EPA-AA-EOD-84/2
Non-Proportional Sample Rates in a Critical Flow Venturi
                Constant Volume Sampler:

      Effects  on Federal Emission  Test  Fuel Economy
                      Performed by

             Engineering Operations Division
                       Written By

                      Carl Paulina

                      January,  1982
                    Correlation Group
                 Testing Programs Branch
             Engineering Operations Division
      Office of Mobile Source Air Pollution Control
                Ann  Arbor,  Michigan   48105

-------
                                                EPA-AA-EOD-84/2
Non-Proportional Sample Rates in a Critical Flow Venturi
                Constant Volume Sampler:

      Effects  on Federal  Emission  Test  Fuel Economy
                      Performed by

             Engineering Operations Division
                       Written By

                      Carl Paulina

                      January,  1982
                    Correlation Group
                 Testing Programs Branch
             Engineering Operations Division
      Office of Mobile Source Air Pollution Control
                Ann  Arbor,  Michigan   48105

-------
                               Executive Summary
Background

The Constant Volume  Sampler  (CVS)  is  used  in conjunction with gas analyzers to
measure  automobile  exhaust  gas  constituents  emitted  during  a  Federal  Test
Procedure (FTP)  driving  sequence.   The raw  automobile exhaust  gases  are  mixed
with  dilution  air,  sampled,  and  collected  in  evacuated  airtight bags.   The
bagged  samples  are  then  analyzed  for percent  or  parts  per million  (PPM)
composition.

Critical  flow  venturi  (CFV)  constant  volume  samplers  (CVS)  are used by  the
Environmental Protection Agency.   A detailed explanation of  CFV properties  and
theories  is  contained in Attachment  H.   If the analysis  bag  sample  flow rate
remains  constantly  proportional to  the total  dilute exhaust  flow  rate,  the
bagged  sample  represents average  emission concentrations for  that portion of
the test.  This value is then applied  to the total  calculated volume  of dilute
exhaust  to  calculate  the  total quantity  of emission emitted by  the vehicle
during  that portion  of  the  test.   The purpose  of this study  is to examine the
possible  effects  on test results  (primarily fuel economy) when sample flow is
not constantly  proportional  to  dilute vehicle exhaust bulkstream flow rate in
a CFV,  CVS.

Test Types

Two  separate  test  programs  were  used  in  this  study.   The  first program used
one vehicle and  one sampling system.   Half  the tests  were run with the  sample
rate  remaining  constantly  proportional to the  total  vehicle  dilute exhaust
flow.   The other half  were run  with  a  sample  rate  which  did not   remain
constantly  proportional to  the  total dilute  exhaust flow.    The test results
were then analyzed as two-sample unpaired  test groups.

The  second  program  was  run on  two  separate vehicles.  Each  vehicle test was
run  using  two  separate  sampling  systems,  sampling  the  same  dilute exhaust
stream.   One  of the sampling systems  operated  with the sample rate constantly
proportional  to the total  dilute  exhaust  flow  while  the other  did  not.  The
sample  system  which was operating at  a flow remaining  constantly proportional
to  the   total  dilute  exhaust   flow  was   randomized  throughout  the testing
sequence.   The  test results  were  then  analyzed  as   two-sample  paired  test
groups.   "The  second  program's  vehicles  and  CVS  operating  parameters  were
chosen  to  assess  the  scope  of  possible  effects.   Both test  programs  used
modified  Federal Emission Test  Procedure  tests  (2 bag  hot  city)  and highway
fuel  economy  tests (HWFET).   Hot tests were used to  both  minimize vehicle  test
to  test  variability and  to  generate  a  population  large  enough  to  insure
statistical confidence within a  reasonable length of  time.

Results
The  results  of  the  study  indicate  that  slightly higher  fuel economy values
were  generally achieved  when  the sample probe  flow  rates remained  constantly
proportional  to  the  total  dilute  exhaust  flow rate.   Overall,  the  measured
mean  differences appeared  to  be  2%  or less.   The second  test  program,  with
manufacturer-supplied vehicles,  exhibited  a  0.6%  to  1.2%  mean  difference
depending  on  the vehicle and  test  type (2 bag  hot city, or HWFET).   Although
the  observed  offsets are  statistically  significant,  extreme  care  had  to  be

-------
                                       -2-
taken  to  minimize  or  eliminate  all  possible  vehicle/site  variabilities  and
inaccuracies.   The  magnitude  of  the  observed  offsets  could  be  masked  by
Federal Register acceptable  tolerances  on  test  parameters.   This  study  used
vehicle engine  size,  loading,  and  CVS  sample  probe  outlet/inlet  operating
pressure  ratio to  try  to  characterize  minimum/maximum possible  fuel  economy
effects.  However,  the  test results indicate that  the complex inter-dependent
relationships  occurring  in  vehicle  emission  testing  prevent  mathematical
prediction of  results by these aforementioned parameters.

Recommendations

It  is  recommended   that  sample probe pressures  be  monitored to  ensure  the
sample  probes  are  operating  at  a  flow  rate   which  remains  constantly
proportional to the  total dilute exhaust flow.

-------
                                      -3-


            Non-Proportional Sample Rates in a Critical Flow Venturi
                            Constant Volume Sampler:

                  Effects  on Federal Emission  Test  Fuel  Economy

Background

The Constant Volume  Sampler (CVS)  is  used  in  conjunction with gas analyzers to
measure  automobile  exhaust . gas  constituents emitted  during  a Federal  Test
Procedure (FTP)  driving  sequence.   The  raw automobile  exhaust  gases  are mixed
with  dilution  air,  sampled,  and  collected  in  evacuated  airtight bags.   The
samples are  then analyzed for percent or  parts  per million (PPM) composition.
These measured concentrations  are then applied  to  the  calculated total volume
of dilute exhaust flow for  that portion of the test sequence.

The critical  flow venturi  (CFV)  constant  volume  samplers  (CVS), used  by  the
Environmental  Protection  Agency,  employ  two   CFV's  each.    The   main  or
bulkstream CFV is  used  as a flow metering device  to  quantify  the total volume
of vehicle exhaust/dilution (dilute  exhaust)  air mixture passed through a CVS
during a Federal Register city  or highway  test  sequence.  The second or sample
CFV is  used  to insure that the analysis bag  sample flow during a test is in a
constant volumetric  proportion  to the total  exhaust volume throughout the test
sequence.  A detailed explanation of  CFV properties and theories are contained
in  Attachment  H.   If  the  analysis   bag  sample flow rate  remains  constantly
proportional to  the  total dilute  exhaust  flow  rate;  the bag can be collected,
analyzed, and  used  as  average emission concentrations  for  that portion of the
test.   This  value  is  then  applied  to  the total  calculated volume  of dilute
exhaust' to  calculate the total  quantity  of  emission  emitted   by  the vehicle
during  that  portion  of  the test.  The purpose  of  this study is to examine the
possible effects,  if any,  on  test results (primarily  fuel  economy)  caused by
the  sample  probe  flow  not being  constantly proportional  to  dilute vehicle
exhaust bulkstream flow rate.

Initial Investigations

Flow  curves  for  two sample probes  contained in  EPA CVS's were characterized
i'.   The  graph of flow  rate  versus  the ratio of  the outlet to inlet pressure
is contained in  Attachment  A.   The sample  probes graphed reached an "in choke"
flow   condition   at  a   ratio   of   pout/pin  °f  approximately   0.60.    A
numerically  higher  ratio will cause the sample  probe to  drop out  of choke
flow,  resulting  in fluctuation   of  sample  flow   with  fluctuation  of  sample
conditions.   Once a CFV  drops  to an  "out   of  choke"  flow condition,  it is
beyond  the  scope of  this  report to  predict  what operating, parameter will
affect  the flow  rate or by  how much.

Actual  pressure  measurement  of  the  CVS  sample  probes were  recorded  to set
outlet  to inlet pressure  ratios P0ut/^in  were  numerically   higher  than the
0.60  ratio  discussed  above.   The values were  measured  using  both  a u-tube
manometer  and  strain gauge  pressure  transducers.  The  pressure transducers
were  then used to  monitor sample probe  CFV inlet and outlet pressures during  a
vehicle test.
I/  Unpublished  Study  performed by C. Ryan and B. Harbowyof EOD,  Calibration  &
    Maintenance.

