HDV  78-04
                          Technical Report

                            August 1978
                Transient Cycle Arrangement for Heavy-
               Duty Engine and Chassis Emission Testing
                                  by

                           Chester J. France
                                 NOTICE

Technical Reports do not  necessarily  represent  final EPA decisions
or positions.   They  are intended to  present  technical  analysis  of
issues using  data  which are  currently  available.    The  purpose  in
the release of  such reports  is  to  facilitate  the exchange of tech-
nical  information  and   to  inform the  public of  technical develop-
ments which may form  the  basis  for a  final EPA decision, position
or regulatory action.
              Standards Development and Support Branch
                Emission Control Technology Division
            Office of Mobile Source Air Pollution Control
                 Office of Air and Waste Management
                U.S. Environmental Protection Agency

-------
                                 -111-


                           TABLE OF  CONTENTS

                                                             Page

      Foreward                                               ii

  I.  Summary                                                 1

 II.  Introduction and Background                             3

III.  Discussion                                              4

      A.  Practical Requirements Governing Cycle
          Arrangement                                         4

      B.  Pertinent Cycle Characteristics                     5

          1..  Trip Length                                    .5
          2.  Selection of Cold Start Segment                 9
          3.  Hot/Cold Weighting Factors                     11
          4.  Hot Soak Time                                  1^

      C.  Finalized Cycles and Corresponding                 13
          Emission Calculations

          1.  Finalized Engine Cycles                        13
          2.  Finalized Chassis Cycles                       l{i
          3.  Exhaust Emission Calculation                   17
              Equations

      D.  Conclusions                                        19

Appendix I                                                   20

Appendix II                                                  26

Appendix III                                                 39

-------
                              -11-
Foreward

     Olson Laboratories,  EPA's  heavy-duty  (HD)  cycle  development
contractor,  has  generated  various nominal  5-minute  chassis  and
engine cycles  from  the  CAPE-21  data b.ase.*   The Emission Control
Technology Division  (ECTD)  of  EPA has  in  turn,  selected the best
cycle  in each  category  for which  cycles were generated  (both
chassis and  engine  cycles).^*   The final  step  in' ECTD's HD  tran-
sient  cycle  development effort  is the arrangement  of these five
minute cycles into  one cycle which exhibits  the proper  trip charac-
teristics as  determined  from the  CAPE-21 survey data.

     The purpose of  this  report  i^ to  identify the cycle arrange-
ment that has the proper trip characteristics and which also meets
certain practical requirements.   Chassis and engine cycle arrange-
ments for both HD gasoline and diesel vehicles are;: developed.   The
equations  necessary  for  exhaust  emission  calculations  are alsp
presented.
*  "Heavy-Duty Vehicle Cycle Development," EPA Draft Final Report,
July 1978 (to be  released  about  September  1978).

** "Selection of  Transient Cycle  for Heavy-Duty Engines," EPA
Technical Report HDV  77-01, by  T.  Wysor  and  C.  France, November
1977 and  "Selection of  Transient Cycles for Heavy-Duty Vehicles,"
EPA  Techical  Report  HDV  78-02,  by T.  Wysor and  C.  France, June
1978.

-------
I.   Summary
     Objective

     The objective
ment that  has  the
freeway  weighting;
weighting;  and trip
program  needs  and
cycle  arrangements
equations  for  both
also be derived.
        of  this  report is  to  develop a cycle  arrange-
        proper trip characteristics  (e.g.,  non-freeway/
         city  weighting;  hot  operation/cold  operation
         length)  and also  meets requirements dictated by
        practical  considerations.    Chassis and  engine
         including  corresponding  emission  calculation
         heavy-duty  gasoline  and  diesel  vehicles  will
     Results

     Various nominal 5-minute  chassis  and  engine  cycles  (developed
by  EPA's  cycle  development  contractor,  Olson Laboratories)  were
arranged into one  cycle  (one  for chassis and  one  for  engine)  ptyat
exhibited  the  proper heavy-duty  trip characteristics.   The  trip
characteristics were  determined from  the  CAPE-21  survey data.

Several other practical  constraints  (summarized in  section  III(A)
"Practical  Requirements  Governing Cycle  Arrangement") also  influ-
ence the arrangement of the finalized cycles.

     The finalized engine  and  chassis  cycle arrangements  are  shown
below.
                        Finalized Engine Cycles
Segment No;
Gasoline:
Diesel:
 New York
Non-freeway
 272 sec.
 297 sec.
Los Angeles
Non-freeway
 307 sec.
 300 sec.
Los Angeles
  Freeway
  316 sec.
  305 sec.
 New York
Non-freeway
  272 sec.
  297 sec.
                     20 minute nominal trip length
            (actual trip length = 19.45 min.  for gasoline
                      and 19.98 min. for diesel)
                        Finalized Chassis Cycle
                         (Gasoline and Diesel)
Segment No:     1
            New York
           Non-freeway
             254 sec.
                 Los  Angeles
                 Non-freeway
                  285 sec.
                  Los Angeles
                    Freeway
                    267 se,c.
                  New York
                 Non-freeway
                   254 sec.
                     20 minute nominal trip length
                    (actual trip length = 17.67  min.)

-------
                                  -2-
A completf emission  test  would  consist  of a cold start and a hot
start cycle run.   (The  second-by-second  listings  for  these  cycles
can be found  in Appendices II and III.)

     The  corresponding  equations  for emission  calculation are:

1)   engine cycle:

     A   ,     l/7(gc) + 6/7(gh)
      wm
          l/7(BHP-Hrc) + 6/7(BHP-Hrh)
Where:

     A   =  Weighted mass  emission  level (HC, CO,  C02j  or NOx)
      wm       in grams per brake horsepower-hour.

     g  ' =  Mass- emission'level  in grams,  measured  during the
      0        cold  start test.

     g,   =  Mass  emission level  in grams,  measured  during the
               hot start test.

 BHP-Hr  =  Total  brake horsepower-hour (brake horsepower
       c       integrated with  respect to  time) for the cold  start
               test.

 BHP-Hr  =  Total  brake horsepower-hour (brake horsepower
               integrated with  respect  to time) for the hot  start
               test.

and

2)  chassis  cycle: .
     A.   = l/7(gc)  +  6/7(gh)
      wm  	5-55


Where:                       .

     Awm  =  Weighted mass  emission level  (HC, CO, C02>  or  NOx)
           in grams  per vehicle mile.

     g    =  Mass emission level  in grams,  measured during the
            cold  start test.

     g,    =  Mass emission level  in grams,  measured during the
            hot  start test.

-------
                                   -3-
 Conclusions

     The  cycle arrangement  above  was  fundamentally  based  on  the
 CAPE-21 data  base and  the cycles  generated  from  it.   In some
 cases  engineering judgement  was relied upon.   The  finalized
 composite  cycles  exhibit   trip  characteristics  supported  by  the
 CAPE-21 data  base and  can be  considered  representative of an
 urban trip for a HD truck.

 II.  Introduction and Background

     The  initial  step in ECTD's  cycle  development  effort was  the
 collection of  urban  truck  operational data.   The CAPE-21 project*
 accomplished  this  task.    In  the CAPE-21 survey  forty-four (44)
 trucks  and three  (3)  buses  were surveyed in Los Angeles  (LA),  and
 forty-four (44) trucks and  four (4) buses were  surveyed in New York
 City (NY).   Speed  (mph),  engine rpm, engine  power, engine  temper-
 ature,  and various  road  and traffic descriptions were recorded on
 tape at approximately one second intervals.   The  vehicles  performed
 their  normal  daily  functions  while these  data were collected.

    From  this  data  base,   Olson  Laboratories  generated  numerous
 5-minute (approximate) long  transient cycles  using the Monte Carlo
 technique.**   ECTD selected, from  the  cycles  delivered,  the best
 cycle in each  category.  The selected cycles and their identifica-
 tion numbers  are listed below.
                Engine Cycles  Selected

  Identification Number         Cycle Description

       203887989                LA  Non-Freeway, Gasoline
       296644805                LA  Freeway, Gasoline
       8410263                  NY  Non-Freeway, Gasoline
       792043535                NY  Freeway, Gasoline

       2110248101               LA  Non-Freeway, Diesel
       1599345415               LA  Freeway, Diesel .
       2114147447               NY  Non-Freeway, Diesel
       104099549                NY  Freeway, Diesel
*"Truck Driving Pattern and Use  Survey,  Phase  II  - Part I," Final
Report,  EPA Report  No.  EPA-460/3-77-009, June  1977 and  "Truck
Driving Pattern and  Use Survey,  Phasell  -  Part  II," EPA Technical
Report HDV 78-03,  by  Leroy  Higdon, May 1978.

** "Heavy-Duty Vehicle Cycle Development," EPA Draft Final Report,
July 1978 (to be  released about September 1978).

-------
              Chassis  Cycles Selected

Identification Number            Cycle Description
    2106-204593        LA Non-Freeway, Gasoline and Diesel
    1539135071        LA Freeway, Gasolene and Diesel
    212'0127413        NY Non-Freeway, Gasoline and Diesel
    2037082365        NY Freeway, Gasoline and Diesel
     The procedures used  to  select these cycles are  described  in
the EPA reports "Selection of Transient Cycles  for Heavy-Duty
Engines," (HDV 77-01)  by T. Wysor and C. France, November 1977, and
"Selection of Transient  Cycles for  Heavy-Duty Vehicles,"  (HDV
 78-02) by T.  Wysor and C. France, June 1978.

     The remaining task in the HD  cycle  development effort  is the
logical arrangement of the above  cycles  into one cycle for chassis
testing and one  for  engine  testing.   The following text  will
address this topic.   The  discussion is  structured  into four major
sections.   They  are:  A)  practical  requirements   governing  cycle
arrangement,  B) pertinent  cycle  characteristics,  0} finalized
cycles  and  corresponding  emission  calculation  equations,  and  D)
conclusions.

III. Discussion

A.  Practical  Requirements Governing Cycle Arrangement

     Below  are  listed  several  requirements dictated by  program
needs and practical considerations  to  which  tl|e test  cycles  §houlc|
conform.

    1)    Nominal  length  (time)  of the  engine cycle  and  pha^sis
     cycle should  be the  same.   The cycle length for  both types  of
     cycles logically  should  be  the same since  they were generated
     from the  sa,me  data bage.

     2)   New York and Los Angeles  operation should be given equal
     weighting in  the  finalize^  cycles,   ECTD  presently  does not
     have any  information or data  that  indicates whether  New  York
     or Los Angeles operation is more  typical  of  HD  urban  opera-
     tion.  Fifty-fifty weighting of each city is the  only alterna-
     tive at this  time.

     3)   The non-freeway  and freeway  operation should receive the
     same proportional weighting as  in the CAPE-21 data base.

     4)    The chassis  cycle used for  HD  evaporative emission
     testing should be the same  as that  used for exhaust  emission
     testing.

-------
                                   -6-
     It; should be pointed out  that  the  reason  there  are  such  large
differences between the means and medians is  that  the density  func-
tions are not normally  distributed  (see  Figures 1 and  2).   Instead
the density functions follow a Weibull  density function  or  even an
exponential density  function quite well.   This  fact  supports the
use  of  the median  as  a measure  of central tendency.   The  means
would be  abnormally weighted  by  the  extreme values and  therefore
misleading.

     Using a purely  statistical approach the following median trip
lengths are appropriate.
                                             Median
               Category                    Trip  Length

               LA Gas                          12  minutes
               NY Gas                           8
               LA Diesel                       27
               NY Diesel                       26
     However, considering the range of the trip lengths and noting
the shape of  the  distribution  functions  (see Figures 1 and 2) any
trip length  from  about  10  to 25 minutes for gasoline vehicles and
20 to 50 minutes, for diesel vehicles  appears  reasonable.  The large
standard deviations  (21  to 80  minutes)  also demonstrate  that the
trip statistics above are imprecise.

     A twenty minute  trip seems  very appropriate for gasoline
engines.  This would  be  a  "nominal"  trip length.   The actual trip
length would be a function  of which set  of cycle segments (e.g., NY
non-freeway, LA non-freeway, etc.) are ultimately selected and may
differ slightly  for engine and  chassis  cycles.   In any  case the
actual cycle time will be approximately  20 minutes.

     A twenty minute  trip length was also selected for  diesel
engines even though it is a little short.  The consequence of such
a short  cycle  is that cold  start  emissions  will  be overweighted.
It is  anticipated at  this  time  that  this will not pose a problem.
The relative difference  between cold and stabilized  emissions from
diesel engines  should  not  be great  enough  for this overweighting
to be  critical.  If  this  judgment  proves  to be incorrect,  two
options will be  available.   One would  be to run the twenty minute
cycle  twice, back  to back,  to obtain a 40  minute cycle.   The
practical  aspects  of doubling  the  test time (cost, instrument
durability,   increased  probability  of void  tests,  etc.) would  be
more detrimental  than  the  advantages that  might  be gained.   The
other option would be  to  compensate by an appropriate adjustment to
the cold trip and hot  trip  weighting  factors.

-------
                                   -5-
     5)    The same test  cycle  should  be used  for diesel particulate
     testing and diesel  gaseous  emission  testing.

     6)     The  diesel  particulate  test  cycle must  be  inherently
     weighted.  The diesel particulate test requires a long sample
     period (greater than  15  minutes) to insure accurate results.
     This requirement dictates a cycle that inherently weights  the
     freeway  and  non-freeway  operation,  and  city weighting.    If
     this was not the case,  emissions measured over a cycle segment
     (e.g. LA non-freeway) would  have to be weighted properly  and
     then summed with the other cycle segment results.   However,  5
     minutes (the typical segment length) is insufficient measurer
     ment time for particulate testing.

     7)    The emission test cycle should include both cold and  hot
     start cycles.  This  requirement  insures an accurate  assessment
     of  cold  start  emissions.   This is particularly  important
     should HD gasoline engines be equipped with catalyst emission
     control systems.

B.   Pertinent Cycle Characteristics

     1)    Trip Length.

     The  major  concern  of trip  length is  its  influence  on hot
versus cold  emissions.   As a trip  becomes  longer,  there  is less
influence on  average emissions by  the  cold start portion  of  the
trip.  This is of more  concern for  gasoline engines than  for diesel
engines,  and becomes very important  if catalyst control systems  are
used.  The following discussion addresses the issue of trip length.

     Table 1  lists  the  trip summary  data from the CAPE-21 survey.
                                Table  1

                             Time  per  Trip*
                              (in  minutes)

               Total No.                         Standard
Category       of Trips     Mean    Median      Deviation     Range

LA Gas           931        19.31      12.22       21.17       0-180
NY Gas           995        19.30       7.97       38.39       0-440
LA Diesel        313        38.82      27.40       45.06       0-330
NY Diesel        234        55.23      25.50       79.88       0-460

* A trip is defined as engine-on to  engine-off.

-------
         Figure 1
10 X 10 TO THE CENTIMETER 18 X 25 CM.
   UNITED CONVERTERS & PRINTERS

-------
            -8-
        Figure 2
10 X 10 TO THE CENTIMETER 18 X 25 CM.
   UNITED CONVERTERS & PRINTERS

-------
   -10-
Table 2
(An asterisk

LA GAS:
NY GAS:
LA DIESEL:
NY DIESEL:
All LA Trucks:
All NY Trucks:
All GAS:
All DIESEL:
All Trucks:
Mean
1.56
1.78
2.85
0.05
2.17
1.13
1.64
2.05
1.82
Cold Start N
Median Std. Dev.
0.43
0.23
0.67
0.02
0.47
0.03
0.40
0.20
0.30
2.44
2.69
4.19
0.08
3.38
2.25
2.48
3.74
3.07
17
10
15
6
32
16
27
21
48
Initial Idle Time
(in minutes)
indicates a frequency of one or less)
Warm Start N Normal Start N
Mean Median Std. Dev. Mean Median Std. Dev.
0.56
0.86
0.40
0.20
0.46
0.58
0.64
0.37
0.48
0.37
0.35
0.10
0.10
0.25
0.27
0.37
0.10
0.27
0.71
1.23
0.57
0.23
0.62
0.95
0.84
0.53
0.68
11
4
19
3
30
7
15
22
37
0.34
1.25
0.26
0.34
0.31
0.98
0.67
0.28
0.53
0.10
0.20
0.13
0.13
0.10
0.20
0.17
0.13
0.15
0.63
3.00
0.32
0.33
0.53
2.55
1.90
0.32
1.53
39
22
26
9
65
31
61
35
96
Hot Start
Mean Median Std. Dev
0.18 0.10 0.27
0.44 0.10 1.20
* * *
* * *
0.18 0.10 0.27
0.43 0.10 1.19
0.28 0.10 0.80
* * *
0.28 0.10 0.80
N
88
62
0
1
88
63
150
1
151

-------
                                   -9-
     As will be seen later, the number of trips per day of gasoline
vehicles versus diesel vehicles also  effects  cold  start weighting.
The  hot/cold   trip  weighting  factors  seleted  under  section  B(3)
underweight the  cold  start  emissions  for diesels.   This  under-
weighting will  tend to offset  the  overweighting resulting  from  a
20 minute trip length.

