EPA-AA-TEB-511-80-5
EPA Evaluation of the "Pass Master Vehicle Air
Conditioner Cut-Off Device"
This document contains several pages which may not reproduce well. Any
questions concerning the legibility of these pages should be directed to:
Merrill W. Korth, Environmental Protection Agency, Office of Mobile
Source Air Pollution Control, Emission Control Technology Division, 2565
Plymouth Road, Ann Arbor, MI 48105, (313) 668-4299 or FTS 374-8299
By
Thomas J. Penninga
August 1980
Test and Evaluation Branch
Emission Control Technology Division
Office of Mobile Source Air Pollution Control
U.S. Environmental Protection Agency
-------
2
Billing Code 6560-01
ENVIRONMENTAL PROTECTION AGENCY
[40 CFR Part 610]
-[-FRL-- ]
FUEL ECONOMY RETROFIT DEVICES
Announcement of Fuel Economy Retrofit Device Evaluation
for the "Pass Master Vehicle Air Conditioning Compressor Cut-Off Device"
AGENCY; Environmental Protection Agency (EPA).
~ y -
ACTION: Notice of Fuel Economy Retrofit Device Evaluation.
SUMMARY: This document announces the conclusions of the EPA evaluation of the
"Pass Master Vehicle Air Conditioner Compressor Cut-Off Device" under the
provisions of Section 511 of the Motor Vehicle Information and Cost Savings
Act.
FOR FURTHER INFORMATION CONTACT; F. Peter Hutchins, Emission Control Technol-
ogy Division, Office of Mobile Source Air Pollution Control, Environmental
Protection Agency, 2565 Plymouth Road, Ann Arbor, Michigan 48105, 313-668-4340.
BACKGROUND INFORMATION; Section 511(b)(l) and Section 511(c) of the Motor
Vehicle Information and Cost Savings Act (15 U.S.C. 2011(b)) requires that:
-------
(b) (1) "Upon, application of any manufacturer of a retrofit device (or
prototype thereof), upon the request of the Federal Trade Commission
pursuant to subsection (a), or upon his own motion, the EPA Administrator
shall, evaluate, in accordance with rules prescribed under subsection (d),
any retrofit device to determine whether the retrofit device increases
fuel economy and to determine whether the representations (if any) made
with respect to such retrofit devices are accurate."
(c) "The EPA Administrator shall publish in the the Federal Register a
summary of the results of all tests conducted under this section, to-
gether with the EPA Administrator's conclusions as to:
(1) the effect of any retrofit device on fuel economy;
(2) the effect of any such device on emissions of air pollutants;
and
(3) any other information which the Administrator determines to be
relevant in evaluating such device."
EPA published final regulations establishing procedures for conducting
fuel economy retrofit device evaluations on March 23, 1979 [44 FR 17946].
ORIGIN OF REQUEST FOR EVALUATION; On September 20, 1979 the EPA received a
request from Mr. Norman Halem for evaluation of a fuel saving device termed
the "Pass Master Vehicle Air Conditioner Compressor Cut-Off Device". An
evaluation has been made and the results are described completely in a report
entitled: "EPA Evaluation of the Pass Master Vehicle Air Conditioner
Compressor Cut-Off Device Under Section 511 of the Motor Vehicle Information
and Cost Savings Act". Copies of this report are available upon request.
-------
Summary;
The "Pass Master" device disengages the air conditioning compressor during
hard vehicle acceleration modes. The reduced engine loading will result in
.so,me_.,fuel savings... . .The ef fectiveness...of...the device will, depend ,on five..main .
factors:.
1) The amount that the vehicle air conditioner is used. The device only
operates when the vehicle air conditioning is turned on.
2) The driving habits of the vehicle operation; i.e., drivers who repeatedly
use heavy accelerations and thereby activate the device will realize a
greater benefit than drivers who use more moderate accelerations.
3) The suitability of the device calibration for the particular vehicle on
which it is installed. The device is offered in three versions. It is
suggested that an operator adjustment procedure may increase the device
effectiveness. r
4) The air conditioning system design on a particular vehicle. The fuel
economy benefit will be greater on certain types of systems than on
others.
5) The type of driving cycle used. The system will be more effective in
urban driving with increased acceleration mode operation than in highway
"steady state driving".
The EPA has tested the device at the Motor Vehicle Emission Laboratory and
reviewed data submitted from other laboratories. The EPA has concluded that
the "Pass Master" does result in a small but real fuel economy benefit when
the vehicle air conditioner is in use.
-------
The improvement in fuel economy attributable to the "Pass Master" when
the vehicle air conditioner is in use will vary between 0 and 4%
"depending "on""the" "veh'icle, the' type ""of air""conditioner " us-ed~; vehicle-
driving patterns, ambient temperature, and the specific calibration of
the unit. Some drivers in warm climates who frequently use their air
conditioner might experience up to a 4% improvement in fuel economy when
driving in conditions that frequently actuate the device. The device
will show the greatest improvement in urban stop-and-go driving with
" ' •
less or no improvement noted in steady state highway type conditions.
The device has no safety related problems and is easy to install. The
emissions of test vehicles running with the air conditioner on are
generally reduced when the "Pass Master" is used. No information is
available to permit an evaluation of any reduction in passenger com-
partment cooling with the "Pass Master" installed.
Date David G. Hawkins
Assistant Administrator
for Air, Noise, and Radiation
-------
EPA Evaluation of "Pass Master Vehicle Air
Conditioner Compressor Cut-Off Device" under Section
.511. of-.the Motor Vehicle Info.rmation and Cost Savings Act
The following is a summary of the information on the device as supplied by the
applicant and the resulting EPA analysis and conclusions.
•1-. • Ma-rketing- Identification of the-Device; - .. ~. - .,
Pass Master Vehicle Air Conditioner Compressor Cut-Out.
Model Numbers PM-2, PM-3, PM-4 through PM-14.
2. Inventor of the Device and Patents;
a. Ralph Haroldson, U.S. Patent No. 3462964
3233 Chapel Downs Drive
Dallas, Texas 75229
b. Norman Halem, U.S. Patent No. 3918543
3053 Skyline Drive
Cocoa, Florida 32922
3. Identification of Device Manufacturer:
Halem Industries, Incorporated
414 Highpoint Drive
' Suite 206
P.O. Box 1419
Cocoa, Florida 32922
4. Manufacturing Organization Principals:
Norman Halem-President
Fred Robin-Secretary
5. Identity of Applicant: Organization Making Application:
Hal err, Industries, Incorporated
414 Highpoint Drive
Suite 206
P.O. Box 1419
Cocoa, Florida 32922
6. Identification of Applying Organization's Principals:
Norman Halem-President
Fred Robin-Secretary
Norman Halem will represent Halem Industries in communicating with EPA.
-------
7. Description of the Device (as supplied by applicant);
a) "Purpose of the Device; This device was developed to improve the
fuel mileage, acceleration performance, vehicle safety and engine
-po-lluti-on™emissions-on-a-ir> conditioned- vehicles." - ~
b) "Theory of Operation; The Pass Master Vehicle Air Conditioner
Compressor Cut-Out device is an engine intake manifold vacuum switch
capable of sensing the vacuum drop which occurs in the engine intake
manifold during engine power- demand periods and interrupts the
electrical power delivered to the vehicle air conditioner compressor
clutch. Thus, the switch, upon sensing engine power demands such
as, vehicle starting from rest, climbing hills or passing, will
activate, open the electrical circuit providing power to the
compressor clutch and idle the compressor. This will then remove the
5 to 15 horsepower compressor load from the engine and allow the
vehicle to accelerate in its driving pattern without the drag from
the compressor. Only a slight effect to the air conditioned comfort
is noted due to the evaporator fan remaining on during this 5 to 30
second normal acceleration period. There is sufficient stored
cooling in the evaporator coils to maintain cooling for this time
period. In the event the driver accelerates too long and is
reminded of his "heavy foot", he would ease up on the acceleration,
restore the air conditioning, and at the same time subconsciously be
retrained to drive for better fuel mileage."
c) "Detailed Description of Construction and Operation; The Pass
Master system is comprised of a vacuum switch and all necessary
hardware to affix it to an air conditioned vehicle. The swith
itself is comprised of a switching element (Honeywell Micro Switch-5
ampere rated), encased in a plastic housing with a 2 inch diameter
thin metal diaphragm serving as the actuator. The switch is
connected to the "host system" as shown in Attachment A."
Applicability of the Device (claimed); "Pass Master is applicable to ALL
carbureted engine vehicles, regardless of the number of cylinders,
horsepower rating, carburetion, transmission, ignition, year, make or
model. It functions ONLY on engines containing intake manifold vacuums
which vary as a direct analog to acceleration or engine power demands.
This includes all carbureted engines, some diesels, fuel injected
engines, and some turbocharged engines. But its main purpose is for the
carbureted engine.
Three models are provided to suit the three basic types of engines used
in vehicles. Switches can also be fabricated to suit any vacuum
threshold.
Model: PM-4 (4 cylinder engines)
PM-6 (6 cylinder engines)
PM-8 (8 cylinder engines)
-------
The difference in the switch model is related to the setting of the
vacuum threshold, with the higher number switch relating to the higher
vacuum cut-off levels of that switch. Although any switch model will
work "in any size engine, it was determined that a better mix of fuel
•—"•-••- economy-and ~air conditioned -cooling-comfort was-attained by- providing- the
three models to suit the three general engine types".
9. Cost; No cost information was submitted with the application.
Device Installation (as supplied by the applicant); "The Pass Master can
be installed with common tools such as a knife, screw driver, drill or
metal punch as follows:
1) Locate a manifold vacuum source rubber tube. This is the most
difficult part of the installation. A mechanic should be able to
point it out.
2) Cut the vacuum line with the knife and insert the provided plastic
tee.
3) Locate the electrical wire going to the compressor clutch. Cut with
knife and strip ends back 1/4 inch.
4) Position the Pass Master case on the wheel-well in the vicinity of
the air conditioner compressor, making sure the length of tubing
provided and the electrical wires will reach their respective
connection places.
5) Drill or punch a hole in the fender well.
6) Screw Pass Master in place.
7) Run vacuum line from Pass Master to plastic tee, making sure it does
not rest on hot engine parts.
8) Run electrical wire to compressor clutch wire and splice into
circuit. Attach the wire with the wire fasteners provided.
9) Installation is now complete. To check out the system do the
following: Apply the vehicle brakes, put car in drive or 1st gear.
Have someone observe the compressor clutch while you gently
accelerate the engine. (Let out clutch on standard transmission
vehicle, but do not let the vehicle move). Air conditioner clutch
will disengage just as soon as the engine loading drops the manifold
vacuum to the point where the Pass Master switch will sense it and
open the clutch circuit.
Pass Master will now automatically turn the air conditioner compressor
OFF during engine acceleration periods and provide the vehicle with
optimum performance, fuel mileage and safety with air conditioning." See
Attachment B for further installation instructions.
10. Device maintenance (claimed); "The device requires no maintenance and
will last the life of the vehicle."
-------
11. Effects on Vehicle Emissions (non-regulated), (as supplied by applicant);
"The Pass Master can not adversely affect pollution emissions of the
vehicle engine in its operating state. Since engine loading is reduced
. during power, demand, periods, of vehicle acceleration, the Pass Master will
..,.,,,. ,,r educe ^engine, .emissions., ,_ _,__„ .._.„„.. „,_ ,_,..,., .,„.„ „
In the event of hose failure or accidental rupture of the diaphragm or
case, the engine manifold will be vented to atmosphere through the 1/8
inch ID tubing. The air .conditioner will then cycle to the constant OFF
..state, which the driver should notice and affect remedy. The likelihood
of hose failure is similar to that of the other vacuum hoses in the
engine compartment provided by the vehicle manufacturer."
12. Effects on Vehicle Safety (claimed); "Pass Master has a positive effect
on vehicle safety. Since the unit will remove the compressor load from
the engine during engine power demand periods, such as climbing hills,
starting from rest or passing, it will permit the vehicle to perform as
though it were suddenly provided 5 to 15 additional horsepower. This
power is being shunted from the compressor load."
13. Test Results Submitted by Applicant;
a. Automobile Club of Southern California
Several tests were run on a 1972 Nova to determine the air
conditioning buyback. The data from these tests is presented in
Attachment C.
b. Bartlesville Energy Research Center of the U.S., ERDA, DOE, Testing.
Two 1977 vehicles, a Pinto and a Cutlass were tested on Hot LA-4
tests at 100°F. This test data is presented in Attachment D.
14. Information collected by E.P.A.
a. A 1978 Pinto was tested using 1975 CVS Federal Test Procedure (FTP)
tests, Highway Fuel Economy Tests (HFET), and Hot 2-bag LA-4 tests
at 75°F.
b. A 1979 Chrysler LeBaron was tested using Hot LA-4 tests at 75°F and
85°F.
c. A 1979 Buick Regal was tested using 1975 FTP and HFET tests.
d. A 1975 Plymouth Valiant was tested using Hot LA-4 tests at 75°F and
100°F.
The EPA test data is summarized in Attachment E. Actual EPA test sheets
are presented in Attachment F.
15. Analysis
a. Description of the Device. The "Pass Master" device is adequately
described by the applicant.
-------
10
b. Applicability of the Device; The device applicability is adequately
described in the application. It is however not mentioned that the
"Pass Master" is only applicable to vehicles with air conditioning
systems.
c. Device Installation; The installation is .straightforward .and
requires—about-IS' minutes-.- - No -technical expertise-is required. .-...The ..
only difficulty is locating a proper source of manifold vacuum. The
installation instructions are clear and complete.
d. Device Maintenance; The applicant's statement that no maintenance
is—requi-red appears to be correct. - . _. . . .. .
e. Effect on Vehicle Emissions (non-regulated); Installation of the
"PassMaster"deviceshouldhavenoeffect on non-regulated
vehicular emissions.
f. Effect on Vehicle Safety; The applicant's claim that the "Pass
Master" hasa positive effect on vehicle safety by allowing more
power to the drive train when required appears to be correct. No
safety problems should occur with installation of the device.
g. Test Results submitted by the Applicant; It must be understood when
looking at the test data that the "Pass Master" functions only when
the air conditioning system in a vehicle is turned on. The device
then is supposed to negate part of the fuel economy penalty incurred
by utilization of the air conditioning system. Therefore, the
important characteristic to look for is the "percent buy-back".
This figure indicates the percent of the fuel economy air
conditioning penalty saved by the device.
1. The Automobile Club of Southern California Testing. This data
appears to be single bag LA-4 urban cycles and the Federal
Highway Fuel Economy Test cycle.
The actual testing is not well documented. Several important
parameters are not recorded. These include: (1) ambient
temperature (2) type of AC unit in vehicle, (3) status of
vehicle windows during testing, (4) interior cooling fan
status, (5) AC setting and humidity. Nevertheless the data
clearly shows that the "Pass Master" allowed an average of 43%
buy-back of the air conditioning penalty on one particular
vehicle, a 1972 Nova. The emission penalty of using air
conditioning was also reduced by the "Pass Master". No
specific details were available about the specific "Pass
Master" calibration used in the testing.
2. The U.S. ERDA Test Data. This test data was taken on two
vehicles; a Cutlass and a Pinto. The tests appear to be Hot
LA-4 test cycles at 100°F. Although not clearly stated it also
appears that the windows were open and the interior circulation
fan turned on high. The Cutlass air conditioning was
declutched 30-36% of the total cycle time. The Pinto with a
10"-12" Hg. vacuum setting declutched the air conditioning
compressor 27% of the time. Temperature measurements were
take'n at the evaporator outlet air and the recirculated air to
evaporator.
-------
10A
The test data shows significant buyback on emissions and fuel
economy. Fuel economy buybacks of 46.2% and 54% were noted.
The testing appears to be valid data based on averages of 2 or
3 tests each. Corresponding emission buybacks of CO = 89%, HC =
114%, and NOx = 22% were noted on the Cutlass. Pinto emission
reduction buyback figures of CO - 88%, HC = 124%, and NOx - 24%
were noted.
The important point about this data is that the settings used to
shut off the compressor were different than those described in the
application for evaluation. The application discusses part models
PM-4, PM-6, and PM-8 for 4, 6 and 8 cylinder vehicles respectively.
Conversations with Mr. Halera, the applicant, indicated that the
numerical part of the model designation indicates the switch point
in inches of Hg. vacuum. For example, the PM-4 unit used in EPA
testing of a 4 cylinder Pinto cut the compressor off at 4 inches of
Hg. and turned on at 5 inches of Hg.
The 4 cylinder Pinto tested by ERDA was equipped with a switch set
to turn the compressor off at 10 inches Hg and on at 12 inches Hg.
While this specification is not given for the Cutlass, the
percentage of the cycle the AC compressor was declutched was higher
for the Cutlass than for the Pinto, 30-36% vs. 27%. Therefore a
rather high "Pass Master" set point must have been used on the
Cutlass. Mr. Halera, the applicant, indicated the ERDA testing was
attempted to determine the maximum possible buybacks which could be
accomplished. No interior temperature readings were taken other
than those mentioned.
The ERDA data appears to be a good analysis of the upper bound of
air conditioning (AC) penalty buyback possible with the Halem
Device.
h. The EPA Testing.
The purpose ot the EPA testing was to determine the fuel economy and
emission benefits of installing production models of the "Pass
Master" device. Therefore, 4, 6, and 8 cylinder vehicles were used
with the corresponding PM-4, PM-6, and PM-8 "Pass Master" models.
The windows were open during the tests with the interior circulation
fan turned on high and the AC turned to maximum. This condition
would present the maximum cooling load on the AC unit.
1. The Pinto (vehicle is described in Attachment G) was tested with the
air conditioning (AC) off, then on without the "Pass Master", and
finally with the AC on and the "Pass Master" installed and
operating. Visual observation of the compressor cut out activating
showed that the "Pass Master" deactivated the AC clutch for 20
seconds of the 1374 seconds of the T..A.-4 (the first two parts of the
FTP driving cycle). According to Mr. Halera, this was not as it
should be. He suggested that Pinto's were not representative
vehicles as the vacuum did not go down low enough to activate the
"Pass Master" switch except during very hard accelerations. The
Federal Test Procedure (FTP) and the Highway Fuel Economy Test
(HFET) were run on a Clayton splitroll dynamometer. The Hot LA-4
-------
11
tests were run on a Labeco Electric singleroll Dyno. The difference
in the percent buyback figures between FTP and Hot LA-4 is due to
increased loading caused by the Labeco Dyno at low speed which
caused the Pinto manifold vacuum to reach the "Pass Master" cut out
« ,-.set.—point--more-, -often. ... The..., .Pinto.....data. ..demonstrates. ..that. .the..
effectiveness of the device depends on 1) driving habits (how hard
accelerations), 2) device calibration, and 3) vehicle vacuum
characteristics. It must be noted that the AC penalty is a small
number..in actual miles per gallon. The percent buyback is well
within.-the..-test-.to- test repeatability. Therefore., only buyback.
percentages above 20% can individually be taken as an indication of
device effectiveness.
2. The Chrysler LeBaron (vehicle is described in Attachment G) was
tested in the same three configurations as the Pinto. Only LA-4
tests were performed at ambient temperatures of 75°F and 85°F. A
larger percentage was noted on HC hydrocarbons (52.7 and 47.8%
buyback) and Carbon Monoxide (15.8% and 32.33% buyback). The NOx
penalty at 85°F is not understood.
Confidence levels for emissions and fuel economy were calculated for
both 75° and 85° LA-4s. The levels are given below.
L_ HC CO NOx
LeBaron 75° Hot LA-4 97*> 67) 7T)
LeBaron 85° Hot LA-4 83 ) 80) 67
* This reads: there is a 97% confidence that HC value with the
device off, AC on, is greater than with the device on, AC on.
** This reads: there is a 95% confidence that the Fuel Economy
with the device off, AC on, is less than with the device on, AC on.
These values indicate that the "Pass Master" had a small beneficial
impact on the LeBaron at both 75°F and 85°F. The actual fuel
economy benefit in miles per gallon is quite low. (.1 mpg and .195
mpg) but definitely there. Overall, fuel economy improvement was
.68% and 1.3% for the 75°F and 85°F tests respectively.
3. The Buick Regal (see attachment G for vehicle description) was
tested on the Clayton Dyno using both FTP and HFET test procedures.
The test results are given in attachments E and F. The "Pass
Master" caused impressive reductions in the AC penalty in both
emissions and fuel economy for this car. Most noticeable was the
reduction in Hydrocarbon penalty. The fuel economy buyback figures
of 8.57% and 18.18% are small but significant. Numerically, these
numbers represent .3 mpg (1.96%) and .6 mpg (2.73%) improvements in
fuel economy.
Confidence levels were calculated using normalized data for the
Pinto and Regal. The combining of the test data for both vehicles
allows a statistical analysis. The confidence levels are:
-------
12
HC_ . CO NOx F.E.
Pinto/Buick FTP 62*/ 63> 60~>
Pinto/Buick HFET 68)> 72). 66 > 59
....... ._,.*.....This - reads-: -.there - is. -a. .62% .confidence ...that the. HC. value with ..the.,
device off, AC on, is greater than the HC value with the device on,
AC on.
** This reads: there is a 51% confidence that the Fuel Economy with
the device off, AC. on, is less.than the FueL Economy value with the
device on, AC on.
The results indicate again that the "Pass Master" does have a
positive effect on Fuel Economy and Emissions.
A. The Dodge Dart (see Attachment G for vehicle description) was tested
using the LA-4 test procedure at 75° F and 100°F. The averaged test
results show significant buyback in Fuel Economy but very difficult
to interpret results on emissions. The vehicle runs at a very low
manifold vacuum compared to most other cars. Therefore, the Pass
Master was probably activated more on this car than on other test
vehicles. The HC results show a substantial HC penalty in using the
"Pass Master". The CO results are so varied that no significance can
be determined from the data. The NOx numbers indicate a small
penalty increase when the "Pass Master" is used. The Fuel Economy
numbers however of 52.0% and 39.13% buyback are very impressive.
The actual HC penalty was .022 gm/mile increase at 75°F and a .0015
gin/mile decrease at 100°F. The fuel economy figures however were .65
miles/gallon and .45 miles/gallon.
Confidence levels could not be calculated on the Dart at 85°F
because the Fuel Economy variance was zero. Confidence levels were
run on the LeBaron/Dart tests at 75°F data. The levels are given
below:
HC_ C0_ NOx
LeBaron/Dart Hot LA-4 at 75° 53*> 63 )> 57 <(
* This reads: There is a 53% confidance that the HC value with
device off, AC on, is greater than HC value with device on, AC on.-
** This reads: There is an 80% confidence that the Fuel Economy
value with the device off, AC on, is less than the Fuel Economy
value with device on, AC on.
5. Summary of EPA Data Analysis
The four vehicles tested showed varying response to installation of
the "Pass Master" device. However, the similar direction of
response shows that the "Pass Master" does reduce the penalty of air
conditioning use on fuel economy and emissions for most cars. A
summary table of the buyback percentages is given below:
-------
13
Percent Buyback
Vehicle
-. • Pinto* FTP
Pinto HFET
Pinto LA-4 @ 75°F
LeBaron LA-4 @ 75°F
LeBaron.LA-4 @._85°F
- .Regal.. FTP . _
Regal HFET
Dart Hot LA-4 @ 75°F
Dart LA-4 @ 100°F
HC
0.0%
N/A
(O75
(O53
0048
N/A .
N/A
None
None
CO
None
N/A
% N/A
% (+)16%
% (+)32%
...... (-079.6%.
(+)90.0%
N/A
N/A
co2
(-)5.56%
(O27.4%
(-07.72%
(+) 1.71%
..(•01.06%
(+)8.7%
(+)51.3%
(O4i.o%
NOx
(-)8 06%
(-)5.*15%
(O28.0%
(+)13.48%
(-)27.9%
(-032.8%
(O4.95%
(-)7.5%
(-)11.85%
F.E.
(-)8 7%
(+)6.25%
(O25.0%
(+)7.98%
(O13.495
(_i_\ Q ^ "7'y
• } O * J / fo
(O 18. 185
(O52.0%
(+)39.135
No vehicle interior temperature data was taken. The interior
passenger comfort penalty by sustained activation of the "Pass
Master" device was not determined. On most vehicles the penalty
would be acceptable. Only those vehicles which operate for
sustained periods of time below the "Pass Master" activation setting
could experience a loss of A/C cooling.
There are several types of Air Conditioning (AC) systems found on
American cars. While most systems incorporate the same major
components; compressor, condenser, evaporator, receiver-dryer, and
expansion valve, the methods of controlling the vehicle interior
temperature varies. The effect of the "Pass Master" compressor
cutout switch will depend on the type of system installed in the
vehicle and to what position the AC control unit is set.
Present air conditioning systems sense an evaporator coil parameter
such as refrigerant pressure or temperature or outlet air
temperature and use this parameter to control the amount of
refrigerant to the evaporator coil. The method of controlling the
refrigerant varies. The actual cool air to the vehicle interior is
controlled by opening or closing baffles which control the air flow,
not the refrigerant. There are basically two refrigerant control
systems:
1) The Thermostatlc Switch type and the Accumulation Type sense
the evaporative temperature or pressure and turn the compressor
clutch on or off to maintain proper evaporator temperature.
This is called the "Cycling Type".
2) The Suction Throttling Valve (STV) Type, the Valve in Receiver
(VIT) Type, and Evaporator Pressure Regulator (EPR) Type
regulate the refrigerant to the compressor to maintain proper
evaporator temperature. This is called the "Continous" type.
The Compressor runs continuously when the air conditioner is
turned on.
Recently several vehicle manufacturers have incorporated both
types of control on vehicles. When the AC switch is on "Max
Cool", the compressor runs continuously. When at Normal or
"FE" settings the compressor cycles.
-------
14
The "Pass Master" device will work best on systems designed to
operate in a "Continuous" mode. During the acceleration modes
the compressor will be cut out by the "Pass Master" device.
Since the compressor will run enough during non-acceleration.
modes to control evaporative temperature,- the reduced engine
load in acceleration should result in fuel economy savings.
On "Cycling" type systems, the "Pass Master" may or may not
have an effect. If the car accelerates while the compressor is
not engaged, the "Pass-Master" will have no effect. If the
compressor is engaged, the vehicle will accelerate under less
load with the "Pass Master". Upon completion of the
acceleration the compressor will run to correct the evaporative
temperature. The fuel saving will be caused by making the
compressor run during more efficient engine operation modes
(cruise versus acceleration). Due to the intermittent cycling
and the delayed compressor operation, less fuel economy gains
are expected on this type of air conditioning system.
The four late model test vehicles had different A/C type
systems. All but the Buick Regal cycled the compressor during
the "Max AC" testing. The Regal compressor is in continuous
operation when the "Max AC" setting is selected. The test data
does not support the differentiation between the cyclic and
continuous type systems. The largest improvement was noted on
a cyclic system, the Dodge Dart. It is our judgment that the
differentiation is still valid. The data masks the difference
because the PM-4, PM-6, and PM-8 were set more appropriately
for some test vehicles than others.
The largest drawback with the "Pass Master" device is that it
is not optimized for each type of vehicle. A suggested
improvement would be to make it's vacuum cutout setting
adjustable and supply in the installation instructions an
operator optimization procedure. This suggestion would insure
that the device operated correctly for each vehicle. With all
of the varied engine sizes, manifold vacuum actuators and
modifiers, vehicle sizes, axle ratios, and transmissions, it is
impossible to characterize the vacuum vs. acceleration rate
characteristics of all vehicles with just three devices.
The final consideration as to the effectiveness of this device
is a geographic one. The device only works when the AC is
used. The yearly fuel economy benefit would depend on how much
the vehicle air conditioners are used.
For the Dodge Dart which gave the largest improvement in fuel
economy the savings in actual fuel economy was 4.04%. If an
owner lived in a warm climate and used his (her) air
conditioner 75% of the time, he (she) could see a fuel economy
benefit of about 3%. An owner in a colder climate may use his
(her) air conditioner 10% of the time. The corresponding fuel
savings would only be 0.4%. This is an optimum fuel economy
gain. The other three vehicles did not show the same amount of
improvement.
-------
15
16. Conclusions
The overall conclusion of this report is that the "Pass Master" does
.reduce vehicle emissions and fuel consumption by a small but discernible
amount -when the air conditioner is-turned on.- -- . — ...
The amount of fuel economy benefit depends on several factors. The most
important factor is the amount that the vehicle air conditioner is used.
Drivers in warm climates who frequently use their air conditioner may
experience up to a 4% improvement in fuel economy when driving in
situations that frequently activate the device. The second important
factor is the suitability of the device to the particular manifold vacuum
characteristics of the vehicle. The improvement in fuel economy with the
air conditioner on will vary from 0 to 4% depending on the vehicle and
the specific calibration of the "Pass Master"unit. Another factor
affecting the performance is the type of vehicle air conditioning unit to
which the "Pass Master" is applied. "Continuous" systems should realize
a larger benefit than "Cycling" systems. The final factor is the amount
of acceleration-mode operation. The "Pass Master" system will show the
greatest improvement in urban stop-and-go driving. Less improvement or
no improvement will be noted in steady state highway type conditions.
The emissions of test vehicles running with the Air Conditioning on are
generally reduced when the "Pass Master" is used.
A larger general vehicle improvement may be found if the "Pass Master"
was either produced for specific vehicle calibrations or the device was
made "field-adjustable" so that it could be optimized for each vehicle.
-------
16
Attachments
Attachment A Schematic Representation of Pass Master Installation
Attachment B Installation Instructions
Attachment C Automobile Club of Southern California Test Data
Attachment D U.S. ERDA Test Data
Attachment E EPA Testing Summary (4 parts)
Attachment F EPA Test Data Sheets
Atta.chme.nt G . . EPA Vehicle Description
Attachment H Copy of Patent #3462964
-------
17
Crank
shaft
pulley
Air Conditioner
Compressor
Manifold
Vacuum
.Source
Attachment A
To
other vacuum operated
.—N items on the engine
Carburetor \fa
compressor
'tT/C thermostat
splices
Schematic Representation of Pass Master
Installation.
-------
18
Attachment B
AIR CONDITIONER COMPRESSOR CUT-OUT
The HALEM INDUSTRIES'PASS MASTER Air Conditioner Compressor Cut-Out is a precision
vacuum actuated switch, factory calibrated to cut off the air conditioner compressor during accelera-
tion periods such as starting from stop, climbing hills or passing and turn it back on during decelera-
tion or coasting. This will relieve the engine from its power robbing, fuel consuming, pollution causing
burden and restore full vehicle performance to levels of non-air conditioned vehicle standards.
