WATER POLLUTION CONTROL RESEARCH SERIES
11010 FLQ 03/71
      Phosphorus  Removal with
    Pickle  Liquor  in an  Activated
             Sludge Plant
ENVIRONMENTAL PROTECTION AGENC Y  R ESEARC H AND MONITORING

-------
         WATER POLLUTION CONTROL RESEARCH SERIES
The Water Pollution Control Research Series describes
the results and progress in the control and abatement
of pollution in our Nation's waters.  They provide a
central source of information on the research, develop-
ment, and demonstration activities in the Environmental
Protection Agency, through inhouse research and grants
and contracts with Federal, State, and local agencies,
research institutions, and industrial organizations.

Inquiries pertaining to Water Pollution Control Research
Reports should be directed to the Head, Publications
Branch, Research Information Division, Research and
Monitoring, Environmental Protection Agency, Washington,
D. C. 20^60.

-------
               PHOSPHORUS REMOVAL WITH PICKLE LIQUOR
                     IN AN ACTIVATED SLUDGE PLANT
          Sewerage Commission  of the City of Milwaukee
                   Milwaukee,  Wisconsin    53201
                                for the
                 ENVIRONMENTAL PROTECTION AGENCY
                        Project  #11010 FLQ
                            March, 1971
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $1.25

-------
               EPA Review Notice
This report has been reviewed by the Water
Quality Office, EPA, and approved for publication.
Approval does not signify that the contents
necessarily reflect the views and policies of
the Environmental Protection Agency, nor does
mention of trade names or commercial products
constitute endorsement or recommendation for
use.
                    ii

-------
                            ABSTRACT


            The Milwaukee Sewerage Commission's Jones Island Waste
Water Treatment Plant consists of a mutual primary treatment facility
followed by two separate activated sludge plants.  To enhance phospho-
rus removal in the 115 MGD East Plant, spent hot sulfuric acid pickle
liquor (ferrous sulfate) was added for a one year test period.  The
85 MGD West Plant was operated as a control.

            The major objective of the iron addition was to maintain
an East Plant effluent total phosphorus concentration of 0.50 mg/1 P.
The East Plant effluent total phosphorus concentration during the 1970
project period from January 12 to December 31, 1970 averaged 0.70
mg/1 P representing 91.3% removal.  The East Plant effluent total
soluble phosphorus concentration averaged 0.30 mg/1 P or 90.7$ removal.
Modification and automation of the iron addition which was completed
in December 1970 will further reduce East Plant soluble phosphorus
residuals.

            Comparison of the efficiencies of the West and East Plants
in removing BOD, COD and suspended solids as well as microscopic
examination of the mixed liquors indicates that the addition of the
unneutralized pickle liquor did not adversely affect purification.

            Waste pickle liquor can be and is being utilized at the
Milwaukee Jones Island Plant to enhance phosphorus removal.  The
principal problem experienced in maintenance of low effluent total
phosphorus concentrations was the control of effluent suspended
solids containing 2.6l/ P.

            This report was submitted in fulfillment of Project
Number 11010 FLQ, under the partial sponsorship of the Water Quality
Office, Environmental Protection Agency.
                              iii

-------
                                 CONTENTS
Section
   I

  II

 III

  IV

   V


  VI

 VII

VIII

  IX
Abstract

Contents

Figures

Tables

Conclusions

Recommendations

Introduction

Objectives

Sewerage Commission of the City of Milwaukee Jones
         Island Plant

Jones Island Plant Operation

Iron Addition Equipment and Operation

Sampling and Analytical Techniques

Presentation and Discussion of Data

    A.  Screened Sewage and Effluent Characteristics

    B.  Mixed Liquor and Return Sludge Characteristics

    C.  Miscellaneous Tests

          1. Pickle Liquor Free Acid

          2. Alkalinities on Sewage, Effluents
               and Mixed Liquors

          3. Soluble Sulfates on Sewage and Effluents

          k. Phosphorus Uptake

          5. Phosphorus Release
Page

 iii

  iv

  vi

viii

   1

   3

   5

   7

   9


  13

  17

  23

  27

  27

  35
                                                                     1*6

                                                                     U7
                               iv

-------
              D.  Rate of Iron Addition                            52

              E.  Mixed Liquor Biota                               52

              F.  Effects of Iron Addition on the                  5^
                  Plant Physical Facilities

              G.  Effects of Iron Addition on the                  56
                  Ferric Chloride Demand

   X      Acknowledgement                                          59

  XI      References                                               6l

 XII      Nomenclature and Glossary                                63

XIII      Appendices                                               65

-------
                             FIGURES
Figure No.                    Title                                FaSe

   1          Jones Island Waste Water Treatment                    11
                 Plants

   2          Automatic Pickle Liquor Addition                       20
                 Equipment

   3.         Transferring Pickle Liquor into                       21
                 Storage Tanks
u
5
6
7
8
9
10
11
12
13
Ik
15
16
IT
18
19
20
Monthly Sevage BOD Variation
Monthly Sewage Suspended Solids
Variation
Monthly Sewage Total Phosphorus
Variation
Daily BOD Variation
Daily Phosphorus Variation
1970 Phosphorus Variation
Daily Iron Variation
1970 Solids Production per BOD Removed
Solids Production per BOD Removed
SOP Release from Mixed Liquor
SOP Release from Mixed Liquor
SOP Release from Mixed Liquor
Soluble Iron Release from Mixed Liquor
SOP Release from Mixed Liquor
Actinomycetaceae , Genus Nocardia
Actinomycetaceae , Genus Nocardia
Technicon Autoanalyzer
30
31
32
37
38
39
ko
U2
k3
hQ
U9
50
51
53
68
69
73
                               vi

-------
21         Sewage SOP Versus Time                                131*



22         Sludge SOP Versus Time                                135



23         Mixed Liquor SOP Versus Time                          136



2U         SOP Versus Time                                       137



25         pH Versus Time                                        138
                             vii

-------
                                TABLES
Table                      Title                                  Page
  1         Yearly Average Screened Sewage                         27
               Characteristics

  2         Monthly Average Screened Sewage and                    28
               Effluent Characteristics

  3         Phosphorus Concentrations for Different                3^
               Periods in 1970

  U         Monthly Average Mixed Liquor and                       36
               Return Sludge Characteristics

  5         Soluble Ortho-Phosphate Uptake                         Vf

  6         Microscopic Identification of Sedimentation            55
               Basin Algae

  7         Monthly Average Ferric Chloride Use                    57
               Requirements for Sludge Conditioning
                                vni

-------
                              SECTION  I

                             CONCLUSIONS
1.  Waste pickle liquor (ferrous sulfate) as an iron source was
successfully added to precipitate phosphorus in the 115 MGD East Plant
at the Milwaukee Sewerage Commission's Jones Island Activated Sludge
Waste Water Treatment Plant.  An 85 MGD West Plant receiving the same
screened raw sewage was operated as a control.

2.  During the grant period from January 12 to December 31, 1970 the
East Plant effluent daily total phosphorus concentration  averaged
O.TO mg/1 P and 55.1? of the time (195 days out of 351* days) the
concentration was below the 0.50 mg/1 P objective.  During certain
months the concentration was high because mixed liquor suspended
solids were discharged into the effluent.

3.  Based on a 1970 average screened sewage total phosphorus
concentration of 8.2 mg/1 P, the East Plant with iron addition
removed 91.3? (0.70 mg/1 P effluent residual) while the control
West Plant removed 83.1? (l.U mg/1 P effluent residual).

k.  Based on a 1970 average screened sewage total soluble phosphorus
concentration of 3.1 mg/1 P, the East Plant removed 90.7? (0.30 mg/1 P
effluent residual) while the West Plant removed 67.5? (l.l mg/1 P
effluent residual).

5.  An average of 9.^ mg/1 iron was added to the East Plant mixed
liquor (13,060 gallons/day at 0.71 pounds of iron per gallon) to
effect the phosphorus removal.  No optimum iron dose  was determined.

6.  The pickle liquor addition increased the return sludge phosphorus
concentration from 2.29? in the West Plant to 2.6l? as P in the East
Plant, and increased the iron content from 1.86? in the West Plant to
5.08? as Fe in the East Plant.

7.  Comparison of the efficiencies of the West and East Plants in
removing BOD, COD and suspended solids as well as microscopic exami-
nation of the mixed liquors indicated that the addition of unneutral-
ized pickle liquor did not adversely affect purification.

8.  The pickle liquor (ferrous sulfate) addition increased the East
Plant effluent soluble sulfate concentration by about 18? (123 to
1^5 mg/1 SOj^) on the samples collected and decreased the
alkalinity by 21? (213 to 169 mg/1 as CaC03).  The alkalinity
of the East Plant mixed liquor was slightly less than the West
Plant and the yearly average mixed liquor pH values were 7.0 and

-------
7.1 respectively for the East and West Plants.  The pickle liquor
free acid which ranged from 2.1 to 5.8# f^SO^ for the A. 0. Smith
Corporation pickle liquor and from 6.6 to 9-3% ^SO^ for the U.  S.
Steel Corporation pickle liquor did not have any apparent effect
on the plant operation.

9.  The pickle liquor caused no problems with the plant physical
facilities.

-------
                              SECTION  II


                            RECOMMENDATIONS
         The results of this one year study have shown that it is
not only feasible but practical to add waste sulfuric pickling liquor
as a source of iron for phosphorus precipitation and removal at the
Milwaukee Sewerage Commission's Jones Island Activated Sludge Plant.
Since iron was added only to the 115 MOD East Plant, the next phase
for demonstration and experimental purposes would be to add the pickle
liquor to the 85 MOD West Plant.

         This 1970 study indicated that pickle liquor addition did
not adversely affect purification and was effective in maintaining low
East Plant effluent phosphorus residuals.  Addition of iron to the West
Plant would increase phosphorus removal and subject the waste sludge
dewatering facilities to a 100$ iron addition.  With the entire 200
MGD Jones Island Waste Water Treatment Plant receiving iron, the West
Plant sludge characteristics will change as it did in the East Plant
and should produce a sludge with a different ferric chloride demand.
A study such as this would prove valuable if the waste water character-
istics remain relatively the same.  Since the present State of
Wisconsin phosphorus removal requirement of 85$ was obtained in 1970,
the addition of iron to the entire plant is unnecessary except for
experimental purposes.

         Another consideration is to continue adding pickle liquor
only to the East Plant.  The iron probably affects other chemical
removals in addition to the phosphorus.  The 1970 project could be
expanded to investigate the removal of the other chemicals of
interest in water  pollution and waste water treatment.  Meters
could be installed to accurately measure sludge production making
it possible to determine the difference between the East Plant and
the control West Plant using a mass balance.  Also optimum iron
requirements for phosphorus removal could be determined especially
with the type of equipment presently installed and operating.

-------
                             SECTION  III


                             INTRODUCTION
         In 1967 the Sewerage Commission of the City of Milwaukee
initiated a three year research program to evaluate the phosphorus
removal in the Jones Island Activated Sludge Plant.  This research
program, funded in part by the Water Quality Office, Environmental
Protection Agency, included studying methods to enhance phosphorus
removal.  The theories of "biological phosphate removal as stated by
Levin and Shapiro (l), Vacker et al.(2) Borchardt and Azad (3) and
Wells (U) along with the chemical precipitation theories contended
by Menar and Jenkins (5) were reviewed and attempts were made to
maximize biological precipitation of phosphorus in the activated
sludge plants.  The 200 MOD Jones Island Plant consisting of the
85 MGD West Plant and the 115 MGD East Plant operated in parallel
receiving a common screened sewage was ideal for plant wide variation
of operating parameters to effect phosphorus removal.

         In 1968 the Sewerage Commission of the City of Milwaukee and
the Water Pollution Control Corporation of Milwaukee, conducted a
plant scale study to enhance phosphorus removal by chemical precipi-
tation using aluminum and iron salts at a small activated sludge plant
(1*0-70,000 gallons per day) located in a contract area of the Metro-
politan Sewerage District.  This work, at a plant receiving only
domestic wastes from a small subdivision, expanded the pilot plant
work done by Earth and Ettinger (6).  Following successful phosphorus
removal with both sodium aluminate and alum, iron in the form of
ferrous sulfate was added.  The A.O. Smith Corporation, who Joined
the study  at this point, supplied the iron in the form of a neutral-
ized waste pickle liquor and also furnished laboratory services.  The
conclusions of the May 1968 to January 19^9 study indicated that the
aluminum or iron addition, to remove phosphorus, was an effective and
economical method to enhance phosphorus removal.

         Concurrent research being conducted at the Sewerage Commis-
sion's Jones Island plant to relate operating parameters to phosphorus
removal indicated that 60 to 90% total phosphorus removal could be
expected but control of plant operations to consistently remove 855? of
the phosphorus as required by the State of Wisconsin Department of
Natural Resources could not be accomplished.  Supplementary cationic
precipitation of phosphorus in conjunction with the activated sludge
process was therefore investigated.  Iron was chosen as the cation to
be used because of the availability of pickle liquor from the A. 0.
Smith Corporation, the cooperative attitude of the company, the
success experienced at the small activated sludge plant study and the
relative costs of the chemicals.

-------
         In September 1968, Mr. George Hubbell (7) reported on his
federal grant activities to remove phosphorus from Detroit's waste
water.  He indicated the phosphorus removal was achieved through
chemical precipitation using iron in a pilot plant.  In May 1969 repre-
sentatives of the Milwaukee Sewerage Commission went to Detroit to ob-
serve the operation and discuss the project with Dr. Albert M. Shannon,
Chief of Water and Sewage Treatment.  This information, combined with
the previous Sewerage Commission work, indicated that iron addition to
a portion of the Jones Island plant was the next logical step.

         When a decline in phosphorus removal occurred in June of 1969
as a result of the Milwaukee Brewery strike it was decided to add
neutralized pickle liquor, from the A.O. Smith Corporation, to one
East Plant aeration tank to observe the effects upon phosphorus precipi-
tation and on the mixed liquor biota.  This test indicated that the
iron effectively reduced the effluent phosphorus concentration with no
noticeable ill effects on the treatment process or equipment.  An
addition rate of 15 mg/1 of iron to the mixed liquor was found to
maximize phosphorus removal.  Neutralization of the pickle liquor free
acid (2-5/0 was not necessary.

         After the plant returned to normal operation following the
five week brewery strike (June 9 to July 15), unneutralized waste
pickle liquor was added to the entire 115 MOD East Plant from November
3 to November lU, 1969.  The pickle liquor was trucked to the Jones
Island plant by the A.O. Smith Corporation and about 20,000 gallons of
the liquor was added to the mixed liquor aeration tank feed channel
each day.  The plant scale test confirmed the single tank studies.
At this point, the Sewerage Commission of the City of Milwaukee
applied for a federal demonstration grant to assist in covering the
cost of a one year plant scale study to add pickle liquor to enhance
phosphorus removal.  The A.O. Smith Corporation agreed to construct
and maintain pickle liquor storage and addition facilities and to
deliver the waste pickle liquor to the Jones Island plant.

-------
                                SECTION  IV


                                OBJECTIVES
         The objectives of the pickle liquor iron addition to the
115 MOD East Plant included:

         A.  Evaluate the effectiveness of continuous iron
             addition to maintain an effluent total phosphorus
             concentration of 0.50 rag/1 P or less.

         B.  Compare the efficiency of the West and East Plants
             in removing phosphorus, BOD, COD and suspended
             solids.

         C.  Determine the optimum iron requirements to
             maximize phosphorus removal.

         D.  Determine the effects of iron addition on the
             mixed liquor biota and its settling character-
             istics.

         E.  Determine the effects of iron addition on the plant
             physical facilities.

         F.  Determine the effect of iron addition on the waste
             sludge conditioning ferric chloride requirements.

-------
                              SECTION  V


            SEWERAGE COMMISSION OF THE CITY OF MILWAUKEE


                     JOHES ISLAM) PLANT (8.9)
         The Jones  Island activated sludge waste water treatment plant
is designed to treat 200 million gallons of sewage daily.  The plant
consists of the original 85 MGD West Plant and a 115 MGD East Plant
addition operated in parallel and receiving the same raw screened
sewage.  The treatment plant has a connected population of about
1,000,000 people.   The service area includes about 17,000 acres of
a combined sewer system and about 83,000 acres having a separate
sanitary sewer system.

         The primary treatment facilities consist of conventional
coarse screening (mechanically cleaned bar screens, 1" between bars)
to remove hair, fleshings, garbage, rags, wood etc.  Following
coarse screening, the waste water is directed to the grit chambers
consisting of eight 8 x 8 x 90 foot long compartments to reduce the
flow velocity to one foot per second.  At this reduced flow rate the
grit consisting of  sand, gravel, coal, ashes and some organic solids,
is deposited on the bottom.

         Following  this treatment, the waste water is directed to
rotary drum fine screens (3/32 inch slots - 2 inches long) to remove
troublesome solids  beforetiie waste water is divided between the
West and East conventional activated sludge plants for treatment.

         The West Plant has a ridge and furrow-type aeration plate
arrangement in the  2k aeration tanks.  The tank arrangement allows
the mixed liquor to travel through h72 feet of aeration tank (22
feet wide, 15 feet  deep) prior to flowing into one of the 11 - 98
foot diameter sedimentation tanks.  The East Plant has twenty
aeration tanks where the mixed liquor travels through 7^0 feet of
tank length (22 feet wide and 15 feet deep).  These tanks have a
longitudinal plate  arrangement (10, 11).  This plant has ten sedi-
mentation tanks each consisting of two adjoining 8U foot diameter
tanks.  In both plants the return sludge volume added to the
screened sewage is  about 25# of the sewage volume but occasionally,
the return sludge volume has been increased to
         The aeration tanks in both plants are designed to aerate
the mixed liquor (screened sewage plus return sludge) for an
average period of six hours varying from four to eight hours over
minimum and maximum flow rates.  The aerated mixed liquor is then
directed to the final sedimentation tanks for an average of a two

-------
hour detention time (the surface settling rate for West and East
Plants are respectively 900 and 8?0 gpd / sq ft at design flow) where
the settled sludge is drawn from the bottom of the base and the effluent
is discharged over a series of weirs into Lake Michigan.

         The mixed liquor solids that are wasted from both the West
and East Plants are directed to one of six gravity thickeners located
in the West Plant.  The thickened waste sludge is conditioned with
ferric chloride, filtered on vacuum filters, dried in rotary dryers
and sold as a fertilizer called Milorganite.   This is the only way
sludge can be removed from the plant.  During 1970 a total of 71500
tons (dry basis) of solids were removed in the dewatering plant.  The
physical layout of the Jones Island Plants is shown in Figure 1.
                             10

-------
              tIGH S LOW LEVEL
               SEWAGE SIPHOHS?
                                      HARBOR
ENTRANCE
:iNNICKINNIC


  RIVER
                                   Figure  I
                 Jones Island Waste Water Treatment Plant

-------
                                SECTION  VI


                        JONES ISLAND PLANT OPERATION

          The Milwaukee Metropolitan area, serviced by the Jones Island
Waste Water Treatment Plant, contains a variety of industries and the
liquid wastes vary from low strength metal-working wastes to the con-
centrated organic wastes contributed by the large brewing industries.
During 1970, the average daily waste water volume received was 171-9
mgd, having a BOD content of 209 mg/1.  The average weekday flow
(industrial and domestic) was l8l.2 mgd with a BOD of 237 mg/1 and
the Sunday flow (essentially domestic) was 1U3.H mgd with a BOD of
llU mg/1.  Calculations from this data indicate that 21% of the flow
is from  industry along with 52/J of the BOD contribution.

          With this type of load on a waste water treatment plant, many
changes  are necessary to maintain an efficiently operating plant and
many problems can be experienced.  The following review discusses
the monthly operational conditions and changes made in 1970.

January:  The average sewage flow that entered the plant was 157 mgd
and was  divided, directing on an average, k6% to the West Plant and
5k% to the East Plant.  From the Uth to the 6th, the sludge dewatering
facilities were shut down for scheduled maintenance (this is usually
done once or twice a year as necessary).  Prior to the dewatering
plant shutdown, the mixed liquor suspended solids concentration was
reduced  and during the shutdown period, the mixed liquor suspended
solids that are normally wasted, were recycled and permitted to build
up within the system.

          During 1969 an uncontrollable growth and froth formation,
identified as Aetinomycetaceae Genus Nocardia would periodically de-
velop on aerated mixed liquor and return sludge channels (see Appendix
A).  The 1969 appearance was the first observed at this plant and it
was restricted to the East Plant.  The third occurrence appeared in
both plants in December, 1969 and continued into January, 1970.  Some
of the aeration tanks were as much as 80J5 covered with the froth that
was present in both the West and East Plants.   The mixed liquor food
(BOD) to microorganisms (MLVSS) ratio remained low because of the
shutdown which was probably responsible for the continued presence
of the froth, although information received from other treatment
plant operators indicated that the froth comes and goes without any
known reason.

February:  The average sewage flow that entered the plant was 158 mgd
with an average distribution of 50% to each plant.  The distribution
was adjusted and six of the twenty (30%) East Plant aeration tanks
were taken out of service to increase the food to microorganism ratio
in an attempt to eliminate the Nocardia froth. By the end of the third
                                   13

-------
week, the froth had practically disappeared and the plant operation
continued under these conditions to determine if these changes caused
the disappearance of the Nocardia froth.

March:  The distribution of the average l6l mgd of sewage that entered,
averaged 50/J to each plant.  The six idle East Plant aeration tanks
were returned to service on the 6th, resulting in an East Plant loading
30% less than the West Plant.  The Nocardia froth had not returned, but
patches of a white foamy substance formed on the aeration tanks in both
plants.  This substance has an irridescent cast and appears to be a
detergent type foam of air, water and some grease solids.  The greater
the solids concentration, the browner the color.  The Jones Island
laboratory was not equipped for any detailed analyses of the foam.

April:  The 50 - 50/S sewage distribution was continued until April 27
when it was changed to k$% to the West Plant and 55$ to the East Plant.
The distribution of the sewage, averaging 172 mgd, resulted in an East
Plant loading 25/G less than the West Plant for the majority of the
month.  The distribution was changed because of overloaded West Plant
sedimentation basins and sludge settling problems.  These changes
resulted in overloaded sedimentation basins in both plants.  This over-
loading caused a MLSS discharge into the effluents which effects the
results of analyses of effluent samples making the data on these days
unuseable as a plant performance indicator.  The white foam was still
present.

May:  The sewage distribution was changed several times resulting in
a U6J West Plant - $k% East Plant average distribution of the 173 mgd
flow.  Problems were still experienced with overloaded sedimentation
basins, but generally, the performance of both plants was good.  The
white foamy substance was present until the return of the Nocardia
froth to the East Plant on the l8th.  Only the white foam was present
in the West Plant.

         A problem of filter cake cracking was experienced while the
cake was under vacuum resulting in a vacuum loss.   The present vacuum
pumps did not have enough capacity to maintain the vacuum.  The filter
cake cracking occurred during a period when the greatest portion of
the waste sludge originated from the East Plant.  This resulted in
no major problems and lasted for only several hours.   The cracking
probably resulted from the increased sludge ash caused by the higher
ash content of the East Plant sludge and the ash washed into the
combined sewer system with the heavy rains experienced during this
period.

June:  The 182.7 mgd of sewage that entered the plant was distributed
bk% to the West Plant and 56* to the East Plant.  The sedimentation
basins were again periodically overloaded because solids could not be
removed fast  enough to keep up with the biological solids production.

-------
The Nocardia froth covered from 20 to 70!? of the East Plant aeration
tank surface, but only a trace was noted in the West Plant.  By the
15th, most of the froth disappeared but the vhite foam returned to both
plants.

July:  The distribution of the 176 mgd of sewage averaged kl% to the
West Plant and 595? to the East Plant.  Two sludge dewatering plant
shutdowns were scheduled.  The first shutdown was from the 6th to the
8th for major maintenance repair and the second was for a few hours
on the 22nd to make additional equipment adjustments.  As a result of
these shutdowns, the sedimentation basins became overloaded with MLSS
discharged into the effluent.  The white foam was still present in
both plants.

August:  No major problems were experienced and excellent plant
operation was obtained.  The 173 mgd of sewage was distributed U3 - 57$
respectively  to the West and East Plants.  Filter cake cracking was
noticed for a short period of time, but was eliminated when more West
Plant sludge was blended into the waste sludge.  The white foam was
still present in both plants.

September:  A distribution of 1*3 - 575? to the West and East Plants
was maintained for the average 188 mgd of sewage that entered the
plant.  Sedimentation basins became overloaded again and the white
foam was still present with larger patches noted on some of the
aeration tanks.

October:  The 172 mgd of sewage flow was distributed 1*5 - 55$ re-
spectively to the West and East Plants.  More sewage  was directed
to the West Plant because of a mechanical failure and resultant damage
to one East Plant double sedimentation basin (10% of the East Plant
capacity).  This loss in capacity resulted in the discharge of MLSS
into the effluent.  The white foam and some brown foam was present on
the aeration tanks in both plants.

November:  A U3 - 575? sewage distribution to the West and East Plants
was maintained with the 175 mgd.  High mixed liquor suspended solids
concentration occurred resulting in a low food to microorganism ratio.
Not only did the reduced sedimentation basin volume become overloaded,
but by the 2Uth, channel surfaces were covered with a large quantity
of Nocardia froth.

December:  The 175 mgd of sewage was distributed kk% to the West Plant
and 56/f to the East Plant.  Again, the sedimentation basins were over-
loaded.  The Nocardia froth build-up was so great that physical re-
moval was necessary.  The froth finally disappeared and the white foam
returned.
                                  15

-------
                           SECTION VII

              IRON ADDITION EQUIPMENT AND OPERATION


         The  facilities  proposed for addition of waste  pickle  liquor
 iron  for enhancement  of phosphorus removal were designed to make
 possible a precise and  reliable operation (12,  13).  The equipment
 was comprised of 2 -  30,000 gallon pickle liquor storage tanks
 insulated so that only  a 1F maximum temperature drop  per day would
 occur at an  ambient temperature of minus 20F.  The automatic  equipment
 would consist of an automatic feed valve, a specific gravity  column,
 a calculator, a recirculation pump through a heater, and an equipment
 by-pass.  The calculator would summate  the mixed liquor  flow  from the
 existing meters, determine the iron concentration from the  specific
 gravity, and control  the iron addition  to maintain the desired iron
 concentration.  Deliveries on equipment were the on3y delaying factor.
 The A. 0. Smith Corporation agreed to design, construct  and maintain
 the pickle liquor facilities and deliver the waste pickle liquor to
 the Jones Island site.

        On Wednesday January 7, 1970 the first truck load of pickle
liquor from the A. 0.  Smith Corporation was delivered to Jones Island
starting the first addition during the grant period.   Initially the
hot pickle liquor  (125F) was drained from each truck tanker through
an insulated, heated hose and a flow meter into the East Plant screened
sewage channel Just upstream from the return sludge addition (this
point of  addition would be changed when the pickle liquor storage tanks
were ready for use).  The outside temperatures were below 0F which
created many problems with crystallization of ferrous sulfate.  These
crystals plugged the tanker valves, hose and flow meter.  The construc-
tion of  a shelter  around the flow meter with heat lights was not enough
to prevent plugging.  Pickle liquor was added continuously for five
days each week starting 7:00 A.M. on Monday and ending 5:00 A.M. on
Saturday.

        During the second week of addition one truck was set up as
the feed  source and was blanket insulated, covered with canvas and
heaters were placed under the covered area to prevent cooling and
crystallization of the pickle liquor.  The hauling truck brought hot
pickle liquor from the A.O. Smith Corporation 10 miles to the station-
ary feed truck on Jones Island.  Compressed air was used to transfer
the liquid from the delivery truck to the stationary tanker. The flow
meter was eliminated and a plastic garbage bucket was used to measure
the pickle liquor flow rate.  This method proved to be very accurate
in measuring the flow rate.  For the first two weeks an objective
addition of 15 mg/1 of iron in the East Plant mixed liquor was  attempt-
ed.  On January 23 the rate was decreased to 10 mg/1 of iron.  Initially
pickle liquor was added independent of the specific gravity (iron con-
centrations)  and independent of the mixed liquor flow.  This rough
                                17

-------
method of addition however, vorked fairly well.  During January,
pickle liquor was added on eighteen days to the mixed liquor with
averages of 12.8 mg/1 of iron per day.  This resulted in an initial
daily addition of approximately 11,800 Ibs of iron in an average of
17,1*00 gallons of pickle liquor per day.

        To more efficiently control the iron addition, a chart was
prepared to specify the gallons per minute of pickle liquor to be
added over a certain specific gravity range assuming a constant
average mixed liquor flow rate (see Appendix B for sample of one of
the  charts used).  This was started on February 19 in an attempt to
accurately add 12 mg/1 of iron.  On March l6 the rate of iron addition
was  increased from 12 to 15 mg/1 to increase the phosphorus removal,
further saturate the return sludge with iron and compensate for not
adding iron on the week ends.  Monday sewage has been character-
istically high in phosphorus as a major day for washing clothes and
more iron was added hoping to sustain a surplus.

        On June 1, 1970 the two - 30,000 gal. pickle liquor storage
tanks and piping were ready for use.  This streamlined the delivery
scheduling making it possible to add pickle liquor continuously
seven days per week.  This resulted in a change of location of pickle
liquor addition to the mixed liquor channel about 55' downstream
from where the return sludge is added to the sewage.  The pickle
liquor was added manually utilizing the automatic equipment by-pass
piping.  The gallons per minute addition of pickle liquor was still
determined by using a bucket measurement.  The pickle liquor stain-
less steel recirculation pump was put in operation on June 21 and
overnight it started leaking, spraying pickle liquor all over the
control house.  In addition to losing a few thousand gallons of
pickle liquor, some of the electrical equipment was damaged.  The
cause of the failure was traced to an "iron" plug that was dissolved
out  of the stainless steel pump body by the acid.

        The  pickle  liquor  addition rate  in June was modified to
better  control  the  pickle  liquor  added in proportion  to the phospho-
rus concentration  and therefore less was added during the night  time
(10 mg/1  during the  day  and  8 mg/1 at night).  On Monday July 13 the
pickle  liquor was  found  crystallized in the piping system stopping
the flow of  iron  into the  plant for an undetermined number of hours
over the  week end.   Manipulation  of the valves freed  the system.
The piping at this  time  was  not yet insulated but was scheduled  for
the near  future.   Again  on July 29 the piping system  was plugged but
this was  caused by  sludge  accumulation in the piping.  In September
a  new recirculation  pump was also installed and put in continuous
operation.   This  pump operated from the  llth to the 29th before
leaking pickle  liquor all  over the floor.
                                18

-------
        The Fischer & Porter Company was to have made delivery of this
automatic equipment "by mid June "but they indicated that some of the
parts had been delayed and the entire package of equipment was not
received until September.  During their installation and inspection,
a circuit board was burned out and had to be returned to the factory.
The repaired circuit board was returned in October and the automatic
pickle liquor control system was put in operation but electrical
problems caused the automatic valve to close unexpectantly.  Another
signal problem resulted from open circuits in the Sewerage Commission's
mixed liquor flow rate meters causing an infinite mixed liquor flow
reading and response.

        Concern was shown by the A.O. Smith Corporation as to their
ability to supply the East Plant with enough pickle liquor during
the period of the General Motors automotive workers strike.  Pickling
activity at the A.O. Smith Corporation was considerably reduced and
the pickle liquor supply was basically from an old storage pond at
the company.  The material from this pond had a low iron content and
the situation became critical to a point where an additional source
of iron had to be found.  The U. S. Steel Corporation, Waukegan,
Illinois Works, was contacted and their management agreed to have
their sulfuric-hydrochloric pickle liquor delivered.  Tests were
conducted and it was felt that the low chloride content in the U. S.
Steel Corporation pickle liquor would not appreciably damage the
stainless steel during this interum period. The first truck load of
U. S. Steel pickle liquor was delivered on November U and a total of
53 truck loads (235,000 gallons) were delivered through December 1st
when the A.O. Smith Corporation was again producing enough pickle
liquor to meet the demands.

        During November and December, work was done in an attempt to
start up the automatic equipment.  After additional changes and parts
replacement in the equipment, the unit was put in operation on
December 11.  Final adjustments still remain and will be made in the
near future.  This equipment will make it possible to set a desired
iron concentration in the mixed liquor and the equipment will auto-
matically control the rate of addition.  Figure 2 shows the unit
in operation and Figure 3 shows one of the A.O. Smith Corporation
tanks being unloaded.

        The equipment and materials used for the construction of the
facilities designed for pickle liquor addition to the 115 mgd East
Plant were:

1.  Two 30,000 gallon steel tanks 12 foot in diameter and 36 foot
long were rubber lined and the outside was insulated with a cover of
urethane foam and painted aluminum.  Both tanks were equipped with
a low level alarm which actuated a red light and a high level alarm
which activated a horn.  The pickle liquor was transferred from the
tanker to the storage  tanks using air pressure.
                                  19

-------
     c
     *

     0        U-^
                 Figure 2

Automatic Pickle Liquor Addition Equipment

-------
              Figure 3



Transferring Pickle Liquor into Storage Tank

-------
2.  All the piping and valves were 3l6 stainless steel which was
resistant to the sulfuric acid pickle liquor.  The piping from the
tanks was h inches in diameter and then reduced to 2 inches as it
passed through the equipment and then returned to U inches.  The
equipment by-pass line was 1 1/4 inches in diameter.  An 8' x 10'
building was constructed to house the automatic equipment.   The
piping located outside of the equipment building was also insulated.

3.  A Fischer & Porter Magnetic flow meter (teflon lined with
Hastelloy C electrodes) was used to measure the pickle liquor flow
rate (chart range of 0 - 50 gallons per minute).

k.  A Saunders automatic rubber lined valve with a flexible diaphram
which seats tightly against a weir in the body was used to control
the pickle liquor gallon per minute flow rate.

5.  The 316 stainless steel specific gravity column was used to
obtain the iron content of the pickle liquor.  A differential
pressure density transmitter was used to determine the specific
gravity which was recorded.  The initial recorder range was 1.00 to
1.1+0.

6.  A Vanton pump with a neoprene liner pumps a portion of the
pickle liquor flow (0.3 gpm) to the specific gravity column.

7.  The mixed liquor flow rate was determined by summating the
resistance output of 20 potentiometers on the exisitng East Plant
tank metering equipment.  The recorder mixed liquor flow range was
initially from 0 to 2^0 mgd.

8.  The Fischer & Porter equipment had a range from 0 to 25 mg/1
of iron added to the East Plant mixed liquor.
                             22

-------
                          SECTION  VIII


               SAMPLING & ANALYTICAL TECHNIQUES
SAMPLING:

Sewage;

         The dally sevage samples analyzed represent 2k hour composite
samples of fine screened sewage from 7:00 A. M. to 7:00 A. M.  A
Phipps-Bird sampler was used to collect samples to form hourly com-
posites (30-200 ml portions per hour) which in turn were composited to
form a 2k hour composite in proportion to  the screened sewage flow
rate.

Effluents:

         The West Plant effluent samples represent a 2k hour composite
of hourly grab samples.  Every hour the operator would take one dipper
full of effluent from each weir channel on all of the eleven clarifiers.
Each hourly sample was mixed and a volume in proportion to the sewage
flow was added to the 2k hour sample bottle.

         In the East Plant the same effluent sampling schedule as the
West Plant was used until April 1, 1970 when an automatic Sonford
sampler was put into operation.  This sampler was activated by a timer
set in proportion to the average flow rate.

Mixed Liquor:

         The SDI analyses were performed on individual mixed liquor
grab samples taken at about 9:30 A.M., 5:30 P.M. and 1:30 A.M. each
day from a feed channel to the sedimentation basins and the results
were averaged.  The mixed liquor pH was determined on the 9:30 A.M.
grab sample.  The MLSS analysis  was performed on a 2k hour composite
mixed liquor sample.  Equal volumes of mixed liquor were collected
every hour for each shift and composited on a shift basis in pro-
portion to the average shift flow rate variations.

Return Sludge;

         Equal volumes of return sludge were collected every two hours
for each shift.  At the end of the shift the sample was mixed and a
designated volume was added to the 2k hour return sludge sample bottle.
This designated volume was proportional to the average flow variation
for each shift.
                              23

-------
Milorganite;

         A Milorganite sample was collected in direct proportion to
the rate of production to produce a 2k hour composite.
ANALYTICAL TECHNIQUES:

Phosphorus Determinations:

         Total, total soluble, and soluble ortho phosphorus concen-
trations were determined on liquid samples.  After the filtration of
the total soluble and soluble ortho samples and the ternary acid
digestion of the total and total soluble sample, the prepared samples
were introduced into a Technicon Autoanalyzer for determination of
the soluble ortho phosphorus concentration using the Amino-
naphtholsulfonic Acid Method.  For a detailed description of the
method refer to Appendix C.  The return sludge phosphorus analyses
was a gravimetric method as outlined in Appendix D.

Iron Determination:

         The total iron and total soluble iron (analyses on filtrate)
determination made on sewage and effluent samples were prepared by a
nitric acid digestion.  Soluble iron determinations on mixed liquor
samples were handled in a similar manner.  The digested samples were
introduced into an Atomic Absorption instrument (instrumentation
Laboratory, Incorporated, Model No. 153) for analyses.  The sewage
sample for total iron was diluted 1 to 2 but the rest of the samples
were run direct.  During the initial stages in the operation of the
atomic absorption unit, (January, February and March) problems were
experienced by using ternary acid for digestion, making too many
dilutions and an improper calibration and use of blanks for back-
ground correction.  Therefore, the iron data for this initial period
is approximate but still presented in Appendix H.

         The iron concentration in the pickle liquor was determined
using a volumetric titration-dichromate process.  A description of
the method is in Appendix E.

         The return sludge iron was determined on dry centrifuged
solids using a volumetric dichromate method as given in the Appendix F.

Mixed Liquor and Return Sludge Suspended Solids Concentration
Determination;

         A known volume of the sample was  filtered through a weighed
filter paper in a Buchner funnel  (100 mis  of ML through a S & S
Sharkskin and 50 mis of return sludge through a Whatman No. 3).  The
sludge and paper were dried at 103 C for  one hour, cooled and weigh-
ed again.  The difference in weight was used  to determine the

-------
concentration.

Sludge Density Index Determination;

          A relatively fresh mixed liquor sample was used for this
analysis.  The suspended solids concentration was determined on one
part and a 30 minute settling test was determined on another part
using a 1000 ml graduated cylinder.

   SDI = % MLSS x 100	
         % Cylinder volume occupied by solids after 30 minutes

Biochemical Oxygen Demand Determination;

          This determination involved using the azide Modification
of the lodometric method as given in Standard Methods 12th Edition
(lU).  The method for rounding off the effluent data was changed in
September as indicated in the presentation of the daily results.

Chemical Oxygen Demand Determination;

          The sewage (20 ml aliquot) and effluents (Uo ml aliquots)
were analyzed for COD using the method as explained in Standard
methods. 12th Edition (lU).

Total Solids Determination;

          A 100 ml sample of sewage or effluent was placed in tared
silica dish and the liquid was evaporated to dryness on a water
bath.  Then the dish was dried in an oven at 103C and was put in a
desiccator to cool prior to being weighed again.  The difference was
the total solid weight per 100 ml of sample.  The method is from
Standard Methods, 12th Edition (lM.

Suspended Solids Determination:

          The sewage (50 ml) and effluent (200 ml) samples were
filtered through a tared Gooch crucible with an asbestos pad.  The
crucible was dried at 103C for one hour cooled in a desiccator and
weighed again and the difference was the suspended solids weight.
The method is from Standard Methods, 12th Edition (lM.

Nitrogen Determination;

          The total KJeldahl nitrogen  analysis on the liquid samples
(sewage and effluents) is as indicated in Standard Methods 12th
Edition (ik).

          The nitrogen analyses on the Milorganite and the dry
centrifuge return sludge solids is a method for total nitrogen on
dried solids explained in Appendix G.
                                    25

-------
Ash Determination:

          A three gram sample of the dried solids were put in a tared
crucible and ignited at 600 C. for two and one half hours, cooled
in desiccator and weighed.

Alkalinity Determination:

          A 50 ml sample was titrated to a pH of U.3 using N/50 E2SO^
using the following calculation as in Standard Methods, 12th
Edition (lM.

   Alkalinity as mg/1 CaCC>3= mis H2SO^ x Normality H2SO^ x 50,000
                                          mis sample

Sulfates Determination:

          The sewage and effluent samples (20 mis diluted to 100 mis
with distilled water) were  analyzed for soluble sulfate by first
filtering the sample through a glass fiber pad and running the
analyses on the filtrate.  The Turbidimetric Method as in Standard
Methods, 12th Edition (lM  was used.

Specific Gravity Determination:

          A standard 60 F. hydrometer was used to measure the
specific gravity of the pickle liquor-  The readings were not com-
pensated for temperature.

% Free Acid Determination:

          Initially, a 10 ml aliquot of the pickle liquor was
titrated with IN Na OH until the formed floe turned from green to
brown (pH about 6.0).  This method was used for all the analyses on
pickle liquor from the A. 0. Smith Corporation.  This method was
later changed to titrate to a pH of IK 3 and all the pickle liquor
from the U. S. Steel Corporation was analyzed in this fashion.
The formula used in all determinations was:


           % HgSO^ = mis titrant x Normality of NaOH x k$
                        mis sample x Specific Gravity
                                26

-------
                            SECTION IX

                PRESENTATION AND DISCUSSION OF DATA


      A.  Screened Sewage and Effluent Characteristics
         The review and investigation of the performance of a waste
water treatment plant was greatly dependent upon the characteristics
of the waste water that enters the plant.  Some of these character-
istics of the raw screened sewage entering the secondary or bio-
logical portion of the Jones Island treatment process presented as
1970 yearly averages are:
                             TABLE  1

      Yearly Average Screened Sewage Characteristics

          Total Solids, mg/1                 939
          Suspended Solids, mg/1             207
          BOD mg/1                           209
          COD mg/1                           1+31
          Kjeldahl Nitrogen mg/1 N            28.3
          Total Phosphorus, mg/1 P             8.2
          Total Soluble Phosphorus, mg/1 P     3.1
          Total Iron, mg/1 Fe                  7.17
          Total Soluble Iron, mg/1 Fe          0.60

These properties of the sewage entering the plant are further
broken down into monthly average concentrations on Table 2.  The
West and East Plant operations are similar except iron was added
to the East Plant.  Table 2 also indicates the quality of the
effluent from both plants along with the percent removal of the
different properties listed.  Appendix H has all the daily results
of analyses.

         The data shows some very significant and interesting
information.  The sewage has a relatively high percent of insolu-
ble phosphorus, 62% or 5.1 mg/1 P.  The pickle liquor iron, there-
fore only has to interact and precipitate the smaller portion of
the phosphorus (38$ soluble).  Figures 4, 5 and 6 show the monthly
variations in screened sewage BOD, suspended solids and total
phosphorus over the last six years.  The year 1970 is far from an
average year and at the present time no substantial answer was
available that could explain the marked change experienced.  The
sewage properties in the future may continue as in 1970 making the
plant data obtained during this grant period typical or it may
return to the earlier characteristics making 1970 an "unusual year",
                              27

-------
                 TABLE 2
      MONTHLY AVERAGE SCREENED SEWAGE
        AND EFFLUENT CHARACTERISTICS

MONTH

January
February
March
April
May
June
July
August
September
October
November
December
Average
BIOCHEMICAL OXYGEN DEMAND
mg/1
SS WPE EPE
251 16.6 12.9
2l49 13.0 lU.O
21*1* 12.5 22.9
203 9.0 11.1*
192 12.8 12.9
183 7.1* 2U. 8
171* 1U.6 15.5
171 8.7 10.3
187 12.6 Ik. U
230 17.0 23.0
210 13.0 15.0
210 13.0 18.0
209 12.5 16.3
% Removal
WPE EPE'
92.5 91*. 6
9U.2 93.9
91*. 2 89. U
95.3 93.8
93.2 92.6
95.6 85.9
91.0 90.5
9>+.l 93.1
92. U 91.5
92.1* 89. 1*
93.5 92.5
93. U 91.3
93.5 91.5
CHEMICAL OXYGEN DEMAND
mg/1
as WPE EPE
505 81 67
1*99 86 78
1*76 85 79
1*1*3 77 67
1*20 83 66
395 55 81
377 60 63
368 5^ 61
377 52 65
1*50 65 81
1*1*0 56 61*
1*20 6l 71
1*31 68 70
% Removal
WPE EPE
82.7 85.9
81.7 83.5
80.7 82.3
81.6 8U. 0
79.5 83.3
85.9 79.8
83.1* 82.6
81*. 3 82.0
85.1 81.9
81*. 9 81.2
86.5 81*. 6
81*. 1 82.0
83.1* 82.8


Month

January
February
March
April
May
June
July
August
September
October
November
December
Average

TOTAL SOLIDS
nw/1
SS WPE EPE
1077 801 803
990 722 756
1038 765 791*
1033 773 807
9l*l* 736 71*6
885 69!* 772
805 639 681
805 629 666
828 61*9 693
918 715 756
928 738 769
1017 829 860
939 721* 759
% Removal
WPE EPE
25.1* 26.6
26.U 22.9
25.9 23.1
2l*.5 21.2
21.5 20.1
21.1* 12.8
20.8 15.2
21.1 17.1
21.2 16.9
21.5 17.6
19.8 17.3
18.0 15.5
22.3 18.9

SUSPENDED SOLIDS
mg/1
SS WPE EPE
259 22 16
230 15 16
230 17 18
2lU 18 13
193 27 16
177 13 1*1
177 22 23
177 12 lU
189 15 23
232 22 1*2
199 18 25
207 21 29
207 18.5 23
% Removal
WEE EPE
90.5 93.8
93.1* 92.8
92.2 91.9
91.5 93.5
86.1+ 91.2
92.6 77.1
87.3 87.5
93.2 91.7
91.8 87.9
90.3 81.0
91.2 87.7
90.0 85.5
90.9 88.5
KJELDAHL
NITROGEN
rag /I as N
SS WPE EPE
3U. 3 15.9 15.1
33.2 lli.l lU.l*
29.9 12.2 ll.U
27.3 9.0 7.6
26.1 10.0 6.1*
2U. 3 8.1 7.5
21*. 9 7.9 U.3
25.9 9.9 5.0
21*. 5 8.1 1*.5
30.7 12.5 10.3
28.6 12.1 7.1
29.9 ll.U 10.0
28.3 10.9 8.6
*A11 effluent data represents the period from Januar-"- 12
 to December 31, 1970.
                        28

-------
           TABLE 2 (cont.)
MONTHLY AVERAGE SCREENED SEWAGE
  AND EFFLUENT CHARACTERISTICS

MONTH

January
February
March
April
May
June
July
August
September
October
November
December
Average
TOTAL PHOSPHORUS
mg/1 as P
SS WPE EPE
9.7 3.0 0.6k
10.1+ 2.5 0.86
9.6 2.2 0.86
8.3 1.6 0.52
7.3 1.1 0.1*9
6.7 1.1 0.96
7.2 0.97 0.70
7.3 0.66 0.3l*
6.8 0.72 0.58
8.9 1.2 l.l
8.1 0.91* 0.56
7.7 1.2 0.77
8.2 1.1* 0.70
% Removal
WPE EPE
69.1 93A
75. k 91.2
76.6 90.8
81.1 93.1*
85.2 93.1*
83.6 85.1*
86.5 90.5
91.1 95.5
89.2 91.3
86.2 87.5
88.7 93.1
81*. 0 90.2
83.1 91.3
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS WPE EPE
3.9 2.6 0.37
3.8 2.1 0.57
3.7 1.9 0.59
3.6 1.3 0.31*
2.8 0.55 0.22
2.6 0.91 0.23
2.5 O.U6 0.19
2.7 0.35 0.20
2.5 0.1*5 0.27
3.1 0.80 0.26
2.8 0.59 O.lU
2.7 0.83 0.17
3.1 1.1 0.30
% Removal
WPE EPE
31*. 2 91.1
ItU.l* 81*. 9
1*7.0 83.7
65.2 90.8
80.5 92.2
66.6 90.9
80.1* 92.5
87.2 93.2
81.1* 89.7
7U. 0 91.1
79.3 9^.7
69.3 93.1*
67.5 90.7

MONTH

January
February
March
Anril
May
June
July
August
September
October
November
December
Average
TOTAL, IRON
mg/1 as Fe
SS WPE EPE
8.1*3 0.67 0.91
7.11 0.30 0.83
7.72 0.39 0.73
7.26 0.1+8 0.60
6.95 0.69 1.01+
5.95 0.58 2.13
7.00 0.81 1.51
6.70 0.51 0.6U
5.60 0.33 0.92
8.15 0.52 1.76
7.82 0.39 1.1
7.1*0 0.1*7 2.0
7.17 0.51 1.18
% Removal
WPE EPE
91.3 89.5
95.5 87.2
9l*. 8 90.1*
93.2 90.9
89.9 81*. 7
90.3 61*. 8
88.7 80.2
92.5 90.5
93.9 82.7
93.6 78.1*
95.0 85.8
93.6 75.3
92.7 83.1*
TOTAL SOLUBLE IRON
mg/1 as Fe
SS WPE EPE
l.Ql* 0.38 0.1*9
0.31* o.io 0.16
0.39 0.17 0.16
0.52 0.22 0.20
0.50 0.2U 0.22
0.75 0.39 O.Ul
0.77 0.38 0.1+2
0.79 0.25 0.27
0.1+3 0.08 0.08
0.60 O.lU 0.13
0.5^ 0.08 0.13
0.58 0.13 0.16
0.60 0.21 0.21+
% Removal
WPE EPE
55.3 5^.6
61*. 3 59.5
5l+. 8 59.5
55.1* 59.1
52.3 56.1
1+8.0 1+5.1+
58.7 51.5
67.3 62.7
79.7 79.3
75.5 76.1+
83.1 73.9
75.9 71.2
61+. 2 62.1+
                 29

-------
    375
    350
    325H
    300H
   2754
Q
O
DQ
         J   F
      MAMJ   JASON
              MONTH
            Figure 4
Monthly  Sewage   BOD  Variation
                          30

-------
o>
E
Q

Ll
O
Q
Ld
Q

LU
Q_
C/)
    375
    250
    32 5J
    300
    275'
250
225
200
    175-
    150
1969

1970
                    ~J   J   A   S   0~
                                              N
      J   FMAM

                  MONTH
                  Figure  5

  Monthly  Sewage  Suspended  Solids   Variation
                         31

-------
    12 4
    II



Q_

c-  10 -I
(T)   9^

or
o

a.   
(f>
o
X
Q.
     6 i
       1968
         JFMAMJJASOND
                     MONTH

                  Figure  6


     Monthly Sewage  Total  Phosphorus  Variation
                        32

-------
         The biological activities for 1970 in the West and East
Plants will be different from the previous years because of the
different loadings, therefore the effluent properties were not
compared with the previous years.  However, the percent total
phosphorus removal in the West Plant was greater in 1970 (83.1/0
than in the 1968 (76.25?) and 1969 (76.9%) period.

