HDV 76-04
Technical Support for Regulatory Action
'Engine Horsepower Modeling
for Gasoline Engines"
Leroy Higdon
December, 1976
Notice
Technical support reports for regulatory action do not necessarily
represent the final EPA decision on regulatory issues. They are intended
to present a technical analysis of an issue and recommendations resulting
from the assumptions and constraints of that analysis. Agency policy
considerations or data received subsequent to the date of release of
this report may alter the conclusions reached. Readers are cautioned to
seek the latest analysis from EPA before using the information contained
herein.
Standards Development and Support Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
Office of Air and Waste Management
U.S. Environmental Protection Agency
-------
HDV 76-04
Technical Support for Regulatory Action
"Engine Horsepower Modeling
for Gasoline Engines"
Leroy Higdon
December, 1976
Notice
Technical support reports for regulatory action do not necessarily
represent the final EPA decision on regulatory issues. They are intended
to present a technical analysis of an issue and recommendations resulting
from the assumptions and constraints of that analysis. Agency policy
considerations or data received subsequent to the date of release of
this report may alter the conclusions reached. Readers are cautioned to
seek the latest analysis from EPA before using the information contained
herein.
Standards Development and Support Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
Office of Air and Waste Management
U.S. Environmental Protection Agency
-------
Table of Contents
Page
Introduction 1
1. CAPE-21 Data Collection 3
2. Horsepower Calibration and Measurement 3
Inadequacies Identified
3. Test Vehicle Procedures 3
4. Data Analysis 3
5. Application of Test Data to Survey Sample 22
Appendix A 30
-------
List of Illustrations
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Master Matrix
Rear Wheel (RW) Matrix
Corrected Rear Wheel Matrix (RW+C)
Normalized Power L = Constant (NP)
L Calculated V Mea'sured
U o
Normalized Power L = Variable (MNP)
Relative Difference Matrixes
Absolute Difference Matrixes
Average Time in RPM & Manifold
Vacuum Los. Angeles
3-D Average Time in RPM & Manifold Vacuum
Reconstructed Power
Weighting Factors
Typical Matrix Reconstruction
Applied Weighting
Relative Difference
Idle Box Construction
Power Model Quality Index
L Curves
Los Angeles Average L
Descriptive Measures
Page
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
24
25
26
28
-------
Introduction
In early 1970 a program was conceived jointly by EPA & CRC, to determine
the operational characteristics of heavy duty trucks.
The program, entitled CAPE-21, was designed to monitor certain engine
and vehicle operating parameters while the vehicle was operated in the
course of a normal days use by the owner.
The intended use of the resultant data was to allow generation of a
transient engine, and/or vehicle, test cycle which was representative of
normal truck operation, and could therefore be used by EPA, and indus-
try, to test heavy duty vehicles for compliance with emission regulations.
The parameters to be used in such testing were engine RPM (speed) horse-
power (Load) for engine cycles, and vehicle speed for chassis cycles.
In view of the intended use of the data, the program had to be designed
in such a way as to have the engine output data relate to engine speed
and load at the shaft.
Economics and equipment limitations made actual shaft measurements
impractical during the data collection phase of the program, and for this
reason a method of measurement was devised which was thought to be
directly related to the information sought, i.e. net shaft horsepower.
That method was based on the fact that, for gasoline engines, load is
directly related to engine speed and manifold vacuum, and that, if
normalized, % rear wheel HP is equal to % engine HP at the output shaft.
This approach assumes driveline losses are a constant percentage of
power input and was inherent in the original CRC decision to use rear
wheel power measurements during calibration.
The application of the load factor assumption was applied to the test
survey by instrumenting the gasoline trucks so that engine RPM and
manifold vacuum were recorded every .8 seconds during operation. In
addition the truck was calibrated on a chassis dynamometer and points
were taken at maximum power and five intervals below that value for a
total of 35 RPM and horsepower values. This procedure was intended to
allow full mapping of the engine for load factors corresponding to rear
wheel horsepower.
During analysis of the data from the survey it was found that three
conditions existed which would not allow direct conversion of the load
factor data to engine shaft horsepower as originally intended. These
conditions were:
1. In order to use the power model, maximum as well as
intermediate powers had to be measured for RPM's as
low as idle for each engine. This was not
possible using the chassis dynamometer and extrapolation
to this point in the calibration data was found to be
unreliable below measured values.
-------
-2-
2. Running gear losses were found to substantially deviate from
a constant percentage of input power at low loads and high rpms
such that the accuracy of the rear wheel model was significantly
compromised.
3. The effects of running gear losses could not be characterized
from existing data with any degree of reliability for any
condition except near maximum power in the intermediate to low
RPM range.
In order to overcome these deficiencies in the data base a procedure
which would effectively deal with the shortcomings of the data had to be
devised. This report deals with such a procedure, its derivation, and
application.
-------
-3-
1. CAPE-21 Data Collection
The CAPE-21 data was collected on a total of 88 trucks in two
cities, New York and Los Angeles. 57 of these trucks were gasoline
fueled, 30 in New York and 27 in Los Angeles.
This report deals only with the gasoline vehicles, and then only with
those data relating to power measurements.
2. Horsepower Calibration and Measurement Inadequacies Identified
As previously mentioned there existed, within the data sample,
three basic inadequacies which prevented direct conversion of RPM and
load factor, as measured at the vehicles rear wheels, to shaft horse-
power. The lack of data points at maximum power for the lower RPM
values which made extrapolation unreliable, the influence of drive
train loses on brake horsepower when measured at the rear wheels, and
the inability to characterize drive train losses. To overcome the
problems created by these conditions and develop a procedure which would
generate a reliable horsepower model for use in cycle development, a
series of tests were performed, using both a chassis dynamometer and an
engine dynamometer, which allowed a statistical evaluation of procedural
approaches to be examined for their ability to predict brake horsepower
using available survey data.
A 1967 Ford truck was used in the study and the results were analyzed to
develop the model. This report deals with that study and its results.
3. Test Vehicle Procedures
A 1967 Ford truck, with a 361CID V8 engine was instrumented and
calibrated on an electric dynamometer in the same manner as the trucks
tested in the survey. RPM and manifold vacuum were recorded for six
normalized power settings based on the maximum power obtainable at the
rear wheels. 100, 80, 60, 40, 20, and 0% power for each of a range of
RPMs from idle to rated RPM in 250 RPM increments was measured. The
engine was then removed from the truck and placed on an engine dynamometer.
The identical points in RPM and manifold vacuum were set and shaft power
recorded at each setting. This data were then used as the master data
for the analysis.
4. Data Analysis
During the data analysis four (4) alternative procedures were being
investigated to determine the most accurate method for presenting the
output data in terms of engine shaft horsepower from an input in terms
of the parameters measured in the survey (RPM & manifold vacuum (MV)).
1. Rear wheel horsepower as measured (RW).
2. Rear wheel horsepower corrected for running gear
losses using the driveline loss equations from the
VMS model(RW+C).
-------
-4-
3. Normalizing power to maximum power assuming a constant
load factor at zero power, load factor equal to the
calibration values at minimum power and the relationship
of MV to power as described in equation 1. (NP)
A. Normalizing power to maximum power assuming a varying
load factor (measured) at zero power and all other factors
the same as in case #3 (MNP).
To allow comparisons of the above methods, a stepwise regression was
performed on the engine dynamometer test data and a math model developed
in % power vs. RPM and manifold vacuum. A matrix was then compiled which
listed RPM from 750 to 4,000 in 250 RPM increments (coded 1 to 14) vs.
manifold vacuum from 0 in. Hg. to 21 in. Hg. in 1.5 in.'Hgiincrements.
Each cell then represents % power for that value of RPM & MV (manifold
vacuum). (See Figure 1).
The same procedures were used to generate matricies for each of the
alternative horsepower models, the results of which are shown in figures
1 thru 4.
Equation 1: % Power = LQ ~ L x 100
L0 " L100
The overall assumption here being, that MV is linear with power for a
given RPM.
where:
L_ = the values of MV at zero power as a function of RPM
L = the value of MV for a given RPM in the data
LI n = the maximum % (100%) power for a given RPM as obtained
in calibration
To test the assumption that L~ is a constant at zero power an experiment
was performed on the test vehicle engine to measure the load factor at
zero power.
Figure Seven (7) indicates the results which show that manifold vacuum
is not constant at zero power as assumed in case 3 and, therefore, for
the best accuracy in shaft horsepower predictions the zero horsepower
curves should be characteristic of the type shown in the data.
A fifth matrix was created using the following equation:
Equation 2: V = Ln = 15-225 + 4.150 x 10~3(RPM) - 7.6986
x 10 x RPM
This equation derived from a regression analysis of the measured values
of zero power manifold vacuum, and plotted in Figure 7, describes the
-------
MANIFOLD VACUUM
21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 1.5 0
1 -40.8
2 -21.2
3 -11.8
4 -6.7
5 -3.8
6 -2.2
7 -1.4
8 -1.2
9 -1.4
10 -1.9
11 -2.8
12 -3.9
13 -5.4
14 -7.4
-23.6
-7.2
0.5
4.5
6.7
7.8
8.3
