EPA-TEB-AA-81-10
Evaluation of Fuel Economy Differences
on a 1978 Volvo for Two
Different Motor Oils
November 1980
by
Thomas J. Penninga
and
Dave Lawrence
Test and Evaluation Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
U.S. Environmental Protection Agency
-------
- 2 -
Abstract
This report presents the results which were gathered to determine the
fuel economy difference between a low viscosity multigrade, synthetic
motor oil and a straight 30 weight motor oil. The test vehicle was a
1978 Volvo which has been modified to give consistent vehicle emissions
and fuel economy. The car was tested with each oil at ambient tempera-
tures of 40° F, 75°F and 90°F.
The low viscosity synthetic showed no improvement on the Federal Test
Procedure (FTP) at 40°F and 90°F and a .74% increase in fuel economy for
the 75°F Tests. The Highway Fuel Economy Tests (HFET) showed a 2.13%
increase at 40°F, 2.48% increase at 75°F, and 2.71% at 90°F for the low
viscosity synthetic multigrade oil.
Background
In the past few years several oil manufacturers have advertised that the
use of certain oils will result in a noticeable fuel economy benefit.
This benefit is usually claimed to be a result of the special viscos-
ities, additives, friction modifiers or special base stocks. Both
industry and government are interested in determining an accurate method
for determining the validity of these advertising claims. The EPA and
ASTM are developing procedures to properly label fuel efficient (FE)
motor oils. Until such procedures are finalized the claims made for
"Fuel Efficient" motor oils cannot accurately be verified. Much of the
problem lies in what "baseline oil" is used in comparison testings.
Depending on the reference oil, an oil which claims 2 to 3 percent
improvement in fuel economy may not show improvement over another
"non-fuel efficient "(NFE) oil.
The EPA was recently questioned concerning the fuel economy benefits of
low viscosity, multigrade, oils over a straight 30 weight oil. This test
project was designed to quickly determine for one car if a noticeable
fuel economy difference was discernable. A description of the test
project is given below
Testing Procedure
The test vehicle was a correlation check vehicle designed to produce
repeatable vehicle emissions and fuel economy. A complete vehicle
description is given in Attachment A. The testing was performed in an
environmental chamber where ambient temperatures and humidity were
controlled. The test fuel was supplied from an auxilliary tank which
was stabilized in the test cell for at least 12 hours prior to the test.
Thus, both the vehicle and the test fuel were at the set point tempera-
tures prior to test. To verify this, the engine oil and water tempera-
tures were required to be within 2.5°F of the temperatures noted for the
first test at that temperature. A battery charger was connected to the
vehicle battery each night to insure consistent battery charge and
alternator loading. The fuel economy was calculated using the Carbon
Balance method. This procedure varied slightly from the Federal Register
Procedure. The actual fuel density and hydrogen-to-carbon ratio were
-------
- 3 -
entered rather than assumed for each test. Therefore the accuracy of the
Carbon Balance procedure was slightly improved.
The test dynamometer was a Labeco single roll electric dynamometer. The
vehicle cooling fan was run at a constant 15,800 CFM because the propor-
tional control for the fan was not operating properly. The actual mile-
ages based on dynamometer roll revolutions were used in the calcula-
tions. Other test particulars are listed below:
1) The dynamometer was warmed for 20 minutes at 50 miles per hour
prior to each test.
2) The vehicle tire pressure was set at 32 psig.
3) The hood was left open for all of the test sequence.
4) An air deflector was placed in front of the cars prior to the
FTP and between the FTP and. HFET.
5) Vehicle Inertia Weight setting was 2250 Ibs.
6) Vehicle Actual Dyno Horsepower setting was 8.8 horsepower at 50
miles per hour.
The vehicle was filled with the low viscosity, multigrade synthetic oil
(test oil #1), run for 10 minutes, drained, refilled with test oil #1,
run for 10 minutes, drained, and refilled with test oil #1. The car was
then tested 5 times at 40°F. Each test consisted of a 1978 CVS FTP and
HFET sequences. Three of these tests were voided due to equipment and
driver problems. The car was then tested three times at 75° F and three
times at 90°F. The oil was then changed using the same "flushing
procedure" but with a straight 30 weight oil (test oil #2). The test
vehicle was then tested twice at 40°F, 75°F and 90°F.
Test Results
The test results can be analyzed several ways. The first method is based
on the ASTM and EPA procedure which selects the closest two tests, if
more than two were taken and then averages the two. A comparison is then
made between these averages. The results of this analysis are as follows:
-------
Temp
— .*—
40°F
40°F
40°F
40°F
OIL
Test Oil #1
Test Oil #1
Average
Test Oil #2
Test Oil #2
Average
% Difference
75°F
75°F
75°F
75°F
% Di
90°F
90°F
90°F
90°F
Test Oil #1
Test Oil #1
Average
Test Oil #2
Test Oil #2
Average
f ference
Test Oil #1
Test Oil #1
Average
Test Oil #2
Test Oil #2
Average
- 4 -
FTP
18.7061
19.0595
18.8828
18.67774
19.2566
19.0172
(-) .71%
20.4607
20.1785
20.3196
20.2810
20.3208
20.3009
(+') 0.09%
20.9935
20.9364
20.9650
20.8288
21.0471
20.9380
% Difference (+)0.13%
HFET
26.7126
26.5687
26.6407
26.0742
26.3281
26.2012
(+) 1.65%
27.3697
27.6353
27.5025
26.8088
27.0810
26.9449
(+) 2.03%
27.5516
27.8203
27.6860
26.6018
27.5078
27.0548
(-O2.28Z
Combined
21.6225
21.8368
21.7197
21.4107
21.9751
21.6929
(.+) .17%
23.0828
22.9672
23.0250
22.7767
22.8924
22.8346
(+) .50%
23.5119
23.5598
23.5359
23.0830
23.5345
23.3088
(+)0.96Z '
-------
- 5 -
A second method of analysis is to look at the averages of all valid tests
at each test point. This method also allows standard deviation and
coefficient of variation comparisons. The results of this analysis are
given below:
Temp.
