EPA-AA-EOD/TPB-85-1 Technical Report EPA-GM Fuel Economy Correlation Program June - July 1985 Marty Reineman Douglas DeVries NOTICE Technical reports do not necessarily represent final EPA decisions or positions. .Their publication or distribution does not constitute any endorsement of equipment or instrumentation that may have been evaluated. They are'intended to present technical analysis of issues using data which are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for improvements in emissions measurement. Testing Programs Branch Engineering Operations Division Mobile SOurce Air Pollution Control Environmental Protection Agency 2565 Plymouth Road Ann Arbor, Michigan 48105 ------- - 1 .- Background This test program was initiated in response to GM's request to investigate a negative fuel economy offset between paired test results obtained at the EPA MVEL and at GM's Milford Proving Grounds. An analysis of the EPA-GM paired certification data did not suggest that the reason for the fuel economy offset was attributable to a particular test, site or component of the fuel economy measurement process. Therefore, the structure of the correlation program included tests on multiple dynamometer and analyzer sites at EPA, measurements of dynamometer torque and horsepower, volumetric fuel measurement, and CC>2 bottle crosschecks. Program Design Emission and fuel economy tests consisted of a series of three hot start IA-4's on four dynamometers (three analyzer sites) at the EPA and one test site at GM. Volumetric (metered) fuel consumption and wheel torque/horsepower were measured for each dynamometer test at each facility, thereby providing an accurate and direct method of assessing dynamometer loading and vehicle fuel economy repeatibility. The CO2 gas standards provided a direct check on the CC>2 analyzer calibration differences between test facilities. The test vehicle was a GM "repeatable" vehicle, a 1984 Pontiac J-2000 with throttle-body fuel injection. The same tank of Howell test fuel was used for the first four tests at GM and EPA, and a second tank was used for the remaining tests. A 15 minute, 50 mph steady state warm-up and the series of three hot start LA-4's served as the preconditioning for the following day of testing. The actual sequence of dynamometer tests was: June 17 three hot - start IA-4 tests at GM on test site No. 8 June 19 " " " " " " EPA on dynamometer 001 June 20 " " " " " " EPA on " 003 June 21 " " " " " " EPA on " 005 June 27 " " " " " " EPA on " 006 July 3 " " " " " " EPA on " 006 July 24 " " " " " " GM on test site No. 8 Each three test series was run on a different day. All tests at the GM were driven by the same GM driver and all tests at the EPA were driven by the same EPA driver. In addition to the LA-4 tests and CC>2 cylinder analyses, a "wet" sample bag from the test vehicle was generated and analyzed at GM and at three analyzer sites at EPA. ------- - 2 - Results The following test results and observations were obtained from this correlation program: 1. GM average carbon balance fuel economy was 2.2 percent lower than EPA test results. 2. GM metered fuel economy was 0.3 percent lower than EPA metered fuel economy. 3. GM's average CC>2 measurements were 0.3 percent higher than EPA's. 4. Dynamometer loading between facilities was similar. 5. The EPA site-to-site emission and fuel economy repeatibility was good. 6. The fuel economy measured with the new exhaust connector pipe was 0.8 percent lower than the results obtained with the old connector pipe. Discussion Table 1 is a summary of the composite LA-4 emission and fuel economy data obtained at the EPA and GM. The test results labeled EPA D006/2 were repeat tests run on dynamometer D006 after a possible exhaust leak was discovered after the first series of tests. It was not possible to estimate the quantitative impact, if any, of the leak and therefore these results were not removed from the data base, although they are tabulated separately. The GM data were combined because their tests were all run on the same dynamometer/analyzer site, the same driver drove all six tests, and relatively little time elapsed between the first and second set of GM tests. Table A-l, in the Appendix, is the standard output format of the EPA IABCOR program which calculates the mean, standard deviation, coefficient of variation, and the percent difference between sample means. Percent difference results are referenced to the mean of the tests in the first row, which is the grand mean of all EPA tests. 