HDV - 78 - 02.
                        Technical Report

                 Selection of Transient Cycles for
                       Heavy-Duty Vehicles
                             June 1978

                                by

                             Tad Wysor
                          Chester France
                               NOTICE

Technical support  reports are  intended  to  present a  technical
analysis of an issue and recommendations  resulting  from the assump-
tions and constraints of that analysis.  Agency policy constraints
or data received  subsequent to  the date  of release of this report
may alter the  conclusions  reached.   Readers are cautioned to seek
the latest analysis from EPA before using the  information contained
herein.
             Standards Development  and  Support Branch
               Emission Control Technology Division
           Office of Mobile Source  Air  Pollution Control
                Office of Air and Waste Management
               U.S. Environmental Protection Agency

-------
Summary

A result of EPA's heavy-duty cycle development  project has been the
computer-generation  of  some  35  candidate  chassis  cycles  by the
contractor, Olson  Labs.   This collection  of  cycles,  synthesized
from actual urban  driving data, has been  narrowed  down  by EPA to
four  cycles  representing  truck  operation  under  both  freeway and
non-freeway conditions  in  Los  Angeles  and  New  York.  In an effort
to  choose  a  cycle  for  each  category  which best  represented the
actual  data,  we scored the  candidates  according  to their summary
statistics, provided by  Olson with each  cycle.  Our  selected cycles
appear  below  in Table  1,  denoted  by  their random number designa-
tions; and their second-by-second listings  may  be  found in Appendix
B.

                            Table 1

                                            Cycle #
          Los  Angeles    Non-Freeway      210 620 459 3
                         Freeway         153 913 507 1

          New  York       Non-Freeway      212 012 741 3
                         Freeway         203 708 236 5
Background and Introduction

The basis of the cycle-generation effort is the road data compiled
in the  CAPE-21 truck-usage survey.   This project involved  the
instrumenting of actual in-use trucks  in Los Angeles and New York,
cities considered to exemplify the extremes of urban traffic flow.
Forty-four trucks in each  city  (as  well as 3  buses in Los Angeles
and 4  in New  York)  were  allowed  to  perform  their  normal  duties
while vehicle and engine parameters were being recorded  on an
approximately  second-by-second  basis.   Among  the  monitored  para-
meters were  vehicle  speed, engine speed,  road  and traffic  condi-
tions, and a measure of power (such as manifold vacuum or throttle
position).   With  the  intent  of  making possible laboratory testing
in which the vehicle  (or engine)  operation  simulates actual on-the-
road use,  transient  computer cycles  of  relatively short duration
have been synthesized.   The result has been the delivery to EPA of
cycles  both for  the  testing  of engines  and of  vehicles.   The
vehicle  - or  chassis  - cycles  are  the concern  of this report.

Olson found  it necessary  to  generate  many  thousands  of  cycles in
order to produce a few which approached the characteristics  of  the
data base.   The several "good" cycles  as screened by Olson include
at  least  three (and as  many as  twelve,  if later work  was  done)
five-minute candidates  for  each of  the  four road categories.
Additionally, cycles  of approximately 10-,  20-, and 30-minute
duration were  generated  for  the  sake  of comparison.   EPA's  task

-------
                               -2-
was to further screen the candidates and arrive at one five-minute
cycle to best represent each category.

The primary way by which both we and Olson compared and rated the
cycles was with the Kolgomorov-Smirnov one-sample test, hereafter
abbreviated "K-S test."  The K-S test is a non-parametric statisti-
cal test concerned with the degree of agreement between two distri-
butions.  It determines whether two distributions can reasonably be
thought to have come from the same population.  Specifically, the
cumulative distributions of the candidate cycles are compared to
the CAPE-21 cumulative distribution (assumed to be the theoretical
distribution).  When compared on an increment-by-increment basis,
there will occur at some point a maximum difference D between the
two distributions.  D can be related to a level of significance, a,
which depends on the size of the sample.  If the maximum difference,
D, exceeds the critical difference for that sample size at a par-
ticular significance level (o), then the sample does not pass the
K-S test and it must be assumed that the two distributions are dis-
similar.  Table 2 relates sample size to significance levels and
critical differences.

                            Table 2*

                            Significance Level	
Sample Size (N)      .20     .15

Over 35            1.07     1.14
The computed values are the critical differences for a particular
N.  The smallest critical difference which exceeds the maximum
difference D for the test yields the significance level.  The
reader is referred to Appendix A for an example of the use of the
K-S test.

