EPA/AA/CTAB/87-06
                        Technical Report
  Evaluation of  Fuel  Economy, Exhaust Emissions  and Performance
        of a Sequentially Fuel-Injected High Compression
   Methanol-Fueled  1.5  L  Engine  in  a Light-Duty  Diesel Vehicle
                               by
                       Robert I.  Bruetsch
                         December  1987
                             NOTICE

Technical  Reports  do  not   necessarily   represent  final  EPA
decisions or positions.   They are  intended  to  present technical
analysis of  issues using  data which  are  currently  available.
The purpose in the release of such reports  is  to  facilitate the
exchange of  technical  information and  to  inform the  public  of
technical developments which may form the basis for  a final EPA
decision, position or  regulatory action.

             U. S. Environmental Protection Agency
                   Office of  Air and Radiation
                    Office of Mobile Sources
              Emission Control Technology Division
           Control Technology and Applications Branch
                       2565 Plymouth Road
                   Ann Arbor, Michigan  48105

-------
                        Table of  Contents


                                                           Page

I.    Background of Engine Development Work 	   1

II.   Diesel Vehicle Baseline Exhaust Emissions,
      Fuel Economy, Performance and Rated Power
      Output  	   7

III.  Diesel Vehicle Modifications and Engine
      Installation  	   9

IV.   Vehicle Testing for Best Economy	19

V.    Vehicle Testing for Performance 	  22

VI.   Vehicle Testing for Reduced NOx Emissions 	  24

VII.  Conclusions	29

VIII. Future Engine Modifications and
      Vehicle Evaluation  	  31

IX.   References	32

X.    Appendices	A-l


Appendix A -     Baseline Engine Data

Appendix B -     Vehicle Specifications and Baseline Data

Appendix C -     Vehicle and Engine Modification Details

Appendix D -     Exhaust Emissions, Fuel Economy and
                 Performance Test Data

-------
I.     Background of Engine Development Work

      Various   properties   of   methanol    fuel    have   been
investigated which  specifically relate to  its  suitability as a
fuel  for use  in  conventional   light-duty  engines.   The  poor
self-ignition  characteristics,  i.e.,  low  cetane  number  of
methanol  fuel  indicates  that  it   is not  easily  utilized  in
Diesel  engines.    Conversely,   methanol's   high  octane  quality
implies  it  is  fairly  suitable  for  application  in  spark-ignited
engines.  The  octane  number  of  methanol  is significantly higher
than  that  of  current commercial gasolines and methanol  lends
itself  for  use  in  engines  having  relatively high compression
ratios with inherent  thermal efficiency advantages  over current
gasoline-fueled  engines.    Methanol   also   has  good  lean  burn
properties which  offer further  advantages  in terms  of  thermal
efficiency   and   low  exhaust  emissions   when   used   in   a
spark-ignited engine.

      In  recent  years,  several  research  organizations  have
worked  on  the   development  of  engine   concepts  capable  of
successfully utilizing high compression  ratios  for  optimized
methanol combustion.   Ricardo  Consulting  Engineers, pic.  have
developed the  HRCC  (High  Compression Ratio,  Compact Combustion
chamber) engine  which,  by  specific  design  of the combustion
chamber, permits  the  use of  a  high  compression  ratio  (with a
relatively  low  fuel   octane  requirement)  together  with  the
ability to successfully utilize lean  mixtures or  tolerate high
levels  of  EGR.   Both are  important  attributes with  regard to
fuel economy and exhaust emissions.

      Considerations  of  the major  performance  characteristics
of   the  HRCC combustion  system  and  some of  the properties  of
methanol fuel suggested that they complement  each  each  other to
a  large  extent.   It therefore appeared that  an HRCC unit  was a
promising basis for the development  of  an  optimized  engine for
methanol use.   In  order  to confirm this  theory,   a  practical
engine  test  program,  aimed  at  investigating  the  potential
performance,  fuel  economy   and exhaust  emissions  of   an HRCC
engine when  fueled  with methanol,  was carried  out  by  Ricardo
under contract  with EPA.[1]*

      This    contract    resulted   in   the   production    of   a
methanol-fueled High  Compression Ratio,  Compact Chamber  (HRCC)
engine  in which  air/fuel  mixture strength  was  controlled using
a  simple carburetor  and   ignition  timing  was varied   using  a
conventional  distributor   with  vacuum  advance.    This  engine
showed  considerable  potential  with  regard  to  high  thermal
efficiency and low  exhaust  emissions.   However,  it was apparent
that  the relatively simple  engine control  system  used  imposed
significant    limitations    on   several   aspects   of   engine
performance.
      Numbers  in  parentheses  denote references  listed  at  the
      end of the paper.

-------
                               -2-

      EPA  initially attempted to  test  the engine  on  an engine
dynamometer  (as received) in  order  make  an exact comparison to
the  Ricardo tests.   This evaluation was  performed  under  the
direction  of engineers in the Technical  Support Staff with the
aid  of  technicians  in  the  heavy-duty test  cell at MVEL.   The
details  of this test  program are included  in  Appendix A.[18]
After this evaluation,  it was envisioned that  the  engine would
then be  placed in the chassis of  an Audi 5000 Diesel vehicle to
compare  the  performance,  fuel economy and  exhaust  emissions of
the  methanol  and Diesel  engines  in the  diesel vehicle  on a
chassis  dynamometer.

      Problems  were experienced  by the  previous  project  team
when  it  came to  fitting  the  engine  into a vehicle for chassis
dynamometer  testing  purposes.    The  vehicle   chosen  was  a
three-year   old   1980   Audi   5000  Diesel   with  a  5-speed
transmission.   The Audi is  a 3250  Ib  IW vehicle,  whereas  the
HRCC  engine  is  based  on  a  VW  Rabbit  powerplant   which  is
normally fit  into  a 2500  Ib  IW  vehicle.    It was believed that
the  increased  power output  of the high  compression HRCC (rv =
13:1)  would  compensate  for  the lower  power-to-weight  ratio
obtained by swapping  a smaller  engine  into a larger vehicle.
The  objective   was  to  compare  the    fuel   economy  of  the
methanol-fueled  engine  with the  certification  Audi Diesel fuel
economy.   Secondary  objectives   included  the  comparison  of
exhaust  emissions  and performance.   A  transmission adapter was
fabricated   to   fit  the  transverse  HRCC  engine   into  the
longitudinal  Audi   chassis.    Though  no  documentation  exists
regarding  the  engine  swap   or   attempted  chassis  dynamometer
testing, it  is believed  that  this effort  was  unsuccessful due
'to  problems which  occurred  when the  VW  Rabbit  flywheel  was
mated to the Diesel clutch.   Proper clutch operation  was never
obtained.   Additional  complications may  have  occurred  as  a
result of  the  engine's  relatively simple control system and the
vehicle  never   achieved acceptable  power  output  for the  FTP
driving cycle.

      The  engine  was then removed from the vehicle and shipped
bac..     Ricardo  for  further  development of  the fuel management
sys-i.,.   .0   incorporate  a  sequential fuel  injection  system in
place of the carburetor,  and to provide  mapped Microprocessor
control  of various Engine Control (MEC)  parameters.  This work
was performed from October 1984 through September of 1986 under
EPA Contract No. 68-03-1968.[9]

      Under  this  contract,  alternative  ignition  systems  were
initially  investigated before  the   fuel metering  system  was
modified.  A  Bosch/MEC ignition  system was shown  to  result in
similar  performance  compared  with  the  original  A.C.  Delco
ignition  system  and  was  adopted  for   the  subsequent  engine
development  program.   This  result  showed  only  that   the  high
energy  ignition  system  previously  used  did  not  offer  any
significant advantage to the methanol engine concept.

-------
                               -3-

      Compared with the  carbureted engine, the  injected  engine
has a much  reduced ignition requirement at part load by 6 to 10
degrees  with  reduced  HC  emissions   and  higher  brake  thermal
efficiency.    Some  of  these differences were  evidently  due  to
the mechanism of fuel preparation since the engine  was  shown to
be sensitive to fuel injection rate and timing.

      At  full load  the  changes  to  mixture  preparation,  fuel
distribution  and intake  manifold geometry  led to  a significant
improvement  in BMEP above 50 rev/s  and  an  increase  in brake
thermal  efficiency  of  2.5  percent   over   the  speed  range.
Volumetric  efficiency  is,  however,  some  5-10 percent  lower  at
20 to 40  rev/s because the manifold geometry  favors  high speed
running.

      Pre-ignition  was  encountered   while  running  at  optimum
mixture strength  above 60  rev/sec  at  full  load.   This  caused
slight  damage which necessitated  fitting a  new piston.   This
was  an  unforeseen problem  as test  work with the  carbureted
engine  had  indicated  that the engine could be over advanced by
up to  10  degrees  before  encountering pre-ignition when  BN-60Y
sparking plugs were fitted.   Richer  mixtures  were later used to
prevent reoccurrence of pre-ignition.

      The mixture  strength  for best  economy without significant
HC  emissions  penalty  was  generally   found  to  be   at  an
equivalence ratio of 0.7 and this mixture  strength  was  used for
the "best economy" maps.   This equivalence  ratio was  the same
as  that  established   as   optimum  for  the  carbureted  engine.
Maldistribution and  lack of adequate  transient fueling control
with the  carburetor  meant  that  this  lean  potential could not
previously be  utilized.   This  was  not the case for the injected
engine  so that the full potential of the engine  concept could
be realized  in the vehicle application.   The result of this was
a   predicted   fuel   economy   improvement    of   18   percent
(Audi/Injected/HRCC over  VW/Carb/HRCC)  despite the  increase of
vehicle weight from 2500 to 3250  Ibs.

      A second control strategy, using EGR and  ignition  timing
retard,  was  identified to  reduce  the NOx emission  level below
that obtained with best  economy  and comply  with  the  project
objectives  of less  than  0.7  g/mi NOx.   The  control  strategy
optimization  showed that NOx emissions could be reduced by 62
percent  with  an  insignificant  increase  of  HC  emissions  by
selecting a  suitable  strategy  for EGR,  mixture strength,  and
ignition  timing.   This  strategy   increased   predicted  fuel
consumption  6  percent  (0.9  MPG) .    It  was  felt  that  the  low
vehicle  power/weight  ratio,  which  at  about  43  kw/ton  (58
hp/ton)  is  well  below that  typical  of current  gasoline  engine
vehicles at  50 to 60  kw/ton (67  to  80 hp/ton),  combined with
lean air/fuel mixtures, EGR and ignition retard  would result in
a  vehicle  concept whose  driveability may  be  unsatisfactory.
Without  ignition  retard,  1.07  g/mi  NOx  was  achieved,  and
Ricardo developed  this as  a first  cut at  a reduced NOx strategy
with driveability that  was believed to be  acceptable.

-------
                               -4-

      Simulation  of engine  transients was  carried out  on the
test bed  by actuation of the throttle lever between "stops."  A
smooth  transition  between  engine   loads   was   achieved  by
calibration  of  the MEC maps. [15]   It was recognized that it was
not possible to fully  calibrate transient  engine performance on
the  engine  testbed  and  that further  development  of  engine
transients  would  be required  when the  engine  was  fitted  into
the vehicle by EPA.

      The  engine  "cold start strategy" was  set  up to  enable an
unaided start to  be achieved at an ambient  temperature  of  10°C
(50°F).   Tests  could  not  be conducted  at  lower temperatures
because the cell  had  no  cooling  facility.   Initial  strategies
for warm-up compensation and modulation of  EGR  rate during the
warm-up phase were also  devised using testbed data and Ricardo
experience  gained from similar applications.  Again,  this  area
was  recognized   as  one  where  further  development  would  be
required  during  the  vehicle phase or  as  part  of another  test
program.

      The  application  of  electronic  sequential  fuel  injection
and electronic  engine  management  to the engine was successfully
carried out during this second Ricardo project.

      The  effect  of fuel  injection was to  improve the engine
performance  when  compared to that  previously obtained with the
carbureted  version of  the engine.   At full  load,  maximum  BMEP
increased  by 6 percent  and  peak power output  by  16  percent;
however,   some    increased   sensitivity   to  pre-ignition   was
evident.   Under  part  load conditions brake thermal efficiency
increased  and HC  emissions were  reduced.   The engine  was noted
to be  sensitive to fuel  injection  characteristics such as  fuel
injection rate.

      The  part  load vehicle calibration  for  best  economy was
carried  out  at  a  leaner  mixture strength than  that  of the
carbureted  engine,  0.7   equivalence  ratio,   instead  of   0.8
equivalence  ratio  due  to  improved  mixture  preparation  and
distribution with sequential  fuel injection,  as  well  as the
sophisticated  transient   fueling   control   possible  with   the
Ricardo MEC unit.

      The  two calibration strategies  developed  for the engine
were  entered  as   data  to  the  Ricardo  "CYSIM"  drive  cycle
simulation computer program.[13]   The vehicle details  input to
the  cycle  simulation  program were  those   of  the  Audi  5000
vehicle.   To  supplement   the   comparison  with   the  results
predicted for the carbureted version  of  this engine when fitted
to  a  VW  Rabbit   vehicle,  a  simulation   of   the  Audi  5000
diesel-engined  vehicle  using Ricardo  in-house  data  was  also
carried out.  These  results  are  summarized  in  Table  1  for the
"FTP"  driving cycle, but  are really representative of hot-start
FTP engine-out emissions.

-------
                                  -5-

                                Table 1

             Predicted Hot-LA4 Results Using Ricardo CYSIM
                    Drive Cycle Simulation Program*


                                             Fuel Economy  Accel.  Time
                          HC     NOX    CO   Meth.   Gas    0-50   30-50
Vehicle/Engine/Strategy (g/mi) (g/mi) (g/mi)  MPG   Equiv.   (sec)  (sec)

1. VW Rabbit/Carb/0.8 ER 1.61   2.07   1.17 13.85  28.61

2. VW Rabbit/Carb/EGR    1.35   0.98   1.75 14.76  30.49

3. VW Rabbit/Injected/   1.95   1.29   3.35 16.84  34.80   15.0    9.1
   0.7 ER

4. VW Rabbit/Injected/   1.70   0.59   8.77 16.48  34.05   15.0    9.1
   EGR

5. Audi 5000/Injected/   1.92   1.75   3.37 16.30  33.68   18.0   11.0
   0.7 ER

6. Audi 5000/Injected/   1,91   1.07  19.90 14.90  30.79
   EGR**

7. Audi 5000/Injected/   1.82   0.67  14.52 15.40  31.82   18.0   11.0
   EGR+

8. Audi 5000/Injected/   1.94   0.65  21.24 14.50  29.96
   EGR++

9. Audi 5000/Diesel/no   0.11   2.15    —    —   32.85   22.9   14.4
   EGR
*    Steady-state simulation—no cold start adjustment.
**   Reduced NOx calibration without spark retard.
+    Initial reduced NOx calibration with spark retard,
++   Final reduced NOx calibration with spark retard.

Notes:
VW Rabbit - 2500 Ibs inertia weight.
Audi 5000 - 3250 Ibs inertia weight.
0.8 ER = Best economy carbureted calibration.
0.7 ER = Best economy fuel-injected calibration.
EGR = Reduced NOx calibration (0.8 ER).

-------
                               -6-

      Both  carbureted and  fuel-injected  HRCC  engine  "reduced
NOx" strategies  result in about  1.0  g/mi FTP  NOx emissions if
MET  ignition   timings   were   used   and   again   showed   the
fuel-injected engine  to  advantage  in fuel economy despite  the
end  weight  differential.   More  directly  comparable  results,
i.e.,  at  the same  simulated  inertia weight,  were carried  out
though  the  results   are  marginally  representative  since  the
change  of  vehicle  weight   requires  a  reoptimization  of  the
engine control strategy since  different  engine  speeds  and loads
are used.

      The comparison  with the simulated  diesel-engined  vehicle
shows  the  Audi/Diesel  to  have  low   HC   emissions   but  NOx
emissions  indicated  that optimization  of the  control  strategy
and/or   EGR  would  be  required.    A  comparison  of   the  fuel
consumption showed the methanol concept  to be favorable.

-------
                               -7-

II.  Diesel Vehicle Baseline Exhaust Emissions, Fuel Economy,
     Performance and Rated Power Output

     After the engine development work  under  the second Ricardo
contract was  completed,  it was decided to  reinstall  the engine
in  the  Audi vehicle  to  determine  whether  the  initial  program
objectives  of  comparing  the methanol  and Diesel engine exhaust
emissions,   fuel  economy   and   performance   could   now   be
successfully performed.

     The   1980   Audi   5000  was   not   cyclic   tested   in  the
as-received  condition (as  a  Diesel)   when  it  arrived at  the
Motor  Vehicle  Emission  Laboratory prior  to  removal  of  the
original Diesel engine.   However,  the vehicle  was  placed on the
dynamometer  for  a few  performance tests.    These  performance
data consist  of several  0-50  MPH  and  30-50  MPH  accelerations
which  are  listed in Table  2.   By  comparison  with  Table  l
values,   the actual  acceleration  times for  the Audi/HRCC  and
Audi/Diesel  combinations  are quite  a  bit  (5-6  seconds)  faster
than  the  performance predicted  by  the  Ricardo  simulations.
However,  as  we  shall  see  in  a  later section,  the  percent
improvement  in  performance with  the methanol engine  over  the
Diesel  baseline is essentially the same,  roughly 22  percent,
for both EPA tests and Ricardo simulations.

     Cyclic emissions and fuel  economy  data for  the Audi/Diesel
were obtained  from the 1980 Fuel Economy Program  49-State Test
Car  List (Gas  Mileage  Guide)  as  published  in  the August  27,
1980 Federal  Register.[22]  These  data are  listed in  Table 3
and pertain to  a 3,250  Ib.  ETW vehicle with  a  121  in5  in-line
five-cylinder  fuel-injected  Diesel  engine with a  compression
ratio of 23:1 and rated  power of  67 HP.   The Audi  5000 Diesel
has  front-wheel  drive,  a  manual  five-speed transmission,  an
axle ratio of 4.78 and an N/V ratio of  46,1.

     No   deterioration  factors  were  applied  to  the  exhaust
emissions  data  to account  for the  fact that this vehicle was
three years  old when procured  by  EPA,  and over six years  old
when evaluated with a methanol engine installed in it.

     The  vehicle  condition   prior  to  installation   of  the
fuel-injected HRCC engine was  quite poor since  it had  not been
moved for  three years and had  acquired a substantial  amount of
rust from  sitting dormant over three  Michigan  winters  outside
of  the   MVEL.    Several   parts  were  in  need  of  repair  and
replacement and  the  vehicle required  cleaning  and  maintenance
from bumper to bumper.

-------
                                -8-
                             Table 2

                  Audi 5000 Diesel Performance:
                June  30, 1983 Acceleration Tests

Test Run
1.
2.
3.
4.
5.
Average
Std. Dev.
0-50 MPH
(sec)
15.75
18.75
15.00
15.75
17.50
16.55
1.535

Test Run
1.
2.
3.
4.
5.
Average
Std. Dev.
                                                      30-50 MPH
                                                        (sec)

                                                         9.0
                                                         8.5
                                                         9.5
                                                         9.5
                                                         9.0

                                                         9.1

                                                         0.42
     30-50  MPH accelerations  performed cruising  at  30  MPH in
     third gear.
                             Table 3

          1980  Audi  5000  Certification Diesel  Emissions
                  and Fuel Economy (g/mi, MPG)
                 FTP              HFET
HC              0.405            0.162

CO              1.330            0.460

COZ               371              236

NOx             1.710            1.075

MPG                27               43           Combined = 33

-------
                               -9-

III. Diesel Vehicle Modifications and Engine Installation

     The  HRCC  engine,  as mentioned earlier, was  installed in a
1980  Audi  5000  Diesel  vehicle  (VIN=  43A0131868).   Prior  to
engine  installation,  however,  a  substantial number  of  vehicle
and  engine  parts  were  procured  or  fabricated  and  various
vehicle modifications needed to be made.

     The  goal  of  these  efforts  was  to ensure  that the test
vehicle  could  be  used  both  on the  dynamometer  for  emissions
tests  and as  a vehicle for operation on the road.   The  overall
test  program  consisted  of   five  distinct   phases  requiring
significant  coordination  of  in-house   personnel   and   test
facilities  and extramural equipment  and  services.    These five
phases  were:   l)  parts  procurement;  2) vehicle  modifications;
3)  engine installation;   4)  baseline Audi/HRCC vehicle  cyclic
testing; and 5) transient fuel and EGR calibration optimization.

     Neat  methanol fuel  was  used  for  all chassis  dynamometer
testing  of  the  engine/vehicle  combination.    The  test  fuel
specifications are listed in Table 4.

     Fitting  a  transverse  engine  into  a  vehicle  originally
designed   for   a  longitudinal  engine  presented   significant
problems,  particularly  with  a front-wheel  drive vehicle (see
Figures 1 and 2) .  The exhaust  system for  this  configuration is
completely  different  than  VW  Rabbit   system  and   had   to  be
fabricated based on Audi  4000  components.[16]   Fortunately, the
engine  being   installed  was  relatively   small   (4-cylinder,
1.5-liter W? Rabbit base engine) compared to the  vehicle engine
compartment  designed  for a  5-cylinder 2.0-liter  Audi  Diesel
engine.[17]  Engine compartment space was not expected to cause
insurmountable problems.   However,  the  front-end grille  frame
on the  Audi had been cut away slightly  indicating  that  extra
space  was  necessary  for  the  radiator  when  the  carbureted
version of the HRCC engine was installed in the Audi.

     Since  the  Audi  vehicle  had  been  sitting  outside  MVEL
without  an engine  for   three  years without  ever being  moved,
some components  acquired  a  significant  amount  of   rust.   The
bell  housing,   transmission   inlet  shaft,  and  transaxle  were
scrubbed  with  steel wool,  thoroughly  cleaned  and  lubricated.
The  front  tires were  replaced and  new front  disc  brake pads
were  installed.   New  engine  mounts  were  fabricated  and  the
alignment,  fitting,  and weight  distribution  of  the  engine,
drivetrain  and transmission  was  performed.   Radiator  mounting
brackets  were  fabricated  and  installed  and a  hood  scoop was
fitted since the new engine  configuration  sat a little  higher
in the  vehicle compartment with the new engine mounts and fuel
injection components.   The emergency brake was  repaired  and the
hood release was attached.

-------
                              -10-

                             Table  4

               Methanol  Test Fuel  Specifications


Appearance                   Clear,    colorless,     free    from
                             suspended matter and sediment

Relative Density 0/00        0.798 - 0.795
15.5/15.5°C

IBP°C                        >64.5

95% Dist. Temp. (°C)         <65.25

FBP°C                        <65.5

Water Content                <0.5  %   by  weight   (measured
                             57lppm)

Aldehydes and Ketones        <.0l5 % by weight, as acetone

Alkalinity                   <.0005 % by weight, as  ammonia

Acidity                      <.003 % by weight, as formic acid

Sulfur and Sulfur Compounds  <.0001 % by weight, as  sulfur

Composition % by weight:

     Carbon                  37 . 5

     Hydrogen                12.5

     Oxygen                  50.0

Octane quality (from lite-
  rature) :

     RON                     104-114

     MON                     87-97

     Stoichiometric air/     6.46
     fuel ratio

     Measured Calorific      19940
     Value, kJ/kg

     Latent Heat of          1100
     Vaporization
     kJ/kg (from
     literature)

-------
Major car components/Volkswagen
Front-drive transverse-engine cars
    Rabbit, Sclrocco, Pickup

      ENGINE
    1. Engine block
    2. Cylinder head
    3. Intake manifold
    4. Carburetor
    5. Fuel-in|eciion distributor
    6. Air cleaner
    7i Fuel-injector lines
    8. Fuel-injector nozzle
    9. Gas pedal
   10. PCVhose
   11. Oilfiller
   12. Oil tiller cap
   13. Drive bell
   14. Electrician
   15. Water pump
   16. Radiator
   17. Radiator cap
   Carburetor engine
                                                                                                                   45
18. Upper radiator hose
19. Lower radiator hose
20. Exhaust pipe
21. Camshaft drive belt cover
22. Overhead camshaft cover
                                                             Fuel-ln|ecled gasoline engine
                                                                                                                                                                   T)
                                                                                                                                                                   H-
                                                                                                                                                                   1-5
                                                                                                                                                                   tt>
                                     DRIVE IHAIN
                                  23. Clutch housing
                                  24. Manual transmission
                                  25. Differential
                                  26. CV joint
                                  27. Drive axle
                                  28. Shift lever
                                  29. Clutch pedal
                                  30. Clutch free play ad|uster
                                  31. Clutch cable
                                  32. Clutch-operating fork

                                     WHEtLS. IIKfcS. BHAKtS
                                  33. Tire
                                  34. Wheel bearing
                                  35. Brake disc
                                  36. Brake cahper
                                  37. Brake pedal
                                  38. Brake vacuum booster
                                  39. Brake fluid reservoir
                                  40. Brake master cylinder
                                   SUSPENSION
                                41. Lower A-arm
                                42. Coil spring
                                43. Shock absorber
                                44. MacPherson strut
   SIEEHING
45. Steering wheel
46. Steer ing column
47. Rack and pinion assembly
48. Tie rod
49. Rubber boot
   ELECTRICAL SYSIEM
50. Battery
51. Coil
52. Distributor
S3. Alternator
54. Starter motor
55. Starter solenoid
56. Sparkplug
57. Spark plug cables
162

-------
                                                                        Figure   2
Front-drive longitudinal-engine cars
    VW Dasher; Audi Fox, 4000, 5000
       CNGINF.
     1. Engine block
     2. Cylinder head
     3. Intake manilold
     4. Fuel-injection distributor
     5. Ait cleaner
     6. Cool air duel
     7. Fuel-injector lines
     8. PCVhose
     9. Oil dipstick
    10. Oil tiller
    11. Oil tiller cap
    12. Drive belt
    13. Crankshall pulley
    14. Electrician
    15. Water pump
    16. Radiator
    17. Radiator cap
    18. Radiator hosos
    19. Radiator overflow recovery lank
    20. Exhaust pipe
    21. Muttler
    22. Camshaft drive bell cover
    23. Overhead camshal! cover

       DRIVE I RAIN
    24. Clutch housing
    25. CV joint
    26. Drive axle
    27. Slnll lever
    28. Shill linkage
    29. Clutch pedal
    30. Clutch cable
    31. Clutch - opei aling lork
    32. Transaxle
    Five-cylinder fuel-Injected engine
                                                                                       Four-cylinder carburetor engine
                                          WHU:IS. IIRHS (IRAKIS
                                       33. Tire
                                       34. Wheel bearing
                                       35. Brake disc
                                       36. Brake caliper
                                       37. Brake pedal
                                       38. Biake vacuum booster
                                       39. Brake lluid reservoir
                                       40. Brake master cylinder
                                       41. Parking brake lever
    SUV.I 'I N'jK IN
42. Lower A-arm
43. Stabilizer bar
44. Coil spring
45. Shock absorber
46. MacPherson strut
    SIRtniNG
47. Steering wheel
48. Steering column
49. Rack and pinion assembly
50. Tie rod
51. Steering knuckle
52. Rubber boot
    CIECtRICALSYSIEM
S3. Battery
54. Coil
55. Distributor
56. Alternator
57. Sparkplug
58. Spark plug cables
59. Windshield washer
    reservoir
                                                                                                                                                                              163

-------
                              -13-

     Engine  installation required  the measurement  and fitting
of  several related  components.   A flywheel  spacer  plate  was
fabricated  to  align  the  Ricardo  flywheel  with  the flywheel
adaptor  plate,  bell   housing,   magnetic  pickup  and  starter
motor.   The  flywheel adaptor was machined  to accept a slightly
altered  starter  geometry to  line  up with  the  Ricardo flywheel
teeth.   A new pilot  bearing was  machined  to match  the main
shaft  from  the  transmission.   A  new  throwout  bearing  was
installed  and  the clutch slave  piston was  lengthened to allow
the  clutch to  engage  and  disengage smoothly  without loss  of
hyraulic  fluid.   All   hydraulic  systems were  bled  and  fluids
replaced.  A  new Bosch fuel  pump,  stainless steel fuel  lines,
fuel  filters  and  pressure  gauges were  installed.   Existing
power  steering  and  air conditioning   system  components  were
removed  since  they would not be needed  for  the Audi/HRCC test
program.   A  methanol tolerant  fuel cell was  installed  in  the
trunk.

     After vehicle  modifications were  complete,  and the engine
was  installed  in  the  vehicle,  all associated  components were
assembled  and connected.   The  air inlet  system  needed  to  be
rerouted  to   connect   with  the   previous  transverse  engine
configuration.  A VW throttle cable was purchased  and  installed
with  a  special pop  fit terminal  on the throttle to  adapt  it
from  automatic to  a standard transmission configuration.  Two
adaptors  were  manufactured  to  fit  the  modified  Audi  4000
exhaust  manifold  and head  pipe  through the engine compartment.
A  straight section  in the  exhaust  pipe  was   fitted in  case
•catalyst  testing  was  to  be  performed after the  engine-out
emissions were baselined.   A completely new  wiring harness  was
installed  to  hook up  all electrical connections.   This allowed
the  Ricardo  EGR  and  microprocessor   engine  controller  (MEC)
systems  to  be installed and  tested for accurate operation (see
Figures 3 and 4) .  Once these systems were  set  up and nominally
functional, all  other  hoses, pipes, valves,  sensors, belts and
thermostats were hooked up.   New fuses, a  battery,  spark plugs
and  wires,  distributor  cap  and  rotor  and  oil  filter  were  all
purchased locally and installed.

     The MEC  required  many  connections  for various  inputs  and
outputs.   Inputs  to  the MEC include  a throttle potentiometer,
crank  and  camshaft  pickups,  exhaust  gas  and  manifold  charge
thermocouples,  and  coolant   and  inlet  air  platinum  resistance
thermometers.    MEC  outputs  include  signals   to   the  ignition
module (distributor  and coil),  fuel injectors,  the Pierburg EGR
control  unit  and  an ADM 11  video  display terminal.   The  MEC
unit  itself  was  installed  in  the passenger compartment  by
removing the front passenger-side seat.

