HDV 78-04
Technical Report
August 1978
Transient Cycle Arrangement for Heavy-
Duty Engine and Chassis Emission Testing
by
Chester J. France
NOTICE
Technical Reports do not necessarily represent final EPA decisions
or positions. They are intended to present technical analysis of
issues using data which are currently available. The purpose in
the release of such reports is to facilitate the exchange of tech-
nical information and to inform the public of technical develop-
ments which may form the basis for a final EPA decision, position
or regulatory action.
Standards Development and Support Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
Office of Air and Waste Management
U.S. Environmental Protection Agency
-------
-111-
TABLE OF CONTENTS
Page
Foreward ii
I. Summary 1
II. Introduction and Background 3
III. Discussion 4
A. Practical Requirements Governing Cycle
Arrangement 4
B. Pertinent Cycle Characteristics 5
1.. Trip Length .5
2. Selection of Cold Start Segment 9
3. Hot/Cold Weighting Factors 11
4. Hot Soak Time 1^
C. Finalized Cycles and Corresponding 13
Emission Calculations
1. Finalized Engine Cycles 13
2. Finalized Chassis Cycles l{i
3. Exhaust Emission Calculation 17
Equations
D. Conclusions 19
Appendix I 20
Appendix II 26
Appendix III 39
-------
-11-
Foreward
Olson Laboratories, EPA's heavy-duty (HD) cycle development
contractor, has generated various nominal 5-minute chassis and
engine cycles from the CAPE-21 data b.ase.* The Emission Control
Technology Division (ECTD) of EPA has in turn, selected the best
cycle in each category for which cycles were generated (both
chassis and engine cycles).^* The final step in' ECTD's HD tran-
sient cycle development effort is the arrangement of these five
minute cycles into one cycle which exhibits the proper trip charac-
teristics as determined from the CAPE-21 survey data.
The purpose of this report i^ to identify the cycle arrange-
ment that has the proper trip characteristics and which also meets
certain practical requirements. Chassis and engine cycle arrange-
ments for both HD gasoline and diesel vehicles are;: developed. The
equations necessary for exhaust emission calculations are alsp
presented.
* "Heavy-Duty Vehicle Cycle Development," EPA Draft Final Report,
July 1978 (to be released about September 1978).
** "Selection of Transient Cycle for Heavy-Duty Engines," EPA
Technical Report HDV 77-01, by T. Wysor and C. France, November
1977 and "Selection of Transient Cycles for Heavy-Duty Vehicles,"
EPA Techical Report HDV 78-02, by T. Wysor and C. France, June
1978.
-------
I. Summary
Objective
The objective
ment that has the
freeway weighting;
weighting; and trip
program needs and
cycle arrangements
equations for both
also be derived.
of this report is to develop a cycle arrange-
proper trip characteristics (e.g., non-freeway/
city weighting; hot operation/cold operation
length) and also meets requirements dictated by
practical considerations. Chassis and engine
including corresponding emission calculation
heavy-duty gasoline and diesel vehicles will
Results
Various nominal 5-minute chassis and engine cycles (developed
by EPA's cycle development contractor, Olson Laboratories) were
arranged into one cycle (one for chassis and one for engine) ptyat
exhibited the proper heavy-duty trip characteristics. The trip
characteristics were determined from the CAPE-21 survey data.
Several other practical constraints (summarized in section III(A)
"Practical Requirements Governing Cycle Arrangement") also influ-
ence the arrangement of the finalized cycles.
The finalized engine and chassis cycle arrangements are shown
below.
Finalized Engine Cycles
Segment No;
Gasoline:
Diesel:
New York
Non-freeway
272 sec.
297 sec.
Los Angeles
Non-freeway
307 sec.
300 sec.
Los Angeles
Freeway
316 sec.
305 sec.
New York
Non-freeway
272 sec.
297 sec.
20 minute nominal trip length
(actual trip length = 19.45 min. for gasoline
and 19.98 min. for diesel)
Finalized Chassis Cycle
(Gasoline and Diesel)
Segment No: 1
New York
Non-freeway
254 sec.
Los Angeles
Non-freeway
285 sec.
Los Angeles
Freeway
267 se,c.
New York
Non-freeway
254 sec.
20 minute nominal trip length
(actual trip length = 17.67 min.)
-------
-2-
A completf emission test would consist of a cold start and a hot
start cycle run. (The second-by-second listings for these cycles
can be found in Appendices II and III.)
The corresponding equations for emission calculation are:
1) engine cycle:
A , l/7(gc) + 6/7(gh)
wm
l/7(BHP-Hrc) + 6/7(BHP-Hrh)
Where:
A = Weighted mass emission level (HC, CO, C02j or NOx)
wm in grams per brake horsepower-hour.
g ' = Mass- emission'level in grams, measured during the
0 cold start test.
g, = Mass emission level in grams, measured during the
hot start test.
BHP-Hr = Total brake horsepower-hour (brake horsepower
c integrated with respect to time) for the cold start
test.
BHP-Hr = Total brake horsepower-hour (brake horsepower
integrated with respect to time) for the hot start
test.
and
2) chassis cycle: .
A. = l/7(gc) + 6/7(gh)
wm 5-55
Where: .
Awm = Weighted mass emission level (HC, CO, C02> or NOx)
in grams per vehicle mile.
g = Mass emission level in grams, measured during the
cold start test.
g, = Mass emission level in grams, measured during the
hot start test.
-------
-3-
Conclusions
The cycle arrangement above was fundamentally based on the
CAPE-21 data base and the cycles generated from it. In some
cases engineering judgement was relied upon. The finalized
composite cycles exhibit trip characteristics supported by the
CAPE-21 data base and can be considered representative of an
urban trip for a HD truck.
II. Introduction and Background
The initial step in ECTD's cycle development effort was the
collection of urban truck operational data. The CAPE-21 project*
accomplished this task. In the CAPE-21 survey forty-four (44)
trucks and three (3) buses were surveyed in Los Angeles (LA), and
forty-four (44) trucks and four (4) buses were surveyed in New York
City (NY). Speed (mph), engine rpm, engine power, engine temper-
ature, and various road and traffic descriptions were recorded on
tape at approximately one second intervals. The vehicles performed
their normal daily functions while these data were collected.
From this data base, Olson Laboratories generated numerous
5-minute (approximate) long transient cycles using the Monte Carlo
technique.** ECTD selected, from the cycles delivered, the best
cycle in each category. The selected cycles and their identifica-
tion numbers are listed below.
Engine Cycles Selected
Identification Number Cycle Description
203887989 LA Non-Freeway, Gasoline
296644805 LA Freeway, Gasoline
8410263 NY Non-Freeway, Gasoline
792043535 NY Freeway, Gasoline
2110248101 LA Non-Freeway, Diesel
1599345415 LA Freeway, Diesel .
2114147447 NY Non-Freeway, Diesel
104099549 NY Freeway, Diesel
*"Truck Driving Pattern and Use Survey, Phase II - Part I," Final
Report, EPA Report No. EPA-460/3-77-009, June 1977 and "Truck
Driving Pattern and Use Survey, Phasell - Part II," EPA Technical
Report HDV 78-03, by Leroy Higdon, May 1978.
** "Heavy-Duty Vehicle Cycle Development," EPA Draft Final Report,
July 1978 (to be released about September 1978).
-------
Chassis Cycles Selected
Identification Number Cycle Description
2106-204593 LA Non-Freeway, Gasoline and Diesel
1539135071 LA Freeway, Gasolene and Diesel
212'0127413 NY Non-Freeway, Gasoline and Diesel
2037082365 NY Freeway, Gasoline and Diesel
The procedures used to select these cycles are described in
the EPA reports "Selection of Transient Cycles for Heavy-Duty
Engines," (HDV 77-01) by T. Wysor and C. France, November 1977, and
"Selection of Transient Cycles for Heavy-Duty Vehicles," (HDV
78-02) by T. Wysor and C. France, June 1978.
The remaining task in the HD cycle development effort is the
logical arrangement of the above cycles into one cycle for chassis
testing and one for engine testing. The following text will
address this topic. The discussion is structured into four major
sections. They are: A) practical requirements governing cycle
arrangement, B) pertinent cycle characteristics, 0} finalized
cycles and corresponding emission calculation equations, and D)
conclusions.
III. Discussion
A. Practical Requirements Governing Cycle Arrangement
Below are listed several requirements dictated by program
needs and practical considerations to which tl|e test cycles §houlc|
conform.
1) Nominal length (time) of the engine cycle and pha^sis
cycle should be the same. The cycle length for both types of
cycles logically should be the same since they were generated
from the sa,me data bage.
2) New York and Los Angeles operation should be given equal
weighting in the finalize^ cycles, ECTD presently does not
have any information or data that indicates whether New York
or Los Angeles operation is more typical of HD urban opera-
tion. Fifty-fifty weighting of each city is the only alterna-
tive at this time.
3) The non-freeway and freeway operation should receive the
same proportional weighting as in the CAPE-21 data base.
4) The chassis cycle used for HD evaporative emission
testing should be the same as that used for exhaust emission
testing.
-------
-6-
It; should be pointed out that the reason there are such large
differences between the means and medians is that the density func-
tions are not normally distributed (see Figures 1 and 2). Instead
the density functions follow a Weibull density function or even an
exponential density function quite well. This fact supports the
use of the median as a measure of central tendency. The means
would be abnormally weighted by the extreme values and therefore
misleading.
Using a purely statistical approach the following median trip
lengths are appropriate.
Median
Category Trip Length
LA Gas 12 minutes
NY Gas 8
LA Diesel 27
NY Diesel 26
However, considering the range of the trip lengths and noting
the shape of the distribution functions (see Figures 1 and 2) any
trip length from about 10 to 25 minutes for gasoline vehicles and
20 to 50 minutes, for diesel vehicles appears reasonable. The large
standard deviations (21 to 80 minutes) also demonstrate that the
trip statistics above are imprecise.
A twenty minute trip seems very appropriate for gasoline
engines. This would be a "nominal" trip length. The actual trip
length would be a function of which set of cycle segments (e.g., NY
non-freeway, LA non-freeway, etc.) are ultimately selected and may
differ slightly for engine and chassis cycles. In any case the
actual cycle time will be approximately 20 minutes.
A twenty minute trip length was also selected for diesel
engines even though it is a little short. The consequence of such
a short cycle is that cold start emissions will be overweighted.
It is anticipated at this time that this will not pose a problem.
The relative difference between cold and stabilized emissions from
diesel engines should not be great enough for this overweighting
to be critical. If this judgment proves to be incorrect, two
options will be available. One would be to run the twenty minute
cycle twice, back to back, to obtain a 40 minute cycle. The
practical aspects of doubling the test time (cost, instrument
durability, increased probability of void tests, etc.) would be
more detrimental than the advantages that might be gained. The
other option would be to compensate by an appropriate adjustment to
the cold trip and hot trip weighting factors.
-------
-5-
5) The same test cycle should be used for diesel particulate
testing and diesel gaseous emission testing.
6) The diesel particulate test cycle must be inherently
weighted. The diesel particulate test requires a long sample
period (greater than 15 minutes) to insure accurate results.
This requirement dictates a cycle that inherently weights the
freeway and non-freeway operation, and city weighting. If
this was not the case, emissions measured over a cycle segment
(e.g. LA non-freeway) would have to be weighted properly and
then summed with the other cycle segment results. However, 5
minutes (the typical segment length) is insufficient measurer
ment time for particulate testing.
7) The emission test cycle should include both cold and hot
start cycles. This requirement insures an accurate assessment
of cold start emissions. This is particularly important
should HD gasoline engines be equipped with catalyst emission
control systems.
B. Pertinent Cycle Characteristics
1) Trip Length.
The major concern of trip length is its influence on hot
versus cold emissions. As a trip becomes longer, there is less
influence on average emissions by the cold start portion of the
trip. This is of more concern for gasoline engines than for diesel
engines, and becomes very important if catalyst control systems are
used. The following discussion addresses the issue of trip length.
Table 1 lists the trip summary data from the CAPE-21 survey.
Table 1
Time per Trip*
(in minutes)
Total No. Standard
Category of Trips Mean Median Deviation Range
LA Gas 931 19.31 12.22 21.17 0-180
NY Gas 995 19.30 7.97 38.39 0-440
LA Diesel 313 38.82 27.40 45.06 0-330
NY Diesel 234 55.23 25.50 79.88 0-460
* A trip is defined as engine-on to engine-off.
-------
Figure 1
10 X 10 TO THE CENTIMETER 18 X 25 CM.
UNITED CONVERTERS & PRINTERS
-------
-8-
Figure 2
10 X 10 TO THE CENTIMETER 18 X 25 CM.
UNITED CONVERTERS & PRINTERS
-------
-10-
Table 2
(An asterisk
LA GAS:
NY GAS:
LA DIESEL:
NY DIESEL:
All LA Trucks:
All NY Trucks:
All GAS:
All DIESEL:
All Trucks:
Mean
1.56
1.78
2.85
0.05
2.17
1.13
1.64
2.05
1.82
Cold Start N
Median Std. Dev.
0.43
0.23
0.67
0.02
0.47
0.03
0.40
0.20
0.30
2.44
2.69
4.19
0.08
3.38
2.25
2.48
3.74
3.07
17
10
15
6
32
16
27
21
48
Initial Idle Time
(in minutes)
indicates a frequency of one or less)
Warm Start N Normal Start N
Mean Median Std. Dev. Mean Median Std. Dev.
0.56
0.86
0.40
0.20
0.46
0.58
0.64
0.37
0.48
0.37
0.35
0.10
0.10
0.25
0.27
0.37
0.10
0.27
0.71
1.23
0.57
0.23
0.62
0.95
0.84
0.53
0.68
11
4
19
3
30
7
15
22
37
0.34
1.25
0.26
0.34
0.31
0.98
0.67
0.28
0.53
0.10
0.20
0.13
0.13
0.10
0.20
0.17
0.13
0.15
0.63
3.00
0.32
0.33
0.53
2.55
1.90
0.32
1.53
39
22
26
9
65
31
61
35
96
Hot Start
Mean Median Std. Dev
0.18 0.10 0.27
0.44 0.10 1.20
* * *
* * *
0.18 0.10 0.27
0.43 0.10 1.19
0.28 0.10 0.80
* * *
0.28 0.10 0.80
N
88
62
0
1
88
63
150
1
151
-------
-9-
As will be seen later, the number of trips per day of gasoline
vehicles versus diesel vehicles also effects cold start weighting.
The hot/cold trip weighting factors seleted under section B(3)
underweight the cold start emissions for diesels. This under-
weighting will tend to offset the overweighting resulting from a
20 minute trip length.
2) Selection of Cold Start Segment
Based on a hot/cold analysis* of the CAPE-21 data it was
concluded that there was not a significant difference in hot versus
cold truck operation from a practical viewpoint. Therefore, a
separate cold start cycle was not generated from the CAPE-21 data
base. The analysis does show that a cold start was characterized
by a longer than normal initial idle period. Table 2 summarizes
the initial idle time following cold, warm, normal, and hot starts.
Table 2 suggests a median initial idle time of 24 seconds for
gasoline trucks (LA and NY). Table 2 also indicates that diesel
trucks have a typical initial idle period of 12 seconds (median
value). It should be noticed that there is a drastic difference
between the median values for LA diesels and NY diesels (.67 min.
versus .02 min.). Because the initial idle is extremely short for
NY diesels when compared to the other categories, the NY diesel
truck data are suspicious. The initial idle time summary statis-
tics may not be that reliable for the NY diesel due to the limited
number of trucks that were used in the hot/cold analysis from which
Table 2 was derived. The initial idle period for the LA diesels
are of the same order of magnitude as the LA and NY gas trucks and
does appear to be reasonable.
