EPA-AA-EOD/TPB-85-1
                               Technical Report
                    EPA-GM Fuel Economy Correlation Program

                               June - July 1985
                                Marty Reineman

                                Douglas DeVries
                                    NOTICE

Technical  reports  do   not  necessarily  represent  final  EPA  decisions  or
positions.   .Their  publication  or  distribution   does   not  constitute  any
endorsement  of  equipment  or  instrumentation  that may  have been  evaluated.
They are'intended to  present technical  analysis of issues using data which are
currently  available.    The  purpose  in the  release  of  such  reports  is  to
facilitate the  exchange of  technical  information and to  inform the public of
technical developments  which may form the basis  for improvements in emissions
measurement.

                            Testing Programs Branch
                        Engineering Operations Division
                      Mobile SOurce Air  Pollution Control
                       Environmental  Protection Agency
                              2565 Plymouth Road
                          Ann Arbor, Michigan  48105

-------
                                     - 1 .-
Background

    This test program was  initiated  in response to GM's request to investigate
    a negative fuel economy offset between paired test results obtained at the
    EPA MVEL and at GM's Milford Proving Grounds.

    An analysis  of the EPA-GM  paired certification data did  not suggest that
    the reason  for the  fuel  economy  offset  was attributable  to a particular
    test,  site   or  component   of   the  fuel   economy  measurement  process.
    Therefore,  the structure  of  the  correlation program  included  tests  on
    multiple  dynamometer   and  analyzer  sites   at   EPA,   measurements   of
    dynamometer  torque  and horsepower,  volumetric  fuel measurement,  and  CC>2
    bottle crosschecks.

Program Design

    Emission  and  fuel  economy  tests  consisted of a series of three hot start
    IA-4's on four dynamometers (three analyzer sites) at the EPA and one test
    site   at   GM.   Volumetric   (metered)    fuel   consumption  and   wheel
    torque/horsepower  were measured  for  each   dynamometer  test  at  each
    facility, thereby  providing  an  accurate  and  direct method  of assessing
    dynamometer  loading  and vehicle  fuel economy repeatibility.   The CO2  gas
    standards  provided  a direct   check  on   the  CC>2  analyzer  calibration
    differences between test facilities.

    The test  vehicle was a GM  "repeatable" vehicle, a 1984 Pontiac J-2000 with
    throttle-body fuel injection.  The same tank of Howell  test fuel was used
    for the  first  four tests at GM and EPA, and a second tank was used for the
    remaining tests.  A  15 minute,  50 mph  steady state warm-up and the series
    of three hot  start  LA-4's served  as  the preconditioning for the  following
    day of testing.

    The actual sequence of dynamometer tests was:

June 17  three hot - start  IA-4   tests at   GM    on   test site No. 8
June 19    "    "      "      "       "    "   EPA   on   dynamometer       001
June 20    "    "      "      "       "    "   EPA   on         "            003
June 21    "    "      "      "       "    "   EPA   on         "            005
June 27    "    "      "      "       "    "   EPA   on         "            006
July 3     "    "      "      "       "    "   EPA   on         "            006
July 24    "    "      "      "       "    "   GM    on   test site No. 8


Each three test  series  was run on a different day.  All tests  at the GM were
driven by the same GM driver and all  tests at  the EPA were driven by the same
EPA driver.

In addition  to  the LA-4  tests  and CC>2  cylinder analyses,  a  "wet" sample  bag
from the  test vehicle was generated and analyzed at GM and  at three analyzer
sites at EPA.

-------
                                     - 2 -
Results

    The  following  test  results  and  observations  were obtained   from  this
correlation program:

    1.   GM average carbon balance  fuel economy was 2.2 percent lower than EPA
         test results.

    2.   GM metered  fuel  economy was  0.3  percent lower  than  EPA metered fuel
         economy.

    3.   GM's average CC>2 measurements were 0.3 percent higher than EPA's.

    4.   Dynamometer loading between facilities was similar.

    5.   The EPA site-to-site emission and fuel economy repeatibility was good.

    6.   The fuel economy measured  with the new exhaust connector pipe was 0.8
         percent lower than the results obtained with the old connector pipe.

Discussion

    Table 1  is  a summary of the  composite LA-4 emission and fuel economy data
    obtained at the EPA and GM.

    The test  results labeled EPA D006/2  were  repeat  tests  run on dynamometer
    D006 after  a possible exhaust  leak was discovered  after  the first series
    of  tests.   It  was not  possible to  estimate the  quantitative  impact,  if
    any, of  the  leak  and therefore  these results  were not  removed from the
    data base,   although  they  are  tabulated  separately.   The  GM  data  were
    combined because their tests  were all run on the same dynamometer/analyzer
    site,   the  same  driver  drove  all  six tests,  and relatively  little  time
    elapsed between the first and second set of GM tests.

    Table  A-l,   in  the Appendix,   is  the standard  output  format of  the EPA
    IABCOR program  which calculates  the  mean,  standard deviation, coefficient
    of  variation,  and  the  percent difference between  sample means.  Percent
    difference  results are  referenced to the  mean  of the  tests  in the first
    row, which  is the grand mean of all EPA tests.

    002 analysis is summarized in Table 2.

Emission and Fuel Economy Results

    Figures A-l  - A-19 and Tables A-2 - A-4 of the Appendix present  individual
    phase  (bag)  1  and 2 results, and  composite results for emissions and fuel
    economy.  Fuel  economy  calculations  are  summarized for  both metered and
    carbon  balance  measurements.    Dynamometer  torque  and  horsepower  are
    displayed as positive and negative totals as a function  of test phase.

-------
                                     - 3 -


                                    Table 1

                       Emission and Fuel Economy Results


Test Location   N     HC, g/mi  CO, g/mi  NOx, g/mi  CO^, g/mi     FE, Mpg

EPA D001        3     x 0.043      1.32      0.52        311         28.3
                      s 0.002      0.08      0.03        1.7          0.2

EPA D003        3     x 0.048      1.48      0.51        313         28.2
                      s 0.009      0.15      0.02        2.5          0.2

EPA D005        3     x 0.048      1.49      0.53        315         27.9
                      s 0.005      0.14      0.04        1.0          0.1

EPA D006/1      3     x 0.059      1.74      0.52        312         28.2
                      x 0.005      0.23      0.03        3.0          0.3

EPA D006/2      3     x 0.049      1.58      0.53        313         28.1
                      s 0.005      0.16      0.02        1.0          0.1

GM Site 8       6     x 0.053      1.58      0.47        320         27.5
                      s 0.003      0.10      0.02        2.7          0.3
0459c

-------
                                     - 4 -
                                    Table 2
                       GM - EPA CO2 Analysis Correlation
                       EPA Gas Standards Master Site [1]
Cylinder No.