-------
 RKMD
-14-
                   EGR SYSTEM
                   •*Ma S HITS

                   fe»   MAfCM
                     THROTTLE
                       J
       FROM
    AIR CLEANED

LINEAR POTENTIOMETER
INDICATING EGR VALVE
     OPENING    \  VALvE

                   Hi
  INLET MANIFOLD
                          EGR FLOW
               1 MODULATED VACUUM
               [T0EGR VALVE.
               1   XVENT TO      VACUUM
                  rf ATMOSPHERE  x SUPPLY
                     VELECTRC7- L
                       PNEUMATIC
                      TRANSMITTED
        VACUUM
                MON-RETURM VALVE
                        CONTeOL
                         UNIT
         0-)0 VOLT SIGNAL FROM
         M.E.C. PROPORTIONAL TO
         REQUIRED EGR VALVE
         OPENING.
       EGR VALVE

       ELECTRO-PNEUMATIC TRANSMITTER

       COMTRC7L UNIT
                                                PART N'«->
             7.7I.C73I.OO

             PV 12.300

-------
               Input  and Output of Microprocessor Engine  Controller
I
UJ
    Crankshaft Timing Reference
           Camshaft Sync. Pulse
         Intake Manifold Vacuum
              Temperature Inputs
im
                        M. E. C.*
  t>
  {i . »
  S g «
  * - c •
22
                                         Driver

                                         Display

                                          Unit
                                      OCC.IQ: IQIINOI IDI IDUC i
                                      : :QC ii3! IDI 3C!Qi iai IOOLI
                                      ciaiiai IDI luni.iatic.mii
                                        Keyboard
                                       Ignition Signal
                                       Fuel Injection Signals
                                       EGR Signal
H-


d


CD


4^
                                                                                                     en

                                                                                                     I
                                                    * Microprocessor

                                                    Engine Controller

-------
                              -16-

     A- MEG  calibration  operates   by   defining  the  ignition
advance and  fuel  injector  pulse length for a given engine speed
(rev/s) and manifold  absolute  pressure  (mbar).   The temperature
inputs  (ambient,  inlet  manifold,   and  coolant)   are  used  to
modify certain derived variables  in  the engine  control strategy
during  warmup  periods.   The  control  strategy  structure  is
fixed, but  is  tunable by ten maps (of  10  by  10 elements).   The
elements  of these maps  may be individually  edited.   Permanent
or  temporary  offsets  may also  be added  to  every element  of  a
specified map.  The state  of MEG can be constantly displayed on
a  Lear  Siegler ADM 11  terminal.   A trace  of  input  and  output
variables   may  also   be   stored   in   volatile   memory,   and
subsequently  retrieved for  display.   The  required  changes  to
maps are  also  made via the terminal.  The ten derived variables
and their associated maps are described further in Table 5.

     The  10 by 10  elements  are accessed by using  the two input
values as  indices  (after normalization),  such  that  a  block of
four map  values are  identified as  "surrounding"  the  true map
operating  point.   The  map  output  is  then  computed  by  linear
interpolation  within  this  block.   The  temperature compensation
coefficients  (X map  variables)  are also  linearly interpolated
between adjacent defined values.

     On power-up,  the MEG writes  a  heading at  the top  of the
screen and  then writes  several lines of variable names together
with their  current values.   These values are only  updated  when
the  engine  is  running,  consequently   at  power-up,  the  values
have  no   significance.   The  final   line  of  the display field
prompts for  a  character to be entered.   A drawing  of a typical
MEG VDU engine panel  display is shown in Figure 5.

     If the  "character" is  one  corresponding to  a map  (as in
Table 5), then  the corresponding  map will be displayed together
with a prompt for map modification.  While the  display is being
continuously  updated,  other  characters  can be entered which
perform map storage and recall functions with  the non-volatile
memory.   Up to  six sets of ten 10 by 10 maps, i.e., six "proms"
can be stored simultaneously in non-volatile memory.

     A  trace   facility   is  also  provided   for   diagnostic
purposes.    Traces  can  be  started,  aborted  and displayed.[19]
Up to ten variables from a pre-defined set may  be  stored every
occasion  control   of  the  engine  is  invoked.   Memory capacity
allows up to  800  cycles to be  retained.   Up  to  four  of the
variables may  be  output on  analog channels, with a facility to
determine the gain of  individual  channels.   These traces helped
immeasurably  in  the   fine  tuning  of MEG  maps  to  achieve   lean
operation of  methanol in the  Audi  on  the  chassis dynamometer
with acceptable driveability.

-------
                                   -17-

                                  Table  5

                    Microprocessor Engine Controller Mags
Select Horizontal Axis
Map Name Character para, units, range
Steady-State F rev/s,-, 20-100
Fuel

Idle Fuel G rev/s,-, 2-20


Exp. impulse H rev/s,-, 20-100
Time Constant
Throttle Angle K rev/s,-, 10-100
Vertical Axis Map' Output
para, units, ranqe para, units

MAP, mbar 100-1000 Fuel Inj .
Fuel/100
arbitrary
unit
MAP, mbar 100-1000 Fuel/Inj.
Fuel/100
arbitrary
unit
Fuel/Inj. 5-50 Trans, height,
constant, mS

MAP, mbar 100-1000 Derivative
coef ,
Derivative
arbitrary
Advance Table
Idle Ignition
Map

EGR valve
 Temperature*
 Compensation
rev/s,-,  20-100   MAP,  mbar 100-1000


rev/s,-,  2-20     MAP,  mbar 100-1000


rev/s,-,  20-100   MAP,  mbar 100-1000
                           Temp.°K,100-1000
                  TTC, MCT, THC, SSF,
                  CT, EGR
unit

Ign. advance
deg BTDC/100

Ign. advance,
deg BTDC/100

0-1000 EGR,
arbitrary  unit

0-100 percent,
°K
 *    The  X map  contains  "percent"  of  steady-state  fueling,
      transient constant,  transient height  coefficient,  and EGR
      to be  applied in  a  specified manifold  charge  or  coolant
      temperature range.

 TTC = Transient time constant.
 MCT = Manifold charge temperature.
 THC = Transient height coefficient.
 SSF = Steady-state fueling.
 CT  = Coolant temperature.
 EGR = Exhaust gas  recirculation.

-------
                            -18-
                           Figure 5

Typical Continuously Updated MEC Engine Panel Video Display
  RICAROO MEC (V2.8.3)
  ENG SPEED (RPS) = 15.00  MAP (mB) = 365 EQR = 0  EGRPOS = -122
  IGN (deg BTDC) = 12.36     E.O.I, (deg ATOC) = 330
  FUEL: -  TOT -. 12.19  «l = .0  Tl = .0 FBL = 12.14 (TMPC = .0)
  TUN HEIGHT (%) = 160,  (TMPC = 0), TRN.T.C. (mS) = 178, (TMPC = 20)
  TEMPS (°K): - m = 359, AMB = 300, MC = 343 EX = 431, CJ = 307
  MAPS BEING USED ARE THOSE IN PROM 6, "BEST ECONOMY"
        This  screen space available for map or trace
            modification, formatting and display
 RPS     = Revolutions  per  second
 mB      = Millibars pressure
 MAP     = Manifold absolute pressure
 EGR     = Exhaust gas  recirculation
 EGRPOS  = EGR valve position (arbitrary units)
 IGN     = Ignition timing  (degrees before  top dead center)
 EOI     = End of injection (degrees after  top dead center)
 TOT     = Total fuel output (=FBL + TRN +  TMPC)
 WW      = Wall wetting compensation
 TI      = Throttle impulse
 FBL     = Fuel baseline (interpolated from "F"  and "G" maps
 TRN     = Transient fuel compensation
 TRNTC   = Transient time constant (milliseconds)
 TMPC    = Temperature  fuel compensation
 WTR     = Coolant temperature (°K)
 AMB     = Ambient temperature (°K)
 MC      = Manifold charge  temperature (°K)
 EX      = Exhaust gas  temperature (°K)
 CJ      = Cold junction temperature (°K)

-------
                              -19-

IV.  Vehicle Testing for Best Economy

     Once the  MEC,  EGR, fuel  injection  and  all  other necessary
engine  control systems  were  functioning accurately,  baseline
FTP tests were run to  observe vehicle  driveability  at  various
speed  and  load combinations  and during engine transients.   £
series  of  stripchart  recordings were  made  to observe  enginr
functions  of  manifold vacuum,  CO  emissions  (percent),  rol
speed  (MPH),  engine speed  (rpm),  and air/fuel ratio  (lambda
while  the  vehicle  operated  under   steady-state  and   cycli
conditions.

     These  traces and  the FTP  test  results  showed a  vehicle
with  minimally acceptable  driveability  and sporadically  rich
operation with extremely high levels of  HC and  CO emissions.
Specific segments  of  the vehicle  trace were  examined  in  more
detail  to  see  if  minor  adjustments  might  improve  vehicle
operation.

     Examination  of manifold  vacuum  and air/fuel  ratio  during
transients revealed that  the engine was  too  sensitive  to small
changes  in  throttle angle.   The Ricardo  MEC  fueling  strategy
algorithm was  investigated  to see  if changes to  the algorithm
could be made  to  smooth  out  the  noise  in  the air/fuel ratio
trace.   This  fueling  strategy is included  in Appendix  C.   As
shown in this diagram,  the throttle angle derivative  (K)  map is
an independent  additive function to the total  fuel output,  and
therefore does  not directly  effect  other  map  functions.   The
elements in the K map  were zeroed out to determine whether  the
MEC was  "smart" enough to  control  the  engine without  fueling
compensation for changes in throttle position with time.

     The  result   was   a  dramatic   improvement   in   vehicle
driveability  and  significantly  leaner operation  under  all
engine  conditions.    Various   increments  of   throttle  angle
derivative were tested  with the  engine controlled  in  the "best
economy" calibration.   This  testing began in  early April 1987.
The best economy  tests were  all performed  with • zero  throttle
angle derivative.

     Ricardo engine dynamometer test  results  from  mixture range
tests at key point conditions  indicated that the  highest brake
thermal  efficiency was achieved  at  an equivalence ratio  of
0.7.    It  was  considered,  from  Ricardo  vehicle   experience  of
applying lean control  strategies to  HRCC methanol  engines, that
a  control  strategy   with  0.7   equivalence  ratio   could   be
developed  in  a  vehicle  for  satisfactory  driveability  given
sophisticated transient  fueling  compensation.    Ignition timing
was kept  optimum  since Ricardo believed  that retard  from  MBT
would degrade engine response to an  unacceptable level.

-------
                              -20-

     The best  economy strategy was  based  on  engine  runs  over
the  load range  at  20,  40,  60 and  80  rev/s  to  determine  MBT
ignition  timings with  0.7  equivalence ratio  up  to 900  mbar
absolute inlet  manifold pressure.  Above  this,  the mixture was
progressively enriched  for full  load  conditions.   The  fueling
level  and  ignition  timing required for  each load and speed was
centered in  a  set  of  MEC maps.  Following  this,  the engine was
run  with the  fueling level  and  ignition  timing automatically
controlled  by  the  MEC  to  obtain  performance  and  emissions
readings from  which a set  of specific  performance  maps,  e.g.,
BSFC,  BTE,  equivalence ratio, BSNOx and BSHC versus  speed and
load, was derived.

     This  precise  calibration  resulted  in  efficient  engine
operation  and  a maximum brake thermal  efficiency  of over  33
percent.   Ricardo   reported  improvements  of  up  to  10  percent
under  low  load conditions  compared  to  the  carbureted  HRCC
engine.

     Ricardo also  found high  levels of HC emissions  under  low
load conditions when  operating under "best economy" calibration
conditions with lean mixtures  and MET  ignition  timings.   NOx
emissions during  lean operating conditions  (below 6  bar)  were
low  and  half that  achieved  with  the carbureted  version  of the
engine.

     EPA run FTP  test  results   for  best  economy  calibration
evaluations are  listed  in  Table  6.   All of these tests were run
with  zero  throttle angle  derivative  and   "engine-out"  exhaust
emissions averaged  0.45,  6.97, and  1.38 g/mile  for  HC,  CO and
NOx emissions,  respectively.  These  levels  are  acceptable given
that no  catalyst was  installed on  the  vehicle  and the results
varied  by  only  five  to  six  percent.   Engine-out  methanol
emissions,   as  predicted  by  CTAB's   MXX  methanol  emissions
calculation  program,   were  quite  high,  over   10  g/mile,  as
expected  from  a  methanol  vehicle  which does  not  employ  a
sophisticated cold-start engine control strategy.

     Fuel economy program objectives were  met and exceeded with
the  results  of  the best economy  vehicle tests.   Methanol  fuel
economy  averaged  14.13  MPG  which  translates   into  a gasoline
equivalent   (energy  based  fuel   economy)   of   28.0  mpg,  or  3
percent  higher  urban   MPG  than   the   Audi   5000   Diesel
baseline. [20]   Fuel  economy  test  results  varied  by only  ±2
percent, such that  the  improvement over the Diesel  engine  fuel
economy varied from 1  to 5 percent.  Details of these and other
exhaust  emissions   and  fuel  economy   data  are  included  in
Appendix D.

-------
                             -21-
                             Table  6

                  Best Economy Calibration FTP
       Emission and  Fuel Economy Results, Audi/HRCC  (g/mi)
Date
04/10/87
04/14/87
04/15/87

0
0
0
HC CO
.47 6.
.46 7.
.42 6.
Average
Average (@ constant
Diesel comparison
NOX
7 N/R
1 1
6 1
.5
.3
CH30H HCHO
10.90 N/T
10.69 .483
9.76 .398
performance)
OMHCE MPG
5.19 27
5.09 27
4.65 28
28
29
27
City
.8
.9
.3
.0
.7
.0
MPG city means 1975 FTP gasoline equivalent MPG.
N/R means not reported.  Stable NOx readings were not possible.
N/T means not tested for.
First test:  one stall, six false starts in Bag 1.
Second test:  8 stalls, 1 false start, Bag 1.
Third test:  5 stalls, 1 false start. Bag 1.
                            Table  7

                 Performance Results, Audi/HRCC
0-50 Accel.
(seconds)
13.0
16.6
30-50 Accel.
(seconds)
7.1
9.1
Vehicle
Audi/HRCC
Audi/Diesel
Testing conducted on a chassis dynamometer.
For 0-50 times, gears selected for best performance.
For 30-50  times, maneuver  started at  30  cruise,  run  in third
gear.

-------
                              -22-

V.   Vehicle Testing for Performance

     In  order  to compare  the  Audi/HRCC MPG to  the Audi/Diesel
MPG  at  equal performance,  a  series of acceleration  tests were
performed  on the  Audi/HRCC to compare  to the values  in Table
2.  Several sequences of 0 to 50 and 30 to 50  MPH accelerations
were run.   Zero  to 50  MPH times averaged 13.0 seconds and 30 to
50 MPH  times  averaged  7.1 seconds  (see Table  7).   Both  sets of
measurements   varied  by   roughly  +6.0  percent.    Both  EPA
(measured)  and  Ricardo  (predicted) Diesel  performance  values
are  roughly 22  percent  higher (slower) than  the corresponding
M100 values with the Audi/HRCC as shown in Table 8.

     The  decision  to  run  0  to  50   MPH  acceleration  tests
initially  on  the  Audi/Diesel  as  a  baseline was made  by  the
previous project engineer  on  this program.  Subsequent 0  to 50
MPH  tests  were  run,  by  Ricardo  simulation and  by  EPA  on  the
Audi/HRCC,  for  direct  comparison  to the  baseline.   Zero  to 60
MPH  tests,  as  is  generally  the  standard  practice  in  the
automotive industry, would have allowed  "measured" values to be
compared to on-road  acceleration  data  by the following equation
which has been derived using on-road acceleration data:[21]
     to-so (sec) = 0.82 (HP/IW)
                               -0.82
     Using this expression, "calculated" values for  0  to 60 MPH
performance of the  Audi/HRCC  and the Audi/Diesel vehicles (both
3,250  Ibs.  1W)  are  17.3  and  19.8 seconds,  respectively.   This
means that the predicted  3,250  Ib.  Audi performance is improved
by 13 percent by  using the sequentially  fuel-injected methanol
HRCC  engine  instead  of  the  original  2.0-liter  Diesel  engine.
This  translates  into a 6  percent loss in  fuel economy due  to
the   higher   performance   of  the  HRCC   engine   (change   in
performance = 0.454  change in MPG).   Therefore,  to  compare the
methanol-fueled  Audi   to  the   diesel-fueled   Audi  at  equal
performance,  all  fuel  economy  measurements  generated  in  this
test  program need to be multiplied  by 1.06.   Multiplication of
the Audi/HRCC average  FTP MPG  (28.0)  by  1.06  yields  29.7  MPG,
or a  10 percent  improvement over  the Audi/Diesel  at constant
performance.

-------
                    -23-
                   Table 8
 EPA/Ricardo Comparison MPG  and Performance
Ricardo: Computer Simulation - EPA:   Measured
	 	 • 	
Ricardo 	
Measure
MPG
0-50
30-50
Diesel
32.9
22.9
14.4
M100
33.7
18.0
11.0
Percent
+2%
-t-21%
+24%
Diesel
27.2
16.6
9.1
EPA
M100
28.0
13.0
7.1

Percent
+3%
+22%
+22%

-------
                              -24-

VI.  Vehicle Testing for Reduced NOx Emissions

     The  second  calibration  which  Ricardo developed  for  our
evaluation  was   the   reduced  NOx  strategy  which  employs  a
sophisticatd EGR control scheme  and slightly  richer  operation
(0.8  equivalence ratio)  than the  best  economy  calibration in
order  to  achieve  the  project  goals of  0.7  g/mi NOx  exhaust
emissions.

     In order  to  determine an  effective  strategy for  reduced
NOx using exhaust gas  recirculation,  a Ricardo computer program
"CONTROL" was used  to  analyze the test results from several EGR
keypoint  tests.   The  objective was  to devise  an  alternative
control strategy that  would  result  in  a maximum reduction in
NOx emissions  with minimum penalties  of  HC emissions  and fuel
consumption.  Exploration over  the range of  mixture  strengths
and  EGR  rates   established  the  operating  envelope  shown  in
Figure  6.   From  this  data, it  is  clear  that  the best economy
strategy  represents  a  strategy towards the lower range  of NOx
emissions  possible  with  MET  ignition  timing.   Furthermore,
there is  a  strong link  between  reducing  HC and  increasing NOx
emissions  indicating  that  a  simultaneous  reduction of  both is
difficult  to  achieve,  and the direction  for  minimum NOx is
similar to  that  for  a  fuel consumption penalty.  This indicates
that  reduced  NOx  will  result  in  increased  fuel consumption.
This  simple  keypoint  model   also  indicated   that  the  limits
presented by the  test  data resulted  in a  minimum NOx  level of
about 1 g/mi  for the Federal  Test  Procedure  if MBT timing were
used.  From  this  trade-off  data,  it was  decided  to  pursue  a
strategy which would result in a minimum NOx strategy without a
significant  HC  emission  penalty,   i.e.,  the  dashed  line  in
Figure 6.

     The  "CONTROL"  program enabled  the  equivalence ratio and
EGR rate  for the  reduced NOx  strategy to be  identified for the
keypoint loads and  speeds.  This  indicated that relatively rich
mixtures of 0.8  and 0.9 equivalence  ratio  should be used with
high rates  of EGR to  obtain NOx reduction without penalizing HC
emissions.   This  strategy,   using  MET   ignition   timings,
resulted  in a CYSIM NOx level prediction  of  1.07 g/mi  with a
level of HC emissions similar  to the  best  economy strategy.  It
was evident that  a  control  strategy with MBT  ignition timing
would not enable  the project  goal  of  0.7  g/mi to be  achieved.
The primary reason  for  the difficulty in achieving 0.7 g/mi NOx
compliance  was  considered  by  Ricardo  to  be  EPA's  choice of
vehicle  which  resulted   in   a   poor  power/weight  ratio  and
subsequent high engine  duty cycle.   It was  therefore  necessary
to  apply  7°-lO°  ignition  retard  in the  mid-upper load  range
from 20-60  rev/s  in  order  to  achieve the required level  of 0.7
g/mi  NOx.   The  final  strategy   resulted   in  a  reasonable
compromise  between  NOx   reduction,   HC   emissions  and  fuel
consumption.  However,  Ricardo believed that  when operating at,
or close to, the dilution tolerance limit of  an engine,  the use
of  ignition retard  would result  in a significant deterioration
of driveability.

-------

-------
                              -26-

     Following calibration of  the control strategy,  the engine
was then  run  with auto fueling/auto ingition/auto EGR to obtain
performance  and  emission  readings  from  which  the  specific
reduced NOx strategy performance maps were derived.

     As  a result,  up  to  15  percent EGR is used  under medium
load  conditions  and part  load  equivalence  ratios  are  in  the
range  of  0.8  to  0.9.   Brake  thermal  efficiency  was  slightly
reduced with  the maximum reduced  by 2 percent  to  31  percent.
Comparison of  the reduced NOx  maps with the best economy maps
shows that at  low load conditions,  significant  reductions have
been  achieved  but increased HC  emissions are evident at higher
loads.  Conversely, NOx emissions  are somewhat  increased at low
load  conditions,  although  they  remain  at a low  absolute level
but are significantly reduced in the medium  to  high load range;
the peak  NOx  level  of  12 g/kW h is reduced to 2 g/Kw h over the
range of engine speed used during the FTP drive cycle.

     When we  began testing the  Audi/HRCC with  the MEG  set  on
the reduced NOx  strategy,  it was  difficult  to  achieve accurate
NOx emissions, because NOx response failed to  return  to zero
stripchart  deflections  after   pre-sample   bag  analyzer  span
checks.   The error  was  determined to be  less than  5 percent  by
the   amount   of   deflection  from   the   zero   point  and  this
deflection remained stable throughout most  tests.   However, the
cause  of   interference  by  methanol  exhaust   has  not  been
determined as  of this writing.   Preliminary analysis determined
that  the  deflection   from  zero  was  proportional  to  methanol
emissions and did  not  occur at  low methanol emission  rates  or
with   other    methanol   vehicles   and   other   NOx  measuring
instruments.[23]    This  problem  is  still  being   investigated
within the Test and Evaluation Branch.

     A catalyst,  with  a loading of  9:1 Pt:Rh,  was installed on
the Audi/HRCC vehicle  to  see  if  the   level  of  catalyst-out
emissions  was significantly   lower than  engine-out  emissions
enough  to not  interfere with  accurate  operation  of   the  NOx
analyzer.   Although emission levels were  significantly reduced,
particularly the  reported  HC and  NOx  emissions,  problems with
the NOx  analyzer persisted.   It  was  then  decided to  complete
testing of  the  reduced NOx (zero throttle angle)  calibration
without the catalyst  and merely note that NOx  emissions are in
error  by the  amount of  the response deflection from zero.  The
results of this testing are shown in Table 9.

     These test  results show  that  the  NOx emission  target  of
0.7 g/mi was easily achieved  with  the  HRCC  engine  in  the Audi
with  acceptable  driveability.    Unfortunately,   though  NOx
averaged  0.44  g/mi '(37 percent  below   the emission  target),
other  exhaust  emissions were  substantially high,  particularly
formaldehyde and methanol emissions.

-------
                             -27-
                            Table 9

                  Reduced NOx Calibration FTP
      Emission  and Fuel Economy Results, Audi/HRCC  (g/mi)
Date
07/09/87
08/27/87
08/28/87
Average
HC
0
0
0
0
.44
.46
.50
.47
CO
13
13
10
14
.5
.8
.3
.5
NOX
0
0
0
0
.54
.40
.39
.44
CH30H
10
10
11
10
.20
.56
.43
.73
HCHO
.348
.395
.405
.383
OMHCE
4
5
5
5
.86
.03
.44
.11
MPG
26
26
26
26
City
.8
.8
.5
.7
MPG city means 1975 gaosline equivalent mpg.
Test one:  5 stalls, l false start in Bag 1.
Test two:  No stalls, false starts reported.
Test three:  4 stalls in Bag 1.

-------
                              -28-

     It was  recognized that more  than enough  NOx control  had
been  achieved  at  the  expense  of  other  emissions  and  fuel
consumption, though  driveability was much  better than  Ricardo
predicted.   Ricardo  was  then  asked  to  submit  the  ignition
timing  maps  from  the  original  reduced  NOx  strategy  that
(Ricardo  reported)   achieved   1.07   g/mi  NOx  in   the  cycle
simulations.  The idea was  to  give up a  little NOx  control  to
make  the  overall  emissions  performance  in   the  reduced  NOx
calibration  more  acceptable.    The   results   showed  not  only
higher  NOx  emissions, though  still  within  project   goals,  but
also higher HC, CO, and  methanol  emissions.   Methanol emissions
were  calculated  for  all  emissions tests  in this test  program
using the CTAB MXX  emission factor program and are  included  in
Appendix D.

     Some   weaknesses   of   the   Ricardo   CYSIM   predictive
capabilities   were    identified   in   MVEL   Audi/HRCC   vehicle
testing.   Although  all  project  goals  were  achieved   and  the
engine showed an unlimited  ability for alternate  engine control
flexibility, it was believed that  the  completely optimized lean
operation of methanol, particularly during cold starts,  has yet
to be  realized with  this  engine, vehicle,  and  control system
combination.   Driveability  is  indeed  a  parameter  that  the
predictive  capabilities   of the model  are  not  sophisticated
enough to determine.   Transient operation of  the vehicle  was,
all  in  all,  guite acceptable  though the  times  predicted for
accelerations  were   considerably   higher  than   the  measured
performance times.

-------
                              -29-

VII.  Conclusions

     1.    The  application  of  sequential fuel  injection  to the
HRCC  methanol  engine  was  performed  successfully  with  an  11
percent  increase  in  rated  power  over  the carbureted  version.
The  installation  of  this  engine  in the  Audi  5000  (Diesel)
vehicle  and  subsequent  chassis dynamometer evaluation  was  also
accomplished successfully.

     2.    On a "gasoline"  equivalent basis,  the Audi/HRCC (28
MPG city)  demonstrated  a 3 percent  improvement  in  fuel economy
over  the  certification  Audi/Diesel  value.    On   a  constant
performance basis,  obtained by comparison to on-road data, the
Audi/HRCC  showed  an improvement of  10  percent   in  fuel economy
compared to the Audi/Diesel.

     3.    Measured  and  predicted   Audi/HRCC   performance  is
improved  by  22  percent  over  Audi/Diesel  performance.   The
Audi/HRCC  averaged  13.0  seconds  on  ten  0-50 MPH  acceleration
tests  and  7.1  seconds  on  ten  30-50  MPH  runs.  Ricardo's
predicted  values  were  1.4 to  1.6  times  higher (slower)  than
EPA's measured  values,  but the  percent  improvement  (22 to  24
percent) was the same.

     4.    Reduced  NOx  emissions, 0.44  g/mi  +  0.07 g/mi,  are
capable  of  being   achieved   with   the   sophisticated  engine
management system provided  by  the Ricardo microprocessor engine
controller.  An optimum  combination  of  EGR rate, HC  emissions,
ignition timing and transient control were obtained  to achieve
this  objective.

     5.    Transient  operation of  the  Audi/HRCC  was  obtained
with acceptable driveability  for both best economy and reduced
NOx control  strategies  when the  MEG was  calibrated with  zero
throttle  angle  derivative.   This result  indicates  that there
are already  enough  transient  fueling  controls  built in  to the
Ricardo MEC  fueling strategy,  such  that minute  changes in fuel
output with small changes  in  throttle angle are not  necessary,
and actually degrade engine performance and driveability.

     6.    Engine  cold  start  control  needs  to  be  improved and
is the  source  of  unacceptably  high  methanol  emissions.   A
follow-up program which  will  modify the  cylinder  head for use
of pencil injectors  with open-valve  variable  start  of  injection
through MEC control may  address  this shortcoming of the current
state of Audi/HRCC development.

-------
                              -30-

     7:    Had the HRCC  engine  been  placed in a vehicle  with a
more   appropriate  vehicle   weight    and  engine   compartment
configuration,   i.e.,    a   VW   Rabbit,   the   engine   vehicle
combination would have a 30  percent  improvement in power/weight
ratio and a Ricardo estimated additional  3.3  percent improvment
in fuel  economy  as well  as  an  additional  12  percent reduction
in NOx emissions.  However,  these simulated emissions  and fuel
economy  values  were   obtained   without   reoptimization  of  the
engine control  strategy  to  account  for  the  different  control
required  at  given  engine speeds and  loads  with  the 2500  Ib
inertia weight.

     8.    It is hoped that  the application of a  cylinder head
configuration more closely resembling "direct  injection," with
the  pencil  injectors  and variable  start  of  injection,  will
further  improve  fuel  economy   and  engine  exhaust  emissions.
With fuel injected past open intake valves,  it is  believed that
heat  losses  will  be   minimal,   A/F  ratio  can be  higher,  more
residuals will be burned  (more combustion near  TDC), and  the
engine should theoretically start quicker.

     9.    The   microprocessor    engine   controller  and  the
air/fuel   ratio   meter  were  invaluable  engine  management  and
diagnostic  tools  in   the  application   of   the  sequentially
fuel-injected HRCC  engine in  the Audi  5000  vehicle.   Program
objectives would have  been  quite difficult  to obtain  without
them.

-------
                              -31-

VIII.Future Engine Modifications and Vehicle Evaluation

     At   the   completion  of   the   second  Ricardo   contract,
additional contract  funds still remained  and  Ricardo  agreed to
use  them  for  the  further  development  of  the  HRCC  engine
concept.   It  was  decided,  as  an  attempt  to  improve  cold
startability and warm-up  emissions,  that the HRCC  engine would
be  modified  to  employ  low-cost  high-speed  "direct-injection"
methanol combustion.

     An  additional  VW  Rabbit  cylinder  head  was machined  with
the  same compression  ratio  and  squish as the original  HRCC
design  to incorporate  pencil  (stream-type) fuel   injectors  as
opposed to the previous  spray-cone  injectors. [24]   MEC software
is being  modified to  change the end of  injection such  that  the
start of  injection  will  vary  with  fuel quantity during  engine
transients.   The injection  phasing  will remain the same  at  70°
CA.

     This work will  soon be completed  by  Ricardo such  that  EPA
evaluation of  this   HRCC modification  can be  performed.   The
theory  behind  this  system  is that  enough of  the spray  will
ignite  before  impingement  so  that the delay  period  will  be
normal,  while the bulk  of the spray will have to evaporate from
the cavity walls  prior to  combustion.   Thus,  the  second stage
of  the  combustion process  is  slowed  down, avoiding  excessive
rates of  pressure  rise.  With fuel injected  past open  intake
valves,   it  is theorized  that  heat  losses will be minimal  as
more  combustion  occurs  at TDC,  more  residuals  are  burned,
leaner  combustion  is  possible,  and   engine  startability  and
warm-up emissions should be measurably improved.

-------
                              -32-

IX.  References

     1.    "Optimum Engine For Methanol Utilization," EPA-460/3-
83-005, April 1983.