002 analysis is summarized in Table 2. Emission and Fuel Economy Results Figures A-l - A-19 and Tables A-2 - A-4 of the Appendix present individual phase (bag) 1 and 2 results, and composite results for emissions and fuel economy. Fuel economy calculations are summarized for both metered and carbon balance measurements. Dynamometer torque and horsepower are displayed as positive and negative totals as a function of test phase. ------- - 3 - Table 1 Emission and Fuel Economy Results Test Location N HC, g/mi CO, g/mi NOx, g/mi CO^, g/mi FE, Mpg EPA D001 3 x 0.043 1.32 0.52 311 28.3 s 0.002 0.08 0.03 1.7 0.2 EPA D003 3 x 0.048 1.48 0.51 313 28.2 s 0.009 0.15 0.02 2.5 0.2 EPA D005 3 x 0.048 1.49 0.53 315 27.9 s 0.005 0.14 0.04 1.0 0.1 EPA D006/1 3 x 0.059 1.74 0.52 312 28.2 x 0.005 0.23 0.03 3.0 0.3 EPA D006/2 3 x 0.049 1.58 0.53 313 28.1 s 0.005 0.16 0.02 1.0 0.1 GM Site 8 6 x 0.053 1.58 0.47 320 27.5 s 0.003 0.10 0.02 2.7 0.3 0459c ------- - 4 - Table 2 GM - EPA CO2 Analysis Correlation EPA Gas Standards Master Site [1] Cylinder No. 11/4381 40321 66753J A3 298 277775 A12955 A2225 MH932 Reference Type Facility Master n n Working Master GM Cone, % .474 .5663 .497 .242 0.9505 0.7495 0.4999 0.3476 1. 0. 1. 1. EPA Cone, % 1.472 0.5670 1.494 1.240 0.9493 0.7523 0.5005 0.3472 % Difference 0.14 -0.12 0.20 0.16 0.13 -0.37 -0.12 0.12 EPA Test Site Analysis [2] Cylinder No. GM Cone, % A001 Conc,% % Diff A002 Conc,% % Diff A003 Conc,% % Diff LL4381 40321 1.474 0.5663 1.469 0.5654 0.34 0.16 1.470 0.5626 0.27 0.66 1.473 0.5641 0.07 0.39 Sample Bag CO2 Results [3] EPA Test Site GM Cone, % EPA Cone, % A001 A002 A003 12.38 12.38 12.38 12.45 12.42 12.47 % Difference - 0.6 - 0.3 - 0.7 NOTE: [1] Analyses on the EPA Master Site were on Range 23, 0-2.5% [2] Test Site analyses on LL4381 were on Range 23, 0-2.5% Test Site analyses on 40321 were on Range 22, 0-1% [3] Bag generated at GM, analyzed at GM Test Site No. 8 ------- - 5 - Figures A-l - A-19 are GM "tri-plots". This method of data presentation shows individual test values along the vertical leg of each triangle and plots the mean of the data at the intersection of the other two legs of the triangle. All GM tri-plots display a plus and minus band around the mean of all test results, as in Figures A-l - A-3, or around the mean of the first three LA-4 tests, as in Figures A-4 - A-19. With the exception of the + 3.0 percent bands around the carbon balance fuel economy means, the band widths on Figures A-4 - A-19 are somewhat arbitrary and are based on engineering judgment and historical observations of actual emissions data. Several observations can be made by examining these data. The GM and EPA metered fuel consumption measurements showed good correlation, EPA fuel economy averaged only 0.3 percent higher than GM. Carbon balance fuel economy values were, however, further apart. EPA carbon balance fuel economy averaged 2.2 percent higher than GM results.