8.4
8.1
7.6
6.9
6.0
4.9
3.5
-8.5
5.3
11.6
14.8
16.5
17.2
17.5
17.4
17.2
16.7
16.2
15.5
14.7
13.9
4.6
16.5
21.8
24.3
25.5
26.0
26.1
26.0
25.7
25.4
25.0
24.6
24.2
23.9
16.0
26.6
31.1
33.1
34.0
34.3
34.3
34.1
33.9
33.6
33.4
33.3
33.3
33.5
26.1
35.7
39.6
41.3
42.0
42.1
42.1
41.9
41.7
41.6
41.6
41.7
42.1
42.8
35.0
44.0
47.6
49.0
49.5
49.6
49.5
49.4
49.3
49.3
49.5
49.9
50.7
51.9
43.0
51.7
55.0
56.4
56.8
56.8
56.7
56.6
56.6
56.8
57.2
58.0
59.1
60.9
50.4
58.9
62.2
63.5
63.8
63.8
63.8
63.7
63.8
64.2
64.8
65.8
67.4
69.7
57.4
66.0
69.2
70.4
70.7
70.8
70.7
70.7
70.9
71.4
72.3
73.7
75.6
78.4
64.4
73.0
76.1
77.3
77.6
77.6
77.6
77.7
78.0
78.7
79.8
81.4
83.8
87.1
71.6
80.1
83.2
84.3
84.6
84.6
84.6
84.7
85.2
86.0
87.3
89.3
92.0
95.8
79.2
87.5
90.4
91.4
91.7
91.6
91.7
91.9
92.4
93.4
95.0
97.2
100.3
104.7
87.5 96.7
95.4 103.9
98.1 106.2
98.9 106.8
99.0 106.7
98.9 106.5
99.0 106.5
99.2 106.8
99.9 107.5
101.0 108.8
102.7 110.7
105.3 113.6
108.8 117.5
113.6 122.8
Master Matrix
Fig. 1
-------
MANIFOLD VACUUM
21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 2.5 0
-62.0 -42.2 -23.8 -6.7 9.0 23.3 36.3 47.9 58.1 67.0 74.5 80.7 85.5 88.9 90.9
-46.5 -31.6 -17.5 -4.0 8.8 20.8 32.2 42.9 52.8 62.1 70.7 78.5 85.7 92.1 97.9
-37.7 -25.4 -13.5 -1.9 9.3 20.1 30.6 40.8 50.6 60.0 69.1 77.9 86.3 94.3 102.0
-32.1 -21.4 -10.9 -0.5 9.8 19.9 29.9 39.7 49.4 59.0 68.4 77.7 86.9 95.9 104.8
5
33 6
&7
8
9
10
11
12
-28.5
-26.4
-25.6
-26.0
-27.7
-30.9
-36.0
-44.0
-18.9
-17.6
-17.2
-18.0
-19.9
-23.1
-28.2
-35.8
- 9.3
- 8.6
- 8.7
- 9.7
-11.7
-14.9
-19.8
-27.0
0.3
0.5
0.1
-1.1
-3.2
-6.3
-10.9
-17.5
10.0
9.8
9.1
7.8
5.8
2.8
-1.4
-7.4
19.6
19.1
18.3
17.0
15.0
12.3
8.6
3.3
29.3
28.6
27.7
26.4
24.7
22.3
19.1
14.7
39.0
38.2
37.3
36.2
34.7
32.8
30.2
26.7
48.6
47.9
47.2
46.2
45.1
43.7
41.8
39.4
58.3
57.8
57.2
56.6
55.9
55.0
54.0
52.7
68.0
67.8
67.5
67.2
67.0
66.8
66.6
66.6
77.8
77.9
78.0
78.2
78.5
79.0
79.8
81.2
87.5 97.2 107.0
88.1 98.4 108.9
88.7 99.6 110.7
89.4 101.0 112.8
90.4 102.6 115.2
91.7 104.8 118.4
93.6 107.9 122.7
96.5 112.3 128.8
i
ON
1
13 -56.2 -47.4 -37.9 -27.5 -16.4 -4.5 8.3 21.7 36.0 51.1 66.9 83.5 100.9 119.1 138.1
14 -76.1 -66.2 -55.3 -43.4 -30.5 -16.6 -1.7 14.2 31.0 48.9 67.7 87.6 108.4 130.2 153.0
Rear Wheel (RW)
Fig. 2
-------
£
MANIFOLD VACUUM
21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 2.5 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
-12.2
-12.4
-12.6
-12.7
-12.9
-13.1
-13.3
-13.5
-13.7
-13.9
-14.1
-14.3
-14.6
-14.8
-4.2
-4.3
-4.4
-4.4
-4.5
-4.6
-4.6
-4.7
-4.8
-4.8
-4.9
-5.0
-5.1
-5.2
3.7
3.8
3.8
3.9
3.9
4.0
4.0
4.1
4.2
4.2
4.3
4.4
4.4
4.5
11.7
11.8
12.0
12.2
12.3
12.5
12.7
12.9
13.1
13.3
13.5
13.7
13.9
14.2
19.6
19.9
20.2
20.5
20.8
21.1
21.4
21.7
22.0
22.4
22.7
23.1
23.5
23.8
27.6
28.0
28.4
28.8
29.2
29.6
30.1
30.5
31.0
31.4
31.9
32.4
33.0
33,5
35.6
36.1
36.6
37.1
37.6
38.2
38.7
39.3
39.9
40.5
41.1
41.8
42.5
43.2
43.5
44.1
44.7
45.5
46.0
46.7
47.4
48.1
48.8
49.6
50.4
51.2
52.0
52.8
51.5
52.2
52.9
53.7
54.5
55.2
56.1
56.9
57.8
58.6
59.6
60.5
61.5
62.5
59.5
60.3
61.1
62.0
62.9
63.8
64.7
65.7
66.7
67.7
68.8
69.9
71.0
72.2
67.4
68.4
69.3
70.3
71.3
72.3
73.4
74.5
75.6
76.8
78.0
79.2
80.5
81.8
75.4
76.4
77.5
78.6
79.7
80.9
82.1
83.3
84.6
85.9
87.2
88.6
99.0
91.5
83.4 91.3 99.3
84.5 92.6 100.7
85.7 93.9 102.1
86.9 95.2' 103.5
88.1 96.6 105.0
89.4 98.0 106.5
90.7 99.4 108.1
92.1 100.9 109.7
93.5 102.4 111.3
94.9 104.0 113.1
96.4 105.6 114.8
97.9 107.3 116.7
99.5 109.0 118.5
101.2 110.8 120.5
Corrected Rear Wheel (RW+C)
Fig. 3
-------
MANIFOLD VACUUM
21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 2.5 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
-19.9
- 8.4
- 1.9
2.2
4.9
6.4
7.1
6.8
5.5
3.2
-0.7
-6.5
-15.6
-30.3
-5.3
2.6
7.2
10.1
12.0
13.0
13.2
12.7
11.3
8.9
5.1
-0.5
-9.1
-23.0
8.4
13.1
16.0
17.9
19.1
19.7
19.6
18.8
17.3
15.0
11.4
6.0
2.0
-14.9
21.0
23.0
24.6
25.6
26.2
26.4
26.1
25.2
23.7
21.3
18.0
13.0
5.6
-6.1
32.6
32.5
32.9
33.2
33.4
33.2
32.7
31.8
30.3
28.1
25.0
20.5
13.9
3.5
43.3
41.4
40.9
40.7
40.5
40.2
39.5
38.5
37.1
35.1
32.4
28.4
22.7
13.7
52.9
49.8
48.7
48.7
47.7
47.2
46.5
45.6
44.3
42.5
40.2
36.9
32.1
24.7
61.4
57.7
56.2
55.4
54.8
54.3
53.9
52.8
51.7
50.3
48.4
45.8
42.1
36.5
69.0
65.1
63.4
62.6
62.0
61.5
60.9
60.2
59.4
58.3
56.9
55.1
52.6
49.0
75.6
72.0
70.4
69.7
69.2
68.8
68.3
67.9
67.3
66.7
65.9
65.0
63.8
62.2
81.2
78.3
77.2
76.6
76.4
76.1
76.0
75.8
75.6
75.4
75.3
75.3
75.5
76.1
85.7 89.2 91.8 93.3
84.1 89.4 94.2 98.5
83.6 89.9 95.8 101.5
83.5 90.3 97.0 103.5
83.5 90.7 97.9 105.2
83.6 91.2 99.8 106.6
83.7 91.6 99.7 107.9
83.9 92.9 100.7 109.5
84.1 92.9 101.9 111.3
84.5 93.9 103.6 113.6
85.1 95.3 105.8 116.8
86.1 97.4 109.1 121.3
87.8 107.7 114.1 128.2
90.8 106.2 122.3 139.2
i
00
I
Normalized Power L_ = Constant (NP)
Fig. 4 U
-------
-9-
O CALCULATED VALUE OF L
0
O' MEASURED VALUE OF L
0
10
15
RPM x 100
Fig. 5
-------
MANIFOLD VACUUM
21.0 19.5 18.0 16.5 15.0 13.5 12.0 10.5 9.0 7.5 6.0 4.5 3.0 2.5 0
-17.2 -8.8 -0.5 7.8 16.1 24.4 32.7 41.0 49.4 57.7 66.0 74.3 82.6 90.9 99.3
2
3
4
5
6
7
8
9
10
11
12
13
-13.0
- 9.5
- 6.7
- 4.5
- 2.9
- 1.7
- 1.1
- 1.0
- 1.4
- 2.3
- 3.8
- 6.1
-4.8
-1.5
1.1
3.3
4.9
6.1
6.7
7.0
6.7
6.0
4.7
2.7
3.3
6.4
9.0
11.1
12.7
13.8
14.6
14.9
14.8
14.2
13.2
11.5
11.4
14.4
16.9
18.9
20.4
21.6
22.4
22.8
22.9
22.5
21.7
20.3
19.5
22.4
24.7
26.7
28.2
29.4
30.3
30.8
30.9
30.7
30.2
29.1
27.6
30.3
32.6
34.5
26.0
37.2
38.1
38.7
39.0
39.0
38.6
37.9
35.7
38.3
40.4
42.2
43.8
45.0
45.9
46.6
47.1
47.2
47.1
46.7
43.9
46.2
48.3
50.0
51.5
52.8
53.8
54.6
55.1
55.5
55.6
55.5
52.0
54.2
56.2
57.8
59.3
60.5
61.6
62.5
63.2
63.8
64.1
64.3
60.1
62.2
64.0
65.6
67.1
68.3
69.4
70.4
71.3
72.0
72.6
73.2
68.2
70.1
71.9
73.4
74.8
76.1
77.3
78.3
79.3
80.3
81.1
82.0
76.3
78.1
79.7
81.2
82.6
83.9
85.1
86.3
87.4
88.5
89.6
90.8
84.4 92.5 100.7
86.1 94.0 102.0
87.6 95.4 103.3
89.0 96.8 104.6
90.4 98.1 105.9
91.7 99.5 107.2
92.9 100.8 108.6
94.2 102.1 110.1
95.5 103.6 111.6
96.8 105.0 113.3
98.1 106.6 115.1
99.6 108.4 117.2
14 - 9.1 0.1 9.2 18.4 27.6 36.8 46.0 55.2 64.4 73.5 82.7 91.9 101.1 110.3 119.5
Normalized Power Ln = Variable as described in equation 2 (MNP)
Fig. 6 °
o
-------
Relative Differance, Master Matrix to
RW, RW + C, NP, MNP, Matrix (% power in each cell)
21 18 15 12 9 6 3 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
a
9
10
11
12
13
14
1
2
3
4
5
6
7
8
10
11
12
13
,,14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o'.o
0.0
0.0
0.0
n.n
0.0
0.0
0.0
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
4.5
6.7
7.8
8.3
8.4
R.I
7.6
6.9
6.0
4.9
3.5
0.0
0.0
0.5
4.5
6.7
7.8
8.3
.8.4
8.1
7.6
6.9
6.0
4.9
3.5
0.0
0.0
6.7
5.6
5.3
5.2
4.9
4.3
3P
C
1.3
1.8
6.0
4.9
.3.5
0.0
0.0
0.5
3.4
3.4
2.9
2.2
1.7
1.1
0.9
0.9
1.3
2.2
.3.4
0.0
5.3
11.6
14.8
16.5
17.2
17.5
17.4
17.2
16.7
16.2
15.5
14.7
13.9
0.0
1.5
7.8
10.9
12.6
13.2
13.5
13.3
13.0
12.5
11.9
11.1
10.3
9.4
0.0
7.8
4.4
3.1
2.6
2.5
2.1
1.4
1.7
4.8
9.5
14.7
.13.9
0.0
2.0
5.2
5.8
5.4
4.5
3.7
2.8
2.3
1.9
2.0
2.3
3.2
4.7
4.6 »7.0 »2.8 1.3 4.9
16.5 »17.8 .14.9 .11.8 .B.8
21.8 *21.8 «19*5 *17.0 »14.2
24.3 .23.3 21.4 *19.1 .16.7
25.2 *24.0 «22.4 »20.2 »17.8
25. S »24.5 .23.0 *21.0 »18.6
26.0 »25.2 .23.8 21.8 «19.4
26.0 »26.3 .24.9 »23.0 »20.4
25.7 »28.1 .26.7 *24.6 »21.9
25.4 »30.8 »29.3 «27.0 «24.0
25.0 *33.4 .33.0 *30.4 «27.0
24.6 »33.3 «3B.4 »35.2 *31.3
24.2 »33.3 .42.1 «4?.4 .37.4
23.9 »33.5 «42.8 .51.9 .46.7
7.1 3.6 1.5 0.6 0.5
4.7 .6.7 »7.7 »7.9 .7.6
9.8 «10.9 .11.2 ll.O .10.3
12.1 »12.6 «12.5 »11.9 .11.0
13.2 .13.2 .12.8 .11.9 .10.8
13.5 *13.2 »12.5 *11.4 «10.1
13.4 «12.9 *12.0 »10.8 «9.3
13.1 »12.4 .11.4 »lfl.l .8.5
12.6 »11.9 .10.7 *9.4 »7.8
12.1 .11.2 .10.2 »8.8 »7.2
11.5 «10.7 »9.7 »B.4 *6.8
10.9 »10.2 «9.3 »8.1 *6.8
10.3 »9.8 »9.1 «8.2 *7.1
9.7 «9,7 *9.3 »8.7 »8.1
16.4 16.6 17.2 17.9 16.4
6.5 5.9 5.7 5.8 6.0
2.8 1.8 1.3 1.1 1.2
1.3 0.1 «0.6 »0.9 »1.0
0.7 »0.6 »1.5 »1.B »2.0
0.4 «1.1 »1.9 »?.4 »2.5
0.0 »1.6 «2.6 «3.0 »3.1
0.8 »2.3 »3.4 .3.8 .3.8
4.1 .5.5 *6.5 ,«6.8 »6.S
7.0 *8.4 »9.2 »9.3 »8.8
11.6 »12.8 .13.3 «13.0 »12.2
18.6 .19.4 .19.4 «18.6 .17.0
23.9 .30.0 »29.1 .27.2 »24.4
3.2 0.1 »1.7 «2.3 «2.6
5.1 «7.1 »8.1 »B.3 «7.8
7.4 «8.7 »9.3 *9.3 »8.8
7.4 «8.4 »8.7 »8.6 »fl.l
6.6 »7.3 «7.S »7.3 «6.8
5.6 .6.1 »6.1 »5.8 .5.3
4.5 «4.9 »4.9 »4.5 »3.9
3.6 »3.8 »3.8 «3.5 .2.8
2.9 «3.1 »3.0 »2.7 »2.0
2.5 »2.7 .2.6 »2.2 »1.7
2.5 »2.7 »2.6 »2.3 »1.7
2.9 .3.1 »3.1 »2.8 »2.4
3.9 «4.2 »4.2 »4.0 *3.6
5.5 »5.9 «6.0 ««;.9 »S.7
7.7
6.1
11.6
14.1
15.2
15.9
16.6
17.5
18.7
20. S
23.0
26.4
31.4
38.7
1.1
6.7
9.3
9.6
9.3
8.6
.7.7
6.8
6.0
5.6
5.2
5.3
5.9
18.6
6.2
1.2
0.9
1.8
2.3
2.9
3.5
5.9
7.9
10.7
14. B
20.7
1.0
6.9
8.0
7.3
6.0
4.5
3.3
K3
1.0
1.0
1.7
3.1
5.3
9.6
3.9
9.2
11.4
12.4
13.0
13.5
14.1
15.0
16.4
18.3
Pl.O
»24.5
?9.5
2. 1
5.7
8.1
8.4
7.8
7.0
6.0
5.0
4.2
3.7
3.5
3.8
4.6
IB. 2
6.0
1.2
0.7
1.5
2.0
2.4
2.8
4.7
6.4
8.7
11.8
.16.2
0.3
5.9
7.0
6.4
5.1
.3.7
P. 4
1.3
0.5
0.1
0.3
1.1
2.4
4.9
10.1
2.3
7.0
8.9
9.6
9.8
10.1
10.5
11.0
11.9
13.2
14. B
16.9
19.4
3.0
4.6
6.8
7.0
6.3
5.3
4.2
3.2
2.4
1.9
1.6
2.2
3.3
16.8
5.3
1.1
0.7
1.2
1.5
1.6
1.9
3.3
4.5
6.1
8.3
11.0
1.6
4.8
6.0
5.4
4.2
2.8
1.5
0.4
0.3
0.6
0.5
0.3
l.B
-------
Absolute Values of Relative Differances
Fig. 8
1
Z
1
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
5
6
7.
8
9
10
11
12
13
14
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
On
u
0.0
0.0
On
u
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
4.5
6.7
7.8
8.3
8.4
8.1
7.6
6.9
6.0
4.9
3.5
0.0
0.0
0.5
4.5
6.7
7.8
8.3
8.4
B.I
7.6
6.9
6.0
4.9
0.0
0.0
6.7
5.6
S.3
5.2
4.9
4.3
3.2
1.3
1.8
6.0
4.9
3.5
0.0
n.o
0.5
1 I*
.' *»
3.4
?.9
22
*c
1.7
1.1
0.9
0.9
1.3
2.2
3.4
0.0
S.3
11.6
14.8
16.5
17.?
17.5
17.4
17.2
16.7
16.2
IS. 5
14.7
13.9
0.0
1.5
7.8
10.9
12.6
13.2
13.5
13.3
13.0
12.5
11.9
11.1
10.3
0.0
7.8
4.4
3.1
2.6
2.5
2.1
1.4
0.1
1.7
4.8
9.5
14.7
13.9
0.0
2.0
5.2
5 a
*o
5.4
4.5
37
r
2.8
2.3
1.9
2.0
2.3
3.2
4.7
4.6
16.5
21.8
24.3
25.2
25.5
26.0
26.0
25.7
?5.4
25.0
24.6
24.2
?3.9
7.1
4.7
9.8
12.1
13.2
13.5
13.4
13.1
12.6
12.1
11.5
10.9
10.3
16.4
6.5
2.8
1.3
0.7
0.4
0.0
0.8
2.0
4.1
7.0
11.6
18.6
?3.9
3.2
5.1
7.4
71.
»**
6.6
5.6
4C
3
3.6
2.9
2.5
2.5
2.9
3.9
5.5
7.0
17.8
21.8
23.3
24.0
24.5
25.2
26.3
2ft. 1
30. «
3*.4
33.3
33.3
33.5
3.6
6.7
10.9
12.6
IS. 2
11.2
12.9
12.4
11.9
11.2
10.7
10.2
9. ft
16.6
5.9
1.8
0.1
0.6
1.1
1.6
2.3
3.6
5.5
8.4
12.8
19.4
30.0
0.1
7.1
8.7
Bf.
H
7.3
6.1
3.S
3.1
2.7
2.7
3.1
4.2
5.9
2.8
14.9
19.5
21.4
22.4
23.0
23.8
24.9
26.7
29.3
33.0
38.4
4?.l
4?.fl
1.5
7.7
11.2
12.5
12.8
12.5
12.0
11.4
10.7
10.2
9.7
9.3
9.1
17.2
5.7
1.3
0.6
1.5
1.9
2.6
3.4
4.6
6.5
9.2
13.3
19.4
29.1
1.7
8.1
9.3
7.5
6.1
3.8
3.0
2.6
2.6
3.1
4.2
6.0
1.3
11. «
17.0
19.1
20. 2
21.0
21.8
23.0
24.6
27.0
30.4
35.?