-------
                                       -4-
 Sample  probe outlet pressure was  recorded  on two vehicle tests and  fluctuated
 0.6  inch  of mercury  (Hg)  on  one and  0.9 inch  Hg  on  the  other while  inlet
 pressures   remained  constant.   As  a  result  the  Pout/Pin  fluctuated  during
.the  emission test  sequence.    The observed  fluctuations  suggested a  possible
 increase of sample  flow rate during  high  acceleration portions of a  test  and
 lower  flow  rates  during idle and  lower accelerations.  Vehicle  emission maps
 with  respect   to  vehicle  speed   are  potentially  variable  from  vehicle   to
 vehicle.  CVS  dilution  ratio variation will  change with  engine  size.   Finally,
 the  pressure  ratio fluctuations  were  not exactly  synchronized  with  vehicle
 accelerations.   Consequently, it  is  not possible  to  state in  which  direction
 the  sample flow rate changed  during higher  and lower  vehicle  emission output.

 Test Plan  One  Design

 To  establish   what   emission   measurement  effects   are  caused   by   the
 non-proportional  flow  rate   fluctuations  in the  CVS  sample  probe  CFV,  a
 sequence  of  tests  were  run  on  a   repeatable  vehicle   used   at  EPA  for
 site-to-site comparisons.  A series  of  ten  highways  and ten  2-bag  hot  city
 tests  were  run on  the EOD  repeatable  vehicle.    In  each test sequence,  five
 tests  were run with the sample  probe operating "in  choke" flow  and  five were
 run  with the probe  operating  "out of choke"  flow.   For the "out of choke" flow
 tests,   a  Pout/Pin  equivalent  to a  ratio of 0.83  was used.   An  "in  choke"
 ratio   of  approximately  0.55  was   used.    In   order  to  minimize  possible
 sequential  results,  all  tests were run  using  two  consecutive  tests  in  one
 condition  followed  by  two   consecutive  tests in  the  opposite  condition  for
 eight  tests.   On  the   final  two tests,  probe  conditions  were  alternated.  The
 sequence  for  the  two  test  types  and  the  pertinent  vehicle  parameters  are
 listed as Test Plan 1.

                                    Test  Plan  1

 Vehicle Parameters:

                Inertia Weight                  3500 Pounds
                Actual  Horsepower               12.8 Horsepower
                Fuel System                     Fuel Injection
                Drive System                    Rear Wheel

 Test Sequence:

                     HWFET                      Hot City. 2-Bag Tests

                1  In choke                     1  Out of choke
                2  In choke                     2  Out of choke
                3  Out  of choke                 3  In choke
                4  Out  of choke                 4  In choke
                5  In choke                     5  Out of choke
                6  In choke                     6  Out of choke
                7  Out  of choke                 7  In choke
                8  Out  of choke                 8  In choke
                9  In choke                     9  Out of choke
                10 Out  of choke                 10 In choke

                             In  Choke Pout:/Pin ~  0.55
                           Out of  Choke Pout/pin  ~  0.83

-------
                                      -5-
Test Plan One Results

The results were  compared as two test groups in  each  test  sequence  (2  bag hot
city,   HWFET).   Comparisons of  the  "in choke", and "out  of  choke" probe  test
results are  contained in Attachment B.  A  two-tailed  Student's  t-Distribution
test was  used  to calculate  a  confidence  interval for  the  offset between the
means  at  the 0.90  confidence  level with 5 tests in each  configuration.   The
assumptions  are  independent,   normally  distributed  populations  and   pooled
variances.

The calculated intervals for % difference unchoked - choked   x ^00
                                              choked
between means are:

    Hot tests     1.5% +_ 1.1% higher fuel economy "in choke"
                                   than "out of choke".

    HWFET         2.0% + 1.6% higher fuel economy "in choke" than "out
                              of choke".

A  sequential  graph  of  test   fuel  economy   is   contained  in  Attachment  C.
Attachment D is a comparison graph  of  the mean and standard deviations  of fuel
economy for the two samples in each test sequence.

Test Plan Two Design

To further  minimize the chance of  vehicle  test-to-test  influences,  a sequence
of tests  were  run using two separate probes and  sample  trains sampling in the
same CVS  bulkstream on  individual  vehicle  tests.  Two  separate vehicles were
used for  the Test  Plan  Two sequence.   The  samples of each individual vehicle's
exhaust were then processed as two  tests  using the same  analyzer.  In the "out
of  choke"  flow  tests,  a  POut/^in  °f approximately  0.90 was used.   This was
numerically higher  than the ratio  used in  test plan one.  An "in choke"  ratio
of approximately  0.50 was used for  that portion of  the tests.  The two sample
probes  were altered  in  and out of  "choke  flow"  randomly.   One  test  was run
with  both  probes  in an  "in choke"  condition at  the start  of each sequence
(2-bag  hot  city and  HWFET)  to quantify possible sample train  offsets.   If  a
difference  was  found, additional tests were run  to  come up with a mean offset
to  subtract from  subsequent  "in"  and "out"  of  choke  flow  pairs.   The test
sequences and pertinent vehicle parameters  are  listed under Test Plan 2.

                                   Test Plan 2

Vehicle I Parameters:

                    Inertia Weight                   2500 Pounds
                    Actual Horsepower                6.0
                    Fuel  System                      Carburetor
                    Drive  System                     Front Wheel

-------
                                      -6-
Test Sequence:
               HWFET
Probe
1 In
2 In
3 Out
4 In
5 In
6 Out
1
Choke
Choke
of Choke
Choke
Choke
of Choke
Probe 2
In Choke
Out of Choke
In Choke
Out of Choke
Out of Choke
In Choke
 Hot City  2-Bag  Tests
Probe 1
1
2
3
4
5
6
In Choke
Out of Choke
In Choke
In Choke
In Choke
In Choke
Probe 2
In Choke
In Choke
Out of Choke
Out of Choke
Out of Choke
Out of Choke
                            In Choke Pout/Pin ~ °'50
                          Out of Choke P,
                                        out
' ^
0.90
Vehicle 2 Parameters:
                    Inertia Weight
                    Actual Horsepower
                    Fuel System
                    Drive System
Test Sequence:
               HWFET
Probe 1
1
2
3
4
5
6
7
8
In Choke
In Choke
Out of Choke
In Choke
In Choke
In Choke
Out Choke
In of Choke
Probe 2
In Choke
Out of Choke
In Choke
In Choke
Out of Choke
Out of Choke
In Choke
In Choke
          4500 Pounds
          13.0
          Carburetor
          Rear Wheel
 Hot City 2-Bag Tests
Probe 1
1
2
3
4
5
6
7
8
In Choke
Out of Choke
In Choke
Out of Choke
In Choke
In Choke
Out of Choke
Out of Choke
Probe 2
In Choke
In Choke
In Choke
In Choke
Out of Choke
Out of Choke
In Choke
In Choke
                             In Choke Pout/pin ~ °'50
                          Out of Choke P0ut/pin ~ °*90

We used these test  sequences both  on  a  "large"  and  a "small" engine vehicle to
bracket maximum and  minimum expectable offsets.   At least five  pairs  of "in
choke"  to  "out  of choke"  comparisons were  generated for  each car  and test
sequence.

Test Plan Two Results

The  results  are  listed  in Attachment  E.   Time  sequence  plots  of   paired
differences  in  fuel economy are contained in Attachment  F.   Attachment  G is a
tabular representation of the  means,  0.90 confidence intervals, and  confidence
that a_ difference  exists.

A  student's t-distribution  test  for  paired data was used to calculate  a 0.90
confidence  interval  that the  expectable  mean offset will  fall within  on the
pairs  in each  configuration.   The  assumptions are  that the  differences are
from a random,  normally  distributed population.

-------
                                      -7-
The calculated  intervals  for the  mean percent offset  between "in  choke"  and
"out of choke" are:

                        (4500 Ibs, 13.0 Actual Horsepower)

    2 bag hot city      0.6% -f 0.4% higher fuel economy "in choke"
                                    than "out of choke".

    HWFET               1.2% + 0.9% higher fuel economy "in choke"
                                    than "out of choke".

                        (2500 Ib, 6.0 Actual Horse Power)

    2 bag hot city      0.6% + 0.4% higher fuel economy "in choke"
                                    than "out of choke".

