SEPA
United States       Office of Mobile Source Air Pollution Control
Environmental Protection Emission Control Technology Division
Agency          2565 Plymouth Road
             Ann Arbor, Ml 48105
                                                EPA-460/3-79-OOg
                                                June 1979
 Characterization of Gaseous and
 Particulate Emissions from Light-
 Duty Diesels Operated on
 Various Fuels

-------
                                            EPA-460/3-79-008
           CHARACTERIZATION OF
GASEOUS AND PARTICIPATE EMISSIONS
         FROM LIGHT DUTY DIESELS
       OPERATED ON VARIOUS FUELS
                            by
                         Charles T. Hare

                      Southwest Research Institute
                        6220 Culebra Road
                        San Antonio, Texas
                            78284
                       Contract No. 68-03-2440
                    EPA Project Officer: T.M.Baines
                          Prepared for

                 ENVIRONMENTAL PROTECTION AGENCY
                    Office of Air, Noise and Radiation
                  Office of Mobile Source Air Polution Control
                   Emission Control Technology Division
                      Ann Arbor, Michigan 48105

                           July 1979

-------
This report is issued by the Environmental Protection Agency to report technical data of
interest to a limited number of readers. Copies are available free of charge to Federal
employees, current contractors and grantees, and nonprofit organizations  in limited
quantities  from the Library Services Office (MD-35), Research Triangle Park, North
Carolina  27711; or,  for a fee, from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia 22161.
This report  was furnished to the Environmental Protection Agency  by Southwest
Research Institute, 6220 Culebra Road, San Antonio, Texas, in fulfillment of Contract
No. 68-03-2440. The contents of this report are reproduced herein as  received from
Southwest Research Institute. The opinions, findings, and conclusions expressed are
those of the author and not necessarily those of the Environmental Protection Agency.
Mention of company or product names is not to be considered as an endorsement by the
Environmental Protection Agency.
                       Publication No. EPA-460/3-79-008

-------
                                  ABSTRACT
      Gaseous and particulate emissions of a non-routine nature were
measured in the exhausts of two light-duty Diesel-powered automobiles.
These vehicles were a Mercedes 240D and a Volkswagen Rabbit Diesel.
Visible exhaust smoke, regulated gaseous pollutants, and exhaust odor
were also measured.  Five fuels were used in this investigation, re-
presenting broad ranges in sulfur content, hydrocarbon-type composition,
density, cetane index, and a number of other properties.

      Vehicle operating procedures used for test purposes included both
those specified in Federal Regulations (FTP, FET) d'* and several others
simulating different situations (CFDS, NYCC, steady-state, odor test
conditions).  Gas samples were acquired from both direct and dilute
exhaust streams.  Particulate samples were taken using an exhaust di-
lution tunnel operating on the entire exhaust stream of each engine.
Filter-collected particulate weights provided the basis for particulate
mass emission calculations.  Most of the sampling and analytical pro-
cedures used were developed during earlier EPA Contracts 68-02-1230^2'^)
68-03-2196 Task Order 4<4'5), and 68-02-1777<6>.

      A statistical analysis of the particulate emissions data was con-
ducted, using some of the methods developed under Contract 68-02-1777'^)
Analysis of gaseous emissions data and particulate size data was also
conducted.
a
  Superscript number in parentheses designate references at end of report
                                     111

-------
                                  FOREWORD
      This Final Report covers the entirety of EPA Contract No.  68-30-2440
conducted for the Emissions Control Technology Division,  U.S.  Environmental
Protection Agency; 2565 Plymouth Road;  Ann Arbor,  Michigan 48105.   The EPA
Project Officer was Mr. Thomas M.  Baines.   Principal Investigator  for South-
west Research Institute was Charles T.  Hare, and overall  supervision was
provided by Karl J. Springer.   The project was performed  during  the period
August 1976 through May 1978,  and it was  identified within Southwest Research
Institute as Project No.  11-4654.
                                    IV

-------
                                IV
                             TABLE OF CONTENTS

                                                                   Page

ABSTRACT

FOREWORD

LIST OF FIGURES                                                     vii

LIST OF TABLES                                                        x

I.       INTRODUCTION                                                 1

II.      SUMMARY AND CONCLUSIONS                                      3

III.     TEST VEHICLES AND FUELS                                      7

         A.   Test Vehicles                                           7
         B.   Test Fuels                                              9

IV.      INSTRUMENTATION AND ANALYTICAL PROCEDURES                   14

         A.   Simulation of Vehicle Road Operation                   14
         B.   Visible Smoke Measurements                             15
         C.   Routine Gaseous Emissions Measurements                 17
         D.   Measurement of Non-Routine Gaseous Emissions           17
         E.   Evaluation of Exhaust Odor                             21
         F.   Particulate Mass Rate, Concentration, and
               Aerodynamic Sizing                                    21
         G.   Particle Sizing by Transmission Electron Microscope
                (TEM)                                                 29
         H.   Analysis of Particulate Composition                    29
         I.   Analysis of the Soluble Fraction of Particulate
               Matter                                                34

V.       TEST PLAN, OPERATING SCHEDULE, AND DATA REDUCTION           35

         A.   Test Plan                                              35
         B.   Vehicle Operating Schedules                            37
         C.   Data Reduction                                         39

VI.      GASEOUS EMISSION AND ODOR RESULTS                           45

         A.   Regulated Gaseous Emissions Results                    45
         B.   Aldehyde Results                                       45
         C.   Gaseous Phenol Results                                 45
         D.   Analysis of Trap-Collected Gaseous Hydrocarbons        48
         E.   Results of Odor Evaluations and Corresponding
               Emissions Tests                                       50
         F.   Other Gaseous Emissions Data                           57
v

-------
                       TABLE OF! CONTENTS (Cont'd.)
VII.     SMOKE AND PARTICULATE EMISSION RESULTS                      59

         A.   Visible Smoke Emissions                                59
         B.   Particulate Mass Emissions and Concentrations          60
         C.   Particle Size Distributions                            66
         D.   Analysis of Particulate Composition                    81
         E.   Amount and Composition of Organic Solubles in
               Particulate Matter                                    87
         F.   Other Particulate Emissions Data                       97

VIII.    MUTAGENIC ACTIVITY OF ORGANIC SOLUBLES IN PARTICULATE
          MATTER, RESULTS AND ANALYSIS                               99

IX.      STATISTICAL ANALYSIS OF FUEL AND EMISSIONS DATA            106
         A.   Statistical Methodology
         B.   Numbering of Variables
         C.   Analysis of Fuel Variables
         D.   Relationships Between Emissions Variables
         E.   Relationships Between Emissions and Fuel
               Variables
         F.   Effect of Operating Schedules on Emissions
               Variables
         G.   Effect of Ambient Variables on Particulate
               Emissions
REFERENCES

APPENDIXES
106
108
110
116

117

129

131

133
         A.   Contract 68-03-2440 Scope of Work
         B.   Communications on Fuels from W.T. Tierney of Texaco
         C.   Sample Analytical Procedures
         D.   Time-Speed Tabulations of Cyclic Schedules used
               for this Project in Seconds and km/h
         E.   Data Forms and Data Reduction Programs
         F.   Gaseous Emissions and Odor Data
         G.   Smoke and Particulate Emissions Data
         H.   Data Related to Statistical Analysis
                                    VI

-------
                               LIST OF FIGURES

Figure                                                              Page

  1       Mercedes 240D test vehicle                                   8

  2       Volkswagen Rabbit Diesel test vehicle                        8

  3       Boiling ranges of several fuels for composition             10

  4       Light-duty vehicle chassis dynamometer used for all
           testing except that involving exhaust odor evaluations     14

  5       Chassis dynamometer used for test involving odor
           evaluations                                                15

  6       Smokemeter mounted on Mercedes 240D                         16

  7       Smokemeter mounted on VW Rabbit Diesel                      16

  8       Dilute exhaust analysis system                              18

  9       Continuous dilute hydrocarbon analysis/integration
           system                                                     18

 10       Schematic diagram of aldehyde sampling system               19

 11       Schematic diagram of gaseous HC sampling system
            (for boiling range analysis)                               20

 12       A.D. Little DOAS analyzer                                   22

 13       Chromosorb 102 traps being loaded for DOAS analysis         22

 14       Continuous hydrocarbon analyzer for raw exhaust             23

 15       Continuous CO, CO9, and NOV analyzers for raw exhaust       23
                           £*        X

 16       Schematic diagram of exhaust dilution tunnel                24

 17       Mercedes 240D operating with particulate dilution
           tunnel                                                     26

 18       VW Rabbit Diesel operating with particulate dilution
           tunnel                                                     26

 19       Particulate sampling probe external detail                  27

 20       Particulate sampling probe internal detail                  27

 21       Particle sizing impactor disassembled, without
           collection media                                           28
                                     VI1

-------
                          LIST OF FIGURES (Cont'd.)

Figure

 22       Unused discs and filter for impactor                        28

 23       Discs and filter for impactor with collected sample         28

 24       Microbalance used to weigh filters,  with temperature-/
           humidity-controlled chamber                                30

 25       Collection grid for TEM study mounted on impactor disc      30

 26       Collection grid for TEM study detail                        30

 27       Templates for sizing agglomerates on TEM micrographs        31

 28       Schematic diagram of phenol sampling system                 33

 29       Speed-time traces of FTP, CFDS, FET, and NYCC operating
           schedules                                                  38

 30       Boiling ranges for fuels and gaseous HC, Mercedes 240D      54

 31       Boiling ranges for fuels and gaseous HC, VW Rabbit Diesel   55

 32       Impaction zone on  stainless disc by SEM at lOOx            67

 33       Portion of impaction zone on stainless disc by SEM
           at 10,000x                                                 67

 34       TEM micrograph at 21,600x                                   68

 35       TEM micrograph at 87,500x                                   69

 36       Average weight percentages of particulate matter collected
           by impactor stage, vehicle, and fuel                       72

 37       Average weight percentages of particulate matter collected
           by impactor stage and operating schedule                   73

 38       Average cumulative particle size distribution by impactor,
           two vehicles                                               74

 39       Average cumulative particle size distribution by impactor,
           five fuels                                                 75

 40       Average cumulative particle size distribution by impactor,
           eight operating schedules                                  75
                                     Vlll

-------
                          LIST OF FIGURES  (Cont'd.)

Figure                                                              Page

 41       Range of cumulative numerical percentages of
           agglomerates observed, all collection locations
           and both test runs                                         80

 42       Cumulative mean percentages of agglomerates by number
           and by mass  (estimated), all collection locations and
           both test runs                                             82

 43       Boiling ranges for fuels, oils, and solubles                98
                                     IX

-------
                               LIST OF TABLES

Table

  1       Description of Test Vehicles                                 1

  2       Properties of the Five Test Fuels                           12

  3       "National Average" Properties from Fuel Surveys             13

  4       Ranges in Properties of Test and Survey Fuels               13

  5       Outline of Chemical and Physical Exhaust Evaluations        36

  6       Test Plan for Each Vehicle-Fuel Combination                 37

  7       Basic Statistics for Vehicle Operating Schedules            39

  8       Description of Odor Measurement Schedules                   40

  9       Air and Exhaust Flow Data Used to Compute Emitted
           Particulate Concentrations                                 42

 10       Regulated Gaseous Emissions Data for a Mercedes 240D
           Operated on Five Diesel Fuels                              46

 11       Regulated Gaseous Emissions Data for a VW Rabbit Diesel
           Operated on Five Diesel Fuels                              47

 12       Summary of "Total" Aldehyde Mass Emissions                  48

 13       Gaseous Phenol Results                                      49

 14       Summary of Gas Chromatograph Analysis of Trap-Collected
           Gaseous Hydrocarbons, Mercedes I240D                        51

 15       Summary of Gas Chromatograph Analysis of Trap-Collected
           Gaseous Hydrocarbons, VW Rabbit Diesel                     52

 16       Gas Chromatograph Analysis of Five Test Fuels               53

 17       Summary of Odor and Corresponding Emissions Data,
           Mercedes 240D                                              55

 18       Summary of Odor and Corresponding Emissions Data,
           VW Rabbit                                                  53

 19       Summary of Smoke Data by Vehicle and Fuel                   59

 20       Particulate Mass Emissions for a Mercedes 240D              61

 21       Particulate Mass Emissions for a VW Rabbit Diesel           62

-------
                          LIST OF TABLES (Cont'd.)

Table                                                               Page
 22       Time-Based Particulate Emissions for Two Diesel
           Vehicles                                                   64

 23       Particulate Concentrations for Two Diesel Vehicles          65

 24       Analysis of Particle Size Distribution Data From Inertial
           Impactor Tests                                             70

 25       Summary of Agglomerate Size Data From TEM Micrographs       78

 26       Cumulative Agglomerate Size Data From TEM Micrographs       79

 27       Average Cumulative Agglomerate Distributions From TEM
           Micrographs Based on Numerical and Mass Criteria           81

 28       Carbon, Hydrogen, Nitrogen, and Sulfur in Exhaust
           Particulate Matter from a Mercedes 240D Operated on
           Five Fuels                                                 83

 29       Carbon, Hydrogen, Nitrogen, and Sulfur in Exhaust
           Particulate Matter from a VW Rabbit Diesel Operated on
           Five Fuels                                                 84

 30       Summary of Sulfate Data on Two Diesel Vehicles              86

 31       Sulfur Recovery in Particulate by X-Ray and BCA             86

 32       Summary of Phenol Compounds in Particulate Matter,
           Time Basis                                                 88

 33       Summary of Phenol Compounds in Particulate Matter,
           Distance Basis                                             89

 34       Organic Soluble Content of Particulate Matter               90

 35       Major Elements in Organic Solubles from Particulate Matter  91

 36       Summary of Results for BaP in Particulate Matter            92

 37       Chromatograph Analysis of Organic Solubles in Particulate
           Matter for the Mercedes 240D                               95

 38       Chromatograph Analysis of Organic Solubles in Particulate
           Matter for the VW Rabbit Diesel                            96

 39       Summary of Boiling Range and Recovery Data for Organic
           Soluble Fraction of Particulate Matter                     97
                                      XI

-------
                          LIST OF TABLES (Cont'd.)

Table                                                               Page

 40       Ames Bioassay Data on Samples from Two Diesel
           Automobiles
                                                                     101
 41       Means and Standard Deviation of Specific Activity
           for Vehicle and Fuel Types                                1°2

 42       Analysis of Variance Tables for Specific Activity
           Versus Vehicle and Fuel Types                             102

 43       Means, Standard Deviation, and Pairwise Correlations
           Between Specific Activity and Fuel Composition Variables  103

 44       Comparison of Mutagenic Activity with Other Emissions
           Data, Cold FTP Runs Only                                  104

 45       Coding of Fuel, Operating Schedule, and Emission
           Variables, and Other Parameters                           109

 46       Basic Statistics for Fuel Variables (59-96)                111

 47       Correlations Between Boiling Percentiles Obtained by
           Two Analysis Methods                                      113

 48       Correlations Between Boiling Percentiles by ASTM-D2887     114

 49       Strong Pairwise Correlations Between Selected Fuel
           Variables  (r > 0.8)                                       115

 50       Summary of Selected Strong Emissions - Emissions
           Correlations                                              117

 51       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           Particulate Mass  (V4), g/h                                119

 52       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           Solubles  (V6), % of Particulate Mass                      120

 53       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           Sulfur  (V10), mg/h                                        121

 54       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           Sulfate  (Vll), mg/h                                       122
                                     XI1

-------
                           LIST OF TABLES  (Cont'd.)

Table

 55       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           BaP  (V12), yg/h                                           124

 56       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           100-CHNS  (V35), % of Particulate Mass                     125

 57       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           Hydrocarbons  (V40), g/h                                   126

 58       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           CO  (V41), g/h                                             127

 59       Multiple Comparisons of Means and Strongest Pairwise
           Fuel Variable Correlators for Emissions Variables:
           NOV  (V42), g/h                                            128
             X

 60       Correlation Matrix for Operating Schedule Variables
           and Nine  Emissions Variables, Both Vehicles               130

 61       Results of Linear Regressions, Particulate Mass Rate
           Against Humidity, Temperature,  and Atmospheric
           Pressure                                                  132
                                     Xlll

-------
                              I.  INTRODUCTION
      Beginning with the 1975 model year, light-duty diesel-powered vehicles
were brought under Federal exhaust emission standards(7).  This action indi-
cated that EPA considered it likely that U.S. sales volume of light-duty
Diesels would soon become appreciable, due to concern over fuel economy and
other factors.  The advent of the Volkswagen and Oldsmobile Diesels within
the past two years has shown the earlier EPA action to be very timely.

      At present, light-duty Diesel gaseous exhaust emissions are regulated
on the same basis as those of light-duty gasoline-powered vehicles.  Diesel
crankcase emissions and evaporative emissions are currently unregulated.
Current and near-term future Federal regulations which apply to light-duty
vehicles are summarized below:
Model year
1978
1979
1980
1981
1982
1983
1984
1985
Standards in g/mi
HC
1.5
1.5
0.41
0.41
0.41
0.41
0.41
0.41
CO
15.
15.
7.0
3.4a
3.4a
3.4
3.4
3.4
NOX
2.0
2.0
2.0
1.0a
1.0a
1.0a
1.0a
1.0
Standards in g/km
HC
0.93
0.93
0.25
0.25
0.25
0.25
0.25
0.25
CO
9.3
9.3
4.3
2.1
2.1
2.1
2.1
2.1
NOX
1.2
1.2
1.2
0.62
0.62
0.62
0.62
0.62
Corporate average
fuel economy*3
mi/gal
18.
19.
20.
22.
24.
26.
27.
27.5
VlOO km
13.1
12.4
11.8
10.7
9.8
9.0
8.7
8.6
    waivers could apply to increase these limits  (NOX for Diesels, CO for
    gasoline vehicles) , per Section 202 of the Clean Air Act
    administered by the U.S. Department of Transportation
Beginning with the 1981 model year, total particulate mass emission regulations
are proposed for light-duty Diesel-powered vehicles(8).  The proposed limits
are 0.6 g/mi  (0.37 g/km) for 1981 and 1982 vehicles, and 0.2 g/mi  (0.12 g/km)
for 1983 and later vehicles.

      Of substances which are known to be emitted by Diesel engines in meas-
urable amounts, some of those absent from current and known future light-duty
regulations are solubles in particulate matter, visible smoke, odor, sulfate,
and numerous other constituents of both exhaust gases and particulate matter.
The project being reported on here was intended to broaden the available data
base on  (especially unregulated) emissions from light-duty Diesels, including
effects of different fuels on emissions.  At the time this project was per-
formed, total particulate matter was also an unregulated pollutant.

      A number of reasons exist to explain why unregulated pollutants have not
been controlled, not all of which apply to each individual pollutant.  These
reasons include:

-------
      •  readily observable short-term toxic, irritant, or nuisance effects
        not present;

      •  simple measurement methods not available;

      •  definitive health effects studies and risk assessments not complete;

      •  data on association with hazardous or carcinogenic substances not
        available.

This project, as well as other current and recent  work(6,9,10,11)f ±s starting
to provide data and measurement methods necessary  to determine what additional
pollutants from the Diesel, if any, need to be researched further or regulated
by law.

-------
                         II.  SUMMARY AND CONCLUSIONS
      The study detailed in this report was intended to provide information
to EPA and the general public on both regulated and unregulated emissions
from Diesel automobiles, and to describe as many fuel effects on these emis-
sions as possible.  These goals have been achieved, and information is also
included on the influence of operating schedules on emissions.  Data on muta-
genic activity of extracts from Diesel particulate samples, developed by EPA's
Research Triangle Park Laboratories, are presented and discussed for those
samples derived from the test vehicles.

      One of the major challenges overcome in performing this work was the
integration of a number of sampling procedures into each test, thereby in-
creasing the number of variables to be studied.  Efficiency was achieved by
minimizing wasted test repetitions which would have resulted from incorpo-
rating fewer sampling procedures into each test run.  Separate tests were
conducted for gaseous and particulate sample collection, however,- since cur-
rent practice  (1977) did not specify simultaneous gaseous and particulate
sampling.  The test format was designed to provide the maximum amount of
emissions characterization information using commercially-available fuels and
a number of operating schedules, but the experimental design was not optimized
for statistical analysis of fuel effects on emissions by regression techniques.

      The most important observations and conclusions reached as a result of
this project  (not necessarily in order) are as follows:

      1.  Regulated gaseous emissions were not strongly affected by fuel com-
position, except for higher HC emissions from the VW Rabbit Diesel on EM-241-F
 ("minimum quality") No. 2 fuel during operating schedules containing substantial
idle time.  Regulated emissions were influenced somewhat more strongly by oper-
ating schedule.  These results may not apply to other Diesel engines.

      2.  Aldehydes were measured by the DNPH procedure, which is yet to be
fully qualified for Diesel engines.  These data indicated that the VW emitted
somewhat more aldehydes than the Mercedes, however, and that fuel effects
were mixed.  Substantial operating schedule effects on aldehydes were in evi-
dence, with generally lower values for schedules involving low  (or zero) speed
variations.

      3.  Phenols were found in exhaust gases at higher mass rates than in
particulate.  The VW generally produced more phenols than the Mercedes,
especially when "minimum quality" No. 2 fuel  (EM-241-F) was used.  Maximum
phenol emission rates for both vehicles were under 32 mg/h, and para-cresol
was found in more samples than any of the other compounds analyzed.  The
phenol procedure has not yet been fully qualified.

      4.  Analysis of trap-collected gaseous hydrocarbons showed higher boiling
percentile temperatures than for corresponding fuels, as well as higher tem-
peratures for samples taken during tests on No. 1 fuel than those for samples
taken during tests on No. 2 fuels.  This result, although based on very few
observations, runs counter to expectations that gaseous hydrocarbons are
closely related to fuel in composition.

-------
      5.  Visible smoke from the test vehicles was generally very low except
for a cold start peak and a few acceleration peaks.   The VW also produced
high "cold idle" smoke when EM-241-F "minimum quality" No.  2 fuel was used.

      6.  Particulate mass emissions from the Mercedes 240D were somewhat
higher than those from the VW Rabbit Diesel, averaging about 29 percent
greater by individual fuels, roughly in proportion to the difference in fuel
consumed.  Use of No. 1 fuel (EM-240-F)  produced least particulate mass; and
use of EM-241-F fuel produced greatest particulate mass, with results for the
other three fuels grouped closely together between the extremes.  Variation
in operating schedules produced extremely large particulate mass emission
variations (range up to 5:1) on a time basis (g/h) ,  but much smaller varia-
tions  (range up to 2:1) on a fuel specific basis (g/kg fuel).  Average par-
ticulate mass emissions for "1975" FTP's were 0.329 g/km (4.59 g/kg fuel) for
the Mercedes and 0.225 g/km (4.66 g/kg fuel)  for the VW using EM-238-F 2D emis-
sions test fuel.  All particulate sampling was conducted with dilute exhaust
temperatures of 52°C (125°F) or less at the filters.

      7.  Cyclohexane-soluble organics in particulate matter ranged from about
6 to 14 percent by weight over the five fuels for the Mercedes, and from about
12 to 16 percent by weight for the VW.  Fuel and operating schedule effects
on percent solubles were mixed.

      8.  Sulfur and sulfate in particulate matter were quite predictable over
all fuels and operating schedules as linear functions of fuel sulfur, with r2
values from 0.835 to 0.974.  In all cases except sulfur emissions from the
Mercedes, mass emission rates as averages by fuel were in the same relative
rank order as fuel sulfur content.  Sulfur in particulate matter, as a per-
centage of sulfur consumed in fuel, averaged about 1.9 percent for the Mer-
cedes and 1.55 percent for the VW, with corresponding sulfur recoveries in
sulfate of 1.65 and 1.95 percent, respectively.

      9.  As an average over all fuels and operating schedules, the VW emitted
about 2.2 times as much benzo-a-pyrene  (BaP) as the Mercedes on a fuel specific
basis  (about 19 \lg/kg fuel versus about 9 yg/kg fuel).  Highest average BaP
was emitted by both vehicles when EM-241-F "minimum quality" fuel was used,
and lowest BaP values were observed using EM-242-F "premium" No. 2 fuel.  The
Mercedes produced its highest BaP emissions during the idle and NYCC schedules
 (in decreasing order), while the VW produced its highest BaP during the cold
FTP and NYCC schedules  (in decreasing order).

     10.  Major elements by weight in organic solubles from particulate matter
were carbon  (^ 84 percent) and hydrogen  Cv 12 percent) , with small amounts of
nitrogen and sulfur  (^0.5 percent).  Oxygen was also present at around  3 per-
cent.  These values are indicative of a predominantly hydrocarbon material
with some impurities and substituted groups.  The soluble organics did not
contain visible soot.

     11.  Boiling ranges of soluble organics from particulate matter fell
mostly between those of fuels and lubricating oils, but much closer to the
oils.  Their ranges include the boiling points of n-paraffins from about n-C16
 (287°C) to above n-C56  (at 600°C), and a small fraction of the  solubles boil
at temperatures higher than the temperature  limit of  the procedure used  for
analysis  (600°C).

-------
     12.  Mutagenic activity of solubles from cold FTP particulate matter,
as measured by the Ames bioassay, was higher for the VW than for the Mercedes
by average factors of 2.2 to 1.7 (with and without metabolic activation,
respectively).  Samples from operation on EM-241-F "minimum quality" No. 2
fuel showed higher mutagenic activity  (by factors of 3 or greater) than those
from operation on other fuels, for both vehicles.  Mutagenic activity cor-
related quite strongly  (r values positive) with total particulate mass, BaP,
and gaseous total hydrocarbons.  Weaker correlations (r values negative) be-
tween mutagenic activity and percent solubles in particulate matter were
also.observed.  These results must be considered preliminary due-to the use
of unqualified sampling and sample-handling procedures.

     13.  Except for rather obvious relationships between fuel variables and
emissions variables  (e.g., fuel sulfur and particulate sulfur), strong inter-
relationships between fuel variables  (both pairwise correlations and multi-
collinearity) and small sample sizes generally made multiple linear regression
analysis essentially useless in analyzing data from this study.  Consequently,
an approach using analysis of variance, multiple comparison of means across
fuels and operating schedules, and listing of strongest pairwise correlators
was adopted to describe relationships between emissions and fuel variables.
This approach did not provide relationships predicting emissions as functions
of fuel composition, but it did show directions for future work in the area
of fuel effects.  Some of these directions are (a) to maximize range and sample
size of fuel variables,  (b) to structure fuel composition toward minimizing
fuel variable interrelationships, and  (c) to minimize other sources of emis-
sions variation  (multiple vehicles, multiple operating schedules, etc.).

     14.  Emissions differences between vehicles and between operating sched-
ules were generally stronger than those between fuels.  While this situation
helped make regression of emissions against fuel variables impossible, it did
permit efforts toward identifying relationships between emissions and operating
schedule variables.  Regressions thus constructed for nine emissions variables
 (in time units) produced r2 values from 0.588 to 0.945  (average 0.82), with
schedule average speed as the dominant variable for all except BaP  (speed
variability dominant) and percent of particulate matter not analyzed as C, H,
N, or S  (percent idle time dominant).

     15.  Correlations between particulate mass rate and ambient variables
 (humidity, temperature, and atmospheric pressure) were negligible over the
limited range of observed test conditions.

     16.  Particles, as sized aerodynamically by an inertial impactor were
very small, with over 85 percent by weight classified as under 0.4 Urn equi-
valent aerodynamic diameter.  TEM micrographs, although probably operating
on samples somewhat finer than were typical of total particulate matter,
showed a numerical median agglomerate diameter of 0.045 Um and an estimated
mass median agglomerate diameter of about 0.2 urn.

     17.  The major element in particulate matter collected was carbon  (about
74 percent by weight for the Mercedes and 68 percent for the VW on  cold FTP's),
with hydrogen second most abundant of those measured at corresponding values
of about 3 and 4 percent.  Nitrogen in particulate matter was generally about
1 percent.  These data are indicative of a primarily soot-like material with
varying amounts of absorbed hydrocarbons.  Idle operating conditions generally

-------
produced comparatively low values for carbon and hydrogen, leaving a consider-
able amount of particulate mass unaccounted for by these elements.  A substan-
tial part of the unaccounted-for mass may have been oxygen, but oxygen measure-
ments were not made.

-------
                        III.  TEST VEHICLES AND FUELS
      Major criteria used for selection of test vehicles included availability,
a difference between the two in engine and vehicle size, and fair represent-
ation of current market offerings.  Fuel selection criteria were variety in
specifications and a reasonable representation of the range of Diesel fuels
available for automotive consumption.
A.
Test Vehicles
      The vehicles chosen for this program were a 1975 Mercedes 240D and a
1977 Volkswagen Rabbit Diesel.  The Mercedes was a production unit, and the
VW was a pre-production model with specifications the same as initial pro-
duction vehicles.  Descriptions of these vehicles are provided as Table 1.
The cars were similar in basic engine design, type of transmission, and engine
rated power per vehicle unit mass.  Greater differences between the two were
evident in compression ratio and engine displacement, both of which could
affect emission of some exhaust constituents.  For documentation purposes,
the Mercedes 240D is shown in Figure 1, and the VW Rabbit Diesel is shown in
Figure 2.  Both vehicles were supplied to the Contractor by EPA for test
purposes.
                   TABLE 1.  DESCRIPTION OF TEST VEHICLES
    Vehicle model
    Engine model  (if different)
    Model year

    V.I.N.
    Engine No.  (if different)

    Body type
    Loaded weight, kg  (lbm)a
    Inertia equivalent, kg  (lbm)

    Transmission

    Displacement, £(in3)
    Cylinders
    Power, kW  (hp) @ rpm
    Injection system
    Combustion chamber
    Compression ratio

    Distance on vehicle, kmb
                              Mercedes 240D
                              OM616
                              1975

                              11511710066208
                              616916-10-052895

                              4 door sedan
                              1492  (3289)
                              1588  (3500)

                              4 speed manual

                              2.40  (146.7)
                              4
                              46.2  (62) @ 4350
                              Bosch
                              prechamber
                              21.0

                              6257
VW Rabbit Diesel

1977

1763188714
2 door sedan
1021  (2250)
1021  (2250)

4 speed manual

1.47  (89.7)
4
35.8  (48) @ 5000
Bosch
Swirl chamber
23.5

6176
    a curb weight plus 136 kg (300 lbm)
      at end of project

-------
      Figure 1.   Mercedes  240D test vehicle
Figure 2.  Volkswagen Rabbit Diesel test vehicle

-------
B.    Test Fuels

      Four of the five required test fuels were specified in the Contract
Scope of Work (included for reference as Appendix A)  as follows:

      • a No. 1 Diesel fuel;

      • a No. 2 Diesel fuel representative of "national average" properties;

      • a low-cetane  (e.g. 42), high-aromatic Diesel fuel; and

      • a high-cetane (e.g. 52), high-paraffin Diesel fuel.

It was decided early in the program that the specific fuel batches to be used
in fulfillment of these requirements would be the corresponding fuels in use
on another then-current EPA Contract, No. 68-02-1777(6).   This decision was
based on fuel availability, a desire to provide continuity in fuel specifi-
cations between the two programs, and the cost savings incurred by not having
to run comprehensive analysis on additional fuels.

      As an outgrowth of a meeting with the Project Officer, efforts were
directed toward obtaining the fifth and last test fuel to be used for Task 3
testing.  The decision was made that a "wide boiling range1' or "100-650°F"
fuel be secured from its source, understood to be Mr. W.  T. Tierney of Texaco.
As of that meeting, this fuel was visualized as having an approximately linear
distillation curve throughout the temperature range.

      Mr. Tierney was contacted, and his responding letter and attachment are
included as Appendix B of this report.  The most notable fuel characteristics
determined by the computer run were the boiling range and the relatively low
percentage of conventional Diesel fuel components.  The fuel also contained
relatively large amounts of olefins and naphthas.  Figure 3 shows the boiling
range of the computer-generated Texaco fuel as compared to those of:  a gas-
oline; a No. 1 Diesel or "Jet A"; a range of two No. 2_Diesel fuels; a 40
percent - 40 percent  - 20 percent blend of gasoline, No. 2 Diesel and No. 1
Diesel, respectively; an average JP-4 from 1974; and a blend supplied^ to
EPA by Texaco as a  "wide boiling fuel" before they  (Texaco) had investigated
the problem thoroughly.

      The conclusion reached by examining Figure 3 was that the latest Texaco
"wide-boiler" was unsuitable as a Diesel fuel.  Mr. Tierney agreed (by tele-
phone) that its cetane number would be around 30, and that the fuel was suit-
able only for direct-injection stratified-charge engines,  (possibly) turbines,
or external combustion engines.  He also confirmed that the original blend
supplied to EPA was a more conventional mixture of gasoline and Diesel fuel
stocks.  Thus, although a reasonable effort was made, the wide-boiling fuel
did not prove to be a viable alternative for use in this project.  It was
recommended to the Project Officer that the fifth fuel for the testing phase
of this project be designated as 2-D Emissions Test Fuel^8) without further
delay.  This recommendation was subsequently accepted when it became apparent
that neither a suitable "wide boiling range" fuel nor any other usable syn-
thetic fuel would become available in time for project use.

-------
CO
                                                                                    700
                                     TEMPERATURE
         Figure  3.  Boiling  ranges  of  several  fuels  for comparison

-------
      The "2D emissions" test fuel was obtained from a local refiner, who
blended it to Federal specifications(7).   The "national average" No. 2 fuel
was obtained locally because it just happened that a locally available No. 2
fuel was close to the "national average" specifications available.  The "Jet
A" No. 1 fuel was also obtained locally.   Both "minimum quality" and "premium"
fuels were obtained in drum lots through American Oil's Kansas City operations,
because they routinely produced both types in that area.  The "minimum quality"
fuel contained a substantial amount of catalytically cracked stock or "cat gas
oil", while the "premium" fuel was mostly "straight-run" refined West Texas
crude.  Table 2 contains values for all the major properties analyzed in the
test fuels.  For comparison, Table 3 shows "national average" No. 1 and No. 2
fuel properties from both 1973 and 1976 Bureau of Mines fuel surveys(12'13).
Note that the Bureau of Mines fuel property data are not sales-weighted due
to the unavailability of such information.  Fuel nitrogen values are not con-
sidered extremely accurate due to lack of sensitivity of the method used for
low nitrogen concentrations.

      All boiling range data given in Tables 2 and 3 were obtained by ASTM
D86  (thermal distillation) for best comparison purposes, although boiling
range data used for statistical analysis  (later in the report) were obtained
by ASTM D2887-73 gas chromatograph-simulated distillation.  Fuel coded EM-
239-F was "doped" with ditertiary butyl disulfide to achieve the sulfur con-
tent listed in Table 2.  When this fuel was obtained, it had a sulfur content
of about 0.15 percent by weight.  One of the major reasons for choosing this
particular Gulf No. 2 fuel for the ''national average" material  (over other
local fuels) was that its existing sulfur content was low enough to allow a
stepwise blending approach to the target sulfur concentration of 0.23 percent.

      Although fuel survey data for 1973  (published in 1974) were used as
the basis in selecting a "national average" No. 2 fuel, data in Table 3 show
that no major shifts in properties occurred between 1973 and 1976 fuels sur-
veyed.  In general, the more recent No. 2 fuels show slightly high density,
sulfur, cetane, and boiling range.  Comparing the No. 2 fuel survey results
to EM-239-F shows no significant differences between the two.  It was not
intended that the No. 1 Diesel fuel chosen for this project  (EM-240-F) be
similar to the "national average" No. 1 Diesel fuel.  It was intended that
the No. 1 fuel used be at or near the low extremes of sulfur, density.- and
boiling range for fuels used in trucks and buses.  Comparing specifications
of EM-240-F of those of "national average" No. 1 fuels shows that this intent
was met.

      Comparing the five test fuels to each other shows that relatively large
ranges of properties are present, as shown in Table 4.  These ranges are ex-
pressed as percentages above and below property values for our  "national
average" No. 2 fuel coded EM-239-F.  Ranges of individual 1976 Bureau of
Mines fuel survey samplesd^) are generally somewhat broader, but not sig-
nificantly so considering percentages of fuels represented by outlying points
and the proximity of some EM-239-F fuel properties to the value zero  (e.g.,
fuel nitrogen and sulfur content).  The skewed percentages resulting from
this latter problem could have been avoided by defining ranges as "(equal)
percentages above and below the mean of the extremes", but such a definition
introduces the problem of unequal extremes  (and consequent unequal means of
said extremes) for test fuels as compared to fuel survey data.
                                      11

-------
                    TABLE 2.   PROPERTIES  OF  THE FIVE TEST FUELS
Fuel Code
Fuel Type
Properties
Density, g/ml
Gravity, "API
Cetane, (D976)
Viscosity, cs (D445)
Flash point, °C
Sulfur, wt. % (D1266)
FIA: aromatics , %
olef ins , %
saturates , %
Distillation (D86)
IBP, °C
10% point, °C
20% point, °C
30% point, °c
40% point, °C
50% point, °C
60% point, °C
70% point, °C
80% point, °C
90% point, °C
95% point, °C
EP, °C
recovery, %
residue, %
loss, %
Carbon, wt. %a
Hydrogen , wt . %a
Nitrogen, wt. %a
Gum (D-481) , mg/100 ml
EM-238-F
2D Emissions

0.845
36.0
48.6
2.65
94
0.35
29.8
1.6
68.6

192
213
223
233
245
257
269
281
293
213
331
349
99
1
0
86.8
12.9
0.005
9.9
EM-239-F
National
Average
No. 2

0.844
36.1
48.7
2.66
87
0.23
21.6
0.8
77.6

186
216
229
239
248
257
266
275
286
303
320
337
99
1
0
86.8
13.0
0.005
8.6
EM- 2 40 -F
"Jet A"
No. 1

0.806
44.1
47.4
1.41
48
0.04
13.0
3,4
83.6

162
181
186
190
196
201
207
214
224
238
249
268
99
1
0
86.2
13.7
0.006
0.2
EM-241-F
Minimum
Quality
No. 2

0.861
32.8
41.8
2.44
68
0.26
34 6
1.0
64.4

182
216
227
240
250
258
266
277
292
301
311
327
99.5
0.5
0.0
87.5
12.3
0.024
11.8
EM-242-F
Premium
No. 2

0.831
38.7
53.0
2.53
66
0.26
12.4
0.8
86.8

183
213
223
231
244
254
262
271
287
301
310
327
99
1
0
86.3
13.5
0.008
2.2
determined by combustion with automated thermal conductivity analysis-values not
considered extremely accurate
                                         12

-------
            TABLE 3.  "NATIONAL AVERAGE"51 PROPERTIES FROM FUEL SURVEYS

Gravity
Cetane
Sulfur,
, °API (ASTM D287)
(ASTM D613)
weight % (ASTM D129)
Distillation: IBP, °C




10% point, °C
50% point, °C
90% point, °C
EP, °C
(12)
1973 Fuel Survey k '
No. 1 Fuel
41.4
49.1
0.096
177
199
228
263
284
No. 2 Fuel
36.4
47.9
0.228
189
219
257
302
327
1976 Fuel Survey ^13)
No. 1 Fuel
42.2
48.6
0.081
176
196
220
252
274
No. 2 Fuel
35.7
48.3
0.253
190
221
261
307
333
not sales-weighted
              TABLE 4.  RANGES IN PROPERTIES OF TEST AND SURVEY FUELS
Property
Density, g/ml
Cetane
Sulfur, wt %
Aromatics , vol . %
IBP, °KC
50% point, °K
EP, °K
Carbon , wt . %
Hydrogen , wt . %
Nitrogen, wt. %
Gum, mg/100 ml
Range in Test
+ 2.0, -
+ 8.8, -
+ 52. , -
_l_ r r\
T OU . ,
+ 1.3, -
+ 0.2, -
+ 2.0, -
U . o ,
+ 5.4, -
+ 480. , -
+ 37. , -
Fuels, %
4.5
14.2
83.
43.
5.2
11.
11.
0.7
5.4
0.0
98.
Range in Individual 1976
Fuel Survey Samples , %a
+ 6.7 ,
+ 34. ,
+ 500. ,
+ 12. ,
+ 6.5 ,
+ 4.3 ,
6.1
- 21.
- 100. ,
b
6.9
- 10.
- 16.
b
b
b
b

a expressed as percentages above and below properties of EM-239-F
k no data
c note that percentages are based on absolute temperatures
                                        13

-------
               IV.  INSTRUMENTATION AND ANALYTICAL PROCEDURES
      Collection and measurement of many gaseous and particulate constituents
were required by the Contract Scope of Work, making necessary the use of a
variety of sampling and analysis techniques.  Descriptions of the equipment
and procedures used are presented in a number of subsections for maximum
clarity.
A.
Simulation of Vehicle Road Operation
      All laboratory vehicle operation except that for odor (and concurrent
emissions) measurement was performed on a 2-roll Model ECE-50 Clayton light-
duty chassis dynamometer of the type qualified for Federal light-duty certi-
fication (14)_   The Mercedes 240D was set up to drive the dynamometer via its
rear wheels, while the VW Rabbit Diesel drove the rolls with its front wheels.
Accommodating the two types of drive trains required adjustments in equipment
positions, but created no real difficulty.  The dynamometer described is shown
in Figure 4.  Inertia and power absorption settings used for all test work on
this dynamometer followed EPA guidelines
                  Figure 4.   Light-duty vehicle chassis
                  dynamometer used for all testing except
                  that involving exhaust odor evaluations
                                     14

-------
      Vehicle operation for exhaust odor evaluation and concurrent emission
measurements was conducted on another chassis dynamometer, this one designed
primarily for operation of heavy-duty vehicles, but adaptable to light-duty
testing under steady-state and simple transient conditions.  This tandem-axle
dynamometer is a Clayton Model CT-200-200, with only the rear pair of rolls
driven in this application.  The four "transient" conditions simulated for
odor evaluation by human panel were a cold start, an idle-acceleration, an
acceleration, and a deceleration.  Only the last three transients listed
actually involved simulated vehicle motion against inertia, so they were the
only odor conditions for which flywheel inertia simulation came into play.
Inertia wheels available for the heavy-duty dynamometer were spaced in rather
coarse increments, and the closest one to actual inertia of the VW Rabbit
Diesel was 1270 kg.  The simulated inertia used for the Mercedes 240D was
correct at 1588 kg.  Figure 5 documents the appearance of the dynamometer
used for odor work.
                    Figure 5.  Chassis dynamometer used
                    for tests involving odor evaluations


B.    Visible Smoke Measurements

      Exhaust smoke from both vehicles was measured using an optical light-
extinction smokemeter of the type specified in Federal regulations for heavy-
duty Diesel engine smoke certification^1'^ .  The smokemeter was mounted on a
51 mm (2 in) O.D. tailpipe extension when in use, as shown in Figure 6  (Mer-
cedes 240D) and Figure 7 (VW Rabbit Diesel).  The control/readout unit for
the smokemeter was mounted remote from the vehicle under test, and continuous
recordings of smoke opacity were made concurrently with vehicle speed traces.
Smoke measurements were made over the first 505 seconds (the transient phase)
of both cold-start and hot-start FTP cycles while the vehicles were operated

                                       15

-------
 Figure 6.  Smokemeter mounted on Mercedes 240D
Figure 7.  Smokemeter mounted on VW Rabbit Diesel
                        16

-------
on a chassis dynamometer.  This procedure is not part of any known smoke regu-
lation, but was developed for research purposes on an earlier EPA Contract,
No. 68-03-2417
C.    Routine Gaseous Emissions Measurements

      Regulated gaseous emissions  (HC, CO, and NOX) from the test vehicles
were evaluated using CVS  (constant- volume sampler) exhaust dilution, bag
sampling for CO and NOX, and subsequent measurement of diluted exhaust  (bag)
concentrations using a bank of continuous analyzers.  The analyzers included
NDIR instruments for CO and CO2 , and a chemi luminescence unit for NOX, as
shown in Figure 8 .  Hydrocarbon measurements were conducted using continuous
heated PID  (flame ionization detector) with electronic signal integration to
provide average dilute hydrocarbon concentration for each run.  A continuous
trace of dilute HC concentration was also obtained via a chart recorder.  This
equipment is shown in Figure 9.  These measurements followed EPA practice for
Federal emissions certification of light-duty Diesel vehicles ^) .   The vehicles
were operated on a light-duty chassis dynamometer during the several driving
schedules required.

D.    Measurement of Non-Routine Gaseous Emissions

      This group of analyses includes those for low molecular weight aldehydes
and for gaseous hydrocarbons collected on Chromosorb 102 traps.  Since the
primary object of the phenol analysis was to determine phenols in particulate
matter, the equipment and technique used will be discussed under the "Particu-
late Compositions" subhead  (Section 4.H.).

      Aldehydes were measured in dilute exhaust samples with processing by
the DNPH  (Dinitrophenylhydrazone) method (115) _  rp^e collection system used
is shown schematically in Figure 10, and it was operated at a sample flow
rate of 0.24 m3/h at relatively constant laboratory ambient conditions.  This
type of operation provided a proportional sample for both transient and steady-
state vehicle operation, yielding accurate integrated rates for each test.
Following several labor-intensive processing steps , a small portion of each
sample was injected into a Varian 1740 chromatograph-FID for analysis.  The
GC was equipped with a 3.2 mm  (diameter) by 610 mm  (length) stainless steel
column, packed with 6.7 percent Dexsil 300 on 60/80 mesh Chromosorb G, and
programmed from 130°C to 300°C at 8°C per minute.  A permanent record of the
GC output was obtained using a strip chart recorder, and quantitative data
were obtained using a remotely-located Hewlett-Packard 3354 computer tied in
via an analog- to-digital converter.  A copy of the analysis procedure is given
in Appendix C, page C-2.

      Gaseous hydrocarbons in Diesel exhaust were collected on Chromosorb 102
cartridges by sampling diluted, filtered exhaust through them.  The collection
apparatus is shown schematically in Figure 11.  It should be noted that al-
through diluted exhaust had a maximum temperature of 52°C, the sample was
subsequently heated to 190°C prior to filtration and pumping.  Maximum tem-
perature in the sampling cartridges themselves was 100°C.  Sample flow through
the system was maintained at a constant rate of about 0.24 m3/h.   Cartridges
were capped immediately after sampling, and their contents were subsequently
eluted with carbon disulfide (CS2) to remove trapped hydrocarbons.  Boiling
range of the hydrocarbons was determined by a gas chromatograph equipped with
                                     17

-------
 Figure 8.  Dilute exhaust analysis system
Figure 9.  Continuous dilute hydrocarbon
      analysis/integration system
                    18

-------
DILUTION
TUNNEL
                               VALVE
                                          IMPINGERS
MOLECULAR
SIEVE  (FILTER)
                                                         DNPH
                                                       REAGENT

        Figure 10.   Schematic diagram of aldehyde sampling system

-------
         PROBE
             LEAK CHECK VALVE
                THERMOCOUPLE
                              OVEN
                              T = 190°c
        HEATED
        SAMPLE
         LINE
           CHROMOSORB  102
           TRAP, MAXIMUM
             T = 38°C
tf
                                 DESSICANT
                                                       DRY
                                                       GAS
                                                      METER
  ROTAMETER

                                                              TO
                                                             ATM,
DILUTE
EXHAUST
 FLOW
    Figure 11.  Schematic diagram of gaseous HC sampling system
                    (for boiling range analysis)
                              20

-------
dual hydrogen flame ionization detectors.  The column was 1.8 m  (length) by
3.2 mm (diameter) stainless steel, packed with 5 percent SE-30 on 80/100
mesh Chromosorb G, AW-DMCS.  It was programmed from 0°C to 390°C at 16°C per
minute, and maintained a detector temperature of 400°C.  Carrier gas flow was
25 m£ helium per minute.  Data processing was conducted on a Hewlett-Packard
3354 computer system.

E.    Evaluation of Exhaust Odor

      Exhaust odor of the test vehicles was evaluated in 100:1 air-diluted
samples by a trained human panel, and a concurrent raw exhaust sample was
taken during each steady-state odor run for later analysis by the A. D. Little
"Diesel Odorant Analytical System" (DOAS).  The vehicles were operated on the
heavy-duty chassis dynamometer described in Section 4.A. under steady-state
and simple transient conditions.  Exhaust sampling, dilution, and presentation
facilities for odor evaluation by the human panel have been thoroughly des-
cribed in earlier publications ^-^ .  In brief, a small amount of vehicle ex-
haust was mixed at constant dilution with filtered, humidity-controlled, and
temperature-controlled air before presentation to the panel.  The vehicle
operator signaled the panel when they were to sniff the dilute mixture, and
each panel member independently rated the odor as to intensity and character.
These ratings were made in terms of a 12-step overall odor intensity scale
(0-12) and four character or "odor quality" scales having four steps each
(0-4).  The quality scales were termed "burnt-smoky", "oily", "aromatic",
and "pungent".

      The DOAS^1') used essentially the same sampling system shown in Figure
11, except that sampling was directly from raw exhaust rather than the dilu-
tion tunnel.  Samples were taken for about 5 minutes onto the Chromosorb 102
traps, and then analyzed by the DOAS liquid column instrument.  The output
was in the form of LCO  (liquid column oxygenate) and LCA (liquid column alde-
hyde) values.  The LCO values were related to odor prediction by the relation-
ship:  TIA  (total intensity of aroma = 1 + Iog10 LCO).  A.  D. Little's DOAS
analyzer is shown in Figure 12, and Figure 13 shows traps in sampling position
on the oven during an odor measurement run.

      In addition to direct odor evaluation by two techniques, several other
exhaust composition measurements were made during the steady-state odor tests.
These measurements included conventional gaseous emissions  (HC, CO, NOX, CO2),
aldehydes, and individual hydrocarbons in raw exhaust.  Gaseous emissions were
measured with the equipment shown in Figure 14  (HC analyzer) and Figure 15
(CO, CO2, NOX analyzers).  Aldehydes were measured by collection in aqueous
reagents and analyzed as previously described in Section 4.D.  Individual
hydrocarbon samples were collected in bags and analyzed by an EPA-developed
gas chromatograph procedure'-^).

F.    Particulate Mass Rate, Concentration, and Aerodynamic Sizing

      Particulate collection for this project was performed using a 457 mm
(18 inch)  diameter dilution tunnel operating on total vehicle exhaust, probes
and other equipment to withdraw samples from the tunnel and collect the par-
ticulate on filters, and a balance to determine mass of particulate matter
collected.  The dilution tunnel used is shown schematically in Figure 16,
along with some of its pertinent dimensions and attached equipment.  This
                                      21

-------
              Figure  12.  A.D. Little DOAS  analyzer
Figure 13.  Chromosorb 102 traps being loaded for DOAS analysis
                               22

-------
   Figure 14.  Continuous hydrocarbon analyzer for raw exhaust
Figure 15.  Continuous CO, CO2, and NOX analyzers for raw exhaust

-------
610mm
 (24in)
           610mm
            (24in)   -H
4.88m (16ft)
840mm (33in)
                                                    r
                                 700mm (27.5in)—
450mm
(17.7in)
                DILUTION AIR
              FILTER ENCLOSURE

          76mm (Sin) RAW
     EXHAUST TRANSFER TUBE
                              /
                    230mm (Sin)
                 MIXING ORIFICE
                                                   SAMPLE
                                        127mm
                                       (Sin) DIA
                    HI-VOL
                 'SAMPLE  PROBE
                 OR 4 EA. l/2"  ID  ISOKINETIC
                 SAMPLING PROBE
            Figure 16.  Schematic diagram of exhaust dilution tunnel

-------
tunnel design, which follows earlier ones by Habibi^19) and EPA^20'21), is
one of many which are in use or have been suggested for sampling particulate
matter emitted by vehicles having Diesel engines.  A number of the details
of adaptation of this tunnel to light-duty Diesel particulate research were
worked out during previous EPA contracts ^9 »1:L) .  Some of the equipment neces-
sary for collecting particulate and relating it to undiluted vehicle emissions
is not shown in the schematic.  It includes a positive-displacement pump oper-
ating at about 500 m^/h to withdraw and measure unsampled air/exhaust mixture,
and sampling systems with filter holders, pumps, rate flowmeters, and flow
totalizing devices.

      Figures 17 and 18 show the dilution tunnel as set up with the Mercedes
and VW vehicles, respectively.  In both cases, the vehicle's exhaust entered
the tunnel horizontally near the upstream end, and sampling took place near
the downstream end.  A special sample probe/filter holder assembly was designed
and constructed for this project to minimize repetitive test runs.  The portion
of this assembly which protruded from the tunnel (filter holders, etc.) is shown
in Figure 19, and the remainder is shown in Figure 20.  Four probes to inter-
cept samples for 47 mm filters and one probe to catch sample for the inertial
impactor were nested inside the hi-vol probe.  This design permitted taking
the six samples simultaneously, while keeping the size of the entry port into
the tunnel at a minimum.

      Two of the 47 mm filter holders were modified to accept Viton-A o-rings,
necessary for use with Fluoropore* filters in order to reduce leakage around
the filter when placed under vacuum.  The other two 47 mm holders were used
with glass fiber filters, and the hi-vol or "8 x 10" filter was also glass
fiber.  Teflon-coated glass fiber filters were not in widespread use when
this project was conducted.  The glass fiber filters were held between stain-
less steel flats in the 47 mm holders, but the hi-vol holder used a foam gas-
ket on one side with stainless on the other.  An inertial particle-sizing
impactor was used as the sixth collection device, mounted on the probe having
the largest tip diameter of the five nested inside the hi-vol probe.  Its tip
was of 16.6 mm inside diameter, while those connected to 47 mm filter holders
were 12.7 mm inside diameter.  The hi-vol probe tip had an inside diameter of
97.3 mm.

      The four 47 mm systems and the impactor system were all connected to
pumps, rotameters with flow control valves, and dry gas meters downstream
of the filter holders.  The hi-vol system incorporated a blower just down-
stream of the filter holder, and a calibrated orifice was located further
downstream following a straight tube section.  The impactor system contained
collection discs on which particulate matter was supposedly fractionated by
size, and a final glass fiber backup filter.  The impactor system is shown
disassembled in Figure 21, with the plates, gaskets, and crossbars removed
from their holder for clarity.  The stainless discs and typical filters are
shown before use (new) in Figure 22, and after use in Figure 23.  In operation,
one stainless disc was placed on each stainless impactor plate from No. 1
through No. 8, and the glass fiber filter was located on the filter backing
plate.  The discs were photochemically machined of 0.05 mm stainless steel
to provide a low-tare weight collection medium  (about 900 mg) having particle
* registered trademark Millipore Corporation
                                    25

-------
  Figure 17.  Mercedes 240D  operating with participate dilution tunnel
Figure 18.  VW Rabbit Diesel operating with particulate dilution
tunnel
                                  26

-------
Figure 19.  Particulate  sampling probe external detail
Figure 20*  Partieulate  sampling probe  internal detail
                            27

-------
    Figure 21.  Particle sizing impactor disassembled,  without collection media
Figure 22.   Unused discs and filter
            for impactor
Figure 23.  Discs and filter for
 impactor with collected sample
                                          28

-------
retention characteristics the same as the impactor plates.  Glass fiber col-
lection discs were tried early in the program, but proved to be unsatisfactory
due to strong adsorbing properties and loss of fibers during sampling.

      To determine the mass of particulate matter collected on sample filters
and impactor discs, they were weighed before and after use on the microbalance
shown in Figure  24.  This balance is housed in a vibration-resistant, temper-
ature- and humidity-controlled chamber to minimize variations in filter weights
with time.  Filters and discs were allowed to stabilize overnight, in most
cases, before weights were measured.  Air to the chamber flows at about 17 m3/h
on a one-pass basis, and keeps the chamber pressure at about 2.5 kPa above at-
mospheric.  The  control system keeps chamber conditions at 22.2 +_ 0.6°C and
63 +_ 2 percent relative humidity, and air entering the chamber is filtered
through a 99.99+ percent OOP  (dioctyl phthalate)-efficient filter.  The micro-
balance itself can be read to mass increments of 1 yg.

G.    Particle Sizing by Transmission Electron Microscope (TEM)

      Two special tests were conducted to collect samples for particulate
sizing by TEM.   The purpose of this experiment, not initially included in
the Test Plan  (Section V), was to study the relationship between aerodynamic
particle size distribution determined by inertial impactor and apparent size
of collected particulate.  Copper grids having a diameter of 3.0 mm and a
thickness of 0.08 mm were attached to stainless impactor discs for these tests,
one grid per disc.  It was attempted to center each grid under one jet from
the preceding stage, as shown in Figure 25.  Figure 26 shows a grid much en-
larged, having bars 26 ym across and holes 57 ym across.  The grids were coated
with a solution  of 0.25 percent Formvar in ethylene dichloride prior to use,
forming a thin layer to hold particles.  This material was transparent to the
TEM beam.

      The TEM itself was a Hitachi HU-11C, operated with an accelerating po-
tential of 75 kv.  Photomicrographs were made at effective magnifications from
about 7,000x to  lll,000x, with statistical work done at 21,600x and 87,500x.
Templates used to size particles and agglomerates are shown in Figure 27, cali-
brated in ym at  87,500x  (27a. and 27b.) or 21,600x  (27c. and 27d) .

      Earlier attempts were made to examine particles collected on stainless
discs using a Scanning Electron Microscope  (SEM).  This instrument did not
have adequate resolution to examine individual particles or agglomerates,
so its use was discontinued.  If this instrument were fitted with an improved
emission source, it could do better than its present "smallest feature" reso-
lution of about  0.015 ym.  As currently equipped, however, its resolution is
about the same as the smallest particles' diameter.

H.    Analysis of Particulate Composition

      Following  acquisition and weighing of particulate samples, their compo-
sition was analyzed by a variety of techniques.  Analyses included in this
subsection are those for major elements, trace elements, sulfate, and phenols.
Analysis of the  soluble fraction of particulate matter is discussed in the
next subsection  (IV.I).
                                     29

-------
                    Figure 24.   Microbalance used to weigh filters,
                     with temperature-/humidity-controlled chamber
     10 mm
                                                      1 mm
Figure 25.  Collection grid for TEN
  study mounted on impactor disc
Figure 26.  Collection grid
    for TEM study detail
                                          30

-------
                                                         TEMPLATE 2
         Fig.  27a
Fig. 27b
                                                           TEMPLATE 4
         Fiq.  27c
Fig. 27d
Figure 27.  Templates  for sizing agglomerates on TEM micrographs
                                 31

-------
      1.  Major Elements

      Samples collected on 47 mm glass fiber filters were sent to Galbraith
Laboratories and analyzed for carbon, hydrogen, and nitrogen content by com-
bustion and subsequent gas analysis.   The equipment used was a Perkin-Elmer
Model 240 automated thermal conductivity CHN analyzer.  Results of this ana-
lysis were reported in percent of submitted sample mass, making the accuracy
of filter weighing very important.  Blank filters were also submitted to per-
mit blank corrections.

      2.  Trace Elements
      Analysis for trace elements in particulate (sulfur and metals) was per-
formed on 47 mm Fluoropore filter samples.  As provided in the contract agree-
ment, these determinations were made by EPA's Research Triangle Park labora-
tories as part of the EPA in-house measurement program.  The instrumentation
used for these analysis was a Siemens MRS-3 x-ray fluorescence spectrometer.
It is automated and computer-controlled, with 16 fixed monochromators and
one scanning monochromator.  Counting intervals are normally 100 seconds for
the fixed monochromators and 20 seconds for the scanning monochromator.

      3.  Sulfate

      Sulfate  (SC>4=) analysis was performed on Fluoropore filter-collected
samples using the barium chroranilate  (BCA) technique(22)^  Samples were
ammoniated in a closed container to convert sulfuric acid particulate to
 (stable) ammonium sulfate.  After ammoniation, the soluble sulfates were
extracted from the filters using a mixture of isopropyl alcohol and water.
Part of the extract was passed through a strong cation exchange resin column,
then through a BCA column to precipitate out-barium sulfate.  The colored
chloranilate ions were measured colorimetrically with a Beckman Model 25 UV
spectrophotometer at a wavelength of 310 nm.  Data were processed using SwRI's
Hewlett-Packard 3354 data system.

      4.  Phenols

      The system used to collect samples for phenol analysis is shown schem-
atically in Figure 28.  It was originally intended that direct measurement of
phenols in particulate be conducted, but problems with the analysis occurred
repeatedly when the collection filter was involved in the extraction process.
As indicated by the schematic, parallel impinger samples were taken  (of undi-
luted^ exhaust) with and without filtration.  It was intended that the system"
would provide phenol data on particulate, therefore, by the difference in
filtered and unfiltered gas concentrations.  Since phenol samples were taken
isokinetically from undiluted exhaust, sampling was restricted to steady-state
operating conditions (idle, 50 km/h, and 85 km/h).

      After extraction from the collection reagent and several intermediate
processing steps, diethyl ether extracts of the samples were injected into
a GC with flame ionization detector (FID).  This instrument was operated iso-
thermally at 125°C, and was equipped with a 1.8 m  (length) by 2.0 mm  (diameter)
glass column packed with 10 percent SP-2100 (a methyl silicone fluid) on 100/
120 mesh Supelcoport.   The analytical procedure is detailed in Appendix C,
page C-3.


                                       32

-------
w
U)
                 HEATED SAMPLE LINES
                    (BOTH SYSTEMS)
                                                                                   ROTAMETER

                                                                                   VALVE
               ISOKINETIC
                  PROBE
       EXHAUST
        FLOW
                                0.1 N
                                 KOH
0 C BATH
                        Figure 28.  Schematic diagram of phenol sampling system

-------
I.     Analysis of the Soluble Fraction of Particulate Matter

      The soluble fractions of particulate matter were obtained by extraction
from a number of individual particulate samples.   The individual soluble?
Camples were subsequently combined into 10 composite samples (one repre-
senting each vehicle and fuel), and analyzed for a variety of constituents.

      1.  Total Soluble Organics

      Samples collected on "8 x 10" (203 x 254 mm)  glass fiber filters were
extracted (one half each filter at a time)  using cyclohexane in a Soxhlet
apparatus.   The solvent was driven off at low temperature in a preweighed
container,  and total mass of solubles was determined gravimetrically.  Cyclo-
hexane was  chosen as the solvent not because it was considered superior for
extraction purposes, but because it was the specified solvent to be used in
the procedure for benzo-a-pyrene (BaP)  analysis (discussed in Section 4.1.4.)-

      2.  Major Elements

      Approximately half of each composite solubles sample was dried at low
temperature, then weighed in a preweighed container.  The resulting samples
were submitted to Galbraith Laboratories and analyzed for carbon, hydrogen,
nitrogen, sulfur, and oxygen by the technique and instrumentation already
described in Section 4.H.I.

      3.  Solubles Boiling Range and Individual n-Paraffin Analysis

      Another portion of the solubles was used for boiling range and indi-
vidual paraffin determinations by SwRI's Mobile Energy Division  (formerly
referred to as the U.S. Army Fuels and Lubricants Research Laboratory).  The
equipment used for this gas chromatograph analysis was a Hewlett-Packard 5700
Series unit, equipped with dual hydrogen flame ionization detectors.  Its
column was 1.8 m  (length) by 3.2 mm (diameter) stainless steel, packed with
10 percent Dexsil 300 on 45/60 Chromosorb P, AW-DMCS.  It was programmed from
0°C to 450°C at 15°C per minute after 2 minutes isothermal at 0°C.  Data pro-
cessing was performed on a Hewlett-Packard 3354 data system.

      This gas chromatograph procedure is a high-temperature variation on
ASTM D2887-73 which currently has no status as an ASTM procedure.  It does
provide a simulated distillation out to 600°C, and utilizes a Cg-C^i internal
standard for determination of recovery and residue.

      4.  Benzo-a-pyrene  (BaP)

      Extractions of "8 x 10" filter halves produced samples for BaP  (benzo-a-
pyrene) analysis.  Extracts were concentrated and spotted on TLC plates, and
the plates were scanned by a Perkin-Elmer MPF-3 fluorescence spectrophotometer.
Excitation was at a wavelength of 388 nm, and emission was read  at 430 nm.  The
procedure and equipment were those of EPA's Research Triangle Park labora-
tories (23)_  A copy of this procedure is given for reference in Appendix C,
pages C-4 through C-7.
                                      34

-------
            V.  TEST PLAN, OPERATING SCHEDULE, AND DATA REDUCTION


      Each of the subjects dealt within this report section is essential to
a complete description of the projects scope.  To assure maximum clarity,
these subjects will be discussed in separate subsections

A.    Test Plan

      The major problem overcome in structuring this project was the need
for a very large number of individual test runs and emissions evaluations.
Table 5 shows the scope of gaseous and particulate emissions to be evaluated,
with collection and analysis techniques summarized as appropriate.  Sizing
of particles via electron microscopy was not included in the initial test
plan, but was added later when it was decided that the resulting data might
prove useful.

      Combining as many sampling/collection procedures as possible, five types
of analysis sequences were defined:

      Sequence 1 - smoke

      Sequence 2 - odor  (DOAS and panel) + aldehydes, individual HC, total
                   HC, CO, NOX, C02

      Sequence 3 - sulfate, sulfur, carbon, hydrogen, nitrogen, sizing and
                   particulate mass emissions

      Sequence 4 - phenols, organic extractables, BaP, molecular weight range
                   of particulate hydrocarbons, and particulate mass emissions

      Sequence 5 - total HC, CO, CO2, and NOX; wet collection for aldehydes;
                   and column trapping for gaseous hydrocarbons

As it turned out, development of the 6-probe particulate sampler permitted
combining of  (original) Sequences 3 and 4 into  (revised) Sequence 3, providing
additional flexibility to conduct repeats of unsatisfactory runs, gaseous
emissions with odor tests, and particulate sizing by electron microscopy.

      The test plan utilizing these sequences is given in Table 6, yielding
a total of 23 runs per vehicle-fuel combination (or 230 in all).  Given the
constraints of this program, the test plan as given was the most comprehensive
which could be accomplished.  We do not consider the single determinations
which were made for some vehicle-fuel-test procedure combinations to be de-
sirable, but they were necessary to meet the intent of the Scope of Work.

      The test plan shown in Table 6 was conducted uniformly as a minimum,
and a number of additional runs were made where necessary to replace erro-
neous data or supply missing information.  These extra runs totalled 9 for
the Mercedes 240D and 25 for the VW Rabbit Diesel, and they were all for par-
ticulate collection within (revised) Sequence 3.
                                      35

-------
                      TABLE 5.  OUTLINE OF CHEMICAL AND PHYSICAL EXHAUST EVALUATIONS
Exhaust component
  under study
Constituent(s) analyzed for
 Collection
   Method
  Analysis technique(s]
    smoke
smoke  (visible)
                   EPA smokemeter (continuous)
    gases
HC, CO, C02, NOX
aldehydes
gaseous hydrocarbons
odor
                                                           wet impinger
                                                           Chromosorb 102
                                                           DOAS traps
                   constant-volume sampler
                   DNPH
                   extraction, GC
                   human panel, DOAS analyzer
particulate
total mass
size distribution
sulfate

sulfur & trace elements

carbon,  hydrogen, nitrogen

phenols
organic extractable substances
BaP in organic solubles
molecular weight range of
  organic solubles
filters
impactor-filter
filter, 47 mm
  Fluoropore
filter, 47 mm
  Fluoropore
filter, 47 mm
  glass filter
wet impingersa
hi-vol filter
gravimetric
gravimetric

BCA

X-ray fluorescence

combustion (commercial)
separation, GC
soxhlet extraction
TLC, fluorescence detection

GC
  parallel gas samples before and after filtration to determine phenols in particulate subtractively

-------
            TABLE 6.   TEST  PLAN  FOR EACH  VEHICLE-FUEL  COMBINATION
(Revised)
Sequence
1 (smoke)
2 (odor)
3 (part.)
4 (gaseous)
Number of replicates by test procedure
FTP
2
-
3C
3
SET
_
-
2C
1
FET
_
-
lc
1
NYCC
_
-
lc
1
Odora
_
2
-
-
Steady-State*3
_
-
1
1
Total
Runs
2
2
10
9
B.
   three runs inherent in procedure,  aldehydes and individual HC run once
   only
   three conditions
   phenols not measured during transient runs
Vehicle Operating Schedules
      As required by the contract, a number of different operating cycles and
modes were used to determine emissions.  For smoke measurements, the first
505 seconds of the FTP cycle (also referred to as the LA-4 or Urban Dynamo-
meter Driving Schedule, UDDS) were used with both cold and hot starts.   This
schedule incorporates all the most interesting operational modes from a smoke
standpoint, including engine start, first idle, first acceleration, second
idle, and second acceleration.  The remainder of each 505 second run generally
produced more or less repetitive information.  A graphical time-speed repre-
sentation of the FTP cycle is given in Figure 29, along with graphs depicting
the other cyclic procedures utilized for emission measurements during the
project.

      Basic statistics for all the cyclic and steady-state schedules used,
except those solely for odor work, are summarized in Table 7.  Computer print-
outs of the time-speed tabulations for the four cyclic schedules  (FTP, CFDS
or "sulfate-7", FET, and NYCC or  "sulfate-8") are given as Appendix D.  This
inclusion is made due to the lack of ready availability of these tabulations
in uniform format.  Examining the statistics in Table 7, it is apparent that
the desired wide range in average speed, speed variation, fraction of idle
time, and cycle length were  achieved with the selected tests.  The effects
of some of these cycle variables will be examined later in the report.

      With the exceptions of phenols, elemental analysis of solubles from
particulate, and GC-simulated boiling range of solubles from particulate,
all the gaseous and particulate emissions data resulting from  (revised) test
Sequences 3 and 4 were determined for all the schedules listed in Table 7
 (including both cold- and hot-start FTP's).  Phenols were determined only
for steady-state conditions  because sampling for them was conducted isokinet-
ically from raw exhaust.  Elemental analysis and GC analysis of  solubles  from
particulate matter were conducted only on  "composite" samples of solubles,
one sample representing each vehicle-fuel  combination.  These  "composite"
samples consisted of the combined cyclohexane  extracts  from two  cold FTP  half-
filters  (hi-vol filters), two hot FTP  half-filters, two CFDS half-filters,  and
one half-filter from each of the  remaining  five  schedules listed in Table 7.
                                       37

-------
  100


   80


£  60
x
6
•*  40

   20


    0
                   .TRANSIENT
                     PHASE
                    200
                                                       STABILIZED
                                                        PHASE
                                400
                                           600        800
                                               TIME, sec
                                                                 1000
                                                                            1200
                                                                                       1371
  100

   80


c  60
X
I  40


   20

    0
   60
   40
 .c
 X
 • H
. e
   20
                    200
                                400
                                           600        800
                                           TIME,  sec
                                                                 1000
                                                                             1200
                                                                                       1398
100
80
60

40

20
0
60

40
X
. e
20

0
                    200
                                400
                            TIME, sec
                                           600
                                                      765
100
80
< 60
E
X
40

20
0
' 60

40
si
X
•H
. g
20

0
                   NYCC (or SET-8)
                    200         400
                       TIME, sec
                                      600
     Figure  29.   Speed-time  traces of FTP, CFDS,  FET,  and  NYCC  operating conditions
                                           38

-------
         TABLE  7.   BASIC  STATISTICS  FOR VEHICLE OPERATING SCHEDULES3
Schedule
FTP
CFDS
FET
NYCC
Idle
50 km/h
85 km/h
Value by statistic
Average
speed,
V, km/h
31.46
55.94
77.52
11.37
0
50.0
85.0
Speed
variability ,
Sv/V
0.752
0.516
0.213
1.129
-
0
0
Stops/km
1.42
0.14
0.06
5.79
0
0
0
% Idle time
19.0
2.6
0.8
40.2
100
0
0
Length ,
km
11.98
21.74
16.47
1.90
0
b
16.67
28.33b
Time,
sec
1371
1398
765
600
1200b
1200b
1200b
  not including odor schedules
  arbitrary
      Operating schedules for odor measurement followed those developed for
light-duty Diesels under a previous EPA Contract, No. 68-03-2116^9'.   In
brief, they included seven steady-state conditions and four simple transients
as described for the two test vehicles in Table 8.  Steady-states were held
long enough to obtain all the necessary concurrent emissions measurements,
normally about five to seven minutes.  Idle-accel transients required about
four seconds, 48-80 km/h accelerations about 18 seconds, 80-48 km/h decel-
erations about 18 seconds, and cold starts about 30 seconds.  Even for the
short schedules, however, at least five minutes were allowed to elapse
between  (monentary) odor sampling periods.  The two transient accelerations
were conducted at full rack to maximize repeatability.
C.
      Data Reduction
      This report subsection documents methods employed to reduce data for
those measurements where such reduction was not trivial and not discussed
elsewhere in the report.  Each set of measurements requiring discussion is
presented separately below.

      1.  Visible Smoke

          As already described in section IV., primary smoke opacity
measurement data were in the form of strip chart recordings covering cold-
start and hot-start FTP transient phases  (first 505 seconds).  These charts
were analyzed manually, resulting in peak and average estimates for several
portions of the test schedule.
                                       39

-------
           TABLE  8.  DESCRIPTION OF ODOR MEASUREMENT SCHEDULES

Steady-state condition
speed , km/h
0 (Idle)
53


90


load
	
	
mid
high
	
mid
high

Transient condition
type

idle-accel.
accel.
decel.
speeds, km/h

0-32
48 - 80
80 - 48
Mercedes 240D
engine
rpm
710
1800
1800
1800
3000
3000
3000
observed dyno
power ,kW


0
9.3
19.8
0
13.8
29.1

gear
N
N
4
4
N
4
4
VW Rabbit diesel
engine
rpm
900
2020
2020
2020
3360
3360
3360
Mercedes 240D
inertia load present
simul.,kg @ 80 km/h, kW

1588 6.8
1588 6.8
1588 6.8

gear

1
4
4
observed dyno
power, kW


0
6.0
13.4
0
12.3
22.4


gear
N
N
4
4
N
4
4







VW Rabbit diesel
inertia load present
simul.,kg @ 80 km/h, kW

1270 5.4
1270 5.4
1270 5.4

gear
N
1
4
4
      2.  Routine Gaseous  Emissions  (HC,  CO,  CO2,  NOX)

          Gaseous emissions required for  certification tests were measured on
bag samples of CVS-diluted exhaust during all the  transient and stea.dy-state
operating schedules described (previously)  in Table 7.   Data for FTP runs
were recorded on the form shown on page E-2 of Appendix E, while those for all
the other schedules were recorded on- the  form given as page E-3.

      In the case of FTP data,  the "cold-FTP" results were computed using
cold transient phase (bag 1)  and stabilized phase  (bag 2) data.  "Hot FTP"
data were computed using hot transient phase (bag  3) and stabilized phase
(bag 2)  data.  Results  for "3-bag" FTP tests were  computed as conventional
1975 (and later) FTP runs.

      The computer programs used to  process the encoded data are given as
pages E-4 through E-14  (FTP or "3-bag" program) and E-15 through E-27
(single-bag program) of Appendix E.   These programs employ the complete
computation methods given in Emissions Certification Regulations for light-
duty Diesel vehicles
                     (7)
Typical output from the FTP program is shown
on page E-28, and corresponding output from the single-bag program is given
on page E-29.
                                      40

-------
      3.  Nonroutine Gaseous Emissions

          Analysis of trap-collected samples for gaseous hydrocarbons
was not quantitative, but rather only descriptive.  After carbon disulfide
(CS2) elution from the traps, the samples were run on a gas chromatograph-
simulated distillation procedure  (ASTM D2887-73)^24^ without internal
standard.  The GC output was computer-processed to yield boiling range
and peak data.  After solvent correction, boiling range was transcribed
to report form.  Qualitative peak data were examined for n-paraffins, and
the relative abundances of these paraffins were computed for reporting.

          Aldehyde analysis by the DNPH method^  ' was quantitative and
the gas chromatograph output was in the form of individual aldehyde di-
nitrophenylhydrazone derivative mass concentrations in the solution
analyzed.  These data were multiplied by factors to remove the influence
of substituted hydrazone groups on molecular weight.  The resulting values
were multiplied by the ratio of total CVS flow during the test to total
sample flow, yielding aldehyde emissions in mass per test.

      4.  Particulate Mass Rate and Concentration

          Since each vehicle's entire exhaust flow was diluted in the tunnel
during the subject tests, computation of particulate mass rate was much
simpler  than for the case in which a portion of the engine's exhaust is
diluted  (e.g. heavy-duty engines tested under other EPA Contracts) (3,6,9,10)_
The basic relationship used for mass emission calculations was:


(mass particulate emitted\ _ /  mass particulate on filter	\
          test           /   \dilute sample mass through filter/i
                                     6                                    1
J dilute mass through tunnel blower + £  (dilute sample mass through filter)  I,
L
where  "i" is the sampler number.  For these tests, samplers 1 and 2 used 47 mm
Fluoropore filters, samplers  3 and 4 used 47 mm glass fiber filters, sampler
5 was  the impactor, and sampler 6 was the hi-vol.  The value of  (particulate
mass emitted/test) resulting from the above  expression was divided by test
distance to yield g/km and by test time to yield g/h.  The hand calculator
program used to process test data is given as Appendix E pages E-30 through
E-33,  and a typical  (filled-in) data sheet is given as page E-34.

          Tests using a CVS or a dilution tunnel for exhaust collection did
not inherently produce data on vehicle exhaust mass or volume flows.  In
order  to calculate concentrations of particulate emitted, therefore, it
was necessary to conduct a series of tests to measure engine air flows over
the various operating schedules used.  Data were acquired by continuous
laminar flow element measurement, with both chart readout and integrated
air flow via a pressure transducer/integrator/counter assembly.  Correc-
                                      41

-------
tions were made for differences in engine inlet air temperature and pres-
sure caused by substitution of the air flow measurement system for each
vehicle's normal air inlet system.  Data resulting from these tests are
given in Table 9, assuming exhaust density and air density to be equal at
             TABLE 9.   AIR AND EXHAUST FLOW DATA USED TO COMPUTE
                      EMITTED PARTICULATE CONCENTRATIONS
Operating
Procedure
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 km/h
85 km/h
Air, kg/test
Mercedes
45.4
44.8
57.8
36.2
13.8
13.0
36.0
63.1
VW
41.4
38.7
50.2
32.0
12.0
15.5
31.2
54.9
Fuel, kg/test
Mercedes
0.948
0.852
1.345
0.936
0.229
0.175
0.666
1.571
VW
0.622
0.566
0.908
0.635
0.139
0.128
0.498
1.077
Exhaust, m /test
Mercedes
38.7
38.1
49.3
31.0
11.7
11.0
30.6
53.9
VW
35.0
32.8
42.7
27.2
10.1
13.0
26.4
46.7
Multiplier0
Mercedes
311.89
316.80
440.97
531.61
205.98
30.30
545.75
527.46
VW
344.86
367.99
509.13
605.88
238.61
25.64
632.58
608.78
a
  mean value over all fuels
  at 101.3 kPa and 21°C
c                         3
  unrounded; based on mg/m  = g/km
                  or mg/m  = g/h  x
                                      3/test
X [m3/t


  U3/t
1000 mg
   g

1000 mg
                                                        x
 km   =
test!

  1 h
                                                         3 tests
                                                                 g/km x Multiplier
                                                                  = g/h x Multiplier
1.99 kg/m  (101.3 kPa and 21°C), which introduces negligible error for com-
bustion effluents from Diesels (0.05%)^25^.  In addition to using the multi-
pliers to compute particulate emissions in mg/m3 (from g/km or g/h), data in
Table 9 could be used to calculate average F/A (fuel:air ratio) for all the
procedures.

       5.  Particle Sizing by Inertial Impactor and Electron Microscopy

           Aerodynamic particulate sizing using the inertial impactor was
carried out using particulate weights on the nine individual collection
stages (eight discs plus the backup filter).  These data were not reduced
to units of mass/test or mass/km,  but were rather computed in terms of
stage percent of total sample mass and cumulative stage percent of total
sample mass.   The resulting information was placed in computer storage so
that it could be analyzed in groups of tests, e.g., all Mercedes tests or all
VW tests, all tests of a given type for each vehicle, all tests on a given
fuel for each vehicle, and so on.   Groups of data were graphed on log-pro-
bability plots  (cumulative data) and rectangular plots  (individual stage
percentages,  excluding filter stage).
                                       42

-------
           Using the templates already shown in Figure 27, particles and
agglomerates appearing in TEM micrographs were sized and tabulated.  The
smallest (individual) particles fell below the smallest template calibration
(0.02 ym) ,  so they were counted prior to sizing the other agglomerates.
The data form used to record the raw data is given as page E-35 of Appendix
E.  Sizes recorded in the "circle" columns were those measured by the cir-
cular templates  (largest diameter), and those recorded in the "line" columns
were those measured by the "line" template (minimum chord).

           Raw data were grouped and summarized on the form given as page
E-36 of Appendix E, with numbers of particles transcribed into the top
section and percentages of particles computed for the bottom section.  Data
from four separate micrographs at 87,500x effective magnification were tabu-
lated on each summary form, and data from the four micrographs were combined
in one of the remaining columns to represent results from one collection
stage.  Most of these steps were not necessary for the larger agglomerates
sized at 21,600x, since very few of them exceeded 1.0 ym apparent diameter.

       6.  Particulate Composition

           Data on major elements in particulate matter (carbon, hydrogen,
and nitrogen) were reported in percent of particulate mass, so no data
reduction was required.  Total solubles were reported in mass per half-
filter extracted, so the only reduction necessary was to recompute the
values in percent of particulate mass.  Sulfur and trace elements were
reported in yg/cm  on the filter analyzed, and these values were multiplied
by the effective filtration area  (14.64 cm2) to yield yg/filter.  For most
of the trace elements analyzed, the mass per filter was simply recomputed
in percent of collected particulate mass.  For sulfur, this percentage was
used with previously-computed total particulate emissions in grams/km to
calculate sulfur in mg/km.

     _     Sulfate raw data were in the form of peak areas corresponding
to SO* concentrations in solutions used to extract sulfate from filters.
These areas, determined by computer, were compared against areas for stan-
dard solutions to yield SO^ in yg/filter.  Sulfate was calculated in mg/km
using these data as fractions of previously computed total particulate mass
emissions.

           Phenol raw data were in the form of yg of individual phenol com-
pounds in total unfiltered and filtered exhaust samples taken from raw ex-
haust under steady-state conditions.  Having measured the amount of exhaust
constituting each sample, phenols in yg/test were calculated by multiplying
phenols in the sample by the ratio of total exhaust to exhaust sampled.
Division of these values by test distance  (or test time, in the case of
idles) yielded phenol emissions in mg/km  (or mg/hr for idles).  For the cases
in which phenols from unfiltered exhaust exceeded those from filtered exhaust
(the expected result), the "filtered" values were subtracted from the "unfil-
tered" values to yield phenols in particulate.  The "filtered" values were
used to represent phenols in exhaust gases.
                                       43

-------
           Data on major elements  in solubles  (carbon,  hydrogen,  nitrogen,
sulfur, and oxygen)  were reported  as received,  in weight percent  of solubles.
Data on BaP in solubles  were  reported in ng/half-filter,  and were subsequently
calculated in yg/km using the reported BaP  values as fractions of previously-
computed total particulate emissions.

           Gas chromatograph-simulated distillation of  solubles from parti-
culate matter were reported as chart output, peaks (individual compounds)
as percentages of total  sample mass, and a  numerical boiling point distribu-
tion (percent distilled  off as a function of temperature).   The only reduction
necessary for these data was  to compute relative  abundances  of peaks identi-
fied as n-paraf f ins, and to compute  the total percentage  of  peak  areas
identified as n-paraffins.
                                      44

-------
                    VI.  GASEOUS EMISSION AND ODOR RESULTS
       This report section includes presentation and discussion of results
on regulated gaseous emissions, aldehydes, gaseous phenols, hydrocarbons
collected by activated traps, and exhaust odor by panel and DOAS analyzer.
Additional aldehyde, regulated emissions, and individual hydrocarbon data
are given with odor results

A.     Regulated Gaseous Emissions Results

       Data on regulated gaseous emissions, including CO2 and fuel consump-
tion, were obtained by analysis of bag samples from CVS-diluted exhaust.
These results are presented in Table 10 for the Mercedes 240D, and in Table
11 for the VW Rabbit Diesel.  Most of the trends in these data are rather
weak, the major exception being comparatively high hydrocarbon values for
the VW Rabbit when operated on EM-241-F "minimum quality" No. 2 fuel.  This
trend is most apparent for test procedures containing substantial idle time,
such as the FTP, the NYCC, and (of course) the steady-state idle.

       These regulated emissions data are also found tabulated on pages F-2
and F-4 of Appendix 4, with average data used for FTP tests.  All these data
(except idle, already in g/h and £/h) have also been recomputed on a time-
rate basis to fulfill Contract requirements and provide input for certain
statistical analysis purposes.  The time-rate data are given on pages P-6
and F-8 of Appendix F.

B.     Aldehyde Results

       Concentrations of a number of individual low-molecular weight alde-
hydes  (formaldehyde through benzaldehyde) were determined in CVS-diluted
exhaust for both vehicles and all five fuels.  These data are too volumi-
nous to include in the text, but they are given in complete form in Appen-
dix F, pages F-2 and F-4  (mg/km) and F-6 and F-8  (mg/h).  Note that the
"acetone" values also include acrolein and propanal, since these three
compounds could not be resolved by the GC.  A summary of the data is given
in Table 12, including only "total aldehyde" values  (the sum  of  the  7
individual aldehyde classifications) .

       Referring to Table 12, few clear trends are evident regarding fuel
effects.  It is obvious, however, that the test procedures influenced
aldehyde emissions quite strongly, with steady-states generally producing
the lowest values per unit distance traveled.  It also appears that over-
all, the VW Rabbit Diesel produced somewhat higher "total" aldehydes than
the Mercedes 240D.

C.     Gaseous Phenol Results

       Phenols as measured in filtered, undiluted exhaust were taken to
represent gaseous phenols, and these results are given in Table 13.  Of
                                       45

-------
                             TABLE 10.  REGULATED GASEOUS EMISSIONS DATA FOR A
                                 MERCEDES 240D OPERATED ON FIVE DIESEL FUELS


Fuel
EM-238-F
2D Emissions



EM-239-F
"Nat1 1 Avg. "



EM-240-F
"Jet A"
No. 1



EM-241-F
"Minimum
Quality"
No. 2

EM-242-F
"Premium"
No. 2




Item
HC
CO
co2
NOX
fuel
HC
CO
co2
NOX
fuel
HC
CO
co2

x
fuel
HC
CO
co2
NOX
fuel
HC
CO
C02
NOX
fuel
Emissions (g/km) and fuel usage (&/100 km) by driving schedule
3-baq FTP test number3-
1
0.13
0.57
225.
0.79
8.42
0.14
0.65
239.
0.79
8.91
0.04
0.58
230.
0.73

8.59
a. 19
0.71
257.
0,88
9.63
0.11
0.60
230.
0.77
8.60
2
No
Data



0.26
0.64
232.
0.82
8.68
0.12
0.56
223.
0.74

8.33
0.22
0.72
253.
0.88
9.49
0.13
0.72
271.
0.93
10.1
3
0,11
0.57
228.
0.77
8.54
0.16
0.63
220.
0.75
8.22
0.10
0.56
230.
0.73

8.60
0.20
0.71
241.
0.87
9.03
0.12
0.71
253.
0.86
9.45

CFDS
0.09
0.39
188.
0.84
7.03
0.08
0.45
194.
0.72
7.24
0.06
0.45
201.
0.69

7.52
0.08
0.48
210.
0.83
7.86
0.07
0.45
183.
0.71
6.85

FET
0,06
0.35
172.
0.68
6.43
0.06
0.40
175.
0.73
6.53
0.04
0.41
188.
0.69

7.01
0.05
0.40
188,
0.80
7.03
0.05
0.41
173.
0.69
6.48

NYCC
0.27
1.11
354.
1.17
13,2
0.27
1.31
382.
1.27
14.3
0.15
1.32
401.
1.34

15.0
0.33
1.55
410.
1.40
15.4
0.20
1.25
;349.
•1. 24
_£3..;1
Steady-States
Idle*3
2.22
6.63
1630.
5.88
0.616
2.10
6.18
1530.
5.70
0.578
1.38
6.12
1820.
6.48

0.685
2.97
7.59
1740.
7.47
0.655
1.38
5.94
1510.
5.61
0.567
50 kph
0.08
0.27
124.
0.47
4.64
0.06
0.27
132.
0.50
4.95
0.04
0.25
119.
0.41

4.43
0.06
0.30
131.
0.49
4.91
0.06
0.25
124.
0.45
4.64
85 kph
0.08
0.36
172.
0.84
6.44
0.06
0.41
175.
0.77
6.56
0.05
0.40
181.
0.70

6.76
0.06
0.40
184.
0.70
6.86
0.05
0.40
159.
0.68
5.96
averages of FTP data given in Appendix F
emissions in grams per hour instead of g/km, fuel in £/h instead of H/1QO km

-------
                                TABLE  11.  REGULATED GASEOUS  EMISSIONS DATA FOR A
                                 VW RABBIT DIESEL OPERATED ON  FIVE  DIESEL FUELS


Fuel
EM-238-F
2D Emissions



EM- 2 39 -F
"Nat'l Avg. "
No. 2


EM- 2 40 -F
"Jet A"
No. 1


EM-241-F
"Minimum
Quality"
No. 2

EM-242-F
"Premium"
No. 2




Item
HC
CO
C02
NOX
fuel
HC
CO
co2
NOX
fuel
HC
CO
co2
NOX
fuel
HC
CO
co2
NOX
fuel
HC
CO
co2
NOX
fuel
Emissions (g/km) and fuel usage (&/100 km) by driving schedule
3-bag FTP test number3
1
0.15
0.48
151.
0.61
5.66
0.19
0.54
151.
0.62
5.66
0.14
0.55
150.
0.57
5.63
0.67
0.76
157.
0.59
5.97
0.19
0.47
157.
0.60
5.90
2
0.15
0.50
149.
0.59
5.57
0.24
0.50
147.
0.67
5.51
0.18
0.55
151.
0.58
5.65
0.67
0.80
167.
0.58
6.33
0.25
0.59
166.
0.68
6.20
3
0.18
0.48
158.
0.56
5.91
0.19
0.49
151.
0.65
5.63
0.20
0.56
156.
0.57
5.85
0.79
0.87
163.
0.57
6.22
0.18
0.49
147.
0.60
5.58

CFDS
0.08
0.36
127.
0.53
4.74
0.12
0.42
131.
0.50
4.92
0.12
0.42
130.
0.51
4.87
0.20
0.43
134.
0.57
5.02
0.10
0.38
136.
0.57
5.09

FET
0.11
0.32
116.
0.53
4.35
0.10
0.38
121.
0.57
4.52
0.15
0.46
121.
0.48
4.55
0.15
0.34
123.
0.52
4.61
0.11
0.39
126.
0.58
4.71

NYCC
0.55
1.08
227.
0.81
8.54
0.39,
1.16
228.
0.98
8.58-
0.33
1.18
224.
0.79
8.44
1.35
1.9,0
241.
0.89
9.23
0.37
0.96
232.
0.89
8. .70
Steady-States
Idleb
7.38
14.4
1110.
4.65
0.432
6.48
12.5
1090.
4.89
0.421
3.60
10.6
1190.
5.73
0.456
17.5
28.0
1310.
5.52
0.527
6.39
11.9
1120.
4.77
0.432
50 kph
0.10
0.27
92.
0.31
3.44
0.07
0.23
95.
0.34
3.55
0.05
0.29
91.
0.31
3.40
1.06
0.92
94.
0.30
3.68
0.07
0.19
95.
0.38
3.54
85 kph
0.08
0.33
119.
0.55
4.45
0.10
0.36
117.
0.57
4.38
0.13
0.46
119.
0.84
4.47
0.20
0.33
120.
0.53
4.51
0.08
0.35
121.
0.60
4.54
a averages of FTP data given in Appendix F
k emissions in grams per hour instead of g/km, fuel in £/h instead of &/100 km

-------
             TABLE  12.  SUMMARY OF  "TOTAL" ALDEHYDE MASS  EMISSIONS

Vehicle
Mercedes
240D






VW Rabbit







Operating
Schedule
FTPCb
FTPHb
CFDS
FET
NYCC
Idlea
50 km/h
85 km/h
FTPCb
FTPHb
CFDS
FET
NYCC
Idlea
50 km/h
85 km/h
"Total" aldehyde mass emissions by test fuel, mg/km
EM-238-F
18.
16.
8.3
8.4
81.
330.
7.2
4.9
35.
24.
83.
13.
94.
860.
20.
8.4
EM-239-F
13.
18.
14.
17.
53.
160.
2.0
1.6
16.
10.
32.
11.
76.
1200.
7.7
4.8
EM-240-F
16.
16.
11.
24.
31.
170.
5.2
3.2
18.
18.
15.
9.1
36.
410.
9.5
6.3
EM-241-F
21.
26.
18.
8.1
39.
250.
4.7
3.5
65.
43.
10.
9.8
53.
940.
38.
8.8
EM-242-F
14.
19.
7.4
8.7
52.
430.
6.9
3.4
18.
10.
1.8
8.1
75.
970.
8.7
5.4
  a idle emissions in mg/h instead of mg/km
    average of three runs

the compounds analyzed, p-cresol was found in more samples than any of the
others  (24), followed by o-cresol (10),  2,3- & 3,5-xylenol (5), and 2,4- &
2,5-xylenol  (2).  As noted at the bottom of Table 13,  several other compounds
analyzed for were not detected in any of the samples.

        Phenols were found in more gas samples from the Volkswagen than from
the Mercedes, and a greater range in amounts of phenols in the gases as a
function of fuel was also noted for the VW.  In particular,  the VW produced
higher phenol concentrations when operated on fuel EM-241-F ("minimum quality"
No. 2) than it did when operated on the other fuels.  In all cases, gaseous
phenol levels were numerically quite low (maximum time rate under 32 mg/h).
The phenol data are given as computer output on pages  F-2 through F-5 of
Appenidx F in mass per unit distance, and again on pages F-6 through F-9 in
mass per unit time.
D.
Analysis of Trap-Collected Gaseous Hydrocarbons
        Hydrocarbons were collected from filtered, dilute exhaust on traps,
and the CS2 elutions from these traps were analyzed qualitatively by gas
chromatograph for boiling range and for paraffin peaks.  Some of these
                                       48

-------
                                          TABLE 13.
GASEOUS PHENOL RESULTS


Vehicle
Mercedes
240D










VW Rabbit
diesel











Operating
Schedule
Idlea



50 km/h



85 km/h



Idlea



50 km/h



85 km/h





Compounds ( s )
c
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Q
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
c
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Q
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Q
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
c
o-cresol +
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
a
Gaseous phenols in rag/km
EM-238-F
od
0
0
0
0
0
0
0
0.032
0.030
0
0
0
0.35
0
0
0.026
0.053
0
0.014
0.035
0.036
0
0
EM-239-F
0
0
0
0
0
0.010
0
0
0.026
0.024
0
0
0
0.22
0
0
0
0.023
0
0
0.027
0
0
0
EM-240-F
0
0.38
0
0
0
0.0096
0
0
0
0.021
0
0
0
0.67
0
0
0.0074
0.023
0
0.0074
0.063
0.071
0
0
EM-241-F
0
0.52
0
0
0
0.021
0
0
0
0.026
0
0
0
6.7
0.16
6.7
0.10
0.27
0.0037
0.16
0.087
0.21
0
0.078
EM-242-F
0
0
0
0
0
0
0
0
0.017
0.028
0
0
0
0.54
0
0
0
0.011
0
0
0.038
0.048
0
0
Ji.
        mg/h instead of mg/km
        analysis also conducted for: phenol; 2,3,5-trimethylphenol; 2,6-xylenol; and 3,4-xylenol; but
          these four compounds were not detected
        o-cresol + salicyaldehyde

-------
samples remained at a low concentration even after evaporation due to low
HC levels in the exhaust, resulting in a substantial number of samples for
which analysis was either partially successful or totally unsuccessful.
These data gaps show up in the complete tabular data, given as pages F-10
through F-19 of Appendix F.

      Summaries of the trap-collected gaseous HC data are given in Tables
14 and 15 for the Mercedes and the VW, respectively.  For comparison, gas
chromatograph analysis of the test fuels themselves is presented in a
similar format in Table 16.  The "Average No. 2" column at the right in
each table lists mean values for all the fuels except EM-240-F, the No. 1
fuel.

      Boiling range temperatures (simulated distillation data) for the
gaseous HC samples were generally higher than for corresponding fuels,
with greater differences between gaseous HC and fuel occurring for EM-240-F
 (+113 to +216°C) than for the average of the No. 2 fuels (+1 to +65°C).  In
fact, gaseous HC from tests on EM-240-F (No. 1 fuel) had a substantially
higher boiling temperature range than the average gaseous HC boiling range
from tests on No. 2 fuel.  This fact runs counter to expectations, based on
the assumption that gaseous HC is closely related to "unburned" fuel in
composition, and it supports the idea that the hydrocarbons are either
combustion products or combustion-modified fuel constituents.  The data
on which these observations are based can hardly be considered conclusive,
however, due to the relatively small number of samples analyzed.  Figures
30  (Mercedes) and 31  (VW) show boiling ranges of EM-240-F (fuel and HC •
emissions) as representative of No. 1 fuel and for the average of data
for No. 2 fuels and corresponding HC emissions.

E.    Results of Odor Evaluations and Corresponding Emissions Tests

      This subsection contains results from both odor panel and instru-
mental odor evaluations, as well as corresponding emissions results.  De-
tailed data on the odor panel evaluations are given in Appendix F, pages
F-20 through F-29.  Detailed data on gaseous emissions and DOA.S results
are given on pages F-30 through F-39, and data on aldehyde and low mole-
cular weight "individual HC" concentrations are presented as pages F-40
through F-45.  For those evaluations conducted twice per vehicle-fuel
combination  (odor, regulated gaseous emissions), the day-to-day repeata-
bility was generally very good.