         The effluent results indicate a very low total soluble
phosphorus concentration in the East Plant effluent; 0.30 mg/1 P
as a yearly average in comparison with 1.1 mg/1 P in the West Plant.
A yearly average for effluent characteristics was from January 12,
1970 (iron addition) to December 31, 1970.  The yearly averages for
total phosphorus concentrations for the East Plant was 0.70 mg/1 P
(91.3!? removal) and l.U mg/1 P (83.1$ removal) for the West Plant.
These total phosphorus concentrations varied greatly at times due
to plant operational problems, start up period of iron addition,
plant acclimation and seasonal changes.  The objective of maintain-
ing a total phosphorus residual of 0.50 mg/1 P was obtained on a
monthly average only twice, in May and August.  The daily data in
Appendix H indicates that this objective probably could have been
obtained every month after the initial acclimation period except
for a mixed liquor suspended solids control problem.  During the
last four months of the grant period, mixed liquor suspended solids
were discharged in the effluent from the final sedimentation basins
contributing a significant amount of insoluble phosphorus to the
effluent.  Considering the 351* days from January 12, 1970 to
December 31, 1970 the total phosphorus concentration in the East
Plant effluent met the objective on 195 days (55.1$ of the time)
while the West Plant effluent met the objective on only 60 days
(l6.9$ of the time).  During the same time period the total
soluble phosphorus concentration in the East Plant effluent was
less than or equal to 0.50 mg/1 P on 311 days (87.9$ of the time)
while the West Plant effluent was in that range only lU3 days
(kQ.k% of the time).  Another comparison of the data was to
divide the year into several periods (remember iron was added only
to the East Plant) as shown in Table 3.  The low total soluble
phosphorus concentration in the effluents indicated the success
to the iron addition for phosphorus precipitation in the East Plant.

         The acclimation period referred to was very difficult to
define because of all the biological aspects that were possibly
affected.  Arbitrarily we assigned January and February as the
initial period because of addition problems.

         Plant performance indicators such as removal of BOD, COD
and suspended solids were compared between the West and East Plant
and both plants operated about the same.  The slightly lower percent
removals in the East Plant reflected the greater loss of mixed
liquor suspended solids from the sludge blankets in the East Plant
sedimentation basins.  The SDI yearly averages of 0.97 for the West
                                33

-------
UJ
.fc-
                                                           TABLE  3

                                   PHOSPHORUS  CONCENTRATION FOR DIFFERENT  PERIODS  IN  1970


                  1970          	Total Phosphorus	Total  Soluble  Phosphorus        Iron Addition
                 Period              mg/1  P         %  Removal         mg/1 P     ff Removal""    to East Plant
          	SS    W     E    W     E    SS      WE     W     E	Ib/day  mg/1


          Weekday Addition
              Acclimation
           Jan  12 -  Feb  28     10.1  2.7  0.77   72.7   92.2  3.9   2.3 0.149   H0.3  87. U     1100U   12.5
      Spring
  Mar  1 - May 31      8.U  1.6   0.62  8l.O  92.5  3.1*   1.2  0.38  6H.3   88.9     12600    13.2


Continuous Addition
      Summer
 June  1 - Sent 30     7.0  0.87  0.6U  87.6  90.7  2.6   0.51* 0.22  79.2   91.6      7527     6.9
            Fall - Winter
           Oct  1 - Dec  31      8.2   1.1    0.8l   86.3  90.3  2.9    0.7^ 0.19  7^.2  93.0     7066    6.7
              Yearly Average    8.2   l.U    0.70   83.1   91.3  3.1   1.1  0.30  67.5  90.7     927U    9.U

-------
Plant mixed liquor and I.Ok for the East Plant indicated that the East
Plant produced a slightly better settling sludge. (See Table h).

         The daily sewage and effluent results for BOD, phosphorus
and iron were separated by the days of the week.  Figure 7 shows  the
daily BOD variation indicating a fairly constant Monday through Friday
average BOD.  The East Plant effluent BOD was slightly higher than the
West Plant due to the greater loss of solids.  The Friday results were
higher because more solids were lost on that day.  No logical explana-
tion was found for the higher East Plant effluent BOD on Monday ex-
cept that the effluent had higher suspended solids concentration  than
the West Plant.  The Monday mixed liquor SDI was 1.03 and 1.10 re-
spectively for the West and East Plants indicating better overall
settling in the East Plant.

         Figure 8 shows the daily phosphorus variation.   On Monday
the screened sewage total phosphorus and total soluble phosphorus was
the highest and on Sunday the lowest with the rest of the days fairly
constant.  The effluent data shows the greater removal in the East
Plant.  Figure 9 shows the monthly phosphorus variation and indicates
the great difference in the effluent values early in the year. This
figure clearly shows the variation between the West and East Plant
for the total and total soluble phosphorus concentrations and the
objective total phosphorus concentration of 0.50 mg/1 P.  The East
Plant Monday data includes the period when iron was not added over
the week end resulting in a higher effluent total soluble phosphorus
concentration.

         Figure 10 shows the daily iron variations (the data does not
include the January and February results because of problems in the
analyses).  The sewage total iron concentration was lowest on Sunday
and increased to a peak on Friday and then dropped slightly on
Saturday.  The East Plant effluent total iron content was about
double that of the West Plant.  Some of this increase was caused  by
the greater loss of solids especially on Fridays.  The soluble iron
concentration in the effluents were very low averaging 0.21 mg/1  Fe
in the West Plant and 0.2k mg/1 in the East Plant.  The total iron
concentration was greater in the East Plant effluent because of the
higher iron concentration in the suspended solids.

    B.  Mixed Liquor and Return Sludge Characteristics

         The addition of iron increased the ash content of the East
Plant sludge.  To compensate for this ash an attempt was initiated
in July, at the suggestion of project officer Dr. R. Bunch, to keep
the East Plant mixed liquor suspended solids 200 mg/1 higher than
the West Plant which would equalize the biomass or volatile suspend-
ed solids in both plants.  The monthly average mixed liquor suspend-
ed solids values indicate that 200 mg/1 differential was success-
fully maintained.
                               35

-------
               TABLE 1+
MONTHLY AVERAGE MIXED LIQUOR AND
 RETURN SLUDGE CHARACTERISTICS

Month

January
February
March
April
May
June
July
August
September
October
November
December
Average
Iron Addition
To East Plant
Lbs/day mg/1
11,778 12.8
10,1+23 12.2
12,192 13.7
12,960 13.7
12,630 12.3
8,081 7.2
7,392 6.7
7,210 6.9
7,1+27 6.8
6,1+08 6.2
6,780 6.3
8,001 7.1+
9,271* 9.U
MIXED LIQUOR
E.P.
M.G.D.
103.1+
98.1+
100.2
109.0
119.8
132.8
130.1+
123.7
133.0
123.8
126.9
127.6
119.1
r>H \Susp.Solids mg/1
WP EP \
7.1 7.1
7.0 7.0
7.1 7.0
7.1 7.0
7.0 7.0
7.2 7.1
7.1 6.9
7.0 6.9
7.2 7.0
7.1 7.0
7.1 7.0
7.1 7.0
7.1 7.0
WP EP
2686 2693
2723 2805
2537 2580
271+1 2665
2991 297^
251+1 2601+
26ll+ 2617
2329 2589
2207 21+26
2588 2773
2791+ 2976
2521+ 27**7
2606 2701+
S. D. I.
WP EP
0.91* 1.02
1.11 1.11
1.16 1.16
1.09 0.9^
1.03 0.90
0.82 0.81+
0.86 1.11
1.06 1.22
0.99 1.19
0.86 0.98
0.92 l.lU
0.83 0.90
0.97 1.0U

Month

January
February
March
April
May
June
July
August
September
October
November
December
Average
RETURN SLUDGE - CENTRIFUGED SOLIDS - DRY BASIS
% Total - P
WP EP
2.36 2.76
2.37 2.65
2.31 2.62
2.18 2.1+7
2.11+ 2.1+1+
2 . 18 2.1+9
2.1+0 2.87
2.1+2 2 . 70
2.31 2.58
2.33 2.69
2.32 2.6l
2.11 2.1+2
2.29 2.61
% Total - N
WP EP
6.67 6.31+
6.53 6.11+
6.1+2 6.06
6.62 6.21
6.52 6.05
6.62 6.16
6.61+ 6.00
6.63 6.12
6.6l 6.01
6.76 6.30
6.83 6.30
6.90 6.1+6
6.65 6.18
% Total-FE
WP EP
2.05 5.67
2.00 5.15
1.99 5.52
1.67 5.55
1.8U 5.3U
1.71+ 1+.81+
1.81+ 1+.76
1.91* 5.08
1.8U 5.11
1.81 1+.1+5
1.90 1+.73
1.72 1+.80
1.86 5.08
% Total Ash
WP EP
21+.51+ 30.57
25.31 29.71+
26.1+1+ 31.58
26.18 31.78
27.88 32.83
27.20 31.83
27.72 32.82
26.87 31.58
26.66 31.76
25.13 29.60
21+.78 29.36
23.20 27.97
25.99 30.95
                  36

-------
   250-
   200-
   150-1
   100.
                /
       Screened Sewoge
                                                 "A
                            \
                                     \

                                                         \
                                                          \
        Su
M
Tu
W
                   Th
So
Q
O  ,5
DO
        Su
                   Eost Plant Effluent
M
                                 West Plant Effluent
Tu
        Th
             Daily
           w
        DAY
 Figure 7
BOD     Variation
Sa
                             37

-------
    9
     7-
a_
     6-

-------
      10-


       9


       8 =


       7


       6.
           Total Phosphorus
                                  ,N
                                 /   *,
                                /
             JFMAMJJASOND
CO
=>
cr
o
i
Q_
CO
O
I
Q_
       4-
                                   Screened  Sewag*

                                   West Plant Effluent

                                   East Plant Effluent
                 Total Soluble Phosphorus
 Total
/ Phosphorus
                          	o-	o	<*	
                                      <>	o
            J    FMAMJ   JASOND
                           MONTH
                          Figure  9

              1970  Phosphorus   Variation

-------
      8H
      7-
                     .Totol Iron
        Su
            i

            M
Tu
W
Th
So
         	 Screened  Sewage

         	 West Plant  Effluent

         	East  Plant  Effluent
    20-
 cn
 E
o
a:
.5.
    1.0-
    0.5-
                                                 Total  Iron-,,
         t=^rr^^_^_
                                               Total Soluble  rr,n
        Su       M        Tu       W

                             DAY


                            Figure  10


             Daily   Iron   Variation
                              40
                                      Th
                                   Sa

-------
           During the initial stages of the pickle liquor addition,
Dr. Bunch raised the question as to what inhibitors were in the pickle
liquor and if they had any carcinogenic effects.  The companies supply-
ing the inhibitors to the A. 0. Smith Corporation were contacted and
requested to supply us with information about their product.  One
company said their product was a biodegradable surface active agent and
the other company said that they did not know anything about the
carcinogenity of their chemical but expected no problems because of the
tremendous dilution factor involved.

           The solids production in the mixed liquor was reviewed.  A
solids production difference between the West and East Plants could
not be determined because the volume of sludge wasted from each plant
individually was not accurately measured.  The total sludge produced
in both plants was obtained by adding the tons of dried solids removed
and the solids present in the effluent.  It should be remembered that
the Jones Island Plant does not have conventional primary settling,
only fine screening, and therefore the sewage BOD and suspended solids
feed to the biological process was high.  This higher load will result
in a greater overall production of solids.  Figure 11, shows the solids
produced in conjunction with the BOD removed and shows the monthly
variation of solids produced per 1000 pounds of BOD removed.  The
increase in production of solids per BOD removed increased during periods
of low BOD content of the sewage because the dewatering facilities were
operated to remove as many solids as practical resulting in a lower
sludge age.

           Figure 12 shows the solids production per pound of BOD
removed for the last six years.  Relating this data to Figure k
(sewage BOD variation) a greater production per pound of BOD removed
occurs during periods of lower sewage BOD.  During the lower BOD period
the solids were removed fast enough to produce a lower sludge age and
greater production.  In 1965, 1966, 196? and 1968 solids were not re-
moved fast enough and the sludge age was greater resulting in endogenous
respiration but possibly a more stable sludge.  This greater solids pro-
duction and removal may be the reason for the increase noted in the
ability of the West Plant to remove phosphorus.  The greater the solids
production, the greater the amount of phosphorus removed.

           The increased phosphorus removal efficiency of the East
Plant was confirmed by the increased phosphorus content of the return
sludge.

               MONTHLY AVERAGES              JAN. 12 - DEC. 31

              West Plant R.S.         -          2.29$ as P
              East Plant R.S.         -          2.6l$ as P
                              111

-------
-a
0)
o
13


e
Q_

co
-o
CO


(2
T3

-------
      I.CH
 o>

 o


 
-------
Along with the phosphorus differences, the pickle liquor addition
clearly indreased the iron content of the East Plant return sludge

           MONTHLY AVERAGES              JAN. 12 - DEC. 31

             West Plant          -           1.86% as Fe
             East Plant          -           5.08$ as Fe

The monthly average mixed liquor and return sludge properties are
shown in Table k and the entire data in Appendix H.  The greater
amount of ash in the East Plant sludge reflects the iron addition.
The nitrogen in the sludges from both plants on a yearly average are
almost exactly the same when based on an ash free sample.
          From January 12 - December 31, 1970 a total of
gallons of waste pickle liquor were added averaging 13,060 gallon
per day or 9,274 Ibs per day to the East Plant.  The specific gravity
ranged from 1.090 (0.20 pounds of iron per gallon) to 1.333 (l.OU Ibs
of iron/gal.) averaging 1.235 (0.71 lb of iron/gallon).

          The phosphorus and iron content of the return sludge in-
creased as expected and the question was raised as to the form in
which the phosphorus had precipitated.  The grant included funds for
x-ray diffraction tests to be conducted at Marquette University through
the Civil Engineering offices of Dr. Raymond J. Kipp, Chairman, and
Dr- Sudershan K. Malhotra, Assistant Professor.  The work was done
by Dr. Martin A. Seitz and Mr. Robert Riedner (15) of the Marquette
College of Engineering.  The objective of the x-ray diffraction was
to determine the nature of any crystalline inorganic or organic
matter in the sludge residue.  Return sludge from the West and East
Plants was obtained and dried.  The dried material was then magnet-
ically separated for x-ray diffraction of the magnetic portion.  The
details of the procedure are in Appendix I.  The inorganic crystal-
line compound, Vivianite: Fe^POi^  8 H20 and variations of ferrous
phosphate (Fe^POj^  (8-x) H20) were found in the sludge from both
plants .

          Some of the conclusions to the work by Seitz and Riedner (15)
were :

          "1.  In order to identify the compound species in the sludge
               residue , they must be concentrated and separated from
               the bulk material.
           2.  Vivianite in a defective form, Fe3(PO|J2  (8-x) H20,
               is present in the sludge residue in varying amounts, of
               the order of 1%.

-------
          3.  Freeze drying methods lead to better results upon x-ray
analysis, while air drying methods lead to better weight analysis
results.  Further work, mainly in the area of electrostatic charge pick-
up by powder particles, is required in order to obtain a more reliable
weight analysis."

The relative concentrations of the ferrous phosphate forms were not
determined but of the dried solids samples obtained, one West Plant
sample had the greatest percent of magnetic material.  This may have
resulted from the drying method used (Freeze dried).  Much more work
is necessary before any conclusions can be drawn.

                  C. Miscellaneous Tests

          During the course of the grant period additional tests were
conducted to further investigate the characteristics of the pickle
liquor and the associated effect on the properties of the mixed liquor
and effluents.  These tests included pickle liquor free acid determina-
tion; alkalinities on sewage mixed liquor and effluents; soluble
sulfates on sewage and effluents; phosphorus uptake rates of the mixed
liquor; and phosphorus release in the sedimentation basins.

          1.  Pickle Liquor Free Acid

          The free acid in the pickle liquor from the A. 0. Smith Corp-
oration varied from 2.1 to 58/ J^SO^ in the samples collected.  The
addition of this acid to the East Plant mixed liquor had only a slight
effect on the pH with the yearly average West Plant mixed liquor being
pH 7.1 and that for the East Plant being pH 7.0.  The sulfuric-
hydrochloric and pickle liquor from the U. S. Steel Corporation was
stronger in free acid and the free acid ranged from 6.6% to 9.3%
H2SOlt.  The individual results are listed in Appendix J.

          2.  Alkalinities on Sewage, Effluents and Mixed Liquors

          Periodically.starting in June, samples of screened sewage,
effluents and mixed liquors were collected for an alkalinity deter-
mination.  This was done to determine the effect of the pickle liquor
acid on the alkalinity of the system.  The yearly sewage alkalinity
averaged 22k mg/1 as CaC03 with the effluents averaging 213 in the
West Plant and 169 in the East Plant (20.7$ difference in the
effluents).  The alkalinities for the mixed liquors averaged 197 for
the West Plant and 187 for the East Plant.  The entire data is listed
in Appendix K.  The differences caused no problems in plant operation.

          3.  Soluble Sulfates on Sewage and Effluents

          Since ferrous sulfate was being added to the East Plant,
samples of screened sewage and effluents were collected to determine
the differences in the sulfate concentrations.  During the early

-------
part of the year a few daily samples were analyzed for soluble
sulfate and started again in August.  Initially some problems were
experienced with the analyses but by the end of August all the
problems were solved and weekly composites were collected and
analyzed.  This data from August 23, 1970 through January 2, 1971
should be very representative of what the actual soluble sulfate
concentrations will be.  An average of the weekly composite data
shows a sewage soluble sulfate concentration of 120 mg/1 SO^ with
the effluents having 123 and 1^5 mg/1 SCty respectively for the
West and East Plants.  The East Plant effluent had a 11.9% higher
sulfate concentration but the increase was not substantial enough
to cause concern.  As a comparison of relative sulfate concentra-
tions, the 1962 U. S. Public Health Service drinking water standard
is 250 mg/1 SOii (l6).  The entire data is in Appendix L.
         k.  Phosphorus Uptake

         To further understand the effects of the pickle liquor iron
addition, a few simple phosphorus uptake and release studies were
conducted.  This iron addition, as one would expect, should change
the rate of phosphorus uptake in the mixed liquor through the
aeration period along with reducing the amount of phosphorus re-
leased after the mixed liquor is directed into the sedimentation
basin.  An initial investigation was conducted to determine if there
were any sample handling problems.  Samples of East Plant sewage,
return sludge and mixed liquor were collected and allowed to stand
for one or two hours.  An aliquot was taken after various periods to
determine how fast the concentration of the soluble ortho-phosphate
(SOP) would change.  The data shown in detail in Appendix M indicates
a small change in concentration of the SOP in sewage, but the concen-
tration changes in the return sludge and mixed liquor were significant.
Therefore, sample preparation (filtration) was undertaken immediately
after collection.

         The SOP uptake rate (biological and/or chemical) was deter-
mined by collecting samples from the West and East Plants at various
stages during the aeration period.  Only one complete test run was
conducted but the results do clearly indicate a difference between the
two plants.  The data in Table 5 indicates a much faster SOP uptake
in the East Plant as expected because of the iron ladened sludge and
the iron addition.

-------
                               TABLE  5

                 SOLUBLE ORTHO - PHOSPHATE UPTAKE

                           SOP in mg/1 P

              RETURN   MIXED LIQUOR IN   AERATION TANK MIXED LIQUOR
PLANT  SEWAGE SLUDGE   FEE& CHANNEL      INLET   TURNING    OUTLET
                                                  POINT

 East    1.5    1.1*        1.9*          0.66     0.38       0.39
 West    1.5    0.97       2.8           2.8      0.38       0.31
       *Just prior to the addition of the pickle liquor

         5. Phosphorus Release

         The release of SOP from the mixed liquor suspended solids
can "be a considerable amount as indicated by the bench scale studies
of R. M. Manthe (17).  It is difficult to compare bench studies with
actual conditions in a waste water treatment plant but for purposes
of comparison this type of an experiment can be useful.  The
difference in the SOP release between the West and East Plant mixed
liquor solids was determined by obtaining samples of mixed liquor
from the aeration tank outlet and allowing them to settle for 0, 1/2,
1, 2, 3 and k hours.  The original mixed liquor sample was separated
into five - liter graduated cylinders for settling.  After each
designated time period the cylinder was divided into five aliquots
each representing 200 ml.  Each aliquot was filtered as soon as
possible and analyzed for SOP.  The pH of each sample was also deter-
mined.  Three tests were conducted in this fashion except the first
test was conducted in the laboratory and the second and third tests
were set up at the site of sample collection.  The data clearly
indicates the reason for an on site test.  The time delay between the
sample collection and delivery to the laboratory was too great and
as shown in Figure 13 the West Plant mixed liquor had already re-
leased a considerable amount of SOP.

         The comparison bench SOP release tests in Figures 13, 1^
and 15 indicate that the iron added to precipitate the phosphorus
also decreases the release of SOP.  Phosphorus release can hinder
the over-all phosphorus removal because a good phosphorus uptake
could be obtained in the aeration stage of treatment and lost in the
sedimentation basin.  The varying soluble iron concentration was
investigated along with SOP release during one of the test runs.
Figure 16 indicates that a release of iron occurs in both plants,
especially in the sludge blankets.  The pH values of the super-
natant remained relatively constant while the pH of the sludge from
both plants decreased markedly which would tend to solubilize more
iron.  In spite of the pH change and soluble iron release in the

-------
   I-


   o
   0-
Q

o
a
      t-
      z
a;
HI
a.
=3
CO
         1000
          MLS
          800
          MLS
     600
          MLS
          400
          MLS
          200
                             	-West Plarft Mixed  Liquor
                             	nEost Plant Mixed  Liquor
                               August  II, 1970
0>
E
    MLS
                         TIME,  HOURS
                           Figure  13

           SOP   Release  From Mixed  Liquor
                               48

-------
    I



   0



Q.  '

 i
_ o

\
en

  i
       g

       _i
       tr
       ui
       o.
       :D
       CO
O
C/)
  60
  45
  30
      Ui
      m


      ui
      o
      o
      r>
      .j
      en
           1000
           MLS
            800

           MLS
           600

           MLS
           200
           MLS
                                    	'West Plant Mixed Liquor

                                    	oEast Plant Mixed Liquor

                                          August 26, 1970
                         TIME,  HOURS

                            Figure  14

             SOP  Release From  Mixed Liquor
                               49

-------
   I.
       u
       o
CL o
z
QC
bi
Q.

OT
Q_
O
   60



   45



   30



   15



   0
       ui

       z


       CD
       UJ
       O
       O
       en
          1000
          MLS
           aoo
          MLS
          600
          MLS
          400
          MLS
           200
           MLS
                                       ..West Plant Mixed Liquor
                                    	-aEast Plant Mixed Liquor

                                    Septetnber  25, 1970
                 0123
                        TIME,  HOURS

                           Figure 15

             SOP  Release  From Mixed  Liquor
                               50

-------
 0>
 en
 E
O
cr


UJ
_i
DQ
    0.2'  9
    O.I -
    2 -
                               	.West Plant
                               a	aEast Plant

                               September 25,1970
                   0  0.5   I      2      3     4

                       TIME,  HOURS

                         Figure  16

       Soluble  Iron  Release  From Mixed  Liquor
                           51

-------
East Plant sludge, very little SOP was released in comparison with
the West Plant.

         Two additional tests were conducted to study SOP release
but these involved measuring only the supernatant SOP after settling
for 0, 1/2, 1 and 2 hours.  The data shown in Figure 17 again
indicates a greater release of SOP from the West Plant mixed liquor
suspended solids.

               D.  Rate of Iron Addition

         At the start of the grant period it was proposed to vary
the iron addition rate to determine minimum, maximum and optimum
iron requirements.  This is the reason why the complicated automatic
iron addition controls were ordered.  Unfortunately this equipment
was not operating until the middle of December 1970 because of
delays in equipment delivery and the time remaining was too short
for any experimentation.

         The iron added throughout the year was varied producing
monthly averages of 13.7 mg/1 Fe in March and April to 6.2 mg/1 Fe
added to the mixed liquor in October.  The dosing was rough because
it was not in proportion to the mixed liquor flow, sometimes in
proportion to the expected phosphorus concentration and sometimes
in proportion to the supply of pickle liquor available.  The data
in Table U indicates the average monthly concentration of iron added
to the East Plant mixed liquor but no optimum iron requirement can
be determined from the information available.

               E.  Mixed Liquor Biota

         Microscopic examinations of the mixed liquor from both the
West and East Plants were conducted five days per week for the first
part of the grant period and was reduced to biweekly examinations in
September for the remainder of the grant.  These examinations deter-
mined the types and numbers of organisms and the general condition of
the mixed liquor.

         At the start of the project in January, a very active and
profuse number of organisms were noted in the East Plant mixed liquor
with normal concentrations in the West Plant.  The numbers decreased
after a change in the sewage distribution from k2% to the West and
58 to the East Plant to 50% to each plant.  In February the organisms
continued to decrease in the East Plant after six of the twenty
aeration tanks were taken out of service.  No general change was
noted in the West Plant.  During March, low mixed liquor suspended
solids were maintained in both the West and East Plants and a further
decrease in biota numbers was observed.  This light biota concentra-
tion continued until the middle of May when an increase was observed
                              52

-------
                   RUN  A
                            o	owest Plant
                            a	Q    Plant
   0.3
              0.5        I

                  TIME,  HOURS
   0.2 ^
RUN  B
CD
E o.i-

QL   '
O
CO
   o
             0.5        I                  2

                  TIME,  HOURS

                     Figure  17

          SOP  Release  From Mixed Liquor
                       53

-------
(an especially light concentration was present in the East Plant).
The biota concentration increased through May and high biota con-
centrations with many varieties were noted from June through October
with very high concentrations in August and September.  During
November the number of organisms decreased until a "normal" con-
centration was reached in December.

         This "normal" concentration is that compared to the observ-
ations of the previous years.  Considering the changes in the sewage
characteristics, the organism may continue to change or vary as they
did in 1970.  This is extremely difficult to analyze and only future
microscopic  analyses can determine any trends.  Due to the many
changes in plant operations, sewage characteristics, the iron addition,
and the limited data, no detailed conclusions can be reached.  However,
the data does indicate that no deleterious effects on the biota could
be traced to the iron addition.  Appendix N shows sample microscopic
analyses of the mixed liquor on arbitrarily chosen days to show
generally the ranges of organisms throughout the year.

         During the course of the project one very drastic difference
between the West and East Plants was the algae growths present in the
sedimentation basins (on the walls and overflow weirs).  In April an
excessive algae growth was noted in the East Plant.  A small amount of
algae always grew in the sedimentation basin but not to this extent.
This excessive algae growth continued through August and in June the
growth was so profuse that numerous basin cleanings were necessary.
The algae growth in the West Plant was normal, increasing in May
and decreasing in August.  In September the algae had essentially
disappeared in both plants, with the coming of colder weather.  The
algae had completely disappeared by the end of October.

         Samples of the algae from both the West and East Plant
sedimentation basins were collected for microscopic identification.
The following Table 6 lists the various types of algae identified
along with the range of concentration in the samples collected.

        F.  Effect of Iron Addition on the Plant Physical Facilities

         Every year at the Sewerage Commission a routine maintenance
program is scheduled for normal repair and cleaning of equipment.
This schedule includes draining, cleaning and checking East Plant
aeration tanks, sedimentation basins and channels which gives us an
ideal situation to determine if the iron addition has any effect on
the plant physical facilities.

         In addition to the normal routine maintenance, special
consideration was given to the East Plant mixing channel where the
return sludge is added to the raw screened sewage, followed by the
iron addition.  The mixing channel  has five sets of swing diffusers
with ceramic tubes.  In February 1970 two sets of the diffusers were

-------
                                TABLE  6

                       MICROSCOPIC  IDENTIFICATION
                     OF SEDIMENTATION  BASIN ALGAE
                                  WEST PLANT
                        EAST PLANT
Green Algae Filaments
ULOTHRIX
RHIZOCLONIUM
MOUGEQTIA
MICROSPORA
PITHQPHORA
CLADOPHORA
STIGECLONIUM FILAMENTS
MICROTHAMNION
CYLINDROCAPSA
SCENEDESMUS
Negligible to 50$
 0 to possible 10%
 0 to < 5%
 0 to 20%
 0 to 10$
 0 to possible 10$
 0 to > 90%
       0
 0 to low number
 0 to negligible
30 to 60%
 0 to 10$
 0 to < 5?
 0 to kO%
     0
     0
 0 to <5$
 0 to <2%
     0
     0
Blue Green Algae


OSCILLATORIA
  Low to 10$
  0 to >20$
DIATOMS

PINNATE


CENTRIC
 Negligible to very
 high count

 Low to high count
  Medium to
  high count

Negligible to
medium count
                                 55

-------
replaced vith new ceramic tubes to determine the effect of the iron
on these diffusers.  The remaining three sets vere washed and in-
spected.  During September 1970 the swing diffusers were raised
for inspection showing the tubes covered with a layer of sludge
(similar to February), which was easily removed by washing with water.
The under layer of sludge did however have a iron red cast.  The
inspection of the tubes indicated no unusual conditions.

         During the warmer months, aeration tanks and sedimentation
basins were drained, cleaned and repaired under the routine mainten-
ance program.  In May when one of the East Plant aeration tanks was
drained a slight iron red coloration deposit was noted on the walls
of the tank for the first 200 feet on the inlet side.  Two East
Plant sedimentation basins were inspected in September.  One of the
basins had a ring of red iron colored deposit on the lower walls
where the sludge blanket was normally in contact with the wall.  The
other basin had similar markings but not as pronounced.  Other than
the coloration, no repairs or problems with the plant physical
facilities could be related to the iron addition.

         In the sludge filter and drying operation a considerable
loss in service life was noted for some of the equipment parts.
There was no evidence that could relate these problems to the pickle
liquor addition.  The sludge dewatering characteristics changed
markedly in 1970 because of the .change in the waste water properties.
The waste water changes in 1969 prior to pickle liquor addition also
affected the sludge dewatering operation.  Any maintenance problems
in the sludge filtering and drying operation were most likely related
to the waste water characteristic changes.

        G.  Effect of the Iron Addition on the Ferric Chloride Demand

         Ferric chloride was used to condition the thickened waste
sludge prior to filtration.  The initial thoughts were that if ferrous
iron was added to the East Plant and the iron concentration in the
East Plant waste sludge was increased, possibly the ferric chloride
requirements would decrease.  The ferric chloride used per dry solids
production was tabulated on a daily basis and compared to quantities
used in 1968 and 1969.  Table 7 lists the monthly average ferric
chloride use for three years.
                              56

-------
                             TABLE 7

      MONTHLY AVERAGE FERRIC CHLORIDE USE REQUIREMENTS
                  FOR SLUDGE CONDITIONING

                                Average Ferric Chloride Use
         MONTH                  Lbs. Anhydrous Fed, per
                                Dry Tons Recovered Solids

                                  1968     1969     1970

        January                  211.82   218.62    228.75
        February                 213.22   206.32    229-98
        March                    206.46   209.06    238.53
        April                    209.49   199.36    194.1*6
        May                      203.42   211.U5    215.52
        June                     220.11   240.26    226.78
        July                     234.04   232.74    260.08
        August                   223.47   219.50    231.15
        September                226.62   254.63    245.62
        October                  239-73   257.18    262.69
        November                 251-10   236.91    257-63
        December                 223.83   229.33    238.03

        Average                  221.94   226.28    235.77

The data indicates that no reduction was obtained in the ferric
chloride requirements for sludge conditioning.  As a result of the
changes in the characteristics of the raw sewage, comparison of these
three years was not really valid.  The solids production for 1970 was
much different than for the previous years as shown in Figure 12.
Working with a lower sludge age and a less stable sludge was probably
the reason for the greater ferric chloride usage per ton of solids
recovered.  Additional data collection is necessary before a review
should be made.  The sewage properties and the resultant effect on
the mixed liquor quality plays an important role in the sludge de-
watering characteristics and therefore data from years with similar
sewage should be compared.  Possibly in the years to come, this
data may be obtained.
                                57

-------
                              SECTION X


                          ACKNOWLEDGEMENTS
        This report was written by Raymond D. Leary, Chief Engineer
and General Manager; Lawrence A. Ernest, Director of Laboratory;
Roland S. Powell, Assistant Director of Laboratory; and Richard M.
Manthe, Laboratory Supervisor of Research.

        The authors gratefully acknowledge the assistance of the
A. 0. Smith Corporation of Milwaukee, Wisconsin for their complete
cooperation, financial assistance and engineering expertise through-
out  the study period.  We wish to acknowledge Mr. S. K. Rudorf and
other staff members of A. 0. Smith Corporation, especially Mr.
Milton Johnson, whose knowledge and advice have proved invaluable.

        Also acknowledged is the Water Quality Office of the
Environmental Protection Agency for the financial assistance and
technical advice through the project officer, Dr. Robert Bunch.

        The assistance from the U. S. Steel Corporation through
Mr. George J. Behrens, Chief Engineer, in supplying pickle liquor
on a temporary basis in November and December 1970 was appreciated.
Without the cooperation from the U. S. Steel Corporation, it would
have been necessary to discontinue the project due to a shortage
of iron.

        The assistance of laboratory technician, Miss Gloria
Aldenhoff and all laboratory staff members for their laboratory
analyses as well as other Sewerage Commission personnel who have
contributed to the success of this project is greatly appreciated.
                               59

-------
                               SECTION XI

                               REFERENCES


 1.  Levin, G. V. and Shapiro, J., "Metabolic Uptake of Phosphorus by
     Wastewater Organisms", JWPCF, 37, 6, 800, June 1965.

 -2.  Vacker, D., Connell, C. H. and Wells, W. N., "Phosphate Removal
     Through Municipal Wastewater Treatment at San Antonio, Texas",
     JWPCF, 39, 5, 750, May 1967-

 3.  Borchardt, J. A., and Azad, H. S., "Biological Extraction of
     Nutrients", JWPCF. 1+0, 10, 1739, October 1968.

 k.  Wells, W. N., "Differences in Phosphate Uptake Rates  Exhibited
     by Activated Sludges", JWPCF, 11, 5, 765, May 1969.

 5-  Menar, A. B. and Jenkins, D., "The Fate of Phosphorus in Waste
     Treatment Processes: The Enhanced Removal of Phosphate by
     Activated Sludge", Paper presented at the 24th Purdue Industrial
     Waste Conference, Purdue University, LaFayette, Indiana, May 6 -
     8, 1969.

 6.  Earth, E. F., and Ettinger, M. B., "Mineral Controlled Phosphorus
     Removal in the Activated Sludge Process", JWPCF, 39,  8, 1362,
     August 1967.

 7.  Hubbell, George E. , "Process Selection for Phosphate  Removal at
     Detroit", Presented at the Ulst Annual Conference of  the Water
     Pollution Control, September 2U, 1968.

 8.  "Milwaukee Waste Water Treatment Facilities", Serving the Metro-
     politan Sewerage District Under Control and Supervision of the
     Sewerage Commission of the City of Milwaukee, 1968. Brochure
     prepared by Sewerage Commission personnel explaining  the plant
     facilities.

 9.  Leary, R. D. and Ernest, L. A., "Industrial and Domestic Waste-
     water Control in the Milwaukee Metropolitan District", JWPCF,
     39. 7, 1223 July 1967.

10.  Leary, R. D., Ernest, L. A., Katz, W. J., "Effect of  Oxygen -
     Transfer Capabilities of Wastewater Treatment Plant Performance",
     JWPCF, 1+0,7, 1298 July 1968.

11.  Leary, R. D., Ernest, L. A., Katz, W. J. , "Full Scale Oxygen
     Transfer Studies of Seven Diffuser Systems", JWPCF, Hi, 3,
     March 1969.
                                  61

-------
12.  Ernest, L. A. andManthe, R. M., "Waste Pickle Liquor Utili-
     zation at the Milwaukee Sewerage Commission for Phosphorus
     Removal", Presented at the Indianapolis Scientific and Engineer-
     ing Foundation, April 30, 1970.

13.  Leary, R. D. and Ernest, L.  A., "Municipal Utilization of an
     Industrial Waste for Phosphorus Removal", Presented at the 32nd
     Porcelain Enamel Institute  Technical Forum at the University
     of Illinois, October 8, 1970.

lU.  "Standard Methods for the Examination of Water and Waste Water",
     12th Edition, American Public  Health Association,  New York, 1965.

15.  Seitz, M. A., Riedner, R., "X-Ray Diffraction Studies of Sewage
     Sludge Residue", Marquette University, January 1971.

16.  McKee, J. E. and Wolf, H. W.,  "Water Quality Criteria", 2nd
     Edition, State Water Quality Control Board, Sacramento,
     California, 1963.

17.  Manthe, R. M., "Uptake and Release of Soluble Ortho-phosphate
     in an Activated Sludge Plant",  Masters Thesis, Marquette
     University, Milwaukee, Wisconsin,  1970.

18.  "Official Methods of Analysis  of the Association of Official
     Agricultural Chemists", 10th Edition, Washington D.C. ,  1965.

19.  "Scott's Standard Methods of Chemical Analysis", 5th  Edition,
     New York.
                                62

-------
                               SECTION  XII

                         NOMENCLATURE AMD GLOSSARY

Phosphorus Nomenclature

    1.  Total Phosphorus (TP).

        All the phosphorus present in sample (whether in the soluble
        or insoluble state and present as ortho, poly, organic, etc.,
        phosphorus compounds) vhich is converted by ternary acid
        digestion to soluble orth-phosphate.

    2.  Total Soluble Phosphorus (TSP).

        All the phosphorus compounds in the sample filtrate converted
        by ternary acid digestion to orth-phosphate.

    3.  Soluble Orho-Phosphate (SOP).

        All phosphorus measured by direct colorimetric analysis of
        sample filtrate.  (Angel Reeve Glass Fiber Pad No. 93itAB).

Iron Nomenclature
    1.  Total Iron.

        All the iron present in the sample.

    2.  Total Soluble Iron.

        All the iron compounds in the sample filtrate.
        (Filtered thru Angel Reeve Glass Fiber Pad No. 93UAB).

Glossary

    1.  BOD - five day biochemical oxygen demand.

    2.  COD - chemical oxygen demand.

    3.  DO  - dissolved oxygen.

    k.  EP  - East Plant.

    5.  EPE - East Plant effluent.

    6.  MGD - million gallons/day.

    7.  ML  - mixed liquor.
                                   63

-------
 8.  MLSS  - mixed liquor suspended solids.




 9.  MLVSS - mixed liquor volatile suspended solids,




10.  N     - nitrogen.




11.  P     - phosphorus.




12.  SDI   - sludge density index.




13.  SOP   - soluble ortho-phosphate.




lU.  SS    - screened sewage.




15.  TP    - total phosphorus.




16.  TSP   - total soluble phosphorus.




17.  WP    - West Plant.




18.  WPE   - West Plant effluent.
                                6k

-------
                             SECTION XIII


                               APPENDIX
Appendix                     Title


   A          Actinomycetaceae, Genus Nocardia                     66

   B          Pickle Liquor Addition Chart                         70

   C          Phosphorus Determination with                        71
                 Technicon Autoanalyzer

   D          Determination of Phosphorus in Sludges               7^

   E          Determination of Ferrous Iron in                     75
                 Pickle Liquor

   F          Determineation of Iron in Sludges                    76

   G          Determination of Nitrogen in                         78
                 Milorganite and Sludges

   H          Plant Operating Data                                 80

   I          X-ray Diffraction Techniques                        128

   J          % Free Acid in Pickle Liquor                        129

   K          Alkalinity                                          130

   L          Soluble Sulfate Concentration                       132

   M          Uptake and Release of Soluble                       133
                 Ortho-Phosphate

   N          Microscopic Count of Mixed Liquor                   139
                                65

-------
                                APPENDIX  A


                      ACTINOMYCETACEAE. GENUS NOCARDIA
        In February, 1969 folloving a reduction in plant loading the
East Plant (a 115 agd secondary portion of the 200 mgd Jones Island
activated sludge  waste water treatment) operated by the Sewerage
Commission of the City of Milwaukee suddenly developed a heavy
growth of floating solids and microorganisms.  Microscopic examination
of the floating material by personnel from the Robert A. Taft Sanitary
Engineering Center, Cincinnati, Ohio, Marquette University, University
of Wisconsin-Madison and the Commission indicated that  the principal
microorganism in the foam belonged to the ACTINOMYCETACEAE, Genus
NOCARDIA.  The predominant species of NOCARDIA were the proteolytic
type commonly found in soils and frequently in sewage associated with
the break down of paper cellulose.

        This type of floating material, which had never been noted
previously, appeared in all portions of the East Plant where mixed
liquor or return sludge were being aerated.  Chemical analysis on the
floating material indicated that it contained 85 percent organic
matter and 31 percent hexane soluble material.

        Attempts made to reduce the floating material with regular
defoaming agents were unsuccessful, and vacuum skimming of the
aeration tanks and clarifier feed channels was instituted.

        Surprisingly, no floating material appeared in the heavily
loaded West Plant (85 mgd secondary portion of the 200 mgd Jones
Island Plant) which received the same screened sewage as the East
Plant.  During this period (February l8th to March 10th) when the
floating material first appeared in the East Plant, the food to
microorganism ratio (ib BOD applied per day/lb mixed liquor volatile
suspended solids under aeration) averaged 0.312 in the East Plant and
0.5^3 in the West Plant.  During this period there were no reductions
in the plant efficiencies as measured by the BOD and suspended solids
removal.

        The settling characteristics of the mixed liquors were not
affected as indicated by the average S.D.I, of 1.11 in the East Plant
and 1.18 in the West Plant.

        In an attempt to overcome this foam problem, the food to
microorganism ratio in the East plant was gradually increased by
reducing the mixed liquor suspended solids and by increasing the BOD
applied.  The quantity of air applied was reduced from an average of
I.1*!* to 1.18 cu ft/per gal of sewage.
                                  66

-------
        The quantity of the floating material has been greatly re-
duced by the skimming operation and/or by the changed loading and
air rates or by the weather or other conditions beyond the control
of the plant operators.  Figures 18 and 19 are pictures of the froth.
                                  67

-------
CD
                                                     Figure 18




                                            Actinomycetaceae, Genus Nocardia

-------
            APPENDIX  A (CONT.)
             iKlfeiaS;



                                       -5
                                 "S -?- *&*<&
                                     *-C^?*'S




March 1970 Nocardia Froth on East Plant Aeration Tank
^fe^Mi
Microscopic Examination (U30x), Noeardia Froth from

East Plant.  Stained with Malchite Green - Safranin
               Figure 19


        Actinomycetaceae, Genus Nocardia
                 69

-------
                               APPENDIX B
                                                    June 9, 1970


TO:  Mr. M. Johnson (A. 0. Smith Corporation)

cc :  Mr. L. Ernest,  Mr. R. Powell,  Mr. D. Nelson


            Effective immediately changes will be made in the rate of

pickle liquor addition to reduce the total iron added and to add at

two different rates to correspond to day and night East Plant mixed

liquor flow variations.  The following Table is to be used to determine

the gallons per minute of pickle to be added for the different specific

gravities .
            For Addition of 10 mg/1 Fe in the day (7:00/A.M.  to 5:00/P.M.)
              and 8 mg/1 Fe at night (5:00/P.M.  to 7:00/A.M.)
                                                     G.  P.  M.
            Specific Gravity

             less than

             1.150 - 1.178

             1,179 - 1.208

             1.209 - 1.236

             1.237 - 1.265

             1.266 - 1.293

             1.29U - 1.321

             1.322 - 1.350

             Greater than 1.351
Day
20
16
13
11
9.5
8.5
7.5
7.0
6
Night
28
13
10.5
9.0
8.0
7.0
6.0
5.5
wL
                                      " ' "1 ~ w v ^^1"  * ^//T
                                       Richard M. Manthe/
                                       Supervisor
                                  70

-------
                             APPENDIX C

Phosphorus Determination with Technicon Autoanalyzer

Reagents :
      A.  Ammonium Molybdate - Dissolve 200 gm of
          in 10 liters of distilled water.  Add 1680 ml. of c. E2BQ]4
          and dilute to 20 liters.