    HWFET               0.8% + 0.5% higher fuel economy "in choke"
                                    than "out of choke".

Conclusions and Recommendations
Non-proportional  CFV-CVS  sample  flow  can  affect  vehicle  calculated  fuel
economy.  We are  unable  to  discern a mathematically predictable pattern to the
effect  on  calculated fuel economy based on  parameters  monitored in this study
(i.e.  engine  size,   loading,  and  sample probe  outlet/inlet  operating pressure
ratios).   It  is  recommended  that  CFV sample probe  parameters be monitored to
ensure  that sample  probes  remain  in  a  "choke"  flow  condition.    This  will
ensure  a  sample  flow  rate  which  remains  constantly  proportional  to total
dilute  exhaust  flow.

-------
                                      -8-






                                  Attachments






A - CVS, CFV Sample Probe Flow Profile




B - Test Program 1 Results




C - Test Plan 1 Sequential Test Fuel Economies




D - Test Plan 1 Fuel Economy Mean and Standard Deviation




E - Test Plan 2 Results




F - Test Plan 2 Sequential Test Absolute Fuel Economies and Percent Differences




G - Test Plan 2 Fuel Economy Results and Statistics




H - CFV Theoretical Analysis

-------
i ri i< >M  }t\  i ~n in 1 tirrll
•.MI  i out A i it* ?i»nt i INI  rfl-.ir.pi ;-MVII v
                                                                                                                                                                                                                               n

-------
                                                      ATTACHMENT  B
                     LHB  CORRELATION SUGARY
                                                                                    PROCESSED:  NOV  I3i 1981
                           VOLVO PRuBE HOTS
                VIN VOLVO RFJ'CA
INERTIA «T  3500    ACTUAL h? 12,8
>     LAB
\     „__
  SAMPLE  CFV  CHOKED
                 HC    CO    NOX  C02   FE  BARO   HUH   NXFC  DBL   H3L  TLOSS
                l<	G/'Hl	>l (MPG)(IN-HG) (SRAINS
                                                    /LB)
                0.606  4,72 2.29  423, 20.5 29,15  49,56 0,89
STANDARD DEV,   .0152 0,887 ,083   4,   0,1 0.042  4.072 .015
C.V.Z             2,5  18,8  3,6   0,9   0.7  0,14   8,22 1,71
                                                                                               l<—(GRAMS)—>!
      SAHPLE CFV 'UNCKOKEH   5
KEAN            0.614  4,52  2,26  430, 20.2 29.03  49.30 0.89
STANBARli DEV.   .0195 0.438  .047    5.   0,2 0,182  9.033 .036
C.V.Z             3,2   9,7   2,1   1,1   1,1  0,63  1S.32 3,98
DIFF, 2            1,   -4,   -1,    2,   -1,  -0.    -1,  -0,
      C.V.Z IS THE COEFFICIENT  OF  VARIATION,  (STD. DEV,/SEAN XlOO),
      lilFF.Z IS THE DIFFERENCE  OF  THE KEANS BETb'EEH  THE  KFF: ASH EPA LABS. (KFR-EPA/EF'A ?100).

-------
> LAB CORRELATION SUGARY - TEST DATA
>"
-—.-__—_---__._-_ _ «.«_ ___v _._..__
V :
>LAJ«, EPA - Choked VEHS VOLVO PROBE HOTS VIHJ VOLVO REPCA INERTIA
> DATE TESTND TYPE HC CO NOX 032 FE DRIVER DYHO OCOH IHP BARD HUM NXFC
_-._ --m-Tir — _ ... m —-.:._, ___. _. .. «.__ — — __ ....
>10-OB-B1 B10905 HOT 0,590 4,20 2,19 424, 20,5 30398 D004 12475.0 10,8 29,10 44,160.87
MO-06-81 810906 HOT 0,600 4,40 2,21 422, 20,6 3089E H004 12490,0 10,8 29,10 47,62 0,89
MO-09-81 810909 HOT 0.610 4.40 2.36 428. 20.3 30S9B D004 12540.0 10,8 29,18 54,88 0,91
MO-09-81 810910 HOT 0,600 4,30 2.35 424. 20.5 30898 D004 12555,0 10,8 29,18 51.81 0,90
MO-16-B1 810912 HOT 0,630 6,30 2.34 417. 20,7 30893 D004 12650.0 10.8 25.21 49,35 0,89
> K 	 (G/KI) 	 ->l IHPB) , UN-HG) (GRAINS
> . /LE)
> MEAN 0.606 4.722,29423.20,5 29,15 49.560,89
•> STANDARD DEV, ,01520.887,083 4, 0,1 ", 0,042 4.072,015
> C.V.Z 2,5 18,8 3,6 0,9 0.7 . 0,1 8,2 1,7
> ' BAG DATA
> DATE TESTND TYPE DYNO SITE ~HC 2 3 CO ' 2 3 NOX 2 3 C02 2
MO-OB-81 810905 HOT D004 A6oY6",591 0.590 0,0 4.34 4,07 0,0 2,81 1,61 0.0 420, 427,
MO-OS-SI 810906 HOT D004 A002 0.601 0.595 0.0 4,19 4,58 0,0 2.8? 1,59 0;0 421, 424,
MO-09-31 810909 HOT D004 A002. '0,620 0,595 0,0 4,34 4,55 0,0 3,13 1,64 0.0 431. 426,
>lP-P?-8i 5)0*10 HOT I'OOs A002 0.613 0.591 0,0 4.22 4.32 0,0 3.14 1.63 0.0 426. 422.
MO-lo-Si SM9l2 HUT DOW A062 0,631 0,636 0,0 5,92 6,59 0,0 3,161,590.0 417,416,
> . : (ALL G/KI)
' . PROCESSED: NOV is. i?ei

WT: 3500 ACTUAL HP; 12,8
DBL HSL TLOSS
K— (GRAHS)-->i .
3 FE 2 3
0, 20,7 20.4 0.0
0, 20,7 20,5- 0,0
0. 20,2 20.4 0.0
0. 20,4 20.6 0,0
0. 20,7 20,7 0,0
K-(HPG) — >1
      STAKliARl; DEV,
      C.V.Z
0.611 0,601 0.0
0.016 0,019 0,0
  2,6   3,2   0,0
4,60  4.E2  0,0  3.03 1.61  0,0  423,  423.
0.74  1,01  0,0  0.16 0,02 0.0    6.    4,
16,1  20,9   0.0  5,4  1.4   0.0  1,3   1,0
 0, 20,5 20.5  0.0
 0,  0.2  0.1  0.0
0.0  1,1  0,6  0,0
>    C.V.Z IS THE COEFFICIENT OF VARIATION.(STB,  DEV./KEftN 1100).
>    D1FF, MS THE DIFFEREHDE OF THE HEAKS STbLcK THE nFR  AND EPA LAB,  (KFR-EFA/EPA tlOO),
>    HDTE: THE COKHENTS PERTINENT TO THESE TESTS  ARE LOCATED IK THE  LAST TABLE OF THIS APPEHDIX,

-------
                                              LAB-CORRELATION SUMMARY - TEST DATA          '     PROCESSED', HOV 18. 1981
>L«P: SAMPLE CFV 'UNCHDKED VEH 5 VOLVO PROBE HOTS

> HATE TESTND TYPE HC CO HOX C02
N ., . .
J .!,.__, . ™- _ •- — . ..— -_-
>1 0-02-81 810903 HOT 0,580 4,00 2,28 423,
MO-06-81 810904 HOT 0,620 4.40 2.18 433,
MO-08-S1 810907 HOT 0,620 4,60 2,29 435,
MO-OS-61 810908 HOT 0.620 4,40 2,28 431.
MO-14-81 810911 HOT 0,630 5,20 2,29 429.