      Data on the Mercedes 240D, Table 17, exhibit little variation as
an apparent function of fuel, and only moderate variation as. an apparent
function of vehicle operating conditions.  Both panel and DOAS odor inten-
sity ratings are slightly greater overall at high loads than at low- loads,
but this trend appears to correlate negatively (and weaklyl with most of
the hydrocarbons and aldehydes measured.  Of the odor ratings on transients,
those for decelerations are highest overall.
                                      50

-------
           TABLE  14.  SUMMARY OF GAS CHROMATOGRAPH ANALYSIS  OF
            TRAP-COLLECTED GASEOUS HYDROCARBONS,  MERCEDES 240D
Weight
% Off
0 (IBP)
5
10
20
40
60
80
90
95
100 (EP)

Carbon
Number
9
10
11
12
13
14
15
16
17
18
19
20



24
25 or 26
28
32
36
40
% peak data
Average Temperature In °C by fuel
EM-238-F
181
216
239
268
301
330
370
394
408
426
EM-239-F
219
241
252
268
294
322
355
376
387
399
EM-240-F
248
260
271
291
338
369
408
423
433
447
EM-241-F
152
199
226
259
295
332
377
407
428
453
EM-242-F
134
197
220
248
286
321
374
409
427
450
Avg . No . 2
172
213
234
261
294
326
369
396
412
432

Average normalized abundance of (fraction of total) n-paraffins by fuel
EM-238-F
0.004
0.009
0.003
0.009
0.050
0.094
0.138
0.110
0.181
0.167
0.130
0.068
0.004
0.002
0.001
0.004
0.006
0.020



68.8
EM-239-F

0.002
0.002
0.019
0.038
0.174
0.153
0.126
0.168
0.099
0.100
0.058



0.009

0.030
0.013
0.005
0.004
55.9
EM-240-F

0.004
0.006
0.069
0.074
0.140
0.064
0.074
0.103
0.036
0.087
0.036



0.149
0.029
0.125
0.002
0.002

52.4
EM-241-F
0.003
0.007
0.001
0.002
0.010
0.096
0.119
0.126
0.149
0.100
0.166
0.024



0.164

0.028
0.006
0.001

46.7
EM-242-F



0.080
0.093
0.078
0.133
0.142
0.204
0.138
0.082
0.042



0.010





77.8
Avg . No . 2
0.002
0.004
0.002
0.028
0.048
0.110
0.136
0.126
0.176
0.126
0.120
0.048
0.001
0.000
0.000
0.047
0.002
0.020
0.005
0.002
0.001
62.3
by ASTM D2887-73 simulated distillation
sum of paraffins as % of peak area by G.C.; peak area less than total sample area

-------
             TABLE  15.   SUMMARY OF  GAS CHROMATOGRAPH  ANALYSIS  OF
             TRAP-COLLECTED GASEOUS HYDROCARBONS, VW  RABBIT DIESEL
Weight
% Off
0 (IBP)
5
10
20
40
60
80
90
95
100 (EP)
Average Temperature in °C by fuel
EM-238-F
187
226
243
265
295
320
356
382
404
449
EM-239-F
222
239
250
264
287
306
327
340
347
355
EM-240-F
249
265
278
299
352
398
442
469
488
516
EM-241-F
169
208
235
250
268
284
304
316
328
342
EM-242-F
213
233
245
263
293
318
342
360
372
389
Avg . No . 2
198
226
243
260
286
307
332
350
363
384
. Carbon
Number
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

28
32
36
40
% peak datab
Average normalized abundance of (fraction of total) n-paraffins by fuel
EM-238-F
0.000
0.003
0.003
0.002
0.007
0.013
0.034
0.101
0.150
0.133
0.177
0.130
0.117
0.064
0.027
0.013
0.014
0.005

0.007



56.0
EM-239-F



0.022

0.018

0.118
0.248
0.262
0.241
0.090











36.3
EM-240-F



0.007

0.035
0.235
0.225
0.118
0.044
0.027
0.004
0.011
0.179



0.106

0.013



30.8
EM-241-F
0.001
0.001
0.001
0.001
0.000
0.019
0.100
0.160
0.152
0.187
0.164
0.090
0.078
0.028
0.011
0.002
0
0.002
0.002




57.8
EM-242-F




0.001
0.022

0.170
0.272
0.230
0.228
0.054

0.022









49.0
Avg . No . 2
0
0.001
0.001
0.006
0.002
0.018
0.034
0.137
0.206
0.203
0.203
0.091
0.049
0.029
0.010
0.004
0.004
0.002
0.001
0.002



49.8
a by ASTM D2887-73 simulated distillation
k sum of paraffins as % peak by G.C.; peak area less than total sample area

-------
                        TABLE 16.  GAS CHROMATOGRAPH ANALYSIS  OF FIVE TEST FUELS
Weight
% Off
0 (IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by fuel
EM-238-F
154
196
199
212
258
284
320
341
356
396
EM-239-F
118
182
200
225
258
280
314
335
350
380
EM-240-F
114
144
158
174
196
217
241
260
272
304
EM-241-F
132
188
206
232
264
288
321
341
354
384
EM-242-F
128
183
198
218
253
280
318
336
350
373
Avg. No. 2
133
187
201
222
258
283
318
338
352
383
Carbon
Number
Q
n 1 p|
11
12
13
14
15
16
17
18
19
20
21
22
23
O A

% peak data
Normalized abundance of (fraction of total) n-paraffins by fuel
EM-238-F


0.237
0.134
0.074
0.090
0.120
0.092
0.112
0.054
0.032
0.020
0.016
0.009
0.005
Onno

64.7
EM-239-F

Om A
0.041
0.082
0.146
0.141
0.203
0.123
0.137
0.052
0.028
0.017
0.009
0.004




56.3
EM-240-F
Om/i
n ~\ A~\
0.229
0.263
0.216
0.061
0.031
0.017
0.008
	
	
	
	






44.9
EM-241-F

Ofinf.
0.015
0.078
0.105
0.111
0.151
0.174
0.141
0.093
0.078
0.030
0.011
0.004
0.004


56.1
EM-242-F


0.120
0.043
0.172
0.147
0.117
0.109
0.136
0.077
0.046
0.024
0.008






60.3
Avg. No. 2

n nnfi
0.103
0.084
0.124
0.122
0.148
0.124
0.132
0.069
0.046
0.024
0.011
0.004
0.002


59.4
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area

-------
                                        AVG.  OF

                                         NO.  2

                                         FUELS
    100
                                                     TRAP-COLLECTED HC,

                                                   AVG. RESULTS FROM  TESTS

                                                        ON  NO.  2 FUELS
oo
oo
ON
 I
Q
Q
W
EH
CO
H
Q

o\o
     80
60
     40
     20
                                                   TRAP-COLLECTED HC,
                                                     RESULTS  FROM
                                                   TESTS ON NO.  1 FUEL
           100
                 200
300
400
500
                                                                  600
                                TEMPERATURE, °C
      Figure 30.  Boiling ranges for fuels and gaseous HC, Mercedes 240D

-------
             100
              80
tn
U1
           00
           oo
           (N
            I
           Q
           Q
           W
           H
           EH
           W
           H
           a

           dP
60
40
              20
               0
                                  NO.
                                 FUEL
                                                                          TRAP-COLLECTED  HC,
                                                                          AVG.  RESULTS FROM
                                                                         TESTS  ON NO. 2 FUELS
                                                     TRAP-COLLECTED HC,
                                                     RESULTS FROM TESTS
                                                       ON  NO.  1 FUEL
                     100        200       300        400        500        600
                                         TEMPERATURE, C»C

                Figure  31.  Boiling ranges  for fuels  and gaseous HCr  VW Rabbit Diesel

-------
                  TABLE  17.   SUMMARY OF ODOR AND CORRESPONDING  EMISSIONS DATA, MERCEDES 240D
Ln
CTi

Data item
Odor panel "D" rating




DOAS TIA rating




Total HC by FID, ppm C




"Total aldehydes", ppm




Methane , ppm




Non-methane light HC,
ppm C




Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Average data values by engine rpm/% load
1800/2%
2.0
2.2
2.1
2.2
2.0
1.5
1.4
1.5
1.2
1.2
56
65
48
51
58
7.6
9.4
3.6
6.8
5.0
6.2
6.6
6.2
5.3
8.5
14.7
23.0
17.0
15.6
29.0
1800/50%
1.9
2.0
1.9
1.8
1.9
1.5
1.4
1.3
1.2
1.4
38
40
32
34
33
2.2
15.0
4.9
2.5
1.6
3.9
3.9
3.9
3.6
3.6
12.1
13.5
15.7
14.4
9.1
1800/100%
2.4
2.6
2.0
2.2
2.4
1.5
1.6
1.3
1.4
1.5
33
40
29
34
33
5.6
13.0
6.3
4.8
2.7
3.9
4.7
4.4
5.1
4.6
13.6
15.8
14.0
14.8
12.9
3000/2%
2.3
2.0
2.2
2.2
2.0
1.4
1.5
1.2
1.2
1.2
57
60
56
49
47
4.0
12.4
8.0
6.2
5.9
7.5
7.6
10.4
8.3
8.4
22.6
25.8
31.2
23.3
23.4
3000/50%
2.0
2.2
1.8
2.0
2.3
1.4
1.6
1.4
1.3
1.3
38
32
30
31
30
4.7
9.4
0.8
3.8
1.1
4.2
3.4
5.0
4.3
4.9
11.3
11.3
13.4
10.6
13.5
3000/100%
2.8
2.9
2.6
2.6
2.7
1.6
1.8
1.6
1.6
1.6
28
38
35
30
30
7.2
5.2
6.4
5.2
3.3
3.0
2.3
5.5
4.1
3.9
11.9
11.8
16.6
14.4
13.7
Idle
2.0
2.3
2.2
2.2
2.2
1.4
1.6
1.0
1.2
1.1
00
103
60
B4
78
6.0
16.3
5.7
6.1
6.6
9.1
8.7
6.7
7.7
8.1
28.3
33.4
23.7
32.6
29.5
Fuel
EM-238-F
EM-239-F
EM-241-F
EM-241-F
EM-242-F
Odor panel "D" rating by transient operating condition
Idle - Acceleration
2.8
3.0
2.6
2.8
2.5
Acceleration
2.5
2.9
2.4
2.6
2.5
Deceleration
4.2
4.8
4.4
4.4
4.0
Cold Start
4.0
2.8
2.8
4.0
4.1

-------
      Data on the VW Rabbit, Table 18, indicate slightly stronger odor
than that recorded for the Mercedes.  Both panel and instrumental data
indicate that operation of EM-241-F ''minimum quality" No. 2 fuel produced
almost uniformly stronger odor than operation on the other fuels.  Odor
intensity dependence on operating condition was mixed and very weak.  Higher
levels of total hydrocarbons, non-methane light hydrocarbons, and aldehydes
occurred most often at idle, followed by the 1800 rpm/2% load condition.
Highest idle emissions of all the gaseous constituents measured were re-
corded during use of fuel EM-241-F, but fuel effects at other conditions
were mixed.  All the transient odor ratings were highest when fuel EM-241-F
was in use, and the cold start produced higher overall odor levels than
the other transients.

F.    Other Gaseous Emissions Data

      In addition to gaseous emissions data in  (mass/distance) and  (mass/
time) already discussed, gaseous emissions results were also computed in
fuel specific units  (mass/kg fuel).  These data are given in Appendix F
as pages F-46 and F-47  (Mercedes) and F-48 and F-49  (VW), their major
intended use being input in impact calculations where category fuel con-
sumption is available.
                                       57

-------
                     TABLE 18.  SUMMARY OF ODOR AND CORRESPONDING EMISSIONS  DATA, VW RABBIT
ui
oo

Data item
Odor panel "D" rating




DOAS TIA rating




Total HC by FID, ppm C




"Total aldehydes", ppm




Methane , ppm




Non-methane light HC,
ppm C




Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM- 2 40 -F
EM-241-F
EM-242-F
EM-230-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
• EM-239-F
EM-240-F
EM-241-F
EM-242-F
Average data values by engine rpm/% load
1800/2% 1800/50% 1800/100% 3000/2% 3000/50% 3000/100% Idle
2.7
2.6
2.6
2.8
2.6
1.8
1.7
1.6
2.2
1.5
136
138
77
152
68
23.3
7.8
12.8
21.4
12.9
4.6
2.7
0.5
6.8
5.8
58.8
24.9
34.9
32.9
28.6
2.5
2.4
2.6
2.5
2.6
2.0
1.9
1.8
2.2
1.6
84
110
63
75
78
16.6
5.6
5.7
24.2
8.5
0
1.8
0
4.0
9.7
21.2
21.4
17.9
24.3
32.7
3.0
3.4
3.1
3.5
2.8
2.2
2.2
2.0
2.4
2.0
84
136
84
86
60
9.8
13.4
9.6
2.2
13.4
0.4
1.8
0
7.6
7.8
23.7
20.2
28.4
25.1
27.0
2.4
2.2
3.1
2.8
2.2
1.5
1.5
1.7
1.9
1.4
64
72
400
79
43
8.6
2.0
2.1
12.2
4.6
0.6
2.6
2.1
5.0
5.4
14.0
14.6
45.5
17.6
15.0
2.7
2.6
3.0
3.2
2.8
2.1
2.1
2.0
2.4
1.9
120
180
176
120
132
3.2
10.3
8.3
8.1
9.1
5.1
9.2
13.8
11.7
15.7
36.4
56.8
80.9
52.3
62.1
3.0
3.1
3.0
3.3
2.9
2.1
2.0
2.0
2.3
1.9
58
93
80
96
58
15.6
6.6
14.8
10.4
5.2
3.8
8.8
4.6
9.5
14.9
33.6
27.0
39.1
22.0
31.1
2.9
3.4
3.0
3.4
2.0
1.7
1.8
J .5
2.2
1.4
246
314
292
625
183
40.0
25.5
3.9
52.6
33.9
2.9
5.4
0.2
10.0
6.4
43.0
47.7
33.5
84.0
42.9
Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Odor panel "D" rating by transient operating condition
Idle - Acceleration
3.6
3.2
3.3
3.9
3.4
Acceleration
3.7
3.6
3.3
4.4
3.8
Deceleration
3.0
2.8
3.3
3.7
3.0
Cold Start
4.1
5.0
4.0
5.4
4.8

-------
                 VII.  SMOKE AND PARTICULATE EMISSION RESULTS
      This section of the report presents summary data and discussion on
visible smoke, total particulate mass emissions, particle size distribution,
sulfate, elemental composition of particulate matter, and phenols in par-
ticulate matter.  In addition, it includes information on organic solubles
in particulate matter, BaP in solubles, and boiling range of organic solubles
by gas chromatograph analysis.
A.
Visible Smoke Emissions
      Visible smoke from both vehicles was measured using an EPA-type
smokemeter over the first '505 seconds  (the "transient phase") of the FTP,
starting with both "cold"  (approximately 72°F) and "hot"  (within about 10
minutes following a prior test run) engine conditions.  Data taken were
in the form of recorder strip charts of vehicle speed and smoke opacity
versus time.  These charts were analyzed manually for smoke peaks and
averages during the initial portion of each test, and it was found that
almost all variation  (fuel-to-fuel, and vehicle-to-vehicle) was contained
in the first three or four minutes of operation.  A summary of the smoke
data is given in Table 19, based on plumes emitted through 51 mm (2 inch)
O.D. exhaust pipes.
             TABLE 19.  SUMMARY OF SMOKE DATA BY VEHICLE AND FUEL

Vehicle
Mercedes 240D









VW Rabbit
Diesel









Condition
Cold start peak
Cold idle avg. (after start)
1st accel peak
Idle at 125 sec, avg.
Accel at 164 sec, peak
Hot start peak
Hot idle avg. (after start)
Hot 1st accel peak
Hot idle at 125 sec, avg.
Hot accel at 164 sec, peak
Cold start peak
Cold idle avg. (after start)
1st accel peak
Idle at 125 sec, avg.
Accel, at 164 sec, peak
Hot start peak
Hot idle avg. (after start)
Hot 1st accel peak
Hot idle at 125 sec, avg.
Hot accel at 164 sec, peak
Average Smoke, PHS %, by fuel
238
22.
4.2
18.
2.0
6.6
26.
2.2
7.0
1.8
5.4
71.
0.5
16.
0.3
18.
41.
0.4
3.5
0.4
31.
239
36.
2.6
15.
1.4
13.
38.
1.4
7.8
1.7
6.2
79.
3.0
5.8
0.5
22.
37.
0.4
3.0
0.4
23.
240
39.
2.3
15.
1.4
7.2
23.
1.4
5.8
1.3
4.6
58.
1.8
6.8
0.4
10.
28.
0.2
2.9
0.2
13.
241
59.
2.2
14.
2.4
9.8
29.
2.3
11.
2.2
5.2
89.
72.
41.
0.4
27.
48.
0.2
4.2
0.2
28.
242
21.
3.4
18.
2.1
12.
22.
2.3
7.5
1.8
6.2
85.
3.5
23.
0.4
22.
34.
0.3
2.2
0.5
17.
                                      59

-------
      The first five line items for each vehicle and fuel represent data
from the cold 505,  and the sixth through 10th line items represent data
from the hot 505 for comparison.  Starting peaks were generally much higher
during cold starts  than during hot starts for the VW Rabbit, but this trend
held only for "minimum quality" No. 2 fuel (EM-241-F) in the Mercedes 240D.
Note also that of all the first or "cold" idles, the peak for fuel EM-241-F
in the VW Rabbit was highest at 72% opacity,  and that this value was the
only cold idle which exceeded 4.2% opacity.  It appears that the relatively
low-cetane fuel  (cetane index (26' approximately 42) made cold operation
marginal in the VW Rabbit.  Some of the smoke charts (initial portion only)
are shown in Appendix G, Figures G-l through G-8 (pages G-2 through G-9).
Figure G-l shows the.beginning of Run 1  (cold start) on the VW Rabbit with
EM-241-F fuel; and it can be compared to Figure G-2, which shows the cor-
r,esponding hot start.  The high "cold idle" smoke in Figure G-l was not
repeated in the  first idle of Figure G-2.  Figures G-3 and G-4 show a
similar comparison for the Mercedes 240D, but no substantial difference
is appparent for this vehicle.

      Figure G-5 shows a cold start on EM-240-F  (No. 1) fuel for the VW
Rabbit, and Figure G-6 shows the initial portions of a corresponding run
on the Mercedes  240D.  Although the No. 1 fuel  (EM-240-F) produced
slightly lower smoke overall, results with No. 2 fuels other than EM-241-F
were quite similar to those obtained with the No. 1 fuel.  This similarity
can be verified by comparing Figure G-7  (VW Rabbit cold start on EM-242-F)
with Figure G-6.
 B.
Particulate Mass Emissions and Concentrations
      Total particulate emissions were measured by six simultaneous fil-
 tration systems during each test, including two each 47 mm glass fiber and
 Fluoropore, one hi-vol filter, and one inertial impactor.  Mass emissions
 computed  from  47 mm glass fiber filter weights were considered most repre-
 sentative for  characterization purposes at the time these tests were con-
 ducted, but corresponding values had to be obtained for the other collection
 systems in order to quantify particulate constituents.  All the particulate
 mass  emissions data are summarized in Tables 20 and 21 for the Mercedes  240D
 and the VW Rabbit Diesel, respectively.  The minimum number of individual
 emission  results averaged or tabulated to arrive at these data is as follows:
Sampling system (s)
both 47 mm types
impactor and hi-vol
Minimum individual results by
operating cycle (s)
all FTP's
6
3
CFDS
4
2
All others
2
1
 For  tests repeated due to unusable data on one filter, the number  of  in-
 dividual results used to compute values for Tables  20 and 21 ^xceeded the
 above  minimums  for the other  filter types.  As noted in the table  sub-
                                     60

-------
                         TABLE 20.  PARTICULATE MASS EMISSIONS FOR A MERCEDES 240D
Sampling System
47 mm glass fiber




47 mm Fluoropore




Impactor set




Hi-vol glass fiber




Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Grams particulate per kilometer by operating cycle or mode
Cold
FTP
0.335
0.319
0.251
0.408
0.299
0.272
0.273
0.207
0.348
0.274
0.293
0.292
0.239
0.330
0.272
0.303
0.295
0.224
0.369
0.245
Hot
FTP
0.324
0.311
0.223
0.358
0.286
0.241
0.262
0.188
0.309
0.265
0.314
0.286
0.217
0.311
0.249
0.281
0.279
0.203
0.314
0.262
(calculated)
1975 FTP
0.329
0.314
0.235
0.380
0.292
0.254
0.267
0.196
0.326
0.269
0.305
0.289
0.226
0.319
0.259
0.290
0.286
0.212
0.338
0.255
CFDS
0.261
0.226
0.166
0.257
0.203
0.183
0.179
0.138
0.224
0.188
0.228
0.204
0.160
0.256
0.174
0.191
0.202
0.144
0.226
0.163
FET
0.212
0.192
0.140
0.258
0.181
0.188
0.173
0.132
0.248
0.158
0.194
0.177
0.141
0.218
0.173
0.173
0.167
0.124
0.218
0.175
NYCC
0.680
0.565
0.317
0.808
0.563
0.580
0.460
0.256
0.644
0.486
0.550
0.474
0.300
0.661
0.363
0.617
0.537
0.287
0.720
0.459
Steady-states
Idlea
2.99
3.16 -
1.50
4.00
2.71
2.08
1.92
1.24
2.83
2.03
3.08
2.78
1.70
4.11
1.66
2.56
2.98
1.42
3.56
2.31
50 kph
0.150
0.142
0.114
0.150
0.131
0.120
0.101
0.092
0.136
0.115
0.161
0.091
0.114
0.141
0.124
0.133
0.131
0.102
0.138
0.114
85 kph
0.196
0.165
0.136
0.231
0.195
0.172
0.128
0.109
0.210
0.182
0.192
0.153
0.142
0.202
0.183
0.170
0.147
0.095
0.192
0.147
grams per hour instead of grams per kilometer

-------
                        TABLE  21.   PARTICULATE MASS EMISSIONS FOR A VW RABBIT DIESEL
Sampling System Fuel
47 mm glass fiber




47 mm Fluoropore




a\
^ Impactor set




Hi-vol glass fiber




EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM- 2 40 -F
EM-241-F
EM-242-F

EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Grams particulate per kilometer by operating cycle or mode
Cold
FTP
0.252
0.250
0.209
0.565
0.221
0.204
0.202
0.160
0.962b
0.186

0.221
0.222
0.190
0.486
0.181
0.223
0.206
0.181
0.432
0.190
Hot
FTP
0.204
0.194
0.152
0.231
0.174
0.156
0,147
0.104
0.174
0.149

0.173
0.178
0.144
0.210
0.152
0.182
0.168
0.136
0.191
0.150
(calculated)
1975 FTP
0.225
0.218
0.177
0.375
0.194
0.177
0.171
0.128
0.513
0.165

0.194
0.197
0.164
0.329
0.164
0.200
0.184
0.155
0.295
0.167
CFDS
0.206
0.194
0.149
0.222
0.156
0.198
0.163
0.095
0.199
0.148

0.187
0.174
0.148
0.190
0.118
0.194
0.165
0.130
0.189
0.136
FET
0.173
0.143
0.138
0.174
0.175
0.150
0.114
0.130
0.140
0.154

0.137
0.140
0.128
0.142
0.151
0.150
0.127
0.110
0.151
0.154
NYCC
0.363
0.384
0.295
0.450
0.402
0.219
0.218
0.176
0.225
0.200

0.294
0.322
0.232
0.438
0.325
0.290
0.296
0.252
0.360
0.276
Steady-states
Idlea
1.93
2.12
0.742
2.84
2.10
0.838
0.812
0.244
1.64
0.424

1.57
1.94
0.711
3.64
1.92
1.58
1.58
0.715
2.48
c
50 kph
0.090
0.068
0.047
0.197
0.052
0.060
0.040
0.024
0.103
0.037

0.078
0.066
0.053
0.196
0.030
0.066
0.055
0.042
0.114
0.041
85 kph
0.167
0.148
0.103
0.189
0.164
0.137
0.130
0.066
0.197
0.151

0.156
0.147
0.102
0.175
0.153
0.144
0.136
0.086
0.158
0.131
grams per hour instead of grams per kilometer
difficulties were encountered with filter plugging
no data

-------
headings, the 1975 FTP entries were calculated from corresponding cold
and hot FTP data.  Data given for 47 mm glass fiber filters are repeated
in Appendix G, pages G-10  (Mercedes) and G-13 (VW).  Tables 20 and 21 show
that vehicle, operating condition, particulate collection system, and fuel
type all influenced particulate mass emissions.   Most of the corresponding
results for the two vehicles show higher emissions for the Mercedes than
for the VW, with the notable exception of cold start FTP tests on EM-241-F
fuel, which was uniformly higher for the VW Rabbit Diesel.  For both vehicles
and most operating conditions, lowest particulate emissions per unit distance
traveled occurred when EM-240-F No. 1 fuel was in use.  Highest emissions
generally occurred using EM-241-F "minimum quality" No. 2 fuel.

      Operating conditions influenced particulate emissions from both.
vehicles quite strongly.  Cold start FTP emissions were also uniformly
higher than hot start FTP emissions, with small differences the rule for
the Mercedes  (average about 7%) and larger differences for the VW (average
about 30%).  It also appears that higher road speed (with its corresponding
higher power requirement), greater fractions of idle time, and greater
speed variability all contributed to higher particulate emissions.

      Particulate emissions data are given in grams per hour for all
operating conditions in Table 22, based only on  47 mm glass fiber filter
results.  This information is also included in the complete data set for
statistical analysis in Appendix G, pages G-15 (Mercedes)  and Gr-19 (VW) .
The fuel-to-fuel and vehicle-to-vehicle comparisons in Table 22 show the
same trends as those in Tables 20 and 21, but the comparisons between con-
ditions are quite different.  Time-based emissions show idle to be lowest
on this basis, with the other conditions producing higher emissions  roughly
proportional to their average speeds.   Other parameters of the operating
conditions are also important, such as speed variability,  percent of idle
time, and so forth.

      Particulate concentrations were calculated only from 47 mm glass
fiber filter data, although the method outlined in section V would work
as well for any of the collection systems.  The concentration data are
given in Table 23 for both vehicles, and this information can also be
found in Appendix G, pages G-10  (Mercedes) and G-13 (VW).  Trends in con-
centration between fuels and operating conditions are the same as those
for particulate mass emissions, but those between vehicles are slightly
different due to the effects of differing exhaust rates.  These effects
show up as an increased number of conditions under which the VW concen-
trations equal or exceed the Mercedes concentrations as compared to
particulate mass emissions data.

      Concentration values in Table 23 also permit direct comparison of
idle emissions with those at other operating conditions, in this case,
without consideration of exhaust flow rates.  Both vehicles exhibited
comparatively low particulate concentrations at idle when EM-240-F No.  1
fuel was used.  When No. 2 fuels were in use, particulate concentrations
were more nearly equal to those emitted at other operating conditions.
                                      63

-------
                       TABLE 22.   TIME-BASED PARTICULATE EMISSIONS  FOR TWO DIESEL VEHICLES
Vehicle
Mercedes
240D



VW Rabbit
diesel



Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
- EM-242-F
Grams particulate per hour by operating cycle or mode
Cold
FTP
10.5
10.0
7.90
12.8
9.41
7.93
7.86
6.58
17.8
6.95
Hot
FTP
10.2
9.78
7.02
11.3
9.00
6.42
6.10
4.78
7.27
5.47
(calculated)
1975 FTP
10.4
9.88
7.39
12.0
9.19
7.08
6.86
5.57
11.8
6.10
CFDS
14.6
12.6
9.29
14.4
11.4
11.5
10.9
8.34
12.4
8.73
FET
16.4
14.9
10.9
20.0
14.0
13.4
11.1
10.7
13.5
13.6
NYCC
7.73
6.42
3.60
9.19
6.40
4.13
4.37
3.35
5.12
4.57
Steady-states
Idle
2.99
3.16
1.50
4.00
2.71
1.93
2.12
0.742
2.84
2.10
50 kph
7.50
7.10
5.70
7.50
.6.55
4.50
3.40
2.35
9.85
2.60
85 kph
16.7
14.0
11.6
19.6
16.6
14.2
12.6
8.76
16.1
13.9
CTi
      based on data  from 47 mm filter samples

-------
                    TABLE 23.  PARTICULATE CONCENTRATIONS FOR TWO DIESEL VEHICLES
Vehicle
Mercedes
240D



VW Rabbit
diesel



Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Particulate concentration in mg/m^ by operating cycle or mode3
Cold
FTP
104.
99.5
78.3
127.
93.3
86.9
86.2
72.1
195.
76.2
Hot
FTP
103.
98.5
70.6
113.
90.6
75.1
71.4
55.9
85.0
64.0
(calculated)
1975 FTP
103.
98.9
73.9
119.
91.7
80.2
77.8
62.9
132.
69.2
CFDS
115.
99.7
73.2
113.
89.5
105.
98.8
75.9
113.
79.4
FET
113.
102.
74.4
137.
96.2
105.
86.6
83.6
105.
106.
NYCC
140.
116.
65.3
166.
116.
86.6
91.6
70.4
107.
95.9
Steady-States
Idle
90.6
95.8
45.4
121.
82.1
49.5
54.4
19.
72.8
53.8
50 kph
81.9
77.5
62.2
81.9
71.5
56.9
43.0
29.7
125.
32.9
85 kph
103.
87.0
71.7
122.
103.
102.
90.1
62.7
115.
99.8
at 101.3 kPa and 21°C

-------
C.    Particle Size Distributions

      All the samples for particle size analysis were collected in an
inertial impactor.   Impactor collection discs were simply weighed to obtain
aerodynamic size distributions by mass via the impactor's own calibration,
and a few impaction zones were later subjected to SEM and TEM analysis to
study the apparent size distributions within the zones.  Figure 32 shows
an entire zone of impacted particulate on a stainless steel surface at
lOOx  by SEM, and Figure 33 shows a small portion of an impaction zone at
10,000x by SEM.  The "fluffy" appearance of the particulate matter at
10,000x became more pronounced as magnification was increased, making the
SEM micrographs essentially useless for sizing purposes.

      Figure 34 shows a sample of particulate matter collected on a copper
grid by TEM at 21,600x,  and Figure 35 shows smaller portion of this same
grid (indicated by brackets in Figure 34) enlarged to 87,500x.  Micrographs
such as these were analyzed visually using the templates  shown in an earlier
section of the report (Figure 27).  It was considered necessary to size
agglomerates in areas where their distribution was sparse enough to avoid
large concentrations which could fill an entire micrograph or introduce
problematic three-dimensional effects, but this choice may have been respon-
sible for biasing the TEM results toward small agglomerate sizes.  In other
words, the "monolayer" areas examined may be only those covered by agglo-
merates flying off the main impaction zone and redepositing further from
its center.

      1.  Impactor Data

          Data from 125 impactor runs were analyzed, including individual
run and average percentages of particulate mass by stage  and cumulative
percentages of particulate mass by stage, for the entire  data set and a
number of subsets.  The subsets included individual fuels, operating cycles/
conditions, and vehicles, as well as individual vehicle-cycle combinations
and vehicle-fuel combinations.  Basic statistics were computed for the data
set and all the subsets, including mean, standard deviation, and coefficient
of variation.  The most basic data set  (mass percent collected by stage,
individual runs) is given in Appendix G, pages G-22 through G-24.  The
run code at left on these pages represents (in order) vehicle  (M or V) ,
fuel (numerical), and test procedure.  The "total particulate" column at
the right on pages G-22 through G-24 is total collected mass for disc and
filter in milligrams.  Stage 9 was the filter stage.

          A first analytical look at some of these data is given in Table
24, which includes breakdowns of mass percent collected on each stage by
vehicle, by fuel, and by operating cycle or condition.  These data show
little difference between vehicles, and only a slight difference between
fuel EM-238-F and the other fuels which shows up most strongly in filter-
collected particulate  (stage 9).  Greater differences exist between
corresponding data for the various operating schedules, with the lower-
speed, higher-variability schedules  (e.g. cold FTP) apparently showing
                                      66

-------
Figure 32.  Impaction zone on stainless
          disc by SEM at lOOx
                                        Figure 33.   Portion of impaction zone
                                         on stainless disc by SEM at 10,000x
                                     67

-------
Figure 34.  TEM micrograph at 21,600x
                  68

-------
3£> ^
J% f A * ^
' •„ f •< "1 •» ,
v**
•j * i "* %^
*V
*A /"
*i<
y •%. * ^
^ ~ %, ^ /J^'1 ^
^

*-3° ^4 ?, »1 „
i* + «' s *»
^^r VO
*3< ** v, ,7
* ^
fV ** ^»*J1
jy^ir
', 1 1
<* K
•* -5 1M" 'x
^r «
^ ^ f
C< (^
'•*•
• «
*sf
_ * /i , , sit. .
06^
*T^
-<«» 1
€ If
%<
It
<^
i
^^



^
^ "•%"
^v
%
* **
?&• ?
•v ^

,v
«
"flt
^|^^V
u>
\<
t> vV
T 1
<
>v^
                               W   •*  ul
Figure 35.  TEM micrograph at 87,500x
                  69

-------
                TABLE  24.   ANALYSIS OF PARTICLE  SIZE DISTRIBUTION DATA FROM INERTIAL  IMPACTOR TESTS
Stage
9(filter)
8
7
6
5
4
3
2
1
ECD,
ym
<0.42
0.42
0.63
1.02
2.0
3.2
4.6
6.8
11.
Average (x) and Coefficient of Variation (s/x) for % Collected by Stage
Mercedes
X
83.9
3.7
3.3
2.9
2.0
1.6
1.4
0.7
0.5
s/x
0.05
0.25
0.24
0.32
0.38
0.58
0.61
0.64
1.07
Volkswagen
X
83.2
3.0
2.6
3.0
2.2
2.0
2.1
1.2
0.7
s/x
0.09
0.44
0.48
0.59
0.64
0.61
0.69
0.92
0.77
EM-238-F
X
80.8
3.5
3.6
3.5
2.5
2.0
2.2
0.9
1.0
s/x
0.08
0.33
0.26
0.46
0.43
0.60
0.72
0.73
0.69
EM-239-F
X
84.9
3.1
3.0
2.8
2.1
1.5
1.3
0.8
0.5
s/x
0.07
0.24
0.39
0.47
0.64
0.61
0.73
0.93
0.67
EM-240-F
X
84.1
2.9
2.6
2.8
2.2
1.8
1.8
1.2
0.5
s/x
0.08
0.28
0.30
0.55
0.56
0.65
0.71
1.19
1.30
EM-241-F
X
83.7
3.7
2.7
2.6
1.8
1.9
1.9
0.9
0.7
s/x
0.06
0.43
0.43
0.44
0.48
0.60
0.69
0.50
0.85
EM-242-F
X
83.9
3.5
3.0
2.9
1.9
1.7
1.7
1.0
0.5
s/x
0.07
0.37
0.39
0.42
0.57
0.60
0.57
0.68
0.95
Stage
9(filter)
8
7
6
5
4
3
2
1
ECD,
Um
<0.42
0.42
0.63
1.02
2.0
3.2
4.6
6.8
11.
Average (x) and Coefficient of Variation (s/x) for % Collected by Stage
Cold FTP
x
77.6
4.1
3.7
4.2
3.1
2.8
2.9
1.1
0.6
s/5
0.04
0.36
0.14
0.17
0.2.1
0.25
0.19
0.48
0.35
Hot FTP
x
82.1
3.3
3.0
3.4
2.5
2.1
2.0
0.9
0.6
s/x
0.05
0.28
0.20
0.25
0.32
0.26
0.36
0.47
0.67
CFDS
x
80.0
3.8
3.8
3.9
2.7
2.2
2.2
0.8
0.4
s/x
0.05
0.19
0.21-
0.24
0.26
0.34
0.39
0.36
0.71
FET
x
86.0
3.0
2.8
2.6
1.7
1.3
1.8
0.4
0.4
s/x
0.03
0.28
0.29
0.14
0.25
0.31
0.75
0.70
0.91
NYCC
x
77.9
3.4
3.0
3.8
3.0
3.0
2.8
1.8
1.1
s/x
0.08
0.37
0.30
0.43
0.49
0.29
0.58
0.59
0.71
Idle
x
85.7
3.2
2.4
1.6
1.6
1.6
1.0
1.7
1.2
s/x
0.07
0.62
0.72
0.67
0.59
0.80
0.69
0.91
0.76
50 kph
x
90.9
2.8
1.8
1.4
0.9
0.6
0.5
0.6
0.6
s/x
0.03
0.28
0.40
0.46
0.59
0.73
0.77
1.02
0.91
85 kph
x
89.0
3.2
2.8
2.0
1.0
0.7
0.6
0.4
0.2
s/x
0.02
0.25
0.29
0.24
0.29
0.27
0.23
0.55
0.91
o

-------
greater concentrations of larger agglomerates than the higher-speed,
lower-variability schedules (e.g. 85 kph steady-state).   This effect
is likely due to the influence of transients in the operating schedule
and the final dilution and sampling temperatures  (temperatures lower for
low-speed, high-variability schedules and idle).  Note that all the data
show between 77 and 91 percent of the particulate on stage 9  (the filter),
indicating that the impactor did not adequately size the vast majority of
the agglomerates.  Computer printout of average run data and computed
statistics for all the data sets summarized in Table 24 are given in
Appendix G, pages G-25 through G-33.

          Data such as those presented in Table 24 can also be expressed
in cumulative mass percent of particulate smaller than stage cutoff dia-
meters, beginning with stage 9  (filter) and working through the sampler
toward larger agglomerate diameters.  Computer printout of average cumu-
lative run data and accompanying statistics are given in Appendix G, pages
G-34 through G-42.  To provide better comparisons and data visualization,
the average run data have been plotted in Figures 36 and 37 (individual
stage collection percentages, excluding stage 9) and the average cumulative
run data have been plotted in Figures 38 through 40.

          Figure 36 shows that as an overall average, a little more
material was classified in the larger size ranges (stages 1-5) for the
VW than for the Mercedes.  Slightly less particulate matter was collected
on stages 7 and 8 for the VW than for the Mercedes.  Fuel comparisons in
Figure 36 show little of significance.  Figure 37 shows than comparatively
slow, highly variable operating schedules (such as the cold FTP and NYCC)
were associated with higher production of larger agglomerates than higher
speed steady-states.  These differences appear most significant for
stages 3 through 6.

          The average cumulative plots in Figures 38 through 40 are indi-
cative of the overall strong similarity between impactor-derived size
distributions for all the data subsets.  Plots for the two vehicles in
Figure 38 are hardly separable, as are those for the five fuels in Figure
39.  Figure 40 shows a wider range for the eight operating schedules,
with a trend toward more large agglomerates as schedule average speed
decreases and speed variability increases (generally right-to-left on the
graph).

      2.  Transmission electron microscope (TEM)  data

          Impactor discs were prepared for two special tests by attaching
small grids  (described in Section V) for later TEM analysis.  These tests
were both conducted on the VW Rabbit Diesel with EM-239-F  ("National Average"
No. 2) fuel, and consisted of one cold FTP and one 85 km/h steady-state.
Four zones on each collection grid were examined by micrographs at 21,600x
for comparatively large agglomerates  (over 1.0 ym), and four smaller areas
on each of 16 of the above-mentioned micrographs were examined at 87,500x
for smaller agglomerates.  Two diameters were measured for each agglomerate;
                                      71

-------
WEIGHT %
3 M KJ CO £>•
1*11
ALL






TESTS dP 4 "
3-
EH
HlH 1 _

i— I 5 "
H ,
"T-i B "

MERCEDES <*> 4



24

nn ^ -
U1J j
E-i
-i-, § 2 '
— H 1 '



VW

R?
D]

^BBIT
[ESEL


~h
87654321 "87654321 "87654321
STAGE STAGE STAGE
to
WEIGHT %
> I-1 to co •&.
i FUEL



EM-238-F ^ 4]






3-
ffi 2-
0
H
n s _


FUEL


EM
[-239-F 4 •
3 •
EH
w o -
hM ^
	 	 X
	 1 W 1 '


FUI
:L
^•^•HI
EM-240-F





	 1
"87654321 "87654321 "87654321
STAGE STAGE STAGE
<*> 4 •
3 -
EH
g 2-
S i-
S

FTT1


EL

EM-241-]






f dP
3-
E-i
K 2 •
0 ^
H T
— i w !'
nn * n


FUEL


EM-242-F





^
              7654321
                   STAGE
87   654321
       STAGE
                            Figure 36.  Average weight percentages of particulate
                                 matter by impactor stage,  vehicle, and fuel

-------
WEIGHT %
O h- ' NJ U) *>.
a 1 B \ •
ALL TESTS










            87654321
                    STAGE
T Ot  *«•
i i • • i
FTPH







"hi
76   54   32
     STAGE
4 -I
3 •







CFDS



--J
OJ
         76  54  32   1
              STAGE
WEIGHT
D M K> U)
I 1 1











n
" 87 65 4 321
STAGE
— ,
                                                                                  876  54  3
                                                                                         STAGE
                                                    2  1
                           Figure  37.  Average weight percentage of particulate  matter
                               collected by impactor stage and operating schedule

-------
                                                                                 0.01
Q
U
w
EH
O
EH
O
O
H
EH
U
W
W
                                                 10    5     21
    0.4
                   20      40     60       80   90    95    98  99        99.9    99.99

                          WEIGHT  PERCENT  PARTICULATE SMALLER THAN  BCD

   Figure 38.   Average cumulative particle size distribution by.-impactor, two  vehicles

-------
Q
U
W
PS
w
EH
Q
En
O
EH
D
U

W
EH
U
W
10.


 8.0



 6.0





 4.0



 3.0




 2.0
 1.0


 0.8


 0.6




 0.4
                   80   70  60  50  40  30
                   20
                                                                                  - 3
                        40      60      80    90   95    98 99         99.9    99.99

                      WEIGHT PERCENT PARTICULATE SMALLER THAN ECD
      Figure 39.  Average cumulative particle size distribution by • impa,ctor,  five fuels

-------
               90
80   70   60  50  40   30   20
                                                       10
2  //I  /)$ /0.2  0.1 0.05   0.01
Q
U
W
w
EH
W
Q


Pn

§

U



H

U
w
Cn

w
                                                                                                10

                                                                                                9
                     20        40     60        80    90    95    98  99         99.9     99.99


                            WEIGHT PERCENT PARTICULATE SMALLER THAN ECD


    Figure* 4O.  Average  cumulative particle  size  distribution by 'inpactpr,  eight operating schedules

-------
the "major" diameter of a circle required to enclose it, and the "minor"
diameter qr "minimum chord" equal to the smallest distance between parallel
lines on opposite sides of the agglomerate.  The data gathered from this
analysis are summarized in Table 25, and it is obvious that in all cases
most of agglomerates measured 0.15 ym diameter or less.  This observation
indicates that for the particles sampled and the impaction zones examined,
aerodynamic size distribution and physical size distribution were grossly
different.

          To extract more information from these data, they have been
retabulated in average cumulative numerical percentages for presentation
as Table 26.  The cumulative data show that the 80th percentile agglomerate
is uniformly smaller than 0.15 ym major diameter, that the 95th percentile
agglomerate is uniformly smaller than 0.4 ym major diameter, and that (see
note a) 99.95% of the agglomerates are smaller than 1.0 ym major diameter.
In addition,  there seems to be no trend in observed agglomerate sizes
from stage to stage in the sampler.  This effect may be due to the areas
chosen for analysis, e.g., those areas where space between agglomerates
was adequate for counting purposes, and the comparatively large sampling
times used for collection.

      Due to the general absense of trends in the data from Table 26,
it is sufficient to present one graph showing the range of observed
agglomerate size distribution on all eight discs from both test runs.
This graph is given as Figure 41, and it can be compared with the average
cumulative plots in Figures 38 through 40 for the purpose of contrasting
impactor cumulative mass data with TEM cumulative number data.  This com-
parison generally shows that agglomerates observed by TEM on all the discs
had similar numerical size distributions, and that the numerical 90tirT per-
centile agglomerate major diameter was between 0.10 and 0.23 ym.  These
figures are quite different from the aerodynamic equivalent 90th percentile
particle diameter range from 0.4 to 2.6 ym (from data for the VW Rabbit
Diesel, FTPC and 85 km/h tests).

      Recognizing that the TEM-derived agglomerate size distribution did
not vary a great deal from stage to stage or from one sample to the other,
some additional consideration has been given to interpretation of the TEM
data in units other than numbers of agglomerates.  If the agglomerates' were
considered to be planar, their masses would vary approximately as the square
of their diameters.  This approximation, using the major diameters as basis,
is probably as accurate as any other simple assumption.  While it is obvious
that the entire square formed by sides equal in length to the major diameter
is not covered by particles in the typical agglomerate sized  (see Figures
34 and 35), there are about enough additional "unseen" particles in the 3rd
dimension  (normal to the micrograph) to make up the difference.  According
to this approximation, then, agglomerate mass is roughly proportional to
the square of the major diameter.

      Average cumulative numerical TEM-derived major diameter data for all
stages and both runs are given in column 2 of Table 27, followed by a "mass
                                      77

-------
                                 TABLE  25.   SUMMARY OF AGGLOMERATE  SIZE  DATA FROM TEM MICROGRAPHS
oo
Agglomerate
diameter
less than
(Urn)
Average numerical percent counted by diameter9
s tage 8 ,
ECD 0.42
maj . 1 min.
stage 7,
ECD 0.63
maj . 1 min .
stage 6,
ECD 1.02
maj . 1 min.
stage 5,
ECD 2.0
maj . I min .
stage
ECD 3
maj.
4,
.2
min.
stage 3,
ECD 4.6
maj. Irain.
stage 2,
ECD 6.8
maj . 1 min.
stage 1,
ECD 11.
maj. 1 min.
                Operating schedule:  Cold FTP
0.02
0.05
0.10
0.15
0.20
0.30
0.40





Agglomerates
Counted
27.3
36.5
21.1
4.9
5.6
3.4
0.7






40
47.3
32.8
12.0
4.2
2.2
1.5
	






8
32.2
32.8
24.7
3.6
4.3
1.5
0.6






46
48.3
36.1
10.5
3.6
1.1
0.4
	






6
30.5
33.6
22.6
4.7
3.8
2.8
1.6






31
46.2
34.6
12.9
3.5
1.3
1.6
	






8
32.3
27.8
24.6
5.3
3.5
3.3
2.5






39
44.9
35.1
13.0
5.0
0.5
1.0
0.5






9
12.8
17.9
32.7
20.4
4.1
9.2
2.6






19
19.4
37.8
30.6
7.1
2.6
2.0
0.5






6
30.5
12.1
20.1
14.4
10.3
6.9
4.0






17
33.3
20.7
28.2
8.6
2.9
4.6
0.6






4
23.5
25.5
27.5
12.9
4.5
5.9
	






35
33.9
32.8
24.4
5.9
2.5
0.6
	






7
32.5
30.8
22.0
7.8
1.5
4.3 '
0.5






3<
45.5
32.8
16.4
3.0
1.5
0.5
0.3






)6
                Operating schedule:  85 km/h steady-state
0.02
0.05
0.10
0.15
0.20
0.30
0.40




Agglomerates
Counted
18.6
20.4
31.7
16.5
5.1
4.8
2.4





33
28.4
34.4
28.4
3.8
1.8
2.4
0.3





4
27.9
32.6
26.2
8.3
2.7
1.7
0.7





30
43.5
37.5
14.3
3.0
1.0
0.7
	





1
18.7
34.5
29.0
7.1
6.3
3.4
0.4


n 9


47
36.6
39.9
16.6
5.0
1.3
0.2
0.2





6
20.3
38.8
25.2
7.3
3.8
3.0
1.1

0 3



36
39.6
38.8
15.7
3.3
1.6
0.8
0.3





9
12.2
27.6
34.8
10.3
6.6
6.0
1.6


0 6


31
28.3
40.8
19.4
7.2
2.8
0.9
	
0 3
0 3



9
20.6
26.9
32.5
11.6
5.0
3.2
	

n ^



37
32.5
43.5
18.7
4.0
0.8
0.3
0.3





-)
19.1
42.4
22.0
9.7
1.7
3.8
0.8





23
40.3
39.4
14.4
2.1
2.5
1.3
	





5
13.9
28.7
31.1
11.5
6.1
6.8
1.7





2<
31.4
37.2
18.9
8.1
2.7
1.0
0.3





)6
                 some agglomerates in excess of 1.0 ym diameter observed,  but they averaged only  0.05 numerical percent of those counted

-------
                                TABLE  26.   CUMULATIVE AGGLOMERATE SIZE DATA FROM TEM MICROGRAPHS
10
Agglomerate
diameter
less than
(urn)
Average cumulative percent counted by diameter3
stage 8,
BCD 0.42
maj. |min.
stage 7,
BCD 0.63
maj. Imin.
stage
BCD 1
maj .
6,
.02
min.
stage 5,
BCD 2.0
maj . Imin.
stage 4,
BCD 3.2
maj. Imin.
stage 3,
BCD 4.6
maj. jrain.
stage 2,
BCD 6.8
maj . min .
stage 1
BCD 11.
maj. |min.
               Operating schedule:   Cold FTP
0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.0
Agglomerates
Counted
27.3
63.8
84.9
89.8
95.4
98.8
99.5
100.



47.3
80.1
92.1
96.3
98.5
100.






408
32.2
65.0
89.7
93.4
97.6
99.1
99.8
100.



48.3
84.4
94.9
98.5
99.6
100.






466
30.5
64.2
86.8
91.5
95.3
98.1
99.7
100.



46.2
80.8
93.7
97.2
98.4
100.






318
32.3
60.2
84.7
90.0
93.5
96.7
99.2
99.2
99.5
100.

44.9
80.0
93.0
98.0
98.5
99.5
100.





399
12.8
30.6
63.3
83.7
87.8
96.9
99.5
99.5
100.


19.4
57.2
87. 8
94.9
97.5
99.5
100.





196
30.5
42.6
62.7
77.1
87.4
94.3
98.3
98.9
98.9
100.

33.3
54.0
82.2
90.8
93.7
98.3
98.9
100.




174
23.5
49.0
76.5
89.4
93.8
99.7
99.7
100.



33.9
66.7
91.0
96.9
99.4
100.






357
32.5
63.3
85.3
93.1
94.6
98.9
99.4
99.7
100.


45.5
78.3
94.7
97.7
99.2
99.7
100.





396
                Operating schedule:  85 km/h steady-state
0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.0
Agglomerates
Counted
18.6
38.9
70.7
87.1
92.2
97.0
99.4
99.7
99.7
100.

28.4
62.9
91.3
95.2
97.0
99.4
99.7
100.




334
27.9
60.5
86.7
95.0
97.7
99.3
100.




43.5
81.0
95.3
98.3
99.3
100.






301
18.7
53.2
82.1
89.3
95.6
98.9
99.4
99.8
99.8
99.8
100.
36.6
76.5
93.1
98.1
99.4
99.6
99.8
100.




476
20.3
59.1
84.3
91.6
95.4
98.4
99.5
99.7
99.7
100.

39.6
78.3
94.0
97.3
98.9
99.7
100.





369
12.2
39.8
74.6
85.0
91.5
97.5
99.1
99.4
99.4
99.4
100.
28.3
69.1
88.5
95.7
98.5
99.4
99.4
99.4
99.7
100.


319
20.6
47.5
79.9
91.6
96.6
99.7
99.7
99.7
99.7
100.

32.5
76.0
94.7
98.7
99.5
99.7
100.





379
19.1
61.4
83.5
93.2
94.9
98.7
99.6
100.



40.3
79.6
94.1
96.2
98.7
100.






236
13.9
42.6
73.6
85.1
91.2
98.0
99.7
99.7
99.7
100.

31.4
68.6
87.5
95.6
98.3
99.3
99.7
99.7
100.



296
                'some agglomerates in excess of 1.0 um diameter observed, but they averaged only 0.05 numerical percent of those counted

-------
oo
o
                   w
                   NI
                   -0
                   w
o
J
o
                   Q
                   w
                   w
                   -O
                      0.6
                      0.4
                      0.3
                      0.2
0.1

0.08
                      0.06
                      0.04
                      0.03-
                      0.02
                              0.5 1  2
                                              10   20
                                                                      1lti;
                                                                                  M.U.IM
                                                                              -MEJE.R<-E.NT
                                                                                  BY
                                                                 7
                                       40     60      80   90   95   98   99
                                         NUMERICAL PERCENTAGE
                                                                                                  99.9   99.99
                         Figure 41.  Range  of cumulative  numerical percentages of agglomerates observed,
                                           all collection  locations and  both test runs

-------
index" for each agglomerate size category based on the square relation-
ship.  The last column of Table 27 gives the estimated average cumulative
percent by mass based on the square relationship, and both sets of data
are also given graphically in Figure 42.  This graph indicates that the
median agglomerate by mass is about 4.5 times larger than the numerical
median agglomerate.  It is still probable that two essentially different
sets of agglomerates were analyzed by the impactor (larger agglomerates
in the central areas of the impaction zones, constituting most of the mass]
and by the TEM (smaller agglomerates on the periphery of impaction zones).
       TABLE  27-  AVERAGE CUMULATIVE AGGLOMERATE DISTRIBUTIONS FROM TEM
              MICROGRAPHS BASED ON NUMERICAL AND MASS CRITERIA
Minor agglomerate diameter
less than (ym)
0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.0
Agglomerates counted
Cumulative percent,
numerical
23.8
54.0
80.7
89.7
94.3
98.3
99.5
99.7
99.8
99.9
100.
5424
"Mass index"
(arbitrary)
0.0004
0.0025
0.01
0.0225
0.04
0.09
0.16
0.25
0.36
0.64
1.0
	
Cumulative percent
by mass
0.6
5.6
23.2
36.6
48.7
72.6
84.9
88.1
90.1
96.4
100.
	
 In order to get better TEM results, it would probably be necessary to
 examine impaction zones on which sampling had occurred for only a few
 seconds, giving a wider distribution of sizes which could be examined.

 D.    Analysis of Particulate Composition

      This subsection includes data on major elements, sulfate, trace
 elements, and phenols.  -Phenol samples were collected in impingers, and
 all the others were  collected on 47 mm filters.

      1.  Major elements  (carbon, hydrogen, nitrogen, and sulfur) in
          particulate matter

          Data on carbon, hydrogen, and nitrogen  content of particulate
 matter were obtained by combustion analysis; and  sulfur data were deter-
 mined by X-ray fluorescence.  This information is presented in Tables
 28 (Mercedes 240D) and 29  (VW Rabbit Diesel) in terms of weight percent
 of particulate.  Sulfur data are also presented in Appendix G in mg/km,
 pages G-10  (Mercedes) and G-13  (VW); and in mg/h, pages G-16  (Mercedes)
 and G-19  (VW).
                                    81

-------
oo
to
                              0.5  1
                                              10   20
                                                          40    60     80    90  95

                                                           PERCENT OF AGGLOMERATES
98  99
99.9   99.99
                   Figure  42.   Cumulative mean percentages  of agglomerates by number  and by mass

                                  (estimated), all collection locations and both test  runs

-------
 TABLE  28.   CARBON, HYDROGEN,  NITROGEN, AND SULFUR IN  EXHAUST
PARTICULATE  MATTER FROM A MERCEDES  240D OPERATED ON FIVE FUELS
Fuel
EM-238-F



EM-239-F



EM-240-F



EM-241-F



EM-242-F



Element
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Weight Percent of Particulate by Cycle or Mode
Cold
FTP
77.1
2.9
0.4
1.16
73.4
3.6
1.0
0.91
79.6
2.8
0.4
0.35
75.3
2.9
0.4
0.98
76.2
2.7
0.4
1.37
Hot
FTP
73.0
2.8
0.3
0.99
74.3
3.9
0.9
0.87
74.0
2.6
0.6
0.31
76.9
3.4
0.4
1.03
72.3
2.6
0.4
1.19
CFDS
72.4
2.6
0.4
1.57
73.5
3.2
2.8
1.15
73.8
2.3
0.9
0.50
74.7
2.8
0.5
1.71
71.8
2.5
0.4
2.41
FET
72.9
2.3
0.3
1.42
73.6
2.9
3.2
0.99
90.0
3.0
2.1
0.56
72.5
2.2
0.3
1.20
70.8
2.8
0.5
1.88
NYCC
76.2
2.6
0.5
0.53
84.5
4.8
1.2
0.46
80.2
2.7
2.5
0.19
76.3
2.0
0.4
0.68
75.3
2.6
0.7
0.78
Idle
62.9
2.5
0.4
1.04
81.4
4.5
2.2
0.47
78.2
4.2
0.4
0.31
66.3
2.7
0.6
0.78
63.6
2.5
0.7
1.03
50
kph
77.9
2.7
0.2
0.80
87.5
3.2
1.9
0.54
88.8
1.1
0.8
0.17
86.'2
5.1
0.5
0.93
60.0
3.3
0.7
0.92
85
kph
73.8
3.0
0.4
1.89
75.8
2.9
0.8
1.45
75.6
2.5
0.8
0.29
75.5
3.4
0.4
1.43
77.1
2.6
0.4
2.10

-------
                          TABLE  29.   CARBON,  HYDROGEN,  NITROGEN,  AND SULFUR IN EXHAUST
                        PARTICULATE MATTER FROM A VW  RABBIT  DIESEL  OPERATED ON FIVE FUELS
00
Fuel
EM-238-F

EM-239-F

EM-240-F

EM-241-F

EM-242-F

Element
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Carbon
Hydrogen
Nitrogen
Sulfur
Weight Percent of Particulate by Cycle or Mode
Cold
FTP
68.8
3.8
0.4
0.87
66.9
3.8
0.8
0.76
66.3
3.2
<0.1
0.48
70.4
5.3
0.4
0.42
69.3
3.8
0.5
1.09
Hot
FTP
71.6
4.1
0.4
0.98
71.9
4.6
1.1
0.67
71.6
3.5
<0.1
0.29
65.9
4.4
0.5
0.69
73.1
4.1
0.7
1.15
CFDS
74.6
4.4
0.6
1.55
72.4
2.7
1.1
1.03
68.1
4.1
<0.3
0.30
69.7
3.9
0.5
1.04
69.1
4.1
0.5
1.79
FET
70.2
3.6
0.4
1.27
75.4
4.6
0.9
0.84
66.8
4.2
<0.1
0.26
71.9
3.6
0.4
0.86
70.9
4.1
0.5
0.74
NYCC
46.8
3.1
0.2
0.55
59.4
7.6
1.7
0.34
53.8
3.6
<0.1
0.095
43.7
2.4
0.9
0.31
52.0
4.6
0.8
0.32
Idle
32.6
4.0
1.2
0.93
35.3
8.2
1.8
0.66
40.9
2.9
<0.1
0.20
37.6
4.4
0.7
0.60
26.7
5.1
1.4
0.67
50
kph
60.4
5.8
0.8
0.40
61.2
8.1
1.3
0.35
60.8
4.9
<0.1
0.060
56.3
7.7
0.3
0.18a
62.7
4.9
1.2
0.54a
85
kph
75.5
3.9
0.5
1.44
83.0
4.5
0.9
1.01
78.0
3.6
<0.1
0.23
75.0
3.4
0.6
0.69
76.6
4.1
0.4
1.40a
                   estimated from incomplete data

-------
          The elemental data for both vehicles show a fairly uniform low
hydrogen content, indicative of a "dry" or soot-like particulate material
rather than an oily material.  Carbon content of the particulate matter
was highly variable from one test procedure to another, but generally much
less variable between fuels.  Lower carbon content was generally observed
for idle and the NYCC, while higher carbon content was associated with the
FET and the 85 kph steady-state.  These effects were more pronounced for
the VW than for the Mercedes.  A substantial amount of the particulate
matter is unaccounted for by the sum of C, H, N, and S; about 10.6% to
66.1% for the VW, and about 4.3% to 33.2% for the Mercedes.  Major fuel
effects seem to be present for sulfur  (as expected) and nitrogen.  Sulfur
percentage was a minimum for both vehicles when EM-240-F fuel was used,
and it was at a maximum on EM-242-F in the Mercedes and on EM-238-F in the
VW.  Nitrogen percentage was at a minimum on EM-240-F in the VW and on
EM-238-F in the Mercedes, and it was at a maximum on EM-239-F fuel in
both vehicles.

      2.  Sulfate in particulate matter

          Sulfate data were obtained by the BCA method, and this infor-
mation is given in Table 30 in weight percent of particulate matter.
Sulfate data are also presented in Appendix G in rag/km, pages G-10
 (Mercedes) and G-13  (VW); and in mg/h, pages G-15  (Mercedes) and G-19
 (VW).  Trends in the sulfate data were very similar to those discussed
earlier for sulfur, except that sulfate was at a maximum on fuel EM-238-F
in both vehicles.  In general, the sulfate radical made up from a fraction
of a percent to some five percent of particulate mass for the Mercedes,
and from under one percent to about four percent of particulate mass for
the VW.

          If sulfur recovery were identical for all tests by both the
X-ray  (sulfur) method and the BCA  (sulfate) method, weight percentages
of particulate matter as sulfate would be 3.00 times corresponding weight
percentages of particulate matter as sulfate.  This reiationship is based
on the ratio of the molecular weight of the sulfate radical, SO^ (96.0616),
to the atomic weight of sulfur, S  (32.063).  One way of comparing recoveries
between the two methods is illustrated by the data in Table 31, which show
BCA recovery values on the order of 0.7 to 3.5 percent for the Mercedes and
0.4 to 6.2 percent for the VW.  Corresponding ranges for X-ray recovery
are 0.9 to 3.4 percent for the Mercedes and 0.3 to 5.2 percent for the VW.
Over all fuels and conditions, X-ray recoveries for the Mercedes averaged
about 1.9 percent, as compared to 1.55 percent for the VW.  Recoveries
for the BCA averaged about 1.65 percent for the Mercedes and 1.95 percent
for the VW.  It is assumed that all the remaining fuel sulfur is emitted
in the form of gases, notably SO2.

      3.  Trace elements in particulate matter

          Data on trace elements are given in complete form in Appendix G,
pages G-10 and G-ll  (Mercedes), and pages G-13 and G-14  (VW).  These data
are repeated for convenience with the time-based data, pages G-16, -17, -19,
and -20.  As a whole, these elements made up from about 0.04% to 27% of
                                      85

-------
  TABLE  30.   SUMMARY  OF SULFATE  DATA ON TWO DIESEL VEHICLES


Vehicle
Mercedes
240D



VW Rabbit






Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM- 2 40 -F
EM-241-F
EM-242-F
304 in weight % of particulate matter by operating schedule
Cold
FTP
2.60
2.60
1.12
2.35
2.47
3.13
2.48
1.72
1.95
2.35
Hot
FTP
2.41
2.22
0.72
2.60
3.39
2.50
2.27
0.92
2.21
1.78

CFDS
3.83
4.25
1.45
4.67
5.42
4.47
3.66
1.54
3.60
4.29

FET
6.13
4.32
1.71
4.65
4.09
4.05
3.08
0.72
2.87
4.29

NYCC
1.91
1.20
0.47
0.92
1.51
1.65
1.12
1.42
1.69
1.22

Idle
2.61
1.36
0.47
1.55
2.10
2.28
3.30
1.62
3.87
2.57
50
kph
2.27
1.41
0.45
1.87
1.91
1.56
1.32
0.68
0.56"
2.31
85
kph
4.90
4.73
1.10
3.51
4.31
3.89
3.38
1.36
2.59
2.80
   estimated from incomplete data






TABLE  31.   SULFUR RECOVERY IN PARTICULATE  MATTER BY  X-RAY AND  BCA
Vehicle
Mercedes
240D




VW Rabbit
Diesel




Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Analysis
Method
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
X-ray
BCA
% sulfur recovery by operating schedule and method
Cold
FTP
1.5
1.1
1.7
1.6
3.1
3.3
1.8
1.5
1.9
1.2
1.3
1.5
1.7
1.8
5.2
6.2
1.7
2.5
1.8
1.3
Hot
FTP
1.4
1.1
1.7
1.5
2.7
2.1
1.9
1.6
1.8
1.7
1.2
1.1
1.3
1.5
2.5
2.6
1.3
1.3
1.6
0.8
CFDS
2.0
1.6
1.8
2.3
3.4
3.3
2.5
2.3
3.3
2.5
2.3
2.2
2.1
2.5
2.9
4.9
2.0
2.4
2.5
2.0
FET
1.6
2.3
1.5
2.2
3.4
3.5
2.0
2.5
2.4
1.8
1.7
1.8
1.4
1.7
2.5
2.3
1.5
1.6
1.3
2.5
NYCC
0.9
1.1
0.9
0.8
1.2
1.0
1.6
0.7
1.6
1.0
0.8
0.8
0.8
0.9
1.0
5.1
0.7
1.2
0.7
0.9
Idle
1.7
1.4
1.3
1.3
2.1
1.1
2.1
1.4
2.3
1.6
1.4
1.1
1.7
2.9
1.0
2.7
1.4
3.1
1.5
1.9
50
kph
0.9
0.8
0.8
0.7
1.3
1.2
1.3
0.8
1.2
0.8
0.4
0.5
0.3
0.4
0.3
1.0
0.4a
0.4a
0.4a
0.5
85
kph
1.9
1.7
1.9
2.0
1.8
2.3
2.1
1.8
3.2
2.2
1.8
1.6
1.8
2.0
1.7
3.2
1.3
1.6
2.33
1.6
   estimated from incomplete data
                                86

-------
particulate mass for the VW, and some 0.025% to almost 5% for the Mercedes.
Sums of trace element percentages appear as variable No. 36 in Appendix G.
Trace elements found most commonly in particulate matter from the Mercedes
were calcium, zinc, lead, manganese, and phosphorus (all in about 3/4 of
the samples).  The most common trace elements in particulate matter from
the VW were calcium, iron, lead, phosphorus, manganese, and zinc (again
in about 3/4 of the samples).  Major differences between vehicles were
the more frequent occurrences of iron, aluminum, nickel, and magnesium
in samples from the VW Rabbit.  Possible sources of aluminum, iron, nickel,
and manganese include wear products from the engines and corrosion products
from the exhaust systems.  Lead may be due to low-level contamination of
fuel supplies or engine wear products, and calcium, zinc, and phosphorus
are possible derived from lubricating oil.

      4.  Phenols in particulate matter

          Gaseous phenols have already been discussed in Section VI, and
the results given here reflect the removal of the gaseous ("filtered")
phenol values from the total  ("unfiltered") measurements.  Phenols in
particulate matter are summarized in Table 32 in milligrams per hour.
This information is also given in the same units in Appendix G, pages G-ll
and G-12 (Mercedes), and G-14 and G-15  (VW), as part of the complete data
set for statistical analysis.  Particulate phenols are given in ing/h on
pages G-17 and G-18  (Mercedes), and G-20 and G-21  (VW).

          Data in Table 32 indicate low overall amounts of phenols in
particulate, on the order of a few milligrams per hour or less.  The
Mercedes generally emitted more phenol compounds at 85 km/h than at the
other conditions, and the Volkswagen's trend was similar but more mixed.
Fuel EM-238-F "2D emissions" was associated with higher phenol levels for
the Mercedes, while EM-241-F "minimum quality" No. 2 seemed to be related
to higher levels from the VW.

          To compare particulate phenols with gaseous phenol results,
Table 33 has been constructed in the same format and units as Table 13
(found in Section VI).  Distribution of particulate phenol compounds is
quite different from gaseous phenols for both vehicles at idle and 50 km/h,
but more similar at 85 km/h.  Where comparable  (nonzero) data exist, gaseous
phenols were uniformly more abundant for both vehicles.

E.    Amount and Composition of Organic Solubles in Particulate Matter

      Organic solubles in particulate matter were determined by weighing
the amount of solute removed from hi-vol glass fiber filters by Soxhlet
extraction in cyclohexane.  A summary of these results is given in Table
34, indicating a somewhat greater percentage organic solubles overall for
the VW Rabbit.  Fuel EM-240-F  (No. 1) seemed to generate a greater fraction
of organic solubles than the other fuels in the Mercedes 24QD, but this
percentage may have been offset by the lower overall particulate rates
emitted while using this fuel.  The remaining fuel and operating schedule
effects seemd to be mixed for both vehicles.  Overall range for the Mercedes
                                     87

-------
     TABLE  32.   SUMMARY  OF  PHENOL COMPOUNDS IN PARTICULATE MATTER, TIME BASIS
Vehicle
Mercedes
240D
VW Rabbit
Diesel
Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM- 2 42 -F
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Operating
Condition
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Idle
50 km/h
85 km/h
Particulate phenols in mg/hr
o-cresol
0
1.45
0.60
1.00
0
0.94
0
0
1.78
0
0
0
0
0
0.08
0
0
1.19
0
0
0
0
0.23
0.26
0
0
1.10
0
0
0.85
p-cresol
0
0.75
0.51
0
0
1.02
0
0
0.60
0
0
0
0
0
0.34
0.19
0
0.76
0.20
0.25
0
0
0.50
1.02
0
0
2.55
0
0.30
0.68
2,4-xylenol +
2,5-xylenol
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.07
0.12
0
0
0
0
2,3-xylenol 4-
3, 5-xylenol
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2.72
0
0
0
other compounds analyzed for (phenol; 2,3,5-trimethyl phenol; 2,6-xylenol;  3,4-xylenol)
 were not found
                                          88

-------
                  TABLE 33.   SUMMARY OF PHENOL COMPOUNDS IN PARTICULATE MATTER, DISTANCE BASIS

Vehicle
Mercedes
240D










VW Rabbit
Diesel










Operating
Schedule
Idlea



50 km/h



85 km/h



Idlea



50 km/h



85 km/h




Compound ( s )
Q
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Q
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
-, c
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
, c
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
£J
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Q
o-cresol+
p-cresol
2,4- & 2,5-xylenol
2,3- & 3,5-xylenol
Particulate phenols in mg/km
EM-238-F
0
0
0
0
0.029
0.015
0
0
0.007
0.006
0
0
0
0.19
0
0
0
0
0
0
0.014
0.009
0
0
EM-239-F
1.0
0
0
0
0
0
0
0
0.011
0.012
0
0
0
0.20
0
0
0
0.005
0
0
0
0
0
0
EM-240-F
0
0
0
0
0
0
0
0
0.021
0.007
0
0
0
0
0
0
0.0046
0.010
0
0
0.003
0.012
0
0
EM-241-F
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.07
0
0
0
0.0020
0
0.013
0.03
0
0.032
EM-242-F
0
0
0
0
0
0
0
0
0.001
0.004
0
0
0
0
0
0
0
0.006
0
0
0.010
0.008
0
0
CD
           mg/h instead of mg/km
           other compounds analyzed for  (phenol; 2,3,5-trimethyl phenol; 2,6-xylenol; 3,4-xylenol) were not  found
           o-cresol + salicylaldehyde

-------
                            TABLE 34.   ORGANIC SOLUBLE CONTENT OF PARTICULATE MATTER


Vehicle
Mercedes
240D





Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Mean percentage
VW Rabbit
Diesel



EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Mean percentage
Weight percent organic solubles in particulate matter by operating schedule3
Cold
FTP
10.7
9.7
12.2
8.3
9.5
10.1
12.2
11.6
13.2
11.8
13.5
12.5
Hot
FTP
11.5
9.8
11.9
7.0
8.5
9.7
9.8
14.4
16.4
18.4
13.7
14.5

CFDS
7.7
7.9
10.4
5.5
7.0
7.7
14.6
13.2
15.2
15.4
14.3
14.5

FET
6.4
7.6
11.7
4.7
2.3
6.5
9.1
14.3
15.3
15.4
12.9
13.4

NYCC
11.4
7.9
25.7
3.1
3.9
10.4
14.4
27.5
18.7
18.0
11.6
18.0

Idle
9.3
6.0
20.1
4.1
6.5
9.2
10.0
18.4
19.6
16.3
11.4
15,1
50
km/h
10.2
9.0
12.7
4.7
7.3
8.8
14.9
22.7
15.7
15.4
16.3
17.0
85
km/h
7.7
8.6
9.8
6.0
4.9
7. 4
14.0
12.7
13.4
21.6
7.4
13.8
Mean
percentage
9.4
8.3
14.3
5.4
6.2
8.7
12.4
16.8
15.9
16.5
12.6
14.8
Vfl
O
       average used where possible

-------
was from 2.3 percent to 25.7 percent, and the VW's range was 7.4 to
27.5 percent.  These data are also found in Appendix G on pages G-10
and G-16  (Mercedes), and on pages G-13 and G-19  (VW).

      1.  Major elements in organic solubles

          Since in most cases the actual amounts of organic solubles
isolated from individual half-filters were on the order of a few milli-
grams, a number of samples from each vehicle-fuel combination were com-
bined to yield more accurate elemental analysis.  The composite samples
analyzed consisted of about one-half of combined solubles from two cold
FTP half-filters, two hot FTP half-filters, two CFDS half-filters, and
one half-filter from each of the remaining cycles and modes.  The elemental
data, determined by combustion analysis, are shown in Table 35.
     TABLE 35.  MAJOR ELEMENTS IN ORGANIC SOLUBLES FROM PARTICULATE MATTER
Vehicle
Mercedes
240D



Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Mean Values
VW Rabbit
Diesel



EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Mean Values
Weight percent element (s) in organic solubles
carbon
82.8
83.5
83.2
83.9
83.7
83.4
83.9
84.2
83.7
84.2
83.8
84.0
hydrogen
12.4
12.2
12.4
12.2
12.4
12.3
12.7
12.1
12.8
12.4
12.6
12.5
nitrogen
0.10
0.08
0.10
0.08
0.13
0.10
0.12
0.08
0.21
0.16
0.11
0.14
sulfur
0.40
0.36
0.39
0.36
0.41
0.38
0.37
0.41
0.35
0.43
0.38
0.39
oxygen
4.2
3.8
3.7
3.4
3.3
3.7
2.9
3.2
2.9
2.7
3.0
2.9
L CHNSO
99.9
100.0
99.8
100.0
99.9
99.9
100.0
100.0
99.9
99.9
99.9
99.9
          All of the elemental data are strongly indicative of hydro-
carbon-like materials  (numeric H/C ratio about 1.75), which is to be
expected given the solvent and process used for extraction.  Nitrogen and
sulfur were both quite low, but oxygen was somewhat more abundant and
seemingly vehicle-related.  Instances for which the individual CHNSO
values do not sum exactly to the summation in the far right column are
due to rounding differences.
                                     91

-------
      2.   Benzo-a-pyrene (BaP)  in organic solubles

           BaP in organic solubles was determined by EPA's Research Tri-
angle Park laboratories as part of its in-house measurements program.
The resulting data, incorporating averages where possible, are summarized
in Table 36.  This table indicates the presence of strong fuel effects
(EM-241-F "minimum quality" No.  2 higher, EM-242-F "premium" No. 2 lower)
and operating cycle effects (FTP's higher, 85 kph steady-state lower).
Vehicle effects seem to be mixed, with the Volkswagen producing higher
BaP during FTP's  (especially cold starts), FET's and 85 kph steady-states;
and with the Mercedes generally producing higher BaP at idle and during
the NYCC.  These data are repeated in Appendix G, pages G-10 (Mercedes)
and G-13  (VW) .  They are also listed on s. time basis on pages G-16
(Mercedes) and G-19  (VW).
        TABLE 36.  SUMMARY OF RESULTS FOR BaP IN PARTICULATE MATTER
Vehicle
Mercedes
240D




VW Rabbit
diesel




Fuel
EM-238-F

EM- 2 39 -F
EM-240-F
EM-241-F
EM-242-F
EM-238-F

EM-239-F
EM-240-F
EM-241-F
EM-242-F
Micrograms per Kilometer by Operating Cycle or Mode
Cold
FTP
0.38

0.54
0.38
0.74
0.23
1.9

2.3
2.0
7.0
1.8
Hot
FTP
0.39

0.40
0.28
0.53
0.23
0.55

0.60
0.56
1.1
0.48
CFDS
0.13

0.19
0.17
0.16
0.13
0.36

0.39
1.2
0.73
0.30
FET
0.076

0.067
0.16
0.086
0.15
0.39

0.25
0.87
0.41
0.40
NYCC
1.9

2.7
0.75
4.0
0.75
1.7

1.6
0.35
1.5
1.4
Steady- State Modes
Idlea
12.

19.
9.2
55.
4.1
4.5

5.3
— b
4.8
3.5
50 kph
0.14

0.12
0.048
0.15
0.38
0.34

0.33
0.019
0.096
0.18
85 kph
0.079

0.033
0.14
0.035
0.028
0.25

0.22
0.74
0.32
0.10
  micrograms per hour instead of micrograms per kilometer
  below minimum detectable limit; in this case, under 0.35 yg/h
                                       92

-------
      3.   Gas Chromatograph "boiling range" analysis of organic solubles

           Composite samples of organic solubles (described in Section VII.
E.I.)  representing each vehicle-fuel combination were subjected to quanti-
tative high-temperature gas chromatograph analysis.  A number of blanks
and standards, and a real crude oil, were also run to provide calibration
and background information.  Chromatograms given in Appendix G are as follows:
page no (s) .
G-43
G-44
G-45

G-46
G-47
G-48 thru
G-55

G-56 thru
G-62

figure no (s) .
G-9
G-10
G-ll

G-12
G-13
G-14 thru
G-21

G-22 thru
G-28

description
cyclohexane blank
cyclohexane + Cg-C]_^ internal standard
cyclohexane + Cg-C^ internal standard +
C40 spike
residue standard
"Altamont" crude oil (example)
samples of organic solubles from the
Mercedes 240D, with Cg-C-M internal
standard + cyclohexane
samples of organic solubles from the
VW Rabbit Diesel, with Cg-C11 internal
standard + cyclohexane
The composition of the standards are given on the same pages as the corres-
ponding chromatograms.

           The cyclohexane blank shown on page G-43  (Figure G-9) is typical
of those run at least once per operating day on the  gas chromatograph.  It
shows no column contamination and a very flat baseline.  The internal stan-
dard shown on page G-44  (Figure G-10) is the same group of compoinds mixed
with each sample of solubles to provide quantitative recovery and boiling
range information.  This standard ends sharply prior to 12 minutes after
injection, and the remainder of the chromatogram stays on the baseline.
Figure G-ll  (page G-45) shows the Cg-C,, internal standard and  a C4Q spike
at a higher attenuation, and with half the normal sample amount injected.

           The "residue standard" shown on page G-46  (Figure G-12) incor-
porates the 5-compound Cg-C-L1 standard, plus a number of higher-boiling
constituents.  Its purpose was to show separation of certain pure compounds
and to check on response factors.  A crude oil termed "Altamont"  (after
its source) is shown  on page G-47  (Figure G-13), with strong paraffin peaks
and a small "envelope" of other compounds ranging up to 10 scale units or
more above baseline.  It is assumed that these non-paraffins include cyclics,
olefins, and substituted compounds.

           The chromatograms for samples of organic  solubles from the
Mercedes 240D, given  as pages G-48 through G-55, exhibit more  similarity
than differences when taken as a group.  Many of the same peaks are visible
in each figure, and the ratio of paraffin peak area  to  "envelope" area
                                       93

-------
appears quite constant.   Total sample area on the chromatograms varies
quite a bit, mostly due  to differences in sample concentration (in cyclo-
hexane) and fraction of  internal standard present.  Sample chromatograms
are presented on a larger scale than the five "standard" chromatograms
which constitute pages G-43 through G-47.  This change was made to exhance
detail, while eliminating the superfluous cyclohexane and internal standard
peaks occurring between  4 and 14 minutes after injection.  A number of^the
Mercedes chromatograms have a faily large peak at about 20.7 minutes, in-
dicative of a compound near n-C.^.

      Chromatograms for samples of organic solubles from the VW Rabbit
Diesel are given as pages G-56 through G-62.  These samples exhibited more
variability than those from the Mercedes, particularly in strength of
paraffin peaks as compared to size of "envelope".  Fuel EM-241-F "mimimum
quality" No. 2 showed larger peaks than the other fuels using this method
of comparison, and EM-240-F No. 1 fuel showed smaller peaks.  The relatively
large peak at about n-C24  (mentioned above for the Mercedes) was prominent
in samples of solubles from operation on fuels EM-240-F and EM-242-F
 ("premium" No. 2) .

          The chromatographic data on solubles are presented in numerical
form in Table 37 for the Mercedes, and in Table 38 for the Volkswagen.
The  principle of the boiling range is self-explanatory, and the percen-
tage recovery was determined from peak data on the internal standard and
known  amounts of standard and sample mixed together.  Factors contributing
to inaccuracy in recoveries include errors in weights of sample and stan-
dard (these mixtures contained only a few milligrams), inconsistencies in
integration of peak data, and so forth.  The only two recovery values
which  are obviously in error are those for samples generated using fuel
EM-240-F in the Volkswagen  (they exceed  100%), but some degree of error
is likely present in all the values.

          Data on abundance of n-paraffins  (identifiable peaks) were
normalized to a total of 1.00 for each sample to enhance comparison of
distribution within the samples.  Most of the identifiable paraffins
fell between C15 and C24, with an occasional large peak indicated for
C28  due to the computer's integrating it from valley to baseline and
thereby assigning it a large peak area.  The large C~n values are not
considered to be realistic, but they can not legitimately be removed
from the data.  No fuel influences seem  to be present in data on either
vehicle.

          To further summarize the boiling range data, Table 39 shows
distillation temperature means, coefficients of variation, and extremes
for  both vehicles in addition to recovery data.  Although boiling ranges
for  all the samples were quite similar throughout most of the range,
samples from the VWhad slightly^ lower boiling temperatures.  The VW
samples also showed somewhat higher recoveries overall, even after removal
of the influence of results showing recoveries over 100%.  As a final
look at the chromatograph data, their range  (for both vehicles) has been
plotted along with fuel and oil boiling  ranges in Figure 43.  This graph
shows  that the oils had a marginally higher boiling range than solubles,
which  were in turn considerably higher-boiling than fuels.
                                     94

-------
         TABLE  37.  CHROMATOGRAPH  ANALYSIS OF  ORGANIC SOLUBLES  IN
                        PARTICULATE MATTER FOR  MERCEDES 240D

Distillation
Point
IBP
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
EP
Recovery , %/
@ temperature, °C
Boiling temperature at distillation point by fuel, °C

EM-238-F
318
370
390
406
422
440
483
	
	
	
	
62.7
607

EM-239-F
305
367
386
400
414
428
443
477
598
	
	
80.4
598

EM-239-Fa
303
364
385
399
413
426
443
482
	
	
	
79.5
606

EM-240-F
327
366
385
396
408
419
432
445
476
585
	
91.2
600

EM-241-F
307
352
374
388
402
416
432
448
514
	
	
84.8
600

EM-241-Fa
297
353
375
391
405
419
434
450
519
	
	
83.1
602

EM-242-F
313
358
377
391
403
415
427
441
462
517
	
95.7
600

EM-242-Fa
290
356
378
392
405
418
430
442
471
580
	
91.2
609
Carbon number
15
16
17
18
19
20
21
22
23
24
25
28b
n-paraffins as
% peak data
Normalized abundance of (fraction of total) n-paraffins at carbon number by fuel
EM-238-F


0.004
0.020
0.045
0.105
0.146
o.eao13
30.2
EM-239-F

0.003
0.045
0.057
0.079
0.291
0.511
0.014
18.5
EM-239-Fa
0.003
0.001
0.021
0.039
0.068
0.217
0.243
0.407
0.001
21.1
EM-240-F
0.005
0.001
0.021
0.035
0.036
0.051
0.030
0.134
0.664
0.021
46.5
EM-241-F
0.004
0.001
0.027
0.120
0.183
0.345
0.319
	
10.0
EM-241-F3
0.010
0.002
0.044
0.146
0.205
0.296
0.290
0.006
17.6
EM-242-F
0.001
0.006
0.010
0.019
0.069
0.061
0.088
0.745b
49.9
EM-242-Fa
0.002
0.001
0.007
0.018
0.035
0.044
0.063
0.036
0.071
0.189
0.534b
63.6
repeat
C   integrated from valley  to baseline for those samples in which it appears to be a major constituent
   this result not considered realistic

-------
             TABLE 38.   CHROMATOGRAPH ANALYSIS OP ORGANIC  SOLUBLES  IN

                        PARTlCULATE  MATTER FOR THE VE  RABBIT DIESEL

Distillation
Point
IBP
10% point,
20% point,
30% point.
40% point.
50% point,
60% point.
70% point,
80% point.
90% point.
EP
Recovery , %
@ temperature, °C
Boiling temperature at distillation point by fuel, °C

EM-238-F
310
358
376
390
407
424
445
473
515
	
	
88.0
600

EM-239-F
301
359
376
390
405
423
443
466
509
	

90.6
600

EM-240-F
331
364
379
391
402
416
431
445
465
493
545
107.9
600

EM-240-F3
328
365
378
391
403
415
430
445
463
489
536
109.1
600

EM-241-F
313
341
354
369
386
403
427
459
517
	
	
86.0
600

EM-242-F
312
349
365
379
393
408
425
442
464
508
	
99.3
600

EM-242-F3
313
349
365
379
393
408
425
442
464
508
	
99.2
600
Carbon number
15
16
17
18
19
20
21
22
23
24
25b
28
n-paraffins as
% peak data
Normalized abundance of (fraction of total) n-paraffins at carbon number by fuel
EM-238-F


0.002
0.008
0.041
0.118

0.105
0.727b
37.1
EM-239-F


0.002
0.008
0.048
0.141
0.126
0.126
0.548b
39.0
EM-240-F


0.004
0.006
0.009
0.051
0.099
0.099
0.121
0.612


53.7
EM-240-F3
0.004
0.010
0.013
0.015
0.065
0.115
0.118
0.125
0.535


66.1
EM-241-F
0.002
0.020
0.108
0.137

0.223
0.511


21.9
EM-242-F
0.006
0.023
0.165
0.355


0.451


7.4
EM-242-F3
0.002
0.002
0.025
0.116
0.221
0.403
0.231


11.6
  repeat
b C   integrated from valley to baseline for those samples in which it appears  to be a major constituent
     this result not considered realistic

-------
              TABLE  39.   SUMMARY OF  BOILING RANGE AND RECOVERY DATA
                   FOR ORGANIC SOLUBLE FRACTION OF PARTICULATE

Distillation
Point
IBP
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
EP

Recovery , %
Boiling temperature statistics at distillation point by vehicle, °C
Mercedes 240D
low
290
352
374
388
402
415
427
441
462
_>J_ /


67.2
high
327
370
390
406
422
440
483


	
	

95.7
mean
308
361
381
395
409
423
440
	
	
	

84.1
s/x
0.038
0.019
0,016
0.015
0.017
0.020
0.041







0.106
VW Rabbit Diesel
low
301
341
354
369
386
403
425
442
463
A QQ
4ttsy
536

86.0
high
328
365
379
391
407
424
445
473
517
	
(100)a
109.1
mean
315
355
370
384
398
414
432
453
485


(94.7)a
97.2
s/x
0.033
0.025
0.025
0.022
0.020
0.019
0.019
0.028
0.055


(0.066)a
0.096
figures in parentheses assume highest recovery was 100.0%
  F.
Other Particulate Emissions Data
        In  addition to particulate emission data in (mass/distance)  and (mass/
  time)  already  discussed,  particulate results were also computed for the  most
  important variables  (all  except 13-30,  35, and 36)  in fuel specific units
  (mass/kg  fuel).   These data are given as pages G-63 (Mercedes)  and G-64  (VW)
  of  Appendix G,  their major intended use being input to impact calculations
  where  category fuel  consumption is available.
                                        97

-------
VD
00
                    100
                     80
                   oo
                   oo
                   7 60
                   Q
                   Q
                   W
                   H
                   EH
                   to
                   H
                   Q
                     20
                                      NO.  1
                                      FUEL
                                                                                    RANGE OF
                                                                                  VW SOLUBLES
                                        RANGE OF
                                        MERCEDES
                                        SOLUBLES
                               USED OIL
                                                                             USED OIL
                           100        200
 300       400
TEMPERATURE, °C
500       600
                   Figure 43.  Boiling ranges for fuels, oils, and solubles

-------
        VIII.  MUTAGENIC ACTIVITY OF ORGANIC SOLUBLES IN PARTICULATE
                        MATTER,  RESULTS AND ANALYSIS
      As a part of EPA's in-house measurements program at the Health
Effects Research Laboratory, Research Triangle Park, portions of some
of the samples submitted for organic solubles determination and _BaP_
analysis were subjected to the Ames Bioassay to determine their mutagenic
activity^27'28).   The data resulting from this sub-investigation,  not orig-
inally intended to be a part of the. subject ..contract, were submitted to the
Project Officer by HERL personnel.  Following his review, the data were sub-
mitted to SwRI for analysis and inclusion in this report.

      The term "Ames Bioassay is colloquial, and it refers to a bacterial
mutagenesis plate incorporation assay with Salmonella typhimurium according
to the method of Ames, et al ^  '.  This bioassay determines the ability
of chemical compounds or mixtures to cause mutation of DNA in the bacteria,
positive results occurring when histidine-dependent strains of bacteria
revert  (or are mutated) genetically to forms which can synthesize histidine
on their own.  The observable positive indication of mutation is the growth
of bacterial colonies on plates of nutrient media containing minimal
histidine, with the number of revertants per amount of substance tested
 (or "specific activity") being the quantitative result.  The observable
negative indication is the lack of such growth.  A third result occurs
when the substance tested is toxic to the bacteria, but this result can
not be interpreted in terms of mutagenesis.  Results of the Ames Bioassay
have been shown to correlate strongly with carcinogenic action on _animals
for individual chemicals^2°~31) .   No such results are known for complex
mixtures of chemical substances.

      At the time samples resulting from work on this Contract were run,
procedures for handling and storing Diesel particulate samples and extracts
were not well developed.  Consequently, the results presented here may
reflect some sample degradation as compared to newer work with better
sample handling  (e.g., filter handling only under yellow light and shipped
in dry ice, extracts kept dark and cold, etc.), so these results may be
conservative.  All the results reported here were obtained using  (bacterial)
strain TA1538, chosen on the basis of prior work on extracts from two
heavy-duty Diesel engines(28^.  Strain TA1538 is reverted mainly by frame-
shift mutagens.  Strain TA100 appeared more sensitive to mutagens in the
heavy-duty extracts, because is is reverted by both frameshift mutation
and base-pair substitution.  The extracts seemed to have a more pronounced
toxic effect on TA100, however, and it also showed smaller differences
between samples with and without metabolic activation than did TA1538
Metabolic activation was performed by mixing the test substances with  a
preparation made from rat liver homogenate, converting some substances to
forms more easily metabolized by the bacteria.
                                      99

-------
      Background data on the samples, as well as specific activity values,
are summarized in Table 40.  This information represents only 16 independent
samples (filter numbers),  eight for each vehicle, so it can not in any way
be considered conclusive.   Of the five filters from which two samples were
extracted (all for Mercedes), repeatability was very good (average deviation
about 10% without activation, 5% with activation);  but the second sample
was uniformly lower without activation, while it was higher in 4 of the 5
cases with activation.  These seemingly directional effects may be quite
random, but their nature will not be known with greater certainty until
a great many more samples are analyzed.

      A basic statistical analysis has been run on these data, resulting
 (first) in the computed values given in Table 41.  The means show a strong
vehicle effect, and a strong fuel effect for EM-241-F "minimum quality" No.
2 fuel, both of which are more dominant in the data for samples which were
metabolically activated.   Activation appeared to increase mean mutagenic
activity values by factors of about 1.8 for the Mercedes, and 2.4 for the
VW Rabbit.  These factors ranged from about 1.9 for EM-242-F "premium"
No. 2 fuel to 2.4 for EM-241-F.  Coefficients of variation  (standard
deviation/mean) were generally higher for activated samples than for
corresponding samples without activation.

      Table 42 shows the results of an analysis of variance conducted on
vehicle and fuel specific activity responses.  The "F" statistics and
their significance levels indicate high probabilities that mean specific
activity responses for the two vehicles and the five fuels are, in fact,
different.  Table 43 shows the strength of individual linear relation-
ships between specific activity and fuel variables for both vehicles taken
together.  This table indicates that specific activity  (both with and
without metabolic activation) is quite strongly related  (numerically) to
fuel nitrogen  (91), cetane index  (61), and hydrocarbon type composition
 (represented by 89, 90, 93, and 95).  The individual fuel variables are
very highly correlated with one another, also, so it was not considered
feasible to run multiple regressions.

      The specific activity data were further analyzed by comparing them
to other corresponding emissions data.  In order to minimize unaccounted-
for variability, the data considered in this manner consisted only of
those obtained for cold FTP runs.  Averages were used where multiple data
values existed, as shown in Table 44.  The corresponding emissions values
chosen for Table 44 included those perhaps most likely to correlate with
specific activity, namely; filtered particulate mass  (essentially propor-  '
tional to particulate rate), percent organic solubles in particulate
matter, BaP, nitrogen in particulate matter, and gaseous total HC.  Of
these variables, gaseous HC was the strongest correlator with specific
activity of metabolically activated extract  (+MA), followed by total
particulate and then BaP.  Gaseous HC also correlated most  strongly with
specific activity of non-activated extract  (-MA), followed by BaP and
then total particulate.  Specific activity both with and without metabolic
activation appeared to have an inverse relationship with percent organic
solubles in particulate matter, much more strongly so for the Mercedes
                                      100

-------
                       TABLE 40.   AMES BIOASSAY DATA ON SAMPLES FROM TWO DIESEL AUTOMOBILES
Vehicle
Mercedes
240D










VW Rabbit






Fuel
EM-238-F
EM-239-F

EM-240-F

EM-241-F


EM-242-F


EM-238-F
EM-239-F
EM-240-F
EM-241-F


EM-242-F
Operating
schedule
cold FTP
cold FTP

cold FTP

cold FTP
cold FTP
cold FTP
85 kph
cold FTP

cold FTP
cold FTP
cold FTP
cold FTP
cold FTP
cold FTP
85 kph
cold FTP
Filter
number
8024-1
8024-2
8053-1
8053-2
8078-1
8078-2
8088
8111
8114
8133-1
8133-2
8142-1
8142-2
8027
8060
8081
8096
8104
8116
8125
8140
Total filter
particulate, mg
158.9
156.5

120.0

173.8
184.4
208.1
192.4
134.2

123.2
100.4
104.0
143.6
196.8
175.3
165.5
92.8
Specific Activity of Extract,
adjusted revertants/mga
with metabolic
activation (+MA)
49.0
51.1
70.0
76.7
53.9
54.2
117.1
258.9
84.6
64.3
79.1
58.5
49.9
90.1
61.5
115.0
315.2
596.6
482.4
94.7
109.0
without metabolic
activation (-MA)
25.9
22.3
38.0
35.4
30.1
27.3
60.5
133.2
46.4
56.9
55.8
34.2
27.6
38.3
27.6
52.2
127.0
242.7
173.2
49.0
52.0
o
     a  units are:  adjusted revertants/mg particulate extracted

-------
     TABLE 41.   MEAN AND  STANDARD DEVIATION OF SPECIFIC ACTIVITY
                     FOR VEHICLES AND FUEL TYPES


Vehicle
Mercedes 240D
VW Rabbit Diesel
Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F
Specific activity, adjusted revertants/mg particulate extracted
with metabolic activation (+MA)
Mean
76.98
168.06

69.55
65.75
84.45
309.10
83.75
Std. Dev.
43.48
167.13

26.09
6.01
43.20
220.05
35.71
without metabolic activation (-MA)
Mean
41.64
70.18

32.10
32.80
41.15
130.40
43.10
Std. Dev.
21.92
62.69

8.77
7.35
15.63
71.28
12.59
TABLE  42.   ANALYSIS OF  VARIANCE TABLES FOR SPECIFIC ACTIVITY  VERSUS
                       VEHICLES AND FUEL TYPES
ANOVA TABLE FOR SAMPLES WITH METABOLIC ACTIVATION (+MA)
Source of Variation
Vehicle Type
Fuel Type
Error
Total
degrees of
freedom
1
4
4
9
Sum of Squares
20738.916
87586.376
31706.264
Mean Square
20738.916
21896.594
7926.566
140031.556
F
2.616
2.762
Sig of
F
.181 (NS)
.174 (NS)

ANOVA TABLE FOR SAMPLES WITHOUT METABOLIC ACTIVATION (-MA)
Source of Variation
Vehicle Type
Fuel Type
Error
Total
degrees of
freedom
1
4
4
9
Sum of Squares
2036.329
14063.404
3577.576
Mean Square
2036.329
3515.851
894.394
19677.309
F
2.277
3.931
Sig of
F
.206 (NS)
.107 (NS)

                                102

-------
                        TABLE 43.  MEANS, STANDARD DEVIATION, AND PAIRWISE  CORRELATIONS

                            BETWEEN SPECIFIC ACTIVITY AND FUEL COMPOSITION  VARIABLES
o
U)
Variable
Density
Viscosity
Cetane Index
Flash Point
Initial Boiling Point
5% Point
10% Point
20% Point
30% Point
40% Point
50% Point
60% Point
70% Point
80% Point
90% Point
95% Point
End Point
Carbon
Hydrogen
Nitrogen
Sulfur
Aromatics
Olefins
Paraffins
Gum
Variable
Number
59
60
61
62
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Mean
0.8374
2.338
47.9
72.6
134.6
186.2
200.4
221.6
241.4
258.8
271.0
282.4
300.2
320.4
342.2
356.4
394.6
86.72
13.08
0.0096
0.228
22.28
1.52
76.2
6.0
Standard
Deviation
0.0194
0.4965
3.79
17.23
8.78
13.62
13.49
20.14
23.15
27.92
29.04
29.24
31.46
36.32
36.74
38.11
39.39
0.487
0.518
0.0077
0.1078
9.340
1.038
9.02
4.47
Pairwise correlation (r) of fuel
variable with specific activity
with metabolic
activation (+MA)
.4667
.0434
-.6580
-.1672
.0023
.0462
.2269
.3250
.2223
.1718
.1618
.1562
.1197
.1078
.0957
.0665
-.0214
.6320
-.5892
.7869
.0878
.5103
-.1786
-.5079
.4159
without metabolic
activation (-MA)
.4838
.0380
-.6867
-.2034
-.0129
.0349
.2365
.3466
.2310
.1752
.1652
.1598
.1200
.1076
.0944
.0627
-.0403
.6576
-.6100
.8433
.0793
.5180
-.1947
-.5140
.4193

-------
               TABLE 44.   COMPARISON OF  MUTAGENIC ACTIVITY WITH OTHER EMISSIONS DATA,
                                              COLD  FTP RUNS ONLY



Vehicle
Mercedes





VW Rabbit
Diesel








Emission variable
specific activity (+MA)a

particulate mass collected, mg
percent organic solubles
BaP, ng/mg particulate mass
N in particulate matter, mg/km
gaseous HC, g/km
specific activity (+MA)a
specific activity (-MA)b
particulate mass collected, mg
percent organic solubles
BaP, ng/mg particulate mass
N in particulate matter, mgAm
gaseous HC, g/km


Value of variable by fuel (averages in parentheses)
EM-238-F
(50.0)

158.931
(10.7)
0.76
(1-34)
(0.14)
90.1
38.3
123.163
(12.2)
7.02
(1-01)
(0.23)
EM-239-F
(73.4)
(36.7)
156.543
(9.7)
1.87
(3.19)
(0.21)
61.5
27.6
100.441
(11.6)
14.5
(2.00)
(0.28)
EM-240-F
(54.0)

120.031
(12.2)
1.46
(1.00)
(0.10)
115.0
52.2
103.956
(13.2)
10.3
(0.46)
(0.24)
EM-241-F
(153.5)

(188.779)
(8.3)
(2.04)
(1.63)
(0.24)
464.7
181.0
(171.908)
(11.8)
(21.0)
(2.26)
(1.12)
EM-242-F
(54.2)

134.202
(9.5)
1.10
(1.20)
(0.14)
109.0
52.0
92.760
(13.5)
10.5
(1.10)
(0.26)
Pairwise correlation (r) of emission
variable with Specific Activity

activation (+M7\)



+0.817
-0.733
+0.756
+0.172
+0.830




+0.923
-0.326
+0.829
+0.581
+0.987

activation (-MA)



+0.580
-0.737
+0.931
+0.546
HO. 862




+0.907
-0.284
+0.822
+0.559
+0.982
with metabolic activation, in "adjusted revertants  per mg particulate matter extracted"
without metabolic activation, in  "adjusted revertants per mg particulate matter extracted"

-------
than for the VW.  Correlations between particulate nitrogen and specific
activity were quite low.