In digression, the significance level is the probability of rejec-
ting a true hypothesis when it is actually true.  In relation to
the K-S test, significance level is the probability of not accepting
two distributions as being the same, when in reality they are.
This type of error is acceptable when comparing two cumulative
distributions.  Therefore, it is desirable to have a large signifi-
cance  level, since this results in more assurance that the two
 *  From Nonparametric Statistics, Sidney Siegel, McGraw-Hill, NY,
   1956.

-------
                              -3-
distributions being compared are really the same.  For most engin-
eering and  statistical  application,  significance levels  of .05 or
.10 are adequate.  The  following discussion addresses how  the  test
was applied  as  a screening  criterion by Olson and subsequently by
EPA.

In addition to the 5-minute  cycles  discussed above, Olson generated
cycles  of longer  duration as  a means of  judging the  effect of
length on cycle  quality.  Candidates on the order of  10 minutes in
length were  submitted  for  each category;  and  20-  and  30-minute
cycles were generated for the  L.A.  Freeway category.

We have attempted to compare the 5-minute cycles within a  particu-
lar category with  the  corresponding  10-minute candidates.   Such a
task,  however,  is handicapped  by the  absence of K-S results for the
10-minute density  functions.   But despite  this  difficulty,  it is
possible  to  make several generalizations  concerning  the 10-minute
cycles:

     1)    Their average speeds  for  the  most part  come  as close as -
          or closer than - their 5-minute counterparts to  matching
          the average speed  of the  input.

     2)    The cycle percentages as  well show a  slight improvement
          over those of the  5-minute  cycles.

     3)    A visual  comparison  of the density  plots  shows that the
          10-minute candidates  reach  a  higher  maximum  speed than do
          the 5-minute  versions.

The very  nature  of  the  cycle  generation process  suggests that the
longer  the  cycle,  the  greater  the  similarity  it  should  exhibit
relative to the  input data.   In  any statistical comparison, a
larger sample  is more  likely  to  simulate the population;  in our
case,  one  would expect  that  a longer cycle  (i.e.,  more  records)
would better match the  input than a  short cycle.  The computer has
a chance to sample  more parts of the "transition probability"
matrix and is able to generate  a better cycle.

In the case  of  the  L.A. Freeway category, even  longer cycles  - on
the order to 20  and 30  minutes - were  also submitted by Olson.  As
expected, the  general trend  is for cycle quality  to improve a
little with increased duration.

Although  the  longer cycles  generally  have  better statistics, the
improvement over the 5-minute  cycles  is slight.   An average speed is
rarely as much  as  1  mph closer to the input in  a 10-minute cycle;

-------
                             -4-
likewise,  the cycle percentages generally vary  by  only 2 or  3
percentage  points,  regardless  of cycle length.  Since a  series of
four or five cycles will be run in  a test  procedure,  the 5-minute
versions are  much more  attractive   from  a practical  standpoint.
Thus,  the  improved quality of  the  longer cycles  is not marked
enough  to  heavily favor  their  use.   Our attention  is  directed
almost exclusively  toward the 5-minute cycles.

Selection Procedure

Several criteria formed tha basis for  the  selection of one  candi-
date  cycle from each  category.  A  relative scoring of Olson's
summary statistics  and  a consideration of  the  quality  of  the  speed
density functions played the major roles in the  decision process.

With  each  candidate cycle, Olson provided EPA a tabulation of
summary statistics  which indicate how well the particular  computer-
generated  candidate imitates  the characteristics  of the  input
matrix.  This input matrix was  the result  of  Olson's  compiling of
the massive road data  for  a category - New York non-freeway,  for
example - into a single matrix relating initial speed and  change in
speed.  Each  cell  of  the matrix is  the probability that  a  parti-
cular  change  in speed  (or  no  change) will  occur  at the  initial
speed  in  question.   The  cycle-generation  program utilizes  these
probabilities  and,  record-by-record,  creates a cycle of the desired
length.   Now the  cycle  itself  can  be converted  into a similar
initial-speed/delta-speed matrix  and compared with  the  input
matrix.  By generating numerous  cycles and testing them against  the
input, the best  cycles  in each category are filtered  and  submitted
by Olson.