40°F
40°F
%
(Test
75°F
75°F
OIL
Test Oil #1
Test Oil #2
Difference
Oil #1 Base)
Test Oil #1
Test Oil #2
Number
of Tests Statistics
3 Mean
Std.Dev.
CV.*
2 Mean
Std. Dev.
CV.*
3 Mean
Std. Dev. .2702
CV.*
2 Mean
Std. Dev.
CV.*
FTP
19.0093
.2815
1.48%
19.0172
.4813
2.53%
(-).04%
20.4530
.2581
1.32%
20.3009
.0282
.14%
HFET
26.7705
.2360
.88%
26.2012
.1795
0.69%
2.13%
27.6303
2404
0.93%
26.9449
.1925
.71%
Combined
21.8608
.2512
1.15%
21.6929
.3991
1.84%
0.77%
23.1597
1.04%
22.8346
.0818
..036%
% Difference
(Test Oil #1 Base)
(+)0.74% (+)2.48%
90° F Test Oil #1 3
90° F Test Oil #2 2
% Difference
(Test Oil #1 Base)
* Coefficient of variation = (std. dev)/mean,
Mean
Std. Dev.
CV.*
Mean
Std. Dev.
CV.*
20.9535
.0348
.17%
20.9380
.1543
.74%
27.8075
.2498
.90%
27.0548
.6407
2.37%
23.5671
.0592
.25%
23.3087
.3192
1.37%
(-00.07% (+)2.71%
)1.10%
-------
- 6 -
Considering the limited number of tests, the second method of data
analysis is considered to be more accurate.
Analysis of Results
Both methods of data analysis indicate no significant difference in Fuel
Economy between the two motor oils during the urban FTP cycle. Consid-
ering the testing variability, no improvement is indicated. The low
viscosity, multigrade oil did show a consistent improvement during the
highway testing (HFET). Depending on the temperature and method of
analysis between a 1.65% to 2.71% improvement in fuel economy was noted.
The combined fuel economy numbers which are a weighted (55/45) average of
the FTP and HFET tests showed lower improvements.
The improvements noted in fuel economy on the HFET cycle must be taken in
the proper perspective. This testing program is not comprehensive enough
to extrapolate the data to other temperatures, oils, or motor vehicles.
Some of the unanswered questions surrounding the data are:
1. Does Test Oil #1 have effects on engine components which are
not removed by "double flushing" with the next test oil? If
Test Oil •#!" does have carryover characteristics, the Test Oil
#2 oil tests would be artificially high.
2. How many miles are required before the full benefit of Test
Oil #1 is realized? It is possible that additional improve-
ments in fuel economy would have been noticed with increased
mileage accumulation. The same question exists for the Test
Oil #2.
3. How representative of other vehicles was the test vehicle?
The impact of viscosity changes on different vehicles depends
on part surfaces, bearing tolerances, oil pressure, sliding
clearances, oil temperatures, and other design criteria. The
data generated in one car cannot correctly be extrapolated to
other vehicles.
The HFET data shows increased improvement with higher ambient tempera-
ture. This indicates that the multigrade 5W-20 rating versus the
straight 30 Weight has a noticeable fuel ecomony effect. The cold start
viscosity of the multigrade oil of 5W seems to have little effect in fuel
economy. This leads to the conclusion that the Volvo fuel economy during
the cold start is not affected by the viscosity of the oil. When the
engine is warmed and running at a relatively constant RPM the viscosity
of the oil appears to affect fuel economy (ie. the HFET data.)
Conclusions:
The low viscosity multigrade oil showed no significant improvement in
fuel economy for the urban cycle at 40°F, 75°F, or 90°F, over the
straight 30 weight oil. The low viscosity multigrade oil showed a 2.13%
improvement at 40°F, 2.48% improvement at 75°F, and 2.71% improvement at
90°F. over the straight 30 weight oil on the highway cycle. The data is
-------
not comprehensive enough to extrapolate to other vehicles, oils, or
temperature.
List of Attachments
Attachment A Vehicle Description
Attachment B Test Data
-------
- 8 -
TEST VEHICLE DESCRIPTION
Chassis model year/make - 1978
Engine
type .Volvo B21F in-line 4 cy.
bore x stroke 3.62" x 3.15"
displacement 2.31 liters
compression ratio 8.5:1
maximum power @ rpm 99 HP @ 5200 RPM
fuel metering Fuel injection
fuel requirement Unleaded, 91 octane
Drive Train
transmission type Automatic 3-speed
final drive ratio ... 3.91:1
Chassis
type Rear wheel drive, steering left
tire size 175 SR 14
curb weight 3000 Ibs.
inertia weight 2250 (as tested)*
passenger capacity 5 passenger
Emission Control System
basic type . Lambda Sond
3-way catalyst (Removed)
*Due to the special use of this vehicle as a laboratory correlation check
car, the catalytic converter was removed to obtain more stable
emissions. This caused excessively high engine-out emissions and the
test inertia weight was lowered to reduce these.