* A comparison of Figures A-2 and A-3 shows that the difference between carbon balance and metered fuel economy is larger for phase 2 than phase 1. This observation is consistent with many GM and EPA tests of vehicles equipped with fuel meters and is currently being studied. An analysis of the metered vs carbon balance results shows that the effect of changing to a new style exhaust connector pipe (the old connectors were in place on dynamometers D001, D003, and D005, and the new system was in place on dynamometer D006) was to reduce the difference between carbon balance and volumetric measurements of fuel economy. The table below summarizes these test results. Note that for purposes of this analysis, the first series of tests on dynamometer D006 (tests with a possible exhaust leak) were not used. Average % Difference Between Carbon Balance and Volumetric Fuel Economy EPA Dynamometers n D001 D003 . D005 D006 Bag 1 3 2.3 1.1 1.5 1.6 Bag 2 3 3.8 3.2 3.2 2.0 Note: Values shown are percent differences in fuel economy based on: ((Carbon balance-met ered)/ (metered )) x 100% HC and CO emission differences were not apparent and the NOx differences between facilities shown in Figure A-12 are not thought to be significant. The approximate -10 percent difference (EPA measuring higher NQjj) is likely due to a combination of driver, ambient conditions, and sampling system differences between facilities during the correlation program. * Although differences are usually expressed using EPA values as the base, this report refers to a number .of GM documents which use their results as the base. ------- - 6 - Figures A-14 - A-17 summarize the wheel torque data as a function of test site. Positive torque differences (Figures A-14 and A-16) are not significant, based on our in-house test experience with our Volvo REPCA, which is also equipped with torque wheels. Negative torque differences between tests at GM and EPA are shown on Figures A-15 and A-17. Although the tests at GM show 2-4 percent higher negative torque, these difference are not considered significant. Rather, they reflect differences between the GM and EPA drivers and dynamometer frictional horsepower. Clearly, the driver influence is much greater on the measurement of negative torque than positive torque. Measured distance is presented in Figures A-18 and A-19. Although the first set of distance measurements on EPA dynamometer D006 is clearly higher than the other values, these results are still well within the EPA QC limits for minimum and maximum allowable distance for bag 1 and bag 2. Tables A-2 - A-4 are data summaries of composite and bag emissions and fuel economy data (measured and carbon balance), torque, horsepower, and distance results. All three tables express the percent difference as (EPA-GM)/GM) x 100 where the reference condition is defined as the average of the first three tests on GM site No. 8. Gas Analysis Two GM facility master standards and six working master standards from Milford were analyzed in the EPA gas standards laboratory. The two GM master standards were then analyzed on EPA analyzer sites A001, A002, and A003. The C02 analyses from EPA's gas laboratory showed excellent correlation with GM. The average difference was +0.02 percent for all eight cylinders, while the largest individual difference was -0.37 percent. Gas analyses on sites A001-A003 showed an average difference of +0.32 percent, with all six analyses being slightly positive. Although all readings on sites 1-3. were positive, and thus contribute approximately -0.3 percent to the fuel economy offset, this CC>2 offset is well within the range of good ' inter-laboratory correlation. The gas analyses are summarized in Table 2. "Wet" sample bag checks are a diagnostic check used by GM to assess intra-lab analyzer correlation at their laboratory. Wet sample and background bags were generated at GM, analyzed on their site No. 8, and' then transported to the EPA laboratory where the bags were read on EPA analyzer sites A001-A003 on June 17. A possible error in the analysis of these bags resulted in deleting the data from further examination. Another wet sample bag was generated and analyzed at GM, and analyzed .on all three EPA light-duty analyzer sites. These results are shown in Table 2 and indicate good correlation for this type of crosscheck. Unfortunately, this bag was not reanalyzed