EPA/AA/CTAB/87-06
Technical Report
Evaluation of Fuel Economy, Exhaust Emissions and Performance
of a Sequentially Fuel-Injected High Compression
Methanol-Fueled 1.5 L Engine in a Light-Duty Diesel Vehicle
by
Robert I. Bruetsch
December 1987
NOTICE
Technical Reports do not necessarily represent final EPA
decisions or positions. They are intended to present technical
analysis of issues using data which are currently available.
The purpose in the release of such reports is to facilitate the
exchange of technical information and to inform the public of
technical developments which may form the basis for a final EPA
decision, position or regulatory action.
U. S. Environmental Protection Agency
Office of Air and Radiation
Office of Mobile Sources
Emission Control Technology Division
Control Technology and Applications Branch
2565 Plymouth Road
Ann Arbor, Michigan 48105
-------
Table of Contents
Page
I. Background of Engine Development Work 1
II. Diesel Vehicle Baseline Exhaust Emissions,
Fuel Economy, Performance and Rated Power
Output 7
III. Diesel Vehicle Modifications and Engine
Installation 9
IV. Vehicle Testing for Best Economy 19
V. Vehicle Testing for Performance 22
VI. Vehicle Testing for Reduced NOx Emissions 24
VII. Conclusions 29
VIII. Future Engine Modifications and
Vehicle Evaluation 31
IX. References 32
X. Appendices A-l
Appendix A - Baseline Engine Data
Appendix B - Vehicle Specifications and Baseline Data
Appendix C - Vehicle and Engine Modification Details
Appendix D - Exhaust Emissions, Fuel Economy and
Performance Test Data
-------
I. Background of Engine Development Work
Various properties of methanol fuel have been
investigated which specifically relate to its suitability as a
fuel for use in conventional light-duty engines. The poor
self-ignition characteristics, i.e., low cetane number of
methanol fuel indicates that it is not easily utilized in
Diesel engines. Conversely, methanol's high octane quality
implies it is fairly suitable for application in spark-ignited
engines. The octane number of methanol is significantly higher
than that of current commercial gasolines and methanol lends
itself for use in engines having relatively high compression
ratios with inherent thermal efficiency advantages over current
gasoline-fueled engines. Methanol also has good lean burn
properties which offer further advantages in terms of thermal
efficiency and low exhaust emissions when used in a
spark-ignited engine.
In recent years, several research organizations have
worked on the development of engine concepts capable of
successfully utilizing high compression ratios for optimized
methanol combustion. Ricardo Consulting Engineers, pic. have
developed the HRCC (High Compression Ratio, Compact Combustion
chamber) engine which, by specific design of the combustion
chamber, permits the use of a high compression ratio (with a
relatively low fuel octane requirement) together with the
ability to successfully utilize lean mixtures or tolerate high
levels of EGR. Both are important attributes with regard to
fuel economy and exhaust emissions.
Considerations of the major performance characteristics
of the HRCC combustion system and some of the properties of
methanol fuel suggested that they complement each each other to
a large extent. It therefore appeared that an HRCC unit was a
promising basis for the development of an optimized engine for
methanol use. In order to confirm this theory, a practical
engine test program, aimed at investigating the potential
performance, fuel economy and exhaust emissions of an HRCC
engine when fueled with methanol, was carried out by Ricardo
under contract with EPA.[1]*
This contract resulted in the production of a
methanol-fueled High Compression Ratio, Compact Chamber (HRCC)
engine in which air/fuel mixture strength was controlled using
a simple carburetor and ignition timing was varied using a
conventional distributor with vacuum advance. This engine
showed considerable potential with regard to high thermal
efficiency and low exhaust emissions. However, it was apparent
that the relatively simple engine control system used imposed
significant limitations on several aspects of engine
performance.
Numbers in parentheses denote references listed at the
end of the paper.
-------
-2-
EPA initially attempted to test the engine on an engine
dynamometer (as received) in order make an exact comparison to
the Ricardo tests. This evaluation was performed under the
direction of engineers in the Technical Support Staff with the
aid of technicians in the heavy-duty test cell at MVEL. The
details of this test program are included in Appendix A.[18]
After this evaluation, it was envisioned that the engine would
then be placed in the chassis of an Audi 5000 Diesel vehicle to
compare the performance, fuel economy and exhaust emissions of
the methanol and Diesel engines in the diesel vehicle on a
chassis dynamometer.
Problems were experienced by the previous project team
when it came to fitting the engine into a vehicle for chassis
dynamometer testing purposes. The vehicle chosen was a
three-year old 1980 Audi 5000 Diesel with a 5-speed
transmission. The Audi is a 3250 Ib IW vehicle, whereas the
HRCC engine is based on a VW Rabbit powerplant which is
normally fit into a 2500 Ib IW vehicle. It was believed that
the increased power output of the high compression HRCC (rv =
13:1) would compensate for the lower power-to-weight ratio
obtained by swapping a smaller engine into a larger vehicle.
The objective was to compare the fuel economy of the
methanol-fueled engine with the certification Audi Diesel fuel
economy. Secondary objectives included the comparison of
exhaust emissions and performance. A transmission adapter was
fabricated to fit the transverse HRCC engine into the
longitudinal Audi chassis. Though no documentation exists
regarding the engine swap or attempted chassis dynamometer
testing, it is believed that this effort was unsuccessful due
'to problems which occurred when the VW Rabbit flywheel was
mated to the Diesel clutch. Proper clutch operation was never
obtained. Additional complications may have occurred as a
result of the engine's relatively simple control system and the
vehicle never achieved acceptable power output for the FTP
driving cycle.
The engine was then removed from the vehicle and shipped
bac.. Ricardo for further development of the fuel management
sys-i.,. .0 incorporate a sequential fuel injection system in
place of the carburetor, and to provide mapped Microprocessor
control of various Engine Control (MEC) parameters. This work
was performed from October 1984 through September of 1986 under
EPA Contract No. 68-03-1968.[9]
Under this contract, alternative ignition systems were
initially investigated before the fuel metering system was
modified. A Bosch/MEC ignition system was shown to result in
similar performance compared with the original A.C. Delco
ignition system and was adopted for the subsequent engine
development program. This result showed only that the high
energy ignition system previously used did not offer any
significant advantage to the methanol engine concept.
-------
-3-
Compared with the carbureted engine, the injected engine
has a much reduced ignition requirement at part load by 6 to 10
degrees with reduced HC emissions and higher brake thermal
efficiency. Some of these differences were evidently due to
the mechanism of fuel preparation since the engine was shown to
be sensitive to fuel injection rate and timing.
At full load the changes to mixture preparation, fuel
distribution and intake manifold geometry led to a significant
improvement in BMEP above 50 rev/s and an increase in brake
thermal efficiency of 2.5 percent over the speed range.
Volumetric efficiency is, however, some 5-10 percent lower at
20 to 40 rev/s because the manifold geometry favors high speed
running.
Pre-ignition was encountered while running at optimum
mixture strength above 60 rev/sec at full load. This caused
slight damage which necessitated fitting a new piston. This
was an unforeseen problem as test work with the carbureted
engine had indicated that the engine could be over advanced by
up to 10 degrees before encountering pre-ignition when BN-60Y
sparking plugs were fitted. Richer mixtures were later used to
prevent reoccurrence of pre-ignition.
The mixture strength for best economy without significant
HC emissions penalty was generally found to be at an
equivalence ratio of 0.7 and this mixture strength was used for
the "best economy" maps. This equivalence ratio was the same
as that established as optimum for the carbureted engine.
Maldistribution and lack of adequate transient fueling control
with the carburetor meant that this lean potential could not
previously be utilized. This was not the case for the injected
engine so that the full potential of the engine concept could
be realized in the vehicle application. The result of this was
a predicted fuel economy improvement of 18 percent
(Audi/Injected/HRCC over VW/Carb/HRCC) despite the increase of
vehicle weight from 2500 to 3250 Ibs.
A second control strategy, using EGR and ignition timing
retard, was identified to reduce the NOx emission level below
that obtained with best economy and comply with the project
objectives of less than 0.7 g/mi NOx. The control strategy
optimization showed that NOx emissions could be reduced by 62
percent with an insignificant increase of HC emissions by
selecting a suitable strategy for EGR, mixture strength, and
ignition timing. This strategy increased predicted fuel
consumption 6 percent (0.9 MPG) . It was felt that the low
vehicle power/weight ratio, which at about 43 kw/ton (58
hp/ton) is well below that typical of current gasoline engine
vehicles at 50 to 60 kw/ton (67 to 80 hp/ton), combined with
lean air/fuel mixtures, EGR and ignition retard would result in
a vehicle concept whose driveability may be unsatisfactory.
Without ignition retard, 1.07 g/mi NOx was achieved, and
Ricardo developed this as a first cut at a reduced NOx strategy
with driveability that was believed to be acceptable.
-------
-4-
Simulation of engine transients was carried out on the
test bed by actuation of the throttle lever between "stops." A
smooth transition between engine loads was achieved by
calibration of the MEC maps. [15] It was recognized that it was
not possible to fully calibrate transient engine performance on
the engine testbed and that further development of engine
transients would be required when the engine was fitted into
the vehicle by EPA.
The engine "cold start strategy" was set up to enable an
unaided start to be achieved at an ambient temperature of 10°C
(50°F). Tests could not be conducted at lower temperatures
because the cell had no cooling facility. Initial strategies
for warm-up compensation and modulation of EGR rate during the
warm-up phase were also devised using testbed data and Ricardo
experience gained from similar applications. Again, this area
was recognized as one where further development would be
required during the vehicle phase or as part of another test
program.
The application of electronic sequential fuel injection
and electronic engine management to the engine was successfully
carried out during this second Ricardo project.
The effect of fuel injection was to improve the engine
performance when compared to that previously obtained with the
carbureted version of the engine. At full load, maximum BMEP
increased by 6 percent and peak power output by 16 percent;
however, some increased sensitivity to pre-ignition was
evident. Under part load conditions brake thermal efficiency
increased and HC emissions were reduced. The engine was noted
to be sensitive to fuel injection characteristics such as fuel
injection rate.
The part load vehicle calibration for best economy was
carried out at a leaner mixture strength than that of the
carbureted engine, 0.7 equivalence ratio, instead of 0.8
equivalence ratio due to improved mixture preparation and
distribution with sequential fuel injection, as well as the
sophisticated transient fueling control possible with the
Ricardo MEC unit.
The two calibration strategies developed for the engine
were entered as data to the Ricardo "CYSIM" drive cycle
simulation computer program.[13] The vehicle details input to
the cycle simulation program were those of the Audi 5000
vehicle. To supplement the comparison with the results
predicted for the carbureted version of this engine when fitted
to a VW Rabbit vehicle, a simulation of the Audi 5000
diesel-engined vehicle using Ricardo in-house data was also
carried out. These results are summarized in Table 1 for the
"FTP" driving cycle, but are really representative of hot-start
FTP engine-out emissions.
-------
-5-
Table 1
Predicted Hot-LA4 Results Using Ricardo CYSIM
Drive Cycle Simulation Program*
Fuel Economy Accel. Time
HC NOX CO Meth. Gas 0-50 30-50
Vehicle/Engine/Strategy (g/mi) (g/mi) (g/mi) MPG Equiv. (sec) (sec)
1. VW Rabbit/Carb/0.8 ER 1.61 2.07 1.17 13.85 28.61
2. VW Rabbit/Carb/EGR 1.35 0.98 1.75 14.76 30.49
3. VW Rabbit/Injected/ 1.95 1.29 3.35 16.84 34.80 15.0 9.1
0.7 ER
4. VW Rabbit/Injected/ 1.70 0.59 8.77 16.48 34.05 15.0 9.1
EGR
5. Audi 5000/Injected/ 1.92 1.75 3.37 16.30 33.68 18.0 11.0
0.7 ER
6. Audi 5000/Injected/ 1,91 1.07 19.90 14.90 30.79
EGR**
7. Audi 5000/Injected/ 1.82 0.67 14.52 15.40 31.82 18.0 11.0
EGR+
8. Audi 5000/Injected/ 1.94 0.65 21.24 14.50 29.96
EGR++
9. Audi 5000/Diesel/no 0.11 2.15 — — 32.85 22.9 14.4
EGR
* Steady-state simulation—no cold start adjustment.
** Reduced NOx calibration without spark retard.
+ Initial reduced NOx calibration with spark retard,
++ Final reduced NOx calibration with spark retard.
Notes:
VW Rabbit - 2500 Ibs inertia weight.
Audi 5000 - 3250 Ibs inertia weight.
0.8 ER = Best economy carbureted calibration.
0.7 ER = Best economy fuel-injected calibration.
EGR = Reduced NOx calibration (0.8 ER).
-------
-6-
Both carbureted and fuel-injected HRCC engine "reduced
NOx" strategies result in about 1.0 g/mi FTP NOx emissions if
MET ignition timings were used and again showed the
fuel-injected engine to advantage in fuel economy despite the
end weight differential. More directly comparable results,
i.e., at the same simulated inertia weight, were carried out
though the results are marginally representative since the
change of vehicle weight requires a reoptimization of the
engine control strategy since different engine speeds and loads
are used.
The comparison with the simulated diesel-engined vehicle
shows the Audi/Diesel to have low HC emissions but NOx
emissions indicated that optimization of the control strategy
and/or EGR would be required. A comparison of the fuel
consumption showed the methanol concept to be favorable.
-------
-7-
II. Diesel Vehicle Baseline Exhaust Emissions, Fuel Economy,
Performance and Rated Power Output
After the engine development work under the second Ricardo
contract was completed, it was decided to reinstall the engine
in the Audi vehicle to determine whether the initial program
objectives of comparing the methanol and Diesel engine exhaust
emissions, fuel economy and performance could now be
successfully performed.
The 1980 Audi 5000 was not cyclic tested in the
as-received condition (as a Diesel) when it arrived at the
Motor Vehicle Emission Laboratory prior to removal of the
original Diesel engine. However, the vehicle was placed on the
dynamometer for a few performance tests. These performance
data consist of several 0-50 MPH and 30-50 MPH accelerations
which are listed in Table 2. By comparison with Table l
values, the actual acceleration times for the Audi/HRCC and
Audi/Diesel combinations are quite a bit (5-6 seconds) faster
than the performance predicted by the Ricardo simulations.
However, as we shall see in a later section, the percent
improvement in performance with the methanol engine over the
Diesel baseline is essentially the same, roughly 22 percent,
for both EPA tests and Ricardo simulations.
Cyclic emissions and fuel economy data for the Audi/Diesel
were obtained from the 1980 Fuel Economy Program 49-State Test
Car List (Gas Mileage Guide) as published in the August 27,
1980 Federal Register.[22] These data are listed in Table 3
and pertain to a 3,250 Ib. ETW vehicle with a 121 in5 in-line
five-cylinder fuel-injected Diesel engine with a compression
ratio of 23:1 and rated power of 67 HP. The Audi 5000 Diesel
has front-wheel drive, a manual five-speed transmission, an
axle ratio of 4.78 and an N/V ratio of 46,1.
No deterioration factors were applied to the exhaust
emissions data to account for the fact that this vehicle was
three years old when procured by EPA, and over six years old
when evaluated with a methanol engine installed in it.
The vehicle condition prior to installation of the
fuel-injected HRCC engine was quite poor since it had not been
moved for three years and had acquired a substantial amount of
rust from sitting dormant over three Michigan winters outside
of the MVEL. Several parts were in need of repair and
replacement and the vehicle required cleaning and maintenance
from bumper to bumper.
-------
-8-
Table 2
Audi 5000 Diesel Performance:
June 30, 1983 Acceleration Tests
Test Run
1.
2.
3.
4.
5.
Average
Std. Dev.
0-50 MPH
(sec)
15.75
18.75
15.00
15.75
17.50
16.55
1.535
Test Run
1.
2.
3.
4.
5.
Average
Std. Dev.
30-50 MPH
(sec)
9.0
8.5
9.5
9.5
9.0
9.1
0.42
30-50 MPH accelerations performed cruising at 30 MPH in
third gear.
Table 3
1980 Audi 5000 Certification Diesel Emissions
and Fuel Economy (g/mi, MPG)
FTP HFET
HC 0.405 0.162
CO 1.330 0.460
COZ 371 236
NOx 1.710 1.075
MPG 27 43 Combined = 33
-------
-9-
III. Diesel Vehicle Modifications and Engine Installation
The HRCC engine, as mentioned earlier, was installed in a
1980 Audi 5000 Diesel vehicle (VIN= 43A0131868). Prior to
engine installation, however, a substantial number of vehicle
and engine parts were procured or fabricated and various
vehicle modifications needed to be made.
The goal of these efforts was to ensure that the test
vehicle could be used both on the dynamometer for emissions
tests and as a vehicle for operation on the road. The overall
test program consisted of five distinct phases requiring
significant coordination of in-house personnel and test
facilities and extramural equipment and services. These five
phases were: l) parts procurement; 2) vehicle modifications;
3) engine installation; 4) baseline Audi/HRCC vehicle cyclic
testing; and 5) transient fuel and EGR calibration optimization.
Neat methanol fuel was used for all chassis dynamometer
testing of the engine/vehicle combination. The test fuel
specifications are listed in Table 4.
Fitting a transverse engine into a vehicle originally
designed for a longitudinal engine presented significant
problems, particularly with a front-wheel drive vehicle (see
Figures 1 and 2) . The exhaust system for this configuration is
completely different than VW Rabbit system and had to be
fabricated based on Audi 4000 components.[16] Fortunately, the
engine being installed was relatively small (4-cylinder,
1.5-liter W? Rabbit base engine) compared to the vehicle engine
compartment designed for a 5-cylinder 2.0-liter Audi Diesel
engine.[17] Engine compartment space was not expected to cause
insurmountable problems. However, the front-end grille frame
on the Audi had been cut away slightly indicating that extra
space was necessary for the radiator when the carbureted
version of the HRCC engine was installed in the Audi.
Since the Audi vehicle had been sitting outside MVEL
without an engine for three years without ever being moved,
some components acquired a significant amount of rust. The
bell housing, transmission inlet shaft, and transaxle were
scrubbed with steel wool, thoroughly cleaned and lubricated.
The front tires were replaced and new front disc brake pads
were installed. New engine mounts were fabricated and the
alignment, fitting, and weight distribution of the engine,
drivetrain and transmission was performed. Radiator mounting
brackets were fabricated and installed and a hood scoop was
fitted since the new engine configuration sat a little higher
in the vehicle compartment with the new engine mounts and fuel
injection components. The emergency brake was repaired and the
hood release was attached.
-------
-10-
Table 4
Methanol Test Fuel Specifications
Appearance Clear, colorless, free from
suspended matter and sediment
Relative Density 0/00 0.798 - 0.795
15.5/15.5°C
IBP°C >64.5
95% Dist. Temp. (°C) <65.25
FBP°C <65.5
Water Content <0.5 % by weight (measured
57lppm)
Aldehydes and Ketones <.0l5 % by weight, as acetone
Alkalinity <.0005 % by weight, as ammonia
Acidity <.003 % by weight, as formic acid
Sulfur and Sulfur Compounds <.0001 % by weight, as sulfur
Composition % by weight:
Carbon 37 . 5
Hydrogen 12.5
Oxygen 50.0
Octane quality (from lite-
rature) :
RON 104-114
MON 87-97
Stoichiometric air/ 6.46
fuel ratio
Measured Calorific 19940
Value, kJ/kg
Latent Heat of 1100
Vaporization
kJ/kg (from
literature)
-------
Major car components/Volkswagen
Front-drive transverse-engine cars
Rabbit, Sclrocco, Pickup
ENGINE
1. Engine block
2. Cylinder head
3. Intake manifold
4. Carburetor
5. Fuel-in|eciion distributor
6. Air cleaner
7i Fuel-injector lines
8. Fuel-injector nozzle
9. Gas pedal
10. PCVhose
11. Oilfiller
12. Oil tiller cap
13. Drive bell
14. Electrician
15. Water pump
16. Radiator
17. Radiator cap
Carburetor engine
45
18. Upper radiator hose
19. Lower radiator hose
20. Exhaust pipe
21. Camshaft drive belt cover
22. Overhead camshaft cover
Fuel-ln|ecled gasoline engine
T)
H-
1-5
tt>
DRIVE IHAIN
23. Clutch housing
24. Manual transmission
25. Differential
26. CV joint
27. Drive axle
28. Shift lever
29. Clutch pedal
30. Clutch free play ad|uster
31. Clutch cable
32. Clutch-operating fork
WHEtLS. IIKfcS. BHAKtS
33. Tire
34. Wheel bearing
35. Brake disc
36. Brake cahper
37. Brake pedal
38. Brake vacuum booster
39. Brake fluid reservoir
40. Brake master cylinder
SUSPENSION
41. Lower A-arm
42. Coil spring
43. Shock absorber
44. MacPherson strut
SIEEHING
45. Steering wheel
46. Steer ing column
47. Rack and pinion assembly
48. Tie rod
49. Rubber boot
ELECTRICAL SYSIEM
50. Battery
51. Coil
52. Distributor
S3. Alternator
54. Starter motor
55. Starter solenoid
56. Sparkplug
57. Spark plug cables
162
-------
Figure 2
Front-drive longitudinal-engine cars
VW Dasher; Audi Fox, 4000, 5000
CNGINF.
1. Engine block
2. Cylinder head
3. Intake manilold
4. Fuel-injection distributor
5. Ait cleaner
6. Cool air duel
7. Fuel-injector lines
8. PCVhose
9. Oil dipstick
10. Oil tiller
11. Oil tiller cap
12. Drive belt
13. Crankshall pulley
14. Electrician
15. Water pump
16. Radiator
17. Radiator cap
18. Radiator hosos
19. Radiator overflow recovery lank
20. Exhaust pipe
21. Muttler
22. Camshaft drive bell cover
23. Overhead camshal! cover
DRIVE I RAIN
24. Clutch housing
25. CV joint
26. Drive axle
27. Slnll lever
28. Shill linkage
29. Clutch pedal
30. Clutch cable
31. Clutch - opei aling lork
32. Transaxle
Five-cylinder fuel-Injected engine
Four-cylinder carburetor engine
WHU:IS. IIRHS (IRAKIS
33. Tire
34. Wheel bearing
35. Brake disc
36. Brake caliper
37. Brake pedal
38. Biake vacuum booster
39. Brake lluid reservoir
40. Brake master cylinder
41. Parking brake lever
SUV.I 'I N'jK IN
42. Lower A-arm
43. Stabilizer bar
44. Coil spring
45. Shock absorber
46. MacPherson strut
SIRtniNG
47. Steering wheel
48. Steering column
49. Rack and pinion assembly
50. Tie rod
51. Steering knuckle
52. Rubber boot
CIECtRICALSYSIEM
S3. Battery
54. Coil
55. Distributor
56. Alternator
57. Sparkplug
58. Spark plug cables
59. Windshield washer
reservoir
163
-------
-13-
Engine installation required the measurement and fitting
of several related components. A flywheel spacer plate was
fabricated to align the Ricardo flywheel with the flywheel
adaptor plate, bell housing, magnetic pickup and starter
motor. The flywheel adaptor was machined to accept a slightly
altered starter geometry to line up with the Ricardo flywheel
teeth. A new pilot bearing was machined to match the main
shaft from the transmission. A new throwout bearing was
installed and the clutch slave piston was lengthened to allow
the clutch to engage and disengage smoothly without loss of
hyraulic fluid. All hydraulic systems were bled and fluids
replaced. A new Bosch fuel pump, stainless steel fuel lines,
fuel filters and pressure gauges were installed. Existing
power steering and air conditioning system components were
removed since they would not be needed for the Audi/HRCC test
program. A methanol tolerant fuel cell was installed in the
trunk.
After vehicle modifications were complete, and the engine
was installed in the vehicle, all associated components were
assembled and connected. The air inlet system needed to be
rerouted to connect with the previous transverse engine
configuration. A VW throttle cable was purchased and installed
with a special pop fit terminal on the throttle to adapt it
from automatic to a standard transmission configuration. Two
adaptors were manufactured to fit the modified Audi 4000
exhaust manifold and head pipe through the engine compartment.
A straight section in the exhaust pipe was fitted in case
•catalyst testing was to be performed after the engine-out
emissions were baselined. A completely new wiring harness was
installed to hook up all electrical connections. This allowed
the Ricardo EGR and microprocessor engine controller (MEC)
systems to be installed and tested for accurate operation (see
Figures 3 and 4) . Once these systems were set up and nominally
functional, all other hoses, pipes, valves, sensors, belts and
thermostats were hooked up. New fuses, a battery, spark plugs
and wires, distributor cap and rotor and oil filter were all
purchased locally and installed.
The MEC required many connections for various inputs and
outputs. Inputs to the MEC include a throttle potentiometer,
crank and camshaft pickups, exhaust gas and manifold charge
thermocouples, and coolant and inlet air platinum resistance
thermometers. MEC outputs include signals to the ignition
module (distributor and coil), fuel injectors, the Pierburg EGR
control unit and an ADM 11 video display terminal. The MEC
unit itself was installed in the passenger compartment by
removing the front passenger-side seat.
-------
RKMD
-14-
EGR SYSTEM
•*Ma S HITS
fe» MAfCM
THROTTLE
J
FROM
AIR CLEANED
LINEAR POTENTIOMETER
INDICATING EGR VALVE
OPENING \ VALvE
Hi
INLET MANIFOLD
EGR FLOW
1 MODULATED VACUUM
[T0EGR VALVE.
1 XVENT TO VACUUM
rf ATMOSPHERE x SUPPLY
VELECTRC7- L
PNEUMATIC
TRANSMITTED
VACUUM
MON-RETURM VALVE
CONTeOL
UNIT
0-)0 VOLT SIGNAL FROM
M.E.C. PROPORTIONAL TO
REQUIRED EGR VALVE
OPENING.
EGR VALVE
ELECTRO-PNEUMATIC TRANSMITTER
COMTRC7L UNIT
PART N'«->
7.7I.C73I.OO
PV 12.300
-------
Input and Output of Microprocessor Engine Controller
I
UJ
Crankshaft Timing Reference
Camshaft Sync. Pulse
Intake Manifold Vacuum
Temperature Inputs
im
M. E. C.*
t>
{i . »
S g «
* - c •
22
Driver
Display
Unit
OCC.IQ: IQIINOI IDI IDUC i
: :QC ii3! IDI 3C!Qi iai IOOLI
ciaiiai IDI luni.iatic.mii
Keyboard
Ignition Signal
Fuel Injection Signals
EGR Signal
H-
d
CD
4^
en
I
* Microprocessor
Engine Controller
-------
-16-
A- MEG calibration operates by defining the ignition
advance and fuel injector pulse length for a given engine speed
(rev/s) and manifold absolute pressure (mbar). The temperature
inputs (ambient, inlet manifold, and coolant) are used to
modify certain derived variables in the engine control strategy
during warmup periods. The control strategy structure is
fixed, but is tunable by ten maps (of 10 by 10 elements). The
elements of these maps may be individually edited. Permanent
or temporary offsets may also be added to every element of a
specified map. The state of MEG can be constantly displayed on
a Lear Siegler ADM 11 terminal. A trace of input and output
variables may also be stored in volatile memory, and
subsequently retrieved for display. The required changes to
maps are also made via the terminal. The ten derived variables
and their associated maps are described further in Table 5.