-------
ENVIRONMENTAL PROTECTION AGENCY
MOTOR VEHICLE EMISSIONS LABORATORY
ANN ARbOR, MICHIGAN
TEST TYPE: FTP
CONTROLLED ENVIRONMENTAL TEST CELL
FUEL EFFICIENT OILS PROJECT
AVERAGE TEST RESULTS
PROCESSED'. JUN 5, 1Q80
OIL TYPE TEST N
TCwPFWA Tl It/P
1 C.""C ** 0 1 Ut\t
40.0 3
MOBIL I (SYNTHETIC)
40.0 3
QUAKER STATE30W
40.0 DEGREE
75.0 3
MOBIL 1 (SYNTHETIC)
75.0 2
QUAKER STATE30W
75. U DEGREE
90.0 3
MOBIL 1 (SYNTHETIC)
90.0 2
QUAKER STATE30W
90.0 DEGREE
STATISTICS
MF A1-)
STU. DEVIATION
9^*> MAX ERROR
MEAN
STD. DEVIATION
95* MAX ERROR
PERCENT CHANGE
MEAN
STU. DEVIATION
-------
PROTFCTIOM
TEST
CONTROLLED ENVIRONMENTAL TEST CELL
FUEL'EFFICIENT OILS PROJECT
AVERAGE TEST RESULTS
PROCESSED: JUN s« i960
^Mrr^t: y't^i! di£^CLcl4s:
OIL TY-T T^ST N
40.0 3
MUHIL 1 (SYNTHETIC)
40. u 2
QUAKER ?TATE30W .
40.0 DEGREE
\
75.0 3
MOHIL 1 (SYNTHETIC)
75.0 2
QUAKER STATE30W
75.0 DEGREE
90.0 3
MOBIL 1 (SYNTHETIC)
0
90.0 2
QUAKER STATE30W
90.0 DEGREE
y_i:j:
STATISTICS
>ifc?4t,
HC
1 <
0.917
0.029
O.Ob''
0.9J4
0.914
0.009
0.017
0.924
0.006
0.021
1.006
0.878
0.014
0.026
0.89H
0.014
0.043
2.233
UJL41H!)Q
CO
(GRft
10.049
0.195
10.059
O.C22
O.OS7
0.09b
9.b30
0.180
9.767
0.109
0.332
-0.637
9.491
0.234
0.522
9.319
0.079
0.242
-1 .814
NOX
MS/MILE> —
0.117
0.215
4.501
0.010
0.031
13.135
3.519
0.157
0.480
3.574
0.337
1.028
1 .566
3.589
0.265
0.806
3.417
0.410
1.250
-4.795
INLSTIA
C02
309.233
2.791
5.128
316.054
16.394
2.206
300.519
3.363
6.179
309.645
1.984
6.037
3.036
398.403
1.203
2.210
308.945
7.895
24.024
3.533
WT:._ 225
FE
(MP'j)
26.766
0.207
0.360
26.399
0.^.24
1.290
-1.370
27.633
0.251
0.461
0.211
0.643
-2.473
27.833
0.251
0.461
27.049
0.636
1.936
-2.814
ACTUAL HP!" 8.8
BARO^FTFR HUMIDITY NfU FAC
(IN-HG) (GRAINS/LB)
29.059
0.210
0.386
28.979
0.438
1.333
28.819
0.226
0.416
29.074
0.078
0.237
29.079
0.228
0.419
29.559
0.551
1.677
14.535
0.972
1.785
23.143
2.B51
8.674
71.716
27.307
50.166
65.724
12.161
37.004
78.828
1.872
3.440
66.176
15.891
48.354
0.002
0.004
0.00.3
0.009
0.993
0.122
0.224
0.958
0.052
0.1SH
1.016
0.008
0.015
0.961
0.068
0.208
I
t—•
o
MOST OF THE TIME. THE ESTIMATED MEAN .'ILL NOT HE EXACTLY EQUAL TO THE TRUE MEAN DUE TO THE SMALL SAMPLE AND VARIATION.
BETWEEN TESTS. BASED ON THE "T STATISTIC"* THE ERROR IN THE ESTIMATE OF THE TRUE MEAN IS LESS THAN THE MAX. 95% ERROR.
ERROR = STD. DEV. * "T'VSuRT(SAMPLE SIZE).
EXAMPLE: LET MAX. 9=;* ERROR = X. THE 95* CONFIDENCE INTERVAL AflUUT THE TRUE MEAN "MU" = (MEAN - X < MU < MEAN » X).
NOTF: COMMENTS PERTAINING TO THE TESTS APPEAR IN THE LAST TABLF OF THIS APPENDIX.
-------
TEST CELL DATA
TYPF: FTP
PROCESSED: JUN s» 1980
_A.£lUa.L._H.P.!_
J/ i I/.'- .« . I W..
"f AN
<-.!.;. ,ir /
"i/, . V-, f
-• i . rf ! t
*<^. '«•*!•
o.g/H !.»>
<;Lt.)
I -•. J
1l-. I
1 '•>. (i 3
n. JO
r.'r-o
~i,^2n ~ "713 v o.o
OrVO 7410.0
7SJ7S.G
8.h
tt . «
b.B
40.0 IS.72
40.0 13.41
40.0 21.24
24.07
n.*a
O."0
«NONt'°
1ft.79 1.000
4.02 0.002
7.39 0.004
(GR/Ltt)
34786
34786
34786
DATE TEST NUMBER TYPE
3/12/80
3/13/80
801933
801974
SO 1945
FTP
FTP
FTP
1
2.05
2.19
2.23
HC
2
1.39
1.28
1.15
3
1.28
1.28
1.29
1
32.56
33.82
31.h3
CO
2
19.15
19. ?7
17.23
3
15.47
15.42
14.68
1
5.16
5.00
4.75
'MTI PI -.