INSTALLATION INSTRUCTIONS
1. Select a mounting position for the PASS MASTER on the side
wall, fender well or fire wall of the engine compartment, as far
as practicable' from any heat producing source. The mounting
surface must be flat to avoid warping the plastic case.
2. Make sure the PASS MASTER lead wire will easily reach some
point on the electrical wire leading to the air conditioning com-
pressor clutch.
3. Make sure the rubber tubing will reach some point on the intake
manifold vacuum line. This can usually be found near the carbu-
retor and can be identified by the rubber or metal tubing routed
to vacuum accessories or to a port on the distributor advance
mechanism.
4. In the event compressor cut off during idle is desired, use the
vacuum source above the carburetor butterfly valve. (Some cars '
may not provide this vacuum source.)
5. If compressor off at idle is NOT desired, make sure the vacuum
-source selected is below the carburetor butterfly valve. This
vacuum source is the same as the intake manifold vacuum. If not
sure where the vacuum source is located, your gas station atten-
dant can point it out.
6. Drill or punch two holes to fit the PASS MASTER and mount it
with the sheet metal screws provided. If the surface is irregular,
one screw tightened snugly will suffice to keep the unit in place
and yet not permit warping of the case.
7. Cut the electrical wire leading to the compressor clutch, strip
about 3/8-inch of insulation off the two leads and attach the
PASS MASTER lead wire using the wire nuts provided.
8. Cut the vacuum line to the vacuum source, insert the tee pro-
vided and connect your PASS MASTER with the provided rub-
ber tube. If your car has a metal vacuum line, cut two one inch
pieces from your rubber tubing and use these to splice the tee
into the line.
9. Your HALEM INDUSTRIES PASS MASTER Compressor Cut-
Out is now ready for use and should require NO adjustments. If,
however, your car is equipped with a simultaneous heat/cool
mix, climate control system, you may have to adjust the tem-
perature controller to compensate for the cycling off of the air
conditioner compressor. Trial and error will determine the opti-
mum setting.
WIRE NUTS
Jft\|il IEAD WIRE
If I I '0 COMPRI
LL
U«D 10
PASS MASItR
COMPRESSOR
VACUUM LINE
10 CARBURETOR
RUBBER TUBE
TO PASS MASTER
Youf HAtEM INDUSTRIES PASS MASTER was designed to function on all internal combustion en-
gines, including yours, so follow our installation instructions carefully and enjoy its benefits.
INCREASES ENGINE POWER FOR MAXIMUM
ACCELERATION WITH AIR CONDITIONING
HALEM INDUSTRIES, INC. P.O. BOX 1419 COCOA, FL 32922 (305) 636-7610
-------
19
Attachment C
Automobile Club of Southern California
HEADQUARTERS: 2601 SOUTH Ft GUEROA STREET • LOS ANGELES. CALIFORNIA 9C037
MAILING: P. 0. BOX 2890 TERMINAL ANNEX • LOS ANGELES. CALIFORNIA 90051
THOMAS A. TAPPENOEN. SUPERVISOR
AUTOMOTIVE ENGINEERING OEPT.
(213) 746 4462
April 4, 1977
Mr. Norman Hal em
Halera Industries, Inc.
P. 0. Box 1419
Cocoa, Florida 32922
Dear Mr. Halem:
Additional tests have been performed to evaluate the Pass Master Device.
Details of these tests are:
Test Vehicle - 1972 Chevrolet Nova - license #321 EXM.
Test Method - Emission and fuel consumption data was developed using the
Federally approved test procedure. The vehicle was operated from- a cold
start for each test. Engine dwell, timing and idle speed were not changed
between tests.
The test results: -
Test #725 without
Pass Master Device
Air Conditioning Off
Test #726 with
Pass Master Device
Air Conditioning On
Test #727 without
Pass Master Device
Air Conditioning On
Emissions
Grams /Mile
HC CO
0.87 11.26
NOX
1.96
Fuel Consumption
Miles/Gallon
Urban Highway
10.36 16.89
Composite
12.54
0.89
1.11
12.65 2.34 10.04
15.44
17.86 2.57
9.57 15.04
11.91
11.43
Enclosed are copies of the previous test results. If you have any questions do
not hesitate to contact me.
e
Yours truly,
"TsL
Thomas A. Tappenden
TAT/gm
Attachment
-------
PASS MASTER DATA
COLD START CVS-2 AND HIGHWAY TEST
BASELINE NO AC - A NO DEVICE AND AC - B W/DEVICE AND AC - C
(725) TDiff (727) 7J)iff (726) *BUY BACK
URBAN
HIGHWAY
COMPOSITE
CB 10.365
CB 16.894
CB 12.547
HC 0.866
NOX 1.956
CO 11.261
C02 835.078
A
9.570 7.7
15.004 11.2
11.433 8.9
1.108
2.568
17.862
895.027
10.037 4;9
15.437 2.9
11.912 4.2
0.886
2.338
12.646
860.850
58.7
: 22.9
i 43.0
t
KJ
O
*Buy Back & C - B
A - B
X 1007.
-------
PASS MASTER DATA
HOT START (CVS-2 STABLIZED AND HOT 505) TEST
JRBAN
BASELINE A/C OFF.
CB
HC
CO
BASELINE A/C ON
BASELINE A/C ON
WITH DEVICE AND A/C
A
(720)
12.447
.822
7.038
J98.794
31 7J>iff
(717) A
10.887 14%
1.013
11.881
807.895
B2 7J)iff
(719) A
10.687 147.
.915
11.711
808.424
C %Dtf£ ZDiff
(718) Bl B2
11.350 6.2 6.2
.938
8.947 .
764.277
*BUY BACK
Bl B2
38% 38%
*Buy Back • C - Bl
A - Bl
C - B2
A - B2
X 100*
X 1007.
-------
22
Attachment D
U.S. DEPARTMENT OF TRANSPORTATION
TRANSPORTATION SYSTEMS CENTER
KENDALL SQUARE
CAMBRIDGE. MA 02142
In reply refer
to: - TSC-3'3-2- August 3, 1977
Mr. Norman Halem
Halem Industries, Inc.
PO Box 1419
Cocoa, FL 32922
Dear Norm:
Enclosed is a copy of a letter from B. H. Eccleston of
Bartlesville Energy Research Center, to Walt Harriott,
containing preliminary results of tests conducted on a
1977 Pinto and Cutlass to determine the effects of your
air conditioner cut-out device on fuel economy. When
I obtain results of further tests (including emissions
data), I will forward them to you. Although the results
are preliminary, we expect a final report in October.
Cordially,
K'. J. Bray
Enclosure
-------
23
UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
BARTLESVILLE ENERGY RESEARCH CENTER
P.O. BOX 1398
BARTLESVILLE, OKLAHOMA 74003
July 15, 1977
Mr. Walter Harriott
Department of Transportation
Transportation Systems Center
Kendall Square
Cambridge, MA 02142
Dear Walt:
As promised, enclosed are updated and corrected tables of data from
the ambient temperature effects project. The A and B tables, "Cycle
fuel economy and emissions. . ." and "Cycle fuel economy at approxi-
mately 1 mile intervals. . ." are from the same source as the data
sent to you with my letter of June 20, 1977. The tables have received
preliminary checking and errors corrected; however, they are still
subject to minor corrections. The additional C and D tables present
temperature data during the cycle tests and fuel, torque, and tempera-
ture for the steady-state tests. A further description of the tabular
material is enclosed as attachment No. 1.
Also enclosed as attachment No. 2 are results of tests wvth the air
conditioner disconnect device. It was intended the device be evaluated
over the full cold start through the two highway cycles; however, it
was found that the tests would have to be replicated at least three
times and evaluations made at all conditions within a. short time frame.
That is because we are attempting to determine a possible fuel savings
approaching the repeatability of the test. Therefore, it was decided
to repeat the tests as used in the preliminary evaluation (my letter of
April 11, 1977 to you) but using the weatherized chassis dynamometer at
100° F ambient. The Cutlass (No. 158) and Pinto (No. 156) were used as
the test vehicles and the hot transient and stabilized cycles of the 75
FET used for the dynamometer driving schedule. The procedure consisted
of driving the vehicle on the dynamometer at 50 mph until the oil tempera-
ture approached equilibrium then taking bag samples for FET stabilized
and hot transient cycles with the following variations:
1. Air conditioner on device off
2.
3.
4.
5.
6.
7.
on
on
off
on
on
off
off
on
off
off
on
off
-------
24
Mr. Walter Harriott -2- July 15, 1977
The data are shown in attachment No. 2, pages 1 and 2. The Pinto is
scheduled for retesting with a vacuum switch adjusted to increase the
air conditioner."off" time. The temperature data shown should be used
only as an indication of the magnitude of loss in cooling effectiveness
as much more attention to thermocouple placement and air velocity would
be required before they could be accepted as a measure of cooling effective-
ness.
Sincerely,
B. H. Eccleston
Research Chemist
Fuel/Engine Systems Research
Enclosures:
As stated
-------
25
Mr. Walt Harriott
Attachment #2
July 15, 1977
Cutlass #158
HT + S cycles of PET, mpg
Test No
Air conditioner off
Air conditioner on
plus disconnect
Air conditioner on
1
13.64
12.67
11.54
2
14.11
12.89
11.55
3
11.40
Avg.
13.88
12.78
11.50
Air conditioner off -»• on = 13.88 - 11.50 = 2.38 mpg = 17.2% of off mpg
Air conditioner off •*• on with disconnect = 13.88 - 12.78 = 1.10 = 7.9%
of off mpg
17.2 - 7.9 = 9.3% savings in fuel economy
or
Air conditioner off -*• on = .0720 gpm - .0870 gpm = .0149 gpm to run air
contitioner = 20.7%
Air conditioner off ->• on + disconnect = .0720 - .0782 gpm - .0062 gpm to run
air conditioner with disconnect = 8.6%
20.7 - 8.6 = 12.1% savings in fuel consumption
NOTES:
a. Above for hot transient plus stabilized phases of 1975 FET
b. Disconnect device declutched air conditioner 30-36% of total cycle
c. Temperature of test cell v/as 100°F
d. Temperatures at air conditioner outlet with all vents open and high
fan speed
Air conditioner on
Air conditioner on
Air conditioner on + device
Air conditioner on + device
outside air to evaporator 57°
recirculated air to evaporator 44°
outside air to evaporator 66°
recirculated air to evaporator 55°
-------
26
Mr. Walt Harriott
July 15, 1977
Pinto #156 - 27% off
Air conditioner off
Air conditioner on
disconnect on
Air conditioner on
HT + S cycles of FET, mpg
Avg.
19.86
18.31
17.18
N
6
3
10
S
.97
.165
.49
.95 ts/ n
1.02
.50
.37
2.68 mpg = 13.5% of off mpg
19.86 - 18.31 - 1.55 mpg =
.0078 gpm required to run
.0504 - -.0546 = .0042 gpm
Air conditioner off -*• on = 19.86 - 17.18
Air conditioner off •*• on with disconnect
7.8% of off mpg 13.5 - 7.8 = 5.7%
or
Air conditioner off ->• on = .0504 - .0582
•air conditioner = 15.5%
Air conditioner off -*• on with disconnect
to run air conditioner = 8.3%
15.5 - 8.3 = 7.2% savings in fuel consumption or 54% of fuel to run
air conditioner recovered
NOTES:
a. The above for HT + S cycles of 1975 FET
b. The disconnect declutched the air conditioner 27% of cycle
c. The disconnect turned air conditioner off at 10" Hg on at 12" Hg
d. The test cell temperature was 100°F "
e. The air to the air conditioner evaporator was ^ 108°F
f. The temperature at center air conditioner vent with all vents open
fan on high was:
Air conditioner on
Air conditioner on + device
Air conditioner on + device
outside air to evaporator 64°
outside air to evaporator 68°
recirculated air to evaporator 58°
-------
27
Mr. Walt Harriott
Cutlass # 158
HOT TRANSIENT AND STABILIZED
Date
Test
Fuel Economy
(mpg)
Fuel
Air Conditioner OFF
6-30 7504
6-30 750?
Avg.
CO HC NOX
(grams per mile)
13.65
14.11
13.88
204
198
201
2.84
2.41
2.63
.34
• 32
.33
1-57
1.51
1.54
Air Conditioner ON WITH Disconnect device.
6-30 7505 12.68 220 3-45 .31 2.38
6-30 7508 12.91 216 3.25 .32 2.35
Avg. 12.8 218 3.37 .32 2.37
Air Conditioner ON
6-30 7502
6-30 7503
6-30 7506
Avg.
11.55
11.^6
11.42
11.51
242
241
245
243
12.53
8.33
7.22
9.36
.46
.38
• 36
.40
2.67
2.52
2.63
2.61
SUMMARY
A = (on-off)
B = On - (on
with PM)
% Recovered =
(B - A)100
% Reduction *
(B - on)100
-2.37
-1.29
54
11.2
42
25
60
10.1
6.73 .07
5.99 .08
89
64
114
20
1.07
.24
22
9.2
-------
28
Mr. Walt Harriott
Pinto # 156 HOT TRANSIENT AND STABILIZED
Date Test #
Fuel Economy
(mpg)
Fuel
CO -HC NOX
(grams per mile)
Air Conditioner OFF
7-13 7536
7-13 7533
Avg.
Air Conditioner
7-13 7539
7-13 7537
7-13 7535
Avg.
Air Conditioner
7-13 7538
7-13 7534
Avg.
SUMMARY
A = (on-off )
B = On - (on
with PM)
% Recovered =
(B - A)100
% Reduction =
(B - on)100
20
18
19
ON WITH
18
18
18
18
ON
17
17
17
-2
-0
46
5
.35
• 51
.43
Disconnect
.54
.26
.22
.34
.72
.10
.41
.02
.93
.3
137
151
144
9
20
14
.11
.73
.92
.45
1.31 ..
.88
1.
2.
2.
73
28
01
device.
150.
153-
153.
152.
157-
163.
160.
16.
8.3
50
5-2
4
6
3
2
4.
5
5
5
13
17
17
16
21
26
24
9
8
88
33
.57
.38
.06
.00
.91
.29
.1
.18
.10
.6
.63
.94
.89
.82
1.08
1.17
1.13
0.25
0.31
124
27-4
2.
2.
2.
2.
2.
2.
2.
0.
0.
24
6
54
c-1
64
60
71
87
79
78
19
.8
-------
29
Attachment E
Passmaster Testing
Pinto
A. FTP
Date
Test #
10-25-79 80-0305
10-31-79 80-0391
11-1-79 80-0393
Percent buyback
B. HFET
10-24-79 80-0304
10-31-79 80-0392
10-26-79 80-0308
11-1-79 80-0394
Percent buyback
C. Hot LA-4
10-29-79 80-0309
10-29-79 80-0397
10-29-79 80-0312
Percent buyback
HC_
.27
.22
.22
0.0%
.02
.03
.02
.02
*
.13
.14
.17
(-075%
CO
CO,
NOx
*Numbers are too low for meaningful analysis.
**Questionable data.
F.E.
4.4
3.6
2.4
None
.6
.1
.8
.2
*
.6
.4**
1.3
t.
410
467
464
(-)5.56%
324
357
349
356
(•09.38%
386
431
448
(+)27.4%
.71
1.38
1.33
(-)8.06%
.48
1.50
.62**
1.45
**
.92
1.10
1.17
(+)28.0%
21.2
18.7
18.9
(-)8.7%
27.3
24.8
25.3
24.9
(+)6.25%
22.9
20.5
19.7
(+)25.0%
Configuration
AC off
AC on; Passmaster On
AC on; Passmaster Off
AC off
AC on, Passmaster On
AC on, Passmaster On
AC on, Passmaster Off
AC off
AC on, Passmaster On
AC on, Passmaster Off
-------
30
Chrysler LeBaron
A. Hot LA-4 Data at 75°F
Date
Test #
HC
11-7-79
11-7-79
11-7-79
11-7-79
11-7-79
11-7-79
B. Hot
11-8-79
11-8-79
11-8-79
11-8-79
11-8-79
11-8-79
80-0462
80-0463
80-0464
80-0465
80-0466
80-0467
% buyback
LA-4 Data at
80-0480
80-0481
80-0482
80-0484
80-0485
80-0486
.699
.635
.736
.735
.701
.682
(+)52.7%
85°F
.769
.728
.963
1.218
.967
.884
CO
CO
4.735 '
4.469
7.008
8.590
7.875
6.716
+)15.8%
6.483
6.716
15.081
22.31
15.580
13.990
544
549
588
585
585
582
(+)7.72%
524
526
561
558
566
555
NOx
1.569
1.554
1.955
1.832
1.874
1.824
1.375
1.386
1.661
1.444
1.573
1.628
F.E.
Configuration
16.
15.
14.
14.
14.
14.
(+)7
16.
16.
15.
14.
15.
15.
04
85
74
73
78
88
.98%
50
35
08
88
03
32
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
off
off
on,
on,
on,
on,
off
off
on,
on,
on,
on,
@
P.
P.
P.
P.
75°F
75°F
M.off
M.off
M.on @
M.
at 85
at
P.
P.
P.
P.
85
M.
M.
M.
M.
on
°F
°F
off
off
on
on
@ 75°
@ 75°
75°F
@ 75°
@ 85
@ 85
@ 85°
@ 85°
F
F
F
oF
°F
F
F
% buyback (+)47.8% (+)32.33%
-------
31
Buick Regal
A. FTP
Date Test #
HC
CO
B. HFET
NOx
F.E.
11-7-79
11-8-79
11-15-79
80-0447
80-0449
80-0451
% buyback i
.85
1.09
.73
(+)114.0%
8.5
17.8
10.4
(+)79.6%
i.
455
549
548
(+)1.063
1.18
1.79
1.59
! (+)32.8%
18.8
15.3
15.6
(+)8.57%
11-7-79
11-8-79
11-15-79
80-0448
80-0450
80-0452
% buyback
.08
.19
.09
*
.7
4.7
1.1
(+)90.0%
349
395
391
(+)8.7%
1.30
2.31
2.26
(+)4.95%
25.3
22.0
22.6
(+)18.
Conf iguration
AC off
AC on, Passmaster off
AC on, Passmaster on
AC off
AC on, Passmaster off
AC on, Passmaster on
* Numbers too small for meaningful analysis.
-------
Dodge Dart
A. Hot LA-4 at 75°F
32
Date
Test #
HC
CO
CO,
NOx
F.E.
11-27-79
11-27-79
11-27-79
11-27-80
11-27-79
11-28-79
80-0772
80-0723
80-0724
80-0725
80-0726
80-0727
% buyback
.492
.491
.400
.408
.518
.510
(-)125%*
.177
.314
.338
.120
.158
.234
*
s.
505
504
548
539
524
523
(+)51.3%
1.50
1.48
1.82
1.83
1.84
1.86
(-)7.5%
17.5
17.5
16.1
16.4
16.9
16.9
(+)52.0
Configuration
AC off @ 75°F
AC off @ 75°F
AC on, P.M. off @ 75°F
AC on, P.M. off @ 75°F
AC on, P.M. on <§ 75°F
AC on, P.M. on @ 75°F
B. Hot LA-4 at 100°F
12-1-79
21-1-79
12-1-79
12-1-79
12-1-79
12-1-79
80-0793
80-0792
80-0791
80-0790
80-0789
80-0788
% buyback
.312
.303
.356
.152
.302
.310 .
(-)97.2%
.243
.210
.292
.208
.212
1.59
*
525
521
565
559
546
546
(+)41.0%
1.93
2.00
2.67
2.61
2.78
2.66
-11.85% i
16.7
16.9
15.5
15.8
16.1
16.1
(+)39.1
AC off at 100 F
AC off at 100°F
AC on, P.M. off @100°F
AC on, P.M. off @100°F
AC on, P.M. on @ 100°F
AC on, P.M. on .@ 100°F
* Numbers are too widely spread for accurate analysis.
-------
MF". V-.l'-
UDE SEhlCt.E 1.0. SlU'i
Attachment F
1 of 53
'•>•'. ttL(. t'HJIVALtNT ACTUAL OVt*- / TEST TYPE /
IT t . PIK. Ki-l-'.r i.r>. )fs) |)Y.-«0 TWnNS. UrtlVE EXPERIMENTAL
l\ir. I.MI,. C.niK A(:MP -it!''. vtlUHl H.P. CONFG. CODE / TEST PROCEDURE — /
V.9 CVS 7S-LATER
f'-'Ivi-
fiATE
a 1
MEASUREO
ri.il')(> / / *, CO / IDLE SOAK COASTDOWN
rff'M l.t*M LtF r KIGHT COMB HPM GEAR PEHlOD TIME
/.
"rtb
COMMTll'-JS - /
"till n dllL^ UNl r • lifll I
61.<) 7^.1) K s l<:
L'-VIO
i •;..
io
SITE
1 3.5%^ MILKS
1-iiacnrEo
'.UM) M.r1.
-vd| L
UVU
Tl-'h
nuo- .
10311). 0
N0» Wfcl.ATIVE
FACTO'H HUMIDITY
ALDKHYOtS
co?
CO
HC-FIll
CO?
CO
t x>iAir>r S'
•.fiT -r. u~
ll <-H. I
;:.} <.-»U'. I s-. '"Lr
hANGt
1'.
13
1 /
iF. TM
17.1
''. >
sne
I".
IS
. i^ rt.H< PPM
(itI'll <».H£ r>r4
-------
OCT 24, 1979
2 Of 53
•':. M.r. tui-MVALfc^T ACTUAL ovtw- / TEST TYPE —
'?*• 1t->- *<<>. HII.. K I- I'll] "i.P. KST OYNO TPANS. DRIVE EXPERIMENTAL
•(JOE VErilCLE I.U. SIun hvr.k 1i.1 r. LMG. CuuE. AC"f Mtl«. rfEIGHl H.P. CONFG. CODE /—r TEST PROCEDURE -
30 FA* ON . c 7'.u 9.9 HWFE
in ! vr. • MEASOPEO
CL'-'.l A»Lh .'ALi / I'>r/lrIijM TlMlNu / / * CO / IDLE SOAK COASTDOMN
OAIE f'tlGHT wtlb'ir (,/.ijr,i >>-f ftSiiriK o| ii/? "PM G^Aft LEFT MIGHT COMB UPM GEAR PEKlOO TIME
•• ••- r r
/- AMMIENT TtbT C
bA>
TtST DATE «u. t
lO-/?J-79 I? f>
1;AG 1 1 0. 1 ^1 M[
SITt »A?15
IV I,
HC-f 10
•. - I 1 n
SET f I'-u
16.4.1 -.•.
AUSI SA.i^l
'•Elf"
11 .-
3^. /
61.1
.11 .0
HL
. U . U )
li''l|(..
i) . II 0.0
<;.•> ii. •)•»<;
•j.J (J.//^
Ci^ ".'0*
tlV. (I..)M
4.4/ Pf«
1 /.Si PHM
1 .Sol *
7/.07 Pf«
HEl. AT IVt"
MIDITY
43.3
ALDEHYDES
OWt
OILUIIOM FACIOK = a.34i
MUSS EMISSIONS AUX. AUX. AUX.
GM5. GMS/M! GMS/^M FIELD1 FIEL02 CODE
0«?9 0.029 O.U1H
3,b3 0.357 0.2?2
3?!S3.16 319.207 198.346
10.22 1.003 0.023
*PG KPL L/100KM
Z7.6 11.75 fl.5
MPG KPL L/100KM
WEIGHTED VALUES 27.7 11.8 8.5
27.b553 11.7705 8.4957
72-74 FTP 27.7 11.8 8.5
27.6502 11.7553 8.5067
UNWEIGHTED FTP 27.7 11.8 «.S
27.6S02 11.7553 8.5067
C
c
011 f'JEL
OYNO SITEID307 TEST • 80-03U
-------
U1-WJ j.id.U^ly. iKn » riJ-li..U t t i^/'H LiG'il UUi» Vf.lUCLh «NdLY?>iS * t-'HOCt!>SEiJi JtUUri.c'l UL. ra» i V. »
3 of 53
"F'w. ALT. EQUIVALENT ACTUAL OVER- / TEST TYPE
MFP. \/t-_H- WfJ. kU'l. htTEbT H.P. TES1 OYNO TRANS. DRIVE EXPERIMENTAL
CODE VtMlCLE I.D. MUN EVAP INIT. CHG. CODE ACHP MfTrt. WEIGHT H.P. COMFii. CODE / TEST PROCEDURE —
30 FAXON 0 a750 9.9 CVS 75-LATER
U'-lvE . MEASURED
CURB AXLE ftXLE / IGNITION TIMING / / % CO / IDLE SOAK COASTOOWN
PKEP DATE WEIGHT WEIGHT GAUGE MEASURE »1 »i kPM GEAR LEFT RIGHT COMB RPM GEAR PERIOD TIME
/- AMBIENT TEST CONDITIONS - /
HAPO WET O^Y CVS
"HO bULtf bULH UNITS UMT
2*.91 62.5 7S.O F a?f
TEST OATE HW,
10-34-79 ia
9AG 1 3.593
SITE «A2l3
MC-F ID
FlOX-CHtM
C0>
CO
dAG 2 3.rt40
SITE »A2l'j
MC-KIO
HOX-CHFM
coa
CO
*AG 3 3.601
bITF. "A215
MC-F ID
NOX-CH£«
CO-?
CO
ACTUAI.
DVNO UlFnTlA UiOICATtO
. SUE SETT I.NG DYNU H.P.
MILES 5.7U2 KM t<37/. MOLL
EXHAUST SAMPLE HAC
RANGE "ETF-) COHC. »
16
!NG
METtH
10.6
11. d
30.0
17. V
S.TJ iv M
•iftUST bttM^l
" F" F F K
?? .-.
31 .-<
41. H
28.8
HC
0 . 3
0. 321 <4
0.^00
4Lfo«E HOUNOING o.l-y-yvv
a7.b'. 16
i.n»-o 23
iaa.^^ an
«4b.'. BOLL
nvu riPE NOX RELATIVE
H.P. 000". PRESSURE FACTOR HUMIDITY ALDEHYDES
10348.0 45.00 0.9611 49.7
^F;vs. VMJX= 2797.0 CU.FT. DILUTION FACTOR = 11.442
.KGPOUND SAMPLE CORRECTED MASS EMISSIONS
"tTF^ CUNC. CONCENTWATIONS GMS. GMS/MI GMS/KM
1.2 3.60 87.44 PPM 3.99 1.112 0.691
0.0
a.i
0.3
KEY'S.
.t i-ACKOIvOUNO
CuMC. PANGK
7 . H 1 14
b.-/H IS
u.sv6 aa
4j.t7 17
h39s. ^i)LL
.E HAC
CONC. OANGK
|h.b'> 14
16. ns IS
1.015 23
7u.as i?
CO
S.H
S.767
3.4H
l.bH4(J
METE"
5.U
0.1
a.o
0.0
we vs.
ivfikoUNO
ML rp.'<
b.l
o.a
a. II
0.0
COc;
412.
412.
?-,6.
2S6.
0.0 ' 7.S4 PPM
0.044 1.040 *
5. 74 816.98 PPM
VMlx= 4746.0 CU.FT.
SAMPLE CORRECTED
CONC. CONCF.NTwnTIONS
3.6H 4.33 PPM
O.OS 5.93 PPM
0.042 0.6S7 *
0.0 43.47 PPM
VMIX= 27f)7.0 CU.FT.
SAMPLE CORRECTED
CONC. CONCENTRATIONS
J.fS 13.11 PPM
0.10 1^.96 PPM
0.042 0.976 %
0.0 70.29 PPM
NOX
O.bl
19 0.6062
0.38
12 0.3767
4.01
1506.49
75.34
DILUTION
1.116
419.303
20.969
FACTOR =
0.693
260.543
13.030
19.101
MASS EMISSIONS
GMS.
n.33
1.47
1614.63
6.dO
DILUTION
GMS/MI
0.087
0.3bl
4J0.4H9
1.771
FACTOR =
GMS/KM
0.054
0.237
261.280
1.101
13.096
MASS EMISSIONS
GMS.
0.60
2.31
140U.98
6.46
WEIGHTED
72-74
GMS/MI
0.166
0.643
391.322
1.794
VALUES
FTP
UNWEIGHTED FTP
GMS/K.M
0.103
0.400
243.156
1.115
MPG
21.0
21.0080
20.2
20.2042
20.9
20.8946
AUX.
FIELD!
MPG
AUX.
FIELD2
AUX.
CODE
KPL L/100KM
19.5 8.27
AUX.
FIEL01
MPG
20.9
AUX.
FIELD!
MPG
22.5
KPL
8.9
8.9327
8.6
8.5P97
8.9
8.8832
AUX.
FIELD2
KPL
8.90
AUX.
FIELD2
KPL
9.55
12.1
AUX.
CODE
..
L/100KM
11.2
AUX.
CODE
L/100KM
10.5
L/100KM
11
11
11
11
11
11
.2
.1947
.6
.6417
.3
.2571
OJ
COMMENTS! PASSM4STEW *4t~+- TF. STING. UNaUThO"! /TtO MCKOOWN ON BAG I STAKT. BASELINE
FIRST 4 sfCONi'S OF y«G 3 ^AN WITH AMHIENT F-UMPS OFF ON cvs
BAG 2 30 MIN OLD
OYNO SITE»D207 TEST # 80-0303
-------
R* OYNO MTE:0207 TfST n
:ODF VEHICLE I.D. SION
30 EXXO.'J 0
DATE
0(-IVE
Cl.'*>B A«LF
WEIGHT WEIGHT
I
HiG'finY HitL ttt'-suwr .W
4 of 53
*-Ku. 41.1. EQUIVALENT ACTUAL OVtR- / TEST TYPE — /
rftH. *"J". wETF.bT H.P. TEST OYNU TRANS. ORIVt EXPERIMENTAL
IfllT. CHG. CODE. ACHK- MtTH. WEIGHT H.P. CONFG. CODE / TEST PROCEDURE /
. 27bU 9.9 HWF£
MEASUHED
•>XLF /— IGNITION TIMING —/ / % co / IDLE SOAK COASTOOWN
GAUf.F. -*t'.SU"IK «1 «2 «PM GEAR LEFT MIGHT COMB RPM GEAR PERIOD TIME
»• f-'.p r y
/- AMBIENT TFbT CONDITIONS -
"HI> BUI.H HIIL" UNITb
2b»91 64.0 «0.0 F
ACTUAL
OYNO INE ^ TI A
TEST DATE MR. MTU StTTI'H,
10-i'>.-/9 1* U207
CVS
ONI I
INUICATtl)
7.