by GM to check the CO2 change as a function of time. ------- - 7 - Summary This program substantiated the 2-3 percent fuel economy offset which has been observed from EPA-GM paired certification data since early 1985. The fuel economy offset is not thought to be attributable to dynamometer loading differences, CC>2 analysis, or ambient effects. Neither is the offset problem confined to a single EPA dynamometer or analyzer site. The results of this program show good EPA site-to-site repeatibility. The change to a new exhaust collection system did not eliminate the fuel economy offset, although a reduction in the difference was observed. Recommendations for Future Work 1. Concentrate on the sampling system as a possible source of fuel economy offsets between the facilities. This program isolated possible dynamometer and CC>2 analysis differences and did not show significant offsets in either area. 2. Monitor the effect of the EPA CVS plumbing changes on a site by site basis to determine if this change has the anticipated effect of reducing EPA-Mfr paired data scatter, and reducing EPA measurements of carbon balance fuel economy. 0459c ------- APPENDIX A ------- PRJ: CM FE OFFSET TABLE A-l LAB CORRELATION SUMMARY PROCESSED: AUG 13. 1905 LAB L'PA EPA DYNO D001 EPA OVNO D003 EPA DYNO DO05 F.PA DVNO 1)006/1 . EPA DYNO UO06/2 GLNtKAL MO IOHS 15 TEST PROCEDURE : HOT CH4 VIN : . HC 2E61BO CO NOX | < G/MI MEAN STO. DEV. C.V.% MEAN STD. DEV. C.V.% DIFF. % MEAN STD. DEV. C.V.% IMFF . % MEAN STD. DEV. C.V .% DIFF. % MEAN STO. DEV. C.V.% DIFF. % MEAN STD. OEV. C.V.% DIFF. % MEAN STD. OEV. C.V.% DIFF. % 0.025 .0025 9.9 0.0 .0 0.0 0.0 0.0 .0 0.0 0.0 0.0 .0 0.0 0.0 0.025 .0025 9.9 0.0 0.0 .0 0.0 0.0 0.0 .0 0.0 0.0 0.049 .0072 14.6 0.043 .0015 3.5 -12.2 0.048 .0087 10.3 -3.4 0.048 .0050 10.6 -3.4 0 . 059 .0047 0.0 20. 3 0.049 .0050 10.3 -1.4 0.053 .00/0 5 . ? J .4 1 .52 0. 195 12.8 1 .32 0.075 5.7 -13.2 1 . 48 0. 145 9.0 -2.9 1 . 49 0 . 137 9. 2 -2. 2 1 . 74 0. 229 13.2 14.3 1 .58 0. 164 10.4 3. 9 1 .50 0. 102 (i. 4 3.9 0.52 .025 4.0 0.52 .029 5.6 -0.6 0.51 .015 3 . 0 -2.6 0.53 .042 7.9 1 .3 0.52 .025 4 . U 0.6 0.53 .023 4 . 4 1 .3 O. 4 / . CM 0 3 .9 9.3 C02 --->( ( 313. 2. 2 0.7 311. 1 . 7 0.6 -0.6 313. 2.5 0.0 -0.0 3)5. 1 . 0 0.3 0. 7 312. 3.0 1 .0 -0. 2 313. 1 .0 0 . 3 0. 1 320 . 2 . 7 0 .11 2.3 INERTIA FE ;MPG) i 28 0 0 20 0 0 0 28 0 0 0 27 (.1 0 -0 20 0 1 0 28 0 II -u 27 0 0 -2 . 1 . 2 . 7 . 3 . 2 . 6 . tj . 2 . 2 . / . 1 .9 . 1 . 2 . 7 . 2 .3 . 1 ' ' , 1 . /] . 1 .5 . 3 .9 . 3 BAUD WT: 2075 SHUM NXFC ACTUAL HP CDT . G.3 DB EVAP/AUXILLARY [ IN--HG) (G/LH) | 29.01 0 . 09 0.32 20 .90 0.026 I) .09 - 0 . -1 29 . 00 0.0 0.0 -0.0 29. 00 O . O 0.0 -0.0 29 . 1 6 0.0 0.0 0.5 29.00 0.026 0 . 09 -0.0 2H . HO 0 . 14(1 (1 . '-> 1 -I.I 49.6 2.72 5.5 54. 2 0.36 0. 7 9 . 3 46.7 0.36 0.0 -5.9 40.9 0. 20 0.6 -1.4 49 . 4 1 . 34 2 . 7 -0.3 48.7 1 . 70 3 .5 1.0 49.0 0 . 7 6 1 . !> 0 . t> 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .893 .010 . 154 .911 .002 . 180 2.0 .003 .002 . 100 -1.2 .091 .001 . 140 -0. 3 . 093 .005 .567 -0. 1 .890 .006 .710 0.4 .094 . 003 . 329 0. 1 0. 0. 0. 0. 0 . 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. a. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t) 0 0 0 0 0 0 0 0 0 0 0 0 75.3 0.73 1 .0 75. 2 0 . 09 U. 1 -0. 1 76.4 0.17 0.2 1 .5 74 .0 0 . 1 5 0. 2 -0.7 74 .5 f). 26 0 . 3 -1.1 75. 7 0.32 0.4 0.5 76.9 0 . 20 0 . 3 ? . 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. FIELD OPT ION BAG DATA NOT USED 0.0 . 0 ,0 0. 0 ,0 0 0.0 0.0 0 ,0 0.0 0.0 .0 ,0 0.0 0.0 0 0 0.0 0.0 0 .0 0.0 0.0 0 0 O . (I 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0.0 .0 .0 0.0 .0 .0 0.0 0.0 .0 .0 0.0 0.0 .0 .0 0.0 0.0 .0 .0 0.0 0.0 .0 .0 0.0 0.0 .0 .0 0 . O 0 0 0 0 0 0 0 0 0 0 o 0 0 0 1 0.0 .0 .0 0.0 .0 . 0 0.0 0.0 . o' .0 u . u I) . 0 . o . 0 0.0 0.0 .0 . 0 0.0 0.0 .0 .0 0.0 0.0 . 0 . 0 0 .0 C.V.% IS THE COEFFICIENT OF VARIATION. «STD. DEV./MEAN) »IUO). OIFF.