NOX
2
2.43
2.39
2.12
3
4.49
4.36
4.36
1
462.6
456.2
451.1
C02
2
438.8
424.4
435.7
3
398.6
388.9
390.2
____-, i
1
16.9
17.1
17.3
f MTI
FEC
2
18.6
19.3
18.9
rc/nAi
3
20.6
21.2
21.1
( rtM \
-------
CONTRAST:
CIUA*LR STATIT.30W
ENVIRONMENTAL TEST CELL DATA
TYPF: FTP
PROCESSED: JUN s» 1990
jc-Mp^-jBjyqr ^Hp'iu.; u
DA.TF T^T NU^MEK
3/26/80. 80194*
4/10/80 801953
MEAN
STO. DEVIATION
VAX. 95% EWWOR
(t tl) \
HC.
1.443
l.bll
1.470
l.<.7b
0.034
0.062
/FHirL/: Vc
CQ
IV. 656
19.072
19.729
0.696
1.279
?4?45i 1 1
NOX
3.661
3.H11
3.661
3.711
0.0 bh
Mil k 1 --_
4 14 11 9
C;;").?
437.480
421.270
429.4*3
8.103
14. eta f
_-.____-. 1
f.
18
19
19
0
0
1 M
INK^TIA -WT:
F DYNO
.7 t)220
.4 -D220
.00
.36
.66
_22iH AQIUAL *»•• 8't.rt.
oij^wpTFK IMP
7923.0 8.8
8264.Q B.B
B290.0 8.8
Hflpy T^MP
i;9.28 40.0
28.67 40.0
28.80 40.0
28.92
0.32
O.S9
•( IM-MC, )
. _^Lla
21.13
26.32
25.36
24.27
2.76
5.07
(r-,a/t 41
SITE: 022-
NQ.X FAC
»NONE»
»NONF.«
»NONF»
1.000
0.002
0.004
34786
35614
35614
DATE TEST NUMBER
3/26/80
4/ V/60
4/10/80
801946
802463
801953
TYPE
FTP
FTP
FTP
1
2.31
2.25
2.35
HC
2
1.18
1.31
1«20
3
1.29
1.33
1.33
1
29.76
3n.tf9
29.19
CO
2
18.20
13.70
16.97
3
14.80
15.92
1
5.63
5.63
15.46 5.63
_ ( f;UnM^/M 1 1 k 1 _.
MOX
2
2.35
2.64
2.36
3
4.67
4.66
4.66
1
479.9
468.9
458.2
C02
2
438.9
435.7
424.8
3
402.9
388.5
386.7
1
16.5
16.8
FEC
2
18.7
18.8
3
20.5
21.2
17.3 19.4 21.3
(MM F51/RAI 1 flM)
NJ
I
-------
eASELINE: MOH
FNVIWOM'^ENT'
IL 1 (SYNTHETIC)
*L TEST CELL DATA
TYPE: FTP
PROCESSED:
JUN 5«
1980
ILMKL^I'J!wE_fcf'Q!JB: /.'5-0 VEHICLE: VC^4^t>L 1 141 KIW iNtHTIft WT: 2i-i>0 . ACTUAL HPt. ».« _ SITE: 0221
!).'.T£ TCST_ N'L'frtFi;
3/14/SO 801V39
3/17/80 601940
3/21/60 801944
"EflN
STU. DEVIATION
MAX. 95* EQKOK
Hi
1 .487
1.607
1 .505
1.533
0.064
0.11H
CO
1 7.404
17.383
17.488
17.424
0.054
0.100
MQV
2.758
0.0
2.581
0.24V
0.75*
cy?
JV^.H60
403.540
397.846
5.70,0 ,
10.473
pp
20.5
20.7
20.2
20.47
0.25
0.46
( M P l^ \
OY^O
u220
0220
D220
OiJUMETEK IMP HA
74«0.0 8.8 29
7546.0 8.8 28
7748.0 8.8 28
28
0
0
( TM
^y TFf*p
.04 76.0
.64 75.0
.69 75. 0
.79
.22
.40
-nr,\
HUM
74.27
55.97
46.18
58. SI
14.26
26.20
NO^ FftC
1.00
0.92
0.88
0.930
0.058
0.107
DHiYE:
34736
34786
347S6
5AQ_QAIA
OaTE :
3/14/80
3/17/80
3/21/80
rEsT NUMRER
801939
801940
801944
TYPE
FTP
FTP
FTP
1
1.90
2.07
1.93
HC
2
1.33
1.52
1.41
3
1 .37
1.41
1.37
1
24.22
25.16
24.37
CO
2
16.34
15.94
16.63
3
14.39
14.36
13.95
1
3.84
3.26
0.0
NOX
2
1.88
1.63
0.0
3
3.62
3.23
0.0
1
406.5
407.9
407.3
C02
2
407.9
397.7
419.6
3
372.2
369.6
370.0
1
19.6
19.4
19.5
(Mil
FEC
2
20.1
20.6
19.5
P^/RAI
3
22.0
22.2
22.2
1 CM)
-------
CONTRAST:
QUAKER STATE30W
ENVIRONMENTAL TEST CELL DATA
TYPF: FTP
PROCESSED: JUN 5. 1980
.S1IL-.J2222
3/29/80 801V49
3/28/80 8C194P
MEAN
STD. DEVIATION
MAX. 95*
__H£ £Q
1.413 16.986
1.422 15.881
1.417 16.433
O.U04 C/.781
0.014 2.377
NO.X CQ? FF
2.9vd if03.710 20.3
^06.000 20.3
2.735
0.370
1.127
5*f 20.30
l.ftlO -.00
4.900 -.00
_DYNO QQOME_L£.R LHP SA^n
U220 B04.6 o.B 29.U&
U220 B011.0 8.8 29.14
29.09
0.07
0.21
(IN-MG)
*_£1A£ QRIVE.R
7b.O 82.83 1.04 34769
75.0 55.00 0.91 29420
68.91 0.974
19.68 0.086
59.89 0.264
(GR/L3)
DATE TEST NUMBER
3/29/80
3/2H/80
R01949
801943
TYPE
FTP
FTP
1
1.94
1.82
HC
2
1*27
1.30
3
1.28
1.35
1
25.31
22.70
CO
2
15.39
14.54
3
13.73
13.29
1
4.35
3.80
NOX
2
1.97
1.54
3
3.92
3.25
1
421.7
427.9
C02
2
410.6
411.0
3
377.1
379.9
FEC
1 2 3
18.9 20.1 21.9
18.8 20.2 21.8
(MILES/GALLON)
-------
TF.ST CELL UATi
TYPF: FT°
PWOCE.SSED: JUN
1980
•. w. ...... j ,.,i ...... .I.- . , ,•- •.'••! t ••:"•"••/..<'--,' i i<.i"i .^
• • • '.'••.>... .• i| • . ; • • i . i i'
i/: •/-•• !•• , '••• ;..!•.-, 1-...VJ (•.*(*'-, J'-'l.-l'J 2".
