HDV - 78 - 02.
Technical Report
Selection of Transient Cycles for
Heavy-Duty Vehicles
June 1978
by
Tad Wysor
Chester France
NOTICE
Technical support reports are intended to present a technical
analysis of an issue and recommendations resulting from the assump-
tions and constraints of that analysis. Agency policy constraints
or data received subsequent to the date of release of this report
may alter the conclusions reached. Readers are cautioned to seek
the latest analysis from EPA before using the information contained
herein.
Standards Development and Support Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
Office of Air and Waste Management
U.S. Environmental Protection Agency
-------
Summary
A result of EPA's heavy-duty cycle development project has been the
computer-generation of some 35 candidate chassis cycles by the
contractor, Olson Labs. This collection of cycles, synthesized
from actual urban driving data, has been narrowed down by EPA to
four cycles representing truck operation under both freeway and
non-freeway conditions in Los Angeles and New York. In an effort
to choose a cycle for each category which best represented the
actual data, we scored the candidates according to their summary
statistics, provided by Olson with each cycle. Our selected cycles
appear below in Table 1, denoted by their random number designa-
tions; and their second-by-second listings may be found in Appendix
B.
Table 1
Cycle #
Los Angeles Non-Freeway 210 620 459 3
Freeway 153 913 507 1
New York Non-Freeway 212 012 741 3
Freeway 203 708 236 5
Background and Introduction
The basis of the cycle-generation effort is the road data compiled
in the CAPE-21 truck-usage survey. This project involved the
instrumenting of actual in-use trucks in Los Angeles and New York,
cities considered to exemplify the extremes of urban traffic flow.
Forty-four trucks in each city (as well as 3 buses in Los Angeles
and 4 in New York) were allowed to perform their normal duties
while vehicle and engine parameters were being recorded on an
approximately second-by-second basis. Among the monitored para-
meters were vehicle speed, engine speed, road and traffic condi-
tions, and a measure of power (such as manifold vacuum or throttle
position). With the intent of making possible laboratory testing
in which the vehicle (or engine) operation simulates actual on-the-
road use, transient computer cycles of relatively short duration
have been synthesized. The result has been the delivery to EPA of
cycles both for the testing of engines and of vehicles. The
vehicle - or chassis - cycles are the concern of this report.
Olson found it necessary to generate many thousands of cycles in
order to produce a few which approached the characteristics of the
data base. The several "good" cycles as screened by Olson include
at least three (and as many as twelve, if later work was done)
five-minute candidates for each of the four road categories.
Additionally, cycles of approximately 10-, 20-, and 30-minute
duration were generated for the sake of comparison. EPA's task
-------
-2-
was to further screen the candidates and arrive at one five-minute
cycle to best represent each category.
The primary way by which both we and Olson compared and rated the
cycles was with the Kolgomorov-Smirnov one-sample test, hereafter
abbreviated "K-S test." The K-S test is a non-parametric statisti-
cal test concerned with the degree of agreement between two distri-
butions. It determines whether two distributions can reasonably be
thought to have come from the same population. Specifically, the
cumulative distributions of the candidate cycles are compared to
the CAPE-21 cumulative distribution (assumed to be the theoretical
distribution). When compared on an increment-by-increment basis,
there will occur at some point a maximum difference D between the
two distributions. D can be related to a level of significance, a,
which depends on the size of the sample. If the maximum difference,
D, exceeds the critical difference for that sample size at a par-
ticular significance level (o), then the sample does not pass the
K-S test and it must be assumed that the two distributions are dis-
similar. Table 2 relates sample size to significance levels and
critical differences.
Table 2*
Significance Level
Sample Size (N) .20 .15
Over 35 1.07 1.14
The computed values are the critical differences for a particular
N. The smallest critical difference which exceeds the maximum
difference D for the test yields the significance level. The
reader is referred to Appendix A for an example of the use of the
K-S test.