   11/4381
   40321
   66753J
   A3 298
   277775
   A12955
   A2225
   MH932
Reference Type

Facility Master
   n      n
Working Master
GM Cone, %
   .474
   .5663
   .497
   .242
  0.9505
  0.7495
  0.4999
  0.3476
1.
0.
1.
1.
EPA Cone, %

    1.472
    0.5670
    1.494
    1.240
    0.9493
    0.7523
    0.5005
    0.3472
% Difference

    0.14
   -0.12
    0.20
    0.16
    0.13
   -0.37
   -0.12
    0.12
                          EPA Test Site Analysis [2]

Cylinder No.  GM Cone, %  A001 Conc,% % Diff  A002 Conc,% % Diff A003 Conc,% % Diff
LL4381
40321
1.474
0.5663
1.469
0.5654
0.34
0.16
1.470
0.5626
0.27
0.66
1.473
0.5641
0.07
0.39
                             Sample Bag CO2 Results [3]

             EPA Test Site     GM Cone, %     EPA Cone, %
                 A001
                 A002
                 A003
                    12.38
                    12.38
                    12.38
                 12.45
                 12.42
                 12.47
                            % Difference

                               - 0.6
                               - 0.3
                               - 0.7
NOTE:  [1] Analyses on the EPA Master Site were on Range 23, 0-2.5%
       [2] Test Site analyses on LL4381 were on Range 23, 0-2.5%
           Test Site analyses on 40321 were on Range 22, 0-1%
       [3] Bag generated at GM, analyzed at GM Test Site No. 8

-------
                                 - 5 -
Figures  A-l - A-19  are GM "tri-plots".  This  method of data presentation
shows  individual test  values  along the vertical  leg of each triangle and
plots  the mean of  the data at  the intersection of  the  other two legs of
the  triangle.   All  GM tri-plots display a plus  and minus band around the
mean of  all test results,  as  in Figures A-l - A-3,  or around the mean of
the  first three LA-4  tests, as  in Figures A-4 - A-19.  With the exception
of  the +  3.0  percent bands around  the  carbon balance fuel economy means,
the  band widths  on Figures A-4 - A-19 are somewhat  arbitrary and are based
on  engineering  judgment  and  historical observations  of  actual emissions
data.

Several  observations can be made  by examining these data.  The GM and EPA
metered  fuel  consumption measurements  showed  good  correlation,  EPA fuel
economy  averaged only 0.3 percent higher than  GM.   Carbon  balance fuel
economy  values  were,  however,  further  apart.   EPA  carbon  balance fuel
economy  averaged  2.2 percent higher than GM results.*

A comparison  of Figures  A-2 and A-3  shows  that  the difference between
carbon balance and  metered fuel economy is larger  for phase 2 than phase
1.   This observation  is consistent  with many  GM and EPA tests of vehicles
equipped with  fuel meters  and is  currently being studied.  An analysis of
the  metered vs carbon balance results shows that the effect of changing to
a new style exhaust  connector pipe (the  old connectors  were  in place on
dynamometers  D001,  D003,  and D005,  and the  new system  was in  place on
dynamometer D006) was  to reduce the difference between carbon balance and
volumetric measurements of fuel  economy.  The table  below  summarizes these
test results.   Note  that  for purposes  of  this analysis,  the first series
of tests on dynamometer D006  (tests with a possible  exhaust leak) were not
used.
Average % Difference Between Carbon Balance and Volumetric Fuel Economy
                            EPA Dynamometers
             n  D001               D003        .   D005            D006
     Bag  1   3    2.3               1.1             1.5             1.6
     Bag  2   3    3.8               3.2             3.2             2.0

Note:   Values  shown  are  percent differences  in  fuel economy  based on:
 ((Carbon  balance-met ered)/ (metered ))  x  100%
HC and CO emission  differences were not  apparent and the NOx differences
between  facilities  shown   in  Figure   A-12   are  not   thought  to  be
significant.   The approximate -10 percent difference (EPA measuring higher
NQjj)  is  likely due  to a combination  of driver,  ambient conditions,  and
sampling  system differences  between  facilities  during  the correlation
program.

*  Although differences  are usually expressed using EPA values as  the  base,
this  report  refers to  a  number .of GM documents which use their results as
the base.

-------
                                     - 6 -
    Figures A-14 -  A-17 summarize the wheel  torque  data as a function of test
    site.   Positive  torque  differences  (Figures  A-14  and  A-16)  are  not
    significant, based  on our in-house  test  experience with our  Volvo REPCA,
    which  is  also  equipped  with torque wheels.  Negative  torque differences
    between tests at  GM and EPA are  shown on Figures A-15 and A-17.  Although
    the tests at GM show 2-4 percent higher  negative torque,  these difference
    are not considered  significant.  Rather,  they reflect differences between
    the GM and EPA drivers and  dynamometer  frictional  horsepower.  Clearly,
    the driver  influence  is much  greater on  the measurement of negative torque
    than positive torque.

    Measured distance is  presented in  Figures A-18  and A-19.   Although the
    first  set   of  distance measurements on  EPA dynamometer  D006  is  clearly
    higher than the other values, these  results are still well within the EPA
    QC limits for minimum and maximum allowable distance for bag 1 and bag 2.

    Tables A-2  - A-4 are data  summaries of  composite and bag  emissions and
    fuel  economy  data  (measured  and  carbon balance),  torque,  horsepower, and
    distance  results.   All  three  tables express   the  percent difference  as
    (EPA-GM)/GM) x  100 where the  reference condition is defined as the average
    of the first three tests on GM site No. 8.

Gas Analysis

    Two GM facility  master  standards and  six  working master  standards from
    Milford were  analyzed  in  the  EPA gas standards laboratory.    The  two  GM
    master standards  were then analyzed on EPA analyzer sites A001, A002, and
    A003.

