-------
                                                        EPA/AA/CTAB/TA/83-2
                         A STUDY  OF  THE  RELATIONSHIP
                          BETWEEN EXHAUST  EMISSIONS
                              AND FUEL ECONOMY
                                     by

                               Jensen P.  Cheng
                              Larry C. Landman
                              Robert D. Wagner
                                  May,  1983
                                   NOTICE

Technical  Reports  do  not   necessarily  represent  final  EPA  decisions  or
positions.  They  are  intended  to present technical analysis  of  issues using
data which  are currently  available.  The  purpose in the  release of  such
reports is to facilitate the exchange of technical  information and to  inform
the public  of  technical developments which  may form  the  basis  for a final
EPA decision, position or regulatory action.
                                 prepared  by
                    U.S. Environmental Protection Agency
                     Office of Air, Noise and Radiation
                          Office of Mobile Sources
                    Emission Control Technology Division
          Control Technology  Assessment  and  Characterization  Branch
                             2565 Plymouth Road
                         Ann Arbor, Michigan  48105

-------
                                     CONTENTS
                                                                     Page
I.     Summary	       1-1

II.    Background	       II-l


III.   Fleet Level Effects

       A.    Fuel Economy of 1974 and Newer Vehicles
             Compared to Uncontrolled Vehicles 	       III-l

       B.    Fuel Economy of 1975 and Newer Vehicles
             Compared to Previous Year Vehicles	       III-7

       C.    Fuel Economy of Federal versus California
             Vehicles	       III-8

       D.    The Relationship Between Emission Standards
             or Levels and In-use Fuel Economy 	       111-20

IV.    Data Analysis	       IV-1


       A.    Two Variable Linear Regressions 	       IV-6

       B.    Two Variable Linear Regressions with
             Stratification by Model Year	       IV-11

       C.    Stepwise Backward Regression Analysis 	       IV-29

       D.    Residual Analysis 	       IV-34

-------
                                                                     Page

       E.    Subconfiguration-Matched Data Analysis  	       IV-39

       F.    Special Engine Over Time Trends	       IV-43

       G.    Sensitivity Coefficient Study 	       IV-53

       H.    Data Stratification by Emission Control System. .       IV-55

       I.    Is There a "Knee" in the Relationship between
             Tailpipe Emissions and Fuel Economy?  	       IV-69

V.     Individual Manufacturer Discussions

       A.    General Motors	       V-l
       B.    Ford	       V-36
       C.    Chrysler	       V-53
       D.    Toyota	       V-65
       E.    Nissan	       V-73
       F.    Honda	       V-87
       G.    Volkswagen	       V-96
       H.    Toyo Kogyo	       V-104
       I.    American Motors	       V-112

VI.    Appendixes

       1.    Prediction of Federal Test Procedure
             Results from Hot Emissions Data	        1-1

       2.    Calculation Methodology for Fuel
             Economy Change Allocation 	        2-1

       3.    Variability Estimates for Emissions
             and Economy over the FTP	        3-1

-------
                                                              Page
4.    Two Variable Linear Regression Plots
      of Emissions versus Economy .	        4-1

5.    Results from Stepwise Backward Regression of
      Vehicle Parameters and Emissions versus Fuel
      Economy	        5-1

6.    Residual and Ratio Regressions. .........        6-1

7.    Plots of Emissions and Fuel Economy
      from Special Engines over Time	        7-1

8.    Multicollinearity Discussion  	        8-1

9.    Plots of Ton-Miles per Gallon versus
      Emissions by Emission Control System  	        9-1

10.   Plots of Ton-Miles per Gallon versus
      Emissions by Emission Control System
      and Transmission Type	       10-1

11.   Adjusted Fuel Economy versus Emissions
      by Emission Control System and
      Transmission Type	       11-1

-------
                                  SECTION I
I•  Summary

This  report  contains  analyses  of  the  fuel economy/emissions  relationships
for  1981 model  year  and  earlier  vehicles.   The  1981 model  year  Federal
emission  standards  are  the  most  stringent  Federal  standards  to date.   "A
Study of  the Relationship Between  Exhaust Emissions  and Fuel Economy" is the
title for this report.   However,  this does  not mean  that these are  the only
two  important  variables.   The   relationship  between  the   fuel  economy  and
exhaust  emissions  does  not  exist  in  isolation, but rather is  intertwined
with  many other vehicle  characteristics.   These associated characteristics
include,  but  are not  limited to;  driveability,  performance, costs,  octane
requirement,  production  lead  time,  and  fuel  economy/exhaust   emissions
control   technology.    Ideally,   an  examination  of  fuel  economy/exhaust
emissions  relationships  would  include  quantification  of  the   concurrent
interactions  with  these  other   vehicle  characteristics.   Unfortunately,
neither  this report  nor any other  reports  available to EPA have  identified
data allowing such quantificaton.

This report is briefly  summarized  as follows:   First, the  background for the
report  was  reviewed,  including  past  EPA  reports  on  fuel  economy  and
emissions.   Second,   a  literature search  identified  other  reports  which
addressed  fuel  economy  and emissions.   Third,  the  1981  car  fleet  was
examined and its fuel economy/emissions performance assessed.

The  historical  fuel  economy  and emission  standards  trends show  an overall
trend of increasing  fuel economy  and  decreasing emissions  over  time.   This
is  not  meant  to imply  that the  reduction in emissions  is necessarily  a
causal  factor  in the fuel economy rise.  Many  other vehicle characteristics
including weight and engine displacement were  also   changing over  this same
time period.

An  important observation to  make and the major  conclusion of this  study is
that  the  twin  goals  mandated  by  Congress  for   the  early  1980's  have
essentially  been met.   Fuel economy  has  been  improved   substantially  and
emissions have been greatly reduced.
                                    1-1.

-------
                                  SECTION II

II. Background

This  report  has  been prepared  to examine  the  relationship  between  exhaust
emissions  and   fuel  economy  of   automobiles.    This   report   treats   the
relationship  between  emissions  and  fuel  economy in  more  detail  than  any
previous EPA work.  This subject is of considerable interest to EPA due  to  the
importance of any  changes  in fuel economy on cost  to  the consumer of  various
emission standards.   The Congress  of  the United  States  is also interested  in
the relationship between exhaust  emissions  and  fuel economy.  The interest  of
the Congress  is  expressed  in Section  203(a)  of the Provisions  of Public  Law
95-95 which do not amend the Clean Air Act.  The  Congressional interest  in  the
subject was an important consideration in the  decision  to  conduct  this study.

"Emission control reduces fuel economy."  Is it true or false?  This  cliche  is
typical  of  many statements  which are  made in  reference to  an  interaction
between   vehicle  emissions  and  fuel   economy.   Three   very  noticeable
shortcomings are evident in  this  cliche.   First,  the  vehicle(s) for  which  the
emission/fuel  economy  relationship  is  being  cited  is  not  defined.   Many
automobile design  parameters can affect  a  vehicle's  emissions  and/or fuel
economy.  Secondly,  the  implied comparison  made in the example statement does
not identify  the basis  for  comparison.  Gain,  loss,  reduction,  improvement,
better and worse mean nothing without  a clearly  stated  basis of comparison.
Finally, the  type  of emission control system is  not  stated.  During•the time
period through which new vehicles have been subject to emission standards,  the
type  of  pollutants,  the  pollutant levels  and  the  test  procedures  have  all
changed.  In  addition, the  State  of California  has  its  own  set  of  emission
standards, which differ from the Federal standards.
                                     II-l

-------
EPA has  studied and  reported  extensively on  both vehicle  fuel economy  and
exhaust emissions.  Several  of  these reports have addressed  the  relationship
between  fuel  economy  and emission  standards.   Prior  to  a  review  of  some
conclusions from  these reports,  a brief  discussion of  fuel economy will  be
presented.

Fuel economy of automobiles  is  often expressed in  terms of miles  per  gallon
(MPG).  Many methods are used to generate mpg  values.   EPA has developed test
procedures which  measure a  vehicle's  mileage over an  "urban" driving  cycle
and a "non-urban" or  "highway" driving  cycle.   Exhaust  gas  is monitored  as  a
vehicle  is  operated  over  these cycles  and the  fuel  economy is  calculated
using the carbon balance method  discussed below.

To calculate fuel economy, in miles  per gallon (MPG),  from  an emission test,
the following equation applies:

    Miles -   gms carbon/gal of  fuel	
    Gallon    gms carbon in exhaust/mile

The carbon in the fuel is:
    grams Cfue^    = grams fuel  x
                     gallon
                     molecular wt. C
                     molecular wt. fuel
                   = (2798) x (.866)
                   = 2423
where:

    2798 is a density typical of test gasoline, in grams/gallon;  and

    .866 is typical of the weight fraction of carbon in the fuel.
                                      II-2

-------
The carbon  in the  exhaust  is contained  in the  unburned fuel  hydrocarbons

(HC),  carbon monoxide (CO),  and carbon dioxide  (CO-),  as follows:


    grams C „  =   gm HC  x  molecular wt.  C
                            molecular wt.  HC

               =   gm HC  x  (.866)


    grams CCQ  =   gm CO  x  molecular wt.  C
                            molecular wt.  CO

                   gm CO  x  (.429)

    grams C    =   gm C02 x  molecular wt.  C
             2              molecular wt.  C02

               =   gm C02 x  (.273)

So we have:

    Miles  _                        2423
    Gallon         (.866gmHC + .429gmCO + .273gmC02)/miles

or

    MPG    _,       	2423 x miles traveled
                   .866gmHC + .429gmCO + .273gmC02



Example:  In a 10-mile  test,  a car's exhaust emission measurements  show  the

following amounts of  carbon compounds:   HC,  9  grams;   CO,  124 grams;  CO-,

3641 grams.


Using the above equation, the fuel economy is:


    MPG  =               2423 x 10
                .866(9) + .429(124) + .273(3641)

              	24,230           =  23.0 MPG

              7.8 + 53.1 + 993.7         ~
                                      II-3

-------
The measured fuel  economies  observed over  these  two driving cycles  are  the
urban  mileage  (MPGu)  and   the   highway   mileage   (MPGh).    The   MPG   and
MPG,   can be used  to  calculate  a  composite  mileage  (MPG )  by means of  a
weighted harmonic averaging technique.

Suppose a motorist takes the following three trips:

                       200 miles, using 15.0 gallons;
                       100 miles, using  9.4 gallons;
                       140 miles, using 11.8 gallons.
The fuel economies of these three trips are:

                        200 miles
                        15.0 gal.
                        100 miles
                        9.4 gal.
                        140 miles
-  13.3 MPG;

=  10.6 MPG;

=  11.9 MPG.
                        11.8 gal.

If he merely averages the individual trip MPG's he gets:

    (13.3 + 10.6 + 11.9)/3 = 11.9 MPG

But  this  is  incorrect.   the motorist  traveled  440  miles  and  used  36.2
gallons, so his overall fuel economy was:

    440/36.2   = 12.2 MPG

To get  the correct fuel economy  for  multiple trips, the  following  equation
must be used:

                        Miles  _  total miles traveled
                        Gallon     total gallons used
                                      II-4

-------
If  the  individual trip lengths  and fuel economy  values are  known,  but  the

gallons used are not known, the proper equation is:
                          miles,  + miles«  +  ... + miles,.
                   MPG -       l         2               N
                          miles..    miles™          miles.,
                               1
                           MPG,      MPG0             MPG.T
                              12                N
where miles   = length of  trip "x";  MPG   = gas  mileage to  trip  "x";   and
           X                             X
N  = number of trips.


For  a number  of  test  trips  of  the  same  length,  the  above  equation  is

equivalent to:
                                           miles   x  N
                 MPG =  	;	=	
                        miles
where miles   =  the standard test length and N   =  the number of  tests.


The above equation simplifies to:
                   MPG   .,,~_T  m(^
which is the harmonic average of the MPGs from the tests.


To  calculate  the  composite  MPG  from  known  city  and  highway  MPG's,   the

apportionment  of  total  mileage  between city  and  highway driving  must  be

used.   If  a  motorist drives 55%  of  his mileage  in  the city  and  45% on  the

highway, his composite fuel economy is:
                                     II-5

-------
                                    total miles
                      .55(total miles)     .45(total miles)
                          City MPG            Highway MPG



                              T33~      ~    TW
                              MPGC           MPGR


In  addition  to  the  carbon  balance  method,  fuel  economy  can  also  be

calculated from vehicle speed and fuel consumption rate, as follows!.


                        Miles   =  Miles/Hour
                        Gallon     Gallons/Hour


But fuel  consumption rate  is related  to  the engine  power  output  (not  the

power rating) by the expression:


                        Gallons     „_   Ibs fuel     Gals
                         Hours         X   HP-Hr    X  Ib


So fuel economy is:

                   Miles   _  (Mi/Hr)     (Ibs/gal)
                   Gallon  ~   (HP)    x  (Ib/HP-Hr)

or
                                MPH x Df
                   MPG
                                HP  x SFC

Where  Df  is  fuel  density,   pounds   per   gallon  (approximately  6.2  for

gasoline); and


SFC is specific fuel consumption, pounds per hour per horsepower output.


SFC  is   a   commonly-used  engineering  term  directly   related   to   engine

efficiency.   The  more  efficient an engine  is,   the  less  fuel  it needs  to

deliver a given power output.   For  a typical gasoline fuel, the relationship

between SFC and engine efficiency is approximately:
                        SFC  -
                                     Efficiency

    (An efficiency of 13.5% corresponds to an SFC of 1.0 Ib/HP-Hr)
                                      11-6

-------
Substituting,

                        MPH x Df         MPH x 6.2 x Eff.
       MPG
                     HP x 13.5/Eff.        HP x 13.5
So we see  that  fuel  economy  is  a function of speed  (MPH),  engine  load (HP),
and engine efficiency according to:
                        MPG  =  .46     .  x Efficiency
                                      Ur
for a typical gasoline fuel.

Example:  An  intermediate size car  requires an  engine output  of  26 HP  to
cruise at 50 MPH.  The  engine  efficiency  for this condition is  22.0%  (SFC =
0.614).  Using the above equation, the fuel economy is:

                        MPG = .46 x 50/26 x 22 =» 19.5 MPG
To cruise at 70 MPH,  the  same car requires 51 HP, and  the  engine efficiency
is 25.4% (SFC = 0.532).  The fuel economy is:

                        MPG = .46 x 70/51 x 25.4 = 16.0 MPG
Also, note  that  the  instantaneous fuel economy  of any automobile  can range
from zero to infinity.  Examples are a vehicle stopped  with an idling engine
(zero MPG) and a vehicle coasting with the engine stopped (infinite MPG).

The  remainder  of  this  section  lists   some  conclusions  which  have  been
presented in  previous  EPA reports.   The  reader  will  notice that  some  fuel
economy  estimates  for  the  same  subject  group of  automobiles  are  different
between  reports.   This  is a function of  the dynamic process  of  estimation.
As  time  has passed,  the  data available  to EPA have  changed, and  analysis
technqiues have been improved.
                                      II-7

-------
An early EPA report* contained the following conclusions:
     Vehicle weight  is  the  single most  important  parameter  affecting
     urban  fuel  economy; a  5000 pound vehicle  demonstrates  50%  lower
     fuel economy than a 2500 pound vehicle.

     The  fuel   economy  loss  for  1973  vehicles,  compared  to  uncon-
     trolled (pre  '68)  vehicles,  is  less  than  7%.   The average  fuel
     economy loss  due to  emission control for  all  controlled  (68-73)
     vehicles is 7.7%.

     Data on 172  1970 and 1971 GM cars  did not  demonstrate  any effect
     on fuel economy of reduced compression ratio.

     The Diesel and  stratified charge engines show  better  fuel  economy
     than  the   conventional   engine   with   the  Diesel  showing  a  fuel
     economy improvement of more than 7
A year  later, in  October 1973,  another  EPA  report**  stated  the  following

concerning emissions/fuel economy relationships:


     The  sales weighted  average  fuel  economy  loss  due  to  emission
     controls  (including  reduction  In  compression  ratio)  for  1973
     vehicles, compared  to  uncontrolled (pre-1968)  vehicles,  is  10.1%.
     However,  vehicles  less  than 3,500 pounds show an average  3%  gain
     (attributable  to  carburetor changes  made  to  control  emissions)
     while vehicles  heavier   than 3,500 pounds show losses up  to  18%.
     The size  of these  losses,  however, is  highly dependent on the  type
     of control systems the manufacturer has chosen to use.

     The reduction  in compression ratio employed  by most manufacturers
     to  enable their  vehicles  to  operate  on 91  octane  gasoline  has
     resulted  in a 3.5% fuel economy loss.
*    Fuel Economy  and  Emission Control, U.  S.  Environmental Protection
     Agency, Office  of  Air and Water Programs, Mobile  Source Pollution
     Control Program, November 1972.

**   A Report on Automobile  Fuel  Economy,  U.S.  Environmental Protection
     Agency, Office  of  Air and Water Programs, Office  of  Mobile Source
     Air Pollution Control, October 1973.
                                      H-8

-------
By  the 1975  model  year,  catalytic  converter  equipped  vehicles  were

being produced in  sizeable numbers.   In the Fall of  that  year,  the EPA

again  reported on  automotive fuel economy.  This report*  presented the

following conclusions:
     There is  no simple or  inherent  relationship between  fuel economy
     and  the  emissions standards  that new cars  are required  to  meet;
     especially misleading is  the  contention  that  fuel  economy always
     becomes  poorer  as  emissions   standards  are  made  more  stringent.
     With the  use  of  catalyst technology, the  average  fuel  economy of
     1975  cars is  nearly 24%  better  than  the  1974 models,  although
     their emissions are  lower  than the 1974's.   In fact,  fuel economy
     of  the  1975's is as  good  as  cars  built before emission controls
     were introduced.

     There is  no guarantee of  superior fuel economy  through  the use of
     catalytic converters.   1975  cars using  catalysts  can give excel-
     lent or poor  fuel economy, depending  on  the  manufacturer's overall
     design.   Cars which  do  not use  catalysts  can  also  give excellent
     or poor economy, again depending on the overall design.
At the beginning of 1975,  EPA published a report which  was  an overview

of the technical  status  of automobile emission control.**   The chapter
of  this   report  which  covered  fuel  economy contained the  following

discussion on the effects of emission standards:
     The  net  effect  on  fuel  economy  of  a  given  emission  standard
     depends on  the  combination of  control  techniques  used  to  achieve
     compliance.  Analysis of  EPA certification data has  clearly shown
     that  the  fuel  economy  performance  of nominally  identical  cars
     (e.g.   same  weight,  engine   size,  axle  ratio,  etc.)   can  be
     significantly different while the emissions are nearly the same.
*    Factors   Affecting   Automotive   Fuel   Economy,   U.S.   Environmental
     Protection Agency,  Office of  Air  and Waste  Management, Mobile  Source
     Air Pollution Control, Emission Control Technology
     Division, September 1975.

**   Automobile Emission  Control - The  Technical  Status  and Outlook  as  of
     December  1974,  A  Report  to  the  Administrator,  U.S.  Environmental
     Protection Agency,  Mobile  Source  Pollution  Control Program,  Emission
     Control Technology Division, January 1975.
                                     II-9

-------
     The difference in fuel economy  is  the result of the  difference  in
     the  usage  of  fuel  efficient  control  technology.   At  a  fixed
     emission level  fuel  economy  is  a  function  of  the  usage of  fuel
     efficient control technology.

     Erroneous conclusions about emission  control and fuel economy  can
     result  from  ignoring   differences   in  the   control   technology
     available  and  looking   at  the  effect  of   different   levels   of
     emission control using a particular  control  system.  With a  fixed
     emission control system  fuel  economy is  a  function of  the  degree
     of emission control required.  When alternative  control  approaches
     are not considered, changes in emission level can only be achieved
     by  altering   basic  engine  calibrations  such  as  spark  timing.
     Since minimum emissions  and maximum fuel economy  are usually  not
     simultaneously achieved,  lower emission levels with a given  system
     result in degraded fuel  economy.

     Besides  looking at  emission  control  system/emission  level/fuel
     economy relationships with the control system held  constant  or  the
     emission levels held constant, it is also possible  to consider  the
     fuel  economy  level  held constant.   With a  fixed  level of  fuel
     economy the degree  of  emission control achievable  depends on  the
     type  of control  technology  used.   For   example,  the  change   in
     emission  level   from uncontrolled  to  the  1975  Federal  Interim
     levels  (1.5,  15,  3.1)  has  been accomplished at  a  fixed  fuel
     economy  level  by  selection  of  lean   engine  calibrations   and
     catalytic exhaust treatment systems.

     The  three underlined statements  above are three different ways  of
     looking  at  control  system/emission   level/fuel  economy  relation-
     ships.  Each  statement  is  a  two-dimensional analysis  of a  three
     dimensional problem,  however.  Unless  one  fully  understands  the
     three dimensional  aspects of th«>  tradeoffs  involved,  it is  pos-
     sible  to be  misled about the  expected  impact of  a  particular
     emission standard.   Since   there  is  no fixed relationship  between
     fuel economy and emission  standards, it is impossible to guarantee
     a change in fuel economy by a change  in emission standards.


Every  year  since   1975   EPA   authors  have  written  Society  of  Automotive
Engineers  (SAE) papers  that  discuss  Che  current  status  and  trends  in fuel

economy  and, more  importantly for  this   report,  discuss estimates  of  the

various  reasons  why  the  fuel  economy  of  one group  of  vehicles  might  be

different from the fuel  economy of another  group.   Some of  the  differences

have been attributed to emissions or to emission standards in  the past.
                                      11-10

-------
A summary of these reports is shown below.
Previous Reports That Contain Fuel Economy and Emissions Discussions
Year
1978
SAE Paper

780036
                   Title
Light Duty Automotive Fuel Economy...
     Trends Through 1978
1979
790225
Light Duty Automotive Fuel Economy...
     Trends Through 1979
1980
800853
Passenger Car and Light Truck Fuel
     Economy Trends through 1980
1981
810386
Light Duty Automotive Fuel Economy.
     Trends through 1981
1982
820300
Light Duty Automotive Fuel Economy.
     Trends through 1982
1983
830544
Light Duty Automotive Fuel Economy.
     Trends thru 1983
This section has only touched upon  some  highlights  from previous EPA technical
reports  which  addressed  the   emissions   versus   fuel  economy  issue.   The
following bibliography is  provided  to assist those readers who  wish to obtain
the reports which were reviewed in preparation of this section.
                                      11-11

-------
Bibliography
1.    Automobile Emission  Control -  A Technology  Assessment  As  Of  December,
      1971,   U.S.  Environmental  Protection  Agency, Mobile  Source  Pollution
      Control Program, Office of Air Programs, January 1, 1972.

2.    Fuel Economy and Emission Control,  U.S.  Environmental  Protection Agency,
      Office  of  Air  and  Water  Programs,  Mobile  Source  Pollution  Control
      Program, November, 1972.

3.    A  Report  on  Automobile  Fuel   Economy,  U.S.  Environmental  Protection
      Agency,  Office  of  Air and  Water Programs, Office  of  Mobile  Source Air
      Pollution Control, October,  1973.

4.    Automobile Emission Control - The Development  Status As  of April 1974, A
      Report  to  the  Administrator,  U.S.  Environmental  Protection  Agency,
      Mobile  Source   Pollution  Control  Program, Emission  Control  Technology
      Division, April, 1974.

5.    Automobile Emission  Control  -  The  Technical Status and  Outlook  as  of
      December  1974,  A Report  to the Administrator,  U.S. Environmental Pro-
      tection  Agency,  Mobile  Source Pollution   Control   Program,  Emission
      Control Technology Division, January, 1975.

6.    Tradeoffs Associated With Possible  Auto Emission Standards, A  Report  to
      the  Administrator,  U.S. Environmental  Protection Agency,  Mobile  Source
      Pollution  Control   Program,    Emission  Control   Technology   Division,
      February, 1975.

7.    Factors Affecting Automobile Fuel Economy, U.S.  Environmental  Protection
      Agency,  Office  of  Air  and Waste Management,  Mobile  Source Air Pollution
      Control, Emission Control Technology Division, September, 1975.
                                      11-12

-------
8.    Automobile Emission Control  -  The  Current Status and  Development  Trends
      as  of  March  1976,  A  Report  to  the  Administrator,  U.S.  Environmental
      Protection Agency, Office  of Mobile  Source Air Pollution  Control,  Tech-
      nology  Assessment and  Evaluation Branch,  Emission  Control  Technology
      Division, April, 1976.

9.    Automobile Emission Control  -  The Development  Status,  Trends, and  Out-
      look as  of December  1976,  A Report  to the Administrator,  U.S.  Environ-
      mental  Protection Agency,  Office  of  Air  and  Waste  Management,  Mobile
      Source  Air  Pollution  Control,  Emission  Control  Technology  Division,
      April,  1977.
                                      11-13

-------
                                SECTION III
III.     Fleet Level Effects

III A.   Fuel Economy  of  1974 and  Newer Vehicles Compared  to Uncontrolled
Vehicles

The  summary  of most fuel  economy/emission relationships  studies  is repre-
sented  in  a figure  like  that shown  in  figure III.A-1.   In  general, those
that claim  fuel  economy penalties for controlling  emissions  have estimates
in  the  region  labeled A.    In  region  A, for  each  and every  percentage
reduction  there   is  a  penalty  and  the  percentage  value of the   penalty
increases as the  stringency increases.   EPA can fairly be said to have made
estimates like those shown  in B  in the past - a  small effect - it could go
either  way.   Almost  nobody  can be  found that  espouses  the relationship
labeled as C in the figure.

In  order  to investigate this issue with  some  data,  SAE  paper 810386*  was
studied.  The nominal  emission standards  in figure  4  of  that  reference were
transformed to percent  reductions from an uncontrolled base  of 8.7 HC, 87.0
CO,  3.5  NOx.   The base, nominal  emissions standards  and percent reductions
are  shown  in  table III.A-1,  along with  the constant-weight-mix fuel  economy
ratio.   The  term  "nominal  emission  standard"  is used  to denote  the most
typical emission  requirement,  and  is  used to account  for those cases where
waivers  (1981  Federal) or  optional  standards (California)  make  a single
triplet of values not precisely correct.

The  analysis  is  based  on each model  year's  total fuel  economy change from
the  pre-emission  control  level  and  total emission standards  change,  also
from  the  pre-control   level.   The   data  in  table  III.A-1   are  presented
graphically in figure  III.A-2 through figure  III.A-4.   It should be  pointed
out  that  these  figures are   at  a constant  weight  mix, so that  the  im-
provement in fuel economy  due to  reduced  weight  cars takin3 a  larger
*   J.A. Foster, J.D.. Murrell, and  S.L.  Loos,  SAE Paper 810386, "Light Duty
    Automotive Fuel Economy....Trends through 1981",  U.S. EPA.
                                    III-l

-------
                           Figure III.  A-l
            Concepts of  Changes in Fuel  Economy with
            Changes in Stringency of Emission Standards
£  °
§  ".
2  -H
O
UJ
UJ
U_
a
UJ
_i
o

I!
CJ  "
OO
a
UJ
a
   o
   CO
o
u
LU
UJ
      d.oo
20.00
40.00       60.00
STRINGENCY
80.00
1QO.QQ
         EXPRESSED flS PERCENT REDUCTION FROM UNCONTROLLED
                        IIT-2

-------
                                   Table  III. A-l

                            Percent Emission Reductions
and
Fuel Economy Ratios Compared to Uncontrolled Emissions


and
Fuel Economy


(Nominal Emissions Standards)

Year
pre
1974
1974
1975
1975
1976
1976
1977
1977
1978
1978
1979
1979
1980
1980
1981
1981

Fed or Cal
- control
Fed***
Cal***
Fed
Cal
Fed
Cal
Fed
Cal
Fed
Cal
Fed
Cal
Fed
Cal
Fed
Cal
HC Standard
(% Red)
8.7 (0%)
3.0 (66%)
2.9 (67%)
1.5 (83%)
0.9 (90%)
1.5 (83%)
0.9 (90%)
1.5 (83%)
0.41 (95%)
1.5 (83%)
0.41 (95%)
1.5 (83%)
0.41 (95%)
0.41 (95%)
0.41 (95%)
0.41 (95%)
0.39* (95%)
CO Standard
(% Red)
87 (0%)
28. (68%)
28 (68%)
15 (83%)
9.0 (90%)
15 (83%)
9.0 (90%)
15 (83%)
9.0 (90%)
15 (83%)
9.0 (90%)
15 (83%)
9.0 (90%)
7.0 (92%)
9.0 (90%)
3.4 (96%)
7.0 (92%)
NOx Standard
(% Red)
3.5 (0%)
3.1 (11%)
2.1 (40%)
3.1 (11%)
2.0 (43%)
3.1 (11%)
2.0 (43%)
2.0 (43%)
1.5 (57%)
2.0 (43%)
1.5 (57%)
2.0 (43%)
1.5 (57%)
2.0 (43%)
1.0 (71%)
1.0 (71%)
0.7 (80%)

MPG Ratio**
1.00
1.00
0.94
1.14
1.07
1.26
1.12
1.30
1.14
1.30
1.14
1.28
1.17
1.32
1.26
1.43
1.39
*   0.39 NMHC treated equal to 0.41  THC  for  this study
**  From SAE paper 810386,  page 13,  figure 4
*** Approximate 1975 FTP  equivalent
                                    IIX-3

-------
                     Figure III.  A-2
       Fuel Economy of the Federal and California Fleets
       Divided by the Fuel Economy of Uncontrolled Vehicles
                 Versus Stringency of the HC Standard
            FIXED   WEIGHT MIX
           POLLUTflNT:  HC
     C3
     oi
o
z
o
UJ
a
UJ
o
cc
o
o
CD
a
UJ
o
     co ..
     CNI . .
     a
     CO
     a
     o
O
o
                                         : 77F, 78F
                                         \79F
                                         . 76F
                                           75F
                  74F
. 76C
• 75C
8 IF
80C
80F
80C
79C
77C,
                                                                   8C
                  74C
                  68.00
                              76.00       84.00
                              STRINGENCY
 92.00
    100.00
         EXPRESSED flS PERCENT REDUCTION  FROM  UNCONTROLLED
                        III-A

-------
                      Figure III.  A-3
        Fuel Economy of the Federal and  California
        Fleets Divided by the-. Fuel Economy  of Uncontrolled
        Vehicles Versus Stringency of  the CO Standard
            FIXED   WEIGHT MIX
           POLLUTflNT:   CO
     e>
     OJ
     CO ..
O
O
LU
                                                               8 IF
     O
     OJ
o
oc
                         .777, 78F    • 81C
                        /79F         • 80F
                        : 76F      -80C
                                  .79C
                                  :77C, 78C
                                          . 75C
                      74F
                      74C
CD
O
LU
a
     C3

     O
o
CJ
LU
     C3
     C3
     ^0.00
S3.QQ
76.00        84.00
STRINGENCY
92.00
100.00
         EXPRESSED flS PERCENT REDUCTION  FROM UNCONTROLLED
                         III-5

-------
                      Figure  III. A-4

       Fuel Economy  of the  Federal and California Fleets

       Divided by the  Fuel  Economy of Uncontrolled Vehicles

               Versus  Stringency of the NOx Standard
            FIXED   WEIGHT MIX
           POLLUTRNT:   NOX
     o
v-
s:
o
z:
o
o
UJ

_J
UJ
o
cc
CD ..
     o
     OJ
     C3
     00
CD

d
LU
a
a

a
o
UJ
     o


     o
                                              81F
                                                   81C
         -76F


         .75F



          74F
* 79F



. 76C
. 75C
                                     , 78F
                                                   80C
.79C

-77C,  78C
                                74C
                  20.00
                         40.00        60.00

                         STRINGENCY
            80.00
                                100.00
         EXPRESSED RS  PERCENT  REDUCTION FROM UNCONTROLLED
                         III-6

-------
fraction of  the fleet  is  not shown.   Something  else other  than  weight  is
responsible for  the  trends.  The  figures show  that  since  1975  there have
been no combinations of emissions standards that have caused  fuel economy  to
fall below the line.  There  is  not much of a  trend for  HC and CO,  but that
could  be  because  they  both fall  between about  66%  and  95%  in percent
reduction space.  For NOx there is a wider spread, from 11%  reduction  to 80%
reduction,  but  there does  not  seem to  be  a  consistant  trend  here either.
One thing  is clear, however,  if there  is  a  trend  such as A  (figure III A-l)
in  the  data  it  is  not  showing  up  at   the  constant weight   level   of
aggregation.   If  anything,  the data seem to  reflect  a  trend  more  like the
"C" example.
III.  B. Fuel Economy  of  1975 and Newer  Vehicles  Compared to Previous Year
      Vehicles

Another way  of  associating fuel economy  changes  with emission standards  is
to compare each model  year's  fuel  economy and emission standards with  those
of the preceding year.   This has been done using  two methods.

The  first  method  considers  the   Federal  and   California   vehicle  fleets
separately and considers  fuel economy of  these fleets  on a  constant weight
basis.  The  constant weight basis  is the  1978 model  year weight  mix of  the
Federal fleet.  Referring to the emission standards  given earlier in  table
III.A-l for  the various  model years, this approach assigns   (for example) a
35% reduction in  the  49-States NOx  standard  for  1977 (2.0 grams/mile) com-
pared  to  1976 (3.1 grams/mile),  and a  50% reduction in the 49-States  NOx
standard  for  1981 (1.0 grams/mile)  compared  to  1980 (2.0 grams/mile).   The
weight-normalized  fuel economy  changes  for  the  49-States  and California
fleets can then be linked to  the emission standards changes of the same  two
subfleets.

The  second  method treats year-to-year changes  in emission  standards  as a
value  equal  to  the 49-States change weighted 90%  and the California change
weighted  10%.   This  yields  an  emission   change   representing  a  pooled
50-States value.   The  corresponding 50-States year-to-year  changes  in fuel
economy  are   determined  using  a  different  analytical   technique than  the
                                     III-7

-------
weight-normalization used  above.   This technique  isolates the  fuel  economy
change due  to  factors other  than  changes in weight  mix,  changes  in  engine
mix within the weight classes, and  changes  in transmission mix shifts  within
discrete weight/engine combinations.   The method is described more fully in
appendix 2  of  this report.  Suffice it to  say  here that  the  resulting  fuel
economy  change,  dubbed  "system optimization",  provides  a  better  estimate
(than  weight-normalized)  of  the  fuel economy  change due  only  to  emission
standards  and  the  emission  control  technology  employed  to  meet   those
standards.

Table  III.B-1  gives  the   results  of  these  two  methods  of  year-to-year
analysis.   Using   either   method,   this  table   shows   that   along   with
year-to-year changes in  emission  standards which have always  been  downward,
fuel economy changes have  always  been upward  (with the single  exception of
1979, when fuel economy  dropped in response to  factors  other  than  emissions
standards, which were  unchanged from  1978).   Figures III.B-1,  III.B-2,  and
III.B-3 illustrate the data from table III.B-1.

In general  it  should be noted  that the  fuel economy  went up in some  years
when the year-to-year change  in a  given emissions  standard was  zero.   These
are plotted on the figures  as zero  percent  reductions.   Figure III.B-1  shows
that fuel economy tended to go up  when no change was made  in  the HC emission
requirements.   As in the case where the  comparison was made  to  uncontrolled
vehicles  as a base,  figures  III.B-1,   III.B-2,   and  III.B-3  indicate  no
penalty for changes  made  from one  year to  the  next even when  these changes
are substantial reductions  in emissions.   In  fact  the  resulting  fuel economy
effects are shown to be positive,  not  negative.

III.  C.  Fuel Economy of Federal  versus  California Vehicles

There is yet another method of analysis  that  can be applied  to  the certifi-
cation  data.   Within  a  given model year,  the   system  optimization  fuel
economy difference  between the  49-States and California fleets can be  com-
pared,  along   with  the  differences  in   49-States  and  California  emission
standards.  This would indicate, at a  fixed point in time, the  fuel economy
effects of two levels of emission  standards.  If one assumes that at a given
                                    III-8

-------
                                   Table III. B-l
                       Changes in Emission Standards  and  Fleet
                  Fuel Economy Compared  to the  Previous Year  Values

         	Method 1	                          	Method 2	
(Federal and California Fleets Separately)  (Federal and  California Fleets Combined)
           Change in    Weight-Normal
Year     Emission Std.   FE Change**

         Fed  HC,  -50%  Fed, +14% (1.14)
74-75         CO,  -46%
         Cal  HC,  -69%  Cal, +14% (1.14)
              CO,  -68%
              NOx,  -5%
                    Change in 50-State
                       Emission Std.

                         HC,    -52%
                         CO,    -48%
                         NOx,  -0.5%
                    50-States
                  System Optim.
                   FE Change***
                    +11.5% (1.12)
75-76    No Change
 Fed, +11% (1.11)
 Cal,  +5% (1.05)
No Change
+ 8.8% (1.09)
         Fed NOx,  -35%  Fed,  +3% (1.03)
76-77    Cal  HC,  -54%  Cal,  +2% (1.02)
            NOx,   -25%
                         HC,    -5.4%
                         NOx,   -34%
                    + 2.8% (1.03)
77-78    No Change
No Change
No Change
+ 0.5% (1.01)
78-79    No Change
 Fed,  -2% (0.98)
 Cal,  +3% (1.03)
No Change
- 2.3%* (0.98)
         Fed  HC,  -73%  Fed,  +3% (1.03)
79-80         CO,  -53%  Cal,  +8% (1.08)
         Cal NOx,  -33%
                         HC,    -66%
                         CO,    -48%
                         NOx,  -3.3%
                    + 2.6% (1.03)
         Fed  CO,  -51%  Fed,  +8% (1.08)
80-81        NOx,  -50%  Cal, +10% (1.10)
         Cal  CO,  -22%
             NOx,  -30%
                         CO,   -48%
                         NOx,  -48%
                    + 2.7% (1.03)
*   More  than  half  of  this  change   in  FE  was  due  to  test  procedure  changes
    (dynamometer loading) made  to  restore  the  rigor  of the 1975 procedure  -  See SAE
    790225, Appendix C.  The  net system optimization  change  independent  of this test
    procedure effect is estimated at -1.0%.
**  Calculated values from figure 4 of SAE Paper 810386, page 13.
*** From SAE Paper 800853, page 36.
                                    III-9

-------
                       Figure III. B-l

                 % Change in Fuel Economy Versus
                   % Change in HC Standard
                        from Previous Year
            POLLUTflNT:   HC
                                              X= System Optimization

                                              • = Weight - Normal
     OJ
     OJ
oc
cc
LU
CO
Z3
o
LU
OC
OU
O
CC
O
O
LU
LU
:D
u_
LU
O
•z.
(X
CD
CD
     CO
     CN;
      i
     CO
     a
                75C
                      . 75F


                    X '75
       ,80Fx 80
          (No change)
                       76 x
                           • 80C, 81F


                           .76C

                    77 j|l- x 77F, 79C


                        78X ?3Fi" 78C


                        79V 79F
      -80.00
              -60.00
-40.00
-20.00
0.00
20.00
            7. CHflNGE  IN  EMISSION STflNOflRD FROM PREVIOUS YEflR
                          111-10

-------
                       Figure  III.  B-2

                     % Change  in Fuel Economy Versus

                       % Change in  CO Standard

                         from  Previous Year
            POLLUTflNT:   CO
     a
     C3

     0*
     a
     o
     oJ
cc
01
     CD
     C3
UJ
QC
Q_
O
GC
O

O
l_>
UJ

_l
UJ
O
u_
O
-z.
(X
     C3
     O

     CD
     C3

     OJ -.
      I
     CT
     CZ>

     CD
  75C           75F
              •


            X  75




           . 81F






      80F.    80, 81
                                              81C
(No change)
                             76F


                          X  76
                           •  80C


                             76C

                       77   77F, 79C

                           . 77C

                       78 X
           79
                             78F, 78C

                             79F
      -80.00
    -60.00
-40.00
-20.00
0.00
20.00
            7. CHflNGE  IN EMISSION  STflNDflRO FROM  PREVIOUS  TEflR
                           III-11

-------
                      Figure  III  B-3

                    a/. Change  in Fuel Economy Versus

                       % Change in NOx Standard

                         From Previous Year
            POLLUTflNT:   NOX
     o
     en
     OJ 4-
     CN
cc
cr
UJ
UJ
cc
Q_
O
CC
o
z
o

LU

_l
LU

U_
LU
O
     o
     o
     CO
     C3
     C3

     oi
     I
     o
     CD
                            81F
        •81C

      .  30C
                         81X     77FX 77  77C
               (No  change)
        75C-  • 75F


             X  75

              ' 76F


             X  76
                           .  76C


                    80  x  .  79C,  80F


                    	X  78

                           N73F,  73C
                             79F
      -80.00
                   -60.00
-40.00
-20.00
0.00
20.00
            '/. CHflNGE  IN  EMISSION STRNDflRD FROM PREVIOUS TEflH
                            111-12

-------
point in time, roughly the same emission control and  fuel  economy technology
is  available  to  the Federal  (49-States)  and  California  fleets,  then  the
technological capability  could be  said  to be  the same.   This  is  probably
roughly  the  case,  but  it must  be  pointed  out  that  the emission  control
technology  used  in California  in  a given  year  in  some  cases  is  more
sophisticated, due  to the  use of  California  as  a proving  ground for  the
newer  technology.   The  results  of  using  this  method  are given  in  table
III.C-1.  Figures III.C-1, III.C-2  and III.C-3  illustrate the  data  of  table
III.C-1.

Looking at table III.C-1  and  figures  III.C-1  through  III.C-3 it  can  be  seen
that  the  nature  of the  relationship  has  changed.   Comparing  49-States  to
California for the  same year generally shows California  to be more  stringent
in emissions and lower in fuel economy.

From  table  III.  C-l the  Federal vs.  California data appear  at first to  be
five equations in four unknowns:

              -73h - 40c -25n + k = -11.8f
              -73h - 40c -25n + k = -11.If
              -73h - 40c -25n + k = -10.If
               -Oh + 29c -50n + k =  -4.6f
and            -Oh +106c -30n + k =  -1.7f

where: h, c,  and n = % change in  HC,  CO,  and NOx  coefficients respectively
f= % change fuel economy and k = constant.
At second glance, however, the first  three equations have  no  possible  unique
solutions for h, c, and n, since  the  right  sides of the three equations  are
unequal.  Also,  the  constant  terms (k) have no  basis  in reality, since  the
FE  change due  to  no emissions  changes must  be  zero  (treating  emission
differences  as   the  sole  source   of  FE  change).   Interpreting  the  -11.8,
-11.1, and -10.1 figures as random variances around the  true A FE  that comes
from  a  combined -73% A HC, -40% A CO,  and  -25% A NOx,  we can average  them
and construct 3  equations.  Setting k  =  0,  there are now 3  equations in  3
unknowns.
                                  111-13

-------
                                     Table III. C-l

                            Federal vs. California Emissions
                                           and
                        Fuel Economy (System Optimization Method)

                     Difference in Emission                System  Optimization
Year                        Standard                           FE  Difference*
*From SAE paper 800853, page 50,
 and SAE paper 810386, page 12
1977                        HC,  -73%
                            CO,  -40%                           -11.8%  (0.88)
                           NOx,  -25%

1978                        HC,  -73%
                            CO,  -40%                           -11.1%  (0.89)
                           NOx,  -25%

1979                        HC,  -73%
                            CO,  -40%                           -10.1%  (0.90)
                           NOx,  -25%

1980                        HC,  "same"
                            CO,  +29%                            -4.6%  (0.95)
                           NOx,  -50%

1981                        HC, "same"
                            CO, +106%                            .-1.7%  (0.98)
                           NOx,  -30%
                                     111-14

-------
                          Figure  III.  C-l


        % Difference in Fuel Economy  Versus % Difference
        in  HC  ^--.idard for the California Fleet Compared
        to  ths Federal Fleet in  the Same Model Year
            POLLUTflNT:   HC
O

(—
CE
Q_
O
UJ
I—
CD
>-
CO
O
CJ
UJ
UJ

U-
LU
O
z
en

CJ
UJ
o
oc
UJ
Q_
     C3
     C3

     C3
     C3

     "*'
     I
     CO
     I
     CN

     T
                 (No Difference)
                                                             81
                                                             80
            O  79

-------
                          Figure III. C-2

        % Difference  in  Fuel Economy Versus % Difference
        in CO Standard  for the California Fleet Compared
        to the Federal  Fleet in the Same Model Year
            POLLUTflNT:   CO
en
fvj
o_
o
in
en
>-
o
o
UJ
UJ
O
z
CE
UJ
o
oc
UJ
Q_
     00
      I
     O
     i
     to
                  (No  Difference)
O 79
O 78
O 77
      -60.00
                   -20.00
                                                           O  81
                                   O 80
                  20.00
60.00
100.00
—I
 140.00
       7.  CHflNGE IN EMIS.  STRNDRRD  ( CflLIF  VS  FED )  IN  THE SOME YEflR
                             111-16

-------
                     Figure III. C-3



   % Difference in Fuel Economy Versus  %  Difference

   in NOx  Standard for the California Fleet  Compared

   to the  Federal Fleet in the Same Model Year
            POLLUTflNT:  NOX
2
O
LU
H-
cn

en

>-

o
z
o

LU


LU
LU
O


(X


CJ
LU
O
cc
LU
Q_
     C3
     C3

     CO

      I
     CN

     T
     C3

     CD
                 (No Ditference;
                    O 80
                                             O  81
                    O 79


                    O 78

                    O 77
      -60.00
                   -50.00
-40.00
-30.00
-20.00
-10.00
       '/.  CHflNGE IN EMIS.  STflNDRRD  ( CflLIF  VS FED UN  THE SRME TERR
                             111-17

-------
              -73h  -40c -25n = -11.Of
                    +29c -50n =  -4.6f
                   +106c -30n =  -1.7f
The solution to this system is:

         h = 0.110246, c = 0.011964, n = 0.098939

         (all decimals are necessary)
11.0 = 11.8 + 11.1 + 10.1
             3
So the dependence of % A FE on % A X, where X = HC,  CO,  NOx is:

    % A FE = .110246 (% A HC) + .011964 (% A CO) + .098939 (% A NOx)

Note  that  all   coefficients  are  positive,  meaning  that  if  any  emission
standard  goes   down   (tighter  control),   FE   also  goes   down  (suffers   a
penalty).

In the ballpark sense, FE responds at 1/10  sensitivity  to HC and  NOx changes
(lowering either standard by 50% would  penalize fuel  economy by  5%),  but  is
less sensitive  to  CO  (lowering the CO  standard  by  50%  would penalize FE  by
.012 x 50 = 0.6%).

The previous equation can be used to  calculate  a fuel economy difference  for
sets of standards which may be of particular interest:

    1.   Base      0.41 HC,  3.4 CO,  1.0 NOx

    2.   "80"      0.41 HC,  7.0 CO,  2.0 NOx

    3.   "Hybrid"  0.41 HC,  7.0 CO,  1.5 NOx

The HC change for all cases is zero.   For Base versus  "80" or Hybrid  the  CO
                                  111-18

-------
change is (7.0 - 3.4)/3.4 = 1.058824 (105.8824%).   The NOx changes are
1.0000(100%) and 0.5(50%).

"80" vs. Base = 0.110246(0) + 0.011964(105.8824) + 0.098939(100)

"80" vs. Base = 0 + 1.266770 + 9.8939 = +11.2%

Hybrid vs. Base = 0 + 0.922320 + 4.946950 = +6.2%

Note that this  is  the  only fuel economy relationship  quantified.  The  other
positive trends could also have been quantified.

As a check  on the accuracy of  the  equation relating  Federal and California
fuel economy in the same model year  for  more  general  application,  the change
in fuel  economy from  the  1980  to the 1981  Federal  standards was  compared.
In the previous calculations,  this would be the negative  of  "80"  vs. Base  or
a  predicted  loss  of  11.2%  fuel  economy  for   this  change   in  emission
standards.  This compares poorly with  the  2.7%  increase  in fuel  economy from
1980 to  1981  due  to system optimization  (from  table  III.B-1),  both in sign
and   in  magnitude,   and   leads   to  the.  conclusion  that   while    the
California/Federal  relationship  for prior years  may  be quantifiable,   that
relationship has little utility when one attempts to  predict changes due  to
differences in Federal or 49-State emission standards.

In summary,  California vehicles have  achieved  less  fuel economy  than  their
Federal counterparts in recent years.  The difference  has been declining and
is now 1.7% less.

-------
III.  D.    The Relationship Between Emission Standards or Levels  and  In-use
            Fuel Economy

III.  D.I   Background

For the  past  four years EPA  and DOE have  analyzed  differences between  EPA
test fuel economy and "on-road" fuel economy of  in-use  cars.   The  purpose of
that work was to measure fuel economy shortfall,  that is,  the  offset between
"on-road" fuel economy and fuel economy as measured on  EPA tests.   The fleet
shortfalls reported  in  the  404  Report* are typical of  the results  of these
early analyses;
              Model Year      Road Shortfall (vs. EPA Composite MPG)
1974
1975
1976
1977
1978
1979
- 6.9%
-12.4%
-19.2%
-19.6%
-19.2%
-16.1%
Note that  the  shortfall  increases with  time  (model  year) through  1977,  after
which  it  decreases.   Before  attempting  to  relate   this  trend  to  possible
emissions  influences,  however,  we must  consider the  matter  of vehicle  tech-
nology.

Since model  year 1978,  manufacturers  have introduced  changes  both in  engine
technologies and in drivetrains that result  in a much less homogeneous mix  of
technologies  in the  U.S.  fleet.   Recent analysis  disaggregates  the  large
sample of  in-use vehicles in  the  current data base  (model years 1978  to  1980)
into technology-specific  subgroups  to. consider  the  shortfall  for each  tech-
nology subgroup.
*   EPA, "Passenger Car  Fuel  Economy:  EPA and Road",  Report  EPA-460/3-80-010,
    September, 1980.
                                       111-20

-------
For  the  purposes  of this  discussion,  the following technologies  are   defined
as "conventional"  technologies.
                                                                       i

     0 Front engine, rear wheel drive vehicles

     0 Spark ignition (S.I.) gasoline engines

     0 Carburetor for fuel metering

      Automatic transmissions

The  1974-78   vehicles   studied   in  early  analyses   employed   predominantly
conventional technologies.  "Alternative" technologies are defined as follows:


     0 Gasoline fuel-injection for fuel metering

     0 Front engine, front-wheel drive vehicles

     0 Diesel engines

      Manual transmissions

A  contractor  working  for  both  EPA   and  DOE   has   recently   performed   a
statistical analysis  of the current  in-use  data base  to study  shortfall  for
technology-specific subgroups  of  vehicles.   The results of this  analysis  sug-
gest that vehicles  utilizing some   of  these  alternative technologies had lower
shortfall than conventional technology vehicles.

The  objective of this discussion  is  to  examine  the  engineering  principles  that
govern the  MPG performance of alternative  technologies on  the  EPA test  pro-
cedure and under in-use conditions.   The results  can be used to  interpret  the
observed shortfalls of  alternative  technologies.  The discussion  examines  each
of  the  four   technologies  in comparison  to  their  conventional  technology
counterpart.  Thus, manual transmissions are compared to automatics, fuel  in-
                                       111-21

-------
jected S.I. engines  to  carburetted  S.I.  engines,  front-wheel drive vehicles to
rear-wheel drive vehicles and  Diesel  engines  to  carburetted S.I.  engines.  The
synergy  between multiple  alternative  technologies  is  not  examined  in  this
analysis,  although  it may be  that  vehicles  with  combinations of  these  tech-
nologies  will  exhibit  greater reductions  in shortfall  than will any  single
application of technology.

Differences in  shortfall of  the four  technologies in  comparison to  conven-
tional technologies are associated  with  responses  to  the  following performance
factors:

    0    The response of the  technology to  the  EPA  test  procedure  (FTP  and
         HFET).  The  EPA fuel  economy is  measured  over fixed driving  cycles on
         a  dynamometer  and the. technology's  response to  the EPA  procedure
         will affect  the shortfall.

    0    The in-use maintenance  characteristics  of the technology.  The  state
         of tune of the vehicle is an important contributor to  shortfall.

    0    The response of the  technology to  non-FTP  driving  conditions.   The
         effects of  cold  ambient  temperatures, extended  idling and   different
         driving cycles are also important contributors to  shortfall.

Manual Transmissions
Earlier studies  on  shortfall showed  that  between model  years  1974 and  1977,
shortfall for manuals  started  at a level  on par with  automatic  transmissions
in  1974  and  increased  to approximately  10 percent  above  the  shortfall  for
automatics by 1977.  EPA* explained that manual  transmission shift  points  were
variable  in  the hands  of  the user,  whereas the automatic  was  calibrated  to
shift  at  preprogrammed  points.   It  was  also  suggested  that  vehicle  owners
drove,  on the  average,  more aggressively than on  the EPA cycle, i.e.,  the
shifts are generally at higher engine speed/load points thus leading to higher
    Ibid.
                                        111-22

-------
shortfall  for  manual  transmission  equipped vehicles  in  comparison  to  those
equipped with automatic transmissions.

New  analyses  by  Ford,  GM,  and DOE  contractors,  with  much  larger  and  more
recent data bases show  the  reverse  to be true, i.e., manuals  have  less  short-
fall   than automatic transmissions.   The  data bases  included vehicles  from
model  years  1978  through  1980.   While the  earlier  results  may  be  suspect
because of the small sample of  vehicles with manual transmissions  in the  data
base,  there  may  be  two technological  reasons  behind this  change:   (i)  EPA
changed  the  manual  transmission shift points during  the FTP  for  model  year
1979 and  succeeding  years.  In previous years,  manufacturers  were allowed  to
specify  shift  points  and  patterns  which  were  often unrealistic,  but  which
tended to maximize fuel economy on  the FTP.  EPA changed  the test  requirements
to restore the  rigor  of the 1975 procedure, and appears  to have succeeded  in
reducing shortfall for  vehicles equipped with manual  transmissions.  However,
automatic  transmissions  were  unaffected   by  this  ruling,  leading  to  one
explanation  for   the  observed  change  in  relative  shortfall.    (ii)   As  fuel
economy  became  more  important,   manufacturers  optimized  shift   points  for
automatic  transmissions so that  upshifts  occured as  early  as  possible  and
downshifts were  delayed during the FTP  cycle.   Torque  converter  lock-up  was
also calibrated  for  maximum  effectiveness on the  FTP,  i.e.,   the  lock-up  is
engaged more frequently on the test  than  in  "real-world"  driving.  This  may
have led  to an  increase  in  shortfall for newer automatics in comparison  to
automatic  transmission  equipped vehicles  of earlier  years.  This,  in  turn,
provides a second explanation for  the observed  changes  in  relative  shortfall
between manual and automatic transmissions.

Fuel Injection

EPA's Emission  Factors  program annually tests  a large sample of   vehicles  on
the  FTP and  checks  these vehicles  for maladjustments  and mistuning.   EPA  has
noted  that carburetor  idle  mixture   and  choke maladjustments  are  the  most
common malperformances  in  these vehicles  and that  the  adjustments were  pre-
dominantly  richer than  the manufacturers'  recommendations,  leading  to  fuel
economy  reductions   as  large  as  10   percent  depending  upon  the degree  of
maladjustment.
                                    111-23

-------
Fuel  injection  systems could  be  expected  to  have lower  shortfall than  car-
buretted vehicles primarily because most  users  are less likely  to  tamper  with
fuel injection systems than carburetted vehicles,  for  two  reasons.   One reason
for  tampering  and  maladjustment  is  customer  dissatisfaction  with  drive-
ability,  and it  is  generally conceded  that  fuel injection  vehicles  offer
superior  driveability  in comparison  to  carburetted  vehicles.   The  second
reason for a  possible  relatively  low  level of maladjustments in fuel  injected
vehicles is  user  unfamiliarity with the system, leading to  reduced tampering.
However, these differences could  diminish for MY  1981,  because the choke  and
idle mixture will be much less easy to adjust in use.

Fuel  injected vehicles  also   should  have  lower  shortfall  than  carburetted
vehicles because,  at   low ambient  temperatures  and during  transients,   fuel
injected vehicles need less enrichment than  carburetted vehicles.    A  Canadian
study* found that fuel injected vehicles showed  smaller  decreases in fuel
economy at cold ambients  in comparison to carburetted   vehicles.   This  is  the
result of fuel being delivered to the  intake  ports, rather  than to the intake
manifold as  in carburetted  vehicles  where  excess  fuel  is required to  ensure
adequate evaporation  and transport   of fuel  to  the  cylinders.  The  precise
delivery of  fuel possible in  fuel  injected  vehicles also reduces the  need  for
enrichment  during  transient   operation.   Operation  at  ambient  temperatures
below those  encoutered on the FTP, and  rapid accelerations and decelerations
not encountered on the FTP,  are important causes of shortfall.

Front-Wheel Drive

On the chassis dynamometer, FWD vehicles  are penalized relative to  rear wheel
drive (RWD)  vehicles,  regardless  of  whether the  power  absorption unit (PAU)
setting on  the  dyamometer is   determined  by coastdown techniques  or by EPA's
"cookbook" method.  To a  large extent  it  is believed  that this  is  because  the
FWD vehicle  places  a   greater  load on the  driven wheels  than  a RWD  vehicle.
For  example,  a  FWD vehicle  with a  60/40   weight  distribution will  have  33
percent more load on the driving wheels than
    N. Ostrouchov,  "Effects of. Cold  Weather on Motor  Vehicle Emissions and
    Fuel Consumption - II", SAE Paper 790229,  1979.

                                 Ul-24

-------
 a  RWD  vehicle with  a  55/45  weight   distribution.   These  distributions are
 nominal values  for each  type.   The  additional  load  on  the  driving  wheels
 increases  the  tire  rolling  resistance,   and  hence,  the   actual  horsepower
 required  to  drive  the  vehicle  on  the chassis dynamometer.

 If  the EPA  "cookbook"  technique  is used  to  determine  the PAU  setting,   these
 losses are uncompensated as the  present formula does not differentiate between
 RWD  and FWD  vehicles.   Although coastdown  techniques  correct  this situation
 somewhat, the FWD  vehicle  is still  penalized.   This is  because the PAU setting
 is  determined for  tractive  effort  at  50  mph during the  coastdown procedure.
 At  speeds below 50 mph  the  FWD  vehicle must still overcome.a greater  load on
"the  dynamometer  than  an  equivalent  RWD vehicle.   This  is because  rolling
 resistance is the  dominant  force  at low speeds,  while aerodynamic drag is more
 important  at high  speeds.   Since about 75  percent  of  the mileage  in  the EPA
 test  is accumulated below 50 mph, the  FWD vehicle  suffers  a  net fuel economy
 penalty in  the  FTP compared  to  the RWD  vehicle;  this would  translate   into
 decreased shortfall for  FWD  vehicles in comparison to RWD vehicles.