     2)   Selection of  Cold Start  Segment

     Based  on a hot/cold analysis* of  the  CAPE-21  data  it  was
concluded that there was  not  a  significant difference  in hot  versus
cold  truck  operation  from a  practical viewpoint.   Therefore,  a
separate cold  start  cycle  was  not generated from  the  CAPE-21  data
base.   The  analysis  does  show  that a cold  start was  characterized
by  a  longer than normal initial  idle period.  Table  2  summarizes
the initial idle time following cold,  warm,  normal, and hot starts.

     Table 2 suggests a median initial  idle time of 24 seconds for
gasoline trucks  (LA  and  NY).   Table  2 also  indicates  that  diesel
trucks  have a typical initial  idle period of 12   seconds  (median
value).   It should be noticed  that there is  a drastic  difference
between the median  values  for  LA  diesels and  NY diesels  (.67  min.
versus  .02 min.).  Because the initial  idle is extremely short for
NY  diesels  when compared  to the  other  categories,  the NY  diesel
truck data  are  suspicious.   The  initial idle  time  summary  statis-
tics may not be that reliable  for the NY  diesel  due to the  limited
number of trucks that were used in the hot/cold analysis from which
Table 2  was derived.  The  initial  idle period for the  LA  diesels
are of  the  same order of magnitude  as  the  LA  and NY gas trucks and
does appear to be reasonable.

     The  practicalities  of  running the  transient test  procedure
prevent the initial idle  period following a cold start  from getting
much shorter than 24 seconds.  Sufficient idle time is  necessary to
allow the engine to  stabilize with  the  proper  choke setting  (after
starting) and to enable the engine  dynamometer  to  be placed  in the
transient control mode.   Since  the  initial idle period  for  the NY
diesels is  somewhat  suspicious and  because diesels  are  less  sensi-
tive  to cold  start characteristics than gasoline  engines  the
initial  idle  for  gasoline  engines  will  also be  used for  diesel
engines.

     It should be emphasized that the  initial  idle  summary  statis-
tics (presented in Table  2) are highly variable.  Large differences
exist between the medians and means  due to the skewed distributions.
The extreme values  (long idle  periods)  for  some  trucks  excessively
weight  the means.  This fact  also  contributes  to the large  standard
*"Analysis of Hot/Cold Cycle Requirements  for  Heavy-Duty Vehicles,"
EPA  Technical Report HDV  78-05,  by Chester France,  June 1978.

-------
 Truck
Category

LA 2-axle GAS
LA 3-axle GAS
LA TT GAS
LA 2-axle DSL
LA 3-axle DSL
LA TT DSL
LA all GAS
LA all DSL
LA All Trucks
LA Buses

NY 2-axle GAS
NY 3-axle GAS
NY TT GAS
NY
NY
2-axle DSL
3-axle DSL
NY TT DSL
NY all GAS
NY all DSL
NY All Trucks
NY Buses
                             -12-
                          Table 3

                       Trips per Day
Sample
Size
71
4
18
2
19
24
93
45
138
7
76
2
9
5
16
24
87
45
132
13

Mean
10.28
11.75
8.56
14.50
6.84
6.42
10.01
6.96
9.01
7.43
12.14
6.50
6.56
2.80
3.44
6.88
11.44
5.20
9.31
11.62

Median
8.10
12.00
5.83
11.00
5.83
5.75
7.83
5.93
7.17
5.88
11.00
1.00
4.50
2.25
1.86
5.00
10.38
2.92
7.00
9.50
Standard
Deviation
6.03
2.28
5.19
3.50
3.41
2,58
5.82
3.42
5.35
1.84
8.62
5.50
5.23
0.75
3.10
5.09
8.48
4.53
7.95
7.12
                          Table 4

                     Time Between Trips
                        (in minutes)
All Days:

LA 2-axle GAS
LA 3-axle GAS
LA TT GAS
LA 2-axle DSL
LA 3-axle DSL
LA TT DSL
LA all GAS
LA all DSL
LA All Trucks
LA Buses

NY 2-axle GAS
NY 3-axle GAS
NY TT GAS
NY 2-axle DSL
NY 3-axle DSL
NY TT DSL
NY all GAS
NY all DSL
NY All Trucks
NY Buses
Sample
Size
659
43
136
27
111
130
838
268
1106
45
847
11
50
9
39
141
908
189
1097
138

Mean
21.24
20.98
35.34
21.15
33.86
28.56
23.51
30.01
25.09
19.87
17.65
21.18
25.56
17.00
43.24
25.99
18.13
29.12
20.02
10.19

Median
12.54
14.25
23.50
12.00
22.85
21.83
14.18
19.50
15.53
14.00
10.17
18.00
20.50
14.75
15.25
17.60
10.48
16.86
11.07
5.55
Standard
Deviation
25.88
20.95
42.20
26.30
37.98
27.42
29.42
32.35
30.28
15.81
27.76
13.77
24.39
6.04
63.42
31.78
27.52
40.51
30.44
19.28

-------
                                   -11-
deviations.   Even among the  statistics  (e.g.,  medians) there are
wide  ranges of values (1 to 40  seconds  for  medians)  among the
various truck categories.  The median was used  to eliminate exces-
sive weighting by extremely long  initial  idle periods.   It was also
thought to  best  represent  the most  typical  initial  idle time for
the CAPE-21  trucks,  moreso  than  the means.    Arguments  could be
constructed for  longer  initial  idle  periods  than the one selected
above, however any  idle time less than  the  one selected would be
difficult to justify (at least for gasoline vehicles).

     In summation, a 24  second  initial  idle  time was selected for
both gasoline and diesel engine  cycles.   The  same 24  second initial
idle  time was also  placed  at the  beginning of  the opening segment
of the chassis cycle.

     Only  one  cycle segment  is  really  a  logical choice  for the
opening  segment.   The  segment  is  New York,  non-freeway.   The
reasons for this  are:  (1)  this  segment,  by far, contains the most
idle  (greater than  40%) and  (2)  its  statistics (mean mph,  mean %
power, mean % rpm,  and %  idle)  are more  characteristic  of cold
operation than those of the other  cycle  segments.*

     To simply add  the  required  idle to the front of the New York
cycle would artificially inflate  the  total  cycle's percent idle.  A
much  better approach would  be to  reorder the idle in the New York
non-freeway  segment.    Reordering  the  idle  does  not  alter the
representativeness  of the  cycle  and  is a  statistically  valid
maneuver.

     The reordered  New York non-freeway segments can  be found in
Appendix I.  (The unmodified versions can be  found in EPA Technical
reports HDV  77-01  and  HDV 78-02.)   Both the engine (gasoline and
diesel) and chassis cycles  are listed.

     3)   Hot/Cold Weighting Factors

     One of  the  requirements (listed earlier)  governing the cycle
arrangement is a cold and hot start test.  Because of this require-
ment the appropriate hot/cold weighting  factors  need  determination.
The number  of trips  per day and the  number of cold  starts per day
for LA and  NY trucks are necessary information for  calculation of
the weighting factors.

     Table 3 summarizes the trips  per day for various CAPE-21 truck
categories.  The only categories of real  interest in  this table are
LA  trucks  (gas  and  diesel)  and NY  trucks  (gas and diesel).   As
before, the median values are more appropriate because of non-nor-
malities.   The median  trips  per  day  for both the LA and NY trucks
is seven (7).
*"Analysis of Hot/Cold Cycle Requirements  for Heavy-Duty Vehicles,"
EPA  Technical Report HDV  78-05,  by Chester  France, June 1978.

-------
                                   -14-


                              Table 5

            CAPE-21 Non-Freeway and Freeway Weighting

     Category             Non-Freeway         Freeway

     LA Gas                   .30                .20
     NY Gas                   .44                .06
     LA Diesel                .24                .26
     NY Diesel                .41                .10

     A  complicating factor  in  trying to  duplicate  the weightings
above,  is that  all cycles  (engine  and  chassis) generated  are a
nominal  five  minutes  in  length.   It  is  impossible  using the five
minute cycles,  the  20  minute trip length,  and  a 50/50 city weigh-
ting, to exactly match the N-F/F weighting in Table 5.

     The  best  compromise  is  to simply delete  the New York freeway
cycle.  This  cycle  only represents  6% of the data for gasoline and
10% of  the  data for diesel.  Also,  the  New York freeway cycle for
gasoline engines was tainted by questionable RPM  data from New York
gas  truck 09.*   Consequently,  the  cycle's  representativeness  is
debatable.    The  New York  non-freeway  gasoline engine  cycle  was
influenced substantially  less  by truck 09 and  it is felt that the
cycle remains  reasonably  representative.  The  deletion  of the New
York  freeway  cycle eliminates  most  of the  potential  influence  of
truck 09  on  the finalized gasoline engine  cycle.  To maintain the
proper  city  weighting the  NY  N-F cycle  could  be run  twice.   The
resulting cycle would look like this:

                              Figure 3

                      Finalized Engine Cycle

Segment No:  1         2         3         4
          NY N-F     LA N-F      LA F     NY N-F
Gas:      272 sec.   307 sec.   316 sec.  272 sec.
Diesel:    297 sec.   300 sec.   305 sec.  297 sec.

               20 minutes nominal trip length
         (actual trip length = 1167 (19.45 min.)  for gas
            and 1199 sec (19.9 min.) for diesel.)

This cycle has the following city and N-F/F weighting.
*This problem  is  more fully  discussed  in the Addendum  to  the EPA
Technical  Report   "Selection  of  Transient  Cycles  for  Heavy-Duty
Engines,"  (HDV  77-01) by  T.  Wysor and  C. France, November  1977.

-------
                                  -13-
     To determine the number of  cold  start  trips per day refer to
Table  4.   This  table  lists the  time between  trips for  various
CAPE-21 truck categories.  The  times  between  trips  listed are the
engine-off times  between  trips.  The engine-off time  preced-
ing the first start of the day was not  included  in  the calculation
of these  summary statistics.   The median values  (and  mean values
for that matter) clearly demonstrate  that only  the  first start of
the day can be considered cold.   Therefore,  the remaining trips can
be considered hot starts.
     Based on  the  above information the  appropriate  hot  and cold
weighting factors are  shown  below.


Cold Start Weighting Factor  = Number of Cold Start Trips per Day = 1
                                Total Number of Trips per Day      7

Hot Start Weighting Factor = Number of Cold Start Trips per Day = £
                               Total Number of Trips per Day      7

     4)   Hot Soak Time

     Again because of  a cold start and hot start test requirement,
the proper hot soak time has to be assessed.  Table 4 will provide
the necessary information.

     The summary statistics in  Table 4  exhibit  the  same degree of
variability as the time per trip data listed earlier.  The density
functions  are  not  normal  and  the  standard deviations  are  huge.
Noting this large amount of  variation among the trucks, a 20 minute
hot soak time seems entirely reasonable.  The actual median values
do indicate a hot soak time  of  eleven (11) to sixteen (16) minutes.
A  hot  soak time  of 20  minutes  is close  to  these  values when com-
pared to the wide range of  values.  Also, practical considerations
of running the test (e.g.,  sampling bag  evacuation, dynamometer and
computer pre-test preparation,  etc.)  discourage  the use  of a
shorter soak time.

C.    Finalized  Cycles and Corresponding Emission Calculations

     1)   Finalized Engine  Cycles

     There is  no strong basis  for  ordering the remainder  of the
segments after the cold start  segment.   The only related constraint
is  the  proper non-freeway  (N-F)  and  freeway (F) weighting.   The
N-F/F weighting  factors for the CAPE-21 data base are shown below.

-------
                                   -16-
                             Figure 4

                     Finalized Chassis Cycle
                      (Gasoline and Diesel)
Segment No:      1          2          3          4
               NY N-F     LA N-F      LA  F      NY N-F
              254 sec.   285 sec.    267 sec.    254 sec.

                 20 minute nominal trip length
          (actual trip length = 1060 sec., 17.67 min.)

     The  summary  statistics  for  this chassis  cycle are  shown in
Table 8.  The chassis cycle  segment weighting  parallels the engine
cycles' weighting very closely.  Also, the chassis cycle's summary
statistics are  comparable  to those of CAPE-21.   A  listing of the
finalized chassis cycle  is located in Appendix  III.

     3)   Exhaust Emission Calculation Equations

     a)  Engine Cycles

     For  engine emission testing, emission  levels are  usually
presented in terms of grams of pollutant  per  brake horsepower-hour.
This  method  of expressing emission levels  removes  inequities
between small  and large  engines,  and  places both on the  same
comparative scale.  With respect  to HD transient emission  testing,
it would  be  desirous  to  obtain total grams of  pollutant per brake
horsepower-hour for an average  trip weighted appropriately for hot
and  cold  trips.   The  following  equation enables  calculation of
emission levels, in grams per brake  horsepower-hour,  for the engine
emission cycle shown in  Figure 3.
Equation (1)       .    _      l/7(g  )
                   A              C
                    wm   -i-
Where:
                                         6/7(BHP-Hrh)
          A   = Weighted mass emission level (HC, CO, C02, or NOx)
                in grams per brake  horsepower-hour.

          g   = Mass  emission  level  in grams,  measured during the
                cold start test.

          g,   = Mass  emission  level  in grams,  measured during the
                hot start test.

-------
                                   -15-
Category

LA Gas
NY Gas

LA Diesel
NY Diesel
                   Table 6

   City and Non-Freeway/Freeway Weighting

City Weighting    Non-Freeway Weighting   Freeway Weighting
Desired  Actual      Desired  Actual      Desired  Actual
  .50
  .50

  .50
  .50
.47
.53

.50
.50
.30
.44

.24
.41
.26
.47

.25
.50
.20
.06

.26
.09
.27
0

.25
0
     The opening segment for the  cycle  above  was  justified  earlier.
The second New  York  segment was  not chosen  for  the  second segment
because  emissions  under  New York driving  conditions would be
measured while  the  engine  was  either  cold  or  partilly  warm  (at
least  for  the  cold start  test).    No  stabilized emission  results
from New York  type  operation would be  available.  Instead,  the LA
N-F cycle  was   selected  for  the  second segment.   This cycle was
chosen so as not to  demand  high power and  speed  from  the engine  (as
would be required by the LA F cycle) before  it was  fully warmed-up.
The LA F  cycle was selected  for  the third  segment and the  NY N-F
cycle concludes the  composite cycle. This composite  cycle  would be
run for both hot and cold start tests.

     Finally, Table  7  compares the average between  %  RPM, average  %
power, and the % idle for  the composite cycle and  the  CAPE-21 data
base.  Table 7  clearly illustrates that the  proposed  cycle  approxi-
mates  the  CAPE-21 %  RPM,  % power and %  Idle  quite  closely.
                              Table  7
Engine Cycle

Gasoline

Diesel
      Average % RPM
     Desired  Actual
       29

       46
     30

     42
              Average  %  POWER
              Desired  Actual
     33

     30
    36

    28
                           %  Idle
                      Desired Actual
   26

   32
   27

   36
     A complete  listing  of the  gasoline  and  diesel engine  cycles
can be found in Appendix  II.

     2)   Finalized Chassis Cycles

     The finalized chassis cycle  was  arranged  in  the same manner as
the engine cycles  and the same logic was used.  The  resulting
composite cycle for chassis testing is  shown below.

