United States
Environmental Protection
Agency
Region 10
1200 Sixth Avenue
Seattle WA 98101
Alaska
Idaho
Oregon
Washingtcr
Environmental Services Division
July, 1983
Commencement Bay
Deep Water Sediment
Investigation
Tacoma, Washington
September 15-17, 1982
-------
COMMENCEMENT BAY DEEP WATER SEDIMENT INVESTIGATION
TACOMA, WASHINGTON
SEPTEMBER 15 - 17, 1982
James Hileman
Mike Matta
U.S. ENVIRONMENTAL PROTECTION AGENCY, 1200 SIXTH AVENUE
SEATTLE, WASHINGTON, 98101
JULY 1983
-------
DISCLAIMER
This report has been reviewed by the U. S. Environmental Protection
Agency, and approved for public release. Approval does not signify that
the contents necessarily reflect the views or policies of the U. S.
Environmental Protection Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
ii
-------
TABLE OF CONTENTS
Disclaimer
Table of Contents
List of Figures
I. INTRODUCTION 1
II. STUDY SCOPE 1
III. SAMPLING AND ANALYTICAL PROCEDURES 1
IV. SUMMARY OF ANALYTICAL METHODS 4
V. RESULTS 5
APPENDIX A - COMPLETE LISTING OF CHEMICAL CONCENTRATIONS INCLUDING
THE MINIMUM QUANTIFIABLE LIMITS
APPENDIX B - COMPLETE LISTING OF CHEMICAL CONCENTRATIONS ON A DRY WEIGHT
BASIS EXCLUDING THOSE BELOW THE MINIMUM QUANTIFIABLE LIMIT
APPENDIX C - DEPTH, PERCENT SOLIDS, SEDIMENT DESCRIPTION AND LOCATION
APPENDIX D - AREA MAPS SHOWING CONCENTRATION AND DISTRIBUTION INFORMATION
BY CHEMICAL
APPENDIX E - NOAA PUGET SOUND AREA SAMPLING SITES AND SUMMARY OF
COMPARISON DATA
m
-------
LIST OF FIGURES
Page
FIGURE 1: LOCATION MAP 2
FIGURE 2: STATION LOCATION MAP 3
IV
-------
INTRODUCTION
Commencement Bay is located at the southern end of the Main Basin of
Puget Sound (Figure 1). It serves as a natural deep water port for the
City of Tacoma. Located along the southeastern shore are eight
commerical waterways, one of which is the Puyallup River, the principal
source of fresh water to the Bay. The nearshore land areas are heavily
industrialized. Serious concerns have been raised about the effects of
current and past waste disposal practices and their effects on the marine
environment. For several years, investigations to determine the sources,
distribution, fate and effects of toxic wastes have been conducted by the
National Oceanic and Atmospheric Administration (NOAA), the Washington
State Department of Ecology (WDOE), the Environmental Protection Agency
(EPA), and other agencies. These studies have documented elevated levels
of contaminants, toxicity to bottom-dwelling biological organisms,
increased incidence of diseased fish, and accumulation of some
contaminants in edible portions of fish and shellfish.
Most of the investigations have focused on the shallower waters near the
shore and the industrilized waterways. A limited amount of work was done
in the deeper, central portions of the bay. Concerns have been raised
regarding the levels and distribution of contaminants in the deepwater
areas by records of waste dumping at designated sites, by the use of the
Bay as a disposal site for dredge spoil, and by the possibility of the
migration of contaminants from the shallow areas to deeper water- During
the period of September 15 to 17, 1982, 46 sediments were collected from
the deepwater portions of Commencement Bay. This study was conducted to
obtain additional data on the distribution of contaminants in the deep
water bottom sediments. The results are presented as a data report to
complement evaluations of contamination problems in the Bay.
STUDY SCOPE
The study covered the entire area inside of a line from Point Defiance to
Dash Point. The survey area and locations of stations are shown in
Figure 2. Within the area, sample locations were selected in two ways.
One set of samples was taken on a rectangular grid pattern with 1/2 mile
spacing, ana a second set of samples was taken at discretionary locations
chosen from acoustic sub-bottom profiling information. For the purpose
of this study deep water was defined as water depth of 100 feet or
greater.
SAMPLING AND ANALYTICAL PROCEDURES
SAMPLING PROCEDURE
Prior to obtaining sediments samples, 3.5 kHz acoustic sub-bottom
tracklines were run across the Bay to determine the thickness of bottom
sediment and to locate possible dumpsites or other areas of high sediment
accumulation. A radar ranging system was used for navigational control.
Navigational accuracy was +_ 2 meters to a distance of 40 nautical miles.
One sediment sample was collected per station using a .1 meter Van Veen
grab sampler. The sediment (approximately the top 1C cm.), not in direct
contact with the interior of the sampler was transferred to the sample
containers with stainless steel spatulas.
-------
-2-
_CANADA _
UNITED STATES
PORT
SUSAN
VANCOUVER ISLAND
>SAN
/JUAN
/ISLANDS
DISCOVERY BAY
PORT' MADISON
WASHINGTON
HOOD CANAL
CASE INLET
SEATTLE
TAG O MA
BUDD INL£T-
COMMENCEMEN T B'AY
FIGURE 1
LOCATION MAP
-------
STATION LOCATION MAP
FIGURE 2
-------
-4-
The grab sampler was thoroughly rinsed with sea water between stations
and the spatulas were rinsed with sea water and deionized water between
samples. The samples were then sealed in pint glass containers with
teflon lined lids, iced and shipped each day to the EPA Lab located at
Manchester, Washington.
Summary of Analytical Methods
Procedures for organic compounds. Samples of thoroughly mixed wet
sediments were extracted with acetone using a Soxhlet extractor. After
extraction, the extract was concentrated, added to organic free water and
extracted with methylene chloride. This extraction was performed at both
pH 6-8 and pH 2. The combined extracts were dried, concentrated and
divided for pesticide/chlorinated hydrocarbon analysis and semivolatile
compound analysis.
The fractions used for pesticide, polychlorlnated biphenyls (PCBs), (EPA
METHOD 608), and polychlorlnated butadienes (PCBDS)(EPA METHOD 612)
analyses were further cleaned on a Florisil column; pentane was used to
elute the PCBDS, PCBs and some of the chlorinated pesticide compounds.
Mixtures of diethylether/petroleum ether were used to elute the other
pesticides. These_fractions were analyzed by gas chrpm.atogr.aQhv/electron
capture_with dual column confirmation. When the concentrations of
chlorinated sp^cTeTli/eT^luTfTcienti'y high, confirmation was obtained by
a Halogen-specific detector and/or fused silica capillary
chromatography/mass spectrometry (FSCC/MS). The semi-volatile portion
was analyzed without further cleanup by FSCC/MS. Volatile organic
compounds were analyzed by the gas purge/GC/MS procedure.
Procedures for metals. Samples of dry sediment were digested with a
mixture of nitric acid and hydrogen peroxide until the organic matter was
destroyed. The metals were determined by Atomic Absorption Spectrometrv
using a graphite furnace or flame following EPA methods. Mercury was
determined on a wet sample by manual cold vapor technique, similar to
that described by EPA METHOD 245.5.
Procedures for phenolics and cyanides. Phenolics and cyanides were
distilled, and the distillate analyzed by automated spectrophotometery
following EPA METHODS.
Procedures for solids (percent). Samples were dried at 103-105 degrees C
according to EPA METHODS.
-------
-5-
RESULTS
All of the sediment samples collected were analyzed for inorganic and
organic chemicals. The concentration of selected chemicals are reported
in Appendices A and B. Appendix A contains a complete listing of all
results including the minimum quantifiable limits for chemicals that were
not detected. Appendix B contains the same data as Appendix A with the
exclusion of those below the minimum quantifiable limits. All data
displayed on a wet weight basis in Appendix A were converted to a dry
weight basis in Appendix B.
Appendix C contains the depth, percent solids and a qualitative
description of the sediment found at each station. Area maps showing
concentration and distribution information by chemical are contained in
Appendix D. The Appendix D maps also include average levels of
contaminants (based upon two to four stations) observed at other
locations in Puget Sound for comparison. These data areas were obtained
from the NOAA Technical Memorandum OMPA-2. Chemical levels found in the
sediment of the Hylebos Waterway near the llth Street bridge are also
presented in Appendix D.
Appendix E contains a loacation map and summary of NOAA data collected
from various reference areas within Puget Sound.
In the following discussion, Commencement Bay study results are presented
for the specific contaminants which were detected. Background
information on these chemicals and compounds are also presented. All of
the background material was extracted from either the NOAA Technical
Memorandum OMPA-20, "Effects, Pathways, Processes, And Transformations Of
Puget Sound Contaminants Of Concern", by Konasewich et al., (1982) or the
"Draft Report No. 1, Water Quality Management Program For Puget Sound,
EPA Work Assignment No. 2 ", by Jones & Stokes Associates, Inc. et al.,
1983.
ACENAPHTHENE (See Figure D-3)
Levels of acenaphthene in the surface sediments of Commencement Bay
ranged from 4.7 to 42 parts per billion (ppb) with an average of JM .JL.
The highest levels of acenaphthene were found at station #39 and #40
(32.7 and 42 ppb respectively). A level of 23.5 ppb was detected in the
Hylebos llth Street Bridge sediment station.
Background (Konasewich et al., 1982)
Acenaphthene was found in most sediment samples of Puget Sound at levels
from 0.1 to 1,300 ug/kg(8rown, 1979,c; Seattle METRO, 1980). It was
generally detected at low levels in biota. AcejiapJi^enj2jT^^
affect_j3lants_ throughimproper nuclear d i vi sTon, a7id~lnTc1^orglil^lmTlfia7^
be similarly affecteolTPA^ T97BT. Acute~toxTcity determination,
-------
-6-
although limited in number, have shown 96-hour LC50 values of 2,230 ug/L
for sheepshead minnow and 970 ug/L for mysid shrimp (EPA, 1978). The
potential effects of acenaphthene on Puget Sound biota require additional
assessment.
ACENAPHTHALENE (SEE Figure D-4)
Levels of acenaphthalene in the surface sediments of Commencement Bay
ranged from S.Lto 65.4 ppb with an average of TJLJLpj>b. The highest
level of acenaphthalene was detected at station #39 (65.4 ppb). A level
of 75.8 ppb was detected in the Hylebos llth Street Bridge sediment
sample.
Background (Konasewich et al., 1982)
Acenaphthalene was found in sediment samples throughout Puget Sound at
concentration from 0.1 to 310 ug/kg. Levels in biota were often
generally less than detection limits; however, detectable levels were
reported, particularly in crabs (Malins et al., 1980). Derivatives such
as nitro-acenaphthalene are known to be carcinogenic. An evaluation of
this compound by the International Joint Commission (1980) designated
this compound nj)tJ:p_^e^jLcjoj3ge^^ Similar evaluations
of the effects of acenaphthalene on aquatic biota have not been
undertaken.
Fluoranthene (See Figure D-5)
Levels of fluoranthene in the surface sediments of Commencement Bay
ranged from 4__to_J_8JL_p4)b (dry weight basis) with an average of 73.5 ppb.
The highest levels of fluoranthene were found at station #33, #35 and #39
(143, 162 and 181 ppb respectively). A level of 704 ppb was detected in
the Hylebos llth Street Bridge sediment sample.
Background (Konasewich et al., 1982)
Fluoranthene has been specified as a potent cocarcinogen in the EPA
(1978) Ambient Water Quality Criteria Document.
The concentrations of fluoranthenes were generally less than detection
limits in most biota samples from Puget Sound; however, the levels in
s^djmejnls_^ej^_j25l!^!nely _hjj.h- Jn many samples, for example,
f 1 uora nthe ne s a nd be rizoTl uora n the ne s were the most dominant Polynuclear
Aromatic Hydrocarbons (PAHs).
Both natural and man-made sources appear to be responsible for
fluoranthene levels in the environment. Man-made sourcjts appear to be
shipping and haxbj>r_j>ij__djjcjiaj^ges and industrial
___
_ ,
and industries usingj^ghj^empej^ure_ju^acej5. Borneff and Kunte (1965)
indicated that rojyijnunoff carTbe a source of fluoranthene as a result of
bituminous road sUrfacesT^car tire wear, and vehicle exhausts.
-------
-7-
The EPA review of fluoranthene levels 1n discharges indicates that timber
products processing is a significant source of fluoranthenes.
Konasewjch et al. (1982) reached the following general conclusions
concerning fluoranthenes within Puget Sound.
1. The fluoranthenes are the most predominant PAHs in terms of
concentration within Puget Sound.
2. Despite their high partition coefficients, fluoranthene
concentrations in biota are in most cases low, indicative of
possible rapid metabolism.
3. Sorption is an important fate process.
4. Microbial biodegradation of fluoranthenes and benzofluoranthenes
is probably minimal within the marine environment.
NAPHTHALENE (See Figure D-6)
Levels of naphthalene in the surface sediments of Commencement Bay ranged
from 4 to 186 ppb with an average of 52 ppb. The highest level of
naphthalene was detected at station #40 (186 ppb). A level of 63.5 ppb
was detected in the Hylebos llth Street Bridge sediment sample.
Background (Konasewich et al., 1982)
Naphthalene is the most abundant single constituent of coal tar. It is
used as an intermediate in production of dye compounds and in the
formulation of solvents, lubricants, and motor fuels. One of its
principal uses is as a feedstock for synthesis of phthalate anhydride
which is subsequently used for the manufacture of alkyd and polyester
resins, dyes, Pharmaceuticals and insecticides.
Naphthalene is one of the EPA's 129 Priority Pollutants. It is
moderately toxic to aquatic biota. However, the alkylated forms of
naphthalene and metabolites of naphthalene are much more toxic to aquatic
biota. Naphthalene is currently being tested as a carcinogen.
Naphthalene, its derivatives and its metabolites are, therefore,
considered to be of concern to Puget Sound.
Naphthalene has a rapid flux rate to sediments; concentrations as low as
2ppm in sediments have been suggested to be able to restrict many species
of biota.
Konasewich et al. (1982) reached the following general conclusions
concerning naphthalenes within Puget Sound.
1. On the basis of the literature review, naphthalene appears to be
readily biodegraded in water and sediments. The high
concentrations of naphthalene in sediments of Elliott and
Commencement Bays implies that there are constant inputs of
naphthalenes to these areas.
-------
-8-
2. The prevalence of naphthalenes within Puget Sound may have an
effect on the fauna. Sublethal effects of low levels of
naphthalenes are possible for species such as the ctenophore,
PIeurobrachia pileus, zoea of the crab, Cancer magister, and
various stages of the spot shrimp, Pandalus platyceros.
3. Of particular concern are the effects of metabolites of the
naphthalenes. Some have been shown to be extremely toxic and
others have been suggested as possible carcinogens.
4. Fecal pellets of zooplankton furnish a primary mode of
introduction PAHs to sediments.