     2.    "Gasoline  Engine  Combustion -  Turbulence  and  the
Combustion Chamber,"  Overington,  M.  T.  and Thring, R.  H.,  SAE
Paper 810017.

     3.    "Gasoline  Engine  Combustion - Compression  Ratio  and
Knock," Overington, M.  T.  and Thring,  R.  H., VW  Conference on
Knocking of Combustion Engines, Wolfsburg,  1981.

     4.    "Gasoline Engine  Combustion  - The  High Ratio Compact
Chamber," Thring, R. H. and Overington, M.  T., SAE Paper 820166.

     5.    "High Compression Ratio Gasoline  Engines  and  Their
Impact   On   Fuel   Economy,"  Overington,   M.   T. ,   Automotive
Engineer, Feb/March 1982.

     6.    "High  Compression  Lean Burn  Engines  For  Improved
Fuel Economy  and Lower NOx  Emissions," Collins, D.  and Wears,
C. R. ,  U.S./Dutch  International Symposium  on Air  Pollution by
Nitrogen Oxides, Maastricht, 1982).

     7.    "The  Ricardo HRCC  Combustion Chamber  Applied to  a
Multi-Cylinder  Engine and  Vehicle,"  de  Boer,  C.  D. ,  Ricardo
Internal Report DP 83/111,  1983.

     8,    "Electronic Sequential Fuel  Injection System Task IV
- Definition  of Design Specification of EGR System,"  Ricardo DP
85/502.

     9.    "Application  of  Electronic Fuel   Injection to  the
Optimum  Engine  for  Methanol  Utilization,"   EPA-460/3-86-002,
July 1986.

     10.   "Alcohol Fuel  Vehicles  of  Volkswagen," Menrad,  H.
Decker, G.  and Weidmann, K., SAE Paper 820968.

     11.   "Development of  A Pure Methanol Fuel  Car," Menrad,
H., Lee, W.,  and Berhardt,  W., SAE Paper 770790.

     12.   "Combustion   and  Emissions    Characteristics   of
Methanol,  Methanol-Water  and  Gasoline-Methanol  Blends  in  a
Spark Ignition Engine," LoRusso, J. A., and Tabaczynski, R.  J.,
Proceedings llth Intersoc.  Energy Conv. Eng. Conf., 1976.

     13.   "Users  Guide   for   the  Cycle  Simulation  Program
CYSIM," Green, R. P.,  Ricardo Internal Report  DP 81/1163, 1981.

     14.   "Preparation  of  Design  Documentation  and  Testing
Procedures  For An Air/Fuel  Metering System," DP 85/141.

-------
                              -33-

IX.  References (cont'd)

     15.   "Transient   Mixture   Strength   Excursions   -   An
Investigation of Their  Causes  and the Development of a Constant
Mixture  Strength  Fueling Strategy,"  Hires,  S.  D.,   et  al. ,  SAE
Paper 810495.

     16.   Audi  5000  Official  Factory  Service  Manual:   1977
through  1983, Robert Bentley, (VW Service Publications), 1983.

     17.   VW Rabbit  Official  Factory Repair  Manual:  1980-1982
Gasoline and Diesel,  Robert  Bentley,  (VW Service Publications),
1982.

     18.   "Results  of   Initial  Ricardo   VW  Testing,"  Bruce
Michael, Internal EPA Memo to Charles Gray, October  19, 1983.

     19.   "Examination   of  High  Speed   Data   During  Engine
Transients," C. A.  Clark and B.  J.  Challen, SAE Paper 850402,
1985.

     20.   "Calculation  of  Emissions  and  Fuel  Economy  When
Using Alternate Fuels,'  EPA/3-83-009, C.  M. Urban, March 1983.

     21.   "Trends  in   Alternate  Measures  of  Vehicle   Fuel
Economy,"  K.H.  Hellman,  J.D.  Murrell,  J.P. Cheng,  SAE 861426,
September 1986.

     22.   "Control of  Air  Pollution From  New  Motor  Vehicles
and  New  Motor  Vehicle  Engines;  Federal  Certification  Test
Results  for  the 1980 Model  Year,"  Federal Register,  Vol.  45,
No. 168, August 27, 1980.

     23.   "Methanol  Interference   on  Chemilluminescent   NOx
Analyzers," W.  Adams,  internal EPA  memo to F.P. Hutchins,  May
6, 1987.

     24.   "Toyota  Electronic  Control  System   for  a  Diesel
Engine," H. Miyagi, J. Nakano,  M. Kobashi,  SAE 830862, February
1983.

-------
APPENDIX A

-------
         UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

                      ANN ARBOR. MICHIGAN 48105
  OCT 191983
                                                          OFFICE OF
                                                     AIR. NOISE AND RADIATION
MEMORANDUM:
SUBJECT:

FROM:


TO:


THRU:
Results of initial Ricardo VW Testing
Bruce Michael
Technical support staff
Charles Gray, Director
Emission Control Technology Division
William Clemmens, Project
Phil Lorang/ Chief
Technical Support staff
J
EPA  funded  a  contract  for  Ricardo  to  develop an  optimum
chamber  shape for a  High  Ratio Compact (combustion)  Chamber
(HRCC)  engine.   The  contract  specified  delivery  of  that
engine  to EPA  in Ann  Arbor.   Prior  to continuing with EPA
plans  to install the  engine into  a vehicle, the  engine was
tested  on the  engine  dynamometer   to  ensure  that  the  engine
was   operating   properly   after   shipment,   and   to   check
correlation of  testing equipment.

This memo presents  the initial EPA  dynamometer  tests  of this
HRCC  engine,  and  compares  them   with  the  results  Ricardo
obtained  at- their  lab.   These initial  results  will also  be.
used  as  baseline  data  with  which  to  compare our  further
development of  the engine.

To briefly summarize,  the  EPA  results  were in close agreement
to  the  Ricardo results  in thermal  efficiency, power,  fuel
consumption,  and  emisions.  The volumetric  efficiency reported
by Ricardo was  higher  than  that tested at EPA.

-------
                             -2-

Results

prom  the beginning,  we experienced  problems  with  trying  to
test  the- engine  in  its  as-received  condition.   We replaced
the valves-prior  to running our first tests  (see the 'Engine
History*  section),  so  technically  we do not  have  an  exact
comparison  to  the   Ricardo tests.   However,  because  stock
replacement parts were  used and all settings were the same as
at Ricardo, I  believe that we can compare the  data as if the
engine  were   in  the  as-received  condition.    Figures  1-3
graphically   show   thermal   efficiency,  power,   and   fuel
consumption for  both the  initial  EPA test^* and the Ricardo
tests.  Ricardo test  data  was used to generate  results on our
own computer  for  these comparisons.   However,  because of the
manner in which Ricardo ran their tests, Ricardo data from a
range of 'percent powers*  had to  be used in  our program as if
they  were  a  single  'percent power*.  As can  be  seen,  even
with  this  data conversion, the  EPA results  are  generally  in
very close agreement with the Ricardo results.

The Ricardo  reported  results  were  usually  better  than  the
results  we obtained  using their  input  data,  however.   For
example,  the   Ricardo  report  shows  a maximum  horsepower  of
70.6  and  thermal  efficiency of 32% at full load whereas the
EPA generated  results using their data shows  only 68.2 hp and
30% efficiency.   The different values  apparently  are  due  to
different horsepojiet correction.factors  (DIN-.va.«._SAE).•

The Ricardo  data could not be used  to  calculate volumetric
efficiency on  our  computer,  therefore  the  Ricardo reported
results were hand drawn on the  graph showing the initial EPA
results  (Figure  4).  Their  results  showed  about  10% better
efficiency  than   our  tests.    Again,   the   difference  in
calculating results  is  probably  the  cause of this.  Our many
tests  both before  and  after  the  engine rebuild  gave  very
consistent results  (see Figures 5 and 6),  so  I  do not believe
we had a problem with our  initial testing.

Idle  fuel  consumption  and  emission measurements  at  EPA were
all performed  after  the engine rebuild of  6/01/83.  Idle fuel
consumption  is shown  in  Figure  7.    Ricardo   reported  lower
fuel  consumption  for  all  ignition  timing  settings  than  we
did.  Ricardo  performed  idle  tests  at  750  rpm  whereas  ours
were at 875 rpm, a difference of 17%.  This probably accounts
•EPA test No. 1173, which was prior to the engine rebuild.

-------
                             -3-

for most  of our  larger  idle  fuel  consumption, which  ranges
from about 5-20% greater than  theirs.   Another  factor  is that
Ricardo measured  fuel mass during  their tests  and  converted
it  to  voluoMfc using  an  assumed specific  gravity  about  3%
higher thait w» do which resulted  in Ricardo  reporting  a lower
fuel  volume  and therefore  lower  fuel  consumption  values.**
One interesting note  is that  Ricardo ran seven  idle  tests at
19°BTDC and  used  only the last  test for use in  their  graph.
Two of  the six earlier tests showed higher  fuel consumption
than did our test at  20°BTDC.  Apparently Ricardo did  not use
the earlier tests because the  test  cell and fuel temperatures
were not yet stabilized.

Emission maps  for our  HC,  CO and  NOx  results  are shown in
Figures 8-10.  The emission  maps were  drawn  using  coarse map
data   obtained   after  the    6/1/83   engine  rebuild.    For
comparison,  many  Ricardo points  are  shown  on  the maps, in
circles with  the  letter *R*.  There is  reasonable  agreement
for all  three emissions;  the agreement  for  NOX seems  to be
the best.
**WhenIinput   the  Ricardo   data  into   our   computer,  I
converted  their measured  fuel  mass  values  to  volume.   This
was  performed by  using  textbook  specific  gravities  for the
reported  fuel  temperatures.   The  specific  gravities I  used
were  generally about  .796  whereas  they  used  .818  for all
cases.   Measured  data  on  our  fuel  indicates  a  specific
gravity of  .7955.

-------
                             -4-
Engine History at EPA  (Summary test results are  shown  in  the
Appendix)
4/22/83
4/27/83
5/4/83

5/17/83


5/18/83
6/1/83
6/28/83
First   dynamometer   runs    (varmups    and   engine
check-out)  at EPA  in  as-received condition.   Best
torque measured was 75-77 ft-lbs.

In  attempting  to  find  TDC   for  accurate  timing
measurements,  the  small  rubber  stop,  fell   into
cylinder  No.  1.   The  head was  removed  to retrieve
it.  When the head  was  put  back  on,  the camshaft
cover  was  not  .replaced.   This   was  felt  to  be
alright,  since it had been  done on an  engine with a
similar timing belt  set-up (Daihatsu).   However,  in
doing an  engine  warm-up  the  camshaft  belt  came off
and the valves were bent.
Installed new intake and exhaust valves.

First  fine  maps,  without  emissions,  run.
1173.)  Peak torque was 81.0 ft.-lbs.
(Test
Engine failure.   The apparent  reason was  that  some
of the material Ricardo used  in reforming the intake
channels  flaked  off and  got  into  the  combustion
chamber.    This  seems  likely,   because  a  lot  of
material  is  missing from the  No. 3  intake channel,
and the No. 3 cylinder wall was greatly damaged.

Reassembled engine with new block,  new head (without
the material  in  the intake  channels),  new  pistons
and valves, and the  original  crank  and rods.   Coarse
maps and  emissions  tests  run shortly after.   (Tests
1175-1178.)  Peak torque was 81.5 ft.-lbs.

Carburetor cleaned  due to  engine  not  idling  well.
Idle  tests and  fine maps  run  after  this.   (Tests
1334 and 1287.)
cc: w/attachments
    J. Alson
    W. Clemmens
    W. Smuda
    R. Wagner
    L. Landman

-------
              Thermal  Efficiency
                                            Figure  1
        1000
2000
                      RICRROO  100Z
                      PHR
                      EPfl  100* PHR  *
                                           5000
                                   6000
                     POHER
     RICflRDO
     EPfl TORQUE
     RICflROO HP
     EPR HP
    0     1000     2000     3000     «000    SOOO     6000
                            RPM

* EPA results  from test 1173, RIcardo results on test 1361.

-------
                                                  Figure 2
                      Thermal  Efficiency
30
 25
'20
 IS
 10
              _L
                      _L
                                       J.
                  J_
                                                       J_
             1000    2000
3000
 RPK
4000
5000    6000
 140
 35
 30
                      Thermal  Efficiency
                                                     26-
                3 IX  PWR
                £Pfl  30Z
 25
 '20
  IS
  10
               J_
                               _L
                                        _L
                                                JU
                                                        J_
              1000    2000
 3000
 RPM
 4000    SOOO
                                                      6000

-------
   ft-7
                       Figure 3
Fuel Consumption
? 0
1.8

1.6

_1.1
5
^1 . 2
a
«°'8
u.
SO. 6
0.2
0.0












-
*

V .
fc
\ S
*v ^
•" ^^'•flflrt/irtW^VOplW*'^

.


i t t
0 1000 2000 3000
RPM
,

	 RlCflROO 100Z
PHR
oaa EPfl 100Z PUR
-mm RlCflROO 67-
7SZ PHR
---EPfl 70Z PHR

^sssss^^


-
\ ' \ i
HOOO 5000 6000

2 Q Fuel Consumption
1.8

1.6
or
Si. 2
X
03
*"* 1 . 0
~o.a
o
SO. 6

0.4

0.2

0.0









.

. .


*
\
*•
A *•
^V



>•*''

n^aeee«r

	 RlCflROO
591 PHR
BOO EPfl SO*
tnnni RlCflROO
31Z PHR
	 EPfl 30 Z
i | t
0 1000 2600 3060
RPM
49-

PHR
26-

PHR
1 ' '
4000 SOOO 6000-


-------
                          H-a
                                                   Figure
 ao

 70

 60

s50
£10
W
230
>
 20

 10

  0
              Volumetric Efficiency Comparison
          EPA Test  1173
         100Z PMR
         70Z PMR
     3500
HOOO
4500
 APR
5000
5500

-------
                                                      Figure 5
               CPU THCRMAL EFFICIENCY COHPflftlSON
 30
'23
 20
 15
U73 70X
1177 701
1287 70X
1173 SOX
1177 SOX
                                70X PN«
                                    SOX PMft'
     1000      2000       3000       <4000       5000      6000
                              flPM
   * Test  1287 at 30£ pvr  could not be graphed due to the
     graphics program only allowing 5 lines.
                   EPfl HORSEPOMEft COMPARISON
                                             TEST 1173
                                             TEST 1177
                                             TEST 1287
 10
     1500
                                              SSOO

-------
                              rt ~ i w
                                                 Figure 6
                      VOLUMETRIC EFFICIENCY
 100,


  95


  90


  85


_ 80
><

It- 75


  70


  65


  60


  55


  50
UJ
       500
                     EPA
                     EPA
                     EPA
            TEST 1175
            TEST 1177
            TEST 1287
1500
                          2500      3500
                               RPM
U500
5500

-------
 3.0
                              n '/ i
                                                         Figure  7
                       I DUE  FUCL  CONSUHPT10N
 2.5
N,'*1
«
-J»
                                             fliCAftOO RtfORT
  t.S
  1.0
                    10    IS     20     25     30    35     HO
                          T1K1N6   (BTOC)

-------
                                                           Figure  a
              HC - Gm/Kw-hr.
100

-------
100
                   CO - Gm/Kw-hr
                                                                       Figure
 90
 80
 70
 60
 SO
 40
 SO
  10
            500
1000
1SOO
2000
2500
3000
3500
4000
4500
5000

-------
               NOx - Gm/Kw-hr
                                                          Figure 10
1QO

-------
TEST NO.:  HO-811175
                         ENGINE: 59O VW-B
TEST D/T:   6-  8-B3  8: O
REPORT  O/T: 09-18-83 O8:4O
PO62581
SUMMARY REPORT  (First test with rebuilt  engine)

RPM
54OO
8400
540O
54OO
45OO
45OO
45OO
4SOO
3SOO
35OO
35OO
35OO
25OO
25OO
25OO
2500
1500
1500
150O
15OO
TOHQ.
FT-LB
67.7
46.9
33.7
20. 0
76.9
53.3
39. 0
23.4
81. 5
57. 0
4O.O
24.5
BO. 5
56.7
4O.4
24.6
7O.O
48.6
35.7
21. 0
%
Ifl^
1OO
70
50
3O
ICO
70
50
30
ICO
7O
SO
3O
1OO
7O
SO
3O
too
7O
SO
3O
THR
POSN
32
7O
112
145
21
6O
1O2
137
14
50
92
129
10
32
76
1 15
2O
33
9O
145
IGN.
T1MG.
25. OB
24. OB
26. OB
25. OB
15. OB
22. OB
25. OB
3O.OB
18. OB
2O. OB
25. OB
3O.OB
16. OB
15. OB
21.08
28. OB
6. OB
6. OB
16. OB
2O. OB
INd.
TIMQ.
0.
O.
O.
O.
O.
O.
O.
0.
0.
O.
O.
O.
O.
O.
O.
0.
O.
O.
0.
0.
CORR.
BHP
7O.4O
48.52
34.88
20.68
66.26
45.92
33.57
2O. 14
54.57
38. 16
26. 8O
16. 4O
38. SO
27. 13
19.34
11.79
20. 11
13.95
10.25
6 OS
MEAS.
A/F
4.65
5.43
3. OB
2.48
4.85
6.32
3. 11
2.71
S.O4
6.46
3.14
2.78
4.41
7.22
6.63
3. SO
4.63
7.87
3.99
3.81
PHI
EOUIV
RATIO
1 .39
1 . 19
2. 1O
2.61
4.34
1 02
2.08
2.38
1.28
1.OO
2.O6
2.33
1.47
O.9O
O.98
1 .85
1.40
o.aa
1 .62
1 .70
AIR
LB/HR
368.5
274. 1
129. 0
80.9
330.3
274. t
110. 1
71.9
269.6
220.2
84.5
56.2
179.7
17O-7
121 3
48. t
98.9
98.9
40.4
29.2
BSFC EOUIV
FUEL LB/ LB/
LB/HR BHPHR BHPHR _JC 	
79. 3O 1.126 O.S29 26.2
SO. 47 1.040 O.489 28.3
41.88 1.2O1 O.564 34.5
32.63 1 .578 O.741 18.7
68. 15 1.O29 O.483 28.6
43. 4O O.945 O.444 31.2
35.42 LOSS O.496 27.9
26. SO 1.315 O.6I8 22.4
53.45 0.98O O.46O 3O. 1
34.10 O.894 O.42O 33. O
26.86 1.OO2 O.47I 29.4
2O.22 1.233 0.579 23.9
4O.79 1.O6O O.498 27.8
23.64 0.871 O.4O9 33.8
18. 3O O.946 O.444 31 . 1
13.74 1 . 165 O.548 25.3
21.35 1.062 O.499 37.7
12.56 O.9OO O.423 32.7
1O. 14 O.989 O.46S 29.8
7.66 1.27O O.597 23.2
1OOO*
M8TU/
BHPHR
9.74
8.99
10. 38
13.64
8.89
8. 17
9. 12
11.37
8.47
7.72
8.66
tO. 66
9.16
7.53
8. 18
1O.O7
9.18
7.78
8.55
IO.98


BSHC
0.0
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
                                                                    BSFC    ENERGV
                                                                    GAS   EFFICIENCY

                                                                                           BRAKE SPECIFIC EMISSIONS (G/BHPHR) 	
                                                                                           . BSCO    BSXOa   BSNOX BSAlOyH 8SPART
                                                                                             0.0
                                                                                             O.O
                                                                                             O.O
                                                                                             0.0
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             0.0
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             O.O
                                                                                             0.0
                                           0.0
                                           0.0
                                           O.O
                                           O.O
                                           O.O
                                           O.O
                                           O.O
                                           0.0
                                           0.0
                                           0.0
                                           0.0
                                           0.0
                                           0.0
                                           0.0
                                           O.O
                                           O.O
                                           O.O
                                           O.O
                                           O.O
                   O.O
                   0.0
                   o.o
                   0.0
                   O.O
                   O.O
                   O.O
                   0.0
                   0.0
                   0.0
                   0.0
                   0.0
                   0.0
                   0.0
                   O.O
                   O.O
                   o.o
                   O.O
                   0.0
                                           O.O   O.O
   O.O
   O.O
   0.0
   O.O
   O.O
   0.0
   O.O
   O.O
   0.0
   O.O
   O.O
   0.0
   0.0
   0.0
   O.O
   O.O
   0.0
   O.O
   o.o
   o.o

-------
TEST NO. :  HD-8MI73
ENGINE:  59O VW
TEST 0/T:   5-17-83 IO:  O      REPORT 0/T:  08-22-83 16:37
                                                                                                  P062S81
SUMMARY REPORT
%
TORQ. MAX
RPM
54OO
5400
54OO
5400
54OO
5400
54OO
5400
5400
5400
9OOO
5000
5OOO
SOOO
50OO
SOOO
SOOO
SOOO
SOOO
SOOO
45OO
4300
45OO
45OO
4500
4SOO
45OO
4 BOO
4SOO
4500
4OOO
4OOO
4OOO
4OOO
4000
4OOO
4OOO
4000
4000
4OOO
FT-LB
68. 0
61. 0
54.5
47.6
4O.8
34. 1
27.4
20. 1
13.7
6.8
72.2
64.2
sa.o
50.2
43. 0
36. 0
28.9
21.6
14. 1
7.5
76. 0
bfl.O
6O.8
53. 0
45.9
38. 0
30.6
23. 1
15. 0
7.8
77.5
69.8
62.2
54.3
46.3
38.6
31.0
23.2
15.5.
7.7
TQ.
10O
90
8O
7O
60
SO
4O
3O
20
10
too
9O
8O
7O
6O
SO
4O
3O
2O
IO
too
9O
8O
7O
60
50
4O
3O
20
10
too
9O
8O
70
60
SO
40
30
2O
10
(First EPA test)
THR IGN. INJ. CORR.
PQSN TIMG.
33 23. OB
37 23. OB
52 25. OB
7O 30 . OB
92 3O.O8
1 IO 32. OB
I27O 3O.OB
147O 3O.OB
161 3O.OB
178O 3O.OB
29 2S.OB
360 25. OB
49O 25. OB
67O 30. OB
9O 30 . OB
1O9O 3O.OB
127O 3O.OB
14SO 3O.OB
162O 3O.OB
180O 3O.OB
2SO 23.08
280 23. OB
42O 25.08
59O 3O.OB
8OO SO OB
1020 30. OB
12OO 3O.OB
136O 3O.OB
1S6O 30.08
176O SO. OB
2O 25. OB
24O 25. OB
380 26.08
540 30. OB
75O 32. OB
9SO 30. OB
1120 30. OB
131O 3O.OB
152O 3O.OB
172O 3O.OB
TIMG.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0.
o.
O.
o.
o.
o.
0.
0.
o.
o.
o.
o.
o.
o.
o.
o.
BMP
69. 8O
62.65
56. 04
48.98
42. 01
35. 12
28. 2O
20.67
14. O9
6.99
68. 7O
61.08
55.23
47.86
41. OO
34.34
27.56
20. 6O
13.44
7. 15
65. 14
58.34
52. 17
45.47
39.38
32.61
26.26
19.83
12.87
8.34
59.36
53.48
47. 7O
41.64
35.52
29.61
23.77
17.77
11 .88
S.9O
MEAS.
A/F
4.64
6.O8
6.O8
6. 01
3.31
3. 14
2.82
2.59
2.66
2.84
4.79
6.21
6. 17
6. 14
3.30
3. 02
2.77
2.55
2.61
2 87
4.96
6.46
6.42
6.43
6.35
3. IO
2.87
2.78
2.75
3. 16
5.O4
6.56
6.54
6.50
5.89
3.24
3 Ol
1.53
0.91
0.17
PHI
EQUIV
RATIO
39
.06
.06
.OB
.96
2.O6
2.29
2.5O
2.44
2.28
.35
.04
.OS
.OS
.96
2. 14
2.34
2 54
2.47
2.26
.30
.OO
.01
01
.02
2.O9
2.26
2.33
2.35
2.O5
1.28
O.99
0.99
1 .OO
1. IO
2 OO
2. 15
4.23
7.11
37. 15
AIR
LB/HR
375.6
372.9
343.3
3IO.O
156.4
133.9
107.8
86.3
73.7
66.5
365.8
356 . 8
328. 0
296.6
146. 0
12O.4
98. 0
78.6
67.4
62.5
34O.6
340.6
309. 1
283. 1
254.8
111.4
90.8
75.5
62.9
58.4
3IO.O
3O9 1
282.2
254.3
2O6.7
1O1 . 1
82.2
35.9
18. 0
2.7
BSFC ENERGY
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR % BHPHR
80.96 1.160 O.S45 25.4 IO.O3
61.34 O.979 O.46O SO 1 8.46
S6.47 1.0O8 0.473 29.2 8.71
51.57 I.O53 O.495 28. O 9.1O
47.25 1.125 O.528 26.2 9.72
42.65 1.214 0.570 24.3 1O.SO
38.20 1.355 O.6S6 21.7 11.71
33.34 1.613 O.758 18.3 13.94
27.75 1.97OO.925 15. O 17. OS
23.44 3.353 1.575 8.8 28.98
76.42 1.112 O.523 26.5 9.62
57.49 O 941 O.442 31.3 8.14
53.19 O.963 O.452 SO. 6 8.32
48. SO 1.OO9 O.474 29.2 8.72
44.22 1.079 O.SO7 27.3 9.32
39.87 1.161 O.54S 25.4 1O.O3
35.42 1.285 O.6O4 22.9 11.11
SO. 83 1 497 0.7O3 19.7 12.94
25.78 1.918 O.90I 15.4 16.58
21.78 3.048 1.432 9.7 26.34
68.66 I.OS4 O.495 27.9 8.11
52.75 O.9O4 O.425 32.6 7.82
48.17 O.923 O.434 31.9 7.98
44.OO O.968 O.45S SO. 4 8.36
4O.1S .019 O. 479 28.8 8.81
35.94 .IO2 O.518 26.7 8.53
31.68 .206 O.667 24.4 IO.43
27.16 . S7O O.644 21.5 11.84
22.84 .775 O.834 16.6 15.34
18.49 2.216 1.O41 13.3 19.16
61. 87 1.O37 O 487 28.4 8.97
47.1OO. 881 O. 414. 33.4 7.61
43.15 O.9O4 O.425 32.6 7.82
39.14 O.94O O.442 3J.3 8.13
35.11 O 988 O.464 29.8 8.94
31.25 LOSS O.496 27.8 9.12
27.36 1.151 O.541 25.6 8.85
23.48 1.321 O.621 22.3 11.42
19.75 1.663 O.781 17.7 14.37
15.48 2.625 1.233 11.2 22.69


BSHC
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
0.0
O.O
6.0
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
1
RAKE SPECIFIC EMISSIONS (G/ BHPHR) ---
BSCO
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
0.0
0.0 '
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
0.0
BSCO 2
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
BSN03 BSALpYH
O.O
0.0
00
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
O.O
0.0
BSPART
O.O
O.O
0.0
O.O
0.0
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O

-------
TEST NO.:  HD-811173
ENGINE:  59O VW
TEST 0/T:   5-17-83 1O:  O
REPORT O/T:  08-22-83 16:37
PO62B81
SUMMARY REPORT

RPM
3500
3SOO
3500
35OO
35OO
3SOO
35OO
35OO
350O
35OO
3OOO
3000
3OOO
3OOO
3OOO
3000
3OOO
3000
3OOO
3OOO
25OO
25OO
2500
250O
2SOO
25OO
25OO
250O
2SOO
25OO
20OO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
2OOO
TORO.
FT-LB
79.5
71. 0
63.5
55.9
47.4
39.4
31 .8
23.9
16. 1
8. 1
8O.9
73.4
64.5
57.2
49. 0
41 .O
32.4
24.2
16.1
8. 1
at .0
72.8
64.2
56.8
48.2
40.4
32. 1
24.1
16.5
10. 2
77.4
70.2
62.4
54.1
46.5
38.7
31.2
23. 0
15.5
7.2
X
MAX
TQ.
1OO
90
ao
7O
6O
SO
40
SO
20
1O
too
9O
ao
7O
60
50
4O
30
20
1O
too
9O
80
70
6O
SO
4O
30
2O
to
too
9O
8O
7O
6O
5O
4O
30
2O
10
THR
PQSN
14O
19O
35O
47O
68O
85O
1O7O
130O
I47O
I84O
1 10
13O
3OO
4OO
55O
790
1O30
125O
15OO
1900
to
13O
2 2O
33O
56O
79O
1O1O
1260
166O
194O
6O
O7O
130
36O
55
74O
too
14SO
173O
I960
IGN.
T1MG.
22. OB
23. OB
25. OB
25 OB
3O.O8
3O.08
30. OB
30. OB
3O.OB
3O.OB
22. OB
23. OB
23. OB
25. OB
25. OB
30. OB
3O.OB
30. 08
3O.OB
30. OB
22.08
22. OB
2O. OB
22. OB
25. OB
3O.OB
32. OB
3O.OB
30. OB
3O.OB
20. OB
2O. OB
2O. OB
22. OB
22. OB
25. OB
3O.OB
32. OB
3O.OB
30. OB
INJ.
T1MG.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
O.
0.
O.
O.
O.
O.
o.
O.
o.
o.
o.
o.
o.
o.
o.
CORR.
BMP
52. 8O
46.92
41.95
36.91
31.29
26. 01
2O. 98
15.78
10. 63
5.35
45.82
41.55
36.49
32.37
27.74
23.21
18.33
13. 7O
9. t 1
4.58
38.25
34 .38
3O.3O
26. 8O
22.75
19. 07
15. 15
11 .37
7.79
4.82
29.26
26.53
23.57
2O.43
17.56
14.62
11.79
8.69
5.85
2.72
MEAS.
A/F
5. 18
6.32
5.34
5.83
5.95
6. OS
4.O3
2.99
3.51
3.68
O.O
6.94
7. 02
6.98
7.O4
7 01
4 .40
2.41
2.45
3.26
4.41
O.O
7.11
O.O
4.72
0.0
1.97
O.O
O.O
1 .96
O.O
O.O
O.O
O.O
O.O
7.3O
0.0
O.O
O.O
O.O
PHI
EOUIV
RATIO
.25
.02
.21
. I 1
.09
.07
61
2. 16
.84
.76
O.O
O.93
O.92
O.93
O 92
O.92
1 .47
2 68
2.64
1 .99
1 .47
O.O
O.91
O.O
1.37
O.O
3 28
O.O
O.O
3.30
O.O
O.O
O 0
O 0
00
O.89
O.O
0.0
O.O
0.0
AIR
LB/HR
277.7
26O.6
202.2
197 .7
179.7
161 .8
95.3
6O.2
58.4
49.4
O.O
248.5
224.7
2O2.2
182. 0
161 .8
88. 1
4O.4
33.7
35.9
183.3
0.0
184.2
0.0
98.9
O.O
31.5
O.O
O.O
18.0
O.O
O.O
O.O
O.O
O.O
1O3 . 3
O.O
00
O.O
O.O
BSFC ENERGY
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR J4 	 BHPHR
53.61 1.O1S O.477 29. O 8.78
41.23 O.87£ O 413 33.5 7.6O
37.86 O.9O3 O.424 32.6 7. BO
33.94 O 919 O.432 32. O 7.85
3O.23 O.966 O.454 3O.5 8.35
26.75 1.O28 O.4B3 28.6 8.89
23.64 1.126 0.529 26.2 9.74
2O. 12 1.275 O.599 23.1 11.02
16.64 1.566 O.736 18.8 13.34
13.44 2.512 I.18O 11.7 21.72
46.65 1.O18 O.478 28.9 8 . 8O
35.83 0.862 O.4O5 34.2 7.45
31.99 O.877 O.412 33.6 7.58
28.96 O.89S O.42O 32.9 7.73
25.84 O 931 O.438 31.6 8. OS
23. O8 O.99S O.467 29.6 8 6O
2O.O2 1.O92 O.513 27. O • 44
16.75 1.223 O.S74 24.1 IO.97
13.75 1.5O9O.7O9 19.5 13. O4
11. O4 2.4O7 1.131 12.2 2O.81
41.54 1.O86 0.5IO 27. 1 9.39
28.91 O 841 O.39S 35. O 7.27
25.91 O.85S O.402 34.4 7.39
23.41 0.873 O. 4 tO 33.7 7.55
2O. 96 O.921 O 433 32. O 7.96
18.56 O.974 O.4S7 3O.3 8.42
16.95 .053 O. 495 28. O 9.1O
13.61 .197 O.S62 24.6 1O.34
11.59 .488 O. 699 19.8 12.86
9.16 .903 O.894 15.9 16.45
3O.53 .044 O.49O 28.2 9 O2
22.26 O.839 O.394 35.1 7.25
2O. 17 O.856 O.4O2 34.4 7.4O
17.91 O.876 O.412 33.6 7.58
15.98 O.91O O.427 32.4 7.86
14.16 O.969 O.4SS 3O.4 8.37
12.35 1.O48 O.492 28.1 8.O6
1O. 61 1.222 O.574 24.1 1O.S6
8.99 1. 535 O. 721 19.2 13.27
6.66 2.445 1.149 12. O 21.14