For purposes of  testing how faithfully a given cycle matched  its
category's input, several  portions  of its speed/delta-speed  matrix
were  examined by Olson.    In  each,  the columns were  converted to
cumulative distributions and checked by the K-S test for similarity
to the corresponding  portion of the  input matrix.   The matrix as  a
whole was screened in this  manner,  as were the parts  corresponding
to acceleration, deceleration,  and  cruise.   Thus,  the  significance
level at which a cycle passed  (or failed) was determined - that  is,
the  lowest  of  these  four  scores -  allowing the candidates  to be
compared among themselves within a given category (Table 3 presents
these levels;  the higher the better).

Additionally,  Olson K-S tested the  speed frequency  distribution as
a  further means of comparison.  The importance  of  the density
functions  (from  which  the  distributions  are derived)  lies in  the
fact  that  percent of  operation at,  say,  55 mph  or  at idle can
significantly affect  emissions;  the  cycles  should match  the  opera-
tion  in the data base reasonably well.  Obviously,  it  is  the  cumu-
lative distributions  that  are  checked, not  the density curves;  but

-------
                                                   Table  3
LA Non-Freeway
LA Freeway
NY Non-Freeway
     INPUT
152  778  878  5
210  620  459  3
211  939  981  9

     INPUT
327  663  671
137  221  132  7
432  285  647

786  981   11
153  913  507  1
129  422  102  9
152  997  154  3
103  847  192  5
148  353  223  1
833  528  981

     INPUT
123  667  645  7
179  960  930  5
104  736  920  3
            Density
Average   Significance
 Speed        Level
 (MPH)  (X=Did not pass
          at .01)

 15.10
 45.54
45.15
45.39
45.41
45.29
44.79
44.95
44.42
44.82
44.35
44.23
.002
.001
X
.45
.43
.41
.10
.05
.03
.02
  7.80
  7.48
  7.37
  7.83
                                               ,09
                                               .42
                                               .06
                                                            M
                                                            X
                                                            X
                                                            X

                                                           .02
                                                           .10
                                                           .007
                                                           .05
                                                           .06
                                                           .07
                                                           .13
.83
.70
.49
                                                     Matrix
                                                  Significance
                                                      Levels
                                                    C      A
                                 X
                                 X
                                 X

                                 X
                                .001
                                 X
                                 X
                                .001
                                .009
                                .001
.67
.50
.28
              .63
              .41
              .81

              .60
              .30
              .32
              .26
              .776
              .11
              .80
.43
.79
.35
              .30
              .43
              .22

              .24
              .13
              .34
              .22
              .39
              .65
              .44
.77
.89
.77
                                         Cycle
                                      Percentages
                                  I      C      A
                                30.1    32
                                       21
                                              D
                                      17
30.1
28.8
29.6
2.3
2.6
2.6
2.6
2.6
2.6
2.5
2.6
2.5
2.6
2.6
50.8
51.2
52.7
52.7
28
29
31
75
65
62
62
61.0
62.6
58.7
63.1
62.5
60.5
62.9
20
18
17
15
22
21
20
12.8
16.6
19.2
18.9
18.1
18.4
19.6
17.0
17.8
19.8
18.2
15.1
16.3
15
16.1
20
21
20
10.0
15.7
16.0
16.3
18.4
16.5
19.2
17.3
17.1
17.2
16.3
13.7
15.0
14.9
16

-------
                                                   Table 3 (cont.)
NY Freeway
*  212  012  741  3
   211  373  494  3
   210  952  317  5
   202  167  539  7
   213  923  722  9
   213  153  035  7

        INPUT
   741  286  985
   209  279  083  3
   137  610  363
                                              Density
                                  Average   Significance
                                   Speed        Level
                                   (MPH)  (X=Did not pass
                                            at  .01)
26.39
                                                M
                                 Matrix
                              Significance
                                  Levels
                                C      A
                       D
                                  Cycle
                               Percentages
                           I     C      A
                                       D
7.57
8.11
7.95
7.34
7.03
8.14
.74
.54
.41
.38
.17
.06
.85
.86
.80
.99
.80
.92
.35
.99
.95
.79
.64
.72
.38
.48
.22
.13
.53
.05
.74
.19
.24
.46
.64
.84
52.0
48.0
51.0
52.4
49.8
49.4
15
18
18
18
19
20
17
17
14
16
15
15
16
17
17
14
16
16
                                15.8  41.2   22.2  20.7
26.54
26.53
27.39
.005
X
.002
.605
.23
.07
.16
.02
.04
.30
.02
.19
.43
.26
.64
14.9
15.1
15.7
36
36
35
24.5 24.5
24.77 23.0
27.0 22.6
            *  203  708  236  5
                       26.91
           .050
.17
.51
.009
,141
15.7
37
25
22

-------
                              -5-
if a cycle distribution closely matches the input distribution, the
corresponding density  function  is generally faithful  to  the  input
as well.   As  a gauge  of  their  quality,  the  density  curves  were
converted to  cumulative distribution functions  and  tested against
those of the input data, again by means of the  K-S test.