DVU
H.P.
QUO".
10J6'*.0
'•S.OO
NOX
0.9563
HF.I.ATIVE
MUMIOHY
ALDEHYDES
SAG i 10.212 MILFS 16.<•:}<• KM 23-109.
SITE »A21b EXHAUST SAMPLE
CUNC.
C02
CJ
i*.
15
?3
17
VAl.dtS
xlLt
MOUNT) IM,
61. -1
17.7
2J.3?
1 .o/'O
•EVS. VMIX= 4031.0 CO.FT.
LjACi\GPOUMI> SAMPLE CO'<«ECTtn
RANGL" I'tTEW CONC. CONCENTRATIONS
la <4.3 3.16 2.»9 PP?"
IS 0.1 O.OS 23.27 PPM
3 1.9 0.0<»0 l.SHb *
17 0.0 0.0 42.98 PPM
o.
O-Olt"
0.01IS7
en
0.6
IJ.SSV
'I..1S
n.
PASb"ASTf.o FOKU Tt'.TlNd
CO?
J2<>.
3? <•.
NOV
0.30
DILUTION FACTOR
MASS EMISSIONS
G'MS.
n.19
4.U6
3311.09
5.71
WEIGHTF.fl
72-74
GMS/MI
0.019
0.476
324.249
0.5S9
VALUES
FTP
UNWEIGHTEU FTP
GMS/xM
0.012
0.296
201.479
0.348
MPG
27.3
27.2860
27.3
27.28.14
27.3
27.2834
AUX.
FIEL01
MPG
27.3
KPL
11.6
11.6212
11.6
11.5993
11.6
11.5993
AUX. AUX.
FIEL02 CODE
KPL L/100KM
11.59
L/100KM
8.6
8.6048
4.6
8.6211
8.6
8.6211
8.6
OJ
DYNO SITEID207 TEST » 80-0304
-------
-t>. v'-'- "!!'
»O/r. V t M 1 C L t I.U. S I () N dVAK IrilT
JO EXXON l)
r,.. IVF
Ct'P't A/.LE
P^EP OATt WEIGHT WEIOHT OAi.if,t
f MO I r
/- AMHIF.NT TEST CONDITIONS - /
RAPO wF. T Liov ("VN
"HO BULd HULIJ» U'-IITS UNIT
2'). 08 63.6 l^.'f f ?tr
ACTUAL
'jinO I'iK'ICA
TEST OATK HP. SITE M.TTI''O U'fNO M
10-^5-70 09 (1207 27b» t.
BAG 1 3.560 MlLfS o.Mu I'M 16 ?M.M 2H.».f>
C02 23 4J.7 l.i;iH
TO 20 ?M.2 •}?<«. Sn
BAI» 2 l.*20 MILFS 6.1'-tt " M r!c''. /.
SITE »A21:> EXHAUST SAfi>Lf
Kf-MGt" «-F T»-K Cui-iC.
«C-FII) !«. 10.0 7.. '6>
'.UX-^HtM l«i Tb.H <.i'7
CO? ?3 <"<.rt o.f-vl
CO 17 12.0 2v.li-)
HAG J 3.b6? MILhb -i.lsd «M oj'"..
SITf «A?1S EXHAUST iftxt'Lh
PANIt ''Elf.u COfiC.
nC-F III lit 2J.7 1 /.SS
MOA-I.MEM !<. SI./ 1J.OS
C02 ?3 •.».<• o.''/S
CO 17 A3. 5 Mo. '(2
*F.tr'MT£r) VALUES HC CO
"•.^AMS/^IUF 0.27 '•.
HFrOOE "DUNOI'.G (l.2<>-'6 " .
GHAMS/KM O.l6d ?.7
rtEFOSE POUNDING n.i67S3 ?.7
• ^ L 1 • t.'JUlVAL^Nl ACTUAL OVL^~ /
. MUM. i-MFsT '-'.I'. I^ST UYUO TWANS. (IWIVE
Ci f ,\i \c f • uD Jt 1 1 jkiikif >JLJ fiTifiC/* ^'nnc y
5 of 53
EXPKX I MENTAL
rtt»« (,Uli'- •«( "'' '*" I l* • •»!• l'»MI n • r • LllNr u* V*UUt f— — ic.-ii rnv/^,ui/ur\i_ — f
tlw 9.9 CVS 75-LATER
AAL^. / Ii-NMIO'M TIM1MO / / * CO r-/ IDLE
MEASURED
SOAK COASTOOWN
MEASllhF_ «1 "d -"I OtArf Ltf T «IGHT COMB RPM GEAR PEHIOO TIME
TtD IWU T 1 '(. N'X MKLATIVt
.P. H.P. COD'. P-JFSSU-VF F<.CTOn hUMIOITY ALDEHYDES
4 injW.O <*-).Oo O.VhB'* 56.0
"DLL ''I-'VS. VM|X= 2/v-i.u CU.FT. DILUTION FACTOM = 11.82B
M/iCftOr-GUMO SA^I'Lt CI"" CUNC. CO l(.t Nlri.-. T IONS GMS. GMS/MI ljMS/l\M
lij 1.3 3.'-ii ',7.0^ >V.1 3.06 O.B60 0.53A
16 '1.2 (i.20 ?H.'«7 ^PM A. 26 1.197 0.7<», 1<»B9.22 *1H.2H9 259.913
?1 M.b v.s». S6'j.77 PPM 52.13 14.6AV 9.103
UIOLL WFVS. \MIXI AT^LU CU.FT. DILUTION FACTOW = i9.2«<»
r)AC«4Mf,K ;. E Tt" C'UC. CONCF.J !'<.-. TUl'MS GMS. GMS/MI GMS/KM
1<» -..-1 J.ti'i j.4-j PH.-I 0.31 0.0 HO O.OSO
!<• U.<» 0.11) *.•*/ HkM 2.29 O.i>99 O.J72
23 1.9 u.niVU U.bS3 •• 1611.90 PK^I *.56 1.19A 0.7A2
WILL -if VS. \-«IX= 2/>:«.D LU.hT. DILUTION F»CTOH = 13.566
M/if><~'"OUNO sovPLt COt-'wtCTf.Li MASS (/.MISSIONS
"i:j(>t ''I: TE'J CU.JC. CONCtNT'-^nONS OMS. GMS/MI GMS/^M
U S.il ).hH iH.U I-P.1 0.6i.(i<,2 D.VJ6 f. 13i>/>.71 379. ail 236.003
17 0.0 il.ii ino.«2 PPM 9.H2 2.757 1.713
CO J0< MPG
A 41o. ii. /I WEIGHTED VALUES 21.2
•.!<. <.')V.S9 0.707/ 21.2272
<. 9 11.8
AUX. AUX. AUX.
FIELD1 FIEL02 CODE
MPG KPL L/100KM
20.9 8.89 11.2
AUX. AUX. AUX.
F1ELD1 F1ELD2 CODE
MPG KPL L/100KM
23.1 9.80 10.2
i
KPL L/100KM
9.0 . 11.1
9.0160 11.0913
8.7 11.5
8.6971 11. ^980
9.0 11.1
9.0291 11.0752
Co
COMMENTS!
FEPi) TtSTI'.u. t/C OFF. 1 1 .S '*{.-. SOA<« rtftu 2 3n »IM OLU
OYNO SITtlD207 TCST » 80-0305
-------
6 Of 53
MFR.
CODE VEHICLE 1.0.
30 EXXON
hf R.
VEM- RIP. RUN.
SION EVAP INIT. CHG.
0
RETEST
CODE ACHP
ALT.
H.P.
METH.
EQUIVALENT
-TEST
WEIGHT
2750
ACTUAL
DYNO
H.P.
9.9
TRANS.
CONFG.
OVER- /-- ----- — TEST TYPE —
DRIVE EXPERIMENTAL
CODE / — - — - TEST PROCEDURE
HWFE
PREP DATE
DPIVE
CURB AXLE
WEIGHT WEIGHT
GAUGE
EMPTY
AXLE
MEASURE
/ IGNITION TIMING / f-- % CO -/
01 »2 RPM GEAR LEFT RIGHT COMB
IDLE SOAK
RPH GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAHO WET DRY CVS
"riG BULB BULB UNITS UNIT
29.08 64.2 77.7 F 27C
DYNO
TEST DATE HR. SITE
10-25-79 11 D207
ACTUAL
INERTIA
SETTING
2750
INDICATED
DYNO H.P.
1 .4
DVU
H.P.
TIRE NOX RELATIVE
DOOM. PRESSURE FACTOR HUMIDITY
10418.0 45.00 0.9751 47.9
ALDEHYDES
flAG 1 10.203 MILES 16.421 KM 23790. ROLL WEVS.
SITE »A215
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
BACKGROUND SAMPLE
VMIX= 4026.0 CU.FT.
CORRECTED
RANGE
14
15
23
17
WEIGHTED VALUES
GRAMS/MILE
BEFORE WOUNDING
GRAMS/KM
BEFORE HOUNDING
METfR
8.7
68.3
65.•*
26.6
MC
0.02
O.U223
O.U14
0.01388
CONC. RANGE
6.40 14
34.52 15
1.756 23
64.86 17
CO
O.B
0.643
O.S2
0.5242
METER CONC. CONCENTRATIONS
4.f> J.38 3.47 PPM
0.2 0.10 • 34.43 PPM
2.2 0.046 1.716 %
0.0 0.0 64.86 PPM
C02 NOX
351. 0.72
350.75 0.717S
21fl. 0.45
217.94 0.4458
COMMENTS! PASSMASTtR FEWD TESTING
A/C ON. NO DEVICE
GMS.
0.23
7.32
3578.88
8.61
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
i EMISSIONS
GMS/MI GMS/KM
0.022 0.014
0.718 0.446
350.753 217.948
0.844 0.524
AUX. AUX. AUX.
F1EL01 FIELD2 CODE
MPG KPL L/100KM
25.2 10.71 9.3
MPG
25.2
25.1706
25.2
25.1945
25.2
25.1945
KPL
10.7
10.7040
10.7
10.7112
10.7
10.7112
LX100KM
9.3
9.3422
9.3
9.3359
9.3
9.3359
O3
4839 0
OYNO SITEID207 TEST « 80-0306
-------
TEST B
7 of 53
MFH.
'.ODE VEHICLE 1.0.
30 EXXON
PPEP DATE
CURB
WEIGHT
SION
b
U
-------
\J1HO SITEIOP07
TEST * rtO-OIOH
MFR.
-ODE VEHICLE I.D.
30 EXXON
MFP. ALT.
VEH- REP. RUN. RETEST H.P.
SION EVAP IN1T. CHO. CODE ACHP METH.
0
EQUIVALENT ACTUAL .
TEST OYNO TRANS.
WEIGHT H.P. CONFG.
3750 9.9
PKEP DATE
DRIVE
CURB AXLE
WEIGHT WEIGHT
GAUGE
EMPTY
AXLE /-
MEASURE «
IGNITION TIMINO -—/
1 <*2 MPM GEAR
/ * CO -
LEFT MIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
8 Of 53
/ TEST TYPE
EXPERIMENTAL
/ TEST PROCEDURE
HWFE.
GEAR
SOAK
PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
8ARO WET DRY CVS
"HO BULB BULB UNITS UNIT
39.30 65.1 79.8 F 27C
OYNO
TEST DATE MB. SITE
10-26-79 10 D207
ACTUAL
INEKTIA
SETTING
8750
INDICATED
UYNO H.P.
7.4
DVU
H.P.
TIME NOX RELATIVE
DOOM. PRESSURE FACTOR HUMIDITY
10466.0 45.00 0.9761 45.2
ALDEHYDES
BAG i 10.218 MILES 16.444 KM 23833. ROLL REVS.
SITE «A21S
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE
!<•
IS
23
17
LIGHTED VALUES
GRAMS/MILE
BEFORt POUNDING
OPAMS/KH
bEFONE ROUNDING
METF.H
8.J
Sb.u
65.1
?6.5
HC
0.02
0.0201
0.013
0.01253
.£ BACKGROUND SAMPLE
CONC.
6.11
29.33
1.72V
64.61
RANGE
14
15
23
17
METEH
4.7
0.1
2.1
0.0
CON
3.
0.
0.
0.
CO
O.fl
0.848
0.53
0.5272
C02
349.
348.93
217.
216.81
VM1X= 4070.0 QI.FT.
CORRECTED
CONCENTRATIONS
3.10 PPM
29.29 PPM
1.691 ft
64.61 PPM
NOX
0.62
0.6167
0.38
0.3832
GMS.
0.21
6.30
3565.28
8.67
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
i EMISSIONS
GMS/MI CMS/KM
0.020 0.013
0.617 0.383
348.937 216.819
0.849 0.527
AUX. AUX. AUX.
F1EL01 FIELD2 CODE
MPG K.PL L/IOOKM
25.3 10.76 9.3
25.3
25.3143
25.3
25.3251
25.3
25.3251
KPL
10.8
10.7526
10.U
10.7668
10.8
10.7668
L/100KM
9.3
9.3000
9.3
9.2878
9.3
9.2B77
COMMENTSI PASSMASTtR FERD TESTING. A/C ON. DEVICE ON
4839 0
DYNO SITEI0207 TEST.* 80-0308
-------
• '' '» '•' _ "•-:» '• -1,-Dt'i,
ofiF vFHln F t ti 1 1 1 *i tTv/t>kJ i t r I'M
-/IJ". V t. " I I . L t 1 • U • J I l ; J t- v «> K I'll* C r* '. T •
JO FXXON 0
0^ 1 VK
f* 1 1 -^ H A 1 1 f-' \ k 1 F.'
v»v ^ « ^ L C. '*^i.n
PrfEP DATE *EIGHT wtlt.HF f.MiGr cKASU^F
r • v> T r
/- AMBIENT Tl-'ST CONDITIONS - /
HA^O v>c T OUY i v-i
"HO ttULH rt'll.H liiIFS ij'ill
29.1rt 6u.b 7-^.7 r r-7f.
ACT'iAi.
'iViO |.J*--llA Ifl.'IC'. (Mi Hi
10-31-79 ID r,i>07 ?7bi< 7.1.
BAG 1 ).bS7 MIL'S S.7i>- i-.ii n^v.i. t. HI *»• '
SITF «A?15 FxnAUST *>A'VL' MAC-.',!
K.^^l^.^; "F|f^ C.)..iC. "Mu,,f
nc-e to is Jw. i s/. i" is
'lOx-CMt'M IS Imi.I 'lO.h'j is
CO? ?3 <•<>. 7 1 .-i'. ) t'3
CO 20 39..) S'v-. .6? ?u
AO a 3.H3? MILf'S ft.l»./ r r' "<,)<.. urii.L -rJ'
ilTF. «A?lb riHAlJ^F Sa'-vlP .^AC^r,l
(..-.f.f,i. -'fFf-' One. rf/.;«^
MC-F 10 1-. 11.-. *.<.•' 1".
fiOx-r^t.i !<• ''t.s 10.7^ 1 1
f(ia £-3 U.-> ii.7i'j £^3
TO 17 l.ii t;.ul IV
^ANCif, "'LTK1' CuljC. u..r,rir.
HC-F 10 !«. >V.' If-. 7 J K
SOU-CHE* IS ft^.7 H.7'1 In
C')a ?.) fc't.o 1.1 I/O 3
CO 17 ( 17
*f tr.MTtO VALUES >iC C''
r,^j"S/MIi f O.^^1 j.h
iEFO"t HOiJN'Jl'iO (i.itl-tH ?.-.fiH
"J-VAMS/HX 0.11'- <-../?.
riEFOWt MOU'.i'I'if. n.ljrn? ?.^-17ti
1 lv//i Lil"'F OilTY VF.iiICLt ANALYSIS 1 PHOCtSSEOl I5i25s«;l OCT 31t 1979
9 of 53
AI_T* KQUFVflLKNT flCTO*^L OVt^~ /••••••••• TEST TYPE ^^^^«»"»^^^
^FFc.T l.P. UST ')Y(,0 TP^NS. OKlVE EXPERIMENTAL
CODc. i^CHh* '-it TH» wf- I oH T M«P» CONFG* COOt /~ ~ ^»»» TEST PROCEDURE ••••••/
27-3U 9.9 CVS 75-LATER
MEASURED
/ — — — ri-ftif T i D\I T T IM T hit »«./ y^B.vH<* UL PO ^^^^»^x i ni F ^nAK PAACTAnwKi
~"*~ I *i"l I 1 I U«N I1"»'ML» ^••»/p ^^™^«™^ -^ 1,IJ ••^^^•^^ 1UUC DUM^ ^VOIUUWi
«l "c- <M FIEL01 FIELD2 CODE
-..7 /.ill) SO. .17 PH1 a. 33 O.bba O.fcOb
(i.^ O.ai 511.67 HH-1 7.63 3.146 1.333 MPG KPL L/100KM
^.-^ -.i.J-'j I.r!il3 * 1739.93 488.900 303.769 17.2 7,32 13.7
i).»> 11. "9 SMM.aS MkM Sn.17 Ib.aJO V.463
!/•>. Vllxr 47^7.11 fJll.Ff. UILUTION FACTOK = 16.983
-OuNii SA^lHLt C(W«ECrtfJ MASS EMISSIONS AUX. AUX. AUX.
•h Fth COM(.. CONCK'JT"'.TIONS '>MS. GMS/MI GMS/KM FIELD1 FIEL02 CODE
f>.7 ^.93 J.7C- PMM il.?9 0.07ft 0.047
0.7 II.IH 1ft. bb PHM 4.33 1.101 0.684 MPG KPL L/100KM
i?,l O.i)44 0.74ft * 183^.10 477. 09J 296.453 18.6 7.90 12.7
ti. id U.4H l.9b PH< O.J1 O.OHO 0.049
L/^. V*IJI|A= P79U.O CU.FT. DILUTION FACTOR = 12.107
JOO.-jil SAMPLE CU^ttTEl) MASS EMISSIONS AUX. AUX. AUX.
'Mr'-' Co.^C. CONCF.NT(-.'.TIUNS fc^S. GMS/MI CMS/KM F1ELD1 FJELD2 CODE
i. » 4.ft3 13. 4H Ph»< O.S7 0.160 0.100
u.J 11. Ib "U.bf> PH.1 4.7b 1.J39 O.H32 MPG KPL L/100KM
3. ii 0.043 I. On! * 153-t.^b 432.553 268.776 20.4 H.66 11.5
u.il U.'l f-3.79 ?f i 4.46 1.369 0.851
C'l'' 'nix MPr, KPL L/100KM
4i,7. l.Jo KE10HTEO VALUES 18.7 8.0 12.5
•»t>7.33 1.3M^s lfl.7346 7.9705 12.5461
?M'1. ».os 72-74 FTP 17.9 7.6 13.1
3VU.3H n.,)-,vo 17.9062 7.6127 13.1358
UNKCIGHTED FTP 18.6 7.9 12.6
18.6417 7.9254 12.6175
COMMLNTS: pass^STf.w Ft-vo it^ri..i.
A/C O»i. OEV1CF- O'l C4-- KMGI\t
OFF
"OT SOAK *AS PUSHEO
OYNO SITE«D207 TEST • 80-0391
-------
MFP.
:>ne VfMlCI E 1.0.
30 EXXON
Sill'' r V--1 I'vl F . (.'•
0
AXLt
DATE
«EK,HT
10 of 53
it-
/ JGNIIION
»i K?
t'JUIVALtMl ACJIJAL
Xf. I'ihir h.P.
THANS.
COMFft.
DHIVE
CODE
/ TtsT TYPE /
EXPERIMENTAL
/ TEST PROCEDURE ———/
MWFC
/ / * CO 1
LEFT HIGHT COMB
IDLE SOAK
RPM GEAR PERIOD
MEASURED
CUASTOOWN
TIME
/- 4MHIKNT TF ST CONOITIfiN-j - /
bi.)LH
6S.6
'IMlf1.
77. S
PVNIO Jf<(- •« T I « l:.!i 1C'-
TEST MATE Hi-. Sift SE.TII ir. j r ,u ..
10-31-79 ID 0?07 /'/S" I.
B.AG 1 10.167
SITE "APIS
HC-FIU
fcJO
CO
CO
D
;rt£M
' VAI.ijF
i/M 1 1 c
->OU';:i[
I'>/KM
KOU'ini
1'.
I*
e*
17
^
"•:()
;G
10.2
71 .)
•^7. J
3.i;
'•C
0.0 f
0 . 0^'i'j
o.ol'-
O.lllS1'!)
1. •< I.)
COMMENTS!
Cn
17 SHAH
/Ll
\l
v^.
• f 0-JMiJ
-tfK-'
D.S
0.^
d • 'I
I I.. K
^f.'lwt
..t>.0fl
NO» HFI.ATIVF;
FfiCIOK HUMIDITY
1.00H1 S3.?
ALDFHYUES
0.^0
o.O
• lO H
.10
/C 0.» - UtvlCt 0"
SP*MNH' .^ LO'J
l.v 311
TlUiMS
70.e> 14 o
DYNO SITEI0207 TEST # 80-0392
-------
OYNO SITE:0820 TEST * BO-0397
I 1978 LIGHT DUTY VEHICLE ANALYSIS I
PROCESSED! »J»49I03
OCI
HFR.
CODE VEHICLE 1.0.
JO EX*ON
MFR. ALT. EQUIVALENT ACTUAL
VEK- REP< RUN. RETEST H.P. TEST OYNO
SIGN EVAP INIT. CHG. CODE ACHP METH. WEIGHT H.P.
0 3750 9
TRANS.
CONFG.
0«IVE
CURB AXLE AXLE
PWEP DATE WEIGHT WEIGHT GAUGE MEASURE
EMPTY
/- AMBIENT TEST CONDITIONS - /
BARO *ET DRY CVS
"HG BULB BULB UNITS UNIT
29.12 59.0 74.0 0 20C
/-— IGNITION TIMING / / * CO /
#1 »2 RPM GEAR LEFT RIGHT COMB
OVER-
DRIVE
CODE
IDLE
RPM
11 Of 53
/ TEST TYPE
EXPERIMENTAL
/ TEST PROCEDURE
2 BAG LA-4
SOAK
GEAR PERIOD
MEASURED
COASTDOWN
TIME
OYNO
TEST DATE MR. SITE
10-29-79 16 D220
ACTUAL
INERTIA
SETTING
2750
INDICATEO
OYNO H.P,
9.9
DVU
H.P.
TIRE NOX RELATIVE
OOOM. PRESSURE FACTOR HUMIDITY
10553.0 45.00 1.0071 59.5
ALDEHYDES
BAG 1 3.590 MILES 5.778 KM
VMIX= 2822.0 CU.FT. DILUTION FACTOR a 12.367
SITE *A216
«C-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE
15
23
17
METER
22.8
55.9
50.3
11.a
.E BACKGROUND SAMPLE
CONC. RANGE
16.8?
2B.15
1.079
28.63
14
15
23
17
METER
5.8 ^
0.0
2.3
0.0
CORRECTED
CONC. CONCENTRATIONS
4.27
0.0
0.042
0.0
12.95 PPM
28.15 PPM
1.040 *
28.63 PPM
MASS EMISSIONS AUX. AUX. AUX.
GMS.
0.60
4.33
1520.88
2.66
GMS/MI
0.166
1.207
423.643
0.742
CMS/KM FIEL01 FIEL02 CODE
0.103
0.750
263.240
0.461
MPG
20.8
KPL
8.86
L/100KM
11.3
<1AG 2 3.910 MILES 6.293 KM
ITE «A216
HC-FIU
NOx-CHEM
C02
CO
EXHAUST SAMPLE
BACKGROUND SAMPLE
VMIX= 4691.0 CU.FT.
CORRECTED
RANGE
14
15
23
17
WEIGHTED VALUES
GRAMS/MILE
BEFORE ROUNDING
ORAMS/KM
BEFORE ROUNDING
METE*
14.0
30.5
36.0
1.7
HC
0.14
0.1424
0.0b9
0.08B53
CONC. RANGE METER
10.34 14 6.0
15.42 15 0.0
0.736 43 l.B
4.09 17 0.0
CONC.
4.42
0.0
0.033
0.0
CONCENTRATIONS
6.16 PPM
15.42 PPM
0.705 «
4.09 PPM
GMS.
0.47
3.95
1713.44
0.63
CO
0.4
0.439
0.27
0.2731
C02
431.
431.24
268.
267.96
NOX
1.10
1.1038
0.69
0.6858
COMMENTSI PASSMASTER FEHD TESTING
DEVICE ON A/C ON. WINDOWS OPEN
T« 75 OEG. F
; EMISSIONS
GMS/MI GMS/KM
0.121 0.075
1.009 0.627
438.219 272.296
0.162 0.101
AUX. AUX. AUX.
FIEL01 FIELD2 CODE
MPG KPL L/100KM
20.2 6. 59 11.6
c
c
c>
u>
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
20.5
20.5246
20.5
20.5193
20.5
20.5193
KPL
8.7
8.7184
8.7
8.7236
8.7
6.7236
L/100KM
11.5
11.4698
11.5
11.4630
11.5
11.4630
4839 0
DYNO SITEID220 TEST « 80-0397
-------
DYNO
ipsr
LH.Hl UtMY VtiiftLt ANALYSIS i PROCESSED.
- . KtP. WON. PETtST
OUE VErllClE 1.0. SIu.J LVAP INIT. CHG. COUt
JO EAXUN 0
A/LE iXLE
PnEP DATE WEIGHT rftlOnr GAUOc
tup TV
/- AMBIENT TEST CONDITIONS - /
BAKi) WFT \1"1 CVS
"H'j HULB HULi UNITS UN IT
t IliNlTION II
tfl «2 WPM
»LT. EQUIVALENT ACTUAL OVER- / TEST
M.P. TEST OfNO TRANS. DRIVE EXPERIMENTAL
MEM. WEIGHT H.P. CONFG. CODE / :-- TEST PROCEDURE -
9.9 2 BAG LA-4
MEASURED
/-. fc co / IDLE SOAK COASTDOWN
LEFT RIGHT COMB HPM GEAR PERIOD TIME
TEST DATE h*.
10-29-79 16
BAG 1 3.590
SITE "A216
MC-FIJ
NOX-CHEM
C0
CO
jAG 2 3.910
SITE »A?16
MC-F 10
NUA-ClEM
CO?
CO
OYNO
SITE
(J?20
MlLt'S
HANGE
14
Ib
?3
17
MIL^S
INt-(lIA lMUIC»Tf[J
SETTIfio JYNL) H.P.
27bl/ V.9
b. 770 r M
AObT SAMPLt H4C«
«Eltl< COfJC. RAM(»£
2V.O dl .b" 1 4
59.9 JO.lb \->
bl.O 1.0-J7 d J
27.0 6&.19 17
b.i:9J ^M
F.XHAUST SAMPLE riAC>\
kf. rn'»L
!<•
14
/•)
17
WEIGHTED VALUES
r.^/VMS/HiLf
ltFO"t *OUM
ij-'A-'S/r.M
•iMf,
HEFO^t rIOUNOING
" 4.13 b. 70 PPM
0.0 0.0 16. 5S PPM
1.6 0.029 0.720 *
0.0 0.0 2.41 PPrt
CO? NOX
4JI . 1.16
4JI..96 1.1S53
26*1. 0. Id
^oT.^') 0.7179
RELATIVE
MIDITY
59.5
ALDEHYDES
COMMENTS' PASSi-ASTt" FEPD TESTING
DEVICE OFF A/C ON MAA/HIGn WINDOWS OPEN T= 7S OtG. F
DILUTION FACTOK = 12.123
MASS EMISSIONS
GMS. GMS/MI
0.79 0.219
4.41 1.229
5.B5 1.631
DILUTION FACTO* =
MASS EMISSIONS
GMS. GMS/MI
0.44 0.112
4.25 1.08H
.6 448.762
0.37 0.095
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
INS
GMS/KM
0.136
0. 7*>4
255.749
1.013
17.895
INS
GMS/KM
0.070
O.t>76
278.848
0.059
MPG
20.5
20.4918
20.5
20.5001
20.5
20.5001
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
HP(i KPL L/100KM
21.4 9.09 11.0
AUX. AUX. AUX.
FIEL01 FIELD2 CODE
MPG KPL L/100KM
19.7 8.39 11.9
KPL L/100KM
8.7 11.5
8.7045 11.4882
8.7 11.5
8.7154 11.4738
8.7 11.5
8.7154 11.4738
N
OYNO SITEID220 TEST * 80-0313
-------
OYNO SITE:D??O -TKST «
I I'JtU
DUTY VEHICLE ANALYSIS I PROCESSEDI 091SOJ43 OCT 30. 1979
13 of 53
MFr>. VF-y- KtP. WIJM. f f FF.S
111 It Up" M I f 1 F 1 11 ** f MKi i-" \/ ft P ? M 1 T f* i-IT (X11I1C
Ul'C. VC.n I^LC. I • U • a 1 UN LV*1" I rJ I 1 » Lnu» L.UUt
30 EXXOU 0
P((.
ACTUAL
OYNO INt^TU iNOlCATtb DVU
SITE SETTI'.o OYNO M. P. H.p.
Pif,£ ME Itw CONC. kAN(,E ;'F. IK«
14 i>iMGt >-Elt-<
14 1J.1 4.6/ 14 S.^
IS 31. b l3.-'J ID U.D
?3 37.4 l>.'/-3« ?3 i.Z
17 2.1 5. 0* 17 0.1
ES HC CO Cut?
(l.\t 1.1 4«H.
ING 0.1 Mri 1.2V3 <.<.M.
0.10/ O.MO /v.
HFFOHt KUUNDlMG O.lllb^b (I.M039 27B.
1
OOOt-. P^t
I-vt NOX
SSORF FACTOR
Ub46.i) 4b.OO 1.0069
VMiX
SAMPLE
CO'NC.
J.^U
0.0
o.o ji
o.n
VMIX
SAMPLE
coixic.
3.83
0.0
0.01.0
0.24
NOX
1.1
30 1.1
= 2824.0 CU.FT.
COPPECItO
CONCENMATIONS
17.92 PPM
30. 70 PPM
1.0-v] *
96.24 PPM
= **6brt.O CU.FT.