K Vb/nl) >1
>
>: -MEAN 0.614 4,52,2.26430.
> "STANDARD DEV. .0195 0,438 -.047 5,
•> C.V.Z 3.2 9,7 2,1 1,1
> DIFF. 1 1, -4, -1, 2,

> DATE TESTND TYPE DYND SITE HC 2
... , . L .. ,,_«._
MO-02-31 E10903 HOT D004 A002 0.593 0.559 0
MO-06-81 810904 HOT H004 A002 0,643 0.600 0
>1 0-08-81 610907 HOT H004 AG02 0.636 0.613 0
MO-O'd-8; 810703 HOT D004 A002 0.647 0.59S 0
MO-14-81 810911 HOT H004 A002 0,637 0.620 0


FE DRIVER


'20,6
20,1
20.0
20.2
20,2


30898
30398
Z.OS9S
30898
30898
VI N: VOLVO REPCA

DYHO


D004
'D004
H004
H004
D004

ODOM


12407
12448
12506
12519
12577

IHP
—
,3 10.
.0 10,
.0 10.
,0 10.
,2 10.
(MPG)

20,2
0,2
1.1
-1,

3
,0
.0
,0
,0
.0




















BAG DATA
CO
4.03
4.53
4,71
4,47
5.50
2
4.04
4.29
4,49
4.39
5,01
. 3
0,0
0,0
0.0
0,0
0.0'
NOX
3,05
2.93
3,03
3.06
3.04

BARO


8 28.97
8 28,74
8 29.12
8 29.08
8 29,22
INERTIA DTI 3500

HUM


65.25
^6,23
44,10
43.74
47.16

KXFC

0,96
0,88
0,87
0,87
0,88
(IN-HG) (GRAINS
'V
29.03
0.182
0.6
-0.

2 3
1.56 0.0
1.4E 0,0
1.61 0,0
1.56 0.0
1.60 0,0
/IB)
49.30
9,0ii
18,3
-1.

C02
423.
437.
439,
433,
430,

0.89
,036
4,0
-0,

2 .
423,
430.
431.
429.
429.
> (ALLS/HI)
> MEAN 0,632 0,598 0
> STAHIiARIi BEV, 0,023 0,024 0
> C.V.Z 3,6 4.0
> DIFF. 2 3, -1,
,0
,0
0.0
0.
4.65
0.54
11.5
1.
4,44
0.36
8,1
-8,
0,0
0.0
0.0
0,
3,02
0,05
1,7
-0,
1.56 0.0
C.05 0.0
432,
6.
3.3 0.0 1,5
-3. 0
o
* *.*
428,
i.
0,7
1.

DBL HSL







K. 	 tr.r-r.u






•
3 FE
0. 20,5
0. 19.9
0. 19.8
0, 20,0
0, 20,1
ACTUAL

TLOSS







ir\. _M







2 3
20,6 .0
20.2 0
20,1 0
20,3 0
20,2 0
HP: 12.8
















.0
.0
.0
.0
.0
K--(HPG)— >l
0, 20,1
0, 0,3
0,0 1,3
0. -2,
20,3 0
0.2 0
0.9 0
-1.
.0
.0
.0
0.
>    c,v.: is THE COEFFICIENT  OF VARIATION,ISTD, DEV./HEAH tioo),
>    EIFF, 1 IS THE "1FFEREKCE OF THE KEANS KTHEEK THE  hFR  AKD  EPA LAB,  (KFR-EPA/EPA «00),
>    NOTE: THE COHMNTS PERTIKENT TO THESE TESTS ARE LOCATED IN THE LAST TABLE OF THIS APPENDIX.

-------
                                                       LAB CORRELATION SUMMARY
                                                                                     PROCESSED: KOV is, i?si
                           VOLVO PROBE  HFET
                                                   VIH VOLVO  REPCft
                                        INERTIA  UT  3500    ACTUAL HP 12,8
      LAB
                                                   KC    CO   NOX  C02   FE  BARO '  HUM   NXFC  DEL   HSL  TLOSS
> SAMPLE  CFV CHOKED    5
                                                   l<	G/HI	>I(KPG)(IN-KG5 (GRAINS      K— (6RAKS)-
                                                .      '                                 /LB)  .
                                   HEAN         /  0,503  3.863,56364,23,929,09   50,350,90
                                   STAKDAPJi DEV. .  .0084 0.044 .086   5.  0.3 0,207   3.401  .013
                                   C.V.Z            -1.7   1,7  2,4  1,3  1,3  0,71    6,751,45
>
.>
      SAMPLE CFV 'UKCHOKED   5.
                                                   0,512  3,86 3,70 371,  23.4 28.86  56,47  0,92
MEAN
STANDARD DEV,   .0099 0,073 ,208
                                   c.v.z
                                   DIFF, 2
                                                                          0.3  0.242  3.935  .016
                  1,9   1,9  5,6   1,4   1.4   0,84    6,97  1.71
                   2,  .-0,   4,
">•  -2,  -1,    .12,    3,
      C.V.Z 13 IKE COEFFICIEKT OF VARIATION,  (STB.  DEV./txAN 1100),
            : IS THE DIFFERENCE OF THE KEANS BETb'EEK THE fiF'K AND EPA  LABS.  (KFR-EPA/EPA 1100).

-------
y

>LAi.;  EFA - Choked
                         Vi»tt» t.rM it- r.«s«r.t"  T3TT*T?rP     • t;" i * * * 'f •' ' •-'• ~-^f'«'^ *
                         'in. VULVL- rr.-'Bi  nrET     Vih, Vw-vj Mpuft
                                                                                    IKESTIA yi; 3500    A-TUALH?: 12.8
           TEETKO   TYPE  HC    CC   KOX  C02   FE DRIVER DYNO  CI'QC   IH?  BARO   Hurl   NXFC  BEL "HEL  TLOSS
Xtf-29-31  810693-1  HFET  0,512   3,67  3,50  364,  23,9  30E98  B004  12147.0  10,8  29,25   51,10  0,90
>0?-29-£l  £v9-30-£i  £10£?S-i  HFET  C.509   Z.B2  3,70  370.  23/5  17282  KM  12275.0  10,8  29,11   47.54  0,6?
>10-01-6l  810901-1  HFET  0,505   3,?o  3,57  366,  23,7-30898  B004  12355,3  10,3  2B.74   55,51  0,92
>                        K	(G/hl)	>l  (fiPG)                       (IH-HG)(GRAINS
>                                                                                .    /LB)
                                                                                        !<—(6RAHS)-
>
>
>
>:
C.V.2
         0,503  3.86 3.56 364. 23,9
DEV.     .0084 0.066 .086   5.  0.3
           1.7   1.7  2,4  1.3  1.3
                                                                           29.09  50,35 0,90
                                                                           0.207  3.401 .013
                                                                             0,7    6.8  1,4
                                        LAB CORRELATION SUMMARY - TEST DATA
>LAE; SAMPLE CFV 'UNCHCKED    VEH: VOLVO PROBE'HFET
                                                            VIN;  VOLVO REFCA
                                                                                                 PROCESSEDt  MOVlSi 1981
                                                                               INERTIA  fc'T;  3500     ACTUAL  KPS  12,6
 >  DATE   TESTHO   TYPE  KC    CO   NOX  CG2   FE DRIVER DYNO  OBOH   IK?  BARO   HUH   NXFC  DEL   HSL  TLCSS
 >09-30-81  B10E95-1  HFET 0.517  3,95 3.73 374,  23.2 172S2 H004 1219B.5 10,8 29,12  56,05 0.92
 >09-30
 -81  810B96-1  HFET  0,517
 SI  6108=9-1  HFET  0,502
 81  B10900-1  HFET  0.522
 81  810902-1  HFET  0.500
                3.92 4,01 377. 23.1 3089c D004 12223.0 10,8 29.11
                3.85 3.53 363. 23.9 17232 1:004 12318.0 10.8 23.63
                3.78 3,75 372, 23.4 17232 1:004 12327.1 10.8 28,64
                3.SO 3.49 369. 23.6 30898 D004 12376.0 10.8 26,73
               "(G/HI )----> I (HPG)
                                                                                   53.16 0.91
                                                                                   58.32 0.93
                                                                                   62,19 0,94
                                                                                   52,64 0,90
                                                                           (IH-HG) (GRAIN'S
                                                                                    /LB)
                                                                                              K—(GRAMS)—>l
>
/•
       HEfiH
       STANDARD DEV,
       C,V,Z
       DIFF, 2
                  0.512  3.86 3.70  371. 23.4
                   ,0099  0,073  ,208    5,   0,3
                     1.9   1.9  5,6   1,4   1.4
                      2,    -0,    4.    2,   -2,
                                                                           28,86
                                                                           0,242
                                                                             0.8
                                                                             -1,
                                                                   56.47 0.92
                                                                   3,935  .016
                                                                     7,0  1,7
                                                                     12,   3,

