EPA/AA/CTAB/TA/83-6
                       Technical Report
    An Analysis of Carbon Monoxide Emissions As  a  Function
         of Ambient Temperature and Vehicle Parameters
                               by

                        Larry  C. Landman
                           July,  1983
                            NOTICE

Technical  Reports  do  not  necessarily  represent  final  EPA  de-
cisions or  positions.   They are  intended to  present  technical
analysis  of  issues  using  data which  are currently  available.
The purpose of the release of  such  reports  is  to  facilitate  the
exchange  of  technical  information  and  to inform the  public of
technical developments which may form the basis for  a  final  EPA
decision,  position or regulatory action.
             U. S. Environmental Protection Agency
               Office  of  Air,  Noise  and  Radiation
                   Office  of  Mobile Sources
              Emission Control Technology  Division
   Control Technology Assessment and Characterization Branch
                       2565 Plymouth Road
                   Ann Arbor,  Micnigan   48105

-------
                              -2-

Introduction

Numerous investigators have reported the observations that:

    1)   Carbon  monoxide  (CO)  exhaust  emissions  tend  to  in-
         crease as ambient temperature decreases.

    2)   The  "cold-start  emissions"  (those  emitted   prior  to
         light-off of the catalyst)  are  the  most sensitive to a
         drop in the ambient temperature [1,5,6,7]*.

This  tendency toward  increased  CO  emissions  is  suspected  as
being  a  major   factor   causing   National  Ambient  Air  Quality
Standard  (NAAQS)  violations for  CO  during  cold  weather condi-
tions  [1] .

To  investigate  possible  functional  relationships  between cold
weather CO emissions and emission control  technology or vehicle
parameters, we reviewed  existing  data  on eighteen  (18)  vehicles
for which  cold-start tests were  performed  in  EPA's Controlled
Environmental Test  Facility (CETF).   These  data  were  generated
between  February  1980  and  October 1981.  Since  these  vehicles
were  not specifically  chosen  as  a  representative  sampling  of
the population of  late-model  year vehicles, care  must  be taken
in generalizing the results of these analyses.

Results  of  these  analyses  may  be used  in  the  development  of
future  test  programs  designed  to investigate  ways to  reduce
cold weather CO emissions.
*Bracketed,  [  ],  numbers  indicate  references  at the end of this
report.

-------
                              -3-

Conclusions and Reconunendations

In  tne  limited data base  which  was used, we  conclude that the
most  significant  vehicle parameter  related  to CO  emissions at
low  ambient  temperature  is  the type  of fuel  metering system.
The  vehicles  equipped  with   electronic  fuel injection   (EFI)
exhibited greater  cold weather  CO  control than  did  the carbu-
reted vehicles.   Of secondary importance  is  the  vehicle's  test
weight  (ETW)  and the type of secondary air injection used.

We  had  limited success  in  predicting both cold-start CO emis-
sions and the  increase  in cold-start CO  emissions (in grams per
mile) relative  to FTP ambient temperatures  (75°F)  as functions
of  ambient temperature,  type  of fuel  metering  system, and  ETW.
However,  the  percent of  CO  increase  (relative to  75°F)  corre-
lated poorly with  tne  available  variables.   From  this, we infer
that an additive  rather  that  multiplicative  "correction factor"
for cold weather CO emissions may be a more appropriate form.

We did  find a  high positive correlation,  at  low ambient temper-
atures,  between the increase  in fuel consumed  (Bag  1  fuel  con-
             i
sumption  minus Bag  3  fuel consumption)  and  the corresponding
increase  in CO  emissions.  This is  further  indication that the
cold-start fuel enrichment systems are  responsible  for much of
the low ambient temperature CO emissions.

It  is difficult to determine, from the  data set used for  this
report,  how  important  eacn design  parameter  is,  since the  data
set  does  not   include  every  possible combination  of  all  the
parameters.    It is obvious,  however,  that the  important para-
meters  to concentrate  on  in  future  investigations  are  those
related  to  the  fuel  metering,  air  injection,   and  cold-start
fuel  enrichment systems.   In  an ideal sense,  further  cold  room
testing  would  involve  test  vehicles  that  had  the  following
characteristics:

-------
                              -4-

    (1)   Vehicles   representing   all   combinations   of   fuel
         metering  systems  (e.g.,  I,  2,   and  4  barrel  carbu-
         retion;  throttle-bodied  fuel  injection  (TBI);  multi-
         point fuel injection)  and secondary  air  systems (e.g.,
         no air  injection,  pulse air injection,  air  pump)  used
         in late-model  vehicles  and/or  likely  to  be  used  in
         future vehicles,  and                '

    (2)   Vehicles representing  various  types  of cold-start  fuel
         enrichment systems.   (We  could then  search for readily
         identifiable vehicle  parameters  which correlate  with
         the cold  start  effects of  these  systems,  and quantify
         the effects on cold weather CO emissions.)

Test Vehicles  & Test Results

The 18 test vehicles are  described in  Table 1.   As  indicated in
that table, data  from  the first ten (10)   vehicles  were  used in
reference 1, the  next five  (5)  appeared in reference 2,  and the
last vehicle appeared in  reference  3.   Data  generated by vehi-
                                             n >
cle D160  (1981  Chrysler  K-Car Wagon) and  vehicle  1009  (Ethyl's
lean-burn concept car)  have  not  appeared  in any  previous  EPA
technical report.

It  should  be  noted  that  both  tne Ethyl  lean-burn  car  (a  1978
Ford Fairmont with  a modified Peugeot  V-6  engine and  an Asian-
Warner A4(00)  transmission)  and  the  Dresser Nova  (a modified
1977 Chevrolet  Nova equipped  with a Dresser  sonic carburetor)
are prototype  vehicles  which  embody hardware that  is not  used
on production cars.  Thus,  some of the  regression analyses  were
done both  with and without these two  vehicles.   Additionally,
vehicle  FB289   (the  turbocharged Datsun  280ZX)  was an  experi-
mental prototype  and,  thus,  not  necessarily  representative  of
either the 1981 or 1982 model year Nissan  vehicles.

-------
  -5-
Table 1
Test Vehicle Descriptions
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
MFR
Ford
Nissan
Nissan
GM
GM
Ford
GM
Nissan
Plymouth
Toyota
Chry
Ford
Ford
GM
GM
Chry
Ethyl
Dresser
VI D
9S1-5.8M-H-400
FB223
FB178
P0948
03H2-94472C
8R10Y131366
4M47AAH202725
FB289
D162
MA46100183
B3BK26B4BC184143
1FABP082XBW20356
1FABP21B3BK15310
1G1AX68X7B621755
2G1AW69J63144479
D160
1009
1X69L7L104103
YEAR/
STANDARD
1979 CA
1980 49
1980 CA
1981 49
1980 CA
1978 CA
1980 50
N/A
1981 49
1980 50
1981
1981
1981
1981
1981
1981
N/A
N/A
MODEL
T-BIRD
280ZX
280ZX
GRAND PRIX
CUTLASS SUPREME
PINTO
REGAL
280ZX TURBO
RELIANT
CELICA SUPRA
K-CAR
ESCORT WAGON
FAIRMONT
CITATION
MALIBU
K-CAR (WGN)
ETHYL LEAN -BURN
DRESSER ' 77 NOVA
ciotr, /
No. 'of Cyl
351(5. 8)/8
168(2. 8)/6
168(2.8)/6
265(4. 3)/8
260(4.3)/8
140(2. 3)/4
231(3. 8)/6
168(2. 8)/6
135(2. 2)/4
156(2.6)76
135(2. 2)/4
98(1. 6)/4
200(3. 3)/6
173(2. 8)/6
267(4.4)/S
135(2. 2)/4
163(2.6)/6
350(5.7)/8

-------
                            -6-

                          Table 1  (Continued)
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
1 D
16
17
18
ETW
(lb)
4500
3250
3125
3875
3500
2750
3750
3250
2750
3000
2750
2500
3375
3000
3625
2625
2750
4000
TRAN
A3
A3
M5
L3
A3
A3
A3
A3
M4
A4-OD
A3
M4
A3
A3
A3
M4
A4-OD
A3

SGR
YES
YES
NO
YES
YES
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
Test Vei
- EMISSK
AIR
PUMP
PULSE
NO AIR
PUMP
PUMP
PUMP
PUMP
NO AIR
PUMP
NO AIR
PUMP
PUMP
PUMP
PULSE
PUMP
PUMP
PUMP
NO AIR
hicle Descriptic
DN CONTROL SYST!
CATALYST *
OXD(M)
OXD
3WY
3WY
3WY
3WY
3WY
3WY
3WY
3WY
3WY
(M)
(M)
( P ) +OXD ( P )
(P)
(M)+OXD(M)
(P)
(M)
(M)+OXD(M)
(M)+3WY(P)
(M)+OXD(M)
3WY(M)+OXD(M)
3WY
3WY
3WY
3WY
(M.)+OXD(M)
(M)+OXD(M)
( P ) +OXD ( P )
(M)+OXD(M)
NONE
3WY
(P)
3ns
LM
A/F
OPEN
OPEN
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
OPEN
OPEN
CLOSED
CLOSED
CLOSED
OPEN
OPEN
FUEL
METR.
2
bbl
EFI
EF
2
2
2
2
EF
2
T
bbl
bbl
bbl
bbl
I
bbl
EFI
2
2
1
2
2
2
3
bbl
bbl
bbl
bbl
bbl
bbl
bbl
SONIC
REF
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[2
[2
[2
[2
[2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
]
None
[4
[3
3
3
? 'P'  designates a Pelleted catalytic converter,
  and 'M' designates a Monolith.

-------
                              -7-

The CO exhaust  emissions  from those test vehicles/ over the  FTP
driving  cycle,  appear in  Appendix  1.   The  emissions,  in  grams
per mile,  are given for  the  cold start  (Bag  1) ,  hot  transient
(Bag  2) ,  and  the hot  start  (Bag 3) portions  of  the FTP cycle.
Those  data are presented graphically,  for  each  vehicle,   in
Appendix 2.

Data Analyses

As  the  18  graphs  in  Appendix   2  illustrate,  the  CO  emissions
during the  hot  transient  (Bag  2)  and hot start (Bag 3)  portions
of the FTP  are  relatively low and relatively insensitive to  the
ambient  temperature.   The  only  possible  exception  to  this
observation could be  the  performance of three of  the four Ford
vehicles  (see Figures  07, 12,  and 13  of  Appendix  2) .    These
three vehicles exhibit a  trend  in low temperature  Bag 2 and Bag
3 CO  emissions  that  appear  somewhat  different  from  the   other
vehicles.   For the purposes of  this report,  no special analysis
based on this observation was made.  However, it  may be neces-
sary and appropriate  to  consider the low temperature Bag  2 and
Bag  3  results  of  vehicles  in  future  test  programs,  based  on
this observation.

For  this  report, the.  analysis  was  divided  into  the following
five areas:

    1)   Analysis of  the  cold start  (Bag 1)  CO  emissions   only.
         This  results  in  analysis  of  Bag 1  emissions  in   grams
         per mile.

    2)   Analysis of the  amount  by  which the Bag  1 CO emissions
         exceeded the  Bag 3  CO  emissions  (i.e.,  the difference
         of Bag .1 and  Bag  3  emissions).   This results in analy-
         sis  of grams per mile differences.

-------
                              -8-

    3)    Analysis of the amount by which  the  Bag  1 CO emissions
         exceeded the  average Bag  1  CO  emissions at  75°F  for
         each vehicle.   This  results in  analysis of  grams  per
         mile differences.

    4)    Analysis of the ratio of the Bag 1  CO emissions to the
         average Bag  1 CO emissions  at 75°F.  This  results in
         analysis  of  dimensionless  quantities  equivalent  to
         percent increases in CO emissions.

    5)    Analysis of the ratio of the Bag 1  CO emissions to the
         corresponding Bag 3  emissions.   This results in analy-
         sis of  dimensionless quantities  equivalent  to percent
         increase in CO emissions.

For  each  vehicle,   equations  were generated  to  approximate CO
emissions by using  a "best fit"  first-degree and a  "best  fit"
second-degree polynominal  in  ambient temperature  (Appendix  3) .
The  best  fit was obtained  using the least-squares-fit method,
which smoothed the  data, and  provided an  insight  into the shape
of the CO emissions  versus ambient temperature  curve.   A second
set  of equations was generated  by using  results  from  tests  for
which the  ambient  temperature was  below  90°F.  Selection  of  a
quadratic equation  in ambient temperature  to  model CO emissions
was  based  on a visual  observation  of  the data.   That  is,  the
quadratic is tne simplest  function  that  is concave  upwards  and
decreases  as temperature  increases.      In   addition,  modeling
the  CO  emissions with  such  a  function  has  been  used  in  the
past. [5]   For  each  of  the 64  least-squares-fit  equations  for
Bag 1 CO in Appendix 3, we calculated:

    1)    predicted CO emissions at 20°,  40°,  and 75°F,

-------
                               -9-

    2)   predicted slope of the equation at  20°,  40°,  and  75°F,

    3)   predicted sensitivity of  the  equation at 20°, 40°,  and
         75°F,  where  sensitivity  is  the  per  cent  change  in  CO
         emissions divided by  the per  cent  change  in temper-
         ature,

    4)   ratio  of  the predicted CO  emissions at  20°F to those
         at 75°F.

For each  of the four  combinations of  temperature  interval  and
polynominal   degree/   we   computed   correlation  coefficients
between  each  of  those  calculated  values   and  the  following
eleven (11) vehicle parameters:

    1)   secondary air (air pump, pulse air,  or no air)

    2)   number of catalysts  (0, 1, or 2)

    3)   equipped with an oxidation catalyst  only (yes or  no)
                                                               •. i

    4)   equipped with a three-way catalyst only  (yes or no)

    5)  .. equipped with both  a three-way and  oxidation catalyst
         (yes or no)

    6)   type of catalyst  (pelletted or monolith)

    7)   fuel metering system  (fuel injected  or carbureted)

    8)   control of air/fuel ratio (open or closed loop)

    9)   equipped with EGR (yes or no)

-------
                              -10-
    10)  equivalent test weight (ETW)  (in pounds)

    11)  number of cylinders  (4, 6, or 8)

Conspicuous by its absence  from the  preceding  list is a vehicle
design  parameter  directly  relating  to cold-start  fuel enrich-
ment  (e.g., choke  angle as functions  of  time  and temperature).
Thus,  this  important factor  was  omitted from  the list because
no variable was  found  to consistently represent  it  for each of
the  test vehicles.   However,  some  of  the characteristics  of
cold-start  fuel  enrichment may be  inferred from  the amount of
additional  fuel  consumed to perform  the  cold-start  relative to
the corresponding  hot-start (i.e.,  Bag 1 minus  Bag  3 fuel con-
sumption) .  This  difference  in total  fuel consumed  (in grams)
appears  in Appendix 1.