 A  second, possibly minor,  effect  which  could  reduce  the  shortfall of FWD
 vehicles  relative  to  RWD vehicles is the  influence of  the  cooling fan  during
 the FTP test.   Since  the vehicle  is stationary during the test,  cooling air is
 provided  by  an external fan.   This fan operates  at  constant   speed  and does
 not provide  adequate  cooling air  at higher vehicle speeds.    Most FWD vehicles
 have  electric fans which  are  controlled  thermostatically;    these  fans remain
 on during much of  the FTP,  because  of  the inadequate  external cooling, unlike
 the real  world situation.   The electrical  power  absorbed  by the cooling fan is
 supplied  by  the engine  through the  alternator.   This power requirement lowers
 the  fuel economy  on  the FTP  relative to "on-road"  conditions,  resulting in
 decreased  shortfall  for FWD  vehicles.   RWD vehicles,  a  majority of   which
 employ engine  driven fans, do  not have   this  difference  in  operating  mode
 between FTP  and "on-road" conditions.  While  the effect  of the  cooling  fan is
 believed  not  as  significant as  the  effect  of  tire  loading, the  cooling fan
 does  make a  contribution  to shortfall reduction  of  FWD vehicles  relative to
 RWD vehicles.
                                        111-25

-------
Diesel
Diesel engines differ markedly from spark ignition  (gasoline) engines  in  their
fuel delivery  systems and  the  type of  combustion  employed.  These  principal
technological differences could account  for  decreased shortfall in  comparison
to spark ignition engines.  The reasons are  as follows:

    (1)  The fuel injection  system  in  the  Diesel engine is  factory  calibrated
         to tight tolerances and sealed at the factory. Spark ignition engines
         on the  other hand, have  carburetors where  the  user  can adjust  the
         idle  air/fuel  ratio  and  the  choke.  As  detailed earlier,  EPA  has
         found that a large majority of spark ignition engines  are maladjusted
         to richer  air/fuel  ratios,  leading  to  increased shortfall.   Diesels
         on the other hand,  are rarely  maladjusted.

    (2)  In Diesel  engines,  the fuel  is injected  directly  into  the  cylinder
         head,  unlike  carburetted  S.I.  engines  where  fuel  is  generally
         distributed  via  an intake manifold  to  the  individual cylinders. At
         low ambient  temperatures, Diesel engines  need  very little  enrichment
         in comparison co an S.I.  engine, where extra fuel is needed to ensure
         adequate vaporization  and transport  of fuel to the  cylinders.

    (3)  Diesel engines  are less  sensitive  to  transient and  non-FTP  driving
         modes than carburetted S.I.  vehicles  in  that  the  fuel consumption
         changes  are  less dramatic.   This  is due  to two   reasons:   (a)  the
         Diesel consumes  very  little  fuel  at idle  in  comparison to  an  S.I.
         engine  (up to  70  percent  less).    Thus,  extended  idling,  common in
         inner city driving, has a much smaller impact on the fuel consumption
         of Diesels than of  S.I.'  engines;   (b)  transient   operation  such as
         sharp accelerations  and  decelerations  not  encountered  on  the  FTP
         increase fuel consumption dramatically for an S.I.  engine but not as
         much for a Diesel  engine.   A carburetted  S.I.  engine  has  very  poor
         transient air/fuel  ratio  control and requires special devices such as
         acceleration  enrichment   pumps and  deceleration   fuel  shutoffs to
                                      I11-26

-------
    control the transient air/fuel  ratio.   Diesels,  on the other hand,  use  an
    accurate  system  of   fuel  metering  where  transient  operation  does  not
    disturb the combustion process as much.

The combined  effect of reduced  tampering,  lower  enrichment at  cold  ambients,
and decreased sensitivity  to  variations  in  driving  cycle  should reduce  the
shortfall for Diesel engines in comparison to S.I. engines.

III. D. 2.    Technology-specific In-use Data

Against the background above, which theorizes why  some advanced technologies
should  have  lower  shortfall  behavior,  we  can  now  examine  what actual   data
reveal.

Figure  III.D-1 shows  the  shortfall  characteristics  of  a  number  of  vehicle
technologies  expressed as  the  ratio of  road gallons per mile, to EPA  55/45
gallons per mile, plotted against the EPA 55/45 MPG  (this  ratio  is  the  same  as
EPA MPG/Road MPG).

The slanted   lines  are regression  lines  for  three  technology  subclasses  of
vehicles:  all are  rear  wheel drive, carbureted  (gasoline) cars.   The  topmost
line,   labeled "Automatic" consists almost  completely of  standard  (non-lockup
or  overdrive) automatics, while the  "Manual"  line represents just that.   The
band  around  the  Manual  line  is  the  95%  confidence  interval.   The  95%
confidence interval for Automatics is  within the  width of the line.

The line  labeled  "Auto-lockup and/or  0/D"  has  been added to the chart  on  the
basis of  a recent finding*  that  automatic  overdrive  gives  a  shortfall   between
that of manuals  and standard automatics.   The assumptions that  this  line has
a  slope  parallel  to the other two  lines,  and  that it also   represents  lockup
automatics, whether or not overdriven, are our own  assumptions.
    South, "1978 to 1980 Ford On-Road Fuel Economy", SAE Paper
    810383, February 1981.
                                       111-27

-------
                                                               Figure III.  D-l
i
K>
oo
       Impact of

       Technology

       on Shortfall

       1S78-1980 CARS
                                     15
                           I

25           30           35

  EPA Composite MPG

-------
The  spots  and vertical  bands on  the figure  require additional  explanation.
Each spot represents a particular technology, and the vertical bands   span  the
95% confidence intervals.   For some  technologies,  these  intervals  are  large
because the sample sizes are small..  The  technology  descriptions   are:
         Fuel System:
FI  = Fuel injected gasoline
 C = Carbureted gasoline
 D = Diesel
         Transmission:
 A = Automatic
 M = Manual
         Drive:
 FWD = Front
 RWD = Rear
The subscripts for some groups designate two  inherently different  subsets  of  a
given  technology.  This becomes  obvious  when looking  at  table III.D-1, which
gives the number of cars,  and model types,  included in each spot.
                                        111-29

-------
                                TABLE III.  D-l
                        EXPLANATION OF FIGURE III.  D-l
Technology Group

  (1) FI/A/FWD1
  (2) FI/A/RWD
  (3) D/A/FWD
  (4) D/A/RWD
  (5) D/M/RWD
  (6) C/M/FWD2
  (7) C/A/FWD1
  (8) FI/A/FWD2
  (9) C/A/FWD2
 (10) FI/M/FWD
 (11) C/M/FWD1
 (12) D/M/FWD
 (13) C/M/ FWD1
No. Cars
Models Included
     8         All Eldorados
    14         13 Sevilles + 1 BMW
     2         Toronados
   191         Half GM,  rest Mercedes & Peugeots
    40         39 Peugeots,  1 Mercedes
    90         Fiestas & Japanese,  all 1978 models
    26         All GM:  Rivieras,  etc.
     5         Rabbits & Foxes
    83         78-79 Japanese, Omnis,  1980 X-cars
    73         Rabbits,  Foxes, Sciroccos
   184         Same as (6) plus Omnis, all 1979's
    72         Rabbits & Dashers
   411         1980 model Fiestas
                                        111-30

-------
Interpretation

The following can be gleaned from figure III.D-1 and table III.D-1:

    the behavior of the eight Eldorados in set (1) is anomalous.

0   Fuel injection makes no significant difference in shortfall,  compared
    to carbureted versions of similar vehicles.

0   The high shortfall for the 90 cars in set (6) can be attributed  to
    the 1978 test procedure, not to the cars themselves;  nearly 600  of
    the same types of cars (but 1979-80 models)  included in sets  (11)
    and (13) show no such high average shortfall.  For all three  sets,
    (6), (11) and (13), average road MPG is consistently about 30;
    they were rated by the 1978 test at about 36, and by the 1979-80
    test at about 31.

0   Rear wheel drive Diesels have essentially the same shortfall  as
    KWD manual gasoline cars.

0   Transmission type makes no significant difference in shortfall for
    front wheel drive cars.

0   The location of set (12), the VW front wheel drive Diesels,  on the map
    would.appear to be due to their front wheel  drive rather than
    their "Dieselity" .

0   The bottom line for all of this is that these data suggest four
    distinguishable technology groupings, each with its own shortfall
    algorithm:

    Front wheel drives,                     1/R  = 1.02/E

    RWD Manuals and Diesels,                1/R  = 0.70/E  + 0.016
                                         111-31

-------
    RWD Automatics, lockup or 0/D,          1/R = 0.77/E + 0.016
                     (gasoline)

    RWD Std. automatic (gasoline)           1/R = 0.85/E + 0.016

           where R = Road MPG and
                 E = EPA 55/45 MPG

Implication

When unique  shortfall  behaviors of  specific  technology strata are  accounted
for, time  trends  in aggregated fleet shortfalls  can result from  time  changes
in the mix of  the  various  technologies.   As  an example, this  type of  analysis
was  done  for  Chrysler  Corporation,  who has changed from  almost  entirely
"conventional"   vehicle  technology  in  1975  to  almost  entirely  "advanced"
vehicle technology in  1981.   Table  III.D-2  shows the results.  In the  earlier
years,   we  would  expect  increasing shortfall  for  the conventional  part  of
Chrysler's fleet simply  because the shortfall algorithm for these vehicles  is
MPG dependent,  and  overall  fleet MPG is  increasing.   In fact, the  calculated
shortfall  for  conventional  vehicles continues  to  worsen  through  1981.   As
advanced technologies  increase  to significant market penetrations in the  later
years,  however, their  lower  shortfall  characteristic influences overall  fleet
behavior more and more, and aggregate fleet  shortfall decreases.

Understanding  now  the  significant  role  of  vehicle  technology changes in the
shaping of  time  trends in fuel economy shortfall,  let us  compare  technology
specific calculated shortfalls  for  the  entire fleet of manufacturers with the
latest  observed shortfalls,  in table III.D-3.
                                          111-32

-------
                                    Table III. D-2
Model
Year
1975
1976
1977
1978
1979
1980
1981
EPA
MPG
14.7
15.9
15.7
17.8
19.8
20.0
25.6
Example of Variation in Calculated,
In-Use FE Shortfall (Chrysler Corp
Technology-Specif ic
. Domestic Fleet)
Shortfall for
RWD. Automatics % Use of Advanced
(Conventional Technology) Technology *
- 7.7%
- 9.2%
- 9.0%
-11.0%
-12.4%
-12.3%
-14.3%
3%
6%.
8%
12%
24%
88%
96%
Fleet
Shortfall
- 7.6%
- 9.0%
- 8.9%
-10.3%
-10.7%
- 5.5%
- 5.1%
(*) Manual or lockup transmissions,  overdrive,  front  wheel  drive.
                                            111-33

-------
                                Table III.  D-3

               Similarity Between Observed Fleet Shortfall and
         Calculated Technology-Specific Shortfall  (All  Manufacturers)
 Model        Observed        Calculated Technology        Federal
 Year     Fleet Shortfall1  Specific Fleet  Shortfall     Emission Stds.'
 1975
 -8.9%
-7.2%
1.5/15/3.1
1976
1977
1978
-9.4%
-15.4%
-15.0%
 1979
 1980
 1981
-10.2%
-9.6%
10.6%
•11.7%
11.5%
10.4%
9.7%
1.5/15/3.1
1.5/15/2.0
1.5/15/2.0
1.5/15/2.0
.41/7/2.0
.41/3.4/1.0
(1)   From Contractor analysis (EEA),  January  1981  (unpublished)

(2)   Calculated using only technology-specific  shortfall  behavior,
     no model year dependence assumed.

(3)   HC/CO/NOx grams per mile.

'4)   Sample size much smaller than prior model  years.
                                       111-34

-------
Note  the  parallel increasing/decreasiag  trends  for the  observations and  the
calculations.  Three  "step changes"  in observed shortfall  are  not  fully  ex-
plained satisfactorily by  the  technology-specific  theory:  the six  percent  in-
crease in shortfall from 1976  to  1977,  the five percent decrease from 1978 to
1979, and the seven percent decrease from 1979 to 1980.

Taking the  second of these first,  there was no  change in  emission  standards
between  1978 and 1979,   so the  five  percent   shortfall  decrease  cannot  be
related to emissions effects.  As mentioned earlier, loopholes in the EPA test
procedures were closed in  1979, and we  attribute  this improvement in  shortfall
to the test procedure.

The 1976  to  1977  shortfall increase  came  simultaneously  with a tightening  of
the NOx standard  from 3.1  to 2.0  grams  per mile,  and could be concluded  to  be
an adverse by-product of  the more stringent NOx  standard.

In the case  of  the 1979  to 1980  improvement  in observed shortfall,  there  was
at the same  time  a  tightening  of  the  HC and CO  (but not NOx) standards,  so  it
could  be  concluded  in  this  case  that  reduced  shortfall  is  a   beneficial
by-product of the more stringent HC and/or CO standards.

The  HC/CO conclusion  relationship  is  less  strong  than  the  NOx  conclusion,
because 1980 data used for this study represented a  much smaller  sample size.

A  test  case for the  premise  that  tighter NOx  control  adversely affects
shortfall will be the in-use data from  1981 model cars, as 1981 NOx  is cut  in
half from the 1980 level.   If  a relationship exists between shortfall and  the
NOx standard change,  it  should certainly appear in  1981 cars.   Unfortunately,
there are no 1981 in-use  fuel economy data currently available.
                                       111-35

-------
                                 SECTION IV

IV.   Data Analysis

The computer data  bases  used to support the  analyses  for this document were
derived  from two  EPA sources;  the  Emission  Factors  data  base,  and the
Certification Division data base which includes tests performed by EPA  and  by
the  individual  manufacturers.   From these  sources,  three  data  bases were
generated  for  use  in this  study.  The  data  bases in  this  study  will   be
referenced as  the EF, CERT/EPA and CERT/MFR data  bases respectively.  They
only include data  for vehicles tested under  the  1975  Federal Test  Procedure
(FTP) and the EPA Highway Fuel Economy Test Procedure (HFET).

Certification records used  to  create the  CERT/EPA and  CERT/MFR data  bases
were  gathered  from  five  certification  data bases.  These  include VEHSUM,
CERTESTSUM, and DFRSLTS, which  are part  of the MICRO Information System, and
files 1200D and 1202D-MFR  (as they appeared on  February  7, 1981).  The  VEHSUM
file  contains  vehicle  descriptions taken  from  the vehicle   identification
sheet.   CERTESTSUM   includes  emission  test   results   and  other   pertinent
information  from  the test data sheet.   Engine  family  deterioration factors
came  from   DFRSLTS.    1200D  included  bag  data   and  1202D-MFR   included
information on whether tests were performed at high  altitude  or  not.

The  data in CERTESTSUM  comes  from  two sources;   a)  tests  run at  the EPA
emissions  laboratory  and    b)   tests  performed   at   the   manufacturers'
facilities.   The  CERT/EPA  data   base,  which  was  created   specifically   to
support  this report,  is  a compilation of  selected  information from  the five
Certification  Division data  bases  discussed  above,  but only  for  vehicles
which were tested at EPA.   Likewise,  the  CERT/MFR  data  base  was limited  to
vehicles  tested  at the manufacturers'  facilities.   The  information  selected
for inclusion in the CERT/EPA and CERT/MFR files is  discussed below.
                                    IV-1

-------
From the file VEHSUM, all vehicles with a Car Line  Code*  of  less  than  50,000
were selected,  except  those whose Sales  Class*  was Both Trucks,   California
Trucks, or Federal Trucks.  The object was to select only light duty vehicles.

The test results used  from  CERTESTUM were restricted to  those  gathered  under
the FTP and   the HFET.   Tests  with Certification Test Dispositions*  of  VOID,
NEWTEST  and  ZEROMILE  were  not  included in  the CERT/EPA  and CERT/MFR  data
bases.   For  the FTP,  the  Test  Types*  included   were  emission  data  tests,
durability tests,  and fuel  economy tests.  For  the  highway  fuel  economy  test
procedure,  only emission data tests and fuel  economy tests were used.

The resulting data set from CERTESTSUM was then joined to the  resulting   data
set from the VEHSUM files.  They were matched by  Internal Vehicle  Number* and
by Version Number*.  In  order  to  eliminate  duplicate test results  in the new
data  bases,   carryover  data  were  assigned   to   a  single  model   year  which
corresponds to the last model year the data were  used.

Using  information  from  the certification data  files 1200D and   1202D-MFR,
high altitude  tests  were removed,  and bag data for  the  EPA tests  were  added
to the new data base.  Bag  data  were not available  for manufacturers'  tests.
This data  base was  then segregated into the CERT/EPA and  EF files.   Table
IV-1 lists the field names  which were  included  in the CERT/EPA and EF  files.
The CERT/MFR file was identical to the CERT/EPA file except  that  the  CERT/MFR
file did not contain bag emissions data.

Combined fuel economy values were  calculated  for each vehicle which  had  both
FTP and HFET  data.   The  objective  was to calculate a  combined fuel  economy
value  for  each  vehicle configuration   for  which  both  urban  and  highway
miles/gallon  (mpg)  data  were  available.  A  method was  selected  to  achieve
    These are  field  names for  the  data base.   Explanations  of these  terms
    can  be  found  in  the  August  28,   1980  letter  from Robert  E.  Maxwell,
    Director,   Certification  Division  of  EPA,  to light-duty  motor  vehicle
    manufacturers.  This letter transmitted the  Supplement to  the  Application
    Format for Certification of Light-Duty Motor Vehicles,  1981 Model Year.
                                    IVr-2

-------
                                        Table  IV-1
                      Information Contained  in the Data Bases Used for This  Study
DATA BASE VARIABLES(FIELOS)
DATA BASF
«SITE
YEAR
81. HC (BAG 1 HO
81. CO (BAG 1 CO)
81.NOX (BAG 1 NOX)
82. HC (BAG 2 HC)
82. CO (BAG 2 CO)
82. NOX (BAG 2 NOX)
83. HC (BAG 3 HO
83. CO (BAG 3 CO)
B3.NOX (BAG 3 NOX)
FFPHC (FTP HC)
FTPCO (FTP CO)
pTPf^jOA ( r T P NOX)
UMPG (URBAN MPG)
HMPG (HWY MPG)
CMPG (COMR MPG)
FEHC (HWY HC)
FECO (HWY CO)
FENOX (HWY NOX)
SITE (TEST SITE)
VEH. (VEH. NO.)
TEST (TEST SEU.)
FTPfiP (FTP 8ARO. P.)
ODOM.MILE
FEBP (HWY BARO. P.)
MAKE (MAKE OF AUTO)
MFR,MFG(MANUF . )
MDYR»MYR(MODEL YEAR)
MODL.MDL (MOOED
DISP.CID
VTRN«TWAN(TRANSM)
*BBL>CARB<# OF BBL.)
#CYL (# OF CYLIN.)
VNRT. INER (INERT I A WT.)
ADHP.HP (ACTUAL DYNO HP)
AIR.1NJIAIH INJECTED?)
CATA (CATALYST)
THER (THERMAL REACTOR)
ENKM.ENFY (ENG FAMILY)
EGH
SUMMARY
CERT-EPA
75-
7V
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X




X


X
X
X
X
X
X
X
X
X



X

(."X"
MEANS THE
VARIABLE
IS AVAILABLE )
EMISSION FACTORS (EF)
HS
80
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X




X


X
X
X
A
X
X
X
X
X



X

81
X
X
X
X
X
X
X
X
X
X
X
V
A
X
X
X
X
X
X




X


X
X
X
X
X
X
X
X
X



X

79
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A
A
X
X
X
X
X
X
X
A
A
A
A
A
X
A
X

rv
X
X
X
X
. X
X
X
X
X
X
X
X
X
X
A
X
X
X
X
X
A
X
X
X
X
X
X
X
X
X
X
A
A
X
X
X
X

78
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

77
X
X
X
X
X
X
X
X
X
X
X
X
X
X
' X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A

76
X
X
X
X
X
X
A
X
X
X
X
X
X
X
X
A
X
X
X
X
X
X

X
X
A
X
X
X
X
X
A
X
X
X
X
X
X
IS
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
A
X
X
X
X
X
X
X
X
X
X
X
7<*
X
X
X
A
X
X
X
X
X
X
X
X
X
X
A
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
A
X

X
73
X
X
X
A
X
X
A
X
X
X
X
X





X
X
X
X
X

X
X
X
X
X
X
X
X
X
X





7?
X
X
X
X
X
x;
X
X
X
X
X
X





X
X
X
X
X

X
X
X
A
X
X
X
X
X
X





LAJW
79
X
X
X
A
X
X
X
X
X
X
X
X
A
A
A
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
A
A
X


HMSF
77
X
X
X
X
X
X
X
X
X
X
X
X





X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOTE-
"SITE!   HS  = HOUSTON  .  LA3W  =  LA  3W  CAT  N  RMSF  = RESTORATIVE  MA INT   SAN  FRAN.
                                         IV-3

-------
                                  Table IV-1 (con't)






DATA  SASE VARIABLES(FIELDS)  SUMMARY  (  "X"  MEANS THE  VAPIAHLE  IS  AVAILABLE  )
DATA 8ASE
«SIT.F
. ,, YE/.K
MAL.DISP(MAL AOJ U1SP)
AXLR»AXRA (AXLE RATIO)
MODI (ENG MODIFICATION)
PCV
TIMING
INT" (INTERNAL NO.)
VRSN (VERSION)
VID (VEH. IDENT.)
CLIN (CAR LINE)
OVUR (OVERDRIVE)
HOKE
STRK (STROKE)
RTHP (RATED HP)
ETYP (ENG. TYPE)
XCR6 (MO. OF CAKBS)
FIN (FUEL INJ.)
CMPR (CUMP. RATIO)
N/VR ( N/V RATIO)
ECS1 (EM CONT SYS 1 )
ECS? (EM CONT SYS ? )
ECS3 (EM CONT SYS 3)
ECS4 (EM CONT SYS 4)
ECSS (EM CONT SYS 5 )
FTYP ( FUEL TYPE )
SACL (SALES CLASS)
VSS (SHIFT SPEED CODE)
ENCD (ENG CODE)
DFV1 (DURA FAC VEH)
TRBO (TUR80CHARGED)
VTYP (VEH TYPE)
HCNO (RUNNING CHANGE »)
CRCO (CRITICAL CODE)
TNUM (TEST NUMHER)
TTYP (TEST TYPE)
RCHG (RUNNING CHANGF)
TPRO (TEST PROCEDURE)
RTST (RETEST CODE)
AOHP (ACTUAL OYNO HP)
CTD (CERT TEST DIS^.l
FED (F.E. TEST DISH
TAYP (TEST ACTIVE YU)
ETW (EOU1V TEST. WT)
CEKT-EPA EMISSION FACTOPS IEFI
75-

X



X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
80

X



X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HS • LA3'V KMS
81 79 79 78 11 Ib tS f+ /J 12 f9 11
XXXXXX. XX
X X X X X X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
                                 IV-4

-------
this, while  simultaneously attempting  to avoid  combining  city  and  highway
data for different configurations  of  the  same vehicle.  The last four digits
of the city and highway test numbers were compared.  Those  test  numbers  which
were within  — 3,  for  vehicles having  the  same  internal  vehicle number  and
version number, were used in calculating the combined fuel  economy value.
This method of "pairing" city and highway  tests allows more  than  one  combined
                                                                V
fuel economy  value  to  be generated for vehicles which had  more than one  set
of paired tests.                                                '

EPA's  emission  factors data  base  included data  on vehicles  from 1972  thru
1981.  The EF data  base, which  was also created specifically to  support  this
report, included  information  selected  from EPA's  emission factors data  base.
Table  IV-1  lists  the  field  names which  were included  in  the  EF  file.
Again, only  FTPs and  HFETs  were used.,   Other tests such  as inspection  and
maintenance tests and steady state tests were not  used.
                                     IV-5

-------
IV. A. Two Variable Linear Regressions


This was  the  initial  step in a  series  of  plotting and regression exercises.
Three large data bases  (CERT/EPA, CERT/MFR and EF) were used in  this work.
First,  two  dimensional  scatter plots of fuel  economy  and emissions for each

of the  following were generated.


    1)   UMPG* versus FTPHC**
    2)   UMPG  versus FTPCO**
    3)   UMPG  versus FTPNOx**
    4)   UMPG  versus FEHC***
    5)   UMPG  versus FECO***
    6)   UMPG  versus FENOx***
    7)   HMPG* versus FTPHC
    8)   HMPG  versus FTPCO
    9)   HMPG  versus FTPNOx
    10)  HMPG  versus FEHC
    11)  HMPG  versus FECO
    12)  HMPG  versus FENOx
    13)  CMPG* versus FTPHC
    14)  CMPG  versus FTPCO
    15)  CMPG  versus FTPNOx
    16)  CMPG  versus FEHC
    17)  CMPG  versus FECO
    18)  CMPG  versus FENOx
*UMPG,HMPG,  and CMPG respectively  mean urban  fuel  economy as  measured on
the 1975  Federal  Test Procedure  (FTP),  highway  fuel economy as  measured on
the EPA  highway test and  composite  fuel economy  as  calculated  by  EPA from
urban and highway economy respectively.
**FTPHC,  FTPCO, and  FTPNOx  mean HC,  CO, and  NOx emissions,  respectively, as
measured on the 1975 FTP.
***FEHC,  FECO,  and  FENOx mean  HC,  CO,  and  NOx  emissions,  respectively,  as
measured on the EPA highway test.
                                   IV-6

-------
For  the  sake of brevity,  these are called  "the 18" plots.   These 18  plots
were  generated  for each of  the three data  bases for  all the  data  in each
data base.  A total of 54 plots were generated.

There was  no apparent linear  or other  relationship  between any  of  the two
variables.  Some of the plots are included as appendix 4 to this report.

The  various  plots  that  were  generated  were  not  totally  adequate for
visualizing lines  or curve  shapes  because multiple  points  in one  spot appear
as a number  (or x which means  10  or  more points at  the same spot) which  is
difficult  to  visually  weight compared to  single  points.   Linear  regressions
were  performed  that corresponded  to  each  of  the plots.   A summary  of the
regressions is presented in  table IV. A-l through table IV. A-3.

Summary

There are  several  items  of  interest that  can  be deduced  from these tables.
First,  there  is no correlation for any of  the  regressions  as  evidenced   by
values of r-squared which always have a  zero as  the  first  digit to the  right
of the decimal  point.  Second,  the slopes of  the regression lines (COEFF  in
the tables) are  consistently negative  except  for occasional, positive values
for HC and CO as measured on the  highway fuel  economy test.  Negative slopes
mean that, as  the  emissions increase, the  fuel  economy decreases.  Positive
slopes mean,  as emissions  increase, fuel economy increases.   The  final item
of interest is that highway  HC and CO emissions are not regulated.

No readily apparent linear  or  other  relationship between  exhaust emissions
and  fuel  economy is seen at this level  of  analysis.  Clearly, no negative
impact  on  fuel economy  due to  emissions  can  be identified in these   data.
There may  be  several  reasons  for  this.   These reasons  include  a  lack  of
stratification  of   the  data and  the  effects  of  other   variables on  fuel
economy.  Other approaches used later will  be  improved  in  some areas,  but by
necessity  the number of  data points available  for  analysis  will  be reduced
with increasing stratification.
                                   IV-7

-------
                                                       Table  IV.  A-l
Two Variable Linear  Regressions Vising _(.;>_• i 'i :J_ i." i. _;i i;
                                                                         DaUi Froiii the EPA Laboratory
                             CERTIFICATION MICRO DATABASE DATA  REGRESSION RUNS SUMMARY
oo


CASE TAYR XXXX XXXX XXXX
1
2
3
4
5
6
7
8
9
1O
1 1
12
13
14
15
16
17
18
FILE: CERT/EPA
1 V/ADTADIfQ — ~s

XXXX XXXX XXXX XXXX DEP(Y]
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
FEB. 27, 1981
ACTUAL* TOTAL
I IND(X)
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
SIZE
46O5
4605
4605
2975
2975
2975
2977
2977
2977
4123
4123
4123
2977
2977
2977
2975
2975
2975
SIZE
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
5753
PAGE NO.
COEFF
-0.
-o.
-2.
3
O.
-1
-0.
-o.
-3
5
0
- 1
-0
-0
-2
3
0
- 1
5
-------
                                     Table IV. A-2
Two Variable Linear  Regressions Using Data From the Emission  Factors  (In-Use) Program
         EMISSION  FACTOR MICRO DATABASE DATA REGRESSION RUNS SUMMARY
FILE: 2G14D-EF(ALL;
< ~ CATEGORICAL VARIABLES 	 >
CASE MDYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y
1
2
3
4
5
6
7
8
9
1O
1 1
H2 .
f|3
^>14
15
16
17
18
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
) MAR
. 02.
A(J IUAL
) IND(X) SIZE
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
8987
8987
8923
6615
6353
6616
6616
6616
6552
6615
6353
6616
esis
6616
6552
6615
6353
6616
198 1
TOTAL
SIZE
8987
8987
8987
8987
8987
8987
8987
8987
8987
8987
8987
8987
8987
8967
8987
8987
8987
8987
PAGE NO.
COEFF
-o
-o
-o
-o
-o
-o
-o
-o
- 1
-o
-o
-o
-o.
-o.
-o.
-o
-o
-o.
.2666
.3494
.6 145
.3909
.2959
.3973
. 47 14
.5040
.0881
.6566
.5447
.6451
.3978
.4333
.8058
.4816
.3797
4815
1

CONST
16
16
17
16
16
17
23
23
25
23
23
24
19
19
2O
18
18
19.
. 218
. 718
. 156
.313
. 36O
. 142
.596
.991
. 186
. 127
. 252
. 46O
.214
567
.312
779
85O
779




R-SQ- STD.ERR
0
0
0
0
O
0
0
0
0
0.
0.
0.
0.
O.
O.
O
O.
0.
.04230
.08816
.05339
. 0098O
.01282
.02551
.0284 1
.04939
04889
01305
02O50
03175
O3237
05843
O4297
01 124
01595
02832
4
4
4
4
4
4
6
6
6
6
6
6
4
4
4
5
5
4 .
. 3084
. 2040
. 2879
. 3758
. 4 133
.3407
. 3079
. 2395
.2503
.3581
. 3977
. 2971
.9756
.9082
.9527
.0300
.0691
9861
                                                                                      -REMARKS

-------
                                    Table  IV.  A-3
Two Variable Linear  Regressions Using Certification Data  From Vehicle Manufacturers
            CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE TAYR XXXX XXXX XXXX
1
2
3
4
5
6
7
8
9
<10
'11
012
13
14
15
16
17
18
FILE: CERT/MFR
1 V/ADTADICTC — "S
FEB. 27.
A fTI 1 A 1
XXXX XXXX XXXX XXXX DEP(Y) IND(X) SIZE
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
9786
9786
9786
5072
5072
5072
5087
5087
5087
5710
571O
5710
5087
5087
5087
5072
5072
5072
1981
Tf\T A 1
1 LJ 1 A L
SIZE
1O425
10425
10425
10425
10425
1O425
10425
10425
1O425
10425
10425
10425
10425
1O425
1O425
10425
1O425
10425
PAGE NO.
COEFF
-2 .
-0.
-o.
1 .
-0.
-0.
-2.
-0.
-2 .
1 .
-0.
-0.
-2.
-0.
-2
1
-0.
-o.
4 196
2674
9418
3907
3842
6959 .
2697
4437
6842
6638
1514
8867
1O1 1
.3692
1332
.6749
7912
7872
1

CONST
2O.
20.
.20.
19.
19.
20
28.
29.
30.
27
27
28
23
24
24
22
22
23
134
344
260
324
476
328
391
544
645
361
.64 1
646
169
. O46
.845
. 218
.429
. 363



R-SQ STD.ERR
O.
0.
0.
0.
0.
0.
O.
0.
0.
0.
O
0.
O
0
0
0
O
0
01 156
O2429
OO654
00079
000 1 2
00910
.O0787
0397 1
033O5
OO074
00129
. OO858
.00951
.03874
.0294 1
. OOO93
OO042
.00952
5 . 5006
5.4650
5. "5 145
5 .6312
5.633O
5.6077
7 .3664
7 .2472
7 . 2723
7 . /102 '
7.4000
7 . 3730
6.2012
6. 109O
6. 1386
6 . 2289
6 . 23O5
6.2021
                                                                                        -REMARKS

-------
IV. B.   Two Variable Linear Regressions with Stratification by Model Year

Various stratifications of the data analyzed in section IV.  A of  this report
could  be  done.  Intuitively,the  stratification  of choice  appears  to be  by
emission  control  system; however,  data  base  limitations  would  not  permit
this  stratification  without  greatly reducing  the  available data or  without
modifying  the  available  data.    The  stratification  chosen  was  by  vehicle
model  year  (or   for   certification  data  by  test  active  year).   This
stratification was accomplished  with minor  losses of data.   Stratification
by emission  control  system  was  accomplished later by data  modification  (see
section IV. H).

Plots  were  generated for each of the three data  bases  for  each of  the  18
emission  versus  fuel economy relationships  for  each  model year.  Again,  no
linear or  other  relationships  between fuel economy and emissions were seen.
Those plots were not reproduced for inclusion in this  report.

Linear regressions  were again run using  the  18  emission  and fuel  economy
variables  for  each  of  the  3  data  bases stratified by  model  year.   The
results of  these regressions are presented here  in table  IV.  B-l  through
table  IV.  B-3.  In  the following  discussion  of  these  results,  only  cases
where sample size ("actual size"  in the  tables) was greater than  or  equal to
25 are considered.

Correlation

Of the 126 cases (144  minus  18   cases  with  less  than 25  data points)  gen-
erated  for the CERT/EPA data  base,  r-squared did not exceed 0.100 in  any
case.

A  total  of  135  cases  were  generated  for the Emission  Factors  data  base.
r-squared  exceeded  0.100 in 9 of these cases.  The  range  of  r-squared  was
from  0.12  to  0.24  for those 9  cases.   The  emission  variable  was CO  as
measured  on the  1975  FTP  in  each case.   The fuel  economy  variables  were
urban  fuel  economy for  model years 1966 through  1971 and  model year  1978,
                                    IV-11

-------
                 Table  IV.  B-l
Regression Results Using  Data From Che EPA Laboratory  Stratified by Model Year
Two Variable Linear
              CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE
1
2
3
4
5
6
7
8
9
1O
1 1
12
13
14
15
16
17
18
19
2O
21
22
M 23
f 24
M 25
NJ 26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
FILE: CERT/EPA
* /""ATC^nOT^AI t/anTArjICC" ^
< 	 LAIbuUKlCAL
V UK 1 MDL tO ^
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
75
76
77
78
79
80
81
82
75
76
77
78
79
80
81
82
75
76
77
78
79
ao
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
81
82
75
76
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
FEB. 27. 1981
ACTUAL TOTAL
IND(X)
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
^^jHC |
SIZE
77
699
1021
1010
73O
597
459
12
77
699
1021
101O
73O
597
459
12
77
699
1021
101O
730
597
459
12
53
499
602
654
470
399
291
7
53
499
602
654
47O
399
291
7
53
499
602
654
470
399
291
7
53
^^£9
SIZE
79
712
1270
1264
970
804
638
16
79
712
1270
1264
970
804
638
16
79
712
1270
1264
970
8O4
638
16
79
712
127O
1264
97O
804
638
16
79
712
1270
1264
97O
8O4
638
16
79
7 12
1270
1264
970
804
638
16
79
Mi*2
PAGE NO.
COEFF
-0.9647
2.4851
3. 1 122
2 .5999
1 .2941
1 .9355
-9.433O
14 .6460
-0.2156
0. 156O
0.8463
0.5813
-0.2370
-0. 12 16
- 1 .0629
0.3123
-2 . 14 16
-0. 2024
- 1 .5465
-2.3144
-0. 1435
0.6743
2.299O
5 . 2000
- 1 .0659
5.7O56
4 .4349
5.5106
8.0557
17.4420
-8.3948
29. 4920
-0.5268
0.904 1
0.244 1
0.4111
O. 2103
0.4229
-0.8565
2 .0213
-0. 2926
O.3374
-0.5603
-0. 4961
0.8466
O. 1203
1 .8915
1 1 .5760
0. 7283
d^?67
1

CONST
14 .
15.
15 .
16 .
18 .
20.
24 .
22.
15 .
16.
16.
17 .
20.
21 .
24 .
24 .
18 .
17 .
19.
21 .
19.
20.
21
22 .
15
16.
16
17
18
19
22
23
15
16
16
17
19
20
22
24
15
16
17
. 18
17
20
21
2 1
2 1
rtttfe
887
413
216
465
598
245
485
572
574
099
851
847
744
12O
692
973
26O
432
1 15
155
275
68O
O75
751
033
,O28
. 4 14
. 174
.405
.584
.942
.74 1
.4 13
. 177
.721
.356
. 152
.430
.902
.569
.455
.375
.900
.589
.929
.442
.572
.875
. 366
•55O



R-SQ STD.ERR
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
O.
O.
0.
0.
0.
0.
O.
0.
0.
O.
0.
0.
0.
0.
0.
O
O.
0.
0.
O.
0
0
O
O
0
O
0
0
o
O
0
0
0
0
0
0
0
0
«•
O0413
O2918
O4 120
017O2
00488
00393
0155O
36566
02694
01 1 16
OOOO4
00002
O2657
009 5O
O4405
O2966
O84O7
00056
01587
O2502
0
O0004
O1375
146O8
,OO 139
06505
.03163
01904
.O5812
.03709
OO524
. 40186
.O1979
.06846
.01O49
.O1789
.00535
.O0198
.01522
.08247
. 003 1 1
.00331
.00661
.00356
.'01073
.00024
.01386
.69915
. 0000 1
•v?5n
4 .5903
5.0591
5. 1099
5.7337
5. 3140
5.2231
6. 1586
1 .3838
4 .5375
5. 1059
5. 2 184
5.7831
5. 2558
5.2085
6 .0686
1 .7 115
4 . 4023
5. 1332
5. 1770
5.7 103
5.3270
5. 2333
6. 16v_
1 . 6O56
4 .9253
4 .8766
5.0628
5.5784
5.3372
5.2256
6.0643
1 . 1835
4.8798
4.8677
5 . 1 178
5.5817
5.4847
5.3200
6.0338
1 .4658
4 .921 1
5.0351
5. 1278
5 .6223
5.4698
5.3246
6.0380
0.8393
7 .4875
•••343
                                                                      -REMARKS

-------
                                      Table IV. B-l  (con't)
Two Variable Linear Regression Results Using:, Data From the EPA Laboratory  Stratified  by  Model. Year
CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71
72
. 73
^ 74
_. 75
j 76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

FILE: CERT/EPA
\/Af>TADICC* -^
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
77
78
79
80
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
8 1
82
75
76
77
78
79
80
81
82
75
76
77
78
79
80
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
FEB. 27. 1981
APTI 1 A 1 TriTAi
A \j 1 UAL.
IND(X) SIZE
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
F EHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
FTPHC
FTPHC
FTPHC
6O3
655
470
399
291
7
53
499
603
655
470
399
291
7
53
499
6O3
655
470
399
291
7
55
512
851
908
71O
606
47O
1 1
55
512
851
9O8
71O
606
47O
1 1
55
512
851
908
71O
6O6
47O
1 1
53
499
603
655
1 t~l 1 M L
SIZE
127O
1264
970
804
638
16
79
712
127O
1264
97O
804
638
16
79
712
127O
1264
970
8O4-
638
16
79
712
127O
1264
97O
804
638
16
79
7 12
127O
1264
97O
804
638
16
79
712
127O
1264
97O
8O4
638
16
79
712
I27O
1264
PAGE NO.
COEFF
4 .8582
4 .2126
2 .201 1
5.0576
-16. 1820
9.9569
-0. 1755
O.5201
0. 3837
0.6078
-0. 320O
-0. 7609
-1 . 1599
-1 .8525
-2 .0638
-0. 1682
-2.2369
-2.7885
-0.8743
-O. 1912
1 .3128
-10.5250
1 . 1857
9.2636
9.584 1
9.5990
12. 1710
17 .8260
-9. 3569
32. 7580
-0. 2885
1 .4 175
0. 3728
0.6196
0. 181G
-0.2046
-1 .O284
8.2762
-0.2169
0.7796
-0. 2460
-0.7263
1 .5880
0.3283
2 . 1895
19.5270
-O.B80O
4 .5425
4 .0372
3 .3158
2

CONST
21 .
22 .
25.
27.
34 .
37 .
22 .
21 .
23.
24 .
28
31
33
42.
24
24
27
28
28
29
30
44
21
22
23
24
25
28
32
38
2 1
22
24
24
26
29
32
38
21
22
24
25
24
28
30
34
17
16
17
18
381
748
750
689
987
413
365
228
726
557
.850
.070
.956
504
,957
.552
.089
.860
.046
. 146
.796
.478
. 101
.401
. 34O
.450
.411
.259
.298
.221
.589
.707
. 178
.848
.621
.320
.'322
.293
.729
.458
. 98O
.584
. 176
.931
.725
.413
.667
.897
.363
.617


R-SO S
O.
O.
0.
0.
O.
0.
0.
0.
0.
O.
O.
0.
0.
0.
0.
O.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0
o
0
o
0
0
0
0
0
o
0
o
o
0
0
o
0
0
0
0
o
0
0
o
0
04336
02490
00658
O0442
02569
04686
00685
05271
00032
00098
02317
02691
02918
20755
02988
OOO 1 6
01323
O21 19
00178
OOO 19
00262
16395
,00075
.08063
.064 17
.03365
. O6635
.02318
.00386
.05394
.00257
.07868
.01098
.02264
.00221
.0
.01693
. 19722
.00075
.00846
. OOO6O
. OOO04
.02130
. OOO95
.01028
.26174
.00202
.06662
.04617
.021 16

'TncoD v DCTMADI/C
)IU.tKK < 	 KtMAKKb 	
7.O975
7 . 1732
7 .5346
7 .O481
7.97O3
3.2960
7 .4619
7 . 1O89
7 .2553
7 . 26O6
7 .4715
6 .968O
7 .9560
3.O054
7 . 3748
7 .3O34
7 • 2083
7 . 1868
7 .5528
7.O631
8 .064 1
3 .0869
7 .3875
7 .0145
7 . 3233
7.3608
7 .O808
7 . 1825
7 .7928
4 0747
7 . 3807
7 .0220
7 .5286
7 .4026
7.3200
7 . 2672
7 .74 15
3.7535
7.3874
7 . 2846
7 .5679
7 .4877
7 .2496
7 . 2638
7 .7677
3.5995
5.7843
5.5949
5.7076
6 . 1368

-------
                                      Taoie  IV. ji-j.  (.uon  t)





Two Variable Linear  Regression Results Using Data From  the  EPA Laboratory Stratified  by Model Year
               CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE
101
1O2
1O3
104
105
1O6
107
1O8
1O9
1 10
1 1 1
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
12O
121
122
123
yi24
1 125
£126
127
128
129
130
131
132
133
134
135
136
137
138
139
14O
141
142
143
144
FILE: CERT/EPA
< 	 CATEGORICAL '
V«K I HDL CO ^
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
79
8O
81
82
75
76
77
78
79
80 ;
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
81
82
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
FEB. 27, 1981
ACTUAL TOTAL
IND(X)
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
SIZE
47O
399
291
7
53
499
603
655
470
399
291
7
53
499
603
655
470
399
291
7
53
499
602
654
47O
399
291
7
53
499
602
654
47O
399
291
7
53
499
602
654
470
399
291
7
SIZE
970
BO4
638
16
79
712
1270
1264
970
804
638
16
79
712
127O
12G4
970
804
638
16
79
712
1270
1264
970
804
638
16
79
712
1270
1264
97O
804
638
16
79
712
1270
1264
970
804
638
16
PAGE NO.
COEFF
1 .
2.
-18.
12 .
-0.
0.
0.
0.
-o.
-0.
-1
-0,
- 1
-0
- 1
-2.
-0
-o
1
O
-o
6
5
6
9
17
- 10
27
-o
1
0
0
O
O
-1
1
-O
0
-o
-o
0
0
1
10
7048
94 16
0520
2850
2475
3728
4982
35O7
26O9
7270
1704
.8932
.8013
. 37O6
.6855
3144
.2981
. 404O
.5035
.8689
.3822
.9418
.5638
.7633
.6356
.7050
.5730
.9580
.4927
.O796
.2655
.4461
.2196
. 3307
.0222
.4628
.2959
.4637
.5462
.4346
.9950
. 1765
.9572
.8230
3

CONST
21 .
22 .
29.
27 .
18.
17 .
19.
20.
23.
25.
28 .
29.
20.
19 .
21 .
23.
22 .
24 .
24 .
29.
17.
18.
18.
19.
2O.
22 .
26
28
17
18
19
19
21
23
26
29
17
18
20
21
20
23
24
26
253
876
567
499
561
542
2O8
128
735
641
164
846
307
768
863
595
513
O48
868
249
268
356
783
656
956
586
.353
.695
.725
.558
211
.935
.883
.481
.275
.529
. 8O9
.658
. 390
.095
.4 (7
.393
.832
.96 1


R-SQ STD.ERR
O.O0592
O.O0217
0.0461 1
0.23732
0.02276
0.04309
0.00084
O.O0045
0.02306
O.O3562
O. 04285
0 . OO 1 6 1
O.038O7
0 . OOOO 1
0.01 159
'O.O2002
0 . 0003 1
0.00123
O. 00495
0.00372
0 . 000 1 3
0.07303
0.03854
0.02366
O. 06592
0.03149
0.00681
0. 24686
O.OI254
O.O740G
0 . 0096 1
0.01738
O.OO462
O.O010O
O.O1773
O.O2952
0.00230
O.OO474
0.00486
0.00226
0.01 175
0.00043
O.O12 14
0.4 1776
6. 1583
5 .8601
6 .5661
1 .6164
5.7239
5.665O
5.8416
6. 2014
6. 1049
5. 7610
6 .5773
1 .8494
5 .6789
5.791 1
5.8101
6. 1404
6. 1756
5.8629
6.7062
1 .8474
5. 7898
5.5756
5.7339,
6 . 1269
5 .9695
5.7734
6 . 7000
1 .6O62
5. 7537
5.5726
5 . 6 |96
6. 1466
6. 1623
5.8635
6.6630
1 .8233
5.7835
5.7774
5 .8335
6. 1937
6. 1402
5.8652
6.682O
1 . 4 123
                                                                                           -REMARKS

-------
Two Variable Linear  Regression Results Using Data From the Emission Factors
                 ("in-Use)  Program Strat'ifled by Model  Year
        EMISSION FACTOR  MICRO DATABASE DATA  REGRESSION  RUNS SUMMARY
FILE: 2614D-EF( ALL) MAR
^ /~iA-rcr^rM-»T/~iAi»*AniAQicc -^ A
CASE
1
2
3
4
5
6
7
8
9
1O
1 1
12
13
14
15
16
17
18
19
2O
21
22
M23
1 24
j-1 25
01 26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
MDYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y]
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
66
67
68
es
70
71
72
73
74
75
76
77
78
79
80
66
67
68
69
7O
71
72
73
74
75
76
77
78
79
8O
74 -
75
76
77
78
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
H
1 IND(X)
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
c T r*r>r\
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
. O2. 1981
PTI 1 A 1 T»-»T A i
L. 1 UA u
SIZE
1O2
212
235
260
294
343
391
21 1
63
994
2133
1264
834
1448
2O1
102
212
235
26O
294
343
391
21 1
63
994
2133
1264
834
1448
2O 1
1O2
212
235
26O
294
343
391
21 1
63
980
21 14
1233
834
1448
2O1
3
987
1B69
1264
834
1 kJ 1 « U
SIZE
102
212
235
26O
294
343
391
21 1
63
994
2133
1264
834
1448
201
IO2
212
235
O/^J^V
294
343
391
21 1
63
994
2133
1264
834
1448
201
102
212
235
26O
294
343
391
21 1
63
99 4
2133
1264
834
1448
201
63
994
2133
1264
834
PAGE NO.
COEFF
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
- 1 .
-O.
-0.
-0.
-o .
-0.
-0.
-0
-0.
-0.
-0.
-0
-0.
-0.
-o
-0
-0.
-0.
-0
-0
-0
-0
-o
-0
-0
-0
0
-0
-0.
-o.
-0.
1
-0.
-0
-0
-0.
2918
1442
1293
1391
2646
3583
2828
4029
6192
207 1
7144
2820
3606
3888
2391
2913
3144
29O3
3G50
5069
4967
3908
3193
2076
2173
. 1808
.4038
.5933
. 3283
. 3402
. 4006
. 1553
3354
3272
. 4 140
.8092
.8385
. 1970
.6904
.2195
.2542
. 3222
. 7974
.5890
1929
.8516
.2441
.6931
. 2297
. 3847
1

CONST
14
15
15
15
15
16
15
15
12
14
14
16
17
18
19
17
17
16
4 r:
17
17
16
15
13
15
15
17
18
18
19
14
14
15
15
16
18
17
14
14
14
14
16
18
18
19
19
14
15
16
17
. 8O2
. 2 12
. 13O
.033
. 780
.464
. 185
.325
.913
.771
.730
.553
.787
.269
.601
.412
. 248
. 395
.854
.743
.823
. 148
.447
.566
.007
.025
.071
.695
.379
.324
.656
.526
.735
.807
. 13O
.263
.675
.424
.47 1
.876
.559
.727
.622
.791
. 261
. 102
. 5O4
.029
. 130
.286




R-SO STD.ERR
O
O
O
O
0
O.
O
O
0
O
O
O
0
0
O
o
o
o
o
O
0
0
0
o
o
o
o
0
0
o
0
o
o
o
o
0
0
0
o
0
0
0
o
o
o
o
o
0
o
o
.00746
. O6997
O6823
.O3326
.O75O1
O2524
.O33O4
O-1529
. 0003O
.03153
.001O2
02057
05827
. O0653
.07 153
21332
. 23857
. 1B895
132GO
. 22261
. 13749
.09519
.0749O
.01825
.O4222
.01855
.O5447
. 13132
.02 138
.O3827
.00050
.00681
.O5245
.04661
. 0347O
.08123
.09672
.00490
.03815
.00430
. OO009
.00828
.05698
. 015O9
.00192
.88572
.00895
. 000 1 9
.00316
.02289
3
3
2
3
3
4 .
4 .
4
4.
4'
3
4
4
4
3
2
2
2
2
3
4
4
4
4
4
3
4
4
4
3
3
3
2
3
3
4
4
4
4
4
3
.4
4
4
3
O
4
3
4
4
O236
2868
.9439
.O975
9029
9243
. 72O7
. 2832
.3164
.'0396
.72 16
.2895
.4 195
.4996
. 2484
.6918
.9739
.7466
.3308
.5780
.6321
.5665
. 2 163
.2775
.0172
.6888
. 2 146
. 2446
. 4659
. 3O6O
.034 1
. 3965
.9688
.0761
.9870
.7808
.5627
. 3729
. 2339
. 1000
. 7321
.3313
.4225
.4802
.3680
.7122
.0827
.7228
.3274
.5017
                                                                                     -REMARKS

-------
Table
                                       B-2  (eon'>t)
Two Variable Linear Regression  Results  Using Data 'From the Emission Factors
(In-Use) Program Stratified
by Model Year
EMISSION FACTOR MICRO DATABASE DATA REGRESSION RUNS SUMMARY
FILE: 2614D-EF(ALL)
CASE
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
M 70
< 71
1 72
h— '
ON 73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
10O
•^ 	 V^ A 1 CUUK I l> ML. VMKIWDLCD '
MDYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
79
8O
74
75
76
77
78
79
80
74
75
76
77
78
79
SO
74
75
76
77
78
79
80
74
75
76
77
78
79
8O
74
75
76
77
78
79
8O
74
75
76
77
78
79
8O
74
75
76
77
78
79
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
MAR. 02, 1981
A r*TI 1 A 1 TC1TAI
f\\j 1 UM L.
IND(X) SIZE
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
1447
201
3
963
1828
1240
819
1325
165
3
987
1869
1264
834
1448
201
3
987
1869
1264
834
. 1448
201
3
987
1869
1264
834
1448
2O 1
3
973
1850
1233
834
1448
201
3
987
1869
1264
834
1447
2O1
3
963
1B28
1240
819
1325 .
1 U 1 M l_
SIZE
1448
201
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
2O 1
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
2O1
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
PAGE NO.
COEFF
0.1417
- 1 .7874
1 .9628
-0. 2447
-0. 1301
-0. 1500
-0.2883
-0.3354
-0.4582
-3 .7610
-0. 1383
-O.7454
-O. 1 192
-0.4624
-0. 1463
0. 2491
2.6777
-0.24 17
-O.2236
-0. 4066
-0.5008
-0.3570
- 1 .6618
3.0168
-0.2556
-0. 2842
-0.5214
-0.8199
-0.4O65
-0.4164
-8.9538
-O. 38O2
-O. 2849
-0.6 128
- 1 . 3355
-0.9813
-0.6484
3. 3498
-0. 3849
-0.3363
-O. 4913
-O.6259
0.250O
-2.7121
2 .9O64
-0.4289
-0.2940
-0.3546
-0.6501
-0.5770
2

CONST
17 .
19.
17 .
14 .
15.
16.
17.
18.
19.
25.
14 .
15.
16.
18.
18 .
18 .
26.
20.
21..
23.
25.
25 .
28.
21
21 .
2 1
24 .
26
25
28
41
21
21
24
26
26
28
27
20
21
23
24
25
28
25
20
21
23
24
_25_
8 14
243
574
642
1OO
144
262
233
491
548
752
231
291
163
138
683
222
84O
312
55O
324
616
744
.960
. 124
.599
134
.574
.883
.336
. 97O
.275
. 7O9
. 1O3
.942
.793
. 807
.023
.567
.098
.031
.692
. 163
. 306
.247
.841
. 158
.065
.837
, 88O


R-SO S
0.
0.
0.
0.
0.
0.
O.
0.
0.
O.
0.
0.
0.
0.
0.
0.
O.
0.
O.
O.
0.
0.
0.
0.
0.
O.
0.
0
0
0
0
0
0
o
0
0
0
0
o
0
0
0
0
o
o
0
0
o
0
0
OO025
044 19
99530
01606
00358
OO263
01232
O1056
04126
73873
OO332
00123
00226
04446
00175
OO469
89085
02156
00526
02135
O5433
00242
05895
92521
02929
02 188
04533
. 12121
.01438
02627
99640
. OO64 1
. OO541
.01492
.07726
.O1837
. OO994
.98589
.01 109
.O0225
.00721
.02929
.OOO34
.O4662
.74220
.O2457
.00897
.00732
.03018
.O1381

' TO P D D *" —
> 1 U . t KK <
4 .5154
3 .2959
0. 1445
4. 1010
3.7397
4 . 3546
4 .5057
4 .5880
3.3081
1 .O769
4 .0942
3.7209
4 .3294
4 .4.517
4 .5104
3 . 3633
1 . 1935
5. 7453
5. 2945
6.069O
6.3703
6 .8081
4 . 8313
0.988O
5.7226
5 . 2501
5.9942
6. 1409
6.7672
4 .9145
0.2166
5.8O78
5.3060
6. 1 175
6 . 2926
6.7535
4 .9555
O.4291
5.7760
5.3026
6. 1 127
6 . 4541
6 . 8 168
4 .8629
1 .8342
5. 7862
5.3232
6 . 1556
6.4327
6 8912
                                                                                REMARKS 	

-------
Two Variable Linear Regression Results Using  Data  From the  Emission Factors
(In-Use) Program Stratified by Model Year
EMISSION FACTOR MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE
1O1
102
103
104
1O5
106
1O7
1O8
109
1 1O
1 1 1
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
120
121
122
H123
•^124
Ml 25
^126
127
128
129
13O
131
132
133
134
135
136
137
138
139
14O
141
142
143
144
145
146
147
148
149
150

FILE: 2614D-EF(ALL) MAR
\ttntnrttr-f* ^ *
MDYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
8O
74
75
76
77
78
79
8O
74
75
76
77
78
79
8O
74
75
76
77
78
79
80
74
75
76
77
78
79
80
74
75
76
77
78
79
8O
74
75
76
77
78
79
8O
74
75
76
77
78
79
80
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
M
1 IND(X)
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FCNOX
. 02. 1981
fTIIAI T f-» T A 1
L. 1 UAL
SIZE
165
3
987
1869
1264
834
1448
201
3
987
1869
1264
834
1448
201
3
987
1869
1264
834
1448
201
3
973
1850
1233
834
1448
201
3
987
1869
1264
834
1447
201
3
963
1828
124O
819
1325
165
3
987
1869
1264
834
1448
201
1 U 1 A L
SIZE
2O1
63
994
2133
1264
834
1448
2O1
63
994
2133
1264
834
1448
2O 1
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
201
63
994
2133
1264
834
1448
20 1
63
994
2133
1264
834
1448
201
PAGE NO.
COEFF
-O.7032
-7.4836
-0. 1622
-0.9794
-O. 2565
-O.8 178
-O. 2986
-O.3762
1 .6364
-O.2286
-0. 1913
-0.3274
-O.4 125
-0. 3919
- 1 . 3962
2.2141
-0.2401
-0.2562
-0. 4500
-0.6791
-0.3629
-0.3717
-6. 1825
-0.295O
-0. 1888
-0.4187
-O.9788
-0.7179
-O.3536
2.3516
-0. 2931
-0. 1560
-0.3147
-0.4677
0. 1745
-2 . 1030
2 . 3047
-0.3064
-0. 1851
-0.2166
-0.4078
-0.4188
-0.5400
-4.9750
-0. 1506
-0.8366
-O. 1642
-O.5806
-O. 1941
0. 1526
3

CONST
28.
39,
20.
21 .
23 .
26
25.
27.
2 1 .
17 .
17
19
2O
20.
22 .
18.
17.
17 .
13
21
21
22
32
17
17
19
21
21
22
21
16
17
18
19
20
22
2O
16
17
18
19
20
22
30
16
17
18
21
20
21
751
582
781
224
378
.279
.809
.992
.746
O13
502
083
501
942
840
191
276
780
.637
.542
. 1O4
.518
.343
.262
.694
.376
.590
.665
.638
.992
.700
.245
.620
.947
. 474
.448
. 340
.882
.314
.64 1
.976
.992
.759
.440
.948
.427
.842
.058
.899
.970