      B.  ANSA Stock Solution - Dissolve 219 gm Na2S205 and 8 gm
          Na2S03 in 7 "^ of distilled water ( temperature < 50C ),
          add k gm of 1-amlno - 2 - naphthol - k - sulfonic acid (ANSA)
          Dilute to 2 liters.  For daily use prepare a 1:10 dilution.

      C.  Phosphorus Standard Curve - Use undigested standards from
          0.1 to 1.2 mg/1 - P in increments of 0.1 mg/1 - P from a
          1000 mg/1 - P stock solution.

      D.  Ternary Acid Mixture - Add 100 ml of 96% HgSO^ to 500 ml
          of 70$ HN03, mix.  Add 200 mis 70$ HClOl^, mix and cool.

Sample Preparation:

      A. Total Phosphorus

          1.  Mix unfiltered sample and pipette into a 100 ml
              volumetric flask (20 ml effluent, 5 ml for sewage).

          2.  Add 5 ml of ternary acid mixture and 3 glass beads.

          3.  Heat on hot plate to dense white fumes of perchloric
              acid and continue heating for 5 minutes.  Then remove
              from hot plate and allow to cool.

          k.  Add 20 ml of distilled water, bring to a boil for 5
              minutes and cool.

          5.  Add 1 drop of phenolphthalein indicator and
              neutralize with 10 N_ NaOH to a faint pink color.

          6.  Just discharge the pink color with 1 N H2SO}|,
              dilute to 100 ml and mix

          7.  Transfer solution to the sampling cup of the
              autoanalyzer.

          8.  Obtain the phosphorus concentration of the sample
              from the standard curve.
                                    71

-------
B.  Total Soluble Phosphorus

    1.  Same as total phosphorus, except the aliquot is
        filtered through an Angel Reeves glass fiber
        pad 931* AH.

C.  Soluble Ortho - Phosphate

    1.  Filter through an Angel Reeves glass fiber
        pad 931* AH.

    2.  Dilute filtrate if needed.

    3.  Place in sampling cup of autoanalyzer.
                          72

-------
-J
OJ
           SAMPLER-

           RATE:40 PERHR.

               M2 CAM
WATER RINSE EVERY

    4^ SAMPLE
                        <-
                                       TO WELL
                                                                  TUBE SIZE
                                                                  (INCHES)

                                                                  0.090 - WATER
                                                                  0.073  ANSA
                                                                             0045  AIR
                                                                             0.056 SAMPLE
                                                                             0.073   MOLYBDATE
                                                        50 mm TUBULAR f/c

                                                        653mu FILTERS
                              Figure 20
                     Technicon Autoanalyzer
                            Schematic
                                                                 RANGE
                                                                 TEN
                                                                 4X

-------
                            APPENDIX  D


             Determination of Phosphorus in Sludges

            by Gravimetric Quinoline Molybdate Method



Reagents:

        A.  Citric - Molybdic Acid Reagent.

            1.  Dissolve 5** gm 100% molybdic anhydride (Mo Og)
                and 12 gm NaOH in UOO ml hot vater and cool.

            2.  Dissolve 60 gm citric acid in lUo ml HC1  and
                200 ml vater.

            3.  Gradually add molybdic solution to citric acid
                solution with stirring, cool, filter and dilute
                to 1 liter.

        B.  Quinoline Solution.

            1.  Dissolve 50 ml synthetic quinoline with stirring
                in mixture of 60 ml HC1 and 300 ml water, cool
                and dilute to 1 liter.

Procedure:

        Pipette a 50 ml aliquot from the remaining sample described
in the iron procedure Appendix F Part A "Treatment of Sample", to
a 500 ml erlenmeyer flask.  Add 30 ml citric molybdic acid, boil
3 minutes, remove from heat, add 10 ml of quinoline with continuous
swirling and cool.  Filter through a Gooch containing a glass fiber
filter pad, and wash with 25 ml portions of water.  Dry at 250F,
cool in desiccator to constant weight.  Weigh as (C^RjN)-^ Ho
[POij  12 Mo 03] .


Calculation:

        %P=  (Wt-Reagent Blk) (Gravimetric factor .
                             Wt of Sample

-------
                               APPENDIX  E


             Determination of Ferrous Iron in Pickle Liquor

                   by Volumetric Dichromate Method



Reagents;

        A.  Sulfuric Acid l:k

        B.  Phosphoric Acid 1:U

        C.  Mercuric Chloride

        D.  Potassium Dichromate

        E.  Diphenylamine Sulfonate indicator
                   (See Appendix F)


Procedure;

        Place a 100 ml aliquot of pickle liquor sample in a 1 liter
        flask and dilute to one liter.  Pipette a 10 ml aliquot
        into a 250 ml beaker, add 10 ml of I:k sulfuric acid, 50 ml
        of l:k phosphoric acid and 0.3 ml of diphenylamine
        sulfonate indicator.  Titrate immediately with 0.1N
        potassium dichromate to a permanent blue endpoint.  Subtract
        0.05 ml for an indicator correction.
Calculation:
            Ibs Fe/gal = ml 0.1N K^C^Oy x factor of  .OU66
                       factor = 1000 x 3.785 x  .005585
                                  75

-------
                             APPENDIX  F


                   Determination of Iron in Sludges

                   by Volumetric Dichromate Method


Reagents :

        A.  Hydrochloric Acid 1:1

        B.  Sulfuric Acid 1:4

        C.  Phosphoric Acid 1:4

        D.  Mercuric Chloride (saturated)

        E.  Potassium Dichromate (standard 0.1 N)

        F.  Stannous Chloride solution
            1.  Dissolve 50 gm SnClg in 100 ml of concentrated
                HC1 , dilute with water to 500 ml.  Store over clean
                metallic tin.

        G.  Diphenylamine Sulfonate indicator

            1.  Dissolve 0.32 gms of barium
                diphenylamine in 100 ml of water.

        H.  Magnesium Nitrate solution

            1.  Dissolve 950 gm P-free Mg(N03)2'6H20 in water
                and dilute to 1 liter.

        Note:  All reagents prepared with distilled water.

Procedure               Part A Treatment of Sample

        1.  Place a 1 gm sample in a silica dish, add 5 ml of
            Mg(N03)o solution, and evaporate.  Then ignite at
            500 to 600 for about 7 minutes.  Add HC1 and
            evaporate to dryness twice .  Add HC1 and wash
            solution into a 250 ml beaker with water, add 10 ml
            of HNOo and boil for three minutes .  Cool solution
            in a water bath, filter into a 250 ml volumetric flask,
            wash filter paper and dilute to volume.  This solution
            is used for both the iron and phosphorus determinations.
                                    76

-------
            Take a 100 ml aliquot for the iron determination and
            save the remaining solution for the phosphorus
            determination.

        2.  Place the 100 ml aliquot into a 250 ml beaker, neutralize
            with ammonium hydroxide and heat but do not boil.  Filter
            the solution, wash the precipitate, and discard filtrate.
            Dissolve precipitate into a 250 ml beaker using a 1:1 HC1
            solution, and wash paper thoroughly.


Procedure               Part B  Volumetric Dichromate Method

        Concentrate the sample prepared in Part A on a hot plate to
100 ml, add stannous chloride drop by drop until sample is decolor-
ized, cool and add 15 ml mercuric chloride solution.  Let stand for
three to five minutes, add 30 ml 1:U phosphoric acid, 10 ml  of 1:U
sulfuric acid, k to 5 drops of diphenylamine sulfonate indicator and
titrate with 0.1N potassium dichromate to the purple end point.

Calculation:


            % Total Iron = (ml 0.1 N K2Cr207 -.05) (.005585)
                                   wt of sample
                           (.05 is indicator factor)
                                 77

-------
                              APPENDIX  G

         Determination of Nitrogen in Milorganite and Sludges


Reagents;

        A.  Sulfuric Acid 93-98? HgSO^, N-free

        B.  Mercuric Oxide, reagent grade, N-free

        C.  Potassium sulfate, reagent grade N-free

        D.  Salicylic Acid, reagent grade N-free

        E.  Thiosulfate solution

            Dissolve kO gm commercial Na2S203 in 1 L H^O.

        F.  Sodium Hydroxide

            Dissolve 1*50 gm solid NaOH in vater and dilute to 1 L.
            (sp. gr. of solution should be 1.36 or higher).

        G.  Methyl red indicator

            Dissolve 1 gm methyl red in 200 ml alcohol

        H.  Sulfuric Acid  Std 0.1N


Procedure;               Part A  Treatment of Sample

            Place a one gram sample in a KJeldahl flask, add hO ml
        HgSO^ containing 2 gm  salicylic acid, swirl until well mixed
        and let stand.  After sample has stood for a minimum of 20
        minutes add 5 go   ^SgO^'J^O, swirl and let stand a minimum
        of 10 minutes.  Place on an electric heater and heat sample
        with occasional swirling until in the liquid state, cool and
        add 15 gm ^SOij and 0.7 gm HgO.  Place back on the burner
        and boil briskly until sample turns a pale straw color.  Wash
        down neck and sides of Kjeldahl flask with 5-10 ml  cone.
              and continue burning for 2 hours.
                                   78

-------
Procedure:                Part B    Determination


        Place cooled sample in a cooling bath and add 200 ml distilled
vater and let stand 10 minutes.  Add 25 ml Na2S203 solution plus two
porcelain bumping disks and with the flask in an inclined position
pour approximately 90 ml NaOH solution gently down sides so as to
layer the NaOH.  Immediately connect the flask to the distilling
apparatus, agitate and distill into receiver containing the proper
amount of 0.1N H2SO^.  Collect about 150 ml of distillate and titrate
excess standard 0.1N E2SO^ with standard 0.1N NaOH using methyl red
indicator.


Calculation:

% N= (ml Std. HSOi^x normality - ml NaOH x normality) mol wt N
                    wt of sample x 1000
                                                               x 100
                              79

-------
                                                      APPENDIX  H
                                                 PLANT OPERATIONAL DATA
JANUARY  19TO
D
a
t
e
1
2
3
1+
5
61
7
8
9
10
11
12
13
1^4
15
l6
17
D
a
7
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
(T
W
Th
F
Sa
18, Su
19
20
21
22
23
2U
I2?
2^
27
2*
29
30
31
M
I1
W
'i'h
I1'
Sa
Su
M
T
W
Th
F
Sa
Total Solids
mg/1
S3
935
1020
866
75
987
1050
1090
1108
1075
776
732
1051+
1039
105U
1080
1119
878
696
1010
11281
1320
1026
1036
833
1003
1150'
WPE
796
7U1*
705
588
573
691
771
61*9
733
670
575
621
692
681
77!*
878
775
616
653
668
733
72U
705
659
756
823
ll*77J1199
1526
1151
105C
90:
EPE
a?3
71*1*
713
6oi*
616
730
785
757
8li+
707
632
719
691
763
791
81+7
7^+3
6ol*
609
705
733
739
711
683
7l+0
830
L035
12 1+31311+
1181 b.51
938 930
703( 727
% Removal
WPE
ll+.Q
27.1
18.6
12.9
1*1.9
31*. 2
29.3
1*1.1+
31.8
13.7
2^,1+
1+1.1
33.1+
35. 1+
EPE
12.0
27.1
17.7
10.5
37,6
30,5
28,0
31.7
2!+, 3
8,9
13,7
31,8
33,5
27,6
28.3 26.8
21.5 21+.3
11.7 15.1+
11.5 13.2
35.3 39.7
1+0.8 37.5
1+1+.5 jl+1+,5
29.1+ 28.0
31.9 31.1+
^0.9 18.0
1+.6 26.2
8.1+ 27.8
8.8 ,29.9
8.5 13.9
inusi 0
0.7 ill.l+
2.1 ,19.5,
Suspended Solids
mg/1
SS
153
?S6
190
150
277
2U7
36U
281
262
158
158
273
261
262
31+1
316
181
ll+l
256
283
581
231
219
198
165
WPE
21
2l+
21
21
12
16
35
1*2
31
17
11
18
8
1*
20
53
39
15
25
2l*
19
17
3!+
29
21
21*2 ll+
259
29!+
21+2
17
18
20
265 28
162 ; 25
EPE
16
22
22
15
17
21*
19
30
86
ll*
15
21
16
13
21
31
12
2
10
ll*
12
13
8
18
19
16
9
2l*
19
23
JCRemoval
WPE
6.3
90.6
88.9
86.0
95.7
93.5
86.7
85.0
88.2
89.2
93.0
93.1*
96.9
98.5
9!*.!
83.2
78.5
89.!+
90.2
91.5
96.7
92.6
8U. 5
85.1+
87.1+
9l+. 2
93.^
93.9
EPE
89.5
91.1+
88.1+
90.0
93.9
90.3
92.8
89.3
67.2
91.1
90.5
92.3
93.9
95.0
93. d
90.2
93.1*
98.6
96.1
95. C
97.5
9l+. l
9b.:
90.9
88.5
93.1+
96.5
91.8
91.7! 92.1
89.^91.3
11 i 8U. 6, 93. 7
BOD
mg/1
SS
150
295
180
155
325
310
265
315
320
190
ll+5
300
350
310
280
275
160
ll*5
280
325
270
270
225
160
135
260
280
2UO
280
275
190
WPE
L0.5
Ll.O
5.0
8.0
L0.5
L0.5
21.0
25.0
L6.0
10. 0
7.2
9.5
6.2
L2.0
8.5
31.0
21+.0
15.5
18,5
17.0
21.0
15.5
30.0
18,0
ll+.O
llf.l
17.1+
12.5
16.5
25.0
6,0
EPE
ll+.O
12,8
ll+.O
13.0
18.5
16,0
18,0
29,5
1*8.0
16.0
12.0
20,5
9,8
19,0
20,5
12.5
10.0
11.0
12-5
10.5
11.5
11.0
10.5
10.0
13.5
12.6
10. i*
19.5
11.0
13.0
9.0
% Removal
WPE
.Q3..0
96.3
97.2
91*. 8
96.8
96.6
92.1
92.1
95.0
9l*. 7
95.0
96.8
98.2
96.1
97.0
^8.8
85.0
89.3
93.U
9^.8
92.2
9l+. 3
"~86.7
86.8
89.6
9l+. 6
93TB
9!+. 8
9!+.!
90.9
96.8
EPE
90.7
95.7
91.9
91.6
_9_l+.3
9!+. 8
93.2
90.6
85.0
91.6
91.7
93.2
97.2
93.9
92.7
95-3
93.8
92.1*
95.5
96.8
COD
ijg/l
SS






1*10
1*65
1+78
322
229
600
756

WPE






16
28
75
57
38
30
EPE






166
20
137
67
1+5
51
50 1 53

585 1*1
525 101
307 61*
20 1* 35
5171 99
61+2
86
95.7 571 76
95.9; 5U6 79
95.3 599 125
93.8 U3l+
90.0 290
95.2
96.3
91.9
96.1
95.3
95.3
51+3
567
5l+7
5l+7
390
1*21+
108
88
82
93
83
^7
ioT
113


1*2
30
.37
67
72
55
58
78
78
78
71
83
96
79
81
110
{ Removal
WPE






06. l
91*. o
81*. 8
EPE






59.5
95.7
71 .3
82.3179.2
83.1+
95.0
93.1+


80.3
91.5
93.0

92,3
80.892.0
79.200.2
82.8)81.9
80.987.0
86.6^8.6
86.7^0.1+
85.5
79.1
75.1
89.1+
B7.0
8?.n
69.7i7^ ]
81+. 9
83.6
81+. 8
8l+. 1
73.3
86. Q
fts.U
a? u
fls.6
79.2
73.3;7l+.l
CD
O

-------
PLANT OPERATIONAL DATA
                                          FEBRUARY  1970
D
a
t
e
1
2
3
1+
?

I
8
?
10
11
12
13
lU
1?
l6
17
l8
!?
20
21
22
2?
2l*
2?
24
i2!
26
29
30
31
D
a
y
Su
M
T
W
Til
F
Sa
RH
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa



Total Solids
nj
S3
863
959
1014
1096
116" l
1333
907
964
12 14
75-3
958
1008
963
7^0
692
985
1041
1012
1143
975
1116
775
1014
1013
1056
1994
10 3k
8}5



c/i
WPK
750
636
715
747
80 4
957
950
658
810
794
680
678
669
5B5
561
603
704
723
792
740
809
751
658
695
743
670
677
556 ,


I
EPE
719
684
753
767
831
L0?l
897
777
822
795
755
820
725
634
559
644
733
739
81?
72?
873
782
757
720
757
709
697
648



% Removal
WPE
13.1
33.7
29.5
31.8
30.7
28.2
Minus
31.7
33.3
Minus
29.0
32.7
30.5
22.0
EPE
16,1
29.7
25.7
30. C
2ft ^
23^
1.1
19. U
32.3
ttnus
21.2
18.7
24.7
15.5
18.9 19. 
38.8; 34.6
32. 4j 29. t
28. 6| 27. C
30. T1 28.3,
24.125.2
27.521.8
3 . iMinus
35.125.3
3m 28. 9
29.6:28.2
38.8 35.2
34.5^ 32.6!
19.5 20.5






Suspended Solids
mj
SS
171*
168
??9
235
245
187
217
167
278
249
229
240
226
220
137
240
250
205
256
316
26],
140
269
249
257
29 4
297
204


j
K/l
WPE
18
13
15
17
11
12
7
7
13
7
9
14
22
16
11
17
20
8
23
33
28
14
16
8
8
12
14
27



EPE
27
15
_21
14
7
12
12
13
15
6
17
19
27
18
16
19
15
9
13
21
24
15
19
14
9
12
18
16


i
^Removal
WPE
89.7
92,3
93. 4
92.8
95t5
93,6
96.8
95.8
95.3
97-2
96.1
94.2
90.3
92.7
92.0
92.9
92.0
96.1
91.0
89.6
89.3
90.0
94.1
96. fc
96.9
95.9
95.2
86.8


EPE
84.5
91.1
90.8
94.0
97.1
93.6
94.5
92.2
94.6
97.6
92.6
92.1
88.1
91.8
88.3
92.0
94.0
95.6
94.9
93. 1*
90.8
89.3
92.9
94.^4
96.5
95.9
93.9
92.2


4
BOD
Wl
SS IWPE
100
P80
240
270
250
295
180
130
255
305
315
305
270
180
170
285
275
300
270
320
155
130
260
260
300
320
325
190



tlsLtS
11.0
12.0
14,0
1^0
lfi.fi
15.2
fl.n
11.0
.1,2, C
12.0
15,0
17,0
9.C
10.2
9,8
12 1 5
11t5
17.5
20.0
13,0
13,5
8.6
6.8
10.5
12.5
15.5
24T0



EPE
9,5
18.0
12.5
12.5
1?.5
13.8
10.4
8.5
12.5
11.5
11.5
16.0
18.?
14.5
13.6
14.0
12,2
16.0
14.5
22.5
24.0
13.0
11.4
9.6
9.6
14.5
19.0
15. ^



% Removal
WPE
87.5
96.1
95.0
94,8
95.5
91.7
91.4
93.8
95.7
96.1
96.2
95.1
93.7
95.0
94.0
96.6
95.5
96.2
93.5
92.3
91.6
89.6
96.7
97.^
96.5
96.1
95.2
Ql.k



EPE
90.5
93.6
94.8
95^
95.7
95.3
94.2
93.5
95.1
96.2
96.3
94.8
93.1
91.9
92.0
95.1
95.6
94.7
94.6
91.3
84.5
COD
w?/l
gs
252
487
525
57^
593
588
420
274
547
626
584
552 '
528
370

WPE
8?
1^
78
86
100
111
96"
75
73
82
90
88
EPE
68
71
76
81
8,7
83
88
76
77
78
78
90
96 84
78

78

499 i 65 |65
519 87
541 92
604 J102
541
424
10 4
98
90.0 262 | 88
95.6 520
96.3
96.8
95.5
9^.2
91.9



520
569
573
582
398



58
70
87
87
80
97



73
78
78
80
88
76"
66
71
76"
82
76
73



I Removal
WPE 'EPE
67.5 ;73.0
a4.a
85.1
85.1
83.1
81.1
77.1
72.6
86.7
86.9
84.6
84.1
81.8
78.9

87.0
83.2
85.4
85.5
86.0
85.3
85.9
79.0
73.3
85.9
87.5
86.6
83.7
84.1
7.9

87.0
85.9
83.0 J85.6
83.1 87.1
80.8
76.9
66.4
88.8
85.2
79.2
71.0
87.3
86.5 J86.3
84.7 186.6
84.8 85.7
86.3 86.9
75.6 81.7




-------
                                                 PLANT OPERATIONAL DATA
MARCH  1970
D
a
t
e
1
2
3
1*
5
6"
7
S
?
10
11
12
13
ll*
1?
l6
17
l8
19
20
?1
??
23
2U
25
26
I2]'
s
2?
30
31
D
a
y
Su
M
T
W
Th
F
Sa
Su
M
1'
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
J-1
Sa
SD
M
T
Total Solids
H
S3
1105
L201
10 1+2
L093
1067
1035
995
852
L381
LllU
lli+2
1121
101*6
858
761
96l
101*7
1021*
1013
91+14
928
868
1067
110 1+
01*6
390
06 1+
895
897
088
037
*/l
WPE
629
Bl+B
900
YBb
Bo 5
789
J6 3
65?
883
868
790
788
708
701
662
622
688
711
613
610
722
7Ul
762
801
7.91
L166
870
787
llk
738
EPE
782
923
82 1+
796
755
80 1+
810
71+7
L020
933
81+1+
787
731+
71*4
650
633
728
729
751*
656
75!*
768
821
822
827
961
_901
785
792
765
7^5 i 783
% Removal
WPE
U3.1
29. U
13.6
28.1
21t,f?
23.8
23.3
22.7
36.1
22.1
30.8
29.7
32.3
18.3
EPE
29.2
?3,il
2Q.9
27,2,
29,2
22,3
18.6
12.3
26.1
16,2
26.1
2?t8
29.8
16.8
13.0lll+Ji
15.1
3>,3
30.6
3>,1
30,5
28.8
39.5 25.6
35.1+ 130.5
22.2 18.8
111. 6 11.5
28.6 23.1
27. 1+ 25.5
21*. 1+
16.1
20.9
30.9
8.2 15.3
12.1 12.3
3.7 .
2.2 '<
LI. 7
>9.7
8.2 2U. 5
Suspended Solids
fflK/1
SS
208
?S9
2.71*
267
250
22.8
1,90
185.
21*9
2l+2
271
309
2lU
226
178
212
251+
233
3.36
216
20U
ll*6
263
283
235
2 1*9
169
181*
172
251
WPE
19
1 3
11
19
16
35
22
lU
8
6
9
11
20
1?
22
15
17
9
17
10
2U
25
13
18
11
13
17
13
29
28
188 i 16 .
EPE
19
20
Ib
2t5
15
3f
'cL'iL
20
lit
9
9
8
11
19
20
10
20
11
17
13
15
18
18
25
17
15
31
21
2l*
26
<>
^Removal
WPE
90.9
95.0
95.3
92.9
93.6
8U.6
88. U
92.1*
97.2
97.5
96.7
96.1*
90.7
91.6
87.6
92.?
93.3
96.1
91*. 9
95A
88.2
82.?
95.1
93.6
95.3
9^.8
89.9
92.9
83.1
88.8
EPE
90.9
92.3
9l*,2
89.5
91*. o
83.8
88.1*
8?.2
91*. i*
96.3
96.7
97. \
?*.9
91.6
88.8
95.3
92.1
95f3
9^.9
9^.0
_9_2.6
87.7
93.2
91.2
92.8
9^.0
81.7
88.6
86.0
89.6
91.5496.8
BOD
mi
SS
170
320
185
280
295
265
230
135
295
300
'360
305
305
185
ll*0
2 1*0
350
320
?80
225
170
115
265
315
265
2l*5
215
165
95
270
270
*/l
WPE
10.0
}_0.5
10iO
7.0
16,0
21,5
l^iO
7,5
6.8
8.5
8.0
8.5
19.0
lU.O
27,0
10,5
ll*.0
ll*,5
13,0
11,6
lU,6
13.0
9-5
15, C
10. C
12. 5
I1*,'
12. C
9"
11. C
13.C
EPE
L5.U
p?,5
13.5
28,0
20,0
38.0
31.0
20.0
15.2
17-5
1U.2
12.6
3*.5
26.^
17.5
27.?
19. q
21*.1;
23.5
lU.C
18. C
26. C
21. C
19*r
27. c
25. C
39. c
33.5
20.5
32.5
13.7
% Removal
WPE
9l*tl
96.7
914.6
97.5
91+.6
91.9
93.9
9*4.1*
97.7
97.2
97.8
97.2
93.8
92. U
80.7
95.6
96.0
95.5
95. ^
9^.8
91.14
88.7
96.1*
95.2
96.2
91*. 9
93.3
92.7
90.0
95.9
95.2
EPE
90.9
93.0
92.7
90.0
93.2
80.0
86.5
05.2
9*4.8
9*4.2
96.1
95.9
88,7
85.7
87.5
88.5
9^.6
Q2.1
91.6
93.8
8Q.U
COD
V/?-
85
316
563
1*51
516
538
550
*453
272
513
572
601
583
5H5
396
268
WPE
8]
66
92
7*4.
92
L08
97
76
58
71
95
92
112
97
82
526 73
611
599
93
92
502 gg
1*6U
386
85
98
77. U 2U9 Q6
92.1 505
93.8
89.8
89.8
81.9
79.7
78.U
88.0
95,0
572
501*
528
1*80
3>6
235
533
51*0
7U
73
77
78
91
95
78
70
89
EPE
75
71,
76
88
81+
103
87
72
59
bB
88
83
90
85.
79
73
76
R5
88
79
83
R?
75
71
71
76
93
79
72
70
72
{ Removal
WPE 'EPE
7U.1476.3
88.3
81.8
85.7
81,8
80,1*
78.6
72.1
88.7
87.6
81*. 2
8i*. 2
80.9
75.5
69.1*
86.1
37. U
33.1
82. 9
81*. i*
31.3
80.8
73.5
|0. 5
88.1
8s. 1*
8s. 8
flU.6
78. s
73.9
86.1
81*.8|87.6
81*.6J85.8
80.382.5
81.783.0
71*. 6178. 5
6lA!67.1
85.3185.1
87.2J87.6
81*. 7
85.9
85.285.6
81.080.6
72.577.2
66.869.*4
86.986.9
83.5:86.7
Co
ru

-------
CO

D
a
t
e
1
2
3
1*
?
4
7
s
9
10
11
12
13
lk
1?
16
1I
iS
!?
20
21
22
23
2U
2?
2^
?I
?A
29
30
31
D
a
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
ftfl
fill
M
T
W
Th
F
Pa
fin
M
T
W
Th.

Total Solids
m
S3
1285
12J+3
3,023
952
89 fi
1007
1075
1117
1117
1125
942
832
ft?,!
108T
1100
100 lj
.1120
1055
879
1085
1159
1143
1103
1096
88
7961
1021
1037
1091
895

g/1
WPE
$5.8.
1097
80$
RTI
770
742
74o
734
75l+
755
71+6
701
573
79 4
840
777
811
817
715
653
792
800
809
796
734
685
790
781*
768
727
i
EPE
8.63
L132
869
845
811
811
773
786
818
775
79 !+
684
624
810
917
855
807
804
807
684
813
865
818
799
747
709
754
755
847
820

% Removal
WPE
33.2
11.7
21.2
12.7
14.3
26.3
31.2
34.3
32.5
32.9
20.8
15.7
30.2
27.0
EPE
"\? 8
8,9
15.1
11.2
9,7
I9t5
28.1
29.6
26.8
31.1
^7
17.8
24.0
25.5
23.6 16.6
22.6 14.8
27.6 27.9
22.6 23.8
18.7
39.8
25.2
30.0
26,7
27.4
17,3
13.9
8.2
37.0
23.2
24.3
25.8
27.1
15.9
10.9
22.6 26 2
24.4 27.2
29.6
18.8
22.4
8.4

PLANT OPERATIONAL DATA APRIL 1970
Suspended Solids
mi
SS
253
200
190
206
172
219
186
224
255
238
176
127
148
182
219
227
266
259
174
235
252
249
256
256
173
172
302
218
216
155
i
K/l
WPE
31
14
27
^
16
23
5
9
14
16
17
6
2
11
9
10
44
27
24
15
10
13
4
22
21
5
25
52
19
22

EPE
20
15
28
16
11
13
4
8
15
12
12
12
7
4
6
7
7
5
11
9
11
10
a
ik
11
6
16
26
16
48
i
^Removal
WPE
87.7
93,0
85,8
83,4
90,7
89.5
57.3
96.0
94.5
93.3
90.3
95.3
98.6
94.0
95.9
95.6
83.5
89.6
86.2
93.4
96.0
94.8
98.4
91.1+
87.9
97.8
91.7
76.1
91.2
85.8
EPE
92.1
92.5
85.3
92.2
91.4
94.1
_91.
96.4
94.1
95.0
93.2
90.6
95.3
97.8
97.3
96.9
97.4
98.1
93.7
96.2
95.6
96.0
96.9
94.5
93.6
97.3
94.7
88.1
92.6
69.0
i
BOD
m,
SS
250
210
240
200
JU5
_2?0
230
230
245
245
165
100
160
200
220
245
260
165
120
225
240
225
235
240
145
75
210
215
250
215

K/l
WPE
LVO
11.5
16.5
11.5
6.0
14.0
7.0
9.0
7.0
10.5
8.4
5.2
6.6
2.2
5.1+
6.0
18.0
13.5
17.0
4.8
5.2
4.4
5.B
9.0
9.4
4.4
4.6
18.0
1U.5
6.0

EPE
LO.O
9.5
8.5
4.6
6.8
L2.0
5.8
6.0
5.0
4.0
3.8
6.4
11.2
6.1+
7.0
8.0
6.2
9.2
13.2
17.5
11.5
9.6
LI. 8
18.0
13.2
20.0
25.0
19.0
22.0
30.0

% Removal
WPE
94.8
94.5
93.1
94.3
94.8
93.6
97.0
96.1
97.1
95.7
94.9
94.8
95.9
?8.9
97.5
97.6
93.1
91.8
85.8
97.9
97.8
98.0
97.5
96.3
93.5
94.1
97.8
91.6
95.8
97.2

EPE
96.0
95.5
96.5
97.7
94.1
94.5
97.5
97.4
98.0
98.4
97.7
93.6
93.0
96.8
96.8
96.T
97.6
94.4
89.0
92.2
95.2
COD
f/1

516
443
4Uo
?51
222
434
497
527
561
585
377
257
361
439
468
WPE
96
05
92
89
66
75
68
84
83
R6
86
71
62
64
63
450 i 72
578
464
287
462
524
99
90
94
?6
63
95. 7j 522 j 71
95.0i 532
92.5
90.9
73.3
88.1
91.2
91.2
86.0

513
340
208
467
495
514
460

74
79
75
56
54
106
85
70

EPE
83
75
72
6ft
6l
5ft
64
67
65
67
68
6?,
57
59
64
63.
6l
65
70
54
fj5
67
67
64
6?
58
56
72
7ft
117

t Removal
WPE 'EPE
81.4
80.8
79.5
74.6
70.3
82.7
86.3
84.1
85.2
85.3
77.2
72.4
82.8
85.4
86.5
84.0
82.9
80.6
67.2
87.9
88.0
86.4
86.1
83.5
83.1
84. p
80,6
72.5
86* 6
87.1
87.3
88.4
88.5
82 J)
75i9
84 i2
86,6
86. 3
86.0
8Q.J+
.8JLo_
75_.&
88. ^
87.6
87.2
87.4
84.687.5
77.9181.8
73.1;72.1
88.4 88.0
78.6 85.5
83.5 84.8
84.8.74.6


-------
PLANT OPERATIONAL DATA MAY 1Q7D
D
a
t
e
1
2
3
li
5
4
7
8
9
10
11
12
13
ll
1?
l6
17
18
1?
20
21
22
23
2t
I2?
26
n
28
29
30
31
D
a
y
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
V
Sa
Su
M
T
W
Th
F
Sa
Su
Total Solids
n
S3
1031
958
776
1007
10U1+
1061
iol+8
1029
813
791+
960
820
B97
893
868
870
821*
1051
1097
1155
JIPOJ.
1067
859
8.5.0
972
102 3J
106:
95.^1
990
76
-------
OO
PLANT OPERATIONAL DATA JUNE 1970
D
a
t
e
1
2
3
I
?
4
7
5
?
10
11
12
13
ll*
1?
1^
17,
l8
!?
20
21
22
23
2U
12?
2^
T
bs
p9
30
31
D
a
y
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T

Total Solids
m
S3
666
84l
IQkl
1050
957
898
802
933
937
983
97?
888
865
762
1024
941
909
897
1006
833
754
883
882
887
895
774
801
802
842
809

K/l
WPE
536
5^9
838
818
784
821
681
70 4
730
747
712
742
667
702
767
738
703
643
802
735
5.3A
^59
692
68]
602
6P1
6?6
673
665
652
EPE
68.6.
5,32
882
905
840
832
746
863
802
758
887
786
735
702
846
791
816
788
878
742
700
692
720
741
771
763
670
771
752

i
% Removal
WPE
19. S
3V7
19.5
22.1
18.1
8.6
15.1
24.5
22.1
24.1
27.0
16. 4
22.9
7.9
EPE

36.7
15.3
13,8
12,2
7i3
7tO
7t5
14.4
22,9
9.0
11.5
15.0
7.9
25.1 17. 1*
21.6 15.9
22.7
28.3
10.2
12.2
20.3 12.7
11.8
29.2
10.9
7.2
25. k 21.6
21.5 18. k
23.2 16.5
32.7 13.9
19.8
21.8
1.1*
16. k
16.1 i 3.9
21.0
19. H
10.7


Suspended Solids
mi
SS
14.3
153
158
167
164
196
17 ^
173
166
192
177
202
155
138
21k
206
214
190
183
209
133
183
171
189
207
189
162
147
192
170
K/l
WPE
3
13
k
9
13
23
9
9
13
12
9
32
9
22
9
15
12
28
46
12
11
3
6
9
Ik
11
7
11
12
11
;
EPE
65
27
6
11
12
17
5
46
11
10
98
83
58
21
17
14
52
97
66
17
2.4
18
25
69
85
L76
20
18
2k

i
jCtemoval
WPE
97. c
91 . S
97.5
91*. 6
92.1
88.3
94.8
9k. Q
92.2
93.8
94.9
84.2
9k.2
Bk.l
95. tJ
92.7
9k.k
85.3
7^. 9
9^,3
91.7
98.U
96.5
95.2
93.2
9l+. 2
95.7
92.5
93t8
93.5
EPE
5><. 5
82. U
96.2
93.1*
92.7
91.3
97.1
73. U
93.H
9^.8
kk.6
s8.o
6?. 6
8U.7
Q?.1
Q^.?
75.7
U8.Q
6?.Q
Ql.Q
ftp.n
Q0.2
fls.U
^.^
S8.Q
fi.Q
87.7
fi7.fi
87. S

4
BOD
m
ss
125
150
170
190
190
165
86
175
205
210
215
150
155
102
225
260
190
200
250
1U2
88
215
200
230
2 HO
210
185
120
220
220

8/1
WPE
9.0
7.0
k.b
6.ti
10.0
7.5
5.0
6.1i
11. ^
B.t
10. i
17.0
5.2
7,6
fl.O
6.8
6,2
fi.O
?2.0
R.P
^.o
?,6
i+,6
Ji,9
fi.f
6.0
5.^4
6.6
u.o
3.fc

EPE
iiB.n
10.5
5.6
10.0
6,0
23,0
7,8
17,5
12.0
5,e
U6.0
36.0
28.0
13.0
16,5
10. C
26. C
38.0
39. c
17.5
23. C
29t"?
20,C
29, c
37. c
66. c
21. c
26.^
29,C
U6.C

% Removal
WPE
92.8
95.3
97.3
96.lt
9^.7
95.5
91.9
96.3
9k. k
96.2
95.2
88.7
96.6
92.5
9^.7
97.4
96.7
96.0
91.2
94.5
96.6
98.8
97.7
97.8
97.2
97.1
97.1
94.5
98.2
98.3

EPE
61.6
93.0
96.7
94.7
96.8
86.;
90.9
90.0
94.1
97.2
78.6
76.0
81.9
87.3
93.3
96.2
86.3
81.0
84.4
88.3
73.9
COD
f/1

276
276
383
411
393
355
205
404
428
424
443
4?o
1^
p^4
4m
WPE
4o
36
50
43
56
52
46
44
57
76
57
69
48
44
40
EPI
6l
46
4i
55
50
49
40
73
46
51
143
107
92
47
21
467 52 54
44n 54
sfi6 72
464
^67
85
56
P07 42
86.3 ^27 38
90.0 427
87. 3i 458
84.6
67.6
88.4
77.9
86.8
79.1

433
602
506
246
400
387

48
53
63
81
122
29
46
42

80
151
100
65
46
60
88
114
132
224
103
73
68
138

( Removal
WPE !EPE
85.5
8L.O
86.9
89.5
85.8
85, 4,
77.6
89.1
86.7
82.1
87.1
83.6
85.7
77.9
S3. 3
39.3
86.6
87.3
86.2
80.5
81.9
89.3
88.0
67.7
74.5
72.5
81.2 [79.9
91.1
88.9
95.3
3B7T
87.7 Pi. 8
87.7 JT4.2
81.5
84.7
79.7
78.4
32. 3
77.8
91.1 ^5.9
88.8 79. ^
88.4 |T5.1
85.5 69.5
86.5 2.8
75.9 79.6
88.2 70.3
88.5 83.0
89.1 64.3


-------
                                                 PLANT OPERATIONAL DATA
JULY  1970
D
a
t
e
1
2
3
1*
5
61
7
8
9
10
11
12
13
ll*
1?
16
17
iB
1?
20
21
22
P?
J2&
p?
P6
27
26
2?
30
31
D
1
a
! y
w
Th
M1
Sa
Su
i'i
T
'J
Th
F
oa
su
M
T
W
Th
TJi
Sa
^u
M
T
W
Thj
F
3a
Sv
M
T
W
Th
F
Total Solids
m/l
S3
876
811
9U1+
7^5
727
832
785
86 14
880
802
766
661
831+
7^3
807
851
762
719
713
908
908
8.1+1+
79 U
930
71*9
610
SQ7
806
099
ft? 3
71+1
WPE
bll
681
672
b97
fi]2
f>li9
?99
625
706
727
638
?62
697
550
627
625
650
621
576
6UO
61+1+
70?
591+
730
731+
532
65!+
613
701
585
EPE
7M
727
693
696
767
690
651
800
819
61+1+
699
662
697
583
7ll+
675
6140
625
_5.86
716
698
681
630
781*
J22
565
679
650
678
621+
5731 573
% Removal
WPE
30.3
16.0
28.8
6.14
15.8
22.0
25.0
27.7
19.8
9.1+
16.7
15.0
16. 1+
26.0
EPE
15. U
A9.1*
26,6
6.6

17.1
17,1
7,U
6,9
19.7
8.7

16, 1+
21,5
22.3J11.5
26.620.7
ll+. 716.0
13.6i3.i
19.217.8
29.521.1
29.1J23.1
16.5J19.3
25.220.7
21.515.7
1.9 3.5
12.8 7.U
19.0|i5.9
23.9J.9.1+
22.0;
2 It. 6
28.9L2l+.2
22.7|22.7
Suspended Solids
ng/1
SS
219
165
180
100
150
185
lW
2.116
201+
208
16U
135
193
156
177
206
127
168
131
231
199
191
191
205
1?5
107
167
196
172
227
WPE
8
5
5
6
9
7
7
12
50
129
50
15
15
8
13
13
75
21
18
18
20
17
20
20
30
12
31
11
6
19
168 I1* .
EPE
25
12
10
8
18
9
10
12_J_
10l4
U6
23
52
111
21
13
lU
7
1U
11
8
11
2
6
10
26
11
17
9
7
18
12
JtRemoTal
WPE
Q6r^i
97,0
97ftg
9hfO
9U.O
96.2
95.2
9^
75.5
3B.O
69.5
88.9
92.2
9^.9
92.7
92.7
U0.9
87.5
86.3
92.2
90.0
91.1
89.5
90.2
8U.6
88.8
Ol.U
9^.1
96.5
91.6
EPE
RR.6
92.7
9^
92.0
88.0
9^.1
9^5.2
^1.2
1*9.0
77.9
86,0
61.5
78,8
86,5
22.J1
93.7
9^.5
91.7
91.6
96.5
9^5
99.0
96.9
95.1
86.7
89.7
89,8
95,2
?5-9
?2.1
91.702.9
BOD
mR/1
SS
220
180
230
155
102
175
160
185
230
185
lU5
92
235
120
205
180
170
120
106
210
230
235
215
210
100
92
175
190
230
165
ik>
WPE
u,o
u,o
5.1*
6.0
U,i*
7.2
11.6

25.0
U2.0
30.5
11.1*
17.0
lU.O
lU.O
10.0
kk.O
Ll.O
LU.O
L5.5
15.0
L3.0
22.0
LU.O
13.0
lU.O
13.0
9.1*
11.5
12.0
10.0
EPE
17.5
16.0
16.0
LU.5
11.5
20.0
21.0
60.0
5U.O
30.0
18. o
3U.O
31.0
16.5
B.U
7.2
6.0
5.2
7.6
8.0
9.2
5.2
6.2
7.0
6.U
10.0
7.6
5.0
7.2
6.8
7.0
% Removal
WPE
98.2
97.8
97-7
96.1
95.7
95.9
92.8

89.2
77.3
79.0
87.6
92.8
88.3
93.2
9^.1+
7^.1
90.8
86.8
92.1+
93.5
9^.5
89.8
93.3
87.0
8U.8
92.6
95.1
95.0
92.7
92.9
EPE
92.0
91,1
93.0
90.6
88,7
88.6
86.8
67.6
76.5
83.8
87.6
63.0
86.8
86.3
95.9
96.0
96.5
95.7
92.8
95.9
96.0
COD
*g/l
&3
UlO
U06
UoU
290
22U
392
398
1+52
1*36
1+19
310
200
1+01+
362
1+81+ ,
WPE
**5
1+8
52
51*
Ul
1+1+
50
55
EPE
62
58
5.5
60
5U
1+8
65
176
97 IL31+
150
92
50
91
67
96
1+6 72
57
52
i+18 52
387
280
139
3^ j
221 1+5
1+19 U6
1+1+3 51+
97.8;U52 52
97.1 U50
96.7
93.6
89.1
95.7
97A
96.9
95.9
95.0
1+1+8
255
193
1+06
1+56
1+58
1+16
1+06
60
58
1+6
1+3
53
53
61
51
60
70
57
1+8
50
1+1+
37
1+0
51+
61
1+8
1+3
1+3
37
1+2
56
62
52
61
( Removal
WPE 'EPE
89.0
88.2
87.1
8,1, 1*
81.7
8,8,8
87,1+
87.8
77.8
61+. 2
70.3
75.0
88.6
81+. 3
89.3
87.6
81+. Q
35.7
86.1*
79.3
75.9
87.8
83.7
6l.l
fc>,3
78.3
78.1+
52.0
82.2
80,7
88.2
88.5
6U.1 187.1
80.7 81+. 3
79.6
89.0
87.8
88.5
86.7
83.3
90.5
814.8
86.5
89.3
87.1 J90.1+
82.0 183.1
77.7 ;80.8
86.9 89.7
88.1+ 87.7
86.7 86.5
87.7 87.5
85.2 :85.0
CD

-------
                                               PLANT OPERATIONAL DATA
AUGUST  1970
D
a
t
e
1
2
3
1*
?
61
7
8
9
10
11
12
13
lU
1?
16
17
iB
!?
20
?1
22
23
2U
e?
2^
n
?A
29
30
31
D
a
y
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
T
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
Total Solids
IB
S3
656
700
736
81*7
871
859
986
841
661
902
89 4
893
882
797
600
625
822
8? R
846
Q22
R84
760
618
79CL
856
866
894
906
66U
629
915
8/1
WPE
627
621
57U
63U
609
633
741+
685
583
577
633
638
645
650
549
505
625
6j)2
603
729
710
624
563
589
559
618
723
718
614
597
EPE
592
657
597
643
648
646
777
738
629
634
655
698
657
656
697
644
721
644
655
712
718
675
707
639
637
715
736
631
670
529
710 i 682
% Removal
WPE
4,4
11.3
22.0
25.1
30.1
26.3
24.5
18.5
11.8
36.0
29.2
28.6
26.9
18. 4
EPE
9,8
6.1
,18,9
24.1
p5,6
?4,8
21.2
12,2
4,8
29,7
26.7
21,8
25,5
17,7
8.5
19.2
24.0

12.3
27.3 22.2
28.7 22.6
20.9 22.8
19.7
17.9J
18,8
11,2
11.8
25. 4 19.1
34.7 25.6
28.6 17.4
19. lj 17.71
20.8 30.4
7.5
5.1

15 1?
22.4 25.5
Suspended Solids
mj
SS
156
126
153
169
194
162
286
184
142
221
198
177
248
202
151
123
198
164
198
138
166
142
131
167
139
175
179
252
191
137
206
R/l
WPE
21
17
8
4
12
9
9
9
8
14
7
12
13
14
20
13
14
11
15
9
14
12
5
7
7
6
6
26"
24
8
9
EPE
17
14
3
8
16
6
11
8
7
8
9
.8
12
12
11
20
23
13
12
9
22
18
17
11
11
18
14
24
25
24
27
JtRemoval
WPE
86.5
86,5
94.8
97.6
93.8
94.4
96.9
95i
94.4
93.7
96.5
93.2
?4.8
93.1
86.8
89.4
92.9
Q3f3
92.4
93.5
91.6
91.6
96.2
95.8
95.0
96.6
95.5
89.7
87.4
94.2
EPE
89.1
88.9
98.0
95.3
91.8
96,3
96.2
95.7
95.1
96,4
95.5
95.5
95.2
94.1
92.7
83.7
88.4
92.1
93.9
93.5
86,7
87.3
87.0
93.4
92.1
89.7
92.2
90.5
86.9
82.5
95.6j86.9
BOD
m,
SS
84
66
150
170
220
220
205
110
98
255
205
190
200
180
85
8?
190
220
205
235
210
II1?
215
195
86
220
220
235
104
94
230
(5/1
WPE
8,0
12.0
11 ,?
9-0
6,?
9.8
7.2
8.4
6.6
9.6
10.2
7.4
8.2
7.0
8.0
7.2
7.6
11.0
9.4
9,4
8.0
-1*2.
8.8
fl.fi
_i*fl
fi.6
11,6
12.0
10.0
7.
8,6
EPE
5.5
7.5
4,5
9..0
11. 0
*3tO
9,E
Ll.O
6,8
11,8
12,8
7.2
7.2
6.8
5.. 4
10.2
10.0
9.0
7.0
8,0
11.0
LL.5.
12,2
13- -o
U.6
11,2
13.0
2,0
313. o
12,fi
17-5
% Removal
WPE
_2P.5
81.8
92.3
94.7
97. 21
95.5
96.5
92.4
93.3
96.2
95.0
95.8
95.9
96.1
91.8
91.2
96.0
95.0
95.4
96.0
95.2
93.7
95.9
95.5
93.3
96.1
94.7
9^.9
90.4
91.7
96.3
EPE
93.4
88.6
97.0
94.7
95,0
89.5
95.2
90.0
93.1
95.4
93.8
96.2
96,4
96.2
93.6
85,1
94,7
95.9
96.6
96,6
Q4.8
COD
fZ1

240
180
395
420
370
440
470
2QO
120.
420
-415.
__4J54
44ol
410
250
WPE
50
42
45
59
52
60
55
53
50
42
53
58
EPE
48
35
37
53
59
51*
51*
46
45
42
41
37
54 ! 42
53"*
52
200 43
405 42
440
 45-0]
62
63
46ot 6l
4^0i 67
90. Oj 300| 58
94.3 POO
94.4
86.5
94.9
_9_!u!
94.9
87.5
86.4
92.4
4?0
440
4,40
455
45
45
57
_ 5JL.
64
475 66
250! 63
215
430
46
42
45
^
64
52
54
62
68
97
123
62
64,
80
77
80
84
71
84
8C
{ Removal
WPE !EPE
79>2 .80.0
76.7
88.6
86.0
85.9
86.4
88.3
81.7
73.7
90.0
88.1
86.7
87.7
87.1
80 45
90.6
87. ^
84.1
87.7
88,5
84.1
76.3
90.0
90.8
91.5
90.5
89.0
79.2 82.0
78.5
68.0
89.687.2
85.9t87.7
86.0J86.2
86.785.2
84.4177.4
80.7
77.5
59.0
69.0
89.384.8
87.081.8
86.6;82.5
85.982.4
86.182.3
74.871.6
78.6:60.9
90.281.4
OO

-------
                                                PLANT OPERATIONAL DATA
SEPTEMBER   1970
D
a
t
e
1
2
3
1*
5
61
I
5
?
10
11
12
13
ll*
1?
l6
17
iB
1?
20
21
22
23
2U
2?
2^
n
26
2?
30
31
D
a
7
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W

Total Solids
ns
S3
888
821
719
896
fti3
591
706
901
8.3.5.
9^6
9l+l
7^3
6ll
760
731
028
761+
921
81+3

8,57
9lU
823
811
8.8.3
827
711
9Vt
9 1+0
949
590
J13
611
720
791
769
700
712
7^
625
818
768
690
671
71?
720
*
% Removal
WPE
-26 JL
18.8
18.5
32.0
18.2
7.1
11+.1+
35-1
17.1
1*1*. 1
25.9
15.1
2.5
21+.7
EPE
23.3
13.3
18.1+
28.1
7.0

12.0
27.2
15. B
32.7
20.6

i.q
Ik. 6
33.2 19.2
27.8; 23.2
18.7 20.0
25.14 21.8
9.1 6.2
|
2U.6 18.2
26.7, ?2.l
6.2 fl.li
29.2!?^.i
18.91 7.14
6.2J 7.1
5.6J 3.0
30.2,28.2
27.823.9
26. 6j 25.2

Suspended Solids
mg/1
S3
206
233
167
223
176
ll+l
161+
186
162
213
229
213
120
181+
178
203
178
192
11*7

206
177
188
155
196
160
97
256
255
288
WPE
12
19
16
18
10
9
15
1+
3
17
12
18
9
9
10
15
38
13
13
23
9
12
17
32
23
21+
10
18
20
15

EPE
in
1Q
?s
1Q
Ifi

U
13
5
2*4
30
60
2U
^
31
23
23
15
16
30
15
11
^
Ik
37
21
11
;6
21
19

jCRemoral
WPE
9^.2
EPE
95.1
91.8'91.8
90.1+
91.9
9^4.3
93.6
90.9
97.9
9B.2
92.0
9*4.8
91.5
92.5
95.1
9^. k
92.6
78.7
93.2
91.2

95.6
93.2
91.0
79.^
88.3
85.0
89.7
93.0
92.2
9^.8
85.0
91.5
90.9

79.3
93.0
96.7
88.7
86.9
71. d
80.0
76.6
82.6
88.7
87.1
92.2
89 fJ

9?iT
93,^
92.6
78.]
81,1
86.9
88,7
93, 
91, 
93.^
J
BOD
m^/1
SS
289
220
190
210
120
66
90
250
170
2^0
230
150
110
190
160
230
220
200
110

210
250
200
160
180
120
100
150
2^0
250

WPE
9.0
11
11
13
6,8
7,9
11
8,6
9^
8.8
8.0
8,2
12
8.8
8.0
8,6
29
11
8,6
8,6
11
Ik
16
37
12
17
16
22
16
11

EPE
12
11
17
15
13

lU
12
12
Ik
21
30
17
27
11+
13
13
11
12
10
12
12
12
22
Ik
a. ^
13
15
10
12

% Removal
WPE
96.8
95.0
9U.2
93.8
9^.3
88.0
87,8
96,6
9^.5
96.6
96.5
9H.5
89.1
95.1+
95.0
96.3
86.8
914.5
92.2

91+.8
9l4.l4
92.0
76.9
93.3
85.8
8U.O
91.2
93.3
95.6

EPE
95.7
95.0
91.1
92.9
89.2

SH.U
95.2
92.9
9^.6
90.9
80.0
81+. 5
85.8
91.3
9!4.3
9l4.1
9l4.5
89.1

9U.3
COD
f/1

U90
14UO
360
1+60
300
ll+O
200
1+50
1+30
1+60
1+90
31+0
210
360
320
WPE
^2
^8
60
73
1+9
1+0
38
1+3
k9
1+2
>+5
51*
EPE
70
73
8l+
82
70

56
bk
59
o9
75
9D_
1+2 ! 62
38
36
1+30 ; 1+1+
1+00
1+30
3UO

1+30
95.2, ^50
9U.O ^70
86,3
92.2
92.9
87.0
91+.0
95.8
95.2

330
31+0
250
200
1+90
350
570

82
52
1+8
1+2
1+1
76
^3
82
32
65
1+5
51+
^7
58

07
59
68
71
1+fl
61
6?
50
59
76
66
66
52
52
W
51
60

t Removal
WPE 'EPE
89.1+ 85.7
86.8
83.1
81+, 1
83.7
71, ^
81.0
90.1+
88.6
90.9
90.7
814.1
79.5
89. k
83.1+
76.3
82.2
76.7

72.0
85.8
86.3
85.0
61+. 5
73.5
69. 81
75.8
88.6 81.3
89.6 81+. 0
79.2 182.0
87.9 J88.8
85.9

90.5
83.1
86.6
82.1

88. U
86.9
83.8
75.2 J80.0
90.6 180.6
7U.O 79.2
77.5 71+.0
89.0 90.1+
86.6 85.1+
89.8 .89.5

CD
OO

-------
                                               PLANT OPERATIONAL DATA
OCTOBER   1970
D
a
t
e
1
2
3
1
?