The 10 by 10 elements are accessed by using the two input
values as indices (after normalization), such that a block of
four map values are identified as "surrounding" the true map
operating point. The map output is then computed by linear
interpolation within this block. The temperature compensation
coefficients (X map variables) are also linearly interpolated
between adjacent defined values.
On power-up, the MEG writes a heading at the top of the
screen and then writes several lines of variable names together
with their current values. These values are only updated when
the engine is running, consequently at power-up, the values
have no significance. The final line of the display field
prompts for a character to be entered. A drawing of a typical
MEG VDU engine panel display is shown in Figure 5.
If the "character" is one corresponding to a map (as in
Table 5), then the corresponding map will be displayed together
with a prompt for map modification. While the display is being
continuously updated, other characters can be entered which
perform map storage and recall functions with the non-volatile
memory. Up to six sets of ten 10 by 10 maps, i.e., six "proms"
can be stored simultaneously in non-volatile memory.
A trace facility is also provided for diagnostic
purposes. Traces can be started, aborted and displayed.[19]
Up to ten variables from a pre-defined set may be stored every
occasion control of the engine is invoked. Memory capacity
allows up to 800 cycles to be retained. Up to four of the
variables may be output on analog channels, with a facility to
determine the gain of individual channels. These traces helped
immeasurably in the fine tuning of MEG maps to achieve lean
operation of methanol in the Audi on the chassis dynamometer
with acceptable driveability.
-------
-17-
Table 5
Microprocessor Engine Controller Mags
Select Horizontal Axis
Map Name Character para, units, range
Steady-State F rev/s,-, 20-100
Fuel
Idle Fuel G rev/s,-, 2-20
Exp. impulse H rev/s,-, 20-100
Time Constant
Throttle Angle K rev/s,-, 10-100
Vertical Axis Map' Output
para, units, ranqe para, units
MAP, mbar 100-1000 Fuel Inj .
Fuel/100
arbitrary
unit
MAP, mbar 100-1000 Fuel/Inj.
Fuel/100
arbitrary
unit
Fuel/Inj. 5-50 Trans, height,
constant, mS
MAP, mbar 100-1000 Derivative
coef ,
Derivative
arbitrary
Advance Table
Idle Ignition
Map
EGR valve
Temperature*
Compensation
rev/s,-, 20-100 MAP, mbar 100-1000
rev/s,-, 2-20 MAP, mbar 100-1000
rev/s,-, 20-100 MAP, mbar 100-1000
Temp.°K,100-1000
TTC, MCT, THC, SSF,
CT, EGR
unit
Ign. advance
deg BTDC/100
Ign. advance,
deg BTDC/100
0-1000 EGR,
arbitrary unit
0-100 percent,
°K
* The X map contains "percent" of steady-state fueling,
transient constant, transient height coefficient, and EGR
to be applied in a specified manifold charge or coolant
temperature range.
TTC = Transient time constant.
MCT = Manifold charge temperature.
THC = Transient height coefficient.
SSF = Steady-state fueling.
CT = Coolant temperature.
EGR = Exhaust gas recirculation.
-------
-18-
Figure 5
Typical Continuously Updated MEC Engine Panel Video Display
RICAROO MEC (V2.8.3)
ENG SPEED (RPS) = 15.00 MAP (mB) = 365 EQR = 0 EGRPOS = -122
IGN (deg BTDC) = 12.36 E.O.I, (deg ATOC) = 330
FUEL: - TOT -. 12.19 «l = .0 Tl = .0 FBL = 12.14 (TMPC = .0)
TUN HEIGHT (%) = 160, (TMPC = 0), TRN.T.C. (mS) = 178, (TMPC = 20)
TEMPS (°K): - m = 359, AMB = 300, MC = 343 EX = 431, CJ = 307
MAPS BEING USED ARE THOSE IN PROM 6, "BEST ECONOMY"
This screen space available for map or trace
modification, formatting and display
RPS = Revolutions per second
mB = Millibars pressure
MAP = Manifold absolute pressure
EGR = Exhaust gas recirculation
EGRPOS = EGR valve position (arbitrary units)
IGN = Ignition timing (degrees before top dead center)
EOI = End of injection (degrees after top dead center)
TOT = Total fuel output (=FBL + TRN + TMPC)
WW = Wall wetting compensation
TI = Throttle impulse
FBL = Fuel baseline (interpolated from "F" and "G" maps
TRN = Transient fuel compensation
TRNTC = Transient time constant (milliseconds)
TMPC = Temperature fuel compensation
WTR = Coolant temperature (°K)
AMB = Ambient temperature (°K)
MC = Manifold charge temperature (°K)
EX = Exhaust gas temperature (°K)
CJ = Cold junction temperature (°K)
-------
-19-
IV. Vehicle Testing for Best Economy
Once the MEC, EGR, fuel injection and all other necessary
engine control systems were functioning accurately, baseline
FTP tests were run to observe vehicle driveability at various
speed and load combinations and during engine transients. £
series of stripchart recordings were made to observe enginr
functions of manifold vacuum, CO emissions (percent), rol
speed (MPH), engine speed (rpm), and air/fuel ratio (lambda
while the vehicle operated under steady-state and cycli
conditions.
These traces and the FTP test results showed a vehicle
with minimally acceptable driveability and sporadically rich
operation with extremely high levels of HC and CO emissions.
Specific segments of the vehicle trace were examined in more
detail to see if minor adjustments might improve vehicle
operation.
Examination of manifold vacuum and air/fuel ratio during
transients revealed that the engine was too sensitive to small
changes in throttle angle. The Ricardo MEC fueling strategy
algorithm was investigated to see if changes to the algorithm
could be made to smooth out the noise in the air/fuel ratio
trace. This fueling strategy is included in Appendix C. As
shown in this diagram, the throttle angle derivative (K) map is
an independent additive function to the total fuel output, and
therefore does not directly effect other map functions. The
elements in the K map were zeroed out to determine whether the
MEC was "smart" enough to control the engine without fueling
compensation for changes in throttle position with time.
The result was a dramatic improvement in vehicle
driveability and significantly leaner operation under all
engine conditions. Various increments of throttle angle
derivative were tested with the engine controlled in the "best
economy" calibration. This testing began in early April 1987.
The best economy tests were all performed with • zero throttle
angle derivative.
Ricardo engine dynamometer test results from mixture range
tests at key point conditions indicated that the highest brake
thermal efficiency was achieved at an equivalence ratio of
0.7. It was considered, from Ricardo vehicle experience of
applying lean control strategies to HRCC methanol engines, that
a control strategy with 0.7 equivalence ratio could be
developed in a vehicle for satisfactory driveability given
sophisticated transient fueling compensation. Ignition timing
was kept optimum since Ricardo believed that retard from MBT
would degrade engine response to an unacceptable level.
-------
-20-
The best economy strategy was based on engine runs over
the load range at 20, 40, 60 and 80 rev/s to determine MBT
ignition timings with 0.7 equivalence ratio up to 900 mbar
absolute inlet manifold pressure. Above this, the mixture was
progressively enriched for full load conditions. The fueling
level and ignition timing required for each load and speed was
centered in a set of MEC maps. Following this, the engine was
run with the fueling level and ignition timing automatically
controlled by the MEC to obtain performance and emissions
readings from which a set of specific performance maps, e.g.,
BSFC, BTE, equivalence ratio, BSNOx and BSHC versus speed and
load, was derived.
This precise calibration resulted in efficient engine
operation and a maximum brake thermal efficiency of over 33
percent. Ricardo reported improvements of up to 10 percent
under low load conditions compared to the carbureted HRCC
engine.
Ricardo also found high levels of HC emissions under low
load conditions when operating under "best economy" calibration
conditions with lean mixtures and MET ignition timings. NOx
emissions during lean operating conditions (below 6 bar) were
low and half that achieved with the carbureted version of the
engine.
EPA run FTP test results for best economy calibration
evaluations are listed in Table 6. All of these tests were run
with zero throttle angle derivative and "engine-out" exhaust
emissions averaged 0.45, 6.97, and 1.38 g/mile for HC, CO and
NOx emissions, respectively. These levels are acceptable given
that no catalyst was installed on the vehicle and the results
varied by only five to six percent. Engine-out methanol
emissions, as predicted by CTAB's MXX methanol emissions
calculation program, were quite high, over 10 g/mile, as
expected from a methanol vehicle which does not employ a
sophisticated cold-start engine control strategy.
Fuel economy program objectives were met and exceeded with
the results of the best economy vehicle tests. Methanol fuel
economy averaged 14.13 MPG which translates into a gasoline
equivalent (energy based fuel economy) of 28.0 mpg, or 3
percent higher urban MPG than the Audi 5000 Diesel
baseline. [20] Fuel economy test results varied by only ±2
percent, such that the improvement over the Diesel engine fuel
economy varied from 1 to 5 percent. Details of these and other
exhaust emissions and fuel economy data are included in
Appendix D.
-------
-21-
Table 6
Best Economy Calibration FTP
Emission and Fuel Economy Results, Audi/HRCC (g/mi)
Date
04/10/87
04/14/87
04/15/87
0
0
0
HC CO
.47 6.
.46 7.
.42 6.
Average
Average (@ constant
Diesel comparison
NOX
7 N/R
1 1
6 1
.5
.3
CH30H HCHO
10.90 N/T
10.69 .483
9.76 .398
performance)
OMHCE MPG
5.19 27
5.09 27
4.65 28
28
29
27
City
.8
.9
.3
.0
.7
.0
MPG city means 1975 FTP gasoline equivalent MPG.
N/R means not reported. Stable NOx readings were not possible.
N/T means not tested for.
First test: one stall, six false starts in Bag 1.
Second test: 8 stalls, 1 false start, Bag 1.
Third test: 5 stalls, 1 false start. Bag 1.
Table 7
Performance Results, Audi/HRCC
0-50 Accel.
(seconds)
13.0
16.6
30-50 Accel.
(seconds)
7.1
9.1
Vehicle
Audi/HRCC
Audi/Diesel
Testing conducted on a chassis dynamometer.
For 0-50 times, gears selected for best performance.
For 30-50 times, maneuver started at 30 cruise, run in third
gear.
-------
-22-
V. Vehicle Testing for Performance
In order to compare the Audi/HRCC MPG to the Audi/Diesel
MPG at equal performance, a series of acceleration tests were
performed on the Audi/HRCC to compare to the values in Table
2. Several sequences of 0 to 50 and 30 to 50 MPH accelerations
were run. Zero to 50 MPH times averaged 13.0 seconds and 30 to
50 MPH times averaged 7.1 seconds (see Table 7). Both sets of
measurements varied by roughly +6.0 percent. Both EPA
(measured) and Ricardo (predicted) Diesel performance values
are roughly 22 percent higher (slower) than the corresponding
M100 values with the Audi/HRCC as shown in Table 8.
The decision to run 0 to 50 MPH acceleration tests
initially on the Audi/Diesel as a baseline was made by the
previous project engineer on this program. Subsequent 0 to 50
MPH tests were run, by Ricardo simulation and by EPA on the
Audi/HRCC, for direct comparison to the baseline. Zero to 60
MPH tests, as is generally the standard practice in the
automotive industry, would have allowed "measured" values to be
compared to on-road acceleration data by the following equation
which has been derived using on-road acceleration data:[21]
to-so (sec) = 0.82 (HP/IW)
-0.82
Using this expression, "calculated" values for 0 to 60 MPH
performance of the Audi/HRCC and the Audi/Diesel vehicles (both
3,250 Ibs. 1W) are 17.3 and 19.8 seconds, respectively. This
means that the predicted 3,250 Ib. Audi performance is improved
by 13 percent by using the sequentially fuel-injected methanol
HRCC engine instead of the original 2.0-liter Diesel engine.
This translates into a 6 percent loss in fuel economy due to
the higher performance of the HRCC engine (change in
performance = 0.454 change in MPG). Therefore, to compare the
methanol-fueled Audi to the diesel-fueled Audi at equal
performance, all fuel economy measurements generated in this
test program need to be multiplied by 1.06. Multiplication of
the Audi/HRCC average FTP MPG (28.0) by 1.06 yields 29.7 MPG,
or a 10 percent improvement over the Audi/Diesel at constant
performance.
-------
-23-
Table 8
EPA/Ricardo Comparison MPG and Performance
Ricardo: Computer Simulation - EPA: Measured
•
Ricardo
Measure
MPG
0-50
30-50
Diesel
32.9
22.9
14.4
M100
33.7
18.0
11.0
Percent
+2%
-t-21%
+24%
Diesel
27.2
16.6
9.1
EPA
M100
28.0
13.0
7.1
Percent
+3%
+22%
+22%
-------
-24-
VI. Vehicle Testing for Reduced NOx Emissions
The second calibration which Ricardo developed for our
evaluation was the reduced NOx strategy which employs a
sophisticatd EGR control scheme and slightly richer operation
(0.8 equivalence ratio) than the best economy calibration in
order to achieve the project goals of 0.7 g/mi NOx exhaust
emissions.
In order to determine an effective strategy for reduced
NOx using exhaust gas recirculation, a Ricardo computer program
"CONTROL" was used to analyze the test results from several EGR
keypoint tests. The objective was to devise an alternative
control strategy that would result in a maximum reduction in
NOx emissions with minimum penalties of HC emissions and fuel
consumption. Exploration over the range of mixture strengths
and EGR rates established the operating envelope shown in
Figure 6. From this data, it is clear that the best economy
strategy represents a strategy towards the lower range of NOx
emissions possible with MET ignition timing. Furthermore,
there is a strong link between reducing HC and increasing NOx
emissions indicating that a simultaneous reduction of both is
difficult to achieve, and the direction for minimum NOx is
similar to that for a fuel consumption penalty. This indicates
that reduced NOx will result in increased fuel consumption.
This simple keypoint model also indicated that the limits
presented by the test data resulted in a minimum NOx level of
about 1 g/mi for the Federal Test Procedure if MBT timing were
used. From this trade-off data, it was decided to pursue a
strategy which would result in a minimum NOx strategy without a
significant HC emission penalty, i.e., the dashed line in
Figure 6.
The "CONTROL" program enabled the equivalence ratio and
EGR rate for the reduced NOx strategy to be identified for the
keypoint loads and speeds. This indicated that relatively rich
mixtures of 0.8 and 0.9 equivalence ratio should be used with
high rates of EGR to obtain NOx reduction without penalizing HC
emissions. This strategy, using MET ignition timings,
resulted in a CYSIM NOx level prediction of 1.07 g/mi with a
level of HC emissions similar to the best economy strategy. It
was evident that a control strategy with MBT ignition timing
would not enable the project goal of 0.7 g/mi to be achieved.
The primary reason for the difficulty in achieving 0.7 g/mi NOx
compliance was considered by Ricardo to be EPA's choice of
vehicle which resulted in a poor power/weight ratio and
subsequent high engine duty cycle. It was therefore necessary
to apply 7°-lO° ignition retard in the mid-upper load range
from 20-60 rev/s in order to achieve the required level of 0.7
g/mi NOx. The final strategy resulted in a reasonable
compromise between NOx reduction, HC emissions and fuel
consumption. However, Ricardo believed that when operating at,
or close to, the dilution tolerance limit of an engine, the use
of ignition retard would result in a significant deterioration
of driveability.
-------
-------
-26-
Following calibration of the control strategy, the engine
was then run with auto fueling/auto ingition/auto EGR to obtain
performance and emission readings from which the specific
reduced NOx strategy performance maps were derived.
As a result, up to 15 percent EGR is used under medium
load conditions and part load equivalence ratios are in the
range of 0.8 to 0.9. Brake thermal efficiency was slightly
reduced with the maximum reduced by 2 percent to 31 percent.
Comparison of the reduced NOx maps with the best economy maps
shows that at low load conditions, significant reductions have
been achieved but increased HC emissions are evident at higher
loads. Conversely, NOx emissions are somewhat increased at low
load conditions, although they remain at a low absolute level
but are significantly reduced in the medium to high load range;
the peak NOx level of 12 g/kW h is reduced to 2 g/Kw h over the
range of engine speed used during the FTP drive cycle.
When we began testing the Audi/HRCC with the MEG set on
the reduced NOx strategy, it was difficult to achieve accurate
NOx emissions, because NOx response failed to return to zero
stripchart deflections after pre-sample bag analyzer span
checks. The error was determined to be less than 5 percent by
the amount of deflection from the zero point and this
deflection remained stable throughout most tests. However, the
cause of interference by methanol exhaust has not been
determined as of this writing. Preliminary analysis determined
that the deflection from zero was proportional to methanol
emissions and did not occur at low methanol emission rates or
with other methanol vehicles and other NOx measuring
instruments.[23] This problem is still being investigated
within the Test and Evaluation Branch.
A catalyst, with a loading of 9:1 Pt:Rh, was installed on
the Audi/HRCC vehicle to see if the level of catalyst-out
emissions was significantly lower than engine-out emissions
enough to not interfere with accurate operation of the NOx
analyzer. Although emission levels were significantly reduced,
particularly the reported HC and NOx emissions, problems with
the NOx analyzer persisted. It was then decided to complete
testing of the reduced NOx (zero throttle angle) calibration
without the catalyst and merely note that NOx emissions are in
error by the amount of the response deflection from zero. The
results of this testing are shown in Table 9.
These test results show that the NOx emission target of
0.7 g/mi was easily achieved with the HRCC engine in the Audi
with acceptable driveability. Unfortunately, though NOx
averaged 0.44 g/mi '(37 percent below the emission target),
other exhaust emissions were substantially high, particularly
formaldehyde and methanol emissions.
-------
-27-
Table 9
Reduced NOx Calibration FTP
Emission and Fuel Economy Results, Audi/HRCC (g/mi)
Date
07/09/87
08/27/87
08/28/87
Average
HC
0
0
0
0
.44
.46
.50
.47
CO
13
13
10
14
.5
.8
.3
.5
NOX
0
0
0
0
.54
.40
.39
.44
CH30H
10
10
11
10
.20
.56
.43
.73
HCHO
.348
.395
.405
.383
OMHCE
4
5
5
5
.86
.03
.44
.11
MPG
26
26
26
26
City
.8
.8
.5
.7
MPG city means 1975 gaosline equivalent mpg.
Test one: 5 stalls, l false start in Bag 1.
Test two: No stalls, false starts reported.
Test three: 4 stalls in Bag 1.
-------
-28-
It was recognized that more than enough NOx control had
been achieved at the expense of other emissions and fuel
consumption, though driveability was much better than Ricardo
predicted. Ricardo was then asked to submit the ignition
timing maps from the original reduced NOx strategy that
(Ricardo reported) achieved 1.07 g/mi NOx in the cycle
simulations. The idea was to give up a little NOx control to
make the overall emissions performance in the reduced NOx
calibration more acceptable. The results showed not only
higher NOx emissions, though still within project goals, but
also higher HC, CO, and methanol emissions. Methanol emissions
were calculated for all emissions tests in this test program
using the CTAB MXX emission factor program and are included in
Appendix D.
Some weaknesses of the Ricardo CYSIM predictive
capabilities were identified in MVEL Audi/HRCC vehicle
testing. Although all project goals were achieved and the
engine showed an unlimited ability for alternate engine control
flexibility, it was believed that the completely optimized lean
operation of methanol, particularly during cold starts, has yet
to be realized with this engine, vehicle, and control system
combination. Driveability is indeed a parameter that the
predictive capabilities of the model are not sophisticated
enough to determine. Transient operation of the vehicle was,
all in all, guite acceptable though the times predicted for
accelerations were considerably higher than the measured
performance times.
-------
-29-
VII. Conclusions
1. The application of sequential fuel injection to the
HRCC methanol engine was performed successfully with an 11
percent increase in rated power over the carbureted version.
The installation of this engine in the Audi 5000 (Diesel)
vehicle and subsequent chassis dynamometer evaluation was also
accomplished successfully.
2. On a "gasoline" equivalent basis, the Audi/HRCC (28
MPG city) demonstrated a 3 percent improvement in fuel economy
over the certification Audi/Diesel value. On a constant
performance basis, obtained by comparison to on-road data, the
Audi/HRCC showed an improvement of 10 percent in fuel economy
compared to the Audi/Diesel.
3. Measured and predicted Audi/HRCC performance is
improved by 22 percent over Audi/Diesel performance. The
Audi/HRCC averaged 13.0 seconds on ten 0-50 MPH acceleration
tests and 7.1 seconds on ten 30-50 MPH runs. Ricardo's
predicted values were 1.4 to 1.6 times higher (slower) than
EPA's measured values, but the percent improvement (22 to 24
percent) was the same.
4. Reduced NOx emissions, 0.44 g/mi + 0.07 g/mi, are
capable of being achieved with the sophisticated engine
management system provided by the Ricardo microprocessor engine
controller. An optimum combination of EGR rate, HC emissions,
ignition timing and transient control were obtained to achieve
this objective.
5. Transient operation of the Audi/HRCC was obtained
with acceptable driveability for both best economy and reduced
NOx control strategies when the MEG was calibrated with zero
throttle angle derivative. This result indicates that there
are already enough transient fueling controls built in to the
Ricardo MEC fueling strategy, such that minute changes in fuel
output with small changes in throttle angle are not necessary,
and actually degrade engine performance and driveability.
6. Engine cold start control needs to be improved and
is the source of unacceptably high methanol emissions. A
follow-up program which will modify the cylinder head for use
of pencil injectors with open-valve variable start of injection
through MEC control may address this shortcoming of the current
state of Audi/HRCC development.
-------
-30-
7: Had the HRCC engine been placed in a vehicle with a
more appropriate vehicle weight and engine compartment
configuration, i.e., a VW Rabbit, the engine vehicle
combination would have a 30 percent improvement in power/weight
ratio and a Ricardo estimated additional 3.3 percent improvment
in fuel economy as well as an additional 12 percent reduction
in NOx emissions. However, these simulated emissions and fuel
economy values were obtained without reoptimization of the
engine control strategy to account for the different control
required at given engine speeds and loads with the 2500 Ib
inertia weight.
8. It is hoped that the application of a cylinder head
configuration more closely resembling "direct injection," with
the pencil injectors and variable start of injection, will
further improve fuel economy and engine exhaust emissions.
With fuel injected past open intake valves, it is believed that
heat losses will be minimal, A/F ratio can be higher, more
residuals will be burned (more combustion near TDC), and the
engine should theoretically start quicker.
9. The microprocessor engine controller and the
air/fuel ratio meter were invaluable engine management and
diagnostic tools in the application of the sequentially
fuel-injected HRCC engine in the Audi 5000 vehicle. Program
objectives would have been quite difficult to obtain without
them.
-------
-31-
VIII.Future Engine Modifications and Vehicle Evaluation
At the completion of the second Ricardo contract,
additional contract funds still remained and Ricardo agreed to
use them for the further development of the HRCC engine
concept. It was decided, as an attempt to improve cold
startability and warm-up emissions, that the HRCC engine would
be modified to employ low-cost high-speed "direct-injection"
methanol combustion.
An additional VW Rabbit cylinder head was machined with
the same compression ratio and squish as the original HRCC
design to incorporate pencil (stream-type) fuel injectors as
opposed to the previous spray-cone injectors. [24] MEC software
is being modified to change the end of injection such that the
start of injection will vary with fuel quantity during engine
transients. The injection phasing will remain the same at 70°
CA.
This work will soon be completed by Ricardo such that EPA
evaluation of this HRCC modification can be performed. The
theory behind this system is that enough of the spray will
ignite before impingement so that the delay period will be
normal, while the bulk of the spray will have to evaporate from
the cavity walls prior to combustion. Thus, the second stage
of the combustion process is slowed down, avoiding excessive
rates of pressure rise. With fuel injected past open intake
valves, it is theorized that heat losses will be minimal as
more combustion occurs at TDC, more residuals are burned,
leaner combustion is possible, and engine startability and
warm-up emissions should be measurably improved.
-------
-32-
IX. References
1. "Optimum Engine For Methanol Utilization," EPA-460/3-
83-005, April 1983.
2. "Gasoline Engine Combustion - Turbulence and the
Combustion Chamber," Overington, M. T. and Thring, R. H., SAE
Paper 810017.
3. "Gasoline Engine Combustion - Compression Ratio and
Knock," Overington, M. T. and Thring, R. H., VW Conference on
Knocking of Combustion Engines, Wolfsburg, 1981.
4. "Gasoline Engine Combustion - The High Ratio Compact
Chamber," Thring, R. H. and Overington, M. T., SAE Paper 820166.
5. "High Compression Ratio Gasoline Engines and Their
Impact On Fuel Economy," Overington, M. T. , Automotive
Engineer, Feb/March 1982.
6. "High Compression Lean Burn Engines For Improved
Fuel Economy and Lower NOx Emissions," Collins, D. and Wears,
C. R. , U.S./Dutch International Symposium on Air Pollution by
Nitrogen Oxides, Maastricht, 1982).
7. "The Ricardo HRCC Combustion Chamber Applied to a
Multi-Cylinder Engine and Vehicle," de Boer, C. D. , Ricardo
Internal Report DP 83/111, 1983.
8, "Electronic Sequential Fuel Injection System Task IV
- Definition of Design Specification of EGR System," Ricardo DP
85/502.
9. "Application of Electronic Fuel Injection to the
Optimum Engine for Methanol Utilization," EPA-460/3-86-002,
July 1986.
10. "Alcohol Fuel Vehicles of Volkswagen," Menrad, H.
Decker, G. and Weidmann, K., SAE Paper 820968.
11. "Development of A Pure Methanol Fuel Car," Menrad,
H., Lee, W., and Berhardt, W., SAE Paper 770790.
12. "Combustion and Emissions Characteristics of
Methanol, Methanol-Water and Gasoline-Methanol Blends in a
Spark Ignition Engine," LoRusso, J. A., and Tabaczynski, R. J.,
Proceedings llth Intersoc. Energy Conv. Eng. Conf., 1976.
13. "Users Guide for the Cycle Simulation Program
CYSIM," Green, R. P., Ricardo Internal Report DP 81/1163, 1981.
14. "Preparation of Design Documentation and Testing
Procedures For An Air/Fuel Metering System," DP 85/141.
-------
-33-
IX. References (cont'd)
15. "Transient Mixture Strength Excursions - An
Investigation of Their Causes and the Development of a Constant
Mixture Strength Fueling Strategy," Hires, S. D., et al. , SAE
Paper 810495.
16. Audi 5000 Official Factory Service Manual: 1977
through 1983, Robert Bentley, (VW Service Publications), 1983.
17. VW Rabbit Official Factory Repair Manual: 1980-1982
Gasoline and Diesel, Robert Bentley, (VW Service Publications),
1982.
18. "Results of Initial Ricardo VW Testing," Bruce
Michael, Internal EPA Memo to Charles Gray, October 19, 1983.
19. "Examination of High Speed Data During Engine
Transients," C. A. Clark and B. J. Challen, SAE Paper 850402,
1985.
20. "Calculation of Emissions and Fuel Economy When
Using Alternate Fuels,' EPA/3-83-009, C. M. Urban, March 1983.
21. "Trends in Alternate Measures of Vehicle Fuel
Economy," K.H. Hellman, J.D. Murrell, J.P. Cheng, SAE 861426,
September 1986.