      It is difficult to attach physical significance to these few data
points, but if the trends observed so. far remained consistent for larger
numbers of samples, it would suggest that production of mutagens (as
determined by the Ames Bioassay) in exhaust particulate matter is related
to production of BaP and gaseous HC in some way.  These relationships
might be the result of coincidental processes or physically similar
processes, and a great deal more information would be required in order
to decide the nature of the correlation.
                                      105

-------
            IX.  STATISTICAL ANALYSIS OF FUEL AND EMISSIONS DATA
      The analysis of emissions data given in previous report sections
VI. and VII. has several goals.  These goals include identification of
existing trends and relationships between emissions and the two test
vehicles, the five test fuels, and the eight vehicle operating schedules
(nine schedules including computed values for the 1975 "3-bag" FTP).
Some of the more obvious relationships have already been discussed
briefly along with presentation of results.
A.
Statistical Methodology
      Examining the mass of data given in Appendices F and G, it is easy
to conclude erroneously that virtually any type of statistical analysis
could be conducted on the results of this program.  The data must be
examined, however, in light of the number of observations in each well-
defined data subgroup.  The number of observations  (some of which repre-
sent averages) in each data subgroup are as follows:
Data Subgroup
                            Subgroup Composition
 Observations per
Emission Variable
A - all data
B - each vehicle
C - number of points, each
    vehicle and fuel
D - each vehicle and schedule
E - each vehicle, fuel and
    schedule
                          2 Veh.  x 5 fuel'x 8 schedule
                          1 veh.  x 5 fuel x 8 schedule

                          1 veh.  x 1 fuel x 8 schedule
                          1 veh.  x 5 fuel x 1 schedule

                          1 veh.  x 1 fuel x 1 schedule
       80°
       40£

        8'
        5
  not including derived 3-bag (1975)  FTP results
If subgroups having large numbers of observations were used for regressions,
a great deal of variability would be present in the data which could not
legitimately be explained by the independent variables (i.e., fuel variables
or schedule variables).  If data subgroup D were used, multiple linear
regressions on five observations would be futile even if the five fuels
were considered variables in themselves.  This problem becomes much worse
if it is attempted to regress dependent variables against 38 individual
fuel property variables.  Use of data subgroup C for regression of emissions
against operating schedule properties (8 observations, 4 schedule variables)
appears more promising, expecially if regressions could be truncated after
inclusion of the most important independent variables.

      Regression analysis on data presented in this report, based on the
above considerations, was used only on selected, important emission
variables.  These variables were regressed against schedule variables in
subgroup C, and a few of them were regressed against selected fuel variables
(based on assumed physical importance) in subgroup D.
                                      106

-------
      A related technique considered for use with the emissions data was
biased multiple regression, a method appropriate for situations in which
the independent variables  (fuel variables in this case) are in fact
highly correlated.  The foregoing discussion on the available data for
each vehicle and operating schedulers points) applies as well to biased
regressions, however, precluding their use in this project.

      Given the difficulty in obtaining meaningful results via regressions
as discussed above, it was decided to conduct analysis of variance on
means of grouped data, and to examine pairwise correlations between emis-
sion variables and. fuel variables for the two vehicles individually.  The
tabular form in which data will be presented is shown in the example below.
Data computed and tabulated in this form will be presented only for nine
selected emission variables  (total particulate mass, percent solubles in
particulate matter, particulate sulfur and sulfate, BaP, percent of parti-
culate mass  unaccounted  for by major elements, and gaseous HC, CO  , and
      These tables are presented in subsection IX.E.
   Vehicle
Emission variable
Inverse rank-ordered
operating
schedule










mean value
of variable










Pairwise correlations between and
fuel variables for indicated operating schedules
highest










r










2nd highest










r










3rd highest










r










Inverse rank-ordered
fuel






mean value
a.
of variable






     brackets surround means not significantly different at the 0.05 level
                                       107

-------
      Referring to the tabular form example given above,  significance
of differences between means were determined using multiple range tests.
This comparison permitted the grouping of similar means according to
consistent criteria, providing greater insight into operating schedule
effects on emissions.  The pairwise correlations listed in order of de-
creasing absolute value give some indication of important fuel variables
for each variable.  Although the fuel variable listed first is the one
which would be included first in a multiple linear regression model, the
others are not likely to be those listed second and third in such a model
due to dependence of fuel variables on each other.

      Since it was obvious that vehicle operating schedules had pronounced
effects of emissions, the operating schedules were analyzed to determine
their salient characteristics.  It was decided that the statistics shown
in Table 7 (section V) were essential to description of the schedules in
the following order of importance:  average speed, percent idle time,
speed coefficient of variation, and number of stops per hour.  Regression
analysis using average emissions as dependent variables and schedule sta-
tistics as independent variables is presented in subsection IX.F.

B.    Numbering of Variables

      To make computer analysis simpler, all the fuel variables, emission
variables, and certain other parameters were assigned numerical variable
codes.  Table 45 is a list of these codes for reference.   A brief summary
of code intervals for the major classes of data is as follows:
Code(s)
             Parameter or variable class
   1
   2
   3
 4-36
40-55
59-96
uncoded
operating schedule parameter (0='75 FTP, ...,  8=85 km/h)
vehicle parameter (l=Mercedes,  2*VW Rabbit)
fuel parameter (l=EM-238-F, ..., 5=EM-242-F)

particulate variables

gaseous emissions variables

fuel variables

operating schedule variables
      The assigned variable codes apply as given regardless of the units
in which emission values are expressed (e.g., g/km, g/h, or g/kg fuel).
Note that particulate phenols are coded as variables 31-34, while gaseous
phenols are coded 52-55.  The other emissions were measured in one phase
or the other, but not (directly) in both.
                                      108

-------
                     TABLE 45.  CODING OF FUEL, OPERATING SCHEDULE, AND EMISSION VARIABLES,
                                              AND OTHER PARAMETERS
    Code
       Parameter or Variable
                            Code
              Variable
              Code
                                           Variable
o
10
 1
 2
 3

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
          operating
          vehicle
          fuel
           schedule
 total particulate mass
 particulate  concentration
solubles in particulate matter
 C  in particulate matter
 H  in particulate matter
 N  in particulate matter
 S  in particulate matter
 SO4= in particulate matter
 BaP in  solubles
 Cr in particulate matter
 Pb in particulate matter
 Mn in particulate matter
 Br in particulate matter
 P  in particulate  matter
 Si in particulate matter
 Cd in particulate matter
 Al in particulate matter
 Na in particulate matter
 Mg in particulate matter
 K  in particulate matter
 Cl in particulate matter
 Zn
 Cu
 Ni
 Fe in particulate matter
 Ba in particulate matter
 Ca in particulate matter
 (particulate)  o-cresol
 (particulate)  p-cresol
             in particulate matter
             in particulate matter
             in particulate matter
33
34
35
36

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

59
60
61
62
63
64
65
66
67
68
69
2,4-xylenol
2,3-xylenol
                                                           [13-30)
(particulate)
(particulate)
100 - (CHNS)  S
sum variables

HC
CO
NOX
C°2
fuel
formaldehyde
acetaldehyde
acetone^
isobutyraldehyde
crotonal
hexanal
benzaldehyde
(gaseous) o-cresol
(gaseous) p-cresol
(gaseous) 2,4-xylenol
(gaseous) 2,3-xylenol

fuel density
fuel viscosity
fuel cetane index
fuel flash point
IBP by D-86
5% point by D-86
10% point by D-86
20% point by D-86
30% point by D-86
40% point by D-86
50% point by D-86
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96

'none'
'none"
'none'
'none'
60% point by D-86
70% point by D-86
80% point by D-86
90% point by D-86
95% point by D-86
EP by D-86
IBP by D-2887
5% point by D-2887
10% point by D-2887
20% point by D-2887
30% point by D-2887
40% point by D-2887
50% point by D-2887
60% point by D-2887
70% point by D-2887
80% point by D-2887
90% point by D-2887
95% point by D-2887
EP by D-2887
C in fuel
H in fuel
N in fuel
S in fuel
aromatics in fuel
olefins in fuel
paraffins in fuel
gum in fuel

schedule avg. speed
schedule speed sv/v
schedule % idle time
schedule stops/h
       plus salicylaldehyde
       plus 2,5-xylenol
       plus 3,5-xylenol
       plus acrolein and propanal

-------
C.    Analysis of Fuel Variables

      This phase of project activity had several goals.  It was of interest
to determine means and standard deviations of the fuel variables among the
five test fuels, thereby providing insight into significance of variability.
It was also necessary to obtain fuel-fuel correlations to determine the
degree of interdependence of the fuel variables.  It was also a goal to
attempt to reduce the number of fuel variables to a few linearly independent,
highly significant ones by either elimination or combination.  The resulting
smaller set of fuel variables was planned for use in analyses of fuel
effects on emissions.

      Basic statistics for the fuel variables are presented in Table 46,
showing most significant variability for (in order of decreasing coeffi-
cient of variation) gum, nitrogen, olefins, sulfur, aromatics, flash
point, and viscosity.  These seven variables would likely have been pre-
ferentially included in multiple regressions of emissions against fuel
variables had such regressions been conducted, even if their physical
significance were in doubt.  Of these variables, gum, nitrogen, and
olefins may contain substantial random variability due to measurement
error.  Such errors would be especially important for nitrogen and
olefins due to their possible relationships to emission variables.  Fuel
variables displaying least significant variability (in order of increasing
coefficient of variation) are carbon, density, hydrogen, and cetane index;
but boiling points by D86 had a average coefficient of variation of 0.0846,
and those by D2887 had an average coefficient of variation of 0.0912.  The
measurement accuracies of carbon, density, and hydrogen are considered to
be good, and cetane index is a calculated statistic depending on fuel
density and 50% point^6)^  ^he low variability of fuel carbon, density,
hydrogen, and cetane index among the test fuels means that if emissions-
fuel regressions had been conducted, these four fuel variables would have
had to correlate very strongly with emission variables in order to be
included in the equations.

      Negative skewness  (yi) values in Table 46 indicate a longer "tail"
for the distributions on the left (toward lower numbers).  Zero skewness
indicates a distribution symmetrical about the central maximum.  In terms
of the data presented here, negative skewness for nearly all the fuel
variables generally means that one value was considerably lower than the
other four.  Positive skewness generally means that one value was higher
than the other four.  Positive skewness for variable 76 resulted from a
high IBP for 2D emissions test  fuel, EM-238-F.  Positive skewness for
carbon and nitrogen resulted from high values for "minimum quality" No. 2
fuel  EM-241-F.  The small positive skewness for aromatics resulted mainly
from higher values for fuels EM-238<-F and EM-241-F.  Positive skewness for
olefins resulted from a comparatively high value for No. 1 fuel, EM-240-F.

      Kurtosis is a measure of the "peakiness" of a distribution, with
the value of this statistic  (y2) for a standard normal distribution being
Y2 = 3.0,  Kurtosis values over 3 show stronger peaking tendencies, while
                                      110

-------
         TABLE 46.   BASIC STATISTICS FOR FUEL VARIABLES (59-96)
Fue
no.
V59
V60
V61
V62
V63
\7f.A
V65
V66
V67
V68
V69
V70
V71
V72
V73
V74
V75
V76
V77
V78
V79
V80
V81
V82
V83
V84
V85
V86
V87
V88
V89
V90
V91
V92
V93
V94
V95
V96
1 variable
name
density
viscosity
cetane index
flash point
IBP(D86)
^9- lr\oe,\
10%(D86)
20%(D86)
30%(D86)
40%(D86)
50%(D86)
60%(D86)
70%(D86)
80%(D86)
90%(D86)
95%(D86)
EP (D86)
IBP(D2887)
5% (D2887)
10%(D2887)
20%(D2887)
30%(D2887)
40%(D2887)
50%(D2887)
60%(D2887)
70%(D2887)
80%(D2887)
90%(D2887)
95%(D2887)
EP (D2887)
carbon
hydrogen
nitrogen
sulfur
aroma tics
olef ins
paraffins
gum

mean
0.8374
2.3380
47.9000
72.6000
181.0000
a
207.8000
217.6000
226.6000
236.6000
245.4000
254.0000
263.6000
276.4000
291.0000
304.2000
321.6000
134.6000
186.2000
200.4000
221.6000
241.4000
258.8000
271.0000
282.4000
300.2000
320.4000
342.2000
356.4000
394.6000
86.7200
13.0800
0.0096
0.2280
22.2800
1.5200
76.2000
6.5400
standard
deviation
0.0185
0.4737
3.6146
16.4329
10.1760
a
13.5424
16.0594
18.7226
20.5261
22.3651
23.7373
25.1489
26.4884
26.9606
28.7778
28.1540
8.3789
12.9937
12.8717
19.2131
22.0830
26.6316
27.7006
27.8942
30.0162
34.6523
35.0516
36.3611
37.5810
0.4648
0.4943
0.0073
0.1028
8.9100
0.9902
8.6046
5.0555
coefficient
of variation
0.0221
0.2026
0.0755
0.2263
0.0562
a
0.0652
0.0738
0.0826
0.0868
0.0911
0.0935
0.0954
0.0958
0..0926
0.0946
0.0875
0.0623
0.0698
0.0642
0.0867
0.0915
0.1029
0.1022
0.0988
0.1000
0.1082
0.1024
0.1020
0.0952
0.0054
0.0378
0.7604
0.4509
0.3999
0.6514
0.1129
0.7730
"Yi-
skewness
-0.5610
-1.3930
-0.4031
-0.1139
-1.0411
a
-1.4629
-1.4205
-1.3749
-1.4590
-1.4866
-1.4671
-1.4380
-1.4602
-1.4103
-1.2331
-1.1798
0.3342
-1.0042
-1.4417
-1.0501
-1.4126
-1.4771
-1.4875
-1.4894
-1.4362
-1.4427
-1.4442
-1.4048
-0.8956
0.5267
-0.2837
1.4189
-0.8910
0.1528
1.2062
-0.1542
-0.3123
Y2 =
kurtosis
2.2624
4.0319
2.4704
1.7425
2.7770
a
3.2007
3.1470
3.0832
3.1963
3.2314
3.2054
3.1680
3.1970
3.1454
2.9420
2.8891
1.9451
2.8073
3.1735
2.6154
3.1337
3.2177
3.2331
3.2364
3.1719
3.1788
3.1800
3.1297
2.6489
4.3836
1.8855
3.1329
2.6943
1.4013
2.7874
1.4309
1.3785
insufficient data
                                      111

-------
values under 3 indicate flatter distributions.  Kurtosis values near 3
dominate the fuel data, especially the boiling ranges.  Notably'"peaky"
distributions (y2 >4)  include those for viscosity and carbon; while
notably flat distributions (y2 <2) other than one boiling point include
flash point, hydrogen, aromatics, paraffins, and gum.

      To find out how strong the linear relationships among the fuel
variables were,  a complete fuel-fuel correlation matrix was run (ex-
cluding variable 64, for which only one data.point was available).  The
complete correlation matrix is given in Appendix H, pages H-2 through
H-9.  Some of these pairwise correlations are of particular interest
including those between corresponding boiling percentiles by two analysis
methods, i.e., variables 63 through 75 against variables 76 through 88,
respectively.  A table of these boiling percentile correlations has been
extracted from Appendix H, and is presented as Table 47-  With the excep-
tion of IBP, all correlations for corresponding boiling percentiles by
the two methods are above +0.965; all the correlations except two are
+0.990 or above.  IBP by D2887 (gas chromatograph) was a comparatively
low correlator with all the D86 boiling points, presumably because the
gas chromatograph was more sensitive to light ends than was thermal
distillation.  The high overall correlations indicate that except for
IBP, the two sets of data are essentially interchangeable regarding
their usefulness as independent variables in studying fuel effects on
emissions.  If the percentiles were linearly independent of one another,
correlations for corresponding percentiles by the two methods would be
high  (var's. 78 vs 65, var's. 79 vs 66, etc.); but other correlations
in Table 47 would be low.  It should be noted, however, that this useful-
ness is compromised greatly due to linear dependencies between boiling
percentiles for each analysis method taken above.

      The linear dependency problem in the boiling range data is illus-
trated by Table 48, a summary of correlations between boiling percentiles
for the gas chromatograph data alone  (ASTM D2887.- variables 76 through 88).
With the exceptions of correlations with IBP  (var. 76) and a few of the
correlations with 20% point  (var. 79), virtually all the non-corresponding
pairs have correlations  (r) in excess of +0.9.  With dependencies as
strong as these, it is virtually impossible to use more than one boiling
percentile as an independent variable in studying fuel effects on emissions.
It is almost certainly the case that for other groups of fuels, the cor-
relations would be different.  It is considered unlikely, however, that
really low correlations would exist for any groups of fuels distilled
and refined by conventional processes.

      Regarding fuel variables other than boiling percentiles, most of
them exhibit strong correlations with one or more additional variables.
To simplify this discussion, it was decided to temporarily characterize
fuel boiling range by three points:   IBP, 30% point, and end point. All
the other boiling percentiles are strongly correlated with one or more
of these points, so no relationships of significance were being over-
looked.  With this change, the remaining high correlations can be pre-
sented at once in Table  49.  Paraffins  (variable 95) was omitted due to
                                      112

-------
TABLE 47.  CORRELATIONS BETWEEN BOILING PERCENTILES OBTAINED
                   BY TWO ANALYSIS METHODS
ASTM D86
(thermal distillation)
boiling range
IBP (var.63)
10% (var.65)
20% (var.66)
30% (var.67)
40% (var.68)
50% (var.69)
60% (var.70)
70% (var.71)
80% (var.72)
90% (var.73)
95% (var.74)
EP (var.75)
Correlation coefficient (r) by ASTM D2887 (gas chromatograph simulated) boiling range
IBP
var.76
0.766
0.571
0.532
0.531
0.586
0.630
0.663
0.685
0.690
0.718
0.723
0.732
5%
var.77
0.990
0.909
0.895
0.889
0.913
0.937
0.955
0.963
0.955
0.977
0.983
0.985
10%
var.78
0.910
0.999
0.998
0.998
1.000
0.996
0.989
0.984
0.987
0.971
0.945
0.935
20%
var.79
0.776
0.960
0.966
0.970
0.958
0.938
0.917
0.906
0.914
0.876
0.833
0.818
30%
var.80
0.908
0.998
0.999
0.999
0.998
0.993
0.987
0.982
0.981
0.967
0.944
0.935
40%
var.81
0.951
0.995
0.991
0.988
0.996
1.000
1.000
0.998
0.996
0.992
0.975
0.969
50%
var.82
0.952
0.994
0.989
0.985
0.994
0.999
0.999
0.997
0.997
0.994
0.976
0.969
60%
var.83
0.953
0.991
0.984
0.979
0.992
0.998
0.998
0.996
0.998
0.994
0.974
0.968
70%
var.84
0.967
0.976
0.966
0.958
0.977
0.989
0.993
0.993
0.994
0.997
0.981
0.976
80%
var .85
0.967
0.977
0.968
0.959
0.078
0.989
0.993
0.992
0.993
0.997
0.981
0.977
90%
var. 86
0.971
0.979
0.971
0.961
0.978
0.990
0.994
0.993
0.992
0.998
0.985
0.981
951
var .87
0.977
0.971
0.963
0.951
0.970
0.984
0.990
0.989
0.986
0.998
0.988
0.985
LP
var. 88
0.998
0.898
0.893
0.884
0.899
0.922
0.944
0.949
0.930
0.966
0.990
0.993

-------
          TABLE 48.  CORRELATIONS BETWEEN BOILING PERCENTIELS  BY  ASTM-D2887
Boiling
percentiles
IBP (var.76)
5% (var.77)
10% (var.78)
20% (var.79)
30% (var.80)
40% (var.81)
50% (var.82)
60% (var.83)
70% (var.84)
80% (var.85)
90% (var.86)
95% (var.87)
EP (var.88)
Correlation coefficient (r) by boiling percentiles
IBP
var . 76
1.000
0.837
0.562
0.347
0.540
0.640
0.652
0.670
0.726
0.717
0.705
0.717
0.766
5%
var.77
a
1.000
0.902
0.759
0.895
0.945
0.948
0.953
0.972
0.970
0.969
0.975
0.984
10%
var.78
a
a
1.000
0.966
0.999
0.993
0.992
0.988
0.971
0.972
0.973
0.964
0.889
20%
var.79
a
a
a
1.000
0.969
0.929
0.924
0.916
0.879
0.881
0.883
0.865
0.749
30%
var . 80
a
a
a
a
1.000
0.991
0.989
0.984
0.965
0.966
0.968
0.958
0.889
40%
var . 81
a
a
a
a
a
1.000
1.000
0.998
0.990
0.990
0.992
0.987
0.934
50%
var . 82
a
a
a
a
a
a
1.000
0.999
0.993
0.994
0.994
0.990
0.934
60%
var.83
a
a
a
a
a
a
a
1.000
0.996
0.996
0.996
0.992
0.934
70%
var.84
a
a
a
a
a
a
a
a
1.000
1.000
0.999
0.997
0.949
80%
var.85
a
a
a
a
a
a
a
a
a
1.000
1.000
0.998
0.950
90%
var . 86
a
a
a
a
a
a
a
a
a
a
1.000
0.999
0.954
95%
var . 87
a
a
a
a
a
a
a
a
a
a
a
1.000
0.962
EP
var.88
a
a
a
a
a
a
a
a
a
a
a
a
1.000
redundant values omitted

-------
                  TABLE 49.   STRONG  PAIRWISE  CORRELATIONS BETWEEN SELECTED
                                     FUEL VARIABLES  (r >  0.8)a
Fuel
variables
density (59)
viscosity (60)
Correlation coefficient r (if > 0.8)a
dens.
(59)
1.000
0.805

flash pt. (62)
IEP(76)
30% (80)
EP(88)
carbon (89)
hydrogen (90)
nitrogen(91)
sulfur (92) c
aroma tics (93)
olefins(94)
gum(96)


0.902

0.909
-0.941


0.858

0.945
vise.
(60)
b
1.000

0 842

0.969
0.958



0.924

-0.924

cet.ind.
(61)
b
b
1 000











flash
(62)
b
b
b
1 000


0.937







IBP
(76)
b
b
b
b
1 000





0.827



30%
(80)
b
b
b
b
b
1.000
0.889





-0.960

EP
(88)
b
b
b
b
b
b
1.000



0.964



C
(89)
b
b
b
b
b
b
b
1.000
-0.993


0.934

0.928
H
(90)
b
b
b
b
b
b
b
b
1.000


-0.956

-0.959
N
(91)
b
b
b
b
b
b
b
b
b
1.000




S
(92)
b
b
b
b
b
b
b
b
b
b
1.000



aro.
(93)
b
b
b
b
b
b
b
b
b
b
b
1.000

0.947
ole.
(94)
b
b
b
b
b
b
b
b
b
b
b
b
1.000

gum.
(96)
b
b
b
b
b
b
b
b
b
b
b
b
b
1.000
a paraffins (95)  omitted due to its definition  (100-aromatics-olefins)
k redundant values omitted
  doping of fuel EM-239-F to increase sulfur content to  "national average"  affected these results

-------
its obvious strong dependence on aromatics (93) and olefins (94).   Of
the variables listed in Table 49, only two exhibit no correlations  (r)
of magnitude 0.8 or more (cetane index, 61, and nitrogen, 91).  Three
additional variables which are somewhat linearly independent of each other
and   of cetane and nitrogen (fcr|<0.8)  are sulfur(92), aromatics (93) ,
and olefins(94).  At least one of these five fuel variables (61, 91,
92, 93 and 94)  is strongly correlated with each of the remaining fuel
variables, so the remaining ones could be represented to some extent
by the five variables listed, if necessary.  This result is the furthest
extent to which the process of elimination of variables can be pushed by
analysis of pairwise correlations.

      In order to determine whether or not the five fuel variables
selected for minimum pairwide correlations possessed multi-variable
linear combinations (multi-collinearity), latent roots and latent vectors
were calculated for the correlation matrix formed with the five variables.
The computer output from this analysis is given in Appendix H, pages H-10
and H-ll.  The fifth (smallest)  latent root was nearly zero, as shown on
page H-10, making the correlation matrix singular.  The corresponding
latent vector indicated the existence of a linear combination among
cetane index, sulfur, and aromatics, in spite of the fact that the
highest pairwise correlation (r) between any two of these variables
was less than 0.73.  The inverse of the correlation matrix is shown on
page H-ll.  Several other combinations of fuel variables considered to
represent most of the physical fuel variability were also examined to
determine whether or not they were linearly related.  In all cases, some
multi-collinearity existed; and thus no way was found to generate a
representative small set of fuel variables from the entire set.

      The final look at the fuel data above in this subsection consists
of a factor analysis conducted on all the fuel variables except boiling
range by ASTM D86  (variables 63 through 75).   Computer output from this
analysis is given in Appendix H, pages H-12 through H-15.  The most
useful result of the analysis is the "varimax rotated factor matrix"
on page H-15, showing that virtually all the mathematical fuel variability
can be characterized in three fuel factors.  Factor 1 is high in (positive)
viscosity, sulfur, and boiling percentiles above IBP, and high in negative
olefins.  Factor 2 is high in (positive)  carbon, nitrogen, aromatics,
and gum, and high in negative cetane, hydrogen, and paraffins.  Factor 3
is highest in (positive) flash point and IBP, although it is not as well-
defined as the other two.  Factor 1 can perhaps best be characterized
as "heavy ends - olefins", Factor 2 as "aromatics + nitrogen", and Factor
3 as "light ends".  The compositions of these factors suggest that the
five fuel variables chosen as most highly uncorrelated via analysis of
pairwise correlations were indeed indicative of most of the mathematical
fuel variability in addition to their having a good chance of being
physically related to emissions production.

D.    Relationships Between Emissions Variables

      Rather than analyzing all 49 emissions variables for linear rela-
tionships, it was decided to analyze a selected set of nine (in mass/unit
                                      116

-------
time)  considered most important.  They included:  total particulate mass;
solubles; sulfur; sulfate; BaP; percent of particulate mass other than
C, H,  N, and S; hydrocarbons; CO; and NOX.  A complete correlation matrix
for these nine variables is presented on page H-16 for the Mercedes 240D,
and a similar table is given on page H-17 for the VW Rabbit Diesel.  Four
of the nine variables (solubles, BaP, 100-CHNS, and HC) exhibited no pair-
wise correlations  (|r|)  over 0.701 with other emissions variables for
either vehicle.  Correlations for the five remaining variables are sum-
marized in Table 50, indicating both similarities and differences between
the vehicles.
   TABLE 50.  SUMMARY OF SELECTED STRONG EMISSIONS - EMISSIONS CORRELATIONS
Vehicle
Mercedes
240D




VW Rabbit
Diesel




Emissions
variables
particulate
mass (4)
sulfur (10)
sulfate (11)
CO (41)
NOX(42)
particulate
mass (4)
sulfur (10)
sulfate (11)
CO (41)
NOX(42)
Correlation coefficient (r) by emissions variable
particulate
mass
(var.4)

1.000
0.863
0.895
0.890
0.890

1.000
0.769
0.848
0.712
0.734
sulfur
(var.10)

a
1.000
0.926
0.735
0.781
a

1.000
0.921
0.380
0.650
sulfate
(var.ll)

	 a
a
1.000
0.748
0.826
^

	 	 a
1.000
0.462
0.676
CO
(var.41)

a
	 a
	 a
1.000
0.941
a

	 a
	 a
1.000
0.666
NOX
(var.42)

a
	 a
a
a

1.000
a

a
	 a
	 a
1.000
  redundant values omitted
      Sulfur and sulfate correlated strongly with each other for both
vehicles, as expected.   Particulate mass rate correlated quite strongly
with the other four emissions variables for both vehicles, although more
consistently so for the Mercedes.  All correlations were lower for the VW
than for the Mercedes, especially those involving CO and NOX-  The fact
that all the correlation coefficients in Table 50 are positive and that
they were calculated from time-based data suggests that they all have a
dependence on a common time-related operating variable, such as fuel
rate  (this relationship is considered a fact for sulfur and sulfate).

E.    Relationships Between Emissions and Fuel Variables

      In a study such as this one, involving emissions measured while a
number of fuels were in use, it would be ideal to be able to construct
linear regressions to predict emissions from fuel variables.  Previous
report subsections have shown, however, that the existing data are much
less than ideal for the purposes of constructing most emissions-fuel
                                      117

-------
regression models.  Some of the reasons for this problem are strong
pairwise linear correlations between fuel variables, strong multicollinear
relationships between groups of fuel variables, and a small effective data
base when the sample is restricted to a single vehicle and a single oper-
ating procedure.

      Given the fact that construction of most emissions-fuel linear pre-
diction models is not feasible due to overall program design and intent,
alternative ways of documenting relationships between emissions and fuels,
and between emissions and operating schedules, were sought.  The major
end product of this search was the use of analysis of variance and multiple
comparisons, along with presentation of strongest pairwise correlations,
as described in subsection IX.A.  Results are given in this manner by
emissions variable and by vehicle beginning with Table 51.

      Table 51 shows wider variation in mean particulate mass rate (variable
4) by operating schedule than by fuel.  Since particulate mass rate is ex-
pressed in time units, these results are as expected.  Note that the fuel
variables most highly correlated (pairwise) with particulate mass appear
to be +density, -hydrogen, +carbon, and +gum, all of which are highly
correlated with one another and appear to act as the "heavy ends" of the
fuel.  Variation in order, and random inclusion of some unexpected, highly
correlated variables is not important in this analysis.  Note that rank-
ordered means by fuel are the same for both vehicles, and that EM-240-F
No. 1 fuel and EM-241-F "minimum quality" No. 2 are the only fuels which
stand out from the other No. 2 fuels in  either direction.  In this table,
rank-ordered means by operating schedule are also identical for both
vehicles, which is really an indicator of the strength of schedule difference.
Note also that the mean for the 1975 FTP is the median figure in each case
 (overall mean for the Mercedes was 9.9046, and that for the VW was 7.7367).

      Table 52 shows somewhat wider variation in mean organic solubles
by fuel than by operating schedule for the Mercedes, and the opposite
situation for the VW.  Ranges of variation in mean solubles were smaller
than the corresponding ranges for total particulate matter.  Olefins,
20% point, and nitrogen were the only fuel variables occurring for both
vehicles among the highest correlators, and they all appeared with dif-
ferent signs for the two vehicles.  Olefins(+), -20% point, and -10%
point occurred most frequently for the Mercedes, while -IBP and -flash
point occurred most frequently for the VW.

      Comparison and correlation data in Table 53 for sulfur indicate
that fuel sulfur was among the three strongest correlating fuel variables
for only 4  (Mercedes) to 6  (VW) of the nine operating schedules.  Given
that the lowest correlation  (r) between variables 10 and 92 for the
Mercedes was +0.760, and that the corresponding value for the VW was
+0.889, the remarkably high associations between fuel variables is amply
demonstrated.  This same situation occurred for sulfate in Table 54,
with fuel sulfur among the three strongest correlating fuel variables for
only 4 of the nine operating schedules for both vehicles.  Rank ordering
of means according to both operating schedules and fuels was very similar
for both vehicles and for both sulfur and sulfate.
                                      118

-------
           TABLE 51.  MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                              PARTICULATE MASS (V4), g/h
Mercedes 240D
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP
Cold FTP
CFDS
FET
85 km/h
mean value
of variable
2.8720





6.6696
L 6.8700
9.4506
9.7526
.10.1427
12.4522
("15.2404
LlS.6910
Pairwise correlations between particulate mass (V4) and
fuel variables for indicated operating schedules
highest
dens. (59)
dens. (59)
dens. (59)
dens. (59)
dens. (59)
H (90)
gum (96)
H (90)
dens. (59)
r
0.989
0.968
0.959
0.997
0.987
-0.975
0.949
-0.968
0.854
2nd highest
H (90)
H (90)
gum (96)
gum (96)
H (90)
C (89)
dens. (59)
dens. (59)
H (90)
r
-0.926
-0.916
0.955
0.942
-0.965
0.966
0.933
0.962
-0.793
3rd highest
20% (79)
gum (96)
40% (81)
H (90)
C (89)
dens. (59)
aro. (93)
C (89)
10% (78)
r
0.921
0.888
0.894
-0.938
0.941
0.953
0.912
0.948
0.772
Inverse rank-ordered
fuel
EM-240-F
EM-242-F
EM-239-F
EM-238-F
EM-241-F
mean value
of variable
7.2009
|~ 9.4682
9.7704
[10.7776
12.3058
VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP

Cold FTP
CFDS
FET
85 km/h
mean-value
of variable










" 1.9464
4.3069
4.54001
6.0088 J
7.4812 1
I
9.4191 J
.10.3713 1
"12.4497 J
..13.1070
Pairwise correlations between particulate mass (v4)and
fuel variables for indicated operating schedules
highest
20% (79)
20% (79)
C (89)
H (90)
C (89)

N (91)
gum (96)
IBP (76)
dens. (59)
r
0.956
0.924
0.941
0.989
0.945

0.969
0.993
0.838
0.918
2nd highest
dens. (59)
dens. (59)
N (91)
dens. (59)
N (91)

C (89)
aro. (93)
S (92)
10% (78)
r
0.946
0.874
0.924
0.974
0.938

0.903
0.977
0.784
0.900
3rd highest
30% (80)
10% (78)
H (90)
C (89)
H (90)

H (90)
H (90)
70% (84)
60% (83)
r
0.926
0.866
-0.917
0.968
-0.916

-0.862
-0.973
0.727
0.895
Inverse rank-ordered

fuel
EM- 2 40 -F
EM-242-F
EM-239-F
EM-238-F
EM-241-F
mean value
of variable




" 5.6844
7.1148
7.2478
. 7.9012
10.7354
    brackets surround means not significantly  different at the 0.05 level

                                            119

-------
           TABLE  52.  MULTIPLE COMPARISONS OF MEANS AND  STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                           SOLUBLES  (V6), % of  particulate  mass
Mercedes 240D
Inverse rank-ordered
operating
schedule
FET
85 km/h
CFDS
50 km/h
Idle
Hot FTP
1975 FTP
Cold FTP
NYCC
mean value
of variable3









6.5400
7.4000
7.7000
8.7800
9.2000
9.7400
9.9000
10.0800
10.4000
Pairwise correlations between solubles --. (V6) and
fuel variables for indicated operating schedules
highest
ole. (94)
ole. (94)
dens. (59)
20% (79)
20% (79)
N (91)
20% (79)
20% (79)
ole. (94)
r
0.838
0.715
-0.896
-0.857
-0.993
-0.803
-0.838
-0.940
0.968
2nd highest
70% (84)
70% (84)
20% (79)
dens. (59)
10% (78)
20% (79)
ole. (94)
ole. (94)
10% (78)
r
-0.815
-0.670
-0.895
-0.800
-0.979
-0.778
0.779
0.879
-0.959
3rd highest
80% (85)
60% (83)
10% (78)
N (91)
30% (80)
ole. (94)
N (91)
10% (78)
10% (78)
r
-0.814
-0.669
-0.876
-0.796
-0.977
0.717
-0.778
-0.860
-0.944
Inverse rank-ordered

fuel
EM-241-F
EM-242-F
EM-239-F
EM-238-F
EM-240-F
mean value
of variable




5.6667
6.5333
8.4778
L 9.5667
14.0556
VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
Cold FTP
FET
1975 FTP
85 km/h
Hot FTP
CFDS
Idle
50 km/h
NYCC
mean value
of variable














12 . 4600
13.4000
13.6400
13.8200
14.5400
14.5400
J.5.1400
17.0000 .







. 18.0400
Pairwise correlations between solubles (V6) and
fuel variables for indicated operating schedules
highest
gum (96)
IBP (76)
flash(62)b
cetane(61)
IBP (76)
flash (62)
IBP (76)
IBP (76)
IBP (76)
r
-0.896
-0.871
-0.801
-0.989
-0.696
-0.576
-0.946
-0.457
-0.625
2nd highest
H (90)
S (92)
EP (88)
par. (95)
N (91)
N (91)
S (92)
ole. (94)
cetaneb(61)
r
0.819
-0.698
-0.706
-0.854
0.692
0.574
-0.793
-0.379
-0.289
3rd highest
C (89)
flash (62)
IBP (76)
C (89)
flash (62)
cetaneb(61)
5% (77)
20% (79)
S (92)
r
-0.814
-0.692
-0.703
0.849
-0.685
-0.560
-0.757
0.368
-0.275
Inverse rank-ordered

fuel
EM-238-F
EM-242-F
EM-240-F
EM-241-F
EM-239-F
mean value
of variable3





"12.2000
12.7444
15.8333
15.4333
L16.4444
   brackets surround means not significantly different at the 0.05 level
   cetane index, not cetane number
                                           120

-------
           TABLE 53.   MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                                 SULFUR (V10), mg/h
Mercedes 240D
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP
Cold FTP
CFDS
FET
85 km/h
mean value
of variable3
[21. 9400
37.9758






.47.5000
86.1375
91.8003 J




99.2878
F188.2940
.188.8387
236.3000
Pairwise correlations between sulfur (V10) and
fuel variables for indicated operating schedules
highest
S (92)
dens. (54)
70% (84)
60% (83)
70% (84)
70% (84)
70% (84)
70% (84)
70% (84)
r
0.901
0.832
0.887
0.953
0.951
0.948
0.872
0.874
0.929
2nd highest
IBP (76)
10% (78)
60% (83)
70% (84)
60% (83)
80% (85)
80% (85)
S (92)
80% (85)
r
0.859
0.830
0.883
0.948
0.951
0.943
0.866
0.868
0.926
3rd highest
5% (77)
20% (79)
S (92)
10% (78)
80% (85)
60% (83)
60% (83)
80% (85)
S (92)
r
0.839
0.820
0.881
0.948
0.947
0.940
0.858
0.868
0.918
                                 Inverse rank-ordered
                                  fuel
 mean value_
of variable1
EM-240-F
EM-239-F
EM-238-F
EM-241-F
EM-242-F
26



r 93
137
J-43
152
.1705
.6937
.9802
.6908
.9504-



VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
50 km/h
Idle
NYCC
Hot FTP
1975 FTP
Cold FTP
FET
CFDS
85 km/h
mean value
of variable
[12.7000
12.9000
14.2807
L.46.1833 "
53.1045
62.2908 J
[101.7062
119.2710
.131.5800









Pairwise correlations between sulfur (V10) and
fuel variables for indicated operating schedules
highest
S (92)
70% (84)
S (92)
S (92)
70% (84)
70% (84)
S (92)
S (92)
5% (77)
r
0.956
0.976
0.991
0.945
0.947
0.937
0.970
0.977
0.915
2nd highest
70% (84)
60% (83)
5% (77)
5% (77)
80% (85)
60% (83)
5% (77)
5% (77)
95% (87)
r
0.943
0.974
0.988
0.929
0.944
0.937
0.953
0.968
0.897
3rd highest
5% (77)
40% (81)
EP (88)
70% (84)
S (92)
80% (85)
IBP (76)
70% (84)
95% (87)
r
0.938
0.974
0.973
0.929
0.938
0.933
0.925
0.951
0.897
                                 Inverse rank-ordered
                                  fuel
                                EM-240-F
                                EM-239-F
                                EM-241-F
                                DM-242-F
                                EM-238-F
 mean value.
of variable
  16.2621
  58.1038
  65.9147
  78.0424
 L 89.4639
    brackets surround means not significantly different at the 0.05 level
    variable 82 (50% point) had equal r value
                                           121

-------
           TABLE 54.   MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                                 SULFATE (V 11),  mg/h
Mercedes 240D
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP
Cold FTP
CFDS
85 km/h
FET
mean value
of variable






49.4000
84.5928"
.112.1000
222.1076
226.1974
231.5456 J





["503.4600
1.601. 8000]

668.2224 J
Pairwise correlations between sulfate (Vll) and
fuel variables for indicated operating schedules
highest
S (92)
S (92)
S (92)
60% (83)
10% (78)
10% (78)
10% (78)
70% (84)
S (92)
r
0.987
0.971
0.986
0.933
0.969
0.973
0.972
0.996
0.921
2nd highest
5% (77)
5% (77)
5% (77)
70% (84)
60% (83)
30% (80)
60% (83)
80% (85)
dens. (59)
r
0.966
0.960
0.965
0.928
0.969
0.972
0.966
0.995
0.909
3rd highest
70% (84)
IBP (76)
70% (84)
10% (78)
50% (82)
40% (81)
50% (82)
95% (87)
5% (77)
r
0.930
0.947
0.929
0.925
0.965
0.970
0.963
0.993
0.901
                                 Inverse rank-ordered
                                  fuel
                                EM-240-F
                                EM-239-F
                                EM-242-F
                                EM-241-F
                                EM-238-F
 mean value
of variable3
  78.0531
 308.6553
 332.6240
 385.2689
L395.0797
VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
50 km/h
Idle
NYCC
Hot FTP
1975 FTP
Cold FTP
CFDS
85 km/h
FET
mean value
of variable




"49.2000
58.0000
61.3980
120.1772
162.5224 J




L213. 2988



372.5604
380.8000
[386.0496
Pairwise correlations between sulfate (Vll) and
fuel variables for indicated operating schedules
highest
S (92)
dens. (59)
H (90)
gum (96)
H (90)
H (90)
S (92)
5% (77)
S (92)
r
0.986
0.904
-0.860
0.961
-0.981
-0.978
0.981
0.994
0.911
2nd highest
5% (77)
C (89)
aro. (93)
dens. (59)
dens. (59)
C (89)
5% (77)
EP (88)
70% (84)
r
0.970
0.888
0.859
0.959
0.968
0.967
0.979
0.992
0.903
3rd highest
70% (84)
20% (79)
C (89)
40% (81)
C (89)
aro. (93)
EP (88)
S (92)
80% (85)
r
0.945
0.887
0.953
0.892
0.955
0.945
0.962
0.985
0.902
                                 Inverse rank-ordered
                                  fuel
                                EM-240-F
                                EM-239-F
                                EM-242-F
                                EM-241-F
                                EM-238-F
  mean value_
 of variable0
   70.2408
  202.5864
  211.5410
  251.2814
 L.266.5762
  brackets surround means not significantly different at the 0.05 level
                                           122

-------
      Data on BaP are presented in Table 55, showing fairly consistent
ranks according to fuel, but little other agreement.  Fuel "+carbon"
occurred most often as a strong pairwise correlator overall, and other
measures of fuel hydrogen/carbon ratio  (-cetane index, -hydrogen, -paraffins,
+aromatics) generally supported this correlation.  The rest of the results
were mixed and not very informative, except that +nitrogen appeared a total
of four times as a strong correlator.

      Total variability in mean values of variable 35, percent of parti-
culate not analyzed as carbon, hydrogen, nitrogen, or sulfur, was somewhat
lower than most of the other particulate variables.  The range of means by
fuel in Table 56 was about equal for the two vehicles, but the range by
operating schedule was considerably wider for the VW.  The most dramatic
results were the high  (100-CHNS) values for the VW at light loads (last
2 conditions tabulated), which also produced low total particulate and
relatively high percentages of metallic elements  (variables 13-30, see
Appendix p. G-15 or G-21).  Cetane index was the fuel variable occurring
most often as a strong correlator, but it was a positive correlator for
the Mercedes and  (mostly) a negative correlator for the VW.  Other variables
occurring comparatively often were +IBP,  (mostly) +nitrogen, and  (mixed
signs) carbon.

      The first of the gaseous emissions analyzed was total hydrocarbons,
shown in Table 57.  More variation in mean HC occurred for the VW than
for the Mercedes by both operating schedule and fuel.  HC was notably
higher for the VW when EM-241-F "minimum quality" No. 2 fuel was in  use.
Fuel variables occurring most often as strong correlators  with HC for
the Mercedes were +carbon, -hydrogen, +density, and +flash point.  The
corresponding list for the VW includes +carbon, +nitrogen (probably  a
mathematical association), and -cetane index.  Generally speaking, all
these correlations could be classed as "+heavy ends + aromatics",  or
something similar.

      With the exception of idle CO emissions from the Mercedes, ranges
and rank ordering of means by schedule and fuel in Table 58 are quite
similar for both vehicles.  The VW showed a somewhat larger range of means
by fuel than the Mercedes, primarily due to the high mean for fuel EM-241-F.
Fuel variables highly correlated with CO for the Mercedes were +nitrogen
( or an associated variable),+carbon, -olefins, +20% point, and -IBP.  The
corresponding list for the VW includes +nitrogen (or an associated variable),
+carbon, and -cetane index.

      The NOV emission mean values shown in Table 59 have a large range
            J\
and parallel variation by operating schedule for the two vehicles, and
relatively minor and mixed variation by fuel.  Fuel variables, conse-
quently, have more mixed and lower correlations with NOX than they did
with CO.  Most important fuel variable correlators for the Mercedes  were
+nitrogen (or a mathematically associated variable), +20% point, and
-cetane index.   For the VW, the most important fuel variable correlators
were -olefins,  and +cetane index.  Fuel variable correlations with NOX are
not considered very informative.
                                       123

-------
           TABLE  55.   MULTIPLE  COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL  VARIABLE  CORRELATORS FOR EMISSIONS VARIABLES:
                                   BaP (V12) , yg/h
Mercedes 240D
Inverse rank-ordered
operating
schedule
85 km/h
FET
50 km/h
CFDS
Hot FTP
1975 FTP
Cold FTP
Idle
NYCC
mean value
of variable






" 5.3550
8.3566"
8.3800
8.7226
11.5144
12.7036
.14.2828
19.8600.



L 22.9674
Pairwise correlations between BaP (V12) and
fuel variables for indicated operating schedules
highest
ole. (94)
gum (96)
ole. (94)
IBP (76)
C (89)
C (89)
cetane(61)b
C (89)
C (89)
r
0.988
-0.925
-0.610
-0.832
0.971
0.941
-0.909
0.923
0.975
2nd highest
20% (79)
flash (62)
cetaneb(61)
S (92)
aro. (93)
H (90)
C (89)
N (91)
H (90)
r
-0.964
-0.854
0.593
-0.540
0.934
-0.904
0.890
0.919
-0.955
3rd highest
10% (78)
dens. (59)
80% (85)
5% (77)
parv, (95)
cetaneb(61)
H (90)
cetaneb(61)
gum (96)
r
-0.920
-0.817
0.537
-0.475
-0.929
-0.900
-0.837
-0.903
0.901
                                 Inverse rank-ordered
                                  fuel
 mean value_
of variable
EM-242-F
EM-240-F
EM-238-F
EM-239-F
EM-241-F




" 8.2906
9.4295"
10.7611
13.1523
20.6702J




VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
Idle
50 km/h
NYCC
Hot FTP
85 km/h
CFDS
FET
1975 FTP
Cold FTP
mean value
of variable






" 3.6200
9.6500
14.8947
20.7007
27.7100
33.3402
L35.9693
52.3872.
94.3800





Pairwise correlations between BaP (V12) and
fuel variables for indicated operating schedules
highest r
30% (80)
flash (62)
40% (81)
N (91)
95% (87)
vise. (60)
vise. (60)
N (91)
N (91)
0.980
0.960
0.990
0.951
-0.947
-0.936
-0.978
0.974
0.977
2nd highest
10% (78)
EP (88)
dens. (59)
cetaneb(61)
80% (85)
95% (87)
30% (80)
cetanek* (61)
cetaneb(61)
r
0.972
0.874
0.989
0.912
-0.946
-0.935
-0.971
-0.875
-0.869
3rd highest
40% (81)
dens. (59)
50% (82)
C (89)
90% (86)
90% (86)
10% (78)
C (89)
C (89)
r
0.968
0.801
0.988
0.882
-0.946
-0.924
-0.964
0.866
0.863
                                 Inverse rank-ordered
                                  fuel
 mean' value
of variable'
EM-242-F
EM-238-F
EM-239-F
EM-240-F
EM-241-F





"21.0452
25.0121
25.8884
35.5588
[55.0800
  brackets surround means not significantly different at the 0.05 level
  cetane index,  not cetane number
                                           124

-------
           TABLE 56.  MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                          100-CHNS  (V35),% of particulate
Mercedes 240D
Inverse rank-ordered
operating
schedule
50 km/h
NYCC
FET
Cold FTP
85 km/h
1975 FTP
Hot FTP
CFDS
Idle
mean value
of variable








r!5.4560
17.0040"
19.2080
19.2400
19.6000
20.4840
21.4200
_21.5400
24.6600.,








Pairwise correlations between 100-CHNS (V35) and
fuel variables for indicated operating schedules
highest
cetane(61)b
IBP (76)
70% (84)
20% (79)
ole. (94)
cetane(61)b
C (89)
C (89)
IBP (76)
r
0.769
0.709
0.983
0.950
0.738
0.964
-0.861
-0.572
0.849
2nd highest
IBP (76)
N (91)
80% (85)
ole. (94)
20% (79)
N (91)
cetane13 (61)
20% (79)
S (92)
r
0.501
0.460
0.980
-0.893
-0.626
-0.694
0.825
-0.523
0.632
3rd highest
par. (95)
S (92)
60% (83)
30% (80)
10% (78)
C (89)
H (90)
H (90)
5% (77)
r
0.491
0.460
0.977
0.876
-0.533
-0.632
0.803
0.515
0.556
                                 Inverse rank-ordered
                                  fuel
  mean value_
 of variablec
EM-239-F
EM-240-F
EM-241-F
EM-238-F
EM-242-F





r!6.3767
16.3922
19.8833
22.4389
.24.1378
 VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
85 km/h
CFDS
Hot FTP
FET
1975 FTP
Cold FTP
50 km/h
NYCC
Idle
mean value
of variable
16.9400





[23.6600
23.7800
24.7600
24.9488
26.5000
31.8800
43.4400
58.7200
Pairwise correlations between 100-CHNS (V35) and
fuel variables for indicated operating schedules
highest
N (91)
flash (62)
cetane(61)b
flash (62)
cetane(61)b
dens. (59)
N (91)
N (91)
IBP (76)
r
0.524
-0.935
-0.960
-0.631
-0.846
-0.809
0.774
0.625
0.672
2nd highest
IBP (76)
EP (88)
N (91)
vise. (60)
95% (87)
N (91)
cetane13 (61)
par. (95)
cetaneb (61)
r
0.410
-0.905
0.879
-0.595
-0.645
-0.771
-0.756
-0.606
0.634
3rd highest
cetaneb (61)
5% (77)
C (89)
ole. (94)
vise. (60)
20% (79)
flash (62)
aro. (93)
S (92)
r
-0.373
-0.874
0.736
0.556
-0.638
-0.756
-0.667
0.577
0.478
                                  Inverse  rank-ordered
                                   fuel
 mean value
of variable'
EM- 2 39 -F
EM-242-F
EM-238-F
EM-240-F
EM-241-F




26.
30.
30.
L31.
32.
6771
4500
7578
7356
951lJ




  brackets  surround means  not significantly different at the 0.05 level
  cetane index, not cetane number
                                            125

-------
           TABLE 57.   MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                               HYDROCARBONS (V40), g/h
Mercedes 240D
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
FET
CFDS
1975 FTP
85 km/h
Cold FTP
mean value
of variable









-

[2.0100
2.77901
.3.0000
[3.5235J
4.0310 "
4.2509
.4.5302
5.1000 .







. 5.2224
Pairwise correlations between HC (V40) and
fuel variables for indicated operating schedules
highest
C (89)
dens. (59)
S (92)
C (89)
flash (62)
EP (88)
20%' (79)
flash (62)
C (89)
r
0.994
0.984
0.959
0.826
0.988
0.930
0.841
0.827
0.882
2nd highest
H (90)
H (90)
5% (77)
H (90)
EP (88)
flash (62)
C (89)
IBP (76)
dens. (59)
r
-0.992
-0.983
0.954
-0.776
0.940
0.927
0.838
0.745
0.867
3rd highest
aro. (93)
gum (96)
EP (88)
N (91)
vise. (60)
5% (77)
dens. (59)
EP (88)
H (90)
r
0.965
0.974
0.948
0.760
0.886
0.902
0.831
0.743
-0.861
                                 Inverse rank-ordered
                                  fuel
 mean value
of variable'
EM-240-F
EM-242-F
EM-238-F
EM-239-F
EM-241-F





[2.7370
.3.3404"!
"4. 0840 J
4.3377
L4. 6381
VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
50 km/h
Hot FTP
NYCC
CFDS
Idle
1975 FTP
FET
85 km/h
Cold FTP
mean value
of variable










[3.6000
5.9774"
6.8028
6.9366
L8.2700
9.1863
9.6125
10.0300 J







_13.4020
Pairwise correlations between HC (V40) and
fuel variables for indicated operating schedules
highest
IBP (76)
N (91)
N (91)
N (91)
N (91)
N (91)
flash (62)
cetane(61)b
N (91)
r
0.921
0.978
0.956
0.921
0.947
0.990
-0.745
-0.918
0.988
2nd highest
S (92)
cetaneb(61)
C (89)
cetaneb(61)
C (89)
C (89)
vise. (60)
N (91)
C (89)
r
0.907
-0.869
0.906
-0.843
0.922
0.851
-0.715
0.890
0.848
3rd highest
5% (77)
C (89)
H (90)
C (89)
H (90)
cetaneb(61)
EP (88)
C (89)
cetaneb(61)
r
0.898
0.852
-0.874
0.717
-0.900
-0.827
-0.706
0.667
-0.839
                                 Inverse rank-ordered
                                  fuel
 mean value_
of variable'
EM-242-F
EM-238-F
EM-240-F
EM-239-F
EM-241-F




" 5.9872
6.2598
6.3191
. 6.3263
16.1173
  brackets surround means not significnatly different at the  0.05  level
  cetane index, not cetane number
                                           126

-------
          TABLE  58.   MULTIPLE  COMPARISONS  OF MEANS AND STRONGEST PAIRWISE
                 FUEL  VARIABLE  CORRELATORS  FOR EMISSIONS VARIABLES:
                                    CO (V41), g/h
 Mercedes  240D
Inverse rank-ordered
operating
schedule
Idle
50 km
NYCC
Hot FTP
1975 FTP
Cold FTP
CFDS
FET
85 km/h
mean value
of variable
6.4920
13.4000
14.8793
T19.1906
[_19.9456~|
20.7636J
24.8374
30.5429
33.4900
Pairwise correlations between CO (V41) and
fuel variables for indicated operating schedules
highest
C (89)
C (89)
N (91)
N (91)
20% (79)
20% (79)
N (91)
IBP (76)
IBP (76)
r
0.923
0.996
0.852
0.783
0.765
0.733
0.662
-0.793
-0.829
2nd highest
par. (95)
H (90)
cetane (61)
20% (79)
N (91)
N (91)
IBP (76)
flash (62)
S (92)
r
-0.907
-0.981
-0.751
0.542
0.734
0.762
-0.647
-0.753
-0.545
3rd highest
H (90)
aro. (93)
C (89)
ole. (94)
ole. (94)
ole. (94)
flash (62)
EP (88)
5% (77)
r
-0.903
0.927
0.577
-0.489
-0.724
-0.753
-0.592
-0.673
-0.501
                                  Inverse rank-ordered
                                   fuel
  mean value
 of variablec
EM-238-F
EM-240-F
EM-239-F
EM-242-F
EM-241-F
[18.4520
L19.8950"
20.5992
F20.8621.
L22.1591

VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
NYCC
Idle
Hot FTP
1975 FTP
50 km/h
Cold FTP
CFDS
FET
85 km/h
mean value
of variable








"14.2714
15.48001
16.4850
18.1210
19.0000
20.1344
"22.4879.
.29.30261
31.1100.








Pairwise correlations between CO (V41) and
fuel variables for indicated operating schedules
highest
cetane (61) b
N (91)
N (91)
N (91)
N (91)
N (91)
IBP (76)
S (92)
70% (84)
r
-0.944
0.957
0.944
0.985
0.969
0.990
-0.828
-0.944
-0.979
2nd highest
N (91)
C (89)
cetaneb(61)
cetaneb(61)
cetaneb(61)
cetane (61)
cetaneb(61)
5% (77)
60% (83)
r
0.932
0.915
-0.839
-0.851
-0.903
-0.848
-0.630
-0.928
-0.979
3rd highest
C (89)
H (90)
C (89)
C (89)
C (89)
C (89)
S (92)
EP (88)
50% (82)
r
0.841
-0.884
0.625
0.757
0.838
0.816
-0.597
-0.903
-0.976
                                 Inverse rank-ordered
                                  fuel
 mean value
of variable'
EM-238-F
EM-242-F
EM-239-F
EM-240-F
EM-241-F




"17.7859
18.0986
18.7619
.21.03921
27. 8655.1
  brackets surround means not significantly different at the 0.05 level
  cetane index, not cetane number
                                           127

-------
           TABLE 59.   MULTIPLE COMPARISONS OF MEANS AND STRONGEST PAIRWISE
                 FUEL VARIABLE CORRELATORS FOR EMISSIONS VARIABLES:
                                   NO  (V42),  g/h
                                     X
Mercedes 240D
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP
Cold FTP
CFDS
FET
85 km/h
mean value
of variable
6.2280
14.5898
("23.2000
24.6646
25.3568
25.9230
42.4025
55.6594
62.7300
Pairwise correlations between NOX (V42) and
fuel variables for indicated operating schedules
highest
cetane (61)b
cetane (61)b
dens. (59)
20% (79)
20% (79)
20% (79)
aro. (93)
N (91)
flash (62)
r
-0.927
-0.752
0.913
0.830
0.810
0.847
0.934
0.893
0.851
2nd highest
N (91)
N (91)
20% (79)
ole. (94)
ole. (94)
ole. (94)
par. (95)
C (89)
EP (88)
r
0.874
0.737
0.912
-0.785
-0.778
-0.833
0.932
0.859
0.663
3rd highest
C (89)
IBP (76)
30% (80)
N (91)
N (91)
10% (78)
gum (96)
cetane (61)
5% (77)
r
0.643
-0.640
0.911
0.701
0.756
0.812
0.836
-0.809
0.571
                                 Inverse rank-ordered
                                  fuel
 mean value
of variable'
EM-240-F
EM-242-F
EM-239-F
EM-238-F
EM-241-F




"29.1847
30.3405
31.4438
.31.8652
33.1403J
VW Rabbit Diesel
Inverse rank-ordered
operating
schedule
Idle
NYCC
50 km/h
Hot FTP
1975 FTP
Cold FTP
CFDS
FET
85 km/h
mean value
of variable






r 5.1120
^ 9.9292
"16.4000
18.4356
19.0018
L.19.3614
29.9838
41.5507
52.5300
Pairwise correlations between NOX (V42) and
fuel variables for indicated operating schedules
highest
EP (88)
20% (79)
cetane ( 61) b
ole. (94)
ole. (94)
vise. (60)
N (91)
ole. (94)
40% (81)
r
-0.832
0.796
0.841
-0.619
-0.690
0.752
0.674
-0.864
-0.989
2nd highest
5% (77)
ole. (94)
par. (95)
cetaneb(61)
vise. (60)
flash (62)
IBP (76)
vise. (60)
10% (78)
r
-0.811
-0.791
0.721
0.587
0.616
0.707
0.459
0.798
-0.986
3rd highest
95% (87)
30% (80)
aro. (93)
par. (95)
cetaneb(61)
par. (94)
par. (94)
95% (87)
50% (82)
r
-0.804
0.697
-0.644
0.520
0.585
-0.697
-0.453
0.769
-0.986
                                 Inverse rank-ordered
                                  fuel
 mean value,
of variablec
EM-238-F
EM-241-F
EM-239-F
Em-240-F
EM-242-F





"22.5090
22.5503
23.6779
24.5711
[24.6137
  brackets surround means not significantly different at the 0.05 level
  cetane  index, not cetane number
                                            128

-------
      Regression equations calculated from the foregoing data are limited
to particulate sulfur (V10) and sulfate  (Vll) against fuel sulfur(92).
To reduce the influence of extraneous variables, the particulate sulfur
and sulfate data used will be in fuel specific units for averages over
all operating schedules from Appendix G, pages G-63 and G-64.  The
equations are as follows:
      Mercedes:  particulate sulfur(10)= 4.63+155  (fuel sulfur,92),
                                                   r2 = 0.835

                             sulfate(11) = 19.8 + 363  (fuel sulfur,92),
                                                   r2 = 0.937


      Volkswagen:  particulate sulfur(10) = 4.28 + 123  (fuel sulfur,92),
                                                   r2 = 0.974

                             sulfate(11) = 35.3 + 325  (fuel sulfur,92),
                                                   r2 = 0.884

Note that even though fuel sulfur(92) was highly correlated with other
fuel variables, as already noted, these equations are very good predictors
of average sulfur and SO^ over the nine operating schedules.

F.    Effect of Operating Schedules on Emissions Variables

      Using the statistics of the operating schedules from Table 7 and
averages  (over five fuels and two vehicles, not including 1975 FTP or
cold start FTP results) of the nine emissions variables discussed in
section IX.D., multiple linear regression equations have been computed.
A complete correlation matrix for all these operating schedule and emis-
sions variables appears as Table 60.  Note that among the operating
schedule variables, idle time and average speed show a moderately strong
negative pairwise correlation, while stops per hour and sv/V" (speed
coefficient of variation) exhibit a strong positive pairwise correlation.
As a result of these observations, the equations will be truncated after
inclusion of the second operating schedule variable to prevent the latter
highly correlated pair from causing inflated coefficients or unrealis-
              9
tically high r  values.

      Regression equations for the nine emissions variables are as follows:
      particulate mass (V4), g/h = 1.16 + 0.148(speed) + 2.67(sv/V);

                                                     r2 = 0.912

      solubles (V6),  % of particulate mass = 15.6 - 0.0668(speed)
                                                - 0.0333(% idle);
                                                     r2 = 0.797
                                      129

-------
                            TABLE 60.   CORRELATION MATRIX  FOR OPERATING SCHEDULE VARIABLES

                                      AND NINE EMISSIONS VARIABLES, BOTH VEHICLES
H1
U)
o
Variable
sv/V
% idle time
stops/hour
particulate ma
% solubles
sulfur
sulfate
BaP
(100-CHNS)%
HC
CO
NOX
Var.
no.
a
a
a
ss 4
6
10
11
12
35
40
41
42
Correlation coefficient (r) by variable or variable number
speed
-0.402
-0.841
-0.493
0.925
-0.764
0.869
0.872
0.365
-0.859
0.609
0.943
0.956
Sv/V
1.000
0.006
0.947
-0.155
0.535
-0.229
-0.237
0.470
-0.002
-0.222
-0.271
-0.315
% idle
b
1.000
0.113
-0.754
0.392
-0.637
-0.622
-0.348
0.969
-0.207
-0.711
-0.722
stops/h
b
b
1.000
-0.289
0.658
-0.393
-0.408
0.267
0.079
-0.282
-0.370
-0.412
4
b
b
b
1.000
-0.800
0.964
0.969
0.658
-0.816
0.788
0.988
0.981
6
b
b
b
b
1.000
-0.842
-0.887
-0.426
0.461
-0.768
-0.819
-0.820
10
b
b
b
b
b
1.000
0.976
0.623
-0.715
0.830
0.953
0.955
11
b
b
b
b
b
b
1.000
0.690
-0.674
0.836
0.958
0.948
12
b
b
b
b
b
b
b
1.000
-0.374
0.609
0.572
0.519
35
b
b
b
b
b
b
b
b
1.000
-0.340
-0.779
-0.790
40
b
b
b
b
b
b
b
b
b
1.000
0.825
0.806
41
b
b
b
b
b
b
b
b
b
b
1.000
0.997
uncoded
            b redundant data omitted

-------
       sulfur  (V10) ,  mg/h = -36.0  +  2.49 (speed)  + 0.607(% idle);

                                                      r2 = 0.786

       sulfate  (Vll),  mg/h =  -143 + 7. 96(speed)+ 2.19(% idle);

                                                      r2 = 0.803

       BaP  (V12),  yg/h = 9.14 + 7.95 (sv/V)  + 0.0989(speed);

                                                      r2 = 0.588

       100-CHNS  (V35), % of particulate = 23.4 + 0.178(% idle)
                                             - 0.0368(speed);

                                                      r2 = 0.945

       HC  (V40),  g/h  = 1.57 + 0.0658(speed)  + 0.0399(% idle);

                                                      r2 = 0.690

       CO  (V41),  g/h  = 6.23 + 0.296(speed)  + 0.0603(%  idle);

                                                      r2 = 0.911

       NC>   (V42),  g/h = -6.33 + 0.715 (speed)  + 0.144(% idle);
        J\
                                                      r2 = 0.936
While speed is the dominant variable, those emissions  (BaP and 100-CHNS)
which are obviously influenced by speed variation and/or idle time show
speed entering second.  The major weaknesses of these equations are small
sample size, and inclusion of only two vehicles in the test work.

G.    Effect on Ambient Variables on Particulate Emissions

      At the request of the Project Officer, particulate mass emissions
(variable 4) were subjected to regression analysis against atmospheric
humidity, atmospheric pressure, and room  (test) temperature.  All the data
together, as well as several data subsets, were used as separate data
bases for this analysis.  It should be noted that the ambient data used
were not acquired for the purpose of regression analysis, and consequently
the type of instrumentation used was less than optimum for both humidity
and temperature.

      With these comments, the regression equations are presented as
Table 61, showing very low correlations between particulate mass emissions
and the ambient variables.  These results are essentially as expected,
since the range of ambient variables encountered was not really sufficient
for such use.
                                       131

-------
   TABLE  61.   RESULTS OF LINEAR REGRESSIONS, PARTICULATE MASS RATE
        AGAINST HUMIDITY, TEMPERATURE, AND ATMOSPHERIC PRESSURE
form of equations:   y = a + bx

                    y = particulate mass emissions, g/km
                    x = hygrometer humidity (Hchart), g H20/kg dry air;
                        psychrometer humidity  (Hw/d), g H2O/kg dry air;
                        room temperature (Ta), °F; or
                        atmospheric pressure (pa), in Hg
Data Set
All Tests



All Mercedes
240D Tests


All VW Rabbit
Diesel Tests


All Mercedes
240D Cold
FTP Tests

All VW Rabbit
Diesel Cold
FTP Tests

Observations
= n
161



73



88



15



20



Independent
Variable "x"
Hchart
Hw/d
Ta
pa
Hchart
Hw/d
Ta
pa
Hchart
Hw/d
Ta
pa
Hchart
Hw/d
Ta
pa
Hchart
Hw/d
Ta
pa
Coefficients
a
1.56548
0.543412
0.919650
0.0213497
1.96220
1.01127
4.43593
-13.4955
0.991178
0.0752543
0.746051
0.0708191
0.345852
0.334656
0.244506
4.87646
0.507134
0.397945
0.970408
6.12242
b
-0.0859574
-0.00768611
-0.00600497
0.0162720
-0.112828
-0.0428319
-0.0497336
0.479753
-0.0448559
0.0272028
0.0149281
0.0164591
-0.00178652
-0.00174411
0.000996933
-0.156209
-0.0151840
-0.00724932
-0.00861147
-0.199414
r^
0.0247496
0.000575875
0.000417365
0.00256279
0.0440460
0.0145391
0.0204269
0.00373618
0.00650675
0.00892863
0.00267588
0.000437150
0.00223228
0.00558608
0.00202044
0.0878518
0.0137960
0.00625180
0.00791982
0.00975743
	 	 	
                                    132

-------
                                  REFERENCES
1.     Federal Register,  Vol.  39,  No.  200,  Tuesday,  October 15,  1974.

2.     Hare, Charles T.,  "Methodology for Determining Fuel Effects on  Diesel
      Particulate Emissions."  EPA-650/2-75-056,  U.S. Environmental Protec-
      tion Agency, Office of Research and Development, March 1975.

3.     Hare, Charles T.,  Springer, Karl J., and Bradow, Ronald L., "Fuel
      and Additive Effects on Diesel Particulate-Development and Demon-
      stration of Methodology."  SAE Paper No. 760130, Detroit,  Michigan,
      February 1976.

4.     Hare, Charles T.,  and Montalvo, Daniel A.,  "Diesel Crankcase Emis-
      sions Characterization."  Final Report of Task No. 4, Contract  No.
      68-03-2196, U.S.  Environmental Protection Agency, May 1977,

5.     Hare, Charles T.,  and Baines, Thomas M., "Characterication of Diesel
      Crankcase Emissions." SAE Paper No.  770719, Milwaukee, Wisconsin,
      Spetember 1977.

6.     Hare Charles T.,  "Characterization of Diesel Gaseous and Particulate
      Emissions."  Draft Final Report of Tasks 1, 2, 4, and 6,  Contract No.
      68-02-1777, U.S.  Environmental Protection Agency, September 1977.

7.     Federal Register,  Vol. 38,  No.  151,  August 7, 1973.

8.     Federal Register,  Vol. 44,  No. 23, February 1, 1979.

9.     Springer, Karl J., "Investigation of Diesel-Powered Vehicle Emissions
      VII," EPA-460/3-76-034, Contract No. 68-03-2116, U.S. Environmental
      Protection Agency, February 1977-

10.   Springer, Karl J., "Characterization of Emissions from Light and
      Heavy Duty Engines."  Draft Final Report on Contract No.  68-03-2417,
      U.S. Environmental Protection Agency, 1978.

11.   Springer, Karl J., and Baines, Thomas M., "Emissions from Diesel
      Versions of Production Passenger Cars."  SAE Paper No. 770818,
      Detroit, Michigan, September 1977.

12.   Petroleum Products Survey No.  73, U.S. Department of the Interior,
      Bureau of Mines, January 1972.

13.   Shelton, Ella Mae, "Diesel Fuel Oils, 1976."  BERC/PPS-76/5, United
      States Energy Research & Development Administration, November 1976.

14.   Federal Register,  Vol. 40, No. 126, June 30, 1975, Subparts I & J.
                                      133

-------
15.   Stump,  Fred,  "Oxygenated Compounds in Automobile Exhaust - Gas
      Chromatographic Procedure."  Unpublished Procedure developed by the
      U.S. Environmental Protection Agency.

16.   Stahman,  Ralph C., Kittredge, G.D., and Springer, Karl J., "Smoke
      and Odor Control for Diesel-Powered Trucks and Buses."  SAE Trans-
      actions,  Paper 680443,  Vol.  77,  1968.

17.   Levins, P.L., and Kendall, D.A.  "Application of Odor Technology to
      Mobile  Source Emission  Instrumentation."  CRC Project CAPE 7-68
      under Contract No. 68-03-0561, September 1973.

18.   Black,  Frank M., High,  L.E., and Sigsby, John E. , "Methodology for
      Assignment of a Hydrocarbon  Photochemical Reactivity Index for Emis-
      sions from Mobile Sources."   Final Report to the Environmental Pro-
      tection Agency, EPA Report No. EPA-650/2-75-025, March 1975.

19.   Habibi, K., et al. "Characterization and Control of Gaseous and Parti-
      culate  Exhaust Emissions from Vehicles."  Presented at the Air Pol-
      lution  Control Association West Coast Section, Fifth Technical Meeting,
      October,  1970.

20.   Wagman, Jack, "Recent Developments in Techniques for Monitoring Air-
      borne Particulate Emissions  from Sources."  AIChE Symposium Series,
      No. 137,  Vol. 70, pp. 277-284.

21.   Gentel, James E., et al. "Characterization of Particulates and Other
      Non-Regulated Emissions from Mobile Sources and the Effects of Exhaust
      Emissions Control Devices on These Emissions."  APTD-1567, National
      Technical Information Service, March 1973.

22.   Tejada, Silvestre, "Determination of Soluble Sulfates."  Unpublished
      procedure developed by  the U.S.  Environmental Protection Agency, 1974.

23.   New Benzo-a-Pyrene Analytical Method, source:  Dr. Robert Jungers, EPA
      Research Triangle Park  Laboratories, In:  Contract 68-02-1777, Tasks
      1, 2, 4,  and 6.  Appendix B, September 1977.

24.   "Standard Test Method for Boiling Range Distribution of Petroleum
      Fractions by Gas Chromatography."  American National Standard,
      ANSI/ASTM D 2887-73.

25.   Keenan, Joseph H., and  Kaye, Joseph, "Gas Tables".  John Wiley & Sons,
      Inc., New York, 1965.

26.   "Standard Test Method for Calculated Cetane Index of Distillate
      Fuels."  American National Standard, ANSI/ASTM D 976-66.

27.   Ames, B.N., McCann,  j., andYamasaki, E., Mutat. Res. 31:347-364, 1975.
                                      134

-------
28.    Huisingh, J.L., et al. "Application of Bioassay to the Characterization
      of Diesel Particle Emissions," from "Application of Short-term Bioassays
      in the Fractionation and Analysis of Complex Environmental Mixtures."
      EPA Report No. EPA-600/9-78-027, September 1978.

29.    McCann,  J. et al. "Detection of carcinogens as mutagens in the
      Salmonella/microsoine test: Assay of 300 chemicals." Proc. Nat. Acad.
      Sci. U.S.A., Vol. 72, No. 12:5135-5139, December 1975.

30.    McCann, J. and Ames, Bruce N. , "Detection of carcinogens as mutagens
      in the Salmonella/microsome test: Assay of 300 chemicals: Discussion."
      Proc. Nat. Acad, Sci. U.S.A.,  Vol. 73, No. 3:950-954, March 1976.

31.    Commoner, B.,  "Reliability of Bacterial Mutagenesis Techniques to
      Distinguish Carcinogenic and Noncarcinogenic Chemicals."  Final Report
      to the Environmental Protection Agency, EPA Report No. EPA-600/1-76-022,
      Contract No. 68-01-2471, April 1976.
                                      135

-------
     APPENDIX A





CONTRACT 68-03-2440





    SCOPE OF WORK

-------
68-03-2440                         EXHIBIT "A"

                                 Scope of Work                 April 15, 1976

     The major objective of this work is to gather data concerning the exhaust
emissions of light duty diesel vehicles as the vehicles are operated with
various diesel fuels.  In order to achieve the objectives of this work, the
following tasks shall be performed:

Task I   Fuel Selection

     The Contractor shall test the vehicles on a total of five  (5) test fuels.
Four of these fuels shall be commercially available diesel fuels that are dis-
tinct from one another in chemical and physical properties, yet represent a
significant share of the diesel fuel market.  The specific fuels shall be se-
lected by the Project Officer (with input from the Contractor) at the inception
of the contract.  Examples of candidate fuels include the following:

     A.  No. 1 Diesel Fuel

     B.  No. 2 Diesel Fuel Representative of "National Average" properties

     C.  A low cetane  (e.g. 42), high aromatic diesel fuel

     D.  A high cetane  (e.g. 52), high paraffin diesel fuel

     The fifth fuel to be tested shall be a "synthetic" fuel that has been de-
rived from a source such as oil shale, tar sands, coal, etc.  The selection of
this fuel shall be made at the inception of the contract by the Project Officer
with Contractor input.  "Synthetic"  fuel selection criteria shall include a)
availability of the fuel in quantities needed for the testing, b) likelihood of
the fuel being produced and marketed in significant quantities, c) likelihood
of the fuel being produced as diesel fuel,etc.  Upon final selection of the
test fuels, the Contractor shall acquire sufficient quantities of the fuels for
all planned testing.

Task II  Vehicle Acquisition

     This contract involves the testing of two  (2) recently developed light
duty diesel engine equipped vehicles.  The final vehicle selection shall be
made by the Project Officer at the inception of the contract to assure the
best choices that result from this flexibility.  The vehicles being considered
are the following:

     A.  A small diesel, such as the Volkswagen.  EPA currently has a Volks-
         wagen diesel which can and will be tested if this appears to be the
         best choice at the inception of the contract.

     B.  A larger diesel.  The Oldsmobile diesel that is being  developed may
         be selected as the second vehicle if one is available.  Project Of-
         ficer may be able to help the Contractor acquire one for testing in
         this contract.  If the Oldsmobile diesel is not available another
         vehicle which  is comparable in size shall be selected.
                                      A-2

-------
Scope of Work 68-03-2440

     The main responsibility for vehicle acquisition shall be with the Govern-
ment.  However, the Contractor shall assist in this endeavor whenever it is ap-
propriate to do so.

Task III  Set-up of Sampling and Analysis Procedures

     Sampling and analysis shall be performed for the following compounds:

     1)  Particulate - The Contractor shall use techniques previously developed
         under contracts such as Contract No. 68-03-1230 to collect and quantify
         the particulate matter emitted by the vehicles.  This shall include
         gross particulate rate, size distribution and analyses for sulfate,
         total sulfur, carbon, hydrogen, nitrogen, and organic extractable sub-
         stances .

     2)  Gaseous emissions - Federal certification tests shall be performed for
         CO, CO , HC and NO  .  In addition, analyses shall be performed for
         aldehydes and specific hydrocarbons as per the analyses performed in
         Contract 68-02-1777.  Also odor analyses as per EPA Contract EHSD-71-
         18 and/or the odor panel will be performed.

     3)  Detailed particulates - The Contractor shall employ high volume sampling
         techniques such as those employed in Contract No. 68-02-1777 to collect
         sufficient sample to enable analysis for benzo(a)pyrene, phenols, mo-
         lecular weight range of paraffinic hydrocarbons, and individual organic
         species.

     4)  smoke emissions -  (see below*)

     The Contractor shall set up the instrumentation and equipment necessary to
carry  out the above analyses.  The methodologies employed and the accuracies
attained shall be subject to Project Officer approval.

Task IV   Vehicle Testing

     The vehicles shall not be tested unless the entire vehicle has accumulated
no less than 2,500 km.  If the vehicle is received by the Contractor with less
than 2,500 km, the Contractor shall accumulate the required kilometerage with
the AMA accumulation cycle. Prior to testing, the vehicle shall be preconditioned
with 500 km of modified AMA.  The vehicles shall then be tested using the Federal
Test Procedures  (FTP), the Congested Freeway Driving Cycle  (SET), the Fuel Econo-
my Test, the "New York City" low speed driving cycle, and selected steady state
cruise modes.  During these cycles, the compounds listed in Task III shall be
sampled and analyzed.  Fuel economy shall be reported in both miles per gallon
and km/kg of fuel consumed.

Task V  Data Handling

     The data that results from the work shall be reduced and reported in the
final  report.  In addition to this, a limited amount of effort shall be expended
comparing this data to that obtained from the long haul and mid  range heavy duty
diesel engines.
* Smoke tests shall be performed during  1975 FTP  tests.  These FTP's  shall  be
  run separately  from gaseous emission  testing so  that  the  PHS  smokemeter  can
  be installed at the vehicle tailpipe.
                                     A-3

-------
        APPENDIX  B





COMMUNICATION ON  FUELS FROM





  W. T. TIERNEY OF  TEXACO

-------
                           TEXACO
                          PETROLEUM PRODUCTS

AUTOMOTIVE ENGINE                                        TEXACO INC.

  DEVELOPMENTS                                         P. O. BOX 5O9

WILLIAM T. TIERNEY                                   BEACON. NEW YORK 12508
  PHOJKCT MANAGER                                      TEL. (AREA 914) 831-3400
                                  November  16,  19?6
Mr. Karl J. Springer
Southwest Research Institute
P. 0. Drawer 28510
San Antonio., Texas   ?8284

Dear Karl:

          As mentioned in our telephone conversation,,  I  am
providing the broad boiling range fuel characteristics that
were supplied by the computer printout when the broad  boiling
range fuel case was simulated.  You will note  that  the dis-
tillation range is well within the 100-650 min/max  distillation
specification that was established for the run.   As I  mentioned
to you, two other stipulations were a sulfur content maximum of
0.1% with an RVP of 12.0.  When you plot the data of the dis-
tillation tabulated on the attachment,, you will find that it
falls on a straight line with the exception of the  upper range.
This apparently is a result of the manner in which  the indivi-
dual process units were manipulated by the RPMS program  in
providing a high yield when severity of the units was  not
necessary to meet the more stringent gasoline  specifications of
octane.  I have also tabulated the percent of  each  of  the major
refinery product components contained in the blend  represented
by the distillation curve as well as the hydrocarbon analysis
of the fuel.  If you have any questions on this information,
don't hesitate to contact me.

          Concerning my discussion with you over  the years we
have regularly utilized a broad boiling range  fuel  in  our engine
and vehicle test work and have had no mechanical  problems that
could be associated with the fuel.  It is to my knowledge that
we have never had an injection system failure  since the  lubricity
of the wide boiling range fuel is apparently more than adequate
to supply the requirements of a broad range of both rotary and
jerk pump systems.  In line with your desire to blend  up a fuel
you can see that this can be done by blending  an  unleaded gaso-
line with a typical No. 2 diesel fuel with perhaps  some  additional
Avjet in order to provide the heavier ends in  suitable proportion.
                              B-2

                         This is recycled paper

-------
Mr. K. J. Springer            - 2 -        November l6a 19?6
You may wish to test a broader boiling range fuel than that which
resulted from our refinery program since,, as you know,, our
refinery unit allocation was based on the average of the Bureau
of Mines statistics for the industry as of 1972.

          I would like to take this opportunity to thank you for
your courtesy for the very pleasant visit to San Antonio on
November 4 and in particular for the river tour on the


                                  Very truly yours,,
                                  W. T. TIERNEY
¥TT-khc

Attachment
                              B-3

-------
BROAD BOILING RANGE FUEL CHARACTERISTICS
TBP DISTILLATION
$ Distilled Temperature °F
IB P
36.9 160
48.1 210
54.5 230
8o.4 330
84.2 360
89.5 4oo
EP






COMPONENTS
Butylenes
90 RON Reformats
F.C. Cat. Gasoline
C,, - A Iky late
Cj| - A Iky late
C 56 - Hydrocrackate
85 - 145 St. Run
C|- mix
200 - 330 St. Run
Natural Gasoline
NC^
Cat. Ck LC60
330 - 44o St. Run
Aromatic s 22.5 %
Paraffin 53.3
Olef in 14 _ 4
Naphtha 12 . 8
Specific Gravity 0.
RVP 10
0.5^
23
.22.4
1.1
4.9
5.0
6.8
0.1
2.1
12
7.1
9-6
5-3
745
.4
                     B-4

-------
         APPENDIX C





SAMPLE ANALYTICAL PROCEDURES

-------
                              ALDEHYDE PROCEDURE

     The procedure in use presently for characterizing gas phase aldehydes in
exhaust uses a 2,4 dinitrophenylhydrazine (DNPH) method.  The exhaust sample
is bubbled through a mixture of DNPH in dilute hydrochloric acid.  The lower
molecular weight aldehydes present react to form their respective aldehyde
phenylhydrazones.  These phenylhydrazones are insoluble or only slightly solu-
ble  in the DNPH/HCL mixture and can be removed by a filtration step followed
by a pentane washing step.  The filtered precipitate and the pentane washings
are combined and then the pentane is evaporated in a vacuum oven.  The remain-
ing extract contains the aldehyde phenylhydrazones.

     The analysis of this extract uses a chromatographic technique.  The ex-
tract is dissolved in a quantitative volume of spectro grade benzene contain-
ing an anthracene internal standard.  A small sample of this dissolved extract
is injected into a gas/liquid chromatograph and analyzed using a flame ioni-
zation detector and a strip chart recorder.  The resulting trace or chromato-
gram quantitatively characterizes the individual aldehydes.  From this charac-
terization and the measured exhaust volume sampled, the composition and rela-
tive amounts of aldehydes present can be calculated.

     The collection efficiency of the method has been tested by bubbling vol-
umes of air containing a known amount of aldehydes present through the system
and then extracting it and running it through analysis.  The resulting data
showed an efficiency of better than 98 percent.
                                      C-2

-------
       METHOD  FOR DETERMINATION OF  PHENOLS  IN IMPINGER SAMPLES

 1.   Transfer contents  of sample bottle to 125 ml separatory funnel.
 2.   Add  13  gm  NaCl to  funnel and shake to dissolve.
 3.   Rinse condenser tube with 10 ml benzene and collect in 50 ml beaker.
 4.   Transfer benzene to separatory  funnel containing distillate and  shake
     vigorously for 1 minute.
 5.   Drain aqueous phase into another 125 ml separatory funnel.   Discard
     benzene.
 6.   Add  10  ml  hexane to separatory  funnel and shake  well.
 7.   Drain  aqueous phase into 100 ml volumetric flask.  Discard  hexane.
 8.   Add  1  drop Phenolphthalein Indicator Solution to aqueous phase.
 9.   Add  concentrated H3PO,j to aqueous phase to indicator end-point then
     add  2-3 drops excess H3PO4.
10.   Cool to room temperature and add 0.5 ml diisopropyl ether (DIE).
11.   Shake  vigorously for 1 minute and immediately pour into 50  ml volu-
     metric flask using appropriate  funnel.
12.   Swirl  contents of stoppered flask and then allow DIE to collect  on
     aqueous surface in neck of flask.
13.   Insert ground glass stopper, to which has been attached a short  length
     (60  mm) of 2 mm I.D. capillary tubing, into mating glass joint on
     flask.
14.   Using a syringe and needle, inject water into flask through previously
     inserted silicone plug in flask body, so as to force the DIE up  into
     the  capillary tube.
15.   Using a micro syringe, withdraw 5 ul of DIE and inject into gas
     chromatograph.

Column: 1.8 m  (length)  x 4.0 mm  (ID) glass

Packing:  10% SP-2100 (a methyl silicone fluid) on 100/120 mesh Supelcoport

Column temperature:  120°C

Detector: FID

Detector temperature:  150°C

Injector temperature:  150°C
                                  C-3

-------
                      NEW BENZ a PYRENE ANALYTICAL METHOD

                         (Copy of report reference 10)


I.  Equipment and Apparatus

    A.  Fluorescence Spectrophotometer (Perkin-Elmer Model MFP-3) with the
        Thin Layer Plate Scanning Attachment

    B.  Digital Integrator (Perkin-Elmer Model 048)

    C.  Recorder (Hitachi Model QPD-33)

    D.  Kuderna Danish Concentrator,  10 ml concentrator  tube with 250 ml flask

    E.  Thin Layer Chromatography (TLC) Plates, Analtech 8" x 8"  (250 y) 20%
        acetylated cellulose.

    F.  Plate Scoring Apparatus, Schoffel

    G.  AIS TLC plate multispotter with 100 yl teflon coated blunt syringes

    H.  Soxhlet Extraction Apparatus, S 35 x 45.

    I.  Soxhlet Extraction Thimbles, Whatman Cellulose  (33 x 94)

    J.  Filter, Kodak Yellow Chrome II

    K.  Hot Plate

II. Chemicals

    A.  Cyclohexane, triple glass distilled, source:  Burdick &  Jackson

    B.  Benzene, Spectroquality, source:  Fisher Scientific

    C.  Benzene, ACS grade, source:  Fisher Scientific

    D.  Ethanol, Spectroquality, source:  Fisher Scientific

    E.  Methylene Chloride, Spectroquality, source:  Fisher Scientific

    F.  Benzo-a-Pyrene - Recrystalized three times, source:  Dr.  Eugene Sawiki
        in EPA, ESRL/RTP.


                                      C-4

-------
III.   Calibration

      Calibration standards of Benzo-a-Pyrene are prepared in the following
      concentration sets.

        50 ng BaP/50 yl cyclohexane
        25 ng BaP/50 VI cyclohexane
        20 ng BaP/50 yl cyclohexane
        15 ng BaP/50 yl cyclohexane
        10 ng BaP/50 yl cyclohexane
         5 ng BaP/50 yl cyclohexane
         1 ng BaP/50 yl cyclohexane

      Prepare a large enough batch to make several sets and freeze.  Use either
      one fresh set or one thawed set daily.  After one day's use, discard.

IV.   Procedure

      Note:  For routinizing purposes we perform the analysis over a three-day
             period.

      A.  Day No. 1

          A-l.  Quarterly Composites of 1" x 8" glass fiber filter strips from
                an NASN  site are received by the laboratory.   [Five  (5) to
                eight  (8) strips constitute a valid quarterly composite.]

          A-2.  Samples  are coded and logged into a laboratory notebook with
                all pertinent  information, i.e., air volumes, site ID, year
                and quarter, number of strips, date received, etc.

          A-3.  Filter strips  are rolled into units containing no more than
                three  strips per unit.  Up to three units may be stacked in
                one soxhlet extraction thimble.

                Note:  The thimbles are prewashed prior to use by refluxing
                for one  hour in spectroquality benzene.

          A-4.  The composite  strips are refluxed for six hours in 100 milli-
                liters of cyclohexane.

          A-5.  Allow  the soxhlet to cool, remove the extract  and keep it  in
                the dark or under yellow light until used during the second
                day.

      B.  Day No. 2

          B-l.  Place  extracts in Kuderna Danish Concentrators which are in a
                water  bath maintained at 50°C.  Blow extract down  to 7 ml  under
                a stream of dry nitrogen filtered through a molecular  sieve
                 (5A) trap.
                                       C-5

-------
         B-2.  Wash the sides of the concentrators with  10  ml   fresh cyclo-
               hexane.  Reconcentrate to 7 ml.  The volumes are carefully
               brought to 10 ml with cyclohexane  and  the samples are trans-
               ferred to 15 ml Teflon capped glass vials and stored in the
               dark and under 34°F refrigeration  until used during the third
               day.

      C.  Day  No.  3

         C-l.  Samples and calibration  standards  are  removed from the refrig-
               erator and freezer and allowed to  warm to room  temperature.

         C-2.  Using an AIS multispotter 50 yl  of the samples, standards,
               blanks and spiked blanks are spotted on a TLC plate in 18 one
               cm channels scored by a  Schoffel plate scoring  device.  Spot-
               ting time is approximately thirty  (30) minutes.

               Syringes  (100 yl) with teflon blunt tips  are loaded to the 90
               yl mark and the plunger  moved to the 80 yl mark.  The 50 yl
               sample is measured from  80 yl to the 30 yl mark and the plate
               is removed from the spotter.

         C-3. Plates are developed in  TLC tanks  to the  19  cm  line in a sol-
               vent mixture of 100 ml ethanol and 50  ml  methylene chloride.
               The plates are removed and allowed to  air dry prior to scan-
               ning.

         C-4. The plates are scanned using a Perkin-Elmer  MPF-3 fluorescence
               spectrophotometer for benzo-ct-pyrene using an excitation wave-
               length of  388 nm and read at an  emission  wavelength of 430 nm.
               The plates are then scanned at 434 nm  ex  and 470 nm em for an-
               thanthrene.

         C-5. The results are presented in both  strip chart recordings and
               digital  integrator readings.

      Note:  Recovery  studies based on  spiked blanks show an average recovery
             of 98.9 +  5%.

             All  work  is  carried out under Kodak yellow chrome  light.

             Limit of  detection based on the  standard  of  a peak being 2 x
             the  background noise  is 0.1 ng.

