EPA-AA-EOD/TPB-85-1
Technical Report
EPA-GM Fuel Economy Correlation Program
June - July 1985
Marty Reineman
Douglas DeVries
NOTICE
Technical reports do not necessarily represent final EPA decisions or
positions. .Their publication or distribution does not constitute any
endorsement of equipment or instrumentation that may have been evaluated.
They are'intended to present technical analysis of issues using data which are
currently available. The purpose in the release of such reports is to
facilitate the exchange of technical information and to inform the public of
technical developments which may form the basis for improvements in emissions
measurement.
Testing Programs Branch
Engineering Operations Division
Mobile SOurce Air Pollution Control
Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Michigan 48105
-------
- 1 .-
Background
This test program was initiated in response to GM's request to investigate
a negative fuel economy offset between paired test results obtained at the
EPA MVEL and at GM's Milford Proving Grounds.
An analysis of the EPA-GM paired certification data did not suggest that
the reason for the fuel economy offset was attributable to a particular
test, site or component of the fuel economy measurement process.
Therefore, the structure of the correlation program included tests on
multiple dynamometer and analyzer sites at EPA, measurements of
dynamometer torque and horsepower, volumetric fuel measurement, and CC>2
bottle crosschecks.
Program Design
Emission and fuel economy tests consisted of a series of three hot start
IA-4's on four dynamometers (three analyzer sites) at the EPA and one test
site at GM. Volumetric (metered) fuel consumption and wheel
torque/horsepower were measured for each dynamometer test at each
facility, thereby providing an accurate and direct method of assessing
dynamometer loading and vehicle fuel economy repeatibility. The CO2 gas
standards provided a direct check on the CC>2 analyzer calibration
differences between test facilities.
The test vehicle was a GM "repeatable" vehicle, a 1984 Pontiac J-2000 with
throttle-body fuel injection. The same tank of Howell test fuel was used
for the first four tests at GM and EPA, and a second tank was used for the
remaining tests. A 15 minute, 50 mph steady state warm-up and the series
of three hot start LA-4's served as the preconditioning for the following
day of testing.
The actual sequence of dynamometer tests was:
June 17 three hot - start IA-4 tests at GM on test site No. 8
June 19 " " " " " " EPA on dynamometer 001
June 20 " " " " " " EPA on " 003
June 21 " " " " " " EPA on " 005
June 27 " " " " " " EPA on " 006
July 3 " " " " " " EPA on " 006
July 24 " " " " " " GM on test site No. 8
Each three test series was run on a different day. All tests at the GM were
driven by the same GM driver and all tests at the EPA were driven by the same
EPA driver.
In addition to the LA-4 tests and CC>2 cylinder analyses, a "wet" sample bag
from the test vehicle was generated and analyzed at GM and at three analyzer
sites at EPA.
-------
- 2 -
Results
The following test results and observations were obtained from this
correlation program:
1. GM average carbon balance fuel economy was 2.2 percent lower than EPA
test results.
2. GM metered fuel economy was 0.3 percent lower than EPA metered fuel
economy.
3. GM's average CC>2 measurements were 0.3 percent higher than EPA's.
4. Dynamometer loading between facilities was similar.
5. The EPA site-to-site emission and fuel economy repeatibility was good.
6. The fuel economy measured with the new exhaust connector pipe was 0.8
percent lower than the results obtained with the old connector pipe.
Discussion
Table 1 is a summary of the composite LA-4 emission and fuel economy data
obtained at the EPA and GM.
The test results labeled EPA D006/2 were repeat tests run on dynamometer
D006 after a possible exhaust leak was discovered after the first series
of tests. It was not possible to estimate the quantitative impact, if
any, of the leak and therefore these results were not removed from the
data base, although they are tabulated separately. The GM data were
combined because their tests were all run on the same dynamometer/analyzer
site, the same driver drove all six tests, and relatively little time
elapsed between the first and second set of GM tests.
Table A-l, in the Appendix, is the standard output format of the EPA
IABCOR program which calculates the mean, standard deviation, coefficient
of variation, and the percent difference between sample means. Percent
difference results are referenced to the mean of the tests in the first
row, which is the grand mean of all EPA tests.
002 analysis is summarized in Table 2.
Emission and Fuel Economy Results
Figures A-l - A-19 and Tables A-2 - A-4 of the Appendix present individual
phase (bag) 1 and 2 results, and composite results for emissions and fuel
economy. Fuel economy calculations are summarized for both metered and
carbon balance measurements. Dynamometer torque and horsepower are
displayed as positive and negative totals as a function of test phase.
-------
- 3 -
Table 1
Emission and Fuel Economy Results
Test Location N HC, g/mi CO, g/mi NOx, g/mi CO^, g/mi FE, Mpg
EPA D001 3 x 0.043 1.32 0.52 311 28.3
s 0.002 0.08 0.03 1.7 0.2
EPA D003 3 x 0.048 1.48 0.51 313 28.2
s 0.009 0.15 0.02 2.5 0.2
EPA D005 3 x 0.048 1.49 0.53 315 27.9
s 0.005 0.14 0.04 1.0 0.1
EPA D006/1 3 x 0.059 1.74 0.52 312 28.2
x 0.005 0.23 0.03 3.0 0.3
EPA D006/2 3 x 0.049 1.58 0.53 313 28.1
s 0.005 0.16 0.02 1.0 0.1
GM Site 8 6 x 0.053 1.58 0.47 320 27.5
s 0.003 0.10 0.02 2.7 0.3
0459c
-------
- 4 -
Table 2
GM - EPA CO2 Analysis Correlation
EPA Gas Standards Master Site [1]
Cylinder No.
11/4381
40321
66753J
A3 298
277775
A12955
A2225
MH932
Reference Type
Facility Master
n n
Working Master
GM Cone, %
.474
.5663
.497
.242
0.9505
0.7495
0.4999
0.3476
1.