% IS THE DIFFERENCE OF THF. MEANS BETWEF.N THE MFR AMI) EPA I.AHS. { ( (MFR -EPA ) It. PA) * 100) ------- EPA/M-VEL HOT START CORRELATION - BUMMER '85 2E618D PONT I AC SUNBIRD Table A-2 SITE B. ooo 8 . 000 8. 000 MEAN STD.DEV. 1.000 1 . 000 1.000 MEAN STD.DEV. X DIFF 3. 000 3. 000 3. 000 MEAN STD.DEV. X DIFF 5.000 5. 000 5. 000 MEAN STD.DEV. 7. DIFF 6.000 6 . 000 6. 000 MEAN STD.DFV. "/. DIFF 6. 000 6. 000 6 . 000 MEAN STD.DEV. x DIFF 8. 000 8. 000 8. 000 MEAN STD.DEV. X DIFF SERNO 1.000 ?. . 0 0 1) 3 .000 4. 000 5.000 6. 000 7. 000 a. ooo 9. 000 10.00 1 1.00 12. 00 is.no 14.00 1 S . 0 0 16. 00 17. 00 18.00 34 . 00 35.00 36. 00 HC 0 . 055 0 . 051 0. 057 0 . 054 0.003 0 . 043 0 . 045 0. 043 0 . 043 0.002 -20.25 0. 03R 0 .050 0 . 055 0 . 048 0 . 009 -12.27 0 . 043 0 :053 0 . 047 0 . 048 0 . 005 -12.27 0 . 063 0 . 054 0 . 061 0 .059 0 . 005 9. 202 0 . 044 0 . 048 0 . 054 0 . 049 0 .005 -10 .43 0 . 050 0..051 0 . 054 0.052 0.002 -4 .908 CO 1 .630 1 .480 1 .670 1 .593 0 . 100 1.240 1 .390 1 .330 1.320 0 .075 -17.15 1 .330 1 .480 1.620 1.477 0.145 -7 . 322 1 .340 1.6.10 1 .5.10 1 .487 0.137 -6.695 1 .630 1.580 2. 000 1 . 737 0 . 229 0.996 1.540 1 .440 1 .760 1 .580 0 . 164 -0 .B37 1.600 1.430 1 .670 1.567 0 . 123 -1 .674 NOx 0 .450 0 .470 0 . 490 0 .470 0 . 020 0.500 0 .500 0 .550 0.517 0 .029 9.929 0.520 0 .490 0.510 0.507 0. 015 7.801 0 .480 0 .540 0 .560 0.527 0 .042 12 06 0.520 0 .500 0.550 0 .523 0 . 025 11 .35 0 .540 0 .500 0.540 0 . 527 0 .023 12.06 0 .480 0 .450 0 .490 0 .473 0 .021 0 .709 C02 323.0 323.0 320.0 322. 0 1.732 313.0 310 .0 310 .0 311 .0 1 .732 -3.416 315.0 313.0 310 . 0 312.7 2.517 -2.899 316. 0 315.0 314.0 315.0 1 . 000 -2. 174 315. 0 309.0 312. 0 312.0 3.000 -3. 106 3)4.0 313.0 312. 0 313. 0 1 . 000 -2.795 317. 0 317.0 319.0 317.7 1.155 -1 .346 CB/MPG 27.20 27.20 27.50 27.30 0 .173 28.10 28.40 20.40. 2H.30 0 . 173 3.663 28.00 28.10 28.40 28.17 0 .208 3.175 27.90 2.7.90 28. 00 27.93 0 . 058 2.320 27.90 28.50 28.10 28. 17 0.306 3. 175 28. 00 28. 10 28.20 28. 10 0 . 100 2.930 27.70 27.80 27.60 27.70 0.100 1 . 465 M/MPG 27.28 27.23 27.47 27 .33 .0 . 124 27.54 27.60 27.57 27.57 0 . 033 0 .889 27.63 27.49 27.60 27.57 0 .071 0 . 892 27.50 27 .33 27.36 27.40 0 . 090 0 .265 27 . 56 27.56 27.52 27.55 0 . 023 0 .801 27.73 27.72 27 . 66 27.71 0 . 039 1 . 384 27.78 27.69 27.45 27.64 0.169 1.151 PHS1MPG 28 . 59 28. 5 i 28.70 28.60 0. 095 29.20 29.70 29.70 29 . 53 0 .289 3.263 28.90 29. 10 29.30 29 . 10 0.200 1 .748 28.90 29. 10 29.10 29. 03 0 . 115 1.515 2.8.70 29.80 28.90 29.13 0 . 586 1. . 865 29.40 29.50 29.60 29.50 0 . 100 3. 147 2.9 . 32 2.9.12 28.88 29. il "0.220 1 . 772 MPHS.1MPG PHS2MPG 2.8 . 49 28 . 49 28 . 75 28.58 0 . 148 28.64 28.97 28.98 28.86 0 .194 1 .004 28.81 28.67 28.80 28.76 0 . 077 0 . 64'5 28.74 28.57 28.55 28.62 0.101 0 . 152 28.80 28.90 28 . 77 28 . 82 0 . 066 0 .864 29 . 1 1 29.00 29.01 29. 04 0 . 061 1 .627 29.20 29.06 28.74 29.00 0.233 1 .476 26. 14 26. 15 26.42 26 . 24 0.159 27.30 27.30 27.20 27.27 0.058 3.926 27. 10 27.20 27.40 27.23 0 . 153 3.799 27.00 26.90 27.10 27. 00 0 . 100 2.909 27.30 27.40 27.50 27.40 0. 100 4.434 26.80 26.90 27.00 26.90 0. 100 2.528 26 . 38 26.58 26.41 26.46 0. 108 0.839 MPHS2MPG 26. 08 25.97 26. 19 26. 08 0. .1.08 26.44 26.24 26.16 26.28 0.144 0 .766 26 44 26.31 26.39 26.38 0 . 068 1. 162 26.27 26. 10 26.17 26.18 0 . 087 0.390 26 . 32 26 . 23 26 . 27 26.27 0 . 047 0 .746 26.35. 26.45 26.31 26.37 0.070 1 . 118 26.36 26.33 26. 17 26.29 0 . 105 0 .796 ------- i-r r*f M vr_i_ n\j t o i Hn i OUR n C.L.H i i un ounnr.K wr» 2E618D PONTIAC SUNBTRD SITE 8.000 B. 000 8. 000 MEAN STD.DEV. i .000 1.000 1 .000 MFAN STD.DEV. % I) IFF 3 . 000 3 . 000 3. 000 MFAN STD.DEV. X DIFF 5. 000 5. 000 5. 000 MFAN STD.DEV. % DIFF h . 0 0 0 6.000 h . 000 MEAN STD.DEV X DIFF 6. 000 6. 000 6.000 MEAN STD . DF.V X niFF 8.000 8. 000 8. 000 MEAN STD.DEV X DIFF PHS1HC 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . -H . 0 . 0 0 . 0 . 0 . 10 0 . 0 . 0 . 0 . 0 . -4. 0 . 0 . 