V.    Calculation

      Where:

          S = concentration of  standard  in nanograms
          C = sample  integrator  counds
          Cs = standard  integrator  counts
          200 = spotting fraction,  50 yl spot  from a  10 ml sample or 1/200

                                     C-6

-------
n = number of strips  used  per 10 ml sample
7 = total active area,  ir*2,  of one strip
63 = total active area,  in^,  of a whole filter
F = air flow through  filter,m
           (S) (C) (200)               „ _ .
                        = nanograms BaP/n
               Cs

           (S) (C) (0.2)
               Cs

           (S) (C) (0.2) (63)
            (Cs)(n)(7)

           (S) (C) (1.8
             (Cs) (n)
= micrograns BaP/n


   = micrograms BaP/filter


 micrograms BaP/filter
           1000 x —	    —— = nanograms BaP/ffi
                             C-7

-------
                APPENDIX  D

TIME-SPEED TABULATIONS OF CYCLIC  SCHEDULES
USED FOR THIS PROJECT IN  SECONDS  AND km/h
        (FTP, CFDS, FET,  AND  NYCC)

-------
         LA-4  CITY CYCLE  (FTP)
D
I
TIME
SEC
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SPEED
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
4.8
9.5
13.8
18.5
23.0
27.2
27.8
2P.1
33.3
34.9
36.0
36.2
35.6
34.6
33.6
32.8
31.9
27.4
24.0
24.0
24.5
24.9
25.7
27.5
30.7
33.9
36.5
36.8
36.5
TIME
SEC
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
SPEED
KM/HR
36.4
34.3
30. 6
27. 5
25.4
25.4
28. 5
31.9
34.8
37.3
38. 9
39.6
40. 1
40. 2
39.6
39.4
39. 7
39.9
39. 7
39.6
39.6
40. 4
41. 2
41.4
40. 9
40. 1
40. 2
40.9
41.8
41. 8
41.4
42.0
43.0
44. 2
46.0
47. 1
47.9
48.4
48.9
49.4
49. 4
49.1
48.9
48. 8
48.9
49.6
48.9
48. 1
47.5
47.9
TIME
SEC
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119'
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
SPEED
KM/HR
48.8
49.4
49.7
49.9
49.7
48.9
47.9
48.1
48.6
49.4
50.2
51.2
51.8
52.1
51.8
51.0
46.0
40.7
35.4
30.1
24.8
19.5
14.2
8.8
3.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TIME
SEC
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
SPEED
KM/HR
0.0 '
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.3
10.6
15.9
21.2
26.5
31.9
35.7
39. 1
41.5
42.5
41.4
40.4
39.7
40.2
40.5
40.9
41.5
43.8
42.6
38.6
36.5
31.2
28.5
27.7
29.1
29.9
32.2
35.7
39.4
43.9
49.1
53.9
58.2
60.0
63.2
65.2
TIME
SEC
200
201
202
203
204
205
206
207
20b
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
SPEED
KM/HR
67.7
70.0
72.6
74.0
75.3
76.4
76.4
76.1
75.9
75.6
75.6
75.6
75.6
75.6
75.9
76.3
77.1
78.0
79.0
79.6
80.4
81.4
82.1
82.9
84.0
85.6
87.0
87.9
88.3
88.5
88.3
87.9
'87.9
88.2
88.7
89.3
89.6
90.3
90.6
91.1
91.2
91.2
90.9
90.9
90.9
90.9
90.9
90.9
90.7
90.3
TIME
SEC
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
283
289
290
291
292
293
294
295
296
297
298
299
SPEED
KM/HR
89.8
88.7
87.9
87.2
86.9
86.4
86.2
86.7
86.9
87.0
87.0
86.6
85.9
85.3
84.6
83.8
84.3
83.7
83.5
S3. 2
82.9
83.0
83.3
83.8
84.5
85.3
86.1
86.9
88.3
89.1
89.5
90.1
90.1
89.8
88.8
87.7
86.2
84.5
82.9
82.9
82.9
82.2
80.6
80.4
80.6
80.4
79.8
79.6
79.6
79.6
TIME
SEC
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
SPEED
KM/HR
79.0
78.2
77.4
75.9
74.2
72.4
70.5
68.5
66.8
64.8
61.9
59.5
56.6
54.4
52.3
50.7
49.2
49.1
48.3
46.7
44.2
39.9
34.6
32.3
30.7
29.8
27.4
24.9
20.1
17.4
12.9
7.6
2.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.6
6.9
12.2
TIME
SEC
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
SPEED
KM/HR
17.5
22.8
27.8
32.2
36.2
38.1
40.5
42.8
45.2
48.3
49.6
50.8
51.6
52.8
54.1
55.5
55.7
56.2
56.0
55.5
55.8
57.1
57.9
57.9
57.9
57.9
57.9
57.9
58.1
58.6
58.7
58.6
57.9
56.5
54.9
53.9
50.5
46.7
41.4
37.0
32.7
28.2
23.3
19.3
14.0
8.7
3.4
0.0
0.0
0.0
TIME
SEC
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
SPEED
KM/HR
0.0
0.0
0.0
4.2
9.5
14.8
20.1
25.4
30.7
36.0
40.2
41.2
44.2
46.7
48.3
48.4
48.3
47.8
47.1
46.3
45.1
40.2
34.9
29.6
24.3
19.0
13.7
8.4
3.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.3
10.6

-------
        Lfl-4  CITY CVCLE  (FTP)
o
to
TIME
SEC
450
451
452
453
454
455
456
457
453
459
460
461
46?
463
464
465
466
467
468
469
470
471
47?
473
474
475
476
477
478
479
480
481
48?
433
434
485
486
487
488
469
490
491
492
493
494
49=5
496
497
49fl
499
SPEED
KM/HR
15.9
21.2
26.5
31.9
37.2
42.5
44. 7
46.8
50.7
53.1
54.1
56.0
56.5
57.3
58. 1
57.9
58.1
58. 7
57.9
37.4
57.n
57.9
57.3
57. 1
57.0
56.6
56.6
56.6
56.6
56.6
56.6
56.3
56. 5
56.6
57. I
56.6
56.3
56.3
56.3
56.0
55.7
55.5
53.9
51.5
48. 4
45. I
41.0
36.2
31.9
26.5
TIME
SEC
500
501
502
503
504
505
506
507
508
509
510
5 11
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
SPEED
KM/HR
21. 2
16.6
11.6
6. 4
1.6
0.0
0.0
0.0
0. 0
0.0
0.0
1.9
5.6
8. 8
10. 5
13.7
15.4
16.9
19. 1
22. 5
25. 7
28. 5
30. 6
32.3
33.8
35.4
37.0
38. 3
39.4
40. 1
40. 2
40. 2
40. 2
40.2
40. 2
40. 2
41.2
41. 5
41.8
41.2
40.5
40. 2
40. 2
40. 2
39. 3
37. 2
31.9
26.5
21.2
15.9
TIME
SFC
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
SPEED
KM/HR
10.6
5.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.3
10.6
15.9
20.9
23.5
25.7
27.4
27.4
27.4
28.2
28.5
28.5
28.2
27.4
27.2
26.7
27.4
27.5
27.4
26.7
26.5
26.5
26.7
27.4
28.3
29.8
30.9
32.5
33.8
33.9
34.1
TIME
SEC
600
601
602
603
604
605
606
607
60S
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
SPEED
KM/HR
34.8
35.4
36.0
36.2
36.2
36.2
36.5
38. 1
40.4
41.3
42.6
43.4
42.0
36.7
31.4
26.1
20.8
15.4
10. 1
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.2
7.2
12.6
16.4
TIME
SEC
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665 '
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
SPttO
KM/HR
20.1
22.5
24.6
28.2
31.5
33.8
35.7
37.5
39.4
40.7
41.2
41 .8
42.0
42.2
42.2
42.5
42.6
42.6
41.8
41.0
38.0
34.4
29.8
26.4
23.3
18.7
14.0
9.3
5.6
3.2
0.0
0.0
'0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.3
5.3
7.1
10.5
14.8
18.2
TIME
SEC
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
SPEED
KM/HR
21.7
23.5
26.4
26.9
26.5
26.5
29.3
30.9
32.3
34.6
36.2
36.2
35.6
36.5
37.5
37.8
36.2
34.8
33.0
29.0
24.1
19.3
14.5
10.0
7.2
4.8
3.4
0.8
0.8
5.1
10.5
15.4
20.1
22.5
25.7
29.0
31 .5
34.6
37.2
39.4
41.0
42.6
43.6
44.4
44.9
45.5
46.0
46.0
45.5
45.4
TIME
SEC
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766,
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
SPEED
KM/HR
45.1
44.2
43.1
41.0
37.8
34.6
30.6
26.5
24.0
20.1
15.1
10.0
4.8
2.4
2.4
0.8
0.0
4.8
10. 1
15.4
20.8
25. 4
28.2
29.6
31.4
33.3
35.4
37.3
40.2
42.6
44.2
45.1
45.5
46.5
46.5
46.5
46.3
45.9
45.5
45.5
45.5
45.4
44.4
44.2
44.2
44.2
44.2
44.2
44.2
44.4
TIME
SEC
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
SPEED
KM/HR
45. 1
45.9
48.3
49.9
51.5
53.1
53.1
54. I
54.7
55.2
55.0
54.7
54.7
54.5
54.1
53.3
53.1
52.3
51.5
51.3
50.8
50.7
49.2
48.3
48.1
48.1
48.1
48. 1
47.6
47.5
47.5
47. 1
46.5
45.4
44.6
43.4
41.0
38.1
35.4
33.0
30.9
30.9
32.3
33.6
34.4
35.4
36.4
37.3
38.6
40.2
TIME
sec
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
SPEED
KM/HR
41.8
42.8
42.8
43.1
43.4
43.8
44.7
45.2
46.3
46.5
46.7
46.8
46.7
45.2
44.2
43.4
41.5
40.2
39.4
39.9
40.4
41.0
41.4
42.2
43.3
44.2
44.7
45.7
46.7
47.0
46.8
46.7
46.5
45.9
45.2
45.1
45.1
44.4
43.8
42.8
43.4
44.2
44.7
45.1
44.7
45.1
45.1
45.1
44.6
44.1

-------
LA-4 CITY CYCLE  (FTP)
TIME
SEC
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
1-1 923
V '924
•t. 925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
94C
941
942
943
944
945
946
947
948
949
SPEED
KM/HR
43.3
42. 8
42.6
4?. 6
4?. 6
42.3
42.2
42.2
41.7
41.2
41.2
41.7
41.5
41.0
39.6
37.3
35.7
34. 8
34. fl
34. 9
36.4
37.7
38.6
38.9
39.3
40. 1
40.4
40. 5
40.7
41.0
40.5
40.2
40.2
40.2
39.7
39.4
39.1
39.1
39.4
40.2
40.2
39.6
39.6
38.8
39.4
40.4
41.2
40.4
38.6
35.4
TIME
SEC
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
963
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
SPEED
KM/HR
32.3
27.2
21.9
16. 6
11.3
6.0
0.6
0.0
0.0
0.0
3.2
8. 5
13.8
19. I
24.5
28.2
29.9
32. 2
33.9
35.4
37.0
39.4
42. 3
44.2
45.2
45.7
45.9.
45.9
45.9
44.6
44.2
43.8
43.1
42. 6
41.8
41.4
40. 5
38.6
35.4
34.6
34.6
35. 1
36.2
37.0
36.7
36.7
37.0
36. 5
36.5
36.5
TIME
SEC
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
SPEED
KM/HR
37.8
38.6
39.6
39.9
40.4
41.0
41.2
41.0
40.2
38.8
38.1
37.3
36.8
36.2
35.4
34.8
33.0
28.2
22.8
17.5
12.2
6.9
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TIME
SEC
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
SPEED
KM/HR
0.0
0.0
0.0
1.9
6.4
11.7
17.1
22.4
27.4
29.8
32.2
35.1
37.0
38.6
39.9
41.2
42.6
43.1
44. 1
44.9
45.5
45.1
44.2
43.4
43.4
42.3
39.4
36.2
34.6
33.1
29.0
24.1
19.8
17.9
17.1
16.1
15.3
14.6
14.0
13.8
14.2
14.5
14.0
13.8
12.9
11.3
8.0
6.8
4.2
1.6
TIME
SEC
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
112b
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
SPEED
KM/HR
0.0
0.2
1 .0
2.6
5.8
11. 1
16.1
20.6
22.5
23.3
25.7
29.1
32.2
33.8
34.1
34.3
34.4
34.9
36.2
37.0
38.3
39.4
40.2
40.1
39.9
40.2
40.9
41.5
41.8
42.5
42.8
43.3
43.4
43.4
43.4
43.3
43.1
43.1
42.6
42.5
41.8
41.0
39.6
37.8
34.6
32.2
28.2
25.7
22.5
17.2
TIME
SEC
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
SPEED
KM/HR
11.9
6.6
1.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.4
8.7
14.0
19.3
24.6
29.9
33.9
37.0
37.8
37.0
36.2
32.2
26,9
21.6
16.3
10.9
5.6
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
2.4
5.6
TIME
SEC
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
SPEED
KM/HR
10.5
15.8
19.3
20.8
20.9
20.3
20.6
21.1
21. 1
22.5
24.9
27.4
29.9
31.7
33.8
34.6
35.1
35.1
34.6
3-4.1
34.6
35.1
35.4
35.2
34.9
34.6
34.6
34.4
32.3
31.4
30.9
31.5
31.9
32.2
31.4
28.2
24.9
20.9
16.1
12.9
9.7
6.4
4.0
1.1
0.0
0.0
0.0
0.0
0.0
0.0
TIME
SEC
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
SPEED
KM/HR
0.0
0.0
1.6
1.6
1.6
1.6
1.6
2.6
4.8
6.4
8.0
10. I
12.9
16.1
16.9
15.3
13.7
12.2
14.2
17.7
22.5
27.4
31.4
33.8
35.1
35.7
37.0
38.0
38.8
39.4
39.4
38.6
37.8
37.8
37.8
37.8
37.8
37.8
38.6
38.8
39.4
39.7
40.2
40.9
41.2
41.4
41.8
42.2
43.4
44.7
TIME
SEC
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
SPEED
KM/HR
45.5
46.7
46.8
46.7
45.1
39.7
34.4
29.1
23.8
18.5
13.2
7.9
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.4
7.7
13.0
18.3
21.2
24.3
27.0
29.4
31.4
32.7
34.3
35.2

-------
         LA-4 f ITY CYCLE (FTP)
D
t_n
TIME
SEC
1350
1351
1352
1353
1354
1355
1356
1357
1358
135C
1360
1361
1362
1363
1364
1365
1366
1367
136P
1369
1370
1371
SPEFD TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED
KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR
35.6
36.0
35.4
34. 8
33.9
33.0
32.2
31.5
29.3
23.2
26.5
24.9
22.5
17.7
12.9
8.4
4.0
0.0
0.0
0. 0
0.0
0.0

-------
SULFATE-7  (SET)  OP  CFDS
TIME
SEC
0
I
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2*
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SPEED
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.6
7. 2
11.6
15.6
18.8
21.4
23.0
24.0
24. I
25.1
26.1
24.8
23.7
23.7
24.1
24.1
24. C
22.4
18.7
16. 1
16.1
16. 1
16. 1
17.2
19.6
21.7
23.3
23.8
24.1
24.5
24.9
24.1
24. 1
24.5
24.3
25.4
27.4
29.9
32.5
TIME
SEC
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
SPEED
KM/HR
34.8
37. 2
39. 4
41.8
44. 4
46. 3
47.6
50.7
52. 3
52.3
50.2
47. 5
46. 8
47.3
49.6
49. 6
49.6
49.4
49.4
49.4
47.8
46. 3
43.8
40. 2
36.2
33.0
31. 1
31. 1
31.4
33.3
34.3
33. 1
32.3
32. 2
32.7
32.3
32.2
32.8
33.9
35.7
37.7
39. 4
41.0
42.8
44.6
46.2
47.5
49.6
49. 2
48.9
TIME
SEC
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
SPEED
KM/HR
48.1
46.8
46.2
47.6
48.8
49.4
48.3
47.3
44.7
41.2
40.2
40.2
39.9
37.8
37.0
37.0
38,0
38.6
40.2
42.3
43.9
45.5
47.1
48.1
48.9
51.3
52.1
52.1
51.5
50.8
49.9
47.6
46.5
44.7
42.3
39:3
35.6
31.7
28.0
25.4
24.1
24.1
24.1
24.3
25.9
28.0
29.9
31.7
32.2
33.0
TIME
SEC
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
SPEED
KM/HR
32.2
32.2
31.9
32.2
31.5
29.1
25.3
20.3
16.6
16.1
15.3
15.6
16.1
16.1
16.1
16.1
16.9
19.0
21.9
24.5
27.0
29.6
31.5
32.2
32.5
32.2
31.9
32.2
31.4
29.3
26.1
21.7
17.5
16.1
16.1
15.6
16.1
16.6
16.6
16.1
16.3
17.1
18.7
20.8
22.5
24.3
26.1
27.8
29.6
31.1
TIME
SEC
200
201
202
203
204
205
206
207
208
209
210
211
212
213
2\\
215 -•
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
SPEED
KM/HR
32.0
32.2
32.2
32.2
32.8
34.4
36.5
39.6
42.6
45.4
47.9
50.7
53.4
56.2
59.1
61.5
63.2
64.4
65.5
66.0
66.0
66.0
66.0
64.4
63.6
63.2
63.7
64.2
64.4
65.0
66.3
67.9
70.2
72.2
74.3
76.3
78.2
80. 1
82.1
84.2
85.9
87.4
88.3
89.0
89.3
89.3
88.5
88.5
88.5
88.5
TIME
SfcC
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
SPEED
KM/HR
88.5
90.1
90.9
90.9
90.6
90.1
89.3
88.8
88.5
88.2
87.7
87.2
86.7
86.9
87.7
87.7
85.0
81.1
80.4
79.8
80.0
80.4
81.3
80.9
80.4
79.3
76.9
72.9
68.1
64.7
64.4
64.0
63.9
64.4
64.7
65.2
68.2
71.1
72.4
73.2
72.7
73.0
72.4
72.4
72.1
70.8
70.5
70.0
71.0
71.8
TIME
SEC
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
SPEED
KM/HR
72.9
74.0
75.5
77.2
78.8
80.3
81.9
83.5
85.1
86.6
87.7
88.3
88.8
88.5
88.0
87.4
86.1
85.3
84.8
85.8
86.4
86.4
86.4
87.7
88.5
88.5
88.8
89.1
89.3
89.5
89.5
89.3
89.1
89.0
89.0
89.0
89.5
89.9
90.3
90.3
90.3
90.3
89.9
89.5
89.0
88.7
88.3
88.0
87.0
85.6
TIME
SEC
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
SPEED
KM/HR
84.0
82.2
80.8
80.1
79.6
79.6
79.5
79.8
80. 1
80.4
80.4
80.8
81.1
80.9
80.4
80.0
78.8
76.9
74.3
70.8
66.0
61.1
55.8
50.5
45.2
39.9
35.1
33.0
32.2
32.2
32.2
31.7
29.8
26.2
21.2
17.1
16.1
16.1
15.9
15.4
14.3
12.7
10.8
9.0
8.0
7.7
6.9
6.4
7.2
8.0
TIME
SEC
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
SPEED
KM/HR
8.0
8.0
8.0
8.7
11.6
14.5
15.8
15.6
15.3
14.8
15.0
15.3
15.9
16.4
16.7
17.2
19.5
21.7
23.7
24.1
24.1
24.5
24.1
23.7
24.1
24.1
24.3
26.1
28.3
30.4
32.0
32.2
32.2
32.2
32.2
31.9
30.2
27.0
22. 2
16.9
11.6
7.2
2.9
0.0
0.0
0.0
0.0
0.0
0.3
3.5

-------
     SULFATE-7  (iET) OR CFDS
O
TIME
Stf
450
451
452
453
454
455
456
457
458
459
460
461
46?
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
4R3
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
SPEED
KM/HR
8.0
12.6
16.4
19.5
21.7
23.3
24.5
24.1
23.8
23.8
23.8
23. 8
24.1
24.3
24.5
24.6
2 '+.6
26.9
30.2
33.3
36.4
39.1
39. 4
39.9
40.?
40. 9
41.8
42.2
42.0
41.0
40. 5
40.2 ..
39.1
36.4
31.5
26.4
21. 1
16.4
15.6
15. I
14.5
14.2
13.7
13.0
13. 5
14.2
14.6
14.5
14.3
14.3
TIME
SEC
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
SPEED
KM/HR
15.3
15. 1
14.5
11.4
8.4
8.0
8.0
8.0
8.0
8.0
8. 0
8.0
8.0
8.0
/. 1
4. 8
1.6
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0. 0
0.0
0.0
0. 8
5. 3
10. 1
15. 1
20.4
25. 7
31. 1
36.4
41. 7
46. 7
51. 5
55.5
57. 1
56. a
56. 8
56.8
56. 8
56.6
56. 5
56.3
56. 3
56. 0
TIME
SEC
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
SPEED
KM/HR
54.5
52.0
47.9
43.1
37.8
32.5
27.4
22.5
17.7
15.8
15.4
15.3
15.3
15.3
15.3
15.4
15.9
16.7
18.3
20.1
21.7
23.3
24.5
25.1
25.4
24.9
24.9
24.6
24.9
24.1
23.0
18.2
12.9
8.0
8.0
8.0
8.0
8.0
8.2
9.8
11.9
13.8
15.6
16.1
16.4
16.3
15.9
15.8
15.8
15.9
TIME
SEC
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
SPEED
KM/HR
15.9
15.0
12.9
10.1
8.0
8.0
8.4
8.7
8.2
8.0
9.5
13.0
16.4
19.8
23.0
24.6
25.7
26.7
26.5
25.7
25.9
25.4
24.5
24.0
24.3
24.3
24.0
23.3
21.9
19.8
17.4
16.1
16.3
17.1
17.5
17.4
15.9
14.8
15.6
16.1
16.7
18.2
20.4
22.5
24.5
26.5
28.6
30.6
31.9
32.5
TIME
SEC
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664 s
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
SPEED
KM/HR
32.3
32.2
31.9
31 .7
31.7
32.0
32.0
32.2
32.5
32.2
33.5
35.6
38.6
42.5
46.2
49.6
52.9
56.3
59.7
63.2
66.8
69.5
71.4
72.4
72.9
73.4
73.7
73.5
72.6
71.6
70.8
70.6
71.0
71 .8
72.4
72.6
72.4
72.2
71.3
69.7
67.4
65.2
64.0
63.9
64.4
64.4
64.4
64.4
64.4
64.5
TIME
SEC
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
SPEED
KM/HR
64.8
66.0
68.2
70.5
72.2
72.6
73.0
74.2
75.1
75.8
75.8
75.6
74.5
73.4
72.7
72.2
72.4
72.6
73.0
73.7
75.3
77.4
79.2
80.9
82.9
84.6
86.4
87.9
88.5
89.1
89.8
89.9
90.9
91 .7
91.7
91.7
91 .2
89.8
88.3
87.2
86.6
85.8
85.0
84.8
85.3
86.9
88.5
89.8
89.9
89.9
TIME
SEC
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766'
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
SPEED
KM/HR
90.1
90.1
90.1
90.1
89.3
88.5
88.5
88.5
88.5
88.0
88.2
88.5
88.5
88.3
87.7
86.4
84.6
82.5
80.9
80.0
79.6
79.2
78.7
78.4
78.0
78.4
78.5
78.7
80.4
80.6
80.9
80.9
80.4
80.4
80.8
80.6
80.8
81.4
82.4
83.5
84.5
85.4
86.6
87.5
88.2
88.5
89.3
89.6
90.1
90.6
TIME
SEC
800
801
802
803
804
805
806
807
808
809
810
611
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
SPEED
KM/HR
90.9
90.4
90.1
89.3
88.5
88.5
88.5
87.7
88.0
88.5
89.3
90.1
90.9
90.1
89.3
88.5
88.5
88.5
88.5
88.5
88.5
88.5
88.5
88.5
88.0
86.9
85.1
82.9
80.9
80.4
80.0
80.4
82.5
83.2
83.7
83.7
83.2
82.7
82.4
82.1
81.6
80.9
80.4
80.8
81.3
80.9
80.6
80.4
80.0
79.2
TIME
SEC
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
SPEED
KM/HR
76.1
72.7
72.4
72.4
72.4
72.4
72.4
72.4
72.4
72.4
72.4
72.2
71.6
70.2
68.1
65.8
64.4
64.4
63.9
63.4
63.2
62.8
63.6
63.9
64.4
63.6
60.7
56.8
56.3
56.3
56.3
56.3
56.3
54.3
56.3
56.3
56.0
55.7
53.1
48.3
44.2
40.2
40.2
40.7
41.0
40.5
40.1
39.3
37.2
34.3

-------
SULFATE-7  (SET )  OR  CFDS
TIME
SEC
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
0 924
1 925
00 926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
SPEED
KM/HR
32.2
31.7
31.2
31.7
32.0
32.2
32.3
33.6
35.2
36.8
38.5
39.9
40. 7
41.2
40. 9
40. 7
40.5
40.2
40.2
40.2
39.9
38.5
35.9
33.0
32.2
32.2
32.?
32.2
32.?
31.7
31.4
31.1
30.7
31. 1
31.4
31.7
32.0
30.7
28.2
25. 1
24. 1
24.1
23.7
23.0
22.5
22.3
23.3
23.7
24.1
25.1
TIME
SEC
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
SPEED
KM/HR
27.2
30.1
33. 1
35. 9
38.6
41.4
44. 4
46.7
48. 1
48.6
49'. 1
49.6
49.2
49.6
49.2
48.9
48.6
48. 4
48. 6
48.8
50.2
52.0
53.4
55.2
56.2
56. 6
57. 1
56.6
56.5
56.3
56.3
56.0
55.0
53. 1
50.7
48.6
48.3
47.9
47.6
47.9
47.6
47.9
47.6
47.3
47.9
48.8
49.7
51.2
52.9
54.5
TIME
SEC
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
SPEED
KM/HR
56.2
57.8
59.4
61.0
62.4
63.6
65.2
66.0
66.6
66.9
66.5
66.0
65.5
65.2
65.0
64.8
64.7
67.4
70.3
72.4
73.2
74.0
74.7
74.5
74.2
73.9
73.5
73.2
72.9
72.6
72.4
72.2
71.4
70.2
68.2
65.6
62.4
59.4
57.1
56.3
56.3
56.3
56.3
56.3
56.3
56.5
58.4
60.7
62.9
64.4
TIME
SEC
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1B84
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
SPEED
KM/HR
65.2
65.5
65.6
65.8
65.5
65.2
65.5
65.6
65.3
65.6
65.6
65.8
68.4
70.8
72.4
72.4
73.2
74.0
74.5
75.0
74.5
74.0
73.5
73.0
72.6
72.2
71.9
71.6
71.3
71.6
71.8
72.1
72.4
72.4
72.6
73.7
75.6
77.9
79.8
81.9
83.8
85.9
87.5
88.5
89.3
90.1
90.6
90.9
90.6
90.1
TIME
SEC
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
SPEED
KM/HR
89.0
89.3
89.0
88.7
88.3
88.0
87.7
87.4
87.0
86.7
86.4
86.1
85.9
85.8
85.6
85.8
85.9
86.2
86.6
86.9
87.2
87.4
87.4
87.5
87.9
88.2
88.3
88.5
88.2
87.0
84.6
81.7
80.8
80.3
80.5
80.4
80.6
80.8
80.9
80.6
80.4
80.4
80.4
80.3
80.0
80.3
80.4
80.9
81.9
83.0
TIME
SEC
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
SPEED
KM/HR
84.2
85.1
86.2
87.4
88.2
88.8
89.3
89.6
89.9
90.1
90.3
89.9
89.8
89.5
89.1
88.8
88.7
88.8
89.0
88.8
88.7
88.7
88.5
88.5
88.5
88.3
88.0
87.7
87.9
87.9
88.0
88.2
88.3
88.2
88.0
87.9
88.0
88.0
88.2
88.0
87.9
88.0
88.5
88.5
88.5
88.5
88.3
87.7
86.6
84.8
TIME
SEC
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216'
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
SPEED
KM/HR
82.7
81.1
80.1
78.8
77.7
77.2
77.1
77.2
77.7
77.7
77.7
77.7
78.4
80.6
80.9
81.1
81.1
30.6
80.3
80.4
80.4
80.4
80.8
81.3
81.9
82.1
81.6
81.9
81.7
83.0
84.2
85.3
86.4
87.5
88.3
88.7
89.1
90.3
90.6
90.6
90.3
90.4
90.6
90.1
90.1
89.6
88.8
88.5
88.5
88.7
TIME
SEC
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
SPEED
KM/HR
88.8
88.5
88.2
87.7
86.9
86.4
86.6
86.4
86.7
87.4
88.0
88.5
88.5
88.0
87.7
88.2
88.3
88.5
88.7
88.7
89.6
90.6
91.1
91.4
90.9
90.3
89.6
89.5
89.5
89.5
89.0
88.5
88.3
87.9
87.0
85.8
84.2
82.4
81.1
80.4
80.0
79.6
78.8
77.7
76.9
77,2
77.6
77.6
77.7
78.4
TIME
SEC
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
SPEED
KM/HR
79.5
79.2
78.8
79.2
79.0
79.0
79.0
79.8
80.3
80.9
82.2
83.5
84.8
86.2
87.5
88.3
88.7
89.0
89.6
90.1
90.4
90.1
89.3
89.6
89.6
89.6
89.6
89.3
89.6
89.9
90.4
91.1
91.2
90.6
90.1
90.1
89.8
89.6
89.3
89.0
88.5
88.8
89.0
88.8
88.8
88.5
88.2
88.0
87.7
86.9

-------
SULFATE-7  (SET)  OR CFDS

 TIMF  S°FED    TIME  SPF.F.D   TIME   SPEED   TIME  SPEED    TIME   SPEED   TIME  SPEED    TIME   SPEED   TIME  SPEED    TIME  SPEED
 SEC   KM/HR    SEC   KM/HR   SEC    KM/HR   SEC   KM/HR    SEC    KM/HR   SEC   KH/HR    SEC    KM/HR   SEC   KM/HR    SEC   KM/HR
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1 360
1361
1 362
1363
1364
1365
1 366
1367
1 368
1 369
1370
1371
1372
0 1373
1 1374
& 1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1 392
1393
1394
1395
1396
1397
1398
86.2
86.7
87.4
87.7
87.5
87.5
87.5
87.2
86.9
86. 2
85.4
86.1
85.9
£5.9
85.9
85.3
82. 1
77. •>
72.4
67.6
62.8
57.9
52.8
47.5
42. 2
36.8
31.5
26.7
22.5
19.3
17.7
16.1
16. 1
16.1
14.2
10.8
7.4
4.0
2.4
1.4
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0. 0
0.0

-------
    HIGHWAY  FUFL  ECONOMY TEST (FFT)
D
TIME
SEC
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SPEED
KM/MR
0.0
0.0
0.0
3.2
7.9
13.0
18.2
23.3
27.8
31.5
35.1
38.6
41 .4
43.6
45. 1
46.7
48.3
49.4
50.6
51.8
52.9
53.9
54. 9
55.6
56.2
56.5
57.4
57. R
57.6
56.9
56.2
55.5
55.7
56.0
56.5
57.4
58.0
59.2
58.7
59.1
59.4
59.5
59.5
59.5
59.5
59.5
59.5
59.6
60. 1
60.8
TIME
SEC
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
SPEED
KM/HR
62. 1
63.3
64.4
65.4
66.6
67.9
69. 1
70. 0
70. 8
71.2
71.6
72. 1
72.3
72. 5
72. 6
73.0
73. 5
74. 0
74.4
74.9
75.3
75.5
75.7
75. 8
76.0
76. 1
75.9
75.7
75.6
75.5
75. 5
75.5
75.6
75. 7
75.8
75.9
75. 8
75.7
75.5
74.8
74.4
74.3
74.4
74.8
75.5
75.8
76. 2
76.7
77.2
77.6
TIME
SEC
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
SPEED
KM/HR
78.0
78.6
78.9
79.2
79.1
79.0
78.8
78.8
78.9
79.2
79.4
79.5
79.6
79.6
79.6
79.5
79.1
78.6
78.2
77.9
77.4
76.7
76.2
76.1
76.4
76.8
77.1
77.2
77.1
77.1
77.1
77.2
77.2
77.2
77.1
76.1
74.0
69.7
66.2
63.6
63.0
62.3
62.8
63.0
63.6
64.5
66.0
67.6
69.3
70.3
TIME
SEC
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
SPEED
KM/HR
71.0
71.3
71.5
71.7
71.9
72.2
72.8
73.5
73.9
74.4
75.3
75.4
75.6
75.8
76.5
77.0
77.2
77.2
77.1
76.9
76.1
75.2
74.3
73.9
73.5
73.2
73.1
72.8
72.4
70.8
69.3
67.9
66.8
66.8
67.7
69.0
70.0
70.6
70.2
69.7
69.2
69.3
69.8
70.6
71.3
71.8
72.2
72.0
71.5
70.6
TIME
SEC
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
SPEED
KM/HR
69.9
69.5
69.5
69.3
69.2
69.2
69.3
69.8
70.6
70.7
70.0
68.5
66.8
65.4
64.4
64.4
64.9
66.0
67.6
68.7
69.3
69.4
69.9
70.6
71.3
71.9
72.6
73.0
73.7
74.8
75.5
75.9
76.3
76.2
76.1
75.9
75.9
75.9
75.8
75.7
75.6
75.5
75.4
75.4
75.6
75.9
76.4
77.1
77.2
77.2
TIME
SEC
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
SPEED
KM/HR
77.2
77.2
77.3
77.4
77.5
77.5
77.4
78.1
78.7
79.0
79.0
79.0
79.0
79.0
78.9
78.7
77.5
76.7
76.4
75.9
75.2
74.3
74.0
73.7
73.4
73.0
72.7
72.4
72.0
71.6
71.1
70.1
68.9
67.6
64.6
62.2
60.3
57.7
55.8
54.7
53.5
52.3
51.0
49.2
47.6
46.3
45.7
46.1
47.5
50.5
TIME
SEC
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
SPEED
KM/HR
53.7
57.3
60.4
62.8
64.7
66.1
67.3
68.2
68.9
69.6
70.5
71.3
72.0
72.4
72.7
73.0
73.2
73.6
73.9
74.2
74.8
75.3
75.8
76.7
77.8
78.8
79.9
81.0
82.1
83.2
84.4
85.4
86.6
87.7
88.8
89.8
90.7
91.6
91.6
91.9
92.2
92.6
93.0
93.3
93.5
93.9
94,4
94.7
94.8
94.9
TIME
SEC
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
SPEED
KM/HR
94.9
94.8
94.6
94.3
94.0
93.6
93.4
93.3
93.2
92.7
92.4
92.0
91.8
91.7
91.7
91.6
91.6
91.6
91.6
91.7
91.7
91.7
91.7
91.7
91.7
91.7
91.7
91.6
91.3
90.9
90.4
90.1
90.1
90.1
90.3
90.7
91.2
91.6
91.9
92.2
92.4
92.4
92.0
91.8
91.6
91.0
90.6
90.3
90.7
91.2
TIME
SEC
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
SPEED
KM/HR
91.9
92.5
93.0
93.3
93.3
93.3
93.3
93.3
93.3
93.2
93.0
92.8
92.8
92.9
93.1
93.3
93.5
94.0
94.8
95.1
95.6
96.2
96.3
96.3
96.2
95.9
95.6
95.3
95.0
94.9
94.8
94.4
94.2
94.1
94.0
93.9
93.8
93.6
93.4
93.3
93.2
93.2
93.2
93.2
93.2
93.3
93.4
93.5
93.6
93.6

-------
HIGHW&Y FUEL  ECONOMY  TEST (FET)
TIME
SEC
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
0 474
j-j 475
H 476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
SPEED
KM/HR
93.6
93. 5
93.4
93.3
93. 3
93.3
93.3
93. 3
93.2
93.2
93.3
93. 4
93.5
93.6
93. 7
93. 8
93.8
93.6
93. 4
93.3
93.0
92. 5
91.9
91.7
91.1
90.3
90.2
89. 8
89.3
88. 9
88.6
88.5
88.4
83.3
88.3
88.3
88.3
88.3
88.4
88. 5
88.5
88. 5
88.5
88.5
88.6
88.6
88. 5
88.4
88. 3
88.2
TIME
SEC
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
5 15
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
SPEED
KM/HR
88. 1
8 r.9
87. 5
87.4
87.3
67. 2
87. I
87. 0
87.0
87.0
86. 9
86.9
86. 9
86. 9
86. 9
86. 9
66. 9
87.0
87.3
87. 6
88.2
88.4
88. 5
88.7
88. 8
88.9
89.0
89. 2
89.3
89. 5
89.7
B9. 8
89. 9
90. 0
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90. 1
90.1
90. 1
89.9
89.9
89.9
TIME
SEC
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
534
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
SPEED
KM/HR
89.8
89.5
89.1
88.8
88.6
88.4
88.3
87.9
87.5
87.2
87.0
86.6
85.9
85.7
85.4
85.1
84.7
84.3
84.0
83.8
83.7
83.7
83.7
83.7
83.8
83.7
83.6
83.5
83.1
82.7
82.2
81.6
80.9
80.1
79.3
78=4
77.6
77.3
77.2
77.2
77.3
77.8
78.7
78.9
79.0
79.0
78.9
78.8
78.7
78.1
TIME
SEC
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
SPEED
KM/HR
77.7
77.2
77.0
76.9
76.7
77.1
77.8
78.8
78.9
78.9
78.7
77.2
75.7
74.3
74.1
74.1
74.3
75.4
76.9
78.8
80.0
81.4
82.9
83.9
84.7
85.3
86.2
86.8
87.0
87.5
88.0
88.7
89.2
89.1
88.5
87.6
86.3
84.5
80.7
77.5
74.8
74.3
74.0
74.0
74.5
75.3
76.4
77.5
78.6
79.6
TIME
SEC
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664.
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
SPEED
KM/HR
80.7
81.6
82.2
83.2
83.9
84.5
83.8
83.1
82.2
82.1
82.1
82.2
82.6
83.1
83.7
84.0
84.4
85.0
84.9
84.6
84.2
84.2
84.2
84.5
84.8
84.7
84.3
83.9
83.2
82.2
81.3
80.6
80.1
79.9
79.8
79.6
79.6
79.9
80.4
80.8
81.4
82.2
83.0
83.4
83.7
83.8
84.2
85.1
85.8
86.5
TIME
SEC
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
SPEED
KM/HR
87.2
87.7
88.2
88.5
89.3
89.9
90.3
90.6
90.8
90.9
91.2
91.5
91.7
92.2
92.9
93.6
94.6
95.1
95.3
95.0
94.7
94.1
93.5
92.8
92.2
91 .9
91.4
90.9
90.4
89.3
87.9
87.1
86.4
85.6
85.1
84.4
83.7
82.6
81.3
79.6
78.0
76.6
75.3
73.4
71.1
68.4
63.1
57.8
52.5
47.1
TIME
SEC
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
1

































SPEED TIME SPEED TIME SPEED
KM/HR SEC KM/HR SEC KM/HR
43.1
39.4
34.6
31.4
27.9
24.3
20.0
15.7
11.3
8.0
5.4
3.2
1.1
0.0
0.0
0.0



































-------
         NEW YORK CITY CYCLE  (NYCC)  OR SET-8
D
 I
TIME
sec
0
1
2
3
4
5
6
7
8
9
10
11
12
13
1*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SPEFD
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.3
O.'T
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
4.5
TIME
SEC
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
SPEED
KM/HR
9.0
11.3
12.2
12,2
10.0
10.3
12.2
15.3
14.3
13.8
15.4
20.0
24. 1
28.6
33.8
36. 8
34.9
29.3
23. 3
16.4
9.0
4.0
3.4
5.0
9.2
14.5
17.4
17.4
15.3
10.5
6.3
4.2
1.6
1.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4.3
13.2
20.0
TIME
SEC
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
SPEED
KM/HR
25.3
28.0
27.8
27.7
24.3
18.0
13.8
9.5
8.7
10.9
11.1
7.7
9.2
11.4
10.9
9.5
9.7
9.7
9.5
9.0
8.8
11.6
15.9
17.4
18.3
19.1
19.5
20.3
19.8
17.1
15.9
15.1
14.3
12.2
9.8
8.0
6.0
4.2
1.6
1.3
0.0
0.0
0.0
0.0
0.0
0.0
2.1
9.7
16.4
19.5
TIME
SEC
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
SPEED
KM/HR
22.2
24.3
26.1
25.6
25.7
27.0
28.2
29.0
31.5
34.9
37.2
38.1
38.8
39.4
40.2
40.5
39.6
39.1
37.5
36.5
35.6
34.8
33.9
32.7
30.9
27.4
22.4
22.7
23.5
23.5
23.3
23.2
22.8
22.8
21.2
18.5
13.5
8.8
6.0
4.7
2.1
1.3
0.0
0.0
0.0
0.0
2.1
6.3
15.9
25.6
TIME
SEC
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232 "
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
SPEED
KM/HR
31.1
33.3
34.4
34.4
33.0
30.6
26.9
21.1
18.0
24.0
31 .9
38.3
41 .4
42.2
42.5
37.5
31.5
30.4
31.1
31.2
29.8
28.2
26.4
25.1
25.1
25.7
27.0
28.2
29.0
31.5
34.9
, 37.8
39.6
40.2
39.1
37.2
33.3
27.7
21.7
14.8
5.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TIME
SEC
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
2B9
290
291
292
293
294
295
296
297
298
299
SPEED
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
3.2
7.2
10.3
11.6
12.2
1 1.6
10.6
10.5
8.2
7.1
8.8
4.8
5.5
4.8
4.7
2.1
1.3
0.5
0.0
0.0
0.5
7.6
15.6
22.4
26.9
30.7
33.0
33.0
31.7
32.0
32.8
33.6
34.4
35.2
36.0
35.6
34.4
33.5
32.7
33.0
31.1
27.8
27.5
26.9
TIME
SEC
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
326
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
SPEED
KM/HR
23.0
19.1
17.2
16.4
15.1
17.1
20.6
22.0
19.8
16.7
13.8
8.8
5.1
3.2
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4.0
9.8
8.8
5.1
5.8
9.8
14.6
15.8
13.8
10.9
9.5
9.0
9.7
11.6
13.5
15.0
12.2
8.8
4.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TIME
SEC
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
SPEED
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.6
4.8
4.8
TIME
SEC
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
SPEED
KM/HR
3.4
3.7
7.4
12.6
15.9
17.2
16.4
16.3
17.2
17.5
18.3
17.9
16.1
14.2
13.2
13.8
16.4
19.0
20.9
21.4
20.6
18.8
18.8
20.0
22.0
23.2
23.0
23.7
24.3
24.6
25.4
23.3
19.6
17.9
19.3
21.1
19.6
14.3
12.4
12.2
12.9
8.8
5.3
3.9
2.3
1.0
0.0
0.0
0.0
0.0

-------
          NEW YORK  CITY  CYCLE (NYCC) OR  SET-8
O
 I
TIME
SEC
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
SPEED
KM/HR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1 .6
6.6
11.9
16.4
TIME
SEC
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
SPEED
KM/HR
18.2
19.0
19.6
23. 0
25.7
28.6
29. 9
31.5
32.5
32.0
31.7
33.5
33.8
30.2
28.3
20.9
12.1
4.7
1.3
0.0
0.0
1. 1
2.3
3.7
4.3
4.8
4.3
1.9
0.0
1. 1
2.9
5.0
6.3
8.5
12.6
15.6
16.6
16.4
15.1
11.4
10.9
14.3
17.1
19.1
24.9
31.5
36.7
40.4
41.8
43.0
TIME
SEC
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
5fl8
589
590
591
592
593
594
595
596
597
598
599
SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED TIME SPEED
KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/HR SEC KM/MR
43.9 600 0.0
44.6
44.4
43.9
41.4
37.5
33.1
28.6
24.0
18.2
11.9
7.4
2.7
1.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-------
               APPENDIX E





DATA FORMS AND DATA REDUCTION PROGRAMS

-------
M
 I
NJ
Evapc
Exhav
Bag 1
Bag 2
Bag 3



12 Truck
f No.

2
-o .
h 0
D 2

4
*
PROJECT
«
^ Test No.


5 6


Date
Mo.


21314
* ' at Speed
Time |



468
jrative Emissions
T3 .

aS Cari
U±1_N
o^TT


11




Da}) Yr




15161718






Mfg.
Code


(U
o
i
19
1st Can
ster Initial
D, Weight



.
3 67
ist Emissions
a .
•a .
0(5

t) .
h O
0 6

•a .
0 7
a
N O
08


o
•1
0 9

a L
3*1
1 0
Od
3
ometer


9

13
Final
Weight

14


Barometer


10





.5



Air
.

20

a
Model

2.


Idle
Speed

21



i'



25







O

2y

iU





SwRI CVS Data Sheet u
Vehicle I. D.



35
rrsz
2nd Can
Canister
No.

21
Temp.
F
Dry
|
lf>
Background Air
HC Meter
Readin •
^
3

^La-
u S

8 9

CO Met
Readi

1




er
T
O
U


Wet
1
18 19
?\



Initial
Weight

2425
LU_


ILL
31
00
c
W
D
H
^



i< 33 40 4?
TTT

II 1

3536 40 45





'50
~

n
1 — i

'O v


IN 3



53545556


Load
HP

ROW

.

5
•a
&
i
Inertia
Weight
1 1
63 646566
Comments
r
50









55


3rd Can
Final Canister Initial
Weight No. Weight

32
.L


CVS Data
Temp.
• F

Blower D
[nlet Press Pr
IN. H2O[IN.


>
22 25 26


JO 31

iff.
ess
rgf

Sample
|

022

Moter
;ading

I.
1617 19
(M 0)


NDX Meter
Reading

2425 27



.

§1

3233
Exhaust Sample
HC Meter
Reading
1 .
3
«|

8 9

CO Meter
Reading

11

.

o $

16 17
^ Background Air
HC Meter
Reading
TT T
3

u &
8 9

CO Met
Readi
TTTI
er


16

HC Meter L ^
Reading [Eg
)
•U
8

9





CD2 Meter
Reading
T
19




sl


NDX Meter
Reading

2425 27


o s
1
32 33
Sample
o &


CO2 Meter
Reading



17 18

CO Meter
Reading

11
M



15
0
U
17

I



!_._
8|


N3X Meter
Reading

2425 27

CD2 Meter
Reading
LLJLJd.
S 24
(NJ ft)
J j§








.



Xj,
O g
2 ^

3213

tOx Meter
Reading

25 27




.

32
O J

)
35

r
38 39 4243


49
J • m Note:
> £ >
Q 0 "

n

Revolution
Counter


Time
Seconds
1 ,



35 40






^



Final
Weight

50













' 60
















65
"

"i


~
Curb
Weight


7071
m
~i
1


1
70 72
1

56
CVS number
TT

n




1




Revolution
Counter

Time
Seconds
T. i

V. 4) •





33

HC Meter
Reading
i

LI.. I
8
s

9

HC Meter
R fading

3

O

CO Meter
Reading

11

&
&

8 9




O
U

16 17




CO Meter
Reading
;
1
.

0
U

16 17
»
1

2 Meter
Reading

19

1







. 1
£§


^DX Meter
Reading

2425 27

CD^ Meter
Reading

19


0 ^


.
O K
z$

Revolution
Counter


Time
[[.I


r



r



r










r











L






















1.


is:
or
or
LLL


1





















1
2
3
L



-.

big truck CVS
blue box CVS
brown box CVS
D






I



























__


LL

















-














... j 	














































G. V. W.


7576
Date
Mo.
zl
73
Day



Yr.
"78
Date
M
73

o.

Day


Yr.

78
Date
Mo.

73


D

*L
Yr.

78
Flat A
Mo.

73


Day


Yr.

78
"Hat-**
Mo.

n

M
73













Day


Yr.

78

0.
D
ay
Yr.
7<
Date
Mo.


Day


73







3233 35 4D




NDX Meter
Reading
; i '
24 25 27



§1






3233
















M_L
















LL









1 1















































Yr.
l
I
7R
Patf
Mo.
!
73

Day
_L
Yr

















81 TestNa R
1

\

81
2

80

10.
I
£L
90
1
I
78 80

Mo.

73

Day


Yr.



78
rj
3
b
80

-------
                                 Vehicle  No.
                                                         DEPT. OF EMISSIONS RESEARCH
                                                     SINGLE BAG CVS  EMISSIONS  DATA SHEET

                                                            Project
                                                          Date
                                                                                     Run No,
Page	of
Remarks
H
1
Exhau
Bag 1
Card
[2.
o
2
1
Vehicle
No.
\
CO
11
H
o
2

Start
Time


2456 8
st Emissions
-o
0

o
2

13 .
0
3
~O •
<-> O
F
0
,
Odometer
' • i .
3




9


Date
Mo


121314
Ua,

15
Barometer


0

t



16
Yr
17
Air
U
Mfg.
Code
•J

L
Temp.
F
Dry


15 16
Background Air
HC M
Rea
J

J

_

et
3ir
n

er
11


8_
HC Meter
Reading

3








u i
Q

CO Meter
Reading

1 1





6
Exhaust
= |


CO Meter
Reading

8 9 H






O
0

Jj


Wet

18 19



it

Z


I*
Manufacturer
~

i 25






30






36
CVS Data
Temp.
°


21 22
F


Blower
Inlet PrtSs
IN. H^O


25 26

t

30
Diff.
Press
[IN. H2Q

31





Sample
J

CCz Meter
Reading
L





19 24
fN
O
(J

V
4
N:

}x Meter
leading
rrru
25 27
O |

32 3}


ample
o $

16 17

CD<> Meter
Reading

1<|







si


^DX Mele
Reading


24 25 27
i .
r

p'J



Brive r
to
R

ev
C(
1

Test Type



! . T
^7 38 40 45





39
olu
3unt
Begin
S Fuel
Q" Wt. Lbs.V



I
50




Model

n)
OJ
f"

Displ .
INJ



53545556
Cnding
Fuel
f. Lbs.
i
42 45 47 50
ion
er

Time in
Seconds
.
35 4041 47



M 33









Miles

5?
J
Dyno
Roll
Counts

48


53





.

I
F
54'



JJ
56




—i' M
>* to


C5

&



Actual
Road
Hp




1
W
T
test
eight

59 60 63 646566 TO 71
Fuel
H/C
Ratio
1U
57


61
-'ercent
"uel
iilfnr
Jj

















6?



60






Fuel
Density
Lb/Gal






JJ


65




o
j



IS)
D
f\

5? 68 70
SO2
Meter
R eadino
1



o

71

-------
OTBMOL»P10,TJO,I0100,L5.MFL50000.                                    .           *-0001
ACCOUNT(Cb?8»O.SLICKm»bS»001                                                   *0008
CIQ(HARRY DIETZMANNjib1*?)                                                        «-0003
REHIND(DISK1,OISK2)                                                              *OOOH
COPYCRCINPUT.OISKI)                                                              4-0005
eOPYCR(INPUT,OlSK2»                                                              *000fc
REWIND(D1SK1,D1SK2)                                                              *D007
COPYCRfDISKl, OUTPUT)                                                             4-0008
LIBRARY(RUN2P3)                                                                  *000«!
RUN(S,,,,,,2000)                                                                 4.0010
MAP(PART)                                                                        4-0011
SETCORE(INDEF)                                                                   4-0012
REDUCE.                                                                          4-001J
LGO.                                                                             *001»
COPYCR(DI8KZ, OUTPUT)                                                             4-001S
                                                                                 4-OOlb
PM      TURN PRINTER PAPER OVER                                                  4-0017
                                                                                 4-OOli'
PM      RESTORE PRINTER PAPER                                                    *OOH
      PROGRAM OTBMOLdNPUT, OUTPUT, PUNCH, TAPEbO»lNPUT)                            «-D021
      INTEGER HCR(?),CORf8),C02R(?)                                              *OOS?
      DIMENSION ITA(*),ITB(»),ITC(b>.ITD(S),VMOp(»),VID(ZJ,EIWT(S),
     lFWTC3),DIF(3),HC(S),pNb(?),CO<8)«CO?Ce),YH'CZ),  VN(I),yC(Z),
     Z YCJf?),HCM{l),PNOM(1),COM(l),Burt2S,3),IBUF(iS,T),NOxR(8),
     iICAN{3),N(3),CO§Mf3),CKC(l),CCO(3),CC02(J),CB(l},COMENT8(»)
      OATA ITA/10H       HC  ,10H       CO  ,10H        COJ.10H        NOX/,        »OOJ7
     I     ITBXltlH  SAMPLE   ,10H  BACK6RO  ,10H   CONCENTS, 10H   MASS GRA/,        *00?8
     8     ITC/10HMETER READ.ITHPPM        .10HPCRCENT    .10HATION  PPM ,          *OOJ9
     3         inHMS         .10HATION  PCT  /, ITO/10HINO/SCALE  ,10M                *0030
     »    ,1H /                                     ,                              «-0031
 1001 FoRM«T(lX,A3.Il,I7.3I?,l3,«(AJO,Ab},l2,m,r».l,8Il,ZIS,F5.0/3X,
 1003
 100* FORMAT(?X,I7.Fb.?(?M,0,I»,|FS,l,8»J,lX,H)                                *003S
 2001 FORMAT(1H1.3?X,*TABLE*>11X,*VEHICUE  EMISSION  RE8ULTS*/>>OX,  *1*(7S          «-003b
     1LIGHT DUTY EMISSIONS TEST       O                                          *0037
 2111 FORMAT(/3x,*uNlT NO.  *, AS, 8X, *TE8T  NO,  *, I 1 , 10X, «DATE  *,IZ,*/*,          *003B
     1I?,*/*.!2,?1X,*MFGR. CODE  *. I J, 17X,*YR,  H*,I2,                           ••003'*
     2/?X,*VEHlCLE MODEL  *, AID, Ab, 10X , 'ENGINE   *,F5.Z,w  LITRE *»Il.             *OOHO
     3* CYL.»,SX.*TEST WT. *,!$,*  KG*, 1SX , *ROAD LOAD   *,F'4.1,* KM*,              *OOH1
     t/JX,*TEST TYPE  *, A10, Ab, 1»X,*COMMENTS   *,3A10,A7,/)                       «-OOt2
 200? FORMAT  ( ?X . *BAROMETER *,Fb.2,*  MM  OF  HG.*, »*X, «WET  BULB TEMP *,           «-00>»3
     1 F5,l,» DEG. C*/?X,*DRY  BULB  TEMP,   *,F!,1,*  DEG.  C*,i»3X,  *»B8. HU        t-00ti»
     ZMIDITy  *,F5.1,* MILLIGRAMS/KG*/»X,*REL.  HUMIDITY   *,FH.O,* PCT.*)        *00>f5
 200b FORMAT* »A10,3(BX,F7.a,8X))                                                «-OOtb
 Z007 FORMATf/7X,*WEIGHTED MASS  HC    *,F7.2,*  GRAMS/KILOMETRE*,                  *00»7
     1        /7X,*WEIGHTED MASS  CO    *,F7.2,*  GRAMS/KILOMETRE*,                  *OOH8
     2        /7X.*WEIGHTED MASS  CO?  *,F7.«,*  GRAMS/KILOMETRE*,                  +00*1
     3        /?X, WEIGHTED MASS  NOX  *,F7,8,*  GRAMS/KILOMETRE*)                  *0050
 2009 FORMATf?X,*EVAPORATIVE EMISSIONS*)                                         4-0051
 2022 FORMAT                 ( 7X , *C ANISTER*, 38X, *1«, IbX,  *2«, IbX, *3*/7X,        *D05I
     1    *FINAL WT'.,   GRAMS*,2SX,Fb.2,llX,  Fb.2,llX,Fb.2/7X,*INITIAL WT        «-OOS3
     2.,  GRAMs*,   ?5X,Fb.2,lU,Fb.?,  1 IX , Fb. 2/7X, *DIFFERENCE    GRAMS*,          «-OOS»
     32SX)Fb'.2.11X,Fb.2,llX>Fb.i//7X>*TOTAU EVAPORATIVE EMISSIONS*, »3X,         *0095
     HF7.2f*  GRAMS*//)                                                           *D05k
 2222 FORMAT                 ( 7X, *CANISTER*, J8X,*1«, IbX,  «**         /7X,        *OOS7
     1    *FIN4L WT'.,   GRAMS*,*»X,Fb.l,llX,  Fb.8         /7x,*INITIAL WT        *0058
     2.,  GRAMg*,   ?SX,Fb.2,llX,Fb.2          /7X,*DIFFERENCE    GRAMS*,          4-0051
     32SX,Fb'.2,HX,Fb.2,         //7X,*TOTAL EVAPORATIVE EMISSIONS*, »IX,         *>OObO
     HF7.2,*  GRAMS*//)                          ,                                 4-DObl
      FORMAT(<»A10,3(10X,FS.8.>X))                                                *>QObI
                                         E-4

-------
Z5SS
3000
5001
5002

5003
5005
bOOO
 FORMAT(»A10,J(10X,FS.1,2X))
 FORMATdX,* WRONG CVS NUMBER*)
 FORMATdH '
                                                                                frOOb!
bOO?
bOO)
 FORMATdX,Il,Il,Il,lX,8FH,l,lX,FS,«,lX,Ik,lX,Il,»UX,II),lX,IJ,lX,
1I'*.7X(41,1X,IH,1X,?4J,1X,F5.»)
 FORMATdX, 11.11,11, t (Fb.«,F».!.Fb.l«m,Fk.I))
 FORMATdX, II, II, II, »A10, AS)
 FORMATdX,///,IX,*TOTAL CARBON BAG 1 «*,FB.»,* GRAMS*,SX,
1*TOTAL CARBON BAG I •*,?9,t,t GRAMS*,IX,OTOTAL CARBON BAG 1 •*,
2FB.3,* GRAMS*,/,IX,*TOTAL CARBON IN EXHAUST f*,FB.2,» GRAMS*)
 FORMATdX,*ESTIMATED FUEL WEIGHT •*,Fb.l,*LB.*)
 FORMAT{SX,*TOTAL CVS FLOW •*.FS.l,* 8TO. CU. METRES*)
 FORMAT;/,SX,*CARBON BALANCE FUEL CONSUMPTION •*,Fb.z,* LITRES PER
IHUNDRED KILOMETRES*)
        JPUNCH.^.,COUNTER OF CARDS PUNCHED
        IBUf.^.,..PRINTING ARRAY
        J"...,.,..POINTER TO ROW IN PRINT ARRAY
        JC,JD	POINTER TO COLUMNS IN PRINT ARRAY
 JR»0

    STORE LINE HEADINGS  IN PRINT ARRAY

 DO 10 Kill,*
  DO 16 K2*l,2
   DO lb KH.1.2
         JC«1
         JR»JR+1
          18UF(JR,JC)«ITA(Kl)
         JC»JC*1
          I8UF(JR,JC5«IT§(K8)
         JC-JC+1
      IF(  Kj  .EQ1.  j  .AND.   K»  .EQ.  8)  KS«1
          IBUF(JR,JC)«ITC(KJ)
         JC«JC+1
          IBUF(JR,JC)«ITD(K«t)
   Ib  CONTINUE
   IB  CONTINUE
   20  CONTINUE
      JRR«JR+1
      DO  2*  KJ»3.H
       DO  22  Kl«l,»
      IF(K1  '.EQ.  1 .AND.  K| ,EO. 1) *l«b
        JC«1
         IBUF(JRR,JC)«ITA(K1)
        JC«JC*1
         I8UF(JBR,JC)«ITB(KJ)
        JC«JC+1
         IBUF(JRR,JC)»ITC(K1)
        JC«JC*1
         IBUF f JRR,JC)"ITD(J)
        JRH«JRR+1
   2?  CONTINUE
   J4  CONTINUE

          READ  INITIAL DATA FOR A TEST

   IS  READ 1001,    ICN,IUN,ITN,IOY,IMO,irR,MFC,,VMOO,VID,MODYR,IDISP,ARL,
     1NCYL,JTC,IWT,ICWT, 6VM,I6NT,ISP, GEAR, I08P, IAC, IEVS, IET.COMENTS
»00b5
••OObb
«00b?
*>00b8
»00b9
*0070
••0071
»00?2
*007S
»Q075
                                                                                »0077
                                                                                *>007B
                                                                                ••0074
                                                                                »ooee
                                                                                t-0091
                                                                                *0083
                                                                                •-008*
                                                                                4-0085
                                                                                fOOBb
                                                                                *>0087
                                                                                «-008B
4.00-^1
»00011b
4-0117
4- 011S
»0120
4-0121
 4-0123
 4-0114
                                        E-5

-------
      IFCEOF.feO) 100, 8b                                                           4-0185
   8b  DISPM«IOISP*.01b39                                             '            4-018b
      IWT • IWT* O'.*»3k                                                           4-0187
      ICWTMxTCWT*.*S3b                                                            4-0188
      GvMM«GVM*,*S3b                                                              4-0189
      ARL « ARL * 0.7*57                                                          4-0130
      PRINT J001                                                                  4.0131
      PRINT 8iu, IUN,ITN,IDY,IMO,IYR,MFC,MOOYR,VMOD, DISPM,NCYL»IWT,            4-0138
     1 ARL.VID.CQMENTS                                                            4-0133
      READ 1003, (TC«N(IT).EIMT(IT)«FNT(IT)iIT*l«9)                               4-013*
      IT«3                                                                        «-0135
      IFfEIWTfS) .EQ. 0 .AND.  FWTO)  .EQ.  0)  IT"8                               *013b
      READ 100*1   KO,PBAR,DBULB,WBULB,ITP,PI,DP,DRV,OPf»,ICV8                    4-0137
C                                                                                 4-0138
C  CALCULATION FOR ABSOLUTE AND RELATIVE  HUMIDITY                                *CUSS
      TWBK    « (S./9.) *  (WBULB  -  SI.)  +  Z73.U                                «-01HO
      SM • (-7.S11SJE3 * TWBK   **(•!.))  t  9b.S389bif» » 1 8. S«»S«970E-Z*            »01«H
     1     TWBK   ) * (-l.lb5»551E-5  *  TWBK    »*2) f (-1 . Zl 103 JbE-8»
     8     TWBK   **3) t (t.OqqgHOiE'll *TWBK    ***)
      TERM i  SM . 1J.15071S * ALOBfTWBK    )
      PWB • ?.qS3E-«t * EXP(TERM)                                                  4-01H5
      A •  3.t>7E-fb
      PV « PWB • (A*PBAR*(DBULB-WBUL8))                                           *01»7
      H     « (H3*7.g *PV)/(PBAR   «PV)                                           *01*8
      TDBK    »(S./l'.) * tDBULB - 38.)  +  873. Ib                                   «-01»
-------
e
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
          HC.,.^.',.. HYDROCARBON CONCENTRATIONS                      '
          PNO..,., .'.OXIDES OF NITROGEN CONCENTRATIONS
          CO.,.,...,CARBON MONOIDS CONCENTRATIONS
          C02 ..... ..CARBON DIOXIDE CONCENTRATIONS
           SUBSfRJPTS
           (1).... .'.CONCENTRATION 0? THE BRUTE  AIR  (BACKGROUNDS
           (2).,.',. ^CONCENTRATION OF THE DILUTE  EXHAUST  SAMPLE  (SAMPLE)
            R. ...... SIGNIFIES RANGE SCALE AS OPPOSED TO  METER READING
        CALCULATION Of
• 0117
»0189
          VO'. ..'.,'.. '.VOLUME OF GAS PUMPED BY  THE  POSITIVE  DISPLACEMENT
                    PUMP, IN CUBIC FEET PER  REVOLUTION
          TP'. ..',.'. .'.AVERAGE TEMP. OF DILUTE  EXHAUST  ENTERING  POSITIVE
                    DISPLACEMENT PUMP DURING TEST  IN DEGREES  RANKIN
          VMJX.,.,.fTOTAL DILUTE EXHAUST VOLUME  IN CUBIC  FEET
          N'. ........ NUMBER OF REVOLUTIONS OF THE POSITIVE DISPLACEMENT
                    PUMP DURING THE TEST PHASE
          DP'.'. .'..'. ..BLOWER DIFFERENTIAL PRESSURE IN  INCHES HJO

  38 DO 70 ICT»1,3
      DO to I»l,2
       READ inn?,   HCm.HCRm.COm,COR(I),COcm,COiRm,PNOm,
    1      NOXR'm.NBLW.SECND
1005 FORMAT(?X.»(FB.O.ie),Ib,F7.0)
     IF(I ,EO. 1) N(ICT)«NBLW
     IF(I.EQ.l) TIMf aSECND
  tO CONTINUE
     RD » TIME/ bO.
     HTP » ITP
       TP « ITP + tbO.
       PBARM a PBAR * 25, t
       GlA a PBARM . (PI * l.tfcB)
     RPM a N(ICT)/RO
     0PM a OP * .07355
     GlB a GlA/?S.t
     X « (3f3RT((TP*OPM)/GlB) )XRPM
     GO TOOqn,3«U, 312,343) ICV8
 3^0 PRINT ?q99
     GO TO 100
 3»OS DO b7 I«l
     KK»HCR(I)
     GO TO (HI
                         10
                             , »»fc, »•».»»•)
        GO TO t5
       YH(I)« HC(I) * I.
        GO TO tS
       YH(I)a HC(I) * •».
*011i
••oaos
«-Q8or
c-0505
                                                                                  •-02DB
                                                                                  t-atoi
                                                                                  *oeio
                                                                                  ••0211
                                                                                  t-OJlb
                                                                                  *0?17
                                                                                  00218
                                                                                  ••0220
                                                                                  *0?21
                                                                                  4-0222
                                                                                  *0223
                                                                                  *>022b
                                                                                  *0227
                                                                                  ••0228
                                                                                  4-0224
                                                                                  ••0230
                                                                                  4-0231
                                                                                  4-0232
                                                                                  4-0233
                                                                                  4-023*
                                                                                  4-0235
                                                                                4-0237
                                                                                4-0238
                                                                                4-0234
                                                                                4-0240
                                                                                4-02tS
                                                                                4-OZtb
                                                                                4-02*7
                                                                                4-Oim
                                             E-7

-------
    60 TO »S                                                       ,
 »» YHU)« HC(I) * 8.
    GO TO »S
»«*5 YH(I)» HC(I) * lb.
    CO TO *S
»*k YH(I)» HC(I) * SI.
    60 TO Hf
»»» YH(I)«HCCI)*fc».
    60 TO H5
»»8 YH(I)«HCU)*188.
 VS KK»COR(I)
    IFfKK.LT.10) 00 TO »b
    KK • KK - 7
 »b 00 TO (»7,i»B,M,H41.»48,iHJ) KK
 »7 YC(I) •CO(I)/(((.J.BIb743?E-94 * CO(I) * »,184«»b7lE-07)  * CO(I)
   1       ' 1.1584i»8bE-0*) * CO(I) » 1.7840488E-08)
    60 TO SO
 *8 YC(I) *CO(I)/((( 3.b5b87JlE-04 * CO(I) • S.k»01848E-07)  * CO(I)
   1       . 4'.85bl>*17E-05) * CO(I> » 8.b<»b8177E-08>
    GO TO 50
 »4 YC(I) «CO(I)/((f 8.b8b8084E»04 * CO(I) • 1.0458584E>Ob)  * CO(I)
             . _ 	1S) w coin » '
                                                                                 4-02SZ
                                                                                 »QZ51
                                                                                 »OSbl
                                                                         ll/08/774>08bH


                                                                         ll/08/774-08b7
                                                                         11/08/77*0870
      GO TO 50
      YC(I)
     i       .
      60 TO 50
      YC(I)
                 /((f-S.330S71SE-0? *CO(I)+
   1       .b.meim9E-OJ)*CO(I) +5.901b8fc3E-01)
    CO TO 50
*43 YC(I) » CO(I)/(((2.147287<*E.07
   1        +3'.01?BO?9E-01) *CO(I)
 SO KK«COJB(I)
    GO TO  (5?.53,«iH KK
                                    *CO(IJ-  3, 7Sl7I77E-Ok)«CO(I)


                                                       -OS)*CO(I)


                                                       OS )  *CO(I)
                                                                       7/15/77 4-0878
                                                                       7/15/77 »0873
7/15/77 4-0875
7/15/77 4-087b
                                            -5 ,
 4/11/774-0878
        »087q
        *>0880
C  *** THESE EQUATIONS FOR BAG CART C08  S/N 8010Sfa CALIB.  EFFECTIVE 4/8/7b
                                                                                 4-0868
   S8 YC8(I) • C08(I)/(((>3.3if8?354E>Ob * C08(I) + 4,b588847E>Oi»)*C08(I)   4/8/7b*0881
     1         -1.»3103»4E.01)* C08(I) * 1.H80814BE+01)                    4/8/7b*08B»
      GO TO fb                                                                   4-0885
   53 YC8CI) • CO»(I)/f C(B.B474bBbE.07 * C08(I) » 1.43» 5774E-D4) *  C08£I)   4/8/7b4-08Bb
     1         -1.11484SZE-01) * C08(I) * Z.788tli53E + 01)                   4/8/7b*0887
      GO TO §(,                                                                   4.0888
   S* YC8(I) * C02(n/((CS.81b441«E-07 * C08(I) * B,0530»»8E-0*}*C08( I)
     1         -?,n»B073SE-01) * COt(I) + k.54blbblE+01)
   5b KK»NOXR(T)
      CO TO (58,54,bO.bl) KK
   58  YN(I)«0.3 * PNOfI)
       GO TO (,7
   54  YN(I)«pNO(I)
       CO TO k7                                    \
   bO  YN(I)»| * PNO(I)
      GO TO b7
   bl YN(I)«in*PNOn)
   k7 CONTINUE

         CORRECTION OF CO FOR MATE* VAPOR AND C08 EXTRACTION

           eoe1..'..'..'..CARBON MONOXIDE CONCENTRATION  or  THE  DILUTE
                      EXHAUST SAMPLE VOLUME CORRECTED
           COO..'..'....CARBON MONOXIDE CONCENTRATION  OF  THE  DILUTION
                      AIR SAMPLE
    COE • (1 • o'.01485 * YCt(t) -0.000383  *
    COD • (1 - 0.000383 *    R    ) *  YC(l)
                                                   R   )  •  YC(t)
                                                                         4/8/7b4-0840
                                                                               *0841
                                                                               4-0848
                                                                               *0843
                                                                               4-0841*
                                                                               *0845
                                                                               *084h
                                                                               *0847
                                                                               4-0848
                                                                               4-0844
                                                                               4-0300
                                                                               4-0301
                                                                               4.030?
                                                                               4-0303
                                                                               4-030*
                                                                               *0305
                                                                               *030b
                                                                               *030?
                                                                               *03D8
                                                                               4-0304
                                                                               »0310
                                           E-8

-------
   CALCULATION OF DILUTION FACTOR

or • u.»/( YCitn »(CYH(j)+coE)/ioooo.n

   CALCULATION OF FINAL CONCENTRATION VALUES
     HCV.
     COV
     PNOV,
              ....CONCENTRATIONS OF THE DILUTE AIR EXHAUST SAMPLE
              ,...  CORRECTED FOR WATER VAPOR AND COB EXTRACTIONS
HCV « YHta) « YHm*n«i/or)
COV * COP- • COD*(J.J/DF)
CO?V«YC?(?) - YC?U) •  (1-1/DF)
PNOV"  YNC21- YN(n*U-l/DF)
   CALCULATION OF HUMIDITY CORRECTION  FACTOR. ,KH

XKH a l.O/u'.O • o'.Odt? *  (H.75))

   MASS CALCULATIONS
     COM
          ...,
               ,.. .EMISSIONS  IN  GRAMS  PER  TEST  PHASE
          ' '
HCM(ICT)» VMIX * lb.33 * (HCV/1000000.>
COM(ICT) = VMIX * 32.97 * fCOV/1000000)
C02M(ICT)»VMIX * 5?.07 * (CO?V/100.)
PNOM(JCT)" VMIX * 51.U * (PNOV/1000000) *XKH

 STORE IN PRINT ARRAY

JRS2
JC*JC+1

DO h9 lal ,?
 JR*JR+1
   8UF(JR,JO)«HC(I)
  I8UFCJR,JC)«HCR(I)
   JRnjR+1
   BUFfJR,JD)«YHfI)

   8UF(JR, JOHCO(I)
  IBUFfJR,JC)«COR(I)
   JR«J9»1
   BUFfJR.JDJBYCfll
   JR»JR+3
   BUFfJR,JO)»C02(I)
  IBUF(JRiJC)«C02R(I)
   JRaJR+1
   8UFCJR.JO)"YC?(I)
   JRiJR+3
   BUFfJR,JD)»PNO(I)
  IBUFfJR,JC)«NOXRfI)
   JR»JR+1
   BUF(JR,JD)«YN(I)
   IF(I  .EQ. 1) JR«0
CONTINUE                                 .
 JRR«JR»1
                                                                          ••0313
                                                                          *OJ1*
                                                                          0-011S
                                                                          «-031B
                                                                          •-03S1
                                                                          «032e
                                                                          ••0383
                                                                          •-03?*
                                                                          •-032S
                                                                           ••0328-
                                                                          »0331
                                                                          ••0332
                                                                          ••0333
                                                                          »033»
                                                                          ••0335
                                                                          «-033h
                                                                          »0337
                                                                          •-033B
                                                                       ALL«-0339
                                                                           ••031*!
                                                                           «-03»3
                                                                           «-03»8
                                                                           ••0319
                                                                           *0350
                                                                           ••0351
                                                                           ••0352
                                                                           ••0353
                                                                           ••0355
                                                                           ••035b
                                                                           ••0357
                                                                           ••0358
                                                                           ••0359
                                                                           ••03bS
                                                                           «-03bb
                                                                           »03b7
                                                                           «-03t>8
                                                                           ••0370
                                                                           *0371
                                                                           *037?
                                 E-9

-------
       BUF(JRR, J0)« HCV
       JRR«JRR+1
       8UF(JHR,JO)« COV
       JRR«JRR+1
       8UF(JPR,JD)«COSV
       JRR»JRR+1
       BUF(JRR,JD)tPNOV
       JRR«JRP+1
       8UF(JPB, JO)«H£MtICT5
       JRRsJRJj+1
       BUFfJRR, JO)iCOM( ICT)
       JRR«JRR+1
       BUF(JRR,JO)iC02MUCT)
       JRR«JRR*1
       BUF(JRR, JD)«PNOM(ICT)
   70 CONTINUE
            '
      ITPM»(ITP-32.)/1.8
      PRINT 2003.  PIM.DPM.ITPM, (N(I),I«1,3)
 8003 FORMAT(?X,*ExHAuST EMISSIONJ*//72X, *BLOWER INLET PRESS., 61  *,
     IPS.!.* MM.  H20*/7X, "BLOWER DIF. PRESS., 02, »,F5.1,* MM. H20*,eBX,
     i. BLOWER INLET TEMP.  .,!»,* OE6. C.//7X,»BA6 RESULTS./7X, *BA6  NO.*,
     33^X,*l*.ihJ(,*?*,lbX,*J*/7x,«BLOWER REVOLUTIONS*, 11X, J(1ZX, IS) )
           HCWM, . ....
           cow*. :...;,  .
           CO?WM.    ,...WEIOHTED M*S8 EMISSIONS OF EACH POLLUTANT
           PNOWM .....
                                     »(.S7 *PNOM(3 J ) ) /7.S
                                    )  +(.57 * COZM(3)))/7.
      COWM  a((0.»3  *  eOMU>>+  COM(J)  +{.57 • COM(l)))/7.5
      HCWM  t((Q,n3  *  HCM(1))+  HCM(»)  +(.57 * HCM(l)))/7.5
      JRlaJR+1
      DO  BO  1»1,JR1,J
 ,n«u                    ''.
 ZOO* FORMAT(«tAln,3(10X,F5.1, */*,H))
           .ST.  9)  CO  TO  7?
= nne ru       '.«''-
ZOOS FORMATf»A10,3(10X,F5.0,?XJ)
     GO TO flo
  72 IFCI ,GT.  12) SO  TO  71
     PRINT
     GO TO an

  80 coN
     PRINT 3000
     JRHJR + 3
     JR2«JRl+l
     PRINT 80(lS,C(18uF JR 2+ |
     PRINT f555.  (IBUF(JR?,J),J,1,l«j,(BUF(JRZ,KJ,K.1.3)
     PRINT ?00(,.((IBUF(I + »,J),J,j,H),
     PRINT ?nfcb. HCM(1),HCM(2),HCM(3)
20bb FORMAT(8X,«HC   MASS M6*,f OX. 30373
 »037»
 »0375
 ••0377
 *0378
 *03BO
 ••0381
 4-0382
 ••0363
 »038H
 *03S5
 *>0387
 ••0369
 ••03HO'
 +•0391
 ••0393
 ••0397
 *03S8
                                                                                 *OHOO
                                                                                 ••0*01
                                                                                 ••0*07
                                                                                 4-OHOB
*0»11
4-OH12
••0113
••OH17
••Ot30
*OH31
»o*3a
+>0
-------
    IK.
          • f3'.7B5 * 100'.)/BULB,WBULB,P8AR,KO,IAC»IEVS,IET,ieNT,
   1ISP,  GEAR, ID9P.OPR. DRV, TEEM
    JPUNCH»JPUNCH+1
      J*l
    PRINT S003.JPUNCH,ICN,IUN,(6UF(I*», J) , I«JRl, JR») , 2
                                              *>0f b3
                                              ••OV7S
    DIMENSION
   \
    EQUIVALENCE f XVTfl . 1 , 1) , RPMJ ) , tXVT Cl . 1 , J) , RPM2)
   1          . (XVTti.l.3)fRPMJ),(XVT(l»i|it),RPMi»)
                                                                               4.0H8D
    DEFINE XO.VO AT TlfXI,VI),Tl
0.01*00, O.i
0.01*00, 0,
0.01*00, O.JbO*,
0.01*00, 0,2bO*,
0.01*00, O.BbO*
0.00^00, 0,i
0.00^00, 0,
0,00
-------
 DATA RPM*/o.00*00,0,3113
1           0.00*00,0.3043 ,
2           0,00*nO,0.303b ,
3           n,00*00,0,30*1 ,
*           0.00*00,O.SOOb ,
 DATA RPMS/fl. 00200 , 0,3112
1          0.00800 , 0,3118
8          0.00800 , 0.31h1>H),RPM»)
  t          , (XVm,l,S),RPMS),(XVm»l»b),RPMb)

   DEFINE XO.VO AT T1(X1,VI),T1(XN,VN),...,T5(X1,V1),T5(XN,VN)
      FOR EACH RPM VALUE
                                                                           4-OHM
                                                                           «-050D
                                                                           4-0508
                                                                           ••0503
                                                                           »0505
                                                                           »050b
                                                                           »0507
                                                                           *0509
4-0510
4-0511
4-051?
4-0513
4-051*-
4-0515
4-asib
00517
*051B
••0519
4-osao
••0521
4-0^82
4-0583
                                                                           4-0585
                                                                           4>OS2b
                                                                           4-0587
                                                                           4.0528
                                                                           4-0524
                                                                           4-0530
                                                                           4-0531
                                                                           4-0532
                                                                           4-0533
                                                                           4-053*
                                                                           4-0535
                                                                           4-05 3b
                                                                           00537
                                                                           4-0538
                                                                           4-0534
                                                                           4-OSHO
                                                                           4-05*1
                                                                           4-05*8
                                                                           »05*3
                                                                           »05**
                                                                           4,05*5
                                                                           4-05*b
                                                                           005*7
                                                                           005*8
                                                                           005*9
                                                                           OOSS'O
                                                                           00551
                                                                           00558
                                                                           00553
                                                                           0055*
                                                                           OOSSS
                                                                           oQ5Sb
                                                                           00557
                                                                           OOS58
                                    E-12

-------
DATA RPM1 / 0. OOtO. 0.3Mb
   DATA RPMJ /
   DAT* RPM3 /
   DATA RPMH >
   DATA RPM5 /
   DATA
            0.0030.0.3131,
            0.00?0,0,J?3k
            O.n0?0,0.3?3b
             ?n*0.0  /
             JCI*0.0  /
             an*o.o  /
             ?0*0.0  /
             80*0.0  /
                               0.0018,0,3m ,
                               0.0038,0.317» ,
                               0.0038,0.317V ,
                               0.0038,0. 317* ,
                               0.0038,0.317* /
   DEFINE RPM VALUES IN THE ORDER ESTABLISHED ABOVE
   DATA RPMT / Ib30. .   0.0 . 0.0 , 0,0 , 0,0 , 0,0 /

   DEFINE T1,TJ,....T5 FOR EACH RPM VALUE IN ORDER ESTABLISHED ABOVE
   DATA TMP / 70. ,  10. , 110. , 110. , 110.
  1         , ?S*0.0  /

   SELECT TABULAR TEMPERATURE VALUE NEAREST TO GIVEN VALUE
   DMIN»1000.
   DO ZO I«l,b
   DIF»AB9CRPM-RPMTei))
   IFCDIF .CT1. OMJN) 60 TO tO
   IRPM«I
   DMIN»D1F
10 CONTINUE
   IFfTEMP .LT. TMPU.IRPM)) TEMP«TMPU,IRPM)
   IFHEMP '.GT. TMPtS.JRPM)) TEMP«TMP(S, IRPM)
   ERR'1.0
   IF(DMIN .GT. (O.OS*RPMT(!RPMj)) ERR»-1,0
   IT«0
   IF(TEMP .GT. TMPC3.IRPM))
   INTERPOLATE LINEARLY TO FIND V(I) VALUES FROM T(I) AT XO .
   DO SO Jal.3
   V ( J) "XVT (?, J* IT. IRPM) +(XO-XVT(1,J+IT, IRPM) )*(XVTC*,J»IT, IRPM)
  1   -XVT(?,J+IT.IRPM))/(XVT(3.J+IT,IRPM).XVT(1,J+IT,IRPM))
   T(J)«TMP(J*IT,IRPM)
SO CONTINUE

   COMPUTE VO BY INO ORDER INTERPOLATION USING. V(I) AND T(I)
   VO»ERR*FLAOR(T,V, TEMP, I, l,J)
   RETURN
   END
   FUNCTION FLAGR  ( X,Y,XARG,IDEG,MIN,N )

    FLAGR USES THE LAGRANGE FORMULA TO EVALUATE THE INTERPOLATING
    POLYNOMIAL OF  DEGREE IDEG FOR ARGUMENT XARS USING THE  DATA
    VALUES X(MIN)'...X(MAX) AND Y(MIN) . , .Y(MAX) WHERE
    MAX • MIN « IDEG.  XCI) IS ASSUMED TO BE IN ASCENDING
    ORDER, AND SUBSCRIPT CHECKING IS PERFORMED,  TERM IS
    A VARIABLE WHICH CONTAINS SUCCESSIVELY EACH TERM OF THE
    LAGRANGE FORMULA.  THE FINAL VALUE OF YEST IS  THE INTERPOLATED
    V«LUE'.  SEE CARNAHAN ET AL, APPL.NUM.METH. .WILEY,

   DIMENSION X<1>. Y(l)

   ..... LOCATE AN X-VALUE NEAR XARO .,..,
   DO 20 I«1,N
   IF (X(I) ,LT. XAHG)  GO TO 10
   MIN • I . IDEG/8                         .
   MAX • MIN * IDEG
                                                                          *05bl
»OSb7
                                                                           ••0570
                                                                           »OS71
                                                                           + OS72
                                                                           *0573
                                                                          *OS7S
                                                                          4-OS7b-
                                                                          »0577
                                                                          4-0578
                                                                           ••0580
                                                                           »osei
                                                                           ••0582
                                                                           »0583
                                                                           *OS85
                                                                           «-058b
                                                                           ••0587
                                                                           ••0588
                                                                           ••OS89
                                                                           ••0510
                                                                           ••0515
                                                                           *05«I7
                                                                           •-0518
                                                                           ••ObOO
                                                                           ••ObOl
                                                                           »0b02
                                                                           *0b03
                                                                           *0b05
                                                                           ••ObOb
                                                                           *0b07
                                                                           ••Obi?
                                                                           •>0bl3
                                                                           ••Obit
                                                                           *0bib
                                                                           ••Obi?
                                                                           ••OblS
                                                                           *ObZO
                                   E-13

-------
      GO TO 10                                                                   »0bil
   10 CONTINUE                                                                   *0fc««
C                                                                                *ObS3
C     ..... CHECK SUBSCRIPT BOUNOJ  .....                                         «-Ob2»
   30 CONTINUE                                                                   *ObZ5
      IF (MIN ,6T. 0)  60 TO *0                                                  *0b2b
      WIN • i                                                                    *0b87
      MAX * MIN 4 IDEG                                                           *0b?8
      GO TO 5n                                                                   «-ObB9
   tO CONTINUE                                                                   *0b30
      IF (MAX .LE. N)  00 TO SO                                                  *0fa31
      MAX ( N                                                                    *0b3?
      MIN * MAX - IOES                                                           *0b33
   SO CONTINUE                                                                   »0b3»
C                                                                                »Ob3S
C     ..... COMPUTE V'ALUE Of FACTOR .....                                        *0b3b
      FACTOR • 1.0                                                               »ObJ7
      DO bd  J«MIN,M»X                                                           *0b38-
      IF (XARG .NE. X(J))  GO TO bO
      FLAGR • Y(J)
      RETURN
   bO FACTOR • FACTOR*CXARG • X(J))
C                                                                                *0b*3
c     ..... EVALUATE INTERPOLATING POLYNOMIAL  .,'.,'.                              >obt»
      YEST « 0.0                                                                 *0b»5
      00 80  I*MIN,MAX                                                           «0b<»b
      TERM • rfI)*FACTOR/(XARG . X(I»                                           4.0b*7
      DO 70  Jc^TN.MAX                                                           «ObfB
      IF (I '.NE. J)  TERM • TERM/fxd) - X(J))                                   «-ObH9
   70 CONTINUE                                                                   *ObSO
      YEST « YEST * TERM                                                         «.0b51
   80 CONTINUE                                                                   *ObSS
      FLAGR • YEST                                                               »QbS3
      RETURN                                                   ,                  4.Qb54
      END                                                                        »Db5S
                                                                                 »ObSb
                                                                                 *ObS7
                                       E-14

-------
  1   -XVT(?,,JflT.IRPMn/(XVTt>,J*IT,IRPM).XVm,J*tT,I«P*))
   T(J)»TMP(J+IT.IRPM)                                            *
SO CONTINUE

   COMPUTE VO BY »NO ORDER INTERPOLATION USING V(I) AND TCI)
   VO»ERR*FLAGR(T.V,TEMP,«,1,1)
   RETURN
   END
   FUNCTION FLAGR ( X,Y.XARG,IDEG,MIN,N )

    FLAGR USES THE LAGRANGE FORMULA TO EVALUATE THE INTERPOLATING
    POLYNOMIAL OF DEGREE IDEG FOR ARGUMENT XARG USING THE DATA
    VALUES X(MIN)...X(MAX) AND V(WIN).,,Y(MAX) WHERE
    MAX • WIN * IOEG.  X(I) IS ASSUMED TO BE IN ASCENDING
    ORDER. AND SUBSCRIPT CHECKING IS  PERFORMED.  TERM 13
    A VARIABLE WHICH CONTAINS SUCCESSIVELY EACH TERM OF THE
    LAGRANGE FORMULA.  THE FINAL VALUE OF YEST 18  THE INTERPOLATED
    VALUE'.  SEE CARNAHAN ET AL, APPL.NUM.METH. .WILEY.

   DIMENSION x(l>, Y(l)

   	 LOCATE AN X.VALUE NEAR  XARG  	
   DO 20 I«1,N
   IF (X(I) ,LT. XARG)  GO TO >0
   MIN * i . me/a
   MAX • MIN » IDEG
   GO TO 30
80 CONTINUE

   	 CHECK SUBSCRIPT BOUNDS  .....
30 CONTINUE
   IF (MIN '.GT. 0)  GO TO »0
   MIN * i
   MAX • MIN + IDEG
   GO TO 50
»0 CONTINUE
   IF (MAX .IE. N)  GO TO SO
   MAX • N
   MIN • MAX - IDEG
50 CONTINUE

   	COMPUTE VALUE OF FACTOR '.....
   FACTOR u l.o
   DO bo  J«MJN,MAX
   IF (XARG ,NE. X(J))  GO TO fcfl
   FLAG" • Y(J)
   RETURN
bO FACTOR • FACTOR*(XAR6 • X(J))

   	 EVALUATE INTERPOLATING  POLYNOMIAL  .....   '
   YEST « o.o
   DO so  I«MIN,MAX
   TERM • Y(I)*FACTOR/(XARG • X«I»
   oo 70  J«MIN.MAX
   IF (I .NE. J)  TERM • TERM/(X(I) " XCJ))
70 CONTINUE
   YEST • YEST » TERM
80 CONTINUE
   FLAGR • YEST
   RETURN

   END
*0750
*07S1
»0753
*075'*
••07SS
»07S7
»07SB
*07B1
»07bl
fc07b?'
*D7b3
»07bb
*07b7
«-07bi
fc0770
••0772
*0771
4-0771*
*077S
*077b
*0777
*077B
*0780
»07B1
••0782
*078J
»078S
••0787
*07B8
••0790
•-07H1
*07«I5
«-074b
••0797
4-07S8
••0800
••0801
••0803
••0803
*0805
• OlOb
                                      E-15

-------
      IF(TEMP .ST. TMP(I.IRPM)) IT88                                             »0btl
                                                                     *            »0b8<*
      INTERPOLATE LINEARLY TO FIND V(I) VALUES FROM T(I) *T XO                   *Ob«S
      00 SO J»l,3                                                                tObBb
      V (J)«XVT(?,J*IT, IRPM) +(xo-XVT(l,J+IT, IRPM) )*(XVT(»,J+IT, IRPM)              »-Ob87
     1   -XVT(J,,JMT,IRPM))/(xVTrS,J»lT,IRPM)-XVT(l»J+IT.IRPM))                  »ObB8
      T(J)«TMP(J+IT,IRPM)                                                        »ObBS
   50 CONTINUE                                                                   »0b<(0
      COMPUTE VO BY »ND ORDER INTERPOLATION USING V(I) AND T(I)
      VO«ERR»FLASR(T.V.TEMP, J,l, S)
      RETURN                                                                     »0b9»
      END                                                                        »0b,5
      SUBROUTINE VOLUM»(RPM,XO, TEMR, Vo)                                          *0b9b
C     COMPUTES VOLUME AS A FUNCTION OF XO, TEMPERATURE AND RPM                   »Ob0710
     2            0.00?0,0.3?3b   0.0038,0.317i» ,
     3            0.00?0,0,3?3b   n.0038,0,117«» ,
     *            O.OQ20,0.1I3b   0.0038,0.1174 /                                4-0713
      DATA PPM? /  80*0.0  /                                                     »071i»
      DATA RPM3 /  S0*0.0  /                                                     *071S
      DATA RPM» /  ?0*0.0  /                                  ,                   *071b
      DATA RPM5 /  Z0*0.0  /                                                     «-0717
      DATA RPMb /  J0*0,0  /                                                     *0718

C     DEFINE RPM VALUES IN THE ORDER ESTABLISHED ABOVE                           *07BO
      DATA RPMT / Ib30. ,   0.0 , 0.0 , 0.0 , 0.0 , 0,0 /                        *0781

C     DEFINE T1,TZ,...,TS FOR EACH RPM VALUE IN ORDER ESTABLISHED ABOVE          *07Z3
      DATA TMP / 70. , to. , 110. , HO, , ISO,
      SELECT TABULAR TEMPERATURE VALUE NEAREST TO GIVEN VALUE                    »0787
      DO 20 I.l,b
      DIF«ABS(RPM.RPMT(I))                                                       *0730
      IFtOIF ,ST'. OMIN) CO TO SO                    \
      IPPMBI                                         '                •
      OMIN.OIF
   ZO CONTINUE,                                                                    „
      IFfTEMP ,LT. TMPU.IRPM)) TEMP«TMP(1, IRPM)                                 *0735
      IFCTEMP .Or. TMPfS.IRPM)) TEMP«TMP(«, IRPM)                                 »073b
              .
      IF(DMIN .GT. (O.OS*RPMT(IRPM))) ERR»-1.0
              .
      IFCTEMP .ST. TMP(3,IRPM)) IT^J

C     INTERPOLATE LINEARLY TO FIND V(I) VALUES FROM TCI) AT XO                   toll*
      00 to J.l.s                              f                                  *07H1
                                          , IRPM) )«(XVT(»,J»IT, IRPM)
                                        E-16

-------
   SUBROUTINE VOLUM3 ( P.PM, XO, TEMP, VO)                              '

   VOLUM3 is FOR BROWN CVS
   COMPUTES VOLUME A3 A FUNCTION OF X0» TEMPERATURE AND RPM
   RETURNS NEGATIVE VOLUME IF RPM IJ NOT CLOSE  TO  TABULAR VALUE

   DIMENSION xVT(*,5,b),TMP(«,bl.RPMT(b),V(3),T<3),
  1          RPMij?0),RpM?(?o>,RPMJ(?o),RPM*(?0),RPMS(?0),RPMk(?0)
   EQUIVALENCE f XVT C1.1,1), RPMJ) • (XVT U , JUZ) ,RPM?)
  1          . fXVTf l,l,3),RI»MJ),(xVTU»l,'»),RPM*)
  I          . fXVTU.l,S),RPMS),(xvm.l.b),RPMb)
*0b?l
«-Obf?
 DEFINE XO.vO AT TKXl.Vl),
    FOR EACH RPM VALUE
 DATA RPMl /O^OObOO,0.308?
1           0,OObOO,0.308?
2           n.ooboo,0.308?
3           O.OObOO.0.308?
*           O.OObOO,0,308?
 DATA RPM? /n.00*50,0.3087
1           0,00*50,0.3087
2           0,00*50,0.3087
3           0,00*50.0.3087
»           0.00*50,0.3087
 DATA  RPM3 / ao * 0.0 /
 DATA RPM*/n.CIO*00,n.M13 ,
1           0.00*00,0.3093
2           0^00*00,0.303b
3           0,00*00,0.30?!
*           0.00*00,0.300fc
 DATA RPMS/0.00?00 , 0,311?
1          n.00?00 , 0,311?
2          o.oo?on , o.sib*
3          n.OOfOO , 0.31H
*          0.00?00 , 0,31b»
 DATA  RPMb / 10 * 0,0 /
                             TnXN,VN),it.,T5(Xl,Vn,TS(xN,VN)

0
0
0
0
0
n
0
0
0
0
.01*00,
,01*00,
,01*00,
,01*00,
,01*00,
,00900,
,00900,
,00900,
,00900,
,00900,
0.
0.
0.
0,
o,
0.
0.
0,
0.
0.
?bO*,
2bO*,
2bO*,
?bO*,
?bO*
?798,
2798,
?79B,
279B,
Z798
                              0.00700,O.?91?,
                               0.00700,0,?893,
                               0.00700,0,?8*b,
                               0, 00700,0.?833,
                               0,00?00,0,?81b /
                                   O.OObOO  , 0.3075,
                                   O.OObOO  , 0,3075,
                                   O.OObOO  , 0,3105,
                                   O.OObOO  , 0,3109,
                                   O.OObOO  , 0.3107/
   DEFINE PPM VALUES IN THE ORDER ESTABLISHED ABOVE
   DATA RPMT / »00. , b*0. , 780,, 870, , 1085,  ,  HbO, /

   DEFINE TliT? ..... T5 FOR EACH RPM VALUE IN ORDER ESTABLISHED  ABOVE
   DATA TMP
/ 70.
70.
70.
70.
70.
7D.
, 85.
, 8S,
, 85.
, 85,
. 7b.
, 85.
95.
95.
95.
95.
110.
95.
US'.
us.
us.
us.
U5.
115,
130. ,
130, ,
130. ,
130. ,
139, ,
130,
   SELECT TABULAR TEMPERATURE VALUE NEAREST TO GIVEN VALUE
   DMIN«1000.
   DO ?0 lal.b
   DIF«ABSfRPM.RPMT(I))
   IF(DIF .6T'. OMIN) 60 TO ?0
   1RPM»I
?0 CONTINUE
   IF(TEMP ,LT. TMP(l.IRPM)) TEMP»TMP(1,IRPM)
   IFfTEMp ,OT. TMP(S.IRPM)) TEMP«TMP(5,IRPM)
   ERR»1,0
   IF(DMIN ,GT, (0.05*RPMT(IRPM))) ERRB-1.0 .
   IT«0
»0b?*
••Obib
«-Ob?7
*Ob?B
*0b30
*0b31
«-Ob3?
*0b33
«-Ob3H
                                                                             *>0b3b
                                                                             «-Ob37
*0b39
*0b*0
«-Ob*l
«-Ob*2
*0b*3
*0b**
*0b*5
*0b*b
*0b*7
*0b*8
«-Ob*9
»Ob5D
*0b51
»0b53
«-ObS*
«-Ob55
»ObSb
*>ObS7
»Ob5B
»ObbO
                                                                             «-Obb3
                                                                             ••Obb*
*0bbb
<-Obb7
*ObbB
*0bb9
«0b70
*>0b71
*>0b7?
*0b?3
*Db7*
*0b?5
»0b7b
»0b77
*0b78
*0b79
»ObBO
»0b81
                                       E-17

-------
c
c
c





















c
e
c
c




c
c


DEFINE XO.VO AT Tl (XI , VI), Tl ( XN, VN) , . . . ,TS(X1, VI) ,TS(xN, VN) '
FOR EACH RPM VALUE
DATA RPM1
1
2
3
»
DATA RPM?
1
2
3
if
DATA RPM3
OATA RPM*
DATA RPMS
1
2
3
»
DATA RPMb
1
2
3
»
DEFINE RPM
DATA RPMT
DEFINE Tl,
DATA TMP
1
2
3
<»
S
SELECT TAB
/ 0.001, 0.82S 0^003, 0.752
0.001, 0,835 0.003, 0.7bO
0.001, 0,8Hb 0.003, 0.770
0.001, 0,8»b 0,003, 0.770
. 0.001, 0,Bi»b 0,003, 0,770 /
/ O.B01, 0.000 0,003, 0,000
o.om, o.ooo 0.003, 0,000
n.ooi, o.ooo 0,003, o.ooo
0.001, 0,000 , 0,003, 0.000
0.001, 0.000 , 0.003, 0.000 /
/ ?o*o,o /
/ ?o*o.o /
/ 0,0008, 0.0801 .O.OOlb, 0.07b2,
0.0008, 0.0801 .O.OOlb, 0,07b2,
0,0008, 0.0801 .O.OOlb, 0.07b2,
0.0008, 0.0801 , O.OOlb, 0.07b2,
0.0008. 0.0801 .O.OOlb, 0,07b2 /
/ 0.0008. 0,0798 , O.OOlb, 0.0757,
0.0008, 0.0798 .n.OOlb, 0,0757,
0.0008, 0.0798 .O.OOlb, 0.0757,
0.0008, 0.079» .O.OOlb, 0,0787,
0.0008, 0,0798 , O.OOlb, 0.0757 /
VALUES IN THE ORDER ESTABLISHED ABOVE
/ 1310., 2120. , J«90. , 2920. , 3890, , »890, /
T»... ,T5 FOR EACH RPM VALUE IN ORDER ESTABLISHED ABOyE
/ 70, 90. 110., 130. ISO,
70, 90. 110., 130. 150.
70. 90. 110., 130. ISO,
70, 90. 110., 130. 150,
70, 90, 110., 110. 150.
70. 90. 110., 130. 150. /
ULAR TEMPERATURE VALUE NEAREST TO P.IWFN uil HP
   DMIN«1000.
   DO 20 I«l,fc
   DIF»ABS(RPM-RPMT(m
   IFCDIF ,OT'. DMIN) 60 TO ZO
   DMiNioiF
20 CONTINUE
   IFfTEMP ,tT. TMP(I.JRPM)) TEMP«TMP(1,IRPM)
   IFCTEMP .ST. TMPfS.lRPMJ) TEMP«TMP(S,IRPM)
   ERR«l.n
   IF(DMIN '.8T. t0.05*RPMT(IRPM))J ERR«-1.0
   IT«0
   IFfTEMP '.ST. TMPO.IRPM)) IT«|

   INTERPOLATE LINEARLY TO FIND VCI) VALUES FROM T(I) AT XO
   DO 50 J«l,3
   V(J).XVT(2,J+IT,IRPM)+(XO-XVT(1,J+IT.IRPM))«(XVT(»,J+IT,IRPM)
   T(J)«TMP(J*IT,IRPM)
SO CONTINUE

   COMPUTE VO BY »ND ORDER INTERPOLATION USING V(I)  AND  T(I)
   VO«ERR.FLAOR(T,V.TEMP,I,i,3)
   RETURN                                   '
                                                                               *05S9
                                                                               ••OSbO
                                                                               »OSbl
                                                                               »D5(,S
                                                                               • OSbb
                                                                               »09b7
                                                                               4-OSb9
                                                                               ••0170
                                                                               *OS71
                                                                               »0572
                                                                               «-OS73
                                                                               ••OS7S
                                                                               »OS7b-
                                                                               »OS77
                                                                               »OS7B
                                                                               4-0579
                                                                               »0580
                                                                               *05B1
                                                                               »058?
                                                                               ••0583
                                                                               »058>f
                                                                               ••0585
                                                                               »OS8b
                                                                              »0588
                                                                              *>0589
                                                                              *OS90
                                                                              *OS92
                                                                              f059S
                                                                              «-OS9b
                                                                              *0597
                                                                              «0598
                                                                              *0599
                                                                              *0b01
                                                                              *>0b02
                                                                              *0b03
                                                                              • ObDt
                                                                              4-ObOS
                                                                              «-ObOb
                                                                              »0b07
                                                                              *-ObOB
                                                                              «-Ofa09
                                                                              »OblO
                                                                              *0hll
                                                                              *OblS
                                                                              »0blk
                                                                              *0bl7
                                                                              *0bl8
                                                                              »0bl9
                                                                              *OblO
                                      E-18

-------
      PC • PBAR/CVINP                                                            »o*97
      DO 70 !• 1,2                                                    '           4-0*98
      33SM  •  {333TO(I)*8SFA(n*83DF(I))/83SA(I)                                4-0*99
      33MF(1)«  939M * 9ML(I)                                                    4-0500
      93MCF m   93MF(I)/93VFvr(l)i83TEM(J),slTEM(l),          »05ZB
     1 S3FA(?),S3FA(J).S3DF(S),830F(1),338TO(Z),333TO(1),3JS*(!),                »0529
     2 S33A(n.S3MF(»),33MF(l)                                 ,                  *0530
      PRINT b018                                                                 *0531
      VOLTEl"fi)« VOLTEM(i).i»bo',                                                  *OS32
      VOLTEM(?)» VOLTEMf»)"»t,0.                                                  4-0533
      PRINT h020. 3AMvOL(2)»SAMvOLfl),VOUTEM(?),vOLTEM(l),82BlA(S),              *OS3»
     1 32BlAfn,S?BlD(2), 32810(15, 3eB2A(?),32BJA(l),88BZD(2),88B?0(l),          4-0535
     2 S23TD(2).32STO(l).S2SA(!),S23A(l)S!MB!(i),             4-05ifa
     3 32M82(1),Y8?(*),Y38(1)                     •                               4-OSS7
      PRINT b022                                                                 4-05BB
      PRINT b02»,3i» ,H2S»  ,308M( 1) .S^PK'.MZSifPK.SOIWM                            4-0539
      PRINT bO?b                                                                 4-05*0
      PRINT b028. FW, PF3                                                        4-OStl
      PRINT bOlO                                                                 4-05*?
      PRINT bo32. WF3, 3023,SH28'», TSW, SOZSRiSHaSitR, T8R                          4-05*3
      PRINT  booi, TVOL                                                          4-05**
      GO TO ?5                                       "'                            4-05*5
  999 STOP                                                                       4-OS*fc
      END                                                                        4-05*7
      3U8ROUTINE VOLUMJ(RPM, XO, T£MP, VO)                                          4-05*8
C     VOLUMJ 19 FOR BULE CV3                                                     4-05*9
C                                                                                4-OSSO
C     COMPUTE9 VOLUME A9 A FUNCTION  OF  XO,  TEMPERATURE AND RPM                  4-0551
c     RETURNS NEGATIVE VOLUME  IF  RPM 13  NOT CLOSE  TO TABULAR VALUE              4-0552
C                                                                                4-OS53
      DIMENSION xVT(*,S,b),TMP(§,b),RPMT(b),V(3),T(3),                          4-055*
     1          PPMl(20),RPM2(20),RPM|(20)»RPM*(80),RPMS(IO),RPMfc(»0)           4-OSSS
      EQUIVALENCE (XVT(l.l,l>.RPMn,(XVT(l,l»8)»RPM2)                            *OSSb
     1          , (XVT(1,1,J),RPM3),(XVT(1,1,*),RPM*)                            4-0557
                                                                                 »OSS8
                                         E-19

-------
C        MASS CALCULATIONS                                           ,
C             ....
C          HCM. ,, ,f ,f
C          COM.......
C          CO?M _   /...EMISSIONS IN GRAMS PER TEST  PHASE
C          P™0^i»j»«*«J
C
      HCM(ICT) * VMIX * lb.33 * (HCV/1000000)
      COM(KT) • VMIX * 38.97 « (COV/1000000)
      CO?M(ICT)«VMIX * 5?.07 *  (COlV/100.)                                       4-044*
      PNOMflcn* VMIX • S4'.lb * (PNOV/1000000) »XKH                              *"!!.?.?5
      SOJM(JCT) • VMIX *77.ZS *C802V/1000000()
      PRINT JOOb.HCV.COV. COZV,PNOV,80«VfHCM(ICT),COM(ICT),CO*M(ICT),
     1PNOM(ICT),SO?M(KT)
C
      XMPG •  MlLES/(FW/b.ZS5)
      ASPD •  MlLES/{RD/bO.)
   8i CHC(I) • HCMfl) * PCTC
   84 CCO(I) * COMfl) * 0.4J88J

   88 CS(I) c CHC(I) + CCO(I) * CCOZ(I)
      TEC • C8(l)                                                                4-0457
      EFF • TEC/fPCTC  )
      HCWM(J)


                                                                                 4-04b4
      COWM(J)
      PNOWM(I) •
      S02WM    I
      SMHC(I) «HCMfI)/RD
      CMCOCI) «COMfI)/RD
      GMC02(I)«C02M(1)/RD
      GMS02 * SO?M(n/RO                          •                               4.0475
      FW » FW * n.453b
      EFF B
      GPCO(I) »COM(I)/FW                                                         4-0480
      GPCO?(I)«C02M(I)/FW                                                        *0481
      GPNO(I) «PNOM(I)/FW                           '\                            4.Q48Z
      GPSO? • SO?Mfn/FW                             N                           *04B3
      F«« Fw *1000.
      PRINT ?007, HCWM(IUCOWMfI),e08WM(I)»PNO»M(I),SOeWM
      PRINT ?008,GPHC(I).GMHC(I),GPCO(l)fGMCO(I)|GPCO((I)|GMC08(I)«
                       ,09                                                        4-0488
      XL"HK  «(FW  *  3.7S5 *  100.) /(XKILM*FPPG* »il.b)                             4-0489
      PRINT  bnOS, XLPHK                                                          »0490
      TVOL »  VMIX •  O.OJ83?                                                      4-0491
C                                                                                4-049E
      IF{S?C,EQ.O.»N0.83C.EO.O)  GO  TO tt                                         4-0493
      IFtS3C.fQ.n)  GO  TO 90                                                      »OH94
C      CALCULATIONS  FOR SULFATE   FROM 8CA PROCEPURE                             »049S
      CVINP  •  P8AR  »(PI* 0.073JS)
                                        E-20

-------
    00  TO («l,«*.bO,bl)  KK
 SI   YN(I)»0.3 • PNO(!)
     CO TO It
 S*   YN(I)iPNOirn
     GO TO kt
 bO   YN(I)»j * PNOm
     GO TO (,?
 bl  YN(I)«10*PNO(I)
 b8  KK  a SOjB(i)
    IF(KK.EQ.O) GO TO bbb
    GO  TO (bJrbSbS.bbJ  KK
 b3  YSZtl) • 808(1) • .1
    GO  TO b7
 bH  YS?(!) • S02(I) * 0.8SO
    GO  TO (,?
 bS  YSZCI) • 808(1)
    GO  TO b7
 bb  YS?(I) • 302(1) * S.
    GO  TO h?
bbb  Y3?(I) • O'.O
 b7  CONTINUE
    PIM « PI * 85.*
    DPM • DP * 85.»
    ITPM «   (ITP - 3?.)/1.8
    VOM  • VO *  P8317
    PRINT ?003.  RD.PIM.DPM,ITPM,RCNT,N(1),VOM
    PRINT ?00».HC(»).HCR(?)iYH(»),HC(l)fHCR(l),YH«l).CO(e),COR(e)f
   lYCtB),COf1),COR(1),YC(1)
    PRINT JOOS.COS(8),C08R(I),YC8(8),COZ(1),CO*R{1),VCI(l),
   1PNO(?).NOXP(?).YNJ!).PNO(1),NOXR(1)(YN(1)

       CORRECTION OF  CO FOR WATER  VAPOR  AND  C08  EXTRACTION

         COE..'..'..'..CARBON MONOXIDE  CONCENTRATION  OF  THE  DILUTE
                     EXHAUST SAMPLE VOLUME  CORRECTED
         coo..'..'..'..CARBON MONOXIDE  CONCENTRATION  OF  THE  DILUTION
                     AIR SAMPLE
    COE • (1 . d'.OllJS  *  YC8(8)  .0.000183  *      R   )  *  YC(8)
    COD « fl - o'.OQ0383 *     R    )  *  YC(1)

       CALCULATION OF DILUTION  FACTOR

    OF • ll.t/f YC8(2)  +((YH(8)*COE)/10000.))