The matrices  of  the calculated correlation coefficients appear
in Appendix  4.   Each correlation coefficient,  r, between pairs
of variables  is  the  standard product-moment  correlation coef-
ficient.*   This  value  is used  to  describe the  strength of the
linear  relationship (if  any)  between  the two  variables being
correlated.   The  tables  in  Appendix  4  give  the  correlation
coefficients  between pairs  of actual data (from Appendix 1) and
vehicle  parameters, between pairs  of model predicted data  (from
Appendix 3) and  vehicle parameters,  and  between pairs  of vehi-
cle  parameters.    The  selection of  model predicted  values was
made  to allow us  to  correlate the  shape of the  CO  values was
made  to allow  us to  correlate the  shape  of   the  CO   emission
curves  (i.e., slope and  sensitivity)  with  the  various vehicle
parameters.
*For  example,  see Introduction  to  the Theory  of  Statistics by
Yale,  G.U.,  and  Kendall;  M.G.  Hafner Publishing  Company,  New
York  1968, p. 216.

-------
                              -11-

Choice  of  numerical values  on which  to  base  a  judgment about
whether  or  not there  is  a relationship  of  the  type  being  in-
vestigated  is  always  a matter of choice.  For  this analysis we
judged  the  variables  to be  linearly  related,  if  we  can accept
that null hypothesis  of linear dependence at  the 0.01 signifi-
cance  level.   The  only vehicle  parameters  thus  defined which
correlated  highly  (either  positively  or  negatively)   with   the
low  temperature  CO values (either  actual  or  calculated)  were
those  related  to  the  fuel  metering  system,  secondary   air
system, ETW, and  possession  of only  a  three-way  catalyst.    Un-
expectedly, the  ratio  of the  CO  emissions  at  2U°F to  CO emis-
sions at 75°F  (or equivalently,  the percent  of increase  in  the
CO  emissions  at  lower temperatures)  did not  correlate  highly
with any of  those eleven  vehicle  parameters.   Possession  of
only a  three-way  catalyst  was  dropped as  a  significant variable
because of its high correlation with secondary  air systems.

The increase in Bag 1  relative to Bag 3 CO  emissions (i.e.,  Bag
1  minus Bag  3  emissions)  correlated  highly  with the  corre-
sponding increase in   fuel  consumption at ambient temperatures
below the FTP  temperature  range  (68°F  to 86°F).   (Appendix  4)
It, therefore, appears likely that  the temperature-related  in-
creases  in  CO  emissions are  due to the cold-start fuel enrich-
ment system.

We  tnen used  both  stepwise  forward  and  stepwise  backward   re-
gression analyses  to  model the  actual cold-start  CO  emissions
as  a  function of  the  three  (3)  continous   variables:   TEMP
(ambient temperature),  TEMP.2  (square of  the ambient  temper-
ature) , and ETW.  The  TEMP variables  were chosen  because  of  the
success  in  modeling  individual  car  CO  results   (see  Appendix
3) .  ETW was  chosen  because,  in  the  correlation matrices  in
Appendix 4,  ETW  was almost always  the next most  highly  corre-
lated  variable in  the  linear sense  after  the three  following

-------
                              -12-

categorical  variables  which  were  previously  determined  to be
 (linearly)  related to  cold  weather  CO  at the  0.01  level of
significance:

         PMP  (0 = No air pump,  1 = Has air pump)
         PLS  (0 = No pulse air, 1 = Has pulse air)
         FS   (0 = EFI, 1 = Carbureted)
  i

It is  important  to note that, in this  sample  of  16 cars, those
six  variables  are not  independent.   The variables  PMP and PLS
are,  of  course,  always  mutually  exclusive   (i.e.,  no  car is
equipped with both an  air  pump system and a pulse air  injection
system)..  However, in  this  study,  the  type  of  secondary air in-
jection system  (PMP  or PLS) correlates highly with  the type of
fuel  metering  system   (FS) :   all  the  test  vehicles  with  air
pumps were carbureted,  while  all the  vehicles  without  secondary
air  were  fuel  injected.   Thus, for this  sample of 16 cars,  the
combinations of  the  categorical variables produce  only four,
rather  than six, subsets with data in them.

 ,!l
S.tepwise  forward  regression analyses  were performed using those
variables,  products of  those  variables  with the  categorical
variables,  and  with  products of  the  categorical  variables.
Stepwise  backward  regression  analyses had  to  be  performed  with
a reduced set  of  variables because  the  matrix  of coefficients
used by the. MIDAS statistical program  became  singular  when all
the  variable and'product terms were used.

The  end  results  of   those  regression  analyses   are   given in
Appendix  5.   Those results indicate  that  the CO emissions  can
be   modeled  using  those   variables,  and  those  models  yield
multiple-Rs  of  aoout  88   percent  for   the   vehicles  in   this
sample.   In  light  of  the high degree of  correlation among  what
should  be independent  variables, the  final regression  equations

-------
                              -13-

are  not  vital.   What  is important,  however,  is  the  fact  that
the  most critical  variable  ('after,  "temperature")  in modeling
cold-start  CO  emissions  is  the  fuel  metering system  (FS)  and
possibly  air  systems.   This  observation  is  illustrated   in
Figures 1 to 3.

Equally  important  is  the fact that attempts to  model  the ratio
of increase  in  CO emissions  from 75°F resulted in  multiple  Rs
of 0.66  to  0.68.   Thus,  the proportion of  the variability  (the
square of R) in that  ratio  of CO  emissions  that is explained  by
temperature, ETW, and  the categorical  variables  is less than  46
percent.   This  seems  to  indicate that use of a multiplicative
form  of  "correction  factor"  to  calculate  cold  weather  CO  may
not be as good as an additive form.

If we use tne results  of the  regression analyses in Appendix  5,
not to predict  CO  emissions,  but  rather to predict  the differ-
ence  in  CO  emissions  between the carbureted  and  fuel injected
vehicles  at   low  ambient   temperatures   (i.e.,    20°F),   the
equations predict:

    1)   Cold-start  CO  emissions  of   the  carbureted  vehicles
         exceed those of  the  fuel injected  vehicles  by 72 grams
         per mile.    (The actual  data  indicate  79.6  grams  per
         mile.)

    2)   The increase  in cold-start CO  emissions  from  75°F  to
         20°F for  the carbureted  vehicles exceeded  by 65 grams
         per mile  the corresponding increase  for  the  fuel  in-
         jected vehicles.   (The actual  data  indicate 74.2 grams
         per mile.)

These predictions are borne out by Figures 1 and 2.

-------
                                         -14-
                                        F i qure 1

                  Average  Bag  1 CO Emissions Versus Ambient Temperature
                           (Means of Actual Data from Appendix  1)
                    Stratified  by Fuel Metering & Secondary Air Systems
   CO Emissions
    (g/mi)
1 10
100  *
              X
 so
 50
 40
 30
 20
 1C
                          EF1 + Pulse
      20   25   30   35   40
45   50   55    SO   S5    70
   Ambient Temperature  (*F)
75   8O   85   9O   95   100

-------
   CO  Emissions
    (g/mi)

 90+4
                                          -15-

                                         Fi qure  2

                     Average Difference  between Bag  1 CO  Emissions  and
                       Bag  1 CO  Emissions at 75'F Ambient  Temperature
                           (Means of Actual Data from Appendix  1)
                                Versus Ambient  Temperature
                    Stratified oy Fuel Metering  & Secondary Air  Systems
 80
 70
              Garb + Air Pump
 SO
 5O
 10
              EFI  +  Pulse  Air
                                                            ALL
-10
      20   25    30   35   40   45    50    55    60    55   70   75   80   85   90   95
                                  Ambient Temperature  ('F)

-------
                                           -16-

                                         Flqure 3

                      Average Difference between Bag 1 CO Emissions and
                        Bag 3 CO Emissions Versus Ambient Temperature
                           (Means of Actual Data from Appendix 1 )•
                    Stratified by Fuel  Metering & Secondary Air Systems
   CO  Em i ss i ons
    (g/mi)
•;00
 90
 80  +
 70
 SO
     -i- 3
 50
 40  •*•
 30
 20
  10
Carb + Air Pump
                      EFT  -i-  Pulse  Air
       20    25    30    35    40    45    50    55    SO    S5    70    7"    80   85    90    95    100
                                   Ambient Temperature  (*F)

-------
                              -17-

References

1.  Robert  I.  Bruetsch,  "Carbon Monoxide  and  Non-FTP Ambient
    Temperature," EPA  Technical Report  Number  EPA/AA/CTAB/ TA/
    81-7, February 1981.

2.  Rodney  J.  Branham, "Evaluation  of  the  Temperature Effects
    on  Five  1981  Passenger  Vehicles,"  EPA  Technical  Report
    Number EPA-AA-TEB-82-4, December 1981.

3.  Thomas  J.  Penninga,  "Evaluation  of a  Dresserator  System
    Test Vehicle," EPA  Technical Report  Number EPA-AA-TEB81-21,
    June 1981.

4.  F.J. Marsee,  "Ethyl Concept Car  vs. 1980  Production  Car,"
    Ethyl Corporation  Research  Laboratories, Report  Number ERM
    80-4, May 1980.

5.  N.  Ostrouchov,  "Effect  of   Cold  Weather  on Motor  Vehicle
    Emissions  and  Fuel  Economy,"  SAE  Paper  Number  780084,
                                                         HI
    February-March 1978. .                                ,;

6.  R.S.  Spindt  and   F.P.  Hutchins,  "The  Effect  of  Ambient
    Temperature  Variation  on Emissions  and Fuel  Economy  -  An
    Interim  Report,"  SAE  Paper Number   790228,  February-March
    1979.               .

7.  J.N. Braddock,  "Impact  of Low Ambient Temperature  on  3-Way
    Catalyst Car  Emissions,"  SAE Paper  Number  810280,  February
    1981.

-------
               APPENDIX 1
CO Emission Data from FTP Driving Cycle
                   1-1

-------
                         Appendix  1

          CO Emissions Data from FTP Driving Cycle

Vehicle I .D.
9S1-5.8M-H-400
1979 fold T-8-Ud






FB223
J9S0 49-S;tate
VcutAun 2SOZX








FB178
1980 Ca£x,|$0AnA.a.
PajUun 2S0ZX






P0948
1981 GJiand P/U.X.






03H2--94472C
J9S0 Cu;t£a4.6 Sap







Temp
(°F)
20.0
60.0
60.0
74.0
75.0
75.0
100.0
101.0
21 .0
22.0
60.0
60.0
74.0
75.0
75.0
75.0
99.0
100.0
100.0
20.0
20.0
60.0
60.0
75.0
75.0
75.0
75.0

20.0
20.0
60.0
60.0
75.0
75.0
1 00.0
101.0
20.0
20.0
60.0
62.0
74.8
75.0
75.0
100.0
100.0
Test
Number
801423
801424
801427
801454
801632
801648
801579
801580
802513
802514
801642
801644
801641
801640
802414
802578
801639
801643
802413
802687
802810
802586
802589
802434
802435
802681
802684

803474
803476
803098
803101
803092
803095
803404
80.3479
803783
803786
803597
803590
803777
803593
803776
803779
803781
	 CO Emissions (g/mi) 	
Bag 1
201.919
105.835 •
106.355
46.897
47.816
53.442
13.369
10.528
22.348
19.172
7.280
7. 173
6.219
9.375
6.253
8.661
. 9.571
8.088
11.101
30.701
27.514
10.797
10.375
1 1 . 102
7.010
13.953
7.666

141 . 126
159.249
77.532
69.041
9.597
10.308
5. 162
3.604
98.346
107.343
39.290
38.939
10.487
12.910
14.462
7.305
6.653
Baq 2
4.318
0.601
2.201
0.632
0.921
0.709
3.259
3. 127
0.0
0.0
-0.007
0.019
0.019
0.014
0.012
0.005
0.025
0.029
0.0
1 .239
1.342
0.960
1.042
1 .044
1 . 143
1 .250
0.737

0.221
0.096
0.1 16
0. 106
0.321
0. 184
0.096
0.062
0.702
0.400
0.326
0.323
0.229
0.284
0.314
0.649
0.275
Bag 3
9.989
9.409
7.220
7.761
9.352
5.725
20.331
13.388
o!.072
0.537
0.567
0.019
1.569
0.513
1.283
0.969
1 .444
1.270
2.360
1 .520
1 .434
0.966
0.901
0.871
0.852
1 .342
1,201
:; i
0'>.812
1. 189
0.678
1.030
2.803
3.060
1 .784
0.709
0.648
0.655
0.622
0.892
0.590
0.658
0.849
2.41 1
1 .266
AFuel
Used*
313. 1
227.5
194.6
158.4
151 .3
170.4
84.7
59.0
202.6
173.4
1 14.5
126.6
34.9
90.8
203.5
41 .2
55.6
60.7
50.4
173.5
164.0
97.1
97.6
87.4
77.6
97.8
75.2

441 .6
456.8
272.4
246.5
132.0
130.0
92.0
89.3
265.2
271 .3
139.5
126.9
96.6
96.5
90.9
27.0
36.3
* AFuel Used is the amount  of  fuel  (in  grams)  consumed during Bag
  minus the amount  consumed during  Bag  3.   (Fuel  consumption  was
             using
calculated
carbon balance equations.)

-------
                      1-3
              'Appendix 1 (Continued)
CO Emissions Data from FTP Driving Cycle

Vehicle I .D.
8R10Y131366
J97S Pon.d Pj.n£o






4M47AAH202725
19 SO BiUcfe Re.ga£





FB289
19Z1 .5 fl
-------
                               1-4

                        Appendix  1  (Continued)

         CO Emissions Data from FTP Driving Cycle

Vehicle I .D.
MA46100183
19 SO Ce.6cc.fl. Sup/to.













