80-4
Evaluation of Two Turbocharged
Diesel Volkswagen Rabbits
October, 1979
Technology Assessment and Evaluation Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
Environmental Protection Agency
by
Edward A. Earth
James M. Kranig
-------
Background
The Environmental Protection Agency (EPA) was requested to test two
Volkswagen Rabbits with turbocharged Diesel engines by the U.S. Depart-
ment of Transportation (DOT). These were research vehicles which cou-
pled turbochargers to small displacement Diesel engines with the ob-
jective of maintaining the fuel efficiency of the Diesel with a power
output similar to that of equal displacement gasoline engines. The DOT
requested testing by the EPA as the EPA has the capability to assess the
vehicle performance and emission levels.
There has been limited experience in testing turbocharged Diesel en-
gines. These vehicles were particularly significant as it was the first
time a small displacement Diesel with a matched turbocharger could be
evaluated by the EPA in terms of performance, fuel economy, particulate
emissions, and gaseous emissions. These vehicles offered the oppor-
tunity of evaluating an automotive engine which may indicate the direc-
tion the auto industry will take in the future in an effort to minimize
harmful emissions, maximize fuel economy, and maintain current vehicle
performance. This test program was run during the period of
February 1977 to May 1978.
The conclusions from the EPA evaluation test can be considered to be
quantitatively valid only for the specific test vehicles used. However,
it is reasonable to extrapolate the results from the EPA test to other
similar types of vehicles in a directional manner, i.e., to suggest that
similar results are likely to be achieved on other similar types of
vehicles.
Test Vehicles
The test vehicles were turbocharged Diesel Volkswagen Rabbits. The
Volkswagen Rabbit Research Prototype Vehicle (RPV) was basically a
standard production Rabbit Diesel modified through the addition of a
turbocharger (see Table I). The power was transmitted through a four-
speed manual transmission with an overall final drive ratio of 3.37:1.
In contrast, the Integrated Research Volkswagen (IRVW) was significantly
different from a standard production Rabbit Diesel (see Table II). The
engine was similar to that used in the RPV and was coupled to a five-
speed manual transmission with an overall final drive ratio of 2.78:1.
The structure of the IRVW was extensively changed from the production
Rabbit to provide additional crashworthiness. However, the inertia
weight of 2250 pounds remained unchanged from that of the production
Rabbit.
-------
Table I
TEST VEHICLE DESCRIPTION
Chassis model year/make - Volkswagen Rabbit Research Prototype Vehicle
Emission control system - Turbocharged Diesel
Engine
type 4 stroke, Diesel, in line 4 cyl, OHC
bore x stroke 76.5 x 80.0 mm/3.012 x 3.149 in.
displacement 1474.8 cc/90.0 cu. in.
compression ratio 23.5:1
maximum power at rpm 68 HP DIN at 5000 rpm
fuel metering Bosch Fuel Injection
fuel requirement Diesel Fuel No. 2
Drive Train
transmission type 4 speed manual
1st gear 3.46:1
2nd gear 1.94:1
3rd gear 1.29:1
4th gear 97:1
axle ratio 3.48:1
overall gear ratio, 4th gear . . . 3.37:1
Chassis
type Front Engine, Front Wheel Drive
tire size Semperit 155SR13, Rayon, Steel
curb weight 1985 lbs/900 kg.
inertia weight 2250 Ibs
passenger capacity 4
Emission Control System
basic type fuel injection, Garrett T-3 turbocharger,
swirl chamber
durability accumulated on .... 5200 miles/9360 km.
system
-------
Table II
TEST VEHICLE DESCRIPTION
Chassis model year/make - Volkswagen IRVW Safety Vehicle
Emission control system - Turbocharged Diesel
Engine
type 4 stroke, Diesel, in line 4 cyl, OHC
bore x stroke 76.5 x 80.0 mm/3.012 x 3.149 in.
displacement 1474.8 cc/90.0 cu. in.
compression ratio 23.5:1
maximum power at rpm 70 hp DIN at 5000
fuel metering Bosch Fuel Injection
fuel requirement Diesel Fuel No. 2
Drive Train
transmission type ... 5 speed manual
final drive ratio 1st gear - 3.46:1
2nd gear - 1.94:1
3rd gear - 1.29:1
4th gear - .97:1
5th gear - .75:1
axle ratio 3.70
overall gear ratio (5th gear) . . 2.78
Chassis
type Front Engine, Front Wheel Drive
tire size 175/70 SR13
curb weight 937 kg/2065 Ibs.
inertia weight 2250 Ib.
passenger capacity 4
Emission Control System
basic type fuel injection, Garret T-3 turbocharger,
swirl chamber
durability accumulated on .... 1910 miles/3074 km.
system
-------
Summary of Findings
Both the RPV and the IRVW were well within the Federal Emission
Standards for 1978 Light-Duty Diesel Vehicles.
- Increasing the shift speeds on the RPV caused an increase in CO and
NOx emissions and a decrease in fuel economy for the FTP and HFET
cycles. The effect on HC emissions was mixed.
- Higher inertia weights for the RPV resulted in either small or no
decreases in HC and CO emissions. NOx emissions increased with
increasing inertia weight and fuel economy decreased.
- The IRVW showed higher HC levels for the lower speed shift sche-
dules for the FTP and HFET but lower levels for the LA-4 (a hot
start FTP with no 10 minute soak and no bag 3 - the Federal Urban
Dynamometer driving cycle).
The IRVW yielded higher NOx levels for lower speed shift schedules
for all test cycles when compared with the standard shift schedule
results.
The effect of variations in shift schedules on the IRVW levels of
CO were mixed.
- For the IRVW, lower shift speeds tended to result in higher fuel
economy.
- The various tires tested yielded equivalent results for the FTP
except for a slight improvement in fuel economy when using the
prepared Continentals. For the HFET, the Semperits and the pre-
pared Continentals yielded equivalent or slightly lower HC and CO
emissions than the stock Continentals and the prepared Continentals
yielded slightly higher fuel economy levels.
- The IRVW was found to be within the proposed particulate standard
of 0.2 grams per mile for 1983 Light-duty Diesel vehicles. Infor-
mation on an applicable deterioration factor does not exist.
- Acceleration of both vehicles was adequate for normal driving.
Test Program
Exhaust emission and fuel economy tests were conducted in accordance
with the 1978 Federal Test Procedure, Highway Fuel Economy Test Pro-
cedure, LA-4 Cycle Test Procedure, and Steady State Test Procedure.
Particulate samples were collected during some of the FTP and HFET
-------
cycles. Various shift schedules, inertia weights, and tires were used
in the above tests. In addition, acceleration tests were conducted to
evaluate the performance of the RPV Diesel. See Table III for the
detailed listing of the tests conducted.
Discussion of Results
Research Prototype Vehicle Test Results
As received and tested at the standard inertia weight, the RPV yielded
an average of 0.48, 0.93, and 0.96 grams per mile for HC, CO, and NOx,
respectively, while attaining an average fuel economy level of 45.9
miles per gallon for the FTP. This is well within the Federal Emission
Standards of 1.5, 15, and 2.0 grams per mile for 1978 Light-Duty Diesel
Vehicles. In addition, the RPV conformed to these standards for each
FTP test. The summaries of results are displayed in Figures 1 through
20 and are tabulated in Tables IV through IX. The individual test
results are detailed in the Appendix.
RPV - Effects of Unscheduled Maintenance
An additional variable was introduced when the vehicle testing was
interrupted by DOT to allow demonstration of the vehicle. The vehicle
accumulated 2000 miles during these demonstrations. When it was re-
turned, some testing was done before it was noticed that the vehicle
demonstrated a transient smoke problem upon acceleration which had not
been apparent previously. The vehicle was returned to Volkswagen for
correction of the problem and the corrective action entailed recon-
ditioning the injector nozzles. After its return, the smoke problem was
gone but the test results appeared to be significantly different from
those originally obtained. Therefore, the test results have been di-
vided into three groups - Phase I was the initial testing, Phase II was
the testing during the smoke problem period, and Phase III was the final
testing. All three groups of data are presented in the Appendix but the
summary plots and tables deal only with Phase I and Phase III testing.
In the FTP, HC emission levels were lower for Phase III than for
Phase I. The CO levels were higher and NOx levels were substantially
higher for Phase III. Fuel economy results were mixed but they appear
to be about the same for each phase (see Figures 1-4).
HC, CO, and NOx levels for Phase III were much higher than for Phase I
for the HFET cycle. The fuel economy for Phase III was lower than for
Phase I (see Figures 5-8).
In contrast, the HC levels for the LA-4 cycle were lower for Phase III.
CO and fuel economy were unaffected. NOx levels were higher for Phase
III (see Figures 9-12).
-------
Table III
FTP
HFET
LA-4
Steady State
Test Program
Research Prototype Vehicle
Inertia Weight (Ibs)
2250
2750
3000
2250
2750
3000
2250
2750
3000
2250
2750
Acceleration
Shift Schedule
Standard (15,25,40)
18/30/47
18/33/47
Standard
Standard
Standard
18/30/47
18/33/47
Standard
Standard
Standard
Standard
Standard
Idle, 1st at 15
2nd at 30, 3rd at 30, 4th at 30
4th at 45, 4th at 60
Idle, 1st at 15, 2nd at 15
2nd at 30 mph
3rd at 30 mph
4th at 30 mph
4th at 45 mph
4th at 60 mph
0-30
0-40
0-50
0-60
0-70
FTP
Integrated Research Volkswagen
Inertia Weight (Ibs) Shift Schedule
2250 9/20/30/40
11/21/32/42 (std.)
13/24/35/46
Tires
Continental
Semperit
Continental
Continental (lightly
prepared)
Continental
-------
HFET
Table III (cont.)