-------
                                   -18-
      BHP-Hr  = Total brake horsepower-hour (brake horsepower inte-
                grated with  respect  to  time)  for  the cold  start
                test.

      BHP-Hr  = Total brake horsepower-hour (brake horsepower inte-
                grated  with respect to  time) for  the hot  start
                test.

     The numerator  in Equation  (1)  would equal the  total  grams  of
pollutant  measured  during  an  average  trip  (as  derived  from  the
CAPE-21 data base).  This  gram value is  weighted  appropriately for
the  typical  number  of  cold and  hot trips  occuring in a truck's
daily operation.   Similarly, the denominator  represents  the  total
hot/cold weighted,  brake  horsepower-hour (work)  output  during the
trip.

     b)   Chassis Cycle

     Emission levels for  chassis  emission  testing are  presented  in
terms  of grams  of  pollutant  per mile  traveled.   The following
equation produces hot/cold weighted mass  emissions per  vehicle mile
for the HD chassis cycle in Figure 4.

                          l/7(g )  + 6/7(gh)
Equation (2)   <     A   = 	=—=-=	
                     wm         _>. j_>
Where:
     A   =     Weighted mass  emission  level (HC, CO, CO.,  or  NOx)
      wm       in grams per vehicle mile.

     g   =     Mass  emission  level in  grams,  measured during  the
               cold start test.

     g   =     Mass  emission  level in  grams,  measured during  the
               hot start test.
     The numerator produces the hot/cold weighted mass  of pollutant
measured during the cycle  (same as  for  engine  cycles).   The  numer-
ical value which  is  in the denominator equals the  total  number  of
miles traveled during the cycle.

     D.   Conclusions
     Figures 3  and  4 present cycle segment arrangements  for  tran-
sient engine  and transient  chassis emission  testing  respectively.
(Listings of  all  cycles are  located  in Appendix II  and  II.)    A

-------
Category
                                                 -17-

                                               Table 8

                                   Chassis Cycle Summary Statistics
City Weighting
Desired  Actual
  Non-Freeway
   Weighting
Desired  Actual
    Freeway
   Weighting
Desired  Actual
              3
Miles per Trip
Desired  Actual
 Average Speed (mph)
    per Trip
Desired  Actual
LA Gas .50 .52
and Diesel

NY Gas .50 .48
and Diesel
.28 .27 .22 .25
4.59 5.55
(5.73)
.43 .48 .07 0


15. 991
(19. 45)2



18.86



  This value was derived from the means of the trip values.  Each trip is weighted equally regardless
of trip length.

2
  The average speed for each truck category was used to calculate this value.  The calculation
technique is shown below.

     Average speed per trip = (Avg. speed, LA Non-Freeway) .28 + (Avg. speed, LA Freeway) .22 +
(Avg. speed, NY Non-Freeway) .43 + (Avg. speed, NY Freeway) .07
and
                                           Average Speed (MPH)
                                       Non-Freeway       Freeway
                    LA Gas & Diesel      15.10
                    NY Gas & Diesel       7.80
                                             45.54
                                             26.39
therefore

     Avg. speed per trip = (15.10) .28 + (45.54) .22 + (7.80) .43 + (26.39) .07 = 19.45 MPH
  Miles per trip = (Average speed per trip)(Trip cycle duration)
                  = (Average speed per trip)(*'*"')
                                              60

-------
                               -19-
complete emission  test would  consist  of  a  cold start  and  a hot
start cycle  run.   Equation (1)  provides  the  means  of  calculating
emission levels for engine testing.   The  calculated  emission  levels
will be in grams per brake horsepower-hour.  Similarly,  for chassis
testing Equation (2) is used to  calculate weighted  grams of  pollu-
tant per vehicle mile.

     The cycle  arrangements  derived in  this  report are fundamen-
tally based on  the CAPE-21 data  base and  the cycles generated  from
it.  In some instances more than one choice or  approach  was-avail-
able.   In  these cases practical  consideration and engineering
judgment were used to aid in the selection of the finalized  cycle.
The  finalized  composite  cycle exhibits  trip  characteristics  sup-
ported  by  the  CAPE-21  data  base and can  be  considered a typical
urban trip for  a HD truck.

-------
             -20-
              APPENDIX I




Reordered New York Non-Freeway Segments




          (Engine and Chassis)

-------
                       -22-




Reordered New York Non-Freeway Gasoline Engine Cycle
RtCORD
(SEC)
POO.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.

%RP"
-------
Reordered New York Non-Freeway Gasoline Engine Cycle
RECORD
(SEC)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
<+«.
49.

*RPM
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
n.'i
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
0 . 0
o.o
o.n
0.0
-1.7ri
0.0
4.2S
27.^7
42.9*1
45. rv
48.11
50.<*2
52./<*
54.00
44. 4. J
45. Ob
46.00
37.0'^
31.61
22.9'+
24.00
20.86
1?.4S
S . 0 i)
6.b^
7.17
2.S6
0.0
0.0

%POWER
0.0
0.0
0.0
0.0
0.0
o.n
o.o
o.o
o.o
o.o
o.o
o.o
o.n
o.o
o.o
o.o
n.o
o.o
o.n
0.0
o.o
o.o
o.o
0.0
n.o
44.40
85.35
100.00
100.00
100.00
100.00
99.46
90.00
75.23
50.00
8.96
MOTORING
9.99
MOTORING
5.68
35.29
4.87
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
RECORD
(SEC)
50.
51.
52.
ST.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
6^.
65.
66.
67.
6ft.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

%RPM
0.0
0.0
4.3?
8.90
1.95
3.3-<
4. on
13.76
26.43
33. 8S
36.00
34. 4S
34.00
35.64
32. 99
36. On
41.63
60.41
48.44
43.8ft
40. 3Q
38.5o
35. OS
40. 6A
43.64
45.9ft
47. in
49. 2Q
37.10
36. On
34.47
32.15
31.67
28. 4a
32.39
36. On
41.69
45.74
49. 9S
49.10
50.59
<»5.9q
42.7*
35.1?
32.0*
35.53
46.57
*9.77
52. On
S3. 06

%POWER
0.0
10.11
<*60<.0
<+5.17
50.00
<»1 .68
09.46
35.60
26.96
6.16
MOTORING
MOT OK ING
VOTORTNG
MOTORING
27.39
30.00
7*. 37
2b.76
MOTORING
MOTORING
MOTOWING
4.01
JO. 00
16.70
26.45
MOTORING
MOTORING
MOT OK ING
MOTORING
MOTukING
MOTORING
MOTORING
MOTORING
13.89
*0.00
9o.oo
90.00
90.00
bO.OO
rtO.OO
62.97
J4.98
7.23
MOTuRIHG
67.92
b2.b5
08. bO
<*d.65
hO.OO
bO.OO
RECORD
(SEC)
100.
101 .
102. .
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
1)4.
115.
llfc.
117.
1 18.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
1<*6.
147.
148.
149.

*>RPM
63.66
64.14
59. 5d
38.00
39.09
40.00
34.85
32.03
34.00
34.00
33.02
25. 5^
15.57
14.00
14.47
lb.00
17.13
16.00
10.02
9.61
5.6e
4.00
t.oo
2.93
O.b^
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
o.n
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
2.00
1 .38
0.0
o.n

%POWER
23.42
17.84
3.76
42.26
30.00
30.00
47.18
10.33
33.48
50.00
20.69
MOTORING
MOTORING
MOTORING
27.64
4.<»9
MOTORING
MOTORING
MOTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
10.00
10.00
29.02
27.83
7.34
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.27
RECORD
(SEC)
150.
151.
152.
153.
154.
Ibb.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
17fa.
179.
180.
181.
182.
183.
184.
18b.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.

%RPM
0.0
0.0
0.0
0.0
O.b3
2.00
0.54
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
17.29
22.17
24.00
2<*.00
2*. 00
22.57
22.00
13.88
K'.CO
9.31
3.99
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0

%POWER
2.16
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
MOTORING
22.01
72.29
80.00
89.29
90.00
82. 7 u
31.96
MOTORINi,
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
                      -24-
Reordered New York Non-Freeway Diesel Engine Cycle
RECORD
(SEC)
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.

%RP"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.U
O.U
0.0
0.0
31. JU
41. IS
44.00
46.41
51.04
66.66
75 . 0 J
89. 8b
96. 7*
96.91
94.t)iJ
99. Jo
100. OU
100.00
100.00
100.9*
100.71
100.00
96. lh
95.77
94.5^
96.86
99.1ft
100.00
101. Ml
86.54
63.56
56. OJ
46.00
41 .Hb
38.31
35.93
31.03
25.36

%POWFR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
73.41
90.00
81.30
90.00
90.00
90.00
82.41
80.00
90.00
90.00
93.83
50.94
17.02
28.60
39.83
30.00
26.69
20.00
20.00
36.06
40.00
30.00
32.75
35.68
30.00
44.93
50. -00
MOTORING
MOTORING
MOTORING
MOTORING
45.18
7R.47
80.00
80.00
80.00
RECORD
( SEC )
250.
7>51.
25?.
253.
25^.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
?76.
277.
-27R.
279.
280.
281.
282.
2fl3.
-284.
285.
-286 .
287.
288.
289.
290.
291.
292.
293.
294.
295.
29ft.
297.



%RPM
23.05
18.20
12.84
10.10
3.79
1.4S
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0-.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



%IJOWER
60.S>7
27.34
43.71
6M.95
fjo • V 5
4. A /* ft
oio
0.0
0.0
0.0
0.0
0.0
0.0
c'4.97
17.16
6.20
10.00
10.00
0.0
OvO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.^0
0.0
o.o
0.0
0.0
-0.0
0.0
• O.-Q
O.U
0.0
0.0
0.0
0.0
0.0
0.0
O.U



-------
                      -23-
Reordered New York Non-Freeway Diesel Engine Cycle
Rt'CORO
(SEC)
0.
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
13.
14. •
15.
16.
17.
IB.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
*RPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
-0.0
0^0
0.0
0.0
o.o
0.0
0.0
o.o
o . u
o.o .
0.0
0.0
0.0
0.0
0.0
3.11
9.09
IB. 62
33.49
37.93
31. 3
17.51
14.19
16. 6-+
27. 77
37. OJ
47. 3b
54.77
57.70
%POWFH
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.67
47.69
59.41
84.54
80.00
80.00
79.29
38.25
26.67
15.10
16.47
28.05
20.38
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
62.52
69.36
60.00
63.79
75.36
80.00
80.00
RECORD
(SEC)
50.
51.
52.
53.
54.
55. •
56.
57.
58.
59.
60.
61..
62.
63.
64.
6S.
66.
67.
b8.
69.
70.
71.
72.
73.
74.
75.
76.
77.
7R.
79.
80.
81.
82.
83.
84.
85.
86.
87.
8P.
89. '
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
%RPM
54.03
58. On
58.65
62.83
69.83
72.00
75.81
84.2?
83.86
60.55
80.51
78.00
79.7Q
«0.33
85. 5R
81. 7R
78.00
80.74
92.10
88.01
84.00
84.00
81.17
70.4*,
66.00
62.23
64.00
63. 4H
60.34
56.85
56.00
52.45
39.91
36. 3H
30.00
27.91
26.00
27.6*
28.00
27.4]
20.9*,
12.15
3. Hi
0.0
0.0
0.0
0.0
0.0
0.0
0.0
*POu,ER
79.92
65.03
0.23
bO.OO
50.00
42.05
<»0.00
H2.20
<*1.28
MOTORING
MOTORING
MOTORING
MOTORING
-SO. 54
«2.12
f>0.00
bU.OO
43.16
73.65
MOTORING
MOTORING
MOT JR ING
MOTORING
MOTORING
13.57
29.43
^0.00
17.42
10.00
10.00
MOTORING
MOTORING
10.00
10.00
10.00
10.00
16.74
3.36
MOTORING
MOTORTNG
MjTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.91
7.52
0.0
0.0
0.0
RECORD
(SEC)
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
%RPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.77
1.60
0.0
0.0
2.14
3. Of
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
*POwER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
0.0
9.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.51
11.34
0.0
RECORD
(SEO
150.
Ibl.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
17b.
177.
176.
179.
180.
181.
182.
183.
184.
185.
18b.
187'.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
*RPM
0.0
0.0
o.O
0.0
0.0
u.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
*POW£R
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.21
30.00
26.78
20.00
20.00
4.12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
20.00
20.00
11.73
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
                 -26-
           APPENDIX II




Finalized Transient Engine Cycles




      (Gasoline and Diesel)

-------
                                                                     -25-

                                         Reordered New York Non-Freeway Chassis Cycle (Gasoline and Diesel)
RECORD SPEED RECORD SPEED  RECORn SPEED  RECORD SPEED RECORD SPEED RECORD  SPEED
 (SEC) (MPH)   (SEC) (MPH)   (SEC) (MPH)   (SEC) (MPH)   (StC)  (MPH)   (SEC)  (MPH)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
?2.
23.
2^.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.19
1 .00
1.51
2.66
4.64
6.96
a.86
7.71
7.45
9.2?
10.00
9.08
10. OH
11.24
12.79
14.00
12.58
12.87
13.00
13.00
13.68
15.00
15.00
13. 3/
12.03
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
H4.
85.
86.
87.
88.
89.
^0.
91.
92.
43.
94.
95.
96.
97.
98.
99.
12.26
14.29
14.56
15.20
16.76
17.00
17.00
17.23
18.77
20.54
19.60
18.14
17.98
17.00
16.34
15.00
15.00
15.00
15.96
12.35
15.28
14.27
12.59
12.25
9.28
8.00
8.00
8.38
9.53
10.69
11.00
9.00
9.00
9.32
10.00
9.36
9.00
9.95
14.33
17.53
19.42
20.00
20.74
21.00
21.11
23.84
27.00
27.00
29.05
32.52
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
31.01
31.00
31.62
33.00
32.37
30.43
30.00
30.00
30.51
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.00
34.00
34.00
33.01
31.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
2.91
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
16?.
163.
164.
16S.
166.
167.
168.
169.
170.
171.
172.
173.
174.
17"=;.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187..
188.
189.
190.
191.
19?.
193.
194.
19S.
196.
197.
198.
199.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.Q
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.13
0.71
0.0
200.
201.
202.
203.
204.
205.
206.
2U7.
etOti.
209.
210.
211.
212.
213.
214.
215.
216.
217.
216.
219.
"22U.
2
-------
          -28-