R-SO STC
O.O4442
0.99474
O. 00228
0.00104
O. 00524
O. 06722
O . 003 1 9
O. 00005
O. 66758
O. 02976
O . 006O2
O. 02135
O.O5842
O. 00488
0.07000
1 .00000
O.O3990
O.O2779
0.05230
O. 13181
O.O1923
0.03521
O. 95331
O.OO597
O. 00371
O. 01077
O. 06577
O. 01649
O. 00497
0.97502
O.O0993
O. 0007 6
0.00457
O.O2593
O. 0002 8
O. 04716
0.93649
0.01936
O.O0556
0.00422
O. 01887
O. 01215
O. 04432
O. 88217
O.003O3
O . 00 1 1 9
0.00331
O.0537O
0.00226
0.00136
4
0
5.
5.
6
g
6
4
1
4
4
4
5
5
3
0
4
4
4
4
5
3
O
4
4
4
5
5
3
O
4
4
4
5
5
3
0
4
4
4
5
5
3
0
4
4
4
5
5
3

)p DD s _ — 	

.8852
. 262O
.80 17
. 3O58
. 1 187
.3267
.8055
.9802
.4703
.6048
. 2344
. 8863
. O488
.2497
7O30
.2005
.5806
. 1878
. 8OG4
.8480
.2117
.7717
.551 1
.6692
.2486
.9315
.O29O
.2190
. 83O3
.4031
.6516
.2456
.9280
. 1351
.2636
.7482
.6427
.6684
.2639
. 96O7
. 1330
.3373
.7555
.8754
.6678
. 2447
.9311
.06 14
. 2566
.8373
                                                                             REMARKS

-------
Two Variable  linear
                        Resales Usin^ Data From Vehicle Manufacturers StracilJied
                                   "
                           by Mo del" Year

CERTIFICATION MICRO  DATABASE DATA  REGRESSION  RUNS SUMMARY
FILE: CERT/MFR
CASE
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
S23
1 24
£25
°°26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
«. 	 ^« 1 CLaUK I V^rtU V«Rl«DI_tO *-
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
UMPG
UMPG
UMPG
UMPG
UMPG
. UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG
HMPG
FEB. 27, 1981
APTIIA 1 TnT A I
M Vrf 1 UH l_
IND(X) SIZE
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
FTPHC
3
5
824
1204
1544
147O
4182
554
3
5
824
1204
1544
147O'
4182
554
3
5
824
1204
1544
1470
4182
554
3
4
572
908
1298
1304
972
1 1
3
4
572
908
1298
1304
972
1 1
3
4
572
908
1298
1304
972
1 1
3
4
1 U 1 H l_
SIZE
3
7
966
1347
169O
1567
429O
555
3
7
966
1347
169O
1567
4290
555
3
7
966
1347
169O
1567
429O
555
3
7
966
1347
1690
1567
4290
555
3
7
966
1347
1690
1567
429O
555
3
7
966
1347
1690
1567
4290
555
3
7
PAGE NO.
COEFF
0.
5.
4 .
2.
O.
- 10.
- 13.
-23.
1 .
0.
0.
0.
-0.
-0.
-0.
-0.
-50.
1 .
-0.
O.
1
-O.
0.
5
31
1 1
7
7
3
2
-0
42
3
1
0
O
0
-0
-0
0
- 13
1
-o
0
1
0
2
7
O
4
5091
5321
0976
7378
1996
259O
4490
2490
2363
6078
9042
3553
1475
5664
4487
3299
.2540
5813
.2613
6058
1992
.2877
3005
.7161
.O53O
. 586O
.5231
.0138
.6784
.5578
.5882
.7210
.O276
.8974
.2698
.5154
.7666
.2686
.5237
.3393
.4960
. 12 18
.4 107
.6088
.7137
.7345
.8403
.4766
.9115
.2570
1

CONST
17 .
16 .
14 .
16.
18.
22 .
23.
25.
8 .
16.
16 .
17 .
19.
21 .
20.
20.
156.
16.
17.
17.
17 .
2O.
19
16
7
17
16
17
18
2O
22
23
1 1
17
16
17
18
2O
22
24
57
17
17
16
16
19
2O
23
26
25
557
475
846
61 1
582
521
263
998
862
683
521
761
634
693
968
872
220
494
461
141
063
411
644
.636
.279
.398
. 130
. 124
. 292
.021
.307
.831
.021
.826
.763
.300
.622
. 155
.589
.939
.533
.522
.836
.876
.050
.284
.990
.077
.729
. 76 1


R-SQ STD.ERR
0. 16434
O. 51724
O.O489O
O. 01463
O . OOO 1 2
O. 02502
O.O5858
O. 17516
0.97871
0.85145
0.00370
O. 00049.
O.O1215
O. 02554
0.02513
0 . 000 1 3
0.82536
0. 18700
0.00030
O. 00 140
O.OO972
O. 0008 2
O. 0002 3
O.O5898
O.9491O
O. 79957
0.04667
O. 02609
0.011 17-
0.00053
0 . OOOO2
0. 1 1674
O. 89052
O. 90808
O.O0808
O.O2750
0 . 00 1 1 5
0 . OOOO 1
O. 00977
O.OO309
0.04O65
0. 18O99
O.OO342
0 . 00600
O.O5160
0.00916
0.02200
0.23127
0. 16973
0. 19994
9.3332
2 . 1049
5.4831
5.5696
4 .8273
4 .9152
5.6307
4 . 2765
1 .4897
1 . 1676
5.6119
5 .6094
4 . 7982
4 .9138
5.7299
4 . 7085
4 .2667
2 .7315
5.6215
5.6069
4 .804 1
4 .9758
5.8O26
4 . 5678
2.3O35
1 .4189
5 .7342
5.4889
4 .6793
4 .9724
6 . 1982
1 .675O
3. 3782
0 . 96O9"
5.8491
5.4849
4 .7029
4 .9736
6. 1679
1 .7795
1 0 . OOOC
2 .8683
5.8628
5.5452
4.5826
4 .9508
6. 1297
1 .5626
16 . 391O
3. 7031
                                                                              -REMARKS

-------
Two Variable  Linear Regression Results Using Data From Vehicle Manufacturers  Stratified by Model Year
                    CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY

CASE
51
52
53
54
55
56
57
58
59
6O
6t
62
63
64
65
66
67
68
69
70
7 1
72
M 73
< 74
>L 75'
>£> 76
77
78
79
SO
81
82
83
84
85
86
87
88
89
9O
91
92
93
94
95
96
97
98
99
100
j- fATC^nDTfAl
<. 	 L* A 1 CoUKlLiAL
FILE: CERT/MFR
WADTAQICC ^
VAKlAoLto 	 >
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y)
77
78
79
80
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
60
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
81
82
75
76
77
78
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG
CMPG
CMPG
CMPG
FEB. 27. 1981
ACTUAL TOTAL
I IND(X)
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FTPHC
FTPHC
FTPHC
FTPHC
SIZE
576
917
1300
1304
972
1 1
3
4
576
917
1300
1304
972
1 1
3
4
576
917
13OO
1 304
972
1 1
3
6
714
1O51
1444
14OO
1O80
12
3
6
714
1O51
1444
14OO
1080
12
3
6
714
1051
1444
1400
1O8O
12
3
4
576
917
SIZE
966
1347
169O
1567
429O
555
3
7
966
1347
169O
1567
4290
555
3
7
966
1347
1690
1567
4290
555
3
7
966
1347
169O
1567
429O
555
3
7
966
1347
169O
1567
429O
555
3
7
966
1347
169O
1567
429O
555
3
7
966
1347
PAGE NO.
COEFF
6.
5.
1 .
-11.
-19.
27 .
2.
0.
0.
0.
-0.
-0.
- 1 .
0.
-88 .
0.
-o.
0.
O.
-0.
1 .
1 .
54 .
- 12 .
7 .
10.
5.
- 1 .
0
93.
5.
-1
0.
O
-0
-0
-0
1
-24
O
-O
1
2
0
3
7
O
4
5
3
9677
1777
5365
8460
2640
9560
1806
6881
1606
7640
1737
5719
2997
3409
2490
7534
2558
422O
9827
5408
3180
0492
6200
107O
7147
1670
5643
.8986
5927
5170
3479
.3187
1623
.6312
.5253
.6269
.8138
.2315
.6130
. 1386
. 2045
. 3593
.457O
.801 1
. 3975
.2794
.6413
.5981
.6828
.9208
2

CONST
2O.
22 .
25.
31 .
35.
34 .
1 1 .
24 .
23.
24 .
27 .
30.
34 .
39.
27O.
26.
24 .
24 .
25.
29.
30.
39.
8.
30.
23.
24.
25.
28 .
31 .
36.
15.
29.
24 .
24.
26
28
31 .
38
99
27
24
23
22
27
29
37
2O
20
16
18
365
782
616
395
417
835
450
856
247
886
489
227
012
OOO
310
970
630
775
O74
195
589
114
7 19
974
143
5O8
868
702
.310
742
236
515
.003
.894
.569
.635
.825
.928
.566
.538
.578
. 398
.678
.673
.799
.535
.767
.324
.54 1
.589


R-SO STD.ERR
0.06522
O. 03257
O . O04 1 2
0.02O55
O. 03394
0.22443
0.9BO75
0.82058
O. 00505
O. 00 146
O. 00902
O.O1573
0.03574
0.00698
0.81984
O. 03382
0 . 000 1 4
O.OOO42
O.OO4O2
0 . O0 1 7 1
0.002O6
O. 00 101
0.94687
0. 14297
0.03915
0.03307
0.01374
0 . OOO 1 7
O . 0000 1
0. 10735
0.89499
O. 06231
O. 00305
0.02445
O.OO030
0 . OOO03
0.01553
0.00937
0.04356
O. 0002 5
O.OOO48
O. 01777
0.05596
0.00665
O. 01948
0.04605
O. 16658
0.33446
O. 06240
0.02490
.7 . 6O69
6.9085
6.3242
6.3953
7 . 7846
3.4589
2.496O
1 . 7536
7 .8479
7 .O187
6 .3O86
6.4 1 1O
7 . 7774
3 .9139
7 .6356
4 .0694
7 .8672
7 .O223
6 . 3245
6.4565
7.9121
3 .9256
4 . 1853
6 .8969
7 .5565
7 .0089
6 .4O54
6 . 4205
7 .8609
3.6586
5.8293
7 .2142
7 .6972
7 .O4O1
6 . 4489
6 . 4209
7. 7997
3.8541
17 . 5930
7 . 4491
7 .7071
7 .0641
6 .2668
6.3997
7 .7841
3.7821
1 1 .6630
2 .8206
6.3523
6.0O63
                                                                                                  -REMARKS  	

-------
                                      laoie IV.  B-J  (con t)




Two Variable ^inear.  Regression Resumes Using Data From Vehicle Manufacturers  Stratified by Model Ye:ar
                CERTIFICATION MICRO DATABASE DATA REGRESSION RUNS SUMMARY
FILE: CERT/MFR
CASE
1O1
102
103
104
105
1O6
1O7
1O8
109
1 10
1 1 1
1 12
1 13
114
1 15
1 16
1 17
1 18
1 19
120
M121
<|122
to123
0124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
FEB. 27, 1981
A /"* Tl 1 A 1 Tr\T A 1
^ 	 UMIC UUK i^AUvMRlMDLtO -^ HX^IUMU
TAYR XXXX XXXX XXXX XXXX XXXX XXXX XXXX DEP(Y) IND(X) SIZE
79
80
81
82
75
76
77
78
79
80
at
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
80
81
82
75
76
77
78
79
8O
81
82
75
76
77
78
79
so
81
82
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
CMPG
FTPHC
FTPHC
FTPHC
FTPHC
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPCO
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FTPNOX
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FEHC
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FECO
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
FENOX
130O
1304
972
1 1
3
4
576
917
1300
1304
972
11
3
4
576
917
1300
13O4
972
1 1
3
4
572
908
1298
13O4
972
1 1
3
4
572
908
1298
1304
972
11
3
4
572
9O8
1298
13O4
972
1 1
t W 1 « l_
SIZE
1690
1567
4290
555
3
7
966
1347
169O
1567
4290
555
3
7
966
1347
1690
1567
4290
555
3
7
966
1347
1690
1567
4290
555
3
7
966
1347
1690
1567
429O
555
3
7
966
1347
1690
1567
4290
555
PAGE NO.
COEFF
0.
-11.
-19.
17 .
1 .
0.
O.
0.
-o.
-0.
- 1 .
0.
-62.
1 .
-0.
0.
1 .
-O.
1 .
5.
38.
12.
8.
8.
4 .
1
-O.
55.
3
2
0.
0
0
-0
-o
1
-17
O
-o
O
1
O
3
6
8291
4400
6O80
3590
5477
6074
1 158
5059
1251
5820
1774
3191
7980
4783
7438
3314
0099
4021
3861
9561
830O
3980
8059
I960
3929
2078
3053
0210
.7926
1219
. 3085
.5490
.3629
.3753
.6275
. 1443
. 1350
.8853
.3869
.7642
.9813
.7800
.0217
.9892
3

CONST
21 .
25.
29,
27 ,
9.
20.
18
20
22
24
27
29
194
20
19
20
20
23
24
26
7
20
18
19
20
23
25
28
12
20
19
19
21
23
25
29
71
2 1
20
19
18
22
24
28
079
9O1
.684
018
898
047
.988
,228
.287
.857
.958
.389
.O7O
.370
.822
.082
. 141
.641
.743
.806
.934
.230
. 528
.719
.998
. 133
,58O
.452
.594
.576
.279
.981
.456
.206
.94 1
.636
.501
. 101
. 36O
.345
.421
.278
. 197
. 178


R-SO STD.ERR
O.OO175
O.O2684
0.04799
0. 24498
O. 97957
O. 91677
O.OO378
O. 00085
O.O0684
0.02282
O.O4003
O.O1731
0.82307
O. 18673
O . OOOO2
O.O0035
0.00620
0.00133
O.O0310
0.09251
O. 94776
0.76946
O.O5102
0.02987
O.O1282
O.OO010
O.O
O. 11288
O. 89239
O. 95431
O.O0843
O.O2616
0 . 0002 1
O . OOOO2
O.01 172
0.02045
O.04 185
O. 09473
O.O0242
O. 00792
O. 05550
O.OO857
0.02082
0. 1 1781
5.2374
5.3866
6.6151
2 .O283
1 .8261
O.9975
6.5479
6 . 0800
5.2240
5.3978
6.6427
2.3140
5.374O
3. 1 180
6.5602
6 . 08 1 5
5.2257
5.4568
6. 7693
2 . 2237
2.920O
1 .6601
6.4047
5.9831
5.2119
5.4601
6.7798
2 . 1986
4 . 1910
O. 739O
6.5469
5.9946
5.2451
5 .4604
6. 7399
2.3103
12 . 5060
3 . 2896
6.5667
6 .O504
5.098O
5.437O
6.7089
2 < Ci ', R
                                                                                             -REMARKS

-------
highway  fuel  economy for  model year  1978,  and  composite fuel  economy for
1978.  These  values  of  r-squared are  considered to represent  very weak, if
any, correlation.   The  six cases  between 1966  and 1971  are  consistent and
could  be  further investigated; however,  they are  for  vehicles  that  are so
old that they are no longer of much importance.

R-squared was over 0.100 (.175 was  the  actual  value,  see case number 8) once
for  the  93  cases  in  the  CERT/MFR data  base.    This  case  was  urban  fuel
economy  as  the  dependent  variable  and  HC  emissions  from  the  FTP  as the
independent variable  for  the  1982  model year.  This can  be found  on  table
IV. B-3 line 8.  TAYR corresponds to model year.

Slopes of the Regression Lines

The  slopes  of the  regression lines for all  ten  cases for  which r-squared
exceeded 0.100 were all negative.

Even though there was little  or no  correlation for the  regression lines, the
slopes of  the  other regression  lines  were  investigated.   The  purpose  of
looking at the  slopes  was  to  see if there was any consistency  in the  signs
of the slopes between the  3  data  bases.  The  results are  shown  in table IV.
B-4.   There  are two  things  of interest in this  table.   First,  the  in-use
data base almost always shows negative  slopes  for the emissions/fuel economy
relationships.   Malfunctions  and maladjustments  could  possibly  explain the
negative slopes for HC and CO.  This speculation is not based on the results
of an  analysis,  however.   An explanation  for  a  negative NOx slope  could be
the  impact of   vehicle  weight  on  NOx  and  fuel  economy.   This  was  not
confirmed and is also speculative.

Second,  there  was some consistency between the  CERT/EPA and  CERT/MFR  data
bases in terms of the numbers of cases  with positive slopes.
                                   IV-21

-------
Slopes of the Regression Lines for 1981 and 1982 Model Year Vehicles

The  1981 and  1982  model  years are  of particular  interest  in this  study
because  3-way  catalyst  technology is  extensively  used in these model  years
and  because  3-way catalyst technology  at  this  point in  time  appears  to  be
the  technology  most  vehicle  manufacturers  will   use   to   meet   emission
requirements in the near future.

It  is  sufficiently  important  to  repeat  that  the  correlation   for  the
regression lines was very weak or non-existent;  however, as can  be  seen from
Table IV.  B-5,  the  slopes of  the regression lines  for  the 1981 model  year
are  surprisingly  consistent  between  the  CERT/EPA and  CERT/MFR data- bases.
The slopes for the regressions  of  1982 model  year data are provided  for  the
few cases for which slopes are available.

Summary

Stratification of  the data  bases by  model year  did not  provide  any  real
improvements in correlation  between  emissions  and fuel economy.  Consistent
directional trends for the  slopes of  the  regression lines between the  1981
EPA and manufacturer data bases are evident.
                                     IV-2 2

-------
                      Table IV. B-4
Direction of the Regression Lines for the Three  Data  Bases
Dependent
Variable
UMPG


UMPG


UMPG


< UMPG
I
OJ
UMPG


UMPG


HMPG


HMPG


Stratified by Model Year
Independent 	 Data Base 	
Variable CERT/ CERT/
EPA EF MFR
FTPHC x
x
x
FTPCO x
x
X
FTPNOx x
x
x
FEHC x
x
X
FECO x
x
X
FENOx x
x
X
FTPHC x
x
X
FTPCO x
x
X
Number of
Cases with
+ Slope
5
0
3
3
0
2
2
1
4
5
1
4
5
0
3
4
1
4
6
0
3
3
0
2
Total Number
of Cases
7
15
6
7
15
6
7
15
5
7
6
5
7
6
5
7
6
5
7
6
5
7
6
5

-------
                  Table IV. B-4 (con't)




Direction of the Regression Lines for the Three Data Bases
Dependent
Variable
HMPG


HMPG


HMPG

^
i
NO
-> HMPG


CMPG


CMPG


CMPG


CMPG


Stratified by Model Year
Independent 	 Data Base 	 Number of
Variable CERT/ CERT/ Cases with
EPA EF MFR + Slope
FTPNOx x 1
x 0
x 3
FEHC x 6
x 1
x 4
FECO x 4
x 0
x 2


FENOx x 4
x 0
x 4
FTPHC x 5
x 0
x 3
FTPCO x 3
x 0
x 2
FTPNOx x 1
x 0
x 3
FEHC x 5
x 1
x 4
Total Number
of Cases
7
6
5
7
6
5
7
6
5


7
6
5
7
6
5
7
6
5
7
6
5
7
6
5

-------
                                                Table IV.  B-4  (con't)


                             Direction of the Regression Lines for the Three Data Bases
Dependent
Variable

CMPG


CMPG


Stratified by Model Year
Independent 	 Data Base 	 Number of
Variable CERT/ CERT/ Cases with
EPA EF MFR + Slope
FECO x 5
x 0
x 3
FENOx x 4
x 1
x 4
Total Number
of Cases

7
6
5
7
6
5
i
N>
Ui

-------
                        Table IV. B-5




Slopes of the Regression Lines for the 1981 & 1982 Model Year

Dependent
Variable
UMPG
UMPG
UMPG
UMPG
UMPG
UMPG
HMPG

Independent Data Base Slope
Variable CERT/ CERT/ for '81 MY for '82 MY
EPA EF MFR
FTPHC x - 9.43
x 	
x -13.45 -23.25
FTPCO x - 1.06
x 	
x - 0.45 - 0.33
FTPNOx x 2.30
x 	
x 0.30 5.72
FEHC x - 8.39
x 	
x - 0.59
FECO x - 0.86
x 	
x - 0.52
FENOx x 1.89
x 	
x 2 . 84
FTPHC x -16.18
x 	
x -19.26

-------
                    Table IV. B-5 (con't)




Slopes of the Regression Lines for the 1981 & 1982 Model Year

Dependent
Variable
HMPG
HMPG
HMPG
HMPG
HMPG
CMPG

Independent Data Base • Slope
Variable CERT/ CERT/ for '81 MY for '82 MY
EPA EF MFR
FTPCO x - 1.16
x 	
x - 1.30
FTPNOx x . 1.31
x 	
x 1.32
FEHC x - 9.36
x 	
x 0.59
FECO x - 1.03
x 	
x - 0.81
FENOx x 2.19
x — —
x 3.40
FTPHC x -18.05
x 	
x -19.61

-------
00
                                                   Table IV. B-5 (con1t)




                               Slopes of the Regression Lines for the 1981 & 1982 Model Year
Dependent
Variable
CMPG


CMPG


CMPG


CMPG


CMPG



InclGpGnoGnt *~Dcit 3. BHSG Slops
Variable CERT/ CERT/ for '81 MY for '82 MY
EPA EF MFR
FTPCO x - 1.17
x 	
x - 1.18
FTPNOx x 1.50
x 	
x 1.39
FEHC x -10.57
x 	
x - 0.31
FECO x - 1.02
x 	
x - 0.63
FENOx x 1.96
x 	
x 3.02

-------
IV.  C.  Stepwise Backward Regression Analysis

Stepwise backward regression  analysis  was investigated as another approach  to
see if  there  was any fuel economy/emissions  relationship  and  if so, what  its
nature might be.

The process basically  involves  starting out with a multiple linear  regression
of MPG as a function of  several variables.  Then the  least  important  variable
as  determined  by   the  partial  correlation  coefficient   is  dropped  and  the
analysis repeated  and  the next least  important  variable dropped,  and so  on
until all of  the coefficients  are  at  least  0.1.   The process can  be  started
with a large  number  of  variables,  the relatively more  important  variables  can
be identified and the less important ones discarded for further analysis.

The independent  variables  that were chosen to start  out the  process  were:
N/V ratio,  road load horsepower, displacement, weight, rated  horsepower,  and
the six emission values.   The dependent variables were the  three fuel  economy
values.

The 1981 CERT/EPA  data  base  was analyzed as  a  unit,  then stratified by  manu-
facturer  and  transmission  type.    In  contrast  to   the  low  values   of  the
correlation coefficient found in cases using the single  independent variables
discussed earlier,   the  R-squared  values  obtained with  this  approach were
substantially higher, typically in the 0.7 to 0.9  range.

We  must  be  aware  that   this   procedure  can  indicate  that  a variable   is
statistically insignificant for any of several reasons which include:
       1.    The variable may actually be virtually unrelated to fuel economy.

       2.    The effects  of the  variable  may be  partially masked  by one  or
             more other  variables.   For instance,  the  effects  of  differences
             in  rated  horsepower may  be  obscured by related  changes in  com-
                                     IV-29

-------
             pression  ratio or  displacement.   Similarly,  variations  in  N/V
             ratio  could  be  hidden  by  axle  ratio differences.   Appendix  8
             includes a discussion of.collinearity  (i.e., to  determine  whether
             the variables  are  truly independent  of one another).   Emissions
             did not appear to be collinear to any other variable.

       3.    The variable  may  strongly influence  fuel  economy; however,  that
             influence may  be hidden if  the range  (i.e.  variations)  of  that
             variable  is   very   small.   For  example,  the  following  summary
             indicates that the  least significant  variable in  determining  the
             urban fuel economy  for  the  1981 Ford vehicles with manual trans-
             missions  was  the  reciprocal  of  the.  test weight  (i.e.  ETWMl).
             However,  an  examination  of   those  test vehicles  indicated  that
             there  were  only  two  weight  ranges.   The  3000  to  3125  pound
             vehicles were offered with 140  and 200 C.I.D. engines,  while  the
             2375  to 2500  pound cars  were offered only  with  a  98  C.I.D.
             engine.  Similarly, ETWMl is  also  the  least significant variable
             for  Nissan's  urban  fuel  economy,   and,  again,  the  maximum
             variation of the test weight  is only 125 pounds  within  each basic
             engine.  Thus,  in  both  of  those cases, a variable (i.e.  ETWMl)
             was indicated  to be  the least  significant when,  in  actuality,
             ETWMl is one of the most important  variables in  determining urban
             fuel economy.

In reviewing the results of this analysis, it was  determined that  the  HC  and
CO  highway  emissions   (FEHC  and   FECO   respectively)  were  consistently,
statistically  insignificant  variables,  and  thus   could  be  omitted  when  we
perform  a multiple  linear regression  of   each  of  MPG , MPG, ,  and  MPG   as
a function  of  the remaining variables.  Results of those regressions  (except
those which  were  stratified by manufacturer) are  in appendix 5.  Compression
ratio  and  axle ratio  do  not   appear  in these  results  because   they were
eliminated on the basis of  partial correlation in earlier  results.
Summary tables that describe the results of the process are shown below.
                                       IV-30

-------
                                                           Table  IV.  C-l

                                               SUMMARY OF  STEPWISE BACKWARD ANALYSIS
                                                 FOR URBAN MPG FOR MODEL YEAR 1981
I
LO
Level of
Stratification:

All Data
Conventional Automatic
   Trans. (CA)
Conventional Manual
   Trans (CM)
Lockup Auto.
   Trans. (LA)
All Chrysler

All Ford
All GM
All Honda
All Nissan
All Toyota
Ford/CA
GM/CA
Ford/CM
GM/LA
                                  Order in which the  variables
                                  were dropped:
FEHC
FEHC
FEHC
FEHC
FENOX
FTP CO
FTP CO
FEHC
ETWM1
FEHC
FEHC
VDHP
ETWM1
FEHC
FECO
FTPCO
FECO
FTPCO
DISP
FTPHC
FTPHC
DISP
FECO
FTPNOX
RTHP
FECO
FEHC
RTHP
DISP
FTPHC
FENOX
FECO
FTPHC
RTHP
FECO
FTPHC
FTPNOX
DISP
FTPCO
FEHC

VDHP
FTPHC
FTPNOX
DISP
RTHP
FTPNOX
FEHC
FENOX
FTPNOX
DISP
RTHP
VDHP
NSVR

FENOX
FENOX
VDHP
VDHP
VDHP
FEHC
FECO
VDHP
ETWM1
FEHC
VDHP
NSVR


FECO

FECO FENOX

NSVR
VDHP FECO

FTPNOX NSVR
VDHP FECO
FTPHC VDHP
FTPCO FTPHC



FTPCO FTPHC
                                                                                                                     FTPCO
                                                                                                                     FENOX

-------
                                                          Table  IV.  C-2

                                               SUMMARY  OF  STEPWISE  BACKWARD ANALYSIS
                                                FOR HIGHWAY MPG FOR MODEL  YEAR 1981
H
<
OJ
Level of
Stratification;

All Data
Coventional Automatic
   Trans. (CA)
Conventionan Manual
   Trans (CM)
Lockup Auto.
   Trans. (LA)
All Chrysler
All Ford
All GM
All Honda
All Nissan
All Toyota
Ford/CA
GM/CA
Ford/CM
GM/LA
                            Order in which the variables
                            were dropped:
FECO
FENOX
FENOX
RTHP
FTP CO
VDHP
FECO
FEHC
FEHC
FTPNOX
FTPHC
NSVR
FEHC
FEHC
FEHC
FEHC
FECO
FEHC
DISP
FEHC
FENOX
ETWM1
ETWM1
FEHC
FTP CO
FTPNOX
NSVR
RTHP
FENOX
FECO
FEHC
FTP CO
FENOX
FTPHC
FTPCO
FTPNOX
FTPNOX
ETWM1
FEHC
FENOX
DISP
FTPCO

FTPHC

FECO
FTPNOX
FTPCO
FEHC
FTPHC
FTPHC
FTPHC
FECO
DISP
FTPCO
FECO

FTPNOX FTPCO

FTPHC
FEHC VDHP FTPHC
FECO
FTPHC
VDHP FECO FTPCO DISP
FECO DISP VDHP

FENOX
FEHC FECO FTPCO
FECO FENOX
FTPHC

-------
                                                             Table IV.  C-3

                                                  SUMMARY OF STEPWISE BACKWARD ANALYSIS
                                                  FOR COMBINED MPG FOR MODEL YEAR 1981
I
UJ
u>
Level of
Stratification:

All Data
Conventional Automatic
   Trans. (CA)
Conventional Manual
   Trans. (CM)
Lockup Auto.
   Trans. (LA)
All Chrysler
All Ford
All GM
All Honda
All Nissan
All Toyota
Ford/CA
GM/CA
Ford/CM
GM/LA
                                 Order in which the variables
                                 were dropped:
FECO
FEHC
FECO
FEHC
FTPNOX
FTPHC
FTPCO
FEHC
FTPNOX
RTHP
FEHC
FECO
FEHC
RTHP
VDHP
FENOX
FEHC
FECO
FENOX
FTPCO
FECO
DISP
ETWMI
FEHC
FTPHC
NSVR
ETWMI
FEHC
FEHC
FTPHC
DISP
FTPCO
DISP
RTHP
VDHP
ETWMI
FECO
FTPNOX
VDHP
DISP
DISP
FECO
FENOX
FTPCO
VDHP
RTHP
FTPCO
FEHC
FTPHC
FTPNOX
DISP
DISP
FTPCO
FENOX

FTPCO

FECO
FENOX
VDHP
FEHC
FECO
FENOX
VDHP
FEHC
FTPCO
FECO
FEHC

FTPHC

FTPNOX VDHP


VDHP FTPHC

FTPNOX
FTPHC
FTPHC VDHP


FTPNOX- '

FENOX

-------
IV.  D.  Residual Analysis

Another analytical  approach that was  used  was a  residual analysis based  on
multiple independent variable regression equations.  Briefly,  the   approach is
as  follows.   Get  a regression  equation  for MPG  as  a  function  of  several
different  variables,  but not emissions.   Compute the  residuals  by using  the
equation  to  predict   the  actual  data.   The residuals  are  the  differences
between,  or   the  ratios of,  the  predicted  and  actual  MPG  data.   Plot  and
regress these  residuals versus  emissions to  see if any relationships can be
seen.   In this  way  most  of  the  fuel  economy important  variables  can  be
"accounted for" and what is left can be explored to see  if there  is a  residual
fuel  economy/emissions relationship.   The  data  base  utilized here  was  the
CERT/EPA base for the 1981 model year (less Diesels).

The  form   of  the basic multiple  regression  equation  to use was  considered
next.  Rather  than  specify  just one form it  was  decided to  use 3  forms  since
it was not known if the  form  of the  basic MPG  equation would  influence  the
result.  We  looked  for equations that  were published  and that had reasonable
 2            2
R   values  (R   values  of  about  0.9  were   considered  desirable).    Three
equation  forms were  selected;   they  are called  the  Murrell  1975,  Bascunana
1979, and Cheng 1981 equations.

The  Murrell   1975  equation  came  from SAE paper 750958,  entitled  "Factors
Affecting  Fuel Economy"  by J.  Dillard  Murrell.   The  equation  contains  5
                           O                                                f\ I
variables:   (CID  x  N/V~* ),   ETW,   (RTHP/ETW),   (RTHP/CID),  and   (CMPR
-1)/(CMPR°'4).

The Bascunana 1979  equation came from  SAE  paper  790654 by Jose L.   Bascunana,
entitled  "Derivation and  Discussion of a Regression Model for Estimating  the
Fuel  Economy  of  Automobiles".    The   1979  Bascunana  equation   contains   as
independent variables:  ETW, displacement, and N/V ratio.   In   contrast  to many
other equations, the  1979  Bascunana equation  involves a   product of variables
instead of a sum.
                                    IV-34

-------
The  1981  Cheng  equation  was developed  in this  study as  an  adjunct  to  the
stepwise backward regression analysis study discussed in  section IV.  C  of this
report.

The general functional forms of the equations are shown below.

                     Functional  Forms  of  the MPG Equations

Equation                               Form

1975 Murrell*                MPG - A(CID x N/V)~°*8   + B(ETW)~°*67
                             +  C(RTHP/ETW)   +  D(RTHP/C1D)
                             +  E(CMPR°'4 -1)/CMPR°'4   + F

1979 Bascunana*              MPG = A[(ETW)a (DISP)b (N/V)°]
1981 Cheng                   MPG - ACETW) + B(VDHP) + C(DISP) + D(RTHP)
                             + E(N/V) + F

For the  data bases that  they  were derived from  with the  specific  constants
listed in the references an estimate of the "goodness of fit" is shown  below:
                    2
                   R  as an Indication of "Goodness of Fit"
Equation
1975 Murrell
1975 Murrell
1979 Bascunana
1981 Cheng
1981 Cheng
1981 Cheng
(Type of MPG)
(urban)
(highway)
(composite)
(urban)
(highway)
(composite)
2
R (original ref)
0.89
0.87
0.95
0.90
0.86
0.90
*   Equivalent test weight  (ETW)  was substituted for inertia weight which  was
    the original variable in the Murrell and Bascunana equations.
                                    IV-35

-------
For  the  1975  Murrell  and  the  1979  Bascunana  equations  it  was  thought
inappropriate   to  use   them  with   their   originally   determined  coefficient
values.   Instead,   the   functional  forms  were   kept   the  same   and   new
coefficients were  derived using the MY  1981 data  base  used in  this  report.
The results are shown in the table below.

                 Updated Coefficients Using MY 1981 Data Base

                            1975 Murrell Equation
Coefficients

Coeff .
A
B
C
D
E
F

Original
urban highway composite
7,909 19,930 N.A.
2,824 2,876 N.A.
-66.82 5.839 N.A.
0.1224 -2.259 N.A.
34.76 39.37 N.A.
-19.74 -25.24 N.A.
R2
Updated
urban
7,501
5,764
-47.36
-5.025
16.20
-17.03
0.90
highway
29,878
3,956
227.2
-16.80
-1.843
-10.69
0.88
composite
14,989
5,602
36.28
-10.09
-1.700
-8.915
0.91
1979 Bascunana Equation
Coefficients

Coeff.
A
a
b
c

Original
urban highway composite
N.A. N.A. 37,246
N.A. N.A. -0.4653
N.A. N.A. -0.4031
N.A. N.A. -0.4150
R2

urban
141,482
-0.8659
-0.1889
-0.2403
0.90
Updated
highway
959,401
-0.7840
-0.3301
-0.6450
0.88

composite
436,918
-0.8831
-0.2323
-0.4086
0.90
                                   IV-36

-------
                             1981 Cheng Equation
                                 Coefficients

A.
B.
C.
D.
E.
F.

urban
70,077
0.2908
-0.0044
-0.0291
-0.1047
4.0439
R2 = 0.90
highway
80,599
-0.4058
-0.0301
-0.0271
-0.4356
34.546
0.86
composite
77,444
0.0458
-0.0084
-0.0366
-0.2187
13.560
0.90
Using the updated  coefficients,  and the original  functional  forms for  all  3
equations, a residual analysis was  carried out.   Two forms of   residuals  were
studied,  actual  MPG  minus predicted  MPG,  (called the  delta-residual),  and
actual  MPG  divided  by  predicted  MPG,   (called  the  ratio-residual).     The
residuals  were scatter  plotted  against  the  six  emission  variables.     The
initial  stratification was based on  all  the  1981 data  implying 108 scatter
plots (3 fuel economy dependent  variables x  3  equations  x  2 residuals  per
dependent variable  x  6  variables).  The plots did not suggest any linear  or
other relationship between the residuals of fuel  economy and emissions.

Upon examining the results of the 108  plots, linear regressions were  performed
                                        2
for  all   the   plots,  and  all  the  r    terms   were  so  small  as  to   be
insignificant.  The regression  results are  presented  in appendix  6.    The
                2
largest  of  the  r   values,  0.042, was  for  the  ratio-residual of  combined  fuel
economy  (MPG )  regressed  against urban  NOx  (FTPNOX).  This  result implies
that only 4.2%  of  the variability 'in  the  percentage by which  the actual  MPG
differs  from  the  MPG   predicted by  the  1979  Bascunana  equation  could  be
explained as a  linear  function  of the urban NOx;  the  remaining 95.8% was  not
                                                            2
related  to  FTPNOX.  Since most  (58 out of 108) of  the  r   values  were  less
                       2
than 1%  (the  average  r   was only 1.1%), only  a  small  proportion of the  total
variation of any of the  18 residuals can be explained  by  a linear function of
the 6 emission variables.
                                    IV-37

-------
Another  way  to  consider  this  type  of  information  is  to  forget  residual
                                  2
analysis and  use improvement in R   and standard error  as  an indicators  that
    r
emissions do  or  do  not  relate to fuel economy.  The following data  illustrate
multiple  regressions  using   the Cheng  equation  with  and  without  the  six
emissions as  independent variables.
Dependent
Variable
UMPG
HMPG
CMPG
—Without Emissions—
          Standard
 R2     Error(SE)
.898
.864
.897
1.760
2.776
2.064
—With Emissions—
         Standard
 R2    Error(SE)
.903
.867
.902
1.819
2.879
2.026
-Change in:—
_R2    SE
+.005   +.059
+.003   +.103
+.005   -.038
These  data indicate  that inclusion  or exclusion  of  the urban  and  highway
emissions  in  the Cheng  equation makes  virtually no  difference.   It  can  be
concluded  that  for  the  1981 EPA  certification data  base,  exhaust  emissions
have essentially no  identifiable relationship to fuel  economy after accounting
for  variability  in fuel  economy  due  to  vehicle  design  parameters.   This
conclusion  is  restricted  to  the  1981  EPA  certification data  base  due  to
somewhat limited  ranges  for  emissions  (these are expanded in  section IV.  H)
and collinearity of variables in the Cheng  equation (see appendix 8).
                                    IV-38

-------
Section IV.  E.    Subconfiguration - Matched Data Analysis

Another analysis method was to  restrict  the  study to the  1981 CERT/EPA  cata
base and then stratify by the following ten (10)  parameters:

    1.   Manufacturer
    2.   Engine Family
    3.   Displacement
    4.   Vehicle I.D.
    5.   Transmission
    6.   ETW
    7.   Dynamometer Horsepower
    8.   Axle Ratio
    9.   N/V
    10.  Compression Ratio

The  purpose  of  such  a   stratification  was  to  identify,   as   closely  as
possible, the effect of engine  calibration on emissions and  fuel  economy for
each  vehicle  that  was   tested  at  the  EPA laboratory  in  more  than   one
configuration.  Also this  tended  to  eliminate test variability which was due
to  either  differences  among the  test vehicles  or to  differences among  the
vehicle testing laboratories.  The disadvantage of such a  stratification was
that only 27  such  vehicles were  identified,  each of  which was tested at EPA
in at least two (2) versions.

In  examining  the  results  the following relationships between the urban  fuel
economy (MPG  ) and the regulated emissions were  seen.

    1.   For FTPHC:
         a.   MPG  increased as FTPHC decreased, in 18 of the 27  cases,
                 u                             '                      '
                                   IV-3 9

-------
         b.   MPG  decreased as FTPHC decreased,  in 8 of the 27 cases,  and
                 u                             '                      '
         c.   MPG  remained unchanged in one (1) of the 27 cases.
    2.   For FTPCO:
         a.   MPG  increased as FTPCO decreased,  in 23 of the 27 cases,  and
                 u                             '                       '

         b.   MPG   decreased as  FTPCO  decreased,  in  four  (4)  of  the  27
              cases.
    3.   For FTPNOX:

         a.   MPG   increased  as  FTPNOX  decreased,  in nine  (9)  if  the  27
              cases, and

         b.   MPG  decreased as FTPNOX decreased,  in 18 of the 27 cases.
                 u

The following chart  illustrates  the  seven (7) combinations of outcomes  that
we found in examining those 27 groups of  data.
    As  MPG   increases,   the  level  of  the  corresponding  emissions   were
    observed to:
                   Number of
                   Occurrences   FTPHC       FTPCO         FTPNOX
Outcome
Outcome
Outcome
Outcome
Outcome
Outcome
Outcome
1
2
3
4
5
6
7
10
7
5
2
1
1
1
Decreases
Decreases
Increases
Increases
Increases
Decreases
Unchanged
Decreases
Decreases
Decreases
Increases
Increases
Increases
Decreases
Increases
Decreases
Increases
Increases
Decreases
Increases
Decreases
                                    IV-40

-------
Thus, from this rather limited set of data  (shown  in table IV.  E-l), we can
infer  that  decreasing the  level  of  the  FTPHC or  FTPCO emissions  is not
usually detrimental  to MPG  .   But decreasing  the  level of FTPNOX  emissions
usually accompanies a decrease in MPG  .
                                    IV-41

-------
                                                       Table IV.  E-l

BZfi
FORO
FORO
FORD
FORD
FORO
FORD
FORO
FOHO
FOIID
FORO
FORD
FORO
FOHO
FORO
FURO
FORD
FORD
FORD
FORO
FORO
FORD
83

yin
1E2-1
1E2-1
1K2-2
1K2-2
1K2-2
1K2-2
IK2-2
1K2-2
1K2-2


.6-F-44J
.6-F-441
.3-C-285
.3-C-2B5
.3-C-285
.3-C-285
.3-C-2B5
.3-G-286
.3-G-286
1K2-2.3-G-266
1K2-2
1K2-2
1Z2-2
122-2
1Z2-2
1S1-4
1S1-4
1A1-5
.3-G-286
.3-0-286
.3-C-290
.3-C-290
.3-C-290
.2-F-345
.2-F-345
.8W-G-259
1A1-5.8W-G-259
1A1-5
1A1-5
COM07
.8W-G-259
.8W-G-259
1
V
t
B
1

3
3
4
5
S
0
0
1
1
1
0
1
1
1
2
0
1
1
2
J

YQtiE
6.4
6.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
10.4
8.9
8.9
B.9
11.0
11.0
12.6
12.6
12.6
12.6
18:1

(use.
98.0
98.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
140.0
255.0
255.0
351.0
351.0
351.0
351.0
§31:8
C
Y
L
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
B
B
B
B
g
C B F
R B I
B L 2
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
1 2 N
i tl\
COMP.
B&I1Q
8.8
8.8
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
8.2
8.2
8.3
8.3
8.3
8.3
8:£
AXLE

T
R
BAILQ. U^y N
3.59
3.59
3.08
3.08
3. OB
3. OB
3.08
3. OB
3.08
3.08
3. OB
3.08
3.45
3.45
3.45
3.08
3.08
2.73
2.73
2.73
2.73
1:41
43.0
43.0
43.0
43.0
43.0
43.0
43.0
44.0
44.0
44.0
44.0
44.0
37.0
37.0
37.0
28.0
28.0
23.0
23.0
23.0
23.0
31:8
M4
M4
M4
M4
M4
M4
M4
M4
M4
M4
M4
M4
MS
MS
MS
L4
L4
L4
L4
L4
L4
b3
EMISSION
CONTROL
SiSIFM _. _
EGR.PMP.OXD.RED
EGR.PMP.OXD.RED
EGR.PMP.OXD.3CL
EGR.PMP.OXD.3CL
EGRiPMP.OXO.3CL
EGR.PMP.OX0.3CL
EGR.PMP.OX0.3CL
EGR.PMP.OX0.3CL
EGR.PMP.OX0.3CL
EGR.PMP.OXD.3CL
EGR.PMP.OX0.3CL
EGR.PMP.OX0.3CL
EGRiPMP.OXf)
EGR.PMP.OXD
EGR.PMP.OXO
EGR.PMP.OXD.REO
EGR.PMP.OXO. RED
EGR.PMP.OX0.3CL
EGR.PMP.OX0.3CL
EGR,PMP,OXO,3CL
EGR.PMP.OXD.3CL
EgB:ENP:8SB:3Eb

I£SI*_
605348
806864
806678
806574
607680
607366
807453
80S808
805901
806116
806183
B0637S
805831
806191
806305
805884
806720
805919
806204
806299
806572
mm

EIK_
2375
2375
3125
3125
3125
3125
3125
31^5
3125
3125
3125
3125
3125
3125
3125
3750
3750
4500
4500
4500
4500
mi

UHEfi
27.9
27.3
21.3
21.4
21.4
22.1
22.2
22.9
23.0
23.3
23.2
23.0
21.2
20.0
20.6
18.1
17.0
13.8
13.9
13.6
13.7
18.4
18.4

tIEtiC
0.260
0.294
0.381
0.426
0.266
0.351
0.269
0.288
0.372
0.326
^0.362
• 0.365
0.321
0.376
0.352
0.248
0.294
0.207
0.272
0.293
0.251
8:?gi

EIECfl
2.220
2.750
3.220
3.970
2.620
2.570
1.750
3.600
3.930
2.180
2.570
2.650
2.190
2.510
2.310
1.040
1.400
1.050
1.740
3.260
1.540
3.200
1.600

FTPNQ)
0.520
0.570
0.510
0.550
0.470
0.760
0.650
0.850
0.900
1.580
1.170
0.900
0.770
0.550
0.600
0.790
0.820
1.050
0.750
0.660
0.820
8. 640
. o5u
GM
GM
CM


GM
GM


JRT
JRT
SAAB
SAAB
       C09023
       COB023
       COB023

       CA7403-A
       CA7403-A

       XJ52/16
       XJ52/16
JHT    XJS2/15
JHT    XJ52/15
JHT    XJ52/15
JHT    XJ52/15
       668
       668
TOYOTA 81-FE-4
TOYOTA 81-FE-4

TOYOTA 81-FE-17
TOYOTA 81-FE-17

TOYOTA 61-FE-13
TOYOTA Bl-FE-13
I
1
1
2
0
2
0
1
0
0
0
1
1
0
1
z
3
0
1
li:i
10.3
10.3
10.3
14.5
14.5
11.3
11.3
11.3
11.3
11.3
11.3
9.2
9.2
7.8
7.8
10.2
10.2
11.5
11.5
§65.0
65.0
268.5
268. S
268.5
367.0
367.0
258.0
258.0
258.0
258.0
258.0
258.0
121.1
121.1
88.6
88.6
108.0
108.0
144.4
144.4
8
8
6
B
8
8
6
6
6
6
6
6
4
4
4
4
4
4
4
4
I
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
i
2
2
2
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
\\
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
1:1
B.3
8.3
B.3
8.2
B.2
B.
8.
B.
B.
8.
8.
7.2
7.2
9.0
9.0
9.0
9.0
9.0
9.0
1:21 3§:8 b3 EgB:R!?:8!8:3Eb
2.41 30.2 L3 EGR.PMP.OXD.3CL
2.41 30.2 L3 EGR.PMP.OXD.3CL
2.41 30.2 L3 EGR.PMP.OXD.3CL
3.08 38.2 A3 EGR.PMP.OXD.3CL
3.08 38.2 A3 EGR.PMP.OXD.3CL
3.07 40.6 A3 3CL
3.07 40.6 A3 3CL
3.07 40.6 A3 PMP.3CL
3.07 40.6 A3 PMP.3CL
3.07 40.6 A3 PMP.3CL
3.07 40.6 A3 PMP.3CL
3.B9 43.7 MS EGH.3CL
3.89 43.7 MS EGH.3CL
3.31 51.7 K4 EGR.PLS.OXO
3.31 51.7 M4 EGR.PLS.OXD
3.73 55.6 A3 EGR.PMP.3CL .OTR
3.73 55.6 A3 EGR.PMP.3CL.OTR
3.58 34.5 A4 EGR.PMP.3HY.OTR
3.58 34.5 A4 EGR.PMP.3WY.OTR
882?6l
803482
803569
805865
806869
807294
806388
806429
806476
806524
806664
806719
B06158
806322
803519
606816
606817
806620
803645
605766
S888
4000
4000
4000
5250
5250
4250
4250
4250
4250
4250
4250
3125
3125
2250
2250
2625
2625
3000
300C
ll:*
17.6
17.3
17.6
11.2
10.4
15.4
15.6
14.5
14.6
14.7
15.4
18.2
18.6
36.5
34.9
25.5
26.8
23.0
22.9
                                                                                                              1.040 0.780
                                                                                                              1.690 C.530
0.156 1.3SO 0.660
0.233 2.340 0.700
0.177 1.650 0.610

0.169 1.020 0.760
0.217 1.940 0.810

0.221 .2.320 0.260
0.227 2.620 0.530

0.235 2.880 0.230
0-225 2.690 0.190
0.068 0.580 0.750
0.084 0.750 1.000
0.303 2.260 0.170
0.208 2.160 0.230

0.147 0.850 0.740
0.160 1.030 0.680
                                                                                                        0.069 0.680 0.460
                                                                                                        0.072 O.b70 0.470
                                                                                                        0.100 1.300 0.640
                                                                                                        0.100 1.370 0.660

-------
Section IV.  F.  Special Engine Over Time Trends

In an attempt  to examine  the  question of fuel economy versus emission  stan-
dards, a  review of five  major  engine displacement groupings was  undertaken
to  see the  effects  on  fuel  economy  with increasingly  stringent Federal
emission  standards.   The model years  selected (1979, 1980,  and 1981) were
chosen  because these  three  years hsive  three different  sets  of  emission
standards  and  represent  the  most  recent  automotive arc?  emission control
technology.  The engine  groupings  chosen represented high production volume
designs that in turn represent the trend for future automotive applications.

The objective was to match up, within the limits of  the test  data  which were
used  to  generate the  EPA fuel economy  label values,* similar  vehicles  of
differing  model  year,  and  see   how  fuel  economy  varied  with   differing
emission  levels.   The  matching was to  incorporate as many possible vehicle
and powerplant design  parameters as  the data base was capable of  providing,
in  order   to  eliminate  to the  maximum  extent possible  the  influence   of
vehicle and  power  plant design differences.   This was not always  possible,
due to  the  variability of product offerings from  model year  to model  year.
In  every  case,  however,  the  closest  possible  matching was arrived   at
utilizing  the  EPA  Test  Car List  data base.   The power  plant  and vehicle
design parameters considered for matching are noted below:

Powerplant Design Parameters

         Swept Volume (displacement)
         Induction System (carburetor design i.e.,  2 barrel, 4 barrel, etc.)
         Compression Ratio
         Manufacturer's Rated Power Output
         Emission Control System
*  EPA Test Car List, Second Edition 1979,  Second Edition 1980, and  Second
   Edition 1981.
                                   IV--43

-------
Vehicle Design Parameters

    Weight
    Transmission Type
    Axle"Ratio
    N/V Ratio
    Road Load Horsepower (RLHP)

By  "walking  through"  the  noted  model  years  and  matching  the above  noted
parameters to the maximum extent  possible  within a given engine displacement
grouping,   data  were compiled  to  address  the  fuel economy  versus  emissions
question.   The following five  tables  are the results of  this  "walk through"
procedure.   After  carefully  reviewing  the  tables  and  their  associated
graphs, it becomes  apparent  that  no  readily discernible  trend is  evident
with respect to fuel economy versus emissions  since  there are  instances when
fuel economy increases  accompany  both increases and decreases  in  emissions.
These data are all plotted and included in this document as appendix 7.

Looking at the  data for various  engine  families,  some  tentative conclusions
can be arrived at.

Ford 2.3 L Powerplant (Table IV. F-l)

For automatic  transmission equipped vehicles,  the slight  increase in  fuel
economy  is  of  the  magnitude   expected  with  a  decrease  in  RLHP   with
progressing model years.   For manual transmission vehicles, an increase  in
fuel economy  was noted with decreasing emissions,  which  coincided with  a
major change in emission control technology.

Chrysler 1.7  L Powerplant (Table IV. F-2)

For automatic transmission equipped vehicles,  there was no  consistent change
in  fuel economy,  either city  or highway,  as emissions  decreased.  As  the
emissions  decreased each year from  1979  to 1981, the fuel economy  dropped  in
1980 and then increased in 1981.
                                    iy-44

-------
                                                                   Table IV. F-l
           MY^  W£   Trans   Ax}u/N/V
-p-
79
80
81
79
80
81
3000
3000
3000
3000
3125
3125
A3-1
A3-1
A3-1
M4-1
M4-1
M4-i
3. 08/43. 0
3.Q8/43.0
3.08/43.0
3.08/43.0
3,.Q8/43.0
3.08/43.0
Calif
80
80
3000
3125
A3-1
M4-1
3.08/43.0
3.08/43.0
RLIIP

10.2
 9.7
 8.5
10.2
10.2
                                             10.4
                                              8.0
                                             10.2
                                                           Ford 2.3 Liter Powerplant

                                                        MY 79 - 140 C.I.D. 2 bbl carb.,
                                                                9.0 C.R. 92 BHP Manf. Rating

                                                        Automatic Transmission Vehicles - EGR/OXD

                                                        Manual Transmission Vehicles - EGR/PMP/OXD

                                                        MY 80 - 140 C.I.D., 2 bbl carb., 9.0 C.R.
                                                                92 BHP Manf. Rating
                                                                EGR/PMP/OXD

                                                        MY 80 (Calif) - 140 C.I.D. 2 bbl carb.,
                                                                9.0 C.R. 92 BHP Manf. Rating,
                                                                EGR/PMP/OXD/3CL

                                                        MY 81 - 140 C.I.D., 2 bbl carb., 9.0 C.R.
                                                                92 BHP Manf. Rating, EGR/PMP/OXD/3CL

                                                                       Emissions

nc
,41
,178
,101
,91
,22
,267
.282
.296
City
CO
7.80
3.09
1.96
4.70
1.76
1.75
3.58
3.96
Highway
NOx
1.48
1.33
.41
1.46
1.40
.46
.44
.63
HC
.05
.033
.014
.16
.065
.045
.034
.026
CO
.50
.10
.01
.20
.02
.14
.04
.27
NOx
2.18
2.26
.18
2.15
2.45
.18
.40
.49
City

20.5
20.9
21.5
20.8
21.3
22.6
                                                            21.1
                                                            20.0
                                                                      F.E.
Hwy
29
29
30
32
33.2
31.7
          31.5
          31.1
C_omb

23.7
23.9
24.8
24.8
25.4
26.0
          24.8
          23.8

-------
                                                       Table  IV. F-2

                                               Chrysler  1.7 Liter Powerplant

                                             MY 79 - 105 C.I.D., 2  bbl carb.,
                                                     8.2 C.R., 7.5 BHP Manf.  Rating,
                                                     EGR/PLS/OXD

                                             MY 80 - 105 C.I.D., 2  bbl carb.,  8.2 C.R.,
                                                     65 BHP Manf. Rating, EGR/PMP/OXD

                                             MY 80 (Calif) - 105 C.I.D., 2 bbl, 8.2  C.R.,
                                                     65 BI1P Manf. Rating, EGR/PMP/OXD/3CL

                                             MY 81 - 105 C.I.D., 2  bbl. carb., 8.2 C.R.,
                                                     65 BHP Manf. Rating, ECR/PMP/OXD/3CL

                                                            Emissions
                                                                                                       F.E.

MY
79
80
81
80
81
79
81

Wt
2500
2500
2500
2625
2625
2500
2500

Trans
A3-1
A3-1
A3-1
M4-1
M4-1
M4-2
M4-2

Axle/N/V
3.48/53.4
3.48/53.4
3.48/53.3
3.37/50.2
3.37/50.4
3.37/49.3
3.13/47.9

RLHP
6.6
7.1
6.9
7.4
6.9
7.4
7.4

HC
.26
.178
.147
.180
.125
.36
.144
City
CO
7.2
3.32
2.07
2.39
1.28
11.70
1.65
Highway
NOx
1.36
1.21
.79
1.00
.63
1.60
.67
HC
.04
.011
.015
.014
.018
.04
.015
CO
.90
.11
.07
.12
.01
.70
.04
NOx
2.84
1.89
.69
1.13
.54
4.41
.49
City
24.0
23.8
24.5
23.3
26.4
26.4
26.9
llwy
32.7
31.2
34.2
33.3
39.4
37.8
41.2
Comb
27.3
26.6
28.1
26.9
31.0
30.6
31.9
Calif
80
80
2500
2500
A3-1
M4-1
3.48/53.4
3.37/50.2
7.1
6.7
.168
.204
1.86
3.38
.86
.61
.010
.020
.06
.10
.68
.70
23.0
24.4
31.9
38.0
26.3
29.1

-------
For  manual  transmission  vehicles,  fuel  economy  increased  as  emissions
decreased.   Thus  both  the  automatic  aad  manual   transmission  equipped
vehicles  exhibited   fuel   economy  Increases   which  coincided  with   the
incorporation of more advanced emission control technology.

General Motors 1.6 L Powerplant (Table IV. F-3)

There were  two  versions  of the GM  1.6 L  engine reviewed, the base  or  stan-
dard  engine  and an  optional  H.O.  (high output)  version.   Fuel  economy
results with  respect  to emissions  differed markedly between these  two  ver-
sions of  the  engine.   For  the  standard  engine with  automatic  transmission,
there was a significant  increase in fuel  economy with decreasing emissions.
For  the  manual  transmission  equipped  version  of  the standard engine  there
was  a  decrease  in  fuel  economy between   1979   and  1980,   only  partly
attributable  to  increased  road  load  horsepower.    Again,  there  was  an
increase  in  fuel  economy  coinciding  with the utilization  of  an  advanced
emission  control system.   For the  H.O.  version of  the engine,  a different
set  of   results emerged.    Both   the  automatic  transmission   and  manual
transmission  versions  of  this engine exhibited noticeable declines  in  fuel
economy with  decreasing  emission levels.   It is not  obvious from  the  data
available why the fuel economy versus emissions relation  is  so  different for
the standard and high output versions of this  powerplant.