Integrated Research Volkswagen
Intertia Weight (Ibs) Shift Schedule
2250 9/20/30/40
: 11/21/32/42
LA-4
Steady State
2250
2250
Sulfate
Particulate-FTP
Particulate-HFET
Particulate-SS
2250
2250
2250
2250
Particulate-Sulfate 2250
13/24/35/46
Standard
9/20/30/40
10/23/33/43
11/21/32/42
idle, 1st at 15
2nd at 15
3rd at 30
3rd at 45
4th at 45
5th at 45
4th at 60
5th at 60
Standard
Standard
Standard
3rd at 30
Standard
Tires
Continental
Semperit
Continental
Continental (lightly
prepared)
Continental (lightly
prepared)
Continental
Continental
Continental
Continental
Continental
Continental
Continental
Continental
Continental
Continental
-------
For the Steady State cycle the effect on HC levels of the two Phases was
mixed and depended upon the gear used and the speed. CO levels for
Phase III were generally higher than those of Phase I. NOx levels were
higher for Phase III. Fuel economy was lower for Phase III in every
condition except for second gear at 30 mph and 2750 IW, where it was
higher for Phase III (see Figures 13-16).
RPV - Effect of Varying Shift Schedule
The RPV was tested using three shift schedules which included the stan-
dard of 15/25/40 mph, as well as 18/30/47 mph, and 18/33/47 mph. For
the FTP, the higher shift schedules caused HC emissions to either
remain unchanged or to increase slightly. CO and NOx emissions in-
creased and fuel economy decreased when the higher shift schedules were
used (see Figures 1-4).
The higher shift schedules used for the HFET cycle did not cause any
change in the levels of HC emissions. CO emission levels showed small
increases as shift speeds were increased. NOx levels were found to
increase while the fuel economy dropped when using the higher shift
schedules (see Figures 5-8).
The HC emission levels and fuel economy dropped when the higher shift
schedules were used for the LA-4 cycle. In contrast, CO and NOx emis-
sion levels showed large increases (see Figures 9-12).
RPV - Effect of Varying Inertia Weight
The RPV was also tested at three inertia weights (2250 Ibs. - standard,
2750 Ibs., and 3000 Ibs.) because the vehicle demonstrated sufficient
power to make its engine suitable for application to heavier vehicles.
For the FTP cycle, the lower inertia weights gave better fuel economy,
higher HC and CO emissions, and lower NOx emissions than the higher
inertia weights.
For the HFET cycle the fuel economy was best at the lower inertia
weights, HC emission levels decreased as the inertia weight was increased
from 2250 Ibs. to 2750 Ibs. then increased as the inertia weight was
increased to 3000 Ibs. The CO emissions did not change significantly as
the inertia weight was increased to 2750 Ibs. but did increase as the
inertia weight was increased to 3000 Ibs. NOx emission levels increased
and fuel economy decreased as the inertia weight was increased (see
Figures 5-8).
HC emission levels tended to be higher for the lower inertia weights
when tested by the LA-4 procedure. CO emissions showed a small decrease
as the inertia weight was increased. NOx emissions tended to increase
slightly as inertia weight was increased. Fuel economy tended to be
better for the lower inertia weights (see Figures 9-12).
-------
As vehicle inertia weight increases, higher dynamometer road load horse-
power and dynamometer inertia weight values are used. However, inertia
is not a factor in steady state tests. The steady state tests showed
that the inertia weight increase, represented only by a higher road load
horsepower had only a marginal effect. HC and NOx levels did not appear
to change. CO emission levels and fuel economy were slightly lower for
the higher inertia weight (see Figures 13-16).
RPV - Effects of Shift Schedule on Following Driving Schedule
The RPV was unable to maintain the desired acceleration rate to stay
with the driver's trace on hard accelerations. The higher shift sche-
dules improved the vehicle's acceleration capabilities. While the
vehicle was tested using only the standard shift schedule at the higher
inertia weights to minimize the number of tests required, it appeared
that the vehicle could have maintained the prescribed acceleration rates
at the higher inertia weights by using higher speed shifts.
RPV - General Summary of Results
The effect of the test conditions was not completely consistent when
comparing the effect on each emission product or fuel economy among test
types. However, increasing the shift speed tended to increase CO and
NOx emissions and to decrease fuel economy. Its effect on HC ranged
from an increase to a decrease depending upon the test cycle.
The lower inertia weights typically yielded higher or equal HC and CO
emissions as well as better fuel economy than did the higher inertia
weights. NOx emission levels, when using the lower inertia weights,
were typically lower than or equal to the levels associated with the
higher inertia weights.
The Phase III test results for CO emissions were generally higher or
equal to the Phase I test results. NOx emissions were higher for
Phase I than for Phase III. Fuel economy for the Phase III results
tended to be less than or equal to the Phase I results. The effect of
the Phases was mixed on HC over the various test cycles.
The RPV did meet the 1978 Federal Emission Standards for all FTP tests
under each set of conditions. The highest single values recorded were
0.71, 1.32, and 1.76 grams per mile for HC, CO and NOx, respectively as
compared with the standards of 1.5, 15, and 2.0 grams per mile.
The track acceleration test indicated that the RPV had adequate power
for acceleration. Zero-to-50 mph times ranged from 10,5 to 11.1 se-
conds. This compares reasonably well with the advertised zero-to-50
mph time of 8.3 seconds for the 1979 gasoline powered Rabbit.
-------
10
Integrated Research Volkswagen Test Results
The IRVW yielded average FTP results of 0.11, 0.57, and 0.92 grams per
mile for HC, CO and NOx, respectively when tested at standard condi-
tions. The resultant average fuel economy was 51.9 miles per gallon.
This easily met the 1978 Light-Duty Diesel Vehicle Federal Emission
Standards of 1.5, 15, and 2.0 grams per mile of HC, CO, and NOx, respec-
tively. Each of the individual tests also met these standards.
IRVW - Effects of Varying Shift Schedule
The IRVW was tested at various shift schedules which included the stan-
dard schedule of 11/21/32/42 mph and other schedules of 9/20/30/40 mph,
10/23/33/43 mph, and 13/24/36/46 mph. For the FTP cycle the HC level
was the same for the standard and higher shift schedules and was in-
creased when the lower shift schedule was used. The CO and NOx was
lowest when the 11/21/32/42 shift schedule was used. Fuel economy was
not significantly affected by the shift schedule (see Figures 1-4).
For the HFET cycle the HC levels decreased as the shift speeds were
increased. The HC levels were significantly higher when the lowest
shift schedule was used. The CO and NOx levels were highest for the low
shift speeds and lowest for the standard shift speeds. The highest
shift speeds yielded results only slightly higher than the standard
shift speeds. Fuel economy was comparable for the two lower speed shift
schedule and was lower for the 13/24/32/42 mph shift schedule (see
Figures 5-8).
HC levels in the LA-4 cycle were lowest for the 9/20/30/40 schedule and
highest for the 10/23/33/43 schedule. CO levels were progressively
higher as the shift speeds were increased. The lower speed shift sche-
dules caused an increase of NOx levels compared with the 11/21/32/42
shift schedule. The fuel economy for the LA-4 tended to be slightly
lower as the shift speed was increased (see Figures 9-12).
IRVW - Effects of Tires
The IRVW was tested with three types of tires for the FTP and HFET
cycles. These included Continental Steel Belted Radials and lightly
prepared Continentals which had some of the tread mechanically removed
when they were trued on a machine. Also, the Semperit tires from the
RPV were used (see Figures 1-8).
For the FTP cycle HC, CO and NOx emissions were not significantly af-
fected by the changing of tires. The fuel economy obtained when using
the prepared tires was slightly better than the others. For the HFET
cycle the NOx levels were unaffected by changing tires. For the Conti-
nentals, HC and CO levels were the same or slightly higher than the
-------
11
Seraperits and the prepared Continentals for the HFET cycle. The Conti-
nentals resulted in the same fuel economy as the Semperits while the
prepared Continentals yielded higher fuel economy. The LA-4 and steady
state tests were conducted with the Continental tires only.
IRVW - General Summary of Results
The effect of the variables, shift schedules and tires, on fuel economy
varied among test cycles. HC levels were highest for the 9/20/30/40
shift schedule while the 11/21/32/42 and 13/24/35/46 schedule gave
comparable results to each other for the FTP. In contrast, the
9/20/30/40 schedule yielded the lowest HC levels for the LA-4 cycle.
For the HFET cycles the HC levels tended to decrease as the shift speeds
increased.
The low speed shift schedule resulted in the highest NOx levels for the
FTP, HFET, and IA-4 with the 11/21/32/42 schedule yielding the lowest
NOx levels. The CO results were mixed among the test cycles when the
shift schedules were varied. The shift schedule effect on FTP fuel
economy was a slight decrease as shift speeds increased. The lower
shift speeds resulted in higher fuel economies for the HFET and LA-4.
The various tires had little, if any, effect on the FTP emissions re-
.suits except that fuel economy was slightly improved with the prepared
Continental tires. The tires either showed no significant differences
or the Semperits and prepared Continentals gave slightly lower results
for all of the HFET emission results. However, the prepared Continental
tires gave better fuel economy for the HFET cycle.
The IRVW yielded average particulate emissions for the Urban Dynamometer
Schedule of 0.18 grams per mile. The IRVW met the proposed 1983 parti-
culate level (0.20 gm/mile) both on the average and in each individual
test. It also demonstrated a reduction from the standard 1979 Certi-
fication Rabbit Diesel which yielded 0.23 grams per mile.
Conclusions
Both vehicles met the 1978 Light-Duty Diesel Vehicle Federal
Gaseous Emission Standards.
The IRVW met the proposed particulate standard for 1983 vehicles.
Both vehicles were somewhat sensitive to shift speed changes over a
small range regarding gaseous emissions and fuel economy, but the
degree of sensitivity and direction of change for each was depen-
dent upon the test cycle.
-------
12
Fuel economy, HC emissions, and CO emissions generally dropped or
remained unchanged as the inertia weight was increased and the NOx
emissions generally increased or remained unchanged.
Tires had little effect except for the prepared Continentals
causing small increases in fuel economy, on the FTP and HFET cy-
cles.
Acceleration was adequate and the engine appeared to show a po-
tential for application to larger vehicles.