In digression, the significance level is the probability of rejec-
ting a true hypothesis when it is actually true. In relation to
the K-S test, significance level is the probability of not accepting
two distributions as being the same, when in reality they are.
This type of error is acceptable when comparing two cumulative
distributions. Therefore, it is desirable to have a large signifi-
cance level, since this results in more assurance that the two
* From Nonparametric Statistics, Sidney Siegel, McGraw-Hill, NY,
1956.
-------
-3-
distributions being compared are really the same. For most engin-
eering and statistical application, significance levels of .05 or
.10 are adequate. The following discussion addresses how the test
was applied as a screening criterion by Olson and subsequently by
EPA.
In addition to the 5-minute cycles discussed above, Olson generated
cycles of longer duration as a means of judging the effect of
length on cycle quality. Candidates on the order of 10 minutes in
length were submitted for each category; and 20- and 30-minute
cycles were generated for the L.A. Freeway category.
We have attempted to compare the 5-minute cycles within a particu-
lar category with the corresponding 10-minute candidates. Such a
task, however, is handicapped by the absence of K-S results for the
10-minute density functions. But despite this difficulty, it is
possible to make several generalizations concerning the 10-minute
cycles:
1) Their average speeds for the most part come as close as -
or closer than - their 5-minute counterparts to matching
the average speed of the input.
2) The cycle percentages as well show a slight improvement
over those of the 5-minute cycles.
3) A visual comparison of the density plots shows that the
10-minute candidates reach a higher maximum speed than do
the 5-minute versions.
The very nature of the cycle generation process suggests that the
longer the cycle, the greater the similarity it should exhibit
relative to the input data. In any statistical comparison, a
larger sample is more likely to simulate the population; in our
case, one would expect that a longer cycle (i.e., more records)
would better match the input than a short cycle. The computer has
a chance to sample more parts of the "transition probability"
matrix and is able to generate a better cycle.
In the case of the L.A. Freeway category, even longer cycles - on
the order to 20 and 30 minutes - were also submitted by Olson. As
expected, the general trend is for cycle quality to improve a
little with increased duration.
Although the longer cycles generally have better statistics, the
improvement over the 5-minute cycles is slight. An average speed is
rarely as much as 1 mph closer to the input in a 10-minute cycle;
-------
-4-
likewise, the cycle percentages generally vary by only 2 or 3
percentage points, regardless of cycle length. Since a series of
four or five cycles will be run in a test procedure, the 5-minute
versions are much more attractive from a practical standpoint.
Thus, the improved quality of the longer cycles is not marked
enough to heavily favor their use. Our attention is directed
almost exclusively toward the 5-minute cycles.
Selection Procedure
Several criteria formed tha basis for the selection of one candi-
date cycle from each category. A relative scoring of Olson's
summary statistics and a consideration of the quality of the speed
density functions played the major roles in the decision process.
With each candidate cycle, Olson provided EPA a tabulation of
summary statistics which indicate how well the particular computer-
generated candidate imitates the characteristics of the input
matrix. This input matrix was the result of Olson's compiling of
the massive road data for a category - New York non-freeway, for
example - into a single matrix relating initial speed and change in
speed. Each cell of the matrix is the probability that a parti-
cular change in speed (or no change) will occur at the initial
speed in question. The cycle-generation program utilizes these
probabilities and, record-by-record, creates a cycle of the desired
length. Now the cycle itself can be converted into a similar
initial-speed/delta-speed matrix and compared with the input
matrix. By generating numerous cycles and testing them against the
input, the best cycles in each category are filtered and submitted
by Olson.
For purposes of testing how faithfully a given cycle matched its
category's input, several portions of its speed/delta-speed matrix
were examined by Olson. In each, the columns were converted to
cumulative distributions and checked by the K-S test for similarity
to the corresponding portion of the input matrix. The matrix as a
whole was screened in this manner, as were the parts corresponding
to acceleration, deceleration, and cruise. Thus, the significance
level at which a cycle passed (or failed) was determined - that is,
the lowest of these four scores - allowing the candidates to be
compared among themselves within a given category (Table 3 presents
these levels; the higher the better).