PHTHALATE ACID ESTERS (See Figure D-7 & D-8)
Five phthalate acid esters (PAEs) were detected in the surface sediments
of Commencement Bay. Bis-(2-ethyl hexyl) phthalate (DEHP) and di-n-butyl
phthalate (DBP) were found at nearly all of the sampled stations.
Levels of DEHP ranged from 36 to 34,853 ppb with an average of 1,372
ppb. The highest levels of DEHP were found at stations #3, #4. #2, #21
and #6 (1,364, 2,372, 5,382, 6,358 and 34,853 ppb respectively). A level
of 271 ppb was detected in the Hylebos llth Street Bridge sediment
station.
Levels of DBP ranged from 29 to 984 ppb with an average of 211 ppb. DBP
in the Hylebos llth Street Bridge sediment sample was less than 3 ppb
(minimum quantifiable level).
Background (Konasewich et a!., 1982)
Phthalate acid esters (PAEs) are used as plasticizers in the production
of polyvinyl chloride. Over 5x1O8 kilograms of PAEs are manufactured
annually in the United States. The high rate of production of PAEs and
the detection of PAEs in the freshwater and marine environments has
resulted in a significant amount of concern to environmental agencies.
In particular, there is concern about the sublethal effects to aquatic
biota at low PAE levels. In 1972 at a National Institute of
Environmental Health Science symposium, scientists concluded that PAEs
"do not appear to pose an imminent threat to human health" but that their
apparent widespread distribution in the environment raised questions
regarding the "possible subtle effects of persistent exposure" to those
compounds (Marx, 1972). As a result, phthalate acid esters have been
classified within the EPA's 129 Priority Pollutants List.
Phthalate esters have a variety of uses ranging from antifoam agents in
the paper industry to perfume vehicles in cosmetic production. However,
they are mainly used as plasticizers in the production of polyvinyl
chloride. Within some plastic formulations, PAEs can comprise up to 60%
of the total weight of plastic depending upon the degree of flexibility
or workability required. The market for PAEs is therefore, extremely
diversified, and PAEs are used in the automobile construction, clothing,
-------
-9-
home furnishings, medical, and packaging industries. Contamination of the
environment by PAEs may occur by discharge of effluents from such
industries, by incineration of plastics, or by leaching of PAE containing
materials from land disposal sites.
Konasewich et al. (1982) reached the following general conclusions
concerning PAEs within Puget Sound.
1. The concern for phthalate acid esters in the environment is a
result of the high production of the compounds and their
subsequent release into the environment. Considerable resources
are being utilized To determine the magnitude of dispersion of
the compounds within the environment. On the basis of the
literature, there is conflicting evidence as to whether
phthalate esters deserve the attention or perhaps the priority
they are receiving.
2. The major concern appears to be the possible chronic effects of
low concentrations of PAEs. In this instance, data are
unfortunately minimal, especially for marine species. If more
efforts could be placed to determine the chronic effects of PAEs
on aquatic biota, more appropriate assessments could be made of
the actual potential hazard, if any, that PAEs pose to the
environment.
3. Very high concentration of PAEs are required before acute toxic
effects on aquatic biota are observed.
4. Natural mixed bacteria populations appear to be capable of
degrading PAEs. Fish likewise appear to metabolize PAEs to
seemingly non toxic metabolites.
5. Elimination of PAEs from biota appears to occur readily.
6. Another concern, illustrated in this review, is that relevant
data are sometimes conflicting. For example, there appears to
be a discrepancy in observations about anaerobic decomposition
of PAEs. Significantly different bi concentration factors are
also reported.
FLUORENE (SEE Figure D-9)
Levels of fluorene in the surface sediments of Commencement Bay ranged
from 4.2 to 38 ppb with an average of 14.1 ppb. The highest levels of
fluorene were found at stations #39 and #4 (30.8 and 38 ppb
respectively). A level of 39.7 ppb was detected in the Hylebos llth
Street Bridge sediment sample.
Background (Konasewich et al., 1982)
There is no evidence for carcinogenicity of fluorene (NIOSH, 1979) and
aquatic toxicity data are minimal. Fluorene was found in most sediment
-------
-10-
samples at concentration from 0.4 to 2,400 ug/kg (Maiins et al., 1980;
Seattle METRO, 1980). Fluorene was not detected at quantifiable levels
in most samples of biota; however, Elliott Bay crab, shrimp, worms and
clams contained detectable quantities. Riley et al. (1980) detected
fluorene in two water samples from the Seattle and Tacoma areas (30 +- 8
and 3 +- 2 ng/L, respectively) and found between 0.01 to 0.07 mg/kg of
fluorene in suspended solids.
PYRENE (See Figure D-10)
Levels of pyrene in the surface sediments of Commencement Bay ranged from
5.1 to 212 ppb with an average of 93 ppb. The highest level of pyrene
was found at station #39 (212 ppb). A level of 776 ppb was detected in
the Hylebos llth Street Bridge sediment sample.
Background (Konasewich et al., 1982)
Pyrene itself has a higher partition coefficient and lower vapor pressure
than fluorene, phenanthrene, and anthracene. Callahan and Slimak (1979)
predicted that sorption to sediments and biodegradation would be the most
significant fate processes for pyrene. Bioaccumulated pyrene was assumed
to be susceptible to metabolism by biota.
In Puget Sound, pyrene was one of the more predominant PAHs found in
biota and sediments. Levels in Elliott Bay sediments varied from 20 to
11,000 ppb (dry weight), and levels in Commencement Bay sediments varied
from 20 to 10,000 ppb (Konasewich et al., 1982). Levels in fish livers
from Elliott Bay varied from less than 8 ppb to 570 ppb (dry weight), and
levels in worms, crab, shrimp, and clams from Elliott Bay varied from 20
to 1,600 ppb. Many fish livers contained less than detection values of
pyrene. This information indicates that sorption to sediments is a
significant fate process for pyrene. In most instances, fish appeared
more able to metabolize pyrene than other organisms.
BENZO(A)ANTHRACENE / CHRYSENE (See Figure D-ll)
Benzo(a)anthracene and chrysene are presented in this report as one value
due to resolution uncertainty in the analytical method.
Levels in the surface sediments of Commencement Bay ranged from 5.0 to
816 ppb with an average of 95 ppb. The highest levels of
benzo(a)anthracene/chrysene were found at stations #4 and #15 (255 and
816 ppb respectively). A level of 235 ppb was detected in the sediment
of the Hylebos llth Street Bridge sample.
Background (Konasewich et al., 1982)
Benzo(a)anthracene, 7-methyl benzo(a)anthracene and
dibenzol a,h)anthracene are listed in the tentative carcinogen list of the
Occupational Safety and Health Administration. All compounds (including
each isomer of methyl benzo(a)anthracene) are categorized as carcinogens
and/or neoplastigens in the NIOSH (1979) Registry of Toxic Effects of
Chemical Substances.
-------
-n-
Probable sources of this compound are engine exhaust, cigarette smoke,
coal-tar pitch, and soot and smoke of Industrial and domestic origin.
Environmental contamination of benzo(a)anthracene, for example, is
widespread. It has been detected in North American drinking waters at
levels from 1 to 23 ng/L (ppt) and in Industrial and municipal effluents
at levels from 25 to 10,360 ng/L (Radding et al., 1976).
Konasewich et al. (1982) reached the following general conclusions
concerning benzo(a)anthracene within Puget Sound.
1. On the basis of the literature review, the environmental
compartment most susceptible to contamination by
benzo(a)anthracene is the bottom sediment.
2. Benzo(a)anthracene bioaccumulates readily in biota; however, its
persistence on biota may be affected by metabolic processes.
3. Metabolites may be formed which may be as toxic and/or as
persistent as the parent compound itself.
4. Other fate processes do not appear to be significant, although
the degree of photochemical degradation in a large body of water
such as Puget Sound is uncertain.
5. The levels of the benzanthracenes in biota of Puget Sound are
higher than most other areas reported in the literature. The
persistence and widespread distribution of the compounds implies
a need for efforts to evaluate the "real" hazards of the
compounds to the environment.
Callahan and Slimak (1979) indicated that sorption and biodegradation are
important fate processes for chrysene. Dichlorochrysene will probably
bioaccumulate to a more appreciable degree than chrysene. Metabolism
within organisms will probably remain significant.
ANTHRACENE / PHENANTHRENE (See Figure D-12)
Anthracene and phenanthrene are presented in this report as one value due
to resolution uncertainty in the analytical method.
Levels in the surface sediment ranged from 4 to 620 ppb with an average
of 181 ppb. The highest level of anthracene / phenanthrene was found at
station # 40 (620 ppb). A level of 451 ppb was detected in the sediment
of the Hylebos llth Street Bridge sample.
Background (Konasewich et al., 1982)
Callahan and Slimak (1979) implied there is insufficient information in
the literature to permit assessment of the aquatic fate of anthracene.
Fate processes which were considered of possible significance were:
volatilization, sorption and movement via sediment, and biodegradation.
-------
-12-
Rapid metabolism of bioaccumulated anthracene was presumed. Elliott Bay
sediments contained from 3 to 2,400 ppb (dry weight) anthracene, and
sediments from Commencement Bay had 8 to 2,200 ppb anthracene (Maiins et
al., 1980). Anthracene was virtually absent in fish livers from Elliott
Bay, but present in crab, worms, shrimp, and clams at levels from 10 to
210 ppb. Similar results were observed for biota from Commencement Bay,
although fish livers did contain more frequent detections of anthracene.
In a review by Callahan and Slimak (1979), environmental fate data
specific for phenanthrene were sparse. Sorption and movement via
sediment and biodegradation were considered to be the important fate
processes. Biodegradation were considered to be the important fate
processes. Bioaccumulated phenanthrene was assumed to undergo rapid
metabolism. The significant fate processes are apparent from the data
provided by Malins et al., (1980) for Puget Sound. Phenanthrene
concentration in Puget Sound biota were generally low. Levels up to 0.51
ppm (dry weight) were found in worms and crab hepatopancreas from
Duwamish and Hylebos Waterways (Malins et al., 1980). Sediments from the
vicinity of Tacoma and Seattle Harbors had phenanthrene levels up to 7.3
ppm.
CHLORINATED BUTADIENES (See Figure D-13)
Chlorinated butadienes (CBD) were detected in all of the 45 sediment
samples obtained from Commencement Bay. Total CBDs (sum of tri, tetra,
penta and hexachlorobutadiene) ranged from below the minimum quantifiable
limit (1 ppb) to 1297 ppb with an average of 134 ppb. A level of 321 ppb
was detected at the llth Street Bridge station. The Highest levels of
total CBDs were found at stations #4, #5 and #6 (1297, 890 and 704 ppb
respectively). Of the four CBDs analyzed, tetrachlorobutadiene was the
primary compound found.
Background (Konasewich et al., 1982)
Chlorinated butadienes (CBD) are used or formed as by-products in a
number of industrial processes including the manufacture of
hexachlorobenzene and trichloroethylene. Hexachlorobutadiene affects
behavior and causes histological damage in aquatic life at very low
concentrations and is a known animal carcinogen. Hexachlorobutadiene is
one of the EPA's 129 Priority Pollutants. Data on toxicities of other
chlorobutadienes are limited, but toxicity is proportional to the degree
of chlorine substitution of butadienes, particularly those with five or
fewer chlorines are minimal. Generally, data on the less chlorinated
butadienes are restricted to the Russian literature. Chlorinated
butadienes have been detected in all compartments of the Puget Sound
ecosystem and are therefore chosen as compounds of concern.
Since carcinogenicity is known or suspected for butadiene molecules with
six chlorine atoms, it seems that molecules containing two to five
chlorine atoms should be considered as potential carcinogens in the
absence of data to the contrary. The LD50 data suggest that butadienes
with three to five chlorine atoms would have systematic toxicity
approaching that of HCBD.
-------
-13-
In one set of experiments in Puget Sound, concentrations of HCBD in
English sole muscle were 6-100 times less than concentrations in liver
(Malins et al., 1980). Analyses for chlorinated butadienes in other
biota showed that, in most cases, levels were nondetectable. However,
positive values included 9 ppb (ug/kg) in clams from Commencement Bay
Waterways, 60 ppb in clams from Hylebos Waterway, 200 ppb in shrimp from
Hylebos Waterway and 70 ppb in crab hepatopancreas from Hylebos
Waterway. Two samples of worms from Hylebos were found to have
concentrations from 40 to 360 ppb.
HCBD levels up to 2.4 ng/L have been measured in waters from Blair and
Hylebos Waterways (Riley et al., 1980). These levels were associated
with up to 147.5 ppb (dry weight) in suspended matter/water concentration
ratios for HCBD were generally about four orders of magnitude.
Distribution analyses showed that relative concentrations of HCBD between
suspended matter and water varied from 0:100 to 70:30 (suspended
matter .-water).
The tri-, tetra-, and pentachlorobutadienes were generally detected at
greater levels than HCBD in Puget Sound sediments. Considering that these
lower chlorobutadienes would be more water soluble suggests that they may
also be present in the water at much higher levels than HCBD.
Hexachlorobutadiene is thought to be present in water as a significant
by-product of production wastes from the manufacture of hexachlorobenzene
(Laseter et al., 1976), tetrachloroethylene, trichloroethylene, and
tetrachloromethane (EPA, 1975). It is used as a solvent for natural and
synthetic rubber and other polymers, as a heat transfer liquid,
transformer liquid and hydraulic fluid, and as a washing liquor for
removing hydrocarbons (Verschueren, 1977).
The largest domestic users of HCBD are chlorine producers, which use it
to recover chlorine from "snift" gas which is cleaned by passage through
HCBD (EPA, 1978). It is known to be extensively used in Europe as a
vineyard aphicide.
No information is available on sources of butadienes containing two to
five chlorine atoms per molecule, although they may derive from the same
sources as HCBD by-products. The compound 2-chloro-l,3-butadiene
(Chloroprene) is used in the manufacture of the polymer Neoprene. The
sources of the chlorinated butadienes in Puget Sound are uncertain, and
will require identification.
Konasewich et al. (1982) reached the following general conclusions
concerning chlorobutadiene within Puget Sound.
1. There is high probability of chronic effects in biota which are
exposed to very low levels of HCBD.
2. The relatively high quantities of pentachlorobutadiene in Puget
Sound appear to be unique in the literature. There have been no
previous references to the existence of penta-CBD in the
environment, except for quantities relative to HCBD.
-------
-14-
3. The literature indicates that highly chlorinated butadienes
should tend to concentrate in sediment (and tissue) compartments
because of their moderate lipophilic properties. However,
photolysis in aerated water may degrade the many chlorinated
butadienes near the water surface where there is minimal
attenuation of solar radiation.
4. As the degree of chlorination of butadienes decreases, their
ability to volatilize will increase because of their vapor
pressures and lov/er tendency to associate with organic matter.
They are also more susceptible to chemical degradation.