       CALCULATION OF FINAL  CONCENTRATION  VALUES


         COV ...... '  ..CONCENTRATIONS  OF  THE  DILUTE AIR  EXHAUST SAMPLE
         C02V     ,...  CORRECTED FOR WATER  VAPOR  AND CO* EXTRACTIONS
         PNOV.'. .'. ..

    HCV • YH(?) - YH(n*n«l/DF)
    COV « COE - COO*(1-1/DF)
    CO?V«YCa(Z) - YCJU).*  (1-1/DF)
    PNOV"   YN(?)- YN(1)*(1-1/OF)
    808V
       CALCULATION  OF  HUMIDITY CORRECTION FACTOR. ,KH

    XKH  •  l.O/h'.O  -  O'.OOH? * (H-75))        ,
V037S
*0377
••0378
»0380
*0381
»03B8
••0363
4-0385
*038b
••0387
••039?
«.03"<3
•-031H
••0317
4-QifOO
••0102
••0*03
 OH07
••OHIO
••0*11
••on?
••OH13
<-OHlb
*0*17
••cms
4-0*5?
4-OHJ3
 4-OHJ7
 «-Ot30
 4-0*31
 4-0*3?
 4-0*33
                                    E-21

-------
802(1) > (YSJ(l)* 100,1/Si.
CONTINUE

     CURVE or METER READING vs CONCENTRATION
HOI IF(SO!B(2)'.IT.10) GO TO HO*
    802(2) «(SO»(2)*100.)/(b.4m«IE-03)»eO(I) +S.«l01bBfc3E-01)
    GO TO 50
  3 YC(I) • CO/I)/(((».n7Z87qE.07 *CO(I)
   1        f3.018BO?1E-03) *CO(I) » 1,0101043)
* CO(I)

* CO(I)

* cocn
                                *CO(I)« 1.7317t77E"Ok)*CO(l )
                                                       *CO(I)
                                                                           *031b
                                                                           ••0323
                                                                           ••032*
                                                                           ••0330
                                                                           ••0331
                                                                           ••0332
                                                                           ••0333
                                                                           «-0335
                                                                           «-033b
                                                                           00337
                                                                           ••0338
                                                                           *0331
                                                                           •-03HO
11/02/77*03HH
11/02/77*0350
ll/02/77«-0351
        »0352
7/1S/77 *0353
7/1S/77 *03S»
        00355
7/15/77 «-035b
7/1S/77 *03S7
        »OJ59
 SO Kl
    GO TO  (52.53,54) KK
 • ** THESE EQUATIONS FOR BAG CART C0«  S/N 2010Sk CALIB.  ELECTIVE 4/8/7b
 52 YC2(I) • C02(I)/(((-3.3»2T3!4E»Ok • COI(I)  t 4.k5»BB47E-OH)*COe(I)
   1         -1.H3103ME-01)* CO«(I) » 1»»Z0114BE»01)
    GO TO 5k
 53 YC2(I) n C0»( I) / (((B. 8974bBbE-0? * COXI) » 1,43HS77»E-0*)*  C02(I)
   1         -l,31H21SgE-01) • C02(I)
    GO TO 5b
                                    17 * com)  +
                               COt(I)
                                                                           »03bO
                                                                           *03bl
                                                                           *>03bt
                                                                           »-03b3
                                                                     <«/B/7b*OJt,5
                                                                           *03fcb
                                                                     4/8/7fc*03b7
                                                                           »OI7I
                                R-22

-------
          Tp." ..... AVERAGE TEMP. OF DILUTE EXHAUST ENTERING POSITIVE
          uu.v •  •  .OI;PU«MENT PUMP DURING TEST IN DEGREES RANKIN'            *oeso
          VM;*.,.,,., TOTAL DILUTE EXHAUST VOLUME IN CUBIC fill                  *0?S1
          N ......... NUMBER OF REVOLUTIONS OF THE POSITIVE DISPLACEMENT         »o?s?
            ..... "UMP OURINC THE TEST PHASE                                 »0253
          Df ...... ..BLOWER DIFFERENTIAL PRESSURE IN INCHES H80                 *02S»
     ICT.l

      °° io "i.«
       READ 1005,   MCd),HCR(I>,eO,            .0258
    1 NOXRCn.NRLW, SEGNO, RC,SIF,SO»d>,308R(J)                                 »nlsq
     IFd .EO. 1) N(ICT)«NBLW                                                  «.nji,n
     IFd.EQ.U TIME .SECNO                                                    *"
     IFd.EQ.l) SCNT . RC
     IFCI.E8.1) PFS > SIF
  HO CONTINUE.
     IFtMILES.NE.O.) GO TO
     MILES . RCNT/zsiLfcii
  3* TP . ITP » no.
     RD . TIME/fcO'.
     STP ' ITP
       P9ARM . P8AR * 85, «
       G1A > P8ARM . (PI » l
     BPM . N(ICT)/RD
     0PM . op . .H7I55
     618 « OiA/f5.»
     X • (SQRT((TP*DPM)/GlB))/RPM                                              4-OJ7S
     GO TO(S*0,S02<4t>
    1 SAMVOLdJ.VOLTEMCIJ, VOLPRS(I)                                           *0297
     CONTINUE
      CALCULATIONS  FOR  S02  PPM  FROM SOZ-BCA                                *0300
                                                                               »0301
     DO »010 I»1,B                                                             »0302
     VOLTEM(j). VOLTEM(J) » »bO.                                               *0303
     VOLPRSfD" PBA*. (. 07355* VOLPRSdM                                      «-030i»
     S2M81(I)»(S29TD(n*S2BlA(I)*10.*S2BlDd))/S2SAd)                          *0305
     S2MB2(!l«(S2STO(I)»S282A(n*10.«S2B«DdJ)/S2SAd)                          «-030k
     032 • t.411 * fvOLPRS(I)/«9.^2) * (»42/VOLTEMd ) )                          *0307
     328 1C •rS«STD(I)*S2BlAd)«S»8lDd)*.»JS«)/(S2SAd)*OSl«SAMVOL(n)         «-0308
     S2B2C •(S2STD(n*32B2Ad)*82B2D(I)*.83St)/(S!8A(I)*DS«*SAMVOLd))         «>0304
     YS2(I)  . SfBlC + 3?B;C                                                    «-0310
                                   E-23

-------
   JNCYL" NCYL
   TVMOO(l) • VMOD(l)
   TVMOD(t) • VMOD(§)
   TVID(l) • VID(l)
   TVID(2) . VIO(I)
    OISPM • IOISP * o'.
   ICWTM • ICWT « 0.»SJk
   GVMM  i GVM * .HSJb
   PRINT »000. ICN
   READ 100*.   KO,PBAR.DBULS,WBULS»lTP,PI,DP,DRV,OP«,BF»»,ErW,MXLES,
  iRHC, FPPG. 1CVS,S2C, SIC
   PRINT «001, IMO,IDY,IYB,ITN,IUN,MODYR,VMOD,VIO,   OI8PM,CV»,NCYU,
  1DRV, ICWTM, GVMM
   RHC * 1,14*
   FPPG »7.07
   FPP6M» FPPG * 111. 841
   DTM • MJLES * l.bOt
   XHCMW m ll'.Oll *  (RHC * 1.008)
   PCTC • 12.011 / XHCMW
   IF (MJLE8. E0'.10.«») MILES • 10.l»t
   FW • BFW • EFW
CALCULATION FOR ABSOLUTE AND RELATIVE HUMIDITY
   TC
   PC
   t
   e
   c
   D
   TDB
   X
   PDB
218.lt,?
173.Ik
         «(5./»
   PRINT tam, WBUUBM.OBULBM,R,HM,PBARM,FWM,OTM   ,FPPGM,RHC
    CALCULAIONS TO GENERATE EXHAUST EMISSIONS
                                                \

        HC'.,,,...,HYDROCARBON CONCENTRATIONS
        PNO..,....OXIDES OF NITROGEN CONCENTRATIONS
        eo........CARBON MONOIDE CONCENTRATIONS
        CO?	CARBON DIOXIDE CONCENTRATIONS
         SUBSfRJPTS
         U)...,^CONCENTRATION OF THE DILUTE  AIR  (BACKGROUND)
         01B7
                                                                      *018B '
                                                                      »01B9
                                                                      ••Oil*
                                                                      ••ozoo
                                                                      ••0201
                                                                      *020b
                                        ••0213
                                        *081»
                                        ••OilS
                                                                      ••0217
                                                                      ••0218
                                                                      ••0214
                                                                              ••0221
                                                                              ••0222
                                                                              »022J
                                                                              •-022*
                                                                      •-OJ27
                                                                      ••0228
                                                                      •-0231
                                                                      «-0230
                                                                      ••0231
                                                                      ••0232
                                                                      ••0233
                                                                      ••023*
                                                                      ••0215
                                                                      *023b
                                                                      ••0237
                                                                      *023B
                                                                      ••0239
                                        »02Hb
                                        «-02>>7
                                    E-24

-------
b018 FO»MAT(/,SX,*3ULPUR DIOXIDE DATA*)
hOZO FORMATC/,bX,*SAMPLE VOL.  CU.  FT.   *, 3X,F8,Z, 17X,F8.Z,/,         *
    J bX,*SAMPLE TEMP'. OEG, F   *,IX,F».0,17X,F8.0,/,
    Z bX,*AREA»BUBBLER 1        •,»X,F<».Z,lbX,F<).?,/,
    i bx,*oiL. FACT. .BUBBLER i  *,ix,FB.o,i7x,Fe.o,/,
    » bX,*AR£A, BUBBLER I        *,»X,FX,F«.*,lX,Ffc1»,JX,FS.J,'»X,F6.»,
    8SX,F».J)
700? FORMATf/.lX,  7X,*OVERALL  AVERAGE*, »X,FS.?, ^X,FS. I, SX.Fb. Z, JX.FS.?,
    l>»X,FB,?,3x,Fb.i»,3X,F5.?,i*X,F5,?,3X,Fb,Z,JX,FS.Z,»X,F5.J,5X,F».Z,/}
7003 FORMAT(1X,»X,*DRIVER  *,A3,«  AVERAGE*, »X,FS. 8, ^X, FS. Z, JX.Fb.Z, 3X,
                ''
ZF».Z)
                                                \
         READ  INITIAL  DATA  FOR  A  TEST
     JJ*1
  Z5 READ  loni,ICN,IuN,ITN,IMO,IOV,lYR,MFC,VMOO,VID,MODYR,lDISP,CYA,
    INCVL.JTC.AHP.ICWT.GVM
     IF(EOF,bO)  999, Zb
  {b IFtGVM.OE.qq'C^)   60 TO  1M
     TGVM  • SVM
     JICN  « ICN
                                                                            4-01?5
                                                                            4-01?b
                                                                            *01?7
                                                                            *01?B
                                                                            »oi?i
                                                                            4-0130
                                                                            4-0131
                                                                            4-013?
                                                                            «-0133
                                                                            *013»
                                                                            *013b
                                                                            4-0137
                                                                            *013B
                                                                            *01HO
                                                                            »om
                                                                            +01*3
                                                                            «.01«t»
                                                                            »01»5
                                                                            «-01»b
                                                                            *01»8
                                                                            4-0150
                                                                            *aiSi
                                                                            4-01S?
                                                                            4-0153
                                                                            »0155
                                                                            4-oiSb
                                                                            *ai57
                                                                            4-Q1SB
                                                                            4-01S1*
                                                                            4-OlbO
                                                                            *01bl
                                                                            4-Olb?
                                                                            4-oibS
                                                                            4-Dlb*
                                                                            *01bS
                                                                            4-Olbb
                                                                            4-01b7
                                                                            »01bB
                                                                            4-0170
                                                                            4-0171
                                                                            4-017?
 JIDISP .IDISP
 TCYA • CYA
                                                                            4-017*
                                                                            4-0175
                                                                            *017b
                                                                            4-0177
                                                                            4-0178
                                                                            4-0179
                                                                            4-0180
                                                                            4-0181
                                                                            4-018?
                                                                            4-0183
                                                                            4-018*
                                                                            4-0185
                                 E-25

-------
    Z bX,*SAMPLE TEMP. OEG. F
    3 bX,*SAMPLE AREA SO. IN.
    * bX,*DILUT;ON FACTOR
    S bX,*STANB  DEN. MICROG/ML
    b bX,*8TAND. AREA SO, IN.
    7 bx,*so»,MICROS/FILTER
3X,F8,0,17X,FB,0,/,
    1/,IX,*HC  SAMPLE  '(»PM*,lkX,10X,FJ.O,                             -          *00b3
    a/,8X,*HC  BACKGRD METER READING/SCALE*,10X,F8.1,*/*» II,                    *>00b*
    3/,8X,*HC  BACKGRD PPM*, IbX, 10X,FS,0,                                       »>OObS
    »/,SX,*CO  SAMPLE  METER READING/SCALE*, 10X,FS.I,*/*, II,                    *00bb
    5/,8X,*CO  SAMPLE  PPM*,lbX,lflX,FS.O,                                       4-OOb7
    b/,8X,*CQ  BACKGRO METER READING/SCALE*,10X.FI.1,*/*,II,                    *00b8
    7/,BX,*CO  BACKGRD PPM*, IbX, 10X.F5.0)               ,                        4.()0b9
ZOOS FORMAT(BX,*C02 SAMPLE  METER READING/SCALE*, 10X,Fi. 1 ,*/*» II.               *>0070
    1/,BX,*COZ SAMPLE  PERCENT*,1ZX.10X.F5.Z,                                   »0071
    Z/,8X,*COZ BACKGRD METER READING/SCALE*,10X.FB,I,*/*,II,                    4-007Z
    3/,8X,*COZ BACKGRD PERCENT*, 1?X, 10X,FS,2,                                   4-0073
    »/,8X,*NOX SAMPLE  METER READING/SCALE*, 10X,FS.I,*/*, 11,                    4-007*
    S/,8X,*NOX SAMPLE  PPM*, IbX, 10X.F5.1,                                       4-007S
    b/,BX,*NOX BACKGRD METER READING/SCALE*,IQX.Fl.l,*/*, II,                    4-007b
    7/,8X,*NOX BACKGRD PPM*,IbX,10X,FS.I)                                       »00?7
ZOOb FORMAT(iX,*HC  CONCENTRATION PPM*,ZOX,FI,0,                                4-0078
    1/,8X,*CO  CONCENTRATION PPM*. 20X,FS .0,                                     4-0079
    Z/,BX,*COZ CONCENTRATION PCT*. ZOX.F5.Z,                                     4-OOBO-
    3/,8X,*NOX CONCENTRATION PPM*,|OX,FS.I,                                     4-OOB1
    */,8X,*SOZ COCENTRATION PPM*,ZOX,F5.1,                                      »OOB8
    S/,BX,*HC  MASS (GRAMS)*,SX,18X,F7,Z,                                       4-0083
    fa/,BX.*CO  MASS (GRAMS)*,SX,18X,F7.2,                                       *008*
    7/,8X,*COZ MASS (GRAMS)*,SX.17X.F8.Z,                                       *>008S
    8/,8X,*NOX MA33 (GRAMS) *, 5X, 18X. F7.1,                                       4-OOBb
    9/,8X,*SOZ MASS (GRAMS)*,5X,17X,FB,Z)                                       4-0087
8007 FORMAT(/,SX,*HC  GRAMS/KILOMETRE*,»X»F1,«,                                 4-0088
    i/,sx.*co  GRAMS/KILOMETRE*,ix,Fb.2,                                        4-0089
    z/,sx,*coz GRAMS/KILOMETRE*,ix,FS.O,
    3/,SX,*NOX GRAMS/KILOMETRE*,*X,FI.2,
    */,SX.*SOZ GRAMS/KILOMETRE*,*X,Fl.2)
2008 FORMAT(/,SX,*HC  GRAMS/KG OF FUEL*,2X,FS.Z,IX,*HC   GRAMS/MIN*,ZX,
    J/,5X,*CO  GRAMS/KG OF FuEL*,2X,FS.l,SX,*CO  GRAMS/MIN*,ZX,FS. 1,            4-0095
    3/,SX,*COZ GRAMS/KG OF1 FUEL*,»X,FS,0,SX, »COZ GRAMS/MIN*, ZX.FS.O,            4>009b
    */,SX,*NOX GRAMS/KG OF FUEL*, JX,F5,Z,5X,*NOX GRAMS/MIN*,2X,F6.2,            4-0097
    s/,sx,*soz CRAMS/KG OF FUEL*,ZX,FS.Z,SX,*SOZ GRAMS/MIN*,ZX,FI.2)            *oo9B
2010 FORMAT(BX,*SOZ SAMPLE METER READING/SCALE*, 10X,Ft, 1,*/*!!,                 4>0099
    1/,BX,*SOZ SAMPLE  PPM*,IbX,10X.F5.1,                                       frOlOD
    Z/,BX.*SOZ RACKGRD METER READING/SCALE*, 10X.FI,I,*/*, II,                    «-0101
    3/,8X,*SOZ BACKGRD PPM*,IfcX,1 OX,FI,1,/,IX)                                  >010Z
Z999 FORMATdX,* WRONG CVS NUMBER*)             ,                               »OIOJ
bOOO FORMATdX,/  ,$X,*TOTAL CARBON •*,      FB.»,* GRAMS*)                     4.010*
booz FORMAT;/,sx,*c*R80N BALANCE FUEL'CONSUMPTION  **,Fb.t,*  LITRES  PER         4-0IDS
    iHuNDREo KILOMETRES*}                                                       *-oioh
b003 FORMAT(SX,*TOTAL CV8 FLOW "4.F8.1,* 8TD, CU.  METRES*)                      »0107
bOlO FORM»T(/f 5X,*DATE *.IZ,*/*,I2,*/*,I2,1*X,*TIME *,IS,* HR8.*,8X,            4-0108
    1*TEST NO. *,1Z,/,                                                          *0109
    ZSX.*MODEL  19*,IZ,IX,Z(AIO,A»),SX,*ENGINE*,F».I,*  LITRE*,AI,II,/,         4-0110
    3SX,*BARO. *,Fb.l.* MM  HG.*)                   \                            4.Q111
b012 FORMAT(«X,*RUN DURATION *,F».Z,« MIN,  DISTANCE  DRIVEN  *,Fb.l,            4.0118
    1 * KILOMETRES*,/,       ,                                                   *-0113
    z sx,*cvs BLOWER TEST VOL. *,F7.z,* ACT. cu. METRES*)                       4.011*
bOl* FORMAT(/,SX,?7X,*SAMPLE *, UX,*BACKGROUND *,/,                             4-0115
    1 SX,*SULFATE DATA *,1*X, •-•«»-• *, IbX, *..........  *)                       4-Ollb
bOlb FORMAT*/, bX,*FILTER NO.           *, 3X, AID, 18X, A10,/,                      4-0117
    1 bX,*SAMPLE VOL..CU. FT,  *,  3X.F8.Z, 17X,FB.Z,/,                           4-0118
                                              4-01ZO
1X,FI.O,17X,FS.O,/,                           4.0121
}X,FB.Z«17X,FB.2,/,                           4-01ZZ
ZX,F9.2,lbX,F9.2,/,                           4-0123
1X,F8.3,17X,FB,1)                             *>01Z*
                                     E-26

-------
D9BMWS,P10,T30,I0100,LS,MFLbS0e0.
ACCOUNT(CbZ??o,SLICKmHi»»Otil                                       •
CIDCHARRY DlETZM/kNN.Zb^)
REHINOfDISKl.DISK?)
COPYCR(INPUT,BI3K1)
COPYCRCINPUT.OISK2)
REHlNDfDISKl.DISKaj
eOPYCRfDISKl, OUTPUT)
LIBRARY(RUNZPJ)
RUN(S,,,,,,ZOOO)
MAP(PART)
SETCORE(INDEF)
REDUCE.
L60.
COPYCR(OI8K|,OUTPUT)

PM      TURN PRINTER PAPER OVER

PM      RESTORE PRINTER PAPER
•
      PROGRAM DSR"WS (INPUT, OUTPUT, PUNCH, T APE bO»!NPUT)
      INTEGER HCP(2).eOR<2),C02R,PNO(2),eO(?),e02C2),YH(2), YN(?),YC(Z5,
     2 YC2(S),HCU(3).PNOMC3),COM(!),BUF(2S,3),1BUF(25,7),NOXR(Z),
     3ICAN(3),N(3),CO?M<3),CHe(3),CCO{3),CCOZ(3),CB<3)
      DIMENSION HCWM(3),COWMO),CO?WM(3),PNOWM(3),SMHCf3),SMCO(3),
     16MCO?(3),CMNO(3),CPHC(3),8PCO(3),ePCO?(J),6PNO(3),IARY(18,S),
     ZB4Ry(l?,lZl,9uM(lZn»v6(lf),0»V6(lZ)iTV»OD(a), TVIO(ZJ,SOZ(3),
     3        YS?f?).SO?M(35
      DIMENSION S3STO.SJOF(g),sMUZ),SSVF<2>,S3TEM
-------
                                              TABLE
               UNIT  NO.   US         TEST  NO.  5
               VEHICLE MODEL   VW  RABBIT DIESEL
               TEST  TYPE   17blB87»

               BAROMETER  733.0» MM  OF  HG.
               DRY BUL8 TEMP.   25.b DEC.  C
               REL.  HUMIDITY      53 PCT.
               EXHAUST EMISSIONS
                                                     1175
                                                                      VEHICLE  EMISSION  RESULTS
                                                           LIGHT  DUTY  EMISSIONS TEST»
                 DATE   3/17/77
                 ENGINE   0.00  LITRE  •*  CYL.
                 COMMENTS   1175 FTP 3 BAG  EM-J38-F
           MFGR. CODE   -0
           TEST WT.  1020 KG
                        YR.  117fa
                        ROAD  LOAD    S.H  KM
                                              WET  BULB  TEMP   18.1  DEC.  C
                                               AB3.  HUMIDITY   11.3 MILLIGRAMS/KG
                   BLOWER OIF. PRESS., G2,  ^57.2  MM.  H20
                                              BLOWER  INLET  PRESS.,  Gl  3S3.7  MM.
                                              BLOWER  INLET  TEMP.    >*3  DEG. c
M
I
NJ
03
BAG RESULTS
BAG NO.
RLOWER REVOLUTIONS
HC SAMPLE METER
HC SAMPLE PPM
HC BACKGRD METER
HC BACKGRD PPM
CO SAMPLE METER
CO SAMPLE PPM
CO BACKGRD METER
CO BACKGRD PPM
C02 SAMPLE METER



READING/SCALE

READING/SCALE

READING/SCALE

READING/SCALE

READING/SCALE
C02 SAMPLE PERCENT
COS BACKGRD METER
READING/SCALE
COg BACKGKO PERCENT
NOX SAMPLE METER
NOX SAMPLE PPM
NOX BACKGRD METER
NOX BACKGRD PPM
HC CONCENTRATION
CO CONCENTRATION
C02 CONCENTRATION
NOX CONCENTRATION
HC MASS GRAMS
CO MASS GRAMS
COS MASS GRAMS
NOX MASS GRAMS
HC MASS MG
READING/SCALE

READING/SCALE

PPM
PPM
PCT
PPM





                         l.b/b
                          52
                         5.5/2
                          11
                        Sf.b/*
                          52
                         l.l/*
                           1
                        t7.b/3
                         .82
                         H.0/3
                         .Ob
                        2b.2/2
                        2b.2
                         1.0/2
                         1.0

                          ta
                          »9
                         .7b
                        25.3
                        l.bt
                        s.^a
                      SSS'.bS
                        3.37
                   WEIGHTED MASS HC
                   WEIGHTED MASS CO
                   WEIGHTED MASS C02
                   WEIGHTED MASS NOX
   .15 GRAMS/KILOMETRE
   .50 GRAMS/KILOMF.TRE
l«f8.S8 GRAMS/KILOMETRE
   .5^ GRAMS/KILOMETRE
    2
 ISbSb
  10.2/2
    20
   5.3/2
    11
  25.8/*
    2*
   1.8/*
     2
  21.5/3
   .HI
   H.3/3
   .07
  17.b/2
  17.b
   1.1/2
   1.1

    10
    22
   .t2
  Ifa.S
   .70
  2.18
913.15
  3.78
   .70
12.2/2
  2*
 4-. 3/2
   9
35. O/*
  33
  .5/«
   0
tl.B/3
 .71
 t.1/3
 .Ob
25.2/2
25.2
  .7/2
  .7

  Ib
  31
 .b5
2*. 5
                                                                                                Bll.b?
                                                                                                  3.27
                 CARBON BALANCE FUEL CONSUMPTION s
                 TOTAL CVS FLOW 3   251.1 STD. CU.
             5.57 LITRES PER HUNDRED KILOMETRES
            METRES

-------
       TABLE        EXHAUST EMIISIONS FROM SINGLE 8*6 SAMPLE
                          VEHICLE NUMBER
DATE  3/15/77              TIME    -0 HRS.
MODEL  197fe VW RA8BJT DIE3.NYCC
DRIVER   DT                TEST WT.  1080 KG.
WET BULB TEMP  18 C        DRY BULB TEMP  8b C
SPEC. HUM.   9.5 GRAM/KG   BARO.  7*0. * MM  HG.
DISTANCE   8.H13 KM        FUEL 8*7.3 G/LITRE
                                                TEST NO.  5
                                                ENGINE 0.0 LITRE    » CYL.
                                                GVW    0 KG
                                                REL. HUM.  *3.8 PCT
                                                MEASURED FUEL  o.oo KG
                                              FUEL HC  RATIO 1.8**
RUN DURATION
BLOWER INLET PRESS.
BLOWER DIF.  PRESS.
RLOWER INLET TEMP.
DYNO REVOLUTIONS
BLOWER REVOLUTIONS
BLOWER CU. CM /REV.
                        9.99 MINUTES
                      393.7  MM. HSO
                      *S7.8  MM  H20
                         *3  DE6. C
                       2780
                        10721
                       8709
  BAG RESULTS
   HC  SAMPLE  METER READING/SCALE
   HC  SAMPLE  PPM
   HC  BACKGRD METER READING/SCALE
   HC  6ACKGRO PPM
   CO  SAMPLE  METER READING/SCALE
   CO  SAMPLE  PPM
   CO  BACKGRD METER READING/SCALE
   CO  BACKGRD PPM
   CO? SAMPLE  MFTER READING/SCALE
   COa SAMPLE  PERCENT
   CO? BACKGRD METER READING/SCALE
   CO? BACKGRD PERCENT
   NOX SAMPLE  METER READING/SCALE
   NOX SAMPLE  PPM
   NOX BACKGRD METER READING/SCALE
   NOX BACKGRD PPM
   HC  CONCENTRATION PPM
   CO  CONCENTRATION PPM
   C02 CONCENTRATION PCT
   NOX CONCENTRATION PPM
   302 COCENTRATION PPM
   HC  MASS (GRAMS)
   CO  MASS (GRAMS)
   COa MASS (GRAMS)
   NOX MASS (GRAMS)
   SO? MASS (GRAMS)
HC  GRAMS/KILOMETRE      .*3
CO  GRAMS/KILOMETRE      .85
co? GRAMS/KILOMETRE   178
NOX GRAMS/KILOMETRE      .b*
302 GRAMS/KILOMETRE     0.00

HC  GRAMS/KG OF FUEL   7.57
co  GRAMS/KG OF FUEL   is.o
CO? GRAMS/KG OF FUEL   3185
NOX GRAMS/KG OF FUEL  11.85
808 GRAMS/KG OF FUEL   0.00
                                           28.9/8
                                             Hb
                                           12.0/2
                                             8*
                                           33.Q/*
                                             31
                                            9.1/*
                                              9
                                           88.5/3
                                            .3b
                                            5.1/3
                                            .Oft
                                           13.0/8
                                           13.0
                                            2.7/8
                                            8.7
                                             28
                                             8?
                                            .89
                                           10.*
                                           0.0
                                           1..0*
                                           8.Ob
                                         *89.10
                                           1.5*
                                           0.00
                              HC  GRAMS/MIN
                              co  GRAMS/MIN
                              coa GRAMS/MIN
                              NOX GRAMS/MIN
                              302 GRAMS/MIN
  .8
  *3
 .15
0.00
                                                  .1
CARBON BALANCE FUEL CONSUMPTION a  b.71 LITRES PER HUNDRED KILOMETRES
                                     E-29

-------
                    Program Description
Program Title
                     /TUN M E L  K» ._^.__ DATA
Name   t.T. _>V A P-i-  ____
Address   —    ------------------- -   ------------------
City ___ ' _________________   ______ _________________ State
                                                        W _______    H 16
                                                              Date  V» /?7
                                                            --ZipCode
Program Description, Equations, Variables, etc.   	
 	  	    ._    	.	
                 /T3.ST   =  0,.41T)_(6_<-
-------
         User Instructions
TUIVJWEU 1-
                    H\B
REPEAT fort RtPwr POR, t S(WI(>IECS '
 STEP
       _ STEP II n STEP is _ STEP It  _ ST&P IT _
STEP
1
2
3
4
sr
(i
7
6
9

10
1 1
IX


'3

lA-
\S



\(5


n

ia















INSTRUCTIONS
UOAD PKJDG.RAM
IN ITlALI £E
STOKE- TV (_ROOM A,rM6>E(VT) , AVG-,
STOR-E. R-OU- COVWTS*
STORE. TEST T< rv\E.
IMPVT iWTE-G-iiATEO eUlWjtK. TSM P.
INPUT ATWOSPrVtRlC PRESSURE., AVG-.
1NPOT PU.OIOER. IWU-T fRCK., «* rt^O 66U)lO /\TM.
mPur 6^«\AJEi?. toufjrt

INPUT TIKE lNtR-£rWCWT i
INPUT ORIFICE. Alf> ^OR- TlVWt IN/C-CEMFMT j
INPUT OK'^ICt Tt/VVP. FOR- TIKV1E lN»teElV\EA/T j


C.DMPUTE Pil-vou MASS Fop. TEST

1MPUT TlfJAU btlA VOLUME-, S-VSTErtA V
\NPUT (NITlAL bGllA VOLUME, SYSTEM v.
^_ 	 f^_If x . tf_ , 	 ^ . , ^


1MPOT n.* PftRTiCDLATE oM FILT-&R. i , AWD
COW.PUTE CTOT. PA,E.1. E«lTTt D /TE^T )• IM jTHivLi

COIXPUTE (pAe-n.CUV.ftTE IN »>">«* /tew );

COMPUTE ( PftR-TlC^UATE IH Jv»"«S/h*-); ,
0\5P> -AV rnfL S SFC-OMC.;

( ftUTOWAft. ) C-QWTlWVJE PCJ)Ol2-AnAA





f-\l>» m\.«i-^ 4, Vt v»'»«~ /*«,a«H)
tfFUVTT1'- l-ATA ReOlSTt-t Cflrtft
B fctouHE wftSS , Ibw. M.ISiS )4 ,
1 ks^rnfLE w^oJjJW S (^S/WPlE *«S.^r
2- ^JAwPa wA£!;)i, Ik- t (SAMPLE ^>K)t/
1 (sA*t».L •"»il)3,lt_ II

INPUT
DATA/UNITS


~U, °F
R O U l_
COOf^TS*
TtS-T -n«*^£,
t«.C^
Tb, °F
H., i« ^
t>L.;>l H*-0
6COWJFR-
CJOUiyTi

Atj, "TO ] Q~B |
[>TO | [ 9 |
1 t II 	 1
LT 1 L 1
[7^7] 1777]
1 .^s 1 1 1
[ 	 ] C 1
1| 4 | | 	 J
r* i r i
! B | | |
1 	 1 1 	 1
i 	 i 1 	 1
[V^l CT~]
1 II 1
i r^ 1 1 i
\ I c- 1 1 1
1 III
L 	 ... ^- 1 1 	 I
i 	 i [ i
| 	 | Q 	 |
|_D_) | 	 J
1 	 1 1 	 i
| E. J [ 	 ]
| 	 | |_ 	 J
| 	 | | 	 |
|g-/s | | 	 |
1 II 1
1 1 L . . 1
i ii i
i 	 1 1 	 1
I 	 1 1 	 |
1 II 1
1 	 1 1 — ... .. -i
1 	 1 1 	 1
1 	 1 1 	 I
1 	 II 	 1
1 	 1 1 	 |
1 	 11 	 I
I 	 1 1 	 1
1 II 1
OUTPUT
DATA/UNITS








eleven »Ats
Fen TEST






1= 1


NEXT I


i- 1

(PACT. /•-tSC-l):
Jl'OJ- I

PA«.r»ClxA1t X
V«~i A —


3vawi /K*^

NEXT i.



-) (EMd)








                     E-31

-------
STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS
001








010









020









030









040









050






•f UB.L A
" 1
3
,
{,
•
K *. 5y
Vn> E
r. » y

Vv *. 5y
4-
t
0
-t-
-V
.
4.
•L
-1
-)
X
R-/S
X.
v«> a
B-/S
f LttC. S
4-
&
0
•l-
-|-

5
\
7
K V"
Xv
S-ro •*- T
R/S
R£,L E-

£-
\
7
H Y*
Q>
.
S
\
ft
y
R.C.L 7
X
itt) C,
i

























































1 aLtwEC-M^/'tE"
1 ^^'^
1 AC.^ _ A 2 1 "
j 	 — Oo*-*



HiV^' J"*~"), (l»l>.~«0t (W.~«),
SO S1 S2 S3
A. | ,
3 6toujtR. rt^ASS ^
TtiT
£T3



060









070









060









090









100









110


K VT I
R./S
•^ L.&U C,
—
I
.
3
i
(,
<.
B-tU E-
f.
K.tL C>
4
t
0
v
~^
•iTtl C.v )
Vl K.C I
1
•t-
K vr X
S"TO A
S
—
•f > > o
R./S
R.C-L A
e/ys
f ^BL D
1
0
0
0
-r
v, x 5 y
K vr i
h x. Sy
RCL U)
-f
t c-sa o
<
S.TO O
e./^
f LBL E
RCL B
1
4-
S
0
.
\
•z.
-7-























































T 1
-
REGISTERS
4
34

fsH^s (UV~V J,(S)
S5 S6 S7
0
8 ROU^ 9 -^tsT
SB SB
E . I SNWPLE sysrt«n |
p , J. * 1
E-32

-------
                          Program
STEP  KEY ENTRY
               KEY CODE
                            COMMENTS
                                         STEP   KEY ENTRY  KEY CODE
                                                                     COMMENTS







120









130









140









150









160








R./S
r>CL
?
3
fe
0
0
-f
RCL o
K ».£ X
-4-
•f -
H-
K et i
1
-V
K UTN
f LBU 0
(J.CX B
R-tL 1
-(-
C-tL 7.
*-
R-C.L 3
4-
ICL 4-
4-
RtL S
+-
ec-L. i.
»-
K R.TW

































•






































































170









'80









190









200









210









220




























































LABELS
A -.TTP S
a
0
5
8 1TEP IT- C ^TEP IS"
b c
1 2
6 7
D S-rtP 11.
d
3
8
E1TT-P O
e
4
9

























































FLAGS
0
1
2
3








SET STATUS
FLAGS TRIG DISP
ON OFF
o n a
1 D 0
2 n ur
3 n 
-------
TOMWEL.  7-
                                       il-4C,S4-ooi
                                                                   TO
      4--21- 77TEST  M..

            FT/7-//    DfclVEIZ.
T^=  R.OOM

OYMO  K-OLL  COUAJTS.
J= pHE
IMCE6MBA/T
1
2
3
4
s
c,
7
6
9
10
TimE «T
EWB,1«X..
ISO
31,0
s
»a PAft-
TitOtATE
o.o?(
0, f>H
o. 03 1
0. (BT
0.108
O.lS.3
o.n3
D,2Z»
4-*TI
5.^45
                                                                                                    •0.1?:
           DRV tfti
            BEFORE
                                 OM  FlLTE-e
                                                  TOT/VL
JJ/TE.ST-
                                                                                          HLTER.
                                    Z. Jll
                                                    2-. 7 41-
                                                                               7.184-
                                    1.001
                                                                 9.203
                                                                              (,.21-?
            on .
                                    3.090
                                                        U
                                                                 o.MI,
                                                                               T. T2.4-
                                                                                          M1~
           0 fl,
                                    3.0TZ.
                                                                 0.^,05
                                FILTER. «•  ois
                                    5,443
                                                    3. SI S
                                                                 o.
                                                                              9-tOE'
                                    I 44 • "Jo?
  3.3SM
               0.18S
At- f ,? 13
RE&.
B
1
i
5
DMA
BLWR. M^S>S.
SftmP. rnAl£ 1
S^r^^p,^nASS 2
SA«P mAlI 3
NJALUE
?> I1}. 05
0.1 It
0. 1 1-7.
o. in
eeo-.
4
S

-------
                           TEM MICROGRAPH DATA REDUCTION
Sheet by	
micrograph no.
vehicle
        _Project	
         magnification
                   Date
                    disc no.
fuel
test type
test date
agglom.
no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
size 1
than (
circle













































ess
Um)
line




























































































agglom.
no.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
size 1
than (
circle













































ess
ym)
line













































agglom.
no.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
size 1
than (
circle













































ess
ym)
line













































                                        E-35

-------
TEM MICROGRAPH DATA SUMMARY
size less
than (urn)
(particle)
0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.0
number of agglomerates by micrograph no. and sizing criterion

circle












line













circle












line













circle












line













circle












line













circle












line













circle












line











size less
than (vim)
(particle)
0.02
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.0
percent of agglomerates by micrograph no. and sizing criterion

circle












line













circle












line













circle












line













circle












line













circle












line













circle












line












            E-36

-------
          APPENDIX F





GASEOUS EMISSIONS AND ODOR DATA

-------
                                                MERCEDES 240D GASEOUS EMISSIONS - DISTANCE BASIS


        VAR.  4(3  VAR.   41  VAR.  4J VAR.   43  VAR.   44 VAR.  45  VAR.   4fa VAR.  47aVAR.   48  VAR.   49 VAR.   50  VAN.   Si VA*.  S2bVA*.   53
              HC        CO       NOX      C02      FUEL FORMALDE  ACETALDE  ACETONE ISOBUTYR  CROTQNAL  HEXANAL  BENZALDt 0-CRESOL  P-CKtSOL
            G/KM     G/KM      G/KM     G/KM  L/100 KM    MG/KM    MG/KM    MG/KM    MG/KM     MG/KM    MG/KM     MG/KM    MG/KM     MG/KN
FUEL 238
FTP 38AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
50 KPH
B5 KPH
FUEL 239
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
50 KPH
85 KPH
FUEL 240
FTP 3BAG
hj FTP C
1 FTP H
f° CFDS
FET
NYCC
IDLE0
50 KPH
85 KPH
FUEL 241
FTP 38AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
So KPH
85 KPH
FUEL 242
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
50 KPH
85 KPH

.1200
.1400
.0900
.OSOO
.UbOO
.2b73
2.2200
.0800
.0800

.1100
.2100
.1300
.0800
.ObOO
.2b?3
2.1000
.ObOO
.ObOO

.OSOO
.1000
.0100
.ObOO
.0*00
.1528
1.3800
.0400
.0500

.2000
.2400
.1500
.0800
.0500
.3310
2.1700
.ObOO
.ObOO

.1200
.1400
.1000
.0700
.0500
.2037
1.3800
.ObOO
.0500

.5700
.bOOQ
.5400
.3100
.3500
1.11)75
b.b300
.2700
.3bOO

.b400
.fabCJO
. b ri n o
.4500
.4000
1.3112
b.1800
.2700
.4100

.5700
.5800
.5800
.4500
.4100
1.3239
b.1200
.2500
.4000

.7100
.7500
.6800
.4800
.4000
1.5531
7.5900
.3000
.41100

.faBOO
.7100
.bSOO
.4500
.4100
1.2475
5.9400
.2500
.4000

.7800 22b,0000
.8100 23b.OOOO
.7300 211.0000
.8400 188.0000
.bBOO 172.0000
1.1712 353.8940
5.88001b30.0000
.4700 124.0000
.8400 172.0000

.7900 230.0000
.8100 242.0000
.6000 217.0000
.7200 194.0000
.7300 175.0000
1.2730 381.9000
5. 70001530.0000
.5000 132.0000
.7700 175.0000

.7300 228.0000
.7400 238.0000
.7200 215.0000
,b900 201.0000
,b900 188.0000
1.33bb 400.9950
b. 48001820. 0000
.4100 119.0000
.7000 181.0000

.8800 250.0000
.8900 2bO.OOOO
.8500 237.0000
.8300 210.0000
.8000 188.0000
1.4003 409.90bO
7.4700174Q.OOOO
.4900 131.0000
.7000 184.0000

.8500 251.0000
.8700 2fa3.0000
.821)0 233.0000
.71UO 183.0000
.fa900 173.0000
1.2348 348.8020
S.blOOlSlO.OOOO
.4500 124.0000
.b800 159.0000

8.4800
8.B300
7.9(100
7.0300
b.4300
13.2398
.blbO
4.b40Q
b.4400

B.bOOO
9.0400
B.1100
7.2400
b.5300
14.257b
.5780
4.9500
b.SbOO

8.5100
8.9000
8.0400
7.5200
7.0100
1S.U214
.b85o
4.4300
b.7bOO

9.3800
9.7400
8. BSOO
7.8bOO
7.0300
15.4033
.bSSO
4.9100
b.SbOO

9.3800
9.8300
8.7100
b.asoo
b.480D
13.1119
.5b70
4.b400
5.9bOO

4 . 7 1) 0 f!
b.OOLIII
3.80UO
2.2000
. BbOII
11.711b
b b . 0 0 0 0
1.1000
1.400P

s.onoo
5.7000
4. bOOl)
1. 9HOII
3. 31100
5.0920
0.0000
0.0000
.5300

2.5000
2.bOOO
2.4000
2.9000
3.7000
.4B37
0.0000
.8300
. 8800

7.0000
b. 70011
7.2000
1.1000
1.2000
0.0000
49.8000
0.0000
.8400

5.4000
5.0000
5.7000
1,2000
• 1.1000
3.1H25
37.8000
.9800
1.40011

1.0000
.9100
1.1000
.3400
.2900
3.1825
3,bOOO
.1500
.0840

.b900
.b700
. 7000
0.0000
0.0000
0.0000
0.0000
O.OOUO
0.0000

.0870
.1400
.0470
.4bOO
.faloo
O.UOOO
0.0000
0.0000
.0900

1.3000
1.1000
1.4000
.4100
0.0000
o.oooo
7.8000
o . o o LI o
0.0000

.5700
0.0000
1.0000
0.0000
o.oo.oo
0.0000
0.0000
0.0000
o.onoo

3.bOOO
a.booo
4.3000
.7800
2.0000
3b.9170
54.0000
.8200
.5800

3.1000
.4700
b.7000
0.0000
i.iooo
0.0000
o.oooo
0.0000
0.0000

.3100
.7300
0.0000
1.2000
1.4000
7.3834
37.8000
.7bOO
.3200

a. boon
l.bOOO
3.3000
1.9000
.7500
4.8374
fao. oooo
.0900
.3200

1.2000
.3200
1.9000
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000

.SbOO
.7400
.4200
.b700
.1100
3.b917
5.4000
.4300
.2500

.bOOO
o.oooo
1.4000
0.0000
b. 8000
29.8790
0.0000
0.0000
0.0000

2.9000
1.4000
4.0000
.5900
.4400
1.9095
10.8000
.2200
0.0000

1.2000
1.2000
1.2000
.4200
.2200
a.soob
lb.8000
.3300
.1900

4.2000
4.7000
3.8000
3.9000
b.4000
44.5550
288.0000
4.8000
1.7000

4.0000
4.bOOO
a.booo
1.1000
2.0000
24.1870
114.0000
3.2000
l.bOOO

3.7000
3.7000
3.7000
11.5000
2.8000
19.0950
108.0000
1 .4000
1.1000

3.9000
4.1000
3.8000
4.0000
lb.0000
17.8220
8b.4QQO
1.5200
.9900

3.7000
3.5000
3.8000
14.0000
.5400
14.0030
bO.OOOQ
1.4000
l.bOOO

3.4000
2.bOOO
4.0000
1.1000
.8800
4.7101
57.0000
1.1000
.2500

.7500
.8400
.bBOO
.3100
.1300
2.2914
90.01TOO
.2700
,4bOO

1.2000
2.0000
. b 3 0 0
.4200
1.4000
0.0000
49.8000
.SbOO
0.0000

1.3000
1.8000
1.0000
.5300
.4100
0.0000
13.8000
1.1000
.3900

2.1000
2.3000
1.9000
.aioo
.2700
3.5b44
13.8000
.2700
.IbOO

2.2000
1.2000
2.9000
1.2000
.3400
0.0000
44.4000
0.0000
o.ooon

2.200U
2.800U
1.800U
2.9000
3.000LI
O.DOOU
o . o o n u
1.200U
.480U

o.ooou
O.OOOU
0 . 0 0 0 U
o.ooou
1.3000
O.OOOU
O.OOOU
0.0000
O.OOOU

5.100U
5. 100U
5.10DU
.980U
1 . 0 0 0 U
3.b917
21.bOOU
.7200
. 490U

b.OOOU
4.5000
7.1000
1. 100U
5.100U'
1 4 . U 0 3 u •
43.200U
2.bOOU
.4000

.OBOU.
O.OOOU
.14011
O.OOOU,
O.OOOU.
O.OOOU'
O.OOOU
O.OOOU
O.OOOU







o.oo on o.oooo
0.00011 ii.OOOO
.032H .1)300







0.0000 ll.OuOO
0.00111) .0100
.02bU .0240







0.0000 .3800
O.OOOU .009b
O.OOlli) .0210







O.OOllll .b200
O.OOilil .0210
O.OOlli! .I)2b0







O.OOllll 0.0000
O.OOUO U.IJUOO
.01711 .ueno
a plus acrolein and propanal
  plus salicylaldehyde
0 idle emissions per hourC/h)
                           ather than per kilometer (/km)

-------
MERCEDES   240D   GASEOUS   EMISSIONS   -   DISTANCE   BASIS



FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
50 KPH
85 KPH
FUEL 23=1
FTP 36AG
FTP C
FTP H
CFDS
FET
NYCC
IDLEC
SO KPH
85 KPH
FUEL 2^0
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE0
SO KPH
85 KPH
FUEL 2m
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IOLEC
SO KPH
85 KPH
FUEL 2H2
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0
5(1 KPH
85 KPH
*• plus 2,
VAR. SH
2,H-XYL
MG/KM







0.0000
0.0000
0.0000







0.0000
0.0000
0.0000







0.0000
0.0000
0.0000







0.0000
0.0000
0.0000







0.0000
0.0000
0.0000
5-xylenol
plus 3,5-xylenol
0 idle emissions per
VAR. 55
2,3-XYL
MG/KM







0.0000
0.0000
n . o n o o







o . n o n o
o.oooo
0 . 0 U 0 0







0.0000
0.0000
n.oooo







0.0000
n. Oiioo
o . n o o o







o.ouoo
0 . 0 (1 (1 0
o. onno

hour (/h) rather than per kilometer (/km)

-------
                                                  VW RABBIT DIESEL GASEOUS EMISSIONS - DISTANCE BASIS


         VAR.  HO  VAR.   HI VAR.  He  VAR.   H3 VAR.  HH  VAR.   H5 VAH.  Hb  VAR.   H7aVAR.  H8  VAR.   HI VAN.  50  VAR.   51 VAR.   52bVArt.  53
               HC        CO      NOX       C02     FUEL  FORHALOE ACETALOE   ACETONE IS08UTYR  CROTONAL  HEXANAL  BENZALPfc 0-CRESUL  P-CRESOL
             G/KM      G/KM     G/KM      G/KM L/100 KM     MG/KM    MG/KH     MG/KM    MG/KM     MG/KM    MG/KM     MG/Kh    MG/KM     MG/KM
FUEL 238
FTP 38AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE c
50 KPH
85 KPH
FUEL 231
FTP 3RAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE c
5(1 KPH
85 KPH
FUEL 2HO
FTP 3BAG
FTP C
hr] FTP H
| CFDS
*> FET
NYCC
IDLE c
So KPH
85 KPH
FUEL 211
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE c
50 KPH
85 KPH
FUEL 2H2
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH

.1800
.2300
. IbOO
.0800
.1100
.5H7H
7.3800
.1000
.0800

.2000
.2800
.1HOO
. 1200
. 1000
.31Hb
b.HBOD
.0700
.1000

.1700
.2HOO
.1500
.1200
.1500
.3310
3.faOOO
.0500
.1300

.7100
1.1200
.3bOO
.2000
.1500
1.3H1H
17.5000
l.ObOO
.2000

.2000
,2bOO
.1HOO
.1000
.1100
.3bS2
b.3100
.0700
.0800

.H100
.5500
.H500
. 3bOO
.3200
1.UH21
IH.HOOO
.2700
.3300

.5100 .
. 5 7 0 0
. H 5 (1 0
.H200
.3800
1.158H
12.5()00
. 2 3 n 0
.3bOO

.5500
.5800
.SHflO
.H200
.HbOO
1.1831
lO.bOOO
.2900
.HbOO

.sino
.13110
. 7UUO
.H300
.3HOO
l.SlbS
28.0IJOO
.1200
.3300

.5200
.5700
.HBOO
.3800
.3100
.15H8
11. 1(100
.1100
.3500

.5100 153.0000
.bSOO 158.0000
.Sbuo its.ooon
.S3UO 127.0000
.5300 lib. 0000
.81H7 S2b.51H(l
H.bSOOlllO.OOOO
.3100 12.0000
.5500 111.0000

.bsno iso.nooo
.bSOO 158.0000
.5100 131.0(100
.5000 131.0000
.5700 121.0000
.1802 227.8b70
H.81001Q10.000D
.SHOO is.onno
.5700 117.0000

.5700 152.0000
.5800 IbO.OOOO
,5bOO IHb.QOOO
.5100 130.0000
,H8oo lei.oono
.7813 22H.OH80
5.73001110.0000
.3100 11.0000
.8HOO 111.0000

.58UO Ib2.0000
.5100 IbS.OHOO
.5800 150.0000
.5700 13H.OOOO
.5200 123.0000
.8111 2HO.S170
5.52001310.0000
.30UO 1H.OOOO
.5300 120.0000

.b300 157.0000
.b300 Ib2.0000
.bHOO 157.0000
.5700 13B.OOOO
.5800 12b.OOOO
.8111 SSl.bBbO
H. 77001120. 0000
.3800 1S.DOOO
.bOOO 1P1.0000

5.7100
5.1500
5.HHOO
H.7HOO
H.3500
8.5H1B
.H320
3.HHQO
H.H500

S.bOOO
5.1100
5.2000
H.1200
H.S200
8.5800
.H210
3.5500
H.3800

5.7100
b.UOOO
5.H800
H.B700
H.5500
8.HHQO
. H S b 0
3.HOOO
H.H700

fa. 1700
b.HSOO
S.bSOO
5.0200
H.blOO
1.2212
.5270
S.bSOO
H.5100

5.8100
b.o7nn
5.8800
5.0100
H.710U
B.blHb
.H320
3. SHOO
H . 5 H n 0

b.oonn
b.HIIOd
5. 7IIUO
3. BUDII
2.1UUO
2H. 1H7II
soH.nnnu
5.20011
i.iunu

5. 101)11
fa. a o no
t. 3 nnn
l.lnnu
2.Rf)lin
8.7H37
378.001111
1. 7l)i)l]
i.Hono

f .011011
H.bOOU
3.b()(IO
3.HOOO
2.2001}
I2.73nn
I32.ouon
l. Bonn
2.21)1)11

ll.onno
2 3 . fl 0 H 0
Ib.OIIOII
3.8UO!)
l.HUOII
11.202H
3BH.OOOII
20.00(11)
3.3oun

b.2IHIII
8. lonn
t. 70(10
1.81)1)1)
1.30011
3.1Hb3
2 7 b. On lid
3. 3 (HI II
1 .51)1111

1.2000
1.5000
.1000
.820(1
.15110
1.2730
HE.OUUU
.fa7(10
,2bDO

.31IIU
. 1 0 11 0
n.onno
(i.on no
0 . 0 0 11 0
n . o o n o
o . o o n o
o . n u u o
.1100

.Hino
.71)00
.lion
.21UO
.2300
2.03bB
? /an n o
.3800
.noun

H.snno
b.OOOO
3.101)0
.H5(IO
.2200
U.DOOO
1b. 00(10
H.HOOO
.5700

.Sbno
e. ooiio
o. oono
0.0000
o.oono
n.oofio
ine.oono
.2HUO
o . n n (i o

5.5(100
b.sooo
H.8000
2.5000
2.0000
lH.O(13n
132.0000
5.3000
1.5000

1 . 1 0 0 Cl
2.0000
.H300
.2100
o . o n o n
0.0000
0.0000
0.0000
.8100

.HbOO
.b300
.3300
,3bOO
.5700
0.000(1
IH.HOOO
.1HOO
.H500

B.HOOO
11.0000
b.SOOO
.1100
.bSOO
2.5HbO
ID.OOOH
3.3000
.8700

l.bOOO
2 . H u 0 0
.1300
0.0000
0.0000
0 . 0 0 (1 0
138.0000
1 . 3 n o 0
.3100

.7300
.8200
,fa700
17.0000
.bSOO
lO.HSBb
30.0000
.SHOO
l.bOOO

1.3000
1.2000
1.3000
0.0000
0.0000
7.812b
38H. 00011
0.0000
1.1000

1.2000
1.3000
1.2000
.3HOO
.7800
0.0000
lfa.8000
1.3000
.3300

2.3(100
2.2000
2.3000
.bbOO
o.nooo
1.1015
55.2000
1.3000
1.2000

1.8000
1.1000
1.7000
.1000
3.8000
HH.5S50
282. (1000
.8100
1.8000

b.1000
b.BOOU
5.5000
17.0000
2.bOOO
21.2711)
1HH.OOOU
2.HOOU
1.2000

3.7000
H.bOOU
3.0000
27.1000
B.100U
51.8310
HllS.OOCO
H.1000
1.3000

3.1000
S.bQQO
2.700U
2.7000
1.100U
10.H36b
8H.OOOO
H.HOOO
.5100

b.2000
b.FOOO
b.OOOO
l.bOOO
1.1000
12.H75H
132.0000
3.7000
1.200U

2.1000
2.7000
1.7000
.0100
1.7000
1H.0030
11H.OOOO
l.HOOO
1.8000

3.1000
H.BOOO
3.2000
21.0000
.1500
7.1288
H2.DUOO
.SHOO
.3200

.BHnn
1.3000
. s o n o
3.3UUO
.71UO
0 . 0 0 0 Cl
0 . 0 U U 0
1 . 1 U 0 0
0.0000

2.1000
S.bOOO
2.HOOO
2.5000
0.0000
H.B37H
IH.HOOO
.2700
0.0000

3.1000
3.HOOO
H.3000
.5100
.H100
7.3B3H
20.HOOO
1.1000
.2HOO

i.ooon
.bHUO
1.3000
o.ooon
1. 3000
12.7300
57.000n
.BSOO
u.oooo

5. 300U
7.100U
3.300U
Bl.OOOU
3.700U
7.383H
270.000U
S.bOOU
l.bUOU

.2BD(J
n.onou
.5000
0 . 0 0 0 b
U.COOb
o.ooou
O.OOOlJ
0. OOOU
0 . 0 0 U U

5.7000
3.200U
7.bOUb
S.bOOU
H.200U
S.012U
1HH.OOOU
.H30U
2.HOOU

7. 800U'
13.0DOU
3. ionu
2. 10UU
S.20(lb
17.822U
iba.ooou
S.BOOU
l.HOOU

U . 0 0 0 U
o.nooc
n.OUUU
o. nnou
o.nuou
o.ooou
r. . n u o u
. bRllU
0 . U U 0 U







0.0000 .3500
.02b() .0530
.035U .U3bO







0.0000 .2200
0 . 0 0 U 1) .0230
.02711 0.0000







o.onun .b?oo
.0071 .U230
.Ob 30 .0710







O.OUilll b.7000
.lonri .2700
.D87U .2100







0.0000 .SHOO
CI.OUIHI .0110
.UJPn .OH80
  plus 2,5-xylenol
  plus 3,5-xylenol
C idle emissions per hour (/h) rather than per kilometer  (/km)

-------
                                                         VW RABBIT DIESEL GASEOUS EMISSIONS - DISTANCE BASIS
                 VAR.  5* VAR.   55
                  5/t-XYL  2,3-XYL
                    MG/KM     MG/KM
^
FUEL 238
 FTP 3BAG
 FTP C
 FTP H
 CFDS
 FET
 NYCCC
 IDLE
 50 KPH
 85 KPH

FUEL 239
 FTP 3BAG
 FTP C
 FTP H
 CFDS
 FET
 NYCC
 IDLE0
 50 KPH
 85 KPH

FUEL  240
 FTP  3BAG
 FTP C
 FTP  H
 CFDS
 FET
 NYCC
 IDLEC
 SO KPH
 85 KPH

FUEL  2tl
 FTP  3BAG
 FTP  C
 FTP  H
 CFDS
 FET
 NYCC
 IDLEC
 50 KPH
 85 KPH
                   0. 0000    P. 0(100
                   0.0000     .OltU
                   0.0000    0.0(100
                   o.oooo    o.onoo
                   0.0000    0.0000
                   0.0000    0.0000
                   0.0000    0.0000
                   0.0000     .007t
                   0.0000    0.0(100
                     .IbOO    b.7000
                     .0037     .IbOO
                   0.0000     .0780
       FUEL 2"»8
        FTP 3BAG
        FTP c
        FTP H
        CFDS
        FET
        NYCC
        IDLE0
        50 KPH
        85 KPH
             o.oooo    n.ouoo
             0.0000    0.0000
             0.0000    0.0000
         plus 2,5-xylenol
         plus 3,5-xylenol
         idle emissions per hour (/h) rather than per kilometer (/km)

-------
                                            MERCEDES 240D GASEOUS EMISSIONS - TIME BASIS
VAR.  10 VAR.   11  VAR.   12 VAR.  13 VAR.   11  VAR.   IS VAN.  Ifa VAR.   17aVAR.   18 VAR.  11 VAH.   SO  VAR.   51 VAH.  f.2bVAH.   53
      HC        CO       NOX      COS     FUEL  FORMALIZE ACETALDE  ACETONE  ISOBUTVR CROTONAL  HEXANAL  BENZALUt 0-CKESOL P-CKtSOL
    G/HR     G/HR      G/HR    KG/HR     L/HR     MG/HR    MG/HH    MG/HR     MG/HR    MG/HK    MG/HR     MG/HK    MG/HH
FUEL 238
FTP 3BAG
FTP C
FTP H
CFDs
FET
NYCC
IDLE
So KPH
85 KPH
FUEL 231
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
5(1 KpH
85 KPH
FUEL 210
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 211
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE
50 KPH
B5 KPH
FUEL 212
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE
Sil KPH
85 KPH

3.7752
1.1011
2.8311
5.031b
1.bSl2
3.0315
2.2200
1.0000
fc.sooo

5.1771
b .bObb
1.0818
1.1752
tt.bS12
3.0315
2.1000
3.0000
5.1000

2.8311
S.llbO
2.8311
3.35b1
3.1008
1.73b1
1.3800
2.0000
1.2500

b.2120
7.5501
1.7110
1.1752
3.87bO
3.7b32
2.1700
3.0000
5.1000

3.7752
1.1011
3.11bO
3.HS8
3.87bO
2.3158
1.3800
3.0000
1.2500

17.1322
18.87bO
lb.1881
21.81bb
27.1320
12.5121
b.b3(10
13.5000
SO.bOOO

20.1311
20.7b3b
IB. 87bO
25.1730
31.llf.l8o
11.11182
b.1800
13.5000
31.8500

17.1322
18.21bB
18.21bB
25.1730
31.7832
15.0530
b.1200
12.5000
31.0000

22.33bb
23.5150
21.3128
2b.8512
31.0080
17.bS83
7.5100
15.0000
31.0000

21.3128
22.33bb
20.1110
25.1730
31.7832
11.1815
5.1100
12.5(100
Sl.nuuo

21.5388
2S.182b
22.1bS8
1b. 181b
52.713b
13.31bl
5.8800
23.5000
71.1000

21.8531
2S.182b
2S.lb8o
10.27bB
5b.581b
11.171P
5.7000
25.0000
bS.ISOO

22.1b58
23.2801
22.b512
38.518b
53.1888
15.1177
b.1800
20.5000
51.5000

27.b818
27.1111
2b.7110
1b.1302
b2.01bO
15.1211
7.1700
21.5000
51.5000

2b.7110
27.3702
25.7172
31.7171
53.1888
11.0318
S.blOO
22.5UUO
57.8000

7.1100
7.121b
b.b38l
10.51b?
13.3331
1.0238
I.b300
b.2noo
11.b200

7.2358
7.bl33
b.H2b8
10.8521
13.5bbn
1. 3122
1.5300
b.bOOO
11.8750

7.1721
7.1875
b.7b31
11.2131
11.5738
1.5513
1.8200
5.1500
15.3850

7.8b50
B.l71b
7.1SBO
11.7171
11.5738
l.fabOfa
1.7100
b.5500
IS.blOO

7. BlbS
8.2710
7.3302
10.2370
13.1110
3.1bS1
1.5100
b.2000
13.5150

2.bb78
2.7771
2.1853
3.132b
1.1815
1.5053
.blbQ
2.3200
5.1710

2.705b
2 . B 1 1 (1
2.5511
1.0501
S.nfa21
1 . b211
.5780
2.1750
5.57bo

2.b772
2.7111
2.5211
1.20b7
5.1312
1.7071
.b850
2.2150
5.71bO

2.1501
3.0b12
2. 713b
1. 31b1
5.1117
1.7511
.bssn
2.1550
5.8310

2.1501
3.0125
2.7102
3.8311
5.0233
1.1108
.5b70
2.3200
S.llbbo

117.Bb2n
IBS. 7bO(i
111.5180
123.0bBll
bb.bh72
133. Iblll
bb.unun
5 5. on mi
1 1 1 . 0 0 U 0

1S7.3IIUU
171.322(1
111 . 71 bll
10b.2Hbll
2S5.8ibu
57. Blbl)
0 . 0 0 0 11
0 . 0 U 0 U
15.0500

78.b50ll
81.71faU
75.5010
Ib2.22bll
28b.B21n
5.5001
0.00011
11.5000
71.BOOO

220.221IM
210.78211
22b.512ll
bl.S31P
13.021M
0 . 0 0 0 (1
11.8000
o.ooon
71.10011

Ibl.BSIU
157.3000
171.32211
b7. 12811
85.2720
3b.lK5n
37.8(1011
IS. (liliin
111.0UOM

Sl.lbOO
2B.b28b
Sl.bObO
ll.OHb
22.1808
3b.l850
B.bOOO
7.5000
7.1100

21.7071
21.0782
22.0220
o.oono
o.oono
0.0000
0.0000
0.0000
0.0000

2.7370
1.1011
1.178b
25.7321
17.2872
0.0000
0.0000
o.onoo
7.bSOO

10.8180
3 1 . b 0 b 0
11.0110
22.1351
0.0000
O.OOUO
7.8000
0.0000
o.oooo

17.1322
o.nono
31.1b()0
n.oono
0.0000
0.0000
o . u n o n
0.00(10
o . o n n n

113.25bO
81.71bO
135.2780
13.b332
155.0100
111.71b3
51.0000
11.0000
11.3000

17.52faO
11.78b2
210.7820
o.onoo
85.2720
n . o o o o
0.0000
0.0000
0.0000

1.752b
22.1bS8
0.0000
b7.1280
108.5280
83.1113
37.8000
38.0000
27.2000

81.71bO
50.33bO
103.8180
10b.2BbO
58.1100
55.0012
bD. 0000
1.5000
27.2000

37.7520
10.0b72
51.7710
0.0000
0.0000
0.0000
0.0000
o.onoo
n.onoo

17.bl7b
23.2801
13.2132
37.1718
8.5272
11 . 17lb
S.lOOO
21.5000
21.2500

18.B7bO
0.0000
11.0110
0.0000
527. 13bO
332.1022
0.0000
0.0000
0.0000

11.2310
11.0110
125.8100
33.001b

125.8100
111.71faO
113.25bU
bl.5310
155.01UO
27S.OOb2
111.0000
IbO.OOOO
ISb.OOOO

lib. 1020
1 1 b . HI 2 0
llb.102U
b13.31nO
217.05bU
217.1101
108.0000
70.0000
13.5000

122.b110
128.18bO
111.5180
223.7bOO
31. 10881210.3200
21.7110
10.8000
11.0000
0.0000

37.7520
37.7520
37.7520
23.1118
17.0511
31.8128
lb.8000
lb.5000
lb.1500

132.1320
117.8b20
111.5180
218.1bbO
lib. 1280
SOb. 5101
288.0000
210.0000
1*1.5000
2U2.b3bl
Bb.1000
7b.OOOU
81.1500

lib. 1020
110.1100
111.5180
783.1bOO
11.8b08
151.2111
bO.OOOU
70.0000
13fa.OOOO

lOb.lblO
81.71bO
125.8100
bl.5310
b8.217b
53.5538
57.0000
55.0000
21.2500

23.5150 bS.212u
2b.H2b1 8H.MK8U
21.3128 5b.b28u
17.3111 Ib2.22bu
10.Ll77b 232.5bUU
2b.oS32 11 . P 0 0 U •
lo.rjooo o.noou o. on LI n
13.5000 b Cl . ij 0 0 (.• O.nOIH
31.100ft 10.SOOU 2.72UP

37.7520 0. til1 01)
b2.12uo 0.0(101;
11. (il^B O.nnilU
23.1118 O.OIIOU
1 0 B . 5 2 8 0 1 U 0 . 7 7 b U
o.nonn o.riniLj
11.8000 o.ociuo o.oonn
28.0000 D.nOOU O.ODUn
o.oooo o.noou 2.2inu

10.8180 IbO.llbO
Sb.b280 Ibn.HbU
Sl.lbUO IbO.llbU
2'i.b1B2 51.8212
31.7832 77.520U
0.0000 11. 171b
13.8000 21.bOOU O.OOUO
55.0000 Sb.OOOU O.OOLIU
33.1500 ll.bbOU O.UOun
.
bb.OfabO 18H.?bOU
72.3560 111. 57 11 U
51.7710 223.3bbU
11.7171 b 1 . 5 3 * U
20.13U1 315.3b2U
10.5272 151.2111
13.8000 13.200U 0.00(111
13.5000 130.000U O.OOOn
IS.bOOO 31.POOU O.nOl'l'

bl.2120 2.51bb
37.7520 O.nOOLJ
11.2310 1.1011
fc.7.1280 P.noOU
2b.35b8 O.OUOU
o.oooo o.noou
ii.iuiKj o.ooou u.ounn
u.nuria ri.nnuu o.floi'M
u.nnnn n.ouuij 1.11511







n.uciOO
n.uooo
2.5500







n.uooo
.bOOO
2.U100







.3800
.1HOO
1.7850







.5200
1.0500
2.2100







n.uooo
n.nooo
2.JSOO
a plus acrolein and propanal

-------
                                                         MERCEDES 240D GASEOUS EMISSIONS  - TIME BASIS
              2't-XYL  2,3-XYL
                MG/HR    MG/HK
FUEL 538
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE 0.0000
5U KPH 0.0000
85 KPH 0.0000







n . M u o o
n . n H n o
n . o o u o
FUEL £3S
FTP 39AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE n.oooo
50 KPH 0.0000
95 KPH 0.0000







o . n n o o
o.oooo
o.oooo
FUEL 2tO
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE 0.0000
50 KPH 0.0000
85 KPH 0.0000







0.0000
o.onoo
o.oooo
FUEL Jtl
FTP 38AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE 0.0000
50 KPH 0.0000
85 KPH 0.0000







n.oooo
o.ouoo
0.0000
FUEL Hi
 FTP 3BAG
 FTP C
 FTP H
 CFDS
 FET
 NYCC
 IDLE
 SO KPH
 RS KPH
0.0000
0.0000
0.0000
0.0000
n. oooo
o.oono
 plus 2,5-xylenol
 plus 3,5-xylenol

-------
                                                   VW RABBIT DIESEL GASEOUS EMISSIONS - TIME BflSIS


        VAR.  i»0  VAR.   tl VAR.  42 VAR.   H3  VAR.   *t VAR.  45 VAR.   Hb  VAH.   t7aVAk.  t8 VAR.   t1  VAR.   SO VAR.  51  VAR.   52bVAR.  53
              HC        CO      NOX       CO?      FUEL FORMALDE ACETALDE   ACETONE ISPBUTYR CROTONAL   HEXANAL (JtNZALUt  0-C«t'SOL P-CRESOL
            G/HR      R/HR     G/HR    KG/HR      L/HR    MG/HR     HG/HR     MG/HR    MG/HR    MG/HW     MG/HR    MS/H*     MG/HR
FUEL 238
FTP 3HAG
FTP C
FTP H
CFOs
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 231
FTP 3BAG
F fP C
FTP H
CFDs
FET
NYCC
IDLE
5ll KPH
85 KPH
FUEL 210
FTP 3RAG
FTP C
FTP H
71 CFDS
CO FET
NYCC
IDLE
SO KPH
85 KPH
FUEL 241
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 242
FTP 3fiAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH

5.bb28
7.2358
5.033b
4.4752
8.5272
b.2238
7.38no
5.0000
b.8000

b.2120
8.8088
4.4044
b.7!S8
7.7520
4.48b1
b.4800
3.5000
8.5000

5.31*82
7.550*
4.7HO
b.7128
Il.b28o
3.7b32
3 . b 0 0 0
2.5000
11.0500

?2.33bb
35.2352
11.32Sfa
11.1880
Il.b280
15.3425
17.5000
53.0000
17.0000

b.2120
8.171b
t.4044
S.S140
8.S572
H.1175
b.3100
3.5000
b. 8000

15.4154
17.3030
It. 1570
20.1384
24.80b4
12.3021
It. 4(100
13.5000
28.0500

lb.Q44b
17.1322
14.1570
23. tllS
21.457b
13.1713
1 2 . S 0 0 0
11.5000
30.b(JOO

17.3030
18.24b8
lb.1B84
23. tltB
35.b512
13.4b08
10. bClOO
14.5000
3 1 . 1 (3 0 0

25.482b
21.2578
22.0220
24.0542
2b.3SbB
21.5bb3
28.0000
4b.0<100
28.0500

lb.3512
17.1322
15.1008
21.2572
30.2328
1 (1 . 8 5 5 5
11. 1(1 00
9.5(100
21.7500

I8.5bl4
11.5052
17.bl7fa
21.b483
41.085b
1.2b34
4.bSOO
15.5000
4b.7SOO

20.4410
20.441Q
13.5bl4
27.1700
44.] 8b4
11.1450
4.8100
17.00(10
48.4500 •

17.1322
I8.24b8
I7.bl7b
28.5214
37.20lb
8.1731
5.7300
15.5000
71.4000

I8.24b8
18.5bl4
18.24b8
31.8858
40.3104
10.1318
5.5200
15.0000
45.0500

11.8118
11.8118
20.1344
31.8858
44.1blb
10.1318
4.77UO
11.0000
51.0000

4.8134
4.1707
4.5bl7
7. 1044
8.1123
2.57b4
1.1100
4.bOOO
10.1150

4.711Q
4.1707
4.3721
7.3281
1. 3711
2.510R
i.oioo
4.7500
1.1450

4. 7811
S.o33b
4.5132
7.2722
1.3711
2.5474
1. 1100
4.5500
10.11SQ

S.OlbS
5.2853
4.7110
7.41bo
1.5350
2.735B
1.3100
4.7000
10.2000

4.1312
S.OlbS
4.1312
7.b078
1.7b75
2.S.343
1.1200
4.7500
10.2850

1.71b4 188. 7b (111
1.8711 201.3440
1.7114 171. 322 11
2.b51b 212.572(1
3.3721 224.80811
.1712 275.0llb2
.4320 204.MI1I1M
1.7200 2bn. udOfl
3.7825 lbl.5001)

1.7bl8 Ib0.44b0
1.8513 US. U 520
l.bSFI 135. 278 rl
2.7522 bl.534i)
3.5031 17Q.S44II
.1755 11.H707
.4210 378. 00 (HI
1.7750 85. 00 (10
3.7230 111.00(10

1.71b4 125.841111
1.887b 144.71fao
1.7240 113.2Sb(l
2.7243 HO. l^b (I
3.5272 170. 544 u
.ISIb 144.74Q1
. 4 5 b o 1 3 2 . 0 n n 0
i.7ono lo.oooo
3.7115 187.0000

1.1411 517.740(1
2.0212 723. 58 (10
1.7775 503.3bli(i
2.8082 212.5720
3.5737 10B.528H
1.0414 127.3713
.5270 384.000D
1.84001000.00110
3.8335 280.50011

1.8530 115.0520
l.llllb 254.82hll
1.8418 147.8b2n
2.8473 100.b12ll
3.b512 100.77hn
.188b 44,. 8b14
.4320 27b. (10(10
1.7700 IbS.onilll
3.8510 127.51MIU

37.7520
47.1100
28.3140
45.87n8
Il.b280
14.4740
42.0000
3 3 . 5 n Q Q
22.1000

12.2b14
28.3140
0.0000
0 . 0 0 0 0
0 .0000
0.0000
0.0000
o . n n o o
1.3500

12. siab
22.0220
5.1774
lb.222b
17.82SB
23.1584
7 . 8 0 0 0
11.0000
34.0000

151.0080
188. 7bOO
122.b140
25.1730
17.0544
0.0000
Ib.OOOO
220.0000
48.4500

2?.05Sb
b2.1200
0.0000
0.0000
u . o o n o
0.0000
102.0000
12.0000
0.0000

173.0300
204.4100
151.0080
131.8500
155.0400
151.2141
132.0000
2b5.0000
127.5000

34.bl)b(l
b 2 . 1 2 0 0
13.5278
lb.222b
n . o o o o
o.noou
Ll . 0 0 0 0
o.uooo
7S.b500

14.47lb
11.8118
10.3818
20.1384
44. 18b4
0.0000
14.4UOO
47.0000
38.2500

2b4.2b40
34b.ObOO
204.4100
50.11154
50.3880
28. 1480
10.0000
IbS.OOOO
73.1500

50.33bO
75.5040
21.2578
0.0000
O.OPOO
0.0000
138.0000
b s . o n n o
2b. 3500

22.1b5S
25.7172
21.0782
150. 1800
50.3880
118.b8b1
3 o . n n o o
27.nono
1 3 b . (1 0 (.1 0

40.8180
37.7520
40.8180

lll.lObO
213.1280
173.0300

122.bS40
151.0080
100.b720

Ibb. 73811
2 1 H . S 3 4 u
1(13. RIHU




150.18001174. 74001174. 740U
201 .5520
332.1022
144.0000
1 2 11 . 0 0 0 0
1 IJ 2 . 0 0 U 0

lib. 4020
144.71bO
1 4 . 3 8 0 0
O.OOQU151S.1740
Q.nono
84. 7381
384.0000
0.0000
13.5000

37.7520
40. 8180
37.7520
1 1 . 0 1 1 b
b0.4bSb
0.0000
lb.8000
b5.0000
28.0500

72.3580
bl.2120
72.3580
3b.1204
0.0000
21.7110
55.2000
bS.OOOO
102.0000

5b.h280
51.7740
53.4830
5.5140
214.57bo
50b.5104
282.0000
44.5000
153.0000
b27.112U
b8(l.27B5
4U8.0000
245.0000
11U.5000

17.52bO
113.25bO
84.1420
1 b 1 . 0 3 8 0
85.2720
HS.bSbl
84.0000
220.0000
43.3500

115.0520
2(14.4100
188.7bOO
81.5040
147.2880
141.8453
132.000U
185.0000
102.0000

bb.Obfal)
84.1420
53.4820
.5514
131.7840
15S.2141
114.0000
7().onuo
153.0000
73.b4tfl
81.0545
42.0000
27.0000
27.20011

2b.42b4
40.8180
IS. 73iill
1 8 4 . b 0 2 0
bl.24(i8
0.0000
0 . 0 O 0 0
5 5 . D 0 O H
0 . 0 0 Cl 0

11.2341)
1 1 3 . i 5 b (1
7 5 . 5 U 4 0
131.8500
0.0000
55.0012
1 4 . 4 0 U 0
13.5000
0.0000

122.b140
10b.Hb4n
135.27HO
28.5214
31.7832
83.1413
20.4000
55.0000
20.4000

31 ,4bOO
20.1344
4 0 . 8 1 8 u
0 . 0 0 n 0
100.77bn
144.74U1
57.0000
44.500(1
0 . 0 0 0 0
R8S. 824U
83 . 141 j
27(1. rj Oil u
28Q.OO 'J U
1 3 b . P P II U

H . S 1 1 H b
0 . OUI1U
1 5 . 7 3 0 U
o . n n u u
o . n n o u
0 . ilOOU
0 . 0 0 0 U
0. 0 Hiiu
o . o n n u

1 7 1 . 3 2 i u
!UO.b7Su
P. 3 1 . 0 1 b U
313.2b4U
325.584U
57.«1bb
1 4 4 . 0 0 0 U
2 1 . 5 0 U U
204 . fjonii

24S.38HU
4ri8.1RilU
12d.b14u
117.474U
4 U 3 . 1 U '(• u
202. b3bl
Ib 2.1.111110
1 1 0 . Ci 0 n U
11 1 . n n I1 U

n-. onnu
0. Oil MO
u.noiju
o. n on u
0 . 0 0 (1 u
o . n o u u
n . Q 0 ',1 0
34.50'JU
ii . nil n u


n . onnii . 3SDO
1.3000 ?.bSOO
2.1750 S.ObOO







(l.ni)lnl .2200
O.nuiiii 1.1SUO
2.24511 ll.OOOO







o . o n on . b 7 o o
. 37(111 I . 1500
S. 3550 b.0350







O.niUIII b.7000
S.OOIIIJ 13.5000
7. 3ibi I 17.8500







O.Ouuu .5400
U.OOIlO .SbOO
3. 23,111 4. OHOO
plus acrolein and propanal
plus salicyaldehyde

-------
                                                    VW RABBIT DIESEL GASEOUS EMISSIONS - TIME BASIS
           VAR.   5taVAR.  S5b
            a.l-XYL  S,3-XYL
              MG/HR    MG/HR
FUEL ?38
 FTP 3RAG
 FTP C
 FTP H
 CFDS
 FET
 NYCC
 IDLE
 Sf) KPH
 85 KPH

FUEL 239
 FTP 3BAQ
 FTP C
 F TP H
 CFDS
 FET
 NYCC
 IDLE
 50 KPH
 B5 KPH

FUEL ?10
 FTP 3RAQ
 FTP c
 FTP H
 CFDS
 FUT
 NYCC
 IDLE
 511 KPH
 RS KPH

FUEL 2*1
 FTP 3RAG
 FTP C
 FTP H
 CFOS
 FFT
 NVCC
 IDLE
 50 KPH
 85 KPH
o.oooo   n. i) u o o
o. o o u 0     . o i f o
o.noou   D.OOOO
o. n o o o    o. n o o o
o.oooo    a. uoDO
o. o o u o    o. o n n o
o.ooon    o.nouo
0.0000     .01171
o.oono    o. no no
 . IbOO    b.7000
 .0037     .ibltO
O.OOnO     .0780
FUEL  ItS
 FTP  3SAG
 FTP  C
 FTP  H
 CFDS
 FET
 NYCC
 IDLE
 50 KPH
 85 KPH
0.0000    0.11(100
o. n o ci o    o.oooo
0.0000    (1.0(100
   plus 2,5-xylenol
   plus 3,5-xylenol

-------
                 ANALYSIS OF GASEOUS HYDROCARBONS  COLLECTED ON
             CHROMOSORB 102, MERCEDES 240D OPERATED ON EM-238-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
246
260
269
282
306
332
370
401
415
435
Hot FTP
190
237
255
273
305
337
383
407
421
433
CFDS
128
159
197
251
297
334
382
407
422
437
FET
152
210
242
273
314
345
386
405
416
426
NYCC
168
214
236
261
298
335
389
412
424
437
Idle
115
146
189
246
273
299
332
358
382
415
50 kph
230
251
258
272
297
319
348
369
384
406
85 kph
220
250
263
284
317
343
373
392
403
421
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
32
36
40
b
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP




0.046
0.094
0.137
0.131
0.212
0.185
0.133
0.048



0.005

0.009




70.3
Hot FTP

0.006

0.008
0.042
0.109
0.194
0.142
0.183
0.157
0.101
0.046





0.011




62.4
CFDS

0.006

0.006
0.038
0.148
0.156
0.112
0.168
0.173
0.122
0.060





0.010




70.3
FET

0.022


0.027
0.072
0.080
0.077
0.193
0.240
0.166
0.098





0.026




80.6
NYCC
0.029
0.017
0.021
0.022
0.104
0.091
0.122
0.095
0.162
0.136
0.096
0.048



0.016

0.040




66.3
Idle

0.008

0.021
0.052
0.105
0.187
0.142
0.199
0.125
0.078
0.044



0.008

0.031




67.1
50 kph




0.024
0.056
0.115
0.117
0.179
0.151
0.148
0.087
0.036
0.015
0.008
0.006
0.046
0.011




67.7
85 kph

0.014

0.014
0.070
0.074
0.114
0.061
0.154
0.166
0.200
0.114





0.020




,65.8
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                       F-10

-------
                 ANALYSIS OF  GASEOUS  HYDROCARBONS3 COLLECTED ON
            CHROMOSORB  102, MERCEDES  240D OPERATED ON EM-239-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
201
229
240
258
283
312
351
383
403
431
Hot FTP
192
220
232
250
270
291
316
334
344
352
CFDS
206
243
252
272
306
344
387
414
431
454
FET
206
224
236
256
290
325
357
374
382
391
NYCC
210
226
236
251
278
311
362
385
398
403
Idle
317
320
324
332
349
373
396
403
407
413
50 kph
211
235
249
258
277
292
311
323
329
336
85 kph
211
230
246
263
298
331
359
393
403
415
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
b
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP

0.001

0.006

0.201
0.220
0.171
0.187
0.087
0.069
0.039
0.002
0.012




48.8
Hot FTP



0.005

0.251
0.225
0.113
0.140
0.089
0.107
0.039
0.004
0.016
0.011



50.2
CFDS



0.002

0.175
0.197
0.133
0.162
0.106
0.111
0.063
0.011
0.026
0.014



52.2
FET

0.004
0.005
0.018
0.078
0.196
0.123
0.070
0.121
0.098
0.142
0.079
0.031
0.027
0.008



51.2
NYCC



0.032
0.125
0.188
0.151
0.088
0.119
0.069
0.070
0.055

0.085
0.018



55.6
Idle






0.058
0.224
0.336
0.152
0.112
0.065
0.019
0.017
0.016



53.8
50 kph

0.009
0.009
0.076
0.024
0.192
0.128
0.138
0.136
0.076
0.065
0.037
0.006
0.011
0.018
0.040
0.035

77.7
85 kph



0.012
0.075
0.189
0.125
0.067
0.143
0.114
0.123
0.090

0.046
0.016



57.7
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                      F-ll

-------
                  ANALYSIS OF GASEOUS HYDROCARBONS  COLLECTED ON
             CHROMOSORB 102, MERCEDES 240D OPERATED ON EM-240-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
251
263
278
310
366
407
445
464
479
502
Hot FTP
248
264
274
297
344
380
407
424
433
448
CFDS
247
268
284
312
359
391
423
438
449
463
FET
195
210
217
236
356
380
399
408
415
422
NYCC
247
258
275
298
332
366
397
404
419
426
Idle
231
234
243
251
267
298
402
420
426
440
50 kph
250
255
260
272
302
335
373
391
400
405
85 kph
317
329
337
355
376
394
416
435
444
468
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
26
28
32
36
40
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP


0.006
0.022

0.295
0.128
0.065
0.116
0.072
0.136
0.083
0.027

0.035
0.016


38.2
Hot FTP





0.131
0.076
0.091
0.129
0.059
0.118
0.060
0.148

0.099



62.6
CFDS




0.026
0.090
0.103
0.085
0.122
0.017
0.126
0.051
0.096
0.152
0.111

0.020

48.7
FET

0.029
0.038
0.147
0.126
0.162
0.043
0.060
0.098
0.043
0.070
0.021
0.091

0.073



62.6
NYCC



0.246



0.126


0.066

0.170

0.391



48.6
Idle



0.048
0.226
0.259
0.076
0.063
0.113



0.035

0.179



55.6
50 kph



0.090
0.218
0.181
0.086
0.028
0.051
0.043
0.057
0.030
0.075
0.079
0.061



53.0
85 kph







0.077
•-0.103
0.053
0.122
0.046
0.547

0.052



49.6
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total  sample  area
                                       F-12

-------
                 ANALYSIS OF GASEOUS .HYDROCARBONS3- COLLECTED ON
             CHROMOSORB 102, MERCEDES 240D OPERATED ON EM-241-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)

Cold FTP
149
224
250
274
312
365
403
426
445
476
Temperature in °C by operating procedure or mode
Hot FTP
109
149
183
239
278
313
372
404
424
468
CFDS
150
191
235
261
295
333
377
405
445
470
FET
144
211
232
262
299
339
389
416
436
477
NYCC
-143
211
231
260
300
341
401
444
454
463
Idle
266
269
275
282
297
313
335
359
374
392
50 kph
100
134
159
226
269
304
346
386
392
410
85 kph
156
205
240
268
310
349
391
415
454
470
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
% data peak
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP
0.005
0.016
0.001
0.002
0.035
0.144
0.124
0.171
0.182
0.119
0.086
0.032

0.078
0.005


31.9
Hot FTP

0.007
0.002
0.008

0.196
0.143
0.147
0.159
0.102
0.062
0.058
0.094
0.012
0.006
0.003

45.5
CFDS

0.002

0.001

0.152
0.136
0.140
0.156
0.107
0.069
0.021
0.185
0.017
0.009
0.004

45.6
FET

0.016
0.002
0.003

0.118
0.197
0.116
0.119
0.003
0.204
0.007
0.189
0.027



40.8
NYCC

0.009

0.004
0.042
0.054
0.106
0.059
0.069
0.051
0.298
0.010
0.259
0.030
0.008


59.1
Idle






0.086
0.212
0.287
0.285
0.086
0.043





40.5
50 kph
0.018
0.008



0.054
0.066
0.089
0.115
0.056
0.249
0.005
0.303
0.027
0.011


55.9
85 kph





0.046
0.094
0.070
0.107
0.073
0.277
0.015
0.279
0.029
0.011


54.5
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area  less  than  total  sample  area
                                       F-13

-------
                  ANALYSIS OF GASEOUS HYDROCARBONS  COLLECTED  ON
              CHROMOSORB 102, MERCEDES 240D OPERATED ON EM-242-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
177
235
247
265
294
328
380
415
431
452
Hot FTP
107
167
211
246
281
311
346
388
406
431
CFDS
142
204
225
251
291
328
376
404
426
455
FET
101
203
222
248
288
329
382
410
427
449
NYCC
117
143
169
215
261
307
385
418
436
448
Idle
131
166
197
230
267
297
349
401
422
443
50 kph
214
248
257
273
301
332
397
433
449
472

85 kph
82
212
230
258
303
339
378
401
421
451
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
b
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP



0.018
0.100
0.138
0.124
0.120
0.173
0.158
0.115
0.046
0.008





65.9
Hot FTP



0.126
0.062
0.095
0.110
0.161
0.195
0.143
0.065
0.043






88.2
CFDS



0.059
0.109
0.092
0.078
0.099
0.160
0.182
0.115
0.050
0.056





67.6
FET



0.141
0.194


0.145
0.127
0.127
0.143
0.071
0.053






92.3
NYCC



0.238
0.127
0.150
0.092
0.146
0.125
0.071
0.026
0.026






84.9
Idle






0.268
0.239
0.493









100.0
50 kph




0.053
0.084
0.182
0.164
0.188
0.171
0.109
0.035
0.015





54.9
85 kph



0.054
0.102
0.063
0.064
0.081
0.167
0.236
0.151
0.082






68.3
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total  sample  area
                                       F-14

-------
                 ANALYSIS OF GASEOUS HYDROCARBONS3 COLLECTED ON
          CHROMOSORB  102,  VW RABBIT DIESEL OPERATED  ON" EM-238-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
241
263
274
291
313
340
387
414
431
461
Hot FTP
180
231
249
265
294
318
358
389
411
460
CFDS
235
259
271
287
314
338
375
402
420
460
FET
176
230
250
270
308
335
372
399
418
460
NYCC
75
102
139
206
254
284
326
360
398
437
Idle
175
233
247
259
278
297
322
342
363
431
50 kph
217
250
260
274
298
317
345
367
387
431
85 kph
197
236
253
271
302
329
362
387
407
450
Carbon
number
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
28
32
36
40
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP






0.004
0.035
0.112
0.152
0.247
0.182
0.148
0.070
0.022
0.006
0.006
0.015




55.9
Hot FTP



0.004
0.002
0.016
0.031
0.133
0.171
0.144
0.205
0.136
0.112
0.038
0.008







62.0
CFDS





0.002
0.013
0.071
0.146
0.139
0.199
0.163
0.155
0.080
0.024
0.003
0.002
0.002




59.1
FET


0.001
0.002
0.008
0.012
0.040
0.092
0.098
0.085
0.129
0.126
0.147
0.106
0.073
0.048
0.033





44.6
NYCC
0.001
0.023
0.020
0.009
0.042
0.046
0.087
0.186
0.156
0.098
0.109
0.078
0.076
0.049
0.010
0.001
0.001





51.4
Idle




0.002
0.017
0.049
0.109
0.219
0.177
0.172
0.110
0.086
0,049
0.010
0.001
0.001





56.8
50 kph





0.002
0.017
0.093
0.188
0.176
0.235
0.145
0.094
0.035
0.007
0.003
0.002
0.001
0.001



63.2
85 kph



0.001
0.002
0.006
0.034
0.090
0.108
0.094
0.119
0.103
0.115
0.084
0.059
0.042
0.065
0.023
0.054



55.1
by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                       F-15

-------
                 ANALYSIS OF GASEOUS HYDROCARBONS51 COLLECTED ON
           CHROMOSORB 102, VW RABBIT DIESEL OPERATED ON EM-239-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
NO DATA









Hot FTP
226
239
250
259
271
289
304
310
314
318
CFDS
223
242
252
265
289
311
333
345
349
353
FET
NO DATA









NYCC
229
240
251
263
287
307
334
354
364
376
Idle
201
221
232
244
259
270
290
301
307
313
50 kph
NO DATA









85 kph
229
253
263
289
329
354
375
389
401
417
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
v^
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP

0.044




0.236
0.347
0.293
0.081







29.7
Hot FTP
NO DATA

















CFDS
NO DATA

















FET
NO DATA

















NYCC
NO DATA

















Idle



0.037

0.235
0.261
0.177
0.189
0.100







42.9
50 kph
NO DATA

















85 kph
NO DATA

















by ASTM-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total  sample  area
                                       F-16

-------
                 ANALYSIS OF GASEOUS HYDROCARBONS3 COLLECTED ON
          CHROMOSORB  102, VW RABBIT DIESEL OPERATED ON EM-240-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100(EP)
Temperature in °C by operating procedure or mode
Cold FTP
223
233
241
258
297
358
413
446
470
512
Hot FTP
236
249
263
290
350
383
42 L
454
483
516
CFDS
332
374
394
402
428
466
493
503
511
520
FET
NO DATA









NYCC
233
239
249
268
329
401
467
492
505
518
Idle
264
273
284
318
376
421
460
487
502
518
50 kph
NO DATA









85 kph
206
221
235
259
329
360
401
430
457
510
Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP

0.025


0.239
0.478
0.048
0.142
0.046








39.3
Hot FTP





0.046
0.055
0.041
0.041


0.410
0.406
0.046



21.7
CFDS
NO DATA

















FET
NO DATA

















NYCC




0.538
0.215
0.247










28.8
Idle
NO DATA

















50 kph

0.009

0.149
0.169
0.117
0.143
0.037
0.029
0.020
0.057
0.129
0.123
0.020



35.0
85 kph



0.027
0.229
0.270
0.099

0.020


0.355





29.3
by ASTM-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                       F-17

-------
                 ANALYSIS OF GASEOUS HYDROCARBONS21 COLLECTED ON
           CHROMOSORB 102,  VW RABBIT DIESEL OPERATED ON EM-241-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by operating procedure or mode
Cold FTP
84
144
234
251
268
282
301
313
324
338
Hot FTP
NO DATA









CFDS
NO DATA









FET ,
150
207
221
227
262
283
304
317
330
342
NYCC
NO DATA









Idle
218
231
237
249
263
280
300
311
322
346
50 kph
196
224
233
248
265
283
304
320
335
351

85 kph
195
236
251
263
281
294
309
318
327
335
Carbon
number
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
28
32
36
40
b
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP
0.005
0.006
0.005
0.001

0.004
0.045
0.218
0.158
0.173
0.134
0.078
0.085
0.049
0.025
0.010
0.003






55.6
Hot FTP



0.004
0.001
0.025
0.150
0.156
0.141
0.191
0.181
0.071
0.057
0.020
0.003








64.7
CFDS

0.003



0.010
0.089
0.191
0.160
0.197
0.181
0.095
0.059
0.012









56.2
FET



0.004

0.053
0.117
0.163
0.115
0.159
0.176
0.103
0.082
0.028









62.0
NYCC






0.102
0.160
0.216
0.235
0.174
0.054
0.046
0.014









58.7
Idle





0.028
0.138
0.149
0.159
0.168
0.133
0.121
0.073
0.030









52.9
50 kph




0.002
0.024
0.123
0.140
0.141
0.159
0.130
0.084
0.096
0.035
0.033


0.018
0.015




54.4
85 kph





0.008
0.040
0.107
0.124
0.211
0.204
0.115
0.123
0.039
0.026
0.003







57.9
by ASTM-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                      F-18

-------
                  ANALYSIS  OF GASEOUS  HYDROCARBONS3  COLLECTED  ON
           CHROMOSORB 102,  VW RABBIT DIESEL OPERATED ON EM-242-F FUEL
Weight
% off
O(IBP)
5
10
20
40
60
80
90
95
100 (EP)
Temperature in °C by Operating Procedure or Mode
Cold FTP
NO DATA









Hot FTP
220
239
251
264
291
312
338
355
367
382
CFDS
216
238
249
267
303
332
359
381
395
416
FET
SAMPLE
LOST








NYCC
212
228
240
255
278
304
329
350
362
377
Idle
214
232
240
254
269
293
315
333
343
358
50 kph
203
230
247
276
322
347
368
382
392
410
85 kph
NO DATA









Carbon
number
9
10
11
12
13
14
15
16
17
18
19
20
24
28
32
36
40
% peak data
Normalized abundance of n-paraffins by operating procedure or mode
Cold FTP
NO DATA

















Hot FTP
NO DATA

















CFDS


0.002
0.044

0.144
0.275
0.172
0.210
0.108

0.044





49.9
FET
SAMPLE
LOST
















NYCC
NO DATA

















Idle





0.195
0.268
0.289
0.247








48.1
50 kph
NO DATA

















85 kph
NO DATA

















by ASTM D-2887-73 simulated distillation
sum of paraffins as % of peak area by GC; peak area less than total sample area
                                      F-19

-------
               COMPARISON OF  ODOR PANEL RATINGS
                              Fuel:   EM-238-F
                              - MERCEDES 240D
  Operating
  Condition
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
            'D1
             "B"
"O"
Date
Composite   Burnt

Steady State Results
                            Transient Results
        Aromatic   Pungent
Inter. Speed
2% Load

Inter. Speed
50% Load

Inter. Speed
100% Load

High Speed
2% Load

High Speed
50% Load

High Speed
100% Load

Idle


9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
1.8
2.2
2.0
2.1
1.7
1.9
2.3
2.5
2.4
2.1
2.5
2.3
2.2
1.9
2.0
2.6
2.9
2.8
2.1
2.0
2.0
0.9
1.0
1.0
1.0
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.7
0.9
0.8
0.8
0.7
0.8
0.8
0.9
0.8
0.7
0.9
0.8
0.7
0.7
0.7
0.9
0.9
0.9
0.8
0.9
0.8
0.4
0.5
0.4
0.4
0.3
0.4
0.4
0.5
0.4
0.5
0.4
0.4
0.5
0.4
0.4
0.5
0.6
0.6
0.4
0.4
0.4
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.3
0.2
0.3
0.5
0.4
0.2
0.2
0.2
9/21/77
9/23/77
Ave rage
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
2.7
2.8
2.8
2.6
2.4
2.5
4.1
4.3
4.2
3.9
4.1
4.0
1.1
1.1
1.1
1.0
1.0
1.0
1.5
1.2
1.4
1.5
1.4
1.4
1.0
1.0
1.0
0.9
0.9
0.9
1.1
1.1
1.1
1.0
1.0
1.0
0.6
0.5
0.6
0.5
0.6
0.6
0.8
0.9
0.8
0.8
0.9
0.8
0.4
0.5
0.4
0.4
0.2
0.3
0.8
1.1
1.0
0.7
0.9
0.8
                                     F-20

-------
             COMPARISON OF ODOR PANEL RATINGS  -  MERCEDES  240D
                               Fuel:   EM-239-F
  Operating
  Condition
                  Date
              "D"
           Composite
          "B"
         Burnt
                           Steady State Results
Inter. Speed
0 Load

Inter. Speed
Mid Load

Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle


9/16/77
9/19/77
Average
9/16/77
9/19/77
Average
9/16/77
9/19/77
Average
9/16/77
9/19/77
Ave rage
9/16/77
9/19/77
Ave rage
9/16/77
9/19/77
Average
9/16/77
9/19/77
Average
2.3
2.1
2.2
2.0
2.0
2.0
2.9
2.4
2.6
2.0
2.1
2.0
2.3
2.1
2.2
3.1
2.7
2.9
2.3
2. 3
2.3
1.0
0.9
1.0
1.0
0.9
1.0
1.1
1.0
1.0
0.9
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.0
1.0
1.1
1.0
0.8
0.8
0.8
0.7
0.7
0.7
0.9
0.8
0.8
0.8
0.6
0.7
0.8
0.8
0>.8
1.0
0.9
1.0
0.8
0.9
0.8
0.4
0.4
0.4
0.5
0.3
0.4
0.5
0.5
0.5
0.3
0.4
0.4
0.6
0.3
0.4
0.6
0.6
0.6
0.3
0. 5
0.4
0.2
0.3
0.2
0.1
0.2
0.2
0.4
0.2
0.3
0.1
0.3
0.2
0.2
0.2
0.2
0.4
0.3
0.4
0.2
0.2
0.2
                            Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
9/16/77
9/19/77
Average

9/16/77
9/19/77
Average

9/16/77
9/19/77
Average

9/16/77
9/19/77
Average
3.1
2.8
3.0

3.1
2.7
2.9

5.0
4.7
4.8

3.1
2.5
2.8
1.1
1.1
1.1
1.2
1.0
1.1

1.9
1.8
1.8

1.1
1.0
1.0
1.0
1.0
1.0

1.0
0.9
1.0

1.2
1.1
1.2

1.0
1.0
1.0
                                    F-21

-------
               COMPARISON OF ODOR PANEL RATINGS
                               Fuel:   EM-240-F
                                                - MERCEDES 240D
  Operating
  Condition
             D
                      "B1
Date     Composite   Burnt

         Steady State Results
"O"
Oily
Aromatic  Pungent
Inter. Speed
2% Load

Inter. Speed
50% Load

Inter. Speed
100% Load

High Speed
2%

High Speed
50% Load

High Speed
100% Load

Idle


9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
2.1
2.1
2.1
1.9
1.9
1.9
1.9
2.0
2.0
2.2
2.1
2.2
1.8
1.8
1.8
2.6
2.5
2.6
2.1
2.2
2.2
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.0
1.1
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.0
1.0
1.0
0.8
0.8
0.8
0.8
0.7
0.8
0.6
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.9
0.8
0.4
0.3
0.4
0.4
0.3
0.4
0.4
0.4
0.4
0.4
0.5
0.4
0.3
0.3
0.3
0.5
0.6
0.6
0.4
0.4
0.4
0.2
0.2
0.2
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.5
0.3
0.4
0.2
0.2
0.2
                            Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
9/26/77
9/28/77
Ave rage
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
9/26/77
9/28/77
Average
2.3
2.9
2.6
2.4
2.4
2.4
4.3
4.4
4.4
3.0
2.7
2.8
1.0
1.1
1.0
1.0
1.0
1.0
1.4
1.6
1.5
1.2
1.0
1.1
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.0
0.9
1.0
0.4
0.6
0.5
0.6
0.4
0.5
0.8
0.7
0.8
0.6
0.5
0.6
0.2
0.4
0.3
0.2
0.2
0.2
0.9
0.9
0.9
0.4
0.4
0.4
                                     F-22

-------
              COMPARISON  OF  ODOR PANEL  RATINGS  - MERCEDES  240D
                                Fuel:  EM-241-F
  Operating
  Condition
    D"
                        "B
                  Date
Composite   Burnt
                           Steady State Results
                    "Q.I        "AM       "p..