B3BK26B4BC184143
J9SJ Ckx.y K-CO.A


1FABP082XBW20356
19S1 EtcoJit Wagon


1FABP21B3BK15310
J9SJ Fcu,A.mon£


1G1AX68X7B621755
J9SJ CLtaJtcon


2G1AW69J6B144479
1931 Cnev Ma-Lcfau

D160
I93J CJuiy K-Wagon




Temp
(°F)
20.0
20.0
60.0
60.0
71.5
72.5
73.0
74.5
74.5
75.0
75.0
75.0
75.0
100.0
100.0
22.0
59.0
72.5
97.0
23.0
58.5
75.0
98.0
22.2
59.0
74.0
100.0
22.0
60.5
75.0
101 .5
18.7
60.0
73.6
20.0
60.0
75.0
75.0
100.0
100.0
Test
Number
806710
806713
806704
806707
805387 *
805537
806359
805383
806357
805385
806361
806698
806701
806690
806693
810713
81071 1
810697
810734
810849
810826
810822
810824
810575
810573
810569
810571
810752
810750
810746
810748
81 1 194
81 1188
81 1 180
807526
807528
807389
807392
807381
807386
	 CO Emi
Baa 1
36.404
36. 169
10.590
13.954
70.073
6.873
6.685
5.234
6.490
6.887
5.440
10.784
5.987
3. 137
3. 163
125.399
23.944
22.938
12.355
78.402
14. 142
11 .206
10.620
136.083
3.578
3.980
3.853
58.147
23.018
.17. 174
1 1 .036
133.036
8.836
9.080
97.453
21 .637
12.710
13.355
7.043
6.646
ssions
Baq 2
0.486
0.469
0.436
0.490
61.705
0.217
'0. 113
;
-------
                                   1-5
                            Appendix 1  (Continued)
            CO Emissions  Data  from FTP Driving Cycle
Vehicle I.D.
1009
       Le.o.n-Bu
-------
                 APPENDIX  2





Plots of CO Emissions for Each Test Vehicle





                (Bag-by-Bag)
  (Note:   All  CO  scales  are  not the same.),
                     2-1

-------
                                                  2-2

                                               Figure  01

     Scatter Plot of  Bag-1  (1),  Bag-2 (2), Bag-3  (3)  CO  Emissions versus  Ambient Temperature

     Vehicle No. 9S1-5.8M-H-4OO,  Ford 1979 California T-BIRD (351 cid)

    CO Emissions
    (si/mi)
225
200
175
150
125
                                                      1
                                                      1
100   +
 75
                                                                      1
 50    +
                                                                     1 1
 25    +
                                                                                                3

       +                                                                                         13
             3                                        33             33
             2                                        23                          22
  0    +                                               2.              222
       +.— _ — _.*_..._ ...«.•..._ — .^—-~_.^.. —_—^__-_ + — _«_.*— __«^.._*^ —— __ ^. —~.^_...^« M..^...«4..«. .«^.v_^._. __.*.____ *
       15    20   25   30   35    40    45    50   55   60   65   70    75    8O   85   90   95    1OO  105

                                         Ambient Temperature (*F)

-------
                                                 2-3

                                               Figure 02

     Scatter  Plot o-f Bag-1 (1), Bag-2  (2),  Bag-3 (3) CO  Emissions versus  Ambient Temperature

     Vehicle  No.  PB223, Nissan  1980  49-State 280ZX  (168  cid)

   CO  Emissions
   (g/mi)
40
35
30
25
20   +
              1
15
                                                                                               1
10   +
                                                                     1                         1
                                                                     1                          1
     *                                               1 1
     +                                                                                         3
                                                                    33                        33
              3                                       3              223
     +       32                                       32             22                        222
      4,_......4...__..4._	_4> — __-4..»«__4._ .*.«.-- — ••«>•• — -- + — — — — 4-	— — *—	4-	•-— •*• — — — — -*•	— —+— — —-4-—— -—4» — —— —4- — — — —4>

     15    20   25   30   35   40   45    50   55   SO   65    70    75   80   85   90    95   100  105
                                        Ambient Temperature  (*P)

-------
                                                2-4
                                             F1qure 03
    Scatter Plot of  Bag-1 (1),  Bag-2 (2), Bag-3 (3) CO Emissions versus Ambient Temperature
    Vehicle No.  FB178,  Nissan 1980 California 280ZX (168 cid)
   CO Emissions
   (g/mi)
45
40
35
           1
30   +
25
20
 15
                                                    1
 10   •»•                                              1
            33                                                      2
            2                                        33             333
 0   +
      15    20    25    30    35    40    45    50    55    SO    65    70   75    SO   85   90    95    1OO  105
                                       Ambient Temperature  CF)

-------
                                                 2-5

                                               Figure 04

     Scatter Plot of Bag-1  (1),  Bag-2  (2),  Bag-3 (3) CO Emissions versus  Ambient Temperature

     Vehicle No. P0948. GM  1981  49-State GRAND PRIX (265 cid)

    CO Emissions
    (g/mi)
180
160
140
120
100
 80   +
                                                     1

      +                                              1
 SO
 40
 20   +



      +                                                             1 1
                                                                                              1
                                                                    33                        31
  0   •*•     23                                       32             22                 '       22
       + ___ _ + ----.*----•»•- _--<.- ___+____+____*-	_4.--__4.----*----*----J-----4.--	4--	-f-	+ -	- —	

      15   20   25   30   35    40    45    50   55   SO   65   70   75   80   85   30   95    100   105


                                        Ambient Temperature (*F)

-------
                                             .  Figure OS

     Scatter* Plot of Bag-1  (Di  Bag-2  (2),  Bag-3 (3) CO Emissions  versus Ambient Temperature

     Vehicle No. 03H2-94472C,  GM 1980  California CUTLASS SUPREME  (260 Cid)

    CCi Emissions
    (ei/mi)
135
120
            1
105   +
 90
 75
 SO
      •*•     1
 45   *

                                                      1  1
 3O
 15   *                                                              1
                                                                     1
                                                                     1
      *                                                                                        11

                                                                                               33
  0   *     22                                        2  3           333                        22
       4.-	_.,._ _-_-!.	_+.____*	__ + ____+	+ ____4.	__*____*	---«.-	_ + __--*-..__ + __-._ + ____^____^.____4.
      15   20    25    30   35   40   45   50    55    SO    65   70   75    3O   35   9O    95    100   105

                                        Ambient Temperature CF)

-------
                                                 2-7


                                               Figure 06

     Scatter Plot of Bag-1  (1), Bag-2  (2),  Bag-3 (3)  CO Emissions versus Ambient Temperature

     Vehicle No. 8R10Y1313B6, Ford 1978  California PINTO (140 cid)

    CO Emissions
    (g/mi)
135
12O
105
 90   +
            1
 75
 SO
 45
 30   +
                                                     1 1

      +     3

            3
 15   +
            22                                                                               1
                                                                                             33
  0   +                                              33             23                       2
       4.____4._'_	4.____4--___J.-__—. ____4.____^.___ _j.__ __.____*____*__ __^.__ __ + ____+_-_-*----»_---*-_-_•

      15   20   25   30    35   40    45    5o'   55   SO   65   70   75   80   85   90   95    100  105

                                        Ambient Temperature (*F)

-------
                                               2-8


                                             Figure 07

    Scatter Plot of Bag-1 (1), Bag-2 (2), Bag-3 (3) CO Emissions versus Ambient Temperature

    Vehicle No.  4M47AAH202725, GM 1980 50-State REGAL (231 Cid)

   CO Emissions
   (g/mi)
90
80
70
60   +

           1
     +



50   +


     •*•



40   +


     •«•



30   +
                                                    1
20   +
                                                    1
 10   +                                                                                      3
                                                                                            3
                                                    23                         2
     -33                                       23             2


 0   +

     15    20    25    30    35    40    45    50   55    60    65   70    75   80   85   90   95    100   105

                                       Ambient Temperature  (*F)

-------
                                                2-9

                                             Figure 08

    Scatter Plot of Bag-1 (1), Bag-2 (2), Bag-3 (3) CO Emissions versus Ambient Temperature

    Vehicle No. FB289, Nissan 1981.5 49-State 280ZX TURBO 1168 cid)

   CO Emissions
   (g/mi)
45
40
35
3O
25
20
15
10
 5                                                 11.                                1
                                                   1                                       1
                                                                  1
     +                                                            1
          233                                     23
          223                                     223             22                       33
 0   +

     15   20   25   30   35   40   45   50   55   SO   65   70   75    80   85   90   95   1OO  105

                                      Ambient Temperature ('F)

-------
                                                2-10

                                              Figure 09

     Scatter Plot of Bag-1 (1), Bag-2 (2), Bag-3  (3) CO  Emissions  versus Ambient Temperature

     Vehicle No.  D162. Plymouth 1981 49-State RELIANT  (135 cid)

    CD Emissions
    (9/mi)
135
120
105
 90
 75
 60
 45   *
 30
  15   +                                              11

                                                                    1
      +                                                             1                         111

             33                                       33             33                       33
  0+22                                       22             22                       32
       + _ — __ + — — _—* — — — • + .. — — -.4.- — «-.+.-...-_ + _.. — •.*._ _ _ — •*• — - — + — — — — + — — — _ + ___ .^_^*_ ^« .«.^....^....^._..^....4.
      15    20    25    30    35    40   45   50   55   SO   65   70   75    SO   85   90   95    100   105

                                        Ambient Temperature (*F)

-------
                                                 2-11

                                              Figure  10

    Scatter Plot o-f  Bag-1  (1),  Bag-2 (2), Bag-3 (3)  CO  Emissions versus Ambient  Temperature

    Vehicle No. MA46100183,  Toyota 1980 50-State CELICA SUPRA (156 cid)

   CO Emissions
   (g/mi)
40
           1
           1
35   +
30
25
20
15
10
                                                                   111
                                                                    1 1
                                                                    1
                                                                                              1 1
           22                                       22            2223                        3
 0   +                                              33            2222                        22
      •.f...___4.__ __.*___...*_	— 4.	— ~*	— — •* — — -.—4- — - - —* — — - — + — - — — •*• — — — — -f — — --"f- — —	*-—— — ^.- —	-fc — — - -« ^	— * — — — — J.

     15   20    25    30   35   40   45   50   55   SO    65    70   75   80   85    90    95   100  105

                                       Ambient Temperature  (*F)

-------
                                                 2-12
                                               Figure 11

     Scatter Plot of Bag-1 M), Bag-2 (2),  Bag-3 (3) CO Emissions versus  Ambient Temperature

     Vehicle No.  B3BK2684BC184143, Chrysler 1981 K-CAR (135 Cid)

    CO Emissions
    (g/mi)
135
120
105
 90
 75
 60
 45 ,'
 30
  15'
               3                                     3.
                                                                   3                         3
  0+2                                     22                         2
       ^— __...t.___..^__._.. + ~..__ + ..-._-..t_ — — « + —_ __.+.— ___.*•_ «_^._.«^_. ..^.....^....^*.._^....^.	_ + _	_^_..«4.
       15    20    25    30   35   40   45   50   55   SO   65    70    75    3O   85   SO   95   100   105

                                        Ambient Temperature  (*F)

-------
                                                2-13

                                             Figure  12

    Scatter Plot of Bag-1 (1), Bag-2.(2), Bag-3  (3)  CO  Emissions  versus Ambient Temperature
    Vehicle No. 1FABPO82XBW20356, Ford 1981 ESCORT WAGON  (98  Cid)

   CO Emissions
   (g/mi)
9O
80
70
SO
50
40
30
20   +

              3
     4>
                                                   1
                                                                   1
10   +                                                            '                        1

                                                                                          3
     *                                                             3
                                                   3
              2                                                    22
 0   +                                             2
      + ____*____*__-_*	-4.-___-i.	__ + ____4._ ___*_-__ + ____*--__ + _-_-«._-_- — ----+----*	*	-- + -	t.
     15   20   25   3O   35   40   45   50   55    SO   65   70    75   SO    85    9O    95    10O   105

                                      Ambient Temperature  ('F)

-------
                                               2-14
                                              Figure  13
     Scatter Plot of Bag-1  (1), Bag-2  (2),  Bag-3  (3) CO  Emissions  versus Ambient Temperature
     Vehicle No.  1FABP21B38K15310,  Ford  1981  FAIRMONT  (20O cid)
    a) Emissions
    (jj/mi)
180
1SO
14O
120
10O
 80
 SO
 20
                                                   1               1                          3
                                                   32                          2
       15   20   25   3O   35   40   45   50   55   SO   65   70   75   80   85   90   95   100  105
                                       Ambient Temperature CF)

-------
                                                 2-15


                                              F i qure  14


    Scatter Plot of  Bag-1  (V),  Bag-2 (2), Bag-3 (3) CO Emissions  versus  Ambient Temperature

    Vehicle No. 1G1AX68X7B621755,  GM 1981 CITATION (173 cid)

   CO Emissions
   (g/mi)
90
SO
70
SO
50
40   •*•
30
20   *
1C   •*•
             3                                       333


 0+2                                       22                           2
      + __	.k_ — .^..A.^..._ _+_ __'_+.. ...^.. —^..«_4.....^._«.~^.~._«^«.«.^ —— — .^. — -•^—.-—^—- ——^- — — _+_- — 4.

     15   20   25    3O    35    40   45   50   55   SO   65   70   75   80   85    90   95    10O  1O5


                                       Ambient Temperature ('F)

-------
                                                2-16
                                              Figure  15
     Scatter Plot  of  Bag-1  (1),  Bag-2  (2),  Bag-3  (3)  CO  Emissions versus Ambient  Temperature
     Vehicle No. 2G1AW6906B144479,  GM  1981  MALIBU  (267 Cid)
    CO Emissions
    (g/mi)
180
160
140
120
10O
 80
 SO
 40
 20
           3                                        3 '             3
           2                                        22
      15   20   25   30   35   40   45   50   55   SO   65   70   75    30    85    9O   95   100  105
                                       Ambient Temperature (*F)

-------
                                                 2-17


                                               Figure 16

     Scatter Plot of Bag-1  (1), Bag-2  (2),  Bag-3 (3) CO Emissions versus Ambient Temperature

     Vehicle No. 0160, Chrysler 1981 K-CAR  (WON) (135 eid)

    CO Emissions
    (g/mi)
135
120
1O5
 90
 75
 60
 45
 30
 15   +
                                                                    1 1
                                                                                             11
            3                                        3               33                        33
      +     2                                        2               22                        22
       + _	_.*.____ + ___-. + _	h- -	+ —	— •*—-. — — .».	_^_«_-^« — -—^——-^^— ---^, —» —— ^«_ ——^. — -._^.—— .—^ —. ——^__ —— ^.