0 . 0. . 0 . 29 0 . 0 . 0 . 0 . . 0 . 0 . 0 . 0 . 0 . 0 . . 0 . -3. 124 .137 156 139 016 120 130 130 127 006 H73 110 160 190 153 040 .31 ioo 160 140 133 031 077 ,?.?0 140 180 180 040 .50 110 140 170 140 030 719 110 139 152 134 022 P37 PHS1.CO 4. 4. 5. 5. 0 . 4 . 4 . 4. 4. 0 . -1? 5. 5. 6. 5. 0 . 10 4. 5. 5. 4. 0 . _ *3 6. 4 . 7 . 6. 1 . 21 5. 4 . 6. 5. 0 . 6. 5. 4. 5. 5. 0. 4 . 550 912 583 015 524 230 530 480 413 161 .00 1.90 320 060 523 469 . H. 500 140' 100 913 359 027 120 91 0 320 117 205 .97 160 640 270 357 833 813 002 992 794 263 460 939 PHSlNOx PHS1C02 PHS2HC 1.554 1 .566 1 .612 1 .577 0 .031 1.720 1 .760 1 .930 1.B03 0 .112 14 .33 1.830 1.790 1 .970 1 .863 0 . 095 18.13 i .790 1.840 1 .930 1.853 0.071 17.50 . 1 .840 1 .770 1 .960 1 .857 0 . 096 17.71 2.010 1.700 1 . 900 1 .870 0 .157 18.55 1.523 1 .563 1 .664 1 .583 0.073 0.380 1108. 1109. 1100. 1106. 5.173 1083. 1056. 1052. 1064. 17.29 -3. BOO 1084. 1076. 1072. 1077. 6.233 -?. . 558 1088. 1077. 1079. 1081 . 5.727 -2. 207 1109. 1067. 1107. 1094. 23.43 -1 . 022 1078. 1068. 1060. 1069. 9. 127 -3.343 1079. 1086. 1096. 1087. 8.320 -i .697 0 .287 0 .240 0 .266 0 .264 0 .024 0 .200 0.200 0 . 190 0 . 197 0 .006 -25.60 0 .170 0 .220 0.220 0.203 0 .029 -23 . 08 0 .220 0 .240 0.210 0 .223 0 .015 -15.51 0 .260 0 .260 0 .280 0 .267 0 .012 0 .883 0 .220 0.2?0 0.230 0.223 0 .006 -15.51 0 .260 0.241 0 .247 0.249 0.010 -5.675 PHS2CO 7. 6. 6. 6. 0 . 5. 5. 5. 5. 0 . -21 4 . 5. 6. 5. 0. -19 5. 6. 6. 6. 0 . -10 6. 6. 7. 6. 0 . 1 . 6. 6. 6. 6. 0 . -6. 6. 5. 6. 6. 0 . -6. 606 114 838 853 746 060 800 350 403 373 .15 750 730 030 503 669 .69 450 840 .170 153 695 .21 130 950 830 970 850 712 360 080 790 410 358 460 934 681 642 419 656 3?B PHR2NDx PHr.2C02 1 1 2 1 0 ? 1 2 2 0 5 2. 1 1 1 0 -1 1 . 2 2 2 0 . 6 p 1 ! 2 2. 0 . 8 2 2. 2 p 0 6 2. 1. 1 1 0. 0 . .781 .974 . 044 .933 136 . 000 .980 . 130 .037 .081 - .363 070 .870 .800 .913 . 140 . 017 .780 . 160 .240 . 060 246 570 080 91:10 .210 090 115 122 .020 020 120 . 053 .058 .225 027 .815 .998 947 115 707 12.97 . 1300 . .1.285. 1294. 7.900 1253. 1247. 1250. 1250 . 2.B90 -3.408 1.267. 1254. 1245. 1255. 11 .30 -3. 001 1260. 1267. 1267. 1265. 3.904 -2 . ?7B 1261 . 1.256 . 1.259. 1259. 2. 193 -2.734 1280. 1262. 1259. 1267. 11 .02 -2.102 1287. 1278. 1286. 12.R4 . 4.782 -0 .798 Table A-3 BAROM 96.70 96.69 96.63 96.67 0 . 038 97.87 97.87 97.87 97.87 0.000 1 .238 98.24 98.20 98.20 98.21 0. 023 1 .593 98.24 98.20 98.20 98.21 0 . 023 1 .593 98 . 78 90 . 75 98.7.1 98.75 0. 035 2. 145 98.27 98.20 98. 17 98.21 0.051 1.593 97.62 97 .60 97.56 97.59 0.031 0 . 952 HUMID 50 .45 50 .49 50 . 17 50 .37 0. 174 54. 00 54. 00 54.60 54.20 0 .346 7.604 47 . 10 46.40 46.60 46.70 0.361 -7.286 48.60 43.90 49. 10 48 . 87 0 .252 -2.985 50 .60 49.80 48. 00 49.47 1 .332 -1 .793 49.90 49.50 46.80 48.73 1 .686 -3.?49 48.98 48.99 49.35 49. 11 0 .211 -2.508 TESTEMP 77. 00 77.00 77. 00 77.00 75. 10 75.20 75.30 75.20 0. 1.00 -2 . 338 76.50 76.50 76.20 76.40 0. 173 -0.779 74.60 74.90 74.80 74.77 0. 153 -2.900 74.80 74.40 74.30 74.50 0 .265 -3.247 75.90 75.80 7S.30 75.67 0.321 -1 .732. 77.00 76.50 77. 00 76 . 83 0.289 -0 .216 ------- EPA/M-VEl. HOT START CORRELATION - SUMMER ' B5 2E61BD PONTIAC SIJNBIRD Table A-4 SITE 8.000 8 . 0 0 0 B. 000 MEAN STD.DEV 1 . 000 1.000 t . 000 MEAN STD.DEV 7. DIFF 3.000 3. 000 3.000 MEAN STD . DEV 7. DIFF 5. 000 5.000 5.000 MEAN STD. DEW 7. DIFF 6 . 000 6 . 000 6.000 MEAN STD.DEV 7. DIFF 6. 000 6 . 000 6. 000 MEAN STD . DEV 7. DIFF 8. 000 8. 000 8. 000 MEAN STD.DEV 7. DIFF PH1PTORQ PHJNTORQ PH2PTORO PH2NTORQ POS/Hpl NEG/Hpl POS/Hp2 NEG/HpP PHSiDIST PHS2DIST ROLL/Ftl ROLL/Ft2 4,769. 1332. 4330 . 4310. . 36.04 4261 . 4 2 82 . 4270 . 427R. . 15.30 -0 .749 4284. 43B5. 438V. 4353 . . 59.42 0 .9BB 4297. 4404 . 4326. 4342. . 55.22 0 . 742 4254. 4338. 4359 . 4317. . 55 . 64 0 . 157 4255. 4249. 4292. 4265. . 23 . 09 -1 . 044 4213. 4259 . 4305. 4259. .45.90 -1 . 182 2151 . 2126. 2133. 2136. 12.85 2130 . 20CI8. 2059. 2092. 