Additionally, Olson K-S tested the speed frequency distribution as
a further means of comparison. The importance of the density
functions (from which the distributions are derived) lies in the
fact that percent of operation at, say, 55 mph or at idle can
significantly affect emissions; the cycles should match the opera-
tion in the data base reasonably well. Obviously, it is the cumu-
lative distributions that are checked, not the density curves; but
-------
Table 3
LA Non-Freeway
LA Freeway
NY Non-Freeway
INPUT
152 778 878 5
210 620 459 3
211 939 981 9
INPUT
327 663 671
137 221 132 7
432 285 647
786 981 11
153 913 507 1
129 422 102 9
152 997 154 3
103 847 192 5
148 353 223 1
833 528 981
INPUT
123 667 645 7
179 960 930 5
104 736 920 3
Density
Average Significance
Speed Level
(MPH) (X=Did not pass
at .01)
15.10
45.54
45.15
45.39
45.41
45.29
44.79
44.95
44.42
44.82
44.35
44.23
.002
.001
X
.45
.43
.41
.10
.05
.03
.02
7.80
7.48
7.37
7.83
,09
.42
.06
M
X
X
X
.02
.10
.007
.05
.06
.07
.13
.83
.70
.49
Matrix
Significance
Levels
C A
X
X
X
X
.001
X
X
.001
.009
.001
.67
.50
.28
.63
.41
.81
.60
.30
.32
.26
.776
.11
.80
.43
.79
.35
.30
.43
.22
.24
.13
.34
.22
.39
.65
.44
.77
.89
.77
Cycle
Percentages
I C A
30.1 32
21
D
17
30.1
28.8
29.6
2.3
2.6
2.6
2.6
2.6
2.6
2.5
2.6
2.5
2.6
2.6
50.8
51.2
52.7
52.7
28
29
31
75
65
62
62
61.0
62.6
58.7
63.1
62.5
60.5
62.9
20
18
17
15
22
21
20
12.8
16.6
19.2
18.9
18.1
18.4
19.6
17.0
17.8
19.8
18.2
15.1
16.3
15
16.1
20
21
20
10.0
15.7
16.0
16.3
18.4
16.5
19.2
17.3
17.1
17.2
16.3
13.7
15.0
14.9
16
-------
Table 3 (cont.)
NY Freeway
* 212 012 741 3
211 373 494 3
210 952 317 5
202 167 539 7
213 923 722 9
213 153 035 7
INPUT
741 286 985
209 279 083 3
137 610 363
Density
Average Significance
Speed Level
(MPH) (X=Did not pass
at .01)
26.39
M
Matrix
Significance
Levels
C A
D
Cycle
Percentages
I C A
D
7.57
8.11
7.95
7.34
7.03
8.14
.74
.54
.41
.38
.17
.06
.85
.86
.80
.99
.80
.92
.35
.99
.95
.79
.64
.72
.38
.48
.22
.13
.53
.05
.74
.19
.24
.46
.64
.84
52.0
48.0
51.0
52.4
49.8
49.4
15
18
18
18
19
20
17
17
14
16
15
15
16
17
17
14
16
16
15.8 41.2 22.2 20.7
26.54
26.53
27.39
.005
X
.002
.605
.23
.07
.16
.02
.04
.30
.02
.19
.43
.26
.64
14.9
15.1
15.7
36
36
35
24.5 24.5
24.77 23.0
27.0 22.6
* 203 708 236 5
26.91
.050
.17
.51
.009
,141
15.7
37
25
22
-------
-5-
if a cycle distribution closely matches the input distribution, the
corresponding density function is generally faithful to the input
as well. As a gauge of their quality, the density curves were
converted to cumulative distribution functions and tested against
those of the input data, again by means of the K-S test.