I/,-./-.'.' - •><. i !..<••; i^.^^i o.ii j-/ 1.140 ?o.
i1;- - I
0
O T
IA^T: ?^sn fli"
HV..1 f)':il'-lr Tfw JHf
ij^20 /fcn H.O 8.b
O220 7670.0 tt.W
•J220 772^.0 8.8
•I','. ' • Vic. T:-'-J v.'Jrf-. J.
-------
:ONTRAST:
QUAKER STATE30W
ENVIRONMENTAL TEST CELL DATA
TYPE: FTP
PROCESSED: JUN 5, 1980
T
P
4/
4/
FMPFPAT.IJPF fiHOi;f: *•
rtTf TE.1JT N^f'HEK
2/80 30195*
3/60 601952
MEAN
STD. DEVIATION!
MAX. 95* ERROR
i£in y.F
"£
1.U74
1.178
0.148
0.452
H1£U£!
_£Q
14.613
It. 580
14.596
0.011
0.033
f r uj a v
V_£?
-------
MOalL 1 (SYNTHETIC)
ENVIRONMENTAL TEST CELL DATA
TYPE:
PROCESSED: JUN 5, i960
•VMC 60193?
J/cIO bOl'973
i/bO 801^54
MEAN
STO. DEVIATION
"AX.
„_££
O.JJ97
0.9U3
10.126
i 0.1 46
3.933
O.V17
0.089
0.19b
0.359
£0? _____ ££__
30fc.S30 26.7
30d.^20 27.0
312.350 26. b
3.97B 309.?3J 26.77
0.117 2.791 0.21
0.215 5.128 0.38
llA.wl: 2.25.0. A£iyAL_H£
0220
U220
U220
7379.0
7^*21.0
7893.0
_IHP
8.8~ 29.21
8.8 28.62
8.« 29.15
29.06
0.21
0.39
40.0
40.0
40.0
_S.IILL_n22fl
15.08 »NONK« 34786
13.41 «NONE« 34786
15.11 <*NONE» 34786
14.53 1.000
0.97 0.002
1.79 0.004
(GR/LB)
c
©
©
©
©
©
TE TEST NiUMRES
?/80 B01932
3/bO H01973
601954
TYPE
HFET
HFET
HFET
1
0.90
0.90
0.95
KC
2
o.n
0.0
0.0
3
0.0
0.0
0.0
i
10.13
10.20
9.*3
CO
2
0.0
0.0
0.0
3
0.0
0.0
i
3.93
4.11
0.0 3.89
/r-finkjf/wTi cr\
NOX
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
306.9
308.4
312.4
C02
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
26.7
27.0
26.6
/ M T 1 C
IMILt
FEC
Z
0.0
0.0
0.0
rc/r At i
3
0.0
0.0
0.0
/"INM
.UN;
Q
©
©
Q
©
@
©
59 •
-------
INTSAST:
QUAKER STATE30W
ENVIRONMENTAL TEST CELL DATA
TYPE: HFF.T
1/26/UO 601957
>/ 9/80 802469
0.903
0.965
•IF: AM
STD. DEVIATION
95% ERROR
10.042
10.077
0.934 10.059
0.044 O.OZi!
0.134 0.067
I <
_tiiii £0? FF__
4.501 319.R70 26.1
4.501 312.240 26.7
4.501 316.054 26.40
0.010 b.38H 0.42
0.031 16.394 1.29
U220
1)220
7945.0
8269.0
IMF HflRQ I£MP
8.8 29.29 40.0
8.8 28.67 40.0
2R.98
0.44
1.33
(IN-nG)
21.13
25.16
23.14
2.85
8.67
(GR/LB)
!JO_X_F££ D
«NONE° 3
»NONE° 3
1.000
0.003
0.009
35614
G-
©
DATE TEST NUMBER TYHE
801957
./ 9/ao
HFET
HFET
1
0.90
0.97
HC
2
0.0
0*0
3
0.0
0.0
1
10.04
lO.Ofl
CO
2
0.0
0.0
3
0.0
1
4.50
0.0 4.50
._ law AM^/MTI r i _.