5. Uptake data for chlorinated butadienes by biota is restricted to
HCBD, and those data are generally erratic for unexplained
reasons.
6. Studies with chlorinated butadienes have been minimal, and these
studies did not appear to carefully consider variable parameters
such as lipid levels in biota, organic content in sediments, etc.
POLYCHLORINATED BIPHENYLS (See Figure D-14 & D-15)
Polychlorinated biphenyls (PCBs) were detected at all stations in
Commencement Bay. PCB-1260 ranged from 4 ppb to 126 ppb with a averaged
of 16.3 ppb. Station #6 had the highest level of PCB-1260 (126 ppb).
Levels of 240 and 210 ppb were detected in the sediment of the Hylebos
llth Street Bridge station for PCB-1254 and PCB-1260.
Background (Konasewich et al., 1982)
Polychlorinated biphenyls are one of the most widely distributed
pollutants on earth. Their persistence is generally considered to be
greater than that for most chlorinated pesticides. PCB residues are
found in fat deposits of numerous warm- and cold-blooded animals,
including man. In the aquatic environment PCBs have been detected in
water, sediments, invertebrates, fish, and waterfowl with the highest
levels being recorded in predatory organisms at the end of the food chain
(IJC, 1977).
The probable sources of PCB contamination are: leaks from transformers,
heat exchangers, and hydraulic systems; vaporization from formulations;
vaporization from poorly operated incinerators; and landfill leachates.
The discharges may be direct (i.e., municipal and industrial discharges)
or indirect (i.e., atmospheric fallout).
Bioaccumulation of PCBs in aquatic organisms appears to occur primarily
through direct uptake of PCBs from water and is strongly dependent upon
lipid levels in organisms. Uptake rates increase and depuration rates
decrease with increasing degrees of chlorination. PCBs are more rapidly
depurated from biota than are DDT and metabolites of DDT. If PCB inputs
to Puget Sound are eliminated, it is expected that PCBs with five or more
substituted chlorine groups will continue to persist in biota for a long
time.
-------
-15-
Konasewich et al., (1982) reached the following general conclusions
concerning PCBs within Puget Sound.
1. PCB levels in Puget Sound fish, crab, and claims, particularly
those from Elliott and Commencement Bays, may affect consumers
of such biota.
2. Many sediments of Puget Sound exceeded the maximum levels of 500
ppb total PCB recommended by Pavlou et al. (1978). The limits
by Pavlou et al. were suggested to assure an ambient water level
of total PCBs of no more than 5 ng/L.
3. A rapid decrease of PCB levels in the Puget Sound water column
may be occurring. For example, during the MESA effort, Brown
(1979) indicated high levels of PCBs in sediments, particularly
sediments from Elliott and Commencement Bays, and Riley et al.
(1980) indicated that PCB levels in suspended solids and water
from the areas were below detection limits. Pavlou et al.
(1977), in earlier studies, indicated that PCB levels in
sediments and suspended solids in the water column of Puget
Sound were quite similar in concentration, indicative of a
system which was in equilibrium. These results may indicate
that while PCBs are rapidly removed from the water column, PCB
levels in biota may be rapidly decreasing. PCBs in sediment
would, however, decrease very slowly.
4. There are few data on physical chemical properties of PCBs in
seawater and the effects of photolysis on PCBs in seawater.
5. Data on uptake of PCBs from sediments by biota do not
conclusively indicate whether release from sediments is of
environmental significance. This review suggests that PCBs must
be released to the water column to enable subsequent uptake by
biota. Annual monitoring of, for example, estuarine yearling
fish may define the amount of release of PCBs from Puget Sound
sediments in the apparent absence or decrease of additional
inputs.
6. Environmental processes of significance to the fate of PCBs are
dependent upon the degree of chlorination of the PCB molecules.
Mono-, di- and trichlorobiphenyls appear to be metabolized to
variable degrees by biota. Biphenyls with more than 5
substituted chlorines are not readily metabolized.
7. Sedimentation and adsorption to suspended matter is probably the
most significant fate process for PCBs in Puget Sound.
Adsorption to suspended matter would result in advection of PCBs
from the sound on the basis of water transport. Volatilization
may be of subsequent importance; however, quantification of its
significance is difficult.
8. Metabolites of chlorinated biphenyls may be of ecological
significance, due to their apparently higher degree of toxicity
compared to parent PCB molecules.
-------
-16-
CHROMIUM (See Figure D-16)
Chromium was detected in all Commencement Bay sediment samples. Chromium
levels ranged from 7 to 31 parts per million (ppm) with an average of
16.7 ppm. A level of 28 ppm was detected in the sediment of the Hylebos
llth Street Bridge station.
Background (Jones 4 Stokes Associates, inc. et al., 1983)
Properties and Fates. Chromium exists in two oxidation states,
hexavalent and trivalent. Chemical processes affecting these states are
important in fate determination. Hexavalent chromium is quite soluble,
and reacts with reducing materials to form trivalent chromium, which is
primarily hydrolized and precipitates as chromium hydroxide. This
precipitation is felt to be the dominant fate process, and the trivalent
form is the most stable under normal water conditions. Both forms adsorb
only weakly to inorganic solids. Photolysis and volatilization are not
considered important fate processes (Chapman et al. 1979).
As an essential nutrient, chromium is bioaccumulated by both flora and
fauna to greater concentrations than in the water column, although it is
generally less than those in sediments. There is no evidence that
methylation occurs, although its occurrence in reducing environments has
been speculated (Callahan et al., 1979).
There appears to be little concern about chromium at the moment.
Konasewich et al., (1982) do not consider it a metal of concern because
levels within Puget Sound sediments fall within normal expected levels.
Dexter et al., (1981) and Crecelius (pers. comm. 1982) do not consider it
of concern.
Sources and Distribution. Potential sources include automotive repair
shops, electroplating industries, carwashes and landfill leachate.
Chromium has also been observed in small concentration in sewage
treatment plant effluent.
BERYLLIUM (See Figure D-17)
Beryllium ranged from .16 to .49 ppm with an average of .34 ppm. A level
of .34 was detected in the sediment of the Hylebos llth Street Bridge
station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Beryllium has very low solubility in water, and tends to be in
particulate form, either adsorbed to clays or to other mineral surfaces,
rather than in dissolved form. Under normal pH conditions it is
hydrolized to form insoluble compounds; this is the controlling mechanism
for beryllium in the aquatic environment. Photolysis and volatilization
are not considered important fates. Beryllium is bioaccumulated in low
amounts, but there is no evidence of biomagnification through the food
chain. Nothing on biotransformation processes has been reported.
-------
-17-
Sources and Distribution. Beryllium is used in production of alloys,
copper and brass (Sittig 1980).
Because beryllium concentrations were not elevated above background
levels, it was not considered to be a contaminant of concern by
Konasewich et al., (1982).
COPPER (See Figure D-18)
Copper levels ranged from 12.5 to 83.9 ppm with an average of 46.1 ppm.
The highest levels of copper was found at station #39 (83.9 ppm). A
level of 112.4 was detected in the Hylebos llth Street Bridge sediment
station.
Background (Konasewich et al., 1982)
Copper is a heavy metal which is found in all compartments of the
ecosystem. It is an essential element in the respiratory pigments of
some saltwater species, especially crustaceans. Saltwater plants have
enzymes containing copper which are necessary for photosynthesis.
However, copper may be appreciable concern when it is found at
concentrations in excess of ambient levels because it is one of the most
toxic metals to marine organisms.
Copper is found in Puget Sound sediments at levels from 10 to 1600 mg/kg
(dry weight). EPA quidelines for classifying sediments within the Great
Lakes consider sediments with levels in excess of 50 mg copper/kg
sediment (dry weight) as "heavily polluted."
Sources or Inputs. Copper enters marine systems by a number of natural
processes including runoff, geothermal sources, and airborne particles.
Copper also enters the environment as a result of industrial activities
such as smelting and the employment of antifouling paints, algicides, and
pesticides (Lewis and Cave, 1979).
Loadings of copper to Puget Sound have been quantified by Schell and
Nevissi (1977), and natural rather than man-made sources appear to
contribute most of the trace elements to Puget Sound. The relative values
of input quantities (metric tons per year) to Puget Sound as determined
by Schell and Nevissi (1977) were: rivers, 787; Seattle METROs West Point
Plant, 29; other municipalities, 22; atmospheric input, 450; vessel's
protective measures, 360-590; urban runoff, 15; and advective transport,
306. Copper smelting in Tacoma may be the cause of the relatively high
levels detected at stations in Commencement Bay (Schell and Nevissi,
1977).
Bioaccumulation of copper occurs in benthic invertebrates to a much
greater extent than in fishes. Depuration does occur; however, it is
affected by many factors.
-------
-18-
Adsorption to particulate matter and sediments is an important fate
process for copper in marine waters. The adsorption desorption processes
are affected by many physical, chemical, and biological parameters.
Release of copper from sediments may occur in the presence of aerobic
conditions.
The following general conclusions were reached by Konasewich et al.,
(1982) concerning copper.
1. In the marine environments copper is generally associated with
particulates (sediments and suspended solids).
2. The most toxic species of copper is Cu2+, the levels of which
are diminished by the presence of ligands or several anions
including chloride.
3. Copper is extremely toxic to marine biota with 96-hour LC50
values as low as 5 ug copper/L.
4. It is not possible to predict the effects of copper contaminated
sediments on biota, because of the complexity of metal-binding
associations within the sediment. Individual studies are
required to assess those effects.
5. Copper release for sediments may occur, dependent upon various
conditions including changes in pH, Eh, oxygen levels, microbial
activity, etc.
6. Copper bioaccumulates particularly within invertebrates.
NICKEL (See Figure D-19)
Nickel was detected at all stations. Concentrations ranged from 6 to 30
ppm with an average of 17.4 ppm. A level of 15 ppm was detected in the
sediments of the Hylebos llth Street Bridge station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Properties and Fates. Nickel is the most mobile of the heavy metals, and
adsorption and precipitation do not appear as important as with other
heavy metals. Adsorption to organic materials and hydrous iron and
manganese oxides is the dominant factor in its mobility, and partitioning
into dissolved and particulate fractions is related to iron, manganese
and suspended material concentrations. Photolysis and volatilization are
not important fate processes. Nickel is bioaccumulated, but
concentrations indicate that neither this nor biotransformation is a
dominant process.
Sources and Distribution. Nickel is used in alloys and electroplating.
Because nickel concentrations were not elevated above expected background
levels, it is not considered to be a contaminant of concern by Konasewich
et al., (1982).
-------
-19-
ZINC (See Figure D-20)
Levels for zinc ranged from 27 to 121.2 ppm with an average of 60.7 ppm.
A level of 132.2 ppm was detected in the Hylebos llth Street Bridge
sediment station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Properties and Fate. Zinc is readily transported and one of the most
mobile of heavy metals. It adsorbs to clay, hydrous iron and manganese
oxides, and organic materials, but adsorption is influenced by
concentrations of materials. Adsorption increases with pH, and increased
Eh releases zinc to the water column. In a reducing situation, or in
areas of high zinc concentration, precipitation of zinc sulfide is
important in reducing zinc mobility.
The release of zinc from sediments is dependent on a combination of ion
exchange and complex formation; stability of the complex determines
solubility. Generally, organic material in polluted waters affects the
form in which zinc is present, and complexes will predominate. In
unpolluted areas, zinc normally will be a divalent cation, and easily
adsorbed. Volatilization and photolysis do not appear to be important
fate processes (Callahan et al. 1979).
Zinc is strongly bioaccumulated by marine biota, and fish may accumulate
it from both food and water, but bioaccumulation appears to be a minor
sink compared to the sediments. No biomethylation has been observed
(Callahan et al., 1979).
Sources and Distribution. Zinc is produced in alloy production and
plating processes (Sittig 1980). The greatest anthropogenic source
appears to be atmospheric (Dexter et al.,1981), and dust from the Harbor
Island smelter is a major source of pollution in the Duwamish estuary
area. CSO and storm drains, such as the Diagonal Way overflow, Hanford
Street overflow, and Denny Way overflow, have also been identified as
contributors to zinc contamination in the Duwamish estuary area. Dexter
et al., (1981) summarize concentrations of zinc in water and suspended
particulate matter for various areas of Puget Sound and estimate inputs
for individual rivers, municipal and industrial effluent, storm drains,
and CSOs. They provide an estimation of annual loading for both natural,
(riverine input, erosion and advection) and anthropogenic sources. Zinc
loading is estimated by Dexter et al., (1981) to be much greater than
that of arsenic, copper of mercury, with the bulk of the input projected
to come from natural sources.
Highest levels were observed in the Duwamish River estuary, but high
levels have also been observed in Hylebos and City Waterways of
Commencement Bay, in Budd and Sinclair Inlets, and in Elliott Bay.
Zinc, although elevated in the sediments, has not been identified as a
contaminant of concern by Konasewich et al., (1982). Because zinc does
not appear elevated to any appreciable extent in the water or biota,
Crecelius (pers. comm. 1982) considered it to be of little concern.
-------
-20-
ARSENIC (See Figure D-21)
Arsenic levels ranged from 1.3 to 29 ppm with an average of 9.3 ppm. A
level of 34.4 ppm was detected at the Hylebos llth Street Bridge station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Properties and Fates. Arsenic exists in four oxidation states, each
having different properties. It is quite mobile, and cycles through
water, sediment and biota. Photolysis is not considered an important
fate process, olatilization is considered unimportant by Callahan et
al., (1979) except in extreme reducing environments,, where anaerobic
bacteria can reduce arsenic compounds to dimethyl and trimethyl arsene,
which are extremely toxic and volatile. Konasewich et al., (1982)
believe volatilization may be of significance to the fate of arsenic in
Puget Sound. In most cases sediments and ocean water are the primary
sinks for arsenic, but metabolism to organic arsenicals by bacteria and
benthic organisms recycles much of it.
Bioaccumulation occurs, but is most significant at lower trophic
levels. Fish may accumulate arsenic through both water and food, but
uptake from the water column appears to be more important (Konasewich et
al., 1982). Reported concentrations in organisms are generally low,
because high toxicity prevents great accumulation.
Adsorption-desorption to and from particulates does not appear
significant in estuarine or marine environments (Konasewich et al.,
1982). Crecelius, (pers. comm. 1982) estimated an arsenic budget for
Puget Sound; the estimated budget indicates that discharge to the Strait
of Juan de Fuca is the major sink, with the remainder primarily deposited
in the sediments.
Arsenic is considered to be either a carcinogen or cocarcinogen, with a
latent period of 20-30 years. It is considered by Dexter et al. (1981)
to be one of the metals having greatest potential for toxicity to
organisms, and Konasewich et al. (1982) have identified it as a
contaminant of concern for Puget Sound. Crecelius (pers. cornm. 1982) does
not consider arsenic to be of concern because there is no evidence that
it is elevated in the tissues of biota, contribution by man is relatively
small, and seawater already has a relatively high concentration.