                    Oily     Aromatic  Pungent
Inter. Speed
2% Load

Inter. Speed
50% Load

Inter. Speed
100% Load

High Speed
2% Load

High Speed
50% Load

High Speed
100% Load

Idle


9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
1.9
2.4
2.2
1.7
2.0
1.8
2.3
2.0
2.2
1.9
2.4
2.2
1.9
2.2
2.0
2.5
2.8
2.6
1.9
2.5
2.2
1.1
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.1
1.0
1.0
1.1
1.0
1.0
1.0
1.0
1.0
0.7
0.8
0.8
0.6
0.8
0.7
0.8
0.8
0.8
0.8
0.9
0.8
0.7
0.8
0.8
0.8
0.9
0.8
0.8
0.9
0.8
0.4
0.4
0.4
0.3
0.2
0.2
0.6
0.3
0.4
0.3
0.4
0.4
0.3
0.3
0.3
0.6
0.6
0.6
0.3
0.5
0.4
0.1
0.2
0.2
0.1
0.1
0.1
0.3
0.1
0.2
0.2
0.1
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.2
0.2
0.2
                            Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
9/30/77
10/3/77
Average

9/30/77
10/3/77
Average

9/30/77
10/3/77
Ave rage

9/30/77
10/3/77
Average
2.7
3.0
2.8

2.8
2.5
2.6

4.3
4.6
4.4

3.9
4.0
4.0
   1.1
   1.1
   1.1

   1.0
   1.0
   1.0

   1.5
   1.7
   1.6

   1.7
   1.3
   1.5

F-23
                       0.9
                       1.0
                       1.0
                       1.0

                       1.0

                       1.1
                       1.0
                       1.0
                       1.0
                       1.0
                       1.0
0.7
0.6
0.6

0.6
0.6
0.6

0.7
0.8
0.8

0.4
0.9
0.6
0.3
0.6
0.4

0.3

0.2

0.9

0.9

0.9
0.9
0.9

-------
  Operating
  Condition
                COMPARISON OF ODOR PANEL RATING
                                Fuel:  EM-242-F
                     - MERCEDES 240D
   "D"
"B
                  Date
Composite   Burnt
                           Steady State Results
"O"
Oily
"A"
                                           up n
                  Aromatic  Pungent
Inter. Speed
2% Load

Inter. Speed
50% Load

Inter. Speed
100% Load

High Speed
2% Load

High Speed
50% Load

High Speed
100% Load

Idle


10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
2.1
1.8
2.0
1.9
1.9
1.9
2.1
2.7
2.4
1.8
2.1
2.0
2.3
2.3
2.3
2.9
2.5
2.7
2.2
2.2
2.2
1.1
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.1
1.0
1.0
1.1
1.1
1.1
1.1
1.0
1.0
1.0
1.0
1.0
0.8
0.7
0.8
0.8
0.8
0.8
0.8
1.0
0.9
0.8
0.9
0.8
0.9
0.9
0.9
1.0
0.9
1.0
0.8
0.8
0.8
0.4
0.3
0.4
0.4
0.3
0.4
0.4
0.6
0.5
0.3
0.3
0.3
0.5
0.5
0.5
0.6
0.5
0.6
0.5
0.4
0.4
0.2
0.1
0.2
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.1
0.2
0.2
0.2
0.2
0.5
0.1
0.3
0.2
0.2
0.2
                            Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
10/5/77
10/7/77
Average
2.4
2.6
2.5
2.6
2.4
2.5
4.3
3.7
4.0
4.1
4.1
4.1
1.0
1.0
1.0
1.0
1.1
1.0
1.6
1.2
1.4
1.1
1.2
1.2
0.9
0.9
0.9
1.0
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.6
0.7
0.6
0.6
0.4
0.5
0.8
1.1
1.0
0.9
1.1
1.0
0.3
0.2
0.2
0.3
0.2
0.2
0.8
0.8
0.8
0.9
0.8
0.8
                                     F-24

-------
                 COMPARISON OF  ODOR PANEL  RATINGS  -  VW RABBIT
                                 Fuel:   EM-238-F
Operating
Condition

Inter. Speed
0 Load

Inter. Speed
Mid Load

Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle



Date

8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
"D"
Composite
Steady State
2.6
2.8
2.7
2.7
2.3
2.5
2.7
3.4
3.0
2.3
2.5
2.4
2.5
2.9
2.7
2.9
3.1
3.0
2.9
2.9
2.9
"B"
Burnt
Results
1.2
0.9
1.0
1.1
1.0
1.0
1.1
1.2
1.2
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.1
1.1
1.1
1.1
1.1
"O"
Oily

0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.8
0.7
0.7
0.7
0.8
0.8
0.8
0.9
0.9
0.9
0.8
0.8
0.8
"A"
Aromatic

0.5
0.6
0.6
0.4
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.3
0.4
0.4
0.6
0.5
0.6
0.6
0.5
0.6
iipn
Pungent

0.3
0.3
0.3
0.4
0.2
0.3
0.4
0.5
0.4
0.3
0.2
0.2
0.3
0.4
0.4
0.3
0.4
0.4
0.4
0.3
0.4
                             Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
8/26/77
8/29/77
Average
3.2
3.9
3.6
3.4
4.0
3.7
3.0
3.1
3.0
3.8
4.4
4.1
1.2
1.3
1.2
1.2
1.3
1.2
1.1
1.1
1.1
1.1
1.4
1.2
0.9
1.0
1.0
0.9
1.0
1.0
0.9
0.9
0.9
1.0
1.0
1.0
0.4
0.6
0.5
0.6
0.8
0.7
0.6
0.6
0.6
0.8
0.6
0.7
0.5
0.8
0.6
0.6
0.8
0.7
0.5
0.4
0.4
0.6
0.9
0.8
                                     F-25

-------
               COMPARISON OF ODOR PANEL RATINGS - VW RABBIT
                               Fuel:  EM-239-F
Operating
Condition

Inter. Speed
0 Load

Inter. Speed
Mid Load

Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle



Date

8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
"D"
Composite
Steady State
2.9
2.4
2.6
2.3
2.4
2.4
3.3
3.5
3.4
2.2
2.2
2.2
2.9
2.5
2.6
2.8
3.4
3.1
3.3
3.4
3.4
"B"
Burnt
Results
1.1
1.1
1.1
1.0
1.1
1.0
1.1
1.3
1.2
1.0
1.1
1.0
1.0
1.1
1.0
1.0
1.2
1.1
1.1
1.2
1.2
"O"
Oily

0.7
0.7
0.7
0.7
0.7
0.7
0.9
1.0
1.0
0.8
0.7
0.8
1.0
0.8
0.9
0.9
1.0
1.0
1.0
0.9
1.0
"A"
Aromatic

0.6
0.3
0.4
0.4
0.3
0.4
0.6
0.4
0.5
0.4
0.2
0.3
0.5
0.4
0.4
0.4
0.4
0.4
0.7
0.6
0.6
up ii
Pungent

0.4
0.2
0.3
0.3
0.2
0.3
0.5
0.8
0.6
0.1
0.2
0.2
0.3
• 0.3
0.3
0.5
0.6
0.6
0.6
0.5
0.6
                            Transient Results
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
3.1
3.4
3.2
3.5
3.7
3.6
2.7
2.9
2.8
No data
5.0
1.1
1.2
1.2
1.2
1.2
1.2
1.0
1.1
1.1

2.1
0.9
1.0
1.0
1.0
0.9
1.0
0.9
0.9
0.9

1.0
0.6
0.5
0.6
0.6
0.6
0.6
0.4
0.5
0.4

0.8
0.5
0.7
0.6
0.7
0.8
0.8
0.4
0.5
0.4

0.8
                                    F-26

-------
                      COMPARISON OF ODOR RATINGS - VW RABBIT
                                Fuel:  EM-240-F
Operating
Condition
Inter. Speed
0 Load
Inter. Speed
Mid Load
Inter. Speed
High Load
High Speed
0 Load
High Speed
Mid Load
High Speed
High Load
Idle
Date
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
"D"
Composite
"B"
Burnt
Steady State Results
2.7 1.0
2.6 1.0
2.6
3.0
2.3
2.6
2.7
3.5
3.1
3.5
2.7
3.1
3.0
3.0
3.0
2.8
3.1
3.0
3.1
3.0
3.0
1.0
1.3
1.0
1.2
1.1
1.5
1.3
1.2
1.0
1.1
1.0
1.1
1.0
1.1
1.1
1.1
1.1
1.1
1.1
"0"
Oily
0.9
0.8
0.8
0.9
0.9
0.9
1.0
1.0
1.0
1.0
0.9
1.0
0.9
0.9
0.9
0.9
1.0
1.0
0.9
0.9
0.9
"A"
Aromatic
0.4
0.4
0.4
0.4
0.3
0.4
0.3
0.3
0.3
0.5
0.6
0.6
0.4
0.6
0.5
0.5
0.5
0.5
0.6
0.6
0.6
..p..
Pungent
0.3
0.3
0.3
0.5
0.3
0.4
0.3
0.8
0.6
0.6
0.3
0.4
0.6
0.5
0.6
0.5
0.4
0.4
0.5
0.3
0.4
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
                             Transient Results
8/31/77
9/2/77
Average
8/31/77
9/2/77
Ave rage
8/31/77
9/2/77
Average
8/31/77
9/2/77
Average
3.4
3.2
3.3
3.4
3.2
3.3
3.4
3.2
3.3
3.9
4.1
4.0
1.1
1.2
1.2
1.1
1.1
1.1
1.2
1.2
1.2
1.4
1.4
1.4
1.0
0.9
1.0
0.9
1.0
1.0
1.0
0.9
1.0
1.0
1.0
1.0
0.7
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.8
0.9
0.8
0.6
0.4
0.5
0.7
0.5
0.6
0.5
0.5
0.5
0.6
0.8
0.7
                                    F-27

-------
  Operating
  Condition
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
                   SUMMARY OF ODOR PANEL RATINGS - VW RABBIT
                                Fuel:   EM-241-F
            'D1
             "B"
Date
Composite   Burnt

Steady State Results
                            Transient Results
  "7\"       Up"

Aromatic  Pungent
Inter. Speed
0 Load

Inter. Speed
Mid Load

Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle


9/7/77
9/9/77
Average
9/7/77
9/9/77
Average
9/7/77
9/9/77
Average
9/7/77
9/9/77
Average
9/7/77
9/9/77
Ave rage
9/7/77
9/9/77
Average
9/7/77
9/9/77
Average
2.7
2.9
2.8
2.4
2.6
2.5
3.6
3.4
3.5
2.7
2.9
2.8
3.2
3.3
3.2
3.1
3.5
3.3
3.7
3.2
3.4
1.0
1.0
1.0
1.0
1.0
1.0
1.3
1.1
1.2
1.0
1.0
1.0
1.2
1.2
1.2
1.0
1.3
1.2
1.2
1.0
1.1
0.9
0.9
0.9
0.9
0.8
0.8
1.0
0.9
1.0
0.9
0.9
0.9
1.0
0.9
1.0
0.9
0.9
0.9
1.0
0.9
1.0
0.4
0.4
0.4
0.3
0.4
0.4
0.6
0.7
0.6
0.3
0.5
0.4
0.4
0.5
0.4
0.4
0.4
0.4
0.7
0.6
0.6
0.3
0.4
0.4
0.3
0.2
0.2
0.6
0.5
0.6
0.3
0.3
0.3
0.5
0.5
0.5
0.6
0.6
0.6
0.7
0.6
0.6
9/7/77
9/9/77
Average
9/7/77
9/9/77
Ave rage
9/7/77
9/9/77
Average
9/7/77
9/9/77
Average
4.2
3.6
3.9
4.8
4.0
4.4
3.9
3.5
3.7
4.8
5.9
5.4
1.6
1.1
1.4
1.8
1.5
1.6
1.2
1.1
1.2
1.8
2.0
1.9
1.0
1.0
1.0
1.3
1.0
1.2
1.0
1.0
1.0
1.3
1.6
1.4
0.7
0.7
0.7
0.7
0.6
0.6
0.7
0.5
0.6
0.4
0.9
0.6
0.9
0.7
0.8
0.9
0.7
0.8
0.9
0.8
0.8
1.0
1.3
1.2
                                     F-28

-------
                 COMPARISON OF ODOR PANEL RATINGS - VW RABBIT
                                Fuel:   EM-242-F
  Operating
  Condition
Inter. Speed
0 Load
Inter.  Speed
Mid Load
Inter.  Speed
High Load
High Speed
0 Load
High Speed
Mid Load
High Speed
High Load
Idle
Idle-
Acceleration
Acceleration
Deceleration
Cold Start
                  Date
9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average
9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average

9/12/77
9/14/77
Average
"D"
Composite
"B"
Burnt
"O"
Oily
Steady State Results
2.6
2.5
2.6
2.6
2.6
2.6
2.9
2.8
2.8
2.3
2.2
2.2
2.9
2.8
2.8
3.0
2.8
2.9
2.9
2.7
2.8
Transient
3.8
3.0
3.4
3.8
3.7
3.8
3.1
2.9
3.0
5.2
4.5
4.8
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.1
1.1
1.0
1.0
1.0
1.1
1.0
1.0
1.1
1.0
1.0
1.0
1.0
1.0
Results
1.5
1.0
1.2
1.3
1.2
1.2
1.0
1.0
1.0
1.9
1.4
1.6
0.8
0.9
0.8
0.9
0.8
0.8
0.9
1.0
1.0
0.9
0.8
0.8
1.0
0.9
1.0
0.9
1.0
1.0
0.9
0.9
0.9

1.0
1.0
1.0
1.0
1.0
1.0
0.9
1.0
1.0
1.3
1.1
1.2
                                            "7\"       "p"

                                          Aromatic  Pungent
0.4
0.7
"076
0.3
0.6
"074
0.4
0.4
"074
0.4
0.4
7J74
 0.4
 0.5
 0.4
 0.5
 0.5
 0.5
 0.3
 0.5
 0.4
 0.7
 0.6
 0.5
 0.8
 0.6
 0.6
 0.5


 0.7
 0.9
0.3
0.3
"073

0.2
0.3
"072

0.2
0.3
 0.1
 0.2
"072
 0.3
 0.5
7D74
 0.4
 0.4
 0.4
 0.5
 0.4
7574
 0.8
 0.6
 0.7
 0.8
 0.7
 0.8

 0.5
 0.7
7J76

 0.8
 1.0
 0.9
                                    F-29

-------
               COMPARISON OF GASEOUS EMISSIONS

    VEHICLE:  Mercedes 240D             FUEL:  EM-238-F
Operating
Condition
Inter. Speed
2% Load
Inter. Speed
50% Load
 Date
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
Inter. Speed  9/21/77
100% Load     9/23/77
              Average
High Speed
2% Load
High Speed
50% Load
High Speed
100% Load
Idle
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
9/21/77
9/23/77
Average
              9/21/77
              9/23/77
              Average
C.L.
HC,
ppm
43
68
56
36
41
38
28
38
33
55
59
57
28
29
28
24
31
28
69
91
80
CO,
ppm
206
205
206
154
155
154
244
274
259
392
368
380
196
191
194
362
322
342
158
170
164
C02,
t
2
2
2
6
7
7
11
12
11
3
3
3
7
7
7
12
11
12
2
2
2
fc
.4
.5
.4
.9
.1
.0
.7
.0
.8
.3
.3
.3
.8
.7
.8,
.5
.9
.2
.7
.8
.8
NO,
ppm
107
64
86
271
290
280
294
328
311
77
85
81
311
311
311
375
412
394
90
99
94
NOX,
ppm
102
60
81
263
293
278
285
328
306
74
82
78
306
300
303
367
405
386
87
91
89
DOAS
LCA,
yg/i
3
11
7
5
5
5
3
9
6
4
5
5
4
4
4
4
5
4
7
7
7
.4
.4
.4
.3
.6
.4
.0
.1
.0
.4
.5
.0
.0
.2
.1
.0
.2
.6
.9
.0
.4
Results
LCD,
yg/i
1
5
3
3
3
3
2
4
3
1
2
2
2
2
2
3
3
3
2
2
2
.8
.1
.4
.4
.0
.2
.4
.3
.4
.8
.6
.2
.2
.6
.4
.1
.9
.5
.3
.3
.3
TIA
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
3
7
5
5
5
5
4
6
5
3
4
4
3
4
4
5
6
6
3
4
4
                           F-30

-------
                SUMMARY OF GASEOUS EMISSIONS

    VEHICLE:  Mercedes  240D          FUEL:  EM-239-F
Operating
Condition
         HC,   CO,
 Date    ppm  ppm
High Speed
 2%  Load
High Speed
 50%  Load
High Speed
100%  Load
Idle
Inter. Speed  9/16/77   73   200
2%  Load       9/19/77   57   198
              Average   65   199
Inter. Speed   9/16/77   43   188
50%  Load      9/19/77   37   153
              Average   40   170
Inter. Speed   9/16/77   43  256
100%  Load     9/19/77   36  277
              Average   40  266
9/16/77   64   435
9/19/77   55   427
Average   60   431
9/16/77   31   198
9/19/77   32   200
Average   32   199
9/16/77   34   411
9/19/77   41   329
Average   38   370
9/16/77   94   182
9/19/77  H2   184
Average  iQ3   183


C02,
%
2.
2.
2.
7.
6.
6.
12.
11.
12.
3.
3.
3.
7.
7.
7.
12.
12.
12.
2.
2.
2.

5
5
5
0
8
9
1
9
0
3
3
3
9
7
8
2
6
4
7
8
8
C.
NO,
ppm
60
69
65
291
310
300
326
345
336
88
84
86
322
342
332
448
443
446
91
100
96
L.
NOX,
ppm
57
65
61
279
317
298
321
345
333
80
78
79
319
342
330
448
450
449
84
97
90
DOAS Results
LCA,
yg
8.
4.
6.
8.
2.
5.
11.
3.
7.
8.
4.
6.
8.
5.
6.
8.
5.
6.
6.
9.
8.
LCD,
[/I yg/1
9
1
5
6
6
6
0
1
0
1
0
0
2
0
6
2
0
6
5
8
2
3.
2.
3.
3.
1.
2.
6.
2.
4.
5.
2.
3.
5.
3.
4.
5.
5.
5.
2.
3.
3.
7
2
0
9
7
8
1
9
5
0
1
6
5
2
4
5
5
5
9
6
2
TIA
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.6
.3
.4
.6
.2
.4
.8
.5
.6
.7
.3
.5
.7
.5
.6
.7
.8
.8
.5
.6
.6
                            F-31

-------
            SUMMARY OF GASEOUS EMISSIONS MEASUREMENTS

 VEHICLE:   Mercedes 240D                        FUEL:  EM-240-F

                                       	C.L.     DOAS Results
                       HC,  CO,   C02, NO
               Date
Operating
Condition
Inter. Speed  9/26/77
2% Load       9/28/77
              Average
Inter. Speed  9/26/77
50% Load      9/28/77
              Average
Inter Speed   9/26/77
100% Load     9/28/77
              Average
High Speed
2% Load
High Speed
50% Load
High Speed
100% Load
Idle
              9/26/77
              9/28/77
              Average
              9/26/77
              9/28/77
              Average
              9/26/77
              9/28/77
              Average
              9/26/77
              9/28/77
              Average
HC,
ppm
50
46
48
33
30
32
23
35
29
57
55
56
27
34
30
27
42
35
63
57
60
CO,
ppm
219
192
206
157
151
154
179
176
178
458
399
429
212
215
214
261
290
276
160
145
152
C02,

2
2
2
7
7
7
10
10
10
3
3
3
8
7
7
11
11
11
2
2
2
%
.4
.5
.4
.1
.1
.1
.9
.8
.8
.3
.3
.3
.0
.7
.8
.9
.9
.9
.9
.8
.8
NO,
ppm
58
56
57
261
257
259
313
295
304
71
68
70
307
293
300
398
380
389
98
81
90
NOX,
ppm
56
60
58
258
249
254
307
295
301
72
70
71
298
292
295
393
377
385
98
82
90
LCA,
yg/i
15.
17.
16.
15.
15.
15.
8.
24.
16.
16.
15.
16.
23.
13.
18.
34.
20.
27.
5.
8.
7.
8
7
8
7
2
4
8
2
5
4
9
2
9
0
4
7
3
5
5
4
0
LCO,
U9/1
3
2
3
2
2
2
1
3
2
1
1
1
3
1
2
5
3
4
1
1
1
.6
.7
.2
.2
.2
.2
.3
.4
.4
.8
.5
.6
.8
.9
.8
.0
.3
.2
.3
.1
.2
TIA
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.6
.4
.5
.3
.3
.3
.1
.5
.3
.3
.2
.2
.6
.3
.4
.7
.5
.6
.1
.0
.0
                             F-32

-------
                 COMPARISON OF GASEOUS EMISSIONS

      VEHICLE:  Mercedes 240D              FUEL:  EM-241-F
Operating
Condition
Inter. Speed
2% Load
Inter. Speed
50% Load
Inter Speed
100% Load
High Speed
2% Load
High Speed
50% Load
High Speed
100% Load
Idle
 Date
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average
9/30/77
10/3/77
Average

HC,
ppm
53
49
51
38
30
34
43
25
34
52
46
49
30
32
31
28
33
30
92
77
84

CO,
ppm
161
170
166
145
147
146
216
210
213
335
376
356
195
221
208
307
261
284
155
155
155


C02,
%
2.
2.
2.
6.
6.
6.
10.
11.
11.
3.
3.
3.
7.
7.
7.
11.
12.
11.
2.
2.
2.

3
4
4
3
9
6
5
7
1
3
3
2
2
5
4
3
2
8
3
8
6
C.
NO,
ppm
57
62
60
251
287
269
279
317
298
75
80
78
287
310
298
342
403
372
82
90
86
L.
NOX,
ppm
59
59
59
256
285
270
279
310
294
77
76
76
291
307
299
347
408
378
80
87
84
DOAS
LCA,
ug/i
2.
2.
2.
2.
2.
2.
7.
2.
5.
4.
2.
3.
4.
2.
3.
5.
5.
5.
5.
3.
4.
9
7
8
6
0
3
8
3
0
3
9
6
2
6
4
2
3
3
0
3
2
Results
LCO,
yg/i
1
1
1
1
1
1
4
1
3
2
1
1
2
1
2
3
3
3
2
1
1
.7
.3
.5
.6
.5
.6
.5
.7
.1
.2
.3
.8
.5
.6
.0
.7
.3
.5
.4
.2
.8
TIA
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2
1
2
2
2
2
7
2
4
3
1
2
4
2
3
6
5
6
4
1
2
                              F-33

-------
                 COMPARISON OF GASEOUS EMISSIONS

      VEHICLE:  Mercedes 240 D             FUEL:  EM-242-F
Operating
Condition
 Date
                                         C.L.
                                    DOAS Results
EC,  CO,   C02, NO,  NOX, LCA,  LCO,
ppm  ppm    %   ppm  ppm  yg/1  yg/1   TIA
Inter. Speed  10/5/77   62  314   2.8   66   62   3.6   1.8   1.2
2% Load       10/7/77   _5_4  —   -—   --_   -—   3.3   2.0   1.3
                                        66   62
Average   58  314   2.1
                            3.4    1.9  1.2
Inter. Speed  10/5/77   37  149   7.0  280  278   2.7   2.0   1.3
50% Load      10/7/77   29_  —   	  —  —   3.9   3.1   1.5
              Average   33  149   7.0  280  278   3.3   2.6   1.4
Inter. Speed  10/5/77   31  213  11.5  315  323   3.5   2.3   1.4
100% Load     10/7/77   3_5  —  	  —  —   5.8   3.7   1.6
              Average   33  213  11.5  315  323   4.©   3.0   1.5
High Speed    10/5/77   48  381   3.3   77   75   2.9
2% Load       10/7/77   46_  —   	   -_-   --•   2.7
              Average   47  381   3.3   77   75   2.8
                                           1.7   1.2
                                           2.1   1.3
                                           1.9   1.2
High Speed    10/5/77   30  210   7.4  308  303   2.4   1.7   1.2
50% Load      10/7/77   30.  —   —  —  —   3.1   ..2.6   1.4
              Average   30  210   7.4  308  303   2.8   2.2   1.3
High Speed
100% Load
10/5/77
10/7/77
Average
 28  324  12.4  405  403
 31  	  	  	  	
          3.1
          4.9
2.5
4.8
1.4
1.7
                        30  324  12.4  405  403   4.0   3.6   1.6
Idle
10/5/77
10/7/77
Average
 79  166   2.!
 77  	
                        78  166   2.:
86   88

86"   88"
                                                  3.1
                                                  3.9
1.1
1.8
1.0
1.2
                           3.5   1.4  1.1
                              F-34

-------
                 COMPARISON OF GASEOUS EMISSIONS
       VEHICLE:  VW Rabbit
Operating
Condition
Inter. Speed
0 Load
Inter. Speed
Mid Load
Inter. Speed
High Load
High Speed
0 Load
High Speed
Mid Load
High Speed
High Load
Idle
               Date
              8/26/77
              8/29/77
              Average
              8/26/77
              8/29/77
              Average
              8/26/77
              8/29/77
              Average
              8/26/77
              8/29/77
              Average
              8/26/77
              8/29/77
              Average
              8/26/77
              8/29/77
              Average

              8/26/77
              8/29/77
              Average
HC,  CO,  C02,
ppm  ppm   %
172
100
 99
 68
 84
  58
110
 47
 81
 64
 108
 133
333
244
183
175
394
400
230
242
236
310
298
  64 2408
  53 2362
243
249
374
382
 2.1
 2.1
                       136  288   2.1
 6.5
 7.1
                            179   6.8
12.7
13.2
                        84  397  13.0
 2.3
 2.4
 2.4
 7.8
 7.9
                       120  304   7.8
     13.3
     13.2
                        58 2385  13.2
 2.3
 2.3
                       246  378   2.3
FUEL:
C.L.
NO,
ppm
36
44
40
220
214
118
254
252
253
73
76
74
318
296
307
307
293
300
78
78
78
NOX,
ppm
45
48
46
215
208
211
252
250
251
79
79
79
304
283
293
305
292
298
80
75
78
EM-238-F
DOAS Results
LCA,
yg/i
13.4
8.6
11.0
24.2
16.6
20.4
19.4
37.2
28.3
2.6
10.2
6.4
22.9
24.4
23.6
23.4
17.0
20.2
11.2
11.7
11.4
LCO,
yg/i
7.7
4.7
6.2
10.3
11.9
11.1
12.2
18.7
15.4
2.4
5.2
3.8
11.5
11.7
11.6
13.3
11.9
12.6
5.0
5.0
5.0

TIA
1.9
1.7
1.8
2.0
2.1
2.0
2.1
2.3
2.2
1.4
1.7
1.5
2.1
2.1
2.1
2.1
2.1
2.1
1.7
1.7
1.7
                              F-35

-------
                 COMPARISON OF GASEOUS EMISSIONS

       VEHICLE:  VW Rabbit                FUEL:  EM-239-F
Operating
Condition
Date
                  C.L.     DOAS  Results
HC,  CO,   C02, NO,  NOX  LCA,  LCO,
ppm  ppm    % •  ppm  ppm  yg/1  yg/1  TIA
Inter. Speed  8/22/77  195  324   2.0   32   35  10.8   6.4  1.8
0 Load        8/24/77   81  290   2.1   46   46_   6.3   4.3  1.6
              Average  138  307   2.0   39   40   8.6   5.4  1.7
Inter. Speed  8/22/77  109  182
Mid Load      8/24/77  111  182
              Average  110  182
                   6.0
                   6.4
                179
                196
162
19S
13.9
13.9
7.7
7.2
1.9
1.9
                   6.2  188  178  1.39   7.4  1.9
Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle


8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
8/22/77
8/24/77
Average
97
175
136
65
79
72
183
176
180
103
83
93
328
300
314
237
299
268
221
251
236
304
325
314
367
2170
1268
431
407
419
11
12
11
2
2
2
7
7
7
11
13
12
2
2
2
.2
.2
.7
.3
.4
.4
.2
.7
.4
.2
.0
.1
.4
.3
.4
230
240
235
74
69
72
267
288
278
285
271
278
73
72
72
216
240
228
72
78
75
238
273
256
274
270
272
65
75
70
18.
33.
26.
3.
7.
5.
31.
25.
28.
17.
13.
15.
11.
12.
11.
2
8
0
6
8
7
3
2
4
8
9
8
5
2
8
11.5
15.8
13.6
3.0
3.1
3.0
16.4
10.6
13.5
13.8
9.4
11.6
6.2
5.1
5.6
2.1
2.2
2.2
1.5
1.5
1.5
2.2
2.0
2.1
2.1
2.0
2.0
1.8
1.7
1.8
                              F-36

-------
           COMPARISON  OF  GASEOUS  EMISSIONS
VEHICLE:  VW Rabbit
                                    FUEL:  EM-240-F

                                  C.L.       DOAS Results
Operating
Condition
Inter. Speed
0 Load

Inter . Speed
Mid Load

Inter. Speed
High Load

High Speed
0 Load

High Speed
Mid Load

High Speed
High Load

Idle



Date
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
8/31/77
9/02/77
Average
HC,
ppm
95
59
77
71
55
63
68
101
84
415
384
400
181
171
176
75
84
80
332
253
292
CO,
ppm
335
335
335
176
179
178
201
224
212
352
356
354
417
440
428
374
351
362
322
312
317
co?f
%
2
2
2
6
6
6
10
11
11
2
2
2
7
7
7
12
11
12
2
2
2

.1
.1
.1
.6
.4
.5
.9
.7
.3
.4
.4
.4
.7
.9
.8
.2
.8
.0
.4
.3
.4
NO,
ppm
39
54
46
231
261
246
256
291
274
69
70
70
289
299
294
313
325
319
84
89
86
NOX,
ppm
48
62
55
229
252
240
254
288
271
70
74
72
263
262
262
307
315
311
84
88
86
                                           LCA,  LCO,
                                           28.8
                                           23.1
                                           63.4
                                           43.5
                                           53.4
                                            77.9
                                            78.2
                                            78.0
                                           68.5
                                           70.4
                                           118.7
                                           127.6
                                           123.2
                                            72.7
                                            74.2
                                            34.5
                                            28.8
                                            31.6
 4.0
 3.3
 7.1
 3.9
 8.1
 9.4
 4.9
 4.9
10.6
 9.2
10.8
11.7
 3.3
 3.0
1.6
1.5
                                           26.0    3.6  1.6
1.9
1.6
 6.0  1.8
1.9
2.0
 8.8  2.0
1.7
1.7
                                            69.4    4.9   1.7
2.0
2.0
 9.9  2.0
2.0
2.0
                                            73.4   11.2   2.0
1.5
1.5
 3.2  1.5
                       F-37

-------
                SUMMARY OF GASEOUS EMISSIONS
   VEHICLE:  VW Rabbit
                       FUEL:  EM-241-F
Operating
Condition
 Date
HC,  CO,
PPi"
Inter. Speed 9/7/77
0 Load       9/9/77
148  381
155  450
Inter. Speed  9/7/77
Mid  Load      9/9/77
              Average
Inter. Speed  9/7/77
High  Load     9/9/77
              Average
High Speed
0  Load
High Speed
Mid Load
High Speed
High Load
Idle
9/7/77
9/9/77
 Average
9/7/77
9/9/77
 Average
9/7/77
9/9/77
 Average
              9/7/77
              9/9/77
              Average
 95
 55
              192
              193
          92 1147
          79 1786
104
 54
364
334
120
121
276
307
                       120   292
 83 1738
108  337
         717
         533
     635
     767
                                  co
                    2.1
                    2.2
              Average  152   416    2.2
      6.4
      6.5
          75  192   6.4
          13.5
    	  13.9
~86~ 1466  13.7
2.5
2.4
                        79   349    2.4
7.7
8.0
7.8
     12.9
     13.2
                        96  1038  13.0
         625  701
      2.3
      2.4
      2.4
c.
NO,
Ppnt
58
52
55
220
212
216
256
254
255
70
74
72
323
312
318
327
312
320
71
76
74
L.
NOX,
ppm
54
53
54
209
213
211
254
246
250
73
75
74
308
300
304
322
309
316
70
77
74
DOAS Results
LCA,
yg/i
24.7
30.3
27.5
33.8
29.7
31.8
54.7
43.8
49.2
14.7
20.1
17.4
37.6
72.6
55.1
37.8
32.5
35.2
51.5
47.3
49.4
LCO,
yg/i
14.0
15.8
14.9
17.2
14.8
16.0
31.6
24.6
28.1
6.9
10.1
8.5
18.8
30.9
24.8
26.2
16.8
21.5
17.6
15.2
16.4
TIA
2.2
2.2
2.2
2.2
2.2
2.2
2.5
2.4
2.4
1.8
2.0
1.9
2.3
2.5
2.4
2.4
2.2
2.3
2.3
2.2
2.2
                            F-38

-------
                SUMMARY OF GASEOUS EMISSIONS
     VEHICLE:   VW Rabbit
                       FUEL:  EM-242-F
Operating
Condition
 Date
HC,
ppm
Inter. Speed
High  Load
High Speed
0 Load
High Speed
Mid Load
High Speed
High Load
Idle
9/12/77
9/14/77
Average
    CO,
    ppm
                    co
Inter. Speed  9/12/77   73  273
 0 Load       9/14/77   62  227
              Average   68  250
Inter. Speed  9/12/77   96  202
 Mid Load     9/14/77   60  167
              Average   78  184
9/12/77   35   241
9/14/77   51   219
Average   43   230
9/12/77  113  343
9/14/77  152  341
Average  132  342
9/12/77
9/14/77
Average
9/12/77
9/14/77
Average
61 3743
56  925
                       205
                       161
    385
    321
                      2,
                    2.1
                    2.1
                    2.1
                    6.9
                    6.0
                    6.5
48  538  12.9
72  362  12.5
60  450  12.7
          2.4
          2.4
          2.4
          7.7
          7.6
          7.6
          13.9
          12.7
                        58 2334  13.3
           2.3
           2.2
                       183  353   2.2
C.L.
NO,
ppm
48
59
54
242
234
238
255
265
260
105
103
104
342
330
336
292
296
294
81
74
78
NOX,
ppm
55
62
58
242
223
232
255
261
258
99
94
96
313
301
307
289
292
290
84
79
82
DOAS Results
LCA,
pg
8.
3.
5.
15.
6.
11.
18.
13.
15.
5.
4.
4.
21.
17.
19.
16.
12.
14.
9.
3.
6.
/I
1
5
8
8
3
0
0
8
9
3
1
7
1
3
2
5
8
6
2
1
2
LCO,
yg/i
4.
2.
3.
6.
3.
4.
9.
7.
8.
3.
2.
2.
8.
7.
8.
8.
8.
8.
4.
1.
3.
2
5
4
2
4
8
4
3
4
1
3
7
7
4
0
8
5
6
1
9
0
TIA
1.
1
1
1
1
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
.6
.4
.5
.8
.5
.6
.0
.9
.0
.5
.3
.4
.9
.9
.9
.9
.9
.9
.6
.3
.4
                            F-39

-------
               ALDEHYDE AND INDIVIDUAL HYDROCARBON  CONCENTRATIONS
             MEASURED DURING STEADY-STATE ODOR  RUNS,  MERCEDES 240D
Fuel:  EM-238-F


Compound, units
Formaldehyde , ppm
Acetaldehyde, ppm
aAcetone , ppm
Isobutyraldehyde , p
Concentration by Operatina Condition
1800 rpm
2% load
0.8
1.2
0.9
pm 0
Crotonaldehyde , ppm 2 . 1
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes, pp
Methane, ppmC
Ethyl ene, ppmC
Ethane, ppmC
Acetylene , ppmC
Propane , ppmC
Propylene, ppmC
Benzene, ppmC
Toluene , ppmC
Non-Methane , ppmC
0.2
2.4
m 7.6
6.2
7.5
0.4
2.4
0.1
2.9
1.3
0.1
14.7
50% load
0
0
0
0
0
0.1
2.1
2.2
3.9
6.1
0.3
2.2
0.1
1.8
1.5
0.1
12.1
100% load
0.4
0.6
0.4
0
2.1
0.1
2.0
5.6
3.9
6.7
0.2
2.8
0
1.8
2.0
0.1
13.6
3000 rpm
2% load
0.1
0.2
0.2
0
0.1
0.2
3.2
4.0
7.5
11.2
0.5
5.1
0.1
2.8
2.8
0.1
22.6
50% load
0.9
0.3
0.2
0
1.0
0.1
2.2
4.7
4.2
5.3
0.2
3.0
0
1.2
1.5
0.1
11.3
100% load
0.5
0.7
0.4
0
3.2
0.2
2.2
7.2
3.0
5.7
0
3.4
0
1.1
1.7
0
11.9

Idle
0.3
1.0
0.6
0
2.1
0.2
1.8
6.0
9.1
14.4
0.9
4.5
0.2
4.5
3.4
0.4
28.3
Fuel:  EM-239-F


Compound, units
Formaldehyde , ppm
Acetaldehyde, ppm
aAcetone , ppm
Concentration by Operating Condition
1800 rpm
2% load
1.4
0.6
0.3
Isobutyraldehyde , ppm 1 . 1
Crotonaldehyde , ppm 2 . 0
Hexanal , ppm
Benzaldehyde ,ppm
Total Aldehydes, pp
Methane , ppmC
Ethylene , ppmC
Ethane , ppmC
Acetylene , ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0.4
3.6
m 9.4
6.6
11.5
0.7
3.4
0.1
4.2
2.3
0.8
23.0
50% load
0.9
1.2
0.8
1.4
7.1
0.4
3.2
15.0
3.9
6.8
0.3
2.4
0
2.1
1.8
0.1
13.5
100% load
1.6
0.8
0.3
1.8
2.6
0.4
5.5
13.0
4.7
7.7
3.1
0
0
2.1
2.7
0.2
15.8
3000 rpm
2% load
1.5
0.7
0.5
1.5
2.8
0.6
4.8
12.4
7.6
12.4
0.5
5.3
0.1
3.3
3.5
0.7
25.8
50% load
0
0.7
0.5
1.6
3.7
0.4
2.5
9.4
3.4
5.3
0.2
2.7
0
1.3
1.7
0.1
11.3
100% load
0.6
0
0
0.9
1.0
0.2
2.5
5.2
2.3
5.7
0
3.2
0
1.2
1.6
0.1
11.8
Idle
2.2
1.9
1.2
1.7
5.7
0.4
3.2
16.3
8.7
16.2
1.0
5.2
0.3
5.6
4.0
1.1
33.4
a.
 includes acetone, acrolein, and propanal
                                       F-40

-------
               ALDEHYDE AND INDIVIDUAL HYDROCARBON CONCENTRATIONS
             MEASURED DURING STEADY-STATE ODOR RUNS, MERCEDES  240D
Fuel:   EM-240-F


Compound, units
Formaldehyde , ppm
Acetaldehyde, ppm
aAcetone, ppm
Concentration by Operating Condition
1800 rpm
2% load
0.34
0.16
0.10
Isobutyraldehyde , ppm 0
Crotonaldehyde , ppm 0.54
Hexanal, ppm
Benzaldehyde ,ppm
Total Aldehydes, pp
Methane , ppmC
Ethylene, ppmC
Ethane , ppmC
Acetylene , ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0
2.43
n 3.57
6.2
9.0
0.4
2.8
0
2.7
2.0
0.1
17.0
50% load
0.41
0
0
0.45
1.42
0.13
2.53
4.94
3.9
8.4
0.2
2.5
0
2.6
1.9
0.1
15.7
100% load
1.19
0.84
0.41
0.38
2.96
0
0.50
6.28
4.4
6.7
0.2
2.8
0
1.9
2.3
0.1
14.0
3000 rpm
2% load
1.65
0.95
0.30
0.17
1.34
0
3.59
8.00
10.4
14.6
0.7
7.1
0.1
3.4
4.8
0.5
31.2
50% load
0.26
0
0
0.12
0.24
0
0.16
0.78
5.0
6.1
0.3
3.6
0.1
1.3
2.0
0
13.4
100% load
1.15
0.98
0.34
0.25
2.50
0.12
1.08
6.42
5.5
7.7
0.2
4.6
0
1.5
2.5
0.1
16.6
Idle
1.71
1.05
0.53
0.33
1.14
0.06
0.92
5.74
6.7
11.5
0.7
3.8
0.1
3.6
3.4
0.6
23.7
 Fuel:  EM-241-F


Compound, units
Formaldehyde, ppm
Acetaldehyde, ppm
aAcetone , ppm
Concentration by Operating Condition
1800 rpm
2% load
1.54
1.85
0.70
Isobutyraldehyde, ppm 0.29
Crotonaldehyde, ppm 1.53
Hexanal , ppm
Benzaldehyde ,ppm
Total Aldehydes, pp
Methane , ppmC
Ethylene , ppmC
Ethane , ppmC
Acetylene, ppmC
Propane , ppmC
Propylene, ppmC
Benzene , ppmC
Toluene, ppmC
Non-Methane, ppmC
0
0.90
n 6.81
5.3
8.1
0.3
2.6
0.1
2.5
1.9
0.1
15.6
50% load
0
0.13
0
0.08
1.17
0
1.09
2.47
3.6
7.5
0.2
2.5
0
2.3
1.8
0.1
14.4
100% load
0.74
0.98
0.34
0.49
1.42
0
0.80
4.77
5.1
6.6
0.2
3.2
0
1.8
2.7
0.3
14.8
3000 rpm
2% load 50% load
1.07
1.30
0.62
0.08
1.27
0
1.89
6.23
8.3
10.8
0.5
5.7
0
2.3
3.6
0.4
23.3
1.09
0.30
0
0
1.20
0.06
1.20
3.85
4.3
4.8
0.2
2.9
0
1.0
1.6
0.1
10.6
100% load
0.99
0.40
0.03
0
1.67
0.07
2.03
5.19
4.1
6.6
0
4.3
0
1.2
2.2
0.1
14.4
Idle
1.16
1.57
	
1.00
1.20
	
1.13
6.06
7.7
15.9
1.0
5.2
0.2
5.4
4.2
0.7
32.6
 a.
  includes  acetone,  acrolein,
and propanal
          F-41

-------
               ALDEHYDE AND INDIVIDUAL HYDROCARBON CONCENTRATIONS
             MEASURED DURING STEADY-STATE ODOR RUNS, MERCEDES 240D
Fuel:  EM-242-F


Compound, units
Formaldehyde , ppm
Acetaldehyde , ppm
a Ace tone , ppm
Concentration by Operating Condition
1800 rpm
2% load
1.28
1.41
0.56
Isobutyraldehyde , ppm 0.16
Crotonaldehyde , ppm 0.91
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes, pp
Methane , ppmC
Ethylene, ppmC
Ethane , ppmC
Acetylene, ppmC
Propane, ppmC
Propylene, ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0
0.66
n 4.98
8.5
14.4
0.6
5.6
0.1
4.4
3.4
0.5
29.0
50% load
0.25
0
0
0.06
0.92
0
0.36
1.59
3.6
4.3
0.2
1.8
0.1
1.1
1.5
0.1
9.1
100% load
0.76
0.36
0
0.06
0.76
0.11
0.64
2.69
4.6
6.0
0.2
2.8
0
1.6
2.2
0.1
12.9
3000 rpm _
2% load
1.86
1.29
0.58
0.19
1.04
0
0.95
5.91
8.4
11.1
0.6
5.7
0.1
2.4
3.4
0.1
23.4
50% load
0
0.05
0.09
0.13
0.33
0
0.48
1.08
4.9
5.9
0.2
3.8
0
1.2
2.3
0.1
13.5
100% load
0.63
0.46
0.13
0.15
1.03
0
0.94
3.34
3. .9
6.2
0
4.2
0
1.1
2.1
0.1
13.7
Idle
1.93
1.53
0.59
0.12
1.21
0.16
1.06
6.60
8.1
14.1
0.9
4.9
0.2
4.6
4.1
0.7
29.5
a.
 includes acetone, acrolein, and propanal
                                       F-42

-------
              ALDEHYDE AND INDIVIDUAL HYDROCARBON CONCENTRATIONS
           MEASURED DURING STEADY-STATE ODOR RUNS, VW  RABBIT DIESEL
Fuel:  EM-238-F


Compound, units
Formaldehyde, ppm
Acetaldehyde , ppm
aAcetone , ppm
Concentration by Operating Condition
2020 rpm
2% load
9.5
5.4
1.8
Isobutyraldehyde , ppm 0.8
Crotonaldehyde , ppm 1 . 1
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes, pj
Methane , ppmC
Ethylene , ppmC
Ethane , ppmC
Acetylene , ppinC
Propane ,. ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0.7
4.0
>m 23.3
4.6
35.0
0.6
6.1
0.1
12.3
3.6
1.1
58.8
50% load
1.8
1.3
0.8
0.1
1.4
0
11.2
16.6
0
12.5
0.1
2.7
0
4.1
1.8
0
21.2
100% load
2.1
1.6
0.5
0
0.8
0.3
4.5
9.8
0.4
13.9
0
3.6
0
3.9
2.3
0
23.7
3360 rpm
2% load
1.6
1.2
0.7
0.2
2.1
0
2.8
8.6
0.6
8.6
0
2.3
0
2.4
0.7
0
14.0
50% load
1.1
0.6
0.1
0
0.5
0
0.9
3.2
5.1
19.7
0.6
7.1
0
4.9
4.1
0
36.4
100% load
1.4
1.5
0.3
0
2.0
0.3
10.1
15.6
3.8
18.3
0.3
6.5
0
4.9
3.6
0
33.6

Idle
16.5
8.3
2.7
0.8
2.5
0
9.2
40.0
2.9
26.2
0.4
4.4
0
8.5
3.0
0.5
43.0
Fuel:  EM-239-F


Compound, units
Formaldehyde, ppm
Acetaldehyde , ppm
aAcetone , ppm
Concentration by Operating Condition
2020 rpm
2% load
1.8
1.0
0.9
Isobutyraldehyde, ppm 0.2
Crotonaldehyde, ppm 2.1
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes , pp
Methane , ppmC
Ethylene, ppmC
Ethane , ppmC
Acetylene, ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane, ppmC
0
1.8
m 7.8
2.7
15.5
0.3
2.3
0.1
5.2
1.5
0
24.9
50% load
0.5
0.2
0.2
0.2
1.9
0.3
2.3
5.6
1.8
12.2
0.3
2.8
0
4.1
2.0
0
21.4
100% load
1.5
2.1
1.4
0.7
4.4
0
3.3
13.4
1.8
11.6
0.2
2.2
0.6
3.5
2.1
0
20.2
3360 rpm
2% load
0
0
0
0
0.6
0
1.4
2.0
2.6
8.6
0.3
2.0
0
2.6
1.1
0
14.6
50% load
2.0
1.4
1.6
0.4
2.7
0
2.2
10.3
9.2
32.5
1.5
7.6
0.1
9.4
5.7
0
56.8
100% load
0.7
0.6
0.4
0
2.6
0
2.3
6.6
8.8
15.0
0.6
5.6
0
2.2
3.6
0
27.0

Idle
12.8
3.4
2.3
1.1
3.0
0.8
2.1
25.5
5.4
30.0
0.8
4.1
0.2
10.0
2.4
0.2
47.7
 includes  acetone,  acrolein,  and propanal
                                      F-43

-------
            MEASURED DURING STEADY-STATE ODOR RUNS, VW RABBIT DIESEL





Fuel:  EM-240-F


Compound, units
Formaldehyde , ppm
Acetaldehyde , ppm
aAcetone , ppm
Concentration by Operating Condition
2020 rpm
2% load
2.1
1.3
0.7
Isobutyraldehyde, ppm 0.3
Crotonaldehyde , ppm 4.1
Hexanal , ppm
Benzaldehyde r ppm
Total Aldehydes, pp
Methane, ppmC
Ethylene, ppmC
Ethane , ppmC
Acetylene , ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0.5
3.8
m 12.8
0.5
21.1
0.1
4.4
0
6.8
1.8
0.7
34.9
50% load
0.9
0.1
0.1
0
1.5
0
3.1
5.7
0
9.0
0
4.0
0
2.1
2.6
0.2
17.9
100% load
2.1
1.1
0.6
0.3
2.4
0
3.1
9.6
0
14.7
0
4.8
0
4.6
3.6
0.7
28.4
3360 rpm
2% load
0.8
0
0
0
0.4
0
0.9
2.1
2.1
24.6
1.0
5.9
0
8.6
4.7
0.7
45.5
50% load
0.7
0.6
0.5
0.3
2.2
0
4.0
8.3
13.8
40.0
1.9
19.3
0.2
8.3
9.4
1.8
80.9
100% load
0
0
0
0
9.2
0
5.6
14.8
4.6
20.9
0.3
8.4
0.1
3.9
4.8
0.7
39.1


Idle
0.9
0.8
0.3
0
0.5
0
1.4
3.9
0.2
20.6
0.1
3.5
0
6.8
1.9
0.6
33.5
Fuel:  EM-241-F


Compound, units
Fo rma 1 de hy de , ppm
Acetaldehyde , ppm
"•Acetone , ppm
Concentration by Operating Condition
2020 rpm
2% load
7.6
3.8
2.0
Isobutyraldehyde, ppm 1.1
Crotonaldehyde, ppm
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes , ppir
Methane , ppmC
Ethylene , ppmC
Ethane , ppmC
Acetylene , ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
4.9
0
2.0
21.4
6.8
19.8
0.4
4.4
0.1
6.2
1.6
0.4
32.9
50% load
2.2
2.3
4.0
2.3
6.4
0.4
6.6
24.2
4.0
13.8
0.3
3.3
0.1
4.5
1.9
0.4
24.3
100% load
0
0
0
0
0.1
0
1.1
2.2
7.6
12.7
0.3
6.2
0
2.8
3.1
0
25.1
3360 rpm
2% load
4.2
2.0
0.8
0.4
3.0
0
1.8
12.2
5.0
10.2
0.3
3.0
0.1
2.7
1.0
0.3
17.6
50% load
2.6
1.0
0.4
0.2
2.0
0.3
1.6
8.1
11.7
27.0
1.3
9.3
0.2
8.6
5.0
0.9
52.3
100% load
0.8
0.5
0.1
1.2
2.6
0.4
4.8
10.4
9.5
11.1
0.4
6.0
0
1.8
2.7
0
22.0


Idle
26.4
7.2
2.8
2.8
3.8
1.4
8.2
52.6
10.0
49.4
1.0
8.2
0.2
16.5
7.0
1.7
84.0
 a.
  includes acetone, acrolein, and propanal




                                       F-44

-------
              ALDEHYDE AND  INDIVIDUAL  HYDROCARBON CONCENTRATIONS
           MEASURED DURING  STEADY-STATE  ODOR RUNS,  VW RABBIT DIESEL
FliPl : RM-242-F


Compound, units
Formaldehyde , ppm
Acetaldehyde, ppm
a Ace tone , ppm
concentration by Operating Condition
2020 rpm
2% load
3.9
1.3
1.0
Isobutyraldehyde , ppm 1.1
Crotonaldehyde , ppm 0
Hexanal , ppm
Benzaldehyde , ppm
Total Aldehydes, ppi
Methane , ppmC
Ethylene, ppmC
Ethane , ppmC
Acetylene , ppmC
Propane , ppmC
Propylene , ppmC
Benzene , ppmC
Toluene , ppmC
Non-Methane , ppmC
0.4
5.2
n 12.9
5.8
17.4
0.4
3.2
0.1
5.6
1.5
0.4
28.6
50% load
1.4
0.9
0.5
1.0
0.2
0.4
4.1
8.5
9.7
16.0
0.9
6.1
0.1
4.2
4.7
0.7
32.7
100% load
1.8
2.0
2.9
1.1
0
0.3
5.3
13.4
7.8
14.1
0.4
5.3
0
3.3
3.7
0.2
27.0
3360 rpm
2% load
0.6
0.6
0.1
0.7
0
0.3
2.3
4.6
5.4
8.2
0.3
3.1
0.1
1.9
1.2
0.2
15.0
50% load
1.9
0.9
0.7
1.1
0
0.3
4.2
9.1
15.7
31.7
1.8
11.8
0.2
8.0
7.2
1.4
62.1
100% load
0.7
0
0
0.1
0
0.3
4.1
5.2
14.9
16.2
0.6
9.6
0
1.8
2.9
0
31.1
Idle
16.3
6.8
3.9
2.4
0.2
0.7
3.6
33.9
6.4
26.7
0.5
4.3
0.1
8.7
2.0
0.6
42.9
a.
 includes  acetone,  acrolein,  and propanal
                                       F-45

-------
                    MERCEDES 240D  GASEOUS EMISSIONS - FUEL SPECIFIC BASIS


Fuel
EM-238-F








EM-239-F








EM-240-F








EM-241-F








EM-242-F









Operating
Schedule
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KEH
85 KEB
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
VAR. 40
HC
g/kg fuel
1.67
1.88
1.35
1.52
1.10
2. 39
4.27
2.04
1.47
2.62
2.75
1.90
1.31
1.09
2.22
4.30
1.44
1.08
1.31
1.39
1.39
0.99
0.71
1.26
2.50
1.12
0.92
2.48
2.86
1.96
1.18
0.83
2.50
5.27
1.42
1.02
1.54
1.71
1.38
1.23
0.93
1.87
2.93
1.56
1.01
VAR. 41
CO
g/kg fuel
7.95
8.04
8.09
6.56
6.44
9.90
12.7
6.89
6.62
8.82
8.65
8.77
7.36
7.26
10.9
12.7
6.46
7.41
8.31
8.09
8.95
7.42
7.26
10.9
11.1
7.00
7.34
8. 79
8.94
8.89
7.09
6.61
11.7
13.5
7.10
6.77
8.72
8.69
8.98
7.91
7.61
11.4
12.6
6.48
8.08
VAR. 42
NOX
g/kg fuel
10.9
10.9
10.9
14.1
12.5
10.5
11.3
12.0
15.4
10.9
10.6
11.7
11.8
13.2
10.6
11.7
12.0
13.9
10.6
10.3
11.1
11.4
12.2
11.0
11.7
11.5
12.8
10.9
10.6
11.1
12.3
13.2
10.6
13.2
11.6
11.8
10.9
10.6
11.3
12.5
12.8
11.3
11.9
11.7
13.7
VAR. 43
C02
g/kg fuel
3150.
3160.
3160.
3160.
3170.
3160.
3130.
3160.
3160.
3170.
3170.
3170.
3180.
3180.
3170.
3140.
3160.
3160.
3320.
3320.
3320.
3320.
3330.
3310.
3300.
3330.
3320.
3100.
3100.
3100.
3100.
3110.
3090.
3090.
3100
3120.
3220.
3220.
3220.
3220.
3210.
3200.
3200.
3220.
3210.
VAR. 45
formaldehyde
rag/kg fuel
66.
80.
57.
37.
16.
100.
130.
28.
26.
69.
75.
67.
31.
60.
42.
0.0
0.0
9.6
36.
36.
37.
48.
65.
4.0
0.0
23.
15.
87.
80.
94.
16.
20.
0.0
88.3
0.0
14.
69.
61.
79.
21.
20.
29.
80.2
25.
28.
VAR. 46
acetaldehyde
mg/kg fuel
14.
12.
16.
5.7
5.3
28.
6.92
3.8
1.5
9.5
8.8
10.
0.0
0.0
0.0
0.0
0.0
0.0
1.3
2.0 '
0.73
7.6
11.
0.0
0.0
0.0
1.6
16.
13.
18.
6.1
0.0
0.0
14.
0.0
0.0
7.3
0.0
14.
0.0
0.0
0.0
0.0
0.0
0.0
VAR. 47
acetone3
mg/kg fuel
50.
35.
64.
13.
37.
330.
100.
21.
11.
43.
6.2
98.
0.0
20.
0.0
0.0
0.0
0.0
4.5
10.
0.0
20.
25.
61.
68.5
21.
5.9
32.
19.
43.
28.
12.
36.
110.
2.1
5.4
15.
3.9
26.
0.0
0.0
0.0
0.0
0.0
0.0
plus salicylaldehyde
                                                F-46

-------
                            MERCEDES  240D GASEOUS EMISSIONS  -  FUEL SPECIFIC BASIS  (CONT'D)



Fuel
EM-238-F








EM-239-F








EM-240-F








EM-241-F








EM-242-F









Operating
Schedule
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
VAR. 48
isobutyr-
aldehyde
rag/kg fuel
7.8
9.9
6.3
11.3
2.0
33.
10.4
11.
4.6
8.3
0.0
20.
0.0
120.
240.
0.0
0.0
0.0
42.
20.
62.
9.7
7.8
16.
19.6
6.2
0.0
15.
14.
16.
6.2
3.6
21.
30.
7.8
3.2
54.
58.
52.
69.
120.
410.
611.
120.
34.
VAR. 49

crotonal
mg/kg fuel
56.
62.
54.
19.
37.
220.
219.
82.
29.
51.
48.
54.
190.
51.
160.
220.
34.
20.
57.
57.
59.
66.
280.
150.
156.
43.
18.
46.
42.
50.
210.
8.9
110.
109.
33.
27.
44.
32.
55.
19.
16.
43.
121.0
29.
5.0
VAR. 50

hexanal
mg/kg fuel
10.
11.
10.
5.2
2.4
20.
173.
6.9
8.4
17.
26.
9.2
6.9
25.
0.0
102.
13.
0.0
19.
25.
15.
8.7
7.3
0.0
25.
31.
7.2
26.
27.
25.
3.1
4.5
27.
24.0
6.4
2.7
28.
15.
40.
21.
6.3
0.0
94.0
0.0
0.0
VAR. 51 VAR. 52 VAR. 53 VAR. 54 VAR. 55
benz-
V.
aldehyde o-cresol,11 p-cresol, 2,4-xylenol, 2,3-xylenol,
mg/kg fuel mg/kg fuel mg/kg fuel mg/kg fuel mg/kg fuel
31.
38.
27.
49.
55.
0.0
0.0 0.0 0.0 0.0 0.0
31. 0.0 0.0 0.0 0.0
8.8 0.59 0.55 0.0 0.0
0.0
0.0
0.0
0.0
24.
0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.24 0.0 0.0
0.0 0.47 0.43 0.0 0.0
74.
71.
79.
16.
18.
30.
39.1 0.0 0.69 0.0 0.0
20. 0.0 0.27 0.0 0.0
9.0 0.0 0.39 0.0 0.0
74.
54.
93.
16.
84.
110.
76.6 0.0 0.92 0.0 0.0
62. 0.0 0.50 0.0 0.0
6.8 0.0 0.44 0.0 0.0
1.0
0.0
1.9
0.0
0.0
0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.34 0.57 0-0 0.0
 plus salicylaldehyde
 Plus 2,5-xylenol
°Plus 3,5-xylenol
                                                           F-47

-------
                     VW RABBIT DIESEL GASEOUS EMISSIONS - FUEL SPECIFIC BASIS
  Fuel
EM-238-F
EM-239-F
EM-240-F
EM-241-F
EM-242-F

Operating
Schedule
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
VAR. 40
HC
g/kg fuel
3.73
4.58
3.48
2.00
2.99
7.58
20.2
3.44
2.13
4.23
5.61
3.19
2.89
2.62
5.45
18.2
2.34
2.71
3.69
4.96
3.40
3.06
4.09
4.87
9.80
1.82
3.61
13.4
20.2
7.40
4.63
3.78
17.0
38.6
33.5
5.15
4.09
5.15
2.87
2.36
2.81
5.11
17.8
2.38
2.12
VAR. 41
CO
g/kg fuel
10.2
10.9
9.79
8.99
8.71
15.0
39.4
9.29
8.78
10.8
11.4
10.3
10.1
9.96
16.0
35.2
7.68
9.74
12.0
12.0
12.2
10.7
12.5
17.4
28.8
10.6
12.8
15.0
16.7
14.4
9.95
8.57
23.9
62.
29.0
8.50
10.6
11.3
9.82
8.98
10.0
13.2
33.1
6.46
9.28
VAR. 42
NOX
g/kg fuel
12.2
12.3
12.2
13.2
14.4
11.3
12.7
10.7
14.6
13.8
13.0
13.4
12.0
14.9
13.5
13.8
11.3
15.4
12.4
12.0
12.7
13.0
13.1
11.6
15.6
11.3
23.3
10.9
10.6
11.9
13.2
13.1
11.2
12.2
9.47
13.6
12.9
12.5
13.1
13.5
14.8
12.3
13.3
12.9
15.9
VAR. 43
C02
g/kg fuel
3170.
3140.
3150.
3170.
3160.
3140.
3040.
3160.
3160.
3170.
3170.
3170.
3150.
3170.
3150.
3100.
3170.
3160.
3300.
3310.
3310.
3310.
3300.
3290.
3240.
3320.
3300.
3050.
3030.
3080.
3100.
3100.
3000.
2900.
3000.
3090.
3210.
3210.
3210.
3220.
3220.
3210.
3120.
3230.
3210.
VAR. 45
formaldehyde
mg/kg fuel
120.
130.
120.
95.
79.
330.
560.
180.
51.
110.
120.
98.
26.
58.
120.
1100.
57.
38.
87.
95.
82.
87.
60.
190.
360.
66.
61.
360.
410.
330.
88.
35.
140.
850.
630.
85.
130.
160.
96.
43.
33.
55.
770.
110.
40.
VAR. 46
acetaldehyde
mg/kg fuel
25.
30.
20.
20.
4.1
18.
120.
23.
6.9
8.3
18.
0.0
0.0
0.0
0.0
0.0
0.0
3.0
8.9
14.
4.3
7.4
6.3
30.
21.
14.
11.
90.
110.
80.
10.
5.0
0.0
210.
140.
15.
18.
40.
0.0
0.0
0.0
0.0
280.
8.2
0.0
VAR. 47
acetone3
mg/kg fuel
110.
130.
100.
62.
54.
190.
360.
180.
43.
23.
40.
9.8
7.0
0.0
0.0
0.0
0.0
24.
10.
13.
7.5
9.2
16.0
0.0
39.
34.
12.
160.
200.
130.
21.
1 fi
J.D .
32
200.
100.
22.
33 .
48.
19 .
On
. u
0 . 0
0.0
380 .
44
*i*i .
8.2
 plus  salicylaldehyde
                                                 F-48

-------
                            VW RABBIT DIESEL GASEOUS EMISSIONS   FUEL SPECIFIC BASIS  (CONT'D)



Fuel
EM-238-F








EM-239-F








EM-240-F








EM-241-F








EM-242-F










Operating
Schedule
FTP 3 -Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3 -Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3- Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
VAR. 48
isobutyr-
aldehyde
rag/kg fuel
15.
16.
15.
420.
18.
140.
82.
19.
40.
28.
24.
30.
0.0
0.0
110.
1100.
0.0
30.
26.
27.
27.
8.7
21.
0.0
46.
47.
9.2
43.
41.
47.
15.
0.0
24.
120.
41.
31.
37.
38.
35.
2.4
97.
620.
790.
30.
48.
VAR. 49

crotonal
mg/kf fuel
130.
140.
120.
420.
71.
410.
390.
83.
32.
78.
92.
68.
650.
210.
830.
1100.
160.
35.
67.
74.
61.
69.
30.
150.
230.
160.
14.
120.
120.
120.
37.
48.
160.
290.
120.
31.
43.
54.
35.
0.24
43.
190.
320.
48.
48.
VAR. 50

hexanal
mg/kg f ue 1
81.
95.
70.
520.
26.
99.
120.
19.
8.5
18.
26.
11.
79.
21.
0.0
0.0
37.
0.0
63.
74.
54.
64.
0.0
71.
39.
9.9
0.0
73.
61.
88.
12.
10.
93.
45.
35.
6.2
20.
13.
27.
0.0
33.
180.
160.
30.
0.0
VAR. 51 VAR. 52 VAR. 53 VAR. 54 VAR. 55
benz-
aldehyde o-cresol,a p-cresol, 2,4-xylenol £ 2, 3-xylenol,c
mg/kg fuel mg/kg fuel mg/kg fuel mg/kg fuel mg/kg fuel
110.
160.
72.
520.
100.
100.
740. 0.0 0.96 0.0 0.0
190. 0.89 1.8 0.0 0.48
43. 0.93 0.96 0.0 0.0
5.9
0.0
11.
0.0
0.0
0.0
0.0 0.0 0.62 0.0 0.0
0.0 0.0 0.77 0.0 0.0
0.0 0.0 0.0 0.0
120.
66.
170.
140.
115.
75.
390. 0.0 1.8 0.0 0.0
16. 0.27 0.34 0.0
67. 1.7 2.0 0.0 0.0
150.
230.
80.
49.
130.
220.
360. 0.0 15. 0.35 15.0
120. 3.1 8.5 0.12 5.0
36. 2.2 5.4 0.0 2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 0.0 1.5 0.0 0.0
23. 0.0 0.37 0.0 0.0
0.0 1.0 1.3 0.0 0.0
  plus salicylaldehyde
b plus 2,5-xylenol
c plus 3,5-xylenol
                                                         F-49

-------
             APPENDIX G





SMOKE AND PARTICULATE EMISSIONS DATA

-------
FIGURE G-l,   VOLKSWAGEN RABBIT DIESEL COLD
            EM-241-F "MINIMUM. QUALITY" NO,
START SMOKE
2 FUEL
TRACE,

-------
FIGURE G-2,   VOLKSWAGEN RABBIT DIESEL HOT START SMOKE TRACE.
            EM-241-F "MINIMUM QUALITY" NO,  2 FUEL

-------
FIGURE G-3,   MERCEDES 240D COLD START SMOKE TRACE,
       EM-241-F "MINIMUM QUALITY" NO,  2 FUEL

-------
[XHAUSTiSfflKEL
I • ' '  ; i '• r •
 lii-  ilM
FIGURE G-4,   MERCEDES 240D  HOT START Si
       EM-241-F  "MINIMUM QUALITY"  MO,
2
     TRACE,
  FUEL

-------
FIGURE G-5,
VOLKSWAGEN RABBIT DIESEL COLD START SMOKE TRACE,
    EM-240-D "JET A" NO, 1 FUEL

-------
o
I
                   FIGURE G-6,   MERCEDES  240D  COLD
                               EM-240-D "JET A"  NO,
START SMOKE TRACE,
 1 FUEL

-------
FIGURE G-7,   VOLKSWAGEN RABBIT DIESEL COLD START SMOKE TRACE,
                EM-242-F  "PREMIUM"  NO,  2  FUEL

-------
FIGURE G-8,   MERCEDES 240D COLD START
      EM-239-F "NATIONAL AVERAGE" NO,
  E TRACE,
FUEL

-------
                                                               MERCEDES 240D PARTICULATE - DISTANCE BASIS
























o
1
h-1
O

























FUEL 838
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE3
SO KPH
85 KPH
FUEL ?39
FTP 3RAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE3
50 KPH
85 KPH
FUEL 810
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IOLEa
So KPH
85 KPH
FUEL 811
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE3
SO KPH
85 KPH
FUEL 212
FTP 3HAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE3
SO KPH
85 KPH
VAR. 1
TOT PART
G/KM

.3290
.3350
.3810
.2blO
.2120
,b800
8.9900
. 1500
.19bO

.3110
.3190
.3110
.88bO
.1920
.5b50
3. IbOO
.1180
.IbSO

.2350
.2510
.2230
.IbbO
.1100
.3170
1.5000
.1110
,13bO

. 3800
.1080
.3580
.2570
.2580
.8080
1.0000
.1500
.8310

.8980
.8990
,88bO
.3030
.1810
,5b30
8.7100
.1310
.1950
VAR. 5
PART CON
MG/M3

103.11100
101.0000
103.0000
115.01100
113.0000
110.0000
9U.bOI)0
81.91100
103.0000

9 8 . 9 11 0 0
99.51100
98.5000
99. 701)0
1 0 8 . 0 (1 n 0
llb.UHOO
95.81100
77.5000
87.0000

73.9000
78. 3000
70.b(IOO
73.8000
71.1000
bS. 3000
15.1000
b2.2000
71.7000

119.0000
127.0(100
113.0000
113.0000
137.0000
lbb.0000
181.0000
81.9000
188.0000

91. 70110
93.3000
90.bOOO
B9.5000
9b. 80(10
lib. 0000
B8.KJOO
71.5000
103.00(10
VAR. fc VAR. 7
TOT SOL. CARBON
PCT MG/KM

11.8000 2ib.nooo
10.7000 858.0000
11.5000 237.0000
7.7000 189.0000
b.1000 155.0000
11.1000 518.0000
9. 30001880.0000
10.8000 117.0000
7.7000 115.0000

9.8000 238.3000
9. 7000 831.nHOD
9.8000 831.0000
7.9000 Ibb.ODOO
7.bOOO 111.0000
7.9000 177.0000
fa. 00008570. 0000
9.0000 121.0000
B.bOOO 185.0000

18.0000 180.1000
18.8000 800.0000
11.9000 IbS.OOOO
10.1000 183.0000
11.7000 18b.OOOO
25.7000 851.0000
20. 10001170.0000
12.7000 101.0000
9.8000 103.0000

7.bOOO 888.8000
8.3000 307.0000
7.0000 875.0000
5.5000 192.0000
1.7000 187.0000
3.1000 bl7.(1000
1.10U08b70.0l)00
1.7000 189.0000
b.OOOO 171.0000

8.9000 81b.OOOO
9.5000 828.0000
8.5000 807.0000
7.0000 lib. 0000
8.3000 188.0000
3.9000 181.0000
b. 50001780. 0000
7.3000 7B.bOOO
1.9000 150.0000
VAR. 8
HYDROGEN
MG/KM

9.3500
9.7800
9.0700
b.7900
1.8800
17.7000
71.BOOO
1.0500
5.8800

11.8100
n.snon
18. 1000
7.2300
5.5700
87.1000
118.0000
1.5100
1.7800

b.3300
7.0300
S.BOOO
3.8800
1.8000
B.SbOO
b 3 . 0 0 0 0
1.8500
3.1000

18.0300
11.8000
18.8000
7.2000
5.7500
lb.8000
108.0000
7.bSOO
7.8500

7.7100
8.0700
7.1100
5.0800
5.0700
H.bOOfl
b7.bOOO
1.3200
5.070(1
VAR. 9
NITROGEN
MG/KM

1. 130(1
1.3 111 II
.9780
i.oino
. b 3 b 0
3.10011
1 8 . 0 0 0 0
.301111
.781(1

8. 9b8ll
3. 191111
8. 80 (111
b. 33UO
b. 11011
b. 7HCIII
bS.SriOO
2. 70011
1.320(1

1.19111
1.000(1
1.31011
1.19(111
8.910(1
7.950U
b. 011(1(1
.9120
1.0900

1. Sibil
l.bSOII
1.130M
1.8900
.877U
3.83()n
81.0000
.751111
.9810

l.lbbO
1. 20110
1.110(1
.8120
.9050
3.910U
19.00UU
.91711
. 781111
VAH. 10
SULFUR
MG/KM

3.5000
3.9000
3.8000
1.1000
3.0000
3.bOOO
3 1 . 0 0 0 U
1.2000
3.7000

8.7900
2.9000
2. 7000
2 . fa 0 0 0
1.9000
2.bOOO
15.0000
. 7bOO
8.1000

.7700
.8800
,b900
.8300
.7800
.bQOO
1.7000
,19{JO
.1000

3.8300
1.0000
3.7000
1.1000
3.100U
5.5000
31.0000
1.1000
3.3000

3. 7000
1.1000
3.1000
1.9000
3.1000
1.1000
88.0000
1.8000
1.1000
VAR. 11
SULFATE
MG/KM

B.1900
B. 7000
7.8000
10.0000
13.0000
13.0000
78.0000
3.1000
9.bOOO

7.5000
8.3000
b.9000
9.bOOO
8. 3000
b.8000
13.DOOO
2.0000
7.8000

8.1800
2.8000
l.bOOO
8.1000
8.1000
1.5000
7.0000
.5100
1.5000

9.1300
9.bOOO
9.3000
18.0000
18.0000
7.1000
bS.OOOQ
8.8000
8.1000

8.7100
7.1000
9.7000
11.0000
7.1000
8.5000
57.0000
8.5000
8.1000
VAN. 12 \
BAP
/JG/KM

.38bO
.3800
.3900
.1300
.07bO
1.9000
18.0000
.1100
.0790

.IbCO
.5100
.1000
.1900
,0b?0
8. 7000
19.0000
.1800
.0330

.3830
.3800
.8800
.1700
.IbOO
.7500
9.8000
.0180
.1100

.b200
.7100
.5300
.IbOO
.08bO
1.0000
55.0000
.1500
.0350

.2300
.8300
.8300
.1300
.1500
.7500
1.1000
.3800
.0860
MR. 13 \
C«
PCT

.0800
O.OOOU
.1100
.ObSO
o.ooou
0.0000
0.0000
0.0000
0.0000

.ObOU
. 1100
0.0000
n.ooou
0.0000
o.ooou
o.ooou
0.0000
0.0000

0.0000
0.0000
0.0000
o.oooo
o.ooou
o . o n o o
0.0000
o.oooo
0.0000

.0580
.1800
o.oooo
0.0000
O.OOOil
o.ooou
o.ooou
o.oooo
o.ooou

.1180
.3500
.1700
.130U
o.oooo
o.ooou
0.0000
0.0000
o.ooou
/AR. 11 \
PB
PCT

.bSOO
.5300
.7100
.2100
.1800
1.7000
3.1000
.1700
.1900

.1100
.3900
.1800
.3100
.9500
1 . b 0 0 0
2.0000
.7100
.SbOO

.blOO
.7800
. 5 3 OH
.IbOO
.7900
0.0000
2.8000
1.8000
.3700

.3000
.3300
.8700
.8800
.1100
.bBOO
0.0000
0.0000
.8100

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
IHR. lb \
PCI

.3300
.8100
.390U
.1800
.880U
. 970U
1.300U
o.ooou
.880U

.210U
.190U
.280U
.200U
.S10(J
.980U
1.100U
.1100
.8900

.890U
.860U
.2900
.880U
.3BQU
o.ooou
1.3000
.b30U
.1BOU

.1800
.190U
.180U
.1100
.8800
.IbOLi
.580U
o.ooou
.nou

o.ooou
0.0000
o.ooou
O.OOQO
0.0000
o.ooou
O.OOOU
0.0000
o . n n o u
/AR. lb V
bR
PCT

o . n u o i)
o.ooou
0.0000
o.oooo
o.oooo
0 . 0 0 U 0
O.OOUD
D.OOOII
o . o o n o

0. 0 DO II
O.OUIIO
O.UOUII
o.ooou
0. tlOUII
o.oonn
O.OOllll
O.OOllll
0.0000

.ObOO
.15UO
O.OOOU
O.OOllll
0 .001111
O.OOllll
O.OUUI1
O.DOUfl
O.UOIHI

0.00011
0.0000
o.oouo
0 . 0 0 U U
0.00011
0.0000
o.oouo
0.00110
O.OOOil

U.noiHi
U.OOIIIJ
0.00110
0.0000
0.00011
U. OOIIU
O.OOllll
U.OOIHI
0 . 0 0 1 1 1 1
/AR. IT
PCT
'
.0118
.OlbO
.008b
.0081
.OObS
o.oooo
11.00110
ii.oooo
.U110

.0118
. 0 1 b 0
.0087
.OuBS
.OObl
0.0000
n. unoo
0. 0000
.0150

.Ib88
.0310
. J280
.0390
.0830
o.oooo
0 . 11 0 0 0
.0150
.0880

.0813
.0878
.0170
.0880
.0210'
.HUB
0.0000
.0081
.0190

.0809
.02bO
.0170
.0850
.0180
.1.0000
n.oooo
.0970
. U 1 b 0
a idle emissions per hour  (/h) rather than per kilometer  (/tan)

-------
                                                      MERCEDES  240D PARTICULATE - DISTANCE BASIS


        VAR.   IB VAR.   11 VAR.   20 VAR.   21  VAR.   22 VAR.   23  VAR.   2*  VAR.   25  VAR.   2h VAR.   27 VAR.   28 VAR.   2H VAR.   3D VAR.   31a
               SI        CD        AL        NA         MG         K         CL         ZN         CU        NI        FE        BA        CA 0-CRESOL
             PCT      PCT      PCT       PCT       PCT      PCT        PCT        PCT        PCT       PCT      PCT       PCI       PCT    MG/KM
FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC .
IDLEb
SO KPH
85 KPH
FUEL 231
FTP 3RAG
FTP C
FTP H.
CFOS
FET
NYCC
IOLEb
so KPH
85 KPH
FUEL 2*0
FTP 3PAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE b
50 KPH
85 KPH
FUEL 2*1
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE b
50 KPH
85 KPH
FUEL 2*2
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC .
IDLE b
50 KPH
85 KPH

.0023
.0025
.0021
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo

.0018
n.oooo
.0032
0.0000
n.nooo
0.0000
0.0000
n.oooo
o.oooo

.0070
.0110
.0031
.OOfaO
.003b
0.0000
0,0000
.0070
n.oooo

.0037
,008b
o.oooo
0.0000
0.0000
0.0000
0.0000
n.nooo
0.0000

.00b2
.0110
.0025
.0020
0.0000
0.0000
0.0000
0.0000
0.0000

.00*1
.UDS2
.00*7
.0025
.OObS
.0200
.oino
.0038
.0031

o . o n n o
n.nouo
o . o n n o
.oonb
0.0000
0.0000
0.0000
o.oono
n.onoo

.0010
. 0 It 2 *
o.onnu
. o n 1 b
.003b
0.0000
0.0000
0.0000
0.0000

o.onoo
0.0000
0.0000
o.onoo
0.0000
o.ouoo
o.oooo
n.oooo
o.oooo

.0022
.0030
. 0 0 1 b
.002b
o.oooc
o.onno
o.onoo
o.onoo
.ooni

o.onno
o.nooo
o.oooo
o.oooo
o.oonn
o.oooo
n.oono
n.ooou
o.oono

o.ooun
n.oonn
o.nnoo
o.oooo
o.oonn
o.ooon
o.oouo
n.ooun
.003*

.0011
o.oooo
.0020
o . o n u n
o.oooo
o.oono
o.oooo
o.oooo
o.nouo

.0021
.00*8
0.0000
o.oono
.0050
o.oouo
o.nooo
o.noon
o.oouo

.OObS
.0052
.007*
.003*
o.noon
o.nnoo
o.oono
o. oonn
o.ouun

o.noon
o.oooo
o.oooo
o.noon
o.nooo
o.nooo
o.nnoo
n.onoo
o.nnoo

o.nono
o.noon
o.nono
o.ooon
o.nnoo
o.nunn
n.onoo
n.onno
.0310

.*030
.*bOO
. 3bOn
.b200
0.0000
o.ooon
0.0000
0.0000
o.oono

o. nnoo
n.nooo
n.nooo
o.oooo
o.oooo
o.ooon
o.oooo
o.noon
o.onoo

o.nono
o.nnon
n.nnoo
o.nnoo
o.nooo
o.nnno
o.noon
u . n n o o
n.nnnn

o.ooon
o.ooon
o.oooo
o.oooo
o.oooo
o.nnoo
o.oooo
o.oooo
o.onoo

o.oooo
0. rill Od
n.onno
n . o n n n
o.oooo
o.onoo
o.oooo
o.nnnn
n.onoo

o.oooo
o.oooo
o.nooo
o.oonn
n.oooo
o.nooo
n.oooo
o.oooo
o.onoo

o.ooon
o.oooo
o.oooo
o.ooon
o.oooo
n.oooo
o.oooo
o.ooon
o.oooo

n.oooo
o.oooo
o.oooo
0 . U 0 0 0
n.oooo
u. ooon
o.nnon
o.noon
n. uonn

o.nnnn
o.ouuo
o.oono
o.oooi)
o.ounn
o.nnnn
o.uunn
o.nunn
O.oonn

o. nn on
O.ounn
O.noon
O.OdHd
o. oouii
0.000(1
o.oono
O.oonn
o . o n o u

,00b2
.01011
. o n 3 *
.005b
.UII3b
.02bO
o.ouno
.01511
.003*

.0011
.OU25
o.ounn
.oo?u
o.oono
o.ooon
o.onnu
.0032
.0013

. o n b 5
.0085
.nnsu
. n n * 3
,00b3
.0071
.n25(i
.0031
.0(13*

.00*2
.0017
n.oono
o.ooou
o.nono
o.onoo
u.oono
o.ouuo
o.nnnn

o . o n o n
n.onno
o.noou
n . u o o o
o.oono
o.oonn
n.oooo
o.uouo
o.nono

.Ul*b
.03*0
0.0000
.0150
0.0000
o.ouoo
0.0000
o.onnn
o.oooo

o.oono
o.ouno
o.oonn
o.onuo
o.ooou
o.onnu
o.oooo
o.oooo
u.oono

o.oono
o.nooo
n . o n u o
o . o o n u
o.onnu
o.oono
o.onno
o.oono
0 . nnuD

.0710
.0810
.0570
.03bO
.0*30
.0710
. 1300
o.nnoo
.0*10

.o*bn
. n 7 * n
.02*0
.0*80
.0*10
o. nonn
o.oooo
.0*70
.0*50

.1070
. 1200
.0170
.0180
.Ob80
. 1100
0.0000
.1000
,07bO

.1030
.1300
.0820
.OlbO
. 1000
. 1100
0.0000
.0700
.07*0

,0b70
.0170
.0**0
.07*0
.0310
0.0000
o.ooon
o.ooon
.03bO

.OSbO
o.oono
.0110
o.ooon
o.oooo
o.nono
.3500
o.noon
o.ounn

o.oono
o.ouno
o.ooon
o.ouoo
o.ouoo
o.oooo
o.onoo
o.oooo
o.nooo

o.oooo
O.ODOO
o.oooo
0.0000
o.oooo
0.0000
0.0000
o. oono
0.0000

0.0000
0.0000
0.0000
O.OODO
o.oooo
o.ouoo
o.ooon
0.0000
o.oono

o.noon
o.nooo
u.nnoo
o.ooon
o.oouo
o.oooo
o.oooo
o.oouo
o.nono

o.oooo
o.ooou
0.0000
o.oooo
0.0000
o.oouo
0.0000
0.0000
0.0000

n.oooo
n.oooo
o.nooo
o.oooo
o.ooou
(1.0000
o.oooo
o.ooou
o.oooo

.0010
.0220
0.0000
.0270
0.0000
0.0000
0.0000
.u**o
o.oouo

u.oooo
o.oooo
n.oooo
0.0000
n.oooo
o.ooou
o.ooou
n.ooou
U . 0 0 0 U

u.ooou
0.0000
0.0000
0.0000
n.oooo
.OSBU
0.0000
n.nonu
n .0000

.2530
.*300
.1200
.0500
.0780
0.0000
0.0000
o.ooon
0.0000

.1330
. 3100
n. nooo
,0b70
0.0000
o.oooo
o.oouo
O.DOOO
0.0000

.2*30
. soon
.2uon
.ibun
i.oono
0.0000
0.0000
o.noon
0.0000

,2b80
.*50U
.1300
.1000
.0150
0.0000
0.0000
o.ooon
.0330

.2180
.5200
.1300
.2000
O.OUOO
o.oooo
0.0000
0.0000
n.oooo

.OU1*
o.ooou
.0025
o . n u o u
.nliu
o.ooou
i) . nnni
o.onoi
o.o noii

0 . 0 U 0 U
o . n o o u
o . n o o u
n . o o u u
n.ooou
o. onou
o.noou
o . n D o u
c.ooou

.UObb
.01SU
0 . 0 U 0 U
.01BU
.031u
0 . 0 0 U LI
.088U
n . n n o u
o . nouu

.0087
. U 0 7 U
.niuu
.0013
o.ooou
0 . U 0 0 U
u . n n o u
n.nnnu
o.ooou

o.oouu
O.OOQU
o.noou
o . n n u u
o.uonu
0. UOOU
o. noou
n.onrni
o . n o u u

.073(1
.UBbll
.Ub3U
.025(1
.031U
.03111
. USUII
. 1)37(1
.0*1(1

.ObSII
.Ub3l1
. U b ? U
.U3()l)
.U3UU
o.onnu
O.UUIHI
U.OUIIIl
.0311.)