7
3
?
10
11
12
13
ll
1?
l6
1I
18
!?
20
21
22
23
2l*
2?
2
1
26
29
30
31
D
a
J
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Total Solids
m
S3
10 42
946
191
191
959
965
975
933
943
819
707
980
956
1036
1048
997
856
721
966
964
1005
1001
914
832
706
1057
887
806
102^4
100 
82 *J
8/1
WPE
755
732
787
629
676
710
771
737
730
710
666
726
710
691
755
761
763
656
760
730
7^9
792
733
668
642
702
687
602
731
808
596t
EPE
822
755
788
702
716
739
813
734
830
785
713
765
717
1JJL
840
888
83>
684
656
7U3
797
854
807
727
684
717
739
585
673
821
718
% Removal
WPE
27.5
22.6
1.3
21.1
29_.5_
26.4
20.9
21.0
22.6
13.3
5.6
25.9
25.7
33.3
28.0
23.7
10.9
9.0
21.3
24.3
25.5,
'20.9
19.8
19.7
9.1
33.6
EPE
21tl
20.2
1.1
11.9
25.3
2.3,4
16,6
21.3
12.0
4.2

21.9
25.0
25.2
19.8
10.9
2.6
5.1
32.1
22.9
20.7
14.7
11.7
12.6
3.1
32.2
22.5 16.7
25.3
28.6
19.8
27. Y
27. ^
34.3
18.6
12.9,
Suspended Solids
mi
ss
276
230
182
175
263
250
241
236
203
186
139
325
238
268
296
283
202
163
263
268
241
238
189
169
128
303
255
249
273
276
189
R/l
WPE
13
18
18
15
17
12
23
48
21
20
13
29
13
20
55
33
27
14
12
33
28
25
17
21
20
10
16
Ifi
19
33
?*
EPE
14
15
?a
24
22
21
^6

-------
PLANT OPERATIONAL DATA
NOVEMBER
1970
D
a
t
e
1
2
3
1*
?
61
7
6
9
10
11
12
13
ll*
1?
l6
XI
id
i?
BO
21
22
2?
2U
2?
26
n
26
29
30
?1
D
a
J
DU
''4
r
w
I'h
F
Ga
Su
M
T
W
Th
?
Sa
Gu
1
T
W
Th
K
Sa
Gu
M
T
rf
Th
F
Ga
Gu
M

Total Solids
D
83
757
9lU
823
965
1006
1033
838
76?
902
1033
10 1*3
1010
1019
882
790
985
1036
10 ho
1020
892
907
763
1060
1073
10*46
85*tl
907
77 J*
685
1023

/l
WPE
699
620
62J
700
7??
799
750
7l*l*
693
6^9
835
787
787
778
715
687
71*9
860
867
623
778
630
712
839
8U2
729
708
7^9
681
702
EPE
721
711*
636
679
802
827
763
687
763
713
835
757
833
803
731
785
785
813
902
790
797
629
778
898
8143
772
766
690
737
817
*
% Removal
WPE
7.7
32.2
23.8
27.5
21.0
22.7
10.5
3.0
23.2
37.2
19.9
22.1
22.8
11.8
EPE
M
21. S
22.1
29. t
20. j
19. <3
ft, 9
10,1<
15.^
31. C
I9i9
25,0
18,3
9.0
9.5| 7. ^
30.3
27.7
17.3
20.2
2l*.2
21.1
15.0 11.6
30.2
11. 1
lit. 2 12.3
17. U
32.8
17. fc
26.7:
21.5j_l6.:
19.5 19J4|
lit. 6
21.9
3.2
0.6
31. JH
9.6
15.5
10.9

20. a
	 1
Suspended Solids
m
SS
113
193
150
219
209
267
191
151
265
255
179
192
211
16 It
155
210
215
211
282
11*
228
188
270
2U3
211
165
177
108
121
2 1+0
K/l
WPE
12
10
6
18
32
23
28
15
15
8
8
5
15
28
?1*
is
12
9
70
17
Ik
13
1?
17
31*
8
12
14
12
23
,
EPE
^
16
8
20
22
31
26
18
18
11
8
9
28
lit
18
7
18
2k
68
113
39
19
32
55
18
21
10
12
16
26

^Removal
WPE
89. U
9k. &
96.0
91. 8
81^.7
91.1+
85.0
90.0
9l*.3
96.9
95.5
95.8
92.9
82,9
8U, 5
92,9
9M
95,7
75.2
90.8
93.9
93-1
93,0
93,o
83.9
95.2
93.2
96.3
90.1
90.14
EPE
37.6
91.7
9k7
90.9
89.5
88. U
86. k
88,1
93.2
95.7
95.5
95'. 3
86.7
91.5
88.U
96.7
91,6
88,6
75,9
38.6
82.9
89,9
88,1
77.14
91.5
87.3
9l4,l4
88,9
86.8
89.2
\
BOD
mj
SS
110
190
190
230
260
220
150
100
220
250
270
270
2l40
160
130
260
2k)
2k)
260
2*40
2k)
160
260
280
260
200
210
iBo
100
2*40

K/l
WPE
1,5
8,6
iii
m
17
16
17
13
11
8.8
10
12
16
1*4
16
12
11
11
26
13
y.o
8.0
16
9.0
22
10
11
6.0
6.0
13

EPE
9.0
ll4
15
13
12
18
13
11
lU
7 'ft
fi.n
11
19
11
11
11
1U
18
1*2
^
\6
13
21

11
11
8,0
12
Jl
lit

% Removal
WPE
86. h
95.5
92.6
93.9
93.5
92.7
88.7
87.0
95.0
96.5
96.3
95.6
93.3
91.2
87.7
95. ^
95. j*
95. 1*
90.0
9^.6
96.7
95.0
93.8
96.8
91.5
95.0
9k8
96.7
9^.0
9^.6

EPE
91.8
92.6
92.1
9^.3
95. ^
91.8
91.3
89.0
93.6
96.9
97.8
95.9
92.1
93.1
91.5
95.8
9^.2
92.5
83.8
77.5
COD
V71
E
250
t400
U20
U8o
550
500
320
220
1*50
530
510
520
U60
380
270
500
510
550
550
WPE
53
32
146
149
53
62
53
38
^5
148
57
57
EPE
55
W
bit
it8
59
62
53
145
5^4
U9
61
6j
56 67
60
60
58
k9
60
100
*450 59
93.3 1*20 149
91.9; 300 i k9
91.9 530
570
95.8! 560
9k5
96.2
93.3
89.0
9^.2

330
1*10
1400
230
510

55
53
85
87
62
U8
39
51

69
bl
62
111
71
107
lltb
7B
62
61
92
6l
55
}k
51
5U
66

t Removal
WPE ' EPE
78.8 78.0
?2.0
89.0
89.8
30.U
87.6
83. 1*
82.7
30.0
90.9
88.8
89.0
87.8
81*. 2
77.8
88. k
90.14
38.3
814.8
30.0
89.3
87,6
83,14
79.5
88.0
90.8
88.0
87.9
85.it
81.8
76.3
87.6
52. Q
89.1 87.1
81.8 80.5
86.9
88.3
83.7
89.6
67 6
RI If
79.3
88.5
90.7 8^.9
814.8 189.1
73.6 '8^.3
8^.9 8$r8
88.0 87. ^
83.0 76 s
90.0 ,87.1


-------
VO
PLANT OPERATIONAL DATA DECEMBER 1970
D
a
t
e
1
2
3
1+
5
4
7
8
?
10
11
12
13
14
1?
l6
17
18
1?
20
21
22
2?
2k
2?
26
?l
2*
2?
30
31
D
a
7
r
w
rh
7
3a
Su
M
I
W
Ih
?
3a
3u
VI
r
w
rh
jp
3a
3u
H
r
w
Th
i1
Sa
Su
M
T
rf
rh
Total Solids
m
S3
971
1083
973
971
932
727
1028
1051
1035
1057
1139
943
976
983
1085
1315
1107
105 it
947
809
1078
138B
1125
900
813
845
863
1041
1113
1144
1024
g/1
WPE
758
859
765
758
732
653
655
821
844
T09
979
909
887
817
806
1020
1019
947
845
711
859
L003
1011
845
740
682
748
798
812
803
903j
EPE
06
862
741
746
750
688
749
788
862
858
L108
930
906
887
815
1035
1101
919
891
76it
836
1061
1027
890
754
72 it
703
806
889
88it
884
% Removal
WPE
21.9
20.7
21.4
21.9
21.5
10.2
36.3
21.9
18.5
33.6
14.0
3,6
J^:L
16.9
EPE
17.0
20.4
23.8
23.2
19-5
5.4
27.1
25.0
16.7
19.6
2.7
l.it
7.2
9.8
25.7 24.9
22.4 21.3
7.9
10.2

12.8
10.8 5.9
12.1 5.6
20.3 22.4
27.7 23.6
10. r 8.7
6.1 1.1
9.0
19.3
13.3
23.3
27.0
29.8
7.3
14.3
18.5
22.6
20.1
22.7
11.8 13.7
Suspended Solids
mi
SS
195
282
236
242
241
144
238
277
263
272
23^
166
116
183
237
178
19?
216
175
130
205
243
206
158
190
153
145
196
248
261
K/l
WPE
16
24
36
48
2
10
10
18
20
18
93
22
10
11
18
lit
25
20
19
11
12
20
7
17
35
14
18
23
19
5
178 ; 21
EPE
14
23
22
21
10
12
10
28
13
78
178
37
*t7
43
17
9
10
47
46
18
14
36
40
31
15
15
20
14
15
5
11 {
^Removal
WPE
21--8
9iU'?
84.8
80,2
99.2
93.1
95.8
93.5
92. it
93.^
60.3
86.7
91. it
94.0
92.it
92.1
87.^4
90.7
89.1
91.5
94.1
Ql .ft
Qfi.fi
8Q.?
PA.fi
90.8
87.fi
fifi.3
EPE
92.8
91,8
90.7
91.3
95.9
91.7
95.8
89.9
95.1
71.3
23.9
77.7
59.5
76.5
92.8
94.9
95.0
78.2
73.7
86.2
93.2
85.2
80.6
80.4
92.1
90.2
86.2
92.9
92t3J94.0
98.1(98.1
88.2J93.8
BOD
mi
SS
250
260
280
250
200
120
270
280
260

220
130
110
240
250
190
260
220
150
130
210
270
260
130
90
150
100
270
280
330
200
*/l
WPE
14
12
21
24
20
7.0
7.0
13
11
16
38
10
8.0
11
13
13
19
lit
9.0
9.0
6.0
10
10
12
12
5.0
8.0
16
14
12
19
EPE
11
lit
21
15
2?
12
LI
37
10
40
Dl
15
p.9
32
10
10
9.0
22
3it
13
14
21
18
9.0
8.0
8.0
9.0
lit
15
10
10
% Removal
WPE
94.lt
95.4
92.5
90.4
90.0
94.2
97.2
95.4
95.8

82.7
92.3
92.7
95. fc
94.8
93.2
92.7
93.6
94.0
93.1
97.1
96.3
96.2
90.8
86,7
96.7
92.0
94,1
95.0
96, it
90.5
EPE
95.6
94.6
92.5
94.0
87.5
90.0
95.9
86.8
96.2

72.3
88.5
82.7
86.7
96.0
94.7
96.5
90.0
77.3
90.0
93.8
COD
W?/l
1;
530
570
540
590
450
270
550
610
590

430
310
260
480
520
390
520
470
350
280
WPE
6it
67
86
88
53
47
41
62
60
65
135
63
51
55
66
61
71
65
57
52
480 51
92.2; 520| 54
93.1 510
93.1
91.1
94.7
91.0
94.8
94.6
97.0
95.0
360
150
160
140
380


320
57
59
48
31
38
47


65
EPE
60
70
8.6
66
93
4.9
4.5
75
59
132
209
93
86
92
in
4l
it7
102
5.5
63
77
77
93
5.0
29
36
4.7
4.5


51
f Removal
WPE 'EPE
87.9
88.2
84.1
85.1
88.2
82.6
92.5
89.8
89.8

68.6
79.7
80.4
88.5
87.3
88.7
87.7
84.1
88.8
7Q.3
81. Q
92.7
87.7
90.0

51. ^
70.0
66.9
80.8
91.7
84.4 89.5
86.3 bl.O
86.2
83.7
8l.it
89.it
89.6
78.3
84,3
77.5
84,0
85.2
88.8 81.8
83.6 86.1
68.0 180.7
80.6 |77.5
72.9 :66.4
87.6 88.2


79.7 84.1

-------
                                                  PLANT OPERATIONAL DATA
JANUARY   1970
D
a
t
e
1
2
3
1*
5
b
7
8
9
10
11
12
13
14
15
10
17
16
l?
20
21
22
23
2^
25
26
27
20
2?
30
31
D
a
y
L'h
7
5a
jU
1
r
;
rh
-'
j>a
JU
-1
r
v
!.'h
^
Ja
3U
-1
.
V
i'h

iaa
Su
1
'

Ti

a
Total Phosphorus
mg/1 as P
SS
b.5
9.2
9.6
0.0
11.6
10.0
9.0
9.1*
9.9
10.1
8.1*
10.8
10.3
9.5
9.5
10.0
10.3
8.2
10.7
8.5
9-5
9.0
9.14
10.0
8.8
10.8
10.2
7.3
8.8
11,8
10.5
WPE
0.63
0.97
0.6^4
2,1*
3.14
1.7
1.9
1.8
1.3
0.57
0.48
2.6
2.1
2.7
2.3
4.6
2.8
1.0
3.5
2.6
3.3
2.2
2.7
2.14
2.1
4.1
4.8
2r8
2.3
3.1
6,1*
EPE
1.5
2.2
2.0
3.0
u.u
3.0
1.3
1.2
2.U
0.6
0.5
0.5
0.1*1*
Q.4Q
0.3fi
0.3fi
0.37
0.80
1.6
0.5C
0.5C
0.35
O.U7
0.51
0.85
1,6
0.65
0.65
0.36
0.6:
0.72
% Removal
WPE
90.3
89.5
92.9
70.0
70.7
83.0
7.9
80.9
86.9
91*. 1*
94.3
75.9
79.6
71.6
75.^
54.0
72.8
87.8
67.:
69.^
65.:
75.6
71.:
",6.C
76.3
62. C
52. S
61. 
J3*S
73. j
EPE
76^9"
76.1
77.8
62. S
62.1
70,0
85, ,6
87.2
75.8
9*4.0
9l4.0
9M
95.7
95.8
96.0
96.2
96,U
90.2
85.0
9)4.1
9^,7
96.1
95.0
9^.9
90.3
85.2
93.6
91.1
?5.9
94.7
39. 093. 0
Total Soluble Phosphorus
mg/1 as P
SS
3.0
3.8
4.3
4.0
5.5
4.6
3.0
3.1
3.1*
3.1*
3.0
4.8

3.8
2.7
3.U
4.2
3.6
4.8
3.3
3.8
3.2
3.2
5.2
4.3
5.2
3.5
2.9
3.3
4.5
5.3
WPE
0.29
0.71
0.46
2.2
3.2
1.5
1.2
1.2
0.66
0.33
0.36
2.14

2.7
2.1
3.5
1.9
0.56
2.9
2.3
2.8
1.9
2.1
2.0
1.8
3.7
4.5
2.5
2.2
2.6
5.3
EPE
1.3
1.9
1.7
2.6
1*.2
2.6
0.92
0.52
0.25
0.20
0.19
0.23

0.16
0.12
0.}.!*
0.15
0.60
1.1*
0.26
0.16
0.17
0.12
0.21
0.59
1.2
0.34
0.28
0.25
0.21
O.UU
% Removal
WPE
90.3
81.3
89.3
1*5.0
1*1.8
67.14
60.0
61.3
80.6
90.3
88.0
50.0

28.9
22.2

54.8
814.U
39.6
30.3
26.3
Uo.6
34.4
61.5
58.1
28.8

13.8
33.3
42.2

EPE
56.7
50.0
60.5
35.0
23.6
V3.5
69,3.
83.3
92.6
?4.1
?3.7
95.2

p5.8
?5.6
95.9
96.1*
83.3
70.8
92.1
?5.8
94.7
96.3
96.0
86.3
76.9
90.3
90.3
92.4
95.3
91.7
Total Iron
rag/1 as Fe
SS
6.01
7.31
6~.72
5.27
U.76
5.86
7.76
10.10
9.06
9.73
10.78
9.87
6.U14
7.79
10. Uu
9.22
8.73
6.49













WPE
O.U6
0.49
0.50
0.47
0.58
0.30
0.56
0.73
0.72
0.31
0.22
0.69
0.59
0.30
0.40
0.97
1.00
0.75
0.96
0.63
0.53
0.24
0.83

0.88






EPE
D.59


D.59
D.37
D.40
3.52
D.96

D.92
D.56
1.03
0.87
D.70
0.91
0.93
0.88
0.76
1.16


0.89


0.99






% Removal
WPE
92.1*
93.*4
92.6
91.1
87.9
95.0
92.8
92.8
92.1
96.8
98.0
93.0
90.8
96.1
93.0
8?,5
88.5
88.1*













EPE
90.5
69.7
I6"2^4
88.9
92.2
93.2
93.4.
90.5
55.7
90.5
94.9
89.6
86.5
91.0.
51.3
B9.9
B9.9.
"88.3













Total Soluble Iron
mg/1 as Fe
SS
i.oi*
0.71
0.61
0.60
0.4l*
0.57
0.61
0.89
0.3^
0.22
WPE
0,25
0.27
o.uu
o.Uo
0.35
O.lU
0.14
0.11
0.09
0.23
0. 33 0.08
2.05 0.57
1
1.22
0.9l
ot6^
0,72
0.6^













0.2fc
0.7:
0.5C
0.32
0.3C
0.3t
0.16
0.3S
o.ii
0.77
0.38
0.06






EPE
0.30
0.18
0,3,1*
V.V
0.25
0.2.5
0.18
0.22
0.12
0.15
0.1C
0.4s

0.5C
0.3^
0.34
0.3S
0.43


0.56
0.45
0.5C
0.5:
0.85






% Removal
WPE
76.0
62.1*
28.7
34.2
10.5
76.1
77-0
87.6
75.0

77.3
72.2

77.0
57.4
15-6
55.6
53.8













EPE
71.2
75.2
45.1
26.7
43.7
56.6
71.3
75.1
66.2
30.2
71.2
76.1

59.0
62.8
46.9
45.8
36.9













vo
ro

-------
                                                       PLANT OPERATIONAL DATA
FEVRRITARY	.19.70
D
a
t
e
1
2
3
1*
5
6
7
a
?
10
11
i?
13
14
1?
16
17
18
19
20
?~\
22
23
24
25
26
27
28
2?
30
31
D
a
y
3u
M
r
ri
i'h
r
3a
3u
^
r
r
Ph
P
Ba
Su
4
1
tf
rh
i
Sa
3u
4
1
V
rh
p
3a



Total Phosphorus
mg/1 as P
SB
6.3
11. ^
9.5
10.5
9. a
11.6
11.3
9.2
11.8
10.5
10.2
13.6
10.8
11.0
9.3
10.7
9. a
10.2
10.0
10.6
10.7
7.6
11.0
10.0
11.1
9.8
10.9
11.2



WPE
3,8
3,6
?|8
2.5
2.9
2.7
2,4
2.2
3,9
2.9
1.9
3.1
2.1
1.9
2.0
2.9
2.1
!?
2.1
3.9
3,6
3.5
3.0
2.3
1.1
0.86
0.84
1.1



EPE
1.9
1.9
0.83
0.56
0.65
0.89
0.75
0.92
1.5
0.60
0.61
0.58
0.55
0.5^
0.96
1.8
0.71
0.56
0.47
0.62
0.98
1.6
1.3
0.46
0.38
0.47
0.56
0.50



% Removal
WPE
39.7
68.4
70.5
76.2
70.4
76.7
78.8
76.1
67.8
72.4
81.4
77.2
80.6
82.7
78.5
72.9
78.6
85.3
79.0
63.2
66.4
53.9
72.7
77.0
90.1
91.2
92.3
90.2



EPE
69.8
83.3
91.3
94.7
93.4
92.3
93.1
90.0
87.3
94.3
94.0
95.7
94.9
95.1
B9.7
83.2
92.8
94.5
95.3
94.2
90.8
78t9
88.2
95.4
96.6
95.2
94.9
???



Total Soluble Phosphorus
mg/1 as P
SS
3.4
5.8
4.8
4.6
4.3
4.2
4.6
3.6
4.3
3.0
4.3
4.3
3.0
4.3
4.2
3.9
3.2
3.7
3.3
4.0
4.2
2,4
^1
3.3
3.6
1.9
2.6
3.5



WPE
3.3
3.3
2.7
2.0
2.7
2.3
2.2
1.9
2.8
2.6
1.7
3.0
1.4
1.6
1.9
2.7
1.7
1.3
1.5
3.2
3.2
3.1
2.8
2.1
0.95
0.73
0.59
0.55



EPE
1.5
1.6
0.50
0.39
0.41
0.51
0.45
0.73
1.1
0.30
0.31
0.23
0.21
0.23
0.72
1.5
0.44
0.38
0.17
0.25
0.70
1.3
1.0
0.20
0.19
0.17
0.21
0.23



% Removal
WPE
2.9
43.1
43.8
56.5
37.2
45.2
52.2
47.2
34.9
13.3
60.5
30.2
53.3
62.8
54. 8
30.8
46.9
64.9
54.5
20.0
23.8

31.7
36.4
73.6
61.6
77.3
84.3



EPE
55.9
72.4
89.6
91.5
90.5
87.9
90.2
79.7
74. It
90.0
92.8
94.7
93.0
94.7
82.9
61.5
86.3
B9.7
94. a
93.8
83.3
45.8
75.6
93.9
94.7
91.1
91.9
93.1*



Total Iron
mg/1 as Fe
SS

4.52
4.72
5.32
5.92
5.40
6.90
5.84
7.96
9.02
5.68
4.90
7.80
7.04
4.20


6.81
a.7a
9.72
7.90
6.18
8.06
7.32
8.44
LL*36_
9.94
8.06



WPE

.296
.196
.297
.268
.468
.457

.185
.332
.3B7
.263
.397
.263
.197


.209
.46C
.552
.397
.325
.240
.199
.317
.211

.299



EPE
r9^
L.06
.980
.712
,836
.706
.606
.491
.691
.645
1.504
L494
1 076
L.27C
.486
.487


.777
L.OOc
.773
.62lj
.633
.70i
.651
.67^
.86:
.90:



% Removal
WPE

93.J2
95.fi
94,4
?5T5
91.3
93.4
98.9
97.7
96.2
93.2
_9_4.6
94. S
96.:
95.:


96. c
94. 
94,^
95. C
94,1
97. C
97.?
96.2
98.3

96t-



EPE

76 5
79.2
86.6
85.9
86.9
91.2
Ql 6
91.'
9? f
73,5
69, c
86.2
82. C
88.4



Total Soluble Iron
mg/1 as Fe
SS

,?6fl
."357
,234
.331
T28J
,185
,111
T?73J
.333
.427
.327
.316
.276
.151*


.446
91.2.50:
8976"
-90-^
89.9
92.2
90.4
92.3
94.0
91.3
bb.t




.31*4
.17$
.36:
.391*
.463
.3b.8
.51t
,520



WPE

.151
.097
.066
.085
.181
.091
.087
.043
.209
.112

.131
.093
.055


.106
.129
.073
,117
 160
,145
 060
.076
.114
.139
.066



EPE

.141
.084
,1?4
.062
.088
.080
.115
.078
.079
,]6P
.527
.17]
.09?
,0ft
.36C


,19*
.4~40
.65*4
.065
.06:
.05^
.19^
.12J
.081
36f



% Removal
WPE

43.7
72.8
71. a
74.3
36.9
50. 
21.6
88.4
37.2
73.8
99.9
58.5
66.3
64.3


76.2
74.4

62.7
10.6
60.3
84. 
83. t
69- C
73.2
By.:



EPE

41.4
76.5
47.0
81.3
69.3
56.8

79.0
76.2
62.1

45.9
64.1
48.1



60.6

82. e
63.7
82.6
86.:
58.3
67.3
83. 
29.2



VO
U)

-------
PLANT OPERATIONAL DATA
MARCH   1970
D
a
t
e
1
I
3
L
5
4
7
8
9
10
11
12
13
A
1?
id
IT
18
19
20
21
22
23
2 1
25
20
2T
28
^
30
jl.
L>
a
y
oU
n
T
w
Th
F
3a
Su
M
'T1
W
Th
F
Sa
Su
*/
m
i.
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
'i
T
Total Phosphorus
mg/1 as P
SS
8.7
10.2
6.0
8,9
10,3
10.0
10.2
8,0
9i8
10.3
9.1+
9.8
10.6
11.1
8.6
11.3
10.)
10.6
8.9
8.3
10 A
8.8
11.6
9.9
10.0
8.1*
9.6
8.E
6.7
10. S
9.7
WPE
1.8
3.3
2.3
1.3
2.0
1.9
1.1
iA
2,8
1.5
1.8
1,8
3.0
2.2
2.1
3.9
3.3
2.3
2.0
l.U
2.2
2.9
l+.l
3.9
1.5
1.3
1.2
0.9C
2.2
3.1
2.9
EPE
1,2
lA
0.1*7
0.65
0.1+3
1.3
0.8)+
1.6
1.3
0.1+7
0.30
0.26
0.1+3
0.55
1.3
1.5
0.143
0.53
O.U7
0.1+1
0.57
1.7
1.6
0.1*9
0.51
O.W
0.93
0.81*
1.6
1.6
0.51
% Removal
WPE
79.3
67,6
61,7
ft1? A
80.6
81.0
89.2
82. S
7] A
85. ,1*
80,9
8;, 6
71.7
80.2
75.6
65.5
68.3
78.3
77.5
83,1
78,8
67.0
61*. 7
60.6
85.0
8l*.5
87.5
89.8
67.2
71.6
70.1
EPE
86.2
86.3
92.2
92.7
95.8
87.0
91.8
80.0
86.7
95. !*
96.8
97.3
95.9
95.0
81*. 9
86.7
95. ^
95.0
9**. 7
95.1
9l*. 5
80.7
86.2
95.1
91*. 9
92*.1*
90.3
90.5
7b.l
37.7
4.7
Total Soluble Phosphorus
mg/1 as P
SS
2.7
3.7
1.8
3.0
3.6
3.3
1+.2
3.1*
3.2
3.6
3.1*
3.6
3.8
4.2
3.3
1+A
3.9
1*.2
3.5
3.5
5.0
1+.8
4.9
3.6
3.0
2.0
3.2
3.5
2.7
4.9
4.6
WPE
1,6
3,2
1^9
0.97
1.8
1.2
Ot77
l.T
2.7
lA
1,6
1.7
2,1*
1.9
1.7
3.8
3.0
2.1
1.7
1.1
1.7
2.1*
i*.o
3.5
lA
1.0
0.7^*
0.5l*
1.8
2.7
2.3
EPE
1,0
1.1
0.2l*
0.20
0.27
0.65
0.1*5
1.3
1.1
0.2U
0,22
0,13
0.11
0.25
1.0
1.3
0.28
0,25
0.31
0.35
0.1*5
1.6
1.3
0.21*
0.18
0.15
0.21
O.U7
1.3
1.2
0.30
% Removal
WPE
40.7
13.5

67.7
50.0
63.6
81.7
67.6
15.6
6l.l
52.9
52T8
36.8
51*. 8
1*8.5
13.6
23.1
50.0
51.1*
68.6
66.0
50.0
18.1*
2.8
53.3
64.3
76.9
81*. 6
33.3
1*1*. 9
50.0
EPE
53.0
70.3
82.1
93.3
92.5
80.3
89.3
61.8
65.6
93.3
93.5
96.U
?7fl
91*. o
69.7
70.5
92.8
91*. o
91.1
90.0
91.0
66.7
73.5
93.3
94.0
9^.6
93.1*
86.6
51.9
75.5
93.5
Total Iron
rag/1 as Fe
SS
6.21*
8.02
7.58
8.ol4
7.78
8.88
7.66
6.71*
10.26
8.84
8.1U
7.71*
8.1*6
8.32
6.12
8.08
8.00
8.36
8.50
7.22
7.58
6.06
8.1*1*
8.91*
10.88
8.70
7.22
5.82
U.68
6.1*2
5.62
WPE
.333
.239
.379
1.000
.259
.72)*
.1*61
.1*22
.233
.283
.235
.227
.1*78
.630
.306
.570
.339
.271*
.309
.258
.436
.1*23
.239
.268
.1*10
.309
.1*97
.1*33
.353
.1*39
.395
EPE
,5^
,811
,981*
L.102
,,881*
2.1*55
,91*1*
.591
,29!*
A56
.262
!253
,665.
.601
.212
.507
.1*93
.571*
.1*81
.671*
.565
.558
.763
.71*2
.850
.708
].913
.775
.57^
.929
.51*5
% Removal
WPE
9^. 7
97 J3
95.0
87.6
96.7
91.8
91*. o
93.7
97.7
96,8
97.1
97.1
91*. 3
92.1*
95.0
92.9
95.8
96.7
96,1*
96,1*
9)*. 2
93.0
97.2
^7.0
96, p
96,1+
93.1
92.6
92.5
93.2
93.0
EPE
91.1
89.9
87.0
86.3
88.6
73.0
87.7
91.2
97.1
9^.8
96.8
96.7
92.1
92.8
96.5
93.7
93.8
93.1
9l*. 3
90.7
92.5
90.8
91.0
91.7
92.2
91.9
73.5
86.7
87.7
85.5
90.3
Total Soluble Iron
mg/1 as Fe
SS
.297
A05
,3.99
 391
,326
.350
.363
.201*
.525
.372
.563
L339
.1*87
.371
.253
?**5
.532
557
511
1*1*9
385
221*
221*
381
1*21
1*60
333
303
275
1*1+3
1+39
WPE
.11*0
.251
.171
.11*1*
.1149
.197
.163
.098
.075
.128
.113
.11*2
.21*8
.1*02
.110
.281*
.212
.112
.160
.196
,11*1
.181*
tli*7
.119
.190
.193
.175
.196
.121
.096
.178
EPE
.253
.221*
.I'A
,11*2
.121
.21*9
.126
.105
.109
.096
.115
.129
,111
563.
,118
.087
.089
.132
.117
.563
,W8
,085.
.106
.085
.191
.085
.110
.080
.109
.102
,306
% Removal
WPE
52.9
38.0
57.1
63.2
54.3
1*3.7
55.1
52.0
85.7
65.6
79.9
58.1
1*9.1

56.5
1*7.9
60.2
79.9
68.7
56.2
63.. 1+
17.9
31*. 1*
68.8
5l*. 9
58.0
U7.1+
35.3
56. C
78.:
59.5
EPE
11*. 3
i+U.7
61.U
63.7
62.9
28.9
65.3
1+8.5
79.2
7U.2
79.6
61.9
77.?

53.1*
8'+.0
83.3
76.3
77.1

71.9
62.1
52.7
77.7
5^.6
81.5
67.0
73.6
60.1+
77. r
30. :

-------
                                                 PLANT OPERATIONAL DATA
APRIL   1970
D
a
t
e
1
?
3
1+
5
6
7
8
9
10
11
12
13
lU
15
16
17
18
!?
20
21
??
23
25
25
26
27
26
2?
30
31
D
a
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
l'h
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
i1
W
Th

Total Phosphorus
mg/1 as P
SS
9.0
7.6
8.2
8.5
6.8
9.9
9.1
9.1
9.2
9.3
B.7
7.81
6.8
7.6
8.2
8.1*
9.7
10.6
6.1
8,8
8.7
8,1
8.1
7.3
7,8
6.5
9.8
8.2
8,2.
6.7

WPE
2.4
,J^3_
1.8
1.5
1.8
3.5
3.7
1.9
1.6
2.0
1.8
1.7
2.5
1.5
1.2
1.8
2.5
1,8
1.0
1.2
IT!
0.80
O.^T
1.1
0.55
0.35
0.35
1.8
1.1
1.5

EPE
0.56
0.37
0.27
0.28
1.2
1.5
o.i*3
0.26
0.18
0.22
0.22
0.88
1.3
0.35
0.28
0.29
0.28
0.29
O.U3
0.58
0.35
0.33
0.28
0.16
0.27
0.39
0.1*14
0.80
0.67
l.B

% Removal
WPE
73,2
tt?,9
78,0
8^,3
73,5
65.6
59.3
79.1
82.6
78.5
79.3
78.2
65.7
80.3
85 A
78.6
75.2
83.0
83.6
86.U
87, 5
90.1
Q^.O
85.9
92.9
9l*. 7
96.1)
78. C
86.7
79 J

EPE
31*.?
95 1
96.7
96 ,_7_
82. 5
81*. 8
95.3
97.1
98.0
97.6
97.5
88.7
80.9
95.5
96.6
96.5
97.1
97.3
93.0
95.5
96.0
L55^9
96.5
97.8
96.5
93.9
95.5
90.2
91.9
73.1

Total Soluble Phosphorus
mg/1 as P
SS
5,?
^.0
l.U
u ?
3.5
5.2
u,u
2.9
U.O
3.5
M
5A
JLJL
3.5
3.8
5T0
3.9
2,6
2.7
3.9
3.9
U.O
2.8
3.3
,3,6
3.2
U.7
3.0
3.5
2.8

WPE
1.9
Ijl
1.3
0.86
;.7
3.1
3.5
1,7
1.3
1.8
1.1
1.6
2.1
lA
1.1
1.7
1.8
1.3
0.1+3
0.99
0,87
0.72
0.50
0.71
0.53
0.26
0.27
0.65
0.70
1.3"

EPE
0.16
0.11
0.11
0.19
1.0
1.3
0.38
0.17
0.17
0.18
0.19
0.82
1.2
0.29
0.22
0.20
0.19
0.19
0.33
0.35
0.18
0.19
0.18
0.11
0.10
0.26
0.33
0.28
0.35
0.36

% Removal
WPE
55.8
63.3
61.8
79.5
51 A
50.5
20.5
ul.u
67.5
U8.&J
7U.H
63. o
32,3
60.0
71.1
57.5
53.8
j?0ip_.
1ft. 1
7^.6
77.7
82.0
82.1
78.5
88.1
91.9
9^.3
78.3
80.0
53.6

EPE
96.2
96.3
96.8
95.5
71 A
75.0
91. U
T5.1
95.8
9^.9
95.6
81.14
61.31
91.7
,9^2
?5.o
95.1
92.7
87. t
91.0
95.^
95.2
93.6
-2iJ
97.?
91.9
93. C
90.7
90.2
87.1

Total Iron
mg/1 as Fe
SS
.6..QO
-6~Ii
6^30
5T66
^36
5.70
^6716
11. IS
7. "So"
10. 9^
6.12
Z23
L_itii
7.02
-i^
_U2
8.76
18.61*
Lmii*
8.06
7,50
6.68
8.16
6.1*6
~rnn*
~TTD
~o".5o
~B~.31*
6j*o
"T72li

WPE
0.1*1*
0.37
0.61
0.62
0.20
0.8l
0.31
0.50
0,1*3
0.5J+
0.63
0.26
0.33
0.33
0.31
0.27
0.81*
0.61*
XT.80
0.73
07%
0.21
0.26
0.35
0.29
0.1*1
0.13
1.51
o.UT
0.39

EPE
Ltl
0.8U
0.63
2iM
0.17
0.69
0.15
0.29
0.25
2iL
0.55
2^2.
0.22
0.22
0.22
&J
0.36
0.1*0
0.1*7
O.J*^
,2sJ20
0.38
0.56
0.1*3
0.5^*
0.81
"0751
1.22
0.97]
U.20

% Removai
WPE
2i*
Ql*,5
90jLl
89,0
95. U
85.8
95.0
25_sJL
9U.U
95.1
89.7
92.1*
9^.7
95.3
95.2
9'S.b
^075"
2*b
"BBTs"
90.9
93.5
W.9
96.8
95.6"
95.5
92.0
9B70
^79
21*1
93.8

EPE
90.3
87.5
90.0
92.0
96.1
87.9
2L.j6l
97.5
96.7
97.5
90.8
91.2
2H
96T9
96.6
95.8
95.9
97.9
93.2
9575
92.0
95.3
93.1
93.3
91.6
85.2
9376
"8575
B"57H
32.7

Total Soluble Iron
mg/1 as Fe
SS
o.5^
0.39
0.37
0.38
0.31
o.5o
0.90
1.11
0.50
0.^0
0.60
0.35
0.57
0.59
0.58
O.Ul
0.6l
0.90
0.53
0.73
0.55
0.56
0*759
0.1*5
O.U5
oT^o
0.32
OT57
0,38
0,56

WPE
0.27
0.20
0.20
0.20
0.16
0.13
0.36
TJ73I
Jk33j
_0i271
0.35
0.19
0.18
0.28
0.25
O.lB
ui^3
0.21
0.20
0.35
=2i2J
0.17
0.21
0.17
0.29
0.19
6.58
0.12
0.10
0.21

EPE
0.3
0.1
0.13
OjiS
0.1
tis
0.1
0.15.
0.1
0.2^
0.16
0.21
0.17
o.is
^0.16
0,1':
^J^
JLJJ
0,1*1
n.5c
o,ic
p. 16
&*l

^ Removal
WPE
5o.Q
5H.7
55.9
57.5
"W75"
67.5
66.7
J2.1
35.0
55.0
51.7
U5.7
61.7
52. S
^S
5572
55.5
"7^.7
53.^
52.1
50.9
"6T7o
57.1
63. C
3575
52-5
T5TT:
Jflj2
JLLJ
2^5

EPE
20.0
53.8
55.1
60.5
51.6
62.5
87.8
86.^
65.0
63.3
73.3
50.0
63.8
61.2
66.7
68.3
75.5
83.3
6775
38.5
72.7
65.2
67.3
52.2
53.3

60.6
~TT^
78. q
3.6

VO

-------
MD
CTN
PLANT OPERATIONAL DATA I1AY 1970
D
a
t
e
1
J
3
1
5
6
1
8
9
10
11
12
13
li*
1?
16
17
Id
19
20
21
22
23
2l
25
20
27
28
2?
?0
31
D
a
y
p
oa
Su
M
r
//
rh
P
3 a
-JU
1
r
v
I'h
T
:>a
iU
.1
.
V
1'n
r
Sa
Su
1
T
V
Ph

a
u
Total Phosphorus
mg/1 as P
SS
7.9
8.0
6.9
9. it
8.9
8.8
8.8
8.3
9,1*
5.9
8.0
5.5
1*,9
^
5.0
5.8
5>
8-?
7.8
7.9
7.5
8rl*
6,7
6,1*
8,0
8.2
8.0
7.7
7,7
6.8
??
WPE
1.1
o.l.
0.3
0.1*
1.1
1.6
2.1*
1*.7
1.3
0.5
0.5
O.U
0.3
0.2
0.56
0.5
0.8i(
1.3
1.6
\^
1.3
1.3
0.3
9,^
0.1*5
0.1*1*
0.6l
^
3,8
o^i;
0.65
EPE
2.5
0.67
0.59
0.63
0.35
0.31*
0.1*8
0.73
0.1*3
0.32
0.32
0.21
0.20
0.28
0.23
0.23
0.21
0.1*5
3.29
0.21
0.21*
0.37
0.28
0.36
1.1
0.93
0.38
0.30
0.31
3. Ill
3.82
% Removal
WPE
86.1
91*. 6
95.2
95.7
87.6
81.8
72.7
1*3.1*
81*. 5
90.8
93.6
92.0
93.1
95.7
88.8
90.5
8l*J*
81*. 7
79.5
82.3
82,7
81*, 5
91*. 3
91*. 7
9l*.l*
9l4.6
92.14
55.8
50.6
?3.7
87.7
EPE
68.1*
91.6
91.1*
93.3
96.1
96.1
9l*. 5
91.2
91*. 9
91*. 6
96.0
96.2
95.9
9*4.8
95. 1*
96.0
96.1
9^.7
96.3
97.3
96,8
?5,6
?5r8
9l*.l*
86.3
88.7
95.3
96,1
96.0
9l*.0
81*. 5
Total Soluble Phosphorus
mg/1 as P
SS
2.5
3.1
2.8
3.8
3.3
3-?
2-s
3.1
3.0
2.3
3.5
2.3
2.0
2.1*
2.0
2.6
2.8
3.7
2.1*
2.5
3.1
3.3
3.0
2.1*
3.2
3.1*
3.1
2.5
2.9
2.1*
2.0
WPE
0.66
0.25
0.19
0.32
0.87
1.1*
1.6
1.1*
0.63
0.28
0.33
0.28
0.23
0.19
0.17
0.27
0.27
1.1
It1*
0.85
0.65
0,61*
0.22
0.16
0.30
0.29
0.36
0,82
0,1*2
0.23
0.27
EPE
0.21*
0.31
0.36
0.23
0.21
0.19
0.27
0.32
0.2"B
0.19
O.li*
0.11
0.09
0.09
0.13
0.17
0.18
0.36
0.18
0.13
O.ll*
O.ll*
O.I1*
0.18
0.21*
0.50
0.31
0.15
0.13
0.16
0.1*5
% Removal
WPE
73.6
91.9
93.2
91.6
73.6
60.0
36.0
51*. 8
79.0
87.8
90.6
87.8
88.5
92.1
91.5
89.6
90.lt
70.3
1*1.7
66.0
79.0
80.6
92.7
93.3
90.6
91.5
88.1*
67.2
85.5
90.1*
86.5
EPE
90.1*
90.0
87.1
93.9
93.6
91*. 6
89.2
89.7
90.7
31.7
96.0
95.2
95.5
96.3
93.5
93.5
93.6
90.3
92.5
9^.8
95.5
95.8
95.3
92.5
92.5
35.3
90.0
9*4.0
95.5
93.3
77.5
Total Iron
rag/1 as Fe
SS
7.1*1*
6.88
1+.78
7.81*
8.72
9.86
9.88
8.81*
7.62
6.90
9.16
7.62
6.20
5.28
5.1*1*
l*.8l*
i*.oo
U.31*
9.11*
8.91*
6.1*2
7.18
5.58
6.1*1*
6.96
6.72
7.52
8.1*0
5.82
5.21*
5.1*2
WPE
0.38
0.26
0.19
0.17
0.27
0.35
0.97
2.67
0.69
0.29
0.18
0.23
0.20
0.17
0.61
0.1*0
0.97
0.35
0.61*
0.8
76.2
56.1
71.8
33.3
66.7
1*0.9
66.7
38.1*
1*8.2
70.14
149.3
32.8
32.7
i*0.7
37.7
55.7
33.8
H6.0
53.1