Sources and Distribution. Sources are both natural and anthropogenic.
Arsenic is present in soils, but is also formed as a by-product of ore
smelting, and is used in herbicides, preservatives, drugs, ceramics and
glass, and a number of other industries (Sittig 1980; Metro 1980).
The northern rivers which enter Puget Sound (Skagit, Snohomish,
Stillaguamish and Duwamish) have arsenic concentrations approximately six
times those of the more southern rivers, which primarily reflects the
mineralogic differences of the drainage basins (Dexter et al., 1981).
Shoreline erosion and advection (transport of water through Admiralty
Inlet) are sources, as are municipal treatment plant effluent and
-------
-21-
atmospheric input. Estimated input for municipal and industrial
discharges, riverine sources, erosion, and advection are given by Dexter
et al. (1981); and by Crecelius (pers. comrn. 1982). In both cases
natural sources are estimated to be greatly predominant. Although
relative contribution from anthropogenic sources seems minor, some
regional areas are heavily impacted, and arsenic in considered to be one
of the metals having greatest potential for producing toxic response in
organisms and their consumers (Deter et al. 1981).
Arsenic measurements for all major areas of Puget Sound sediments are
summarized by Dexter et al. (1981). It has been found in high
concentrations in sediments of all four urban embayments (Elliott and
Commencement Bays, and Budd and Sinclair Inlets). In Tacoma, liquid and
slag discharges from the ASARCO smelter, storm drains, and sewer
overflows have produced very high concentrations of arsenic (and
antimony) along the western bay, but atmospheric emissions are also a
likely source. Northwesterly flow along the southwest shore of
Commencement Bay minimizes impact there, but sediments in Quartermaster
Harbor and to the south of Fox Island have significantly higher arsenic
levels than other areas. Deep sediments in East Passage also have
elevated levels (Dexter et al. 1981). Measurements in the water column
indicate arsenic associated with particulates is minor in comparison to
the concentration of dissolved material (Konasewich et al. 1982).
MERCURY (See Figure D-22)
The mercury levels in the deepwater sediments of Commencement Bay ranged
from .03 to.25 ppm with an average of .1 ppm. The highest level of
mercury was detected at station #39 (.25 ppm). A level of .23 ppm
mercury was detected at the Hylebos llth Street Bridge station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Structure and Fate. Mercury has been well researched in comparison to
many other metals. The great majority is rapidly removed from the water
column by strong adsorption to particulates, and sediments are the
primary sink (Callahan et al. 1979). However, rapid decreases in Puget
Sound sediments have been documented, indicating either methylation or
dissolution is occurring, and that the sediments in Puget Sound may not
be a permanent sink (Konasewich et al. 1982).
Transformation processes in the sediments include precipitation as HgS in
a reducing environment, and methylation by bacteria. Methylation
potential is increased in areas of highly organic sediments favoring
bacterial growth. These processes may release ionic or metallic mercury
back into the water column. Resuspension of sediments by organisms or
turbulence can also release compounds to the water.
Mercury adsorbed to sediments in river water may dissolve when it reaches
an estuary, and dissolved levels tend to be higher in estuaries than in
either inflowing rivers or the ocean receiving waters.
-------
-22-
Photolysis 1s of importance in the atmosphere, and may affect aquatic
fates as well. Volatilization is probably an important process for the
movement in and out of the aquatic environment, particularly for
methyl mercury.
Mercury is strongly bioaccumulated by absorption from water and through
the food chain. Most bioaccumulation is connected to methylated forms of
mercury, which have a half-life of 1-3 years in most aquatic organisms.
Uptake and release of mercury also are affected by season and life state
of the organisms. Mercury is one of the few contaminants that is also
biomagnified.
Marine invertebrates have some ability of detoxify low level chronic
pollution by means of metal binding proteins. There is also some
interaction between selenium and mercury, which appears to protect marine
organisms from mercury exposure to some extent, although the mechanism is
not well understood.
Sources and Distribution. Both natural and anthropogenic sources
contribute to mercury loadings. Natural sources include volcanic
activity and leaching of natural deposits. Anthropogenic sources include
industrial processes such as manufacture of electrical equipment,
chlorine, caustic soda, paint, pulp and paper, drugs, smelting and other
sources (Sittig 1980). Possible sources in Puget Sound include
chlor-alkali plants and sewage treatment plants, smelter stack dust, and
industrial discharges to the Duwamish River (Konasewich et al. 1982).
Dexter et al. (1981) and Mai ins et al. (1982) summarize mercury levels in
sediments for all major areas of the Sound. Mercury has been observed in
high concentrations in nearly all Puget Sound urban areas. Highest
concentrations were found in the lower Duwamish River estuary sediments,
but high levels have also been found in Sinclair Inlet, Hylebos and City
Waterways, and Elliott Bay sediments. Crecelius et al. (1975) indicated
that mercury in Bellingham Bay had a half-life of about 1.3 years;
elevated mercury levels have also been noted in the water column and
organisms (Crecelius pers. comm. 1982).
Konasewich et al. (1982) consider mercury to be contaminant of concern in
Puget Sound because of its toxicity and potential effects on consumers of
aquatic life. Because it has been observed at elevated concentration in
water, sediments and organisms, Crecelius (pers. comm. 1982) considers
mercury to be a metal of concern, which should be researched in more
detail. Mercury is also one of the four compounds on the priority
pollutant listing singled out by Chapman et al. (1979) as being of
special significance because of its high toxicity, demonstrated presence
in effluent, ability to accumulate in sediments and biota, and because it
is one of the few pollutants known to be biomagnified.
-------
-23-
CADMIUM (See Figure D-23)
Cadmium levels, in Commencement Bay deep water sediments, ranged from .06
to .48 ppm with an average of .24 ppm. A level of .65 ppm was detected
in the Hylebos llth Street Bridge station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Properties and Fates. Cadmium is relatively mobile because it dissolves
readily in water. As such, it may pose a hazard to all forms of aquatic
biota. Adsorption to suspended matter reduces concentrations in the
water column, and in polluted or organic-rich areas; cadmium adsorption
to organic matter is considered the most important fate process. In
unpolluted areas, adsorption to clay, hydrous iron and manganese is the
most important (Callahan et al. 1979). There is also a tendency for it
to be associated with fine grained sediment and high organic carbon
levels (Maiins 1980 in Konasewich et al. 1982).
Bioaccumulation is considered an important fate process. Cadmium is
strongly bioaccumulated at all trophic levels, and uptake increases with
increased temperature and decreased salinity. It can be accumulated to
much higher levels than water concentrations, although usually to a level
lower than that of the sediments. It is not known to be methylated.
The form of cadmium within the sediments is dependent upon redox
conditions. In oxidizing conditions, carbonate formation is the
controlling process and soluble chlorides are the major complexes. In
reducing conditions, the formation of generally insoluble sulphides
regulates the amount of dissolved cadmium available.
When river particulates enter an estuary, cadmium is probably released to
the water. The release of cadmium from Puget Sound sediments appears to
occur readily, and may be of importance to health of the biota
(Konasewich et al. 1982). Photolysis and volatilization are not
considered important fates.
Sources and Distribution. Cadmium is used industrially in plating, and
in manufacture of paint, varnish, batteries, plastics, fungicides,
fertilizers, rubber tires, and motor oil (Sittig 1980; Konasewich et al.
1982). It can also be released to the atmosphere in smelting of zinc,
copper, and lead ores. Crecelius (pers. comm. 1982) has roughly estimated
an annual input of 44 tons to the Sound, the majority contributed through
advection, with riverine, sewage and atmospheric input considered of less
importance.
Crecelius (pers. comm. 1982) does not consider cadmium to be a metal of
concern, because there is no evidence of elevation in tissues of biota,
and contribution by man is minor compared to that of advection. On the
other hand, Konasewich et al. (1982) consider it as a contaminant of
concern because sediment levels are highly elevated compared to
regulatory criteria for classifying sediments. Cadmium is one of the
four compounds on the priority pollutant listing singled out by Chapman
-------
-24-
et al. (1979) as being of special significance because of its high
toxicity, demonstrated presence in effluent, and ability to accumulate in
sediments and biota.
Concentration of cadmium for various areas of Puget Sound sediment are
given in Mai ins et al. (1981). Effects of levels found in Puget Sound
are discussed in Konasewich et al. (1982). Dexter et al. (1981) do not
discuss it in detail, because data were considered limited and of unknown
quality, and regional impacts were considered to be minor.
LEAD (See Figure D-24)
Lead levels ranged from 6 to 50 ppm with an average of 25.8 ppm in the
deepwater sediments of Commencement Bay. A level of 116 ppm was detected
in the sediment of the Hylebos llth Street Bridge station.
Background (Jones & Stokes Associates, Inc. et al., 1983)
Properties and Fate. Chemical speciation affects transport and fate of
lead, and may also affect toxicity and bioavail ability. At pH values of
7.5-8.5 (ambient Puget Sound levels), lead exists predominately as free
lead. Free metal ion concentrations are highest at a 1:1 seawater to
freshwater ratio, and the most toxic effects occur at this range,
probably within an estuary environment.
Adsorption is an important process in Puget Sound (Konasewich et al.
1982). Lead tends to form complexes, and adsorption to inorganic solids,
organic materials and hydrous iron and manganese oxides controls lead's
mobility. Adsorption and sediment enrichment are important fates in
natural waters, but in polluted areas precipitation may be an important
process in controlling mobility. Adsorption is highly pH-dependent; lead
is more mobile in acidic water.
Volatilization is probably not an important fate process except for
alkylated lead compounds. Photolysis is important in determining the
form in which lead enters the water, but its importance within the water
is unknown.
Marine plants and invertebrates bioaccumulate lead to a greater extent
than fish, but it is not biomagnified, and bioconcentration decreases
with increased trophic level. Benthic microorganisms can methylate lead,
resulting in the more toxic and volatile compound tetramethyl lead. This
may be a mechanism for lead removal from the sediments (Callahan et al.
1979).
Sources and Distribution. Lead sources are both natural and
anthropogenic. Anthropogenic sources include combustion of leaded
gasoline, ore smelting, sewage treatment plant effluent, urban runoff,
paint and battery manufacturing plants and similar sources (Sittig 1980).
-------
-25-
Konasewlch et al. (1982) estimate loadings from anthropogenic sources.
Dexter et al. (1981) estimate loadings from both anthropogenic sources
and natural sources such as advection, riverine inputs and shoreline
erosion. Crecelius (pers. comm. 1982) estimates a mass balance, and
indicates atmospheric input is significant. The main removal mechanism
appears to be sedimentation. Although anthropogenic input is small
relative to natural sources, obvious contamination exists in localized
areas.
Lead is one of the metals receiving greater attention in Puget Sound. It
has been observed in high concentrations in nearly all urban area
sediments. Dexter et al. (1981) summarize known lead levels in sediments
(and water and suspended matter where available), for all major areas of
Puget Sound. Mai ins et al. (1982) summarize concentration data and
discuss contaminants in relation to biological abnormalities. Health
effects are discussed by Sittig (1980).
Especially high lead levels were observed in Hylebos and City Waterways
sediments, but highest concentrations were noted in the lower Duwamish
River sediments. Metal concentrations in the water column have received
much less attention.
Konasewich et al. (1982) consider lead to be a contaminant of concern
because of the heavy concentrations observed in the sediments. Crecelius
(pers. comm. 1982) considers it to be a metal of some concern that should
be examined in more detail because lead levels are elevated in sediments,
the water column, and biota.