BSHC
O.O
0.0
0.0
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
RAKE SPECIFIC EMISSIONS (G/BHPHR) 	
esco
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
BSC02
0.0
0.0
O.O
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
0.0
BSNQX BSALPVH
' ' * ••^••^ ^^M*A*»«^*
o.o ,,,;
0.0
O.O
o o
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
BSPARf
0.0
O.O
O.O
o.o
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
o.o
O.O
O.O
O.O
O.O
o.o
O.O
O.O
o.o
o.o
0.0
0.0
0.0
o.o
o.o
o.o
o.o

-------
TEST NO.:  HD-811177
ENGINE:  59O VW-B
TEST 0/T:   6- 9-83  9:  O
REPORT 0/T: O8-22-83 16:37
PO6258I
SUMMARY REPORT
%
TORO. MAX
RPH
S40O
6400
54OO
5400
45OO
4500
45OO
450O
35OO
350O
35OO
35OO
250O
2500
25OO
25OO
15OO
I5OO
tsoo
15OO
FT-LB
67.4
47. 0
33.4
2O. O
76.5
53.4
38. 0
23. 0
81.0
56.5
4O.5
24.3
79.9
56. 0
4O.O
24.5
7O.9
SO.O
35.4
21 .3
TO..
too
7O
50
30
too
7O
SO
30
10O
7O
SO
3O
too
7O
SO
30
100
7O
5O
3O
(Test with rebuilt engine)
PHI
THR IGN. INJ. CORR. Me AS EOUIV
POSN
32
68
1 1O
14SO
24
56
99
1340
14O
45O
86O
125O
1O
320
72O
110
3O
31
92
142O
TIMG.
25. OB
2O. OB
25. OB
3O.OB
15. OB
22. OB
25. OB
30. OB
15. OB
2O. OB
23. OB
SO. OB
12. OB
23. OB
2O. OB
25.08
15. OB
15.08
20.08
20.08
TIMG.
O.
O.
O.
0.
O.
O.
O.
0.
O.
O.
O.
O.
0.
0.
O.
O.
O.
O.
0.
0.
BMP
69.64
48.54
34 50
20 64
65.75
45.91
32.68
19.77
54. 12
37.73
27. 02
16.32
38.28
26.83
19. 16
11.73
2O. 38
14.38
10. IB
6. 12
A/F
4.65
6. 01
2.98
2.47
4.86
6.33
3.O5
2.62
5. 1O
6.46
3. 13
2.69
4.4O
7. 18
7. 02
3.51
4 70
7.4O
3.89
3.81
RATIO
1 .39
1 .08
2. 17
2.62
1 .33
1 .02
2. 12
2.47
1 .27
1 00
2 O6
2.4O
1 .47
O.9O
0 92
1.84
1 .38
O.87
1 .66
1 .70
AIR
LB/HR
368.5
3O5.S
124 .9
8O.9
328. 0
278.6
107.8
71. 0
271 .8
220.2
85.4
55.3
179.7
17O.7
13O 3
49.4
98.9
98.9
40 4
3O.6
BSFC ENERGY
GAS EFFICIENCY
BSFC EQOIV 1OOO*
FUEL IB/ LB/ MBTU/
LB/HR BHPHR BHPHR _£ 	 BHPHR
79.22 1.138 0.534 25.9 9.83
SO. 87 1.048 O.492 28.1 9.O6
41.95 1.216 O.57I 24.2 1O.51
32. 7O 1.584 O.744 18.6 13.69
67.53 1.O27 O.4B2 28.7 8.88
44.OO O.958 0.45O 3O.7 8.28
35.34 1.O82 O.SO8 27.2 8.35
27. O7 1.369 O.643 21. 5 11.84
53.35 O. 886 O. 463 29.9 8.52
34.09 O.9O4 O.42S 32.6 7.81
27.24 1 OOB O.474 29.2 8.72
20.54 1.259 O.S91 23.4 1O.88
4O.87 1.O68 O.502 27.6 9.23
23. 8O O.887 O.417 33.2 7.67
18.56 O.968 0.455 3O.4 8.37
14.09 (.201 O.564 24.5 1O.38
21.05 1.O33 O 485 28.5 8.93
13.36 O 930 O.437 31.7 B.O4
1O.4O 1.022 O.480 28.8 8.84
8.O1 1.3O9 O.615 22.5 11.32


8SHC
O.971
0 829
O.838
1.5O9
O.914
O.98S
1. 1O4
1.8O6
O 891
1. 174
1.542
2.6O7
1.111
1.833
2.362
3.963
2.299
2.79S
3. 135
4.699
IRAKE SPECIFIC EMISSIONS (O/BHPHR) 	
BSCO
62.546
5.329
4.S7S
9.347
69.673
4.379
3.550
6.464
87.384
3.488
2.965
3.791
128.755
3.637
3. 165
6.829
99 . 6O9
3.519
3. 198
4.884
BSC02
531.78
679.81
773.37
962.93
512. 19
B82.O7
666 . 22
81O.OS
469 . 6 1
548. O7
61O.92
742.63
409.44
5O1.9O
566 . 7O
7O9.66
444. 4O
537.26
582.83
721.78
BSNOX BSALpVH
' M*1* TT»^T«^^™»
4.120 '**
9. 167
9: 589
7.878
4.583
7.891
7.78O
5. 1OO
4. 135
6.328
4.973
2.28O
1.682
2.982
1.426
O.866
1.676
2 . 769
3.638
5. 126
BSPARJ
O.O
0.0
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O

-------
TEST NO.:  HD-811287
ENGINE: 59O VW-B
TEST 0/T:  6-13-83  8:3O
REPORT D/T:  O8-22-83 16:38
P062981
SUMMARY REPORT (Rebuilt
X
TORQ. MAX THR IGN.
RPM
540O
54OO
S4OO
S4OO
54OO
54OO
5400
54OO
S4OO
540O
5OOO
5OOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
SOOO
45OO
4500
4SOO
4SOO
4SOO
4SOO
45OO
4500
45OO
45OO
4OOO
4000
4OOO
400O
4OOO
4OOO
4OOO
4OOO
40OO
4000
FT-LB
68. 0
61. 0
SS.O
47.7
40.9
34.3
27. 0
20. 5
13. O
6.5
72.8
65. 0
58.4
SI. 2
43.8
36.5
29. 0
21.9
14.6
7.5
77. 0
69. 0
62.3
54.6
46.6
38. 5
31. O
23. 5
15. 5
7.9
BO. 9
72.4
64. S
S6.S
48. 0
39.7
32. 0
24.4
17.0
8.0
TQ. POSN
10O 33O
9O 34O
8O 480
7O 69O
6O B9O
SO 1 t IO
4O 13OO
3O I48O
2O 162O
IO 179O
1OO 3OO
9O 3 1O
BO 4 SO
7O 61O
6O 83O
SO 1O6O
4O 12SO
3O 147O
2O 164O
1O 179O
1OO 25O
9O 26O
BO 38O
7O 55O
6O 76O
50 1O2O
4O 121O
3O I4OO
2O 16 1O
to taio
100 2OO
9O 21O
8O 34O
70 50O
6O 7 2O
SO 98O
4O tISO
3O 136O
20 154O
IO 1730
engine and
INJ. CORR.
11MG. TIMG
12.08
14. OB
16. OB
18. OB
21 .OB
22 .OB
24. OB
24. OB
26. OB
26. OB
12. OB
14. OB
16. OB
18. OB
21 .OB
24. OB
25. OB
27. OB
28.08
28. OB
12. OB
14. OB
16. OB
18.08
21 .OB
24. OB
26. OB
27. OB
28. OB
28. OB
14. OB
14.08
16. OB
18.08
21.08
24. OB
26. OB
28. OB
28.08
30.08
O.
O.
O.
O.
O.
0.
O.
O.
O.
O.
O.
0.
O.
0.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
O.
O.
0.
O.
0.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
BMP
70. 13
62.94
56.71
49. 14
42. 13
35.32
27.81
21 . IO
13.37
6.69
69. 38
62.00
55.69
48.82
41 .75
34.79
27.64
2O.86
13. 9O
7. 14
65.99
59.24
53.46
46.84
39.96
33.0O
26.57
2O. 14
13.28
6.77
61 .62
55.22
49. 19
43.08
36. 6O
3O.27
24.39
18. 6O
12.96
6.1O
carb
ME AS.
A/F
4.79
6. 14
6. OS
S.99
S.64
3. 14
3.22
2.73
2.58
2.56
4 7O
6.20
6. 16
6. tB
6. 14
3. 12
2.92
2.58
2.46
261
4.81
6.30
6.22
6.32
6.39
3.O8
2.91
2 .70
2.5O
2.69
4.83
6.36
6.35
6.43
6.45
3.05
2.95
2.69
2.73
3. 16
cleaned)
PHI
EQUIV AIR
RATIO
35
.05
.07
oa
. IS
2.O6
2. 01
2.37
2.5t
2.52
.38
.04
-OS
.05
.05
2.O7
2.22
2.51
2.63
2.48
.35
03
.04
.02
.01
2. IO
2.22
2 .40
2. SB
2.41
.34
.02
.02
.01
.00
2 12
2. 2O
2.41
2.37
2.05
LB/HR
364. 0
368. S
337. 0
301. 1
256. t
130.3
1O3.3
85.4
69.6
57.5
346. 0
355.0
323. 1
296.6
265. 1
121.3
98.9
75.9
61 .6
53.9
323. 5
328. 0
3O1 . 1
278. 1
251 .6
107.8
89.4
71.4
56.2
49.4
292. t
301. (
274. t
251 .6
224.7
94.4
BO.O
62.9
53.9
49.4
BSFC ENERGV
GAS EFFICIENCY
BSFC EQUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR JC 	 BHPHR
75.93 1.083 O.5O9 27.2 9.36
59.98 0.953 O.448 30.9 8.24
53.74 O 983 O.462 30. O 8. SO
SO. 28 .023 O.481 28.8 8.85
45.44 O79 O.SO7 27.3 9.32
41.45 .174 O.S51 25.1 IO. 14
32. OS .153 O.542 25.6 9.96
31. SO .464 O.697 19.9 12.83
26.99 2.OI9 O.948 14.6 17.49
22.44 3.353 1.S79 8.8 28.98
73. 6O I.O6I O.498 27.8 9.17
57.22 O.923 O.434 31.9 7.98
52.44 O.942 O.442 31.3 8.14
47.98 O.983 O.462 3O.O 8. SO
43.19 .034 O.486 28. S 8.94
38.86 .117 O.525 26.4 9.65
33.88 .226 O.S76 24. O 1O.6O
29.47 .412 0.664 2O.9 12.21
24.98 .797 O.844 16.4 19.53
2O. 64 2.889 1.357 1O.2 24.98
67.29 1.O2O 0.479 28.8 8.81
52. O7 O.879 O.413 33.5 7.6O
48.38 O.9O5 O.42S 32.6 7.82
43.98 O.939 O.441 31.4 8.12
39.39 O.986 O.463 29.9 8.52
35. O6 1.O62 O.499 27.7 9.18
30.71 1.156 0.543 25.5 9.99
26.48 1.315 O.6I8 22.4 11.36
22.44 1. 689 O. 793 17.4 14. 6O
18.39 2.717 1.276 1O.8 23.48
6O.48 O.982 O.461 3O.O 8.48
47.31 O.B57 O.4O2 34.4 7.41
43.17 O.878 O.412 33.6 7.99
39.13 0.9O8 0.427 32.4 7.85
34.82 O.951 O.447 31. 0 8.22
3O.93 1.O22 O.48O 28.8 8.83
27.14 1.113 O. 923 26.5 9.62
23.40 1.258 O.591 23.4 10.88
19.72 1.522 O.71S 19.4 13.15
15.64 2.566 1.2O5 11.5 22.18


BSHC
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
BRAKE SPECIFIC EMISSIONS (O/BHPHR) 	
BSCO
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
0.0
BS.CO2
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
0.0
O.O
0.0
BSNOX BSALOVH BSPART
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0:0
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
0.0
O.O
O.O
O.O

-------
TEST NO.: HO-B11361      ENGINE:  59O VW-B
TEST 0/T:  1-13-83 13:  O
REPORT D/T: 08-22-83 16:38
PO62B81
SUMMARY REPORT fRicardo

RPM
5400
480O
4 BOO
48OO
48OO
420O
420O
420O
42OO
42OO
36OO
36OO
36OO
36OO
360O
30OO
300O
3000
300O
3OOO
3OOO
24OO
2400
24OO
24OO
2400
24OO
1800
18OO
18OO
18OO
18OO
18OO
12OO
12OO
12OO
12OO
12OO
12OO
TORQ.
FT-LB
68.6
75.3
59.6
46.6
34. 1
79.7
59.6
46.6
34.1
21 .2
81.9
59.6
46.6
34. 1
21 .2
82. 0
59.6
46.6
34. 1
21.2
14. 0
81.3
59.6
46.6
34. 1
21.2
12.7
79.3
55.7
46.6
34.1
21.2
12.7
69.4
51.8
46.6
34. 1
21.2
12.7
X
MAX THR IGN.
test data)
INJ.
TQ. POSN TIMG. TIMG.
too
too
79
62
45
100
75
58
43
27
too
73
57
42
26
too
73
57
42
26
17
too
73
57
42
26
16
too
70
59
43
27
16
too
75
67
49
31
18
22. OB
22. OB
24.08
30.08
34.06
22. OB
24. OB
29.08
33. OB
35. OB
21. OB
22. OB
28. OB
31. OB
33. OB
18. OB
19. OB
23. OB
28. OB
3O.OB
31. OB
16. OB
15. OB
19. OB
24. OB
27. OB
27. OB
12. OB
12. OB
14. OB
2 I.OB
23. OB
23. OB
10. OB
9. OB
11 .OB
19 OB
23. OB
22. OB
O.
O.
O.
O.
O.
0.
0.
O.
O.
0.
O.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O
O.
O.
O.
O.
O.
O.
O.
O.
0.
O.
O.
O.
0.
CORR.
BHP
68.21
66.56
51.98
4O.64
29.74
61.64
45.88
35.87
26.25
16.32
54.29
38.99
3O.48
22.31
13.87
45. 3O
32.77
25.62
18.59
11.56
7.63
35.93
25.99
2O. 32
14.87
9.25
5.54
26.28
18.38
15.37
It .25
6.99
4. 19
15.34
It .39
1O. 25
7.50
4 66
2.79
MEAS.
A/F
O.O
O.O
O.O
O.O
0.0
O.O
0.0
O.O
00
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0 O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
0 O
0.0
O.O
O.O
O.O
0.0
PHI
EOUIV
RATIO
0.0
O.O
O.O
O.O
0.0
O.O
0.0
0.0
O O
O O
O.O
O O
O.O
0.0
00
O.O
O.O
0 O
O.O
00
O.O
O.O
O 0
O.O
00
0 O
O O
0.0
O.O
00
O.O
O.O
O.O
0.0
O O
O.O
O.O
0.0
0.0
AIR
LB/HR
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
BSFC ENERGY
GAS EFFICIENCY
BSFC EOUIV 1OOO*
FUEL LB/ LB/ MBTU/
LB/HR BHPHR BHPHR %
75.49 1 . 1O7 O.S2O 26.6
67.24 1.O1O O.475 29.2
61.09 O.983 O.462 3O.O
43.84 1.O79 O.5O7 27.3
36.14 1.215 O.571 24.2
59.89 O.972 O.4S6 3O.3
43.95 O.958 O.45O 3O 7
36. 8S 1.O27 O 483 28.7
3O.4O 1.158 0.544 25.4
24. OO 1.471 O.691 2O.O
51.84 0.955 O.449 3O.8
36.61 O.939 O.441 31 .4
SO. 66 1.OO6 O.473 29.3
25.25 1. 132 O.532 26.0
19.65 1 .417 O.666 2O.8
43.29 O.9S6 O.449 30.8
29.84 O.9IO O.428 32.4
24.99 O.975 O.458 3O.2
20.44 1. tOO O.S17 26.8
15.95 1 380 O.648 21.3
13.25 1.736 0.816 17. O
35. O3 O.97S O.458 3O.2
23.52 O.9O5 0.425 32.5
19.78 O 973 O.457 3O.3
16.35
12.58
9.74
27.59
17.13 (
14. SO (
11.87
9.45
7.31
18.25
1O. 82 C
9.97 C
8.26
6. 19
4.82
O99 O.B16 26.8
36O O.639 21.7
.759 O.826 16.7
.O5O 0.493 28.1
) 932 O.438 31.6
).863 0.482 30.6
.OSS 0.496 27.9
.352 O.63S 21.8
.745 O.82O 16.9
. 19O O.B59 24.7
.950 O.446 31. O
.873 O.4S7 3O.3
.1O1 O.617 26.7
.329 O.624 22.2
.725 O.811 17. 1
BHPHR
9.57
8.73
a. so
9.32
to. so
8.4O
8.28
8.88
1O.O1
12.71
8.25
8. 12
8.69
9.78
12.25
8.26
7.87
8.43
9.51
11.93
15. 01
8.43
7.82
8.41
9.5O
11.76
15.21
9.O7
8.06
8.32
9.12
11.69
15. 09
10. 29
8.21
8.41
9. 52
11.48
14.92


BSHC
O.O
O.O
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
O.O
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
O.O
O.O
0.0
1RAKE SPECIFIC EMISSIONS (G/BHPHR) 	
asco
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
O.O
0.0
O.O •
O.O
0.0
0.0
0.0
O.O
0.0
0.0
O.O
0.0
0.0
0.0
O.O
0.0
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
BSC02
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
BSNOX QS.A
°-° •!<&
0.0 ' ' '
0,0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
O.O
0.0
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
0.0
O.O
O.O
LPYH BS.PART
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
0.0

-------
TEST NO.:  HO-811173
ENGINE:  59O VW
TEST 0/1:   5-17-83 1O:  O
REPORT 0/T:  O8-22-B3 16:37
P062&81
SUMMARY REPORT

RPM
1OOO
tooo
1000
IOOO
tooo
tooo
IOOO
IOOO
IOOO
tooo
TORO.
FT-LB
72.4
64. 0
58.3
S1.0
43.4
38. 0
29.4
22.2
14.4
7.3
MAX THR
JJL. POSN
tOO 3O
9O 4O
BO ISO
7O 38O
6O 520
SO 870
4O 12 1O
3O 143O
2O I66O
1O 192O
IGN. INJ.
TIMG. TIMG.
18. OB
18. OB
2O. OB
2O. OB
22. OB
3O.OB
3O.OB
30. OB
3O.OB
3O.OB
0.
O.
O.
O.
O.
O.
O
O.
O.
0.
CORR.
BHP
13.68
12. 1O
11 .02
9.64
8.20
7. 18
5.56
4.20
2.72
1 .38
MEAS.
A/f
0.0
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
PHI
EOUIV
RATIO
O.O
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
00
AIR
LB/HR
0.0
O.O
O.O
O.O
0.0
O.O
O.O
O.O
O.O
O.O
BSFC
GAS
BSFC EOUIV
FUEL LB/ LB/
LB/HR BHPHR BHPHR
21 .02
15.58
14.23
12.82
11 .28
10. 65
9. 19
7.89
.536 O.722
.288 O.6OS
.29t 0.607
.330 0.625
.376 O.646
.483 O.697
.653 O.777
. 88O O.883
6.30 2.316 1.O88
4.93 3.574 1.679
ENERGV
EFFICIENCY
tooo*
MBTU/
JC 	 BHPHR
19.2 13.28
22.8 11.14
22.8 11.16
22.1 11.80
21.4 11 89
13.9 12.82
17.8 14.29
15.7 16.25
12.7 2O.O2
8.2 3O.9O


BSHC
O.O
O.O
O.O
O.O
O.O
O.O
O.O
O.O
0.0
O.O
IRAKE SPECIFIC EMISSIONS (O/BHPHR) 	
BSCO
0.0
O.O
O.O
0.0
O.O
O.O
O.O
O.O
0.0
O.O
BSC02
O.O
O.O
O.O
O.O
O.O
O.O
0.0
0.0
0.0
0.0
6SNOX B,S.^L
O.O ;
O.O "' "'
O.O
O.O
0.0
o.o •
O.O
O.O
0.0
O.O
PVH BSPART
0.0
O.O
O.O
0.0
O.O
0.0
O.O
0.0
O.O
O.O

-------
TEST NO.:  HO-811287
ENGINE: 59O VW-B
TEST 0/T:   6-13-83  B:3O
REPORT 0/T: O8-22-83 16:38
                                                                                                   P062MI
SUMMARY REPORT
RPM
33OO
35OO
350O
35OO
35OO
35OO
350O
3SOO
35OO
35OO
30OO
3OOO
3OOO
3OOO
3OOO
3000
3OOO
3OOO
3000
3OOO
2SOO
25OO
2SOO
25OO
25OO
2500
25OO
2500
25OO
25OO
2OOO
2OOO
2OOO
2OOO
20OO
2OOO
20OO
2OOO
2OOO
20OO
TORQ.
FT-LB
82. 0
73.5
69.8
57. 0
49.5
41.5
32.5
24. 0
17.0
8.5
82.3
74.5
66.6
57.7
49.5
41.5
33.0
24.5
16.5
8.2
81. 0
73.4
65. 0
56.5
49. 0
40.6
33. 0
24.3
16.4
8.4
77.9
7O.5
63. 0
84. 0
46.5
39. 0
31.5
23.4
15.5
7.8
X
UAV TUD
PI A A 1 MK
TQ. POSN
1OO 14O
9O 16O
8O 3OO
7O 46O
6O 68O
SO 89O
4O 108O
3O 132O
2O 1480
tO 168O
too no
9O 12O
8O ISO
7O 380
6O 570
SO 75O
4O 103O
3O 123O
2O 143O
IO 189O
too too
9O 110
80 200
7O 330
6O 470
5O 77O
4O 970
3O 1190
2O 166O
IO 194O
1OO O6O
9O 070
8O 100
7O 320
6O 49O
SO 69O
4O 8SO
3O 142O
2O 172O
IO 193O
IGN.
TIMG. •

12. OB
14. OB
16. OB
18. OB
21 .OB
22. OB
24. OB
28.08
28. OB
28. OB
12.08
12. OB
14.08
14. OB
18. OB
2O. OB
24.08
22. OB
25. OB
26. OB
12. OB
12. OB
12.08
14. OB
15. OB
18. OB
20.08
22. OB
24. OB
25. OB
8. OB
IO. 08
IO. OB
12. OB
15.06
18.08
18. OB
2O. OB
21 .OB
22. OB
INJ. CORR.
flMG. BHP
0.
0.
O.
O.
O.
O.
O.
0.
0
O.
O.
O.
0.
O.
O.
0.
O.
O.
0.
O.
0.
0.
O.
O.
O.
O.
O.
0.
0.
O.
O.
0.
0.
O.
O.
O.
0.
O.
0.
O.
54.66
49. 06
46.59
38. 04
33.O2
28.83
21.67
16. OO
It .34
5.66
47.OO
42. 6O
38. IO
33.O1
28.32
23.73
18.87
14. Ol
9.43
4.69
38.57
35.O1
31 .Ol
26.95
23.37
19.34
15.71
11.56
7.79
3.99
29.62
26.82
23.96
2O.53
17.68
14.82
11 .97
8.89
5.89
2.96
A/F
5.O1
6.63
6.55
6.43
6.34
6.3O
3.O6
2 72
291
3.3O
4.96
6.71
6.54
6.59
6.69
6 95
2.96
2.99
3.38
3.71
4.42
6.32
7.O6
7.25
7.25
6.84
3.78
3.48
3.61
3.74
4.44
6.38
7.51
7.43
6.98
7. 10
6.59
3.62
361
3.84
PHI
EQUIV
RATIO
t .29
O.98
O.99
t .01
t .02
t .03
2. t 1
2.38
2.22
1 96
t .30
O.96
0.99
0.98
O.97
O 93
2. 19
2. 17
t .91
t .74
1 .47
1 02
O.92
O.89
O.B9
O.95
.71
.86
.79
.73
.46
.Ol
O.86
O.87
O.93
O.91
O 98
1 .79
1 .79
t .69
AIR
LB/HR
267.4
274. t
247 . t
215.7
193 2
17O.7
71. 0
53.9
49.4
44.9
229.2
238. 1
211.2
188.7
I7O.7
157.3
58. 0
49.4
47.2
4O.4
179 3
184.2
184.2
168.5
152.3
125.8
6O.7
47.2
4O.4
33.7
134.8
143.3
152.3
134.8
112.3
101. 1
83. 1
38.2
31.5
26.5
BSFC ENERGV
GAS EFFICIENCY
B, EOUIV 1OOO*
FUEL Lti. LB/ MBTU/
LB/HR BtoHR BHPHR X BHPHR
53.32 O.976 O.458 SO. 2 8.43
41.33 O.842 O.396 35. O 7.28
37.71 O.8O9 O.38O 36.4 7.OO
33.54 O.B82 O.414 33.4 7.62
SO. 48 O.923 O.434 31.9 7.98
27. IO O.94O O.441 31.3 8.12
23.18 I.O70 O.5O3 27.5 9. 25
19.79 1.237 O.581 23.8 1O.69
16.97 1.497 0.703 19.7 12.94
13.61 2.403 1.129 12.3 2O.77
46. 2O O 983 O.462 3O.O 8. SO
35.48 O.833 O.39I 35.4 7 . 2O
32. 3O O.B48 O.398 34.7 7.33
28.65 O.868 O.4O8 33.9 7. SO
25.54 O.9O2 O.424 32.7 7.8O
22.62 O 953 0.448 3O.9 8.24
19.61 1.O39 O.488 28.4 8.98
16.56 1.182 O.5S5 24.9 1O.22
13.96 1.48OO.69S 19.9 12.79
1O. 9O 2.326 I.O93 12.7 2O.1I
4O.59 1.O52 O.494 28. O 9. IO
29.13 O.832 O.391 35.4 7.19
26. tO O.842 O.39S 35. O 7.28
23.24 O.862 O.4O5 34.2 7. 45
21.02 0.900 O.423 32.7 7.78
18. 4O O.9SI O.447 31. O 8.22
16. OS 1.O22 O.48O 28.8 8.83
13.54 1.172 O.5SO 25. 1 10.13
11.22 1.439 0.676 20. B 12.44
9.O1 2.258 1.O61 13. O 19. S3
SO. 35 1.O25 O.48I 28.7 8.86
22.46 0.837 O.393 35.2 7.24
2O. 29 O.847 O.398 34.8 7.32
18. IS O.884 O.41S 33.3 7.64
16.10 O.91O O. 428 32.4 7.87
14.23 O.86O O.4S1 3O.7 8.3O
12.61 1.O53 O.49S 28. O 9. IO
1O.56 1.188 O.SS8 24.8 1O.27
8.72 1.481 O.696 19.9 12. 8O
6.9O 2.329 I.O94 12.6 2O. 13

8SHC
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
o.o
o.o
0.0
o.o
0.0
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
3RAKE SPE
BSCO

o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
o.o
0.0 •
o.o
o.o
0.0
o.o
o.o
o.o
o.o
CIFIC El
BSCO}

0.0
o.o
o.o
o.o
0.0
0.0
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
o.o
o.o
0.0
o.o
MISSIONS (G/BHPHH) 	
BSNOX BfrALtjVH B.SPART
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
0.0
o.o
o.o
0.0
o.o
o.o

-------
TEST NO.:  HO-811287
ENGINE: 59O VW-8
TEST O/T:   6-13-83  8:30
REPORT D/T:  00-23-63 16:38
                                                                                                   PO62&81
SUMMARY REPORT
TORO.
RPM FT-LB
tSOO 72.8
150O 63. O
1SOO 58. O
tSOO 49.5
1SOO 43.7
«5OO 37. O
1SOO 28.5
tSOO 22. O
150O tS.O
1SOO 7.9
X
MAX
UL.
too
90
80
70
6O
5O
4O
3O
2O
10
THR
POSN
O30
O3O
O7O
34O
4OO
62O
124O
I46O
164O
1BOO

TIMG.
8. OB
8. OB
8. OB
8. OB
1O. OB
14 .OB
2O. OB
2O. OB
2O. OB
20. OB
INJ
TIMG.
O.
O.
O.
0.
0.
O.
O.
O.
O.
O.
CORR. MEAS.
BHP
20. 76
17.98
te.ss
t4.12
12.46
1O.5S
8. 13
6.27
4.28
2.25
A/
4
6
7
7
7
7
3
3
4
5
'f
.67
.57
.17
.45
.47
.64
.55
.77
.04
.21
PHI
EOUIV
RATIO
t .39
O.99
O.90
O.87
O.87
O.8S
t .83
1 .72
t .60
1 .24
AIR
LB/HR
98.9
tot . i
105.6
96.6
89.9
BO 9
31 .5
29.2
26. 1
27.0
BSFC ENERGV
GAS EFFICIENCY
BSFC EOUIV 1OOO*
ciici i a / i a / ftifkTii / — — -. a

LB/HR BHPHR BHPHR % BHPHR BSHC
21.18 1.O21 0.48O 28.9 8.82 O.O
15. 39 O.8S6 O.4O2 34.4 7.4O O.O
14.74 O.891 O 418 33.1 7.7O O.O
12.97 O 918 O.431 32.1 7.94 O.O
12.03 O.965 O 453 3O.5 8.34 O.O
IO. 59 1.OO4 O.472 29.3 8.68 O.O
8.87 1 091 0 513 27. O 9.43 O.O
7.75 1.236 O.5B1 23.8 1O.68 O.O
6.45 1.5O9O.7O9 19.5 13. 04 O.O
5.17 2.297 I.O79 12.8 19.86 O.O
RAKE SPECIFIC EMISSIONS (Q/BHPHR) 	
BSCO
O.O
O.O
0.0
0.0
O.O
O.O
O.O
O.O
O.O
O.O
BSC02
O.O
O.O
O.O
O.O
O.O
o.o
o.o
o.o
0.0
o.o
BSNO
O.O
O.O
0.0
0.0
o.o
o.o
0.0
o.o
o.o
o.o
!S BS.fi.pYH B^PART
0.0
I* o.O
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
                                                                                                                                        \
                                                                                                                                        {
                                                                                                                                        c

-------
APPENDIX B

-------
SUBCOMPACT CARS (Continued)
SUBCOMPACT CARS (Contfnued)
M4tnul*cturtr
It
is
MCRCCOCS-
BENZ
450SLC
OLOSMOBILE
STARFIRE



PLYMOUTH
CHAMP



HORIZON/
Futf
Econoffly
I


16

22
24
15
19

37
35
!i

veMctt OtacupUon
4


$844 |275(4.5D/8

$614
$563
$800
$710

$364
$366
33 |$409
30 ;$4SO
23 i$S87

15H2.5L1/4
151(2.5L)/4
231(3.8L)/6
231(3.8L)/6

•6/4
86/4
98/4
98/4
105/4
TURISMO 124 !SS63 105/4
SAPPORO

PONTIAC
21
$643
22 $614

FIREBIRD 20

$675
156/4
156/4

23H3.8L1/6
16 $844 30l(4.9Ll/8

14 S964
SUNBIRO ! 22
$614
24 S563
15 $900

SUBARU
20 $675

SUBARU ;25 $540
301(4.9L)/8
151(2.5L)/4
151(2.5L)/4
2310.8L1/8
231(3.8L)/6

97/4
:32 i$421 '97/4
25 $540 97/4
32 $421
97/4
.21 '$643 109/4
SUBARU 4WO i 23 $587
TOYOTA i
97/4

CELICA 23 $587
21 $643

20 $675
l
134/4
134/4
134/4

CELICA SUPRA 19 i$710 156/6
21 :$643 156/6
COROLLA '28 $482 108/4
'27 '$500 108/4
26 $520 ' 108/4
COROLLA 33 $409 :89/4
'ERCEL 3i" $436 89/4
29 $466 89/4
CORONA ^23 $587 ' 134/4
21 $643 134/4
20 .$675 134/4
CRESSIDA
VOLKSWAGEN
21 !$643
1
DASHER 36 $334
156/6

90/4
i COOL I 23 [$587 197/4


(CALl(FFS)



(GM-BUICK)
(GM-8UICK)










|


A3

M4
A3
M4
A3

M4
M4X2
M4X2
A3
M4
A3
1


Fl

till!