The  summary  statistics also  include  "cycle  percentages",  which
simply give the fraction of  the  total cycle  operation which occurs
in  the various  modes  (acceleration,  deceleration,  cruise  (less
idle) and idle (zero speed,  zero  delta-speed)).   The average  speed
of the  cycle is  provided  as well.   These parameters, which  also
appear in Table 3, allow further  insight  into  the relative quality
of  the cycles  when  they  are  compared to their  input values.

There are several reasons why a cycle can score well on Olson's K-S
tests  (as  reflected  in the  summary  statistics)  and simultaneously
make  a  poor showing as regards  the  speed  distribution  K-S  test.
Primarily, the screening done  by Olson was not  designed  to choose
good  speed distributions -  rather the process  simply  looks at how
well  a  cycle  imitates   the  initial-speed/delta-speed  matrix of the
input.  In addition, the relatively  short  length of the cycles, in
particular those  of  5-minute duration, makes  it  difficult  for the
computer to sample the  entire population  (i.e.,  the input matrix).
However, since the generation process tends  toward cycles  possessing
accurate average  speeds and percents  idle,  one would  expect  some
correlation between good summary  statistics  and  a reasonable  speed
density function (and this  is generally the  case).

Returning  to  the  selection  procedure itself,  we chose  the  final
cycles according  to  their  performance on 1) the  speed  density K-S
test, 2) the matrix K-S tests,  with the overall matrix test bearing
the most weight,  and 3) a  comparison of  the cycle's  average  speed
to its  input.   It did  not  become necessary to  consider  the  cycle
percentages since  most choices were  fairly straightforward.    The
order above reflects the relative importance given each criterion.

The  general  procedure   employed  in making  a  single  selection  per
category was to first eliminate any  cycles whose speed  density K-S
level is markedly lower than the  rest.   Then, a scan  of  the  four
matrix and  sub-matrix  K-S  levels  reveals  the  level at which  that
cycle passed (i.e.,  the smallest value  determines the passing
level)  and  this  value  may  be  compared with  the other  remaining
candidates.  Any  further dispute  between  cycles  is  usually settled
by the overall matrix value or by the average speed.

The following paragraphs describe the rationale involved in selecting
one 5-minute candidate  for each of the  four  truck categories.   The
reader is referred to Table 3.

-------
                              -6-
LA Non-Freeway.   The selection of cycle  210- demonstrates  the
procedure outlined above.  Cycle 152- is eliminated since it failed
the densty K-S test.  The matrix significance levels show that 211-
passed at  .15 and  210-  at  .34,  reinforcing the density  test  and
finalizing the decision.

LA Freeway.   Six  of  the  ten  candidates in  this  category  can  be
eliminated immediately because  of  low  density significance levels,
leaving cycles 786-, 153-, 129-, and 152- with moderate to excellent
density scores.   Of these,  only  153-  passes  the matrix K-S tests
(though just barely) and  is selected on this merit.

NY Non-Freeway.   Eliminating  the  three  cycles  whose density  K-S
values  fall  below  .10,  six cycles  which  look  very  good  remain:
179-,  2120-,  2113-,  2109-,  2021-,  and  2139-.  This pool  may  be
pared down by  removing 2021- and  2113-  from contention,  since they
passed the matrix  K-S  tests at values  less  than .20.   The overall
matrix scores  for  these  remaining four candidates  are all  so high
that they are worth little as quality indicators.  The matrix tests
show  179-  and 2139-  to   be  slightly better  matches  of  the input
matrix  than  2120- and 2109-;  however,  their  average  speeds stray
further  from  the  data  base.   The  density  significance  level  of
2139- though good (.17) is outscored by the  other three.   The final
decision reflects  the  greater  weight given  the density  level  as  a
criterion;  cycle  2120-  is  chosen  for  its   combination  of  a  high
density score (though it  is important to remember that the improve-
ment  of a value  of .74   over  an also-excellent value  of  .42  is
difficult  to  quantify),   excellent  matrix values,  and  an  average
speed close  to that of  the  input.   Any of  the  final  four cycles,
however, could have  reasonably been expected  to be as representa-
tive as 2120-.