-------
APPENDIX A
COMPLETE LISTING OF CHEMICAL CONCENTRATIONS INCLUDING THE MINIMUM
QUANTIFIABLE LIMITS
-------
INORGANICS — METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: METALS U6/GM (PPM) DRY WEIGHT BASIS
PHENOLICS UG/KG (PPB) DRY WEIGHT BASIS
a in i\ ivcrc
STATION DESCRIPTION NUM MILE
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
1 IK
M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE TIME AL
620915 III?
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
6209 16 1554
820916 1615
820916 1629
820916 1705
M t 1 ft
CR BA
161
151
171
171
311
281
191
171
161
191
221
241
211
201
171
171
131
161
161
161
191
151
131
161
161
161
121
121
181
151
131
161
201
91
211
181
201
141
221
141
141
121
121
71
91
171
L a r /v K « M t
BE CO
.161
.161
.231
.311
.491
.481
.351
.391
.231
.211
.241
.341
.311
.381
.351
.361
.341
.431
.331
.361
.361
.341
.391
.391
.411
.401
.361
.351
.431
.391
.391
.441
.391
.281
.401
.311
.361
.261
.361
.341
.331
.311
.301
.281
.241
.341
. i t K a
CU FE
12.51
15.41
19.41
37.81
60.51
62.41
33.81
49.61
16.11
20.11
34.31
56.61
52.01
55.41
43.21
45.71
38.91
58.61
49.81
54.01
57.81
44.4)
44.51
49.21
53.21
52.91
43.81
43.91
65.91
55.01
54.61
69.81
55.71
30.81
59.21
54.31
73.51
49.31
83.91
42.11
44.11
41.91
36.51
25.81
28.21
112.41
Nl
271
241
241
151
251
251
221
181
231
291
301
271
231
161
181
191
121
151
III
101
III
III
151
131
171
161
121
III
191
171
181
221
181
101
251
211
151
141
221
121
161
71
91
121
61
151
-------
INORGANICS -- METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: METALS U6/GM (PPM) DRY WEIGHT BASIS
PHENOL ICS UG/KG (PPB) DRY WEIGHT BASIS
om
STATION DESCRIPTION NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
n i vert i in
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE
820915
820915
820915
820915
820915
820915
820915
82091 5
820915
820915
820915
820915
820915
820915
820915
82091 5
820915
820915
820915
820915
820915
820915
820915
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
620916
820916
820916
820916
820916
820916
T IME MN
1117
1141
1213
1236
1318
1338
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1631
1842
1654
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
|V| t | n
ZN B
31.21
43.51
48.11
50.61
87.51
85.11
50.41
63.71
45.51
58.71
61.11
76.81
68.5)
68.51
53.51
55.31
46.31
66.61
46.01
50.81
57.51
43.31
45.21
54.21
59.31
63.91
52.71
51.11
121.21
66.31
89.01
107.21
93.81
33.61
72.21
72.31
76.91
62.11
98.61
48.71
47.71
46.91
38.11
27.01
29.41
132.21
u a r
V
« rc « M c
AG
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 U|
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 U|
.05 Ul
.05 Ul
.05 U|
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 Ul
.05 U|
.05 Ul
AS
1.31
5.81
4.81
8.01
11.51
12.51
8.31
9.51
7.51
10.81
10.01
15.01
11.31
10.31
8.01
8.51
6.51
9.01
6.01
5.51
7.01
5.31
5.51
7.81
8.31
9.51
6.61
6.81
19.31
13.01
15.31
29.01
18.31
4.51
10.81
13.01
12.01
10.81
17.51
6.31
6.31
5.81
5.01
2.81
3.01
34.41
SB SE
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 U|
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 U|
.25 Ul
.25 U|
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
.25 Ul
1.5 1
Ul
Ul
Ul
Ul
1
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
1
Ul
Ul
Ul
Ul
Ul
Ul
1
1
Ul
Ul
1
Ul
Ul
Ul
Ul
1
Ul
1
Ul
1
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
-------
INORGANICS — METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: METALS UG/GM (PPM) DRY WEIGHT BASIS
PHENOL ICS UG/KG (PPB) DRY WEIGHT BASIS
STA
STATION DESCRIPTION NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
RIVER ITR
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
MET
TIME TL
1117
1141
1213
1236
1318
1338
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1831
1842
1854
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
ALS PARAMETER
HG SN CD
.051
.061
.061
.091
.151
.131
.091
.III
.031
.041
.101
.161
.131
.141
.091
.101
.071
.101
.091
.101
.101
.071
.061
.091
.101
.III
.101
.091
.131
.131
.101
.121
.091
.051
.151
.131
.171
.161
.251
.081
.091
.091
.071
.031
.051
.231
.061
.141
.141
.221
.301
.301
.201
.241
.III
.III
.201
.231
.211
.251
.181
.211
.151
.291
.411
.241
.351
.231
.271
.231
.251
.211
.331
.481
.261
.241
.271
.361
.231
.231
.241
.301
.271
.211
.421
.231
.231
.241
.181
.141
.201
.651
S — —
PB
141
201
201
261
431
421
221
251
211
241
291
381
341
311
241
261
211
311
221
221
271
181
241
191
241
291
251
221
421
291
271
341
321
101
311
291
391
321
501
181
181
141
151
61
III
1161
PHENOL 1C
129 Ul
128 U|
139 Ml
182 Ml
246 Ml
268 Ml
170 Ml
219 Ml
140 Ml
132 Ml
141 Ml
177 Ml
191 Ml
229 Ml
186 Ml
163 Ml
142 Ml
201 Ml
183 1
196 Ml
193 1
166 Ml
158 I
182 Ml
206 Ml
214 Ml
192 Ml
183 Ml
210 Ml
221 Ml
209 Ml
207 Ml
179 Ml
175 Ml
214 Ml
186 Ml
242 Ml
178 Ml
192 Ml
300 I
181 Ml
172 Ml
171 Ml
158 Ml
158 I
180 Ml
CN
.13 Ul
.12 Ul
.14 Ul
.18 U|
.24 Ul
.27 Ul
.17 Ul
.22 Ul
.14 Ul
.13 Ul
.14 Ul
.18 Ul
.19 Ul
.23 Ul
.18 Ul
.16 Ul
.14 Ul
.20 Ul
.18 Ul
.20 Ul
.19 Ul
.16 Ul
.16 Ul
.18 Ul
.21 Ul
.21 Ul
.19 Ul
.18 U|
.21 Ul
.22 Ul
.21 Ul
.21 Ul
.18 Ul
.18 Ul
.21 Ul
.18 Ul
.24 Ul
.18 Ul
.19 Ul
.20 Ul
.18 Ul
.17 Ul
.17 Ul
.16 Ul
.16 Ul
.18 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
PHENOL DRY WEIGHT BASIS
STA RIVER OTR
STATION DESCRIPTION NUM MILE M NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
8209 1 6
820916
820916
820916
820916
820916
AUIU UUMfUUNUS
2,4.6 P-
TRI CHLORO 2- 2,4,01 2,4,DI 2- 4- 2,4,DI
CHLORO -M- CHLORO CHLORO METHYL NITRO NITRO NITRO
TIME PHENOL CRESOL PHENOL PHENOL PHENOL PHENOL PHENOL PHENOL
III?
1141
1213
1236
1318
1338
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1831
1842
1854
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
6 U|
6 U|
6 Ul
6 U|
6 U|
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 U|
6 Ul
6 U|
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 U|
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
12 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 U|
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 U|
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 U|
40 Ul
40 Ul
40 Ul
40 U|
40 U|
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 Ul
40 U|
40 Ul
40 Ul
40 Ul
40 U|
40 Ul
20 Ul
20 U|
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 U|
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 U|
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
20 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
STA RIVER OTR
STATION DESCRIPTION NUM MILE M NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
2,6,01
NITRO
TIME PHENOL
1117
1141
1213
1236
1318
1338
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1831
1842
1854
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
U NOT DETECTED — V,
M COMPOUND PRESENT
ANALYSES:
UNITS:
PENTA
CHLORO
PHENOL
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
PHENOL
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
3
3
3
27
12
3
3
3
3
3
3
44
12
3
3
3
3
3
3
3
3
3
3
3
3
35
3
3
3
3
3
3
3
3
3
3
3
24
3
3
3
3
3
3
3
3
Ul
Ul
Ul
1
1
Ul
Ul
Ul
Ul
Ul
Ul
1
1
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
1
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
1
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
EPA LAB ~ MANCHESTER
SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
PHENOL DRY WEIGHT BASIS
COMPOUNDS
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
r t a i i o i u t a
STA RIVER OTR CHLOR- 4,4'- 4,4'- 4,4'- A-ENDO B-ENDO
STATION DESCRIPTION NUM MILE M NUM DATE TIME ALDRIN DIELDRIN DANE DDT DDE ODD SULFAN SULFAN
01 S 820915 III?
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U 1
U 1
I
5
U
U
2
U
2
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
r t s i i i/ i u t s
ENDO HEPTA
SULFAN ENDRIN HEPTA CHLOR G-BHC
STATION DESCRIPTION NUM MILE M NUM DATE TIME SULF ATE ENDRIN ALDEHYDE CHLOR EPOXIDE A-BHC B-BHC D-BHC L INDANE
01 S 820915 III?
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 620915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
NOT DETECTED ~ VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STATION DESCRIPTION NUM MILE M NUM DATE TIME PCB-1242
01 S 820915 1117 10 U
02 S 820915 1141 10 U
03 S 820915 1213 10 U
04 S 820915 1236 15 U
05 S 820915 1318 20 U
06 S 820915 1338 20 U
07 S 820915 1356 3 U
08 S 820915 1436 5 U
09 S 820915 1503 3 U
10 S 820915 1524 2 U
II S 820915 1542 2 U
12 S 820915 1606 3 U
13 S 820915 1627 3 U
14 S 820915 1653 4 U
15 S 820915 1721 3 U
16 S 820915 1738 3 U
17 S 820915 1750 2 U
18 S 820915 1805 3 U
19 S 820915 1819 3 U
20 S 820915 1831 3 U
21 S 820915 1842 3 U
22 S 820915 1854 3 U
23 S 820915 1903 3 U
24 S 820916 0946 3 U
25 S 820916 1009 3 U
26 S 820916 1023 3 U
27 S 820916 1042 3 U
28 S 820916 1055 3 U
29 S 820916 1122 3 U
30 S 820916 1135 3 U
31 S 820916 1156 3 U
32 S 820916 1210 3 U
33 S 820916 1237 3 U
34 S 820916 1253 3 U
35 S 820916 1321 3 U
36 S 820916 1348 3 U
37 S 820916 1403 4 U
38 S 820916 1420 3 U
39 S 820916 1439 3 U
40 S 820916 1454 3 U
41 S 820916 1512 3 U
42 S 820916 1532 3 U
43 S 820916 1554 3 U
44 S 820916 1615 3 U
45 S 820916 1629 3 U
HYLEBOS IIST BRIDGE 46 S 820916 1705 12 U
PCB-1254
10 U
10 U
10 U
15 U
20 U
20 U
3 U
5 U
3 U
2 U
2 U
63
3 U
4 U
21
27
II
32
24
16
21
14
14
22
21
37
16
15
31
17
21
30
II
6
27
24
36
15
34
17
21
18
9
9
6
240
PCB-I22I
10 U
10 U
10 U
15 U
20 U
20 U
3 U
5 U
3 U
2 U
2 U
3 U
3 U
4 U
3 U
3 U
2 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
4 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
12 U
— ri/e> —
PCB-1232
10 U
10 U
10 U
15 U
20 U
20 U
3 U
5 U
3 U
2 U
2 U
3 U
3 U
4 U
3 U
3 U
2 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
4 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
12 U
PCB-1248
10 U
10 U
10 U
15 U
20 U
20 U
3 U
5 U
3 U
2 U
2 U
3 U
3 U
4 U
3 U
3 U
2 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
4 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
12 U
PCB-1260
10 U
10 U
10 U
15 U
20 U
126
21
28
10
2 U
2 U
16
25
25
10
13
6
22
14
9
12
6
3 U
12
10
16
7
3 U
12
15
8
15
3 U
3 U
17
10
19
5
17
6
8
7
3 U
4
5
210
PCB-IOI6
10 U
10 U
10 U
15 U
20 U
20 U
3 U
5 U
3 U
2 U
2 U
3 U
3 U
4 U
3 U
3 U
2 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
4 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
3 U
12 U
IUAA-
PHENE
30 U
30 U
30 U
45 U
60 U
60 U
10 U
15 U
9 U
6 U
6 U
9 U
9 U
12 U
9 U
9 U
6 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
12 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
9 U
40 U
IV/LJU
D IOX IN
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIICNT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/K6 (PPB) WET WEIGHT BASIS
STA RIVER OTR
STATION DESCRIPTION NUM MILE M NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS 1 1ST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
BIS
1,2,4- HEXA HEXA 2-CHLORO 2-CHLORO 1,2-DI 1,3-DI
ACENAPH BEN TRICHLOR CHLORO CHLORO EHTYL) NAPH CHLORO CHLORO
DATE TIME THENE ZIDINE BENZENE BENZENE ETHANE ETHER THALENE BENZENE BENZENE
820915 III?
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 (842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
3
3
3
3
3
3
3
3
3
3
3
4
4
3
3
3
3.3
3
3
3
3
3
3
3
9
6
3
3
3
2.6
3
3
3
3
3
3
4
6
17
21
7
9
9
3
3
13
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
1
Ul
Ml
1
Ul
Ul
1
Ul
1
1
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 U|
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 U|
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 U|
200 Ul
200 U|
200 U|
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 Ul
200 U|
200 Ul
200 Ul
200 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 U|
15 U|
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
18 1
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
STA RIVER OTR
STATION DESCRIPTION NUM MILE M NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS ||ST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
BA5t / N t U 1 K A L :>
3,3'- 4-CHLORO 4-BROMO BIS<2-
1,4-DI DICHLORO 2,4- 2,6- 1,2-01 PHENYL PHENYL CHLOROISO
CHLORO BENZI DINITRO DINITRO PHENYLHY FLUOR PHENYL PHENYL PROPYL)
DATE TIME BENZENE DINE TOLUENE TOLUENE DRAZAINE ANTHENE ETHER ETHER ETHER
820915 1117
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
620915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
15 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul 3 Ul
3 Ml 3 Ul
10
51
17
25
16
31
9
3 U
17
27
29
29
23
32
33
36
28
30
30
36
47
32
36
48
29
45
42
52
43
54
80
35
76
61
48
47
94
63
63
67
25
19
35
390
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
6 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
3 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
STA
STATION DESCRIPTION NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
RIVER OTR
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE TIME
820915 1117
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
BIS HEXA HEXA N- N- N-
2-CHLORO CHLORO CHLOROCY NITROSO NITROSO NITROSO
ETHOXY BUTA CLOPENT ISO NAPH NITRO DIMETHYL DIPHENYL DIPROPYL
METHANE DIENE ADIENE PHORONE THALENE BENZENE AMINE AMINE AMINE
3 Ul 3 Ul 200 Ul 3 Ul 3 U| 3 U| 100 U| 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 3 Ml 3 U| 100 U| 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 3.8 3 Ul 100 Ul 6 Ul
3 Ul 10 I 200 Ul 3 Ul 44 3 U| 100 Ul 6 Ul
3 Ul 14 I 200 U| 3 Ul 13 3 Ul 100 U| 6 U|
3 Ul 91 200 Ul 3 Ul 17 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 10 3 U| 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 25 3 U| 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 3.3 3 Ul 100 U| 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 3 U 3 Ul 100 Ul 6 Ul
3 U| 3 U| 200 Ul 3 Ul 12 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 U| 19 3 Ul 100 Ul 6 U|
3 Ul 51 200 Ul 3 Ul 23 3 Ul 100 U| 6 Ul
3 U| 51 200 Ul 3 Ul 20 3 Ul 100 U| 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 33 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 U| 3 Ml 39 3 U| 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ml 54 3 Ul 100 U| 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 40 3 Ul 100 Ul 6 Ul
3 U| 3 Ul 200 Ul 3 Ul 45 3 Ul 100 U| 6 U|
3 U| 3 Ul 200 Ul 3 Ul 29 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 46 3 U| 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 U| 40 3 U| 100 U| 6 Ul
3 Ul 3 U| 200 Ul 3 Ul 46 3 Ul 100 U| 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 31 3 U| 100 Ul 6 Ul
3 U| 3 U| 200 Ul 3 U| 3 U 3 U| 100 Ul 6 Ul
3 Ul 3 U| 200 Ul 3 Ul 25 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 21 3 U| 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 23 3 U| 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 13 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 19 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 4 3 Ul 100 Ul 6 U|
3 U| 3 Ul 200 Ul 3 U| 17 3 U| 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 8 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 32 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 10 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 24 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 24 3 U| 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 46 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 54 3 Ul 100 U| 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 93 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 33 3 Ul 100 Ul 6 U|
3 Ul 3 Ul 200 Ul 3 Ul 46 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 54 3 Ul 100 U| 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 10 3 Ul 100 Ul 6 Ul
3 Ul 3 Ul 200 Ul 3 Ul 20 3 U| 100 Ul 6 U|
3 Ul 12 1 200 U| 3 Ul 33 3 Ul 100 Ul 6 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP
SEDIMENT SURVEY
WATER
STA RIVER OTR
STATION DESCRIPTION NUM MILE
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS 1 1ST BRIDGE 46
M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
BIS
2-ETHYL BENZYL DI-N- DI-N- BENZO A BENZO B
HEXYL BUTYL BUTYL OCTYL Dl ETHYL DIMETHYL ANTHRA BENZO A FLUORAN
DATE TIME PHTHALAT PHTHALAT PHTHALAT PHTHALAT PHTHALAT PHTHALAT CENE PYRENE THENE
820915 1117 540
820915 1141 4300
820915 1213 910
820915 1236 1300
820915 1318 70
820915 1338 13000
820915 1356 300
820915 1436 86
820915 1503 200
820915 1524 86
820915 1542 140
820915 1606 35
820915 1627 130
820915 1653 85
820915 1721 32
620915 1738 46
820915 1750 520
820915 1805 88
820915 1819 26
820915 1831 82
820915 1842 3300
820915 1854 250
820915 1903 320
820916 0946 43
820916 1009 82
820916 1023 270
820916 1042 19
820916 1055 68
820916 1122 53
820916 1135 3 U
820916 1156 32
820916 1210 100
820916 1237 85
820916 1253 240
820916 1321 70
820916 1348 3 U
820916 1403 57
820916 1420 52
820916 1439 420
620916 1454 29
820916 1512 24
820916 1532 54
820916 1554 74
820916 1615 72
3 Ul 27
3 Ul 23
3 Ul 44
3 Ul 50
3 Ul 3 U
3 Ul 79
3 Ul 80
10 I 1 80
19 I 31
22 | 68
12 I 22
3 U| 107
5 I 31
4 I 20
3 Ul 220
3 Ul 3 U
3 Ul 96
3 Ul 490
3 Ul 51
3 U| 3 U
3 Ul 200
3 Ul 78
3 Ul 3 U
3 U| 3 U
3 Ul 230
3 U| 160
3 Ul 128
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3.51 3 Ul
3 Ul 3 U| 3 U|
3 Ul 3 Ul 3 Ul
125 1 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 U| 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 41 3 U|
81 1 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
26 1 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul 3 Ul 3 Ul
3 Ul 50 1 3 Ul 3 U| 3 Ul
3 Ul 45 I 3 Ul 3 Ul 3 Ul
3 Ul 3 Ul 3 Ul 3 Ul 3 Ul
3 Ul 110 1 3 Ul 3 Ul 3 Ul
3 U| 3 U| 3 U| 3 Ul 3 U|
3 Ul 3 U| 3 U| 3 Ul 3 Ul
3 Ul 30 I 3 Ul 3 Ul 3 Ul
3 Ul 128 1 3 U| 3 Ul 3 Ul
3 Ul 300 1 3 Ul 3 Ul 3 Ul
3 Ul 130 | 3 Ul 3 Ul 3 Ul
3 Ul 200 I 3 U| 3 Ul 3 U|
3 Ul 56 1 3 Ul 3 Ul 3 Ul
3 Ul 110 I 10 I 3 Ul 3 Ul
820916 1629 180 I 3 Ul 3 Ul 3 U| 3 Ul 3 U|
820916 1705 150 I 3 Ul 3 U| 3 Ul 3 Ul 3 U|
70 Ul
70 Ul
70 Ul
170 1
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ml
70 Ml
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 U|
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 U|
70 Ul
70 U|
70 U|
70 Ul
70 U|
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
70 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT U6/KG (PPB) WET WEIGHT BASIS
