I • t **••§ • I mfJL I  ' * • t *«M*f •***••*§**• I • ( •
• • • •••***• • • 9ff\ I  , » • *Mt*****M»IMM*« • • •
«*««••«*«• > y^ y 1   ' * «*««*§*•«•«»•• *««
• • • ItHMt » *fff \  I * • ( inMniMMIMH * • t


!•>••• tf-^S ff  fit »»* f • * *M«M*M * *
                  H«tho» I)all89 AiHualitg  Siwilation

                                 June 25, 198?
                                 HWsoft  Inc.
                                 6333 77th Avenue SE
                                 Hercer Island,  UA 98040
                                 (206K32-181$
                                         •• t«*» 1H4IIMIM MM WMM §••« *M H ••« «M I»»« M t M • 11 * •• * IM t •• * *
                                         «*•*••»»>*•• tt* 11*« M*l •**« * t tMI *« • • *• * t * t * * *t M UUttlPtMflf A*A*

-------
                       Report No. EPA-910/9-87-180
Methow Valley Air-Quality Simulation
          Halstead Harrison
           WYNDsoft, Inc.
          6333  77th Avenue SE
          Mercer  Island, Washington  98040

          June 25, 1987
           Prepared for

           U.S. Environmental Protection Agency
           Region 10
           1200 Sixth  Avenue
           Seattle, Washington 98101-3188

-------
         An Air-Quality Simulation of Total Suspended Particles
     In the Methow Valley of Okanogan County, Washington  State
                                  Halsttad Harrison
                                   WYNDsoft Inc.
                                 6333 77th Avenue SE
                               Mercer Island, WA 98040

The concentrations of total suspended particles (TSP) in the air of a constricted mountain valley
system have been simulated with a 820-box, 2-layer model that accounts for systematic and ran-
dom  winds with  boundary  conditions appropriate to the complex valley contours.  Three-day
episodes were computed with the actual winds of February 10-12,  1985, with base-case and pro-
jected emissions.
Resulting estimates of TSP-concentration  fields are presented as functions of time and space, for
highest 24-hour averages  and for highest 6-min episodes.  Comparisons  are presented between
observations and simulations.
I.  Introduction
This report completes  a  two-part task for  the US Environmental Protection Agency,
Region X,  to simulate  smokey  episodes in  the  Methow Valley  of Okanogan County.1
Task 1 of this projected has been completed with the report 'On Air-Quality Modeling in
Complex Terrain,  with  Emphasis on  WYNDvalley, A  Dispersion Model  for  Near-
Stagnant Flows' [Harrison, 1987].  That report described  the  application of Gaussian-
plume  and  box-model  simulations in  complex terrain,  and  the  technical  details  of
WYNDvalley, a box model that had been used in an earlier simulation of the Methow.
[R.W. Beck  Associates, 1985].  This  present report describes recent  modifications  of
WYNDvalley  and presents data for source emissions and winds, and the model's output
simulations for the  concentrations of suspended atmospheric particles.

H.  WYNDvalley
WYNDvalley  is a conventional linear  box model adapted  to  the complex topologies and
boundaries that characterize drainage-valley airsheds.  For details the reader is referred
to the report of Task 1  [Harrison,  1987).  The choice of transport parameters is crucial to
successful use of such models ... or,, indeed, all models. A sensitive  parameter that dom-
inates predictions for tracer concentrations in  airsheds that are laterally  restricted, as in
the present case, is the rate at which ventilation occurs across the upper surface of the
modeled region, into the  free atmosphere above.  In the previous exercise of WYNDval-
ley,  this ventilation  was  simulated  as  occuring from  a single  layer of 'boxes'  whose
heights (100m) and  ventilation  rates  were  estimated  subjectively with  the help  of
 1 Order Number 7Y0499NNSA, March 26, 1987 [amended April 1, 1987}, ATTN: R. Wilson, EPA, 1200 Sixth
Avenue ES-098, Seattle, WA 98101-3188

-------
acoustic soundings  on 'typical'  stable winter days.  The resulting rates  corresponded
roughly to  Gifford-Pasquill-Turner  stability  class  E,  for which  the  eddy-diffusivity
coefficient at 
-------
                                       - 3-

     of the next two  columns locate each box: i- increases  leftwards from  the  upper
    right corner of  the accompanying figures  Ib and Ip, and j- increases down.wards.
    The fourth  column '1985' gives one of the base-case inventories used in the previous
    exercise [Beck, 1985].  The fifth column '1983' is the  base inventory for the present
    study.  The sixth, 'inc' gives the  anticipated increments  above the 1983  base case,
    and the  seventh  'Total'  sums  the  two.  The last column  lists the  differences
    between the 1985 and 1983 inventories. All emissions are in kilograms per day.

    Figure 2  illustrates an assumed fractional emission curve for TSP as a function of
    time of day. This curve remains unchanged from that assumed earlier.

2.   Transport
    I am grateful to Mr. R. Miller and Ms. P. Thede of  the  Washington State Depart-
    ment of Ecology for making available to me the original wind  data collected by
    WDOE at the Knott Station in Winthrop and the Bernheisel residence in Carleton,
    during the  period January 1  through April 14, of 1985.  These data display hourly
    velocities in 1 mph increments, and directions in 5 degree increments. An examina-
    tion of this record showed  three periods of 72 hours (midnight  to  midnight) for
    which the mean winds were  less than 2 mph. While  most of the velocity  entries for
                                  •
    these  periods showed finite  winds, the  direction entries defaulted to '000',  which
    coded 'calms'.  [360 coded northerly winds].

    I selected one of  these  72-hour  episodes,  from midnight to midnight of February
    10-12, 1985, as displaying the largest  incidence of calms.

    Table II  lists the  transport  coefficients used  in each of 72 successive hours for the
    simulations.  The  second and  third columns  show  the  horizontal  and  vertical
    diffusivities. The fourth column gives the winds. All  northerly winds are  negative
    and all southerly are positive. All winds within 90 degrees of each of these  two car-
    dinals were subsumed into one category or the  other.  [This is  less arbitrary than
    will later appear, because most winds were  assigned as 'random'.]  The last three
    columns show the diffusive [Rt], ventilation [/?,], and advection [./?„]  terms as  used
    by WYNDvalley, as fractions per hour.  These were obtained in the following way:
    a.    Gifford-Pasquill-Turner stability class 'E' was assumed, for which the  horizon-
          tal  and vertical diffusivities were  taken to be  12.5 and. 0.126 m~s~l, respec-
          tively, at  wind speeds  of  1  mph  [Harrison, 1987:  table  1,  page 23].  These
          values were then multiplied by  the magnitudes of the prevailing hourly wind
          speeds, and Rd  and /?„  were estimated as Ky /dx2 and  K:/dz~.

-------
                                   - 4-

b.    Next the '000'  flag for  'calms' was examined,  and where these  occurred  the
     horizontal eddy-term, Rt, was modified  by adding the absolute value of  the
     indicated wind  speeds divided by the horizontal grid spacing, dx.  Where  the
     '000' flag was  omitted, the  advective term, Rw, was retained  as the wind
     speeds  over dx, with appropriate sign.  In the few cases where wind speeds
     were tabulated  as  zero,  1 mph was assumed for the K, and K,, but no 'ran-
     dom' winds were added to the Rt.

     Figure  3 illustrates  the temporal behavior of  the three  transport terms, in
     arbitrary but proportional scales, for the 72 hour period of the simulations.

3.    Results
     a.    The time-dependent behavior of TSP simulations at  Twisp, Winthrop,
          and Early Winters, during the  72 hour episode, are shown  in figures 4b
          and 4p, for the base-case  and  projected  emissions,  respectively.  These
          show steadily increasing concentrations at  the three  sites, punctuated by
          several short spikes when the  winds were  reported  as zero,  and  ter-
          minated by more brisk winds in the late evening of February 12. Curves
          of this type are sensitive to the assumed starting  conditions, unless rela-
          tively brisk winds also depress  the TSP  levels at the beginning of  the
          episode, as indeed they  do here. For the present illustrations, starting
          TSP levels were assumed to be  at steady-state  with the starting tran-
          sport  parameters, but results for the  last 24 hours of the simulation are
          essentially equivalent when zero initial TSP levels were assumed  instead.

     b.   Spatial patterns for TSP concentrations are displayed in 5-8,  for both 24
          hour averages [between  hour 48 and 72] and for the  highest  6  minute  lev-
          els, for the  base-case emissions, for projected  emissions,  and for  the
          difference  between these emissions.

     Some comparisons between simulations and observations are presented below
     in Table IV.

-------
                                  - 5-
                           Table IV
                 Model Comparisons with Observations
                 Entries are TSP in /*g/m3
                 Base Year
                 Site
                     Projected Year
 observed   model       model
24-hr    24-hr/6-min   24-hr/6-min
            24    Mazama
            134    Winthrop
            241    Twisp
            353    Carleton
156
86

45
33/48
89/178
112/197
39/63
80/126
135/268
130/222
46/74
IV.  Summary and Discussion
The  modeled numbers approach, but do not exceed, the emerging PM10 standard
that  2nd highest annual 24-hr averages should be less than -150 /ig/m3. For 2 out
of 3  comparisons that are available between the model and observations, the agree-
ment is excellent.  The third is wildly wrong.  This case was observed on a windy
fall day, not in the winter season  . A suspicion here is that somebody was burning
leaves or slash.  The  highest 24-hr TSP observed in Mazama during in December
and  January of 1984-1985 was 18 jig/m3.