NY Freeway.   Of  the  four  candidates,  cycle  203-  shows  the  best
density K-S value and the second-best matrix K-S scores;  this cycle
is an easy selection for  this category.

Conclusions

The  selected  cycles,  denoted by  their  random number  designations,
follow;  their second-by-second  listings  are  included in  Appendix
B.

Los Angeles    Non-Freeway         210 620 4593
               Freeway             153 913 5071

New York       Non-Freeway         212 012 7413
               Freeway             203 708 2365

These cycles  have  been judged  to  be  the most representative of the
CAPE-21 data base on the  basis.of statistical considerations alone.
Further evaluation  will  follow as  the  cycles are  actually  run  on
the dynamometer.

-------
                              APPENDIX A

                 Sample K-S Test on Speed Distribution
MPH
Increment

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Cumulative Distribution
Function (Input)

.517
.540
.560
.578
.598
.615
.632
.644
.665
.682
.698
.714
.730
.746
.762
.778
.794
.810
.824
.838
.852
.864
.877
.888
.898
.907
.916
.924
.932
.938
.944
.949
.954
.959
.963
.966
.969
Cumulative Distribution
Function
(Cycle 212 012 7413)

.539
.556
.566
.573
.580
.590
.603
.610
.631
.664
.688
.698
.725
.749
.769
.800
.814
.841
.851
.858
.868
.885
.885
.892
.895
.895
.895
.905
.908
.908
.925
.942
.963
.986
1.000
—
—
K-S
Different

-.022
-.016
-.006
.005
.018
.025
.029
.039*
.034
.018
.010
.016
.005
-.003
-.006
-.022
-.020
-.031
-.027
-.020
-.016
-.021
-.008
-.004
.003
.012
.021
.014
.024
.030
.019
.006
-.009
-.025
-.037
—
—
The maximum difference of .039 occurs at *.  Since the sample size (total
number of records in the cycle) is 294, Table 2 shows a critical difference
at a .20 significance level of .062.  Thus the cycle passes easily at the
high .20 level, indicating a close match with the input as far as the
speed distribution is concerned.

-------
         APPENDIX B




SECOND-BY-SECOND LISTINGS

-------
 1.00-SECONO INTERPOLATION OF 2106204593  LA  G+0 N
                                                                                                            1MOU29  FEB lot 1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
1ft.
17.
18.
19.
20.
21.
2?.
23.
24.
25.
26.
27.
?8.
?9.
10.
11.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46*
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.24
0.60
0.0
1.42
50.
51.
52.
53.
54.
55.
56.
57.
5fl.
59.
60.
61<
6?.
63.
64.
65.
66.
67.
6R.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
9?.
93.
94.
Q5.
96.
97.
9K.
"9.
2.00
3.08
5.63
4.00
4.00
3.34
1.37
1.00
0.0
0.0
0.0
0.0 ,
0.0
0.0
o.n
0.23
1.39
2.00
4.11
5.00
6.02
7.18
7.33
6.49
7.00
7.00
7.00
7.00
7.00
7.43
H.OO
8.00
7.09
11.06
12.89
14.49
11.46
13.08
16.55
16.00
15.34
12.32
13.00
13.00
13.00
15.86
12.00
11.73
11.00
11.00
100.
101.
102.
103.
104.
105.
106.
107.
lo«.
109.
110.
111.
112.
113.
114.
115.
116.
117.
lift.
119.
120.
121.
122.
123.
1P4.
125.
126.
127'.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
13«.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
11*00
1 1 .90
12.89
10.36
7.26
•4.05
4.68
6.68
ci.OO
/•P4
7.00
f.=.3
7.H7
25. SI
29. on
29.00
29.nO
30.51
31.00
30.00
30.HO
30.00
30. r-.4
31.00
31.16
31.00
31.]7
32.33
33.00
33.00
33.80
34.00
35.12
36. .no
36.00
34.'t2
33. ?5
32.09
32.no
32.00
32.00
32.00
32.oo
32.^5
33.nl
34.00
33.68
2oO.
201.
202.
203.
2u4.
2\l5.
206.
2d7.
2nd.
209.
210.
211.
212.
213.
214.
21b.
216.
217.
218.
219.
220.
2^1.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
2J5.
236.
237.
23«.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
32.52
32.00
32.00
32.95
33.00
33.00
33.42
34.00
34.74
35.00
.35.00
35.00
35.00
35.00
35.00
35.84
37.99
38.00
37.69
38.41
39.37
39.00
39.00
38.10
39.00
39.41
40.57
41.73
42.00
41.92
40.00
40.00
39.49
37.66
37.00
36.01
34. H6
33.70
32.54
29.54
26.46
22.28
19.91
18.76
17.60
16.44
14.57
13.13
11.97
10.81
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
2>4.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
9.31
7.50
6.34
4.37
3.03
1.87
0.71
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
- -0.
-o.
-o.
-0.
-o.
-o.
-o.
-0.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-o.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
. -0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-0.
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.
-o.
-o.
-o.
-0.
-o.
-o.
-o.
-0.
-o.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-o.
-0.
-o.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
"0.
-0.
-o.
-0.
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
SUM OF SPEEDS =   4148.17