    The C02  analyses  from EPA's gas laboratory showed  excellent correlation
    with  GM.   The   average   difference was  +0.02  percent  for  all  eight
    cylinders,   while  the  largest  individual difference was -0.37 percent.  Gas
    analyses on sites A001-A003 showed an average  difference of +0.32 percent,
    with  all six  analyses being  slightly positive.   Although  all readings  on
    sites 1-3. were  positive, and  thus contribute approximately -0.3 percent to
    the  fuel  economy offset,  this CC>2  offset is  well  within the  range  of
    good ' inter-laboratory correlation.   The  gas  analyses  are summarized  in
    Table 2.

    "Wet"  sample  bag checks  are  a  diagnostic  check  used by GM  to assess
    intra-lab  analyzer  correlation  at  their  laboratory.   Wet   sample  and
    background  bags were  generated at GM, analyzed on their  site  No.  8, and'
    then  transported to  the  EPA laboratory  where the  bags were read  on EPA
    analyzer sites  A001-A003 on  June  17.  A  possible error in the analysis of
    these  bags  resulted  in  deleting  the  data   from  further  examination.
    Another wet sample  bag was  generated and analyzed  at  GM,  and analyzed .on
    all three EPA light-duty analyzer sites.   These  results are shown in Table
    2   and  indicate  good   correlation   for  this   type   of    crosscheck.
    Unfortunately,  this  bag was not  reanalyzed by GM  to  check the CO2 change
    as a  function of  time.

-------
                                     - 7 -
Summary

    This program  substantiated the 2-3  percent  fuel economy offset  which has
    been observed from EPA-GM  paired  certification data since early 1985.  The
    fuel  economy offset  is  not  thought to  be  attributable  to  dynamometer
    loading  differences,  CC>2  analysis,   or  ambient  effects.   Neither  is the
    offset problem confined to a single  EPA dynamometer or analyzer site.  The
    results  of this  program  show good  EPA site-to-site  repeatibility.   The
    change  to a  new  exhaust  collection system  did not  eliminate  the  fuel
    economy offset,  although a reduction in the difference was observed.

Recommendations for Future Work

    1.   Concentrate  on  the   sampling  system as   a  possible  source  of  fuel
         economy  offsets  between  the   facilities.    This  program   isolated
         possible dynamometer  and  CC>2  analysis differences  and did  not show
         significant offsets in either area.

    2.   Monitor the effect of the EPA CVS plumbing  changes  on a site by site
         basis  to determine   if  this change  has the  anticipated effect  of
         reducing EPA-Mfr paired  data scatter,  and  reducing EPA measurements
         of carbon balance fuel economy.
0459c

-------
APPENDIX A

-------
                             PRJ:  CM FE OFFSET
   TABLE A-l




LAB CORRELATION  SUMMARY      PROCESSED: AUG 13.  1905
 LAB
 L'PA
 EPA DYNO D001
 EPA OVNO D003
 EPA DYNO DO05
 F.PA DVNO 1)006/1
. EPA DYNO UO06/2
 GLNtKAL MO IOHS
                         15

TEST PROCEDURE


: HOT
CH4

VIN :
. HC




2E61BO
CO
NOX

| < 	 	 G/MI — • 	
MEAN
STO. DEV.
C.V.%
MEAN
STD. DEV.
C.V.%
DIFF. %
MEAN
STD. DEV.
C.V.%
IMFF . %
MEAN
STD. DEV.
C.V .%
DIFF. %
MEAN
STO. DEV.
C.V.%
DIFF. %
MEAN
STD. OEV.
C.V.%
DIFF. %
MEAN
STD. OEV.
C.V.%
DIFF. %
0.025
.0025
9.9
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.025
.0025
9.9
0.0
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.049
.0072
14.6
0.043
.0015
3.5
-12.2
0.048
.0087
10.3
-3.4
0.048
.0050
10.6
-3.4
0 . 059
.0047
0.0
20. 3
0.049
.0050
10.3
-1.4
0.053
.00/0
5 . ?
J .4
1 .52
0. 195
12.8
1 .32
0.075
5.7
-13.2
1 . 48
0. 145
9.0
-2.9
1 . 49
0 . 137
9. 2
-2. 2
1 . 74
0. 229
13.2
14.3
1 .58
0. 164
10.4
3. 9
1 .50
0. 102
(i. 4
3.9
0.52
.025
4.0
0.52
.029
5.6
-0.6
0.51
.015
3 . 0
-2.6
0.53
.042
7.9
1 .3
0.52
.025
4 . U
0.6
0.53
.023
4 . 4
1 .3
O. 4 /
. CM 0
3 .9
9.3
C02

--•->( (
313.
2. 2
0.7
311.
1 . 7
0.6
-0.6
313.
2.5
0.0
-0.0
3)5.
1 . 0
0.3
0. 7
312.
3.0
1 .0
-0. 2
313.
1 .0
0 . 3
0. 1
320 .
2 . 7
0 .11
2.3


INERTIA
FE
;MPG) i
28
0
0
20
0
0
0
28
0
0
0
27
(.1
0
-0
20
0
1
0
28
0
II
-u
27
0
0
-2
. 1
. 2
. 7
. 3
. 2
. 6
. tj
. 2
. 2
. /
. 1
.9
. 1
. 2
. 7
. 2
.3
. 1
' '
,
1
. /]
. 1
.5
. 3
.9
. 3
BAUD



WT: 2075
SHUM
NXFC



ACTUAL HP
CDT
.
G.3


DB EVAP/AUXILLARY
[ IN--HG) (G/LH) |
29.01
0 . 09
0.32
20 .90
0.026
I) .09
- 0 . -1
29 . 00
0.0
0.0
-0.0
29. 00
O . O
0.0
-0.0
29 . 1 6
0.0
0.0
0.5
29.00
0.026
0 . 09
-0.0
2H . HO
0 . 14(1
(1 . '-> 1
-I.I
49.6
2.72
5.5
54. 2
0.36
0. 7
9 . 3
46.7
0.36
0.0
-5.9
40.9
0. 20
0.6
-1.4
49 . 4
1 . 34
2 . 7
-0.3
48.7
1 . 70
3 .5
•1.0
49.0
0 . 7 6
1 . !>
0 . t>
0
0
1
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

.893
.010
. 154
.911
.002
. 180
2.0
.003
.002
. 100
-1.2
.091
.001
. 140
-0. 3
. 093
.005
.567
-0. 1
.890
.006
.710
0.4
.094
. 003
. 329
0. 1
0.
0.
0.
0.
0 .
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
a.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
0
0
0
0
0
0
0
0
0
75.3
0.73
1 .0
75. 2
0 . 09
U. 1
-0. 1
76.4
0.17
0.2
1 .5
74 .0
0 . 1 5
0. 2
-0.7
74 .5
f). 26
0 . 3
-1.1
75. 7
0.32
0.4
0.5
76.9
0 . 20
0 . 3
? . 1

0.
0.