The practicalities of running the transient test procedure
prevent the initial idle period following a cold start from getting
much shorter than 24 seconds. Sufficient idle time is necessary to
allow the engine to stabilize with the proper choke setting (after
starting) and to enable the engine dynamometer to be placed in the
transient control mode. Since the initial idle period for the NY
diesels is somewhat suspicious and because diesels are less sensi-
tive to cold start characteristics than gasoline engines the
initial idle for gasoline engines will also be used for diesel
engines.
It should be emphasized that the initial idle summary statis-
tics (presented in Table 2) are highly variable. Large differences
exist between the medians and means due to the skewed distributions.
The extreme values (long idle periods) for some trucks excessively
weight the means. This fact also contributes to the large standard
*"Analysis of Hot/Cold Cycle Requirements for Heavy-Duty Vehicles,"
EPA Technical Report HDV 78-05, by Chester France, June 1978.
-------
Truck
Category
LA 2-axle GAS
LA 3-axle GAS
LA TT GAS
LA 2-axle DSL
LA 3-axle DSL
LA TT DSL
LA all GAS
LA all DSL
LA All Trucks
LA Buses
NY 2-axle GAS
NY 3-axle GAS
NY TT GAS
NY
NY
2-axle DSL
3-axle DSL
NY TT DSL
NY all GAS
NY all DSL
NY All Trucks
NY Buses
-12-
Table 3
Trips per Day
Sample
Size
71
4
18
2
19
24
93
45
138
7
76
2
9
5
16
24
87
45
132
13
Mean
10.28
11.75
8.56
14.50
6.84
6.42
10.01
6.96
9.01
7.43
12.14
6.50
6.56
2.80
3.44
6.88
11.44
5.20
9.31
11.62
Median
8.10
12.00
5.83
11.00
5.83
5.75
7.83
5.93
7.17
5.88
11.00
1.00
4.50
2.25
1.86
5.00
10.38
2.92
7.00
9.50
Standard
Deviation
6.03
2.28
5.19
3.50
3.41
2,58
5.82
3.42
5.35
1.84
8.62
5.50
5.23
0.75
3.10
5.09
8.48
4.53
7.95
7.12
Table 4
Time Between Trips
(in minutes)
All Days:
LA 2-axle GAS
LA 3-axle GAS
LA TT GAS
LA 2-axle DSL
LA 3-axle DSL
LA TT DSL
LA all GAS
LA all DSL
LA All Trucks
LA Buses
NY 2-axle GAS
NY 3-axle GAS
NY TT GAS
NY 2-axle DSL
NY 3-axle DSL
NY TT DSL
NY all GAS
NY all DSL
NY All Trucks
NY Buses
Sample
Size
659
43
136
27
111
130
838
268
1106
45
847
11
50
9
39
141
908
189
1097
138
Mean
21.24
20.98
35.34
21.15
33.86
28.56
23.51
30.01
25.09
19.87
17.65
21.18
25.56
17.00
43.24
25.99
18.13
29.12
20.02
10.19
Median
12.54
14.25
23.50
12.00
22.85
21.83
14.18
19.50
15.53
14.00
10.17
18.00
20.50
14.75
15.25
17.60
10.48
16.86
11.07
5.55
Standard
Deviation
25.88
20.95
42.20
26.30
37.98
27.42
29.42
32.35
30.28
15.81
27.76
13.77
24.39
6.04
63.42
31.78
27.52
40.51
30.44
19.28
-------
-11-
deviations. Even among the statistics (e.g., medians) there are
wide ranges of values (1 to 40 seconds for medians) among the
various truck categories. The median was used to eliminate exces-
sive weighting by extremely long initial idle periods. It was also
thought to best represent the most typical initial idle time for
the CAPE-21 trucks, moreso than the means. Arguments could be
constructed for longer initial idle periods than the one selected
above, however any idle time less than the one selected would be
difficult to justify (at least for gasoline vehicles).
In summation, a 24 second initial idle time was selected for
both gasoline and diesel engine cycles. The same 24 second initial
idle time was also placed at the beginning of the opening segment
of the chassis cycle.
Only one cycle segment is really a logical choice for the
opening segment. The segment is New York, non-freeway. The
reasons for this are: (1) this segment, by far, contains the most
idle (greater than 40%) and (2) its statistics (mean mph, mean %
power, mean % rpm, and % idle) are more characteristic of cold
operation than those of the other cycle segments.*
To simply add the required idle to the front of the New York
cycle would artificially inflate the total cycle's percent idle. A
much better approach would be to reorder the idle in the New York
non-freeway segment. Reordering the idle does not alter the
representativeness of the cycle and is a statistically valid
maneuver.
The reordered New York non-freeway segments can be found in
Appendix I. (The unmodified versions can be found in EPA Technical
reports HDV 77-01 and HDV 78-02.) Both the engine (gasoline and
diesel) and chassis cycles are listed.
3) Hot/Cold Weighting Factors
One of the requirements (listed earlier) governing the cycle
arrangement is a cold and hot start test. Because of this require-
ment the appropriate hot/cold weighting factors need determination.
The number of trips per day and the number of cold starts per day
for LA and NY trucks are necessary information for calculation of
the weighting factors.
Table 3 summarizes the trips per day for various CAPE-21 truck
categories. The only categories of real interest in this table are
LA trucks (gas and diesel) and NY trucks (gas and diesel). As
before, the median values are more appropriate because of non-nor-
malities. The median trips per day for both the LA and NY trucks
is seven (7).
*"Analysis of Hot/Cold Cycle Requirements for Heavy-Duty Vehicles,"
EPA Technical Report HDV 78-05, by Chester France, June 1978.
-------
-14-
Table 5
CAPE-21 Non-Freeway and Freeway Weighting
Category Non-Freeway Freeway
LA Gas .30 .20
NY Gas .44 .06
LA Diesel .24 .26
NY Diesel .41 .10
A complicating factor in trying to duplicate the weightings
above, is that all cycles (engine and chassis) generated are a
nominal five minutes in length. It is impossible using the five
minute cycles, the 20 minute trip length, and a 50/50 city weigh-
ting, to exactly match the N-F/F weighting in Table 5.
The best compromise is to simply delete the New York freeway
cycle. This cycle only represents 6% of the data for gasoline and
10% of the data for diesel. Also, the New York freeway cycle for
gasoline engines was tainted by questionable RPM data from New York
gas truck 09.* Consequently, the cycle's representativeness is
debatable. The New York non-freeway gasoline engine cycle was
influenced substantially less by truck 09 and it is felt that the
cycle remains reasonably representative. The deletion of the New
York freeway cycle eliminates most of the potential influence of
truck 09 on the finalized gasoline engine cycle. To maintain the
proper city weighting the NY N-F cycle could be run twice. The
resulting cycle would look like this:
Figure 3
Finalized Engine Cycle
Segment No: 1 2 3 4
NY N-F LA N-F LA F NY N-F
Gas: 272 sec. 307 sec. 316 sec. 272 sec.
Diesel: 297 sec. 300 sec. 305 sec. 297 sec.
20 minutes nominal trip length
(actual trip length = 1167 (19.45 min.) for gas
and 1199 sec (19.9 min.) for diesel.)
This cycle has the following city and N-F/F weighting.
*This problem is more fully discussed in the Addendum to the EPA
Technical Report "Selection of Transient Cycles for Heavy-Duty
Engines," (HDV 77-01) by T. Wysor and C. France, November 1977.
-------
-13-
To determine the number of cold start trips per day refer to
Table 4. This table lists the time between trips for various
CAPE-21 truck categories. The times between trips listed are the
engine-off times between trips. The engine-off time preced-
ing the first start of the day was not included in the calculation
of these summary statistics. The median values (and mean values
for that matter) clearly demonstrate that only the first start of
the day can be considered cold. Therefore, the remaining trips can
be considered hot starts.
Based on the above information the appropriate hot and cold
weighting factors are shown below.
Cold Start Weighting Factor = Number of Cold Start Trips per Day = 1
Total Number of Trips per Day 7
Hot Start Weighting Factor = Number of Cold Start Trips per Day = £
Total Number of Trips per Day 7
4) Hot Soak Time
Again because of a cold start and hot start test requirement,
the proper hot soak time has to be assessed. Table 4 will provide
the necessary information.
The summary statistics in Table 4 exhibit the same degree of
variability as the time per trip data listed earlier. The density
functions are not normal and the standard deviations are huge.
Noting this large amount of variation among the trucks, a 20 minute
hot soak time seems entirely reasonable. The actual median values
do indicate a hot soak time of eleven (11) to sixteen (16) minutes.
A hot soak time of 20 minutes is close to these values when com-
pared to the wide range of values. Also, practical considerations
of running the test (e.g., sampling bag evacuation, dynamometer and
computer pre-test preparation, etc.) discourage the use of a
shorter soak time.
C. Finalized Cycles and Corresponding Emission Calculations
1) Finalized Engine Cycles
There is no strong basis for ordering the remainder of the
segments after the cold start segment. The only related constraint
is the proper non-freeway (N-F) and freeway (F) weighting. The
N-F/F weighting factors for the CAPE-21 data base are shown below.
-------
-16-
Figure 4
Finalized Chassis Cycle
(Gasoline and Diesel)
Segment No: 1 2 3 4
NY N-F LA N-F LA F NY N-F
254 sec. 285 sec. 267 sec. 254 sec.
20 minute nominal trip length
(actual trip length = 1060 sec., 17.67 min.)
The summary statistics for this chassis cycle are shown in
Table 8. The chassis cycle segment weighting parallels the engine
cycles' weighting very closely. Also, the chassis cycle's summary
statistics are comparable to those of CAPE-21. A listing of the
finalized chassis cycle is located in Appendix III.
3) Exhaust Emission Calculation Equations
a) Engine Cycles
For engine emission testing, emission levels are usually
presented in terms of grams of pollutant per brake horsepower-hour.
This method of expressing emission levels removes inequities
between small and large engines, and places both on the same
comparative scale. With respect to HD transient emission testing,
it would be desirous to obtain total grams of pollutant per brake
horsepower-hour for an average trip weighted appropriately for hot
and cold trips. The following equation enables calculation of
emission levels, in grams per brake horsepower-hour, for the engine
emission cycle shown in Figure 3.
Equation (1) . _ l/7(g )
A C
wm -i-
Where:
6/7(BHP-Hrh)
A = Weighted mass emission level (HC, CO, C02, or NOx)
in grams per brake horsepower-hour.
g = Mass emission level in grams, measured during the
cold start test.
g, = Mass emission level in grams, measured during the
hot start test.
-------
-15-
Category
LA Gas
NY Gas
LA Diesel
NY Diesel
Table 6
City and Non-Freeway/Freeway Weighting
City Weighting Non-Freeway Weighting Freeway Weighting
Desired Actual Desired Actual Desired Actual
.50
.50
.50
.50
.47
.53
.50
.50
.30
.44
.24
.41
.26
.47
.25
.50
.20
.06
.26
.09
.27
0
.25
0
The opening segment for the cycle above was justified earlier.
The second New York segment was not chosen for the second segment
because emissions under New York driving conditions would be
measured while the engine was either cold or partilly warm (at
least for the cold start test). No stabilized emission results
from New York type operation would be available. Instead, the LA
N-F cycle was selected for the second segment. This cycle was
chosen so as not to demand high power and speed from the engine (as
would be required by the LA F cycle) before it was fully warmed-up.
The LA F cycle was selected for the third segment and the NY N-F
cycle concludes the composite cycle. This composite cycle would be
run for both hot and cold start tests.
Finally, Table 7 compares the average between % RPM, average %
power, and the % idle for the composite cycle and the CAPE-21 data
base. Table 7 clearly illustrates that the proposed cycle approxi-
mates the CAPE-21 % RPM, % power and % Idle quite closely.
Table 7
Engine Cycle
Gasoline
Diesel
Average % RPM
Desired Actual
29
46
30
42
Average % POWER
Desired Actual
33
30
36
28
% Idle
Desired Actual
26
32
27
36
A complete listing of the gasoline and diesel engine cycles
can be found in Appendix II.
2) Finalized Chassis Cycles
The finalized chassis cycle was arranged in the same manner as
the engine cycles and the same logic was used. The resulting
composite cycle for chassis testing is shown below.
-------
-18-
BHP-Hr = Total brake horsepower-hour (brake horsepower inte-
grated with respect to time) for the cold start
test.
BHP-Hr = Total brake horsepower-hour (brake horsepower inte-
grated with respect to time) for the hot start
test.
The numerator in Equation (1) would equal the total grams of
pollutant measured during an average trip (as derived from the
CAPE-21 data base). This gram value is weighted appropriately for
the typical number of cold and hot trips occuring in a truck's
daily operation. Similarly, the denominator represents the total
hot/cold weighted, brake horsepower-hour (work) output during the
trip.
b) Chassis Cycle
Emission levels for chassis emission testing are presented in
terms of grams of pollutant per mile traveled. The following
equation produces hot/cold weighted mass emissions per vehicle mile
for the HD chassis cycle in Figure 4.
l/7(g ) + 6/7(gh)
Equation (2) < A = =—=-=
wm _>. j_>
Where:
A = Weighted mass emission level (HC, CO, CO., or NOx)
wm in grams per vehicle mile.
g = Mass emission level in grams, measured during the
cold start test.
g = Mass emission level in grams, measured during the
hot start test.
The numerator produces the hot/cold weighted mass of pollutant
measured during the cycle (same as for engine cycles). The numer-
ical value which is in the denominator equals the total number of
miles traveled during the cycle.
D. Conclusions
Figures 3 and 4 present cycle segment arrangements for tran-
sient engine and transient chassis emission testing respectively.
(Listings of all cycles are located in Appendix II and II.) A
-------
Category
-17-
Table 8
Chassis Cycle Summary Statistics
City Weighting
Desired Actual
Non-Freeway
Weighting
Desired Actual
Freeway
Weighting
Desired Actual
3
Miles per Trip
Desired Actual
Average Speed (mph)
per Trip
Desired Actual
LA Gas .50 .52
and Diesel
NY Gas .50 .48
and Diesel
.28 .27 .22 .25
4.59 5.55
(5.73)
.43 .48 .07 0
15. 991
(19. 45)2
18.86
This value was derived from the means of the trip values. Each trip is weighted equally regardless
of trip length.
2
The average speed for each truck category was used to calculate this value. The calculation
technique is shown below.
Average speed per trip = (Avg. speed, LA Non-Freeway) .28 + (Avg. speed, LA Freeway) .22 +
(Avg. speed, NY Non-Freeway) .43 + (Avg. speed, NY Freeway) .07
and
Average Speed (MPH)
Non-Freeway Freeway
LA Gas & Diesel 15.10
NY Gas & Diesel 7.80
45.54
26.39
therefore
Avg. speed per trip = (15.10) .28 + (45.54) .22 + (7.80) .43 + (26.39) .07 = 19.45 MPH
Miles per trip = (Average speed per trip)(Trip cycle duration)
= (Average speed per trip)(*'*"')
60
-------
-19-
complete emission test would consist of a cold start and a hot
start cycle run. Equation (1) provides the means of calculating
emission levels for engine testing. The calculated emission levels
will be in grams per brake horsepower-hour. Similarly, for chassis
testing Equation (2) is used to calculate weighted grams of pollu-
tant per vehicle mile.