0.
1.
1.
EPA Cone, %
1.472
0.5670
1.494
1.240
0.9493
0.7523
0.5005
0.3472
% Difference
0.14
-0.12
0.20
0.16
0.13
-0.37
-0.12
0.12
EPA Test Site Analysis [2]
Cylinder No. GM Cone, % A001 Conc,% % Diff A002 Conc,% % Diff A003 Conc,% % Diff
LL4381
40321
1.474
0.5663
1.469
0.5654
0.34
0.16
1.470
0.5626
0.27
0.66
1.473
0.5641
0.07
0.39
Sample Bag CO2 Results [3]
EPA Test Site GM Cone, % EPA Cone, %
A001
A002
A003
12.38
12.38
12.38
12.45
12.42
12.47
% Difference
- 0.6
- 0.3
- 0.7
NOTE: [1] Analyses on the EPA Master Site were on Range 23, 0-2.5%
[2] Test Site analyses on LL4381 were on Range 23, 0-2.5%
Test Site analyses on 40321 were on Range 22, 0-1%
[3] Bag generated at GM, analyzed at GM Test Site No. 8
-------
- 5 -
Figures A-l - A-19 are GM "tri-plots". This method of data presentation
shows individual test values along the vertical leg of each triangle and
plots the mean of the data at the intersection of the other two legs of
the triangle. All GM tri-plots display a plus and minus band around the
mean of all test results, as in Figures A-l - A-3, or around the mean of
the first three LA-4 tests, as in Figures A-4 - A-19. With the exception
of the + 3.0 percent bands around the carbon balance fuel economy means,
the band widths on Figures A-4 - A-19 are somewhat arbitrary and are based
on engineering judgment and historical observations of actual emissions
data.
Several observations can be made by examining these data. The GM and EPA
metered fuel consumption measurements showed good correlation, EPA fuel
economy averaged only 0.3 percent higher than GM. Carbon balance fuel
economy values were, however, further apart. EPA carbon balance fuel
economy averaged 2.2 percent higher than GM results.*
A comparison of Figures A-2 and A-3 shows that the difference between
carbon balance and metered fuel economy is larger for phase 2 than phase
1. This observation is consistent with many GM and EPA tests of vehicles
equipped with fuel meters and is currently being studied. An analysis of
the metered vs carbon balance results shows that the effect of changing to
a new style exhaust connector pipe (the old connectors were in place on
dynamometers D001, D003, and D005, and the new system was in place on
dynamometer D006) was to reduce the difference between carbon balance and
volumetric measurements of fuel economy. The table below summarizes these
test results. Note that for purposes of this analysis, the first series
of tests on dynamometer D006 (tests with a possible exhaust leak) were not
used.
Average % Difference Between Carbon Balance and Volumetric Fuel Economy
EPA Dynamometers
n D001 D003 . D005 D006
Bag 1 3 2.3 1.1 1.5 1.6
Bag 2 3 3.8 3.2 3.2 2.0
Note: Values shown are percent differences in fuel economy based on:
((Carbon balance-met ered)/ (metered )) x 100%
HC and CO emission differences were not apparent and the NOx differences
between facilities shown in Figure A-12 are not thought to be
significant. The approximate -10 percent difference (EPA measuring higher
NQjj) is likely due to a combination of driver, ambient conditions, and
sampling system differences between facilities during the correlation
program.
* Although differences are usually expressed using EPA values as the base,
this report refers to a number .of GM documents which use their results as
the base.
-------
- 6 -
Figures A-14 - A-17 summarize the wheel torque data as a function of test
site. Positive torque differences (Figures A-14 and A-16) are not
significant, based on our in-house test experience with our Volvo REPCA,
which is also equipped with torque wheels. Negative torque differences
between tests at GM and EPA are shown on Figures A-15 and A-17. Although
the tests at GM show 2-4 percent higher negative torque, these difference
are not considered significant. Rather, they reflect differences between
the GM and EPA drivers and dynamometer frictional horsepower. Clearly,
the driver influence is much greater on the measurement of negative torque
than positive torque.
Measured distance is presented in Figures A-18 and A-19. Although the
first set of distance measurements on EPA dynamometer D006 is clearly
higher than the other values, these results are still well within the EPA
QC limits for minimum and maximum allowable distance for bag 1 and bag 2.
Tables A-2 - A-4 are data summaries of composite and bag emissions and
fuel economy data (measured and carbon balance), torque, horsepower, and
distance results. All three tables express the percent difference as
(EPA-GM)/GM) x 100 where the reference condition is defined as the average
of the first three tests on GM site No. 8.
Gas Analysis
Two GM facility master standards and six working master standards from
Milford were analyzed in the EPA gas standards laboratory. The two GM
master standards were then analyzed on EPA analyzer sites A001, A002, and
A003.
The C02 analyses from EPA's gas laboratory showed excellent correlation
with GM. The average difference was +0.02 percent for all eight
cylinders, while the largest individual difference was -0.37 percent. Gas
analyses on sites A001-A003 showed an average difference of +0.32 percent,
with all six analyses being slightly positive. Although all readings on
sites 1-3. were positive, and thus contribute approximately -0.3 percent to
the fuel economy offset, this CC>2 offset is well within the range of
good ' inter-laboratory correlation. The gas analyses are summarized in
Table 2.
"Wet" sample bag checks are a diagnostic check used by GM to assess
intra-lab analyzer correlation at their laboratory. Wet sample and
background bags were generated at GM, analyzed on their site No. 8, and'
then transported to the EPA laboratory where the bags were read on EPA
analyzer sites A001-A003 on June 17. A possible error in the analysis of
these bags resulted in deleting the data from further examination.
Another wet sample bag was generated and analyzed at GM, and analyzed .on
all three EPA light-duty analyzer sites. These results are shown in Table
2 and indicate good correlation for this type of crosscheck.