The summary statistics also include "cycle percentages", which
simply give the fraction of the total cycle operation which occurs
in the various modes (acceleration, deceleration, cruise (less
idle) and idle (zero speed, zero delta-speed)). The average speed
of the cycle is provided as well. These parameters, which also
appear in Table 3, allow further insight into the relative quality
of the cycles when they are compared to their input values.
There are several reasons why a cycle can score well on Olson's K-S
tests (as reflected in the summary statistics) and simultaneously
make a poor showing as regards the speed distribution K-S test.
Primarily, the screening done by Olson was not designed to choose
good speed distributions - rather the process simply looks at how
well a cycle imitates the initial-speed/delta-speed matrix of the
input. In addition, the relatively short length of the cycles, in
particular those of 5-minute duration, makes it difficult for the
computer to sample the entire population (i.e., the input matrix).
However, since the generation process tends toward cycles possessing
accurate average speeds and percents idle, one would expect some
correlation between good summary statistics and a reasonable speed
density function (and this is generally the case).
Returning to the selection procedure itself, we chose the final
cycles according to their performance on 1) the speed density K-S
test, 2) the matrix K-S tests, with the overall matrix test bearing
the most weight, and 3) a comparison of the cycle's average speed
to its input. It did not become necessary to consider the cycle
percentages since most choices were fairly straightforward. The
order above reflects the relative importance given each criterion.
The general procedure employed in making a single selection per
category was to first eliminate any cycles whose speed density K-S
level is markedly lower than the rest. Then, a scan of the four
matrix and sub-matrix K-S levels reveals the level at which that
cycle passed (i.e., the smallest value determines the passing
level) and this value may be compared with the other remaining
candidates. Any further dispute between cycles is usually settled
by the overall matrix value or by the average speed.
The following paragraphs describe the rationale involved in selecting
one 5-minute candidate for each of the four truck categories. The
reader is referred to Table 3.
-------
-6-
LA Non-Freeway. The selection of cycle 210- demonstrates the
procedure outlined above. Cycle 152- is eliminated since it failed
the densty K-S test. The matrix significance levels show that 211-
passed at .15 and 210- at .34, reinforcing the density test and
finalizing the decision.
LA Freeway. Six of the ten candidates in this category can be
eliminated immediately because of low density significance levels,
leaving cycles 786-, 153-, 129-, and 152- with moderate to excellent
density scores. Of these, only 153- passes the matrix K-S tests
(though just barely) and is selected on this merit.
NY Non-Freeway. Eliminating the three cycles whose density K-S
values fall below .10, six cycles which look very good remain:
179-, 2120-, 2113-, 2109-, 2021-, and 2139-. This pool may be
pared down by removing 2021- and 2113- from contention, since they
passed the matrix K-S tests at values less than .20. The overall
matrix scores for these remaining four candidates are all so high
that they are worth little as quality indicators. The matrix tests
show 179- and 2139- to be slightly better matches of the input
matrix than 2120- and 2109-; however, their average speeds stray
further from the data base. The density significance level of
2139- though good (.17) is outscored by the other three. The final
decision reflects the greater weight given the density level as a
criterion; cycle 2120- is chosen for its combination of a high
density score (though it is important to remember that the improve-
ment of a value of .74 over an also-excellent value of .42 is
difficult to quantify), excellent matrix values, and an average
speed close to that of the input. Any of the final four cycles,
however, could have reasonably been expected to be as representa-
tive as 2120-.
NY Freeway. Of the four candidates, cycle 203- shows the best
density K-S value and the second-best matrix K-S scores; this cycle
is an easy selection for this category.
Conclusions
The selected cycles, denoted by their random number designations,
follow; their second-by-second listings are included in Appendix
B.
Los Angeles Non-Freeway 210 620 4593
Freeway 153 913 5071
New York Non-Freeway 212 012 7413
Freeway 203 708 2365
These cycles have been judged to be the most representative of the
CAPE-21 data base on the basis.of statistical considerations alone.
Further evaluation will follow as the cycles are actually run on
the dynamometer.