The cycle arrangements derived in this report are fundamen-
tally based on the CAPE-21 data base and the cycles generated from
it. In some instances more than one choice or approach was-avail-
able. In these cases practical consideration and engineering
judgment were used to aid in the selection of the finalized cycle.
The finalized composite cycle exhibits trip characteristics sup-
ported by the CAPE-21 data base and can be considered a typical
urban trip for a HD truck.
-------
-20-
APPENDIX I
Reordered New York Non-Freeway Segments
(Engine and Chassis)
-------
-22-
Reordered New York Non-Freeway Gasoline Engine Cycle
RtCORD
(SEC)
POO.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
%RP"
-------
Reordered New York Non-Freeway Gasoline Engine Cycle
RECORD
(SEC)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
<+«.
49.
*RPM
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
n.'i
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
0 . 0
o.o
o.n
0.0
-1.7ri
0.0
4.2S
27.^7
42.9*1
45. rv
48.11
50.<*2
52./<*
54.00
44. 4. J
45. Ob
46.00
37.0'^
31.61
22.9'+
24.00
20.86
1?.4S
S . 0 i)
6.b^
7.17
2.S6
0.0
0.0
%POWER
0.0
0.0
0.0
0.0
0.0
o.n
o.o
o.o
o.o
o.o
o.o
o.o
o.n
o.o
o.o
o.o
n.o
o.o
o.n
0.0
o.o
o.o
o.o
0.0
n.o
44.40
85.35
100.00
100.00
100.00
100.00
99.46
90.00
75.23
50.00
8.96
MOTORING
9.99
MOTORING
5.68
35.29
4.87
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
RECORD
(SEC)
50.
51.
52.
ST.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
6^.
65.
66.
67.
6ft.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
%RPM
0.0
0.0
4.3?
8.90
1.95
3.3-<
4. on
13.76
26.43
33. 8S
36.00
34. 4S
34.00
35.64
32. 99
36. On
41.63
60.41
48.44
43.8ft
40. 3Q
38.5o
35. OS
40. 6A
43.64
45.9ft
47. in
49. 2Q
37.10
36. On
34.47
32.15
31.67
28. 4a
32.39
36. On
41.69
45.74
49. 9S
49.10
50.59
<»5.9q
42.7*
35.1?
32.0*
35.53
46.57
*9.77
52. On
S3. 06
%POWER
0.0
10.11
<*60<.0
<+5.17
50.00
<»1 .68
09.46
35.60
26.96
6.16
MOTORING
MOT OK ING
VOTORTNG
MOTORING
27.39
30.00
7*. 37
2b.76
MOTORING
MOTORING
MOTOWING
4.01
JO. 00
16.70
26.45
MOTORING
MOTORING
MOT OK ING
MOTORING
MOTukING
MOTORING
MOTORING
MOTORING
13.89
*0.00
9o.oo
90.00
90.00
bO.OO
rtO.OO
62.97
J4.98
7.23
MOTuRIHG
67.92
b2.b5
08. bO
<*d.65
hO.OO
bO.OO
RECORD
(SEC)
100.
101 .
102. .
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
1)4.
115.
llfc.
117.
1 18.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
1<*6.
147.
148.
149.
*>RPM
63.66
64.14
59. 5d
38.00
39.09
40.00
34.85
32.03
34.00
34.00
33.02
25. 5^
15.57
14.00
14.47
lb.00
17.13
16.00
10.02
9.61
5.6e
4.00
t.oo
2.93
O.b^
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
o.n
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
2.00
1 .38
0.0
o.n
%POWER
23.42
17.84
3.76
42.26
30.00
30.00
47.18
10.33
33.48
50.00
20.69
MOTORING
MOTORING
MOTORING
27.64
4.<»9
MOTORING
MOTORING
MOTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
10.00
10.00
29.02
27.83
7.34
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.27
RECORD
(SEC)
150.
151.
152.
153.
154.
Ibb.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
17fa.
179.
180.
181.
182.
183.
184.
18b.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
%RPM
0.0
0.0
0.0
0.0
O.b3
2.00
0.54
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
17.29
22.17
24.00
2<*.00
2*. 00
22.57
22.00
13.88
K'.CO
9.31
3.99
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
%POWER
2.16
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
MOTORING
22.01
72.29
80.00
89.29
90.00
82. 7 u
31.96
MOTORINi,
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
-24-
Reordered New York Non-Freeway Diesel Engine Cycle
RECORD
(SEC)
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
%RP"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.U
O.U
0.0
0.0
31. JU
41. IS
44.00
46.41
51.04
66.66
75 . 0 J
89. 8b
96. 7*
96.91
94.t)iJ
99. Jo
100. OU
100.00
100.00
100.9*
100.71
100.00
96. lh
95.77
94.5^
96.86
99.1ft
100.00
101. Ml
86.54
63.56
56. OJ
46.00
41 .Hb
38.31
35.93
31.03
25.36
%POWFR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
73.41
90.00
81.30
90.00
90.00
90.00
82.41
80.00
90.00
90.00
93.83
50.94
17.02
28.60
39.83
30.00
26.69
20.00
20.00
36.06
40.00
30.00
32.75
35.68
30.00
44.93
50. -00
MOTORING
MOTORING
MOTORING
MOTORING
45.18
7R.47
80.00
80.00
80.00
RECORD
( SEC )
250.
7>51.
25?.
253.
25^.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
?76.
277.
-27R.
279.
280.
281.
282.
2fl3.
-284.
285.
-286 .
287.
288.
289.
290.
291.
292.
293.
294.
295.
29ft.
297.
%RPM
23.05
18.20
12.84
10.10
3.79
1.4S
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0-.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
%IJOWER
60.S>7
27.34
43.71
6M.95
fjo • V 5
4. A /* ft
oio
0.0
0.0
0.0
0.0
0.0
0.0
c'4.97
17.16
6.20
10.00
10.00
0.0
OvO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.^0
0.0
o.o
0.0
0.0
-0.0
0.0
• O.-Q
O.U
0.0
0.0
0.0
0.0
0.0
0.0
O.U
-------
-23-
Reordered New York Non-Freeway Diesel Engine Cycle
Rt'CORO
(SEC)
0.
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
13.
14. •
15.
16.
17.
IB.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
*RPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
-0.0
0^0
0.0
0.0
o.o
0.0
0.0
o.o
o . u
o.o .
0.0
0.0
0.0
0.0
0.0
3.11
9.09
IB. 62
33.49
37.93
31. 3
17.51
14.19
16. 6-+
27. 77
37. OJ
47. 3b
54.77
57.70
%POWFH
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.67
47.69
59.41
84.54
80.00
80.00
79.29
38.25
26.67
15.10
16.47
28.05
20.38
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
62.52
69.36
60.00
63.79
75.36
80.00
80.00
RECORD
(SEC)
50.
51.
52.
53.
54.
55. •
56.
57.
58.
59.
60.
61..
62.
63.
64.
6S.
66.
67.
b8.
69.
70.
71.
72.
73.
74.
75.
76.
77.
7R.
79.
80.
81.
82.
83.
84.
85.
86.
87.
8P.
89. '
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
%RPM
54.03
58. On
58.65
62.83
69.83
72.00
75.81
84.2?
83.86
60.55
80.51
78.00
79.7Q
«0.33
85. 5R
81. 7R
78.00
80.74
92.10
88.01
84.00
84.00
81.17
70.4*,
66.00
62.23
64.00
63. 4H
60.34
56.85
56.00
52.45
39.91
36. 3H
30.00
27.91
26.00
27.6*
28.00
27.4]
20.9*,
12.15
3. Hi
0.0
0.0
0.0
0.0
0.0
0.0
0.0
*POu,ER
79.92
65.03
0.23
bO.OO
50.00
42.05
<»0.00
H2.20
<*1.28
MOTORING
MOTORING
MOTORING
MOTORING
-SO. 54
«2.12
f>0.00
bU.OO
43.16
73.65
MOTORING
MOTORING
MOT JR ING
MOTORING
MOTORING
13.57
29.43
^0.00
17.42
10.00
10.00
MOTORING
MOTORING
10.00
10.00
10.00
10.00
16.74
3.36
MOTORING
MOTORTNG
MjTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.91
7.52
0.0
0.0
0.0
RECORD
(SEC)
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
%RPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.77
1.60
0.0
0.0
2.14
3. Of
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
*POwER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
0.0
9.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.51
11.34
0.0
RECORD
(SEO
150.
Ibl.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
17b.
177.
176.
179.
180.
181.
182.
183.
184.
185.
18b.
187'.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
*RPM
0.0
0.0
o.O
0.0
0.0
u.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
*POW£R
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.21
30.00
26.78
20.00
20.00
4.12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
20.00
20.00
11.73
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
-26-
APPENDIX II
Finalized Transient Engine Cycles
(Gasoline and Diesel)
-------
-25-
Reordered New York Non-Freeway Chassis Cycle (Gasoline and Diesel)
RECORD SPEED RECORD SPEED RECORn SPEED RECORD SPEED RECORD SPEED RECORD SPEED
(SEC) (MPH) (SEC) (MPH) (SEC) (MPH) (SEC) (MPH) (StC) (MPH) (SEC) (MPH)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
?2.
23.
2^.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.19
1 .00
1.51
2.66
4.64
6.96
a.86
7.71
7.45
9.2?
10.00
9.08
10. OH
11.24
12.79
14.00
12.58
12.87
13.00
13.00
13.68
15.00
15.00
13. 3/
12.03
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
H4.
85.
86.
87.
88.
89.
^0.
91.
92.
43.
94.
95.
96.
97.
98.
99.
12.26
14.29
14.56
15.20
16.76
17.00
17.00
17.23
18.77
20.54
19.60
18.14
17.98
17.00
16.34
15.00
15.00
15.00
15.96
12.35
15.28
14.27
12.59
12.25
9.28
8.00
8.00
8.38
9.53
10.69
11.00
9.00
9.00
9.32
10.00
9.36
9.00
9.95
14.33
17.53
19.42
20.00
20.74
21.00
21.11
23.84
27.00
27.00
29.05
32.52
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
31.01
31.00
31.62
33.00
32.37
30.43
30.00
30.00
30.51
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.00
34.00
34.00
33.01
31.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
2.91
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
16?.
163.
164.
16S.
166.
167.
168.
169.
170.
171.
172.
173.
174.
17"=;.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187..
188.
189.
190.
191.
19?.
193.
194.
19S.
196.
197.
198.
199.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.Q
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.13
0.71
0.0
200.
201.
202.
203.
204.
205.
206.
2U7.
etOti.
209.
210.
211.
212.
213.
214.
215.
216.
217.
216.
219.
"22U.
2
-------
-28-
Gasoline Engine Cycle
tir.oR.)
(StC)
200.
201 .
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212..
213.
214.
215.
216.
217.
218.
219.
220.
221 .
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
24n.
241.
242.
243.
244.
245.
246.
247.
248.
249.
*RP"
n.;)
n.,i
O.o
O.u
-2.->-J
-4.2''
n.o
n . u
U .'.1
n.o
0."
1 ,r>7
15."**-
2s. 4^
24. 2rr
23.*"*
12. "I
K.->->
7.2--1
1^.7'
24. n7
0.2-
O.'i
n."
1...
n.o
n .u
0 . u
n.i.-
) . •)
n.-.i
n.o
O.I'
n . u
0 . •>
O.o
0 . I;
n.u
n . o
n.u
n.u
o.o
o.r,
O.o
n.u
n.u
0."
o.»-
n..j
O.o
^.PO'vFtJ
n.n
o.o
n.o
o.o
6.3d
15.28
10.00
in. nn
10. nn
75.Q3
32.22
35.no
29. H2
"0 TOR INC.
MOTOPIN'",
MOTOR I Mi,
8n.no
83. M
84.*?
80.00
63.33
79. *l
8.^2
O.U
0.0
0.0
o.n
n.o
O.P
0.0
n.n
O.o
O.o
17.59
19.63
10.00
10.00
lo. nn
3.34
n.o
o.o
o.o
o.n
n.n
o.o
n.o
n.o
n.o
o.n
o.n
KECORD
(Sh'C)
?'•>».
251 .
2-72.
253.
254.
255.
256.
257.
2->P.
259.
260.
261 .
26?.
263.
264 .
265.
266.
267.
2*8.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
27tJ.
2hO.
2*1.
282.
283.
284.
2H5.
286.
2*7.
?««.
2*9.
291':.
291 .
292.
293.
294.
?v5.
2-36.
297.
2^H0
2^°.
*RPv
o.n
0.0
n.o
o.o
o.o
o.o
0.0
o.n
o.n
n.o
o.o
o.o
O.U
o.o
0.0
o.n
o.o
0.0
0.0
o.o
o.o
O.U
o.o
O.o
o.o
O.U
o.o
0.0
o.o
0.0
0.0
o.n
1. IS
2. on
0.2?
O.U
0.0
0.0
0.0
O.n
O.o
0.0
0.0
O.U
0.0
0 . 0
O.u
O.u
n . o
0. 1
/--U -'(-H
U.O
0 . u
0. U
0 . (.)
0.0
o.o
0.0
0.0
0.0
U .0
O.u
o.o
U. 0
0.0
0 . !)
o.n
U . 0
0 . u
U . I.I
U.O
O.u
0.0
o.n
0.0
0.0
u . u
0.0
o . o
O.u
U.O
0.0
4.17
1 U . 0 0
lO.uO
i a . u o
U.O
U.O
II . II
• 0 . u
U . ,)
II.')
'-> . u
U . II
U .0
U . u
o . i
O.u
0 .u
U. !l
U . .1
KfCORD
(SF.C)
300.
301 .
302.
303.
304.
305.
306.
307.
308.
309.
31 n.
311.
312.
313.
314.
315.
316.
31 7.
3 1 8 .
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
<40.
J'4l.
342..
343.
3440
J45.
3-46,
347,
J4*,,
349 „
*KH.-i
0.0
0.0
0.0
0.0
0.0
2.33
16. 2^
24.00
24.00
19.06
1 a . 0 'J
17.17
9.0"
1 .0^
0.0
0. fl
0.0
0.0
0.0
0.0
O.u
0.0
0.0
o.n
0.37
2.6o
6.uu
11.9^
15. 6J
41.26
4b.26
44.56
36.00
27. 5f
23. a c'
24.00
26.2"
30.00
30.00
30. OU
30. nu
30.00
30. Ib
40. nu
40.6 7,
41 .'12
40. Ou
41.61
42 . nu
4, bo 00
fcPOwER
4.07
io.no
17.22
20.00
20.37
31.9t»
36.48
24.91
13.34
10.00
MOTORING
MOTORING
MOTORING
MOTORING
0.0
o.n
0.0
0.0
0.0
0.0
o.n
-o.n
n.o
0.82
41 .08
90.00
94.99
100.00
100.00
90.28
9o.no
67.08
1.12
50.12
9n.no
90.00
70.00
65.38
34.47
io.no
io.no
lo.no
60.00
58.25
50.00
50.00
50oOO
50.00
50 = 00
50»00
RtCORl'
(SEC)
35o.
351.
352.
353.
354.
355.
356.
357.
35*.
359.
360.
361.
362.
363.
364.
365.
365.
367.
3be.
369.
370.
371.
372.
37.1.
374.
375.
3/h.
377.
37*.
37-*.
3ao.
381 .
3ti2.
383.
384.
385.
386.
387.
3B8.
389.
39u.
391.
392.
39j.
394.
395.
39h.
397.
39« .