-------
nrr, 20x20 TO
  VOLVO REFCA FUEL  ECONOMY - SEQUENTIAL TESTS
                                                                                         o

                                                                                         &
                                                                                         a
                                                                                         2
                                                                                         H

                                                                                         n

-------
                                  ATTACHMENT D
                                                                                     I ,' I
                                                                                IMeJ
                                                                       i  i
                                                                             —S-tan iard-j-
                                                           ~n~r
                                                                              MM
                 i I
                                                            ITT
                                                                              MM
                _L_L
                                                      i ! I
              I i  I
                    -HOX-IESX
                                        i i
                                              I i
                                                           I I I
                                                              HWFET:
               i  I I
                                                           i i i
                                                                                    i i
                                                                                    I I  I
              I I  I
I !  i
         I I  i
        i I
                               UNCHOKEtt
                                      j- I i i I
              MM
                                                             i  i
                                                                       !  M i
                                                                       I  I I I
                                                                              i IT
                                                                                    Mil
                                                                        MM
                                                                              i I M
                                                                              Mil
                                                             I  i
                                                                                      TT
                                                                        II M
                                                           i M  I
                                                                              III!
                                                                          I I
                                                                         ! i I
                                                                              Mi'
                                                                        ! i i
                                                                              I i  I
                                                                               i  • i
                                                                           TT
                      TTTET
                                                                              III!
                                                        i  !
                                 T7TTT
                                                                        III!
                                                                              I I  i
                                                                         i i
                                                              i i
                                                                          i  i
                                                                        MM
                                                                        Mil
                                                                               i  i
20.0  .
                                 -o '
                                                                        Mil
                                                             J_L
                                                              i l
                                                                         ! I


-------
                                        LAH CORRELATION SUMMARY - TEST DATA
                                                                        PROCESSED!  NOV 19, 1981

'>: EPA - PAIRED
JATE TESTNO
28-81 011327
?8-81 81132H
-28-81 811329
=28-bl 811330
-13-81 811331
-13-81 811332
-13-81 811333
-13-81 811334
-J3-81 B~il335
-13-81 011336
-13-81 811380 	
-13-81 811389
-J3-01 811591"
-13-81 811592
-TJ-Bi 8~li593
-13-81 B11594
TESTS
TYPE
HOT
HTT
HOT
H')T
HOT
HnT
HOT
HOT
Ho'f "
HOT
HIT
HOT
HOT
HOT
HOT
HOT
HC
0.162
0.161
0. 148
0.14/
0.254
0.250
0.234
0.237
6.214
0.214
0.20V
0.20V
0.19V
0.19V
0.21 1
0.205
1 t 	
VEHI COUGAR HOTS VINI 106T084 ' INERTIA WTl 4500 ACTUAL HP 1 13.
CO NOX C02 FE DRIVER DYNO DOOM 1HP BARO HUM NXTC OBL HSL TLOSS
0.61 0.99 546. 16.2 17282 0003 7195.1 10.0 29.29 48.81 0.09 •
0.60 0.99 546. 16.2 17282 0004 7195.1 0.0 29.29 48.81 0.09 •
0.43 0.96 544. 16.3 17282 0003 7207.0 0.8 29.29 50.46 6.50 *
0.43 0.96 548. 16,1 17282 0004 7207.0 0.8 29.29 50.46 0.90
1.13 .02 54?. 16.3 22118 0003 7390.1 0.8 29.39 49.93 0.89 *
1.11 .02 543. 16.3 22118 0004 7390,1 0.8 29.39 49.93 n.89 •
0.00 .09 535. 16.5 2?118 0003 7400.5 0.0 29.40 47.30 0.89 §
0.00 .10 536. 16.5 22118 0004 7400.5 0.8 29.40 47.38 0.89
0.91 .05 529. 16.7 22118 0003 7414.5 0.8 29.36 46.97 O.Ofl
0.90 .04 522. 16.9 22118 0004 7414.5 0.0 29.36 46.97 0.08 f
1.01 .02 532. 16.6 23118 0004 7425.8 0.0 29.34 41.91 0.07 •
1.02 .02 535. 16.5 23118 0003 7425.8 10.8 29.34 41,91 0.87 	
0.65 .06 533, 16.6 22118 0003 7432.1 10.8 29.34 42.73 0.87 •
0.66 .06 537. 16.5 22118 0004 7432.1 10.8 29.34 42.73 0.87
0",54 .05 536. 16.5 22118 0003 7437.6 10.6 29.34 43.12 0.87 •
0.53 .05 537. 16.5 22118 0004 7437.0 10.8 29.34 43.12 0.87
	 Ir./MIi 	 % 1 IMPr.l ( 1N-HC.I (r.BAIN<; 1 <--- ( rtR AM5 ) --- > 1
MEAN
STANDARD DEV,
•c; v. %
D003  = Probe 2
DOOA  = Probe 1
0.20J  0.76 1.03 538. 16.4
.0336 0.234 .041   7.  0.2
 16.5  30.9  4.0  1.3  1.3
29.34  46.41  0.88
0.065  3.275  .012
  0.2    7,1   1,4
                                                                                                                           O
                                                                                                                           O
                                                                                                                           OJ
                                                                                                                           o
K)

§  >
a  3
o  >
H  O
°  a
M  H

H  W
CO
CO

-------
                                              LAB COHHELATION SUMMAHY - BAG DATA
Ji  EPA
VLHI COUGAR HOTS
V1NI 106T004
INERTIA WTI  4500
ACTUAL HPI  13.0
)<\TE    TESTNO TYPE OYNO SITE  HC
                     CO
                                      MOX
                        ro2
               re   2
?H-B1 811327 HOT D003 A002 0.159 0.16f> 0.0 1.09
;H-BI B1132B HOT 000*. AOO? o.iS7 0.166 0,0 i.oo
-'H-ai BI1329 HOT 0003 A002 0.126 0.16V 0.0 • 0.00
?H-H1 811330 HOI 0004 AU02 0.126 0.166 0.0 0.01
J-B1 B11331 HOT OOU3 A002 0.363 0.155 0.0 2.03
3-81 H11332 HOT 0004 A002 0.355 0.155 0.0
3-B1 811333 HOT 0003 A002 O.J19 0.156 0.0
3-B1 811334 HOT 000<« A002 0.329 0.153 0.0
3-B1 B11335 HOT DOU3 A002 0.268 0.16b 0.0
J-81 B11336 HOT 0004 A002 0.268 0.165 0.0
J-81 811380 HOT D004 A002 0.25** 0. b'f 0.0
3-B1 8113*9 HOT 0003 AU02 0.252 0. 70 0.0
J-bl 811591 HOT 0003 A002 0.230 0. 71 0.0
3-81 B11592 HOT OOOrt A002 0.230 0. 71 0.0
.99
.41
.'.2
.52
.50
.55
.56
.00
.00
3-81 811593 HOT 0003 A002 0.257 0. 6V 0.0 0.93
13-81 811594 HOT 000<» A002 0.247 0.166 0.0 0.91

0.17
0.16
0.09
0.09
0.32
0.32
0.23
0.23
0.36
0.35
0.51
0.52
0.34
0.34
0.19
0.18

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.13 0.06
.13 O.b7
.08 O.H6
.07 0.05
.20 0.66
.20 0.66
.29 0.91
.30 0.91
.23 0.08
.22 0.87
.IB 0.07
. 18 0.87
.22 0.90
.22 0.90
.21 0.91
.22 0.90
(ALL G/MI)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

522.
522.
521.
527.
535.
536.
523.
525.
516.
512.
516.
519.
509.
510.
521.
525.