. 122U
.151111
.lOlln
.1*1111
.12(1(1
.mini ^
.18110
. lOnu
.U11II

.Db2ll
.08PU
.0 + HU
.0*10
.0*1(1
. O*BII
.ossn
.Olbll
.033')

.Obin
. mm)
.0*511
.071H
.0310
.03811
0. 00(111
o.ounu
. 031*!!







n.uooo
.0210
.1)070







l.OUOO
(1.0000
.0110







n.uuoo
,l. 0000
.U210







II. UUOO
11.0000
o.ouoo







IP. oooo
... 0 0 U 0
.U010
plus salicylaldehyde
idle emissions per hour  (/h) rather than per kilometer (/km)

-------
                                                                    MERCEDES 240D PARTICULATE - DISTANCE BASIS
                      VAR.  38  VAR.  333VAR.  3*1>VAR.  35  VAR.  3b
                      P-CRESOL   2,*-XYL   2,3-XYL  1UO-CHNS   SUM VAR
                         MG/KM     MG/KM     MG/KM       PCT       PCT
M
FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE0 0.0000 0.0000
50 KPH .0150 O.IUHIO
85 KPH .OObO 0.0000
FUEL 231
FTP 3BAG
FTP C
FTP H
CFDS
FET
MVCC
IDLE0 0.0000 0.0000
5U KPH 0.0000 0.0000
8S KPH .0120 0.0000
FUEL 2>»0
FTP 38AG
FTP C
FTP H
CFOS
FET
NYCC
IDLEC 0.0000 0.01100
50 KPH 0.0000 0.0000
85 KPH .0070 0.0000
FUEL 2*1
FTP 36AG
FTP C
FTP H
CFOS
FET
NYCC
IDLE0 0.0000 0.0000
50 KPH 0.0000 0.0000
85 KPH 0.0000 0.0000
FUEL 2*2
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE0 0.0000 0.0000
50 KPH 0.0000 O.DdOO
85 KPH .00*0 0.00110







0.0000
O.OOtlO
0.0000
.-






n.oooi)
0.0000
0.0000
---






0.0000
0.0000
0.0000







0.0000
0.0000
o.oooo
• — --






o.oono
0.0000
0.0000

20.1500
18.5000
22.8000
23.0000
2*. 3000
20.2000
33.21100
18.3000
20.7000

20.5300
21.1000
20.1000
ii.*noo
11.5000
1.1200
11.5000
7.0*00
11.1000

20.0500
lb.8000
22.5000
22.2000
*.3*00
1*.5000
17.1000
1.3*00
20.7000

11.2500
' 20.5000
18.3000
20.3000
23.8000
20.bOOO
21.2000
7.5000
11.5000

21.b*00
11.3000
23.*OQO
22. 8000
2*. 1000
20.bOOO
32.3000
35.1000
18.0000

1.5350
l.*100
l.bSOO
.5*70
.8120
2.8100
*. 1*00
.5110
.8150

.1b50
1.1800
.8030
.bltO
1.5500
2.5200
3 . 1 0 n 0
1.2000
.1750

1.1370
2.3700
l.blOO
1.8100
2.*200
.32faO
3.7700
2.1100
.7SbO

1.0030
1.3faOO
.7330
.b300
.1550
1.3100
.55SO
.0170
.5*00

.81*0
1.1200
.7230
.8120
.0800
.10*0
.0250
.1010
.0100
             plus 2,5-xylenol
             plus 3,5-xylenol
           C idle emissions per hour  (/h) rather than per kilometer (/km)

-------
                                                     VW RABBIT DIESEL  PARTICULATE - DISTANCE BASIS


        VAR.   4  VAR.    5 VAR.    k VAR.    7  VAR.    8  VAR.   q  VAR.   10 VAR.   11 VAR.   12  VAR.  13  VAR.   14 VAR.   IS VAN.   Ib VAW.   17
        TOT PART  PART  CON TOT  SOL.   CARBON  HYDROGEN  NITROGEN    SULFUR  SULFATE      HAP        CH        PB        MM        b*         P
            G/KM     MG/M3       PCT    MG/KM     MG/KM     MG/KM     MG/KM    MG/KM    t/G/KM       PCI       PCT       PCI       PCT       HCT
FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC ,
IDLE
50 KPH
85 KPH
FUEL 231
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLEa
50 KPH
85 KPH
FUEL 240
FTP 3BAG
FTP C

FET NYCC IDLE a 50 KPH 85 KPH FUEL 241 FTP 38AG FTP C FTP H CFDS FET NYCC IDLE a 50 KPH 85 KPH FUEL 242 FTP 3BAG FTP C FTP H CFDS FET NYCC IDLE a 50 KPH 85 KPH .2250 .2520 .2040 .20bO .1730 .3b30 1.1300 .0100 .Ib70 .2180 .2500 .HHO .1140 .1430 .38tO 2.1200 .ObBO .1480 . 1770 .2010 .1520 .1410 .1380 .2150 . 7420 .0470 .1030 .3750 .5b50 .2310 .2220 .1740 .f 500 2.8400 .1170 .1810 .1140 .2210 .1740 ,15bO .1750 .4020 2.1000 .0520 .Ib40 80.2000 Sb.ltlOO 75.1000 105.0000 105.0000 Sb.bODO 41.5000 Sb.lOOO 102.0000 77. 8000 8b.2000 71.4000 18.8000 Sb.bUDO ll.bOOO 54.4000 43.0000 10.1000 ba.iooo 72.1000 55.1000 75. 1000 B3.boOO 70.4000 11.0000 21.7000 b2.7000 132.3000 115.0000 85.0000 113.0000 105.0000 107.0000 72.8000 125.0000 115.0000 bl.2000 7b.2UOO b4.0000 71.4000 lOb.OOOO 15.1000 53.8000 32.1000 11.8000 10.8000 157.bOOO 12.2000 173.0000 1.8000 ltb.0000 l"».bOUO ISf.OOOO 1.1000 121.0000 14. HOOD 170.0000 10.0000 b21.0000 14.1000 54.4000 14.0000 12b.OOOO 13.2000 151.0000 ll.bOOO Ib7.0000 14.4000 131.0000 13.2000 140.0000 14.3000 108.0000 27.5000 228.0000 IS.tOOO 748.0000 22.7000 41.bOOO 12.7000 123.0000 15.0000 121.1000 13.2000 131.0000 lb.4000 101.0000 15.2000 101.0000 15.3000 12.2000 18.7000 151.0000 ll.bOOO 303.0000 15.7000 28.bOOO 13.4000 80.3000 IS.bOOO 257.8000 ii.sooo aiB.nooo 18.4000 152.0000 15.4000 155.0000 15.4000 125.0000 18.0000 117.0000 Ib. 30001070. 0000 15.4000 111.0000 21.bOUO 142.0000 13.bOOO 138.2000 13.5000 153.0000 13.7000 127.0000 14.3000 108.0000 12.1000 124.0000 ll.bOOO 201.0000 11.4000 5bl.OOOO lb.3000 32.bOOO 7.4000 12b.OOOO 8.8800 1.5800 8.3bOO I.ObOO b.230U 11.3000 77.2000 5.2200 b.5100 1.1700 1.5000 8.1200 5.2400 b.5800 21.2000 174.0000 5.5100 b.bbOO 5.1100 b.falOO 5.3200 b . 1 1 o n 5.8000 lO.bOOO 21.5000 2.3000 3.7100 18.b700 21.1000 10.2000 B.bbOO b.SfaOO 10.8000 125.0000 15.2000 b.4300 7.b800 8.4000 7.1300 b.4000 7.1800 18.5000 107.0000 2.5500 b.7200 .811(1 1.0100 .BlbO 1.240(1 . b 1 2 n . 72bO 23.2IJIHI .7200 .83511 2.074U 2. 00 00 2 . 1 3 0 (I 2.13UI) 1.21011 b . 5 3 U 0 38.200(1 .8840 1.3300 .4430 . 4 b 0 0 .43(1(1 . 4 ? 0 (1 .32011 1. 1001) t. n noo .1800 .2bOO 1 . b 3 3 U 2.2b()(l l. ibnn 1.1100 . hlbll 4.0500 11.1000 .51111 1. 13 CHI i. ibaii 1. innn 1.22nn . 7HOU .8750 3 . 2 2 n a 2<1. 41)00 . bj?4U .bSbll 2.01UO 2.2000 2.0000 3.2000 2.2000 2.0000 18.0000 .3faL)0 2.4000 1 . 5 b (1 0 1 .1000 i.sono 2 . 0 0 U 0 1.2000 1 . 30(10 1 4 . 0 0 U 0 .2400 1.5000 . fa 8 0 0 1.0000 . 4 4 U 0 .4500 .3bDO .280U 1.50(JO .0300 .2400 1.H400 2.4000 l.bOOO 2.3000 1.5000 1.4000 17.0000 . 3bOO 1. 3000 2.1700 2 . 4 0 0 0 2.0000 2. 8000 1.3000 1.3000 14.0000 .2800 2.3000 b . 3 0 0 0 7.1000 5.1000 1.2000 7.0000 b.OOOO 44.0000 1.4000 b.SOOO 5.1700 b . 2 0 0 0 4.4000 7.1000 t.4000 4.3000 70.0000 .1000 5.0000 2.3500 3.bOOO 1.4000 2. 3000 1.0000 4.2000 12.0000 .3200 1.4000 B.0100 11.0000 5.1000 8.0000 5.0000 7.b()00 110.0000 1.1000 4.1000 H.OOOO 5.2000 3.1000 b.7000 7.5(100 4.1000 54.0000 1.2000 4. boon 1.1310 1.1000 .5500 .3bOO .3100 1.7000 4.5000 .3400 .2500 1.3310 2.3000 . b 0 0 0 .3100 .2500 l.bOOO 5.3000 .3300 .2200 1.1710 2.0000 .5bOO 1.2000 .8700 .3500 0.0000 .0110 .7400 3.b370 7.0000 1.1000 .7300 .4100 1.5000 4.8000 .OlbO .3200 1.04BO 1.8000 .4800 .3000 .4000 l.HOOO 3.5000 .18UO .1000 0.0000 O.OOUU 0.0000 .1500 o.oooo o.ooou 0.0000 0.0000 n.oooo 0.0000 o.ooou 0.0000 0.0000 o.ooou u.oooo 0.0000 0.0000 o.ooou 0.0000 o.oooo 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 o.ooou 0.0000 o.oooo 0.0000 o.oooo 0.0000 0.0000 o.ooou 0.0000 o.oooo .3740 .8700 n.oooo 0.0000 o.ooou o.oooo 0.0000 0.0000 .2500 .5300 .7tOO .3700 .1100 0.0000 3.2000 5.7000 2.4000 .3100 . 8000 . 8400 .7700 .5700 .8400 3.1000 0.0000 1.1000 .5100 .8400 .4100 i. looo . 5bOO .5500 4.0000 IS.oonn 2.4000 .b400 .1800 0.0000 .3200 .3000 ,4bOO 1.8000 0.0000 i.touo .3300 0.0000 0.0000 o.oooo o.oooo o.oooo 0.0000 0.0000 0.0000 n. noon .270U .37UU .200U o.ooou o. oouu 1.500U 2.800U 1.1DOU .110U . 4300 .4SOU . 420U .280U . 4 70U 1 . 1UUU o.ooou 1.10DU .31UU .4300 .25UU .SbOU . 300U .310U 2.500U s . i n (i u 1. 500U .330U . 130U o . onuu .2200 .200U . 320U 1.100U o.oouu 1 . 0 U 0 0 .230U 0. OOOU 0. OOOU n . o n n u O.OOOU o.ooou O.ODOU 0 . 0 0 0 u o.ooou 0 . 0 U 0 U o.ooou 0 .UUUII 0.0000 o.oouu o.uoou 0.0000 o.oouu U. DUUO o.ooun O.OUOII 0.0001) u. ooiin o.oouu 0. OOUO 0.001)11 o.oouu u.ooun O.OUIMI o.o on u 0 . 0 f) U 0 o.uuon o.oouu O.UOUll 0 . U 0 U 0 0 . II UN H o.ouuu 0.0000 U . U 0 U (I u.oouo O.OUIII) o.uooo o.oouu o.ooou u.oonu 0 . 0 U 0 1.1 o . u o 1 1 n n.oouu o.ooou 0 . 0 0 (1 1) o.oonu O.OOUl) o.oonu FJ.DOlJil O.UUOII U. OOUU .022^ .0240 .0220 .0270 .0220 n.oooo n.oooo O.GUOO .0210 ,030b .0340 .0280 . UidO .oeoo n.oooo n. ouoo 1). 0000 .UlbO .0393 .0330 .04»0 .0500 .0150 ...0000 •). ouoo n.oooo .02*0 .0227 .Ul?0 .0270 .0250 .0220 n.ouoo II. 0000 .01 + 0 .01?0 .0433 .otso .0420 .0320 . U130 .0310 n. no oo .0170 .0200 idle emissions per hour (/h) rather than per kilometer (/km)


-------
                                                          VW RABBIT DIESEL PARTICULATE - DISTANCE  BASIS
VAR. 18 VAR. 11 VAR. SO VAR. ai VAR. 22 VA'R. 33 VAR. 2* VAR. 35 VAR. 2b VAR. 27 VAR. 28 VAR. ai VAR. 30 VAR. 31
31 CD AL NA MG K CL ZN CU MI FE BA CA 0-CRE30L
PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCT PCI PCT MG/KM
FUEL 238
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IOLEb
50 KPH
85 KPH
FUEL 231
FTP 3R4G
FTP C
FTP K
CFDS
FET
NVCC
IOLEb
50 KPH
85 KPH
FUEL a*U
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLEb
SO KPH
85 KPH
FUEL 2*1
FTP 3SAG
FTP C
FTP H
CFDS
FET
NYCC
I0LEb
50 KPH
85 KPH
FUEL 2*2
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IOLEb
50 KPH
85 KPH

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.nooo

o.uooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
o.oooo
0.0000
0.0000
.0050
0.0000
0.0000
0.0000
.0080

.001*
.0033
o.oooo
0.0000
o.oooo
0.0000
0.0000
0.0000
o.oooo

.00**
.0058
.003*
.0280
.0070
n.oooo
0.0000
0.0000
0.0000

.001*
.0032
0 . 0 U 0 0
0.0000
0.0000
.ouis
0.0000
.0073
.0008

.0010
.0023
0.0000
.0012
0.0000
0.0000
0.0000
o.otmo
o.oooo

o.oouo
0.0000
0.0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
o.oooo

.OOOb
.0013
0.0000
0.0000
0.0000
0.0000
o.oooo
n.oooo
0.0000

.0052
.ooba
.00*5
.0038
0.0000
0.0(100
o.ouoo
.0052
.OOlb

,01*b
,oa*o
.0075
.0120
.0035
0.0000
0.0000
o.oouo
o.oouo

.0155
.0250
.008*
.0089
0.0000
0.0000
.0310
0.0000
o.oooo

.0150
.0170
.0130
.01*0
.007b
0.0000
0.0000
0.0000
o.oooo

.oaoi
.DObl
.0300
.0038
o.oooo
0.0000
o.oooo
0.0000
o.oooo

.*b25
.oaso
.0570
.0110
o.ouoo
o.oooo
0.0000
D.OOOO
.OOHD

0.0000
o.onoo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o . o o o n

0.0000
0.0000
0.0000
o.nooo
0.0000
0.0000
0.0000
o.oooo
o.oooo

o.oooo
0.0000
o.onoo
0.0000
o.nooo
0.0000
o.nooo
0.0000
0.0000

o.ooon
0.0000
o.onoo
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
o.nnoo
o.oonn
o.nooo
o.nooo

.OObl
.0071
.DOS*
,00b2
.00*5
n.oooo
0.0000
0.0000
.0028

.0178
.11330
.OOb*
.0072
.0028
0.0000
o.oooo
0.0000
.002b

.OObl
.0070
.nos*
.0081
.0035
o.oooo
0.0000
0.0000
.oa*o

.00*1
.00*0
.00*a
.00*0
0.0000
0.0000
n.oooo
0.0000
.0012

.0081
.0083
.0071
.0093
.00?B
o.ooon
0.0000
0.0000
.0019

o.onim
o.onno
0.0 no n
o.u on n
O.OIHKI
n.onun
o. nnon
0.00011
0. 00110

. n o 1 5
. 0 0 3 b
o.oonn
. n n 3 b
o.fiuon
o.tinoi'
o.noiin
.013U
,uii2a

.002*
.OU5b
o.onon
.00*1.1
,no35
. 0 * * II
0.0000
.0230
.01511

0.01)01.1
o.oonn
o.oiiou
O.oonn
o.ooon
0.110(1(1
0.001)11
o.oonn
0.0000

.oioa
.oian
.OU8B
.02811
.0070
,n*nn
.117111
.112111
.11) 911

0.0000
0.0000
0.0000
.OObO
0.0000
n. oouu
o.oouo
u.onou
o.oono

u.oooo
0.0000
0.0000
o.ooon
0.0000
0.0000
o.oono
o.oono
n.oooo

0.0000
n.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

o.oono
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
o.ooon
o.oono

o.oooo
o.oono
n.oooo
o.oooo
o.onoo
0.0000
0.0(100
o.oono
o.oono

.OblO
.0920
.0370
.Ob90
.0750
.2800
.2300
. IbOO
.05*0

.Ob50
.0880
.0*70
.0590
.0700
0.0000
0.0000
0.0000
.0590

.07bO
.OblO
.0880
.0500
.n**o
o.oooo
o.oooo
o.oooo
.0320

.Ob*0
.0290
.0910
.moo
.07*0
o.oooo
D.OOOO
.2300
.0770

.0700
.0930
.osao
.07*0
D.OOOO
O.DOOO
o.ooon
0.0000
o . n o o t)

O.OODO
0.0000
0.0000
0.0000
0.0000
0.00110
n.oooo
.*OUO
o . 0 o U n

n.oooo
o.ooon
0.0000
.0800
0.0000
0.0000
o.nooo
o.nooo
0.0000

0.0000
0.0000
o.nooo
0.0000
D.OOOO
0.0000
o.oooo
n.oooo
o.ouoo

0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
o.nnon
o.nooo
o.oono

0.0000
o . n n n o
0.0000
0.0000
0.0000
0.0000
0.000(1
0.0000
o . n o n n

.OObO
n.oooo
.0110
o.oooo
o.oono
n.oooo
0.0000
.1101)
o.onoo

.0180
.0190
.0180
O.OODO
.0500
.aboo
0.0000
.1*00
0.0000

0.0000
o.oooo
o.oooo
.0220
.0300
o.onou
0.0000
.3200
0.0000

.0100
0.0000
.1)170
0.0000
o.oooo
0.0000
o.oooo
.1500
.0210

0.0000
n.oooo
n.oooo
o.oooo
0.0000
0.0000
11.0000
n . n o o u
u.oooo

.21bO
.5300
.iaoo
.2500
.1300
0.0000
o.oooo
0.0000
.1*00

.*bOO
.b2DO
.3*00
.2700
.aooo
.8100
1 .3000
,*100
,09bO

.*5*0
.5000
.*200
. 3 b 1) 0
.2000
l.*000
3.5000
.8*00
.2000

.1730
.1500
.1100
.1500
.0910
o.oooo
0.0000
.2000
.0*70

.asao
.*000
.1*00
.2300
.1100
o.oono
o.nnno
n.oooo
. o * u n

0.0000
D.OOOO
0.0000
o.ouou
o.oonu
o.onou
O.DOOU
o.ooou
o.oonu

n.oouu
o.ouou
o.ooou
o.ouou
o.onou
o.oonu
n.ouuu
O.ODOU
O.OODU

o.ooou
o.ooou
o.ooou
o.oouu
O.ODOU
o.oonu
o.ooou
o.ooou
o.ooou

o.ouou
o.ooou
o.ooou
o.ooou
O.ODOU
o.ooou
0.0000
o.ooou
o.ooou

o.ooou
o.ooou
o.ooou
o.ooou
o.ooou
o.onou
o.onou
o.ooou
u.ouou

.07011
.077U -
.Ob*ll
.0*1)11.
.022'!
.1*1111
.17UM
0.000(1
.0210

.ubtn
.Ub9U
.ob in
.0*511
. 0 2 0 0
. 1 u u n
.19IMI
.05*n
.OlbO

.09311
.0831)
. 1UOII
.U83'l
. 0 7 b U
.281) 0
. 80(111
.0*90
.02*0

.0*5(1
.0*gl|
.U*BD
.03*1)
.01*!)
. o 3 a u
. OblHJ
.03*1)
.0130

.3250
.Ob7ti
.5201)
.*2(K)
.03*0
o.ooon
n.onnu
O.OUUH
.Olfan







11.0000
n . n o o o
.01*0







11.0000
n.oooo
n.oooo







u.oooo
.0050
.0030







i.l.OOOO
o.oooo
.0130







n.oooo
u.oooo
.0100
plus salicylaldehyde
idle emissions per hour  (/h)  rather than per kilometer (/km)

-------
                                                            MERCEDES 24OD PARTICULATE - TIME BASIS
;
FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
SO KRH
85 KPH
FUEL 231
FTP 3BAG
FTP C
FTP H.
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 2tO
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
5(1 KPH
85 KPH
FUEL 2tl
FTP SHAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
SO KPH
85 KPH
FUEL 2*2
FTP 3RAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH
AR. 18 \
SI
PCT

.0023
.0025
.0021
0.0000
n.oooo
0.0000
0.0000
n.nooo
0 . 0 0 f J 0

.0018
0 . 0 0 0 0
.0032
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooa

.0070
.0110
.0031
.OObO
,003b
0.0000
0.0000
.0070
n.oooo

.0037
.OOSb
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
o.oooo

.00b2
.0110
.0025
.0020
o.oooo
0.0000
0.0000
0.0000
0.0000
/AR. 11 \
CD
PCT

.oots
.0052
.0(lt7
.0025
.OllbS
.0200
.(1100
.0038
. 0 U 3 1

n . o n o o
n . o u o o
0.0000
. 0 0 0 b
0.0000
0.0000
0.0000
0.11000
0. (1000

.(1010
.002t
0.0000
. 0 0 1 b
. 0 0 3 b
0.0000
0.0000
n.oooo
0.0000

0.0000
0.0000
n.nooo
0.0000
n.ooon
0.0000
o.oono
n.oooo
0.0000

.nu22
.0030
.OOlb
.002b
n . oooo
n.onno
n.nooo
0.0000
.onos
/AR. 20 \
AL
PCT

o.ooon
o.oooo
o.oooo
o.oooo
o.ooon
o.oono
0.0000
0.0000
o.noon

o.ooon
0.0000
a . o o o n
0.0000
0.0000
0.0000
0.0000
0.0000
.0031*

.0011
0.0000
.0020
0.0000
0.0000
0.0000
0.0000
o.ooon
0.0000

.0021
.0048
0.0000
0.0000
.0050
0.0000
o.aooo
0.0000
o.oooo

.OObS
.0052
.007t
.003f
0.0000
o.oooo
0. 0000
o.ooun
o . o o n n
MR. 21 \
NA
PCT

0.0000
0.0000
0.0000
o.nooo
o.nonn
o.onoo
o . n o u o
o.onoo
o.ooon

n . n o n n
o.onoo
n . onoo
o.nooo
0.0000
0. 0000
o . o o n o
n.nooo
.0310

. tosn
.tbnn
. 3bOO
.b200
o.nooo
o.oooo
0.0000
o.oooo
o.onno

n.ooon
n.nooo
o.nooo
o.oooo
o.onoo
o.nooo
n.ooon
o.nnon
o. nnoo

o.ooon
o.oooo
0.0(100
o.onoo
o.oooo
n. onon
o.nnon
o. noon
n . o n n n
/AR. 22
MG
PCT

o.nooo
o.ouoo
o.oono
o . n o n o
o.nnon
n.oooo
o.nooo
o.oooo
o.oooo

o.oooo
o.nnon
n . n o n o
n . n n n o
o . n n n o
o.ooon
o.oooo
o.oooo
o . o n o n

II. (1 000
o.oooo
o.oooo
0.0000
0.0000
0.0000
o.oooo
n.oooo
d.nuno

n.oooo
o.ooon
o.onoo
o.oooo
o.oono
u.nnno
0. 000(1
o.ooon
o.ooon

o.ouno
n.oooo
o.oooo
o.nooo
o.onno
n. nnoi)
11.11000
n.ooon
...oooo
/AR. 23
K
PCT

o.nnnn
o.ooon
o. ou on
o.nnnn
o.oonn
o. oo no
o.oonn
o.oono
o. onoo

u.nonii
0.0110(1
o.nnun
o. on on
o.anon
O.oonn
o. onoo
o . n o u ii
0. 0(100

. 0 0 b 2
.010 0
.oust
.onsb
.OIlBb
.02bll
o.ooon
.01511
. 0 0 3 4

.nnil
.noss
o.onnn
. n n 2 n
o.nnuii
n.nnnn
0. llllllll
.01132
. 0 n i 3

. oub5
.oiiH5
.011511
.0(143
.llllhl
.01171
.njsii
.OU31
. 0 0 3 4
/AR. 24
CL
PCT

.nnt2
.0017
o.oono
o.oonn
n . n n o o
o.onoo
o.oono
o.onno
n.oooo

(I .0000
n.oooo
o.onoo
o.oooo
o.onoo
n.ooou
n.oooo
n . o n o o
n.oooo

.014b
.O3tn
o.oooo
.0150
n.oooo
o.oooo
o.oooo
o.onno
u.onno

o.oono
.1.1)000
n . n n it o
o.nooo
u.onno
o.oonn
n.oooo
o.onno
o.onno

n . oooii
o.nooo
o.oono
o.nnnn
n . n n n o
(1.0 0(10
(I.OOIII)
o.oonu
n. nnoo
^AR. 25
ZN
PCT

.0710
.0810
.0570
. 0 3 b 0
.0*30
.0710
.1300
o.nooo
.0410

.otbn
.0740
.024(1
.0*80
.0*10
0.0000
0.0000
.0*70
.0450

.1070
.1200
.0^70
.0180
.ObSO
.1100
0.0000
.1000
.07bO

.1030
. 1300
.0820
.OlbO
. 1 n 0 0
.1100
o.onoo
.0700
.0740

.nb70
.0170
.04*0
.07*11
.0310
o . n n o n
n . n o n o
o.oooo
. 0 3 b U
VAR. 2t
cu
PCT

.USbO
o.oono
.0110
o.ouno
o . n D n o
n.oooo
.35(10
n . o D o o
o . n n u o

o.ooon
o.oooo
o.ooon
n.nooo
n.uooo
o.oooo
o.nouo
o.oooo
0.0000

o.nooo
o.uooo
o.oooo
o.oooo
0.0000
o.oono
o.oono
o.ooon
n.ouoo

0. OOOO
o.oonn
n. noun
o.oooo
o.oonn
o.noon
o . oono
n.oouo
o.nooo

o.nnon
o.oooo
0 . 0 0 0 U
r. . nnnn
o.oonn
o . n o u o
o.nooo
0 . 0 0 0 0
o.oooo
VAR. 27
Nl
per

n.ooou
o.ooou
o.oooo
o.oooo
o.oooo
n.oooo
n . o n o o
u . o o o u
n . n n o o

o.onoo
o.oooo
o.oooo
n.oooo
o.oooo
0.0000
o.oooo
n.oooo
o . o n o u

.0010
.0220
n.oooo
.0270
0.0000
0.0000
0.0000
.otto
o.oooo

0.0000
0.0000
o.onoo
0.0000
o.oooo
n.oooo
0.0000
n.oooo
0.0000

o.nooo
0.0000
0.0000
0.0000
o.ooou
.0580
0.0000
o.oono
n.oooo
i/AR. 28
FE
PCT

.2530
. H 3 Cl 0
.1200
.USOO
.0780
o.ooon
0.0000
o.oono
o.noon

.1330
. 3100
o.ooon
.(Jb70
0.0000
0.0000
o.ooon
n.oono
0. OOOO

.2*3n
. 3UIJO
.2000
. 1 b C 0
i . n o r, o
0 . 0 0 0 0
o.noon
o.noun
o . n o n o

.2b80
.4500
. 1300
.1000
.0150
n . o n n n
o . n nun
o.oooo
.033n

.2180
.5200
.1300
.2000
0.0000
n.ooon
o.nonn
0. noun
0 . U 0 (J 0
VAR. 2H
DA
PCI

.001*
O.OOOU
. o o 2 s
O.OOOU
.niiu
n.oooi)
o.ooon
n . n n u u
n.ooou

n . «. a a u
o.onnu
M . onnu
0 . 0 11 0 U
n.noou
0 . 0 U 0 U
0.0 QUO
(1. Oil Oil
o . n o u u

. 0 0 b b
.015U
o. nooL
.0181)
. IJ 3 1 U
n.nnoo
.OH8L
n. ocinu
o . n o n i>

. n n e 7
.no7u
. 0 1 0 U
.0013
n . u o n b
o . o o o L
O.UUOlj
u . o n o u
a. oui'u

r. . n 1 1 n u
o . o o n i'
o.ooou
o . o n D u
0 . 0 U 0 L'
o. nil lib
0 . 0 n 0 U
0. . 0 0 0 U
n. re on
VAK. 3d
CA
PCI

.U730
. U M Ml
. U b 5 I
. U f 5 1
.OiK
. u 3 q I
.I'b'.'i
. (M 711
. !l t 1 H

. (IbSn
. Pb3 '
.lib? 1
. I1 dli I
. 0 3n i
0 . II u 1. I
o . n 1 1 1 ' i
0. IMH' I
.03) I

. I2en
. linn
. 1 U 1 1 1 '
. it iii.
.12(11'
.1 ILIi
.IM.Il
. ) 1 ' 1 1
. li'-'iC

. llbfMI
.U87(l
. U H "t 1 1
. (i1* ] II
. U t J 1 1
. 0 4 1- 1 .
.U3'iil
. (1 1 b 1 '
. (I 3 jl'

. Ob4l.
. IHM,
. Ill t "
. 1)7111
.03)H
. 03HM
0 . IK. (Ill
(i . UI'IMI
. 0 Jt-ii
VAH. 31
ti-CktSOL
MG/HR







i. onno
1 .4500
.SS50







i . ooon
n . nooo
.1350







1 1 . 11 0 0 0
i. .uooo
1 . 78SO







, i . 0 0 0 0
1 1 . 0 0 0 0
n.oooo







... 0 0 0 0
I'.OOOO
. UHSO
plus salicylaldehyde

-------
                                                                            MERCEDES 240D PARTICULATE - TIME BASIS

-------
VW RABBIT DIE
VAR.   4 VAR.   5 VAR.    b  VAR.    7  VAR.    B VAR.   1 VAK.   JO  VAR.   11  VAR.   12 VAR.  13 VAR.   14
TOT PART PART CON TOT SOL.    CARBON  HYDROGEN NITROGKN   SULFUR   SULFATt       8AP       CR       PB
    G/HK    HG/M3      PCT      G/HR     MG/HR    MG/HR    Mli/HR     MG/HR    liG/HP      PCI      PCT
                                                         VAR.  Ib VAk.   Ih  VAR.   17
                                                               MN        BR         P
                                                              PCI       PCT       PCT
FUEL 238
FTP 3BAG
MP C
F TP H
CFOS
FET
NYCC
IOLE
50 KPH
85 kpH
FUEL 231
FTP 3RAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 240
FTP 3BAG
O FTP C
1 FTP H
to CF°S
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 241
FTP 3RAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 242
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IOLE
50 KPH
85 KPH

7.0785
7.1271
b.4178
11.523b
13.4110
4.1273
1.1300
4.5000
1 4 . 1 1 5 (J

b.8583
7. SbSO
b. 1032
10. 8524
11.0854
4. 3bbl
2.1200
3.4000
12.5800

5.5b84
b.5751
4.7811
8.3351
10.fa178
3.3541
.7420
2.3500
8. 7550

11.7175
17. 7741
7.2b73
12.4187
13.4885
S.llbS
2.8400
1.8500
Ib.ObSO

b.1032
b.1527
5.4740
8. 72bb
13.5bbO
4.5707
2.1000
2.bOOO
13.1400

80.2BOO
Bb.1000
75.1000
105.0000
105.0000
Sb.bOOO
41.5000
Sb.1000
102.0000

77.8000
8b.2ll')0
71.4000
18.BOOO
Bb.bOQO
H.bllOO
54 .4iir>0
43.0000
ID. looo

b2.1000
72. 1000
5 5 . 1 o 0 0
7 5. 1|) 00
8 3 . b n o 0
70.4000
11.0000
21. 7[JOO
b2.7QOO

132. 3000
115.0000
85.0000
113.0000
105.0000
107.0000
72.8000
125.0000
115.0000

bl. 2(100
7 b . 2 0 0 0
b 4 . 0 0 0 0
7 1 . 4 n o o
lOb.OOOO
15.1(100
53.81)00
3 2 . 1 0 0 0
11.8000

10.8000
12.2000
1. 8000
14.bOOO
1.1000
14.4000
10.0000
14.1000
14.0000

13.2000
1 1 . bOOO
14.4000
13.2000
14.3000
27.5000
18.4QOO
22. 7000
12.7000

15.0000
13.2000
lb.4000
15.2000
15.3000
18.7000
H.buOO
15.7000
13.4000

IS.bOOO
11.8000
18.4000
15.4000
15.4000
18.0000
lb.3000
15.4000
2 1 . b 0 0 0

13.bOOO
13.5000
13.7000
14.3000
12.1000
1 1 . b 0 0 0
11.4000
lb.3000
7.4000

4.1581
5.442b
4.513?
8. b!48
1. 3711
1.1321
. b 2 1 0
2. 7200
10.7100

4.7505
5.2538
4.3721
7.831b
8.372?
2.5124
.7480
2.0800
10.4550

3.8350
4.3721
3.4211
S.b4l1
7.1473
1.8078
.3030
1.4300
b.8255

8.1104
12.5211
4.7811
8.b707
l.blOO
2.23H
1.0700
5.5500
12.0700

4.3478
4.8134
3.1154
b.0415
1,bl25
2.37b3
.5blo
I.b300
10.7100

271.3b48
301.38b8
2b3.00Sb
50b.81b4
4B2.141b
128.4810
77.2000
2bl.OOOO
5S3.3500

288.4882
218.87(1(1
280.b232
213.125b
5 1 0 . 0 8 1 b
332.0040
174.0000
275.5000
Sbb. 1000

185.128b
210.4b74
Ib7.3b72
341.7134
441.blbO
120.5220
21.5000
115.0000
315.3500

587.3582
14D.b54Q
320.8150
484.4404
485.2752
122.71bO
125.0000
7bO.OOOO
S4b.5500

241.bl28
2b4.2b40
224.3018
SSB.OlbO
55b.513b
210. 3450
107.0000
127.5000'
571.2000

28.
31.
25.
bl.
53.
8.
23.
3b.
70.

b5.
b2.
b7.
111.
100.
74.
38.
44.
113.

13.
14.
13.
23.
24.
12.
4.
1.
22.

51.
71.
3b.
b2.
53.
4b.
11.
21.
Ib.

3b.
34.
38.
43.
b7.
3b.
21.
31 .
55.

2825
774b
b?14
3b5b
b4 38
254b
5000
iinim
17511

24HI1
120U
iioiR
1522
0(1(18
24bl
201111
200H
05011

13bR
471b
5278
41^8
80 b4
507(1
0000
0000
11100

3745
Ollb
413b
0134
1531
0485
10011
55IM1
0500

7453
bllbO
3812
b3 ^
H30I1
bl!4
4 II OH
2000
7b(lll

b5.7S14
bl.2120
b?.1200
171.0080
170.5440
22.7400
18.0000
1 H . 0000
2 1)4 .0000

4 1 . 0 7 7 b
51. 774Q
40. 8180
111.8800
13.0240
14.7810
14.0000
12.0000
127.5000

21. 3128
31.4bOO
13.8454
25.1730
27.1072
3.183b
1.5000
1.5000
20.4000

bl.0324
75.5041]
50.33hO
128.bb20
lib. 2 8 00
15.1180
17.0000
1 8.0000
110.5000

hS.2b82
75.5040
b 2 . 1 2 0 0
) 5b.b320
1 0 0 . 7 7 b 0
14.7810
14.0000
14 . 0000
115.5000

118. 1180
248.5340
Ib0.44b0
514.b480
542.b400
b 8 . 2 2 0 0
44.0000
70.0000
552.5000

Ib2. b482
115.0520
138.4240
317.1740
341.0880
48.8110
70.0000
45.0000
425.0000

73.1310
113.25bQ
44.0440
128.bb20
77.5200
47. 7540
12.0000
lb.0000
111.0000

251. 114b
34b.ObOO
Ib0.44b0
447.5200
387.bOOO
8b.412o
110.0000
55.0000
41b.5000

125.8400
Ib3.5120
17.52bO
374. 7180
5B1.40QO
55.7130
54.0000
b 0 . 0 0 0 0
311.0000

35.5813
51.7740
17.3030
20.13H4
30.2328
11.3210
4.5000
17.0000
21.2500

41.8733
72.3580
18.87bO
21.«lbb
11.3800
18.1120
5.3000
Ib. 5000
18.7000

37.0H3
b2.1200
17.bl7b
b7.1280
b7.4424
3.1715
0.0000
.1500
b2.1000

114.4200
220.2200
34.bObO
40.83b2
31.7832
17.0550
4.8000
4.8000
27.2000

32.1701
5b.b2BO
15.1008
lb.7B20
31.0080
15.1180
3.5UOO
1.0000
8.5000

o.oooo
0.0000
0.0000
.1500
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
o.ooou
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo
o.oooo

.3740
.8700
0.0000
o.oooo
0.0000
0.0000
o.ooou
0.0000
.2500

.5300
.7400
.3700
.1100
o.oooo
3.2000
5. 70UO
2.4000
.3100

.8000
.8400
.7700
.57GO
.8400
3.1000
0. 0000
1.1000
.5100

.8400
.4100
1.1000
. 5 b f) 0
.5500
4.0000
15.0000
2.4000
.b400

. 1800
0.0000
.3200
.3000
. 4 b 0 0
1 . 8000
0.0000
1.4000
.33011

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0 0 U 0

.2700
.370b
.2000
O.OOOU
0 . U 0 0 u
1.5000
2. BOOu
1. 1UOU
. 1 1 0 U

.4300
. "bou
. 42HL,
.280U
.4700
1 . S 0 0 U
0 . n n o u
1 . I 0 0 U
. 3 1 0 U

. 4300
.250U
. SbOU
. 3 0 0 U
.3100
2.5000
8. 1000
1.5000
.330U

.1300
0 . IIOOU
.2200
. 200U
. 3 a o u
1 . 1 0 0 U
0.0000
l .oonu
.2300

0.0 OH (J
o.ooou
n. nnnu
0.0'IOU
0 . 0 0 0 U
0.0000
n.onoL'
n . o o n o
i", . noou

o.ooou
0.0000
0.0000
0.0000
0.0'JliH
0. on on
0 . OUUO
0.0000
O.nooo

O.oooo
0 .00011
O.OOIU)
0.00011
0.0 Oil II
O.OOIMi
O.OODH
0 . 0 n n ')
0.0000

0.0 OH '1
0.0000
0.0000
0 . 00011
o.oooo
0.0001)
0.000(1
o. uo on
0.0000

0 . OOtlll
O.OOOU
0.0 0 (Ml
o.ooou
0 . OUIMI
0 . 0 0 1 1 1 1
0 . no MIJ
0.0000
0 .OOnn

0 .00111)
O.OOOU
o. ootm
0.0000
0 . 0 0 U 1 1
0 . l-l 0 ll II
O.ODHll
0 . O'JIM)
0. OOP M

.02JS
.0240
.02iO
.0270
.0220
0.0000
U. UoOO
II. 0000
.0210

.0301.
.0340
.0280
.0280
.0200
11.0000
,,.0000
,.0000
.OlbO

.0313
.0330
.0440
.0500
.0150
11.0000
I). UOOO
0.0000
.0240

.0227
.0170
.0270
.0250
.0220
0. 0000
0. 0000
.0140
.0178

.0433
.0450
.04^0
.0320
.0130
.0310
1.0000
.0170
. 0 d 0 0

-------
                                                                                VW RABBIT DIESEL PARTICULATE  -  TIME BASIS
O

NJ
O

FUEL 238
FTP 3BAG
FTP C
FTP H
CFOS
FET
NYCC
IDLE
So KPH
85 KPH
FUEL 231
FTP 3PAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
5(1 KPH
85 Kf'H
FUEL 2*0
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE
50 KPH
85 KPH
FUEL 2*1
FTP 3B
o.nooi)

o.nooo
o.ouno
o.nuoo
.o«un
I' . 0 0 0 0
D.ooon
o.nnoo
o.nuno
0.0000

u . n o (i o
o.nooo
n.nooo
n.oooo
o.oooo
o.oono
r.oooo
o.oooo
o.onoo

o.oooo
o.ooon
o.ooon
o.oooo
o.nooo
o.oono
o.nana
o.oooo
0. OlldO

o.oooo
o.oooo
0.0000
O.ODOO
0.0000
o.nooo
o.oouo
U . 0 0 11 (1
[i . n o o o
/AR. 27 V
NI
PCT

.onbo
u.onoo
.011U
o.onnu
n.oono
o.nono
u.nouu
.1100
o.oooo

.0180
.0110
.018U
o.uouo
.05(10
.2bOO
n.oooo
.1*UU
n . o n n u

o.oooo
n.nooo
o.ooou
.0220
.0300
0.0000
0.0000
.3200
u.oooo

.0100
n.oooo
.0170
n.onou
u.oooo
o.oooo
o.ouuo
.15UU
.0210

0.0000
o.nooo
n.oooo
0.0000
0.0000
0.0000
n.nooo
n.onoo
.1 . n n n u
AR. 28 \
FE
PCT

.2ibn
.S3UU
.12UO
.ssuo
. 13UU
o. noun
u.ouoc
o.oouu
. 1 * 0 U

.*bOO
. b 2 0 n
.3*00
. 2 ? 0 0
. 2 0 0 (1
. B10P
1. 3 (HIP
. * 1 0 11
. 0 1 b 0

,*5*P
.5UUP
.12(1(1
. 3blJO
.SDOn
l.*000
3.5000
.8*00
. 2 u o n

. 1 7 3 n
. 150U
.1100
.1500
.011(1
n.oooo
o.uunu
. 2 0 U 11
.o*7n

.25211
,*oun
. 1*11(1
.2300
. 1 1 o n
o.ooon
o.uuun
n.unon
.0*110
AR. pi V
II*
PI; i

n. nnou
u . u u o u
o.ooou
n. OIKIU
0. (in 11 u
n. mini/
<> . (MMUJ
u . nuiju
0 . IIUUU

u.uuuu
ii.nnnu
n. nnuu
o.nunu
n . nitou
u. ounu
ll . OlIIHJ
U.'ICIHl
n. nnou

,1 . IJIIUU
o . n o n u
n .nunu
n.oouu
0 . 0 U (1 U
o.ouuu
o.ouuu
o.nuuu
O.UIlUu

o.namj
n . o o (i u
o.nonu
O.OOIlU
n. nniiu
U.OIIUU
II . 1.1(1 II U
n.nnnu
o . 0 n D u

n.ijnuu
o.nuuu
a . o u n o
o. no nil
o.nunu
o.oo u u
u . n 1 1 1 1 u
o. nudu
n . nnou
Art. i\l V
LA C
PCT

. U7IIII
.07711
. Ub^l!
.0*111
.11221
. Itlll
. 17UI
11 . Illllll
. us U

. U b '111
.llhHM
.noj (I
.IJtSU
. UPlill
. 1UI1II
.IHllll
. H5*ll
. n Lhn

.111 Jii
.08311
. JUIHI
.LIB3II
. I) > b 1)
.2BIII1
.BHI1I)
.11*11)
. U i? 1 1 1

. 0 * b 1
.0*211
. HtMd
.113*11
.Ultl)
.U JKU
. Ublill
. 11 .9 * 11
-U13IJ

. 32511
. Uh?ll
.bPllll
. 'tplIU
. H 3 H U
n.uiiini
II . I'HI.HI
u . (Minn
.nil. n
A-J. 31B
1-CHESOL
MG/HR







1 1 . 1 1 U 0 0
...nnuo
l.HOO







,,.uuuo
II.UUOO
n.uouo







II.UUUO
.2SOO
.2550







n.uuoo
n.uooo
1.1050







n.onoo
11.0000
.8500
                  plus salicylaldehyde

-------
                                                     VW RABBIT DIESEL PARTICIPATE - TIME BASIS
        VAR.   32 VAR.  333VAR.   34&VAR.  35  VAR.   3b
        P-CRESOL  2,4-XYL   2,3-XYL 1UO-CHNS  SUM  VAR
           MG/HR    MG/HR     MG/HR      PCT       PCT






















CD
1
NJ
M
























FUEL 238
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE .1100
50 KPH 0 . I) 0 0 0
85 KPH .7bSO
FUEL 231
FTP 3BAQ
FTP C
FTP H
CFDS
FET
NYCC
IDLE .2000
SDKPH .25 00
85 KPH 0.0000
FUEL 2*0
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE 0. OUOO
50 KPH .5000
85 KPH 1.0200
FUEL 2m
FTP 38AG
FTP C
FTP H
CFDS
FET
NYCC
IDLE o.nooo
50 KPH 0.0000
85 KPH 2.5500
FUEL 242
FTP 3BAG
FTP C
FTP H
CFDS
FET
NYCC
IDLE 0.0000
50 KPH .3000
85 KPH . bSOO

24.4200
2b. 3000
23.0000
18.7000
24.8000
41.3000
n. iiiiiio o.oouo bi.sooo
0.01)110 0.0000 30.3000
n.ouoo o.oo no 18.7000

12. 17011
27.SOOO
2 2 . 0 0 0 0
2 3 . 0 0 0 n
1 8 . i o o n
31.0000
n.nnno o.oono st.iooo
o.on no o.oooo 21.1000
n.nooo o.ooon 10.5000

2b.S200
21. boon
24.2000
27.5000
28.5000
42.0000
0.0000 0.0000 55.5000
0.0000 0.0000 33.8000
0.0000 0.0000 18.0000

2fa.3bOO
23. toon
28.bOOO
21. 7000
2S.bOOO
5 2 . b 0 0 0
.0700 0.0000 Sb.bOOO
.1200 0.0000 35.5000
0.0000 2.72UO 20.2000

22.9500
25.4000
21. 1000
24.4000
23. 8000
42.3000
0.0 000 0.0000 b b . 1 0 0 0
0.0000 0.0000 30.7000
o.onoo o.oono 17.3000

1.2810
1.8700
.8370
. 7500
. 2 5 7 n
5.1300
s.iono
4.1800
.8200

l . i n b o
2 . 1 8 n n
1 . 700(1
1.3501)
l.b7Q[)
b.l?OU
1.5200
3 . b 2 0 0
1.0100

1.1520
1.4500
2.3300
1.4500
1.2400
3.2200
27.4000
5.1300
1.3000

,b4bO
.2540
.1420
. B170
.1810
2.1400
.ObOO
3.031)0
.7440

1.1340
1.5300
.83bO
.8440
.1740
.0710
.11710
.0430
.3410
plus  2,5-xylenol
plus  3,5-xylenol

-------
                                                 PERCENT OF TOTAL PARTICULATE COLLECTED
O

NJ
NJ
TEST TYPE
M238FTPC
M23BFTPH
M23RFTPH
M238CFDS
M238CFOS
MB38FET
M23BFET
M23RNYCC
M238NYCC
M238IDLE
M2385HKH
H33R85KH
Ma31FTPC
M231FTPC
M231FTPC
M231FTPH
M231FTPH
M231FTPH
M231CFOS
M231CFOS
M231FET
M231NYCC
MaSIIDLE
M83S5IIKH
M23185KH
M210FTPC
M210FTPC
M210FTPC
MainFTPH
MaioFTPH
M210FTPH
MaincFos
M210CFD3
M210FET
M210NYCC
MJtoinLE
M21n5nKH
waiosoKH
M21085KH
M211FTPC
M31JFTPC
M2HFTPH
M211FTPH
MailFTPH
M211CFDS
M211CFOS
M211FET
MailFET
M211NYCC
MaillDlE
MailSOKH
M2118SKH
MailSSKH
MaiaFTPC
MaiaFTPC
M242FTPC
MaiaFTPH
MaiaFTPH
STAGE 1
.701
.sal
.570
.an
.bii
.101
.118
.3oa
a. bib
a. SB*
,b!5
.Ibb
.178
.181
.873
.121
.220
1.112
.043
.332
.118
.285
.21b
.517
.71b
.015
.131
.Dlb
.075
.141
.128
.2*3
.057
.OSb
,22<1
.^31
.lib
.318
.017
.3*3
.571
.587
.bta
,23b
.osa
.281
.111
.152
l.tOS
a.n^s
,5bl
.tb8
.na?
.310
.SOH
.711
.307
.an
STAGE a
.2«H
.bll
.38b
.7b2
.777
.13b
.112
.378
3.111
1.03t
.71)7
.217
.355
.105
1.31b
.202
. 5t1
1.1I7H
.Itl
.BOB
.211
.1*2
.288
.t8b
.351
.b17
.17b
.231
.toi
i.aiH
.*bl
.H17
.757
.132
.801
1.7bl
.233
l.Olt
.b17
.8*7
. 781
.bib
.lit
.253
.121
.b02
.185
1.317
1.111
i.atb
l.Olb
,5h3
.778
.181
i.nsi
.778
.182
.Bib
STAGE 3
a.7b2
1.021
1.188
1.508
i.ias
.511
2.bbl
.183
5.213
0.1)00
.bl5
.117
a. 073
2.155
2.758
1.130
1.115
I.bl2
.852
.b22
.781
.570
.135
.ISb
.50b
a.sbi
3.188
1.715
1.103
2.010
1.383
1.701
i.ati
,iai
1.111
2.317
.111
.sab
.bOO
2.220
2.531
l.SIb
.b18
1.515
1.821
2.108
3.022
l.Sbb
3.07b
.711
1.111
.712
1.030
a. 811
a. 837
3.7ba
1.121
a. 2Bi
STAGE 1
2.351
l.bll
3.311
1.508
1.713
1.088
3.117
1.512
b.081
.131
.7b1
.117
l.bSI
1.731
a. 580
1.271
i.bae
1.831
.131
1.135
.112
1.125
.711
.IBb
.155
1.571
2.iae
1.817
1.578
1.7b7
i.aso
2.0UO
l.bbS
.818
1.71b
3.2Bb
.310
.181
.5b8
2. 583
2.311
a. 010
1.510
1.131
1.871
a. 385
.115
.b73
3. 751
1. 118
1.2113
.saa
1.183
a. 101
3.1b7
3.312
1.771
a. 015
STAGE 5
a. 121
2. 358
1 .181
3.2b5
2.551
.aib
2.813
l.lbS
5.311
a. 153
1.383
i.an
2.iia
2.517
a. sii
1.735
1 .818
a.osb
1 ,10b
2.101
1.351
I.b38
.b17
.112
l.lbl
1. 711
2.3b1
2.111
3.001
1 ,8fab
1.811
a.abo
2.252
1.188
2.288
3.1b1
i.ias
1.112
1.371
2.b03
a. isi
] .101
a. isi
l.Sbb
3. 217
2.530
1.117
3.018
2.503
a.aos
1.815
l.llb
.383
a. 881
a.iia
1.018
1.172
a.b87
STAGE b
3.800
a. 851
a. 811
3.5b3
3.2b8
2.177
3.117
2.570
b.bll
1.733
l.bll
a.as7
3. Obi
1.117
i.a7o
2.bb3
2.b81
2.717
3.278
3.015
2.723
1.852
1.583
1.003
2.151
3.1b2
l.llb
2.188
a. 255
2.331
3.237
I.OSb
3.111
a.37b
a.Sbo
2.1b5
1.513
a. 215
1.7b8
3.111
3.811
a. 111
3.208
3.135
t.353
3.175
1.872
3.10b
1.181
2. Obi
a.bao
a. 3bO
a.sbi
3.171
3.513
3.7b2
a. 738
a. 737
STAGE 7
3.577
s.na
3.178
1.110
3.117
3.121
3.801
2.011
b.081
2.581
a. sob
3.771
3.115
3.821
i.a?o
2.125
3.037
3.101
3.172
3.537
3.010
3.117
l.bSS
2.271
3.38b
3.32?
a. 171
a.ais
2.75b
2.231
2.133
3.35b
3.515
a. 101
2.8bO
1.313
l.Bb2
2.571
a. 303
1,371
3.111
3.178
3.8b1
3.b71
1.815
1.157
a.b88
i.oin
3.111
2.253
2.111
3.370
3.0b7
3.858
a. 112
3.783
3.151
2. 1Kb
STAGE 8
3,707
3.517
i.oia
1.325
3.331
3.837
I.BIb
2.118
.2as
3.015
a. 120
3.bl8
3.752
1.211
3.1b1
1.015
3.158
S.bll
l.llb
3.138
3.b73
3.5bl
2.518
a.saa
s.sia
3.373
2.128
2.188
3.257
2.1bl
3.a27
3.b31
3.8aa
3.517
1.577
3.28b
2.183
2.b13
3.S28
1.237
1 . 181
3.111
1.181
1.213
1.883
1.878
3.bB1
3.10b
1.275
3.787
3.111
3.17b
1.130
3.7bl
3.782
3.b57
3. fell
3.558
STAGE 1 TOTAL PARTICULATE
71.12b
81. Obi
82.112
80.701
82.313
8B.lb3
78.075
87.302
bl .181
Rb.177
88.115
87.805
83.235
80.315
77.122
85.131
85.12b
B2.15b
81.711
83.521
87.080
Bb.blO
11.3b7
11.310
Bb.bSI
83.3b3
71. 7bb
85,b32
8b.273
85.315
Bb.U18
82.211
B3.1bO
88.381
83.521
78.101
12.1b1
81.211
81.351
78.871
71.011
83.722
82.751
83.bSO
78.121
78.77b
85.531
81.313
75.8bO
81.081
81.810
8b.1U3
8b.137
71.003
78.88a
7b.OH
81.535
82.533
5.315
1.118
5.113
b.031
fa. 301
3.b75
b.577
1.323
1.77b
l.lbl
3.253
7.B23
S.Ubl
5.52?
5.b21
1.157
5. Ibb
5. SIR
b.121
7.237
1 . 737
1.101
1.310
3.211
7.118
1.118
l.bll
1.183
3.112
1.011
3.105
5.751
5.a85
3.788
.871
.asa
2.578
2.7b2
b.lb5
I.ISb
b.113
fa.lbl
5.211
5.S31
8.111
8.302
5.311
5.110
1.118
2.08b
3.710
1.107
1.128
S.158
1.751
1.758
I.SbS
1.011

-------
                                                 PERCENT OF TOTAL PARTICIPATE COLLECTED
W
to
M24JFTPH
M242CFDS
M242CFDS
M242FFT
M242NYCC
M242IDLE
M242IDLE
M24250KH
M24250KH
M242BSKH
V238FTPC
V23RFTPC
V238FTPC
V238FTPH
V238FTPH
V23BFTPH
V23RCFOS
V238CFD3
V238FET
V238NYCC
V238SnKH
V239FTPC
V239FTPC
V239FTPC
V239FTPC
V239FTPH
V239FTPH
V239FTPH
V239CFDS
V239CFDS
V239FET
V239NYCC
V239IDLE
V239IDLE
V23950KH
V2398SKH
V240FTPC
V240FTPC
V240FTPC
V24C1FTPH
V240FTPH
V240FTPH
V240CFDS
V240CFOS
V2triFET
VatHFET
V2tONYCC
V2tnNYCC
V240IDLE
V2tnSOKH
V2t08";KH
V2tlFTPC
V2tlFTPC
V2tlFTPC
VJ11FTPC
V2H1FTPC
V2H1FTPH
VS'tlFTPH
V2H1FTPH
V2-HCFDS
V2H1CFOS
V211FET
,b3i
.3bO
.170
.lit
1.231
1.157
0.000
.HOI
.32b
.OH"!
.803
,t59
.73t
I.b57
. 789
2.194
.8t7
l.CltS
.8b2
1.195
l.SSt
.b31
1.227
.138
l.b1*?
1.531
o.ooo
.103
.t75
.978
.599
.302
.175
.23t
l.*B3
.H07
1.0b2
,b21
.091
,sot
.II1*
0.000
.bHS
.H92
.8b5
1.431
H.b97
.SOf
.552
.118
.151
.984
.182
.535
.bb>*
.0^1
.989
.b
-------
                                                  PERCENT OF TOTAL PARTICULATE COLLECTED
V2HNYCC
V211NYCC
V211IDLE
V211IDLE
V21150KH
V211SOKH
V21185KH
V21185KH
V212FTPC
V212FTPC
V212FTPC
V212FTPC
V212FTPH
V212FTPH
V212FTPH
V212FTPH
V212CFOS
V212FET
V212FET
V212NYCC
V212NYCC
V212IDLE
V212IDLE
V21250KH
V21285KH
1.103
l.bb?
.905
2.211
.571
.031
.325
.052
.137
1.219
.IS*
1.079
.7bb
1.339
.110
.5b2
.Ofa2
.085
. 71b
.288
,b38
0.000
3.282
0.000
.029
2.279
.9b5
.251
1.273
.39*
.015
.377
.273
.581
2.732
1.907
2.287
1.997
1.339
1.230
1.059
1.1H3
.285
,9b9
. 719
1.913
0.000
•KOtB
0.000
.292
2.57>f
B.59b
1.055
1.331
.709
.Ob3
.911
.599
l.blO
3.031
t.459
3.109
2.929
2.11B
1.790
1.952
2.203
1.153
1.815
.8b3
2.551
0.000
3.720
0.000
.138
1.S1H
b.101
1.910
5.091
.512
.073
.Bib
.103
2.12b
3.2b1
3.93b
2.B52
3.195
2.501
l.Bbl
1.985
1.217
1.253
1.117
3.309
2.551
.19b
1.122
.228
.511
2.20b
.139
.151
.728
.099
.ObB
1.171
.b77
2.597
3.b9B
1.159
1.b25
3.19b
2.159
2.271
1.300
1.538
I.b52
1.191
2.878
2.80b
.391
.875
.571
.bSb
1.511
1.191
.751
.Sib
.591
.011
2.05b
1.380
1.202
S.lbS
1.520
5.03b
1.3bl
1.83b
1.b98
5.293
2.390
2.905
2.859
2.158
2.551
.293
1.313
1.598
l.B9b
1.397
1.812
.101
.121
.985
.213
2.733
2.720
2.191
1.830
3.53b
1.b25
3.395
1.727
3.810
3.173
2.153
2.250
2.1bl
1.727
3.189
.391
1.9b9
1.112
g.Sbl
.809
2.281
.fa03
.121
1.872
5.285
2.8b3
5.558
3.00B
3.bb1
3.383
3.983
3.129
1.770
3.b91
3.113
2.215
2.991
1.710
1.727
3.827
1.b92
1.8bO
3.995
2. blO
8b.511
7b.31b
91.271
88.235
91.2bb
91.207
88.717
88.338
82.9X8
72.019
73.b17
72.105
7b.731
81.908
80.201
78.231
8b.718
87.12b
8b.503
8b.331
79.971
91.037
81.510
92.1bb
91.27b
                                                                                                                                        1.3bO
                                                                                                                                        1.110
                                                                                                                                        1.990
                                                                                                                                        I.b19
                                                                                                                                        5.075
                                                                                                                                       2D.bb2
                                                                                                                                        7.b81
                                                                                                                                        7.b83
                                                                                                                                        2.927
                                                                                                                                        3.002
                                                                                                                                        3.252
                                                                                                                                        3.892
                                                                                                                                        3.001
                                                                                                                                        2.31b
                                                                                                                                        2.bB2
                                                                                                                                        3.023
                                                                                                                                        1.811
                                                                                                                                        3.511
                                                                                                                                        1.023
                                                                                                                                         ,bH5
                                                                                                                                         .781
                                                                                                                                        1.023
                                                                                                                                         .911
                                                                                                                                         .87b
                                                                                                                                        b.85S
O

-------
 AVERAGE PERCENT OF EXHAUST PARTICIPATE
  COLLECTED BY ANDERSON IMPACTOR BY STAGES
FROM A MERCEDES 5400 AND A VH RABBIT (DIESEL)

             BY VEHICLE
TEST TYPE
M238FTPC
MS38FTPH
M238CFDS
M238FET
M238NYCC
M238IOLE
M238SOKH
M23885KH
M239FTPC
H239FTPH
M239CFDS
M239FET
M239NYCC
M239IDLE
M23950KH
MJ3985KH
M2*OFTPC
M2*OFTPH
M2*OCFDS
Q MS*oFET
1 M2*ONYCC
£j M2*oIOLE
M2*OSOKH
M2*085KH
M2*1FTPC
M2*lFTPH
M2*1CFDS
H2*lFET
M2H1NYCC
M2*1IDLE
M2*150KH
MJH185KH
M2H2FTPC
M2*2FTPH
M2*2CFDS
MS*2FET
M2*2NYCC
M2*2IDL£
M2*2SOKH
H2*38SKH
STAGE 1
.70*
.5*7
.*3*
.153
1 ,*7*
2.58*
.blS
.Ibb
,*10
.*a*
.187
.1*8
.285
.21b
.5*7
,71b
.191
.11?
.150
,02b
. 229
.939
.257
.097
.*bl
.*88
,18b
.131
l.*08
a.**s
.5bl
.**?
.538
• *12
,2b5
.11*
1.231
.579
.3b3
.0*9
STAGE Z
.2*1
.539
.770
.52*
1.93*
1.03*
.707
.217
.859
.b08
.37b
.211
.1*2
.288
,*8b
.351
, b37
.719
.587
.132
.801
1.7bl
,b23
. b97
.81*
.b31
.513
.7bb
1.199
1.2*b
1.09b
.b71
.939
.7*0
.bb3
.182
l.b*2
1.937
,b3*
.210
STAGE 3
2.7b2
1.2Sb
I.*b8
I.b03
3.138
0.000
.blS
,**7
2.329
1.39b
.737
.781
.570
.935
.*5b
.SOb
2.*31
I.b09
l.*7b
.92*
1.1**
2.3*7
.2bO
.bOO
2.375
1.253
1.9bb
2.29*
3.07b
.719
1.***
.871
3.137
2.052
2.*19
1.2*9
2.39*
.821
.b27
,b!8
STAGE *
2.35*
2.5*5
l.bll
2.103
3.79b
.*31
.7b9
.**7
1.992
1.578
l.*37
.992
l.*25
.791
.*8b
.955
2.10b
1.5*2
1.832
.818
1.7lb
3.28b
,2*b
.SbB
2.**9
l.bSO
2.128
.809
3.75*
1.198
1.203
.857
3.071
2.001
2.321
l.*99
2.73b
.881
.bll
.7*1
STAGE 5
2.929
2.171
2.909
1.830
3 . b57
2.153
1.383
1.291
2.*18
1.880
2.155
1.351
I.b38
. b*7
.912
l.*bl
2.121
1.905
2.2Sb
1.188
2.288
3.1B9
1.2bB
1.379
2.531
1.885
2.888
2.522
2.503
2.205
1.8*5
.750
3.310
2.297
2.*9b
1 .8*0
2.bb8
I.*b5
.701
.717
STAGE b
3. SOU
2.835
3.*15
2.937
*.b07
1. 723
I.b91
2.237
3.82b
2.717
3. 187
2.723
1.852
1.583
1.003
2.*59
3.b32
2.b07
3.7b5
2.37b
2.8bO
2.*b5
1.879
1.7b8
3.903
2.931
*.lb*
2.889
*.*8*
2. Obi
2.b20
2.*b2
3.77?
2.801
*.1S5
2.839
*.2*1
3.9*1
l.*53
2. Ob*
STAGE 7
3.577
3.185
*.OS*
3.*bS
*.0bl
2.58*
2. SOb
3.771
3.8b2
3.12*
3.755
3.0*0
3.917
l.bSS
2.279
3.38b
2.8b*
2.*?b
3.*7b
2.90*
2.8bO
*.3*3
2.21b
2.303
*.lb*
3.b72
' *.b7b
3.3b*
3.**1
2.253
2.9*1
3.219
3.528
2.889
3.9bl
3. bll
2.bbB
5.718
2.257
*.0*1
STAGE 8
3.707
3.819
3.828
*.3bb
1.587
3.015
2.920
3. blS
3.81*
3.707
*.027
3.b73
S.Sbl
2.518
2.522
3.512
3.09b
3.1*8
3.728
3.2*7
*.577
3.28b
2.5b3
3.228
*.3bl
*.11S
*.881
3.798
*.27S
3.787
3.**9
*.OS3
3.733
3.*lb
*.59b
3.725
3.078
7.72b
2.713
3.*97
STAGE 9
79.92b
83.103
81.511
83.119
75.7*5
8b.*77
88.995
87.805
80.*91
8*. 507
8*. 139
87.080
Sb.blO
91.3b7
91.310
8b.b5*
82.920
85.878
82.729
88.39*
83.52*
78. *o*
90.b88
89.359
78.9*2
B3.37S
78.599
83.*2b
75.8bO
8*. OB*
8*. 8*0
8b.b70
77.9b8
83.391
79.12*
8*. 9*2
79.3*3
7b,932
90.b*0
88. Ob*
TOTAL PARTICIPATE
5. 395
*.B20
b.lb9
S.12b
1.5*9
l.lbl
3.253
7.823
S.*02
5.27*
7.080
*.73?
l.*0*
1.390
3.291
7.118
*.*!*
3.972
5.518
3.788
.87*
.852
2.b70
b.lbS
5.93*
5.902
B.*00
S.bb7
1.918
2.0Bb
3.7*0
9.2b7
*.892
*.***
b.708
*. *03
I.*b2
.822
2.781
8.093
AVER.
VMAX.
VMIN.
8.0.
RANGE
VARI.
.53*
2.58*
,02b
.57*
S. 558
• 107. *88
.728
1.937
.132
.*b3
l.BOS
b3.b!3
i.*as
3.136
0.000
.871
3.138
bl.02b
1.593
3.79b
.2*b
,920
3.551
57.739
1.975
3.bS7
.b*7
.750
3.010
37.988
2.8bb
*.b07
1.003
.922
3,bO*
32.171
3P297
5.718
l.bSS
.799
*.0b*
2*. 2*9
3.bS7
7.72b
1.587
.92*
b.l*0
25.2bl
83.923
91.3b7
75,7*5
*.3*2
15.b22
5.17*
                                                                             ».39*
                                                                             9.2b7
                                                                              .822
                                                                             2.300
                                                                             B.»*5
                                                                            52.335

-------
 AVERAGE PERCENT OF EXHAUST PARTICULATE
  COLLECTED BY ANDERSON IMPACTOR BY STAGES
FROM A MERCEDES 8*OD AND A VH RABBIT (DIESEL)

             BY VEHICLE
TEST TYPE
V23BFTPC
V23BFTPH
V23BCFOS
V23BFET
V23BNYCC
V23850KH
V231FTPC
V231FTPH
V231CFDS
V231FFT
V231NYCC
V231IDLE
V23i5oKH
V2318SKH
V2*OFTPC
V2*OFTPH
V2*OCFOS
V2*OFET
V8*ONYCC
Va*OlDLE
& V2*OSOKH
to V2*085KH
C\ V2*1FTPC
V2*1FTPH
V2*1CFDS
V2*1FET
V2*1NYCC
V2*1IDLE
V2*1SOKH
V2*1BSKH
V2*2FTPC
V2*8FTPH
V2*aCFDS
V2*8FET
V2*2NYCC
V2*2IDLE
V2*2SOKH
V2*285KH
STAGE 1
.bb5
1.5*7
.1*8
.8ba
1.115
1.55*
.111
.5*5
.7ab
.511
.302
.20*
l.*B3
,*07
.511
.20b
.5bB
1.1*8
8.b01
.552
.1*8
.151
.*81
.713
.b15
,*12
1.385
1.57*
.303
.181
.bb7
,7b1
,0b2
.*lb
,*b3
l.b*l
0.000
.081
STAGE 8
1.001
1.808
1.221
. *12
8.151
. 10*
1.771
.851
1.072
.180
a. lao
.71b
1.122
,*07
1.530
.518
i.ia*
1.037
3.785
5.525
0.000
.108
1.585
1.005
1.00*
,2*b
I.b22
,7b2
.ao*
.325
1.87b
l.*Db
1.1*3
.b27
1.31b
a.oa*
o.ooo
.818
STAGE 3
3.3b8
3.b85
3.*1*
5.208
*.0fa2
.*bfa
3.b88
,2.050
2.580
1.228
1.511
.350
.82*
.b7B
3.5*0
2.172
3.533
1.83*
*.5*1
1.105
.1*8
.710
2.1b1
2. bib
a.boa
.7b3
5. 585
1.115
,38b
.755
3.0bO
8.372
8.803
I.b3*
1.707
l.BbO
O.DQO
,*38
STAGE «t
3.530
a. 101
3.310
l.*2*
2.187
.207
3.5b8
2.02*
2.811
1.018
3.021
.31*
1.318
.753
3.538
l.bSS
3.*0b
1.35b
3,b20
2.7b2
.21b
,*73
1.823
a. 150
2.000
1.231
3.17*
3.502
.212
.b2S
3.120
2.*b2
1.8*7
1.335
8.130
.801
.828
.511
STAGE S
3.530
*.5*1
3.553
2.*3S
2.270
.b21
3.70*
2.b31
3.b03
l.*17
5.7*0
1.21b
1.0*3
1.130
3.b*b
2.232
3.b53
I.*b8
S.*83
2.*8b
.370
.181
2.*12
2.737
2.21*
l.b*1
1. 322
,*31
.083
.12*
3.8**
2. 182
1.538
1.578
2.8*2
.b33
.571
.b5b
STAGE b
*.12*
*.811
5.*35
2.*3S
b.571
1.2*3
5.307
*.1*2
*.2b*
1.1*b
*.b32
.13*
1.757
2.251
5.027
3.3ia
S.2Sb
a. on
5.381
.552
.fabS
.ias
3.2bl
3.3bO
3.121
2.757
1.518
.bBO
.317
1.718
*.B05
*.717
2.310
2.8R2
2.355
.803
1.518
l.BIb
STAGE 7
*.3*8
*.13b
5.25a
3.172
*.301
1.55*
*.b2b
2.175
*.*20
I.*b7
*.b32
1.22b
1.208
2.*10
3.*11
2.133
3.311
l.bSI
2.*ia
a.*sb
1.330
1.527
3.2*1
2.385
3.037
2.*b2
l.bao
.111
.511
2.727
3. 871
3.101
2.*53
a. 355
2.*SB
1.180
1.1*2
2.2bl
STAGE B
3.552
*.B83
3.171
2.*35
5.37b
1.815
3.131
a. 811
3.7b*
1.1*b
a. 820
I.b78
2.52b
2.711
2.7bfa
I.b82
3. 085
1.B18
3.103
2.7b2
2.217
I.bl3
8.U71
2.3b1
3.513
3.053
1.5*5
.51*
3.578
*.210
3.501
a. 133
a. 2*5
2.3b5
2.777
3.27b
3.115
2.b*0
STAGE 1
75.081
71.b81
72.881
80.817
71.087
12.157
72.*87
81.15*
7b.7S3
10.120
7*.*21
13.202
87.111
81.2*5
75.150
Bb.007
75.18*
87.bb8
bB.lBb
81.7b8
1*.B2b
13.50*
7b.8b1
Sl.Bbb
81.b*5
87.3*b
81 ,*30
11.253
1*.23b
88.527
7S.a*7
71.2b1
Bb.718
8b.81*
83.153
87.773
12.*bb
11.27b
TOTAL PARTICULATE
3
2
b
2

1
*
3
b
3

1
1
b
3
2
5
3


1
*
B
3
b
*
1
1
12
7
3
2
*
3



b
.871
.830
.525
.bbl
.837
.131
.080
.1*8
.013
.3*0
.113
.000
.821
.b31
.*01
.582
.027
.13*
. bS2
,3b2
.353
,b*1
.SOb
.871
.*71
.Ob2
.250
.811
.BbB
,b83
.2faB
.75b
.811
.7b7
.731
.IbB
,87b
.855
AVER.
VMAX.
VHIN.
3.D.
RANGE
VARI.
.731
2.b01
0.000
.5b*
2.b01
77.08f
1.800
5.525
0.000
1.011
5.525
91.538
8.10*
5.585
0.000
l.*53
5. 585
fcl.Ob?
1.18S
3.17f
--'••• .807
1.280
•:•• 3.7b7 ,
" kl.ttf •->-
8.28*
5.7*0
.083
l.*28
S.bS7
b*.221
2.150
b.571
.317
1.73*
fa. 25*
58.771
8.b31
5.252
.111
1.2Sb
5.1*1
*7.7»8
3.00b
8.071
.51*
1.31b
7.5b5
*3.785
83. IbB
1*.82b
bB.lBb
7.b25
2b.b*0
I.IbB
                                                                             3.bl7
                                                                            la.abB
                                                                              .3b2
                                                                             2.b55
                                                                            12.50b
                                                                            73.318

-------
                                                   AVERAGE PERCENT OF EXHAUST PAHTICULATE
                                                    COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                  FROM A MERCEDES 2*OD AND A VW RABBIT (DIESEL)

                                                                 BY FUEL
TEST TYPE
M23BFTPC
M238FTPH
M238CFDS
Ma38FET
M238NYCC
Ma38IDLE
Ma385nKH
M23885KH
V23BFTPC
V238FTPH
V23BCFDS
V238FET
VJ38NYCC
V238SnKH
AVER.
VMAX,
VMIN.
3.0.
RANGE
VARI.
STAGE I
.70*
.5*7
.*3*
.153
l.*7*
a.sa*
.blS
.Ibb
.bbS
1.5*7
.118
.8b2
1.115
1.55*
.Ibl
a.58*
.153
.bbO
a.*31
b8.7l8
STAGE 2
.2*1
.538
.770
.sa*
1.134
1.03*
.707
.217
1.001
1.808
1.221
.*12
a. isi
.10*
.10*
2.151
.10*
.bb2
2.0*7
73.1*0
STAGE 3
2.7b2
1.25b
I.*b8
I.b03
3.138
0.000
.blS
, ,**7
3.3bB
3.b85
3.*1*
s.aoa
*.0b2
,*bb
2.2*1
5.208
o.oon
l.blb
5.208
71.825
STAGE *
2.35*
2.5*5
l.bll
2.103
3.7Sb
.*31
.7b1
.**7
3.530
2.11)1
3.310
i.*a*
a. is?
.207
a. 030
3.71b
.an?
1.227
3.581
bO.*bb
STAGE 5
a.iai
2.171
2.101
1.830
3.b57
2.153
1.3B3
1.2S1
3.530
*.5*1
3.553
2.*3S
2.270
.b21
2.sao
*.5*1
.b21
1.07*
3.111
*2.bao
STAGE b
3.800
2.835
3.*1S
2.837
*.b07
1.723
l.bll
2.a37
*.12*
*.8]1
5.*35
a.*35
b.571
1.2*3
3.*b1
b.571
l.a*3
i.boa
s.328
*b,113
STAGE 7
3.577
3.185
*.05*
3.*b5
*.0bl
2.58*
2.30b
3.771
*.3*B
*.13b
5.252
3.172
*.301
1.55*
3.bie
5.252
1.55*
.150
3.b18
ab.308
STAGE 8
3.707
3.811
3.82B
*.3bb
1.587
3.015
2.120
3. blB
3.552
*.B83
3.171
2.*35
5.37b
1.215
3.*5fa
5.37b
1.215
1.1*0
*.OB2
32.178
STAGE 1
71.S2b
93.103
81.511
83.111
75.7*5
8b.*77
88.115
87.805
75.081
71.b81
72.881
80.817
71.087
12.157
80.800
12.157
71.087
b.831
21.870
B.*S*
TOTAL PARTICULATE
5.
*.
b.
5.
1.
1.
3.
7.
3.
2.
b.
a.
.
i.
3.
7.
.
2.
b.
5b.
315
820
IbS
lab
5*1
Ibl
ess
823
871
830
525
bbl
837
131
855
823
837
172
18b
355
o
I
NJ
                                                    AVERAGE  PERCENT  OF  EXHAUST  PARTICULATE
                                                     COLLECTED  BY  ANDERSON  IMPACTOR  BY  STAGES
                                                   FROM  A  MERCEDES a*OD AND A  VW  RABBIT  (DIESEL)

                                                                  BY FUEL
TEST TYPE
M231FTPC
M231FTPH
M231CFDS
M231FET
M231NYCC
M231IDLE
M23150KH
M23185KH
V231FTPC
V231FTPH
V231CFD3
V231FET
V231NYCC
V231IDLE
V231SOKH
V23185KH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
.*10
.*8*
.187
.1*8
.385
.21b
.5*7
,7lb
.111
.5*5
.72b
.511
.302
.20*
l.*83
.*07
.511
l.*B3
.1*8
' .3*0
1.335
bb.b**
STAGE a
.851
.bOB
.37b
.an
.1*2
.288
.*8b
.351
1.771
.851
1.072
.180
a.iao
.71b
1.132
.*07
.823
2.120
.1*2
,7b1
a. 778
13.*5b
STAGE 3
a.sai
1.31b
.737
.781
.570
.135
.*5b
, .SOb
3.b88
a. oso
2.580
i.aas
1.511
.350
.82*
.b78
i.ess
3.b88
.350
,13b
3.338
7a.bii
STAGE *
i.iia
1.578
l.*37
.na
i.*as
.711
.*Bb
.155
3.5bB
a.oa*
2.811
1.018
3.oai
.31*
1.318
.753
1.53b
3.5bB
.31*
.130
3.17*
bO.SbO
STAGE 5
2.*1B
1.880
2.155
1 .351
l.b3B
.b*7
.112
l.*bl
3.70*
2.b31
3.b03
l.*17
5.7*0
1 .21b
1.0*3
1.130
a. 070
5.7*0
,b*7
1.32*
5.013
b3.157
STAGE b
3.82b
a. 717
3.187
2.723
1.852
1.583
1.003
2.*51
5.307
*. 1*2
*.2b*
1.1*b
*.b32
.13*
1.757
2.251
a. 787
5.307
.13*
1.320
*.373
*7.3*B
STAGE 7
3.8b2
3.12*
3.755
3.0*0
3.117
l.bSS
2.271
3.38b
*.b2b
2.175
*.*20
I.*b7
*.fa32
1.32b
1.208
2.*10
2.111
*.b32
1.208
1.18*
3.*2*
31.*B3
STAGE 8
3.81*
3.707
*.027
3.b73
3.5bl
2.518
2.522
3.512
3.131
2.811
3.7b*
1.1*b
2.820
I.b78
2.52b
2.711
3.01b
*.027
I.b78
.7*2
a. 3*1
33.172
STAGE 1
80.*11
B*.507
8*. 131
87.080
Sb.blD
11.3b7
11.310
8b.b5*
72.*87
81.15*
7b.7S3
10.120
7*.*21
13.20a
87.111
81.2*5
8*. 811
13.202
7a.*87
b.202
20.715
7.30b
TOTAL PARTICULATE
s.*oa
5.27*
7.080
*.737
l.*0*
1.310
3. ail
7.118
*.OBO
3.1*8
b.013
3. 3*0
.113
1.000
i.sai
b.b31
3.121
7.118
.113
2.115
b.125
55. IB1*

-------
                                                  AVERAGE PERCENT OF EXHAUST PARTICULATE
                                                   COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                 FROM A MERCEDES 2*OD AND A VW RA8BIT (DIESEL)

                                                                BY FUEL
TEST TYPE
M2*OFTPC
M2*OFTPH
M2*OCFDS
M2*OFET
M2*ONYCC
M2*OIDLE
M2*050KH
M2*085KH
V2*OFTPC
Va*OFTPH
V2*OCFD3
V2*OFET
V2*ONYCC
V2*OIOLE
V2*OSOKH
Va*085KH
STAGE 1
.111
.117
.150
.02b
.221
.131
.257
.017
.511
. 20b
.SbB
1.1*8
a.boi
.552
.1*8
.151
STAGE 2
,b37
.711
.587
.132
.801
1.7bl
.b23
.b17
1.530
.518
1.12*
1.037
3.785
5.525
0.000
.106
STAGE 3
2.*31
l.bOl
l.*7b
.12*
1.1**
2.3*7
.2bO
. .bOO
3.5*0
2.172
3.533
1.83*
*.5*1
1.105
.1*8
.710
STAGE *
2.10b
i.s*a
1.832
.818
1.71b
3.2Bb
.2*b
.5b8
3.538
I.b58
3.*Ub
1.35b
3,b20
2. 7ba
,21b
.t73
STAGE 5
2.121
1 .105
2.25b
J .188
2.288
3.1b1
1 . 2bB
1.371
3.b*b
2.232
3.b53
I.*b8
5.*B3
2.*Bb
.370
.181
STAGE fc
3.b32
2.fa07
3.7bS
2.37b
2.8bO
2.*bS
1.871
1.7b8
s.oa?
3.312
5.25b
a. on
5.381
.552
,bb5
.125
STAGE 7
2.8b*
2.*7b
3.*7b
2.10*
2.8bO
*.3*3
a.21b
2.303
3.*11
a. 133
3.311
l.bSI

2. *8b
l!330
1.527
STAGE 8
3.01b
3.1*8
3.728
3.2*7
*.577
3.eBb
2.5b3
3.22S

i! bBa
3.085
1.818
3.103
2. 7b2
2.217
I.bl3
STAGE 1
82.120
85.878-
82.721
88.38*
83.52*
78. *0*

81. 351
75. 150
Bb.007
75.18*
87.bfe8
bS.IBb
81 . 7b8
1*. Bab
13.5U*
                                                                                                                        TOTAL PARTICULATE

                                                                                                                              3.172
                                                                                                                              5.518
                                                                                                                              3.788
                                                                                                                               .87*
                                                                                                                               .852
                                                                                                                              2.b70
                                                                                                                              b.lbS
                                                                                                                              3.*01
                                                                                                                              2.582
                                                                                                                              5.027
                                                                                                                              3.13*
                                                                                                                               .b52
                                                                                                                               .3b2
                                                                                                                              1.353
                                                                                                                              *.b*1
CD
to
00
AVER.
VMAX.
VMIN.
3.0.
RANGE
VARI.
.*18
a.boi
.oat
,b*b
2.57*
121. bll
1.22*
5.525
0.000
l.*55
5.525
118.8*3
1.77*
*.5*1
.1*8
1.2b*
*.*01
71.252
1.827
3.b20
.2*b
1.113
3.37*
bS.310
a. a**
S.*B3
.370
1.265
5.11*
Sb.3b8
8. 785
5.3R1
.552
1.5*1
*.B21
55.331
2.bl7
*.3*3
1.330
.71*
3.012
30.33*
2.120
*.577
I.bl3
.81*
a.ibs
27.873
8* .111
1*. B2b
be.isb
7.021
2b.b*0
8.3*8
                                                  AVERAGE PERCENT OF EXHAUST PARTICIPATE
                                                   COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                 FROM A MERCEDES 2*OD AND A VH RABBIT (DIESEL)

                                                                BY FUEL
                                                                                                                              3.088
                                                                                                                              b.lbS
                                                                                                                               .3b2
                                                                                                                              1.851
                                                                                                                              5.803
                                                                                                                             51.1**
TEST TYPE
M2H1FTPC
M2*1FTPH
MB*1CFOS
M2*1FET
M2*1NYCC
M2*1IOLE
M2*150KH
H2*185KH
V2*1FTPC
Va*lFTPH
V2*1CFOS
V2»1FET
V2*1NYCC
Va'UIDLE
V2*150KH
V2!»185KH
STAGE 1
.*bl
.*88
.18b
.131
l.*08
2.**S
.5bl
,**7
,*81
.713
.bIS
.*ia
1.385
1.57*
.303
.181
STAGE 2
.81*
.b31
.513
,7fab
1.111
1.2*b
l.Olb
.b71
1.585
1.005
1.00*
,2*b
I.b2.2
.7b2
.30*
.325
STAGE 3
2.375
1.253
l.lbb
2.21H
3.07b
.711
1.***
, .871
2.1b1
2. bib
a.bO?
.?i>3
5.585
1.115
.3Bb
.755
STAGE *
2.**1
l.bSO
2.128
.801
3.75*
1.118
1.203
.857
1.823
2.150
2.000
1.231
3.17*
3.502
.212
,b25
STAGE 5
2.531
I.8B5
2.898
2.522
a. 503
2.205
1.8*5
.750
2.*12
2.737
2.ai*
l.b*1
1.322
."I
.083
.12*
STAGE b
3.103
2.131
*.lb*
a. 881
*.*8*
?. Obi
a.bao
a.*ba
3.2bl
3,3bQ
3.121
2.757
1.518
.b50
.317
1.718
STAGE 7
*.lb*
3.B72
*.b7b
3.3b*
3.**1
2.253
2.1*1
3. an
3.2*1
2.385
3.037
2."»b2
I.b20
.111
.511
2.727
STAGE 8
*.3bl
*.115
*.881
3.718
4.275
3.787
3.**1
*.053
8.U71
2.3b1
3.513
3.053
1.5*5
.51*
3,578
*.210
STAGE 1
78.1*2
83.375
78.511
83.*2b
7S.8bO
8*. 08*
8*. 8*0
8b.b7o
7b.8bH
Bl.Sbb
81.b*5
87.3*b
81.*30
11.253
1*.23b
88.527
TOTAL PARTICULATE
5.13*
5.102
8.*00
S.bfa?
1.11B
2.0Bb
3.7*0
1.2b?
B.SDb
3.871
b.*71
*.Db2
1,250
1.811
12.8bB
7.bB3
AVER.
VMAX.
VMIN.
3D
. ** .
RANGE
VARI.
.7*7
2.**S
. 131
,b3*
2.313
BH.711
.BSb
i.baa
.20*
.*31
1.*18
5Q.*01
1.871
5.585
.38b
1.288
5.111
faB.S*S
1.103
3.17*
.212
1.1*7
3.b81
bO.301
1.817
2.888
.083
.873
2.805
*8.032
2.b31
*.*B*
.317
l.lbB
*.lbb
**.2*8
2.7**
*.b7b
.111
1.H2
*.5b5
*3.**b
3.721
8.071
.51*
l.bia
7.5bS
*3.221
B3.b8b
1*.23b
75.Bbo
5. oh*
l8.37b
b.QSl
                                                                                                                               5.511
                                                                                                                              12.8bB
                                                                                                                               1.250
                                                                                                                               3.223
                                                                                                                              ll.blB
                                                                                                                              S7.bSl

-------
                                                  AVERAGE PERCENT OF EXHAUST PARTICIPATE
                                                   COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                 FROM A  MERCEDES 2400 AND A VW RABBIT (DIESEL)

                                                                BY FUEL
TEST TYPE
M242FTPC
M242FTPH
M342CFOS
MS42FET
M242NYCC
M242IDLE
M242SOKH
M24285KH
V242FTPC
V242FTPH
V242CFDS
V242FFT
V242NYCC
V242IDLE
V24250KH
V24285KH
STAGE 1
.538
.412
,2bS
.114
1.231
.579
,3b3
.049
,bfa7
.7b9
,0b2
,41b
.4b3
I.b41
O.ono
.029
STAGE 2
.939
.740
.bb3
.IBa
I.b42
1.937
.b34
.210
l.B7b
1.40b
1.143
.b27
1 . 31b
2.024
0.000
.292
STAGE 3
3.137
2.052
2.419
1.249
2.394
.821
.b27
.bl8
S.ObO
2.272
2.203
I.b34
1.707
l.BbO
0.000
.438
STAGE 4
3.071
a. ooi
a. 321
1 . 4SS
a.73b
.881
.bll
.741
3.120
2.4fa2
1.247
1.335
2.930
.80S
.228
.511
STAGE 5
3.310
2.297
2.49b
1.840
2.bb8
1 .4b5
.701
.717
3.844
2.982
1 .538
1.572
2.842
.b33
.571
,b5b
STAGE b
3.777
2.801
4.155
2.839
4.241
3.941
1.453
2 . 0 b 4
4.8H5
4.797
2.390
2.882
2.355
.803
1.598
1.89b
STAGE 7
3.528
a. BBS
3.9bl
3. fall
2.bb8
5.718
2.257
4.041
3.871
3.109
2.453
2.355
2.458
1.180
1.142
2.2bl
STAGE 8
3.733
3.41fa
4.5Sb
3.725
3.078
7.72b
2.713
3.497
3.509
2.933
2.245
2.3b5
2. 777
3.27b
3.995
2.b40
STAGE 9 TOTAL PARTICULATE
77.9bB
83.391
79.124
84.942
79.343
7b.932
9D.b40
88.0b4
75.247
79.2b9
8b.718
8b.B14
83.153
87.773
92.4bb
91.27b
4
4
b
4
1

2
8
3
2
4
3



b
.892
.444
.708
.403
,4b2
.822
.781
.093
.2b8
.75b
.811
.7b7
.739
.9b8
. 87b
.855
(TJ
I
NJ
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
.475
1 . b>H
O.OUO
.450
1^>41
4.797
.977
2.024
0.000
.bbS
2.024
bB.OSb
I.b5b
3.137
0.000
.945
3.137
57.084
l.bSb
3.120
.228
1.001
2. 891
b0.44b
1.883
3. 844
.571
l.ObS
3.274
Sb.713
2.925
4. 805
.803
1.23b
4.002
42.250
2.9b9
5.718
1.142
1.149
4.577
3B.b97
3.514
7.72fa
2.245
1.283
5.481
3b.524
83.945
92.4bb
75.247
5.4b2
17.219
b.507
 3.b03
 8.093
  .739
 2.328
 7.353
b4.bOS
                                                   AVERAGE  PERCENT  OF  EXHAUST  PARTICULATE
                                                    COLLECTED  BY  ANDERSON  IMPACTOR  BY  STAGES
                                                  FROM  A  MERCEDES a40D AND  A VW  RABBIT  (DIESEL)

                                                         BY TEST PROCEDURE
TEST TYPE
M238FTPC
M239FTPC
M240FTPC
M241FTPC
M242FTPC
V238FTPC
V239FTPC
V240FTPC
V241FTPC
V242FTPC
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
.704
.410
.191
.4bl
.538
.bbS
.911
.591
.481
,bb?
.5b2
.911
.191
.195
.719
34.b92
STAGE a
.241
.859
.b37
.814
.939
1.001
1.771
1.530
1.585
l.B7b
1.125
1.87b
.241
.537
l.bSS
47.7Db
STAGE 3
2.7b2
2.329
2.431
2.375
3.137
3.3b8
3.bB8
3.540
2.1b9
3.0bO
2.8Bb
3.b88
2.1b9
.548
1.519
1B.SS2
STAGE 4
2.354
1.992
a.lOb
2.449
3.071
3.530
3.5bB
3.538
1.823
3.120
a. 755
3.5b8
1.B23
.b8b
1.745
24.8S7
STAGE 5
2.929
2.418
2.121
2.531
3.310
3.530
3.704
3.b4b
2.492
3,844
3.052
3.844
2.121
,b30
1.724
20.b35
STAGE b
3.800
3.82b
s.bsa
3.903
3.777
4.924
5.307
5.027
3.2bl
4.805
4.22b
5.307
3.2bl
.712
2.04b
lb.852
STAGE 7
3.577
3.8b2
2.8fa4
4.1b4
3.528
4. 348
4.b2b
3.411
3.241
3.871
3.749
4.b2b
a.8b4
.533
1.7bl
14.225
STAGE B
3.707
3.814
3.09b
4.3bl
3.733
3.552
3.939
2.7bb
8.079
3.509
4.0Sb
8.079
2.7bb
1.480
5.313
3b.4S4
STAGE 9
7S.92b
80.491
82.920
78.942
77.9b8
75.081
72.487
75.950
7b.8b9
75.a47
77.5B8
82.920
72.487
3.078
10.433
3.9b8
                                                                                                                         TOTAL  PARTICULATE
                                                                                                                               S.3S5
                                                                                                                               5.402
                                                                                                                               4.414
                                                                                                                               5.934
                                                                                                                               4.892
                                                                                                                               3.879
                                                                                                                               4.080
                                                                                                                               3.401
                                                                                                                               8.50b
                                                                                                                               3.2B8
                                                                                                                               4.917
                                                                                                                               8.50b
                                                                                                                               3.2bB
                                                                                                                               1.543
                                                                                                                               5.238
                                                                                                                              31.381

-------
CD
I
OJ
o
                                                    AVERAGE PERCENT OF EXHAUST PARTICIPATE
                                                    COLLECTED BY  ANDERSON  IMPACTOH BY STAGES
                                                  FROM A MERCEDES 240D AND A VW RABBIT  (DIESEL)

                                                          BY TEST PROCEDURE
TEST TYPE
Ma3HFTPH
M231FTPH
Ma40FTPH
M241FTPH
Ma43FTPH
Va38FTPH
V331FTPH
vanoFTPH
Va41FTPH
V24aFTPH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
.547
.484
.117
, .488
.4ia
1.547
.545
.aob
.713
.7b1
.593
1.547
.117
.313
i .431
b7.4ab
STAGE a
.538
.b08
.711
,b31
.740
1.808
.851
.518
1.005
1.40b
.883
1.808
.519
.411
i.aio
47.411
STAGE 3
l.aSb
1.31b
l.bOl
i.ass
a.osa
3.b85
a. 050
a.i?a
a.bib
a.a?a
a.o3b
3.b85
1.253
.741
a. 43i
3b,318
STAGE 4
2.545
1.578
1.54?
1 .bSO
?.nni
a . 1 1) i
a. 034
l.bSB
a. iso
a.4ba
a. 131
a. 150
i.S4a
.Sfb
1.408
as.bii
STAGE 5
2.171
J .8811
) .IMS
1.885
a.ai?
4.541
a.bsi
a. as?
a. 73?
a. 182
a.sa?
4.541
1.880
.803
a.bbi
31.777
STAGE fc
a. 835
a. 7i?
a.bn?
a. 131
a.Bni
4.811
4.i4a
3.312
3.3bQ
4.71?
3.440
4.811
2.b07
.BSO
2.212
a4.b1?
STAGE 7
3.185
3.124
2.47b
3.b72
2.881
4.13b
2. 175
a. 133
2.385
3.101
3.008
4.13b
a. 133
.518
a. 003
11.884
STAGE 8
3.811
3.707
3.148
4.115
3.41b
4. 883
a. 811
i.baa
a.3bi
a. 133
3.388
4.883
i . baa
.113
3. am
37.757
STAGE 1
83.103
84.507
85.878
83.375
83.311
71.b81
81.154
Bfa.OO?
81.8bb
71.ab1
82.103
Bb.007
71.b81
4.1b?
14.32b
5.075
TOTAL PARTICULATE
* p
5.
3.
5.
4.
2.
3.
a.
3.
a.
3.
b.
a.
i.
3.
28.
820
274
172
102
444
630
148
583
871
75b
IbO
102
sea
143
sao
871
 AVERAGE PERCENT OF EXHAUST PARTICULATE
  COLLECTED BY ANDERSON IMPACTOR 8Y STAGES
FROM A MERCEDES 2400 AND A VW RABBIT (DIESEL)

        BY TEST PROCEDURE
TEST TYPE
M238CFDS
M831CFDS
M240CFOS
M241CFDS
M242CFDS
V238CFDS
V231CFDS
V240CFDS
V241CFDS
vataCFOS
STAGE 1
.434
.187
.150
.18b
.abs
.148
,7ab
.5b8
.b15
.Ob?
STAGE 2
.770
,37b
.587
.613
.bb3
i.a2i
1.072
1.124
1.004
1.143
STAGE 3
1.4b8
.737
1.47b
l.lbb
a. 411
3.414
2.580
3.533
a. boa
2. 203
STAGE 4
l.bll
1.437
1.832
a. 128
a. 321
3.310
2.811
3.4Ub
2.000
I.a47
STAGE 5
2.101
a. 155
a.asb
2.888
2.41b
3.553
3.b(13
3.bS3
2.214
1.538
STAGE b
3.415
3.187
3.7b5
4.1b4
4.155
5.435
4.2b4
5.25b
s.iai
2.310
STAGE 7
4. 054
3.755
3.47b
4.b7fa
3.1bl
5.252
4.4ao
3.311
3.037
a. 453
STAGE 8
3.828
f .oa?
3.7a8
4.881
4. Sib
3.17S
3.7b4
3.085
3.513
2.345
STAGE 1 TOTAL PARTICULATE
81
84
8?
78
71
?a
7b
75
81
8b
.511
.131
.731
.511
.124
.881
.753
.184
.b45
.718
b.lbl
7.080
5.518
8.400
b.708
b.525
b.013
5.027
b.471
4.811
AVER.
VMAX.
VHIN.
S.D.
RANGE
VARI.
.422
.148
,0b2
.211
.885
70.7S4
.847
1.221
.37b
.3oa
.845
35.b31
2.240
3.533
.737
.872
2.71b
38.121
a. an
3.40b
1.247
.753
2.151
34.050
2.735
3.b53
1.538
.712
2.115
ab.osi
3. lib
5.435
2.310
.148
3.045
24. ail
3.847
5.252
2.453
.Bib
a. 711
21.223
3.773
4.881
2.245
.735
2.b3b
11.474
80.001
Bb.71B
72.889
4.145
13.821
5.181
                                                                                                                                b.272
                                                                                                                                B.400
                                                                                                                                4.811
                                                                                                                                1.044
                                                                                                                                3.581
                                                                                                                               Ib.b44

-------
                                                 AVERAGE PERCENT OF EXHAUST  PART1CULATE
                                                  COLLECTED BY ANDERSON  IMPACTOR BY STAGES
                                                FROM A MERCEDES 21DD AND A VW RABBIT  (DIESEL)

                                                        BY TEST PROCEDURE
TAGE a
.521
.an
.133
.7bb
.182
.11?
.180
1.037
. 21b
.b27
STAGE 3
l.bOS
.781
.121
2.211
1.211
5.208
1.22B
,1.831
.7b3
I.b31
STAGE 1
a. 103
.112
.818
.BUI
1.111
1.121
1.018
1.35b
1.231
1.335
STAGE 5
1.83IJ
1 .351
1.188
2.522
l.sin
2.135
1.117
l.lbB
l.bll
1.572
STAGE fc
2.83?
2.7P3
2.37b
2.881
2.891
2.135
l.llb
2. nil
2.757
2.8R2
STAGE 7
3.1b5
3.010
2.101
3.3b1
3.bll
3.172
1.1b7
I.b51
2.1b2
2.355
STAGE 8
I.Sbb
3.fa73
3.217
3.718
3.725
2.135
l.llb
1.818
3.053
2.3b5
STAGE 1
83.111
87.080
88. 381
83.12b
81 . 91?
80.817
10. 120
87. bb8
87.31b
Sb.Rli
TOTAL PARTICIPATE
5.12b
1.737
3. 788
5.bb7
1.103
2.bb9
3. 310
3.1 31
1.Ub2
3.7b7
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
.101
1.118
.02b
.371
1.121
10.715
.132
1.037
.132
.303
.105
70.011
1.752
5.208
.7b3
1.309
1.115
71.710
1.251
a. 103
.801
.3Bb
1.213
30.b37
1.735
2.522
] . 188
.110
1.331
25.328
2.571)
2.8B1
l.llb
.351
.913
13.1b3
2.830
3.172
1.1b7
.833
2.501
21.121
3.013
1.3bb
1.818
.Bbb
2.518
28.17fa
85.172
10.120
80.817
2.828
1.303
3.210
                                                                                                                              I.Obl
                                                                                                                              5. bb7
                                                                                                                              2.bb9
                                                                                                                               .129
                                                                                                                              2.118
                                                                                                                             22.825
o
I
OJ
                                                  AVERAGE  PERCENT  OF  EXHAUST  PARTICULATE
                                                   COLLECTED  8Y  ANDERSON  IMPACTOR  BY STAGES
                                                 FROM  A  MERCEDES 2100  AND  A VW RABBIT  (DIESEL)

                                                        BY TEST PROCEDURE
TEST TYPE
M238NYCC
M231NYCC
M210NYCC
M211NYCC
M212NYCC
V238NYCC
V231NYCC
V210NYCC
V211NYCC
V212NYCC
STAGE 1
1.171
.285
.221
1.108
1.231
1.115
.302
2.b01
1.385
.1b3
STAGE 2
1.131
.112
.801
1.111
i.bia
?. 151
2.920
3.785
l.b?2
l.Slb
STAGE 3
3.138
.570
1.111
3.07b
2.311
1.0b2
1.511
1.519
5.585
1.707
STAGE 1
3.71b
1.125
1.71b
3.751
2.73b
2.187
3.021
3.b20
3.171
2.130
STAGE 5
3.bS7
I.b38
2.288
2.5H3
2.bb8
2 . 2 7 ci
5. 71J
5.183
1.322
2.812
STAGE fc
I.b07
1.852
2. BbO
1.181
1.211
b.571
1.b32
5.3R1
1.518
2.355
STAGE 7
I.Obl
3.917
2.8bO
3.111
2.bb8
1.301
1.fa32
2.112
I.b20
2.158
STAGE 8
1.5F7
3.5bl
1.577
1.275
3.078
5.37b
2.820
3.903
1.515
2.777
STAGE 9
75.715
Sb.blO
83.521
75. BbO
71. 313
71 .(187
71.121
faB.IBb
81.130
83.153
                                                                                                                        TOTAL PAKTICULATE
                                                                                                                             1.511
                                                                                                                             1.101
                                                                                                                               .871
                                                                                                                             1.118

                                                                                                                               .837
                                                                                                                               .993
                                                                                                                               .bS2
                                                                                                                             1.250
                                                                                                                               .731
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
1.057
2.b01
.221
.718
2.372
70.715
1.751
3.785
.112
1.031
3.b13
51.311
2. 771
5.585
.570
l.falO
5.015
58.017
a. lib
3.171
1.125
.BbS
2.511
28. 887
3.011
5.710
1.322
1 .197
1.118
11.211
3.850
b.571
1.518
I.b38
5.053
12.535
3.21S
1.b3?
I.b20
.172
3.013
ai.ibi
3.350
5.37b
1.515
1.211
3.832
37.051
77.93b
8b. hlO
b8. 18b
5.881
18.121
7. Sib
                                                                                                                             l.lbS
                                                                                                                             1.918
                                                                                                                              .b52
                                                                                                                              .113
                                                                                                                             1.2bb
                                                                                                                            35.313

-------
                                                  AVERAGE  PERCENT  OF  EXHAUST  PARTICULATE
                                                   COLLECTED BY  ANDERSON IMPACTOR  BY  STAGES
                                                 FROH A  MERCEDES atOD AND A  VW  RABBIT (DIESEL)

                                                         BY  TEST PROCEDURE
TEST TYPE
M238IDLE
M239IDLE
M2tOlDLE
M2tlIDLE
M2t2IDLE
V239IDLE
VatOIDLE
V2tlIDLE
V2t2IDLE
STAGE 1
e.58t
.aib
.939
a.tts
.579
,20t
.552
1.574
l.btl
STAGE a
1.03t
.288
1.7bl
1.2th
1.937
.71b
5.525
.7b2
2.021
STAGE 3
0.000
.935
a. 3*7
.719
.821
,35n
1.105
1.195
l.Bbn
STAGE t
.t31
.791
3.28b
1.198
.881
. 39t
2.7fa2
3 . 5 CI 2
.809
STAGE S
2.153
.bt7
3.1b9
a.ans
J .tbS
1.29b
2. tab
.1*39
.b33
STAGE fc
1.723
1.583
2.tb5
2. Obi
3.9tl
,93t
.552
.fa50
.803
STAGE 7
2.5Bt
l.bSS
t.3t3
2.253
5.718
1.22b
2.tBb
.111
1.180
STAGE B
3.015
2.518
3.28b
3.787
7.72b
I.b78
2.7bS
.Sit
3.27b
STAGE 9
Bb.t77
91. 3b?
78. tOt
St.OBt
7b,932
9 3 . 2 1] 2
81.7b8
91 .253
87.773
AVER.
VHAX.
VMIN.
S.D.
RANGE
VARI.
1.193
a.sst
.20t
.911
a. 380
7b.3t3
I.fa99
5.525
.288
1.553
5.237
91.379
1.037
a.3t7
o.oon
.718
2.3t7
bS.288
1.5b2
3.5fl2
. 39t
i.ast
3.108
80.303
l.bll
3.1b9
,t39
.950
2.730
58.981
I.b35
3 . 9 1 1
.552
1.091
3.3S8
bb.7t5
2.395
5.718
.111
l.?lt
S.bOB
71.573
3.17t
7.72b
.51t
1.970
7.212
b2.087
8S.b9b
93.202
7b.932
5.83t
lb.270
b.808
STAGE 9
Bb.t77

-------
                                                  AVERAGE PERCENT OF EXHAUST PARTICULATE
                                                   COLLECTED BY ANDERSON  IMPACTOR  BY  STAGES
                                                 FROM A MERCEDES 2100  AND  A VW  RABBIT  (DIESEL)

                                                         BY TEST PROCEDURE
TEST TYPE
M23885KH
M23185KH
M21085KH
M21 185KH
M2128SKH
V23185KH
V21085KH
V21185KH
V21285KH
STAGE 1
. Ibb
. ?lb
.017
.117
.011
.1U7
.151
.191
.021
STAGE 2
.217
.351
.b17
.b71
.210
.107
. 108
.325
.212
STAGE 3
.117
.50b
.bOO
.871
.bis
,b?8
.710
.755
.138
STAGE 1
.117
.155
.5bB
.857
.711
.753
.173
.b25
.511
STAGE 5
1.211
1 . Ibl
1.371
.750
.717
1.130
.181
.121
,b5b
STAGE fa
2.237
2.151
1.7b8
2.1h2
2. Obi
2.251
.125
1.718
l.Blfa
STAGE 7
3.771
3.38t>
2.303
3.211
1.011
2.110
1.52?
2.727
2.2bl
STAGE 8
S.blB
3.512
3.228
1.053
3.117
2.711
l.b!3
1.210
2. blO
STAGE 1
87. 805
Bb.bSI
81.351
Bb.b7o
88. Obi
81.215
13.501
88.52?
11.27b
                                                                                                                         TOTAL  PARTICULATE
                                                                                                                               7.823
                                                                                                                               7.118
                                                                                                                               b.lbS
                                                                                                                               1.2b7
                                                                                                                               8.013
                                                                                                                               b.b31
                                                                                                                               l.bll
                                                                                                                               7.b83
                                                                                                                               b.855
 I
u>
U)
AVER.
VMAX.
VMIN.
3.D.
RANGE
VARI.
.250
.71b
.021
.228
.b87
10.127
,3b1
. bl?
.108
.202
.510
55.330
,b25
.871
.138
.1H5
.133
23.2bO
,b51
.155

!l?8
.508
27.020
1.033
l.lbl
.b5b
.211
.805
28.132
1.17b
2. 1b2
.125
.180
1.537
21.301
2. 811
1.011
KS27
.813
2.513
28.51b
3.231
1.210
l.b!3
.801
2.517
21.878
81.012
13.501
Bb.bSI
2.211
b.850
2.181
                                                                                                                               7.111
                                                                                                                               1.2b?
                                                                                                                               l.bll
                                                                                                                               1. 308
                                                                                                                               l.blS
                                                                                                                             18.308

-------
CUMULATIVE PERCENT OF EXHAUST PARTICULATE
    COLLECTED BY ANDERSON IMPACTOR  BY  STAGES
  FROM A MERCEDES 2400 AND A  VW RABBIT (DIESEL)

               BY VEHICLE
TEST TYPE
M238FTPC
M238FTPH
M23BCFDS
M238FET
M238NYCC
M238IDLE
M238SOKH
M23885KH
M231FTPC
M231FTPH
M231CFDS
M231FET
M239NYCC
H239IOLE
M231SOKH
MasiBSKH
Ma*QFTPC
Ma*oFTPH
M2*OCFD3
M240FET
M240NYCC
(-, M240IDLE
1 M24050KH
U) M24085KH
*• M241FTPC
M341FTPH
M241CFDS
Ma41FET
M241NYCC
M241IDLE
M2415-OKH
M24185KH
M242FTPC
M242FTPH
M242CFDS
M242FET
M242NYCC
M242IDLE
M24250KH
M2H28SKH
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
STAGE 2
91.21b
11.453
11.5bb
11.847
18.52b
17.*lb
11.385
19.83*
19.590
11. Sib
11.813
11.852
11.715
11.78*
11,*S3
11.28*
11.801
11.883
11.850
11.17*
11.771
11. Obi
19.7*3
11.103
11.531
19.512
99.814
99.8b9
18.592
97.555
99.439
99.553
11.4b2
99.588
11.735
11.88b
18.7b9
19.421
11.b37
99.951
STAGE 3
99.055
98.915
98.717
11.323
lb.511
1b.382
18.b78
19.bl7
IB. 731
18.108
11 . *3b
11.b41
11.573
11.*1b
18.1b7
18.132
11.171
11. lb*
11.2b3
11.842
18.170
97.300
99.111
9i.aos
18.725
98.881
99.301
99.103
97.393
9b.309
98.342
98.882
98.523
98.8*7
19.072
19.705
17.127
17.48*
19.003
99.741
STAGE 4
9b.213
97.bS9
97.321
97.720
93.453
9b.3B2
IB.ObS
ll.lbl
1b.1*02
17.512
1B.b91
IB.SbO
11.003
IS.Sbl
18.511
18.427
1b.740
17.555
97.7Bb
18.918
17.82b
94.953
IB.SbO
18. bOS
1b.341
17.b28
17.33b
lb.801
14.317
15.590
9b.898
18. nil
95.387
9b.79S
9b.b53
98.45b
94.733
9b.bb3
98.37b
91.123
STAGE 5
93.939
95.11*
95.718
IS.bl?
Bl.bS?
is.isa
17.ai5
is.7aa
14. *10
15.13*
17, ab3
97.8b8
97.578
17.770
is.oas
17.*71
9*.b3*
9b.014
15.95*
98.019
9b.llO
ll.bb?
18. bl*
18.037
13.901
95.978
95.308
95.919
90.5b3
94.391
IS.bIS
97.15*
92.31b
1*.715
14.333
1b.157
11.117
15.783
97.7bS
98.381
STAGE b
11.010
i2.i4a
12.801
93.788
Sb.OOO
93.718
15.111
17.431
11.192
14.055
15.107
lb.517
15. 1*0
17.122
17.113
lb.010
12.513
I4.ini
13.fa18
lb.111
13. aaa
88.418
17.345
Ib.bSI
11.370
14.012
ia. 311
13.477
ss.obo
la.isb
13.850
1b.404
as.oob
12.417
11.83b
95.117
81.330
14.317
97.0b4
97.bbS
STAGE 7
87.210
90.108
81.393
90.151
81.393
9a.0?b
i*.aai
15.11*
as.ibb
11.338
91.921
93.71*
1*.088
15.5*0
lb.111
13.552
8B.B81
11.502
81.933
14.535
lO.lbl
8b.033
95.*b7
9*. 811
8?.*b7
11. Ib2
88.155
90.588
83.577
90.125
11.330
93.9*2
85.221
81. bib
87.b81
92.278
85.089
90.377
95.blO
9S.b01
STAGE 8
83.b33
Bb.922
85.331
87.485
77.332
81.4ia
91.915
11.423
84.304
88.215
BS.lbb
10.754
10.171
13.885
93.832
lO.lbb
8b.017
B9.oab
8b.457
H.bSl
88.101
81. blO
13.250
12.587
83.303
87.481
83.471
87.22*
80.13b
87.872
88.2B1
90.723
81.702
Bb.807
83.720
88.bb7
B2.*21
8*.b58
93.353
91.5fal
STAGE 9
79.92b
83.103
81.511
83.119
75.7*5
8b.*77
H8.115
67.805
B0.*11
8*. 507
8*. 131
87.080
Bb.blO
11.3b7
91.310
Bb.bS*
aa.iao
85.B78
82.731
ea.3B*
83.524
78.40*
IQ.bSB
81.351
7B.9*2
83.375
78.519
83.*2b
7S.BbO
84. 084
84.840
8b.b70
77.1bB
83.391
79.124
84.942
71.343
7b,132
10.b4D
88. Ob*
TOTAL PARTICULATE
5.395
4.820
b.lbl
5.12b
1.549
l.lbl
3.253
7. 823
5.402
5.274
7.080
4.737
1.40*
1.390
3.211
7.118
4.414
3.172
5.518
3. 788
.874
.852
a.b70
b.lbS
5.134
s.ioa
8.400
S.bb?
1.118
a.osb
3.7*0
9.2b7
4.812
4.444
b.708
4.403
1.4b2
.822
2.781
B.013
AVER.
VMAx.
VMIN.
S.D.
RANGE
VARI.
100.000
100.000
100.000
.000
.000
.000
99,*bb
99. S7*
97.41b
.57*
a. 559
.577
98.738
99.842
9b.309
.122
3.533
.934
97.310
99.1fa9
93.453
l.*10
5.71b
l.Htl
95.717
98.722
89.bS7
2.20a
9.0b5
2.301
93.742
17.bbS
Bb.OOO
2.859
ll.bbS
3.050
90.877
1b.Hl
81.313
3. bob
14.718
3.1bB
87.580
93.885
77.332
*.D13
lb.553
4.582
83.923
91.3b7
75.745
*.3*2
!S.b22
5.174
                                                                               4.314
                                                                               9.2b7
                                                                                .822
                                                                               2.300
                                                                               8.445
                                                                              S2.33S

-------
CUMULATIVE PERCENT OF EXHAUST PARTICIPATE
    COLLECTED BY ANDERSON IMPACTOR BY STAGES
  FROM A MERCEDES 2*00 AND A VW RABBIT (DIESEL)

               BY VEHICLE
TEST TYPE
V239FTPC
V23BFTPH
V23BCFOS
V238FET
V23BNYCC
V2385nKH
V239FTPC
V239FTPH
V239CFDS
V239FFT
V239NYCC
V239IOLE
V23950KH
V23985KH
V2*OFTPC
V2*OFTPH
V2*OCFDS
V2*OFET
V2*ONYCC
V2*OIDLE
V2*050KH
V2*085KH
V2*lFTPC
V2*1FTPH
V2*1CFDS
V2*1FET
V2*1NYCC
V2*1IDLE
V2*150KH
V2*185KH
V2*2FTPC
V2*2FTPH
V2*2CFDS
V2H2FET
V2*2NYCC
V2*2IDLE
V2*250KH
V?*28SKH
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100. noo
100.000
100.000
100.000
100.000
100.000
100.000
loo.ooo
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
STAGE 2
99.335
98,*53
99.052
99.138
98.805
98.**b
99.089
99.*S5
99.27*
99.*01
99.b9B
9q.79b
98.517
99.593
99.*09
99. 79*
99.*32
98.H52
97.399
99.**8
99.852
9'9 . 8 * 9
99.519
99.287
99.305
99.508
98. blS
98.*2b
99.b97
99.811
99.333
99.231
99,938
99.58*
99.537
98.359
100.000
99.971
STAGE 3
9B.33*
9b.b*5
97.831
98.72b
9b.b55
98.3*3
97.318
98.59b
9B.202
99.222
9b.777
99.080
9b.S95
99.187
97.878
99.27b
98.308
97. Bib
93. bl*
93.923
99.852
99. 7*2
97.93*
9s!282
98.301
99.2bl
9b.993
97.bfa3
99.*93
99. *8b
97. *5b
97.825
98.79*
98.957
98.221
9b.335
100.000
99.b79
STAGE *
9*. 9b5
92.9bO
9* . *1 7
93.518
92.593
97.877
93.b3D
9b.S*b
95.b22
97.99*
95.2b7
98.730
95.772
98.509
9* . 339
97. 10*
9*. 775
95.981
89.0bS
92.818
99.70*
99.032
95. 7b*
95,bbb
9S.b98
9B.*98
91.*OB
9b.*b9
99.107
98.731
9*. 397
95.552
9b.591
97.32*
9b.Sl*
9*.*75
100.000
99.2*1
STAGE B
91
90
91
92
89
97
90
9*
92
9b
92
98
9*
97
90
95
91
9*
85
90
99
98
93
92
93
97
87
92
98
98
91
93
95
95
93
93
99
98
.*35
.059
. 108
.09*
.bOb
.b?0
.Ob2
.522
.803
.97b
.2*b
.337
.*5*
.7Sb
.800
,**b
,3b9
,b25
,**5
.055
. *09
.559
.9*2
.71b
,b98
.2b7
,*3*
.9b7
.81*
.IDb
.277
.090
.3**
.989
.58*
.bbb
.772
.731
STAGE t
87.905
85.519
87.555
B9.bS9
B7.33b
97.0*8
8b.3S9
91.8H2
B9.2nl
95.*79
Sb.SOb
97.0*1
93,*10
9b.b2b
87.155
93.21*
87.71b
93.15b
79.9b2
87.5b9
99.039
97.5b9
9 1 . * 5 0
89.980
91. *0*
95.bl8
Bb.112
92.528
98.731
97.182
B7.*33
90.108
93. BOb
9*.*17
90.7*2
93.033
99.201
98.07*
STAGE 7
82.981
80. 700
82.120
87.22*
80.7b5
95.805
81.052
87.7*1
8*. 937
93.533
81.873
9b.l07
91.b53
9*. 3b7
82.127
89.822
B2.*59
91.1*5
7*. 581
87.017
98.37*
9b. b**
88.189
8b.b20
88.275
92.8bl
8*. 59*
91.878
98. *1*
95. *b*
82.b27
85.311
91.*lb
91.535
88.387
92.230
97.b03
9b.l78
STAGE 8
78.b33
7b.5b*
7b.8b8
83.252
7b.*b*
9*. 252
7b.*2b
8* . 7hb
80.517
92. Ohb
77.2*1
9*. 881
90. **5
91.957
78.71b
87. bfl9
79.0b8
89.*8b
72.089
8*. 530
97.0**
95.117
B* . 9*8
8*. 235
85.238
90. 399
82.975
91.7b7
97.815
92. 738
78.75b
82.202
B8.9b3
89.180
85.929
91.050
9b.*bl
93.917
STAGE 9
75.081
71.b81
72.889
80.817
71.087
92.957
72.*87
81.95*
7b.753
90.120
7*.*21
93.202
87.919
89.g*5
75.950
8b.007
75.98*
87. bb8
b8. 18b
81.7b8
9*.82b
93.50*
7b. 8b9
81 ,8bb
81.b*S
87.3*b
81.*30
91.253
9*.23b
88.527
75.2*7
79.2b9
8b.718
flb.81*
83.153
87.773
92.*bb
91.27fa
TOTAL PARTICULATE
3.879
2.830
b.525
2.bb9
.837
1.931
*,080
3. 1*8
b.013
3.3*0
.993
1.000
1.821
b.b39
3.*01
2.582
5.027
3.13*
.bS2
.3b2
1.353
*.b*9
B.50b
3.871
b.*71
*.0b2
1.250
1.819
12.8bB
7.b83
3.2b8
2. 75b
*.B11
3.7b7
.739
.9b8
.87b
b.855
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
100.000
100.000
loo.ooo
.000
.000
.000
99.2b9
ino.ooo
97.399
,5b*
a.boi
,Sb8
98.0b8
100.000
93. bl*
1 ,*29
b.3Bb
l.*57
9S.9bS
ion. ooo
89.0b5
2.*bO
10.935
2.Sb*
93.980
99.772
8S.**5
3.50*
l*.32b
3.728
91.7Sb
99.201
79.9b2
*.b*8
19.239
S.Obb
88.605
98. *1*
7*. 581
b.02b
23.833
b.785
Bb.175
97.815
72.089
7.00*
25.72b
8.127
83. Ib8
9*.82b
bB.lSb
7.b25
2b.b*0
9.1b8
                                                                               3.bl7
                                                                              12.8bB
                                                                                ,3b2
                                                                               2.b55
                                                                              12.5Qb
                                                                              73.398

-------
CUMULATIVE PERCENT OF EXHAUST PARTICULATE
    COLLECTED BY ANOEHSON IMPACTOR BY STAGES
  FROM A MERCEDES 2*00 AND A VW RABBIT (DIESEL)

                 BY FUEL




















o
1
U)
CTi























TEST TYPE
MaSBFTPC
M338FTPH
M238CFDS
M238FET
M238NYCC
M338IDLE
M3385HKH
M23885KH
V338FTPC
V31BFTPH
V238CFDS
V338FFT
V238NYCC
V33B50KH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.