-------
APPENDIX A
Sample K-S Test on Speed Distribution
MPH
Increment
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Cumulative Distribution
Function (Input)
.517
.540
.560
.578
.598
.615
.632
.644
.665
.682
.698
.714
.730
.746
.762
.778
.794
.810
.824
.838
.852
.864
.877
.888
.898
.907
.916
.924
.932
.938
.944
.949
.954
.959
.963
.966
.969
Cumulative Distribution
Function
(Cycle 212 012 7413)
.539
.556
.566
.573
.580
.590
.603
.610
.631
.664
.688
.698
.725
.749
.769
.800
.814
.841
.851
.858
.868
.885
.885
.892
.895
.895
.895
.905
.908
.908
.925
.942
.963
.986
1.000
—
—
K-S
Different
-.022
-.016
-.006
.005
.018
.025
.029
.039*
.034
.018
.010
.016
.005
-.003
-.006
-.022
-.020
-.031
-.027
-.020
-.016
-.021
-.008
-.004
.003
.012
.021
.014
.024
.030
.019
.006
-.009
-.025
-.037
—
—
The maximum difference of .039 occurs at *. Since the sample size (total
number of records in the cycle) is 294, Table 2 shows a critical difference
at a .20 significance level of .062. Thus the cycle passes easily at the
high .20 level, indicating a close match with the input as far as the
speed distribution is concerned.
-------
APPENDIX B
SECOND-BY-SECOND LISTINGS
-------
1.00-SECONO INTERPOLATION OF 2106204593 LA G+0 N
1MOU29 FEB lot 1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
1ft.
17.
18.
19.
20.
21.
2?.
23.
24.
25.
26.
27.
?8.
?9.
10.
11.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46*
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.24
0.60
0.0
1.42
50.
51.
52.
53.
54.
55.
56.
57.
5fl.
59.
60.
61<
6?.
63.
64.
65.
66.
67.
6R.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
9?.
93.
94.
Q5.
96.
97.
9K.
"9.
2.00
3.08
5.63
4.00
4.00
3.34
1.37
1.00
0.0
0.0
0.0
0.0 ,
0.0
0.0
o.n
0.23
1.39
2.00
4.11
5.00
6.02
7.18
7.33
6.49
7.00
7.00
7.00
7.00
7.00
7.43
H.OO
8.00
7.09
11.06
12.89
14.49
11.46
13.08
16.55
16.00
15.34
12.32
13.00
13.00
13.00
15.86
12.00
11.73
11.00
11.00
100.
101.
102.
103.
104.
105.
106.
107.
lo«.
109.
110.
111.
112.
113.
114.
115.
116.
117.
lift.
119.
120.
121.
122.
123.
1P4.
125.
126.
127'.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
13«.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
11*00
1 1 .90
12.89
10.36
7.26
•4.05
4.68
6.68
ci.OO
/•P4
7.00
f.=.3
7.H7
25. SI
29. on
29.00
29.nO
30.51
31.00
30.00
30.HO
30.00
30. r-.4
31.00
31.16
31.00
31.]7
32.33
33.00
33.00
33.80
34.00
35.12
36. .no
36.00
34.'t2
33. ?5
32.09
32.no
32.00
32.00
32.00
32.oo
32.^5
33.nl
34.00
33.68
2oO.
201.
202.
203.
2u4.
2\l5.
206.
2d7.
2nd.
209.
210.
211.
212.
213.
214.
21b.
216.
217.
218.
219.
220.
2^1.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
2J5.
236.
237.
23«.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
32.52
32.00
32.00
32.95
33.00
33.00
33.42
34.00
34.74
35.00
.35.00
35.00
35.00
35.00
35.00
35.84
37.99
38.00
37.69
38.41
39.37
39.00
39.00
38.10
39.00
39.41
40.57
41.73
42.00
41.92
40.00
40.00
39.49
37.66
37.00
36.01
34. H6
33.70
32.54
29.54
26.46
22.28
19.91
18.76
17.60
16.44
14.57
13.13
11.97
10.81
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
2>4.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
9.31
7.50
6.34
4.37
3.03
1.87
0.71
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
- -0.