Unfortunately, this bag was not reanalyzed by GM to check the CO2 change
as a function of time.
-------
- 7 -
Summary
This program substantiated the 2-3 percent fuel economy offset which has
been observed from EPA-GM paired certification data since early 1985. The
fuel economy offset is not thought to be attributable to dynamometer
loading differences, CC>2 analysis, or ambient effects. Neither is the
offset problem confined to a single EPA dynamometer or analyzer site. The
results of this program show good EPA site-to-site repeatibility. The
change to a new exhaust collection system did not eliminate the fuel
economy offset, although a reduction in the difference was observed.
Recommendations for Future Work
1. Concentrate on the sampling system as a possible source of fuel
economy offsets between the facilities. This program isolated
possible dynamometer and CC>2 analysis differences and did not show
significant offsets in either area.
2. Monitor the effect of the EPA CVS plumbing changes on a site by site
basis to determine if this change has the anticipated effect of
reducing EPA-Mfr paired data scatter, and reducing EPA measurements
of carbon balance fuel economy.
0459c
-------
APPENDIX A
-------
PRJ: CM FE OFFSET
TABLE A-l
LAB CORRELATION SUMMARY PROCESSED: AUG 13. 1905
LAB
L'PA
EPA DYNO D001
EPA OVNO D003
EPA DYNO DO05
F.PA DVNO 1)006/1
. EPA DYNO UO06/2
GLNtKAL MO IOHS
15
TEST PROCEDURE
: HOT
CH4
VIN :
. HC
2E61BO
CO
NOX
| < G/MI
MEAN
STO. DEV.
C.V.%
MEAN
STD. DEV.
C.V.%
DIFF. %
MEAN
STD. DEV.
C.V.%
IMFF . %
MEAN
STD. DEV.
C.V .%
DIFF. %
MEAN
STO. DEV.
C.V.%
DIFF. %
MEAN
STD. OEV.
C.V.%
DIFF. %
MEAN
STD. OEV.
C.V.%
DIFF. %
0.025
.0025
9.9
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.025
.0025
9.9
0.0
0.0
.0
0.0
0.0
0.0
.0
0.0
0.0
0.049
.0072
14.6
0.043
.0015
3.5
-12.2
0.048
.0087
10.3
-3.4
0.048
.0050
10.6
-3.4
0 . 059
.0047
0.0
20. 3
0.049
.0050
10.3
-1.4
0.053
.00/0
5 . ?
J .4
1 .52
0. 195
12.8
1 .32
0.075
5.7
-13.2
1 . 48
0. 145
9.0
-2.9
1 . 49
0 . 137
9. 2
-2. 2
1 . 74
0. 229
13.2
14.3
1 .58
0. 164
10.4
3. 9
1 .50
0. 102
(i. 4
3.9
0.52
.025
4.0
0.52
.029
5.6
-0.6
0.51
.015
3 . 0
-2.6
0.53
.042
7.9
1 .3
0.52
.025
4 . U
0.6
0.53
.023
4 . 4
1 .3
O. 4 /
. CM 0
3 .9
9.3
C02
--->( (
313.
2. 2
0.7
311.
1 . 7
0.6
-0.6
313.
2.5
0.0
-0.0
3)5.
1 . 0
0.3
0. 7
312.
3.0
1 .0
-0. 2
313.
1 .0
0 . 3
0. 1
320 .
2 . 7
0 .11
2.3
INERTIA
FE
;MPG) i
28
0
0
20
0
0
0
28
0
0
0
27
(.1
0
-0
20
0
1
0
28
0
II
-u
27
0
0
-2
. 1
. 2
. 7
. 3
. 2
. 6
. tj
. 2
. 2
. /
. 1
.9
. 1
. 2
. 7
. 2
.3
. 1
' '
,
1
. /]
. 1
.5
. 3
.9
. 3
BAUD
WT: 2075
SHUM
NXFC
ACTUAL HP
CDT
.
G.3
DB EVAP/AUXILLARY
[ IN--HG) (G/LH) |
29.01
0 . 09
0.32
20 .90
0.026
I) .09
- 0 . -1
29 . 00
0.0
0.0
-0.0
29. 00
O . O
0.0
-0.0
29 . 1 6
0.0
0.0
0.5
29.00
0.026
0 . 09
-0.0
2H . HO
0 . 14(1
(1 . '-> 1
-I.I
49.6
2.72
5.5
54. 2
0.36
0. 7
9 . 3
46.7
0.36
0.0
-5.9
40.9
0. 20
0.6
-1.4
49 . 4
1 . 34
2 . 7
-0.3
48.7
1 . 70
3 .5
1.0
49.0
0 . 7 6
1 . !>
0 . t>
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.893
.010
. 154
.911
.002
. 180
2.0
.003
.002
. 100
-1.2
.091
.001
. 140
-0. 3
. 093
.005
.567
-0. 1
.890
.006
.710
0.4
.094
. 003
. 329
0. 1
0.
0.
0.
0.
0 .
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
a.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
0
0
0
0
0
0
0
0
0
75.3
0.73
1 .0
75. 2
0 . 09
U. 1
-0. 1
76.4
0.17
0.2
1 .5
74 .0
0 . 1 5
0. 2
-0.7
74 .5
f). 26
0 . 3
-1.1
75. 7
0.32
0.4
0.5
76.9
0 . 20
0 . 3
? . 1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
FIELD
OPT ION
BAG DATA NOT USED
0.0
. 0
,0
0. 0
,0
0
0.0
0.0
0
,0
0.0
0.0
.0
,0
0.0
0.0
0
0
0.0
0.0
0
.0
0.0
0.0
0
0
O . (I
0
0
0
0
0
0
0
0
0
0
0
u
0
0
0.0
.0
.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0.0
0.0
.0
.0
0 . O
0
0
0
0
0
0
0
0
0
0
o
0
0
0
1
0.0
.0
.0
0.0
.0
. 0
0.0
0.0
. o'
.0
u . u
I) . 0
. o
. 0
0.0
0.0
.0
. 0
0.0
0.0
.0
.0
0.0
0.0
. 0
. 0
0 .0
C.V.% IS THE COEFFICIENT OF VARIATION. «STD. DEV./MEAN) »IUO).