0.
0.


0.
0.


0.
0.


0.
0.


0.
0.


0.
0.

FIELD
OPT ION
BAG DATA NOT USED
0.0
. 0
,0
0. 0
,0
0
0.0
0.0
0
,0
0.0
0.0
.0
,0
0.0
0.0
0
0
0.0
0.0
0
.0
0.0
0.0
0
0
O . (I

0
0

0
0


0
0


0
0


0
0


0
u


0
0

0.0
.0
.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0 . O

0
0

0
0


0
0


0
0


0
0


o
0


0
0

1
0.0
.0
.0
0.0
.0
. 0
0.0
0.0
. o'
.0
u . u
I) . 0
. o
. 0
0.0
0.0
.0
. 0
0.0
0.0
.0
.0
0.0
0.0
. 0
. 0
0 .0
      C.V.%  IS THE COEFFICIENT OF  VARIATION.  «STD. DEV./MEAN)  »IUO).




      OIFF.%  IS THE DIFFERENCE OF  THF. MEANS  BETWEF.N THE  MFR AMI)  EPA I.AHS.  { ( (MFR -EPA ) It. PA) * 100)

-------
EPA/M-VEL HOT START CORRELATION - BUMMER  '85
          2E618D PONT I AC  SUNBIRD
                                                 Table  A-2
SITE
B. ooo
8 . 000
8. 000
MEAN
STD.DEV.
1.000
1 . 000
1.000
MEAN
STD.DEV.
X DIFF
3. 000
3. 000
3. 000
MEAN
STD.DEV.
X DIFF
5.000
5. 000
5. 000
MEAN
STD.DEV.
7. DIFF
6.000
6 . 000
6. 000
MEAN
STD.DFV.
"/. DIFF
6. 000
6. 000
6 . 000
MEAN
STD.DEV.
x DIFF
8. 000
8. 000
8. 000
MEAN
STD.DEV.
X DIFF
SERNO
1.000
?. . 0 0 1)
3 .000

4. 000
5.000
6. 000

7. 000
a. ooo
9. 000

10.00
1 1.00
12. 00

is.no
14.00
1 S . 0 0

16. 00
17. 00
18.00

34 . 00
•35.00
36. 00

HC
0 . 055
0 . 051
0. 057
0 . 054
0.003
0 . 043
0 . 045
0. 043
0 . 043
0.002
-20.25
0. 03R
0 .050
0 . 055
0 . 048
0 . 009
-12.27
0 . 043
0 :053
0 . 047
0 . 048
0 . 005
-12.27
0 . 063
0 . 054
0 . 061
0 .059
0 . 005
9. 202
0 . 044
0 . 048
0 . 054
0 . 049
0 .005
-10 .43
0 . 050
0..051
0 . 054
0.052
0.002
-4 .908
CO
1 .630
1 .480
1 .670
1 .593
0 . 100
1.240
1 .390
1 .330
1.320
0 .075
-17.15
1 .330
1 .480
1.620
1.477
0.145
-7 . 322
1 .340
1.6.10
1 .5.10
1 .487
0.137
-6.695
1 .630
1.580
2. 000
1 . 737
0 . 229
0.996
1.540
1 .440
1 .760
1 .580
0 . 164
-0 .B37
1.600
1.430
1 .670
1.567
0 . 123
-1 .674
NOx
0 .450
0 .470
0 . 490
0 .470
0 . 020
0.500
0 .500
0 .550
0.517
0 .029
9.929
0.520
0 .490
0.510
0.507
0. 015
7.801
0 .480
0 .540
0 .560
0.527
0 .042
12 06
0.520
0 .500
0.550
0 .523
0 . 025
11 .35
0 .540
0 .500
0.540
0 . 527
0 .023
12.06
0 .480
0 .450
0 .490
0 .473
0 .021
0 .709
C02
323.0
323.0
320.0
322. 0
1.732
313.0
310 .0
310 .0
311 .0
1 .732
-3.416
315.0
313.0
310 . 0
312.7
2.517
-2.899
316. 0
315.0
314.0
315.0
1 . 000
-2. 174
315. 0
309.0
312. 0
312.0
3.000
-3. 106
3)4.0
313.0
312. 0
313. 0
1 . 000
-2.795
317. 0
317.0
319.0
317.7
1.155
-1 .346
CB/MPG
27.20
27.20
27.50
27.30
0 .173
28.10
28.40
20.40.
2H.30
0 . 173
3.663
28.00
28.10
28.40
28.17
0 .208
3.175
27.90
2.7.90
28. 00
27.93
0 . 058
2.320
27.90
28.50
28.10
28. 17
0.306
3. 175
28. 00
28. 10
28.20
28. 10
0 . 100
2.930
27.70
27.80
27.60
27.70
0.100
1 . 465
M/MPG
27.28
27.23
27.47
27 .33
.0 . 124
27.54
27.60
27.57
27.57
0 . 033
0 .889
27.63
27.49
27.60
27.57
0 .071
0 . 892
27.50
27 .33
27.36
27.40
0 . 090
0 .265
27 . 56
27.56
27.52
27.55
0 . 023
0 .801
27.73
27.72
27 . 66
27.71
0 . 039
1 . 384
27.78
27.69
27.45
27.64
0.169
1.151
PHS1MPG
28 . 59
28. 5 i
28.70
28.60
0. 095
29.20
29.70
29.70
29 . 53
0 .289
3.263
28.90
29. 10
29.30
29 . 10
0.200
1 .748
28.90
29. 10
29.10
29. 03
0 . 115
1.515
2.8.70
29.80
28.90
29.13
0 . 586
1. . 865
29.40
29.50
29.60
29.50
0 . 100
3. 147
2.9 . 32
2.9.12
28.88
29. il
"0.220
1 . 772
MPHS.1MPG PHS2MPG
2.8 . 49
28 . 49
28 . 75
28.58
0 . 148
28.64
28.97
28.98
28.86
0 .194
1 .004
28.81
28.67
28.80
28.76
0 . 077
0 . 64'5
28.74
28.57
28.55
28.62
0.101
0 . 152
28.80
28.90
28 . 77
28 . 82
0 . 066
0 .864
29 . 1 1
29.00
29.01
29. 04
0 . 061
1 .627
29.20
29.06
28.74
29.00
0.233
1 .476
26. 14
26. 15
26.42
26 . 24
0.159
27.30
27.30
27.20
27.27
0.058
3.926
27. 10
27.20
27.40
27.23
0 . 153
3.799
27.00
26.90
27.10
27. 00
0 . 100
2.909
27.30
27.40
27.50
27.40
0. 100
4.434
26.80
26.90
27.00
26.90
0. 100
2.528
26 . 38
26.58
26.41
26.46
0. 108
0.839
MPHS2MPG
26. 08
25.97
26. 19
26. 08
0. .1.08
26.44
26.24
26.16
26.28
0.144
0 .766
26 44
26.31
26.39
26.38
0 . 068
1. 162
26.27
26. 10
26.17
26.18
0 . 087
0.390
26 . 32
26 . 23
26 . 27
26.27
0 . 047
0 .746
26.35.
26.45
26.31
26.37
0.070
1 . 118
26.36
26.33
26. 17
26.29
0 . 105
0 .796