-o.
-o.
-0.
-o.
-o.
-o.
-0.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-o.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
. -0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-0.
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.
-o.
-o.
-o.
-0.
-o.
-o.
-o.
-0.
-o.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-o.
-0.
-o.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
"0.
-0.
-o.
-0.
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
SUM OF SPEEDS = 4148.17
IF THE ABOVE TI^E INTERVAL IS 1 SF.COwo, THEM:
AVEHAGE SPEED: 14.55 DURATION: 4.75 MTN.
DISTANCE: 1.15
-------
1.00-SECONU INTFPPOIAT.ION OF 153-J1 35071 I.A G»D FVY
10»24tl8 FEB 14..1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
1?.
13.
14.
15.
If-.
17.
18.
19.
20.
21.
22.
23.
?4.
25.
?6.
27.
28.
29.
30.
31.
12.
33.
34.
15.
36.
17.
18.
39.
40.
41.
42.
43.
44.
45.
46.
47.
4P.
49.
0.0
0.0
0.0
0.0
0.0
2.36
3.94
5.31
8.26
9.42
11. IS
12.73
14.78
16.05
17.41
19.72
21. 52
23.35
24.83
25.99
27.15
28.31
29.46
30.62
31. 7M
32.94
34. 1R
36.25
37.41
38.56
39.72
40.00
40.00
40.00
40.00
40.no
40.00
40.82
41 .00
41 .00
41.30
42.00
42.00
4?. 00
42.93
43.00
43.00
43.00
43.56
44.71
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
7?.
73.
74.
75.
76.
77.
78.
79.
80.
0
55.00
55.00
55.no
55.no
55.no
55.no
55.nO
55.00
55.00
55.no
55.00
54.50
54.66
55.00
54. n3
54.00
54.00
54.nO
54.00
54.00
54.00
54.00
54.no
54.77
56.no
56.no
56.00
56. P2
57.00
56.67
56.00
56.00
56.00
56.00
56.00
56.nO
56.no
56.00
56.00
56.^1
57.00
57.00
57.nO
57.00
57.00
57.05
58.00
58.00
58. nO
200.
a-)i.
2u2.
203.
204.
205.
2n6.
207.
20H.
2<)9.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226,
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
58.00
58.00
58.00
58.00
58.00
58.00
57.15
56.00
56.00
56.00
56.00
56.00
55.63
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
54.22
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
53.01
50.86
49.70
48.54
47.39
46.23
45.07
43.91
42.51
40.60
39.44
38.28
37.13
35.94
33.81
?.50.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263,
264.
265.
266.
267.
-0.
-0.
-0.
,-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-a.
-0.
-0.
-0.
-0.
<-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
32.66
30.50
28.34
P6.37
25.03
21.87
19.85
16.56
15.40
14.24
12.17
10.71
6.08
2.61
1.45
0.30
0.0
0.0
-0.00
• 0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0,00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
. -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0,00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
rO.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
•0.
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•••• -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
1 -o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-o.
-0.
-0.
-0.
-o.
-o.
. -o.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-o.
-o.
-n.
-0.
-0.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-o.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
SUM OF SPFEDS = 11997.68
IF THE ABOVE TIME INTERVAL IS 1 SECONDt THEN!
AVERAGE SPEED! 44.94 DURATION: 4.45 MIN.