NOX
2
0.0
0.0
3
0.0
0.0
1
319.9
312.2
C02
2
0.0
0.0
3
0.0
0.0
> l
FEC
133
26.1 0.0 0.0
26.7 0.0 0.0
(MILES/GALLON)
00 g
®
Q
-------
MOBIL 1 (SYNTHETIC)
ENVIRONMENTAL TEST CELL DATA
: HFET
PROCESSED: JUN 5. 19BO
TFMp^Aj_yRE_i^OL!P: 1
PATE ..TEST MIM^K
3/14/80 601955
3/17/80 8019b8
3/21/60 801966
MEAN
STD. DEVIATION
MAX. 95* ERROR
~isi — *
H£
0.922
0.919
0.904
0.914
0.009
0.017
ialCLti-idCi
CO
9.801
9.940
9.751
ttfctSLli
NUX
3.408
3.631
0.0
9.830 3.519
0.098 0.157
0.130 0.480
-m-- '
C.tp
30J.910
297.170
300.480
300.519
3.363
6.179
_1BI£S
p L
27.4
27.9
27.6
27.63
0.25
0.46
i M a r. i
na.wi^
DYNO
0220
0220
0220
g?5(J ACTUAL HP:
ooowETtw IMP BAPO
7520.0 8.8 29.08
7557.0 8.8 28.66
7802.0 8.8 28.72
28.82
0.23
0.42
8.8
JEjiP H
75.5 75
75.0 96
75.0 42
71
27
50
/r,p
.54
.91
.70
.72
.31
.17
/i MI
sn
NO_X_FA£
1.00
1.11
0.87
0.993
0.122
0.224
rLL_nE2.I
34766"
34786
34786
DATE TEST NUMBER
3/14/80
3/17/an
3/31/00
801955
801968
801966
TYPE
HFET
HFET
HFET
1
0.92
0.92
0.90
HC
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
9.80
9.94
9.75
CO
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
3.41
3.63
0.0
co OX
2
0.0
0.0
0.0
3
OiO
0.0
0.0
1
303.9
297.2
300.5
C02
2
0.0
0.0 •
0.0
3
0.0
0.0
0.0
•> l
1
27.4
27.9
27.6
FEC
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
H-*
VO
(MTI FQ/ftAI 1 ("INi)
-------
OUAKEK STATE30*'
ENVIRONMENTAL TEST CELL DATA
TYPF: HFET
PROCESSED: JUN 5. 1980
-SITE' n2.2fl
DA T.F, lt.SI_iiU^dE.ti
3/i?a/60 801960
3/29/eO 801962
MEAN
STO. DEVIATION!
MAX. 95*
-_HC _CQ
0.939 9.H*b
0.919
NO 2 CO?
3.336 311.U60
308.230
27.1
0.924
0.006
0.021
1 <
9.767
0.109
3.574
0. J37
0.332 1.028
309.645
1.984
6.037
26.95
0.21
0.64
IUOC-)
U2ZO
D220
8026.0
806^.0
_IHP
8. ft .
8.8
29.13 75.0
29.02 75.0
29.07
O.OB
0.24
(IN-HG)
57.12 0.92
74.32 1.00
65.72 0.958
12.16 0.052
37.OC 0.158
(GR/LB)
29420
34786
DATE TEST NUMBED TYPE
3/28/8n
3/29/aO
801960
801962
HFET
HFET
1
0.93
0.92
HC
2
o.-o
0.0
3
0.0
0.0
1
9.H5
9.69
CO
2
0.0
0.0
3
0.0
0.0
1
3.34
3.81
III F> —
NOX
2
0.0
0.0
3
0.0
0.0
1
311.1
308.2
C02
2
0.0
0.0
3
0.0
0.0
> 1
I
to
FEC
1 2 3
26.8 0.0 0.0
27.1 0.0 0.0
(MILES/GALLON)
-------
.SELINE:
MOblL 1 (SYNTHtTIC)
ENVIRONMENTAL Tf.ST CELL DMA
TYPF:: HFF.T
TC-MDP04r')»
QATE, IILS.T
i. (5091 IP; v
NIJM4EK
1/20/8(1 8019S9
1/18/80 801967
1/19/80 801942
MEAN
STD.
MAX.
DEVIATION
95* ERROR
n.p_ y_
HC
0.886
0.889
0.862
0.878
0.014
0.026
KI-ICL.F: vc
CO
9.668
9.643
9.491
0.522
V4;>45L.l'
0.0
3.777
3.402
3.b89
0.265
0.806
41*0^
C.O?
299.290
2^8.900
297.020
298.403
1.203
2.210
INFP
pr
27.6
28.1
27.83
0.25
0.46
1 lA U tl, \
TT£ ylj_.
yyMO
0220
U220
D220
?p^0 ' ACTUAL >•<«: 8.rt
Oi'iO'-'ETER IHP BAHQ fEMP
0.0 8.8 2P.83 90.0
7660.0 8.8 29.28 90.0
7696.0 8.8 29.13 90.0
29.08
0.23
0.42
/ TM-HT, >
. HUH t
80.48
79.22
76.79
78.83
1.87
3.44
(fiR/l h»)
ill
40.x_L£L_
1.02
1.02
1.01
1.016
0.006
0.015
L * '••'-''
347R6
347*6
€
€
DATE TEST NUMBER
;/?0/80
1/18/80
1/19/80
801959
801967
B01942
TYPE
MKtT
HrtT
HFET
1
0.89
0.89
0.86
i <- _-.