20R-80/8

2 iHBK-78/10
2
2
2

2
2
2
2
2
2



HBK-77/11



H8K-81/17

MS J2 '2DR-78/8
A3 |2



(GM-BUICK)|A3 2 20R-8S/7

(TURBO)
A3 4
A3 4
!M4 J2 I20R-79/7
'A3 ;2 '-H8K-78/10
(GM-BUICK)
(GM-8UICK)

(NO CAT)
(CAT)
M4 2 '
A3 \2
i :
M4 .2 20R-77/12
M4 2 '.40R-78/12
(NOCAT)IM5 ;2 HSK-78/12
(CAT)]M5 !2 '
I A3 \2
(NO CAT)
M4 2 H6K-78/12
;
;M4 2 20R-75/9
MS '2 HBK-75/14
|A3 ;2 !


(CALl(FFS)JMS |FI HBK-75/13
(CAL)(FFS)|A4 iFI
M4

2 2DR-79/1I
MS 2 40R-79/11
A3 !2 H8K-75/14
'M4 2 20R-80/9
I.M5 2 HSK80/13
•A3 2
|M4 2 .4CR-80/11
MS \2 H3K-77'16
A3 2
(CALl(FFS)
A4 Fl 40R-80/11
|


(DIESELl|M4 Fl lHBK-76/15
.M4 Fl ;
M.UM4U*

ia
VOLKSWAGEN
FtMl
I


(Cont)
DASHER ! 22
(Com.)
JETTA

RABBCT





SCIROCCO



25
22
27
40
42
24
25
23
24
25
j
li


$614

$940
$614
$500
$300
$296
$663
$540
(667
$563
$640
23 |$567
VfMd.OM.Xpta,

fill


97/4

97/4
97/4
89/4
90/4 (DIESEL)
90/4 (DIESEL)
97/4
97/4
97/4
97/4
97/4
97/4

1


A3

MS
A3
U4
M4
MB
M4
MS
A3
M4
MS
A3

1


Fl

Fl
Fl
1
Fl
Fl
Fl
Fl
Fl
Fl
Fl
Fl
a I
- |.a
Sill!




2DR-78/13
4OR- 77/13
2OR-77/6
HBK-77/14




H8K-72/14


                                      COMPACT CARS
I Fu«
Manufacturvr ECOOQI
li !!
AMC
CONCORD 22 $6
my
L. Jl
i
14 i 151/4
J20 :$675 J15I/4
17 5794 1258/6
18 '$751 1258/8
?ACER '•" $794 ! 258/8
:3 $751 ;258/6
AUDI
5000 2? '$4.
i
44 121/5
1" $794 131/5
•• $794 1131/5
BMW

7331 '« $844 h96(3.2L)/6
.16 $844 H96(3.2L)/6

BUICK '.
I
i
SKYLARK .24 !$563 jlS1(2.5L)/4
22 S614 .151(2.511/4
20 S6
20 56
FIAT
~5 '73I2.3LI/6
•5 I73(28L)/S

57RADA 25 S540 31I1500CC1/4
2J 5563 9l(:500CC)/4
FORO
GRANADA '3 57

0 25014 -D/6
••' 3794 250(4. iD/6
•7 5794 302I5.0L1/8
LINCOLN-
MERCURY
MOHARCH '9 57
(Com 1


0 250(4 1LI/6

Vgtucta 0**cnption
b r
•
'M4 2
>3 2
(FFS)|M4 2
[FFS)|A3 2
IFFS)JM4 '2

! iilit

2DH-90/H
J40R-90/11

1
H8K-91/11
(FFSl|A3 !2 ;

i
(OIESEL)JMS Fl 40R-90/15
MS |F
A3 .F

1
1

(CAL1(FFS)|M4 Fl 40R-94/13
(CALKFFS) A3 F


'M4 2
;*3 2
M4 '2
A3 2

MS 2
A3 2

M4 '
A3
1


'20R-94/14
40R-95/14



H.3K-35M5


2DB-59.':5
JdR-^3< -5
|A3 2 ;
* .

,M4 1



2DR-^9/16

16
                                                                   17

-------
                                                      ,      TESTS REPORT                   APR  IO. 198O  Ot -.57:45
                                                      198O FUEL ECONOMY PROGRAM
                                                 49 STATE TEST CAR LIST - PASSENGER CARS  (GAS MILEAGE GUIDE)
                                                                                                                         30


MFR.
AUDI
AUDI
*ypi.

AUDI
AUDI
AUDI
AUDI
AUDI


VEHICLE ID.
384

490-669


637-8O
125-8O

O27-8O

A/C
SIM
YES

NO


YES
YES
~
YES
ACT .
OYNO
UP
7.9

7.0


7.0
7.O

G.5
CITY EMISSIONS
(GRAMS/MILE )
HC
O. 1O7

0 . 40'J


O. IfiO
O. 2f>0

O. 1711
CO
1 .00

1 .33


1 .20
2 5O

4.11
C02
396 .

37 1 .


531 .
529.

437 .
NOX
1 .23

1 .71


1 .47
1 .53

O.35

CITY
MPG
22

~\~2T~i~~
i . 1

17
17

20
HIGHWAY EMISSIONS
(GRAMS/MILE)
HC CO CO2 NOX
O.O29 O.O4 258. 2.87
	 _. . 	
6. 1~7O "" o:44 236. 1 . IO
Q. 156 O.48 235. 1.O5

O.O30 O.O 352. 1.O9
O.O2O O.O 296. 1.32

O.O56 O.47 319. 0.01

HIGHWAY
MPG
34
	 _-/ ..
'43 /
43 I

25
3O

28

COMBINED
MPG
26
	 . 	
33


2O
21

23
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI

FUJI
FUJI
FUJI

FUJI
FUJI
FUJI
FUJI
* 8OFE-12
» 8OFE-12
* BOFE-12
  80F E- 12

» 8OFE-1O
» 80FE-10
• 80FE-1
* 80FE-11
  8OFE-16
  8OFE-15
  80FE-14
YES
YES
YES
NO
NO
tJO
NO
NO
HO
NO
110

NO
NO
NO
7
7
G
9
y
9
9
9
9
9.
9.

9
9.
9
.O
.O
.5
. 4
. 4
.4
.4
. 4
4
2
4

4
.4
4
O
O
O.
0
O.
0
O
O.
O.
O.
O.
O
O.
O.
O
IfiO
2f>0
1711
2r>r,
2'IO
2BO
2f.1
,2fin
254
in?
330
267
167
3O1
27G
1
2
4
3
3
3
3
I
1
4
3
3
4
6
6
.20
5O
. 1 1
61
.37
.65
.91
.52
. 14
. 24
. 15
.70
.90
. 14
. 14
531 .
529.
437 .
351 .
356.
351 .
361 .
274 .
271 .
379.
387.
395.
39O.
395.
421 .
1 .47
1 .53
O.35
1 .20
1 .27
1.21
1 .29
1 .27
1 . 19
1 07
1 .08
1. 17
1 .02
1 .38
1.52
17
17
20
25
24
25
24
32
32
23
23
22
22
22
21
0.005
O.OO4
O.006
O.005

O.O47
0.052
O.O52

0.003
O.O02
O.008

O.CO2
O.002
0.008
O.43
O.76
0.61
O.73

O.O2
O. 13
O.O3

O.78
O.32
O.52
O.
O.
49
23
1.58
248.
261 .
222.
228.

217.
194.
194 .

262.
266.
275.

287.
295.
308.
1 .65
1 .77
1 .69
1 .50

1 .59
1 .42
1.47

1.21
1 .52
1.56

1. 16
1 .24
1 .86
36
34
40
39

4 1
46
46

34
33
32

31
3O
29
                                  29
                                  28
                                  30
                                  29

                                  35
                                  37
                                  27
                                  26
25
25
24

-------
                                                             V.I.  REPORT
                                                       I98O  FUEL  ECONOMY  PROGRAM
                                                 49  STATE TEST CAR  LIST  -  PASSENGER CARS
                                                                                     APR  10.  1980 01:57:45

                                                                                    (GAS  MILEAGE  GUIDE)
 MFR

AUDI
AUDI
AUDI
AUDI
AUDI
AUDI
AUDI
AUDI

FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
FUJI
CARLINE NAME

 4OOO

 5OOO

 5OOO
 5OOO

 4OOO
 SUBARU WAGON
 SUBARU WAGON
 SUBARU
 SUBARU WAGON

 SUBARU
 SUBARU

 BRAT 4WD
 SUBARU WAGON -1WO

 SUBARU
 SUBARU
 SUBARU WAGON
VEHICLE ID

 384

 490669

 637-BO
 125-OO

 O27 BO
•SOFT-12
'8OFE-12
'8OFE- 12
 8OF f. - 1 2

•8OF F- 10
'8OFE-1O

•8OFE-1
•8OFE-11

 8OFE- 1C,
 8OFE 15
 8OF t - 1 -1
                                                              CARB
                                                       DISP   VENT   COMP.
                                                      /CIO   /FI    RATIO
                                                                    HP
 97   FI
   BASIC
121   FI
   BASIC
131   FI
131   FI
   BASIC
131   FI

   BASIC
 97    2
 97    2
 97    2
 97    2
   BASIC
 97    2
 97    2
   BASIC
 97    2
 97    2
   BASIC
1O9    2
109    2
1O9    2
    8.1    76   FI
ENGINE DESCRIPTOR:
   23. 0   v67/  FI
ENGINE DESCRIPTOR:
    8.1   1O3   FI
    8.1   103   FI
ENGINE DESCRIPTOR:
    8.2   1OO   FI
CONTROL SYSTEM

/EGR/OXO/   /
(DIESEL)
I   I   I   I
NONE
/EGR/OXO/   /
/EGH/OXD/   /
(CAD(FFS)
/3WY/CLS/   /
ENGINE DESCRIPTOR: (NO CAT)
    8.5    67   EGR/PLS/OTR/
    8.5    67   EGR/PLS/OTR/
    8.5    67   EGH/PLS/OTR/
    8.5    67   EGR/PLS/OTR/
ENGINE DESCRIPTOR: (CAT)
    9.O    68   EGR/PLS/OXD/
    9.O    68   EGR/PLS/OXD/
ENGINE DESCRIPTOR: (NO CAT)
    8.5    67   EGR/PLS/OTR/
    8.5    G7   EGH/PLS/OTR/
ENGINE DESCRIPTOR: NONE
    8.7    72   EGR/PLS/OTR/
    8.7    72   EGR/PLS/OTR/
    8.7    72   EGR/PLS/OTR/
TRNS-O/D
/CAN
/NON
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
/CAN
M4-2
M5-2
A3-1
M5-2
A3- 1
M4-2
M4-2
M5-2
M5-2
M4-2
M5-2
M4-2
M4-2
A3- 1
A3-1
A3- 1
E .T.W.
LBS.
250O
325.O
3OOO
3OOO
2875
2375
2 SCO
2375
2 SCO
2375
2375
250O
2625
2375
25OO
2625
AXLE
RATIO
4.
4.
3
4
3
3
3
3.
3.
3.
3.
3.
3.
3
3.
3
11
78
.90
. 11
.45
.89
89
89
89
70
7O
89
89
59
59
8O
N/M
56.6
46.1
56.4
•16. 0
53.9
57.0
57.0
44 .0
44.0
54 .O
42.0
59.0
59.0
56.0
56.0
59.0

-------
  CONCORD
  PACER
( 5000
tiUlCti.
  SKYLARK
LLA1.
  STRAOA
FQRP
  GRANADA
JAGUAR
                                                        COMPACT  CANS
                                           AVt^AC.t
                                     EST.   ANNUAL   COMrt  MWY
               f.NGINt OeSCHlPTlON
                                              -  FUF.L
  XJ
                                               900
17
                                                           22
            258(  4.2D  / 6   (CAD (FFS)   A3
                                                                                                         FI
                                                                  <.OH- 91/10
!'_3£_ l_Vk»W—at3C-4.i.
?2 * 614
20 % 67b
17 t 7~<4
Irt * 751
1 7 1> 794
16 % 7bl
27 * 444
17 t 79««
IB 1 7S1
17 * 794
16 4 H44
lb I 444
24 1. 563
22 * M4
20 t 675
20 t 6/5

24 % bt>3
2rt t> 4o2
26 * 520
19 % 710
17 * 794
17 t 7-^4

22
21
20
21
20
33
21
20
20
19
19
29
?6
24
23
29
26
31
29
22
19
20
30
25
26
25
26
25
30
25
25
23
23
3*
34
33
30
35
30
38
32
2d
23
2b

151/ 4
25H/ 6
25H/ 6
25b/ 6
2SB/ 6
121/ S
1 31/ 5
Ul/ S
131/ 5
1961 3.2D / 6
196( 3.2D / 6
151 1 2.5D / 4
151 I 2.5D / 4
173( 2.HD / 6
173( 2.ttD / 6
91 ( 1SOOCC) / 4
91 ( 1SOOCC)/ 4
91 (1500CO/ 4
91 (1500CC)/ 4
250( 4. ID / 6
2SO( 4. ID / 6
302 ( 5.0L) / 8

A3
(FFS) M4
(FFS) A3
(FFS) M4
IFFS) A3
(DIESEL) MS
MS
(CAD (FFS) A3
A3
(CAD (FFS) M4
(CAD (FFS) A3
M4
A3
M4
A3
MS
A3
(CALIF) MS
(CALIF) A3
M4
A3
A3
2
2
2
2
?
2
F.I ..._ ~~~~"
FI
FI
FI
FI
n
2
2
2
?
2
2
FI
FI
1
1
2
20H- 90/11
40H- 90/11


HBK- 91/11

40 R- ^O/Ts^1


40H- 94/13

20H- 94/14
40rt- 95/14


MBK- 85/16



2DR- 89/15
4DR- 93/15

                                                                                                                                      £1*1

-------

    ICMIC-INCM
                          - VCM1CLT CAHLUtf
                                                                                     roui*
                                                                        OlSP.fc.   . A  TEST
                                                                        CAM«  • •  • w- •CIOMT
                                                                                                                    o»inc» .
                                                                                                                      <*     HVO«O>»
                                                       C1AINE rtmi T- nrgt
IT ft /  JT f (cw»r.»      	

    '  (EXMMlST  QdCMMATIOM F»CTOa» FOH - FI
.-.;    ICtMMtt.  OC1M10BATIM* FAfilOW HX» «.   /    /   ./

IT PT /  3T l»
  I «TI
    P/U  2*O
                                                                  SCAM
                                                                                                  V !!/•>*•-
                                                                                                             • 1.
                                                                                                                       !.«*«»-•-
                       ,  C P/V 2«0

                         C P/U 2*0
                                            FI /CfiBS    /•   /    /CAH
                                            FI /ES«/    /   /    /CAN  v  »T-Ft
                                            FI /EM/    /   /    /CAN    9T-M  *•»  23TS
                                                                                            T.T»>,i    |,»r-i-
        (EVAPOft. OCTCHMOMAT10I* f ACTO»« FOA •
                           tlO
                           no
                                                                        f««KT IT
                                                                                                      l.»      T.»      1.8

                                                                                                  I  1.00*    1.221    1.008
                                                                                                                               '  N/» >
                                                                                                                                ».IS9I
                                                                                                                               N/A>


                                                                                                                              • H/A
Mn> a«HAn^l» •• I
                                                F\/«»  •
                                                                • '  -  2.0 •  -  1 .*•
                                                               >•*  "•  /.» -    J.»
                                                                                      ».TT
                                                                                      0.6*
                                                                                                                                  l.S
  EiiAUSt
    ICU4IC INCH 01S3(.«CE-tND
      CARLINES covtotD
                           vtnlCLE
inni - rtHii IFI cFJTtfiroi
                                                        xjrXt  '£••
                                                                               OIESE1.
                                                                        ulSO.k    A  TEST
                                                                        Ci-8      N  .£Iu-T
                                                                                                        E»HA(JST  t»ISS10««
                                                                                                                            '•1SSIONS
                                                                                                   HT[)P«0-    OUHUN     Of     ifONO.
  OA
      5000
                                                                        ;i-lLt l»
                                                                                                    O.-O       1.3      1.7

                                                                                                   : 1.000     1.000    1. .100
  53J9ZO
      CUTLASS »AliON
      CUTLASS
      CUTLASS sup»i»t
      I-PALA/CAPOICE «&1
                         StVlLLE
                         CiULiNA
                         >iN£Tt E
                         COTL»SS
      CATALINA/BONNr.
      CUSTOM caul sco •<*
      OCLTA 8«
      LfSAdOC
      (STATE WAGON
      NINETY EIGHT
      ELECTDA
      OEVlLLE/bUOubHAM
      TOflONAOO
>GM
       /f'j"/
       /EG'/
                                                         /   /    /-.ON    ]i.tl-FI   1-3  ".SCO  2.»1
                                       L-3
                                       L-3
      ELUOAACXT
      iiVILLF

        (EXHAUST OCTER10MATIOM FACTORS FOt) - FI /eO->/   /   /
                                                                                                    O.J"
                                                                                                               1.3       l.»
                                      1.3
                                      1.3
                                                                        (4M1LT  n1J<)2(»
                                                                                                  1  l.l<.»     I.IJ*
  ao.
    C 2*00/2"OC/3000     C  2*00/2aOE/3000
      
                                            FI /
                                            FI /
                        /SON
                        /NOM
1»6-F|
1 ".»-*!
»-*  3500  3.69     0.31
«-»  3S«»  >.»•     *.J«
ft. 41
 1.1-
l.»
1.1
N/A
N/«

-------
V(.M


List ing
1
2
3
4
5
6
Q up . TAM v**1*
2 ^wWX 1 Mc- f^f>
"^ 1 f I 1 / i ll'l 1 1
of -f at 15:4 N on JUl 16,1 198E tor tcAd=JSN8(J
4- \L JWt i-X' if -H J/ J •I
591 3000 FMDS 67 59021 56 121.0 M52 0 5 18.41
591 3000 FAMS 103 59026 44 131.0 A31 0 5 13.46
591 3000 FMMS 103 59026 44 131.0 M52 0 5 13.19
591 3500 FAMS 107 59028 44 131.0 A3 1 0 5 14.78
591 3000 FAMS 107 59027 44 131.0 A31 0 5 13.06
591 3000 FMMS 107 59027 44 131.0 M52 0 5 12.81
f '/">!

1
4
4
4
4
4
4
^f
n.
VCH
W futt
I i
BO FLDO
80 CLDV
80 CLDV
80 FLDV
BO FLDV
80 FLDV


VOt •
9809
4790
663
3987
10840
1809


7
9809
4790
663
3987
10840
1809

CflCiW
7
5015
5015
5015
5015
5015
5015

(
fii
21
21
21
21
2 1
21


ta
!•


V
.00 27.20
.40 16.70
.40 14.90
.40 17.50
.10 16. 20
.10 16.10


" ~<<:,y
b
43.00
24.60
30.40
24.90
24.30
29.50


	 	 	 HUPtt,
•' i t *• ./* M(T
I J,
32.59 5000
19.52 5000
19.34 5000
20.20 5000
19.06 5000
20.24 5000
                                                                         Page

-------
O - 50
                                      So
      • 55 5
            S
     - 4-3 A 3 /.? / "_'

-------
                                    TECHNICAL DATA
Engine
Diesel engine
See page 105
Four stroke, five cylinders in line, in front of front axle lilted to right, crankshaft with six main
bearings, spur-belt overhead camshaft.
Water cooling, thermostatically-controlled, with electric fan, thermostatically operated.
Pressure oil feed with gear-type pump and full flow filter.
Electric fuel pump. CIS fuel injection system.
Paper element air cleaner with temperature sensitive intake air pre-heating.
Exhaust emission control system. Activated charcoal filter (carbon canister) in the fuel sy-
stem.
- Maximum output SAE net    .  .  .

- Maximum torque SAE net    .  .  .
                                     - Displacement
                                     - Stroke    ....
                                     - Bore   	
                                     - Compression ratio
103 hp at 5300 rpm.
U0hpat5300rpm»
112.4ft. Ibs. at 4000 rpm
163 Nm at 4000 rpm
115.9ft. Ib. at 4000 rpm*
168 Nm at 4000 rpm*
130.8 cu. in/2144 cm3
3.40 in/86.4 mm
3.13 in/79.5 mm
8.0:1
                                     Cooling system	  Electric fan with thermo switch.
                                                                          Water pump spur-belt driven.
                                     Fuel   	  Canada models: "Regular", incl. low-lead or
                                                                          unleaded fuels
                                                                          "Unleaded fuel only" for cars with catalytic
                                                                          converter.
                                     * Canada mmteb ontv.
                                                                           87
Transmissions:
Body/Chassis:
Steering:
Front wheel suspension:
Rear wheel suspension:
Service (foot) brakes:
Parking brakes:
Tires:
Tire size and pressure:
Automatic Transmission
Automatic transmission with separate final drive. The transmission consists of a hydrodynami
torque converter and planetary gearing with three forward gears and one reverse.
Front wheel drive with two constant velocity joints per drive shaft.
Manual Transmission
Single plate, dry clutch.
Hydraulic clutch system.
Baulk synchronized five-speed transmission and bevel gear differential in one housing.
Front v. heel drive with two constant velocity joints per drive shaft.
All steel unitized body/chassis, passenger compartment designed as safety cell, front anc
rear ends designed to absorb impact energy.
Rack and pinion steering (power assisted) with maintenance-free tie rods.
Independent front wheel suspension: coil spring/shock absorber struts with negative stee
ring roll radius, stabilizer bar.
Rear wheel suspension: torsion crank axle with Panhard rod for lateral stability, progressivi
coil springs, telescopic shock absorbers.
Foot brakes: Power assisted, dual diagonal hydraulic system, disc brakes wit!
brake wear indicators at front, self-adjusting drum brakes at rear
brake pressure regulator for the rear wheels.
Parking brake: Mechanical, effective on rear wheels.
Steel belted radial tires 185/70 SR (HR) 14. Steel rims 5% J x 14 or light alloy rim:
6 J x u (Always go by information listed on label inside of fuel tank flap).
Tire pressures: See sticker on inside of the fuel filler flap.
 88

-------
    Electrical system
    See page 106 for Diesel engine.
    Voltage    	    12 Volts
    Battery	    63 Ampere hours
    Starter   .	    l.Shp/l.lkW
    Radiator fan    	    250 watts
    Alternator   	    1050 watts 14 volts/75 amp.

    SizeotV-belts:
       for alternator    	    9.5x800
       for air conditioner   	    12.5x915
       for power assisted steering	    12.5x1003 LA

    Ignition distributor    	    with combined vacuum and centrifugal
                                            spark advance
    Ignition system   	    Transistorized (breakerless)
    Firingorder	     1-2-4-5-3
    Sparkplugs	    Bosch W 175 T30
                                            Bem 175/14/3A
                                            Champion N8Y


    for California models	     Bosch WR 7 DS
                                             Beru RS 35
                                             Champion N 8 GY


    Plug thread   	    14 mm
    Electrode gap	    °-027 in/0-7 mm
Dimensions

A - 189.0 in/4798 mm
B -  69.6 in/1768 mm
C-  54.7 in/1390 mm (unladen)
D-  40.3 in/1023 mm
E -  42.9 in/1087 mm
F -  24°
G -  19°  (unladen)
H - 105.9 in/2688 mm (unladen)
J  -  57.9 in/1470 mm
K -   4.4 in/ 112 mm (laden)
Weights
Vehicle capacity weight	
Curb weight with Manual Transmission
Curb weight with Automatic Trans-
   mission   	
Gross vehicle weight
Gross axle weight, front
Gross axle weight, rear
see sticker on the inside of the fuel filler flap.
2703 lb/1225 kg

27361b/1240kg
see Safety Compliance Sticker on the left
door jamb.
Permissible roof weight*   	    165 lb/75 kg
Turning Circle, Curb to CUrb 33.8 ft/10.3 m.  • Applies onlyio roof tack mounted 10 rain tuners. DiMrihiiieluiij evenly!

-------
 Lubricants

 Engine oil
 Always use quality oil labeled "For Service API/SE" for the engine of your Audi.
 Engine oils are graded according to their viscosity. The proper grade to be used in
 your engine depends on existing climatic or seasonal conditions.
 The table on the right contains the grading for oils to be used in your Audi engine.
 As temperature ranges of the different oil grades overlap, brief variations in outside
 temperatures are no cause for alarm. It is also permissible to mix oil of different vis-
 cosities if you find it necessary to add oil.
 Transmission oil
 Hypoidoil"     Single-grade   Multi-grade    Specifications  Additive basis
Manual
Transmission
Final drive of
the Automatic
Transmission
SAE SOW
SAE 90
SAE 80 W/90
	
Mii-L-2105
API/GL4
Mil-L-2105 B
AP1/GL 5
sulphur
phosphorus
* Does not have tu he changed

Automatic Transmission and torque converter require  ATF all year round. All
ATFs labeled Dexron can be used.

Lubricant additives
If your Audi is properly maintained, it is uneconomical to mix any type of additive
with fuel, or lubricating oils and transmission fluids.

Battery

Silicone spray or petroleum jelly should be used for the battery terminals and posts.
Climate

Tropical





Moderate


Arctic


*>•

»•



XV

0-
o-


*
0"

»

00


40
n
0
»
0
Single
grid* oil
,
o
W*
j{












a

Jl










0

1










1
"I
3

Muitigrade oil


!

\
S3

\f
XK
ill






X*
,• 7
aa
„„
33









>.\s
98
SArow-
SAtOW











-8'
t
' v^
••3.
I 33-231 1
                                                                             When using single grade SAE 10 W or multi
                                                                             grade SAE 5 VV-20 engine oil avoid high speed
                                                                             long distance driving if the outside temperature
                                                                             rises above the indicated limit.
                                   DIESEL ENGINE
                                   This portion of the Owner's Manual contains information that applies to Audi
                                   5000 vehicles v>.ith Diesel Engine.
                                   As this Owner's Manual is based on the gasoline engine equipped car. there are
                                   certain data that do not apply to your Audi 5000 Diesel, such as Catalytic Conver-
                                   ter. Exhaust Gas Recirculation. Emission Control System. Fuel Octane Rating,
                                   Engine Oil Grades. Spark  Plugs.
                                   Please read the following pages before you drive your Audi 5000 Diesel, especially

                                   the explanations on
                                   - Starting with pre-glow

                                   -  Diesel Fuel No. 2
                                   -  Engine oil grade: API/CC or CD

                                   All other on tor mat ion and operating instructions for your Audi as described in this
                                   Owner's Manual apply. For warranty and service information consult your War-
                                   ranty & Maintenance booklet.
                                                                                                       iDiesel]  93

-------
Technical data

Engine
Four stroke. Five cylinders in line, crankshaft with six main bearings, spur-belt overhead
camshaft.