DISTANCES 3.33
-------
1.00-SECONO 1NTEHPOLATION OF 2037082365 NY G»D
I6:o5:49 FEB 10. 1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
15.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.46
0.22
0.0
0.0
0.0
0.0
0.0
0.0
2.97
4.00
3.69
3. on
3.62
4. 00
5.87
9.00
9.00
9.41
10. 56
11.00
12.76
13. on
13. on
13.35
14. SI
14.33
14. on
14.98
15.55
18.11
15.55
15.61
16.0"
15. n7
16. on
16.24
17. on
17. on
17.00
50. 17.00
51. 17.05
52. 19.00
53. 19.00
54. 19.50
55. 20.00
56. 18.37
57. 18.00
58. 18.74
59. 17.29
60. 18.44
61. 19.00
62. 21.28
63. 19.25
64. 19.29
65. 23.00
66. 23.00
67. 23.00
6B. ?3.70
69. 24.00
70. ?4.00
71. 24.00
72. 23.67
73. 23.49
74. 23.35
75. 23.00
76. 24.92
77. 24.88
78. 23.72
79. 23.43
HO. 23.41
81. 23.00
R2. 20.28
R3. 20.06
84. 21.00
85. 20.24
86. I9.no
87. 19.00
88. 20.70
89. 21.nl
on. 22.33
91. 23. 6H
02. 22.52
93. 22.00
94. 22. 80
95. 21.09
96. 21.22
97. 22.73
98. 22.00
99. 23.16
100. 26.22
101. 27.00
102. 2^.00
ln3. 2^.42
104. 31.37
105. 32.00
lo6. 3isno
107. 32.no
108. 34.00
109. 34.16
110. 14.69
111. 35.41
112. 3M.26
113. 3". 00
114. 3V/. 94
115. 40.20
116. 42.00
117. 42.00
118. 42.00
119. 41.27
120. 41.00
121. <>1.04
122. 42.00
]23, 42.36
124. 43.52
125. 44.67
126. 45.83
127. 46.00
128. 4fr.no
129. 4^.30
130. 47.46
131. 4h.h2
132. 4«.?2
133. 4H.OO
134. 4f<»00
135. 4H.OO
116. 48.41
137. 4S.56
13". 5". 00
139. SI. 76
140. SX.04
141. Sd.Pl
142. 52.no
143. 52.no
144. S?.00
145. S.-NOO
14ft. 1V.OO
147. 53.00
148. 53.00
149. S3. 45
15n. 54.00
151. 53.33
15?. 53. nO
15->. 52. P2
154. 52.24
155. 53. no
156. 53. .10
157. 52. '9
15«. 48.53
151'. 48.no
160. 48. 1«
161. 49.nO
162. 48. SO
163. 46.f' 3
164. 45.nO
165. 43. n6
166. 40.13
167. 41.00
168. 4l.nO.
160. 4l.no
170. 40.24
171. 40.nO
172. 39.no
173. 39.00
174. 39.fiO
175, 39.nO
176. 39.70
177, 40. °6
178. 42.nO
17". 42.00
18n. 42. nO
1«1 . 41.51
10?. 41.65
!«•». 42.C.O
184. 41,r,4
IBS. 42.1?
1H*. 42.72
187. 42.43
l«n. 43.no
199. 43.00
19n. 43.o]
191. 45.00
10?. 45.??.
193. 45. --»5
1Q4. 44. nO
195. 44.00
196. 44.nO
197. 44.nO
19R. 44.33
190. 45.68
2'JO. 45,00
2'Jl. 46,27
202. 45.41
2()3i 45.00
2'i4. 44,11
205. 44.73
2.)6. 44.00
207. 44,58
208. 43,52
2o<*. 43,00
210. 44.05
211. 44.58
212. 42.63
213. 41.47
214. 4UOO
215. 41.00
216. 39.01
217. 39.85
218. 37.75
219. 35.00
220. 35.00
2<21. 35.00
222. 35.94
223. 37.00
224. 37.51
225. 39.00
226. 39.00
2H1. 39.00
228. 39.00
229. 37.87
230. 35.00
231. 35.00
232. 35.00
233. 36.34
234. 37.00
235. 36.01
23b. 33.71
237. 31,70
238. 29.63
239. 26.77
240. 25. 2J
241. 21.28
242. 19.91
243. 18.03
244. 14.60
245. 13.44
246. 11.57
247. 9.26
248. 7.94
249. 5.63
250.
