COO
5,000
5.000
4.000
4. COO
10.000
7.000
12.000
23.000
1 7*000
i.o.ooo
8. COO

64*200
63*700
63*700
63*500
~ 63*500
63*500
64*000
64*200
64*000
63*500
63*000
63*000
62«700
63*000
63*500
63*200
62*700
62*500
62*200
62*200
62*000
61«700
	 61*500
61*500
61*500
61*000
61*000
60*700


-------
t'
f
'. ' """ 7.000
i!
10.000
Jl
, 1.000
11.
•"" " 	 10. 000
10.000 	
10.000
*" 	 ~" 	 10. coo"
10.000
10.000
10.000
	 10.000
10.000
i o.ooo
10.000
5,000
7.000
• 000
1.000
' 	 3.000
3.000
7.000
8.000
4.000
.000
.000
_ 	 	 8,000
j 2.000
7,000
7,000


56*000
53.000
61.000
64.000
57*000
55*000
52.000
50.000
50.000
50*000
50.000
51*000
53.000
53*000
50*00.0
49*000
46*000
43*000
56*000
63*000
65*000
54*000
50*000
47*000
44*000
45.000
60*000
66*UOO
68*000


100.000
100.000
97.000
75*000
	 93*000.
96.000
100.000
100.000
100.000
100.000
100.000.
100.000
100.000
__100.000
93,«.OJaa
93.000
89,000
100.000
78,000
65,000
59.000
83.000
89.000
96.000
96.000
100.000
87.000
68*000
63.000
61

3. COO
3.QOO
9. COO
6.000
_ 7.-coo.
6.000
8.000
__8.000
7.000
6.QCO
.. 	 7.000.
7,000
4,000
; 	 4, COO
6, COO
4,000
4.000
3,000
/•OOO
10, COO
10.000
7.000
_..».? 000.
5.000
3.000
4,000
14,000
12.000
10.000


60*700
61*000
61*500
62*000
	 61*500
61*500
61*200
61*200.
61*200
61*000
.60*500
60*000
59*500
	 59*200
55*5-00-
59*500
_59*500.
60*000
60*700
60*700
60*000
59*500
	 59*200
59*000
' ~59«000
58*700
59*200
59*500
59*000


-------
                 .000     61.000      78.000       6.000     59*000
               f.OOO     6l«000      78*000       7.000     58*700
          UA»    77l8«OOOK  rtlDTH-     fOO.OOOCLD  CQVER"      2.000TEMP  AIR-     62.000
          TEMP WATER-      60.000REL   HUM-      72.000WIND   SPEED-      8.700
          NUMBER OF CASES-     4
          ALLO^EP OTS
             •100COOOE 01
             .200rCOOE Cl
             .3000000E 01
             •fOOOOOOE 01
          NUMdEK fcF DAYS AVERAGED-      2
£         CAYS AVERAGED
              1
              2
          FTBLl    TTBL1    HFGT81
         *******»»*******«»*«*«****•»***«*«*«***«#»«<»*«•«*****«**»»«»**
.
.
*
.
•
.
.
*
*
*
885E-Q1 »32oE
122E
178E
256E
363E
5C7E
698E
9f9E
127E
169E
OC
00
00
cc
00
00
00
01
01
f
*
*
*
.
*
.
.
.
40CE
500E
600E
700E
800E
90CE
100E
11CE
12GE
02
02
02
02
02
02
02
03
03
03
.
.
.
.
.
*
*
•
•
*
1Q3E
107E
107E
106E
105E
105E
lOf E
lOf E
103E
103E
Of
Of
Of
Of
of
of
Of
Of
of
of
          DAYS SjNCE  MARCH  Si'       75.000BETA*       45,000

-------
OCTOBER 30 , 1974
OCTOBER 1 to 3 , 17 to 24, and 27 to 29, 1973
NUMBER 6F DATA
CLD C9VER AIR
~ .000
	 . poo 	
.000
.000
3.000
8.000
5.000
5.000 	
5.000
3.000
10.000
10.000
10.000
10.000
10.000
10*000
10.000
10.000
10.000
10.000
10*000
10.000
10.000
10.000
10.000
10.000
LINES"
rEMp REL
38*000
37.000
38*000
56*000
65*000
66*000
59*000
55.000 ._
54*000
54*000
53.000
58.000
60*000
58.000
58*000
59.000
61.000
60*000
62.000
65*000
64.000
65.000
62*000
58*000
44*000
45.000
112TIME AV
HU^ WIND
96.000
100,000
100.000
72.000
.,..47*000..
37.000
56.000
_., 67.000..
75*000
75*000
74.000
72.000
84.000
96.000
100.000
97.000
97.000
100.000
100.000
97.000
100.000
100.000
100*000
100.000
65.000
65.000
63
. L8GIC-
SPO WATER
4.000
	 3.00.0.
3*000
6*000
	 	 8.*.000_.
8. COO
9.000
	 5.000__
11. COO
7.000
9.000
10.000
10.000
	 9*coo._
8*000
7*000
	 8.000
4.000
4.000
6.000
7.000
3.000
b.OOO
3.000
9. -000
6.000
0
TEMP
"60*000
60*000
60*000
60*700
_ 61*000 	 	 	
60*700
60*500
_. _ .,60*500 	 	
60*200
60« 200
60*200
60*500
60*500
_ 60*700. ._ 	 „, 	
60*500
60*500
60*500. 	 	 ...
60*500
60*500
60*700
61»000
60*700
60*500
60»5UO
54*700
54*700

-------
t " 	
I
1 10.000
1
\ ' "10.000
1
«u_ 10.000
10.000
1 0.6 oo
10.000
10,000
lo.ooo
9.000
8,000
loVooo
10,000
10.000

10,000
1.000
3,000
5.000
1.000
5.000
ic.ooo
10.000
10.000
10.000
lo. coo
10.000
10.000
I
1. 10.000
10.000
45.000
45*000
45*000
47.000
""45*000
45.000
43.000
42*000
38*000
46.000
47.000
46.000
45.000

43.000
37.000
32.000
32.000
43.000
48.000
50.000
44.000
45.000
44.00C
44.000
44.000
44.00C
46.000
46,000
68.000
" 77.000
80,000
56.000
58.000"
60.000
73,000
76,000
82.000
66.000
61,000
66.000
71.000

73.000
89.000
96.000
100.000
100.000
63.000
50.000
68.000
58.000
80.000
86.000
86.000
100.000
100.000
100.000
64
10. COO
10. 000
_ 14* 000
10.000
"""7.000
7*000
4.000
*»COO
5.000
7,000
6. COO
6.000
4. COO

3". 000
3.000
3.000
3.000
.000
3.000
5. COO
6. COO
8.000
11.000
11.000
7.000
3. COO
6 . 000
7.000
54*500
54'7UO 	 	 -
55*000
55*500
55.500
55*500
55*000
55*000 ~
54*700
54*700
54*500
54*500
54*200

54,200
54*000
54*000
53*700 	 ""
53*700
53*700
54*200
54*000
54*000
53*700
53*500
53*200
53*000
53*000
53*500

-------
10.000
	 10.000
10.000
L — " 	 "" StOOQ
	 8.000
2.000
	 " "" .000
__.. t000
.000
.000
	 .000
.000
4.000
.000
3.000
5.000
	 .000
.000
.000
_. .000
.000
4.000
3.000
7.000
8.000
, 	 _. 4.000
, i
I 5.000
r
I i.
5.000
4.000

46.000
44.000_.
44.000
41.000
39.000
43.000
47.000
49.000
40.000
37.000
34.000
33*000
32*000
	 47*000_
56.00C
58.000
45.000
44.000
40*000
38.000
35*000
56*000
62.000
63.000
55.000
50*000
47.000
44.000
39.000

96.000
....IPO. 000.
100.000
100.000
._.. 89,000,
71.000
56. COO
50.000
86.000
89.000
92.000
96.000
100.000
	 93.000
64.000
60.000
93.000
86*000
96.000
100.000
100. OCO
72.00.0
58.000
54,000
69.000
86.000
93.000
96.000
96.000
65
10. COO
7.000
6.000
7.000
	 6.COO_ 	
9.000
4.000
	 .4.000 	
3. CCO
3.000
	 5*000 	
4.00.0
3. -000
	 10. COP 	 ___
6. COO
7. COO
_ b.COO 	
b.COO
3. COO
3. COO
b.COO
11.000
	 10.000
6. COO
b.COO
	 3. COO
3. COO
3.000
3,000

53*200
53*000
53> COO
52«700
52*500
52*200
52.700
53*200
53*000
52*700
52*500.
52.200
52*000
52*000
52*000
52*500
52.500.
52*500
52*000
52*000
51*500
51*700
52*000
52*500
52*500
52*200
52*000
51*500
51*200


-------
7.000
4*000
tOOO
.000
:~"~,oou
10.000
10,000
10. LOO
10.000
10.000
lo.coo
10.000
4,000
2,000
5.000
8.000
" 8.000
10.000
9.000
10.000
10,000
10,000
8.000
5.000
8.000
10.000
10,000
10,000

50.000
61.000
62*000
52,000
43,000
54,000
47,000
" 45«OOC
44,000
44,000
44*000
40,000
38,000
31,000
30,000
27,000
39,000
42,000
43,000
37,000
41,000
42,000
40,000
36,000
45,000
49,000
43.000
47.000

96.000
67.000
67,000
93.000
100.000
96,000
96.000
83.000"
80*000
74.000
71.000
76.000
67.000
92.000
96.000
96.000
79.000
63.000
63.000
82.000
73.000
71.000
62.000
79,000
68.000
09.000
39 ,000
74.000
66
3,000
"6.000
5. COO
3.000
3,000
	 10,000
9.000
lo.Q&G
11.000
13.000
9.000
7.000
3.000
3.000
3.000
5.000
4.000
	 8.QOO
5,000
3. COO
6. COO
9.000
12.000
3.000
11.000
12.000
13,000
11.000

51*000
51*500" 	 """"
52»000
52*000
52,000
52,000
51,700
" 51*5t>$
51*700
52*000
52*000
51*700
51,500
51*000
51 t QOO
50*700
~" 50*500
50*700
50*700
50«500
50*200
50*000
50*000
50*000
50*000
50*000 "
50*000
50*000


-------
    10.000     47.000     93.000      8.000     50*000
UA-   f240.000R  WIDTH-    fOO.OOOCLD  C9VER*      1»OOOT£MP  AlR»
TEMP W#TEr<»     50«OOOREL  HUMi     68'OCOWIND   SHEED»       *000
NUMBER QF CASES-    f
ALL8KET OTS
  •looroooE 01
  •200COOOE 01
  •300COOOE 01
  .fOcroouE 01
NUMBER 6F DAYS AVERAGED?     2
CAYS AVERAGED
    1
    2
PTBLl    TTBL1    HFGT81
                                                                      45*000
.
.
•
t
.
.
.
t
.
t
885E-01
122E
178E
256E
363E
507E
698E
9f 9E
127E
169E
00
OP
OC
OC
OC
OC
00
01
01
• 320E
•
t
.
.
.
.
.
»
.
400E
500E
600E
700E
8UOE
900E
100E
110E
12CE
02
02
02
02
02
02
02
03
03
03
.
.
.
.
.
•
.
.
.
.
108E
107E
107E
106E
105E
105E
lOfE
10f E
103E
103E
of
Of
Of
Of
of
Of
Of
Of
of
of
DAYS SINCE MARCH
                          103.000BETA*
45.000

-------
ADDITIONAL DATA FOR STATION 7 ABOVE THE DAM

TEMPERATURES AT STATION 7, °F, DAILY AVERAGES,
OCTOBER 1-3, 17-24, AND 27-29

60.1, 60.0, 59.8, 55.8, 55.0, 54.5, 53.6, 53.4,
53.0, 52.6, 52.9, 52.7, 51.9, 51.0
                            68

-------
                   NOVEMBER 15,  1973
                   OCTOBER 17 to 24 and  27 to 29, 1973
                   NOVEMBER 1 to 14, 1973
NUMBER er DATA LINES-   BOOTiME AV. LSGIO.	,_o	

CLO cevE9  AIRTEMP   REL HU*  WIND SPD  ^ATER  TEMP

    10.000     44*000      65.000      9.00054*700

    10*000     45*000      65.000  	6.000     54*700
10.000
' 	 ~ 	 10.000
	 10,000
10.000
10.000
10.000
10*000
10.000
9.000
8.000
10.000
10.000
10.000
10.000
1.000
3.000
5.000
	 	 1.000
5.000
10.000
	 10.000
10.000
10.000
10.000
45.000
45.000
	 45.000
47.000
45.000
45.000
43.000
42.000
38.000
46.000
47.000
46.000
45.000
43.000
37.000
32.000
32.000
43.000
48.000
50*000
44.000
45.000
44.000
44.000
68.000
~ 77.000'
80vQOQ_.
56.000
bS.OOO
60.000
73.000
" 76.000
82.000
66.000
61,000
	 A6'000
71.000
73.000
89.000
96.000
100.000
100.000
63.000
bO.OOO
68.000
58.000
80.000
86.000
10.000
10. COO
	 _14.000 	
10. COO
7. COO
7.000
4.000
	 "4.000
5.000
7.000
6.000
	 6 . 000 	
4.000
3.000
3.000
3.0.0.0
3.000
	 .000 	
3.000
5.000
6.000__ 	
8. COO
11.000
11.000
54*500
54*700 	 ~~
55 » 000 	 . 	
55.500
55*500
55*500
55*000
5S«000
54*700
54«700
54*500 	 '
54*500 	 __
54*200
54*200
54*000
54*000
53*700
53«700.._
53*700
54*200
54*000 _ 	
54*000
53*700
53*500
                             69

-------
1 10.000
ti. " io.ooo
I ! '
'',..._ 	 _._. 10.000
10.000
lo. coo
10.000
10*000
9. COO
8.000
2. COO
_..___. tOQO
.000
.000
" .000
,, - .... .000
.000
4. COO
.000
3.000
5.000
.000
.000
.000
.000
.000
(f - '- - '4,000
1
> 3.000
7.000
44'OOC
44.000

46.0CO
46.000
46/000
44*000
44*000
41.000
39.000
43.000
47.000
49*000
40*000
37*000
34.000
33.000
32.000
47*000
56. COO
58.000
45.000
44.000
40.0UC
38.000
35.000
56.000

62. COO
63,000
86.000
100.000

ICO. 000
100,000
~~ 96,000
100,000
100.000
" " 100* 000
89.000
71. COO
"56.000
5Q.OOO
86.000
89,000
52,000
96.000
100.000
93.000
6.COO
6.000
9.000
~4.~000
4*000
3. COO
3.000
5. COO.
4,000
3,000
10,000
6,000
7.0CO
5, QCO
5.000
3.000" "
3.000
5.000
11. COO

10. COO
6. COO
53*200
53*000

53.000
53.500
53,200
53«000
53*000
52*7t30"
52*500
52*200
52*700
53*200
53*000
52*700
52*500
52*200
52*000
52*000
52*000
52*500
52*500
52*500
52*000
52*000
51*500
51.700

52*000
52*500
70

-------
	 " "8.000
4.000
5.000
5.000
4.000
7.000
" 4.000
.000
.000
.000
10.000
10.000
..__. . ..... --lotooo
10.000
10.000
lo.coo
10.000
4.000
2.000
5.000
8.000
8.000
lo.coo
9.000
~ '- 10". ooo
10.000
10.000
8.000
5.000
55.000
50.000
47.00C
44.000
39.000
50*000
" 61.000
62.000
52.00C
"" 43.000
54.000
47.000
45.000
44.000
44.000
44.000
40.000
38.000
31.000
30.000
27.000
39.000
42.000
43.000
37.000
41.000
42.000
40.000
36.000
69.000
	 86,000.
93.000
96.000
96.000
96.000
67.000
67.000
93.000
100.000
96.000
96.000
83.000
80.000
74.000
71.000
76.000
67.000
92.000
96.000
96,000
79.000
63,000
63-000
82.000
73.000
71.000
62.000
79.000
5.000
	 3.000 	
3. COO
3.000 "
3.000
3.QOO
6.QOO
5.000
3. COO
"3.000 ""
10.000
9.000
i if. ooo
11.000
13.000
9.000
7.000
3.000
3.000
3.000
5. COO
4.000
8.000
b.QOO
3.000
6,000
9.000
12.000
3.000
52*500
52*200. _ 	 _ 	 .... 	
52*000
51*500
51*200
51.000
51»500
52«000
52»000
52*000
52»000
51*700
51.500
51*700
52*000
52«000
51*700
51*500
51*000
51*000
50»7VO
50*500
50*700
50*700
50*500
50*200
50*000
50*000
50*000
71

-------
r
8.000
	 io.ooo
lOtOOO
10.000
"10.000
10*000
lOtOOO
10. COO
10.000
10.000
10.000
10.000
10.000
	 "ib.coo
6.000
4.000
5.000
8. COO
10.000
10.000
lo.ooo
10.000
3.000
3.000
3.000
9.000
9. COO
4,000

45*000
49*000
49*000
47*000
47,000
39*000
48*000
46.000 "
47*000
49.000
50*000
49*000
49*000
' 49.000
49*000
48.000
49.000"
54.000
52*000
50*000
45.000
43.000
42*000
42.000
44.000
44.000
42.00C
41.000

68*000
59*000
59.000
74.000
" 93,000
93.000
80*000
83.000
93.000
93.000
69.000
63.000
61,000
56,000
50.000
48.000
" "48.000
43.000
45.000
50.000
74-000
76.000
71.000
60,000
47.000
40*000
41.000
40.000
72
11*000
12.000
1.3.000.
11.000
8,000
3*000
5.000
e>»co6~
6.000
9.000
"~i2*ooo~
14.000
20.000
13.QOO
	 14.000
16.000
8. COO"
9.000
9.000
	 b.QOO
b.COO
6.000
" 14. COO
14.000
lb.000
17.000
12.000
15.000