-------
i-r r*f M — vr_i_ n\j t o i Hn i OUR n C.L.H i i un — ounnr.K wr»
2E618D PONTIAC SUNBTRD
SITE
8.000
B. 000
8. 000
MEAN
STD.DEV.
i .000
1.000
1 .000
MFAN
STD.DEV.
% I) IFF
3 . 000
3 . 000
3. 000
MFAN
STD.DEV.
X DIFF
5. 000
5. 000
5. 000
MFAN
STD.DEV.
% DIFF
h . 0 0 0
6.000
h . 000
MEAN
STD.DEV
X DIFF
6. 000
6. 000
6.000
MEAN
STD . DF.V
X niFF
8.000
8. 000
8. 000
MEAN
STD.DEV
X DIFF
PHS1HC
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
-H .
0 .
0
0 .
0 .
0 .
10
0 .
0 .
0 .
0 .
0 .
-4.
0 .
0 .
0 .
0.
. 0 .
29
0 .
0 .
0 .
0 .
. 0 .
0 .
0 .
0 .
0 .
0 .
. 0 .
-3.
124
.137
156
139
016
120
130
130
127
006
H73
110
160
190
153
040
.31
ioo
160
140
133
031
077
,?.?0
140
180
180
040
.50
110
140
170
140
030
719
110
139
152
134
022
P37
PHS1.CO
4.
4.
5.
5.
0 .
4 .
4 .
4.
4.
0 .
-1?
5.
5.
6.
5.
0 .
10
4.
5.
5.
4.
0 .
_ *3
6.
4 .
7 .
6.
1 .
21
5.
4 .
6.
5.
0 .
6.
5.
4.
5.
5.
0.
4 .
550
912
583
015
524
230
530
480
413
161
.00
1.90
320
060
523
469 .
•H.
500
140'
100
913
359
027
120
91 0
320
117
205
.97
160
640
270
357
833
813
002
992
794
263
460
939
PHSlNOx PHS1C02 PHS2HC
1.554
1 .566
1 .612
1 .577
0 .031
1.720
1 .760
1 .930
1.B03
0 .112
14 .33
1.830
1.790
1 .970
1 .863
0 . 095
18.13
i .790
1.840
1 .930
1.853
0.071
17.50 .
1 .840
1 .770
1 .960
1 .857
0 . 096
17.71
2.010
1.700
1 . 900
1 .870
0 .157
18.55
1.523
1 .563
1 .664
1 .583
0.073
0.380
1108.
1109.
1100.
1106.
5.173
1083.
1056.
1052.
1064.
17.29
-3. BOO
1084.
1076.
1072.
1077.
6.233
-?. . 558
1088.
1077.
1079.
1081 .
5.727
-2. 207
1109.
1067.
1107.
1094.
23.43
-1 . 022
1078.
1068.
1060.
1069.
9. 127
-3.343
1079.
1086.
1096.
1087.
8.320
-i .697
0 .287
0 .240
0 .266
0 .264
0 .024
0 .200
0.200
0 . 190
0 . 197
0 .006
-25.60
0 .170
0 .220
0.220
0.203
0 .029
-23 . 08
0 .220
0 .240
0.210
0 .223
0 .015
-15.51
0 .260
0 .260
0 .280
0 .267
0 .012
0 .883
0 .220
0.2?0
0.230
0.223
0 .006
-15.51
0 .260
0.241
0 .247
0.249
0.010
-5.675
PHS2CO
7.
6.
6.
6.
0 .
5.
5.
5.
5.
0 .
-21
4 .
5.
6.
5.
0.
-19
5.
6.
6.
6.
0 .
-10
6.
6.
7.
6.
0 .
1 .
6.
6.
6.
6.
0 .
-6.
6.
5.
6.
6.
0 .
-6.
606
114
838
853
746
060
800
350
403
373
.15
750
730
030
503
669
.69
450
840
.170
153
695
.21
130
950
830
970
850
712
360
080
790
410
358
460
934
681
642
419
656
3?B
PHR2NDx PHr.2C02
1
1
2
1
0
?
1
2
2
0
5
2.
1
1
1
0
-1
1 .
2
2
2
0 .
6
p
1 !
2
2.
0 .
8
2
2.
2
p
0
6
2.
1.
1
1
0.
0 .
.781
.974
. 044
.933
136
. 000
.980
. 130
.037
.081 -
.363
070
.870
.800
.913
. 140
. 017
.780
. 160
.240
. 060
246
570
080
91:10
.210
090
115
122
.020
020
120
. 053
.058
.225
027
.815
.998
947
115
707
12.97 .
1300 .
.1.285.
1294.
7.900
1253.
1247.
1250.
1250 .
2.B90
-3.408
1.267.
1254.
1245.
1255.
11 .30
-3. 001
1260.
1267.
1267.
1265.
3.904
-2 . ?7B
1261 .
1.256 .
1.259.
1259.
2. 193
-2.734
1280.
1262.
1259.
1267.
11 .02
-2.102
1287.
1278.
1286.
12.R4 .
4.782
-0 .798
Table A-3
BAROM
96.70
96.69
96.63
96.67
0 . 038
97.87
97.87
97.87
97.87
0.000
1 .238
98.24
98.20
98.20
98.21
0. 023
1 .593
98.24
98.20
98.20
98.21
0 . 023
1 .593
98 . 78
90 . 75
98.7.1
98.75
0. 035
2. 145
98.27
98.20
98. 17
98.21
0.051
1.593
97.62
97 .60
97.56
97.59
0.031
0 . 952
HUMID
50 .45
50 .49
50 . 17
50 .37
0. 174
54. 00
54. 00
54.60
54.20
0 .346
7.604
47 . 10
46.40
46.60
46.70
0.361
-7.286
48.60
43.90
49. 10
48 . 87
0 .252
-2.985
50 .60
49.80
48. 00
49.47
1 .332
-1 .793
49.90
49.50
46.80
48.73
1 .686
-3.?49
48.98
48.99
49.35
49. 11
0 .211
-2.508
TESTEMP
77. 00
77.00
77. 00
77.00
75. 10
75.20
75.30
75.20
0. 1.00
-2 . 338
76.50
76.50
76.20
76.40
0. 173
-0.779
74.60
74.90
74.80
74.77
0. 153
-2.900
74.80
74.40
74.30
74.50
0 .265
-3.247
75.90
75.80
7S.30
75.67
0.321
-1 .732.
77.00
76.50
77. 00
76 . 83
0.289
-0 .216