399.
oRPN-
4H.22
59.21
67.18
71.00
7r!.00
72. n
74.89
6H.91
•49.71
41.84
3^.30
35.93
2f..OO
23.4^
10.1 f.
<*.72
0.62
-9.53
2.20
20.53
21.1-
17.67
13.0'.
n.41
lu.33
17.27
22. on
2b. l<-
29.37
36.73
4C .00
23.50
9.37
*.oo
6. 74
2.b6
o.ll
0.0
U.O
0.0
U.O
0.0
0.0
0.0
o.o
0.0
u.O
u.o
u.O
u.u
*POWE^
50.00
58.69
70.00
70.00
70.00
68.08
28.94
MOTORINb
MOTORINf,
MOTORING
MOTORINf,
MOT OR I NO
MOTORING
MOTORING
MOTORING
MOTORING
5.90
19.53
45.60
7.33
0.0
MOTORlNo
MOTORINI.
79.7u
100.00
100.00
100.00
100.00
100.00
66.35
MOTORINi,
MOTOrtlNb
MOTOR i N(.I
MOTOR INC,
MOTORINi,
MOTORINI,
MOTORIN<'
MOTORINb
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
OoO
OoO
OoO
-------
-27-
Gasoline Engine Cycle
RECORD
(SEC)
0.
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31 .
32.
33.
34.
35.
36.
37.
38.
39.
HO.
41.
42.
43.
44.
45.
46.
47.
48.
49.
>RK -'
O.i)
O.'i
' 0 . •.'
0.'.'
0 . .1
0 . >
O.n
O.ii
0 .11
0. 'i
0.0
().!•
O.o
0. .1
0..)
0.;,
' 0 . n
O.u
I.'J
0. i
0 . 0
0. •!
0. •'
0. i
0 . 0
-1. /><
0 .'i
4.2. >
27.4 /
4?. -^
45. / •>
43. 1 I
b 0 . 4 /-
b ^..7 '••
S4.U'i
44. •* J
45.1!-
46. 'J--
37.o-
3 1 . b i
22.''-
24.0"
2o . ••><->
12.4-
h.'l-J
6 . :.. -
7.17
5 . T^
'") . :
O.i)
£PObFK
0.0
0.0
0.0
0.0
0.0
0 . 0
0 . .')
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
44.40
8S.35
100.00
loo.no
100.00
100.00
99.4r>
90.00
7-1.23
50.00
rt.96
MO TOP1 1 fir,
9.9M
MOTORING
] • fi ^
35. ?9
4 . M 7
MOTORING
MOTORING
MO TOR I '"d
.'•'OT OH ING
^OTOt-'IN',
MO TOR I "in
0.°
O.o
>RP:-«
0 . O
o.o
4.3?
8.90
1 . 9q
3.3T
4.00
13. 7*
26.4 ^
33. *<••;
36. no
44. 4^
34.00
35.64
32.'-'')
36.00
41 .b.l
60.4)
48.44
43. ««,
40.33
38. 5n
35. O^
^0. 6*,
43.64
45.9^
47.1''.
49.21
17. 1 r\
36.0-1
34.47
32.1^
3 1 . (-> 7
28. 4H
32.3 q
36.0')
41 .60
45.74
49.9^
49. 10
50. 5 "J
nS.9^,
42.7',
35. 12
.12.. i A
JS.^T
4 b . -> 7
H9.77
52. i'PT
58. )A
•'^0 h k
O.U
10.11
-tb.^0
•*5. 1 7
nO. 00
-1 .68
•i9.46
,>5.bO
2b.96
6. 16
M'Vrukl.-viG
M)I JRTNG
•.'i)Ti>Rtr.iG
"II TUNING
27.39
"0.00
74. T7
tb. 76
MllTuKl'JG
••MI l.jkif.G
M')T mi NG
4.01
10.00
16.70
r; b . 4 5
M'jl IklflG
'KiT.mifjG
Mf'T')Kl~.|(,
"••uT.mT -JG
"r, r.ik i:jG
N'u J )R II'G
".•uT'ikl.'jG
Mi) I i IK 1 \lG
13.89
-0.00
•< D.OO
'0.00
-»o. oo
-o.oo
-.2.97
14. -/fa
7.23
M.l'l -JrtlNG
r> 7 . '-/ 2
v>2. >5
•irt.f.u
-.d.b5
-.0.00
".0.00
k- CORO
(StC)
100.
101.
1 02.
103.
104.
105.
lOb.
107.
108.
109.
110.
111.
112.
113.
1 14.
115.
1 16.
11 7.
113.
1 19.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
1.36.
137.
1 J8.
139.
140.
141.
142.
143.
144.
145.
14b.
147.
148.
149.
%HPri
63. bb
64. IH
b9.5n
38.00
39. OS/
<+O.On
34. b5
32.03
34.0d
34.00
33.0,;
25.54
15.57
14.00
14.47
18.00
17.13
16.00
10.02
9.81
S.tto
4.00
4.UI-
2.9J
0.6,;
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.u
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2. ON
1 . 3*
0.0
0.0
*POHFk
23.42
1 7.84
3.76
4?. 26
30.00
30.00
47.18
10.33
33.48
50.00
20.69
MOTORING
MOTORING
MOTORING
27.64
4.4^
"OTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
10.00
10.00
29.02
27.83
7.34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.27
RECOHU
(SEC)
15o .
151.
152.
Ib3.
154.
155.
156.
157.
158.
159.
160.
Ibl.
162.
163.
164.
165.
166.
167.
Ib8.
169.
1 7o.
171.
172.
173.
174.
17b.
17b.
177.
178.
179.
180.
181.
18,;.
183.
184.
185.
186.
187.
188.
189.
19u.
191.
192.
193.
194.
195.
19b.
197.
19*.
199.
ftRPM
0.0
0.0
0.0
0.0
0.83
2.00
0 . 54
0.0
0.0
U.O
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
1 7.29
22.17
2«. 00
24.00
24.00
22.57
22.00
1 3.88
1 ') . 0 0
9.31
3.9^
0.0
0.0
0.0
o.O
(, .0
o.O
r, .0
0.0
0.0
0.0
o.O
0.0
0 . 0
0.0
o.O
0.0
u.O
..'.0
o.O
GROWER
2.1b
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
MOTORING
MO TORINO
MOTORINb
MOTORING
0.0
0.0
0.0
0.0
0.0
MOTORING
22.01
72.29
n 0 . 0 0
^9. 2s/
90.00
82. 7u
31. 9b
MOTORlNo
MOTORING
MOTORINn
MOTORlNl.
MOTORIN.,
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
-30-
Gasoline Engine Cycle
RECORU
(StC)
600.
601.
602.
603.
604.
605.
606.
607.
60fi .
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621 .
622.
623.
624.
625.
626.
627.
62H.
629.
630.
631 .
632.
633.
634.
635.
636.
637.
638.
639.
640 .
641.
642.
643.
644.
645.
646.
647.
^48.
649.
*top i
40.61
<« > . U • '
"2..M
42.0"
42.0.1
42.II'.
4'.5 •
4 .< . 1 "1
4 3 . 1 \
44 . 0 1
44.0.J
44.0.1
44.0 1
44. 7.i
46.0''
<»o. 0'
46.0 .
"O. ,) i
44.0 .
44 . 0 .'
u <.« •
^2. il
"2. M.i
43."'
5 1 1 . o i
5 0 . ij i
So . i) '
5 ti . 0 • i
'->M.I,.l
44.2"
"+4.UI.
48. J '
4Q. )r.
4 •< . 0 .1
<*8.'l i
U r| . 1 ! '
4H. in.
44.',..
nH.U"
4P.uv
44. DM
4'J.D-'
SO. 0»
SO.O'I
SO.'I '
S0.7-.
S?..)'i
••>'.(•••'
s;>.'i,'
52.."-
*PQv;EW
100.00
100.00
100.00
100.00
100.00
100.00
97.50
85.93
85.65
90.00
90.00
80.00
80.00
80.00
74.91
63.3.+
6 n . 0 0
60. n(i
10.00
10.00
lo.oo
1 n . r. o
10.00
19.2r,
9 0 . n 0
90.00
90. nn
90.00
90.00
90.00
89. 73
80.00
40.00
80. r")
80.00
80.no
70.24
70.no
70.00
74.44
61 ,9o
50.00
50.00
40.00
44. *• ?
60 . On
44.04
40 „ 00
40.0 0
40 . i-.J
^truRD
(SEC)
650.
651 .
652.
653.
654.
655.
656.
657.
658.
654.
660.
661 .
6h?.
663.
064.
665.
*ih^ .
667.
'iofi .
6h9.
670.
671.
672.
^73.
h74.
675.
676.
677.
h7A.
^74.
640 .
*81 .
082.
643.
044.
6H5.
Hrtb .
o87.
008.
669.
(- 4 0 .
641.
*•-*?.
643.
694.
h4S .
69b.
^47.
O'-*f' .
'^>f'o
%RP'.«
54. (in
54. On
54 . 0 n
55. ?.••>
56.00
56.00
56. (in
56.0n
56.00
56. on
56. On
56.00
54.00
54. On
54.un
54.00
54. On
54. On
54. un
54. On
54. 0 n
5<». i6
57. 2-^
56.4)
57.91
58.2?
6 0 . 0 'i
6 0 . 0 n
bO .00
bO .On
60.00
60.00
60. <4">
o2. 74
oS.OS
n6.0o
66. Of
66. On
o6.0 ~i
66. On
66. (1.1
66. '')')
T6.0"
66. (.T
-i*.r"^
70.0"
70 oil".
70.0 1
74. \>
76 oO .
r^O.-tR
HO. 00
4IJ.OO
•^5.10
73.53
7U.OO
70.00
60.00
= 7.23
oO.OO
<«. 17
10.00
!(.'.. 10
iv. 36
f 1 . 79
20.00
a 0 . i.i 0
2D.OO
11.49
0.08
13.31
JO.OO
10.00
-HI . 0 0
JO. 00
io.uo
10.60
^O.oO
-•u.iiO
^T.^2
^2.^0
•»0.,iO
-"J .00
•'U.liO
•1 0.00
-•o.oo
->J. 16
71.^9
70.00
70.00
73.14
•lO.OO
•5.n.28
»0.!JO
'0.00
i ; 0 . 0 0
1 JO. 00
1 j 0 . U 0
l')U . i'0
1 ,'U.OO
1 JO. 00
HkCdRB
(StC)
700.
701.
702.
703.
704.
705.
706.
707.
704.
704.
710.
711.
712.
713.
7)4.
715.
7)6.
717.
718.
719.
720.
721.
722.
723.
724.
7^5.
726.
727.
728.
729.
730.
731.
73?.
733.
734.
735.
7 i6.
737.
738.
7J9.
7<+0.
7«1.
742.
74.3.
744.
745o
7460
747.
7<+«.
7<+9o
fKHri
72.04
73.61.
72.00
72.00
72.00
72.00
7^.oo
72.24
73.34
72.42
74.00
74.00
77.73
78.00
77. bu
76. Oo
76.0U
76.0U
7
-------
-29-
Gasoline Engine Cycle
RECOR i
(SEC)
400.
401.
402.
403.
404.
405.
406.
4U7.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420 .
421 .
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
4 )4.
435.
436.
437.
438.
439.
440 .
441 .
442.
443.
4<*4 .
445.
446.
447.
448 .
449.
ftt^<-
O..I
o.si
0. )
O.u
0.0
O.n
O.'i
O.'i
n. i
O.'l
0,:>
0.0
O.'i
0.0
') . V
0.0
O..I
0 . u
n.'.i
2.<;7
2.^J
0."
0. ,
0. '
0. i
0 . •.<
O.'i
n.'-.>
O.C
O.n
0..'
0.2"
16.6'i
45.3'-
4 3 . 0 • i
4 0 . 0 -.
35. If
2S. l'i
28.^
30.0 :
30.il"
30.0 i
34.5.-.
36. •) i
3b.* <
43.'—
50.0.-
50.01
t>o.'i •
SO. I1
'^POw^K
0.0
0.0
0.0
0.0
0.0
0.0
o.r.
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
O.o
O.I!
20.0')
14.1 1
0.0
n.o
o.n
0 .0
0.0
O.n
0.0
o.n
0.0
0.0
0.78
31 .S3
29. 7M
1 0 . 0 0
10.00
10.00
19.7()
47. 4S
30.00
30.00
30.00
3n .no
30.00
3 i i.OO
3 0 . (< 0
30.00
24.5s
20 .Of)
'••OTO°I Mi:
KtCORD
(SEC)
450.
451.
-52.
453.
454.
455.
4b6.
4b7.
45*.
"5v.
40(1.
4M .
462.
463.
464.
46S.
46b.
467.
4^H .
46".
4 7 fl .
471.
472.
473.
474.
475.
47f.
477.
*7rt.
470.
48d .
4tl .
4r)?.
<*o3.
4/J4.
4HS .
48h .
<*H7 .
4*8 .
'4*9.
490.
«+•»!.-
4^2.
493.
fe94.
u9S.
u^h .
-97.
4J^.
4-JU.
%RP'1
37.9?
35. }1
30.6='.
27.02
26. On
26.00
20.24
14.00
13. 4S
9.4n
10.7?
IS.an
19.6?
20. 2S
25. 7h
35.0?
->2. 14
44.00
45. 7n
51 .90
->0.0r
51. 2w
54. 9o
5 b . 0 n
62. 31-
71. S]
7b.2.->
7 8 . 0 n
78.00
55.93
is.-.?
34. 4 P
36.1 1
33. 14
•+2.74
4 4 . f i n
49.4-'-
52. On
32. OS
25.60
24.00
24. On
20.24
I 0 . 1 *
8.P i
10.2'.
1 3 . b .
I r. •:)'.
f. 0 . 2 •••
f?.".i
f-POvER
Mill "IKI'-JG
"(jT')KTMG
"111 JKjNiG
'-•OTiJKlr.G
^ii TUNING
'•oT.)KING
•.•o r-)Ki^G
•^V.'T'JKING
ia.27
:?2. 99
.1 1 . 8 1
-»7.4&
li.O.OO
1 j 0 . 0 0
1 -;0 . 00
1 1,0. 00
••*4.e5
' 0 . u 0
JO. 00
o 0 . 0 0
iO. 00
63.22
' 0 . 0 0
7o.l)0
30. £-5
30 . uO
30 .00
j>u .00
-1.53
12.SU
0.0
71.65
79.47
->7.-)0
nO. 00
s-.7^
)ta. 35
30. DO
^.(Ti.ikl'iG
. 0 ,-i
0 . n
"1 1 f *K I ' iG
" ;1 JKT ',G
"> 0 . i» 3
'..J.-.8
-M!.^9
/'/ . UO
'4.]3
1 ,L0 . HO
1 "l.f.O
f- CORD
(SEC)
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
Sib.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
S27.
S28.
S29.
530.
531.
532.
533.
534.
535.
536.
537.
& 38.
539.
7>40 .
54 1 .
S42.
543.
S44.
54b.
5»*6 .
547.
54H.
549.
%rVP^
23. 77
Sfc.Uf
30.00
32.83
32. bt.
33.37
36.00
51.77
60.37
64. 00
64.91
75.^3
82.00
85. U
8b. 17
88.49
90.00
91.12
92.00
93. 74
89.2-<
bb.Ou
b7.3b
80 .02
93. 9S
97.6.1
94.11
85.60
70.0 1.;
69.1 1
66.81:
64.4'!
53. Ou
52.73
62.0i'
62.0i
64. In
53. 56
46.20
46.0':
4b;^b
45.9^
4 ti .'. 1 3
44. 71
40. H^
bl .•->'.