COHP.ECTEO
CONCENTRATIONS
6.06 PPM
16.93 PPM
0.730
-------
".f-'. ALT.
VF.H- «tP. PUN. UETF.ST H.P.
DDL VEHICLE I.U. SIGN EVAH INIT. CnG. CODE ACuP
30 EX»U( 0
EUUIVALEMT ACTUAL OVEH-
TEST OYNO TR«NS. OHIVE
WFIGHT H.P. CONFG. CODE
27b'U 9.9
14 of 53
/ TEST TYPE /
EXPERIMENTAL
/ TtST PHOCEDUHE ———/
2'BAG LA-4
PnEP OATt
IGnT
««Lt AXLE /— IGNITION
lit luHT OAuC-L '"EASUHt *l »2
r MH I Y
/
GEAK
LEFT
it CO -
RIGHT
COHb
IDLE
rtPM
GEAH
SOAK
PtHIOO
MEASUHEO
COASTOOWN
TIME
/- A^.HIENT TEST CONOITIONS - /
BA»0 WtT OPT CVS
"Mli BUI ft bULtt (JNlTi UNIT
39.13 59.0 74.0 U ?OC
OYNO
TEST DATE HP. SITt
ACTUAL
SETTlfai
BAO 1 3.590 MILES S.77d i-M
SITE «A?lb
MC-FIO
MOX-CHEH
t')2
CO
EXfiAUS! b^
H4NGE
14
15
23
17
«ET IK
2^.3
51 .u
46 .3
20.3
INDICATED DVU MK£ NO* RELATIVE
OYNO H.P. H.P. DOOM. PrtESSUKF. 'FACTOH HUMIDITY
9.9 1051H.V 43.00 1.0071 59.5
V"!IX = 27*7.0 CU.FT. DILUTION
E bACKGPOUMl) SAMPLE
CUNC .
1-j.b'j
2b.69
O.^hO
50. OS
PANGE
14
15
23
17
"C. til*
5.5
0.0
2.0
0.0
CONC.
4. Ob
0.0
0.03?
0.0
COWECTKD
CONCK'ITriATlOMS
1^.7b HKM
. 2b.69 PKM
0.9a», *
bO.05 PPM
ALDEHYDES
FACTOR = 13.582
MASS EMISSIONS
(IMS.
0.58
1.46
1356.09
4.57
GMS/M1
0.160
1.080
377.741
1.272
GMS/K.M
0.100
0.671
234.716
0.790
AUX.
FIEL01
MPG
23.
AUX.
FIELD2
KPL
3 9.92
AUX.
CODE
L/100KM
10.1
3.910 MILES.
KM
SITf «A?lo
MC-FI!)
NOX-CM£M
C02
co
tXHAUSI S
VMIX=
HACKGf
11 ,bb
0 . 1- / j
1.60
1<<
Ib
23
17
b.6
0.1
2.7
0.0
CONC. Cf
<».13
0.05
O.OSO
0.0
INCtNTWAl IONS
5.23 PPM
11.61 PPM
0.626 *.
1.6H PP"
GMS.
0.40
3.00
1535.21
0.26
GMS/M1
0.104
0.767
392.637
0.067
GMS/KM
O.U64
0.477
243.974
0.042
VALUES
MEFUKE WOUNOINO
0-fAMi/f.M
dEFOWE
F1ELU1 KIEL02 CODE
"C
O.l:»
O.lJOij
O.Onl
CO C02 NO*
O.h )bb. O.V2
0.643 lbb.50 . 0.916H
U.'.O ?40. 0.57
n.uOUO PJ9.S4 0.5696
WEIGHTED VALUES
72-7<- FTP
UNWEIGHTED FTP
PASSMAbTt" FEfo TtiTlNf... «/C OFF. OtVICE OFF. HOT STAWT
T=75 DEO. F
MPG
22.9
22.8940
22.9
22.9296
22.9
22.9296
MPG
22.6
9.7
9.7254
9.7
9.7483
9.7
9.7463
KPL
9.59
L/100KM
10.4
L/100KM
10.3
10.2«23
10.3
10.2581
10.3
10.2581
OYNO SITE10220 TEST * 80-0309
-------
.-:.». " MI-I...
'.ODE VE-ICLE 1.0.
JO .F.XXO-4
Jv/M Lii.M,' DU.Y VLHlLLI: ANALYblb I PkOCtSStDI U9l2'jl43
OCT 30.
15 of 53
-'I-'*. ALT. EQUIVALENT ACTUAL . OVER- / TEST TYPE ———/
Vt*- WEP. «UM. kfTEST ".P. 1EST OYNO TRANS. ORIVE EXPERIMENTAL
SIJ'M tvAP inlT. CnO. COUt ACHP Mt'Trt. WElGHl n.P. CONFG. CODE /-. TEST PKOCEOURE, /
0 2750 9.9 2 8AG LA-4
u-IVt MEASUREO
AALt AXLE / --- IGNITION TIMING --- / / ------ * CO ------ / IDLE SOAK COASTDOWN
OA7F. wEIGrtl wtlOHT OAUf.t MEASUrfF. i \ ft WPM GE«W LUFT RIGHT COMB HKM GEAH PERIOD TIME
/- A'-^IENT TEST CON01TJONS - /
H«^<0 «F.t o^r TVS
"H'i HUL1 HULd UNITS UM T
?9.12 SV.O It.Q <.) ^Ot.
ACTUAL
lm(0 ir.E'Un
TEST DATE HU. SITE SET11M,
BAG 1 3.390 MlLF.b ->.7/b r.M
SITF " KXhAiJST SAwr"L
KANGE -^tTr^
C02 ?3 "7.0
C" 17 3S.3
""TAG 3.'<10 MILKS b.iJ'.J "M
SIT? "A?l>> MriAu^l -,ftMML
HC-KI'J 14 13.U
NOX-CMf.M lb 2J.S
C02 ?3
CO 17
WEIGH FED VALUKS
r,^AMS/M|Lt
hEFOPE ?0'.i'tt>lM,
'^^AMS/C.M
BEFG&K POU'IOINO
33 . -j
1. 3
"C
o./s
C .^bdi
0. Ib6
0. IbbfcS*
IMHCrtTEO OVU TI«£ NOX RELATIVE
UYMJ n.P. tt.P. ODO-". PP.ESSU>3 * 1357.3:
an.:>
3V1 .20 i).v2b7
r'43. d.SH
<;4.1.0« 0.5771
1576.71
0.41
WEIGH
72
ALDEHYDES
MASS EMISSIONS
GMS/MI
> 0.407
I 1.095
I 37P.OB5
i 2.172
MASS EMISSIONS
GMS/Ml
! 0.107
I 0.776
I 403.247
I 0.123
72-74 FTP
UNWEIGHTED FTP
INS
GMS/ftM
0.253
0.641
234.931
1.350
INs*
GMS/KM
0.066
0.4B2
250.566
0.077
hPG
22. b
22.5353
22.5
22.5337
22.5
22.5337
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL L/100KM
23.2 9. US 10.2
AUX. AUX. AUX.
FIELpl F1EL02 CODE
" *
MPG KPL L/100KM
22.0 9.34 10.7
KPL L/100KM
9.6 10.4
9.5785 10.4399
9.6 10.4
9.5800 10.4383
9.6 10.4
9.5800 10.4383
COMMENTS* PASSMASTK^ FtKO TESTING. A/C
LONG ?,OAK 22 KPN. FOO^E TEST
OEVICE OKF, HOT .STAKT
T= 75 OEG. F
DYNO SITE10220 TEST * 80-0311
-------
0,NO SITE
10220 Ttb'T v bO-OJIO 1
nr M .
• ODE VEnlCLE I .0. SION EVAP 1N1T. CriG. CODE
30 EXXON 0
IV/u LK.nl
AL T
r H.P
'ACHP MET
UPIVE
PMEP OATt
\^l If- r- M AUt- *• Al_c / — — — 1 1 1>-4 i 1 i VJI<4
WEIGHT HEIGHT GAUOt MEASURE " 1 »d
OUIY VfMlCLt
AKALYUl, I P«octSS,.0, „«.•,..
C'lilllitftiCivlT AfTiinl rtU t" U« /»
* ^'< w*. 1 \"i * i 11 i
16 of 53
rtsi OITNO TRANS, OHIVE EXPE.RIMENTAL
H * WFi I OH T
27SO
TlMTfu' _A«/ /
\ i *l 1 rn> — — — / /
t,PM GEAR
V.9 2 BAG LA-4
LEFT MIGHT COMB RPrt GEAR
CflAK
3U**f\
PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDI TIOt4b - /
bARO
"HG
29.13
TEST DATE
10-29-79
HAG 1 3.
• ET 0*1 CVS
BULB 1ULB UNITS UNIT
59.0 7S.O 0 20C
AC I UAL
OYNO INERTIA INDICATED >>vu
M». SITE SETTING OYNG H.P. H.P. (
15 (•220 2750 9.9 1(
590 MILFS 5.77tl KM
T I
)D01k-. PWLS
)53h.O "5
VMIX =
SITE »A?16 EXHAUST SAMPLE ttACK&PGOMJ SAMPLE
HC-FIO
SOX-Cri
C02
CO
,AG 2 3.
SITF »A?1
HC-FIO
PANGE MET EH CONt. RANGE "tTER
1* 27. it 20.30 !<• 5.J
EM 15 M.5 30. •>-> 15 U.O
23 52.0 1.122 23 2.0
17 <»0.2 99.2'i 17 0.0
910 MILES 0.293 K,w
6 FXHAUST SAMPLE tiACKGROUNO
f-ANGE -lETEX CUNt. MANGF "ETE'R
!<• 13.3 -y.n2 1 <. 5.'»
NOX-CMEH 15 3<«.5 17. ^J 15 0.0
C02
CO
WEIGHTED
GUAMS/
bEF ORE M
GKAHb
bEFORt fc
23 36.o 0.750 23 2.3
17 0.2 O.fatt 17 0.0
VALUES HC CO L02
"ILE 0.1 6 1.2 '•37.
OUNt'lNG 0.162v 1.212 <.3>j.;
/KM 0.101 0.7S 271.
JUN01NG 0.10122 I). 7533 271.'
COMC.
3.^11
0.0
0.0 \l
0.0
VM(A =
SAMPLE
CONC .
3.VO
0.0
0.0<»2
0.0
rjox
\.f\
t* 1.21
11. '/S
ijf. NOX
SUKt hAClurt
.00 1.0069
2/V-. 0 CU.F T.
CORhif.CTtO
CONCENTRATIONS
16. 73 PPM
10.95 PPM
l.OoH A
VV.2& PPM
Hf.HII.0 CU.FT.
CORkLCTF.O
CONCENTRATIONS
6.13 PPM
17.7 0.120 0.075
'..'45 1.138 0.707
1721.75 <«<.0.3<»
8.6
8.5BB4
AUX.
FIELD?
KPL
8.62
AUX.
HELD2
KPL
8.55
AUX.
COUE
L/100KM
11.6
AUX.
CODE
L/100KM
11.7
L/100KM
11
11
11
11
11
11
.6
.6317
.6
.6*35
.6
.6435
00
COMMENTS! PASbHASTE* FEp.0 TtSTlNG. A/C ONi DEVICE 0«. HOT START T= 75 DEG. F
OYNO SITE10?20 TEST * 80-0310
-------
iinF vFniriP i n
«J' T. vc.niv.LC. l.U
30 FAXON
P^EP QArt »fc'/Grt
/- AM-llFNT TFST CO
P A*yo tvE T
"rU'» Bill B
2B.92 h!).0
DY^O
Tc.ST 'JA1E H4. SITE
11- l-7v OH L?07
BAT, l 1.564 MILKS
t 1 1 1 * I f \i f fj I i ! T
• r> i \j 1 1 r. v *• " I'Jli
n
UI- 1 Vf
A VI t
M * i_ r.
I ^EIGHT OAUOK
t r-'.P T Y
-laiTlMMb - /
0"Y f.'/-,
IIIJLH ONI is ij'U r
7fc.S I- t-/i.
ACTJAL
A i r
• n l_ 1
. nil I. KhltST n.P
• C*iO • COOL &CHH M£ T
Aiii-' / _ • «. i r NJ i T i ' i u
MA(.r. / •" — "• lllNl 1 1 "JiM
• t'JUI^ALK'^*T ACTUAL
TKSI OYMO TRANS.
M.
T I M t ftlCm
1 1 M 1 INO
UJK-IIA 1'jl-ICAir.D UVU II"t
SK 1 1 1 ."., UY^U f
.P. H.P. 000>-<. Pt^fc S
?/S'i /.- ld^U.9 <«s.OO
S.7JH -.0 ».01".
SHE »A?lb EXnAUST S IS
NO <-<" >-lEM | «>
CO? ?3
CO ?r)
.iAG 2 3.H3* MILKS
SITE OA215 t<
«ANf>K
HC-FIO )4
NOX-CHEH IS
CO? ?1
CO 17
HAG j 1.553 MILES
•4F.Tf.>4 CONC.
"19. / S'<. bO
S"».s SJ."0
<« rt . -1 1 . i"> f.
!«./ j7«r.^?
6.I7"» I'M HV4-J.
HAUST SA^HLr
-r Ti- " C1-11 C.
10 .-> 1.7")
31.1 !S."(i
33.7 ii. /VJ
1.0 ^.^ 1
5.71V "M M^HS.
SITE »A'|S K'-iAuST SA'VLt
HANf.t
MC-FIO 14
NOK-fHEH IS
CC ?3
CO 17
WEIGHTED VALUES
GKAMS/MH 1
ntfO«E "DO^lO 1 Nf>
OWAMS/KM
Hf.FOPt ROU'lUING
xt 1 1 rf CONC .
?0 .0 !<• . ^ «
M.o 10.'-.
4S.H 1.1 i'h
21.4 SJ.(i4
MC Cll
O.^f" /?.
n,,L[_ ^Kvs. VMIX=
riACi'Gs-OiINO SAMPLE.
i)AN( o.o (i . ii
^t ^.J o.ojh
?0 0.1 1.91
"OLL Wf.VS. V"IX =
nACMj^OUNiJ SAMPLE
w,\;ji_'t '•"-. If.". CONC.
1<« b.u 4.al
In 0.0 0 . (1
<;.( d.O 0.04£?
17 0.0 0.0
PULL KF.VS. vM[x.=
nACM'huu-'iU SAMPLE
J*N,',C. rKU.'< CuNC.
1". T.I J.7S
is o.o o . n
^1 l.-y O.OuO
r/ o . n o.o
CD? MOX
^ 4'ja. i.jj
?7<.n.
we I un i
27SO
n . r •
9.9
— ~^/ y^.-^^»™ u. p rt
•~~"/ /• — — — — — v, ^i;
GtoP LEFT RIGHT
NOX
FACIOrt
O.V7S2
0 CII.FT.
RELATIVE
HUMIDITY
S3.0
OUUIION
DRIVE
17 Of 53
EXPERIMENTAL /""^N
CVS 75-LATtR
COMB
ALDEHYDES
FACTOK =
T ni fc
1ULC. JV«r\
RPM GtAR PERIOD
10. /63
CO^KtCIED MASS EMISSIONS
CONCfci^
Sb
s:i
1
3/1)
4'S'y7.
TK.(T IONS
.b^ HP'-I
.HO PPM
. 1 /n f,
.S3 PPM
0 CO.FT.
COWHtCTEO
COMCENTf/flTIONS
3
IS
0
2
2/81.
.t^tj ppM
,(<0 PPM
. /S4 *
.(,1 P(JM
0 fU.FT.
COWPECTED
COriCF.NIRATlONS
11
«0
' 1
S3
. Jt> PPM
,M« PPM
.Oft9 *.
.04 PPM
GMS.
2. SO
7.61
16f-S. 12
33.57
DILUTION
GMS/MI
0.701
2. 191
<*»7. 191
9.419
FACTO* =
GMS/^M
0.436
1.3M
290.299
5.H53
16.871
".ASS EMISSIONS
G"S.
0.27
3.92
1BJ4.<;8
0.37
DILUTION
GMS/MI
0.072
1.0?2
478.116
0.097
FACTOR =
GMS/^M
0.045
0.635
297. 08H
0.060
12.d-.fi
MASS EMISSIONS
GMS.
O.bl
4.b3
1540.41
4.66
WEIGHTED
GMS/MI
0.145
1.275
433.504
1.369
VALUES
O./'^Pl 2..T/6 4o.«.»)2 1.33J3
0 . 1 J1 1 .«>
0.1 Jrt'li; 1 .4
H ^Ott« 0«rtJ
/6^*
-------
L i i i ' i"i i .. .'. „'. n
M.I.H_ « b. J . l-'KOLt
:.( L ., A i f !•'• tl 1 1 \l A 1 L" .1 T Af* T 1 1 Al
•FP. vtf-
ilDf VFrilf'l t- I 'i \t -\tJ
V W ». » t. >> I ' . l_ C. 1 • ' • j i W < r. V * r
30 fXXON ')
PrfEP DATE
/. AHHIF.NT
"hC>
2B.9^
TEST DATE
11- 1-/9
Li" 1 . 3*? «M ?37
SITE »i?lS
MC-FID
NOX-CME
C02
CO
EXHAJST SAnwL':
''ANGF. -'FTrx CON
14 M.^ b.
M 16 70. V lu.
?3 67.4 1.
17 b.6 U.
WEIGHTED VALUES HC
f,W4Mt,/M
nEFO^t NO
dUA^S/
bErOBf. PO
CO^MF.NTSI
ILt • <>.<>/
OSDI'iG 0.0/'^'»
K " 0 . 0 1 -
1/nOlNG O.ni w1^
pASSMASTt w Ftflj TtSTlN
A/C Of . uEVICK df>
• ' • "I. • . C.WI' IV^lt'tl »»^,l Vf l_
••f.''. Kti'-<. whTtST H.r>. TFSI n\TMO TrtANS.
INM» CM'J. CUOt ACH^ METH* —EIGHT " rt /"/M.C-/^
27SO
n . r . ^vvr V.
AWII; y frMITTllW TfMTKJf^ -• • y /•»• •• tl Prt M« •*• X
A A L t, /^~~ lONllluiN IIMlNll — f ^^«*^™i»^ v> l,(J «»^^^^^^
'He MtAb'J^K « 1 «2 ^PM GF Aft LFFT ^IGHT COMH
T IT
'•Ti' r
^;
OlCATtU I)VU TI>-'E M0\
rju n.P. H.P. OOO'i. PKESSUKE FACTOK
/.4 10624. / 4b.OO U.<-V04
i.M. WOLL «fVS. VM]X= 393H.O CU.FT.
oACr.GH()UfliJ SAMMLt ClWrtEClEO
C. l-ANGE •'tltrv CDNC. CONCENTRATIONS
J.I 14 J.4 ef.M6 3.S6 PHM
06 16 D.O 0.0 70.06 PPM
H!>6 23 I./ 0.036 1./76 *
S^ 17 0.0 0.0 13. S2 PPM
co c;u<- NOX
0.2 3'.->f>. l.^S
'V.l/2 Jbb.oS l."»b2H
i/. 11 ?i!l. O.-yfl
0.10/0 2-» MOV 1. 1979
18 of 53
EXPERIMENTAL
HWFE
»,-\l r
er\ A w
1ULC 3Vf">
RPM GEAR PERIOD
7.410
MASS EMISSIONS
GMS. GMS/MI
0.23 0.022
14. BO 1.453
3622.76 355. 6H2
1.76 0.172
WEIGHTED VALUES
72-74 FTP
U«J*EIGHTEO FTP
AUX.
MEASURED
^f\»CTOrtiJW
LUAD 1 'JvVIri
TIME
AUX. AUX.
GMS/rvM F1ELD1 FIELD2 CODE
0.014
0.90.1
221.011
0.107
MPG
24.9
20.8640
24.9
24.9203
24.9
24.9203
MPG
24.9
KPL
10.6
10.5900
10.6
10.5947
10.6
10.5947
KPL L/100KM
10.59 9.4
L/100KM
9.4
9.4427
9.4
9.4386
9.4
9.43B6
r
c
c S
-------
; IT'. !,..;MI /
ODF. VtnlClt 1.0.
iO FMtl'^FlbO'VJ,'
-)ATF.
WEK.MT
4>li-.
1 !•»/•* LlU'il Dul Y VtnlCLt
AI. i. KUUIVALF
l--HIEMT TEST Cr>NOITl!j.,b - /
"HCi HULH bill M illlC) 1.1." IT
I'V'iO
TEST OATt. nJ. SITt
11- 7-79 09 \ISOr
MAO 1 3.Si3 MII^S
SITt »A21b tXM
Mi'.oK
HC-FI-J IS
N'JX-CHtM IS
dv 3
C'J £•()
'X
,A(J ? 3.rt«.o MILKS
bITF «A?1S F»H
Sl».-.C,f
MC -Fill I <•
;j'.i«-r^tM is
C'l'* JM
C" 1 7
rtAij J 3.S7S MILtS
S1TK «A?1S HH
Pi f iGF.
•-c-f ID !<•
f.UA-C.MtM Ib
Co? ^3
C/ 17
*tIG^TKli VfcLi't1-
r,-f, jc,/v,|^f
stF'i-t -''j'prir..Inr,
.JftM^/f U
iFf'J^E MOiii'iDlNd
4C I.JAI
If.r.-'Tlu jl-i"'ICf. feu OVII
TI«t NOX
Sf. llp.i, y/Mi n.^. M.H. 01)0 '. PKLSSUr' CO'it. ->.\'|f,i- p'i-lr-< CU^C.
31 ,f '<3. /-< !•> 1.0 J.Ol)
14 ..I 3.1. /•'. 1* 0.1 1). 10
*)l> . * 1 . T '1 fJ 1 .V U .0'<
11. J )!«.<:.'•/ .-0 D.^ 3.H3
S.I-"'.' r ?4 t'-^^>'-. '''ILL Kf;V^.. VMJ
AIJSI •>/.'•• r- 1 r 1ACMl>"li|M) SAM^LL
-iF-'lt' C.UNC. W.lMl'.K '•tit'-' CU.lC.
^b.', 1-n. '"•-•! 1". J.i •'•.• if jr. •'». IK'-i Cv)iNC.
• 'JU
'l.^S S.M '^^r>. 2.
U.-.b-H b.>i2 SuU.SO 2.
().«iif> ). -><> i^l . 1 .
0.u,if.)S .l.'.lhl .fbD.71 1.
"b.OO 0.-<(S67
H= ^790.0 ClI.fT.
COhf^HCTK)
CONCtNTWAllONS
91.1(i PH'-I
33.6t> Pt^M
U l.bbh d
t>39.«4 HI/M
A= 477u.i) CU.KT.
CO^KtCIF.I)
CO.NCrMWAT IONS
1 6. 3 7 P»-M
fa^.yi PHM
^ ') . 9 1 7 *
jS.hb PPM
x= ?7V'J.O Cil.FT.
COWHtCTEi)
coNCc.-MTPAruws
f>ct.7j PPM
.16.64 PHM
.l INK
"CO. >--?•)
COULD MOT ui;
MY .b DEFLECTION
DYNO SITEIDP07 TFST « 80-0470
-------
T'sT
I |'i/» >ittii|..• T
"H6 dl)L6
l TIONS -
Or-10
TEST DATE M->. SITF.
11- 7-7V 10
At. 1 UM.
11. t
ij;nV
riKF N'JX XEL4TlVt
HWtSSUKt F»CTOi< HUMIDITY
'.'3.00
ALDEHYDES
oAO 1 lIUl-JO HlL1 r. I*:."
CAr.ijr '-t (
MC-c ID 1<» «• J
CIV f-j It
CO 1 / j«
r' VAI.'jf.S
(•HA"S/MII.f 0
tEFO-'t Poj'iiil'ir- o
G1«iub/''.« 0.
t-FFOwc. HOOf.l'U.G 0.
U '•« ^.)/7-.. ..IJLL "1J1-. v~!U= «.ii'>«-.8 CU.KI
SA'^Lr H;.C,',(,«uir)L» SAMPLE COwKtCTEO
I-.K CdiiC. >-/.ri;.r. "fcit-! C>>.-iC. CONCi- iJTWAT 1 0>
.0 '>: .'"i 17 u.o '1.0 hb.96 'PH..
.0 l.'y-S i>.l !.-»
.0 VJ. 1'i 1 / U.O
>'C CO CU^
. 1 -V 1 . ? J V 7 .
. 1 y'l(5 ^^O.ftl
'I.U<.0
o.o
1^0^
l.JS
1 .3^ J1*
O.b'*
O.H-12
1 . 'Ml »,
VJ.lO PHl'
•<> rt •, 11 ,'.,
MASS EMISSIONS AUX. AUX. AUX.
VIS. (.MS/MI GMS/KM FIEL01 FIEL02 COOE
1.V6 0.1V2 0.119
1J.M1
1.35'. O.b<>l MPG
9A.H89 <;<>6.616 22.2
1.218 0.757
MPG KPL
WEI'jrlTED VALUES 22.2
22.19R7
72-74 FTP 22.2 9.4
22.2132 9.443b
FTP 22.2 9.4
22.2132 9.4438
KPL L/100KM
9.44 10.6
L/100KM
10.6
10.6104
10.6
10.5889
10.6
10.5889
Ul
ro
OYNO SITEI0207 TEST • 80-0*71
-------
SITt!D/»07
TEST • H0-04d9
I 197V LIGHT DUTY VEHICLE ANALYSIS I
PROCESSEDI 14150116
NOV R. 1979
fS.
CODE VEHICLE I.D.
20 FMi.109FlbO.93i
"FW. ALT. EQUIVALENT
VEH- KtP. HUN.. KETEST H.P. TEST
SION EVAP 1MIT. CMG. COUE ACHP METM. WEIGHT
0 N 4000
ACTUAL
DYNO TRANS.
H.P. CONFG.
14.3
P*t"P DATE
CUKB
WEIGHT
AXLE
WEIGHT
GAUGd
EXPTY
AXLE
MtASUrtE
/ IGNITION TIMING /
«1 *2 dPM GEAR
/ . t, CO •
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
21 of 53
TYPF.
EXPERIMENTAL
/—„_•— TEST PROCEDURE
CVS 75-UATER
SOAK
GEAR PERIOD
MEASURED
COASTOOWN
TIME
/- AMH1FNT TEST CONDITIONS - /
BA»0 KET OSY CVS
"HG OULb bULH UNITS UNIT
28.84 61.7 74.7 F 27C
DYNO
TEST DATE HW. SITE
11- $-79 09 0307
ACTUAL
INEHT IA
SETTING
4000
iN'JlCATtL)
UYNO H.P.
1 1 .S
DVU
H.P.
ODOM. PRESSURE
NOX
FACTOH
0.9479
RELATIVE
HUMIDITY
47.8
ALDEHYDES
BAG 1 3.563 MILES 5.767 KM BJSS. t'OLL HfVS.
VMIX= 2730.0 CU.FT. DILUTION FACTOR = 7.560
SITE »A?15
EXnAUST SAMPLt
bACKGWOUND SAMPLE
HC-FIO
NOX-CHEM
C02
CO
RANGE
16
16
23
19
METER
40.7
37.8
63.2
94.4
CUNC.
122. 2H
37.46
1 ,6*>b
941 .22
RANGE
16
16
23
19
METER
1.0
0.0
2.1
0.0
CORRECTED
CONC. CONCENTRATIONS GMS
J.OO 11^.68 PPM 5.34
0.0 37.46 PPM 5.25
0.044 1.62B * 2302.66
0.0 941.22 PPM -84.72
BAG 2 3.H19 MILES 6.i4& KM ovij<.. ROLL MF.VS.
VMIX= 46H4.0 CU.FT.
SITE KA215
HC-FIO
C02
CO
EXHAUST SAMPLK
RANGE
14
15
23
17
METtH
29.b
S2.1
42.2
20.1
bAG J 3.55S MlLtS S.721 KM H2T). HULL HKVS.
VM1X= 272^.0 CU.fT.
HACKGPOUNU SAMPLE
MtTtH
4.2
0.2
2.0
0.0
XE1GHTEO VALUES HC CP C02 NOX
G*AMS/MILE O.f4 rt.2 607. 1.64
dEFORE ROUNDING 0.7448 tt.lb4 607.31 1.6350
GRAMS/KM 0.46J 5.07 377. 1.02
BEFORE ROUNDING 0.46285 5.0668 " 377.37 1,0159
SITE *A?15
HC-FID
NOX-CHEM
C02
CO
EXHAUST SA-
RAMGb
14
15
23
18
HF1F.K
46.4
87.2
55.0
64,4
4PLt HM
CONC. PAUGI
72.42 14
44.12 15
1.404 23
310.30 17
MASS EMISSIONS
GMS/MI
i 1.-.89
i 1.465
S 642.587
2 23.642
CMS/KM
0.925
0.910
399.285
14.690
AUX. AUX. AUX.
F1ELD1 FIELD2 CODE
MPG KPL L/100KM
13.0 5.51 18.2
K HflCMjWOUNU SAMPLE
COuC .
22. 1 1
26.37
1 . 0
4H.H7
RANGE
14
15
^3
17
METtd
4.0
0.3
2.0
0.0
CONC.
3.53
0.15
0.042
0.0
CORRECTED
CONCENTPATIONS
18.85 PPM
26.22 PPM
0.987 *
48.87 PPM
1
GMS.
1 .44
6.31
2395.45
7.55
DILUTION FACTOR = 12.973
MASS EMISSIONS
GMS/MI
0.378
l.bSl
627.264
1.976
GMS/KM
0.235
1.026
3B9.764
1.228
AUX.
FIELD1
AUX. AUX.
FIELD* CODE
MPG
14.0
KPL
5.97
L/100KM
16.8
c
(.
LE CORRECTED
,ONC. CONCENTRATIONS
3.09 69.67 PPM
0.10 44.03 PPM
0.042 l'.367 •* .
0.0 318.30 PPM
I
GMS.
3.10
6.16
1930.71
28.61
EMISSIONS
GMS/MI GMS/KM
0.872 0.542
1.733 1.077
543. OHO 337.454
8.047 5.000
AUX. AUX. AUX.
F1ELD1 F1EL02 CODE
MPG KPL L/100KM
IS. 9 6.75 14.8
WEIGHTEO VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
14.3
14.2521
13.5
13.5007
14.2
14.1921
KPL
6.1
6.0623
5.7
S.7397
6.0
6.0336
L/100KM
16.5
16.4952
17.4
17.4223
16.6
16.5735
COMMENTS! PASbMASTER FEHO TESTING
DEVICE OFF. A/C ON FULL
6260 0
OYNO SITEI0207 TEST » 60-0469
-------
AU^ ^
22 of 53
F*.