Gasoline Engine Cycle
tir.oR.)
(StC)
200.
201 .
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212..
213.
214.
215.
216.
217.
218.
219.
220.
221 .
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
24n.
241.
242.
243.
244.
245.
246.
247.
248.
249.
*RP"
n.;)
n.,i
O.o
O.u
-2.->-J
-4.2''
n.o
n . u
U .'.1
n.o
0."
1 ,r>7
15."**-
2s. 4^
24. 2rr
23.*"*
12. "I
K.->->
7.2--1
1^.7'
24. n7
0.2-
O.'i
n."
1...
n.o
n .u
0 . u
n.i.-
) . •)
n.-.i
n.o
O.I'
n . u
0 . •>
O.o
0 . I;
n.u
n . o
n.u
n.u
o.o
o.r,
O.o
n.u
n.u
0."
o.»-
n..j
O.o
^.PO'vFtJ
n.n
o.o
n.o
o.o
6.3d
15.28
10.00
in. nn
10. nn
75.Q3
32.22
35.no
29. H2
"0 TOR INC.
MOTOPIN'",
MOTOR I Mi,
8n.no
83. M
84.*?
80.00
63.33
79. *l
8.^2
O.U
0.0
0.0
o.n
n.o
O.P
0.0
n.n
O.o
O.o
17.59
19.63
10.00
10.00
lo. nn
3.34
n.o
o.o
o.o
o.n
n.n
o.o
n.o
n.o
n.o
o.n
o.n
KECORD
(Sh'C)
?'•>».
251 .
2-72.
253.
254.
255.
256.
257.
2->P.
259.
260.
261 .
26?.
263.
264 .
265.
266.
267.
2*8.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
27tJ.
2hO.
2*1.
282.
283.
284.
2H5.
286.
2*7.
?««.
2*9.
291':.
291 .
292.
293.
294.
?v5.
2-36.
297.
2^H0
2^°.
*RPv
o.n
0.0
n.o
o.o
o.o
o.o
0.0
o.n
o.n
n.o
o.o
o.o
O.U
o.o
0.0
o.n
o.o
0.0
0.0
o.o
o.o
O.U
o.o
O.o
o.o
O.U
o.o
0.0
o.o
0.0
0.0
o.n
1. IS
2. on
0.2?
O.U
0.0
0.0
0.0
O.n
O.o
0.0
0.0
O.U
0.0
0 . 0
O.u
O.u
n . o
0. 1
/--U -'(-H
U.O
0 . u
0. U
0 . (.)
0.0
o.o
0.0
0.0
0.0
U .0
O.u
o.o
U. 0
0.0
0 . !)
o.n
U . 0
0 . u
U . I.I
U.O
O.u
0.0
o.n
0.0
0.0
u . u
0.0
o . o
O.u
U.O
0.0
4.17
1 U . 0 0
lO.uO
i a . u o
U.O
U.O
II . II
• 0 . u
U . ,)
II.')
'-> . u
U . II
U .0
U . u
o . i
O.u
0 .u
U. !l
U . .1
KfCORD
(SF.C)
300.
301 .
302.
303.
304.
305.
306.
307.
308.
309.
31 n.
311.
312.
313.
314.
315.
316.
31 7.
3 1 8 .
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
<40.
J'4l.
342..
343.
3440
J45.
3-46,
347,
J4*,,
349 „
*KH.-i
0.0
0.0
0.0
0.0
0.0
2.33
16. 2^
24.00
24.00
19.06
1 a . 0 'J
17.17
9.0"
1 .0^
0.0
0. fl
0.0
0.0
0.0
0.0
O.u
0.0
0.0
o.n
0.37
2.6o
6.uu
11.9^
15. 6J
41.26
4b.26
44.56
36.00
27. 5f
23. a c'
24.00
26.2"
30.00
30.00
30. OU
30. nu
30.00
30. Ib
40. nu
40.6 7,
41 .'12
40. Ou
41.61
42 . nu
4, bo 00
fcPOwER
4.07
io.no
17.22
20.00
20.37
31.9t»
36.48
24.91
13.34
10.00
MOTORING
MOTORING
MOTORING
MOTORING
0.0
o.n
0.0
0.0
0.0
0.0
o.n
-o.n
n.o
0.82
41 .08
90.00
94.99
100.00
100.00
90.28
9o.no
67.08
1.12
50.12
9n.no
90.00
70.00
65.38
34.47
io.no
io.no
lo.no
60.00
58.25
50.00
50.00
50oOO
50.00
50 = 00
50»00
RtCORl'
(SEC)
35o.
351.
352.
353.
354.
355.
356.
357.
35*.
359.
360.
361.
362.
363.
364.
365.
365.
367.
3be.
369.
370.
371.
372.
37.1.
374.
375.
3/h.
377.
37*.
37-*.
3ao.
381 .
3ti2.
383.
384.
385.
386.
387.
3B8.
389.
39u.
391.
392.
39j.
394.
395.
39h.
397.
39« .
399.
oRPN-
4H.22
59.21
67.18
71.00
7r!.00
72. n
74.89
6H.91
•49.71
41.84
3^.30
35.93
2f..OO
23.4^
10.1 f.
<*.72
0.62
-9.53
2.20
20.53
21.1-
17.67
13.0'.
n.41
lu.33
17.27
22. on
2b. l<-
29.37
36.73
4C .00
23.50
9.37
*.oo
6. 74
2.b6
o.ll
0.0
U.O
0.0
U.O
0.0
0.0
0.0
o.o
0.0
u.O
u.o
u.O
u.u
*POWE^
50.00
58.69
70.00
70.00
70.00
68.08
28.94
MOTORINb
MOTORINf,
MOTORING
MOTORINf,
MOT OR I NO
MOTORING
MOTORING
MOTORING
MOTORING
5.90
19.53
45.60
7.33
0.0
MOTORlNo
MOTORINI.
79.7u
100.00
100.00
100.00
100.00
100.00
66.35
MOTORINi,
MOTOrtlNb
MOTOR i N(.I
MOTOR INC,
MOTORINi,
MOTORINI,
MOTORIN<'
MOTORINb
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
OoO
OoO
OoO

-------
          -27-




Gasoline Engine Cycle
RECORD
(SEC)
0.
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31 .
32.
33.
34.
35.
36.
37.
38.
39.
HO.
41.
42.
43.
44.
45.
46.
47.
48.
49.

>RK -'
O.i)
O.'i
' 0 . •.'
0.'.'
0 . .1
0 . >
O.n
O.ii
0 .11
0. 'i
0.0
().!•
O.o
0. .1
0..)
0.;,
' 0 . n
O.u
I.'J
0. i
0 . 0
0. •!
0. •'
0. i
0 . 0
-1. /><
0 .'i
4.2. >
27.4 /
4?. -^
45. / •>
43. 1 I
b 0 . 4 /-
b ^..7 '••
S4.U'i
44. •* J
45.1!-
46. 'J--
37.o-
3 1 . b i
22.''-
24.0"
2o . ••><->
12.4-
h.'l-J
6 . :.. -
7.17
5 . T^
'") . :
O.i)

£PObFK
0.0
0.0
0.0
0.0
0.0
0 . 0
0 . .')
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
44.40
8S.35
100.00
loo.no
100.00
100.00
99.4r>
90.00
7-1.23
50.00
rt.96
MO TOP1 1 fir,
9.9M
MOTORING
] • fi ^
35. ?9
4 . M 7
MOTORING
MOTORING
MO TOR I '"d
.'•'OT OH ING
^OTOt-'IN',
MO TOR I "in
0.°
O.o
>RP:-«
0 . O
o.o
4.3?
8.90
1 . 9q
3.3T
4.00
13. 7*
26.4 ^
33. *<••;
36. no
44. 4^
34.00
35.64
32.'-'')
36.00
41 .b.l
60.4)
48.44
43. ««,
40.33
38. 5n
35. O^
^0. 6*,
43.64
45.9^
47.1''.
49.21
17. 1 r\
36.0-1
34.47
32.1^
3 1 . (-> 7
28. 4H
32.3 q
36.0')
41 .60
45.74
49.9^
49. 10
50. 5 "J
nS.9^,
42.7',
35. 12
.12.. i A
JS.^T
4 b . -> 7
H9.77
52. i'PT
58. )A

•'^0 h k
O.U
10.11
-tb.^0
•*5. 1 7
nO. 00
-1 .68
•i9.46
,>5.bO
2b.96
6. 16
M'Vrukl.-viG
M)I JRTNG
•.'i)Ti>Rtr.iG
"II TUNING
27.39
"0.00
74. T7
tb. 76
MllTuKl'JG
••MI l.jkif.G
M')T mi NG
4.01
10.00
16.70
r; b . 4 5
M'jl IklflG
'KiT.mifjG
Mf'T')Kl~.|(,
"••uT.mT -JG
"r, r.ik i:jG
N'u J )R II'G
".•uT'ikl.'jG
Mi) I i IK 1 \lG
13.89
-0.00
•< D.OO
'0.00
-»o. oo
-o.oo
-.2.97
14. -/fa
7.23
M.l'l -JrtlNG
r> 7 . '-/ 2
v>2. >5
•irt.f.u
-.d.b5
-.0.00
".0.00
k- CORO
(StC)
100.
101.
1 02.
103.
104.
105.
lOb.
107.
108.
109.
110.
111.
112.
113.
1 14.
115.
1 16.
11 7.
113.
1 19.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
1.36.
137.
1 J8.
139.
140.
141.
142.
143.
144.
145.
14b.
147.
148.
149.

%HPri
63. bb
64. IH
b9.5n
38.00
39. OS/
<+O.On
34. b5
32.03
34.0d
34.00
33.0,;
25.54
15.57
14.00
14.47
18.00
17.13
16.00
10.02
9.81
S.tto
4.00
4.UI-
2.9J
0.6,;
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.u
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2. ON
1 . 3*
0.0
0.0

*POHFk
23.42
1 7.84
3.76
4?. 26
30.00
30.00
47.18
10.33
33.48
50.00
20.69
MOTORING
MOTORING
MOTORING
27.64
4.4^
"OTOPING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
10.00
10.00
29.02
27.83
7.34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.27
RECOHU
(SEC)
15o .
151.
152.
Ib3.
154.
155.
156.
157.
158.
159.
160.
Ibl.
162.
163.
164.
165.
166.
167.
Ib8.
169.
1 7o.
171.
172.
173.
174.
17b.
17b.
177.
178.
179.
180.
181.
18,;.
183.
184.
185.
186.
187.
188.
189.
19u.
191.
192.
193.
194.
195.
19b.
197.
19*.
199.

ftRPM
0.0
0.0
0.0
0.0
0.83
2.00
0 . 54
0.0
0.0
U.O
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
1 7.29
22.17
2«. 00
24.00
24.00
22.57
22.00
1 3.88
1 ') . 0 0
9.31
3.9^
0.0
0.0
0.0
o.O
(, .0
o.O
r, .0
0.0
0.0
0.0
o.O
0.0
0 . 0
0.0
o.O
0.0
u.O
..'.0
o.O

GROWER
2.1b
0.0
0.0
0.0
MOTORING
MOTORING
MOTORING
MOTORING
MO TORINO
MOTORINb
MOTORING
0.0
0.0
0.0
0.0
0.0
MOTORING
22.01
72.29
n 0 . 0 0
^9. 2s/
90.00
82. 7u
31. 9b
MOTORlNo
MOTORING
MOTORINn
MOTORlNl.
MOTORIN.,
MOTORING
MOTORING
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
          -30-



Gasoline Engine Cycle
RECORU
(StC)
600.
601.
602.
603.
604.
605.
606.
607.
60fi .
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621 .
622.
623.
624.
625.
626.
627.
62H.
629.
630.
631 .
632.
633.
634.
635.
636.
637.
638.
639.
640 .
641.
642.
643.
644.
645.
646.
647.
^48.
649.

*top i
40.61
<« > . U • '
"2..M
42.0"
42.0.1
42.II'.
4'.5 •
4 .< . 1 "1
4 3 . 1 \
44 . 0 1
44.0.J
44.0.1
44.0 1
44. 7.i
46.0''
<»o. 0'
46.0 .
"O. ,) i
44.0 .
44 . 0 .'
u <.« •
^2. il
"2. M.i
43."'
5 1 1 . o i
5 0 . ij i
So . i) '
5 ti . 0 • i
'->M.I,.l
44.2"
"+4.UI.
48. J '
4Q. )r.
4 •< . 0 .1
<*8.'l i
U r| . 1 ! '
4H. in.
44.',..
nH.U"
4P.uv
44. DM
4'J.D-'
SO. 0»
SO.O'I
SO.'I '
S0.7-.
S?..)'i
••>'.(•••'
s;>.'i,'
52.."-

*PQv;EW
100.00
100.00
100.00
100.00
100.00
100.00
97.50
85.93
85.65
90.00
90.00
80.00
80.00
80.00
74.91
63.3.+
6 n . 0 0
60. n(i
10.00
10.00
lo.oo
1 n . r. o
10.00
19.2r,
9 0 . n 0
90.00
90. nn
90.00
90.00
90.00
89. 73
80.00
40.00
80. r")
80.00
80.no
70.24
70.no
70.00
74.44
61 ,9o
50.00
50.00
40.00
44. *• ?
60 . On
44.04
40 „ 00
40.0 0
40 . i-.J
^truRD
(SEC)
650.
651 .
652.
653.
654.
655.
656.
657.
658.
654.
660.
661 .
6h?.
663.
064.
665.
*ih^ .
667.
'iofi .
6h9.
670.
671.
672.
^73.
h74.
675.
676.
677.
h7A.
^74.
640 .
*81 .
082.
643.
044.
6H5.
Hrtb .
o87.
008.
669.
(- 4 0 .
641.
*•-*?.
643.
694.
h4S .
69b.
^47.
O'-*f' .
'^>f'o

%RP'.«
54. (in
54. On
54 . 0 n
55. ?.••>
56.00
56.00
56. (in
56.0n
56.00
56. on
56. On
56.00
54.00
54. On
54.un
54.00
54. On
54. On
54. un
54. On
54. 0 n
5<». i6
57. 2-^
56.4)
57.91
58.2?
6 0 . 0 'i
6 0 . 0 n
bO .00
bO .On
60.00
60.00
60. <4">
o2. 74
oS.OS
n6.0o
66. Of
66. On
o6.0 ~i
66. On
66. (1.1
66. '')')
T6.0"
66. (.T
-i*.r"^
70.0"
70 oil".
70.0 1
74. \>
76 oO .

r^O.-tR
HO. 00
4IJ.OO
•^5.10
73.53
7U.OO
70.00
60.00
= 7.23
oO.OO
<«. 17
10.00
!(.'.. 10
iv. 36
f 1 . 79
20.00
a 0 . i.i 0
2D.OO
11.49
0.08
13.31
JO.OO
10.00
-HI . 0 0
JO. 00
io.uo
10.60
^O.oO
-•u.iiO
^T.^2
^2.^0
•»0.,iO
-"J .00
•'U.liO
•1 0.00
-•o.oo
->J. 16
71.^9
70.00
70.00
73.14
•lO.OO
•5.n.28
»0.!JO
'0.00
i ; 0 . 0 0
1 JO. 00
1 j 0 . U 0
l')U . i'0
1 ,'U.OO
1 JO. 00
HkCdRB
(StC)
700.
701.
702.
703.
704.
705.
706.
707.
704.
704.
710.
711.
712.
713.
7)4.
715.
7)6.
717.
718.
719.
720.
721.
722.
723.
724.
7^5.
726.
727.
728.
729.
730.
731.
73?.
733.
734.
735.
7 i6.
737.
738.
7J9.
7<+0.
7«1.
742.
74.3.
744.
745o
7460
747.
7<+«.
7<+9o

fKHri
72.04
73.61.
72.00
72.00
72.00
72.00
7^.oo
72.24
73.34
72.42
74.00
74.00
77.73
78.00
77. bu
76. Oo
76.0U
76.0U
7
-------
          -29-



Gasoline Engine Cycle
RECOR i
(SEC)
400.
401.
402.
403.
404.
405.
406.
4U7.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420 .
421 .
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
4 )4.
435.
436.
437.
438.
439.
440 .
441 .
442.
443.
4<*4 .
445.
446.
447.
448 .
449.

ftt^<-
O..I
o.si
0. )
O.u
0.0
O.n
O.'i
O.'i
n. i
O.'l
0,:>
0.0
O.'i
0.0
') . V
0.0
O..I
0 . u
n.'.i
2.<;7
2.^J
0."
0. ,
0. '
0. i
0 . •.<
O.'i
n.'-.>
O.C
O.n
0..'
0.2"
16.6'i
45.3'-
4 3 . 0 • i
4 0 . 0 -.
35. If
2S. l'i
28.^
30.0 :
30.il"
30.0 i
34.5.-.
36. •) i
3b.* <
43.'—
50.0.-
50.01
t>o.'i •
SO. I1

'^POw^K
0.0
0.0
0.0
0.0
0.0
0.0
o.r.
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
O.o
O.I!
20.0')
14.1 1
0.0
n.o
o.n
0 .0
0.0
O.n
0.0
o.n
0.0
0.0
0.78
31 .S3
29. 7M
1 0 . 0 0
10.00
10.00
19.7()
47. 4S
30.00
30.00
30.00
3n .no
30.00
3 i i.OO
3 0 . (< 0
30.00
24.5s
20 .Of)
'••OTO°I Mi:
KtCORD
(SEC)
450.
451.
-52.
453.
454.
455.
4b6.
4b7.
45*.
"5v.
40(1.
4M .
462.
463.
464.
46S.
46b.
467.
4^H .
46".
4 7 fl .
471.
472.
473.
474.
475.
47f.
477.
*7rt.
470.
48d .
4tl .
4r)?.
<*o3.
4/J4.
4HS .
48h .
<*H7 .
4*8 .
'4*9.
490.
«+•»!.-
4^2.
493.
fe94.
u9S.
u^h .
-97.
4J^.
4-JU.