35.62 -2.064 2090 . 2132. 2112. 21 1J . 21.31 -1 . 170 2060. 2065. ' 2093. 2072. 18.00 -3 . 999 21.26. 2105. 2.1.17. 2116. 10.41 -0 .955 2106. 2092. 2174. 2124. 43. 99 -0 .590 2179. 2212. 2188. 2193. 16.86 2.645 6686. 6713. 6732. 6710 . 2.2 . 96 6582 . 6570 . 6561. 6571 . 10 .40 -2. 072 6738. 6748. 6715. 6734. 16.92 0 .352 6731 . 6757. 6693. 6727. 31.77 0 .253 6650 . 6680 . 6723 . 6685. 36.56 -0 . 379 6616. 6557 . 6597. 6590 . 30.18 -1 .792 6577. 6605. 6646. 6609. 34 . 52 -1 .503 3739. 3785. 3759. 3761 . 23.02 3697. 3730 . 36B2 . 3703. 24. 18 -1 .532 3682. 3735. 3693. 3703. 27.65 -1 .524 362.3 . 3713. 3693 . 3676. 47.08 -2 . 248 3730. 3684. 3754. 3722. 35.62 -1 . 025 3609 3724. 3675. 3670. 57.48 -2. 426 3867. 3791 . 3799 . 3817. 41.91 1 .549 2629. 2675. 2689. 2665. 31 .25 2697. 2711 . 2699. 2702. 7.814 1 .424 2706. 2783. 278B. 2759. 45.72 3.542 2757. 2770. 2750 . 2746 . 2.6 . 95 3.042 2717. 2774. 2810 . 2767. 46.62 3.B49 2703. 2672 . 2720 . 2698. 24.61 1.261 2570. 2627. 2666. 2621. 47.94 -1.637 B89.7 886 . 2 888 . 7 88B.2 1 .803 787.4 785 . 1 773. a 781 .8 7.736 -11 .98 789.5 804.4 792.9 795.6 7.808 -10 .43 759.7 776.9 787. 0 775.2 14.72 -12.72 800 .8 800 . 0 BIB. 2 806.3 10 .28 -9.2)7 778.9 789.4 809. 4 792.6 15.49 -10 .77 900 .2 892.5 902.7 898.5 5.316 1 . 156 2508. 2521. 2527. 2519. 9.805 2546. 2528. 2503. 2526. 21 .57 0 . 282 2604. 2633. 2598 . 2612. 18.49 3.679 2593 . 2610 . 2602. 2.602. 8 .402. 3.286 2586 . 2600 . 2650 . 2612. 34 . 14 3 . 692. 2564. 2524. 2540. 2543. 20 .44 0 .941 2461 . 2479. 2500 . 2480. 19.91 -1 .543 1113. 1130 . 1. 1 1 4 . 1119. 9.535 1021 . 1011 . 994 .4 1009. 13.35 -9.870 1020 . 1054 . 1029. 1034. 17.36 -7 . 592 982. 0 1018. 1024. 1 008. 22 . 77 -7 . 927 999.3 1 010. 1040 . 1017. 2.1 .24 -7. 167 987.6 1.029. 1021 . 1012. 21.83 -9.543 1133. 1136. 1139. 1136. 3. 100 1 .474 3.596 3.592 3 . 589 3 . 592 0 . 004 3.587 3 . 562 3.550 3.566 0.019 -I) .724 3.565 3 563 3 . 579 3 . 569 0 . 007 -I) .650 3 . 57 1 3 . 558 3.567 3.565 0 . 007 -0 .752 3.621 3.612 3.647 3 627 0 . 018 0 . 956 3.607 3.575 3.571 3 . 5B4 0 . 020 -0 . 223 3.594 3.595 3.598 3.596 0.002" 0.093 3 . 861 3.864 3.863 3 . 863 0 . 002 3.878 3 . 869 3 . 863 3.870 0 . 008 0 . 190 3.897 3.881 3 . 883 3.887 0 . 009 0 .630 3 . 867 3 . 879 3 . 899 3 . 882 0 . 016 0 .492 3.910 3.9.13 3.946 3.923 0 . 020 1 . 562 3.895 3.866 3.862 3.874 0 . 018 0 .302 3.865 3.861 3 . 862 3.863 0.002 0.000 18786 18772 18757 1B772 14.65 18894 18761 18692 18782 103. 1 0 . 057 18752 18733 18815 18767 43. 14 -0 . 026 18784 18711 18757 18751 . 37 . 34 -0 . 1 07 17113 17062 19252 19142 98. 15 1 .976 19010 18839 18817 18888 105.8 0.623 10756 18761 18796 18771 21 .73 -0 . 003 20290 20301 20295 20295 5.735 20462 20431 20384 20426 39.39 0.643 20549 20467 20471 20495 46.30 0 . 786 20390 20449 20557 20465 84.52 0.837 20662 20679 20850 2.0730 104 . 1 2.143 20557 20404 20382 20448 95.49 0.752 20286 20253 20274 20271 16.65 -0 .119 ------- Q. o o -J UJ D U_ Q. 21 O o CL h- 29 28.5^ 28- 27.5- 27" 26.5 EPA/M-VEL CORRELATION - SUMMER '85 PONTIAC SUNBIRD 2E618D - HOT START Figure A- / 97 74F 0.5X A C.B. A MTR. t Dlff C.B. - MTR. MTR. X 100 I I | \ \ I I I I I I I I I I I I I I 1 I I I I 0 t 23456 7 8 9 I 0 It t 2 1 3 1 4 1 5 1 6 1 7 t 8 1 92021 22232425 M-VEL SITE 8 EPA "YflO 1 EPA DYNO 3 EPA DYNO 5 EPA OYNO 6 EPA DYNO 6/2 FMTEL SITE 8 TEST SEQUENCE NO. JRC 24JL85 ------- CD 0. \ 2 O O -J UJ X a. EPA/M-VEL CORRELATION - SUMMER '85 PONTIAC SUNBIRD 2E618D - HOT START Figure A" 2. 29.5" 29- 28.5^ 28- 27.5 0.4X 0.4X 0.07X C.B. KTR X D1ff - C'B- ' HTR- X TOO HTK i i i i i i i i r I i i i i I i r i i i I I i i 0 123 A 5 6 7 8 9 IQM 12 1 3 1 4 1 51 6 I 7 1 8 1 92021 22232425 i j | =-j ^ | f =| r 11 11 i M-VEL SITE 8 EPA OYNO 1 EPA EPA EPA EPA M-VEL OYNO 3 DYNO 5 DYNO 6 DYNO 6/2 SITE 8 TEST SEQUENCE NO. JRC 24JL85 ------- CD CL \ Z o o I LJ ID u. Cvl V) T. Q_ EPA/M-VEL CORRELATION - SUMMER '85 PONTIAC SUNBIRD 2E618D - HOT START Figure A"3 1 1 I I I I I I I I I I I I I I I l I I I l I I 8 1 23456789181! 