50*000
50*000
50*000
50*000
50.000
... . 49*000
49*000
4.9».0-UO
.49*000
49«200
50*000
50*000
49*200
4 g". ooo
48*200
48*200
"48*500"
48*700
48*700
48*500
48*500
48*700
48*700
49*000
49*000
49*200
49*000
49*000


-------
: 	 " 9tOOO
1 9.000
6.000
" 	 " 8. COO
9*000
9.000
" 6.000
9. COO
1.000
2.000
2.000
3.000
5.000
9.000
6.000
""5.000
8.000
10.000
10.000
10.000
7tOOO
9.000
10.000
10.000
1C. COO
	 7.000
7.000
8.000
8*000
4o*ooo
39.000
37.000
36.000
36*000
38*000
39.000
37.000
33.000
31.000
32.000
31.000
34.000
35. COO
38.0.00
35.000
34.000
32.00C
31.000
30.000
28.000
31.000
32.000
29.000
28.000
27.000
£5.000
27.000
30.000
39.000
38.000
39.000
"40.000 "
40.000
37.000
36.000
41,000
44,000
'47.000 ~
43*000
43.000
42.000 "
37.000
31.000
32.000
37.000
33,000
36.000
41.000
53,000
40.000
36.000
58.000
61.000
bS.OOO
60.000
61,000
58.000
73
14.000
18.000
12.000
~ '14*000
17*000
11* COO
11.000
8.000
8.000
"" "6.000
7.000
7.000
	 ~12rGOd "
9*000
10.000
11,000
7.000
11.000
lu.coo
12*000
14, COO
1U.COO
.17.000
8.000
12.000
	 7.000 	
9.000
b.OOO
4.000
48*500
48*500
48*500
48*200
48*200
48*2UO
48*200
47*500
47*000
47*000
46*700
46*700
47*000
47*000
46*700
46*500
45*700
45,500
45*200
45*000
45"* 000
45,000
45*000 	 	
44*700
44*500
44*500 __
44*500
44*500
44*500

-------
1 7.000
i
•;1 9.000
"... ,9. COO
1
10.000
10* COO
10.000
10.000
10.000
10.000
9.000
10.000
7. COO
9.000
9.000
6.000
7.000
"7 •000
9.000
9.000
10.000
9.UOO
10.000
10.000
10.000
8.000
t 	 7.000
1 5.000
10.000
36.000
33.000
38*000
33*000
36*000
36*000
36*000
36*000
33*000
40.000
41.000
38.000
36.000
35.000
32.000
32.000
34*000
33.000
31.000
29.000
26.000
25.000
25.000
25.000
30.000
33.000
31.000
31.000
52.000
46.000
46*000
53.000
67.000
62*000
62.000
57.000
50.000
45.000
45.000
57.000
42.000
42.000
45.000
43.000
"38.000
45.000
43.000
45.000
46.000
46.000
53.0'00
66.000
56.000
42.000
43.000
45.000
6. COO
12. COO
.._.io*coo
7.000
8. COO
7*000
10.000
15-.GOO
15. COO
14.000
13.000
8.000
12.000
7.QOO
7.000
12. COO
12. COO
12.000
Ib.COO
13. COO
14.000
12*000
12.000
10.000
9.000
	 9. COO
10. COO
11. COO
44*700
44»700
44*200
44*000
44*000
44*000
43*500
43f5-0«
43*500
43*500
43*500
43*500
43*200
43*000
43*000
43*000
43*000
43*000
42*500
42*200
42*000
41*700
	 41*500 	
41*500
41*500
41*200
41*200
41*000

-------
1

-------
8.000
6.000
3.000
57tOOO
48.000
45.000
42.000
63,000
71.000
12.000
4.000
4.000
                                                        42*000

                                                        42.000

                                                        42.000

        UA*   7640.OCOR  rtlDTH*    400.000CLD  C8VER"       1»OOOTEMP  AIR-     50.000

        TEMP WATER*     41.700REL  HUM-     68.000WIND   SPEED"      4.400

        NUMBER er CASES*     4

        ALLOWED DTS

           .100COOOE 01

           •20CCOOOE 01

           .300COOOE 01

-o          .400COOOE 01
Ol
        NUMBER &F DAYS AVERAGED-     2

        CAYS AVERAGED

            1

            2

        PTBL1    TTBL1    HFGTBl


       • S85E-01  »32cE Q2   »108E 0**
       .122E 00  »40CE 02   »107E 04
       •178E 00  -500E 02   »107E 0^
       .256E 00  »600E 02   .106E Q4
       .363E OC  »700E 02   »105E 0^
       •507E GP  »300E 02   »l05t 04
       •698E OP  «90CE 02   •104E Q4
       »949t OC  »10CE 03   «104E Q4
       •127E 01  «11CE 03   .103E Q4
       •169E 01  «1HOE 03   »103E 04

-------
                      APPENDIX C

                   PROGRAM LISTINGS

This appendix presents complete program listings for the
STREAM, SENSIT, and MONT codes.
                           77

-------
1
2
3
4
5
6
7
8
9
10
11
12
13
If
15
16
17
18
19
20
21
?2
?3
24
25
26
27
23
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
• 000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
r
C
C
C
C
C
C
C









4
5



10

20
100

250
STRFAM
STREAM THERMAL M9DFL
IMTC* IN* I9*EL* AREA*U
C9MMQN DTEMP.TE"1P* XPR* XFND, DXPR, X.DX*
C9MM6M ERRBR.DXMAX
C9MM8MRHfij I*MO*MD* TAI RjCLD* RH^ ALBAR* TWS,TAj  EW^ EAj H9S*HS
C9MM9M HS^^ Hft3> P8R/EVAP,HEiHC/ HLYMN, PTBL ( 10 )*TTBL( 10) i WHS* CONST
CALL IM°UT
IF( 1NTC -4)4
XPR = DXPR
cgNTjNJUp:
D9 100 JF« l.INT
CALL DI-FFQ
G9 T9 (10*10.20)* INTC
CALL EULFR(OTEMPjTEMP*DX,l* JE*V->
G9 T8 100
CALL RK4(DTEMP*TEMP*DX*1.JE*X)
C9NTINUE
IF(X - XPR )       5*250*250
CALL 9UPT

-------
29.000
30.000
31.000 105"
32.000 '.
33.000 110
34.000
35.000 120
36.000
37.000
33.000 130
39.000 131
40.000
41,000 140
42.000
43,000
44.000 150
45.000
46.000 300
47.000
48.000
'49.000
50.000
51.000
52.000
53.000
54.000 10
55.000 20
56.000 C
XPR « XPR + nxPf?
IF(X - XFND) 5*300*300
C9NTINUF
JJMP • -1
C8NT1MUE
XPR =• X +. DXPR
C9KTIMUC:
CALLN9RD(DTEMP*X* XPR* TEMP* ERR9R, t . DX* DXMAX* JUMP* KSTP*KC* 1 »E-6* 18 >
IFUuMPilSOj^O.lSO
(•RlTEdB.isi) X
F3RMAT(//i x *'Ei4.5i INTEGRATIBN FAILURE')
CALL EXIT
C9NTINUF
CALL 3IFFQ
G3 T8 IPO
CALL 9UPT
IF(X - XFND) 110*300.300
CALL .EXIT
END
SJB38UTINE INPUT
1 CSM^ISN OTEMP.TEMP, XPR. XEND, OXPR. X* DX* INT.INTC*
1 IN* I3*FI../ARFA*UjERR9RjDXMAX
CSMMBNRHSj WMD*.HD* TAI R* CLD* RH* ALBAR j TWS , TA* EW*EA*H8S*HS
C9MM6N HSR*HR3*FBR*EvAPjHE*HC*HLYMN,PTBL(lO). *TTBL(10) *WMSjC6NST
C9MMBN HFG/r.LDl*HFGTB(io)*CeNSV
FSRMAT(AFIO.O)
F9RMAT(6T10)
CHBlCE 8F INTEGRATI8N SUBR8UTINF

-------
CD
Q
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
.
.
.
.
.
.
»
,
.
.
.
.
.
«
*
.
.
.
.
.
«
«
.
.
,
.
t
•
«
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000.
000
000
000
000
30
40
50
60

110
115

120

125

130
135

140
H5
150
C
C


160

IF! INTC - 3)
INT . INTC
G9 T9 60
INT s n
G9 T9 60
C3NTINUF
INTC
30*40*50
C9NTINUF
G8 T9.
WRITE!
F3RMAT
G9 T9
(11
19.
( * 1
ISO
OjlP.0^130,
115


)



****

140)

.

FULFR


INTC

1NTERRATI9N *****!//)

C9NTINUF
WRITE!
FORMAT
G8 T9
WRITE!
F9RMAT
G8 T9
WR I TE (
F3RMAT
CgNT.j M

19,
( M
125

)


*****


M8D.

EULER INTEGRATI8N *****(//)
150
19.
( M
135

)


*****

Uf

TH

8RDER RUNGE-KUTTA ******DX,DX



ADAMS M8UI,TBN INTEQ. »**»***!//)






• PARAMETERS

XOX/DXPR,
'F6.pl
E10.3/

/)
EN
D
XE-ND.
DX

s'Eln.3! DXPR »'E10.3

READ(IN.IO) FRR9R,DXMAX

-------
 86*000       WRlTE( 18.180) E9R8R.DXMAX
 87.000 180   F3RMATP  'ERR8R a(El0.3»   DXMAX o'E'.O.S//)
 88.000       REAQdN.10)  TEMP, U> AREA.F.L
 89.000       REAO(IN.IO)  RH8. WMPH, TAIRj CLP* RHj A-LBAR
 90.000       09 .185  IsljlO
 91.000 185   REAodN.10)  PT3L(I)i TT8L(l)j MFGTB(1>
 92.000       TA . (TATR - 32.)*5./9.
 93.000       W » WV|PM»22./15.
 9*iOOO       IN^S 9 W * .3048
 95.000       HMD B WMPH * 24.
 96.000       C8NST >i FL/( RH9*U*ASE:A )
 97.000       C3NS1 B (RH8#0.00328)/{P4«»3600.#Ot06l'M
 98.000       SINA »  STN(AL3AR^3.14159/180.)
 93.000       CLDt «  1. •  .07A5«CLO
103.000 C     INCIDENT SSl-AR ^ADlATlSN
101 •'000       H8S a 1.9*SINA
102.000       H3 = H8S»(1» • .0006*CLD»*3)
103.000 c     REFLECTED ssi.AR RADIATIBN
134.000       HSR s H3*3./AL3AR
10=»000       EA = ?^H*( 1013./147Q« )*SI ( TTBL, PTBLj TA IR» io>
106.000       WRlTEt18.200) TPMP
107-000 200   FSRMATM  INITIAL STREAM TEMPERATURE  *'F6.2i  DEG F'/>
103«000       WRlTElI8j210) U,AREA.EL
109.000 210   F3RMAT(i  STREAM VF.L9CITV = ' F6. ^' FT/SEC   CR. SEC. AREA
110.000      1F10.2'   SQ.  FT.      SURFACE WIDTH »'F6«ll  FT'/)
111.000       WRlTEf19.220) RM8*CLD^RH.ALBAR
112.000220   F9RMAT(i  RH8a'F5.2i   LR/CU.FT.       CLO=»F4.1'  'TENTHS'*
113.000      1»    RH«'F5.1I  PCTi/1   ALBAR 3iF4.1'  OEGRFES'/)

-------
             114.000        WRITE(I8,230)  TAtR,TA/C8NST/  CBNS1
             115.000 230    F3RMATP   AIR  TFMP.  ='F5.1'   DFC3  F'F8»1'   DFG  .C' i
             116.000       1'     C9NST siElO.3'      CONSl  «IEIO«3'/)
             117.000        WRlTE(19*240)  W.WMPH,WMS*WMD
             118.000 240    FQRMAT(i   WjND VELBCjTY  «»F6.2i FT/sECIF8.2IMPH'F8.2'  METERs1/
             119.000       1 '/SEC'F8.2i  MlLES/DAYl/)
             120.000        WRlTE'(I8.260)
             1P1.0QO 260    F9RMAT(/,T20tTTBL'T40'PTBL'T60lHFt5TB'/)
             122.000        08  ?70  t  »lj10
             123.000 270    WRlTEt16.280)  TTBL(I)* PTBL(I). HFGTB(I)
             124.000 28a    FQRMAT(inX/3F20.5)
             125.000        WRlTF(Ifl*300)  EAjH6S*HS.HSR
             126.000 300    F5RMAT{//'   FA ,»E12.4I    HSS «IE12.4'    HS B'E12.4j
             1?7.000       1  '    HSR  ='E12.4-'   LY/MTNM
             1P8.000        WRlTEC18.310)
             129.000 310    F8RMAT(MM
S            130.000        RETURN
             131.000        ENJD
             132.000        SUBRBJT'INE 8UPT
             133.000        C3MM8N  DTEMP,  TFMP,        XPRjXFND*DXPR,X,DX*  INT^INTC*
             134,000       1  IN, 18,El *ARFA*LJf ERR3R*DXMAX
             135.000        C3MM3MRHBJ  WMD/MDjTAlRjCLDjRH* ALBAR* T^'SjTAj  EW*EA*H6SjHS
             136.000        C3MMBM  HSR*HB3*FBRjevAP,HEjHCjHLYMNjPTBL(10)>TTBL(10)*W«S»CeNST
             137.000        CQMneN   rlFG^rLDl*HFGTB(lO)/C8N«;1
             13B.OOO        WRlTE(I8«10) X>DX
             139.000 10     F9RMAT(i    X =»'F7,H  FT     DX a'Ffe.l*  /)
             140.'000        WRlTE(I8.20) TE^Pj'DTtMP
             1^1.000 20    'F9RMAT(i   STREAM  TEMP «IF6»2'  DFG F        DTEMP »
             142.000       1'   DEG  F/FTl/)

-------
             143.000
             144.000 30    F9RMAT(i   EH  >'F13t5i                  EvAP/MMPD «'E12»5' HE «'
             145.000       1E12.5'   I Y/MIN     HFG  =iE12«5j/>
             146.000       WRlTF(l9,50)  H8q,F.BR,HC
             147.000 50    F3RyiATM   H8R ai£lP«5'    EBR»iF12.5"    HC  »'E12.5'  LY/MlNi/1
             148-000       WRlTE(I9,60)  HLYMN/HO
             149.000 60    F3RMAT('   T9TAL  HEAT  TRANSFER • I.NT/1NTC*
             157.000       1  IN,J9,Fl jARFA*U*ERR9R*DXMAX
S            158.000       cscNeNRMa, WMD,MDJTAIRJCLD*RHJALBARJTW.SJTA* EWJEA/HBS/.HS
             159.000       C-JMM6M  HSR' Hfl3i FBR^EVAP/HE^ HC, HLYMM, PTBu (10) i TTBL (10) • WMS^CBNST
             1<,0«000       C3^MSM   HFG*rLOl,HFGT
             161.000 C     'THERMAL FXCHANQr WjT-l
             162.000       TwS= (TFMP-3?.)»5./9.
             163.000       E.-/=(1013./14.7)#SI(TTBL.PTBL,TFMP.10)
             164.000' C     EFFECTIVF BArK RADIATI8N.
             165.000       H3B« (l4.38-.09*TWS-.04fi-#RH)/69.7?
             166.000       ESR  s H9R * rLOl
             167.000 C     EVAP63ATT8N HEAT TRAMSFF.P-.
             168.000       EVA? «  .35* (EW-EA)*(1. + .009R* WMD)
             169.000.      HFQ  » SI(TTBl iHPGTB/TEMPjlO)
             170.000       HE * EVAP*HFG*C^NS1

-------
171.
172.
173.
174 .
175,
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
139.
190.
191.
192,
193.
194.
195.
196.
197.
198.
199.
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
.000
000
boo
000
000
.000
000
000
000
000
000
000
c

c

c

c



ccccc
ccccc
ccccc
ccccc

c
c
c
c
c

c

120
130

150
160
180
C8NVECTI8N HFAT TRANSFER
HC = 39. #(.26 + .Q77*WMS)*(TWS - TA )/l440«
T3TAL HFAT TRANSFER T9 -WATER/ LY/MIN
HLYMN » HS - 
-------
200.000       GS T8 254
201.000 C     FIND X  IN TABLE.S  IN  TABLE
202.000   210 03 220  IKa2*M
203.000       II • IK
204.000       IF(XTBLdK)-X)
205.000   2.20
206.000   254 Xl
207.000       X2
208.000       Yl
209-000       Y2
210.000       SI
                             XTBl" dI-1)
                             XTBIJII)
                             YTBf dl-l)
                             YTBLdl)
                             Y1 + 
-------
2?S
2?9
230
231
232
233
234
235
236
237
238
233
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
.
.
.
•
.
..
.
.
.
.
•
.
,
.
.
.
.
.
.
.
.
.
.
.
.
.
•
25 5 •
256
•
000
000
000
000
000
000
000
000
000
000
000
000
0-0 0
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000


20


200


CCCCC
CCCCC
CCCCC
c
CCCCC
CCCCC
CCCCC



10




100



20

T.T+DT
RETURN
CONTINUE
09 POO InliNp-
Y( i )»• sYtn + (YP( i >+SYP*DT/?.
C9NTINUF.
RETURN
END



F3URTH 9RDER RUNGE-KUTTA INTEGRATTSN



SUBRQUTIME RK4(YP*YiDTjNE:j J*T)
DIMFNSI9M YP(5') .Y(5)*AK<5*4) jSYfS)
G9 T6( 10»20*30*40)> J
cgNjiNUp;
D9 1-00 i = l/NF
SY( T ) = Yd)
A<( T j'l ) = DT*YP( I )
Y.d ) = Yd ) +AK( I'jl }#.5
CaNTIMUR
ST » T
T ST +'nT*«H
RETURN
C9NTINUF
09 POO I»liNF