22. "Control of Air Pollution From New Motor Vehicles
and New Motor Vehicle Engines; Federal Certification Test
Results for the 1980 Model Year," Federal Register, Vol. 45,
No. 168, August 27, 1980.
23. "Methanol Interference on Chemilluminescent NOx
Analyzers," W. Adams, internal EPA memo to F.P. Hutchins, May
6, 1987.
24. "Toyota Electronic Control System for a Diesel
Engine," H. Miyagi, J. Nakano, M. Kobashi, SAE 830862, February
1983.
-------
APPENDIX A
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
ANN ARBOR. MICHIGAN 48105
OCT 191983
OFFICE OF
AIR. NOISE AND RADIATION
MEMORANDUM:
SUBJECT:
FROM:
TO:
THRU:
Results of initial Ricardo VW Testing
Bruce Michael
Technical support staff
Charles Gray, Director
Emission Control Technology Division
William Clemmens, Project
Phil Lorang/ Chief
Technical Support staff
J
EPA funded a contract for Ricardo to develop an optimum
chamber shape for a High Ratio Compact (combustion) Chamber
(HRCC) engine. The contract specified delivery of that
engine to EPA in Ann Arbor. Prior to continuing with EPA
plans to install the engine into a vehicle, the engine was
tested on the engine dynamometer to ensure that the engine
was operating properly after shipment, and to check
correlation of testing equipment.
This memo presents the initial EPA dynamometer tests of this
HRCC engine, and compares them with the results Ricardo
obtained at- their lab. These initial results will also be.
used as baseline data with which to compare our further
development of the engine.
To briefly summarize, the EPA results were in close agreement
to the Ricardo results in thermal efficiency, power, fuel
consumption, and emisions. The volumetric efficiency reported
by Ricardo was higher than that tested at EPA.
-------
-2-
Results
prom the beginning, we experienced problems with trying to
test the- engine in its as-received condition. We replaced
the valves-prior to running our first tests (see the 'Engine
History* section), so technically we do not have an exact
comparison to the Ricardo tests. However, because stock
replacement parts were used and all settings were the same as
at Ricardo, I believe that we can compare the data as if the
engine were in the as-received condition. Figures 1-3
graphically show thermal efficiency, power, and fuel
consumption for both the initial EPA test^* and the Ricardo
tests. Ricardo test data was used to generate results on our
own computer for these comparisons. However, because of the
manner in which Ricardo ran their tests, Ricardo data from a
range of 'percent powers* had to be used in our program as if
they were a single 'percent power*. As can be seen, even
with this data conversion, the EPA results are generally in
very close agreement with the Ricardo results.
The Ricardo reported results were usually better than the
results we obtained using their input data, however. For
example, the Ricardo report shows a maximum horsepower of
70.6 and thermal efficiency of 32% at full load whereas the
EPA generated results using their data shows only 68.2 hp and
30% efficiency. The different values apparently are due to
different horsepojiet correction.factors (DIN-.va.«._SAE).•
The Ricardo data could not be used to calculate volumetric
efficiency on our computer, therefore the Ricardo reported
results were hand drawn on the graph showing the initial EPA
results (Figure 4). Their results showed about 10% better
efficiency than our tests. Again, the difference in
calculating results is probably the cause of this. Our many
tests both before and after the engine rebuild gave very
consistent results (see Figures 5 and 6), so I do not believe
we had a problem with our initial testing.
Idle fuel consumption and emission measurements at EPA were
all performed after the engine rebuild of 6/01/83. Idle fuel
consumption is shown in Figure 7. Ricardo reported lower
fuel consumption for all ignition timing settings than we
did. Ricardo performed idle tests at 750 rpm whereas ours
were at 875 rpm, a difference of 17%. This probably accounts
•EPA test No. 1173, which was prior to the engine rebuild.
-------
-3-
for most of our larger idle fuel consumption, which ranges
from about 5-20% greater than theirs. Another factor is that
Ricardo measured fuel mass during their tests and converted
it to voluoMfc using an assumed specific gravity about 3%
higher thait w» do which resulted in Ricardo reporting a lower
fuel volume and therefore lower fuel consumption values.**
One interesting note is that Ricardo ran seven idle tests at
19°BTDC and used only the last test for use in their graph.
Two of the six earlier tests showed higher fuel consumption
than did our test at 20°BTDC. Apparently Ricardo did not use
the earlier tests because the test cell and fuel temperatures
were not yet stabilized.
Emission maps for our HC, CO and NOx results are shown in
Figures 8-10. The emission maps were drawn using coarse map
data obtained after the 6/1/83 engine rebuild. For
comparison, many Ricardo points are shown on the maps, in
circles with the letter *R*. There is reasonable agreement
for all three emissions; the agreement for NOX seems to be
the best.
**WhenIinput the Ricardo data into our computer, I
converted their measured fuel mass values to volume. This
was performed by using textbook specific gravities for the
reported fuel temperatures. The specific gravities I used
were generally about .796 whereas they used .818 for all
cases. Measured data on our fuel indicates a specific
gravity of .7955.
-------
-4-
Engine History at EPA (Summary test results are shown in the
Appendix)
4/22/83
4/27/83
5/4/83
5/17/83
5/18/83
6/1/83
6/28/83
First dynamometer runs (varmups and engine
check-out) at EPA in as-received condition. Best
torque measured was 75-77 ft-lbs.
In attempting to find TDC for accurate timing
measurements, the small rubber stop, fell into
cylinder No. 1. The head was removed to retrieve
it. When the head was put back on, the camshaft
cover was not .replaced. This was felt to be
alright, since it had been done on an engine with a
similar timing belt set-up (Daihatsu). However, in
doing an engine warm-up the camshaft belt came off
and the valves were bent.
Installed new intake and exhaust valves.
First fine maps, without emissions, run.
1173.) Peak torque was 81.0 ft.-lbs.
(Test
Engine failure. The apparent reason was that some
of the material Ricardo used in reforming the intake
channels flaked off and got into the combustion
chamber. This seems likely, because a lot of
material is missing from the No. 3 intake channel,
and the No. 3 cylinder wall was greatly damaged.
Reassembled engine with new block, new head (without
the material in the intake channels), new pistons
and valves, and the original crank and rods. Coarse
maps and emissions tests run shortly after. (Tests
1175-1178.) Peak torque was 81.5 ft.-lbs.
Carburetor cleaned due to engine not idling well.
Idle tests and fine maps run after this. (Tests
1334 and 1287.)
cc: w/attachments
J. Alson
W. Clemmens
W. Smuda
R. Wagner
L. Landman
-------
Thermal Efficiency
Figure 1
1000
2000
RICRROO 100Z
PHR
EPfl 100* PHR *
5000
6000
POHER
RICflRDO
EPfl TORQUE
RICflROO HP
EPR HP
0 1000 2000 3000 «000 SOOO 6000
RPM
* EPA results from test 1173, RIcardo results on test 1361.
-------
Figure 2
Thermal Efficiency
30
25
'20
IS
10
_L
_L
J.
J_
J_
1000 2000
3000
RPK
4000
5000 6000
140
35
30
Thermal Efficiency
26-
3 IX PWR
£Pfl 30Z
25
'20
IS
10
J_
_L
_L
JU
J_
1000 2000
3000
RPM
4000 SOOO
6000
-------
ft-7
Figure 3
Fuel Consumption
? 0
1.8
1.6
_1.1
5
^1 . 2
a
«°'8
u.
SO. 6
0.2
0.0
-
*
V .
fc
\ S
*v ^
•" ^^'•flflrt/irtW^VOplW*'^
.
i t t
0 1000 2000 3000
RPM
,
RlCflROO 100Z
PHR
oaa EPfl 100Z PUR
-mm RlCflROO 67-
7SZ PHR
---EPfl 70Z PHR
^sssss^^
-
\ ' \ i
HOOO 5000 6000
2 Q Fuel Consumption
1.8
1.6
or
Si. 2
X
03
*"* 1 . 0
~o.a
o
SO. 6
0.4
0.2
0.0
.
. .
*
\
*•
A *•
^V
>•*''
n^aeee«r
RlCflROO
591 PHR
BOO EPfl SO*
tnnni RlCflROO
31Z PHR
EPfl 30 Z
i | t
0 1000 2600 3060
RPM
49-
PHR
26-
PHR
1 ' '
4000 SOOO 6000-
-------
H-a
Figure
ao
70
60
s50
£10
W
230
>
20
10
0
Volumetric Efficiency Comparison
EPA Test 1173
100Z PMR
70Z PMR
3500
HOOO
4500
APR
5000
5500
-------
Figure 5
CPU THCRMAL EFFICIENCY COHPflftlSON
30
'23
20
15
U73 70X
1177 701
1287 70X
1173 SOX
1177 SOX
70X PN«
SOX PMft'
1000 2000 3000 <4000 5000 6000
flPM
* Test 1287 at 30£ pvr could not be graphed due to the
graphics program only allowing 5 lines.
EPfl HORSEPOMEft COMPARISON
TEST 1173
TEST 1177
TEST 1287
10
1500
SSOO
-------
rt ~ i w
Figure 6
VOLUMETRIC EFFICIENCY
100,
95
90
85
_ 80
><
It- 75
70
65
60
55
50
UJ
500
EPA
EPA
EPA
TEST 1175
TEST 1177
TEST 1287
1500
2500 3500
RPM
U500
5500
-------
3.0
n '/ i
Figure 7
I DUE FUCL CONSUHPT10N
2.5
N,'*1
«
-J»
fliCAftOO RtfORT
t.S
1.0
10 IS 20 25 30 35 HO
T1K1N6 (BTOC)
-------
Figure a
HC - Gm/Kw-hr.
100
-------
100
CO - Gm/Kw-hr
Figure
90
80
70
60
SO
40
SO
10
500
1000
1SOO
2000
2500
3000
3500
4000
4500
5000
-------
NOx - Gm/Kw-hr
Figure 10
1QO
-------
TEST NO.: HO-811175
ENGINE: 59O VW-B
TEST D/T: 6- 8-B3 8: O
REPORT O/T: 09-18-83 O8:4O
PO62581
SUMMARY REPORT (First test with rebuilt engine)
RPM
54OO
8400
540O
54OO
45OO
45OO
45OO
4SOO
3SOO
35OO
35OO
35OO
25OO
25OO
25OO
2500
1500
1500
150O
15OO
TOHQ.
FT-LB
67.7
46.9
33.7
20. 0
76.9
53.3
39. 0
23.4
81. 5
57. 0
4O.O
24.5
BO. 5
56.7
4O.4
24.6
7O.O
48.6
35.7
21. 0
%
Ifl^
1OO
70
50
3O
ICO
70
50
30
ICO
7O
SO
3O
1OO
7O
SO
3O
too
7O
SO
3O
THR
POSN
32
7O
112
145
21
6O
1O2
137
14
50
92
129
10
32
76
1 15
2O
33
9O
145
IGN.
T1MG.
25. OB
24. OB
26. OB
25. OB
15. OB
22. OB
25. OB
3O.OB
18. OB
2O. OB
25. OB
3O.OB
16. OB
15. OB
21.08
28. OB
6. OB
6. OB
16. OB
2O. OB
INd.
TIMQ.
0.
O.
O.
O.
O.
O.
O.
0.
0.
O.
O.
O.
O.
O.
O.
0.
O.
O.
0.
0.
CORR.
BHP
7O.4O
48.52
34.88
20.68
66.26
45.92
33.57
2O. 14
54.57
38. 16
26. 8O
16. 4O
38. SO
27. 13
19.34
11.79
20. 11
13.95
10.25
6 OS
MEAS.
A/F
4.65
5.43
3. OB
2.48
4.85
6.32
3. 11
2.71
S.O4
6.46
3.14
2.78
4.41
7.22
6.63
3. SO
4.63
7.87
3.99
3.81
PHI
EOUIV
RATIO
1 .39
1 . 19
2. 1O
2.61
4.34
1 02
2.08
2.38
1.28
1.OO
2.O6
2.33
1.47
O.9O
O.98
1 .85
1.40
o.aa
1 .62
1 .70
AIR
LB/HR
368.5
274. 1
129. 0
80.9
330.3
274. t
110. 1
71.9
269.6
220.2
84.5
56.2
179.7
17O-7
121 3
48. t
98.9
98.9
40.4
29.2
BSFC EOUIV
FUEL LB/ LB/
LB/HR BHPHR BHPHR _JC
79. 3O 1.126 O.S29 26.2
SO. 47 1.040 O.489 28.3
41.88 1.2O1 O.564 34.5
32.63 1 .578 O.741 18.7
68. 15 1.O29 O.483 28.6
43. 4O O.945 O.444 31.2
35.42 LOSS O.496 27.9
26. SO 1.315 O.6I8 22.4
53.45 0.98O O.46O 3O. 1
34.10 O.894 O.42O 33. O
26.86 1.OO2 O.47I 29.4
2O.22 1.233 0.579 23.9
4O.79 1.O6O O.498 27.8
23.64 0.871 O.4O9 33.8
18. 3O O.946 O.444 31 . 1
13.74 1 . 165 O.548 25.3
21.35 1.062 O.499 37.7
12.56 O.9OO O.423 32.7
1O. 14 O.989 O.46S 29.8
7.66 1.27O O.597 23.2
1OOO*
M8TU/
BHPHR
9.74
8.99
10. 38
13.64
8.89
8. 17
9. 12
11.37
8.47
7.72
8.66
tO. 66
9.16
7.53
8. 18
1O.O7
9.18
7.78
8.55
IO.98
BSHC
0.0
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
BSFC ENERGV
GAS EFFICIENCY
BRAKE SPECIFIC EMISSIONS (G/BHPHR)
. BSCO BSXOa BSNOX BSAlOyH 8SPART
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
o.o
0.0
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
o.o
O.O
0.0
O.O O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
0.0
0.0
O.O
O.O
0.0
O.O
o.o
o.o
-------
TEST NO. : HD-8MI73
ENGINE: 59O VW
TEST 0/T: 5-17-83 IO: O REPORT 0/T: 08-22-83 16:37
P062S81
SUMMARY REPORT
%
TORQ. MAX
RPM
54OO
5400
54OO
5400
54OO
5400
54OO
5400
5400
5400
9OOO
5000
5OOO
SOOO
50OO
SOOO
SOOO
SOOO
SOOO
SOOO
45OO
4300
45OO
45OO
4500
4SOO
45OO
4 BOO
4SOO
4500
4OOO
4OOO
4OOO
4OOO
4000
4OOO
4OOO
4000
4000
4OOO
FT-LB
68. 0
61. 0
54.5
47.6
4O.8
34. 1
27.4
20. 1
13.7
6.8
72.2
64.2
sa.o
50.2
43. 0
36. 0
28.9
21.6
14. 1
7.5
76. 0
bfl.O
6O.8
53. 0
45.9
38. 0
30.6
23. 1
15. 0
7.8
77.5
69.8
62.2
54.3
46.3
38.6
31.0
23.2
15.5.
7.7
TQ.
10O
90
8O
7O
60
SO
4O
3O
20
10
too
9O
8O
7O
6O
SO
4O
3O
2O
IO
too
9O
8O
7O
60
50
4O
3O
20
10
too
9O
8O
70
60
SO
40
30
2O
10
(First EPA test)
THR IGN. INJ. CORR.
PQSN TIMG.
33 23. OB
37 23. OB
52 25. OB
7O 30 . OB
92 3O.O8
1 IO 32. OB
I27O 3O.OB
147O 3O.OB
161 3O.OB
178O 3O.OB
29 2S.OB
360 25. OB
49O 25. OB
67O 30. OB
9O 30 . OB
1O9O 3O.OB
127O 3O.OB
14SO 3O.OB
162O 3O.OB
180O 3O.OB
2SO 23.08
280 23. OB
42O 25.08
59O 3O.OB
8OO SO OB
1020 30. OB
12OO 3O.OB
136O 3O.OB
1S6O 30.08
176O SO. OB
2O 25. OB
24O 25. OB
380 26.08
540 30. OB
75O 32. OB
9SO 30. OB
1120 30. OB
131O 3O.OB
152O 3O.OB
172O 3O.OB
TIMG.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0.
o.
O.
o.
o.
o.
0.
0.
o.
o.
o.
o.
o.
o.
o.
o.
BMP
69. 8O
62.65
56. 04
48.98
42. 01
35. 12
28. 2O
20.67
14. O9
6.99
68. 7O
61.08
55.23
47.86
41. OO
34.34
27.56
20. 6O
13.44
7. 15
65. 14
58.34
52. 17
45.47
39.38
32.61
26.26
19.83
12.87
8.34
59.36
53.48
47. 7O
41.64
35.52
29.61
23.77
17.77
11 .88
S.9O
MEAS.
A/F
4.64
6.O8
6.O8
6. 01
3.31
3. 14
2.82
2.59
2.66
2.84
4.79
6.21
6. 17
6. 14
3.30
3. 02
2.77
2.55
2.61
2 87
4.96
6.46
6.42
6.43
6.35
3. IO
2.87
2.78
2.75
3. 16
5.O4
6.56
6.54
6.50
5.89
3.24
3 Ol
1.53
0.91
0.17
PHI
EQUIV
RATIO
39
.06
.06
.OB
.96
2.O6
2.29
2.5O
2.44
2.28
.35
.04
.OS
.OS
.96
2. 14
2.34
2 54
2.47
2.26
.30
.OO
.01
01
.02
2.O9
2.26
2.33
2.35
2.O5
1.28
O.99
0.99
1 .OO
1. IO
2 OO
2. 15
4.23
7.11
37. 15
AIR
LB/HR
375.6
372.9
343.3
3IO.O
156.4
133.9
107.8
86.3
73.7
66.5
365.8
356 . 8
328. 0
296.6
146. 0
12O.4
98. 0
78.6
67.4
62.5
34O.6
340.6
309. 1
283. 1
254.8
111.4
90.8
75.5
62.9
58.4
3IO.O
3O9 1
282.2
254.3
2O6.7
1O1 . 1
82.2
35.9
18. 0
2.7
BSFC ENERGY
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR % BHPHR
80.96 1.160 O.S45 25.4 IO.O3
61.34 O.979 O.46O SO 1 8.46
S6.47 1.0O8 0.473 29.2 8.71
51.57 I.O53 O.495 28. O 9.1O
47.25 1.125 O.528 26.2 9.72
42.65 1.214 0.570 24.3 1O.SO
38.20 1.355 O.6S6 21.7 11.71
33.34 1.613 O.758 18.3 13.94
27.75 1.97OO.925 15. O 17. OS
23.44 3.353 1.575 8.8 28.98
76.42 1.112 O.523 26.5 9.62
57.49 O 941 O.442 31.3 8.14
53.19 O.963 O.452 SO. 6 8.32
48. SO 1.OO9 O.474 29.2 8.72
44.22 1.079 O.SO7 27.3 9.32
39.87 1.161 O.54S 25.4 1O.O3
35.42 1.285 O.6O4 22.9 11.11
SO. 83 1 497 0.7O3 19.7 12.94
25.78 1.918 O.90I 15.4 16.58
21.78 3.048 1.432 9.7 26.34
68.66 I.OS4 O.495 27.9 8.11
52.75 O.9O4 O.425 32.6 7.82
48.17 O.923 O.434 31.9 7.98
44.OO O.968 O.45S SO. 4 8.36
4O.1S .019 O. 479 28.8 8.81
35.94 .IO2 O.518 26.7 8.53
31.68 .206 O.667 24.4 IO.43
27.16 . S7O O.644 21.5 11.84
22.84 .775 O.834 16.6 15.34
18.49 2.216 1.O41 13.3 19.16
61. 87 1.O37 O 487 28.4 8.97
47.1OO. 881 O. 414. 33.4 7.61
43.15 O.9O4 O.425 32.6 7.82
39.14 O.94O O.442 3J.3 8.13
35.11 O 988 O.464 29.8 8.94
31.25 LOSS O.496 27.8 9.12
27.36 1.151 O.541 25.6 8.85
23.48 1.321 O.621 22.3 11.42
19.75 1.663 O.781 17.7 14.37
15.48 2.625 1.233 11.2 22.69
BSHC
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
0.0
O.O
6.0
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
1
RAKE SPECIFIC EMISSIONS (G/ BHPHR) ---
BSCO
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
0.0
0.0 '
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
BSCO 2
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
BSN03 BSALpYH
O.O
0.0
00
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
O.O
0.0
BSPART
O.O
O.O
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
-------
TEST NO.: HD-811173
ENGINE: 59O VW
TEST 0/T: 5-17-83 1O: O
REPORT O/T: 08-22-83 16:37
PO62B81
SUMMARY REPORT
RPM
3500
3SOO
3500
35OO
35OO
3SOO
35OO
35OO
350O
35OO
3OOO
3000
3OOO
3OOO
3OOO
3000
3OOO
3000
3OOO
3OOO
25OO
25OO
2500
250O
2SOO
25OO
25OO
250O
2SOO
25OO
20OO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
TORO.
FT-LB
79.5
71. 0
63.5
55.9
47.4
39.4
31 .8
23.9
16. 1
8. 1
8O.9
73.4
64.5
57.2
49. 0
41 .O
32.4
24.2
16.1
8. 1
at .0
72.8
64.2
56.8
48.2
40.4
32. 1
24.1
16.5
10. 2
77.4
70.2
62.4
54.1
46.5
38.7
31.2
23. 0
15.5
7.2
X
MAX
TQ.
1OO
90
ao
7O
6O
SO
40
SO
20
1O
too
9O
ao
7O
60
50
4O
30
20
1O
too
9O
80
70
6O
SO
4O
30
2O
to
too
9O
8O
7O
6O
5O
4O
30
2O
10
THR
PQSN
14O
19O
35O
47O
68O
85O
1O7O
130O
I47O
I84O
1 10
13O
3OO
4OO
55O
790
1O30
125O
15OO
1900
to
13O
2 2O
33O
56O
79O
1O1O
1260
166O
194O
6O
O7O
130
36O
55
74O
too
14SO
173O
I960
IGN.
T1MG.
22. OB
23. OB
25. OB
25 OB
3O.O8
3O.08
30. OB
30. OB
3O.OB
3O.OB
22. OB
23. OB
23. OB
25. OB
25. OB
30. OB
3O.OB
30. 08
3O.OB
30. OB
22.08
22. OB
2O. OB
22. OB
25. OB
3O.OB
32. OB
3O.OB
30. OB
3O.OB
20. OB
2O. OB
2O. OB
22. OB
22. OB
25. OB
3O.OB
32. OB
3O.OB
30. OB
INJ.
T1MG.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
O.
0.
O.
O.
O.
O.
o.
O.
o.
o.
o.
o.
o.
o.
o.
CORR.
BMP
52. 8O
46.92
41.95
36.91
31.29
26. 01
2O. 98
15.78
10. 63
5.35
45.82
41.55
36.49
32.37
27.74
23.21
18.33
13. 7O
9. t 1
4.58
38.25
34 .38
3O.3O
26. 8O
22.75
19. 07
15. 15
11 .37
7.79
4.82
29.26
26.53
23.57
2O.43
17.56
14.62
11.79
8.69
5.85
2.72
MEAS.
A/F
5. 18
6.32
5.34
5.83
5.95
6. OS
4.O3
2.99
3.51
3.68
O.O
6.94
7. 02
6.98
7.O4
7 01
4 .40
2.41
2.45
3.26
4.41
O.O
7.11
O.O
4.72
0.0
1.97
O.O
O.O
1 .96
O.O
O.O
O.O
O.O
O.O
7.3O
0.0
O.O
O.O
O.O
PHI
EOUIV
RATIO
.25
.02
.21
. I 1
.09
.07
61
2. 16
.84
.76
O.O
O.93
O.92
O.93
O 92
O.92
1 .47
2 68
2.64
1 .99
1 .47
O.O
O.91
O.O
1.37
O.O
3 28
O.O
O.O
3.30
O.O
O.O
O 0
O 0
00
O.89
O.O
0.0
O.O
0.0
AIR
LB/HR
277.7
26O.6
202.2
197 .7
179.7
161 .8
95.3
6O.2
58.4
49.4
O.O
248.5
224.7
2O2.2
182. 0
161 .8
88. 1
4O.4
33.7
35.9
183.3
0.0
184.2
0.0
98.9
O.O
31.5
O.O
O.O
18.0
O.O
O.O
O.O
O.O
O.O
1O3 . 3
O.O
00
O.O
O.O
BSFC ENERGY
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR J4 BHPHR
53.61 1.O1S O.477 29. O 8.78
41.23 O.87£ O 413 33.5 7.6O
37.86 O.9O3 O.424 32.6 7. BO
33.94 O 919 O.432 32. O 7.85
3O.23 O.966 O.454 3O.5 8.35
26.75 1.O28 O.4B3 28.6 8.89
23.64 1.126 0.529 26.2 9.74
2O. 12 1.275 O.599 23.1 11.02
16.64 1.566 O.736 18.8 13.34
13.44 2.512 I.18O 11.7 21.72
46.65 1.O18 O.478 28.9 8 . 8O
35.83 0.862 O.4O5 34.2 7.45
31.99 O.877 O.412 33.6 7.58
28.96 O.89S O.42O 32.9 7.73
25.84 O 931 O.438 31.6 8. OS
23. O8 O.99S O.467 29.6 8 6O
2O.O2 1.O92 O.513 27. O • 44
16.75 1.223 O.S74 24.1 IO.97
13.75 1.5O9O.7O9 19.5 13. O4
11. O4 2.4O7 1.131 12.2 2O.81
41.54 1.O86 0.5IO 27. 1 9.39
28.91 O 841 O.39S 35. O 7.27
25.91 O.85S O.402 34.4 7.39
23.41 0.873 O. 4 tO 33.7 7.55
2O. 96 O.921 O 433 32. O 7.96
18.56 O.974 O.4S7 3O.3 8.42
16.95 .053 O. 495 28. O 9.1O
13.61 .197 O.S62 24.6 1O.34
11.59 .488 O. 699 19.8 12.86
9.16 .903 O.894 15.9 16.45
3O.53 .044 O.49O 28.2 9 O2
22.26 O.839 O.394 35.1 7.25
2O. 17 O.856 O.4O2 34.4 7.4O
17.91 O.876 O.412 33.6 7.58
15.98 O.91O O.427 32.4 7.86
14.16 O.969 O.4SS 3O.4 8.37
12.35 1.O48 O.492 28.1 8.O6
1O. 61 1.222 O.574 24.1 1O.S6
8.99 1. 535 O. 721 19.2 13.27
6.66 2.445 1.149 12. O 21.14
BSHC
O.O
0.0
0.0
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
RAKE SPECIFIC EMISSIONS (G/BHPHR)
esco
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
BSC02
0.0
0.0
O.O
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
BSNQX BSALPVH
' ' * ••^••^ ^^M*A*»«^*
o.o ,,,;
0.0
O.O
o o
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
BSPARf
0.0
O.O
O.O
o.o
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
o.o
O.O
O.O
O.O
O.O
o.o
O.O
O.O
o.o
o.o
0.0
0.0
0.0
o.o
o.o
o.o
o.o
-------
TEST NO.: HD-811177
ENGINE: 59O VW-B
TEST 0/T: 6- 9-83 9: O
REPORT 0/T: O8-22-83 16:37
PO6258I
SUMMARY REPORT
%
TORO. MAX
RPH
S40O
6400
54OO
5400
45OO
4500
45OO
450O
35OO
350O
35OO
35OO
250O
2500
25OO
25OO
15OO
I5OO
tsoo
15OO
FT-LB
67.4
47. 0
33.4
2O. O
76.5
53.4
38. 0
23. 0
81.0
56.5
4O.5
24.3
79.9
56. 0
4O.O
24.5
7O.9
SO.O
35.4
21 .3
TO..
too
7O
50
30
too
7O
SO
30
10O
7O
SO
3O
too
7O
SO
30
100
7O
5O
3O
(Test with rebuilt engine)
PHI
THR IGN. INJ. CORR. Me AS EOUIV
POSN
32
68
1 1O
14SO
24
56
99
1340
14O
45O
86O
125O
1O
320
72O
110
3O
31
92
142O
TIMG.