Modeling '2nd-highest 24-hr averages' is extraordinarily vulnerable to outliers, both
of measurements and models.  The user  of these numbers must ultimately judge
how  representative of 2nd-highest episodes are the parameters chosen, and must do
this  with little assistance from measurements, for which a single  episode was chosen
from only four months meteorological data. The parameters selected here represent
a  best guess at severe conditions that  might be encountered 3-10  times per year.
As a another guess, the PM10 standard may be exceeded with the projected emis-
sions, about 5-10  times per decade.  But  all bets are off for emission sources not
included in the present inventory ... such as leaf burning.

-------
                                 - 7-

V.  References
Beck, R.W. and Associates (1985)
Methow Valley Air-Quality Study and Management Plan
Okanogan County Planning Department, 227 4th North, Okanogan, WA 98440

Harrison, H. (1987)
On Air-Quality Modeling in 'Complex Terrain,  with Emphasis on WYNDvalley, A
Dispersion Model for Near-Stagnant Flows
WYNDsoft Inc., 6333 77th Avenue SE, Mercer Island, WA 98040

WDOE (1986)
Washington State Air Monitoring Data for 1985
Washington State Department of Ecology, Office of Air Programs,
Olympia, WA 98504-8711

-------
                                   - 6-

Figure Captions

lb,p Spatial distributions of emission inventories in kg/day for base-case and pro-
     jected emissions.

2    Diurnal emission function for wood-smoke emissions

3    Temporal behavior of the transport  coefficients for April 10-12, 1985.  The
     ordinate scales are arbitrary and offset, but proportional.

4b,c Temporal behavior of the simulated TSP concentrations at Twisp, Winthrop
     and Early Winters (Mazama), for base-case and projected emissions.

5b,p Spatial distributions of the highest 24-hour average simulated TSP, for base-
     case and  projected emissions.

6b,p Spatial distributions of the highest  6-minute maxima of simulated TSP,  for
     base-case and projected emissions.

7    Spatial distributions  of the 24-hr increments  [projected  minus  base-case] of
     simulated TSP.

8    Spatial distributions of the 6-minute increments [projected minus base-case] of
     simulated TSP.

-------
HE1HOU  UALLEY AIR-QUALITY SIHULAIION
  ,0<  •   <  50,0
30,6
20,0
10,0 <
 0,0 <
 HiniwiM  -
   40,0
   30,0
<  20,0
   10.0

   0,00  Kg/day
   4,00  Kg/day
  46,41  Kg/day
Early Winters ->
                                                                        north —>
                                                                   "I
                                                                   IlllltlllIlllIf1111111111II

                                                                    Illlllllllllllllllllllll
                                                                          MIIMIIIIIMIII


                                                                          Illllllllllllill
                                                                 Chewack  River
                                                Base-Case Ewissions

-------
HETHOU UALLEY AIHUALIN SIMULATION
         •   <  69,4
         •   <  49,0
         •   {  30.0
         B   {  20,0
         o   {  10,0
30,0 <
20,0 <
10,0 <
 0,0 <
                                       Early Winters -
 NiniMUM
 Average
 HaxiMUM
 0.00 Kg/day
 5,57 Kg/day
69,39 Kg/day
                                                                             north -->
                                                               lllllll|lll|lll|lllllll|
                                                               III III
                                                               III|III|III|IM|III|III|IIIIIHI


                                                               mil ilium iiliiiliiiliiiliiilm|iiiiiM|iiiiiii|iiii


                                                               nil        liiiliiiliii!iiiliiiliii|iii|i(i|iiiiiii|


                                                                               iilmliiiliiil
                                                                     Chewack River
                                                   Projected Emissions

-------
0,05
                                   D D D D
                      a D a  D cr            t a a  a  a  E
0,03
0,02
0,01
0,
-B-El  B B-0-
   <- fraction of daily wood swoke
       ertissions pep hour
H-


C


9


M
      12 PM       6 aM        12 noon      6 PM        12 PM

                     -.- tiMe of day —)

-------
A
       H(wind)
       R(vent)  x  10
       R(diff)
                      24     --  hours  -->
72

-------
259
150
 50
  0
          Base Case
       MSP  Iug/nA31
                                                            Early Winters\
    0
24     -- hours -->
72

-------
259
209
150
 50
            ~
           Projected [Missions
        <- ISP  [ug/MA3]
  0
                              Hinthrop
    0
24     -- hours -->
72

-------
 HEIHOH VALLEY AIR-QUALITY SIMULATION
120,0 (
 90,0 <
 60,0 <
 30,0 <
  0,0 <  '

  HaxiHUH
  Average
  HinimiM
( 150,0
{ 120,0
      .0
      ,0
   30,
Early Winters -
                    r
                    Illl
                                                                                T\
                                                                                H'
                                                                               north  -->
                                                                                              m
                                                                                              cr
                                                                       lllll|llll
                                                                       llllllllll

                                                                       llllllllllllUIIIIIII|lll|lll|lll|

                                                                          """
                                                                          llllllllll llllllllllflllllll|lll|lll|IH|


                                                                                 Illllllllllllllll
                                                                       Cbeuack River
                                                    Base  ISP:  24-hr,  Avg,

-------
 HEIHOU UALLEY AIR-QUALITV SIHULflTION
126,6 <  i  < 150,0
   L0 <  •  ( 120,0
            (  90,0
33,0 (  a  <  60.0
                                                Early  Winters ->
 0,0 <
 Average
 Mini Him
               30,0

              135,30 ug/«A3
               69,87 ug/HA3
                0,00 u.g/HA3
                                                                      InMHiliiiltnl


                                                             Chewack River
                                             Projected ISP;  24-hr,  Avg,

-------
        UALLEY  A1HUALI1Y SIMULATION
120,0 < «  < 197,0
         i»  < 120.0
  ,0<
  ,0
30,0
 0,0
  HaxiMUM
  Average
  HiniMUM
     ,0
<  30,0

: 197,00 ug/MA3
:  70,77 ug/hA3
:   0,00 ug/HA3
                                               Early Winters ->
                                  ;i:
                                  HIM
                             Iwisp
                             River
H-
iQ
C
                                                            Clieyack River
                                            Base ISP:  6-nin,  Max,

-------
HETHOU UALLEV AIR-QUALITV  SIHULAIION
120,0 <
 90,0 <
 (0,0 <
 30,0 (
  0,0
              2(8,1
              120,0
        B   <
                                                  Early Winters ->
               30.0

              2(8,10 ug/HA3
               97,50 ug/«A3
                0,00 ug/MA3
                                     uiiii
                                     Mil
                                     Illlll
                                Tyisp
                                River
                                                                                       C
                                                                                       I
                                                                       north  ->
                                                                      •((••••••••I
                                                                      U,,,l,,,,,,.,,,.,,|,,,|
                                                                         liuhiiliiiliiil


                                                                Chewack River
                                               Projected ISP!  (-Min, Max.

-------
NE1HOH VALLEY AIHUALIIV SIHULAIION
           <  50,8
           <  46,0
           <  30,0
           <  20,0
           <  10,0

           :  48,50 ug/«A3
           :  19,99 ug/HA3
           :   0,00 ug/MA3

                             Tyisp
                             Riven1
30,0 <
20,0 <
10,0 <
 0,0 < !

 HaxiMUH
 Average
 HininuM
Early Hinters ->
                   jj
                                   0
                                   c
                                   i
                                   ID
                    north --}
                                                                    >III|IM|MI|III|MI|
                                                                     llltllHMimill



                                                            Chewack River
                                            Increnent ISP! 24-hp, Aug.
                                  ..