OIFF.% IS THE DIFFERENCE OF THF. MEANS BETWEF.N THE MFR AMI) EPA I.AHS. { ( (MFR -EPA ) It. PA) * 100)
-------
EPA/M-VEL HOT START CORRELATION - BUMMER '85
2E618D PONT I AC SUNBIRD
Table A-2
SITE
B. ooo
8 . 000
8. 000
MEAN
STD.DEV.
1.000
1 . 000
1.000
MEAN
STD.DEV.
X DIFF
3. 000
3. 000
3. 000
MEAN
STD.DEV.
X DIFF
5.000
5. 000
5. 000
MEAN
STD.DEV.
7. DIFF
6.000
6 . 000
6. 000
MEAN
STD.DFV.
"/. DIFF
6. 000
6. 000
6 . 000
MEAN
STD.DEV.
x DIFF
8. 000
8. 000
8. 000
MEAN
STD.DEV.
X DIFF
SERNO
1.000
?. . 0 0 1)
3 .000
4. 000
5.000
6. 000
7. 000
a. ooo
9. 000
10.00
1 1.00
12. 00
is.no
14.00
1 S . 0 0
16. 00
17. 00
18.00
34 . 00
35.00
36. 00
HC
0 . 055
0 . 051
0. 057
0 . 054
0.003
0 . 043
0 . 045
0. 043
0 . 043
0.002
-20.25
0. 03R
0 .050
0 . 055
0 . 048
0 . 009
-12.27
0 . 043
0 :053
0 . 047
0 . 048
0 . 005
-12.27
0 . 063
0 . 054
0 . 061
0 .059
0 . 005
9. 202
0 . 044
0 . 048
0 . 054
0 . 049
0 .005
-10 .43
0 . 050
0..051
0 . 054
0.052
0.002
-4 .908
CO
1 .630
1 .480
1 .670
1 .593
0 . 100
1.240
1 .390
1 .330
1.320
0 .075
-17.15
1 .330
1 .480
1.620
1.477
0.145
-7 . 322
1 .340
1.6.10
1 .5.10
1 .487
0.137
-6.695
1 .630
1.580
2. 000
1 . 737
0 . 229
0.996
1.540
1 .440
1 .760
1 .580
0 . 164
-0 .B37
1.600
1.430
1 .670
1.567
0 . 123
-1 .674
NOx
0 .450
0 .470
0 . 490
0 .470
0 . 020
0.500
0 .500
0 .550
0.517
0 .029
9.929
0.520
0 .490
0.510
0.507
0. 015
7.801
0 .480
0 .540
0 .560
0.527
0 .042
12 06
0.520
0 .500
0.550
0 .523
0 . 025
11 .35
0 .540
0 .500
0.540
0 . 527
0 .023
12.06
0 .480
0 .450
0 .490
0 .473
0 .021
0 .709
C02
323.0
323.0
320.0
322. 0
1.732
313.0
310 .0
310 .0
311 .0
1 .732
-3.416
315.0
313.0
310 . 0
312.7
2.517
-2.899
316. 0
315.0
314.0
315.0
1 . 000
-2. 174
315. 0
309.0
312. 0
312.0
3.000
-3. 106
3)4.0
313.0
312. 0
313. 0
1 . 000
-2.795
317. 0
317.0
319.0
317.7
1.155
-1 .346
CB/MPG
27.20
27.20
27.50
27.30
0 .173
28.10
28.40
20.40.
2H.30
0 . 173
3.663
28.00
28.10
28.40
28.17
0 .208
3.175
27.90
2.7.90
28. 00
27.93
0 . 058
2.320
27.90
28.50
28.10
28. 17
0.306
3. 175
28. 00
28. 10
28.20
28. 10
0 . 100
2.930
27.70
27.80
27.60
27.70
0.100
1 . 465
M/MPG
27.28
27.23
27.47
27 .33
.0 . 124
27.54
27.60
27.57
27.57
0 . 033
0 .889
27.63
27.49
27.60
27.57
0 .071
0 . 892
27.50
27 .33
27.36
27.40
0 . 090
0 .265
27 . 56
27.56
27.52
27.55
0 . 023
0 .801
27.73
27.72
27 . 66
27.71
0 . 039
1 . 384
27.78
27.69
27.45
27.64
0.169
1.151
PHS1MPG
28 . 59
28. 5 i
28.70
28.60
0. 095
29.20
29.70
29.70
29 . 53
0 .289
3.263
28.90
29. 10
29.30
29 . 10
0.200
1 .748
28.90
29. 10
29.10
29. 03
0 . 115
1.515
2.8.70
29.80
28.90
29.13
0 . 586
1. . 865
29.40
29.50
29.60
29.50
0 . 100
3. 147
2.9 . 32
2.9.12
28.88
29. il
"0.220
1 . 772
MPHS.1MPG PHS2MPG
2.8 . 49
28 . 49
28 . 75
28.58
0 . 148
28.64
28.97
28.98
28.86
0 .194
1 .004
28.81
28.67
28.80
28.76
0 . 077
0 . 64'5
28.74
28.57
28.55
28.62
0.101
0 . 152
28.80
28.90
28 . 77
28 . 82
0 . 066
0 .864
29 . 1 1
29.00
29.01
29. 04
0 . 061
1 .627
29.20
29.06
28.74
29.00
0.233
1 .476
26. 14
26. 15
26.42
26 . 24
0.159
27.30
27.30
27.20
27.27
0.058
3.926
27. 10
27.20
27.40
27.23
0 . 153
3.799
27.00
26.90
27.10
27. 00
0 . 100
2.909
27.30
27.40
27.50
27.40
0. 100
4.434
26.80
26.90
27.00
26.90
0. 100
2.528
26 . 38
26.58
26.41
26.46
0. 108
0.839
MPHS2MPG
26. 08
25.97
26. 19
26. 08
0. .1.08
26.44
26.24
26.16
26.28
0.144
0 .766
26 44
26.31
26.39
26.38
0 . 068
1. 162
26.27
26. 10
26.17
26.18
0 . 087
0.390
26 . 32
26 . 23
26 . 27
26.27
0 . 047
0 .746
26.35.