-------
EPA/M-VEl. HOT  START CORRELATION - SUMMER  ' B5
           2E61BD PONTIAC SIJNBIRD
Table A-4
SITE
8.000
8 . 0 0 0
B. 000
MEAN
STD.DEV
1 . 000
1.000
t . 000
MEAN
STD.DEV
7. DIFF
3.000
3. 000
3.000
MEAN
STD . DEV
7. DIFF
5. 000
5.000
5.000
MEAN
STD. DEW
7. DIFF
6 . 000
6 . 000
6.000
MEAN
STD.DEV
7. DIFF
6. 000
6 . 000
6. 000
MEAN
STD . DEV
7. DIFF
8. 000
8. 000
8. 000
MEAN
STD.DEV
7. DIFF
PH1PTORQ PHJNTORQ PH2PTORO PH2NTORQ POS/Hpl NEG/Hpl POS/Hp2 NEG/HpP PHSiDIST PHS2DIST ROLL/Ftl ROLL/Ft2
4,769.
1332.
4330 .
4310.
. 36.04
4261 .
4 2 82 .
4270 .
427R.
. 15.30
-0 .749
4284.
43B5.
438V.
4353 .
. 59.42
0 .9BB
4297.
4404 .
4326.
4342.
. 55.22
0 . 742
4254.
4338.
4359 .
4317.
. 55 . 64
0 . 157
4255.
4249.
4292.
4265.
. 23 . 09
-1 . 044
4213.
4259 .
4305.
4259.
.45.90
-1 . 182
2151 .
2126.
2133.
2136.
12.85
2130 .
20CI8.
2059.
2092.
35.62
-2.064
2090 .
2132.
2112.
21 1J .
21.31
-1 . 170
2060.
2065. '
2093.
2072.
18.00
-3 . 999
21.26.
2105.
2.1.17.
2116.
10.41
-0 .955
2106.
2092.
2174.
2124.
43. 99
-0 .590
2179.
2212.
2188.
2193.
16.86
2.645
6686.
6713.
6732.
6710 .
2.2 . 96
6582 .
6570 .
6561.
6571 .
10 .40
-2. 072
6738.
6748.
6715.
6734.
16.92
0 .352
6731 .
6757.
6693.
6727.
31.77
0 .253
6650 .
6680 .
6723 .
6685.
36.56
-0 . 379
6616.
6557 .
6597.
6590 .
30.18
-1 .792
6577.
6605.
6646.
6609.
34 . 52
-1 .503
3739.
3785.
3759.
3761 .
23.02
3697.
3730 .
36B2 .
3703.
24. 18
-1 .532
3682.
3735.
3693.
3703.
27.65
-1 .524
362.3 .
3713.
3693 .
3676.
47.08
-2 . 248
3730.
3684.
3754.
3722.
35.62
-1 . 025
3609
3724.
3675.
3670.
57.48
-2. 426
3867.
3791 .
3799 .
3817.
41.91
1 .549
2629.
2675.
2689.
2665.
31 .25
2697.
2711 .
2699.
2702.
7.814
1 .424
2706.
2783.
278B.
2759.
45.72
3.542
2757.
2770.
2750 .
2746 .
2.6 . 95
3.042
2717.
2774.
2810 .
2767.
46.62
3.B49
2703.
2672 .
2720 .
2698.
24.61
1.261
2570.
2627.
2666.
2621.
47.94
-1.637
B89.7
886 . 2
888 . 7
88B.2
1 .803
787.4
785 . 1
773. a
781 .8
7.736
-11 .98
789.5
804.4
792.9
795.6
7.808
-10 .43
759.7
776.9
787. 0
775.2
14.72
-12.72
800 .8
800 . 0
BIB. 2
806.3
10 .28
-9.2)7
778.9
789.4
809. 4
792.6
15.49
-10 .77
900 .2
892.5
902.7
898.5
5.316
1 . 156
2508.
2521.
2527.
2519.
9.805
2546.
2528.
2503.
2526.
21 .57
0 . 282
2604.
2633.
2598 .
2612.
18.49
3.679
2593 .
2610 .
2602.
2.602.
8 .402.
3.286
2586 .
2600 .
2650 .
2612.
34 . 14
3 . 692.
2564.
2524.
2540.
2543.
20 .44
0 .941
2461 .
2479.
2500 .
2480.
19.91
-1 .543
1113.
1130 .
1. 1 1 4 .
1119.
9.535
1021 .
1011 .
994 .4
1009.
13.35
-9.870
1020 .
1054 .
1029.
1034.
17.36
-7 . 592
982. 0
1018.
1024.
1 008.
22 . 77
-7 . 927
999.3
1 010.
1040 .
1017.
2.1 .24
-7. 167
987.6
1.029.
1021 .
1012.
21.83
-9.543
1133.
1136.
1139.
1136.
	 3. 100
1 .474
3.596
3.592
3 . 589
3 . 592
0 . 004
3.587
3 . 562
3.550
3.566
0.019
-I) .724
3.565
3 563
3 . 579
3 . 569
0 . 007
-I) .650
3 . 57 1
3 . 558
3.567
3.565
0 . 007
-0 .752
3.621
3.612
3.647
3 627
0 . 018
0 . 956
3.607
3.575
3.571
3 . 5B4
0 . 020
-0 . 223
3.594
3.595
3.598
3.596
0.002"
0.093
3 . 861
3.864
3.863
3 . 863
0 . 002
3.878
3 . 869
3 . 863
3.870
0 . 008
0 . 190
3.897
3.881
3 . 883
3.887
0 . 009
0 .630
3 . 867
3 . 879
3 . 899
3 . 882
0 . 016
0 .492
3.910
3.9.13
3.946
3.923
0 . 020
1 . 562
3.895
3.866
3.862
3.874
0 . 018
0 .302
3.865
3.861
3 . 862
3.863
0.002
0.000
18786
18772
18757
1B772
14.65
18894
18761
18692
18782
103. 1
0 . 057
18752
18733
18815
18767
43. 14
-0 . 026
18784
18711
18757
18751 .
37 . 34
-0 . 1 07
17113
17062
19252
19142
98. 15
1 .976
19010
18839
18817
18888
105.8
0.623
10756
18761
18796
18771
21 .73
-0 . 003
20290
20301
20295
20295
5.735
20462
20431
20384
20426
39.39
0.643
20549
20467
20471
20495
46.30
0 . 786
20390
20449
20557
20465
84.52
0.837
20662
20679
20850
2.0730
104 . 1
2.143
20557
20404
20382
20448
95.49
0.752
20286
20253
20274
20271
16.65
-0 .119