25. OB
2O. OB
25. OB
3O.OB
15. OB
22. OB
25. OB
30. OB
15. OB
2O. OB
23. OB
SO. OB
12. OB
23. OB
2O. OB
25.08
15. OB
15.08
20.08
20.08
TIMG.
O.
O.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
0.
0.
O.
O.
O.
O.
0.
0.
BMP
69.64
48.54
34 50
20 64
65.75
45.91
32.68
19.77
54. 12
37.73
27. 02
16.32
38.28
26.83
19. 16
11.73
2O. 38
14.38
10. IB
6. 12
A/F
4.65
6. 01
2.98
2.47
4.86
6.33
3.O5
2.62
5. 1O
6.46
3. 13
2.69
4.4O
7. 18
7. 02
3.51
4 70
7.4O
3.89
3.81
RATIO
1 .39
1 .08
2. 17
2.62
1 .33
1 .02
2. 12
2.47
1 .27
1 00
2 O6
2.4O
1 .47
O.9O
0 92
1.84
1 .38
O.87
1 .66
1 .70
AIR
LB/HR
368.5
3O5.S
124 .9
8O.9
328. 0
278.6
107.8
71. 0
271 .8
220.2
85.4
55.3
179.7
17O.7
13O 3
49.4
98.9
98.9
40 4
3O.6
BSFC ENERGY
GAS EFFICIENCY
BSFC EQOIV 1OOO*
FUEL IB/ LB/ MBTU/
LB/HR BHPHR BHPHR _£ BHPHR
79.22 1.138 0.534 25.9 9.83
SO. 87 1.048 O.492 28.1 9.O6
41.95 1.216 O.57I 24.2 1O.51
32. 7O 1.584 O.744 18.6 13.69
67.53 1.O27 O.4B2 28.7 8.88
44.OO O.958 0.45O 3O.7 8.28
35.34 1.O82 O.SO8 27.2 8.35
27. O7 1.369 O.643 21. 5 11.84
53.35 O. 886 O. 463 29.9 8.52
34.09 O.9O4 O.42S 32.6 7.81
27.24 1 OOB O.474 29.2 8.72
20.54 1.259 O.S91 23.4 1O.88
4O.87 1.O68 O.502 27.6 9.23
23. 8O O.887 O.417 33.2 7.67
18.56 O.968 0.455 3O.4 8.37
14.09 (.201 O.564 24.5 1O.38
21.05 1.O33 O 485 28.5 8.93
13.36 O 930 O.437 31.7 B.O4
1O.4O 1.022 O.480 28.8 8.84
8.O1 1.3O9 O.615 22.5 11.32
8SHC
O.971
0 829
O.838
1.5O9
O.914
O.98S
1. 1O4
1.8O6
O 891
1. 174
1.542
2.6O7
1.111
1.833
2.362
3.963
2.299
2.79S
3. 135
4.699
IRAKE SPECIFIC EMISSIONS (O/BHPHR)
BSCO
62.546
5.329
4.S7S
9.347
69.673
4.379
3.550
6.464
87.384
3.488
2.965
3.791
128.755
3.637
3. 165
6.829
99 . 6O9
3.519
3. 198
4.884
BSC02
531.78
679.81
773.37
962.93
512. 19
B82.O7
666 . 22
81O.OS
469 . 6 1
548. O7
61O.92
742.63
409.44
5O1.9O
566 . 7O
7O9.66
444. 4O
537.26
582.83
721.78
BSNOX BSALpVH
' M*1* TT»^T«^^™»
4.120 '**
9. 167
9: 589
7.878
4.583
7.891
7.78O
5. 1OO
4. 135
6.328
4.973
2.28O
1.682
2.982
1.426
O.866
1.676
2 . 769
3.638
5. 126
BSPARJ
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
-------
TEST NO.: HD-811287
ENGINE: 59O VW-B
TEST 0/T: 6-13-83 8:3O
REPORT D/T: O8-22-83 16:38
P062981
SUMMARY REPORT (Rebuilt
X
TORQ. MAX THR IGN.
RPM
540O
54OO
S4OO
S4OO
54OO
54OO
5400
54OO
S4OO
540O
5OOO
5OOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
45OO
4500
4SOO
4SOO
4SOO
4SOO
45OO
4500
45OO
45OO
4OOO
4000
4OOO
400O
4OOO
4OOO
4OOO
4OOO
40OO
4000
FT-LB
68. 0
61. 0
SS.O
47.7
40.9
34.3
27. 0
20. 5
13. O
6.5
72.8
65. 0
58.4
SI. 2
43.8
36.5
29. 0
21.9
14.6
7.5
77. 0
69. 0
62.3
54.6
46.6
38. 5
31. O
23. 5
15. 5
7.9
BO. 9
72.4
64. S
S6.S
48. 0
39.7
32. 0
24.4
17.0
8.0
TQ. POSN
10O 33O
9O 34O
8O 480
7O 69O
6O B9O
SO 1 t IO
4O 13OO
3O I48O
2O 162O
IO 179O
1OO 3OO
9O 3 1O
BO 4 SO
7O 61O
6O 83O
SO 1O6O
4O 12SO
3O 147O
2O 164O
1O 179O
1OO 25O
9O 26O
BO 38O
7O 55O
6O 76O
50 1O2O
4O 121O
3O I4OO
2O 16 1O
to taio
100 2OO
9O 21O
8O 34O
70 50O
6O 7 2O
SO 98O
4O tISO
3O 136O
20 154O
IO 1730
engine and
INJ. CORR.
11MG. TIMG
12.08
14. OB
16. OB
18. OB
21 .OB
22 .OB
24. OB
24. OB
26. OB
26. OB
12. OB
14. OB
16. OB
18. OB
21 .OB
24. OB
25. OB
27. OB
28.08
28. OB
12. OB
14. OB
16. OB
18.08
21 .OB
24. OB
26. OB
27. OB
28. OB
28. OB
14. OB
14.08
16. OB
18.08
21.08
24. OB
26. OB
28. OB
28.08
30.08
O.
O.
O.
O.
O.
0.
O.
O.
O.
O.
O.
0.
O.
0.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
O.
O.
0.
O.
0.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
BMP
70. 13
62.94
56.71
49. 14
42. 13
35.32
27.81
21 . IO
13.37
6.69
69. 38
62.00
55.69
48.82
41 .75
34.79
27.64
2O.86
13. 9O
7. 14
65.99
59.24
53.46
46.84
39.96
33.0O
26.57
2O. 14
13.28
6.77
61 .62
55.22
49. 19
43.08
36. 6O
3O.27
24.39
18. 6O
12.96
6.1O
carb
ME AS.
A/F
4.79
6. 14
6. OS
S.99
S.64
3. 14
3.22
2.73
2.58
2.56
4 7O
6.20
6. 16
6. tB
6. 14
3. 12
2.92
2.58
2.46
261
4.81
6.30
6.22
6.32
6.39
3.O8
2.91
2 .70
2.5O
2.69
4.83
6.36
6.35
6.43
6.45
3.05
2.95
2.69
2.73
3. 16
cleaned)
PHI
EQUIV AIR
RATIO
35
.05
.07
oa
. IS
2.O6
2. 01
2.37
2.5t
2.52
.38
.04
-OS
.05
.05
2.O7
2.22
2.51
2.63
2.48
.35
03
.04
.02
.01
2. IO
2.22
2 .40
2. SB
2.41
.34
.02
.02
.01
.00
2 12
2. 2O
2.41
2.37
2.05
LB/HR
364. 0
368. S
337. 0
301. 1
256. t
130.3
1O3.3
85.4
69.6
57.5
346. 0
355.0
323. 1
296.6
265. 1
121.3
98.9
75.9
61 .6
53.9
323. 5
328. 0
3O1 . 1
278. 1
251 .6
107.8
89.4
71.4
56.2
49.4
292. t
301. (
274. t
251 .6
224.7
94.4
BO.O
62.9
53.9
49.4
BSFC ENERGV
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR JC BHPHR
75.93 1.083 O.5O9 27.2 9.36
59.98 0.953 O.448 30.9 8.24
53.74 O 983 O.462 30. O 8. SO
SO. 28 .023 O.481 28.8 8.85
45.44 O79 O.SO7 27.3 9.32
41.45 .174 O.S51 25.1 IO. 14
32. OS .153 O.542 25.6 9.96
31. SO .464 O.697 19.9 12.83
26.99 2.OI9 O.948 14.6 17.49
22.44 3.353 1.S79 8.8 28.98
73. 6O I.O6I O.498 27.8 9.17
57.22 O.923 O.434 31.9 7.98
52.44 O.942 O.442 31.3 8.14
47.98 O.983 O.462 3O.O 8. SO
43.19 .034 O.486 28. S 8.94
38.86 .117 O.525 26.4 9.65
33.88 .226 O.S76 24. O 1O.6O
29.47 .412 0.664 2O.9 12.21
24.98 .797 O.844 16.4 19.53
2O. 64 2.889 1.357 1O.2 24.98
67.29 1.O2O 0.479 28.8 8.81
52. O7 O.879 O.413 33.5 7.6O
48.38 O.9O5 O.42S 32.6 7.82
43.98 O.939 O.441 31.4 8.12
39.39 O.986 O.463 29.9 8.52
35. O6 1.O62 O.499 27.7 9.18
30.71 1.156 0.543 25.5 9.99
26.48 1.315 O.6I8 22.4 11.36
22.44 1. 689 O. 793 17.4 14. 6O
18.39 2.717 1.276 1O.8 23.48
6O.48 O.982 O.461 3O.O 8.48
47.31 O.B57 O.4O2 34.4 7.41
43.17 O.878 O.412 33.6 7.99
39.13 0.9O8 0.427 32.4 7.85
34.82 O.951 O.447 31. 0 8.22
3O.93 1.O22 O.48O 28.8 8.83
27.14 1.113 O. 923 26.5 9.62
23.40 1.258 O.591 23.4 10.88
19.72 1.522 O.71S 19.4 13.15
15.64 2.566 1.2O5 11.5 22.18
BSHC
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
BRAKE SPECIFIC EMISSIONS (O/BHPHR)
BSCO
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
0.0
BS.CO2
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
0.0
BSNOX BSALOVH BSPART
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0:0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
-------
TEST NO.: HO-B11361 ENGINE: 59O VW-B
TEST 0/T: 1-13-83 13: O
REPORT D/T: 08-22-83 16:38
PO62B81
SUMMARY REPORT fRicardo
RPM
5400
480O
4 BOO
48OO
48OO
420O
420O
420O
42OO
42OO
36OO
36OO
36OO
36OO
360O
30OO
300O
3000
300O
3OOO
3OOO
24OO
2400
24OO
24OO
2400
24OO
1800
18OO
18OO
18OO
18OO
18OO
12OO
12OO
12OO
12OO
12OO
12OO
TORQ.
FT-LB
68.6
75.3
59.6
46.6
34. 1
79.7
59.6
46.6
34.1
21 .2
81.9
59.6
46.6
34. 1
21 .2
82. 0
59.6
46.6
34. 1
21.2
14. 0
81.3
59.6
46.6
34. 1
21.2
12.7
79.3
55.7
46.6
34.1
21.2
12.7
69.4
51.8
46.6
34. 1
21.2
12.7
X
MAX THR IGN.
test data)
INJ.
TQ. POSN TIMG. TIMG.
too
too
79
62
45
100
75
58
43
27
too
73
57
42
26
too
73
57
42
26
17
too
73
57
42
26
16
too
70
59
43
27
16
too
75
67
49
31
18
22. OB
22. OB
24.08
30.08
34.06
22. OB
24. OB
29.08
33. OB
35. OB
21. OB
22. OB
28. OB
31. OB
33. OB
18. OB
19. OB
23. OB
28. OB
3O.OB
31. OB
16. OB
15. OB
19. OB
24. OB
27. OB
27. OB
12. OB
12. OB
14. OB
2 I.OB
23. OB
23. OB
10. OB
9. OB
11 .OB
19 OB
23. OB
22. OB
O.
O.
O.
O.
O.
0.
0.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O
O.
O.
O.
O.
O.
O.
O.
O.
0.
O.
O.
O.
0.
CORR.
BHP
68.21
66.56
51.98
4O.64
29.74
61.64
45.88
35.87
26.25
16.32
54.29
38.99
3O.48
22.31
13.87
45. 3O
32.77
25.62
18.59
11.56
7.63
35.93
25.99
2O. 32
14.87
9.25
5.54
26.28
18.38
15.37
It .25
6.99
4. 19
15.34
It .39
1O. 25
7.50
4 66
2.79
MEAS.
A/F
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
00
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0 O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
0 O
0.0
O.O
O.O
O.O
0.0
PHI
EOUIV
RATIO
0.0
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O O
O O
O.O
O O
O.O
0.0
00
O.O
O.O
0 O
O.O
00
O.O
O.O
O 0
O.O
00
0 O
O O
0.0
O.O
00
O.O
O.O
O.O
0.0
O O
O.O
O.O
0.0
0.0
AIR
LB/HR
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
BSFC ENERGY
GAS EFFICIENCY
BSFC EOUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR %
75.49 1 . 1O7 O.S2O 26.6
67.24 1.O1O O.475 29.2
61.09 O.983 O.462 3O.O
43.84 1.O79 O.5O7 27.3
36.14 1.215 O.571 24.2
59.89 O.972 O.4S6 3O.3
43.95 O.958 O.45O 3O 7
36. 8S 1.O27 O 483 28.7
3O.4O 1.158 0.544 25.4
24. OO 1.471 O.691 2O.O
51.84 0.955 O.449 3O.8
36.61 O.939 O.441 31 .4
SO. 66 1.OO6 O.473 29.3
25.25 1. 132 O.532 26.0
19.65 1 .417 O.666 2O.8
43.29 O.9S6 O.449 30.8
29.84 O.9IO O.428 32.4
24.99 O.975 O.458 3O.2
20.44 1. tOO O.S17 26.8
15.95 1 380 O.648 21.3
13.25 1.736 0.816 17. O
35. O3 O.97S O.458 3O.2
23.52 O.9O5 0.425 32.5
19.78 O 973 O.457 3O.3
16.35
12.58
9.74
27.59
17.13 (
14. SO (
11.87
9.45
7.31
18.25
1O. 82 C
9.97 C
8.26
6. 19
4.82
O99 O.B16 26.8
36O O.639 21.7
.759 O.826 16.7
.O5O 0.493 28.1
) 932 O.438 31.6
).863 0.482 30.6
.OSS 0.496 27.9
.352 O.63S 21.8
.745 O.82O 16.9
. 19O O.B59 24.7
.950 O.446 31. O
.873 O.4S7 3O.3
.1O1 O.617 26.7
.329 O.624 22.2
.725 O.811 17. 1
BHPHR
9.57
8.73
a. so
9.32
to. so
8.4O
8.28
8.88
1O.O1
12.71
8.25
8. 12
8.69
9.78
12.25
8.26
7.87
8.43
9.51
11.93
15. 01
8.43
7.82
8.41
9.5O
11.76
15.21
9.O7
8.06
8.32
9.12
11.69
15. 09
10. 29
8.21
8.41
9. 52
11.48
14.92
BSHC
O.O
O.O
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
0.0
1RAKE SPECIFIC EMISSIONS (G/BHPHR)
asco
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
O.O •
O.O
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
BSC02
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
BSNOX QS.A
°-° •!<&
0.0 ' ' '
0,0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
LPYH BS.PART
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
-------
TEST NO.: HO-811173
ENGINE: 59O VW
TEST 0/1: 5-17-83 1O: O
REPORT 0/T: O8-22-B3 16:37
P062&81
SUMMARY REPORT
RPM
1OOO
tooo
1000
IOOO
tooo
tooo
IOOO
IOOO
IOOO
tooo
TORO.
FT-LB
72.4
64. 0
58.3
S1.0
43.4
38. 0
29.4
22.2
14.4
7.3
MAX THR
JJL. POSN
tOO 3O
9O 4O
BO ISO
7O 38O
6O 520
SO 870
4O 12 1O
3O 143O
2O I66O
1O 192O
IGN. INJ.
TIMG. TIMG.
18. OB
18. OB
2O. OB
2O. OB
22. OB
3O.OB
3O.OB
30. OB
3O.OB
3O.OB
0.
O.
O.
O.
O.
O.
O
O.
O.
0.
CORR.
BHP
13.68
12. 1O
11 .02
9.64
8.20
7. 18
5.56
4.20
2.72
1 .38
MEAS.
A/f
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
PHI
EOUIV
RATIO
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
00
AIR
LB/HR
0.0
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
BSFC
GAS
BSFC EOUIV
FUEL LB/ LB/
LB/HR BHPHR BHPHR
21 .02
15.58
14.23
12.82
11 .28
10. 65
9. 19
7.89
.536 O.722
.288 O.6OS
.29t 0.607
.330 0.625
.376 O.646
.483 O.697
.653 O.777
. 88O O.883
6.30 2.316 1.O88
4.93 3.574 1.679
ENERGV
EFFICIENCY
tooo*
MBTU/
JC BHPHR
19.2 13.28
22.8 11.14
22.8 11.16
22.1 11.80
21.4 11 89
13.9 12.82
17.8 14.29
15.7 16.25
12.7 2O.O2
8.2 3O.9O
BSHC
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
IRAKE SPECIFIC EMISSIONS (O/BHPHR)
BSCO
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
BSC02
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
6SNOX B,S.^L
O.O ;
O.O "' "'
O.O
O.O
0.0
o.o •
O.O
O.O
0.0
O.O
PVH BSPART
0.0
O.O
O.O
0.0
O.O
0.0
O.O
0.0
O.O
O.O
-------
TEST NO.: HO-811287
ENGINE: 59O VW-B
TEST 0/T: 6-13-83 B:3O
REPORT 0/T: O8-22-83 16:38
P062MI
SUMMARY REPORT
RPM
33OO
35OO
350O
35OO
35OO
35OO
350O
3SOO
35OO
35OO
30OO
3OOO
3OOO
3OOO
3OOO
3000
3OOO
3OOO
3000
3OOO
2SOO
25OO
2SOO
25OO
25OO
2500
25OO
2500
25OO
25OO
2OOO
2OOO
2OOO
2OOO
20OO
2OOO
20OO
2OOO
2OOO
20OO
TORQ.
FT-LB
82. 0
73.5
69.8
57. 0
49.5
41.5
32.5
24. 0
17.0
8.5
82.3
74.5
66.6
57.7
49.5
41.5
33.0
24.5
16.5
8.2
81. 0
73.4
65. 0
56.5
49. 0
40.6
33. 0
24.3
16.4
8.4
77.9
7O.5
63. 0
84. 0
46.5
39. 0
31.5
23.4
15.5
7.8
X
UAV TUD
PI A A 1 MK
TQ. POSN
1OO 14O
9O 16O
8O 3OO
7O 46O
6O 68O
SO 89O
4O 108O
3O 132O
2O 1480
tO 168O
too no
9O 12O
8O ISO
7O 380
6O 570
SO 75O
4O 103O
3O 123O
2O 143O
IO 189O
too too
9O 110
80 200
7O 330
6O 470
5O 77O
4O 970
3O 1190
2O 166O
IO 194O
1OO O6O
9O 070
8O 100
7O 320
6O 49O
SO 69O
4O 8SO
3O 142O
2O 172O
IO 193O
IGN.
TIMG. •
12. OB
14. OB
16. OB
18. OB
21 .OB
22. OB
24. OB
28.08
28. OB
28. OB
12.08
12. OB
14.08
14. OB
18. OB
2O. OB
24.08
22. OB
25. OB
26. OB
12. OB
12. OB
12.08
14. OB
15. OB
18. OB
20.08
22. OB
24. OB
25. OB
8. OB
IO. 08
IO. OB
12. OB
15.06
18.08
18. OB
2O. OB
21 .OB
22. OB
INJ. CORR.
flMG. BHP
0.
0.
O.
O.
O.
O.
O.
0.
0
O.
O.
O.
0.
O.
O.
0.
O.
O.
0.
O.
0.
0.
O.
O.
O.
O.
O.
0.
0.
O.
O.
0.
0.
O.
O.
O.
0.
O.
0.
O.
54.66
49. 06
46.59
38. 04
33.O2
28.83
21.67
16. OO
It .34
5.66
47.OO
42. 6O
38. IO
33.O1
28.32
23.73
18.87
14. Ol
9.43
4.69
38.57
35.O1
31 .Ol
26.95
23.37
19.34
15.71
11.56
7.79
3.99
29.62
26.82
23.96
2O.53
17.68
14.82
11 .97
8.89
5.89
2.96
A/F
5.O1
6.63
6.55
6.43
6.34
6.3O
3.O6
2 72
291
3.3O
4.96
6.71
6.54
6.59
6.69
6 95
2.96
2.99
3.38
3.71
4.42
6.32
7.O6
7.25
7.25
6.84
3.78
3.48
3.61
3.74
4.44
6.38
7.51
7.43
6.98
7. 10
6.59
3.62
361
3.84
PHI
EQUIV
RATIO
t .29
O.98
O.99
t .01
t .02
t .03
2. t 1
2.38
2.22
1 96
t .30
O.96
0.99
0.98
O.97
O 93
2. 19
2. 17
t .91
t .74
1 .47
1 02
O.92
O.89
O.B9
O.95
.71
.86
.79
.73
.46
.Ol
O.86
O.87
O.93
O.91
O 98
1 .79
1 .79
t .69
AIR
LB/HR
267.4
274. t
247 . t
215.7
193 2
17O.7
71. 0
53.9
49.4
44.9
229.2
238. 1
211.2
188.7
I7O.7
157.3
58. 0
49.4
47.2
4O.4
179 3
184.2
184.2
168.5
152.3
125.8
6O.7
47.2
4O.4
33.7
134.8
143.3
152.3
134.8
112.3
101. 1
83. 1
38.2
31.5
26.5
BSFC ENERGV
GAS EFFICIENCY
B, EOUIV 1OOO*
FUEL Lti. LB/ MBTU/
LB/HR BtoHR BHPHR X BHPHR
53.32 O.976 O.458 SO. 2 8.43
41.33 O.842 O.396 35. O 7.28
37.71 O.8O9 O.38O 36.4 7.OO
33.54 O.B82 O.414 33.4 7.62
SO. 48 O.923 O.434 31.9 7.98
27. IO O.94O O.441 31.3 8.12
23.18 I.O70 O.5O3 27.5 9. 25
19.79 1.237 O.581 23.8 1O.69
16.97 1.497 0.703 19.7 12.94
13.61 2.403 1.129 12.3 2O.77
46. 2O O 983 O.462 3O.O 8. SO
35.48 O.833 O.39I 35.4 7 . 2O
32. 3O O.B48 O.398 34.7 7.33
28.65 O.868 O.4O8 33.9 7. SO
25.54 O.9O2 O.424 32.7 7.8O
22.62 O 953 0.448 3O.9 8.24
19.61 1.O39 O.488 28.4 8.98
16.56 1.182 O.5S5 24.9 1O.22
13.96 1.48OO.69S 19.9 12.79
1O. 9O 2.326 I.O93 12.7 2O.1I
4O.59 1.O52 O.494 28. O 9. IO
29.13 O.832 O.391 35.4 7.19
26. tO O.842 O.39S 35. O 7.28
23.24 O.862 O.4O5 34.2 7. 45
21.02 0.900 O.423 32.7 7.78
18. 4O O.9SI O.447 31. O 8.22
16. OS 1.O22 O.48O 28.8 8.83
13.54 1.172 O.5SO 25. 1 10.13
11.22 1.439 0.676 20. B 12.44
9.O1 2.258 1.O61 13. O 19. S3
SO. 35 1.O25 O.48I 28.7 8.86
22.46 0.837 O.393 35.2 7.24
2O. 29 O.847 O.398 34.8 7.32
18. IS O.884 O.41S 33.3 7.64
16.10 O.91O O. 428 32.4 7.87
14.23 O.86O O.4S1 3O.7 8.3O
12.61 1.O53 O.49S 28. O 9. IO
1O.56 1.188 O.SS8 24.8 1O.27
8.72 1.481 O.696 19.9 12. 8O
6.9O 2.329 I.O94 12.6 2O. 13
8SHC
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
o.o
o.o
0.0
o.o
0.0
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
3RAKE SPE
BSCO
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
o.o
0.0 •
o.o
o.o
0.0
o.o
o.o
o.o
o.o
CIFIC El
BSCO}
0.0
o.o
o.o
o.o
0.0
0.0
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
o.o
o.o
0.0
o.o
MISSIONS (G/BHPHH)
BSNOX BfrALtjVH B.SPART
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
0.0
o.o
o.o
0.0
o.o
o.o
-------
TEST NO.: HO-811287
ENGINE: 59O VW-8
TEST O/T: 6-13-83 8:30
REPORT D/T: 00-23-63 16:38
PO62&81
SUMMARY REPORT
TORO.
RPM FT-LB
tSOO 72.8
150O 63. O
1SOO 58. O
tSOO 49.5
1SOO 43.7
«5OO 37. O
1SOO 28.5
tSOO 22. O
150O tS.O
1SOO 7.9
X
MAX
UL.
too
90
80
70
6O
5O
4O
3O
2O
10
THR
POSN
O30
O3O
O7O
34O
4OO
62O
124O
I46O
164O
1BOO
TIMG.
8. OB
8. OB
8. OB
8. OB
1O. OB
14 .OB
2O. OB
2O. OB
2O. OB
20. OB
INJ
TIMG.
O.
O.
O.
0.
0.
O.
O.
O.
O.
O.
CORR. MEAS.