HC
2
0.0
0.0
• 0.0
3
0.0
0.0
0.0
i
9.67
9.64
9.16
CO
2
0.0
0.0
0.0
3
0.0
0.0
1
0.0
3.78
0.0. 3.40
.— t r;t? A MC /M T i f-~ t _-
NOX
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
299.3
298.9
297.0
C02
2
0.0
0.0
0.0
3
0.0
0.0
0.0
1
27.8
27.6
FEC
2
0.0
0.0
3
0.0
0.0
28.1 0.0 0.0
(MTI FC/ftai 1 flMl
i
NJ
6
<3
c
©
e
€
G
-------
ONTRAST:
QUAKER STATF30W
ENVIRONMENTAL TFST CELL DATA
TYPF: HFET
PROCESSED: JUN 5. i9«o
LllA_!iIJ 225.IL
4/
4/
2/80
3/60
801950
801964
0
0
.888
.909
9.377
9.262
3.127
3.7u8
303.
360
26.6
27. S
0220
U220
8138.0
9170.0
STD. DEVIATION
MAX. 95* ERROR
0.898
0.01^
0.0^3
I <
9.319
0.079
0.2^2
(GRAMS/MILt)
3.M7
O.<*10
30H.945 27.05
_1MP BA.B.
~8.6 29.17
8.8 29.95
29.56
0.55
1.68
(IN-HG)
90.0
90.0
54. 9a
77.41
0.91
1.01
66.18 0.961
15.89 0.068
43.35 0.208
(GR/Lri)
35614
35614
e-
©
€
DATE TEST NUHREP TYPE
2/80
4/
801950
801964
HFcT
HFET
1
0.89
0.91
i <•___-.
riC
2
0.0
0«0
3
0.0
0.0
CO
1 2
9.36 0.0
«.2b 0.0
NOX
31 2
0.0 3.13 0.0
0.0 3.71 0.0
(GRAMS/MILE)
CO?
3 1 2
0.0 314.5 0.0
0.0 303.4 0.0
3
0.0
0.0
— >l
TEC
1 Z 3
26.6 0,0 0.0
27.5 0.0 0.0
(MILES/GALLON)
N5
NJ
-------
ENVIRONMENTAL PROTECTION AGENCY
.MOTOR VEHICLE EMISSIONS LAdORATORY
ANN ARBORt «ICHIGA.\'
MHLE QIL_lltiL LE.MPE.RA.IUB.t-
801933 M08TL 1 (SYNTHETIC) 40.0
801974 MObIL 1 (SYNTHETIC) 40.0
801945
801946
80?468
MOHTL 1 (SYNTHETIC) 40.0
QUAKER STATE30W
40.0
STATE30K 40. 0
CONTROLLED ENVIRONMENTAL TEST CELL
FUEL EFFICIENT OILS PROJECT
AVERAGE TEST RESULTS
C.OMME.N.JS VgH
PROCESSED: JUN s, i960
TYPE! FTP
VOLVO TCV COLD RM TEST 40 DEG. F
NOX Oh BAG ? UI.O NOT RETURN TO SPAN POINT
SUMMAKY CODE 4) - MOBIL OIL 5iv 20
VOLVO 40 DEC. F COLD ROOM FUEL EFFICIENT OILS TESTING MOBILE 1 REFERENCE OIL
SUMMARY CODE 41 - MOHIL OIL 5K 20
F.PA-S42 W-TT VOLVO T.C.V ROOM & &Q UEG. F MQHIL «1
NOX INSTRUMENT OOrtN FOR REPAIR: VALVES QUESTIONABLE SPAN CHECK BG
NOT RETURN. SUMMARY CODE M - MOBIL OIL 5W 20
VOLVO TCV EPA-542 COLD KM V 40 DEGREES F STD 30 W QUAKER STATE
OIL TEMP c. START FTP/ 43.2 DEGREES F
SUMMARY CODE 42 - QUAKER STATE 30W
VOLVO EPA 542 COLD ROOM M 40 DEG. F W/OUAKER STATE 30W
NOX SPAN CHECK DID NOT RET ON BOG ONE* f. SAG TWO
HC DID
801953 QUAKER STATE30W 40.0
VOLVO COLD ROOM QUAKER STATE 30W M AO DEGREES F FTP
801939 MOBIL 1 (SYNTHETIC) 76.0
801?40 MOBIL 1 (SYNTHETIC) 75.0
801944 MOHIL 1 (SYNTHETIC) 75.0
801949 OUAKCR STATE30W 76.0
801948 QUAKER STATE30W 75.0
801^41 MOBIL 1 75 DEG. F QUAKER STATE 30W
SUMMARY COOE 4? - OUAKER STATK 30W
VOLVO TCV FPA-542: ROOM :* 75 DEG. F W/30W QUAKER STATE OIL
NOX OF BAG TWO DID NOT RET. TO SPAN CHECK VALVE
SUMMARY CODE 42 - QUAKER STATE 30W
VOLVO FOTP AT ^0 DEG. F FUEL ECON. REFERENCE OILS
DEFLECTOR *(AS IN PLACE ALL THSIJ BAG 3
BAG 1 NOX DID NOT RETURN TO ORIGINAL SPAN PT. DURING CHECK SUMM. CODE 41 MOBIL
r
-------
ENVIRONMENTAL PROTECTION AGENCY
MOTOR VEHICLE EMISSIONS LABORATORY
ANN AP.30R. "ICHIGAN
CONTROLLED ENVIRONMENTAL TEST CELL
4 NO
CERTIFICATION
AVERAGE TEST RESULTS
PROCESSED: JUN 5, 1990
801956 MOBIL I (SYNTHtTIC) 90.0
801943 MOBIL 1 (SYNTHETIC) 90.0
801958 OUAKfR STATt30w 90.0
801952 QUAKER STATE30W 90.0
COLD ROOM FUEL EFFICIENT OILS TEST REFERENCE OIL 90 OEG. F
MOBILE 1 FTP
NOX INSTRUMENT UNSTABLE SUMMARY CODE 41 - MOBIL OIL 5W 20
FTP VOLVO MOBIL 1 REFERENCE OILS
HUMIDITY OUT OF SPEC. - 24 HR SOAK
NOX INSTRUMENT DOWN FOR MA INT.