-------
2=57tOOO       AK(tjE)  . DT*YP(I)
25S..OOO       Y(I) =. SY(I> + AK< I j ? U.5
259.000 200   C9NTINUF.
260.000       RETURN
261.000 30    C9NTINUE
263.000       D9 300 i « 1,NE
263-000       AK(Tj3)  . DT*YP(I)
26^.000       Y(I) = SY (I) + AKH.3)
265.000 300   C9NT1NUE
2^6tOQO       T = ST + DT
267.000       RETURN
26SOOO 40    C8NTINUE
269.000       09 *00 T * 1,NE
270.000       AK(I^)  = DT.#YP(I)
271.000       Y(I)sSY(T) + (
272.000 ^00   C9NTINUE
273.000       RETURN
274.000       END
275.000 CCCCC
276.000 CCCCC
277.000 CCCCC
278.000 C     ADAMS-M9ULT9N INTEGRAT19N
279.000 CCCCC
280.000 CCCCC
281.000 CCCCC
282.000       SUBRBUTlNE
233.000       DlMENSrSN STARY(5)/Y(5),SY<5),SAVEY(5)/F(5).FP(5>,DELTA{5)tDALTA(5
23ft000      l>'A<5)/B(5)jr<5)»D<5)iAA<5)»BB<5)jCC<5)jDD(5)/SF(5)

-------
235.000
286.000
287.000
288-000
239.000
290.000
291.000
292.000
293.000
•294.000
295.000
296.000
297.000
293.000
299.000
300.000
301.000
302.000
303.000
304.000
305.000
306.000
307.000
308.000
309.000
310.000
311.000
312.000
313.000
IF ( 803 ) » I A
C JUMP P9S. REST6RE VALUES
999 T=SAVET
993 JUMp=0
09 901 I»1/NF
F( I )=SF( T )
901 Y(I)=SAVFY(I)
G3 T.8 10?
C J'JMP SJEG. INITIALIZE.
1 03 5 I»1»NE
3TARY! I )sY( I>
A( I 1=0.001
Bf I 1*0.001
C{ I } «0.0nl
50(1) lO.onl
KSTp=0
KDELY=0
KCBMsO
XT=95«/(?88.»64. )
Ua8A,3»/M 2.*R040. )
V995tO/?88.0
P«HR. 0/34.0
Q*35.0/7?.0
R«5. 0/48.0
S»1.0/l?0.0

-------
            314.000        IAM
            315.000        JjMpsO
            316.000        G8  T8  1101
            317iOOO  C      BEGIN  INTEGRATION STrP
            318.000   1000  D9  1111  T=1*NE
            319.000        SF(I)=F(M
            320.000   llll  SAVFY(I)«Ytn
            391.000  C      H  T90  SMALL  RETURN WITH JUMP NFG
            322.000    600  IF(A9S(T+H)-ABS'+D(I) >
            328.000     10  FP( I)«F(T)+2.3*A(n+3«6«B
S           329.000        IA»?
            330.000        G3  T8  1101
            331-000     11  D3  12  Isl^NE
            332.000     12  SY(I)=Y(T)
            333.000        D9  20  I»1*NE
            3-34.000        DELTA   CT)»F(I)-FPm
            3^b..OOO     20  Y(I>aY(n+V#OELTA  < t > *H
            336.000
            337.000
            338.000        G9 T8  1101
            339.000     21  KCSMsO
            3*0.000        D3 30  I»1/NE
            341.000        DALTA   ( T ) «.F( I) -FP( I)

-------
342,000    29 Y{I)s5Y(I)+V*DALTA  (IUH
343.000    3.0 C9NTIMUC
344.000 C     TEST F9R STARTING SEQUENCE
34b.OOO    31 IFUsTP-?8)3Ri40.*40
3^6'OOp C     APPLY TEST 2 9N ZER9TH STEP
347.000    35 IF«sTP>FiO*50*60
3^8.000 C     HALVING TESTS
3^9«000    40 D8 45 I=1*NE
353.000       IF(ABS(DALTA   ( T ) ) -ERRQR/ABS ( H n*Rj 45* 5g
351tOOO    45 C8NTINUF
352*000    50 IF(v*H*r.L!F-0.lP5)60,60,55
353.000    55 T=T-H
354.000 C     FAIL TESTSj HALVE H
355.000   ?23 H=H/2.0
356.000       KOELY»0
357.000       D9 56 I=1/NE
35S.OOO       A( I )sAm/2.n
353.000       B(I)*3(11/4.0
3#.o.ooo       cducm/s'.n
361.000       F(I)=SF(T)
362.000       Y(I)sSAVFY(I)
363.000    56 D(I)*D(I 5/16.0
364-000       G9 T8 1000
365-000 C     PASS TESTS' T.6RRECT AjB*OD
366.000    60 KSTpsKSTp+1
367.000       D9 65 IM/NE
368.000       A( I UA( I ^+3«0»8( 1 )+6.0*C( I )*10.n#0( I )-t-P*DALTA   (I)
369.000    62 B( I )«3< I )+4.*0*C( I > + 10«0*D(I )+Q#OALTA(I >
370tOOO    64 C(I )»C(I)+5*n*0'I)+R*DALTA(I)

-------
371»000    67 D(I )-3
372.000    65 CONTINUE
373tOOO C     IF IN! STARTING SEQUENCE* BRANCH
3770*90*100
375*000    70 G9 TS "(1.000*1000*1000*7**1000*1DOO*1000*78*1000*1000*1000*7mlOOOj
376*000      11000,1000*86.1000.1000j1000*74,1000*1000*I000)*KSTP
377.000 C     4TH, 12TH* 2nTH STEP, G9 BACK
378.000    74 H--H
379«000       09 75 I»1jNE
380.000       A(I)a-A(T)
331.000    75 C(I).-Cm
3S2.000       G8 T6 1000
3S3.000 C     8TH STEP  G8 FBWARO
33<*pOOO    78 Hs-H
3S5.000       09 79 I=1*NE
386.000       Y(I)«STARY(I)
387.000       A(I)a-A(t)
33S.OOO    79 C(I)»-C(T)
339.000       G8 T8 1000
390.000 c     I&TH STEP/ HALV? H* APPLY TEST 1
391.000    86 H»H/2«0
39a»000       D9 S7 IsliNE
393.000       A.( I )=A( I 1/2.n
391.000       B(I)=3(I)/^.n
395.000       C(I)=C(I 1/8.0
396.000    87 D( I )O< U/l.6.0
397.000       •D9 88 I=1*N£
398.000       IF(ABS(DALTA   (T ) )-ERR8R/ABS(M))8Rj88^89

-------
399.000    88 C9NTIMUC
400.000 C     PASS TEST   S8 F8WARO WITH HALVFD H
401.000       G9'T8 78
402.000 C     FAIL TEST   BEGIN AGAIN WITH HALVFD H
403.000    89 H«-M
404.000       D8 9? I*1/NE
405.000    92 Y(I)=STARY( 1 >
406.000       G9 T8 1
407.000 C     24TH STEP* DflUBLE H, STARTING SFQUENCE ENDS
408.000    90 H*H*p.O
409.000       D3 91 I^i^NiE
410.000       A(I>=/UI)*2.0
411.000       B(1)*3(T)*4.0
412.000       C(I)sC(T)*8»0
4l3"000    91 D(IlOm*16.0
414.000       G3 TB 7«?
415.000   100 KDELYa:OFLY*1
416.000 C     WILL \EXT STFP ^8yE PAST TLIK
417.000   102 IF(AB5(TI.IM-T)-ABS(H))1034103J110
418.000 C     YES	....SAVF T AMD Y, INTEGRATE T8 TlIM.RETURN,
4i9.ooo   103 ENDH»TLIM-T
420.000       D9 105 IsljNF
421.000       AA(T)=ENDH«A(I)/H
4?2.000       B3(I)«ENDH**?*B(I)/H**2
423.000       CC( I )=ENDH**3*C(I)/H**3
424.000   105 DD( t )»ENDH**4*D( I')/H**4
425.000       SAVFT'T
426.000       D3 800 Tsl-iNF
427.000       SF
-------
428.000   800 SAVPY{IJ«Y(I)
4?9,000   806 ToTtn
430,000       0:3 106 Isl>NF
431.000       Y( I )=Y( I )+ENDH*(F(I HAAd )+BB( I J+CC(.I )+DD(I) )
432.000   106 FP( I )«F( I >+2'.0#AAfI )+3.0#BB( I >+4.0*CC ( I )+5.0*DD( I)
              G9 T8 1101
435.000   802 D3 805 tsl^NP
436,000   805 SY(I)«Y(T)
437.000       D3 107 lel^NF
433.000       DELTA  (T)«F(I>-FP{I)
439.000   107 Y(I)»Y(Ii+V»OELTA   (I)*FNDH
440«000       IA=5
441.000       Q3 T8 1101
442,000   803 09 103 I»1*NF
443.000       DALTA  (T )=F( 1 )-FP(1 )
444.000   108 Y( I )=3Y(t )+V*DALTA   (I)*EMDH
445.000       JUMP«1
446.000       G9 TB 1101
447.000 C     N9.......TEST  FBR DOUBLING. IF flK, BEGIN NEST  STE-  AFTER  D8UBLING
443.000   110 IF(ABS(TlIM-T>-ABS(2.0*H))1000.1000*111
449.000   111 IFUDEl_Y-4)1000.1?Ojl20
450.000   120. IF(ABS(?.0#H1-ABS(HMAX)1121J121,1000
451.000   121 Da 125 1=1,IMF
452,,000       IFUBStDALTA   ( I ) ) -ERR8R/ (128. 0»ABS ( H ) > ) 125, 125* 1000
453.000   125 CSN'TINUC
454*000       lF(V*H*CLlF-
'455.000   130 C9NTINUF.

-------
        456-000   335 H=2.0*H
        457.000       09 135 T»1*NF
        458.300       A( I )»2.0»A(I)
        459.000       B(I>»4,o*B(I)
        463.000       C{ I )s3.0»Cm
        461.300   135 D(I>=16.n*DFlQ.6*l4V,IKSTP «'t2X.I3t10X/'DAL3A(I)>,/
        466.000  1151 F8RMAT(5(2X^I2jtXiE14.7))
        467.000       RETuRNI
        468.000       .END
vo

-------
 1.000 C
 2.000 C
 3.000 C     SENSIT
 4.000 C
 5.000 C
 6.000 c     SENSITIVITY ANALYSIS
 7.000 c
 3.000 C
 9.000 C
10.000       CgMMSSDDT^DT. XPR, XF.N3, DXPR,X,DX. INT,!NTo IN.IB,ELiAREA*U
11.000       CSMwieN ERR8R,DX"iAX,TrMP,HFQTBMn),C9NSl
12.000       C8MMBMRH8>WMn,HO,TAIR*CLD/RH-, A| BAR, TWS>TA,Ew,EA,H8S,HS
13.000       C9MMBN HRR,HeB*EBR>EVAP,HE*HC,HLYMN,PTB|_(10),TT3L(10),
14.000       C9MM0N HF-GjH8C^CLDljCLO?/CLD3*DALpjDALp'??jDCLD^DRH^DTAIRi
15.000      iDTA.D'
16.000       IN»5
17.000       I9»6
18.000       CALL INPUT
19.000       IFdNTC - 4)
?0.000 4     XPR » DXPR
?1.000 5     C9NJIMUF
?2.000       09 100 JF= 1,1NT
P3.000       CALL DIFFQ
24.000       G9 TB (10*10,20>j  INTC
25.000 10    CALL EULFR(ODTjOTjDX.ljJE*X)
26.000       Ga T0 100
27.000 20    CALL RK4 t DDT , DT . DX, 1, JE,-X )
23.000 100   CaNTlNUE
29.000       IF(X - XPR )       5,250,250
30.000 250   CALL 9UPT
51.000       XPR s XPR * DXP9
32«000       IF(X - XFND) 5
33.000 105   CaNrlNUF.
34.000       JUMP = -1
35.000 110   C8NTINJE
36.000       XPR s X + DXPR

-------
37.000 120   C8NTIMUF
38t000       CALLN9RDX*DXMAX*jUMP,KS*KC/l.E-6(JlMP)l30*140.150
40-000 130   WRlTE<19.131) X
41.000 131   F9RMAT(//t   X «iE14.5i   iNTEGRAT r8NI  FAjLURpi)
42.000       CALL EXIT
43.000 140   C9NTINUF
44.000       CALL DIFFQ
45.000       G9 T9  1?0
46.000 150   CALL 8UPT
47.000.       IF(X - XFND) 110*300.300
43.000 300   CALL EXIT
49-000       END
50.000       SUBR8JTINE  iNJoUT
51,000       caMMe^ obij   OT.    XPR*XENOJDXPR.X,DX>INT*INTC*
55.000      1 IN, I9,tl.*ARFA*LJjERR9RjDXMAXjTEMP.HFGTB(10).C8NSl
53.000       CSMMeMRHH^WMnjHDjTAIR^CLD^RH/A
54.000       C8MM9N HSR/h99jFBR^EVAP.HEjHCjHLYMN,PTBL(10)iTTBL(10)jWMS*CONST
55.000       C8MM8N HFGjriRCiCLD1jCLD?>CLD3/DALP.DALPR,DCLD>DRHiDTAIR*
56.000      lDTA^DW.nwMS.nirJMD/DEA.DEW*DLYMNJ
57.000 10    F9RMATC6F10.0)
58.000 20    F3Rv|AT(6TlO)
59-000       RATI8  » 3.14159/180.
60-000 C     CHOICE 8F  INTEGRATI9NI  SUBR9UTINF
61.000       READ(IN.PO)  IMTC
62.000       IFdNlTC -  3) 30.40'SD
63-. 000 30    IsjT «  INTC
64.000       Q8 T8  60

-------
65.000 40
66.000
67.000 50
AS. 000 60
.69.000
73.300 110
71.000 115
72-300
73.000 120
74.000
75.300 125
76,300
77.300 130
73.300 135
79.000
80.000 140
81.000 If 5
82.000 I5o
83.300 C
84.000 C
85.000
86.000
87.000 160
8S.OOO
89*000
93.000
91.000 180
92.000
93.000
INT a 4
G8 T8 60
C9NTINUF
C9NTINUE
G9 T8 (110, IPO/130,
WRlTE( la, 115)
F9R.MAT(!1 *»»»
G3 T6 150
C9NTINUF
WRlTE(IS,125)
F9RMAT( I 1 *»*##
G8 T9 IRQ
WRlTEH^lSB)
F9RMAT(M *»**#
GB T3 150
WRlTE(IS,145>
FSRMAT(M *##*#
C9NTINUE

INTPQRATISN CQNTR8L
REAr5(IN,lO) XjDX,DX




UO), INTC

JTULFR INTEfiRAT18N *»»**i//)



M8D. EULER INTEGRATI8N »*#**












r//)


4 TH 8RDER RUNGE-KUTTA **##**»//)


ADAMS M8ULT8N INTEQ. #****#*


PARAMETERS'
PR/ XEND


'//)




WRlTFt IS,160)X/TX«DXPRjXEND
F9RMAT1 i X =(Ff .?i
1 ' XENiD ="E10.3,
READ(IN,1Q) FRRf?R,D
WRlTE(I8.180> ERRSR
FBRflAT( ' ERR89 B»
READ(IN,10) DT,U,A
DX ='E10.3i DXPR ='E10.
/)
XMAX
,DXMAX
E10.3I DXMAX ««E10.3>/)
R!TA,EL
3





READ( IN, 10) RH8,WMPH.TAIR/CLD,RH, ALBAR

-------
  94.000        D9  185  1 = 1*10
  95.000  185    READ(IN»10)  PTBUlJj  TTBL(l)j  HFGTB(I)
  96.000        TA  =  (TATR • 32O»5./9.
  97.000        W  *  W*1PH*22./15.
  98.000        WHS  a  W *  .3048
  99.000        WMD  6  WMPH * ?4.
 100.000        C0NST  o Fl_/(RH9*U*AR-A)
 101.000        C9NS1  » {RHe*0.r>03PS)/C?4.*3600.»0.06t4)
 102.000        REAO(lNilO)  DALP*DCLD^DRHjDTAIR,DWMPH
 103.000        DTA  a  DTAlR*B«/9.
 104.000        H3S  =  lt9*SlN(ALBAR*RATI-8)
 105.000        H3C  9  1.9*C6S(ALaAR*RATI8)
 106.000        CLDl  B  i.  -  ,0765*CLD
 107.000        OLD?  *  -.OOIR*CLD«*?
 108.000        CL.D3  »  1.  -  iOOr)6*CLD**3
 109»000        DAlPR  =. HALP * RATI9
 110.000        D^  a  DWMPH*p?./i5.
 111.000        D-KMs  s  DW- *  .30^8
 112.000        D/JMD  =  DWMPH#?4.
 113.000  C      IMClOENT  SSLAR 9ADIATI8N
 114.000        HS  =  H8S  * Cl D3
 115.000  C      REFLECTFD  S0I AR RADIATION
 116^000        HSR  a  HS  » 3./ALBAR
 117.000        FTA  =  SI{JTBl jPTBL^TAlR^lQ)
 118.000        EA  =  RH*(101:WU70. )*FTA
-119.000        TAlRP  « TAIR+DTAIR
 120.000        F-TAP  «  SI (TTRL*PT3L*.TAIRPjlO)
 121.000        DEA  «..(1013./1470. )*(DRH»FTA + RH#
-------
123.000 200   F8RMATM  INITIAL DT »'F.12.4           '       OEQ F1/)
124.000       WRlTE(I8j210) U.AREA,EL
1P5.000 210   F8RMAT(i  STREAM VFL8CITY ,'F6.3t FT/SEC   CR. SEC. AREA  «'
126*000      1F10.2'  .SO. FT.     SURFACE WIDTH »»F6.i'  FT'/)
197.000       WRlTE(I8,220) RH8,CLD,RHjALBAR
138.000220   F8RMATM  RH8«'F5.2l  LB/cU.FT.      CLD-'F4.1'  TENTHS'4
1P9.000      1»    RH««F5.1'  PCTi/'  ALBAR =»F4.1'  OEGRKES'/)
130.000       WRlTE( 19.230) TA I R, TA^ C3NST> C0N551
Igl.OOO 230   F8RMAT(i  AIR TFMP. s'FR.l'  OFQ FiFS'l'  DEG C1/
132.000      1»    CSiMRT slElO.31    C8NS1 «iF10.3j/)
133.000       WRlTE(I8.240!l W, WMPH. WMS> WMO
131.000 2^fO   F9RMAT("  WIND VELOCITY «'F6.2» FT/SEC'F8.2iMPHIF8.2' METERS'*
l35'300      l'/SEC'F8.2l  MlLES/DAYl/)
136.000       W3ITET< 18,260)
137.000 260   F3RMAT(/,T20iTTRLtT40'PTBL'T60«HFf3TBi/)
133.000       D8 270  I -1*10
139.090 270   WRlTE(I8,280) TTBLdli PTBLd), HFGTB(I')
1*0.000 28Q   F9RMAT(tnXj3F30.5)
141.000       WRlTEtI9,300)DCLDjDRHjDTAIR
142.000 300   FaRMATf/i  D.CLD ="F6.3i.  DRM »iF5.3'  DTAIR .'F6.2)
1*3.000       WRlTEtIB,310) DALP/OWMPH
H^.OOO 310   FaRMATt/l  DALP s'F6.2i  DW^IPH ni-F6.2)
145.000       WRlTEt 18*320) Hf}S> HBC* HS, HSR
146.000320   F3RMAT(/i  HfiS=(E12.4l  H8C*'l E1 ?. 41   HSa'El?.4'  HSR»'E12.4l LY/MIN')
147.000"      IN')
148.000       WRlTE(18,330) EA,DEA
149.000 330   F8RMAT(/l  EA »'El2.4"  DEA BiF!1?.4)
150*000       WRlTE(I9/34o>