BHP
20. 76
17.98
te.ss
t4.12
12.46
1O.5S
8. 13
6.27
4.28
2.25
A/
4
6
7
7
7
7
3
3
4
5
'f
.67
.57
.17
.45
.47
.64
.55
.77
.04
.21
PHI
EOUIV
RATIO
t .39
O.99
O.90
O.87
O.87
O.8S
t .83
1 .72
t .60
1 .24
AIR
LB/HR
98.9
tot . i
105.6
96.6
89.9
BO 9
31 .5
29.2
26. 1
27.0
BSFC ENERGV
GAS EFFICIENCY
BSFC EOUIV 1OOO*
ciici i a / i a / ftifkTii / — — -. a
LB/HR BHPHR BHPHR % BHPHR BSHC
21.18 1.O21 0.48O 28.9 8.82 O.O
15. 39 O.8S6 O.4O2 34.4 7.4O O.O
14.74 O.891 O 418 33.1 7.7O O.O
12.97 O 918 O.431 32.1 7.94 O.O
12.03 O.965 O 453 3O.5 8.34 O.O
IO. 59 1.OO4 O.472 29.3 8.68 O.O
8.87 1 091 0 513 27. O 9.43 O.O
7.75 1.236 O.5B1 23.8 1O.68 O.O
6.45 1.5O9O.7O9 19.5 13. 04 O.O
5.17 2.297 I.O79 12.8 19.86 O.O
RAKE SPECIFIC EMISSIONS (Q/BHPHR)
BSCO
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
BSC02
O.O
O.O
O.O
O.O
O.O
o.o
o.o
o.o
0.0
o.o
BSNO
O.O
O.O
0.0
0.0
o.o
o.o
0.0
o.o
o.o
o.o
!S BS.fi.pYH B^PART
0.0
I* o.O
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
\
{
c
-------
APPENDIX B
-------
SUBCOMPACT CARS (Continued)
SUBCOMPACT CARS (Contfnued)
M4tnul*cturtr
It
is
MCRCCOCS-
BENZ
450SLC
OLOSMOBILE
STARFIRE
PLYMOUTH
CHAMP
HORIZON/
Futf
Econoffly
I
16
22
24
15
19
37
35
!i
veMctt OtacupUon
4
$844 |275(4.5D/8
$614
$563
$800
$710
$364
$366
33 |$409
30 ;$4SO
23 i$S87
15H2.5L1/4
151(2.5L)/4
231(3.8L)/6
231(3.8L)/6
•6/4
86/4
98/4
98/4
105/4
TURISMO 124 !SS63 105/4
SAPPORO
PONTIAC
21
$643
22 $614
FIREBIRD 20
$675
156/4
156/4
23H3.8L1/6
16 $844 30l(4.9Ll/8
14 S964
SUNBIRO ! 22
$614
24 S563
15 $900
SUBARU
20 $675
SUBARU ;25 $540
301(4.9L)/8
151(2.5L)/4
151(2.5L)/4
2310.8L1/8
231(3.8L)/6
97/4
:32 i$421 '97/4
25 $540 97/4
32 $421
97/4
.21 '$643 109/4
SUBARU 4WO i 23 $587
TOYOTA i
97/4
CELICA 23 $587
21 $643
20 $675
l
134/4
134/4
134/4
CELICA SUPRA 19 i$710 156/6
21 :$643 156/6
COROLLA '28 $482 108/4
'27 '$500 108/4
26 $520 ' 108/4
COROLLA 33 $409 :89/4
'ERCEL 3i" $436 89/4
29 $466 89/4
CORONA ^23 $587 ' 134/4
21 $643 134/4
20 .$675 134/4
CRESSIDA
VOLKSWAGEN
21 !$643
1
DASHER 36 $334
156/6
90/4
i COOL I 23 [$587 197/4
(CALl(FFS)
(GM-BUICK)
(GM-8UICK)
|
A3
M4
A3
M4
A3
M4
M4X2
M4X2
A3
M4
A3
1
Fl
till!
20R-80/8
2 iHBK-78/10
2
2
2
2
2
2
2
2
2
HBK-77/11
H8K-81/17
MS J2 '2DR-78/8
A3 |2
(GM-BUICK)|A3 2 20R-8S/7
(TURBO)
A3 4
A3 4
!M4 J2 I20R-79/7
'A3 ;2 '-H8K-78/10
(GM-BUICK)
(GM-8UICK)
(NO CAT)
(CAT)
M4 2 '
A3 \2
i :
M4 .2 20R-77/12
M4 2 '.40R-78/12
(NOCAT)IM5 ;2 HSK-78/12
(CAT)]M5 !2 '
I A3 \2
(NO CAT)
M4 2 H6K-78/12
;
;M4 2 20R-75/9
MS '2 HBK-75/14
|A3 ;2 !
(CALl(FFS)JMS |FI HBK-75/13
(CAL)(FFS)|A4 iFI
M4
2 2DR-79/1I
MS 2 40R-79/11
A3 !2 H8K-75/14
'M4 2 20R-80/9
I.M5 2 HSK80/13
•A3 2
|M4 2 .4CR-80/11
MS \2 H3K-77'16
A3 2
(CALl(FFS)
A4 Fl 40R-80/11
|
(DIESELl|M4 Fl lHBK-76/15
.M4 Fl ;
M.UM4U*
ia
VOLKSWAGEN
FtMl
I
(Cont)
DASHER ! 22
(Com.)
JETTA
RABBCT
SCIROCCO
25
22
27
40
42
24
25
23
24
25
j
li
$614
$940
$614
$500
$300
$296
$663
$540
(667
$563
$640
23 |$567
VfMd.OM.Xpta,
fill
97/4
97/4
97/4
89/4
90/4 (DIESEL)
90/4 (DIESEL)
97/4
97/4
97/4
97/4
97/4
97/4
1
A3
MS
A3
U4
M4
MB
M4
MS
A3
M4
MS
A3
1
Fl
Fl
Fl
1
Fl
Fl
Fl
Fl
Fl
Fl
Fl
Fl
a I
- |.a
Sill!
2DR-78/13
4OR- 77/13
2OR-77/6
HBK-77/14
H8K-72/14
COMPACT CARS
I Fu«
Manufacturvr ECOOQI
li !!
AMC
CONCORD 22 $6
my
L. Jl
i
14 i 151/4
J20 :$675 J15I/4
17 5794 1258/6
18 '$751 1258/8
?ACER '•" $794 ! 258/8
:3 $751 ;258/6
AUDI
5000 2? '$4.
i
44 121/5
1" $794 131/5
•• $794 1131/5
BMW
7331 '« $844 h96(3.2L)/6
.16 $844 H96(3.2L)/6
BUICK '.
I
i
SKYLARK .24 !$563 jlS1(2.5L)/4
22 S614 .151(2.511/4
20 S6
20 56
FIAT
~5 '73I2.3LI/6
•5 I73(28L)/S
57RADA 25 S540 31I1500CC1/4
2J 5563 9l(:500CC)/4
FORO
GRANADA '3 57
0 25014 -D/6
••' 3794 250(4. iD/6
•7 5794 302I5.0L1/8
LINCOLN-
MERCURY
MOHARCH '9 57
(Com 1
0 250(4 1LI/6
Vgtucta 0**cnption
b r
•
'M4 2
>3 2
(FFS)|M4 2
[FFS)|A3 2
IFFS)JM4 '2
! iilit
2DH-90/H
J40R-90/11
1
H8K-91/11
(FFSl|A3 !2 ;
i
(OIESEL)JMS Fl 40R-90/15
MS |F
A3 .F
1
1
(CAL1(FFS)|M4 Fl 40R-94/13
(CALKFFS) A3 F
'M4 2
;*3 2
M4 '2
A3 2
MS 2
A3 2
M4 '
A3
1
'20R-94/14
40R-95/14
H.3K-35M5
2DB-59.':5
JdR-^3< -5
|A3 2 ;
* .
,M4 1
2DR-^9/16
16
17
-------
, TESTS REPORT APR IO. 198O Ot -.57:45
198O FUEL ECONOMY PROGRAM
49 STATE TEST CAR LIST - PASSENGER CARS (GAS MILEAGE GUIDE)
30
MFR.
AUDI
AUDI
*ypi.
AUDI
AUDI
AUDI
AUDI
AUDI
VEHICLE ID.
384
490-669
637-8O
125-8O
O27-8O
A/C
SIM
YES
NO
YES
YES
~
YES
ACT .
OYNO
UP
7.9
7.0
7.0
7.O
G.5
CITY EMISSIONS
(GRAMS/MILE )
HC
O. 1O7
0 . 40'J
O. IfiO
O. 2f>0
O. 1711
CO
1 .00
1 .33
1 .20
2 5O
4.11
C02
396 .
37 1 .
531 .
529.
437 .
NOX
1 .23
1 .71
1 .47
1 .53
O.35
CITY
MPG
22
~\~2T~i~~
i . 1
17
17
20
HIGHWAY EMISSIONS
(GRAMS/MILE)
HC CO CO2 NOX
O.O29 O.O4 258. 2.87
_. .
6. 1~7O "" o:44 236. 1 . IO
Q. 156 O.48 235. 1.O5
O.O30 O.O 352. 1.O9
O.O2O O.O 296. 1.32
O.O56 O.47 319. 0.01
HIGHWAY
MPG
34
_-/ ..
'43 /
43 I
25
3O
28
COMBINED
MPG
26
.
33
2O
21
23
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
* 8OFE-12
» 8OFE-12
* BOFE-12
80F E- 12
» 8OFE-1O
» 80FE-10
• 80FE-1
* 80FE-11
8OFE-16
8OFE-15
80FE-14
YES
YES
YES
NO
NO
tJO
NO
NO
HO
NO
110
NO
NO
NO
7
7
G
9
y
9
9
9
9
9.
9.
9
9.
9
.O
.O
.5
. 4
. 4
.4
.4
. 4
4
2
4
4
.4
4
O
O
O.
0
O.
0
O
O.
O.
O.
O.
O
O.
O.
O
IfiO
2f>0
1711
2r>r,
2'IO
2BO
2f.1
,2fin
254
in?
330
267
167
3O1
27G
1
2
4
3
3
3
3
I
1
4
3
3
4
6
6
.20
5O
. 1 1
61
.37
.65
.91
.52
. 14
. 24
. 15
.70
.90
. 14
. 14
531 .
529.
437 .
351 .
356.
351 .
361 .
274 .
271 .
379.
387.
395.
39O.
395.
421 .
1 .47
1 .53
O.35
1 .20
1 .27
1.21
1 .29
1 .27
1 . 19
1 07
1 .08
1. 17
1 .02
1 .38
1.52
17
17
20
25
24
25
24
32
32
23
23
22
22
22
21
0.005
O.OO4
O.006
O.005
O.O47
0.052
O.O52
0.003
O.O02
O.008
O.CO2
O.002
0.008
O.43
O.76
0.61
O.73
O.O2
O. 13
O.O3
O.78
O.32
O.52
O.
O.
49
23
1.58
248.
261 .
222.
228.
217.
194.
194 .
262.
266.
275.
287.
295.
308.
1 .65
1 .77
1 .69
1 .50
1 .59
1 .42
1.47
1.21
1 .52
1.56
1. 16
1 .24
1 .86
36
34
40
39
4 1
46
46
34
33
32
31
3O
29
29
28
30
29
35
37
27
26
25
25
24
-------
V.I. REPORT
I98O FUEL ECONOMY PROGRAM
49 STATE TEST CAR LIST - PASSENGER CARS
APR 10. 1980 01:57:45
(GAS MILEAGE GUIDE)
MFR
AUDI
AUDI
AUDI
AUDI
AUDI
AUDI
AUDI
AUDI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
CARLINE NAME
4OOO
5OOO
5OOO
5OOO
4OOO
SUBARU WAGON
SUBARU WAGON
SUBARU
SUBARU WAGON
SUBARU
SUBARU
BRAT 4WD
SUBARU WAGON -1WO
SUBARU
SUBARU
SUBARU WAGON
VEHICLE ID
384
490669
637-BO
125-OO
O27 BO
•SOFT-12
'8OFE-12
'8OFE- 12
8OF f. - 1 2
•8OF F- 10
'8OFE-1O
•8OFE-1
•8OFE-11
8OFE- 1C,
8OFE 15
8OF t - 1 -1
CARB
DISP VENT COMP.
/CIO /FI RATIO
HP
97 FI
BASIC
121 FI
BASIC
131 FI
131 FI
BASIC
131 FI
BASIC
97 2
97 2
97 2
97 2
BASIC
97 2
97 2
BASIC
97 2
97 2
BASIC
1O9 2
109 2
1O9 2
8.1 76 FI
ENGINE DESCRIPTOR:
23. 0 v67/ FI
ENGINE DESCRIPTOR:
8.1 1O3 FI
8.1 103 FI
ENGINE DESCRIPTOR:
8.2 1OO FI
CONTROL SYSTEM
/EGR/OXO/ /
(DIESEL)
I I I I
NONE
/EGR/OXO/ /
/EGH/OXD/ /
(CAD(FFS)
/3WY/CLS/ /
ENGINE DESCRIPTOR: (NO CAT)
8.5 67 EGR/PLS/OTR/
8.5 67 EGR/PLS/OTR/
8.5 67 EGH/PLS/OTR/
8.5 67 EGR/PLS/OTR/
ENGINE DESCRIPTOR: (CAT)
9.O 68 EGR/PLS/OXD/
9.O 68 EGR/PLS/OXD/
ENGINE DESCRIPTOR: (NO CAT)
8.5 67 EGR/PLS/OTR/
8.5 G7 EGH/PLS/OTR/
ENGINE DESCRIPTOR: NONE
8.7 72 EGR/PLS/OTR/
8.7 72 EGR/PLS/OTR/
8.7 72 EGR/PLS/OTR/
TRNS-O/D
/CAN
/NON
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
M4-2
M5-2
A3-1
M5-2
A3- 1
M4-2
M4-2
M5-2
M5-2
M4-2
M5-2
M4-2
M4-2
A3- 1
A3-1
A3- 1
E .T.W.
LBS.
250O
325.O
3OOO
3OOO
2875
2375
2 SCO
2375
2 SCO
2375
2375
250O
2625
2375
25OO
2625
AXLE
RATIO
4.
4.
3
4
3
3
3
3.
3.
3.
3.
3.
3.
3
3.
3
11
78
.90
. 11
.45
.89
89
89
89
70
7O
89
89
59
59
8O
N/M
56.6
46.1
56.4
•16. 0
53.9
57.0
57.0
44 .0
44.0
54 .O
42.0
59.0
59.0
56.0
56.0
59.0
-------
CONCORD
PACER
( 5000
tiUlCti.
SKYLARK
LLA1.
STRAOA
FQRP
GRANADA
JAGUAR
COMPACT CANS
AVt^AC.t
EST. ANNUAL COMrt MWY
f.NGINt OeSCHlPTlON
- FUF.L
XJ
900
17
22
258( 4.2D / 6 (CAD (FFS) A3
FI
<.OH- 91/10
!'_3£_ l_Vk»W—at3C-4.i.
?2 * 614
20 % 67b
17 t 7~<4
Irt * 751
1 7 1> 794
16 % 7bl
27 * 444
17 t 79««
IB 1 7S1
17 * 794
16 4 H44
lb I 444
24 1. 563
22 * M4
20 t 675
20 t 6/5
24 % bt>3
2rt t> 4o2
26 * 520
19 % 710
17 * 794
17 t 7-^4
22
21
20
21
20
33
21
20
20
19
19
29
?6
24
23
29
26
31
29
22
19
20
30
25
26
25
26
25
30
25
25
23
23
3*
34
33
30
35
30
38
32
2d
23
2b
151/ 4
25H/ 6
25H/ 6
25b/ 6
2SB/ 6
121/ S
1 31/ 5
Ul/ S
131/ 5
1961 3.2D / 6
196( 3.2D / 6
151 1 2.5D / 4
151 I 2.5D / 4
173( 2.HD / 6
173( 2.ttD / 6
91 ( 1SOOCC) / 4
91 ( 1SOOCC)/ 4
91 (1500CO/ 4
91 (1500CC)/ 4
250( 4. ID / 6
2SO( 4. ID / 6
302 ( 5.0L) / 8
A3
(FFS) M4
(FFS) A3
(FFS) M4
IFFS) A3
(DIESEL) MS
MS
(CAD (FFS) A3
A3
(CAD (FFS) M4
(CAD (FFS) A3
M4
A3
M4
A3
MS
A3
(CALIF) MS
(CALIF) A3
M4
A3
A3
2
2
2
2
?
2
F.I ..._ ~~~~"
FI
FI
FI
FI
n
2
2
2
?
2
2
FI
FI
1
1
2
20H- 90/11
40H- 90/11
HBK- 91/11
40 R- ^O/Ts^1
40H- 94/13
20H- 94/14
40rt- 95/14
MBK- 85/16
2DR- 89/15
4DR- 93/15
£1*1
-------
ICMIC-INCM
- VCM1CLT CAHLUtf
roui*
OlSP.fc. . A TEST
CAM« • • • w- •CIOMT
o»inc» .
<* HVO«O>»
C1AINE rtmi T- nrgt
IT ft / JT f (cw»r.»
' (EXMMlST QdCMMATIOM F»CTOa» FOH - FI
.-.; ICtMMtt. OC1M10BATIM* FAfilOW HX» «. / / ./
IT PT / 3T l»
I «TI
P/U 2*O
SCAM
V !!/•>*•-
• 1.
!.«*«»-•-
, C P/V 2«0
C P/U 2*0
FI /CfiBS /• / /CAH
FI /ES«/ / / /CAN v »T-Ft
FI /EM/ / / /CAN 9T-M *•» 23TS
T.T»>,i |,»r-i-
(EVAPOft. OCTCHMOMAT10I* f ACTO»« FOA •
tlO
no
f««KT IT
l.» T.» 1.8
I 1.00* 1.221 1.008
' N/» >
».IS9I
N/A>
• H/A
Mn> a«HAn^l» •• I
F\/«» •
• ' - 2.0 • - 1 .*•
>•* "• /.» - J.»
».TT
0.6*
l.S
EiiAUSt
ICU4IC INCH 01S3(.«CE-tND
CARLINES covtotD
vtnlCLE
inni - rtHii IFI cFJTtfiroi
xjrXt '£••
OIESE1.
ulSO.k A TEST
Ci-8 N .£Iu-T
E»HA(JST t»ISS10««
'•1SSIONS
HT[)P«0- OUHUN Of ifONO.
OA
5000
;i-lLt l»
O.-O 1.3 1.7
: 1.000 1.000 1. .100
53J9ZO
CUTLASS »AliON
CUTLASS
CUTLASS sup»i»t
I-PALA/CAPOICE «&1
StVlLLE
CiULiNA
>iN£Tt E
COTL»SS
CATALINA/BONNr.
CUSTOM caul sco •<*
OCLTA 8«
LfSAdOC
(STATE WAGON
NINETY EIGHT
ELECTDA
OEVlLLE/bUOubHAM
TOflONAOO
>GM
/f'j"/
/EG'/
/ / /-.ON ]i.tl-FI 1-3 ".SCO 2.»1
L-3
L-3
ELUOAACXT
iiVILLF
(EXHAUST OCTER10MATIOM FACTORS FOt) - FI /eO->/ / /
O.J"
1.3 l.»
1.3
1.3
(4M1LT n1J<)2(»
1 l.l<.» I.IJ*
ao.
C 2*00/2"OC/3000 C 2*00/2aOE/3000
FI /
FI /
/SON
/NOM
1»6-F|
1 ".»-*!
»-* 3500 3.69 0.31
«-» 3S«» >.»• *.J«
ft. 41
1.1-
l.»
1.1
N/A
N/«
-------
V(.M
List ing
1
2
3
4
5
6
Q up . TAM v**1*
2 ^wWX 1 Mc- f^f>
"^ 1 f I 1 / i ll'l 1 1
of -f at 15:4 N on JUl 16,1 198E tor tcAd=JSN8(J
4- \L JWt i-X' if -H J/ J •I
591 3000 FMDS 67 59021 56 121.0 M52 0 5 18.41
591 3000 FAMS 103 59026 44 131.0 A31 0 5 13.46
591 3000 FMMS 103 59026 44 131.0 M52 0 5 13.19
591 3500 FAMS 107 59028 44 131.0 A3 1 0 5 14.78
591 3000 FAMS 107 59027 44 131.0 A31 0 5 13.06
591 3000 FMMS 107 59027 44 131.0 M52 0 5 12.81
f '/">!
1
4
4
4
4
4
4
^f
n.
VCH
W futt
I i
BO FLDO
80 CLDV
80 CLDV
80 FLDV
BO FLDV
80 FLDV
VOt •
9809
4790
663
3987
10840
1809
7
9809
4790
663
3987
10840
1809
CflCiW
7
5015
5015
5015
5015
5015
5015
(
fii
21
21
21
21
2 1
21
ta
!•
V
.00 27.20
.40 16.70
.40 14.90
.40 17.50
.10 16. 20
.10 16.10
" ~<<:,y
b
43.00
24.60
30.40
24.90
24.30
29.50
HUPtt,
•' i t *• ./* M(T
I J,
32.59 5000
19.52 5000
19.34 5000
20.20 5000
19.06 5000
20.24 5000
Page
-------
O - 50
So
• 55 5
S
- 4-3 A 3 /.? / "_'
-------
TECHNICAL DATA
Engine
Diesel engine
See page 105
Four stroke, five cylinders in line, in front of front axle lilted to right, crankshaft with six main
bearings, spur-belt overhead camshaft.
Water cooling, thermostatically-controlled, with electric fan, thermostatically operated.
Pressure oil feed with gear-type pump and full flow filter.
Electric fuel pump. CIS fuel injection system.
Paper element air cleaner with temperature sensitive intake air pre-heating.
Exhaust emission control system. Activated charcoal filter (carbon canister) in the fuel sy-
stem.
- Maximum output SAE net . . .
- Maximum torque SAE net . . .
- Displacement
- Stroke ....
- Bore
- Compression ratio
103 hp at 5300 rpm.
U0hpat5300rpm»
112.4ft. Ibs. at 4000 rpm
163 Nm at 4000 rpm
115.9ft. Ib. at 4000 rpm*
168 Nm at 4000 rpm*
130.8 cu. in/2144 cm3
3.40 in/86.4 mm
3.13 in/79.5 mm
8.0:1
Cooling system Electric fan with thermo switch.
Water pump spur-belt driven.
Fuel Canada models: "Regular", incl. low-lead or
unleaded fuels
"Unleaded fuel only" for cars with catalytic
converter.
* Canada mmteb ontv.
87
Transmissions:
Body/Chassis:
Steering:
Front wheel suspension:
Rear wheel suspension:
Service (foot) brakes:
Parking brakes:
Tires:
Tire size and pressure:
Automatic Transmission
Automatic transmission with separate final drive. The transmission consists of a hydrodynami
torque converter and planetary gearing with three forward gears and one reverse.
Front wheel drive with two constant velocity joints per drive shaft.
Manual Transmission
Single plate, dry clutch.
Hydraulic clutch system.
Baulk synchronized five-speed transmission and bevel gear differential in one housing.
Front v. heel drive with two constant velocity joints per drive shaft.
All steel unitized body/chassis, passenger compartment designed as safety cell, front anc
rear ends designed to absorb impact energy.
Rack and pinion steering (power assisted) with maintenance-free tie rods.
Independent front wheel suspension: coil spring/shock absorber struts with negative stee
ring roll radius, stabilizer bar.
Rear wheel suspension: torsion crank axle with Panhard rod for lateral stability, progressivi
coil springs, telescopic shock absorbers.
Foot brakes: Power assisted, dual diagonal hydraulic system, disc brakes wit!
brake wear indicators at front, self-adjusting drum brakes at rear
brake pressure regulator for the rear wheels.
Parking brake: Mechanical, effective on rear wheels.
Steel belted radial tires 185/70 SR (HR) 14. Steel rims 5% J x 14 or light alloy rim:
6 J x u (Always go by information listed on label inside of fuel tank flap).
Tire pressures: See sticker on inside of the fuel filler flap.
88
-------
Electrical system
See page 106 for Diesel engine.
Voltage 12 Volts
Battery 63 Ampere hours
Starter . l.Shp/l.lkW
Radiator fan 250 watts
Alternator 1050 watts 14 volts/75 amp.
SizeotV-belts:
for alternator 9.5x800
for air conditioner 12.5x915
for power assisted steering 12.5x1003 LA
Ignition distributor with combined vacuum and centrifugal
spark advance
Ignition system Transistorized (breakerless)
Firingorder 1-2-4-5-3
Sparkplugs Bosch W 175 T30
Bem 175/14/3A
Champion N8Y
for California models Bosch WR 7 DS
Beru RS 35
Champion N 8 GY
Plug thread 14 mm
Electrode gap °-027 in/0-7 mm
Dimensions
A - 189.0 in/4798 mm
B - 69.6 in/1768 mm
C- 54.7 in/1390 mm (unladen)
D- 40.3 in/1023 mm
E - 42.9 in/1087 mm
F - 24°
G - 19° (unladen)
H - 105.9 in/2688 mm (unladen)
J - 57.9 in/1470 mm
K - 4.4 in/ 112 mm (laden)
Weights
Vehicle capacity weight
Curb weight with Manual Transmission
Curb weight with Automatic Trans-
mission
Gross vehicle weight
Gross axle weight, front
Gross axle weight, rear
see sticker on the inside of the fuel filler flap.
2703 lb/1225 kg
27361b/1240kg
see Safety Compliance Sticker on the left
door jamb.
Permissible roof weight* 165 lb/75 kg
Turning Circle, Curb to CUrb 33.8 ft/10.3 m. • Applies onlyio roof tack mounted 10 rain tuners. DiMrihiiieluiij evenly!
-------
Lubricants
Engine oil
Always use quality oil labeled "For Service API/SE" for the engine of your Audi.
Engine oils are graded according to their viscosity. The proper grade to be used in
your engine depends on existing climatic or seasonal conditions.
The table on the right contains the grading for oils to be used in your Audi engine.
As temperature ranges of the different oil grades overlap, brief variations in outside
temperatures are no cause for alarm. It is also permissible to mix oil of different vis-
cosities if you find it necessary to add oil.
Transmission oil
Hypoidoil" Single-grade Multi-grade Specifications Additive basis
Manual
Transmission
Final drive of
the Automatic
Transmission
SAE SOW
SAE 90
SAE 80 W/90
Mii-L-2105
API/GL4
Mil-L-2105 B
AP1/GL 5
sulphur
phosphorus
* Does not have tu he changed
Automatic Transmission and torque converter require ATF all year round. All
ATFs labeled Dexron can be used.
Lubricant additives
If your Audi is properly maintained, it is uneconomical to mix any type of additive
with fuel, or lubricating oils and transmission fluids.
Battery
Silicone spray or petroleum jelly should be used for the battery terminals and posts.
Climate
Tropical
Moderate
Arctic
*>•
»•
XV
0-
o-
*
0"
»
00
40
n
0
»
0
Single
grid* oil
,
o
W*
j{
a
Jl
0
1
1
"I
3
Muitigrade oil
!
\
S3
\f
XK
ill
X*
,• 7
aa
„„
33
>.\s
98
SArow-
SAtOW
-8'
t
' v^
••3.
I 33-231 1
When using single grade SAE 10 W or multi
grade SAE 5 VV-20 engine oil avoid high speed
long distance driving if the outside temperature
rises above the indicated limit.
DIESEL ENGINE
This portion of the Owner's Manual contains information that applies to Audi
5000 vehicles v>.ith Diesel Engine.
As this Owner's Manual is based on the gasoline engine equipped car. there are
certain data that do not apply to your Audi 5000 Diesel, such as Catalytic Conver-
ter. Exhaust Gas Recirculation. Emission Control System. Fuel Octane Rating,
Engine Oil Grades. Spark Plugs.
Please read the following pages before you drive your Audi 5000 Diesel, especially
the explanations on
- Starting with pre-glow
- Diesel Fuel No. 2
- Engine oil grade: API/CC or CD
All other on tor mat ion and operating instructions for your Audi as described in this
Owner's Manual apply. For warranty and service information consult your War-
ranty & Maintenance booklet.
iDiesel] 93
-------
Technical data
Engine
Four stroke. Five cylinders in line, crankshaft with six main bearings, spur-belt overhead
camshaft.