EPE
66.2
1+8.8
U8.6
72.7
31.8
65.3
Hi*. 2
63.6
78.9
68.6
88.2
57.1
6l.O
92.3
69.7
66.7
5l*.5
17-9
50.7
57.8
66.3
68.0
56.9
36.7
37.0
22.6
1*8.6
1*9.2
50.5
59.2


-------
PLANT OPERATIONAL DATA
JUNE  1970
D
a
t
e
1
2
3
1+
5
6
7
b
9
10
11
12
13
lit
15
16
17
18
19
20
21
22
23
2*4
25
26
27
28
29
^O
31
D
a
y
M
T
W
T>|
F
,Sa
Su
M
T
w
?h
F
Sa
Si
M
m
X
w
TJ-
F
Rf
Sij
M
T
W
Th
F
Sa
Si;
M
T

Total Phosphorus
mg/1 as P
SS
5.5
3.9
5.5
6.0
6,6
6,1
"?,^
7,
7,8
7.1
7,0
7.0
6,4
5.3
7.7
7,6
6,8
6,7
7r6
7.0
5.6
8.4
7.5
7.9
7.0
5.8
7.2
5.8
8.6
7.3

WPE
1.4
0.93
0.38
0.37
0.59
0.52
0.41
1.3
1.4
2.1
1.2
Ii9
0,81;
0.39
1.6
2.9
1,8
1.1
1.9
0.58
0.37
1.3
1.9
1.1
0.93
0.53
0.38
0.64
1.9
1.5

EPE
1.7
D.61
0.28
0.20
0.25
0.30
0.25
1.1
0.46
0.31
2.7
1.9
1.5
0.73
0.47
0.43
1.3
2.3
1.7
o.4
0.37
0.71
0.64
1.8
0.60
4.1
0.52
0.38
0.41
0.34

% Removal
WPE
74.5
76.2
93.1
93.8
91.1
91.5
92.4
83.3
82.1
70.4
82.9
74.3
86.9
92.6
79.2
61.8
73.5
83.6
75.0
91.7
93.4
84.5
74.7
86.1
b6.7
90.9
94. T
09.0
77.9
79.5

EPE
69.1
84.4
94.9
96.7
96.2
95.1
95.4
85.9
94.1
95.6
61.4
72.9
76.6
86.2
93.9
94.3
80.9
65.7
77.6
93.1
93.4
91.5
91.5
77.2
91.4
29.3
92.8
93.4
95.2
95.3

Total Soluble Phosphorus
rag/1 as P
SS
2.5
1.3
1.6
2.4
2.2
2.6
2.6
4.0
3,4
3.1
2.7


2.4
3.2
3.1
2.6
2.4
2.0
2.3
2.1
4.1
2.9
3.1
2.8
2.2
2.b
2.0
3.1
2.6

WPE
1.3
0.71+
0.21
0.22
0.28
0.22
0.21
1.1
1.1
1.9
0.88


0.24
1.5
2.8
1.7
0.72
0.79
0.22
0.25
1.2
1.8
0.98
0.68
0.51
0.26
0.45
1.9
IT^

EPE
1.0
0.23
0.11
0.11
0.10
0.12
0.16
0.37
0.34
0.22
0.2S


0.14
0.13
0.25
0.30
0.47
0.14
0.19
0.17
0.26
0.24
0.25
0.16
0.17
0.14
0.14
0.22
0.15

% Removal
WPE
48.0
M,;
86,9
90.8
87.3
91.5
91.9
72.5
67.6
38.7
67.4


90.0
53.1
9.7
34.6
70.0
60.5
90.4
88.1
70.7
37.9
68.4
75.7
76.8
90.0
77.5
38.7
46.2

EPE
60. C
82.3
93.1
95.4
95.5
95. 1+
93.8
90.8
90.0
92.9
89.6


94.2
95.9
91.9
88.5
80.4
93.0
91.7
91.9
93.7
91.7
91.9
94.3
92.3
94.6
93.0
92.9
94.2

Total Iron
mg/1 as Fe
SS
4.80
5.68
7.86
5.72
5.24
4.30
4.44
4.30
4.00
5.14
5.50
6.06
5.62
4.30
5.88
5.12
5.20
5.56
7.34
5.76
4.66
4.80
6.48
6.06
Ll.02
6.88
7.52
7.28
7.84
7.22

WPE
0.45
n.39
0.60
0.81
0.47
0.74
0.42
0.46
0.33
0.31
0.49
0.63
0.22
0.27
0.49
0.29
0.52
0.51
0.88
0.67
0.39
0.31
0.86
0.77
1.02
0.99
0.2
0.93
0.62
0.73

EPE
3t^
1.71
3.85
1 .11
3.89
0.92
3.81
2.62
0.63
0.60
5.92
4.26
3.33
0.73
0.79
0.5
2.06
4.98
3.29
0.99
0.87
0.70
1.58
4.40
1.56
8.22
1.42
1.83
1.07
1.53

% Removal
WPE
90.6
93.1
92.4
85.8
91.0
82.8
90.5
89.3
91.8
94.0
91.1
89.6
96.1
93.7
91.7
94.3
90.0
90.8
88.0
80.4
91.6
93.5
86.7
tt.8
90.7
05.6
89.1
87.2
92.1
89.9

EPE
26.3
69.9
89.2
80.6
83.0
78.6
81.8
39.1
84 1. 3.
88.3

29.7
40.7
83.0
86.6
88.7
60.4
10.4
55.2
82.8
81.3
85.4
75.6
35.9
85.8

8l. 1
74.9
86.4
78.8

Total Soluble Iron
mg/1 as Fe
SS
),54
1,07
).58
3.75
3,66
3,67
3.51
3.^Q
b.52
3.45
3.40


.35
.78
.51
.53
.70
.41
.48
.57
.60
.23
1.72
1.26
1.10
1.07
.93
.9^
.32

WPE
0.40
0.21
0.36
0.63
0.36
0.63
0.36
0.24
0.22
0.23
0.09


0.20
0.33
0.19
0.26
0.27
0.26
0.24
0.30
0.28
0.71
0.62
0.77
0.72
0.46
0.49
0.53
0.62

EPE
3.31
0.36
0.36
3.24
3.55
0.46
3.40
3.27
3.24
).ll
0,17


3,24
3.29
3,114
3,13
.24
ti3
,?-3
,23.
.20
.63
.89
.76
.72
.87
.87
.59
.06

$ Removal
WPE
25. Q
80.4
37.9
16.0
45.5
6.0
29.4
38.5
57. V
48.9
77.5


42.9
57.7
62.7
50.9
61.4
36.6
50.0
47.3
53.3
42.3
54.0
38.9
34.5
57.0
47.3
43.6
53.0

EPE
42.6
66.4
37 ._9
68.0
16.7
31.3
21.6
30.8
53.8
75.6
57.5


31.4
62.8
72.5
75.5
65.7
68.3
72.9
59.6
66.7
48.8
48.3
39.7
34.5
18.7
6.5
37.2
19.7


-------
                                                      PLANT OPERATIONAL DATA
                                                                                                 JULY
1970
VO
GO
D
a
t
e
1
2
-}
I
5
&
7
8
9
10
11
12
13
ll
1?
id
17
18
!?
20
21
22
23
2**
25
26
27
28
2?
30
jl
D
a
y
w
Th
F
oa
Su
M
T
rf
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
rf
Th
F
Sn
Su
M
r
v
i'h
r
Total Phosphorus
mg/1 as P
SS
8.0
7.5
7.9
6.7
6.7
9.6
7-7
7.8
7.8
7.6
7.2
5.9
7.7
6.3
T-
7.0
0.0
6.1
5-1
8.7
8.2
8.0
7-5
7-u
6.6
5. '4
7.3
7.1
7.2
6.5
6.1
WPE
0.95
0.66
0.83
0.3:
0.3U
1.1
1.2
1.3
2.9
3.7
1.7
0.50
0.51
0.56
0.60
0.60
2.7
0.63
0.51
0.62
0.1+7
0.5*4
0.89
0,87
0.51+
0.1+9
0.69
0.52
0.82
1.1
0.91
EPE
0.1+5
0.36
0.19
0.30,
0.1+5
0,80
0.96
V?
3.3
1.6
0.75
1.3
1.5
0.77
0.35
0.19
0.23
0.19
0.20
o.i+o
0.20
0.19
0.20
0.31+
0.3k
0.29
0.2*+
0.25
0.26
0.21+
0.31
% Remova
WPE
88,1
91.2
89.5
95. J4
9^.9
88.5
8U.1+
1*3. 3
62.8
51.3
76.1+
91.5
93, ^
91.1
91,1+
91,1+
59.1
89.7
90.0
92.9
91+.3
93.3
88,1
88,2
91.8
90.9
90.5
92.7
88.6
83.1
85.1
EPE
91*.
95.2
97.9
95.
93.
91.7
87.5
U2.
57.7
78.9
89.6
78.0
80.U
87.8
95.0
97.3
96.5
96.9
96.2
95. i*
97.6
97.6
97.:
95. i
9i+. t
9l4t6
96.7
96, ?
96,i
96."
91+. 9
Total Soluble Phosphorus
mg/1 as P
SS
2T6
2.8
2.1
1.9
2.1
6.0
it. 8
3.5
2.1+
1.6
1.8
1-7
3.7
2.9
2.5
1.8
1.9
1.6
1.6
H.O
3.7
3.5
2.8
1.8
1.7
1.1+
2.5
2.1
2.5
1.2
2.0
WPE
0,85.
0.52
0.71
0.2?
0.26
1.0
0.79
1.0
1.5
0.57
0.21
0.20
O.lTi
0.15
0.21
0.30
0T5
0.22
0.15
0.21+
0.21
0.2U
0.3^4
0.36
0.21
0.20
0.58
o.uo
0.72
0.67
O.U3
EPE
0.17
0.16
0.11
0.11
0.16
0.5*4
0.58
0.1+9
0.21
0.21
0.21
0.21
0.38
0.18
0.11
0.10
0.10
0.10
0.11
0.27
0.17
0.11+
0.11+
O.lU
O.lU
0.11
0.13
0.13
0.13
0.12
0.11
% Removal
WPE
67.3
fl].L
66.2
158^+
87.6
83.3
83.5
71.1+
37.5
6U. 1+
88.3
88.2
95.1+
9l+. 8
91.6
83.3
69.5
86.9
90.6
91*. o
9l+. 3
93.1
87.9
80.0
87.6
85.7
76.8
81.0
71.2
1+1+.2
78.5
EPE
93.5
9^.3
9*4.8
9*4.2
92.}+
91.0
87.9
86.0
91.3
86.9
6V8.3
87. 6
89.7
93.8
95.6
914. '4
9*4.7
93.8
L93.1
93.3
95.!+
96.0
95.0
92.2
91.8
92.1
9*4.0
93.8
9*+. 8
90.0
9J4.5
Total Iron
rag/1 as Fe
SS
7.1+1+
8.12
8.92
6.80
7.91'
1+.81+
3.9J+
6~. 1+0
9.86
10.52
7.98
7.76
6.00
1+.76
5.81*
"TTW"
6.16
6.1+6
6.16
5.06
5.80
5.1+1*
6.76
8.80
6.88
6.16
8.0U
7.7t>
7.3b
9.4b
7.3*+
WPE
3.83
3.57
1.06
0.8U
0.89
1.02
0.88
0.98
1.96
3.36
1.81
1.16
0.1+2
0.38
0.35
0.1+7
1.95
0.32
0.22
0,36
0.37
0.25
0.38
0.35
0.2U
0.27
0.6l
0.65
0.62
0.79
0.85
EPE
1.62
1.15
0.8J
0.9?
1.17
1.27
1.53
9.16
6.73
1+.30
1.8E
3,^o
2.15
1.67
0.72
0.3l
0.6c
0.314
0.20
0.21
0.22
0.26
0.38
0.63
0.59
0.1+1
0.69
0.71
0.67
0.86
1.05
% Removal
WPE
88.8
93.0
88.1
87.6
88.8
78.9
77.7
81+.7
80.1
68.1
77.3
85.1
93.0
92.0
91*. o
93.7
68.3
95.0
96.1+
92.9
93.6
95A
9^A
96.0
96.5
95.6
92.5
91.6
"92775"
91.7
88.1+
EPE
78.2
85.8
_90.2
85 . 1+
85.3
73.8
61.2

31.7
59.1
76. 1+
56.2
61+. 2
61+.9
87. t
9^.9
90.2
9^.7
96. t
95. fc
96.2
95.Z
9^.it
92.8
91. ^
93.3
91.5
90.9
90.9
90.9
85.7
Total Soluble Iron
mg/1 as Fe
SS
1.29
1.12
1.72
l.llt
0.91
i.ol+
3.96
1^22
^t23
1.1+0
0,9!+
i32
0,1+5
0,32
0T55
0,1+9
0.1+2
0.30
0.25
0,^8
0.1+0
0,3.5
0,252
0.5^
0.25
0.21
0.90
0.95
1.13
0.73
0.52
WPE
0.78
0.1+1+
0.75
0.70
O.TF
,0_. 80
^L
0.75
0.90
0.95
0.67
JL1
0.13
LQjM
0.17
0.06
0.07
0.21
0.06
0.09
0.11
0.9
0.01+
0.07
0.06
0.03
0.31+
0.25
0.31+
0.31
0.22
EPE
0.66
0.60
0.53
0.59
~-!j
0.72
0.51
1.08
0.75
0.90
0.83
0.97
0.31
0.22
0.06
0.16
0.25
0.07
0.08
0.06
0.0:
0.19
0.09
0.07
0.05
0.06
0.52
0.57
0.1+9
0.52
L0.2i<
% Removal
WPE
39.5
6l.l
56.1+
38.6
25-3
23.1
1+0 . 6
3B.5
26.8
32.1
28.7
26.5
71.1
75.0
69.1
87.8
83-3,
30.0
76.0
8H.5
72.5
77.1
87.5
87.0
76.0
85.7
62.2
73.7
69.9
57-5
57.7
EPE
1+8.8
l+6.o
69.?
1+3.2
16.5
30.8
1+6.9
11.5
39.0
35.7
11.7
26.5
31.1
31.3
89.1
67.3
'+0.5
76.7
68.0
89.7
92.5
1+5.7
71.9
87.0
80.0
7TX
1+2.2
1+0.0
56.6
28.8
53.8

-------
PLANT OPERATIONAL DATA
AUGUST   1970
D
a
t
e
1
2
3
li
5
6
7
8
9
10
11
12
13
ll*
1?
16
17
18
19
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a
y
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
i1
Sa
Su
4
T
7
Th
r1
Sa
Su
1
T
^
Th
P
Sa
Su
vA
Total Phosphorus
mg/1 as P
SS
6.?
5-0
8.3
7-1*
7-3
7.2
8.1
7.9
6.6
8.1+
7.0
7.0
7.7
7.2
5.6
6,2
8,5.
6,4
7.0
7.8
7.Q
7.3
6.S
q.i
7.9
7.8
7.2
7.9
6.1
6.7
8,6
WPE
0.54
0.50
0.93
0.46
0.55
0.62
0.45
0.52
0.41+
0.56
0.61
0.67
0.79
0.88
0.54
O.U9
0.56
0.55
0.57
0.71+
1.1
0.48
0.1+5
1.1+
1.4
0.69
0.60
0.70
0.56
0.46
0.50
EPE
0.29
0.17
0.24
0.21
0.28
0.21
0.25
0.22
0.22
0.28
0.25
0.29
0.27^
0.23
0.15
0.23
0.49
0.30
0.28
0.23
0.25
0.27
0.56
1.0
O.U7
0.29
0.29
0.37
0.30
0.41+
1.1
% Removal
WPE
91.7
90.0
88.8
93.8
92.5
91.4
94.4
93.4
93.3
93.3
91.3
90. U
89.7
87.8
90. U
92.1
93.4
91.H
91.9
90.5
86fl
93.1+
93.1
84.6
82.3
91.2
91.7
91.1
90.8
93.1
94.2
EPE
95.5
96.6
97.1
97.2
96.2
97.1
96.9
97.2
96.7
96.7
96.4
95.9
96.5
96. b
97.3
96.3
94.2
95.3
96.0
97.1
96,8
96.3
91.4
89.0
94.1
96.3
96.0
95.3
95.1
93. k
87.2
Total Soluble Phosphorus
mg/1 as P
SS
2.1
1.8
3.5
2.8
2.8
2.6
3.5
2.8
2.5
3.6
2.2
2.0
2.9
2.5
2.4
2.1
3.4
1.8
2.2
2.6
2.4
3.3
2.7
5.0
3.3
2.7
2.3
2.5
1.8
2.7
3.9
WPE
0.19
0.19
0.38
0.26
0.31
0.34
0.29
0.36
0.25
0.33
0.31
0.39
0.44
0.53
0.33
0.20
0.26
0.22
0.20
0.35
0.30
0.25
0.25
1.1
1.1
0.40
0.32
0.35
0.21
0.24
0.35
EPE
0.?6
0.10
0.14
0.13
0.13
0.12
0.12
0.08
0.11
0.16
0.09
0.11
0.11
0.10
0.10
0.13
0.26
0.12
0.09
0.13
0.13
0.13
0.39
0.89
0.20
0.16
0.17
0.18
0.13
0.30
0.91
% Removal
WPE
91.0
89.4
89.1
90.7
88.9
86.9
91.7
87.1
90.0
90.8
85.9
80.5
84.8
78.8
86.3
90.5
92.4
87.8
90.9
86.5
87.5
92.4
90.7
78.0
66.7
85.2
86.1
"86.0
88.3
91.1
91.0
EPE
87.6
94,1+
96.0
95Ji
95.1+
95.4
96.6
97.1
95.6
95.6
95.9
94.5
96.2
96.0
95.8
93.8
92.4
93.3
95.9
95.0
94.6
96.1
85.6
82.2
93.9
94.1
92.6
92.8
92.8
88.9
76.7
Total Iron
rag/1 as Fe
SS
7.20
7.10
6.08
6.44
6.56
7.00
6.48
7.38
6.96
6.84
6.92
7.00
6.66
8.28
5.56
6.38
6.86
7.90
7.96
8.14
8.50
7.86
6.42
4.60
5.44
5.92
5.86
6.52
6.80
5.3H
1+.86
WPE
L.12
0.52
0.63
0.54
0.73
0.53
0.48
0.42
0.39
0.47
0.51
0.40
0.48
0.53
0.93
0.50
0.62
0.59
0.64
0.65
0.70
0.53
0.48
0.28
0.21
0.32
0.30
0.34
0.39
0.31'
0.19
EPE
L.10
3.52
0.68
0._52
0.81
0.82
0.63
0.60
0.36
0.80
0.56
0.49
0.63
0.65
0.34
0.49
0.77
0.75
0.64
0.79
P.88
0.93
0.82
0.43
3.51
3.56
3.41+
3.66
3.57
.55
3.46
% Removal
WPE
$4.4
92,7
89t6
91,6
88.9
92.4
92.6
94t3
94.1+
93.1
92.6
94.3
92.8
93.6
83.3
92.2
91.0
92.5
92.0
92.0
91.8
93.3
92.5
93.9
96.1
94.6
94.9
94.8
94.3
94.2
96.1
EPE
84.7
92.'
88.8
91.9
B7. 7
88.3
90.3
91.9
94. 8
88.3
91.9
93.0
90.5
92.1
93.9
92.3
88.8
90.5
92.0
90.3
89.6
88.2
87.2
90.7
90.6
90.5
92.5
89.9
91.6
89.7
90.5
Total Soluble Iron
mg/1 as Fe
SS
),63,
3.49
0.81+
O.S^j
If17
1.03
0,86
0.67
0,41
1.38
0.78
1.25
1.16
0.98
0.46
0.83
1.18
LSI)
1.09
1.06
0,72
1.14
0.63
0.1+2
0.48
0.60
0.53
0.1+5
0.31.
0.27
0.46
WPE
0.37
0.31
0.48
0.35
0.33
0.25
0.21
0.29
0.15
0.39
0.35
0.27
0.23
0.18
0.12
0.33
0.32
0.43
0.29
0.40
0.28
0.37
0.31
0.13
0.11+
0.12
O.lU
0.07
0.08
0.07
0.10
biPE
3.32
0.27
0,3.6
9,43,
0.33
0.30
0.22
0.28
0.24
0.29
0.40
0.24
0.17
0.20
0.23
0.20
0.43
0.37
0.37
0.27
3.42
r1*?
3.40
.10
.14
.08
.11
.09
.31
.21
.05
 Removal
WPE
41.3
36.1
42.9
57.8
J1.8
75.7
75.4
56.7
63.4
71.7
55-1
78.lt
80.2
81.6
73.9
60.2
72.9
67.9
73.4
62.3
61.1
67-5
50.8
69. ^
70. ^
80.0
73.6
84. *+
76.5
74.1
78.3
EPE
49.2
41+.9
57.1
48.2
71.8
70.9
74.4
58.2
41.5
79.0
48.7
80.8
85.3
79.6
50.0
75-9
63.6
72.4
bb.l
74.5
41.7
60.5
36.5
76.7
70.8
86.7
79.2
80.0
3.8
22.2
89.1

-------
o
o
PLANT OPERATIONAL DATA SEPTEMBER 1970
D
a
t
e
1

3
1*
5
6
7
8
9
10
11
12
13
ll
15
16
IT
18
!?
20
21
22
23
2*4
25
26
27
28
2?
30
31
D
y
r
/J
'i'h
P
ba.
oU
*,'
'!'
W
in
J-'
Sa
Su
M
T
w
Th
F
Sa
Su
:i
T
W
Th
F
Sa
Su
M
T
rf

Total Phosphorus
mg/1 as P
SS
8.8
6.8
5.2
7.5
8,0
3.2
o . 1
8.0
6.6
7.3
8.3
7.6
5.2
6.8
U.5
7.2
6.0
6.U
7.3

8.2
6.8
6.2
U.9
6.3
6.7
6.0
8.9
7.8
8.0

WPE
0.55
0.61
0.50
0.75
0.39
0.33
0.95
1.1*
1.0
0.91
0.55
0.32
0.33
O.UO
0.35
0.49
0.85
O.UO
O.UO
0,1*1
1.7
0.82
0.91
1.0
o,M
0.71*
o.5U
1.8
1.3
0,56

EPE
O.U5
0.39
0.58
0.50
0.33

0.71
1.0
0.^3
0.37
0.98
1.2
0.60
1.2
0.73
O.U6
0.32
0.38
0.33
0.33
0.53
0.35
O.UO
0.57
0.56
0.39
0.67
l.U
0,147
0.33

% Removal
WPE
93., 8
91.0
90. U
90.0
95.1
^9.7
81*. 1*
82.5
81*. 8
87.5
93. U
95.8
92.7
9U.1
92.2
93.2
85.8
93.8
9l4,5

79.3
87.9
85.3
79.6
93.2
89.0
91.0
79.8
83.3
93.0

EPE
914.9
914,3
'88,8
23*1
-?Ju2.

88,1+
87.5
93.5
914.9
88.2
8U.2
88.5
82.14
83.8
93.6
9*4.7
9U.1
95.5

93.5
9^.9
93.5
88.U
91.1
9*4.2
88.8
814.3
914.0
95.9

Total Soluble Phosphorus
mg/1 as P
SS
3.9
2.2
2.0
1.6
2.8
0.80
2.9
3.1
2.9
2.8
3.'t
2.3
2.2
2.8
1.6
"2.6
1.8
2.1*
3.6

2.8
2.1
2.0
1.7
2.2
1.8
2.U
3.6
3.1
2.8

WPE
0.21
0.29
0.20
0.39
0.21
0.20
0.75
1.2
O.U6
0.62
0.35
0.21
0.20
0.23
0.19
0.31
0.37
0.16
0.26
0.27
1.5
0.55
0.1*1
0.60
0.21
0.33
0.26
1.3
1.0
0.37

EPE
0.35
0.23
0.20
0.31
0.17

O.U6
0.83
0.27
0.17
O.Ul
0.21
0.1*4
0.22
0.18
0.20
0.114
0.15
0.16
0.22
0.38
0.19
0.19
0.12
0.19
0.11*
0.21
0.83
0.25
0.17

% Removal
WPE
9l4.6
86.8
90.0
75.6
92.5
75.0
7U.1
61.3
814.1
77.9
89.7
90.9
90.9
91.8
88.1
88.1
79. U
93.3
92.8

146.U
73.8
79.5
6U.7
90.5
81.7
89.2
63.9
67.7
86.8

EPE
91.0
89,5
90.0
80.6
93.9

8U. 1
73.2
90.7
93.9
87.9
90.9
93.6
92.1
88.8
92.3
92.2
93.8
95.6

86. U
91.0
90.5
92.9
91.1*
92.2
91.3
76.9
91.9
93.9

Total Iron
mg/1 as Fe
SS
5.76
6.26
5.6U
8.02
6.68
5.18
14.06
6.22
U.66
5.28
5.58
6.30
14.56
14.7U
5.30
5.98
5.22
U.8U
i4.ua

5.50
6.1U
5.86
U.92
5.70
7.52
U.52
5.80
5.32
6.40

WPE
0.25
0.29
0.3U
0.59
0.23
0.13
0.18
0.13
0.20
0.22
0.1*5
0.21
0.27
0.22
0.17
0.10
0.97
0.23
O.ll*
0.11
0.35
0.28
0.70
0.72
0.27
0.51
0.52
O.U8
0.32
0.21* '

EPE
n.s?
0.50
1.00
0.85
0.56

0.51
O.U9
0.38
0.86
1.U2
2.67
1.20
2.86
1.69
0.91
0.66
0.68
0.65
0.38
0.1*7
0.52
0.57
1.214
1.17
0.53
1.22
1.12
0.57
O.U2

% Removal
WPE
95., 7
95.U
9U.O
92.6
96.6
97.5
95.6
?7.9
95.7
95.8
91.9
96.7
9U.1
95. U
96.B
97.0
81. U
95.2
96.9

93.6
95.1*
88.1
85.1*
95.3
93.2
88.5
91.7
9U.O
96.3

EPE
2.1.0
92.0
82.3
89. 1*
91.6

87.U
92.1
91.8
83.7
7U.6
57.6
73.7
39.7
68.1
8U.8
87.U
"BS.O
85.5

91.5
91.5
90.3
74,8
79.5
93.0
13.0
80.5
89.3
93.14

Total Soluble Iron
mg/1 is Fe
SS
0,66
Q!^
0,5.8,
0.6^5
Q .UJ
0.31
0-39
0.58
0.50
0.55
0.7U
O.UO
0.38
O.U2
O.i*3
O.Ul
0.35
o.uu
0.25

0.2.9
0,51
0.3U
0.36
0.25
0.32
0.23
0.3U
O.UO
O.U6

WPE
D.08
0.13
0.08
0.11
0.06
0.06
0.03
0.05
0.07
0.05
0.08
0.06
O.OU
0.11
0.09
0.07
0.10
0.15
0.02
0.07
0.12
0.08
0.13
0.16
0.10
0.05
0.08
0.06
0.07
0.06

EPE
0,11*
0.33
0.11
0.09
0.03

0.05
0.03
9,08
0.12
0.07
0.05
0.01
0.00
0.05
0.07
O.OU
0.01
0.05
0.07
0.17
0.13
0.13
0.10
0.11
O.OU
0.06
0.18
0.07
p. 06

% Removal
WPE
87.9
76. U
86 . 2
H3.1
B7.2
80.6
92. 3
91. U
86.0
90.9
80.2
85.0
B9.5
73. H1
79.1
82.9
71. U
65.9
92.0

58.6
81*. 3
61.8
55.6
60.0
8U.U
65.2
82. U
82.5
87.0

EPE
78.8
UO.O
81.0
86.2
93.6

R7. 2
9)4 . 8
81*. 0
78.2
90.5
87.5
97- U
22*&
88.1*
82.9
88.6
97.7
80.0

1*1.1*
7U.5
61.8
72.2
56.0
87.5
73.9
U7.1
82.5
87.0


-------
PLANT OPERATIONAL DATA
OCTOBER  1970
D
a
t
e
1
2
3
1+
?
6
7
b
9
10
11
12
13
I1*
1?
l6
17
18
19
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a
y
Th
F
Sa
Su
M
r
tf
Th
P
3a
Su
-1
l
rf
Th
r
Sa
Su
T
;i
w
Th
i1
Sa
Su
f
T
/}
Til
ji
^a
Total Phosphorus
mg/1 as P
SS
8.4
9.0
8.6
7.3
9.^
a. 7
8.2
7.9
7.7
8.3
7.9
10. 4
8.9
8.B
9.6
10.3
10.2
8.6
10.0
8.7
8.5
8.1*
8.7
9.J4
8.0
10.9
8.0
13.0
8.1*
8.2
6.9
WPE
0.58
0.71
0.43
0.48
1.3
0.95
1.0
1.7
1.1
0.60
0.54
0.84
0.76
1.2
2.9
3.2
1.7
0.45
0.62
1.5
1.5
2.1
2.5
o.ao
0.63
1.3
1.1
1.9
2.4
1.3
0.43
EPE
0.35
0.52
0.43
0.46
0,58
0.57
0.76
0.77
2.6
0.60
0.41
0.60
0.60
0.81
3.2
4.0
1.1
0.6
0.48
0.5^
0.64
1.7
4.6
1.1
0.58
0.48
0.48
0.50
1.9
1.1
0.95
% Removal
WPE
93.1
921.!
95.0
93.4
flfi.?
89.n
97,9
78. S
8<5.7
92.8
93.2
91.9
91.5
86.4
69.8
68.9
83.3
94.8
93. 
82. 
82.4
75.0
71.3
91.5
92.1
88.1
86.3
85>
71.4
84.1
93.8
EPE
95.8
94.2
95.0
93.1
93.8
93.4
90.7
90.3
66.2
92.8
94.8
9^.2
93.3
90.8
66.7
61.2
89.2
92.1
95.2
93.8
92.5
79.8
47.1
88.3
92.8
95.6
94.0
96.2
77.4
86.6
86.2
Total Soluble Phosphorus
mg/1 as P
SS
2.2
3.1
3.8
3.1
3.1
3.1
3.1
3.0
2.2
3.0
2.8
3.8
3.2
2.5
3.2
3.0
3.3
3.0
3. B
2.5
3.0
3.1
3.4
2.4
2.4
3.0
2. 
9.0
2.7
2.0
2.3
WPE
0.32
0.40
0.25
0.2
1.1
0.59
0.60
0.65
0.55
0.26
0.21
0.6l
0.45
0.72
2.0
2.5
1.1
0.23
0.30
0.70
0.92
1.7
1.9
0.19
0.19
0.96
o.ao
1.5
2.0
0.60
0.16
EPE
0.19
0.30
0.21
0.17
0.28
0.31
0.33
0.33
0.26
0.20
0.15
0.28
0.40
0.41
0.32
0.16
0.12
0.15
0.28
0.29
0.41
0.27
0.13
0.12
0.16
0.17
0.16
0.29
0.88
0.22
0.14
% Removal
WPE
85.5
87.1
93.4
91.0
64.5
81.0
80.6
78.3
75.0
91.3
92.5
83.9
85.9
71.2
37.5
16.7
66.7
92.3
92.1
72.0
69.3
45.2
44.1
92.1
92.1
68.0
71.4
83.3
25.9
70.0
93.0
EPE
91. U
90.3
9^.5
94.5
91.0
90.0
89. 1+
89.0
88.2
93.3
94.6
92.6
87.5
83.6
90.0
94.7
96.4
95.0
92.6
88.4
86.3
91.3
96.2
95.0
93.3
94.3
94.3
96.8
37. 4
39.0
J3.9
Total Iron
mg/1 as Fe
SS
8.58
6.96
5.78
5.68
7.96
6.44
6.4o
6.30
6.72
7.04
6.76
7.20
7.04
7.70
7.98
7.24
7.28
6.66
7.86
9.74
8.98
7.60
10.24
12.98
11.84
11.44
8.80
7.84
8.96
10.62
9.92
WPE
0.43
0.41
0.32
0.13
0.39
0.37
0.4
0.93
0.40
0.36
0.71
0.52
0.28
0.43
0.66
0.52
0.40
0.19
0.48
0.76
0.77
0.67
0.81
O.b7
0.67
0.45
0.5U
0.37
0.58
0.78 '
3.37
EPE
0.53
0.77
0.58
0.76
0.68
0.61
1.40
1.49
4.40
0.91
0.67
0.22
0.5^
1.10
3.26
6.76
1.79
i.oi*
3.71
3.76
3.81
2.82
3.90
2.30
L.05
3.83
L.07
.68
.69
.27
2.10
% Removal
WPE
95.0
94.1
94.^
97.7
95.1
94.3
92.5
85T2
94.0
94.9
89.5
92.8
96.0
94. i*
91.7
92.8
94.5
97.1
93.9
92.2
91.4
91.2
92.1
93.3
94.3
96.1
93.9
95.3
93.5
92.7
96.3
EPE
93.8
88.9
90.0
86,6
91.5
90.6
78.1
76,3.
34.5
87.1
90.1
96.9
92.3
85.7
59.1
6.6
75.it
84.4
91.0
92.2
91.0
62.9
13.1
82.3
91.1
92.7
a7.a
91.3
70.0
78.6
78.8
Total Soluble Iron
mg/1 as Fe
SS
0.39
0^4^
0.36
0.32
0.47
0.45
0.59
0.48
0.38
0.35
0.26
0.3^
0.49
0.41
0.43,
0.36
0.41
0.4it
0.89
1.36
1.41
0.87
1.43
0.3a
0.81
0.47
0.7a
0.90
0.85
0.33
0.81
WPE
0.25
0.09
0.07
0.08
0.13
0.18
0.13
0.10
0.06
0.07
0.07
0.01
0.05
0.04
0.10
0.13
0.08
0.07
0.36
0.27
0.27
0.26
0.32
0.30
0.13
0.14
0.20
0.06
0.12
0.10
3.05
EPE
3.12
3.09
3.06
3.13
3.07
3.07
3.39
D.08
3.08
3.10
3.07
3.02
3.03
0.03
0.01
0.07
3.06
3.05
3.28
3.19
3.23
.20
.27
.19
.14
.32
.24
.13
.20
.17
.06
% Removal
WPE
3S.9
78. (^
80.6
75.0
72.3
60.0
78.0
79.2
84.2
80.0
73.1
97.1
89.8
90.2
76.7
63.9
80.5
84.1
59.6
80.1
80.9
70.1
77.6
21.1
84.0
70.2
74.4
93.3
85.9
69.7
93.8
EPE
69.2
78.6
83.3
59.4
85.1
84.4
33.9
83.3
78.9
71.4
73.1
94.1
93.9
92.7
97.7
80.6
85.^
88.6
68.5
86.0
83.7
77.0
31.1
50.0
82.7
31.9
69.2
85.6
76.5
48.5
92 ^

-------
                                                   PLANT OPERATIONAL DATA
                                                                                               NOVEMBER
1970
D
a
t
e
1
2
3
I
5
6
1
y
9
10
11
12
13
1U
1>
16
IT
18
!?
20
21
22
23
2l
25
26
27
28
2?
30
31
D
a
y
3u
1
r
i
Th
F
Ga
*~> i.
M
T
,V
Th
7
Sa
Su
M
;
tf
1'h
F
Sa
Su
4

f
'h

a
u


Total Phosphorus
mg/1 as P
SS
6.9
6.4
6.8
7.2
8.0
7.1
7.9
7.3
8.0
8.9
7.8
8.3
7.8
7.6
7.5
10. U
9.6
9.1
9.8
8.2
7.8
8.14
9.7
8.3
8.6
7. 1
8.5
8.1
7i2
9.2

WPE
0,43
0.48
0.47
o.s6
0.76
1-1
0.76
0.42
0.79
0.70
0.79
0.80
0.93
0.78
0.614
0.77
0.72
0.814
2.2
0.78
0.33
o.ia
1.7
0.90
1.9
0.67
0.60
0.69
1.7
3.6

EPE
0.35
0.^5
0.43
0.29
0.40
0.8'i
O.U9
0.4l
0.32
0.27
0.28
0.32
0.5^
0.30
0.27
0.314
0.50
0.66
1.0
3.0
0.51
0.42
0.65
1.1
0.66
0.51
0.31
0.34
0.33
0.77

% Removal
WPE
93.8
92.5
93.1
92.2
90.5
814.5
90.14
9l4.2
90.1
92.1
89.9
90. U
88.1
89.7
91.5
92.6
92.5
90.8
77.6
90.5
95.8
95.1
82.5
89.2
77.9
90.9
92.9
91.5
76. 4
60.9

EPE
914.9
96,1
93.7
96.0
95.0
88.2
93.8
9U.1*
96.0
97.0
96.14
96.1
93.1
96.1
96. 4
96.7
91*. 8
92.7
89.8
63.14
93.5
95.0
93.3
86.7
92.3
93.1
96.U
95.8
95. 4
91.6

Total Soluble Phosphorus
mg/1 as P
SS
2.0
2.9
2.7
2.0
4.o
2.6
2.6
2.3
2.6
2.2
2.7
2.6
2.1
2.5
2.14
3.14
2.9
2.7
2.0
2.6
2.2
3.2
2.8
2.7
3.9
2.1
H.I
3.5
^3.3
3.9

WPE
O.K.
o.uo
0.23
0.20
0,46
0.60
0.35
0.214
0.52
0.46
0.56
0.70
0.81
0.25
0.19
0.1)5
0.145
0.55
0.74
0.140
0.20
0.25
1.2
6.61
0.73
0.50
0.25
0.55
1.5
3.3

EPE
0.13
0.13
0.12
0.10
0.14
0.13
0.12
0.11
0.12
0.13
0.12
0.14
0.12
0.10
0.10
0.15
0.20
0.17
0.16
0.13
0.1*4
O.Ik
0.16
0.15
0.20
0.15
0.12
0.13
0.19
0.32

% Removal
WPE
92.0
86.2
91.5
90.0
88T5
76.9
86.5
89.6
8o.O
79.1
79.3
73.1
61.U
90.0
92.1
86.8
84.5
79.6
63.0
814.6
90.9
92.2
57.1
77.14
81.3
76.2
93.9
84.3
5^.5
15.14

EPE
93.5
95.5
95.6
95.0
96.5
95.0
95.4
95.2
95.1*
9U.1
95.6
9U.6
914.3
96.0
95.8
95.6
93.1
93.7
92.0
95.0
93.6
95.6
9U.3
9l4. H
9U. 9
92.9
97.1
96.3
9*4.2
91. 

Total Iron
mg/1 as Fe
SS
10.30
5.98
6.66
8.88
7.60
7.50
8.80
9.06
7.28
9.26
6.44
6.80
7.50
7.84
7.54
7.214
8.314
7.72
9.16
7.70
7.314
7.64
9.114
6.90
7.86
7.56
7. 1C
7.^6
5.5^
10.214

WPE
0.36
0.08
0.33
O.U5
0.38
0.53
0.50
0.26
0.39
0.27
0.29
0.23
0.34
0.39
O.UO
0.31
0.28
0.32
l.OU
0.1*8
0.30
0.24
O.U8
0.92
0.87
0.19
0.31
0.11
0.15
0.53 '

EPE
0.58
0,53
0.80
0.52
0.73
1.90
1.18
0.75
0.59
o.li
0.48
0.51
1.07
0.55
0.1*7
0.56
0.70
1.20
2.05
6.15
1.57
0.72
1.24
3.00
1.22
0.9l4
3.38
3.31
J.55
1.22

% Removal
WPE
96.5
?B,7
95.0
94,9
95,0
92.9
94.3
97.1
94.6
97.1
95.5
96.6
95.5
95.0
94.7
95.7
96.6
95.9
88.6
93.7
95.9
96.9
94.7
86.7
88.9
97.5
95.7
9B.5
97.3
94.8

EPE
94.1*
91.1
88.0
?4,1J
90.4
74.7
86.6
91.7
91.9
95.6
92.5
92.5
85,7
93.0
93.8
92.3
91.6
84.5
77.6
20.1
78.6
90.6
86.4
56.5
84.5
87.6
94.7
95. 81
90.1
88.1

Total Soluble Iron
mg/1 as Fe
SS
0.54
0.50
0,64
0,86
0.65
1.03
0.72
0,27
0.45
0.24
0.49
0.51
0.40
0.54
0.45
0.44
0.6l
0.49
0.45
0,40
0T45
0.28
0.41
0.57
0.43
0.76
O.B5
0.60
0.51
0.56

WPE
0.05
0.05
0.04
0.07
0.08
0.07
0.10
0.03
0.09
D.09
D.10
3.11
).ll
D.08
D.10
3.08
3.07
p. 10
p. 13
0.07
0.17
0.10
0.09
0.08
0.04
0.08
0.10
0.04
0.03
p. 08

EPE
0,10
9i97
Q.67
0.05
0.02
0,14
O.O?
0.09
0.20
0.18
0.21
0.1"
0.09
O.OE
0.1]
0.1'
0.2C
o.of
0.23
0.14
0.09
0.17
0.07
0.04
0.06
0.06
0.06
0.03
0.02
0.14

% Removal
WPE
90.7
Qo.n
93.8
91.9
H7.7
93.2
86.1
88.9
80.0
62.5
79.6
7'U
72.5
85.2
77. 
81. f
88.5
79.6
71.1
82.5
62.2
64.3
73.0
86.0
90.7
89.5
88.2
93.3
94.1
85.7

EPE
81.5
86.0

94.?
96.9
H6.4
87-5
66.7
55.6
25.0
57.1
74.5
77.5
35.2
75.6
70.5
67.2
83.7
48.9
65.0
80.0
39.3
82.9
93.0
86.0
92.1
92.9
95.0
96.1
75.0

o
ro

-------
                                                  PLANT OPERATIONAL DATA
DECEMBER  1970
D
a
t
e
1
2
3
4
5
6
7
8
?
10
11
12
13
lit
1?
16
17
18
!?
20
?1
22
23
2l*
25
26
27
28
29
30
31
D
a
y
n
j.
w
Th
F
Sa
Su
M
T
rf
rh
7*
3.a
Su
1
1
;
Th
;>
Sa
Su
4
n
rf
Th
p
Sa
Su
T
i
r
rh
Total Phosphorus
mg/1 as P
SS
7.9
8.1
8.1
9.0
9.8
7.8
9.9
tf.9
8.5

6.6
7^
6.9
8,8
7.6
6.1
6.5
6,3
6J
6,9
7,6
7.1
7.0
6,6
8.2
6.7
6.6
8.5
7t8
8.7
7.6
WPE
2.0
0.83
1.1
1.6
0.72
0.39
0.95
1.5
0.71
1.2
2.2
0.6U
0.79
3.0
1.9
1.1
1.2
0.94
0.46
0.36
0.68
1.7
1.1
0.96
0.46
0.41
1.1
3.1
2.2
1.6
1.1
EPE
0.50
0.39
0.45
0.69
0.59
0.38
O.Ul
1.0
0.53
2.3
3.9
0.85
1.4
1.1
0.35
0.36
0.30
1.1
1.2
0.50
0.30
0.78
1.2
0.77
0.19
0.21
0.33
0.68
0.49
0.29
0.29
% Removal
WPE
7^.7
89.8
86.4
82.2
92.7
95.0
90.4
83.1
91.6

66.7
91.4
88.6
65.9
75.0
82.0
81.5
85.1
93.1
94.8
91.1
76.1
84.3
85.5
94.4
93.9
83.3
63.5
71.8
81.6
85.5
EPE
93.7
95.2
9^.4
92.3
9^.0
95.1
95.8
88.8
93.8

40.9
88.5
79.7
87.5
95.4
94.1
95.4
82.5
82.1
92.8
96.1
89.0
82,9
88,3
97.7
96.9
95.0
92.0
93.7
96.7
.9.6.2
Total Soluble Phosphorus
mg/1 as P
SS
3fO
2.8
2.5
2,8
3T6
2.6
If.U
3.0
2.9

1.8
2.9
3.2
3.7
2.7
1.9
1.8
1.4
1.7
2.1
2.4
1.9
2.2
2.6
1.1
2.7
2.5
4.2
2.9
2.9
3.7
WPE
L.6
D.59
0.42
Q.44
0,48
0.22
0.82
0.81
0.42
0.76
0.40
0.25
0.57
2.7
1.6
0.81
0.56
0.64
0.22
0.16
0.47
1.1*
0.90
0.65
0.17
0.22
0.93
2.5
1.9
1.4~
0.62
EPE
0.19
0.14
0.16
0.12
0.11
0.12
0,15
0.21
0.22
0.13
0.12
0.12
0.11
0.19
0.16
0.15
0.14
0.08
0.10
0.10
0.18
0.29
0.17
0.17
0.13
0.13
0.17
0.53
0.33
0.17
0.15
% Removal
WPE
46.7
78.9
83.2
84.3
86.7
91.5
81.4
73.0
H5.5

77.8
91.4
82.2
27.0
40.7
~57V4~~
68.9
54.3
87.1
92.4
80.4
26.3
59.1
75.0
84.5
91.9
62.8
40.5
3^.5
51.7
83.2
EPE
93.7
95.0
93.6
95.7
96.9
95.it
96.6
93.0
92.4

93.:
95.9
96.6
"9^.9
94.1
92.1
92.2
94.:
9^.1
95.2
92.5
84.7
92.2
93.5
88.2
95.2
93.2
87.4
88.6
94.1
95.9
Total Iron
mg/1 as Fe
SS
9.60
L0.86
LI. 62
12.50
LI. 6 4
9.52
7.02
9.14
8.22

6.84
5.66
5.00
5.70
6.30
6.68
7.46
6.24
6.30
6.90
6.74
6.96
J-76
5_.^0
6.64
6.06
6.06
5.64
7.68
7.16
4.76
WPE
0.54
0.39
0.77
1.43
0.47
0.27
0.43
0.51
0.47
0.52
1.30
1.07
D.30
0.28
0.39
0.33
0.47
0.31
0.23
0.24
0.20
0.36
0.22
0.35
0.28
3.50
3.39
3.47
3.41
3.23
3.44
EPE
0.94
0.81
1.01
2,4^
1.93
0.78
0.62
2.32
1.43
4.22
L3.72
2.72
4.87
3.45
074T
0.63
0.581
3.07
3.04
.97
-*5-
.53
3.06
t07
,26
.93
.49
).4o
)r47
).38
UiL
% Removal
WPE
94.)
96,4
93, ^
fifi,6
96.0
97,2
93.9
94,4
94.3

81.0
81.1
94.0
95.1
93.8
95.1
93.7
95. C
96.:
96.5
97.0
9^.8
96.2
93.5
95.8
91.7
93.6
91.7
94.7
96.8
90.8
EPE
90.2
92.5
91.3
80.7
83,4
91.8
91.2
74,6
82.6


51.9
2. "5"
39.5
93.5
90.6
92.2
50.8
51.7
85.9
90.4
78.0
46.9
61.7
96.1
84.7
9i.9
92.9
93.9
9^.7
89.7
Total Soluble Iron
mg/1 as Fe
SS
0.68
0.61
0.84
1.28
0.78
0.54
0.80
0.8i*
0.67

0.581
0,68
0,60
0.72
0,51
0.67
Ot4o
0.36
0.33
0,52
0.211
0,39
0.36
0.32
0.35
0.36
0.35
0.58
0.59
0.66
463
WPE
0.12
0.09
0.20
0.14
0.10
0.09
0.11
0.13
0.15
0.15
0.13
0.11
0.12
0.17
0.19
0.27
L0.07
0.09
0.02
0.05
0.05
0.10
O^T4~
OTT4~
0.15
0.33
0.10
0.07
3.14
3.13
3.09
EPE
0.23
0.12
0.17
0.23
0.30
0.30
0.19
0.14
0.23
0.24
0.27
0.21
0.1:
0.15
0.09
0.1:
0.22
o.os
o.os
0,2C
0,0?
0.18
0.09
2*02
f1^
.09
ti.2
-&22
.15
.15
^*o^
% Removal
WPE
8?, 4
Rs.p
76.P
8Q-1
87,?
83,, 3.
86,3,
34.5
77. 6"

77.6
83. ^
80.0
76.4
62.7
59.7
32.5
75.0
93.9
90.4
83.9
74.4
61.1
56.3
57.1
8.3
71.4
07.9
76.3
80.3
tib.6
EPE
66.2
80.3
79.8
82.0
61.5
44.4
76.3
83.3
6^.7

53.4
69.1
78.3
79.2
82.4
80. 6
45. C
75. C
72.7
61.'
74.?
S9 f]
75. r
71.9
57.1
75.0
62.9
84.5
74.6
77.3
92.5
o
U)

-------
                                                PLANT OPERATIONAL DATA
JANUARY
1970
D
a
t
e
1
2
3
I*
5
6
7
y
?
10
11
12
13
11+
1?
16
17
18
19
20
21
22
23
'A
25
2b
27
20
r
30
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
14
T
W
Th
F
ba
bu
M
T
/
Th
F
ba
Iron Addition
to East Plant
Mixed Liquor
Ibs/day






12,000
10,013
1U.781


17.U66
12.U70
13.7U6
15.170
11.9U6


10.382
15.19U
15.762
13.330
8.118


7.526
9.216
6.621+
9.50U
10.212

mg/1






11.5
9.5
1U,3.