%RP'1
37.9?
35. }1
30.6='.
27.02
26. On
26.00
20.24
14.00
13. 4S
9.4n
10.7?
IS.an
19.6?
20. 2S
25. 7h
35.0?
->2. 14
44.00
45. 7n
51 .90
->0.0r
51. 2w
54. 9o
5 b . 0 n
62. 31-
71. S]
7b.2.->
7 8 . 0 n
78.00
55.93
is.-.?
34. 4 P
36.1 1
33. 14
•+2.74
4 4 . f i n
49.4-'-
52. On
32. OS
25.60
24.00
24. On
20.24
I 0 . 1 *
8.P i
10.2'.
1 3 . b .
I r. •:)'.
f. 0 . 2 •••
f?.".i

f-POvER
Mill "IKI'-JG
"(jT')KTMG
"111 JKjNiG
'-•OTiJKlr.G
^ii TUNING
'•oT.)KING
•.•o r-)Ki^G
•^V.'T'JKING
ia.27
:?2. 99
.1 1 . 8 1
-»7.4&
li.O.OO
1 j 0 . 0 0
1 -;0 . 00
1 1,0. 00
••*4.e5
' 0 . u 0
JO. 00
o 0 . 0 0
iO. 00
63.22
' 0 . 0 0
7o.l)0
30. £-5
30 . uO
30 .00
j>u .00
-1.53
12.SU
0.0
71.65
79.47
->7.-)0
nO. 00
s-.7^
)ta. 35
30. DO
^.(Ti.ikl'iG
. 0 ,-i
0 . n
"1 1 f *K I ' iG
" ;1 JKT ',G
"> 0 . i» 3
'..J.-.8
-M!.^9
/'/ . UO
'4.]3
1 ,L0 . HO
1 "l.f.O
f- CORD
(SEC)
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
Sib.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
S27.
S28.
S29.
530.
531.
532.
533.
534.
535.
536.
537.
& 38.
539.
7>40 .
54 1 .
S42.
543.
S44.
54b.
5»*6 .
547.
54H.
549.

%rVP^
23. 77
Sfc.Uf
30.00
32.83
32. bt.
33.37
36.00
51.77
60.37
64. 00
64.91
75.^3
82.00
85. U
8b. 17
88.49
90.00
91.12
92.00
93. 74
89.2-<
bb.Ou
b7.3b
80 .02
93. 9S
97.6.1
94.11
85.60
70.0 1.;
69.1 1
66.81:
64.4'!
53. Ou
52.73
62.0i'
62.0i
64. In
53. 56
46.20
46.0':
4b;^b
45.9^
4 ti .'. 1 3
44. 71
40. H^
bl .•->'.
47. b •
3b.31
1 7. 7j
29.^ i

*POWFR
91.15
90.00
86.01
80.70
100.00
100.00
100.00
100.00
95.72
70.00
70.00
70.00
70.00
51.42
49.14
35.13
15.99
26.74
32.85
30.00
MOTORING
41.87
56.^8
54.96
66.34
^3.69
60.00
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
44.98
49.27
40.00
43.88
44.55
4.88
15.79
19.83
10.00
10.00
10.00
3.^4
"0 TOP ING
66.82
MOTOR ING
9.23
55. 6H
38.22
RECOKU
(SEC)
550.
551.
552.
553.
554.
555.
55o.
557.
5bo.
559.
560.
561 .
562.
563.
564.
565.
566.
567.
56h.
569.
570.
571.
572.
573.
57<4.
575.
576.
57/.
57o.
579.
5MO.
581 .
58^.
583. '
584.
585.
58b.
587.
58t<.
5^9.
590.
591.
592.
59J.
594.
59b.
59b.
597.
59c.
599.

f-.RPM
3b.OO
3n.OO
3^.00
34.00
34.00
3^.2^
43.3-
5i'.7f
52.00
b«;.32
52.09
4M.QO
4rt.OO
4o.OO
30.94
la.QO
28.00
28.00
2h.OO
2b.53
2b.OO
23.71
U.5
11 .65
1 .92
o.O
0 .0
0.0
1.0
N.O
o . 0
0.0
N.O
1 .2--.
b.72
13.67
lh.2n
la. 52
25.83
3b.l'
3a.93
41 .7«
4 1.; . 0 0
4.1.00
•+0 .On
40.00
4 (..00
40. On
40.0 0
3o.3()

*POwEH
37. 4b
40.00
40.00
40.00
36.2i>
24. 61
M.3H
46. 12
19.92
0.0
3.19
10.00
10.00
10.00
19. 4H
20.00
20.00
15.81
10.00
10.00
1 0 . 0 o
MO TOW INC.
MOTOHIN'.
MOTOHINi.
MOTOR I NO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
25.19
47.87
40.56
»O.OC
80.00
75.83
70.00
77.31
80.00
10.00
20. 18
52.7*
34.82
30.00
38.33
30.09
100.00

-------
          -32-



Gasoline Engine Cycle
RECORD
(SEC)
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
10U9.
1010.
1011.
1012.
1013.
1014.
in 1 5 .
1016.
1017.
1018.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
102.7.
1028.
1029.
1030.
1031 .
1032.
1033.
1034.
1035.
10.36.
1037.
103H.
1039.
104().
1041.
104?.
104.3.
1044.
1045.
1046.
10<+7.
1048.
1049.
40.U.'
34. -^
32.1.' <
34.0.1
34.0-i
33."^
25. *>'<•
l^.-^ 1
\ u . 0 • ,
14. 4/
1 f? . U ' '
17.li
16.0-.
1 0 . 'J ->
V.rtt
b . 8 •<
<• . U ,
it .U i
2 . •> i
n .'•>•?
O.o
O.1'
n . o
o.r-
o.u
n. u
o . y
O.u
o.c-
').:
0 .1
•0.'
1..
1. .
0.
0 .-
D.I
O..I
i) . -I
n.,i
O.u
?.'.)-.•
1 . j'A
O.i'
O.'j
u. >
II. 'I
O.'.l
O.'i
0 . M <
30.00
47.18
10.33
33.4-1
so.r.n
20.64
MOTOPPI'j
MOTO^lNii
I^TOPING
27. 6t
4.44
•^OTORINb
"OTOR iN'i
MOTORING
N'OTORING
"OTORIN',
fOTOHlN'i
vOTOPIN',
MO TOW INN
MOTORING
MOTOHlNl.,
M()TOH>IN(i
*>OTO&IV;
M(JTORlN~i
MOTOWINi,
10.0 ()
10.0 0
24.02
27.8'i
7.34
0.0
0.0
0.0
0.0
O.U
o.o
0.0
0.0
0.0
0 . U
0 .0
o.o
0.0
o.o
6.27
2. In
o.o
o.o
0.0
MO TOP IN'i
(Str;i
loso.
1051.
1 1)52.
1053.
1 1)54 .
1055.
1U56.
1057.
105s*.
1054.
1060.
10M.
106?.
1063.
1 064.
1065.
1066.
1067.
1008.
1064.
1070.
10/1 .
107?.
1073.
1074.
1075.
107*.
1077.
107*.
] 074.
lilrtO.
low 1 .
li>^2.
10M3.
1 0«4.
1085.
1086.
1087.
1 0 if M .
1 0*4.
104Q.
1041.
1042.
Hi9i.
1 04u .
1 o y "-• .
1 f'4b.
1 1 ! ^ 7 .
1 ')*>>.
1044.
2.00
0.5/,
0.0
0.0
0.0
O.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.23
6.63
17.29
22.17
24.01
24. On
24.0,-!
22.r>7
22. on
I.3.H.*
10. On
9.31
3. i')
O.U
O.u
0.0
0.0
0.0
.0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.n
0.0
0.0
o.u
0.0
0.0
o.o
U.O
0. !i
O.fj
-2.^-'
-'.r'U -Jh.K
wo r.iu ING
•'ilTuK JMG
"•••)T JWTNG
KOI UK IMG
^•JT'jkl'-JG
0.0
U.O
0.0
0. i)
0.11
MOTuk T M(j
22. nl
'2.29
•JO.DO
-<4.^9
4U.GO
o2.70
)1 ,'ih
M& 1 '.'KING
''OTut-' J\'G
w;i Tort TNG
."iJTiiKlMG
'•Ml )kTiMf,
^OIiJKTfiG
MOlu^T'MG
U.O
U.U
O.u
U . U
0.0
U . fl
(I . I.)
|> . 0
u.u
I'.ll
(I.J
u.u
U . i.i
U . n
0 . 0
II ,,j.
O.n
U.'.l
1) . (i
0 . li
ll . -1
(1 . ..1
II . II
6. lO
1100.
1101.
11U?.
1103.
1104.
1105.
106.
1107.
1108.
1109.
1110.
1111.
1112.
1113.
114.
115.
116.
117.
118.
119.
1120.
1121.
1U2.
1123.
1124.
1125.
1126.
127.
128.
1?9.
130.
131.
1.32.
1133.
1 34.
1 35.
1 J6.
37.
1 38.
1 139.
1 14Q.
.141.
142.
143.
144.
I4b.
148.
1^7.
"H.
144.
-4.22
0.0
0.0
O.U
0.0
U.U
1.6'7
15.4*
25.46
24.22
23. 44
12. tl
b.4^
7.26
16. Ml
24.1^7
0.2«-
U.O
U.U
U.O
U.O
O.G
0.0
0.0
o.o
0.0
0.0
o.u
0.0
U.O
U.O
U.O
O.u
U.O
U.O
0.0
o.u
0.0
0.0
o.c
0 . 0
o.u
o.u
o.u
O.U
O.U
O.U
U . I;
U.O
U.u
RECOKU
fcPOWFR (SEC) *>rtPM
15.28 115ij. 0.0
10.00 1151. '.i.O
10.00 1152. O.U
10.00 1153. 0.0
75.93 1154. il.O
32.22 115b. U.O
35.00 1156. O.U
29.82 1157. d.U
MOTORING 115ti. U.O
MOTORING 1159. 'J.U
MOTORING ii6u. o.o
80.00 1 1M . 0.0
8.3.61 11 toe. 0.0
84.«2 1163. 0.0
HO'. 00 llb<*. 0.0
63.33 1165. 0.0
79. P.I Il6b. O.o
8.52 1167. 1.1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
17.59
19.63
10.00
10.00
10.00
3.34
o.o
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.0
0.0

































-------
          -31-




Gasoline Engine Cycle
RFCORo
(SEC)
800 .
801 .
802.
803.
804.
805.
806.
807.
808.
8d9.
810.
811.
812.
HI 3.
814.
815.
816.
817.
818.
819.
820 .
821 .
822.
823.
824.
825.
826.
827.
828.
829.
830.
831.
832.
833.
834.
835.
836.
837.
838.
839.
840.
841 .
842.
843.
844.
h45.
846.
847.
848.
849.

^-J-1 "
64. U'J
64.0'1
f-6.0 .'
6b.^l
68.00
6H.O •
b«. 0 ••
73.31
74. O-'i
74. !)•!
7 3 . 2 t
72.0.1
7T.3<*
74 . 0"
7?..> i
7 1 . 7 i
7 0 . U • '
70.011
68. II
68.0')
hH. O'J
6.4.',l'>
6 ft . 0 '
61. .1 i
b A . 1 1 !
6.H. i.l'l
fr8..ii'i
br». '.I 1
6H. O1'
6 8 . o ' '
*9. I)'!
VO.IH.
70.0 i
7').0'i
70. u.)
70.'.)"
70. on
73. M
Tn'.ll'l
76. u.1'
76. On
76.9,:
80. 7-*
82.1. i
*3.-*''
h-k. 0-;
83. if-
82. i i
'*5.3 <
89. •»-

*POl«F^
80.00
80.00
70.00
70.00
65. M7
60.00
60.00
66.^5
9o.oo
90.00
90.00
84.8o
73.29
70.00
70.00
50.00
50.00
50.00
56. is
60 . ii 0
bO.OO
58.2-1
40. OJ
48.01
60.00
60.00
60.00
60.00
bl .87
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.0 0
6?. 41
60.00
loo.oo
100.00
100.00
100.00
100.00
i o o . o o
'90,,)U
90.00
93.31
100.00
>->7.
H.9* .
hS>9,

%HPw
bH.l >
H9.21
95. 7*
100.23
102.00
104.50
112.71
113.01
112.00
104.00
103.5*
102. 7=.
102.9^
99.24
4<».6l
93.9--J
92.3'J
93.3f,
92. Oo
90. 7 t
BS.4^
84.21
rt2.no
M2.00
82.0o
M2.00
66.70
64. On
b4.0n
b8.6^
37.27
34 . 9A
32. hi-;
30.33
28.0?
25.7,i
23.3-'
21.07
18.7'-
I4.ig
12. n
5.4S
0.0
0.0
o^ o
0,0
o'.o
0.0
T\.o
0,,(l

^•HOvF.R
luO .00
ioo.no
liiO.CO
lnO.OO
i ;.) o . o o
1 u 0 . 0 0
100.00
MO. 00
I'JO.OO
N>Or>JtflNG
'•OTOKING
Mi)TUKI"JG
MilT'.iHlNG
MilTdklnG
«i)T'Jk IhG
M ) I uK I >>iG
MOTJrflnG
M'jFuKING
• i)Tv)wifgG
MOT-)KI')G
••DTiiKTIiG
wi)T>i*IfjG
iO.OO
/. 38
MuT .mlNG
•iiiT'J^< ING
"rt ,h9
/U.OO
'0.00
b/,',5
->o.,oO
'•' 0.00
/3.54
•* o.oo
) o . o o
-> u . o o
37.76
i 0 . 0 0
i 0 . 0 0
M;)T IHIi^G
••.OTuklNG
vi iT jKJ'jG
O.I'
• (i.O
li . 0
•O . u
O.i,
U . (l
0 . '1
"-•''
Ht'COHO
(SEC)
900.
90.1.
902.
903.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.
91 7 .
918.
919.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
93.3.
934.
935.
936.
937.
938.
939.
940.
941.
942.
943.
944.
^45.
-946.
94 r .
••}<*8,
'94*.

%t(pM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-l./n
0.0
4.25
27. 4/
42.96
45.7-y
48.1 1
50.42
52. '4
54.01'
44.42
45.05
46.00
37.6SI
31. bl
22.94
24. On
20. 8b
12.4b
b.OU
b.o2
7. It
2.5o
0.0
0.0
0.0
0.0
4.32
H.y-./
l.^b

%POWER
0.0
0,0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
44.40
85.35
100.00
100.00
100.00
100.00
99.46
90.00
75.23
50.00
8.96
MOTORING
9.99
MOTORING
5.68
35.29
4.87
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MUTORING
0.0
o.o "
0.0
1 0-. 1 1
46.40
45 . 1 7
50.00
RECORD
(SE.C)
950.
951.
95c.
953.
9S4.
95a.
956.
957.
958.
959.
960.
961 .
962.
963.
964.
96b.
966.
96V.
9bb.
969.
970.
971.
972.
973.
974.
975.
976.
977.
97tt.
979.
980.
981.
962.
983.
984.
985.
98b.
987.
98b.
969.
99o.
991 .
992.
993.
994.
995.
996.
99?.
99>' .
99V.