-ODE VEHICLE 1.0.
30 FMI.1G9F150932
VF*- PtP. HUN. RETEST
SION EVAP INII. CHG. CODE ACHP
0 N
flLr.
H.P.
MEIH.
EQUIVALENT
1EST
WEIGHT
4000
ACTUAL
OYNO
H.P.
14.3
TRANS.
CONFG.
OVER- / TEST TYPE «
OH1VE EXPERIMENTAL
CODE / TtST PROCEDURE
HVFE'
PkEP UATE
CURB
WEIGHT
Owl Vt
AXLE
WC.IGMT
AXLE
GAUOt
EMPTY
/ IGNITION TIMING / / % CO
»1 #3 RPM GEAR LEFT RIGHT COMB
IDLE SOAK
RPM GEAR PERIOD
MEASOWED
COASTOOWN
TIME ,
/- AMR1ENT TEST CONDITIONS - /
HAKO WET OWf CVS
"HG BULB rfULH UNITS UNIT
38.8<. 61.7 7S.O F 27C
ACTUAL
OYNO
TEST DATE HP. SITE
11- 0-79 16 DZ07
st n
INUICM'tU
DYNO H.P.
11.5
DVIJ
H.P.
ODOf.
7 I«E
PRESSURE
NOX
FACTOR
RELATIVE
HUMIDITY
ALDEHYDES
640 1 10.14
SITE «A?15
HC-F 10
MILES 16.33i; f M
rfOLL
VMIX=
CU.FT. DILUTION FACTOR =
EXHAUST SAMPLE
8AC^GPOUNI) SAMPLE
CORRECTED
MASS EMISSIONS
RANGE
coa
CO
wtio^rto VALUES
GKAMS/M1LE
17
33
Id
ROUNOING
METER
5b.O
31.U
76.5
37.1
MC
0.3t>
0.35/0
0. 160
0.
CONC.
7b.M
17*.3b
17
lb
CO
3.3
o.o
3.0
0.0
CO3
41*.95
361.
360.94
COMMENTS1 PASSMASTEW FtPO TESTING
DEVICE OFF. A/C ON FULL
CONC.
J.31
0.0
0.043
0.0
CONCENTRATIONS
40.58 PPM
76.61 PPM
2.090 t,
179.25 PPM
GMS.
2.61
15. as
4261.75
23.26
GMS/MI
0.257
1.562
419.956
2.292
GMS/KM
0.160
0.970
260.948
1.424
AUX.
AUX.
AUX.
FIEC01 FIEL02 CODE
NOX
1.56
1.561B
0.97
0.9704
WEIGHTED VALUES
FTP
UNWEIGHTED FTP
MPG
20.9
20.8937
20.9
20.9067
20.9
20.9067
MPG
20.9
KPL
8.9
8.8826
8.9
8.8883
8.9
8.8883
KPL
8.8R
L/100KM
11.3
L/100KM
11.3
11.2578
11.3
11.2506
11.3
11.2506
c
c
c
Ul
6260 0
DYNO SITEI0307 TEST * 80-0468
-------
23 of 53
MFR.
"ODE VEHICLE 1.0.
20 FM41G9F150V32
urn. ALT. EQUIVALENT ACTUAL
VER- HEP. RUN. RETEST H.P. TEST DYNO TRANS.
SlUN EVAP INIT. CH(i. CODE ACHP METH. WEIGHT. H.P. CONFG.
ON . ' 4000 14.3
CURB AXLE AXLE / --- IGNITION TIMING—/ / ------ % CO - — - — /
PREP DATE WEIGHT WEIGHT GAUGt MEASURE #1 »2 HPM GEAR LEFT MIGHT COMB
EMPTY
/- AMBIENT TEST CONDITIONS - /
BAWO WET D3Y CVS
"hG BULb BULB UNITS UNIT
29.22 59.0 75. 0 0 20C
OVEH-
DRIVE
CODE
IDLE
RPM
/_—_-_ TEST TYPE —
EXPERIMENTAL
/ TEST PROCEDURE
BAG BY BAG
SOAK
GEAR PERIOD
MEASUREO
COASTOOWN
TIME
OYNO
TEST DATE HR. SITE
11- 7-79 15 0220
ACTUAL
INf "TIA
SETTING
4000
INDICATED OVU THE NO* RELATIVE
UYNU H.P. H.P. ODOM. PRESSURE FACTOR HUMIDITY
14.3 12815.0 4S.OO 1.0058 57.5
ALDEHYDES
BAG 1 3.590 MILES 5.7/8 KM
VMU = 2804.0 CU.KT.
SITE «A21b
HC-FIl)
NOK-CHEM
CU2
CO
EXHAUST SAMPLE
BACKGROUND SAMPLE
CORRECTED
RANGE
15
15
23
19
METER
53.9
83.2
53.0
34.3
CONC.
81.03
42.08
1.343
313.67
RANGE METER CONC. CONCENTRATIONS
15 2.8 4.17 77.29 PPM
15 0.3 0.15 ' 41.9«. PPM
- 23 2.0 0.042 1.305 *
19 0.1 0.89 312.87 PPM
CMS.
3.54
6.41
1896.30
28.92
, EMISSIONS
GMS/MI GMS/KM
0.986 0.613
1.7H<> 1.109
52B.219 328.220
8.057 5.006
AUX. AUX. AUX.
FIEL01 FIEL02 CODE
MPG KPL L/100KM
16.3 6.93 14.4
AG 2 3.V10 MILES 6.293 KM
EXHAUST SAMPLE
RANGE METEtf
HC-FIO !<• 31.0
NOX-CHEM 15 41.0
C02 23 30.».
CO 17 18.2
COMMtNTSI PASSMASTER FERD TESTING
BASELINE W/0 AIR NO DEVICE
VMIX:
.E BACKGROUND SAMPLE
CONC.
23.01
20.79
0.920
4<«.21
RANGE
14
15
23
17
METER
5.9
0.3
1.8
1.0
CONC.
4.34
0.15
0.038
2.41
= 4766.0 CU.FT.
CORRECTED
CONCENTRATIONS
18.97 PPM
20.64 PPM
0.885 %
41.96 PPM
DILUTION
FACTOR = 1<».459
MASS EMISSIONS
CMS.
1.48
5.36
2185.10
6.59
GMS/MI
0.378
1.371
558.849
1.686
GMS/KM
0.235
0.652
347.253
1.048
AUX.
FIELD1
MPG
15.8
AUX.
FIELD2
KPL
6.70
AUX.
CODE
L/100KM
14.9
Ui
6260 0
OYNO SITEID220 TEST * 80-0462
-------
OYNU bi
MFR.
'ODE VEHICLE 1.0.
20 FM41G9F150932
24 of 53
VEH- HEP. RUN. RETEST
SION EVAP INIT. CHG. CODE ACHP
ON
ALT.
H.P.
METH.
EQUIVALENT
TEST
WEIGHT
4000
ACTUAL
OYNO
H.P.
14.3
TRANS.
CONFG.
PREP DATE
CUR8
WEIGHT
DRIVE
A»LE
WEIGHT
GAUGE
EMPJY
MEASURE
/— IGNITION TIMING —/
#1 #2 RPM GEAR
/ * CO •
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
/ TEST TYPE —
EXPERIMENTAL
/ ... TEST PROCEDURE
BAG BY BAG
SOAK
GEAR PERIOD
MEASURED
COASTOOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAHO WET DRY CVS
"HG BULB BULB UNITS UNIT
29.22 59.0 7S.O 0 20C
OYNO
TEST DATE HR. SITE
10- 7-79 15 0220
ACTUAL
1NEHTIA
SETTING
4000
INDICATED DVU TIRE NOX RELATIVE
OYIMO M.P. H.P. OOOM. PRESSURE FACTOR HUMIDITY
14.3 12821.0 <»5.00 1.0058 57.5
ALDEHYDES
BAG 1 3.390 MILES 5.778 KM
VMIX= 2798.0 CU.FT.
SITE »A215
HC-FIO
NOX-CHEM
C02
CO
EXnAuST SAMPLE
BACKGROUND SAMPLE
CORRECTED
RANGE
15
15
23
19
METE&
54.u
31.J
CUNC.
73.64
2B5.30
RANGE METER CONC. CONCENTRATIONS
15 2.6 3.87 70.17 PPM
15 0.0 0.0 41.95 PPM
23 1.7 0.036 1.342 *
19 0.0 0.0 285.30 PPM
AG 2 3.910 MILFS 6.203 KM
jITE
EXHAUST SAMKLE
BACKGROUND SAMPLE
4754.0 CU.FT.
CORRECTED
HC-FID
NOX-CHEM
C02
CO
RANGE
14
15
23
u
METER
32.3
40.3
38.2
10.9
CUNC. RANGE
23.98 14
20.32 15
0.915 23
45.92 17
METER CONC. CONCENTRATIONS
5.7 4.19 20.0« PPM
0.0 0.0 20.32 PPM
1.6 0.034 0.883 %
0.0 0.0 45.92 PPM
COMMENTSI PASSMASTER FtWU TESTING
NO AC OR DEVICE
DILUTION FACTOR =» 9.507
MASS EMISSIONS
CMS.
3.21
6.39
1945.01
26.32
GMS/MI
0.893
1.781
541.785
7.331
GMS/KM
0.555
1.107
AUX.
FIELD1
AUX.
FIELD2
AUX.
CODE
MPG
15.9
KPL
6.78
ft.SSS
L/100KM
14.8
DILUTION FACTOR = 14.541
MASS EMISSIONS
GMS.
1.56
5.26
2175.72
7.20
GMS/MI
0.399
1.346
556.450
1.841
GMS/KM
0.248
0.036
345.762
1.144
AUX.
F1EL01
AUX.
FIEL02
AUX.
CODE
MPG
IS.8
KPL
6.73
L/100KM
14.9
6260 0
OYNO SITEID220 TEST « 80-0463
-------
•* OYNO SiTtl0220
IFSI *
197') Lif-rtT OUiV VtH.CLt ANALYS.b
25 of 53
MF».
'OUE VEHICLE 1.0.
20 FM41G9F150932
VEH- REP. RUN. RETEST
SION EVAP INIT. ChG. CODE ACHP
0 N
ALT.
H.P.
METH.
EQUIVALENT
TEST
WEIGHT
4000
ACTUAL
OYNO
H.P.
14.3
TRANS.
CONFG.
OVER- / TEST TYPL —
UH1VE EXPERIMENTAL
CODE / TEST PROCEDURE
BAG BY BAG
PREP DATE
UMyE
CURB AXLE AXLE / IGNITION TIMING —/ /---— % CO /
WEIGHT WEIGHT GAUGE MEASURE #1 *2 RPM GEAR LEFT RIGHT COMB
EMPTY
IDLE SOAK
HPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAHO WET UPY CVS
"KG BULB BULB UNITS UNIT
39.21 57.0 74.0 U ZOC
OYNO
TEST DATE HM. SITE
11- 7-79 16 D220
ACTUAL
INERTIA
SETTING
4000
INDICATED
OYNO H.P.
DVU TIKE NOX RELATIVE
H.P. DOOM. PRESSURE FACTOR HUMIDITY
12629.0 45.00 O.V810 55.4
ALDEHYDES
SAG i 3.590 MILES 5.77M KM
SITE «A215
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
VM1K= 2776.0 CU.KT. DILUTION FACTOR = B.859
BACKGROUND SAMPLE
CORRECTED
RANGE
15
15
23
19
METER
5S.li
104.0
57.0
40.6
CONC.
Si. 77
37J.96
RANGE METER CONC. CONCENTRATIONS
15 3.3 4.91 7B.33 PPM
15 0.0 0.0 52.77 PPM
23 l.tt 0.038 1.433 *
19 0.0 0.0 373.96 PPM
GMS.
3.55
7.78
2061.59
34.23
MASS EMISSIONS
GMS/MI
0.989
2.168
574.260
9.534
AUX.
AUX.
AUX.
GMS/NM
0.615
1.347
356.B28
5.924
FIEL01 FIELD2 CODE
MPG
15.0
KPL
6.36
L/100KM
15.7
AG 2 3.V10 MILES b.293 KM
*A215
EXHAUST SAMPLE
MACKGROUNU SAMPLE
VMIX= 4741.0 CU.FT. DILUTION FACTOR = 13.271
CORRECTED
HC-FIO
NOX-CHEM
C02
CO
RANGE
14
15
23
17
MtTER
41.2
54.2
41.1
47.7
CONC.
30.67
27.42
U.99S
117.32
RANGE
14
15
23
17
MEIER
7.7
0.2
2.0
0.0
CUMMtNTSI PASSMASTIR FERO TESTING
AC & NO DEVICE
CONC. CONCENTRATIONS
5.66 25.43 PPM
0.10 27.33 PPM
0.042 0.956 %
0.0 117.32 PPM
MASS EMISSIONS
GMS.
1.97
6.88
2346.47
18.34
GMS/MI
0.504
1.760
600.632
4.690
GMS/KM
0.313
1.094
373.216
AUX.
AUX.
AUX.
FIEL01 FIEL02 CODE
MPG
14.5
KPL
6.IB
L/100KM
6260 0
OYNO SITEID220 TEST * 60-0464
-------
0YNI) SITEl02?0
TFST « MD-0'.h'i
I 1979 LICHT DUTY VEHICLE ANALYSIS I
PROCESSED! 14120106
NUV
MFS.
'ODE VtnlCLE 1.0.
20 FM41G9F150932
P*EP DATt
CURB
HEIGHT
Vt*- WtP. kU.4. KEItST
SION EVAP iNir. CHG. .CODE ACHP
o N
ALT.
H.P.
METH.
IJ^I Vt
AJiLE.
wtlGHl
EUUIVALENT
TEST
WEIGHT
4000
ACTUAL
OYNO
H.P.
14.3
TR4NS.
CONFG.
AXLE
MtASUWE
/ --- IGNITION TIMING --- /
»i *2 HPM GEAR
/ --- - — % CO
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
26 of 53
/ TEST TYPE /
EXPERIMENTAL
/ TEST PROCEDURE /
BAG BY BAG
GEAR
SOAK
PERIOD
MEASURED
COASTOOWN
TIME
/- OMRIENT TEST CONDITIONS - /
04*0 WET U«Y CVS
"HG BULB BULR UNITS UNIT
29.19 57.0 7fc.O 0 20C
DYNO
TEST OATt HW. SITE
11- 7-79 16 0220
ShfTIMG
<«UOU
IMDICJTtO
UYNO H.P.
DVU TIRE NOX RELATIVE
H.P. ODOM. PRESSURE FACTOR HUMIDITY
12H37.0 45.00 0.9812 55.4
ALDEHYDES
dAG 1 3.590 MILES S.77B KM
VMIX= 279<..0 CII.FT. DILUTION FACTOR = 9.037
SITF. »A21b
HC-FIO
NOX-CMEM
C02
CO
EXHAUST bAMPLt
15
15
23
19
••(ETFW
49.0
AG 2 3.910 MILES O.^VJ
iITt «A215
EXHAUST
H/VNGt
MC-FID 14
NOX-CHEM • li
C02 23
CO 17
bO.O
41.0
CUNC.
l.^tV
<.S(>.(.'1
CijNC.
-------
UYNO si
-ODE vEMICLt 1.1).
20 FM41G9F150932
IV7V LIGHT DUTY VEHICLE ANALYSIS
VFR-
SIOH LVAR
U N
KtP. HUN. RtTEbT
IN1T. CHG. CODE ACHH
ALT.
M.P.
METH.
tOUIVALF.NT
TEST
WEIGHT
4000
ACTUAL
OYNO
H.P.
14.3
HROCISSEDI 14I21UO
NOV fl. 1979
27 of 53
OVER- / — TEST TYPE —
TRANS. DRIVE EXPERIMENTAL
CONFG. CODE / TEST PHOCEOURF
BAG BY BAG
PREP PATE
If. I GMT
UK I vT
AXLt
WEIGHT
GAUGE
EMPTY
AXLf
MEASURE
/ IGNITION TIMING /
»1 »'d PPM GEAR
/ ------
LtFT
% CO -
rtlGHT
COMB
IDLE
RPM
GEAR
SOAK
PERIOD
MEASUREO
COASTOOWN
TIME
/- AMRIENT TEST CONDITIONS - /
Ba»0 WFT UPY CVS
"Hi but-h d'JLH UNITS UnlT
?'/.!« SQ.O 7^.0 U ^OC
OYNO
TEST DATE MB. SITE
Jl- 7-/9 17 T22U
ACTUAL
iNt-'TiA
StT f Ii,G
'.HOD
HAG 1 3.590 MlLtS S.77n
rE «A21b EXHAUST h.
HC-F ID
NOx-CHEM
C02
CO
RANGE
15
IS
23
19
Mt if p
49.0
lUl tf.
Sb. J
42. V
IMDICATEO
UYNO H.P.
1<».3
DVU
H.P.
DOOM.
12345.0
11 WE
PRESSURE
45.00
NOX
FACTOR
1.0063
RELATIVE
HUMIDITY
59.5 .
ALDEHYDES
CUMC.
SI .33
ItACKGkUUND SAMPLE
VM[X= 2754.0 CU.FT. DILUTION FACTOR = 8.981
CORRECTED
IS
Ib
19
MF.1t* CONC. CONCENTRATIONS
3.J 4.yi 70.48 PPM
0.3 0.1S 51.18 PPM
1.9 0.040 1 .410 *
0.0 0.0 396.23 PPM
GMS.
3.17
7.6H
2011.18
.35.98
MASS EMISSIONS
GMS/Ml
0.883
560.217
10.022
GMS/KM
0.549
1.330
348.102
6.227
AUX.
AUX.
AUX.
FIEL01 FIELD2 CODE
MPG
15. 3
KPL
6.51
L/100KM
15.4
AG 2 3.910 MILTS
KM
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLf
RANGE
IS
21
17
VMIX= 4721.0 CU.FT. DILUTION FACTOR = 13.049
BACKGROUND SAMPLE
41 .6
60.2
CONC.
31 .42
1 .009
14U.7S
RANGE
lb
23
17
METEw
6.4
0.3
1.9
0.2
MPLt CORRECTED
CUNC. CONCENTRATIONS GMS.
4.71 27.08 PPM 2.09
0.15 24.76 PPM 6.37
0.040 0.972 * 2377.77
0.48 148.30 PPM 23.08
MASS EMISSIONS AUX. AUX. AUX.
GMS/MI GMS/KM FIELD1 FIELD2 CODE
0.534 0.332
1.630 1.013 MPG KPL L/100KM
608.125 377.871 14.3 6.09 16.4
5.904 3.668
COMMENTS* PASSKASTEH FERU TtSTlNiG
A/C ONI DEVICE O'l
6260 0
DYNO SITEID220 TEST » 80-0466
-------
28 of 53
MFP.
'ODE VEHICLE 1.0.
20 FM41G9F150932
f-F*. ALT.
VfH- PtP. KUM. kETEST H.P,
SION EVAP INIT. CHG. CODE ACHP METH.
0 n
EQUIVALENT ACTUAL OVER-
TEST OYNO TRANS. DRIVE
WEIGHT H.P. CONFG. CODE
4000 14.3
/. ,_ TEST TYPE —
EXPERIMENTAL
/ JEST PROCEDURE
BAG BY RAG
DATE
Cli^B
HEIGHT
OWIVf
WtlGHf GAUGE
AXLt
MEASUkt
/ IGNITION TIMING /
01 *? RPM GEAR
/ * CO -
LEFT RIGHT
/- AMRIENT TEST CONDITIONS - /
HARO WET DwY CVS
"HO BULB bHLH UNITS UNIT
29.lb St.(I 74.0 0 20C
COMB
IDLE
RPM
GEAR
SOAK
PERIOD
MEASURED
COASTOO.N
TIME
OYNO
TEST DATE HP. SITE
11- 7-79 IB
ACTUAL
IMF^TIA
SETfl-d,
'•OOO
INDICATED UVU TIPE NOX RELATIVE
UYNU H.P. H.P. DOOM. PRESSURE FACTOR HUMIDITY
14.3 12H52.0 45.00 1.0063 59.5
ALDEHYDES
BAO 1 3.590 MILES 5.77B i
-------
itsr
LI(>H;
CODE VEHICLE i.o.
30 FMHG9F 150933
P*EP DATE
CURB
WEIGHT
MFP. ALT. EQUIVALENT ACTUAL
VF.P- REP. HUN. P.ETEST H.P. TEST OYNO
SION EVAP INIT. CHG. cuot ACHP Mtin. WEIGHT H.P.
0 N 4000 14.3
U*lv.t
AXLE
wEIGnr
TRANS.
CONFG.
GAUGE
AXLE
MEASUKE
/— - IGNITION TIMING — /
«1 #? vfPM GEAR
/— ---- % co
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
29 of 53
/ --------- TEST TYPE
EXPERIMENTAL
/ ---- — TEST PROCEDURE
BAG BY BAG
GEAR
SOAK
PERIOD
MEASURED
COASTOOWN
TIME
/- AMHIF.NT TEST CONDITIONS - /
BA(<0 WET U«r CVS
"HO BULB HULB UNITS UNIT
38.83 S*>.0 8S.O U 30C
OYNO
TEST DATE Hh. SITE
11- 8-79 13 0330
ACTUAL
INFrM I A
S£ T F I >iO
INDICATtO
UYNO H.P.
UVU
H.P.
OOOM.
13H98.U
Tlt/E
PRESSURE
45.00
NOX
FACTOR
O.V73B
RELATIVE
HUMIDITY
37.3
ALDEHYDES
BAG 1 3.590 MILES b.77b KM
SITE
MC-FIO
NOX-CriEM
C03
CO
E'XMAUST
RANGE
15
33
19
5B.8
58.7
CONC.
Ho. JO
1.319
40b.67
VMIX= 3773.0 CU.FT.
HACKOfOUNI) SAMPLE
COHKECTEO
DILUTION FACTOR
9.790
ftNGE METE* CONG. CONCENTRATIONS GMS.
Ib 3.b 3.73 84.95 PPM 3.«5
15 0.0 0.0 37.5H PPM 5.49
33 3.0 0.039 1.3H5 % 1845.01
19 0.1 0.93 405.83 PPM 37.09
MASS EMISSIONS
GMS/MI
1,071
1.530
513.930
10.333
AUX.
AUX.
AUX.
GMS/KM
0.666
0.951
319.342
6.430
FIEL01 FIELD3 CODE
MPG
16.6
KPL
7.07
L/100KM
AG 3 3.910 MlLFS h.393 K.M
jlTE «A?16
HC-FIO
MOX-CHEM
C03
CO
VMIX=
EXHAUST SAMPLE tit.C
RANGE *ETKK CONC. RANGE
14
15
33
17
34 . J
3M.6
41.7
30.3
3i.4h
1V.49
O.bVJ
74.43
14
IS
33
17
BACKGROUND SAMPLE
CU.FT. DILUTION FACTOR = 14.836
COHWECTEO
CONC. CONCENTRATIONS
b.O
0.1
3.0
0.0
4.43
0.05
0.039
0.0
31.34 PPM
19.44 PPM
0.657 %
74.4J PPM
GMS.
1.64
4.83
2087.11
11.53
MASS EMISSIONS
GMS/MI
0.419
1.232
533.788
2.949
GMS/KM
0.360
0.766
331.680
1.832
AUX.
AUX.
AUX.
FIELD1 FIEL02 CODE
MPG
16.4
KPL
6.99
L/100KM
14.3
C
c •
COMMENTS! PASSMASTER FtHU TESTING HASELINE P.OOM i> Mb OEO. F NO A/C« NO DEVICE
OYNO SITElO??0
TFST » flO-0480
-------
FR.
wODE
VEHICLE I.D.
Lit'M'f DUVY VtHlCLt ANALYSIS I
VtM- PtP. HUN.
S10N F.VftH IMIT. CHG.
0 IM
KtTEST
CODE ACHP
ALT.
H.P.
METH.
EOUIVALENT
TEST
WEIGHT
.4b
15 74.5 J/.«.f)
SH.9 I.3?S
23
19
44. J
VMIX = 27S1.0 CU.FT.
BACKGROUND SAMPLE
CORMtCTED
Ib
15
DILUTION FACTOR = 9.7/VO
K'-EfER CONC. CONCENTRATIONS GMS.
3.7 S.b2 B3.5II PPM 3.75
0.2 0.10 37.39 PPM 5.63
2.0 0.039 1.290 * 1838.55
0.1 (1.93 423.60 PPM 38.42
MASS EMISSIONS
GMS/MI
l.O'.S
1.568
512.130
10.702
GMS/KM
0.6*9
0.97*
318.223
6.650
AUX.
AUX.
AUX.
FIELD1 FIEL02 CODE
MPG
16.7
KPL
7.08
L/100KM
BAG 2 3.910 MILES 6.293 KM
SITE »A?16
HC-FTO
FXMAUST S«
MANGE METEW
14 36.6
15 36.9
23
17
31.8
CUMC.
0.900
7b. lo
VMIX= 4676.0 CU.FT. DILUTION FACTOR = 14.710
nflCKGKOUNO SAMPLE
CORKECTEU
23
1 7
f'KIEW
1.7
0. J
CONC. CONCENTKATIONS
5.16 22.38 PPM 1.71
0.0 18.63 PPM 4.77
0.033 0.870 % 2107.45
0.72 77.51 PPM 11.95
MASS EMISSIONS
GMS. GMS/MI GMS/KM
0.437 0.272
1.220 0.758
538.989 334.912
3.056 1.899
AUX.
AUX.
AUX.
FIELD! FIEL02 CODE
MPG
16.3
KPL
6.92
L/100KM
14.5
to
COMMENTS: PASSMASTEO TESTING UASELNE HOOM •• es DEO. F NO A/C (• NO DEVICE
siTFin??n TFST
-------
FP.
CODF. VEHICLE 1.0.
20 FM41G9F150933
Mf P.
VEH- Ui>>. K(JK.
SION EVAP INIT. CriG.
U N
kETEST
CODE
ACHP
31 of 53
ALT. EQUIVALENT ACTUAL OVER- / TEST TYPE —•
H.P. TEST OYNO TRANS. DRIVE EXPERIMENTAL
METH. WEIGHT H.P. CONFG. CODE / TEST PROCEDURE
4000 l.
DVU
H.P.
OOOM.
TIPE
PRESSUKE
<.S.OO
NOX
FACTOR
0.4733
RELATIVE
HUMIDITY
39.7
ALDEHYDES
BAG 1 3.590 MILFS S.77d «M
SITE »A?16
HC-FIO
NOX-CHEM
C02
CO
EXHAUST
RANGE
15
15
23
19
METE*
64.0
95.0
73.4
CUNC.
<
-------
MFR.
JODE VEHICLE 1.0.
20
PREP DATE
ClWH
wtIOHT
J i ^,tut ,
,, IT
ANALYSIS
0
OPIvE
AXLE
WEIGHT
«t«. ALT. EQUIVALENT ACTUAL
^r.P. KU'J. wKTEST M.P. TEST OYNO
tVAP INIT. CHI;. CODt ACHP METH. WEIGHT H.P.
N ' 4000 14.3
PROCESSED! 14I52HO
TRANS.
CONfG.
AXLK
GAUGL
/ IGNITION TIMING /
»1 »i RPM GEAR
/ % CO •
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
NOV 13« 1979
32 of 53
* r
/ --------- TEST TYPE — — --- /
EXPERIMENTAL
/ ------ • TEST PROCEDURE — --- -/
BAG BY SAG
SOAK
GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
B«HO *ET 0^»Y CVS
"MG BULH OULfl UNITS UNIT
3«.6B 55.0 81.0 U ^0(,
DYNO
TEST DATE HP. SITE
11- a-79 is |J^^o
ACTUAL
INt-flA
SETTING UYNO H.K.
4000 1^.3
OVU
H.P.
BAG 1 3.590 MILES S.77H "M
SITE »A?16 f.i
MC-FIO
NOX-CHtM
CM?
CO
R4NGE
15
23
oAG 2 3.910 MILES
SITE «A?16 Exr
RANGE
HC-FIO )<•
NOx-CHEM 15
CO
COMMENTS:
M
•It It*
11.3
39.0
<«5.4
100.2
CONC. WfiMGt
>> 1 . 0 v 1 . fj 1 1 b
97.1) 40. HI IS
f>9./ f,Hl.t>v 19
CuNC .
IV.6v
FEPU Tt'.. TING COLO
ROOM Tt'MP OUT OF SPEC • ino UtG.
TIRE
PRESSURE
0 45.00
VM[X =
NO* .
FACTOR
RELATIVE
HUMIDITY
38.3
ALDEHYDES
CU.FT. DILUTION FACTOR
9.095
SAMPLt
COfKfCTED
Mt TEP
J.4
O.i?
0.1
CONC. CONCFNIKATiUNS
S.OB 8?.OV PPM
0.10 ".b.78 PPM
0.03" 1.3&2 *
O.V3 680.26 PPM
GMS.
3.87
6.9«.
1921.79
61.09
MASS EMISSIONS
GMS/MI
1.079
1.933
S3S.317
17.018
GMS/KM
0.671
1.201
332.630
10.574
AUX.
FIEL01
AIM. AUX.
CODE
MPG
15.7
KPL
6.67
U/100KM
15.0
VMIX= 4659.0 CU.FT. DILUTION FACTOR = 12.M98
tiACKfiROUNO SAMPLE
* t\
Nbt
1"
IS
aj
1M
METtR
b.V
0.1
1.6
0.0
CONC .
5.09
0.05
U.031
0.0
CORRECTED
CONCENTRATIONS
56.25 PPM
19.64 PPM
0.954 *
502.51 PPM
MASS EMISSIONS
GMS.
4.28
4.78
2303.24
77.19
GMS/MI
1.095
1.222
589.065
19.741
GMS/KM
0.680
0.759
366.028
12.267
AUX.
FIEL01
MPG
14.
AUX.
FIEL02
KPL
2 6.05
AUX.
CODE
L/100KM
16.5
<* as DKG. F A/C ONI DEVICE OFF
DYNO SITE»D?20 TEST » 80-04B3
-------
CODE VEiICLE 1.0.
20 FM<.lG9Flb093,?
">FK. ALT. EQUIVALENT ACTUAL
VKW- kKP. PUM. HETEST H.P. TEST OYNO
SIGN EVAP U.IT. CHG. CODE ACHP MtTri. WEIGHT H.P.