47.4
51.9
(1.6
7.9
11.0
11.9
11.9
11.4
lo.e
10.1
9.4
8.8
8.4
8.1
H.2
17.9
5.8
1.1
n.9
1.8
2.4
3.0
3.B
S.O
6. ft
9.3
13.0
IB. 6
27.2
?.3
ft. 3
9.3
7.3
5.8
3.5
2.7
2.2
2.3
2.8
4.0
S.9
4.9
H.8
14.2
16.7
17.8
1H.6
19.4
20.4
21.9
?4.0
27.0
31.3
37.4
46.7
0.5
7.6
in. 3
11.0
10.8
10.1
9.3
8.5
7.8
7.2
6.8
6.8
7.1
1H.4
6.0
1.2
1.0
2.0
2.5
3.1
3.8
4.9
6.S
R.8
12.2
17.0
24.4
2.0
7.8
8.8
6.6
5.3
2.8
2.0
1.7
1.7
2.4
3.6
5.7
7.7
6.1
11.6
14.1
IS. 2
15.9
16.6
17.5
18.7
20. S
23.0
26.4
31.4
38.7
1.1
6.7
9.3
9.8
9.3
8.6
7.7
6.H
6.0
5.6
5.2
5.3
5.9
18.6
6.2
1.2
0.9
l.H
2.3
2.9
3.5
4.4
5.9
7.9
10.7
14. H
20.7
1.0
6.9
v 8.0
6.0
4.5
2.1
1.3
1.0
1.0
1.7
3.1
5.3
9.6
3.9
9.2
11.4
12.4
13.0
13.5
14.1
15.0
16.4
18.3
21.0
24.5
29.5
?.l
5.7
H.I
8.4
7.8
7.0
6.0
5.0
4.2
3.7
3.5
3.8
4.6
18.2
6.0
1.2
0.7
1.5
2.0
2.4
2.8
3.6
4.7
6.4
8.7
11.8
16.2
0.1
5.9
7.0
5.1
3.7
2 A
.**
1.3
0.5
0.1
0.3
1.1
2.4
4.9
10.1
2.3
7.0
e.9
9.6
9.8
10.1
10.5
11.0
11.9
13.2
14. P
16.9
19.4
3.0
4.6
6.8
7.0
6.3
5.3
4.2
3.2
2.4
1.9
1.8
2.2
3.3
16.8
b.3
1.1
0.7
1.2
1.5
1.6
1.9
2,4
3.3
4.5
6.1
8.3
11.0
1.6
4.8
6.0
4.2
2.8
1C
7>
0.4
0.3
0.6
0.5
0.3
1.8
4.4
9.1
1.6
5.3
6.6
6.8
6.7
6.6
6.5
6.7
7.0
7.5
8.1
8.5
H.2
3.8
3.7
5.7
b.7
4.9
3.7
2.5
1.4
0.6
0.1
0.1
0.7
2.0
14.1
4.0
0.4
o.e
I.I
1.0
0.9
0.6
1.)
1.5
2.2
3.2
4.2
5.0
3.8
5.1
3.4
2.0
07
. r
0.4
1.1
1.4
1.2
0.3
1.2
3.9
6.3
1.8
4.1
4.5
4.2
3.5
3.0
2.5
2.0
1.7
1.4
0.7
0.6
3.7
4.2
3.0
4.7
4.5
3.6
2.2
1.0
0.2
1.1
1.5
1.4
0.7
0.8
10.0
1.9
0.6
1.1
1.0
0.4
0.1
0.3
0.5
0.5
0.3
0.2
0.4
1.5
3.1
4.3
3 a
n
2.7
1.2
0(\
V
1.0
1.8
2.1
1.8
0.9
0.7
3.6
1..4
3.3
3.8
3.0
1.8
0.5
0.6
1.8
2.7
3.8
5.2
7.0
10.3
J6.6
3.8
2.8
4.2
3.7
2.4
0.9
0.4
1.7
2.5
3.0
2.9
2.0
0.2
4.3
1.2
2.3
1.9
1.1
0.1
0.7
1.5
2.0
2.6
3.1
3.8
5.3
8.7
2.9
4.1
3e
D
2.2
0.8
OC
D
1.6
2.2
2.6
2.3
1.3
0.4
3.3
5.8
6.0 (% power ii
4.2 ^
2.0
0.3
2.4
4.2
6.0
7.7
9.6
12.0
15.2
20.6
30.2
2.6
3.2
4.1
3.3
1.7
0.0
1.6
2.9
3.8
4.3
4.1
3.1
1.0
3.4
5.4
4.7
3.3
1.5
0.1
1.4
2.7
3.8
4.8
6.1
7.7
10.7
16.4
2.6
3.2
4.2
3c
* J
2.1
0.6
Of
f
1.8
2.6
2.8
2.6
1.5
0.3
3.3
I,
H1
NJ
II
-------
-13-
zero horsepower MV characteristic for the test vehicle. Figure 8 shows
the matrix for the test truck as obtained using equation 1 to define L_
in equation 2.
Figure 7 shows the relative degree of difference between the master or
engine dynamometer matrix and each of the matricies created by using the
several alternative procedures.
The negative or motoring values shown in the five (5) power matrixes,
Figures 1, 2, 3, 4, and 6, were removed and replaced with zeros in
Figure 7. This was done because the amplitude of motoring horsepower
values are not predictable by any of the models applied and therefore no
relative differences between these cells can be made in the comparison.
The purpose of this procedure was to determine the absolute value of
difference between each conversion method and the master matrix, and
thereby produce an overall quantified quality value for each method
compared to a master model. The matricies of Figure 7, therefore have
been converted to absolute values and are shown in Figure 8.
Although it is not immediately obvious, the modified normalized matrix
exhibits the least amount of differance at this point in the study. In
order to develop a more conclusive statistical representation, however,
a more indepth analysis of the differences was performed. This was
accomplished by first reviewing a matrix of average percent time spent
in various engine RPM and manifold vacuum conditions for 25 trucks from
the Los Angeles CAPE-21 Study, Figure 9. These data are indicative of
the way trucks are operated in service from the standpoint of RPM and
manifold vacuum, and therefore can be used to weight the importance of
each area of operation for the four procedures under investigation.
Because the scale of the matricies under investigation was different
from that of Figure 9, the matrix in Figure 9 was rescaled by summing
the data of all cells and dividing each cell from 0 to 20 inches of
manifold vacuum by the total, thereby distributingtthe time spent above
20 in. Hg. evenly among the cells at 20 in. Hg. and below.
Figure 10 is a three-dimensional representation of Figure 11 and in-
dicates the areas of most frequent operation to be between 9 and 22%
RPM. From the operational data obtained from the test vehicle, and
manufacturers data on average idle speed, it was determined that this
range of RPM represents Idle. RPMs below this value can then be said to
be luging conditions while RPMs above this range of values can be
related to various % RPM levels above Idle.
The matrix of Figure 9 was then reconstructed as shown in Figure 11.
The % time spent in each minor cell was totaled to arrive at each major
cell and this total was used as the weighting factor to analyze the
power matricies, see Figure 12.
-------
TABLE 3. MATRIX OF AVERAGE PERCENT TIME SPENT IN VARIOUS ENGINE RPM-
MANIFOLD VACUUM CONDITIONS FOR 25 TRUCKS FROM LOS ANGELES CAPE-21 STUDY
Engine
rpm
Interval
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Manifold Vacuum, 2
26
0.00
0.00
0.00
0.04
0.23
0.48
0.64
0.67
0.60
0.45
0.28
0.14
0.07
0.02
0.00
24
0.00
0.01
0.28
0.99
.1.26
1.36
1.16
0.87
0.67
0.53
0.38
0.20
0.10
0.03
0.01
22;^-
0.82
2.25
3.70
2.19
.1.01
0.73
0.67
0.57
0.47
0.44
0.38
0.32
0.17
0.04
0.01
; 20
1 . 26
5.38
1,41
0.69
0.53
0.54
0.56
0.53
0.44
0.47
0.49
0.35
0.22
0,06
0.01
.; 18
0. 81
i, 9i
'.70. 56
0.35
0.40
0.49
0.57
0.61
0.54
0.62
0.67
0.51
0.34
0.10
0.01
16
0.37
0.29
0.22
0.27
0.33
0.46
0.63
0.69
0.62
0.74
0.99
0.74
0.44
0.12
0.02
14
0.10
0.12
0.16
0.19
0.26
0.42
0.59
0.66
0.61
0.83
1.12
0.90
0.53
0.14
0.02
inches of Hg Intervals
12
0.04
0.07
0.12
0.16
0.24
0.38
0.49
0.58
0.61
'0.88
1.30
0.95
0.61
0.14
0.02
10
0.02
0.06
0.09
0.13
0.20
0.28
0.37
0.42
0.48
0.75
1.11
0.83
0.52
0.10
0.01
8
0.01
0.05
0.08
0.14
0.18
0.28
0.35
0.42
0.49
0.79
1.01
0.64
0.35
0.09
0.02
6
0.01
0.05
0.08
0.15
0.22
0.32
0.41
0.47
0.56
0.85
1.16
0.96
0.82
0.17
0.03
4
0.01
0.05
0.10
0.17
0.27
0.38
0.51
0.71
1.06
1.81
2.27
1.76
1.04
0.22
0.03
2j_
0.01
0.04
0.09
0.17,
0.24
0.35
0.47
0.47
0.59
0, 81
0.99
0.83
0.35
0,06
0.00
Fig. 9
-------
-15-
AVERAGE PERCENT TIME SPENT IN VARIOUS RPM-MV INTERVALS FOR
25 GASOLINE POWERED TRUCKS FROM LOS ANGELES CAPE-21 STUDY
Fig. 10
-------
-16-
The power matrix was reconstructed to form major cells to facilitate the
final analysis. This was accomplished in much the same way as was
the compilation of the weighting matrix. The only exception being the
deletion of RPMs codes 13 and 14 (3750 and 4000 RPM). This was done
because the maximum RPM observed in actual truck operation was something
less than 3,700 RPM, Figure 13 shows this reconstructed power matrix.
Manifold Vacuum (In. Hg)
20
Mot
Idle
26%
52%
104%
.016
.071
.018
.009
.007
.007
.007
.007
.005
.006
.006
.004
.002
.002
.000
18 16 14
.010 .004 .001
.025 .003 .001
.007 .002 .002
.004 .003 .002
.005 .004 .003
.006 .006 .005
.007 .008 .007
.008 .009 .008
.007 .008 .008
.008 .009 .011
.008 .013 .014
.006 .009 .012
.004 .005 .007
.001 .001 .001
.000 .000 .000
12 10 8
.000 .000 .000
.000 .000 .000
.001 .001 .001
.002 .001 .002
.003 .002 .002
.005 .003 .004
.006 .004 .005
.007 .005 .006
.008 .006 .007
.011 .010 .011
.017 .014 .015
.012 .011 .012
.008 .006 .010
.001 .001 .002
.000 .000 .000
642
.000 .000 .000
.000 .000 .000
.001 .001 .001
.002 .002 .002
.002 .003 .003
.004 .005 .004
.005 .006 .006
.006 .009 .006
.007 .014 .007
.011 .024 .010
.015 .030 .013
.012 .023 .011
.010 .013 .004
.002 .002 .000
.000 .000 .000
Reconstructed % Time in Power
Fig. 11
-------
-17-
Manifold Vacuum
20
- Mot
IDle
26%
52%
104%
.016
.089
.030
.024
.006
18 16 14
.015
.040
.060
.011
.046
12 10 8
0
.003
.039
.117
.063
6 4 2
0
.003
.044
.152
.077
Weighting Factors For
Major Cells
Fig. J.2
-------
ZONE 4
ZONE 3
ZONE 2
ZONE 1
1 Motor
2 IDle
3
4
5 33%
. 6
7
8 33%
9
10
11 33%
12
13 *
14 *
0.0 0.0 0.0
0.0 0.0 5.3
0.0 0.5 11.6
0.0 4.5 14.8
0.0 6.7 16.5
0.0 7.8 17.2
0.0 8.3 17.5
0.0 8.4 17.4
0.0 8.1 17.2
0.0 7.6 16.7
0.0 6.9 16.2
0.0 6.0 15.5
0.0 4.9 14.7
0.0 3.5 13.9
4.6 7.0 2.8 1.3
16.5 17.8 14.9 11.8
21.8 21.8 19.5 17.0
24.3 23.3 21.4 19.1
25.2 24.0 22.4 20.2
25 24.5 23.0 21.0
26.0 25.2 23.8 21.8
26.0 26.3 24.9 23.0
25.7 28.1 26.7 24.6
15.4 30.8 29.3 27.0
25.0 33.4 33.0 30.4
24.6 33.3 38.4 35.2
24.2 33.3 fc2pJ.j44.4p E
23.9 33.5 52.-TB w:9
4.9 7.7 9.6 0.0
8.8 6.1 3.9 2.3
14.2 11.6 9.2 7.0
16.7 14.1 11.4 8.9
17.8 15.2 12.4 9.6
18.6 15.9 13.0 9.8
19.4 16.6 13.5 10.1
20.4 17.5 14.1 10.5
21.9 18.7 15.0 11.0
24.0 20.5 16.4 11.9
27.0 23.0 18.3 13.2
31.3 26.4 21.0 14.8
n 37.4 31.4 24.5 16.9
46.7 38.7 29.5 19.4
9.1 6.3 1.4 5.8
1.6 1.8 3.3 6.0
5.3 4.1 3.8 4.2
6.6 4.5 3.0 2.0
6.8 4.2 1.8 0.3
6.7 3.5 0.5 2.4
6.6 3.0 0.6 4.2
6.5 2.5 1.8 6.0
6.7 2.0 2.7 7.7
7.0 1.7 3.8 9.6
7.5 1.4 5.2 12.0
8.1 0.7 7.0 15.2
8.5 0.6 10.3 20. 6k
8.2 3.7 16.6 30.2*
CO
I
Typical Reconstruction Method
Used for Power Matrixes
Fig. 13
-------
Motor
IDle
26%
52%
104%
ZONE 4
0
17.4
76.9
76.9
69.9
ZONE 3
15.7
141.0
273.9
302.1
365.8
ZONE 2
32.3
63.1
163.4
352.1
274.8
ZONE 1
22.6
30.1
42.3
50.3
79.2
Rear Wheel
Motor
IDle
26%
52%
104%
ZONE 4
0
9.8
55.7
64.6
56.0
ZONE 3
12.8
69.9
150.8
140.7
216.9
ZONE 2
6.9
59.1
101.4
71.7
53.8
ZONE 1
14.6
31.4
36.6
19.7
23.9
Normalized Power Ln = Constant
(NP) °
ZONE 4
Motor
IDle
26%
52%
104%
0
18.9
24.3
16.0
25.1
ZONE 3
68.1
30.9
13.3
32.7
107.5
ZONE 2
72.0
28.2
18.1
37.3
85.7
ZONE 1
31.8
20.5
13.4
15.8
36.0
Rear Wheel Corrected
(RW+C)
1
t"
Motor
IDle
26%
52%
104%
ZONE 4
0
7.0
25.4
13.8
9.3
ZONE 3
7.3
63.3
85.4
42.2
32.0
ZONE 2 I ZONE 1
4.9 ! 12.1
55.2 J 30.7
65.6 ' 30.4
21.8 | 14.4
12.4 20.8
i
Normalized Power L
(NMP)
= Variable
Fig. 14
-------
Motor
IDle
26%
52%
104%
20
0
1.54
2.02
1.84
.41,
18 16 14
.23
5.64
16.43
33.53
16.82
12 10 8
0
.18
6.37
41.19
17.31
642
0
.09
1.86
7.64
6.09 -
Box 2 RW Weighted #159.20
Motor
IDle
26%
52%
104%
20
0
.87
1.67
1.55
.33
18 16 14
.19
2.79
9.04
15.61
9.97
12 10 8
0
.17
3.95
8.31
3.38
642
0
.09
1.61
2.99
1.84
Box 3 Proposed Weighted #64.36
Motor
IDle
26%
52%
104%
20
0
1.68
.72
.38
.15
18 16 14
1.02
1.23
.79
3.62
4.94
12 10 8
0
.08
.70
4.36
5.39
642
0
.06
.58
2.40
2.77
Box 4 RW+C Weighted #30.87
Motor
IDle
26%
52%
104%
20
0
.62
.76
.33
.05
18 16 14
10
2.53
5.12
4.68
1.47
12 10 8
0
.16
2.55
2.55
1.56
642
0
.09
1.33
2.18
1.60
Box 5 Prop Alt. Weighted #27.68
Fig. 15
-------
en
4->
C
-------
: -22-
Again following the same procedure the minor cells were summed to arrive
at a total difference in power for each major cell, Figure 14 shows this
value for each of the power matrixes.