General Motors 2.5 L Powerplant (Table IV. F-4)

For  both  vehicles equipped with either  automatic  or  manual transmissions,
the  significant drops  in  fuel  economy  appear to  be associated with  the
engine  being  used  to  power  front-wheel drive  (FWD) vehicles   instead  of
rear-wheel  drive (RWD) vehicles.  This drop in tested fuel economy might not
be indicative of a real  difference  in the in-use fuel economies.   (There is
evidence  to  the effect  that  rear-drive vehicles  have   larger   offsets  of
actual in-use fuel economy  versus dynamometer fuel economy test  results than
do front-drive vehicles.*)  The slight drop in fuel economy for the RWD
* - Neil South,  "1978  to 1980 Ford On-Road Fuel Economy,"  SAE  Paper 810383,
    February 1981.
 -  Schneider,  et al.,  "In-Use  Fuel Economy of  1980 Passenger Cars,"   SAE
    Paper 810384, February 1981.
 -  Section III. D of this report.
                                     IV-47

-------
 I
T-
CO
                   Calif

                   80
                   80
2500
2375
                                                                           Table IV. F-3

                                                                   General Motors 1.6 Liter Powerplant

                                                                 MY 79 - 98 C.I.D., 2 bbl carb., 8.6 C.R.,
                                                                         70 BI1P Manf. Rating, EGR/OXD
                                                                         74 BIIP II.0. Manf. Rating, EGR/OXD

                                                                 MY 80 - 98 C.I.D., 2 bbl carb., 8.6 C.R.,
                                                                         70 BHP Manf. Rating, EGR/PLS/OXD
                                                                         74 BIIP 11.0. Manf. Rating, EGR/PLS/OXD

                                                                 MY 80 (Calif) - 98 C.I.D., 2 bbl carb., 8.6 C.R.,
                                                                         70 BIIP Manf. Rating, EGR/PLS/3CL

                                                                 MY 81 - 98 C.I.D., 2 bbl carb., 8.6 C.R.,
                                                                         70 BIIP Manf. Rating, EGR/PLS/3CL

                                                                                  Emissions
A3-1
M4-1
3.70/56.7
3.70/56.5
8.9
8.9
.123
.171
1.99
5.00
.40
.12
.020
.040
.55
.63
.03
.04
24.7
26.0
                                                                                                                           F.E.

MY
79 Std
80 Std
81 Std
79 110
80 HO
79 Std
80 Std
81 Std
79 110
80 HO

we
2500
2500
2500
2500
2500
2500
2500
2500
2250
2375

Trans
A3-1
A3-1
A3-1
A3-1
A3-1
M4-1
M4-1
M4-1
M4-1
M4-1

Axle/N/V
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.5
3.70/56.7

RLHP
9.2
9.8
9.8
9.2
9.8
9.2
9.8
9.8
9.2
8.9

HC
.43
.188
.178
.89
.206
.55
.163
.176
.67
.234
City
CO
9.00
3.01
3.68
11.80
2.96
8.25
4.47
3.06
8.30
3.70

NOx
1.47
1.39
.28
1.11
1.41
1.46
1.05
.47
.71
1.31

HC
.03
.026
.106
.07
.041
.05
.026
.021
.06
.041
Highway
CO
1.57
.38
3.24
.90
.03
.55
.46
.67
.70
.23

NOx
.78
1.25
.04
1.76
1.47
1.85
1.41
'.15
1.28
1.66

City
23.3
26.1
25.8
26.4
23.0
28.3
24.7
27.4
28.4
26.3

Hwy
25.8
31.0
32.3
34.7
28.3
39.1
33.2
36.3
38.8
36.4

Comb
24.3
28.1
28.4
29.8
25.1
32.3
27.9
30.8
32.3
30.1
30.6
37.2
27.0
30.1

-------
                                                                 Table IV. F-4
f
                                                         CM Corp. 2.5 Liter L-4 Powerplant

                                                      MY 79 - 151 C.I.D., 2 bbl carb.,  8.1 C.R.,
                                                              90 BIIP Manf. Rating, EGR/OXD

                                                      MY 80 - 151 C.I.D., 2 bbl carb.,  8.2 C.R.,
                                                              90 BIIP Manf. Rating, EGR/OXD/PLS

                                                      MY 80 (Callf)-151 C.I.D., 2 bbl carb., 8.1  C.R.
                                                              90 BHP Manf. Rating, EGR/3CL

                                                      MY 81 - 151 C.I.D., 2 bbl carb.,  8.1 C.R.,
                                                              90 BIIP Manf. Rating, EGR/PMP/OXD/3CL

                                                                               Emissions
                                                                                                                          F.E.

MY
79
80
80
81
81
79
80
80
81

Wt
3000
3125
3000
3000
3000
3000
3000
3000
3000

Trans
A3-1/RWD
A3-1/RWD
A3-1/FWD
A3-1/FWD
A3-1/FWD
M4-1/RWD
M4-2/FWD
M4-2/FWD
M4-2/FWD

Axle/N/V
2.73/39.9
2.73/39.9
2.84/35.7
2.53/35.7
2.53/35.7
2.73/39.9
3.34/38.6
3.34/38.6
3.32/38.0

RUIP
8.3
8.2
7.3
7.3
7.3
8.3
7.3
7.3
7.3

HC
.39
.163
.223
.113
.135
.46
.192
.254
.175
City
CO
7.20
2.96
2.17
1.15
1.77
6.50
2.84
3.89
1.01
Highway
NOx
1.54
1.37
1.21
.66
.52
.99
1.55
1.42
.68
HC
.06
.027
.040
.035
.035
.05
.023
.027
.027
CO
.60
.34
.40
.46
.80
1.10
.19
.19
.18
NOx
1.63
1.23
1.16
.31
.29
1.08
1.45
1.35
.15
City
24.3
24.2
21.1
22.1
21.8
23.7
22.9
22.1
21.6
Hwy
32.5
31.6
31.9
32.5
31.5
37.4
34.1
34.6
35.0
Comb
27.4
27.1
24.9
25.8
25.3
28.4
26.9
26.4
26.1
         Calif

         80
         80
3000
3000
A3-1/FWD
M4-2/FWD
2.84/35.7
3.34/38.2
7.3
7.3
.300
.328
4.49
3.33
.33
.94
.025
.019
.32
.12
.33
.75
22.3
23.8
33.8
35.9
26.3
28.1

-------
vehicles equipped with automatic  transmissions  (from  1979  to 1980) is of the
magnitude  expected  with a  125 pound  increase  in test  weight.   There  is  a
slight  drop  in fuel  economy  for  the  FWD  vehicles equipped  with  manual
transmissions  from  1980 to  1981.  For  the  automatic transmission  equipped
FWD  vehicles,  the  increase  (from 1980  to  1981) coincides  with  the use  of
more  advanced  emission  control  technology  on  the  1981  models.   However,
since  the  cylinder heads  also underwent substantial design changes  during
those  three  years,  it is known  that  other  factors are  probably  influencing
the fuel economy, too.
General Motors 3.8 L Powerplant (Table IV. F-5)

For automatic  transmission equipped vehicles,  the  increase in  fuel  economy
appears  to  be attributable  primarily  to  the  usage  of   a  lock-up  torque
converter  on MY 81  vehicles.   For manual  transmission vehicles  the  slight
decrease  in  fuel  economy  between 1979  and  1980  appears  to  be  partly
attributable to an  increase in test weight and rear axle  ratio.   Again,  an
increase in  fuel economy coinciding with  the  adoption of  an advanced control
system can be seen.

Summary

After reviewing the  comparisons,  the only apparent  trend  (with  the exception
of a  2.1%  drop in fuel economy associated with the 2.5 L  vehicles equipped
with manual  transmissions)  is  an increase in fuel  economy from the 1980  to
the  1981  model  year,  which  coincides  with  the  replacement  of  oxidizing
catalyst  systems  with  more  sophisticated  3-way  catalyst  systems.    The
average  increase   in  combined   fuel  economy   (MPG )    that   accompanied
replacing  an open-loop oxidation  catalyst  system with a  closed-loop  3-way
catalyst system was  5.3%.   However, since this  "trend"  includes  increases  in
fuel  economy  as  small as  1.1%,  we   tested  this  trend   by  comparing  1980
Federal  test  vehicles  with  similar   1980  California  vehicles.   The  1980
Federal vehicles were all equipped with  oxidation catalyst systems while the
California vehicles were all equipped  with 3-way catalyst  systems.
                                    IV-50

-------
                                                                 Table IV. F-5

                                                         CM Corp. 3.8 Liter V-6 Powerplant

                                                      MY 79 - 231 C.I.D., 2 bbl carb., 8.0 C.R.,
                                                              115 BHP Manf. Rating, EGR/OXD/OTR

                                                      MY 80 - 231 C.I.D., 2 bbl carb., 8.0 C.R.,
                                                              115 BHP Manf. Rating, EGR/PMP/OXD

                                                      MY 80 (Calif) - 231 C.I.D. 2 bbl carb., 8.0 C.R.,
                                                              115 BHP Manf. Rating, EGR/PMP/3CL

                                                      MY 81 - 231 C.I.D., 2 bbl carb., 8.0 C.R.,
                                                              110 BHP Manf. Rating, EGR/PMP/3CL
                                                                     Emissions
Oi
H1
         MY   Wt    Trans   Axle/N/V
79 3500
80 3500
81 3750
79 3500
80 3625
81 3625
Calif.
80 3625
80 3375
Federal
A3-1
A3-1
L3-1
M3-1
M3-1
M3-1

A3-1
M4-1

2.41/32.7
2.41/32.7
2.41/32.8
2.93/39.8
3,08/41=8
3.08/42.9

2.41/32.7
2.93/43.3

              RU1P
                                          12,
                                          10,
                                          10,
                                           12.2
                                           11=3
                                           11.3
                                           11.2
                                           9.0
HC
.62
.295
.221
.62
S312
.229
.205
.244
City
CO
5.20
4.20
2.70
7.40
2,96
3.23
2.62
4.97
NOx
1.19
1.32
.50
1.44
.79
.74
.55
.50
HC
.07
.056
.029
.04
.039
.017
.050
.029
Highway
CO NOx
.60
.18
.31
.20
.17
.03
.43
.38
1.56
1.17
.17
1.54
.80
.64
.08
.59
                                                           City

                                                           19.5
                                                           19.6
                                                                          20
                                                                          17
                                                                          16
                                                                          16.8
                                                                          19.7
                                                                          15.8
                                                                                    P.E.
                                                           Hwy

                                                           25.0
                                                           26.8
                                                           30.1
                                                           26.0
                                                           23.7
                                                           26.8
                                                                     26.8
                                                                     26.3
                                                                                              Comb
                                                       21,
                                                       22.
                                                       24,
                                                       20.
                                                       18,
                                                                               20.2
                                                                     22.4
                                                                     19.3
         80   3375  M4-1
2.93/42.8
9.0
.3^4    4.63
1,23
.040   .50
1.26
14.9
24.9
18.2

-------
The ten  (10)  comparisons  between similar 1980  MY  Federal vehicles and  1980
MY  California vehicles  (detailed  in the  previous  5  tables)  indicate  an
increase in  fuel  economy with  the  addition of  a  3-way,  closed-loop  system
occurred in  7 out of  the  10 cases.  The average  increase  in fuel economy,
for the  10  cases,  which accompanied  the  utilization  of a closed-loop  3-way
catalyst system was 2.6%.

Thus,   there  appears  to  be  a trend  indicating a  slight increase  in  fuel
economy  when an  open-loop  oxidizing catalyst  system is  replaced  with  a
closed-loop  3-way  catalyst  system.   However,  since  the  amount  of  data  is
limited and the absolute value of  the fuel  economy improvement is not  large
relative to  test  variability, all  that  can be said  is that,  based on  this
engines over  time  study,  there  appears  to  be  no  identifiable fuel  economy
penalty which can be  attributed  to  changes  in the Federal emission standard
between 1979 and 1981.
                                    IV-52

-------
IV. G. Sensitivity Coefficient Study
In  yet  another  way  to  investigate  fuel  economy/emissions  relationships  a
sensitivity analysis was undertaken.   A sensitivity  coefficient  can be thought
of  as  sort of  a normalized  derivative,  and is  usually expressed  as percent
change in  the dependent variable  per percent change  in independent variable.
Suppose  there are  two  points  a  and  b,  with  FE ,  FE
                                                          b'
                                                and  if  for  this
example the pollutant is HC, then we have HC  and HC, .
                                            3.       D
Let FE '• (FEa +
                                   -f'2, HC = (HCa + HCb)-r2,
              and  AFE = FE,  - FE , AHC == HC,  - HC .
                           b     a'         b     a

Then  the sensitivity,  call  it SFEHC,  is  equal to   AFE/FE-fr AHC/HC .
Besides  giving  an indication  of the  magnitude  of  the effect,  the  algebraic
sign of  the  sensitivity  coefficient can  contain  useful information.   Since the
quantities  FE  and  emissions  are   positive,   the   sign .  of  the  sensitivity
coefficient  is  determined  by  the  signs  of  the  deltas.   Four  cases  are
possible, and they are shown below:
                               AEmissions
        AFE
     AFE  > 0
     AFE  < 0
AEmissions > 0 AEmissions < 0
S > 0
S < 0
S < 0
S > 0
Two cases are possible for  the  sensitivity  coefficient.   Either it is positive
or  negative.   If it  is  positive  then whenever fuel  economy  goes  up,  so  do
emissions, and  vice versa.   If  the  sensitivity coefficient  is  negative,  then
then when fuel economy goes up,  emissions go down,  and vice  versa.

What was  done was  to  search  the CERT/EPA  data base (for  1975 to  1982 model
years) for multiple tests  of the  same vehicle.  From  the multiple  tests  the
maximum number of sensitivity coefficients were determined.
                                    IV-53

-------
The results are shown below:
       Variables
          for
  MPG
Pollutant
           No. of Tests       Sensitivity Coefficient
                N        Mean      Max       Min      Sigma
MPG Urban    HC Urban
               1026     +0.001     31.8     -12.8     1.62
MPG Urban    CO Urban
               1027     -0.079
                    6.5     - 8.7   -.0.75
MPG Urban    NOx Urban
               1027     -0.132     10.5     -16.6     1.38
MPG Hwy
HC Hwy
432     -0.035
3.9     -19.3     1.09
MPG Hwy
CO Hwy
432     -0.060
0.9     - 3.5     0.35
MPG Hwy
NOx Hwy
432     -0.071
8.7     -15.2     1.48
The average sensitivity coefficients are small and  the  standard  deviations  are
large.  This  means that  for  all practical  purposes,  the average  sensitivity
coefficient is  neither positive  nor negative,  it is  zero, meaning  that  as
often  as   fuel  economy  goes  up when  emissions  go  up,  the  opposite case
happens.   If  anything,  the fact  that 5  out  of  the  6  average  sensitivity
coefficients  were  negative would  lead one  to suspect  that the  relationship
hinted  at  was  one of  "emissions down-fuel  economy up".   However,  what   is
concluded   is  that  the  sensitivity  coefficient  study did  not  discover  any
relationship between fuel economy and emissions.  If anything, given the  data
in  the above  table,    it almost  appears as  if  the  results  might  be from
independent parameters, i.e. two independent  parameters  randomly  varying.
                                    IV-54

-------
Section IV.   H.   Data Stratification By Emission Control System

As a  first step in  the analysis, each  of the  three  fuel economies  (UMPG,
HMPG, and  CMPG)  were  plotted against each  of  the three  regulated  emissions
(FTPHC, FTPCO,  and FTPNOX)  as well as against  the three emissions from  the
highway  test  cycle  (FEHC,  FECO,  arid  FENOX).   The  data   examined were
restricted to:

    1.   Test data generated at EPA's laboratory  (the  CERT/EPA data base)  to
         eliminate any possible variation due to differences in laboratories,

    2.   Spark-ignition vehicles (i.e.,  no Diesels),

    3.   1979  through  1981  model  year  vehicles,  in  order  to  make  the
         analysis more relevant to present and future vehicles, and

    4.   Non-durability vehicles,  since durability  vehicles  with test data
         up to  50,000 miles  and  without any matching highway test data were
         of limited usefulness in this analysis.

However, this first set of 18 graphs  (see appendix 4 for  similar  graphs)  did
not  indicate  any relationship between  fuel economy and exhaust emissions.
This  result  was  expected  since  regressions of  fuel   economy  against each
emission produced  very small  values of  r-squared.    (See  section  IV. A.)
Since  the  highway  fuel economy  (HMPG)   had  a  weaker relationship  to  the
regulated  emissions  (FTPHC, FTPCO,  FTPNOX)  than did  either  the urban fuel
economy (UMPG)  or the combined fuel  economy  (CMPG),  subsequent analyses were
restricted to trying to relate UMPG or CMPG to FTPHC, FTPCO, or FTPNOX.
The next  step was to  stratify  the data by  the  emission control  technology
employed.  The  following  eight  (8) emission control systems were  identified
which are representative of a majority  of  the systems that are currently  in
use as well as the ones which will be used in the near future:
                                    IV-55

-------
                        Emission  Control Technologies

Fuel
Injected
System 1
System 2-
System 3
System 4
System 5
System 6
System 7
System 8
No
No
No
No
No
No
Yes
Yes

EGR?
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Ox
Cat?
Yes
Yes
Yes
Yes
No
Y/N
Y/N
Y/N
3 Way
Cat?
No
No
No
Yes
Yes
Yes
Yes
Yes

3CL?
No
No
No
Yes
Yes
No
Yes
Yes
Air
Pump?
No
No
Yes
Y/N*
Y/N
Yes
Y/N
Y/N
Pulsating
Air Sys?
Yes
No
No
Y/N
Y/N
No
Y/N
Y/N
*   Y/N means either Yes or No.
    (Note:  While  the above eight  systems  are  non-overlapping,  they do  not
    represent all technologies.)
Stratifying the  data by emission control  technologies  increased the number
of  graphs  by a factor  of  8   and  accordingly  decreased  the  amount  of
variation.  These  graphs  showed a -slight  tendency for  an  increase in  fuel
economy  with  a  decrease  in emission  levels;  however,  since that  tendency
might  have  been  a  result of - ETW  or  transmission  differences,   further
analysis was carried out.   Since it was possible that much  of this variation
was  due  to  differences in the  test  weight  (ETW)  of  the  vehicles,   fuel
economy  results  were plotted  against  the emissions  and stratified by  both
ETW and  emission control  technologies.   However,  this approach produced  too
many graphs,  most  of which lacked a sufficient number  of  points upon which
to make a statistically sound analysis.

In  order to  incorporate both  ETW  and  the emission  control  technology  but
still  have  enough data  per graph  to analyze,  the data were stratified  by
only the technology  and then a new variable was  plotted.   The new  variable
was fuel economy multiplied by ETW and divided by 2000 (i.e. ton-miles  per
gallon).  This  new  variable  was plotted  against  each  of the  three urban
emission  results.    This  ton  miles per  gallon  variable   is essentially  a
measure  of efficiency for the vehicle.   By using
                                    IV-56

-------
this variable, we were able  to  reduce  much  of the variation in  fuel  economy
causi d only by differences in ETW.  Stratifying by control  system  produced  a
set of  48  graphs.  The graphs  for UMPG vs  FTPNOX are presented  in  figures
IV. H-l  through  IV. H-8.   The  remaining 40  graphs  are in appendix 9.  An
additional  set  of 48 graphs was  created  by plotting  gallons per  ton-mile
(i.e., the reciprocal of ton-miles per gallon) against  each of the regulated
emissions.  These graphs suggested that these variables, which are a  measure
of efficiency, are  independent  of the emission results.   If  we assume  that
each   of   these   data   points   represents   vehicles   having    acceptable
drivaability,  then  there  is  little  difference  among the  groups  in  the
minimal levels of FTPHC and  FTPCO  attainable.  However, for FTPNOX,  the  fuel
injected, 3-way, closed-loop vehicles attain 1/3 to 1/2 the emissions of  the
carbureted, 3-way vehicles,  which  attain about 1/2 to 2/3 of the emissions
of the carbureted vehicles without a 3-way catalyst.

A fifth set of 138 graphs related  fuel consumption per  ton  (i.e. gallons  per
ton-mile)  for the  urban and  combined  test cycles  to each  of  the  three
regulated emissions and stratified by  transmission class (CA, CM,  and LA) as
well as by control system.  A similar set of 132 graphs (see appendix 10  for
the graphs which  contain  at  least 12 points), relating ton-miles  per gallon
to each of the three regulated  emissions and also stratified by  transmission
class,  was  generated.   This  sixth analysis had  six   fewer graphs than  the
fifth  analysis  because  the  sixth analysis  did not  include   any  test  data
prior to the 1980 model year while the fifth analysis  additionally used  1979
data.  These two analyses confirmed the conclusions drawn from the third  and
fourth  sets  of  graphs;  that is, the efficiency of  the vehicle  (as  measured
in ton-miles per gallon) appears to be independent of  the  emission  results.

To assist in analyzing  the  graphs  of ton-miles per gallons versus the  urban
emissions, the upper and lower  ranges  on each graph  were sketched in.   (see
appendix  10).   These curves were drawn  by visual  inspection  and are  not
                                    IV-57

-------
            SCATTER PLOT   <1>  SYSITOUSI  CASES=TAY»Z(79-81)
                       N=  184  OUT OF 245  41.UTE.S.2K  VS. 3.FTPNOX
            UTE.S.2K
             55.000   *
                                                                                      Figure IV.  H-l
50.000    »
                                                                                             Urban Ton-Hllea per Gallon versus
                                                                                                    FTP NOx Emissiona

                                                                                                   Emission Control System 1
             45.000   »
             40.000   +
                                                 *      » «
                                                «    «   * «
Ul
oo
             35.000
             30.000
                                                              «  « «  ««
                                00                            O   00 O  O   2
                           «    »      2  *          a          002  •oo       o  a
                                o              2     oooo     02   °2                  •  «  •
                           »    ««         «»        oo o « 3 02  oo  «      2 «  ««2     *
                                       o            002      o    oo  o o
                            «           o   o          «    oo  o «23  ooo          oo        •»
                                          *        oo               » «2 2   *        8* »»«>•        2«
                                oo                    «       «  oo o oooaoo
                                                                 O   ft OO
             25.000   *
             20.000
             15.000
             10.000    *
                                        ---- * ---- * ---- * ---- * ---- * ---- » ---- * ---- * ---- + ---- + -_-_,-^.-, ---- + ---- « .....
                                         •5000°               1.0000               l.bOOO               2.0000     FTPNOX
                                                              i _   _ •  »«=»"

-------
        TCTflr
            N=  162 OUT OF 229   41.UTE.S.2K VS. 3.FTPNOX
UTE.S.2K
 55.000    *
                   •Vigi-r? IV. H-2
 50.000    *
             Urban Ton-Hilea per Gallon vet»u«
                    FTP NOx Emissions

                   Emission Control System 2
 45.000
 40.000    +
 35.000
 30.000    *
                                         o
                                       * «
                                                ««    ««
 « « « « 2°  .   «   «        »
     « 2 2      «   • •    o    «
             ««2 2  *   »    «  »»
   «««2»2   2«»    2«
»»   « 2  2*1  °      «»«
 25.000
 20.000
 15.000    +
 10.000
         0.                    .50000               1.0000               1.5000               2.0000     FTPNOX
                   .25000                .75000                1.2500               1.7500               2.2500

-------
         SCATTER PLOT  <3>  SYSlTOHO  CASES=TAYK:<79-81)
                    N= 501  OUT  OF 661  M.UTE.S.2K  VS.  3.FTPNOX
         UTE.S.2K
          55.000   »
                                                               Figure IV. H-3
          50.000
                                                          Urban Ton Miles per Gallon versus
                                                                FTP NOx Emissions

                                                               Emission Control System 3
          <»5.000
          40.000   »
o>
o
          35.000   *
          30.000   *
          25.000   +
                               oo o      «           o
                         «       o  « o oo      2***     *  •
            «   «    oo  oo o     »  «2 0000200  go   o  o  oo      » « *
        •  oo          2     » 2  * *2°3 * 2  3  "23  *    2 *    * *
     2« 2*  »2  *   2°»  22°2°* * «« 23 * 2    *   3"    3««»         «
o  o  oo    ooo   ooo 2 **£ °  *  3°° ***   22*3 »»2***      « »
    « o    «    00303  «ooo «3 3   22 2  «34 22<»22*'»    «  •   *
   o    o       00^02000400 » 303343 «3°3  ««2«2   2 *°         *  *
    »    «o   220002<»  »23<*232<»20»323300032    •   «o   «• »  •«
         o oo   «2»  22222 02225°°°°*    *    * «2°* *     '  *   *
        2«  »«  » »   0300 2*  2** ****°°2 2    *   *       *
     «      «2  2    °   ** °   2*3     "* *  *  32*
        «   o     ??oo   «  «  o o «    oooo  «       o
                                                    o  «
                     2     »       oo   o  o
                        00   O  O    «    «
          20.000    »
          15.000    »
                                                                «  o
          10.000
                 J).  	   ^^     .50000      _         1.0000               1.5000              2.0000  ^FTPN

-------
          OT ^W
           N=  176 OUT OF 243  41.UTE.S.2K VS. 3.FTPNOX
UTE.S.2K
 55.000
                                                 Figure IV. IM
 50.000   »
                                             Urban Ton Miles per Gallon veraue
                                                   til" MUX Emissions

                                                  Emission Control System 4
 45.000
 40.000   *
 35.000   *
 30.000   »
    2 »««
   «  «
   2 «
  »  « 2
22242*6 433   * **
                                           * *    «»
                          *«  2 3  «  «  2»  «3 2 «
                         2« 2« 22  «  ««2  «2   «
                                       >o<> 00
 25.000
 20.000   *
 15.000   »
 10.000   +
           +—-—-+—---+——--»--—-*----*---—»—-——»-___»__-.—+----»__-_»_-_—»---_»-——-«____«____«__—_»—___«
        0.                   .50000               1.0000               1.5000               2.0000    FTHNOX
                   •P5000               .75000               1.2500               1.7500              '

-------
              SCATTER PLOT   <5>  SYS1T08S5   CASES=TAYK!(79-81)
                         N=  129  OUT OF 164   M.UTE.S.2K VS.  3.FTPNOX'
              UTE.S.2K
               55.000   »
                                       Figure IV. H-5
               50.000   *
                                   Urban Ton-Miles per Gallon versua
                                          FTP HOx Emissions

                                        Emission Control System S
               45.000   »
               40.000
<3
               35.000
               30.000
 go   o                «   00    o
                o   e    o     o
0000      oo        2  *
 2o               o      goo
003 »    ««    •  •   o       » «»
  3    o oo  o«    go         «   »»
 OOO 0 « «                O    O  O O
     o o «   3  02*003 «2   000
           2      »     00   2 2
                             0

          00         0
          00     00
                          o  «

                          »
               25.000
               20.000
               15.000
               10.000
                       0.                    .50000	      _    J.^njJOO        ^^  l^OJ/0
                                 • ?.
.7?
           l.noc
                                          .2

-------
              UTE.S.2K

               55.000    «
                         N=  65 OUT OP 88  M .UTK . S.2K VS. 3.FTPNOX
                                                          Figure IV. H-6
               50.000
                                                      Urban Ton-Miles per Gallon versus

                                                             FTP NOx Emissions



                                                            Emission Control  System 6
               45.000   »
               40.000   *
r
o>
OJ
               35.000   »
               30.000
   *« »  3      «

    aa  ao      A

   a a^a     a  aa

     a aa   a   a

    Ol»  a    a
               25.000
               20.000
               15.000
               10.000
                                 .25000
.50000               1.0000               1.5000               2.0000     FTPNOX

          .75000                1.2500               1.7500               2.2500

-------
            SCATTER PLOT   <7>  SYS1T08:?   CASES=TAYR!(79-81)
                        N=  145  OUT OF 203   M.UTE.S.2K VS. 3.FTPNOX
            UTE.S.2K
             55.000    «
    Figure IV.  H-7
             50.000
Urban Ton-Miles per Gallon veraua
       FTP NOx Emissions

     Emission Control System 7
c^
-P-
             45.000
             40.000   »
                                030     » 2  ««2
             35.000   +
             30.000   *   «  "  52 2"««2  « »   *     «

                          « »     o   ?  »   »
             25.000
             20.000   »
             15.000
             10.000
                               125
                                                      50
-    .    LHH   •••
250(T      ^^     177
           77500
2.2500

-------
              SCATItH PTUT  ~~5YSlTUFT8  CA5FS=T£TRT<79=81)
                          N=  55 OUT OF 7ti  M.UTF..S.2K VS. 3.FTPNOX
              UTE.S.2K
               S5.000    *
                                                 Figure IV.  H-8
               50.000    *
                                             Urban Ton-Miles per Gallon versus
                                                    FTP NOx Emissions

                                                  Emission Control System 8
<
cr>
               45.000    *
               40.000
               35.000
               30.000    *
               25.000
               20.000    *
               15.000    *
                                « o
               10.000
                                            .50000
          1.0000
          1.5000
          2.0000
                                  .?5000
,75000
1.2500
1.7SOO
FTPNOX
2.2500

-------
meant  to  represent  a specific functional:  relationship  between fuel  economy
and emissions;  they are meant only  to indicate upper  and  lower bounds  for
any  such  functional relationship  that may  exist.    The  plots  were  then
compared  to  determine whether a  given system  yielded  superior  performance
(i.e. higher ton-miles per gallon at every level of a given emission).   (See
figure  Toyota  -1 in section V.  D.  for  an  idealized  relationship  between
systems.)   The  only  such instance  we detected  was that  system  number  1
produced  higher  ton-mile per gallon  results at given  emission levels  than
did system number 3.  It may be possible that relationship  resulted  from the
smaller parasitic horsepower loss of the pulsating air  system  compared  to an
air pump system.

There  is  an  obvious problem,  however, in  using  ton-miles   per  gallon  to
analyze  the  data;  that  is,  the  weight  of the  vehicle  is  not  the  only
variable  which  is  changing.   To compensate  for the diversity in  engines,
tires,  axles,  et cetera,  the test  data were  examined  in each of  the  24
groupings  obtained   by  stratifying  by  the  8  emission  control  technology
systems and  by  the  3 transmission classes.   Within each of  the 24  groups,
the mean  (average)  of each  of the following:   1/ETW, dynamometer horsepower
(VDHP), engine  displacement  (DISP),  rated horsepower (RTHP),  and N/V  ratio
(NSVR) were calculated.   We  then used  the 1981 Cheng  Equation (see  section
IV. D.)  to obtain  an  "adjusted"  fuel economy described  by  the  following
equation:

    Adjusted MPG = Actual MPG + A [ mean (ETW"1) -  actual  (ETW"1)  ]

                 + B  [ mean (VDHP) -  actual (VDHP)]

                 + C  [ mean (DISP) -  actual (DISP)]

                 + D  [ mean (RTHP) -  actual (RTHP)]

                 + E  [mean (NSVR) - actual  (NSVR)]
                                    IV-6"6

-------
These "adjusted MPG"  values are actually  the  measured fuel economy  results
plus (or minus) a  correction factor, predicted  by  the 1981 Cheng Equation,
which approximate the expected results if all the tests within each of  those
24 groups had  been performed on vehicles of the  same  test weight, the  same
VDHP,  the  same engine  size and  power,  and  the same  N/V  ratio.   We  then
plotted  these  adjusted  MPG  values  against   the   corresponding  regulated
emissions.    (See   appendix  11.)   Care  should  be  taken  in  evaluating  the
results of this procedure.   (See  the discussion on collinearity in appendix
8.)

In examining the plots of adjusted UMPG versus  FTPNOX,  it was found  that  20
graphs  each  contained  at  least   12  points.   A   (two   variable)   linear
regression analysis was  performed for each of  those 20 sets  of data.   The
analyses  indicated  that  10  sets  of data  displayed  a  tendency for  the
adjusted UMPG to decrease as the NOx emissions decreased.   The other  10  sets
displayed the opposite (i.e., the tendency for the adjusted UMPG to increase
as  the  NOx  emissions decreased).   A similar  analysis was  performed  with
graphs of adjusted CMPG  versus  FTPNOX.,   In 19 cases, with  at  least  12  data
points, 11 exhibited a tendency for  decreases in adjusted CMPG as  the FTPNOX
decreased,  while the remaining  8 exhibited the opposite tendency.  Thus,  the
results from this approach tend to imply that decreasing the level of FTPNOX
emissions has no consistent effect on fuel  economy.

A visual inspection of the  48  graphs of  adjusted fuel economy versus FTPNOX
exhibited  some patterns  which corresponded  to  figure   Toyota-1 (section
V.D.).   Specifically,  it was found  that  carbureted  vehicles  equipped  with
3-way catalysts (system  numbers 4,   5, and 6)  produced higher adjusted  fuel
economy  (both urban  and  combined)   results  than  did  carbureted vehicles
equipped with  air  pumps  but without 3-way catalysts, for every  transmission
grouping.  This visual  analysis also supported  the  conclusion made  earlier
in  this  section  that,  among carbureted  vehicles without  3-way  catalysts,
those vehicles equipped with pulsating air systems  (system  number  1)  produce
higher fuel  economies  than  similar vehicles  equipped with  air pumps  (system
number 3).
                                    IV-67

-------
Another  stratification used  was  to  divide  the  data based  on  the  FTPHC
values.  Using only the FTPHC  test  values  not exceeding 0.60 grams per  mile
we grouped the data as follows:

    1.    HC up to (i.e. less than) 0.20 g/mi
    2.    HC at least 0.20, but less than 0.30 g/mi
    3.    HC at least 0.30, but less than 0.40 g/mi
    4.    HC at least 0.40, but less than 0.50 g/mi,  and
          '.
    5.    HC at least 0.50, but less than 0.60 g/mi.
In  this  last  stratification,  the  attempt  was  to stratify  by both  the  8
emission control  technology  systems and the  5  FTPHC ranges,  and then,  for
each  of  those 40  groups, plot  urban  ton-miles  per gallon  versus FTPNOX.
Linear  regression analysis  was  performed  on each  of   those  40  groups  of
data.  Of  the 26 sets of  data containing  at least  12  points, the  analysis
indicated that 10  sets  of data displayed a  tendency for decreasing vehicle
efficiency with decreasing FTPNOX, and  the remaining 16  displayed  a  tendency
for increasing vehicle efficiency with decreasing  FTPNOX.
                                    IV-68

-------
Section IV.  I.  Is There a "Knee" in the Relationship between Tailpipe
                 Emissions and Fuel Economy?
We will refer to a graph as possessing a "knee" (or "tolerance point") if:
    1.   To the right of the knee, the graph is almost horizontal, and
    2.   To the left of the knee, the graph is angled downward sharp}}
An idealized sketch of such a graph is:
Since many  manufacturers have alluded  to the existence of  such a  curve in
relating  fuel  economy to emissions (usually FTPNOX), the  graphical  analyses
in   Section  IV.   H.  were  investigated   for   the  existence  of   such  a
relationship.   While  such  a  "knee"  curve  might  exist,  its existence  was
hidden  by the variation among the  test vehicles (i.e., differences  in ETW,
VDHP, DISP,  RTHP,  and NSVR).  However,  since  the  graphs  of  "Adjusted" fuel
economy  versus FTPNOX  were designed  specifically   to  compensate  for  those
vehicle differences,  those 48 graphs were re-examined.
                                     IV-69

-------
There  were  several  graphs  for  which  could  be   inferred,  from  a  visual
inspection, that decreasing  the FTPNOX  emissions had  a significant  effect on
the  fuel  economy.   These  particular  graphs  each  seemed  to  possess  a
"tolerance point"  with the  following property:  for FTPNOX  emissions  higher
than that  point,  the adjusted fuel  economy  was unaffected  by  variations in
the FTPNOX level;  however,  for FTPNOX  emission below that  tolerance  point,
the  adjusted  fuel   economy  exhibited a   significant   deterioration  with
decreasing FTPNOX  levels.   The groups for which these tolerance  points  were
found are:

    1.   Carbureted  vehicles with  lockup  automatic  transmissions  (LA)  and
         oxidizing catalyst  systems exhibited a tolerance  point  at 1.0  NOx
         for the adjusted UMPG graphs.  However, this  pattern did not  appear
         on the adjusted CMPG graphs for these groups.

    2.   For  carbureted vehicles  equipped  with an  oxidation  catalyst,  a
         3-way,  closed-loop system  (i.e.,  system number   4),  and  with  a
         manual  transmission  (CM),  a  tolerance   point  of 0.8  g/mi   NOx
         appeared for both the adjusted UMPG  and adjusted CMPG.

    3.    For  fuel  injected  vehicles with  EGR  and 3-way  catalysts  (i.e.,
         system number  8),   equipped  with  other than  a  lockup  transmission
         (i.e., either  CA or  CM),  the adjusted UMPG  exhibited a  tolerance
         point at  0.4 g/mi  NOx.  This  same  tolerance point (i.e.  0.4  g/mi
         NOx) also appeared  for the adjusted CMPG for  only  the  manual  trans-
         mission.

These  groups   represent  a  very  small  proportion   of  the  total number  of
emission control/transmission combinations.  Tolerance points were  not found
for the  majority  of  the combinations.  It  is interesting  to note  that  the
above  three   tolerance  values  approximately  coincided  with   actual   NOx
emission standards (1.0, 0.7,  and  0.4 g/mi).  However,  in  order  for a  test
to pass the applicable emission standard, its FTPNOX level multiplied  by  the
appropriate deterioration factor  (DF) must not  exceed  the   standard.  Since
the data used  in this  section represented low mileage  data only,  directly
relating these data to existing or  future  standards  is  not straightforward.
                                   IV-70

-------
                                  SECTION V,
V.  Individual Manufacturer Discussions;
V. A. General Motors


1.  GM  Statements  Concerning   the  Relationship  between  Emissions  and  Fuel

    Economy


In a  paper titled  "Automotive  Fuel Economy  Review,"* GM  said that  emission
standards penalized fuel economy in the following manner.


    While we  are  meeting the 1980  Fuel Economy  Standards,  which  is
    20  miles  per  gallon,  we  also  have  to  overcome   a  penalty
    estimated at up to  5 percent  imposed  by the increased stringency
    of  the  1980  emission  standards.   In 1981,  when the  corporate
    average  fuel  economy  must  be  22  MPG,  another  increase  in
    emission  controls  severity  imposes   an   estimated   3  percent
    penalty on fuel economy as  compared with 1979.   Introduction  of
    the  new GM C-4  Emissions  Control  System  in 1981 will prevent
    this loss from being larger.

    In  the  preceeding  years,   compromises  in  spark  and  carburetor
    settings  for  emission  control had  reduced  GM's new  car average
    fuel economy  to 12.0  miles  per gallons (mpg) in  1974.   Adoption
    of a new  emission control system made  possible engine  operating
    improvements that brought average fuel  economy  up  to  15.3  mpg  in
    1975.  The reason was  that  the use of  the.  oxidizing  catalyst  to
    remove  most  of the  hydrocarbons  (HC)  and  carbon monoxide  (CO)
    after  the exhaust  gases  have left  the  engine   enabled  us  to
    recalibrate the ignition and  carburetion nearer to  their optimum
    settings.  Each year thereafter has seen  further  increase  in our
    fuel  economy,   so   the  GM  sales-weighted  average  for  1980  is
    estimated  at  21.4  mpg,  an improvement  of more  than  78%  since
    1974.

    Improved basic engine efficiency also is  constantly being  sought
    in  .research   programs.    Engine  efficiency  will   be  further
    improved  by  increasing  use  of  electronic engine  controls,  to
    decrease  emissions  and  offset much of  the  fuel economy penalty
    resulting from emission control.

    It has  been  a well  established fact that  the  Diesel  engine  is
    superior  to   the   gasoline   engine   in  fuel  economy,  and  GM
    introduced  the Diesel  engine  as  an option  for  its full  size
    Oldsmobile in 1978.  For a comparable performance,  the Diesel
    Earl  K.   Werner,   General  Motors,   "Automotive   Fuel   Economy
    Review",   Society   of  Plastics  Engineers   National   Technical
    Conferences, November 7, 1979, pages 2, 5, 6 & 8.
                                      V-l

-------
    gives  upwards  of  25  percent  better  fuel  economy  than  the
    gasoline engine,  and  if we can  overcome the negative  effect  of
    tightening emission standards, we  expect to apply the  Diesel  to
    a greater number of our vehicles, further improving our CAFE.

In  a  September  22,  1980  letter*  to  the  Administrator  of the  Environmental

Protection  Agency, General Motors included a  chart  which among other  things

provided   information  on  the  effects  of emission  standards  on fuel  economy.

This information can be found in tables GM-1 and GM-2.


Six CO waiver applications  from GM were decided between September 5,  1979  and
March 3, 1981.   Fuel economy was one of  the  criteria for granting a  CO waiver,

yet GM  did not make  an  issue of  fuel  economy  in their  first  four CO  waiver
applications.  However, in  their fifth  and  sixth CO waiver  requests  (1.8/2.0  L

and 1.6L engines), GM claimed the following:


    Compliance with the 3.4 gpm CO standard  as  compared to  a  7.0  gpm
    CO  standard  has  the  potential  of  adversely  affecting   fuel
    economy  in   the   range  of   2  to  5   percent,   citing   engine
    calibration changes ("retuning")  as one of the principal causes.

    To further substantiate its position, General Motors  embarked  on
    an engineering  development  and test program  in  which a "J"  car
    1.8L engine  was calibrated  to  meet  the  3.4 gpm CO standard  and
    then  recalibrated  to  meet  a 7.0  gpm  CO  standard.   Exhaust
    emissions and  fuel economy were measured  under both  conditions
    and driveabilty was  compared.   The  results  of  these  tests  have
    been presented to EPA  for the  public record.  These results  show
    that a fuel  economy  penalty  of  1  mpg  would exist  in the  EPA
    label value if the waiver were  denied.

    To  further  substantiate the fuel  economy  penalty, we have  now
    completed an investigation involving  a matched  pairs study  of
    federal gasoline  passenger cars comparing  the  fuel  consumption
    improvement  from  1980  to 1981 of   those  passenger cars  granted
    the CO  waiver to  the  fuel  consumption improvement from 1980  to
    1981 of  those  [Federal gasoline]  passenger  cars not granted  the
    CO  waiver.  This  study  was  based  on  the  premise  that   any
    improvement in fuel consumption between  the CO and non-CO waiver
    groups  could be  attributed  to  the CO waiver.   The  following
    parameters  were  matched:  engine   displacement,  test  weight,
    transmission,  axle  ratio  and dynamometer  horsepower  setting.
    The results are shown in [table GM-3]:**
*   Letter and  enclosures  to the Honorable  Douglas  M. Costle, Administrator,
    U.S.  Environmental  Protection  Agency  from  Dr.  Betsy   Ancker-Johnson,
    General Motors, dated September 22,  1980.
**  Letter and attachment  to Mr.  D.M.  Costle (Administrator, EPA), from T.  M.
    Fisher (GM), dated December 8, 1980.

                                    V-2

-------
                                                                              Table GH-t
<
        GENERAL  MOTORS CORPORATION                            LIGHT OUTlt (PASSENGER CAR) GASOLINE ENGINES                                  Issued! October 1, 1980

                EFFECTS OF EXHAUST AND EVAPORATIVE  EMISSION STANDARDS ON HARDWARE, FUEL ECONOMY, FUEL CONSUMPTION, AND ADDITIONAL-FIRST-COST TO CONSUMER

        NOTE:  The  data  In this  table  are baaed on teats of current CM hardware designed to comply with light  duty (passenger car) gasoline  emission and fuel
              economy  standards.   Hardware utilized In this effort has an effect on performance In both areas,  although  Installed primarily for Its contribution
              to either emission control or fuel economy.  Since the "state of the art" In this effort has changed rapidly, It should be noted  that the hardware
              and  cost  estimates represent current technology adjusted to reflect 1981 economic levels and new  1981  average dealer discounts.  As a result. It
              should be expected that  future versions of this table may not be the same as shown here. This  table will  be updated periodically.
           Standards            Applicable/
         HC/CO/NOx/Evap. Most Probable Hardware1
                                                       Increased Fuel
                                               Fuel     Consumed In    Gasoline
                                            Economy  .  Vehicle Life   Vehicle
                                               Loss,    Billions      First Costs, t
                                            Percent* of Gallons^     Add'lTotal
        1.5/15/2.0/6.0
        1979  Federal
                 Oxld.  Conv.,  EGR  or  BPECR,  Baseline   Baseline
        .41/7.0/2.0/6.0  Oxld. Conv., AIR or FAIR,
        1980 Federal     BPECR

        .41/9.0/1.0/2.0  CCC Sys. (Single Bed),
        1980 California  AIR, BPBGR
                                               2-3
.41/3.4/1.0/2.0   CCC  Sys.  (Dual-Bed), AIR.   Minimum
1981 and Later    BPECR,  EST,  ISC               of 1
Federal
        . 41/3.4/.41/2.0
        Research
        Objective
                 CCC  Sys.  (Dual-Bed), AIR,
                 BPECR, EST,  ISC, and I
                                                                  1.0
                                                       Included
                                                        Above
                                                                  2.1
Baseline  185




   60     245


  4755    6605





  540&    725°
Remarks

For each set of future standards,  the tabulated results  are
based on comparisons between vehicles meeting the 1.5/15/2.O/
6.0 standards and comparable vehicles equipped with hardware
designed to meet the future standards.
Dual-bed CCC systems and EST 'received Hotted use In
California In 1980 to gain field experience with these  advanced
technologies.  Additional vapor storage capacity and Improved
fuel system seals were required to meet the 1980 California
evaporative standard (same as  the 1981 Federal standard).

In general, a dual bed CCC system Is necessary to provide  the
Improved CO control necessary  to meet a 3.4 g/mlle standard.
A limited number of engine famlllea have been granted a waiver
to a 7.0 g/mile CO standard for 1981-82.

Meaningful assessments of fuel economy and additional first
cost cannot be made since control systems have not been dem-
onstrated to meet these standards through the complete  EPA
50,000-mile certification durability requirements, selective
enforcement audit and In-use surveillance requirements.
       'Hardware Dettnltons!   (a)  EGR -  Exhaust  Gas  Reclrculatlon,  (b) BPEGR - Back Pressure EGR, (c) AIR - Air Injection Reactor, (d) PAIR - Pulse Air
       Injection Reactor,  (e)  CCC  System - Computer  Command Control System, (f) Single-Bed - 3-Way Catalyst, (g) Dual-Bed - 3-Way Catalyst plus Oxidation
       Catalyst, (h) EST - Electronic Spark Timing,  and  (1) ISC - Idle Speed Control.  Other electronic engine controls may be Included 1^ emission control
       or fuel economy benefits are demonstrated.

       *Fiio I Economy;  The use of  a dlesel engine  of comparable performance In place of a gasoline-fueled engine, may Increase the fuel economy of that vehicle
       by about 25-301.  Refer to  other  side  for dlesel  Information:

       ^Ftiel Consumption!   Based on emission  certification and fuel economy tests, a fuel economy penalty of 3X has been determined for 1980 vehicles and IX
       estimated fur 1981-1985 vehicles  to project the  Increase In  total  fuel consumed during the life of 1980 through 1985 vehicles, In comparison to vehicles
       meeting the future  fuel economy standards.  Total fuel consumed was calculated using the General Motors fuel consumption model.  These fuel economy
       penalties result In an  Increase In total  fuel consumed of 3.1  billion gallons of fuel during the life of 1980-1985 vehicles.

       "Hardware Costs!  On-going  production  costs of 1979 gasoline vehicle exhaust emission control systems was $165, In comparison to uncontrolled vehicle
       costs; evaporative  emission controls cost an  additional 120  for a  total gasoline vehicle baseline cost of |185.  Additional first costs of future
       systems are estimated on the basis of  system  definitions as of August, 1980.  For vehicles equipped with a CCC system, the oxygen sensor may have to be
       changed during the  useful life of the  vehicle, at an additional maintenance cost.
                I
       ^California 1980 Hardware Costi  The cost data shown are calculated on the basis of high volume production and therefore are conservative estimates.
       Compared to 1981 and Laty  Federal, 1980  California costs Include  compliance testing.

       "Future Cost Trends! Based on projections  of potential reductions of electronic component costs, first cost to the consumer Is expected to decrease
       In laier years from the value given In the  table.

       AECI85
       9/15/80

-------
                                                                                Table CM-2
<
         GENERAL MOTORS CORPORATION                             LIGHT  DUTY  (PASSENGER CAR) DIESEL ENGINES                                Indued:  October 1, 1980

                       ESTIMATED EFFECTS OP EXHAUST AND EVAPORATIVE EMISSION STANDARDS  ON POTENTIAL HARDWARE,  AND ADDITIONAL-FIRST-COST TO CONSUMER

         NOTE:  The projections In this table are based on tests of  current  CM experimental hardware and advanced  research on control concepts which may have
         potential for compliance with future emission and fuel economy  standards*.  NO ADVANCED HARDWARE BEYOND 1982 FEDERAL HAS DEMONSTRATED AN ABILITY TO
         ACHIEVE FUTURE STANDARDS.   The control hardware listed below  represents GH's best ESTIMATE of the TYPE and EXTENT of the hardware that will be necessary
         to approach future standards, and should not be Interpreted to  mean that the needed technology Is available.  This table will be updated periodically to
         reflect changes In the "state of the art."
           Event

         1979
         federal

         1980
         Federal
         1981
         federal
         1982
         federal
          1984
          federal
                                                                                      Diesel   Vehicle
                         Standards3       PART-                                       first    Com t3
                       HC   CO    NOx   1CULATE3  Appllcable/Hoat Probable  Hardware2   Add'lTotal
              l.S   IS   2.0
             0.41  3.4  2.0
                   lelcj
             0.41   3.4  1.0*
             •Waived  to 1.5
              0.41   3.4   1.0*
              •Waived to 1.5
1982          0.54  7.0  1.2
California
                       0.41 3.4  1.0*
                                          0.6
                                          0.6
                                          0.6
 Baseline Uncontrolled Engine


' F.I. Timing, ECR




 f.I. Timing, HOD-EGR





 F.I. Timing, MOD-ECU
 F.I. Timing, analog
 electronic control of
 EGR and TCC engagement
                                         Digital electronic  control
                                         of ECR, F.I.  Timing,  rich
                                         fuel llmlter  and TCC  engage-
                                         ment.  Modified F.I.  Pump.
Base-
line

 50
 50
                                                                                      Base-
                                                                                      line
                                                                                       50
          SO
 50       50


Undetermined'






Undetermined3
                                                                                                  Remarks
                                                                                                  Same engine marketable nationwide In 1979.
1980 California dlesel engine certified to 1.5  NOx
standard with 100,000 mile durability requirement
(See Footnote 1).

•Waived to l.S NOx Is available for 1981-84 with EPA
approval.  CM 3.7 L dlesel granted waiver to l.S NOx
for 1981-82.
Redesign of EGR system offsets potential hardware  cost
Increase of more stringent NOx standard.

first application of paniculate requirement.  No
specific additional hardware deemed necessary for
compliance.

NOx standard for turbocharged engines - l.S gpm NOx at
100,000 tnllea.  NOx standards were set by CARB emer-
gency action and are subject to confirmation at public
hearing.  0.57 HC standard reflects adjustment  for low
evap. allowance.'''  This system would be required to
meet 1983 Federal Standards w/o NOx waiver.

Compliance required 1984 and beyond at all altitudes.
                       0.41 3.4  1.0      0.2     Digital electronic control
                                                  of EGR, F.I. Timing, rich
                                                  fuel llmtter and TCC engage-
                                                  ment.  New electronic con-
                                '                  trolled F.I. Pump.  Some form
                                                  of regenerative partlculate
                                                  trap Is required.
                                                                             Undetermined3        TECHNOLOGY IS NOT AVAILABLE TO CONTROL EMISSIONS TO
                                                                                                  THESE STANDARDS;  the hardware described represents
                                                                                                  one form of research control concept under study.  It
                                                                                                  la Impossible to define the extent of development time
                                                                                                  and effort needed to develop practical and reliable
                                                                                                  production hardware.
           ^California Standards I   Beginning  In MY  1.980,  the California Standards provide a variety of options and adjustments which result  In different
           standards  for each consecutive  year.  Available options Include total or non-methane HC standards, 100,000 mile durability standards,  HC  standard
           adjustment  [or1 low evap.  emission  systems,  and various combinations of these provisions.  The difficulty of controlling NOx results In  selection of least
           stringent NOx requirement.

           ^Hardware Definitions!   (a)  ECR  -  Exhaust Gas  Reclrculatlon, (b) MOD-EGR - Modulated Exhaust Gas Reclrculatlon (c) TCC - Torque Converter  Clutch
           (transmission), (d) F.I.  - Fuel  Injection,  (e) Rich Fuel Llmlter - a control that holds air/fuel ratio below some level of enrichment.   Emission Control
           hardware la not yet defined  beyond 1981, although speculation as to the general concepts necessary to fulfill minimum need is possible  aa  shown.

           ^Hardware Costs;  Since control  hardware Is undefined beyond 1982 Federal Standards, projection of first coata.of future systems  Is not possible at
           this time.  Costs shown are  expressed  In 1981  dollars.

           *fuel Economy;  The use of a dleael engine  of  comparable performance in place of a gasoline-fueled engine, nay Increase fuel econoay of that vehicle by
           about 25-30X.  Refer to other aide for gasoline information.

           ^Evaporative Emissions;  Diesel-fueled vehicles typically do not emit significant amounts of hydrocarbons through evaporative or  refueling mechanisms.
           Consequently, compliance with the  2.0  g  per test evap requirement Is possible vtthout additional hardware.
           ARC 199

-------
                                  Table GM-3

                          Percent  Improvement  in  Fuel
                  Consumption of 1981 Federal Passenger Cars
                   Compared to 1980  Federal  Passenger  Cars**


                   Average Adjusted         % Improvement       Number of
                    GPM Improvement           From 1980        Combination
Classification     Between 1980 and 1981       to 1981        Groups Matched


All Federal

Passenger Car

Engines                 .0012                    2.6%                 28


CO Waiver-

Engines                 .0022                    4.7%                 10


Non-CO Waiver

Engines                 .0007                    1.4%                 18


Difference

Between the CO

Waiver Engines

and the Non-CO

Waiver Engines          .0015                    3.2%*
*   A 95%  confidence  interval was  calculated  for the difference  of
    two  means   with   common  unknown, variances.    The   confidence
    interval ranges from -1.5% to 7.9%.

    These  data  clearly indicate that  those  vehicles  granted the  CO
    waiver  exhibit a  3.2%   increase  in  fuel  economy  over  those
    •vehicles without  the CO waiver.  This  finding compared favorably
    with  both  the  National  Research  Council's  estimate   of  2  to  5
    percent and  with  our  experience on the  "J"  car  test  program  as
    well.
**  Retyped for clarity.
                                     V-5

-------
    Coincidentally,  as  part  of a  new application  being  submitted
    today  for  a  1982  CO  waiver  on  the  1.6L  Chevrolet  Chevette
    engine,  we  have  conducted  a  test   program  similar  to  that
    conducted on the "J"  car as described above.  The  data  from the
    Chevette  testing also  confirms  a  fuel  economy  penalty on  the
    order of 1 mpg for a car complying with a 3.4 gpm CO  standard  as
    compared to a car complying with  a  7.0 gpm  standard.   These  data
    are enclosed in the attachment [table  GM-4].

    All of  these  data  consistently show that, without  a  waiver,  the
    "J"  car 1.8/2.0  liter  engine  family will achieve  lower  fuel
    economy  levels  than  it could have achieved were  a  relaxed  CO
    standard in effect.  Based upon our best  estimates, we  believe a
    fuel economy penalty of the magnitude  of  1  mpg on  the EPA label
    will cause  a  significant number  of potential  buyers to  either
    purchase a  competing  model  of vehicle, or  to withdraw  from  the
    new car market place until  better fuel  economy  is  achieved  to
    help offset the cost of the new car.  In  either case,  the  effect
    is one of lost sales to  General Motors.
In a report to EPA, GM said "a 0.4 g/mi NOx standard would worsen  fuel  economy

and driveability of gasoline engines, and, at present levels of  technology,  it

would eliminate the fuel-efficient Diesel..."*


Automotive News  said  "GM  also  stressed that averaging  and lowering emission

standards may improve fuel economy."**
*   General Motors,  "1979-1980  Report of General Motors  On Advanced  Emission
    Control System Development Progress," February,  1981,  Vol.  1,  page  9.
**  Automotive News,  April 6,  1981,  page 49.
                                     V-6

-------
                                     Table GM-4


                                     ATTACHMENT

               COMPARISON OF EMISSION AND FUEL ECONOMY RESULTS FOR
            DEVELOPMENT DATA CARS  EQUIPPED WITH 1.6 LITER ENGINES AND
                   CALIBRATED  TO  3.4 AND  7.0 G/MI CO STANDARDS


                            Car Calibrated to        Car Calibrated to
                            3.4 g/mi Standard*       7.0 g/mi Standard**
                          Test. 1    Teat 2   Avg.     Test 1  Test 2.   Avg.

        • Automatic transmission: Equipped:  Cars: (H035A; and IIQ35S)

Emissions (FTP) g/mi

     HC.                     .037     .077     .082     .154     .195   .174-
     CO                      .90     1.21     1.06     3.06-     4.01   3.54
     NOx                     .32      .29      .30      ..28      .33    .30

Fuel Economy tnpg

     City                   22.9     23.2    23.05     24. 0     23.7  23.35
     Highway                27.3     27.9    27.60     30.0     30.2  30.10
     Composite              —       —    24.90      —       —   26.31

                          Car  Calibrated  to                Car Calibrated to
                   __.	3.4  g/mi Standard*	      7.0 g/jai Standard**
                   Test  1 Test 2  Test 3 last 4-  Avg.  Test 1 Test 2 Test 3  Avg.

         Four-Speed Manual  Transmission Equipped Cars. (IT033A. and IT033B)

  Emissions (FTP) g/mi

       HC            .075    .084-   .077   .084-   .080   .137   .115   .118   .123
       CO             .99    1.12    .42    .84-    .84-   2.26   1.94-   1.86   2.02
       NOx            .31     .33    .24-    .26    .28    .52    .36    .35    .4-1

  Fuel Economy mpg

       City-        24.9    25.2.   25.1   25.3  25.13   26.4.   26.0   26.1  26-. Id-
       Highway      32.5    33.3   33.. 6.    —   33.63.   34-. 9   -34.5   34.6:  34.66.
       'Composite      —     •—     —     —   28J.35    —     —     —'  29.40.


  Notes;

   * Calibrated using deterioration factors (HC - 1.419, CO - 1.590 and NOx -
     1.285) developed on certification durability car 1110.