560.
569.
565.
567.
5<»9.
5<*9.
5<-6.
5'«6.
5M.
532.
5<*&.
551.
555.
561.
550.
547.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

16.9
16.9
17.0
16.8
16.4
16.4
16. V
16.8
17.1
17.2
17.1
17.0
17.3
17. J
16.9
16. B
U —
15.6
15.6
15.7
15.6
16.1
16.1
16.2
16.2
16.4
16.6
16.1
16.1
16.0
15. B
16.1
16.2
(MPG1--
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
->l
   MEAN
   STANDARD OEV.
   C.V.%
  0.246 0.164 0.0    1.29  0.27
  0.075 0.006 0.0    0.39  0.13
   30.3   3.7   0.0  30.5  47.5
    0.0  1.19 0.08-0.0  521. 553.
    0.0  0.06 0.02 0.0    8.  11.
     0.0  5.4  2.4  0.0  1.5  1.9
           0.  16.9 16.0   0.0
           0.   0.3  0.3   0.0
          0.0   1.6  1.8   0.0
  C.V.* IS THE COFKF1C1ENT OF VAUI AT I ON. <5TO. OEV./.iE«N MOO).
  OIFF. % IS THE OIFFEHtNCE OF THE MEANS BETWEEN THE MFH AND EPA LAB.  (MFR-EPA/EPA "100).
  NOTE" THft COMMENTS PERTINENT TO THESE TESTS AHE LOCATED IN THE LAST  TABLE1 OF THIS APPENDIX.

   D003 '= Probe 2
   D004 = Probe 1

-------
                                       LAR  CORRELATION SUMMARY - COMMENTS
327




328




329




3JO




.131




332



333



334
336
1H9
               . COUGAR HOTS




PROHE 2-CwS 23     IN CHOKE




PROBE 1-CvS 24-IN  CHOKE




PHOBE 2-CvS 23-IN  CHOKE




PROHE 1-CVS 24-OUT OF CHOKE




PROBE 2-C-/S 23  IN CHOKE




PROBE 1-CVS 24   IN CHOKE




PP04E 2-CvS 23-lM  CHOKE




PWOt'E 1-CVS 24 -OUT OF CHOKE




PROBE 2-CVS 23,-OUT OF CHOKE




PROBE 1-CVS 24-IN  CHOKE




PROPE 1-CvS 2<>-lN  CHOKE




PROME 2-CVS 23-OUT OF CHOKE




PROBE2-CVS 23C - IN* CHOKE




PROBE 1-CVS2««C- OUT OF CHOKE.




PPOBE 2 C-/S 23C -IN CHOKE




PROHE 1 CVS 2^»C-OUT OF CHOKE
                                                VIN
INERTIA WT 'tSOO    ACTUAL HP 13.Q




               4500 IBS/13.0 ACT.




               4500/13.0 ACT.









               1  14.13  2 14.10  3 14.25




               1  13.57  2 13.78  3 13.B7




               1  13.57  2 13.78  3 13.87




               1  14.03  2 13.70  3 13.99




               1  14.03  2 13.70  3 13.99




               1  13.60  2 13.91  3 14.09




               1  13.60  2 13.91  3 14.09
                                                                                       1ST BAG SHOOK FOR STRATIFICATION




                                                                                       1ST BAG SHOOK FOR STRATIFICATION

-------
                                          LAI} CORRELATION SUMMARY - TEST DATA
                                     PROCESSEDI NOV  19.  1981
  EPA
                          VtHt  COUGAR HFKTS
VINI 106T004
                                                             INEHTIA  WTI A500     ACTUAL HP I  13.0
.IE    TESTNO    TYPE  HC    CO   NO*  C02   FL DRIVER DYNO  DOOM    IHP  BARO   HUM   NXFC   OBL    HSL   TLOSS    _S_EgUEN£E
)<«-Bl 811430-
I'.-Hl 01 (439-
|J-Hl 811444-
!3-rt| OH445-
16-B1 8)1606-
16-81 01)607-
)4-fll 81 1440-
J4-81 0114/.1-
>4-Bl 811442-
}<»-81 811443-
16-81 811446-
16-81 81)447-
16-81 B 1 1 4i»8-
16-81 811450-
HFFT 0.079
HFET 0.0 f8
HFLT 0.067
HFKT 0.065
HFET 0.065
HFKT 0.07?
HFFT 0.077
HFfLT 0.077
HFtT 0.077
HFFT 0.066
HFKT 0.066
HFtT 0..067
HFKT 0.067
16-BJ 811605-1 HFFT 0.067


O.OB
0.0(1
0.05
0.02
0.02
0;12
0.12
0.16
".•1.5
0.06
0.05
0.0~6
0.06
0 . 07 "
0.07
f *- tit
.54 3d3. 23.1 2211H 0004 72U3.0 10.8 29.25 49.32 0.09 0-
.53 379. 23.4 22118 0003 721)3.0 10.8 29.25 49.32 0,89 •
,57 375. 23.6 22118 0003 7447.0 10,8 29.34 42.73 0,87 •
.47 378. 23.5 34704 (,)004 7540.0 9.7 20.78 58.89 0.93 •
.46 377. 23,5 34704 0003 7540.0 9.7 28.78 50,89 0,93 •
.52 372. 23.8 22129 0004 7306,0 10.8 29.26 40.08 0.89 •'
.54 381. 23.2 £2129 0003 7306.0 10.8 29,26 48.08 0.89
.54 JH. 23.9 22118 0004 7329.0 10.0 29.25 51.62 0.90
..54 3.7L, &J.9 E_2JLLB (3.0.03 7.3 2_9_,_0_JLQ.,_Q 2JL...2.S 5.L..W O..JLO 	 •
.49 380. 23.3 34?U4 0004 7474.0 V.7 28.78 3^.47 0.06 •
.49 382. 23.2 347H4 0003 7474,0 9.7 28.78 39,47 0.06
.46 3b3. 24.4 347H4 Q00<» 7497,0 9.? 20.78 56.40 0.92 •
.47 371. 23.9 34784 0003 7497.0 9.7 28.76 56.40 0.92 	
.47 374. 23.7 34784 0003 7519.0 9.7 28.70 55.21 0.91 •
/LB)
                                                                                                                 8
                                                                                                                 2
                                                                                                                 3
                                                                                                                 5
                                                                                                                 6
                                                                                                                 7
                                                                                          I <	(GRAMS)--->|
                                                                                                                                  O
                                                                                                                                  O
  MFAN
  STANDARD  DE.V.
  C.V.T,
  D003 = Probe  2
  D004 = Probe  1
0.071  O.P8 1.51 375. 23.6
.0056 0.04) .039   !>.  0.3
  7.9  53.0  2.6  1.4  1.4
                29.03  50.21 0.90
                0.265  6.505 .024
                  0.9   13.0  2.7
U)
•
O
                              Test
            \v\c
                                                                      *VvoU
                                                                           t

-------
                                              LAfl CORRELATION SUMMARY  - COMMENTS
                        COUGAR HFETS            VIN 106TOH4              INERTIA  WT 45QO     ACTUAL  HP 13.Q

 43H     PHOBE  1-CVS 24                                                                  TEST WOT  4500 POUNDS    ACHP 13.0   IMP 10
        .«                                     1 14.42  2 14.49  3  14,55
 439     PWOHE  2-CVS 23                                                                  TEST WOT  4500   POUNDS  ACHP  13.0    IMP
        10. H                                   I 14.42  2 14.49  3  14.55
 44<»     PWOBE  i-cvs 24-iN CHOKE                                                         ACTUAL  TEST  WEIGHT  »  4500    ACHP * 13.0
        IHP  2  10.R                            .
 445     PWOHE  2-CvS 23-1N CHOKE                                                         ACTUAL  TEST  WEIGHT  =  4500    ACHP =13.0
        I HP  =  10.H
 *,06     PHOBE  1  CVS 24C  IN CHOKE  AVE. CVS TEMP.- 200 TO 225 F                         C.D, 1  !«•.<•«• 2  U.50  3  lfc.56

 hQ7     PWOBE  2  CVS 23C  IN CHOKE                                                       C.O. 1  1«».^B 2  1<>.58  3  1<».S6

 '.'•O     PMOHE  1-CvS 2^-lN CHOKE                                                         1  1^.55   2  14.57  3 14.61
                                              ACTUAL WEIGHT- 4500  ACHP=13.0   1HP=10,0
 «41     PROyE  2-CVS 23-OUT OF CHOKE                                                     1  14.55   2  14.57  3 14.61
                                              ACTUAL rfEIGHT-4500   ACHP=13.0   1HP=10.8
 442     PROBE  1-CvS 24                                                                  ACTUAL  WEIGHT   4500  ACHP  * 13.0   IHP «
        in.8           '                        OC 1 14.37  2 14.52  3 14.50
 443     PROBE  2-CVS 23                                                                  ACTUAL  WEIGHT -4500   ACHP =  13.0  IHP =
        10.0                                   OC 1 14.37  2 14.52  3 14.50
 446     PHOBE  1-CVS 24   IN CHOKE                                                       C.O.  1  14.16, 2  14.in  3  14.19