The weighting factors were then applied to each of the power matricies
and the cell quality indicies added to provide an overall comparison.
(Fig. 15) This index shows the significance of each major cell as it
relates to the operational characteristics of the sample. The total of
all cells for a given matrix is the numerical quality index of that
matrix relative to the master. Obviously the smaller the number the
better the procedures ability to describe the % of shaft horsepower.
As can be seen in Figure 15 the power matrix for the modified normalized
power procedure has the lowest weighted total (27.68) and hence would
indicate the least amount of overall error. Again, this procedure
involves determining zero and 100% power manifold vacuum levels as a
function of RPM and then making intermediate power values a linear
function of manifold vacuum at eac RPM level.
5. Application of Test Data to Survey Sample
The modified power procedure gave the best results for shaft horsepower
when compared to the master matrix. To apply this procedure to the
survey sample, the zero power manifold vacuum had to be known. To
acquire this data each truck in the Los Angeles portion of the survey
was retested for zero power manifold vacuum using the identical instru-
mentation system used in the survey.
The data from the zero power manifold vacuum for each truck ..were then
compared to the idle manifold vacuum and RPM for each respective truck
in the Los Angeles survey to test for goodness of fit at idle, and
changes which might have occured as a result of engine wear or opera-
tional conditions since the truck was originally tested.
It was found that, because of the definition for "idle", the values of
manifold vacuum as measured at the time of testing of some vehicles
differed from that of the zero power retest data for idle. To under-
stand this condition it is necessary to consider the definition of the
term "idle".
Two conditions exist under which a vehicle's engine can be said to be at
idle. One is based on recommended idle RPM as specified by the engine
manufacturer. The other is defined as that time during which the
vehicle is at zero road speed and hence the shaft horsepower is zero.
The latter is independent of the manifold vacuum and RPM.
A review of the matrix referred to as "zip E vs L" (described as a fre-
quency matrix in RPM and MV during which time road speed equals zero)
indicated that in use vehicles operate in a range of RPMs and manifold
vacuum at zero power (Idle) dependent on conditions at the time during
which the idle measurements are taken. Furthermore, when viewing the
-------
-23-
"zip E vs L" it is obvious that during the transistion from zero road
speed, some power is required to start the vehicle moving. Some records,
then, cannot be said to be idle, as defined, and must be separated from
the true idle data before the Ln curve can be applied to the operational
data.
A. method was devised which allowed the range of actual engine idle in
the operational data to be identified. Although somewhat arbitrary in
design, the method very closely brackets the Idle manifold vacuum and
RPM (zero power) measured in the two conditions, before and after testing.
The method consists of taking 1% of the total number of records recorded
at vehicle speed euqals zero and using this number, boxing that part of
the "zip E vs L" matrix whose cell entries have a frequency of occurance
equal to or greater than its value.
With the Idle box thus established, the values for the upper and lower
diagonal extremes were chosen and the corresponding RPM & MV values
used, along with the measured values of zero power points, in a point
to point curve fit which established the L (L zero) curve for power.
This curve is then restrained on one end by the idle box and on the
other by maximum value of RPM and its associated MV as measured when the
vehicles were measured for zero power. Figure 16 shows a typical idle
box creation.
Equation 1, wherein L,. is a variable, can now be applied to the data to
yield a value of % power.
The RPM is now normalized by using equations 3, 4, & 5 in- conjunction
with the Idle box.
E - E
Equation 3: for E < ET %E = - -
L E ~
R ~ EL
Equation 4: for EL < E < E^ %E = 0 = Idle
E -
Equation 5: for E < ETT %E =
E
TT
U ER " EU
where :
E = RPM
E = RPM of Lower Idle box extreme
J_i
E = RPM of upper Idle box extreme
E = Manufacturers Rated RPM
K
The above procedure was applied to the Los Angeles data and power data
tapes generated for each truck.
-------
-24-
Power Model Quality Index
Using Averages For L_
.Motor
IDle
26%
52%
104%
ZONE 4
.08
.35
.21
.32
.21
ZONE 3
.26
1.58
3.43
4.97
3.23
ZONE 2
0
.13
1.95
2.46
1.83
ZONE 1
0
.08
1.21
2.16
.170
Test Truck LQ Weighted Index 26.16
Fig. 17
-------
M Calculated for Master
21.0
iv
M
A
N
1
F
0
L
0
V
A
c
O--0>0--G
I
N5
Ul
I
15.0
400.0
1JoO.O
) .U
5200.0
Figure 18
-------
-26-
ZONE 4
Motor
IDle
26%
52%
104%
.04
.36
.40
.18
.04
ZONE 3
.15
1.90
4.04
3.13
.47
ZONE 2
0
.14
.2.17
1.70
.42
ZONE 1
0
.09
1.25
2.20
1.59
Los Angeles Ln Weighted Index 20.27
Fig. 19
-------
-27-
The same procedure used for gasoline trucks in Los Angeles was of course
intended for use in the analysis of the New York vehicles as well.
Attempts to remeasure L_ for these vehicles were unsuccessful however,
and an alternative method was needed in order to derive L-. for these
trucks.
The use of manifold vacuum as a parameter to accurately measure power
output of gasoline engines is a proven approach and has been used on
numerous occasions in the past. CAPE-21 presented a somewhat complex
problem in that all previous use of MV as a power factor assumed that
the engine was tuned to manufacturers specifications.
Because trucks in the CAPE-21 survey were tested on an as received
basis, nothing was known of the state of tune of a given engine or the
effects this might have on zero power MV values and the effects of its
use in determining % power were unknown.
To better understand the effects of state of tune on manifold vacuum and
the associated confidence which can be placed in its ability to relate
MV to HP, a test was designed which simulated the most commonly known
states of engine tune degradation. Conditions of the test were as
follows. The five most critical aspects of engine state of tune, mixture
ratio, timing, breathing system, piston rings, and ignition were altered
separately and in combination with each other while a complete zero
power curve was recorded. Seventy-two (72) tests were performed in all,
the results of which are shown in the Appendix of this report.
Test results show that although there is significant change in the
absolute level of manifold vacuum from the norm, the curve shapes remained
the same in all cases. A mean value was established for all the data
and this curve applied to the test vehicle in order to compare HP prediction
matricies. (Fig. 17). The results of this comparison indicated that,
in fact, use of the average value of L« resulted in a slightly better
prediction of horsepower.
The reasons for the improvement in prediction power of the average
L_ curve is thought to be that, in the regions of higher operation, as
identified by the L.A. database, the curvature of the L_ curve is less
effected by those parameters effecting state of tune than at Idle. This
would indicate that because the weighing factors are relatively small in
these regions the error in predicted horsepower is, for all practical
purposes, insignificant and can be effectively reduced by forcing the
lower end of the curve to fit the idle box as described earlier. Figure
18 shows the LQ curves for all tests conducted.
Based on the above, a matrix was constructed which used the average
curve for the Los Angeles data in comparison with the Master Engine
Matrix in the manner described earlier. The results of this comparison
are shown in Figure 19.
-------
-28-
Descriptive Measures
Case
RW
NP
RW + C
NMP
L!
N
180
180
180
180
180
Maximum
38.4
13.5
18.6
9.3
12.7
Mean
12.495
6.108
3.864
3.098
3.639
Standard deviation
9.5
4.3
4.2
2.4
3.2
Fig. 20
-------
-29-
As can be seen in Figure 19, the weighting index is smaller than that
of the weighting index for the average test truck data. By referring
to Figure 18, trace no. 5, it can be seen that in the regions of high
percentage operation the average L- data for Los Angeles very closely
approximates the actual engine data as measured. (Trace No. 1 in
Figure 18.)
The mean and standard deviation for all cases tested are shown in Figure
20 and indicate that .although the values for these parameters are
higher when using average L_ for Los Angeles, the major differences
occur in areas of the RPM spectrum that have low frequencies of
occurance of operation in the operational data base. See Figure 17
and Figure 19.
The conclusion which is drawn here is that, an average Ln curve for Los
Angeles can be applied to New York data to produce a value of % Horsepower.
The data indicate that the degree of error to be expected when this is
done is slightly higher, but remains insignificant when viewed overall.
Comparing values of mean, and standard deviation in step five (Figure 18
actual values of L_ for the test truck as predicted by the Master Horsepower
model) with that obtained in step four (the actual measured value of Ln
for the test truck applied in equation 2) indicates that the procedure
used in Los Angeles, ie., measured LQ for each truck, is the best procedure
for predicting % horsepower and should be used wherever possible. But
if actual Ln data are not available the degree of accuracy which can be
expected from a procedure using an average L,. is quite high provided the
data base for the average is sufficient, and the operational data associated
with it is analyzed to produce a significance matrix for weighting
purposes.
-------
APPENDIX A
-------
Key to Test Data
NM = Normal Mixture
NT = Normal Timing
NV = Normal Vacuum
NP = Normal Plug
NL - formal Lead (Spark Plug Lead-on)
RM = Rich Mix two turns
LM = Lean Mix.two turns
AT = Advanced timing 5°
RT = Retarded timing 5°
VL = Vacuum leak 1/4"
SP = Plug with hole installed 1/8"
RL = Plug lead removed
-------
696066-
JOB NO. 696066
r>S- -696066-
-696066-
UNIVERSITY OF MICHIGAN TERMINAL SYSTEM (MODEL EC075)
15136:0! WED JAN U/76
MhMMM MMMMM
MMMMMM MMMMMM
MMMMMMM KM.MMMMK
MMMMMMMM MMMMMMMM
MMMMMMMMM MMMMMMMMM
MMMMMMMMMM MMMMMMMMMM
MMMMM MMMMM MMMMM MMMMM
rfMMMM MMMMM MMMMM MMMMM
MMMMM MMMMM ^MVMM NIW.M^M
MMMMM HMMMMMMS'.MMM MMMMM
MMMMM ' MMMMMMMMM MMMMM
MMMMM MMfWMMM MMMMM
MMMMM MMf.MM MMHMM
MMMMM MMM MMMMM
MMMMM MMMMM
MMMMM MMMMM
MMMMM MMMMM
MMMMM MMMMM
ssssssssss
ssssssssssss
ss
ss
sss
ss
sssssssss
SSSSSSS5S
ss
sss
ss
ss
ssssssssssss
ssssssssss
TTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTT
TTTTT
TTTTT
TTTTT
TTTTT
TTTTT
TTTTT.
TTTTT
TTTTT
. TTTTT
TTTTT
TTTTT
TTTTT
TTTTT
TTTTT
TTTTT
AAAAAAAAAA QQOQQQOOQO
AAAAAAAAAA4A
AA
AA
AA
AA
Aft
AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
QCGQQOOQQOQQ
00
QQ
00
00
QO
00
QO
QQ
00
QO
00
00
00
00
QQ
00
QQ
ooca
COOQQQOQOQO
QOOQCOCO
QO
SSS'
SSSSS!
SSSSSSS:
ssssss
SSSSS
SSSSS
ssssss
SSSSSSS:
sssss:
sss
SSSSS
SSSSSSS
SSSSSSS
SSSSS
sss
ppppppppppp
pppppppppppp
pp
pp
pp
pp
pp
pp
pppppppppppp
ppppppppppp
pp
pp
pp
pp
pp
SSSSSSS
SSSSS
ss
ssss
sssssssssssss
SSSSSSS
SSSSS
SSSSS
SSSSS
SSSSSSS
-696066-
-696066 696066-
-696066-
-696066-
-696066-
-------
TEST
MiT
-ovrn
TYPES
1 fJM NT
COMMENTS:
RPM CRPM
610.
750.
1000.
1350.
1500,
1750.
2000.
3250.
2500.
2750.
3000.
3250.
3500.
602.
740.
987.
1233.
1479.
1726.
1972.
2216.
2464.
2711.
2957.
3203.
3449.
jon -»_-_- ---
OF TEST DATE
ovoifo
8ARO
NV NP ML 12-12-75 2<;
MVI HV2 MVS MEAN
342
336
347
326
301
299
230
2E3
286
293
307
318
328
346
337
342
317
303
298
278
282
286
292
306
317
323
345
336
343
317
302
300
2SO
283
2fi7
293
305
317
328
MV
344-.
336.
344.
320.
302.
299.
279.
282.
2B6.
292.
30fe.
317.
328.
3
3
0
0
0
0
3
7
3
7
0
3
0
TEMP TEMP TFST
^o uQ s*r\nc
L/P w L» VjV/UL.
1.35 79.5 57.0 0
HGUN.)
19
'9
19
20
21
21
21
?1
21
21
20
20
20
.68
.94;"
.69
.47
.05
.15
.79
.68
.56
.36
.92
.55
.21
TEST
MA
TYPES OF TEST DATE
2 NM NT
COMMENTS:
640.
750.
10CO.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
632.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
BARO
TEMP TEMP TEST
r\n LID /*s\r\e
.Vi/VNP ML 12-23-75 29.20 78.0 56.5 1
MVI MV2 MV3 MEAN HGUN.)
350
351
367
327
318
' 313
291
2?6
300
308
322
333
345
34R
345
356
326
317
312
293
236
297
303
321
336
342
346
339
354
323
312
312
292
295
294
303
319
332
340
MV
348.
345.
359.
325.
315.
312.
292.
295.
297.
304.
320.
333.
342.
0
0
0
3
7
3
0
7
0
7
7
7
3
19,
19.
19,
20,
20,
20.
21.
21.
21.
20.
20.
. 20,
19.
.56
.66
.20
,29
.61
,72
,38
,26
,22
,97
,45
,02
,74
-------
TEST
NO
TYPES
3 NM NT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TO.P TfTMP TEST
no iiti rrtnr
VL NP RL 12-23-75 29.24 77.5 58.5 2
MV1 MV2 MV3 *£AN HGUN.)
MV
600.
750.
1000.
1250.
1500.
1750.
?000.
2250.
3500.
2750.
3000.
3250.
3500.
593.
740.
987.
1233.
1479.
1726.
1972.
2218.
2^64.
2711.
2957.
3203.
3449.