-------
30,0 <
20,0 <

10,0 <
 0,0 (
       VALLEY AIR-QUALITY SIMULATION
                1,0
                1,0
HaxiMUH
Average
MiniHUM
<
<
    30,0
    20.0
    10,0

    90,00 U9/HA3
    26.73 ug/»A3
     0,00 u?/MA3
                                                  Early Winters ->
                              I wisp
                              River
  J""""T'T"
IMIUl|lll|lllllllllll|lll

IM|II*|III|III|III|III
      hii
      Im
                    ...,,
                   lllllll

                   "
                   ml
                                                             north -->
                                                                                        11
                                                                                        H-
                                                                                        fl
                                                                                        C
                                                                                        1
                                                                                        I

                                                                                        CO
                                                                Chewack  River
                                               Increnent ISP;  6-Min, Max,

-------
                   D 1,«=?   IE

Source Data Lkg/day 3  for  Met how Valley
n   i   j      1985     1983     inc    Total  1985-1983
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
£.*£.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
x+ 2
4 3
4'H-
-3
-2
-2
-1
-1
0
0
1
1
1
•~i
'7-'
3
3
4
' 4
5
5
6
6
7
7
8
8
8
8
9
9
9
9
9
9
10
10
10
10
10
1 1
11
11
11
1 2.
12
12
-1
— 1
0
0
1
1
4^>
1
2
3
3
4
4
5
5
6
6
7
7
8
8
9
8
9
10
11
8
9
10
11
12
13
7
11 •
12
13
14
12
13
14
15
1 3
14
1 5
Q.OO
0.00
0.00
0.00
0.00
Q.OO
0.00
0.00
0.00
13.81
13.81
13.81
0.00
0.99
0.99
0.99
0.00
0.00
0.00
0.00
1.97
8.88
1.97
8.88
8.88
6.91
0.49
2.96
2.96
4. 19
4. 19
2.63
0.49
4. 19
4. 19
2 . 63
2. 63
3.88
1.97
1.97
1 . 64
1 . 97
1.97
1 . o4
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
11.75
11.75
11.75
0.00
0.86
0.86
0.86
0.00
0.00
0.00
0.00
1.94
7.22
1.94
7 . 22
7 . 22
6. 79
0.64
2.75
2.75
3. 72
3. 72
2.26
0.64
3.72
3. 72
2. 26
2. 26
3.09
2.02
2.02
1.29
2.02
2. 02
i . 29
0.00
Q.OO
. 0.00
0.00
0.00
0.00
0.00
0.96
0.96
6.21
6.21
6.21
2. 22
5.23
5.23
5.23
0.00
O.QO
0.00
0.00
1.00
13.82
1.00
13.82
1 3 . 82
7.37
0.00
0.00
O.QO
13. 48
13.48
1.30
0.00
1 3 . 48
13.48
1.80
1.80
5.06
3.09
3.09
0. 64
3.09
3.09
0 . 64
0.00
0.00
0.00
O.QQ
0.00
0.00
0.00
0.96
0.96
17.96
17.96
17.96
2.22
6.09
6.09
6.09
0.00
0.00
O.QO
Q.OO
2.94
21.04
2.94
21 .04
21.04
14. 66
0.64
2.75
2.75
1 7 . 20
17.20
4. 06
0.64
17.20
17. 20
4.06
4.06
13. 15
5. 11
5. 1 1
1 . 93
5 . 1 1
5 . 1 1
1.93
0.00
0.00
Q.OO
0.00
O.QO
O.QO
0.00
Q.OO
0.00
2.06
2.06
2. 06
0.00
0. 13
0. 13
0. 13
Q.OO
0.00
0.00
0.00
0.03
1.66
0 . 03
1 . 66
1.66
0. 12
-0.15
0.21
0.21
0. 47
0 - 47
Q . 37
-0.15
0. 47
0.47
0 . 37
0.37
0.79 -
-0.05
-0 . O5
0.35
-Q. US
-O. 05
0. 35

-------
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
12
13
13
13
14
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18
18
19
19
19
19
19
20
20
20
21
21
21
21
21
21
21
^.4^.
22
22
22
•~' *~"
22
22
2 2
22
. •' .••'
22
2 !^L
22
23
16
14
15
16
15
16
17
18
17
18
19
18
19
20
18
19
20
19
20
21
22
20
21
22
23
24
23
24
25
24
25
26
27
28
29
30
24
25
26
27
28
29
30
31
32
33
34
35
-.56
... ,...
i_ i
1.64
0.00
3.70
3.70
3.70
3.70
9.37
9.37
1.97
1.97
4.28
1.97
4.28
4.28
1.97
1.73
1.73
1.73
1.73
3.95
3.95
0.00
1.48
1.48
1.23
1.23
1 . 23
1.23
1.97
0.00
0.74
0.74
0.25
0.25
0.25
0.25
0.00
0.74
0.74
0.25
0.25
0.25
0.25
0.99
0 . 99
4. 69
4.69
0 . 66
C3.66
2. 96
1.29
0.00
3.39
3.39
3.39
3.39
S.09
8.09
1.72
1.72
3.99
1.72
3.99
3.99
1.29
1.70
1.70
1.70
1.70
3.39
3.39
0.00
1.29
1.29
1.29
1.29
1.29
1.29
2.57
0.00
0.64
0.64
0. 32
0.32
0. 32
0.32
0.00
0.64
0.64
0.32
0. 32
0.32
0.32
0.36
0. 36
4. 04
4. 04
0. 43
0. 43
2.6 7
0.64
0.00
•-I •-! /
i- . ^.O
2 . 26
2.26
2.26
3.56
3.56
1.26
1.26
4.61
1.26
4.61
4.61
0.00
0. 27
0.27
0.27
0.27
0.20
0.20
0.00
0.80
O.SO
0.67
0.67
0.67
.0.67
1. 18
0.00
0.89
0.89
0.75
0.75
0. 16
0. 16
0.00
0.89
0.39
0.75
0.75
0. 16
0. 16
1 .01
1.01
2.2B
2. 28
Q.39
0. 39
4. 07
1.93
0.00
5.66
5.66
5.66
5.66
11.64
11.64
2.98
2.98
8.59
2.98
8.59
3.59
1.29
1.97
1.97
1.97
1.97
3.61
3.61
0.00
2.09
2.09
1.96
1.96
1.96
1.96
3. 75
0.00
1.53
1.53
1.08
1.08
0.48
0.48
0.00
1.53
1.53
1.08
1.08
0.48
0.48
1.87
1 .87
6. 32
6 . 32
0.82
0.82
6 n 7 4
0.35
0.00
0.31
0.31
0.31
0.31
1.28
1.28
0.25
0.25
0.29
0.25
0.29
0.29
0. 68
0.03
0.03
0.03
O.O3
0.56
0.56
0.00
0. 19
0.19
-0.06
-0.06
-0 . 06
-0.06
-0. 60
0.00
0. 10
0. 10
-0.07
-0.07
-0.07
-0.07
0 . 00
0.10
0. 10
-0.07
-0.07
-0.07
-0.07
0.13
0.13
0.63
0 . o''5
U ., ,i 3
0.23
On 29

-------
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
1 44
23
23
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27
27
U- t
27
JL! t
26
27
28
29
30
31
32
33
34
35
36
37
25
26
27
28
29
30
31
32
33
34
35
36
37
28
29
30
31
32
33
34
36
37
38
29
30
31
32
33
34
35
37
30
31
Z5 j;'1
33
34
35
37
2.96
2.22
2.22
0.49
0.49
1.23
1.23
13.07
13.07
1.48
1.48
0.00
2.96
2.96
2.22
2.22
0.49
0.49
1.23
1.23
13.07
13.07
1.48
1.48
0.00
0.00
1.73
1.73
5.67
5.67
56.00
56.00
1.48
0.33
0.33
1.73
1 . 73
5.67
5.67
56.00
56.00
1.48
0.33
4.93
8. 14
a. 14
8.39
8.39
9. 37
1 . 23
2.67
2.02
2.02
0.64
0.64
1.29
1.29
10.51
10.51
1.38
1.38
0.00
2.67
2.67
2.02
2.02
0.64
0.64
1.29
1.29
10.51
10.51
1.38
1.38
0.00
0.00
1.38
1.38
4.77
' 4.77
46.41
46.41
1.29
0.43
0.43
1.38
1.38
4.77
4. 77
46.41
46.41
1.29
0.43
5. 17
7. 11
7 . 11
7.11
7 . 1 1
8.09
1. 29
4.07
1.32
1.32
0.75
0.75
2.63
2.63
4.36
4.36
0*81
0.81
0.00
4.07
4.07
1.32
1.32
0.75
0.75
2.63
2.63
4.36
4.36
0.81
0.81
0.00
1. 18
0.46
0.46
2.25
2.25
22.99
22.99
4.22
0.00
0.00
0.46
O.46
2.25
2.25
22.99
22.99
4.22
0.00
3.22
5.99
5. 99
3.06
3 . 06
4.02
1 . 13
6.74
3.34
3.34
1.40
1.40
3.92
3.92
14.88
14.88
2. 18
2. 18
0.00
6.74
6.74
3.34
3.34
1.4O
1.40
3.92
3.92
14.88
14.88
2. 18
2.18
0.00
1. 18
1.84
1.84
7.02
7.02
69.39
69.39
5.51
0.43
0.43
1.84
1.84
7.02
7.02
69.39
69.39
5.51
0.43
8.39
13. 11
13. 11
10.17
10.17
12. 10
2 . -+2
0.29
0.20
0.20
-0. 15
-0. 15
-0.06
-0.06
2.56
2.56
0. 10
0. 10
0.00
0.29
0.29
0.20
0.20
-0. 15
-0. 15
-0.06
-O.O6
2.56
2.56
0. 10
0. 10
0.00
0.00
0.35
0.35
0.90
0.90
9.59
9.59
0. 19
-0.10
-0. 10
0.35
0.35
0.90
0.90
9.59
9.59
0.19.
- -0. 10
-O.24
1.03
1 . 03
1.28
1.28
1.28
-0. 06