Water cooling, thermostatically-controlled, with electric fan. thermostatically operated.

Pressure oil feed with gear-type pump and full flow filter. Mechanical fuel injection pump,
fuel injectors.
                                       Paper element air cleaner.
                                        Maximum output SAE net. .  .
                                        Maximum torque SAE net.
                                        Displacement. .  . .
                                        Stroke	
                                        Bore	
                                        Compression ratio .
                                        Cooling syslem.  .
                                        Fuel .
                                          67 hp at 4800 rpm
                                          90 ft. Ib at 3000 rpm
                                          125 Nm at 3000 rpm
                                          121 cu. in./l986ccm
                                          3.402 in/86.4 mm
                                          3.012 in/76.5 mm
                                          23:1
                                          Electric fan with thermo switch.
                                          Water pump spur-belt driven.
                                          Diesel Fuel No. 2
Transmission
 5-speed Manual Transmission.
                                                                                                              Diesel
     Cooling system


     Electrical system
      Capacity
      Battery  	
      Starter   	
      Radiator tan	
      Alternator    	•.  .  .  .
      V-hwIt for alternator	
            for aireonditioner  .  .  .
            for power assisted steering
9.9 U.S. quarts/9.4 liters
88 Ah
2.0 hp
250 watts
15 Amp/1050 watts
^x«13 LA
12.5 x9!5
12.5 \ 1050
     Weights
      Curb weight with ManualTransmission
2736 Ib/1240 kg
106
     Diesel!

-------
         ENGINE
         Horsepower SAE net .
           Canada models only
           Diesel engine ....
         No. of cylinders .  . .
         Displacement	
           Diesel engine ....
         Type	
           Cooling ....
           Fuel/air supply
             Diesel engine
           Fuel tank capacity
           Engine oil capacity
             with filter-change
             without filterchange
 l03hpatS300rpm
 110hpat5300rpm
  67 hp at 4800 rpm
 5
 130.8 cu. in/2144 cm1
 12 leu. in/1986 cm3
 in line, front mount

 water-cooled
 CIS fuel injection
 mech. fuel injection
 19.8 U.S. gal./
 75 liters
  4.8 U.S. (f
  4.5 liters
  4.5 U.S. qi/
  4.0 liters
VEHICLE LENGTH
         WIDTH  .
         HEIGHT
(unladen)
BRAKES   ....

SUSPENSION   .  .
STEERING
189.0 in/4798 mm
69.6 in/1768 mm
54.7 in/1390 mm
dual diagonal circuits, power-
assisted, discs front, drums rear
front wheels: independent
rear wheels: torsion crank axle
           with Panhard rod
rack-and-pinion, power-assisted
DRIVE TRAIN
Type   	
Gears (Manual)
Speeds (Automatic)

ELECTRICAL
SYSTEM   .  .
Battery   .  .  .
  Diesel engine
Alternator  .  .
front wheel drive
5 forward, 1 reverse
3 forward, 1 reverse
 12 Volt
 63 Ampere hours
 88 Ampere hours
 1050 watts (14 volts/75 amp.)
                                                                                                      U.S.
                                                                         Metric
Capacities
See page 106 for Diesel engine.
Fuel tank
   Reserve of total capacity

Cooling system including heater

Engine oil (API/SE)
   with filter change	
   without filter change    .  .  .
                                           Oil capacity between upper and lower
                                              marks on dipstick    	
                                           Automatic Transmission
                                              at change (ATF)   	
                                              final drive	
                                              (hypoid oil - does not have to be chan-
                                              ged)

                                           Manual Transmission    	
                                              (hypoid oil - does not have to be chan-
                                              ged)
                                           Windshield washer container

                                           Power assisted steering
                                19.8 gal
                                 -.1 gal

                                 8.6 qt
                                                                                                        4.8 qt
                                                                                                        4.3 qt
                                                             1.1 qt
                                                             3.2qt
                                                             1.1 qt
                                                            1.8 qt

                                                            0.8 qt
                       75.0 liters
                        X.O liters

                        8.1 liters
                                               4.5 liters
                                               4.0 liters
                                               1.0 liter
                                               3.0 liters
                                               1.0 liter
                                                            2.75qt       2.75 liters
                                              1.7 liters

                                              0.8 liter

-------
APPENDIX C

-------
BEST ECONOMY
RK21RDO
r »-(«-• ^J
EEPRCM BEST ECONCMY/OPT IGN.FEB 1986
H.A.- RPS(*10), V.
10
9
8
7
6
5
4
3
2
1

0080
0090
0100
0110
0120
0130
0140
0150
0150
0150
1
H.A.- RPS(*10), V.
10
9
8
7
6
5
4
3
2
1
H.A.- RPS(


a
7
5
5
4
3
2
1

H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
OCOO
0000
1
*10), V.
0500
0500
0500
0600
0000
0600
05CO
0600
0600
COCO
1
A.- FUEL(*5) «
0030
0030
0035
0040
0045
0050
0055
0060
0060
0060
2
0035
0030
0035
0040
0045
0050
0055
0060
0060
0060
3
0030
0040
0050
0055
0055
0060
0060
0065
0065
0065
4
A.- MAP(mB*100) «
0140
0160
0180
0200
0220
0240
0270
0300
0300
0300
0200
0310
0330
0340
0350
0375
0400
0450
0450
0450
2 3
A.- MAP(mB*100
0500
1600
1900
2100
2300
2300
2300
2300
2300 '
OCOO
2
*2), V.A.- f
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
5
Throttle
0200
0150
0170
0210
0240
0260
0280
0300
0300
0300
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
6
Angle
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
7
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
8
Derivative -
0200
0200
0200
0200
0200
0200
0000
0200
0200
0200
4567
)« Advance Table (deg/ 100
1300
1900
2100
2200
23CO
2300
2300
2300
2300
OCOO
4
1400
2000
2200
2300
2300
2300
2400
2400
2400
0000
5
< Idle Ign.
COCO
CCOO
COCO
CCOO
0400
C4CO
C4CO
0400
0400
COCO
COCO
CCOO
CCOO
coco
0600
0600
0500
0600
0500
0000
1500
2200
23CO
2400
2500
25CO
2500
2500
2500
OCOO
6
Mao - '
0500
0500
0500
0600
0500
05CO
0600
0600
0600
0000
1600
2200
2400
2600
2500
2500
2500
25CO
2600
COCO
7
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
8
BTDC)
1700
2200
2600
2700
2700
2700
2700
2700
2700
OCOO
8
J" (deg/ICO
C5CO
C5CO
C7CO
CSCO
0300
CSCO
CSCO
OS-CO
OSCO
coco
0500
CSCO
1-000
1200
1200
14CO
15CO
1600
1300
OCOO
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
9
"K" »
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
9
- "I" »
1700
2200
2600
2700
2700
2700
2700
2700
27CO
COCO
9
BTDC) >
05CO
1000
14CO
1600
1700
1SCO
2CCO
2000
1600
CCOO
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
10

0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
10
1800
2200
2600
2700
2700
2800
2300
2800
2800
0000
10

CSCO
1500
13CO
2 ICO
2300
2300
2300
2300
2000
OCOO
                               10

-------
RK2RDO
EEPROM BEST ECONOMY/OPT
IGN.FEB
1986 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100)« Fuel Injection
10
9
8
7
6
5
4
3
2
1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1

6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
4100
2380
2130
1850
1580
1350
1100
0900
OVRUN
OVRUN
2
4600
2575
2275
1980
1690
1420
1160
0915
OVRUN
OVRUN
3
4950
2710
2395
2080
1770
1470
1170
0930
OVRUN
OVRUN
4
5350
2800
2470
2125
1830
1520
1220
0970
OVRUN
OVRUN
5
5450
2815
2480
2165
1840
1530
1220
1010
OVRUN
OVRUN
6
A.- MAP(mB*100) < Idle Fuel Map -
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
H.A.- RPS(*10), V.A.- FUEL(*5) «
10
9
3
7
6
5
4
3
2
1

H.A.- RPS(
10
9
8
7
6
5
4
3
2
1


0000
0000
0000
0000
0000
ooco
coco
coco
0000
OCOO
1
*2), V
0000
coco
0000
ooco
coco
0000
0000
0000
0000
0000
1

0030
0050
0070
0080
0090
0100
0110
0120
0120
0120
2
0030
0040
0045
0050
0060
0070
0080
C090
0090
0090
3
A.- MAP(m3*100
0000
OOCO
COCO
COCO
OOCO
COCO
0000
ooco
0000
0000
2

OOCO
OCOO
0000
OCOO
OCOO
0000
coco
coco
1 ooco
0000
3

0030
0040
0050
0055
0060
0065
0075
0080
0080
0080
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
Exp.
0030
0045
0060
0070
0080
0085
0090
0100
0100
0100
5
) « WW Idle
OOCO
coco
coco
ooco
coco
coco
ooco
coco
ooco
coco
4

0000
0000
OCOO
0000
0000
0000
ooco
OCOO
0000
0000
5
65
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Impulse
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
6
Height
OCOO
0000
0000
OOCO
OOCO
0000
OOCO
OCOO
0000
ooco
6

Table( Fuel/100) - "F" »
5700
2930
2590
2240
1950
1640
1320
1050
OVRUN
OVRUN
7
5900
2990
2650
2305
1970
1640
1320
1200
OVRUN
OVRUN
8
6100
3050
2700
2380
2020
1670
1350
OVRUN
OVRUN
OVRUN
9
6300
3100
2750
2450
2100
1700
1400
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
4100
2380
2130
1850
1580
1350
1100
0900
1200
OVRUN
10
Height(%) - "H" »
0030
0030
0030
0030
0030
0030
C030
CO30
C030
0030
7
- "W"
0060
0060
0080
C080
0100
0120
0140
0160
0160
OOCO
7

0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
8
»
0060
0060
0060
0080
0100
0120
0140
0160
0160
0080
8

0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9

0060
0060
0060
0060
0060
0120
0120
0120
0120
0060
9

0030
0030
0030
0030
0030
0030
C030
0030
0030
0030
10

0060
0060
0060
0050
C060
0120
0125
C125
0125
0060
10


-------
                  RK2RDO
EEPRCM BEST ECONCMY/OPT IGN.FEB 	
1986 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100) < E.G.R. 0 to 1000 >
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
5 Two Line Temp.
10
9
8
7
6
5
4
3
2
0200
0270
0200
0270
0350
0270
0100
0100
0000
1 0270
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3
Corp. Tables
0200
0280
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4
(CCMP
0200
0295
0200
0295
0160
0290
01CO
0100
COCO
0290
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
5
./TEMP.
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
7
), TEMP(KELVIN)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
10
, OCMP(%)
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
oioo
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
         7
8
10
66

-------
                  RK3RDO
EEPROM REDUCED NOX STRATEGY JUNE 86
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
.A.- MAP(mB*100)« Fuel Injection
4100
2660
2170
1830
1540
1300
1210
0900
OVRUN
OVRUN
2
4600
2750
2250
1900
1690
1420
1190
0915
OVRUN
OVRUN
3
H.A.- RPS(*2), V.A.- MAP(mB*100)
10
9
8
7
6
5
4
3
2
1

H.A.- RPS(
10
9
8
7
6
5
4
3
2
1

H.A.- RPS(
10
9
8
7
6
5
4
3
2
1
6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
*10), V
0110
0110
0120
0120
0130
0140
0140
0150
C150
0150
1
*2), V.
0000
0000
0000
0000
0000
0000
COOO
0000
0000
0000
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
4950
2820
2280
1960
1750
1470
1175
0920
OVRUN
OVRUN
4
5350
2930
2340
1980
1800
1500
1250
1000
OVRUN
OVRUN
5
< Idle Fuel
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
.A.- PUEL(*5) «
0110
0110
0120
0120
0130
0140
0140
0150
0150
0150
2
0020
0030
0030
0030
0030
0050
0060
0060
0060
0060
3
A.- MAP(mB*100
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0040
0040
0045
0045
C050
0050
COS 5
0055
0060
0060
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
5450
3030
2365
2000
1820
1510
1290
- 1080
OVRUN
OVRUN
6
Map -
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Exp. Impulse
0020
0020
0025
0025
0030
0030
0035
0035
0040
0040
5
) « WW Idle
COOO
0000
CCOO
0000
COOO
COOO
coco
COOO
0000
0000
COOO
0000
0000
0000
0000
0000
0000
coco
COOO
0000
0030
0030
0030
0030
0030
•0030
C030
0030
0030
0030
6
Height
0000
0000
0000
"000
UOOO
0000
0000
0000
COOO
0000
Table( Fuel/100) - "F" »
5700
3900
2700
2280
2000
1670
1360
1100
OVRUN
OVRUN
7
5900
5000
2970
2550
2200
1820
1470
1200
OVRUN
OVRUN
8
6100
5400
3000
2620
2240
1850
1490
OVRUN
OVRUN
OVRUN
9
6300
5700
3050
2650
2300
1900
1520
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
Height( %) - "H
0030
C030
0030
0030
0030
C030
C030
C030
C030
0030
7
- "W"
0060
0060
0080
C030
0100
0120
0140
0160
0160
0000
0030
0030
0030
0030
0030
0030
0030
. 0030
0030
0030
8
»
0060
0060
0060
CCSO
0100
0120
0140
0160
0160
0080
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
1 »
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9

0060
0060
0060
0050
0060
0120
0120
0120
0120
0060
4100
2600
2170
1830
1540
1300
1210
0900
1200
OVRUN
10

0030
0030
0030
0030
0030
0030
C030
C030
C030
0030
10

C060
C060
0060
CC60
C060
0120
0125
0130
0130
0060
68
                       10

-------
- 3
                         RIGRDO
                         COMSUhfittG CttGiWftM
EEPRCM REDUCED NOX STRATEGY JUNE
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1

0035
0040
0045
0050
0055
0060
0065
0070
0070
0070
1
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1

0000
0330
0340
0350
0360
0370
0380
0390
0400
0400
1
H.A.- RPS(*10), V
10
9
8
7
6
5
' 4
3
2
1
1
COCO
ocoo
ocoo
ocoo
ocoo
0000
0000
ocoo
0000
ocoo
2
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
ocoo
ocoo
coco
0000
ocoo
coco
ocoo
0000
0000
0000
86 recalled
.A.- FUEL(*5) «
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
2
0085
0090
0095
0100
0105
0110
0115
0120
0120
0120
3
0050
0055
0060
0065
0070
0075
0075
0080
0080
0080
4
.A.- MAP(mB*100) «
0220
0230
0240
0250
0260
0270
0280
0290
0300
0300
2
0120
0130
0140
0150
0160
0170
0180
0190
0200
0200
3
0260
0280
0290
0300
0310
0320
0330
0340
0350
0350
4
Exp. Impulse Time Constant(mS) - "C" >
0080
009O
0100
0110
0120
0130
0140
0150
0150
0150
5
Throttle
0320
0330
0340
0350
0360
0370
0380
0390
0400
0400
5
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
6
Angle
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
6
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
7
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
8
Derivative - "
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
7
.A.- MAP(mB*100)« Advance Table(deg/100
0500
0700
1000
2000
2100
2100
-2100
21CO
2000
COCO
3
0700
0900
1200
2100
2100
2100
2100
2100
2100
OCOO
4
A.- MAP(mB*100)
COCO
0000
COCO
OCOO
COCO
0000
0000
coco
ocoo
0000
COCO
OCOO
COCO
ocoo
0000
coco
coco
coco
ocoo
ocoo
0800
1000
1200
2100
2100
2100
2100
2100
2100
OCOO
5
0900
1000
1200
2200
2200
2200
2200 •
2200
2200
OCOO
6
< Idle Ign.
COCO
OCOO
COCO
COCO
0400
0400
0400
0400
0400
COCO
COCO
OCOO
COCO
OCOO
0600
0600
0600
0600
0600
OCOO
1000
1000
1200
2300
2400
2400
2400
2400
24CO
OCOO
7
Map -
0500
0500
0500
0600
0600
0600
0600
0600
0600
OCOO
1600
2100
2200
2400
2400
2400
2400
2400
2400
0000
8
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
8
BTDC) -
1700
2100
2300
2500
2500
2500
2500
2500
2500
COCO
9
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
9
K" »
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
9
"I" »
1700
2100
2400
2500
2500
2500
2500
2500
2500
0000
10
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
10

0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
10

1800
2100
2400
2500
2500
2600
2600
2600
26CO
0000

"J" (deg/100 BTDC) >
0500
0500
0700
0700
0800
0800
0800
0800
0800
COCO
0500
0800
1000
1200
1200
1400
1600
1600
1300
COCO
0500
1000
1400
1600
1700
1800
2000
2000
1600
0000
0500
1600
1900
2100
2100
2100
2100
2100
2000
0000
                              10
      69

-------
r
                          c -
RK3RDO
EEPRCM REDUCED NOX STRATEGY JUNE 86 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100) < E.G.R. 0
10
9
8
7
6
c
4

2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
5 Two Line Temp.
10
9
8
7
6
5
4
3
2
1
0200
0270
0200
0270
0350
0270
0100
0100
0000
0270
0000
0240
0250
0260
0240
0220
0200
0000
0000
0000
2
0000
0350
0350
0370
0330
0280
0230
0225
0000
0000
3
Corp. Tables
0200
C 30
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
0000
0450
0430
0440
0400
0320
0230
0225
0000
0000
4
(CCMP
0200
0295
0200
0295
0160
0290
0100
0100
0000
0290
0000
0500
0475
0550
0470
0350
0240
0225
0000
0000
5
./TEMP.
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
to 1000 >
0000
0550
0500
0650
0560
0370
0260
0000
0000
0000
6
0000
0420
0400
0550
0440
0330
0240
0000
0000
0000
7
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
10
), TEMP(KELVIN), CCMP(%)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
0100
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
                                             8
     10
                                 70

-------
To
     / Fax No.     OtOl
Fax No. Brighton (0273) 464124
Telex No.  87383  RICSHAM  C
Date
Page
                                                                      of
           Con
                                                    i  i.
                                         \   a   s   4-
                  If you do not receive ail of ttie pages or the message is distorted
                   please call 0273 455611 ext 2334 and speak to fax operator
                                    J

-------
65
f-i
 yj

 G3
 LL
 'LI

 CO
  U I

  Gl
            "  "
            rt |

            "  O
            o  «•»
            10  -t
            ~-j  o
            w  n

               '~
£<&
t* °
a «

Hi it
!]L ;:a

o 1:5
             ••:5  ..n

             II
U    U"  U   U

                                                                                                                              .
                                                                                                                         -o
                                                                                                                         (U
                                                                                                                          p
                                                                                                                                 s

-------
Telex/  Facsimile  Message
To	
                 Q«0»
/ Fax No..

         OT (3*
                                        4313
Subject
                                                                   RlflRDO
             Fax No. Brighton (0273) 464124
             Telex No. 87383  RIC5HAM G
             Date
                                                       Page
                                                              \
                        of
                    MEC FUEL CALCULATIONS,
     In order to understand the fuel algorithms the user may need to
     identify the engine panel display  values with the  nodes on the fuelling
     strategy chart,  the trace values with the fuelling strategy chart,  and
     the total fuel calculated with the injector opening time.

     The fuel calculations are written  in assembly code which allows only
     six characters for names of variables and procedures.  This causes  the
     names to be unpronouncable and brief but they have been used in the
     diagrams and descriptions to aid accuracy.
    Throttle impulse calculation.

    This adds fuel  as the throttle is opened.
    Engine Speed (RPSOV)
    Manifold Air (MAPGV)
    Pressure
    Throttle P
    Position
                                       (TKIGV)
                (TAGV)    ^
JFTAFGV)
                                                      KDTADT
                                                     (TIGV)
                 If you do not receive all of the pages or the message is distorted
                  please call 0273 4','h n e*t 2334 and speak to fax operator

-------
DBG. CRANK


CAM. HJLSE


TEST BOX CAM.
SIGNAL

CRANK SIGNAL
WC SUCM3UB OP BVBNIS
0 180 360
! 1 1
1

I I
540 720
1 1
1

1
CYLINDER FIRING
VALVE PERIODS.
          CYLINDER 1

             •     3

             "     4

                   2
70 DEC. 6TOC
REP. PULSE
IGNITION
EXH
                  EXH
INJECTION

END OP INJECTION BEFORE
IVO.
                   IN
                                  Effl
                             IC3N 6T
                                                            IT]
                                            IN
                       EXH     1
DBG. CRANK
    I
    0
 I
180
360
 I
540
 T
720

-------
Impulse Time
Best Economy
 Impulse Time
   Best Economy
                                    ISO
                                    140
                                     120
                                     too
Impulse Time
                                   XQO
        g§
                                                 .,*mM"
                                                 o o
                                                     o o
                                    Impulse Time
                                      Best Mr

-------
                                 - /
                  -i 3
      o o
e a 8 S S 3 8 ° 8
          O O
Impulse Time
             Best Economy
                                                g g   o o
Impulse Time
Impulse Time
              Best Economy
                                         1QO
                                         140
                                          120
                                          100
Impulse Time

-------
Impulse Time
Bed Economy
Impulse Time
Best mi

-------
 Wiring details of MEC injector and ignition relay
                                                                  RIQIRDO
                                                                  CONSULTING ENGINCEIIS
            +12 V
          to acivate
          relay
       (normally fron
        ignition switch)
             +12 V
          from battery

m
tch)
ry

- > ! !

WZ i i 	
Cl
	 X f-0
Wl

Supply to
injectors
0\j
battery neg
1 ( chassis )
Relay type LUCAS 6RA
Pin view showing pin numbers.

-------
                                                                    RlflRDO
Appendix_l

       CONFIGURATION OF PLUS/SOCKET INTERFACE WITH PROBES AND LOCM

ILLUSTRATION OF PREFERED PRATICE
PROBE
PRT's
AN'S
Ring Gear
Camshaft
Crankshaft
Ignition
Knock & EGR
Map
fTTUt ••••. f 1 "I A
1ILLUU L.J.6
Injector
Receptacle
Type Pin
Cable
H
ft
It
11
If
II
*
*
*
*
*
*
*
CONNECTION
Skt
LOOM
Plug
Type Pin Skt
PT01E-10-6PXPT06E-10-6S Cable
II
tt
II
II
II
II
X
X
X
X
X
X
/— — 	 — 	 /
Plug
*
It
It
It
II
It
II
It
1 AO
n
(i
M
n
ii
n
n
C*-*-***J -*1
	 N j. «v* opc^-LOJ.
PT06E-10-6PXPTOOE-10-6S Recept/Cha
*
*
*
*
*
*
*
*
If
*
MEC
==>-
==>
==>
==>
==>
-»• X
==>
i
i
i
i
i
i
i



55-WAY


==>!
•»— . x
== XLR31
'K' Type t/c SCREENED coup-lead & mimiature plugs  to be used  as std.

 Connector Identification
PT01E-10-6P(SR)	Receptacle Cable
PT06E-10-6S(SR)	Plug Cable
PTOOE-10-6S(SR)	Receptacle Chassis
PT06E-10-6P(SR)	Plug Cable
PTOOE-22-55S(SR) 	Recptacle Chassis
PT06E-22-55P(SR)	Plug Cable
Notes.  .
PT     shell type
     -10-shell size in mm
         6 NO. of contacts
          P pins
          S skts
           (SR) Strain Relief
The above part numbers are of Aviation Elect.  & Radio Co, Horsham
similar Mil-C-26482 spec connectors are available from Townsend Coates
Leicester, with a different prefix. Refer to catalogue.

1 REVISED
       Now using PT01E-10-6S PLUG (cable type),  since addition of
       signal condition, connected direct to throttle-pot,  which is
       terminated with a CHASSIS type PTOOE-10-6P to match.

-------
                                    - / u?
                                                                     RK21RDO
                                                                     CONSULTING [NCIH(C«3
  (.ITEMLSTS.MEC.EPACON)
NEC WIRING LOOM DETAILS
12-06-86
iss
1
date
12-06-86
change description
Derived from NEBGON all information not
relating to the EPA/METHANOL MEC loon
deleted.
initials
MGB
NOTES:
1  12V Connected direct to injectors via relay
2  Gen. interconnection between loom and pickups by AMPHENOL type
   plugs and sockets to MIL-C-2 5482—62GB series.
3  ** All these connections are made external to plug for
   convenience and these pins should NOT be used.
4  ***Fuel injector outputs are routed through own bulkhead fitting
   this applies to seme vehicle applications ie. MEC in trunk.
5  SCREENED 4 - core 7/0.2 cable to be used throughout with
   exception of fuel injs. where 4-core 16/0.2 is to be used.
6  Screens connected to pins as indicated through bulk-head
   interface (i.e.Plug engine loon, Socket b/head) only.All screens
   grouped at M.E.C. and remote from plug and grounded to case
   (N.B. Ensure case is adequately grounded.
7  The cold start/warm-up air control valve is to be supplied via
the (battery) relay.(N.B. there is no connection through the
55-way.).
8  Comtunication link between an ADM 3/5 terminal & MEC is detailed
   in attached sketch.
9  Separate supply to MEC (NOT through 55-way). Gauge of cable
   dependant on distance between battery and MEC ; in case of
   VW/Jetta(MEC sited in trunk, battery in engine comp't) 50/0.2
   single core was used.
10 Scene facilities provided for in the loom are not implemented
   on the EPA/Methanol MEC and should be ignored. These are
   Knock, Ring gear and spare PRT inputs .

-------
      MEC "IGNITION DRIVE"  Interface with  "IGNITION MODULE".
                 \  (BOSCH)
                 i     Amplifier Switch Device
                            7-WAY PLUG.
                          543
                                                                    RIQ1RDO
                                                                    CONSULTING INCINieHS
Amphenol
Plug Pin
Wire Code
Ign. Drive
         V
     Redundant
     Not used
  B
 Blu
 B
Red
                             Coil(Batt)
                               +12v
  V
  k
 MEC
    Ign.  Drive
Signal
                             V      V
                          Battery  -ve
                           Earth   COIL
                                        V
                                        j
                                       MEC
                                      Return
   ADM Terminal (RS232) Link To MEC
3 Pin-Din
Locking
Plug
Pin No

_ __ ______
9- 	 	
25 Way
'D'Type
Plug
Pin No.


	 7

-------
                                 c -
                                                                    RlflRDO
                                                                    CONSULTING CNGINdllJ
       ENGINE LOOM INTERFACE FRONT PANEL  ITEMS.

                                      PLUGS
E.G.R. ————————
CAM, CRANK, RG
IGN   	
M.A.P. 	
AN 1 (PRT Water)
- AMPHENOL 55 WAY
AN 2 (PRT Air) 	
AN 3 (spare) 	
Throttle 	
t/c 1	   sub miniature thermocouple
t/c 2 —	   sub miniature thermocouple
INJECTORS	\ 5 Pin XLR31 Type  (ITT CANNON)
POWER	   12 Pin multipole  connector.
RS232 Portl	   3 Pin Locking Din
RS232 Port2	   3 pin Locking Din

NB See Appendix 1 for PLUG & Socket configuration.
SUPPLIERS:-
    PLUGS:- AMPHENOL           F.C.Lane,  Horsham
                             OR Aviation Electrical & Radio Co Ltd
                                12 North Parade ,  Horsham
            XLR31              RS
            Multipole Con'r    RS
            DIN Locking Type   Stock

-------
                           CL -l
                                                                   CONSULTING CHCINCEIt]
AMPHENOL 55 way connector to Engine pin asignments
<- 	 ^
55
Way
Pin
No.
A
B
C
D


E
F
G
H


J
K
L
M

T
U
V
W
X
Y

Z
a

b
c
d
e

f
g
h


3
k
INTERCONNECTION
6 Way
CABLE Pin No
RED
BLUE
GREEN
YELLOW


RED
BLUE
GREEN
YELLOW


RED
BLUE
GREEN
YELLOW

RED
BLUE
GREEN
RED
BLUE
GREEN

RED
BLUE

RED
BLUE
YELLOW
Screen PRT Air

RED
BLUE
GREEN

_
RED
BLUE
A
B
C
D


A
B
C
D


A
B
C
D

A
B
C
A
B
C

A
B

A
B
C


A
B
C


A
B
SIGNAL
Lead ! Probe
Blue ! Platinum Resistance
Yellow i Thermometer No.l
Red i HATER
CRN or Whti
i
i
Blue i Platinum Resistance
Yellow ! Thermometer No. 2
Red ! AIR FILTER
CRN or Whti
i
i
Blue ! S
Yellow ! P
Red i A
CRN or Wht! R
! E
i EGR Position Sensor
]
i
! Throttle Position
! Sensor
i
i
Red ! Signal Ring Gear
Black !0v Orbit P/U
i
Brown ! +ve Camshaft
Blue !0v Proximity
Black ! Signal Detector
!
i
!+ve 12v Crankshaft
iOv 70 deg. REF
! Signal Orbit P/U
i
i
Pin 3 ! Signal Ignition
Pin 6 i Return Module
— i 	 k 	 1 	

-------
                          CJ. -
                                                              RKTOO
                                                              CONSULTING ENGINEERS
AMPHENOL 55 way connector to Engine pin asignments
55
Way
Pin
No.
m
n
P
q
r
s
t
u
V

z
AA
on
DD
FP





INTEROOfWECTICN
6Ti7<9*v
way
CABLE Pin No
RED C
BLUE A
GREEN B
YELLOW D
Screen POT Water
RED A
BLUE B
Screen Cam
" rv~anlr
Screen Ignition
Screen E.G.R
Screen Ring P/U
" Wrvvlr

INTERCONNECTION
VT pon
CABLE Plug
FOUR CORE SCREENED CABU
RED 1
BLUE 2
GREEN 3
YELLOW 4

Lead
+ve sply
+ve sig
-ve sig
-ve sply






Lead
3. 4 Injed
!(cyl. No. 4
!(cyl. No.l
!(cyl. No. 3
i(cyl. No.2
SIGNAL
Probe
Manifold Pressure
Transducer
NO CONNECTION
II
Knock Detector
NO CONNECTION
II
II
NO CONNECTION
NO CONNECTION
II
NO CONNECTION
II

SIGNAL
! Probe/device
tor system
)! Fuel InJ. 4
)! 1
)! 3
)! 2

-------
26  Exhaust System-Emission  Controls
                                                                   /\UO !
                   EGR valve
                   if equipped
         CO protM receptacle
         Heat deflector
         shield
         Oxygen sensor
         (if equipped)
         do not allow
         anti-seize compound
         on threads to get
         in slots of sensor
                              10 Nm (7 ft Ib)
                                                          Do not hit or drop catalytic converter
                                                          because ceramic insert will be destroyed
                                            35 Nm (25 ft Ib)
                                                            Always replace gaskets and use correct type
                                                            rubber mounts as illustrated
                                           25 Nm (18 ft Ib)
                                                                         Intermediate pipe, front
                             Exhaust pipe,
                             (dual pipe shown)
            Exhauat manifold
                                                            25 Nm (18 ft Ib)
                                                                                   Qaaket
                                                                                   metal lip faces
                                                                                   catalitic converter
        Gasket
        metal Up faces
        exhaust pipe
30 Nm (22 ft Ib)
                                                                                   Catalytic converter
                                                                                   except Canada
                                                                                   checking, page 26.36
                                         25 Nm (18 ft Ib)
                                                                          25Nm(18ftlb)
                                                                 Rubber mount
                                                                 for rear muffler
                   Intermediate pipe, rear
                                           25Nm(18ftlb)
        r--
L
         /  ^
           Gasket
           metal lip faces
           intermediate pipe
 Exhaust system aligning
 see page 26.3

 EGR temperature valve
 checking page 26.14
                                                    Rubber mount •
                                                    for tail pipe

-------

-------
    OF
PLY
                         in-
                                 ( AW9LCAOY
                                    OP
                                          3TOC.   (PS.