      15   2O   25   30   35   40   45   50   55    60    65    70    75    3O   85   90   95   100  105


                                       Ambient Temperature ('F)

-------
                                                2-18

                                              Figure 17

     Scatter  Plot  of  Bag-1 (1),  Bag-2 (2),  Bag-3 (3) CO  Emissions versus Ambient Temperature

     Vehicle  No.  1009,  Ethyl  Lean-Burn Car  (163 cid)

    CO  Emissions
    (g/rni)
180
160   +     1

             1
      +•     1


140   +
120
100
 80
                                                    1
 SO   *                                             1
 40
 20   +                                                            11
                                                              1     1  1
                                                                   1
      +                                             33            333
           333             3     333                  33   233
           222             2     222                 222        2  2222
  0   +
       15   20   25    30    35    40   45   50   55   SO   65   70   75   80   85   90   95   100  105

                                       Ambient Temperature C'F)

-------
                                                2-19

                                             Figure  18

    Scatter Plot of Bag-1 (1), Bag-2 (2), Bag-3 (3) CO Emissions versus Ambient Temperature

    Vehicle No. 1XB9L7L104103, Dresser 1977 NOVA (350 cid)

   CO Emissions
   (g/mi)
45
40
35
30
25
20
15
10
                               1 1
                                                   1
                               1                    31
                                                   1 1
                                                               1   1 1
                                                  222             11
                               23                 22            22
           33                 222                  3              222
           22      2
     15   20   25   30   35   40   45   50   55   SO   S5   70   75   30   35   90   95   100  105

                                      Ambient Temperature ("F)

-------
                   APPENDIX 3
Equations Modeling CO Emissions for Each Vehicle
                       3-1

-------
                                                  3-2
Models Predicting Cold-Start CO Emissions for Vehicle 9S1-5.8M-H-400,
  Ford 1379 California T-BIRO  (351 cid)
N Temp interval
8 20.0 - 101 .0
a 20.0 - 101 .0
8 20.0 - 101 .0
a 20.0 - 101 .0
6
6
6
6
Models
N
1 1
1 1
1 1
1 1
8
3
8
a
Models
N
"3
8
a
8
Models
N
a
a
8
8
6
6
e
6
20.0 - 75.0
2O. 0 - 75.0
2O. 0 - 75.0
2O. 0 - 75.0
Predicting Co
Temp Interval
21.0 - 100.0
21.0- 100.0
21.0 - 1 00 . 0
21.0 - 100.0
21.0- 75.0
21.0- 75.0
21.0- 75.0
21 .0 - 75.0
Predicting Co
Temp Interval
2O. 0 - 75.0
20.0 - 75.0
2O. 0 - 75.0
20.0 - 75.0
; Predicting Co
Tamp Interval
2O. 0 - 1O1 .0
2O. 0 - 101 .0
20.0 - 101 .0
20.0 - 101 .0
2O. 0 - 75.0
20.0 - 75.0
20 . 0 - 75 . 0
20.0 - 75.0
BAG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1
CO
CO
- BAG3)
- BAG3)
CO
CO
- BAG3 )
- BAG3)
S
s
CO =
CO =
3
3
CO =
CO «
243.77
271 .94
239.69
255 . O4
263.44
218.47
252.55
207 . 80
- 2.4142(TEMP)
- 3.5O45(TEMP)
- 2.5036(TEMP)
- 3. 0978 (TEMP)
- 2.7977(TEMP)
- 0.3004 (TEMP)
- 2. 7541 (TEMP)
- 0.2685(TEMP)
Id-Start CO Emissions for Vehicle FB223,
! .

BAG1
8AG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAGS)
- BAG3)
CO
CO
- BAGS)
- 3AG3)

3
S
CO =
CO =
3
3
CO =
CO =

20. 14
33.63
2O.49
33.20
25.33
37.97
25.44
36.49
Id- Start CO Emissions for

BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAG3)

3
3
CO =
CO =

35.26
47.52
33.68
45.28
'Id-Start CO Emissions for

BAG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAGS)
CO
CO
- BAG3)
- BAG3)

3
3
CO -
CO =»
8
8
CO =
CO =

183.30
216. 13
182.37
216. 19
202 . 36
138.46
2O2 . 67
134.29

- 0. 1 397 f TEMP)
- 0.7044 (TEMP)
- 0. 1586(TEMP)
- O.S910(TEMP)
- 0.2514(TEMP)
- 0.9578(TEMP)
- 0.2S53(TEMP)
- 0.8832(T£MP)
Vehicle FB178,

- 0.3543(TEMP)
- 1.0732(TEMP)
- 0.34S5(TEMP)
- 1.0270(TEMP)
Vehicle P0948,

- 1.9388 (TEMP)
- 3.4312(T)^MP)
- 1.9479 (TEMP)
- 3.4853(TEMP)
- 2.42O4(TEMP)
+ 1.4226(TEMP)
- 2.4475(TEMP)
+ 1.S330(TEMP)
+ 0.
+ 0.
- 0.
- 0.
008775 (TEMP.
004781 (TEMP.
0262781 TEMP.
026 155 (TEMP.
2)
2)
2)
2)
Nissan 1980 49-state

* 0.
+ 0,
+ 0
•*• o.

,004667 (TEMP.
,004400 (TEMP.
.00739HTEMP.
,OO6466(TEMP.

2)
2)
2)
2)
Nissan 1980 Califorrv

* 0
f 0

.007627 (TEMP.
.007219(TEMP.

-------
                                                 3-3




Models Predicting Cold-Start  CO  Emissions  for  Vehicle 8R10Y131366. Ford 1978 California PINTO (140 cid)
N iemp inierva i 	 equation 	 K-5QK St
3
8 '
8
8
6
€
6
6
Models
N
7
7'
7
7
5
5
5
5
Models
N
12
12
12
12
10
10
10
10
20.0 - 100.0
20.0 - 100.0
20.0 - 100.0
20.0 - 100.0
20.0 - 75.0
20.0 - 75.0
20.0 - 75.0
20.0 - 75.0
Predicting Co
Temp Interval
20.0 - 10O.O
20.0 - 10O.O
20.0 - 100.0
20.0 - 1OO.O
2O. 0
20.0
20. 0
20.0
Pree
Temp
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
- 75.0
- 75.0
- 75.0
- 75.0
licting Co
Interval
- 1OO.O
- 1OO.O
- 1OO.O
- 100.0
- 75.0
- 75.0
- 75.0
- 75.0
Models Predicting Co
N Temp Interval
9
9
9
9
6
8
5
8
20. 0
20.0
20.0
20.0
20.0
20.0
2C.O
*1/^. '"'
- 10O.O
- 100.0
- 1OO.O
- 100.0
- 75.0
- 75.0
- 75.0
- 75.0
BAG1 CO = 108 . 14
BAG1 CC =• 137.33
(8AG1 - BAG3) CO = 87.23
(BAG1 - BAG3) CO = 99.72
BAG1 CO = 118.69
BAG1 CO =150.96
(BAG1 - BAG3 ) CO » 91 .49
(BAG1 - BAG3) CO = 108.69
Id-Start CO Emissions for

3AG1
BAG1
(BAG1
(BAG1
BAG1
SAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAG3)
CO
CO •
- BAGS)
- BAG3)

CO
CO
CO
CO

3
3
3

S7.77
38.62
64.55
82.66
= 75.70
» 102.41
= 71.37
= 95.53
Id-Start CO Emissions

3AG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAG3)
CO
CO
- BAG3)
- SAG3)

CO
CO
CO
CO

3
S
3
5
a
3
Id-Start CO Emissions

BAG1
BAG1
(BAG1
(BAG1
BAG1
5AG1
(SAG1
(3AG1

CO
CO
- BAG3)
- BAG3)
CO
CO
- BAG3 1
- 3AG3 I

CO
CO
CO
CO

S
3
3
S
S
=
=
for

16.41
22.75
15.40
21 .63
18.90
20.83
17 .81
2O.21
for

56. 10
79.74
53.21
77.57
66 . 29
79.59
63 . 78
75 . 54
- 1 . 1267(TEMP)
- 2.4607(TEMP) + 0.01 1384(TEMP.2)
- 0.8985(TEMP)
- 1.4695(TEMP) + 0.004872 (TEMP. 2)
- 1.3872(TEMP)
- 3. 3 125 (TEMP) + 0 .020948 ( TEMP . 2 )
- 1 .0037 (TEMP )
- 2.0305(TEMP) + 0 .01 1 172( TEMP . 2 )
Vehicle 4M47AAH202725 , GM 1980 50-S

- 0.6342(TEMP
- 1.6013(TEMP
- 0.6899(TEMP
- 1.5298(TEMP
- 0.8469(TEMP
- 2.4794(TEMP
- 0.8728(TEMP
- 2.3490(TEMP
Vehicle FB289,

- 0. 15O3(TEMP
- 0. 457 1( TEMP
- 0. 1469(TEMP
- 0.4487 (TEMP
- 0.2172(TEMP
- 0.3348 (TEMP
- 0.2117(TEMP
- 0.3581 (TEMP
Vehicle D162,

- 0.5492(TEMP
- 1.6038 (TEMP
- 0.5412(TEMP
- 1.6277(TEMP
- 0.8007 (TEMP
- 1 . 5939( TEMP
- 0.30201 TEMP
- 1.5635(TEMP

)
) + 0.008 171 (TEMP .2)
)
) + O.OO7096(TEMP.2)
)
) + 0.018352(TEMP.2)
)
) * 0.016595(TEMP.2)
Nissan 1981.5 49-Sta

)
) + 0.002740(TEMP.2)
)
) + 0.002696 (TEMP. 2)
)
) •*• 0.001322(TEMP.2)
)
) + 0.001646(TEMP.2)
Plymouth 1981 49-Stat

)
) + O.OO8742(TEMP.2)
)
) * 0.009006 (TEMP. 2)
)
) - 0.003631 ( TEMP. 2)
)
) * O.C08236I TEMP . 2 )
92 . 636%
98.843%
95.672%
97.519%
96. 128%
99. 173%
95.020%
96 . 656%
itate REGA
R-SQR
88.452%
97.336%
9 1 . 975%
97 . 883%
92 . 307%
97 . 980%
93 . 724%
98 . 1 58%
te 280ZX
R-SQR
65 . 35O%
80 . 695%
65.076%
79 . 344%
79 . 359%
79 . 744%
77 . 4O4%
78.016%
e RELIANT
R-SQR
88 . 577%
99 . 1 94%
84 . 323%
98 . 989%
97.392%
98 . 964%
97 . 380%
98 .324%
10.645
4.6213
S.4039
5.3116
7 .9148
4.2231
6.5325
6. 1817
i. (231 dd)
SE
8.3322
4 .4691
7 . 3988
4.2490
7. 1699
4 . 5000
6.6236
4.3943
TURBO (168 Cid)
SE
3.3588
2.6817
3.376O
2.7368
2.8127
2.9788
2 . 9O5 1
3.0633
(135 Cid)
SE
7.5771
1 .9352
7.8418
2. 1513
3.7251
2.7112
3.7397
2. 8933

-------
                                                 3-4
Models Predicting Cold-Start CO Emissions  for Vehicle MA46100183,
  Toyota 1980 50-State CELICA SUPRA (156 cid)
N Tano interval 	 equation 	 K-SUK st
14
14
14
14
12
12
12
12
Models
N
4
4
4
4
3
3
3
3
Models
N
4
4
4
4
3
3
3
3
Models
N
4
4
4
4
3
3
3
3
20.0 - 100.0
20.0 - 100.0
20.0 - 100.0
20.0 - 10O.O
20.0 - 75.0
20.0 - 75.0
20.0 - 75.0
20.0 - 75.0
Predicting Co
Temp Interval
22.0 - 97.0
22.0 - 97.0
22.0 - 97.0
22.0 - 97.0
22.0 - 72.5
22.0 - 72.5
22.0 - 72.5
22.0 - 72.5
i Predicting Co
Tamp Interval
23.0 - 98.0
23.0 - 98.0
23.0 - 98.0
23.0 - 98.0
23.0 - 75.0
23.0 - 75.0
23.0 - 75. O
23.0 - 75.0
; Predicting Co
Temp Interval
22.2 - 10O.O
22.2 - 1OO.O
22.2 - 10O.O
22.2 - 100.0
22.2 - 74.0
22.2 - 74.0
22.2 - 74.0
22.2 - 74.0
BAG1
8AG1
(BAG1
(BAG1
8AG1
8AG1
(8AG1
(8AG1
CO
CO
- BAGS)
- BAG3)
CO
CO
- BAG3)
- BAGS)
S
3
CO =
CO =
a
B
CO »
CO =•
41 .60
54.46
41 .09
53.65
46.53
53.56
45.91
52.62
- 0.4448 (TEMP)
- 1 .0045(TEMP)
- 0.4424(TEMP)
- 0.9889 (TEMP)
- 0.5392(TEMP)
- 0.9494 (TEMP)
- 0.5347(TEMP)
- 0.9259(TEMP)
+ 0.
+ 0.
* 0.
+ 0.
004906(TEMP
004790(TEMP
0043 141 TEMP
0041 13(TEMP
.2)
.2)
.2)
.2)
Id-Start CO Emissions for Vehicle B3BK26B4BC184143, Chrysler

BAG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(8AG1
(BAG1

CO
CO
- BAGS)
- BAGS)
CO
CO
- BAGS)
- BAGS)

S
a
CO *
CO =
s
3
CO =
CO =

142.56
216.85
135.25
209 . 36
168.98
254 .28
161 .27
251 .63
i Id- Start CO Emissions for

BAG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAGS)
- BAGS)
CO
CO
- SAGS)
- BAGS)

*
*
CO *
CO »
•
a
CO •
CO -

87.48
144.79
70.74
113.56
1O6.30
162.27
34.87
125.83
ild-Start CO Emissions for

BAG1
BAG1
(SAG1
(BAG1
5AG1
BAG1
(BAG1
( BAG1

CO
CO
- BAGS)
- BAG3)
CO
CO
- 3AG3)
- BAG3 )

3
3
CO *
CO =
s
CO *
CO =


- 1.5394 (TEMP)
- 4.8156(TEMP)
- 1.4874(TEMP)
- 4.7563(TEMP)
- 2. 18OKTEMP)
- 7.02O6(TEMP)
- 2. 1188(TEMP)
- 7.2458(TEMP)

* 0.
* 0,
+ 0.
* 0,

,028103(TEMP
.028040(TEMP
,052822(TEMP
,055948(TEMP
Vehicle 1 FABPO82XBW20356 . Ford
b\4fl V 1 Wt 1
- 0.9255(TEMP)
- 3.3876(TEMP)
- 0.7947(TEMP)
- 2. 6341 (TEMP)
- 1 .3747(TEMP)
- 4. 3683 (TEMP)
- 1.1320(TEMP)
- 3.3226(TEMP)

* 0
* 0
•*• 0
* 0

.0207 16 (TEMP
.015476CTEMP
.031388(TEMP
.022969(TEMP
Vehicle 1FABP21B3BK15310, Ford

147. 6O - 1 .7355(TEMP)
262. 10 - 6.6433(TEMP)
142.40 - 1 -6900(TEMP)
251 .74 - 6.3769(TEMP)
190.04
307 .74
183 .01
294 . 35
- 2.7480(TEMP)
- 9 . 23701 TEMP )
- 2.S587ITEMP)
- 3.8445I7EMP)