372
370
383
335
329
313
316
316
320
328
344
361
373
372
368
383
336
333
305
305
312
316
322
341
355
371
365
367
3?1
333
328
303
308
312
314
323
336
353
364
369
368
382
334
329
307
3C9
313
316
324
340
356
369
.7
.3
.3
.7
.7
.0
.7
.3
.7
.3
.3
.3
.3
18
18
IS
19
20
20
20
20
20
20
15
19
18
.R5
.90
.44
.99
.15
.89
.80
.68
.58
.33
.81
.29
.87
TEST
Kin
TYPES
4 NM NT
COMMENTS:
PPM
590.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
CRPM
583.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
3957.
3203.
3449.
Or TEST DATE BARO
NV MP RL 12-23-75 29.24
HVl MV2 MV3
359
354
373
328
327
300
304
308
311
323
335
351
358
360
354
370
330
327
303
304
309
313
321
334
352
362
356
354
370
329
323
299
30*
308
312
321
336
352
362
MEAN
M"
358
354
371
329
325
300
304
308
312
321
335
351
360
V
.3
.0
.0
.0
.7
.7
.0
.3
.0
.7
.0
.7
.7
TEMP TEMP TEST
no I,. Q ("rtfic
urs wn L-LJut
79.5 65.0 1
HGUN.)
19
19
18
20
20
21
20
20
20
20
19
19
19
.22
.36
.81
.IB
.28
.10
.99
.B5
.73
.41
.98
.44
.15
-------
5 NM NT
COMMENTS:
RPM CRPM
NV SP ML 12-
MV1 HV2 MV3
\JU I i V~-
12-75 29.34 77.
MEAN HGIIN.)
MV
6CO.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
32SO.
3500.
593.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
356
345
354
318
313
285
284
289
291
302
310
324
331
353
343
356
322
307
286
285
289
292
297
309
320
331
353
348
355
323
309
291
285
289
291
298
310
320
329
3S4
347
35S
321
309
287
284
289
291
299
309
321
330
.0
.0
.0
.0
.7
.3
.7
.0
.3
.0
.7
.3
.3
19
19
1'9
20
20
21
21
21
21
21
20
20
20
.36
.59
.33
.44
.80
.53
.62
.48
.40
.15
.80
.42
.13
SARO TEMP TEMP TEST
W8 CODE
55.0 1
TEST
TYPES
6 NM NT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
na uo /*nnc
VL SP RL 12-23-75 29.25 77.5 56.0 3
MV1 MV2 MV3 MEAN HGtIN.)
MV
580.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
573.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
387
383
391
348
343
314
313
313
316
322
338
354
369
397
391
385
346
337
312
312
314
315
323
343
353
365
378
378
369
347
334
312'
312
312
315
321
338
351
362
387
384
388
347
338
312
312
313
315
322
339
352
365
.3
.0
.3
.0
.0
.7
.3
.0
.3
.0
.7
.7
.3
16
18
18
19
19
20
20
20
20
20
19
19
19
.28
.39
.25
.59
.88
.71
.72
.70
.62
.40
.83
.41
.00
-------
TEST
TYPES
7 KM NT
COMMENTS:
RPM CRPH
OF TEST DATE BA«0
TEMP TEMP TEST
na UD rnnc
VL SP NL 12-24-75 29.36 77.0 55.0 2
MV1 MV2 HV3 MEAN HGdN.)
MV
630.
750.
1000.
1250.
1SOO.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.
1972.
2218.
246*.
2711.
2957.
3203.
3449.
350
344
360
326
315
294
295
295
297
302
314
328
338
353
355
373
330
318
315
293
292
296
301
314
325
337
353
355
366
328
316
314
238
291
293
298
313
325
333
352
351
366
328
316
307
292
292
295
300
313
326
336
.0
.3
.3
.0
.3
.7
.0
.7
.3
.3
.7
.0
.0
19
19
18
20
20
20
21
21
21
21
20
20
19
.43
.45
.96
.21
.59
.87
.38
.36
.27
.11
.67
.27
.95
8 NM NT
COMMENTS:
RPM CRPM
600.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
593.
740.
987.
1233.
1479.
1/26.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
NV SP RL 12-24-75 29.37 80.
MV1 MV2 MV3. MEAN HGdN.)
364
362
373
334
325
304
305
309
309
315
337
345
361
367
362
374
330
325
303
305
307
305
318
333
348
353
364
354
372
332
325
303
303
308
312
318
334
347
355
MV
365.
359.
373.
332.
325.
303.
304.
308.
309.
317.
334.
346.
358.
0
3
0
0
0
3
3
0
7
0
7
7
0
19
19
18
20
20
21
20
20
20
20
19
19
19
.01
.19
.75
.08
.31
.01
.98
.86
.64
.57
.99
.60
.23
BARO TEMP TEMP TEST
WB CODE
57.5 2
-------
TEST
TYPES
9 NM AT
COMMENTS:
PPM CRPM
CF TEST DATE 8ARO
TEMP TEMP TEST
no njo rr\r\c
NV NP ML 13-15-75 29.91 76.4 56.8 1
MV1 MV2 MV3 MEAN HGUN.)
MV
630.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
622.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2.711.
2957.
3203.
3449.
346
335
336
327
317
313
301
301
299
302
317
327
340
341
335
335
328
316
312
294
296
296
304
317
329
339
339
334
335
328
315
312
296
295
295
302
314
329
336
342
334
335
327
316
312
297
297
296
302
316
328
338
.0
.7
.3
.7
.0
.3
.0
.3
.7
.7
.0
.3
.3
.19.
19.
19.
20.
20.
20.
21.
21.
21.
21.
20.
20.
19.
75
99
97
22
60
72
22
20
23
03
60
20
87
TEST
MA
TYPES
10 NM AT
COMMENTS:
RPM CRPM
670.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
662.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
OF TEST DATE
BARO
TEMP TEMP TEST
no LID rnr\c
VL NP NL 12-19-75 29.06 82.0 58.5 2
MV1 MV2 MV3 MEAN HGIIN.)
331
326
325
331
313
314
290
293
295
302
313
329
339
333
327
329
331
315
312
290
294
295
JOO
313
331
339
334
321
325
333
315
314
29ft
295
296
302
315
330
339
MV
332.
324.
326.
331.
314.
313,
292.
294.
295.
301.
313.
330.
339.
7
7
3
7
3
3
0
0
3
3
7
0
0
20
20
20
20
20
20
21
?1
21
21
20
20
19
.06
.32
.26
.09
.65
.68
.38
.31
.27
.07
.67
.14
.85
-------
TEST
MA
TYPES
11 NM AT
COMMENTS:
RPM CRPM
OF TEST DATE 8ARO
TEMP TEMP TEST
r%o I.IQ mnc
VL NP RL 12-19-75 29.13 80.0 57.5 3
MV1 MV2 MV3 MEAN HG1IN.)
MV
640.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
632.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.'
2711.
2957.
3203.
3449.
349
346
348
335
328
312
305
309
'307
317
333
348
363
349
338
347
336
330
321
310
310
311
313
334
350
361
351
344
349
338
327
313
308
309
312
319
333
351
357
349.
342.
348.
336.
323.
315.
307.
309.
310.
318.
333,
349,
360,
,7
,7
,0
,3
,3
.3
,7
.3
.0
.0
.3
,7
.3
19
19
19
19
20
20
20
20
20
20
20
19
19
.50
.73
.56
.94
.20
.62
.87
.81
.79
.53
.03
.50
.16
12 NM AT
COMMENTS:
RPM CRPM
650.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
642.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
NV NP RL 12-19-75 29.06 78.
MV1 MV2 MV3 MEAN HGUN.)
343
333
333
331
323
308
304
309
314
323
339
354
365
347
338
347
332
323
319
308
313
314
325
339
352
365
345
335
339
330
323
310
305
310
310
321
335
352
365
MV
344.
335.
339,
331.
323.
312.
305.
310.
312.
323.
337.
352.
365.
7
3
7
0
0
3
7
7
7
0
7
7
0
19
19
19
20
20
20
?0
20
20
20
19
19
19
.67
.97
.63
.11
.37
.72
.93
.77
.71
.37
.89
.41
.01
RARO TEMP TEMP TEST'
WB CODE
56.5 2
-------
13 NM AT
COMMENTS:
RPM CSPM
NV SP NL 12-15-75 28.96 80.
MV1 MV2 MV3 MEAN HG(IN.)
MV
620.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
354
344
347
333
325
320
297
293
302
309
317
331
340
368
351
345
332
327
319
299
302
303
303
316
329
337
356
345
344
326
325
316
298
298
300
306
313
329
337
359,
346,
345,
330,
325,
318,
298,
299,
301,
306,
315.
329.
338.
.3
,7
.3
.3
.7
.3
.0
.3
,7
.0
.3
.7
.0
19.
19.
19.
20.
20.
20.
21.
21.
21.
20.
20.
20.
19.
19
60
65
13
28
52
18
14
06
92
62
15
88
BARO TEMP TEMP TEST
WB CODE
58.7 2
14 NM AT
COMMENTS:
RPM
650.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
CRPM
642.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
VL SP NL 12-19-75 29.04
MV1 MV2 MV3
348
358
351
337
331
321
308
310
306
311
317
332
341
352
349
352
339
331
326
301
302
303
304
319
332
343
349
345
341
337
332
325
304
308
307
309
316
329
339
MEAN
K"
349
350
348
337
331
324
304
306
305
308
317
331
341
V
.7
.7
.0
.7
.3
.0
.3
.7
.3
.0
.3
.0
.0
LJO
78.1
HG(IN.)
19.
19.
19.
19.
20.
20.
20.
20.
20.
20.
20.
20.
19.
SO
47
56
89
10
34
98
90
94
86
55
11
79
BARO TEMP TEMP TEST
WB CODE
58.0 3
TTCT TVOCC nr TTCT
HATF
TFMP TfMP
-------
15 MM AT
COMMENTS:
RRM CRPM
VL SP RL 12-19-75 29.04 81.
MV1 MV2 MV3 MEAN HGIIN.)
MV
610.
750.
1000.
1250.
1500.
1750.
2000.
22SO.
2500.
2750.
3000.
3250.
3500.
602.
7*0.
987.
1233.
1479.
1726.
1972.
221B.
246*..
2711.
2957.
3203.
3449.
370
363
375
348
345
310
311
317
320
326
341
355
370
369
365
363<
345
344
314
316
316
319
326
339
356
370
369
360
363
344
344
314
311
310
316
327
337
356
369
369
362
367
345
344
312
312
314
318
326
339
355
369
.3
.7
.0
.7
.3
.7
.7
.3
.3
.3
.0
.7
.7
18.
19.
18.
19.
19.
20.
20.
20.
20.
20.
. 19.
19.
18.
87
08
94
63
68
71
71
65
52
2A
85
31
85
B&RO TEMP TtMP TFST
W6 CODE-
58.5 4
TEST
TYPES
16 NM AT
COMMENTS:
RPM CRPM
610.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2503.
2750.
3000.
3250.
3500.
602.
740.
987.
1233.
1479.
1726.
1972.
2R18.
2464.
2711.
2957.
3203.
3449.
OF TEST DATE BARO TEMP TEMP TEST
NV SP RL 12-19-75 29.05 82.0 58.0 3
MV1 MV2 MV3 MEAN HGI1N.)
356
347
349
336
331
313
310
315
316
322
340
353
365
357
346
354
336
333
315
313
316
315
325
337
357
367
359
347
355
340
333
314
313
315
319
325
339
353
366
MV
357.3
346.7
352.7
337.3
332.3
314.0
312.0
315.3
316.7
324.0
338.7
354.3
366.0
19.26
19.60
19.41
19.90
20.07
20.66
20.73
.20.62
20.58
20.34
19.86
19.35
18.97
-------
TEST
TYPES
17 MM RT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\o i.
-------
TEST
MA
TYPES
19 NM RT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
AQ LID rnnr
VL NP HL 12-19-75 29.13 81.5 58.0 3
MV1 MV2 MV3 MEAN HGdNI.)
MV
560.
750.
10,00.
1250.
1500.
1750.
2000.
?250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
396
391
390
'344
334
315
316
318
318
327
345
359
370
398
395
391,
347
336
313
316
318
322
326
343
357
368
396
401
397
349
334
310
315
315
321
326
343
358
369
396
395
392
346
334
312
315
317
320
326
343
358
369
.7
.7
.7
.7
.7
.7
.7
.0
.3
.3
.7
.0
.0
17.
18.
18.
19.
19.
20.
, 20.
20.
20.
20.
19.
19.
18.
9«
01
11
60
99
71
61
57
46
26
70
23
88
20 NM RT
COMMENTS:
RPM CRPM
NV NP RU 12-19-75 29.13 80.
MV1 MV2 MV3 MEAN HGIIN.)
MV
540.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
534.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
394
396
393
347
330
311
315
318
321
330
3<«5
360
373
391
3o8
339
344
333
309
312
315
319
326
344
356
370
391
387
387
342
330
307
313
315
320
325
341
357
371
392
390
389
344
331
309
313
316
320
327
343
358
371
.0
.3
.7
.3
.0
.0
.3
.0
.0
.7
.3
.3
.3
18
18
18
19
20
20
20
20
20
20
I1*
19
13
.13
.18
.20
.68
.11
.83
.68
.60
.47
.22
.71
.22
.80
3ARO TEMP TEMP TEST
WB CODE
57.0 2
-------
TEST
TYPES
21 NM RT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TfMP TEMP TEST
no uti r*r\r.c
NV SP NL 12-16-75 28.98 82.0 60.0 2
MV1 MV2 MV3 MEAN HGtIN.)
MV
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
352
389
386
340
327
313
302
304
305
308
322
334
344
394
394
384
341
331
312
301
304
304
309
322
332
344
395
394
386
342
330
313
303
305
304
309
319
333
342
393
392
385
341
329
312
302
304
304
308
321
333
343
.7
.3
.3
.0
.3
.7
.0
.3
3
.7
.0
.0
.3
18
1ft
18
19
20
20
21
20
?0
20
20
20
19
.07
.12
.35
.79
.16
.71
.05
.98
.98
.64
.44
.05
.71
TEST
MO
TYPES
22 NM RT
COMMENTS:
RPM CRPM
OF TEST DATE
BARO
TEMP- TEMP TEST
no 1.1 D /* rt P\ fT
VL SP NL 12-19-75 29.13 77.0 55.0 3
MV1 MV2 MV3 MEAN HOdN.)
MV
590.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
583.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
383
381
393
341
323
309
302
306
307
315
324
339
346
384
386
403
350
328
324
300
304
304
308
320
334
342
383
388
405
350
329
318
295
300
299
302
316
331
338
383.
385.
400.
347.
326.
317.
299.
303.
303.
30fi.
320.
334.
342.
3
0
3
0
7 '
0
0
3
3
3
0
7
0
18
18
17
19
20
20
21
21
21
20
20
19
19
.41
.36
.66
.59
.25
.57
.15
.01
.01
.85,
.47
.99
.75
3ARO TEMP TEMP TEST
-------
TEST
NO
TYPES
23 NM RT
COMMENTS:
RPM CRPM
OP TEST DATE BARO
TEMP TEMP TEST
no LID rrtptr
VL SP RL 12-19-75 29.13 82.0 58.0 4
MV1 MV2 MV3 MEAN HG(IN.)
MV
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
1972.
22 IP..
2464.
2711.
2957.
3203.
3449.