26.45
26.31
26.37
0.070
1 . 118
26.36
26.33
26. 17
26.29
0 . 105
0 .796
-------
i-r r*f M vr_i_ n\j t o i Hn i OUR n C.L.H i i un ounnr.K wr»
2E618D PONTIAC SUNBTRD
SITE
8.000
B. 000
8. 000
MEAN
STD.DEV.
i .000
1.000
1 .000
MFAN
STD.DEV.
% I) IFF
3 . 000
3 . 000
3. 000
MFAN
STD.DEV.
X DIFF
5. 000
5. 000
5. 000
MFAN
STD.DEV.
% DIFF
h . 0 0 0
6.000
h . 000
MEAN
STD.DEV
X DIFF
6. 000
6. 000
6.000
MEAN
STD . DF.V
X niFF
8.000
8. 000
8. 000
MEAN
STD.DEV
X DIFF
PHS1HC
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
-H .
0 .
0
0 .
0 .
0 .
10
0 .
0 .
0 .
0 .
0 .
-4.
0 .
0 .
0 .
0.
. 0 .
29
0 .
0 .
0 .
0 .
. 0 .
0 .
0 .
0 .
0 .
0 .
. 0 .
-3.
124
.137
156
139
016
120
130
130
127
006
H73
110
160
190
153
040
.31
ioo
160
140
133
031
077
,?.?0
140
180
180
040
.50
110
140
170
140
030
719
110
139
152
134
022
P37
PHS1.CO
4.
4.
5.
5.
0 .
4 .
4 .
4.
4.
0 .
-1?
5.
5.
6.
5.
0 .
10
4.
5.
5.
4.
0 .
_ *3
6.
4 .
7 .
6.
1 .
21
5.
4 .
6.
5.
0 .
6.
5.
4.
5.
5.
0.
4 .
550
912
583
015
524
230
530
480
413
161
.00
1.90
320
060
523
469 .
H.
500
140'
100
913
359
027
120
91 0
320
117
205
.97
160
640
270
357
833
813
002
992
794
263
460
939
PHSlNOx PHS1C02 PHS2HC
1.554
1 .566
1 .612
1 .577
0 .031
1.720
1 .760
1 .930
1.B03
0 .112
14 .33
1.830
1.790
1 .970
1 .863
0 . 095
18.13
i .790
1.840
1 .930
1.853
0.071
17.50 .
1 .840
1 .770
1 .960
1 .857
0 . 096
17.71
2.010
1.700
1 . 900
1 .870
0 .157
18.55
1.523
1 .563
1 .664
1 .583
0.073
0.380
1108.
1109.
1100.
1106.
5.173
1083.
1056.
1052.
1064.
17.29
-3. BOO
1084.
1076.
1072.
1077.
6.233
-?. . 558
1088.
1077.
1079.
1081 .
5.727
-2. 207
1109.
1067.
1107.
1094.
23.43
-1 . 022
1078.
1068.
1060.
1069.
9. 127
-3.343
1079.
1086.
1096.
1087.
8.320
-i .697
0 .287
0 .240
0 .266
0 .264
0 .024
0 .200
0.200
0 . 190
0 . 197
0 .006
-25.60
0 .170
0 .220
0.220
0.203
0 .029
-23 . 08
0 .220
0 .240
0.210
0 .223
0 .015
-15.51
0 .260
0 .260
0 .280
0 .267
0 .012
0 .883
0 .220
0.2?0
0.230
0.223
0 .006
-15.51
0 .260
0.241
0 .247
0.249
0.010
-5.675
PHS2CO
7.
6.
6.
6.
0 .
5.
5.
5.
5.
0 .
-21
4 .
5.
6.
5.
0.
-19
5.
6.
6.
6.
0 .
-10
6.
6.
7.
6.
0 .
1 .
6.
6.
6.
6.
0 .
-6.
6.
5.
6.
6.
0 .
-6.
606
114
838
853
746
060
800
350
403
373
.15
750
730
030
503
669
.69
450
840
.170
153
695
.21
130
950
830
970
850
712
360
080
790
410
358
460
934
681
642
419
656
3?B
PHR2NDx PHr.2C02
1
1
2
1
0
?
1
2
2
0
5
2.
1
1
1
0
-1
1 .
2
2
2
0 .
6
p
1 !
2
2.
0 .
8
2
2.
2
p
0
6
2.
1.
1
1
0.
0 .
.781
.974
. 044
.933
136
. 000
.980
. 130
.037
.081 -
.363
070
.870
.800
.913
. 140
. 017
.780
. 160
.240
. 060
246
570
080
91:10
.210
090
115
122
.020
020
120
. 053
.058
.225
027
.815
.998
947
115
707
12.97 .
1300 .
.1.285.
1294.
7.900
1253.
1247.
1250.
1250 .
2.B90
-3.408
1.267.
1254.
1245.
1255.
11 .30
-3. 001
1260.
1267.
1267.
1265.
3.904
-2 . ?7B
1261 .
1.256 .
1.259.
1259.
2. 193
-2.734
1280.
1262.
1259.
1267.