BENZO K
STA RIVER OTR FLUORAN
STATION DESCRIPTION NUM MILE M NUM DATE TIME THENE
01 S 820915 III?
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
CHRYSENE
ACENAPH
THYLENE
3 U
3 U
3 U
3 U
5.4
5.8
3
10
3 U
3 U
3 U
6
7
5
8
10
II
6
8
6
10
9
10
8
6
5
4
10
3 U
3 U
3 U
9
3 U
3 U
3 U
3 U
7
12
34
3 U
5
6
3 U
3 U
3 U
42
3 n a c /
ANTHRA
CENE
BENZO
GH 1 PHENAN
PERYLENE FLUORENE THRENE
15 Ul 3 Ul
15 Ul 3 U|
15 Ul 3 Ul
15 Ul 21
15 Ul 6.B
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 3 Ul
3 Ul 3 Ul
3 Ul 3 Ul
3 Ul 3
3 Ul 5
4 1 6
3 Ul 7
3 Ul 5
3 Ul 8
15 Ul 8
15 Ul 6
15 Ul 6
15 Ul 7
15 Ul 6
15 Ul 7
15 Ul 7
15 Ul 3 Ul
15 Ml 3 Ul
15 Ul 3
15 Ul 3 Ul
15 Ul 5
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 7
15 Ul 3 U|
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 3 U|
15 Ul 3 Ul
15 Ul 16
15 Ul 1 1 1
15 U| 3 Ul
15 Ul 10 I
15 Ul 6
15 Ul 3 Ul
15 Ul 3 Ul
15 Ul 22
Dl BENZO INDENO
A.H ANTH 1.2,3-CD
RACENE PYRENE
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 U| 70 U|
70 U| 70 U|
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 U|
70 Ul 70 Ml
70 Ul 70 Ml
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 U| 70 U|
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 U|
70 Ul 70 U|
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 U|
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 U|
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
70 Ul 70 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED -- VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM
DATE TIME PYRENE
BASE / NEUTRALS
BEN20(A)ANTHRACENE/ BENZO(B)FLUORANTHENE/ ANTHRACENE/
CHRYSENE BENZO(K)FLUORANTHENE PHENANTHRENE
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
820915
82091 5
820915
820915
820915
820915
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
8209 1 6
820916
820916
820916
820916
820916
III?
1141
1213
1236
1318
1338
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1831
1842
1854
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
3 U
4.1
18
80
28
42
29
44
II
3 U
Ib
38
41
37
42
48
48
57
42
65
66
56
85
54
72
37
34
40
38
30
55
59
73
36
70
55
70
66
110
75
65
77
38
10
29
430
6
6
24
140
51
66
42
3
6
6
28
22
21
18
440
54
II
49
46
5.5
10
3
9
40
46
6
6
52
6
7
6
6
6
6
8
6
6
6
45
6
6
15
6
6
6
130
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
100
100
100
100
100
100
100
100
100
100
100
100
too
100
100
100
100
100
100
100
100
100
100
100
100
100
100
too
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
too
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
3
5
14
78
48
47
16
70
21
3
26
70
76
66
41
51
64
63
55
70
79
79
20
21
4
120
130
93
79
160
130
170
210
210
190
100
92
180
250
310
180
240
56
3
60
250
M
U
U
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM
ACRYLO
DATE TIME ACROLEIN NITRILE BENZENE
VOLATILES
CARBON 1,2- 1,1,1- 1,1- 1,1,2-
TETRA CHLORO DICHLORO TRICHLOR DICHLORO TRICHLOR
CHLORIDE BENZENE ETHANE ETHANE ETHANE ETHANE
01 S 820915 1117 10 Ul 5 U|
02 S 820915 1141 10 Ul 5 U|
03 S 820915 1213 10 U| 5 Ul
04 S 820915 1236 10 Ul 5 Ul
05 S 820915 1318 10 U| 5 Ul
06 S 820915 1338 10 U| 5 U|
07 S 820915 1356 10 Ul 5 U|
08 S 820915 1436 10 U I 5 Ul
09 S 820915 1503 10 U| 5 Ul
10 S 820915 1524 10 Ul 5 Ul
II S 620915 1542 10 Ul 5 Ul
12 S 820915 1606 10 U| 5 Ul
13 S 820915 1627 10 Ul 5 Ul
14 S 820915 1653 10 U| 5 U|
15 S 820915 1721 10 U| 5 Ul
16 S 820915 1738 10 U| 5 Ul
17 S 820915 1750 10 U| 5 U|
18 S 820915 1805 10 Ul 5 U|
19 S 820915 1819 10 Ul 5 U|
20 S 820915 1831 10 Ul 5 Ul
21 S 820915 1842 10 Ul 5 Ul
22 S 820915 1854 10 U| 5 U|
23 S 820915 1903 10 Ul 5 Ul
24 S 820916 0946 10 Ul 5 U|
25 S 820916 1009 10 Ul 5 Ul
26 S 820916 1023 10 Ul 5 Ul
27 S 820916 1042 10 U| 5 U|
28 S 820916 1055 10 Ul 5 U|
29 S 820916 1122 10 Ul 5 Ul
30 S 820916 1135 10 U| 5 Ul
31 S 820916 1156 10 Ul 5 Ul
32 S 820916 1210 10 Ul 5 U|
33 S 820916 1237 10 Ul 5 Ul
34 S 820916 1253 10 U| 5 Ul
35 S 820916 1321 10 Ul 5 Ul
36 S 820916 1348 10 U| 5 Ul
37 S 820916 1403 10 Ul 5 Ul
38 S 820916 1420 10 Ul 5 Ul
39 S 820916 1439 10 U| 5 Ul
40 S 820916 1454 10 U| 5 U|
41 S 820916 1512 10 Ul 5 Ul
42 S 820916 1532 10 U| 5 U|
43 S 820916 1554 10 Ul 5 Ul
44 S 820916 1615 10 Ul 5 Ul
45 S 820916 1629 10 Ul 5 U|
HYLEBOS (1ST BRIDGE 46 S 820916 1705 10 Ul 5 Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
ut
Ul
Ul
Ul
Ul
Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT U6/KG (PPB) WET WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM DATE
1.1.2,2-
TETRA
CHLORO CHLORO
TIME ETHANE ETHANE
VOLAT ILES
2-CHLORO TRANS- TRANS-
ETHYL I.I- 1,2- 1,2- 1,3- CIS-1,3-
VINLY CHLORO DICHLORO DICHLORO DICHLORO DICHLORO DICHLORO
ETHER FORM ETHENE ETHENE PROPANE PROPENE PROPENE
01 S 820915 1117
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 8209161705
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ml
Ml
Ml
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ml
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul •
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
.8
.2
.6
.6
.6
Ul
Ul
Ul
Ul
Ml
Ml
Ml
Ml
Ml
.5 1
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ml
Ml
Ul
Ul
Ml
Ml
Ml
Ul
Ul
Ml
Ml
Ml
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
2.2
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
1 Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB -- MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
METHYL BROMO FLUORO DICHLORO CHLORO
STA RIVER OTR ETHYL LENE CHLORO BROMO BROMO DICHLORO TRICHLOR DIFLUORO DIBROMO
STATION DESCRIPTION NUM MILE M NUM DATE TIME BENZENE CHLOR IDE METHANE METHANE FORM METHANE METHANE METHANE METHANE
01 S 620915 III?
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 8209 Ib 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
U|
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
STA
STATION DESCRIPTION NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
RIVER OTR
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE
820915
8209 1 5
820915
820915
820915
820915
820915
820915
820915
820915
820915
620915
820915
820915
820915
820915
820915
820915
620915
820915
820915
820915
820915
620916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820916
820910
820916
8209 1 6
820916
820916
820916
820916
820916
820916
820916
820916
820916
V U L
TETRA
CHLORO TRICHLOR VINYL
TIME ETHENE TOLUENE ETHENE CHLORIDE
1117
1141
1213
1236
1318
1336
1356
1436
1503
1524
1542
1606
1627
1653
1721
1738
1750
1805
1819
1831
1842
1854
1903
0946
1009
1023
1042
1055
1122
1135
1156
1210
1237
1253
1321
1348
1403
1420
1439
1454
1512
1532
1554
1615
1629
1705
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ml
Ul
Ml
Ml
Ml
Ml
Ml
Ul
Ul
Ml
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ml
Ul
Ml
Ul
Ml
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
.8 1
Ml
Ml
Ml
Ml
Ul
Ul
Ul
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ml
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
Ul
VOLATILES
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
U NOT DETECTED — VALUE SHOWN IS THE MINIMUM QUANTIFIABLE LIMIT
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB -- MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
P 0
MONO
CHLORO
STA RIVER OTR BUTA
STATION DESCRIPTION NUM MILE M NUM DATE TIME DIENE
01 S 820915 1117
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1605
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
L Y C H I
Dl
CHLORO
BUTA
DIENE
. 0 R 1 N
TRI
CHLORO
BUTA
DIENE
1 U
1 M
23
73
153
95
7
28
14
1 M
1 M
17
18
46
3
1
6
45
8
17
4
16
35
16
21
17
14
21
1 M
1 M
1 M
1 M
98
12
13
M
M
M
M
U
U
25
A T E D
TETRA
CHLORO
BUTA
DIENE
1
7
31
1143
700
569
63
147
59
6
16
77
174
288
43
36
37
172
29
95
5
60
34
49
70
53
79
141
5
10
5
1
191
55
134
19
18
8
1 20
8
5
1 M
1 M
1 230
B U
PENTA
CHLORC
BUTA
DIENE
"
4(
2(
1'
:
e
-
i;
e
"
i:
T A D 1 E N E S
HEXA
) CHLORO
BUTA TOTAL
D IENE PCBDS
Ul 1 Ul 1
51 1 Ul 10
Ul 1 Ul 54
) 41 1 297
j II 890
I 26 704
U 3 73
U 3 178
5 Ul 76
3 Ul 14
5 Ul 19
? Ul 106
> Ul 198
1 13 342
Ul 31 52
Ul 2 1 39
Ul 1 Ul 43
51 1 Ml 220
1 PRESENT
Ul 1 Ul 37
Ul 3 115
Ul 1 Ul 9
1 PRESENT
Ul 2 78
U I U 1 69
Ul 6 71
U| 51 96
Ul Ul 70
5| 6 I 102
1 3 170
Ul 1 Ml 5
U| 1 U| 10
Ul 1 U| 5
Ul 1 Ul 1
Ul 24 313
1 4 I 72
Ul 8 1 155
Ul Ul 20
U| Ul 18
Ul Ul 8
U| Ul 20
Ul Ul 8
Ul Ul 6
Ul Ul 1 Ml
U| Ul 1 M
51 53 I 321
-------
APPENDIX B
COMPLETE LISTING OF CHEMICAL CONCENTRATIONS ON A DRY HEIGHT BASIS
EXCLUDING THOSE BELOU THE MINIMUM QUANTIFIABLE LIMIT
-------
INORGANICS
METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: METALS U6/6M (PPM) DRY WEIGHT BASIS
PHENOLICS UG/KG (PPB) DRY WEIGHT BASIS
3 m
STATION DESCRIPTION NUM
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
nivcrc im
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
DATE TIME AL
820915 1117
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 J403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
M t 1 A
CR BA
161
151
171
171
311
281
191
171
161
191
221
241
211
201
171
171
131
161
161
161
191
151
131
161
161
161
121
121
181
151
131
161
201
91
211
181
201
141
221
141
141
121
121
71
91
171
L a r A K « M t
BE CO
.161
.161
.231
.311
.491
.481
.351
.391
.231
.211
.241
.341
.311
.381
.351
.361
.341
.431
.331
.361
.361
.341
.391
.391
.411
.401
.361
.351
.431
.391
.391
.441
.391
.281
.401
.311
.361
.261
.361
.341
.331
.311
.301
.281
.241
.341
CU FE
12.51
15.41
19.41
37.81
60.51
62.41
33.81
49.61
16.11
20.11
34.31
56.61
52.01
55.41
43.21
45.71
38.91
58.61
49.81
54.01
57.81
44.41
44.51
49.21
53.21
52.91
43.81
43.91
65.91
55.01
54.61
69.81
55.71
30.81
59.21
54.31
73.51
49.31
83.91
42.11
44.11
41.91
36.51
25.81
28.21
112.41
Nl
271
241
241
151
251
251
221
181
231
291
301
271
231
161
181
191
121
151
III
101
III
III
151
131
171
161
121
III
191
171
181
221
181
10)
251
211
151
141
221
121
161
71
91
121
61
151
-------
INORGANICS — METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: METALS U6/GM (PPM) DRY WEIGHT BASIS
PHENOLICS UG/KG (PPB) DRY WEIGHT BASIS
am i\ivc.r\ I in —____—.