-------
4
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
31
32
32
32
32
32
32
33
33
33
33
33
34
34
34
34
34
35
35
35
35
35
38
31
32
33
34
35
37
38
39
31
32
33
34
35
36
37
31
32
33
34
35
36
31
32
33
34
35
36
37
34
35
36
37
38
39
34
35
36
37
38
34
35
36
37
33
35
36
37
38
39
1.23
8. 14
8. 14
8.39
8.39
9.37
1.23
1.23
2.96
7.40
7.40
4.69
4.69
11.84
11.84
3.95
7.40
7.40
4.69
4.69
11.84
11.84
1.48
1.48
6.91
6.91
3.45
3.45
0.66
6.91
3.45
3.45.
0.66
0.66
2.96
0.00
4. 19
4. 19
2.71
2.71
0.00
4. 19
4. 19
2.71
2.71
0.00
0.00
2.96
2. 96
0.00
1.29
7. 11
7. 11
7. 11
7. 11
8.09
1.29
1.29
2.58
6. 14
6. 14
4.04
4.04
9.78
9.78
3.88
6. 14
6. 14
4.04
4.04
9.78
9.78
1.29
1.29
5.93
5.93
2.99
2.99
0.43
5.93
2.99
2.99
0.43
0.43
2.58
0.00
3.72
3. 72
2.34
2.34
0.00
3.72
3.72
2.34
2.34
0 . 00
.0.00
2.66
2.66
0.00
1. 13
5.99
5.99
3.06
3.06
4.02
1. 13
1. 13
0.21
3.74
3.74
2.49
2.49
3.35
3.35
4. 18
3.74
3.74
2.49
2.49
3.35
3.35
1.34
1.34
3. 11
3. 11
2.O6
2.06
1.26
3. 11
2.06
2.06
1.26
1.26
0.62
0.00
2.20
2.20
0.29
0.29
0.00
2.20
2.20
0.29
0.29
0.00
0.00
0.29
0.29
0.00
2.42
13. 11
13. 11
10. 17
10. 17
12. 10
2.42
2.42
2.79
9.89
9.89
6.53
6.53
13. 13
13. 13
8.06
9.39
9.89
6.53
6.53
13. 13
13. 13
2.63
2.63
9.04
9.04
5.05
5.05
1.69
9.04
5.05
5.05
1.69
1.69
3.21
0.00
5.91
5.91
2.64
2. 64
0.00
5.91
5.91
2 . 64
2.64
' 0 . 00
0.00
2. 96
2. 96
0.00
-O.O6
1.03
1.03
1.28
1.28
1.28
-0.06
-0.06
0.38
1.26
1.26
0.65
0.65
2.06
2 . O6
0.07
1.26
1.26
0.65
0.65
2.06
2.06
0. 19
0. 19
0.98
0.98
0.46
0.46
0.23
0.98
0.46
0.46
0.23
0.23
0. 38
0.00
0.47
0.47
0. 37
0. 37
0.00
0.47
0.47
0.37
0. 37
0 . OO
'• o . QD
0.30
0.30
0. 00

-------
-    5     -
195
196
197
198
199
200
201
202
2O3
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2.44
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
40
40
40
40
40
41
41
41
4 i
41
41
41
4 1
35
36
37
38
35
36
37
38
39
35
36
37
38
39
22
23
24
25
26
27
28
29
30
36
37
38
39
40
41
20
21
31
32
33
34
35
36
37
38
39
40
41
19
20
37
33
39
40
41
42
0.00
0.00
2.96
2.96
0.00
0.00
4.93
4.93
2.96
0.00
0.00
4.93
4.93
2.96
5.92
2.96
2.96
5 . 92
5.92
3.95
3.95
1.97
1.97
4.60
22.45
22 . 45
4.44
4.44
0.49
15.79
5.92
6.41
6.41
10.85
10.85
4.60
4.60
22.45
22.45'
4. 44
4.44
0.49
5.43
5.43
41.77
4 i . 77
52.30
52.30
6.41
6.41
0.00
0.00
2.66
2.66
0.00
0.00
4.36
4.36
2.58
0.00
0.00
4.36
4.36
2.58
5.33
2-59
2.59
5.33
5.33
3.39
3.39
1.94
1.94
3.99
18.92
18.92
3. 72
3. 72
0.64
13.25
5.33
5.97
5.97
3.90
8.90
3.99
3.99
18.92
18.92
3. 72
3.72
0.64
4.68
4.68
35.03
35 . 03
43. 25
43.25
5.42
5. 42
O.OQ
0.00
0.29
0.29
0.00
0.00
0. 10
0. 10
0.59
0.00
0.00
0. 10
0. 10
0.59
0.42
0. 10
0. 10
0.42
0.42
0.59
0.59
0.20
0.20
0.68
1.66
1.66
0.38
0.38
0.00
0.84
0.42
0.59
0.5.9
0.86
0.86
0.68
0.68
1.66
1.66
0.38
0.38
0.00
0.59
0.59
2.36
2 . 36
4.78
4.73
0.51
0.51
0.00
0.00
2.96
2.96
0.00
0.00
4.47
4.47
3. 16
0.00
0.00
4.47
4.47
3. 16
5.75
2.68
2.68
5.75
5.75
3.98
3.98
2. 14
2. 14
4.67
20.58
20.58
4.09
4.09
0.64
14.08
5.75
6.56
6.56
9.76
9.76
4. 67
4.67
20.58
20.58
4.09
4.09
0.64
5.28
5.28
37.39
37. 39
48.03
48 . 03
5. 93
5. 93
0.00
0.00
0.30
0.30
0.00
0.00
0.57
0.57
0.38
O.OQ
0.00
0.57
0.57
0.38
0.59
0.37
0.37
0.59
0.59
0.56
0.56
0.03
0.03
0.61
3.53
3.53
0.72
0.72
-0. 15
2. 54
0.59
0.44
- 0.44
1.95
1.95
0.61
0.61
3. 53
3. 53
0.72
0.72
-0. 15
0.75
0.75
6. 74
6 . 7 4
9 , 05
9.05
0,99
0.99

-------
-    6     -
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
41
41
42
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45
46
46
46
46
46
46
47
47
47
47
47
47
48
48
47
48
17
18
38
39
40
41
42
46
47
39
40
41
42
43
44
45
46
47
40
41
42
43
44
45
46
47
40
41
42
43
44
45
46
47
41
42
43
44
45
46
41
42
43
44
45
46
41
42
2.96
2.96
1.97
1.97
41.77
52.30
52.30
6.41
6.41
2.96
2.96
5.59
5.59
6.91
6.91
3.95
3.95
1.23
1.23
1.48
5.59
6.91
6.91
3.95
3.95
1.23
1.23
1.48
0.00
1.23
1.23
7. 15
7. 15
1.97
1.97
0.00
1.23
1.23
7. 15
7. 15
1.97
1.97
0.49
0.49
3 . 95
3.95
0.99
0.99
0.49
0. 49
2.70
2.70 .
1.29
1.29
35.03
43.25
43.25
5.42
5.42
2.58
2.70
4.96
4.96
5.82
5.82
3.72
3.72
0.97
0.97
1.29
4.96
5.82
5. "82
3.72
3.72
0.97
. 0.97
1.29
0.00
0.97
0.97
6. 15
6. 15
2.02
2.02 .
0.00
0.97
0.97
6. 15
6. 15
2.02
2.02
0. 32
0.32
3 . 40
3.40
0.64
0.64
0.32
0-32
0. 14
0.'14
0.31
0.31
2.36
4.78
4.78
0.51
0.51
0.21
0. 14
0.46
0.46
0.43
0.43
0.29
0.29
0.05
0.05
0.20
0.46
0.43
0.43
0.29
0.29
0.05
0.05
0. 20
0.00
0.29
0.29
0.51
0.51
0. 16
0. 16
0.00
0.29
0.29
0.51
0.51
0. 16
0. 16
0. 10
0. 10
0 . 5 1
0.51
0.05
0 . 05
0. 10
0. 10
2.83
2.83
1.61
1.61
37.39
48.03
48.03
5.93
5.93
2.79
2.83
5.42
5.42
6.25
6.25
4.01
4.01
1.02
1.02
1.50
5.42
6.25
6.25
4.01
4.01
1.02
1.02
1.50
0.00
1.26
1 .26
6. 66
6.66
2. 18
2. 18
0.00
1.26
1.26
6. 66
6.66
2. 18
2. 18
0.43
0.43
3.91
3.91
0. 70
0. 70
0. 43
0.43
0.26
0.26
0.68
0.68
6.74
9.05
9.05
0.99
0.99
0.38
0.26
0.63
0. 63
1.09
1.09
0.23
0.23
0.26
0.26
0. 19
0.63
1.09
1.09
0.23
0. 23
0.26
0.26
0. 19
0.00
0.26
0.26
1.00
1.00
-0.05
-0.05
0.00
0.26
0. 26
1.00
1.00
-0.05
-0.05
0.17
0.17
0.55
0.55
0. 35
(3.35
0 . 17
0 . 1 7