IF THE ABOVE TI^E INTERVAL IS 1 SF.COwo, THEM:
  AVEHAGE SPEED: 14.55   DURATION:  4.75 MTN.
DISTANCE:   1.15

-------
 1.00-SECONU INTFPPOIAT.ION OF 153-J1 35071   I.A G»D FVY
                                                           10»24tl8  FEB 14..1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
1?.
13.
14.
15.
If-.
17.
18.
19.
20.
21.
22.
23.
?4.
25.
?6.
27.
28.
29.
30.
31.
12.
33.
34.
15.
36.
17.
18.
39.
40.
41.
42.
43.
44.
45.
46.
47.
4P.
49.
0.0
0.0
0.0
0.0
0.0
2.36
3.94
5.31
8.26
9.42
11. IS
12.73
14.78
16.05
17.41
19.72
21. 52
23.35
24.83
25.99
27.15
28.31
29.46
30.62
31. 7M
32.94
34. 1R
36.25
37.41
38.56
39.72
40.00
40.00
40.00
40.00
40.no
40.00
40.82
41 .00
41 .00
41.30
42.00
42.00
4?. 00
42.93
43.00
43.00
43.00
43.56
44.71
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
7?.
73.
74.
75.
76.
77.
78.
79.
80.
0
55.00
55.00
55.no
55.no
55.no
55.no
55.nO
55.00
55.00
55.no
55.00
54.50
54.66
55.00
54. n3
54.00
54.00
54.nO
54.00
54.00
54.00
54.00
54.no
54.77
56.no
56.no
56.00
56. P2
57.00
56.67
56.00
56.00
56.00
56.00
56.00
56.nO
56.no
56.00
56.00
56.^1
57.00
57.00
57.nO
57.00
57.00
57.05
58.00
58.00
58. nO
200.
a-)i.
2u2.
203.
204.
205.
2n6.
207.
20H.
2<)9.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226,
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
58.00
58.00
58.00
58.00
58.00
58.00
57.15
56.00
56.00
56.00
56.00
56.00
55.63
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
54.22
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
53.01
50.86
49.70
48.54
47.39
46.23
45.07
43.91
42.51
40.60
39.44
38.28
37.13
35.94
33.81
?.50.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263,
264.
265.
266.
267.
-0.
-0.
-0.
,-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-a.
-0.
-0.
-0.
-0.
<-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
32.66
30.50
28.34
P6.37
25.03
21.87
19.85
16.56
15.40
14.24
12.17
10.71
6.08
2.61
1.45
0.30
0.0
0.0
-0.00
• 0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0,00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
. -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0,00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
rO.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
•0.
-0.00
-0.00
-0.00
-o.oo
-o.oo
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•••• -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
1 -o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-o.oo
-o.oo
-0.00
-o.oo
-o.oo
-o.oo
-o.
-0.
-0.
-0.
-o.
-o.
. -o.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-o.
-o.
-n.
-0.
-0.
-0.
-o.
-o.
-0.
-o.
-0.
-0.
-0.
-0.
-o.
-0.
-o.
-0.
-o.
-o.
-0.
-o.
-o.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-o.oo
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-o.oo
-0.00
-o.oo
-o.oo
-0.00
-0.00
-0.00
-0.00
SUM OF SPFEDS =  11997.68