  ** Calibrated using deterioration factors (HC - 1.679, CO - 1.490 and NOx -
     1.248) developed on certification durability car 1104.
                                      •V-7

-------
2.  New  Technology  or  Developments   which  Could  Provide  a  Change  in  the

Relationship Between Emissions  and Fuel Economy  as  Compared to  1981  Vehicles

or GM's Estimates


A.  The  first  device  discussed  is GM's  detonation sensor  system,  which  was

described  in  Society  of  Automotive Engineers  Paper  //790173,  titled  "Energy

Conservation with  Increased  Compression Ratio  and  Electronic Knock  Control".

The following GM  discussion  provides;  a) insight into  the  circumstances  which

led to the development of  this  system,   b) how  it operates, and  c)  test  data

for two vehicles calibrated  to meet 0.41 HC, 3.4  CO  and 1.0 NOx, one  with the

detonation sensor system, and the other, without.


    Spark  Knock  Control  has been  the focus of  extensive  research
    over the years by both  oil  companies  and  engine  manufacturers.
    Efforts  to  improve  the  fuel .economy  and  performance  of  spark
    ignited gasoline engines have  been hindered by the  occurence of
    knock  which   can  be  affected  by  such   variables as   engine
    tolerances,   fuels,  and  vehicle operating  conditions.   In  the
    past,  spark knock  control has  been achieved  by  the use  of  fuel
    additives,  fuel  blends,  or engine  design  modifications  such as
    combustion chamber design,  cooling system  design,  or  retard of
    ignition timing.   Currently,  spark  retard  is  utilized  in  many
    production  engines  to  reduce  the  tendency  for  knock  under
    adverse  driving  conditions  such  as  heavy load,  high  ambient
    temperature,   or  low  humidity.   Accordingly,   the  engine  may
    operate with  reduced  efficiency  under  less  adverse  conditions
    when retard  is not required to  control  knock.   With the advent
    of catalytic converters  necessitating the use of unleaded fuels,
    the  engine  designer  has  limited  the compression  ratio  so  that
    the  engine  octane  requirement  is  satisfied   by  the  current
    available unleaded fuels.

    Historically,   raising  the  compression  ratio  of  an engine  has
    improved efficiency.   However,  there has been  some concern,  in
    addition  to   the   concern for  higher  octane  requirement  that
    efficiency might  not  be  improved  when  higher compression  ratio
    engines were  recalibrated  to  meet emission  constraints.  As a
    result, a  study  (1)*  was recently completed  at  General  Motors
    which  indicated  that with  catalytic  converter  emission  control
    systems, the  traditional efficiency gains  were  possible at  the
    current  Federal  Exhaust  Emission  Standards,  (1.5   g/mi  HC,  15
    g/mi CO, 2.0 g/mi  NOx) when  raising  compression ratio from 8.3:1
    to 9.2:1.
    References are listed by the number in parentheses  at  the  end  of
    the excerpts.
                                     
-------
    This gain was accompanied  by  an increase in octane  requirement,
    however,  which  could  not  be  satisfied with 91  Research  Octane
    Number  (RON)  unleaded  fuel.   Published  information  from  the
    petroleum  industry  indicated  that  substantial  energy  losses
    occurred in the  refinery when  producing  higher octane  unleaded
    fuel.   As a result, the energy losses  in  the refinery  for  making
    the higher  octane  fuels  offset  the  efficiency  gains  in  the
    vehicle.   Consequently,  the conclusion  of  this  study was  that
    there  did not appear  to  be an incentive  for increasing  unleaded
    fuel octane levels to allow  for the  use of higher  compression
    ratio  engines  with a catalytic converter  emission control system.

    This paper will describe an electronic closed loop knock control
    system  that  may   satisfy   the   octane   requirements   of   more
    efficient   higher  compression   ratio   engines,    at   current
    (1.5/15.0/2.0) and  1981  exhaust  emissions levels  (.41/3.4/1.0),
    with 91 octane fuel.

    A  knock  control  system  (2) is  currently being  offered by  the
    Buick Motor Division  of  General Motors  on  the Turbocharged  V-6
    engine.  The  scope of the  paper will,  therefore,  be  limited  to
    the  application   of   the   knock  control   system    to   higher
    compression ratio engines.

CLOSED LOOP KNOCK  CONTROL  (CLKC) SYSTEM DESCRIPTION

    The knock control  system  was designed  for  use on  engines  with
    electronic  ignition.    It   includes   a   detonation   sensor   or
    accelerometer, electronic controller and  modified distributor.

    The detonation sensor, is  mounted  on the intake manifold  of  the
    engine.  The  location of  the sensor  is carefully  selected  to
    insure that the  knock vibration will  be  transmitted  as  equally
    as possible from all cylinders.

    If no  knock is  present,  the  normal ignition timing,  determined
    by the basic  timing,  centrifugal advance, and vacuum  advance  is
    passed  directly   to  the   distributor.   When  knock  occurs,  the
    detonation signal  is  larger than the background noise level  and
    a  retard  command  is generated  that  is  proportional  to  the
    intensity of knock encountered.

    The retard  command  is  used  to produce  a  delayed  or  retarded
    ignition  pulse  to  the  distributor.   The  distributor  ignition
    module has  been modified  to accept the retarded ignition  pulse.
    When knock is reduced to desired levels,  the controller  restores
    the spark advance  at  a predetermined rate until  the  normal spark
    values are  re-established.  It  is important  to  note  that  the
    system  only retards  and  does  not advance  timing  to  seek  out
    knock.
                                     •VT9

-------
It can  be  noted that  the  spark is  retarded rapidly  to  control
knock and  then  readvanced  slowly.  This  is a  feature used  to
maintain smooth vehicle operation during  knock control.   More
rapid changes   in  spark timing  can  cause  uneven  engine  power
resulting in  surge which is  observed  by  the  driver  as a  jerky
forward motion  in  the vehicle.  Throughout  the  acceleration,  the
spark advance  is  retarded  and readvanced while  the. system  seeks
to maintain  a  commercial  knock  level.   In  this  example,  the
maximum  retard  for  this  condition  was  11°  during  the  test.
The  operation  of  the  knock  control system  is  dependent on  the
occurrence of  knock.   That  is,  a knocking  cycle must occur  to
trigger  the  control system  and generate  retard.  These  "knock
control" cycles, which occur  just  prior  to  control, may be  heard
as random trace  to light knock in the engine during  the  control
mode.  It should,  therefore,  be emphasized that  the  system does
not  eliminate   detonation, but  controls the knock  to  commercial
levels.   More sensitive control of detonation  below these  levels
can  produce  a  "false  retard"  condition  when  retard  occurs
without knock  in the  engine.  False retard should  be  avoided  as
it can result in a loss of  vehicle performance and fuel economy.

The  maximum  spark retard  available  using  the  knock  control
system  is  determined  by  the  physical  characteristics  of  the
distributor and  vehicle  driveability.   For example,  the  maximum
retard  is  physically  limited  by  arcing   or  crossfire  in  the
distributor  cap which can  result in  a spark  occurring in  the
wrong cylinder.

Likewise, large changes in spark retard  could  also  contribute  to
the  surge  problem  described  earlier.   The  final vehicle  spark
calibration  with  a  knock  control  system must,  therefore,  be
evaluated under the most severe knocking conditions expected,  to
insure that the  system has sufficient  retard  capacity  to  control
knock while maintaining driveability.

FUEL ECONOMY  POTENTIAL  AT  .41/3.4/1.0  EMISSION STANDARDS  -  Two
vehicles  (4000 Ib.  inertia   weight)  with  305  CID  engines  and
3-way catalyst  emission  control  systems were built to  determine
the  fuel  economy advantage of  a  higher compression ratio  and a
closed loop knock  control at  the  1981  Federal  emission standards
of  .41/3.4/1.0.  The  engines were  built  with  8.4:1  and  9.2:1
compression ratios, respectively, and  calibrated  within  the same
percent  loss   (approximately  1%)   from best  fuel economy  spark
timing.    Both  vehicles  were  equipped  with  closed  loop  knock
control systems allowing the  vehicles  to be  calibrated  without a
knock constraint.   Fuel  economy gains were  therefore  determined
for  the  effect  of  compression  ratio  at  equivalent  emission
levels.    Rear   axle   ratios  were  selected  to   equalize  the
performance of  the cars.
                                V-10

-------
Emission  Results   -  Emission   targets   of   .25/2.5/.60   were
established to  allow for emission control  system  deterioration,
vehicle variability,  and test variability.  These  targets  would
not  necessarily  assure  that  these  vehicles  would   meet  the
Federal  Standards   at  50,000  miles,  however, .since  durability
testing  was  not  run  as  part  of   this  program.   Figure  13
illustrates that  the  exhaust emission goals  for  hydrocarbons,
carbon  monoxide,  and  oxides  of  nitrogen  were  met  with  each
vehicle.   In  general,   the  higher  compression   ratio   engine
required more  EGR  for NOx  control and  more spark  retard  during
cold start operation for HC control.

FUEL ECONOMY  RESULTS -  Figure  14 shows  the comparison of  fuel
economy on  the EPA  city  (5)  and highway  (6)  schedules for  the
8.4 CR and 9.2 CR vehicles.   The  9.2 CR vehicle  exhibited  a 3.7%
advantage in fuel economy  on  the  EPA city test and 5.3% gain on
the EPA highway  test.   The overall fuel economy improvement  for
the composite  55/45  test was  4.3%,.  These results  were obtained
from the average of  four tests  on each vehicle and were all  run
with 91 RON fuel.

The fuel economy tests on  the 9.2 CR vehicle were  then run with
clear  Indolene test  fuel (RON 98).   This  resulted  in a  small
gain in fuel economy on  both  the city and highway  tests  (Figure
24) and the overall  gain for  the  change in compression ratio was
5.9%.  The  reason  for this difference appears  to  be due  to  the
reduction  in  spark  retard required   to  control knock with  the
higher octane fuel on the 9.2  CR vehicles.

Figure  15  illustrates the  spark  retard generated  by   the  9.2:1
compression ratio  engine on  91 and  98 RON  fuels  during one  of
the more severe portions  of the EPA  city  test.   The frequency of
occurrence  of  knock  and amount  of  retard  required  to  control
knock was greater with  91 RON fuel.   The  increased retard  had a
minimal effect on  the  EPA fuel economy results as  the  spark was
not retarded over the majority  of operating  conditions.  The  8.4
CR vehicle  did not  have significant  spark retard during the  EPA
test; therefore, no  change  in fuel, economy would be expected due
to increasing fuel octane over 91 RON.

-------
 305-4
 CLOSED LOOP CARBURETOR
 1975 FEDERAL TEST PROC.
              AVG. 4 TESTS
4000* I.W., 10.8 HP
3-WAY CONVERTER - EGR
91 RON FUEL
TAILPIPE (CMS/MI)
C.R. AXLE
8.4:1 2.41:1
9.2:1 2.28:1
TARGET
STANDARD
HC
.25
.22
.25
.41
CO
2.5
2.4
2.5
3.4
NOx
.52
.63
.60
1.0
 Fig.  13 - The exhaust emissions  of  the 8.4 CR
 and  9.2 CR vehicles  met the target  levels for
 the  1981 Federal  standards
       30S-4
       CLOSED LOOP CARBURETOR
4000« I.W.. 10.8 H.P.
3 WAY CONVERTER-EGR
                   AVERAGING OF 4 TESTS


FUEL

91 RON
(CHEVRON 91)
98 RON
(INOOLENE
CLEAR)
COMPRESSION RATIO
REAR AXLE RATIO
6PA FUEL ECONOMY
CITY
HIGHWAY
COMPOSITE 55/4S
CITY
HIGHWAY
COMPOSITE
3.4:1
2.4:1

16.1
22.7
19.5

_
-
9.2:1
2.28:1

16.7
23.9
19.3
16.9
24.4
19.6


% GAIN
3.7
5.3
4.3
5.0
7.5
5.9
 Fig. 14 - The  9.2 CR vehicle  exhibited a 4.3%
 gain in fuel  economy on  the EPA composite  55/45
 test
                      VEHICLE SPEED
    20-r
RETARD
                     CHEVRON «1 RON
                   MOOIENE CLEAR M RON
                           _r—
 Fig. 15 -  The amount of retard  encountered by
 the 9.2 CR vehicle on the EPA  City test was
 reduced when fuel octane was  increased from 91
 RON to 98  RON
                       V-12

-------
The  following  references are  for  the  preceding quotations  from SAE  paper
number 790173.

REFERENCES*

1.  J.J. Gumbleton,  G.W. Niepoth,  and J.H.  Currie,  "Effect  of  Energy and
    Emission Constraints  on Compression  Ratio", Paper  760826 presented  at
    SAE, October 1976.

2.  T.F. Wallace,  "Buick's  Turbocharged V-6  Powertrain  for  1978",   Paper
    780413  presented at SAE, March 1978.

5.  R.E. Kruse  and  T.A. Huls,  "Development of  the Federal  Urban Driving
    Schedule",  Paper 730553 presented at SAE, May 1973.

6.  T.C. Austin, K.H. Hellman and C.D. Paulsell,  "Passenger Car Fuel Economy
    During Non-Urban Driving",  Paper 740592  presented at  SAE,  August  1974.
    Only  those  references which  were cited  in the  previous  excerpts were
    included in  this  listing.   The original reference numbers were used  for
    this document.
                                     'V--13

-------
B.  Another area,  which affects  the  relationship between  fuel economy  and

emissions,  is  combustion  chamber  design.   GM  described  development  work

concerning combustion chambers  in the Society  of Automotive Engineers  Paper

#800920,  titled  "The  Attributes  of  Fast Burning  Rates in  Engines."   The

following excerpts from this  paper  provide insights into combustion  chamber

design  and  its   effect on   the  relationship  between  emissions  and  fuel

economy.  The references cited by GM are listed at the  end of  the excerpts.


    THE CONCEPT  OF BURNING THE MIXTURE in a  spark ignition  engine
    relatively fast   is increasingly  making  its  way  into   engine
    designs  throughout  the world.   Fast  burning is  certainly  not
    new,  with  the higher  efficiency  or  output  and  fuel   octane
    advantages  being   known   for  decades.   In  fact,   some  of  the
    engines of the 1920's (1) incorporated combustion-chamber  design
    features promoting fast  burning.

    In  the  past,  fast  burning  was  curtailed, due  to  adverse  noise
    and mechanical failures  caused  by  too great  a rate  of pressure
    development,  particularly as  compression  ratios were increased.
    With  the  introduction of  exhaust  gas recirculation  (EGR)  for
    oxides of nitrogen control  in the early 70's  and the  lowering  of
    compression ratios in the mid 70's, the pendulum swung  the  other
    way, and burning  rates decreased sharply.   The current movement
    toward  fast  burning  represents  an effort  to  reestablish,  at
    least to some  degree,  the rates of combustion that  once  existed
    in engines.

    ENGINE EFFICIENCY  AND EMISSIONS  -

    Tuttle and Toepel  (10) diagnosed and  compared combustion in  the
    two different  combustion  chambers  shown in  Fig.  8.   The  wedge
    chamber, with  its off-set  spark  plug and resulting long  flame
    travel  distance,  promotes  relatively long  burning  times.   In
    contrast,  the  compact  open chamber,  with  a  more  central  spark
    plug,   would   be  expected  to  produce  faster  burning.    Each
    combustion chamber  was  instrumented  extensively,  including  the
    incorporation  of  cylinder  pressure instrumentation  (14-16)  to
    diagnose heat release and flame motion (17).  Testing followed  a
    statistical experimental  design involving  selected  combinations
    of engine  speed,  fuel input,  air-fuel ratio, EGR rate and  spark
    timing.
                                     V-14

-------
           WEDGE  CHAMBER
             OPEN  CHAMBER


      Fig. 8 - Experimental study combustion
               chambers (10)
O
z
UJ

o
u.
.11.
UJ
cc
UJ
X
LU
z
35



34




33



32



31



30



29
                          B  C
                   MBT
       ~ SPEED -1900 r I min
         A If RATIO -16:1           0?EN

         FUEL INPUT-23.0 mq /cycle   WEDGE	
                  8          16

                     EGR,%
                                    24
     Fig. 9 - Efficiency - NOX tradeoff (10)

-------
Experimental  results  showed  that the  open  chamber  did  indeed
have faster burning, as made  evident  by  shorter  combustion times
and reduced spark-advance values  at MET.  Net thermal  efficiency
of both chambers is shown  in  Fig. 9  for various amounts  of  EGR,
with  engine  speed,  air-fuel  ratio,  and  fuel  input  constant.
Concentrating first on  the  curves denoted MET,  which  represents
optimum  timing  data,  the  open,  or  faster  burning chamber,  is
seen to exhibit  higher  efficiencies.   Starting with no EGR,  the
efficiency  at first increases  with  the addition  of EGR.   This
behavior is  due  to both the  higher  specific-heat ratio  and  the
reduced throttling of  the more dilute mixture.

Another important advantage of  the faster burning  chamber is  its
greater tolerance  to  dilution.  As shown,  EGR rates as  high  as
28% can  be accommodated with the open  chamber, versus  22%  for
the   wedge   chamber,   before   the    efficiency  drops   off
significantly.   This  capability  of   going   to  greater  dilution
with fast  burning has  also  been found  (18) to occur when  the
dilution gas is air rather  than EGR.

Also  shown  in  Fig.  9 are   lines  of  constant  NO  emissions.
Movement  vertically  downward  from  the  MET   line   represents
increasing  spark retard from  optimum  timing.   Evident  is  the
familiar reduction  in NO with either spark  retard  or  higher  EGR
ratei   A comparison of  the condition at  points A and B shows  the
same  trend  uncovered   earlier  using  the  engine  simulation  -
namely, that  faster burning produces higher  NO emissions.  Note,
however,  that by  adding  a  slight  amount  of EGR to  the  open
chamber  (point  C), its  efficiency  advantage  can be  maintained
while  matching  the lower NO  value  of  the  slower  burning  wedge
chamber.  This behavior is  very significant since it  shows  that
the judicious selection of spark  timing  and  EGR  rate can  lead  to
both higher  efficiency  and lower NO  emissions  in  the  fast-burn
chamber.

Kuroda  et   al.   (11),  in  going  from single  ignition  to  dual
ignition in the  same  combustion chamber and  introducing  varying
amounts of  EGR for  oxides  of nitrogen (NOx)  control,  also found
that fast burning could achieve both higher  efficiency and lower
NOx.  Likewise,  Thring  (13),  going  from  one up  to  four  spark
plugs  to  increase burning rate in  a  given combustion  chamber,
found   the   dual  improvement  with   faster  burning.    As   an
additional  part  of his studies, Thring used  alternate  design
approaches to achieve the same  burning rate,  as  indicated by  the
time  in crank-angle  degrees  to go  from   burning  10%  of  the
mixture to  burning 90%  of  the mixture.   Included among  these
approaches were  different combinations  of  four  spark  plugs,  the
use of  ordinary  or extended  electrode  spark plugs, and  the use
of a shrouded intake valve to create  fluid motions conductive  to
faster flame speeds and  therefore faster burning  rates.

-------
An  important   finding   was   that  engine  efficiency   and  NOx
emissions were  not  unique functions of the burning  rate.   While
both  of  these  parameters  increased  as   the  burning  time  was
reduced,  their  magnitudes  at  a given burning  time  depended upon
the approach  taken  to achieve that: particular burning  time.   To
modify  slightly a  former  advertising slogan,   "It's  not  how
short you make it,  but how you make; it short that is important."

With regard  to  hydrocarbons,  the data of Tuttle  and Toepel (10)
shown in  Fig.  10  indicate no  significant  influence of  burning
rate  on  the  hydrocarbon emissions  index  (grams of the HC  per
kilogram  of fuel).  The  data  do  show,  however, that operation at
low EGR rates and retarded spark timing is  an  effective means to
lower  HC  emissions,  primarily  due  to   the  resulting  higher
exhaust   temperatures   demonstrated  earlier   with   the   engine
simulation.

There are two  factors  associated with the  formation  of  hydro-
carbons.   First,  as  thermal  efficiency  increases  with  faster
burning,  the  exhaust  temperature  generally  decreases.    This
leads  to  lower HC  oxidation  rates  and  therefore  higher  HC
concentrations  in   the  exhaust  port.   In  fact,  Mayo  (12)  has
found  an  almost  linear  variation  of  HC  concentration  with
burning  time.  For  a  given   engine  load,  however, the  higher
efficiency  for  the  faster burning  means  that  less total  mass
flow  is  required  through  the  engine,   which  may  more  than
compensate  for  the  higher HC  concentration and lead to lower HC
emissions expressed on a mass  per unit  time, or  per vehicle mile
traveled  basis.  These  conflicting  trends  make   it  difficult  to
establish a general rule  regarding  the  effect  of  burning rate on
HC emissions.  For  example, Kuroda  et  al.  (11) have found  the HC
emissions  on  a mass  per unit  time basis  to  be  lower for  fast
burning at  a  given  EGR rate,  while Thring  (13)  has reported no
change in HC  emissions at  low loads and higher HC emissions with
increased burning at high loads.

As  a  sidelight,   the  data   of   Figs.  9  and  10  illustrate  a
dichotomy  regarding engine calibration factors.   That is,  high
efficiency   considerations  dictate   that   optimum  timing   be
established with moderate EGR rates.  Low  HC  emissions, on  the
other hand,  favor  low EGR rates and retarded timing,  while  low
NO emissions  favor  high  EGR rates and  retarded timing.   Managing
these  conflicting   goals  represents  a formidable   challenge  in
engine  calibration.   Adding  to   the difficulty  of  engine  cali-
bration  is the  need to  provide good vehicle   driveability  by
minimizing the cyclic variability of engine power.

SIMULATION  STUDIES  OF BURNING ENHANCEMENT APPROACHES - Lienesch
(3) has used  the  engine simulation discussed  earlier  to  examine
the  two  approaches  to   faster   burning  rates.    Starting  with
measurements  of turbulence  in the wedge-shaped chamber  shown in
Fig.  16  as  a  baseline   condition,  the  turbulence  level  was

                                  -VV17

-------
            OPEN
     35
       ._    WEDGE	
SPIED    - 1900r/min
Aff RATIO - 16:1
FUEL INPUT - 23.0 mg/ cycle
O
z
LU

O
u.
L_
LU
cr
UJ
X
UJ
2
                                         24
                      32
                         EGR. %
        Fig.  LO  - Efficiency - hydrocarbons
                    tradeoff  (10)

-------
                        IGNITION POINT
     WEDGE  CHAMBER
                         IGNITION POINT
EXTREME  OPEN  CHAMBER
    Fig.  16 - Combustion chambers of
             analytical study (3)
             V-L9

-------
increased  analytically  by  50%,  as  might  be  accomplished
experimentally   (35)   with   a   shrouded  valve.   Use   of   a
correlation  of  burning velocity  with  turbulence  developed
experimentally  by  Groff  and   Matekunas   (35)   allowed  the
resulting engine performance to be predicted.

As  an alternative  to  this  fluid-motions  approach,  a  second
chamber was  envisioned in  which the cylinder head and  piston
crown  both have  concave spherical  shapes  and  the  ignition
point  is located  in the center of the  chamber.  While  such a
shape  is not practical  to  manufacture, its  extreme  openness
represents  an upper  limit   to  the  geometric approaches  for
increasing fuel burning rates.

The  performance  of the  standard wedge, increased  turbulence
wedge,  and extreme  open chamber  was  analyzed for  a  light
acceleration  condition  involving  a  stoichiometric  air-fuel
ratio, 10%  nominal  EGR and  MET timing.  Results are  given  in
Table  1 for near-equal NO exhaust  concentrations,  achieved  by
adding 1 to 3% of additional EGR to the fast-burn cases.

Starting with  the standard  wedge  chamber  and increasing  the
turbulence  level  resulted  in  a reduction  of the  combustion
duration from  43  to 32 crank-angle degrees.  However,  in  the
case  of  the  extreme  open  chamber,   the  duration  was  even
shorter, namely  27  degrees.  These  variations  resulted in  a
slight improvement  in  efficiency for  the increased turbulence
case  and an even greater improvement  in  efficiency in going
to the extreme open combustion chamber.

The  reason  for this higher  efficiency  is  linked to  the heat
transfer.   Because  the high-temperature burned  gases  in  the
extreme open  chamber  do not contact  the  chamber wall  during
most  of  the  combustion  process,   the heat losses  in  this
chamber  are  significantly  lower.   In  contrast,  the  wall
contact of  the  flame  in the  wedge chamber plus  the  higher
film  coefficient  (due  to   the  higher  pressure  term  in  the
Woschni  (6) correlation)  for  the  faster   burn  case  caused
greater heat-transfer  losses.   Had an additional  increase  in
the  film  coefficient  been   made  to  account for  the  higher
turbulence  of  this case, these heat losses would have  been
even greater.  These heat-loss  considerations account for  the
slightly higher  exhaust gas temperature of  the extreme  open
chamber in  spite  of its higher efficiency  and more  complete
expansion.
                                 'VT20.

-------
                         Table I - Simulation Results*
      Parameter
Combustion Duration
Peak Burning Rate
Peak Heat-Transfer Rate
Indicated Thermal Eff.
Exhaust Nitric Oxide
Exhaust Temperature
Standard
  Wedge
(.Case 1)

    43
  13.2
   3.8
  34.6
  1530
  1130
Increased
Turbulence
 (Case 2)

     32
   18.0
    4.3
   35.1
   1530
   1115
Extreme
  Open
l Case 3)

    27
  25.3
   3.3
  37.0
  1520
  1135
Units

  °CA
mg/°CA
J/°CA
    %
   ppm
    K
     Retyped for clarity
                                    •Vr-2.1

-------
While these  results  show the technique of  increasing frontal
areas to  be  more effective than that of  increasing  the turb-
ulence level,  generalizations  should  not  be drawn.   First  of
all, the  heat-transfer  model in the engine simulation  is  not
sophisticated  enough   to  account  for   details   of  chamber
geometry  and fluid  motions.   Furthermore,  the  heat-transfer
correlation  (6)  may  not be applicable for engine  designs  far
removed   from  conventional   practice.    In  addition,   the
ignition delay computation procedure in the  engine simulation
does not  account for  swirl  effects,  thereby  underestimating
the influence  of  swirl  on the overall time of  the combustion
event.   Finally,  as   mentioned  before,   the   extreme  open
chamber  design   represents  an  upper-limit  case  which   is
impractical  to manufacture  for  many  reasons.   Within  these
constraints,   the study  does  indicate  that  there  may  be  a
limit  to  the  optimum  amount  of   turbulence,   after  which
excessive heat losses cause a drop in efficiency.

Some evidence  of this  situation is  indicated  by  the experi-
mental data  of Thring (13) discussed earlier.  To  review,  the
NOx and indicated specific fuel consumption were not a  unique
function  of  combustion  duration.   When  the  same  combustion
duration was obtained,  in one case  with  increased  swirl  and
in  the  other case with multiple spark  plugs,  the  increased
swirl led  to greater heat  losses,  which produced  lower  NOx
but lower indicated efficiency as well.

CONTEMPORARY ENGINE DESIGNS

The fast-burn  approach  to  engine  combustion is rapidly  being
adopted in new engine  designs throughout  the world.  A  small
sample of some of these  new  designs is illustrated in Fig.  18
[and 19].

In figure 18, a cross-section  of the General Motors  2.8  L  V-6
engine designed  by Chevrolet  (39),  shows the  chamber  to  be
somewhat open with a near-central spark plug location.

Another geometric approach to  fast  burn  is shown  in Fig.  19,
where the original shallow cavity  of  a flat-topped  piston  in
a wedge-shaped chamber  was redistributed  to provide  an  offset
cavity.   The original compression ratio was maintained.  This
offset  cavity  provides  a  large  frontal   area  co   the
propagating  flame while  improving the fuel  octane  requirement
by  providing  more  effective  cooling of the  end  gas.   In
experimental studies (17) with this piston, the attributes  of
fast burning  were realized.   This piston-cavity approach  has
been employed in  the turbocharged versions of the  Pontiac  4.9
L V-8 engine (40, 41).
                                 V-22

-------
Fig.  13 - General Motors 2.3  L V-6
         combustion chamber  (39)
                    SPARK  PLUG
                    ELECTRODES
    Fig. 19 - Experimental  modified wedge
             chamber (17)
                •VT23

-------
SUMMARY

Fast  burning  in engines has  been shown to  have a  number  of
attractive attributes.  Among these advantages  is  an improved
tradeoff  between  efficiency and  NOx  emissions and  a  greater
tolerance  to  dilution,  either  with  EGR or  with excess  air.
Resulting from  the combined effect of  these  two traits is the
potential for  simultaneously  achieving higher  efficiency  and
lower NOx emissions.

Fast  burning   also  reduces  the  cyclic  variation  of  engine
power, which  can  improve vehicle  driveability.   furthermore,
the greater resistance  to knock with  faster  burning  can allow
the  fuel  economy  advantages  associated  with higher  compres-
sion ratios to be  realized.

A  number  of  different  combustion chamber design  techniques
exist for  accomplishing fast  burning.  These  techniques  fall
into  the  two  categories  of  altering the  combustion-chamber
shape and  affecting  the fluid motions  in  the  chamber.   Com-
bining  these   different techniques  into  an  "optimum"  com-
bustion chamber design, while  still  recognizing  all  of  the
important  constraints,   offers  a challenge  as  well  as  an
opportunity for the engine designer.

Finally,  the  growing  number  of  new  engines  throughout  the
world  incorporating  fast  burning attests  to  the  merits  of
this concept.
                                 'VT24

-------
    References*

1.  J. C.  G.  Hempson,  "The Automobile Engine,  1920-1950,"  Paper 760605,  pre-
    sented at SAE West  Coast Meeting,  £>an Francisco,  August  1976.

3.  J. H.  Lienesch,  "Engine Simulation  Identifies  Optimal  Combustion Chamber
    Design."  Presented at Seventeenth FISITA International Congress, Hamburg,
    West Germany, May 1980.

6.  G. Woschni,  "A Universally  Applicable  Equation  for the Instantaneous  Heat
    Transfer  Coefficient   in  the  Internal  Combustion  Engine."    SAE   Trans-
    actions, Vol. 76, 1967, pp.  3065-3083.

10. J. H.  Tuttle and  R.  R. Toepel,  "Increased Burning  Rates  Offer Improved
    Fuel Economy-NOx Emissions  Trade-Offs  in Spark  Ignition  Engines."   Paper
    790388,  presented  at   SAE  Automotive   Engineering  Congress,  Detroit,
    February 1979.

11. H. Kuroda, J. Nakajima, K.  Sugihara, Y.  Takagi  and S. Muranaka, "The  Fast
    Burn with Heavy EGR, New Approach for  Low NOx and Improved Fuel Economy."
    SAE Transactions, Vol.  87,  1978,  pp.  1-15.

12. J. Mayo,  "The Effect  of  Engine  Design  Parameters on  Combustion  Rate  in
    Spark-Ignited Engines."  SAE Transactions, Vol.  84,  1975,  pp.  869-888.

13. R. H.  Thring, "The  Effect  of Varying Combustion  Rate  in  Spark Ignited
    Engines."   Paper  70-387  [sic],  presented  at  SAE  Automotive  Engineering
    Congress, Detroit,  February  1979.

14. D.  R.   Lancaster,  R.   B.  Krieger  and J.  H.  Lienesch,  "Measurement  and
    Analysis of Pressure Data."   SAE  Transactions, Vol.  84,  1975,  pp. 155-172.

15. R. V.  Fisher and J. P.  Macey,  "Digital  Data Acquistion  with Emphasis  on
    Measuring   Pressure   Synchronously   with  Crank   Angle."   Paper  750028,
    presented at SAE  Automotive  Engineering Congress,  Detroit, February 1975.

16. M.  B.   Young  and  J.   H.  Lienesch,   "An   Engine  Diagnostic  Package
    (EDPAC)-Software   for  Analyzing  Cylinder   Pressure-Time  Data."   Paper
    780967,  presented   at  SAE  International  Fuels  and Lubricants  Meeting,
    Toronto, November 1978.

17. J. N.  Mattavi,  E.   G.  Groff,  J. H.  Lienesch,  F.  A.  Matekunas and  R.  N.
    Noyes,  "Engine Improvements Through  Combustion  Modeling."  Proceedings  of
    Symposium at  General  Motors Research  Laboratories  on Combustion Modeling
    in Reciprocating Engines, J.  N.  Mattavi  and C.  A.  Amann, Editors,   Plenum
    Press, New York-London, 1980,  pp.  537-587.

18. A. A. Quader, "Effects of Spark Location and Combustion Duration on  Nitric
    Oxide  and  Hydrocarbon  Emissions."   SAE  Transactions,  Vol.  82,  1973,  pp.
    617-627.
*   Only  those  references  which were  cited  in  the  previous  excerpts  were
    included  in  this  listing.   The  original reference numbers  were  used for
    this document.

-------
34. D. R.  Lancaster,  "Effects of  Engine Variables  on Turbulence  in a  Spark
    Ignition Engine."   SAE Transactions,  Vol.  85,  1976, pp.  671-688.

35. E.  G.  Groff  and  F.  A.  Matekunas,  "The  Nature  of   Turbulent   Flame
    Propagation  in   a   Homogeneous   Spark-Ignited   Engine,"   Paper   800133,
    presented at SAE Automotive Engineering Congress,  Detroit,  February  1980.

39. D. A.  Martens,  "The General Motors  2.8 Liter 60° V-6  Engine Designed  by
    Chevrolet."  Paper  790697,  presented  at   SAE  Passenger  Car  Meeting,
    Dearborn, June 1979.

40. "Automotive Industries."  October 1979,  p.  87.

41. "Automotive Design and Development."  May 1980,  pp. 16-17.
                                     •V-r26

-------
C.  In a SAE Paper  (#800794)  titled  "Controlling Engine Load by Means  of  Late

Intake-Valve Closing",  General Motors  described  a  technique  of  reducing  an

engine's  pumping  losses  in  order  to  improve  thermal  efficiency,  with  the

accompanying benefit  of  considerably  reduced NOx emissions.  Pumping  losses

are defined as the power required to p'ump the fuel-air  mixture  into  and out. of

the  cylinder during  the  intake   and  exhaust  strokes.  Pumping  losses  were

reduced  by   "delaying  intake-valve  closing  (with  respect   to  a  conventional

intake-valve  closing)   as  a  method  of  controlling  the engine  load  without
incurring the usual part-load  throttling losses."  The  following excerpts  more

fully describe the concepts and the results.


CONCEPT
    The  late  intake-valve-closing  (LIVC)  engine is  an engine  with
    the  power output  regulated  by  controlling the  crankangle  at
    which the intake valve closes.  An  LIVC  engine  operating  at  part
    load is  depicted  in Fig.  2.   As  in the  case of  a  conventional
    engine,  the  intake valve  opens just prior  to  and  remains  open
    throughout the intake stroke  of the  engine.   However,  the intake
    valve also  remains  open  over   a   portion   of  the  compression
    stroke while  the piston  pushes part of  the  cylinder charge  back
    into the  intake manifold.  After the intake valve closes,  the
    remainder of  the  compression  stroke,  as well  as  the  expansion
    and  exhaust   strokes,  are  similar  to  those of  a  conventional
    engine.

    An idealized  pressure-volume diagram for  an  LIVC  engine is  shown
    in Fig.  3.  For comparison, an idealized pressure-volume  diagram
    for a conventional  engine is  also shown.  The  pumping  losses  of
    the conventional engine  operating at part load are  substantial,
    as depicted  by  the shaded  area in  Fig.  3.   In  contrast,  since
    the  LIVC  engine  inducts  fresh   charge  at  near   atmospheric
    pressure  (unthrottled),   the  throttling   losses  are   nearly
    eliminated  for  all  load  conditions.   The  trapped   cylinder
    charge,   and  therefore   power  output,   is   determined   by   the
    effective  cylinder  volume  at  the  time  of  the  intake-valve
    closing  Vjyc  of  Fig.  3.   A mechanism that  would vary the  time
    the intake valve closes  as a  function of speed and  desired  load
    would allow the LIVC engine to achieve the same maximum power  as
    that  of   an   equal-displacement   conventional   engine,   while
    providing lower part-load pumping  losses.
                                    •Vr27

-------
  a) Intake Stroke
 c) Compression
  Stroke (before
   Intake Valve
     Closes)
                                 t
     b) Start of
Compression Stroke
   d) Compression
    Stroke (after
    Intake Valve
      Closes)
      Fig. 2 -  Depiction of LIVC operation
PRESSURE
    rATM -
                LATE INTAKE -
               VALVE CLOSING
        CONVENTIONAL
          THROTTLING
                              PUMPING
                              LOSS
            VTDC
              VOLUME
     'TDC
        VOLUME
'BDC
       Fig.  3 - Pressure-volume diagrams
                     V-28

-------
EXPERIMENTAL EQUIPMENT

    Because  of  the   exploratory  nature  of  this  investigation,   a
    variable  valve-timing  mechanism  was  not  necessary.   Rather,
    modification  of   the   test   engine   to   LIVC  operation   was
    accomplished by replacing the production camshaft with a  splined
    shaft.  The splined camshaft allowed  cams  of  different dwells  at
    maximum lift to be  installed  such that the intake-valve  closing
    could  be   incrementally  varied.   The  timings  of  exhaust-valve
    opening and closing and  of intake-valve opening were  the  same  as
    those of  the  conventional engine.  The intake-and  exhaust-valve
    opening  and closing  crankangles  for  the  various  intake-valve
    dwells  investigated are  listed  in  Table  2.  Valve  lifts  are
    shown in  Fig. 5  for both the  conventional engine and  an engine
    with  the  intake-valve  closing  delayed  80  degrees of  crankshaft
    rotation.   An  intake-valve  dwell  of  0°CA   corresponds  to  the
    conventional engine.

                        Table 2-Valve Timing

         Intake-Valve          Exhaust Valve          Intake Valve
         Dwell (°CA)          Open	Close        Open	Close

          0 (conventional)
         60
         80
         96
88°BBDC
88°BBDC
88°BBDC
88°BBDC
52°ATDC
52°ATDC
52 °ATDC
52°ATDC
38°BTDC
38°BTDC
38°BTDC
38°BTDC
82 °ABDC
142°ABDC
162°ABDC
178°ABDC
RESULTS
         All  specific  test  data  reported  herein  are   based  on
         integrated  pressure  cards.   "Indicated"  values  represent
         power   developed    within    the   cylinder   during    the
         compression-expansion  portion  of  the  engine  cycle,  and
         "pumping" values represent  the  negative power required for
         the  exhaust and  intake  strokes.  The  difference  between
         these two powers is termed the "net" power.

         ENGINE LOAD  CONTROL - The power  output of the LIVC  engine
         is controlled by the effective cylinder  volume* at the time
         of the  intake-valve closing.  Increasing  the  dwell of the
         intake  valve at  its maximum  lift decreases  the  cylinder
         volume  at  the  intake-valve  closing,   thus  decreasing  the
         amount of fresh charge trapped in the cylinder.

         FUEL CONSUMPTION - The fuel-consumption characteristics  of
         the  LIVC  engine   relative   to  those  of  the   conventional
         engine were  analyzed as the additive  result  of  changes  in
         both the indicated and pumping portions of  the  engine
*    The  term "effective  cylinder volume"  is  used to  denote  the
     cylinder volume at which the intake valve is effectively closed.

-------
                  EXHAUST   INTAKE
VALVE
 LIFT  6
 (mm)
                                           80 °CA
                                          DELAYED
                            CONVENTIONAL
                          \ (0 °CA DELAYED)
           90  180  270  360  450  540 630  720
                         TDC                TDC
               CRANKSHAFT POSITION (°CA)
              Fig.  5 - Valve-lift diagram
      PMEP
       (kPa)
70


60


50


40


30


20


10
                                       CONVENTIONAL
                                          ENGINE
                                                 I
               0       10      20      30       40
                    FUELING LEVEL (mg/cycle)
             Fig. 9 ~  PMEP versus  fueling  level

                                  ESTIMATED VALUE
                                  (NON-KNOCKING)
             36


             35
   INDICATED  34
   THERMAL
   EFFICIENCY
             33
             32 -
       CONVENTIONAL
       ENGINE
   LIVC
   ENGINE
                                    VALUES AT
                                    BORDERLINE KNOCK
               0      10      20      30     40
                   FUELING LEVEL (nig/cycle)

     Fig.  10 - Indicated thermal  efficiency  versus
     fuel ing level
                              V-30

-------
cycle.   The change  in  the pumping  portion  of  the  cycle  is
presented first.  Because  the  LIVC engine inducts  fresh  charge
at near  atmospheric  pressure,  the pumping losses of the  engine
are expected  to be  much  lower than  those of  the  conventional
engine.  Values  of  pumping mean  effective pressure (PMEP)  for
both  the LIVC  and  conventional   engines  are  plotted  against
fueling  level  in  Fig.   9.   As   the   fueling  level  of   the
conventional engine  is decreased  from  the  maximum value,  the
PMEP  of  the engine continually increases.   The values of .PMEP
shown in Fig. 9 for the LIVC engine are  essentially the  same as
those  of  the conventional  engine:  operating at WOT.  Thus  the
LIVC  concept of  load  control  can  limit  engine  "breathing"
without incurring the large throttling losses  associated  with a
conventional engine operating at part  load.

Indicated thermal efficiency is plotted  versus  fueling level in
Fig.  10 .for both the LIVC and the conventional  engines.   With
the exception  of the highest  values  of  fueling level in  Fig.
10,  the  values  of   indicated  thermal  efficiency  are not  MET
spark  timing.   At  the  highest  values  of  fueling level,  MET
timing could not  be  attained due  to  knocking  of the  engine on
the  97  RON fuel.   Under  knocking  conditions,  the  indicated
thermal  efficiency  in   Fig.   10  is   that   corresponding   to
borderline  knock.   Estimated  values  of  indicated  thermal
efficiency  for  non-knocking operation  are  represented  by  the
dashed line.  For  non-knocking operation,  the  rate  of decrease
in  indicated  thermal efficiency  with decreasing  fueling  level
(load) is significantly greater for the  LIVC engine.   The cause
of the larger decrease  in indicated  thermal efficiency for  the
LIVC engine will be addressed later.

Even  though the LIVC engine is at  a disadvantage when  indicated
thermal  efficiencies are  compared, the lower  pumping  losses of
this  engine result  in  its having  an  advantage  when net  thermal
efficiencies are  compared.  Net thermal efficiency is based on
the   indicated  output  power   less  the   pumping   losses  and,
consequently,  gives credit  for  the   lower PMEP   of  the  LIVC
engine.  Fig.  11  is a  plot of net  thermal  efficiency  versus
fueling  level   and  shows  the  improvement   in   net  thermal
efficiency  of  the HVC engine  over the conventional  engine to
increase with decreasing fueling level.

The data  of Fig. 11 are  replotted in Fig.  12 as  net specific
fuel  consumption  (NSFC)   versus   net  mean  effective   pressure
(NMEP).  Use of  net  output (indicated less pumping work)  allows
the fuel economy of  the LIVC and  the  conventional  engines to be
compared at  equal engine  load, where equal engine  load  refers
to equal NMEP.   If  the engine  friction were unchanged  between a
conventional engine and one modified for 'LIVC operation,  then


                                V-31

-------
   NET
 THERMAL
EFFICIENCY
             36


             34


             32


             30

             28


             26
                   LIVC
                  ENGINE
                  CONVENTIONAL
                     ENGINE
                                    ESTIMATED VALUE
                                    (NON-KNOCKING)
                                      VALUES AT
                                      BORDERLINE
                                        KNOCK
                                      	I
                      10      20     30
                    FUELING LEVEL (mg/cyclc)
                                          40
  Fig.  II -  Net thermal  efficiency versus  fueling
  I eve I
                         SYMBOL   ENGINE
                            •  CONVENTIONAL
                            A  LIVC
                              LIVC » THROTTLING
    NET
  SPECIFIC
    FUEL
CONSUMPTION 280
  (g/kW-h)
            270
                                      VALUES AT
                                  BORDERLINE KNOCK
                  ' 200    400    600    800   1000
                NET MEAN EFFECTIVE PRESSURE (kPa)
        Fig.  12  -  Specific fuel  consumption

           30.0
           25.0
           20.0

     NET
   SPECIFIC
     NOx   15.0
   (g/kW-h)

           10.0
            5.0
            0.0
                           SPARK TIMING FOR 1%
                         LOSS FROM MBT TORQUE
                   CONVENTIONAL
                      ENGINE
                                IVC ENGINE
                   200
                          400       600
                           NMEP (kPa)
                                                800
        Fig.  15  - Specific  NOx emissions
                    v-3;

-------
the  comparison would  also  be  valid  at  equal  brake load.   As
mentioned  earlier,  because  delayed   intake-valve   closing   is
limited  to  about  96°CA  and  because  this amount  of delay  does
not  provide  a  range  of  load   control  sufficient  for  vehicle
operation, LIVC  must be  combined  with conventional  throttling.
Consequently,  also  included in  .?ig.  12  are  data  for  which
combinations of  delayed  intake-valve  closing  and  conventional
throttling were  used to  regulate  engine load.   These data  are
indicated by the  dashed  lines   in Fig.  12,  which connect  data
having a  common  value of  intake-valve  dwell  The data  indicate
the  fuel  consumption when throttling  is used  to decrease  the
load further from that achieved  by unthrottled LIVC operation.

In comparison to the conventional  engine, both  the throttled  and
the  unthrottled  LIVC engines  exhibit  improved  fuel-consumption
characteristics  at  part   load.   Comparing  data   for   engine
operation  with  combined   LIVC   and  throttling  to  data   for
unthrottled LIVC operation  shows  the  LIVC-plus-throttling  method
of  load  control  has a  higher   NSFC  than  the  unthrottled  LIVC
method.  These results indicate  that unthrottled LIVC should be
used to control engine load for  loads which can be  regulated by
intake-valve dwells  of  up  to  about  96°CA.   For  lighter  engine
loads, which cannot  be achieved  by unthrottled LIVC  operation,  a
combination  of  96°CA  of  intake-valve dwell  plus  conventional
throttling exhibits the lowest fuel consumption.

EXHAUST EMISSIONS  -  Specific emissions of NOx are shown  in  Fig.
15  for  both  the  conventional  and  the  LIVC  engines.    These
emissions are based  on net output power.  Because NOx  emissions
are  extremely  sensitive  to spark timing near the  MBT  timing  and
because  MBT  spark  timing  itself  is  not always  well  defined,
emissions are not  compared at MBT power.  Rather, emissions  are
compared at a spark  timing  which resulted in a  1%  loss  in engine
torque  from  the  MBT output.   Emissions are  not  shown  at  the
zero-dwell power (WOT power for  the  conventional  engine)  because
knocking prevented the estimation  of  the  MBT value of the engine
torque.

At equal  NMEP,  the NOx  emissions  of  the  conventional  engine  can
be seen  in  Fig.  15 to be  considerably  higher  than those of  the
LIVC  engine.   At  mid-load, the NOx  emissions of  the the  LIVC
engine  are  about   24%   lower  than   those  of  the  conventional
engine.  The higher,  NOx emissions  of  the  conventional engine  are
attributable  to  its higher peak cylinder  pressures  and,   as
calculations showed,  its  higher  peak  cylinder-gas  temperatures.
The  lower pumping  losses  of the  LIVC engine allow the engine to
have  a substantially  lower peak  pressure  while  producing  the
same  part-load  NMEP as  the  conventional engine.   The measured
                                  V-33

-------
    cylinder-gas  pressures were  input  to a  heat-release  analysis
    [10]   which   computes    the    associated    peak   cylinder-gas
    temperature.  At mid-load,  the peak cylinder-gas  temperature  of
    the conventional engine  is higher than  that of the LIVC  engine
    by 70 K.

    Specific emissions of  unburned hydrocarbons  (HC) are  plotted  in
    Fig.  18.   Again,,  the  emissions measurements  correspond  to  a
    spark timing which resulted in  a 1%  loss in torque from the  MET
    output.  The  HC  emissions  from the conventional engine and  from
    the LIVC engine are not too different, particularly at the lower
    engine loading.  Because  exhaust-gas temperature will  affect  HC
    cleanup  in a  vehicular  exhaust system,  the  measured exhaust
    temperatures  are  compared  ...   Since  the   temperatures   are
    similar for the two engines, post-cylinder HC clean-up should  be
    no  more difficult  for  the  LIVC engine  than  it  is  for  the
    conventional engine.
CONCLUSIONS
    1.   Load  Control  -  Delayed  closing  of   the  intake  valve  is
    limited  to  about  96  degrees  of  crankshaft  rotation  because
    greater delays  cause   large  deterioration  in indicated  thermal
    efficiency.  This amount  of  delay does not provide  a  sufficient
    range of  load  control  for vehicular  application.   Consequently,
    the   LIVC   concept   would   have   to  be   combined   with   a
    variable-density throttle control.

    2.   Fuel Economy -

         a.   The  HVC  concept  of  load  control  can  limit  engine
         power output without  incurring the large throttling  losses
         associated  with  a  conventional  engine  operating  at  part
         load.

         b.   In comparison  to  the  efficiency of  the  conventional
         engine  with its  fixed  compression  ratio,  the   indicated
         thermal efficiency  of  the  LIVC  engine  at  part  load  is
         lower, and  it decreases  more rapidly with decreasing  load.
         The  lower  indicated  thermal efficiency of  the LIVC  engine
         at  part load results from  a  lower  effective compression
         ratio and  a longer combustion duration.

         c.   Although the indicated  thermal  efficiency of the  LIVC
         engine  is  lower,  the lower pumping  losses result  in  the
         LIVC engine's having  up to  a  6.5% lower net  specific  fuel
         consumption  than  the  conventional  engine   at   the   same
         light-load operation.
10. R.B. Krieger and G.L.  Borman,  "The Computation of Apparent  Heat
    Release for Internal Combustion Engines," ASME Paper  66-WA/DGP4,
    1966.

                                   . V-34

-------
     d.   Conversion  of a  conventional engine  to LIVC  operation  requires
     the addition of  a control  mechanism.  Consequently,  the fuel  savings
     offered by  the LIVC  concept must  be  diminished  by the losses  innerent
     in any such control  device.

     e.   The  current  trend  toward  lower vehicular power/weight  ratios
     diminishes  the 'fuel-economy benefit of the LIVC concept.

3.   Exhaust Emissions  -

     a.   At  spark timings yielding   a  1% loss in  torque  from  the  MET
     values,  the NOx emissions  of  the LIVC engine are  considerably  lower
     than those  of  the  conventional engine.  At  mid-load, the reduct.on is
     about 24%.
     b.
HC emissions of  the  LIVC engine are similar  to  those of che con-
     ventional engine.
                    6.0 r
                    5.0
               NET
             SPECIFIC
               HC
             (g/kW-h)
                    4.0 -
               LIVC
              ENGINE
                    3.0
                                  SPAFIK TIMING FOR 1%
                                  LOSS FROM MBT TORQUE
                                   CONVENTIONAL
                                     ENGINE
                                                   J
                              30O  400  500
                                  NMEP (kPa)
                                             600  700
               Fig.  18  - Specific hydrocarbon emissions
                                 V-33

-------
V.  B.   Ford

1.  Ford Statements  Concerning  the Relationship  between Emissions and  Fuel
    Economy

A.  High Altitude Emission Standards

    Ford states  that  they believe that the  implementation of the  1984  high
    altitude requirements will reduce  their  fleet average  fuel economy by 2%
    to  7%.   Ford states  that  this loss  would result  from their  replacing
    fuel efficient configurations by less efficient ones.   Ford  claims,  "The
    1984 and Subsequent Model Years High Altitude Control  Requirements could
    regulate  out  of  existence   some  of  the  most  fuel-efficient  vehicle
    configurations  because  of   their  inability  to   simultaneously  meet
    stringent high  altitude standards and  yield acceptable  performance."*
    However, Ford did not provide any data to back up  this  claim.

B.  Effects of Reducing the NOx Standard to 0.4 g/mi

    Ford states, "Further reducing NOx emission levels  below 1.0 g/mi could,
    in  some cases, without  further design and  development of high EGR  tol-
    erance  engines,  cause power  reduction,  tip-in stumbles,  lean sags  and
    surging.  These  conditions  can usually be  minimized by  reducing  EGR
    rates and richer air-fuel mixtures.  However, rich  air-fuel  operation is
    inconsistent with high fuel economy and low HC and CO objectives."*

    Ford  further  stated   that   their  "California  cars   will   suffer   an
    additional 8% loss in fuel economy in 1983  [relative to their 1981 model
    year counterparts] when the  0.4 NOx  emission standard goes  into  effect
    (assuming this NOx standard can be met  at all);  that will lower  CAFE by
    0.2 MPG.  These  losses  will  occur in spite of  the  fact that we will be
    using sophisticated and very  expensive emission control systems —
*   "Ford Status Report," February 1981, Sections IIA6 and IIJ.
                                    V-36

-------
    including three-way  catalysts and  complex electronics  to  control  fuel
    metering, spark timing, and  other  important  parameters of the engine  —
    to minimize what otherwise would  be much larger  fuel  economy  losses."*

    While Ford provided no  data  to substantiate the  above claims, they did
    submit a  summary  of  computer engine mapping  results comparing the  fuel
    economy  of  vehicles  which meet  the research  target (0.41  HC,  3.4 CO,
    0.41 NOx) versus vehicles whose emissions are totally uncontrolled.  The
    comparisons used engine maps of vehicles equipped with 2.3 liter and 5.0
    liter  engines.   Ford's  results  indicated  that  the  unconstrained 2.3
    liter vehicles obtained between 11% and 21% better fuel  economy than the
    controlled versions,  and  the  unconstrained  5.0  liter  version produced
    between  9%  and  12% higher  fuel  economy than  their  controlled counter-
    parts.   Ford  obtained  between  25.9  mpg  and  26.0  mpg combined  fuel
    economy with  their uncontrolled  2.3  liter vehicles, and  17.8 mpg  with
    their  uncontrolled 5.0 liter vehicles.**   Unfortunately  Ford  did not
    provide any emissions data or specifics on those vehicles (e.g., type  of
    transmission,  test weight,  axle  ratio,  whether  turbocharged,  whether
    closed-loop, and whether  fuel injected or carbureted).   Since the  Ford
    report was submitted in September  1979, the EPA technical staff examined
    1980  model  year  Ford  vehicles  which were  used   to generate  the  fuel
    economy  label values  used by  Ford for  their   1980  model  year vehicles
    equipped with either  2.3  or  5.0 liter engines.  We found  that  the 2.3
    liter, 2  barrel,  manual  (both 4-  and  5-speed) transmission, open-loop
    vehicles  produced  28 MPG ,  and  thus  exceeded  the  "best  fuel economy"
                             c
    version  in  Ford's  study.   Similarly,  the  5.0  liter,  2 barrel  or  fuel
    injected, automatic (3- and  4-speed)  transmissions,  open or  closed-loop
    vehicles (with the exception of the LTD, LTD Wagon,  Marquis,  and Marquis
    Wagon) all  achieved at  least 18  MPG .***  We,  therefore,  have  doubts
    concerning the  accuracy  of  Ford's computer engine mapping  technique  as
    an indicator of  EPA test results.
*   Hearings before the Subcommittee on Energy and Power of  the  Committee  on
    Interstate and  Foreign  Commerce of the  House  of Representatives, March
    13 and 14, 1979.
**  "Ford 0.4 NOx Research Objective Program,"  September  1979,  pages  1-2.
*** EPA/DOE 1980 Gas Mileage Guide.
                                    V-37

-------
C.  Effects of Alternate "Standards" on Fuel Economy

    Ford  has  studied the  effects  on fuel  economy of  a  proposed (by  Ford)
    emission standard of 0.39 g/mi non-methane HC, 9.0  g/mi CO,  and  1.5 g/mi
    NOx compared to  the  current  standard   of  0.41 g/mi HC, 3.4  g/mi  CO,  and
    1.0 g/mi  NOx.   Ford  states,  "Based on  a preliminary  analysis,  such  a
    change starting  in the 1983 model year  could,  conservatively,  provide an
    average benefit of 0.5-0.7 mpg to the fuel economy  of  the  Ford fleet."*
    Since the 1983 CAFE  standard is 26.0 mpg, Ford apparently  believes that
    their proposed emission  standard will  result in a  fuel economy  improve-
    ment of approximately 2% to 3%.  Ford provided neither  the  test  data  nor
    the analysis method used to predict that fuel economy improvement.

D.  General Comments By Ford

    Ford,  in  the same report states,  "It has not  been possible for  Ford  to
    separate the fuel economy penalty attributable to  emission  controls from
    the overall improvement  in fuel  economy,  but the penalty is  believed to
    be  significant."**   Ford's  statements  contradict  the  computer  simula-
    tions of  Heywood, Higgins,  Watts,  and Tabaczynski  which  indicate  that
    fuel  economy can be improved while  controlling  emissions.  For  example
    simultaneously  increasing  the  amount  of  EGR and advancing  the  spark
    timing  could  increase  fuel  economy without  causing  the  NOx  to  sig-
    nificantly increase.***  The  resulting  increase in  HC  could probably  be
    handled by the catalyst.   See figures Ford-1  and  Ford-2.

E.  General Comments by EPA's Technical Staff

    It is quite time  consuming to generate  test  data to analyze since  it  is
    difficult to  run  more  than  one city  (FTP)  test  per day on  a  given
    vehicle.  Ford eliminates this problem  by running either steady-state
*   "Ford Status Report," February 1981,  Section IIF.
**  Ibid., Section III B.
*** Heywood, et. al,  "Development  and Use of  a Cycle Simulation to Predict
    SI Engine Efficiency and NOx Emissions,"  SAE Paper 790291,  page  18.
                                   V-38

-------
             360
             340
             320 J,
             300
                                  6     8     10
                                   bsNO, gNO/kW-hr
   12
                                                  16
              Figure  Ford - 1*
                      - Lines of  constant  percent  exhaust  gas
              recycle, and constant  timing relative  to  MBT,  on
              a  plot of brake specific  fuel consumption versus
              brake specific nitric  oxide  emissions.  Combus-
              tion duration 40°,  equivalence ratio 1.0,  1400
              rev/min, bmep 325 kPa
  360


w
•C

5 340
jt
>.
o«

2 320
*n
ft


  300
                    10%
                                   O% EGR
 6b =6O"

. 20" Ret
o 10* Rel
«  5* Ret
o MBT
•  5°Adv
                                    6      8     10
                                   tisNO. qNO/kW-hr
       12
                                                 14
               Figure  Ford - 2
                      - Lines of constant percent exhaust gas
              recycle, and constant timing relative to MBT, on
              a plot of brake specific fuel consumption versus
              brake specific nitric oxide emissions.  Combus-
              tion duration 60°, equivalence ratio 1.0, 1400
              rev/min, bmep 325 kPa
Ibid., page 18.
                                 V-39

-------
    tests or by running what Ford calls a hot-CVS (which is a  city  test  with
    the vehicle already warmed-up).  Unfortunately, it is very  difficult,  if
    not impossible,  to accurately  predict  both emissions  and fuel  economy
    results  for  the FTP  cycle  based only  on steady-state or hot-CVS  test
    results  (as  shown  in appendix  1 of  this  report).   Therefore,  Ford's
    approach might not be  correct  for actual FTP results.  Also, Ford makes
    a  number of claims  but without  providing any  data to  document those
    claims.