-------
-    7     -
295
296
297
298
299
300
301
302
3O3
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
34-0
341
342
343
344
48
48
48
48
49
49
49
49
49
49
49
49
49
50
50
50
50
50
50
51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
53
54
54
54
55
55
55
55
55
56
56
56
5o
'36
56
56
43
44
45
46
41
42
43
44
45
46
47
48
49
41
42
43
44
45
46
41
42
43
44
45
41
42
43
44
45
46
41
42
43
44
45
41
42
43
40
41
42
43
34
35
36
38
39
40
41
42
3.95
3.95
0.99
0.99
0.00
0.00
2.22
2.22
1.48
1.48
1.97
1.97
2.96
0.00
O.OO
2.22
2.22
1.48
1.48
0.99
0.99
6.66
6x66
0.00
0.99
0.99
6.66
6.66
0.00
0.00
5.43
5.43
0.33
0.33
0.00
5.43
5.43
0. 33
4.60
4.93
4.93
1.97
5.92
0.49
0.49
0 . 00
4. 60
4. 60
4.93
4. 93
3.40
3.40
0.64
0.64
0.00
0.00
2.02
2.02
1.29
1.29
1.94
1.94
2.58
0.00
0.00
2.02
2.02
1.29
1.29
0.97
0.97
5.42
5.42
0.00
0.97
0.97
5.42
5. 42
0.00
0.00
4.45
4.45
0.43 .
0.43
0.00
4.45
4.45
0.43
3.99
4.36
4.36
2.58
5.17
0.65
0.65
0 . 00
3.99
3.99
4 . 36
i — * .
H- .. ..io
O.51
0.51
O.05
0.05
0.00
0.00
O. 16
O. 16
0.21
0.21
0.20
0.20
0.00
0.00
0.00
0. 16
0. 16
0.21
0.21
0.51
0.51
1. 12
1. 12
0.00
0.51
0.51
1. 12
1. 12
0.00
0.00
1. 12
1. 12
0.07
0.07
0.00
1. 12
1. 12
0.07
0.96
0.56
0.56
0.00
0.62
0. 10
0. 10
0 . 00
0.96
0. 96
0.56
Q . 5 6
3.91
3.91
0.70
0.70
0.00
0.00
2. 18
2. 18
1.50
1.50
2. 14
2. 14
2.58
0.00
0.00
2. 18
2. 18
1.50
1.50
1.48
1.48
6.54
6.54
0.00
1.48
1.48
6.54
6.54
0.00
0.00
5.57
5.57
0.50
0.50
0.00
5.57
5.57
0.50
4.95
4.93
4.93
2.58
5.79
0.75
0 . 75
0 . 00
4 . 95
4. 95
4 „ 9 3
4. 93
0.55
0.55
0.35
0.35
0.00
0.00
0.20
0.20
0. 19
0. 19
0.03
0.03
0.38
0.00
0.00
0.20
0.20
0. 19
0. 19
0.02
0.02
1.24
1.24
0.00
0.02
0.02
1.24
1.24
0.00
0.00
0.98
0.98
-0. 10
-0. 10
0.00
0.93
0.98
-O. 10
0.61
0.57
0.57
-0.61
0.75
-0. 1.6
-0. 16
0.00
0.61
O.61
0.57
0 . 5 7

-------
-    8     -
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
57
57
57
57
57
57
58
58
58
59
59
60
60
61
61
61
62
62
63
63
64
64
64
65
65
65
65
65
66
66
66
67
67
67
68
68
68
3
4
5
6
7
8
9
10
1 1
12
13
14
15
-37
38
39
40
41
42
38
39
40
38
39
38
39
37
38
39
38
39
39
40
39
40
41
38
39
40
41
42
41
42
43
42
43
44
43
44
45
35
35
35
35
34
34
34
34
3.4
34
33
33
32
0.66
0.66
7.40
7.40
1.48
1.48
0.66
7.40
7.40
2.96
2.96
2.96
2.96
1.64
1.64
1.48
1.64
1.48
4. 19
4. 19
4. 19
4. 19
1.97
0.00
0.49
0.49
4.44
4.44
4.44
4.44
0.00
0.00
0.25
0.25
0.25
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.93
4 . 93
1.43
1.48
1. 48
1 . 48
4. 93
0.43
0.43
6. 14
6. 14
1.29
1.29
0.43
6. 14
6. 14
2.58
2.75
2.58
2.75
1.72
1.72
1.29
1.72
1.29
3.72
3.72
3.72
3.72
1.29
0.00
0.64
0.64
3.72
3.72
3.72
3.72
0.00
0.00
0.32
0.32
0.32
0.32
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.05
4.05
1.29
1 .29
1.29
1.29
4. 04
0. 14
0. 14
1.28
1.28
0.20
0.20
0. 14
1.28
1.28
0.69
0.42
0.69
0.42
0.39
0.39
0. 10
0.39
0. 10
0.51
0.51
0.51
0.51
0.00
0.00
O.-OO
0.00
0.21
0.21
0.21
0.21
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.02
1.02
0.00
0 . 00
0.31
0.31
0.59
0.57
0.57
7.43
7.43
1.50
1.50
0.57
7.43
7.43
3.27
3. 16
3.27
3. 16
2. 11
2. 11
1.39
2. 11
1.39
4.23
4.23
4. 23
4.23
. 1 . 29
0.00
0.64
Q. 64
3.93
3.93
3.93
3.93
0.00
0.00
0.32
0.32
0.32
0.32
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.07
5 . 07
1.29
1.29
1.61
1.61
4. 63
0.23
0.23
1.26
1.26
0. 19
0. 19
0.23
1.26
1.26
0.38
0.21
0.38
0.21
-0.08
-0.08
0. 19
-0.08
0. 19
0.47
0.47
0.47
0.47
0.68
0.00
-0. 15
-0. 15
0. 72
0.72
0.72
O.72
0.00
0.00
-O.G7
-0.07
-0.07
-0 . 07
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.88
0 . S3
0. 19
0. 19
0.19
0. 19
0.89

-------
-    9     -
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
15
16
16
17
17
18
18
19
19
20
20
20
21
21
21
21
33
32
33
32
33
32
33
32
33
32
33
34
32
33
34
35
8.39
4.93
8.39
7.89
0.99
7.89
0.99
9.87
0.66
9.87
0.66
0.66
0.99
4.69
4.69
0.66
7.44
4.04
7.44
7.44
0.65
7.44
0.65
8.25
0.43
8.25
0.43
0.43
0.86
4.04
4.04
0.43
1.02
0.59
1.02
2.37
0.20
2.37
0.20
2.53
1.97
2.53
1.97
1.97
1.01
2.28
!ti . liS
0.39
8*47
4.63
8.47
9.80
0.86
9.80
0.86
10.78
2.40
10.78
2.40
2.40
1.87
6.32
6.32.
0.32
0.95
0.89
0.95
0.45
0.34
0.45
0.34
1.62
0.-23
1.62
0.23
0.23
0. 13
0.65
0.65
0 . 23

-------
                    II
Transport Parameters

Winthrop: Knott Station
1:00 AM Feb 10, 1985  thru 12:00 PM Feb 12,
1985
i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
•24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Ky
mA2/s
37.50
50.00
50.00
37.50
37.50
37.50
25 . 00
25.00
25.00
25.00
12.50
12.50
12.50
12.50
25.00
25. OO
12.50
25.00
25.00
12.50
12.50
37.50
37.50
37.50
25.00
25.00
25.00
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
25.00
37.50
37.50
12. 50
Kz
mA2/s
0.38
0.50
0.50
0.38
0.38
0.38
0.25
0.25
0.25
0.25
0. 13
0. 13
0. 13
0. 13
0.25
0.25
0. 13
0.25
0.25
0. 13
0. 13
0.38
0.38
0.38
0.25
0.25
0.25
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0.25
0.38
0. 38
0.13
wind
mph
-3
-4
-4
~" J
-3
-3
2
2
2
2
1
1
1
1
2 .
2
1
2
±.
1
1
-3
-3
-3
'2.
2
ji
1
1
1
1
1
1
0
1
!*^!
3
3
1
Rd
/hr
0.209
0.278
0.278
0.209
0.209
0.209
4. 139
4. 139
4. 139
4. 139
2 . 070
2.070
2.070
2.070
4. 139
4. 139
2.070
4. 139
4. 139
2.070
2.070
0.209
0.209
0.209
4. 139
4. 139
4. 139
2.070
2. 070
2.070
2.070
2.070
2.070
0.070
2.070
4. 139
0.209
0.209
2.070
Rv
/hr
0.544
0.726
0.726
0.544
0.544
0.544
0.363
0.363
0.363
0.363
0. 181
0. 181
0. 181
0. 181
0.363
0.363
0. 181
0.363
0. 363
0. 181
0. 181
0.544
0.544
0.544
0.363
0. 363
0.363
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0.181
0. 363
0.5*4
0. 544
Q .131
RUJ
/hr
6.000
8.000
8.000
6.000
6.000
6.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0 . 000
0.000
0.000
6.000
6.000
6.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
O.QQO
6.000
6-. QOO
0 . 000