47. b •
3b.31
1 7. 7j
29.^ i
*POWFR
91.15
90.00
86.01
80.70
100.00
100.00
100.00
100.00
95.72
70.00
70.00
70.00
70.00
51.42
49.14
35.13
15.99
26.74
32.85
30.00
MOTORING
41.87
56.^8
54.96
66.34
^3.69
60.00
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
44.98
49.27
40.00
43.88
44.55
4.88
15.79
19.83
10.00
10.00
10.00
3.^4
"0 TOP ING
66.82
MOTOR ING
9.23
55. 6H
38.22
RECOKU
(SEC)
550.
551.
552.
553.
554.
555.
55o.
557.
5bo.
559.
560.
561 .
562.
563.
564.
565.
566.
567.
56h.
569.
570.
571.
572.
573.
57<4.
575.
576.
57/.
57o.
579.
5MO.
581 .
58^.
583. '
584.
585.
58b.
587.
58t<.
5^9.
590.
591.
592.
59J.
594.
59b.
59b.
597.
59c.
599.
f-.RPM
3b.OO
3n.OO
3^.00
34.00
34.00
3^.2^
43.3-
5i'.7f
52.00
b«;.32
52.09
4M.QO
4rt.OO
4o.OO
30.94
la.QO
28.00
28.00
2h.OO
2b.53
2b.OO
23.71
U.5
11 .65
1 .92
o.O
0 .0
0.0
1.0
N.O
o . 0
0.0
N.O
1 .2--.
b.72
13.67
lh.2n
la. 52
25.83
3b.l'
3a.93
41 .7«
4 1.; . 0 0
4.1.00
•+0 .On
40.00
4 (..00
40. On
40.0 0
3o.3()
*POwEH
37. 4b
40.00
40.00
40.00
36.2i>
24. 61
M.3H
46. 12
19.92
0.0
3.19
10.00
10.00
10.00
19. 4H
20.00
20.00
15.81
10.00
10.00
1 0 . 0 o
MO TOW INC.
MOTOHIN'.
MOTOHINi.
MOTOR I NO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
25.19
47.87
40.56
»O.OC
80.00
75.83
70.00
77.31
80.00
10.00
20. 18
52.7*
34.82
30.00
38.33
30.09
100.00
-------
-32-
Gasoline Engine Cycle
RECORD
(SEC)
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
10U9.
1010.
1011.
1012.
1013.
1014.
in 1 5 .
1016.
1017.
1018.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
102.7.
1028.
1029.
1030.
1031 .
1032.
1033.
1034.
1035.
10.36.
1037.
103H.
1039.
104().
1041.
104?.
104.3.
1044.
1045.
1046.
10<+7.
1048.
1049.
40.U.'
34. -^
32.1.' <
34.0.1
34.0-i
33."^
25. *>'<•
l^.-^ 1
\ u . 0 • ,
14. 4/
1 f? . U ' '
17.li
16.0-.
1 0 . 'J ->
V.rtt
b . 8 •<
<• . U ,
it .U i
2 . •> i
n .'•>•?
O.o
O.1'
n . o
o.r-
o.u
n. u
o . y
O.u
o.c-
').:
0 .1
•0.'
1..
1. .
0.
0 .-
D.I
O..I
i) . -I
n.,i
O.u
?.'.)-.•
1 . j'A
O.i'
O.'j
u. >
II. 'I
O.'.l
O.'i
0 . M <
30.00
47.18
10.33
33.4-1
so.r.n
20.64
MOTOPPI'j
MOTO^lNii
I^TOPING
27. 6t
4.44
•^OTORINb
"OTOR iN'i
MOTORING
N'OTORING
"OTORIN',
fOTOHlN'i
vOTOPIN',
MO TOW INN
MOTORING
MOTOHlNl.,
M()TOH>IN(i
*>OTO&IV;
M(JTORlN~i
MOTOWINi,
10.0 ()
10.0 0
24.02
27.8'i
7.34
0.0
0.0
0.0
0.0
O.U
o.o
0.0
0.0
0.0
0 . U
0 .0
o.o
0.0
o.o
6.27
2. In
o.o
o.o
0.0
MO TOP IN'i
(Str;i
loso.
1051.
1 1)52.
1053.
1 1)54 .
1055.
1U56.
1057.
105s*.
1054.
1060.
10M.
106?.
1063.
1 064.
1065.
1066.
1067.
1008.
1064.
1070.
10/1 .
107?.
1073.
1074.
1075.
107*.
1077.
107*.
] 074.
lilrtO.
low 1 .
li>^2.
10M3.
1 0«4.
1085.
1086.
1087.
1 0 if M .
1 0*4.
104Q.
1041.
1042.
Hi9i.
1 04u .
1 o y "-• .
1 f'4b.
1 1 ! ^ 7 .
1 ')*>>.
1044.
2.00
0.5/,
0.0
0.0
0.0
O.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
17.29
22.17
24.01
24. On
24.0,-!
22.r>7
22. on
I.3.H.*
10. On
9.31
3. i')
O.U
O.u
0.0
0.0
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.n
0.0
0.0
o.u
0.0
0.0
o.o
U.O
0. !i
O.fj
-2.^-'
-'.r'U -Jh.K
wo r.iu ING
•'ilTuK JMG
"•••)T JWTNG
KOI UK IMG
^•JT'jkl'-JG
0.0
U.O
0.0
0. i)
0.11
MOTuk T M(j
22. nl
'2.29
•JO.DO
-<4.^9
4U.GO
o2.70
)1 ,'ih
M& 1 '.'KING
''OTut-' J\'G
w;i Tort TNG
."iJTiiKlMG
'•Ml )kTiMf,
^OIiJKTfiG
MOlu^T'MG
U.O
U.U
O.u
U . U
0.0
U . fl
(I . I.)
|> . 0
u.u
I'.ll
(I.J
u.u
U . i.i
U . n
0 . 0
II ,,j.
O.n
U.'.l
1) . (i
0 . li
ll . -1
(1 . ..1
II . II
6. lO
1100.
1101.
11U?.
1103.
1104.
1105.
106.
1107.
1108.
1109.
1110.
1111.
1112.
1113.
114.
115.
116.
117.
118.
119.
1120.
1121.
1U2.
1123.
1124.
1125.
1126.
127.
128.
1?9.
130.
131.
1.32.
1133.
1 34.
1 35.
1 J6.
37.
1 38.
1 139.
1 14Q.
.141.
142.
143.
144.
I4b.
148.
1^7.
"H.
144.
-4.22
0.0
0.0
O.U
0.0
U.U
1.6'7
15.4*
25.46
24.22
23. 44
12. tl
b.4^
7.26
16. Ml
24.1^7
0.2«-
U.O
U.U
U.O
U.O
O.G
0.0
0.0
o.o
0.0
0.0
o.u
0.0
U.O
U.O
U.O
O.u
U.O
U.O
0.0
o.u
0.0
0.0
o.c
0 . 0
o.u
o.u
o.u
O.U
O.U
O.U
U . I;
U.O
U.u
RECOKU
fcPOWFR (SEC) *>rtPM
15.28 115ij. 0.0
10.00 1151. '.i.O
10.00 1152. O.U
10.00 1153. 0.0
75.93 1154. il.O
32.22 115b. U.O
35.00 1156. O.U
29.82 1157. d.U
MOTORING 115ti. U.O
MOTORING 1159. 'J.U
MOTORING ii6u. o.o
80.00 1 1M . 0.0
8.3.61 11 toe. 0.0
84.«2 1163. 0.0
HO'. 00 llb<*. 0.0
63.33 1165. 0.0
79. P.I Il6b. O.o
8.52 1167. 1.1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
17.59
19.63
10.00
10.00
10.00
3.34
o.o
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.0
0.0
-------
-31-
Gasoline Engine Cycle
RFCORo
(SEC)
800 .
801 .
802.
803.
804.
805.
806.
807.
808.
8d9.
810.
811.
812.
HI 3.
814.
815.
816.
817.
818.
819.
820 .
821 .
822.
823.
824.
825.
826.
827.
828.
829.
830.
831.
832.
833.
834.
835.
836.
837.
838.
839.
840.
841 .
842.
843.
844.
h45.
846.
847.
848.
849.
^-J-1 "
64. U'J
64.0'1
f-6.0 .'
6b.^l
68.00
6H.O •
b«. 0 ••
73.31
74. O-'i
74. !)•!
7 3 . 2 t
72.0.1
7T.3<*
74 . 0"
7?..> i
7 1 . 7 i
7 0 . U • '
70.011
68. II
68.0')
hH. O'J
6.4.',l'>
6 ft . 0 '
61. .1 i
b A . 1 1 !
6.H. i.l'l
fr8..ii'i
br». '.I 1
6H. O1'
6 8 . o ' '
*9. I)'!
VO.IH.
70.0 i
7').0'i
70. u.)
70.'.)"
70. on
73. M
Tn'.ll'l
76. u.1'
76. On
76.9,:
80. 7-*
82.1. i
*3.-*''
h-k. 0-;
83. if-
82. i i
'*5.3 <
89. •»-
*POl«F^
80.00
80.00
70.00
70.00
65. M7
60.00
60.00
66.^5
9o.oo
90.00
90.00
84.8o
73.29
70.00
70.00
50.00
50.00
50.00
56. is
60 . ii 0
bO.OO
58.2-1
40. OJ
48.01
60.00
60.00
60.00
60.00
bl .87
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.0 0
6?. 41
60.00
loo.oo
100.00
100.00
100.00
100.00
i o o . o o
'90,,)U
90.00
93.31
100.00
>->7.
H.9* .
hS>9,
%HPw
bH.l >
H9.21
95. 7*
100.23
102.00
104.50
112.71
113.01
112.00
104.00
103.5*
102. 7=.
102.9^
99.24
4<».6l
93.9--J
92.3'J
93.3f,
92. Oo
90. 7 t
BS.4^
84.21
rt2.no
M2.00
82.0o
M2.00
66.70
64. On
b4.0n
b8.6^
37.27
34 . 9A
32. hi-;
30.33
28.0?
25.7,i
23.3-'
21.07
18.7'-
I4.ig
12. n
5.4S
0.0
0.0
o^ o
0,0
o'.o
0.0
T\.o
0,,(l
^•HOvF.R
luO .00
ioo.no
liiO.CO
lnO.OO
i ;.) o . o o
1 u 0 . 0 0
100.00
MO. 00
I'JO.OO
N>Or>JtflNG
'•OTOKING
Mi)TUKI"JG
MilT'.iHlNG
MilTdklnG
«i)T'Jk IhG
M ) I uK I >>iG
MOTJrflnG
M'jFuKING
• i)Tv)wifgG
MOT-)KI')G
••DTiiKTIiG
wi)T>i*IfjG
iO.OO
/. 38
MuT .mlNG
•iiiT'J^< ING
"rt ,h9
/U.OO
'0.00
b/,',5
->o.,oO
'•' 0.00
/3.54
•* o.oo
) o . o o
-> u . o o
37.76
i 0 . 0 0
i 0 . 0 0
M;)T IHIi^G
••.OTuklNG
vi iT jKJ'jG
O.I'
• (i.O
li . 0
•O . u
O.i,
U . (l
0 . '1
"-•''
Ht'COHO
(SEC)
900.
90.1.
902.
903.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.
91 7 .
918.
919.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
93.3.
934.
935.
936.
937.
938.
939.
940.
941.
942.
943.
944.
^45.
-946.
94 r .
••}<*8,
'94*.
%t(pM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-l./n
0.0
4.25
27. 4/
42.96
45.7-y
48.1 1
50.42
52. '4
54.01'
44.42
45.05
46.00
37.6SI
31. bl
22.94
24. On
20. 8b
12.4b
b.OU
b.o2
7. It
2.5o
0.0
0.0
0.0
0.0
4.32
H.y-./
l.^b
%POWER
0.0
0,0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
44.40
85.35
100.00
100.00
100.00
100.00
99.46
90.00
75.23
50.00
8.96
MOTORING
9.99
MOTORING
5.68
35.29
4.87
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MUTORING
0.0
o.o "
0.0
1 0-. 1 1
46.40
45 . 1 7
50.00
RECORD
(SE.C)
950.
951.
95c.
953.
9S4.
95a.
956.
957.
958.
959.
960.
961 .
962.
963.
964.
96b.
966.
96V.
9bb.
969.
970.
971.
972.
973.
974.
975.
976.
977.
97tt.
979.
980.
981.
962.
983.
984.
985.
98b.
987.
98b.
969.
99o.
991 .
992.
993.
994.
995.
996.
99?.
99>' .
99V.
*WPM
3.33
4.00
13.76
26.43
33. BS
36.00
34.45
3"*. 00
35.64
32.99
31.00
41.63
60.41
48.44
43.86
40.3'-
38.50
35. Or-
40 . 66
43.64
45.96
47.10
<*9.21J
3?. 10
3b.OO
34.4 '
32. r
31.67
2«.4-
32.3-
36.00
41.6-
45.74
4^.95
4*. 10
5-.).S-
4b.99
4<-.76
3b,12
32. 0<
35.53
<+6.57
•+9.77
32.00
51. 0-.
63.66
64. 1^
3'^.S-
3C.O-0
3^.09
9iPO«(ER
41.68
89.46
55.60
26.96
6.16
MOTORINb
MOTORING
MOTORING
MOTORING
27.39
80.00
74.37
26.76
MOTORING
MOTORING
MOTORINfi
4.01
30.00
16.70
^6.45
MOTORING
MOTORING
MOTORING
MUTORING
MOTORING
MOTORINi,
MOTORING
MOTORING
13.89
^0.00
90.00
90.00
90.00
80.00
*0.00
b2.97
34.9*5
7.23
MOTORJNl-
67.92
62.55
68.60
48.85
60.00
f 0.00
23.4^
17.84
3.7b
42,26
3,0.00
-------
—34-
Diesel Engine Cycle
-PECOR:'
n . ,<
0. I
31. <-•
41.1.
44.D.'
4f-, .u]
5! . '.!"
66.6-1
7-> . J (
H 9 . -< -.
9*. 7-
96. '-'I
94-. t>:
99.1-
100. 00
100-.U'!
100-.U-
100.9-
100.71
100 . '.) '
96 . 1 -
95 . 7 7
94.5^
96.rt~>
90. 1 -
100. 0':
-101.11
8-6.514
e3.5-5
56-. 0'
4-S.il,'
41.--.
3*-. J i
3=;. *•-
31 ..i i
25. j >
<£PO».'Fw
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o .
o.o
0.0
0.0
O.'I
73.41
90. -0.0
Ml. 30
90 .00
-9o.no
90.0.)
82.41
BO. DO
90.00
90.00
93.88
50. y^
17.02
28. 60
39.83
30.00
26. 6H
20.0.0
20.or)
36. On
40.0Q
30.00
3?. 75
35. 6n
30.00
44. Q3
50.00
t'OTOPIM'--
vo ruPi'Ki
MOTOU [Mb
w 01 OP I NO
45. 1 •<
78.47
3u .110
:8 0 . U 0
80.uO
Kb-ro^o
(SEC)
250.
25-1.
.252.
253.
254.
255.
256.
257.
258.
259.
2.6 0 .
261.
262.
263-.
264.
265.
2hA..
267.
268.
?6^.
270.
271.
?72.
273.
274.
275.
27*.
277.
27f .
27P.
280.
281.
282.
2i3.
284.
285.
286.
287.
288.
280.
290.
29\.
292-.
293.