Water cooling, thermostatically-controlled, with electric fan. thermostatically operated.
Pressure oil feed with gear-type pump and full flow filter. Mechanical fuel injection pump,
fuel injectors.
Paper element air cleaner.
Maximum output SAE net. . .
Maximum torque SAE net.
Displacement. . . .
Stroke
Bore
Compression ratio .
Cooling syslem. .
Fuel .
67 hp at 4800 rpm
90 ft. Ib at 3000 rpm
125 Nm at 3000 rpm
121 cu. in./l986ccm
3.402 in/86.4 mm
3.012 in/76.5 mm
23:1
Electric fan with thermo switch.
Water pump spur-belt driven.
Diesel Fuel No. 2
Transmission
5-speed Manual Transmission.
Diesel
Cooling system
Electrical system
Capacity
Battery
Starter
Radiator tan
Alternator •. . . .
V-hwIt for alternator
for aireonditioner . . .
for power assisted steering
9.9 U.S. quarts/9.4 liters
88 Ah
2.0 hp
250 watts
15 Amp/1050 watts
^x«13 LA
12.5 x9!5
12.5 \ 1050
Weights
Curb weight with ManualTransmission
2736 Ib/1240 kg
106
Diesel!
-------
ENGINE
Horsepower SAE net .
Canada models only
Diesel engine ....
No. of cylinders . . .
Displacement
Diesel engine ....
Type
Cooling ....
Fuel/air supply
Diesel engine
Fuel tank capacity
Engine oil capacity
with filter-change
without filterchange
l03hpatS300rpm
110hpat5300rpm
67 hp at 4800 rpm
5
130.8 cu. in/2144 cm1
12 leu. in/1986 cm3
in line, front mount
water-cooled
CIS fuel injection
mech. fuel injection
19.8 U.S. gal./
75 liters
4.8 U.S. (f
4.5 liters
4.5 U.S. qi/
4.0 liters
VEHICLE LENGTH
WIDTH .
HEIGHT
(unladen)
BRAKES ....
SUSPENSION . .
STEERING
189.0 in/4798 mm
69.6 in/1768 mm
54.7 in/1390 mm
dual diagonal circuits, power-
assisted, discs front, drums rear
front wheels: independent
rear wheels: torsion crank axle
with Panhard rod
rack-and-pinion, power-assisted
DRIVE TRAIN
Type
Gears (Manual)
Speeds (Automatic)
ELECTRICAL
SYSTEM . .
Battery . . .
Diesel engine
Alternator . .
front wheel drive
5 forward, 1 reverse
3 forward, 1 reverse
12 Volt
63 Ampere hours
88 Ampere hours
1050 watts (14 volts/75 amp.)
U.S.
Metric
Capacities
See page 106 for Diesel engine.
Fuel tank
Reserve of total capacity
Cooling system including heater
Engine oil (API/SE)
with filter change
without filter change . . .
Oil capacity between upper and lower
marks on dipstick
Automatic Transmission
at change (ATF)
final drive
(hypoid oil - does not have to be chan-
ged)
Manual Transmission
(hypoid oil - does not have to be chan-
ged)
Windshield washer container
Power assisted steering
19.8 gal
-.1 gal
8.6 qt
4.8 qt
4.3 qt
1.1 qt
3.2qt
1.1 qt
1.8 qt
0.8 qt
75.0 liters
X.O liters
8.1 liters
4.5 liters
4.0 liters
1.0 liter
3.0 liters
1.0 liter
2.75qt 2.75 liters
1.7 liters
0.8 liter
-------
APPENDIX C
-------
BEST ECONOMY
RK21RDO
r »-(«-• ^J
EEPRCM BEST ECONCMY/OPT IGN.FEB 1986
H.A.- RPS(*10), V.
10
9
8
7
6
5
4
3
2
1
0080
0090
0100
0110
0120
0130
0140
0150
0150
0150
1
H.A.- RPS(*10), V.
10
9
8
7
6
5
4
3
2
1
H.A.- RPS(
a
7
5
5
4
3
2
1
H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
OCOO
0000
1
*10), V.
0500
0500
0500
0600
0000
0600
05CO
0600
0600
COCO
1
A.- FUEL(*5) «
0030
0030
0035
0040
0045
0050
0055
0060
0060
0060
2
0035
0030
0035
0040
0045
0050
0055
0060
0060
0060
3
0030
0040
0050
0055
0055
0060
0060
0065
0065
0065
4
A.- MAP(mB*100) «
0140
0160
0180
0200
0220
0240
0270
0300
0300
0300
0200
0310
0330
0340
0350
0375
0400
0450
0450
0450
2 3
A.- MAP(mB*100
0500
1600
1900
2100
2300
2300
2300
2300
2300 '
OCOO
2
*2), V.A.- f
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
5
Throttle
0200
0150
0170
0210
0240
0260
0280
0300
0300
0300
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
6
Angle
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
7
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
8
Derivative -
0200
0200
0200
0200
0200
0200
0000
0200
0200
0200
4567
)« Advance Table (deg/ 100
1300
1900
2100
2200
23CO
2300
2300
2300
2300
OCOO
4
1400
2000
2200
2300
2300
2300
2400
2400
2400
0000
5
< Idle Ign.
COCO
CCOO
COCO
CCOO
0400
C4CO
C4CO
0400
0400
COCO
COCO
CCOO
CCOO
coco
0600
0600
0500
0600
0500
0000
1500
2200
23CO
2400
2500
25CO
2500
2500
2500
OCOO
6
Mao - '
0500
0500
0500
0600
0500
05CO
0600
0600
0600
0000
1600
2200
2400
2600
2500
2500
2500
25CO
2600
COCO
7
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
8
BTDC)
1700
2200
2600
2700
2700
2700
2700
2700
2700
OCOO
8
J" (deg/ICO
C5CO
C5CO
C7CO
CSCO
0300
CSCO
CSCO
OS-CO
OSCO
coco
0500
CSCO
1-000
1200
1200
14CO
15CO
1600
1300
OCOO
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
9
"K" »
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
9
- "I" »
1700
2200
2600
2700
2700
2700
2700
2700
27CO
COCO
9
BTDC) >
05CO
1000
14CO
1600
1700
1SCO
2CCO
2000
1600
CCOO
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
10
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
10
1800
2200
2600
2700
2700
2800
2300
2800
2800
0000
10
CSCO
1500
13CO
2 ICO
2300
2300
2300
2300
2000
OCOO
10
-------
RK2RDO
EEPROM BEST ECONOMY/OPT
IGN.FEB
1986 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100)« Fuel Injection
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
4100
2380
2130
1850
1580
1350
1100
0900
OVRUN
OVRUN
2
4600
2575
2275
1980
1690
1420
1160
0915
OVRUN
OVRUN
3
4950
2710
2395
2080
1770
1470
1170
0930
OVRUN
OVRUN
4
5350
2800
2470
2125
1830
1520
1220
0970
OVRUN
OVRUN
5
5450
2815
2480
2165
1840
1530
1220
1010
OVRUN
OVRUN
6
A.- MAP(mB*100) < Idle Fuel Map -
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
H.A.- RPS(*10), V.A.- FUEL(*5) «
10
9
3
7
6
5
4
3
2
1
H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
ooco
coco
coco
0000
OCOO
1
*2), V
0000
coco
0000
ooco
coco
0000
0000
0000
0000
0000
1
0030
0050
0070
0080
0090
0100
0110
0120
0120
0120
2
0030
0040
0045
0050
0060
0070
0080
C090
0090
0090
3
A.- MAP(m3*100
0000
OOCO
COCO
COCO
OOCO
COCO
0000
ooco
0000
0000
2
OOCO
OCOO
0000
OCOO
OCOO
0000
coco
coco
1 ooco
0000
3
0030
0040
0050
0055
0060
0065
0075
0080
0080
0080
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
Exp.
0030
0045
0060
0070
0080
0085
0090
0100
0100
0100
5
) « WW Idle
OOCO
coco
coco
ooco
coco
coco
ooco
coco
ooco
coco
4
0000
0000
OCOO
0000
0000
0000
ooco
OCOO
0000
0000
5
65
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Impulse
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
6
Height
OCOO
0000
0000
OOCO
OOCO
0000
OOCO
OCOO
0000
ooco
6
Table( Fuel/100) - "F" »
5700
2930
2590
2240
1950
1640
1320
1050
OVRUN
OVRUN
7
5900
2990
2650
2305
1970
1640
1320
1200
OVRUN
OVRUN
8
6100
3050
2700
2380
2020
1670
1350
OVRUN
OVRUN
OVRUN
9
6300
3100
2750
2450
2100
1700
1400
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
4100
2380
2130
1850
1580
1350
1100
0900
1200
OVRUN
10
Height(%) - "H" »
0030
0030
0030
0030
0030
0030
C030
CO30
C030
0030
7
- "W"
0060
0060
0080
C080
0100
0120
0140
0160
0160
OOCO
7
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
8
»
0060
0060
0060
0080
0100
0120
0140
0160
0160
0080
8
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9
0060
0060
0060
0060
0060
0120
0120
0120
0120
0060
9
0030
0030
0030
0030
0030
0030
C030
0030
0030
0030
10
0060
0060
0060
0050
C060
0120
0125
C125
0125
0060
10
-------
RK2RDO
EEPRCM BEST ECONCMY/OPT IGN.FEB
1986 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100) < E.G.R. 0 to 1000 >
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
5 Two Line Temp.
10
9
8
7
6
5
4
3
2
0200
0270
0200
0270
0350
0270
0100
0100
0000
1 0270
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3
Corp. Tables
0200
0280
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4
(CCMP
0200
0295
0200
0295
0160
0290
01CO
0100
COCO
0290
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
5
./TEMP.
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
7
), TEMP(KELVIN)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
10
, OCMP(%)
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
oioo
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
7
8
10
66
-------
RK3RDO
EEPROM REDUCED NOX STRATEGY JUNE 86
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
.A.- MAP(mB*100)« Fuel Injection
4100
2660
2170
1830
1540
1300
1210
0900
OVRUN
OVRUN
2
4600
2750
2250
1900
1690
1420
1190
0915
OVRUN
OVRUN
3
H.A.- RPS(*2), V.A.- MAP(mB*100)
10
9
8
7
6
5
4
3
2
1
H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
*10), V
0110
0110
0120
0120
0130
0140
0140
0150
C150
0150
1
*2), V.
0000
0000
0000
0000
0000
0000
COOO
0000
0000
0000
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
4950
2820
2280
1960
1750
1470
1175
0920
OVRUN
OVRUN
4
5350
2930
2340
1980
1800
1500
1250
1000
OVRUN
OVRUN
5
< Idle Fuel
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
.A.- PUEL(*5) «
0110
0110
0120
0120
0130
0140
0140
0150
0150
0150
2
0020
0030
0030
0030
0030
0050
0060
0060
0060
0060
3
A.- MAP(mB*100
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0040
0040
0045
0045
C050
0050
COS 5
0055
0060
0060
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
5450
3030
2365
2000
1820
1510
1290
- 1080
OVRUN
OVRUN
6
Map -
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Exp. Impulse
0020
0020
0025
0025
0030
0030
0035
0035
0040
0040
5
) « WW Idle
COOO
0000
CCOO
0000
COOO
COOO
coco
COOO
0000
0000
COOO
0000
0000
0000
0000
0000
0000
coco
COOO
0000
0030
0030
0030
0030
0030
•0030
C030
0030
0030
0030
6
Height
0000
0000
0000
"000
UOOO
0000
0000
0000
COOO
0000
Table( Fuel/100) - "F" »
5700
3900
2700
2280
2000
1670
1360
1100
OVRUN
OVRUN
7
5900
5000
2970
2550
2200
1820
1470
1200
OVRUN
OVRUN
8
6100
5400
3000
2620
2240
1850
1490
OVRUN
OVRUN
OVRUN
9
6300
5700
3050
2650
2300
1900
1520
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
Height( %) - "H
0030
C030
0030
0030
0030
C030
C030
C030
C030
0030
7
- "W"
0060
0060
0080
C030
0100
0120
0140
0160
0160
0000
0030
0030
0030
0030
0030
0030
0030
. 0030
0030
0030
8
»
0060
0060
0060
CCSO
0100
0120
0140
0160
0160
0080
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
1 »
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9
0060
0060
0060
0050
0060
0120
0120
0120
0120
0060
4100
2600
2170
1830
1540
1300
1210
0900
1200
OVRUN
10
0030
0030
0030
0030
0030
0030
C030
C030
C030
0030
10
C060
C060
0060
CC60
C060
0120
0125
0130
0130
0060
68
10
-------
- 3
RIGRDO
COMSUhfittG CttGiWftM
EEPRCM REDUCED NOX STRATEGY JUNE
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0035
0040
0045
0050
0055
0060
0065
0070
0070
0070
1
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0000
0330
0340
0350
0360
0370
0380
0390
0400
0400
1
H.A.- RPS(*10), V
10
9
8
7
6
5
' 4
3
2
1
1
COCO
ocoo
ocoo
ocoo
ocoo
0000
0000
ocoo
0000
ocoo
2
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
ocoo
ocoo
coco
0000
ocoo
coco
ocoo
0000
0000
0000
86 recalled
.A.- FUEL(*5) «
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
2
0085
0090
0095
0100
0105
0110
0115
0120
0120
0120
3
0050
0055
0060
0065
0070
0075
0075
0080
0080
0080
4
.A.- MAP(mB*100) «
0220
0230
0240
0250
0260
0270
0280
0290
0300
0300
2
0120
0130
0140
0150
0160
0170
0180
0190
0200
0200
3
0260
0280
0290
0300
0310
0320
0330
0340
0350
0350
4
Exp. Impulse Time Constant(mS) - "C" >
0080
009O
0100
0110
0120
0130
0140
0150
0150
0150
5
Throttle
0320
0330
0340
0350
0360
0370
0380
0390
0400
0400
5
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
6
Angle
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
6
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
7
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
8
Derivative - "
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
7
.A.- MAP(mB*100)« Advance Table(deg/100
0500
0700
1000
2000
2100
2100
-2100
21CO
2000
COCO
3
0700
0900
1200
2100
2100
2100
2100
2100
2100
OCOO
4
A.- MAP(mB*100)
COCO
0000
COCO
OCOO
COCO
0000
0000
coco
ocoo
0000
COCO
OCOO
COCO
ocoo
0000
coco
coco
coco
ocoo
ocoo
0800
1000
1200
2100
2100
2100
2100
2100
2100
OCOO
5
0900
1000
1200
2200
2200
2200
2200 •
2200
2200
OCOO
6
< Idle Ign.
COCO
OCOO
COCO
COCO
0400
0400
0400
0400
0400
COCO
COCO
OCOO
COCO
OCOO
0600
0600
0600
0600
0600
OCOO
1000
1000
1200
2300
2400
2400
2400
2400
24CO
OCOO
7
Map -
0500
0500
0500
0600
0600
0600
0600
0600
0600
OCOO
1600
2100
2200
2400
2400
2400
2400
2400
2400
0000
8
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
8
BTDC) -
1700
2100
2300
2500
2500
2500
2500
2500
2500
COCO
9
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
9
K" »
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
9
"I" »
1700
2100
2400
2500
2500
2500
2500
2500
2500
0000
10
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
10
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
10
1800
2100
2400
2500
2500
2600
2600
2600
26CO
0000
"J" (deg/100 BTDC) >
0500
0500
0700
0700
0800
0800
0800
0800
0800
COCO
0500
0800
1000
1200
1200
1400
1600
1600
1300
COCO
0500
1000
1400
1600
1700
1800
2000
2000
1600
0000
0500
1600
1900
2100
2100
2100
2100
2100
2000
0000
10
69
-------
r
c -
RK3RDO
EEPRCM REDUCED NOX STRATEGY JUNE 86 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100) < E.G.R. 0
10
9
8
7
6
c
4
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
5 Two Line Temp.
10
9
8
7
6
5
4
3
2
1
0200
0270
0200
0270
0350
0270
0100
0100
0000
0270
0000
0240
0250
0260
0240
0220
0200
0000
0000
0000
2
0000
0350
0350
0370
0330
0280
0230
0225
0000
0000
3
Corp. Tables
0200
C 30
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
0000
0450
0430
0440
0400
0320
0230
0225
0000
0000
4
(CCMP
0200
0295
0200
0295
0160
0290
0100
0100
0000
0290
0000
0500
0475
0550
0470
0350
0240
0225
0000
0000
5
./TEMP.
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
to 1000 >
0000
0550
0500
0650
0560
0370
0260
0000
0000
0000
6
0000
0420
0400
0550
0440
0330
0240
0000
0000
0000
7
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
10
), TEMP(KELVIN), CCMP(%)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
0100
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
8
10
70
-------
To
/ Fax No. OtOl
Fax No. Brighton (0273) 464124
Telex No. 87383 RICSHAM C
Date
Page
of
Con
i i.
\ a s 4-
If you do not receive ail of ttie pages or the message is distorted
please call 0273 455611 ext 2334 and speak to fax operator
J
-------
65
f-i
yj
G3
LL
'LI
CO
U I
Gl
" "
rt |
" O
o «•»
10 -t
~-j o
w n
'~
£<&
t* °
a «
Hi it
!]L ;:a
o 1:5
••:5 ..n
II
U U" U U
.
-o
(U
p
s
-------
Telex/ Facsimile Message
To
Q«0»
/ Fax No..
OT (3*
4313
Subject
RlflRDO
Fax No. Brighton (0273) 464124
Telex No. 87383 RIC5HAM G
Date
Page
\
of
MEC FUEL CALCULATIONS,
In order to understand the fuel algorithms the user may need to
identify the engine panel display values with the nodes on the fuelling
strategy chart, the trace values with the fuelling strategy chart, and
the total fuel calculated with the injector opening time.
The fuel calculations are written in assembly code which allows only
six characters for names of variables and procedures. This causes the
names to be unpronouncable and brief but they have been used in the
diagrams and descriptions to aid accuracy.
Throttle impulse calculation.
This adds fuel as the throttle is opened.
Engine Speed (RPSOV)
Manifold Air (MAPGV)
Pressure
Throttle P
Position
(TKIGV)
(TAGV) ^
JFTAFGV)
KDTADT
(TIGV)
If you do not receive all of the pages or the message is distorted
please call 0273 4','h n e*t 2334 and speak to fax operator
-------
DBG. CRANK
CAM. HJLSE
TEST BOX CAM.
SIGNAL
CRANK SIGNAL
WC SUCM3UB OP BVBNIS
0 180 360
! 1 1
1
I I
540 720
1 1
1
1
CYLINDER FIRING
VALVE PERIODS.
CYLINDER 1
• 3
" 4
2
70 DEC. 6TOC
REP. PULSE
IGNITION
EXH
EXH
INJECTION
END OP INJECTION BEFORE
IVO.
IN
Effl
IC3N 6T
IT]
IN
EXH 1
DBG. CRANK
I
0
I
180
360
I
540
T
720
-------
Impulse Time
Best Economy
Impulse Time
Best Economy
ISO
140
120
too
Impulse Time
XQO
g§
.,*mM"
o o
o o
Impulse Time
Best Mr
-------
- /
-i 3
o o
e a 8 S S 3 8 ° 8
O O
Impulse Time
Best Economy
g g o o
Impulse Time
Impulse Time
Best Economy
1QO
140
120
100
Impulse Time
-------
Impulse Time
Bed Economy
Impulse Time
Best mi
-------
Wiring details of MEC injector and ignition relay
RIQIRDO
CONSULTING ENGINCEIIS
+12 V
to acivate
relay
(normally fron
ignition switch)
+12 V
from battery
m
tch)
ry
- > ! !
WZ i i
Cl
X f-0
Wl
Supply to
injectors
0\j
battery neg
1 ( chassis )
Relay type LUCAS 6RA
Pin view showing pin numbers.
-------
RlflRDO
Appendix_l
CONFIGURATION OF PLUS/SOCKET INTERFACE WITH PROBES AND LOCM
ILLUSTRATION OF PREFERED PRATICE
PROBE
PRT's
AN'S
Ring Gear
Camshaft
Crankshaft
Ignition
Knock & EGR
Map
fTTUt ••••. f 1 "I A
1ILLUU L.J.6
Injector
Receptacle
Type Pin
Cable
H
ft
It
11
If
II
*
*
*
*
*
*
*
CONNECTION
Skt
LOOM
Plug
Type Pin Skt
PT01E-10-6PXPT06E-10-6S Cable
II
tt
II
II
II
II
X
X
X
X
X
X
/— — — /
Plug
*
It
It
It
II
It
II
It
1 AO
n
(i
M
n
ii
n
n
C*-*-***J -*1
N j. «v* opc^-LOJ.
PT06E-10-6PXPTOOE-10-6S Recept/Cha
*
*
*
*
*
*
*
*
If
*
MEC
==>-
==>
==>
==>
==>
-»• X
==>
i
i
i
i
i
i
i
55-WAY
==>!
•»— . x
== XLR31
'K' Type t/c SCREENED coup-lead & mimiature plugs to be used as std.
Connector Identification
PT01E-10-6P(SR) Receptacle Cable
PT06E-10-6S(SR) Plug Cable
PTOOE-10-6S(SR) Receptacle Chassis
PT06E-10-6P(SR) Plug Cable
PTOOE-22-55S(SR) Recptacle Chassis
PT06E-22-55P(SR) Plug Cable
Notes. .
PT shell type
-10-shell size in mm
6 NO. of contacts
P pins
S skts
(SR) Strain Relief
The above part numbers are of Aviation Elect. & Radio Co, Horsham
similar Mil-C-26482 spec connectors are available from Townsend Coates
Leicester, with a different prefix. Refer to catalogue.
1 REVISED
Now using PT01E-10-6S PLUG (cable type), since addition of
signal condition, connected direct to throttle-pot, which is
terminated with a CHASSIS type PTOOE-10-6P to match.
-------
- / u?
RK21RDO
CONSULTING [NCIH(C«3
(.ITEMLSTS.MEC.EPACON)
NEC WIRING LOOM DETAILS
12-06-86
iss
1
date
12-06-86
change description
Derived from NEBGON all information not
relating to the EPA/METHANOL MEC loon
deleted.
initials
MGB
NOTES:
1 12V Connected direct to injectors via relay
2 Gen. interconnection between loom and pickups by AMPHENOL type
plugs and sockets to MIL-C-2 5482—62GB series.
3 ** All these connections are made external to plug for
convenience and these pins should NOT be used.
4 ***Fuel injector outputs are routed through own bulkhead fitting
this applies to seme vehicle applications ie. MEC in trunk.
5 SCREENED 4 - core 7/0.2 cable to be used throughout with
exception of fuel injs. where 4-core 16/0.2 is to be used.
6 Screens connected to pins as indicated through bulk-head
interface (i.e.Plug engine loon, Socket b/head) only.All screens
grouped at M.E.C. and remote from plug and grounded to case
(N.B. Ensure case is adequately grounded.
7 The cold start/warm-up air control valve is to be supplied via
the (battery) relay.(N.B. there is no connection through the
55-way.).
8 Comtunication link between an ADM 3/5 terminal & MEC is detailed
in attached sketch.
9 Separate supply to MEC (NOT through 55-way). Gauge of cable
dependant on distance between battery and MEC ; in case of
VW/Jetta(MEC sited in trunk, battery in engine comp't) 50/0.2
single core was used.
10 Scene facilities provided for in the loom are not implemented
on the EPA/Methanol MEC and should be ignored. These are
Knock, Ring gear and spare PRT inputs .
-------
MEC "IGNITION DRIVE" Interface with "IGNITION MODULE".
\ (BOSCH)
i Amplifier Switch Device
7-WAY PLUG.
543
RIQ1RDO
CONSULTING INCINieHS
Amphenol
Plug Pin
Wire Code
Ign. Drive
V
Redundant
Not used
B
Blu
B
Red
Coil(Batt)
+12v
V
k
MEC
Ign. Drive
Signal
V V
Battery -ve
Earth COIL
V
j
MEC
Return
ADM Terminal (RS232) Link To MEC
3 Pin-Din
Locking
Plug
Pin No
_ __ ______
9-
25 Way
'D'Type
Plug
Pin No.
7
-------
c -
RlflRDO
CONSULTING CNGINdllJ
ENGINE LOOM INTERFACE FRONT PANEL ITEMS.
PLUGS
E.G.R. ————————
CAM, CRANK, RG
IGN
M.A.P.
AN 1 (PRT Water)
- AMPHENOL 55 WAY
AN 2 (PRT Air)
AN 3 (spare)
Throttle
t/c 1 sub miniature thermocouple
t/c 2 — sub miniature thermocouple
INJECTORS \ 5 Pin XLR31 Type (ITT CANNON)
POWER 12 Pin multipole connector.
RS232 Portl 3 Pin Locking Din
RS232 Port2 3 pin Locking Din
NB See Appendix 1 for PLUG & Socket configuration.
SUPPLIERS:-
PLUGS:- AMPHENOL F.C.Lane, Horsham
OR Aviation Electrical & Radio Co Ltd
12 North Parade , Horsham
XLR31 RS
Multipole Con'r RS
DIN Locking Type Stock
-------
CL -l
CONSULTING CHCINCEIt]
AMPHENOL 55 way connector to Engine pin asignments
<- ^
55
Way
Pin
No.
A
B
C
D
E
F
G
H
J
K
L
M
T
U
V
W
X
Y
Z
a
b
c
d
e
f
g
h
3
k
INTERCONNECTION
6 Way
CABLE Pin No
RED
BLUE
GREEN
YELLOW
RED
BLUE
GREEN
YELLOW
RED
BLUE
GREEN
YELLOW
RED
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE
RED
BLUE
YELLOW
Screen PRT Air
RED
BLUE
GREEN
_
RED
BLUE
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
A
B
C
A
B
A
B
C
A
B
C
A
B
SIGNAL
Lead ! Probe
Blue ! Platinum Resistance
Yellow i Thermometer No.l
Red i HATER
CRN or Whti
i
i
Blue i Platinum Resistance
Yellow ! Thermometer No. 2
Red ! AIR FILTER
CRN or Whti
i
i
Blue ! S
Yellow ! P
Red i A
CRN or Wht! R
! E
i EGR Position Sensor
]
i
! Throttle Position
! Sensor
i
i
Red ! Signal Ring Gear
Black !0v Orbit P/U
i
Brown ! +ve Camshaft
Blue !0v Proximity
Black ! Signal Detector
!
i
!+ve 12v Crankshaft
iOv 70 deg. REF
! Signal Orbit P/U
i
i
Pin 3 ! Signal Ignition
Pin 6 i Return Module
— i k 1
-------
CJ. -
RKTOO
CONSULTING ENGINEERS
AMPHENOL 55 way connector to Engine pin asignments
55
Way
Pin
No.
m
n
P
q
r
s
t
u
V
z
AA
on
DD
FP
INTEROOfWECTICN
6Ti7<9*v
way
CABLE Pin No
RED C
BLUE A
GREEN B
YELLOW D
Screen POT Water
RED A
BLUE B
Screen Cam
" rv~anlr
Screen Ignition
Screen E.G.R
Screen Ring P/U
" Wrvvlr
INTERCONNECTION
VT pon
CABLE Plug
FOUR CORE SCREENED CABU
RED 1
BLUE 2
GREEN 3
YELLOW 4
Lead
+ve sply
+ve sig
-ve sig
-ve sply
Lead
3. 4 Injed
!(cyl. No. 4
!(cyl. No.l
!(cyl. No. 3
i(cyl. No.2
SIGNAL
Probe
Manifold Pressure
Transducer
NO CONNECTION
II
Knock Detector
NO CONNECTION
II
II
NO CONNECTION
NO CONNECTION
II
NO CONNECTION
II
SIGNAL
! Probe/device
tor system
)! Fuel InJ. 4
)! 1
)! 3
)! 2
-------
26 Exhaust System-Emission Controls
/\UO !