2.  New Technology or  Developments  which  Could Provide a Change  in  the Re-
    lationship between Emissions and  Fuel  Economy as Compared  to 1981 Vehi-
    cles or Ford's Estimates.

A.  New Engines

    1.   PROCO (PROgrammed COmbustion)

         The PROCO  engine is  a direct  injection,  open  chamber stratified
         charge engine.  Fuel is injected into the combustion  chamber during
         the compression  stroke and  ignited  by dual spark plugs.   Stratifi-
         cation  is  achieved  by relatively  late injection  timing  and  the
         swirl of incoming air, resulting  in a rich mixture in the  vicinity
         of  the spark plugs  and a  very  lean mixture around the periphery  of
         the combustion chamber.

         Ford has tested  PROCO  engines  with displacements of  7.5, 6.6,  5.8,
         5.0, 3.3,  and 2.5 liters.*  Ford has  found that, "Because  the PROCO
         engine runs at overall lean  air/fuel ratios  and the  fuel charge  is
         concentrated in the center of the combustion chamber,  thus  reducing
         fuel  contact  with  the cylinder  head and  walls,  both  HC  and  CO
*  "Ford Status Report," February 1981,  Sections IIG &  IIH,
                                    V-40

-------
         emissions are minimized.   However,  oxidation catalysts  will still
         be required to meet the 0.41  g/mi hydrocarbons  and 3.4 g/mi carbon
         monoxide emission standards.  The NOx  standard  of  1.0 g/mi is also
         achievable due  to this engine's  ability  to  use  large  amounts  of
         EGR."*  Fortunately,  the use  of EGR should not  lower fuel economy,
         as Ford  explains, "The  erroneous  notion that  EGR  is  inherently
         detrimental to  fuel  economy comes  from the fact  that  EGR reduces
         the combustion  speed.   If  the  engine  had the  optimum combustion
         speed without  EGR and measures are not taken to counteract the com-
         bustion speed reduction effect  of EGR, then  the  fuel economy will
         indeed suffer from EGR.  The  combustion speed of the PROCO engine,
         however, is optimized  for  the 100% charge  dilution condition with
         the aid of inlet swirl, squish, and dual  ignition  in order to take
         full advantage  of the  fuel economy  potential  inherent  in charge
         dilution."**

         Ford estimates  that  the PROCO engine, when calibrated  to meet the
         1981  statutory  emissions   standards,   will  produce  a 20-25%  fuel
         economy improvement over a carbureted, conventional gasoline engine
         of  the  same  displacement  which  was   also  calibrated to  the  1981
         standards.**

         According  to Ford,  the major problem  in  mass  producing the PROCO
         engine  "revolves  around mass manufacturing  of  its precision fuel
         injection  system  which   requires   extremely   tight   tolerances.
         Pending  continued  successful  development  and resolution  of manu-
         facturing open  issues,  the PROCO may be  available for production
         use by the mid-1980's.1'**

         Ford states that, "As engine power-to-vehicle weight ratios are re-
         duced,  it  may  be  necessary to turbocharge  the smaller  engine  to
         restore the required performance level.  In addition to meeting the
*   Nickol, "Automotive  Powertrains  - Now  and into the  1990's,"  SAE Paper
    801340, October 1980, page 6.
**  Scussel, et al, "The Ford PROCO Engine Update," SAE Paper 780699, August
    1978, page 4.
                                    V-41

-------
         required performance level,  it may be necessary  to turbocharge  in
         order to meet the NOx emission control requirements.   ...Testing  to
         date indicates  that  turbocharging PROCO, with  its inherently  fast
         combustion, will  require modifications  to the  current  technology
         PROCO combustion system."*   In fact  Ford says,  "The advanced  [i.e.
         turbocharged]  PROCO  is  not  expected  to  be  available  prior  to
         1990."**

         In a recent  interview  with  "Ward's Engine  Update," Ford  Chairman,
         Philip  Caldwell indicated  that the PROCO engine  will  not be  going
         into production.  Ford  will, however, try  to  incorporate some  of
         the  technological  know-how  they  developed  while  working  on  the
         PROCO on some other  projects  that will go into production.***
    2.   Stirling
         The Stirling engine that  Ford  is  investigating is a  reciprocating,
         closed cycle, continuous external combustion engine with multi-fuel
         capabilities.  Ford states that,  "Using  gasoline,  the Stirling has
         been projected to be capable of  achieving  up to 40%  better  economy
         than conventional gasoline engines,  although experimental vehicles
         have fallen  far  short  of this goal."****   These projections, how-
         ever,  are not based on  actual  test data.

         Ford's work  on  the Stirling  engine had  been done under Department
         of Energy Contract No.  EC-77-C-02-4396.   At the conclusion  of Task
*   "Ford Status Report," February 1981,  Section IIH.
**  Nickol, "Automotive  Powertrains  - Now  and  into the  1990's",  SAE Paper
    801340, October 1980, page 10.
*** Ward's Engine Update,"  Volume 6,  Number  24,  December 15,  1980, pages 5
    & 7.
****Nickol, "Automotive Powertrains - Now and  into the  1990's," SAE Paper
    801340, October 1980, pages 11-12.
                                    V-42

-------
         I in September  1978,  Ford officially notified  the Federal  govern-
         ment agencies and  private finns that it  intended to withdraw  from
         active  participation  in  the  development  of  the Stirling engine  as
         an automotive power plant.*

    3.    Gas Turbine

         Ford is  a  subcontractor  to  AiResearch  Manufacturing  Company  of
         Arizona on the  current  NASA/DOE  Advanced  Gas  Turbine  Powertrain
         System  (Contract No.  DEN  3-37).   "Ford believes  that  the  ceramic
         single  shaft  turbine has the  best  potential  of any  turbine  for
         attaining   low  emissions,  excellent  fuel  economy  and  reasonable
         manufacturing cost.   The  potential  of  meeting  a 0.4  [g/mi]   NOx
         standard is yet to  be determined."*

         Ford and AiResearch believe that a 3000 pound car  powered by such a
         turbine could achieve  a  fuel  economy  of  42.8  MPG ;  however,  a
                                                              c
         vehicle is not planned to be  available  for  testing until July  1981
         and  no   test  data  is   currently  available.**   There  was   no
         speculation  as  to   when  this  engine  might   be  available   in
         automobiles.

    4.    Diesel

         Ford is currently  developing  Diesel engines;  however,  there is  no
         indication  of  when they  will  be available for production.  Until
         Ford's  Diesel  is ready  for  production,  Ford will purchase  Diesel
         engines from  companies such as  Bayerische Motoren Werk AG  (BMW)***
         and Toyo Kogyo (TK).****
*   "Ford Status Report," February 1981,  Section IIH.
**  Rackley, "Advanced  Gas  Turbine Powertrain  System Development Project,"
    presented at Automotive  Technology Development Contractors  Coordination
    Meeting - Dearborn,  Michigan,  November 1980.
*** "Ward's Engine Update,"  Volume 6,  Number 24, December 15,  1980, page  5.
****"Ward's Engine Update,"  Volume 6,  Number 20, October  15, 1980, page 6.
                                     V-43

-------
         Ford's  Diesel research has  not reached a  point at  which  they can
         predict fuel economy and emission results.   They are currently in-
         vestigating turbocharging  and  both direct  and  indirect injection
         combustion chamber  configurations.*

         As part  of  a correlation program  with Ford,  EPA tested  a front-
         wheel drive  Escort equipped with  a manual  transmission and  a TK
         Diesel  engine.   A  total of  two tests  were performed  at  EPA and
         eight tests at Ford; the average  results  of those  tests are shown
         below:

                                FTP  (g/mi)	
                                                               MPGh    MPGP
                                                               51.4    42.4
                                                               50.8    41.7

         It should  be  pointed out that,  at both  test  facilities,  the NOx
         levels  are  below  1.0  g/mi   and  the total particulate  levels  are
         below  0.20  g/mi.**   There   has  been  some  interest  in the  fuel
         economy of  a Diesel at  these emission levels.   This  vehicle was
         tested  at  an  ETW  of  2750   pounds  with  a  dynamometer horsepower
         (VDHP)  setting  of  6.7  horsepower.   Two   similar  1981  model  year
         Diesel  vehicles  with manual  transmissions  were identified.   The
         following table  allows a  rough  comparison of  these three vehicles:
Lab
EPA
Ford
# of
Tests
2
8
HC
.241
.213
CO
.70
.69
NOx
.74
.74
Part.
.184
.145
MPGU
37.1
36.4
Vehicle
Ford Correlation Diesel
Chevette Diesel
VW Dasher Diesel Wagon
ETW
2750
2500
2625
VDHP
6.7
8.3
6.9
MPGn
37.1
40.1
36.0
MPGh
51.4
55.1
48.0
MPGC
42.4
45.7
40.6
         Nichol,  "Automotive Powertrains  - Now  and  Into  the  1990's,"  SAE
         Paper 801230,  October  1980, pages  8-9.
**       Watson,  "Ford -  EPA 1981 Light  Duty Vehicle  Diesel Correlation",
         EPA Technical  Report No.  EPA-AA-EOD-81-3, May 1981.

                                    V-44

-------
B.  Continuously Variable Transmission (CVT)

    A  truly  continuously variable  transmission  is one  which permits  ratio
    variations  completely  independent  of  vehicle  speed or  engine  output.
    Its major advantage is that  it  provides  the  flexibility to run an  infi-
    nite number of drive ratios  between fixed upper and lower limits.   Ford
    says that the advantages of the CVT are:

         1.   Smooth vehicle acceleration without shift impulses.
         2.   Acceleration  with   the   engine  operating  very  close  to  its
              optimum power output, thereby improving  performance.
         3.   Road load engine operation at  peak efficiency consistent  with
              acceptable  driveability, thereby  improving  economy,  due  to
              CVT's ability  to  optimize its  performance within this narrow
              range.*

    Ford states that, "To  date,  however,  some of the  apparent benefits  have
    been  offset by  high  internal  frictional losses.  Much  work remains,
    making the CVT an unlikely prospect for the mid-1980's."**

3.  The Effect  of  Known Technology which  Helps  Quantify Single or Multiple
    Calibrations or Vehicle Description Changes.

A.  Automatic Overdrive Transmission (AOD)

    The AOD,  which Ford  began  using  in  the 1980  model year,  incorporates
    three  fuel  savings  features.   First,  the overdrive  gear (fourth  gear)
    has a gear ratio of 0.67 to 1.0, thus allowing the engine to  operate at
*   Nichol,  "Automotive  Powertrains -  Now  and Into  the  1990's", SAE  Paper
    801230, October 1980, page 13.
**  "Ford Status Report," February 1981, Section IIF.
                                    V-45

-------
    a lower speed than  it  would with a similar automatic  transmission  which
    had a  final  gear ratio of  only 1.0-to-l.O.   Secondly,  the torque  con-
    verter clutch directs  the flow  of  engine power to completely bypass  the
    torque converter and  to follow  a  direct mechanical path  to the drive-
    shaft, thus  eliminating torque   converter  losses  while the  transmission
    is in  fourth gear.   Finally,  the transmission uses  a  split torque  path
    which  allows a  portion of  the   engine  power  to bypass  the torque  con-
    verter and follow a mechanical path to  the drive shaft,  thus eliminating
    some of the torque converter losses.  While none of  those  three  features
    is unique  in the automotive industry,  Ford  claims that the combination
    of all three "is an industry  'first.'   Only  Ford Motor Company offers
    this feature."*

    Ford claims, without  providing   substantiating data,  that  the overdrive
    gear can  increase  highway  fuel economy  (MPG,)  by  up to  6%,  that  the
    torque  converter  clutch   can   increase  combined   fuel  economy (MPG  )
    approximately 4%, and  that  the   split torque  principle can  improve  MPG
    approximately 7%.**

    Ford pointed out that  this  system  could be improved by incorporating an
    electronic control  system  such that  a  single microprocessor  would
    control both  engine   and  transmission  functions.   Ford   states   that,
    "Potential  benefits  from  such   a   system  could  include  improved   fuel
    economy through  implementation  of  a  neutral  idle  control  strategy and
    increased  transmission  shift scheduling flexibility permitting the  best
    compromise of shift timing to attain optimum fuel  economy, emissions and
    driveability."***  However, Ford did  not indicate if  they are  studying
    this possible improvement.
*   Dabich, "Ford Motor Company Automatic Overdrive Transmission," SAE Paper
800004, February 1980.
**  Nickol, "Automotive  Powertrains  - Now  and  into the  1990*s,"  SAE Paper
801230, October 1980,  pages 12-13.
*** Ibid.
                                    V-46

-------
B.  Weight Reductions

    Ford's Metallurgy  Department has  been investigating  the  potential for
    using high  strength  steels (HSS)  in  place of mild  steel.   Ford states
    that  "the  use of  higher  strength steels  allows for  reduced  weight in
    components that are primarily used in energy absorbing applications.  An
    example  of  this is  the widespread  use of  HSS  in  sidedoor beams with
    large weight  reduction over original mild steel versions.  ...Although
    the total weight of  steel in future  vehicles  is somewhat uncertain, it
    is  possible  to project that  sheet: steel  stampings will make up  about
    forty  percent  of  future  vehicle  weights.   The overall  penetration of
    high  strength steel  among the  sheet  steels is now about  20%  in  Ford
    vehicles; the  authors speculate that this penetration will reach  30 to
    50% of the total automotive  sheet  steel  by the end of the  decade...  We
    speculatively project  the  application of high  strength sheet steels per
    vehicle  to approach   the  300   to  600  pound range  by  the end  of the
    decade."*  Ford believes that the  use of high strength steels will be  a
    key feature  in "achieving very significant worldwide fuel  savings."**
    Ford anticipates that  the  use of high strength steels  to  replace  average
    strength steels will  result  in  the savings of 100 pounds per  vehicle by
    1985  (See  figure  Ford-3).**   See  figure  Ford-4 for overall  weight re-
    duction.

C.  Reduction of Internal  Friction within the Engine

    Ford's  Fuel  and. Lubricants  Department  analyzed  motored  engine  friction
    data  from  a Ford  1.6 liter  and a Datsun  2.0 liter engine.   Ford  found
    the  frictional losses  in  the  Ford  1.6  liter engine  were  significantly
    higher than in the Datsun  2.0 liter engine.  Ford determined that this
*   Magee, et.al., "Automotive Sheet Steels for the 1980's," May 1980.
**  Magee,  et.al.,  "Factors  Influencing  Automotive  Applications  of  High
    Strength Steels," August' 1979.
                                     V-47

-------
      150
CO
U
z
td
oa
EI
CO

Cd

M
CO-
Z
W
H
CO
CO
pa
      100
        50
                                                                                  0
     WEIGHT
      SAVE
/
                               19.75
1980
         1985
       Figure Ford - 3*
                Trends in strength  level of HSS used in automobiles and  the

                increased weight  reduction
           Ibid.
                                          V-48

-------
                                                      Figure Ford - 4*

                              SAtES WEIGHTED AVERAGE INERTIA TF.ST HEIGHT FOR ^ORD BY MODEL YEAR

                                                     PASSENGER CARS
      4500
 3

 »—
 i/l
      4000
      3500
L°
S^J
      3000
     2500
                                                                              Tentative Programs Under Consideration
          1974
1976
1978
1980
   1982


MODEL YEAR
1984
1986
19&J        199
1990
          *    "Ford Status Report," February 1981, Section IIP.

-------
    friction could be  reduced by  redesigning  the piston/cylinder  interface
    and by the use of low friction oils.*

    Ford states  that  their "studies show  that  reduced friction engines  in-
    corporating  fast  burn/lean burn  combustion  technology  offer  potential
    for  about  a  12%  fuel economy  improvement  over  the  original engine.
    Although some  technological,   cost  and  lead time  issues remain  to  be
    resolved, increased usage  of  this  technology is expected throughout  the
    mid-1980's.**

D. Reducing Parasitic Losses

    Ford found  that,  by replacing the  conventional  V-belt arrangement on  a
    1978, 5.0 liter Mustang with  a serpentine drive arrangement,  "increased
    belt  flexibility  and  improved traction  resulted  in a  more  efficient
    drive  system with potential  increase  of 0.04 mpg."***   An increase  of
    0.04 mpg on that model amounts to  an increase of 0.2%.****

    "Fans  which deactivate when   satisfactory  engine cooling  exists  offer
    potential for  improved on-road fuel economy  which may,  to some degree,
    be  reflected  on  the EPA  test.  Electro-mechanically clutched  fans  have
    been used  on Ford vehicles such  as the Fiesta  and  Escort/Lynx and  are
    expected to see more wide spread applications in the future."*****

    Variable speed and  two-speed  accessory drives are being  studied for  use
    on  vehicles  with  low  power-to-weight  ratios and  relatively   heavy  ac-
    cessory  loads.  These  systems will  drive  air pumps,  alternators,  power
    steering pumps, and air conditioners.  For the variable speed  system,
*Willermet, "Lubrication Modes and Engine Friction - A  Comparison of Motored
Engine  Friction  Data for  the 1.6L  Ford  and 2.0L  Datsun Engines,"  January
1981, attachment to "Ford Status Report," February 1981.
**"Ford Status Report," February 1981, Section IIF.
***Cassidy, et.al.,  "Serpentine  - Extended  Life Accessory Drive,"  SAE  Paper
790699, June 1979.
****EPA/DOE 1978 Gas Mileage Guide.
*****"Ford Status Report," February 1981, Section IIF.
                                   V-50

-------
    "[k]ey problem areas relate to durability, packaging and optimization  of
    accessory  performance."   For the  two-speed  system,  "ultimate  usage  is
    questionable on a cost/benefit basis*"*

E. Supercharging

    Ford claims  that  supercharging  by  way of  a  turbocharger can allow  that
    engine to equal the performance of a naturally  aspirated engine which  is
    50% larger  than  the  turbocharged  engine.  Also, the  turbocharged  engine
    according to Ford, can provide approximately 9% better  fuel  economy  than
    the larger  naturally  aspirated  engine  and with no  significant impact  on
    emissions.**

F.  Decel/Idle Fuel Shut-Off System

    This system shuts off the fuel, and hence  the engine, when the engine  is
    warm and  would  normally  be idling.  Ford  claims, without submitting any
    supporting data,  that this  system  provides a fuel  economy improvement  of
    1% to 2%  on vehicles  equipped with either manual or  automatic overdrive
    transmissions  when tested  on the  FTP  cycle  excluding the cold  start
    (Ford's HOT-CVS  test  cycle).   Vehicles equipped with conventional auto-
    matic  transmissions  have  fuel  economy gains  of  less than  1%.   Ford
    states  these produce  higher HC  feedgas  levels;  however,   there is  no
    change in HC tailpipe levels.  The problems with  this  system, according
    to Ford,  are:

         1.   Without a speed  signal,  the  system gives  poor driveability and
              potential stalls.
         2.   The  system  incurs  substantial  cost  penalties for  additional
              hardware (e.g., sensors, solenoids,  etc.).***  However,  some
*"Ford Status Report," February 1981, Section IIF.
**Nickol,  "Automotive Powertrains  -  Now and  into the  1990's,"  SAE  Paper
801340, October 1980, page 5.
***"Ford Status Report," February 1981, Section IIA3f.
                                    V-51

-------
    of that hardware would already  be  present  if the vehicles were  equipped
    with a closed-loop system.

    Ford states that, "These problems are expected to be resolvable  and  pro-
    duction incorporation  is being  studied or actively  pursued for  several
    engines."*

G.  Multipoint Electronic Fuel  Injection

    Ford  currently  (1981 model year)  uses central  fuel  injection  (CFI)  on
    its  fuel   injected  models.   Ford  is  working  to  develop  a  multipoint
    electronic fuel  injection  (EFI) system  for  use  on  4-cylinder  engines.
    The multipoint EFI system  with  its four  injectors has the  potential for
    greater control of the fuel metering than does the CFI with  only its two
    injectors.**  If  this potential is  realized,  the multipoint  EFI  could
    result in an improvement in both emissions and fuel economy.
* Ibid., Section IIF.
**Ibid., Section IIA3.
                                    V-52

-------
V. C.  Chrysler

1.  Chrysler's Statements Concerning the Relationship between Emissions
    and Fuel Economy

In  CO  waiver hearings,  Chrysler  said  that fuel  economy,  on  average,   is
degraded by about 2% for vehicles complying with the  3.4  g/mi CO standard,   as
compared to  a 7.0 g/mi CO standard.   According  to Chrysler, the  7.0  standard
would  allow  the  use of richer A/F  ratios  during acceleration,  to enhance  the
catalyst's NOx reduction capability.   This  allows  the  use  of  EGR  and  spark
timing calibrations  that are  more optimum for fuel economy.   The  fuel  economy
benefit  varies from one engine  family to another depending  on the  degree  to
which  EGR and  spark  timing calibrations  have  been  compromised in order  to meet
the  NOx  standard.    Chrysler indicated  that,  on  average,   fuel  economy  is
expected to  improve  by 2%, but this was  based on  their  judgment.  They  had  not
run  back-to-back tests between  vehicles calibrated  for  3.4  and  7.0 g/mi  CO
standards.*

In a historical  review on  emission  controls,  Chrysler commented that  with  the
introduction of  catalysts,

     it became  necessary   to  remove  lead from  gasoline.   The
     antiknock level  of unleaded  fuel  that could  be accomplished
     with existing refining technology was and is substantially
     below  that which  existed with  the  lead  antiknock compound
     present.   As a  result,  lower  compression ratio had  to be
     used with resulting loss  in  fuel e:conomy.**
 *    Transcript  of Proceedings, United  States  Environmental Protection Agency,
     In the Matter  of:   Public Hearing on Applications  for Waiver  of Carbon
     Monoxide  Emission  Standards  for   Certain  Model Automobiles,  Washington,
     D.C.,  October 24, 1980.
 **   Charles M.  Heinen,  Chrysler Corp.,  "We've  Done the  Job - What's It Worth,"
     SAE Paper 801357, October  20-23, 1980, pages  9 & 11.
                                    V-53

-------
This paper  made  the case  that  lighter vehicles with  electronic engine  con-
trols and changes in


    mixture  preparation  and distribution  should result  in  exhaust
    emissions before any catalyst of 1.5 HC, 10 CO and  1.5 NOx  based
    on  vehicles  already  in existence.   These  systems will  be on
    vehicles  regardless  of  the  emissions  requirements  because of
    their  fuel  economy  benefits.   Without a  catalyst  a moderate
    amount  of  lead would  be  permissible.   The  results,  of  course,
    would be a gain of not only fuel economy, but a reduction in the
    cost of fuel with all their attendant benefits.

The author  admitted that the fuel economy  loss is a highly controversial sub-

ject, but  referred to a  Detroit  News Editorial, June 9, 1980,  for  order  of

magnitude figures that indicated  that leaded regular fuel would  cost  6-7% less

than unleaded fuel and improve fuel economy 5-10%.**


Table Chrysler-1 below was included in the  SAE Paper cited above.  This  infor-

mation  was  taken by Chrysler from the Annual Report  of  the Administrator  of
the Environmental Protection Agency to the  Congress of  the United States, "The

Cost of Clean Air and Clean Water,"  96th Congress, First  Session, Document  No.
96-38, December, 1979.

                              Table Chrysler-1**

                       Fuel                                    Fuel
                   Consumption                             Consumption
Year	Penalty*	Year	Penalty*
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
* millions of
343.64
599.19
1033.89
• 1556.84
2346.72
3304.32
2954.63
2540.78
2077.18
1851.86
1977 dollars
1978
1979
1980
1981
1982
1983
1984
1985
1986


1587.17
1349.58
1049.19
849.61
524.89
366.24
255.02
151.95
85.44


**  Charles  M.  Heinen,  Chrysler  Corp.,  "We've  Done  the  Job  -  What's  It
    Worth," SAE Paper 801357, October 20-23, 1980, pages 9 & 11.
                                    V-54

-------
In their  "Oxides of Nitrogen  Research Plan  for Model Year  1979," Chrysler
stated the following:

    Chrysler's   fuel  economy   improvement   plans  are   based  on
    increasingly more  stringent  emission standards which  eventually
    reached the  level  of .41/3.4/1.0.  If  the  0.4 NOx level  should
    ever be achievable, and a  standard  promulgated at  that  level our
    efforts to improve fuel economy would suffer a severe  setback.**

Chrysler did  not provide test data to support  their  comments regarding   the
relationship between fuel economy and emissions.

2.  New  Technology  or  Developments which   Could  Provide  a  Change   in  the
Relationship  between Emissions and Fuel Economy as  Compared  to 1981  Vehicles
or Chrysler's Estimate

The  "Progress  Report   on  Chrysler's  Efforts  to Meet  the  Federal  Emission
Standards  for HC,  CO, and  NOx  in 1981 and Subsequent  Model Years,"  dated
February 1981,  discussed seven  development programs whose objectives  were  to
improve vehicle  fuel economy.  These include:

1.  Vehicle weight reduction.
2.  Power-to-weight  reduction.
3.  Drive  trains.
4.  Accessory drives.
5.  Engine efficiency.
6.  Tires.
7.  Lubricants.
**  Chrysler Corporation, "Chrysler's Oxides of Nitrogen Research
    Plan,  for Model Year 1979," March 14, 1979, page 7.
                                    V-55

-------
This section will discuss only the new technology being developed by  Chrysler

in the above projects.


Chrysler began development  efforts  on lock-up torque converters in January of

1973 and  entered production for rear wheel drive vehicles in  the  1978 model

year.   They began development  of  lock-up  torque converters for  front wheel

drive vehicles in  June  'of 1976.  Chrysler  stated,  "at  the present time,  how-

ever, the  use  of lock-up on  front  wheel drive cars has  been deferred due to

unacceptable driveability at the current state of development."*  Chrysler did

not  discuss the  impact on  emissions  nor quantify the effect  on fuel  economy

for  this technology.


In  their  engine  efficiency  program,  Chrysler's  "engine  mapping and  controls

optimization"  project seems to  be  their most significant program to  improve

fuel economy and emissions.


This  project's objective is  "to develop both  the  hardware  and software  for

electronic  control of spark timing, fuel/air  ratio,  exhaust gas recirculation,

etc., so that fuel economy is maximized while emissions constraints  are met."**


     The   project   includes  chassis  dynamometer   measurement  and
     computer  simulation of  engine  speed/load  requirements  during
     EPA   Urban   and   Highway  driving   cycles.    Key   speed/load
     conditions  are selected by  analyzing  resulting histograms.  The
     engine configuration  is  then   "mapped"  (steady-state)  on  an
     engine dynamometer at  the "key"  conditions  for emissions  and
     fuel   consumption.   From  these   data,   for  any   reasonable
     emissions  constraint,  key point  operating conditions  can  be
     found  which predict  minimum fuel usage on a hot  '74 EPA cycle.
     These  operating  conditions are  then  incorporated in  a  vehicle
     and  evaluated on a chassis dynamometer.
 *    Chrysler  Corp.."Progress  Report on Chryslers Efforts to Meet   the Federal
     Emissions Standards  for  HC,  CO,  and  NOx  in  1981  and Subsequent  Model
     Years," February 1981, page F-3.
 **   Chrysler  Corporation, "Oxides  of  Nitrogen Annual  Report  for  Model  Year
     1980," December 23,  1980, page  1-9.
                                    V-56

-------
     Engine maps  have  been  obtained,  under  a  contract with  the
     Department of  Transportation  (DOT),  for  several versions  of
     both the  318  CID V8 and 225 CII)  slant  6 engines,  as  well as
     turbocharged  1.7  liter 4-cylinder engine.  Strategies have been
     obtained   for  the base 318  CID and  225 CID  engines.  Vehicle
     tests  of   these  strategies  are  reported  in  the  section  on
     Integrated Engine Controls.   A  strategy for  the turbocharged
     1.7  liter  engine  has also been prepared.

     Preliminary tests  on  Car 198  (360  CID)  have been  made that
     demonstrate  the   potential  capabilities  of  the  system  and
     optimization  strategies.  Tests with "optimized" strategies for
     spark advance and EGR  were compared  against the standard spark
     advance and EGR  control system.   The  "optimum" strategies were
     tested by  programming  schedules into a  microprocessor capable
     of controlling spark  advance and EGR.   The  fuel/air ratio was
     maintained around stoichiometric by an  oxygen sensor  feedback
     Holley 2 bbl. carburetor with Holley electronics.  A summary of
     these tests follows  [table Chrysler-2]*.
Tests
 15
 20C
Avg. of
4 tests

Avg. of
2 tests
                              Table Chrysler-2*

                            Car  198, 360 CID Engine
                               HOT '74 EPA TEST
   Engine Out
Emissions (gm/mi)
 HC     CO    NOx
2
3
2
.84
.94
.48
26
21
18
.9
.2
.6
1
2
2
.71
.71
.26
2.42   19.9
1.66
 Fuel
Economy
  MPG

 12.3


 14.5


 14.2


 13.9
       Comments

Baseline-Mech.  spark
adv. and prod.  EGR

Schedule to improve
fuel economy

Schedule to improve HC


Schedule to improve NOx
    Control strategies have also been run on  318  and  225  CID engines
    (Cars 373  and  535,  respectively).   These cars were modified  to
    include  three-way  catalysts and  feedback carburetor  systems.
    Typical results for hot '74 EPA tests are as follows:
*Chrysler Corporation,Application  For  Waiver of the 1981-1982 Model  Year
    Carbon Monoxide (CO) Standard of 3.4 Grams Per  Vehicle  Mile   For  Passenger
    Cars," July 3, 1979 at Vol. II,  pages B5-54,  B5-55,  & B5-57.
                                    V-57

-------
                           Table Chrysler-2  (con't)

                           Car  373, 318 CID Engine
  Strategy     HC    CO     NOx

As received

Minimum Fuel

Emissions
Constrained
  Strategy

As received

Minimum Fuel

Emissions
Constrained
Engine-Out
HC CO
2
3
2
.7
.0
.6
22.6
12.5
10.9

Hot '74
NOx
1
3
2
.5
.5
.1
EPA
HC
.3
.2
.2
Test

Tailpipe
CO
4.6
2
1
.3
.7
NOx Fuel Economy
1.4 15
2.0 18
1.3 17
.5
.4
.1
Car 535, 225 CID Engine
Hot
Engine -Out
HC CO
Not
3
3
.3
.3
'74 EPA
NOx
Available
13.4
13.3
4
3
.0
.0
test
HC
.4
.4
.3
Tailpipe
CO
7
3
3
.9
.1
.2
NOx Fuel Economy
1.4 19
2.2 21
.7 20
.4
.3
.8
                                     V-58

-------
     These  data  have  been processed  to identify  optimum  control
     strategies for specific vehicles  with  318,  225,  and 1.7  liter
     engines.  The  strategies  are currently  being evaluated.  The
     results were presented in  Volume  II of Reference 22 Sec. B-5,
     pp.  54-57  [see table  Chrysler-2].   Since  that  time,  initial
     cold start and warm-up tests have  been  conducted on car 535.
     Preliminary results are:
                            Table Chrysler-3

                          Car 535,  225 CID Engine
                             Cold '75 EPA Test

                  Engine Out                 Tailpipe

Urban                                                      Corrected
Strategy       H£      C0_   NOx         HC_     C0_     NOx  Fuel Economy

Emissions      4.00   20.6  2.13        .34   3.29     .37     17.9
     This car was built up with experimental  induction  and  emission
     control  systems  and  does not  directly  compare  to  the 0.4  NOx
     program  cars.  The  significance  of the results, then, is  that
     we have  established  that the  program  cars are achieving  fuel
     economy  comparable  to  the   optimum  values   predicted   from
     analytic evaluation of comprehensive engine data.

     It   should  be   noted   that,   informally,   the   systematic
     methodology  discussed here has  already  had  an  evolutionary
     effect  on  our  test  philosophies and  is  expected  to  have
     increasingly   greater   impact.    Therefore,    all  of   these
     activities will  continue except for the DOT  project which is
     limited  by contract.*
    Chrysler Corporation,  "Oxides  of  Nitrogen Annual Research Report  for  Model
    Year 1979," October 25, 1979 pages 23-24.
                                    V-59

-------
In  addition to  emission  control  systems  optimization  in  engine  mapping,
Chrysler's engine efficiency program also includes projects to study the  fuel
economy benefits of:

                   a)  Deceleration fuel shut-off
                   b)  Reduced engine friction
                   c)  Combustion chamber designs
                   d)  Intake manifold designs
                   e)  Turbocharged engines

The deceleration  fuel  shut-off project will  restrict  fuel flow during closed
throttle deceleration in an  attempt  to improve fuel economy.  Chrysler is now
evaluating the fuel  economy  and driveability  implications of  this feature, but
did not  discuss  or  provide data  on  emissions or  fuel  economy and  did not
indicate when this technology would be used  in production.*

For the  1981  model  year,  Chrysler  has introduced lower  tension oil rings  in
order  to  reduce engine friction.  Chrysler is also evaluating  other  friction
reducing items  for their  2.2 L engine  but  has not  indicated which  components
will be evaluated.  No emissions or fuel economy data  were provided.

Fast burn  combustion chambers  are being  evaluated  to  develop a design "which
combines the best possible part load efficiencies and dilution  tolerance with
high specific  power  output  and reasonable  fuel  octane   requirement."*   Swirl
ports  and  squish-type  chambers with reduced   flame travel  distance are  among
those  being evaluated.  Chrysler  did not  indicate when the  results  of this
development would be used in production, but  said  that  the work is primarily
based  on a 1981 2.2  L engine.  Chrysler  said that  the 2.2 L engine's  combus-
tion chamber "has proven to  be a very  good one with  the  exception  that W.O.T.
output is  limited by valve  shrouding  in the  deep,  compact  chamber  design."*
Emissions and fuel economy data were not provided.
    Chrysler  Corp.,  "Progress  Report  on Chrysler's  Efforts  to  Meet  the
    Federal  Emissions  Standards for  HC,  CO,   and  NOx  in  1981 and  Subsequent
    Model Years", February, 1981, pages F-7 & F-8.
                                    V-60

-------
In order  to  improve the power output of the  2.2  L engine, Chrysler has rede-
signed  the  intake  manifold  by reducing  branch  lengths  and  providing  less
restrictive flow paths.  "The result was a large  gain in mid-range to  top-end
power.  This  was transformed into  a low-to-mid-speed  torque benefit  through
advancing  the  camshaft timing."*  Chrysler plans  to  introduce the new  intake
manifold in the 1982 model year.

Chrysler  evaluated  the  use  of  turbocharged  engines of  smaller  displacement
than  the  naturally  aspirated engines which  they would  replace,  to  increase
fuel  economy   without  a   loss  in  performance.   Chrysler  concluded   that
turbocharged  small  displacement engines would not be a cost  effective  method
for improving fuel economy for high volume production.  No data were provided.*

Chrysler's  tire test program includes  rolling resistance tests in an  effort
to improve fuel economy.  Chrysler stated:

     The   rolling   resistance   characteristics   of   our   current
     production tires  are  evaluated  through head-to-head  coast-down
     tests  against  tires   on   competitive  domestic  and  foreign
     vehicles.
     The  rolling resistance characteristics  of   the tires  to  be
     released  for production are  optimized  by  selecting only  the
     best  for  production.   This has  resulted  in a five  percent
     reduction  in vehicle  force required  as reported  to the  EPA
     between  the 1980  and  1981 model  years.  Through  competition
     between  tire suppliers, all eventually had tires that were of
     about  equal  rolling resistance and were  acceptable  from other
     release  standards.*

Chrysler  said  that  although  tire rolling  resistance has improved greatly  from
1979 to the  1981 model years, they do not  feel that there  will be  any rolling
resistance  improvement for  the  near  future until major improvements  are  made
in  design or compounding.   Chrysler  did  not  discuss the emissions impact  of
their tire test program.
    Chrysler  Corp.,  "Progress  Report  on  Chrysler's  Efforts  to  Meet  the
    Federal  Emissions Standards for HC,  CO, and  NOx  in 1981  and Subsequent
    Model Years," February, 1981, pages F-7  to F-10.
                                   V-61

-------
A "fuel efficient"  lubricant  test  program included evaluations of engine lub-
ricants and axle  lubricants.   Pour engine oils were  tested for fuel  economy
improvements.    Of these  four,  "only one,  Sun Code  X892,  showed significant
(1.6-3.2%) fuel economy improvement potential  in the 225  CID engine."*  The
Sun  Code  X892  oil  is  now  available commercially  as Sunoco  "MPG  PLUS" oil.
Chrysler  said  that  since this  oil includes  a  friction  modifier containing
phosphorus, durability tests  would be  required  to  determine the  effect  on
catalysts  and oxygen  sensors.   Chrysler did  not indicate  when this  oil  or
other fuel efficient oils might be used  in production.  No  emissions data were
provided from this testing.

Table Chrysler-4  lists fuel  economy improvements associated  with the use   of
an experimental 75W axle lubricant  as  compared  to an 80W-90 rear axle  lub-
ricant.  According to  Chrysler "additional economy testing  of other  candidate
oils will be limited due to the future decrease of sales  volume  of rear wheel
drive vehicles.   It is estimated  that  no fuel  economy improvement potential
exists in  this  area for the  corporate  front wheel drive vehicles; therefore,
similar tests were not  planned.  "  Although  a fuel  economy improvement was
shown on  all  four vehicles "the   75W  oil was  considered  unacceptable due  to
differential  bearing wear and  ring and  pinion gear  scoring."  The effect  on
emissions was not discussed.

                               Table Chrysler-4
                          Axle Lubricant  Test Results
         REFERENCE OIL:  MS-5644, SAE 80W-90 FACTORY FILL
         TEST OIL:       O.S.  38623, SAE 75W
                         CONTAINS SOLUBLE FRICTION MODIFIER
              Vehicle Type             EPA Composite Economy Effect*
           1978 "E" Body (225)              2.0% Improvement
           1978 "F" Body (318)              0.6% Improvement
           1979 "F" Body (318)              1.2% Improvement
           1979 "D" Body 100                1.1% Improvement
                   *Compared to factory-fill baseline.
    Chrysler Corp.,  "Progress  Report on Chryslers Efforts to  Meet  the Federal
    Emissions  Standards  for  HC,  CO,  and  NOx in  1981  and   Subsequent  Model
    Years," February, 1981, pages F-10 & F-ll.
                                    V-62

-------
Chrysler evaluated the  feasibility  of  utilizing  an oxidation catalyst  system
to meet emission standards of 0.41 HC,  3.4 CO,  1.0 NOx on a vehicle with a 2.2
liter engine.    Chrysler's data, listed  in table Chrysler-5,  shows a  2 mpg
fuel economy  loss for the oxidation catalyst system  on  the FTP.
                               Table Chrysler-5
Tailpipe
HC CO
_ 	 ^ /— J
- - -g/mi -
.25 2.1
.19 1.9
-24% -9.5%
-.06 -.2

NOx


.58
.83
+43%
+ .25
Engine-Out
HC CO NOx
	 	 	 _. /_. . J 	 	 	
	 	 g/mi 	
2.0 11 1.80
2.2 30 0.80


Fuel
Urban


26.0
24.0
-7.7%
-2.0
Economy
Hwy


34.4
33.6
-2.3%
-0.8
82 Dual Bed (DB)
Ox Cat (OC)
100 (OC-DB), %
      DB
Difference (OC-DB)
In  order  to comply with  the  1.0 g/mi. NOx  standard,  Chrysler  used high  EGR
rates and rich A/F ratios.  Chrysler said that this  type  of  calibration  "leads
to  unstable or inconsistant combustion which can produce undesirable vehicle
surge  and unsatisfactory  performance  under certain operating  conditions."*
The 30 g/mi. engine-out CO  level for the oxidation catalyst  system  as  compared
to  the  11 g/mi.  CO level for  the  dual bed  system indicates that it is  likely
that  the  oxidation  catalyst  equipped vehicle  was   operating with  richer A/F
ratios than the dual bed equipped vehicle.  This may explain the 2  mpg loss  in
fuel  economy.   Chrysler  also  implied that the  spark  timing  and EGR  cali-
brations also had an adverse impact on fuel  economy, but  did not provide their
specifications.
    Chrysler Corp., "Progress Report  on  Chrysler's Efforts  to  Meet  the Federal
    Emissions  Standards  for  HC,  CO,  and  NOx in  1981  and  Subsequent  Model
    Years," February, 1981, pages A-l & A-2.
                                   V-63

-------
Chrysler's  open chamber  Diesel  project  is intended  to determine  the  feas-
ibility of using the open chamber Diesel engine in passenger  cars.


    Early tests indicated significant potential  for  improvement
    of  the  fuel economy/NOx relationship  over  that  of a pre-
    chamber  engine  if  fuel  injection  timing  and rate  profile
    could be precisely  controlled.   Electromechanical  actuators
    were developed to provide this control.

    Single  and  multicylinder tests  confirmed  indications  of  a
    superior  fuel   economy/NOx   relationship.    Fuel   economy
    benefits of 10 to 15% over an  equivalent pre-chamber Diesel
    were  observed,  along with  some  evidence   that  NOx levels
    below 1 gm/mi might be achieved.

    However, two major problem areas were identified:

    - HC emissions are excessively high in those areas where
      NOx control is best.

    - Fuel control system reliability is not sufficient to
      maintain a productive test program.

    An  intensive  series of  tests  involving combustion chamber
    parameters  as  well  as a variety of fuel  system components
    has  indicated  some  promise  for  solving these problems.  It
    is  not  yet  possible to  say,  however,  that  this concept will
    achieve  the  anticipated  lower  emission  levels while  re-
    taining  a  substantial fuel economy advantage.   Current  de-
    velopment efforts are directed to  the  near term  solution of
    these problems.*
    Chrysler  Corp.,  "Progress Report  on Chrysler's Efforts  to
    Meet  the  Federal Emissions Standards for  HC,  CO,  and NOx in
    1981  and  Subsequent Model Years", February, 1981, page H-2.
                                    V-64

-------
V.D.  Toyota

1.    Toyota's  Statements  Concerning  the  Relationship Between  Emissions and
      Fuel Economy

A.    Toyota states that "strengthened emission standards affect not only  fuel
      economy but also all  of  other  factors  such  as  driveability,  performance,
      durability, cost, etc."  Toyota  has been complying with  the  increasingly
      stringent  emission  standards  by  trading  off  the  above   factors  except
      fuel economy.  Toyota  states,  "Fuel economy cannot be  sacrificed  because
      it shares  a large factor in market competition."  Accordingly, Toyota  is
      "optimizing and  upgrading  emission control  systems  in order to maintain
      or improve economy, which results in increased cost of system."*

      Toyota  included  graphs (which  appear on the next page,  figures Toyota-1
      and Toyota-2) which  indicate the effects of various NOx standards (from
      2.0 to  0.4 g/mi) on both  fuel economy  and  on costs.  These graphs  show
      that to go from  a  NOx standard of 1.5  g/mile to one of  0.4  g/mile would
      increase cost due to  the need  to employ a more sophisticated technology;
      however,.the new technology  would  increase  fuel economy  by  as  much as  10
      to 15%.**   A  15% increase in fuel economy  for a vehicle rated at 25 MPG
      would result in  a savings  of 260 gallons of fuel  during  the first 50,000
      miles.  (At a fuel cost  of $1.55/gallon, the savings would  be  $403.)  On
      the  graph,  the  system  designated "P-2"  indicates  carbureted  vehicles
      equipped  with oxidation catalyst  systems;  "P-8-2"  and  "P-8-3"  indicate
      carbureted vehicles  equipped  with closed  loop  3-way catalyst  systems;
      and  "P-7"  and "P-ll"  indicate fuel injected  vehicles with closed-loop,
      3-way catalyst systems.***
 *"Toyota  Status Report - Efforts  to Meet the 1981 and Subsequent Model
 Year  Light-Duty Vehicle Emission  Standards and Other Statutory Requirements,1
 page  70.
 **  IBID.,  page 71.
 *** IBID.,  page ii.
                                    V-65

-------
          20
        + 10
     6
     O
     c
     O
     u
     
     (X
                                                        P-7  or P-ll
                                                    P-8-2 or  P-8-3
             P-2
                                          J      1
                    2.0                  1.0   0.7   0.4

                               Nox emission



         Figure Toyota - 2*  N0x Emission VS. System  Cost
*   Ibid.,  page 71.
V-66

-------
2.  New Technology or Developments which Could Provide a Change in the
    Relationship between Emissions and  Fuel  Economy Compared to  1981 Vehicles
    or Toyota's Estimates.

A.  Combustion Chamber Redesign

    Toyota  confirmed  the general  tendency  for fuel  economy to  improve   with
    increased  EGR  rate and  advanced  spark  timing.   When Toyota retarded  the
    spark timing to decrease NOx,  they  found the fuel  economy  penalty was  re-
    duced  by using a  high turbulence  type  combustion chamber  in  place of  a
    non-squish  type  chamber.   The high  turbulence  type chamber, which used  a
    "twist  type piston", also reduced the HC emissions.*

    Since  the  accompanying data were generated  by using non-FTP  test  cycles,
    we  cannot  directly  translate their  results  to  probable  changes  in  fuel
    economy on either EPA's urban or highway test cycles.

    A  similar   calibration  (high  turbulence combustion  chamber,  higher  com-
    pression ratio,  extension of EGR tolerance)  is being used for compliance
    with  the Japanese  emission standards.   Toyota  plans  to  investigate  the
    feasibility of using  a  similar calibration to comply with  the  U.  S. emis-
    sion standards.   The current  problems  are insufficient  acceleration  per-
    formance,   higher   NOx   emissions,   and    insufficient   fuel  economy  im-
    provement.**
 *    Matsumoto.  et  al,   "The  Effects of  Combustion Chamber  Design  and  Com-
     pression  Ratio on Emissions, Fuel Economy  and  Octane Number Requirement,"
     SAE  Paper  770193, page  13.
 **   "Toyota Status Report  -  Efforts to Meet the 1981 and Subsequent Model Year
     Light-Duty  Vehicle Emission  Standards  and Other  Statutory Requirements,"
     page 38.
                                    V-67

-------
    Toyota provided  emissions and  fuel  economy data  generated with  such  a
    combustion chamber design  change.   Unfortunately,  Toyota did  not  detail
    the changes.   The following data were generated on a 3,000  Ib. IW vehicle
    equipped  with  a  five-speed  manual  transmission  and   a  2.4  liter,  4
    cylinder engine*  (the  description  of this vehicle  is similar to  that of
    the Toyota Celica):
                     Compression                                  Fuel Economy
                     Ratio          HC (gpm)    CO (gpm)   NOx  (gpm)   Gain  (%)

Before Modification     8.4          0.100         1.65      0.55     (Baseline)
After Modification      9.0          0.104        1.65       0.56        5.5
B.  Digitally Controlled EFI

    Toyota introduced the  digitally  controlled  EFI system into the Japanese
    market in August  1980.  Use of  this  system,  Toyota states, "results  in
    the improvements  in  performance,  driveability,  fuel economy, and  relia-
    bility"  by  controlling the  "amount  of fuel,  ignition  timing,  and  idle
    speed."   Toyota   did  not  submit  any  data  to  substantiate  the  claims.
    Toyota plans to phase  this  system into the U.S. market beginning  in  the
    1983 model year.**
*   IBID., pages 64-65.
**  IBID., page 37.
                                   V-68

-------
C.  Single Point Injection (SPI)

    Toyota says  that they  have been investigating  the basic characteristics
    and  "potentialities of  performance  and emission  reduction  of  the SPI
    system for several years."  Toyota says that they hope to improve  the fuel
    metering accuracy over  the  current conventional carburetors or EFI systems
    by using a SPI system.

    Toyota stated  that,  with the SPI  system,  they are currently  experiencing
    the following problems:

         1.  "Unbalanced distribution of A/F mixture among the cylinders,

         2.  Large fluctuation of transient A/F ratio,  and

         3.  Insufficient startability,."

    "After making a  comparison among  SPI  systems  and current carburetors  or
    EFI systems," Toyota says they, will  decide the  policy of  how  to adopt  the
    SPI  systems to  their  engines.*   SPI is,  according  to  Toyota,  more  ex-
    pensive  and more fuel  efficient than  convential  carburetors,  but SPI  is
    less expensive and  less fuel efficient than EFI.**
 *    IBID, pages  34-36.
 **   "Toyota NOx  Research Program - 1979 Annual Report Period Plan,'
  September 1979,  page  15.
                                     V-69

-------
3.  The Effect  of Known  Technology which  Helps Quantify  Single  or Multiple
    Calibrations or Vehicle Description Changes

A.  Vehicle Weight Reduction Programs

    Toyota  plans  to  reduce  vehicle  weight   by   "rational  design,   minia-
    turization,  and  material  substitution."   Some models  will  be  lightened,
    and others  will  be replaced by new and lighter  car lines during the  1980
    through 1985 model years.*

    The  lightening  of vehicles  will  improve  fuel  economy with  no  adverse
    effect on emissions.

B.  Transmissions

    1.   Manual Transmission

    To  lower engine  speed,  Toyota  adopted wide  ratio transmissions and its
    fuel  economy gain was about  2%  for  the  1981  models.   Toyota plans  to
    review   the  current  gear   ratios  to   gain  additional  fuel   economy
    improvements  for  the 1983  models.   Toyota did  not  state whether  they
    anticipate  any effects on emissions.

    2.  Automatic Transmission

    To  lower  engine 'speed and  eliminate slippage losses,  Toyota  plans,  for the
    1982  model  year,  to  equip its  Corolla  and pickup  truck  with  a four-speed
    automatic  transmission with overdrive  and  its Celica  Supra with an auto-
    matic transmission with  a   lockup torque  converter.  Toyota  expects a fuel
    economy  improvement of 2% to 4%  with  the automatic four-speed  and an im-
    provement of  1%  to 2% with the  lockup.
     "Toyota Status  Report  - Efforts to Meet the 1981 and Subsequent Model Year
     Light-Duty Vehicle Emission  Standards and  Other  Statutory Requirements,"
     pages 57-58.                    v_?()

-------
    Toyota plans to improve the lockup torque converter by allowing the lockup
    function to  operate  in both  second  and  third  gears. They  anticipate an
    additional 1%  increase  in fuel economy due   to this improvement.  Toyota
    plans  to  introduce  this  improved  transmission  on  its  1983 model  year
    cars.*  Toyota did not  state  whether  they anticipate any effects on emis-
    sions.

C.  Toyota currently (1981  model  year)  has a  6  cylinder, 168 CID   (gasoline)
    engine equipped with feedback EFI and 3-way catalyst  (engine family number
    BTY2.8V5HB4).  Of the 15 valid (non-void) FTP tests performed on  the seven
    certification data vehicles in that  family:

         1.  No HC emission level exceeded 0.226  g/mi (without DF),

         2.  No CO emission level exceeded 1.42 g/mi (without  DF), and

         3.  No NOx emission level exceeded 0.32  g/mi (without DF).

    Applying the applicable deterioration factors (HC =  1.385, C0=   1.385,  and
    NOx = 1.275), we note that every FTP would meet  the 0.41  HC, 3.4 CO,  0.41
    NOx  research target  level.   However,  the durability vehicle line-crossed
    by  generating  a  50,000 mile  calculated  NOx value  of 0.425  g/mi, which
    exceeds 0.41 g/mi.**  Considering how close  the durability vehicle  came to
    being  acceptable  for  use at the NOx  research  target, it is reasonable to
    assume  that  Toyota  could achieve the research  target using  the  technology
    which  they  currently  employ  on  their   1981  model  year  Celica  Supra,
    Cressida, and Cressida  station wagon.   Those  models have EPA fuel economy
*Ibid, page 60.
**EPA/MFR test data base as of February 10, 1981
                                     V-71

-------
    values of:*

                                            MPG          MPG        MPG
              Car Line       Transmission    ——u         —-h       	c

              Celica  Supra       M5            21          29        24

              Celica  Supra       A4            22          29        25

              Cressida           A4            22          29        25

              Cressida  Wagon    A4            22          29        25
    If we  compare these  models'  MPG  with  those  of  other  1981 model   year
    cars, we  see  the fleet average MPG   for all 3,000  Ib IW cars   is  24.85
    mpg.**  Thus,  we conclude that Toyota  is not  suffering a   fuel economy
    penalty on these  models compared to the competition as a result  of the low
    emission levels.
*   EPA/DOE 1981 Gas Mileage Guide
**  Foster, Murrell, Loos,  "Light Duty Automotive Fuel Economy  ... Trends
    Through 1981,", SAE Paper 810386,  February,  1981, page 16.
                                    V-72

-------
Section V.   E.    Nissan (Datsun)


1.  Nissan Statements Concerning the Relationship between Emissions and Fuel

    Economy


This  section  summarizes  Nissan's  statements  regarding   the  relationship

between fuel economy arid emissions.


In  CO  waiver hearing  testimony*,  Nissan said  that they  expected the fuel

economy of  their  1981  model year vehicles to  improve about  15% to 25% over
that of  their  1979 model  year  Federal vehicles.  Nissan  also  said that an
air  pump  may  be  necessary to meet  the 3.4 CO  standard,  but  might  not be
necessary to meet a 7.0 CO  standard.   They felt  that  the increased parasitic
horsepower  due  to the  use of an air  pump, could cause  a one to two  percent

decrease in fuel economy.


In  a status report,** dated, March  1981,  Nissan  said the following with

respect to the relationship between emission standards and  fuel  economy.
    We have  been proceeding with  our  research work on an  oxidation
    catalyst  system  and  on a 3-way  catalyst  system in an  effort  to
    develop  a system  that will meet  the 0.4  g/mile NOx  standard.
    The results  that we  have  obtained  with these  two  systems  to date
    are  shown  in  [table  Nissan-1]   and  [table  Nissan-2]  and  in
    [figure  Nissan-1].   The  specifications  of  the  systems  that
    produced  these results  are  shown;  in  [table Nissan-3]  through
    [table Nissan-6].

    In  order  for  the  oxidation catalyst system to  clear  the  0.4
    g/mile  NOx  standard,  heavy EGR  is  required,  but  this  has  an
    adverse  effect on  combustion stability.   Using  a  richer air-fuel
    ratio  to  improve  combustion  stability  lowers fuel  economy  by
    more than 10%,  in  comparision  with the fuel  economy  that can be
    obtained  in  clearing the 1.0 g/mile NOx standard.
*   Transcript  of  Proceedings, Environmental Protection  Agency,  "In
    the  matter  of;  Public Hearing on Applications  for  Waiver of  the
    1981  and 1982  CO Emission  Standard for  Light  Duty Vehicles,"
    Washington,  D.C.,  September 12, 1979, pages 91 and 92.
**  "Research  and  Development Program  Status  Report  for 1981  and
    Subsequent  Emission  Standards";  Nissan Motor  Co.,  Ltd;  March,
    1981,  pages  260 and 261.
                                    V-73

-------
                                              Table Nissan - 1



                              Gxhaust  Emission and Fuel Economy


                                       (Ox. Cat)
System
Oxi-.Cat.














Veh.
I.D.
80-968






YD-001




80-972


1W
Ibs
2,750






2,750




2,750


Eng ,
Z20S






Z20S




Z20S


C/fl
8.5






8.5




a. 5


F/E
mpci
25.6
25.4
25.9
25. 4
25.6
26.3
25.8
23.9
23.6
23.9
23.7
23.8
27.9
27.5
27.5
CVS-CH cjpm
HC
0.45
0.39
0.43
0.40
0.40
0.42
0.48
0.31
3.79
3.62
3.57
3.48
O.'U
0.32
0.34
CO
5.68
3.03
3.84
3.91
3.86
3.54
2.62
4.67
28.8
31.0
34.7
35.6
4.68
4.00
3.49
HOx
0.61
0.65
0.68
0.70
0.71
0.74
0.81
o; 35
0.42
0.39
0.35
0.39
1.43
1:57
1.67
Remarks
with catalyst







w/o gatalyst



with catalyst


-J
-C-

-------
                                          Table Nissan - 2
                                Exhaust Emission and Fuel  Economy



                                         (3-Way Cat.)
Sys tern
3 Way Cat






Veh.
I.D.
YD-020






IW
Ibs
2,750






Eng .
Z20S
ECC






c/n
8.5






F/E
mp
-------
                   Figure Nissan - 1

RELATIONSHIP  BETWEEN NQx AND FUEL ECONOMY IN
OXIDATION CAT. SYSTEM AND THREE WAY CAT. SYSTEM

ENGINE OUT NOx
CATALYST OUT' NOx
OXI. CATALYST
. SYSTEM
•
o
3WAY CATALYST
SYSTEM
A ' •
A
         30r
Q.
E
>-
o
         26
      o
      a 24
      UJ
      ID
      b.
         22
           0
               IW = 2750Lbs
                    3Way Catalyst System
                            Oxidation Catalyst System
            05      1£)      15
           '75 FTP  NOx  " (g/mile)
2D
                       V-76

-------
                        Table Nissan - 3
                    Vehicle Specifications
 1.  Vehicle ID. No.
8D-968
 2.  Vehicle model
Datsun  510
 3.  Model year
Experimental Vehicle
 4.  Inertia weight
•2,750  Ibs
 S.  Engine
 L4,  191CID
 6.  Transmission
M4
 7.  Axle  ratio
 3.545
 8.  N/V ratio
 53.3
 9.  Fuel metering system
 Carburetter
10.  Exh. emission control system     2 plug*EGR+EAI_OX.CAT.
11.  Catalyst
    CD Type
    (2) Substrate construction
    (3) Size Cinches)  •
    (4) Location
12.  EGR
        Type
     C2) EGR Rate
 Oxidation Catalyst
.Monolith
 Oval  Width 6.68 in  Height 3.18 in
	length 5.65 in	
 Under floor
 yvj_
 30% C2600 rpm x -SOOmmHg-)-
                             V-77

-------
                         Table Nissan - A
                    Vehicle Specifications
 1. Vehicle ID. No.
8D-972
 2.  Vehicle model
Datsun  510
 3. Model year
Experimental Vehicle
 4. Inertia weight
 5.  Engine
•2,750 Ibs
L4, 191 CID
 6. Transmission
M4
 7. Axle  ratio
 3.545
 8. N/Y ratio
 53.3
 9. Fuel metering system
 Carburetter
10. Exh. emission control system     2 plug+EGR*EAI+OX.CAT,
11.  Catalyst
    CD Type   .
    (2) Substrate construction
    (3) Size (inches)
    (4) Location
12.  EGR
    (1] Type
    (2) EGR Rate
 Oxdation Catalyst
_Monolith
 Oval   Width 6.68  in Height
	Length 5.65 in	
 Under floor
 VVT
 20% (2600 rpm x -300 mmHg)
                            V-78

-------
                        Table Nissan - 5
                    Vehicle Specifications
 1.  Vehicle ID. No.
 2.  Vehicle model
 3. Model year
 4.  Inertia weight
 5.  Engine
 6. Transmission
 7. Axle  ratio
 8. N/V ratio
 9. Fuel metering system
YD-020
Datsun  510
 Experimental Vehicle
 2,750  Ibs
 L4,  191  CID
 M4
 3.545
 53.3
 ECC
10. Exh. emission control system     ECOEGR+TWOCL
11. Catalyst
    CD Type
    (2) Substrate construction
    (3). Size Cinches)
    C4) Location
12. EGR
     Cl) Type
     (2) EGR Rate'
 3 Way Catalyst
_Monolith
 Oval Width 6.68 in  Height 3.18 in
 	Length 5.65 in	
 Under floor
 VVT
 20% (2600rpm x -300mmHg)
                            V-79

-------
                         Table Nissan - 6
                    Vehicle Soe'oifications
 1.  Vehicle ID. Mo.
YD-001
 2.  Vehicle model
 3.  Model year
 4.  Inertia weight
    engine
 6.  Transmission
Datsun 510
Experimental Vehicle
2,750 Ibs
                                    L4, 191 CID
M4
 7.  Axle  ratio
3.545
 8.  N/V ratio
 9.. Fuel metering system
53.3
Carburetter
10.  Exh. emission control system    2 plug+EGR+EAI+OX.CAT.
11. Catalyst
    CD Type
    (2) Substrate construction
    (3) Size (inches) .
    '4) Location
12. EGR
     CD Type
     (2) EGR Rate
Oxdation  Catalyst
Monolith
 Oval  Width   6.68  in
 	Length  5.65  in
Height 3.17
 Under  floor

 VVT
 25% (2600rpm x -300mmHg)
                            V-80

-------
    On the other hand,  the 3-way catalyst system divides the work of
    reducing  NOx emissions  between EGR  and  the catalyst.   In this
    system the  NOx level  that  should be  cleared by  EGR  is  1-1.5
    g/mile,  and thus the  necessary EGR  rate is  not  as heavy  as  in
    the oxidation catalyst system which  uses only  EGR  to reduce NOx
    emissions.   Consequently,  the EGR  rate in  the  3-way  catalyst
    system has  no adverse  effect on fuel  economy.