-------
I.H
RTF TE:
Figure 1
5T REZ5ULT
HYDREDCRREnN
UMMRRY
Ld
1.2
EC I'H
LJ
CL
LH Q
21 -a
m
o:
in
^ .E
LJ
13
, 1
IT*
%T™ U
J^^ *
z
EL
III
LLJ M
z: -2
i
-
rH
efl
j-i
C
0)
C
4J
C
o
o
M MM t—l
MMM 1— 1 1
MMM MMM M l-<
O
1 1 1 1 1 1 1 1 •*
O O r~ «— • r~ O O O O O
CO
CM
• "^
m
i — i
l
o
in
CM
CM
1
.....
a
g
•*«*•*-* CO
m m m u~» o
CM CM CM CN| CM
•^^.
m
M
1
o
m
CM
i
>
&
*^^ ^^,
m LO
r— i i — i
l i
o o
m o
r~» o
CM CO
1 I
> >
a &
^*^. *^^
u-> (Ti
n '
o
o m
O CM r
O CM
CO
1
1
t> >
PM Pi
2 M
R)
£
s
•H
C
s
1
CM
1 '
vo CM
•* C^.
CO ^
-d" *~
CM ^
•^^. ^^«
CO r~
rH >H
1 1
o o
m m
CM CM
CM CM
1 1
5 • >
1 s|-| s
T-4
0)
a.
co
1
o
cT
CO
o
CM
^•*
CTi
1
o
in
CM
CM M*
1
n 5>
M
TET5T CnMI> I T I DN5
-------
LJ
Figure 2 - • • . '
FTP TEI5T REZ5UL.T5 5UMMRRY
CRRBDNMnKIHlX I OEI
2.00 ,.
1.75 .
o:
u
in
1.S0 .
I.2E .
s
c
0)
c
c
o
U
T3
y
isr
a: 1.00
ID
v
LJ -re
~ "^ • /3^
^H>J
_J
CE
^^
.£0
z:
CE
LJ
21 .25
1
u 0
M
1
O
^*
To
CM
in
* '
i
o
m
CN
CN
_ i
..„
•a
M
M
l-l
1
O
^^
m
CN
m
1—1
i
o
m
CN
CN
1
j..,
Oi
pi
M
1
1^
~d-
O
en
OO
1 '
1
0
m
CN
i
>>
Oi
H-l
M
l-l
1
1^
^^-
CO
CO
00
1 — t
1
o
in
CM
CN
1
>.,
£
S c S • S U
.5 Tj Tj a CD
2 § s 1 1
o u u (*• .?
M
l-l
M
1
O
^^>
in
CN
in
1 '
1
O
m
CN
I
>
£
1-1
I
o
*^"
m
m
^^
I
o
m
CN
I
j>
P--
C_) "'
M II1.
M^_ 1 _. '
. i 1 I
1
O
^^
m
CN
m
1—1
i
o
o
o
CO
,
>
P-!
Crf
1
O
,,^-
m
CN
m
« — i
i
0
0
o
CO
1
;>
fe
CN vD ^ _
o -st
l-l
CN C
r— • ^-^
— H C>
1
o
in
CN
l
tr
c."
1
cr
m
C-l
oj
i
^
c.'
t— *
._.
I
h-1
CO
TETST CDND I T I DN5
-------
Figure 3
FTP TEI5
T REZ5UI_T5
NITROGEN nx i E>ETs
UMMRRY
I.S0 r.
1 • MMU
LJ
-J 1.25
z:
o:
u
Q- 1.00
Ul
z:
CE
o:
LD .75
V
U
-»'™|
EE .50
^>
CE
z: .25
1
X
§ 0
.
M
1
0
CM
m
rH
1
o
CM
CM
1
^
&
M
1 |
M
1
O
m
CM
m
r-l
1
O
in
CM
CM
1
>
£5
M
1
O
CO
00
r-l
1
O
m
CM
CM
1
>
s
M
H
I
CO
m
oo
r-l
1
O
m
CM
I
^
Pj
PA
M
1
O
m
••^
m
•-i
I
o
m
CM
I
^
&
M
M
1
O
m
CM
in
r-l
1
O
m
CM
I
^
a
M
1
O
m
CM
m
r-l
1
O
O
o
co
i
^
a
r-l
r-l
|
CD
CM
-*^_
u-i
t— 1
1
0
CD
CO
1
^>
S
r-H
0)
4-1
C
•rl
C
O
U
|
0
-3-
O
CO
o
CM
•**^.
CJ\
1
o
in
CM
CM
1
jj
^
cd
M
'• a
1
•H
I-I >H
nt ed
4J , 4->
C
0)
C
•H
4J
a
3
i
CM
•^^
CM
CO
i-H
CM
•••^
t-l
H
1
O
m
CM
CM
1
S
^>
H
C
0)
c
•H
4J
C
0
O
1
vO
•^»^
m
CO
CM
•*»^,
CO
r-l
1
O
m
CM
CM
1
,3
^
M
4-1
"
13
(U
H
cd
cx
(I)
PH
1
CM
*****
CM
CO
r-l
CM
*"*»•
r-l
iH
1
O
m
CM
CM
1
.3
^>
M
4J
T4
&
g
CJ
1
o
^*
o
CO
o
CM
**"*.
o^
•
1
o
m
CM
CM
1
s
^>
M
-O
I
TET5T CDMI> I T I IUN!
-------
Figure 4
FTP TEZ5T REZ5UL.T5- 5UMMHRY
LD
O.
V
LJ
BE
B0
75
70
ci)
e
rp
LJ
z:
LfCT
i
>- H0
z:
Q -ar-
^r ••••*
a
^^r ^Ift
|| *JU
Li-J
-J 2S
U
i. 20
3 8 8 "8
3 5 3 • £ a
•u C C *
a o o .' J-1
H MM M
M M M M 1
MHM MMM MM
O
O
CO
* CM
m
H
|
O
in
CM
CM
1
' I
1 1 1 1 1 1 1 -0-
•••^
O
m
CM
m
H
|
O
in
CM
CM
1
s
M
r~s r~ O o O O O
-* «* -3"
O
CO
00
H
|
O
m
CM
CM
1
1
— »
CO
CO
oo
M
|
O
in
CM
CM
1
1
— «
CM
m
1
o
in
r*^
CM
1
1
•xf *^" *^ CO
in
CM
m
M
|
O
in
f^
CM
1
i
•
— .
m
CM
m
i
o
o
o
CO
1
\
~ —
m
CM
in
M
|
O
O
o
CO
1
1
^-*
o
CM
•^
a>
i
o
m
CM
CM
1
t6
M
U
1
CM
-a-
CM
CO
-»-
CM
M
r-H
1
0
in
CM
CM
1
PJ
M
O • P-1
1
5
~«^
in
CO
~~»
CM
CO
1
O
m
CM
CM
1
M
-
1
CM
""•*-
CM
CO
***r
CM
^H
1
O
in
CM
CM
1
3
1
M
a,
6
-------
Figure 5
HREIT T
EI5T RESULT
HYD-RnCFIRBCIN
UMMRRY
. — J.*
u •*
ijll
-J
•—
2:
a: -2s
LJ
CL
g .20
EE
tr
ta
V «r-
. IS
LJ
—i
_j
i
_i
rr
> .10
CE
LJ
"i Pic
T~ . cux
•in*
1
¥ •
-
•
n
1
o
o-
m
CM
m
i — i
i
o
in
CM
CM
•
i
i
M
M
M
1
O
&
-
H
1
r-»
<•
O
CO
00
rH
1
o
in
CM
CM
1
1
r-
M
M
M
1
r~
&
-
M
M
M H
1 1
O O
o-
&
^^^
m
CM
m
rH
|
O
m
r-.
CM
1
>
%
t
r-1
n)
4-1
C
a)
C
•H
4J
C
3 5
2 *i -a
•M '^
0)
c
•H
4_)
C
0
u
H
1
O
<)•
m
CM
m
rH
|
0
o
o
CO
1
>
&
i
o
C
0)
c
•H
4J
c
s
T3
0) 4J
>-i iH
n] j-4
a. CD
OJ p^
n 6
&H 0)
oo
,n '
^sO
•* o
*~- vr
m -^
CO O
•*-. co
1 1
0 0
m m
CM CM
CM CM
' n *
CA &
M (-H
TETST CaMO I T ( CJN5
-------
Figure 6
HREIT
REI5ULT5 SUMMARY
CHRBdNMnNIHX I OET
xs .70
U
_J
21 .HI
o:
u
.SB
in
21
EC
cr .40
LD
%^
3 .30
.J
EC
^^^
TIP!
z:
EC
LJ
^ .10
i
•
LJ 0
.
-
M
1
O
st
m
CM
^•^
in
r_4
I
o
in
CM
CM
1
•>
&
••
M
M
H
1
O
^
m
CM
^^^
m
I
o
m
CM
CM
1
J>
§
r-l
1
>
%
M
H
M
1
o-
CO
•"•^
co
^J
r^
1
O
m
CM
CM
1
^
§
-
M
1
O
si-
m
CM
^^^
m
I
o
m
CM
1
K.,
&
H
H
H
1
O
m
CM
^^
m
I
o
m
CM
I
*>
%
rH
4-1
rH
1
O
m
CM
**^
m
i
r~1
i
o
o
o
1
.;,
PL|
B
3
I
o
o
CO
O
CM
ON
1
O
m
CM
CM
1
^
M
mi
(0
4-1
a
en
1
1
vO
si- O
m ^>.