+ 0
+ 0
•*• c
* \J

.040848 (TEMP
.039009 (TEMP
.0700291 TEMP
.0662451 TEMP

.2)
.2)
.2)
.2)
1981

.2)
.2)
.2)
.2)
1981

.2)
.2)
.2)
.2)
89 . 463%
98 . 207%
89.813%
98 . 273%
97.287%
98.028%.
97.416%
98. 101%
1981 K-CAR
R-SQR
32.481%
98.769%
81 .237%
98 . 345%
93 . 755%
100.00%
92 . 668%
100.00%
3. 7156
1 . 6008
3 . 6264
1 .5594
1 .9615
1 .7629
1 .3974
1 .7144
(135 cid)
SE
27.213
10.201
27.419
11 .516
20 . SOS
0.000
22.036
O.OOO
ESCORT WAGON (98 Cid)
R-SQR SE
77. 191%
99 . 1 36%
8 1 . 79O%
99.388%
92 . 520%
100.00%
93 . 998%
100.0O%
FAIRMONT
R-SQR
72 . 709%
98 . 626%
73.521%
98 . 724%
91 .939%
1 00 . 00%
32.267=4
1 00 . 00%
19 . 444
5 . 3520
14 . 494
3.7578
14.689
0.000
10.749
O.OOO
(200 Cid)
SE
42.317
13.427
40.366
12.533
30.670
0 . 000
29.013
0.000

-------
                                                  3-5




Models Predicting Cold-Start CO  Emissions  for Vehicle  1G1AX68X7B621755. GM 1981 CITATION (173 cid)
r»
4
4
4
4
3
3
3-
3
Models
N
3
3
3
3
Models
N
6
6
6
6
4
4
4
4
Models
N
17
17
17
17
Models
N
17
17
' 7
i 7
iwup
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0
Pree
Temp
18.7
18.7
18.7
18.7
Pree
Temp
20.0
20. 0
20.0
20.0
20.0
20.0
20.0
20.0
Pree
Temp
20.0
20.0
20.0
20.0
; Pret
Temp
20.0
20.0
20.0
20. C
interva i
- 1O1 .5
- 101.5
- 101 .5
- 101.5
- 75.0
- 75.0
- 75.0
- 75.0
iicting Co
Interval
- 73.6
- 73.6
- 73.6
- 73.6
licting Co
Interval
- 1OO.O
- 1OO.O
- 10O.O
- 1OO.O
- 75.0
- 75.0
- 75.0
- 75.0
licting Co
Interval
- 75.0
- 75.0
- 75.0
- 75.0
licting Co
Interval
- 75.0
- 75.0
- 75.0
- 75.0
BAG1
BAG1
(BAG1
(BAG1
BAG1
SAG1
(BAG1
(BAG1
CO
CO
- 3AG3)
- BAG3)
CO
CO
- BAG3)
- BAG3)
a
CO =
CO =
S
S
CO =
CO =
66.61
87.55
63.76
84.49
74 .87
91 .01
72. 12
85.28
Id-Start CO Emissions for

BAG1
BAG1
(BAG1
(BAG1

CO
CO
- SAG3)
- BAG3)

a
CO =
CO =

173.81
251 . 10
171 .82
253.35
Id- Start CO Emissions for

BAG1
BAG1
(BAG1
(BAG1
BAG1
BAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAG3)
CO
CO
- BAG3)
- BAG3)

a
s
CO «
CO =
3
a
CO =
CO =

104.27
154.28
1O1 .55
152.23
125.57
164.20
123. 15
162. 10
Id-Start CO Emissions for

3AG1
BAG1
(BAG1
(BAG1

CO
CO
- BAG3)
- BAG3)

s
a
CO =
CO =

203 . 48
2O8 . 03
196.30
201 .20
ild-Start CO Emissions for
SAG1
BAG1
(BAG1
(3AG1
CO
CO
- 3AG3)
- 3AG3 )
=
CO =
CO =
33.47
63.05
33 .03
55 .31
equation 	
- 0.6064 (TEMP)
- 1 .5036 (TEMP)
- 0.6142(TEMP)
- 1 .5026 (TEMP)
- 0.8017(TEMP)
- 1.7054CTEMP)
- 0.81 19(TEMP)
- 1.5488 (TEMP)
* 0
* 0
+ 0,
* 0.
.OO74Q4(TEMP.2)
.007332(TEMP.2)
,009612(TEMP.2)
007837 (TEMP. 2)
Vehicle 2G1AW89U6B 144479, GM 1981

- 2.4327(TEMP)
- 7.3439(TEMP)
- 2.4367(TEMP)
- 7.6276(TEMP)

+ 0.
+ 0.

,055104 (TEMP. 2)
058399(TEMP.2)
Vehicle D160, Chrysler 1981 K-CAR

- 1.0856(TEMP)
- 3.2073(TEMP)
- 1.0821 (TEMP)
- 3.2326(TEMP)
- 1.5527(TEMP)
- 3.818O(TEMP)
- 1.5559(TEMP)
- 3.8399(TEMP)

* 0.
+ 0.
«• 0.
+ 0.
Vehicle 1009, Ethyl

- 2.4633(TEMP)
- 2.6914(TEMP)
- 2.4769(TEMP)
- 2.7219(TEMP)

* 0.
+ 0,

.01737KTEMP .2)
0176O6(TEMP.2)
024032(TEMP.2)
,024232(TEMP.2)
Lean -Burn Car

,OO2318(TEMP.2)
,00249O(TEMP.2)
K-5QK
90 . 8 1 3%
99.922%
91 .245%
99 . 996%
98. 171%
100.00%
98 . 8O7%
100.00%
MALZBU (267
R-SQR
94 . 264%
100.00%
93 . 394%
100.00%
SE
7.8367
1.0192
7.7294
0.2334
4.2385
0.000
3.4562
O.OOO
cid)
SE
24.263
O.OOO
25 . 124
O.OOO
(WON) (135 Cid)
R-SQR SE
84 . 355%
99 . 785%
83.913%
99 . 784%
96 . 9 1 3%
99 . 996%
96.871%
99.991%
(163 Cid)
R-SQR
96 . 1 58%
96 . 1 75%
95 . 89O%
95 . 909%
Vehicle 1X89L7U 104103, Dresser 1977 NOVA (350
Equation 	 • 	 R-SOR
- 0.4513(TEMP)
- 1.8657 (TEMP)
- 0.471 1 (TEMP )
- 2. 01 45 I TEMP)
+ 0.
* 0.
0143501 TEMP . 2)
0156591 TEMP . 2 )
74.603%
93.274%
74 . 3O6%
94 .889%
15.564
2. 1075
15.773
2. 1128
8.8177
0.4561
8.8977
0.676O
SE
10.9O5
11 .263
11.357
11 .728
cid)
SE
5.2759
2.8104
5 . =207
2 . 5586

-------
                           APPENDIX 4

Correlation Coefficients between:

    1.   Difference in  (actual) CO emissions from Bag 3 to Bag
         1 and the corresponding differences in fuel
         consumption.   (Stratified by temperature)

    2.   Actual CO emissions  (from Appendix 1) and vehicle
         parameters.

    3.   Predicted CO emissions  (from Appendix 3) and vehicle
         parameters.

    4.   Pairs of vehicle parameters.

KEY;
AIR:     0 = No secondary air; 1 = Has secondary air.
PMP/PLS: 0 « Pulse air; 1 = Air pump.  (Missing - No air.)
GXD:     1 = Has only oxidation catalyst;  0 = Otherwise.
3WY:     1 = Has only three-way catalyst;  0 = Otherwise.
BOTH:    1 = Has both oxidation and three-way catalysts;
         0 = Otherwise.
#CAT:    Number of catalyst(s) (0, 1, or 2)
TYPE:    0 = Monolith Catalyst; 1 = Pelleted Catalyst.
FS :      0 = EFI; 1 = Carbureted.   (FS: Fuel Metering System)
A/F:     0 = Open-loop air/fuel  (A/F) control;
         1 = Closed-loop A/F.
EGR:     0 = No Exhaust Gas Recirculation  (EGR); 1 = Has EGR.
ETW:     Equivalent Test Weight  (pounds)
ICYL:    Number of cylinders  (4,  6, or 8)
                               4-1

-------
                                   4-2


Correlation Matrices for ACTUAL Emission & Fuel Consumption Data
    (from Appendix 1).


Correlation Coefficients between the Increase in Bag 3 to Bag  1 CO
    Emissions and the Corresponding  Increase in Fuel Consumed  for All
    18 Vehicles.

           Correlation
    Temp   Coefficients

     20°F   0.7159 (N» 33  DF= 31  R@  .0500= .3440  R@ .0100=  .4421)*

     30°F    N/A   (TOO FEW CASES  FOR  ANALYSIS)

     40°F   0.9638 (N=  7  DF=  5  R@  .0500= .7545  R@ .0100=  .8745)

     60°F   0.7799 (N= 36  DF= 34  R@  .0500= .3291  R@ .0100=  .4238)

     75°F   0.4721 (N= 50  DF= 48  R@  .0500= .2787  R@ .0100=  .3610)

     100°F  -0.1991 (N= 26  DF= 24  R@  .0500= .3882  R<5> .0100=  .4958)


Correlation Coefficients between the Increase in Bag 3 to Bag  1 CO
    Emissions and the Corresponding  Increase in Fuel Consumed  for  16
    Vehicles  (All Cars Except the  Ethyl and Dresser Cars)

           Correlation
    Temp   Coefficients

     20°F   0.6972 (N= 27  DF= 25  R@  .0500= .3809  R@ .0100=  .4869)

     60°F   0.8038  (N= 28  DF= 26  R@  .0500= .3739  R@ .0100=  .4785)

     75°F   0.5006  (N= 38  DF= 36  R@  .0500= .3202  R@ .0.100=  .4128)

     100°F  -0.1991  (N= 26  DF= 24  R@  ..0500= .3882  R@ .0100=  .4958)
   "N"  is  sample  size,  'DF'  is  degrees  of  freedom.

   'R@  .0500=  .3440'  indicates  that  the correlation  coefficient  which
       corresponds  to  the  '.0500'  significance  level  is  '.3440'

-------
                                                  4-3


Correlation Coefficients between Pairs of Actual  Data (Appendix 1) and Vehicle Parameters,

Stratified by Ambient Temperature:



Correlation Matrices for All Vehicles Except the  Ethyl  &  Dresser Cars



ACTUAL
VARIABLE
Temperature

Bag 1 CO

          *
Delta Fuel


Delta CO

Temperature

Sag 1 CO

Delta Fuel

Delta CO

Temperature

Bag 1 CO

Delta Fuel

Delta CO
= 20'F, N = 27  DF= 25


.6330   .7436   .0554


.3372   .4151  -.0696


.6096   .7152   .0620


= 60'F, N= 28  OF* 26


.4024   .4687   .4385


.2372   .2798   .3220


.3869   .4509   .4265


= 75"F, N= 38  DF = 36


.4007   .4649   .4991


.1069   .1393   .3675


.3525   .4166   .4938


AIR     PMP/PLS 0X0
R .0500= .3809


-.5329-  .4979


-. 1787   .2227


-.5014   .4622


R .0100= .4421 :


-.0139  -.1472


-.1186   .2259


-.03O1  -.1184


 R@ .0100= .4238:


- . 1464  -. 1595


- . 1614   . IOCS


-. 1Q44  -. 1220


 R® .0100= .3610:


-.2782  -.3198


-.1810   .0050


-. 1533  -.2177


 #CAT    TYPE
.7570  -.1727   .2346   .4438   .3417


.4257   .2251   .0649   .6916   .6149


.7275  -.1551   .2334   .4925   .4087
4808
2426
4604
4895
1236
4395
FS
6561
4562
6373
3918
2359
363-i
3860
1276
2877
FS
- .2656
-.2193
-.2498
-.3946
-.2623
- . 3635
A/F
-. 1961
- . 0308
- . 1917
- . 1412
? Q 1 ^
-.103'.
-.2635
- . 2198
-. 1545
A/F
. 1629
. 1223
. 1853'
.0468
.0818
.0625
EOT
.2206
. 1069
.2217
. 1342
• n =; .-^,
. 1472
.0422
.0852
.0303
EGR
.6484
.3043
.6451
.5275
.6042
.5025
ETW
,
J4J104
. 1007
.2423
.4659
. 2-73
. 1539
.3983
. 1809
ETW
. 5392
. 7459
.5547
-.2826
.5323
.2906

. 1497
.5143
.2082
. 2T7 1
.5502
.2356
.0307
.4229
.0880
*CYL
  Delta Fuel = Total fuel consumed  (in grams) during Bag  1  minus  total  fuel  consumed during
               the corresponding Bag 3.
  Delta CO = CO Emissions  (grams per mile) during Bag  1  minus  corresponding  Bag 3 CO Emissions.

-------
Correlation Matrices for PREDICTED  Bag  1  CO  (Appendix  3)  for  All  18  Vehicles


Correlation Coefficients for  Linear Model  with  Ho  Data from Tests Over 90'F

N»  17  DF = 15' R@>  .0500=  .4821   R*  .0100=  .5055
PREDICTED
VARIABLE
CC » 20' F
CO 3> 40' F
CO 0 75' F
Slope»20' F
S 1 ope«»40' F
Slope@75' F
RATIO*
Sen% 20' F
Sen » 40' F
Sen > 75' F
DIFF

Correlation
N= 18 DF=
PREDICTED
VARIABLE
CO 9 20' F:
CO » 40' F:
CO * 75' F:
Slope@20' F
S 1 opee40' F •
S 1 ope@75' F
RATIO
Sen * 20' F
Sen a 40' F
Sen 9 75' F
DIFF

RATIO «
OIFF =
?on ( 'Zor
.5981
.5843
. 4 174
- . 5097
-.6097
-.5097
.0663
-.0829
-.0739
- .0663
.6097
AIR
Coeff
16 Re

.5867
.5946
.5300
-.5379
-.5379
- . 5379
.0024
. 1054
. 1079
- .0024
.5379
AIR
Bag 1
Bag 1
\« i -f i w i
.7155
.6925
.46OO
-.7434 -
-.7434 -
-.7434
. 1392 -
- . 2707
-.2522
-. 1392
.7434
PMP/PLS
icients for
.2035 -.5435
.2536 -.5255
.4792 -.3462
.0864 .5658
.0864 .5658
.0864' .5658
.1919 - . 1460
.5049 . 1332
.4783 .1350
.1919 . 1460
.0864 -.5658
0X0 3WY
.2351
. 1897
- . 08 1 3
-.3277
- . 3277
- .3277
.2926
-.4265
-.4178
-.2926
.3277
BOTH
Linear Model with Data
.0500= .4683 R9 .0100= .