406
407
419
361
345
317
318
318
318
326
342
356
366
405
415
406
356
342
317
314
317
319
328
344
359
369
409
40R
402
356
344
317
319
318
320
329
344
360
368
406
410
409
357
343
317
317
317
319
327
343
358
367
.7
.0
.0
.7
.7
.0
.0
.7
.0
.7
.3
.3
.7
17.
17.
17.
19.
19.
20.
20.
20.
20.
20.
19.
19.
18.
65
54
58
24
70
57
57
54
50
22
71
22
92
24 NM RT
COMMENTS:
RPM CRPM
MV SP RL 12-19-75 29.13 80.
MV1 MV2 MV3 MEAN HGUN.)
MV
570.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
27SO.
3000.
3250.
3500.
563.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
396
390
396
346
337
314
315
317
316
325
343
356
369
399
390
391
345
337
314
316
314
318
327
341
357
369
400
398
396
349
336
313
316
317
319
328
342
355
369
398
392
394
346
336
313
315
316
317
326
342
356
369
.
.
.
.
.
.
.
.
.
.
.
3
7
3
7
7
7
7
0
7
7
0
0
0
17.
18.
18,
19.
19,
20.
20,
20.
20.
20,
19,
19,
18.
,92
.11
,05
.60
.93
.67
.61
.60
.54
.25
.75
.30
.88
BARO TEMP TEMP TEST
W8 CODE
57.0 3
-------
TEST TYPES OF TEST
NO < >
25 LM NT NV N? NL
OATE BARO
MM-DD-YY
12-29-75 29.35
TEMP TEMP TEST
06 WB CODE
80.0 59.0 1
COMMENTS: IDLE 625-MIXTURE SCREWS TURNED IN 1/8 TURN EA. IDLE 550
RPM
CRPM
MV1 M\/2 MV3
MEAN
HGIIN
MV
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
378
375
375
324
312
301
287
289
292
298
315
325
334
375
374
371
323
313
299
285
286
288
295
312
321
330
385
373
374
327
313
305
266
266
288
296
308
320
329
379,
374,
373.
326,
312,
301.
286,
287.
289.
296.
311.
322.
331.
.3
,0
.3
.3
,7
.3
,0
,0
,3
,3
,7
,0
,0
18
18
18
20
20
21
21
21
21
21
20
20
20
.54
.71
.74
.26
.71
.07
.57
.54
.46
.24
.74
.40
.11
26 LM NT
COMMENTS:
RPM
580.
750.
1000.
1250.
1500.
1750.
2000.
Z250.
2500.
2750.
3000.
3250.
3500.
VL NP NL 12-29-75 29.34
C3PM MV1 MV2 MV3
573.
740.
987.
1233.
1479.
1726.
1972.
2215.
2464.
2711.
2957.
3203.
3449.
364
369
376
333
320
307
265
288
237
294
308
320
329
375
383
379
333
318
305
286
289
289
297
309
320
331
370
375
378
331
318
312
287
291
269
295
310
319
331
MEAN
369,
375,
377,
332,
318,
308,
286,
289,
2S8,
295.
309.
319.
330.
/
,7
.7
.7
.3
,7
,0
.0
,3
,3
.3
,0
,7
,3
HG
18
18
18
20
20
20
21
21
21
21
20
20
20
UB
82.
(IN.)
.85
.66
.59
.07
.51
.86
.57
.46
.50
.27
.83
.43
.13
8ARO TEMP TEMP TEST
WB CODE
57.5 2
TFCT TVDPC flF TTCT
BiDrt TFMP TFMP TF«;T
-------
TEST TYPES OF TEST DATE BARO
NO < > MM-OO-YV
37 LH NT VL NP RL 13-29-75 29.37
TEMP TEMP TEST
OB WB CODE
78.5 56.0 3
COMMENTS:
RPM CRPM
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
HV1 MV2 MV3
398
395
383
344
334
316
309
311
313
321
338
348
361
394
394
382
343
332
306
307
308
312
321
336
350
362
395
393
383
342
332
305
305
308
312
322
336
351
363
MEAN
MV
395.
394.
382.
343.
332.
309.
307.
309.
312.
321.
336.
349.
362.
7
0
7
0
7
0
0
0
3
3
7
7
0
HGIIN.)
18
18
18
19
20
20
20
20
20
20
19
19
19
.01
.06
.43
.72
.06
.83
.89
.83
.72
.42
.93
.50
.10
TEST
TYPES
28 LM NT
COMMENTS:
RPM CRPM
OF TEST DATE 8ARO
TEMP TEMP TEST
r»o 1.1 Q fr\r\c
NV NP RL 12-29-75 29.25 81.0 57.5 2
KV1 MV2 MV3 MEAN HGIIN.)
MV
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
221fl.
2464.
2711.
2957.
3203.
3449.
376
378
376
337
329
304
305
307
310
318
335
349
361
382
379
376
337
328
302
306
306
309
320
335
349
362
383
382
378
338
326
300
304
306
310
319
336
349
363
380.
379,
376,
337,
327,
302,
305,
306,
309,
319,
335.
349.
362.
.3
.7
.7
.3
,7
,0
.0
.3
,7
,0
,3
.0
.0
18,
18.
18,
19,
20,
21,
20,
20,
20,
'20.
19.
19.
19.
,51
.53
.63
.90
.22
.05
.96
.91
.80
,50
,97
.53
.10
-------
29 LM NT
COMMENTS:
RPM CRPM
NV SP NL 12-29-75 29.24 SO.
MV1 MV2 MV3 MEAN HGIIN.)
MV
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
388
384
378
332
325
307
303
291
295
303
315
327
336
387
385
380
337
327
313
291
292
294
301
313
326
335
392
385
380
338
324
305
290
291
293
298
315
326
335
389
384
379
335
325
308
294
291
294
300
314
326
335
.0
.7
.3
.7
.3
.3
.7
.3
.0
.7
.3
.3
.3
18.
18.
18.
19.
20.
20.
21.
21.
21.
21.
20.
20.
19.
23
37
54
96
29
fi5
29
40
31
10
65
26
97
BARO TEMP TEMP TEST
WB CODE
57.5 2
TEST
TYPES
30 LM NT
COMMENTS:
RPM CRPM
QF TEST DATE HARD
TEMP TEMP TEST
PiD 1.10 f*f\r\e
VL SP NL 12-30-75 28.85 79.0 59.0 3
MV1 MV2 MV3 MEAN HG(IN.)
MV
540.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
534.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
399
390
378
344
338
322
312
315
313
320
335
345
354
404
399
3H9
348
337
306
308
309
310
316
331
340
349
40fl
398
393
349
338
319
306
305
308
314
328
341
349
403
395
386
347
337
315
308
309
310
.7
.7
.7
.0
.7
.7
.7
.7
.3
316.7
331
342
350
.3
.0
.7
17
Id
IS
19
19
20
20
20
20
20
20
19
19
.75
. ni
.30
.59
.69
.61
.84
.80
.78
.58
.10
.75
.47
TF<;T TVPFX nr
n/uir
SARD TFMP TEMP TEST
-------
TEST TYPES OF TEST DATE BARO
NO < > MM-OO-YY
31 LM NT VU S? SL 12-30-75 28.84
TEMP TEMP TEST
06 WB CODE
82.5 61.5 4
COMMENTS:
RPM CRPM
500.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
494.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
MV1 MV2 MV3
436
419
392
357
348
320
320
323
326
334
348
364
372
424
417
396
360
345
320
321
322
327
336
350
366
376
427
416
396
361
350
323
323
323
329
336
349
365
378
MEAN
MV
429.0
417.3
394.7
359.3
347.7
321.0
321.3
322.7
327.3
335.3
349.0
365.0
375.3
HGUN.)
16.93
17.31
18.04
19.19
19.57
20.44
20.42
20.38
20.23
19.97
19.53
19.01
18.67
TEST
wn
n»U
32
TYPES
l_M NT
OF TEST
NV SP RL
DATE BARO TEMP TEMP TEST
MM nn VY no nip fnriF
PIW~UU~T T UO WD V.UUC.
12-30-75 28.84 80.0 61.5 3
COMMENTS:
RPM
490.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
CRPM
484.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
MV1
429
420
391
356
347
320
320
323
329
337
353
366
378
MV2
426
405
389
351
343
319
319
323
328
336
351
366
376
MV3
423
400
3S8
355
344
319
318
320
324
335
346
365
375
MEAN
MV
426.0
406.3
389.3
354.3
344.7
319.3
319.0
322.0
327.0
336. D
350.7
365.7
376.3
HGIIN.)
17.02
17.60
18.22
19.36
19.67
20.49
20.50
20.40
20.24
19.95
19.47
18.98
18.64
-------
33 LM AT
COMMENTS:
RPM CSPM
NV NP NL 12-30-75 28.77 80.
MV1 MV2 MV3 MEAN HGIIN.)
MV
600.
750.
1000.
1350.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
593.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
357
349
353
333
326
319
301
302
308
318
334
341
350
360
350
356
337
329
319
301
302
310
316
326
341
351
360
360
356
337
328
320
302
299
304
312
327
340
348
359
353
355
335
327
319
301
301
307
315
329
340
349
.0
.0
.0
.7
.7
.3
.3
.0
.3
.3
.0
.7
.7
19
19
19
19
20
20
21
21
20
20
20
19
19
.20
.40
.33
.96
.22
.49
.07
.09
.88
.62
.18
.80
.50
SARD TEMP TEMP TEST
WH CODE
61.0 2
34 LM AT
COMMENTS:
RPM CRPM
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
VL NP NL 12-30-75 28.77 82.
MV1 MV2 MV3 MEAN HG(IN.)
378
363
373
342
332
327
303
302
307
312
328
341
348
375
365
371
342
333
316
305
303
30ft
313
328
342
348
374
369
365
341
333
322
309
306
306
313
327
340
346
MV
375.7
365.7
370.7
341.7
332.7
321.7
305.7
303.7
306.3
312.7
327.7
341.0
347.3
18.66
lfl.9fl
18.82
19.76
20.06
20.41
20.93
21.00
20.91
20.71
20.22
19.79
19.58
6ARO T£MP TEMP TEST
WB CODE
61.5 3
-------
TEST
TYPES
35 LM AT
COMMENTS:
RPM CRPM
CF TEST DATE BARO
TF".P TEMP TEST
no I..-Q rnnc
VL NP RL 12-31-75 28.96 79.0 57.5 4
MV1 MV2 MV3 MEAN HGUN.)
MV
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
967.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
370
364
366
341
337
313
317
320
322
334
349
363
376
381
379
381
344
339
320
313
313
319
332
348
362
371
376
378
377
345
338
318
315
313
319
329
345
357
371
375
373
374
343
338
317
315
315
319
331
347
360
372
.7
.7
.7
.3
.0
.0
.0
.3
.7
.7
.3
.7
.7
18
18
18
19
19
20
20
20
20
20
19
19
18
.64
.71
.67
.70
.87
.56
.62
.61
.47
.08
.57
.13
.74
TEST TYPES OF TEST DATE BARO
NO < > MM-DD-YY
36 LM AT NV NP RU 12-31-75 28.97
TEMP TEMP TEST
08 WB CODF
82.0 68.0 3
COMMENTS:
RPM CRPM
580.
750.
1000.
12SO.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
573.
740.
987.
1233.
1479.
1726.
1S72.
2218.
2464.
2711.
2957.
3203.
3449.
MVl MV2 MV3
362
355
362
339
332
310
309
310
317
328
344
355
370
370
360
367
340
336'
307
311
311
317
327
345
354
372
371
371
372
342
331
316
303
311
315
327
343
356
369
MEAN
MV
367.
362.
367.
340.
333.
311.
309.
310.
316.
327.
344.
355.
370.
7
0
0
3
0
0
3
7
3
3
0
0
3
HGUN.)
18
19
18
19
20
20
20
20
20
20
19
19
18
.90
.09
.92
.80
.03
.75
.81
.76
.58
.22
.68
.32
.82
-------
TEST
TYPES
37 LM AT
COMMENTS:
RPM CRPH
OF TEST DATE BARO
TEMP TEMP TEST
no i..'D mnc
NV SP NL 12-30-75 28.77 83.5 61.0 3
MV1 MV2 MV3 MEAN HGdN.)
MV
580.
750.
1000.
1250.
1500.
1750.
3000.
2250.
2500.
2750 .
3000.
3250.
3500.
573.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
373
374
-368
337
333
324
308
305
306
311
330
339
345
374
374
372
339
336
324
300
302
3oa
315
330
342
346
374
372
369
341
335
324
304
304
305
315
329
339
349
373
373
369
339
334
324
304
303
306
313
329
340
346
.7
.3
.7
.0
.7
.0
.0
.7
.3
.7
.7
.0
.7
18
18
18
19
19
20
20
20
20
20
20
19
19
.71
.72
.84
.84
.98
.33
.98
.99
.91
.67
.14
.81
.59
TEST
TYPES
38 LM AT
COMMENTS:
RPM CRPM
OF TEST DATE 8ARO
TEMP TEMP TEST
r\o i.i ts s*f\r\c
VL SP NL 12-30-75 28.79 80.0 60.0 4
MV1 MV2 MV3 MEAN HGdN.)
MV
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
543.
740.
987.
1233.
1479.
1726.
1972.
2216.
2464.
2711.
2957.
3203.
3449.
393
385
383
347
342
332
303
311
312
318
328
341
344
395
366
382
345
342
330
309
306
311
315
329
341
347
392
385
385
346
340
320
305
309
311
316
328
341
348
393.
385.
333.
346.
341.
327.
307.
308.
311.
316.
328.
341.
346.
3
3
3
0
3
3
3
7
3
3
3
0
3
18
18
18
19
19
20
20
20
20
20
20
19
19
.06
.33
.39
.61
.76
.22
.87
.83
.74
.58
.19
.77
.60
TTCT Tvorc f\f TC-CT
06Rn TFMP TTMP TP1T
-------
TEST TYPES OF TEST DATE 8ARO
NO < > MM-DD-YY
39 LM AT VL SP RL 13-30-75 28.83
TEMP TEMP TEST
OB WB CODE
63.0 62.0 5
COMMENTS:
RPM CRPM
MV1 MV2 MV3
MEAN
HGUN.)
MV
540.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
534.
740.
987.
1233.
1475.
1726.
1972.
22 1.8 .
2464.
2711.
2957.
3203.
3449.
400
391
390
359
344
319
317
319
324
333
349
366
376
408
396
3<3S
360
349
320
318
319
327
334
347
363
376
408
395
393
355
345
323
322
319
325
332
349
364
375
405
394
392
358
346
320
319
319
325
333
348
364
375
.3
.0
.7
.0
.0
.7
.0
.0
.3
.0
.3
.3
.7
17
18
18
19
19
20
20
20
20
20
19
19
18
.67
.04
.09
.22
.61
.44
.49
.49
.28
.03
.53
.01
.64
TEST
TYPES
40 .' LM' AT
V*.-. -V
COMMENTS:
RPM CRPM
OF TEST DATE BARC
TEMP TEMP TEST
r\n i.m ^»rt^rr
NV SP'RLS 12-30-75 28.83 82.0 61.0 4
MV1 MV2 MV3 MEAN HG1IN.)
MV
520.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
514.