CO O
sr
CM
CO
i-H
1
o
m
CM
CM
1
^
06
rH
CO
0
CM
^«^
{^
1
O
m
CM
CM
1
E^
OS
I-H
TEIST CIHNI> I T 1 DNS
-------
Figure 7
HFEIT TEI5
T REZSUL.T5
N I TRdEEZM OX 1 D-ETS
UMMHRY
I.H0 ^
y 1.20
E
tz \ 00
Ld
CL
in
en -m
fZ
ID
V
Id -E0
]"~)
IT
> .H0
zi
C
LJ
^
.20
I
X
n
z: 0
•
M
1
O
•"
M
M
M
1
O
•3-
in
CM
m
rH
1
O
m
CM
CM
1
^
§2
M
1
r^
<•
0
"CO
oo
rH
1
O
in
CM
CM
1
^
%
M
M
M
1
CO
CO
OO
iH
1
O
m
CM
CM
I
>
fe
M
1
O
sfr
m
CM
m
rH
1
O
m
CM
I
^
%
M
IH
M
1
O
<•
in
CM
m
i — i
I
o
m
f%^
CM
1
^
£
H
1
O
-tf
m
CM
^.
m
iH
1
O
O
o
CO
1
^
Pn
rH
rt
Jj
. C
(U
c
•H
1 j
8
i
o
-*
o
CO
o
CS|
1
o
m
CM
CM
1
5
J>
M
td nl
4-1 4->
C C
eA
IH
0) (U
M J-l
f^ (Q
0. CX
0) (U
p-l
1
1
CM
CM
CO
i-H
CM
iH
rH
1
o
m
CM
CM
1
3
^
c£
I— f
PH
1
1
VO
in
CO
sr
CM
CO
iH
1
o
m
CM
CM
1
a
^>
M
4J
•H
M
(U
O.
(U
en
o
C^.
0
CO
o
CM
-------
Figure 8
HFEIT
TEI5T REI5LJL-T5
F-LJEL. ECONOMY
5UMMHRY
as
B0
^ 7S
ID
0- 70
r T0
•v
, , BS
U
Zl
rr- ^^
> ss
z
Ct P-M
LJ
i«
HE
I
i
>- H0
^p^
4b»
Q
*^^ «I^X
n
^ 3"
_J 25
U
Zl
rr 20
-
-
I
;
! rH rH
— ' i 3
i c
1 -H
rH
i i
•
Hi
1
O
.
•^
^^
O
en
*x^
oo
i-H
1
O
m
CM
CM
1
%.
1
J_l
M
M
HI
1
r-
«^
>^^
en
en
•^.^^
co
rH
1
0
m
CM
CM
1
i
M
HI
1
O
-a-
-^
in
•••^
m
rH
1
O
m
CM
i
i
c
8
H
HI __ 1
|_ (
1
O
st
\^
in
CM
•x,,,^
m
H
1
O
m
CM
i
1
.,
o
1
o
<^
•^..^
m
I T I DNS
-------
— H T
Figure 9
T REZSULT5 5UMMRRY
H0
LJ
_J
21 .30
LJ
.25
LH
— .
Z-
f'T"
L&^
m .20
LD
v
1 C*
13 -lb>
_J
cc
^^*
.10
LT
LJ
jf^. ML*
r^« • JUiA
i
^
T- 0
»
.1
•
o
s±
m
CN
• rH
i
O
m
CN
CN
1
>
M
M
|
0
tn
.CN
m
rH
i
0
m
CN
CN
1
1
"™
M
M
M
|
CO
CO
-^^_
OO
1
0
m
CN
I
1
M
|
O
m
CN
^*^
m
rH
1
o
m
CN
I
1
M
I
O
in
CN
•**^
m
I
o
o
0
CO
1
1
rH
rH CO
«J -U
4J S
G cu
0) C
C
•H
4J
c
8
i
o
>^-
o
CO
O
CN
*^
I T 1 DN5
-------
L_R —H
Figure 10
REI5UL.TE
i DE:
UMMRRV
z:
tr
LJ 1 00
CL
in
z:
CE
CK .75
in
•v
U
_I .£0
CE
^^^
**^
CE
Ld .2S
z:
i
u 0
-
•
M
1
O
in
CM
•*x^.
in
rH
i
O
in
H- CM
CM
1
0?
M
M
M
1
O
m
CM
*v^_
in
rH
1
o
in
CM
CM
1
1
M
M
M
1
^
CO
CO
•**^.
CO
rH
i
O
m
CM
CM
1
>
r
•-H rH
rM
m
i— i
i
o
m
CM
I
I
M
1
O
m
CM
•^^
m
r— (
i
o
o
o
CO
1
>
G -H
•H 4->
4J C
i 5
1
1
O
••a-
0
CO
o
CM
^Nfc
ON
|
O
in
CM
CM
1
04
M
CO
CO
CO
CO
CM
O
r-l
1
O
m
CM
CM
1
PS
M
-H
4J
C
8
i
CM
CM
CO
i-H
CM
rH
i — 1
1
O
m
CM
CM
1
M
TEST CDNE> I T 1 DN5
-------
Figure 11
—H T
5T REZ5UL.T5
N 1 TRQEHEIN OX I DEIS
BLJMMRRY
I.E0 ^
LJ I.H0
r
o: !"20
LJ
EL
in • I.HH
^ J
EC
IT
LD .B0
\s
LJ
1 f+vm
*m ' hyi
EC
^^
Z .H0
EC
LJ
21
, .20
X
7- 0
-
M
1
O
-3-
in
CM
m
I
o
m
CM
I
j>
&
M
M
I-H
1
0
m
CM
m
, — |
I
o
m
CM
CM
1
j>
§
M
H
1
^
CO
CO
00
, — 1
1
o
m
CM
CM
1
>
%
M
1
O
m
CM
m
, — |
o
in
CM
£.,
&
M
|
O
m
CM
m
i
o
o
o
CO
1
.....
i
rH
tO
•U
C
C
iH
4J
C
1
o
o
CO
O
CM
CTi
1
0
m
CM
CM
1
g
M
rt
4-1
§
C
•H
4J
C
0
1
CO
^
CM
CO
, — |
CM
l~~l
rH
1
O
in
CM
CM
1
^
&
M
'
1
N3
1-0
1
TET5T CnME> i T I ON5
-------
Figure 12
H —H TE5T RESULTS
F"UEL-
7S
ID
5UMMRRV
LJ
ID
_1 B0
CE
>
AA
^T
CE £0
u M
21
HS
1
^^M ^T^3
z:
Q
Z^J3L
n
-1 X
LJ
r? 20
*
iH iH
CO • JJ 4J
JJ fj rj
C 0) 0)
Q) C f3
C i-l -H
w C C
c
H M "
M M i
M H
1
O
^^
s
1
o
CM
CM
1
>
&
1
O
^*"
m
CM
in
H
i
o
m
CM
CM
1
>
&
__
H H M
III
B
^
m
CM
m
H
I
0
m
CM
i
>
%
O O
&
o
CM
CT\
1
O
m
CM
CM
1
1
&
S
1
CO
CO
CO
CM
O
1
O
m
CM
CM
1
g-
M
8
I T~
CM
sfr
CM
CO
t-H
CM
rH
rH
1
O
m
CM
CM
1
EI
H
TET5T CDND I T I DN5
-------
Figure 13
55 TEI5T REI5LJL_T5
HYD-RCKTFIRenN
UMMRRY
1 * »B*H
x^ 1.H0
LJ
21 1.20
n:
LJ
°- 1.00
in
cc
a: .B0
La
•v
IjJ
• ""I • ^31U
•-J
J
a:
^^
.H0
Z
tr
LJ
^ .20
I
V
—
.
M
1
in
r-\
4-1
fl)
iH
1
o
CM
CM
1
>
a
M M
1 1
O O
ro
4J 4J
id id
CM m
I i
o o
m in
CM CM
CM CM
1 1
> >
52 1 I 2
I!
MM M
1 1 1
•n o in
0- vD tH
4J4-1 4J
cd cd cd
<3- > >
*n "n a
l_-^
J— j
M
1
m
I—
4-1
cti
1— i
1
o
m
p^
CM
1
>
a
M
H
M
1
in
H
4-1
n)
1
o
in
fs^
CM
1
>
a
_
M MM M M
M MM M M
MM MMMMM MM
II 1 1 1 1 1 II
O O
n ro
4-1 4-1
«d «d
CM CN
1 1
0 0
m m
r^ r*^
CM CM
1 1
> >
a[j s
«,
o o o m m o o
CO CO CO **^ *>^ vO ^O
4-J 4J 4-» J-) 4-> 4J U r~
n) rt c3 > > >_> > >
I
NJ
TET5T CDMI> I T I DNS
-------
Figure 14
B5 TEIST REI5UL.T5
UMMRRY
i E>E:
3.00
2.75
y 2.5B
^ 2.25
LJ 2.00
EL
LH 1.75
EE
EE 1.50
m
V
1.25
_J 1.00
EE
^^
.75
Z
EE
U .50
21
1 .25
_
u 0
-
-
-
-
.
.
i
- m
1-1
4-1
td
i-i
1
o
• in
CM
CM
1
&
fm
1
O
co
4->
n)
r-\
1
o
m
CM"
I
g
w
H
1
m
r-t
4J
(d
H
1
o
in
(M
1
§
M M MM M M
M M MM M M
1 1 1 1 1 1 1 1 1 1
m o °n o o o m m o o
rH CO CO CO CO co *^ "^ vO **O ^
4-II—I4-I 4-1 4-1 4-1 4J 4-1 4-1 4J 4-1
(d cdtdcdcd cdcdcdcdcd
CM CMCMCOCO sj- 1 T 1 DNS
-------
_J
Figure 15
B5 TEI5T REI5UL-T5 5UMMRRY
N I TRDEEN DX 1 £>EIS
2.1
2.E0
2.H0
2.20 .
cr 2 00
u *-m
n.
I. BE!
in
y*
o:
in i.H0
^
L| 1-20
13
_1 1.00
CC
> .B0
"Z.
IT .E0
UJ
21 .HB
1
.20
X
i 0
Z. u
•
•
MM M M M
II III
m o o m
rH CO CO -3"
4J
M
1
o
. "~>
CM
1
>
&
—
4-1
CM
1
O
CM
1
>
.-
1 i i i
c^ cd
CO
I
o
CM
CM
1
>
&
••
&
~
o
4J
n)
^j-
I
o
CM
CM
1
>
£
M
M
M M
1 1
m m
rH rH
"«
rH
1
O
CM
1
>
&
U—
"
«
,_,
1
O
in
CM
i
;>
S
•w
M M
1 1 il
H MM
1 1 1
in
H
«
CM
1
O
m
CM
I
j>
§
0
CO
^J
CM
I
O
m
CM
i
£>
§
O
CO
4-1
ti
CM
1
O
in
CM
1
J>
03
MM a
MM.. r~
M M M " l~
III1 *
0 0
CO CO
4-1 4J
CO CO
,
O
m
CM
I
^
§
"*
O
m
CM
|
£,
PH
_J^_
-
s -
V -
^.
o
m
CM
I
^
£
-d-
I
o
m
CM
I
>
&
-
ir
4-1
«J
<}•
1
O
m
CM
I
>
&
—
M
1
O
vO
4-1
(0
&
-
M
M
M
1
O
vO
4-1
rt
^.