2^4.
295.
2^*.
297.
_ 2VH .
2s*1-).
*KPv.
23.05
18.20
42.8^
10.10
3.70
1 .4p
0.0
0.0
O.nJ
.0 . 0
0.0
0.0
0.0
0.0
0.0
O.-O
o.o
O.o
O.(i
' 0.0
0.0
-O.U
0.0
O.o
O.u
0.0
o.o
0.0
0.0
O.o
0.0
0.0
0.0
0.0
O.i.)
0.0
0.0
0.0
0.0
0.:)
o.o
0.0
0 . 0
0.:)
0.0
0.0
0.0
0.0
0.0
O.'i
*-'U.nhR
TO . V7
2 7.. 14
43.71
o«.v5
013 . s*5
-»4.d8
0 . n
0.. U
U.ll
0.0
o.o
U.IJ
U.U
-. 0
U. 0
O.u
*r-COKD
(SEC)
300.
301.
302.
3U3-.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
U8.
319.
320.
321.
J22.
.32}.
324.
325.
326.
327.
3^8.
129.
no.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
34f>.
'}47.
">.4H.
349.
»,KM,-4.
36"5.
3bf>.
367.
3be.
369.
370.
37-1 .
372.
373.
374.
375.
376.
377.
378.
379.
380.
381 .
3H2.
3tt3.
384.
385.
3H6.
387.
3Bti.
38V.
390.
-391.
392.
39J.
394.
39i.
3Vb.
39 1.
396.
399.
'fRPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
'i.O
0.0
0.0
0.0
0.0
-o.o
0.0
o.o
0.0
o.o -
0.0
0.0
0.0
u.O
O.U
o.O
0.0
0.0
0.0
0.0
-1 .50
S.88
<*(->. 0^
76. B1*
30.00
82.1'.
85.39
-
102.88
106.00
'109.18
111.91
M2.00
74.33
-/ 1 . 1 '-•
68.84
/t>.-35
82.00
80.65
*POWER
0.0
0.0
0.0
0.0
O.-O
0.0
0.0
0.0
0.0
0.0
0..0
0.0
0.0
0.0
0.0
0.0
O.-O
o.-o
0.0
0.0
0.0
0.0
-0.0
0.0
0.0
0.0
0.0
29.59
8 7-. 4 6
100.00
100.00
100.00
100.00
94.64
83.07
8 8:. 51
79.33
6U66
66.^7
^0.00
72.76
8.43
MOTORIN')
MOTOHJMij
MOTXJW-IN'"'
MOTORINO
MOTOrt-ING
49.17
70.00
69. -46
-------
-33-
Diesel Engine Cycle
RECORd
(SEC)
0 .
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
1 1 .
12.
1 3.
14.
15.
16.
I7-.
18.
19.
20'.
21 .
22.
23.
24.
25.
26.
27.
28.
29.
30.
31 .
32.
33.
34.
35.
36.
37.'
38.
39.
40.
41..
42.
43.
44.
45.
46.
47.
"H.
49.
•»,R>'
0 . ')
o'.o
O'...)
0.'!
0.;)
O..i! '
O.'u
o.c.
0..1
O.i;
O'.Jl"
o.'u
O.,u.
0..0
o.:'
0 . ii
0."
O.i)
o..1"
0 .!•
0.'!
0.'.'
n .'i'
n.n
0.'.'.
o.n'
n.!i'
1.1 i
9. •'-/
15. fit
33.-* "
37.9 5
31. J
17.bl
i 4 ,"i -
16. ->'.
?J .1 1
3f,'u
47. ir-
54. 7 /
57. 7i.
^POwFP.
0.0
0.0
0.0
o.o"
0.0
o.n
0.0
o.n
n.n
n.o
o.o
o.o
o.o
o.o
o.o
o.o
n.n
0 ..0
O.I)
0.0
o.n
0.0
O'.o •
o.n
O.o
3.67
4 7.. 6 3
59.4J
84.5V
80.00
80.00
79. ?9
3H.PS
26.67
15.10
16.47
28.05
20. 3M
MOTOR IMU
MOTOMMO
MOTORING
MOTOR IMG
MOTOPINi,
6>.S?
69. )6
60.00
61.74
75.36
80.1o
M o . n o
KECOPD
(<^EC>
50.
51.
52.
S3.
54.
55..
5*.
57.
SK..
' 59.
60.
61.
62.
63.
64.
6S.
66.
67.
6f'.
69.
70.
7.1 .
72.
73.
74.
75.
76.
77.
78.
79.
80..
81.
82.
83.
K4.
M.S.
86.
67.
r18.
89.
90.
-0 .
W2.
93..
-^4.
95.
46.
97.
4^o
44o
*KPM
54.01
58. On
58.65
62. 8q
69.W7
72.01
75.8]
84.^3
H3.H6
80 .5=;
bO.s]
78.00
79. /c)
80.31
85. SP
81. 7P
78. On
80. 74
42.10
«8. 01
s4.0o
. ")4.01
a 1 . 1 7
70. 46
66. On
62.21
6 4 . 0 f '•
3 3 . <* i
e>0. V+
56. HS
56. On
52. 4S
39.9]
36.3-1
JO.Of'
27. 9T
«!b.'ii'i
^7.64
28. Or
2 7 . a ]
20.'^
12.13
3. Ml
0 . 0
0.:)
().!i
0 . LI
0.0
0,0
0 . •)
•S-HOWtW
/ -> . »2
65.n3
"3.^3
^0.00
5 0.00
-2.05
H 0 . 0 0
••^.20
-1.28
MilTuKp-jG
"uTuklNG
^OTJKING
MiiT.JKlMG
HI. 54
•+2. 12
oO.OO
->u.oo
t3.16
/3.65
M.I T UK I NO
MUTjPIf-jG
"•JIuKlNG
'Ml ,)Kp.,G
no 1 i/K JrjG
13.57
<;*_...<* 3
^n'..u.o
1 7 . u 2
1 0, 00
1 0 . fi 0
Mur.JK 1Mb"
MoT.JHllMG
"•)T JKING
0.91
/.b2
0.0.
0.')
|J . n
R--COR.L).
(SEC)
100.-
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120..
121.
122.
123.
124.
125.
126.
127.
128.
129.
130..
131.
132.
133.
1 14.
135.
136.
137.
138.
139.
1^0.
141.
\<*d.
.1.41.
144.
145.
146.
.. . .'l'+7o •-,
148.
l«+4.
*«PM
O.o
0.0
0.0
0.0
0.0
0.. (1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0 .
0.0
0.0
0.0
0.0
o.o
0.0
0...0
0.0
0.0
0.0
0.0
0..0
0.0.
1.77
1 . t>0
0,0
0.0
2.1<»
3.0'i
0.. 0
0.0
o'.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
OoO
0.0
0.0
0,0
OoO
*POWt'H
0.0
0.0
O.n
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0. .
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o'.o
0.0.
0.0
0.0
0.0
MOTORING
MOTOPING
MOTOPING
0.0
9.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
OoO
5.51
11. 34
o.o
RECOKb
(SEC)
15u.
151.
152.
153.
154.
155.
I5b.
157.
158.
159.
160.
161.
162.
163.
164.
165,.
166.
167.
168.-
169.
170.
171.
172.
173.
17*.
175.
176.
177.
17b.
179.
1 80 .
18.1.
182.
183.
184.
185.
186.
187.
160.
169.
19u.
191.
192.
193.
194.
195.
196.
197.
19b.
. 199.
fc*PM
0.0
ii.0
0.0
1"; .0
''.0
0.0
.0.0
C'.O
0.0
0.0
0.0
0.0
'i.O
<).0
o.O
'/.O
•J.O
0.0
0.0
0.0
0.0
fi.O
n.O
0.0
y.o
0.0
0.0
'i.O
n.O
0.0
0.0
0..0
0.0
0.0
0.0
0.0
0.0
0.0
o.O
•J.O
0.0
(..0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
n.O
*POwER
O.o
0.0
0.0
0.0
0.0
0.0.
0.0
0.0
0*21.
30. 00.
26.78
20.00
20.00
4.12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0.
0 .0
0.0
0.0
0.0
?0.00
20.00
11.73
0.0.
0.0-
O.O.-
0.0-
0.0 .
0.0
0.0
0.0
0.0
0.0
0.0
OoO
0.0
-------
-36-
Diesel Engine Cycle
RECORD
(SEC)
600.
601.
602.
603.
604.
605.
606.
607.
60fl. '
609.
'610.
611.
612.
613.
614.
615.
616.
617.
' 61fl.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631 .
632. :
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
6-f5.
646.
647.
648.
6*9.
*R^>
i).;i
O.o
O.o
0.0
O.'l
0.<>
2 . .-> S.
10. 1 }
13.8v
2 ').?••••
24..(i7
33.33
40. J"
47. 11
66.0"
68.0-1
-67.-. -<
66.'J.i
67..J-*
6 3. •.),-,
fo*.U'.
75.'»ji
78.'.) !
78. IV
77.o7
76.. , 1
76.. U.i
76.01'
75. 6. j
73.0"
76.81
8 'i . 2 ;-
81.44
84. Oil
H*.U>!
83.61
82.01.
83.0.-'
86. (--7
89. V,
90.0'i
H9.*">
86. Hi
H6.0 •
87. 2J
HH.II i
88. 0--
8.8. j .
8 H . 'i i
MH.O i
*PO*F*
0.0
0.0
0.0
0.0
o.ri
0.0
6.3o
17.87
20.00
20.00
22.59
1-7.50
f-OTORIN'j
MOTORING
7. 78
10.9J
32.04
40.00
40.00
40.00
48.33
99.53
•100.no
100.00
100.00
100.00
lon.no
I00.no
ion. oo
97.So
90.00
90.00
90.00
98.79
100.00
100.00
100.00
94.91
90. DO
90.00
99.^1
100.00
100.00
95.47
90.00
90.00
81.7-
7-y.i7
77.21
100.00
KtCuRD
( SEC )
650.
651.
65?.
653.
654.
655.
*56.
657.
658.
659.
660.
661 .
^62.
663.
664.
665.
666.
667.
66P .
6b<5.
670.
671.
672.
673.
674.
67S.
67fi.
677.
67R.
679.
680.
K81 .
692.
683.
6r.4.
685.
686.
687.
688.
689.
690.
f 91 .
6S>2.
*>93.
6-»4.
69^ .
64*.
(-97.
f-.4P .
•^99.
%PPM
>b 8 . f 1 0
18.0^
88.00
90.0':
b9.6"<
88. 6«
90.00
90.00
91 .61
92. on
90 .On
89.4 4
87.11
86.00
86. Or.
rt9.66
90. Or,
90.46
92.73
v5.no
100.2?
Io2.oo
102.00
1 02 . 0 1
97. 14
87.0?
M6.fJ.-l
73.1^
75.77
75.7*.
75.ll
78.:)n
80. )7
77.51
81.4*.
«2. 1 3
84. 'in
84. nn
64.Q.1
85. 3T
86. Or
*6. On
85.7)7
H4.o<-
M6.'J'->
87 . 2 :•>
H8.-11
Hb-. M J
rl 3 . 7 -
Ml. -7
-MU,t>
^"*.*5
yO.no
' 0 . 0 0
JO. '10
*o.OO
-yo.i.o
'0.00
<0 .00
•i 1 . 86
MJ.OO
31 .29
92 . 86
1'jO.OO
1 .'0.00
luO.oO
1 -.'I'. 00
•*9.27
•^o.oo
-'0.00
'O.OO
T2.J.'7
.-.o.oo
'0.18
--> o.oo
:j 0 . o 7
M.)-TOr9.t-,2
•*d,80
* 7.23
14.34
•+0.00
H7.i»9
--0.00
.*9. J6
c7. 79
16.21
13. 16
26. -*3
10.10
10.08
' -0.0-0
••0.00
..v^. 20
JU .00
^2.';5
•->..>! o^I vG
•'-)T..i«I\.G
••'••1 iKl'-jC,
(StC)
700 .
7-01.
702.
703.
7-04.
' 7-05.
706.
707.
708.
709.
710.
711.
712.
713.
714.
715.
716.
717.
718..
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
7 12.
733.
714.
73S.
736.
737.
73H.
739.
740.
741.
742.
743.
744.
745.
7<+h.
7u /.
748.
.7'.S..
%^n
81.70
85.16
84.52
82.21
79.89
77.5t<
76.00
79.1o
75.1t>
72.00
72.00
74.00
74.00
74.00
74.0o
72. 4j
6o.^J
73.80
72. 5<:
74.01.
72.8^
76. 3«
81 .53
-8 0 . 1 ti
83. hi)
63.4*
86. Oi'
87. 3'3
86.3'»
b6.0u
88.2'y
«6. 78
86.9.00
96.00
9t>.00
97.74
100.0-
l(j«;.00
102.00
10J.OO
104.00
102.37
103.94
10*. on-
104.00
103.12
100.80
100.00
101.83
102.00
102.00
102.00
100.91
101.40
100.2^
97.97
96.00
96.00
9fc.OO
9 a . 0 0
9^.00
94.08
/b.OO
77.45
71 .67
o7. 18
60.50
71.43
74. n
7 -3 . b h
74.75-
77.07
7^.3-
80.00
8C.01
*POWEH
87.05
57.40
42.19
42.33
40.00
38.37
12.83
MOTORING
MOTORING
MOTORING
7.37
19.74
11.83
26.81
49.96
60.00
60.00
60.00
40.00
25.75
MOTORINi,
MOTORING
MQTOHINu
44.88
3b.4o
MOTOKINn
MOTORING
MOTORINb
MOTORING
MOTORING
MOTORING
• MOTORING
10.00
0.23
MOTORING
MOTORING
MOTORINb
MOTORING
MOTORING
28.96
80.00
87.48
90.00
90.00
92.20
100.00
94.65
8.3.08
71.51
69.93
-------
-35-
Diesel Engine-Cycle
RECOR .•
(SEC)
400.
401 .
402.
4u3.
404.
405.
406.
407.
408. '
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423. '
424.
425.
426.
427.
428.
429.
430. "
4.3-1.
432.
433.
434.
4.35.
436.
437,
436.
439.
440. ,
441 .
442.
443.
444 .
445.
446.
447,
448.
449.
'.UK -
42.J,>
97.*--
98.9 :
100.7-
103.br
104,0';
r>,o,b<:
83 . 3 f
-81. -in
8Q.O '
76,-x-
74.11
7-1. •>.•
70.5-1
78.0 i
8 ".<;-»
8 ') . 5 •»
7"S.^ '
78.*-)
84. \>
72.1".
74.1
90. r-
74.,.*
68 . ., ->
-68.T )
5 i . J '->
6 3 . -3 •'
70.0';
73.1 '
72.1.-
!-:!.<<
36. 0 i
• 20./-.
M . «• -»
-?.(.' /
-0. 7 i
8 ,t> 7
30. T,
6 7.. .1 ,
86. !i i
84. •).!
4 1 . 1 .
47.1- .
4 7 . .7 <
96. ,)'!
96.0 .'
46. '.'"i
85.^7
H7.o .
*PO».r *>
6 1 . O 0
bO.OO
6 0 . P1 IKJr,
"MOTO^IN'j
60.00
61.4)
63.00
34.85
30.no
30.00
10.411
1 .37
10.00
0 .98
MOTORING
28. 3*
30.7*,
-:fc-COKJ
( SEC)
* H 0 .
451.
452.
453.
454.
455.
456.
457.
458.
454.
4bO .
4M.
46?.
4*- 3.
464.
465.
46e .