.7038
.7035
. 5835
-.6685 -
- . 6685 -
-.6635 -
. 0603 -
-.0952
-.0702
- . 0603
.6685
PMP/PLS
CO at 20' F
CO at 20' F
t\/ > = '

.1812 - .5415
.2250 -.5364
.3833 -.4236
.069O .5255
.0690 .5255
.0690 .5255
. 1450 - .0815
.^493 -.0040
.3993 ..0005
. 1450 .0815
.0690 -.5255
OXD 3WY
divided by Bag
minus dy Bag 1
'_ d(Tsmp)
.5897

.2351
.2195
.1130
-.2595
-.2595
- .2595
. 1730
- . 1696
- . 1492
-. 1729
.2595
BOTH
1 CO at
CO at 75

-.0197
-.0510
- . 2089
-.050O
- . 0500
- . 0500
.2297
-.3057
- . 2996
-.2297
.0500
/CCAT
-.0467
-.0686
-. 1738
- . 0030
- . 0030
- . 0030
.4146
-.3199
- .3344
- . 4146
.0030
TYPE
from Tests up


-.0256
-.0249
-.0176
.0260
.0260
.0260
. 1219
-.0555
-.0375
- . 1218
- .0260
75' F. '
• c



• -.0642
-.0771
-. 1215
.0308
.0308
.0308
.4160
- . 254 1
- . 2905
- .4150
- .0308
TYPE


.6083
.5848
.3642
- .6423
- .5423
-.5423
.2561
-.5296
- .51 18
-.2561
.6423
FS
to 105 'F


.6054
.5978
.4636
-.5919
-.5919
- . 5919
. 1986
- .-374
- .4055
- . 1986
.5919
FS


-. 1580
- . 1778
- . 2540
. 1095
. 1095
. 1095
.0455
.0022
.0183
-.0455
-. 1095
A/F



-.2111
- . 207 1
- . 1547
.2094
.2O94
.2094
.0342
. 1326
. 1536
- .034'1
- . 2094
A/F


.2736
.2527
. 1014
- .31 10
-.3110
- .31 10
. 1780
-.3964
-.3825
-. 178O
.3110
EGR



.270O
.2557
. 1485
- . 2898
- .2898
- . 2898
. 1275
- . 1950
- .2001
-. 1276
.2898
EGR


.2833
. 3140
.4269
- . 2065
- . 2065
- . 2065
.1721
.0887
.0664
- . 1721
.2065
ETW



.3060
.3166
.3106
- .2654
-.2654
- . 2654
.2545
- . 1575
- . 1959
- .2546
.2654
ETW


.2491
• .2586
.2679
- . 2202
- . 2202
-.2202
. 3109
-.0153
- . 04O4
- . 3 1 09
.2202
,CYL



.28O4
.2579
. 1 145
- .3184
-.3"! 84
- . 3184
.41 15
- . 3333
- . 3651
-.4115
.3184
#CYL


                         CO
                                 Temp

-------
                                                  4-5




Correlation Matrices for PREDICTED Bag 1  CO (Appendix 3)  for All 18 Vehicles





Correlation Coefficients for Quadratic Model  with No Data from Tests Over 90'F



N = 18  OF = 16  R@ .0500= .4683  R@ .0100= .5897
PREDICTED
VARIABLE
CO ® 20' r
CO <& 40' F
CO * 75' F
SI 006920' F
SI 006040' F
S10De*75' F
RATIO
Sen -3 20' F
Sen * 40' F
Sen 9 75' F
DIFF

Corre 1 at i on
N = 17 OF=
PREDICTED
VARIABLE
CO 9 20' F
CO » 40' F
CO » 75' F
S1opa»20"F
Slope®40' F
'Slooe@75' F
RiTIO
Sen '9> CO' F
Sen s. JQ' "
Sen a 75' F
OIFF


.8143
.4808
.3860
- . 421 1
-.5912
-.2413
. 1305
.06O6
- . 0086
.0708
.6076
AIR
Coeff
15 R@

.5009
.5470
.4180
-.5454
- . 609 1
- . 4J72
.0398
.2788
. 1773
- . 4098
.6160
AIR

.7343
.5691
.4236
-.5101
- .7187
-.2968 -
.1711 -
.0646
- . 0664
.0859 -
. 7396
PMP/PLS
icients for

. 1506
.3106
. 4741
.2321
.0706
.3030
. 1085
.2250
.2554
.0824
.0166
0X0

-.5756
- . 4154
- . 2905
.4554
.5936
. 1830
-. 1823
.0483
. 1409
- . 1421
-.5942
3WY

.3105
.0551
-. 1231
- . 546O
-.4981
. 1456
.2689
-.2755
-.3684
.2480
.4181
BOTH
Quadratic Model with
.0500= .4821 R»

.7207
.6436
.4662
-.6785
-.7472 -
- . 5259 -
. 1405 -
.2237
.0916
- .4531
.7522
PMP/PLS

. 1910
.2905
.4693
.0543
.0345
.2328
.2730
.2705
. 2361
.0669
.0669
OXD
.0100=

- . 55O9
-.4858
- . 3496
.5325
.5769
. 3851
-. 147S
- . 1319
- .0439
.2943
- . 5775
3WY
.6055

. 250O
. 1034
-.0643
-.4897
-.3943
.0429
.3472
- . 1374
- .2194
- . 1477
.3476
BOTH

.0523
-.1381
-.2391
-.3570
-.2336
.2525
.2224
-.2673
-.3216
.2261
. 1466
#CAT
Data from


-.0108
- . 1344
- . 1933
-.2629
-. 1 178
.2965
.2717
-.2320
- .2035
- .0127
.06O1
0CAT

-.0798
-.0499
-. 1088
.0866
.0733
- .0328
- . 0670
- . 0503
-. 1690
-.0582
-.0585
TYPE
Tests


-.0475
-. 1463
-.1137
-. 1947
- . 0409
.3546
. 3742
-.4381
- .4436
. 549O
- .0179
TYPE

.6386
.4804
.3480
-.4697
-.6395
-.2351
. 1569
-.0652
- .2514
. 1047
.6503
FS
up to 1O5


.6272
. 541 1
.3791
- .6322
- .6694
-.4119
. 3470
- . 0609
-.2354 •
-. 1659
.3648
FS

-.2495
-. 1892
-. 1303
. 1799
.250O
.0987
- .3477
.2017
.3114
- .3645
-.25SO
A/F
"f
•

- . 1721
-.2279
- .2383
.0024
.0979
.2795
- .0804
.0559
. 1 175
- .0486
- . 1310
A/F

.2952
.2349
.0689
-.1811
- . 3O6 1
- . 1923
. 1077
.0615
-. 1310
.0261
.3327
EG*



.2818
.2348
. 1 145
-.2948
-.'3197
-.2139
.2460
- .O546
- . 1 .7 1 2
-. 1303
.3201
EQR

.2577 .2077
.4O86 .3576
.4166 .2675
.2016 .2265
-.0488 -.0338
-.4512 -.4710
.0673 .0191
.2725 .3265
.0624 .084O
.0367 -.0494
. 1661 . 1576
ETW #CYL



.2683 .2325
.3102 .2393
.4784 .3264
-.1320 -.1716
-.1579 -.1779
-.1388 -.1006
.0442 . 1544
-.0250 -.0915
- .0945 - . 1800
.4847 .5017
. 1632 . 1753
ETW #CYL

-------
                                                  4-6
Correlation Matrices for PREDICTED Bag 1  CO (Appendix 3) for All Vehicles Except the Ethyl  &  Dresser Cars





Correlation Coefficients for Linear Model with No Data from Tests Over 90'F



N= 15  DF:= 13  R» .0500s .5140  R0 .0100= .5411
PREDICTED
VARIABLE
CO » 20' F:
CO * 40 l:
CO e 75' F:
S 1 ope 75' -
S1oqe*20' F
Slope@40' F
Slope*75" F
RATIO
Sen ® 20' F
Sen * JO' F
Sen $ 75' F
DIFF


.5454
.5260
.3325
-.5676
-.5676
-.5676
. 1886
- . 305O
- . 304S
-. 1887
.5676
AIR

.6797
.6497
.3799
- . 7202 -
-.7202 -
-.7202 -
.2642 -
-.5106
-.4998
-.2642
.7202
PMP/PLS
Coefficients for
14 R®

.539O
.5391
.4522
- . 5084
- . 5084
- . 5084
.1301
-.1105
- . 1255
- . 1301
. 5084
AIR

.2311 -.4737
.2347 -.4515
.5080 -.2574
. 1041 .5046
. 1041 .5046
.1041 .5046
.1837 -.2460
.5071 .2946
. 48O5 . 3062
. 1837 .2460
. 1041 - .5047
0X0- 3WY
Linear Model
.0500" .4973 R* .0100"

.6733
.6643
.5184
-.6570 -
-.6570 -
-\6570 -
. 1859 -
- .3444
- .3302
-.1359
.5570
PMP/PLS

.2110 -.4765
.2523 -.4659
.3876 -.3458
.0998---' .4749
.0998 .4749
.0998 .4749
. 1288 - .1323
.4516 .1518
.4054 .1732
. 1288 . 1823
.0999 -.4749
OXD 3WY

.29O1
.2327
-.1030 -
-.4059 -
-.4059 -
-.4059 -
.3576
-.6239 -
-.6167 -
-.3576 -
.4059
BOTH
with Data
.6226

.3O45
.2672
.0647 -
-.3771 -
-.3771 -
-.3771 -
.2562
-.4495 -
- . 4321
-.2562 -
.3771
BOTH

. 1720
. 1 170
. 1852
.2868
.2868
.2868
.3215
.6180
.6041
.3215
.2368
#CAT
from


. 1883
. 1488
.0437

.3156
.2785
.0391
-.3854
-.3854
-.3854
.4252
- .3269
-.3323
-.4252
. 3854
TYPE
Tests up


.3058
.2646
.0463
.2726 -.3875
.2726
.2726
.2344
.4953
.4576
.2344
.2726
#CAT
- .3875
-.3875
.4469
-.3721
-.3933
- .4469
.3875
TYPE

.6747
.6488
.4002
- . 7O62
-.7062
-.7062
.2455
-.5158
- . 4986
-.2455
.7062
FS
to 105 'F


.6698
.6639
.5315
-.6462
- .6462
- .5462
. 1750
-.4117
-.3772
- . 175O
.6462
FS

-. 1826
-.2159
- .3473
. 1O24
. 1024
. 1024
. 1292
-.2391
-.2186
-. 1291
-. 1024
A/F



-.2303
-.2484
-.2854
. 1738
. 1738
. 1738
. 1409
- . 1743
- . 1S23
- . 1409
- . 1738
A/F

.2979
.2755
. 1 125
-.3356
-.3356
-.3356
. 1694
- . 388O
-.3747
- . 1694
.3356
EGR



.2929
.2799
. 1794
- . 3075
-.3075
- . 3075
. 1 106
- . 1563
-. 1633
- . 1 106
.3075
EGR

.5311
.5665
.6468
-.4326
-.4326
-.4326
. 1017
.2474
. 2308
- . 1017
.4326
ETV



.5659
.5717
.5041
- . 5200
- . 5200
- . 5200
. 1S32
- .0752
- . 099=
-. 1932
.5200
ETX

.3867
.3989
.3902
-.3450
-.3450
-.3450
.2657
. 1295
. 1059
-.2657
.345O
#CYL



.4229
.4OO7
.2414
-.4524
- .4524
-.4524
.3527
- . 2 193
- .2539
- .3627
.4524
#CYL.

-------
                                                  4-7
Correlation Matrices for PREDICTED Bag 1  CO (Appendix 3)  for All Vehicles Except the Ethyl & Dresser Cars

Correlation Coefficients for Quadratic Model  with No Data from Tests Over 90"F
N= 16  DF = 14  R@ .0500= .4973  R@ .0100= .6226 '
PREDICTED
VARIABLE
CO 9 20' F
CO * 40' F
CO » 75' F
S1ope®2O' F
S!ope<3>4O' F
Slooe 75' F
DIFF

Correlation
N = 15 DF=
PREDICTED
VARIABLE
CO * 20' F
CO » 40' F
CO * 75' F
Slope4O' F
Slope®75' F
RATIO
Sen .a 20' F
Sen s. 4C" .r
Sen * 75' F
DIFF


.5708
.4171
.3100
-.4116
-.5592
-. 1732
. 14 19
- . 1298
- . 2471
. 1258
.5718
AIR

. 7074
.5156
.3508
- . 5086
- . 7009
- . 23O8 -
. 1888 -
- . 1 176
- . 3054
. 1443
.72O4
PMP/PLS
Coefficients for
13 R@

.5572
.4867
.341 1
-.5364
-.5802
-.3764
.2520
-.0215
- . ' 623
-. 1683
.5848
AIR

. 1684
.3452
.5007
.2412
.0732
.3336
. 1 178
.2309
.2600
.0913
.0229
OXD

-.5176
- .3364
- . 2054
.4417
.5517
. 1030
-. 198O
.218O
.3498
- . 1981
- .5454
3WY

.3714
.0842
- . 1419
-.5735
-.5643
.1261
. 2635
- .3576
- . 5002
.2459
.4944
BOTH
Quadratic Model with
.0500= .5140 RS>

.6925
.5959
.3947
-.6819
-.7340 -
- . 4660 -
.3570 -
-.0877
-.2517
- . 24O9
.7384
PMP/PLS

.2183
.3382
.4936
.0588
.0448
.3293
.2689
.3185
.3133
. 1 185
.0856
OXD
.0100=

-.4878
-.4055
-.2681
.51O3
.5286
.2781
- .3207
. 1539
. 2544
.0610
- . 5241
3WY
. 641 1

.3122
. 1527
-.0830
-.5223
-.469O
- .0384
.4862
- . 3624
- .4538
- . 1385
.4369
BOTH
.
.2509
- . OO59
- . 2208
-.4889
-.4505
. 1597
.2339
- . 32O6
- .4519
.2068
.3786
#CAT
Data from


. 1915
.0475'
-. 1705
-.4034
-.3465
.0244
. 4553
-.3186
- . -217
- . 1976
.3157
#CAT

.2351
.2727
..1 1 1 1
.0182
- . 1649
- . 3165
-. 1208
. 2243
.0631
- . 1971
. 24 14
TYPE
Tests


.3032
.2067
. 1O29
- . 4077
- .3734
-.0550
. 3224
-. 1562
-.-710
.2837
.3511
TYPE

.6997
.5186
.3740
- . 49O4
-.6818
-.2326
. 1727
-.0511
- .2466
. 1 19O
.7030
FS
up to 105