1
O
m
CM
I
J>
§
,
ho
o-
1
TET5T CDMD> I T I ON5
-------
Figure 16
TEI5T
REZ5UL-T5
ETCdNHlMV
LJMMHRY
111
00
^ 75
LD
i: ^
Ld E
ID
.J E0
n:
> ET
IT m
Ld *"
21
HS
> H0
z:
i~[ -
z z
a
M 3"
Ld
-j zs:
Ld
i "PP\
•
•
•
.
•
"
M
1
in
~- M
<8
tH
1
O
m
CM
CM
1
>
&
M
1
0
CO
4->
&
1-
1
a
en
4J
n)
CO
i
o
CV
CM
1
>
&
M
1
m
4J
(0
vr
i
o
CM
CM
1
>.
f£
-
M
O
vO
4-1
n)
sr
I
o
CM
CM
1
J>
s
M
1
m
4-1
n)
T-H
1
O
m
CM
1
>>
s
-
M
M
1
m
H
4J
nJ
M
1
O
m
CM
1
£>
&
u_ «aj • • . . .
M
M
1
m
H
4J
H)
CM
1
O
m
CM
1
£,
s
M
1
o
CO
4-1
n)
CM
1
o
m
CM
1
£,
&.
It
M
M M
1 1
O
CO
4-1
rt
CM
1
O
m
CM
I
£>
S
O
CO
4J
(tf
CO
1
O
m
CM
I
>
s
-
M
M
1
O
CO
4-1
s
M
M
1
O
CO
4-1
tS
^
1
0
.N
1
•>
&
1—
1
in
4-1
I
o
CM
1
^
s
M
M
M
1
m
4-1
tfl
,3-
I
0
in
CM
1
£»
&
M
1
O
vO
n)
^
I
o
m
CM
i
K,
^
M
M
M
1 p.
O
l
o
m
CM
i
»-,
&
TETST CCIND I T I ON5
-------
1.50
Figure 17
TEI5T REISUL_T5
HYD-RCKIRRSnN
UMMRRY
I.
LJ
_J
21 1.20
a
LJ
^ 1.00
in
2:
a:
a: .BH
m
V
y .50
I
a:
.H0
z:
EC
LJ
s .20
1
.
.
rH
Cfl
C
0)
C
•H
4-1
c
O
1
rH
4-1
tO
FH
1
O
in
CN
CN
1
M
iH iH rH r-l
tfl cfl
4-1 4-1
C C
cu cu
C C
•H -rl
4-1 4->
C C
o o
u u
i i
m o
rH CO
4-1 4J
cfl cfl
CN CN
1 1
op] o
m in
CN CN
CN CN
1 1
M M
cfl cfl
4-1 4-1
C C!
0) CO
n c
•H -H
4-1 4J
c c
0 0
0 0
1 1
0 0
ro ro
4-1 4->
cfl (0
en en
1 1
oFj o
m m
CN CN
CN CN
1 1
Od 04
M M
rH
CO
C
0)
•H
4-1
C
o
o
1
m
I T 1 ON5
-------
Figure 19
55 TEI5T REI5UL_T5 5UMMRRY
N I TRdGETN nX I £>EZS
2.00
2.03
y 2.H0
£ 2.20
CL
1 .80
in
xr
^—* 1 C«R
a:
ID 1.40
v
I Mill
Ul „ ^K
-J 1.00
cc
fWl
* *•*•
-z.
p: .60
Ul
^" t4PI
• UU
I
x •»
^^J
•r 0
-
-
-
•
w
rH
rt
C
8
•H
4-1
e
O
a
i
m
rH
4J
" rt
rH
1
O
CM
CM
1
1
M
M
rH rH
o
1
TEST CDM£> I T I IHN5
-------
55 TEIST
BE!
Figure 20
RESULTS
ECONOMY
UMMRRY
m
V
LJ E
13
_J E0
EC
>
dthk
m ^p
EC CM
• i •Uu
L^M
z:
i
>- H0
*r™
p-
o 3£
0
a »
-J 25
U
^^|
i. 20
•
—
iH H r-l i-H
• cd cd cd cd
4J 4J 4-14-1
C C
0) 0)
c c
. -H -H
4J 4J
C C
8 8
1 1
in m
iH r-l
4J 4-1
cd cd
iH CM
o o
m in
"CM CM
i r-i i
t? E*
cd a:
M H
c c
d) a)
C C
•H -rl
4-1 4-1
C C
8 8
i i
0 0
CO
4-)
cd
CM
O
m
CM
CM
1
,5
jg
H
CO
4J
cd
CO
1
o
m
CM
CM
1
OJ
M
cd
4J
0)
•H
4-1
C
8
i
o
CO
4J
cd
CO
i
0
m
CM
CM
|
^
i
H
i — I iH
cd cd
4-1 4J
C C
(U (U
a G
•H -H
4-) 4-1
cS
1
m
•*
4-1
cd
CO
1
o
m
CM
CM
I
f£
M
MB
c
8
I
m
4-1
cd
Sf
O
m
CM
CM
1
c£
M
^
cd
4-1
g
C
•H
4-1
C
8
i
in
4J
cd
m
o
m
CM
CM
1
i
M
i~H t~H
cd cd
4J 4-1
C C
(1) (1)
c c
4-1 4J
c
8
1
o
vD
4-1
cd
] i
cd
m
o
m
CM
CM
I
i
. M
1
U
r-
1
TEST CaNI> I T I DNS
-------
-32-
Result Sunnnary - Mean (standard deviation)
Table IV; FTP Test Results - (Grams Per Mile)
Tires IW
Semperit 2250
2750
3000
Continental 2250
Prepared
Continental
Semperit
Semperit 2250
RPV
Shift Test
Schedule Phase* HC-HFID
Std. (15/25/40) I
III
18/30/47 I
18/33/47 III
Std. I
III
Std. I
III
9/20/30/40
11/21/32/42
13/24/35/46
11/21/32/42
9/20/30/40
Table V:
Std. I
Std. Ill
18/30/47 I
18/33/47 III
0.48(0.12)
0.44(0.06)
0.50
0.49(0.10)
0.40(0.08)
0.34(0.04)
0.40
0.33
IRVW
0.25(0.02)
0.11(0.02)
0.12(0.01)
0.13
0.23
HFET Test Results -
RPV
0.19(0.04)
0.32(0.01)
0.17
0.33(0.03)
CO
0.93(0.05)
0.98(0.04)
1.00
1.15(.018)
0.89(0.06)
0.94(0.09)
0.82
0.89
0.69(0.01)
0.57(0.02)
0.66(0.01)
0.54
0.74
CO
L
219(7)
229(4)
252
241(18)
236(12)
256(12)
255
255
197(2)
195(3)
203(3)
187
200
NOx
0.96(0.04)
1.22(0.14)
1.24
1.41(0.28)
1.02(0.05)
1.39(0.06)
1.08
1.29
1.34(0.02)
0.92(0.03)
1.00(0.01)
0.88
1.31
MPG
45.9(1.5)
43.9(0.9)
39.9
41.8(3.1)
42.8(2.3)
39.5(1.8)
39.5
39.5
51.1(0.5)
51.9(0.9)
49.8(0.7)
54.1
50.4
(Grams Per Mile)
0.41(0.00)
0.72(0.02)
0.43
0.76(0.02)
175(10)
181(3)
183
187(3)
0.88(0.08)
1.15(0.05)
0.93
1.32(0.10)
58.0(3.3)
55.5(0.8)
55.3
53.7(1.0)
Number of
Tests
7
2
1
4
2
2
1
1
3
6
2
1
1
2
3
3
3
*Phase 1 - initial test phase, Phase II - smoke problem, Phase III - after rework.
Note: There is no standard deviation for single tests.
-------
-33-
Result Summary - Mean (standard deviation)
HFET Test Results - (Grams Per Mile) (cont.)
Tires
Continental
Prepared
IW
2750
3000
2250
2250
Continental
Semperit
Semperit
2250
2250
2750
3000
Shift
Schedule
Std.
Std.
9/20/30/40
11/21/32/42
11/21/32/42
13/24/35/46
9/20/30/40
Std.
18/33/47
Std.
Std.
Test
Phase*
I
III
I
_.
-
-
—
-
Table VI:
I
III
III
I
I
0
0
0
0
0
0
0
0
IA-4 Test
0
0
0
0
0
RPV
HC-HFID
.12(0.02)
.28(0.04)
.16
IRVW
.20(0.02)
.06(0.01)
.06
.05
.18
Results -
RPV
.38(0.01
.33(0.04)
.30
.39
.33
CO
0.39(0.
0.73(0.
0.44
0.53(0.
0.26(0.
0.24
0.28
0.50
CO
z
02) 195(7)
04) 208(2)
219
02) 161(2)
02) 159(3)
149
159
161
NOx
0.97(0.04)
1.24(0.01)
1.08
1.18(0.04)
0.79(0.03)
0.73
0.81
1.19
MPG
51
48
46
62
63
68
64
62
.9(1.9)
.6
.3
.8(0.6)
.8(1.2)
.3
.0
.7
Number of
Tests
3
2
1
6
6
1
1
1
(Grams Per Mile)
0.85(0.
0.86(0.
1.39
0.83
0.80
00) 223(4)
06) 214(5)
252
233
253
1.02(0.05)
1.26(0.08)
1.60
1.00
1.11
45
47
39
43
39
.2(0.8)
.1(1.0)
.9
.4
.9
2
20
1
1
1
*Phase I - initial
Note: There is no
phase, Phase II - smoke problem, Phase III - after rework
standard deviation for single tests.