-------
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
25.00
12.50
25.00
25.00
25.00
25.00
12.50
12.50
12.50
12.50
25.00
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
12.50
25.00
37.50
50.00
37.50
50.00
37.50
0.25
0. 13
0.25
0.25
0.25
0.25
0. 13
0. 13
0. 13
0. 13
0.25
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0. 13
0.25
0.38
0.50
0.38
0.50
0.38
ji.
1
2
JL
2
2
1
1
0
1
•~'
1
1
0
1
1
1
1
1
1
1
1
1
0
0
1
1
2
3
-4
—3
—4
-3
4. 139
2.070
4. 139
4. 139
4. 139
4. 139
2.070
2.070
0.070
2.070
4. 139
2.070
2.070
0.070
2.070
2.070
2.070
2.070
2.070
2.070
2.070
2.070
2.070
0.070
0.070
2.070
2.070
4. 139
6.209
0.278
0.209
0.278
0. 209
0.363
0. 181
0.363
0.363
0.363
0.363
0. 181
0. 181
0. 181
0. 181
0.363
0. 181
0. 181
0. 181
0. 181
0. 181
0. 131
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0. 181
0.363
0.544
0.726
0.544
0.726
0.544
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
8.000
6.000
8.000
6.000

-------
         Tcato 1 e?   Ill




Computed TSP  Concentrations  for the Methotu  Valley
cell
1
'Z
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
•-. --r
4^X-
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
39
Base Case TSP
iy j x Cavg ( i )
Lig/mA3
-3
.— ,
"~4i.
-1
-1
0
0
1
1
1
2
.— i
3
3
4
4
5
5
6
6
7
7
8
8
8
8
9
9
9
9
9
9
10
10
10
10
10
1 1
11
-1
-1
0
0
1
1
2
1
2
3
3
4
4
5
5
6.
6
7
7
3
8
9
8
9
10
11
8
9
10
1 1
12
13
7
1 1
12
13
14
12
13
0.0
0.0
2.4
3.9
6. 1
8.7
10.9
10.7
13. 1
18.7
20.4
22.0
19.8
20.5
20.4
21. 1
21.4
22.5
23.5
25.2
27.2
29.8
29.0
30.7
32.0
32. 8
29.0
30.3
31.3
32. 1
32.3
31.8
28. 1
32. 1
32. 1
31.8
31.6
33,0
31.5
Cmax <
Lig/mA
0.
0.
13.
14.
15.
16.
17.
17.
21.
42.
44.
46.
31.
29.
29.
30.
31.
32.
33.
35.
37.
46.
4O.
47.
48.
43.
40.
41.
43.
43.
42.
41.
38.
42.
42.
41 .
40.
49,,
40.
i) ! ceil
3
0
0
0
9
4
3
£?
*i
7
9
9
4
^
7
7
4
\3
4
o
5
Cf
3
0
••-i
8
2
0
3
2
5
5
5
7
9
1
3
6
/
8
1
•-,
.3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2.1
22
23
•7.' A
25
26
27
28
29
30
31
3li
33
34
35
36
37
38
39
Projected TSP
iy J x Cavg ( i )
ug/mA3
—3
~~ *L
™"^1
-1
-1
0
0
1
1
1
il
]^
3
3
4
4
5
5
6
6
7
7
8
8
8
8
9
9
9
9
9
9
10
10
10
10
10
1 1
11
-1
-1
0
0
1
1
'j£
1
^
3
3
4
4
5
5
6
6
7
7
3
3
9
8
9
10
11
8
9
10
11
12
13
7
11
12
13
14
12
13
0.
0.
4.
8.
12.
17.
.— , .—,
j^jl •
jC*l •
26.
36 .
40.
44.
43.
46.
48.
50.
50.
53.
56.
60.
65'.
73.
69.
75.
78.
80.
69.
72.
75.
30.
80.
75 .
66.
79.
79.
74.
/ \i- .
7 6 .
f i^! «
0
0
9
0
4
8
^j
1
8
7
7
3
6
8
1
4
8
5
3
5
3
1
5
1
9
1
3
j^!
5
6
3
6
7
7
^
4
^
4
3
Cmax < i )
ug/mA3
0.0
0.0
30.5
35 . 5
36 . 6
38. 9
39.2
40.9
42.9
75 . 3
8O.2
34.8
67. 9
63.2
69.3
7 1 . 9
74.5
78. 1
32.2 .
37.0
93. 2
119.6
98.4
120.9
126.0
115.3
98.0
101.6
108.4
120.7
118.5
1 00 . 3
94.3
119.3
116.7
93.3
93.9
106.3
95.0'

-------
40
4i
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
36
87
88
89
11
11
12
12
12
12
13
13
13
14
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18
18
19
19
19
19
19
20
20
20
21
21
21
21
21
21
21
j^.oi!
ihili
2! 2!
!vil^!
j^! ji!
.il -.:!
.«L. ji.
J-^
*;'! ji.
14
15
13
14
15
16
14
15
16
15
16
17
18
17
18
19
18
19
20
18
19
20
19
•20
21
22
20
21
22
23
24
23
24
25
24
25
26
27
28
2 9
30
24
25
26
27
28
29
3O
31
32
31.
31.
31.
31.
31.
• 31.
31.
32.
32.
32.
33.
35.
35.
33.
33.
34.
33.
33.
34.
32.
32.
33.
32.
32.
33.
33.
32.
32.
33.
34.
34.
34.
35.
36.
35.
36.
38.
40.
42.
44.
'46.
36.
37.
39.
40.
*•(• i^~ •
45.
47 .
51 .
56 .
4
3
4
3
4
7
0
1
8
5
•-i
0
6
6
8
5
'"'
9
1
8
9
1
7
7
4
9
3
8
5
lii
8
5
•~'
3
6
6
0
1
1
4
8
a
6
0
6
7
1
3
8
. ~t
40.
39.
40.
40.
39.
39.
39.
40.
40.
40.
41.
50.
51.
42.
42.
42.
40.
41 .
41.
39.
39.
39.
39.
38.
39.
40.
38.
38.
39.
40.
41.
40.
41.
43.
42.
44.
46.
49.
52.
56.
59.
44.
45.
47 .
50.
53.
5 6 .
6G .
65 .
70.
.-,
8
4
0
S
9
8
3
8
6
7
8
1
3
0
7
8
6
8
9
8
6
,-*i
£.
9
9
5
6
7
1
1
1
7
7
0
9
.-•,
4
7
9
1
1
5
6
6
3
,j
8
3
4
iij
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
31
82
33
84
35
86
87
88
39
11
11
12
12
12
12
13
13
13
14
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18
IS
19
19
19
19
19
20
20
20
21
21
21
21
21
21
21
22
j^-j^.
!*i!ii!
j^ ^
j;^!ti
j^. xi!
j-;' _,-;'
-»;i! jJ
^ j:;'
14
15
13
14
15
16
14
15
16
15
16
17
18
17
18
19
18
19
20
13
19
20
19
20
21
ji. ji.
20
21
^L j£-
23
24
23
24
25
24
25
26
27
28
29
30
24
25
26
27
!i^y
29
30
3 1
3 Ji
70.8
68.8
70.8
69.4
67.6
67.3
67.0
67.8
67.6
67. 4
67.2
67.8
67. 3
65.0
64.5
65.4
62.7
63.7
63. 8
60.3
60. 7
60.5
59.4
59.0
59.3
59. 2
58. 1
58.5-
59. 1
59.6
60. 4
60. 1
61.0
62.4
61.7
63. 2
65. 1
6 7 . 7
70. 1
72.8
75 . 8
63.5
64.9
66. 6
68. 5
70.9
7 3 . 7
7 7 . 3
82. 7
8 7 . 1
91.0
88.0
91.6
88.3
86.0
84.7
86. '2
86.0
84.3
84.4
34.1
89.6
88.6
82. 1
81.7
82.5
80.2
81.0
81.6
73.2
78.3
78.9
76.5
76.5
77.2
75 . 5
74.6
74.8
75.2
73.7
72.1
73 . 4
72.0
71.4
71.3
73.0
76. 1
30.7
85.0
89.3
93.5
73.6
75.1
77.9
31.6
35.9
90.4
95 . 4
102.4
109,5