17.2
12.2
13.6
16. k
13.0


11.8
17. U
18.0
15.1
9.7


8.8
10.3
6.7
10.5
11. U

Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
91. U
LIU. 3
95.3
93.3
L17.8
L18.7
L21+.6
126.7
123.7
L01.6
93.3
121.9
122.7
121. 1+
111.2
110.5
92.8
80.0
105.7
10U.U
10U.9
106.2
100. U
78.5
67. U
102.3
107.8
L19.3
108.8
107.0
95.0
t>H
WP














T'l
7.0


7.0
7.1
7.0
7.1
7.0
7.3
7.U
7.3
7.1
7.0
7.1
6.8
7.1
EP














6.9
6.9


7.2
7.1
7.0
7.1
7.0
7.2
7.3
7.3
7.1
7.1
6.9
6.9
7.1
Suspended
Solids mg/1
WP
2550
2120
2090
i860
21+00
2730
301+0
2950
3050
2930
2770
2520
2660
2770
25UO
281+0
2830
2720
2130
2200
2300
2UUO
2770
2780
2600
2360
2690
2810
3220
3280
3250
EP
2l+6o
2350
2270
1830
22k)
2670
2650
2770
3200
3260
2870
2710
2820
2920
281+0
2180
I960
2690
2390
2680
2610
2610
2970
2810
2510
2450
2500
2890
3050
3090
3180
SDI
WP
0.69
0.83
0.8U
0.76
0.93
0.92
0.88
0.87
0.86
0.9U
0.92
0.95
0.92
0.92
0.81
0.76
0.73
0.80
0.82
0.9U
0.93
0.89
0.90
0.89
0.9U
0.99
1.11
1.19
1.2k
1.08
1.06
EP
0.82
0.90
0.96
0.86
1.03
0.97
0,88
0.85
0.91
0.93
0.91+
0.95
1.03
0.98
0.96
0.89
0.92
0.99
0.98
0.95
1.03
0.99
0.97
1.01
1.05
1.07
1.07
L.lU
1.21
1.06
1.16
% Total P
WP

2.71


2.69

2.50
2.1+1
2.37
2.53
2.81
2.7B
2.1+7
2.31
2.32
2.23
2.31
2.61
2.65
2.1*0
2.27
2.28
2.28
2.37
2.51
2.1+6
2.31
2.18
12.10
2.11
g. 20
EP

2.6U


2.5^4

2.1+0
2.1+9
2.1.1
2.57
2.75
2.79
2.79
2.77
2.71
2.61+
2.59
2.86
2.96
2.95
2.78
2.76
2.69
2.bb1
2.86
2.92
2.92
2.78
2.57
2.6l
2.65
% Total N
WP

7.20


7.13

6.95
7.10
7.09
7.21
7.12
6.85
0.67
6.77
6.8U
6.77
6.78
6.95
6.78
6.1+3
6.56
6.68
6.77
6.85
6.89
6.71
6.70
6.23
6.23
6.1+9
6.1+9
EP

7.05


7.13

6.82
6.92
6.79
6.71
6.91
6.70
6,1+2
6.26
6.1+0
6.50
6.56
6.58
6.1+3
6.18
6.28
6.21
6.37
6.57
6.50
6.36
6.18
6.05
5.86
6.32
6.01+
% Total Fe
WP

1.65


iiTi

1.65
1.71
^iTl
ii9i
2.21+
2,55
2.21
1.91
1.88
1.79
1.96
2.07
2.27
2.13
1.88
1.96
1.96
2.02
2.33
2.07
2.05
2.05
2.05
1.93
1.99
EP

2.50


2.16

2.21
2.86
3.39
U.12
1+.21
1+.5U
5.05
5.07
5.1*7
5.83
1+.88
5.69
5.61
6.1k
6.31+
6.3U
6.1+2
6.11+
5.94
5.9U
6.00
5.B3
5.30
5.M
5.^7
% Total Ash
WP

23.60


22.87

23.51
23.52
23.30
23.92
21+.95
25.50
2U.ll*
23.56
21+.08
2U.11
2U.10
2U.66
2U.70
2U.OU
23.23
2U.32
23.80
2U.50
21*. 76
2U.5U
2U.61
25. HU
26.15
25.53
25.59
EP

21+.79


23.38

2U.29
25.07
25.33
26. 6U
27. 5U
28.12
28.28
28. UU
28. 9U
29.71
28.36
30.30
30.11
30. 5U
36. 7U
31.39.
30.13
30.06
30.32
30.83
30.81+
36. OU
31.09
30.60
30.1+9
O

-------
PLANT OPERATIONAL DATA
FEBRUARY   1970
D
a
t
e
1
2
3
k
5
6
7
81
9
10
11
12
13
ll+
15
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
D
a
y
Si}
M
T
w
Tti
3f
s.a,
fin
M
T ,
w
Th
F
fift
Su
M
T
w
Th
F
RF|
Su
M
T
W
Th
F
Sa



Iron Addition
to East Plant
Mixed Liquor
Ibs/day

10.703
9.936
8.78U
9.656
10.011


8.520
10,790
l6,5l*8
15.3U7
7.740


7,12U
"8,819
11,307
10,571*
8,354


11.111
10.688
11.263
10.6UO
10.5U1*




^ng/1

11.9
11.3
10.3
11.0
10.9


10.0
12.6
19.5
18.1
Q.I


8.8
10.6
13.6
12.8
9.9


13.2
12.6
13.1*
12.7
12.5




Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
103.8
108.1
105.5
102.2
101*. 8
110.0
87.2
85.9
102.1+
102.5
101.6
101.7
101.9
89.0
82.6
97.5
100.1
100.0
99. 4
101.5
90.3
86.2
100.7
102.0
100.8
100.2
101.0
87.4



tH
WP
T-1
7.1
7.0
6.9
6.9
6.9


7.4
7.1
6.9
7.0


7.2
7.2
7.0
7.1
6.8
7.0


7.2
6.7
6.7
7.0
6.7




EP
7.1
7.2
7.1
7.0
6.9
6.9


7.3
7.0
6.9
7.0


7.1
7.1
6.7
6.9
6.5
7.0


7.4
7.0
6.6
6.7
6t6




Suspended
Solids mg/1
WP
3110
2760
3140
2790
2980
3200
2970
2810
2290
2670
2820
2870
2920
2950
2750
2ll*0
2330
2730
2650
2690
2830
2590
2170
2500
2600
2690
2670
2620



EP
2950
2820
3020
2730
281*0
21*50
3060
3200
2920
2810
2770
3100
3110
2950
2950
2550
2630
2600
2700
2870
3070
2760
2330
21+50
2600
2780
2750
2760



SDI
WP
1.12
1.17
1.06
1.11+
1.13
1.07
l.Ol*
1.08
1.13
1.18
1.1)+
1,16
i.oi*
0.98
1.07
1.17
1.07
1.18
1.09
1.08
1.10
1.08
1.15
1.20
1.15
1.13
1.05
1.08



EP
1.17
1.11
1.08
1.13
1.10
0.91+
0.96
0.96
1.02
1.12
1.08
1.16
1.10
1.10
1.21
1.21
1.18
1.15
1.21+
1.06
1.06
1.17
1.10
1.12
1.2U
1.11+
1.12
1.05



% Total P
WP
2.78
2.27
2.21+
2.17
2.16


2.36
2.37
2.30
2.29
2.21+
2.21*
2.37
2.50
2.51+
2.38
2.31+
2.29
2.31
2.51
2.56
2.5Y
2.35
2.31
2.30
2.33
2.1+9



EP
2.30
2-80
2.75
2.66
2.51+


2.68
2.76
2.67
2.58
2.53
2.1+9
2.61
2.77
2.82
2.77
2.61+
2.5^+
2.55
2.76
2.83
2.5
2.01
2". 66
2.58
2.1+1
2.5*+



% Total N
WP
6,56
6.29
6.36
6,ty
6,51
6,61
6.23
6.78
6.51+
6.1+6
6.1+9
6.61+
6.75
6.85
6.81
6.58
6.33
6.50
6.57
6.56
6.68
6.58
6.36
6.26
6.36
6.58
6.51+
6.67



EP
6.^0
6.01
5.88
5.93
6.01
6.29
6.01
6.1+7
6.35
6.30
6.15
6.2?
6.21
6.33
6.30
6.21
5.98
6.07
6.19
6.12
6.29
6.12
6.00
5.86
5.93
6.11
6.12
6.28



% Total Fe
WP
2.05
1.77
1.79
;,77
lt68
1,71
1.99
1.99
2.02
2.30
2.16
2.05
1.9?
2.05
2.07
2.16
?.16
1.93
1.88
1.85
2.05
2.07
2.16
1.99
1.99
1.93
2.13
2.27



EP
5.30
4.99
5.10
5.05
4.99
4.71
1+.80
4.99
1+.82
1+.99
5.30
5.69
5.6l
5.38
5.35
5.13
5.02
5.02
5.19
5.21+
5.13
1+.91
4.91
5.07
5.13
5.52
5.30
5.66



% Total Ash
WP
26.1+9
26.13
25.36
24.78
24.38


24.91+
24.87
25.04
25.29
25.13
24.97
25.08
25.12
25.42
24.68
24.50
24.52
24.1+8
25.21
25.98
26.33
25.95
25.78
25.78
25.66
26.21



EP
32.32
30.97
30.42
29.81
28.74


28.81
28.97
29.21
29.42
29.75
29.50
29.75
29. 70
29.49
29.20
29.09
28.86
28.61
29.11
29.99
30.20
30.41
30.08
30.30
30.27
30.18




-------
                                                PLANT OPERATIONAL DATA
MARCH   1970
D
a
t
e
1
2
3
1*
5
4
7
H
9
10
11
12
13
1*4
1?
16
17
18
19
20
21
22
23
2*
25
26
27
2t4
29
30
31
D
a.
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
ba
Su
M
T
Iron Addition
to East Plant
Mixed Liquor
Ibs/day

10.976
10.1470
9.726
10.599
11.036


10.370
10.790
11.337
11.180
10.512


1*4.190
13.906
13.195
16.779
1*4.970


13,276
12.790
12 ,71*4
10,7*48



13,052
13.U23
rng/1

12.0
10. *4
10.6
12.0
12.6


11.9
12.5
12.9
12.8
12.3


16. U
16.7
15.7
17.0
15.6


15. 1.
IU.7
1*4.3
11.1



15.3
15.6
Mixed Liouor Return Sludge (Dry Basis)
East
Plant
MOD
8JLJ1
109.6
121.3
110.2
105.9
105.1
89.9
80.0
10)). 8
100.8
105.6
10*4.3
102.3
83.0
78.0
103.7
99.9
100.5
118.3
11*4.7
89. *4
85.2
103. U
10*4.5
106. U
116.0
102.8
90.8
79.5
102.1
102.9
DH
WP

7.1
7.2
7.1
7.0
7-1


7.5
7.0
6,8
6,9
6,9


7.3
7*0
7-1
6.9
7.0


7.3
7.0
7.1
7.0
6.9


7.*4
7.1
EP

7.1
7.1
7.0
6.9
6.9


7.3
7.0
6,8
6,9
6,9


7.2
7.0
7.0
6.8
7.0


7.3
7.1
7.1
7.0
7.0


7. ^
7.0
Suspended
Solids rag/1
WP
2630
2170
2630
2810
2900
2930
2830
2750
2590
2550
2780
281+0
2810
2720
2600
2060
2230
2390
2720
2510
2550
23*40
2180
2370
25^0
2550
25*40
2520
2360
20*40
2200
EP
2,660
2**20
23*40
29UO
2920
2730
2780
2680
2550
2590
2580
2560
2560
2750
2760
2380
2590
2560
2580
2530
2800
2670
2370
21450
2)450
2560
25^0
2520
2570
2200
2390
SDI
WP
1,17
1.25
1.38
,1.37
1.33
1.09
1.02
1.13
1.21
1.23
1.16
Arl5
1.02
0.9*4
1.00
1.12
1.18
1.08
1.09
1.13
1.08
1.05
1.13
1.17
1.2U
1.25
1.10
1.12
1.18
1.21
1.2b
EP
1.12
1.21
l.~*40
1.37
1.39
1.1*4
1.13
1.19
1.19
1.21
1.21
1.06"
1.03
1.03
1.09
1.1*4
1.12
1.07
1.10
1.07
1.07
1.09
1.23
1.1*4
1.1*4
1.17
1.13
1.12
1.2*4
1.18
1.1*4
% Total P
WP
2-53
2.U9
2.20
2.05
2.08
2.15
2.2*4
2.UO
2.1*7
2.39
2.30
2.29
2.27
2.31
2.51
2.1*7
2.31
2.22
2.62
2.06
2.19
2.39
2.1*7
2.33
2.29
2.20
2.20
2.23
2.36
2.35
2.26
EP
2.72
2.78
2.52
2.31
2.32
2.**I
2.55
2.7*+
2.82
2.76
2.68
2.61
2.56
2.58
2.77
2.85
2.83
2.71
2.57
2.U2
2.145
2.69
2.81
2.78
2.70
2.53
2.1*7
2.148
2.63
2.62
2.6*4
% Total N
WP
6.1*7
6.28
5.7*4
5.69
5.97
6.23
6.37
6.57
5.1*6
6.37
6.37
6.56
6.71
6.77
6.77
6.57
6.35
6.36
6.U2
6.29
6.51
6.65
^.W
6.37
6.51
6.32
6.61
^.63
b.75
6.5*4
6.*4l4
EP
6.21
6>Q1
5^*t9
5t38
5.55
5.7**
5.86
5.98
5.97
5.8*4
6.00
6,16
6.21
6.33
6.29
6.23
6.00
6.15
6.28
6.1*4
6.09
6.23
6.12
6.08
6.0**
6.16
"6".28~
6.25
6.33
6.28
6.16
% Total Fe
WP
2.1*7
2.38
2.13
2.10
2.02
1.96
1.93
2.21
2.21
2. 2*4
2.10
1*22,
Ii82
LJM
2.16
2ip_5_
1.88
1.88
1.88
lt^
1.77
1.99
2.02
11.99
^2.05
1.93
1.77
l.bti
1.82
1.85
1.71
EP
5.55
5.35
5.07
ii49
5.30
5.19
5.1*1
i^g^
5,1*1
5.52
5.58
5.58
5.61
5..30
5.1*9
5.147
5.75
5.89
5.1*9
5.92
5.83
6.08
5.92
6.17
6.3*4
5.86
5.02
5.13
*4.96
5.02
5.35
% Total Ash
WP
26.36
25.93
27.36
28.27
21.53.
26.65
27.0)4
2J.28
27.U1
26.63
26.00
25.51
29.16
25.78
26.31
25.96.
25.29
2*4.80
2*4.78
25.69
26.75
26.82
26.79
25.72
25.89
26.21
26.19
26.57
27.0*4
26.*46
25.55
EP
30.13
29.85
31.17
31.80
31.22
30. U2
32.15
32.60
32.70
32.09
31.91
30.68
31.22
30.93
31.25
31.63
31.1*7
31.23
30.26
31.36
32.3*4
32.72
32.76
32.***4
32.27
32.21
32.22
31.39
31.78
31.1*9
31.*40
o
ON

-------
PLANT OPERATIONAL DATA APRIL 1970
D
a
t
e
1
2
3
k
5
6
T
ri
?
10
11
12
13
lU
1?
16
17
18
19
20
21
22
23
24
25
26
27
2ti
29
30
31
D
a.
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th

Iron Addition
to East Plant
Mixed Liquor
Ibs /day-
lS, 664
12.986
14.188


12.853
13.186
13.005
12.824
13.385


12 T 882
13,628
12.583
14.306
14.824


12.432
13.410
13.104
14.016
12.876


10.184
10.234
12.528
12,031

mg/1
15.0
13.6
15.3


14.3
1UJ
lU.2
14.3
14.9


13.1
14.2
13.0
15.2
16.3


13.0
14.it
13.7
15.0
i4.4


10. 4
9.9
12.1
10.2

Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
109.5
114.7
111.5
92^9
97.5
107.6]
108.9
109.9
107.7
107.7
94.3
86.5
117.8
115.3
115.7
113.0
109.3
90.5
109. 4
114.8
111.7
114.8
112.3
107.5
94.0
88. 4
117.6
123.4
12H.3
141.5

t>H
WP
7.2
7.1
7.0
7.0

7.3

7.0
6,9
7.2


7.4
7.2
7.2
7.2
6,8


7.0
7.0
6.8
7.1
6.9



7.0
7.2
T-1

EP
7.0
7.1
7.0
7.0

7.3

7.0
7.0
7.1


7.3
7.2
7.2
7.1
6,7


7.0
6.8
6.9
6-?
6.8



7.0
6.?
6.8

Suspended
Solids rag/1
WP
21*60
2620
2530
2660
2440
1910
2230
2410
2770
2790
2860
2830
2270
2390
2670
2820
2890
2800
2830
2620
27QO
2960
3030
3240
3340
3120
2840
2620
3260
3230

EP
2380
2540
2380
2550
2630
2380
2480

2510
2650
2690
2730
2590
2660
2730
2660
2680
2540
2650
2470
2700
2610
2840
2770
2930
^2820
2810
2790
3140
2970

SDI
WP
1 .25
1.23
1.13
1.09
1.09
1.17
1.14
1.11
1.07
1.04
1.05
1.08
1.09
1.16
1.14
1.08
1.00
0.93
1.10
1.13
1.19
1.13
1.10
I.Ob
1.01
1.05
1.10
1.06
1.08
0.94

EP
1,06
1.13
1.06
1.01
1.07
1.15
1.03
1.08
0.90
0.95
0.85
0.96
0.97
0.92
0.89
0.79
0.81
0.84
0.95
0.96
0.96
0.95
0.91
o.aa
o.ao
0.90
0.95
0,98
0.88
0.73

% Total P
WP
2.16
2.06
2.03
2.16
2.24
2.19
2.15
2.10
2.12
2.12
2.16
2.30
2.22
2.08
2.07
2.07
2.09
2.25
2.37
2.3*1
2.23
2.18
2.13
2.11
2.16
2.33
2.36
2.34
2.23
2.19

EP
2.56
2.41
2.33
2.38
2.51
2.53
2.58
2.50
2.45
2.37
2.39
2.52
2.56
2.47
2.41
2.39
2.34
2.47
2.53
2.55
2.51
2.43
2.38
2.39
2.39
2.51
2.62
2.54
2.58
2.53

% Total N
WP
6,4.6
6^6_3_
6.40
6.65
6.74
6.58
6.58
6,67
6.74
6.82
6.82
6,84
6.50
6.28
6.21
6.65
6.75
6.78
6.46
6.46
6.46
6.56
6.67
6.44
6.74
6.91
6.79
6.65
6.77
6.75

EP
6.32
6.29
6.11
6.26
6.39
6.11
6.12
6.15
6.28
b.32
6.37
6.36
6.07

6.02
6L2JL
6.26
6.25
6.30
6.07
5.98
6.21
6.12
5.94
6.16
6.19
6.32
6.li
6.37
6.39

% Total Fe
WP
^,65
1.51
li**6
1.60
1,82
1,74
1,65
1.51
1.71
1.60
1.77
1.82
1,8,5
;,7^
1.65
1.54
1.49
1,7^
2tl6
2.07
1.88
1.77
1.71
It 32
1.63
It60
1.54
1.51
1.60
1.46

EP
5.55
5.21
5.72
5.78
5.38
5.27
5.61
5.47
5.47
5.80
5.83
5.61
5.55
5.55
5.69
5.58
5.64
6.03
5.75
6.00
5.69
5.55
4.99
5.55
5.^9
5.55
5.^7
5.10
5.27
5.35

% Total Ash
WP
25.54
26.00
26.75
26.61
26.62
26.31
25.80
25.51
25.86
25.65
26.01
26.37
27.11
26. 84
26.28
25.73
25.63
27.12
27.07
27.38
26.77
26.05
25.81
26.01
25.81
25.96
26.10
25.66
25.30
25.60

EP
31.39r
31.50
32.06
32.19
31.86
32.05
32. 43
31.95
31.73
31.28
31.52
31.49
31.84
32.17
32.25
31.78
31.40
33.38
32. Ik
32.42
32. 24
31.79
31.65
31.90
31.43
31.45
31.48
31.05
30.70
30.82


-------
                                                PLANT  OPERATIONAL DATA
MAY   19TO
D
a
t
e
1
2
"3
1*
5
6
7
o1
?
10
11
12
13
14
1?
16
17
18
!?
20
21
22
23
2U
25
26
27
28
29
30
31
D
a
y
F
Sa
Gu
M
T
W
Th
F
Ga
Su
K *
.'t
T
W
Th
F
Sa
Su
M
T
>V
Th
F
Sa
Su
M
r
w
I'h
7
Sa
Su
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
12.750


13.782
14.102
14.102
13.367
10.179


11.811
11.818
13.490
12.782
11.967


13,268
13,206
13.3U8
13.311
11,956


13,160
10,608
12,739
10,858



nig/I
12.3


15.2
15.5
16.7
1^,7
10.U


11.2
10.3
11,4
10.7
9.8


12.1
12.3
12.6
12.6
11.14


12.8
10.5
12.6
10.2



Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
124.4
102.2
83.0
108.5
109.1
101. U
108.7
117.0
108.2
92.3
126.9
136.9
142.5
1143.5
1U7.1
129.14
119.1
131.0
128.9
127.14
126.2
125.5
120.0
119.1
122.9
121.0
121.14
127.9
121.0
115.5
105.5
t>H
WP
6.9


7.1
7.2
7.0
6.8
6.6


7.0
6. J
6,7
6.8
7.0


7.1
6.9
7.0
6.9
7.2


7.5
7.1
7.2
7.1



EP
6.9


7.2
7.1
6,9
6,7
6,6


7.1
6-7
6,8
6.9
7.0


7.1
6.8
7.0
6.8
7.1


7.3
7.1
7.2
7.1



Suspended
Solids rag/1
WP
3300
3180
3170
2810
3000
3050
2970
3350
31J40
2860
2810
301*0
3110
3080
3090
3170
2990
2760
3070
3020
2980
3020
3080
2770
2600
2770
2860
2880
3020
2990
2790
EP
3000
3280
3010
2920
3010
3040
3080
3060
3240
3070
2940
2930
2960
2890
2970
3250
3200
27140
2790
2930
2780
2920
3200
3000
28UO
27*40
2830
2830
2980
3000
2760
SDI
WP
0.86
0.93
0.99
1.05
1.04
1.01
1.03
0.91
0.91
1.09
1.08
1.16
1.24
1.23
1.24
1.17
1.19
1.20
1.12
1.12
1.02


1.02
1.00
0.96
0.91
0.814
0.80
0.71+
0.93
EP
0.59
0.82
0.98
1.08
1.02
0.97
0.77
O.U6
0.69
1.03
0.82
0.98
1.11
Ifll4
1.11
0.93
1.01
1.15
1.08
0.97
0.85


0.97
0.91
0.76
0.64
0.76
0.75
0.76
0.96,
% Total P
WP
2,11*
2.18
2.34
2.48
2.31
2.22
2.13
2.07
2.10
2.1k
2.20
2.07
1.96
1.92
1.89
1.95
2.07
2.10
2.12
2.09
2.09
2.03
2.06

2.17
2.23
2.22
2.23
2.29
2.26
2.27
EP
2.142
2.44
2.5H
2.66
2.67
2.64
2.56
2.149
2.52
2.58
2.64
2.147
2.29
2.25
2.19
2.16
2.214
2.38
2.34
2.30
2.30
2.26
2.31

2.44
2.51
2.47
2.43
2.514
2.46
2.57
% Total N
WP
6J4
6.63
6.85
6.7*4
6.61
6.57
6.67
6.71
6.79
6.44
6.35
6.15
5.91
6.09
6.25
6.30
6.29
5.9k
6.07
6.47
6.65
6.67
6.53

6.56
6.63
6.77
6.85
6.58
6.86
6.81
EP
6.35
6.11
6.33
6.28
6.22
6.15
6.08
6.22
6.26
6.05
6.00
5.79
5.49
5.51
5.69
5.66
5.72
5.72
5.1k
5.93
6.15
6.22
5.97

6.15
5.95
6.36
6.47
6.07
6.50
6.49
% Total Fe
WP
1.U3
1.143
1.47
1,^7
1.U7
1.6l
1.68
l<5.k
1.5k
1.82
1.82
1,96
2.59
2.52
1.82
2.31
M?
1.96
1.75
1.82
1.68
1.89
1.89

1.96
1.89
2.03
2.03
2.31
I.ti9
1.89
EP
5.19
5.16
4.91
5.05
5.12
5.514
5.47
5.61
5.33
5.05
5.05
5.47
5.54
5.75
5.89
?t^
5.26
5.40
4.84
5.33
5.47
5.514
5.68

5.26
5.514
5.40
5.26
5.26
5.5U
4.70
% Total Ash
WP
24.63
26.18
26.63
26.83
26.16
25.60
25.61
25.41
25.92
28.42
28.49
29.25
31.31
30.96
30.60
30.32
30.44
30.31
29.24
28.44
27.83
27.23
28.06

28.63
27.88
27.50
26.5U
27.72
26.62
27.78
EP
30.72
11 . nH
31.46
31.86
31.91
31.76
31.94
31.76
31.83
33.26
33.78
34.46
35.77
36.13
35.63
35.12
35.08
35.52
34.07
33.11
32.41
31.00
32.98

32.64
32.52
31.88
30 . 59
32.56
30.26
31.13
o
CD

-------
6
VO

D
a
t
e
1
2
3
k
5
6
7
o1
9
10
11
12
13
14
15
16
IT
18
19
20
21
22
23
2l*
25
2^
27
28
29
30
31
D
a
y
M
T
W
Til
F
fin
fiu
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T

PLANT OPERATIONAL DATA JUNE 1970
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
12_,312
13.628
12.701
14.136
7_.100
5.400
4.666
7T862
9,729
9,976
9,313
6,897
4.124
3.629
9,21*1
7,272
10,847
9,364
7,898
3,780
2,430
8,185
9,65
Q,^80
8.843
6.810
4.180
3.888
10.588
8.585

mg/1
11.8
12.0
10.8
12.U
6.6
5.1
4.3
7-Q_
8.4
8.4
7.8
5.5
^5.6
3.4
8.2
6.3
9.0
7.8
6.8
3,6
2.8
7.3
8.5
'8.4
7.8
5.8
4.5
U.8
9.7
7.7

Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
138.7
135.6
141.4
136.7
129.5
126,3
116.2
134.5
139.0
142.0
142.6
151.7
139.0
127.7
13U.8
137.8
1U5.2
143.7
138.3
125.6
105.9
134.7
136.3
133.9
135.2
139.8
111.0
97.0
130. 
13U.5

uH
WP
7.1*
7.1
7.3
7.2
7.2


7.3
7.3
7.1
7.1
7.1


7.U
7.1
7.1
7.1
7.3


7.5
7.3
7.2
7.3
7.3


7.5
7.1

EP
7.0
6.9
7.3
7.2
7.2


7.2
7.1
7.0
7.1
7.1


7.1
7.1
7.1
7.1



7.3
7.1
Y.I
7.2
7.1


7.2
7.0

Suspended
Solids rafi/1
WP
2580
2480
2520
2750
2820
2810
2730
2510
2730
2890
2800
2620
2530
2440
2280
2360
2340
2310
2570
2430
2370
2300
2440
2370
2500
2400
2780
2440
2430
2620

EP
2610
2290
2450
2770
2590
2930
2810
2680
2630
2770
2580
2720
2630
2690
2610
2560
2530
2420
2520
2540
2400
2340
2400
2480
2740
2580
2870
2820
2650
2510

SDI
WP
0.99
1.00
1.11
1.10
1.01
0.98
1.05
1.05
0.95
0.76
0.79
0T64
0.75
0.89
0.92
0.87
0.72
0.79
0.73
0.69
0.72
0.80
0.74
0.65
0.48
0.55
0.55
0.71
0.81
0.73

EP
0.98
0.99
1.06
1.05
1.00
0.90
0.98
1.01
1.04
0.84
0.82
0.59
0.81
0.76
0.81
O.bO
0.66
0.75
0.72
O.bfa
O.Y3
6. Ob
0.01
O.Y2
O.bl
o.by
O.Y1*
u.yo
i.oY
I.Ob

% Total P
WP
2.25
2.27
2.10
2.10
2.10
2.11
2.16
2.23
2.19
2.16
2.18
2.23
2.15
2.3^
2.13
2.20
2.06
2.01
2.09
2.19
2.28
2.36
2.16
2.11
2.11
2.12
2.06
2.23
2.30
2.30

EP
2.51
2,44
2.36
2.24
2.24
2.23
2.37
2.51
2.53
2.49
2.47
2.41
2.^5
2,36
2.49
2,5lj
2.45
2.3
2.40
2.47
2.6a
2.6
2.65
2.52
2.5:

2.4^
2.66
2.8l4
% Total N
WP
6.42
b.lb
6.14
6,33
6.49
6.57
6.6fc
6.67
6.5t
6.6C
6,84
6,75
6.85
6.71
6.46
6.50
6.6C
6.7C
6.73
6.6J
6.63
6.5^4
6.58
6.6
6.79
6.89
6.7C
6.75
6.72
2.90| 6.75
1
EP
6.14
5.77
5^.93
6.00
6.00
6.25
6.22
6.15
6.12
6^.25
6.22
6.^6
6.P-3
6.?l
6.11
6.11
6.2t
6.25
6.32
6.22
6.07
5.9C
6.11
6. IS
6|?
6,36
6.29
6,2^
6.04
5.86

% Total Fe
WP
1.89
2.17
2.10
1,96
2.52
1.89
1.75
1.75
1.6l
;.^7
1,61
1,^7
l,
-------
PLANT OPERATIONAL DATA
JULY   1970
D
a
t
e
1
2
-
C
t
S
6
7
81
?
10
11
12
13
li
1?
16
17
ib
l?
20
21
22
23
24
25
26
27
2ti
29
30
31
D
a
y
w
i'h
F
3a
JU
:-1
r
,y
tti
J1
pa
?u.
4
T
if
2ft
T
3a
Su
J
l
V
rh
-
Sa
bu
1
1

h

Iron Addition
to East Plant
Mixed Liquor
Ibs/day
9,353
8.1430
6.002
5.703
5.233
0.595
9.193
b.1+33
9.929
6.1+12


7.996
9.073
0.208
8.266
5.831
4.018
3.953
4.711

8.138
9.417
6.176
5,590
5,735
8,229
7,972
8,989
8,159
8.31+2
rag/1
8.3
7.6
6.5
7.2
7.1
8.1+
7.9
7.1*
8.6
5.5


6.5
7.8
7.2
7.2
^,9
3.8
3.8
4.1+

7.1+
L^.U
5.5
5.5
6.3
7.1
6.7
7.7
6.8
7.0
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
135.0
130.1+
12^.6
95.9
00.6
123.0
11+0.3
137.2
138. S
138.7
122.7
112.8
11+7.7
139.3
136.3
137.0
11+3.6
125.1+
123.7
127.8
131.0
131.9
131+. 7
131+. 7
122.8
108.8
138.9
11+3.1
140.3
11+3.3
11+2.9
t>H
WP
7.1
7.0
7.1


7.1+
7.3
7.2
7.1
7.2


7.3
7.3
7.1
7.2
7.0


7.2






6.8
7.0
7.0
T-1
7.0
EP
7.0
7.0
7.0


7.0
7.0
7.0
6.9
6.9


6.9
7.0
6.7
6.9
7.0


6.9






6.J
7.0
6.9
6.9
7.1
Suspended
Solids mg/1
WP
2590
2610
2700
2950
2780
2710
2850
2910
3100
3130
2950
2770
21+50
21+1+0
21+90
2690
2850
281+0
251+0
2330
2130
2210
2U70
2610
2550
21+50
2080
2250
21+20
21+80
2690
EP
2580
2400_j
21+70
2570
2680
2680
281+0
3010
3080
321+0
3130
2870
2650
2890
261+0
2700
2690
2760
2330
2190
2230
21+60
2510
2670
2710
2U80
2150
2260
2270
2320
2680
SDI
WP
0.68
0.63
0.51
0.51
0.75
0.81+
0.78
0.06
0.61+
0.65
0.76
0.86
1.01
1.01
1.01
0.92
0.86
0.89
1.01+
1.06
1.02
0.89
0.81
0.76
0.92
0.96
1.03
1.03
0.98
1.05
1.01+
EP
1.03
0.92
0.81+
0.87
1.10
1.21+
1.22
1.17
1.12
1.07
1.12
1.23
1.381
1.32
1.21
1.22
1.11
1.13
1.15
1.16
1.11+
1.13
0.99
1.00
1.02
1.08
0.98
1.27
1.09
1.08
1.15
% Total P
WP
2.31
2.29
2.31+
2.1+2
2.53
2.09
2.75
2.1+1
2.1*1
2.1+1
2.44
2.56
2,58
2.1+5
2.31
2.33
2.35
2.33
2.1+U
2.1+0
2.37
2.25
2.32
2.25
2.35
2.51
^ 1+6
2. iff
2.25
"?,16
[?.20
EP
2.93
2.91+
2.92
2.91
3.02
3.21
3.21+
3.01
2.96
2.9U
2.95
3.ll
3.19
3.10
2.88
2.79
2.79
2.60
2.71+
2.83
2.85
2.71+
2.65
2.61+
2.71
2.92
2.95
2.Jk
2.63
2.1+7
2.1+3
% Total N
WP
6.85
6.86
6.96
7.05
6.81
6.7!+
6.1+1+
6.1+2
6.51+
6.63
6.88
6.58
6.70
6.51+
6.1U
6.1+3
6.65
6.70
6.70
6.1+3
6.51
6.63
6.60
6.92
6.74
6.67
6.51+
6.1+2
6.57
6.1+7
6.78
EP
5.9U
6.26
6.23
6.25
6.00
5,81+
5.62
5.71*
5.77
5.81
6.05
5.77
5.67
5.67
5.59
5.90
5.93
6.12
6.01+
5.91
6.02
5.91
6.28
6.1+2
6.25
6.16
6.02
6.01
6.15
6.32
6.28
% Total Fe
WP
1.61
1,68
1.68
1.75
1.75
;f8?
1,89
1.75
1.61
Ii75
1,09
2.17
2.03
2.03
1.89
1.89
1.75
1.89
1.89
2\03
1.B9
1.75
l.'/5
1.75
1.75
1.89
2.03
2.03
1.75
1.68
1.89
EP
1+.98
5.12
1+.98
5.26
5.1+0
5.60
5.51+
5.26
1+.98
1+.98
5.26
5.1+0
5.12
1+.98
1+.70
1+.70
1+.70
1+.56
1+.70
1+.1+2
1+.1+2
l+.OO
3.85
1+.11+
i+.OO
1+.56
4.75
4.56
it. 11+
1+.H+
4.42~
% Total Ash
WP
26.13
25.59
25.57
26.00
26.13
27.91
27.68
27.92
27.90
28.05
28.21
28.72
28.63
28.79
29.81
29.1+8
28.63
29.21
29.54
29.61
28.31+
27.38
27.77
26.66
27.21+
27.44
27.37
27.04
26.94
26.51
27.13
EP
32.14.
31.58
31.30
31.41+
31.55
33.89
34.20
33.76
33.27
33.57
33.79
34.08
35.09
35.16
35.65
35.42
34.09
33.86
34.02
33.85
32.90
31.51
30.53
30.57
31.26
32.06
32.43
31.1+7
31.43
29.99
30.67

-------
                                               PLANT OPERATIONAL DATA
                                                                                       AUGUST
1970
D
a
t
e
1
2
3
4
5
6
T
ri
9
10
11
12
13
11+
1?
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
D
a
y
tla
bU
M
'!'
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
*'
Sa
Su
M
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
4,15**
5,069
8.644
9.207
9.480
9.873
6r2T5
UT808
5T056
8r175
7,503
8,712
8,758
6.85^
5t800
4,064
8.986
10.467
9.142
9.184
6.361
4.210
2. it 19
9.966
8.528
8.838
8.404
6.114
5.887
4.859
7.726
mg/1
U.I
6.1
7.8
8.5
8.7
9.1
5.7
5.3
6.3
7.5
6.7
7.8
7.8
6.0
6.0
U. 9
8.2
9.0
8.0
8.5
5.9
4.5
3.2
9.3
7.9
8.2
7.6
5.5
6.1
5.7
7.3
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
121.1
100.3
132.9
129.3
130.3
130.1
132.2
107.8
95.6
131.3
133.7
133.7
135.3
137.5
115.0
99.1
132.1
138.7
136.9
129.3
129.7
111.1
92.0
128.9
129. 1*
129.2
132.31
134.3
116.5
102.3
126.3
rH
WP

6,9

6.9
6,9
6.7
6,9

6.8
6.8
6.8
7.0
7-fl


6,9
7.1
7.0
6,9
7.0
7.0

7.1
7.1
7.1
7.0




7.2
EP

6,9

6.8
6.8
6.9
6.9

6.8
6.8
6.7
6.9
6.8


7.0

6,8
7.0
7.0
6,9

6.9
6.9
6.8
6.9




6.9
Suspended
Solids rag/1
WP
2710
2500
2310
2190
2470
2730
2870
2810
2510
2210
2300
2510
2630
2900
2U90
2160
1810
1980
1930
2290
2610
2260
2070
1430
1680
2220
2^90
2360
21*90
2210
2070
EP
2790
2590
2 U20
2580
2760
2930
3230
3140
2920
2700
2680
2630
2660
2810
2770
2760
2520
2520
2U20
2370
2760
2380
22UO
2080
2130
2300
2420
2410
2780
2360
2200
SDI
WP
1.07
1.09
1.08
1.10
0.99
0.91*
0.93
0.96
1.10
1.03
1.15
1.09
1.05
1.03
1.11
1.01*
1.23
1.19
1.06
1.08
0.88
0.90
1.06
1.27
1.39
1.11
0.96
0.94
0.95
1.02
1.12
EP
1,16
1.13
iiiA
1.09
0.99
1.05.
1.19
1.12
1.1*0
1.20
1.29
1.31
1.26
1.28
1.26
1.26
1.1*1
1.39
1.35
1.28
1.23
1.20
1.35
1.50
1.34
1.13
0.99
1.08
1.01
1.15
1.19
% Total P
WP
2.27
2.1*1*
2.1*7
2.1*0
2.30
2.37
2.28
2.29
2.1*7
2.80
2.43
2.35
2.37
2.32
2.1*9
2.67
2.69
2.1*1
2.27
2.37
2.40
2.53
2.81
2.69
2.30
2.17
2.22
2.17
2.20
2.52
2.64
EP
2.4l*
2.65
2.69
2.68
2.6l
2.1*3
2.52
2.61
2.81
2.98
2.91
2.85
2.58
2.68
2.74
2.91
3.02
2.90
2.59
2.58
2.55
2.65
2.94
2.93
2.89
2.68
2.50
2.51
2.52
2.66
2.82
% Total N
WP
6.kP
6.1*4
6.23
6.22
6.61*
6.50
6.7!*
6.79
6_^IO_
6,1*7
6,51*
6,56;
^,5,1
6,8?
6t82
6,61
6,U6
6.36
6.1*2
6.60
6.75
6.88
6.95
6.67
6>.6l
iM59
6.99
6.98
6.82
6.71
6.51
EP
6,08
6.05
5.94
6.02
6.09
6.37
6.30
6.23
6.07
5.97
5.88
6.00
\^LL
6.29
6.29
6.14
5,88
5.98
5.76
6,18
6.29
5.98
6.30
6.08
6". 09
6.29
6.^2
'6730
6.36
(T.12
5.91
% Total Fe
WP
1.96
1.89
2.03
2.17
1.75
2.87
1.89
1.75
1.89
2.03
I,-, 7^
1.8?
1.75
1-75
1,96
2.03
2.17
2.17
2.03
2.17
2.17
1.89
2.17
2.03
1.61
1.47
1.75
1.61
1.6 a
1.59
1.89
EP
4.56
4.98
5.26
4.98
4.81*
4.28
4.84
4.98
5.1+0
5.68
JLL26_
5.19
4.98
5f12
5.33
5.54
5.54
5.54
4.98
5.12
5.12
4.58
5.26
5.33
5.12
4.98
U.14
4.75
4.70
5.19
T7^*7
% Total Ash
WP
29.00
29.19
29.27
29.80
27.30
28.1*6
26.69
26.3.7
27.2,1
27.85
26.39
p6. .16.
?6.20
26.05
26.78
27.78
27.37
26.33
26.00
26.27
26.20
26.05
26. 7
26.41*
24.97
24. 3
24. 8j
21*. 69
26.27
21. 9J
27. 9
EP
32.27
33. 0
-------
                                                 PLANT OPERATIONAL DATA
SEPTEMBER   19TO
D
a
t
e
1
2
3
4
5
6
1
8
9
10
11
12
13
Ik
1?
l6
17
18
!?
20
21
22
23
2k
25
2*3
27
2ti
29
30
31
D
a
y
T
W
Th
F
Sa
Su
14
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W

Iron Addition
to East Plant
Mixed Liquor
Iba/day
8,035
6,968
7.934
8.405
8.828
10,206
9.331
6.39k
7.603
7.296
8.944
6.055
6.178
7.022
8,U82
7.085
7.111*
7,020
8,190
8.100
7.771*
7,960
6.392
4,951+
4,118
3,966
6.579
11^610
7,525
6,739

ag/1
7.5
6.0
7.1
7.3
9.8
9. ^
9^
5.8
6.5
8.7
7.7
"5pJ
6.2
5.8
7.1
5.7
6.0
6.0
8.2
8.9
6.5
6.8
5.1
'k.O
3.1
3.6
7.0
10.1*
6.7
6.0

Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
127.7
135.1
134.8
137.6
108.1
130.3
118.8
131.9
141.1
100.1
139.7
127. k
119.1*
1U5.5
142.3
150.0
141.3
139.3
119.2
109.2
11+2.3
ll*0.1
11+9.1
150.0
159.7
131.1
112.7
133.9
131*. 6
131+. 6

T>H
WP
7.2
7.1
Y.I
Y.>





7.1
7.1

7.1
7.0
7.1
7.3

7.4



7.2
7.3
7.2
7.2


T.3
7.0
7.1

EP
6.9
6.9
7.0
7.3





7.2
6.9

61.?
6.9
6.9
7.2

7.2



7.0
7.2
7.0
7.0


7.0
6.9
6.9

Suspended
Solids rag/1
WP
2220
2390
2310
2360
2l*80
2030
1810
1780
2310
2500
2650
2550
21*20
2010
211*0
2250
2370
2260
21*80
L950
L780
>130
21+00
1920
201+0
2090
2100
191+0
2130
21*10

EP
2^10
2440
2260
2280
2500
21*20
21*70
221*0
2320
2500
2550
2510
2520
21*1*0
2380
2370
2380
21+70
261+0
2410
2240
2480
2840
2570
2650
2570
2^20
21 1*0
??10
2360

SDI
WP
115
1.09
1.02
1.03
0.91
1.06
1.15
1.31+
1.21
1.15
1.03
0.98
0.99
1.00
1.05
0.98
0.99
0.95
1.01
0.97
0.91
0.89
0.77
0.86
0.82
0.83
0.82
0.85
0.93
0.88

EP
1.26
1.19
1.11
1.21
1.13
1.29
1.1*0
1.33
1.33
1.15
1.16
1.08
1.17
1.05
1.1?
1.26
1.12
1.06
1.12
1.12
1.12
1.19
1.10
1.13
1.16
1.16
1.27
1.29
1.31
1.13

% Total P
WP
2.U1
2.32
2.23
2.18
2.1+0
2.61+
2.55
2.1*9
2.27
2.22
2.1?
2.30
2.1*1
2.1+5
2.33
2.50
2.16
2.08
2.21
2.1+6
2.12
2.30
2.16
2.10
2.03
2.21
2.1*6
2.1+2
2.33
2.22