-------
o
°
151.
152.
153.
154.
155.
156.
157.
153.
159.
160«
161.
162.
163.
164»
165.
166.
167.
168.
U9.
170.
171.
172.
173.
174,
175.
176.
177.,
178.
179.
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
340




350

360










10

20


30


50

60
                            F9RMAT(/,T20iSTTBL'T40iXTBL'/>
                            READ(IN,?0)  NTEMP
                            D3  350  I  =1>NTEMP
                            REAO(INMO)    STTBL ( I ) * XT8L( I)
                            WRITE( 18.280)  STTBL ( I > , XTBl ( 1)
                            C9NTINUF
                            WRlTEt 18,360)
                            F9RMAT( M ' )
                            RETURN
C9MM8N
        NJE 6UPT
        DDT..
                                                  XPR, XEND. DXPR* X^ Dx* INT>
C8MN)SM HfiR>
                                                               TW3/ TA* EW> EA/ H3S* HS
                                           FBR^EVAP^HE/ HC* HI. YMN, PTBL ( 10 ) t TTBL { 10 ) « WMS/CgNST
C9MMSN HFG/HBCjCLDli f.LDP> CLD3J
                                                                     DCLD*DRH> DTAlRj
iDTA.DN/DWMSjD^MOjDEAf'DEWjDLYMN.DBTUS^NTEMP* STTBl ( 10 )t XTBL (10)
 WRlTE(I8jlO> X^ OX
 F8RMATH    X ='F7»1» FT    DX s'Ffc.i       */)
 WRlTE(i8^20) TEMP
 F8RMAT(»  STREAM TFMp
 WRlTni8,70) DT.DDT
 IM'RITE(IB.30) EW, DEWj
 F9RMAT(i  EW »(fl?.5i
1E12.51  fY/MTN    HFG
                                                  =iE12«4'  DEc5 F'/)
F9RMAT(i  HBR ?»E1P.R'
WRITE(I8*60) HLYMM/HO
F8RMAT(i  T8TAL HEAT TRANSFER
                            HFt5
                       'DEW siF12.5t
                      »»E12»5j/)
                      C
                         EBR='F1?.5'
                                       EvAP  aiE12.5i
                                                                                  HE
                                                                       »IE12.5'
                                                          -IE12.5'  LY/MIN »

-------
183.000
1«1.
182.
133.
184.
135.
186«
187.
183.
189.
190.
191.
19?.
193.
194.
195.
196.
197.
198.
199.
200.
201.
.202.
203.
204.
205.
206.
207.
000
000
000
000
000
000
000
OQO
000
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000'
000
70

80

90









C








C


C
'    BTU/SEC-FT2t/j
F9RMAT(i  DT .«iFl?.5i    DDT »iFl
W3lTE(I9,80) DLYMN,DBTUS
F8RMATM  DLYMN «»£!?. 5»    DBTIJS  «»E12,5*/»
WRlTE(19.90>
                          XPR. XFND* DXPRj X, DX,
              RETURN
              END
              SUBR8JTINE DIFEO
              C3MMBN  DDTjDT^
              C9MMBM
THERMAL F.XCHANGF WITH ENV IR9-NMFNT .
TEMP * ST»5./9.
     n DT*5./9.
      SI(TTBL»PTBL*TFMPjio)
      TFMP + DT  .
      SI (TTBl jPTBL^TTWjlO)
     (101.3. /14.7)#FTA
      (inl3./14.7)*(FTB - FTA)
EFFCCTIVF BACK RADIATI9N,
H8B= (14.38-.09*TWS-.046*RH)/6q.7?
EBR » H8R#CLD1
EVAPSRATIQN HEAT TRANSFER.
              FTA
              TTW
              FTB
              EW

-------

20S.OOO
209.000
210«000
211.000
212.000
213.000
21 t » 000
215*000
216.000
217.000
218-000
219.000
220.000
2P1.000
222.000
2?3.000
224.000
2?5«OoO
226.000
2?7.000
2>a»ooo
229.000
230.000
231.000
232.000
233.000
234.000
235.000
EVAP a .35* (EW-EA)*(1. + «009R* WMD )
HFG > SKTTBl ..HFGTB/TEMPjlO)
HE a EVAP*HFfi*C^NSl
C CQNVECTjftN HFAT TRAMgFER
HC » 39.*(.2ft + .077*WMS)*(TWS - TA J/H40*
C T9TAL HFAT TRANSFER TS WATER* I.Y/MIM
HLYMN B HS • (E^R + HSR + HC + HE >
C TSTAL HFAT TRANSFER* BTU/SEC-FT?
HD » HLYMM * «0f>i4
Fl « CLO?*DCl D*H8S
F2 a CLO^*H3r»DALPR
F3 a .0765*Dr.LD»H8R
F4 » -CLnl#(-.09*DT'.'JS • .046*DRH>/69.72
F5 = "(F1+F2i*3./AL3AR
F6 = HS*3«#DALP/ALPAR*#P
F7 a ••( .35#HF3/tf400. )*( (!• + . 0098*WMD ) # (DFW - DEA ) +
1 .0098*DwMD*(EW - EA 1 )
FS a • { .19 ./I 4^0. ) *( ( .26 -f i077*WMS ) * (DTwS - DTA) +
1 .077*DWMS*(TWS -TAJ)
DLYMN > Fl + F2 + F3 + F4 + >5 + F6- + F? + F8
DBTUS = DLYMN».0614
DDT « CBNST*DBTUS
RETURN
END
CCCCC
ccccc
CCCCC
CCCCC

-------
236.000
237.000
238.000
239.000
240.000
241.000
242.000
243.000
244.000
245.000
246.000
247.000
243.000
249.000
253.000
251.000
252.000
253.000
254.000
P55.000
256
257
258
259
260
261
262
263
264
*
t
.
•
.
.
•
•
•
000
000
000
000
000
000
000
ooo
000
FJNCTI8N .SKXTBLjYTBLjXjN)
C LINEAR INTERP8LATI8N 8R EXTRAPOLATION 6p SINGLE VARIABLE FljNCTI8N1
C XTBL « INDEPFNDFNT VARIABLE TABLE
C YTBL « DEPENDENT VARIABLE TABLF
C IND « INDICAT.QR 8F EXTRAPSLATIBN
C 8*No EXTRAP8I ATT8N, 1=L6WER EXTRAP8LATI8N* ?.4PPER E73RAP8LATI8N
DIMEN518N XTBL(40.)*YTBL<40)
C CHECK T8 SEE IF EXTRAP8LATI8N !S NEEDED.
IFtX-XTBl (1 ) ) 1?0*130*150
120 IND » 1
.130 II . 2
G8 T6 254
150 IF(XT3L(N)-X) 160*180*210
160 'IND ' 2
180 II « N
G9 T8 ?54
C FIND X IN TABLE. S IN TABLE
?10 DO ?20 IKs2*N
II = IK -
IF(XTBL( TKJ-X) 920*254*354
220 C9NT1NUC
254 XI
X2
Yl
Y2
SI
XT3I
XTSI
YTBI
YTBL
Yl-H
(
(
(
(
I
1
I
I
Y2
I-
I)
I-
I)
1)

1)

-Y1)*(X-X1




)/rx2-xi>
RETURN
END
CCCCC













-------
265.000 CCCCC
266.000 C EULER AND M8D1FTEO EULER
267.000 CCCCC
26S-000 CCCCC
269.000 CCCCC
273.000 SUBRBUTINE EULER ( YP> YJ DT
271.000 DIMFN5I3N YP ( 20 ) , Y( 20 ) >
272.000 Gg T0(10j?0)jJ
273.'000 10 C^NTlNUe
27*«000 D9 100 I=1*NF
275.000 SY( T)= Y( I J
276.000 SYP£I )= YP( I )
277.000 Y(I)= Y( T )+DT*YP( I )
278.000 100 C3NTIMUE
279.000 T=T+DT
230.000 RETURN!
281-000 20 C9NT1MUF
285.000 D9 ?00 Isl^NF
283.000 Y(I)= SY( I )+(YP( I )+SYP(I
28^.000 POO C9NTINUF.
2S5.000 RETURN!
286.000 ENID
287.000 CCCCC
288.000 CCCCC
2^9.000 CCCCC
290-000 C F8URTM 8RDER RUMGE-KUTTA
291.000 CCCCC
292.000 CCCCC
293.000 CCCCC

INTEGRATTftN



,NEj J>T)
SY(20),SYP(?!0)











) )*OT/?.






INTEGRATT8N




-------
294.000       SUBR8UTINE RK4(YPjV.DT*NE>JiT)
295.000       DlMCNSIflN YP(5)iY<5).AK(5*4)jSY(5>
296'OQO   .    G9 TB(10j20*30'*0)*J
297.000 10    CgNTiMUC
298.000       09 100 I»1/NET
299.000       SY( I ) B Y(I)
303.000       A<(!,!> = DT»YP(I)
301-000       Y(I> = Yd) +AK(I*l->*»5-
302.000 100   C9NTINJUE
303.000       ST = T
301.000       T = T + DT*.R
305.000       RETURN
306-000 20    C9NTIMUE
307.000       D3 POO TaliNF
308-000       AK(1*2) » DT#YP(1)
309.000       Y(I) i SY(I) * AK t DT*YP{I)
315.000       Y(I) « SY  (1) •»• AK1I.3)
316.000 300   C9NTIMUE
317.000       T  * ST +  DT
318-000       RETURN
319.000 40    C3NTINUE
3PO.OOO       D8 400 I  i  IjNE
351.000       AK(I^) * DT #YP(I)

-------
3P2
3?3
3?4
3?5
326
327
3^3
3?9
330
331
312
313
314
315
336
337
3.13
3.19
340
341
342
343
344
345
'346
347
348
349
350
.000
.000
.000
.000
.000
'•000
.000
.000
.000
.000
.000
.000
.000
.000
• coo
.000
.000
• 000
.000
.000
• 000
• 000
.000
.000
.000
.000
• 000
.000
• 000

400


ccccc
ccccc
ccccc
-c
ccccc
ccccc
ccccc




991
c
993
998
c
999
992


901

C
1

Y(I)sSY(T) + (AKlT*l)+AKUj4)+?t*(AKU*2)4'AK(T*3)))/6.«
CONTINUE
RETURN
END



ADAMS-M9ULTSN INTEGRATI8N



£UBR9UTINEN8RD(C-,TjTLlMjY,E3R9R,NF,H*HMAX* JUMP* KSTP* KCSN* CLlF* 18)
DIMEN5I8N STARY (5 ) • Y ( 5 ) ,SY (5 ) , SAVEY ( 5 ) * F ( 5 ) ,FP ( 5 ) /DELTA (5 ) t DALTA (5
1 ) j A < 5 ) * 3 < 5 ) , r ( 5 5 ' D'( 5 > ' AA ( 5 ) * B3 t R > j CC ( 5 > *- DD ( 5 ) * SF ( 5 )
IF(KsTP-32767)993j991*991
KSTP=28
TEST F9R TYPF BF ENTRY
IF (JIMP ) 1 *99R*999
G8 T8 (1000*1 1*?1*80?*803)/IA
JUMP P8s. RE
-------
351.000
352.000
353.000
354.000 5
355.000
356.000
357.000
358.000
359.000
360.000
361.000
362.000
363.000
364.000
365.000
366.000
367.000
368.000 C
363.000 1000
370.000
371.000 1111
372.000 C
.373.000 600
374..000 601
375.000
376.000 605
377.000
378.000
A( I )»0.0nl
B( I ) sQ.noi
C( I )*o.noi
D( I i «o«oni
KSTP=0
KOELY*O
KCBN=0
XT=95./(?88.»64. )
Ue863«/(12.*R040. )
V«95.0/?R8.0
P"2s.0/?4.0
Q=35.Q/7?.0
R«5. Q/48.0
S»l .0/120.0
IA«l
JUMPED
G9 T9 1101
BEGIN INTEGRATION STFP
09 1111 T«ljNE
SF( T )«F( T )
SAVEYd JeYdl
H TBS 'SMALL RETURN WITH JUMP NPG.
IF(ABS(T4-H)-ABS(T) >6o5j 60 1*605
JjMps-1
G9 T6 1101
T?T+H
09 10 I»1jNE
Y( I )»Y( I1+H*+B(I)+C(T)+D
-------
                    10  FP( M*F< T >+2.o*A( n+3.o*8(i
00
380
3S1
382
333
334
335
336
387
388
339
393
391
393
393
394
395
396
397
393
399
400
401
402
403
404
405
406
407
.000
.000
.000
.000
.000
.000
.000
.000
.000
• 000
• 000
oOOO
• coo
.000
.000
.000 c
• 000
.000 c
.000
.000 C
.000
.000
.000
.000
• 000
.000 C
.000
.000
IAS?
G3 T8 Unl
11 D9 12 I»1*NE
12 SY( I )=Y( M
03 ?0 I»1*NE
DELTA ( T )«F(I )-FP( I )
20 Y{ I )sY< I )+V*DElTA (I ) »H
IA*T
KC8N=1
G9 T9 linl
21 KCBN.O
D9 30 U1/NE
DALTA (T)sFm-FPm
29 Y( I 5=3Y( I)+V#OALTA (I)*H
30 C9NTINUF!
TEST F8R STARTIMG SEQUENCE
31 IF(KSTP-?8)3Rj40>40
APPLY TfST 2 9N ZER9TH STEP
35 IFUsTP)50/5r>j60
HALviNs TESTS
40 D9 45 1=1 >NE
IF (ABS (DALTA ( T ) ) -ERRSR/ABS (M ) >45* 45/55
45 C8NTIMUF
50 IF(V*H*CLlF-'n.l?5)60. 60*5$
55 TsT-H
FAIL fESTSj HALVE H
?23 H=?H/2.0
KD£LY«O

-------
408.000
409.000
410.000
411.000
412.000
413.000
41 4.000
415.000
416.000 C
417-000
41 8.000
419.000
423.000
431.000
422.000
423.000
424.000 C
4?5.000
436«000
427.000
42S.OOO C
429.000
410.000
431.000
432.000
433.000
434.000 C
435*000






56


60


62
64
67
65


70


74


75


78
09 56 I«1*NE
A( )»Am/a«n
B( )"B(M/4.0
C( >»cm/8.n
F( )=SF(T)
Y( laSAVFYU)
D.( 1=3(11/16.0
G9 T9 1000
PASS TESTS* T.9RRECT A*B*C*D
K3TP = 
C( I )aC( T )+5.n*D(I 5+R*DALTA(I )
D( I 1»D( I H.S#nALTA(I i
C9NTINUF
IF IN STARTING SEQUENCE* BRANCH
IFUSTP- 24)70*30*100
G9 T9 (1 000* 1 000* 1000* 7^* 1000* 1 000* 1 000*78* 1 000* 1000* 1000*74* 10CO/
1 1 000* 1000/86* 1000*1000*'! 000* 74* 1000*1000*1 000 )*KSTP
4TH, 12TH* 20TH STEP* G9 BACK.
Ha-H
09 75 I»1*NE
A( I )*-A(I)
C(I )»-C( t )
G3 TB 1000
8TH STEP G8 F9WARD
H^-H