11 .02
-2.102
1287.
1278.
1286.
12.R4 .
4.782
-0 .798
Table A-3
BAROM
96.70
96.69
96.63
96.67
0 . 038
97.87
97.87
97.87
97.87
0.000
1 .238
98.24
98.20
98.20
98.21
0. 023
1 .593
98.24
98.20
98.20
98.21
0 . 023
1 .593
98 . 78
90 . 75
98.7.1
98.75
0. 035
2. 145
98.27
98.20
98. 17
98.21
0.051
1.593
97.62
97 .60
97.56
97.59
0.031
0 . 952
HUMID
50 .45
50 .49
50 . 17
50 .37
0. 174
54. 00
54. 00
54.60
54.20
0 .346
7.604
47 . 10
46.40
46.60
46.70
0.361
-7.286
48.60
43.90
49. 10
48 . 87
0 .252
-2.985
50 .60
49.80
48. 00
49.47
1 .332
-1 .793
49.90
49.50
46.80
48.73
1 .686
-3.?49
48.98
48.99
49.35
49. 11
0 .211
-2.508
TESTEMP
77. 00
77.00
77. 00
77.00
75. 10
75.20
75.30
75.20
0. 1.00
-2 . 338
76.50
76.50
76.20
76.40
0. 173
-0.779
74.60
74.90
74.80
74.77
0. 153
-2.900
74.80
74.40
74.30
74.50
0 .265
-3.247
75.90
75.80
7S.30
75.67
0.321
-1 .732.
77.00
76.50
77. 00
76 . 83
0.289
-0 .216
-------
EPA/M-VEl. HOT START CORRELATION - SUMMER ' B5
2E61BD PONTIAC SIJNBIRD
Table A-4
SITE
8.000
8 . 0 0 0
B. 000
MEAN
STD.DEV
1 . 000
1.000
t . 000
MEAN
STD.DEV
7. DIFF
3.000
3. 000
3.000
MEAN
STD . DEV
7. DIFF
5. 000
5.000
5.000
MEAN
STD. DEW
7. DIFF
6 . 000
6 . 000
6.000
MEAN
STD.DEV
7. DIFF
6. 000
6 . 000
6. 000
MEAN
STD . DEV
7. DIFF
8. 000
8. 000
8. 000
MEAN
STD.DEV
7. DIFF
PH1PTORQ PHJNTORQ PH2PTORO PH2NTORQ POS/Hpl NEG/Hpl POS/Hp2 NEG/HpP PHSiDIST PHS2DIST ROLL/Ftl ROLL/Ft2
4,769.
1332.
4330 .
4310.
. 36.04
4261 .
4 2 82 .
4270 .
427R.
. 15.30
-0 .749
4284.
43B5.
438V.
4353 .
. 59.42
0 .9BB
4297.
4404 .
4326.
4342.
. 55.22
0 . 742
4254.
4338.
4359 .
4317.
. 55 . 64
0 . 157
4255.
4249.
4292.
4265.
. 23 . 09
-1 . 044
4213.
4259 .
4305.
4259.
.45.90
-1 . 182
2151 .
2126.
2133.
2136.
12.85
2130 .
20CI8.
2059.
2092.
35.62
-2.064
2090 .
2132.
2112.
21 1J .
21.31
-1 . 170
2060.
2065. '
2093.
2072.
18.00
-3 . 999
21.26.
2105.
2.1.17.
2116.
10.41
-0 .955
2106.
2092.
2174.
2124.
43. 99
-0 .590
2179.
2212.
2188.
2193.
16.86
2.645
6686.
6713.
6732.
6710 .
2.2 . 96
6582 .
6570 .
6561.
6571 .
10 .40
-2. 072
6738.
6748.
6715.
6734.
16.92
0 .352
6731 .
6757.
6693.
6727.
31.77
0 .253
6650 .
6680 .
6723 .
6685.
36.56
-0 . 379
6616.
6557 .
6597.
6590 .
30.18
-1 .792
6577.
6605.
6646.
6609.
34 . 52
-1 .503
3739.
3785.
3759.
3761 .
23.02
3697.
3730 .
36B2 .
3703.
24. 18
-1 .532
3682.
3735.
3693.
3703.
27.65
-1 .524
362.3 .
3713.
3693 .
3676.
47.08
-2 . 248
3730.
3684.
3754.
3722.
35.62
-1 . 025
3609
3724.
3675.
3670.
57.48
-2. 426
3867.
3791 .
3799 .
3817.
41.91
1 .549
2629.
2675.
2689.
2665.
31 .25
2697.
2711 .
2699.
2702.
7.814
1 .424
2706.
2783.
278B.
2759.
45.72
3.542
2757.
2770.
2750 .
2746 .
2.6 . 95
3.042
2717.
2774.
2810 .
2767.
46.62
3.B49
2703.
2672 .
2720 .
2698.
24.61
1.261
2570.
2627.
2666.
2621.
47.94
-1.637
B89.7
886 . 2
888 . 7
88B.2
1 .803
787.4
785 . 1
773. a
781 .8
7.736
-11 .98
789.5
804.4
792.9
795.6
7.808
-10 .43
759.7
776.9
787. 0
775.2
14.72
-12.72
800 .8
800 . 0
BIB. 2
806.3
10 .28
-9.2)7
778.9
789.4
809. 4
792.6
15.49
-10 .77
900 .2
892.5
902.7
898.5
5.316
1 . 156
2508.
2521.
2527.
2519.
9.805
2546.
2528.
2503.
2526.
21 .57
0 . 282
2604.
2633.
2598 .
2612.
18.49
3.679
2593 .
2610 .
2602.
2.602.
8 .402.
3.286
2586 .
2600 .
2650 .
2612.
34 . 14
3 . 692.
2564.
2524.
2540.
2543.
20 .44
0 .941
2461 .
2479.
2500 .