-------
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
22
22
22
22
23
23
23
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
'Z 7
27
33
34
35
36
25
26
27
28
29
30
31
32
33
34
35
36
37
25
26
27
28
29
30
31
32
33
34
35
36
37
28
29
30
31
32
33
34
36
37
38
29
30
31
32
33
34
35
37
30
31
58.
59.
58.
57.
39.
40.
42.
44.
46.
49.
53.
58.
64.
64.
60.
59.
57.
40.
41.
43.
46.
48.
52.
56.
62.
69.
70.
64.
59.
58.
48.
51.
55.
60.
67.
83.
85.
62.
58.
57.
54.
58.
63.
69.
85.
88.
75 .
59.
62.
66'.
7
4
1
4
3
5
1
4
6
8
9
1
0
6
9
0
6
4
.— ,
ji.
6
3
7
2
8
5
3
6
7
3
3'
1
5
2
8
6
5
2
2
9
9
4
3
6
9
6
6
3
1
0
2
-73.
74.
73.
73.
47.
49.
51.
55.
58.
62.
68.
74.
85.
86.
76.
74.
73.
48.
49.
53.
57.
61.
66.
72.
83.
100.
102.
83.
74.
73.
60.
65.
70.
78.
95.
173.
175.
77.
73.
72.
69.
75.
83.
99.
175.
17S.
1O9.
73.
30.
86.
3
2
6
2
1
0
7
1
7
9
3
3
5
1
7
5
4
2
6
6
5
5
4
9
5
6
3
2
9
7
7
•-•
JL
"7
6
4
5
4
6
7
8
6
4
0
2
4
1
9
j^1
it.
.•'
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
113
119
120
121
1 .-,.-,
1 j^-tL.
123
124
125
126
127
128
129
130
131
132
133
134
135
1 36
137
13S
139
22
22
22
22
23
23
23
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
2 7
2 7
33
34
35
36
25
26
27
28
29
30
31
32
33
34
35
36
37
25
26
27
28
29
30
31
32
33
34
35
36
37
28
29
30
31
32
33
34
36
37
38
29
30
31
32
33
34
35'
37
30
31
90.2
90.9
88.9
87.8
68. 1
69.6
70.8
73.3
76.0
80.3
86.2
91.8
98. 1
98.6
93. 1
90.2
38. 1
69.9
70.7 •
72.8
75.9
79.0
83.7
90.4
98.3
107. 1
107. 6
98.8
91.4
89. 1
78.6
82.6
87.6
95.6
105. 1
128.4
130.4
95.7
89.7
88.0
36.7
91.9
99.4
108.4
131.2
1 35 . 3
116.0
89.6
97.4
1Q3-. 6
113. 1
114.0
113.0
112.3
31. 1
82.9
83.6
38. 1
93.2
99.3
107.0
115.6
129.2
129.5
117.7
114. 1
112.5
84.2
84.6
86.2
91.8
97. 3
104.3
114. 1
129.5
152.9
154.5
127. 1
114.8
112.7
96.4
1 02 . 7
110.5
121.9
146.3
261.8
264.6
118.9
112.4
110.8
108.9
117.3
128.2
151.8
264.4
263. 1
168.5
110.8
124. 3
• 133.2

-------
-     4     -
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
131
182
183
184
135
186
137
188
189
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
31
32
32
32
32
32
32
33
33
33
33
33
34
34
34
34
34
32
33
34
35
37
38
31
32
33
34
35
37
38
39
31
32
33
34
35
36
37
31
32
33
34
35
36
31
32
33
34
35
36
37
34
35
36 .
37
38
39
34
35
36
37
38
34
35
36
37
38
-70.
74.
76.
77.
59.
59.
67.
69.
71.
72.
72.
61.
60.
59.
68.
68.
68.
68.
70.
68.
64.
67.
67.
66.
66.
63.
67.
66.
66.
66.
66.
64.
64.
62.
65.
63.
62.
62.
61.
61.
62.
63.
63.
62.
62.
62.
63.
63 .
63.
64 .
5
2
5
6
8
7
5
4
0
1
9
9
6
9
0
2
3
8
0-
3
5
4
5
9
9
0
3
0
1
7"
1
8
1
8
0
5
9
0
7
9
5
4
1
5
4
5
5
9
7
1
95.
105.
108.
107.
73.
72.
87.
90.
93.
95.
94.
74.
73.
72.
87.
87.
88.
88.
90.
88.
77.
85.
85.
84.
83.
88.
87.
83.
83.
82.
80.
78.
76.
75.
77.
76.
75.
75.
74.
74.
76.
76.
76.
75.
75.
76.
77.
77.
77 .
78.
1
5
0
4
0
8
6
3
4
4
4
8
3
3
2
6
0
0
9
7
1
2
1
6
9
5
2
6
5
5
9
8
8
8
8
4
6
0
6
j^.
0
1
0
8
5
5
0
5
7
3
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
' 135
186
1 87
188
139
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
31
32
32
32
32
32
32
33
33
33
33
33
34
34
34
34
34 .
32
33
34
35
37
38
31
32
33
34
35
37
38
39
31
32
33
34
35
36
37
31
32
33
34
35
36
31
32
33
34
35
36
37
34
35
36
37
38
39
34
35
36
37
38
34
35
36
37
'38 -
109.5
113.5
116.4
117.9
89.7
89.4
105. 1
107.3
108.2
109.0
109.6
92.2
90.5
89. 1
104.4
104.4
103.7
103.4
103.8
101.8
95.8
102.8
102.4
100.8
99.7
99.9
98. 1
100.3
99.9
99.4
97.2
94.2
92.2
89.5
93.7
90.8
89. 1
86.9
85.7
84.9
87.6
88.6
87.4
85.6
85.0
65 . 7
86. 3
86. 5
85. 1
34.3
146.6
159.9
162.9
161.9
109.4
109.0
134.6
138.0
- 141.4
143.2
140.7
111.3
109.4
107.8
132.7
132.9
132.4
131.3
131.0
127.7
114.2
129.0
128.3
126.4
124.0
126.4
124.0
126.1
125.3
122. 1
118.0
113.5
112.5
111.8
113.0
111.0
109.7
108.9
108.2
105.4
109.2
109.9
108.2
106.6
105.9
105.9
106.7
107. 2
105.2
103. S

-------
-    5     -
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
2337
238
239
35
35
35
35
35
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
40
40
40
40
40
41
41
41
35
36
37
38
39
35
36
37
38
35
36
37
38
39
35
36
37
38
39
22
23
24
25
26
27
28
29
30
36
37
38
39
40
41
20
21
31
32
33
34
35
36
37
38
39
40
41
19
20
37
64.
64.
66.
66.
65.
67.
67.
69.
70.
70.
71.
74.
77.
78.
75.
77.
81.
83.
84.
45.
47.
49.
52.
55.
56.
58.
60.
64.
85.
91.
93.
90.
90.
90.
43.
43.
69.
74.
30.
83.
85.
92.
99.
101.
97.
94.
91.
35.
39.
103.
0
7
1
3
8
0
6
5
7
8
8
6
1
1
ji.
1
1
1
-4
7
1
5
9
1
4
3
3
0
1
8-
7
9
7
5
0
0
7
7
0
6
7
2
1
7
5
6
6
7
5
4
79.
80.
80.
81.
81.
83.
84.
85.
87.
89.
90.
92.
96.
98.
95.
97.
102.
106.
109.
57.
59.
61.
65.
67.
68.
70.
73.
78.
109.
129.
130.
119.
120.
121.
69.
56.
85.
93.
101.
106.
111.
122.
139.
145.
134.
126.
122.
46.
51.
177.
2
1
9
3
3
8
4
8
1
1
2
7
4
6
0
5
5
1
3
5
0
3
•-i
jL.
8
1
ji.
4
5
3
0
9
9
9
7
4
7
8
^
3
9
6
8
9
5
4
6
5
9
8
7
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
.-, .-, .-,
ji.jL.ji.
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
35
35
35
35
35
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
40
40
40
40
40
41
41
41
35
36
37 .
38
39
35
36
37
38
35
36
37
38
39
35
36
37
38
39
'"' *"'
ji.*-
23
24
25
26
27
28
29
30
36
37
38
39
40
41
20
21
31
32
33
34
35
36
37
38
39
40
41
19
20
J> .••
84.8
85.0
86.0
85.8
85.0
85.7
86.2
88.0
89.0
88,4
89.3
92.0
94.3
95.3
92. 1
94.0
97.9
99.8
101.0
50.8
52. '5
55.3
59.3
62.2
64.0
66.3
68.7
72.9
1O1.7
108.7
110.5
107. 1
1 06 . 5
105.3
47.5
47.7
79. 4
85.2
91.4
96.0
99.0
108.5
115.8
118.5
113.3
1 1 0 . 3
1 06 . 7
39. 7
44 . 0
125. 2
102.9
103.4
104.2
102.6
102.3
1 04 . 2
104.6
105.6
106.6
107.9
108.8
111.1
114.3
116.3
112.8
115. 1
119.8
1 23 . 4
126.5
63. "4
65,2
67.9
72 . 6
75.8
76.8
79.5
33.2
39. 1
126.5
147. 1
143.9
137.0
137.6
133.0
75.5
62.3
97.5
106.0
115.2
122. 2
123. 1
140. 1
158.3
164. 1
152. 1
143. 3
138. 7
51.9
57.2
197.5