-------
436.000       D9 79 I«1JNE
437.000       Y(I)oSTARYU)
438*000       A(I)S-A(T)
439.000    79 C(I1«-C(T)
4^0.000       G9 T8 1000
441.000 c     I&TH STEP^ HALVP- H> APPLY TEST 1
44?.000    86 HsH/p.Q
443.000       03 '87 1 = 1 >NE
444.000       A(I)iA(n/2.0
445.000       B( I >«3( D/4.0
446.000       C( I )»C( M/8.0
447.000    87 D( I J*D( D/16.0
448.000       D1? 88 I»t*NE
449-000       IF(ABS(DALTA  ( T ) )-ERR8R/ABS(HnR«J ,88>89
450.000    88 C9NTINUE
4"51iOOp C     PASS TEST   G6 F8WARD WITH HALVFD H
452.000       G6 T6 78
453.000 C     FAIL TEST   BEGIN AGAIN WITH HALVFD H
454.000    89 H="H
455.000       D9 92 I=UNE
456.000    92 Y( I )=STARY-( I )
457.000       G8 TB 1
453.000 C     24TH STEP/ DfiUBLE H, STARTING SEQUENCE ENDS
455.000    90 H=H»2,Q
460.000       D3 91 I=1*NE
461.000       A< H*A( I )*2«n
462.000       B(I)»B(t1*4.0
463.000       C(I)sCm*8.0
464.000    91 0(I)>0(T)*16.0

-------
465.000       GS T8 78
466.000   100 KDELY»KDFLY+1
467,000 C     WILL NEXT STFP *IQVF PAST TLIM
468.000   102 IF(ABS(TIIM-T)-ABS(H))103/103*110
469.000 C     YES...,,., t.SAVE T AND YJ INTEGRATE T8 TLJMjRETURN*
470.000   103 ENDH'*TLIM-T
471.000       D3 105 I=1*NF
472.000       AA( I )=ENDH*A(1)/H
473.000       B8( I )*ENinH»*?*8(I)/H#«2
474.000       CC( I )=ENnH*#3*CU >/H«*3
475.000   105 D0( I )-ENJDH##4*D(l )/H*»4
476.000       SAVET=T
477.000       D3 800 T»1*NF
478.000       SF(I)=F(T>
479.000   800 SAVFY(I)SY(I)
480.000   806 TsTun
481.000       03 106 t«l*NF
482.000       Y(D»Y(i)+ENOH*(F(I)+AA(I>+BB(T1+CC(I)*DD(p)
483.'000   106 FP(I)=F(t)+2.0»AA(I)+3.0*BB(I)+4.0*CC(IJ+5.0»DD{I>
4S4.000       IA«4
485.000       G3 TB 1101
436,300   802 D9 805 I«ljNF
487.000   805 SY(I)»Y(T)
488.000       D8  107 ,I,ljNF
489.000       DELTA  (T ) =F(I)-FP(II
490.000   107 Y(I )»Y( I )+V*RELTA   (I-)*ENDH
49i.OOO       IA«B
492.000       GQ  T8 1101

-------
 1.000 CCCCC C( 1000)*rLBUr> C
 2.000 CCCCC TA(1000'>=AIR  TEMP.
 3.000 C     PHI(10001=  RFL MUMIOITY
 4.0CO C     MlOCO'l*  WIND S°EF.D
 5«OoO C     TW(10001= 'WATER TFMP
 6..000 C     NCAS*'N9.  8F  C.ASES
 7'000 C     N3A=  MS. .SF D'AY1? TB BE TRIES
 S-OCO C-    DELjlSOlr  E3R9R CRlTt^I?R T^ 3F SATISFIED
 9*000 C     IOAS(.50)=  N9. 3F DAYS IN TRIAL
ib.ooo c     NLN=  Me.  SF LI NFS
11.000 C     OT= FRW9R  CRITE^I&R F9R THE S=FCIFTC  CASE
12OOO C     N'TAa  NI3.  Qf TI'MF AVERAGED DATA PBt.MTS
13.000 C     UA^EL/CC. ... ..*'Yl (S)-*XPR1 jXE JDl/DXPR1 / XI j DX1 j NE1 / INTlj INTCl/INl* 181
17.000       l*ELijARFAl>U1
15.000       CaM-iS'j'  FRR9iRliOVMAyiiTE^Pl*HFGT^l (lO)^CBNSll
19.000       CSMvisM  RMeijWlf WMDl>HDl,TAI3ljrL01 jRHl/ AL3AR1, T^Sl j TA1> TWSA1, EW1>
PO.OOO       1EAUH3S1.HS1
31.000       C.JMMSN  HSftljHQBl jFBRUEVAPljHEl . Hri^ HL YMN1/ PTBL1 (1 0 ) / TTBL 1 ( 10 ) t
=2.000       IwMSljCSMsTl
53.000       C3MM5N  Cl IFl,HFTl,M3CljCLDlljCl D?1,CL03lfDALP1jOALPR1*DCLD1jDRH1>
•34.000       IDTAlRlOTA'lyD'/Jl.DWMSl/DUIMDlOEAl ji3t^l>-DLYMNljD3TUSl/MTEMP.l*
P5.-OCO       PSTTiLldnJ/XT^LKlO)
?6«000       C3MM8N  C ( 1COO 1 > TA (  1 000 } t PHH lOnn 1 j *i (1000 )> TW ( 1000 )
?7.0CO       C3NM6N  Nf.AS/  NDA>  DELT(BO)/ IDAStSC)
P5.000       C9M.MBM  MI-N>INjI«^U>OT,.NTA* IDA
?9-.000       C3MMSN  CTA(50) jTATA ( 50 1 / PHITA ( BO 1 j I«TA (5o)/TWTA  (50)

-------
30.
31.
32.
33.
34,
•35 •
36.
37.
355-
33.
40-
41.
45.
43 .
44,
45.
45.
47.
4S .
43.
50.
51.
52,
53.
54.'
55 «
56.
000
000
000
000
000
000
ooo
ooo
ooo
000
ooo
^ ^ o
«J ^ *J
000
030
000
000
000
000
000
000
ooo
000
•*N —, /">
JUvJ
000
000
000
OO'O





ccccc
ccccc
ccccc
ccccc




20




c
ccccc
ccccc
ccccc
ccccc
ccccc


C9M.MPM
Cf5hMBM
COMMON
CdMMBM
C9MM6^




CALL ^F
DT>1 .
Dfl ?0 I
CALL PR
C9NTIMU
CALL PR
CAUL VE
CALL EX
END
SUBRBJT





SJBRBJT
.'C9MMBN
UAiEL,CC.TAlR,TWAjRHjWSp
T"JT2^ TNT3/DC/DTA,DPHI^OW.DTWji INVS/ IFl
DM21,BETA
LRGl.iNDAq
ir.ASiP^PfSO* 10.)




FAD

DA = 1/NOA«!
3R
(T
3D
RN!9M
IT

TMi.FflR READING IN DATA





INE RFEAO
YP1 (5)»Y1 (S)*.XPRl«XENDljnXPRl*XljDXl
liELl.jARE'Al>Ul
NE1> INTli INTCIMNI^ 181

-------
=57.000       .C3MM9N 'F.RRBR1 ', DVMAX1, TEMPI, HFGTql M 0 )> CONS11
53.000       C3M-M6N RH31,l
59OOO       1EA1,H9S1,HS1
60.000
61-000
62,000       C^MMSM Cl IFl,HFGl,HdCl,CLDl.l,CI D2'l , CLDSl^DALPl/DALPRl^CLDlj
63.000       lPTAlRl,DTAl,DWl,DWMSl,D^M0.1,DEAt,DFl'o)
67.ooo       C5K^SN NI N,IN,I^U/DT,NTA.J IDA
68-000       C3M:M9M CTA ( 50 ) , TATA ( 50 ). PHI TA ( Rn >, W.TA ( 50) t TWTA ( 50)
69OOO       C3MM8N UA, EL, CC/.TA I R, TWA, RH, v*ISP
70.000       C3MMf3M  I MT?, T NTT, DC, DTA, DPHI , DW, DTW, IN.VS* I FLAG
71.000       C'JMMBN DM21,RETA
72.000       C3MM6N LRG1.
73.000       C3MM8M
7(,.000       IM*101
75.000       lau^io;
.76.000   1000 F9RMATi
77.000   1001 F3RMAT(6T1'0)
73.000       READ (INMOOn MLN,L93l
79.000       iN^lTEf IBlJ,2000)NLNjL9Gl
30.'000   2000 F3RM.AT(iwo,2x, INUMRER OF DATA I  I NFS= I / 15, I TIME AV.  LSQIC='M5)
31.000       WRITE!I9U,POOD
82.000   2001 FORMAT (1 HO, 2X, i.CLD  CSVER   AIRTFMP =?EL  HUM.  WIND SPD  WATER TEMP')
33..000       D3 10 I«  1,NLN
H^.OOO       REAQ(IN,1000) C(I),TA(I V,PHI(I>>W(I)/TW(I )
85,000        ^ITECCi),TAi

-------
CTl
            36,000
            87.0CO
            SB.000
            39.330
            90.000
            91.000
            92.330
            93.000
 3
 95.
 96.
 97.
 9s.
 99.
100.
101.
102.
103-
•000
'000
• 000
.000
.000
.'000
.000
.000
. 000
•000
           10^.300
           105-000
           136.060
           13/.330
           108.000
           109,000
           110.000
           111.000
           112,030
           113tOOO
         2002 F9RMATUHQ;2X,5(F10.3* IX.) )
           10 CONTINUE
        c     PLANT DATA
        c     UA»vftL* FL=RTVER ^IOTH,  cL=CL9uo  CBVER/  TAIR
        C"     T'JA = wATER TEMP, RH*REL  HUMIDITY,  WSP^lND SPEED ('KM8T3)
              REAOt IN. 1 003)iJA»'EL»CC/TATR
                                         MR
                                            |R   WIDTHei^ix/FlO.S,»CLD   C9VER=
2003 FORMAT(
    11X/F13.3.'TEMP  AIR=';lXjF10.3)
     READ( I.M, 1 000)TWA,PH/wSP
                                                                     HUM*' /.1X*F10»3* 'WIND
                      15
                                      )NT4
2005 FORMAT(lH0^2Xj'NUMBER  9F  TIME  AV.  DATA  P8INTS='>IX*15)
     WR'ITE( I9U.2006)
2006 F3RMAT('n',2X, 'CLD C3VFR  TA    AIR  TEMP  TA   REL  HUM TA   WlNiD TA
    1   TEMP dATER  TA'i )
     0 '3 ? 0 I = 1 i N T A
     READ( IN, 1000)  CTA(I ), TATA ( I ) , PH T T A ( I ) / WTA (I ) , TiA/TA ( I )
     WRlTEf I9U,20n7)rT'A( I )^TATA(J ),PHITA(I )
2007 F^RMATC tMC>2x*S(Fio.3^ ixn
  20 CONTINUE
  16 C3NTIMUE
     READ(IM,1001)NCAS

-------
 114.000        WRITET
 11-5 • POO   2008 F9RMAT{lwOf2x» 'MUMBER  9F  CASES.* 11 1 X* I 4 )
 116.000        READfJN1300C)(DFLT(J>i
 117,000   3000 F3R"!AT(6F10.3>
 1.18.000        WRlTF(IBiJj3010)
 119.000   3010 FORMAT(IHO/2X*'ALLP^ED DTS')
•120.030        '.V'RITF( 1911*2009) (Df=
 121,000   2009 F9RMAT(1HO/2V,EH, . .
 1?2.000        READMN.1001 l.MDAS
 123.300        WRlTE'(I9il,2010>MDAS
 1'4.000   2010 F3R^IAT( »fi'j2Xj'DUMBER  8F .DAYS  AVERAQEDs i / 2Xj 14 )
 1?5.000        READ(IM.100l)(nAS(i)j I«1*NDAS)
 126.330        W3lTE< I9IJ/301.1)
 127.000   3011 F1RMAT(lwO/2X*'DAYS AVERAGEOi)
 123.000        W=?ITE( IS.ll/2050) MDA3(I )*I«1>NDAS)
 129.030   2050 F9RMAT(iwO^2X*15)
 13J.OOO        WRlTF.(lSlJj201l)
 1-31.000   201.1 F9RMAT(1HO>2X^'PTBL1    TTBLl    HFQT.Bl i > //, 2X/ 60< i* I ) )
 132.000        D=) 185 lal'/ln
 133.000        READ(IMM002) PTBLl ' I > ' TTBLl (I ), HFG'TBl ( 1 )
 134.000        WRlTE FlO. 3/ I BETA= 11 2X/ FlO.3 )
 1.42.000        09 30•••" •••-•-

-------
            143.000       D<5 40
            144.000       P3P( IDA.. TCASlaO,
            1'jo.COu    40 Cf^Tr>lUE
            !<+&*000    30 CcNTHUF
            147.000       RETURN
            143.OuO       END
            1.49*000 CCCCC
            150-000 CCCCC
            151.000 CCCCC
            152.000 CCCCC
            133.00'Q CCCCC
            154.000       SUBROUTINE PR9B
            155.000       ;C3MM8N  YP'l (5)/Yl ( 5 ) / XPR1 * XEND1. DXP91/ Xl/ DX1, NE11 INT1/JNTC1MN1/I81
            1^6.000      1/EL1/A3FA1/U1
->.           157. OuO       C.^MIBV  ERP0K1 j DXMAX1/TEI1P1/HFGTR1
OT           1=53.000       -C3MM8M  RHOl/Wl*iA)MDl/HDl,TAIRljrLD
            159.000      lEAl/H^Sl'/HSl
            160*000       C9MMRN  HSR1>H93t/EP^1/EVAP1>HE1.HC1,HLYMN1/PTEL1(10)/TTBL1(10)>
            161 .000      IW'^51 /C9NST1
            162.000       CfjMMRM  Cl  IF 1, HFT1, HdCl / CLDl 1 / Cl 021 * CLD31/ DALP1/ DALPR1» DCLD1/-DRH1/
            163.000      IDTAlRl/DTAl/OWlf D/JM31/D'^MD1/DEA1 , DE!/J1/ DtYMNl/ DBTUS1/NTEMP1/
            164rOoO      2STT-BL1 (ln)jXT-3L1 (10)
            165 «000       CeM^lSM  C( 1 000 ) / TA ( 1 000 ) . PHI (1000) , M 1000 )/'TW ( 1000)
            166.000       C.3MfiN  NfAS^  NDA/  DELT'(RO)/  pASC^O)'
            167.000       C^h^BN  Nl  N, IN/ IRU/DT» NTA/'lDA
            16S«000       C9MMSN.  CTA(5-0)/TATA(50)jPHITA(sn)*WTA(5Q)/TWTA(50)
            169-000       C3MM8N  UA/EL.CC.TAIR,TWAj«H/WSP
            170.00'0       C9MM8V  INT2/ T NT^/ DC> OTA/ DPHI / DW. DTK/ JNVS/ IFLAG

-------
171.000        CdM^eVl OMJ31, RET A
173.000        Cftl-MSN LRGl/NlOAS
173-000       .Ca«:i6NI irAS>P3
17^.000        DIMENSION P3I10)
175.. 000 C      NOA=  'MUMRER ftr DAYS  jN THE  CAgF
1.7= • 000        IDM3A
177.000        NDA=IDAS(ID)
178.000       -NClsNLN/R
173.. 000        F'>lDAa\IDA»3
1^1.000        iF(NDA-Nrl) 10*999/999
1B2.000     1
183.000
    ooo        DENP=O.
187.000        D'5  ?0
i3S,:co        cs*o.
is9.ooo        TAS=O.
1 9LOQO        1*3 = 0.
192. 000        T'/JSsOt
193.000        Da .^C. 1 = 1 /N'OA.
194 -.0.00        D9 to  J=1 »3
195.000        IMT, = fi*( IPO+I-1 l-i-J-8
196.000        C3 = CS  +  r'( INT)
197.000        TAS = TAS  4. TA(INT)
198.000        PHIS=PHIR + PHI(INT)

-------
193.030       wS* gs + W( INT )
200-300       T*S = T-A'S  +  TW(INJT)
201.000    40 C3N-TIMUF
202.000    30
203.000       cs
SQt.O'OO       TAS= TAS*FKDA
203*000       PHlS=DHIR*FNnA
307.0CO        TA'S=
203.000 C      lNT?s  F3I LS^TNG DAy
503.000        HT?=  I?n + NDA
210. OCO        C1S='C.
211.000        TAlS=0.
212.000        P^I1S=2.
213,000        klS=D.
21'MOOO        T'J13 = 0.
21 5.300        D9 '^0  1 = 1/8
216.000 C      I\T.3=  JHF ACTUAL PfiSlTIBN IN THR DAY
217.000        INT3=IMT?*8-R+I
218.000        CiSIClS+r< INT3)
219.00.0        TAlS = TAlR + TAUNT3)
2^0.000        PHllS=PHTlS+pHI ( INT3)
2?1.00C        Wl.S = i'jlS + l*( INT3)
2^2-000        TWlSaTWlS+TW( INT3)
2P3.QOO    SO   C9NTINUF
2?4.0GO        C1S3C1S».125
2^5.000        TA13'=TA1K*.1?5
               PHI iS = PiHT lS*
               WlSaWl'S*»125

-------
223. COO.        T.nSsTWTfi*. l?5
2?9.JCO        DC°C.1S-CS
230.000
 '
2^3.000
23^.000
E;53.0SO       STT-3Ll(?)=Tw1S
?'36rOoO       XTBt.1 (1 )S0.
2S7.00.0       XTBL1 (?) =25000.
233-000
2*o«ooo       CALL  '
              09  60 ICASsl*MCAS
              IF(Art3(Y1 (1) )-DrLT(ICAS))
2*3.000   65  C9NTINJF
2^5.000   70
246.000   60
247.000   ?_0
2*3.000
2*9.0.00       D=»  75
251. coo   75  C^N
252.000       IF(L6Gl )?00^?01 .200
253.000   gOO C3NT1MUF.
2=5*. 000       ENUM = 0.
253-000       DENcO*
256.000       DF.NPsO.