STATION DESCRIPTION NUM MILE M NUM DATE TIME MN
01 S 820915 III?
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
M t 1 A
ZN B
31.21
43.51
48.11
50.61
87.51
85.11
50.41
63.71
45.51
58.71
61.11
76.81
68.51
68.51
53.51
55.31
46.31
66.61
48.01
50.81
57.51
43.31
45.21
54.21
59.31
63.91
52.71
51.11
121.21
66.31
89.01
107.21
93.81
33.61
72.21
72.31
78.91
62.11
98.61
48.71
47.71
46.91
38.11
27.01
29.41
132.21
L 3 r
V
A K A M I
AG
AS SB
1.31
5.81
4.81
8.01
11.51
12.51
8.31
9.51
7.51
10.81
10.01
15.01
11.31
10.31
8.01
8.51
6.51
9.01
6.01
5.51
7.01
5.31
5.51
7.81
8.31
9.51
6.81
6.81
19.31
13.01
15.31
29.01
18.31
4.51
10.81
13.01
12.01
10.81
17.51
6.31
6.31
5.81
5.01
2.81
3.01
34.41 1.5
SE
.1
.1
.1
.1
.1
.1
.1
.1
1
-------
INORGANICS — METALS
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: METALS UG/6M (PPM) DRY WEIGHT BASIS
PHENOLICS UG/KG (PPB) DRY WEIGHT BASIS
STA RIVER
STATION DESCRIPTION NUM MILE
01
02
03
04
05
06
07
08
09
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
ITR
M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
METALS PARAMETER
DATE TIME TL HG SN CD
820915 1117
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1524
820915 1542
820915 1606
820915 1627
820915 1653
820915 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
620916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
.051
.061
.061
.091
.151
.131
.091
.III
.031
.041
.101
.161
.131
.141
.091
.101
.071
.101
.091
.101
.101
.071
.061
.091
.101
.III
.101
.091
.131
.131
.101
.121
.091
.051
.151
.131
.171
.161
.251
.081
.091
.091
.071
.031
.051
.231
.061
.141
.141
.221
.301
.301
.201
.241
.III
.III
.201
.231
.211
.251
.181
.211
.151
.291
.411
.241
.351
.231
.271
.231
.251
.211
.331
.481
.261
.241
.271
.361
.231
.231
.241
.301
.271
.211
.421
.231
.231
.241
.181
.141
.201
.651
q _ ..__
PB
141
201
201
261
431
421
221
251
211
241
291
381
341
311
241
261
211
311
221
221
271
181
241
191
241
291
251
221
421
291
271
341
321
101
311
291
391
321
501
181
181
141
151
61
III
1161
PHENOLIC CN
1
1
139 Ml
182 Ml
246 Ml
268 Ml
170 Ml
219 Ml
140 Ml
132 Ml
141 Ml
177 Ml
191 Ml
229 Ml
186 Ml
163 Ml
142 Ml
201 Ml
183 I
196 Ml
193 I
166 Ml
158 I
182 Ml
206 Ml
214 Ml
192 Ml
183 Ml
210 Ml
221 Ml
209 Ml
207 Ml
179 Ml
175 Ml
214 Ml
186 Ml
242 Ml
178 Ml
192 Ml
300 1
181 Ml
172 Ml
171 Ml
158 Ml
158 I
180 Ml
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) WET WEIGHT BASIS
PHENOL DRY WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM
04 S
05 S
12 S
13 S
26 S
38 S
2.6.DI
NITRO
DATE TIME PHENOL
820915 1236
820915 1318
820915 1606
820915 1627
820916 1023
820916 1420
PENTA
CHLORO
PHENOL PHENOL
27
12
44
12
35
24
COMPOUNDS —
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STA RIVER OTR
STATION DESCRIPTION NUM MILE M NUM DATE TIME ALDRIN
03 S 820915 1213
04 S 820915 1236
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
DIELDRIN
CHLOR-
DANE
'nail
4,4'-
DDT
O
4
Dl
1
'
:
I u t ;
4'-
)E
I
5
>
.
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
4,4'- /
DDD
\-ENDO
SULFAN
B-ENDO
SULFAN
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
EPA LAB — MANCHESTER
SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM
DATE
ANALYSES:
UNITS:
---------------------------- PCB
TIME PCB- 1 242 PCB- 1 254 PCB- 1 22 1 PCB- 1 232 PCB- 1 248 PCB- 1 260 PCB-IOI6 PHENE
TCDD
D I OX IN
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
63
21
27
II
32
24
16
21
14
14
22
21
37
16
15
31
17
21
30
II
6
27
24
36
15
34
17
21
18
9
9
6
1240
126
21
28
10
18
25
25
10
13
6
22
14
9
12
6
12
10
16
7
12
15
8
15
17
10
19
5
17
6
8
7
4
5
210
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STA RIVER OTR ACENAPH
STATION DESCRIPTION NUM MILE M NUM DATE TIME THENE
12 S 820915 1606 7.1
13 S 820915 1627 7.6
14 S 820915 1653 6.9
15 S 820915 1721 5.6
17 S 820915 1750 4.7
18 S 820915 1805 6 M
19 S 820915 1819 5.5
22 S 820915 1854 5
23 S 820915 1903 4.8
25 S 820916 1009 18.6
26 S 820916 1023 12. B
28 S 820916 1055 5.5
30 S 820916 1135 5.7
35 S 820916 1321 6.4 M
37 S 820916 1403 9.7
38 S 820916 1420 10.7
39 S 820916 1439 32.7
40 S 820916 1454 42
41 S 820916 1512 12.7
42 S 820916 1532 15.5
43 S 820916 1554 15.5
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705 23.5
BEN
ZIDINE
1.2,4-
TR ICHLOR
BENZENE
5 A a t /
HEXA
CHLORO
BENZENE
32.5
' N t U
HEXA
CHLORO
ETHANE
K A L 3
BIS
2-CHLORO
EHTYL)
ETHER
2-CHLORO
NAPH
THALENE
1,2-DI
CHLORO
BENZENE
1,3-DI
CHLORO
BENZENE
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
1,4-DI
STA RIVER OTR CHLORO
STATION DESCRIPTION NUM MILE M NUM DATE TIME BENZENE
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS (1ST BRIDGE 46 S 820916 1705
3,3'-
D 1 CHLORO
BENZI
DINE
2,4-
DINITRO
TOLUENE
n A b t ,
2,6-
DINITRO
TOLUENE
' N t U
1,2-DI
PHENYLHY
DRAZAINE
1 K A L i
FLUOR
ANTHENE
4 M
14
93
42
67
27
68
13
24
48
55
66
43
52
47
72
51
59
58
60
74
58
74
103
56
83
88
115
90
112
143
61
162
113
116
84
181
126
114
116
43
30
55
704
4-CHLORO
PHENYL
PHENYL
ETHER
4-BROMO
PHENYL
PHENYL
ETHER
BISC2-
CHLOROISC
PROPYL)
ETHER
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB -- MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
BIS
2-CHLORO
STA RIVER OTR ETHOXY
STATION DESCRIPTION NUM MILE M NUM DATE TIME METHANE
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 820916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
HEXA
CHLORO
BUTA
DIENE
18
34
24
10
II
22
HEXA
CHLOROCY
CLOPENT
ADIENE
5 A a t i
ISO
PHORONE
5 M
4 M
< W C U
NAPH
THALENE
4 M
5.3
80
32
46
17
55
4.6
16.9
33.7
43.9
45.8
61.2
63.6
76.6
80.3
82.4
56.9
88.6
66.2
72.9
56.5
53.5
40.4
42.2
27.3
41.9
8.4
35.2
14.3
56.1
21.4
44.6
58.1
81.7
104
186
59.9
79.3
92.8
15.8
31.6
63.5
rc « L a
NITRO
BENZENE
N-
N ITROSO
D IMETHYL
AMINE
N-
N ITROSO
DIPHENYL
AMINE
N-
N ITROSO
DIPROPYL
AMINE
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM DATE
BASE / NEUTRALS
BIS
2-ETHYL BENZYL DI-N- DI-N- BENZO A
HEXYL BUTYL BUTYL OCTYL DIETHYL DIMETHYL ANTHRA
TIME PHTHALAT PHTHALAT PHTHALAT PHTHALAT PHTHALAT PHTHALAT CENE
01 S 820915 III? 695
02 S 820915 1141 5382
03 S 820915 1213 1364
04 S 820915 1236 2372
05 S 820915 1318 172
06 S 820915 1338 34853
07 S 820915 1356 511
08 S 820915 1436 188
09 S 820915 1503 280
10 S 820915 1524 86
II S 820915 1542 197
12 S 820915 1606 62
13 S 820915 1627 248
14 S 820915 1653 194
15 S 820915 1721 59
16 S 820915 1738 75
17 S 820915 1750 738
18 S 820915 1805 177
19 S 820915 1819 48
20 S 820915 1831 161
21 S 820915 1842 6358
22 S 820915 1854 414
23 S 820915 1903 507
24 S 820916 0946 78
25 S 820916 1009 169
26 S 820916 1023 578
27 S 820916 1042 36
28 S 820916 1055 125
29 S 820916 1122 III
31 S 820916 1156 67
32 S 820916 1210 207
33 S 820916 1237 152
34 S 820916 1253 421
35 S 820916 1321 150
37 S 820916 1403 138
38 S 820916 1420 92
39 S 820916 1439 808
40 S 620916 1454 58
41 S 820916 1512 44
42 S 820916 1532 93
43 S 820916 1554 127
44 S 820916 1615 114
45 S 820916,1629 284
HYLEBOS 1 1ST BRIDGE 46 S 8209 16( 1705 271
22
27
22
17
10
9
35
29
61
91
212
136
394
44
68
31
190
59
46
408
136
984
93
385
129
474
343
246
104
80
235
53
246
600
236
345
96
174
335
155
51
16
4.9
7.1
BENZO B
BENZO A FLUORAN
PYRENE THENE
310
134 M
160 M
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB -- MANCHESTER
UNITS: SEDIMENT UG/K6 (PPB) DRY WEIGHT BASIS
BENZO K
STA RIVER OTR FLUORAN
STATION DESCRIPTION NUM MILE M NUM DATE TIME THENE
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
II S 820915 1542 141 M
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721 186 M
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
32 S 820916 1210
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 8209I& 1454
41 S 820916* 1512
42 S 820916 1532
43 S 820916 1554
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
CHRYSENE
ACENAPH
THYLENE
13.3
15.6
5.1
21.9
10.6
13.4
11.4
14.8
16.3
15.6
16.1
14.7
11.8
19.3
14.9
15.8
14.6
12.4
10.7
7.7
18.3
18.6
16.9
21.3
65.4
9.1
10.3
75.8
a n a t ,
ANTHRA
CENE
f W t U
BENZO
GHI
PERYLENE
8
31 M
i n n L. a
FLUORENE
38
16.7
4.2
8.9
11.5
16
9.3
13.1
11.3
12
II
13.7
11.6
11.6
II. 1
6.4
9.2
14.5
30.8
22
17.2
10.3
39.7
PHENAN
THRENE
Dl BENZO
A,H ANTH
RACENE
INDENO
1,2,3-CD
PYRENE
124 M
134 M
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB ~ MANCHESTER
UNITS: SEDIMENT UG/K6 (PPB) DRY WEIGHT BASIS
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM
DATE TIME PYRENE
BASE / NEUTRALS
BENZO(A)ANTHRACENE/ BENZO(B)FLUORANTHENE/ ANTHRACENE/
CHRYSENE BENZO(K)FLUORANTHENE PHENANTHRENE
01
02
03
04
05
06
07
08
09
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
HYLEBOS IIST BRIDGE 46
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
820915 1117
820915 1141
820915 1213
820915 1236
820915 1318
820915 1338
820915 1356
820915 1436
820915 1503
820915 1542
820915 1606
820915 1627
820915,1653
8209 15' 1721
820915 1738
820915 1750
820915 1805
820915 1819
820915 1831
820915 1842
820915 1854
820915 1903
820916 0946
820916 1009
820916 1023
820916 1042
820916 1055
820916 1122
820916 1135
820916 1156
820916 1210
820916 1237
820916 1253
820916 1321
820916 1348
820916 1403
820916 1420
820916 1439
820916 1454
820916 1512
820916 1532
820916 1554
820916 1615
820916 1629
820916 1705
5.1
25
146
69
113
49.4
96.3
15.4
25.4
67.4
78.2
84.7
77.9
78.3
68.1
114
76.9
127.5
127.2
92.7
135
98.4
148
79.2
65.4
73.4
79.8
66.2
115
122
131
63.2
150
102
170
121
212
150
118
133
65.3
15.8
45.8
776
33
255
125
177
71.6
6.6
39.4
39
40.1
41.2
816
88.1
15.6
98.4
84.2
10.8
19.3
5
14.3
72.9
94.8
95.4
15.5
17.1
86.5
25.9
235
4 M
6
19
142
118
126
27
153
30
37
124
145
151
76
83
91
126
101
137
152
131
32
38
8
257
250
171
166
353
272
352
376
368
406
186
223
320
481
620
327
414
96
95
451
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
STATION DESCRIPTION
STA RIVER OTR
NUM MILE M NUM DATE
M COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
VOLATILES
I 1,1,2,2- 2-CHLORO TRANS- TRANS-
TETRA ETHYL 1,1- 1,2- 1,2- 1,3- CIS-|,3-