-------
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
27li
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
41
41
41
41
41
41
41
42
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45
46
46
46
46
46
46
47
47
47
38
39
40
41
42
47
48
17
18
38
39
40
41
42
46
47
39
40
41
-42
43
44
45
46
47
40
41
42
43
44
45
46
47
40
41
42
43
44
45
46
47
41
42
43
44
45
46
41
42
43
110.
112.
107.
92.
38.
48.
48.
23.
24.
112.
112.
106.
90.
82.
49.
48.
98.
91.
84.
77.
68.
60.
51.
49.
48.
81.
76.
71.
65.
59.
55.
49.
48.
70.
68.
64.
63.
59.
54.
52.
48.
61.
59.
58.
57.
53.
51.
54.
54.
54.
8
3
4
5
5
5
4
7
5
6
4
9
3
7
1
6
1
5
9
1
7
6
4
0
4
3
6
9
4
8
0
4
4
7
4
9
0
1
5
4
4
4
3
9
1
5
7
6
3
.3
182.
197.
188.
122.
116.
56.
56.
29.
29.
184.
196.
186.
116.
105.
57.
57.
139.
120.
106.
100.
94.
90.
61.
58.
57.
102.
102.
102.
96.
' 90.
85.
59.
57.
93.
98.
98.
98.
93.
86.
81.
57.
94.
94.
95.
95.
39.
83.
91.
91.
91.
0
0
3
0
0
7
3
4
9
5
8
5
0
4
9
1
6
4
3
1
6
4
4
4
5
5
5
0
3
6
7
0
6
3
3
3
4
1
9
9
A
6
5
3
3
8
8
1
1
5
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
2S9
41
41
41
41
41
41
41
42
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45
46
46
46
46
46
46
47
4 7
47
38
39
40
41
42
47
48
17
18
38
39
40
41
42
46
47
39
40
41
42
43
•44
45
46
47
40
41
42
43
44
45
46
47
40
41
42
43
,44
45
46
47
41
42
43
44
45
46
4 1
42
43
127.6
129.6
124.0
107.3
102.7
55. 1
54.9
26.6
27.4
1 29 . 2
129. 1
123.0
104.4
95.3
55.8
55.2
112.9
105.5
98.0
89.2
79. -7
70.4
58.6
55.3
55. 1.
93.8
88.5
83.2
75.9
69.5
63.9
56.3
55.3
81 . 7
79.3
75.3
73. 0
68.5
63.4
60. 7
55.3
7 1 . 3
68.9
68.3
66. 2
62.2
60. 0
6 3 . 6
63. 2
6 3 . 2
202.0
'221.5
211.9
137.7
131.0
64.2
63.8
32.6
33.2
204.4
220.9
209.5
130.8
118.9
65.6
64.6
156.8
1 35 . 5
121.8
114.9
108.4
103.8
69.5
66.2
65.2
117.4
117.6
117.2
110.5
104. 1
98.6
67.0
65.4
112.7
112.7
112. S
113.2
107.3
100. 1
94.3
65. 1
108.7
108.6
109.7
109.9
103.7
96.8
104.3
104.9
1 05 . 4

-------
-    7     -
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
47
47
47
48
48
48
48
48
48
49
49
49
49
49
49
49
49
49
50
50
50
50
50
50
51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
53
54
54
54
55
55
55
55
55
5
-------
-   s
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
56
56
56
56
56
57
57
57
57
57
57
58
58
58
59
59
60
60
61
61
61
62
62
63
63
64
64
64
65
65
65
65
65
66
66
66
67
67
67
68
68
68
3
4
5
6
7
a
9
in
38
39
40
41
42
37
38
39
40
41
42
38
39
40
38
39
38
39
37
38
39
38
39
39
40
39
40
41
38
39
40
41
42
41
42
43
42
43
44
43
44
45
35
35
35
35
34
34
34 .
34 •-
38.7
40.9
41. .6
42.0
42. 1
32.6
37.9
39.9
41.2
40.5
40.7
31.9
38.2
39.4
30.8
31.4
28.4
28.8
26.5
26.5
26.4
25.2
24.2
22.7
21.4
20.6
20.0
18. 1
19.2
19.2
18.0
17.2
15.2
15.2
13.3
10. 1
9.7
7.7
5.6
6.4
4.8
4. 1
0.0
3.0
6. 1
9.5
13.3
17.7
23.5
27 . 6
67.
71.
72.
72.
72.
52.
63.
65.
70.
70.
70.
48.
59.
63.
45.
45.
43.
43.
42.
41.
41.
40.
40.
39.
39.
38.
38.
37.
37.
37.
37.
37.
36.
36.
36.
35.
34.
34.
31 .
30.
29.
28.
0.
17.
20.
22 •
25.
27 .
34.
38.
6
7
1
3
5
4
3
8
6
4
7
2
4
3
8
8
8
9
0
9
9
5
3
5
2
5
5
8
0
2
ji.
6
9
5
8
4
4
0
7
6
3
1
0
5
4
3
1
.ii!
4
9
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
56
56
56
56
56
57
57
57
57
57
57
58
58
58
59
59
60
60
61
61
61
62
62
63
63
64
64
64
65
65
65
65
65
66
66
66
67
67
67
68
68
63
3
4
5
6
7
8
9
i Q
38
39
40
41
42
37
38
39
40
41
42
38
39
40
38
39
38
39
37
38
39
38
39
39
40
39
40
41
38
39
40
41
42
41
42
43
42
43
44
43
44
45
35
35
35
35
34
34
34
34
45.
48.
49.
49.
49.
38.
44.
46.
48.
47.
47.
37.
45.
46.
36.
36.
33.
33.
31.
30.
30.
29.
28.
26.
24.
23.
22 .
20.
21.
21.
20.
19.
17.
17.
14.
11.
11.
a.
6.
7 .
5.
4.
0.
4.
8.
13.
18.
24 .
32 .
33.
5
2
0
3
4
1
5
9
5 .
6
7
5
0
3
2
8
3
7
0
9
7
4
0
1
6
6
9
6
9
9
5
4
2
^
9
5
0
7
4
lii
5
T
/
0
*£.
6
3
5
6
3
0
79.5
84.5
84.9
85. 1
85.2
59.8
73.9
76.8
82.9
82.7
83. 1
55.4
69. 1
73.6
52.7
52.7
50.5
50.6
48.5
48.5
48.4
46.9
46.6
45.7
45.3
44.6
44.6
43.6
42.9
43.0
43.0
43.5
42.6
42. 2
42.4
40 . 8
39.7
39.2
36. 6
35.3
33.8
32. 4
0.0
23.4
27.6
31.2
34.8
38. 4
46. 2
52,5

-------
                         -  9  -
390
391
392
393
394
395
396
397
398
399
400
401
402
4O3
404
405
4O6
4O7
408
409
410
11
12
13
14
15
15
16
16
17
17
18
18
19
19
20
20
2O
21
21
21
21
34
34
33
33
32
33
32
33
32
33
32
33
32
33
32
33
34
32
33
34
35
30.2
33. 8
38.3
43.8
47". 7
48.5
49.4
50.2
51.5
49.9
52.8
51.2
54.3
52.5
55.6
53.9
54.0
54.8
56. 3
56.7
56.0
39.
44.
50.
58.
62.
67.
63.
68.
69.
64.
70.
65.
72.
66.
73.
68.
68.
68.
69.
70.
71.
7
6
7
O
3
1
8
6
2
4
0
3
5
i=^
1
0
8
6
9
9
5
390
391
392
393
394
395
396
397
393
399
40O
401
402
403
404
405
406
407
408
409
410
11
12
13
14
15
15
16
16
17
17
18
18
19
19
20
20
20
2 i
2 1
21
2 i
34
34
33
33
32
33
32
33
32
33
32
33
32
33
32
33
34
32
33
34
35
42.
47'.
54.
62.
63.
69.
71.
72.
75.
72.
78.
75.
81 .
79.
84.
82.
83.
84.
86.
86.
35.
0
4
1
4
1
0
0
0
1
9
1
9
3
7
1
6
O
3
3
9
9
54. 1
61.5
70. 4
81 . 3
87. 7
91.6
90. 7
94.4
99. 1
93. 2
1O1 . 7
96. 3
106. 2
100.3
1 OS . 3
1 03 . 9
105.4
1 05 . 8
1 07 . 5
108. 9
109.7
Average =
49.9
                                          Average =
                                          69.

-------
 REPORT DOCUMENTATION
       PAGE
1. REPORT NO.
   EPA-910/9-S7-180
                                                                3. Recipient's Acc*»lon No.
4. Title and Subtitle
                                                                 5. Report Oat*
            Methoui Valley Ail—Quality Simulation
                                                                          O6-25-87
7. AuthorM
           Halstead Harrison
                                           8. Performing Organisation Rept No;
 S. Performing Organisation Nam* ami Address
                                                                 10. Preject/Task/Work Unit No.
          UYNDsoft Inc.
          6333 77th Avenue SE
          Mercer  Island,  WA 98O4O
                                           11. ContracUQ cr GrantfG) No.

                                           (C)
 12. Sponsoring Omnlzatton Nam* and Address
           U.S.  Environmental Protection Agency
           Region X
           12OO 6th  Avenue
           Seattle,  WA 98101-3188
                                            13. Type of Report & Parted Covered
                                            14.
 15. Supplementary Not*s
 10. Abstract (Limit 200 words)
           The concentrations of total suspended  particles  (TSP) in  the air
           of  a constricted mountain  valley  system have  been  simulated with
           a 820—box, 2—layer model that accounts for systematic and random
           winds with boundary  conditions appropriate to the  complex valley
           contours.   Three-day episodes were computed with the actual
           winds of  February 10-12, 1985, with base-case and  projected
           emissions.

           Resulting estimates  of TSP-concentration fields are presented  as
           functions of time and space,  for  highest 24—hour averages and
           for highest 6—min episodes.  Comparisons are  presented  between
           observations and simulations.
 17. Document Analysis a. Descriptors
   b. Identifiers/Open-ended Terms
   c. COSATt Field/Group
 IS. Availability Statement

-------