-------

-------
                   VW HRCC AUDI  5000
                  STARTING PROCEDURE
1.    Flip MEC switch ON (plug in fuse at battery).

2.    Power MEC by flipping switch on-front of VDU.

3.    Turn on igni tion.

4.    Press reset button on MEC (blue box).
      NOTE:   Car  has  tendency  to stall when  reset button
      is pushed (give  it a little fuel).

5.    Set calibration  by  typing  "R1" for  best  economy,  or
      "R3"  for  low  NOx (as a check, type  "N"  and VOU will
      tell you what EEPROM you are in).

6.    Shift cookbook (5th gear @ 50 MPH).

7.    If car stalls, stop trace and begin again at 3.

-------
APPENDIX D

-------
- - 	 d-SLL,
7«a!*.,V Facsimile Message
E?A ANN ARBOR 	 _
1 0 	 	 .1
ATTENTION - ROB BRUETSCH 	 '__
. QlQl 313 668 4368 	

4\ W** ^^ "y
GRA HAM LEESON
f . ^J f\f« ***•* * •"" ^ — ^ ^ 	 _^_^^^^^^^^^^^^»^^M^»^^™
Subject 	 XO
ffTHAMOL ENGINE 	

r™\ l x*1 ^nsr^w^"
Rl^rxLJL


Fax No. Brighton (0273) 46412
Telex No. 87383 RICSHAM C

natP 9.1.87

Daoa 1 ftf 1 _

IGNITION MAP TO GIVE 1ST REDUCED NOx STRATEGY I.E. 1.91 HC
19.9 CO 1.0? NOx (gm/mile) .
IGNITION -°B
Mbar
1000

900
800
700
600
500
400
300
200
100
.^•v^^— »««•


5 © (T?) (Tl) <£?) 16 17 17 18
XTT^) / Q5 Q) 22 23 24 24
20 21 21 22 23 24 25 25 25
21 21 21 ^T) 24 24 25 25 25
21 21 21 (2£) 24
21 21 21 (2) 24
21 21 21 <2) 24
<^T^ 21 21 (2?) 24
oo o o o
	 — 	 	
20 30 40 50 60
_ 	 	 __ _. «. ^m • I f^ T~* J~*
24 25 25 26
24 25 25 26
24 25 25 26
24 25 25 26
0 .0 0 0
70 80 90 100
If you do not receive all of the pages of the message is distorted
 please call 0273 455611 ext 2334 and speak to fax operator

-------
REPORT  TIME: M:17:45
        DATE: OCT   6,  1987
                                 WARNING:  CRITICAL CODE  STORED IN VI  FILE DIFFERS FROM  ERRORS FOUND  DURING THIS. RUM.
                                 CRITICAL  CODE = 0("     " )  -  PROGRAM  FOUND '• + ••=  i ,"**••=  0  - PLEASE  "CORRECT"  TMIS VEHICLE.
      VEHICLE SPECIFICATION  REPORT  -
                                            (REPORT)
                                                           DATE  OF ENTRY
                                                                              1 / 7/87
                                                            VEHICLE  SPECIFICATIONS
     MANUFACTURER
                             VEHICLE  ID  / VER   REPRESENTED CARLINE   MODEL CODE
                                                                                             DRIVE CODE
                                                                                                                         SOURCE
AUDI
VEHICLE
TYPE
43A0131868
MODEL
ACTUAL VEHICLE MODEL YEAR
C
ACTIVE
YEAR
)
DRIVE
FULL
TANK

AXL WTS
EMPTY
TANK

CURB
WEIGHT
SEDAN
INERTIA
CLASS
FRONT DRIVE STR .
EQUIV .
TEST
WEIGHT H.P. METHOD
LEFT
E FW
C .0.
VEH
EPA
O/U
cout

Al 1 UAL RUNNING
DYNO HP NUMBER

CHG
NON-CER   AUDI 5000S
                                   80
                                          80
                                                                 2625P
                                                                          3000P
                                                                                   3250P
                                                                                             NO ENTRY
  ASSIGNED OF OR  DURABILITY VEHICLE  ID
                                                 ALT. MANUFACTURER
                                                                               ODOMETER
                                                                              CORRECTION     TIRE £  RIM
                                                                            INITIAL  FACTOR   SIZES
                                                                                                 /. Ij

                                                                               r 1 RK  -  Sl'LC I I  1 >.A I 1 ON-.
                                                                                                    -,wi.  BLT  Pbi   TD
                                                                                            I.ON:-. lf< N M  N  M FT RR  DP
DISPLACEMENT BORE STROKE
88. 9E 3. 13E 2.89E
IGNITION IGNITION TIM. TIMING
TIMING 1 TIMING 2 TOL . RPM
AXLE N/V A/C
RATIO RATIO ODOMETER INSTALLED
RATED ENGINE
HP TYPE
79 OTTO SPARK
RPM TIMING
TOL. GEAR

DRIVE
EXHAUST TYPE

ENGINE SPECI
ENGINE
CONFIGURATION
IN-LINE
% CO % CO %CO
LEFT RIGHT COMB

TRAIN AND CONTROL

185/70R14
FICATIONS
NO.
CYL.
4
CO
TOL.

SYSTEM
NO. TOTAL FUEL SYSTEM FUEL I UkliO/ '-UI'LR LUMP. COAST
CARBS BBLS MFR/MODEL INJ C.HAK(,LI< . i (n>L 1 NO RATIO DN TM
YE:-, HONL U.U
IDLE IDLE IDLE
RPM TOL. GEAR ENGINE F.AMIl •, FNl.lNE CODF

SPECIFICATIONS
CRANKCASE TRANSMISSION SHIFT INDIC. EVAPORATION
SYSTEM CONFIG MODIF CODE LIGHT SYSTtM KILL 1 VI'E
 0.0
         0.0
                                                                                       -NO  ENTRY
      MAIN-TANK
CAPACITY    VOLUME
$$$
       AUX.-TANK
 CAPACITY    VOLUME
                                      SHIFT SPEED
EVAPORATIVE EMISSION
  FAMILY         CODE
MtTMAMOL


          SALES  CLASS

  NO  '.At l>. v I  AL.^, SPECIFIED
                                                            CONTROL  SYSTEM TYPES
                                                       VEHICLE SPECIFICATION  COMMENTS
                                                                                                                     M.I i Olvlf.H Mi '-,
                                                         16418

-------
     S1TE:D209
                  TEST * 87)791
                             1980  LIGHT DUTY VEHICLE ANALYSIS   |
                                                                                          PROCESSED: 16:31:44
                                                                                                                  APR  10.  19B7
a
MFR.
640  43A0131868
                                  MFR .
                      VER-       REP. RUN. RETEST
                        0    N
                                     ALT .
                                    H.P.
EQUIVALENT  ACTUAL
  TEST      DYNO
                                                                  TRANS.
PREP DATE
04-09-67
              CURB
             WEIGHT
DRV AXLE
 WEIGHT
         GAUGE
         EMPTY
 AXLE    /--
MEASURE
                                                   IGNITION  TIMING 	/
                                                     #2     RPM   GEAR
                                                                          IDLE
               % CQ
              HIGH SPEED
 OVER-   /	TEST TYPE	
DRIVE   EXPE
        CVS 75-LATER

 IDLE         SOAK    COASTDOWN TIME
  RPM  GEAR  PERIOD ACTUAL   ADJUSTED
               21               0.0
/	 AMBIENT TEST CONDITIONS 	/
 BARO  DEW   AMB TEMP % REL  S.HUM   NOX             CVS
 "HG  POINT TEMP UNIT  HUM   GR/LB FACTOR ALDEHYDES  RGE
28.93  48.0  74.0  0   39.7  51.36 0.9000            27C
/	 DYNAMOMETER TEST CONDITIONS  	/
             DVNO . ACTUAL   DYNO  TIRE  ODOMETER   SYSTEM
TEST DATE HR SITE  IW SET   TWHP   PSI    (MI)      MILES
 04-10-87 12 D209   3'J50     5.0 45.00  75214.5    N/A
BAG 1 3,630
SITE CA203

HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.877
SITE 0A203
1.
HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
BAG 3 3.579
SITE *A203

HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
MILES
5 .04 1 KM
8463
EXHAUST SAMPLE
RANGE
19
15
22
19
15

MILES
METER
15.0
0.0
66.0
40.3
7 . 2

6.239 KM
CONC.
447 .92
0.0
. ROLL REVS.
BACKGROUND
RANGE METER
19 0.0
15 0.0
0.639 22 5.0
372 .78
3.60

9039
EXHAUST SAMPLE
RANGE
16
15
22
17
15

MILES
METER
63.0
0.0
51.3
39.8
3.6

5.759 KM
CONC.
188 .59
0.0
19 0.0
15 3.4

. ROLL REVS.
BACKGROUND
RANGE METER
16 1.2
15 0.0
0.489 22 4.8
97 .81
1 .80

8344
EXHAUST SAMPLE
RANGE
16
15
22
19
15

WEIGHTED VALUES
GRAMS/MILE

BEFORE ROUNDING
GRAMS/KM

BEFORE ROUNDING
METER
72. 1
0.0
66.0
37 . 2
5.5

HC
4.013
4.01312
2.494
2.49363
CONC.
215 .92
0.0
17 0.0
15 3.2

. ROLL REVS.
BACKGROUND
RANGE METER
16 1.5
15 0.0
0.639 22 5.0
342. 76
2. 75

19 0.0
15 3.4

NM-HC CO
4 .
4.
2.
2.
000 6.72

SAMPLE
CONC.
0.0
0.0
0.045
0.0
1 .70


SAMPLE
CONC.
3.60
0.0
0.043
0.0
1 .60


SAMPLE
CONC.
4.49
0.0
0.045
0.0
1 .70

C02
270
00040 6.7250 270
486 4.18
168
48573 4.1787 167

SECS.
VMIX =
CORRECTED
CONCENTRATIONS
447 .
0.
0.
372.
1 .
445.

92 PPM
0 PPM
597 %
78 PPM
.99 PPM
.92 PPM
SECS.
GMS
23.
0.
1007 .
40.
0.
23.
VMIX =
CORRECTED
CONCENTRATIONS
185.
0.
0.
97 .
0.
184.

. 13 PPM
. 0 PPM
, 448 %
.81 PPM
26 PPM
.87 PPM
SECS.
GMS
14 .
0.
1 100.
15 .
0.
14 .
VMIX =
CORRECTED
CONCENTRATIONS
211.
0
0
342
1
21U


. 19

.89
.66 PPM
.0 PPM
.597 %
.76 PPM
. 14 PPM
.52 PPM
NOX
0.0
0.0
0.0
0.0
GMS
9.
0.
854.
31 .
0.
9.
3256.0
MASS

82
0
37
02
1 1
7 1
4747.0
MASS

35
0
59
31
02
33
2761 .0
MASS

54
0
09
20
05
49
CU.FT.
EMISSIONS
GMS/MI
6.561
0.0
277 .531
1 1 .025
0.029
6.532
CU . FT .
EMI SSIONS
GMS/MI
3. 702
0.0
2H3.Q93
3.949
0.005
3.696
CU.FT .
EMISSIONS
GMS/MI
2.667
0.0
238.661
8.719
0.014
2.652
DILUTION

CMS/KM
4.077
0.0
172.450
6.851
0.018
4.059
DILUTION

GMS/KM
2.300
0.0
176.403
2.454
0.003
2.297
DILUTION

GMS/KM
1 .657
0.0
148 . 297
5.417
0.009
1 .646
MPG
FUEL
ECONOMY 14.0
14.0380








                                                                                                          FACTOR  =   1B.572
                                                                                                           AUX.      AUX.    AUX.
                                                                                                          FIELD1    FIELD2  CODE
                                                                                                                MPG       KPL
                                                                                                                13.0     5.55
                                                                                                           L/100KM
                                                                                                             18.0
                                                                                                           FACTOR  =   25.901
                                                                                                           AUX.      AUX.    AUX.
                                                                                                           FIELD!    FIELD2  CODE
                                                                                                                MPG
                                                                                                                13.6
                                                                                                     KPL
                                                                                                    5.00
                                                                                                                               L/100KM
                                                                                                                                 17.2
                                                                                                           FACTOR  =   19.272
                                                                                                            AUX.      AUX.    AUX.
                                                                                                           FIELD1    FIELD2  CODE
                                                                                                                MPG      KPL
                                                                                                                15.8     6.71
                                                                                                           L/100KM
                                                                                                             14.9
                                                                                                              KPL
                                                                                                              6.0
                                                                                                              5.9604
                                                                                                     L/100KM
                                                                                                      16.8
                                                                                                      16.7773
COMMENTS: R1CARDO AUDI   EE  PROM  6   COLD START  ONE STALL 6 FALSE STARTS BAG 1
          NOX SAMPLES OVER  20  MIN.  LIMIT UNABLE TO GET STABLE NOX READINGS
THE FUEL ECONOMY VALUE WAS  CALCULATED USING CONSTANT FUEL PROPERTIES FROM PRE-1988 REfiULATIONS.
                                                   16418
                                                                                                 DYNO  SITE:D209
                                                                                                                   TEST   87-1791

-------
DVNO SITE:D209
                   TEST * B71792
                                                   1980  LIGHT  DUTY VEHICLE ANALYSIS   |
                                                                      PROCESSED: 11:02:20
                                                                                               APR 15. 1987
a
MFR .
640  43A0131B68
            MFR.
VER-       REP.  RUN.  RETEST
  0    N
 ALT.
H.P.
EQUIVALENT
  TEST
ACTUAL
DYNO
                              TRANS.
 OVER-
DRIVE
                                                                                                                       TEST TYPE
                                                EXPE
                                                CVS 75-LATER
               CURB  DRV AXLE          AXLE
PREP DATE     WEIGHT  WEIGHT  GAUGE   MEASURE
                              EMPTY
                        /	 IGNITION  TIMING 	/
                         #1    *2      RPM   GEAR
                                                     IDLE
                         % co -----
                        HIGH SPEED
/	AMBIENT TEST CONDITIONS	/
 BARO  WET    AMB TEMP % REL  S.HUM   NOX            CVS
 "HG   BULB  TEMP UNIT  HUM   GR/LB FACTOR ALDEHYDES RGE
29.06  59.9   74.2  F   42.9  55.60 0.9164           27C
/	  DYNAMOMETER TEST CONDITIONS 	/
              DYNO  ACTUAL   DYNO   TIRE ODOMETER  SYSTEM
TEST DATE  HR  SITE  IW SET   TWHP    PSI   (MI)     MILES
 04-14-87  09  D209   3250     5.0 45.00  75232.0    N/A
                               IDLE          SOAK   COASTDOWN TIME
                                RPM  GEAR   PERIOD ACTUAL  ADJUSTED
                                               0              0.0
BAG 1 3.540
SITE *A203

HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.883
SITE #A203

HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 3 3.574
SITE 0A203

HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
MILES
f> . 697
KM 8253.
EXHAUST SAMPLE
RANGE
19
15
22
20
15

MILES
METER
15.6
7B. 1
65. 2
22 .0
7 .8

6. 249
CONC.
465.88
39. 23
0.631
445.57
3.90

KM 9053.
EXHAUST SAMPLE
RANGE
16
15
22
1 7
15

MILES
METER
59. 7
41.0
51.2
39. 1
4.0

5.752
CONC .
178.69
20. 70
0.488
96. 10
2.00

KM 8334.
EXHAUST SAMPLE
RANGE
16
15
22
19
15

METER
67 .6
B8 .6
65. 3
37 .0
5.8

CONC .
202.40
44 .43
0 .632
340.83
2 .90

ROLL REVS.
BACKGROUND
RANGE METER
19 0.0
15 1.8
22 5.3
20 0.3
15 3.9

ROLL REVS.
BACKGROUND
RANGE METER
16 1.2
15 1.1
22 5.0
17 0.0
15 3.9

ROLL REVS.
BACKGROUND
RANGE METER
16 1.3
15 0.8
22 5.1
19 0.0
15 4.0


SAMPLE
CONC .
0.0
0.91
0.047
5. 78
1 .95


SAMPLE
CONC.
3.60
0.56
0.045
0.0
1 .95


SAMPLE
CONC.
3.90
0.41
0.046
0.0
2.00

SECS.
CORRECTED
CONCENTRATIONS
465.88 PPM
38.36 PPM
0.586 %
440 . 10 PPM
2.06 PPM
463.82 PPM
SECS.
CORRECTED
CONCENTRATIONS
175.23 PPM
20. 17 PPM
0.445 %
96. 10 PPM
0.13 PPM
175. 1 1 PPM
SECS.
CORRECTED
CONCENTRATIONS
198.70 PPM
44.04 PPM
0.589 %
340.83 PPM
1 .00 PPM
197.70 PPM
VMIX= 3203.0
MASS
GMS.
24.37
6.10
972.95
46.48
0.11
24. 26
VMIX= 4767 .0
MASS
GMS.
13.64
4.77
109B.44
15. 10
0.01
13.63
VMIX= 2780.0
MASS
GMS.
9.02
6.08
848.23
31 . 24
0.05
8.97
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
6.884 4.278
1.723 1.071
274.870 170.797
13. 130 8 . 159
0.030 0.019
6.854 4.259
CU.Ff. DILUTION
EMISSIONS
GMS/MI GMS/KM
3.513 2 . 183
1 .229 0.764
282.899 175.786
3.890 2.417
0.003 0.002
3.511 2.181
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
2.524 1.568
1 .700 1 .056
237.307 147.456
8 . 740 5. 431
0.013 0.008
2.511 1 .560
FACTOR -
AUX.
FIELD1

MPG
13.0



FACTOR =
AUX.
FIELD)

MPG
13.7



FACTOR =
AUX.
FIELD1

MPG
15.9



IB .553
AUX. AUX.
FIELD2 CODE

KPL L/
5.52



26.010
AUX . AUX .
FIELD2 CODE

KPL L/
5.83



19.520
AUX. AUX.
FIELD2 CODE

KPL L/
6. 76







100KM
18.1







100KM
17.l'<







100KM
14.6



WEIGHTED  VALUES        HC        NM-HC        CO         C02         -')X
   GRAMS/MILE        3.934       3.923       7.11        269.         1.16
 BEFORE ROUNDING     3.93405     3.92303     7.1096      268.79      1 .. >B9
    GRAMS/KM         2.445       2.438       4.42        167.         0.9.
 BEFORE ROUNDING     2.44451     2.43765     4.4177      167.02      0.90li
                                                         FUEL ECONOMY
                                         MPG
                                        14. 1
                                        14.0686
                                             KPL
                                             6.0
                                             5.9859
                                            L/100KM
                                             16.7
                                             16.7058
COMMENTS:  NOX SAMPLES RUN  AT  EOT     EEPROM 6     COLD CRANK 7 STALLS BAG  * 1  1FALSE
           START - 168 SEC   STALL  BAG #1    NOX  SCALE SHIFT
             CO SAMPLE *2 CORRECTED VALVE 39.1
THE FUEL  ECONOMY VALUE WAS CALCULATED USING CONSTANT FUEL PROPERTIES FROM  PRE-1988 REGULATIONS.
                                                     16418  0
                                                                                                    DYNO  SITE:D209
                                                                                                                      1ES1  87-1792

-------
DVNO SITE:D20Q
                   TEST  »  871793
                                                  I960  LIGHT DUTY VEHICLE  ANALYSIS  I
                                                                    PROCESSED:  15:15:47
                                                          APR  15.  1987
a
MFR.
640  43A0131868
VER-
  0    N
            MFR.
           REP. RUN. RETEST
 ALT.
H.P.
EQUIVALENT
  TEST
                                                                               ACTUAL
                                                                               DVNO
                                                                 TRANS.
 OVER-
DRIVE
                                                                                                                     TEST  TYPE
                                               EXPE
                                               CVS 75-LATER
              CURB   DRV  AXLE          AXLE    /	
PREP DATE    WEIGHT   WEIGHT   GAUGE  MEASURE   »\
                              EMPTY
                             IGNITION TIMING 	/
                               #2      RPM   GEAR
                /	%  CO	
                 IDLE  HIGH  SPEED
                               IDLE          SOAK   COASTDOWN TIME
                                RPM   GEAR  PERIOD ACTUAL  ADJUSTED
                                              0              0.0
/	 AMBIENT  TEST  CONDITIONS 	/
 BARO  DEW   AMB TEMP % REL   S.HUM   NOX            CVS
 "HG  POINT TEMP UNIT   HUM   GR/LB FACTOR ALDEHYDES RGE
28.89  44.6  74.3   D    34.6   45.16 0.8770           27C
/	 DYNAMOMETER TEST CONDITIONS 	/
             DYNO.  ACTUAL   DYNO  TIRE ODOMETER  SYSTEM
TEST DATE HR SITE'  IW SET   TWHP   PSI   (MI)     MILES
 04-15-87 08 D209   3250     5.0 45.00  75243.0    N/A
BAG 1 3,579
SITE *A203

HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 2 3.885
SITE *A203
'}.
HC-FID
NOX-CHEM
C02
CO
METHANE
HC-NM
BAG 3 3.589
SITE *A203

HC-FID
NOX-CHEM
CO2
CO
METHANE
HC-NM
MILES
5.759
KM 8344.
EXHAUST SAMPLE
RANGE
19
15
22
20
15

MILES
METER
13.0
77 .8
68.6
21.9
7 .3

6. ^53
CONC.
388.08
39.08
0.666
443 .44
3.65

KM 9059.
EXHAUST SAMPLE
RANGE
16
15
i!2
19
15

MILES
MEIER
60. 2
38.6
51.3
10.9
4.6

5. 776
CONC.
180. 19
19.50
0.489
97.28
2 .30

KM 8368.
EXHAUST SAMPLE
RANGE
16
15
22
19
15

METER
67 .8
91.9
65 .6
32 . 7
6.0

CONC.
203.00
46.06
0.635
299.60
3.00

ROLL REVS.
BACKGROUND
RANGE METER
19 0.2
15 5.4
22 5.2
20 0.8
15 4.0

ROLL REVS.
BACKGROUND
RANGE METER
16 1.4
15 4.2
22 5.2
19 0.0
15 4.2

ROLL REVS.
BACKGROUND
RANGE METER
16 1.3
15 3.1
22 5.0
19 0.0
15 4.4


SAMPLE
CONC.
5.96
2.74
0.046
15.44
2.00


SAMPLE
CONC.
4.19
2.13
0.046
0.0
2.10


SAMPLE
CONC.
3.90
1 .57
0.045
0.0
2.20


SECS.
VMIX =
CORRECTED
CONCENTRATIONS
382.
36.
0.
428 .
1 .
380.

46 PPM
49 PPM
623 %
86 PPM
76 PPM
69 PPM
SECS.
GMS
18.
5.
963.
42.
0.
18.
VMIX =
CORRECTED
CONCENTRATIONS
176.
17.
0.
97.
0 .
175.

. 15 PPM
.45 PPM
.444 %
.28 PPM
. 28 PPM
.87 PPM
SECS.
GMS
13.
3.
1092.
15.
0.
13.
VMIX =
CORRECTED
CONCENTRATIONS
199
44
0
299.
0.
198.
.30 PPM
.57 PPM
.593 *.
.60 PPM
.91 PPM
.39 PPM
GMS
9.
5.
851 .
27.
0.
8.
2987 .0
MASS

65
IB
53
24
09
5V
4751 .0
MASS

67
94
99
24
02
64
2771 .0
MASS

02
87
18
37
04
98
CU. FT.
EMISSIONS
GMS/MI
5.213
1 . 447
269 . 241
1 1 .802
0.024
5. 189
CU. FT .
EMISSIONS
GMS/MI
3.517
1 .C13
28 1 . 309
3.922
0.006
3.512
CU.FT .
DILUTION

GMS/KM
3.239
0.899
167.299
7.333
0.015
3.224
DILUTION

GMS/KM
2. 186
0.630
174.797
2.437
0.003
2. 182
DILUTION
EMISSIONS
GMS/MI
2.513
1 .634
237 . 164
7.626
0.012
2.501
GMS/KM
1 .561
1.016
147.367
4.739
0.007
1 .554
                                                                                                           FACTOR  -   17.875
                                                                                                            AUX.      AUX.    AUX.
                                                                                                           FIELD1    FIELD2  COOE
                                                                                                                 MPG      KPL
                                                                                                                 13.5    5.75
                                                                                                         L/100KM
                                                                                                            17.4
                                                                                                            FACTOR  =  25.945
                                                                                                             AUX.      AUX.    AUX.
                                                                                                            FIELD1    FIELD2  CODE
                                                                                                                 MPG
                                                                                                                 13.8
                                                                                                   KPL
                                                                                                  5.86
                                                                       L/100KM
                                                                         17.1
                                                                                                            FACTOR =  19.547
                                                                                                             AUX.      AUX.    AUX.
                                                                                                            FIELD1   FIELD2  CODE
WEIGHTED VALUES         HC       NM-HC        CO        CO2
   GRAMS/MILE         3.b92      3.581       6.56       267.
 BEFORE ROUNDING      3.59203    3.58100     6.5605     266.73
    GRAMS/KM          2.232      2.225       4.08       166.
 BEFORE ROUNDING      2.23198    2.22513     4.0765     165.74
                                                                    NOX
                                                                    1 . 27
                                                                    1 . 2727
                                                                    0.79
                                                                    0.7908
                                                                              FUEL ECONOMY
                                                                           MPG
                                                                          14.3
                                                                          14.2610
                                                                                                                 MPG
                                                                                                                 16.0
                                                      KPL
                                                      6. 1
                                                      6.0596
                                                                                                   KPL
                                                                                                  6.81
                                                                       L/100KM
                                                                         14.7
                                                        L/100KM
                                                         16.5
                                                         16.5026
COMMENTS:  NOX  SAMPLED AT EOT  NOX DATA BAD   1  FASE  START  5  STALLS START OF TEST


THE FUEL  ECONOMY  VALUE WAS CALCULATED USING  CONSTANT  FUEL PROPERTIES FROM PRE-1988 REGULATIONS.
                                                    16418
                                                                                                  OYNO  SITE:D209
                                                                                                                    IEST  87-1793

-------
OYNO  SITE:D209
                    TEST * 073925
                                                      I960  LIGHT DUTY VEHICLE ANALYSIS  |
                                                                          PROCESSED:  12:34:58
                                                    JUL   9. 1987
MFR .
t>40   43AOI31B6B
             MFR .
VER-        REP.  RUN.  RETEST
  0     N
                                                               ALT.
                                                             H.P.
EQUIVALENT
  TEST
ACTUAL
DYNO
         TRANS.
 OVER-
DRIVE
                                                                                                                             TEST TYPE
               CURS  DRV AXLE           AXLE
I'REP  DATE    WEIGHT  WEIGHT   GAUGE   MEASURE
(I7-OH-B7                        EMPTY
                                        EXPE
                                        CVS 75-LATER
                               IGNITION  TIMING 	/
                                 02      RPM   GEAR
                                                        IDLE
                %  co -----
               HIGH SPEED
                    IDLE          SOAK   COASTDOWN  TIME
                     RPM  GEAR   PERIOD ACTUAL  ADJUSTED
                                   17                0.0
, .-	  AMBIENT  TEST CONDITIONS	/
  BAKO   DEW   AMB  IEMP % REL   S.HUM    NOX             CVS
  "IIC.   POINT TEMP  UNIT  HUM    GR/LB  FACTOR ALDEHYDES RGE
/U.04   <1K . 5  72.8   D   39.1   48.32  O.Hbbb            27C
,  .	DYNAMOMETER TEST CONDITIONS	/
              DYNO   ACTUAL    DYNO  TIRt UDOMETER   SYSTEM
I  til DATE  HR SITE   1W SET    TWMP    PSI   (Ml)      MILES
  U7-U9-B7  UB D209    3250      5.0 45.00  75472.7     N/A
BAU 1 3.576
SITE *A203