 447     PROHE  2-CVS 23  OUT OF CHOKE                                                    14.16   14.1H 14.19

 448     PROBE  1-CVS 24  IN 'CHOKE                                                        C.O.  1  14.43 2  14.52  3  14,47

 «.SO     PROBE  2-CVS 23  (TREAT AS AN. ODD TEST NUMBER)  OUT OF CHOKE                      C.D.  1  14.43 2  14.52  3  14.47

 604     PPOUE  1-CVS24C  OUT OF CHOKE                                                    C.D.  1  14.4» 2  14.56  3  14.55

1*05     PROHE  2  CV'S-i!3C   IN CHOKE                                                      C.O.  1  14.4H 2  14.56  3  14.55

-------
                                          LAB CORHELATION SUMMARY - TEST DATA
                                                                                PHOCESSEDI DEC  It 1981

EPA
TE
9-81
9-81
•-V-81
:0-B1
)0-81
(0-81
lO-OI
lO-Bl

TESTNO
811349
8 1 1 350
8 1 I 351
811352
ttllJbJ
B11354
811355
811356
811357
811358
81 1359
811360

TYPE
HOT
HOT

HC
0.350
0 .350
Hnf 0.559
HOT 0.561
'"H-iT
HIT
H'lT
HOT
nor
HOT
HOT
HOT
0.57U
0 .565
0.332
0.331
0.319
0.317
0.4H3
0 .482

VtHi
CU
13.90
13.91
21.07
21.10
71.81
21.71
10.11
10i02
11.00
10.91
16. 2i
16.11

ESC OUT HOTS
NOX CU2
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
MI)
09 345.
09 346.
07~3J5TT
07 336.
00" JJ3.
07 332,
14 J60.
15 350.
13 3b2.
13 361.
li 358.
11 356.

FE DH1VEW
24.1 34783
24.0 34783
24.0 34783
23.9 34783
24.0 34VH3
24.1 34703
23.5 221 18
23.J_22U.8
23.3 22118
23.4 22118
23.0 2211B
23.2 22118
(MHO)
VIM! 202-1. 6-F-076
DYNO
0003
0004
0003
0004
0003
0004
0003
0004,
D003
0004
0003
0004
DOOM
7667.1
7667. 1
7681 .5
76B1 .5
7695.1
7695.1
7712.0
_LLl.2.,.XL
7731.0
7731.0
7742.0
7742.0
I HP BARO
4.b 29.30
4.6 29.30
4.6 29.30
4.6 29.30
4.6 29.31
4,6 29.31
4.6 29.40
4.6 29.40
4.6 29.34
4.6 29.34
4.6 29.34
4.6 29.34
(IN-HG)
INERTIA WT! 2500 ACTUAL HPI 6.0
HUM NXFC DBL HSL TLUSS
55.06 0.91 •
55.06 0.91 •
54.88 0.91 •
54.88 0.91
5^.67 0.91
54.67 0.91 •
54.85 0.91
54.85 0.91 •
55.84 0.92
55.84 0.92 •
57.20 0.92
57.20 0.92 •
(GRAINS X 	 (GRAMS) 	 >l
/LB)
MEAN
STANDARD DEV.
C.V.4

D003 =  Probe 2
D004 =  Probe 1
                    0.435 15.65 0.10 349. 23.7
                    . 1 104 4.737 .029  12.  0.4
                     25.4  30.3 28.1  3.4  1.6
                                                           2V. 33  55.42 0.92
                                                           0.0-Hl HI  351
•V-H1 HI  352
">-ti\ HI  353
"'-111 81  354
iD-01 81  355
;0-81 HI  356
10-81 81  357
10-81 61  358
iO-Bl 81  359
iQ-Bl 81  360
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
HOT
                 0003
                 0004
                 DOOJ
                 1)004
                 D003
                 0004
                 OOOJ
                 0004
                 DOOJ
                 0004
                 DOOJ
                 0004
                     A002
                     A002
                     A002
                     A002
                     ft002
                     A002
                     A002
                     A002
                     A002
                     A002
                     A002
0.512
0.512

0.625

0.526
0.560
0.558
0.502
0.7<*8
0.742
0.201 0.0
0.201 0.0
0.49^ 0.0
0.502 0.0
0.606 0.0
0.600 0.0
0.121 0.0
0.121 0.0
0..151 0.0
0.151 0.0
0.240 0.0
0.24J 0.0
c
15
15
19
19
18
18
13
13
13
13
20
19

0
.M4
.M.3
.65
.72
.20
.14
.35
.23
.27
.16
.12
.89

f
12.
12.
22.
22.
25.
25.
7.
7.
8.
8.
12.
12.


11
15
39
37
15
01
12
05
92
84
6<>
64

3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
(ALL

0
0
0
0
0
0
0
0
0
0
0
0

NO
0.
0.
o.
0.
0.
o.
0.
0.
0.
0.
0.
0.
G/MI
X
11
1 1
10
10
11
10
15
17
16
16
16
15
I

0
0
0
0
0
0
0
0
0
0
0
0

2
.06
.06
.04
,04
.05
.04
. 13
.13
.11
.11
.06
.06


0
0
0
0
0
0
0
0
0
0
0
0

3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

                                                                               C02
305.
305.
299.
301.
299.
297.
328.
328.
327.
328.
322.
320.
                                                                                   FE
381.
384,
368.
369.
36-».
364.
389.
386.
395.
392.
390.
389.
 MEAN
 STANDARD  DEV.
 C.V. I

 D003  = Probe  2
 DOOA  = Probe  1
               0.578 0.303  0.0    16.70  14.70
               0.089 0,190  0.0     2.91   7.00
                15.4  62.8    0.0   17.4   47.6
                                                           0.0   0.13  0.07 0.0
                                                           0.0   0.03  0.04 0.3
                                                            0.0  21.7  47.6  0.0
                                                                              313. 381.
                                                                               13.  11.
                                                                               4.2  3.0
0
0
0
0
0
0
0
0
0
0
0
0
•
•
•
*
•
•
t
•
*
•
•
•
26
26
26
26
26
27
25
25
25
25
24
25
•
*
•
•
•
f
•
•
•
•
•
•
r
8
7
6
9
1
3
3
3
it
9
1
22
22
21
21
21
21
22
22
21
21
21
21
*
•
*
•
•
»
•
•
•
•
•
»
1
0
9
8
9
9
2
3
7
8
6
7
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
|< — (MPG) 	 >l
.0
0
0.
•
•
0
26
0
3
•
•
•
0
8
3
21
0
1
•
•
•
9
2
0
0.
0.
0.
0
0
0
                                                                                                                                   to
                                                                                                                                   o
                                                                                                                                   o
                                                                                                                                      to
                                                                                                                                     33
                                                                                                                                     o
                                                                                                                                     H
                                                                                                                                     o
                                                                                                                                      H
                                                                                                                                      W
                                                                                                                                      CO
                                                                                                                                      H
                                                                                                                                      CO

-------
                                             LAO CORRELATION  SUMMARY  -  COMMENTS
                       ESCORT HOTS             V1N 2G2-J,6-F-OId        INERTIA- WT  2500     ACTUAL  HP  6.0

349    PROBE 2-CVS 23-1N CHOKE                                                         E.O.T.  5 SECS.  AFTER 24C


350    PROHE 1-CvS 24- IN CHOKE                                                        1  14.50  2  14.61   3 14.60

351    PROHE 2-CVS 23-IM CHOKE

352    PROHE 1-CvS 2
-------
                                          LAd CORRELATION SUMMARY - TEST DATA
                                                                        PHOCESSEOI  DEC  It  19B1
:  EPA
                          VEH!  ESCORT HWFET5
                                   VIM!  202-1.6-F-076
         INERTIA WTI  2500    ACTUAL HP I   6.0
«TE   TESTNO   TYPE  HC    co   NO*  coa   FE DRIVER OYNO  DOOM   IHP  BARO   MUM   NXFC  OBL    HSL  TLOSS
?rf-81
J2-B1
/8-B1
24-81
29-81
P9-81
?9-81
29-81
811363-1
B11364-1
81 1365-1
81 1366-1
81136/-1
81136^-1"
B11370-1
811371-1
811372-1
81 1386-1
811387-1
HFFT
HFK T
HFF;T
HFET
HFFT
HFK.T
HFF.T
HFKT
HFFT
HFKT
HFET
0.094
0.095
0. 126
0.126
O.OB2
O.OM2
6,07V
0 . 0 B 1
0.071
0,075
0.072
0.071

4.1 1
4^69
3.80
2.97
2.76
2.72
0.12
0. 12
0.13
0.13
0.15
0. 15
0.21
0.21
0.21
0.21
2.02 0. IV
2 . 8 1 0.19

237.
236.
239.
237.
237.
237.
239.
238.
240.
236.
23B.
236.