TEST TYPE
M339FTPC
M339FTPH
M339CFDS
M239FET
M339NYCC
M239IDLE
M239SOKH
M239B5KH
va39FTPC
Va39FTPH
V339CFD3
V239FET
V239NYCC
V239IDLE
Va39SOKH
V2398SKH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
lou.oon
100.000
.000
.oon
.000



STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
.000
.000
.000
STAGE 2
99.29B
99.*53
99.5bb
99.8*7
98.53b
97.*lb
99.385
99. 83*
99.335
9B.*53
99.osa
99.13B
98.805
98.**b
99.039
99.8*7
97.*lb
.bbO
3.*31
.bbb



STAGE 2
99.590
99.51b
99.813
99.852
99.715
99.78*
99.*53
99.28*
99.089
99.*5S
99. a7*
99.*01
99.b9B
99.79b
98.517
99.593
99.*B9
99.852
98.517
.3*0
1.335
.3*a
STAGE 3
99.055
98.915
98.797
99.333
9b.591
9b.383
98.b78
99.bl7
98.33*
9h.b*5
97.831
98.73b
9b.b55
98.3*3
98.135
99,bl7
9b.383
l.llb
3.23*
1.137



STAGE 3
98.731
98.908
99.*3b
99.b*l
99.573
99.*9b
98.9b7
98.932
97.318
98.59b
98.302
99.222
9b.777
99.080
9b,595
99.187
98. bbb
99.b*l
Sb.59S
.9b3
3.0*b
,97b
STAGE *
9b.293
97.b59
97.339
97.720
93.*53
9b.3B3
9B.nb3
99.1h9
9*.9fa5
92. 9bO
9* .*! 7
93.518
9a.S93
97.877
95.88b
99.1b9
9a.S93
2.191
b.S77
a. ass



STAGE *
9b.*oa
97.512
9B.b99
93. BbO
99.003
98.5bl
98.511
9B.*27
93.b30
9b.5*b
95.b33
97.99*
9S.ab7
98.730
95.773
98.509
97.378
99.003
93.b30
I.b2fa
5.373
I.b70
STAGE 5
93.939
95.11*
95.718
95.bl7
89.b57
95.952
97.295
98.722
91.*35
9n.ns9
91.1QB
92.09*
89. bOb
97.b70
93.85b
98.732
89.bnb
3.153
9. lib
3.359



STAGE 5
9*.*10
95.93*
97.ab3
97.8b8
97.578
97.771)
9B.035
97.*71
90.0ba
9*.saa
9a.803
9b.97b
9a.2*b
98.337
9*.*5*
97.7Sb
95.8*a
98.337
90.0ba
a.*87
8.37*
2.59*
STAGE fc
91.010
93.9*2
93.809
93.788
ab.ono
93.798
95.911
97.*31
87.905
85.519
87.555
89.b59
87.33b
97.0*8
9l.33b
97.*31
85.519
*.0b5
11.913
*.*51



STAGE b
91. 99a
9*. 055
95.107
9b.517
95.9*0
97.122
97.113
9b.010
8b.359
91.883
89.2nl
95,*79
Bb.SOb
97.0*1
93.*10
9b.b2b
93.772
97.12a
8b.359
3.b*0
10. 7b*
3.882
STAGE 7
87.210
90.108
89.393
90.951
81.393
92.07b
9*. 321
95.19*
82.981
8n.700
82.130
87.32*
80.7b5
95.805
87.8b7
95.805
80.700
5.*99
15.105
b.258



STAGE 7
BB.lbb
91.338
91.921
93.79*
9*. 088
95.5*0
9b. Ill
93.553
81.053
87.7*1
8*. 937
93.533
81.873
9b.lD7
91.b53
9*.3b7
90.98b
9b. Ill
81.053
*.85*
15.059
5.335
STAGE B
83.b33
8b.933
85.339
B7.*85
77.332
89.*93
91.915
91.*23
78.b33
7fa.5b*
7b.8b8
83.252
7b.*b*
9*. 352
8*. 255
9*. 352
7b.*b*
b.373
17.788
7.**S



STAGE 8
8*. 30*
88.315
SB.lbb
90.75*
90.171
93.885
93.833
90.1bb
7b.*afa
8*.7bb
80.517
93.0bb
77.a*l
9*. 881
90.**5
91.957
87.987
9*. 881
7b.*2b
5.780
18.*55
b.5fa9
STAGE 9
79.9ab
83.103
81.511
83.119
75.7*5
Bb.*77
88.995
87. 805
75.081
71.b81
73.889
80.817
71.087
93.957
80.600
93.957
71.087
b.831
31.870
B.*5*



STAGE 9
80.*91
8*. 507
8*. 139
87.0BO
Sb.blO
91.3b7
91.310
8b.b5*
7a.*87
81.95*
7b.753
9o.iao
7*.*21
93.2U3
87.919
B9.a*S
8*. 891
93.202
7a.*87
b.302
ao.7is
7.30b
TOTAL PARTICULATE
5.395
*.820
b.lb9
5.iab
1.5*9
l.lbl
3.253
7.823
3.879
2.830
b.53S
2.bb9
.837
1.931
3.855
7.8a3
.837
3.172
b.98b
5b.355



TOTAL PARTICULATE
5.*02
5.27*
7.080
H.737
l.*0*
1.390
3.291
7.118
*.OBO
3.1*8
b.013
3.3*0
.993
1.000
1.821
fa.b39
3.921
7.118
.993
2.195
b.125
55.98*

-------
O
I
LO
                                             CUMULATIVE PERCENT OF EXHAUST PARTICULATE

                                                 COLLECTED BY ANDERSON IMPACTOR BY STAGES

                                               FROM A MERCEDES SHOD AND A VW RABBIT (DIESEL)


                                                              BY FUEL
TEST TYPE
MatOFTPC
MatOFTPH
MatOCFDS
M3HOFET
M2HONYCC
MatoIDLE
MatOSOKH
MatnssKH
VatoFTPC
VatoFTPH
vatoCFDS
VatOFET
VatONyCC
VatOlDLE
vatosoKH
V3H085KH
AVER.
VMAX.
VMIN.
s.o.
RANGE
VARI .
TEST TYPE
MaHlFTPC
MatlFTPH
M8H1CFDS
M3H1FET
M3H1NYCC
MatllDLE
MatlSOKH
MatlBSKH
vaniFTPC
VatlFTPH
vatiCFOs
VatlFET
VatlNYCC
V3H1IDLE
V3HisoKH
VatlBSKH
AVER.
VMAX.
VMIN.
3.D.
RANGE
VARI.
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
1 o o . o n o
100. OHO
100.000
100.000
100.000
ion. ooo
100.000
100.000
100.000
100.000
100.000
100.000
100.000
.000
.000
.000
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
.000
.000
.000
STAGE a
SS.80S
SS.883
SS.850
9S. 97t
99.771
99. Obi
SS. 7t3
S9.S03
99.HU9
99.79H
99.13a
98.85a
97.39S
99.HH8
99.85a
99.8tS
ss.sua
9S.97t
97.3SS
.btb
a.57t
.btS
STAGE a
SS.S3S
ss.sia
SS.81H
99.8b9
98.5Sa
97.555
99.t3S
99.553
99.519
ss.as?
99.305
99.508
98. blS
SB. tab
99.bS7
99.811
ss.ass
99.8bS
97.555
.b3t
a. 313
.b3S
STAGE 3
99.171
99.1bH
99,ab3
99. BHa
98.970
97.300
99.119
99.205
97.B7B
S9.27b
SB. 308
97. Rib
SS.blH
93.9as
99.85a
99.7ta
SB.a?8
ss.ssa
S3. bit
1.S10
b.23B
l.St3
STAGE 3
98.7a5
98. 881
SS.301
99.103
97.393
9b.30S
S8.3ta
98.883
S,7.93H
9B.asa
98.301
ss.abi
Sb.SS3
S7.bb3
SS.tIB
99..18b
S8.3S7
99. t93
Sb.309
.S3b
3.18H
.951
STAGE H
Sb.7tO
S7.555
S7.78b
S8.S1B
S7.Rab
St.S53
SS. BbO
9 8 . b 11 5
9H.33S
S7.10H
St. 775
95.981
R9.0b5
9a.B18
99.70t
99.033
Sb.SDt
99. 7Dt
89.0b5
a. 788
10.b39
a. 889
STAGE t
Sb.StS
S7.b3B
S7.33b
Sb.BOS
St. 317
95.590
Sb.898
98.011
S5.7bH
95.bbb
95.b9B
S8.HS8
Sl.tOB
Ib.HbS
SS.107
98.731
Sb.517
99.107
Sl.tOB
1.89a
7.b99
1.9bO
STAGE 5
St.b3t
Sb.illH
S5.95H
98.099
Sb.110
91 .bb7
98. bit
9 B. II 3 7
90. 8011
95.ttb
9 1 , 3b9
St .bJ?5
85. ttS
90.055
99. t 09
98.559
9t.b77
9S.tOS
85. tHS
3.8bl
13.9b3
t.078
STAGE 5
93.901
S5.978
ss.aos
S5.SS9
S0.5b3
St.SSl
SS.bSS
97.15t
93.Sta
sa.7ib
SS.bSB
S7.ab7
B7.t3t
sa.sb?
98. Bit
SB.lOb
9t.bl5
98.81t
B7.t3t
a. set
11 .380
3.0tB
STAGE b
93.513
9t . 109
S3.bS8
Sb.SU
93.822
88.198
97.3tS
Sb.b5H
87. 1SS
93.211
87.71b
SS.lSb
79.9h2
87.5b9
99.039
97.5bS
9a.t33
99.039
79.9b2
5.0b2
19.077
5.t7b
STAGE b
91.370
9H.09a
9a.31S
S3.t77
BB.ObO
S2.18b
93.850
9b. tnt
91.t50
B9.9BO
si .tnt
ss.bia
8b.ua
sa.sas
98.731
97.183
sa.7sa
98.731
8b.ua
s.abs
12. blS
3.saa
STAGE 7
BB.B81
9i.soa
89.933
St .535
SO.Sbl
8 b . 0 3 3
S5.tb7
St .891
82.127
89.822
aa.tss
91.115
71.581
87.017
98.371
9b.btt
89. btB
98.371
71.581
b.lBt
as. 793
b.898
STAGE 7
87.tb7
Sl.lb3
88.155
SO. 588
83.577
90.135
9i.33o
ss.sta
88.189
Bb.bao
88.375
sa.Bbi
Bt.SSt
91.878
SB. Hit
SS.tfat
SO. 159
98. tit
83.577
3.905
11.837
1.331
STAGE 8
8b.017
ss.oab
Bb.t57
Sl.bSl
88.11)1
Bl.bSQ
93.250
9a.5B7
78. 71b
87.bB9
79. II^B
89. IRb
72.0R9
81. 530
97 . Ott
95.117
87.031
97.011
72.089
b.b33
at. 955
7.fa21
STAGE 8
83. 303
87.189
83.179
87.aat
80.13b
87. B7a
RB.2BS
SO. 723
81. SIB
81 .a35
85. 338
SO. 399
8a.975
91.7b7
97.815
9a.738
87. tit
97.815
B0.13b
t . 1P9
17.b79
5.13b
STAGE S
aa.sao
85.878
sa.7a9
88. 381
83. SJt
7R. tot
9n.b8B
89.359
75 . 95(1
8b.no?
75.981
H7.bbS
hP. IBh
81 . 7b8
91 . 83b
93.501
81.111
St . 83h
faB. 18b
7.oai
ab. bHO
8.318
STAGE S
78.S13
83.375
78.599
83. tab
75.8bO
81 .08H
81.810
8b.b70
7b.8bS
Sl.Bbb
81. btS
87.3tb
81.130
91.353
St.33b
88.537
83.b8b
91.23b
75.8bO
S.Obt
ie.3?b
b.051
TOTAL PARTICULATE
t.HlH
3.S73
5.518
3.788
.871
.853
3.fa70
b.lbS
3.101
3. 583
5.027
3.131
. b52
. 3b3
1.353
H.bHS
3.088
b . 1 b 5
. 3fa 3
1.851
5.803
59.9HH
TOTAL PARTICULATE
5.93*
5. "»02
8. too
5.bb7
1.118
a.OBb
3.7HO
S.Sb7
B.SQb
3.871
b.H71
t.Oba
i.eso
1.819
ia.8b8
7.b83
5. 511
la.BbB
1.350
3.333
ll.blB
57.b51

-------
o
U)
oo
                                                 CUMULATIVE  PERCENT  OF  EXHAUST  PARTICULATE
                                                     COLLECTED BY  ANDERSON IMPACTOR BY STAGES
                                                   FROM  A  MERCEDES 2*OD AND A  VM RABBIT CDIESEL)

                                                                  BY FUEL
TEST TYPE
M2H2FTPC
M2H2FTPH
M2H2CFDS
M2*2FFT
M2*2NYCC
M2*2iDLE
M2*2SOKH
M2*285KH
V2*2FTPC
VgtaFTPH
V2*2CFDS
V2*2FFT
V2*2NYCC
V2*2IDLE
V2*25(1KH
V2*285KH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE i
100.000
100.000
100.000
100.000
100.000
100.000
ino.ono
1DO.OOO
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
loo.ooo
100.000
.000
.000
.000
STAGE I
99.*ba
99.588
99.735
99.BBb
98.7b9
99.*21
99.b37
99.951
99.333
99.231
99.938
99.581*
99.537
98.359
100.000
99.971
99.525
100.000
98.359
.'•SO
l.btl
.*sa
STAGE 3
98.523
98.8*7
99.072
99.705
97.137
97. *B*
99.003
99.7*1
9,7. *5b
97.825
98.79*
98.957
98.221
9b.335
100.000
99.b79
98.5*8
100.000
9b,335
1.059
3.bfa5
1.07H
STAGE *
95.387
9b.79S
9b.faS3
98.*Sb
9*. 733
9h.bb3
98.37b
99.123
9*. 397
95.552
9b.591
97.32*
9b.51*
9*.H75
100.000
99.2fl
9b.892
loo.ooo
94.397
1.7S»
5.b03
1.810
STAGE S
92.31b
9*. 795
9t.333
9b.957
91.997
95.783
97.7b5
9B.381
91 .277
93.090
95. 3t*
95.989
93.58*
93.fabb
99.772
98.731
95.83b
99.772
91.277
2.5bl
8.*95
2.b90
STAGE b
89.00b
92.*97
91.83b
95.117
89.330
9*. 317
97. Ob*
97.bb5
87.*33
90.108
93. 80b
9*.*17
90.7*2
93.033
99.201
98.07*
93.353
99.201
87.*33
3.510
11.7b8
3.7bO
STAGE 7
BS.229
B9.b9b
B7.b81
92.278
85.0B9
90.377
9S.blO
95.b01
82.b27
85.311
91.*lb
91.535
88.387
92.230
97,b03
9b,178
90.*2B
97.b03
B2.b27
*.*8b
I*.t75
*.9bl
STAGE 8
81.702
Bb.807
83.720
88.bb7
82.HP1
8*.bS8
93.353
91.5bl
78.75b
82.202
88.9b3
89.180
85.929
91.050
9b.*bl
93.917
87.*S9
9b.*fcl
78.75b
5.03b
17.705
5.758
STAGE 9
77.9b8
83.391
79.12*
8*. 9*2
79.3*3
7b.932
90.b*0
88. Ob*
75.2*7
79.2b9
Bb.718
Sb.81*
83.153
87.773
92.*bb
91.27b
83.9*5
92.*bb
75.2*7
5.*b2
17.219
b.507
TOTAL PARTICULATE
*.B92
*.***
b.706
*.*03
I.*b2
.822
2.781
8.093
3.2b8
g.75b
*.811
3.7b7
.739
.9bB
.B7b
b.855
3.b03
8.093
.739
2.328
7.353
b*.b05

-------
                                              CUMULATIVE PERCENT OF EXHAUST PAHTICULATE
                                                  COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                FROM A MERCEDES 2100 AND A VH RABBIT (DIESEL)
                                                        BY TEST PROCEDURE
TEST TYPE
M238FTPC
M239FTPC
M210FTPC
M211FTPC
M212FTPC
V238FTPC
V239FTPC
V210FTPC
V211FTPC
V212FTPC
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
100.000
100.000
100.000
100.000
100,000
100.000
100.000
100.000
100.000
loo.ooo
100.000
100.000
100.000
.000
.000
.000
STAGE 2
99.29b
99.590
99.809
99.539
99.1b2
99.335
99.089
99.109
99.519
99.333
99.138
99.809
99.089
.195
.719
.19b
STAGE 3
99.055
98.731
99.171
98.725
98.523
98.331
97.318
97.878
97.931
97.15b
98.313
99.171
97.318
.bll
1.853
.bS5
STAGE 1
9b.893
9b.102
9b.710
9b.319
95.387
91.9bS
93.b30
91.339
95.7b1
91.397
95.127
9b.710
93.b30
1.058
3.110
1.109
STAGE 5
93.939
91.1UI
91,b31
93.901
92.31b
91.135
9Q.Ofa2
90.800
93.912
91.277
92.b72
91.b31
90.0b2
l.bBI
1.572
1.817
STAGE b
91.010
91.992
92.513
91.370
89.00b
87.905
8b.359
87. 155
91.1511
87.133
89.bl9
92.513
8b.359
2.289
b.155
2.551
STAGE 7
87.810
88.1bb
88.881
87.1fa7
85.229
82.981
81.052
82.127
88.189
82.b27
85.393
88.881
,81.052
2.919
7.830
3.151
STAGE 8
83.b33
81.301
Bb.Ol?
83.303
81.702
7B.b33
7b.12b
7B.7lb
81.918
78.75b
81. bll
8b.017
7b. 12b
3.283
9.591
1.028
STAGE 9
79.92b
80.191
82.920
78.912
77.9bB
75.081
72.187
75.950
7b.8b9
75.217
77.588
82.920
72.187
3.078
10.133
3.9bB
                                                                                                                       TOTAL PARTICULATE
                                                                                                                             5.395
                                                                                                                             5.108
                                                                                                                             1.892
                                                                                                                             3.879
                                                                                                                             1.080
                                                                                                                             3.101
                                                                                                                             8.50b
                                                                                                                             3.2faB
                                                                                                                             1.917
                                                                                                                             B.SOb
                                                                                                                             3.2b8
                                                                                                                             1.513
                                                                                                                             5.238
                                                                                                                            31.381
o
 I
u>
                                               CUMULATIVE PERCENT  OF EXHAUST  PARTICULATE
                                                   COLLECTED BY  ANDERSON IMPACTOR  BY  STAGES
                                                 FROM A MERCEDES 8100 AND A VW RA8BIT (DIESEL)

                                                         BY TEST PROCEDURE
TEST TYPE
M838FTPH
M239FTPH
M210FTPH
M211FTPH
M218FTPH
V23BFTPH
V239FTPH
V810FTPH
V811FTPH
V2H2FTPH
AVER.
VMAX.
VMIN.
9n
. L>.
RANGE
VARI.
STAGE 1
100.000
100.000
100.000
loo.ooo
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
000
!ooo
.000
STAGE 8
99.153
99.51b
99.883
99.512
99.588
98.153
99.155
99.791
99.287
99.231
99.117
99.883
98.'»53
, 393
1.129
.315
STAGE 3
98.915
98.908
99.1b1
98.881
98.817
9b.b1S
98.59b
99.27b
9,8.282
97.825
98.531
«tq.27b
9b.bH5
.788
2.b31
.800
STAGE 1
97.b59
97.512
97.555
97.b28
9b.795
92.9bO
9b.51b
97.101
9S.bbb
95.552
9?!fa59
92.9bO
l.lbS
1.b98
1.519
STAGE 5
95.111
95.931
9b.011
95.978
91.795
90.059
91.522
95. lib
92.71b
93.090
SH.3b7
9b.011
90.059
1.903
5.951
2.017
STAGE t
92.912
91.055
91. IDS
91.092
92.197
85.519
91.882
93.211
89.980
90.108
91.810
91.109
85.519
2.b89
8.590
2.928
STAGE 7
90.108
91.338
91.502
91.1b2
B9.b9b
BO. 700
87.711
89.822
8b.b20
85.311
88.100
91.508
80.700
3.115
10.802
3.8b3
STAGE 8
8fa.922
88.215
89.02b
87.189
8b.807
7b.Sb1
81.7fab
B7.b89
81.235
82.202
85.392
89.8?b
7b.Sb1
3.727
12.1b3
1.3b5
STAGE 9
83.103
81.507
85.878
83.375
83.391
71.bBl
B1.951
Sb.OO?
81.8bb
79.2b9
82.103
8b.007
71.b81
H.32b
5.075
                                                                                                                        TOTAL  PANICULATE
                                                                                                                              1.820
                                                                                                                              5.871
                                                                                                                              3.978
                                                                                                                              5.908

                                                                                                                              2!B30
                                                                                                                              3.118
                                                                                                                              2.588
                                                                                                                              3.871
                                                                                                                              2.75b
                                                                                                                              3.9bO
                                                                                                                              5.902
                                                                                                                              2.582
                                                                                                                              1.113
                                                                                                                              3.380
                                                                                                                             28.871

-------
                                               CUMULATIVE  PERCENT  OF  EXHAUST  PART1CULATE
                                                   COLLECTED BY  ANDERSON  IMPACTOR  BY  STAGES
                                                 FROM A  MERCEDES J*OD AND A VM  RABBIT (DIESEL)

                                                        BY  TEST PROCEDURE
TEST TYPE
M23BCFDS
M239CFDS
M2*OCFDS
M2*1CFDS
M2*2CFOS
V238CFOS
V239CFD3
V2*OCFDS
V2*1CF03
V2*2CFDS
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
100.000
roo.ooo
100.000
100.000
100.000
loo.ooo
100.000
100.000
100.000
100.000
100.000
100.000
100.000
.000
.000
.000
STAGE 2
99.5bb
99.813
99.850
99.81*
99.735
99.052
99.27*
99.*32
99.305
99.938
99.578
99.938
99.052
.299
.885
.300
STAGE 3
18.717
19.*3b
19.2fa3
19.301
99.072
97.831
98.202
98.308
9,8 . 3 0 1
98.79*
98.731
99.*3b
97.831
.5*b
l.bOS
.553
STAGE »
97.329
9B.b99
97.78b
97.33b
9b.b53
9*.*17
9S.b22
9*. 775
9S.b98
9fa.591
9b.*91
98.b99
9*.*17
1.359
4.282
l.*09
STAGE S
95.718
97.2b3
95.95*
95.208
9*. 333
91.108
92.803
91.3b9
93.b9B
95.3**
9*. 280
97.2b3
91.108
2.023
b.155
2.1*5
STAGE b
92.809
15.107
93.b98
92.319
91.83b
87.555
89.201
87.71b
91. *0*
93.80fa
91.5*5
95.107
87.555
2.599
7.552
2.8*0
STAGE 7
89.393
91.921
89.933
88.155
B7.bBl
82.120
8*. 937
32.*59
88.275
91.*lfa
87.b29
91.921
82.120
3.H3S
9. BOO
3.120
STAGE 8
85.331
BS.lbb
8fa.*57
B3.*71
83.720
7b.8b8
80.517
79.QbB
85.238
B8.9b3
83.782
8B.9b3
7b.8bB
3.923
12.095
*.b83
STAGE 9
81.511
8*. 139
82.729
78.599
79.12*
72.889
7b.753
75.98*
81.b*5
8b.718
80.009
8b.718
72.889
*.1*5
13.829
5.181
                                                                                                                        TOTAL  PARTICULATE
                                                                                                                              b.lb9
                                                                                                                              7.080
                                                                                                                              5.518
                                                                                                                              8.*00
                                                                                                                              b.708
                                                                                                                              b.525
                                                                                                                              fa.013
                                                                                                                              5.027
                                                                                                                              b.*71
                                                                                                                              *.B11
                                                                                                                              b.272
                                                                                                                              8.*00
                                                                                                                              *.(U1
                                                                                                                              l.P**
                                                                                                                              3.589
                                                                                                                             Ib.b**
a
£v
O
CUMULATIVE PERCENT OF EXHAUST PARTICULATE
    COLLECTED BY ANDERSON IMPACTOR BY STAGES
  FROM A MERCEDES 2*00 AND A VM RABBIT (DIESEL)

          BY TEST PROCEDURE
TEST TYPE
M23SFFT
M239FET
M2*OFFT
M2*1FET
M2*2FET
V238FET
V239FET
V2*OFET
V2*1FET
V2*2FET
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
STAGE 2
99.8*7
99.852
99.17*
II.Bbl
99.88b
99.138
99,*01
98.852
99.508
91.58*
STAGE 3
19.323
99.b*l
99.8*2
19.103
99.705
98.72b.
19.222
17.81b
1,9. 2bi
18.157
STAGE *
97.720
98.8bO
98.918
9b.809
9B.*Sb
13.518
97.99*
95.981
98,*18
97.32*
STAGE 5
IS.bl?
97.8b8
18.011
15.1^9
1b.9S7
12.09*
9b.97b
9*.b25
17.2b7
95.189
STAGE t
93.788
9fa.S17
lb.111
93.*77
95.117
81.b59
95.*79
93.15b
95. blS
9*.*17
STAGE 7
90.151
93.79*
9*. 535
90.588
92.278
87.22*
93.533
91.1*5
92. Bbl
91.535
STAGE 8
B7.*85
10.75*
H.b31
87.22*
B8.bb7
83.252
92.0bb
89.*8b
90.311
81.180
STAGE 9 TOTAL PARTICULATE
83.
87,
88.
83.
8*.
80.
90.
87.
87.
8b.
119
080
38*
*2b
9*2
817
120
bbB
3*b
81*
5.12b
*.737
3.7BB
S.bb7
*.*03
2.bb9
3.3*0
3.13*
*.0b2
3.7b7
AVER.
VHAX.
VMIN.
S.D.
RANGE
VARI.
100.000
100.000
100.000
.000
.000
.000
11.511
11.17*
18.852
.371
1.121
.372
1^.159
11,8*2
17.816
.58*
E.0?b
.581
17.*08
18.118
13.518
l.bSS
5.391
I.b99
•»b.i*1
18.011
12.01*
1.778
b.OOS
1.8*1
1H.*!1*
lb.111
89.b51
2.087
7.252
2.210
14.. •**
9*. 535
87.22*
B.093
7.312
2.271
81. Oi»
IS.Obb
83.252
2.587
B.81»
2.10b
BS.172
10.120
80.817
2.B2B
1.303
3.210
                                                                                                                              *.0b1
                                                                                                                              S.bb7
                                                                                                                              2.bbl
                                                                                                                               .929
                                                                                                                              2.118
                                                                                                                             22.825

-------
CUMULATIVE PERCENT OF EXHAUST PARTICULATE
    COLLECTED BY ANDERSON IMPACTOR 6Y STAGES
  FROM A MERCEDES 8100 AND A VH RABBIT  (DIESEL)

          BY TEST PROCEDURE
TEST TYPE
M238NYCC
M239NYCC
M210NYCC
M211NYCC
M212NYCC
V238NYCC
V239NYCC
V210NYCC
V211NYCC
V212NYCC
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
100.000
100.000
loo. oon
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
.000
.000
.000
STAGE ?
98.52b
99.715
99.771
98.592
98.7b9
98.805
99.b98
97.399
98. blS
99.537
98.913
99.771
97.399
.718
2.372
.7Sb
STAGE 3
9b.591
99.573
98.970
97.393
97.127
9b.b55
9b.777
93. fall
9i,993
98.221
97.191
99.573
93.bl1
I.bl9
5.959
l.bbb
STAGE 1
93.153
99.003
97.82b
91.317
91.733
92.593
95.2b7
89.0bS
91.108
9b.S11
91.118
99.003
B9.0b5
2.978
9.937
3.151
STAGE S
B9.b57
97.578
9b.lin
9(1. 5b3
91 .997
89. bob
92.21b
85.115
87.131
93.581
91.122
97.578
85.115
3.717
12.133
I.Obb
STAGE fc
Sb.OOO
95.910
93.822
BB.ObO
89.330
87. 33b
Sb.SOb
79.9b2
8b.ua
90.712
88.3Bi
95.910
79.9b2
1.1b7
15.978
5.055
STAGE 7
81.393
91.088
90.9bl
83.577
85.089
80.7b5
81.873
71.581
81. 591
88.387
81.531
91.088
71.581
S.5b7
19.508
b.585
STAGE B
77.332
90.171
88.ini
80.13b
82.121
7b.1b1
77.211
72.089
82.975
85.929
81.2Rb
90.171
72.089
S.b98
18.082
7.010
STAGE 9
75.715
Bb.blO
83.521
75.8bO
79.313
71.087
71.121
b8.18b
81.130
83.153
77.93b
8b.blO
b8.18b
5.881
18.121
7.51b
TOTAL PARTICULATE
1.519
1.101
.871
1.918
1.1b2
.837
.993
.bS2
1.250
.739
I.lb8
1.918
.bS2
.113
1.2bb
35.313
CUMULATIVE PERCENT OF EXHAUST PARTICULATE
    COLLECTED BY ANDERSON IMPACTOR BY STAGES
  FROM- A MERCEDES aiOD AND A VH RABBIT (DIESEL)

          BY TEST PROCEDURE
TEST TYPE
MJSBIDLE
M239IDLE
MaiOlDLE
Mill IDLE
M212IHLE
V239IOLE
V210IDLE
V211IDLE
V212IDLE
STAGE 1
loo.ooo
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
STAGE Z
97. lib
99. 781
99. Obi
97.555
99.121
99.79b
99.118
98.12b
98.359
STAGE 3
9b.3R2
99.19b
97.300
9b.309
97.181
99.080
93.923
97.bb3
9t,33S
STAGE 1
9b.3S2
98.5bl
91.953
95.590
9b.bb3
98.730
92.818
9b.1b9
91.175
STAGE 5
95.952
97.770
91.bb7
91.391
95.783
98.337
9(1.055
92.9b7
93.bbb
STAGE b
93.
97.
88.
92.
91.
97.
87.
92.
93.
798
122
198
18b
317
Oil
5b9
528
033
STAGE 7
92.07fa
95.510
8b.033
90.125
90.377
9b.lO?
87.017
91.878
92.230
STAGE 8
89.192
93.885
Bl.b90
87.872
Sl.bSB
91.881
81.530
91.7b7
91.050
STAGE 9 TOTAL PARTICULATE
8b.
91.
78.
81.
7b.
93.
81.
91.
87.
177
3b7
101
081
932
202
7fa8
253
773
1
1

2

1

1

.Ibl
.390
.852
.OBb
.82?
.000
.3b?
.819
.9bB
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
100.000
100.000
100.000
.000
.000
.000
98.807
99.79b
97. lib
.911
2.380
.92?
97.108
99.19b
93i9J3
l.bSS
S.S71
1.707
9b.071
98.730
92.818
1.887
5.912
1.9b1
91.510
98.337
90.055
2.739
8.281
2.898
92.899
97.122
B7.5b9
3.2R1
9.553
3.535
91.2bS
9b.l07
8b.033
3.37b
10.071
3.b99
BB.8b9
91.881
81.b90
1.527
13.190
5.091
85.b9b
93.202
7b.932
5.831
lb.270
b.808
                                                                               e'osb

                                                                                .531
                                                                               1.721
                                                                              IS.bSB

-------
                                                 CUMULATIVE  PERCENT  OF  EXHAUST  PARTICULATE
                                                     COLLECTED  BY  ANDERSON  IMPACTOR BY STAGES
                                                   FROM  A MERCEDES 210D  AND  A VH RABBIT  (DIESEL)

                                                          BY TEST PROCEDURE
TEST TYPE
M23850KH
M23950KH
M21050KH
M211SOKH
M2i?5oKH
V23850KH
V?39SOKH
V?105nKH
V211SOKH
V21250KH
AVER.
VMAX.
VMIN.
S.D.
RANGE
VARI.
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
ino.ooo
100.000
.000
.000
.000
STAGE 2
99.385
99.153
99.713
99.139
99.b37
98. lib
98.517
99.85?
99.b97
100.000
99.117
100. 000
98. lib
.529
1.551
.53?
STAGE 3
98.b78
98.9b7
99.119
98.312
99.003
98. 3*3
9b.595
99.855
9.9.193
100. 000
98.839
100.000
9b.595
.971
3.105
.98?
STAGE 1
9B.Ob3
98.511
98.8bO
9b.89B
98.37b
97.877
95.77?
99. 701
99.107
100.000
98.317
100.000
95.778
I.?b8
1.228
l.?90
STAGE 5
97.?95
98.0?5
9B.bl1
95. bIS
97.7b5
97.b70
91.151
99.109
98. Bit
99.77?
97.751
99.77?
91.151
I.b3b
5.318
I.b71
STAGE b
95.911
97.113
97.315
93.850
97. Obi
97.018
93.110
99.U39
98.731
S9.201
9b.871
19.201
93.110
1.999
5.791
3. Obi
3TAGE 7
91.221
9b.lll
95.1b7
91.?30
95.blO
95.805
91.b53
98.371
98.111
97.b03
95.119
98.111 .
91.?30
8.501
7.181
?.fa?0
STAGE 8
91.915
93.83?
93.250
B8.?89
93.353
91. ?5?
90.115
97.011
97.815
9b.1bl
93.bbb
97.815
88.289
2.971
9.52b
3.172
STAGE 9
88.995
91.310
90.b88
81.810
90. blO
92.957
87.919
91.82b
91.23b
92.1bb
90.888
91.82b
81.810
3.032
9.987
3.33b
TOTAL PARTICULATE
3.253
3.291
2.fa70
3- 7in
2
1
1
1
12

3
1?

3
11
99
.781
.931
.821
.353
.8b8
.B7b
.158
,8b8
. 87b
.130
.992
.181
o
£>
NJ
                                               CUMULATIVE PERCENT OF EXHAUST PARTICULATE
                                                   COLLECTED BY ANDERSON IMPACTOR BY STAGES
                                                 FROM A HEHCEDES 2HOD AND A VH RABBIT (DIESEL)

                                                         BY TEST PROCEDURE
TEST TYPE
M23885KH
M23985KH
M21085KH
M21185KH
M21285KH
V239BSKH
V21085KH
V2H8SKH
V21285KH
STAGE 1
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
STAGE 2
99.831
99.281
99.903
99.553
99.951
99.593
99.B19
99.811
99.971
STAGE 3
99.bl7
98.932
99.205
98.882
99.711
99.187
99.712
99.18b
99.b79
STAGE 1
99.1b9
98.127
98.bOS
98.011
99.123
98.509
99.03?
98.731
99.211
STAGE 5
98.722
97.171
98.037
97.151
98.381
97.75fa
98.559
9B.10b
98.731
STAGE fa
97.131
9b.U10
9b.faS9
9b.101
97,bb5
9b.b2b
97.5b9
97.182
98.071
STAGE 7
95.191
93.552
9!».891
93.912
SS.bOl
91.3b7
9b.b11
95.1b1
9b.l78
STAGE 8
91.123
90.1bb
92.587
90.723
91.5bl
91.957
95.117
92.738
fS.917
STAGE 9
87.805
Bb.bS*
89.35S
Bb.b70
BB.Obl
89.215
93.501
88.527
91.27b
                                                                                                                        TOTAL PARTICULATE
                                                                                                                              7.««
                                                                                                                              7.li»
                                                                                                                              b.lkS
                                                                                                                              9.8*?
                                                                                                                              8.093
                                                                                                                              b.b39
                                                                                                                              1.M9
                                                                                                                              7.b83
AVER.
VMAX.
VMIN.
9.0.
RANGE
VARI.
100.000
100.000
100.000
.000
.000
.000
99.750
99.071
99.88*
.228
.687
.328
99.3Bb
99.712
98.882
.3*2
.8bO
.311
98.7bl
99.211
98.011
.H13
1.231
.118
98.102
98.731
97.151
.558
1.577
.5b8
97.0b9
98.071
9b.010
.b79
2. Obi
.b99
95.092
9b.fe»1
93.552
l.Olb
3.093
1.0fa9
92.213
95.117
90.1bt>
1.552
H.951
I.b83
89.012
93.50*
Sb.bSl
2.211
fa. 850
2.181
                                                                                                                              n.sa*

-------

U)
                          _£:
                                      ill

                                                                           $
                                                                               iliil
                                                                                    II
                                                                                   I
JJJ
                                                                                       I
           •ft
               fi
Uililisl
              Figure G-9.  Cyclohexane  (solvent)  blank output from high-temperature gas  chromatograph run

-------
             C9~cll Standard Composition
Weight %
                                      Compound
Boiling point, °C
   20
   19
   23
   19
   19
                                  n-nonane
                                  4-methyl nonane
                                  n-decane
                                  2-methyl decane
                                  n-undecane
       151
       166
       174
       189
       196
Figure G-10.  Cyclohexane plus
                  internal  standard  on high-temperature  gas  chromatograph

-------
tn



Ul
        Figure  G-ll.   Cyclohexane  and internal standard with C4Q spike on high-temperature gas chromatograph

-------
                                            Residue Standard Composition
                               Weight %

                                 30.6
                                 10.9
                                  8.0
                                  5.5
                                  6.6
                                  6.3
                                  7.7
                                  4.7
                                  6.2
                                  2.6
                                  3.1
                                  4.1
                                  3.7
Component ( s )
    n-C12
    n-C14
    n-C17
    n-C18
    n-C24
    n-C30
    n-C32
    n-c36
    n-C40
Boiling point(s),  °C

      151-196
        216
        254
        271
        287
        302
        316
        369
        391
        449
        466
        496
        522
O
                  Figure G-12.   Residue standard output from high-temperature gas chromatograph run

-------
Figure G-13.  "Altamont" crude oil output from high-temperature gas  chromatograph run

-------
o

£>
03
                  Figure G-14.  Chromatogram of organic solubles from particulate matter,



                             Mercedes 240D operated on EM-238-F fuel

-------
o
I
                  Figure G-15.  Chromatogram of organic solubles from particulate matter,




                               Mercedes  240D operated on EM-239-F fuel

-------
                                       I
                                                    U-L
                                              till
                                                                            H —
Q

Ln
O
                               ill
                                                 -4-1-
                                                                            H	
                                                      I I!
                       Figure G-16.   Chromatogran of organic solubles  from particulate matter,


                            Mercedes  240D operated on EM-239-F fuel  (repeat)

-------
o
I
Ul
                Figure G-17.  Chromatogram of organic solubles from particulate matter,



                          Mercedes 240D operated on EM-240-F fuel

-------
I
Ln
to
              Figure G-18.   Chromatogram of  organic  solubles  from particulate matterr


                             Mercedes  240D operated on  EM-242-F fuel

-------
Figure G-19.  Chromatogram of organic solubles from particulate matter,




         Mercedes 240D operated on EM-241-F fuel (repeat)

-------
o
                    Figure G-20.  Chromatogram of organic solubles from partiuclate matter,




                              Mercedes 240D operated on EM-242-F fuel

-------
I
ui
                   Figure G-21.   Chromatogram of  organic  solubles  from particulate matter,


                           Mercedes  240D  operated on  EM-242-F  fuel (repeat)

-------
o
I
ui
CTi
              Figure G-22.   Chromatogram of organic solubles from particulate matter,



                      Volkswagen Rabbit Diesel operated on EM-238-F fuel

-------
                                               it;
                                                                                                   HT
                                                                                                   f 1 r
                       -h-
o
I
ui


                               A;
 ,JJ
- r r r r
                  _LLJ_
                           r i'   - r
                                                                                            i -i -i i 11 V
               Figure G-23.   Chromatogram of organic solubles from particulate matter,



                         Volkswagen Rabbit Diesel operated on EM-239-F fuel

-------
0

Ul
CO
                     Figure G-24.  Chromatogram of organic solubles from particulate matter,


                          Volkswagen Rabbit Diesel operated on EM-240-F fuel

-------
en
i
Ul
                         Figure G-25.  Chromatogram of organic solubles from particulate matter,



                            Volkswagen Rabbit Diesel operated on EM-240-F fuel  (repeat)

-------
o
I
                 Figure G-26.  Chromatogram of organic solubles from particulate matter,




                       Volkswagen Rabbit Diesel operated on EM-241-F fuel

-------
Figure G-27.  Chromatogram of organic solubles from particulate matter,




     Volkswagen Rabbit Diesel operated on EM-242-^ fuel

-------
o

CTi
tO
                         Figure G-28.  Chromatogram of organic  solubles  from particulate-imatter,


                            Volkswagen Rabbit Diesel operated on EM-242-F fuel (repeat)

-------
                                           MERCEDES 24OD PARTICULATE - FUEL SPECIFIC BASIS

                                     VAR. 6      VAR. 9      VAR. 10     VAR.ll      VAR. 12
            VAR. 4       VAR. 7
             Total
Operating  Participate    carbon     hydrogen    nitrogen     sulfur      aulfate
                                                                                                              VAR.  31
                                                                                                                          VAR. 32
                                                                                                                                      VAR. 33
                                                                                                                                                   VAR. 34
                                                                                                   BaP      o-cresola    p-cresol  2,4-xylenolb 2,3-xylenolc
Fuel Schedule gAg fuel
EM-238-F FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
EM-239-F FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
EM-240-F FTP 3-Bag
I FTPC
(Ti FTPH
W CFDS
FET
NYCC
Idle
50 KPH
85 KPH
EM-241-F FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
EM-242-F FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
4.59
4.49
4.85
4.39
3.90
6.08
5.74
3.83
3.60
4.33
4.18
4.54
3.70
3.48
4.70
6.48
3.40
2.98
3.43
3.50
3.44
2.74
2.48
2.62
2.72
3.19
2.50
4.71
4.87
4.68
3.80
4.26
6.09
7.09
3.55
3.91
3.75
3.66
3.95
3.57
3.36
5.17
5.75
3.40
3.94
mgAg fuel
3430.
3460.
3550.
3180.
2850.
4630.
3610
2980.
2660.
3200.
3070.
3380.
2720.
2560.
3960.
5270.
2970.
2260.
2620.
2790.
2550.
2030.
2230.
2100.
2120.
2830.
1890.
3580.
3660.
3600.
2840.
3090.
4650.
4730.
3050.
2950.
2770.
2790.
2860.
2560.
2380.
3890.
3650.
2040.
3030.
mg/kg fuel
130.
130.
136.
114.
09.8
158.
144.
103.
108.
163.
151.
177.
118.
101.
225.
291.
109.
86.3
92.3
.98.0
89.5
63.0
74.3
70.7
114.
35.0
62.4
149.
141.
160.
106.
95.0
122.
192.
181.
133.
98.9
98.8
103.
89.2
94.2
134.
144.
112.
102.
mgAg fuel
15.8
18.0
14.6
17.5
11.7
30.4
23.0
7.65
14.4
40.9
41.8
40.9
104.
111.
56.3
142.
64.6
23.8
17.4
13.9
20.7
24.6
52.0
65.4
10.9
25.5
20.0
18.8
19.4
18.7
19.1
14.5
24.4
42.6
17.7
15.6
15.0
14.7
15.8
14.3
16.8
36.2
40.3
23.8
' 15.8
mg/kg fuel
48.8
52.3
47.9
69.0
55.2
32.2
59.6
30.6
68.0
38.4
38.0
39.4
42.6
34.5
21.6
30.8
18.2
43.4
11.2
12.3
10.6
13.7
13.8
4.96
8.51
5.32
7.34
47.4
47.7
48.4
65.0
51.2
41.5
55.0
33.1
55.9
47.5
50.2
47.0
86.1
63.1
40.4
59.4
31.1
82.8
mgAg fuel
114.
117.
117.
168.
239.
116.
150.
86.7
176.
103.
109.
101.
157.
151.
56.5
88.2
47.9
141.
30.9
39.0
24.7
39.6
42.5
12.4
12.7
14.3
27.5
117.
114.
122.
177.
198.
55.8
110.
66.2
137.
112.
90.6
134.
193.
137.
78.0
121.
64.8
170.
pgAg fuel mgAg fuel mg/kg fuel mg/kg fuel mg/kg
5.39
5.09
5.84
2.19
1.40
17.0
23.0 0.0 0.0 0.0
3.57 0.740 0.383 0.0
1.45 0.129 0.110 0.0
6.34
7.08
5.84
3.11
1.22
22.4
38.9 2.05 0.0 0.0
2.87 - 0.0 0.0 0.0
0.596 0.199 0.217 0.0
4.71
5.30
4.32
2.80
2.83
6.20
16.7 0.0 0.0 0.0
1.34 0.0 0.0 0.0
2.57 0.385 0.129 0.0
7.68
8.82
6.93
2.36
1.42
30.2
97.5 0.0 0.0 0.0
3.55 0.0 0.0 0.0
0.593 0.0 0.0 0.0
2.95
2.82
3.18
2.28
2.79
6.88
8.70 0.0 0.0 0.0
9.86 0.0 0.0 0.0
0.565 0.020 0.081 0.0






0.0
0.0
0.0






0.0
0.0
0.0






0.0
0.0
0.0






0.0
0.0
0.0






0.0
0.0
0.0
aplus salicylaldehyde
bplus 2,5-xylenol
Cplu3 3,5-xylenol

-------
                                                             VW RABBIT DIESEL PARTICULATE - FUEL SPECIFIC BASIS
         Fuel
       EM-238-F
       EM-239-F
       EM-240-F
CTi
       EM-241-F
      EM-242-F
VAR. 4
Total
Operating Particulate
Schedule
FTP 3-Bag
FTFC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTr 3-Bag
FTf'C
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
FTP 3-Bag
FTPC
FTPH
CFDS
FET
NYCC
Idle
50 KPH
85 KPH
g/kg fuel
4.66
5.01
4.44
5.14
4.71
5.03
5.29
3.10
4.44
4.61
5.01
4.42
4.67
3.75
5.30
5.97
2.27
4.00
3.85
4.32
3.44
3.80
3.76
4.34
2.02
1.72
2.86
7.06
10.2
4.75
5.14
4.38
5.66
6.26
6.22
4.87
3.96
4.38
3.56
3.69
4.47
5.56
5.85
1.77
4.35
VAR. 7
carbon
rag/kg fuel
3270.
3440.
3180.
3840.
3290.
2360.
1720.
1870.
3350.
3190.
3350.
3170.
3370.
2830.
3150.
2110.
1390.
3330.
2650.
2870.
2470.
2570.
2510.
2340.
820.
1040.
2230.
4850.
7170.
3120.
3590.
3150.
2480.
2360.
3500.
3660.
2820.
3030.
2600.
2550.
3170.
2890.
1560.
1110.
3340.
VAR. 8
hydrogen
rag/kg fuel
184.
191.
182.
226.
169.
160.
211.
180.
173.
194.
190.
203.
126.
172.
403.
490.
184.
180.
128.
138.
120.
156.
158.
156.
58.5
83.9
103.
351.
538.
210.
200.
160.
140.
280.
480.
170.
157.
167.
146.
151.
183.
256.
298.
86.7
180.
VAR. 9
nitrogen
rag/kg fuel
18.6
20.1
17.8
31.0
18.8
10.1
63.6
24.8
22.2
43.9
40.1
48.5
51.3
33.8
90.2
110.
29.5
36.0
9.63
9.51
9.74
10.7
8.73
16.2
10.9
6.57
7.22
30.7
40.7
23.8
25.7
17.5
51.0
43.9
18.7
29.1
23.9
21.8
25.0
18.4
22.4
44.6
81.9
21.2
17.4
VAR. 10
sulfur
VAR. 11
sulfate
mg/kg fuel mg/kg fuel
43.3
43.8
43.5
79.9
59.9
27.7
49.3
12.4
63.8
33.0
38.1
29.6
48.2
31.5
18.0
39.4
8.01
40.6
14.8
20.7
9.96
11.5
9.82
4.12
4.08
1.09
6.66
36.5
43.2
32.9
53.2
37.8
17.6
37.5
11.4
33.5
44.3
47.6
40.9
66.2
33.2
18.0
39.0
9.52
61.0
131.
157.
111.
230.
190.
83.1
121.
48.2
173.
109.
124.
100.
171.
115.
59.4
200.
30.0
135.
51.1
74.4
31.7
58.6
27.3
61.7
32.6
11.7
38.9
151.
198.
105.
185.
126.
95.6
242.
34.7
126.
81.7
103.
63.4
158.
192.
67.8
150.
40.8
122.
VAR. 12 VAR. 31 VAR. 32 VAR. 33
BaP o-cresola p-crcsol 2,4-xylenol
yg/kg fuel mg/kg fuel mg/kg fuel mg/kg fuel
23.4
37.8
12.0
8.99
10.6
23.6
12.3 0.0 0.52 0.0
11.7 0.0 0.0 0.0
6.65 0.37 0.24 0.0
28. 2
46.1
13.7
9.39
6.55
22.1
14.9 0.0 0.56 0.0
11.0 0.0 0.17 0.0
5.95 0.0 0.0 0.0
25.6
41.4
12.7
30.6
23.7
5.15
0.0 0.0 0.0 0.0
0.69 0.18 0.36 0.0
20.5 0.08 0.33 0.0
68.5
126.
22.6
16.9
10.3
18.9
10.6 0.0 0.0 0.15
3-03 0.0 0.0 0.08
8.24 0.33 0.77 0.0
21.4
35.7
9.82
7.09
10.2
19.4
9.75 0.0 0.0 0.0
6.12 0.0 0.20 0.0
2.66 0.27 0.21 0.0
VAR . 34
2,3-xylenol
mg/kg fuel






0.0
0.0
0.0






0.0
0.0
0.0






0.0
0.0
0.0






0.0
0.0
0.82






0.0
0.0
0.0
        plus salicylaldehyde
        plus 2,5-xylenol
        plus 3,5-xylenol

-------
              APPENDIX H





DATA RELATED  TO STATISTICAL ANALYSIS

-------
                                                COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS, 5 FUELS
                                                                               78/Ob/29.
                                                                                             O7.*7.05.
                                                                                                            PAGE
FILE   MERCEDES (CREATION  DATE  =  78/Ob/29.)    AND VOLKSWAGEN  FUEL  ANALYSIS

V5S
VbO
Vbl
Vb2
Vb3
VbS
Vbb
Vb7
Vb8
Vb9
ffi V70
K)
V71
V?2
V73
V7*
V75
V7b
V77
V78
V79
V80
V81
vB2
V83
V8*
VBS
vs9
i.nooo
.8051
-.*SSS
.b*25
.779*
,88bl
.8839
.917*
.8981
.8853
.8773
.B8SS
.8831
.8*31
.8210
,811b
.*952
.78b3
.8989
.8S11
.9025
.8817
.8705
.8598
.8320
.82*9
VbO
.8051
1.0000
.1532
.8*20
.9717
.97b3
.9751
.9falb
,972b
.9830
.9878
.9832
,97Sb
.990*
,98b3
.9832
.bt!3
.952b
,9b90
.8859
.9b87
.98bf
.9877
.98bS
.9852
.9881
KHUN
Vbl
-.H555
.1532
l.UOOO
.1130
.1391
.000*
-.U038
-.0795
-.0237
.OlbS
.02b*
.00*7
.0093
.08*7
.091b
.1051
.Ib23
.Ilb3
-.030*
-.13*0
-.0*23
.0183
.0*lb
.Oblb
.10b3
.121*
L U K K t
Vb2
.b*25
.8*20
.1130
1.0000
.915b
.7*21
.7*97
.7397
.738B
.7bb5
.7995
.8Q5b
.7b2*
.8281
.893b
.9032
.b2B9
.8bbl
.729*
.5799
.7*11
.78b8
.7820
.7738
.7899
.7923
L A 1 1 U
VbS
.779*
.9717
.1391
,915b
1.0000
.9187
.9121
.9023
.9189
.9*11
.9595
.9b3*
.9*77
.9790
.9952
.9975
.7bbl
,989b
.9095
.7758
.9081
.9508
.9521
.952b
.9bb7
.9b70
N tUt
VbS
.88bl
.97b3
.000*
.7*21
.9187
1 .0000
.998*
,99bO
.999*
.9972
.9915
,98b7
.9880
.97faO
.9519
.9*29
.571*
,9[J9*
.999*
.9597
.9985
.9953
.99*2
.9912
.97b3
.9772
t f 1 L i
Vbb
.8839
.9751
-.0038
.7*97
.9121
.998*
1.0000
.9970
.99bS
.992b
.98b3
.9801
.9788
,9b83
.9*72
.9381
.5323
.8950
.9978
,9b5b
.9990
.9910
.9888
.98*1
.9bbO
.9b77
Vb7
.917*
.9blb
-.0795
.7397
.9023
,99bO
.9970
1.0000
,99b3
.9901
.983*
.979*
.9793
,9b20
.9*01
.9301
.531*
.8890
.9977
.9705
.9993
.9883
.98*7
.9789
.9585
.9588
Vb8
.8981
.972b
-.0237
.7388
.9189
.999*
.99b5
,99b3
1.0000
.9978
.9925
.9890
.9909
.97b9
.9520
.9*29
.5858
.9133
.999b
.9581
.9980
.9958
.99*5
.9918
.977*
.9775
Vb9
.8823
.9830
.OlfaS
,7bb5
.9*11
.9972
,992b
.9901
.9978
1.0000
.9981
,995b
.99b3
.9888
,9b80
.9bUb
,b300
.9372
.995b
.9375
.9931
.9995
.9993
.9979
.9889
.9891

-------
                                            COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS, 5 FUELS (Cont'd.)
                                                                                78/ob/29.
                                                                                              07.t7.05.
                                                                                                             PAGE
FILE   MERCEDES (CREATION  DATE  =  ?8/Ob/29.)    AND VOLKSWAGEN FUEL ANALYSIS

V8b
V87
V88
V89
V90
V91
V92
V93
V9*
V95
ffi V9b
00
V59
.82*0
.80bO
.771b
.9Q89
-.9*11
.5950
.7877
.8583
-.7837
-.7985
.9399
VbO
.992*
.9931
.9582
.*B89
-.5bb8
.0985
.92*2
.4839
-.9239
-.39*8
.b853
K a u N
Vbl
.1250
.1531
.123*
-.7850
.72*5
-.772*
.aaii
-.729b
-.1108
.7b82
-.5790
t U K K t
Vb2
.BObfl
.8211
.9373
.3930
-.*8*0
-.2215
.82bb
.5359
-.593b
-.*8bb
. 7091
L A 1 1 U
Vb3
.9707
.9773
. 9980
.*?*7
-,5b70
,01b3
.9703
,553b
-.8109
-.*8QO
.7181
N UUt
VbS
.9788
.9707
.8983
.bl?b
=.b77*
.29*9
. RBSb
.55b3
-.9b3*
-.*b51
.7385
^ f 1 U I
Vbb
.9709
.9b28
.8928
.fal89
-.b7fa2
.2BOb
,8b91
.5*92
-.9bbl
-.*575
. 7*22
Vb7
.9bl3
.9512
.88*2
.b773
-.7308
.3*10
.8b73
.b07*
-.9530
-.5192
.7851
Vb8
.978*
.9b9B
.8988
.b3b9
-.b9b5
. 3178
.89Sfa
,579b
-.95b9
-.*901
.7530
Vb9
.9898
.9837
.9225
.bOb3
-.b?25
.272b
.9202
.5700
-.9*b5
-.*B13
.7*a*

-------
                                            COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS, 5 FUELS (Cont'd.)
                                                                                78/Ob/21.
                                                                                              07.17.05.
                                                                                                             PAGE
FILE    HERCEDE3 (CREATION DATE =   78/Ob/21.)   AND  VOLKSWAGEN-FUEL  ANALYSIS

V51
VbO
Vbl
Vb2
VbS
VbS
Vbb
Vb7
VbS
Vbl
•J3 V70
4^
V71
V72
V73
V71
V75
V7b
V77
V78
V71
V80
V81
V82
V83
VB1
V85
V70
.8773
.1878
,02b1
.7115
.1515
.1115
,18b3
.1831
.1125
.1181
1.0000
.1111
.11b8
.1155
.1812
.1751
.bb21
.1551
.1881
.llbb
.18bb
.1115
.1113
.1182
.1132
.1131
V71
.8851
.1832
.0017
.805b
.1b31
.18b7
.1801
.1711
.1810
,11Sb
.1111
l.OUOO
.1173
.11bO
.1832
.1778
.b851
,1b27
.1815
,10b3
.1817
.117b
.1172
.11b3
.1130
.1121
K 3 U N
V72
.8831
.175b
.0013
,7b21
.1177
.1880
.1788
.1783
.1101
.11b3
,11bB
.1173
1.0000
.1121
.1702
,1b3S
.bBIb
.151fa
.IBbb
.1131
.1813
.llbl
.1170
.1178
.1112
.1121
t U R R t
V73
.8131
.1101
.0817
.8281
.1710
,17bn
.1b83
.1b20
.17b1
.1888
.1155
.11bO
.1121
1.0000
.Illb
.1883
.7180
.1771
.1701
.8758
.1b71
.1121
.113b
.1115
.1171
.1173
1 A I i U
V71
.8210
.18b3
.Ollb
.813b
.1152
.1511
.1172
.1101
,1520
.IbBO
.1812
.1832
.1702
.Illb
1.0000
.Illb
.7233
.1832
.1111
.8331
.1111
.1751
.1755
.1711
.18U8
.1811
N (. U t
V75
.811b
.1832
.1051
.1032
.1175
.1121
,1381
.1301
.1121
.IfaOfa
.1751
.1778
.1b35
.1883
.Illb
1.0000
.7323
.1811
.1353
.8178
.1318
.IbSB
.Ibll
.1b83
.17b5
.1770
r i- i L i
V7b
.1152
.b113
.Ib23
.b281
.7bbl
.5711
.5323
.5311
.5858
.b300
.bb21
.hBSI
.b81b
.7180
.7233
.7323
1.0000
.83bb
.5b21
.3170
.5317
.blOl
.b517
.b701
.72b1
.7173
V77
.78b3
.152b
.Ilb3
.8bbl
.181b
.1011
.8150
.8810
.1133
.1372
.1551
.1b27
.ISIb
.1771
.1832
.1811
.B3bb
1.0000
.101b
,758b
.8111
.1152
.1185
.1528
.1722
.1700
V78
.8181
. IblO
-.0301
.7211
.1015
. 1111
.1178
.1177
.Illb
,115b
.1881
.1815
.IBbb
.1701
.1111
.1353
.5b21
.lOlb
1.0000
.IbS?
.1111
.1132
.1115
.1881
.1713
.1718
V71
.8111
.8851
-.1310
.5711
.7758
.1517
.IbSfa
.1705
.1581
.1375
.llbb
,10b3
.1131
.8758
.8331
.8178
.3170
.758b
.1faS7
1.0000
.1b85
.1211
.1212
.1lb2
.8710
. 88Ub

-------
                                            COMPLETE FUEL-FUEL  PAIRWISE CORRELATIONS, 5 FUELS (Cont'd.)
                                                                                78/Ob/2S.
                                                                                              O7.*7.05.
                                                                                                             PAGE
FILE   MERCEDES (CREATION  DATE =  78/Ob/29.)    AND VOLKSWAGEN FUEL ANALYSIS

VBb
VS7
V8B
V89
V90
V91
V92
V93
V9*
V95
V9b
ffi
1
V70
.99*2
.9900
,9**0
.597b
-,bb88
.2385
.9388
,5829
-,927b
-.*9b9
.7523

--1-tAKSUN C U N K t I
V71 V72 V73 1
.992b .9915 .9982
.S88b .9859 .9975
.9*93 .9295 .9b57
.b!32 .b088 .5*5b
-,b85b -.b791 -.b253
.2*95 .2875 .1711
.9*91 .9*55 ,9b23
.b09b .5930 ,5bD7
-.9125 -.92*1 -.9015
-.52b2 -.5077 -.*7b9
,7b90 .7*52 .72b7

A 1 1 U
m
.98*8
,9878
.9897
.5290
-.b!39
.0877
.9fag5
.575*
-.85b8
-.*972
,7*b8

N UUt
V7S
.9809
.9850
.9933
.5138
-.b008
.Ob*0
,9b38
,5fa93
-. 8**2
-.*92*
.7*03

l-f ILItNla-
V7b V77
.70*7 ,9b93
.717* .97*5
.7bb3 .98*2
.25b5 .*8B3
-.358* -.5819
.0237 .0859
.87b9 .99*8
.*739 .5781
-.*08S -.79*1
-.**37 -.5072
.*Sb* .7091

V78
.9730
.9b37
.8888
.b*10
-.b981
.325?
.8823
,57*3
-.9b22
-,*839
.7513

V79
.8827
.BfaSB
.7*85
.b87?
-,?lb*
,*51 b
.733b
.53*2
-,9b9l
-.**lb
.7185


-------
                                                  COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS, 5 FUELS  (Cont'd.)
                                                                                      78/Db/21.
                                                                                                    O7.*7.05.
                                                                                                                   PAGE
      FILE   MERCEDES (CREATION  DATE =  78/Ob/21.)   AND  VOLKSWAGEN FUEL  ANALYSIS
cc

V51
VfaO
Vbl
Vb2
Vb3
Vb5
Vbb
Vb7
VfaB
Vbl
V70
V71
V72
V73
V7*
V75
V7b
V77
V78
V71
VBO
V81
VB2
VB3
VB*
V85
VBO
.1025
.1b87
-.0*23
.7*11
.1081
.1185
.1110
.1113
.1180
.1131
.18bb
.1817
.1813
,1b71
.1***
.13*8
.5317
.81*1
.1111
.IbSS
1.0000
.1112
.IBBb
.1837
.IbSO
.1b58
V81
.8817
.18b*
.0183
,78bB
.1508
.1153
.1110
.1883
.1158
.1115
.1115
,117b
.llbl
.1121
.175*
.IbBS
,b*0*
.1*52
.1132
.1211
.1112
1.0000
.Illb
.1171
.1103
.1105
KHUN
V82
.8705
.1877
.0*lb
.7820
.1521
.11*2
.1888
.18*7
.11*5
.1113
.1113
.1172
.1170
.113b
.1755
.Ibll
.bS17
.1*85
.1115
.12*2
,1B8b
.Illb
1.0000
.1113
.113*
.1137
L O H K t
V83
.8518
.IBbS
.Oblb
.7738
,152b
.1112
.18*1
.1781
.1118
.1171
.1182
.11b3
.1178
.11*5
.17**
.1bB3
.b70*
.1528
.1881
.lib?
.1837
.1171
.1113
1.0000
,11b3
.lib*
L * 1 I U
V8*
.8320
.1852
.10b3
.7811
,1bb7
.17b3
.IbbO
.1585
.177*
.1881
.1132
.1130
.11*2
.117*
.1808
.17bS
,72b*
.1722
.1713
.8710
.IbSO
.1103
.113*
.11b3
1.0000
.1118
N L U t
vas
.82*1
.1881
.121*
.7123
.1b70
.1772
.1b77
.1588
.1775
.1811
.1131
.1121
.1121
.1173
.1811
.1770
.7173
.1700
.1718
.BBOfa
.IbSS
.1105
.1137
.lib*
.1118
1.0000
I- r 1 L 1
VBb
.82*0
.112*
.1250
.BObO
.1707
.1788
.1701
.1bl3
.178*
.1818
.11*2
.112b
.1115
.1182
.18*8
.1801
.70*7
.1b13
.1730
.8827
.Sb82
.1117
.11**
.11b3
.1188
.1115
V87
.BObO
.1131
.1531
.8211
.1773
.1707
.1b28
.1512
.IblB
.1837
.1100
.18Bb
.1B51
.1175
.1878
.1850
.717*
.17*5
,1b37
,8b53
.1581
.IBbS
.1817
.1121
.1172
.1183
VBB
.771b
.1582
.123*
.1373
.1180
.8183
.8129
.88*2
.8188
.1225
,1**0
.1*13
.1215
.1b57
.1817
.1133
.7bb3
,18*2
.8888
.7*85
.8810
.13*1
.13*5
.1331
.1*1*
.1*15
V81
.1081
.*B81
-.7850
.3130
,*7*7
.b!7b
,b!81
.b?73
.b3b1
.bOb3
,517b
.b!32
.b088
.5*5b
.5210
.5138
,2SbS
.*883
,b*10
.b872
,b*1S
.bO*1
.SUbO
,5b88
.527*
.SISb

-------
                                            COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS, 5 FUELS  (Cont'd.)
                                                                                ?8/Ob/21.
                                                                                              07,17.05.
FILE   MERCEDES (CREATION DATE  =   78/Ob/2S.)    AND VOLKSWAGEN FUEL ANALYSIS
                                                                                                             PAGE

V8b
V87
VSB
V81
vio
VII
V12
V13
VII
VIS
ffi ylb
V80
.1b82
.1581
.8810
.b115
-.7052
.3171
.8723
.5801
-.IbOl
-.1105
,7b32
V81 V82
.1117 .1111
.18b5 .1817
.1311 .1315
.bOII .58bO
-.b733 -.b558
.253b .2133
.1275 .131b
.5785 .Sbl3
-.1378 -.H311
-.1111 -.1731
.7513 .7311
C U K H E
V83
.11b3
.1121
.1331
.SbRB
-.blOl
.2381
.1381
.5180
-.1375
-.151b
.7173
L A 1 I 0
V81
.1188
.1172
.1111
.5271
-.bOb3
.112?
.IfaOB
.5332
-.nab
-.1171
.bllS
N C 0 E
V85
. 1115
.1183
.1115
.SISb
-.Sllb
.1781
.15bb
.5187
-.1171
-.1315
.b8S?
F F I C I
V8b
i.nooo
.1112
.1513
.5137
-.5128
. Ibl8
.1521
.Slb3
-.1111
-.1281
.blOO
E N T 3 -
V87
.1112
l.OOOQ
.SbBB
.1878
-.5701
.1211
.1571
.5011
-.1080
-.1117
.b?73
V88
.1513
.sbea
i.oooo
,17b1
-.Sbll
-.0011
,1b38
.5712
-.7781
-.S02U
.7321
V81
.5137
.1878
,17fa1
1.0000
-.1131
.7718
.5015
.1311
-.1175
-.1103
.1211

-------
                                            COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS,  5 FUELS (Cont'd.)
                                                                                7B/Ob/21.
                                                                                              O7.*7.05.
                                                                                                             PAGE
FILE    MERCEDES (CREATION DATE =   ?8/Ob/21.)   AND  VOLKSWAGEN FUEL  ANALYSIS

vsi
VbO
Vbl
Vb2
Vb3
VbS
Vbb
Vb?
VbS
VbS
ffi
I V70
OD
V71
V72
V73
V7*
V7S
V7b
V77
V78
V79
VBO
VB1
V82
V83
V8*
VBS
V10
-.1*11
-.SbbS
.72*5
-,*8*o
-.5b70
-,b?7*
-.b7b2
-.7308
-.blbS
-.b725
-.fabB8
-.b85b
-,b711
-,b253
-.bl3S
-.bOOS
-.3SBt
-.581S
-.falSl
-.71b»
-.7052
-,b733
-.b558
-.btOf
-.bQb3
-.SStb
- - f t A
VS1
.5950
.OSS5
-.7724
-.2215
,01b3
.as*s
.280b
.3flO
.3178
.272b
.2385
^t^S
.2875
.1711
.0877
.UbfO
.0237
.0851
.3257
.fSlb
.317*
.253b
.S133
.238*
.1127
.178t
H S U N
VS2
.7877
.<»2'»2
.0811
.82bb
.1703
.888b
.8bSl
.8b73
.815b
.1202
.1388
.I^Sl
.1*55
.1b23
.1b2S
.Sb38
.87b1
.11t8
.8823
.733b
.8723
.1275
,131b
.1381
.iboa
.15bb
C 0 R R E
V13
.8583
.t831
-.721b
.5351
.553fa
.5Sb3
.5*12
.b071
.571b
.5700
.5821
.bOlfa
.5130
.Sb07
.575*
.5bS3
.»731
.5781
.57H3
.53*2
.580*
.5785
,Sbl3
.5*80
.5332
.5187
L A T I 0
VI*
-.7837
-.1231
-.1108
-,513b
-.8101
-,1b3*
-.Ibbl
-.1530
-,15b1
-,1*b5
-,127b
-.1125
-.12*1
-.1015
-,85b8
-.8**2
-.*08S
-.71*1
-,1b22
-.Ibll
-.IbO*
-.1378
-.131*
-.1375
-.nab
-.117*
N COt
VIS
-.7185
-.31*8
.7b82
-.*8bb
-.*800
-,*b51
-,*575
-.5112
-.*101
-.*813
-.*1b1
-.S2b2
-.5077
-,*7b1
-.*S72
-.*12*
-.**37
-.5072
-.*B31
-,**lb
-.*105
-.*111
-.*731
-.*51b
-.**71
-.*31S
Vlb
.1311
.b8S3
-.5710
.7011
.7181
.7385
.7*22
.7851
.7530
.7*2*
.7523
.7b10
.7*52
.72b7
.7*b8
.7*03
.*5b*
.7011
.7513
.7185
.7b32
.7513
.73*1
.7173
.b1*S
.b857

-------
                                           COMPLETE FUEL-FUEL PAIRWISE CORRELATIONS,  5 FUELS (Cont'd.)






                                                                              78/Ob/29.     07.17.05.
PAGE   11
FILE   MERCEDES  (CREATION DATE =  78/Ob/29.)    AND VOLKSWAGEN  FUEL  ANALYSIS

VBb
V87
V88
V89
V10
V91
V12
V93
VII
V95
f V9b
V90
-.5928
-.5701
-,5b99
-.9931
1.0000
-.7230
-.5977
-.9558
.5121
.1273
-,95b2
V91
,lb!8
.1211
-.01191
.7718
-.7230
1.0000
.138b
.fa019
-.2831
-.5937
.1891
K 3 u M
V92
.9529
.1571
.9b38
.5015
-.5977
.133b
1.0000
.bOlb
-.7fa13
-.5381
.7071
C U K N t
V93
.Slb3
.5011
.5712
.9311
-.9558
,b019
.bOlb
1 ,0000
-.3587
-.9912
.9501
L A 1 I U
V9t
-.1111
-.1080
-.7781
-.1175
.5121
-.2831
-.7b13
-.3587
1.0000
,25b1
-.5721
N cut
VIS
-.1289
-.1117
-.5020
- . 9 1 1) 3
.9273
-.5937
-.5381
-.9912
.25b1
1.0000
-.9182
V9b
.blOO
.fa?73
.7321
.9211
-.9Sb2
.1891
.7071
.9501
-.5721
-.9182
1.0000
     A VALUE  OF  99.0000 is PRINTED  IF  A  COEFFICIENT CANNOT  ee  COMPUTED.

-------
                                                       LATENT ROOT/VECTOR ANALYSIS OF FUEL VARIABLES
                                                61,  91, 92,  93 and 94 (CETANE, N,  S, AROMATICS, AND OLEPINS)
.Sb89Sbl23E +
                                                  LATENT ROOTS OF  X  PRIME X
                                                    (IN DESCENDING ORDER)


                                        . 1S1 SI 7 7bSE + 00  . 1151 38050E+00  - . 1 7 i 20 71 bSE-'lS
                   .*BblES88
                                                 LATENT VECTORS OF X  PRIME  X
                                           (IN  CORRESPONDENCE TO THE  LATENT ROOTS ABOVE)

                                                          V(5)
                                .37710573
                                                          V(3)
                                .sso^ssts   .51*57551    ,sot78Bq7
      .387n07Jb    .51173123    .1b15?8b1  -.13878137    .



      ,bD7o1018    .11811723   -.IbSOISl?   .bgb757S8   -.
ffi
 I
M
O

-------
                                                  INVERSE OF MATRIX, FUEL VARIABLES 61, 91, 92, 93, and 94
                                                            (CETANE, N, S,  AROMATICS, AND OLEFINS)


                                                    INVERSE  OF X PRIME  X

                                                               ROW(l)
         .782o8858bE+15 - . 1 SQ8Sa8»  . 28H1 3H b89E + 1 1  - . q 7 38 75SJ8E + 1 a

-------
      FILE   MERCEDES (CREATION  DATE
      SUBFILE   M           V
                       FACTOR ANALYSIS OF ALL FUEL VARIABLES EXCEPT D86 BOILING RANGE


                                                           78/01/03.    Ob.18.15.

              =   78/01/03.)   AND VOLKSWAGEN FUEL  ANALYSIS
                                                                                                               PAGE
.SS307
.781Rb
.S373S
.87b90
ffi
I
      VARIABLE   EST COMMUNALITY
      vss
      VbO
      Vbl
      VbJ
      V7b
      V77
      V78
      V71
      V80
      V81
      vsa
      V83
      V81
      V8S
      V8b
      V87
      V88
      V89
      VS1
.SSH12
.SRS57
.9S9S7
.SS17S
.S9S75
.9SS50
                        .77*83
                            FACTOR

                               1
 5
 b
 7
 8
 q
ID
il
15
13
I1*
15
Ib
17
18
IS
ao
81
S2
23
                                                                   EIGENVALUE   PCT OF VAR   CUM PCT
.8. 11951
1.10SOO
1.1513S
.b3737
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-.00000
-.00000
-.00000
-.00000
-.00000
-.00000
-.00000
-.00000
-.00000
-.00000
71.0
17. b
S.B
5.S
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.0
-.0
-.0
-.0
-.0
-.0
-.0
-.0
-.0
-.u
71.0
91. fa
S7.S
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100,0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100,0
100.0
100.0
100.0

-------
                                          FACTOR ANALYSIS OF ALL FUEL VARIABLES EXCEPT D86 BOILING RANGE (Cont'd.)


                                                                                  78/04/03.     Ob.H8.15.
                                                                                                             PAGE
    FILE   MERCEDES  (CREATION  DATE =  78/04/03.)   AND  VOLKSWAGEN FUEL ANALYSIS
    SUBFILE   H           V
    FACTOR MATRIX USING   PRINCIPAL FACTOR WITH ITERATIONS
EG
 I
V59
VbO
Vbl
Vb2
V7b
V77
V78
V79
V8D
V81
V82
V83
V84
V85
V8b
V87
V88
V89
V90
V91
V92
V93
V94
V95
                   FACTOR   i

                     .S3187
                     .95b53
                    -. 11S53
                     .79R7t
                     .b7010
                     .93557
                     . 7053b
                    -.77180
                     .93913
                   -.87778
                   -,b3015
FACTOR  £

 -.3*552
  .27555
  .95357
  .23335
  .23288
  .08bl3
  .02817
  ,0758t
  . 13792
  .IbOSI
  . 17881
  .222bl
  .23818
  .2t33f
  .27191
  . 2tb8fa
  .71058
  . b 1 0 7 0
  .73273
  .19213
  .bS103
  .21352
  .b988b
  .H70b9
FACTOR  3

 -.OSbbl
 -.05031
 -.00219
  .39355
  .21058
 -,20t73
 -.1192b
 -.20570
 -.09840
 -.09871
 -.093b9
 -.02808
 -.03705
 -.03592
 -.00793
  .23911
 -.0?2b5
  .00t35
 -.35222
  .2372b
  .28941
  .42221
 -.34914
  .14382
    ITERATIVE PROCEDURE STOPPED AFTER    1  ITERATIONS BECAUSE COMMUNAL ITIES EXCEED  ONE

-------
                                       FACTOR ANALYSIS OP ALL FUEL VARIABLES EXCEPT D86  BOILING RANGE (Cont'd.)
                                                                               78/01/03.    Ob.18.IS.
                                                                                                           PAGE
FILE   MERCEDES (CREATION DATE
SUBFILE    M           V
=  78/01/03.)    AND VOLKSWAGEN FUEL  ANALYSIS
VARIABLE
                COMMUNALITY
vss
VbO
Vbl
V7b
V77
V78
V7S
V80
V81
V82
V83
V81
V85
V8b
V87
V88
V 8 S
^ vso
fL VU
iC> VI?
VS3
V11
V5
VSb
. SS52b
. ^931(2
.S23SS
!?11faS
. S9721
1 . OUiSb
. qqi3b
.1S801
1.00073
1.00071
. qqq^q
. qqjuq
. 9SbS7
1.00001
1.0U081
. SS310
1.00771

. 7fab?fa
.17518
1.00b37
.
-------
                                             FACTOR ANALYSIS OF ALL FUEL VARIABLES EXCEPT D86 BOILING RANGE  (Cont'd.)
                                                                                     7B/04/03.
                                                                                                  ab.H8.lS.
                                                                                                                 PAGE
                                                                                                                        10
       FILE    MERCEDES  (CREATION DATE =  7g/04/03.)    AND  VOLKSWAGEN FUEL ANALYSIS
       SUBFILE    M           V
             VARIHAX  ROTATED FACTOR MATRIX
        AFTER  ROTATION *ITH KAISER NORMALIZATION
ffi
I
V59
VbO
Vbl
Vb2
V?b
V77
V78
V79
VBO
V81
V82
V83
VB4
V85
V8b
V87
V8H
V89
V90
V91
V92
V93
       VSb
              FACTOR   1

                 .b915b
                                  FACTOR
                                              FACTOR   3
                        .SbDbS
                        .405bl
                        .7b5b5
                        .S2307
                        .91073
                        .89002
,8S83b
. 88990
.74722
.37505
                        .17980
                        .73252
                        .23198
                        .987b2
                        .12bOO
                        .47322
b8233
12329
922bO
11592
U7484
Ib839
29920
3b7bU
30821
25951
23757
21939
17878
Ib298
15841
13059
151b8
92840
8929b
78823
20325
88703
13581
9U299
77109
.22b78
. 39850
.14852
.72191
. 75798
,b!859
.229lb
-,0152b
.22574
.33881
.34183
.34875
.41350
.40753
.40975
.43798
.b4192
.07177
-.17399
-.3355S
.b3030
.40712
-.02245
-.419b8
.37092
        TRANSFORMATION MATRIX
       FACTOR  1
       FACTOR  2
       FACTOR  3
              FACTOR  I

                .82527
                ,337b9
               -,452bb
                                 FACTOR   2    FACTOR  3
            .39519
           -.91790
            .03573
.40343
.20837
.89097
        FACTOR SCORE COEFFICIENTS ARE  INDETERMINATE

-------
                                       PAIRWISE CORRELATIONS FOR NINE EMISSIONS VARIABLES, MERCEDES 240D
78/Ob/30. 11.51.53. PAGE 3







ffi
CTl

FILE

V*
Vb
V10
Vll
V12
V35
V*0
V*l
V*2
MERCEDES (CREATION DATE = 78/Ob/
V*
1.0000
-.*195
.8b31
.81*7
-.2853
.03*8
.7008
.8103
.8100
Vb VlO
-."»19S ,8b31
1.0000 -,*57fa
-.*57b 1.0000
-.*1£7 .1258
-.2158 -,32b7
-.2*10 .1513
-.31)17 .57*8
-.2b08 .7353
-.2901 .781*
'30.) AND VOLKSWAGEN FUEL ANALYSIS
CORRELATION COEFFICI
Vll V12 V35 V*0
.89*7
-.*127
.9258
1.0000
-.3558
.Ib29
.5SbO
.7*81
.8257
-.2853
-.2158
-,32b7
-.3558
1.0000
.127*
.0197
-.33b2
-.*210
.03*8 . 7008
-.2*10 -.3017
.1593 .57*8
.Ib21 .5SbO
.127* .0117
1.0000 .0510
,0510 1.0000
. .- . 0 B 0 b .bl!3
-.0*87 .5*59

V*l V*g
.8103 .8900
-.2b08 -.2809
.7353 .781*
.7*81 .8257
- . 3 3 b S- -,*210
-.080b -.0*87
.bl!3 . .5*51
1.0000.. . .9*07
.9*07 1.0000
A VALUE  OF 91.0000  IS PRINTED  IF A COEFFICIENT CANNOT  BE COMPUTED.

-------
                                        PAIRWISE CORRELATIONS FOR NINE EMISSIONS VARIABLES, VW RABBIT DIESEL
                                                                                78/07/18.
                                                                                              08.0t.35.
FILE   MERCEDES  (CREATION DATE  =   78/07/18.)    AND VOLKSWAGEN  FUEL ANALYSIS
                                                                                                             PAGE

Vt
Vb
vio
Vll
V12
V35
V f 0
V 1 1
V*2
Vt
1.0000
-.2b7Q
.7b88
,8t8S
,t979
-.hb»8
.5232
.7117
.73H2
Vb
-.2b70
1.0000
-.3755
-.3050
-.1778
.IbO*
-.0398
-.15tt
-.2359
K 0 U N
VIO
.7b88
-.3755
1.0000
.9209
.0722
-.5820
.1289
.3798
.b*98
L U N K C.
Vll
.H»RS
-.3050
.9309
i.oono
.1907
-.5571
.2820
.»bl«
,b?bt
L ft 1 1 U
V12
.H979
-.1778
.0722
.1907
1 .0000
- . 3 11 H 7
.7787
.2859
.1337
N LUC
V35
-.bb»B
.IbO.
-.5820
-.5571
-.3D1*?
1.0000
-.OH7S
-.3729.
-.7037
r r i L l
.5232
-.0398
.1289
.2820
.7787
-,0t75
1.0000
_ .»B8l'
.1271
V1*!
.7117
-.15Ht
.3798
.1bl9
.2859
-.3729
.1*281
1.0000
.bbS9
V-.8
. 7 3 f 2
-.2359
.bH98 ;;;
.b?b'»
.1337
-.7037
.1271
.bb59
1.0000
     A VALUE OF  99.0000 13 PRINTED  IF  A COEFFICIENT  CANNOT BE  COMPUTED.

-------
                                  TECHNICAL REPORT DATA
                           (Please read Instructions on the reverse before completing)
 . REPORT NO.
  EPA-460/3-79-008
             3. RECIPIENT'S ACCESSI ON" NO.
4. TITLE AND SUBTITLE
 Characterization of Gaseous and  Particulate Emissions
 From Light-Duty Diesels Operated on Various Fuels
                                                          5. REPORT DATE
                                                            July 1979
             6. PERFORMING ORGANIZATION CODE
7. AUTHOH(S)

  Charles  T.  Hare
             8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
  Southwest Research Institute
  6220  Culebra Road
  San Antonio, Texas  78284
                                                           10. PROGRAM ELEMENT NO.
             11. CONTRACT/GRANT NO.

               68-03-2440
12. SPONSORING AGENCY NAME AND ADDRESS
  U.S.  Environmental Protection Agency
  OMSAPC-ECTD
  Ann  Arbor,  Michigan  48105
             13. TYPE OF REPORT AND PERIOD COVERED
               Final  Report
             14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
  Gaseous and particulate  emissions of a non-routine nature  were measured in the
  exhausts of two light-duty  Diesel-powered automobiles.   These vehicles were a
  Mercedes 240D and a Volkswagen Rabbit Diesel.  Visible  exhaust smoke, regulated
  gaseous pollutants, and  exhaust odor were also measured.   Five fuels were used in
  this investigation, representing broad ranges in sulfur content,  hydrocarbon-type
  composition, density,  cetane  index, and a number of other  properties.  Vehicle
  operating procedures used for test purposes included both  those specified in
  Federal Regulations and  several others simulating different driving situations.  Gas
  samples were acquired  from  both direct and dilute exhaust  streams.  Particulate
  samples were taken using an exhaust dilution tunnel operating on the entire exhaust
  stream of each engine.   Filter-collected particulate weights provided the basis
  for particulate mass emission calculations.  The results of a statistical analysis
  of the particulate emissions  data is included as is an  analysis of gaseous emissions
  and particulate size data.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS  C.  COSAT! Field/Group
  Exhaust Emissions
  Diesel Engines
  Particulate
  Diesel Fuel
  Nitrogen Oxides
  Hydrocarbons
 Fuel  Effects
• Light Duty Vehicles
 Emission Test Procedures
 Emission Characterization
18. DISTRIBUTION STATEMENT

  Release Unlimited
19. SECURITY CLASS (This Report)
  Unclassified
21. NO. OF PAGES
  340
20. SECURITY CLASS (This page)
  Unclassified
                           22. PRICE
EPA Form 2220-1 (9-73)

-------
                                                      INSTRUCTfONS

1.    REPORT NUMBER
     Insert the EPA report number as it appears on the cover of the publication.

2.    LEAVE BLANK

3.    RECIPIENTS ACCESSION NUMBER
     Reserved for use by each report recipient.


     Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently:  Set subtitle, if used in smaller
     type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
     number and include subtitle for the specific title.

5.    REPORT DATE                                                                                      .     ..     ,     ,
     Each report shall carry a date indicating at least month  and year. Indicate the basis on which it was selected (e.g., date of issue, date of
     approval, date of preparation, etc.).

6.    PERFORMING ORGANIZATION CODE
     Leave blank.

7.    AUTHOR(S)
     Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it differs from the performing organi-
     zation.

8.    PERFORMING ORGANIZATION REPORT NUMBER
     Insert if performing organization wishes to assign this number.

9.    PERFORMING ORGANIZATION NAME AND ADDRESS
     Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.

10.  PROGRAM ELEMENT NUMBER
     Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.

11.  CONTRACT/GRANT NUMBER
     Insert contract or grant number under which report was prepared.

12.  SPONSORING AGENCY NAME AND ADDRESS
     Include ZIP code.

13.  TYPE OF REPORT AND PERIOD COVERED
     Indicate interim final, etc., and if applicable, dates covered.

14.  SPONSORING AGENCY CODE
     Leave blank.

15.  SUPPLEMENTARY NpTES
     Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented at conference of,
     To be published in, Supersedes, Supplements, etc.

16.  ABSTRACT
     Include a brief (200 words or less) factual summary of  the most significant information contained in the report. If the report contains a
     significant bibliography or literature survey, mention it here.

17.  KEY WORDS AND DOCUMENT ANALYSIS
     (a) DESCRIPTORS -  Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
     concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

     (b) IDENTIFIERS  AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc.  Use  open-
     ended terms written in descriptor form for those subjects for which no descriptor exists.

     (c) COSATI FIELD GROUP - Field and group assignments are to be taken from  the 1965 COSATI Subject Category List. Since the ma-
     jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
     endeavor, or type of physical object.  The application(s) will be cross-referenced with secondary Field/Group assignments that will follow
     the primary posting(s).

18.  DISTRIBUTION STATEMENT
     Denote releasability to the public or limitation for reasons other than  security for example "Release Unlimited."  Cite any availability to
     the public, with address and price.  '

19. &20. SECURITY CLASSIFICATION
     DO  NOT submit classified reports to the National Technical Information service.

21.  NUMBER OF PAGES
     Insert the total number of pages, including this one  and unnumbered pages, but exclude distribution list, if any.

22.  PRICE
     Insert the price set  by the National Technical Information Service or the Government Printing Office, if known.
    EPA Form 2220-1 (9-73) (Reverse)

-------