EP
2.71
2.58
2.51
2.47
2.61
2.84
2.91+
2,88
2.65
2.52
2.1+6
2.1+1*
2.59
2.71
2.62
2.12
2.1+0
2.1+2
2.50
2.71
2.1*7
2.73
2.58
2.1+1
2.37
2.1+8
2.69
2.79
2.71
2.63

% Total N
WP
6.5.1
6,68
6.70
6,7^-
6.57
6,5.6.
6.19
6,16
6.30
6,1+7
6.63
6.71
6,, 6.1
6.61
6.57
6.39
6,1+7
6,86
6.88
6.88
6.77
6.1+6
6.82
6.68
6.74
6.7!+
6.74
6.60
6.57
6.70

EP
6. OU
6.19
6.05
,01
5.87
5.97
5.27
5.41
5.80
5.97
6.11
6.15
6.02
6.08
5.95
5.98
5.91
6.23
6.21
6.16
6.01
6.08
6.25
6,18
6.14
6.22
6.00
5.94
5.90
6.21

% Total Fe
WP
1,6?
1.62
1.62
1J6
1.J6
1.90
2.18
2,04
2.04
1.90
1.76
1.76
1.90
1.90
1.83
1.761
1.76!
1.761
1.82
!.9,7
1.90
1.76
1.90
1.69
1.69
1.97
2.04
2.04
1.90
1.76

EP 1
4.99
4.64
4.36
4.57
4.78
5.69
6.1+0
6.12
5.55
5.13
4.85
4.78
5.27
5.69
5.20
5.20
4.92
4.85
4.85
5.27
5.62
5.27
4.85
5.55
5.13
4.43
4.71
5.20
4.99
4.57

% Total Ash
WP
26.48
25.70
26.26
26.22
26.81
27.82
30.09
28.65
27.24
26.68
26.17
26.17
26 82
26.28
26.80
26.61
26.60
26. 1Q
25.82
25.95
25.77
25.12
24.97
26.97
27.01
27.47
27.95
27.29
26.37
25.61

EP
31.20 ,
30.17
30.66
30.81
31.39
33.13
36.47
35.18
32.79
32.20
30.98
30.80
31.98
31.83
32.01
32.19
31.47
31.58
31.00
31.54
32.06
31.05
30.19
31.30
31.46
31.65
32.17
32.30
31.30
30.01+

ro

-------
                                                PLANT OPERATIONAL DATA
OCTOBER   1970
D
a
t
e
1
2
3
1*
?
6
7
tJ
9
10
11
12
13
14
1?
16
17
18
19
20
21
??
23
2k
25
24
27
2B
29
30
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
6,b53:
7,109
6.183
8.191
8.690
5.792
9.384
4.765
7.464
6.614
12.91+0
11.303
8.909
5.343
6.270
7.486
2.776
2.844
6.892
6.859
4.987
2.381
5.741
3.312
H.752
9.000
5.640
6.291
7.137
912
6.040
mg/1
5.9
6.2
6.9
10.0
7.9
5.0
8.0
4.0
6.6
6.9
14.7
10.3
8.0
5.0
5.8
7.3
3.2
3.5
6.6
6.2
4.6
2.3
5.2
3.7
6.5
9.1
5.0
5.1*
6.7
0.8
6.2
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOO
135.2
138.0
107.^
98.0
131.6
138.3
140.0
141.2
135.2
115.6
105.3
131.7
133.6
127.2
130.5
123.0
103.8
96.8
124.3
133.0
131.14
126.9
131.14
107.1
87.7
119.2
135.6
127.2
128.5
136.9
116. a
PH
WP
7.0
7.2
7.1

7.2
7.0
7.1
7.1
7.1


7.3
7.2
7.3
7.1
7.2
7.0
7.1
7.3
7.1
7.0
7.0
7.0


7.2
7.0
7.1
7-1
7.0

EP

-------
PLANT OPERATIONAL DATA NOVEMBER 1970
D
a
t
e
1
2
T
J4
5
6
7
a1
9
10
11
12
13
11+
1?
16
17
18
!?
20
21
22
23
2*4
25
26
27
28
29
30
31
D
&
y
Su
M
iji
iJ
Th
F
Sa
Su
M
T
W
Th
7
Sa
Su
M
T
W
Th
I*
Sa
Su
v!
T
W
Th
i1
Sa
Gu
M

Iron Addition
to East Plant
Mixed Lijjuor
Ibs/day
1+.351
11.1+1+8
8,813
11.225
11.31+0
6.500
5.590
1+.1+32
6.0U8
7.839
6.293
10.831+
7.680
5.558
8.1457
11.532
5.1+21
7.880
8.258
6.21+0
2.871
3.511+
7.711
5.913
8.837
2,997
2.07U
2.600
3.370
7.77U

m/l
5.2
10.5
7.6
9.5
9.7
5.7
5.8
5,0
5.2
7.0
5.7
9.9
7.0
5.1+
9.3
10.2
M
6,9
6.6
5.0
2.8
1+.2
7.2
5.1+
7.8
3.2
2.0
3.0
u.o
7.2

Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
100.3
130.2
138.5
11+2.0
139.8
137.2
111+.6
106.6
138.8
131+. 9
133.3
130.8
130.8
123.0
108.5
135.9
138.1
136.2
11+9.0
11+8. 1*
120.9
100.3
129.3
132.9
135.9
111.3
121*. 9
101+.9
100.8
128.9

ott
WP

7.2


7.1
7.0


7.2
7.2

7.1
7.0
7.1

7.2

7.0
6.9
7.0


7.1
7.2
7.2

7.3


7.1*

EP

7,0


7.0
6,9


7.0
7.0

6,9
6,9
1.1

7.1

7.0
6.9
7.0


6.9
7.0
7.1

7.2


7.1

Suspended
Solids mg/1
WP
2520
2220
2680
2U70
2800
3080
2890
2630
2360
2810
2830
3010
3150
3010
2920
2850
3010
3210
3200
2900
2960
2880
2710
2860
2860
3030
2610
2560
2U80
2330

EP
31 7Q
2660
2680
2510
2650
3010
3090
3060
2680
2770
2930
2930
2870
2960
3080
2880
2930
3190
3290
3120
3UOO
3260
3160
3070
3030
3260
3020

2920
2710

SDI
WP
1.12
1.03
0.98
1.01
0.95
1.05
0.91+
I. Ok
0.9k
1.10
1.01*.
0.92
0.77
0.76
0.90
0.91
0.78
0.76
0.55
0.76
1.06
0.07
0.99
0.92
0.82
0.75
0.87
1.00
0.91+
1.05

EP
1 .19
1.27
1.28
1.25
1.12
1.19
1.12
1.20
1.19
1.20
1.18
1.15
1.03
1.01+
1.01
1.01+
1.18
1.00
0.98
1.06
1.2U
1.06
1.13
1.13
1.05
i.oT
i.it
1.13
1.213
1.29

% Total P
WP
2.1+6
2.58
2.36
2.30
2.15
2.15
2.25
2.1+7
2.1+5
2.33
2.20
2.09
2.1U
2.17
2.37
2.1+6
2.31+
2.26
2.23
2.20
2.21+
2.1+1
2.1+3
2.20
2.16
2.31
2.1+0
2.31+
2.52
2.kQ

EP
2.90
2.97
2.7U
2.62
2.51+
2.52
2.1+7
2.62
2.70
2.60
2.53
2.1+7
2.^8
2.1+0
2.56
2.67
2.58
2.51+
2.1+9
2.1+3
2.1+6
2.57
2.67
2.61
2.55
2.58
2.68

2.95
2.99

% Total N
WP
6,81+
6.77
6.6J
6.6J
6.68
6.7*+
6.98
6,88
6.70
6.53
6.68
6t78
6.33
7.00
7.03
6,98
6.79
6.88
6.70
6.77
6.91
6.93
6.81
6.72
6.95
6.99
7.09
7.06
7.03
6.93

EP n
6,36
6.05
6.12
6,18
6.09
6.30
6.35
6,3.6
6,18
6.16
6.22
6,M
6,13.
6,1+9
6,1+1+
6,3.5,
6.29
6.1+2
6.30
6.30
6,1+0
6.1+2
6.32
5.88
6.51
6.1+6
6.51

6.35
6.36

% Total Fe
WP
1.90
1.83
1.83
1.83
1.83
1.90
1.90
1.97
2.25
1.83
1.97
1.B3
1.69
1.69
1.83
1.76
1.83
1.76
1.90
1.97
1.97
2.01+
2.11
1.97
1.97
1.83
1.83
1.83
2.25
1.83

EP
1+.57
1+.92
1+.85
It. 71
1+.61+
1+.71
1+.S7
I+.9?
1+.92
1+.85
1+.79
1+.51
l+.ll
1+.65
5.07
5.35
1+.93
1+.86
it. 57
1+.72
1+.86
1+.79
1+.93
1+.72
U.37
it.51
U.16

It. 65
1+.65

% Total Ash
WP
25.1+6
25.33
21+.66
21+.1+5
21+.27
2U.38
21+.79
25.51
25.52
25.1+1+
25.08
?U.06
21+.58
2U.52
21+.73
21+.80
2l.32
21+.1+0
21+.9J+
25.1+9
25.69
25.75
25.1+9
21+.37
23.91
21+.21+
21+.26
23.93
2*1.23
23.77

EP
30.90i
31 . 36
30.1+1+
29.53
29.25
29.1+6
28.92
29.63
30.30
29.55
29.29
29.08
28.01+
28.90
28.91+
29.61+
28t78
28.69
29.12
29.36
29.61
29.73
29.99
29.15
_27_.98
28.66
28.61

29.08
29.11


-------
                                                PLANT OPERATIONAL DATA
DECEMBER   1970
D
a
t
e
1
2
3
1+
5
6
7
A
9
10
11
12
13
11+
15
16
17
18
19
20
21
22
23
2k
25
261
27
26
29
30
31
D
a
y
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
6,566
10,268
11,035
8.052
6.018
6.739
10.088
8.082
11.621+
13.001
11.957
10.603
6.1+86
1+.695
5.01+5
13.818
9.525
8.71+8
7.1+52
1+.061
9.698
7.920
7.661
6.61+6
5.586
5.U90
1+.980
5.760i
7.398
6.662
6.365
rmg/l
6.0
9 J.
9t^
7.3
5.9
7.1
8.8
7.1
10. 1+
10.7
10.1
9.3
6,1?
^i?
1+.1+
11.6
8.0
7.0
7.2
i+,i+
8i7
6.8
7.0
'6.9
7.3
7.0
6.0
5.6
7.0
6.1+
6.9
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
130.6
136.0
lUO.O
132.U
121.3
113.9
137.0
136.1
13U.2
11+6.1
1U2.U
136.7
120.0
131.1+
137. 1+
11+3.2
11+2.3
150.3
123.7
110.6
133. 1+
139.0
132.0
11U.7
91. 1+
93.5
98.7
121+.3
126. 1+
12k .3
111.2
T>H
WP
7.2
7.1
7.1
7.0


7.3
7.2
7.2
7.1
7.0


7.1
7.2
7.0

6,8


6.9
6.9
6.9
6.9



T-1



EP
7.1
7.0
7.0
7.0


7.1
7.0
7.1
7.1
7.0


7.0
7.2
6.9

6.8


6.9
b.9
6.9
b.9



74



Suspended
Solids rag/1
WP
2500
261+0
2610
2690
2760
2530
21+80
2560
2590
2780
2690
2900
2220
2170
2330
2500
2610
2670
2550
2390
2320
21+10
21+80
2770
2570
21+20
2170
2020
21+10
2560
291+0
EP
2680
2800
271+0
291+0
291+0
2810
2680
2670
2830
291+0
281+0
2520
2720
2690
2800
2720
2700
2650
2670
2750
2710
2770
281+0
3000
2930
2760
21+20
2310
2600
2760
2970
SDI
WP
0.83
0.68
0.65
0.58
0.5U
0.73
0.77
0.78
0.76
0.61
0.76
0.82
O.B5
0.95
0.86
0.89
0.91
0.89
0.9*+
0.92
0.95
0.99
0.9b
0.03
0.85
0.87
0.93
1.00
0.97
0.90
0.87
EP
1.13
1.06
0.93
0.91+
0.81
0.88
0.91
0.85
0.77
0.1+7
0.72
0.73
0.79
0.93
0.87
0.91
0.91
0.91
0.9!+
0.90
0.9!+
0.90
o.ay
0.76
0.87
0.90
1.02
1.06
1.00
1.03
1.09
% Total P
WP
2.21
2.12
2.05
2.05
2.06
2.19
2.27
2.15
2.12
2.10
2.0U
2.07
2.25
2.29
2.08
2.00
1.92
1.95
1.99
2.13
2T16
2.08
1.98
2.02
2.11
2.26
2.33
2.26
2.06
2.00
2.01
EP
2.78
2.59
2.1+7
2.39
2.39
2.50
2.61
2.53
2.1+5
2.UO
2.33
?.3l+
2.1+1
2.53
2.1+6
2.37
2.28
2.20
2.17
2.31
2.1+0
2.31+
2.35
2.27
2.37
2.1+8
2.61
2.66
2.1+9
2.36
2.31
% Total N
WP
6.79
6.92
6.86
6.99
7. lit
7.26
7.09
7.03
6.63
7.03
6.98
7.06
7.07
6.98
6.53
6.81+
6.70
6.92
7.05
7.10
6.86
6.71
6.7!+
6.81+
7.07
7.13
6.96
5.60
6.60
6.70
6.75
EP
6.28
6.36
6.57
6.1+1+
6.63
6.58
6.12
6.1+2
6.1+7
6.60
6.1+6
6.1+6
6.1+1+
6.32
6.1+0
6.1+1+
6.35
6.1+1+
6.58
6.56
6.1+6
6.1+2
6.581
6.65
6.67
6.58
6.50
6.29
6.29
6.37
b.57
% Total Fe
WP
1.83
1.62
i.bb
1.62
1.62
1.76
1.76
1.76
1.62
1.62
1.83
1.12
1T69
1.69
1.97
1,1+1
1.69
1.62
1.62
1.90
1.97
1.83
1.76
1J6
1.76
1.90
2.01+
2.01+
1.76
1.62
1.62
EP
1+.09
1+.16
1+.16
1+.1+1+
1+.37
1+.65
1+.86
1+.72
1+.37
1+.1+1+
1+.51
1*. 79
5.61+
5.35
1+.79
1+.65
1+.79
1+.79
1+.79
5.28
5.1+9
5.11+
1+.86
1+.72
1+.93
5.28
5.61+
5.1+9
1+.86
1+.1+1+
1+.16
% Total Ash
WP
23.1+2
23. 0
23.17
23.30
22.82
22.93
23.02
22.80
22.96
23.00
23.03
23.67
23.29
23.07
22.78
22.7
23.01+
23.38
23.1+1
23.81+
23.67
23.87
23.87
23.38
23.16
23.03
23.12
23.05
22.80
23.06
23.39
EP
28.29
27.57
27.58
28.20
27.5!+
27.98
28.07
27.73
27.27
27.17
27.97
28.11
28.55
28.85
28.13
27.1+0
28.17
27.89
27.25
28.20
28.1+6
28.52
28.01
27.70
28.02
28.65
29.00
28.91+
27.78
27.28
26.71+
H
v/i

-------
ON
PLANT OPERATIONAL DATA JANUARY 1970
D
a
t
e
1
?
3
I
5
I
7
8
9
10
11
12
13
1U
i?
l6
17
l&
*?
^0
21
22
J?
JU
??
26
27
28
29
30
1
D
a
y
Th
F
Sa
Gu
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
flh
F
Sa
SH
M
T
W
Th
ji
Sa
KJeldahl Nitrogen
mg/1 as N
SS
35.6
38.2
33.0
31.4
39.3
37.5
34 7
37.9
36.8
33.7
31.9
36.5
37.1
37.2
36.3
35.8
3U.lt
31.8
33.6
35 A
35.1
34.6
36.3
33.3
32.1
34.4
34.2
29.0
31*. 6
33.3
31.5
WPE
16.7
21.1
14.7
16.2
20.0
2U.5
13.7
14.4
13.1+
12.5
17.9
20.1+
13.3
13.14
16.2
16.5
16.1
19.3
20.1+
14.8
13.2
12.2
15.5
14.7
18.5
20.6
17.5
13.2
13.1+
14.4
11+.1+
EPE
19.0
19.9
15.8
28.6
20.9
12.7
12.6
ll+.O
17.1+
11+.6
20.7
20.9
15.0
11.2
12.2
12.2
ll+.l
22.5
21,0
15.1+
12.9
12.7
12.6
12.5
17.6
?3.0
15.8
13.6
_11.8
!!_.
13.1+
Milorganite
As Received Basis
Tons/
Day
207.3
179.8
182.0
92.7

10.6
171.2
232.0
220.5
227.5
215.0
212.5
225.3
231+.2
223.7
221+.2
230.5
216.2
213.2
238.1
235.0
228.5
223.0
210.0
189.1
?m .9
210. 3
205.1
217r9
216.1+
222.1
Nitrogen
% N
6.63
6.96
6.81+
6.87

6.85
6.66
6.71
6.76
6.71
6.71
6.63
6.1+3
6.36
6.35
6.37
6.4?
6.1+1
6.65
6,30
6.08
6. ill
6.?6
6.?6
6.1+2
6. 48
6.22
.00
5.81+
5_. 91
6.05
Ash
%
21+.82
25.41
21+.91
21+.99

25.08
21+.2U
2U.83
2U.85
25.11
26.12
26.99
27.1+7
27.12
26.72
27.10
27.77
27.93
27.57
27.08
27.28
27,00
27.13
26^1+2
27.1+8
27.50
27.60
27.53
28.35
27.76
27.61
Average Ferric Chloride Use
PH
3.1
3.1
3.1
3.1

3.2
3.1
3.1
3.,!
3.1
3_.l
1.3
3.3
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.1
Waste
Sludge
* Solids
l.!+9
1.50
1.66
1.65

1.92
1.51
1.50
1.1+5
1.1+2
1.39
1.1+6
1.59
1.58
1.51+
1.51
1.1+6
1.1+5
1.1+5
1,63
1.67
1.59
1.36
1.35
1.27
1.32
1.U
1.53
1.55
1.U8
1.U8
Ibs. Anhydrous FeCl.j ^r
Dry tons recovered Solids
1968
229.50

5U.91
202.15
215.27
177.20
183.16
195.29
212.62
217.36
222.1+0
232.11+
231.29
208.56
221.16
21+7.73
211+.69
216.76
216.78
207.91
227.22
226.69
193.81+
209.13
213. 5U
215.1+3
224.35
189 . 40
193.08
158.69
203.27
1969
235.51
21+0.61
220 . 89
220.57
234.39


239.40
211.46
285.31
204.67
206.56
219.10
216.06
219.98
199.69
199.33
206.74
209.88
197.55
223.77
218.19
215.13
183.03
186.47
205.23
242.09
233.44
229.41
214.93
217.29
1970.
278.74
264.56
265.32




256.13
257.56
250.95
270.46
218.39
222.59
207.52
227.05
215.06
210^77
225.54
228.39
204.17
212.98
202.12
208.39
207.21
225.47
230.85
223.61
213.90
213.07
219.17
216.40
Precipitation
Water
Equivalent
Inches
.03
Trace
.01
Trace


Trace
.03
Trace

.01

Trace
.05

Trace
.09
Trace

Trace

.01
Trace
Trace
.01
,08
.02
.03
.04
Trace


-------

D
a
t
e
1
2
3
I
5
I
7
a
9
10
11
12
L3
ll
L5
16
17
18
!?
20
21
??
23
2l
2?
2&
27
28
29
30
11
D
a
y
Su
M
T
W .
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa



KJeldahl Nitrogen
mg/1 as N
SS
27.2
31. a
32.9
33.7
35. ^
34.7
35.3
31.1
34.9
3^.6
36.7
33.7
33.5
32.3
32.9
32.8
32.9
33.3
3l+. 2
32.6
31.5
28.6
32.8
32.5
34.4
34.5
36.1
31.8



WPE
15.8
16.1
12.9
11.9
12.5
11.5
12.5
19.6
19.6
U.3
11.2
13.3
11.3
12.7
18.2
21.6
15.7
11.9
11.9
11.8
12.6
18.1
19.5
14.4
10.5
10.2
11,2
12.0



EPE
18.5
18.1
15.5
11.6
11.8
14. 0
14.8
18.2
18.8
13. U
13.3
12.3
12.6
12.5
17.9
25.1
15.5
12.7
11.6
11.1
11.1
16.0
18.1
14.1
11. 
10_*i
11.:
10.9



PLANT
Milorganite
As Received Basis
Tons/
Day
225.1
216.9
249.3
197.0
212.7
206.8
229.0
218.2
220.0
220.2
201.3
239.0
213.5
234.5
211.0
224.5
218.1
217.8
231.1
224.6
210.0
203.8
219.7
227.0
226.6
212.5
217.0
215.0



Nitrogen
% N
6,16
6.06
5.78
5.74
5.93
6.08
6.23
6.42
6.33
6.15
6.08
6.14
6.25
6.30
6.51
6.38
6.05
6.03
6.08
6.19
6.16
6.19
6.12
5.90
5.91
5.98
6.05
6.02



Ash
%
27.62
29.20
28.60
27.61
27.67
26.71
25.69
26.48
27.12
26.96
27.67
26.95
27.38
27.24
27.91
27.23
27.05
27.36
26.71
26.42
26.72
27. 71
28.38
28.30
27.82
27j29
27.92
27.50



OPERATIONAL DATA FEBRUARY 1970
Average Ferric Chloride Use
pH
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.2
3.0
3.0
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1



Waste
Sludge
< Solids
1.50
1.60
1.70
1.61
1.54
1.45
1.42
1.40
1.U1
1.41
1.39
1.42
1.48
1.29
1.37
1.55
1.62
1.45
1.42
1.35
1.37
1.35
1.37
1.41
1.38
1.33
1.27
1.21



Ibs. Anhydrous FeClo^tfr
Dry tons recovered Solids
1968
201.89
199.3:
240.71
272.52
206.46
236.27
222.29
238.08
,234.14
226.15
213.88
209.86
200.64
202 . 4
207.71
209.21
206.30
203.37
193.68
202.73
218.53
229.02
196.01
193.37
190.87
246.36
184.91
194.12
202.41


1969
220 . 36
216.98
224.93
202.08
203.56
203.40
179.66
201.85
211.00
228.10
224.53
198.29
192.34
184.58
183.74
189. 2g
209.11
209.51
205.96
207.44
206.76
223r72
212.87
214.35
215.88
219.66
I84r85
202.26



1970
210.37
216.97
203.72
248.23
231.58
229.28
223.28
237.92
233.35
222.91
206.09
210.65
218.51,
200.34
333. 3Q
254.75
231.62
249.04
241.74
238.83
246.38
272.15
246.63
231.56
224.70
214.90
222 . 71
237.79



Precipitation
Water
Equivalent
Inches
Trace
Trace

.04



.03
Trace
Trace
Trace
.01

Trace
Trace


.05
Trace





Trace
Trace
Trace
Trace




-------
H
H
00
PLANT OPERATIONAL DATA MAR
D
a
t
e
1
2
-}
1+
5
6
7
ti
9
10
11
12
X?
ill
15
1^>
L7
L8
*?
20
21
22
2?
?5
a>
26
X
28
yy
0
i
D
a
y
Su
M
T
W
Th
p
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
w
Th
F1
Sa
S,u
1
T
KJeldahl Nitrogen
ing/1 as N
S3
28.0
32.9
24.5
29.8
30.7
31.5
30.5
29.0
29.8
31.5
32.6
33.6
33.5
29.5
31.1
33.5
34.4
33.3
27.2
25.1
26.6
28.0
30.4
30.7
29.4
27.0
28.8
27.0
27.2
31.2
29.4
WPE
10.1
20,3
12.0
9.7
8.1
9.0
8.8
12.6
17.9
11.1
8.8
9.8
12.2
11.5
17.6
19.6
13. 4
14.6
7.8
7.6
9.2
16.2
16.4
12.5
8.3
7.U
6.7
7.1
14.3
18.2
10.1
EPE
^7.5
17.9
11.3
10.8
9.^
13.3
10.8
lH.lt
16.0
9.1*
7.8
8.3
9.2
9.1
15.5
18.9
12.;
9.7
8.0
6.6
7.0
12.9
16.7
10,2
7.7
a.j
7.1
8.2
13. C
16. lj
9.2
Milorganite
As Received Basis
Tons/
Day
207.5
2]. 3.0
22|lf,7
24;L.3
220.7
235.0
232.0
215.1
220.5
224.8
211*. 6
210.3
213.9
197.5
215.6
206.5
220.5
206.6
205.5
198.7
2Q1.5
200.5
2^2.1
203 7
210 1
1QQ 7
207 1*
208 5
200.5
202.1
210.8
Nitrogen
% N
6 1Q
fi 17
s fin
5.37
5.1*1
5.67
5.87
6.10
6.00
5.86
5.86
5.93
6.19
6.29
6.38
6.29
6.06
6.00
6.12
6.08
6.0l*
6.19
6.22
6*10
6,01
6.01
6.li*
6.17
6.29
6,37
6.11
Ash
%
2J^6_
28r09
^8.^.8
29.57
29.25
29.61
28.19
28.82
29.29
29.50
29.02
28.67
28.39
27_.22
2I^Ul
28.16
28.07
28.36
28.30
28.29
28.1*8
29.35
29. B
29.59
28.96
29.00
29.01*
28.10
28.71
29,3T_
28. U8
Average Ferric Chloride Use
PH
3.JLj
3fl
3f J-
3.1
3.1
3.-1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1*
Waste
Sludge
* Solids
^r27
1.37
1.50
1.65
1.1+9
1.32
1.27
1.18
1.20
1.29
1.31
1.23
1.21
1.20
1.20
1.40
1.55
1.50
1.1*2
1.38
1.39
1.39
1.1*0
1.1*6
1.1*6
l.l+l
1.35
1.25
1.25
1.33
1.51
Ibs. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
221*. 01
228.01*
209.25
217.03
219.39
236.09
236.61*
213.91
216.59
220_^29
192.58
198.01+
19l+. 92
225.72
215.17
234.67
212.1*7
193.75
206.80
219.51
221.1*0
2KL.88
182.1+5
171.1+1
176^ 80
194.96
177.66
182,28
168,28
194.79
203.73
1969
210.58
207.46
202.58
192.91
182.93
194.83
182.85
201.10
203.80
248.17
229.82
205.02
204.85
216.27
205.19
219.82
224.42
241.45
219.32
212.67
208.36
210.96
224.40
239.24
219.76
203.36
220.24
218.42
187.66
186.67
155.91
1*70
251.77
232.21
219.69
224.09
234.42
244.81
241.22
260.90
265.65
249.43
230.32
233.66
228.91+
264.61
269.09
247.21
240.21
245.77
236.41
234.49
237.09
250.05
265.85
257.36
220j 83
216.58
20J,4l
215.81
220.84
237.46
210.31
H 1070
Precipitation
Water
Equivalent
Inches





Trace
Tr&sfi
.17

Trace


Trace
.01




.42
.nfl


Trpff*
Trar P
.QT.
-^
.05

Tjj-p^p



-------
PLANT OPERATIONAL DATA
D
a
t
e
1
2
3
I
5
I
7
a
9
10
11
12
13
lk
15
16
17
18
19
20
21
22
23
2k
25
26
27
2ti
29
30
31
D
a
y
w
Th
F
Sa
Su
M
T
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Tji

KJeldahl Nitrogen
mg/1 as N
SS
28.3
21.7
24.1
26.9
2^.2
29.5
28.7
30.0
23.0
31.8
29.0
30.0
19.5
24.6
26.3
26.0
30.8
29.H
21.4
30.0
?8.8
?8.6
?9.7
30.0
29^8
25.3
29.5
28.6
7.2
?5.9

WPE
8.1
3.9
5.0
5.9
10.1
15.1
10.8
7.3
6.3
7.7
10.2
17.2
12.3
6.2
7.0
7_.0
8.5
10.1
14. U
11.3
7.6
4.9
5.5
7.3
5.6
10.6
17.6
10.4
8.0
8.1

EPE
8.1
5.6
3.8
5.3
12.5
15.5
10.2
7.3
6.0
5.9'
6.9
13.2
13.2
7.3
U.3
4.3
3.8
5.7
11.5
8.3
5.0
4.3
4.1
4.2
5,0
9.2
14.1
7.6
6.9
8.7

Milorganite
As Received Basis
Tons/
Day
208 5
192.7
207.2
200.3
208.5
225.9
204.9
193.5
190.0
204.0
201.5
209.5
220.5
210.5
188.3
209 2
209.0
203.0
207.0
204.0
215.0
199.0
196.5
177.0
150.5
181.5
192.1
199.5
193.5
193.0

Nitrogen
% N
6.13
6.08
6.22
6.23
6.30
6.30
6.10
6.06
6.31
6.44
6.44
6.54
6.39
5.95
5.88
6.06
6.33
6.42
6.40
6.29
6.13
6.17
6.16
6.16
6.38
6.48
6.50
6.35
6.24
6.30

Ash
%
28.68
28.34
29.29
28.67
28.59
29.09
29.31
29.00
29.75
28.84
28.02
28.41
28.52
29.29
30.33
29.50
28.54
28.20
29.JJL
29.67
29.13
29.11
28.53
28.72
28.72
28.79
28.90
29.12
28.55
28.79

Average Ferric Chloride Use
pH
3.4
3,4
?4
3.3
3.2
3.2
3.2
3.3
3.3
3.2
3.1
3.1
3.1
3.2
3.3
3.3
3.1
3.1
3,4
3,r4
3.4
3,,4
3.2
3.3
3.3
3.3
3.3
3.3
3.2
3.1

Waste
Sludge
% Solids
1.47
1.39
1.32
1.24
1.18
1.26
1.35
1.27
1.23
1.21
1.19
1.17
1.24
1. 32
1.30
1 22
1.18
1.17
1.24
1.31
1.35
1.31
1.28
1.32
1.30
1.26
1.32
1.45
1.52
1.49

Its. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
188.47
201.43
218.74
222.46
210.75
P04.18
215.84
226.78
221.05
204.63
197.44
199 . 88
214.46
?1 7 k^
215.08
223.88
212.45
197.13
200.23
205.24
179.73
198.33
210.61
192.56
206.30
227.86
226.62
231.15
.96.17
217.94

1969
181.69
192.00
175.33
173.53
189.63
191.85
200.89
202.21
188.95
174.76
173.22
172.71
190.75
194.21
193.31
206.64
186.27
195.22
194.32
214.78
229.47
234.99
208. 9k
199.63
213.45
233.37
244.16
208.26
206.08
210.23

1970
179.42
174.81
159.46
183.21
197.41
212.85
207.52
181.78
179.64
180.95
203.06
197.45
194.75
178.16
189.11
198.91
202.35
201.32
183.94
187.68
195.69
182.89
199.20
195.04
200.42
205.34
212.33
202.71
219.85
226.67

APRIL 1970
Precipitation
Water
Equivalent
Inches
.33
.43


.03
.07




Trace
.01
.99
.02
Trace
.05


4P
.02
Trp.fp
.07







.27


-------
ro
o
PLANT OPERATIONAL DATA
D
a
t
e
1
2
3
I
5
6
7
8
9
10
11
12
13
ll*
15
16
1-l
l6
!?
20
21
22
2?
2&
2?
26
27
28
up
30
1
D
a
y
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
T^
F
Sa
SH_
;-1
T
tf
Th
F
?^_
Sij
M
T
rf
Th

S^L
SH
KJeldahl Nitrogen
mg/1 as N
S3
28.6
28.8
26.2
29.5
31.6
26.5
31.1
29.8
2U. 9
27. 0
28. 1*
17.1
18.8
19.3
19.5
20.0
21.1
27.6
28.0
29. 1+
28.0
29.7
25.1
23.8
26,. 7
29.0
30.1*
^0.2
?1.7
?8.3
23.8
WPE
7.8
8.1
11.2
11+.7
7.8
6.Q
8.7
16.1
8.8
15.1
15.0
6.7
3.6
5.0
5.5
7.3
11.9
lU.O
9.0
9.1
9.5
7. It
l+.S
10.2
13.2
7.^_
7.8
1U.3
11.6
-LL
18.3
EPE
10.2
7.3
9.8
1U.3
12.3
7.1
5.7
6.3
5.3
8.8
10.5
U.6
2.8
3.6
2.9
3.1+
6.3
8.1
1+.3
U.I
ll.l
3.1+
2-1
6 i
q 5
k i
"3 S
6.2
2.1+
3.U
6.9
Milorganite
As Received Basis
Tons/
Day
200.0
199.5
193.1
197.2
203.7
190.8
191.8
202.6
201+.7
208.7
205. U
203.4
211.2
21U.5
158.1+
189.7
213.6
220.3
228.0
220.0
211.3
206.5
220^2
216.7
195.1
201.1
213.1
199.3
192.5
183.9
186.6
Nitrogen
% N
6_.30
6.30
6.1*2
6.37
6.23
6.22
6.18
6.18
6.26
6.33
6.16
5.98
5.76
5.6l
5.63
5.85
5.83
5. 9U
5.8l
5.88
5.92
6.23
6j_29
6,30
6.08
6_,27
6.19
6.26
6.32
6.U2
6.53
Ash
%
28.1*2
28.79
29.22
29.21*
29.39
30.01*
29.23
29. te
29.29
29.68
30.80
31.79
32.78
33.10
33.77
33.73
32.93
33.51
33.31*
32.07
31.21
30.15
29.73
29.92
30.23
^jJ1?
30.78
30.52
30.11
29.1+9
29.1+7
Average Ferric Chloride Use
PH
3.0
3.Q
3.1
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.1+
^
3,1+
3.7
3.7
3.7
3.7
3.7
3.1+
3.1*
3.2
3.2
3.1
3.1
3 i
3.1
3.2
3.2
3.1
3.1
Waste
Sludge
* Solids
1.1*6
1.51
l.Vf
1.55
1.63
1.69
1.70
1.67
1.69
1.72
1.77
1.79
1.9^
1.81+
1.72
1.72
1.72
1.85
1.89
1.81+
1.71
1.59
1.56
1.60
1.57
1.57
1.61+
1.62
1.62
1.52
1.51
Ibs. Anhydrous FeCl-j ^er
Dry tons recovered Solids
1968
220.15
202.22
182.1*0
185.28
107.70
203.85
216.62
19^.1*0
203.1+6
191*. 1+0
196.96
200.65
215.66
202.11
200.30
225.09
201.81
232.38
199.52
151.51
192,26
201+.1+S
210.61
215 17
228.97
196.86
201+.59
207.77
213.51
211.90
203.20
1969
209.62
223.30
226.61+
221*. 33
250.03
246.67
227.25
209.14
193.70
193.62
215.79
209.90
219.29
23U.1+8
222.1+9
192.23
199.5.1+
192.31+
196.32
213.01
202.33
195.99
187.08
202.57
190.72
211+.07
205.51+
226.27
227. Ul
210.21
193.09
1970.
2U3.68
225.29
21+1.31
255.06
21+3.70
229.02
222.5U
220.76
213.00
213.79
228.18
196. 5H
205.93
1SL2._91
178.63
173.16
180.99
179.61
195.32
197.38
198.65
213.75
203.09
208.95
239.56
22^.16
219.59
222.06
226.05
21+3.52
21+5.89
MAY 1070
Precipitation
Water
Equivalent
Inches
0.1

0.02

Trace



0.68
Trace
0.15
1.01
0.21*
0.26
0.28
Trace
Trace




0.08
0.1S
0.11
Trace

0.02

O.OU
0.07
0.20

-------
H
ro
PLANT
D
a
t
e
1
2
3
4
5
b
7
a
9
10
11
12
13
14
15
16
17
18
1?
20
21
22
23
24
2?
26
27
?H
2?
30
31
D
a
y
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
rf
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T

KJeldahl Nitrogen
mg/1 as N
SS
18.2
15.7
21.7
23.9
24.5
2^.7
23.2
23.9
23.7
26.5
25.5
24.5
2k. 4
21.3
26.9
26.5
23.7
25.8
26.2
27.3
25.9
24.9
25.3
24.6
26.5
2U. 8
,27.2
26.9
23.1
21.3

WPE
11.8
5.0
5.6
5.2
5.3
5.7
9.7
11.1
3.6
U.I
7.0
8.5
4.9
11.9
13.0
8.4
6.2
6.0
7.8
7.1
13.4
16.1
5.6
4.6
5.6
6.2
6.7
15.7
15.4
6.8

EPE
4.9
3.6
4.2
2.2
3.1
2.9
6.0
7.8
2.3
3.4
10.8
7.9
7.3
8.4
9.5
4.8
5.9
8.7
3.1
3.6
10.9
9.5
3.8
7.1
7.3
14. .3^
6.0
9.5
9.5
37.0

Milorganite
As Received Basis
tons/
Day
192.0
195.3
195.0
177.0
153.0
17?. 0
i85.n
1QQ.Q
202.5
206.5
212.5
246.0
230.9
220.6
231.0
223.5
207.0
206.5
207.0
195.0
192.0
189.5
194.0
180.0
180.5
193.5
190.5
189.5
176.5
178.0

Nitrogen
% N
6.25
6.04
5.79
5.82
6.01
6.12
6.17
6.27
6.16
6.19
6.29
6.30
6.39
6.30
6.33
6.13
6.22
6.30
6.42
6.24
6.16
6.21
6.n
6.?4
6.32
6.44
6.41
6 46
6.27
6.11

Ash
%
30.09
"31. 7^
^2 9Q
33.56
32.36
32.93
^0.8
31 .20
30.78
?n. TT
29.14
28.78
28.67
28.85
30.21
30.03
29.63
28.97
29.79
29.81
30.29
30.30
30.47
29.38
29.11
28.71
28.54
28.65
29.32
30.26

DPERATIONAL DATA JUNE 1970
Average Ferric Chloride Use
pH
3.1
3.1
3.2
3.1*
3.1*
3.5
3.4
3.6
3.6
3.6
3.1*
3.2
3.2
3.2
3.2
3.3
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
3.0

Waste
Sludge
% Solids
1.50
1.72
1.89
2.04
2.02
1.92
1.82
1.72
1.74
1.69
1.66
1.53
1.47
1.50
1.53
1.62
1.61
1.58
1.55
1.56
1.55
1.53
1.64
1.69
1.67
1.59
1..52
1.57
1.67
1.91

Its. Anhydrous Fed, ler
Dry tons recovered Solids
1968
195.54
203.44
220.^98
224.95
218.64
245.99
241.68
233.17
234.45
208.04
234.37
240..29
245.62
224.50
218.66
204.93
220.63
228.25
226.70
206.56
217.95
196.59
187.97
212.23
229.10
228.20
206.24
207.45
221.50
218.57

1969
217.34


214.92
211.55
207.40
212 . 42
198.91
205.88
239.61
256.73
249.40
248.27
252.55
260.01
275.63
282.67
253.20
246.94
263.80
261.27
275.38
249.12
250.70
248.62
235.99
204.09
213.25
229.66
262.07

1$70
250.56
241.44
197.76
212.78
236.76
220.64
205.11
205.09
199.24
216. Q4
228.^4
220.89
225.40
212.76
231.34
240.79
218.47
L_2 ]JL_T1
200.91
222.83
231.25
2T7.06
222.12
242.56
245.78
2^8.99
239.81
235.48
24l.ll
262.44

Precipitation
Water
Equivalent
Inches
1.05
1.1?









.20
3?
.24



.08

.22
.01


.01

.64

Trace




-------
ro
ru
PLANT OPERATIONAL DATA JULY 1910 	
D
a
t
e
1
2
3
I
5
6
T
a
?
10
11
12
L3
it
1?
l6
17
iti
19
20
21
22
23
2U
2?
26
2T
28
29
30
1
D
a
y
w
Th
F
Sa
up
W
T
W
Th
F
Q Q
qn
M
T
W
'Hi
F
Sfl
S^j
^M
T
rf
Th
r
Sfl
Su
M
i
if
Th
F
KJeldahl Nitrogen
mg/1 as N
SS
26.5
2i4.9
29.7
23. *4
23.1
26.9
23.2
26.0
27.6
2U.9
25.1
2*4.2
23.7
19.7
22.7
2*4. 8
2U.1
22.3
21.7
26.3
26.5
26.7
28.1*
26.7
22.3
23.5
2*4.9
25.9
26.5
2U.8
2*4. U
WPE
7.6
6.7
6.6
10.1
15.3
16.0
13.9
7.8
9.*4
13.0
10.8
1*4.3
11.1
3.9
*4.3
5.2
9.0
6.*4
8.0
8.0
**.9
*4.3
5.9
6.0
**.9
?'7
U.9
3.6
5.0
5.3
7.1
EPE
5.5
^.5
5.2
5.0
5.3
5.7
5.2
10.9
10.1
5.7
3.5
6.3
*4.8
2.7
2.1
3.1
2.5
2.1
2.9
3.2
3.1
2.7
3.8
U.5
2.8
2.*4
2.9
2.5
2.1
2.9
6.**
Milorganite
As Received Basis
Tons/
Day
107.5
203.5
188.5
173.5
92.7


69 T 7
1614.5
188.0
176.0
190.9
185.3
376 5
183.0
202.6
22^4.7
227.6
219.8
227. k
216.1
116.9
12U.8
235.3
202. U
207.5
213.3
217.9
20U.7
211. U
196. U
Nitrogen
% N
6.12
6.1U
6.U6
6.38
6.UU


6.28
6.01
5.87
5.99
6.09
5.89
5.98
5.82
5.63
5.79
6.07
6.15
6.0U
6.01
6.17
6.17
6.19
6.148
6.19
6.09
6.02
5.95
6.05
6.16
Ash
%
29.90
29.38
29.25
29.00
29.83


29.31
30.86
31.10
3T.6S
TL . SU
31.71
31.kfi
32.63
33.26
32.57
31.61
31.82
31.66
31.08
30.50
30.21
28.88
29.21
29. 3U
30.23
29.89
29.66
29.13
28.39
Average Ferric Chloride Use
PH
3.0
3.0
2.9
2.9
2.7


2.8
2.8
3.0
2.9
2.9
2.9
2.9
2.9
3.0
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
3.1
3.2
3.1
3.0
3.0
Waste
Sludge
% Solids
1.89
1.86
1.80
1.67
1.67


1.93
1.82
1.98
2.10
1.79
1.77
2^0
2.36
2.27
1.98
1.81
1.80
1.79
1.88
1.86
1.79
1.53
1.U8
1.146
1.58
1.66
1.69
1.59
1.53
Ibs. Anhydrous FeCl^ por
Dry tons recovered Solids
19_68
217.32
2514.69
229.02
229.31
219.56
221.03
235.91
237.78
253.38
263.85
2l45.3l4
2140.72
221.15
250.06
21)0.88
268.33
260.73
2U1.70
253.25
212.1414
222.28
212.0*4
226.16
232.67
212.141
206.30
221. U5
216.25
227.92
23^.25
2U7.00
1969
229.63
2514.67
200.77
22*4.62
277.814
216.33
276.85
267.18
275.16
2*48.96
2*41.33
263.90
236.149
262.02
285.38
227.147
189.53
18U.91
199.16
195.60
195.67
19U.S6
218.18
22SL.U9
2l43.5*4
2*4*4.17
255.37
235. U2
215.63
2JJ.Q9
208.15
1*70
2*4*4.17
231.8*4
253.70
255.23
293.07



360.20
2U6.88
335. *4l
282.71
256.81
2*42.20
297.58
28U.*40
228.65
227.29
230.59
210.66
209.66
291.50
335 . 39
263.05
277.60
260.93
230.92
235.20
226.05
237.65
232.93
Precipitation
Water
Equivalent
Inches
Trace

.06




.51
Trace



.03
.15
.02

.06
.01
.36



Trace


.05
,*+o
.19
Trace
.05
.ou

-------
H
ro
PLANT OPERATIONAL DATA AUGUST 1970
D
a
t
e
1
2
3
4
5
6
Y
a
9
10
11
12
13
14
15
16
17
18
!?
20
21
??
?3
24
25
?f>
27
28
?9
30
31
D
a
y
Sa
tsM
Nf
T
W
Tti
?
5&
Su
M
T
rf
Th
H1
Ra
Su
M
T
W
T1?!
V
Qn
Su
M
T
vf
Th
J1
Sa
Su
M
KJeldahl Nitrogen
mg/1 as N
SS
21.3
21.8
25.6
27.2
28.8
25.2
27.7
26.6
25.8
25.6
25.9
26.0
26.9
26.3
23.7
23.7
21.3
24.5
25.1
27.7
25.2
26.9
25.8
29. ;L
27.3
27. 
28.7
28.6
23.0
25.6
2,8.8
WPE
7.6
10.9
9.8
7.1
7.7
7.8
6.7
9.2
14.8
14.1
7.0
7.4
7.1
9.4
10.4
14.4
10.1+
6.2
6.0
6.2
9.0
10. 4
16. U
16.1
9.9
7P3
8.7
8.7
9.1
15.1
16.1
EPE
6.2
7.4
6.3
4.2
5.0
5.7
5.2
7.0
10.1
7.7
5.2
3.4
4.2
4.1
3.6
4.6
2.5
2^2
2.4
2.8
3.9
5.6
6.2
3.9
2.9
?.7
4.2
4.8
6.0
9.5
6.0
Milorganite
As Received Basis
Tons/
Day
182.3
184.0
188.5
195.9
192.4
190.1
230.6
219.0
218.5
212.4
219.5
221.1
215.7
226.4
226.0
223.7
191.3
225.8
211.6
223.7
215.2
211.1
?POf4
187.9
174.3
188.0
192.5
202.5
198.5
194.0
193.8
Nitrogen
% N
6.21
6.10
6.09
5.95
5.90
6.05
6.19
6.22
6.24
6.17
5.91
5.94
6,02
6.14
6.17
6.35
6.03
5.80
5.87
5.96
6.15
6 20
6.4?
6.31
6.06
6 o?
6.21
6.44
6.60
6.33
6.17
Ash
%
29.13
30.57
30.70
31.17
30.33
29.51
28.80
29.16
29.24
29.84
30.20
30.77
29.42
29.32
28.64
28.87
2J.. 12
30 32
29.28
29.29
29.10
28 62
?8.74
29.16
29.47
?9 ?7
28.31
27.25
27.28
29.53
3SL49
Average Ferric Chloride Use
pH
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.9
2.9
2.9
3.1
3.3
3.4
3.2
3.1
3.1
3.3
3.3
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
Waste
Sludge
% Solids
1.49
1.42
1.46
1.54
1.57
1.58
1.62
1.66
1.62
1.73
1.94
1.96
1.90
1.79
1.68
1.67
1.92
2.02
1.95
1.76
1.65
1.50
1.47
1.64
l.J?0
l.8l
1.47
1.34
1.30
1.32
1.47
Ibs. Anhydrous FeClo per
Dry tons recovered Solids
1968
217.26
216.32
211.93
212.02
216.59
238.46
231.57
229.33
224.75
209.96
235.99
236.96
242.85
228.37
221.36
215.80
196.95
196.16
217.67
208.88
209,29
227.93
220.00
224.90
24l,27
216.18
247.68
231.95
220.96
225.71
252.40
1969
211.42
218.88
235.75
231.35
247.46
276.61
247.46
228.81
253.81
247.44
235.99
243.61
218.47-
208.04
222.59
201.09
192.80
211.60
211.15
207.06
222.79
208.93
238.88
198.63
220.98
206.33
190.13
188.79
201.23
185.48
191.23
1970
255.17
237.59
246.43
242.21
249 . 71
262.13
203.95
227.05
243.25
267.27
250.31
228.97
223.92
215.51
219.96
221.54
239.31
208.28
242.51
222.06
216.12
217.73
213.21
214.56
243.16
231.14
220.41
214.22
209.57
218.09
260.37
Precipitation
Water
Equivalent
Inches