-------
-34-
Result Summary - Mean (standard deviation)
LA-4 Test Results - (Grams Per Mile) (cont.)
Tires
IW
Continental 2250
Shift Test
Schedule Phase*
20/30/40
23/33/43
21/32/42
IRVW
HC-HFID
0.22(0.
0.31(0.
0.24(0.
01)
02)
O8)
0.
0.
1.
CO
65(0.
80(0.
02(0.
01)
06)
42)
co2
193(3)
200(1)
204(6)
1
1
0
NOx
.35(0.
.41(0.
.82(0.
03)
04)
11)
MPG
52.2(0.
50.4(0.
49.3(1.
8)
4)
7)
Number of
Tests
3
2
3
-------
-35-
Table VII: Steady State Test Results - (Grams Per Mile)**
Tires IW Gear at MPH
Semperit 2250 idle
1st at 15
2nd at 30
3rd at 30
4th at 45
4th at 60
2750 idle
idle
1st at 15
1st at 15
2nd at 15
2nd at 30
2nd at 30
3rd at 30
3rd at 30
4th at 30
4th at 45
4th at 45
4th at 60
4th at 60
Test
Phase*
I
I
I
I
I
I
I
III
I
III
III
I
III
I
III
III
I
III
I
III
KPV
HC-HFID
12.39
1.47
0.10
0.19
0.09
0.09
16.19
7.49
1.59
0.97
0.39
0.11
0.55
0.19
0.19
0.17
0.11
0.19
0.10
0.46
CO
26.79
2.43
0.52
0.48
0.30
0.42
29.18
17.27
2.13
2.12
0.86
0.47
0.99
0.42
0.56
0.29
0.34
0.62
0.41
0.93
1129
180
149
123
147
176
1121
1206
177
329
186
354
231
124
159
135
168
179
191
231
NOx
5.30
0.71
0.70
0.61
0.83
1.17
5.40
6.90
0.75
1.
.90
0.88
0.77
1.70
0.55
0.84
0.65
0.82
1.08
1.20
1.73
MPG*
0.12
54.7
68.0
.3
.2
82.
69.
57.5
0.12
0.12
55.7
30.5
54.1
28.6
43.6
81.6
63.6
75.0
60.2
56.6
53.1
43.6
Number of
Tests
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
* Note: There is no standard deviation for single tests.
** For idle - grains per hour/gallons per hour.
-------
-36-
Steady State Test Results - (Grams Per Mile)**
Tires
IW
Continental 2250
Gear at MPH
idle
1st at 15
2nd at 15
2nd at 30
3rd at 30
4th at 30
3rd at 45
4th at 45
5th at 45
4th at 60
5th at 60
IRVW
Test
Phase HC-HFID
2.95
1.22
0.28
0.76
0.28
0.13
0.86
0.40
0.14
1.26
0.44
CO
12.71
3.05
0.99
1.22
0.80
0.34
1.06
0.86
0.30
1.76
0.96
CO
12.71
3.05
0.99
1.22
0.80
0.34
1.06
0.86
0.30
1.76
0.96
CO 2
1136
366
194
254
163
134
208
162
138
211
177
NOx
9.06
2.76
1.19
2.35
1.06
0.90
2,22
1.30
1.04
2.54
1.60
MPG*
0.12
27.3
52.0
39.7
62.0
75.8
48.4
62.2
73.3
47.0
56.6
Number of
Tests
2
2
2
2
2
2
2
2
2
2
2
* Note: There is no standard deviation for single tests.
** For idle - grams per hour/gallons per hour.
-------
-37-
Table VIII: Particulate Results - Mean (Standard Deviation) - (Grams Per Mile)
IRVW
Tires
IW
Continental 2250
Speed in mph
0-30
0-40
0-50
0-60
0-70
Test Type
FTP
HFET
SS
Sulfate
Shift
Schedule
Standard
Standard
3rd at 30 mph
Standard
Particulates
0.18 (0.01)
0.16 (0.02)
.21
.18
Table IX; Acceleration Time (Seconds)
RPV
Driver 1-'
5.6
7.5
11.1
15.0
Driver 2-
5.2
8.1
10.7
14.8
Driver
16.4
— Speeds from vehicle speedometer.
21
— Speeds from fifth wheel.
Note: There is no standard deviation for single tests.
Number of
Tests
4
3
1
1
21
Driver 4-
5.5
7.2
10.5
15.4
22.0
-------
-38-
Semperit Tires
Appendix
FTP Composite Mas.s Emissions (Grams Per Mile)
PJ»V - 2250 Ib. Inertia Weight
Test
Number
78-0730
78-0779
78-0802
78-0816
78-0860
78-0906
78-0939
x (V)
78-0961
78-3899
78-6050
x (V)
7R--106S
78-4562
78-4563
78-4565
78-5179
x (V)
Test
Phase
I
I
I
I
I
I
I
II
III
III
T
III
III
HI
HI
HC-HFID
0.47
0.71
0.43
0.34
0.55
0.44
0.41
0.48(0.12)
0.42
0.39
0.48
0.44(0.06)
0.50
0.40
0.41
0.57
0.57
0.49(0.10)
CO
0.88
1.03
0.94
0.89
0.95
0.96
0.89
0.93(0.05)
0.97
1.01
0.95
0.98(0.04)
1.00
1.00
0.99
1.30
1.32
1.15(0.18)
co2
219
219
208
213
223
229
223
219(7)
226
226
232
229(4)
252
225
227
252
260
241(18)
NOx
0.94
0.89
0.94
0.95
0.97
1.02
1.00
0.96(0.04)
1.18
1.12
1.32
1.22(0.14)
1.24
1.19
1.18
1.51
1.76
1.41(0.28)
MPG
45.9
45.7
48.3
47.2
45.0
43.9
45.1
45.9(1.5)
44.5
44.5
43.3
43.9(0.9)
39.9
44.7
44.3
39.8
38.6
41.8(3.1)
Shift
Schedule
Standard (15,25,40)
Standard
Standard
Standard
Standard
Standard
Standard
—
Standard
Standard
Standard
—
18/30/47
18/33/47
18/33/47
18/33/47
18/33/47
* Phase I - Initial phase, Phase II - a, ke problem, Phase III - After rework.
-------
-39-
Appendix
FTP Composite Mass Emissions (Grams Per Mile)
Semperit Tires
test
Number
78-0836
78-1015
x (V)
78-3902
78-3907
x (V)
78-1016
78-0874
78-3901
Test
Phase
I
I
III
III
I
II
III
RPV -
HC-HFID
0.34
0.45
0.40(0.08)
0.36
0.31
0.34(0.04)
RPV -
0.40
0.41
0.33
2750 Ib.
CO
0.85
0.93
0.89(0.
1.01
0.88
0.94(0.
3000 Ib.
0.82
0.99
0.89
Inertia Weight
C02
227
244
06) 236(12)
264
247
09) 256(12)
Inertia Weight
255
256
255
NOx
0.98
1.05
1.02(0.05
1.34
1.43
1.39(0.06)
1.08
1.28
1.29
MPG
44.4
41.2
42.8(2.3)
38.2
40.8
39.5(1.8)
39.5
39.3
39.5
Shift
Schedule
Standard
Standard
Standard
Standard
Standard
Standard
Standard
* Phase I - Initial phase, Phase II - Smoke problem, Phase III - After rework.
-------
-40-
FTP Composite Emissions (Grams Per Mil_e_)_
Continental Tires
Test
Number
79-088A*
79-0888*
79-0891*
79-1188*
79-1202
79-1208
x (V)
78-5322
78-5334
78-5434
x (V)
79-1211
79-1192
x (V>
Lightly
79-1196
Sempirit
78-5432
HC-HFID
0.12
0.11
0.13
0.08
0.09
0.12
0.11(0.02)
0.26
0.25
0.23
0.25(0.02)
0.12
0.13
0.12(0.01)
IRVW - 2250
CO
0.57
0.57
0.55
0.55
0.59
0.56
0.57(0.02)
0.69
0.69
0.68
0.69(0.01)
0.66
0.67
0.66(0.01)
Ib. Inertia Weight
co2
198
196
199
190
194
192
195(3)
199
196
196
197(2)
201
205
203(3)
NOx
0.900
0.920
0.970
0.910
0.910
0.930
0.92(0.03)
1.340
1.360
1.310
1.340(0.02)
1.010
1.000
1.005(0.01)
MPG
51.1
51.6
50.8
53.2
52.1
52.6
51.9(0.
50.6
51.4
51.4
51.1 (0
50.3
49.3
49.8(0.
Shift
Schedule
Standard (11/21/32/42)
Standard
Standard
Standard
Standard
Standard
9)
9/20/30/40
9/20/30/40
9/20/30/40
.5) -
13/24/35/46
13/24/35/46
7)
Prepared Continental Tires
0.130
Tires
0.230
0.540
0.740
187.0
200.00
0.880
1.310
54.100
50.400
11/21/32/42
9/20/30/40
* Particulate Test.
-------
Semperit Tires
-41-
Bag by Bag Mass Emissions (Grams Per Mile)
RPV - 2250 Ib. Inertia Weight - Standard Shift Schedule
Test
Number
78-0730
78-0779
78-0802
78-0816
78-0860
78-0906
78-0939
78-0961
78-3899
78-6050
78-1065
78-4562
78-4563
78-4565
78-5179
HC
0.32
0.65
0.28
0.24
0.22
0.22
0.27
0.24
0.28
0.22
0.29
0.25
0.25
0.29
0.66
HFID
0.69
1.38
0.54
0.43
0.72
0.66
0.53
0.49
0.50
0.54
0.59
0.49
0.51
0.56
0.55
CO
1.03
1.34
0.96
0.99
1.05
1.15
1.01
1.13
1.14
1.08
1.07
1.12
1.13
1.31
1.38
co2
237
239
218
229
241
245
248
247
246
255.