*WPM
3.33
4.00
13.76
26.43
33. BS
36.00
34.45
3"*. 00
35.64
32.99
31.00
41.63
60.41
48.44
43.86
40.3'-
38.50
35. Or-
40 . 66
43.64
45.96
47.10
<*9.21J
3?. 10
3b.OO
34.4 '
32. r
31.67
2«.4-
32.3-
36.00
41.6-
45.74
4^.95
4*. 10
5-.).S-
4b.99
4<-.76
3b,12
32. 0<
35.53
<+6.57
•+9.77
32.00
51. 0-.
63.66
64. 1^
3'^.S-
3C.O-0
3^.09

9iPO«(ER
41.68
89.46
55.60
26.96
6.16
MOTORINb
MOTORING
MOTORING
MOTORING
27.39
80.00
74.37
26.76
MOTORING
MOTORING
MOTORINfi
4.01
30.00
16.70
^6.45
MOTORING
MOTORING
MOTORING
MUTORING
MOTORING
MOTORINi,
MOTORING
MOTORING
13.89
^0.00
90.00
90.00
90.00
80.00
*0.00
b2.97
34.9*5
7.23
MOTORJNl-
67.92
62.55
68.60
48.85
60.00
f 0.00
23.4^
17.84
3.7b
42,26
3,0.00

-------
        —34-



Diesel Engine Cycle
-PECOR:'

n . ,<
0. I
31. <-•
41.1.
44.D.'
4f-, .u]
5! . '.!"
66.6-1
7-> . J (
H 9 . -< -.
9*. 7-
96. '-'I
94-. t>:
99.1-
100. 00
100-.U'!
100-.U-
100.9-
100.71
100 . '.) '
96 . 1 -
95 . 7 7
94.5^
96.rt~>
90. 1 -
100. 0':
-101.11
8-6.514
e3.5-5
56-. 0'
4-S.il,'
41.--.
3*-. J i
3=;. *•-
31 ..i i
25. j >

<£PO».'Fw
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o .
o.o
0.0
0.0
O.'I
73.41
90. -0.0
Ml. 30
90 .00
-9o.no
90.0.)
82.41
BO. DO
90.00
90.00
93.88
50. y^
17.02
28. 60
39.83
30.00
26. 6H
20.0.0
20.or)
36. On
40.0Q
30.00
3?. 75
35. 6n
30.00
44. Q3
50.00
t'OTOPIM'--
vo ruPi'Ki
MOTOU [Mb
w 01 OP I NO
45. 1 •<
78.47
3u .110
:8 0 . U 0
80.uO
Kb-ro^o
(SEC)
250.
25-1.
.252.
253.
254.
255.
256.
257.
258.
259.
2.6 0 .
261.
262.
263-.
264.
265.
2hA..
267.
268.
?6^.
270.
271.
?72.
273.
274.
275.
27*.
277.
27f .
27P.
280.
281.
282.
2i3.
284.
285.
286.
287.
288.
280.
290.
29\.
292-.
293.
2^4.
295.
2^*.
297.
_ 2VH .
2s*1-).

*KPv.
23.05
18.20
42.8^
10.10
3.70
1 .4p
0.0
0.0
O.nJ
.0 . 0
0.0
0.0
0.0
0.0
0.0
O.-O
o.o
O.o
O.(i
' 0.0
0.0
-O.U
0.0
O.o
O.u
0.0
o.o
0.0
0.0
O.o
0.0
0.0
0.0
0.0
O.i.)
0.0
0.0
0.0
0.0
0.:)
o.o
0.0
0 . 0
0.:)
0.0
0.0
0.0
0.0
0.0
O.'i

*-'U.nhR
TO . V7
2 7.. 14
43.71
o«.v5
013 . s*5
-»4.d8
0 . n
0.. U
U.ll
0.0
o.o
U.IJ
U.U
-. 0
U. 0
O.u
*r-COKD
(SEC)
300.
301.
302.
3U3-.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
U8.
319.
320.
321.
J22.
.32}.
324.
325.
326.
327.
3^8.
129.
no.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
34f>.
'}47.
">.4H.
349.

»,KM,-4.
36"5.
3bf>.
367.
3be.
369.
370.
37-1 .
372.
373.
374.
375.
376.
377.
378.
379.
380.
381 .
3H2.
3tt3.
384.
385.
3H6.
387.
3Bti.
38V.
390.
-391.
392.
39J.
394.
39i.
3Vb.
39 1.
396.
399.

'fRPM
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
'i.O
0.0
0.0
0.0
0.0
-o.o
0.0
o.o
0.0
o.o -
0.0
0.0
0.0
u.O
O.U
o.O
0.0
0.0
0.0
0.0
-1 .50
S.88
<*(->. 0^
76. B1*
30.00
82.1'.
85.39
-
102.88
106.00
'109.18
111.91
M2.00
74.33
-/ 1 . 1 '-•
68.84
/t>.-35
82.00
80.65

*POWER
0.0
0.0
0.0
0.0
O.-O
0.0
0.0
0.0
0.0
0.0
0..0
0.0
0.0
0.0
0.0
0.0
O.-O
o.-o
0.0
0.0
0.0
0.0
-0.0
0.0
0.0
0.0
0.0
29.59
8 7-. 4 6
100.00
100.00
100.00
100.00
94.64
83.07
8 8:. 51
79.33
6U66
66.^7
^0.00
72.76
8.43
MOTORIN')
MOTOHJMij
MOTXJW-IN'"'
MOTORINO
MOTOrt-ING
49.17
70.00
69. -46

-------
         -33-




Diesel Engine Cycle
RECORd
(SEC)
0 .
1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
1 1 .
12.
1 3.
14.
15.
16.
I7-.
18.
19.
20'.
21 .
22.
23.
24.
25.
26.
27.
28.
29.
30.
31 .
32.
33.
34.
35.
36.
37.'
38.
39.
40.
41..
42.
43.
44.
45.
46.
47.
"H.
49.
•»,R>'
0 . ')
o'.o
O'...)
0.'!
0.;)
O..i! '
O.'u
o.c.
0..1
O.i;
O'.Jl"
o.'u
O.,u.
0..0
o.:'
0 . ii
0."
O.i)
o..1"
0 .!•
0.'!
0.'.'
n .'i'
n.n
0.'.'.
o.n'
n.!i'
1.1 i
9. •'-/
15. fit
33.-* "
37.9 5
31. J
17.bl
i 4 ,"i -
16. ->'.
?J .1 1
3f,'u
47. ir-
54. 7 /
57. 7i.
^POwFP.
0.0
0.0
0.0
o.o"
0.0
o.n
0.0
o.n
n.n
n.o
o.o
o.o
o.o
o.o
o.o
o.o
n.n
0 ..0
O.I)
0.0
o.n
0.0
O'.o •
o.n
O.o
3.67
4 7.. 6 3
59.4J
84.5V
80.00
80.00
79. ?9
3H.PS
26.67
15.10
16.47
28.05
20. 3M
MOTOR IMU
MOTOMMO
MOTORING
MOTOR IMG
MOTOPINi,
6>.S?
69. )6
60.00
61.74
75.36
80.1o
M o . n o
KECOPD
(<^EC>
50.
51.
52.
S3.
54.
55..
5*.
57.
SK..
' 59.
60.
61.
62.
63.
64.
6S.
66.
67.
6f'.
69.
70.
7.1 .
72.
73.
74.
75.
76.
77.
78.
79.
80..
81.
82.
83.
K4.
M.S.
86.
67.
r18.
89.
90.
-0 .
W2.
93..
-^4.
95.
46.
97.
4^o
44o
*KPM
54.01
58. On
58.65
62. 8q
69.W7
72.01
75.8]
84.^3
H3.H6
80 .5=;
bO.s]
78.00
79. /c)
80.31
85. SP
81. 7P
78. On
80. 74
42.10
«8. 01
s4.0o
. ")4.01
a 1 . 1 7
70. 46
66. On
62.21
6 4 . 0 f '•
3 3 . <* i
e>0. V+
56. HS
56. On
52. 4S
39.9]
36.3-1
JO.Of'
27. 9T
«!b.'ii'i
^7.64
28. Or
2 7 . a ]
20.'^
12.13
3. Ml
0 . 0
0.:)
().!i
0 . LI
0.0
0,0
0 . •)
•S-HOWtW
/ -> . »2
65.n3
"3.^3
^0.00
5 0.00
-2.05
H 0 . 0 0
••^.20
-1.28
MilTuKp-jG
"uTuklNG
^OTJKING
MiiT.JKlMG
HI. 54
•+2. 12
oO.OO
->u.oo
t3.16
/3.65
M.I T UK I NO
MUTjPIf-jG
"•JIuKlNG
'Ml ,)Kp.,G
no 1 i/K JrjG
13.57
<;*_...<* 3
^n'..u.o
1 7 . u 2
1 0, 00
1 0 . fi 0
Mur.JK 1Mb"
MoT.JHllMG
"•)T JKING
0.91
/.b2
0.0.
0.')
|J . n
R--COR.L).
(SEC)
100.-
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120..
121.
122.
123.
124.
125.
126.
127.
128.
129.
130..
131.
132.
133.
1 14.
135.
136.
137.
138.
139.
1^0.
141.
\<*d.
.1.41.
144.
145.
146.
.. . .'l'+7o •-,
148.
l«+4.
*«PM
O.o
0.0
0.0
0.0
0.0
0.. (1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0 .
0.0
0.0
0.0
0.0
o.o
0.0
0...0
0.0
0.0
0.0
0.0
0..0
0.0.
1.77
1 . t>0
0,0
0.0
2.1<»
3.0'i
0.. 0
0.0
o'.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
OoO
0.0
0.0
0,0
OoO
*POWt'H
0.0
0.0
O.n
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0. .
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o'.o
0.0.
0.0
0.0
0.0
MOTORING
MOTOPING
MOTOPING
0.0
9.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
OoO
5.51
11. 34
o.o
RECOKb
(SEC)
15u.
151.
152.
153.
154.
155.
I5b.
157.
158.
159.
160.
161.
162.
163.
164.
165,.
166.
167.
168.-
169.
170.
171.
172.
173.
17*.
175.
176.
177.
17b.
179.
1 80 .
18.1.
182.
183.
184.
185.
186.
187.
160.
169.
19u.
191.
192.
193.
194.
195.
196.
197.
19b.
. 199.
fc*PM
0.0
ii.0
0.0
1"; .0
''.0
0.0
.0.0
C'.O
0.0
0.0
0.0
0.0
'i.O
<).0
o.O
'/.O
•J.O
0.0
0.0
0.0
0.0
fi.O
n.O
0.0
y.o
0.0
0.0
'i.O
n.O
0.0
0.0
0..0
0.0
0.0
0.0
0.0
0.0
0.0
o.O
•J.O
0.0
(..0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
n.O
*POwER
O.o
0.0
0.0
0.0
0.0
0.0.
0.0
0.0
0*21.
30. 00.
26.78
20.00
20.00
4.12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0.
0 .0
0.0
0.0
0.0
?0.00
20.00
11.73
0.0.
0.0-
O.O.-
0.0-
0.0 .
0.0
0.0
0.0
0.0
0.0
0.0
OoO
0.0

-------
         -36-



Diesel Engine Cycle
RECORD
(SEC)
600.
601.
602.
603.
604.
605.
606.
607.
60fl. '
609.
'610.
611.
612.
613.
614.
615.
616.
617.
' 61fl.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631 .
632. :
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
6-f5.
646.
647.
648.
6*9.
*R^>
i).;i
O.o
O.o
0.0
O.'l
0.<>
2 . .-> S.
10. 1 }
13.8v
2 ').?••••
24..(i7
33.33
40. J"
47. 11
66.0"
68.0-1
-67.-. -<
66.'J.i
67..J-*
6 3. •.),-,
fo*.U'.
75.'»ji
78.'.) !
78. IV
77.o7
76.. , 1
76.. U.i
76.01'
75. 6. j
73.0"
76.81
8 'i . 2 ;-
81.44
84. Oil
H*.U>!
83.61
82.01.
83.0.-'
86. (--7
89. V,
90.0'i
H9.*">
86. Hi
H6.0 •
87. 2J
HH.II i
88. 0--
8.8. j .
8 H . 'i i
MH.O i
*PO*F*
0.0
0.0
0.0
0.0
o.ri
0.0
6.3o
17.87
20.00
20.00
22.59
1-7.50
f-OTORIN'j
MOTORING
7. 78
10.9J
32.04
40.00
40.00
40.00
48.33
99.53
•100.no
100.00
100.00
100.00
lon.no
I00.no
ion. oo
97.So
90.00
90.00
90.00
98.79
100.00
100.00
100.00
94.91
90. DO
90.00
99.^1
100.00
100.00
95.47
90.00
90.00
81.7-
7-y.i7
77.21
100.00
KtCuRD
( SEC )
650.
651.
65?.
653.
654.
655.
*56.
657.
658.
659.
660.
661 .
^62.
663.
664.
665.
666.
667.
66P .
6b<5.
670.
671.
672.
673.
674.
67S.
67fi.
677.
67R.
679.
680.
K81 .
692.
683.
6r.4.
685.
686.
687.
688.
689.
690.
f 91 .
6S>2.
*>93.
6-»4.
69^ .
64*.
(-97.
f-.4P .
•^99.
%PPM
>b 8 . f 1 0
18.0^
88.00
90.0':
b9.6"<
88. 6«
90.00
90.00
91 .61
92. on
90 .On
89.4 4
87.11
86.00
86. Or.
rt9.66
90. Or,
90.46
92.73
v5.no
100.2?
Io2.oo
102.00
1 02 . 0 1
97. 14
87.0?
M6.fJ.-l
73.1^
75.77
75.7*.
75.ll
78.:)n
80. )7
77.51
81.4*.
«2. 1 3
84. 'in
84. nn
64.Q.1
85. 3T
86. Or
*6. On
85.7)7
H4.o<-
M6.'J'->
87 . 2 :•>
H8.-11
Hb-. M J
rl 3 . 7 -
Ml. -7
-MU,t>
^"*.*5
yO.no
' 0 . 0 0
JO. '10
*o.OO
-yo.i.o
'0.00
<0 .00
•i 1 . 86
MJ.OO
31 .29
92 . 86
1'jO.OO
1 .'0.00
luO.oO
1 -.'I'. 00
•*9.27
•^o.oo
-'0.00
'O.OO
T2.J.'7
.-.o.oo
'0.18
--> o.oo
:j 0 . o 7
M.)-TOr9.t-,2
•*d,80
* 7.23
14.34
•+0.00
H7.i»9
--0.00
.*9. J6
c7. 79
16.21
13. 16
26. -*3
10.10
10.08
' -0.0-0
••0.00
..v^. 20
JU .00
^2.';5
•->..>! o^I vG
•'-)T..i«I\.G
••'••1 iKl'-jC,
(StC)
700 .
7-01.
702.
703.
7-04.
' 7-05.
706.
707.
708.
709.
710.
711.
712.
713.
714.
715.
716.
717.
718..
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
7 12.
733.
714.
73S.
736.
737.
73H.
739.
740.
741.
742.
743.
744.
745.
7<+h.
7u /.
748.
.7'.S..
%^n
81.70
85.16
84.52
82.21
79.89
77.5t<
76.00
79.1o
75.1t>
72.00
72.00
74.00
74.00
74.00
74.0o
72. 4j
6o.^J
73.80
72. 5<:
74.01.
72.8^
76. 3«
81 .53
-8 0 . 1 ti
83. hi)
63.4*
86. Oi'
87. 3'3
86.3'»
b6.0u
88.2'y
«6. 78
86.9.00
96.00
9t>.00
97.74
100.0-
l(j«;.00
102.00
10J.OO
104.00
102.37
103.94
10*. on-
104.00
103.12
100.80
100.00
101.83
102.00
102.00
102.00
100.91
101.40
100.2^
97.97
96.00
96.00
9fc.OO
9 a . 0 0
9^.00
94.08
/b.OO
77.45
71 .67
o7. 18
60.50
71.43
74. n
7 -3 . b h
74.75-
77.07
7^.3-
80.00
8C.01
*POWEH
87.05
57.40
42.19
42.33
40.00
38.37
12.83
MOTORING
MOTORING
MOTORING
7.37
19.74
11.83
26.81
49.96
60.00
60.00
60.00
40.00
25.75
MOTORINi,
MOTORING
MQTOHINu
44.88
3b.4o
MOTOKINn
MOTORING
MOTORINb
MOTORING
MOTORING
MOTORING
• MOTORING
10.00
0.23
MOTORING
MOTORING
MOTORINb
MOTORING
MOTORING
28.96
80.00
87.48
90.00
90.00
92.20
100.00
94.65
8.3.08
71.51
69.93

-------
         -35-




Diesel Engine-Cycle
RECOR .•
(SEC)
400.
401 .
402.
4u3.
404.
405.
406.
407.
408. '
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423. '
424.
425.
426.
427.
428.
429.
430. "
4.3-1.
432.
433.
434.
4.35.
436.
437,
436.
439.
440. ,
441 .
442.
443.
444 .
445.
446.
447,
448.
449.