2480.
19.91
-1 .543
1113.
1130 .
1. 1 1 4 .
1119.
9.535
1021 .
1011 .
994 .4
1009.
13.35
-9.870
1020 .
1054 .
1029.
1034.
17.36
-7 . 592
982. 0
1018.
1024.
1 008.
22 . 77
-7 . 927
999.3
1 010.
1040 .
1017.
2.1 .24
-7. 167
987.6
1.029.
1021 .
1012.
21.83
-9.543
1133.
1136.
1139.
1136.
3. 100
1 .474
3.596
3.592
3 . 589
3 . 592
0 . 004
3.587
3 . 562
3.550
3.566
0.019
-I) .724
3.565
3 563
3 . 579
3 . 569
0 . 007
-I) .650
3 . 57 1
3 . 558
3.567
3.565
0 . 007
-0 .752
3.621
3.612
3.647
3 627
0 . 018
0 . 956
3.607
3.575
3.571
3 . 5B4
0 . 020
-0 . 223
3.594
3.595
3.598
3.596
0.002"
0.093
3 . 861
3.864
3.863
3 . 863
0 . 002
3.878
3 . 869
3 . 863
3.870
0 . 008
0 . 190
3.897
3.881
3 . 883
3.887
0 . 009
0 .630
3 . 867
3 . 879
3 . 899
3 . 882
0 . 016
0 .492
3.910
3.9.13
3.946
3.923
0 . 020
1 . 562
3.895
3.866
3.862
3.874
0 . 018
0 .302
3.865
3.861
3 . 862
3.863
0.002
0.000
18786
18772
18757
1B772
14.65
18894
18761
18692
18782
103. 1
0 . 057
18752
18733
18815
18767
43. 14
-0 . 026
18784
18711
18757
18751 .
37 . 34
-0 . 1 07
17113
17062
19252
19142
98. 15
1 .976
19010
18839
18817
18888
105.8
0.623
10756
18761
18796
18771
21 .73
-0 . 003
20290
20301
20295
20295
5.735
20462
20431
20384
20426
39.39
0.643
20549
20467
20471
20495
46.30
0 . 786
20390
20449
20557
20465
84.52
0.837
20662
20679
20850
2.0730
104 . 1
2.143
20557
20404
20382
20448
95.49
0.752
20286
20253
20274
20271
16.65
-0 .119
-------
Q.
o
o
-J
UJ
D
U_
Q.
21
O
o
CL
h-
29
28.5^
28-
27.5-
27"
26.5
EPA/M-VEL CORRELATION - SUMMER '85
PONTIAC SUNBIRD 2E618D - HOT START
Figure A- /
97 74F
0.5X
A C.B.
A MTR.
t Dlff
C.B. - MTR.
MTR.
X 100
I I | \ \ I I I I I I I I I I I I I I 1 I I I I
0 t 23456 7 8 9 I 0 It t 2 1 3 1 4 1 5 1 6 1 7 t 8 1 92021 22232425
M-VEL
SITE 8
EPA
"YflO 1
EPA
DYNO 3
EPA
DYNO 5
EPA
OYNO 6
EPA
DYNO 6/2
FMTEL
SITE 8
TEST SEQUENCE NO.
JRC
24JL85
-------
CD
0.
\
2
O
O
-J
UJ
X
a.
EPA/M-VEL CORRELATION - SUMMER '85
PONTIAC SUNBIRD 2E618D - HOT START
Figure A" 2.
29.5"
29-
28.5^
28-
27.5
0.4X
0.4X 0.07X
C.B.
KTR
X D1ff - C'B- ' HTR- X TOO
HTK
i i i i i i i i r I i i i i I i r i i i I I i i
0 123 A 5 6 7 8 9 IQM 12 1 3 1 4 1 51 6 I 7 1 8 1 92021 22232425
i j | =-j ^ | f =| r 11 11 i
M-VEL
SITE 8
EPA
OYNO 1
EPA EPA EPA EPA M-VEL
OYNO 3 DYNO 5 DYNO 6 DYNO 6/2 SITE 8
TEST SEQUENCE NO.
JRC
24JL85
-------
CD
CL
\
Z
o
o
I
LJ
ID
u.
Cvl
V)
T.
Q_
EPA/M-VEL CORRELATION - SUMMER '85
PONTIAC SUNBIRD 2E618D - HOT START Figure A"3
1 1 I I I I I I I I I I I I I I I l I I I l I I
8 1 23456789181! 12131415161718192821 22232425
M-VEL
SITE 8
EPA
DYNO 1
EPA
DYNO 3
EPA
DYNO 5
EPA
DYNO 6
EPA
DYNO 6/2
i r
M-VEL
SITE 8
JRC
24JL85
TEST SEQUENCE NO.