467.
468.
489.
470.
471 .
472.
473.
474.
475.
47b.
477.
478.
4 74.
480.
481 .
48^.
433.'
484.
4*5.
48^.
487 .
48^ .
4 •!<-/.
* 9 0 .
441 .
44?.'
4-
nfl.til
" -* 0 . ') n
.H)5.4T
74.0 n
73.34
71.1?
76. 4*,
81.61
78.1'-
74.11-
4 0 . 0 .1 '
40.87
^ 2. or.
4 3 . 5 f>
44.1,)'-'
44. 1 1
tiS. •>•-
63.2 =
62.oi
44.^4
b2.-4 J '
64. OA
r.4.4'--
71.41
78. -7
8?. 0(i
66. T'~
' •-'G...£P
•- 4 . 1 8
'"'I . 00
^o.oo
d o . j 0
^ pJ . 0 0
11.32
•ViT J*I\G
0.04
Mj [ JKl.iG
»•' )T )KI,\G
M'lT )STr..(i
•'•) I Jr?1 UG
•• 'TIMING
f" iT'JHT' iG
^' )F.jKT:jG
"•i F.ih1 ] 'jG
' ')[ JHJ: iG
••"; rp..Hl:,G
7 0.00
^4.53
•i"+.5h
M.lT )HIt';G
"'il Jp^I'iG
'•:)TOH fjO
"i;Tut-IhG
MOT-JhJfjG
10.00
•- 9 . 3 8
* 0 . 0 0
i1.). 39
26.4fj
0.0
' - • 0
f-'-i r jki -JG
KI'J F'JKl JO
v.i piKT'jG
••'•
0.0
MUTORlNO
MOTORING
MOTORINu
MOTORINi,
MOTORINo
MOTORING
MOTORINO
MOTOR1NO
MOTORING
37.91
-20.00
20.00
20.00
20.00
MOTORING
0.0
0.0
0.0
0.0
-------
-38-
Diesel Engine Cycle
RECORD
(SEC)
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
101«.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
If 38.
1039.
10*0.
1041.
104?.
10*3.
1044.
1045.
10*6.
1047.
10*8.
1049.
*RP-1
0.0
0.')
O.o
0.0
O.o
O.o
O.'i
0.0
O..I
O.'i
0.0
O.i'
O.'i
O.'i
O.ii
O.'.i
O.'i
O.'i
O.'i
0.0
O.i
O.ii
0.0
O.i.
O.'J
I) . 0
0.0
0. u
0.0
O.U
0.0
I.//
1 .6'.
0.')
0.0
2.1-
3.08
O.'J
0 . 0
O.ii
O.ii
O.'i
IJ.l)
0. 1
0.0
O.o
0.:..
0.!..
O.'i
O.u
*PO*ER
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
MOTOR INf>
STORING
MOTORING
0.0
9.28
0.0
o.o
0.0
o.o
0.0
o.n
0.0
0.0
0.0
0.0
o.o
•0.0
0.0
5.51
kt.CORD
(SEC)
1C50.
1051.
1052.
1053.
105*.
105^.
1056.
10S7.
1058.
1US9.
1060.
1061.
1062.
1063.
106*.
1065.
1066.
1067.
1068.
10P4.
1070.
1071.
107?.
1073.
1074.
1075.
1076.
1077.
1078.
1074.
10HO.
1081 .
1082.
1083.
10*4.
1045.
1086.
1087.
IOMH.
1089.
1090.
1091.
109?.
lOPT.
1094.
1095.
1096.
1097.
104H.
10 44.
%RP».-
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.;t
O.o
-ro ...(•: R
1 1 . 34
U . 0
U.O
U.O
O.u
0.0
U.O
O.o
0.0
0.0
0.21
.iu..)0
•J.'l
KECORU
(SFC.)
i luo.
1101.
1102.
1103.
1 104.
1105.
1 106.
1107.
1 108.
1109.
1 10.
1 11.
1 12.
1 13.
1 1*.
1 15.
1 16.
1 17.
I 18.
119.
120.
121.
122.
123.
12*.
1125.
1 126.
1127.
1128.
1129.
1130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
11*1.
1142.
1143.
1 144.
1 1*5.
11*6.
1147.
1144.
I 149.
%HP"
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
O.u
0.0
U.O
0.0
0.0
U.O
0.0
o.u
U.O
O.u
31.31'
41.15
44.01)
46.41
51.0*
6b.66
75.03
89. Mb
96. M
96.91
94. 6 U
99.1r>
1UU.UO
100. Or.
10U.OO
100.^0
100. n
100.00
96. 10
95.77
S4.b5
96.«r>
99.1'-,
100.00
1 0 1 . 8 1
86.5*
63. bh
56.00
46. Of
41 ,«f-.
3b.3l
35.9-1
*POWER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
73.41
90.00
81.30
90.00
90.00
90.00
82.41
80.00
90.00
90.00
93.88
50.94
17.02
28.60
.19.83
30.00
26.69
20.00
20.00
36.06
40.00
30.00
32.75
35.68
30.00
44.93
50.00
MOTORING
MOTUHING
MOTORING
MOTORING
45.14
78.47
80.00
RECORD
(SEC)
115(1.
1151.
1152.
1153.
1154.
1155.
1156.
1157.
115R.
1 159.
1 IbU.
1161.
llbir.
1163.
1164.
1165.
1 IbO.
1167.
1 168.
1 169.
117(1.
1171.
117?.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
118U.
1181.
11*2.
1183.
1184.
Il8b.
1186.
1187.
1188.
118v.
119U.
1191.
1 192.
1193.
119*.
119s.
1 19e .
1 19f.
119b.
1199.
*HPM
31 .0 •
2b.36
23.0'-
1H.20
U.84
lo. 10
3.7-i
1 .4 •
O.U
0.0
0.0
U.O
u.o
0.0
0.0
.1.0
o.u
(i .0
0.0
o.O
0.0
o.O
0.0
o.u
U.O
o.O
0.0
0.0
0.0
0.0
0 .(1
0.0
U.O
o.O
i. .U
o.O
0.0
'./ . 0
0.0
o.O
f..O
n.o
o.O
o.O
o.O
o.O
0.0
0.0
V. .0
o .U
J.POWEW
MO. 00
80.00
HO. 97
27.3*
43.71
68.95
68.95
44.28
0.0
0.0
0.0
0.0
0.0
O.U
0.0
i'4.97
17.16
6. 2'.
10.00
1 0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
o.u
O.o
0.0
-------
-37-
Diesel Engine Cycle
PECORii
(SEC)
800.
801.
802.
803.
804.
805.
806.
807.
808.
809.
810.
811.
812.
813.
814.
815.
816.
817.
818.
819.
820.
821 .
A22.
823.
824.
825.
826.
f-27.
828.
829.
830.
«31 .
832.
H33.
834.
835.
836.
837.
838.
839.
H<*0.
841.
842.
843.
844.
845.
846.
847.
848.
H49.
*RK"
82.3 1
84.0.1
84.D'..
84.0'i
84.0 '.'
84.01.
82.0 .)
81. t/
bO.O'i
77.'3-<
7402
77. Si
81 .rt^
80.42
8?.0 i
83. .1-3
84.0"
84. UO
H4.0i
86.01'
8ft. ij .
8b. •''••'
Hrt.bi
88. 4j
HH.ili.
94. 'J.i
94. SI
9S.1 7
95. !•*
94. T*
94. U<)
94. U'..'
44. On
94..0'.'
44.0 I,-
94. OD
94.0"
94.0'J
94.^4
«7. n>:
102.41
l(J4.0u
104. Uu
104. U'l
106.0 .j .
106.0 •'
106.0 .1
104.1".
104. U'l
104.01'.
%POtoEn
58.36
50.no
59.5S
76.36
80.0()
70.49
80.00
82.6ft
90.00
90.00
75.24
78.96
8n.on
8o.no
83.68
7o.5(j
70.00
61 .60
50. T 3
60. OD
6o.no
64.39
73.73
70.00
70.00
70.99
80.00
80.00
80.00
80.no
80.00
77. H9
31 .94
43.57
60.2rt
63.24
76.57
80. Ah
90.00
87.00
80.00
73.85
62. 2H
69.20
70.00
62.70
40.00
40.00
32. «S
30.00
KLCORD
(SEC)
850.
851 .
°52.
853.
S54.
855.
856.
857.
85*.
a 54.
860.
861 .
862.
H63.
864.
B6S.
866.
Mb 7.
8b8.
8b9.
H70 .
871 .
372.
873.
874.
*/S.
H7b.
877.
8/fe.
«79.
8hO .
flbl .
H82.
«83.
HH4.
RH5.
886.
887.
888.
3M9.
t'9().
H91 .
80?.
843.
S44.
895.
*96.
H97.
r!4K.
f-99.
•JjkP"
104.00
1 il 3 . 6 '<
100.6?
48.00
96.6*
96.00
96.00.
96.00
95.41
94.00
94.00
95.5'J
97.83
98. OT
48. Oi)
97.2?
96.00
9b.0n
96. un
95.9'<
92.00
92.0o
92. 4r
44.00
90. 7Q
88. U 8
H6.2T
88 . uo
67. 1 14
44. 8?
82.51
82.00
82.1?
^n
HO. On
14. 2*
H6.6?
84.31
81.94
f9.3S
75. J^
73. OS
70.71
68.4?
47. 'I r-
35.70
3?.4-
29. Is
16.47
2.1 »
S"O.JKR
0.30
11. «7
13.12
b.-)l
1 U . 0 0
MI. no RING
MHTOKING
MUTvJ^IhjG
'•'01 -JHING
"OT.fKTMG
MOTvjkli^'G
5.18
MOI'ikl.-jG
MOT OK ING
« UNKING
M.JT JWTNG
6.35
12.98.
10.00
10.00
10.0 0
iO.OO
1<».*9
l3.t>4
-^.12
MI.40
lu.OO
.12. 75
->4. J2
.0.00
TU.OO
iO.OO
HO. 00
.15.64
2U.OO
51 .95
ob. 21
oU.OO
•i . -ib
1 . b 1
1 9 . ': 6
•-.o.oo
8.35
^ .1 1 .IN I! !G
0.95
1 0 . !)()
i'.jP
^!lT JRJI.'G
M'll )K [nil
t.- iT.ikiN.G
RECORD
(SEC)
900.
901 .
902.
003.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.
917.
918.
419.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
933.
934.
935.
936.
437.
938.
9J9.
9<*0.
941 . /
942.
943.
944.
445.
4<*ft.
947.
94H.
949 .
%-RP1"!
O.U
0.0
0.0
u.u
0.0
O.u
0.0
0.0
0.0
o.u
O.U
O.o
0.0
O.U
0.0
u.o
0.0
O.o
U.O
o.u
0.0
0.0
0.0
0.0
0.0
o-.o
0.0
u.o
U.O
3.11
9.0V
15. >-s
33.49
37.93
31. 2li
21.91--
30. On
22. 2J
19.61
20.00
18.3J
6.5i
15.82
23. t)
17.t>l
1^.14
Ib.hi.
27.77
J7.03
47.3f.
*POWER
0.0
0.0
0.0
OiO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
O.n
n.n
0.0
0.0
o.n
3.67
47.69
59.41
84.54
80.00
80.00
79.29
38.25
26.67
15.10
16.47
28.05
20.38
MOTORING
MOTOkING
MOTORING
MOTORING
MOTORING
62.52
60.36
60.00
63.79
75.36
RECORIJ
(SEC)
95 U.
951.
952.
953.
954.
955.
956.
957.
958.
959.
96U.
961 .
962.
963.
964.
965.
9bb.
967.
968.
969.
970.
971.
972.
973.
974.
975.
97b.
977.
97o.
979.
9bu.
981 .
982.
983.
984.
985.
98b.
987.
9«W.
989.
990 .
991.
992.
993.
994.
995.
996.
997.
99o.
999.
b4.77
57.70
54 . 0 1
58.00
Sw.65
62. B8
69.83
ft. OCl
75.81
84.22
83.86
80.55
SO. 51
7*. 00
74.7^
8C.33
H5. bx
81 .7-
''1.00
B'J .74
92.10
B'1.01
bn .00
a«.00
81.17
7s). 4S
bb.OO
b2.23
6n.OO
b3.4H
6(;.34
3ft.8S
bf-..00
b>.45
39.91
3o.3
30.00
27.93
26.00
2'. 66
2". 00
27.41
21 .9',
12.1
3. 81
o.O
U.O
<).0
U.O
U.O
80. OU
b 0 . 0 U
79.92
65.03
43.23
50.00
50.00
42.05
40.00
42.2U
41.28
MOTORING
MOTORING
MOTORING
MOTORING
30. 5t
42.12
50.00
50.00
43. Ib
73.65
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
13.57
29.43
20.00
17.4^
10.00
10.00
MOTORING
MOTORING
10.00
10.00
10. Ou
10.00
16.74
3.36
MOTOR IN.i
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.91
7.52
0.0
-------
APPENDIX III
Finalized Transient Chassis Cycle
-------
-40-
Chassis Cycle (Gasoline and Diesel)
RECORD
(SEC)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
IS.
16.
17.
16.
19.
20.
21 .
?2.
23.
?4.
25.
?(- .
27.
28.
?9.
30.
31.
32.
33.
34.
35.
36.
37.
3b.
39.
40.
41 .
42.
43.
44.
45.
46.
47.
48.
49.
SPEEG
(MPH)
0.0
0.0
o.n
o.o
o.n
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.r
o.o
o.o
0.0
0.0
0.0
0.1*
1 . 0 o
1 .51
2.6*1
4.64
6.9(S
8.8^
7.7)
7.4S
9.22
10.00
9.0T
10.01
11. ?4
12.7*
14. O'l
12.5-1
12.87
13.ni,
13.00
13.6'-
15. Oil
15. O'.i
13.37
12.01
REC'IMP
(SFC)
'SO.
51.
52.
53.
54.
55.
56.
57.
'18.
59.
60.
61.
d?.
63.
64.
6t>.
66.
67.
6ri.
69.
70.
71.
72.
73.
74.
75.
76.
77.
74.
79.
-U).
•M «
82.
H3.
«4.
85. V
86.
1 7.
•AS.
89.
'»0 .
41 .
42.
4.3.
14.
45.
46.
? 7.
'•>H .
'-) 1.
SPFEO
CiPH)
I-?. 26
14.29
14.56
IT. 20
1 -1.76
1 7.00
17.00
17.23
1H.77
20.54
19.60
1H.14
1 7.98
17.00
16.34
15.00
IT. 00
15.00
1 '-^.96
12.35
15.28
14.27
12. S9
12.25
9.2H
^.00
8.00
4.38
4.53
1 0.69
11.00
4.00
9.00
4.32
lu.ou
9.36
4.00
9.9b
14.33
1 7.53
14.42
?o.oo
r-1.74
?l .00
21.11
2.1.84
?7.00
?7.00
2^.05
32.52
RECO^n
(SEC)
100.
101.
102.
103.
104.
106.
106.
107.
10H.
10*.
110.
111.
112.
1 13.
1 14.
116.
116.
117.
118.
119.
1?U.
121.
122.
1 ?3.
124.
126.
1 ?s.
1??.
28.
1?4.
no.
131.
132.
133.
I 34.
135.
1 16.
137.
1 Irt.
139.
140.
141.
142.
43.
<*4 ,
46.
46,
47.
«*«.
14*.