251
246
248
264
269
NOx
0.91
0.84
0.87
0.93
0.95
0.96
0.95
1.16
1.18
1.33
RPV
1.08
RPV
1.24
1.23
1.41
1.64
MPG
42.5
41.8
46.2
44.0
41.9
41.1
40.5
40.7
40.9
39.6
- 2250 Ib.
40.1
- 2250 Ib.
41.0
40.5
38.1
37.2
RPV - 2750 Ib.
78-0836
78-1015
78-3902
78-3907
78-1016
78-0874
78-3901
0.21
0.28
0.27
0.22
0.22
0.25
0.24
0.43
0.55
0.47
0.39
0.48
0.51
0.42
0.93
1.04
1.20
1.00
0.93
1.15
1.08
241
270
292
267
284
282
281
0.95
1.05
1.34
1.34
1.09
1.25
1.28
41.9
37.4
34.6
37.6
RPV - 3000
35.6
35.8
35.9
HC
0.24
0.33
0.24
0.20
0.18
0.17
0.20
0.18
0.18
0.16
HFID
0.46
0.61
0.43
0.33
0.58
0.43
0.41
0.42
0.36
0.47
Inertia Weight -
0.25
0.54
Inertia Weight -
0.18
0.17
0.30
0.75
0.40
0.39
0.64
0.62
Inertia Weight -
0.18
0.24
0.19
0.15
Ib. Inertia
0.21
0.16
0.16
0.35
0.48
0.34
0.28
CO
0.92
1.06
1.05
0.94
1.02
0.99
0.93
0.96
1.02
0.90
Shift
1.08
Shift
0.98
0.94
1.37
1.40
co2
218
217
211
212
221
227
216
225
225
227
Schedule
265
Schedule
222
221
257
271
Standard Shift
0.91
0.97
0.95
0.82
222
238
255
243
NOx 'MFC
0.96 46.2
0.91 46.3
0.98 47.7
0.97 47.5
0.98 45.7
1.04 44.5
1.02 46.6
1.20 44.8
1.13 44.8
1.32 44.4
(18/30/47)
1.37 38.0
(18/33/47)
1.17 45.4
1.17 45.6
1.61 39.1
1.92 36.9
Schedule
0.99 45.2
1.06 42.4
1.34 39.5
1.56 41.6
Weight - Standard Shift Schedule
0.41
0.40
0.31
0.85
0.94
0.83
249
248
247
1.09 40.6
1.30 40.6
1.32 40.9
HC
HFID
CO
CO,
NOx
MPG
0.16
0.21
0.18
0.16
0.13
0.13
0.15
0.18
0.20
0.17
0.33
0.38
0.32
0.28
0.38
0.31
0.30
0.35
0.36
0.44
0.68
0.74
0.73
0.70
0.72
0.76
0.74
0.88
0.91
0.95
206
206
197
202
216
220
217
214
212
223
0.93
0.87
0.92
0.93
0.98
1.02
1.01
1.17
1.05
1.30
49.0
49.0
51.2
49.9
46.8
45.9
46.5
47.2
47.5
45.1
0.18 0.35 0.50 141 0.70 44.6
0.21
0.21
0.27
0.58
0.14
0.18
0.22
0.18
0.15
0.19
0.18
0.34
0.37
0.46
0.48
0.27
0.34
0.34
0.31
0.31
0.34
0.32
0.95
0.97
1.16
1.12
0.67
0.75
0.96
0.89
0.67
0.96
0.86
216
220
232
232
226
237
260
239
246
252
249
1.20
1.17
1.40
1.54
0.97
1.03
1.32
1.23
1.05
1.27
1.26
46.7
45.8
43.4
43.1
44.8
42.6
38.8
42.2
41.1
40.1
40.5
-------
Continental Tires
Test
Number HC HFID CO CO-
-42-
Bag by Bag Mass Emissions (Grams Per Mile)
IRVW - 2250 Ib. Inertia Weight - Standard Shift Schedule
NOx MPG
HC HFID
CO
O>2 NOx MPG
79-0884*
79-0888*
79-0891*
79-1188*
79-1202
79-1208
78-5322
78-5334
78-5434
79-1211
79-1192
0.08
0.08
0.06
0.06
0.08
0.07
0.15
0.14
0.14
0.09
0.08
Lightly Prepared
0.12
0.18
0.17
0.10
0.12
0.13
0.28
0.31
0.26
0.11
0.13
0.68
0.68
0.62
0.62
0.67
0.68
0.77
0.81
0.76
0.75
0.77
Continental
212
208
210
191
203
209
211
207
209
214
217
Tires
0.87
0.87
0.92
0.83
0.85
0.90
IRVW
1.28
1.24
1.20
IRVW -
0.91
0.92
IRVW -
47.7
48.6
48.3
52.9
49.8
48.5
- 2250 Ib.
47.8
48.7
48.4
2250 Ib.
47.2
46.6
2250 Ib.
0.06 0.15
0.07 0.10
0.60 0.13
0.06 0.08
0.06 0.09
0.06 0.12
0.62
0.62
0.59
0.60
0.65
0.58
Inertia Weight - Standard
0.12 0.26
0.10 0.23
0.11 0.24
0.72
0.70
0.70
Inertia Weight - Standard
0.08 0.13
0.07 0.14
0.72
0.72
Inertia Weight - Standard
197
195
198
193
192
187
Shift
200
196
196
Shift
200
207
Shift
0.95
0.96
1.02
0.96
0.95
0.95
Schedule
1.41
1.43
1.36
Schedule
1.08
1.08
Schedule
51.3
51.9
51.1
52.5
52.7
54.0
(9/20/30/40)
50.6
51.4
51.5
(13/24/35/46)
50.5
48.8
(11/21/32/42)
79-1196 0.08 0.17 0.67 209 0.87 48.3 0.05 0.14 0.55 179 0.88 56.5
Semperit Tires - Shift Schedule (9/20/30/40)
78-5432 0.14 0.28 0.86 212 1.23 47.6 0.12 0.23 0.77 200 1.37 50.5
HC
HFID
CO
NOx
MPG
0.05
0.04
0.04
0.04
0.04
0.05
0.10
0.10
0.10
0.06
0.06
0.05
0.08
0.11
0.07
0.07
0.10
0.24
0.24
0.20
0.12
0.12
0.41
0.42
0.44
0.43
0.43
0.44
0.56
0.56
0.57
0.49
0.50
189
188
193
184
190
187
190
188
186
194
192
0.83
0.88
0.92
0.87
0.89
0.91
1.26
1.29
1.30
0.95
0.93
53.7
53.9
52.6
55.0
53.4
54.1
53.2
53.7
54.4
52.2
52.7
0.04 0.09 0.41 186 0.88 54.4
0.10 0.20 0.61 192 1.25 52.6
* First three bags of four bag particulate FTP.
-------
Semperit Tires
-43-
HFET Mass Emissions (Grams Per Mile)
RPV - 2250 Ib. Inertia Weight
Test
Number
78-0731
78-0861
x (V)
78-0962
78-3900
78-4561
78-4564
x (V)
78-1066
78-4566
78-1034
78-5180
x (V)
78-0837
78-0838
78-1017
x (V)
78-3903
78-3908
x (V)
Test
Phase
I
I
II
III
III
III
I
III
III
III
I
I
I
III
III
HC
0.11
0.06
0.09(0.04)
0.16
0.19
0.19
0.19
0.19(0.0)
0.88
0.18
0.19
0.39
0.25(0.12)
0.07
0.08
0.07
0.. 07 (0.01)
0.21
0.16
0.19(0.04)
HFID
0.21
0.16
0.19(0.04)
0.27
0.32
0.32
0.33
0.32(0.01)
0.17
0.33
0.35
0.30
0.33(0.03)
RPV - 2750 Ib.
0.11
0.12
0.14
0.12(0.02)
0.31
0.25
0.28(0.04)
CO
0.41
0.41
0.41(0.00)
0.67
0.70
0.74
0.73
0.72(0.02)
0.43
0.75
0.78
0.74
0.76(0.02)
Inertia Weight
0.38
0.38
0.42
0.39(0.02)
0.76
0.70
0.73(0.04)
co2
168
182
175(10)
182
179
185
180
181(3)
183
184
189
189
187(3)
193
190
203
195(7)
209
206
208(2)
NOx
0.82
0.93
0.88(0.08)
1.20
1.12
1.21
1.12
1.15(0.05)
0.93
1.22
1.31
1.42
1.32(0.10)
0.98
0.93
1.01
0.97(0.04)
1.24
1.23
1.24(0.01)
MPG
60.3
55.6
58.0(3.3)
55.4
56.2
54.6
55.8
- 55.5(0.08)
55.3
54.8
53.2
53.0
53.7(1.0)
52.4
53.4
49.8
51.9(1.9)
48.3
48.9
48.6(0.4)
Shift
Schedule
Standard (15/25/40)
Standard
-
Standard
Standard
Standard
Standard
-
18/30/47
18/33/47
18/33/47
18/33/47
-
Standard
Standard
Standard
-
Standard
Standard
* Phase I. - initial phase, Phase II - smoke problem, Phase III - after rework
-------
Semperlt Tires
x (V)
-44-
HFET Mass Emissions (Grams Per Mile)
RPV - 3000 Ib. Inertia Weight
Test Test
Number Phase
78-1033 I
78-0875 II
78-0940 II
x (V)
Continental Tires
79-0886**
79-1190**
79-1209
79-1200
79-1191
79-1194
x (V)
78-5323
78-5313
78-5333
78-5335
78-5336
78-5435
x (V)
79-1201
79-1210
79-1212
79-1193
HC
0.08
0.20
0.19
0.20(0.01)
0.03
0.03
0.02
0.02
0.03
0.02
0.02(0.01)
0.11
0.10
0.09
0.10
0.10
0.10
0.10(0.01)
0.02
0.02
0.03
0.03
HFID
0.16
0.34
0.30
0.32(0.03)
IRVW - 2250 Ib.