IF THE ABOVE TIME INTERVAL IS 1 SECONDt THEN!
  AVERAGE SPEED! 44.94   DURATION:  4.45 MIN.
DISTANCES   3.33

-------
1.00-SECONO 1NTEHPOLATION OF 2037082365  NY G»D
                                                                                                           I6:o5:49  FEB 10. 1978
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
15.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.46
0.22
0.0
0.0
0.0
0.0
0.0
0.0
2.97
4.00
3.69
3. on
3.62
4. 00
5.87
9.00
9.00
9.41
10. 56
11.00
12.76
13. on
13. on
13.35
14. SI
14.33
14. on
14.98
15.55
18.11
15.55
15.61
16.0"
15. n7
16. on
16.24
17. on
17. on
17.00
50. 17.00
51. 17.05
52. 19.00
53. 19.00
54. 19.50
55. 20.00
56. 18.37
57. 18.00
58. 18.74
59. 17.29
60. 18.44
61. 19.00
62. 21.28
63. 19.25
64. 19.29
65. 23.00
66. 23.00
67. 23.00
6B. ?3.70
69. 24.00
70. ?4.00
71. 24.00
72. 23.67
73. 23.49
74. 23.35
75. 23.00
76. 24.92
77. 24.88
78. 23.72
79. 23.43
HO. 23.41
81. 23.00
R2. 20.28
R3. 20.06
84. 21.00
85. 20.24
86. I9.no
87. 19.00
88. 20.70
89. 21.nl
on. 22.33
91. 23. 6H
02. 22.52
93. 22.00
94. 22. 80
95. 21.09
96. 21.22
97. 22.73
98. 22.00
99. 23.16
100. 26.22
101. 27.00
102. 2^.00
ln3. 2^.42
104. 31.37
105. 32.00
lo6. 3isno
107. 32.no
108. 34.00
109. 34.16
110. 14.69
111. 35.41
112. 3M.26
113. 3". 00
114. 3V/. 94
115. 40.20
116. 42.00
117. 42.00
118. 42.00
119. 41.27
120. 41.00
121. <>1.04
122. 42.00
]23, 42.36
124. 43.52
125. 44.67
126. 45.83
127. 46.00
128. 4fr.no
129. 4^.30
130. 47.46
131. 4h.h2
132. 4«.?2
133. 4H.OO
134. 4f<»00
135. 4H.OO
116. 48.41
137. 4S.56
13". 5". 00
139. SI. 76
140. SX.04
141. Sd.Pl
142. 52.no
143. 52.no
144. S?.00
145. S.-NOO
14ft. 1V.OO
147. 53.00
148. 53.00
149. S3. 45
15n. 54.00
151. 53.33
15?. 53. nO
15->. 52. P2
154. 52.24
155. 53. no
156. 53. .10
157. 52. '9
15«. 48.53
151'. 48.no
160. 48. 1«
161. 49.nO
162. 48. SO
163. 46.f' 3
164. 45.nO
165. 43. n6
166. 40.13
167. 41.00
168. 4l.nO.
160. 4l.no
170. 40.24
171. 40.nO
172. 39.no
173. 39.00
174. 39.fiO
175, 39.nO
176. 39.70
177, 40. °6
178. 42.nO
17". 42.00
18n. 42. nO
1«1 . 41.51
10?. 41.65
!«•». 42.C.O
184. 41,r,4
IBS. 42.1?
1H*. 42.72
187. 42.43
l«n. 43.no
199. 43.00
19n. 43.o]
191. 45.00
10?. 45.??.
193. 45. --»5
1Q4. 44. nO
195. 44.00
196. 44.nO
197. 44.nO
19R. 44.33
190. 45.68
2'JO. 45,00
2'Jl. 46,27
202. 45.41
2()3i 45.00
2'i4. 44,11
205. 44.73
2.)6. 44.00
207. 44,58
208. 43,52
2o<*. 43,00
210. 44.05
211. 44.58
212. 42.63
213. 41.47
214. 4UOO
215. 41.00
216. 39.01
217. 39.85
218. 37.75
219. 35.00
220. 35.00
2<21. 35.00
222. 35.94
223. 37.00
224. 37.51
225. 39.00
226. 39.00
2H1. 39.00
228. 39.00
229. 37.87
230. 35.00
231. 35.00
232. 35.00
233. 36.34
234. 37.00
235. 36.01
23b. 33.71
237. 31,70
238. 29.63
239. 26.77
240. 25. 2J
241. 21.28
242. 19.91
243. 18.03
244. 14.60
245. 13.44
246. 11.57
247. 9.26
248. 7.94
249. 5.63
250.
251.
252.
253.
254.
255.
256,,
257.
258,
259*
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
-0.
-0..
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
3.66
2.00
0.34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo .
-0.00
-0.00
-0.00
-0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0,00
-0. -0.00
-0. -0.00
-o. -o.oo
•-o. -o.oo
-o.'-o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-6. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
- -0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.no
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. .-0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -n.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0; -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-o. -o.oo
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
' -0. -0.00
-0. -0.00
-0. -0.00
-0. -0.00
 SUM OF SPEEDS
                   7533.55
 IF THE ABOVE TIME INTERVAL IS 1 SF.COND. THEN!
   AVERAGE SPEEDt 27.00   DURATION:  4.65 HIM.
DISTANCE:   2.09