0 N . 1,000 14.3
33 of 53
OVER- / — TEST TYPE —
TRANS. DRIVE EXPERIMENTAL
CONFG. CODE / TEST PROCEDURE
BAG BY BAG
PREP DATE
•EIGHT
UI.IVE
AXLE.
WEIGHT
GAUfit
AXLE
MEASURE
/ ---
ffl
IGNITION TIMING --- /
«2 KPM GEAR
/ ---- :--
LEFT
% CO -
RIGHT
COMB
IDLE
RPM
GEAR
SOAK
PERIOD
MEASURED
COASTOOWN
TIME
/- A"f)lFNT TEST CONOITIONS - /
HARQ »ET 0=>r CVh
"MO BULB dlJLd UNITS UNIT
?f).8b Sfc.O «7.0 U fdC.
OYNO
TEST 0«TE HP. bITt
II- ft-7«V 16 0280
ACTUAL
I Nt "X I I A
SETTING
BAO 1 3.390 MILES S.773 KM
S1TF »A21b
MC-FID
NOX-CHEM
C')2
CO
EXHAUST
&HGE METE*
Ib 7<..b
15
23
19
INDICATED
H.M.
1*1.3
CONC .
11l.Mh
Hb.O
60. a
97.7
Ib
Ib
23
IV
ovu
H.P.
TME NOX RELATIVE
ODO'1. PKtSSU^E FACTOf* HUMIDITY
1292V. 0 tb.OO 0.9517 32.5
ALDEHYDES
VM1X= 27SS.O CD.FT. DILUTION FACTOR = 9.031
IUND SAMPLE CORRECTED
TEW CONC. CONCENTRATIONS
J.I
0.0
2.0
U.O
«..f>3
0.0
0.03V
0.0
107.75 PPM
42. 7H PPM
1 .340 t>
978.79 PPM
MASS EMISSIONS AUX. AUX. AUX.
GMS. GMS/MI GMS/KM FIELD1 FIELD2 CODE
4.85
6.07
1913.31
88.91
1.350
1.692
532.955
24.765
0.839
1.051
331.163
15.388
MPG
15.4
KPL
6.54
L/100KM
15.3
BAG 2 3.910 MILES h.'dlj KM
SITE »A216
HC-FID
MOX-CHEK
C02
CO
EXHAUST
Ib
23
18
39.2
45. U
ini.7
O.V/J
b 1 U . Ib
14
IS
23
IB
VMIX= 4663.0 CU.FT. DILUTION FACTOR = 13.011
SAMPLE
COKKECTED
CUNC. t^A.NC.t Mt Ftw
6. J
0.0
o.o
CONC. CONCENTRATIONS
t.64
0.0
0.033
0.0
b6.36 PPM
19.7V PPM
0.943 *
510.35 PPM
COMMENTSI PASSMASTEH FtkU TtbTINO COLL) kOOK- •" Mb UEG. A/C ONI DEVICE OFF
GMS.
4.29
4.76
2277.31
78.46
MASS EMISSIONS
GMS/MI
1.098
1.216
582.431
20.067
AUX.
CMS/KM
0.682
0.756
361.906
12.469
AUX.
AUX.
FIELD1 FIELD2 CODE
MPG
14.4
KPL
6.11
L/100KM
16.4
c
TFST * AO-04A4
-------
OYNO SITEI0220
.ro.
CODE VEHICLE. 1.0.
20 FM41G9F150932
1979 LU-nT DUTY VEHICLE ANALYSIS I
PHOCESSEDl 15107139
VFrf-
SI ON KVAP
U N
HEP.
INIT.
KU-I. DETEST
CHG. COOE ACHP
NOV 13. 1979
34 of 53
ALT. EQUIVALENT ACTUAL OVER- / —— TEST TYPE —
n.P. TEST OYNO THANS. DRIVE EXPERIMENTAL
METH. WEIGHT H.P. CONFG. CODE /— TEST PROCEDURE
4000 14.3 BAG BY BAG
PHEP DATE
CljrfH
K.EIGHT
WEIOnT
GAUOt
fc *iPTY
AXLE
t— IGNITION TIMING —/
»l »2 r*PM GEAR
/ % CO •
LEFT RIGHT
COMB
IDLE
RPM
GEAR
SOAK
PERIOD
MEASURE!!
COASTOOWN
TIME
/- AMHIFNT TEST CONDITIOKS - /
RAKO WF.T D°Y CVS
"HG BULB BULH UNITS UNIT
3H.89 5V.0 BS.O D ^OC
SITE «A216
HC-FID
NOx-CnEM
C02
CO
15
IS
ACT'JAL
INFVTIA
SETTI'io
DYNO
TEST DATE HR. SITE
11- 8-79 16 0?20
SAG 1 3.590 MILES S.77tt
IMOICATKU
LlYNO H.^.
14.3
61.J
79.2
61 .V
75.5
SAMPLE
CONC.
VtT.flh
3V . ns
IWU
H.P.
TI«E NOX RELATIVE
ODOM. PPESSUWE FACTOR HUMIDITY
12V3S.O 45. OU I. 0100 41.5
ALDEHYDES
VMU= 2727.0 CU.FT.
DILUTION FACTOR = 9.009
HACr.GPOUNi; SAMPLE COtfKECTFD
Not "KTE.-I CONC. CONCENTRATIONS
15
13
23
19
J.U
0.1
2.3
0.0
4.4H
0.05
0.044
0.0
SB. 08 PPM
39.80 PPM
1.365 »
741.39 PPM
MASS EMISSIONS AUX. AUX. AUX.
GMS. GMS/MI CMS/KM FIELD1 FIEL02 CODE
3.92
5.94
1927.98
66.66
1.093
1.654
537.041
18.568
0.679
1.028
333.702
11.537
MPG
15.6
KPL
6.6Z
L/100KM
IS. I
BAG 2 3.910 MILES 6.293 'M
SITE -A?16
HC-FIQ
C02
CO
TXMAU5T SA
PANGE METEK
15
1H
45.3
45.6
66.0
CONC.
<./. 911
rtACKGPOUNO SAMPLE
U.9H7
J^b.13
HANGt
Ib
23
1H
0.2
0.1
2.0
U.O
4661.0 CU.FT. DILUTION FACTOR = 13.075
COMHECTED
COMMENTS! PASS"ASTf" FtHO TESTING
BLUE L£HA->ON
CONC. CONCENTRATIONS GMS.
4.S7 43.68 PPM 3.33
0.05 22.79 PPM 5.82
0.039 0.952 % 2302.15
0.0 326.13 PPM 50.19
MASS EMISSIONS
GMS/MI
0.852
1.489
5B8.7B4
12.837
GMS/KM
0.529
0.925
365.654
7.976
AUX.
AUX.
AUX.
FIEL01 FIECD3 CODE
MPG
14.5
KPL
6.16
L/100KM
16.2
OEG. F A/C ON &. DEVICE ON
OVNO siTFin??n
TFST * HO-04RS
-------
35 of 53
Fa.
CODE VEHICLE 1.0.
20 FM*1G9F 1SOV32
PREP DATE
VF.k- wt^. KUM. (-tTEST
SION FVAP INIT. LUG. CODt ACMP
0 H - '
ALT.
H.P.
METH.
EUUIVALENT
TEST
WEIGHT
*000
ACTUAL
DYNO
H.P.
14.3
TRANS.
CONFG.
WEIGHT
A»LE
WEIGHT
AXLE
GAUGE
F.MPI Y
/ IGNITION TIMING /
«l »2 >}PM GEAR
/— —
LEFT
% CO -
HIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
/ TEST TYPE —
EXPERIMENTAL
/ . TEST PROCEDURE
BAG BY BAG
GEAR
SOAK
PEHIOO
MEASURF.O
COASTOOWN
TIME
/- AM91FNT TEST CONDITIONS - /
BARi) WFT U3Y (,VS
"MG BULB HULR UNITS UNIT
2H.90 53.0 d*.S u «?»(.
OY'JO
TEST DATE MO. SITF.
11- 8-79 17 0?20
ACTUAL
i itf -i r i A
SETTP.G
UYfJI) n.P.
DVU
H.P.
OUO«.
PW£SSU«E
«5.00
NOX
FACTOR
RELATIVE
HUMIDITY
33.9
ALDEHYDES
BAG 1 3.590 MILES S.77b "M
VMU= 2727.0 CII.FT.
SITE «A?16
EXH«UST
HACKGUOLlMI) SAMPLE
COKKECTEO
HC-FIO
NOX-f.MEM
C02
CO
RANGE
IS
IS
23
IV
METtR
Sb.9
VO.O
60. J
71.7
cu.-jc.
H.J.'.S
<«^.31
1.361
701. hi
RANGE
IS
IS
23
19
"E fM
J.il
0.0
1.6
0.0
CONC. CONCENTRATIONS
't.ta S't.'tb PPM
0.0 > . 9 / 3
271.9j
1*
IS
23
Id
MtTtW CONC. CONCENTRATIONS
S.y *.3S 37.60 PPM
0.0 0.0 2*.8* PPM
1.7 0.033 0.9*3 *
0.0 0.0 271.93 PPM
COMMENTS: PASS*ASTF.O n.»o JESTING
#7 LAfc DEVICE ON - A/C ON
COLO KOOM AT rfi DEG. F
DILUTION FACTOR = 9.303
MASS EMISSIONS
GMS.
3.76
6.30
188*.71
63.10
GMS/MI
1.0*8
1.7S5
52*.989
17.576
GMS/KM
0.651
1.091
326.213
10.921
AUX.
FIELD1
AUX.
FIEL02
AUX.
CODE
MPG
16.0
KPL
6.78
L/100KM
14.7
DILUTION FACTOR = 13.3**
MASS EMISSIONS
GMS.
2.86
5.91
2278.13
41.82
GMS/MI
0.733
1.512
582.642
10.697
GMS/KM
0.*55
0.939
362.037
6.647
AUX.
FIELD1
AUX.
FIELD2
AUX.
CODE
MPG
14.7
KPL
6.27
L/100KM
16.0
- o
o
h/>60 0
stTFin??n
TFST
-------
36 of 53
.OOE VEHICLE 1.0.
40 4J47A9H123351
PHEP DATE
VKH-
SIGN
0 n
PEP. Ku-g. MKTtST
1N1T. CnG. CODE ACHP
ALT.
H.P.
METH.
tOUIVALENT ACTUAL
TEST
WEIGHT
3500
OYNO
H.P.
THANS.
CONFG.
WEIGHT
DWIVE
A/LE
WEIGHT
GAU'.K
EMPTY
/ IGNITION TIMING /
«l «2 P.PM GEAR
LEFT
* CO -
MIGHT
COMB
OVEH-
OH1VE
CODE
IDLE
RPM
/ TEST TYPE —
EXPERIMENTAL
/ TEST PROCEDURE
HWFE
GEAR
SOAK
PERIOD
MEASURED
COASTOOWN
TIME
/- AMR1ENT TEST CONDITIONS - /
8ARO WET LWY Cvs
"HG BULB 8IJLH UNITS UNIT
28.88 61.5 7fc.3 F ^7C
DYNO
TEST DATE HP. SITE
11- 8-79 15 0307
ACTUAL
INEWTIA
SETTING
3SOO
INOICATEU
UYNO M.P.
V.7
I)VU
H.P.
01)0-1.
TIKE
PHESSUHE
NOX
FACTOH
RELATIVE
HUMIDITY
ALDEHYDES
bAG 1 10.327 MILES 16.620 KM i"«07*. ROLL KtVS.
VMIX= 3944.0 CU.FT. DILUTION FACTOR = 6.524
SITE «A215
HC-FIO
NOX-CHEM
C02
CO
tXHAUST
riaC*GWOuNO SAMPLE
RANGE
17
23
18
WEIGHTED VALUES
lETfc'M CUNC.
43
46
73
74
0
0.
0.
.D
. i
.4
•2
HC
.19
116
11587
3.
116.
t.
366.
03
67
ni
72
2
2
WANGt
14
1 7
4 23
IB
CO
4.7
.90
.8VH3
KOUNOING
G»AMS/KM
UEFOPE WOUNDING
COMMENTS: DEVICE OFF. A/C ON FULL
iFt^ CONC. CONCtNTMATIONS
J.4 2.b6 29.6u PPM
0.0 0.0 116.67 PPM
2.0 0.042 1.979 *
0.0 0.0 366.72 PPM
:o^ NOX
3S^. 2.31
3V>.<»V 2.3067
GMS.
1.93
23.82
MASS EMISSIONS
GMS/MI
0.186
2.307
395.493
4.664
AUX.
AUX.
AUX.
GMS/KM
0.116
245.748
2.898
FIELD1 FIELD2 CODE
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
22.0
22.0059
22.0
21.9929
22.0
31.9929
MPG
22.0
KPL
9.3
9.3363
9.4
9.3501
9.4
9.3501
KPL
9.35
L/IOOKM
10.7
L/IOOKM
10.7
10.7108
10.7
10.6950
10.7
10.6949
CD
6242 0
OYNO SITEID207 TEST » 80-0450
-------
MFH.
ODE VEHICLE. 1.0.
40 4J47A9H123351
MK*. ALT. tOUIVALENT ACTUAL
VER- REP. RUN. DETEST H.P. TEST DYNO TRANS.
SION EVAP iNir. CHG. CIJUE ACHP METH. WEIGHT H.P. CONFG.
0 N 3500
37 Of 53
OVER- / TEST TYPE —
DRIVE EXPERIMENTAL
CODE / TEST PROCEDURE
CVS 75-LATE*
r~
PREP DATE
WEIGHT
0*- I VK
AXLE
WEIGHT
GAUGE
EMPTY
AXLE
MEASURE
/ ---
»1
IGNITION TIMING --- /
«2 RPM GEAR
/- AMBIENT TEST CONDITIONS - /
BARO WET 0"Y CVS
"H& BULB HULH UNITS UNIT
88.86 61. 5 71.5 F 2/C
/ ------ % CO
LEFT RIGHT
COMB
MEASURED
IDLE SOAK COASTDOWN
RPM GEAR PERIOD TIME
OYNO
TEST DATE HP. SITE
11- 8-79 i* D207
ACTUAL
INERTIA
st T n NO
JSOU
INDICATED DVU TIPE NOX RELATIVE
UYNO H.P. h.P. 000". PRESSURE FACTOR HUMIDITY
V.7 14H74.6 45.00 O.V522 50.6
ALOEHYOES
SAG 1 3.561 MUES 5.731 KM 0303. «OLL rfEVS.
SITE *A215
HC-FIl)
N'OX-CMEM
coz
CO
EXHAUST SAMPLE
RANGE ME.TKW CUnC.
16 74.0 Z'tt.i'c
16 72.7 71.'0
KAN&E
16
16
23
20
2.0
0.3
VMIX- 2/62.0 CU.FT.
SAMPLE CONNECTED
ClJNC. CONCENTRATIONS
2.70 214.8* PPM
U.bl 71.42 PPM
0.042 1.361 *
5.74
1766. 5<« PPM
9.92
10.17
1948.04
160.87
i EMISSIONS
GMS/MI GMS/KM
2.784 1.730
2.H57 1.775
547.030 339.909
45.173 28.069
AUX.
FIELD1
MPG
14.1
AUX. AUX.
FIEL02 CODE
KPL L/100KM
I 6.01 16.6
jAG 2 3.836 MILES 6.173 KM 8944. HULL WtVS.
VM1X= 4722.0 CU.FT.
EXHAUST SAMPLE
SITE HA215
HC-FID
C02
CO
BAG 3 3.530 MILES 5.6H1 «M H?3o. wOLL RFVS.
BACKGPOUNO SAMPLE
COPHECTEU
NGE
14
15
23
IB
ME TEW
47.0
3b.l
39.0
b3.r)
CUMC.
3b.0't
1 / .12
0 . •* 1 7
26^.46
PBNGE
14
Ib
23
17
^ETEW
4.1)
0.0
1 .9
0.0
CO.NC. CONCENTKflTIONS GMS.
2.44 32.32 PPM 2.49
0.0 1/.82 PPM 4.34
0.040 0.900 * 2200.79
0.0 262.46 PPM 40.86
VMIX= 2754.0 CU.FT.
i EMISSIONS
GMS/MI GMS/^M
0.650 0.404
1.131 0.703
573.714 356.490
10.652 6.619
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL L/100KM
15.0 6.36 IS. 7
O
VD
SITE *A215
HC-FID
NOX-CHEM
C02
CO
EXHAUST SAMPLE dflCK
(•ANOE
14
16
23
19
METEw
71. H
S6.1
50.7
44.0
CUN
bJ.
bb.
1.
406.
C. r
HO
37
2/3
VJ
(A'JOr.
14
15
23
IV
GWOUND SAMPLE
N't TEW
J.7
0.1
1.8
0.0
CUNC.
2.72
0.05
0.038
0.0
CORRECTED
CONCENTKATIONS
51.35 PPM
55.32 PPM
1.239 9,
406.93 PPM
GMS
2.
7.
1771.
37.
I
.
31
«7
47
02
1 EMISSIONS
GMS/MI GMS/KM
0.655 0.407
2.230 1.386
501.862 311.842
10.487 6.516
AUX. AUX. AUX.
FIELD1 FIEL02 CODE
MPG KPL L/100KM
17.0 7.24 13.8
WEIGHTED VALUES
BEFORE POUNDING
GWAMS/KM
BEFORE ROUNDING
HC
1.09
1.0931
0.6/9
0.67924
CO
1 I .»
17.7S3
11.03
11.0312
CO^
b'4V.
b4«.56
341.
340.86
NOX
1 . 79
1 . 78H5
l.ll
1.1113
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
15.3
15.2785
14.6
14.5676
15.3
15.2861
KPL
6.5
6.4987
6.2
6.1933
6.5
6.4988
L/100KM
15.4
15.3875
16.1
16.1463
IS.4
15.3873
COMMENTS: DEVICE OFF. A/C ON FULL
62b2 0
DYNO S1TE:D207 TEST « 80-0449
-------
MFP.
:O:«F;
., - "*i. '« .t>. » n,;-o«Mh | !•//•, MlGM.Af MILL I.CONOMY ANALYSIS 1 PROCESSEDl 08158115 NOV 8, 1979
38 of 53
Vt*- t-tP. RUM. RtTtST H.P. TEST OYNO TRANS. DRIVE EXPERIMENTAL
<» J^ 7 A9n 1^33^1 0 ^ 3SOO HWF£
OP Ivt MEASURED
PKEP DATE WEIGHT WEIGHT GAUC.F MtASUKE « 1 »<; PPM GEAR LEFT RIGHT COMB RPM GEAR PERIOD TIME
KM(-TY
/- AMBIENT TEST CONDITIONS - /
HAKO WET IWf r ( VS
"M& BULo bllLfl UMIT'J UNIT
?9.23 bl.3 74.4 F sH.
ACTU&I.
TEST DATE HP. SITc
11- '-79 U uao/
UtNfl H.P.
3^00
uvu TI^E
H.P. OOO.-i. PKESSUKE
l<«MSb.O «.3
64.2
liJ.31
f>J.«>7
1 .*<>•,
S".3l
HC
O.Oo
0.0849
O.(fyj
O.I
C"
0. 7
0.7^6
I/.45
0.
POLL *F'VS.
P.\Not '•"
If.
1 7
CUc?
NOX
FACTOR
O.V375
.0 TU.FT.
RELATIVE
HUMIDITY
47.0
ALDEHYDES
VM[X =
SAMHLE
CONC. CONCENTRATIONS
3.1
0.1
1 .-/
0.0
.79
0.10
0.041)
0.0
NOX
I.JO
1.3006
0.01
O.UOtf2
Ii;.tt7 PPM
63.3H PPM
1.6b<> *
i>«».bl PPM
DILUTION FACTOR = 7.354
MASS EMISSIONS
GMS. GMS/MI
0.«7 0.085
13.25 1.301
3550.33 348.526
7.40 0.726
WEIGHTED VALUES
IZ-Tt FTP
UNWEIGHTED FTP
>NS AUX. AUX. AUX.
GMS/KM
0.053
0.808
216.564
MPG
25.3
25.3119
25.4
25.3538
25.4
25.3538
FIELD1 FIELD2 CODE
MPG
25.3
KPL
10.8
10.7525
10.8
10.7790
10.8
10.7790
KPL L/100KM
10.77 9.3
L/100KM
9.3
9.3001
9.3
9.2772
9.3
9.2772
COMMENTS! PASSMASTtW HASELINF
OYNO SITEID207 TEST » 80-0448
-------
SITt:D207
TF.ST o >i<)-04<,7
LIGHT OUT* VEHICLE ANALYSIS
PROCESSED* UB153I07T
•FR.
JOE VEHICLE 1.0.
40 4J47A9H123351
MFf<. ALT.
VER- KEP. RUN. fttTEST H.P.
SION EVAP INIT. CHG. CODE ACHP rtETH.
0 N
EQUIVALENT ACTUAL
TEST OYNO
WEIGHT M.P,
3500
39 Of 53
OVER- /-- TEST TYPE ——/
TRANS. DRIVE EXPERIMENTAL
CONFG. CODE / TEST PROCEDURE /
CVS 75-LATER
PREP OATt
CURB
aEIGHT
0"lv£
A«LE
WE iOrlT
GAUGE
AXLE
MEASURE
/ IGNITION TIMING /
»1 »2 RPM GEAR
/ % CO /
LEFT RIGHT COMB
IDLE
HPM
SOAK
GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMHIENT TEST CONDITIONS - /
BA*0 wET D»r CVS
"H<> BULB bUL* U'JITS UNIT
29.?6 61.0 73.V F 27i.
TEST DATE
II- 7-79
HP.
12
OYNO
SITE
0207
ACIUAL
lNh-tTlA
SETTING
Ji>00
IhOICATtD
UYNO H.P.
DVU
H.P.
ODOM.
1^.836.0
TIkE
PRESSURE
NOX RELATIVE
FACTOH HUMIDITY
0.9349 itl.t
ALDEHYDES
BAG 1 3.578 MILES b.7ba
VM(X= 283^.0 CU.F T.
'£ »A2l5 EXHAUST bAMkLc bA
HC-FID
NOX-CHEH
C02
CO
RANGE
16
15
23
20
"ETER
6«.2
91 .b
4(5.2
52.1
CONC. f
^ 0 ** • B^*
*•* to • 37
1.199
1 133.9U
*ANU
1 6
15
23
20
BACKGROUND SAMPLE
METER CONC.
0.9 2.70
0.1
2.1
O.J
dAG 2 3.840 MILES 6.1HO r,M 8954. POLL HE
SITE OA215
ExnAUST SAMHLh
0.05
5. i
CORRECTED
CONCENTRATIONS
202.40 PPM
46.33 PPM
1.159 <*,
1128.73 PPM
RANGE
MC-FIO !<.
NOX-CHEM 14
CO? 23
CO 17
BAG 3 3.569 MILES
HETt" CONC. RANGE
2^.2 2U.91 14
44.6 11. ?H 14
31.9 U.746 23
31.9 77.71 17
5.743 KM t>32! . HULL
iff TE^
4.2
0.1
1 .H
U.U
REVS.
SITE «A?15 EXHAUST SAMPLE bACK&HUUN'J S
RANGE
hC-FIO 14
HOX-CMtM 15
C02 23
Co 17
WEIGHTED VALUES
r,kAMS/MlLE
bEFOKt ROUNDING
GRAMS/KM
HEFORE BOUNDING
METER CONC. RANGE
"7.1 35.12 14
77.1 3B.VB 14
44.3 1.086 23
44.2 100.57 17
fiC CO
O.H5 b.S
U.b4f6 b«54b
0.527 ^.31
0»5266rt S.3120
ME TER
4.2
U.I
l.t
U.U
Co2
45s.
455.03
2ri3.
2b2.74
VMIX = 4B05.0 CU.FT.
SAMPLE CORRECTED
CONC. CONCENTRATIONS
J.09 lh.00 PPM
U.03 11.25 PPM
0.038 0./10 *
U.O 77.71 PPM
VMIA = 281^.0 CU.FT.
SAMPLE CORRECTED
CONC. CONCENTRATIONS
3.09 32.29 PPM
U.03 31).95 PPM
O.OJB 1.051 4
0.0 10t).b7 PPM
HOX
l.lb
i.tBlb
0.7342
.DILUTION FACTOR = 10.054
MASS EMISSIONS
GMS.
9.37
6.65
1702.OB
105.46
GMS/MI
2.61d
1.858
475.726
29.477
GMS/KM
1.627
1.155
295.604
18.316
AUX.
FIELD1
AUXo AUX.
FIELD2 CODE
MPG
16.7
KPL
T.ll
L/100KM
DILUTION FACTOR = 17.733
MASS EMISSIONS
GMS. GMS/MI GMS/KM
1.41 0.368 0.229
2.74 0.713 0.443
1768.00 460.378 286.066
12.31 3.206 1.992
DILUTION FACTOH = 12.183
MASS EMISSIONS
AUX.
FIEL01
AUX. AUX.
FIELD2 CODE
MPG
19.0
KPL
e.oe
L/100KM
12.4
GMS.
1.40
S.55
1532.14
10. 07
GMS/MI
0.416
1.555
429.310
2.H22
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
GMS/KM
0.258
0.966
266.761
1.754
MPG
18.8
18.8261
17.8
17.8395
18.6
18.5958
AUX.
F1ELD1
AUX. AUX.
FIEL02 CODE
MPG
20.4
KPL
8,0
7.9951
7.5
7.5843
T*9
7.9059
KPL
8.67
L/100KM
11.5
L/100KM
12.5
12.5075
13.2
13,1850
12.6
12.6487
COMMENTS! BAG 2 IS 3 SECONDS SHORT
PASSMASTER BASELINE
DYNO SITE»D207 TEST 8 80-0447
-------
-HFR.
ODE VEHICLE 1.0.
40 4J47A9H123351
MFR.
VER- REP. RUN. RETEST
SION EVAP INIT. CHG.
0 N
PREP DATE
DRIVE
CURS AXLE
WEIGHT HEIGHT
GAUGE
EKPTY
AXLE
MEASURE
1 1979 LIGHT DUTY
TEST
ODE
#1
ALT. t
H.P.
ACHP METH.
IGNITION TIMING
« i RPM
VEHICLE
ANALYSIS i PROCESSED:
.JIVALENT ACTUAL
TEST DYNO TRANS.
HEIGHT H.P. CONFG.
3SOO 12.2
GEAR
LEFT RIGHT COM3
OVER-
DRIVE
CODE
IDLE
RPM
U8I25:48 NOV 20. 1979
40 Of 53
EXPERIMENTAL
CVS 75-LATER
SOAK
GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AM9IFNT TEST CONDITIONS - /
SARO *ET OH1 CVS
"HO BULB rtULB UNITS UNIT
38.87 61.0 73.0 F 27C
TEST DATE hi*.
11-15-79 14
6AG 1 3.625
SITE »A?15
HC-FID
NOX-CHEM
C02
CO
AG 2 3.874
alTE «A?15
HC-FID
NO<-CrtEM
C02
CO
SAG 3 3.62?
SITE OA21S
HC-FID
KOX-CHEM
C02
CO
DYNO
SITE
MILES
ACTUAL
INERTIA INDICATED DVU TIRE NOX RELATIVE
SETTING UYNO H.P. H.P. DOOM. PRESSURE FACTOR HUMIDITY
3500 9.7 14912.9 45.00 0.9-.S8 50.2
5.834 KM H4b2. ROLL REVS. VMlA = 2802.0 CU.FT. DILUTION
EXHAUST SAMPLE
RANGE
16
16
23
20
MILFS
METER CUNC.
54.J 163.13
60.3 bv.51
54.6 1.392
55.0 1207.46
6.23b I'M V033.
EXHAUST SAMPLE
RANGE
14
15
23
1«
MILES
MEftR CUNC.
30.9 22. yj
33.0 16.76
39. s O.'vbO
31.6 152.22
5.830 KM 8446.
F. XhAUSt SAMPLE
KANOE
14
16
23
17
WEIGHTED VAL'lES
GRAMS/MILE
8EFOPE ROUNDING
GRAMS/KM
a£FORE ROUNDING
METER CONC.
42. b 31.6b
52.0 51.34
51. b 1.2V7
51.0 125.60
BACKGROUND
RANGE »
-------
murmur rutu CtUIWIT ANALYSIS I
PHOCESSEOl 08»25«S6"
NOV
41 of 53
•1FR.
XJDE VEHICLE 1.0.
40 4J47A9H123351
MFP. ALT.
VEK- MEM. HUN. RETEST H.P.
S10N EVAP 1NIT. CMS. CODE flCHP METH.
0 N
EQUIVALENT ACTUAL
TEST
HEIGHT
3500
DYNO
H.P.
12.2
TRANS.
CONFG.
OVER- / TEST TrPE —
DRIVE EXPERIMENTAL
CODE / TEST PROCEDURE
HWFE
CURB AXLE AXLE / IGNITION TIMING / / * CO /
PREP DATE WEIGHT WEIGHT GAUGE MEASURE HI »2 HPM GEAR LEFT RIGHT COMB
EMPTY
/- AMBIENT TEST CONDITIONS - /
BARO WET DPY CVS
"HG BULB bULH UNITS UNIT
28.91 63.4 74.5 F 27C
IDLE SOAK
RPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
DYNO
TEST DATE HR. SITE
11-15-79 16 U207
ACTUAL
INEKTIA
SETTING
3500
INDICATED OVU TI«E NOX RELATIVE
DYNU H.P. H.P. ODO". PRESSURE FACTOR HUMIDITY
y.7 14933.8 45.00 0.9627 50.8
ALDEHYDES
riAG 1 10.317 MILES 16.604 KM 24055. POLL W£VS.
VMIX= 4017.0 CU.FT. DILUTION FACTOR = 6.760
SITE "A?15
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE
14
17
23
VALUES
/MILE
BEFOPE ROUNDING
G*A"S/XM
BEFORE ROUNDING
72.2
35.5
HC
0.09
O.OB71
0.054
0.05412
CONC.
IV. 40
111.14
T.972
86.d9
RANGE
16
23
17
IUN!) SAMPLE CORRECTED
TEH CONC. CONCENTRATIONS
5.9 4.34 13.70 PPM
0.0
2.0
0.0
0.0
0.042
0.0
111.14 HPM
1.936 *
86.89 PPM
MASS EMISSIONS AUX. AUX. AUX.