-------
F
T
P
C
8
f
U
E
L
C
0
N
/
n
p
G
EPA/H-VEL CORRELATION - SUMMER '89
PONTIAC SUHBIRD 2E618D - HOT START
Figure A-
29
28.5-
28-
27.3-
27-
26.5
nc
RUEL EPA EPA EPA EPA EPA MUEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
813566/28
JRC
24JL93
-------
F
T
P
H
E
T
E
R
F
U
E
L
C
0
N
/
H
P
G
29
EPA/M-UEL CORRELATION - SUMMER '85
PONTIAC SUNBIRD 2E618D - HOT START
Figure A"
28.3-
28-
27.5-
27-
26.5
HUEL EPA EPA EPA EPA
8ITE DYNO DYNO DYNO DVNO
8 1 336
EPA HUEL
DYNO SITE
6/2 8
JRC
24JL83
-------
P
H
S
F
U
E
L
C
0
N
P
G
38
EPA/H-UEL CORRELATION - SUHHER '85
PONTIAC SUNBIRD 2E618D - HOT START
Figure
29.3-
29-
'--$>--
28.5-
28-
27.3
HVEL EPA EPA EPA EPA EPA MUEL
SITE DYHO DYNO DYNO DYNO DYNO SITE
813966/28
JRC
24JL83
-------
M
E
T
E
R
P
H
S
F
U
E
L
C
0
N
/
H
P
G
38
EPA/M-VEL CORRELATION - SUMMER '83
PONTIAC SUHBIRD 2E618D - HOT START
Figure Ar "7
29.3-
29-
28.5-
-
To
28
27.5
MUEL EPA EPA EPA EPA
SITE DYHO DYNO DYNO DYNO
8 1 35 6
EPA MUEL
DYNO SITE
6/2 8
JRC
24JL85
-------
p
H
S
F
U
E
L
C
0
H
P
G
EPA/M-UEL CORRELATION - SUMMER '83
PONTIAC SUMBIRD 2E616D - HOT START
Figure A" 6
27.3
27-
26.5-
26-
23.5
29
HUEL EPA EPA EPA EPA EPtt HUEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
8 1 33 6 6/28
JRC
24JL83
-------
N
E
T
E
R
P
H
S
F
U
E
L
C
0
N
/
N
P
G
EPA/H-VEL CORRELATION - SUMMER '83
PONTIAC SUHBIRD 2E618D - HOT START
Figure
27.3
27-
26.3-
26-
23.5-
29
flUEL EPA EPA
SITE DYHO DYNO
8 1 3
EPA EPA
DYHO DYNO
3 6
EPA HUEL
DYHO SITE
6/2 8
JRC
24JL85
-------
0.875
EPA/H-UEL CORRELATION - SUMMER '83
POHTIAC SUMBIRD 2E618D - HOT START
8.8S5-
H
C
C
a
x
H
I
8.855H
0.645-
8.835-
8.
MUEL EPA EPA EPA EPA EPA MUEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
8 1 33 6 6/28
JRC
24JL83
-------
C
0
G
H
/
M
I
2.1
1.9-
1.7-
1.5-
1.3-
1.1
EPA/M-UEL CORRELATION - SUIWER '83
PONTIAC SUNBIRD 2E618D - HOT START
Figure A"
__ a -* IflX-QEJtEfll
QEJfEftl
MUEL EPA EPA
SITE DYNO DYNO
8 1 3
EPA EPA
DYNO DYNO
5 6
EPA NMEL
DYNO SITE
6/2 8
JRC
24JL83
-------
N
0
x
G
n
s
H
I
0.6
EPA/M-UEL CORRELATION - SUMMER '83
PONTIAC 3UNBIRD 2E618D - HOT START Figure A-12
8.55-
8.52-
8.48-
-..}-,
8.44-
0.4
MUEL EPA EPA EPA EPA EPA MUEL
SITE DYNO DYNO DYNQ DYNO DYNO SITE
8 i 356 6/28
JRC
24JL83
-------
338
EPA/M-VEL CORRELATION - SUMMER '85
PONTIAC SUNBIRD 2E618D - HOT START Fi^re A"13
325-
c
0
2
G
H
/
N
I
329-
,J1E0*
315-
310-
p-
305
MUEL EPA EPA
SITE DYNO DYHO
8 1 3
EPA EPA
DYNO DYHO
3 6
EPA MUEL
DYNO SITE
6/2 8
JRC
24JL85
-------
EPA/H-VEL CORRELATION - SUMMER '85
PONTIAC 3UNBIRD 2E618D - HOT START
4438
Figure A-
p
H
S
P
0
S
T
0
R
Q
4339-
4239-
423*
_. -V 1 H iX.QFJlEfi!
HUEL EPA EPA EPA EPA EPA HUEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
8 1 3 5 66/28
JRC
24JL89
-------
2238
EPA/H-UEL CORRELATION - SUHHER '83
PONTIAC SUHBIRD 2E618D - HOT START
Figure A~ /5"
P
H
S
N
E
G
T
0
R
Q
2209-
2158-
2100-
QEJlEfci
LJUJ
2838-
2G90
HUEL EPA EPA EPA EPA
SITE DYNO DYNO DYNO DYNO
8 13 3 6
EPA HUEL
DYNO SITE
8
JRC
24JL83
-------
p
H
S
P
0
S
T
0
R
0
6S09
EPA/H-UEL CORRELATION - SUMMER "85
PONTIAC SUNBIRO 2E61CD - HOT START
A-/6
r~
....$,.
HUEL EPA EPA EPA EPA EPA MUEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
813966/28
JRC
24JL85
-------
p
H
S
N
E
C
T
0
R
Q
3909
EPA/M-UEL CORRELATION - SUMMER '83
PONTIAC SUHBIRD 2E618D - HOT START Figure
3840-
3788-
3728-
3S68-
3S8S
HUEL EPA EPA
SITE DYHO DYNO
8 1 3
EPA EPA
DYNO DYNO
3 6
EPA HUEL
DYNO SITE
6/2 8
JRC
24JL8S
-------
s
1
D
I
S
T
E
S
EPA/M-VEL CORRELATION - SUMMER '83
PONTIAC SUNBIRD 2E618D - HOT START
Figure A"'5
3.65
3.62-
3.39-
3.56-
3.53-
3.3
MUEL EPA EPA EPA EPA EPA MUEL
SITE DYNO DYNQ DYNO DYNO DYNO SITE
813366/28
JRC
24JL85
-------
p
H
8
D
I
S
T
I
L
E
S
3.93
EPA/M-UEL CORRELATION - SUMMER '83
PONTIAC SUNBIRD 2E618D - HOT START
Figure ' A-
3.92-
3.89-
3.86-
3.83-
3.8
HVEL EPA EPA EPA EPA EPA MVEL
SITE DYNO DYNO DYNO DYNO DYNO SITE
8 1 33 6 6/28
JRC
24JL83
------- |