740,
987.
1233.
1479.
1726.
1972.
2213.
2464.
2711.
2957.
3203.
3449.
413
394
391
353
341
317
317
319
325
334
349
364
376
402
3E7
3B7
350
344
326
317
313
324
333
348
364
374
401
337
385
351
343
316
317
317
323
333
349
365
376
405
389
387
351
342
319
317
318
324
333
348
364
375
.3
.3
.7
.3
.7
.7
.0
.0
.0
.3
.7
.3
.3
17
18
18
19
19
20
20
20
20
20
19
19
18
.67
.19
.25
.44
.72
.47
.56
.52
.33
.02
.52
.01
.65
-------
TEST
TYPES
41 CM RT
COMMENTS:
RPK CRPM
OF TEST DATE
BARO
TfMP TEMP TEST
nn u2 rr\r\c
NV NP NL 12-31-75 26.97 80.0 S7.5 2
MV1 MV2 MV3 M^AM Hf,(!N.)
MV
490.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
484.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
414
405
383
342
327
311
30.0
304
306
315
329
339
347
410
400
390
342
325
312
298
302
306
314
328
339
346
406
411
387
342
326
312
298
301
30*
312
327
338
348
410.
405.
386.
342.
326.
311.
293.
302.
305.
313.
328.
338.
347.
0
3
7
0
0
7
7
3
3
7
0
7
0
17.
17.
18.
19.
20.
20.
21.
21.
20.
20.
20.
19.
19.
52
67
28
74
26
73
16
04
94
67
20
35
58
TEST TYPES OF TEST DATE RARO
NO < > MM-DO-YY
42 l_* RT VL N? NL 12-31-75 28.91
TEMP TEMP TEST
OB WB CODE
77.5 57.0 3
COMMENTS:
RPM
CRPM
MV1 MV2 MV3
MEAN
HGIIN
MV
470.
750.
1000.
1253.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
465.
740.
987.
1233.
1479.
1726.
1972.
2213.
2464.
2711.
2957.
3203.
3449.
432
429
393
347
331
320
305
307
311
318
331
343
349
425
418
3fl5
347
330
319
302
307
309
317
328
340
351
420
411
383
346
332
324
305
307
310
315
329
337
347
425
419
388
346
331
321
304
307
310
316
329
340
349
.7
.3
.7
.7
.0
.0
.0
.0
.0
.7
.3
.0
.0
17.
17.
18.
19.
20.
20.
20.
20.
20.
20.
20.
19.
19.
01
22
22
59
10
43
90
88
79
57
15
61
51
-------
TEST TYPES OF TEST DATE BAftO
NO < > MM-OO-YY
43 LM RT VL NP RL 13-31-75 28.90
TEMP TEMP TEST
DB WB CODE
81.0 58.0 4
COMMENTS:
RPM CPPM MVl MV2 MV3 MEAN
KG UN.)
460.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
455.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
431
428
396
354
338
313
323
321
326
336
351
367
377
433
425
397
346
344
313
318
321
323
335
349
365
379
433
414
399
355
341
315
319
324
328
335
348
363
376
432
422
397
351
341
315
320
322
325
335
349
365
377
.3
.3
.3
.7
.0
.3
.0
.0
.7
.3
.3
.0
.3
16.
17.
17.
19.
19.
20.
20.
20.
20.
19.
19.
18.
18.
79
12
93
42
77
61
46
39
27
96
50
99
59
TEST TYPES OF TEST DATE BAPO
NO < > MM-DD-YY
44 LM RT NV NP RL 01-02-76 28.99
TEMP TEMP TEST
OB WB CODE
79.0 58.0 3
COMMENTS:
RPM CPPM
MVl MV2 MV3
MEAN
HGUN.)
MV
500.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
494.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
?71 1 .
2957.
3203.
3449.
406
395
376
335
334
318
324
324
325
339
354
371
382
408
416
382
345
338
316
321
324
327
336
35 C
367
381
424
415
387
346
338
320
324
325
327
339
355
366
382
412.
409.
361.
342.
336.
3S8.
323.
324.
326.
338.
353.
368.
381.
7
3
7
0
7
0
0
3
3
0
0
0
7
17,
17,
IB,
19,
15.
20,
20,
20.
20.
19.
19.
18.
18.
.43
.54
.-5
.74
9:
,b2
.36
,32
.25
.87
.38
,39
.45
-------
TEST TYPES OF TEST DATE BASO TEMP TEMP TEST
WB CODE
59.0 4
45 LM RT
COMMENTS:
RPM CRPM
VL SP ML 01-02-76 28.88 79.1
MV1 MV2 «V3 MEAN HGUN.)'
MV
510.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
504.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
423
429
384
349
340
312
312
313
313
324
335
345
354
418
426
382
346
338
311
303
310
311
318
331
343
347
424
422
387
345
334
309
311
309
309
318
332
345
349
421
425
384
346
337
310
310
310
311
320
332
344
350
.7
.7
.3
.7
.3
.7
.3
.7
.0
.0
.7
.3
.0
17,
17,
18,
19,
19,
20,
20,
20.
20,
20.
20.
19,
19.
.14
.01
.36
.59
.89
.76
.77
,76
.75
,46
,05
.66
,48
TEST TYPES OF TEST DATE 8ARO TEMP TEMP TEST
WB CODE
50.0 3
46 LM RT
COMMENTS:
RPM CRPM
NV SP ML 01-02-76 28.88 81.
MVI MV2 MV3 MEAN HGIIN.)
MV
480.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3c50.
3500.
474.
740.
987.
1?33.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
422
411
374
340
332
302
307
310
313
315
333
344
352
425
417
375
336
331
308
307
308
310
319
332
343
351
424
413
377
342
329
306
309
309
311
320
331
342
349
423.
415.
375.
339.
330.
305.
307.
309.
311.
318.
332.
343.
3SO.
7
3
3
3
7
3
7
0
3
0
0
0
7
17
17
Ifl
19
20
20
20
20
20
20
20
19
19
.07
.35
.65
.83
.11
.94
.86
.82
.74
.52
.07
.71
.46
-------
TEST TYPES OF TEST DATE BARO TEMP TEMP TEST
MO <--> MM-OO-YY OB WB CODE
47 LM RT VL SP RL 01-02-76 28.98 81.0 59.5 5
COMMENTS:
RPK CRPM
MVl MV2 MV3
MEAN
HG(IN.)
MV
460.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
455.
. 740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
458
437
387
357
347
324
326
327
329
339
352
367
379
457
464
391
362
348
327
325
326
325
339
351
368
378
46R
466
398
358
343
325
323
322
327
338
352
368
381
461,
455.
392.
359.
346.
325.
324.
325.
327.
338.
351.
367,
379,
0
,7
,0
,0
.0
.3
,7
,0
,0
,7
,7
,7
.3
15
85
16.03
18
19
19
20
20
20
20
19
19
18
18
,
,
»
.
11
19
61
28
31
30
23
as
42
90
52
TEST
wn
TYPES
48 LM RT
COMMENTS:
RPM CRPM
OF TEST DATE
BASO
TEMP TEMP TEST
r\Q IJD p/tnr
NV SP RL 01-02-76 28.98 79.0 58.5 4
MVl MV2 MV3 MEAN HGUN.)
\ MV
450.
750.
1000.
1250.
1500.
1750.
2COO.
2250.
2500.
2750.
3000.
3250.
3500.
445.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
450
454
399
359
346
329
328
331
329
342
353
371
382
451
449
392
353
348
328
324
324
328
341
350
371
382
453
Vsi
437 446.
397
353
347
325
323
325
330
339
352
368
382
396.
355.
347.
327.
325.
326.
329.
340.
351.
370.
382.
3
7
0
0
0
3
C
7
0
7
7
0
0
16
16
17
19
19
20
20
20
20
19
19
18
18
.17
.32
.98
.32
.58
.22
.30
.24
.17
.78
.42
.83
.43
-------
TEST TYPES OF TEST DATE BARO TEMP TEMP TEST
NO <- > MM-DO-YY 08 WB CODE
49 RM NT NV NP NL 01-05-76 29.45 78.0 56.0 1
COMMENTS: LEAN IDLE SSO-MIXTURE SCREWS TURNED OUT s/s TURN EA., IDLE s
RPM CHPM MV1 MV2 MV3
550.
750.
1000.
1350. 1233
1500. 1479
1750. 1726
2000. 1972
2250. 2218
2500. 2464
2750. 2711
3000. 2957
3250. 3203
543. 367 363 363
740. 316 319 314
987. 297 298 295
305 300 303
283 280 283
287 284 284
278 "276 276
283 283 283
287 290 287
301 297 297
307 314 311
320 322 325
3500. 3449. 335 334 333
MEAN
MV
366.0
316.3
296.7
302.7
282.0
285.0
276.7
283.0
288.0
298.3
310.7
3?2.3
334.0
HGIIN.)
18.96
20.S3
21.22
21
21,
21
P3
70
60
21.87
21.67
21.50
21.17
20.76
20.38
20.00
TEST
urt
TYPES
50 RM NT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\o t.i o ff\ne
VL NP NL 01-05-76 29.45 81.8 56.3 2
MV1 MV2 MV3 M£AN HG(IN.)
MV
620.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
339
314
298
310
285
287
281
282
289
298
314
325
334
338
312
297
312
286
289
283
281
288
298
313
325
332
340
312
298
307
287
239
282
283
289
399
312
326
336
339
312
297
309
286
288
262
262
288
298
313
325
334
.0
.7
.7
.7
.0
.3
.0
.0
.7
.3
.0
.3
.0
19
20
21
20
21
21
21
21
21
21
20
20
20
.84
.70
.19
.80
.57
.49
.70
.70
.43
.17
.69
.28
.00
-------
TEST
klA
TYPES
51 RM NT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\a I.IQ /*APIC
VL NP Rl_ 01-05-76 29.45 82.8 56.8 3
MV1 MV2 MV3 MEAN HGUN.)
MV '
580.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
573.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
360
324
312
313
296
289
299
299
311
3!6
334
344
360
353
324
317
317
293
291
295
303
310
319
336
346
359
358
324
317
316
297
294
298
302
306
317
335
342
362
358
324
315
315
295
291
297
301
309
317
335
344
360
.7
.0
.3
.3
.3
.3
.3
.3
.0
.3
.0
.0
.3
19.
20.
20.
20.
21.'
21.
21.
21.
20.
20.
19.
19.
19.
20
33
61
61
26
40
20
07
82
55
97
68
14
TEST
TYPES
52 RM NT
COMMENTS:
RPM CRPM
500.
750.
loon.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
494.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
OF TEST DATE
BARO
TEMP TEMP TEST
r\o uo ^t\r\f
NV NP RU 01-05-76 29.41 79.0 55.0 2
MV1 MV2 *V3 MFAN HGIIN.)
MV
400
335
315
308
293
291
301
305
311
320
338
350
365
401
332
314
311
292
295
299
302
311
322
337
350
363
400
332
316
308
293
290
296
304
310
321
336
350
361
400.
333.
315.
309.
292.
292.
298.
303.
310.
321.
337.
350.
363.
3
0
0
0
7
0
7
7
7
0
0
0
0
17
20
20
20
21
21
21
20
20
20
19
19
19
.84
.03
.62
.82
.35
.37
.16
.99
.76
.43
.90
.48
.05
-------
TEST
TYPES
53 RM NT
COMMENTS:
RPM CRPM
540.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
1534.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
CF TEST DATE
BARO
TEMP TEMP TEST
rto UD mr\c
NV SP NL 01-05-76 29.39 82.0 56.5 2
MV1 MV2 MV3 MEAN HG(IN.)
379
326
302
307
287
292
284
287
291
301
313
324
333
372
316
301
307
2S7
292
235
288
293
303
314
328
336
372
324
303
307
288
292
283
283
291
299
316
.329
334
MV
374.
322.
302.
307.
237.
292.
284.
-886.
291.
301.
314.
327.
334.
3
0
0
0
3
0
0
0
7
0
3
0
3
18
20
21
20
21
21
21
21
21
21
20
20
19
.68
.39
.05
.88
.53
.37
.63 .
.57
.38 :
.08
.64
.23
.99
TEST
TYPES
54 RM NT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\B k.iQ f*nr\c
VL SP NL 01-05-76 29.38 83.5 57.0 3
MV1 MV2 MV3 MEAN HGUN.)
MV
620.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.V
1972.
2218.
2464.
2711.
2957.
3203.
3449.
343
316
299
310
288
^297
282
289
293
302
309
327
336
342
317
302
31!
29J)
293
28:6
289
293
307
315
328
336
342
315
304
311
289
284
283
286
289
297
312
329
336
342
316
301
310
289
291
283
288
291
302
312
328
336
.3
.0
.7
.7
.0 .
.3
.7
.0
.7
.0
.0
.0
.0
19,
20,
21,
20.
« 21,
21,
21.
21,
21,
21,
20,
20.
19.
.73
.59
.06
.76..
.47
.40
.65
.50
,3ft
,05
,72
,20
,94
-------
TEST
TYPES
55 RM NT
COMMENTS:
RPM CPPM
580.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
573.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
OF TEST DATE
BARO
TEMP TEMP TFST
r\o wo ff\r\e
VL SP KL 01-05-76 29.36 81.5 67.0 4
MV1 MV2 MV3 MEAN HGUN.)
375
339
327
319
305
298
306
311
314
324
339
351
366
363
334
323
321
306.
300'
304
310
308
323
331
353
369
368
328
325
317
302
299
305
305
313
322
339
353
365
MV
368.
333.
325.
319.
304.
299.
305.
308.
311.
323.
336.
352.
366.
7
7
0
0
3
0
0
7
7
0
3
3
7
18
20
20
20
20
21
20
20
20
20
19
19
18
.87
.01
.30
.49
.97
.14
.95
.83
.73
.36
.93
.40
.94
TEST TYPES OF TEST DATE BARO
NO < > MM-DO-YY
56 RM NT NV SP RL 01-05-76 29.37
COMMENTS:
TEMP TEMP TEST
08 WB CODE
82.0 62.5 3
RPM
500.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
CRPM
494.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
MV1 MV2 MV3
408
333
315
312
295
292
295
305
313
318
339
352
363
407
335
316
322
300
309
297
307
310
315
331
346
354
407
336
318
322
300
291
299
309
310
317
336
350
359
MEAN
MV
407.
334.
316.
318.
298.
297.
297.
307.
311.
316.
335.
349.
358.
3
7
3
7
3
3
0
0
0
7
3
3
7
HGIIN
17
19
20
20
21
21
21
20
20
20
19
19
19
.61
.98
.58
.50
.17
.20
.21
.88
.75
,57
.96
.50
.20
-------
57 RM AT
COMMENTS:
RPM CRPM
NV NP Nl_ 01-06-76 29.05 81.
MV1 MV2 MV3 MEAN HG(IN.)
KV
620.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.
1972.
221fl.
2464.
2711.
2957.
3203.
3449.