'.UK -
42.J,>
97.*--
98.9 :
100.7-
103.br
104,0';
r>,o,b<:
83 . 3 f
-81. -in
8Q.O '
76,-x-
74.11
7-1. •>.•
70.5-1
78.0 i
8 ".<;-»
8 ') . 5 •»
7"S.^ '
78.*-)
84. \>
72.1".
74.1
90. r-
74.,.*
68 . ., ->
-68.T )
5 i . J '->
6 3 . -3 •'
70.0';
73.1 '
72.1.-
!-:!.<<
36. 0 i
• 20./-.
M . «• -»
-?.(.' /
-0. 7 i
8 ,t> 7
30. T,
6 7.. .1 ,
86. !i i
84. •).!
4 1 . 1 .
47.1- .
4 7 . .7 <
96. ,)'!
96.0 .'
46. '.'"i
85.^7
H7.o .

*PO».r *>
6 1 . O 0
bO.OO
6 0 . P1 IKJr,
"MOTO^IN'j
60.00
61.4)
63.00
34.85
30.no
30.00
10.411
1 .37
10.00
0 .98
MOTORING
28. 3*
30.7*,
-:fc-COKJ
( SEC)
* H 0 .
451.
452.
453.
454.
455.
456.
457.
458.
454.
4bO .
4M.
46?.
4*- 3.
464.
465.
46e .
467.
468.
489.
470.
471 .
472.
473.
474.
475.
47b.
477.
478.
4 74.
480.
481 .
48^.
433.'
484.
4*5.
48^.
487 .
48^ .
4 •!<-/.
* 9 0 .
441 .
44?.'
4-
nfl.til
" -* 0 . ') n
.H)5.4T
74.0 n
73.34
71.1?
76. 4*,
81.61
78.1'-
74.11-
4 0 . 0 .1 '
40.87
^ 2. or.
4 3 . 5 f>
44.1,)'-'
44. 1 1
tiS. •>•-
63.2 =
62.oi
44.^4
b2.-4 J '
64. OA
r.4.4'--
71.41
78. -7
8?. 0(i
66. T'~

' •-'G...£P
•- 4 . 1 8
'"'I . 00
^o.oo
d o . j 0
^ pJ . 0 0
11.32
•ViT J*I\G
0.04
Mj [ JKl.iG
»•' )T )KI,\G
M'lT )STr..(i
•'•) I Jr?1 UG
•• 'TIMING
f" iT'JHT' iG
^' )F.jKT:jG
"•i F.ih1 ] 'jG
' ')[ JHJ: iG
••"; rp..Hl:,G
7 0.00
^4.53
•i"+.5h
M.lT )HIt';G
"'il Jp^I'iG
'•:)TOH fjO
"i;Tut-IhG
MOT-JhJfjG
10.00
•- 9 . 3 8
* 0 . 0 0
i1.). 39
26.4fj
0.0
' - • 0
f-'-i r jki -JG
KI'J F'JKl JO
v.i piKT'jG
••'•
0.0
MUTORlNO
MOTORING
MOTORINu
MOTORINi,
MOTORINo
MOTORING
MOTORINO
MOTOR1NO
MOTORING
37.91
-20.00
20.00
20.00
20.00
MOTORING
0.0
0.0
0.0
0.0

-------
         -38-



Diesel Engine Cycle
RECORD
(SEC)
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
101«.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
If 38.
1039.
10*0.
1041.
104?.
10*3.
1044.
1045.
10*6.
1047.
10*8.
1049.

*RP-1
0.0
0.')
O.o
0.0
O.o
O.o
O.'i
0.0
O..I
O.'i
0.0
O.i'
O.'i
O.'i
O.ii
O.'.i
O.'i
O.'i
O.'i
0.0
O.i
O.ii
0.0
O.i.
O.'J
I) . 0
0.0
0. u
0.0
O.U
0.0
I.//
1 .6'.
0.')
0.0
2.1-
3.08
O.'J
0 . 0
O.ii
O.ii
O.'i
IJ.l)
0. 1
0.0
O.o
0.:..
0.!..
O.'i
O.u

*PO*ER
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
MOTOR INf>
STORING
MOTORING
0.0
9.28
0.0
o.o
0.0
o.o
0.0
o.n
0.0
0.0
0.0
0.0
o.o
•0.0
0.0
5.51
kt.CORD
(SEC)
1C50.
1051.
1052.
1053.
105*.
105^.
1056.
10S7.
1058.
1US9.
1060.
1061.
1062.
1063.
106*.
1065.
1066.
1067.
1068.
10P4.
1070.
1071.
107?.
1073.
1074.
1075.
1076.
1077.
1078.
1074.
10HO.
1081 .
1082.
1083.
10*4.
1045.
1086.
1087.
IOMH.
1089.
1090.
1091.
109?.
lOPT.
1094.
1095.
1096.
1097.
104H.
10 44.

%RP».-
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.;t
O.o

-ro ...(•: R
1 1 . 34
U . 0
U.O
U.O
O.u
0.0
U.O
O.o
0.0
0.0
0.21
.iu..)0

•J.'l
KECORU
(SFC.)
i luo.
1101.
1102.
1103.
1 104.
1105.
1 106.
1107.
1 108.
1109.
1 10.
1 11.
1 12.
1 13.
1 1*.
1 15.
1 16.
1 17.
I 18.
119.
120.
121.
122.
123.
12*.
1125.
1 126.
1127.
1128.
1129.
1130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
11*1.
1142.
1143.
1 144.
1 1*5.
11*6.
1147.
1144.
I 149.

%HP"
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
O.u
0.0
U.O
0.0
0.0
U.O
0.0
o.u
U.O
O.u
31.31'
41.15
44.01)
46.41
51.0*
6b.66
75.03
89. Mb
96. M
96.91
94. 6 U
99.1r>
1UU.UO
100. Or.
10U.OO
100.^0
100. n
100.00
96. 10
95.77
S4.b5
96.«r>
99.1'-,
100.00
1 0 1 . 8 1
86.5*
63. bh
56.00
46. Of
41 ,«f-.
3b.3l
35.9-1

*POWER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
73.41
90.00
81.30
90.00
90.00
90.00
82.41
80.00
90.00
90.00
93.88
50.94
17.02
28.60
.19.83
30.00
26.69
20.00
20.00
36.06
40.00
30.00
32.75
35.68
30.00
44.93
50.00
MOTORING
MOTUHING
MOTORING
MOTORING
45.14
78.47
80.00
RECORD
(SEC)
115(1.
1151.
1152.
1153.
1154.
1155.
1156.
1157.
115R.
1 159.
1 IbU.
1161.
llbir.
1163.
1164.
1165.
1 IbO.
1167.
1 168.
1 169.
117(1.
1171.
117?.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
118U.
1181.
11*2.
1183.
1184.
Il8b.
1186.
1187.
1188.
118v.
119U.
1191.
1 192.
1193.
119*.
119s.
1 19e .
1 19f.
119b.
1199.

*HPM
31 .0 •
2b.36
23.0'-
1H.20
U.84
lo. 10
3.7-i
1 .4 •
O.U
0.0
0.0
U.O
u.o
0.0
0.0
.1.0
o.u
(i .0
0.0
o.O
0.0
o.O
0.0
o.u
U.O
o.O
0.0
0.0
0.0
0.0
0 .(1
0.0
U.O
o.O
i. .U
o.O
0.0
'./ . 0
0.0
o.O
f..O
n.o
o.O
o.O
o.O
o.O
0.0
0.0
V. .0
o .U

J.POWEW
MO. 00
80.00
HO. 97
27.3*
43.71
68.95
68.95
44.28
0.0
0.0
0.0
0.0
0.0
O.U
0.0
i'4.97
17.16
6. 2'.
10.00
1 0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
0.0
0.0
0.0
o.u
O.o
0.0

-------
         -37-



Diesel Engine Cycle
PECORii
(SEC)
800.
801.
802.
803.
804.
805.
806.
807.
808.
809.
810.
811.
812.
813.
814.
815.
816.
817.
818.
819.
820.
821 .
A22.
823.
824.
825.
826.
f-27.
828.
829.
830.
«31 .
832.
H33.
834.
835.
836.
837.
838.
839.
H<*0.
841.
842.
843.
844.
845.
846.
847.
848.
H49.

*RK"
82.3 1
84.0.1
84.D'..
84.0'i
84.0 '.'
84.01.
82.0 .)
81. t/
bO.O'i
77.'3-<
7402
77. Si
81 .rt^
80.42
8?.0 i
83. .1-3
84.0"
84. UO
H4.0i
86.01'
8ft. ij .
8b. •''••'
Hrt.bi
88. 4j
HH.ili.
94. 'J.i
94. SI
9S.1 7
95. !•*
94. T*
94. U<)
94. U'..'
44. On
94..0'.'
44.0 I,-
94. OD
94.0"
94.0'J
94.^4
«7. n>:
102.41
l(J4.0u
104. Uu
104. U'l
106.0 .j .
106.0 •'
106.0 .1
104.1".
104. U'l
104.01'.

%POtoEn
58.36
50.no
59.5S
76.36
80.0()
70.49
80.00
82.6ft
90.00
90.00
75.24
78.96
8n.on
8o.no
83.68
7o.5(j
70.00
61 .60
50. T 3
60. OD
6o.no
64.39
73.73
70.00
70.00
70.99
80.00
80.00
80.00
80.no
80.00
77. H9
31 .94
43.57
60.2rt
63.24
76.57
80. Ah
90.00
87.00
80.00
73.85
62. 2H
69.20
70.00
62.70
40.00
40.00
32. «S
30.00
KLCORD
(SEC)
850.
851 .
°52.
853.
S54.
855.
856.
857.
85*.
a 54.
860.
861 .
862.
H63.
864.
B6S.
866.
Mb 7.
8b8.
8b9.
H70 .
871 .
372.
873.
874.
*/S.
H7b.
877.
8/fe.
«79.
8hO .
flbl .
H82.
«83.
HH4.
RH5.
886.
887.
888.
3M9.
t'9().
H91 .
80?.
843.
S44.
895.
*96.
H97.
r!4K.
f-99.

•JjkP"
104.00
1 il 3 . 6 '<
100.6?
48.00
96.6*
96.00
96.00.
96.00
95.41
94.00
94.00
95.5'J
97.83
98. OT
48. Oi)
97.2?
96.00
9b.0n
96. un
95.9'<
92.00
92.0o
92. 4r
44.00
90. 7Q
88. U 8
H6.2T
88 . uo
67. 1 14
44. 8?
82.51
82.00
82.1?
^n
HO. On
14. 2*
H6.6?
84.31
81.94
f9.3S
75. J^
73. OS
70.71
68.4?
47. 'I r-
35.70
3?.4-
29. Is
16.47
2.1 »

S"O.JKR
0.30
11. «7
13.12
b.-)l
1 U . 0 0
MI. no RING
MHTOKING
MUTvJ^IhjG
'•'01 -JHING
"OT.fKTMG
MOTvjkli^'G
5.18
MOI'ikl.-jG
MOT OK ING
« UNKING
M.JT JWTNG
6.35
12.98.
10.00
10.00
10.0 0
iO.OO
1<».*9
l3.t>4
-^.12
MI.40
lu.OO
.12. 75
->4. J2
.0.00
TU.OO
iO.OO
HO. 00
.15.64
2U.OO
51 .95
ob. 21
oU.OO
•i . -ib
1 . b 1
1 9 . ': 6
•-.o.oo
8.35
^ .1 1 .IN I! !G
0.95
1 0 . !)()
i'.jP
^!lT JRJI.'G
M'll )K [nil
t.- iT.ikiN.G
RECORD
(SEC)
900.
901 .
902.
003.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.
917.
918.
419.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
933.
934.
935.
936.
437.
938.
9J9.
9<*0.
941 . /
942.
943.
944.
445.
4<*ft.
947.
94H.
949 .

%-RP1"!
O.U
0.0
0.0
u.u
0.0
O.u
0.0
0.0
0.0
o.u
O.U
O.o
0.0
O.U
0.0
u.o
0.0
O.o
U.O
o.u
0.0
0.0
0.0
0.0
0.0
o-.o
0.0
u.o
U.O
3.11
9.0V
15. >-s
33.49
37.93
31. 2li
21.91--
30. On
22. 2J
19.61
20.00
18.3J
6.5i
15.82
23. t)
17.t>l
1^.14
Ib.hi.
27.77
J7.03
47.3f.

*POWER
0.0
0.0
0.0
OiO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
O.n
n.n
0.0
0.0
o.n
3.67
47.69
59.41
84.54
80.00
80.00
79.29
38.25
26.67
15.10
16.47
28.05
20.38
MOTORING
MOTOkING
MOTORING
MOTORING
MOTORING
62.52
60.36
60.00
63.79
75.36
RECORIJ
(SEC)
95 U.
951.
952.
953.
954.
955.
956.
957.
958.
959.
96U.
961 .
962.
963.
964.
965.
9bb.
967.
968.
969.
970.
971.
972.
973.
974.
975.
97b.
977.
97o.
979.
9bu.
981 .
982.
983.
984.
985.
98b.
987.
9«W.
989.
990 .
991.
992.
993.
994.
995.
996.
997.
99o.
999.
b4.77
57.70
54 . 0 1
58.00
Sw.65
62. B8
69.83
ft. OCl
75.81
84.22
83.86
80.55
SO. 51
7*. 00
74.7^
8C.33
H5. bx
81 .7-
''1.00
B'J .74
92.10
B'1.01
bn .00
a«.00
81.17
7s). 4S
bb.OO
b2.23
6n.OO
b3.4H
6(;.34
3ft.8S
bf-..00
b>.45
39.91
3o.3
30.00
27.93
26.00
2'. 66
2". 00
27.41
21 .9',
12.1
3. 81
o.O
U.O
<).0
U.O
U.O
80. OU
b 0 . 0 U
79.92
65.03
43.23
50.00
50.00
42.05
40.00
42.2U
41.28
MOTORING
MOTORING
MOTORING
MOTORING
30. 5t
42.12
50.00
50.00
43. Ib
73.65
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
13.57
29.43
20.00
17.4^
10.00
10.00
MOTORING
MOTORING
10.00
10.00
10. Ou
10.00
16.74
3.36
MOTOR IN.i
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
MOTORING
0.91
7.52
0.0