12131415161718192821 22232425 M-VEL SITE 8 EPA DYNO 1 EPA DYNO 3 EPA DYNO 5 EPA DYNO 6 EPA DYNO 6/2 i r M-VEL SITE 8 JRC 24JL85 TEST SEQUENCE NO. ------- F T P C 8 f U E L C 0 N / n p G EPA/H-VEL CORRELATION - SUMMER '89 PONTIAC SUHBIRD 2E618D - HOT START Figure A- 29 28.5- 28- 27.3- 27- 26.5 nc RUEL EPA EPA EPA EPA EPA MUEL SITE DYNO DYNO DYNO DYNO DYNO SITE 813566/28 JRC 24JL93 ------- F T P H E T E R F U E L C 0 N / H P G 29 EPA/M-UEL CORRELATION - SUMMER '85 PONTIAC SUNBIRD 2E618D - HOT START Figure A" 28.3- 28- 27.5- 27- 26.5 HUEL EPA EPA EPA EPA 8ITE DYNO DYNO DYNO DVNO 8 1 336 EPA HUEL DYNO SITE 6/2 8 JRC 24JL83 ------- P H S F U E L C 0 N P G 38 EPA/H-UEL CORRELATION - SUHHER '85 PONTIAC SUNBIRD 2E618D - HOT START Figure 29.3- 29- '--$>-- 28.5- 28- 27.3 HVEL EPA EPA EPA EPA EPA MUEL SITE DYHO DYNO DYNO DYNO DYNO SITE 813966/28 JRC 24JL83 ------- M E T E R P H S F U E L C 0 N / H P G 38 EPA/M-VEL CORRELATION - SUMMER '83 PONTIAC SUHBIRD 2E618D - HOT START Figure Ar "7 29.3- 29- 28.5- - To 28 27.5 MUEL EPA EPA EPA EPA SITE DYHO DYNO DYNO DYNO 8 1 35 6 EPA MUEL DYNO SITE 6/2 8 JRC 24JL85 ------- p H S F U E L C 0 H P G EPA/M-UEL CORRELATION - SUMMER '83 PONTIAC SUMBIRD 2E616D - HOT START Figure A" 6 27.3 27- 26.5- 26- 23.5 29 HUEL EPA EPA EPA EPA EPtt HUEL SITE DYNO DYNO DYNO DYNO DYNO SITE 8 1 33 6 6/28 JRC 24JL83 ------- N E T E R P H S F U E L C 0 N / N P G EPA/H-VEL CORRELATION - SUMMER '83 PONTIAC SUHBIRD 2E618D - HOT START Figure 27.3 27- 26.3- 26- 23.5- 29 flUEL EPA EPA SITE DYHO DYNO 8 1 3 EPA EPA DYHO DYNO 3 6 EPA HUEL DYHO SITE 6/2 8 JRC 24JL85 ------- 0.875 EPA/H-UEL CORRELATION - SUMMER '83 POHTIAC SUMBIRD 2E618D - HOT START 8.8S5- H C C a x H I 8.855H 0.645- 8.835- 8. MUEL EPA EPA EPA EPA EPA MUEL SITE DYNO DYNO DYNO DYNO DYNO SITE 8 1 33 6 6/28 JRC 24JL83 ------- C 0 G H / M I 2.1 1.9- 1.7- 1.5- 1.3- 1.1 EPA/M-UEL CORRELATION - SUIWER '83 PONTIAC SUNBIRD 2E618D - HOT START Figure A" __ a -* IflX-QEJtEfll QEJfEftl MUEL EPA EPA SITE DYNO DYNO 8 1 3 EPA EPA DYNO DYNO 5 6 EPA NMEL DYNO SITE 6/2 8 JRC 24JL83 ------- N 0 x G n s H I 0.6 EPA/M-UEL CORRELATION - SUMMER '83 PONTIAC 3UNBIRD 2E618D - HOT START Figure A-12 8.55- 8.52- 8.48- -..}-, 8.44- 0.4 MUEL EPA EPA EPA EPA EPA MUEL SITE DYNO DYNO DYNQ DYNO DYNO SITE 8 i 356 6/28 JRC 24JL83 ------- 338 EPA/M-VEL CORRELATION - SUMMER '85 PONTIAC SUNBIRD 2E618D - HOT START Fi^re A"13 325- c 0 2 G H / N I 329- ,J1E0* 315- 310- p- 305 MUEL EPA EPA SITE DYNO DYHO 8 1 3 EPA EPA DYNO DYHO 3 6 EPA MUEL DYNO SITE 6/2 8 JRC 24JL85 ------- EPA/H-VEL CORRELATION - SUMMER '85 PONTIAC 3UNBIRD 2E618D - HOT START 4438 Figure A- p H S P 0 S T 0 R Q 4339- 4239- 423* _. -V 1 H iX.QFJlEfi! HUEL EPA EPA EPA EPA EPA HUEL SITE DYNO DYNO DYNO DYNO DYNO SITE 8 1 3 5 66/28 JRC 24JL89 ------- 2238 EPA/H-UEL CORRELATION - SUHHER '83 PONTIAC SUHBIRD 2E618D - HOT START Figure A~ /5" P H S N E G T 0 R Q 2209- 2158- 2100- QEJlEfci LJUJ 2838- 2G90 HUEL EPA EPA EPA EPA SITE DYNO DYNO DYNO DYNO 8 13 3 6 EPA HUEL DYNO SITE 8 JRC 24JL83 ------- p H S P 0 S T 0 R 0 6S09 EPA/H-UEL CORRELATION - SUMMER "85 PONTIAC SUNBIRO 2E61CD - HOT START A-/6 r~ ....$,. HUEL EPA EPA EPA EPA EPA MUEL SITE DYNO DYNO DYNO DYNO DYNO SITE 813966/28 JRC 24JL85 ------- p H S N E C T 0 R Q 3909 EPA/M-UEL CORRELATION - SUMMER '83 PONTIAC SUHBIRD 2E618D - HOT START Figure 3840- 3788- 3728- 3S68- 3S8S HUEL EPA EPA SITE DYHO DYNO 8 1 3 EPA EPA DYNO DYNO 3 6 EPA HUEL DYNO SITE 6/2 8 JRC 24JL8S ------- s 1 D I S T E S EPA/M-VEL CORRELATION - SUMMER '83 PONTIAC SUNBIRD 2E618D - HOT START Figure A"'5 3.65 3.62- 3.39- 3.56- 3.53- 3.3 MUEL EPA EPA EPA EPA EPA MUEL SITE DYNO DYNQ DYNO DYNO DYNO SITE 813366/28 JRC 24JL85 ------- p H 8 D I S T I L E S 3.93 EPA/M-UEL CORRELATION - SUMMER '83 PONTIAC SUNBIRD 2E618D - HOT START Figure ' A- 3.92- 3.89- 3.86- 3.83- 3.8 HVEL EPA EPA EPA EPA EPA MVEL SITE DYNO DYNO DYNO DYNO DYNO SITE 8 1 33 6 6/28 JRC 24JL83 ------- |