.6875
.6OO1
.4131
-.6613
-.7179
-.4728
. 3307
-.0234
- . 2210
- . 27 1 1
.7245
FS

-.2953
- . 2C50
-. 1636
.2332
.2960
.0625
- .4401
. 1893
.2911
-.459O
- . 2946
A/F
•F


-. 1881
-.2530
-.3245
.0182
.O879
.2458
.0613
- . 1028
- . 1OS2
.0594
- . 1 140
A/F

.3190
. 2491
.0742
-. 1893
-.3225
- . 1913
. 1 170
.0803
-. 1223
.0339
. 3548
EGR



.3027
.2536
. 1255
— . 3056
- . 3366
-^2352
.234-.
- .0343
- . -.645
-.2051
.3415
EGR

.4821 .3300
.6518 .4918
.6163 .3755
.1638 .2014
- . 1928 - . 1 106
-.6410 -.5720
.0691 .0306
.4964 .4902
.2703 .2410
-.0112 -.O699
.3566 .2606
ETW #CYL



.5013 .3570
.5807 .3781
.6912 .4469
-.2283 -.2339
-.3367 -.2738
-.4673 -.2351
- . 1059 . .C52S
.3319' .1306
. 2C3S . C233
.3144 .4569
.3729 .2837
ETW XCYL

-------
                                                  4-8
Correlation Matrices for All 18 Vehicles






Correlation Coefficients between pairs of Vehicle Parameters:




N = 18  OF = 16  R@  .0500= .4683  R@>  .0100= .5897






VARIABLE



AIR        1.0000




PMP/PLS      .9286   1.0000




OXD          .1890    .0236   1.0000




3WY        -.7559   -.6614   -.2500   1.0000



BOTH         .5345    .5345   -.3536   -.7071   1.0000




*CAT         .2224    .2224   -.2942   -.3922    . 832r   1.OOOC  i




TYPE       -.0279    .0279   -.1474    .3686   0.        .1735  1.0000




FS           .6786    .7679   -.2362   -.4725    .5345    .2224   .2229  1.OOOO




A/F        -.0945   -.0472   -.5000    .2500    .2357    .3922   .2949  -.0945  1.0000




EGR          .2362    .1890    .1250   -.5000    .3536    .2942  -.1843   .2362  -.2500  1.OOOO



ETW        -.1013   -.0716    .4207    .2589   -.4053   -.2937   .5944   .0874  -.2034  -.1294  1.0000




»CYL       -.1793   -.1793    .2372    .3162   -.4472   -.3721   .5595  0.       -.1581  0.         .8596   1.0OOO




             AIR      PMP/PLS OXD      3WY      BOTH    #CAT    TYPE    FS      A/F     EGR      ETW     #CYL



Correlation  Matrices for  16 Cars  (All  Vehicles  Except the Ethyl  & Dresser Cars)






Correlation  Coefficients between pairs of Vehicle  Parameters:




N»  16  DF=  14  Re  .0500=  .4973  R*  .0100=  .6226
VARIABLE
AIR
PMP/PLS
OXD
3WY
30~H
-CAT
TY = E
f $
A/F
EGR
ETW
,-CYL


1 .OOOO
.9115
. 1816
-.7125
. 5447
. 2894
.2774
.332-;
- .2774
.3026
.0946
- .0402
AIR
                    1.OOOO




                    0.       1.OOOO




                    -.5970  -.2548  1.0000



                     .5578  -.4286  -.7545




                     .3266  -.4880  -.=919




                     .3651  -.2'182   .2335




                     . 9 12S  - . 2182  - . 544S




                    -.1826  -.5547   .3892




                     .2390   .1429  -.5606



                     .1245   .4752   .1287




                    -.0529   .2845   .2368




                     PMP/PLS OXD     3WY
               I J
'. . OOOO



 .3783  1.0000



- .0727  -.1491  i.0000




  S547   .4-72   .3333  i.OOCO




 .0727   .1491   .333.3  0.      1.0000




 .4286   .4880  -.2182    .2182  -.2182  1.OOOC




-.4370  -.5O45   .5159    .0787  -.2011  -.1546   1.0000




-.4109  -.4102   .5276  -.0483  -.0483  -.0315    .3676   1.OOOO



 BOTH    #CAT    TYPE    FS      A/F     EGR      ETW     #CYL

-------
                          APPENDIX  5

            Regression Analyses Modeling Cold-Start
                         CO  Emissions

The results from forward and backward selection indicate that
relationships can be determined which have R-squared values
that exceed 0.7.  The relationships are summarized below.
                                     i
                Results From Backward Selection

                   ----- Value of the Coefficient of the Term -----
Dependent Variable Constant  Temp    FS     ETW  FS*TEMP FS*TEMP2 R-Sq.
Bag 1 CO           -134.310 0.852  109.59  0,021 -1.800   0.006    0.78
Bag 1 CO-Bag 1 CO   -97.936 0.855  102.01  0.010 -1.846   0.007    0.76
                     Results From Forward Selection
                   --- Value of the Coefficient of the Term —
Dependent Variable Constant  Temp2    ETW    FS*TEMP  FS*ETW   R-Sq.
Bag 1 CO           73.719   0.009    -0.041  -1.131   0.031   0.77
Bag 1 CO-Bag 1 CO  93.998   0.009    -0.047  -1.153   0.029   0.76
  @75°
FS is a categorical variable.  If a venicle has fuel injection, FS =
0.  If a vehicle is carbureted, FS = 1.0.
                              5-1

-------
                                      5-2
SELECT OPTIQNS=STEPWISE,BACKWARD VAR=03;2,20,7,12,17,71;72,74,81,82
   MAXIM=100 LEVELS*.05,.10>

Selection of Regression of Bag 1 CO (BONE)  Using All Vehicles Except
   Ethyl 4 Dresser Cars (16 Cars)

ANALYSIS At STEP 0 (Initial Step) FOR 3.BONE  N= 119 OUT OF 119
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R= .88141
VARIABLE
CONSTANT
2. TEMP
20. TEMP. 2
7 .PLS
12. FS
17.ETW
71 .PLS-TEMP
72 . PLS-TEMP .2
74.FS-PLS
81 . FS'TEMP
82 . FS'TEMP .2
ANALYSIS AT STEP 5
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R = .88036
VARIABLE
CONSTANT
2. TEMP
12. FS
17. ETW
81 . FS-TEMP
82. FS-TEMP .2
REMAINING
20. TEMP. 2
7. PLS
71 .PLS'TEMP
72.PLS-TEMP.2
74.FS*PLS
DF SUM OF SORS
10 . 13340 *6
108 38312.
118 .17172+6
R-SOR= .77689 SE=
PARTIAL COEFFICIENT
-196.08
.09395 1.9510
- .05871 - . 10570 -1
.OOOOO 43.252
. OOOOO 164.36
.497O5 .20961 -1
- .01431 - . 17 138
.02097 .20800 -2
-.COOOO -44.638
-.31725 -2.3125
. 18052 . 1 1077 -1
MEAN SQUARE
13340.
354.74

18.835
STD ERROR
.61971 +8
1 .9894
. 17294 - 1
.61971 +8
.61971 +8
.35212 -2
1 . 1523
.95443 -2
.61971 -t-8
.66518
.58077 -2
(Final Step) FOR 3. BONE N= 119
DF SUM OF SORS
5 . 133O9 +6
113 38632.
118 . 17172 *6
R-SOR* .77503 SE*
PARTIAL COEFFICIENT
-134.31
.33372 .85150
.72186 .109.59
.49366 .20792 -1
-.61885 -1.7998
.40289 .64208 -2
PARTIAL SIGNIF
-.07818 .4083
-.03940 .6772
-.03181 :7369
-.03738 .6930
-.03940 .6772
MEAN SQUARE
26617.
341 .88

18.490
STD ERROR
18.737
.22627
9.3839
.34457 -2
.21491
. 13722 -2






r _ 5 T i f
37 .606



T-STAT
-.31641 -5
.98070
- .61 1 17
.69794 -6
.26522 -5
5.9529
- . 14873
.21794
-.72030 -€
-3.4766
1 .9073
OUT OF 119
F-STAT
77.856



T-STAT
-7. 1682
3.7633
1 1 . 088
6.0341
-8.3747
4.6793






SIGNIF
.0000



SIGNIF
1 . OOOO
.3289
.5424
1 . 0000
1 . OOOO
.0000
.8820
.8279
1 . OOOO
.0007
.0591

SIGNIF
.0000



SIGNIF
.0000
.OO03
.OOOO
.OOOO
.OOOO
.OOOO




-

REGRESSION OF 3 . SONE USING BACKWARD SELECTION

STEP    R-SQR  STD ERROR  - VAR       VARIABLE
PARTIAL  SIGNIF
^
1
2
3
4
5
. 77689
.77689
.77688
.77648
.77640
.77503
18 .835
18.748
18 .663
18.595
18.515
18.490
10
9
8
7
6
5
0
9
8
7
6
5

7. PLS
74.FS«PLS
72.PLS*TEMP.2
71 . PLS-TEMP
20. TEMP .2
IN
OUT
OUT
OUT
OUT
OUT

. OOOOO
- .00420
.04247
-.01894
- .07818

1 .0000
.9651
.6566
.8422
.4083

-------
                                      5-3
SELECT OPTIONS=STEPWISE,FORWARD VAR=03;2.20,7,12,17,71-74,81-83,91,92,93
   MAXIM=100 LEVELS*.05,.10>

Selection of Regression of Bag 1 CO (BONE)  Using All  Vehicles Except
   Ethyl 4 Dresser Cars i16 Cars)

ANALYSIS AT STEP 1 (Initial Step) FOR 3.BONE  N= 119 OUT OF 119

SOURCE               OF   SUM OF SORS  MEAN SQUARE   F-STAT     SIGNIF
REGRESSION
ERROR
TOTAL
MULTIPLE 5= .S3O87
VARIABLE
CONSTANT
2. TEMP
REMAINING
20. TEMP. 2
7.PLS
12. FS
17.ETW
71 .PLS-TEMP
72.PLS-TEMP .2
73.PLS-ETW
74.FS-PLS
81 .FS"TEMP
82.FS-TEMP.2
83.FS-ETW
91 .FS»PLS«TEMP
92.FS*PLS'TEMP.2
93. FS'PLS'ETW
ANALYSIS AT STEP 6
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R= .87827
VARIABLE
CONSTANT
2O. TEMP. 2
17. ETW
81.FS-TEMP v
83.FS»ETW
REMAINING
2 . TEMP
7.PLS
12.FS
7 1 . PLS'TEMP
72. PLS-TEMP .2
73.PLS-ETW
74. FS'PLS
82.FS«TEMP .2
91 .FS»PLS*TEMP
92.FS«PLS'TEMP.2
93 . FS»PLS*ETW
1
1 17
1 18
R-SQR=
PARTIAL

-.S3O87
PARTIAL
.23864
-. 15201
68342.
. 10337 +6
. 17172 +6
.39799 SE*
68342. 77.350
883.55

29.724
COEFFICIENT STD ERROR T-STAT
84.892
-.87305
SIGNIF
.0093
. 1003
S.9503 12.214
.99268 -1 -8.7949



.0000



SIGNIF
.0000
.0000



.49859. .OOOO
. 40492
-.06789
.06538
.05522
.43871
. 29072
.26129
. 60202
.27256
.26594
.,55526
(Final
OF
4
1 14.
1 18
R-SQR=
PARTIAL

.45367
-.53754
- .69676
.770t9
PARTIAL
- .09398
. 0090 1
- .04090
-.02375
- .01029
.00901
.00542
. 15276
- . 00009
.07951
. 0090 1
REGRESSION OF 3 . BONE USING
STEP R-SOR STD
1 . 39799 29
2 .51618 23
3 .67576 22
4 .67446 21
5 .71210 20
5 .77135 18
ERROR
.724
.836
.003
.952
.734
.558
.0000
.4651
.4818
.5526
.0000
.0014
.0043
.0000
.0028
.0036
.0000
Step) FOR 3.
SUM OF SORS
. 13245 *Q
39262.
. 17172 *€
.77135 SE=











BONE N* 119 OUT OF 119
MEAN SQUARE F-STAT
33114. 96. 147
- 344.41

18.558
COEFFICIENT STD ERROR T-STAT
73.719
.85788 -2
- . 41 108 - 1
-1.1313
. 31 124 - 1
SIGNIF
.3178
.3238
. 5543
.801 1
.9131
.9238
.9542
. 1O31
.9992
.3983
.9238
13.485 5.4670
. 15783 -2 5.4353
.6O398 -2 -6.80S3
.10908 -10.371
.24141 -2 12.893
























SIGNIF
.OOOO



SIGNIF
.0000
.0000
.0000
.0000
.0000












FORWARD SELECTION
» VAR
1 2.
2 83.
3 81 .
2 2.
3 17.
4 20.
VARIABLE PARTIAL
TEMP IN -.63087
FS'ETW IN .60202
FS-TEMP IN -.39400
TEMP OUT -.05331
ETW IN -.34005
TEMP. 2 IN .45367
SIGNIF
.0000
.0000
.OOOO
.4977
. 0002
.0000

-------
SELECT OPTIONS=STEPWISE,BACKWARD VAR=18;2,20,7,12,17,71,72,74,81  82
   MAXIM=100 LEVELS'.05,.10>

Selection of Regression of the Amount (DIFF) by Which  Bag  1  CO  Exceeds
   Bag 1  CO at 75'F for 16 Veh.