-------
Q.
o
o
-J
UJ
D
U_

Q.
21
O
o

CL
h-
         29
       28.5^
         28-
27.5-
         27"
       26.5
                       EPA/M-VEL  CORRELATION  - SUMMER  '85

                       PONTIAC SUNBIRD  2E618D - HOT START
                                                              Figure  A- /
                                                                  97  74F
                                                             0.5X
A	C.B.

A    MTR.
                                                             t Dlff
                                                           C.B. - MTR.

                                                             MTR.
                                                                        X 100
         I   I  |   \   \  I   I   I  I   I   I  I   I  I   I   I  I   I   I  1   I   I  I   I

      0  t  23456 7  8  9  I 0 It t 2 1 3 1 4 1 5 1 6 1 7 t 8 1 92021 22232425
M-VEL
SITE 8
EPA
"YflO 1
EPA
DYNO 3
EPA
DYNO 5
                                    EPA
                                    OYNO 6
                                                   EPA
                                                   DYNO 6/2

                                                                 FMTEL
                                                                 SITE 8
                                 TEST SEQUENCE NO.
       JRC
       24JL85

-------
CD
0.

\
2
O
O
-J
UJ
X
a.
                       EPA/M-VEL  CORRELATION -  SUMMER '85

                       PONTIAC SUNBIRD 2E618D - HOT  START
                                                          Figure  A" 2.
       29.5"
29-
       28.5^
         28-
       27.5
                                                           0.4X
               0.4X 0.07X
                   C.B.

                   KTR
                                                       X D1ff - C'B- ' HTR- X TOO
                                                              HTK
       i  i   i   i  i   i   i  i   r  I   i  i   i  i   I   i  r  i   i  i   I   I   i  i
    0  123  A  5  6  7  8  9 IQM 12 1 3 1 4 1 51 6 I 7 1 8 1 92021 22232425
      i      j  |      =-j  ^      | f      =| r       11       11      i
                M-VEL

                SITE 8
                 EPA

                OYNO 1
 EPA       EPA       EPA       EPA      M-VEL
OYNO 3     DYNO 5     DYNO 6     DYNO 6/2   SITE 8
 TEST  SEQUENCE NO.
       JRC
       24JL85

-------
CD
CL

\
Z
o
o
—I
LJ
ID
u.

Cvl

V)
T.
Q_
                      EPA/M-VEL CORRELATION  - SUMMER '85

                      PONTIAC SUNBIRD 2E618D - HOT  START   Figure  A"3
               1   1  I   I  I   I  I   I  I   I   I  I   I  I   I  I   I  l   I  I   I  l   I   I
            8  1  23456789181! 12131415161718192821 22232425
                 M-VEL
                 SITE 8
 EPA
DYNO 1
 EPA
DYNO 3
 EPA
DYNO 5
 EPA
DYNO 6
 EPA
DYNO 6/2
                                                           i r
M-VEL
SITE 8
      JRC

      24JL85
                                TEST  SEQUENCE NO.

-------
F
T
P

C
8

f
U
E
L
C
0
N
/
n
p
G
                   EPA/H-VEL CORRELATION - SUMMER '89

                   PONTIAC SUHBIRD 2E618D - HOT START
                                                         Figure  A-
        29
28.5-
  28-
27.3-
  27-
      26.5
                                                            nc
                RUEL    EPA    EPA    EPA    EPA    EPA   MUEL
                SITE   DYNO   DYNO   DYNO   DYNO   DYNO   SITE
                 813566/28
                                                      JRC
                                                      24JL93

-------
F
T
P

H
E
T
E
R

F
U
E
L
C
0
N
/
H
P
G
        29
                   EPA/M-UEL CORRELATION - SUMMER '85
                   PONTIAC SUNBIRD 2E618D - HOT START
                                                       Figure  A"
28.3-
  28-
27.5-
  27-
      26.5
                HUEL    EPA    EPA    EPA    EPA
                8ITE   DYNO   DYNO   DYNO   DVNO
                 8      1      336
                                              EPA   HUEL
                                             DYNO   SITE
                                              6/2    8
                                                JRC
                                                24JL83

-------
P
H
S
F
U
E
L
C
0
N
P
G
       38
                  EPA/H-UEL CORRELATION - SUHHER '85
                  PONTIAC SUNBIRD  2E618D - HOT START
                                                  Figure
     29.3-
       29-
                                       '--$>--
28.5-
       28-
      27.3
               HVEL    EPA    EPA    EPA    EPA    EPA   MUEL
               SITE   DYHO   DYNO   DYNO   DYNO   DYNO   SITE
                813966/28
                                                   JRC
                                                   24JL83

-------
M
E
T
E
R

P
H
S
F
U
E
L
C
0
N
/
H
P
G
        38
                   EPA/M-VEL CORRELATION - SUMMER '83
                   PONTIAC SUHBIRD 2E618D - HOT START
                                                 Figure Ar "7
29.3-
  29-
28.5-
-
To
  28
27.5
                MUEL    EPA    EPA    EPA    EPA
                SITE   DYHO   DYNO   DYNO   DYNO
                 8      1      35      6
                                              EPA   MUEL
                                             DYNO   SITE
                                              6/2    8
                                                JRC
                                                24JL85