EGR valve
if equipped
CO protM receptacle
Heat deflector
shield
Oxygen sensor
(if equipped)
do not allow
anti-seize compound
on threads to get
in slots of sensor
10 Nm (7 ft Ib)
Do not hit or drop catalytic converter
because ceramic insert will be destroyed
35 Nm (25 ft Ib)
Always replace gaskets and use correct type
rubber mounts as illustrated
25 Nm (18 ft Ib)
Intermediate pipe, front
Exhaust pipe,
(dual pipe shown)
Exhauat manifold
25 Nm (18 ft Ib)
Qaaket
metal lip faces
catalitic converter
Gasket
metal Up faces
exhaust pipe
30 Nm (22 ft Ib)
Catalytic converter
except Canada
checking, page 26.36
25 Nm (18 ft Ib)
25Nm(18ftlb)
Rubber mount
for rear muffler
Intermediate pipe, rear
25Nm(18ftlb)
r--
L
/ ^
Gasket
metal lip faces
intermediate pipe
Exhaust system aligning
see page 26.3
EGR temperature valve
checking page 26.14
Rubber mount •
for tail pipe
-------
-------
OF
PLY
in-
( AW9LCAOY
OP
3TOC. (PS.
-------
-------
VW HRCC AUDI 5000
STARTING PROCEDURE
1. Flip MEC switch ON (plug in fuse at battery).
2. Power MEC by flipping switch on-front of VDU.
3. Turn on igni tion.
4. Press reset button on MEC (blue box).
NOTE: Car has tendency to stall when reset button
is pushed (give it a little fuel).
5. Set calibration by typing "R1" for best economy, or
"R3" for low NOx (as a check, type "N" and VOU will
tell you what EEPROM you are in).
6. Shift cookbook (5th gear @ 50 MPH).
7. If car stalls, stop trace and begin again at 3.
-------
APPENDIX D
-------
- - d-SLL,
7«a!*.,V Facsimile Message
E?A ANN ARBOR _
1 0 .1
ATTENTION - ROB BRUETSCH '__
. QlQl 313 668 4368
4\ W** ^^ "y
GRA HAM LEESON
f . ^J f\f« ***•* * •"" ^ — ^ ^ _^_^^^^^^^^^^^^»^^M^»^^™
Subject XO
ffTHAMOL ENGINE
r™\ l x*1 ^nsr^w^"
Rl^rxLJL
Fax No. Brighton (0273) 46412
Telex No. 87383 RICSHAM C
natP 9.1.87
Daoa 1 ftf 1 _
IGNITION MAP TO GIVE 1ST REDUCED NOx STRATEGY I.E. 1.91 HC
19.9 CO 1.0? NOx (gm/mile) .
IGNITION -°B
Mbar
1000
900
800
700
600
500
400
300
200
100
.^•v^^— »««•
5 © (T?) (Tl) <£?) 16 17 17 18
XTT^) / Q5 Q) 22 23 24 24
20 21 21 22 23 24 25 25 25
21 21 21 ^T) 24 24 25 25 25
21 21 21 (2£) 24
21 21 21 (2) 24
21 21 21 <2) 24
<^T^ 21 21 (2?) 24
oo o o o
—
20 30 40 50 60
_ __ _. «. ^m • I f^ T~* J~*
24 25 25 26
24 25 25 26
24 25 25 26
24 25 25 26
0 .0 0 0
70 80 90 100
If you do not receive all of the pages of the message is distorted
please call 0273 455611 ext 2334 and speak to fax operator
-------
REPORT TIME: M:17:45
DATE: OCT 6, 1987
WARNING: CRITICAL CODE STORED IN VI FILE DIFFERS FROM ERRORS FOUND DURING THIS. RUM.
CRITICAL CODE = 0(" " ) - PROGRAM FOUND '• + ••= i ,"**••= 0 - PLEASE "CORRECT" TMIS VEHICLE.
VEHICLE SPECIFICATION REPORT -
(REPORT)
DATE OF ENTRY
1 / 7/87
VEHICLE SPECIFICATIONS
MANUFACTURER
VEHICLE ID / VER REPRESENTED CARLINE MODEL CODE
DRIVE CODE
SOURCE
AUDI
VEHICLE
TYPE
43A0131868
MODEL
ACTUAL VEHICLE MODEL YEAR
C
ACTIVE
YEAR
)
DRIVE
FULL
TANK
AXL WTS
EMPTY
TANK
CURB
WEIGHT
SEDAN
INERTIA
CLASS
FRONT DRIVE STR .
EQUIV .
TEST
WEIGHT H.P. METHOD
LEFT
E FW
C .0.
VEH
EPA
O/U
cout
Al 1 UAL RUNNING
DYNO HP NUMBER
CHG
NON-CER AUDI 5000S
80
80
2625P
3000P
3250P
NO ENTRY
ASSIGNED OF OR DURABILITY VEHICLE ID
ALT. MANUFACTURER
ODOMETER
CORRECTION TIRE £ RIM
INITIAL FACTOR SIZES
/. Ij
r 1 RK - Sl'LC I I 1 >.A I 1 ON-.
-,wi. BLT Pbi TD
I.ON:-. lf< N M N M FT RR DP
DISPLACEMENT BORE STROKE
88. 9E 3. 13E 2.89E
IGNITION IGNITION TIM. TIMING
TIMING 1 TIMING 2 TOL . RPM
AXLE N/V A/C
RATIO RATIO ODOMETER INSTALLED
RATED ENGINE
HP TYPE
79 OTTO SPARK
RPM TIMING
TOL. GEAR
DRIVE
EXHAUST TYPE
ENGINE SPECI
ENGINE
CONFIGURATION
IN-LINE
% CO % CO %CO
LEFT RIGHT COMB
TRAIN AND CONTROL
185/70R14
FICATIONS
NO.
CYL.
4
CO
TOL.
SYSTEM
NO. TOTAL FUEL SYSTEM FUEL I UkliO/ '-UI'LR LUMP. COAST
CARBS BBLS MFR/MODEL INJ C.HAK(,LI< . i (n>L 1 NO RATIO DN TM
YE:-, HONL U.U
IDLE IDLE IDLE
RPM TOL. GEAR ENGINE F.AMIl •, FNl.lNE CODF
SPECIFICATIONS
CRANKCASE TRANSMISSION SHIFT INDIC. EVAPORATION
SYSTEM CONFIG MODIF CODE LIGHT SYSTtM KILL 1 VI'E
0.0
0.0
-NO ENTRY
MAIN-TANK
CAPACITY VOLUME
$$$
AUX.-TANK
CAPACITY VOLUME
SHIFT SPEED
EVAPORATIVE EMISSION
FAMILY CODE
MtTMAMOL
SALES CLASS
NO '.At l>. v I AL.^, SPECIFIED
CONTROL SYSTEM TYPES
VEHICLE SPECIFICATION COMMENTS
M.I i Olvlf.H Mi '-,
16418
-------
S1TE:D209
TEST * 87)791
1980 LIGHT DUTY VEHICLE ANALYSIS |
PROCESSED: 16:31:44
APR 10. 19B7
a
MFR.
640 43A0131868
MFR .
VER- REP. RUN. RETEST
0 N
ALT .
H.P.
EQUIVALENT ACTUAL
TEST DYNO
TRANS.
PREP DATE
04-09-67
CURB
WEIGHT
DRV AXLE
WEIGHT
GAUGE
EMPTY
AXLE /--
MEASURE
IGNITION TIMING /
#2 RPM GEAR
IDLE
% CQ
HIGH SPEED
OVER- / TEST TYPE
DRIVE EXPE
CVS 75-LATER
IDLE SOAK COASTDOWN TIME
RPM GEAR PERIOD ACTUAL ADJUSTED
21 0.0
/ AMBIENT TEST CONDITIONS /
BARO DEW AMB TEMP % REL S.HUM NOX CVS
"HG POINT TEMP UNIT HUM GR/LB FACTOR ALDEHYDES RGE
28.93 48.0 74.0 0 39.7 51.36 0.9000 27C
/ DYNAMOMETER TEST CONDITIONS /
DVNO . ACTUAL DYNO TIRE ODOMETER SYSTEM
TEST DATE HR SITE IW SET TWHP PSI (MI) MILES
04-10-87 12 D209 3'J50 5.0 45.00 75214.5 N/A
BAG 1 3,630
SITE CA203
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.877
SITE 0A203
1.
HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
BAG 3 3.579
SITE *A203
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
MILES
5 .04 1 KM
8463
EXHAUST SAMPLE
RANGE
19
15
22
19
15
MILES
METER
15.0
0.0
66.0
40.3
7 . 2
6.239 KM
CONC.
447 .92
0.0
. ROLL REVS.
BACKGROUND
RANGE METER
19 0.0
15 0.0
0.639 22 5.0
372 .78
3.60
9039
EXHAUST SAMPLE
RANGE
16
15
22
17
15
MILES
METER
63.0
0.0
51.3
39.8
3.6
5.759 KM
CONC.
188 .59
0.0
19 0.0
15 3.4
. ROLL REVS.
BACKGROUND
RANGE METER
16 1.2
15 0.0
0.489 22 4.8
97 .81
1 .80
8344
EXHAUST SAMPLE
RANGE
16
15
22
19
15
WEIGHTED VALUES
GRAMS/MILE
BEFORE ROUNDING
GRAMS/KM
BEFORE ROUNDING
METER
72. 1
0.0
66.0
37 . 2
5.5
HC
4.013
4.01312
2.494
2.49363
CONC.
215 .92
0.0
17 0.0
15 3.2
. ROLL REVS.
BACKGROUND
RANGE METER
16 1.5
15 0.0
0.639 22 5.0
342. 76
2. 75
19 0.0
15 3.4
NM-HC CO
4 .
4.
2.
2.
000 6.72
SAMPLE
CONC.
0.0
0.0
0.045
0.0
1 .70
SAMPLE
CONC.
3.60
0.0
0.043
0.0
1 .60
SAMPLE
CONC.
4.49
0.0
0.045
0.0
1 .70
C02
270
00040 6.7250 270
486 4.18
168
48573 4.1787 167
SECS.
VMIX =
CORRECTED
CONCENTRATIONS
447 .
0.
0.
372.
1 .
445.
92 PPM
0 PPM
597 %
78 PPM
.99 PPM
.92 PPM
SECS.
GMS
23.
0.
1007 .
40.
0.
23.
VMIX =
CORRECTED
CONCENTRATIONS
185.
0.
0.
97 .
0.
184.
. 13 PPM
. 0 PPM
, 448 %
.81 PPM
26 PPM
.87 PPM
SECS.
GMS
14 .
0.
1 100.
15 .
0.
14 .
VMIX =
CORRECTED
CONCENTRATIONS
211.
0
0
342
1
21U
. 19
.89
.66 PPM
.0 PPM
.597 %
.76 PPM
. 14 PPM
.52 PPM
NOX
0.0
0.0
0.0
0.0
GMS
9.
0.
854.
31 .
0.
9.
3256.0
MASS
82
0
37
02
1 1
7 1
4747.0
MASS
35
0
59
31
02
33
2761 .0
MASS
54
0
09
20
05
49
CU.FT.
EMISSIONS
GMS/MI
6.561
0.0
277 .531
1 1 .025
0.029
6.532
CU . FT .
EMI SSIONS
GMS/MI
3. 702
0.0
2H3.Q93
3.949
0.005
3.696
CU.FT .
EMISSIONS
GMS/MI
2.667
0.0
238.661
8.719
0.014
2.652
DILUTION
CMS/KM
4.077
0.0
172.450
6.851
0.018
4.059
DILUTION
GMS/KM
2.300
0.0
176.403
2.454
0.003
2.297
DILUTION
GMS/KM
1 .657
0.0
148 . 297
5.417
0.009
1 .646
MPG
FUEL
ECONOMY 14.0
14.0380
FACTOR = 1B.572
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL
13.0 5.55
L/100KM
18.0
FACTOR = 25.901
AUX. AUX. AUX.
FIELD! FIELD2 CODE
MPG
13.6
KPL
5.00
L/100KM
17.2
FACTOR = 19.272
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL
15.8 6.71
L/100KM
14.9
KPL
6.0
5.9604
L/100KM
16.8
16.7773
COMMENTS: R1CARDO AUDI EE PROM 6 COLD START ONE STALL 6 FALSE STARTS BAG 1
NOX SAMPLES OVER 20 MIN. LIMIT UNABLE TO GET STABLE NOX READINGS
THE FUEL ECONOMY VALUE WAS CALCULATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REfiULATIONS.
16418
DYNO SITE:D209
TEST 87-1791
-------
DVNO SITE:D209
TEST * B71792
1980 LIGHT DUTY VEHICLE ANALYSIS |
PROCESSED: 11:02:20
APR 15. 1987
a
MFR .
640 43A0131B68
MFR.
VER- REP. RUN. RETEST
0 N
ALT.
H.P.
EQUIVALENT
TEST
ACTUAL
DYNO
TRANS.
OVER-
DRIVE
TEST TYPE
EXPE
CVS 75-LATER
CURB DRV AXLE AXLE
PREP DATE WEIGHT WEIGHT GAUGE MEASURE
EMPTY
/ IGNITION TIMING /
#1 *2 RPM GEAR
IDLE
% co -----
HIGH SPEED
/ AMBIENT TEST CONDITIONS /
BARO WET AMB TEMP % REL S.HUM NOX CVS
"HG BULB TEMP UNIT HUM GR/LB FACTOR ALDEHYDES RGE
29.06 59.9 74.2 F 42.9 55.60 0.9164 27C
/ DYNAMOMETER TEST CONDITIONS /
DYNO ACTUAL DYNO TIRE ODOMETER SYSTEM
TEST DATE HR SITE IW SET TWHP PSI (MI) MILES
04-14-87 09 D209 3250 5.0 45.00 75232.0 N/A
IDLE SOAK COASTDOWN TIME
RPM GEAR PERIOD ACTUAL ADJUSTED
0 0.0
BAG 1 3.540
SITE *A203
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.883
SITE #A203
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 3 3.574
SITE 0A203
HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
MILES
f> . 697
KM 8253.
EXHAUST SAMPLE
RANGE
19
15
22
20
15
MILES
METER
15.6
7B. 1
65. 2
22 .0
7 .8
6. 249
CONC.
465.88
39. 23
0.631
445.57
3.90
KM 9053.
EXHAUST SAMPLE
RANGE
16
15
22
1 7
15
MILES
METER
59. 7
41.0
51.2
39. 1
4.0
5.752
CONC .
178.69
20. 70
0.488
96. 10
2.00
KM 8334.
EXHAUST SAMPLE
RANGE
16
15
22
19
15
METER
67 .6
B8 .6
65. 3
37 .0
5.8
CONC .
202.40
44 .43
0 .632
340.83
2 .90
ROLL REVS.
BACKGROUND
RANGE METER
19 0.0
15 1.8
22 5.3
20 0.3
15 3.9
ROLL REVS.
BACKGROUND
RANGE METER
16 1.2
15 1.1
22 5.0
17 0.0
15 3.9
ROLL REVS.
BACKGROUND
RANGE METER
16 1.3
15 0.8
22 5.1
19 0.0
15 4.0
SAMPLE
CONC .
0.0
0.91
0.047
5. 78
1 .95
SAMPLE
CONC.
3.60
0.56
0.045
0.0
1 .95
SAMPLE
CONC.
3.90
0.41
0.046
0.0
2.00
SECS.
CORRECTED
CONCENTRATIONS
465.88 PPM
38.36 PPM
0.586 %
440 . 10 PPM
2.06 PPM
463.82 PPM
SECS.
CORRECTED
CONCENTRATIONS
175.23 PPM
20. 17 PPM
0.445 %
96. 10 PPM
0.13 PPM
175. 1 1 PPM
SECS.
CORRECTED
CONCENTRATIONS
198.70 PPM
44.04 PPM
0.589 %
340.83 PPM
1 .00 PPM
197.70 PPM
VMIX= 3203.0
MASS
GMS.
24.37
6.10
972.95
46.48
0.11
24. 26
VMIX= 4767 .0
MASS
GMS.
13.64
4.77
109B.44
15. 10
0.01
13.63
VMIX= 2780.0
MASS
GMS.
9.02
6.08
848.23
31 . 24
0.05
8.97
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
6.884 4.278
1.723 1.071
274.870 170.797
13. 130 8 . 159
0.030 0.019
6.854 4.259
CU.Ff. DILUTION
EMISSIONS
GMS/MI GMS/KM
3.513 2 . 183
1 .229 0.764
282.899 175.786
3.890 2.417
0.003 0.002
3.511 2.181
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
2.524 1.568
1 .700 1 .056
237.307 147.456
8 . 740 5. 431
0.013 0.008
2.511 1 .560
FACTOR -
AUX.
FIELD1
MPG
13.0
FACTOR =
AUX.
FIELD)
MPG
13.7
FACTOR =
AUX.
FIELD1
MPG
15.9
IB .553
AUX. AUX.
FIELD2 CODE
KPL L/
5.52
26.010
AUX . AUX .
FIELD2 CODE
KPL L/
5.83
19.520
AUX. AUX.
FIELD2 CODE
KPL L/
6. 76
100KM
18.1
100KM
17.l'<
100KM
14.6
WEIGHTED VALUES HC NM-HC CO C02 -')X
GRAMS/MILE 3.934 3.923 7.11 269. 1.16
BEFORE ROUNDING 3.93405 3.92303 7.1096 268.79 1 .. >B9
GRAMS/KM 2.445 2.438 4.42 167. 0.9.
BEFORE ROUNDING 2.44451 2.43765 4.4177 167.02 0.90li
FUEL ECONOMY
MPG
14. 1
14.0686
KPL
6.0
5.9859
L/100KM
16.7
16.7058
COMMENTS: NOX SAMPLES RUN AT EOT EEPROM 6 COLD CRANK 7 STALLS BAG * 1 1FALSE
START - 168 SEC STALL BAG #1 NOX SCALE SHIFT
CO SAMPLE *2 CORRECTED VALVE 39.1
THE FUEL ECONOMY VALUE WAS CALCULATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REGULATIONS.
16418 0
DYNO SITE:D209
1ES1 87-1792
-------
DVNO SITE:D20Q
TEST » 871793
I960 LIGHT DUTY VEHICLE ANALYSIS I
PROCESSED: 15:15:47
APR 15. 1987
a
MFR.
640 43A0131868
VER-
0 N
MFR.
REP. RUN. RETEST
ALT.
H.P.
EQUIVALENT
TEST
ACTUAL
DVNO
TRANS.
OVER-
DRIVE
TEST TYPE
EXPE
CVS 75-LATER
CURB DRV AXLE AXLE /
PREP DATE WEIGHT WEIGHT GAUGE MEASURE »\
EMPTY
IGNITION TIMING /
#2 RPM GEAR
/ % CO
IDLE HIGH SPEED
IDLE SOAK COASTDOWN TIME
RPM GEAR PERIOD ACTUAL ADJUSTED
0 0.0
/ AMBIENT TEST CONDITIONS /
BARO DEW AMB TEMP % REL S.HUM NOX CVS
"HG POINT TEMP UNIT HUM GR/LB FACTOR ALDEHYDES RGE
28.89 44.6 74.3 D 34.6 45.16 0.8770 27C
/ DYNAMOMETER TEST CONDITIONS /
DYNO. ACTUAL DYNO TIRE ODOMETER SYSTEM
TEST DATE HR SITE' IW SET TWHP PSI (MI) MILES
04-15-87 08 D209 3250 5.0 45.00 75243.0 N/A
BAG 1 3,579
SITE *A203
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.885
SITE *A203
'}.
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 3 3.589
SITE *A203
HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
MILES
5.759
KM 8344.
EXHAUST SAMPLE
RANGE
19
15
22
20
15
MILES
METER
13.0
77 .8
68.6
21.9
7 .3
6. ^53
CONC.
388.08
39.08
0.666
443 .44
3.65
KM 9059.
EXHAUST SAMPLE
RANGE
16
15
i!2
19
15
MILES
MEIER
60. 2
38.6
51.3
10.9
4.6
5. 776
CONC.
180. 19
19.50
0.489
97.28
2 .30
KM 8368.
EXHAUST SAMPLE
RANGE
16
15
22
19
15
METER
67 .8
91.9
65 .6
32 . 7
6.0
CONC.
203.00
46.06
0.635
299.60
3.00
ROLL REVS.
BACKGROUND
RANGE METER
19 0.2
15 5.4
22 5.2
20 0.8
15 4.0
ROLL REVS.
BACKGROUND
RANGE METER
16 1.4
15 4.2
22 5.2
19 0.0
15 4.2
ROLL REVS.
BACKGROUND
RANGE METER
16 1.3
15 3.1
22 5.0
19 0.0
15 4.4
SAMPLE
CONC.
5.96
2.74
0.046
15.44
2.00
SAMPLE
CONC.
4.19
2.13
0.046
0.0
2.10
SAMPLE
CONC.
3.90
1 .57
0.045
0.0
2.20
SECS.
VMIX =
CORRECTED
CONCENTRATIONS
382.
36.
0.
428 .
1 .
380.
46 PPM
49 PPM
623 %
86 PPM
76 PPM
69 PPM
SECS.
GMS
18.
5.
963.
42.
0.
18.
VMIX =
CORRECTED
CONCENTRATIONS
176.
17.
0.
97.
0 .
175.
. 15 PPM
.45 PPM
.444 %
.28 PPM
. 28 PPM
.87 PPM
SECS.
GMS
13.
3.
1092.
15.
0.
13.
VMIX =
CORRECTED
CONCENTRATIONS
199
44
0
299.
0.
198.
.30 PPM
.57 PPM
.593 *.
.60 PPM
.91 PPM
.39 PPM
GMS
9.
5.
851 .
27.
0.
8.
2987 .0
MASS
65
IB
53
24
09
5V
4751 .0
MASS
67
94
99
24
02
64
2771 .0
MASS
02
87
18
37
04
98
CU. FT.
EMISSIONS
GMS/MI
5.213
1 . 447
269 . 241
1 1 .802
0.024
5. 189
CU. FT .
EMISSIONS
GMS/MI
3.517
1 .C13
28 1 . 309
3.922
0.006
3.512
CU.FT .
DILUTION
GMS/KM
3.239
0.899
167.299
7.333
0.015
3.224
DILUTION
GMS/KM
2. 186
0.630
174.797
2.437
0.003
2. 182
DILUTION
EMISSIONS
GMS/MI
2.513
1 .634
237 . 164
7.626
0.012
2.501
GMS/KM
1 .561
1.016
147.367
4.739
0.007
1 .554
FACTOR - 17.875
AUX. AUX. AUX.
FIELD1 FIELD2 COOE
MPG KPL
13.5 5.75
L/100KM
17.4
FACTOR = 25.945
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG
13.8
KPL
5.86
L/100KM
17.1
FACTOR = 19.547
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
WEIGHTED VALUES HC NM-HC CO CO2
GRAMS/MILE 3.b92 3.581 6.56 267.
BEFORE ROUNDING 3.59203 3.58100 6.5605 266.73
GRAMS/KM 2.232 2.225 4.08 166.
BEFORE ROUNDING 2.23198 2.22513 4.0765 165.74
NOX
1 . 27
1 . 2727
0.79
0.7908
FUEL ECONOMY
MPG
14.3
14.2610
MPG
16.0
KPL
6. 1
6.0596
KPL
6.81
L/100KM
14.7
L/100KM
16.5
16.5026
COMMENTS: NOX SAMPLED AT EOT NOX DATA BAD 1 FASE START 5 STALLS START OF TEST
THE FUEL ECONOMY VALUE WAS CALCULATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REGULATIONS.
16418
OYNO SITE:D209
IEST 87-1793
-------
OYNO SITE:D209
TEST * 073925
I960 LIGHT DUTY VEHICLE ANALYSIS |
PROCESSED: 12:34:58
JUL 9. 1987
MFR .
t>40 43AOI31B6B
MFR .
VER- REP. RUN. RETEST
0 N
ALT.
H.P.
EQUIVALENT
TEST
ACTUAL
DYNO
TRANS.
OVER-
DRIVE
TEST TYPE
CURS DRV AXLE AXLE
I'REP DATE WEIGHT WEIGHT GAUGE MEASURE
(I7-OH-B7 EMPTY
EXPE
CVS 75-LATER
IGNITION TIMING /
02 RPM GEAR
IDLE
% co -----
HIGH SPEED
IDLE SOAK COASTDOWN TIME
RPM GEAR PERIOD ACTUAL ADJUSTED
17 0.0
, .- AMBIENT TEST CONDITIONS /
BAKO DEW AMB IEMP % REL S.HUM NOX CVS
"IIC. POINT TEMP UNIT HUM GR/LB FACTOR ALDEHYDES RGE
/U.04 <1K . 5 72.8 D 39.1 48.32 O.Hbbb 27C
, . DYNAMOMETER TEST CONDITIONS /
DYNO ACTUAL DYNO TIRt UDOMETER SYSTEM
I til DATE HR SITE 1W SET TWMP PSI (Ml) MILES
U7-U9-B7 UB D209 3250 5.0 45.00 75472.7 N/A
BAU 1 3.576
SITE *A203
HC-FID
NOX-CHEM
CO 2
CO
METHANE
HC-NM
bAG 2 3.B93
SITE »A203
HC-F II)
NOX-CHtM
CO2
CO
METHANE
HC -NM
BAG 3 3.619
SITE #A203
HC -FID
NOX-CHEM
CO 2
CO
METHANE
HC-NM
MILES
b . /bi> KM
8337
EXHAUSI SAMPLE
RANGE
19
1 5
22
19
15
MILES
ME 1 tR
15.7
41.1
68 . 6
G3 . 7
10. 0
6.265 KM
CONC .
468 .87
20. 75
. ROLL
REVS.
BACKGROUND
RANGE
19
15
0.666 22
607 . 60
5.01
9077
EXHAUST SAMPLE
RANGE
16
15
22
19
15
Ml l.Es
METER
58.0
22.0
51.4
21 .9
4. 7
6.B24 KM
CONC .
173.59
11.14
19
15
. ROLL
METER
0. 7
6.8
5 .0
0 .0
3.6
REVS.
BACKGROUND
RANGE
16
15
0.490 22
254 . 1 1
2 .35
B43U
EXHAUST SAMPLE
RANGE
16
15
22
19
15
WEIGHTED VALUES
GRAMS/MILE
BEFORE ROUNDING
GRAMS/KM
ULFORE ROUNDING
METER
72.7
34 . 5
tV.j . 6
6u . 0
7 . 3
II C
3.751
3 . 75 1 1 3
2 . 331
2 . 33UB4
CONC .