36.4
36.5
35.9
36,2
36.4
36.3
36.5
36.2
36.8
36.6
36.8
3009B
3089H
3089b
30(198
iTZfTT
17282
172*2
17282
34783
1
0003
0004
0003
0003
0003
0004
0003
0004
0003
751 1.0
751 I .0
7522.9
7555.1
758272
75H2.2
7610.3
7610.3
7636.5
7636.5
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
29.30
?9.30
2V. 2B
29.29
29.29
29.35
29.35
29.35
29.35
29.34
29.34
(IN-HG)
47.95 0.89
47.95 0,89
53.70 0.91
5J)j_70 Q,9L_
53.67 0.9).
53.67 0.91
52.20 0.90
52.20 0.90
57.50 0.92
57.50 0.92
54.60 0.91
54.60 0.91
(GRAINS
/LB)
t

9
	 §
(<-
  MEAN
  STANDARD DF.V.
  C.V.*

  D003 = Probe 2
  D004 = Probe 1
O.OHB  3.53 0.17 238.  36.4
.0195 0.764 .038   1.   0.3
 22.2  21.7 22.8  0.6   0.7
29.32  53.27 0.91
0.058  2.999 .012
  0.2    5.6  1.3
                                                    prcAoe
                                                                                         |<	(GRAMS!	>l
                                                                                                                                Cn
                                                                                                                                O
                                                                                                                                O

-------
                                      LAP co'»nf.LAT ION  SUMMARY  -  COMMENTS
                ESCORT HWFETS           VIM  2G2-1.6-F-076        INEHTlA-wT  2bOO     ACTUAL  HP  6.0




PWOHE 2-C^S 23-1N CHOKE C.D.15.20 ,15,16,15.Ob




PROHE 1-CvS 24-l'J CHUKE C.D. 15.20.15.16,15.06




PROHE 2-CvS 23   C.0.15.2V,15.21, 15.12




PROHE 1-CvS 2<» C.O. 15.2V,15.21 ,15.12




PROBE i>-Cv5 23-lN CHOKE




PROHE 1-CVS 2<»-UUT OF CHOKE                                                    CO   1 J5.34  2  15.37  3 15.22




PROHE 2-CVS 2J-OUT OF CHOKE




PROHE 1-CVS 2<»-lN CHOKE                                                        1  15.28   2  15.33  3 15.27




PROHE ^-C'/S 23                                                                 OC'S.  1  15.30  2 15.40  3 15.36



PROHE 1-CVS 2<»                                                                 OC'S.  1  15.30  2 15.40  3 15.36




PROHE 1-CVS 24-OUT OF CHOKE                                                    1  15.35   2  15.35  3 15.28




PWOHE 2-CvS 23-lN CHOKE                                                        OC'S.  1  15.35  2 15.35  3 15.28

-------
         20x20 TO 1NC1I

         SEQUENTIAL ABSOLUTE  FUEL ECONOMY - 4500 Ib.
                                                                                              ry
     5      6
SEOUENCE
3     A     5      6
       SEQUENCE

-------
HER 20x20 TO INCH





      SEQUENTIAL PAIRED  DIFFERENCES - 4500 Ib.

-------
           HEE 20x20 TO INCH





              SEQUENTIAL, ABSOLUTE FUEL  ECONOMY - 2500 Ib.
SEQUENCE
SEQUENCE  '

-------
                                      J\fF. 20x20 TO INCH


                                            SEQUENTIAL PAIRED  DIFFERENCES '-  2500 Ib.
111
  I
                   >0t
            s
:AH₯
                                       v<
                                       I
                                             p t:
                                             to;
                                                    ill
                                                                "

                                                                             If
in
I i!


-------
                                  CVS PROBE STUDY
                                     Test Plan  2
                                    Fuel Economy
                                .90 Confidence Intervals
(Student1
VEHICLE
2500 Ib. 6.0 AltP
Mean MPG
Absolute AMPG-interval (min, max)
A% - Interval (min , max)
% confidence that a difference
( mai exist
| 4500 Ib, 13.0 AHP
'• Mean MPG
Absolute AMPG - int. (min, max)
1
A% - interval (min, max)
% confidence that 
-------
                                   ATTACHMENT H


Theoretical Analysis

Sonic velocity  is  defined as  the  maximum obtainable velocity of gas that can
be achieved regardless of the  outlet pressure  depression.  The  term  "critical"
or  "choked flow"  means  that  sonic velocity  exists at  the minimum  area or
throat section  of  the venturi.  This  means that when  "choked" or  "critical"
flow conditions are reached the venturi reaches a maximum  flow  in actual cubic
feet  per  minute   (ACFM)..   The  flow  in  ACFM is  then  independent of   flow
variations due  to  venturi  outlet  pressure or other  variations.   Thus,  a CFV
provides a constant volumetric metering  element.   The basic flow equation for
a  CFV  is  derived  in  CVS  technical note  //I  and  3 by Warren  F.  Kaufman for
Ford/Philco October 6, 1971.

Critical Flow Venturi:
              Q = Volumetric flow rate (ft^/sec)
              A = CFV effective metering area (ft^)
              g = Gravitational constant (32-2 ft/sec^)
              "R = Universal gas constant (1545 ft-lb/°R mol)
              Mw = Molecular weight of gas (Ib-mol)
              To = Qas total temperature (°R)
              K = Gas Specific heat ratio (dimensionless)
              M = Mach No. at inlet to venturi = v/c (dimensionless)
              V = Gas velocity - (ft/sec)_
              C = Velocity of sound =^CglT/Mw' (ft/sec)
              T = Gas static temperature (°R)

The  flow  rate  equation  does  not  contain  inlet  or  venturi  differential
pressures as factors.

The bracketed  term  in the preceeding equation  is a  function  of  the  inlet  Mach
number which in  turn is a function of  the  ratio of the venturi  inlet  section
area (Aj) to throat area (A*):
 l     1
A*     M
                      k+1
                                         k+1


                                                    (2)
              M = Mach no. at inlet to venturi (dimensionless)
              K = Gas specific heat ratio (dimensionless)

-------
A typical EPA  CVS main venturi inlet diameter  is  approximately  3.875"  and  the
throat diameter  is approximately 1.3".   The  ratio of  specific  heats  (K)  for
air  and  for nitrogen  (largest mol fraction  in the  exhaust gas) are  constant
and  equal  to   1.40  for  the  temperature  range   of  interest.   Equation  (2)
reduces to:

              M = 0.064

A typical EPA  CVS sample probe venturi  inlet  diameter  is  approximately 0.185"
and  throat diameter approximately 0.035" yields:

              M = 0.021

Substitution of  either of these values  for M  into equation (1)  results in  the
bracketed term being essentially equal to unity.  Equation (1)  thus  reduces  to:
                                                      (3)


By  definition  g,  and R  are constants.  For the  temperature  range  of  interest
specific  heat  ratio  (K)  and molecular weight  (My)  are  essentially  constant.
Finally,  the area of each venturi remain constant.

Formula (3) then reduces to:
    Qsample ~ ^sample ,J1 sample  anc^    Qmain ~ Cmain


Or  actual  flow  in the sample  probe  and  main Venturis are proportional  to'the
square  root  of  the absolute temperature of  the  gas  mixture.   The  ratio  of  the
flow equations for the main and sample Venturis will be:
                       Qsample    ^sample ./^sample
                               ~  ^main  ^
The sample probe is physically located at the main venturi inlet, consequently:

              ^sample = ^main


              Q
               samPle  = Constant
              Qmain


or  the  two Venturis being in  choked  flow guarantees a constantly proportional
sample.

-------