-------
          APPENDIX III




Finalized Transient Chassis Cycle

-------
               -40-
Chassis Cycle (Gasoline and Diesel)
RECORD
(SEC)
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
IS.
16.
17.
16.
19.
20.
21 .
?2.
23.
?4.
25.
?(- .
27.
28.
?9.
30.
31.
32.
33.
34.
35.
36.
37.
3b.
39.
40.
41 .
42.
43.
44.
45.
46.
47.
48.
49.
SPEEG
(MPH)
0.0
0.0
o.n
o.o
o.n
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.r
o.o
o.o
0.0
0.0
0.0
0.1*
1 . 0 o
1 .51
2.6*1
4.64
6.9(S
8.8^
7.7)
7.4S
9.22
10.00
9.0T
10.01
11. ?4
12.7*
14. O'l
12.5-1
12.87
13.ni,
13.00
13.6'-
15. Oil
15. O'.i
13.37
12.01
REC'IMP
(SFC)
'SO.
51.
52.
53.
54.
55.
56.
57.
'18.
59.
60.
61.
d?.
63.
64.
6t>.
66.
67.
6ri.
69.
70.
71.
72.
73.
74.
75.
76.
77.
74.
79.
-U).
•M «
82.
H3.
«4.
85. V
86.
1 7.
•AS.
89.
'»0 .
41 .
42.
4.3.
14.
45.
46.
? 7.
'•>H .
'-) 1.
SPFEO
CiPH)
I-?. 26
14.29
14.56
IT. 20
1 -1.76
1 7.00
17.00
17.23
1H.77
20.54
19.60
1H.14
1 7.98
17.00
16.34
15.00
IT. 00
15.00
1 '-^.96
12.35
15.28
14.27
12. S9
12.25
9.2H
^.00
8.00
4.38
4.53
1 0.69
11.00
4.00
9.00
4.32
lu.ou
9.36
4.00
9.9b
14.33
1 7.53
14.42
?o.oo
r-1.74
?l .00
21.11
2.1.84
?7.00
?7.00
2^.05
32.52
RECO^n
(SEC)
100.
101.
102.
103.
104.
106.
106.
107.
10H.
10*.
110.
111.
112.
1 13.
1 14.
116.
116.
117.
118.
119.
1?U.
121.
122.
1 ?3.
124.
126.
1 ?s.
1??.
28.
1?4.
no.
131.
132.
133.
I 34.
135.
1 16.
137.
1 Irt.
139.
140.
141.
142.
43.
<*4 ,
46.
46,
47.
«*«.
14*.
SPEEO
(MPH)
31.01
31.00
31.62
33.00
32.37
30. 4J
30.00
30.00
30.61
32.41
33.00
32.27
32.00
31.04
32.20
33.36
34.no
34.00
34.00
33.01
31 .86
30.10
26. 17
23.39
21.46
17.?*
15. h3
1 3.76
12.60
10.33
f*.?8
5.38
2.91
0.0
U.O
0.0
o.n
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
RFC.OKD
(SEC)
ISO.
151.
15?.
153.
164.
15=;.
156.
167.
ISfi.
164.
160.
1M.
16°.
163.
164.
165.
166.
167.
16B .
169.
170.
171.
17?.
173.
174.
75.
7f- .
77.
7*.
79.
•AO.
1*1.
18?.
183.
1*4.
IMS.
186.
I**?.
1^,0.
18<5.
190.
141.
19?.
1°3.
194.
l^q.
1*6.
147.
14P.
14Q.
SPEFO
(MM.-!)
O.n
O.n
O.n
o.n
O.n
O.n
O.n
O.n
O.o
0.0
O.o
O.n
o.n
O.n
n . o
O.n
o.n
O.n
O.n
O.n
O.o
O.n
O.n
O.n
0.61
0. r3
0.0
o.n
o.n
o.o
O.n
O.n
O.n
O.n
o.n
o.n
0.0
O.n
0.0
O.n
0. n
O.n
O.n
O.n
O.n
O.r
O.n
o.n
0. 71
0. n
Mf-.C'^O
(Sr;c )
2'iU.
2ul.
">2 .
2 J3.
204.
2 :i b .
2J6.
?J7.
2tib,
2o 9.
210.
211.
21^.
213.
214.
216..
21t>.
217.
21t5.
219.
220.
?.d\ .
222.
223.
tt1* .
225.
2?b.
227.
2 f.ti.
2?9.
£.iu .
f. 31 .
{ 12.
2.53.
2.34.
2J5.
eL jri.
237.
2J«.
2J9.
2nU .
241.
2*»2.
2*3.
2'*4.
2*6.
2-»b.
{"•1 .
C->0.
2«V.
SPEED
(MPH)
0.0
O.o
O.u
4.15
6.00
6.00
6.00
5.30
4.14
l.*6
0.0
0.0
0.0
0.0
0.0
0.0
O.U
0.0
0.0
0.0
0.0
o.o
O.U
O.u
0.0
O.U
0.0
o.u
0.0
0.0
0.0
0.48
1.64
0.41
O.n
o.o
0.0
O.u
0.0
O.o
0.0
0.0
0.0
0.0
O.U
0.0
o.o
0.0
O.U
o.u
RECORD
(SEC)
250.
251.
252.
253.
254.
255.
266.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
2H5.
286.
287.
288.
289.
290.
?91 .
292.
293.
294.
295.
296.
297.
298.
?99.
SPEED
(MPH)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Pt.COWQ
(SEC)
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
326.
326.
327.
32d.
329.
330.
331.
332.
333.
334.
335.
336.
337.
33M.
339.
340.
341.
342.
343.
344.
345.
346.
347.
34b.
349.
SPEFO
(MPH)
0.24
0.60
0.0
1.42
2.00
3.08
5.63
4.00
4.00
3.34
1.37
1.00
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.23
1.39
2.00
4.11
5.00
6.02
7.18
7.33
6.49
7.00
7.00
7.00
7.00
7.00
7.43
8.00
8.00
7.09
11.06
12.89
14.49
11.46
13.08
16.55
16.00
15.34
12.32
13.00
13.00
13.00
15.86
Hf.CORD
(SEC)
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
bHEED
(MPH)
1^.00
11.73
ll.oo
11.00
11.00
11.90
l£. 39
10. 36
7.26
4.95
4.68
6.68
8.00
7.84
7.00
6.53
7.89
10.57
11.00
10.10
10. 74
10.42
11.00
12.46
14.77
14.i.)9
lfc.20
17.00
17.00
17.00
17.00
15.02
15.71
14.00
14.92
16.38
15.78
16.00
It. 00
16.25
17.41
18. 5b
1*.00
19.88
21 .00
21 .00
rl.OO
20.49
2 U . 0 0
19. lh
RECORD
(sEC)
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
4l4.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
•*30.
431.
432.
-33.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
4<*8.
449.
bPEEO
(MPh)
19.00
18.86
18.29
19.00
19,61
20.00
20.00
20.00
20.00
20.00
19.46
20.42
21.87
20.97
^0.37
22.00
22.00
22.66
23.00
23.97
25.51
29.00
29.00
29.00
.10.51
31.00
30.00
30.00
30.00
10.54
31.00
31.86
11.00
.11.17
32.33
33.00
33.00
13. 80
34.00
.15.12
J6.00
16.00
34.8?
33.25
12.09
.12.00
»2.00
32.00
.32.00
32.00
HEr.OHO
(SED
450.
45l.
4b?.
463.
454.
455.
456.
457.
45*.
459.
460.
46 I.
462.
463.
464.
465.
46b.
467.
468.
469.
470.
471.
473.
473.
474.
476.
476.
477.
478.
479.
480.
481.
48?.
483.
484.
<*85.
486.
487.
488.
489.
49n.
491.
49?.
493.
494.
495.
496.
497.
498.
499.
SPEED
(MPH)
32.85
33.01
34.00
33.68
32.52
32.00
32.00
32.96
33.00
33.00
33.42
34.00
34.74
35.00
35.00
35.00
35.00
35.00
35.00
35.84
37.99
38.00
37.69
38.41
39.37
39.00
39.00
38.10
39.00
39.41
40.57
41.73
42.00
41.92
40.00
40.00
39.49
37. 6to
37.00
36.01
34.86
33.70
32.54
29.54
26.46
22.28
19.91
18.76
17.60
16.44

-------
               -41-
Chassis Cycle (Gasoline and Diesel)
FCORl) SPEE'J WtC'W St'FFD MtCDkn
(SEC)
500.
501.
5!)2.
503.
5n4.
505.
506.
507.
SOP.
509.
510.
511.
512.
513.
514.
515.
516.
517.
5)8.
519.
520.
521.
522.
5?3.
5?4.
525.
526.
527.
52*.
524.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
*i46.
-547.
54?.
•549.
(MPH)
14.57
13.13
11.47
10.81
9.31
7.5'J
6.34
4.37
3.0.1
1 ."7
0.71
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
2 . 3t
3.4"
5. 11
8 .26
9. "2
1 1 . 1 L<
(?FC )
550.
551.
5^2.
553.
554.
555.
556.
557.
558.
5S9.
560.
561 .
562.
563.
564.
565.
566.
567.
56«.
569.
570.
571.
572.
573.
574.
57S.
576.
577.
578.
579.
5*0 .
541.
5H2.
b.-O.
5rt4 .
5*5.
586.
547.
544.
549.
590.
591 .
5*2.
54 3.
5V4.
5 '-'5 .
5^6.
597.
b9 J .
b'-is.
C'PH)
12.73
14.74
16.05
17.41
19.72
21.52
?3.35
24.8.3
25.99
27.15
2H.31
29.46
30.62
31 .78
32.94
34.18
V'.25
37.41
3H.56
l->.72
40.00
40.00
"0.00
40.00
40.00
4'). 00
40.8?
"1 .00
41.0.)
"1.30
42.00
42.00
42.00
"2.93
" i.UO
" 1.00
4 1.00
" 1.56
44.71
45.00
"4.97
44. 18
44.66
"H.OO
44. UO
44.81
"5.0(1
'-^.00
4S.OO
"5.44
(SEC)
600.
Mil .
602.
603.
604.
605.
606.
6lj7.
608.
6-J4.
61U.
Ml.
612.
613.
614.
615.
610.
617.
611.
614.
620.
621 .
622.
623.
624.
625.
62t>.
*?7.
620.
t>24.
630.
631.
632.
6J3.
634.
635.
636.
637.
63H.
6 14.
640.
6ul .
642.
6<+3.
hu4.
6i*5.
64t!.
647.
6u-l.
64V.
SPEEU PFCOPD
(MPH)
46.00
46.00
46.42
47.00
47.00
47.00
47.00
47.00
47.00
47.04
49.00
49.33
44.51
44.00
44.00
49.00
49.00
48.72
4M.r<7
50.00
50.00
50.00
50.00
49.78
49.00
49.00
49.64
5 0 . 0 0
5U.OO
50.00
49.68
4^.0U
49.00
4b.2U
4tf.OO
4>-.00
4M.27
49.00
44.58
50.00
50.00
30.00
50.00
50.00
50.00
50.00
50.00
50.00
5o.0o
50.00
(SFD
650.
651 .
65?.
65"*.
654.
65S.
656.
657.
65«.
654.
660.
661.
66?.
663.
664.
665.
66*.
667.
66°.
661.
670.
671.
67?.
673.
674.
675.
676.
677.
678.
674.
680.
611 .
68?.
683.
6^4.
685.
6i46.
(SA7.
68=>.
6*9.
691.
6')1 .
69?.
693.
644.
64=;.
646.
b->7.
69-.
690.
SPErn
(MPH)
50.47
51 .00
51.00
51 .00
51.00
51.00
51.42
52.00
52. on
52.00
52.00
52.20
53.00
53.00
53.00
53.00
53.00
53.nO
53.00
53.r,0
52. ">"
52.00
52. ^3
52.^1
52.25
51.01".
53.no
53.no
53.00
53.0-1
53.00
53.no
5.3.00
53. Of
53.00
53.4"
55.00
55.00
55.00
SS.O'i
55.00
55.01!
55. nc
55.00
55.no
55. n.'.
55. m
55.00
55. 00
55. ni.
HhX-jKij
(br.C>
7ou.
7ol .
7 > 1 2 .
7.J3.
7u4.
7,>5.
7 16.
7u7.
7:j8.
7o4.
710.
711.
712.
713.
714.
715.
716.
717.
716.
719.
7<;o.
721.
722.
723.
7<;4.
725.
72o.
727.
728.
729.
7)0.
711.
7-12.
1 J3.
7 i4.
7.:>b.
7 J6.
7 J7.
'73tt.
7 14.
7*0.
7*1.
742.
7-3.
7u<*.
/••>5.
'7 "6.
7<» 7 .
7 " cl .
74^.
SPFtL)
(MPM)
55.00
54. bO
54.66
55.00
54.03
54.00
54.00
54.00
54.00
54. uO
54.00
54. UO
54. OU
54.77
56.00
56.00
56.00
56.02
57. uO
56.67
56. uO
56.00
•^6.00
56.00
56.00
56.00
56.00
56.00
56. UO
56.91
57.00
57.00
57. UO
57.00
5 7 . u 0
57. HS
58.00
56.00
56.00
SB. 00
56.00
58.00
58.00
58.00
58.00
57.13
56.00
56.00
56.oO
56.00
RECORD
(SEC)
750.
751.
752.
753.
754.
755.
756.
757.
758.
759.
760.
761.
762.
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.
773.
774.
775.
776.
777.
778.
779.
780.
781 .
782.
783.
784.
785.
786.
787.
788.
789.
790.
791.
792.
79.3.
794.
795.
796.
797.
748.
749.
SPEED
(MPH)
56.00
55.63
55.00
55.00
55.00
55.00
5b.OO
55.00
55.00
55.00
54.22
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
54.00
53.01
50.86
49.70
48.54
47.39
46.23
45.07
43.91
42.51
40.60
39.44
38.28
37.13
35.94
33.81
32.66
30.50
28.34
26.37
25.03
21.87
19.85
16.56
15.40
14.24
1 1 . 1 7
rtt-.CORD
(SEC)
800.
801.
80^.
803.
804.
805.
806.
607.
806.
809.
610.
811.
812.
813.
814.
815.
81b.
617.
616.
819.
820.
821.
822.
823.
t>24.
825.
826.
627.
828.
629.
830.
831.
832.
833.
834.
835.
636.
637.
838.
839.
840.
H41.
842.
643.
844.
8*5.
846.
647.
84H.
M44.
SPEED
(MPH)
10.71
6.08
2.61
1.45
0.30
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.19
1 .00
1.51
2.66
4.64
6.96
8.86
7.71
7.45
9.22
10.00
9.08
10.08
11.24
12.79
14.00
12.58
12.87
13.00
u'tCOrtD
(SEC)
850.
851.
652.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
663.
864.
865.
866.
867.
866.
869.
870.
P71.
872.
873.
874.
675.
876.
877.
878.
879.
880.
861.
882.
683.
884.
885.
886.
887.
888.
889.
890.
891.
892.
893.
894.
895.
696.
897.
898.
894.
SPEED
(MPH)
13.00
13.68
15.00
15.00
13.37
12.03
12.26
14.29
14. b6
15.20
16. 76
17.00
17.00
17.23
18.77
2U.54
19.60
16.14
17.s>6
17.00
16. 34
15.00
15.00
lb.00
15. 9to
12.35
15.26
1^.27
12.59
12.25
4.28
6.00
6.00
6. 38
9.53
10.69
11.00
9.UO
4.00
4.32
10.00
4. 36
9.00
9.95
14. J3
17. S3
19.42
20.00
20. 74
21.00
HECORn SPEEO RECORD
(SEC)
400.
901.
402.
403.
404.
405.
906.
907.
906.
909.
910.
911.
912.
913.
914.
915.
916.
917.
918.
919.
920.
921.
422.
423.
924.
925.
926.
927.
926.
429.
OO.
931.
432.
933.
434.
435.
436.
437.
938.
439.
440.
441.
442.
443.
444.
445.
446.
947.
448.
949.
(MPH)
21.11
23.84
27.00
27.00
29.05
.12.52
31.01
U .00
Jl.62
33.00
32.37
30.43
30.00
'10.00
10.51
32.41
33.00
32.27
.12.00
31 .04
.12.20
33.36
3<*.00
1^.00
3^.00
33.01
Jl.86
30.10
26.17
23.39
21.46
17.28
15.83
13.76
12.60
10.33
8.28
5.38
2.91
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
(SEC)
950.
951.
952.
953.
454.
455.
456.
457.
454.
454.
460.
961.
96?.
963.
964.
965.
966.
967.
964.
969.
970.
971.
972.
973.
974.
97s.
976.
977.
978.
479.
^80.
981.
982.
983.
984.
985.
966.
987.
98-3.
969.
490.
991.
492.
993.
994.
99S.
996.
997.
448.
49Q.
SPEED
(MPH)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
0.33
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
               -42-
Chassis Cycle (Gasoline and Diesel)
RF.CORO
(SEC)
1000.
1001 .
100?.
1003.
1004.
lOOb.
1006.
1007.
100ft.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1019.
10?0.
10P1.
1 0?.2 •
10^3.
1 o?4.
10?5.
10?6.
10?7.
1028.
10.^9.
1030.
1 0 3 1 .
103?.
1033.
1034.
1035.
1036.
1037.
103R.
1039.
1040.
1041.
1 Oil?.
1043.
1044.
1 04^.
1046.-
1047.
1048.
1049.
SPHFJ
(MPH)
0.0
0.0
0.0
0.1 ?
0.71
0.0
0.0
0.0
0.0
4. li
6. On
6. Oil
6.0'.
5.3ii
4. 1-*
1 .9-
0.0
O.n
0.0
0.0
0.0
0.0
0.0
n. o
O.n
0.0
O.o
O.n
o.o
o.o
o.o
o.o
o.o
o.o
O.f)
0.0
0.0
0.4-<
1.64
O.M
0.0
0.0
0.0
O.n
O.n
o.n
0.0
0.0
0.0
0.0
RtCOWi.» SPFED
(SFC) (MPH)
1050. n.o
losi. n.o
105?. 0.0
1053. 0.0
1054. 0.0
1055. ".0
1056. 0.0
1057. 0.0
105>8. n.O
1059. n.O
lOfiO. 0.0








































-------