0.08
0.06
0.04
0.05
0.07
0.07
0.06(0.02)
0.23
0.21
0.18
0.20
0.19
0.20
0.202(0.02)
0.06
0.06
0.07
0.07
CO
0.44
0.80
0.80
0.80(0.0)
co2
219
217
209
213(6)
NOx
1.08
1.34
1.32
1.33(0.01)
MPG
46.1
46.5
48.3
47.4(1.3)
Shift
Schedule
-------
-45-
Lightly Prepared Continental Tires
HFET Mass Emissions (Grams Per Mile)
IRVW - 2250 Ib. Inertia Weight
Test Test
Number Phase
79-1197
79-1198
Semperit Tires
78-5433
HC
0.02
0.02
0.09
HFID
0.06
0.05
0.18
CO C02
0.24 149
0.28 159
0.50 161
NOx
0.73
0.81
1.19
MPG
68.3
64.0
62.7
Shift
Schedule
11/21/32/42
13/24/35/46
9/20/30/40
-------
Semperit Tires
78-1019
78-1031
-46-
LA-4 Composite Mass Emissions (Grams Per Mile)
RPV - 2250 Ib. Inertia Weight
Test
Number
78-0987
78-0988
x (V)
78-5676
78-5677
78-5681
78-5682
78-5683
78-5679
78-5680
78-5678
78-5947**
78-5945**
78-5944**
78-5946**
78-6049**
78-6285
78-6286
78-6287
78-6288
78-6284
78-6283
78-6282
x (V)
78-4567
Test
Phase*
I
I
III
III
III
III
III
III
III
III
III .
Ill
III .
Ill
III
III
III
III
III
III
III
III
-
HC-HFID
0.39
0.37
0.38(0.01)
0.34
0.32
0.38
0.39
0.40
0.31
0.33
0.35
0.27
0.29
0.33
0.35
0.35
0.39
0.28
0.30
0.29
0.30
0.36
0.33
0.33(0.04)
0.30
CO
0.85
0.85
0.85(0.00)
0.90
0.90
0.80
0.80
0.90
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.90
1.00
0.90
0.90
0.90
0.90
0.90
0.90
0.86(0.06)
1.39
co2
226
220
223(4)
212
216
212
212
215
218
219
218
203
207
208
211
222
210
216
218
214
213
216
213
214(5)
252
NOx
1.05
0.98
1.02(0.05)
1.26
1.25
1.24
1.26
1.26
1.20
1.22
1.22
1.20
1.22
1.21
1.20
1.28
1.30
1.46
1.41
1.43
1.19
1.20
1.20
1.26(0.08)
1.60
MPG
44.6
45.7
45.2(0.8)
47.4
46.6
47.4
47.4
46.7
46.2
46.0
46.2
49.6
48.6
48.4
47.7
45.3
47.8
46.6
46.2
47.0
47.2
46.6
47.2
47.1(1.0)
39.9
Shift
Schedule
Standard
Standard
-
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
-
Standard
RPV - 2750 Ib. Inertia Weight
0.39 0.83 233 1.00 43.4 Standard
RPV - 3000 Ib. Inertia Weight
0.33 0.80 253 1.11 39.9 Standard
* Phase I - initial tes phase, Phase II - smoke problem, Phase III - after rework
** Line preheated to 400 F skin temperature
-------
-47-
LA-4 Composite Mass Emissions (Grams Per Mile)
Continental Tires
IRVW - 2250 Ib. Inertia Weight
Test
Number
78-5310
78-5311
79-1199
x (V)
78-5312
78-5337
78-5333
x (V)
78-5331
78-5427
x (V)
HC-HFID
0.28*
0.28*
0.150
0.24(0.08)
0.23
0.22
0.22
0.22(0.01)
0.32
0.29
0.31(0.02)
CO
1.28
1.25
0.54
1.02(0.42)
0.64
0.65
0.65
0.65(0.01)
0.84
0.75
0.80(0.06)
co2
208
207
197
204(6)
192
197
191
193(3)
201
199
200(1)
NOx
0.73
0.79
0.94
0.82(0.11)
1.37
1.32
1.35
1.35(0.03)
1.43
1.38
1.41(0.04)
MPG
48.2
48.5
51.3
49.3(1.7)
52.5
51.2
52.8
52.2(0.08)
50.1
50.6
50.4(0.4)
Shift
Schedule
Standard(ll/21/32/42)
11/21/32/42
11/21/32/42
9/20/30/40
9/20/30/40
9/20/30/40
10/23/33/43
10/23/33/43
-
* HC-FID only.
-------
-48-
Steady State Composite Mass Emissions (grams per mile)*
Semperit Tires
RPV - 2250 Ib. Inertia Weight
Test No.
78-0804
78-1018
78-0804
78-1018
78-1018
78-0804
78-1020
78-0805
78-1020
78-1020
78-0805
78-1032
78-0805
78-1032
Test
Phase
I
II
I
II
II
I
II
I
II
II
I
II
I
II
HC
6.
2.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
50
95
65
51
10
06
23
10
10
04
06
09
06
16
HFID
12.39
7.03
1.47
1.03
0.27
0.10
0.45
0.19
0.18
0.09
0.09
0.13
0.09
0.26
CO
26.79
15.23
2.43
2.23
0.82
0.52
1.07
0.48
0.62
0.27
0.30
0.53
0.42
0.76
CO
z
1129
1177
180
333
185
149
231
123
160
137
147
163
176
199
NOx
5.30
7.09
0.71
1.99
0.96
0.70
1.60
0.61
0.89
0.72
0.83
1.05
1.17
1.64
MPG*
0.
0.
54.
30.
54.
68.
43.
82.
63.
73.
69.
62.
57.
50.
12
12
7
1
7
0
7
3
3
8
2
0
5
7
Gear @ MPH
1st
1st
2nd
2nd
2nd
3rd
3rd
4th
4th
4th
4th
4th
idle
idle
@ 15
@ 15
@ 15
@"30
@ 30
-------
-49-
IRVW - 2250 Ib. Inertia Weight, Continental Tires
Test No. HC HFID CO C0_ NOx MPG (GPH for idle) Gear @ MPH
—~—^——— — ._ ,_ ' " ' - l-V-l—T...-L .IT' . - _ - ~
78-5330
78-5428
78-5330
78-5428
78-5330
78-5428
78-5328
78-5429
78-5328
78-5429
78.-532S
78-5429
78-5329
78-5430
78-5329
78-5430
78-5329
78-5430
78-5332
78-5431
78-5332
78-5431
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.29
.46
.41
.36
.10
.11
.20
.16
.11
.11
.04
.05
.27
.33
.18
.16
.05
.04
.73
.58
.22
.21
3.41
2.48
1.26
1.17
0.26
0.29
0.88
0.65
0.26
0.29
0.13
0.13
0.75
0.97
0.39
0.42
0.14
0.15
1.38
1.13
0.47
0.42
13.37
12.05
3.21
2.89
1.00
0.98
1.24
1.20
0.83
0.76
0.32
0.35
0.97
1.16
0.86
0.86
0.30
0.31
1.80
1.72
1.04
0.88
t.
1153
1120
364
369
194
193
257
251
168
158
141
127
207
208
161
162
137
139
213
209
178
176
8.
9.
2.
2.
1.
1.
2.
2.
1.
1.
0.
0.
2.
2.
1.
1.
1.
1.
2.
2.
1.
1.
94
18
71
80
20
18
44
26
10
01
98
82
26
18
36
24
06
01
61
50
58
61
0
0
27
27
51
52
39
40
59
64
71
79
48
48
62
62
73
72
46
47
56
57
.12
.11
.5
.1
.9
.2
.2
.2
.9
.0
.9
.6
.6
.1
.4
.1
.7
.9
.5
.6
.3
.0
idle
idle
1st
1st
2nd
2nd
2nd
2nd
3rd
3rd
4th
4th
3rd
3rd
4th
4th
5th
5th
4th
4th
5th
5th
@ 15
@ 15
@ 15
@ 15
@ 30
<§ 30
@ 30
@ 30
@ 30
@ 30
@ 45
@ 45
@ 45
@ 45
@ 45
@ 45
@ 60
@ 60
@ 60
@ 60
-------
-50-
Acceleration Time
Research Prototype Vehicle
I/ I/ 2/ 21
Speed i,n mph Driver 1— Driver 2— Driver 3=- Driver 4—
0-30 5.8/5.5 5.2 5.6/5.4
0-40 7.4/7.6 8.1 7.2/7.2
0-50 11.0/11.2 10.8/10.9/10.4 10.4/10.6
0-60 15.8/15.6/15/13.9/14.7/14.8 14.4/15.2 16.8/16.8/15.6 15.4/15.3
0-70 22./22.1
•—. Speeds from vehicle speedometer.
— Speeds from fifth wheel.
Speedometer Calibration (Miles Per Hour)
Research Prototype
Speedometer
30
40
50
60
70
80
Vehicle
Fifth Wheel
25
35
45
55
65
75
Shift Points
Research Prototype
Driver Acceleration
. 1-2
#1- Easy 20
20
19
Moderate 23
, . Hard 26
#3-' 24
22
22
23
Vehicle
Shift from-to
2-3
30
34
33
38
45
40
38.5
41
41
3-4
44
46
44
51
65
62
58
61
61
— Speeds from vehicle speedometer.
— Speeds from fifth wheel.
-------
-51-
Particulate Mass Emissions (Grains Per Mile)
Continental Tires
Test Number
79-0886
79-1190
IRVW - 2250 Ib. Inertia Weight
Test Type
Particulates
HFET
HFET
0.177(0.014)
0.179
0.145
Shift Schedule
79-0884
79-0888
79-0891
79-1188
FTP
FTP
FTP
FTP
0.163
0.169
0.195
0.179
Standard
Standard
Standard
Standard
Standard
Standard
x (V)
79-0890
SS-3rd at 30 mph
0.162(0.024)
0.209
3rd at 30
79-0893
79-0887
Sulfate Cycle
Sulfate Cycle
0.164
0.175
Standard
Standard
x (7)
0.170(0.008)
*U.S. GOVERNMENT PRINTING OWICt: 1979- 651-112/0126
------- |