-------
.257,000        C('l303)«rC
2=5S.OJO        TA(1000)«TAIR
2=53.000        PHI (1000) s-RH
260.000        w(1000)»wSP
261.000        T'/l
262.000        Dd
264.000    ?05
2&5.000
266.000        DOCTA(I)-CC
267.000        DTA.TATAM J-TA1R
263.000        DPHl«P.HfTA( D-RM
263.0'jO        •D«I = WTA( I ,.lvSP
270.0.00        DTW.T'x'T^n )-TWA.
271. OCO        '•STT^LimsT1*'? 10DO)
272.000        STT8L1 (?)"!•/,• (1000)
273,000        XTBLl(l)=b.
274.000        XTBu(?)=25000.
275.000
276.000
277.000        CAUL  C
27^.000        D3  HO ICAS=1
-------
to
LO
2S5-. 000
23S
237
238
283
290
231
292
293
29*
293
206
297
298
239
300
375
376
.377
378
37-9
330
331
332
3-53
384
3S5
336
337
•
•
•
•
•
t
*
*
*
t
•
*
*
*
*
•
•
f
•
•
*
•
*
*
t-
t
%
f
000
ooo
DOO.
000
OOP
000
000
ooo
000
oco
000
0-0 0
000
000
000
000
000
000
000
000
000
Ooo
ooo-
coo
000
000
000
000


90
?01.

999

4000


ccccc
ccccc
ccccc
ccccc
ccccc


2000

•recce
ccccc
ccccc
ccccc

J

D3 90 ICAS*1>^CAS
P3( tCAS) =PR( TCA.s)/FNTA
CALL 9aTTO6u*pR( ICASJ* IDAI
C3NTtNjr
C3NTIMUE
^tTuRM
C9NTIMUE
'^ITF.'J. I9lJj 4000V
F3RMAT{1H8/2X/-'T83 SMALLI)
CALL EXIT
EMD





SUBSBJTINE eiJTT(l3U*P*l J
W^lTEt I9iJj2000) IiP
FaR;-1AT(lM9i?X^ 'CASri, I^^PXj 'PRMARTLITY'*EU.7)
RETURN
END




SUBRRJTINiE C6MP(ENUM/DFN)-
C9M-1SM YP1(5),Y1 t =5 ) / XPRl , XENO-t , OXPfU, XI, DX1 , Nt \, INTl/INTCl* INI, I 91
L^ELljAREAl^Ul
CgMMeN ERR8R1*OXMAX1, TEMPI jHFQTSK 10) /CwNSll

-------
        3SS.OGO
        '3P.9.00Q       1EA1/H3S1.HS1
        393OOO        CStfMSM HSR1/H9B1 /£RRl/EVAPl/Ht1 *HC1 j HLYMN1 > PTEL3 (10 ) / TT8L1 (10 )*
        391.000,       1WMS1,C3\IST1
        392.030        C9MMSM Cl IFl,HFT1,H8C1*CLD1\,Cl 0?1.CLD31/DALP1*DALPRl,DCLD1/ORH1*
        393.000       lDTAitRljDTAl/nWl.DV!MSl/DWMDl/DEA1 PHI (1000) . W (1,000 ), TW (1000)
        396-000        C^M^tsN IMP AS/ MDA* DELTfFJO)/
        397.000        C3MM9M Nl N/IN/I^U/DT.NTA»IDA
        39S.OOO
        399.000
        40J.OOO        C3MMSM I \'T2, TNT-?/ DC/ DTA/ DP.HI /DW. DTW/ INVS/ IFLAG
        431 OOO        C3MM6N DM21/RETA
        402.000        C3MM6N .LBS1/NDAS
!^       '403-000        C9MMQSJ
        4:')4iOJO        RHBl=6?.4
        405.000        XI=0.
        406.000        Yl(l)«DTw
        407.000        Xc.NOl=25nOO.
        408.000        DXPRl=XFNfDl
        403.300        DXlslOOO.
        430.OuO        N'Eilsl
        411.000        INlalNl
        412.OOP        I31' = I?U
        413.000        ELl-EL
        414.000        AREA1=UA
        .415.000        Ul«l.

-------
417.000        DXMAX1-2ROOO.
418.. 0.00
419.000
423.000
4?6.000
4?3«-000        TAIS1=TA(
               CLDi=C(INJVSJ
                       .
4P3.000        TwSl«5'.*{TEi1Pl-32. 1/9.
4^9.000        TAl=5'*(TAIRl-33.
431.0.00        DAL3R1.0A.LP1/57.296
432-000        DCL01=OC
433.000        DRH1=2PH|
434.000        DTA1RUTDTA
43.6.000        DWMsi = D^l «.3048
437.00.0        D*IMD1 = D.«/1 *36'oO» *24.
43S.OQO CCCCC
.4^9-000 CCCCC
440.000 CCCCC
4
-------
445
446
'447
443
443
453
451
452
453
454
455
456
45 /
453
459
460
461
462
463
464
465
466
467
•468
469
470
471
472
• 000
• 000
.000
.030
.030
.030
• 300
« 0 00
• 300
.300
.000
.300
• 000
.000
.000
.000
.330
.030
.000
.000
•000
.000
.000
.000
.300
.000
.000
.000
ccccc


.10


20



ccccc
ccccc
ccccc
ccccc












ccccc
ccccc

IpUAGsQ
IF"( AB3 ( Y1 ( 1 ) ) »DT ) 10 J 10* ?0
CONTINUE
EMUMsENUM+l t
I?LAG»1
C3NTINJE
DENsQEiM + 1 •
RETURM'
END




FUKC.TISN ALNAPfTM^l/BETA)
S\1»SIN(RETA)
Trll= 6. ?R*Divi'?l/ ',36F«
DEL= A3I\i(slN( (?3. 45/57. ?96) )*RTNI(TH1 ) )
pHY = AC9S(TA,\i(DEL)^TAM(BETA) )
•JO=?4«*?HY/6.P8
TI =P4» -Tn
AV= (Tl-TO ) *STN (DEL) *SNl/34«
Av»Av-C3S'(DEl ) #C8S( 3ETA ) » f SI N( 6,2R*Tl/24« ) -SIN ( 6»28*TO/24 . ) 5/6.28
Al_NAP = ASTN( AV)
RETURN
ENID



-------
473.000
474.000
470.000
476,000
477.000
473.QOO
^79.000
430.000
4*51.000
432.000
4S3.000
1^.000
485.000
456.000
437.000
488.000
433.000
490.000
491. -000
^92.000
493,000
494.0-00
495.000
496.000
497.000
498.000
499.000
500.000
501.000
CCCCC
CCCCC
CCCCC

c
1



4
5



1.0

20
100

250


105




5JB39UTINE HuNOl




STREAM THERMAL M6DFL **** SENSITIVITY ANALYSIS **»«
C3MM8N YP(5)*Y( DXPR
CSNTI^'JF
D'3 100 JF* l.INT
CALL DIFFQ
G3 TP. (in*10*30)* IMTC
CALL EULFRf YP* Y»OX*^-:*.JE*X}
3g Te 100
CALL ^;<4 ( YP* Y'DX*NF* JE*X)
C3NTINUE
IF'(X • XPR+ DX/4.J 5*250*250
C3NTIMJ^
XPR = X.P5 + OXPR
IF-(X - XFND) 5*300*300
C9NTINUF
jJi^P = rl
* 4LBAR>TWS'TA«TWSA'E:w*EA'Hes>-HS
HLYMN*pTBL( 10)jTTBL( 10) iwMS/JC8.NST
rLD-?*DALP*DALPR*DCLD*DRH*DTAIR*
jDBTUS*N'TEMP*STT3L(10)*-XTBL(10)



















-------
NJ
OO
502
5)3
50
515
516
517
518
519
5?0
521
522
523
5?*
525
526
5?7
528
529
,000
• 000
.000
•00.0
• 000
.030
.000
.Q'_)0
.000
• 000
.000
.000
.000
^ r- "~]
. WlJVJ
.000
.000
• 000
.000
.000
.000
.000
.000
.000
• 000
.000
.000
• 000
• 000
110
C9MINJE

XPR = X 4. DXP-3
lao


130
131

140


150

300


ccccc
ccccc
'•CCCCC
ccccc

C3NTINUF
CALLN3RO(YP*
IF( JU1PJ1 30*
W=?ITE( 1-3,131
F'3R^IAT(//'
RETURN
C3NTINJF
CALL 3IFVQ
Q3 T8' 1?6
C9NT1MUE
IF(X • XFND)
CONTINUE:
RETURN
END




SJBR8JTINE I

X*XPR/Y*£RReRjNE>DXjDxMAX*JUMP^KSTP*KC8N*CLIF*l8]
lfO.150
) X
X ='E14.5.i IsjTEGpATT8M FAILURE')





110*300*300







NPUT
DIMENSION PTRL(101*TTSLMO)

CSM^iBV YP'(5)
, DT* DUM(4)^XPR*XFMD*DXPR*X*DX*NE* INT* INTCj
1 JN*19*EI *ARFA*U*EPR5R*DXMAX,TFMP,HFGTB(1Q).C8NS1




C8f1M8MRHfi*W*
C3MM8N' HRR*H
CSh^SN CL If,
1DTA,D^*DWMS*
WMD,Hp*TAlR,CLD*RH,ALRAR*T^S*TA,TWSAjE^*EA*H8S*H:
8R'*FBR*EVAP,HEjHC*HLYMN/PTbL *TTBL /WMS*C8'NST
HFQ.H8C*CLDl.*CLD2*rLD3*'OALP,DALPR*DCLD/DRH*DTAlR
DWMD*DEA,DEW*DLYM.N,DBTU'S>NTEMP>STT3L(10)*XTBLC10

-------
NJ
IO
530.000 10
531.000 20
533.000
533.000 C
534 i 000
535.000
536.000
537.000 33
538-. 000
539.000 40
5*0.000
541.000 50
542.000 60
544 V 300
5i»3'000 65
.545.000
547.000 110
548. COO 115
550.000 120
551.000
552.000 125
5n3.000
5'StiOOO 130
555.000 135
556.000
557.000 140
553.000 145
F9R~1AT(*>F10.0)
F9RMAT.(M10)
RAT 18. « 3«14159./1«0.
NJM3ES 8'F E3UATI8NS- AND. CHBICE frF INTEGRATION SUBR6UTINE
NE»t
rjToi
IFtlMTC - 3> 30*40*50
INT = iNlTC
G3 T8 60 '
IMT = *
G9. T8 60
C9IMTINUF
C9NTINUF
IF(JFLA-n6S,.150j65
CSNTINJF.
Gg.Te* ( 11 0*.1?0* 130* 140)* iNTC
W^ I TEH 9* 115V
F3RMAT(«r »*** EULFR IMTERRAT19N »*»»*1//)
CONTINUE
.H3ITEU9.125)
F9RMAT(M *»#** M8D. EULFR INTEGRATI9N **»«»!//)
38 T9 1=50
h ^ 1 T F ( I S • 1 3 5 )
F8RMATM1 ***»* 4 TH 8RDER RUNQE-KUTTA •******»//}
G6 T9 ISO
kvR I TE( 18.145)
F9RMAT(M *»*** ADAMS M8UI T8N INTEG. *»*****i//)

-------
5o9.3oO 150
5O.300 C
561.000 C      INTEGRATION  r.SNTRGL  PARAMETERS
562*000        C^NST  *  Fl/(RH9*U*AR'.E:A)
563.000        C.9NS1  •  (RH8*0.003?S)/(?4«*360n.*0.06it)
56^.300        DTA  =  DTAIR*B«/T.
565OOO        H9S  ,  1, 9*S I N.( ALBAR'R'AT 18 )
566.000        H9C  =  1 . 9*CSS ( ALBA'R'*=?A'Tie )
567.300        CLDl  =•!.  -  ,0765*CLD
568.300        CLD?  «  -.001J»»CID**2
569-000        CLD:3  »  1.  -  .0006»CLD**3
570.000        DALPR  =  HALF5 *  RAT19
571.000        D-J  »  D', TA IR, .\ Q )
579.000        EA  =  3HMl01'3*/U70t )*FTA
5SO.OGO        fAlRP  =  TAIR+DTAIR
5S1.000        FTAP  =  STtTTRL*PTRL*TAIRP/10)
5S2-000        DEA  a  ( 1013./1470O*(DRH*FTA + RH*(FTAP  -  FTA))
5*3.000        IFLAsl
58^.000        IF(IFLA-1) 198^199^198
585.000  198   CONTINUE
536.000        WRITE CIO-2.0,01  OT

-------
5^7.000 200   F9RMAT(»  .INITIAL DT .1^13.4           '       DEG  F'/>
           .
5*9.000 210   F6RMATM   STREAM VFL3CITY * CSN2;!
59:5-000 230   F3RMAT('   AIR  TFM'P. «'FS.J'  OF-3 FiF8»l»   DEG C'*
53b«000       li     C9MST "iE-10.3"    CBNS1 aipio.3//)
597.000       WRITF(.I8*2*0)  W. WfPHj WMSj KMD
593.000 240   F9RMA.T"("   WIND VELOCITY «iF6.2i FT/SEC ' F8.2 ' MPH 'F8.2 '  METERS «J
5C>9>000       li/SEC'F8.2'   ^IILES/DAYI/)
600. 300       W^lTF(I^i?60)
601.000 260   F9R.1AT(yJT20lTTRL'T40'PTBL'j60tHFST!3'/J
603.000  270    W^ITF.(I5.280) TTBL(T)/ PTBLM). HFGTB(I)
634.000  23O    FSR^AT < 1 OX/3F20.5 )
6.15.000        1N3ITE:(13..300)QCLD,D'3H,DTAIR
635-000  300.    F^K^AT(/i  OrLD =!F6.3', ORH  »IF5.S'-  DTAIR a'F.6.2)
60.7.030        WRliF'l IS.310) DALP/OWMPH
638.000  310    F3RMAT(/»  DALP »iF6.2i- DWIP'H .« • F6.2 )
639.000-        W^ITE( 13.320) 'H^Sf H3C» HSjHSR
610.000  320    F^R^lA1'/"  .H8S»''El?.4'  H9C=iEi?..fti  HS»'E12«*'   HsR»'E12«'4» LY/MjN1)
611-000       IN' )
612.000        W=ilTF(I3.330) EA^DFA
61'3'OQO  3.30    F3RMAT(/i  EA =iEl/?«4'  DEA
614.000        W-?ITF(I3.340J
615.030  .340    F9RvtAT
-------
616.300   199
617.00.0        RETURN
6 IS. 000        END
619.000  CCCCC
630.000  CCCCC
6?1-000  CCCCC
652.000  CCCCC
6^3.000        S'JBRSJTIME 6UPT
654.000        C9MM9N  DOT,YPU)> DT* DUM ( 4 ) , XF9, x'c.MDj. D*PR, X> OX/ NE j I NT*
6°3«000       llNiTCj  IN, IB/FL/ ARfTA, U>» ERR8R; DXMAX, TEMP> HFGTB ('10 )
626,000        C9MMagRHR/w'/WMa,HD.TAlR*CLD*RH* ALPAR/TWg*TAjTWsA
627.000        C"?M'M9M HSR, Hflg, =-BR^ E\/Ap^ HE, HC, HLYMM/ pTBL ( 10 \> TTfiL ( 10 ) , WMS* CBNST
6'S.OOO        C3MM8N Cl IF> HFG, H6C/ CLDl , CLO?j rLQr^j DALP, DALPR/DCLD/ DRH>
63^.000
630.300        W-mFUS.lO) X^OX
'631.000   10    F9RMATM     x ciF7.li FT
633.000  2-0     FaRMATt""  STREA-I TFMP  =»E12«4'  DES  F1/)
6^4«OnO        wi:?l.TE( 19^70) OT.DD.T
635,000        W9ITF( 16.30) EW.DEW* rvAP, HE* HFfi
636.000  30     F3R-1ATM   E^ a'FlP.5'   DEw  e'FIP.51   E.VAP = ' E12 .5 '    HE  ='
637- OCO       Itl'S.B''   I. Y/rtTN    HFG  a'E12»5*/i
638. OQO        WRlTF( I9.5Q) H9R*EPRiHC
639,000  50     F9R^AT(i   KSR ='E1?«5'   FBR='F12.=;'    HC  .IE12.51
640.000        W3lTF(l3.60> HLYMN*HD-
641.000  60     F5R,JIAT(!   T6TAL HEAT TSAMSFER  B'F12.5'   LY/MIN ' E15«5j
642,000       1'    BTO/S.F.C-FT2!./)
643.000  70     F9RMAT('   QT'»'Fl?.5t    QDT  B»F1?.5>/)

-------
w
64 4 -000
6^5.000 SO
t , c - "i A n
D lf.3 * wUw
6^7.000 90
648.000
649.000
650.000 CCCCC
651.000 CCCCC
632.000 CCCCC
653.000 CCCCC
654-.000
655.000
6 — ' ~ -i PI i
-•O • -J JU
657.000
658.000.
659.000
660.000 :
661.000 C
662-000
663.000
664.000
665-000.
666.000
667.000
668.000
669.000
670.000
6-71.000 C
672.000
n3lT£(ia.30> DLYMN,Oet(JS
F9RMA.K' DLYMM «YP(4), DT/ DUM(4)^XPRjXEND/DXPR>X^DXiNE*
ITMT T^lTr- T,\l TQ n A 3 C7 A II r^DQC) ^VMAV.TCMP UiCf^TRMn^aPflNIQI
L 1-N r > 1 J| C* 1'Nj ID»bL? "^LAiUit-^KaKfL/XnAA-/ 1 1 1 '• / rtr u i DV IU^/UDINOI
C3MM6MRHfl«WjWHO.HDtTA-IR.Cj5H* Al ^AS, TWS' TAj T'*lsA* EW> EA,H6S' HS
C3I^^19M .Hficr/H93,>3R>cVAPjHE/HCil4LYMN*PTBL(10)/TTBL(10)»WMS*CeNST
C3fNTEMP,SITBL(10)^XT8L(lO)
THERMAL FXCHANGC- WITH ENV IR9NMFNT .
TEMP «.' si
T"/S= (TFMP-3?. ) *5./3.
TWSA s T'wS + ?.7^.
DTrtS = 3^*5 i/9i
FTA- = SI (TT3L»PTBL/T=:MP410)
Jfrt a TFMP •*• 'Of
FIB = SI (TTBl .PTBLjTTWjIO)
ifi' = ( 13'1 3./14.7)*FTA
DEW a (10l3./H.7)*(FTB - FTA)
EFFECTjVF BAC.< RA°IATl8N.
H9B« (l*.38-.09*TWS-.046*RH)/6q.7.?!