251.
252.
253.
254.
255.
256,,
257.
258,
259*
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
-0.
-0..
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
3.66
2.00
0.34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo .
-0.00
-0.00
-0.00
-0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0,00
-0. -0.00
-0. -0.00
-o. -o.oo
•-o. -o.oo
-o.'-o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-6. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
- -0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.no
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. .-0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -n.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0; -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
' -0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
SUM OF SPEEDS
7533.55
IF THE ABOVE TIME INTERVAL IS 1 SF.COND. THEN!
AVERAGE SPEEDt 27.00 DURATION: 4.65 HIM.
DISTANCE: 2.09
-------
1.00-SECOND INTERPOLATION OP 2120127413 NY G+D "IFWY
1M07:15 FEB 10* 1978
o.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
1C.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
18.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69i
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
"I.
92.
9.1.
94.
95.
96.
97.
98.
99.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.13
0.71
0.0
0.0
0.0
0.0
4.15
6.00
6.00
6.00
5.30
4.14
1.96
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.48
1.64
0.41
0.0
0.0
0.0
0.0
0.0
ino.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
11?.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
118.
139.
140.
141;
142.
143.
144.
145.
146.
147.
148.
149.
n.n
o.o
o.o
0*0
0.0
0.0
o.o
n»o
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
U.O
u.o
0*0
o.o
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
II. 0
n«0
0.0
0*0
0.0
o.o
o.o
0.0
0*0
0.0
0.0
o.o
o.o
0.19
1.00
1.51
2.66
4.64
6.96
B.86
7.71
7.45
ISO.
151.
152.
153.
154.
155.
156.
157.
15«.
15n.
160.
161.
16?.
161.
16i.
16^.
1ft*.
1*7.
168.
16Q.
17n.
171.
17?.
171.
176..
17=;.
17ft.
177.
178.
179.
18n.
181.
18?.
18?.
184.
185.
186.
187.
188.
18P.
190.
191.
19?.
191.
194.
1°5.
196.
197.
19*.
199.
9. ;-2
10.00
9.:T8
lO.nfl
11. ?4
12.79
14.00
12.58
12.^7
13.nO
13.^0
13. *8
15. no
15.no
13.17
12.03
12. ?6 .
14. ?9
14.56
15. ?0
16.76
17.no
17.nO
17. ?3
18.77
20.54
19.60
18.14
17.98
17.00
16.14
15.00
15.00
15.00
15.Q6
12.15
15. ?8
14. ?7
12.59
12. ?S
9.?8
8.00
8.00
8.18
9.^3
10.69
ll.no
9.no
9.00
9.32
' 200.
201.
202.
203.
204.
205.
206.
207.
208.
20*.
210.
211.
212,
213.
214.
215.
216.
217.
218.
219.
2?0.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
2J1.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
10.00
9.36
9.00
9.95
14.33
17.53
19.42
20.00
20.74
21.00
?1.11
23.84
27.00
27.00
29.05
32.52
31.01
31.00
31.62
33.00
32.37
30.43
30.00
30.00
30.51
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.00
.34.00
34.00
33.01
31.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
a. 91
0.0
250.
251.
252.
253.
254.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
' -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
' -0.
-0.
-0.
-0.
-0.
•0.
-0.
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
•0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00 .
•0.00
-0.00
-0.00
•0.00
•0.00
•0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
"0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
•0.00
-0.00
. -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-6.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
'-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
.-0.00
-0.00
-o.no
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00 '
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
-0.
•0*
-0.
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0*00
-0.00
•0.00
-0.00
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0*
-0.
-0.
-0.
•0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
.•0.00
-0.00
SUM OF SPEEDS = 1920.68
IF THE ABOVE TIME INTERVAL IS 1 SECOND. THFNI
AVERAGE SPEED! 7.56 DURATION: 4.23 MlN.
DISTANCES 0.53
------- |