    As  [figure  Nissan-1]  shows,  however,  the  fuel  economy of  the
    3-way catalyst  system in clearing the 1.5 g/mile NOx standard is
    4% worse than  that afforded  by  the oxidation  catalyst system.
    The  reason  is that  since  the  air-fuel  ratio  in  the  3-way
    catalyst  system  is  controlled to  the  stoichiometric  air-fuel
    ratio, a reduction in  fuel  consumption  cannot  be  obtained  by
    making the  mixture  leaner.

    Irrespective of  the durability,  driveability  and  cost  of each
    system,  the  fuel economy afforded by the  3-way  catalyst  system
    in clearing the HC 0.41, CO 3.4 and  NOx 0.4 g/mile standards is
    roughly equal  to  that of the  oxidation  catalyst in meeting the
    standards of HC 0.41,  CO 3.4  and  NOx  1.0 g/mile.   Even if the
    compression ratio  is  increased or  if  improvements are  made  in
    combustion  performance, with the oxidation catalyst system there
    is no way to avoid  a decrease  in fuel economy of  at least 5%.


2.  New  Technology or Developments  which  Could  Provide  a  Change   in  the
    Relationship between   Emissions  and Fuel  Economy  as   Compared   to  1981

    Vehicles  or Nissan's Estimates
In  their  status report*  on emission  control systems,  Nissan discussed four
areas  in  which  they  were  doing research  and development  work in  order   to

improve fuel economy.   These included:


1.  Accessory drive program;

2.  Engine efficiency  improvement program;

3.  Tire test program; and

4.  Lubricant test program.


The following are excerpts  from  Nissan's discussion of  the accessory  drive  and

engine efficiency programs.  Nissan did not discuss the impact on emissions as

a result of their tire and lubricant test programs.


    II.F.3 Accessory Drive Programs
*   Ibid., pages 251 to 253.

                                    V-81

-------
The  air-conditioner compressor,  the  power  steering  pump,   the
alternator and  the water  pump  are included in  the category of
engine assisted equipment.  For the 280ZX model, we  studied what
effect  the air-conditioner  compressor  and  the  power  steering
pump have on catalyst inlet emissions and fuel  economy.

In  contrast   to  engines  without  compressors,  engines  equipped
with them showed an overall worsening of 10 to 12% for HC and CO
emissions, 30% for NOx and 11% for fuel economy.

II.F.4  Engine Efficiency Improvement Program

Improving  engine  efficiency  is important not  only  in achieving
better fuel economy but also in reducing emissions.  As a basic
step  toward   attaining   these  goals,  the  research  to  upgrade
engine efficiency  is a  vital  part of  our  overall  research  and
development activities.

In our efforts to  improve  engine  efficiency, we  have carried  out
basic  research  on  raising  the  engine compression  ratio and on
lowering  the  pumping loss.  We  have  also  been proceeding with
applied research of  the  engine efficiency improvement  program to
other  projects  such  as  "0.4  gpm .. NOx  Research  Program."    The
following is our status of this research work.

In  addition  we are  presently  making  every  effort  to develop  a
new engine which will achieve a reduction in mechanical  friction
loss.

(1)  High Compression Ratio Engine

As  we  explained in  our 0.4 g/mile  NOx Research Program report
(September  1979   to  January  1981),  we  found  that  improved
combustion by the  high compression  ratio  made  it possible  to
expand   the   region  of   stable   combustion  under   heavy   EGR
conditions and  to  lessen partial-load  fuel  consumption at  the
equivalent NOx  level.   At  the  low  engine  speed WOT  condition,
however,  it   is  necessary  to  retard  the  ignition  timing  to
prevent engine knocking,  and  this results in lowering the  engine
torque by approximately 10%.

To  solve  this problem we have been making a concerted effort to
develop  the technology  needed for raising the  engine mechanical
octane number.  These findings  indicate that when  engine  torque
and  fuel economy  are  taken into  account,  a  combustion pattern
having   a  short   heat   generation  period  and   slow   initial
combustion is effective  in suppressing knocking.

The  fuel economy   level  of  an experimental  vehicle  mounted  with
10:1 compression  ratio  engine is about  5% better  than that  with
8.5:1  compression  ratio engine.   However,  it is  estimated  that
this  improvement  in fuel economy will be lowered  somewhat,  when
the   engine   is   actually   used   on  production   vehicles   and
countenneasures  are  implemented  to  reduce  the   increased  HC
                                 V-82

-------
    emissions   and   to   compensate   for   the   deterioration   in
    driveability due  to the  decreased torque  in low  engine  speed
    ranges.

Nissan has shown a significant improvement in  fuel economy,  27% over the last
three years, while achieving the required emissions performance, for their 119
CID engine.  Most  of  this  improvement is attributable  to the  introduction of
new  cylinder heads  which  speed-up  the  burning  rate  within  the combustion
chamber*.  The engine which  utilizes  the new cylinder head  is  referred to as
the  NAPS-Z  engine.    The   new   cylinder  head  incorporates  the  following
features:

    1.   Compact hemispherical combustion chamber;
    2.   Dual spark plugs;  and
    3.   Redesigned intake porting to induce  swirl and turbulence.

The net  result of  these  changes  is  to  improve  the burning rate of the  fuel by
about 50%  if there is  no  exhaust gas recirculation, and about  65% with  the
intake charge diluted 20%  with recirculated exhaust  gas, as   shown in figure
Nissan-2.   Major  improvements in combustion  stability,   with  heavy  EGR, were
made, permitting  dramatic improvements  in  both economy  and emissions*,  (see
figure Nissan-3).

An  equal  contribution,  to  improved  economy  and  emissions, was  obtained by
optimizing the control of ignition timing, fuel-air ratio and EGR.

Basically, this was accomplished by mapping the steady-state response of
the engine,  in terms  of  economy  and emissions,  as  functions  of  fuel-air ratio,
ignition timing, and  EGR rate, at selected speed-load points  representing  the
EPA Urban Cycle.

Detailed refinements  to  the engine, to improve mixture distribution,  and
to enhance  performance  during cold-start and warm-up, account  for the  rest of
the progress made  by Nissan.
    The  Fast  Burn with Heavy EGR, New  Approach  for Low NOx and  Improved Fuel
    Economy;  SAE paper no.  780006.   Figures 11,  and 15,  and  pages 8  and  10
    respectively
                                     V-83

-------
                   Figure Nissan - 2
  100
z
o

g
<
DC
CO

CO
ce

CD
                                        I400rpm


                                          3kgm


                                         MBT


                                        A/F 14.5:1
     135
                           , CONVENTIONAL
               180

               (TDC)
   225      270


CRANK ANGLE   deg.
315
            Effect of fast burn on combustion duration
     15
  en
   x

  O
     10
              I-
              co
                   Figure Nissan - 3
      0	

      260     300    340     380     420


                   BSFC g/psh
             Improved fuel economy combined with

      low NO emission achieved by fast burn engine
                         V-84

-------
In the  case  of  the 2.8 liter  (168  CID) engine used  in the Datsun 280  series
cars,  the  same  progress  with  respect  to  emission  control has  taken  p.'.ace,
however, the improvement in fuel economy is small.

Nissan  employs  a  microprocessor  to control,  electronically,  the  following
parameters:

         1.  Fuel/air ratio;
         2.  Spark timing;
         3.  Exhaust gas recirculation;
         4.  Air intake at idle.

In  addition  to  emissions   standards,  heavy  emphasis  was placed  on  drive-
ability.*  The  system is described  schematically in  figure Nissan-4.   It will
be  noted  that  this  engine  uses  a "three-way"  catalyst  for  exhaust  after
treatment,  rather  than  the  simple  oxidation catalyst  used  on the  smaller
engines.

In  the case  of the' smaller Nissan engines of 1.2, 1.4,  and 1.5 liter capacity
 (75.5,  85.0, and  90.8  CID), the picture  is  qualitatively similar to  that of
the  2.8 liter  engine,  i.e. ,  the  emissions  standards have  been met  with no
noteworthy effect on  fuel  economy.  Nissan  has recently  announced  that this
family of  smaller  engines  will  be  modified  to  incorporate  the  fast-burn
features,  found on the 119  CID  engine,  for the Japanese market in 1982.
      Nissan  ECCS (Microprocessor Control  System)  Boosts Fuel  Economy "  First
     International Automotive  Fuel Economy  Research Conference;  Oct.  31 to Nov
     2,  1979, pages 212  to 219.
                                     V-85

-------
                                    Figure Nissan - 4
    EGR CONTROL VALVE
                      VCM VALVE
                                               THROTTLS CHAMBER
                                                  AIR  FLOW  AIR CLEANER
                                        POWER /
                                   TRANSISTOR

                                         IGNITION COILJ.
                                                    U LI
                                             .HROTTLs  VALVc
                                             SWITCH
CRANKSHAFT
SENSOR
 _^n>n
                                        DISTRIBUTOR
                                        TH E R MCSTAT _
                                          HOUSING
                                   MUFFLER
                                ^-EXHAUST
                                 TEMP SENSOR
                                       WATER TEMP SENSOR
          CRANKSHAFT
            	
   f—I     r—1 EXHAUST TEMP
--Hs)         0 MONITOR LJGHT
 CRANK  PULLEY
^  NEUTRAL SV/ITCH
                                                       CONTROL UNIT
                         VEHICLE SPEED SENSOR
                   Schematic of Electronic Concentrated Engine Control System
                                        V-86

-------
V.  F. Honda

1.  Honda's  Statements  Concerning  the  Relationship  between  Emissions and
    Fuel Economy

Honda  stated  that  a basic  characteristic  of  their CVCC engine  is low  spe-
cific  fuel consumption  (i.e.,  high  fuel  economy)  and low NOx  emissions  when
bench  tested.*  Honda also reported thai: the use of EGR on  their  CVCC  engine
could:**

    1.   Decrease NOx emissions but increase HC emissions.
    2.   Increase fuel economy, and
    3.   Improve driveability.

Honda  controls  the increase  in  HC  emissions by  using  a catalyst.**   Thus,
with  the use of EGR and a catalyst, Honda  says  that  they are able to control
emissions without adversely affecting their fuel economy.

2.  New  Technology  or  Developments  which Could  Provide  a   Change  in  the
    Relationship  between Emissions  and Fuel  Economy  as   Compared  to  1981
    Vehicles or Honda's Estimates.

A.  New Engines

    1.   While  Honda has not supplied EPA with  any development data  on  a
         three-cylinder  engine,  "Automotive  News"  reports   that  Honda  is
         planning  to  introduce in Japan, during autumn of  1981,  a small car
         powered  by  such  an engine.   That  report  speculates  that  the
*"Honda's  NOx Research  Program - 1979  Annual  Research Period  Plan,"  March
25, 1979,  page 10.
**"Honda's Effort  and  Progress  in Meeting the 1981 and Subsequent Model Year
Emission Standards," March 20,  1981, page 7.
                                      V-87

-------
         new car will be  based  upon the Civic but will  be smaller.*  Honda
         has neither confirmed nor denied  these reports.

    2.   Diesel Engine

         Honda is continuing to conduct basic research and to analyze avail-
         able information on Diesel engines.**  Honda has been bench testing
         a 4 cylinder, 4  cycle,  2.2 liter Diesel engine.***  They have not,
         however, provided EPA with any of their  conclusions or test results.

B.  Three-Way Catalysts

    Honda's primary candidate for a system to meet the 1983 California emis-
    sions standards  is  their stratified charge  engine  (CVCC)  equipped with
    EGR,  a  closed-loop  carburetor, and  a  three-way  catalyst  (system  D).
    Honda has  experimented  with two other systems, one  is similar to their
    1981 models  (i.e., CVCC with EGR,  an  open-loop carburetor, and oxidation
    catalyst);  the second  system  uses  a conventional  engine with  EGR,   a
    closed-loop  carburetor,  and  three-way  catalyst.   However,  Honda found
    that their primary system was  superior to the other  two in driveability,
    fuel  economy,  and emissions.   This  system  has  been  tested in  a 2125
    pound car equipped with a manual five-speed  transmission and  a 1.5 liter
    engine.  Honda  reports  that this vehicle met the research target  levels
    (0.41 HC,  3.4  CO,  0.41 NOx); however, no emission  or fuel economy data
    was provided.
*"Automotive News," March 23, 1981, page 30.
**"Honda's Effort and Progress  in  Meeting  the  1981  and Subsequent Model Year
Emission Standards," March 20, 1981, page 19.
***"Honda's Emission Control Status Report," January 13, 1978, page 0.4-15.
                                      V-88

-------
    "However,"  Honda states,  "in view of the urgent  need  for complying with
    the  1983. California standard,  development and  refinement  work for  a
    modified  system  (system  Dl) has  been initiated  based upon  1981  model
    production hardware."*  Honda has  not provided EPA with a description of
    this  modified system; although, the  typical emission  results that  Honda
    provided  on these two systems** leads the EPA technical staff to believe
    that  their primary  system  is superior to  the modified  (Dl)  system for
    emissions.   (See table Honda-1.)

    Honda states that they are  continuing  to refine their primary system.*
    While Honda claims to have  confirmed the durability  of their new three-
    way  catalyst up to  50,000  miles,  they are  still experiencing problems
    with  cars  equipped  with  the  automatic  transmissions.   Honda reports,
    "Automatic transmission models equipped with the system D currently fail
    the  applicable  CO  standard because their high  gear ratio  causes the
    carburetor secondary passages  to  frequently  operate.   A change of the
    gear  ratio results in a reduction  of fuel economy."***

    Honda's  current  work on  three-way   ca.talysts  centers on  the following
    four  projects:****

    1.   Development of the three-way  catalyst  for both systems D and Dl,
    2.   Evaluation of Pt/Rh  ratio,
    3.   Study of substituting Pd for  Pt, and
    4.   Study of improving catalyst durability at elevated temperature*
*   "Honda's Effort  and  Progress in Meeting  the  1981 Standards," March 20,
    1981, pages 37-38.
**  Ibid., Table 14.
*** Ibid., pages 44-46.
****Ibid., page 55.
                                     V-89

-------
System D
MODEL
ENGINE (1)
TRANS.
TEST WT.
(Ibs)
N/V
LA-4
Emiss.
(g/mi)

CO
HC
NOx
CIVIC
1.5
5MT
2125

41.0
1.84
0.254
0.312
System D,
CIVIC CIVIC CIVIC CIVIC ACCORD ACCORD
1.3 1.3 1.5 1.5 1.8 1.8
5MT 3AT 5MT 3AT 5MT 3AT
2000 2125 2125 2125 2625 2625

50.7 60.3 43.3 58.7 48.7 56.0
2.72 2.54 2.51 3.04 3.81 4.28
0.29 0.32 0.32 0.32 0.28 0.24
0.29 0.31 0.28 0.28 0.21 0.23
                                Table Honda - 1*

                   TYPICAL EMISSION TEST RESULTS OBTAINED BY
                              USING AGED CATALYSTS
*   Ibid., Table 14.
                                      V-90

-------
3.  The Effects of Known  Technology which Helps Quantify Single or Multiple
    Calibrations or Vehicle Description Changes

    A.   Engine Improvements

         Honda is continuing  to  study variations of their stratified charge
         combustion chamber.  Honda reports that they have evaluated  several
         such  systems.   One  type,  called a  "branched  conduit"  system, is
         similar to Honda's CVCC system except  that the  auxiliary  combustion
         chamber is connected to the  main combustion chamber by a  relatively
         long  torch  passage  oriented  toward  the approximate  center  of  the
         chamber.  Honda  states that  this  system "is able to further  reduce
         exhaust  emissions,   HC  and  NOx,  in  particular,  with  no  adverse
         effect on fuel consumption under  the wide  range of engine operating
         conditions."*  Honda also reported test results from  other auxilia-
         ry  stratified  charge combustion  chamber  engines  identified simply
         as  Type 1,  Type 2,  and  Type  3.   Honda did  not  describe  these
         systems in detail;  however,  their test results indicate  that  these
         systems  can  yield   emissions and  fuel  economy  results superior
         (during  some   operating   conditions)   to  Honda's   standard   CVCC
         engine.**  Some  of  these  features  have already  been  incorporated
         into Honda's 1981 models.

    B.   EGR

         Incorporation  of  EGR  on  the  CVCC   system,   according  to  Honda,
         enables  them  to increase  the  compression  ratio  and  advance  the
         spark  timing,  thus  resulting in improved fuel economy  and  drive-
         ability.***  For the 1981 model year, Honda modified the
*    S.Yagi,  et al.,  "A New Combustion  System  in the  Three-Valve  Statified
     Charged Engine,  "SAE Paper 790439, February, 1979, page 1.
**   "Honda's  Emission Control  Status Report," January, 1978,  pages  80-26  to
     80-28.
***  "Honda's  Effort and Progress  in Meeting the  1981 and  Subsequent Model
     Year Emission  Standards," March 20, 1981, pages 29-32.
                                      V-91

-------
         back-pressure  EGR,  that they used on  their  1980  California models,
         to  allow  for  more  recirculation of  exhaust  gas;  this  increased
         capacity of the EGR valve was  combined  with an improved stratified
         charge  combustion  chamber  design.  Honda  states  that,  "This  EGR
         system  [combined with  the aforementioned improved CVCC engine]  con-
         tributed to improved fuel economy and driveability by:

         1.    The combination  of  a high  EGR  rate  and near  stoichiometric
              engine operation  at  high loads,  in order  to  improve  drive-
              ability while  reducing NOx emissions, and

         2.    The combination of CVCC's lean  combustion characteristics and
              a  low EGR rate at low loads, in  order  to improve fuel economy
              and driveability."*

    C.    Oxidation Catalyst

         Honda reports  that, "The increase in  fuel  economy and reduction in
         NOx emissions, achieved through the use of  the improved combustion
         chamber design,  are accompanied by an increase in HC emissions, the
         control of which is  done by an  improvement  in oxidation catalyst.
         Specifically,  HC conversion  efficiency  was improved  by  2% through
         an increase in the  specific surface area of substrates, that is, by
         the use of 400 cell substrates as compared   with 300 cell for 1980
         system."**

    D.    Engine  Friction Reduction

         For 1982, Honda reports,  "An additional fuel economy gain is sought
         by reducing mechanical friction  due to piston rings  or oil seals,
         and also by controlling idle speed by  engine loads."***
*     Ibid.,  page 7.
**    Ibid.,  pages 7-8.
***   Ibid.,  pages 30-32.
                                      V-92

-------
   E.    Carburetor

         Honda  hopes to  minimize  the fuel  penalty during  decelerations  by
         replacing  the  throttle opener with a deceleration control device.*

   F.    Reduction  of Aerodynamic Drag and Vehicle Weight

         "For some  [1982]  models,  "Honda states,  "minor  modifications  of
         body are  made  in order  to  reduce  aerodynamic  drag  as  well  as
         vehicle weight,  such  as adopting high strength steel and plastics."*

   G.    General Comments

         The EPA  technical   staff  attempted  to  evaluate   the  effects  on
         emissions  and fuel economy of adding EGR  and an oxidation catalyst
         to Honda's CVCC engine.   The  most dramatic  change  was  with the
         non-California version  of  the 81  C.I.D.   (1.3  liter)  Civic.   The
         results of  all tests  performed  at  EPA's  laboratory  and Honda's
         laboratory, are shown on the following  chart:**
*   Ibid., pages 30-32.
**  EPA/MFR Test Data Base as of February 10,  1981.
                                     V-93

-------
              Manual 5-Speed                       Manual 4-Speed


HC
CO
NOx
MPG
u
MPGh
MPG
c

1980
0.256
3.84
1.20
27.75

38.40
31.71

1981
0.182
1.18
0.75
33.56

44.65
37.78
Percent
Change
-28.9%
-69.3%
-37.5%
+20.9%

+16.3%
+19.1%

1980
0.220
3.08
1.21
27.30

35.65
30.52

1981
0.189
1.35
0.80
33.33

41.93
36.72
Percent
Change
-14.1%
-56.2%
-33.9%
+22.1%

+17.6%
+20.3%
    Thus,  Honda was able to substantially reduce emissions while at the same
    time  substantially  increasing fuel  economy.   Honda was  also able  to
    increase the  rated  horsepower (from  55  to  60  HP)  by raising  the com-
    pression ratio from 7.9 to 8.8.

    The changes in fuel economy from 1980 to 1981 with Honda's other engines
    were less dramatic and  less  consistent.   Honda's Accord equipped with a
    1.8 liter engine and manual  5-speed  transmission actually lost about 3%
    in MPG  from 1980 to 1981.*
          c

    Using approximations for Honda's sales-weighted fuel economy (CAFE) (the
    official values are not yet  available), we  found that Honda was able to
    increase its CAFE from 1980  to 1981 by 3%  (from. 30.0 to 30.9 mpg), even
    though  the  average  weight  increased by   27,.**   However,  compared  to
    similar  1981  model year  vehicles of  all  other  manufacturers, Honda's
    vehicles had an average poorer fuel economy  (by 3 to 4%)  in  each inertia
    weight class, as shown on the following table:
*   Ibid.
**  Foster,  Murrell,  Loos,  "Light Duty  Automotive Fuel  Economy...  Trends
    through 1981, "SAE Paper number 810386,  February 1981,  pages 14-16.
                                      V-94

-------
                           Table Honda-2*

               Comparison of  Honda's  1981 fuel Economy
               Versus the Entire 1981 Fleet By Weight

Inertia        Honda's      Avg. of All            Percent Diff.
Weight         Avg. MPG     Car's MPG        (Relative to Fleet)
                       C    '  rrrrm    T"~"' C          • — -

2000             35.81          36.96                -3.1%
2250             33.13          34.47                -3.9%
2500             28.11          29.37                -4.3%
Ibid.
                                   V-95

-------
V. G.  Volkswagen

I.    Volkswagen's Statements  Concerning  the Relationship between  Emissions
      and Fuel Economy

      A. VW Study

         Volkswagenwerk  AG   (VW)   investigated   the   impact  of   emission
         standards  on fuel  economy.   This  program  was conducted  under  a
         contract  between  VW  and  the U.S.  Department  of  Transportation  -
         Transportation Systems Center.  The following results of  that  study
         were reported by  VW in SAE  Paper  number 790230, titled  "Impact  of
         Emission Standards on Fuel Economy and Consumer Attributes."

         In  addition  to  testing  uncontrolled  vehicles,   VW  also  tested
         vehicles targeted to meet the following four standards:

                                                  Emissions (g/mi)
              Standard                 HC_                C0_         NOx

         Federal 1976                 1.5              15.         3.1
         California 1976              0.9               9.0        2.0
         Federal 1981                 0.41              3.4        1.0
         Research Goal                0.41              3.4        0.4

         Each of  the five (5)  groups included  a 2250 pound  inertia weight
         Rabbit equipped with  a 1.3 liter  engine ^never  sold  in  the U.S.),  a
         2250 and a 2500 pound Rabbit each  equipped  with a  1.6 liter engine,
         and a 3000 pound  Audi.  The  Audis  used in the uncontrolled case and
         with  the  1976 standards  were equipped  with 1.6  liter,  4-cylinder
         engines; the ones used with  the  1981  standard and  the research goal
         were equipped with  2.2 liter, 5-cylinder engines.

         The technologies  that  the VW engineers  chose to use were:
                                       V-96

-------
          Standard                        Technology

    Uncontrolled             Carburetor
    1976  Federal             Carburetor, Oxidation Catalyst
    1976  California          Carburetor, Oxidation Catalyst
    1981  Federal             Fuel  Injection, 3-Way, Closed-loop
    Research Goal            Fuel  Injection, 3-Way, Closed-loop

    VW then tested the uncontrolled vehicles  as  well as those equipped
    with   oxidation  catalysts  and  carburetors.   VW  found  that  no
    additional modifications  were  required  of  the  catalyst  equipped
    cars  in order  to  meet  the  1976 standards.

    Before testing the fuel injected vehicles, VW set engineering goals
     for  the  emissions  that  were  more stringent  than  the standards.
    Those more  stringent  goals were  "formulated  to ensure  that once
     they  had  been attained at the  end of the  development  period, all
     the mass  production  vehicles  made  along  the same  lines will meet
     the exhaust emission  standards,  no matter when  or  where they are
     tested within the initial 50,000 miles of their  service  life."*  VW
     chose  as  goals   for   HC  and  CO  values  that  were one-half  the
     respective standards;  and for NOx, one-fourth of  the applicable NOx
     standard.

     The fuel  injected vehicles  then were  modified and  tested until the
     emissions,  driveability,   and   fuel   economy  were   considered
     satisfactory.   As  a  criterion for  satisfactory fuel  economy,  VW
     used the  fuel economy  of  the  uncontrolled version as the goal.  In
     addition  to changes in ignition timing,  the modifications  included
     in some cases adding  a proportional EGR system and  a secondary air
     pump.
H. Getting,  "Impact of Emission  Standards  on Fuel Economy  and  Consumer
Attributes," SAE Paper No. 790230, February, 1979, page 2.
                                  V-97

-------
        The   results   of  the  testing  indicates  that  the  Audi  vehicles
        suffered  a substantial loss  in fuel economy in meeting  either the
        1981  standards or the research goal.  The  loss  was more  than 20%
        relative  to  those meeting the 1976 standards.   VW believes that the
        loss  in fuel  economy  is  primarily "due to the  fact that friction in
        these engines is  higher because of the fifth cylinder."*

        The  three types of Rabbits  (1.6  liter at 2250 and  2500  pounds and
        1.3  liter at 2250 pounds)  exhibited  two  consistent  fuel econony
        trends:

        1.    All   the  Rabbits which were   targeted  to meet  the  research
              standard suffered a  loss  in fuel  economy of  between 4.2% to
              10.9%  relative   to  the  corresponding   Rabbits   which  were
              targeted to  meet  the 1981  Federal standards.

        2.    All  the Rabbits which  were  targeted to meet  the  1981 Federal
              standards displayed  a fuel economy improvement of  between 2.1%
              to  7.5% relative  to  the  corresponding  Rabbits which  were
              targeted to  meet  either of the  1976  emission  standards.

        VW speculated  that  the  reason the  vehicles  targeted  to  meet the
        1981   standards  exceeded  the  fuel  economy  performance  of similar
        vehicles   which met  far  less  stringent  standards  was  due to  "the
        introduction of new technological features, such  as lambda control
        and  K-Jetronic fuel  injection."*

        VW  then  studied  these  vehicles   with  respect   to  unregulated
        emissions, noise, startability, and  performance.   VW concluded  that:

              1.   "[T]he   emission  control   concepts   featuring  K-Jetronic
                   fuel injection and 3-way  catalysts are capable of meeting
                   the advanced standards, furnishing good fuel economy, low
                   HCN emissions,  and a  stable SO,  emission rate."**
*   Ibid., pages 5-6.
**  Ibid, page 7.
                                      V-98

-------
        2.   "[T]he  noise emissions of  modifications  13 through  16  [i.e.,
             those  vehicles which  were  designed to meet  the  1981  Federal
             emission  standards] are  lower  than those of other  vehicles
             meeting less  stringent exhaust emission standards."*

        3.   The   "sophisticated  concepts  introduced  to  meet   advanced
             emission   standards are   superior  to  conventional  concepts
             regarding  their  startability and driveability."*

        4.   "[LJeaving aside the 5-cylinder  engine,  the performance of the
             vehicles   which  meet  the   advanced   standards   is  slightly
             inferior  to that of the others.   This  is because gradeability
             is  related to maximum torque in a practically linear function,
             and  by  some  sort  of  accident  it was  the  carburetor-type
             vehicles which always  had  the highest torque.   There is no way
             of  explaining this  by  the emission control  concept."**

        Finally,  VW analyzed the effects on the cost of the engine of  those
        vehicles  which  met  the more stringent emission  standards.   They
        determined,  that in order to meet either the  1981 Federal standards
        or  the   research  goal   (the  components are  the  same  for  both
        standards),  the cost  of the engine  (not the  entire vehicle)  would
        be  increased  by  between  64%  and   89%  over  the   corresponding
        uncontrolled  vehicles,   and  by  between  38%  and  56%  over  the
        corresponding vehicles meeting  the 1976 Federal  standards.***

    8.  EPA Comments on the VW Study

        VW  assumed  that  a  closed-loop, three-way  catalyst,  fuel  injected
         system was necessary to meet the  1981  Federal standards;  however,  a
        number of  open-loop, carbureted vehicles  have been  certified  as
        meeting those standards.
*   Ibid., page 8.
**  Ibid., page 9.
*** Ibid., page 11.
                                      V-99

-------
         The engineering  goals  (of 1/2  the  applicable HC  and  CO standards
         and .of  1/4 the  applicable NOx  standard)  were  conservative.   The
         deterioration  factors  associated   with  the   1981   model  year,
         closed-loop,  3-way  catalyst,   fuel  injected,   gasoline  powered
         Federal  vehicles equipped  with either  1.7  liter,  4-cylinder  VW
         engines or 2.2 liter,  5-cylinder Audi engines  are all 1.000.

         Thus, VWs  selection  of  the  required technology and engineering
         (emission)  goals was  possibly  more conservative than necessary.
         However,  VW did  show,  that,  for .an  increase  in  cost,  the  fuel
         economy, noise, and driveability could all be improved while at the
         same time substantially reducing the emissions.

2.  New  Technology  or  Developments which  Could  Provide a  Change  in  the
    Relationship  between  Emissions  and  Fuel  Economy   as Compared  to  1981
    Vehicles or VW's Estimates.

    A.   Formula E

         VW will  be  introducing  a  package of  several  features  that will be
         called "Formula E" (for Economy).  This package  will consist of one
         or more (depending on the  model) of:

         1.   Signal to Shift

         VW is  developing an electronic  device  that will signal the driver
         when  to  shift  for  optimal  fuel   economy  at  various  speeds  and
         loads.   This  option  has  been  available  on   VWs  in  Europe since
         December,  1980.   It is anticipated  that this option  will soon be
         available on some U.S. Rabbits.*

         EPA  is  currently  testing  such  vehicles,  but not enough  data has
         been  generated to assess  the  effect of  this option.   However, VW
*   "Wards Engine Update," March 15, 1981, page 6.
                                      V-100

-------
              reported   to  EPA   that,   "Experimental  results   show  that
              observing  the electronically given  shifting signals can  lead
              to  fuel savings of 6 to  10%  in the urban cycle,  depending on
              engine  and gearbox adjustment.   This is due  simply  to  correct
              'engine management*  and  does  not entail  any diminuation  of
              performance.    Practical   driving   results   confirm   these
              findings."*

         2.    Automatic  Engine  Shut-Off

              VW  is testing a system that will  switch off the engine during
              idling  and deceleration..   VW claims this  system will increase
              urban fuel  economy.   VW  states,  "This  [system]  would  mean a
              25% increase  in  spark ignition engine  efficiency  and  an 18%
              increase  in Diesel  engine efficiency."**

              The engine  is  restarted  from kinetic energy  which  was stored
              in  a spinning flywheel that  turns the  crank.  A second clutch
              disconnects  the   flywheel   when  the  car  stops   or   coasts.
              Simultaneously,  the computer shuts  off the  ignition and fuel
              flow.  When  the  driver  steps  on  the  gas,   the  second clutch
              recouples  the  flywheel  to  the crankshaft,   fuel  is injected,
              and the spark plugs fire.

              VW engineer Paulus Heidemeyer  was quoted  as saying, "Shutting
              off  the   engine  when  its   power  isn't  needed  can cut   fuel
              consumption  by  20-25%  in  city  and  suburban  driving,  when
              frequent  stops  and  starts  are  made."*  A  test  vehicle was
              reported  to have yielded higher fuel  economy on the FTP  cycle
              and  produced  lower emissions  than a  similar vehicle  with  a
              conventional power train.*
*   "Status Report of Volkswagenwerk AG and Audi NSU,"  May 1981,  page 191.
**  Ibid., page 186.
*** Norbye, "VW's Stop/Start  21st-century  Car,"  Popular Science, July  1980,
    pages 76-77.
                                      V-101

-------
             A  drawback of this  system  is that  there  is no  provision  for
             running  accessories while  the  engine  is  stopped.   Thus,  it
             might  not  be  suitable  for cars  equipped with air conditioning,
             power  steering, or power brakes.*

         3.   Overdrive  Top Gear

             VW has  redesigned  and renamed  their  gearboxes.  The  4-speed
             manuals  will  be  called "3 + E"  (i.e.,  3-speed  plus  an economy
             gear),  and the 5-speed manuals  will be called "4 + E."   The
             gear  ratios within  the  transmission will  be changed  so  that
             the  maximum speed is  reached  in the next  to  last  gear,  with
             the  top gear becoming an economy overdrive  gear.   VW  claims,
             "In  normal operation,  the savings amount to  10  to 13%  on 3 + E
             gearboxes  and 5  to 6%  on  4 + E  gearboxes."**   VW  made  no
             predictions for  fuel savings on either EPA's urban  or  highway
             test  cycles.

         4.   Aerodynamic Aids  and Weight Reduction

             While  reducing  neither  aerodynamic  drag  nor  weight   is  new,
             these   concepts   will  be   incorporated  in   the   Formula  E
             package.***

    B.    Combustion  Chamber Redesign and Knock Sensing

         VW   is  developing  a   combustion  chamber  which  provides a higher
         compression ratio,  an increase of 2  to  3 units.****  VW is working
         on  a knock limit sensing system in conjunction with the  development
         of  high compression concepts.   By using a computer  to closely match
         the  spark  advance  to  the  knock  limit,  VW  hopes   to  improve
         efficiency.*****
*Norbye,  "VW's  Stop/Start  21st-century  Car,"  Popular  Science,  July 1980,
pages 76-77.
**"Status Report of Volkswagenwerk AG and Audi NSU,"  May  1981, page 189.
***Ibid., page 186.
****Ibid., page 168.
*****Ibid., page 161.                V-102

-------
     C.    Three-Cylinder Diesel

          VW  has  built  and is testing a 1.2 liter, direct injection, Diesel
          engine  with  supercharger.   VW  believes   that  direct  injection
          could  possibly  provide  a "10-15% increase  in fuel  economy over
          what  is already a miser, the swirl chamber Diesel."*  Even though
          VW  has  a  1.3  liter,  4-cylinder  engine  already   available  in
          Europe,  they  decided to make  this engine  a 3-cylinder instead of
          4,  in order to  reduce  frictional  losses.*

          VW  is  investigating  the  advantages  of a turbocharger  versus  a
          mechanically  driven supercharger  versus  natural aspiration.*
*Ibid., page 31.
                                      V-103

-------
V. H. Toyo Kogyo (Mazda)

1.    Toyo Kogyo's  Statements  Concerning  the Relationship between Emissions
      and Fuel Economy

Toyo Kogyo  (TK) did  not state that  there  was a  well defined  relationship
between emissions and  fuel  economy.   However,  TK did state that meeting  the
1983 California  standards  (0.41  HC,  7.0 CO, 0.4 NOx)  will  result  in a  fuel
economy penalty  even  though the  emission control system they are  developing
to meet those  standards  has a  "potential  to reduce the fuel consumption  and
exhaust emission."*  TK  did not  quantify  the amount of the expected loss  in
fuel economy, nor did  they  provide EPA  with  data to substantiate their  claim
of a loss in fuel economy.

2.    New  Technology  or  Developments which Could  Provide a  Change in  the
      Relationship  between  Emissions and Fuel  Economy as  Compared  to  1981
      Vehicles or TK's Estimates.

A.    New Engines

      1. Rotary Engine

         TK  is the only manufacturer of  automotive rotary (Wankel)  engines
         sold  in the U.S.   TK  began  using a  3-way  catalyst  with an open-loop
         carburetor  and an air  pump  on  their  rotary models  for  the  1981
         model  year.   They  intend  to use  this  same  system  for  1982.   For
         1983,  TK  plans   to  use  a  closed-loop   carburetor  with  a  3-way
         catalyst,  an  air pump,  and  EGR.**   TK provided no estimates or test
         data  on this new system.

         TK  reported  that  they are  studying a  supercharged version  of  their
         rotary.***   Industry  sources  speculate  that   the   supercharged
         version of the twin-rotor Wankel engine will  offer more horsepower,
         greater low-end torque, and  improved fuel  economy.***  The
 *    "Mazda  Status  Report," February 1981, pages 64-65.
 **   "Mazda  Status  Report," February 1981, page 3.
 ***  "Ward's Engine Update," Volume 6, Number 12, June 25, 1980, page 6.
                                      V-104

-------
        speculation  is that  this  vehicle would not  be available prior  to
        the 1983 model year.*

   2.   Diesel Engine

        With  the 1981  model year,  TK introduced  its  first passenger  car
        Diesel  engine  in TK's  Japanese Luce series.   This  4 cylinder,  2.2
        liter  engine is  available only  in  TK's  Japanese market;  however,
        industry  sources  believe that: it  is similar to  the  engines  that  TK
        has  agreed  to  sell to  Ford  in  the next  year  or so  for the  U.S.
        market.**  TK  claims that  this Diesel  vehicle  has a  fuel economy of
        51.7 mpg when  tested at a  steady  37.5 mph**(not an EPA test cycle).

        TK reported that work  on  a  direct-injection combustion  system for
        their  Diesel  engines is  a  project, second  in importance  only  to
        TK's work  in turbocharging small  engines.***

        TK has not provided EPA with  any emissions or  fuel  economy  data on
        their  Diesel  powered  vehicles.   Some  emission  and  fuel  economy
        results  from  a  TK  engine in a  Ford  vehicle  are shown  in  section
        V.B, Ford.

    3.   Small  (2-  and  3-Cylinder)  Engines

        TK reports  that they  are  investigating  the  use  of  4-,  3-,  and
        2-cylinder engines  for  use  in 4-passenger, 2-passenger,  and  2+2
         small  cars.   The engine  displacements range  to below  1 liter (61
        CID).****   "Automotive  News"  reports  that TK  will  begin producing
         small  cars, powered by a 3-cylinder  engine,  for sale  in the U.S.
        beginning with the 1985 model year.  These cars would be  sold under
        the Mazda,  Ford, and  Mercury nameplates.   The  report  predicts an
        urban  fuel economy for these cars of between 40 to 50 mpg.**
*   "Automotive News," November 17,  1980,  pages 2  and 44.
**" "Ward's Engine Update," Volume 6,  Number 20, October 15,  1980,  page  6.
*** "Ward's Engine Update," Volume 6,  Number 17, September  1,  1980,  page 6.
****"Ward's Engine Update," Volume 6,  Number 17, September  1,  1980,  page 6.

                                      V-105

-------
         Another report  Indicates  that  this car will  be front-wheel drive,
         and that the engine displacement will  be  between 1 and 1.2 liters
         (61 to 74 CID).*  TK did not submit any data on this vehicle to EPA.

B.  Closed-Loop Carburetor

TK plans  to employ a closed-loop  carburetor,  an air pump, EGR,  and  a dual
3-way catalyst on all of  their  passenger  cars  beginning with the 1983 model
year.**  This system has been tested by TK in a vehicle with 2250 pound test
weight and  equipped with  a  1.5 liter  engine  and  manual transmission.   TK
states that  neither the fuel economy  results  nor  the  driveability obtained
thus far with this system (see table TK-1) met  their goal.***

                                 Table TK-1
               Comparison of  Fuel Economy  and Emissions  of the
              Closed-Loop Test Vehicle to  the Fuel  Economy and
        Emissions of a Comparable 1981 Model Year Open-Loop  Vehicle.

                     HC       CO       NOx      MPG      MPG,      MPG
                                                   u        n         c

Closed-Loop
Test Vehicle***    0.22     4.0        0.31       33.4

1981 TK Data
Vehicle****        0.224    1.03       0.49       34.5         41.6     37.4
*   "Ward's  Engine  Update," Volume 7,  Number 2, January  15,  1981, pages  1
    and 4.
**  "Mazda Status Report,"  February, 1981, page 3.
*** Ibid, pages 66-67.
****"EPA Test Car List, 1981 Second Edition."
                                      V-106

-------
    Even though  this one  test vehicle  experienced a  drop  in urban  fuel
    economy of  3.2%  (relative to  its  1981  model  year counterpart),  the
    effect  of  this system on overall fuel economy cannot be determined since
    TK did  not submit highway test data (MPG,).

    TK believes that  the loss  in  fuel economy and  driveability  is,  "due to
    the insufficient controlling performance for the air/fuel ratio and EGR,
    the insufficient catalytic efficiency, the choking-up of the EGR passage
    by the  carbon and so  forth.   And thus,  the refinement of  the control
    system of the mixture  and  EGR,  the combustion improvement, the catalyst
    screening  and so  forth are  considered  important."*  TK says they plan to
    improve those components during the 1982 model year based on the results
    of the analysis done  during 1981.**

C.  Combustion Chamber Improvements

    TK reports:

         "We have  taken  an approach  to  mainly  accelerate combustion in the
         engine  with the  help  of  increased  swirl  and  squish,   and  have
         achieved the excellent results  through the MSH  (Masked Seat Head)
         method."

         "We  intend  to continue  pursming  the  improvement  of  fuel  economy
         still further by  means of  modifying the combustion chamber  config-
         uration in the future."***

         "In addition, the following items will be considered,  too:

              To make the combustion chamber more compact.
              To make the compression ratio higher.
              Development of [a]DIS (Dual Induction System).
              The selection of  spark plug location."****

*"Mazda Status Report," February, 1981, page 67.
**  Ibid., page 33.
*** Ibid., page 70.
****Ibid., page 69
                                      V-107

-------
D.  Electronic-Controlled EGR

    Backpressure type EGR provides increased control over the type not using
    backpressure  to  simultaneously  reduce NOx  and   to  stabilize  drive-
    ability.  TK plans  to  develop  an electronic-controlled EGR system which
    will provide greater control accuracy  of EGR  than the backpressure type
    provides.*

3.  The Effect  of  Known Technology Which  Helps Quantify Single or Multiple
    Calibrations or Vehicle Description Changes.

TK plans to  gradually replace the  main moving parts  of their engines (such
as rotors  for rotary engines and  connecting rods for conventional engines)
with  lighter weight  parts.   TK  says  that this will  decrease  frictional
losses and thus increase engine efficiency.**

TK also plans on studying four other systems that  can  affect  fuel economy:**

    1.   Using pulse air instead of an air pump,
    2.   Fuel injection,
    3.   Electronic ignition, and
    4.   Knock controller.

For the 1981 model year, TK increased the  fuel economy of their GLC and RX-7
models over the corresponding 1980  models. (See table  TK-2.)
*Ibid., page 69.
**Ibid., page 33.
                                       V-108

-------
                                Table TK-2*
                Fuel Economy of 1980 and 1981  Mazda Vehicles
                   	1980--
                   MPG
         MPGV
          MPG
         MPG
          MPG.
         MPG
GLC
A3-Trans
M4 -Trans
M5-Trans
27
30
29
34
42
39
30
34
33
30
35
35
37
43
45
32
38
39
RX-7
     A3-Trans
     M5-Trans
16
17
24
28
19
20
19
21
24
30
21
24
TK claims  that  they improved the  fuel  economy of their conventional  engine
(used in the GLC) by:**
           Change in emission control system
           Although  we  had  been using  a  single  catalyst  +  air
           injection + EGR up to  the  1980 year  models,  we  adopted on
           the  1981  year models  a dual catalyst  + air injection  +
           EGR  so as  to improve  the  fuel  economy and meet  the more
           stringent NOx standard.
           Vehicle weight reduction
           By changing  the GLC  to a  front wheel drive model, we were
           able to reduce the weight from 2,250 Ibs to 2,125 Ibs.
*EPA/DOE Gas Mileage Guide.
**   "Mazda Status Report" February, 1981, page 32,
                                       V-109

-------
     3.    Power-to weight reduction and drivetrain programs
           The GLC engine was  increased in piston  displacement  from
           86.4 CID  to  90.9 CID,  thus  having adequate  power/weight
           ratio.   So,  N/V  ratio was  changed from 57.0  to 54.1  in
           top gear  and from  47.1  to 43.1  in  overtop,  thus making
           this engine a high  speed  type, thereby  improving the  fuel
           economy.


     4.    Accessory drive program
           The cooling fan was changed  to a motor  driven type, hence
           reducing the propulsion loss of the fan.

TK says  that  the  improved fuel economy of their rotary  engine  (used in  the
RX-7) resulted from:*
     1.    Engine efficiency
           We  improved   fuel   economy  and  reduced  emissions   by
           improving  the  gas   sealing,  modifying  the  engine  (the
           ignition   system  and   intake   system  in   particular),
           operating  the  engine  at  a  leaner  mixture,  making  the
           combustion  more   stable  and  optimizing  the   catalyst
           system.  In order  to optimize all three systems, we made
           studies  on reduction  in raw HC,  improvement in  thermal
           efficiency,  best  design   of   the   catalytic  converter,
           selection  of a  catalyst  best  suited  to  the  rotary  engine,
           reduction  in  the  temperature  of the exhaust  gas  entering
           the catalyst, and adjustment of the air/fuel mixture.

     2.    Reduction  in vehicle air resistance
           The shape  of  the front  grille  of the  car  was  redesigned
           so as  to reduce the air  resistance  of the car body,  and
           the  load  to   be applied  to  a  chassis-dynamometer  was
           lowered  from 8.0 hp/50 MPH for 1980 to 7.1 hp/50 MPH  for
           1981.

     3.    Vehicle weight reduction
           We reduced the weight of  the car body, engine and their
           related  parts,  thereby  lowering  the  test  weight  from
           2,750 Ibs  to 2,625 Ibs.
    Ibid., page 34.
                                      V-110

-------
    The  EPA  technical  staff  has generated  approximations  of  TK's  sales-
    weighted  fuel economy value (the official values are not yet available),
    and  we found  that  TK's fleet average  fuel  economy increased  from  26.3
    mpg  in 1980 to 31.1  for  their  1981  models (an  increase  of  18%).*  Com-
    paring,  by weight,  TK's  1981  vehicles  with  conventional  (not  rotary)
    engines  to the average of all 1981 model  year  vehicles,  yields the  fol-
    lowing table:

                               Table TK-3**
                   Comparison of Toyo Kogyo's 1981  Fuel
Economy Versus the
Inertia
Weight
2000
2250
2750
By
TK's
Avg.
.38
34
30
Weight
MPGr
.59
.52
.75
Entire 1981 Fleet
(Excluding Rotary
Avg.
Car's
36.
34.
27.
of All
MPGr
96
47
17
Engines)

Percent
(Relative

+4.
+0.
+13.
Diff.
to Fleet)
4%
1%
2%

     Thus TK was able to increase the fuel economy of its conventional vehi-
     cles so  that they  were  more  fuel  efficient  than most  other similar
     vehicles.  TK's rotary engine  vehicles average 24.27 MPG  compared to
     29.37 MPG  for  all 2500 pound  inertia weight cars.**   These  data are
     somewhat biased against the Mazda vehicles  since  their  equivalent test
     weight  is 2625  pounds and  they are  being compared to a  group  of vehi-
     cles which includes lighter vehicles.
*   Foster, Murrell,  Loos,  "Light Duty  Automotive Fuel  Economy  ... Trends
    through 1981,"  SAE Paper number 810386,  February 1981,  pages  14-16.
**  Ibid.
                                     V-lll

-------
V.  I.   American Motors

1.  American   Motors'   Statements   Concerning   the   Relationship  between
    Emissions and Fuel Economy

Quoting  their  latest status  report,*  "American Motors  is  vendor dependent
with   regard  to   emission   control  systems.    These   include  catalytic
converters, air injection pumps, ignition systems, carburetors, EGR  systems,
and  electronic  control modules."   Because  of  this  dependency,  and  the
necessity  of  prior financial  commitment  to the  vendors,  AMC's  development
program  has  been  limited   in  scope  to  evaluation  of  emissions  control
components, evaporative emissions control,  driveability,  and fuel  economy.

Their  emissions  control program is  one  of  evaluation of prototype, vendor-
supplied,  control  hardware  installed on  suitably  modified production cars.
"Once  a  particular  emission  control  strategy, and  associated components have
been  selected, there  is  an  inherent  relationship  between the  achieveable
fuel  economy and  the emissions standards as a  result of the  control  system
constraints.   Consequently,  there  has  been no separate reportable effort  or
data  in  the area of fuel economy improvement."

With  respect  to  a  0.41 HC,  3.4 CO, 0.4  NOx standard,  they stated "AM has
been  unable  to demonstrate,  even on a research vehicle  that these standards
can be met with any control  system planned for 1981  through 1983."  Work  is
planned  to investigate different fuel  systems, catalyst  configurations, and
refinement of  control  strategies.  Confidential treatment was  requested  for
the details of AMC's production vehicle development program.
    American  Motors  Corporation  Efforts  and  Progress  to  Meet  1981  and
    Subsequent Model Year Light-Duty Vehicle Emission Standards; March,  1981.

                                      V-112

-------
General Comments

A substantial body of test  data  was provided in the status report; however,
the vehicle descriptions and  the details  of the test configurations were so
sketchy that the EPA technical staff could not draw conclusions from the AMC
efforts.  It  is  possible to consider  the  recent  (1979-1981)  history of AMC
cars with  the 258-2V engine  (table AMC-1),  as tested by  EPA.   This is the
only passenger car engine common  to model years 1979, 1980, and 1981.   Since
1979, control of HC  and  CO  emissions has been improved significantly (up to
66%  and 60%  respectively),  and  urban fuel  economy  has improved  5  to  10%.
Some  improvement in  NOx control was  observed for  the manual  transmission
cars,  but  not for those with automatic  transmissions.  No  major change in
weight  occurred, other  than that attributable to  the  finer test weight in-
crements used since  1980.   There is not  a demonstratable adverse effect on
fuel economy attributable to the  improvements in emission control.

In  the case of  the  151-2V  engine,  which  entered  production  in 1980,  there
have been no  changes in emissions control requirements for 1981,  because of
waivers.  Consequently,  as  shown in  table AMC-2, there have  been no  major
changes in  the emissions and fuel economy performance.  .
                                     V-113

-------
             Table AMC-1

Emissions and Fuel Economy of AMC Cars
             2S8-2V Engine
HC EMISSIONS
(g/ml)
Model
Year Trans. Mean Max Mi.n
1979 A3 .565 .61 .50
M4 .468 .52 .40
1980 L3 .27 .33 .25
H4 .2165 .27 .183
<398l L3 .193 .280 .132
1
£ M4 .186 .204 .171



HC EMISSIONS
Model (s/ml)
Year Trans Mean Max Mi.n
1980. A3 .201 .232 .170
M4 .255 .260 .250
1981 A3 .097 — —
H4 .1593 .189 .124
CO EMISSIONS
(g/niil
Mean Max
8.7 9.5
4.8 4.9
4.55 6.65
2.36 4.0
3.450 4.71
2.653 5.27

Emissions



Min
7.9
4.7
3.0
1.38
0.79
2.12
Table
and Fuel
151-2V


Mean
1.125
1.645
1.30
1.347
1.11
.865
AMC-2
Economy
Engine
CO EMISSIONS
Mean Max
2.335 2.65
3.80 4.7
1.13
2.637 3.86
)
Min
2.02
2.8
__
1.31
Mean
1.505
1.18
1.59
1.787
NOx EMISSIONS
(./.I)
Max Min
1.29 0.96
1.73 1.56
1.38 1.16
1.38 1.29
1.24 0.92
1.21 0.81

of AMC Cars

NOx EMISSIONS
(g/ml)
Max Min
1.69 1.32
1.21 1.15
—
1.90 1.70
URBAN ECONOMY
(mcu)
_Avg Test
Mean Max Min UVIi;lil
16.5 17 16 3375
17.5 18 17
17.67 18 17 3396
18.0 18
18.6 19 18 3264
18.75 20 18



URBAN ECONOMY
(HI'C )
" Avt; Tost
Mean Max Min Wt-l^lu
20.5 21 20 3125
22 22 22 2938
20 -- — ~. 3250 sarcple
22.67 2958

-------
             Appendix 1

Prediction of Federal Test Procedure
   Results  from Hot  Emissions  Data

-------
                                 Appendix 1

                    Prediction of Federal Test Procedure
                        Data from Hot Emissions Data

The  test  procedures  used  to  measure  exhaust  emissions  from  new motor
vehicles are  described  in Part  86 of the  Code of Federal Regulations.   The
Federal  Test  Procedure  is  commonly  referred  to  as  the  FTP.    The   FTP
specifies  the test fuel,  driving schedule,  vehicle  preparation,  test  site
ambient  conditions  and other details which  are  intended to  give the  test
results a high degree of scientific accuracy.

A brief discussion of the  exhaust emission measurement  portion of  the FTP is
required at  this  point.   The exhaust emissions  of  a light-duty vehicle  are
measured while the vehicle is operated on a chassis  dynamometer.

The vehicle exhaust gas is  collected while the vehicle is being operated on
the dynamometer.  The  exhaust gas stream is  diluted with ambient  air and a
sample of  this  dilute  mixture is collected  during  each phase for analysis.
The dynamometer run is"0 divided into three  phases.  A composite gas sample is
collected  in  a separate  bag for each phase.   Bag  one contains  the sample
collected during  the "transient"  phase  of the cold  start test which is  the
first  505   seconds  of  the  driving  schedule.   The  second  bag   sample  is
collected  from  the 505th  second  of the  driving  schedule until its  end  at
1372 seconds.   This is the "stabilized" phase  of  the test.  Bag three  is
collected from  the  time the  vehicle  is  restarted  following  the  ten minute
hot soak until the 505th second of the driving schedule.  The  three bags  are
sometimes  referred  to  as  the cold transient  (ct)  bag,  the  stabilized  (s)
bag, and the hot transient (ht)  bag.

The bag samples are analyzed and  calculations are performed to determine  the
grams of emissions per  test phase.  The  final reported  test results are then
computed using  the  grams  per test  phase data from the bag  samples  and  the
following equation:*
*   Code of Federal Regulations,  Part   86.144-78  As  of  July 1,  1979.
                                     1-1

-------
Ywm = 0.43 ((Yct + Ys)/(Dct + Ds)) + 0.57((Yht + Ys)/(Dht + Ds))

Where:   Y   = Weighted mass emissions of each pollutant,  i.e., HC,  CO,  NOx
                 or C02, in grams per vehicle mile.

         Y   = Mass emissions as calculated from Bag 1,
                 in grams per test phase.

         Y   = Mass emissions as calculated from Bag 3,
                 in grams per test phase.
         Y   = Mass emissions as calculated from Bag  2,
          s
                 in grams per test phase.
         D   = The measured driving distance during Bag  1,
                 in miles.
         D,   = The measured driving distance during Bag  3,
                 in miles.
         D   = The measured driving distance during Bag 2,
          s
                 in miles.
The  final  value  of  the measured  emissions is  obviously  a  function  of the
design of the test procedure.  Emissions values determined using another  test
procedure or a modified version of the FTP, may  or  may not be related to the
FTP emissions.

Automotive   research   and  development   programs  will   often   utilize  an
abbreviated  form  of  the  FTP.    For  example,   if  a  researcher  was   only
interested  in  a vehicle's  exhaust  emissions,  the  portion of the  FTP which
measures evaporative  emissions may  be omitted.  Another  common abbreviated
form of the FTP is called a "hot"  FTP.  The implied meaning of a "hot" FTP is
that the 12 to 36 hour  soak  period before the  dynamometer  run  was deleted.
Instead the  dynamometer run is started with the vehicle in  a "warmed up" or
                                     1-2

-------
"hot" condition.  Elimination of the many hours long soak period  prior  to  the
start of  the  dynamometer  run allows many  "hot"  FTP's to be  run in an eight
hour  working  day  compared  to  only  a  part  of  a  single  emission  test  in
accordance with the FTP.