GMS. GMS/MI GMS/KM FIELD1 FIEL02 CODE
0.90 0.087 O.U54
23.28
4029.62
11.51
2.256 1.402
390.578 242.694
1.115 0.693
MPG KPL L/100KM
22.6 9.60 10.4
CO
1.1
1.115
0.69
0.69JO
coa
391.
390.57
243.
242.69
N'OX
2.2b
2.2561
1.40
1.4018
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
22.6
22.5644
22.6
22.5982
22.6
22.5982
COMMENTS* WITH PASSvlASTEH - DEVICt ON. A/C ON
EfuR
KPL
9.6
9.5912
9.6
9.6075
9.6
9.607S
L/100KM
10.4
10.4261
10.4
10.4085
10. <>
10.4035
nvun ciTFtnan?
TFCT *
-------
DYNO SITt:022G
TF.ST
IV/b LIGnl DUTY VEHICLE AMALYSIS
PROCESSED! MIOOM7
NOV 28. 1979
fjC" _1 H. I T LliL IfAlLhiT A ^* T J 1 A !
MFR.
* Anc"
W*>Ut
020
PfcEP
\ic.j T pi r T r\
VC~lv.l_C 1 * Lf •
LH41C5H290359
CU^B
DATE »EIGMT
VE*-
C t ( )M
J 1 \J*4
0
A y i c~
** A (_ t
WEIGHT
REP
Ci/ftij' IfjTT
C. V Mf 1 (4 i |
GAUGt
EMPTY
. KIM. KtTtST
r n r. r i \ i •» L.
a t*nu» v*t/UC.
1 X 1 P / — __
•* A L u /
^EASURE »1
"l_ 1 • E.VW»-..1'«t_U''«t MU 1 tj«l_
H.P. TEST DYNO TRANS.
A CHH MF TH u-L'Trifc-T u D /»rtk,c/;
1 f'thl I T I n(Vj T T M T Wft
lOPti 1 i U'» 1 i ™ l nJvJ
i*2 HPM
W [_ J \J' I 1 ri • ^ • t*V/lYrV?*
3500 11. 3
GEAR LEFT RIGHT COMB
OVEH~
DRIVE
ronp"
uuut
TOI r
i UL.C.
RPM
42 of 53
EXPERIMENTAL
2 BAG LA-4
QHAtc"
DUft^
GEAR PERIOD
MEASURED
fftAQTnfiUM
\^UM5 t UL/wri
TIME
/- AMBIENT TEST CONDITIONS - /
BA30 WET D^Y
"nG BULB BULH UNITS
29.10 60.0 7,S'.0 0
2uC
TEST DATE HO.
11-27-79 09
3AG 1 3.590 »
SITE »A215
^
HC-FICi
NOX-CrlEM
C02
CO
OYNO
SITE
0220
MLES
ACTUAL
INERTIA
SETfl'iG
3bOO
5.776 <"*
INDICATED
UYNU
11
H.P.
.2
FKHAUST bAMPLc. SAC
Z3
17
ovu ri,
v£ NOX
H.P. ODO*. PRESSURE FACTOR
c-lftSl.6 45,
VM[X =
KGPOU^D SAMPLE
^ElLR CO^C. (
b.3 J.SiO
O.V O.V2
2.'i 0.042
0.2 O.-.M
.00 1.0210
2772.0 CU.FT.
CORRECTED
;OiMCENTKAT IONS
3V.8H PRi-i
4i:;2-» PPM
1.1 bb *
10. 4 PPM
RELATIVE
HUMIDITY
59.6
DILUT
GMS.
l.ei.
6.41
165d.b
0.9!
BAG 2 3.S10 MILfS 6.2V3 r .1
SITE »A?lb F'"»UST SAMOL
CU.FT.
BACKGROUND SAMPLE
HC-FI
riO<-C
C02
CO
iEK.HTEO
RANGE
'J 14
MtM 1*1
23
17
VALUES
"EUR
37.e
Ib. 1
3o.l
1.0
HC
COK'C. RtNGt ^'tTE''
2e
11
y
2
. 1 1
.3ft
.vl 2
.41
CO
14
Ih
23
17
<".RA«S/MlLt 0.492 0.177
BEFOPt
rfOUNOlNG
GRAMS/KM 0.
BEFOPE
ROUNDING
.4W21,
106
.3060
•
0.1
.
17/0
10
1100
b05.
bOb
314.
313
b .
U.
2.
0.
C02
.2
. V
3
e.
1
0
COMC. CONCENTRATIONS
J.
0.
0.
0.
l.SO
1 .4
0.^31
90
20
U44
0
NOX
9H
2-*. 48 PPM
18.14 PP.M
o.t>n *
2.41 PPM
.V30b
COMMENTS: GRKE'I OAHT 7S Uti>w££b COLD ROOM
PASS-iSTt= TESTING
BAStLINt LA* NO A/C UK OtVILE
ALDEHYDES
DILUTION FACTOR = 11.181
MASS EMISSIONS
GMS/MI GMS/KM
0.503 0.312
1.806 1.122
461.9bO 287.061
0.265 0.165
DILUTION FACTOR = 14.647
MASS EMISSIONS
G'-IS. GMS/MI
1.89 0.4«3
4.75 1.215
2130.28 544.829
0.38 0.096
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
AUX.
FIELDl
AUX.
FIELD2
AUX.
CODE
MPG
19.1
KPL
8.13
L/100KM
12.3
NS AUX. AUX. AUX.
GMS/KM FIELDl FIELD2 CODE
0.300
0.755
338.541
0.060
MP&
17.5
17.5050
17.5
17.4990
17.5
17.4990
MPG
16.2
KPL
7.4
7.4372
7.4
7.4396
7.4
7.4396
KPL L/100KM
6.90 14.5
L/100KM
13.4
13.4458
13.4
13.4413
13.4
13.4415
254 U 0
DYNO SITE:0220 TEST * 80-07Z2
-------
li-il a ov-V/dJ
LlG*T UUTY VtMiCLt ANALYSIS
PROCESSED! 11100137
NOV 28. 1979
"FP. •
' ."ODE VEHICLE 1.0.
020 LH4lC5rt2903S9
PȣP DATE
/- AM4IENT TEST
8AWO w£T
"HG buLB
29.10 60.0
Or NO
TEST OATt M3. SITE
11-27-79 09 C-220
BAG 1 3.b9fi MILS.S S.77b KM
• VEW- «t;p. WUN. kFTEST
SIUN EVSP IMIT. CnG. CUDt
ION
U^IVE
A?
CO
F.XMAUST
'.GE MtlE.
|4 S-y.
1*> 41.
23 ".7.
17 10.
bAMPLt
* CONC.
1 <•<« . | <-y
3 41 . 7 i
t> l.lol
U 2-.. 19
OACKGKOUNi)
RANGE "-EIE*
14 b.l
lo a -d
23 l.o
17 U.U
SAMPLE
COMC.
3.75
0.20
0.038
0.0
3AG 2 3.910 MlLtS 'i.2c'3 KM VMIX
SITE »A?15
P>A
HC-^ ID
NO<-Cl£M
C02
CO
•EIGHTED VALUES
G*AMS/M!LE
aEFO^t HOUND IN
(,«flMS/)\M
BEFOJE *OUrjDI'.
• XHAJST
NOE MFTF
14 37.
1M 16.
^ j JH.
17 0.
5AMPLK
H CONC .
d ?/•(>*
0 11.21
0 0.90V
4 o.Vf,
HC CO
0.491
r, .490*
0.10S
G .3050
O.J14
.3144
0.195
. 1 V-D4
biCftG»«>UiiD
KANGK vtlE^
It 3.b
ih 0.2
«f3 l.rt
17 0.0
CU2
504.
503.7
313.
313.0
hiMPLE
CONC.
4.')4
0.20
0.03fa
0.0
NO*
1 .4H
1 .476
0.917
.9172
COK^ECTEO MASS EMISSIONS
CGNCtNTRATIO-MS
40.77 PPM
41.5<» PPM
1 . 147 f,
24.19 PPM
= 4710.0 CU.FT.
CUH-Vt'CTED
CONCENTKflTIONS
23. H9 PHM
1H.09 PPM
O.W74 t>
0.96 PPM
GMS.
1 .04
6.36
1645.32
2.21
DILUTION
GMS/MI
0.514
1.772
458.305
0.615
FACTOR =
GMS/KM
0.319
1.101
28«.778
0.382
14.694
MASS EMISSIONS
GMS.
1.84
4.71
2132.57
0.15
WEIGHTED
72-74
GMS/MI
0.470
1.205
545.414
0.038
VALUES
FTP
UNWEIGHTED FTP
GMS/KM
0.292
0. /49
338.905
0.024
MPG
17.5
17.5323
17.5
17.5420
17,5
17.5420
AUX.
FIELD1
MPG
19.3
AUX.
FIEL01
KPG
16.2
KPL
7.5
7.4578
7.5
7.4579
7.5
7.4579
AUX.
FIEL02
KPL
8.18
AUX.
FIELD2
KPL
6.90
AUX.
CODE
"^
L/100KH
12.2
AUX .
CODE
_
L/1SOKH 5
| CoiJ)
PA^S-tSTt" TtSri'iG
BASELiNL
'4
55f
^
/-S-'J ')
DYNO
resr o
O
-------
gv.-.
isfcM
fes
f
fc
» » I s. • uf c
i". >i *» n"-v ft
MF».
;OOE VEHICLE I.D.
020 LHMC5PP90359
Vc-'- PEP. KUM.
SIUN Evflp INIT. CHG.
0 N
1 prrvcTrrwr TT
ALT.
H.P.
44 of 53
COUE
TEST
WEIGHT
3500
ACTUAL
DYNO
H.P.
11.2
TRANS.
CONFG.
OVEH-
DRIVE
CODE
/ TEST TYPE —
EXPERIMENTAL
/ TEST PROCEDURE
2 BAG .LA-4
AXLE
AXLE
/ IGNITION
PREP DATE
HEIGHT
/ ^ co -
LEFT RIGHT
COMB
RPM
GEAR
SOAK
PERIOD
MEASURED
COASTOCMN
TIME
f- T Y
/- AMBIENT TEST CONDITIONS - /
yARO »ET
"nG BULB
29.12 60.0
OYNiO
TEST DATE M». SHE
11-27-79 10 0220
8AG 1 3.590 MILtS
SITE "A21S FX
PANGE
HC-FIll 14
NOX-CrtEM 16
C02 23
CO 17
dAG 2 3.V10 ^ILr.<;
SITE «A215 FX
PANG*:
HC-FIO 14
.'•JOX-C^EM 16
C02 23
CO 1 7
WEIGHTED VALUES
G^AMS/MlLF 0
bEFOWE "O'JNl/I-JG
GPAMS/KM 1)
BEFORE *OUN01NG
D=>Y CVS
tt'JLH UNITS UNIT
7S.O 0 200
ACTUAL
iNE-*ri- INDICATED ovu TIV-K NOX RELATIVE
SEirirj'o uY.-iU M.H. H.P. UOO'". PRESSURE FACTOH HUMIDITY ALDEHYDES
3500 11.2 21&66.4 45.00 1.0207 59.6
S.77o KM VMIX= 2«2'J.O CU.FT. DILUTION FACTOR = 10.5H1
r'SUST SA"Jl.E HACKGxOUN'j SAMPLE COP^ECTED MASS EMISSIONS
•''ETI-k CUNC. PANGE -iFTf* Cu'iC. CONCENTwA I IONS GMS. GMS/MJ GMS/KM
4Si. 1
48.9
50.3
5.M
o.2^3 '
H4U^T SA'
••IE rt'w
31 .0
22. V
41 ,d
3.J
MC
.400
. J996
.24«
.24B1
36.63 14 5.3
4v.33 16 (1.2
1.2M 23 2.1
14. <"^ 17 U.I
I .^
*r-*Lc. bACKGKOUNU
CuNC . ^ANGE ''•(•. TL^
23.''! !<• o.i
2J.23 16 0.3
o.'ivrt 23 2. COLO ROOM
tNdl'jt S1ALLFU OH STA-
-------
5irt:u22(>
MFR.
CODE VEHICLt 1.0.
020
PREP DATE
VF:H-
SIGN
0
P IMIT. CttG. COOt ACHP METH.
N
45 ..of 53
tuUIVALtNT ACTUAL OVEK- / TEST TYPE ———/
TEST DYNO TftANS. DP.IVE EXPERIMENTAL
WEIGHT H.P. CONFG. CODE / TEST PROCEDURE ———/
3500 11.2 2 BAG LA-4
Cu»b AXLt AXLE / IGNITION TIMING / / * CO /
fcEIGHT HEIGHT GAUGE MEASURE a I , »2 ftPit GEAW LEFT KIGHT COMB
IDLE SOAK
HPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
/-AMBIENT TEST CONDITIONS - /
Be.HO *ET DPY . Cv^,
"fO bULb riULH UNITS UNIT
29.il 60.0 7s.o u ;•«
TEST DATE MS. SITE
11-87-79 11 UiZO
BAG 1
SITE '
3.590 MILES
WANGf. ME
HC-FID
CU2
co
?3
17
•JAG 2 3.910 MILES
SITE «A21^ itr
HANGE
rC-FID 14
'lOX-CHEM 16
C02 23
CO 17
VALUES
0 .'. !H
9EFG3t kOONOlMG
BEFORE POUNDING
ACTUAL
SETTING
3500
b.778 KM
L/ST bA^H
•jfTEK
52. 7
47.7
50.0
3.2
t>.2^3 ».M
)ST SAMh-
"f\fA
31.0
24.4
40.7
O.V
MC
!H
iOBw
14
i53<1
1'iOICATtD DVU IlKK NO* RELATIVE
UY'lO H.P. H.P. OOO-i. P-?ESSU^E FACTO" HUMIDITY ALDEHYDES
11.2 21«73.5 45
vr-IX =
Lf HAC^GnOUN'J SAMPLc.
CU.'iC. SANGt "LltK CO'iC.
j1*. 1i 14 0.2 4.bb
4e. 1 j 16 .1. J 0.31
1.2b2 d3 2.0 0.042
7.72 17 0.2 0.4b
VH[« =
j_F ri ftC^GPOUNt/ SA'-lPLE
CONG. P/.NGt -'KTE-( CO^C.
2 J.o 1 14 3.1 4.26
24.74 16 0.4 0.41
U.^-54 23 2.2 0.046
2.17 17 U.3 0.72
CO C02 '.0<
0.1 ?o S31*. 1.H3
. 1^0^ b3«. 7 1 .o2o
u. /» 't -11 3JS. 1 . 1 J
,746Vr.-ol 334. 1 1.1JS
.00 1.0209
27S2.U CU.FT.
CO-'KECTtu
CUI-jCr.NrwaTIONS
3^.22 PH^I
4?.bb PPM
1.214 «
7.2M PPM
4on4.0 CU.FT,
COWKECTEO
CONCHNTrVATIONS
IV. 06 PPM
24.3t> PPM
0 . V4l *
1.50 PPM
59.6
DILUTION FACTOH = 10.660
MASS EMISSIONS
GMS. GMS/MI GMS/^M
1.61 0.447 O.d78
7.JV 2.038 1.278
1756.54 489.288 304.030
O.b7 0. 1«7 0.116
DILUTION FACTOR = I3.se7
MASS EMISSIONS
GMS. GMS/MI GMS/KM
1.46 0.373 0.232
6.31 1.614 1.003
2283.42 583.994 352.877
0.23 0.059 0.037
MPG
WEIGHTED VALUES 16,4
16.4154
72-74 FTP 16.4
16.4250
UNWEIGHTED FTP 16.4
16.4256
AUX.
FIELD1
AUX. AUX.
FIELD2 CODE
MPG
18.1
KPL
7.68
L/100KM
13.0
AUX.
FIEL01
AUX. AUX.
FIELD2 CODE
MPG
15.2
KPL
7.0
6.9771
7.0
6.9832
7.0
6.9832
KPL
6.45
L/100KM
15.5
L/100KH
14.3
14.3324
14.3
It.3199
14.3
14.3199
C i
COMMENTS: G*>EEN OAWT 75 DEG^tEb Cot 0 -
-------
MFR,
•ODE VEHICLE I.i).
J20 LH41C5-29035S*
DATE
WEIGHT
SIUM EVAP INIT.
0 'I
i,-lvt
AXLt 1
'EI(,HT GAUGfc ME
1 !'*/:> Lll»nf Our V VtHICLt
ANALYSIS 1
ALT. t'UUiVALtNT ACTUAL
KU*I. PETEST R.P. TEST DYNO
Cnr,. COuE ACMP MtTn. WEIGHT H.P.
3500 11.2
iXLC / IGNITION TIMING / / * CO
LflSUwK "1 i>2 *-PM GFAP LEFT WIGHT
PROCESSED:
TRANS.
CONFG.
COM8
DRIVE
CODE
IDLE
RPM
11:02:19 NOV 28i 1979
46 Of 53
EXPERIMENTAL
2 BAG LA-4
SOAK
GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TtST
Bt«0 *ET
29.10 60.0
IUnS - /
Dor CVS
rt>>L* U-'JlTS UMIT
7^.0 0 SbC
ACTUAI
(••YNO INE"TI« 1'JOICATED DVU
TEST DATE H». SITE SET! Pit; UYNO H.P, H.P.
11-27-79 11 f>22<; 3ioi; 11.2
oAG 1 3.bVf' ("iLf'i 5.77i *M
SITE rtA?lb EXHAUST !D^ ^HLt ofcC^GwO'jN
PflNG£ ^c.Tt^ CONC. PoN'it i-fc 1 1
HC-FIIJ 14 73. u S4.71 14 o.
NOX-CHEM 16 46.7
C02
CO
.40 2 3.
SITE "API
HC-F 1 J
fiC/.-C"
C02
CO
»EI6HTtD
Or^AMSX
riEFO'E 4
0»AMS
HEFORt P
?3 49.ii
17 4.u
910 HILfS i^'jj <
5 fc xiAUST bti
P«NGt ••'FTtf
' 14 33.1;
IEM 16 2b.l
23 3-^.b
17 O.s
VAP.UEb nC
MR t 0 .51^
Ou«.';If.G ,-ilfio
I/KX 0,322
OU'iDI'.G .3219
4/. 13 Ih 0.
1.223 23 2.
v.6b 17 u.
1
MLr MACKl'^Olj^
1 IK£ NOX RELATIVE
OOO1 . P-^ESSUKE FACTO* HUMIDITY ALDEHYDES
VMU= 2/M7.0 CU.t-T. DILUTION FACTOR = 10.903
\> SA "Put COKKC.CTEU MASS EMISSIONS
~ CuNC. CONCtNTKflTIONS GMS. GMS/Ml GMS/rtM
0 '..'.1 bO./l HP" 2.31 0.643 0.399
2
0
u
U J
Cor,C. KiN!jt •••£. ftf
24. SI 14 b.
25. -5 !l 0.
o.9bJ 23 2.
1.93 I/ u.
C'.i CO^-
0.1 ">" b24.
.15/9 -)23.-*
(1.91-lF-ol 32i.
.9^,1 If -01 32S.D
/
2
U
0
(1.2(1
U.042
U.O
VMM
>A"fh>,_t
CUNC.
4.19
i).20
0.042
0.0
NOX
1 .04
1 .H37
1.14
1.141
46.94 P|JM
1.184 PPM
0.914 *
1.V3 PP«
7.2J
1710.29
O.b9
DILUTION
2.01b
476.404
0.247
FAC10K =
1.252
296. U24
0.153
14.020
MASS EMISSIONS
GMS.
i.ba
6.54
2218.95
0.30
WEIGHTED
72-74
GMS/MJ
0.40J
1.673
567.506
0.076
VALUES
FTP
UNWEIGHTED FTP
GMs/isM
0.251
1.040
352.632
0.047
MPO
16.9
16.8708
16.9
16.8741
16.9
16.8741
AUX.
FIEL01
MPG
18.5
AUX.
FIELD1
MPG
15.6
KPL
7.2
7.1637
7.2
7.1739
7.2
7.1739
AUX. AUX.
FIELD2 CODE
KPL L/100KM
7.88 12.
AUX. AUX.
FIELD2 CODE
7
KPL L/100KM
6.63 15.
L/100KM
14.0
13.9591
13.9
13.9393
13.9
13.9393
1
SD
COMHENTS: GOEtN ui^T 7b UtGRELb COLO ROOM
PASS»--ASTtW TtST ING
A/C nlTH OEVICt (CAK STALLED ON
/££
s
:!
2S40 0
OYNO SITE:D220 TEST.* 30-0726
-------
MFP..
.:OOE VEHICLE 1.0.
020 LH41C5aa90359
i rs>7V~LfSHYTJOTY vTfiTCLE ANALYS*!i
MF'J. ALT. EQUIVALENT ACTUAL
VEK- rffc>. RUN. Rfc'TEST H.P. TEST DYNO
SIUN EVAH INH. CMG. CODE ACHP METH. WEIGHT H.P.
0 M . 3500 11.2
"PROCESSED: 11:54:26
NOV 28. 1979
47 of 53
OVER- ' TEST TYPE /
TRANS. DRIVE EXPERIMENTAL
CONFG. CODE / TEST PROCEDURE —/
2 BAG LA-4
PREP DATE
OUVE
Ci)*r) AXLE
•EIGHT WEIGHT
AXLE
GAUGt'
EMPTY
/- 4M6IFNT TEST CONOITIONS - /
8A»0 «ET 0°Y CVS
"HG SUL8 ei'JLH UNITS UNIT
29.10 60.0 75.0 0 20C
/ IGNITION TIMING —/
1\ »2 RPM GEAR
LEFT
* CO •
RIGHT
COMB
IDLE
RPM
GEAR
SOAK
PERIOD
MEASURED
COASTDOWN
TIME
OYNO
TEST DATE no. SITE
11-27-79 12 D220
SAG 1 3.590
SITE »A215
HC-FIO
C02
CO
17
ACTUAL
INERTIA
SETTING
3500
b.77H
-------
OYNO SITEI0320
TEST » 80-0793
I 197S LIGhT DUTY VEHICLE ANALYSIS I
PROCESSEDl 14IOUS9
OtC 4f 1979
MFR.
".ODE VEHICLE 1.0.
J20 . LM41C58290359
MFR. ALT. EQUIVALENT ACTUAL
VEH- REP. RUN. RETEST H.P. TEST DYNO
SION EVAP INIT. CHG. CODE ACHP METH. WEIGHT H.P.
ON . . 3500 11.2
TRANS.
CONFG.
48 of 53
OVER- / TEST TYPE /
DRIVE EXPERIMENTAL
CODE / TEST PROCEDURE /
Z BAG LA-4
DRIVE
CURB AXLE AXLE
PREP DATE WEIGHT WEIGHT GAUGE MEASURE
EMPTY
/- AMBIENT TEST CONDITIONS - /
BAHO WET DPY CVS
"HG BUL8 BULB UNITS UNIT
29.00 50.0 100.0 D 20C
/ IGNITION TIMING / / % CO /
»\ #2 RPM GEAR LEFT RIGHT COMB
IDLE SOAK
RPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
TEST DATE HR,
12- 1-79 12
OYNO
SITE
D220
ACTUAL
INERTIA
SETTING
3500
INDICATED
UYNO H.P.
11.2
DVU
H.P.
ODOM.
22025.7
TI»E
PRESSURE
45.00
NOX RELATIVE
FACTOR HUMIDITY
0.9143 18.8
ALDEHYDES
BAG 1 3.590 MILES 5.778 KM
VMIX= 2779.0 CU.FT. DILUTION FACTOR = 10.653
SITE «A215
HC-F 10
NOX-CMtM
C02
CO
EXHAUST SAMPLE
RANGE
14
16
23
17
METER
65.1
62.6
49.6
51.2
CONC.
48.73
63.16
1.240
126.10
BACKGROUND SAMPLE
RANGE
14
16
23
17
METEH
12.6
0.1
2.0
0.2
CONIC.
9.29
0.10
0.042
0.48
CORRECTED
CONCENTRATIONS
40.31 PPM
63.07 PPM
1.202 %
125.66 PPM
1
GM5.
1.83
8.68
1731.19
11.51
; EMISSIONS
GMS/MI CMS/KM
0.510 0.317
2.417 1.502
482.225 299.641
3.207 1.993
AUX. AUX. AUX.
FIELD1 FIEL02 CODE
MPG KPL L/100KM
18.1 7.72 13.0
'AG 2 3.910 MILES 6.293 KM
SITE »A215
MC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE
14
16
23
17
METER
21.2
24.5
39.0
18.1
WEIGHTED VALUES HC
OWAMS/M1LE 0.312
BEFORE ROUNDING .31 is
GRAMS/KM 0.1 SI4
BEFORE ROUNDING .1937
CONC.
15.68
24.64
0.937
43.96
CO
2.43
2.434
1.51
1.513
BACKGROUND SAMPLE
RANGE METER
14 13.2
16 0.1
23 1.5
17 0.2
VMIX= 4701.0 CU.FT.
C02
525.
525.5
327.
326.5
COMMENTS! DART BASELINE 6» 100 DEGREES F LA-4
NO HUMIDITY CONTROL BAG 1
STALLED AT STA*T
LE
ONC.
9.73
0.10
0.031
0.48
CORRECTED
CONCENTRATIONS
6.63 PPM
24.75 PPM
0.907 S
43.51 PPM
1
GMS.
0.51
5.76
2209.92
6.74
i EMISSIONS
GMS/MI GMS/KM
0.130 0.081
1.473 0.915
565.197 351.197
1.725 1.072
AUX. AUX. AUX.
FIELD1 F1ELD2 CODE
MPG KPL L,
15.6 6.64
t/JOOKM
1S.1
NOX
1.925
1.20
1.196
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
16.7
16.7461
16.7
16.7307
16.7
16.7307
KPL
7.1
7.1026
7.1
7.1129
7.1
7.1129
L/100KM
14.1
14.0791
14.1
14.0567
1<>.1
14.0587
CD
O
2540 0
DYNO SITEID220 TEST 0
-------
LltTHT" UuY?^EHl^£'r~ANALfsfs* f""~ PROCESSED! 14101110
DEC
49 of 53
•ODE VEHICLE 1.0.
iZQ LH41C53290359
MFR. ALT. EQUIVALENT ACTUAL
Vt*- HEP. HUN. RETtST H.P. TEST DYNO TRANS.
SION EVAP INIT. CHG. CODE ACHP METri. WEIGHT H.P. CONFG.
0 N ' 3500 11.3
PREP DATE
CUR'S
WEIGHT
DHIVE
AXLE
WEIGHT
GAUGE
EMPTY
AXLE
MEASURE
/ IGNITION TIMING —/
Ml »2 RPM GEAR
/ « CO -
LEFT RIGHT
COMB
OVER-
DRIVE
CODE
IDLE
RPM
/_.. JEST TYPE —
EXPERIMENTAL
/—— TEST PROCEDURE
2 BAG LA-4
SOAK
GEAR PERIOD
MEASURED
COASTOOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAPO WET DRY CVS
"HO BULB BULB UNITS UNIT
29.00 59.5 100.5 D 20C
ACTUAL
DYNO
TEST DATE HB. SITE
12- 1-79 12 0220
SETTING
3500
INDICATED
UYNO H.P.
11.2
DVU
H.P.
ODOM.
22033.0
TIRE
PRESSURE
45.00
NOX
FACTOR
1.0154
RELATIVE
HUMIDITY
26.1
ALDEHYDES
BAG 1 3.590 MILES 5.778 KM
VMIX= 2765.0 CU.FT. DILUTION FACTOR = 10.713
51Tt SA215
HC-FIO
MOX-CHEM
CO?
CO
EXHAUST SAMPLE BACKGROUND SAMPLE
RANGE HETEW CUNC. RANGE METEW
43.13 14
16
23
17
57.7
57.5
49.5
37.3
57.H9
1.237
91.36
16
23
17
7.7
U.I
1.9
0.0
'LE
:ONC.
5.66
0.10
0.040
0.0
CORRECTED
CONCENTRATIONS
37.99 PPM
57.80 PPM
1.201 *
91.36 PPM
1
GMS.
1.72
8.79
1720.91
8.33
AG 2 3.910 MILES 6.293 KM
VMIX= 4687.0 CU.FT.
SITE SA215
HC-FID
NOX-CHEM
C02 "
CO
EXHAUST bA
METEH
16.6
24.1
39.u
20.3
14
16
23
17
WEIGHTED VALUES MC
GRAMS/MILt 0.303
BEFOPt ROUNOING .3029
GRAMS/KM 0.1H8
BEFORE HOUNDING .18B2
CO
2.10
2.104
1.31
1.307
C02
521.
521.3
324.
323.9
NOX
2.00
2.002
1.24
1.244
COMMENTS* DART BASELINE w 100 DEGREES F LA-4
STALLED ON START
MASS EMISSIONS AUX.
GMS/MI QMS/KM FIELD1
0.478 0.297
2.448 1.521
479.363 297.862
2.320 1.442
AUX. AUX.
FIELD2 CODE
MPG
18.3
KPL
7.79
L/100KM
12.8
E BACKGROUND SAMPLE
CONC.
12.26
24.44
0.937
49.35
RANGE
. 14-
16
23
i7
METE*
7.3
0.3
1.8
0.5
CONC.
5.37
0.31
0.038
1.20
CORRECTED
CONCENTRATIONS
7.27 PPM
24.15 PPM
0.901 %
46.24 PPM
1
GMS.
0.56
6.23
2189.07
7.45
EMISSIONS
GMS/MI GMS/KM
0.142 0.086
1.592 0.989
559.864 347.884
1.906 1.165
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL L/100KM
15.8 6.70 14,9
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
16.9
16.8911
16.9
16.6802
16.9
16.8802
KPL
7.2
7.1751
7.2
7.1765
7.2
7.1765
L/100KM
13.9
13.9369
13.9
13.9342
13.9
13.9342
c
c
c
2540 0
DYNO SITEID220 TEST H 80-079Z
-------
MFR.
:ODE VEHICLE 1.0.
J20 LM41C5H290359
1975 LIGHT DUTY VEHICLE ANALYSIS I
.*, In.' iiK™""""'
PROCESSEDl 14IOOH4
MFR. ALT. EQUIVALENT ACTUAL
VER- REP. RUN. RETEST H.P. TEST OYNO
SION EVAP INIT. CHG. CODE ACHP METH. WEIGHT H.P.
0 N • 3500 11.2
-•.