345
321
296
292
287
295
28«
2S7
294
302
314
328
331
353
322
296
290
289
289
2P5
288
289
300
313
329
338
349
319
297
290
289
299
290
290
294
300
314
329
334
348
320
296
290
288
294
267
288
292
300
313
328
334
.0
.7
.3
.7
.3
.3
.7
.3
.3
.7
.7
.7
.3
19
.54
20.44
21
21
21
21
21
21
21
21
20
20
19
.23
.42
.49
.30
.51
.49
.36
.09
.67
.18
.99
BARO TEMP TEMP TEST
WB CODE
57.0 2
58 RM AT
COMMENTS:
RPM CRPM
VL NP ML 01-06-76 29.07 82.
MVl MV2 MV3 MEAN HGIIN.)
MV
670.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
662.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
333
325
296
290
292
292
237
287
293
300
314
327
337
337
315
292
294
292
291
292
291
295
301
314
325
336
333
318
295
290
291
292
290
292
296
302
313
324
336
334
319
294
291
291
291
289
290
294
301
313
325
336
.3
.3
.3
.3
.7
.7
.7
.0
.7
.0
.7
.3
.3
19
20
21
21
21
21
21
21
21
21
20
20
19
.99
.48
.30
.40
.38
.39
.45
.44
.29
.08
.67
.23
.93
BARO TEMP TEMP TEST
WB CODE
57.5 3
-------
TEST
TYPES
59 RM AT
COMMENTS:
RPM CRPM
OF TEST DATE BAPQ
TEMP TEMP TEST
rvD i.i D mr\c
VL NP RL 01-06-76 29.09 79.0 59.0 4
MV1 MV2 MV3 MEAN HGIIN.)
MV
630.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
622.
740.
987.
1233.
1479.
1726.
1972.
2213.
2464.
2711.
2957.
3203.
3449.
357
333
316
319
303
307
308
316
317
327
341
357
368
353
330
315
314
302
308
306
309
314
325
337
353
369
351
331
315
310
304
309
303
308
314
324
336
352
366
354,
331.
315,
314.
303,
308,
305,
311.
31S,
325,
338,
354,
367,
.3
,3
,3
.3
.0
.0
,7
.0
.0
.3
.0
.0
,7
19.
20.
20.
20.
21.
20.
20.
20.
20.
20.
19.
19.
18.
34
09
61
64
01
85
93
75
62
28
87
35
90
60 RM AT
COMMENTS:
RPM CRPM
NV NP RU 01-06-76 29.18 81.
MV1 MV2 MV3 MEAN HGIIN.)
MV
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
377
327
309
309
295
305
29fl
302
308
317
332
344
361
376
329
311
307
297
303
297
304
310
320
332
346
361
374
329
310
312
298
302
300
307
311
317
331
346
360
375
328
310
309
296
303
298
304
309
318
331
345
360
.7
.3
.0
.3
.7
.3
.3
.3
.7
.0
.7
.3
.7
18
20
20
20
21
21
21
20
20
20
20
19
19
.64
.19
.79
.81
.22
.00
.17
.97
.80
.52
.08
.63
.13
BARO TFMP TEMP TEST
WB CODE
57.0 3
-------
61 RM AT
COMMENTS:
RPH CRPM
NV SP NL 01-06-76 29.20 79.
MV1 MV2 MV3 MEAN HGUN.)
MV
620.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
612.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
350
321
299
291
290
290
287
288
293
301
311
328
337
349
319
301
289'
291
292
285
288
293
301
313
328
334
348
320
295
292
291
290
284
238
292
298
312
327
335
349
320
298
290
290
290
285
288
292
300
312
327
335
.0
.0
.3
.7
.7
.7
.3
.0
.7
.0
.0
.7
.3
19
20
21
21
21
21
21
21
21
21
20
20
19
.51
.46
.17
.42
.42
.42
.59
.50
.35
.11
.72
.21
.96
BARO TF.MP TEMP TEST
WB CODE
56.0 3
TEST
NO
TYPES
62 RM AT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
fin LJQ ft\nc
VL SP NL 01-06-76 29.20 82.0 57.0 4
MV1 MV2 MV3 MEAN HGUN.)
MV
700.
750.
1000.
1250.
1500.
1750.
2000.
2350.
2500.
3750.
3000.
3250.
3500.
691.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
3711.
2957.
3203.
3449.
328
317
298
289
293
291
285
387
393
298
318
323
334
326
315
292
295
294
256
289
287
291
298
311
336
335
324
314
292
291
293
293
286
286
289
300
309
324
333
326.
315.
294.
291.
293.
293.
286.
286.
290.
298.
312.
324.
334.
0
3
0
7
3
3
7
7
7
7
7
3
0
20
20
21
21
21
21
21
21
21
31
20
20
20
.26
.61
.31
.38
.33
.33
.55
.55
.42
.16
.70
.32
.00
-------
TEST
TYPES
63 RM AT
COMMENTS:
RPM CRPM
OF TEST DATE 8ARO
TEMP TEMP TEST
r.o ..to rnr\e
VL SP ftL 01-06-76 29.20 82.5 57.5 5
MV1 MV2 MV3 MEAN HGIIN.)
MV
660.
750.
1000.
1250.
1500.
1750.
2000.
3250.
2500.
2750.
3000.
3250.
3500.
652.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
343
328
311
308
302
313
298
309
311
316
333
347
357
346
329
310
311
306
316
302
307
311
319
335
350
358
344
330
308
311
305
313
301
308
314
321
335
344
361
344
329
309
310
304
314
300
308
312
318
334
347
358
.3
.0
.7
.0
.3
.0
.3
.0
.0
.7
.3
.0
.7
IS
20
20
20
20
20
21
20
20
20
19
19
19
.66
.17
.60
.79
.97
.65
.10
.05
.72
.50
.99
.58
.20
TEST TYPES OF TEST DATE BARO
NO < > MM-OD-YY
64 RM AT NV SP «t_ 01-06-76 29.19
TEMP TEMP TEST
08 WB CODE
79.5 57.0 4
COMMENTS:
RPM CRPM
MV1 MV2 MV3
MEAN
HGIIN.)
MV
600.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
593.
740.
987.
1233.
1479.
1726.
197?.
2218.
2464.
2711.
2957.
3203.
3449.
369
335
313
315
303
309
301
310
314
321
335
349
364
365
332
312
309
300
307
301
305
311
319
332
349
363
363
331
309
306
300
308
298
307
311
318
334
347
362
365
332
311
310
301
308
300
307
312
319
333
348
363
.7
.7
.3
.0
.0
.0
.0
.3
.0
.3
.7
.3
.0
18
20
20
20
21
20
21
20
20
20
20
19
19
.97
.05
.74
.79
.08
.85
.11
.87
.72
.48
.01
.53
.05
-------
65 RM RT
COMMENTS:
RPM CRPM
520.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750,
3000.
3250.
3500.
51*.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
NV MP NL 01-07-76 28.92 79.
MV1 HV2 MV3 MEAN HG1IN.)
419
347
332
328
303
304
295'
301
305
311
325
340
348
420
351
334
330
307
305
296
302
307
315
328
339
345
416
348
332
330
302
302
298
303
308
314
327
338
347
MV
418.
348.
332.
329.
304.
303.
296.
302.
306.
313.
326.
339.
346.
3
7
7
3
0
7
3
0
7
3
7
0
7
17
19
20
20
20
20
21
21
20
20
20
19
19
.25
.52
.05
.15
.98
.99
.23
.05
.89
.68
.24
.84
,59
BARO TEMP TEMP TFST
WB CODE
58.0 2
TEST TYPES OF TEST DATE BARO
NO < > MM-OO-YY
66 PM RT VL NP NL 01-07-76 28.93
TEMP TEMP TEST
OB WB CODE
82.0 59.5 3
COMMENTS:
RPM
580.
750.
1000.
1250.
1500.
1759.
20t0.
2250.
2500.
3750.
3000.
3250.
3500.
CRPM
573.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
MV1
390
344
334
333
306
307
296
302
309
314
325
336
342
MV2 MV3
379
345
333
334
307
306
293
2?7
308
313
324
337
343
380
343
331
335
305
305
295
304
308
316
327
337
344
MEAN
MV
333.0
344.0
332.7
334.0
306.0
306.0
294.7
301.0
308.3
314.3
325.3
336.7
343.0
HGUN.)
18.40
19.68
20.05
20.00
20.92
20.92
21.29
21.08
20.84
20.64
20.28
19.91
19.71
-------
TEST
TYPES
67 RM RT
COMMENTS:
RPM CRPM
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
OF TEST DATE
6ARO
TEMP TEMP TEST
no UID rAnc
VL NP RL 01-07-76 23.94 81.5 59.5 4
MV1 MV2 MV3 MEAN HGUN.)
405
358
344
337
316
311
314
324
329
332
344
361
376
406
356
350
337
316
307
318
326
321
332
342
357
374
409
353
345
336
317
307
314
322
326
333
342
359
372
MV
406.
355.
346.
336.
316.
308.
315.
324.
325,
332.
342.
359.
374.
7
7
3
7
3
3
3
0
3
3
7
0
0
17
19
19
19
20
20
20
2C
20
20
19
19
18
.63
.29
.60
.91 .
.58
.84
.61
.33
.28
.06
.72
.19
.70
TEST
MA
TYPES
68 PM RT
COMMENTS;
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\D LfI3 fAfNC1
NV NP RL 01-07-76 28.97 80.0 59.0 3
MV1 MV2 MV3 MEAN HGUN.)
MV
520.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
514.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
426
365
354
332
316
308
316
321
329
336
344
362
371
425
364
349
332
311
310
313
321
326
331
346
361
371
426
363
352
330
314
306
314
319
327
330
346
360
372
425.
364.
351.
331.
313.
308.
314.
320.
327.
332.
345.
361.
371.
7
0
7
3
7
0
3
3
3
3
3
0
3
17
19
19
20
20
20
20
20
20
20
19
19
18
.01
.02
.42
.09
.67
.85
.64
.45
.22
.06
.63
.12
.78
-------
NU
69
RM RT
NV SP NL
!"WUU- T i UC3
01-07-76 28.98 80.
COMMENTS:
RPM
550.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
3750.
3000.
3250.
3500.
CRPM
543.
740.
987.
1233.
1479.
1736.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
HV1
400
349
332
327
303
303
294
301
304
312
325
337
344
MV2
400
347
334
329
304
308
297
303
307
310
326
337
343
MV3
403
349
338
327
305
304
298
302
303
314
327
338
344
MEAN
MV
401.0
348.3
334.7
327.7
304.0
305.0
296.3
302.0
304.7
312.0
326.0
337.3
343.7
HGIIN.)
17.81
19.53
19.98
20.21
20.98
20.95
21.23
21.05
20.96
20.72
20.26
19.89
19.69
RA°0 TEMP TEMP TEST
WB CODE
58.0 3
TEST TYPES OF TEST DATE BARO TEMP TEMP TEST
MO < » > MM-DO-YY DB WB CODE
70 RM RT VL SP NL 01-07-76 29.00 80.0 57.5 4
COMMENTS:
RPM CRPM MV1 MV? MV3 MEAN HGUN.)
MV
600.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
593.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
380
343
331
333
307
308
290
301
308
313
325
337
344
375
344
338
335
307
314
297
303
308
313
324
333
344
375
343
339
336
309
313
296
302
307
311
325
339
345
376.
343.
336.
334.
307.
311.
294.
302.
307.
312.
324.
336.
344.
7
0
0
7
7
7
3
0
7
3
7
3
3
18,
19,
19,
19,
20.
20,
21,
21,
20.
20.
20.
19.
19.
.61
.71
.94
.98
.86
.73
,30
,05
.86
.71
.31
,93
,66
-------
TEST
TYPES
71 RM RT
COMMENTS:
RPM CRPM
OF TEST DATE BARO
TEMP TEMP TEST
r\Q UD r'Anr
VL SP RL 01-07-76 28.96 79.5 56.5 5
MVI MV2 MV3 MEAN HG
MV
560.
750.
1000.
1250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
3250.
3500.
553.
740.
987.
1233.
1479.
1726.
19T2.
2218.
2464.
2711.
2957.
3203.
3449.
404
364
360
341
321
314
321
322
331
335
347
366
381
399
368
360
336
315'
313
316
326
329
336
347
366
377
402
368
358
338
321
314
318
323
327
335
348
366
376
401
366
359
338
319
313
318
323
329
335
347
366
378
.7
.7
.3
.3
.0
.7
.3
.7
.0
.3
.3
.0
.0
17
18
19
19
20
20
20
20
20
19
19
18
18
»
79
94
17
86
49
67
51
34
17
96
57
96
57
TEST
TYPES
72 RM RT
COMMENTS:
RPM CRPM
OF TEST DATE
BARO
V
TEMP TEMP' TEST
r\a LI a . f*r\r\c
NV SP RL 01-07-76 28.96 81.0 57.0' 4
MVl MV2 MV3 MEAN HGUN.)
MV
500.
750.
1000.
1250.
1500.
1750.
2000.
'2250.
2500.
2750.
3000.
3250.
3500.
494.
740.
987.
1233.
1479.
1726.
1972.
2218.
2464.
2711.
2957.
3203.
3449.
433
366
352
335
314
309
314
324
326
335
344
364
374
431
364
354
335
314
310
316
321
326
331
344
361
373
436
367
351
336
312
313
315
320
326
331
345
362
373
433
365
352
335
313
310
315
-321
326
332
344
3fc2
373
.3
.7
.3
.3
.3
.7
.0
.7
.0
.3
.3
.3
.3
16
18
19
19
20
20
*
,
76
97
40
96
68
76
20.62
20
20
20
19
19
18
*
40
26
06
66
03
72
-696066-
-696066-
-696066-
-696066-
-696066-
-696066-
-------
646066-
JOS NO. 696066
. 696066 696066 -696066 696066 696066-
UNIVERSITY OF MICHIGAN TERMINAL SYSTEM (MODEL EC075) 15:36:01 WED JAN 14/76
6666666666
666666666666
66 66
66
66
66666666666
666666666666
66 66
66 66
66 66
666666666666
6666666666
9999999999
999999999999
99 99
99 99
99 <59
999999999999
999999999999
99
99
99 99
999999999999
9999999999
6666666666
666666666666
66 66
6fi
66
66656666666
666666666666
66 66
66 66
66 66
666666666666
6666666666
00000000
0000000000
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
0000000000
00000000
6666666666
666666666666
66 66
66
66
66666666666
666666666666
66 66
66 66
66 66
666666666666
6666666666
6666666666
666666666666
66 66
66
66
66666666666
666666666666
66 66
66 66
66 66
666666666666
6666666666
ssssssssss
ssssssssssss
ss
ss
sss
ss
sssssssss
sssssssss
ss
sss
ss
ss
ssssssssssss
ssssssssss
AAAAAAAAAA
AAAAAAAAAAAA
AA
AA
AA
AA
A A
AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
QOQOQOQQOO
OOQQQOOQOQQQ
OQ
(50
00
GO
CO
00
OQ
00
00
OQ
00
00
00
QO
00
00
00
OQQO
QQQQOOQQQQQ
OQOOQQQQ
00
PPPPPPPPPPP
PPPPPPPPPPPP
PP
PP
PP
PP
PP
PP
PPPPPPPPPPPP
PPPPPPPPPPP
PP
PP
PP
PP
PP
696066-
-696066 696066-
-696066-
696066-
-696066-
------- |