-------
p
H
S
F
U
E
L
C
0
H
P
G
                   EPA/M-UEL CORRELATION - SUMMER '83
                   PONTIAC SUMBIRD 2E616D - HOT START
                                                        Figure  A" 6
      27.3
        27-
      26.5-
  26-
23.5
        29
                HUEL    EPA    EPA    EPA    EPA    EPtt   HUEL
                SITE   DYNO   DYNO   DYNO   DYNO   DYNO   SITE
                 8      1      33      6      6/28
                                                      JRC
                                                      24JL83

-------
N
E
T
E
R

P
H
S
F
U
E
L
C
0
N
/
N
P
G
                   EPA/H-VEL CORRELATION - SUMMER '83
                   PONTIAC SUHBIRD 2E618D - HOT START
                                                      Figure
      27.3
  27-
26.3-
  26-
23.5-
  29
                flUEL    EPA    EPA
                SITE   DYHO   DYNO
                 8      1      3
                                EPA    EPA
                               DYHO   DYNO
                                3      6
 EPA   HUEL
DYHO   SITE
 6/2    8
   JRC
   24JL85

-------
0.875
              EPA/H-UEL CORRELATION - SUMMER '83

              POHTIAC SUMBIRD 2E618D - HOT START
8.8S5-
H
C

C
a
x
H
I
8.855H
0.645-
8.835-
8.
           MUEL    EPA    EPA    EPA    EPA    EPA   MUEL
           SITE   DYNO   DYNO   DYNO   DYNO   DYNO   SITE
            8      1      33      6      6/28
                                                 JRC
                                                 24JL83

-------
C
0

G
H
/
M
I
       2.1
       1.9-
1.7-
1.5-
       1.3-
       1.1
                   EPA/M-UEL CORRELATION - SUIWER '83
                   PONTIAC SUNBIRD 2E618D - HOT START
                                                    Figure  A"
                                          __ a	-*	IflX-QEJtEfll

                                                     QEJfEftl
                MUEL    EPA    EPA
                SITE   DYNO   DYNO
                 8      1      3
                               EPA    EPA
                              DYNO   DYNO
                               5      6
 EPA   NMEL
DYNO   SITE
 6/2    8
   JRC
   24JL83

-------
N
0
x

G
n
s
H
I
      0.6
                  EPA/M-UEL CORRELATION -  SUMMER '83

                  PONTIAC 3UNBIRD 2E618D - HOT START   Figure  A-12
     8.55-
8.52-
8.48-
                        -„..}-,
     8.44-
      0.4
               MUEL    EPA   EPA    EPA   EPA   EPA   MUEL
               SITE   DYNO   DYNO   DYNQ  DYNO   DYNO   SITE
                8     i     356     6/28
                                                 JRC
                                                 24JL83

-------
       338
                   EPA/M-VEL  CORRELATION - SUMMER '85
                   PONTIAC SUNBIRD 2E618D - HOT START   Fi^re   A"13
       325-
c
0
2

G
H
/
N
I
329-
                                                            ,J1E0*
315-
       310-
p-
       305
                MUEL    EPA    EPA
                SITE   DYNO   DYHO
                 8      1      3
                               EPA    EPA
                              DYNO   DYHO
                               3      6
               EPA   MUEL
              DYNO   SITE
               6/2    8
                 JRC
                 24JL85

-------
                   EPA/H-VEL CORRELATION - SUMMER '85
                   PONTIAC 3UNBIRD 2E618D - HOT START
      4438
                                                   Figure  A-
p
H
S
P
0
S

T
0
R
Q
      4339-
4239-
      423*
                       _. -V	1	H	iX.QFJlEfi!
                HUEL    EPA    EPA    EPA    EPA    EPA   HUEL
                SITE   DYNO   DYNO   DYNO   DYNO   DYNO   SITE
                 8      1      3      5      66/28
                                                      JRC
                                                      24JL89

-------
    2238
            EPA/H-UEL CORRELATION - SUHHER '83
            PONTIAC SUHBIRD 2E618D - HOT START
                                Figure  A~ /5"
P
H
S
N
E
G

T
0
R
Q
    2209-
    2158-
2100-
                                   QEJlEfci
LJUJ
2838-
    2G90
          HUEL  EPA   EPA  EPA   EPA
          SITE  DYNO  DYNO  DYNO  DYNO
           8   13    3    6
                             EPA  HUEL
                             DYNO  SITE
                                  8
                               JRC
                               24JL83

-------
p
H
S
P
0
S

T
0
R
0
    6S09
EPA/H-UEL CORRELATION - SUMMER "85
PONTIAC SUNBIRO 2E61CD - HOT START
                                                A-/6
                    r~
                 .„...$,.
            HUEL   EPA   EPA   EPA   EPA   EPA  MUEL
            SITE  DYNO   DYNO  DYNO  DYNO  DYNO  SITE
             813966/28
                                        JRC
                                        24JL85

-------
p
H
S
N
E
C

T
0
R
Q
      3909
                   EPA/M-UEL CORRELATION - SUMMER '83
                   PONTIAC SUHBIRD 2E618D - HOT START  Figure
      3840-
      3788-

3728-
3S68-
      3S8S
                HUEL    EPA    EPA
                SITE   DYHO   DYNO
                 8      1      3
                                EPA    EPA
                               DYNO   DYNO
                                3      6
 EPA   HUEL
DYNO   SITE
 6/2    8
   JRC
   24JL8S

-------
s

1

D
I
S
T
E
S
             EPA/M-VEL CORRELATION - SUMMER  '83
             PONTIAC SUNBIRD 2E618D - HOT START
                                                        Figure  A"'5
      3.65

      3.62-
3.39-
      3.56-
      3.53-
       3.3
                MUEL    EPA    EPA    EPA    EPA    EPA   MUEL
                SITE   DYNO   DYNQ   DYNO   DYNO   DYNO   SITE
                 813366/28
                                                      JRC
                                                      24JL85

-------
p
H
8
D
I
S
T
I
L
E
S
      3.93
                   EPA/M-UEL CORRELATION - SUMMER '83
                   PONTIAC SUNBIRD 2E618D - HOT START
                                                  Figure ' A-
3.92-
      3.89-
      3.86-
3.83-
       3.8
                HVEL    EPA    EPA    EPA    EPA    EPA   MVEL
                SITE   DYNO   DYNO   DYNO   DYNO   DYNO   SITE
                 8      1      33      6      6/28
                                                      JRC
                                                      24JL83

-------