217.72
17.44
19
15
. RUI L
METER
2 .8
6.B
4 .7
0.0
3.5
REVS.
BACKGROUND
RANGE
16
15
0.635 22
663 . 03
3.65
19
15
NM-HC
3 .
3 .
2.
2 .
727
72736
316
31607
METER
2.5
6. 7
4 . 7
0.0
3. 3
CO
13.53
SAMPLE
CONC.
20.85
3.45
0.045
0.0
1 .80
SAMPLE
CONC.
8.39
3.45
0.042
0.0
1 .75
SAMPLE
CONC.
7 .49
3.40
0.042
0.0
1 .65
C02
272
13 . 5324 27 1
8.41
169
8.4086 168
SECS.
CORRECTED
CONCENTRATIONS
449.22 PPM
17.50 PPM
0.624 %
607.68 PPM
3.31 PPM
445.91 PPM
SECS.
CORRECTED
CONCENTRATIONS
165.54 PPM
7.83 PPM
0.449 %
254 . 1 1 PPM
0.67 PPM
164.87 PPM
SECS.
CORRECTED
CONCENTRATIONS
210.63 PPM
14.22 PPM
0.596 %
663.03 PPM
2.09' PPM
208.54 PPM
NOX
0.53
.53 0.5346
0.33
.72 0.3322
VM1X =
GMS
22 .
2 .
987 .
61 .
0.
22.
VMIX =
GMS
12.
1 .
1117.
40.
0.
12.
VMIX =
GMS
9.
1 .
864 .
61 .
0.
9.
3052.0
MASS
39
57
32
15
17
22
4798.0
MASS
-
97
81
20
20
05
92
2802^0
MASS
64
92
59
25
10
54
CU. FT.
EMISSIONS
GMS/MI
6.261
0.719
276. 1 19
17 . 101
0.046
6.215
CU.FT.
EMISSIONS
GMS/MI
3.332
0.464
286.970
10.325
0.013
3.318
CU.FT.
EMISSIONS
GMS/MI
2.663
0.530
238.903
16.925
0.026
2.637
DILUTION
GMS /KM
3.891
0.447
171 .573
10.626
0.029
3.862
DILUTION
GMS/KM
2.070
0. 288
178.315
6.416
0.008
2.062
DILUTION
GMS/KM
1 .655
0.329
14B.447
10.517
0.016
1 .638
MPG
FUEL
ECONOMY 13
13
.5
.4919
FACTOR = 17.309
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL
12.8 5.42
L/IOOKM
18.4
FACTOR = 25.164
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG
13.1
KPL L/IOOKM
5.58 17.9
FACTOR = 18.525
AUX. AUX. AUX.
FIELD1 FIEL02 CODE
MPG
15.0
KPL
5. 7
5.7362
KPL
6.39
L/IOOKM
15.7
L/IOOKM
17.4
17.4329
\
l.UMMLNTS; AUDI STRAIGHT PIPE NOX SAMPLED CAST 5 STALLS 1 FALSE START BAG 1
FTP W/AIR FUEL RATIO METER PROM *5 NOX VALUES QUESTIONABLE-VOID
IHE FUEL ECUNUMY VALUE WAS CALCULATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REGULATIONS.
164 IB
DYNO SITE:D209 TEST 87-3925
-------
I E : 1
It SI a b/bUJb
I9BO LIGHT DUTY VEHICLE ANALYSIS I
PROCESSED: 12:32:47
AUG 28. 1987
Ml l< . •
i,-in : -IIAO i :
Vhf<
0
N
MI-R .
RUN. RETEST
ALT.
H. P.
EQUIVALENT
TEST
ACTUAL
DYNO
TRANS.
OVER-
DRIVE
TEST TYPE
EXPE
CVS 75-LATER
CUhb I'KV A/\Lt
PRtP IJA'IC Wt 1 GH I WHGMT GAUGE
OH _'t>-il7 EMPTY
A.M t /
Ml.ASURE
IGNITION TIMING /
#2 RPM GEAR
/ % co /
IDLE HIGH SPEED
IDLE SOAK COASTDOWN TIME
RPM GEAR PERIOD ACTUAL ADJUSTED
24 0.0
I ...._._.- AM 111 L N 1 I I '•> I ( UNO 1 T 1 ONb - - • • /
HAKil Ot"W AMb ll-MP "/. REl. S.HUM NOA CVS
"HC, P01NI IfcMP UNIT IHJM GR/LB hAlMOK ALDEHYDES RGE
29.CIH 4V.y 73.'., (> 40 . .i 6U.9G 11.8983 27C
/- -- UVNAMUMLIL'K ItST (.UNDITlUNi ----.../
UYNU AC I UAL DVNU T1RL OUUMETLR SYSTEM
I t', I DAlt" HR Silt IW St.T TWHP PS1 (Ml) MILES
Oil- J7-U7 lb U2UU 321>U 5.0 46.00 75556.2 N/A
H/u, i
'.111 ;
Ml I I: S b . bob KM B4 1 5 .
L XI IAUST '.AMHI. 1:
KAIHit Ml: I ER CONC .
1 ') 1 ('; . 1 41)11 . 04
lb lib . 9 ' 1 7 .'J2
.; .' 72.D.-' 11 . /Ill)
I u I b-
Ml II I AN! I b
I li NM
DAI, :• i. >i3i-i Milt
:. rii. *rA2U3
RANGE MEItR
IK t 1 n 16
NO/ -CMEM lb
CO
MET HANI:
HC - NM
BAG 3 3.1,ill
SHE * A 2 U 3
IK. -f 10
NOX- l.llhM
CO 2
CO
ME IIIANE
HC NM
M 1 1. 1.1
l.>
iy
b.334 KM 9177.
i. r SAMPLE
CONC: .
6 1 . b •/ 184 . 09
I U . ti-/ . b . 39
b 1 . 8 -•' 0.50 1
31.2 .'' /bb 32
b . 1 S v . 55
bby KM
I bAMl'l I:
RANGE Mf T LR , CONC:
1(> 7(> . b ' 22H . 1!
••'•••'"/ '•••-"
lib . U /, Cl . t,3b
(,l> . 3-/ i>3-4 . 73
7.7/ 3.05
ROLL
HAC
RANGE
1<)
15
22
19
lb
RCH. 1
REVS .
KGROUND
METER
0 . 2
0. 7,
4 . 8
U . 0
3. B
REVS.
BACKGROUND
RANGE
16
lb
2 2
19
Hi
ROI 1
METER
1 . 9
1 . 5
4 .9
Cl . U
3 . 7
REVS.
BACKGROUND
RANGE
IG
ib
1' 2
19
15
METER
2 . 0
1 . 3
4 . 7
U . 0
3.B
SAMPLE
CONC.
''
-//
/'
/
'•'
5.
0.
0.
0.
1 .
96
35
045
0
90
SAMPLE
x^CONC .
x
/
S
_/
.^
5.
U.
0.
0.
1 .
b9
75
046
0
85
SAMPLE
CONC.
X
'/
.
/
5.
0.
0.
0.
1 .
99
65
044
0
90
SECS.
VM1X =
CORRECTED
CONCENTRATIONS
475
17
0
639
3
472
. 25 PPM
.59 PPM
. 666 %
. 95 PPM
. 17 PPM
.08 PPM
SECS.
GMS
22 .
2.
996.
60.
0.
22.
VMIX =
CORRECTED
CONCENTRATIONS
178
4
0
285.
0
177
.63 PPM
.67 PPM
. 458 %
.32 PPM
.78 PPM
.85 PPM
SECS.
GMS
13.
1 .
1132.
44 .
0.
13.
VMIX =
CORRECTED
CONCENTRATIONS
223
1 1
0
634
2
221
.48 PPM
.86 PPM
.594 %
.73 PPM
.06 PPM
.43 PPM
GMS
10.
1 .
856.
58.
0.
10.
2B89 .0
MASS
CU.
FT .
DILUTION
EMISSIONS
GMS/MI
42
47
49
96
15
27
4779 .0
MASS
6.
0.
276.
16.
0.
6.
CU.
EMI
212
685
102
889
041
171
FT.
SSIONS
GMS/MI
94
09
80
96
06
88
2782.0
MASS
3.
0.
287 .
1 1 .
0.
3.
CU.
EMI
542
276
807
422
015
526
FT .
SSIONS
GMS/MI
15
60
32
22
09
06
2.
0.
235.
15.
0.
2.
789
44 1
195
990
026
763
GMS/KM
3.860
0.426
171 .562
10.494
0.026
3.834
DILUTION
GMS/KM
2.201
0.171
178.835
7.097
0.010
2.191
DILUTION
GMS/KM
1 .733
0. 274
146. 143
9.936
0.016
1.717
FACTOR = 16.346
AUX. AUX. AUX.
FIELD! F1ELD2 CODE
MPG
12.8
KPL
5.43
L/100KM
18.4
FACTOR = 24.444
AUX. AUX. AUX.
FIELDl FIELD2 CODE
MPG KPL
13.0 5.52
L/IOUKM
18.1
FACTOR = 18.563
AUX. AUX. AUX.
FIELDl FIELD2 CODE
MPG
15.3
KPL
6.50
L/100KM
15.4
WEIGHTED VALUES
GRAMS/MIL E
BEFORE ROUNDING
GRAMS/KM
BLI'-ORE ROUNDING
HC
. Obb
. IIB4 I A
.414
. 4 13BI,
NM-HC
3.861
3.86117
2.399
2.39922
CO
1 3. BO
13.7977
B.5735
C02
271.
270.98
168.
168.38
NOX
0.41
0.4051
0.25
0.2517
FUEL ECONOMY
MPG
13.5
13.4986
KPL
5.8
5.7509
L/100KM
17.4
17.3883
COMMENT;
AUfM I'liOM fj
IHL I-UEL LC.UNOMY VAl ut
l! Al ClJL AT bU USING CONSTANT FUEL PROPERTIES FROM PRE-19UB REGULATIONS.
16410 0
DYNO SITE:L>209 TEST 87-5035
-------
HYNi) Sill; :U2l)y
T f S I
1980 LIGHT DUTY VEHICLE ANALYSIS |
PROCESSED: 12:32:40
AUG 28. 1987
i,4u 4 JAO I .) I tth'tl
HlA I t
lid- 2V-b /
t.'llKli
Wb I l-il I'l
MFR .
VLK- HEP. HUN. l' . 9' 711 . U L)
I ( ilNUl f 1 ONS -- — - /
7. HI. I. S.HUM IMU<\
HUM GH/L6 hAl'IOK
:iy . -) 48. y6 U . By III
Al LitHYUES
/ -- OYNAMOMI-. I t K It-'Si
OYNU AC] 1 UAI
1 i sl HA IE i IK i, I TE I w Sh T
tin . H tl / lib D2I.I9 3'J'JII
CVS
RGE
27C
CONDITIONS /
DYNO riRL ODOMETER SYSTEM
VWHP PSi (MI) MILES
5.0 45.UO 75570.y N/A
UAI
'. 1
UAl
S 1
.A 1 3.'.,'VJ
1 1- «-A2u3
Hi. 1- 1 D
HO>. l.llkM
Cll2
Cd
ML 1 IIANt:
I-H -NM
A 2 3 . U 'J 4
1 t »A2U3
Hi. -h 1 D
NOX - I.MEM
CO 2
CO
Md IMANl:
III' -MM
hAG 3 3 . 597
SITE »A203
III' ' L ID
NUA I.HLM
CO 2
CO
Mt S'MANE
HC " NM
Ml 1 L.
h
RANG
19
1 5
2 2
19
It,
Ml Lg
1:
HANG
1 b
Hi
2 2
19
15
Mil 1:
S '.", . /2(J KM b29b .
XHAUSI SAMI'I t
I! METLH ,. CONC.
16. //" -498 .80
3 7 . 0 xO 1 8 . 4 7
l,y . 0 • , S (I . 677
7 1 . C, -X/bbt) . 43
1 U . b -^ b . 4 1
S b.2b/ KM 91)79.
XHAUSl SAMPLE
E ME1 LH x' CONC .
6f> . (S 'y'T'Jt) . 39
i u . o Xi 4 . yy
50.3 y' 0.406
3fi. 3 /y-334 .1)8
ti.h/ 2. BO
S !') . 789 KM b3b V .
EXHAUST SAMPL E
RANG
It,
It,
2 2
19
t" ME TEH S CONC .
bU . 2 ^24(1 . 29 i
2 3 . b ' 1 1 . b 7
b'l . 3 ^ I) . b'2ti
/ U . 2 / / b 1 . 1 1
b . 1 ' 4 . U b
ROLL REVS.
BACKGROUND SAMPLE
RANGE METER .,
iy 0.3
IS 7.8 -^
22 4.9V,
19 0.0^
15 3 . 9 X
ROLL REVS.
CONC.
8 .94
3 .89
0.046
0.0
1 .95
BACKGROUND SAMPLE
RANGE METER/
Hi 1 ~l ^
Hi 0.4 -*^T
2 2 4.7 /'y'
19 0.0 ^*
15 3 . b/
ROLL HEVS.
CONC.
5.09
0 . 20
0. 044
0.0
1 .90
BACKGROUND SAMPLE
RANGE METER x-
111 1 . 3 /
It, 0 . O /
22 4.8 /^^
19 0.0 -^
15 3 .9^
CONC .
0.0
0.045
0.0
1 .95
SECS.
CORRECTED
CONCENTRATIONS
490.40 PPM
14.81 PPM
0 . 634 %
689.43 PPM
3.57 PPM
486.83 PPM
SECS.
CORRECTED
CONCENTRATIONS
191 .50 PPM
4.bO PPM
0. 444 %
334.08 PPM
0.98 PPM
190.52 PPM
SECS.
CORRECTED
CONCENTRATIONS
236.61 PPM
11.87 PPM
0.586 %
761 . 1 1 PPM
2.21 PPM
234.40 PPM
VMIX= 2942.0
MASS
GMS .
23 .56
2. 10
966 . 01
66.87
0.17
23 . 39
VM1X= 4833.0
MASS
GMS.
15.11
1.12
1112.22
53.23
0.08
15 . 04
VMIX= 2806.0
MASS
GMS.
10 .84
1 .61
852 .01
70.41
0. 10
10. 74
Co. FT. DILUTION
EMI SSIONS
GMS/MI GMS/KM
6. 620 4.113
0.591 0.367
271 .431 168.659
1U . 790 1 1 .676
0.048 0.030
6.572 4.083
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
3 . 881 2.412
0. 287 0. 178
285.629 177.482
13.671 8.495
0.020 0.012
3.862 2.399
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
3.014 1 .873
0.447 0.278
236.858 147. 177
19.575 12.163
0.028 0.017
2.986 1.855
FACTOR =
AUX .
FIELD1
MPG
12.8
FACTOR =
AUX.
FIELD1
MPG
12.9
FACTOR =
AOX .
FIELD1
MPG
14.9
16.845
AUX. AUX.
FIELD2 CODE
KPL L/
5.44
24.852
AUX. AUX.
FIELD2 CODE
KPL L/
5.48
18. 395
AUX. AUX.
FIELD2 CODE
KPL L/
6.32
100KM
18.4
100KM
18.2
100KM
15.8
Wt I L.M I tD VAl lILi HI.
GHAMi/Ml I. E -I . Jllij
btt-'OHt ROUNDINI.. 4. 'Jilt,29
GRAMS/KM 2.1,14
HE FORE ROUNDING 2 . li I 367
t.OMMLU I !-. : AUDI PHOM h
NM-llC
-1 . 178
4 . 1 783/
2 .596
2.59632
CO
16. 34
16.3380
10. 15
10.1520
C02
269.
269.36
167.
167.37
NOX
0.39
0.3932
0. 24
0.2443
FUEL ECONOMY
MPG
13.4
13.3667
KPL
5.7
5.6873
L/100KM
17.6
17.5829
4 SlAl.t.S bAG I START
lul I nil H MiOMV
(if. WAS l.AICUiATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REGULATIONS.
16418
DYNO SITE:D209 TEST 87-5036
-------
TEST
FORMALDEHYDE WORKSHEET DATE:
bJ0n
"H^O
Distance
TOTAL CH.,0
*•
Units
me/mi
m?
mi
^r-tmarv
Seeondai-v
TOTAL
primarv
Secondarv
TOTAL
wt . mi
wt. CH-,0
BAG 1
V^^>. y
do , //
#1 6» ?/
JSIS'f
?/. /7
Z.ffV
(0.5)
~ / *77
/^ 6^ ^ y
(0.43)
.
•'-. Emission? 8T . wt . CK-,0
wt. mi
: i
; I
1
• t
1
.
BAG 2
<5
-------
FORMALDEHYDE WORKSHEET
TEST 0's
DATE:
Units
BAG 1
BA1 2
BAG 3
me /mi
^riroarv
3?3.
Secondary
37T/
TOTAL
Primarv
zz
Secondary
ss.te
TOTAL
nistance
mi
3.5<1
(0.5)
(1.0)
(0.5)
WP- mi.
'. CH?0
mg
//^.
(0.43)
(1.00)
(0.57)
wt. CH-,0 r
•>. Emission?
t-:t. CK-,0
vt . mi
ANALYSIS TEST DATE: V'/
VEHICLE:
VEHICLE CONFIG.: //^Ury>y, JR^
-------
FORMALDEHYDE WORKSHEET
TEST ,rs 77. $9Ji?
DATE: 7-x* - * ?
Distance
TOTAL CH.O
Units
mi
m?
5eron
-------
^77
FORMALDEHYDE WORKSHEET
TEST i?'s
DATE:
ANALYSIS TEST DATE:
VEHICLE:
VEHICLE CONFIG.:
-------
FORMALDEHYDE WORKSHEET
TEST v's-
DATE:
Units
?
BA'r ?
UTTTT
_
-
Ho0
xstance
•VTAL CH^O
-
: . xT?.ission<
•
"PPM
-.c /--• 1
me
mi
me
3 &
t
t
1
1
i
1
1
1
1
!
!
I
|
^-_
SemnHarv
TOTAL
Primary
Secondary
TOTAL
wt . mi' .
wt. CHoO
wt. CP00
wt . mi
1
i TOTALS'.
\
\
\
\
\
I
i
1
i
j^ *~ \
c23. 7V
4/7 ?.S5T
//*9d-7
W. Vb
/¥74. / (,
3
(0.5)
' /.7R
/V75-/6
(0.43)
"1S,~57."^~
•
'
/3 . A F6-
, J?/^>
yy, / ?
i
Cj ff / U •' 1
0
*-£/ -Y/
/7^7. V
^
/7S-7,*/
«3.. 5f 7
0
/o. J97
3r7. f ^ i
(3
3(57, //
//^7./
ft
JJ07. 1
3. GO
(0.5)
/. y r>
//07./
(0.57)
&3 r. 05-"!
i
/A /73s
o
/A / 7 3
1
as 7, VJ?
*VC>1A.'71
s <*)«* ^^
ANALYSIS TEST DATE: ff--f- P 7
VEHICLE:
VEHICLE CONFIX. :
-------
COMPOSITE TEST RESULTS FROM 2658Z-MXX
TEST
NUMBER
871791
871792
871793
873925
875035
B
A
3
3
3
3
3
%
OF .
U£ T k-l
Mb 1 n
100.
100.
100.
100.
100.
MILES
1 1 .086
10.997
1 1 .053
1 1 .088
1 1 . 186
< CURRENT TEST RESULTS >
H C CO CO2 NOX
4
3
3
3
3
.013
.934
.592
.751
.885
6
7
6
13
13
.725
. 109
.561
.532
.798
270
268
266
271
270.
. IB
.79
.75
.54
99
0
1
1
0.
0.
.0
.459
.273
.535
.405
0
0
0
0
0
<
H C
.472
.463
.423
.441
.457
6
7
6
13
13
PROPOSED TEST CALCULATIONS (GRAMS/MILE)
C 0 C02 NOX OMHCE CH30H HCHO
.725
. 1 10
.562
.532
.798
270
268
267
271
270
.25
.93
. 10
.69
.89
0
1
1
0
0
.0
.459
.274
.536
.405
5
5
4
4
5
.19410
. 09 1 1 0
.649 9
.85610
.0281O
.903
.689
.761
. 195
.556
0
0
0
0
0.
.00001
.00001
.00001
.0
.0
13
13
14
13
13
.83
.88
.08
.34
.33
2
2
2
2
2
> METH-
ANOL
~ M P *~
.0105
.0105
.0105
.0105
.0105
u
27
27
28
26
26
GAS
FACTOR EQUIV
MO f*
r* u
.81
.91
.30
.81
.60
875036 3 100. 11.050 4.206 16.338 269.36 0.393 0.495 16.338 269.34 0.394 5.44411.430 0.0
13.17 2.0105 26.48
-------
BAG BY BAG TEST RESULTS FROM 265BZ-MXX
TEST
NUMBER
B71 791
871 791
87)791
B7I792
871792
871792
871793
B71793
871793
873925
B73925
873925
875035
875035
B75035
8/5036
875036
B75G36
B %
A OF .
G ME TH
BAG=1
BAG=2
BAG=3
BAG= t
BAG=2
8AG=3
BAG- 1
BAG = 2
BAG = 3
BAG- 1
BAG = 2
BAG = 3
BAG = 1
BAG=2
BAO- J
BAG = 1
BAG- 2
BA(,-.I
MILES
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
iuu .
1 UU .
MID .
100.
HID .
3.
3.
3.
3.
3.
3
3.
3
3
3.
3
3.
3.
3.
3
3
3
3
< CURRENT TEST RESULTS >
H C CO C02 NOX
.630
.877
579
.540
883
574
579
.885
589
.576
893
.619
. Ii09
yje
. t>4 1
.559
.894
.597
23.
14.
9.
24.
13.
9.
18.
13.
9.
22.
12.
9.
22.
13.
10
23.
15
10
.816
351
543
.368
641
020
655
.667
018
.389
970
638
.421
.940
. 153
.560
. 1 14
842
40
15
31
46
15
31
42
15
27
61
40
61
60
44
58
66
53
70
.016
.308
.201
.476
. 103
.239
. 235
.239
.371
.147
. 198
.252
.956
.957
.219
.873
. 234
.413
1007
1 100
854
972
1098
848
963
1092
851
987
1117
864
996
1 132
856
966
1112
852
.37
.59
.09
.95
. 44
. 23
.53
.99
. 18
. 32
.20
.59
.49
.80
.32
.01
. 22
.01
0
0
0
6
4
6
5
3
5
2
1
1
2
1 .
1
2.
1
1
0
.0
0
.098
. 772
077
177
.938
.866
.57 1
.807
918
.472
,085
.605
103
1 18
.608
< - -
M
2.
1 .
1 .
2.
1 .
1 .
2.
1 .
1
2.
1
1
2.
1 .
1 .
2.
1
1
C
802
689
123
867
605
061
195
.608
061
.635
526
134
.638
640
. 195
772
.778
. 276
PROPOSED TEST CALCULATIONS (GRAMS/BAG ) >
C 0 CO2 NOX OMHCE CH30H HCHO
40
15
31
46
15
31
42
15
27
61
40
61
60
44
58
66
53
70
.018
.308
.201
.482
. 103
.239
.250
.239
.371
. 148
. 197
. 252
.956
.956
.219
.873
.234
.413
1006.
1101
853.
974.
1099.
847
964.
1095
850
986
1118.
864
997
1 132.
855.
966
1111
851
85
.68
60
09
1 1
99
17
.55
89
. 79
51
7 1
23
.02
.83
.71
.94
. 7 1
0.
0
0
6
4 .
6
5
3
5
2.
1 .
1
2.
1
1 .
2.
1
1
0 30.
.0 18.
.0 12.
. 10031
.77217 .
.078 1 1
.18124
.941 17
8681 1
.57628
.81316
.92212
.47329.
.08618.
. 6061 3 .
. 10930.
.11919
.60814 .
82164.
57438
.35225.
.53566
.65537
.67624
. 14650
.68937
.67324
.98760
. 79035
47726
.01960
04437
. 14227
49664
.56341
03329
. 702
.993
931
. 201
.064
.510
.690
. 135
.505
.853
.248
. 192
.921
.88 1
.589
.021)
.068
.459
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
0
0
.00004
.00004
.00003
.00004
.00004
.00003
.00004
.00004
.00003
.0
.0
.0
.0
.0
.0
.0
.0
.0
-------
D-L5"
APPENDIX D
HRCC-Audi Cold FTP Bag Data
Test No. 871791 871792 871793
Bag 1 QMS
HC-FID 23.82
NOx-Chem
C02 1007.37
CO 40.02
Methane 0.1l
HC-NM 23.71
Bag 2
GMS
HC-FID 14.35
NOx-Chem
C02 1100.59
CO 15.31
Methane 0.02
HC-NM 14.33
Bag 3
HC-FID
NOx-Chem
CO 2
CO
Methane
HC-NM
GMS
9.54
854.09
31.20
0.05
9.49
GMS
24.37
6.10
972.95
46.48
0.11
24.26
GMS
GMS
9.02
6.08
848.23
31.24
0.05
8.97
GMS
18.65
5.18
963.53
42.24
0.09
18.57
GMS
GMS
9.02
5.87
851.18
27.37
0.04
8.98
Average
GMS
22.28
5.64
981.28
42.91
0.10
22.18
GMS
13.
4.
1098.
15.
0.
13.
64
77
44
10
01
63
13
3
1092
15
0
13
.67
.94
.49
.24
.02
.64
13
4
1097
15
0
13
.89
.36
.34
.22
.02
.87
GMS
9.19
5.98
851.16
29.94
0.05
9.15
Error Range
GMS
+2.86
±0.46
±21.92
+3.23
+0.01
+2.84
GMS
+0.36
+0.42
+3.80
+0.10
+0.0005
+0.35
GMS
+0.26
+0.10
+2.93
+ 1.94
+0.0005
+0.26
Percent
Error
12.8
8.2
2.2
7.5
9.7
12.8
Error
2.6
9.5
0
0
25.0
2.5
3
,1
Error
2.8
1.8
0.3
6.5
10.0
2.8
HRCC-Audi Weighted Emissions/Fuel Economy
Test No. 871791 871792 871793 Average Error Range Percent
HC-FID 4.013
NOx-Chem 4.000
CO2 270.
CO 6.72
NOX
3.934
3.923
269.
7.11
1.46
3.592
3.581
267.
6.56
1.27
3.846
3.835
269.
6.80
1.36
+ 0.21
+0.21
+ 1.5
+0.275
+0.095
5.5
5.5
0.6
0
0
4
7
MPG
14.038
14.069
14.261 14.123
+0.112
0.8
-------
APPENDIX D (cont'd)
EPA Measured Audi/HRCC Performance Data
0-50
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Avg.
S.D.
MPH Tests
12.22 seconds
12.26
13.07
13.11
12.94
13.31
13. 11
13.15
13. 19
13.24
13.47
12.64
13.74
13.05
12.82
13.02
.78
30-50
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Avg.
S.D.
MPH Tests
7.16 seconds
7.43
7.09
7.32
7.08
6.90
7.02
6.93
7.25
6.96
7.24
7.06
7. 12
.43
------- |