SPEEO
(MPH)
31.01
31.00
31.62
33.00
32.37
30. 4J
30.00
30.00
30.61
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.no
34.00
34.00
33.01
31 .86
30.10
26. 17
23.39
21.46
17.?*
15. h3
1 3.76
12.60
10.33
f*.?8
5.38
2.91
0.0
U.O
0.0
o.n
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
RFC.OKD
(SEC)
ISO.
151.
15?.
153.
164.
15=;.
156.
167.
ISfi.
164.
160.
1M.
16°.
163.
164.
165.
166.
167.
16B .
169.
170.
171.
17?.
173.
174.
75.
7f- .
77.
7*.
79.
•AO.
1*1.
18?.
183.
1*4.
IMS.
186.
I**?.
1^,0.
18<5.
190.
141.
19?.
1°3.
194.
l^q.
1*6.
147.
14P.
14Q.
SPEFO
(MM.-!)
O.n
O.n
O.n
o.n
O.n
O.n
O.n
O.n
O.o
0.0
O.o
O.n
o.n
O.n
n . o
O.n
o.n
O.n
O.n
O.n
O.o
O.n
O.n
O.n
0.61
0. r3
0.0
o.n
o.n
o.o
O.n
O.n
O.n
O.n
o.n
o.n
0.0
O.n
0.0
O.n
0. n
O.n
O.n
O.n
O.n
O.r
O.n
o.n
0. 71
0. n
Mf-.C'^O
(Sr;c )
2'iU.
2ul.
">2 .
2 J3.
204.
2 :i b .
2J6.
?J7.
2tib,
2o 9.
210.
211.
21^.
213.
214.
216..
21t>.
217.
21t5.
219.
220.
?.d\ .
222.
223.
tt1* .
225.
2?b.
227.
2 f.ti.
2?9.
£.iu .
f. 31 .
{ 12.
2.53.
2.34.
2J5.
eL jri.
237.
2J«.
2J9.
2nU .
241.
2*»2.
2*3.
2'*4.
2*6.
2-»b.
{"•1 .
C->0.
2«V.
SPEED
(MPH)
0.0
O.o
O.u
4.15
6.00
6.00
6.00
5.30
4.14
l.*6
0.0
0.0
0.0
0.0
0.0
0.0
O.U
0.0
0.0
0.0
0.0
o.o
O.U
O.u
0.0
O.U
0.0
o.u
0.0
0.0
0.0
0.48
1.64
0.41
O.n
o.o
0.0
O.u
0.0
O.o
0.0
0.0
0.0
0.0
O.U
0.0
o.o
0.0
O.U
o.u
RECORD
(SEC)
250.
251.
252.
253.
254.
255.
266.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
2H5.
286.
287.
288.
289.
290.
?91 .
292.
293.
294.
295.
296.
297.
298.
?99.
SPEED
(MPH)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Pt.COWQ
(SEC)
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
326.
326.
327.
32d.
329.
330.
331.
332.
333.
334.
335.
336.
337.
33M.
339.
340.
341.
342.
343.
344.
345.
346.
347.
34b.
349.
SPEFO
(MPH)
0.24
0.60
0.0
1.42
2.00
3.08
5.63
4.00
4.00
3.34
1.37
1.00
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.23
1.39
2.00
4.11
5.00
6.02
7.18
7.33
6.49
7.00
7.00
7.00
7.00
7.00
7.43
8.00
8.00
7.09
11.06
12.89
14.49
11.46
13.08
16.55
16.00
15.34
12.32
13.00
13.00
13.00
15.86
Hf.CORD
(SEC)
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
bHEED
(MPH)
1^.00
11.73
ll.oo
11.00
11.00
11.90
l£. 39
10. 36
7.26
4.95
4.68
6.68
8.00
7.84
7.00
6.53
7.89
10.57
11.00
10.10
10. 74
10.42
11.00
12.46
14.77
14.i.)9
lfc.20
17.00
17.00
17.00
17.00
15.02
15.71
14.00
14.92
16.38
15.78
16.00
It. 00
16.25
17.41
18. 5b
1*.00
19.88
21 .00
21 .00
rl.OO
20.49
2 U . 0 0
19. lh
RECORD
(sEC)
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
4l4.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
•*30.
431.
432.
-33.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
4<*8.
449.
bPEEO
(MPh)
19.00
18.86
18.29
19.00
19,61
20.00
20.00
20.00
20.00
20.00
19.46
20.42
21.87
20.97
^0.37
22.00
22.00
22.66
23.00
23.97
25.51
29.00
29.00
29.00
.10.51
31.00
30.00
30.00
30.00
10.54
31.00
31.86
11.00
.11.17
32.33
33.00
33.00
13. 80
34.00
.15.12
J6.00
16.00
34.8?
33.25
12.09
.12.00
»2.00
32.00
.32.00
32.00
HEr.OHO
(SED
450.
45l.
4b?.
463.
454.
455.
456.
457.
45*.
459.
460.
46 I.
462.
463.
464.
465.
46b.
467.
468.
469.
470.
471.
473.
473.
474.
476.
476.
477.
478.
479.
480.
481.
48?.
483.
484.
<*85.
486.
487.
488.
489.
49n.
491.
49?.
493.
494.
495.
496.
497.
498.
499.
SPEED
(MPH)
32.85
33.01
34.00
33.68
32.52
32.00
32.00
32.96
33.00
33.00
33.42
34.00
34.74
35.00
35.00
35.00
35.00
35.00
35.00
35.84
37.99
38.00
37.69
38.41
39.37
39.00
39.00
38.10
39.00
39.41
40.57
41.73
42.00
41.92
40.00
40.00
39.49
37. 6to
37.00
36.01
34.86
33.70
32.54
29.54
26.46
22.28
19.91
18.76
17.60
16.44
-------
-41-
Chassis Cycle (Gasoline and Diesel)
FCORl) SPEE'J WtC'W St'FFD MtCDkn
(SEC)
500.
501.
5!)2.
503.
5n4.
505.
506.
507.
SOP.
509.
510.
511.
512.
513.
514.
515.
516.
517.
5)8.
519.
520.
521.
522.
5?3.
5?4.
525.
526.
527.
52*.
524.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
*i46.
-547.
54?.
•549.
(MPH)
14.57
13.13
11.47
10.81
9.31
7.5'J
6.34
4.37
3.0.1
1 ."7
0.71
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
2 . 3t
3.4"
5. 11
8 .26
9. "2
1 1 . 1 L<
(?FC )
550.
551.
5^2.
553.
554.
555.
556.
557.
558.
5S9.
560.
561 .
562.
563.
564.
565.
566.
567.
56«.
569.
570.
571.
572.
573.
574.
57S.
576.
577.
578.
579.
5*0 .
541.
5H2.
b.-O.
5rt4 .
5*5.
586.
547.
544.
549.
590.
591 .
5*2.
54 3.
5V4.
5 '-'5 .
5^6.
597.
b9 J .
b'-is.
C'PH)
12.73
14.74
16.05
17.41
19.72
21.52
?3.35
24.8.3
25.99
27.15
2H.31
29.46
30.62
31 .78
32.94
34.18
V'.25
37.41
3H.56
l->.72
40.00
40.00
"0.00
40.00
40.00
4'). 00
40.8?
"1 .00
41.0.)
"1.30
42.00
42.00
42.00
"2.93
" i.UO
" 1.00
4 1.00
" 1.56
44.71
45.00
"4.97
44. 18
44.66
"H.OO
44. UO
44.81
"5.0(1
'-^.00
4S.OO
"5.44
(SEC)
600.
Mil .
602.
603.
604.
605.
606.
6lj7.
608.
6-J4.
61U.
Ml.
612.
613.
614.
615.
610.
617.
611.
614.
620.
621 .
622.
623.
624.
625.
62t>.
*?7.
620.
t>24.
630.
631.
632.
6J3.
634.
635.
636.
637.
63H.
6 14.
640.
6ul .
642.
6<+3.
hu4.
6i*5.
64t!.
647.
6u-l.
64V.
SPEEU PFCOPD
(MPH)
46.00
46.00
46.42
47.00
47.00
47.00
47.00
47.00
47.00
47.04
49.00
49.33
44.51
44.00
44.00
49.00
49.00
48.72
4M.r<7
50.00
50.00
50.00
50.00
49.78
49.00
49.00
49.64
5 0 . 0 0
5U.OO
50.00
49.68
4^.0U
49.00
4b.2U
4tf.OO
4>-.00
4M.27
49.00
44.58
50.00
50.00
30.00
50.00
50.00
50.00
50.00
50.00
50.00
5o.0o
50.00
(SFD
650.
651 .
65?.
65"*.
654.
65S.
656.
657.
65«.
654.
660.
661.
66?.
663.
664.
665.
66*.
667.
66°.
661.
670.
671.
67?.
673.
674.
675.
676.
677.
678.
674.
680.
611 .
68?.
683.
6^4.
685.
6i46.
(SA7.
68=>.
6*9.
691.
6')1 .
69?.
693.
644.
64=;.
646.
b->7.
69-.
690.
SPErn
(MPH)
50.47
51 .00
51.00
51 .00
51.00
51.00
51.42
52.00
52. on
52.00
52.00
52.20
53.00
53.00
53.00
53.00
53.00
53.nO
53.00
53.r,0
52. ">"
52.00
52. ^3
52.^1
52.25
51.01".
53.no
53.no
53.00
53.0-1
53.00
53.no
5.3.00
53. Of
53.00
53.4"
55.00
55.00
55.00
SS.O'i
55.00
55.01!
55. nc
55.00
55.no
55. n.'.
55. m
55.00
55. 00
55. ni.
HhX-jKij
(br.C>
7ou.
7ol .
7 > 1 2 .
7.J3.
7u4.
7,>5.
7 16.
7u7.
7:j8.
7o4.
710.
711.
712.
713.
714.
715.
716.
717.
716.
719.
7<;o.
721.
722.
723.
7<;4.
725.
72o.
727.
728.
729.
7)0.
711.
7-12.
1 J3.
7 i4.
7.:>b.
7 J6.
7 J7.
'73tt.
7 14.
7*0.
7*1.
742.
7-3.
7u<*.
/••>5.
'7 "6.
7<» 7 .
7 " cl .
74^.
SPFtL)
(MPM)
55.00
54. bO
54.66
55.00
54.03
54.00
54.00
54.00
54.00
54. uO
54.00
54. UO
54. OU
54.77
56.00
56.00
56.00
56.02
57. uO
56.67
56. uO
56.00
•^6.00
56.00
56.00
56.00
56.00
56.00
56. UO
56.91
57.00
57.00
57. UO
57.00
5 7 . u 0
57. HS
58.00
56.00
56.00
SB. 00
56.00
58.00
58.00
58.00
58.00
57.13
56.00
56.00
56.oO
56.00
RECORD
(SEC)
750.
751.
752.
753.
754.
755.
756.
757.
758.
759.
760.
761.
762.
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.
773.
774.
775.
776.
777.
778.
779.
780.
781 .
782.
783.
784.
785.
786.
787.
788.
789.
790.
791.
792.
79.3.
794.
795.
796.
797.
748.
749.
SPEED
(MPH)
56.00
55.63
55.00
55.00
55.00
55.00
5b.OO
55.00
55.00
55.00
54.22
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
53.01
50.86
49.70
48.54
47.39
46.23
45.07
43.91
42.51
40.60
39.44
38.28
37.13
35.94
33.81
32.66
30.50
28.34
26.37
25.03
21.87
19.85
16.56
15.40
14.24
1 1 . 1 7
rtt-.CORD
(SEC)
800.
801.
80^.
803.
804.
805.
806.
607.
806.
809.
610.
811.
812.
813.
814.
815.
81b.
617.
616.
819.
820.
821.
822.
823.
t>24.
825.
826.
627.
828.
629.
830.
831.
832.
833.
834.
835.
636.
637.
838.
839.
840.
H41.
842.
643.
844.
8*5.
846.
647.
84H.
M44.
SPEED
(MPH)
10.71
6.08
2.61
1.45
0.30
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.19
1 .00
1.51
2.66
4.64
6.96
8.86
7.71
7.45
9.22
10.00
9.08
10.08
11.24
12.79
14.00
12.58
12.87
13.00
u'tCOrtD
(SEC)
850.
851.
652.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
663.
864.
865.
866.
867.
866.
869.
870.
P71.
872.
873.
874.
675.
876.
877.
878.
879.
880.
861.
882.
683.
884.
885.
886.
887.
888.
889.
890.
891.
892.
893.
894.
895.
696.
897.
898.
894.
SPEED
(MPH)
13.00
13.68
15.00
15.00
13.37
12.03
12.26
14.29
14. b6
15.20
16. 76
17.00
17.00
17.23
18.77
2U.54
19.60
16.14
17.s>6
17.00
16. 34
15.00
15.00
lb.00
15. 9to
12.35
15.26
1^.27
12.59
12.25
4.28
6.00
6.00
6. 38
9.53
10.69
11.00
9.UO
4.00
4.32
10.00
4. 36
9.00
9.95
14. J3
17. S3
19.42
20.00
20. 74
21.00
HECORn SPEEO RECORD
(SEC)
400.
901.
402.
403.
404.
405.
906.
907.
906.
909.
910.
911.
912.
913.
914.
915.
916.
917.
918.
919.
920.
921.
422.
423.
924.
925.
926.
927.
926.
429.
OO.
931.
432.
933.
434.
435.
436.
437.
938.
439.
440.
441.
442.
443.
444.
445.
446.
947.
448.
949.
(MPH)
21.11
23.84
27.00
27.00
29.05
.12.52
31.01
U .00
Jl.62
33.00
32.37
30.43
30.00
'10.00
10.51
32.41
33.00
32.27
.12.00
31 .04
.12.20
33.36
3<*.00
1^.00
3^.00
33.01
Jl.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
2.91
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
(SEC)
950.
951.
952.
953.
454.
455.
456.
457.
454.
454.
460.
961.
96?.
963.
964.
965.
966.
967.
964.
969.
970.
971.
972.
973.
974.
97s.
976.
977.
978.
479.
^80.
981.
982.
983.
984.
985.
966.
987.
98-3.
969.
490.
991.
492.
993.
994.
99S.
996.
997.
448.
49Q.
SPEED
(MPH)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
-42-
Chassis Cycle (Gasoline and Diesel)
RF.CORO
(SEC)
1000.
1001 .
100?.
1003.
1004.
lOOb.
1006.
1007.
100ft.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1019.
10?0.
10P1.
1 0?.2 •
10^3.
1 o?4.
10?5.
10?6.
10?7.
1028.
10.^9.
1030.
1 0 3 1 .
103?.
1033.
1034.
1035.
1036.
1037.
103R.
1039.
1040.
1041.
1 Oil?.
1043.
1044.
1 04^.
1046.-
1047.
1048.
1049.
SPHFJ
(MPH)
0.0
0.0
0.0
0.1 ?
0.71
0.0
0.0
0.0
0.0
4. li
6. On
6. Oil
6.0'.
5.3ii
4. 1-*
1 .9-
0.0
O.n
0.0
0.0
0.0
0.0
0.0
n. o
O.n
0.0
O.o
O.n
o.o
o.o
o.o
o.o
o.o
o.o
O.f)
0.0
0.0
0.4-<
1.64
O.M
0.0
0.0
0.0
O.n
O.n
o.n
0.0
0.0
0.0
0.0
RtCOWi.» SPFED
(SFC) (MPH)
1050. n.o
losi. n.o
105?. 0.0
1053. 0.0
1054. 0.0
1055. ".0
1056. 0.0
1057. 0.0
105>8. n.O
1059. n.O
lOfiO. 0.0
------- |