ANALYSIS  AT STEP 0 (Initial Step) FOR 18.DIFF' N=  119  OUT OF  119

SOURCE               DF   SUM OF SQRS  MEAN SQUARE    F-STAT     SIGNIF
REGRESSION
ERROR
TOTAL
MULTIPLE R= .87525
VARIABLE
CONSTANT
2. TEMP
20. TEMP. 2
7.PLS
12. FS
17.ETW
71 .PLS-TEMP
72.PLS-TEMP.2
74.FS-PLS
81 .FS*TEMP
82.FS-TEMP .2
ANALYSIS AT STEP 5
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R= .87424
VARIABLE
CONSTANT
2. TEMP
12. FS
17 .ETW
81 .FS-TEMP
82. FS-TEMP. 2
REMAINING
20. TEMP. 2
7.PLS
71 .PLS'TEMP
72.PLS*TEMP.2
74.FS-PLS
10
108
1 18
R-SQR=
PARTIAL

.08594
- .04937
. 00000
. 00000
.27953
- .00545
01299
- . 00000
-.32584
. 18239
(Final
OF
5
1 13
118
R-SOR=
PARTIAL

.34915
.71323
.27547
-.64637
.43369
PARTIAL
-.07237
- .03987
- . 03O09
- .03470
-.-03987
. 1 1430 *6
34905 .
. 14921 +6
.76606 SE=
COEFFICIENT
-152.92
1 .7021
-. 34796 | -2
39.773!
154.42
.10169 - 1
-.62300 -1
. 12302 -2
' -44 .047
-2.2819
. 10687 -1
Step) FOR 18.
SUM OF SORS
. 1 1 4O4 -1-6
35169.
. 14921 -t-6
.76430 SE=
COEFFICIENT
-97.936
.85508
102.01
. 10O15 -1
-1 .8464
.66984 -2
SIGNIF
. 4442
.5736
.7506
. 7 1 4O
.6736
1 1430.
323. 19

17.978
STD ERROR
.59151 +8
1 .3988
. 16507 -1
.59151 +8
.59151 +8
.3361O -2
1 .0998
.91 10O -2
.59151 +8
.63492
.55434 -2
DIFF N= 119
MEAN SQUARE
22808 .
31 1 .23

17 .642
STD ERROR
17 .878
.21589
9.4305
.32876 -2
. 205O5
. 13092 -2






35.366



T-STAT
-.25853 -5
.89639
-.51369
. 57239 -5
.26107 -5
3.0256
-.56645 -1
. 13504
- . 744.66 -6
-3.5939
1 .9278
OUT OF 119
F-STAT
73.283



T-STAT
-5.4781
3 . 9608
10.817
3.0461
-9.0050
5. 1 164






. . 0000



SIGNIF
1 . 0000
.3720
.6085
'• . OOOO
• . oooo
.0031
.9549
.3928
1 . OOOO
.0005
.0565

SIGNIF
.0000



SIGNIF
.OOOO
.OOO1
.0000
.0029
.OOOO
.OOOO






REGRESSION OF T8.0IFF USING BACKWARD SELECTION

STEP    R-SQR  STD ERROR  = VAR       VARIABLE
PARTIAL  SIGNIF
0
1
2
3
4
5
. 766O6
. 76606
.756O6
.76578
.76553
. 76430
17 .978
17.395
17.314
17 . 744
17.674
17 .542
10
9
3
7
S
5
                                                    IN
                                    7.PLS         OUT
                                   71.PLS-TEMP    OUT
                                   72.PLS-TEMP.2  OUT
                                   74.FS-PLS      OUT
                                   20.TEMP.2      OUT
 .00000
-.00545
 .03467
-.03229
-.07237
1.OOOO
 .9547
 .7167
 .7342
 . 4442

-------
                                      5-5
SELECT OPTIONS=STEPWISE,FORWARD VAR=18;2,20,7,12,17,71-74,81-83,91,92,93
   MAXIM=100 LEVELS*.05,.10>

Selection of Regression of the Amount  (DIFF) by Which Bag 1  CO  Exceeds
   Bag 1 CO at 75'F for 16 Veh.

ANALYSIS AT STEP 1 (Initial Step) FOR  18.DIFF  N=  119 OUT OF 119

SOURCE               OF   SUM OF SORS  MEAN SQUARE   F-STAT     SIGNIF
REGRESSION
ERROR
TOTAL
                    1 17
                    1 18
       72307.
       76901.
       .14921
                                        72307.
                                        657.27
                                                      110.01
MULTIPLE R=  .69514  R-SOR=  .48461   SE =  25.S37

     VARIABLE      PARTIAL  COEFFICIENT  STD ERROR    T-STAT
CONSTANT
2. TEMP
REMAINING
20. TEMP. 2
7.PLS
12. FS
17.ETW
71 .PLS-TEMP
72.PLS-TEMP.2
73.PLS-ETW
74.FS*PLS
81 . FS-TEMP
82. FS* TEMP. 2
83.FS*ETW
91 .FS*PLS«TEMP
92.FS-PLS-TEMP.
93.FS«°LS*ETW

-.59614
PARTIAL
.27473
-. 10272
.37123
.23127
-.OO670
. 13664
.01750
.33336
. 143O6
. 14778
.41252
. 15279
2 .18404
.38121
73. 145
-.39801
SIGNIF
.0026
.2683
.0000
.0117
.9426
.1401
.3508
.0002
. 1222
. 1 103
.0000
.0986
.0460
.OOOO
                                          5.9946
                                          .85618  -1
                                                     12.202
                                                    -10.489
ANALYSIS AT  STEP 6  (Final  Step)  FOR 18.DIFF   N«  119  OUT OF  119

SOURCE               OF    SUM  OF SORS   MEAN  SQUARE    F-STAT

                                                      87.983
REGRESSION
ERROR
TOTAL
  4
1 14
1 18
.11270 +6
365O7.
. 14921  +6
28175.
320.23
 MULTIPLE  R=  .86910   R-SOR"  .75533   SE-  17.895

      VARIABLE       PARTIAL   COEFFICIENT  STD  ERROR    T-STAT
                    PARTIAL
                              SIGNIF
     REMAINING

   2.TEMP
   7 . PLS
  12.FS
  71.PLS'TEMP
  72.r>LS*TEMP . 2
  73.PLS-ETW
  74.FS-PLS
  82.FS-TEMP.2
  91'.FS"PLS"TEMP
  92 FS*PLS*TEMP.2
  93.FS»PLS*£TW
 REGRESSION  OF  18.DIFF  USING FORWARD SELECTION

 STEP     R-SOR   STD  ERROR   » VAR        VARIABLE
. 1 1532
.00387
.01878
.03368
.01504
.OO387
.00519
.17170
.00480
.08610
.00387
. 2 177
.9672
.8421
.7208
.8732
.9672
.9561
.0665
.9594
.3602
.9672
1
2
3
4
5
6
.48461
.57231
.62143
.31485
.€8463
.75533
25.637
23.455
22. 163
22.258
20.228
17.895
                                      .0000
                                            SIGNIF

                                             .0000
                                             .0000
SIGNIF

 .0000
                                                                SIGNIF
CONSTANT
20. TEMP. 2
17.ETW
81 .FS-TEMP
83.FS-ETW

.47347
-.60221
-.71626
.75492
93.998
.87349 -2
-.46906 -1
-1 . 1526
. 28610 -1
13.003
. 15219 -2
.58239 -2
. 10518
.23278 -2
7.2292
5.7394
-8.0540
-10.959
12.290
.0000
.0000
.0000
.0000
. 0000
                                                        PARTIAL   SIGNIF
1
2
3
2
3
4
2. TEMP
33.FS-ETW
81 .FS'TEMP
2. TEMP
1 7 . ETW
20. TEMP .2
IN
IN
IN
OUT
IN
IN
- .59614
.41252
-.33888
- . 13071
-.42566
.47347
.0000
.OOOO
.0002
.1601
.0000
.0000

-------
                                      5-6

SELECT OPTIONS = STEPWISE, BACKWARD VAR= 19 ; 2 ,"20 , 7 , 12, 17,71 ,72,74,81 .82
   MAXIM=100 LEVELS5-OS,.10>

Selection of Regression of Quotient (RATIO) of Bag 1 CO Divided by
   Bag 1 CO at 75'F for 16 Vehicles

ANALYSIS AT STEP 0 (Initial Step) FOR 19.RATIO  N= 119 OUT OF 119

SOURCE               DF   SUM OF SORS  MEAN SQUARE   r-STAT     SIGNIF
REGRESSION
ERROR
TOTAL
MULTIPLE R = .681 12
VARIABLE
CONSTANT
2 .TEMP
20. TEMP. 2
7.PLS
12. FS
17 . ETW
71 . PLS'TEMP
72.PLS*TEMP . 2
74.FS*PLS
81 . FS'TEMP
82.FS«TEMP.2
ANALYSIS AT STEP 7
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R= .57206
VARIABLE
CONSTANT
12. FS
81. FS'TEMP
82.FS-TEMP.2
10
108
1 18
R-SOR=
PARTIAL

- . OOO29
- .00122
. 00000
. 00000
. 1 135O
.01778
- .00563
- . 00000
-. 14079
.08368
(Final
OF
3
115
1 18
H-SOR"
PARTIAL

.56296
-.43346
.29451
891 .60
103O.3
1921 .9
.46392 SE=
COEFFICIENT
-2.8227
-.96814 -3
-.35951 -4
.45237 -1
9.S308
.68549 -3
. 3491 1 - 1
-.91602 -4
-2.3586
- . 16120
.83111 -3
Step) FOR 19.
SUM OF SORS
868.04
1053.8
1921 .9
.45166 SE=
COEFFICIENT
.62845
6.5177
-. 13936
.74O08 -3
89. 160
9.5395

3.0886
STD ERROR
. 10162 +8
.32623
.28360 -2
. 10162 + 8
. 10162 +8
.57742 -3
. 18896
. 15651 -2
. 10162 +8
. 10908
.95238 -3
RATIO N» 1
MEAN SQUARE
289.35
9. 1638

3.0272
STD ERROR
.97537
.89227
.27017 -1
.22393 -3
9 . 3464



T-STAT
-.27776
-.29677
-. 12677
. 44514
.94769
1 . 1872
. 18476
-.58527
- . 23209
-1 .4778
.87267
19 OUT OF
F-STAT
31 .575



T-STAT
.64432
7 . 3046
-5. 1581
3 . 3049
.0000



SIGNIF
-6 1 . OOOC
-2 .9976
-1 .9899
-a 1.0000
-6 1 .0000
.2378
.8538
-1 .9534
-6 1.0000
. 1424
.3848
119
SIGNIF
.OOOO



SIGNIF
.5207
.OOOO
.OOOO
.0013
     REMAINING
PARTIAL
SIGNIF
2. TEMP .07341 .4335
20. TEMP. 2 .07109 .4483
7.PLS -.O2253 .3103
17 . ETW . 10982 .2406
71.PLS-TEMP .03515 .7080
72.PLS-TEMP.2 . O488 1 .6028
74.FS*PLS -.02253 .8103
REGRESSION OF 19. RATIO USING BACKWARD
STEP R-SQR STD ERROR. P VAR
0
1
2
3
4
5
6
7
.46392
.46392
. 46392
.46390
.46382
.45879
.45828
.45166
3
3
3
3
3
3
3
3
.0886
.0744
0604
.0467
.0332
.0339
.0220
.0272
10
9
8
7
6
5
4
3

7
2.
20
72 .
71
74.
17
SELECTION
VARIABLE

.PLS
.TEMP
.TEMP. 2
.PLS-TEMP.2
. PLS'TEMP
.FS-PLS
. ETW

IN
OUT
OUT
OUT
OUT
OUT
OUT
OUT
PARTIAL

. 00000
- . OO029
-.OO659
- .01 189
.09647
-.03075
. 10982
SIGNIF

1 . OOOO
.9976
.9450
.9005
.3072
. 7443
.2406

-------
                                        5-7

SELECT OPTIONS=STEPWISE,FORWARD VAR=19;2,20.7,12.17,71-74,81-83,91,92,93
   MAXIM*100 LEVELS=.OS,.10>

Selection of Regression of Quotient (RATIO) of Bag 1 CO Divided by
   Bag 1 CO at 75'F for 16 Vehicles

ANALYSIS AT STEP 1 (Initial Step) FOR 19.RATIO  N= 119 OUT OF 119

SOURCE               DF   SUM OF SQRS  MEAN SQUARE   F-STAT     SIGNIF
REGRESSION
ERROR
TOTAL
MULTIPLE R» .57659
VARIABLE
CONSTANT
2. TEMP
REMAINING
20. TEMP. 2
7.PLS
12. FS
17. ETW
71 . PLS'TEMP
72.PLS»TEMP.2
73.PLS--ETW
74. FS-PLS
81 . FS-TEMP
82. FS-TEMP . 2
83.FS«ETW
91 . FS"PLS"TEMP
92.FS'PLS"TEMP.2
93.FS"PLS'ETW
ANALYSIS AT STEP 4
SOURCE
REGRESSION
ERROR
TOTAL
MULTIPLE R= .65672
VARIABLE
CONSTANT
2. TEMP
20. TEMP. 2
82.FS-TEMP.2
33.FS-ETW
REMAINING
7.PLS
12. FS
17 . ETW
71 . PLS'TEMP
72. PLS-TEMP . 2
73.PLS*ETW
74. FS-PLS
81 . FS'TEMP
91 .FS-PLS*TEMP
92. FS«PLS*TEMP .2
93 . FS*PLS*ETW
1 638.94 638.94 58.270
117 1282.9 10.965
118 1921 .9
R-SOR= .33246 SE= 3.3114
PARTIAL COEFFICIENT STD ERROR T-STAT
7.9725 .77427 10.297
-.57659 -.84416 -1 . 1 1O59 -1 -7.6335
PARTIAL SIGNIF
.26269 .0041
-.O7387 .4266
.19936 .03O4
. 1 1698 .2071
-.00879 .9247
. 1 1775 . 2041
-.0105O .9102
. 16701 .0707
.08684 .3498
.13610 .1417
.21702 .0183
.08943 .3355
. 16164 .OSO3
. 19046 .0388
(Final Step) FOR 19. RATIO N= 119 OUT OF 119
DF SUM OF SQRS MEAN SQUARE F-STAT
4 828.87 2O7.22 21.613
114 1093.0 9.5877
118 1921.9
R-SOR* .43128 SE* 3.0964
PARTIAL COEFFICIENT STD ERROR T-STAT
7.5243 .1.6640 4.5217
-.4134O -.22931 .47304 -1 -4.8475
.32536 .18132 -2 .49354 -3 3.3738
-.21074 -.34248 -3 .14879 -3 -2.3018
.29133 .68738 -3 .21140 -3 3.2515
PARTIAL SIGNIF
-.06731 .4748
. 17053 .0684
- . 17274 .0649
-.02812 .7654
-.01590 .8661
- . 1 1539 .2194
.05007 .5951
.06203 .5101
-.00961 .9188
-.01590 .8661
-.06731 .4748
.0000



SIGNIF
.OOOO
.OOOO
















SIGNIF
.0000



SIGNIF
.0000
.OOOO
.0004
.0232
.0015












REGRESSION OF 19. RATIO USING FORWARD SELECTION
STEP R-SOR STD
1 .33246 3.
2 .37852 3.
3 .40485 3.
4 .43128 3.
ERROR if VAR VARIABLE PARTIAL
3114 1 2. TEMP IN -.57659
2088 2 20. TEMP. 2 IN .26269
1537 3 83.FS-ETW IN .20583
0964 4 82. FS-TEMP .2 IN -.21074
SIGNIF
.OOOO
.0041
.0260
.0232

-------