HUMIDITY IS AVE. VALUE
SUMMARY COOE 41 - MOBIL OIL 5W ZO
e
VOLVO EPA-54? ROOM '«! 90 DEG. F W/QUAKER STATE 30 W
VEH WHS I'J SECOND GEAR FOR FRIST ACCEL OF BAG *1
SUMMARY CODE ^f - QUAKER STATE 30w
VOLVO EPA-5^2 ROOM
-------
ENVIRONMENTAL PROTECTION AGENCY
MOTOR VEHICLE EMISSIONS LABORATORY
ANN ARBOR. "ICrtlGAN
CONTROLLED ENVIRONMENTAL TEST CELL
FUEL EFFICIENT OILS PROJECT
AVERAGE TEST RESULTS
PROCESSED: JUN s, i9bo
.M£iFR. Q.IL_IY£t ILliEiE
801932 MOBIL 1 (SYNTHETIC)- 40.0
801973 MOBTL 1 (SYNTHETIC) 40.0
801954 MOBIL 1 (SYNTHETIC) 40.0
801957 QUAKER STATE30W 40.0
802469 QUAKER STATE30H 40.0
R01955 • MOBIL 1 (SYNTHETIC) 75.5
801968 MOHIL 1 (SYNTHETIC) 75.0
801966 MOHIL 1 (SYNTHETIC) 75.0
801960 QUAKER STATE30* 75.0
801962 QUAKER STATE30w 75.0
801959 MOBIL 1 (SYNTHETIC) 90.0
801957 M03IL 1 (SYNTHETIC) 90.0
C.QM.ME.NIS.
TY&Et HFET
VOLVO TCV COLD RM. TEST i«i 40 DEG. F MOBIL 1 OIL
SUMMARY CODE 41 - MOBIL OIL 5W 20
VOLVO - 2 HFET » 40 DEO. F W- MOBILE 1 5W-20 OIL
SUMMARY CODE 41 - MOBIL OIL 5W 20
VOLVO TCV EPA 542 ROOM. *> 40 DEG. F MOBIL fcl REFERENCE OIL
NOX INSTRUMENT OQWN FOR REPAIR VALVES ARE QUESTIONABLE
SUMMARY cooe: 4i - MOBIL OIL sw 20
VOLVO TCV EPA-542 COLO RM *) 40 OEGREES F RAN W/STD 30 W QUAKEP STATE
NOX OF BAG a3 DTI) NOT RET TO SPAN CHECK
SUMMARY CODE 42 - OUAKER STATE 30W
VOLVO EPA 542 ROOM W/UUAKER STATE 30 W *40 DEG.
VAPIAN NOT OPERATING PROPERLY - SHORT MILEAGE
VOLVO 75 OEG. 2 HFET'S COLD ROOM FUEL ECONOMY OILS TEST REFERENCE OIL MOBIL 1
SUMMARY CODE 41 - MOHIL OIL 5W 20
VOLVO TCV VEH. COLD RM ia' 75 DEG. F MOBIL 331 REFERENCE OIL
NOX ON HFET 1 DID NOT RETURN TO SPAN WITHIN TOLERENCE
SUMMARY CODE 41 - MO^IL OIL 5W 20
VOLVO COLD ROOM FE REFERENCE OILS MOBIL .* 75 DEG.
NOX INSTRUMENT OOWN FOR REPAIR
SUMMARY CODE 41 -MOBILE OIL 5W 20
VOLVO TCV EPA-542 COLD ROOM '* 7b DEG. QUAKER STATE 30W
SUMMARY COOt 42 - QUAKtR' STATE 30W
VOLVO T.C.V. EPA-542 ROOM :ci 75 OEG. F QUAKER STATE 30W
SUMMARY CODE 42 - QUAKER STASTE 30V.
NOX INSTRUMENT DOWN. FOP MAINT
SOAK TIME 24 HRS HUMIDITY IS AVE. VALUE
WHT VOLVO TCV .» vO DEGREES F COLD RM REF. OILS SUMM. CODE 41 -M08IL OIL 5W 20
WHT TCU VOLvO RM ;o) ^0 DEG. F HFET MOBILE REFERENCE OIL #1
SUMMARY CODE 41 - MOBIL OIL 5W 20
Ul
I
-------
ENVIRONMENTAL PROTECTION AGENCY CONTROLLED ENVIRONMENTAL TEST CELL PROCESSED: JUN 5» 1980
MOTOR VEHICLE EMISSIONS LABORATORY /i".'Q
ANN ARBOR. MICHIGAN CKRTIF ICAT ION '
AVERAGE TEST RESULTS
l YPE.;. '..HFE.T_
801942 MOHIL 1 (SYNTHETIC) 90.0 VOLVO a-HFF.T KUEL EFFICIENT OILS QU OEG. F TEST M08IL #1 r>
Ib SEC '',ETW£E:'J HFET *1 S ^2 TEST'TOTEST
NOX INSTRUMENT UNSTABLE. SUMMARY CODE &i - MOBIL OIL 5K ao
^)
801950 QUAKER STATE30W 90. 0 VOLVO £Pa 542 ROOM i* 90 i.'EG. F HFET QUAKER STATE 30W
SUMMARY COOK ±?. - QUAKER STATE 30W • @
80196^ QUAKER STATE30W 90.0 VOLVO EPA-1^;? ROOM w VOOfcGREES F HFET rt/OUAKER STATE 30W
C3
CODE ^? - QUAKER STATE 3CW
©
e
c
e
Q
------- |