HC-FID
NOX-CHEM
CO 2
CO
METHANE
HC-NM
bAG 2 3.B93
SITE »A203

HC-F II)
NOX-CHtM
CO2
CO
METHANE
HC -NM
BAG 3 3.619
SITE #A203

HC -FID
NOX-CHEM
CO 2
CO
METHANE
HC-NM
MILES
b . /bi> KM
8337
EXHAUSI SAMPLE
RANGE
19
1 5
22
19
15

MILES
ME 1 tR
15.7
41.1
68 . 6
G3 . 7
10. 0

6.265 KM
CONC .
468 .87
20. 75
. ROLL
REVS.
BACKGROUND
RANGE
19
15
0.666 22
607 . 60
5.01

9077
EXHAUST SAMPLE
RANGE
16
15
22
19
15

Ml l.Es
METER
58.0
22.0
51.4
21 .9
4. 7

6.B24 KM
CONC .
173.59
11.14
19
15

. ROLL
METER
0. 7
6.8
5 .0
0 .0
3.6

REVS.
BACKGROUND
RANGE
16
15
0.490 22
254 . 1 1
2 .35

B43U
EXHAUST SAMPLE
RANGE
16
15
22
19
15

WEIGHTED VALUES
GRAMS/MILE

BEFORE ROUNDING
GRAMS/KM

ULFORE ROUNDING
METER
72.7
34 . 5
tV.j . 6
6u . 0
7 . 3

II C
3.751
3 . 75 1 1 3
2 . 331
2 . 33UB4
CONC .
217.72
17.44
19
15

. RUI L
METER
2 .8
6.B
4 .7
0.0
3.5

REVS.
BACKGROUND
RANGE
16
15
0.635 22
663 . 03
3.65

19
15

NM-HC
3 .
3 .
2.
2 .
727
72736
316
31607
METER
2.5
6. 7
4 . 7
0.0
3. 3

CO
13.53

SAMPLE
CONC.
20.85
3.45
0.045
0.0
1 .80


SAMPLE
CONC.
8.39
3.45
0.042
0.0
1 .75


SAMPLE
CONC.
7 .49
3.40
0.042
0.0
1 .65

C02
272
13 . 5324 27 1
8.41
169
8.4086 168
SECS.
CORRECTED
CONCENTRATIONS
449.22 PPM
17.50 PPM
0.624 %
607.68 PPM
3.31 PPM
445.91 PPM
SECS.
CORRECTED
CONCENTRATIONS
165.54 PPM
7.83 PPM
0.449 %
254 . 1 1 PPM
0.67 PPM
164.87 PPM
SECS.
CORRECTED
CONCENTRATIONS
210.63 PPM
14.22 PPM
0.596 %
663.03 PPM
2.09' PPM
208.54 PPM
NOX
0.53
.53 0.5346
0.33
.72 0.3322
VM1X =

GMS
22 .
2 .
987 .
61 .
0.
22.
VMIX =

GMS
12.
1 .
1117.
40.
0.
12.
VMIX =

GMS
9.
1 .
864 .
61 .
0.
9.
3052.0
MASS

39
57
32
15
17
22
4798.0
MASS
-
97
81
20
20
05
92
2802^0
MASS

64
92
59
25
10
54
CU. FT.
EMISSIONS
GMS/MI
6.261
0.719
276. 1 19
17 . 101
0.046
6.215
CU.FT.
EMISSIONS
GMS/MI
3.332
0.464
286.970
10.325
0.013
3.318
CU.FT.
EMISSIONS
GMS/MI
2.663
0.530
238.903
16.925
0.026
2.637
DILUTION

GMS /KM
3.891
0.447
171 .573
10.626
0.029
3.862
DILUTION

GMS/KM
2.070
0. 288
178.315
6.416
0.008
2.062
DILUTION

GMS/KM
1 .655
0.329
14B.447
10.517
0.016
1 .638
MPG
FUEL



ECONOMY 13



13


.5
.4919


                                                                                                                   FACTOR  =  17.309
                                                                                                                    AUX.      AUX.    AUX.
                                                                                                                   FIELD1    FIELD2   CODE
                                                                                                                         MPG       KPL
                                                                                                                         12.8    5.42
                                                                                                                 L/IOOKM
                                                                                                                    18.4
                                                                                                                   FACTOR  =  25.164
                                                                                                                    AUX.      AUX.    AUX.
                                                                                                                   FIELD1    FIELD2   CODE
                                                                                                                         MPG
                                                                                                                         13.1
                                                                                                          KPL   L/IOOKM
                                                                                                         5.58      17.9
                                                                                                                   FACTOR  =  18.525
                                                                                                                    AUX.      AUX.    AUX.
                                                                                                                   FIELD1    FIEL02   CODE
                                                                                                                        MPG
                                                                                                                         15.0
                                                                                                                       KPL
                                                                                                                       5. 7
                                                                                                                       5.7362
                                                                                                          KPL
                                                                                                         6.39
                                                                  L/IOOKM
                                                                    15.7
                                                                                                           L/IOOKM
                                                                                                            17.4
                                                                                                            17.4329
                                                                                                                \
l.UMMLNTS;  AUDI   STRAIGHT  PIPE   NOX  SAMPLED CAST   5 STALLS 1 FALSE  START BAG 1
           FTP W/AIR FUEL  RATIO METER    PROM *5    NOX VALUES QUESTIONABLE-VOID

IHE FUEL  ECUNUMY  VALUE WAS  CALCULATED USING CONSTANT FUEL  PROPERTIES FROM PRE-1988 REGULATIONS.
                                                       164 IB
                                                                                                         DYNO  SITE:D209    TEST  87-3925

-------
         I E : 1
                      It SI  a b/bUJb
                                                            I9BO   LIGHT DUTY  VEHICLE  ANALYSIS   I
                                                                                    PROCESSED:  12:32:47
                                                                                                                                         AUG 28.   1987
Ml l< . •
i,-in  : -IIAO i :
                           Vhf<
                             0
                                   N
                                         MI-R .
                                              RUN.  RETEST
                                                                     ALT.
                                                                    H. P.
                                                                               EQUIVALENT
                                                                                 TEST
                                                                     ACTUAL
                                                                     DYNO
                                                                                                       TRANS.
                                                                                                                    OVER-
                                                                                                                  DRIVE
                                                                                                                                           TEST  TYPE
                                                                                                    EXPE
                                                                                                    CVS 75-LATER
                 CUhb  I'KV A/\Lt
PRtP IJA'IC     Wt 1 GH I   WHGMT   GAUGE
OH  _'t>-il7                          EMPTY
                                             A.M t      /
                                            Ml.ASURE
                                     IGNITION TIMING  	/
                                       #2      RPM   GEAR
                                                                                        /	%  co	/
                                                                                         IDLE   HIGH SPEED
                                                                                          IDLE           SOAK    COASTDOWN  TIME
                                                                                           RPM  GEAR   PERIOD ACTUAL   ADJUSTED
                                                                                                           24                  0.0
I ...._._.-  AM 111 L N 1  I I '•> I  ( UNO 1 T 1 ONb - - • •    /
 HAKil   Ot"W    AMb  ll-MP  "/. REl.   S.HUM    NOA               CVS
 "HC,  P01NI  IfcMP  UNIT   IHJM    GR/LB  hAlMOK  ALDEHYDES RGE
29.CIH   4V.y   73.'.,   (>    40 . .i  6U.9G  11.8983              27C
/-  	  --  UVNAMUMLIL'K  ItST  (.UNDITlUNi    ----.../
                UYNU   AC I UAL    DVNU  T1RL  OUUMETLR   SYSTEM
I t', I DAlt"  HR  Silt   IW  St.T    TWHP    PS1    (Ml)       MILES
 Oil- J7-U7   lb  U2UU    321>U      5.0 46.00   75556.2     N/A
H/u,  i
'.111  ;
                Ml I  I: S  b . bob  KM   B4 1 5 .
                    L XI IAUST '.AMHI. 1:
                KAIHit  Ml: I ER      CONC .
                  1 ')      1 ('; . 1    41)11 . 04
                  lb      lib . 9  '    1 7 .'J2
                  .; .'      72.D.-'    11 . /Ill)
    I u             I b-
    Ml II I AN!        I b
    I li  NM
DAI, :•   i. >i3i-i  Milt
:. rii.  *rA2U3
                RANGE   MEItR
    IK  t 1 n        16
    NO/  -CMEM      lb
    CO
    MET HANI:
    HC - NM
BAG 3   3.1,ill
SHE * A 2 U 3

    IK. -f 10
    NOX- l.llhM
    CO 2
    CO
    ME IIIANE
    HC  NM
                M 1 1. 1.1
                   l.>
                   iy
b.334 KM   9177.
 i. r  SAMPLE
           CONC: .
 6 1 . b •/  184 . 09
 I U . ti-/ .    b . 39
 b 1 . 8 -•'    0.50 1
 31.2 .''  /bb  32
   b . 1 S    v . 55
  bby KM
  I  bAMl'l I:
                RANGE  Mf T LR  ,  CONC:
                   1(>     7(> . b '  22H . 1!
••'•••'"/   '•••-"
lib . U /,    Cl . t,3b
(,l> . 3-/   i>3-4 . 73
 7.7/    3.05
ROLL
HAC
RANGE
1<)
15
22
19
lb

RCH. 1
REVS .
KGROUND
METER
0 . 2
0. 7,
4 . 8
U . 0
3. B

REVS.
BACKGROUND
RANGE
16
lb
2 2
19
Hi

ROI 1
METER
1 . 9
1 . 5
4 .9
Cl . U
3 . 7

REVS.
BACKGROUND
RANGE
IG
ib
1' 2
19
15

METER
2 . 0
1 . 3
4 . 7
U . 0
3.B




SAMPLE
CONC.
''
-//
/'
/
'•'


5.
0.
0.
0.
1 .


96
35
045
0
90


SAMPLE
x^CONC .
x
/
S
_/
.^


5.
U.
0.
0.
1 .


b9
75
046
0
85


SAMPLE
CONC.
X
'/
.

/

5.
0.
0.
0.
1 .

99
65
044
0
90


SECS.
VM1X =
CORRECTED
CONCENTRATIONS
475
17
0
639
3
472

. 25 PPM
.59 PPM
. 666 %
. 95 PPM
. 17 PPM
.08 PPM
SECS.
GMS
22 .
2.
996.
60.
0.
22.
VMIX =
CORRECTED
CONCENTRATIONS
178
4
0
285.
0
177

.63 PPM
.67 PPM
. 458 %
.32 PPM
.78 PPM
.85 PPM
SECS.
GMS
13.
1 .
1132.
44 .
0.
13.
VMIX =
CORRECTED
CONCENTRATIONS
223
1 1
0
634
2
221
.48 PPM
.86 PPM
.594 %
.73 PPM
.06 PPM
.43 PPM
GMS
10.
1 .
856.
58.
0.
10.
2B89 .0
MASS
CU.
FT .
DILUTION
EMISSIONS
GMS/MI
42
47
49
96
15
27
4779 .0
MASS
6.
0.
276.
16.
0.
6.
CU.
EMI
212
685
102
889
041
171
FT.
SSIONS
GMS/MI
94
09
80
96
06
88
2782.0
MASS
3.
0.
287 .
1 1 .
0.
3.
CU.
EMI
542
276
807
422
015
526
FT .
SSIONS
GMS/MI
15
60
32
22
09
06
2.
0.
235.
15.
0.
2.
789
44 1
195
990
026
763
GMS/KM
3.860
0.426
171 .562
10.494
0.026
3.834
DILUTION

GMS/KM
2.201
0.171
178.835
7.097
0.010
2.191
DILUTION

GMS/KM
1 .733
0. 274
146. 143
9.936
0.016
1.717
                                                                                                                                FACTOR =   16.346
                                                                                                                                 AUX.       AUX.    AUX.
                                                                                                                                FIELD!    F1ELD2  CODE
                                                                                                                                      MPG
                                                                                                                                      12.8
                                                                                                                                                 KPL
                                                                                                                                                5.43
                                                                                                                                L/100KM
                                                                                                                                   18.4
                                                                                                                                FACTOR =   24.444
                                                                                                                                 AUX.       AUX.     AUX.
                                                                                                                                FIELDl    FIELD2   CODE
                                                                                                                                      MPG        KPL
                                                                                                                                      13.0      5.52
                                                                                                                                                        L/IOUKM
                                                                                                                                                           18.1
                                                                                                                                FACTOR =   18.563
                                                                                                                                 AUX.       AUX.     AUX.
                                                                                                                                FIELDl    FIELD2   CODE
                                                                                                                                      MPG
                                                                                                                                      15.3
                                                                                                                                                 KPL
                                                                                                                                                6.50
                                                                                                                                L/100KM
                                                                                                                                   15.4
WEIGHTED VALUES
    GRAMS/MIL E
 BEFORE  ROUNDING
     GRAMS/KM
 BLI'-ORE  ROUNDING
  HC
  . Obb
  . IIB4 I A
  .414
  . 4 13BI,
NM-HC
3.861
3.86117
2.399
2.39922
  CO
1 3. BO
13.7977

 B.5735
C02
271.
270.98
168.
168.38
NOX
0.41
0.4051
0.25
0.2517
FUEL ECONOMY
                                                                                                                    MPG
                                                                                                                   13.5
                                                                                                                   13.4986
                                                                                                                                   KPL
                                                                                                                                   5.8
                                                                                                                                   5.7509
                                                                                                                         L/100KM
                                                                                                                          17.4
                                                                                                                          17.3883
COMMENT;
            AUfM  I'liOM fj
IHL  I-UEL  LC.UNOMY  VAl ut
                                 l! Al ClJL AT bU USING  CONSTANT FUEL  PROPERTIES  FROM PRE-19UB  REGULATIONS.
                                                             16410   0
                                                                                                                     DYNO  SITE:L>209    TEST   87-5035

-------
HYNi)  Sill; :U2l)y
                       T f S I
                                     1980   LIGHT DUTY  VEHICLE  ANALYSIS   |
                                                                                                                  PROCESSED:  12:32:40
                                                                                                  AUG 28.   1987
i,4u   4 JAO I .) I tth'tl
HlA I t
lid- 2V-b /
                  t.'llKli
                Wb I l-il I'l
                                           MFR .
                            VLK-         HEP.  HUN.  l' . 9' 711 . U   L)
I  ( ilNUl f 1 ONS -- — -   /
 7. HI. I.   S.HUM    IMU<\
  HUM    GH/L6  hAl'IOK
  :iy . -)   48. y6  U . By III
        Al LitHYUES
/	  --  OYNAMOMI-. I t K  It-'Si
                OYNU   AC] 1 UAI
1 i sl  HA IE  i IK i, I TE   I w  Sh T
  tin . H  tl /  lib D2I.I9    3'J'JII
                                         CVS
                                         RGE
                                         27C
         CONDITIONS  	/
          DYNO   riRL ODOMETER   SYSTEM
          VWHP    PSi    (MI)       MILES
           5.0  45.UO   75570.y      N/A
UAI
'. 1







UAl
S 1







.A 1 3.'.,'VJ
1 1- «-A2u3

Hi. 1- 1 D
HO>. l.llkM
Cll2
Cd
ML 1 IIANt:
I-H -NM
A 2 3 . U 'J 4
1 t »A2U3

Hi. -h 1 D
NOX - I.MEM
CO 2
CO
Md IMANl:
III' -MM
hAG 3 3 . 597
SITE »A203






III' ' L ID
NUA I.HLM
CO 2
CO
Mt S'MANE
HC " NM
Ml 1 L.
h
RANG
19
1 5
2 2
19
It,

Ml Lg
1:
HANG
1 b
Hi
2 2
19
15

Mil 1:
S '.", . /2(J KM b29b .
XHAUSI SAMI'I t
I! METLH ,. CONC.
16. //" -498 .80
3 7 . 0 xO 1 8 . 4 7
l,y . 0 • , S (I . 677
7 1 . C, -X/bbt) . 43
1 U . b -^ b . 4 1

S b.2b/ KM 91)79.
XHAUSl SAMPLE
E ME1 LH x' CONC .
6f> . (S 'y'T'Jt) . 39
i u . o Xi 4 . yy
50.3 y' 0.406
3fi. 3 /y-334 .1)8
ti.h/ 2. BO

S !') . 789 KM b3b V .
EXHAUST SAMPL E
RANG
It,
It,
2 2
19


t" ME TEH S CONC .
bU . 2 ^24(1 . 29 i
2 3 . b ' 1 1 . b 7
b'l . 3 ^ I) . b'2ti
/ U . 2 / / b 1 . 1 1
b . 1 ' 4 . U b

ROLL REVS.

BACKGROUND SAMPLE
RANGE METER .,
iy 0.3
IS 7.8 -^
22 4.9V,
19 0.0^
15 3 . 9 X

ROLL REVS.
CONC.
8 .94
3 .89
0.046
0.0
1 .95


BACKGROUND SAMPLE
RANGE METER/
Hi 1 ~l ^
Hi 0.4 -*^T
2 2 4.7 /'y'
19 0.0 ^*
15 3 . b/

ROLL HEVS.
CONC.
5.09
0 . 20
0. 044
0.0
1 .90


BACKGROUND SAMPLE
RANGE METER x-
111 1 . 3 /
It, 0 . O /
22 4.8 /^^
19 0.0 -^
15 3 .9^

CONC .
0.0
0.045
0.0
1 .95

SECS.
CORRECTED
CONCENTRATIONS
490.40 PPM
14.81 PPM
0 . 634 %
689.43 PPM
3.57 PPM
486.83 PPM
SECS.
CORRECTED
CONCENTRATIONS
191 .50 PPM
4.bO PPM
0. 444 %
334.08 PPM
0.98 PPM
190.52 PPM
SECS.
CORRECTED
CONCENTRATIONS
236.61 PPM
11.87 PPM
0.586 %
761 . 1 1 PPM
2.21 PPM
234.40 PPM
VMIX= 2942.0
MASS
GMS .
23 .56
2. 10
966 . 01
66.87
0.17
23 . 39
VM1X= 4833.0
MASS
GMS.
15.11
1.12
1112.22
53.23
0.08
15 . 04
VMIX= 2806.0
MASS
GMS.
10 .84
1 .61
852 .01
70.41
0. 10
10. 74
Co. FT. DILUTION
EMI SSIONS
GMS/MI GMS/KM
6. 620 4.113
0.591 0.367
271 .431 168.659
1U . 790 1 1 .676
0.048 0.030
6.572 4.083
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
3 . 881 2.412
0. 287 0. 178
285.629 177.482
13.671 8.495
0.020 0.012
3.862 2.399
CU.FT. DILUTION
EMISSIONS
GMS/MI GMS/KM
3.014 1 .873
0.447 0.278
236.858 147. 177
19.575 12.163
0.028 0.017
2.986 1.855
FACTOR =
AUX .
FIELD1

MPG
12.8



FACTOR =
AUX.
FIELD1

MPG
12.9



FACTOR =
AOX .
FIELD1
MPG
14.9



16.845
AUX. AUX.
FIELD2 CODE

KPL L/
5.44



24.852
AUX. AUX.
FIELD2 CODE

KPL L/
5.48



18. 395
AUX. AUX.
FIELD2 CODE
KPL L/
6.32







100KM
18.4







100KM
18.2






100KM
15.8



Wt I L.M I tD VAl lILi          HI.
    GHAMi/Ml I. E           -I . Jllij
 btt-'OHt  ROUNDINI..       4. 'Jilt,29
     GRAMS/KM            2.1,14
 HE FORE  ROUNDING       2 . li I 367

t.OMMLU I !-. :   AUDI     PHOM h
               NM-llC
               -1 . 178
               4 . 1 783/
               2 .596
               2.59632
            CO
         16. 34
         16.3380
         10. 15
         10.1520
                                           C02
                                           269.
                                           269.36
                                           167.
                                           167.37
         NOX
         0.39
         0.3932
         0. 24
         0.2443
     FUEL ECONOMY
 MPG
13.4
13.3667
KPL
5.7
5.6873
L/100KM
  17.6
  17.5829
                                     4  SlAl.t.S  bAG  I  START
lul  I nil  H MiOMV
                         (if. WAS l.AICUiATED  USING CONSTANT  FUEL PROPERTIES FROM PRE-1988  REGULATIONS.
                                                                16418
                                                                                                                          DYNO SITE:D209    TEST   87-5036

-------
TEST
FORMALDEHYDE WORKSHEET DATE:

bJ0n




"H^O




Distance



TOTAL CH.,0
*•

Units
me/mi




m?




mi







^r-tmarv
Seeondai-v
TOTAL


primarv
Secondarv
TOTAL




wt . mi



wt. CH-,0

BAG 1
V^^>. y
do , //
#1 6» ?/


JSIS'f
?/. /7



Z.ffV
(0.5)
~ / *77

/^ 6^ ^ y
(0.43)



.
•'-. Emission? 8T . wt . CK-,0
wt. mi
: i
; I





1
• t



1





.





































BAG 2
<5 
-------
                                  FORMALDEHYDE WORKSHEET
                                                                    TEST  0's
                                                                    DATE:
               Units
                                       BAG 1
                                                    BA1 2
                           BAG  3
               me /mi
                          ^riroarv
3?3.
                          Secondary
                                                      37T/
                              TOTAL
                          Primarv
                                                        zz
                          Secondary
                                                     ss.te
                              TOTAL
nistance
                 mi
                         3.5<1
                                       (0.5)
                                                   (1.0)
                          (0.5)
                            WP-  mi.
    '. CH?0
               mg
                                                               //^.
                                       (0.43)
                                                   (1.00)
                          (0.57)
                            wt.  CH-,0 r
•>.  Emission?
                            t-:t. CK-,0
                            vt .  mi
            ANALYSIS TEST  DATE:  V'/
            VEHICLE:
            VEHICLE  CONFIG.:    //^Ury>y, JR^

-------
                                  FORMALDEHYDE WORKSHEET
                                                                    TEST ,rs 77. $9Ji?
                                                                    DATE:    7-x* - * ?
Distance
TOTAL CH.O
               Units

                 mi
               m?

                          5eron
-------

                               ^77
                     FORMALDEHYDE WORKSHEET
TEST i?'s
DATE:
ANALYSIS TEST DATE:
VEHICLE:
VEHICLE CONFIG.:

-------


                      FORMALDEHYDE WORKSHEET
   TEST  v's-
   DATE:
   Units
                              ?
BA'r ?
                                                                  UTTTT
_
-



Ho0




xstance



•VTAL CH^O
-




: . xT?.ission<



•


"PPM













-.c /--• 1




me




mi



me





3 &


t
t



1
1
i
1
1
1
1
!
!


I
|
^-_
SemnHarv
TOTAL


Primary
Secondary
TOTAL




wt . mi' .



wt. CHoO



wt. CP00
wt . mi






1
i TOTALS'.
\
\

\
\
\
I
i
1
i

j
(0.5)
' /.7R

/V75-/6
(0.43)
"1S,~57."^~

•
'







/3 . A F6-
, J?/^>
yy, / . 5f 7
0
/o. J97











3r7. f ^ i
(3
3(57, //


//^7./
ft
JJ07. 1


3. GO
(0.5)
/. y r>

//07./
(0.57)
&3 r. 05-"!
i









/A /73s
o
/A / 7 3
1






















as 7, VJ?



*VC>1A.'71



s <*)«* ^^




















ANALYSIS TEST DATE:  ff--f- P 7
VEHICLE:
VEHICLE CONFIX. :

-------
 COMPOSITE TEST RESULTS  FROM  2658Z-MXX
TEST
NUMBER

871791
871792
871793
873925
875035
B
A

3
3
3
3
3
%
OF .
U£ T k-l
Mb 1 n
100.
100.
100.
100.
100.
MILES

1 1 .086
10.997
1 1 .053
1 1 .088
1 1 . 186
< 	 CURRENT TEST RESULTS 	 >
H C CO CO2 NOX

4
3
3
3
3

.013
.934
.592
.751
.885

6
7
6
13
13

.725
. 109
.561
.532
.798

270
268
266
271
270.

. IB
.79
.75
.54
99

0
1
1
0.
0.

.0
.459
.273
.535
.405

0
0
0
0
0
< 	
H C

.472
.463
.423
.441
.457

6
7
6
13
13
PROPOSED TEST CALCULATIONS (GRAMS/MILE) 	
C 0 C02 NOX OMHCE CH30H HCHO

.725
. 1 10
.562
.532
.798

270
268
267
271
270

.25
.93
. 10
.69
.89

0
1
1
0
0

.0
.459
.274
.536
.405

5
5
4
4
5

.19410
. 09 1 1 0
.649 9
.85610
.0281O

.903
.689
.761
. 195
.556

0
0
0
0
0.

.00001
.00001
.00001
.0
.0

13
13
14
13
13

.83
.88
.08
.34
.33

2
2
2
2
2
> METH-
ANOL
~ M P *~
.0105
.0105
.0105
.0105
.0105
u
27
27
28
26
26
GAS
FACTOR EQUIV
MO f*
r* u
.81
.91
.30
.81
.60
875036 3 100. 11.050  4.206  16.338  269.36 0.393  0.495  16.338   269.34 0.394 5.44411.430 0.0
13.17  2.0105 26.48

-------
BAG BY BAG TEST RESULTS FROM  265BZ-MXX
TEST
NUMBER
B71 791
871 791
87)791
B7I792
871792
871792
871793
B71793
871793
873925
B73925
873925
875035
875035
B75035
8/5036
875036
B75G36
B %
A OF .
G ME TH
BAG=1
BAG=2
BAG=3
BAG= t
BAG=2
8AG=3
BAG- 1
BAG = 2
BAG = 3
BAG- 1
BAG = 2
BAG = 3
BAG = 1
BAG=2
BAO- J
BAG = 1
BAG- 2
BA(,-.I
MILES
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
iuu .
1 UU .
MID .
100.
HID .
3.
3.
3.
3.
3.
3
3.
3
3
3.
3
3.
3.
3.
3
3
3
3
< 	 CURRENT TEST RESULTS 	 >
H C CO C02 NOX
.630
.877
579
.540
883
574
579
.885
589
.576
893
.619
. Ii09
yje
. t>4 1
.559
.894
.597
23.
14.
9.
24.
13.
9.
18.
13.
9.
22.
12.
9.
22.
13.
10
23.
15
10
.816
351
543
.368
641
020
655
.667
018
.389
970
638
.421
.940
. 153
.560
. 1 14
842
40
15
31
46
15
31
42
15
27
61
40
61
60
44
58
66
53
70
.016
.308
.201
.476
. 103
.239
. 235
.239
.371
.147
. 198
.252
.956
.957
.219
.873
. 234
.413
1007
1 100
854
972
1098
848
963
1092
851
987
1117
864
996
1 132
856
966
1112
852
.37
.59
.09
.95
. 44
. 23
.53
.99
. 18
. 32
.20
.59
.49
.80
.32
.01
. 22
.01
0
0
0
6
4
6
5
3
5
2
1
1
2
1 .
1
2.
1
1
0
.0
0
.098
. 772
077
177
.938
.866
.57 1
.807
918
.472
,085
.605
103
1 18
.608
< - -
M
2.
1 .
1 .
2.
1 .
1 .
2.
1 .
1
2.
1
1
2.
1 .
1 .
2.
1
1
C
802
689
123
867
605
061
195
.608
061
.635
526
134
.638
640
. 195
772
.778
. 276
PROPOSED TEST CALCULATIONS (GRAMS/BAG ) 	 >
C 0 CO2 NOX OMHCE CH30H HCHO
40
15
31
46
15
31
42
15
27
61
40
61
60
44
58
66
53
70
.018
.308
.201
.482
. 103
.239
.250
.239
.371
. 148
. 197
. 252
.956
.956
.219
.873
.234
.413
1006.
1101
853.
974.
1099.
847
964.
1095
850
986
1118.
864
997
1 132.
855.
966
1111
851
85
.68
60
09
1 1
99
17
.55
89
. 79
51
7 1
23
.02
.83
.71
.94
. 7 1
0.
0
0
6
4 .
6
5
3
5
2.
1 .
1
2.
1
1 .
2.
1
1
0 30.
.0 18.
.0 12.
. 10031
.77217 .
.078 1 1
.18124
.941 17
8681 1
.57628
.81316
.92212
.47329.
.08618.
. 6061 3 .
. 10930.
.11919
.60814 .
82164.
57438
.35225.
.53566
.65537
.67624
. 14650
.68937
.67324
.98760
. 79035
47726
.01960
04437
. 14227
49664
.56341
03329
. 702
.993
931
. 201
.064
.510
.690
. 135
.505
.853
.248
. 192
.921
.88 1
.589
.021)
.068
.459
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
0
0
.00004
.00004
.00003
.00004
.00004
.00003
.00004
.00004
.00003
.0
.0
.0
.0
.0
.0
.0
.0
.0

-------
                                 D-L5"
                             APPENDIX D

                     HRCC-Audi  Cold FTP  Bag Data
Test No.  871791   871792   871793
Bag 1      QMS
HC-FID    23.82
NOx-Chem
C02     1007.37
CO        40.02
Methane    0.1l
HC-NM     23.71
Bag 2
  GMS
HC-FID    14.35
NOx-Chem
C02     1100.59
CO        15.31
Methane    0.02
HC-NM     14.33
Bag 3

HC-FID
NOx-Chem
CO 2
CO
Methane
HC-NM
  GMS

  9.54

854.09
 31.20
  0.05
  9.49
  GMS

 24.37
  6.10
972.95
 46.48
  0.11
 24.26

  GMS
  GMS
  9.02
  6.08
848.23
 31.24
  0.05
  8.97
  GMS

 18.65
  5.18
963.53
 42.24
  0.09
 18.57

  GMS
  GMS
  9.02
  5.87
851.18
 27.37
  0.04
  8.98
Average
  GMS

 22.28
  5.64
981.28
 42.91
  0.10
 22.18

  GMS
13.
4.
1098.
15.
0.
13.
64
77
44
10
01
63
13
3
1092
15
0
13
.67
.94
.49
.24
.02
.64
13
4
1097
15
0
13
.89
.36
.34
.22
.02
.87
  GMS
  9.19
  5.98
851.16
 29.94
  0.05
  9.15
Error Range
   GMS

   +2.86
   ±0.46
  ±21.92
   +3.23
   +0.01
   +2.84

   GMS

   +0.36
   +0.42
   +3.80
   +0.10
   +0.0005
   +0.35

   GMS

   +0.26
   +0.10
   +2.93
   + 1.94
   +0.0005
   +0.26
Percent
 Error

 12.8
  8.2
  2.2
  7.5
  9.7
 12.8

 Error
                                                    2.6
                                                    9.5
                                                    0
                                                    0
                                                   25.0
                                                    2.5
                                            3
                                            ,1
 Error

  2.8
  1.8
  0.3
  6.5
 10.0
  2.8
              HRCC-Audi  Weighted Emissions/Fuel  Economy
Test No.  871791   871792   871793   Average  Error Range  Percent
HC-FID     4.013
NOx-Chem   4.000
CO2      270.
CO         6.72
NOX
3.934
3.923
269.
7.11
1.46
3.592
3.581
267.
6.56
1.27
3.846
3.835
269.
6.80
1.36
                                        + 0.21
                                        +0.21
                                        + 1.5
                                        +0.275
                                        +0.095
                                          5.5
                                          5.5
                                          0.6
                                            0
                                            0
                                 4
                                 7
MPG
 14.038
 14.069
 14.261   14.123
            +0.112
               0.8

-------
          APPENDIX D (cont'd)



EPA Measured Audi/HRCC Performance Data
0-50
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Avg.
S.D.
MPH Tests
12.22 seconds
12.26
13.07
13.11
12.94
13.31
13. 11
13.15
13. 19
13.24
13.47
12.64
13.74
13.05
12.82

13.02
.78
30-50
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Avg.

S.D.


MPH Tests
7.16 seconds
7.43
7.09
7.32
7.08
6.90
7.02
6.93
7.25
6.96
7.24
7.06

7. 12

.43



-------