-------
673.000
674.000
•675« 000
-676. OdO
677OOO
673.000
673-000
680.000
631.000
6S2OOO
633.000
6S-'^
686.000
687.000
68S-OCO
633.Q30
690.000
691, OGO
692,000
693.000
694. COO.
695.000
696. OCO
697.000
693.000
693.000
700.000
E3R « H'3R*CLnt
C EVAP8RATT6N HEAT TRANSFER.
EvAp » ..75* (EW-EA)*( 1. + .009R* 'WMD
HF'3 a SI fTT3|. •MFGTB,TEMP,10)
HE » EVAP*HFfi*C3NSl
c CONVECTION HFAT TRANSFER
HC a 39. #(.26 -H .077#WMS)*(TWS - TA
C T9TAL HFAT TRANJSFFR T9 WATER, I.Y/MIN
HLYMNi = nS - (E3R 4--HSR + HC + HE)
C T3TAL..HFAT TRANSFER, 3TU/SEC-FT?
HD » HLYMM * «0<:>1'*
FI 3 CL3?*DCl. D*HSS
F3 = « 0765*DrLD*Hf?fa
F4 » -CL01* ( - «09*DTWS - .046*DRH)/69
F5 a -(n +F2)*3./ALBAR
F6 = - Hs*7. *DALP/ALPAR**?
F7 3 -C'«S5*HFG/t 440-0. )#(.(!• * .nO^S*
1 . Ou93#DwMD>-»(EW • FA ) )-
F3 = - ( ^g ./1440. ) *( ( . 2ft + »077*WMS)»
1 ..077*DWMs*(TWs - TA) )
DLYMN = FI +'F2 + F3 + F4 +-FB + F&
D3TUS n DLYMM*.0614
DOT .= -C9NST*n3TUS
RETURN!
END
CCCCC
CCCCC
   ) * ( DEW - DEA) •+




      - DTA )  +




+ F7 + F8

-------
701.
702.
703.
70*.
705 »
706.
707.
70S.
703.
710.
711.
712.
713.
7lt.
715.
71b.
717-
71S.
719.
723«
72-r.
7? 2''
723.
72 4 •
725.
72.5.
727.
723.
729.
000
000
000
000
000
000
000
000
000
000
000-
000
000.
000
000
OOP
000
000
000
•000
-ooo
000
000
ooo.
000
000
-QOO
'000
-000
ccccc
'ccccc

c
c
r
c
c

c








c



















120
130

•550
160
180


210.


220
25*-





FUNCT19S> SI (XT3L.J YT3!_/X,N)
LINEAR IMTE3PSLATIBN' 9R. FXTRAPftLATTflN 8-F
XTBu - K'OEP'FNDENT' VARIABLE TARLE
YTBL .= DFPENDEMT ,VA?!IA3LF TABLF
IMD *• INDICATOR 9F EXTRAP8LAT I ftN
dsN9 EXTK.APSLATI8N, 1*L9WER EXT^AP'SLAT I 9
DIMEN3I9M XTRL(401* YT3L(40)
CHECK T3 SEE" IF EXi^ei-AT I3^ TS' NEEDED.
lF
-------
730
731
732
733
7.34
735
735
737
73S
7.39
740
741
7*2
743
744
745
746
747
74S
749
750
751
752
753
754
755
756
757
f
•
*
•
t
«
•
*
•
•
ff
t
•
*
.
•
f
•
•
•
*
•
«
V
«
•
*
*
000
000
000
000
000
000
ooo
0-)0
000
0 jO
.000
000
JCO
000
000
ooo
000
000
ooo
ooo
000
ooo
000
030
000
OJO
oob
000

CCCCC
CCCCC
CCCCC
CCCCC



10




100


?0


200


CCCCC
CCCCC
CCCCC
CCCCC


ENID




SjBRe'JTTNJE EULER(YPjYjDTjNE*JjT)
DIMEM3I9N YP(20)/Y(2C.>J SY (20 > . SYP ( 20 )
G3 T6 ( 1 Oi 20 } t J
C3NTIMJE
D3 .100 I =l/i\IF
SY( n= Y(,I )
.SYP(I)= YP(n
Y( IU Y( t )+DT*YP( M
C.^NTI \UE
TsT+OT
RETjR\J
CSN'TINUE
D9 ?00 Is.ljNF
Y( I ) = SYH )•*•( YP( I.)+SYP( I ) )«D.T/?.
C3NTINUE.
RETU9M
END




SjeReJTIiVJE RK4 ( YPj Y>OT^NF* Jt T )
DIMEMSI9N YP(5),Y(5)j.AK(5^,4)>SY(5)

-------
758.000
759.000 10
760.000
761.000
762.000
7*3.000
764.000 100
765.000
766.000
7*7.000
763.000 20
763.000
770,000
771.000
772,000 200
773.0-00
.774.000 30
775.000
776,000
777.000
773.000 300
773.000
730.000
731,000 40
782,000
733*000-
734,00.0
785.000 400
736.000
03 Te(rO.;;0*30*40>*J
C9NTIMUP!
Dd 100 I=1*NF
SY( I ) « Yd )
A1<(I*1) a OT*YPdV
Y(I) * Yd) + AKd*l)**.5
CgNTlNlUE
ST = T
T • T + HT».R
RETURN
C3NTINUE
D'9 200 Id*NF
A<( 1*2) = DT*YP(1 1
Y( I ) = SY(.r) • .+ AXd*2)*
C^NTjNUP
RETURN
C3NTINUC
03 '300 I a.l*.SE'
AK( 1*3) a DT*YP( I )
Yd ! = 3Y ( I ) + AKd*3)
CSNT-INUF:
T = ST + DT
RETURN
C3NTINUE
D9 409 I - 1*NE
A<( 1*4) = DT *Y=( I)
Y( I )=SY( T ) + (AK( 1* t)+AK(
C8NTINUE
RETURN •
h(AKd*2)+AKd*3)

-------
7*7.
7*3.
759-
790.
791.
792.
793*
794.
795.
795.
797.
798.
799.
800.
801.
802.
803 t
804,
80?.
806.
807.
808.
809.
810.
811.
812.
813.
814.
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
.000
000
000

CCCCC
CCCCC
CCCCC
CCCCC


1

991
C
993
998
C
999
992


90.1

C
1



5

END




SJBR9JT
D I KENS I
L),A(5),
IpUSTP
KSTP.28
TEST re
IF(JUMP
G9 T8 (
JUMP =9
TaS'AVET
JJMP»0
D9 901
F( I )»SF





INEN3RD(F,T,TLlM,Y^ERR
9M STA^Y(5)>Y(5)jSY(5)
ac5ijC(5)*D(5)>AA<5.)*B
-.^2767)9^3,991/991

R TYPF Qf ENTRY
)1./998/999
1000* 11* PI/ 802/803)* I A
3. REsTQRE VALUES


Ial*NP
( T )
Y( l')aSAVPY( I.I
G9 T8 1
JUMP NE
D9 5 1 =
STARY( I
A( I UO.
B{ I )=0.
C( I )=0.
D{ I )=0i
KSTpsO
0?
G. INITIALIZE
l/NE
UY( I )
oni
oni
001
001

 .NJFjH,HMAX, JUMP*KSTP>KC8N,CLIF/ 18)
 AVFY ( 5 >> F( 5 ) • FP (5 ) > DELTA (5 )' DALT'A (
(5>jCC<5)jDD(5>*SF(5)

-------
815.000
816.000
S17OOO
813.000
819.000
8?1.000
                                 KOELY-0
                                 KC8N.O
                                 XT«95«/t?88«*64. )
                                 U«863«./( 1 2.*5040.
                                 V»95.0/?S8.0
                                 P«35. 0/24.0
                                 G»35.0/7?.0
10
ID
8?3;.OOQ
8?4.00.d
825.000
856,000
8?7.000
^358.000
8=9.000
830.000
831,000
832.000
                                                   STEP
834.000
835.000
836.000
837.000
833.000
839.000
840.000
841.000
842.000
843.000
              JUNPaO
              G3 TB 1101
              B£Gl*J INTEGRATION
         1000 D9 1111  T=1*NE
              SP(!)»F(T)
         1111 SAVEY(I)=V(I J
        C     H T9B SMALL  RETURN  WITH  JUMP MFG
          600 lF(ABS(T-t-H)-ABS(T!>605j60lj6o5-
          601
                             605
            10
            11
            12
                                           .
                                 Gg Te Hnl
                                 09. 10 I»1 *NE
                                 Y( I)*Y( I )+H*(F( I ) +A ( I ) +B(I )+C( T J.+ D ( I ) )
                                 FP(I)«F(T )+2.0*A(I)+3»0*B(I)+4.0*C(I)+5,0#D(I)
                                 IA = ?>
                                 G9 TS 1101
                                 D9 12 I='ljNE'
                                 SY(I)»Y(I)
                                 Dd. 20: I*1^N£

-------
844.000
845,000
846. '000
847,000
848.000
849.000
850.000
851.000
852.000
853.000
.854.000 C
855.000
856.000 C
S57.-GOO
85S.OOO C
859.000
860.000
861.000
862.000
86^.000
864.000 C
865.000
866.000
867,000
868.000
869-000
870.000
871.000

20.



21


29
30

31

35

40

45
50
55

?23






DELTA { T )sF( I )-FP( I)
Y< M«Ym+V*DELTA U ) *H
IA»3
KCBM*1
G3 T9 llnl
KCSNsO
D9 30 I»1>N£
DALTA ( T )«F( I )-FP< I )
Y.( I )s3Y< T )+V*DALTA (I)*H
C9NT1MUF
TESj F8R STARTI^ SEQUENCE
lF«STP-?8)3R/40/40
A=>PLY TEST ? 9N ZER0TH STEP
IF«STp)RO,50.»6b
HALVING TESTS
09 45 Isl /NE
IF(A8S(OALTA ( I ) V-ERR8R/ABS'(H 1 545*
C8NTINUE
IF(V*H*CI IF-0»iJ»5)60j60*55
T»T-H
FAIL TESTS^ HALVE H
H=h/^.Q
KDELY=0
.09 56 I=1/NE
A( I )*A( I 1/2.0
•S''( I ) =8( I)/4.n
C( I )aC( I 1/8.0
F( I')*SF( T.)
55

-------
872*000
873.000
874.000
875.000 C
876.000
877.000
878.000
'879.000
830. COO
8S1»000
882.000
833.000 C
884.000
835.000
836.000
887.000 C
8SS.OOO
889.000
890.000
831.000
892.000
893.000 C
894.000
•895.000
896.000
897.000
898.000
899.000
900.000 c

56


60


62
64
67
65


70

74


75


78



79


Y(.I } «3AVFY( I )
D ( I ) O ( I 1 /16.0
G+Q«OALTA(I >
C( I )«C( I )+5.0*0( I )+R*OALTA( I )
D(I)O(t)+S*DALTA(I)
CftNT T Mlir
W U 1 » 1 1 ' U r.
IF IN STARTING SEQUENCE, BRANCH
IF«STP-?4)7,0*90* 100
G9 T8 ( 1000* 1000* 1000*74* 1000*1000* 1000*78* 1000* 1000*1000*74*1000*
11000*1000* 86* 1000* 1000* 1000* 74. 1000* 1000* 1000 )* KSTP
4TH* 12TH* 2'OTH STEP*- G8 BACK
Hs -H
03 7B I»1*NE
A ( I ) »• A ( I )
C ( I ) s-c ( T )
G9 TB 1000
8TH STEP G8 F8WARD
H='rl
09 79 I »1 *NE
Y( I ) =5TARY( I 1
A/i\s*A/T\
n ( * ) " I -' )
C( I ) s-'C ( T )
G9 T8 lO'OO
•16TH STEP* HALVF H* APPLY TEST 1

-------
901.
902.
903.
904.
905.
906.
907.
90S.
909.
910.
911.
912.
913.
214,
915.
916.
917.
91£.
9i9.
9?0.
9 = 1.
9?2 »
9?3«
924.
9?5.
926.
9?.7.
928.
000
000
000
000
000
000
000
000
000
000 C
000
000 C
000
000
000
000
000 C
000
000
000
000
000
000
000
000
000 C
000
000 C
86




87


88
H*
08
A(
S(
C<
D(
D3
IF
H/?

I
I
I
I

(
37
«0
' I«1
) = A ( n
)s
) s
>.«
a p.
3( ! )
Z( I )
0(1)
I =1

i

NE
/2.
/4.
/8.
/16
t
NE
AB3(DALTA
C3NTI
PASS


89

92

G9
FA
H =
03
Y(
G3

I
^

I

T9
L
H
9?
)»
T8
24TH
.90




91

100

102.
H*
D9
A (
B(
C(
D(
Gd
KD
WI
IF
H

I
I
I
I

E
+ 2
91
) 3
) s
) =
) 3
TS
LY
LL
{
MUE
TEST
78
TEST

i = 1





,
STARY
1
STEP
,» 0
I s^
A( I V
8(1)
C( T ).
0(1)
78
°KDF
NEXT
ABS(TI

t

i
*
*
*
*

L





ME
( I



0.
0
0
.0

C T ) )-ERR8R/ABS(H) ) 88 , 88/89

R9 P8WARD WITH HALVFD H

REGIN AGAIN .WITH HALVTD H


)

D8U3LE H^ Sf ART ING RF!QUENCE ENDS

NE
? »
4 .
8 *
16

Y +


n
n
n
.0

1
STFP MQvF PAST TLI.1^
I
M-
YES.........
T)-ABS(H) )103*103*1 10
SA.VP T AND Y> INTERRATE T8 TLIM

-------
           929.000    103  ENDH.TLIM-T
           930.000        DB  105  t»l*NP
           931.000        AA(I)=EMOH*A
           9*3.000-        IA»4
£          944.000        G9  TS
           9.40.000    802  Da  SOS  i=l/NF
           946.000    805  SY( t ). = Y( I )
           947.000        03  107  I»1*NF
           943OOO        DELTA.  ( I ) »F ( I ) -FP{ I )
           949.200    107  Y(I)=Y(I)+V#DELTA  (I)*FNDH
           950.030        IA*5
           951.000        G9  TB  linl
           952.000    803  D9  108  I=1*NF
           933.000        DALTA   (T)=F (I)-FP(I)
           934.000    108  Y( I)«SY( t')-»-V*DALTA  d)*ENDH
           95-5«000       .JUMp = l
           -956.000        39  TS  llnl
           957.000  C      N9........TEST F9R D6JBLING. IF'SK, BEGIN MEST STE- AFTER D8UBLING

-------
958,000.    110  IF(ABS(TI IM-T)-ABS(2.0*HniOOO.1000*111
959.000    111  IF«OELY-4)1000.»1PO>120
963.000    120  IF(AQ3(?.0*H1-A^S(HMAX))121»131*10QO
961.000    121  03  125  I,1*NF
962.000        IF(ABS(DALTA   (!))-ERR8R/{128.0*ABS(H)))125*125*1000
963.000    125  C9NTIMUE
964.000        IF (V*-UCI. IF"0.0625) 130^.1000* 10.00
965.000    130  C3NTINJE
966.000    335  H = c.0*rl
967.000        05  135  I«1*NF
963.000        A(I)s2.0*A(I V
.969.000        B( I)s^»0*B( I)
970*000        C( I')»3tQ*C( I.)
971-000 •   135  D(I )»16.0*D(I)
972-000        K3El_Y«0
973«000        G3  T8-1000
97t.jQO   1101  Cg.NtlNiJE
975.000   1150  F9RMAT(/«2X* iHH « i *-2X*FlOi6« 14V* « KSTR- B 11 2X* 13* 10X> ' DAL3A (I ) ' t /)
976.000   1151  F9RMAT('5(2X* I2*lXjEH.7) ).
977.000        RETURN
973.OCO        END'
979-0.00 CCCCC
980.000 CCCCC
931.000 CCCCC
9S2.000 CCCCC
9*3.000 CCCCC
934'..000        SjS'SeJTlNE  DF3U3U.N)
935.000        I91U102

-------
 946.000
 987.000
 933.000
 9-^9.000
 990.000
 991.000
 992.000
 993.000
 994.0.00
 99,3.000
 995.000
 997.000
 993.000-
 999-000
I'OOO.OOO
1001.000
1002.000
1003.000
1004*000
1005.000
1005-000
1007.000
1'OOS.OCO
.1009.000
lOlOiOGO
1011,000
1012.000
1013.000
10-14,00'0
            .
1000 F9RMAT(1M9,2X., » A» i >El/f.7. 1 X* I NU • , I k
     EMD
     SUBReJTlME. PR8U
                   «3XMAX1 /TEMPI, HFGTqi(10)/CeNsll
    1 h- A 1 /

        ^ra
       bl i C9MST1
    IOTA IR11 OTAl, 041,OWMSl, OWMDl. DEA 1 , OEWl, DtYMNl!, DBTUSl/NTEMPl^
    2STT3L1 •( I'O ) i XT3L1 (10)
     C3MMSM C ( 1000 ), TA (1000 Y, PHI (1 Onr».W( 1000 ),TW( 1000)
     C9MM9vj NT.AS* NDA,  OELT(SO),  TOAc(FiO)
     C3MiM8N' NI.NV1N, I^U,DT,NTAj IDA
     C9MM9N CTA(50)»TATA(50)fPHITA(«5n),WTA(5Q),TWTA(50)
     C3MM6N IMT2* TMT^*DC>DTA,DPHI,DW,DTWjINVs*IFLAG
     C9MM9N 	 	
     C9MM9M-
     C9MMSN
2000 FgRMATdWO/aXi'PR5BABILTTV  CHART ' /> 2XJ 60 ('*'))
     WRITE! 1911,2001) (OELT( I ),I«»1,NCAS)
2001 F9RMAT(lwO,lOX,10(E10.3il.X).)
     D-9 10 1-.