DEC
" " ' 'Mif, -• -"-
4. 1979
50 of
OVER- / TEST TYPE —
TRANS. DRIVE EXPERIMENTAL
CONFG. CODE / TEST PROCEDURE
2 BAG LA-4
DRIVE
CU»8 AXLE AXLE / IGNITION TIMING / /—— % CO /
PREP DATE WEIGHT WEIGHT GAUGE MEASURE «1 *2 RPM GEAR LEFT RIGHT COMB
EMPTY
IDLE SOAK
RPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAHO WET DPY CVS
"KG BUL8 BULB UNITS UNIT
29.00 60.0 102.0 D 20C
DYNO
TEST DATE HR. SITE
12- 1-79 13 0220
ACTUAL
INEHTIA
SETTING
3bOO
INDICATED
OYNO H.P.
11.2
DVU
H.P.
ODOM.
22040.
TIRE
PRESSURE
45.00
NOX
FACTOR
1.0224
RELATIVE
HUMIDITY
25. 4
ALDEHYDES
BAG 1 3.590 MILES 5.778 KM
VMIX= 2753.0 CU.FT.
SITE KA215
HC-FID
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE
14
16
23
17
METER
70.3
70.2
53.2
69.0
CONC.
52.67
70.49
1.349
171.00
BACKGROUND SAMPLE
RANGE
14
16
23
17
METER
6.8
0.3
1.9
0.3
CONC.
5.00
0.31
0.040
0.72
CORRECTED
CONCENTRATIONS
48.18 PPM
70.22 PPM
1.313 *
170.35 PPM
1
GMS.
2.17
10.70
1873.19
15.46
1 EMISSIONS
GMS/MI GMS/KM
0.603 0.375
2.981 1.853
521.779 324.218
4.307 2.676
AUX. AUX. AUX.
TIEL01 FIELD2 CODE
MPG KPL L/100KM
16.7 7.11 14.1
.AG 2 3.910 MILES 6.293 KM
VMIX= 4668.0 CU.FT. DILUTION FACTOR = 13.175
SITE
-------
. . «-^B
MFR.
' :ODE VEHICLE 1.0.
J20 LH41C58290359
MFR.
VER- REP. RUN. RETEST
SION EVAP INIT. CHG.
0 N
DRIVE
CURB AXLE AXLE
PREP DATE WEIGHT WEIGHT GAUGE MEASURE
EMPTY
/- AMBIENT TEST CONDITIONS - /
BARO WET OPY CVS
"HG BULB BULB UNITS UNIT
29.00 58.0 100.0 D 20C
T~~]
:TEST
:ODE
/ —
»i
wsnrc'RrTuT'r
VEHICLE
ALT. EQUIVALE
H.P. TEST
ACHP METH. WEIGHT
3500
IGNITION TIMING /
«2 RPM GEAR
ANALYSIS 1 PROCESSED*
NT ACTUAL
DYNO TRANS.
H.P. CONFG.
11.2
LEFT RIGHT COMB
OVER-
DRIVE
CODE
IDLE
RPM
13I59«33 DEC 4. 1979 ®
51 of 53
EXPERIMENTAL
2 BAG LA-4
SOAK
GEAR PERIOD
MEASURED
COASTOOWN
TIME
f—-~«
DYNO
TEST DATE HR. SITE
12- 1-79 13 0220
BAG 1 3.590 MILES
ACTUAL
INERTIA
SETTING
3500
5.778 KM
INDICATED DVU TIRE NOX RELATIVE
OYNO H.P. H.P. ODOM. PRESSURE FACTOR HUMIDITY
11.2 22047.7 45. 0.9956 25.1
VMIX= 2746.0 CU.FT. DILUTION
SITE »A215 FXHAUST SAMHLE
RANGE
KC-FID 14
NOX-CMEM 16
C02 23
CO 17
JAG 2 3.910 MILES
METER
27.0
68. 8
53.1
54.5
6.293 KM
CONC.
20.01
69.10
1.346
134.39
SITE KA215 EXHAUST SAMPLE
RANGE
HC-FID u
NOX-CHEM 16
C02 23
CO 17
WEIGHTED VALUES
GhAMS/MlLE 0.
SEFORt ROUNDING
GRAMS/KM 0.
BEFORE ROUNDING
METER
13. d
37.3
41.3
9.S
HC
152
.1521
945E-01
.9449E-01
CONC.
10.1«
37.72
1.000
22.96
CO
2.08
2.079
1.29
1.292
BACKGROUND
RANGE METEfi
14 6.6
16 0.3
33 1.9
17 0.2
BACKGROUND
RANGE METER
14 6.5
16 0.4
23 1.9
i7 0.2
C02
559.
559.1
347.
347.4
SAMPLE
CONC.
4.85
0.31
0.040
0.4fl
VMIX =
SAMPLE
CONC.
4.78
0.41
0.040
0.48
NOX
2.61
2.611
1.62
1.623
CORRECTED
CONCENTRATIONS
15.65 PPM
6«, 83 PPM
1.310 %
133.96 PPM
4666.0 CU.FT.
CORRECTED
CONCENTRATIONS
5.76 PPM
37.34 PPM
0.964 %
22.53 PPM
ALDEHYDES
FACTOR = 9.843
MASS EMISSIONS
GMS.
0.70
10.19
1864.03
12.13
DILUTION
GMS/MI
0.195
2.839
519.229
3.378
FACTOR =
GMS/KM
0.121
1.764
322.634
2.099
13.349
MASS EMISSIONS
GMS.
0.44
9.40
2329.54
3.47
WEIGHTED
72-74
GMS/MI
0.112
2.403
595.791
0.837
VALUES
FTP
UNWEIGHTED FTP
GMS/KM
0.070
1.493
370.207
0.551
MPG
15.8
15.7658
15.8
15.7618
is. a
15.7618
AUX.
FIELD1
MPG
16.9
AUX.
FIEL01
MPG
14. &
KPL
6.7
6.7094
6.7
6.7010
6.7
6.7010
AUX. AUX.
FIELD2 CODE
KPL L/100KM
7.18
AUX. AUX.
FIELD2 CODE
13.9
KPL L/100KM
6.31
L/100KM
14.9
14.9042
14.9
14.9229
14.9
14.9229
15.8
O3
U)
COMMENTS* DART LA-4
PASSMASTER
04 A/C ON DEVICE OFF 100 DEGREES F-COLD ROOM
2540 0
OYNO SITE:D220 TEST » 80-0790
-------
u ..... "TES'i » ~ao-ufB9
HFR.
ODE VEHICLE I.D.
020 LH41C5H290359
MFR«
VER- REP. RUN. RETEST
SION EVAP INIT. CHG.
0 N
1 1975 LIGHT DUTY VEHICLE ANALYSIS
ALT.
TEST H.P.
ODE ACHP METH.
EQUIVALENT
TEST
WEIGHT
3500
ACTUAL
OYNO
H.P.
11.2
i PROCESSED! 13:58:12 DEC 4. 1979
52 of 53
TRANS. DRIVE EXPERIMENTAL
2 BAG LA-4
PREP DATE
DRIVE
CURB AXLE
WEIGHT WEIGHT
GAUGE
EMPTY
AXLE
MEASURE
/ IGNITION TIMING /
fcl »2 RPM GEAR
/ . % CO /
LEFT RIGHT COMB
IDLE SOAK
RPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
BAflO WET OPY CVS
"HG dULB BULB UNITS UNIT
29.01 5B.O 102.0 D 20C
DYNO
TEST DATE HR. SITE
12- 1-79 14 0220
ACTUAL
INEHTIA
SETTING
3500
INDICATED
DYNO H.P*
11.2
DVU TIRE
H.P. ODOM. PRESSURE
22055.0 45.00
NOX RELATIVE
FACTOR HUMIDITY
0.9955 23.7
ALDEHYDES
BAG 1 3.590 MILES 5.778 KM
SITE «A215
HC-FIO
NOX-CHEM
C02
CO
EXHAUST SAMPLE BACKGROUND SAMPLE
RANGE METER CONC. RANGE METER
14
16
23
17
59.6
74.8
51.4
45.0
44.57
75.04
1.294
110.57
14
16
23
17
6.3
0.3
1.9
0.2
VMIX = 2743.0 CU.FT.
'LE CORRECTED
ONC. CONCENTRATIONS
4.63 40.39 PPM
0.31 74.76 PPM
0.040 1.258 %
0.48 110.13 PPM
DILUTION FACTOR = 10.230
MASS EMISSIONS
GMS. GMS/MI GMS/KM
1.81 0.504 0.313
11.06 3.080 1.914
1788.41 498.163 309.544
9.96 2.774 1.724
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL L/IOOKM
17.6 7.48 13.4
JAG 2 3.910 MILES 6.293 KM
SITE KA215
HC-FID
NOX-CHEM
C02
CO
EXHAUST SAMPLE
RANGE METER CONC.
VMIX= 4633.0 CU.FT.
BACKGROUND SAMPLE CORRECTED
RANGE METER CONC. CONCENTRATIONS
14
16
23
17
14.3
39.0
41.2
16.2
WEIGHTED VALUES HC
GRAMS/MILE 0.302
BEFORE ROUNDING .3023
GRAMS/KM 0.108
BEFORE ROUNDING .1878
10.55
3V. <>2
0.998
39.31
CO
2.12
2.120
1.32
1.317
14
16
23
17
6.6
0.3
1.9
0.2
C02
546.
546.0
339.
339.2
4.85
0.31
0.040
0.48
NOX
2.78
2.778
1.73
1.726
6.06 PPM
39.14 PPM
0.961 *
38.87 PPM
GMS.
0.46
9.78
2306.33
5.94
i EMISSIONS
GMS/MI GMS/KM
0.117 0.073
2.500 1.554
589.855 366.519
1.518 0.943
AUX. AUX. AUX.
FIELD1 FIELD2 CODE
MPG KPL L/IOOKM
15.0 6.37 15.7
00
-P-
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
MPG
16.1
16.1228
16.1
16.1239
16.1
16.1239
KPL
6.9
6.8598
6.9
6.8549
6.9
6.8549
L/IOOKM
14.6
14.5776
14.6
14.5879
14.6
14.5879
COMMENTSI DART A/C. DEVICE ON LA-4
PASSMASTER TESTING
100 DEGREES F
2540 0
OYNO SHEI0220 TEST « 80-0789
-------
.&. raV-.Mfc
-iwrrear"BOYT
ANALYSIS I
SFR.
ODE VEHICLE 1.0.
020 LH41C5&290359
PREP DATE
DRIVE
CUR8 AXLE AXLE
WEIGHT HEIGHT GAUGE MEASURE
EMPTY
PROCESSED: 13(55:2?
L Iff*-"" "' '
DEC 4, 1979
MFR. ALT. EQUIVALENT ACTUAL
VEX- REP. RUN. RETEST H.P. TEST OYNO TRANS.
SION EVAP INIT. CHG. CODE ACHP METH. WEIGHT H.P. CONFG.
0 N . 3500 11.2
/ IGNITION TIMING / / * CO /
#1 »2 RPM GEAR LEFT RIGHT COM8
53 of 53
OVER- / TEST TYPE —
DRIVE EXPERIMENTAL
CODE / TEST PROCEDURE
2 SAG' LA-4
IDLE SOAK
RPM GEAR PERIOD
MEASURED
COASTDOWN
TIME
/- AMBIENT TEST CONDITIONS - /
8ARO WET OCY CVS
"HG BULB SULB UNITS UNIT
39.02 56.0 100.0 L> 20C
TEST OATt HP
12- 1-79 17
bAG 1 3.590
SITE *A215
HC-FID
NOX-CMEM
C02
CO
OYNO
. SITE
D220
MILES
ACTUAL
INtxTIA INDICATED
SETTING OYNO H.P.
3bOO 11.2
5.77B KM
EXHAUST SAMPLE
RANGE
1*
16
23
17
METEH
62. a
71 .4
51. B
39.0
CONC.
46.99
71.68
1.306
9b.59
DVU TIRE NOX RELATIVE
H.P. DOOM. PRESSURE FACTOR HUMIDITY
22062.0 45.00 0.9716 23.*
VMIX= 2719.0 CU.FT. DILUTION
BACKGROUND SAMPLE
RANGE
14
16
23
17
METER
6.4
0.4
2.0
0.2
CONC.
4.71
0.41
0.042
0.48
CORRECTED
CONCENTRATIONS
42.74 PPM
71.. 31 PPM
1.269 %
95.16 PPM
ALDEHYDES
FACTOR = 10.146
MASS EMISSIONS
GMS.
1.90
10.20
1787.15
8.53
GMS/MI
0.529
2.H42
497.814
2.376
GMS/KM
O.J29
1.766
309.327
1.477
AUX.
FIELD1
AUX.
FIELD2
AUX.
CODE
MPG
17.6
KPL
7.50
L/100KM
13.3
dAG 2 3.910 MILES 6.293 KM
SITE »A215
EXHAUST SAMPLE
HC-FIO
NOX-CHEM
C02
CO
HANGE
14
16
23
J7
METEH
13.6
3V. 9
41.2
V.2
CONC. (
10.03
40.32
0.990
22.25
JANG
14
16
23
J7
VMIX= 4651.0 CU.FT.
BACKGROUND SAMPLE CORRECTED
METER CONC. CONCENTRATIONS
6.5 4.78 5.61 PPM
0.5 0.51 39.85 PPM
2.0 0.042 0.959 »
0.1 0.24 22.03 PPM
WEIGHTED VALUES
GSAMS/MILE
HC
0.310
BEFORt WOUNDING .3098
GRAMS/KM 0.193
BEFORE ROUNDING .1925
CO
1.59
1.568
O.V87
.VB66
C02
546.
546.4
339.
339.5
NOX
2.66
2.661
1.65
1.653
COMMENTS: DART A/C ON DEVICE ON LA-4 100 DEGREES F
PASSMASTER TESTING
DILUTION FACTOR = 13.388
MASS EMISSIONS
GMS. GMS/MI GMS/KM
0.43 0.109 0.068
9.75 2.495 1.550
2310.57 590.939 367.192
AUX.
FIEL01
AUX.
FIELD2
AUX.
CODE
3.38
0.864
WEIGHTED VALUES
72-74 FTP
UNWEIGHTED FTP
0.537
MPG
16.1
16.146S
16.1
16.1360
16.1
16.1360
MPG
15.0
KPL
6.9
6.8700
6.9
6.8601
6.9
6.8601
KPL
6.37
L/SOOKM
15. 7
00
U1
L/100KM
14.6
14.5559
14.6
14.5769
14.6
14.5769
2540 0
OYNO SUEID220 TEST *
-------
so
1 of 4
Attachment G
Test Vehicle Description
Chassis model/year/make 1978 Ford Pinto
Engine
Type 1-4
bore x stroke 3.781 x 3.126
displacement 2.3 liter
compression ratio 9.0
maximum power @ rpm 88 hp @ 4800 rpm
fuel metering Feedback, electronic
fuel requirement Unleaded, tested with Indolene IHO unleaded
Drive Train
transmission type A
inertia weight 2750 Ibs.
Emission Control System EGR
Air Injection
Dual Oxidation Catalyst
-------
87 * *f
Test Vehicle Description
Chassis model year/make-1979 Chrysler LeBaron
Vehicle I.D. FM41G9F150932
Engine^
type Otto Spark, V-8
bore x stroke 3.91 x 3.31 in/99.3 x 84.1 ram
displacement 318CID/5211 CC
compression ratio 8.61:1
maximum power @ rpm 145 hp/108 k W
fuel metering 2 Venturi carburetor
fuel requirement . Unleaded, tested with Indolene IHO unleaded
Drive Train
transmission type ... 3 speed lockup automatic
final drive ratio 2.50
Chassis
type 4 door sedan
tire size FR 78 X 15
curb weight 3660 lb/1660 kg.
inertia weight 4000 Ib.
passenger capacity 6
Emission Control System
basic type EGR
Oxidation catalyst
Air Injection
-------
'j 88 3 Of 4
I
Test Vehicle Description
Chassis model year/make-1975 Dodge Dart
Emission Control System-Air Pump, Catalyst EGR
Engine
type Inline 6, 4 cycle
bore x stroke 3.40 x 4.125 in.
displacement 225 CId/3687 cc
compression ratio 8.4:1
fuel metering 1 Venturi, carburetor
fuel requirement Unleaded, tested with Indolene IHO unleaded
Drive Train
transmission type 3 speed automatic
final drive ratio 2.75
Chassis
type 4 door sedan
tire size D78 X 14
inertia weight 3500 Ibs.
passenger capacity 6
Emission Control System
basic type Air Pump
Oxidation Catalyst
EGR
Calibrated to 1975 California Standards
-------
I 4 of 4
1
* Test Vehicle Description
I Chassis model year/make-1979 Buick Regal
Vehicle ID 4J47A9H123351
Engine
type Otto Spark, V-6
bore x stroke 3.8 x 3.4 in.
displacement 3.8 liter/231 CID
compression ratio 8.0:1
maximum power @ rpm 115 hp/86 k W @ 4800 rpm
fuel metering 2 Venturi carburetor
fuel requirement Unleaded, tested with Indolene IHO unleaded
Drive Train
transmission type 3 speed automatic
final drive ratio 2.40
Chassis
j! type 2 Dr. Sedan
tire size P 195/75 R 14
curb weight 3312 lb/1502 kg.
passenger capacity 5
Emission Control System
; basic type EGR Oxidation Catalyst
:| Oxidation Catalyst
;j Air Injection
L
;:
-------
90
United States Patent OfSa
Attachment H
. i of ^ •
3.,462,954
Patented Aug. 26, 1969
3,462,964
AIR CONDITIONER CONTROL MEANS RESPON-
SIVE TO VEHICLE ENGINE POWER DEMANDS
Ralph K. Haroldson, Dallas, Tex.
(5725 E. 63rd Place S.. Tulsa. Okla. 7-4135)
Filed Sept. 12, 19r>7, Scr. No. 667,176
hit. Cl. B60h 3104; HOlh 35/34
U.S. CI. 62—133 12 Claims
ABSTRACT OF THE DISCLOSURE
A system for automatically shutting off an automobile
air conditioner if the full power of the automobile engine
is needed including a vacuum line connecting the auto-
mobile intake manifold with a pressure-responsive switch
having a flexible, concave cover, a normally open micro
switch with its operating button adjacent the concave
cover, and operable by inward movement of the con-
cave cover, a set screw for adjusting the position of the
micro switch relative to the concave cover in a hori-
zontal direction and a set screw for adjus:ing the position
of the micro switch relative to ths concave cover in a
vertical direction, a source of electrical power leading
to the pressure-responsive switch, a source of electrical
power passing from electrical switch to the operating
clutch of an air-conditioning compressor and an operative
connection berween the clutch and the air conditioner
compressor. In an alternate arrangement, an arm is
conn;cted to ths accelerator and the arm is positioned
to compress ths concave cover of the switch when the
accelerator is approaching the full power position.
Field of the invention
The present invention relates to an auto air conditioner
switch. In a more specific aspect, the present invention
relates to a simple electrical switch and a system for auto-
matically operating an automobile air conditioner there-
wi.h.
The prior art
It is a well-known fact that automobile air conditioners
require a substantial portion of the power of the auto-
mobile engine for their operation. This power require-
ment of the air conditioning system is particularly trouble-
some and dangerous when a high level of performance is
necessary. For example, when one is attempting to pass
another car, it is extremely important from a safety
standpoint that the full power of the engine be available.
While a number of complex systems have been provided
for speeding up the engine under these circumstances,
this does not provide an adequate answer since there is a
point at which the engine cannot be sp::d:d up and thus
be made to handle both the air-conditioning system and
the full power load of the automobile. Secondly, even
though the engine might be speeded up to handle both the
air conditioner and the full power load of the engine,
the operation of a thermostatic switch on the air condi-
tioner can result in sudden changes in the load. Further,
while a wids variety of switches have been proposed for
this and like us:, all such switches appear to be unduly
complex and expensive.
Summary of the invention
It is therefore an object of the present invention to
provide an improved switch and automatic switching
system for an automobile air conditioner which over-
comes the problems and deficiencies pointed out above.
It is another object of the present invention to provide
an improved switch for an auto air-conditioning system.
A further objict of the present invention is to provide an
g improved system for shutting off an automobile air-
conditioning system when full power of the engine is
required for auto operation. Another and further object
of the present invention is to provide an improved sys-
tem for automatically shutting off an auto air conditioner
10 when the engine is operated at a point approaching its
full power capacity. Siill another object of the present
invention is to provide an improved system for automati-
cally shutting off an auto air conditioner in response to
an increase in the intake manifold pressure of the engine
15 above a preselected point. Another and further object of
the present invention is to provide an improved switch
wherein a flexible concave surface forms one exterior
wall of the switch. Another and further object of the pres-
ent invention is to provide an improved switch wherein a
20 flexible, concave element forms one exterior wall of the
switch and flexing of this element depresses the plunger
of a double-throw, snap-action electrical switch.
Briefly, the present invention involves a system for
turning off an auto air conditioner when full power is
25 required for operation of the auto, including menns for
sensing a predetermined condition of the automobile
engine as maximum engine power is approached and
switch means responsive to the sinsed condition to in-
terrupt the electrical circuit to the air conditioner when
30 said predetermined condition is sensed.
Brief description of the drawings
In accordance svith the drawings, FIGURE 1 shows
the system of the present invention in schematic form;
35 FIGURE 2 shows the operation of the switch of the
present invention by different actuating 'means than FIG-
URE 1;
FIGURE 3 shows one form of the switch of the pres-
ent invention; and
FIGURE 4 shows another form of the switch of the
40
50
00
present invention.
Description of the preferred embodiments
Referring now to the drawings, FIGURE 1 shows an
automobile engine 10 having a belt or other appropriate
transmitting means op:ratively connecting the engine to
one element of ths clutch 14. The other element of the
clutch 14 is, in turn, coupled to an air-conditioning com-
pressor 16. Compressor 16, of course, has refrigerant
passing to and from the unit through refrigerant lines
18. The continuously rotating element of clutch 14 is
electrically actuated by power transmitted from a power
source through lines 26 and lines 28. Forming a pan of
the engine 10 is intake manifold 20. In open communica-
tion with intake manifold 20 is section line or vacuum line
22. The other end of vacuum line 22 is connected to
pressure-responsive switch means 24. The pressure-
responsive switch means 24 is mounted in lines 26 and 28
in a manner such that the switch will make and break
the circuit between the source of power and the air
conditioner clutch 14.
In the operation of this form of the present invention,
the pressure-responsive element of pressure-responsive
switch means 24 senses the intake manifold pressure of
the engine. When the throttle is opened up to a point
near its full capacity, the manifold pressure approaches
atmospheric pressure. The pressure-re.-.ponsive element
senses this condition and responds to a preselected pre.s-
-------
permit movement or the operating element of s;nu switkn
means toward and away from the flexible wall of sa/u
container.
12. A system in accordance with claim 9 wherein the
switch means is adjustably mounted on the container to
permit movement of the operating element of said switch
means laterally with respect to the center of flexure of
the flexible wall of said container and to permit move-
ment of said operating element of said switch means
toward and away from said flexible wall of said container.
2.107,A4i -vi'Mp (><..- , ^ fta~-133 X
2,263.667 > dsz "r---------- 62—133
5 2,929,226 3/l> .-;er et al. 62—215
3,121,314 2/1964 ..oyanagi 62—133
A. HARRY LEVY, Primary Examiner
in U.S. Cl. X.R.
62—323; 180—1, 77, 53; 200—61.89, S3
-------
the pressure-responsive switch means, turns n<: swit;-.!i
off and thereby interrupts (he pow;r tu the air cont!-:ti'.:n«r
clutch 14. Although the manifold pressure remains :it
this relatively high pressure (near atmospheric) for only
a small fraction of the time, this fraction of time occurs
when full power of the engine is needed most, such as
when attempting to pass another car, etc. When the
manifold pressure again drops, this is sensed by the
pressure-responsive element of the swkch means and this
element responds to the lowered pressure to actuate the
electrical switch and again close the circuit between the
power source and the air conditioner compressor.
FIGURE 2 of the drawings shows an alternate means
of operating the switch. However, before discussing the
details of FIGURE 2, it is believed best to discuss the
construction of the switch of ths present invention which
actually can be pressure-responsive or operated by an
appropriate arm mechanism.
Specifically referring to FIGURES 3 and 4, the switch
of the present invention is made up of a base element in
the general shape of a circular can bottom 30, a vacuum
line 32 in open communication with base 30 and desig-
nated as vacuum line 32 leads to the engine manifold
where the manifold pressure is the condition sensed. The
switch has a generally concave cover 3-1 which fits tightly
over the base 30 to form an airtight container. It is
obvious at this point that the cover 34 may be concave
or convex and that the concavity or convexity may be
in the base rather than in the cover depending on how
the unit is to be mounted. Further, where mechanical
operation of the switch is desired, the vacuum line 32 may
be eliminated. Mounted within the enclosure is a micro
switch 36 having a plunger 38. In the instance shown in
FIGURE 3, micro switch 36 is a normally open switch
and when the cover 34 is depressed either mechanically
or by drawing a vacuum through line 32, the plunger
38 will be depressed, closing the circuit in which switch
36 is mounted. Switch 36 is mounted on a bracket in a
manner such that it may slide to the right and left a
limited amount. This bracket (not shown) is positioned
behind switch 36 to permit movement of switch 36 in a
vertical direction. In the variations shown in FIGURE 4,
the switch can only be pressure actuated since switch 36
is mounted on a flexible arm 42 above the cover 34 of
the container. Of course, by moving the switch slightly
to the side of the center, mechanical operation for flex-
ing of the cover 34 may be carried out. In any event, in
this instance, switch 36 is a normally closed switch which
is open when cover 34 is in its normal state of flexure
and which will be closed when the plunger 38 is released
by the downward flexure of cover 34. Switch 36 in FIG-
URE 4 is also mounted on arm 42 in a manner to permit
vertical and horizontal movement thereof. In both FIG-
URES 3 and 4, vertical movement of switch 36 and hence
a change in the set point of the switch is effected by means
of set screw 44. Horizontal movement of switch 36 and
hence a change in the differential pressure response of
the switch is effected by adjustment of the screw 46.
In the alternative form of FIGURE 2 which does not
require a sensing of the manifold pressure, operation can
be effected mechanically by depressing the accelerator of
the automobile to a point near its ultimate limit. As
shown in FIGURE 2, the accelerator control rod 50 is
connected to pivotal tab 52. Pivotal tab 52 is mounted
on pivot 54 on the side of the carburetor of the engine
48. An operating pin or rod 56 bears against the top of
switch 58. Switch 58 is positioned and set to operate and
open the switch when the accelerator nears its ultimate
travel, rod 50 nears its extreme pull to the left, and tab
52 approaches its maximum clock-wise rotation. Thus,
in accordance with FIGURE 2, when the accelerator is
depressed to a point near its maximum limit, in order to
pass another car, etc., the pin 56 operates the switch
means 58, the switch is opened and the air conditioner
10
15
20
30
40
50
70
75
,..eain closes and ihi- :iir conditioner may operate
in respond '>• ''••• ••"•••rr- ".-ttittt.! »wiu:ii.
While the prcn .ni'on has been described with
reference to speciti ..sirations and specific examples,
it is to be understood that these are illustrative only.
I claim:
1. A system for automatically shutting off an auto
accessory adapted to be driven by the engine of said auto
when the operation of said engine approaches its maxi-
mum capacity, as indicated by a preselected high pressure
in the intake manifold of said engine, comprising; sensing
means, operatively connected to said intake manifold of
said engine, for sensing said preselected high pressure:
and switch means operatively coupled to said sensing
means and operable by said sensing means, in a manner
such that said switch means is opened when said sensing
means senses said predetermined high pressure, and opera-
tively connecting said engine to said accessory whereby
said accessory is operative or non-operative as dictated
by said switch.
2. A system in accordance with claim I wherein the
preselected manifold pressure is a pressure approaching
atmospheric pressure.
3. A system in accordance with claim 1 wherein the
sensing means is a closed, generally-hollow container hav-
ing a flexible wall which is flexed by a change in pressure
in the container, the switch means is mounted adjacent
said flexible wall and the operating element of ssid switch
means is operated by flexure of said flexible wall.
4. A system in accordance with claim 3 wherein the
switch means is adjustably mounted on the container to
permit movement of the operating element of said switch
means laterally with respect to the center of flexure of the
flexible wall of said container.
5. A system in accordance with claim 3 wherein the
switch means is adjustably mounted on the container to
permit movement of the operating element of said switch
means toward and away from the flexible wall of said
container.
6. A system in accordance with claim 3 wherein the
switch means is adjustably mounted on the container to
permit movement of the operating element of said switch
means laterally with respect to the center of fle.xure of
the wall of said container and to permit movement of
said operating element of said switch means toward and
away from said flexible wall of said container.
7. A system for automatically shutting off an auto
air-conditioner adapted to be driven by the engine of said
auto when the operation of said engine approaches its
maximum capacity, as indicated by a preselected high
pressure in the intake manifold of said engine, comprising;
sensing means, operatively connected to said intake mani-
fold of said engine, for sensing said preselected high pres-
sure; and switch means operatively coupled to said sensing
means and operable by said sensing means, in a manner
such that said switch means is opened when said sensing
means senses said predetermined high pressure, and oper-
atively connecting said engine to said air-conditioner
whereby said air-conditioner is operative or non-operative
as dictated by said switch.
8. A system in accordance with claim 7 wherein the
preselected manifold pressure is a pressure approaching
atmospheric pressure.
9. A system in accordance with claim 7 wherein the
sensing means is a closed, generally-hollow container hav-
ing a flexible wall which is flexed by a change in pressure
in the container and the switch means is mounted adja-
cent said flexible wall and the operating element of said
switch means is operated by rlexure of said flexible wall.
10. A system in accordance with claim 9 wherein the
switch means is adjustably mounted on the container
to permit movement of the operating element of said
switch means laterally with respect to the center of flexure
of the flexible wall of said container.
-------
r-w_^ ,r ^
93
4 of 4
_
Aug. 26, 1969 R. K. HAROLDSON 3'',462,964
AIR CONDITIONER CONTROL MEANS RESPONSIVE
TO VEHICLE ENGINE TOWER DEMANDS
Piled Sept. 12, 1967
L.
FIG. I.
16
FIG. 3.
46
32
;: 44
FIG. 2.
Ro/p
INVENTOR
K. Haro/dson
BY
ATTORNEY
------- |