Trace






Trace









0.27
0.01



.04

Trace


0.32



-------
ro
PLANT
D
a
t
e
1
2
3
1
5
&
7
8
9
10
11
12
13
1U
}5
16
17
181
!?
20
21
22
23
2&
2?
26
2T
2ti
2y
30
1
D
a
y
T
ti
Th
E
.Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
?
Sa
Su
M
n
rf

KJeldahl Nitrogen
mg/1 as N
S3
28.7
26.3
21.7
27. U
25.6
15.8
20^4
26.3
23.9
26.6
28.7
25.8
21.1
23.0
18.3
25.6
21.1
25.5
23.9

24.8
26.6
23.7
20.6
2,3.7
23.0
22.8
30.5
28.7
30.2

WPE
8.4
7. ^
5.9
9.1
11.5
12.3
12.0
10.5
6.2
3.5
7.1
8.1
11.6
9.9
it. 8
It. 9
6.9
6.2
7.6
10.8
9.7
it. 6
6.0
5.3
6.3
7.C
11.8
12.3
9.0
6.3

EPE
3.6
it. 2
it. 2
5.9
6.3

2.8
3.2
3.1
3.9
6.2
8.0
8.3
8.0
3.6
it. 3
2.8
3. t
4.2
it.l
2.9
3.1
3.8
3.8
it. 3
k*6
it.l
it. 9
3.8
U.2

Milorganite
As Received Basis
Tons/
Day
185.1
196.6
186.5
186.5
187.5
187.5
l6Ji.Q_
117.6
170.0
17U. 5
I87.it
183.1
187.0
179.6
180.6
180.8
200.6
210.8
195. U
197.8
193.0
193.8
191.3
209.7
194.0
17it.3
186.9
190.7
19it.8
203.5

Nitrogen
% N
5.99
6.11
6.26
6.23
6.29
6.18
6.03
5.70
5.58
5.80
6.07
6.26
6.32
6.30
6. lU
5.97
6.07
6.36
6.U2
6.38
6.32
6.12
6.23
6.it2
6.28
6.29
6.15
6.15
6.12
6. lit

Ash
%
29.68
29.65
28.61
29.08
29.06
28.91
30,54
33.25
33.26
31.13
29.25
28.1+5
29.11
29.32
29.52
30.32
3Q_,l4
29. Ul
28.86
28.29
29.33
29.08
28.71
28.42
29.itO
30^00
29.97
30.57
30.16
29.65

OPERATIONAL DATA SEPTEMBER
Average Ferric Chloride Use
H
3.0
3.0
3,0
3.0
3.0
^.0
3^0
3,3
3.3
3.3
3,1
3.0
3.0
3.0
3.0
3.1
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1

Waste
Sludge
% Solids
l.6l
l.Sli
l 46
l.4i
1 .4?
i Lii
i R
l 6fl
l.fi^
1 .76
1 6?
1 .47
1 .lift
i .^n
T .S"*
1.6?
1.61
T.S6
i _Uo
1.50
i.sU
1 -S7
] Ufi
l UU
1.U9
1 ~V3
l.ltS
1 59
1.5Q
1 6k

Ibs. Anhydrous FeCl^ jper
Dry tons recovered Solids
1968
?1S lili
PPi kn
237.10
24it.69
241. 08
233.09
225.07
227.72
224.36
237.17
239.08
214.90
214.23
219.84
251.02
226.75
230.62
228. Ib
247.54
220.67
233.48
240.88
224.J6
226j24
175.66
199.12
219.83
224.51
217,38
236.73

1969
207.64
362 . 32
230.85
205.57
218.29
208.73
213.76
238.56
253.05
229.97
243.73
236.23
268.79
235.78
292.70
243.91
236.94
266.11
272.99
279.6J
273.08
269 . 30
263.79
231*96
276.38
269.91
286,. 09
296.21
271.83
254.74

1$70
257.61
?53.4^
238.13
254.59
255.92
265.16
269.09
327.39
246.92
237.19
209.54
234.43
222.66
240.32
230.75
244.23
231.02
214.37
232.71
243.88
252.96
264.47
250.20
225.79
227.56
243.17
251.37
241.42
241.64
260.64

1Q7D
Precipitation
Water
Equivalent
Inches

.56
.54


1.44
Trace

.53
Trace

.16
.18
.22
.86

.66



.06
.11
1.19
.27
.13
.02
Trace





-------
H
ro

D
a
t
e
1
2
3
4
5
6
7
ti
9
10
LI
12
L3
14
15
16
17
18
19
20
?1
??
23
2l+
25
26
27
28
2?
30
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Tft
F
Pft
S^
M
"?
JW
Tfi
F
Sa
KJeldahl Nitrogen
mg/1 as N
SS
31.5
31 A
27.7
27.0
30. 4
30.5
30.1+
30.7
28.7
27.6
30.0
32.8
32.5
33.2
34.6
34.9
30.1
29.3
33.2
31.5
33.6
32.5
30.9
30.7
29. 4
34.6
27.9
23.2
32.6
31.6
27.2
WPE
7.8
11.3
10.2
14.3
14.3
8.0
9.2
18.2
10.6
11.5
16.1*
17.8
11.2
10.6
13.3
13.7
13.9
15.1
18.8
12.0
11.6
12.5
13.0
12.7
20.4
18. Q
9.4
4.5
7.8
9.9
. 8.5
EPE
4.8
6.7
7.6
9.2
8.8
5.7
6.9
9.5
11.6
10.1
12.6
13.0
9.2
8.5
13.5
16.5
11.9
14.1
13.7
8.7
7.8
13 2
17.2
11.1
16.8
ill. 6
7.0
3.6
8.3
8.7
8.3
PLANT OPERATIONAL DATA nn-mmzR.
Milorganite
As Received Basis
Tons/
Day
201.0
201.5
203.2
204.2
181. 4
212.1
214.1
200.2
200.0
211. 4
190.8
180.0
188.7
176.0
193.2
190.8
196.5
184.1
196.2
166.1
179.3
198.1
179.5
200.0
199.0
206.3
200^8
188.5
206.0
215.0
227.0
Nitrogen
% N
6.36
6.39
6.37
6.45
6.21
6.11
6.14
6.13
6.32
6.U8
6.48
6.28
6.06
6.13
6.17
6.40
6.44
6.48
6.48
6.23
6.18
6.22
6.29
6.40
6.46
6.33
6.12
6.06
6.08
6.08
6.24
Ash
%
27.93,
27.63
28.06
28.30
28.59
29 . 49
28.59
27.71
27.92
27.27
27.41
28.53
28.69
28.51,
27.29
26.96
26.89
26.42
27.35
27.28
27.82
27TU3
26.78
26.40
26.83
27.36
27.85
28.26
28.77
28.59
28.04
Average Ferric Chloride Use
pH
3.1
3.1
3.1
3.1
3.1
3.3
3.3
3.3
3.1
2.9
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.9
2.9
3.0
3.0
3.0
3.0
2.9
2.9
Waste
Sludge
% Solids
1.52
1.49
1.43
1.48
1.57
1.76
1.91
1.84
1.79
1.64
1.50
1.64
1.73
1.77
1.63
l.oO
1.49
1.49
1.50
1.71
JLJ7JL
1.74
1.71
1.62
1.68
1.64
1.73
1.83
1.85
1.87
1.72
Ibs. Anhydrous FeClo $er
Dry tons recovered Solids
1968
530.5:
237.92
231.47
235.04
227.42
245.96
278.60
262.31
249. lb
230.67
236.87
219.71
222.20
224,57
239.15
243.87
243.43
253.99
260.30
242.97
24^.19
257.15
231.31
223.78
224.91
242.86
234.01
240.43
220.60
247.66
243.68
1969
266.25
301.36
298.87
320.60
304.67
270.96
292.44
301.08
310.57
331.65
325.33
311.96
284.14
267.36
225.29
246,13
238.29
217.82
229.48
208.04
200.94
204.29
210.51
222.80
234.62
226.87
213.66
223.52
235.33
236.16
211.53
1*70
232.32
234.04
229.49
235.50
263.45
237.63
211.29
234.64
239.96
252.72
249.64
268.11
269.10
288J.5
256.69
253.25
293.48
295.81
284.36
227.25
287.96
250.55
278.35
317.52
295.22
260.45
251.94
256.47
241.25
281.20
295.54
1970
Precipitation
Water
Equivalent
Inches






.03
.06
.04
Trace


.06
.01





.09

.Ok
.P5
.01


.54
.53

.16
.27

-------
ro
ON
PLANT OPERATIONAL DATA NOVEMBE 1970
D
a
t
e
1
2
3

5
fc
7
a
?
10
11
12
13
1^+
1?
it
17
18
!?
20
21
22
23
24
2?
26
2'f
2ti
^
JO
31
D
a
y
i>u
M
T
W
Th.
F
Pfl
fill
!!
T
W
Th
p
2a
ftu
H
T
W
Th
F
Sa
Su
M
T
W
1'h
K
Sa
Su
M

KJeldahl Nitrogen
mg/1 as N
SS
21*. 5
2U.5
23.5
27.6
29.1
23.0
21.3
27.3
26.6
20.8
30.1
30.7
29.8
2^.0
28.7
TL.9
?o.9
^2.9
TL.5
26.2
31.5
29.3
30.7
32.8
32.8
30.9
3U.9
31.2
28.0
32.5

WPE
15.8
15.5
9.2
8.5
8.0
6.9
9.2
17.9
13.7
5r3
7.8
8.7
9.9
11.1
17.1+
16.9
11.3
10.5
13.U
6.9
11.1+
111. 7
15T1
9.2
10.6
7.8
16.7
16.7
18.1
18.1

EPE
8.8
jj.5
l.fi
3.6
3.6
3.6
7.1
8.3
5.6
2.3
3.2
3.6
5.7
1+.6
5.7
6.U
5.7
7.3
9.1
11.5
9.1
9.2
9.9
7.7
7.0
7.0
LI. 8
11.3
9.1
9.8

Milorganite
As Received Basis
Tons/
Day
237.5
203.2
203.8
180.0
207.3
218.6
229.8
217.2
211.7
227.7
235. k
218.0
222.5
213.3
208.3
206.5
200.3
218.1+
221.8
201+.7
236.7
195.5
198.3
191.8
185.1+
201.2
197.2
210.0
221.0
20U.1

Nitrogen
% N
6.31+
6.27
6.00
6.13
6.10
6.22
6.38
6.1+1+
6.31+
6.28
6.59
6.13
6.23
6.U3
6.1+1
6.1+1
6.36
6.27
6.35
6.39
6.2k
6.3k
6.3k
6.31
6.26
6.1+U
6.57
6.61
6.55
6.33

Ash
%
27.77
29.01
29.01
29.28
27.76
27.21
26.76
27.01+
27.75
28.57
27.90
27.85
27.56
27.01+
26.95
27.1+9
27.5JL
26.1+7
26.81*
26.92
27.25
27.67
28.1+1+
28.58
27.76
26.89
27.19
27.16
26.97
27.21

Average Ferric Chloride Use
PH
2^9
3.0
3.2
3.2
3tl
3.1
3-1
3.1
3.1
3.1
i1
3.1
3.0
3.0
3.0
^p
lit0
^r
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.1
3.2
3.2

Waste
Sludge
% Solids
1.56
1.75
1.81
1.93
1.82
1.70
1.58
1.51+
1.57
1.69
1.77
1.80
1.65
1.51
1.51+
1.55
1.62
1.71
1.68
1.59
1.5U
1.60
1.68
1.69
1.71
1.71*
1.63
1.56
1.6l
1.76

Ibs. Anhydrous FeCl^ ^r
Dry tons recovered Solids
1968
21+6.15
257.81
251+.80
266.56
277.07
235.29
195.8^.
195 . ^7
226.39
237.23
229.13
238.69
253.31
230.85
238.1+5
21+3.17
21+1.79
270.01
290.53
260.86
262.73
267.92
271.50
282.05
258.80
258.95
268.76
265.88
265.96
21+1.11+

1969
181+.U6
197.62
196.10
198.09
191.1+1
221.50
189.77
202 . 1+2
2lU. 35
230.67
233,16
231.98
21+1+.51
255.59
250.68
259.1+5
265 ..35_
25l+. 1+9
21+0,16
21+1.56
251.39
267.39
281.23
280^08

238.33
277.57
25^.02
2i+2.1+8
27!+. 62

1*70
267.86
255.1+1
211.09
209.27
201+.88
229 . 79
225.1+1+
237.1+7
266.55
260.99
21+1.56
26U.1+2
269.85
305.91+
258. Qi+
260.1+1
286.1+8
21+9.17
261.72
309. 2k
2^5.11
278.01
285.80
283.1+1
266.98
273.78
298.50
260 . 89
231+.20
235.70

Precipitation
Water
Equivalent
Inches

0.1+5
0.19
0.12




0.27
0.15


Trq.rp
n.m
TTBPP


Trnrp
o m
0.62


Trace
0.01
Trace
0.03
0.12
0.01
0.02
Trace


-------
H
r\i
]
PLANT OPERATJQMAL DATA DECEMBER 19 IP
D
a
t
e
I
2
3
it
5
6
T
b
9
10
11
12
13
L4
15
16
17
18
!?
20
21
??
>o
pij
25
26
27
28
29
30
31
D
a
y
T
tf
Tl1
F
fia
Sn
M
T
W
Th
F
Sa
Su
M
T
rf
Th
F
Sa
Su
M
T
rf
Th
r
Sa
Su
M
T
/J
Tti
KJeldahl Nitrogen
mg/1 as N
SS
31.8
33.6
30.8
33.0
32.9
27.9
35.1
35.0
34.6
38.1
26.2
27.6
25.3
29.7
29.0
23.7
27.7
27.1*
25.1
24.2
28.7
29.5
29.4
28.3
25.9
28.7
26.6
11.1
11.9
13.9
14^.2
WPE
11.6
8.1
8.1
10.2
8.7
11.4
16.4
11.3
9.8
11.6
13.7
11.9
15.7
15.8
10.6
6.6
7.6
7.0
6.U
11.3
14.1
9.5
8.5
11.5
13.6
17.5
14.0
17.5
11.3
9.1
9.5
EPE
8.1
6.7
7.1
6.4
7.6
10.8
11.9
9.9
8.7
lit. 8
16.0
11-. 9
16.1
15.5
12.3
5.3
5.5
7.8
6.9
9.7
11.3
8.5
8.7
7.0
11.2
15.0
14.6
14.0
8.8
5jl_
6.6
Milorganite
As Received Basis
Tons/
Day
207.1
221.3
211.3
225.7
219.4
221.8
201.4
191.0
200.1
200.8
207.9
207.8
203.6
219.0
208.1
210.5
215.0
211.5
216.0
222.4
211.7
211j2
178.6
210.2
206.0
182.5
185.8
168.1
169.1
200.1
195.7
Nitrogen
% N
6.23
6.26
6.55
6.48
6.56
6.57
6.60
6. 46
6.50
6.57
6.59
6.63
6.59
6.52
6.45
6.34
6.35
6.38
6.60
6.73
6.65
6.45
6.44
6.43
6.63
6.66
6.65
6.49
6j37
6.27
6.39
Ash
%
27.35
27.20
26.33
26.09
25.91
25.97
26.21
26.29
25.96
25.61
25.41
25.61
25.55
26.02
26.03
25.50
25.35
25.51
25.48
25.41
25.98
25.79
26.79
25.71
25.88
25.91
26.58
26.60
26.81
26.48
25.78
Average Ferric Chloride Use
pH
1.2
1.2,
3.2
3.0
3.1
3.1
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.2
3.2
3.1
3.0
3.0
3.1
3.1
3.1
3.1
3.1
Waste
Sludge
% Solids
1.83
1.77
1.65
1.52
1.42
1.37
1.39
1.49
1.45
1.40
1.42
1.40
1.39
1.42
1.55
1.58
1.57
1.53
1.43
1.39
1.44
1.46
1.47
1.42
1.38
1.36
1.42
1.56
1.72
1.75
1.68
Ibs. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
242.00
250.24
256.08
228.22
244.99
241.67
241.29
233.92
207.49
204.49
222.84
219.66
237.26
207.82
221.93
243.97
266.06
242.11
236.81
210.02
207.56
215.26
176.22
201.92
208.92
230.31
222.70
197.04
201.99
214.54
203.40
1969
PflQ.lf,
273.27
272.21
248.08
236.14
221.45
233.38
222.37
207.89
228.03
235.82
195.40
207.03
214.54
208.39
187.01
186.68
191.19
201.9,1
190.52
201.16
196.77
??0.9?
243.67
263.60
263.99
248.19
267.57
225.12
266.71
257.01
1970
226.77
236.18
244.70
252.84
245.98
250.50
232.36
247.59
244.16
255.71
244.12
219.66
220.27
211.13
233.53
229.70
207.30
232.23
216.76
235.58
262.77
237.86
244.30
225.90
260.31
304.22
270.89
229.23
241.08
205.37
209.85
Precipitation
Water
Equivalent
Inches
.01

.27
Trace





1.08
.71
.11
.07


.24
Trace
Trace
Trace

.09
.15

.01
.03
.19


.04

Trace

-------
                          APPENDIX  I

                 X-ray Diffraction Techniques
        To use x-ray diffraction techniques to explore crystalline
species in the sludge, the material must be changed from a liquid to
a powder.  Air drying at room temperature and freeze drying were
chosen for drying because the temperature at which sludge was
initially formed would not be drastically exceeded.

        Liquid sludge was obtained from the sewage plant.  This was
centrifuged and the bulk of the liquid removed.  The concentrated
sludge was placed in a Virtis Automatic Freeze Dryer, Model 10-010,
and dried.  The freeze dried material thus obtained was fibrous in
character.  When ground it appeared as a fine fluffy powder.  Air
dried material appeared in the form of hard, millimeter sized
particles and when ground yielded a granular powder which was easier
to handle.

        A crystalline sample selected from mineral Vivianite was
obtained from a commercial source.  This material was found to be
magnetic.  It was reasoned that if one of the chemical species of
interest in the sludge was an iron phosphate compound, it could be
separated and concentrated by a magnetic separation technique and
identified.

        The sludge sample, whether freeze dried or air dried, was
separated by dropping it through a high itensity magnetic field.  The
powdered sludge residue was dropped through a 2 inch diameter glass
cylinder placed between a 10 kilo-gauss electro-magnet.  The
magnetically separated material adhered to the side of the cylinder
and the nonmagnetic material dropped through.

        The magnetically separated material was then loaded into a
0.5 mm diameter glass capillary.  These capillaries were mounted in
a 114.6 mm Philips powder diffraction camera.  The specimens were
then exposed to a beam of x-ray radiation, obtained from an iron
x-ray tube, for periods of time ranging from 2 to 6 hours.  The
x-ray diffraction patterns were recorded on film in the form of lines
of varying intensities at various angular positions.

        The angular positions of the x-ray diffraction lines were
used to calculate the interplanar d-spacings of the unknown crystal-
line materials.  These d-spacings were compared with standard
patterns of crystalline materials in the ASTM files.  This allowed
the identification of the crystalline species in the sludge residue.
                                 128

-------
                                        APPENDIX  J
                             % FREE ACID IN PICKLE LIQUOR
From the A. 0. Smith  Corporation

                           % FREE
DATE
SPECIFIC
GRAVITY
                            ACID
                                               From U.  S.  Steel Corporation
                                                DATE
SPECIFIC
GRAVITY
                                                                               % FREE
                                                                 ACID
2-17-70
2-18-70
2-19-70
2-20-70
2-23-70
2-2U-70
2-25-70
2-26-70
2-27-70
3- 2-70
3- 3-70
3- U-70
3- 5-70
3- 6-70
3- 9-70
3-10-70
3-11-70
3-12-70
3-13-70
3-16-70
3-17-70
3-18-70
3-19-70
3-20-70
3-23-70
3-2U-70
3-25-70
3-26-70
8- U-70
8- lt-70
8- 5-70
8- 6-70
8- 6-70
8- 7-70
8- 7-70
8-10-70
8-10-70
8-11-70
8-12-70
8-13-70
8-13-70
8-1U-70
8-1U-70
8-17-70
8-17-70
8-17-70
8-18-70
8-19-70
Ave
Max
Min
1.18U
1.185
1.262
1.26U
1.2te
1.268
1.2U6
1.270
1.285
1.251
1.202
1.192
1.273
1.261
1.29U
1.229
1.288
1.291
1.238
1.277
1.217
1.181
1.288
1.300
1.30U
1.266
1.307
1.320
1.263
1.28U
1.273
1.283
1.280
1.268
1.321
1.319
1.331
1.316
1.301
1.216
1.223
1.221
1.272
1.252
1.267
1.26U
1.260
1,281
1.26 U
1.331
1.181
                              2.7
                              5.0
                              5.8
                              It. 9
                              3.9
                              it. 6
                              it. 3
                              It. 3
                              5.2
                              2.T
                              U.O
                              It. 6
                              fc.5
                              It. 2
                              3.9
                              3.9
                              5.6
                              3.3
                              2.1
                              5.7
                              U.2
                              3.9
                              U.7
                              >t. 3
                              It. 2
                              U.3
                              it.o
                              U.5
                              It. 6
                              It. 8
                              5.2
                              5.0
                              5.0
                              It. 8
                              It. 3
                              >t. 7
                              5.0
                              5.0
                              5.3
                              M
                              5.0
                              I*. 8
                              It. 5
                              >t.lt

                              it. 5
                              5.8
                              2.1
                                11- U-70
                                11_ lt-70
                                11- It-70
                                11- 5-70
                                11- 5-70
                                11- 5-70
                                11- 6-70
                                11- 6-70
                                11- 6-70
                                11- 9-70
                                11- 9-70
                                11-9-70
                                11-10-70
                                11-10-70
                                11-10-70
                                11-11-70
                                11-11-70
                                11-12-70
                                11-12-70
                                11-12-70
                                11-13-70
                                11-13-70
                                11-13-70
                                11-16-70
                                11-16-70
                                11-16-70
                                11-17-70
                                11-17-70
                                11-17-70
                                11-18-70
                                11-18-70
                                11-18-70
                                11-19-70
                                11-19-70
                                11-20-70
                                11-23-70
                                11-2U-70
                                11-2 lt-70
                                11-27-70
                                11-27-70
                                11-27-70
                                11-27-70
                                11-30-70
                                11-30-70
                                11-30-70
                                12- 1-70
                                12- 1-70
                                12- 1-70

                                Ave
                                Max
                                Min
 1.180
 1.186
 1.172
 1.206
 1.202

 l!l98
   ,208
   ,202
   ,198
   ,195
   ,19lt
   ,198
   196
   203
   203
   201
   201
   201
   201
   203
   202
   210
 1.223
 1.209
   19 U
   196
   196
   200
   200
   192
   ,200
   ,208
   ,193
   ,220
   ,222
   ,206
   ,198
   ,20lt
   ,188
   ,185
   ,182
   ,181
   ,18U
   ,186
  1.186

  1.198
  1.223
  1.172
                                                                               8.1
                                                                               8.0
                                                                               8.2
                                                                               7.7
                                                                               7.6

                                                                               7.8
                                                                               7.3
                                                                               7.1*
                                                                               7.7
                                                                               8.9
                                                                               7.5
                                                                               7.2
                                                                               6.8
                                                                               6.6
                                                                               6.9
                                                                               7.2
                                                                               6.9
                                                                               7.5
                                                                               7.5
                                                                               8.8
                                                                               7.8
                                                                               7.9
                                                                               7.9
                                                                               7.6
                                                                               7.8
                                                                               8.0
                                                                               8.9
                                                                               8.9
                                                                               8.3
                                                                               8.5
                                                                               8.5
                                                                               8.2
                                                                               8.9
                                                                               6.8
                                                                               7.6
                                                                               7.6
                                                                               7.2
                                                                               7.2
                                                                               7.6
                                                                               7.6
                                                                               7.8
                                                                               7.3
                                                                               7.5
                                                                               7.5
                                                                               8.3
                                                                               8.5
                                                                               9.3

                                                                               7.8
                                                                               9.3
                                                                               6.6
                                     129

-------
                                      APPENDIX   K

                              ALKALINITY AS mg/1
  DATE
  RUN
  19TO

  6-23
  6-2 U
  6-25
  7-  1
  7-  5
  7-  8
  7-12
  7-13
  7-19
  7-21
  7-23
  7-26
  8-  3
  8-  1*
  8-  5
  8-  6
  8-  7
  8-  8
  8-  9
  8-10
  8-12
  8-13
10-11*
10-19
10-20
10-21
10-22
10-26
10-27
10-30
11-  3
11- U
11-11
11-12
11-17
11-18
11-19
12- 1
12- 2
12- 3
12- 7
12- b
12-15
12-17
12-29

Ave
 SCREENED SEWAGE

Original    Alkalinity
   T3H
                                       WEST PLANT EFFLUENT
                                      EAST PLANT  EFFLUENT
7.0
6.9
6.8
6.9
7.0
6.9
6.9
6.9
6.9
6.9
6.9
7.0
6.6
6.7
7.0
7.0
7.0
6.9
7.0
6.9
6.9
6.9
6.9
232
220
201*
230
218
211*
181*
228
230
232
238
231*
176
210
218
2UO
21*8
226
2UO
230
226
232
21*6
  6.9
221*
Original
   pH

   7.8
   7.8
   7.7
   7.8
   7.9
   7.9
   8.1
   7.9
   7.9
   7.7
   7.8
   7.6
   8.0
   7.6
   7.8
   7.6
   7.9
   7.8
   9.0
   8.1
   7.3
   7.6
   6.9
   6.9
   7.2
   7.1
   7.0
   7.2
   7.7
    .0
    .2
    .5
    .1*
   7.
   7.
   7.
   7.
   7.8
   7.5
   7.6
   7.5
   7.1*
   7.3
   7.3
   7.2

   7.5
                             7.
                             7.
                             7.
                             7.
                              .5
                              .2
                              .2
                              .5
                        Alkalinity
                                           206
                                           210
                                           200
                                           210
                                           200
                                           190
                                           200
                                           200
                                           170
                                           190
                                           188
                                           182
                                           196
                                           192
                                           206
                                           196
                                           208
                                           200
                                           202
           Original
              pH
Alkalinity
190
191*
232
231*
220
232
221*
228
232
198
214
216
232
2 U6
22k
230
230
262
2l*U
220
21*2
232
220
218
2l*U

213
7.5
7.1*
7.1*
7.9
7.9
7.8
7.8
7.7
7.2
7.6
8.1
7.6
7.9
7.1
7.6
7.8
7.8
7.7
7.7
7.8
7.2
7.1*
6.9
7.1*
7.1
7.0
7.3
7.0
6.9
7.3
7.3
7.3
7.2
7.6
7.1
7.2
7.1*
7.8
7.6
7.6
7.1*
7.7
7.3
7.3
7.3
172
170
168
166
121*
130
136
150
111*
161*
ll*2
158
13U
166
181*
168
166
1U6
11*1*
121*
152
130
196
188
182
186
192
18U
172
166
16 U
11*8
190
188
180
190
190
2014
19U
188
192
200
192
180
211*
                                                                    7.5
                                                                    169
                                         130

-------
                           APPENDIX K(CONT.)

                        MIXED LIQUOR ALKALINITY
                              WEST PLANT
                         EAST PLANT
Date 1970
  6-23
  6-21+
  6-25
  7-1
  7-5
  7-8
  7-12
  7-13
  7-19
  7-21
  7-23
  8-6
  8-9
  8-10
  8-12

  AVE.
                        Original  Alkalinity  Original  Alkalinity
                           pH                    pH
7.2
7.3
7.2
7.7
7.6
7.0
7.9
7.6
7.U
7.2
7.3
l.k
7.3
7.5
7.1
20U
196
200
190
206
202
180
190
182
196
I9k
196
19 ^
22H
198
6.9
7.3
7.0
l.k
7.U
7.1
7.9
7.8
7.0
7.0
7.0
7.2
7.2
l.k
6.9
180
180
176
192
216
20k
19 'k
192
161*
192
200
18U
182
190
166
l.k
197
7.2
187
                                   131

-------
                                                           APPENDIX
                   DATE 1970
                                      SOLUBLE SULFATE CONCENTRATION - REPORTED AS mg/1
SCREENED
 SEWAGE
  EFFLUENTS
WEST    EAST
DATE 1970
SCREENED
SEWAGE
U)
ro
2-22
2-2 k
2-25
3- 1 thru 3-7
8- 1
8- 2
8- 3
8- U
8- 5
8- 6
8- 7
8- 8
8- 9
8-10
8-12
8-13
ti-lU
8-15
8-16
8-17
8-18
8-20
8-21
8-22
8-23
8-2U
75
111*
119
116
80
125
83
95
90
91
100
88
60
95
87
95
75
65
ho
83
98
83
88
83
59
91
90
152
1U8
139
130
115
103
110
118
120
128
105
105
110
118
130
125
118
103
90
110
118
118
115
98
108
92
109
110
115
100
90
91
88
103
103
80
88
91
70
100
79
152
122
103
103
130
131
131
123
115
122
8-23 thru 8-29
8-30 thru 9- 5
9- 6 thru 9-13
9-1*4 thru 9-19
9-20 thru 9-26
9-27 thru 10- 3
10- 1* thru 10-10
10-11 thru 10-17
10-18 thru 10-2U
10-25 thru 10-31
11- 1 thru 11- 7
11- 8 thru 11-lU
11-15 thru 11-21
11-22 thru 11-28
11-29 thru 12- 5
12- 6 thru 12-12
12-13 thru 12-19
12-20 thru 12-26
12-27 thru 1- 2


Average
(8/23-1/2)

All Daily Samples

_
118
112
103
110
115
151
122
138
110
118
122
1*5
118
_
121+
118
108
110



120

Represent 2k hr.

120
131
108
98
118
125
130
130
138
125
108
138
118
125
_
133
12 J*
119
118



123

11*0
133
135
131
H*5
151
1U8
1U8
11*8
11*0
151
163
158
130
_
151*
151
oM
138



1^5

Composites



-------
                           APPENDIX  M
        Uptake and Release of Soluble Ortho-Phosphate
        In an investigation to determine and compare the soluble
ortho-phosphate uptake and release in the East and West plants,
samples of East plant sewage, return sludge and mixed liquor were
collected and allowed to stand for one to two hours.  An aliquot
was taken initially and filtered immediately.  Other aliquots
were taken after various detention periods and again filtered
immediately.  Soluble ortho-phosphate (SOP) determinations were
run on the filtrates, the results for sewage, return sludge and
mixed liquor are shown on figures 21, 22 and 23.  The data
indicates a slight reduction in the SOP for the sewage and large
releases of SOP from the return sludge and mixed liquor.

        Another run was made similar to the first but this time
the pH values were taken and the detention time increased to
3 1/2 hours (figures 2k and 25 show the data).  The SOP concentra-
tions again indicated slight reduction in the sewage, a large re-
lease from return sludge and slight release from the mixed
liquor.  The sewage pH value decreased and the mixed liquor and
return sludge pH values increased.

        The data indicates that any testing involving SOP uptake
or release would require the immediate filtering of all samples
taken.
                             133

-------
CL
cn
E
LU
X
CL
CD
O
O
X
h-
cr
o

LU
_l
00
ID
_l
O
CO
                TIME,  HOURS
                  Figure 21

         Sewage  SOP Versus Time
                      134

-------
                   East Plant Return Sludge
      TIME, HOURS
        Figure 22
Sludge  SOP  Versus Time
           135

-------
Q_
 -  2 H
Lu
Q_
CO
o
X
Q_
 i
O
X
I-
cr
o

LU
_l
DO
O
ID
                        East Plant Mixed Liquor
                        0	 Fe Addition Point
                        a	a Aeration Tank Inlet
                        0	-0 Aeration Tank Turning Poirrt
                   TIME,  HOURS
                      Figure 23

        Mixed  Liquor  SOP  Versus  Time
                         136

-------
Q_
 I
0	OEast Plant Mixed Liquor
a	a East Plant Return Sludge
                  '-- ..... -0 ...... 0 ......... o ........ 
     0   0.5    I         2         3
                    TIME,  HOURS
                       Figure 24

               SOP  Versus Time
                         137

-------
 7.7



 76



7.5



7.4



7.3



7.2



7.1-



7.0



6.9



6.8



67-



66
6.5
 \
  \
   \
    \
0	
                	 Sewage
                O   -OFast Plant Mixed Liquor
                o	a East Plant Return Sludge
                        ...0
.0
      0.5
                 TIME,  HOURS
                     Figure  25
             pH  Versus   Time
                       138

-------
Mie-1-10/66/69
                                       APPENDIX  N
                                                              Date
                                                                      March 2. 1970
            MICROSCOPIC COUNT OF MIXED LIQUOR PER  MILLILITER AT 0.25* SOLIDS
                                       10 Fields (200  PWR)  Total  Count x 200  Count/ML
                                                  Solids diluted to 0.125*
M.L. Temp.
Solids
Color
Eerltrichia Epistilis
Opercularia
Zoothanium
Carcheslum
Vortieella
Holotrichia ColpoJa-Colpidium
Loxoplyllum
Chaenia
Chilidon
liypotrichia - Large Euplotes
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Rhizopoda Difflugia
Guttula
Proteus
Kotirers
Nematodes
AlgaeS
Leptospira/Fleld
Slime Molds .Small Amoeba Zoo flagellates /Field
Filament/Slime Ratio
Filament Length/Type
Type Floe %
Moc bi ze
Floe Connected >
Floe Thickness (Fluffy)
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West Negligible
East 20?
(Thioaystis
Sulnhur Bacteria (B. Gigas.etc
Wt Negligible
East Negligible





WfljflT M.L. EAST tt^L. 	 ,

0.202
Med. r.rey Ri-nun




1















































1










J,-























^









J,




1








Ft












?










Bl












1










1







1




1











































i



1




















,20G


ino

200








Uoot







20ffl
Some Dinobrvon



2/QS
Short & Medium
Negl-Fila Gran-Normal Dens
1frfpin-^0!5smal..:rest med.
20 1>
Son-Fluffy (Non 3-Dimentior
r
Neg! to low

NeKl.toLnw
Mar Iced
Negligible
l/2u
5/10

None
None
Marked
Low

1=^


!P1
f,

0.232





p



















Med. Rust







































k'












1










6










1












F:




1







k










e.








Brown




9










d













1

















































1















1







14,000



300






10.000




1400







2/28
Short & Medium
Lty Same as West
'leel pin 10/Ssmall rest med.
30%
11 > Sai?e as West
Clear
nthrix RnhMiT-otllln
t.nna '*
Free Zooglea, coarse
Zooglea Ramigera
Slime Clots, Zoogleal
Ribbon-Conglom-Floc ( B. Qigas
Grease. -

T.I If. Nr,H.o
1 Actino Involved
Nocardia Mycelia
finr+. Vnr-m
Fungus Fil. Large Tyue
Fiber Count

r,v few CluinDS

T.nu
MaT-lrrt
10/10
1/20
10/10
20!!
None
None
Low
Low

                                     139

-------
Mic-1-10/66/69
                                       APPENDIX  N
                                                              Date
                                                                      April 29, 1970
            MICROSCOPIC  COUHT  CF  MIXED LIQUOR PER   MILLILITER AT 0.25*  SOLIDS

                                      10 Fields (200 PWR) Total Count x 200  Count/ML
                                                  Solids diluted to 0.125*
M.L. Temp.
Solids
Color
Supernatant
Perltrichla tpistilis
Opercularia
Zoothanium
Car che Blum
Vorticella
Holotrichla Colpoda-Colpidium
Loxoplyllum
Chaenia
Chilidon
Soirotrichia Aspidisca
liypotrichia - Large Euplotea
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoebina Arcella
Rhlzopoda Difflugia
Guttula
Proteus
Hotirers
Hematodes
Algae?
Leptospira/Fleld
Slime Molds, Small Amoeba Zooflagellates/Fleld
Bacteria Background
Filament/Slime Ratio
Filament Length/Type
Type Floe J
floe size
Floe Connected >
Floe Thickness (Fluffy)

Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West 20 - 30*
East 80*
(Thiooystls
_ 	 Sulnaur Bacteria (B. Gin* ,etc
Wt. Ncirliei'ble
East Heelieible





WEST M.L. EAST "-t--
62
^
i^T*av Brown
Ti




2



1
2






1








>\1 H S




i

1

1




















1


I

\






2















1

















c







1





















1


1








1








,|




1


T

















p




2











?








Floe




1




1















1
























200



180Q

20C
i ?no
140C
9P






L200










Neeliaible
Low
Low-Marked (Most Snores)
2/9H
Medium - Long
Negl. Fila Gran - Medium
< 10S Pin 10J Small
50*
Non Fluffy
<1U'; Pila Uran Pin
Clear
NeRliKible
HpffUfflhlB
Low
Jegligible
5/10 Pld
Negligible
**/ 1 n vi H

:ieligible
 MarVod
Negligible
Heelislhlo


.28

SI. Turbid so





























i



























1





















1




























L









































ne b


















































US

























D.

























i*lOC




1400


?np
200


















NBffH^hl*
Low-Marked
Low-Marked (Host Spores)
1/99
Long - Clunroed

102 Pin
805S
Non Fluffy
10* Fila 5ran Pin
Clear

Mt.n. "
Free Zooglea, coarse
Zooslea Ramlitera
Slime Clots, Zoogleal
Ribbon-Congloa-Floc ( B. Sigu
r

Ireaae- -
% Act!
T.IVo tnAmj
ElO InvalTed
tfocardia M/celia
w 5?hrtT^i Frti-m
rungus Pil. Larne Tree
Fiber Count

Heel.
Nol
T nu
Hettl.

Neel.
>6noTla 

"if1 -
Low
Neel.
Jlepl .

                                       140

-------
               APPENDIX If
Mic-l-iO-/66/69

            MICROSCOPIC
                                       Date
                                                 June 18. 1970
COUNT OF MIXED LIQUOR PER  MILLILITER AT  0.25*  SOLIDS

               10 Fields (200 PWR) Total Count x 200 - Count/ML
                           Solids diluted to 0.125*
                             _WEST  M.L.
M.L. Temp.
Solids
Color
Eerltrichia Epistilis
Opercularia
Zoothanium
Carchesium
Vortieella
Holotrichia Colpoda-Colpidlum
Loxoplyllum
Chaenia
Chi 11 don
Spirotrichia Aspidisca
liypotrichia - Large Euplotes
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasla
Small Flagellates
Medium Flagellates
Amoeblna Arcella
Rhizopoda Difflugia
Gutt-ila
Proteus
Hotirers
nematodes
Algae*
Leptospira/Field
Slime Molds .Small Amoeba Zooflagellates /Field
Bacteria Background
Filament/Slime Ratio
Filament Length /Type
Type Floe *
tloc size
Floe Connected >
Floe Thickness I Fluffy;
Floe Fragmentation?
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West Nealieible
East Lav
(Thiooystis
Sulnhur Bacteria (B. Giftas .etc
Wt- HH
-------
                                       APPENDIX H
Mic-1-10/66769
                                                              Date
                                                                       August 10.  1970
            MICROSCOPIC COUHT OF MIXED LIQUOR PER   MHiLILTTER AT 0.25* SOLIDS

                                       10 Fields  (200  PWR)  Total Count x 200   Covmt/ML
                                                  Solids diluted to 0.125*
                                                     WEST  M L
M  L  Xcfflp 
Solids
Color
Supernatant
Perltrichla Eplstilis
Opercularia
Zoothanlun
Carcheslum
Vortlcella
Holotrichla Colpoda-Colpidi urn
Loxoplyllum
Chaenla
Chili dQn
Splrotrlchia Aspidisca
liypotrichia - Large Euplotea
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoeblna Arcella
Rhlzopoda Difflugla
Gut tula
Proteus
Kotirers
Nematodes
Algae S
Leptosplra/Fleld
Slime Molds .Small Amoeba Zooflagellates /Field
Bacteria Background
Filament/Slime Ratio
Filament Length/Type
Type Floe %
rioc bize
Floe Connected J
Floe Thickness IFlufry}
Floe Fragmentation}
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West > 90* Granular
East > 905 Granular
(Thioaystis
SulBhur Bacteria (B, Giftas.etc
JJ -larked Bec.Gigas .ST>irulime
	 & Tniocystis
East Negligible




12
.217
Dark Grev Brown
Sliphtlv Turbid




1
















1










1




1







1





51,














T




1













]





j/



1
1



















Fi















1








fl




1



















)




2







1


1













1




h,


















1
1























1





^Hnr


1400


600


100

?\ti



IjQpC



800
1606





Very Hiph Count

Low
NenliPible Filaments
ilot Atmlicable
Floe Gran Hetero-Consrlom
-O^pin/Smal.. & tedium 70S
< 20Z
lion-fluffy
10a Granular
Clear


KiKh

1/10
Marked
10/10 "
N'eplifrible


Low
Low


.256
Medium Red Brown
CV.ear







1












1


1

h


















1
1
L







1





1









2











,L












1





a.


















It


2








i


i
























j









i
L





|



]














> 1
2 I
1

1











L









1




fiiiia
1POO __


1*00


600


BOO








oOO
2800
600

.000



Negligible

Very Light
negligible Filaments
((ot Applicable
Floe Gran Hetero-Conelom
10^Pin.lQ)fSftll^) 20%
lion-fluffy
10,4 Granular
Clear
jptothr^ sph*itrnti1-H-a
H.ton= "
Free Zooglea, coarse
ZooRlea RamlRera
Slime Clots, Zoogleal
Ribbon- Jonglom-Floc B.Glgas]
(

Crease. -
X Act!
r/fko Kr,rt.=
no Involved
Nocardia Mycelia
^hni-t. Vnrm
Fungus Fil, Lar0e Tyoe
Fiber Count



jOW


llefl.
yu/iu
lierl.


Low
Low

                                        142

-------
                                       APPENDIX N
Mio-1-10/66/69
                                                              Date  November  13.  1Q7Q
            MICROSCOPIC COUHT OF MIXED  LIQUOR PER   HILLILITER AT 0.25X SOLIDS

                                       10  Fields (200 PWB) Total Count x 200  Count/ML
                                                  Solids diluted to 0.125*
M.L. Temp.
Solids
Color
Peritrichia Epistilis
Opercularla
Zoothanium
Carchesium
Vorticella
Holotrlchla Colpoda-colpldlum
Loxoplyllum
Chaenia
Chili don
Spirotrichia Aspidisca
Uypotrichia - Large Euplotes
Suctoria Podophrya
Flagellates Large Peranema TrichoDhorum
Astasia
Small Flagellates
Medium Flagellates
Amoebina Arcella
Rhizopoda Difflugia
Guttula
Proteus
Hotirers
Hematodes
Algae*
Leptospira/Field
Slime Molds .Small Amoeba Zooflagellates/Fleld
Bacteria Background
. Filament/Slime Ratio
Filament Length /Type
Type Floe %
t'loc size
Floe Connected 
Floe Thickness I Fluffy;
Floe Fragmentation*
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West =20%
East 
(Thiooystis

ut- Some
Ba*i Low





IfEST M.L. EAST M !.-
67* F
.331*
Brown Grey




1



























1










1





1

Ji







1











1





































3











I










1











1



1









1




















2





1



1






1

















1






]












1
















hOO


600


140Q
200
&Q
200



100



i!UU
200

800

200
200




Moderately Heavy
5/9?
Medium LonK Very Lons
Fila-Gran-Open-Lacey-Ligtvl
IDS Pin to 208 x Laree
302
Fluffy
102
Cle


Marked



10/10
205!

Marlcpd
Very Marked
Marked

r

.310
Br









1









1












1













1






















1

1



own Grey










1









1


,L















1









1


















i


1












1









1
1



















1



1

|



L














1






L










200

ufio
200



feOO



linn
600
600
800

200
1*00




Lifiht
2/98
Not Exposed
Granular, Lacey
10/S Pin. 20/i Small
20*
Non-Fluffy
10S Granular Pin
Clear
jfiptoV1*"1* ST>hrpttlia
N.t.no "
Free Zooglea, coarse
ZooKlea Ramlgera
Slime Clots, Zoogleal
Ribbon-Conglom-Floc(B.3igas j


t Act! no InvnlTMii
Nocardia Mycelia
Rharfc Vnrm
Fungus Fil. Lara
Fiber Count

e Troe




Hign

Low(but Ige)

_20/10
20%

Some
Marked
Marked

                                       143

-------
   Accession Number
 w
                     r\ I Subject Field & Group


                             05D
                                     SELECTED  WATER RESOURCES ABSTRACTS
                                           INPUT TRANSACTION FORM
   Organization
                Sewerage Commission of the City of Milwaukee
                Milwaukee, Wisconsin
   TMe
           Phosphorus Removal with Pickle Liquor in an Activated  Sludge  Plant
10
AuOior(a)
Leary, Raymond D.
Ernest, Lawrence A.
Powell, Roland S.
Manthe, Richard M.
                             Project Designation
                                                      EPA WQO   Project  #11010 FLQ
                                    21 j
                                    *"*
    Citation
           Proceedings of the Porcelain Enamel Institute Technical  Forum,  Volume 32,
           Page  103, 1970
23
Desc'riptora (Starred First)
           *Activated Sludge, *Biological Treatment, *Chemical  Precipitation,  *Iron,
           *Phosphorus, *Waste Treatment, Ferrous Sulfate, Pickle  Liquor,  Phosphorus Removal,
           Sewerage Commission of the City of Milwaukee
2*:  Identifiers (Starred First)
27
    Abstract
              The Milwaukee Sewerage Commission's Jones Island Waste Water Treatment Plant
           consists of a mutual primary treatment facility followed by two separate activated
           sludge plants.  To enhance phosphorus removal in the  115 MGD East  Plant, spent hot
           sulfuric acid pickle liquor (ferrous sulfate) was added for a one  year test period.
           The 85 MGD West Plant was operated as a control.
              The major objective of the iron addition was to maintain an East Plant effluent
           total phosphorus concentration of 0.50 mg/1 P.  The East Plant effluent total
           phosphorus concentration during the 1970 project period from January 12 to
           December 31, 1970 averaged 0.70 mg/1 P representing 91.3$ removal.   The East Plant
           effluent total soluble phosphorus concentration averaged 0.30 mg/1 P or 90.7%
           removal.  Modification and automation of the iron addition  which was completed
           in  December 1970 will further reduce East Plant soluble phosphorus residuals.
              Comparison of the efficiencies of the West and East Plants in removing BOD,
           COD, and suspended solids as well as microscopic examination of the mixed liquors
           indicates that the addition of the unneutralized pickle liquor did not adversely
           affect purification.

              Waste pickle liquor can be and is being utilized at the  Milwaukee Jones Island
           Plant to enhance phosphorus removal.
Abstractor
       Manthe,  Richard M.
                              IfiNtittition
                                   Sewerage Commission of the City of Milwaukee
 WR:1D2
 WRSI C
                         SEND, WITH COPY OF DOCUMENT, TO: WATER RESOURCES SCIENTIFIC INFORMATION CENTER
                                                   U.S. DEPARTMENT OF THE INTERIOR
                                                   WASHINGTON. D. C. 20240
                                                                          GPO: 1970  407 -891

-------