-------
   5. 03.0       WRITE( I9U*2002) IP AS (I.)* (PRP( I / .1 ) , J« 1 1 NCAS )
1016.000  2002
ici7.ooo    10
101S..OOO
isoo.ooo
I'SOl.OOO       C9M>1SM  YP1(5)*Y1 ( 5 ) / XPR1 1 XENDl ,t)XPRl, XI, DX1, NE1* INT1< JNTC1/ INI t 181
1502.000      1>EL1^ ARFA1*U1
1503.000       C^MMgN  FRRe^l /DxMAXl* TEMPI t HF3TR1 ( 10 )' CgNsl 1
ISOt.OOO       C^M>I9M  R^Ql^WliWMDl/^Dl^TAIRl / T.LD1 * RH1/ AL8AR1^TWS1> TA1/ TWSAl/ EW1*
1505.. 000      !EAl/H3SljHSl
1506 '000       C3MM?N  MRR1 jH9Bl j EPR1/EVAP1* HE1 .HC1 > HLYMNl^ PTBL1 ( 10 ) ' > TTBL1 ( 10 Yi
1507.000      lW*lSljC8\IRTl
1508.000       C9MMSM  Cl IF 1 , HF'lly M9C1 , CLOl 1 > CL021 > CLD31 j DALP1 j DALPR1 • DCLD1 j DRH1 »
1503.000      IDTAIRI/OTAI^DWI , D^MSl / OWMDlli DEA1 »OEWl/DLYMNljDBTU51*NTEMPi/
1510.000      2STTSLl(ln)*XT^Ll(10)
1511.000       C3M:-l'9.M  C f 1000 )/ TA ( 1000 ). PHI (10DO) . W ( 1000 ) , TW ( 1000 }
1512.000       C^MMQN  MTAS/  MOA*  OELT(BO)J  IDAS(SO)
1513.000       C^M^S^  \'l N, IN. I«U/OT»NTA.* IDA
1 51<+* 000       C9N16M  CTA(5fi)jTATA(50)*PHITA(Rfl)iWTA(50),TWTA(50)
151-5. ooo       csr-He^  UA»EL^CC.TAIR*TWAJRH^'SP
1516.000       C3M^19N  I NT?> INT'^ DCOTA* DPMI , DW, DTWi INVS> IFLAG
1517.000       C9MM8N  !^^121
1513'. 000       C9.MM8M  LRGl
I5i9.oco       C^MMSM  irAs
15?O.OoO       DIME.NSI9N. PR ( 10 ) , T.7 ( 100 )
15?0«010       D9  3  I»1«NCAS
15a0..020       PR(D»0.

-------
1557.000
15?S.OOO
is?:). 030     3   CSNTIMUE:
15=n.060  C     -N3A. DUMBER BF DAYS  IN THg  CASF
1 522.000        NDA.j
1.033.000        NClsNlL.N/8
           1020
          2001
               lF(NpA-NJri )  10*999*999'
           10  C9NTINUF-
                D9  5 1=1, NCI
1528.
1523-030
1532.000
1532.5.00
153-3OQO
1535.000
               'DENaO'
15^7.000
1533.000
1539.000
15*0.000
1541,000
1542.000
1543.000
1544.000
1545.000
1546.000
1547.000
D3 2C I
C-3 = 0.
TAS=O.
PHIS=0.
W3-0.
T4SaO>
OS 30 1
D9-. ifO J
IV-JT = 8*(
CS'CS +
.TAS.TAS
?n«i*MOIF





,1 *NDA
*1,*8
IPO+.I-D+J
r ( I'MT)
. + TAf I NT-)

-------
-tr
00
                         15tfi..OOO        PHlSsPHIR + PHI(INT)
                         15«*9»'OCO        W,3 = .gS + w( INT.)
                         1551 .00.0     40
                         1552. OCO     30
                         1532OOO        C5=
                         15H«f.OQO        TAS= ,TA3*FNDA
                         1555,000
                         15 tjo. OCO
                         1537.030        TA'S = T7(I?0)
                         1553.000  C     INT?= F.3lL8>,IMG DAY
                         1553. OoC
                         156J.OOO
                         1561.000
                         1562.000
                         1565.000       D3 =50 1,1*8
                         15^6.000 C     iMT.^i THr ACTUAL  PfiSlTISN IN THF DAY
                         15S7.000       I.MT3»INT?*8"R+I
                         1563. OgO       CiSaClS-i-r ( INT3)
                         1569.000       TAlS = TAtS + TAMNT3)
                         1570.000       PHllS'P^T IStPHI ( INT3)
                         1571. DOO       lMS = WlS + i*/( INT3)
                         157?. 000       T"J1S = TW1 S + TW( IMT3)
                        •1573OOO   50  C^NTINJF
                         1574'. 000       C1S = C1S*.125
                         1575.000       TA15=TA1S*.1?5
                         1576. DOO       PHllS

-------
1577.00O
1578..000
1579'.000
1530.0QO
1531.000
15S2.000
15%3«000
•1584.000
1535..000
1536,000
1537-000
1538.000
1539.000
1590.000..
1591.000
159? .0.00
1593,000
1594,000
15 95. '000
159S.OOO
15.97,000
1593*000.
1599.000
1600.000
1601.000
1601.010
16J1.0'?0
l'6ol'0.?5
1601.030
1601.040
1601.050'
I6ol«060
1602,000
1603.000
WlS«wlS».125
T',JlS«TWlS». l?g
DC«-C13-Cs
OTA.TA1S-TAS
DPHIaPHHS-FHlS
DW*:«/1S»WR
OT»»TWiS-TW3
STT3LKl>«TW1S
STT3L1 

»Trt1 S X'TBLl (1 J = 0. XTBL1 (2)-=25000« NT£MPI«? I.\lVS = IvjT?»8-Jf CALL C9MP(EN.uicbr>EN) '05 60 ICA3«1..NCA'S IF(ABS(Y1 (in-DPLK ICASn 65j6R/70 65' C3NTJMJF P3< tt!AS)=PR(ICAS)+l. 70 C3NTINJC .60 C9NTINUE 20 C3NT1NJE DENPaNQlF 03 75 ICASoljNCAS PR( ICAS)=PR(JCA,S)/DE^P 75 CONTINUE' W^lTEf ISiJj^OOO) (PR( I-J/ I = t^NCA'S) 2000 F8RMAT(/.2X* !SHTi:8N.'7 RESULTS I . in «F6 RETURN 999 C3NT1NJE WRl TE(- ISJIJ* 4.000) 4000 F3RMAT(/,2X* »T89 SMALL') CALL EXIT RETURN END IX) )


-------
                      APPENDIX D

          THEORY OF THE SENSITIVITY ANALYSIS

In this appendix the development of the equation  (1)  is
discussed together with the problems of convergence  and
averaging of the data.  The sensitivity analysis  is  further
discussed with the exact solution being developed for the
constant coefficient equation.

THE GENERAL STREAM MODEL

The equation ( 1 ) is developed from the energy equation
heat fluxes shown in Figure 1 .  The development of this
equation is based on a Taylor's expansion of the  dependent
variable,  T , about the position, x , downstream:


          T(x + dx)  =  T(x) + ^ (x) dx    .           (D-1)
                               QX

Use of this Taylor's expansion together with the  conserva-
tion of energy for the control volume in Figure 1 yields:
  uA T(x) - uA  [T(x) + $2L  (x) dx]  +
                       dx


+ * dx  [QRad - QRef - QBack ~ QEvap + QConv + QMisc]  =   °
                                                       (D-2)
The first term is the enthalpy transport into the control
volume; the second term is the analogous transport out of
the control volume; the third term is the total heat  flux
at the air/water interface.  Some minor algebra on equation
(D-2)  yields equation (1), assuming that the quantities u,
A, and £ vary slowly along the stream.

The equation (1) holds between points at which flows  and/or
heated effluents are added to the stream.  Many authors
directly integrate equation  (1) over a station length,  Ax  ,
assuming the fluxes and u, A, H to be constant over that
distance.  The result is simply
 x+Ax               x+Ax
      7uA dT          C
      — d? dx  =   J



                     °-Conv + °-Misc] dx
                                 QRef   QBack + QEvap
x                  x
                          150

-------
uA
- [T(x + Ax) - T(x>]  =   [QRaa - QRef
                                           Ax
                          QConv + Q] Ax
T(X + Ax)  =  T(X) +
It is possible to then incorporate heat fluxes not covered
by those at the air/water interface in the Qwisc term»
simplifying the coding and the model considerably.  Two
aspects of this concept should be emphasized:  1) all models
are similar to this model and are within a small error that
is a function of the mesh size, and 2) the convergence of
the procedure can be shown from previous literature.

Suppose that an alternate model is used in which the fluxes
are redistributed, i.e., the total flux may be the same but
the model assumptions causes a difference in the flux at
any position  x .  Then this difference can be represented
as a quantity proportional to the station length,  Ax .
For example:
       QRad(x + Ax)  =  QRad(x) + 0(Ax)  '             (D~4)


But the introduction of this expression into equation  (D-3)
will introduce a term of order  Ax2  (O(Ax2)), which can be
made appropriately small by a suitable choice of  Ax .  Thus,
all correctly formulated models will be a measurable error
away from the general model described by equation ( 1 ) .

The question of numerical convergence of the solution is
discussed in general by Salvador! and Baron  [1961],  p. 116.
Much of the information provided by them can be directly
applied to this problem.

Suppose a general problem stakes the; form
                         151

-------
                  y  =   f(x,  y)    ,

               y(0)  =   y0    .                          (D-5)

If Euler's method is taken  as an  example the form for the
integration is


             Yi+1  =  YI +  f U±  ,  y±)h   ,              (D-6)

which is seen to be identical in  form to equation (D-3).
From p. 91 in Salvador!  and Baron
                y(x)  =     /f(z)  dz


                y(x)  =  f(x)

                         •
                y(x)  =  f(x)


               (n)
y
                  (x)  =   f (n-1) (x)    .                 (D_7)
A Taylor's expansion about  x  yields:


  y(x±h)  =  y(x) ± J^f (x) + ^  |(x)  ±  £- f (x)  + ---
                             *'          '              (D-8)
From this the following expressions  can be evaluated
               x+h
      I -I  =    f  f(z) dz  =  y(x+h)  -  y(x)

              x

          =  h[f (x) +  y  f (x) + JT f (x)  + — ]    ,     (D-9)


and
                          152

-------
             x+h


            ift/h
I2  =    /  f(z) dz  =  y(x+h) - y(x-h)
         =  [2 hf(x)  +     f (x) +     f(IV)  (x) + --- ]    .

                                                       (D-10)

From Taylor's theorem and equation  (D-6)


                               h2 '
     y(x+h)   =  y(x)  + hf(x) + jj- f(x)                 (D-11)
and the error is proportional to the maximum value of the
second derivative.  With these fundamentals set down the
error for the equation

     dT  =  _QL_                                       (D-1
     dx     uApc


can be readily found.  From the general analysis the error
is bounded by the expression
           IT            - T        <        I—I Ax
           1  Approximate    Exact1  —  uApc  'dx'       /Am
                                                 max   v D- i J j

 An expression similar to (D-13) is easily developed  for
.bounding the station length


             Ax  <   I ^allowable I     _                (D_14)
                    nnax    idQi
                     uApc   'dx1
                                max


From experience, a convergent  Ax  can easily be obtained
for this differential equation since the heat fluxes  are
generally very small and have small derivaties.
                          153

-------
DATA AVERAGING

For small changes in temperature the equation  (1) will be
quasi-linear.  Thus, the theory of linear equations can be
applied to the problem.  This is very important since
average data will produce average output to such a model,
while a nonlinear model will not yield results of this
type.

To prove this it is necessary to examine the theory from a
different viewpoint.  For example, the temperature at any
point  x  downstream from the disturbance can always be
represented from the linear equation in the form

                           x
           T(x)  =   £]
                      i   0

where the integral occurs over the domain of interest and
the kernel function  K^(x, £)   relates the effect of the
i'th heat flux  0^(5)   at the position  £  to the temperature
T(x)  at the position  x ; the sum produces the effects of
all of the heat fluxes.  Since the expression is linear , it
can be summed over several sets of heat fluxes to obtain the
sum of temperatures as follows
                           n
            vx)  =
                                                       (D-16)
Suppose that equation (D-16) is rearranged and both sides
of the equation divided by the number of temperatures  n
        n
                                                       (D-17)
This proves that the effects of the heat fluxes can be
averaged and the equation used to compute an average tem-
perature.  This would not be true for a nonlinear equation
and is a significant result.

-------
THE SENSITIVITY ANALYSIS

The fundamental equation for the sensitivity  analysis  is
developed by varying both sides of the  solution  equation
(1):
                    d6T      H
                    ~dx"  =  Au" 6Q    '                  (D

where  6Q  is the change in the heat fluxes and   6T   the
resulting change in the stream temperature.  The  initial
condition for the equation is
                   6T(0)  =  <5TQ   ,                    (D-19)


i.e., an initial error in temperature  <5T0   is known  at  a
point in the stream, which allows  the computation  of  the
error at points downstream.

On closer examination of  6Q  the  linearity  of the solution
emerges.  The individual terms are


&Q       =  1.9 sin a (-0.0018 C2  6C)(0.61)
  Solar

            + (1.0 - 0.0006 C3)(1.9 cos of 6a) (0.061)
6Q0 *i  x. ^  =  - )   ,
                         155

-------
                     f
^Evaoration  =  ^fo  (0-35) (1.0  + 9.8 x 10~3 w2) (6ew - 6ea)
"^Evaporation


                   Ph
                     240
                          (0.35) (9.8  x 10~3 ,5^) (ew _ e&)
^Convection  =   39.0  (0.077  SW2) (T  -  Ta) (f) (0. 061)


                  +  39.0  (0.26  +  0.077  W2) (&T - 6T&) (|) (0.061)


                                                       (D-20)

Note that small changes  in the heat  fluxes  imply like changes
in  6T.  Thus, the  justification in  linearizing the analysis.
The equation  (D-18) is solved  in this  investigation using
numerical analysis  procedures.   However,  for constant coef-
ficients in equation  (D-18),  the equation can be solved in
closed form.  Symbolically the equation can be written as:
          —      r _ f1  ' i^ rp .L ^   j-  r~*   _i_  __   /""I            Y T~\ o 1 \
          —  -—  L C-i 01 + Cn  +  Co  +	WnJ    ,        lD-/!1;
      ax     Au     '       ^    o         "i


where the  C^  are constants.   The solution  to this equation
is found in two parts, a homogeneous solution decaying with
distance and particular solutions  that are constant.  The
homogeneous solution is found by assuming it in the form


                   6T  =  A e~ax   ,                   (D-22)

where  A  is an initial amplitude  and a  is the decay rate.
Substitution into equation (D-21)  yields


           -(a) A e~ax  =  JL [- c.|  A e"ax]    ,        (D-23)


which finds  a  to be
                                                       (D-24)
                          156

-------
The particular  solutions are found from


                            C
                                                       (D-25)
where  i = 2, --- , m .  It is on   this basis that the
sensitivity analysis is completed.
                         157

-------
                              TECHNICAL REPORT DATA
                        (Please read Inunctions on the reverse before completing)
1. REPORT NO.
 EPA-660/3-75-037
                         2.
                                                   3. RECIPIENT'S ACCE88ION>NO.
4, TITLE AND SUBTITLE
                                                   5. REPORT DATE
 Improving the Statistical Reliability of
 Stream Heat Assimilation Prediction
           6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
         Richard W. McLay
         Mahendra S.  Hundal
                                                   8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMIN
         Richard W. McLay, P.E.
         18  Redwood Terrace
         Essex Junction,  Vermont
         05452
           10. PROGRAM ELEMENT NO.
             1BA032
           11. CONTRACT/GRANT NO.
             68-03-0439
12. SPONSORING AGENCY NAME AND ADDRESS
  National Environmental Research Center
  Office  of Research and Development
  U.S. Environmental Protection Agency
  Corvallis, Oregon   97330 	^_____
           13. TYPE OF REPORT AND PERIOD COVERED
           Final	
           14. SPONSORING AGENCY CODE
16. SUPPLEMENTARY NOTES
16. ABSTRACT
 This work  is an evaluation of existing, one-dimensional  stream temper-
 ature prediction techniques for  accuracy and precision.  A sensitivity
 analysis of a general  model is used in oonjunction with  statistical
 methods to determine solution errors. Data  taken in  1973 at the Vernon,
 Vermont nuclear plant  are used as  a data base.  These data are used with
 Burlington, Vermont airport tfeafeher station data to  1) gain insight  intc
 the orders-of-magnitude of the various errors and 2) carry out a de-
 tailed data analysis to establish  probabilities of meeting given error
 requirements.
17.
                           KEY WORDS AND DOCUMENT ANALYSIS
               DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
 Accuracy
 Stream temperature prediction
18. DISTRIBUTION STATEMENT
                                        19. SECURITY CLASS (TM&.Report)
                       21. NO. OF PAGES

                         163
                                        20. SECURITY CLASS (Thispage)
                                                               22. PRICE
EPA Form 2220-1 (9-73)
                           U.S. GOVERNMENT PRINTING OFFICE: 1975-699-072 111 REGION 10

-------