-------
 1.00-SECOND INTERPOLATION OP 2120127413  NY G+D "IFWY
                                                           1M07:15  FEB 10*  1978
o.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
1C.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
18.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69i
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
"I.
92.
9.1.
94.
95.
96.
97.
98.
99.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.13
0.71
0.0
0.0
0.0
0.0
4.15
6.00
6.00
6.00
5.30
4.14
1.96
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.48
1.64
0.41
0.0
0.0
0.0
0.0
0.0
ino.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
11?.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
118.
139.
140.
141;
142.
143.
144.
145.
146.
147.
148.
149.
n.n
o.o
o.o
0*0
0.0
0.0
o.o
n»o
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
U.O
u.o
0*0
o.o
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
II. 0
n«0
0.0
0*0
0.0
o.o
o.o
0.0
0*0
0.0
0.0
o.o
o.o
0.19
1.00
1.51
2.66
4.64
6.96
B.86
7.71
7.45
ISO.
151.
152.
153.
154.
155.
156.
157.
15«.
15n.
160.
161.
16?.
161.
16i.
16^.
1ft*.
1*7.
168.
16Q.
17n.
171.
17?.
171.
176..
17=;.
17ft.
177.
178.
179.
18n.
181.
18?.
18?.
184.
185.
186.
187.
188.
18P.
190.
191.
19?.
191.
194.
1°5.
196.
197.
19*.
199.
9. ;-2
10.00
9.:T8
lO.nfl
11. ?4
12.79
14.00
12.58
12.^7
13.nO
13.^0
13. *8
15. no
15.no
13.17
12.03
12. ?6 .
14. ?9
14.56
15. ?0
16.76
17.no
17.nO
17. ?3
18.77
20.54
19.60
18.14
17.98
17.00
16.14
15.00
15.00
15.00
15.Q6
12.15
15. ?8
14. ?7
12.59
12. ?S
9.?8
8.00
8.00
8.18
9.^3
10.69
ll.no
9.no
9.00
9.32
' 200.
201.
202.
203.
204.
205.
206.
207.
208.
20*.
210.
211.
212,
213.
214.
215.
216.
217.
218.
219.
2?0.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
2J1.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
10.00
9.36
9.00
9.95
14.33
17.53
19.42
20.00
20.74
21.00
?1.11
23.84
27.00
27.00
29.05
32.52
31.01
31.00
31.62
33.00
32.37
30.43
30.00
30.00
30.51
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.00
.34.00
34.00
33.01
31.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
a. 91
0.0
250.
251.
252.
253.
254.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
' -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
' -0.
-0.
-0.
-0.
-0.
•0.
-0.
0.0
0.0
0.0
0.0
0.0
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
•0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00 .
•0.00
-0.00
-0.00
•0.00
•0.00
•0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
"0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
•0.00
-0.00
. -0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-6.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
'-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
.-0.00
-0.00
-o.no
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00 '
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
•0.
-0.
-0.
-0.
•0*
-0.
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-o.oo
-0*00
-0.00
•0.00
-0.00
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0*
-0.
-0.
-0.
•0.
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
•0.00
.•0.00
-0.00
SUM OF SPEEDS =   1920.68

IF THE ABOVE TIME INTERVAL IS 1 SECOND. THFNI
  AVERAGE SPEED!  7.56   DURATION:  4.23 MlN.
DISTANCES   0.53

-------