CHLORO CHLORO VINLY CHLORO DICHLORO DICHLORO DICHLORO DICHLORO DICHLORO
TIME ETHANE ETHANE ETHER FORM ETHENE ETHENE PROPANE PROPENE PROPENE
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
20 S 820915 1831
26 S 820916 1023
27 S 820916 1042
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
39 S 820916 1439
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
1 M
1 M
1.8 M
2.5 M
2.7 M
2.3 M
1.6 M
1.4 M
1 M
2.4 M
3.3
12.8
4.3
2.7
3.5
1.9 Ml
2.3 M
1.9 M
1.6 M
1.4 Ml
3
2 Ml
2.1 M
1 Ml
1 Ml
1 Ml
2.1 M
2.1 Ml
1 Ml
2.4 Ml
1.9 Ml
4
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES; EPA LAB — MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
STA
STATION DESCRIPTION NUM
04
05
06
07
08
12
13
14
15
16
17
16
19
20
23
24
32
33
35
37
39
HYLEBOS IIST BRIDGE 46
RIVER OTR
MILE M NUM
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
TETRA
CHLORO TRICHLOR VINYL
DATE TIME ETHENE TOLUENE ETHENE CHLORIDE
820915 1236 1.8 Ml
820915 1318 1
820915 1338 I
820915 1356 1
820915 1436 I
820915 1606 1.8 Ml
820915 1627 1
820915 1653 2.3 Ml
820915 1721 I
820915 1738 1.6 Ml
820915 1750 1.4 Ml
820915 1805 2 Ml
820915 1819 1.8 Ml
820915 1831 2 Ml
820915 1903 1.6 Ml
820916 0946 1.8 Ml
820916 1210 2.1 Ml
820916 1237 1.8 Ml
820916 1321 2.1 Ml
820916 1403 2.4 Ml
820916 1439 1.9 Ml
820916 1705 1.8 Ml
3.3 I
2.5 Ml
2.7 Ml
1.7 Ml
2.2 Ml
.8 Ml
.9 Ml
2.3 Ml
.9 Ml
.6 Ml
.4 Ml
2 Ml
2.1 Ml
1.9 Ml
1.8 Ml
L A T I L E S
-------
ORGANIC ANALYSES
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
ANALYSES: EPA LAB -- MANCHESTER
UNITS: SEDIMENT UG/KG (PPB) DRY WEIGHT BASIS
p o
MONO
CHLORO
STA RIVER OTR BUTA
STATION DESCRIPTION NUM MILE M NUM DATE TIME DIENE
01 S 820915 1117
02 S 820915 1141
03 S 820915 1213
04 S 820915 1236
05 S 820915 1318
06 S 820915 1338
07 S 820915 1356
08 S 820915 1436
09 S 820915 1503
10 S 820915 1524
II S 820915 1542
12 S 820915 1606
13 S 820915 1627
14 S 820915 1653
15 S 820915 1721
16 S 820915 1738
17 S 820915 1750
18 S 820915 1805
19 S 820915 1819
20 S 820915 1831
21 S 820915 1842
22 S 820915 1854
23 S 820915 1903
24 S 820916 0946
25 S 820916 1009
26 S 820916 1023
27 S 820916 1042
28 S 820916 1055
29 S 820916 1122
30 S 820916 1135
31 S 820916 1156
32 S 820916 1210
33 S 820916 1237
34 S 820916 1253
35 S 820916 1321
36 S 820916 1348
37 S 820916 1403
38 S 820916 1420
39 S 820916 1439
40 S 620916 1454
41 S 820916 1512
42 S 820916 1532
43 S 820916 1554
44 S 820916 1615
45 S 820916 1629
HYLEBOS 1 1ST BRIDGE 46 S 820916 1705
L Y C H I
Dl
CHLORO
BUTA
DIENE
. 0 R 1 N
TRI
CHLORO
BUTA
DIENE
1 M
23
73
153
95
7
28
14
1 M
1 M
17
18
46
3
1
6
45
8
17
4
16
35
16
21
17
14
21
1 M
1 M
1 M
1 M
98
12
13
M
M
M
M
25
A T E D
TETRA
CHLORO
BUTA
DIENE
1
7
31
1143
700
569
63
147
59
6
16
77
174
288
43
36
37
1-72
29
95
5
60
34
49
70
53
79
141
5
10
5
1
1 191
55
134
1 19
18
8
20
8
5
1 M
1 1 M
1 230
BUT/
PENTA
CHLORO
BUTA
DIENE
3
40
26
14
3
8
3
12
6
7
3
3
5
1
1
13
\DIEN
HEXA
CHLORO
BUTA
DIENE
41
II
26
3
3
13
3
2
1 M
3
2
6
5
6
3
1 M
24
4
8
53
EC _
*j — — —
TOTAL
PCBDS
1
10
54
1297
890
704
73
178
76
14
19
106
198
342
52
39
43
220
PRESENT
37
115
9
PRESENT
78
69
71
96
70
102
170
5
10
5
1
313
72
155
20
18
8
20
8
6
1 Ml
1 M
321
-------
APPENDIX C
DEPTH, PERCENT SOLIDS, SEDIMENT DESCRIPTION AND LOCATION
-------
COMMENCEMENT BAY DEEP WATER
SEDIMENT SURVEY
Station
Number
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
% Solids
77
79
72
54
40
37
58
45
71
75
71
56
52
43
.7
.9
.0
.8
.7
.3
.7
.7
.3
.6
.0
.4
.4
.7
53-.9
61
70
49
54
51
51
60
63
54
48
46
52
54
47
45
47
48
55
57
46
53
41
56
52
50
55
58
58
63
63
55
.3
.5
.8
.6
.0
.9
.4
.1
.9
.5
.7
.0
.5
.6
.3
.8
.3
.9
.0
.8
.8
.3
.3
.0
.0
.1
.0
.2
.4
.3
.4
Depth
(Fathoms)
45
85
90
96
97
94
80
96
87
50
35
72
85
92
70
49
50
70
80
44
52
40
83
87
88
88
88
87
89
89
86
85
90
90
75
82
53
47
78
75
68
74
59
23
Sample Description
Sandy
Sand,
Mud
Mud
Fine
Fine
Fine
Fine
Fine
Sandy
Fine
Fine
Fine
Fine
Fine
Fine
Fine
Extra
Fine
Fine
Fine
Fine
Fine
Fine
Fine
Fine
Fine
Fine
Fine
clay & rock
mud & soft clay
mud & soft clay
mud & soft clay
mud & soft clay
sand & clay
sand
mud
mud
mud
mud
mud
mud
fine mud
mud
mud
mud
mud
mud
mud
mud
mud
mud
mud
mud & sand
Pebbles, fine mud & sand
Fine
Fine
Fine
Fine
Mud
Mud &
Mud
Sandy
Fine
Fine
Fine
Fine
Fine
Fine
Sandy
mud
mud
mud
mud
sand
mud
mud
mud & wood fiber
mud & wood fiber
mud
mud
mud & sand
mud
Latitude
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47C
47"
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47"
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
47°
19'
19'
19'
19'
18'
18'
18'
IS-
IS'
IS'
18'
17'
17'
IS'
17'
18'
IS1
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
17'
16'
16'
16'
17'
16'
16'
6.5"
02"
05"
II"
59"
44"
30"
33"
32"
34"
12"
52"
59"
00"
59"
21"
03"
52"
37"
31"
26"
19"
03"
34"
30"
39"
44"
43"
43"
52"
48"
40"
46"
54"
52"
32"
23"
08"
00"
49"
43"
33"
02"
58"
25"
Longitude
122"
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
122°
31'
30'
29'
28'
27'
27'
27'
28'
29'
30'
29 •
29'
29'
28'
26'
26'
26'
26'
26'
26'
25'
25'
25'
26'
27'
27'
27'
27'
27'
27'
27'
27'
27'
27'
27'
29 •
28'
28'
28'
27'
27'
26'
26'
25'
25'
01"
03"
03"
08"
06"
00"
02"
2| ••
20"
09"
48"
22"
04"
01"
55"
52"
49"
40"
28"
02"
39"
14"
00"
58"
58"
47"
13"
20"
40"
36"
21"
27"
24"
16"
48"
01"
44"
23"
02"
35"
15"
57"
59"
58"
57"
-------
APPENDIX D
AREA MAPS SHOWING CONCENTRATION AND DISTRIBUTION INFORMATION
BY CHEMICAL
-------
ACENAPTHENE (PPB) DRY WT.
Port Madison --'O
Case Inlet— "
Budd Inlet""
Hylebos— —
Sinclair Inlet-
NAUTICAL MILES
FIGURE 3
-------
ACENAPHTHYLENE (PPB) DRY WT.
FIGURE 4
-------
FLUORANTHENE (PPB) DRY WT.
Case Inlet
Port Madi&on-- "~" 80-fc
120--17
Hylebos - --
Sinclair Inlet 800
NAUTICAL MILES
FIGURE 5
-------
NAPHTHALENE (PPB) DRY WT.
Case Inlet
Port Madison-
Sinclair Inlet 160-*
200--
FIGURE 6
-------
IS-2 - ETHYL IIEXYLPHTHALATE (PPB) DRY WT.
Q-r-.
Station 2 - 5382 PPB
Station 3 - 1364 PPB
Station 4 - 2372 PPB
Station 6 - 34853 PPB
Station 21 - 6358 PPB
NAUTICAL MILCS
FIGURE 7
-------
I-N - BUTfLPHTHALATE (PPB) DRY WT.
Hylebos
FIGURE 8
-------
FIGURE 9
-------
39 *
-------
47°-l«'N
'BENZO (A) ANTHRACENE/CHRYSENE (PPB) DRY wr.
Case Inlet
Port Madison- —
Budd Inlet-
180-j?
Hylebos Z9ff^\g
300
NOTE:
Station 15 - 816 PPB
Sinclair Inlet - 1252 PPB
NAUTICAL MILES
FIGURE 11
-------
ANTHRACENE/PHENANTHRENE (PPB) DRY WT.
Case Inlet _~i
Port Madison-
Budd Inlef
250- -,
375-<
Hylebos ' - ~ 500- -.
625+
Sinclalr Inlet- -
) \
FIGURE 12
-------
Ol
02
03
010 09
on
(512
$13 °0
TOTAL POLYCHLORORINATED BUTADIENES (PPB) DRY WT.
To
150->
Hylebos
NOTE:
Station 4 - 1297 PPB
Station 5 - 890 PPB
Station 16 - 704 PPB
.-300^
375-
FIGURE 13
-------
122'- ao'w
PCB - 1260 (PPB) DRY WI.
•-°45\\
Sinclair Inlet -10
HyleboS-_ 21QJ_
FIGURE 14
-------
PCB - 1254 (PPB) DRY WT.
Case Inlet- — - ~~ T^
Port Madison^"'
Budd Inlet'"''
3
40
Sinclair Inlet-68.5
Hylebos 240
NAUTICAL MILES
Station 12 - 63 PPB
FIGURE 15
-------
*T'-I9'M
35«f$Ap34 as
CHROMIUM (PPM) DRY.WT.
o -.—
Hylebos
Port Madison--^,
Case Inlet --
NOTE:
Budd Inlet 44.7 PPM
Sinclair Inlet 58.4 PPM
FIGURE 16
-------
®34 •IB
BERYLLIUM (PPM) DRY HT.
'"o
Hylebos --^
— .-35^:
Case Inlet 1
.625 PPM
.55 PPM
Budd Inlet
Sinclair Inlet
FIGURE 17
-------
Port Madison
Case Inlet — '
Budd Inlet 1U-
8°~fr"
Hylebos J00" "
FIGURE 18
-------
NICKEL (PPM) DRY WT.
0-r:
Hylebos ------ 15- -.
20-
Port Madison --- ^30- -
Case Inlet ---- ^3?i-
NAUTICAL MILtS
Budd Inlet 42.A PPM
Sinclair Inlet A7.0 PPM
FIGURE 19
-------
39 fi^ O43
O40
Budd Inlet
Hylebos —
NAUTICAL MILES
FIGURE 20
-------
12 ~T:
Port Susan
FIGURE 21
-------
FIGURE 22
-------
$37 V25*? ^8
Hylebos
V
FIGURE 23
-------
LEAD (PPM) DRY WT.
Case Inlet |
and V-' ^
Port MadisonJ „ - "30
Port Susan^'' 40-p
Budd Inlet 30--
Hylebos 116
NAUTICAL MILES
FIGURE 2A
-------
APPENDIX E
NOAA PU6ET SOUND AREA SAMPLING SITES AND SUMMARY OF
COMPARISON DATA
-------
Point Jtfttnon
fart M*4iu*
NOAA PU6ET SOUND AREA SAMPLING SITES
-------
COMPARISON OF CONTAMINANT LEVELS AT SELECTED NOAA STATIONS
Parameter
Chromium
Bery 1 1 1 urn
Copper
Nickel
Zinc
Arsenic
Silver
Antimony
Selenium
Mercury
Cadm | urn
Lead
Pyrene
F 1 uorene
Acenaphthy-
lene
Naphthalene
Fluoran-
thene
Case
Inlet +
Mln
20.9
.160
10.2
19.4
23.2
1.63
19.0
-
.024
3.16
7.93
8.0
.10
.10
3.0
7.0
Acenapthenel 0.2
Anthracene/ 1 4.3
Phenanthrene
1
Benzo (A) 6.0
Anthracene/
Chrysene
PCB - 1260 .15
PCB - 1254 .34
Max
52.7
.588
45.0
47.0
82.5
2.26
46.0
28
.118
7.58
23.9
90
1.0
.40
20
100
5.0
58
40
1.2
2.9
Avg
36.8
.374
27.6
33.2
52.8
2.04
32.5
28
.071
5.37
15.9
49
0.6
.25
12
54
2.6
31.2
23
.67
1.6
Port
Madison +
Mln
22.8
.221
10.4
21.5
26.8
1.48
17.8
-
.042
3.08
10.3
30
10
.10
8.0
30
.10
23
40
.40
2.2
Max
45.6
.490
25.8
42.0
61.9
1.97
32.4
22
.113
6.25
20.1
100
.40
.10
30
80
3.0
70
120
2.0
6.0
Avg
34.2
.35
18.1
31.8
44.4
1.72
25.1
22
.078
4.66
15.2
70
5.2
.10
19
55
1.6
46
80
1.2
4.1
Budd
Inlet +
Mln
34.6
.433
36.6
34.8
55.1
57
2.66
43.7
28
.125
8.19
22.6
100
5.0
.20
30
80
9.0
50
80
.90
4.3
Max
50.1
.759
81.1
47.6
IIB
140
3.67
66.6
74
.329
11.2
60.1
180
9.0
.30
80
160
10
110
200
6.0
17
Avg
44.7
.625
62.7
42.4
91.4
99
3.1
57.8
54
.246
9.64
44
150
7.0
.23
53
123
9.7
83
137
4.2
II
Sinclair
Inlet +
Mln
39.4
.420
46.8
35.5
83.2
2.02
31.1
27
.315
5.24
44.2
190
4.0
.2
40
160
6.0
90
260
13
16
Max
71.5
.633
184
52.9
292
4.76
52.0
30
1.15
8.14
136
3100
90
3.0
360
2300
80
2180
3600
90
120
Avg
58.4
.55
128.4
47.0
192.3
3.28
43.8
29
.89
7.06
100.7
1025
36
.9
132
800
31.5
710
1252
70.8
68.5
Port
Susan -M-
Mln
14
29
.36
.860
21
Max
15
.58
.907
22
Avg
15
.47
.880
•
22
Discovery
Bay -H-
Mln
N
Max
2.6
.03
.39
Avg
2.6
+ Matins et.al. Chemical Contaminants and Biological Abnormalities In Central and Southern Puget Sound, NOAA Tech. Memo. CMPA-2
++ Mai Ins et.al. Chemical Contaminants and Abnormalities In Fish and Invertebrates from Puget Sound, NOAA Tech. Memo. OMPA-19
------- |