The cold transient and stabilized phases of the dynamometer run are  performed
with  a  warmed-up  vehicle.  The driving  schedule  will be  identical for  both
the "hot" FTP and Bags  1  and  2  of  the  official  FTP.  However, because  of  the
difference in thermal preconditioning  between these two  test procedures,  the
final emission values may be vastly different.

FTP equivalent  emissions  and fuel  economy results  are  sometimes  calculated
from  steady-state  engine  data.   These calculated projections are  often  (or
should be) qualified by a statement like the following:  .

    It  should be  noted  that  these  calculations  do not account
    for the warm-up  portion of  the FTP drive cycle,  the engine
    transients,  or... *

This  statement  above should  alert  users of  such data that  the possibility
exists  that the calculated  emissions and fuel economy may be different  from
actual FTP results.  SAE  paper  number  800396, "The Exhaust Emission and  Fuel
Consumption Characteristics  of  an  Engine  During  Warmup -  A Vehicle Study",
said the following in reference  to gasoline fueled vehicles:

    The  relative  contribution   of  pollutants  emitted  during
    vehicle warmup  has  been  magnified because  the  outstanding
    performance of contemporary catalytic converters has nearly
    eliminated the pollutants emitted from fully warm vehicles.
    Trella,  Thomas  J.,  "Fuel  Economy Potential  of Diesel  and
    Spark Ignition - Powered Vehicles in the 1980s" SAE 810514.
                                     1-3

-------
Many vehicle components  influence  the exhaust emissions as  a  function of  the
vehicle's  thermal  state.  For example,  all,  or  nearly all, model  year  1981
gasoline  fueled  light-duty vehicles  utilize  a  catalytic  converter  in  their
emission  control  system.  The conversion  efficiency of a  catalyst increases
with  higher   temperature.    Exhaust  emissions  are   reduced   with  greater
conversion  efficiency.   Diesel  engines in  production  now do  not have  any
catalytic devices to treat the exhaust.

Another  design feature  of  gasoline fueled  vehicles  which effects  exhaust
emissions as a function  of thermal pre-conditioning  is  the start-up enrichment
system.  This cold start enrichment and the initial  inactivity of the catalyst
during Bag  1 of  the FTP contribute a large percentage  of  the  total CO and HC
measured in a FTP.

Emission test data from  certification testing were analyzed  to determine  what,
if  any,  relationships exist  between  Bag 1 and  Bag 3  emissions.   Figure  1-1
presents a  summary of the selection criteria  for  the main  data  base which  was
analyzed.  Additionally, this figure shows how  the  main data base was divided
into ten subgroups.

Correlation matrices  were generated  for the ten data  sets shown  in figure
1-1.   These  matrices  are  presented  in  table  1-3   to  table  1-12.    Some
correlation coefficients (r values) have been compiled  from  these matrices  and
listed in tables 1-1 and 1-2  for  easier  reference  in the following discussion.

These  correlation  coefficients  could provide some  guidance in  developing an
emission  test  procedure which  is based on  an abbreviated  form of  the  FTP.
Conversely, these  data may provide some insight into the relationship between
a so-called "hot FTP" and an  actual FTP.

The data of table 1-1 seem to substantiate  the following observations:

    1.   Bag 3 NOx correlates to some extent  (r > .85)  to  the FTP  NOx for  all
         cases.  The r is greater when NOx  is  not  catalytically controlled.
                                     1-4

-------
                              Figure 1-1
                        Data Base Description
     Test Active Years = 79,  80 and 81
     Sales Classes = 49 States, 50 States and California
     Vehicle Type = Certification Data and Fuel  Economy  Data
     Test Type = Certification Data Test Emissions  and Fuel Economy
     Test Procedure = Three Bag 1975 FTP
     Certification Test Disposition = Passed Used for  Certification
     Fuel Economy Disposition = Used for Fuel Economy
Active
Year =
79
                            Active Year =  81
           Active Year = 80
Fuel Type = Gasoline
[Fuel Type = Diesel
     Fuel Injection = Yes
          Injection
   ^Converter Type = Oxidation
     Converter Type = Three-way
    ^Converter Type = Three-way + Oxidation
                                    1-5

-------
                                                                    Hblel

                                                           Correlation Coefficients (r)


                                                                 1981 Active Year
       Variable
    BjHC vs.  FTPHC
    BjCO vs.  FTPCO
    B1NOX vs.  FTPNOx
                            Gasoline    Diesel       Oxidation  Cat.    3-Wav  Cat.   3-W  +O.C.     Fuel  Injected  (Non-Diesel)
                            .7238        .3519         .7357             .9162        .6705                 .9129
                            .8700        .9430         .8719             .9120        .8309                 .9339
                            .8035        .9121         .8746             .7546        .6890                 .8517
                                                                                                  Mot  Fuel  Injected
                                                                                                        .6937
                                                                                                        .8518
                                                                                                        .7766
    B3HC  vs.  FTPHC          .6744        .5228         .7662
    B3CO  vs.  FTPCO          .5965        .9043         .6115
    B3NOx vs.  FTPNOx         .9286        .9105         .9757
                                                                      .5433
                                                                      .6260
                                                                      .8859
                                                          .6426
                                                          .6067
                                                          .8593
                                   .5322
                                   .3788
                                   .9217
                         .7133
                         .6132
                         .9130
         vs.  FTPHC
         vs.  FTPCO
          vs.  FTPNOx
                            Active  Year 1979.  All

                                      .6527
                                      .8015
                                      .7644
                                 Active  Year  1980.  All

                                            .3346
                                            .8623
                                            .8661
                         Active  Year  1981.  All

                                   .3512
                                   .8767
                                   .7800
    B3HC vs.
    B3CO vs.
    B3NOx vs.
             FTPHC.
             FTPCO
              FTPNOx
              .8578
              .7789
              .9011
.3764
.6614
.9353
.5439
.5957
.9333
                                                                        Table  1-2
                                                               Correlation Coefficients
                                                                     1981 Active Year
                                                                                        (r)
Variable
B3HC vs.
B3CO vs.
B3NOx vs. B}NOx
BjHC
Gasoline
 .0985
 .1927
 .7401
                                       Diesel
                                        .6457
                                        .8656
                                        .9365
                         Oxidation Cat.
                              .1929
                              .2047
                              .8669
3-Way Cat.
  .2916
  .3029
  .6986
3-W * O.C.
  .0152
  .1305
  .5192
                                    Fuel Injected (Non Diesel)
                                         .2817
                                         .1081
                                         .7654
                               Not Fuel Injected
                                 .1140
                                 .1739
                                 .6816
B3HC vs.
B3CO vs.
B3NOx vs
         BjHC
Active Year 1979, All
       .4826
       .4342
       .7465
   Active Year 1980. All
         .0852
         .2616
         .6485
                            Active Year 1981. All
                                    .1927
                                    .2181
                                    .7687

-------
   Table 1-
Active Year 1979
CORRELATION
BYST VAR=23
:ORRELATION MATRIX <79>
1= 6OO DF= 598 R«> .O50O
VARIABLE
23.DISP
24.RTHP
1 .FTPHC
2.FTPCO
3.FTPNOX
1 1 .B1HC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
1S.B2NX
17.B3HC
18.B3CO
19.B3NX
51 . ETW
53.ETWSDISP
54.ETWSRTHP
1O1 .BtSB3.HC
1O2.BISB3.CO
1O3.B1SB3.NX

18.B3CO
19.B3NX
51. ETW
53.ETWSDISP
54.ETWSRTHP
1O1 .BISB3.HC
1O2.B1SB3.CO
1O3.B1SB3.NX


1.00OO
.8133
.0083
. 1287
. 1895
.2298
.3816
.O226
-. 1551
-.2731
.2868
-. 1O1O
.0087
.O883
.9217
-.8954
- . 33O4
.0504
.03 13
-.O924
23.
DISP
1.OOOO
.2366
.O244
.O127
.O788
- 3558
-. 1433
- . O69O
18.
B3CO
.24. 1-3,
TAYR:79
- .0801


1.OOOO
-.O773
.O617
.O546
. 1994
.2882
-.O276
-. 1875
-.2492
. 1029
-. 1393
-.0598
.O245
.7802
-.6837
-.7123
.2012
. 1O41
-.O545
24.
RTHP

1 . OOOO
.0373
-.057 3
- . 0 1 9O
-. 1788
.OO13
-.3915
19.
B3NX
11-19,51,53

RC .OIOO=



1.OOOO
.5429 1
.4584
.6527
.2902
.2644
.8555 '
.5160
.4357
.8578
.5066
.4253
-.0127
-.0412
. 1050
- . 300 1
-.0837
-.1614
1 .
FTPHC


1.OOOO
-.7454 1
-. 1956
.OS74
.O606
- . O664
51 .
ETW
.54, 1O1-

. 1051




.0000
.3075
.6520
.8015
.2566
.3858
.6516
.2013
.5207
.7789
.3555
. not
. 1198
.O342
. 1287
.O7O6
. 1225
2.
FTPCO



.OOOO
.325O
.O4O2
.O321
. O546
53.
ETWSOISP
1O3 STRAT







1 .OOOO
.3764
• .2494
.7644
.3654
. 1818
.8617
.3965
.2642
.9011
. 1367
-. 1806
.0502
-.2125
-.O057
- . 3074
3.
FTPNOX




1 .OOOO
-.2375
-.O943
- . OO68
54.
ETWSRTHP
All
=V50>








1 .OOOO
.6996 1.OOOO
.3179 . 18O1 1.OOOO
.3162 .0301 .2244 1.OOOO
.2302 .1097 .2054 .5960
.2677 .1925 .3826 .3241
.4826 . 2O73 .2547 .8281
.3959 .4342 .1969 .4O83
.3988 .268O .7465 .3629
.1862 .3515 -.O125 -.2OO6
-.2489 -.3691 -.O339 .O958
-.1771 -.1453 .OO97 .O741
.1398 .1219 -.O731 -.3808
-.O118 .O181 .O388 -.O766
-.O951 -.1156 .O193 -.1161
11. 12. 13. 14.
B1HC B1CO B1NX B2HC





1 .OOOO
. 192O 1.OOOO
.1338 .O171 1.OOOO
1O1. 102. 1O3.
B1SB3.HC B1SB3.CO B1SB3.NX













1.0000
.O430 1.OOOO
.5132 .3413 1.OOOO
.5564 .23O3 .6336
.2803 .6232 .3997
-.2805 .24O4 -.1345
.2619 -.2837 .O541
.O912 . 1OO8 .O287
-.2631 -.2423 -.4637
-.1O33 -.0328 -.1O87
-.O710 -.3378 -.1391
15. 16. 17.
B2CO B2NX B3HC










-------
                                                        Table 1-4
                                                     Active Year 1980
i
co
All
lORRELATION MATRIX <8O> TAYH:8O
1- 450 DF» 448 R» .O5OO= .0925
VARIABLE
23.DJSP 1.OOOO
24.RTHP .7658 1.OOOO
1.FTPHC .2401 .1327
2.FTPCO -.0982 -.0298
3.FTPNOX .3081 .0343
11.B1HC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
18.B3CO
19.B3NX
51.ETW
53.ETWSDISP
54 . ETMSRTHP
1O1.B1SB3.HC
1O2.B1SB3.CO
103.B1SB3.NX

18.B3CO
19.B3NX
S1.ETM
S3.ETWSDISP
54.ETWSRTHP
101.B1SB3.HC
102.B1SB3.CO
I03.B1SB3.NX

- . 0535
-.0308
. 213O
.3243
-. 1S9S
.3643
.0806
-.0972
.2056
. .9115
-.9137
-.2838
-. 1815
.09O1
-.0797
23.
DISP
1.0000
- . 1O94
-.O93O
. 1199
. tsot
-.2767
-.2514
-.0387
18.
B3CO
.2118
.0915
.O210
.1178
-. 1906
.0575
-.0254
-.1626
-.0025
.7441
-.6830
-.7149
.07 98
.O949
-.0116
24.
RTHP

t.OOOO
. 1493
-. 1739
. 1493
-.30O4
. 1235
- . 4509
19.
B3NX
RP .O1OO= .1213
1.COOO
.1789 1.0000
.1733 -.1929 t
.3346
. 1135
.O663
.47O9
.1845
.2440
.3764
.1196
.0949
.2618
- . 2069
.1490
-. 1566
.0657
-.0936
1.
FTPHC


1.0000
- . 7504
-. 1526
-.1136
.O749
-.0572
51.
ETW
.4645
.8623
-.1674
-.O832
.3812
-.2310
.3875
.6614
-.O962
-.OB77
.O867
-.0674
. O388
.O34O
-.0655
2.
FTPCO



1.OOOO
.3345 1
.1491
-.1149
.0382
S3.
ETWSDISP
.OOOO
. 2SO3
. 1527
.8661
.3393
.0765
.9305
.O179
.1596
.9353
.2717
.2698
.2163
.3364
.1109
.3538
3.
FTPNOX




.OOOO
.2433
.0914
.0633

1.OOOO
.6481
-.0985
-.1855
-. 1914
-.3540.
.0852
-.0003
-.1671
-.0821
-.0329
-.4135
.4893
.2493
.1548
11.
B1HC





1.0000
. 1491
.2257
54. 101.
ETWSRTHP B1SB3


1.OOOO
-.0948
-.1723
-.O646
-.2142
.1856
.2616
-.O565
-.O375
-.0315
-.2228
.2220
.22OO
-.O161
12.
B1CO






1.0000
-.O370
1O2.
HC B1SB3



t.OOOO
.2741 t.OOOO
-.1523 .1729 t.OOOO
.6570 .3407 -.O339 1.OOOO
.0446 .3262 .1777 -.O361
-.1589 .O214 .8065 -.1621
.8485 .2938 -.O6t1 .7739
.1678 .264O -.1067 .3511
-.2103 -.3294 .2724 -.3108
.1193 .O975 .2315 .2683
-.2351 -.4692 -.1872 -.35O5
.1334 -.O320 -.2285 .0719
-.0927 -.1921 -.1469 -.3625
13. 14. 15. 16.
B1NX B2HC B2CO B2NX
•






t.OOOO
103.
CO B1SB3 NX







t.OOOO
. 6O6O
.O794
.O122
-.O897
.0579
-.484O
-.1061
-.1015
17.
B3HC










-------
Active Year 1931
All
ORRELATION MATRIX  TAYR:81
!=• 378 D. - J.<. Rf .05OO- . 1OO9
VARIABLE
23.0ISP 1.0000
24.RTHP .7936 1.OOOO
1.FTPHC .3453 . 2O78
2.FTPCO .0356 . 14OO
3.FTPNOX .2638 -.1OIO
11.B1HC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
I8.B3CO
19.B3NX
51.ETH
53.ETHSDISP
54.ETWSRTHP
1Ot.B1SB3.HC
102.B1SB3.CO
103.B1SB3.NX

18.B3CO
19.B3NX
51.ETW
53.ETWSOISP
54.ETHSRTHP
1O1.B1SB3.HC
102 B1SB3.CO
103.B1SB3.NX

. 1OO6
.O213
.3O72
.1791
.OO77
. 2O5S
. 1887
.0577
.2580
.9189
-.9240
-. 1942
-. 142O
.0683
-.O744
23.
DISP
1.0OOO
-.0351
.0427
-.0583
-.0824
-.2785
-.3979
-.O224
18.
B3CO
.3661
. 1764
.0636
. 1031
-.0444
-. 1784
. 176S
.O401
- . O360
.7543
-.7003
-.6895
.O7O7
. 1431
.0618
24.
RTHP

1 .OOOO
.2401
-.2155
.3808
- . 3O65
-.0025
-.4689
19.
B3NX
R» .0100- .1323
1 .OOOO
.3119 1.000O
.3082 -.123O
.3512
. 1539
.1780
.6983
.4169
.3180
.5439
.2527
.2855
.3271
- . 2954
.O743
-.2228
-. 1210
-.1130
1.
FTPHC


1.0000
-.7738
-. 1087
- . O7 1 t
.O748
.OO79
51.
ETW
.4890
.8767
-.0910
.264O
.4618
-.1317
.33O1
.5957
-.0876
.0207
-.O672
-.2621
.OO64
.O447
.01 16
2. .
FTPCO



1.OOOO.
.2738
. 1591
-.0975
.1027
1.000O
-.3897 1
-.2005
.7800
.2696
.1217
.9457
.01OO
.0126
.9333
.2563
-.2033
.4951
- . 3469
- . 0599
-.3891
3.
FTPNOX




t.OOOO
-.2134 1
-. 154S
-.1241
53. 54.
ETMSDISP ETWSRTHP

.OOOO
.6033
.1951
.0343
.0419
.4341
.1927
.0664
.2752
.O854
.1417
.5124
.4206
.2472-
. 1342
11.
BtHC





.OOOO
.3897
.1849
101.
B1SB3


1.0000
- O965
.0790
.0586
-.2483
. 17O1
.2181
-.1169
-.0117
-.0819
-.3468
.1855
.3221
.O168
12.
B1CO






1.OOOO
-.0047
102.
HC B1SB3.



1.0000
.1985 1.00OO
-.0519 .3816
.5655 .2379
.0728 .6407
.O022 .3269
.7687 .2971
.3147 .1498
-.2630 -.1512
.2594 .0151
- . 2407 - . 43O7
.O7S9 -.1751
-.1933 -.2001
13. 14.
BtNX B2HC







1.00OO
103.
.CO B1SB3.NX





1.0000
.1999 t.OOOO
.1732 -.O229 t.OOOO
.4736 .0397 .5O31
.0587 .8038 .O256
.0636 .1984 .1210
.0533 -.1401 -.2439
.1390 .5373 -.1900
-.2196 -.3494 -.4779
-.3492 -.1318 -.2533
.0174 -.3594 -.0316
IS. 16. 17.
B2CO B2NX B3HC










-------
                                                         Table 1-6
                                                      Active Year 1931
                                                          Gasoline.
 i
•M
O
CORRELATION BYST VAR=23
.24. 1-3.
1t-t9.51.53
.54,101-
103 STRAT
-V50:B1»V36:(1.2.6.7.17).(B.9)>

IQRRELATION MATRIX <1> TAYR :8 1*FTYP: ( 1 .2.6.7 . 17)
1- 335 OF- 333
VARIABLE
23.0ISP
24 . RTHP
1.FTPHC
2 . FTPCO
3.FTPNOX
11.B1HC
12.B1CO
13.B1NX
14.B2HC
1S.B2CO
IE.B2NX
17.B3HC
1B.B3CO
19.B3NX
51.ETW
53.ETWSDISP
54 . ETWSRTHP
1O1.B1SB3.HC
1O2.B1SB3.CO
1O3.B1SB3.NX

18.B3CO
19.B3NX
51 .ETW
S3.ETWSOISP
S4.ETWSHTHP
1O1 .B1SB3.HC
102.BISB3 CO
103.B1SB3.NX

RO .O5OO

1.OCXX)
.8148
.2851
.O69t
.2344
.2234
.0939
.2807
.1750
- . O654
. 154O
.2074
.O575
.2290
.9304
-.9237
-.3462
-. 1205
. 1O61
-.O645
23.
OISP
1 .OOOO
.O179
.0480
-.0503
-.O119
-.3232
-.4324
- . 0399
18.
B3CO
= . 1O72


1.0OOO
.2977
.0658
.0277
.3O77
.0819
.12O7
. 1344
.O104
-.O535
. 1316
.OO72
.O621
.8295
-.7247
-.7563
.O101
. 1050
. O28O
24.
RTHP

1.OOOO
. 1487
-.2415
. 1O7O
- . 2034
. 1228
-.4643
19.
B3NX
Re .0100-



1.0000
.4820 1
.1627
.7238
.3896
. 1061
.7342
.3555
. 1413
.6744
.3111
. 1848
.2698
- . 2688
- . 2039
-.1548
-.O627
-.O718
1.
FTPHC


1.OOOO
-.7942 1
- . 3O49
-.0190
.1286
.0419
51.
ETW
. 14O6




.0000
.1336
.3899
.8700
.O102
.3213
.6291
. 1963
.2873
.5965
.O955
.O751
.O711
.O579
.O962
.O263
.0445
2.
FTPCO



.0000
.3584
.1685
.1112
.1116
53.
ETWSDISP






1.00OO
-.0276
.1758
.8O35
.2753
- . 1O75
. 9O95
. 1860
. 1092
.9286
. 1S25
-.2453
. 1453
-.2299
. 1O76
- . 3930
3.
FTPNOX




1.0OOO
-.0338
-.oiaa
-.O219







1.0000
.4555 1.0000
-.0303 .O576 1.OOOO
.1186 .1562 .1840 1.OOOO
.1803 .2558 -.1560 .3632 1.OOOO
-.O455 . 2O62 . S3O7 .2480 -.O4B2
.O985 .0899 .1411 .6802 .2497
.OO83 .1927 .O346 .3447 . 537O
.O137 .1636 .7401 . 293O -.1123
.2529 O919 .2617 .1346 -.O285
-.1953 -.1068 -.2652 -.1542 .O846
-.221O -.O352 . I1O3 -.O883 - . 1O22
.3271 .0570 -.1736 -.4228 -.1443
.1576 .2572 .1519 -.1567 -.3089
.O506 -.07 14 -.1585 -.1868 .O755
11. 12. 13. 14. 15.
B1HC B1CO B1NX B2HC B2CO





t.OOOO
.3517 t.OOOO
.1466 -.0405 1.0000












1.0000
.1932 t.OOOO
.1878 .4958
.7578 .1459
.0552 . 1549
-.1760 -.2433
.1533 -.O732
-.2239 -.6698
.0430 -.3085
-.383O -.O658
16. 17.
B2NX B3HC








54. 101. 1O2. 103.
ETWSRTHP B1SB3.HC B1SB3.CO B1SB3.NX

-------
  Table 1-
Active Year 1981
Fuel Injected
CORRELATION
BYST VAH=
:ORRELATION MATRIX <1>
1' 88 OF- 86
VARIABLE
23.0ISP
24.RTHP
1.FTPHC
2.FTPCO
3.FTPNOX
11.B1HC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
18.B3CO
19.B3NX
51.ETW
S3.ETWSOISP
S4.ETWSRTHP
1O1.B1SB3.HC
1O2.B1SB3.CO
103.B1SB3.NX

1B.B3CO
19.B3NX
51.ETW
53.ETWSOISP
84 . ETWSRTHP
101.B1SB3.HC
1O2.B1SB3.CO
1O3.BISB3.NX

23.24.1-3
.11-19.51
TAYR:B1*FTYP:( 1.2
at .O5OO- . 2O96

1.0000
.7O55
.2916
.0085
.5712
. 1622
.O496
.4862
.2419
-. 1383
.4775
.4623
.0704
.4807
.9122
-.9002
- . 1968
- . 2082
-.0236
-. 113O
23.
DISP
1.0000
-.2688
.O743
-.O7O9
-.O564
-.3818
-.6123
. 1611
18.
B3CO


1.0000
.4620
.2146
.3415
.3958
.2339
.2993
.3149
.0592
. 1624
.3371
.0607
.4O12
.7787
-.6768
-.7724
- . 0605
. 1801
-.1214
24.
RTHP

1.0OOO
.4461
-.4O21
-. 1389
-.0392
.3188
-.4452
19.
B3NX
RO .O1OO-



1 .OOOO
.6980
.0409
.9129
.6548
- . 06O7
.6647
.4165
. OO84
.5322
.34O5
. 1638
.3309
-.2881
-.3986
-.0068
-.0065
.0045
1.
FTPHC


1.0000
- . 7O59
-.2250
-.O899
.O169
-.0293
51.
ETW
(non-Diesel)
.53.54,101-103 STRAT«V50:81
.6,7, 17)«FIN
.2732




1.0000
-.O77O 1
.6589
.9339
-. 1818
.4936
.6569
-.1811
.24 1O
.3788
. 1783
.0324
-.0348
-.2856
-.O186
.OO75
-.0042
2.
FTPCO



1.0000
.3585 1
.2625
.02 16
. 1418
53.
ETWSDISP
:Y






.OOOO
.0067 1
.0831
.8517
. O783
.3546
.7530
.osoi
.3292
.9217
.5113
.4736
.0029
.0609
.3071
. 3936
3.
FTPNOX




.0000
.O187 1
.2328
. 1656
54.
ETWSRTHP








.OOOO
.672O
.07 1O
.3575
.2983
.O474
.2817
. 1931
. 14O9
.2203
. 1932
.3931
.2249
. 1133
.O119
11.
B1HC





.OOOO
.409O
.OO53
101.
B1SB3
•V36:(1.2.6.7,17)«V26:Y.N>









1.OOOO
-.O368 1.OOOO
.3838 -.012S 1.0000
.3624 -.3558 .4972 1.OOOO
-.0598 .3629 .0495 -.3816
.1561 -.0210 .3661 .1664
.1081 -.3792 .2869 .5631
.3168 .7654 .1659 -.1574
.0470 .4590 .2639 -.O508
-.0834 -.3964 -.172O .1416
-.2896 .O449 -.2549 -.1493
.0811 -.0558 -.1927 -.1231
.1979 v .3592 -.0858 -.2616
-.0883 -.1526 -.0448 .1672
12. 13. 14. 15.
BtCO B1NX B2HC B2CO






1.OOOO
-.13OI 1.OOOO
102. 103.
.HC B1SB3 CO B1SB3.NX














1 OOOO
.1329 t.OOOO
-.1737 .3130
. .5648 .0266
.3857 .4101
-.4002 -.4440
.OB31 -.1294
-.0648 -.5328
.O882 -.3068
-.4113 .1393
16. 17.
B2NX B3HC
•









-------
   Table 1-8




Active Year 1931
Not Fuel Injected
ORRELATION MATRIX <2> TAVR:81*FTYP: ( 1 . 2.6,7. 17)«FIN
1= 247 OF" 245 Rt> .0500= .1249 Re .OtOO- .1636
VARIABLE
23.OISP 1.OOOO
24.RTHP .9000 1.OOOO
1.FTPHC .2789 .3058 1.0OOO
2.FTPCO . O765 .0871 .3952 1.OOOO
3.FTPNOX
tt.BIHC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
18.B3CO
19.B3NX
51.ETW
53.ETWSDISP
S4.ETWSRTHP
101.B1SB3.HC
1O2.B1SB3.CO
1O3.B1SB3.NX

18.B3CO
19.B3NX
91.ETW
S3.ETWSOISP
54.ETWSRTHP
1O1 .B1SB3.HC
1O2.B1SB3.CO
1O3.B1SB3.NX

.1337
.2692
. 1005
. 1835
.1524
-.O469
.O753
.1427
.0484
. 1343
.9478
-.9364
-.444O
-.0531
.1468
.0099
23.
OISP
1.0OOO
-. 1O02
.O793
-.0104
-. 115O
-.3412
-.4456
. 1268
18.
B3CO
.O925
.2346
.0814
. 1539
.2218
.0071
.O468
. 1918
.0779
0798
.8556
-.8197
-.7296
-.0984
.0769
.0075
24.
RTHP

1.OOOO
.1103
-. 1347
.02 15
-.0917
.09)8
-.4972
19.
B3NX
.1043
.6937
.2779
. 1202
.7623
.3387
.0731
.7133
.2968
.1018
.2766
-.2386
-.2270
-. 1941
- . 0769
-.0268
1.
FTPHC


1.0000
-.8523
-.3185
-.0324
.1598
.0923
51.
ETW
.0738 1
.3592
.8518
-.O071
.221O
.6298
.1689
.2400
.6132
-.0414
. 1126
-.O481
-.0831
-.0385
-.O281
. 1257
2.
FTPCO



1.0OOO
.4457 1
.0559
-. 1538
.OO93
S3.
ETWSDISP
:N
.0000
.O6O8
.1311
.7766
.1235
.0861
.9191
.0332
.OO62
.9130
.1265
. 1251
.0037
.0892
.0897
. 28OB
3.
FTPNOX




.OOOO
.1511
.0583
.0793


1.OOOO
.4199
.O696
.1249
. 1498
.0523
.1140
.0311
.O437
.26O4
-.2334
-.0915
.4IO1
.1782
.O346
It.
B1HC





1.0000
.4126
.0679
54. 101.
ETWSRTHP B1SB3.



1.00OO
.0355
.0422
.2253
.2006
.0211
.1739
.O419
. 1247
-.09O2
-.0199
. 1691
.2818
.0770
12.
BtCO






t.OOOO
.OO42
1O2.
HC B1SB3




t.OOOO
.1178 1.OOOO
-.1093 .3491 t.OOOO
.5236 .O752 -.O172 t.OOOO
.0751 .6919 .2686 .O2O6
-.0090 .2824 .5683 .O829
.6816 .1589 -.1389 . 75O2
.2329 .1594 -.O181 .O5O7
-.17O8 -.O978 .O772 -.O651
.OO44 -.2253 -.1115 -.0235
-.O963 -.5O17 -.1817 -.O628
.O926 -.1754 -.3197 .Ob 15
.1921 -.1273 .O969 -.3232
13. 14. 15. 16.
B1NX B2HC B2CO B2NX







t.OOOO
103.
.CO B1SB3.NX








t.OOOO
.4560
.0076
. 1422
-.1618
- . 208 1
-.6411
-.3196
.O343
17.
B3HC










-------
   Table 1-9
Active Year 1981
Oxidation Catalyst
CORRELATION
BYST VAR=
IQRRELATION MATRIX <2>
1= SB Of" 56
VARIABLE
23.0ISP
24.RTHP
1.FTPHC
2.FTPCO
3.FTPNOX
11.B1HC
12.B1CO
13.B1NX
14.B2HC
1S.B2CO
16.B2NX
17.B3HC
18.B3CO
19.B3NX
51.ETW
53.ETWSDISP
54.ETWSRTHP
101.B1SB3.HC
102.B1SB3 CO
103.B1SB3.NX

18.B3CO
19.B3NX
S1.ETW
53.ETWSDISP
94.ETMSRTHP
10t.B1SB3.HC
102 B1SB3.CO
tO3.B1SB3.NX

R» .O50O

1.0000
.8489
.O787
. 1642
.2161
-. 1726
. 1233
.2335
.2674
-. 1408
. 1788
.2745
.2743
.2O97
.9588
-.9261
- . 16O3
-.1789
. 1569
.0366
23.
DISP
1.0000
. 1345
.2796
- 2831
.2590
-.3380
-.4982
.1233
18.
. B3CO
23,24. H3
.11-19.51
TAYR:81»FTYP:( 1,2
• .2586


1 .OOOO
-.O157
.07 12
.0435
- . 14O4
. 1256
. 1011
. 1151
-. 1792
.0075
. OS8O
.0498
.O373
.8714
- . 7966
-.5923
.08 14
.4559
. 1608
24.
RTHP

1.0OOO
. 1923
-.2326
.216O
-.O655
-.06 10
- . 4076
19.
B3NX
RO .O1OO-



1.OOOO
.3148
- . 1096
.7357
. 1727
-.0622
.6550
.3078
-.1169
.7662
.3099
-.1082
.1533
.O145
.2485
-.0027
-.O675
.0588
1.
FTPHC


1.0000
-.8481
-. 1422
-. 1470
.2114
.O723
51.
ETW
.53.54.101
-103 STRAT
=V5O:81»V36:( 1,2,6.7. 17)*V35>

.6.7. 17)«ESCS:OXID
.3357




1.OOOO
.1097
.2934
.8719
-.O12O
. 1632
.5552
. 1545
. 1685
.6115
.1186
.2090
-.1599
.2033
.1177
-.O024
-.O897
2.
FTPCO



1.0000
.2783
.1407
-.086O
. -.0504






1.0000
-.1019
.O572
.8746
- O284
.0126
.9603
-.0872
. 1661
.9757
.2036
-.2479
.2150
-.0764
-.0898
-.3116
3.
FTPNOX




1.0OOO
-.3536
-.4717
- . 2808







1.0000
.2920 1.OOOO
-.1269 -.0842 1.0000
.0052 .O2OO .O523 1.OOOO
.29SO .2668 -.1264 .1231
-.0851 .1068 .7213 -.O577
.1929 -.O959 .0156 . 795O
.0359 .2047 2O28 .3118
-.0854 .O836 .8669 -.O351
-.1507 .1721 .2415 .3614
.1797 -.O957 -.2445 -.1235
.0285 .09O3 .122O .3473
.5886 .3356 - . 167O -.5649
.1741 .3489 -.0881 -.2118
-.0595 -.1677 .0432 . 1O92
11. 12. 13. 14.
BtHC B1CO BtNX B2HC





».OOOO
.5981 1.0000
-.1218 -.0383 1 OOOO











1.0000
.0729 1.0000
.1929 -.fits I.OOOO
.3427 .1518 . 5O9O
.O218 .9016 -.1075
-.1114 .1619 .3444
.O862 -.2211 -.1767
.1655 .2377 .291O
.OO73 -.O314 -.5459
-.3619 -.099O -.3215
-.0649 -.3858 .1716
15. 16. 17.
B2CO B2NX B3HC








53. 54. 101. 102. 103.
ETWSDISP ETWSRTHP B1SB3.HC B1SB3.CO 81SB3.NX

-------
                                              Table   1-lfT

                                            Active Year  1981
                                           Three-way Catalyst
CORRELATION MATRIX  O> TAYR:81*FTYP:(!.2.6.7.17)«ESCS:THREEW

N= 119 OF- 117  RO .O5OO= .18O1 RO .O1OO- .2353
23
24
1
2
3
11
12.
13
14
15
16
I—1
1 "•
•1 '|
•C- 18
19.
31.
S3.
54
101
102
103

IS
19
51
S3
54
101
102
103

VARIABLE
OISP
.RTHP
. FTPHC
. FTPCO
. FTPNOX
B1HC
.8 ICO
.B1NX
B2HC
B2CO
.B2NX
B3HC
B3CO
B3NX
ETW
. ETWSDISP
.ETWSRTHP
.B1SB3.HC
.B1SB3.CO
.B1SB3.NX

B3CO
.B3NX
.ETW
.ETWSDISP
. ETWSRTHP
. BISB3.HC
.B1SB3.CO
.B1SB3.NX

1.0000
.7212
.3287
.3270
.4438
.2623
.3114
.3544
.1111
.1324
.3955
.4721
.2231
.3560
.8931
-.8932
~?92
-.1354
.1954
-.O039
23.
DISP
1.OOOO
-.0735
.2353
- . 2040
. 1985
- . 3056
- . 3942
.O482
18.
B3CO
1.0000
.4229
. 1514
. 1063
.3894
. 1345
. 1779
.2243
. 1221
-.O270
.2855
-.O124
. 1958
.804O
-.5833
-.8657
.0419
. 159O
.O393
24.
RTHP

1.OOOO
.2313
-.3796
-.O70S
-.0226
.3936
-.4379
19.
B3NX
1.OOOO
.5600
-.O023
.9162
.49O2
- . 1097
.6276
.4581
.0279
.5433
.2790
.0576
.367O
-.2686
-.3276
.1281
-.O326
.0647
1.
FTPHC


1.OCOO
-.6490
-.4342
-.087O
.O985
. 1253
51.
ETW
1.0000
. 28SO 1
.5096
.9120
.0996
.3542
.6241
. 3O27
.3124
' .6260
.2713
.2826
-.3 ISO
.O176
- . 0237
.O793
-.O192
2.
FTPCO



1.0000
.3749 1
.O8B8
-.2155
.1119
53.
ETWSDISP
.0000
.O111
.3881
.7546
.0306
. 1O31
.8616
.O076
.0568
.8859
.2890
.4743
. O862
.O292
.3853
.3599
3.
FTPNOX




.0000
. 1336
. 1300
.O183
54.
ETWSRTHP
1.0OOO
.4959
-.O713
.3132
.3231
.0223
.3916
. 179O
.0688
.3027
-.235O
-.3252
. 4O42
.0493
.O425
11.
B1HC





1.OOOO
.3136
.0686
101.
B1SB3.
1.OOOO
. 1714
.2359
.2744
.3735
. 1998
.3029
.3974
.2238
-.3245
-.O208
.O99O
.3001
-.O776
12.
BICO






1.0000
-.O99S
1O2.
HC 8 1583.

1.0000
-.1278 1.OOOO
-.1126 . 49O2 1.OOOO
.3734 -.OO93 -.O696 1 .OOOO
-.O822 . 389O . 29O6 .O682
-.0185 .1999 .7306 .1628
.6986 .0480 -.0894 .6141
.3178 .1682 .2320 .2O76
-.313O -.O438 -.O866 -.4619
.04 39 -.1954 -.0154 .1761
.OOS7 -.2O58 -.166O -.O462
.3673 -.0744 -.2924 .2326
-.1025 -.0048 .121O -.3274
13. 14. 15. 16.
B1NX B2HC B2CO B2NX







IIOOOO
103.
CO B1SB3.NX





1.OOOO
.4O47
-.0480
.4208
-.3823
- O986
-.5727
-.2359
. 168O
17.
B3HC










-------
I
M
Ul
                                                                       Table  1-11


                                                                    Active Year 1981
                                                             Three-way  + Oxidation  Catalyst
                          CORRELATION MATRIX  <4> TAYH:81«FTVP:(1.2,6,7.17)*ESC5:TW.O.C


                          N= 158  DF- 156 R» .0500=  .1562  R» .O1OO" .2O44
VARIABLE
23.DISP
24.RTHP
1 . FTPHC
2.FTPCO
3.FTPNOX
tl.BtHC
12.B1CO
13.BINX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
18.B3CO
19.B3NX
51.ETW
53.ETWSOISP
54 . ETWSRTHP
101.B1SB3.HC
102.B1SB3.CO
103.B1SB3.NX

18.B3CO
19.B3NX
51.ETW
S3.ETWSDISP
54. ETWSRTHP
1O1.BtSB3.HC
1O2.BtSB3.CO
1O3.B1SB3.NX

1 .OOOO
.8565
. 1276
-. 1859
15O9
.3716
-. 1023
.2291
-.0816
-.2329
-.0300
-. 1556
-.1253
.2070
.934O
-.9027
-.2887
.O432
.O594
-.035O
23.
OISP
1.OOOO
-.2083
-.1373
. 1476
-.1754
-.2661
-.4796
.O241
IB.
B3CO
1 .OOOO
. 1891
- .O942
. ttO3
.3618
-.O564
. 1519
.0065
-. 1289
.0082
-.O825
-.O434
. 1263
.79O3
-.7426
-.6675
-O457
-.0213
-.O437
24.
RTHP

1 .OOOO
.2096
- . 179O
. 1O60
-.0954
.0480
- . 5O53
19.
B3NX
1.OOOO
.4354
. 1478
.6705
. 339O
.0880
.7813
.3458
.0954
.6426
.2598
. 1656
. 1012
-. 1389
- . 2206
-.2179
-.O968
-.1065
1.
FTPHC


1.OOOO
-.7736
-.1195
. 1651
. 1258
.O293
51.
ETW
1.OOOO
- . 0645
.3146
.8309
-.1724
.3218
.6545
. 1069
.2678
. 6O67
-.1405
-. 1815
.1956
-.1386
-.1247
-.1227
-.0330
2.
FTPCO



1.000O
. 3OO4
.O765
-.O618
.O443
53.
ETWSOISP
1.OOOO
. 1527
.OO94
.6890
.1111
-. 1195
.7961
.OO94
-.1013
.8593
. 1681
-.0912
.0536
-.1521
.0325
-.2001
3.
FTPNOX




1.00OO
. 1239
.217O
.0547
54.
ETWSRTHP
1.OOOO
.4798
. 1865
.1467
-.0011
.0264
.O152
-.O802
.1737
.3842
-.3275
-. 1507
. 1826
.2708
-.0360
11.
B1HC





1.0OOO
.3636
.0373
101.
B1SB3.
t.OOOO
-.O742
.1025
.2371
.0963
.O117
. 1305
-.0384
-.O846
.0987
- . 0395
.0338
.1995
-.0258
12.
BICO






1.0000
.O575
102.
HC B1SB3

1.0000
-.O138 1.OOOO
-.1958 .4854
.2132 .1112
-.O443 .5979
-.1753 .3O28
.5192 .1505
. 3036 - . 1OB7
-.1850 .0813
.1130 -.1675
-.0533 -.3268
.0981 -.2308
.4294 -.1751
13. 14.
B1NX B2HC







1.0000
103.
.CO B1SB3.NX



t.OOOO
.O149 t.OOOO
.3188 .0748 1.0000
.5470 .0968 .4691
-.1329 .5362 -.O326
-.2468 -.O548 -.2150
.2488 .0919 .0473
-.1681 -.O605 -.1451
-.1876 -.1881 -.4868
-.3308 -.0494 -.4271
-.0800 -.3273 .OO41
IS. 16. 17.
B2CO B2NX B3HC










-------
  TaFIe 1-1




Active -Year 1981
Diesel
ORRELATION MATRIX <2>
1= 43 DF- 41 R» .05OO=
VARIABLE
23.DISP 1.OOOO
24.RTHP .8323
1.FTPHC .5772
2.FTPCO .4681
3.FTPNOX
11.BIHC
12.B1CO
13.B1NX
14.B2HC
15.B2CO
16.B2NX
17.B3HC
I8.B3CO
19.B3NX
S1.ETW
S3.ETWSDISP
S4.ETWSRTHP
1O1.B1SB3.HC
1O2.B1SB3.CO
103.B1SB3.NX

18.B3CO
19.B3NX
91.ETW
S3.ETWSOISP
54.ETWSRTHP
101.B1SB3.HC
1O2.B1SB3.CO
103.B1SB3.NX

.3706
.1621
.3874
.4225
. 167O
.3766
.3413
.9979
.6676
.3030
.8631
-.9667
-.3171
-.382O
-.3793
.3886
23.
DISP
1.0OOO
.O077
.762O
-.SS4J
-.3152
-. 1633
-.1456
.0455
18.
B3CO
TAYR:81»FTYP:(B,9)
' .3OO8 R» .01OO°
1.OOOO
.3246 1.OOOO
.5247 . 403O
.4133
.2391
.5326
.4396
. 1O46
. 4O8O
. 33OO
.4681
.6824
.4641
.9066
-.7425
-.7642
-. 1276
-. 1231
.O35O
24.
HTHP

1.0000
.4578
-.2457
-.2425
-. 1254
- . 2O27
-.0728
19.
B3NX
-.O112
.3319
.2564
-.O408
.432O
.4022
. O60S
.3228
.4690
-. 1286
.4053
- . 3603
-. 1292
- . 19O3
-.2879
.2078
1.
FTPHC


t.OOOO
-.7263
-.4339
-. 1061
-.1252
. 1439
51.
ETW
.3887
1.0000
-.2542 1
.4388
.943O
-.2172
.3857
. 97O6
-.2576
.4O8O
.9043
- . 2080
.5968
-.3355
-.2573
.O972
.1642
-.0595
2.
FTPCO



1.0OOO
.5435 1
.5006
.5134
-.4326
53.
ETWSDISP

.OOOO
.1383
.2068
.9121
. 1276
.3333
.95O1
.0668
.0529
.91O5
.4279
.3422
.2252
.1702
.2279
.0902
3.
FTPNOX




.OOOO
.O914
.O711
.O359
54.
ETWSRTHP


1.OOOO
.3826
-.1937
.7894
.467O
-.1015
.6457
.3269
-.1313
.2588
-.0908
-. 1627
.5095
. 146O
-. 1646
11.
B1HC





1.OOOO
.7511
-.261O
101.
BISB3



1.OOOO
-.1634
. 1968
.8620
-.2362
.2459
.8656
-.1254
.6067
-.2213
-.224O
.2147
.35O2
-.131O
12.
B1CO






1.0000
-.2031
102.
HC BISB3




1.0000
-.1612 1.0000
-.3156 .4787 1.OOOO
.7551 -.O853 -.3098
.O591 .6931 .3945
.0199 .2726 .7956
.9365 -.1583 -.3097
.4893 .1389 . 47O5
-.3786 -.1587 -.2612
-.1839 -.O847 -.2224
-.1991 .1749 .1467
-.2388 -.1361 .1992
.2735 -.0582 -.O697
13. 14. 15.
B1NX B2HC B2CO







1.0000
103.
.CO B1SB3.NX







1.0000
.O950 1.OOOO
-.O982 . S1O4
.7468 -.OO67
.3412 .4559
-.3355 -.6135
- . 2028 - . 3675
-.1697 -.2726
-.2082 -.4341
.O846 .1983
16. 17.
B2NX B3HC










-------
    2.   Bag  1  CO  correlates  to  the  FTP  CO better  than Bag  3  CO for  all
         cases.   The Bag  1 CO  correlation  coefficients  exceed  .80 for  all
         cases  compared  to a  minimum  Bag 3  CO  r of  .38.  Bag  3 CO  appears
         useful for prediction of FTP emissions for Diesels only.

    3.   Model year  1981  Diesel  vehicles have very good correlation  (r > .90)
         of Bag 1 and  Bag 3 to the FTP  for  both CO and NOx emissions.   Bag  1
         CO and NOx correlation  coefficients are  slightly greater  than  the
         corresponding Bag 3 values.

    4.   The correlation coefficients for Bag 1 HC vs. FTP HC and  Bag 3 HC  vs.
         FTP HC range from  .33 to greater  than  .91.  Active year  1981 vehicles
         equipped with three-way  catalysts  and/or  non-Diesel  fuel injected
         engines appear unique from  the  other  subgroups,  having Bag 1 HC  vs.
         FTP HC r values which indicate reasonably good correlation (r ^ .91).

In  summary,  the  correlation  coefficients  analyzed  indicate  that 'accurate
prediction  of FTP  equivalent  emissions  from test  data  which  don't  reflect
operation over  the  cold  transient  phase is doubtful.  However, FTP equivalent
emissions  can be  predicted with  reasonable  confidence   for  some  individual
pollutants and certain specific subgroups of vehicles.

Based on  the  lack of correlation between Bag 1  emissions  and  Bag  3  emissions
shown in  table  1-2   it can  be  concluded  that  there  is effectively no  way to
predict Bag 1 emissions,  even  assuming that  one  could  computer-model-calculate
Bag   3   emissions   accurately.     Even   if   one    further   assumes   that
computer-model-calculated MPG  values are  accurate,  any  relationship  between
predicted emission levels (or  emission standards) and  MPG  based on the use of
hot data only is probably worthless.
                                     1-17

-------
           Appendix 2

Calculation Methodology for Fuel
    Economy  Change Allocation

-------
                                 Appendix 2

                         Calculation Methodology for
                       Fuel Economy Change Allocation

The  procedure for  computing  fleet  fuel  economy  changes  due  to  specific
factors,  such as system optimization and  weight mix  shifts,  involves  the
construction of matched sets of data from a base fleet  (e.g.  1978) and  a  new
fleet (e.g. 1979), and calculation of  intermediate  sales-weighted  fleet fuel
economy values for  the  matched sets.  Depending  on the degree of matching,
the data  sets being  compared  include  only certain known changes between  the
sets, and hence  the calculated intermediate  fleet MPG  values  reflect  the
fuel economy effects of only those specific changes in fleet makeup.

CALCULATION OF  DIFFERENCES DUE  TO SYSTEM  OPTIMIZATION:   To determine  the
differences in  fuel economy  between  the 1978 and 1979 cars  due  to  system
optimization,  it  was necessary to limit  the  comparison to nominally  ident-
ical vehicles.  For each manufacturer  it was established which 1978  and 1979
models  were  identical in  terms of  weight, displacement,  and  transmission
type-.   When  this  was<  established   a  new* set   of   sales   fractions  was
calculated, based on 1978  sales estimates,  using  only  those  combinations
which were carried over  from  1978  to 1979.  Two  sales-weighted  fuel economy
values  (SWMPG)  were calculated- using, the. equation, below.   One. calculation.
using 1978 model MPG  values  and  1978 carryover  sales  fractions,  and  one
using the 1979 model. MPG values, also with 1978 carryover sales fractions.
         SWMPG
                  afi(l/MPG±)
         where fi = sales fraction for stratum ig whose MPG is

The difference  between the two  values  reflects the  change in fuel  economy
due to  what we  have called  system  optimization.   Since  the weights,  dis-
placements, transmissions - and  their sales distributions  - are matched,  any
difference in fuel economy is due to other factors.  The  main factors  which
could be  contributing  to such a  system  optimization  change in fuel  economy
are:
                                      2-1

-------
o   Emission control system design changes;

o   Engine design and/or calibration changes;

o   Changes in transmission efficiency,  shift  scheduling,  or gear ratios;

o   Axle ratio changes;

o   Changes in test procedure which influence  fuel economy.

DIFFERENCES DUE TO TRANSMISSION MIX SHIFTS:   In  the analysis  of  fuel  economy
changes due to "system optimization,  any IW/CID/transmission  combination  not
common  to  both  years was  eliminated  from  consideration,  and  the  sales
distribution of  those combinations that were carried over was  held at  the
1978 mix.   If the  calculation  is repeated  using only  weight/displacement
combinations   as   the   determinants   for  model  year   carryover,    those
IW/CID/transmission combinations  that are not  common to both  sets of data
are not "sifted out",  but remain in their respective  data bases;   also, each
of the'data- bases retains" its' own  sales  split' between automatics and  manuals
within the carryover IW/CID combinations.

Again,  two  SWMPG values, are.- calculated using  the  same equation,  wherein  the
first MPG   is  the  harmonic  mean sales-weighted fuel  economy of  each  manu-
facturer's  1978 models in IW/CID  class  i,  and  the second  MPG^^  is the fuel
economy of  his  1979 models  in IW/CID class  i.   Both of  these  SWMPG values
are based on the same  mix of the IW/CID  classes (the  1978 mix),  so the dif-
ference between  the  two  is  due  to system optimization plus  all  changes  in
transmission mix.,

DIFFERENCES DUE TO  ENGINE MIX SHIFTS:   Similarly, by sifting for carryover
at only the weight class  level,  all  differences in the IW/CID structures  of
the  fleets  are allowed to  remain.   The difference  between the two  SWMPG
                                      2-2

-------
values calculated on  this  basis is thus  due  to system optimization,  trans-
mission mix shifts,  and shifts in the  mix of engine displacements*.

DIFFERENCES DUE  TO WEIGHT  MIX SHIFTS:   The  bottom-line  SWMPG values  cal-
culated from the full, unperturbed data  bases,  each with its own sales  mix,
includes all  of  the above  effects  plus  the  effect- of non-carryover  weight
classes  and  the  1979  redistribution  of   sales  among  carryover   weight
classes*

Table 2-1 summarizes the above  calculation methodology, and figure 2-1 shows
a diagram  of  the relationship  between the  various calculated  SWMPG values.
Since the methodology  is  suitable for a  comparison between any two vehicle
sets  (49-States  vs.  California,   cars  vs.  trucks, manufacturer  X vs. Y,
etc.), table 2-1 and figure 2-1 are notated for the general case rather  than
the year-to-year case.

Table 2-2  illustrates the  equations  for  separation  of  individual factors
from the combined effects discussed above.
*This also includes shifts in the mix of engine standards/systems; Federal
vs. California, and Spark vs.  Diesel.

-------
                                              Table 2-1

                           Method  for  Constructing Fuel Economy
                           Comparisons between  Two Vehicle Groups
Configuration
Determinants

IH/CID/Trans-
miasion Type
                      Vehicle Croup "A"
Vehicle Croup "B"
MFC
Base(mpg^)
Sales
Base(f1)
Fleet   HFC         Sales
SWMPG   BaseQap^)   Base(ft)
                 Fleet
                 SWMPG
                         A-to-B SWMPC Change Attributed1 To;

                         System optimization in carryover
                         I/C/T combinations
IW/CID
                                                            A *
                                                                             Above plus new/discontinued I/C/T
                                                                             combinations plus shifts In trans-
                                                                             mission mix within carryover I/C
                                                                             combinations
IW
                                                            A  **
                                                                             Above plus new/discontinued I/C
                                                                             combinations  plus shifts in engine
                                                                             mix within carryover IW classes
Open
       B ***    FEBB      Above  plus new/discontinued IW
                         classes plus shifts  in IW mix
                         among  carryover IW classes
                                                                   Includes B mix of transmissions
                                                                   within c/o 1C classes.
                                                                   Includes B mix of CT combinations
                                                                   within c/o weight classes.
                                                                   Includes B mix of all ICT combinations
                                                                   in group B.
                                             Figure  2-1

                            Relationships  between  SWMPG  Values
                                       .   from Table  2-1
        Discontinued
        ICT combinations
     Discontinued
     1C combinations
                                        system optimization _
   Discontinued
   wt. classes
                                         system optimization
                                         plus net T changes
                                         system optimization
                                         plus net T changes
                                         plus net C changes
                                        All changes combined


                                                    2r-4
                      New ICT combinations
                      and T mix shifts within
                      c/o 1C combinations
                           New  1C combinations
                           and  C mix shifts within
                           c/o  wt. classes
                               New weights and wt. mix shifts
                               among c/o wt.  classes

-------
                        Table 2 -  2
                                    j.c  Factor
Percent Change in
Fuel Economy Due To:          Calculated By;
Systems Optimization             °-*"     -  1   x 100
Transmission Mix Shifts      I   °'~  -f-    °"  „ 1-1   x 100
Engine Mix Shifts              l^ftl +  -?a_    - i   x 100
SH
Weight Mix Shifts              --S2--  -i- —S&- I . 1   x 100
All Changes Combined          I —r2- I - 1   x 100
                             2-5

-------
            Appendix 3

Variability Estimates for Emissions
     and Economy over the FTP

-------
To   Karl Hellinan
From'John Foster
Fxe   Test to test variability
25 March, 1981
     Using/similar procedure and the same data as my sensitivity  study
(see my memo to you of 12 March), I have looked into the differences
between multiple tests on the same vehicles.

     For each multiply-tested car I calculated the mean fuel economy,
iiC, CO, and uGx> for both city and highway test cycles.  I also found
the standard deviations of these 8 means, whicii are measures or their
test-to-test variability.  The 1027 vehicles were taeri avera^eu to
find their mean standard deviation.  lie re are the results:

                                  DIFFERENCE             (WF.-R*r,v.\
VARIABLE
l.FECITY
2.iiCCITY
3.COCITY
4.NOXC1TY
5.?EHw'Y
6.HCHWY
7 . COiiWY
8.NGXHWY
LI
1027
1027
1027
1027
432
430
361.
431
al^Uli
0.
0.
0.
o.
0.
0.
0.
0.
	 a~x
3.
I.
54
1.
7.
LiU,,
5360
74oO
.477
2800
5660
.43500
11
1.
.709
6720
,i£^
.46217
'.06b06u
1.0577
.12346
1.0039
.015156
.33817 •
.16613
\*«* ***«**^**y
.4^0
.10265
2. OS 76
.13782
1.0633
.029851
.88500
.22276
    Data base is CERT/EPA for model years  1975 to 1982.
                                     3-1

-------
             Appendix 4

Two Variable Linear Regression Plots
     of  Emissions  versus Economy
(Data from all Model Years Available
 and No Stratification of  the Data)

-------
1l;t CABIBIALL  1 NTBHVAL*< 4 . . «0 ) ; ( O. 2 . 7 I > -§ CATTKR PLOT       N*  4111  OUT Of 1711  11 . UMPC VI. -1.PTPNC
UMPG
 40.OOO   »      «        *     *
                                                                                   DATA  BASE IS  CERT/EPA
 ll.OOO   »    2  «    2       •   «        *
                 • **••     2            *•       *
               **    2  •••   *    2
          *    *• 2   •   2       *           *•
                 * 2**   *2        *  *    2   *        *
                 2":3* *  2***                     *         *
 32.OOO   *    *23'i3  *•  *•*   *  *     *•  • *              *
               **b  • * 2 • **        * *  *       *3
               **22**22       *•                             «
          *    «2JB  *33  *23 *             •         «         «
             ••••284* 32232**    • 2              *•• •
              *2*SB*B**2* 2*  •   •      •     ••**•*
 2*.000   «   23*38232822*22  •  **2*«2     2*   « • •  ••«     •
              •4«I6«B4242S3   3  «»«2    •      «  3«  2        »
             2 BB84222344*3*  •  *  »••   • •• 2« • *4 2**«2
          •    BIIB4BSB32 S««*««*« 3*   **2«   «3«     2  3  *•
             • 492X4BB473321O3  2222 42**   2 • 2« 34   *2  «
              4XX7X4733442****3*222*  2 «2 2 3 «   2   2 2«*
 24.000   »   64XXXOX3733 334 22*223  • 2 2 2*«  **224 •2" «  •
              43X8889448*82 *2*«332*3 * •• 22*««« 22«4*« * *
              4BX7BX742SB2 2322»*2 "22 2 2  *2« * 3* *2*
          *    XX9977BEB433B33   B2> 3*«»2*** 22* «  •• «   •*
              *S8»X8X8432B374>2<22>3* •• 4**2* <2   «*2
              •387X7XX9BB37322I322**22*32*32*2  22* •« • «  ••
 20.000   *   •«X»XXX77B24S3277I* S2322 23 3222»«2   •   2 « *
              4B» :«948B7IBB7B323BBB42«42 23** 3*33* 2
             «34a): I>7>I4BB2B7B273B4243B4**34*2»  2 » »   **2 * *
          *   *4«X)IXXBX3XaBXBXBXIIBBBBB3 22* 333* *2**2  2  **  •
               • 7;ixaxaxxaaxxaB47  a2222* 2 *  **
          »     saixxa7xxxxxxaaaBaB322B> 42 2  *
                 BBaXXXXXXaXX747X78BB *24 3* 3  4     •     *
                •37aBSXXXgXXaa8B3233**3« 3 *3* »2 •         >
 12.000   «     224eiBXXX>XiaBB2772B*2*    **2      >•        2
                2447>XXXaBB7>7BB23»* 2*42  ••  «3        *
                «2axaaaaBB4a3222C32432*> >•*»*  2
          «      2BB4773422 a423*4  *2*      ......   2 >
               > 28*2* 2*23*  3  3B********    **•     •   *
                 2*2*  *2 * 32   *                        *
 t.OOOO   *      2* •    *223 •*
<3CATTBR  VAX*11-2  1NTCRVAL*<4.,4O);(O,27»-SCATTER PLOT      . M* 4BBB OUT OP B7B3  11.UMPC VB.  2.PTPCO
UMPC
 4O.OOO   »   *•*
                               *
                 *              *
          *   * * *  .*       3
                2*    *     * *
              m»   *      •
 36.000   4   «.J.     «        •  «
             «**22**         •
            *  .   «  »«2 «                «•
          •*»32*               *-*
             «2  «  •   «  «2  «2      *       »
             2*23**      ••*      *            *
 32.OOO   +    5  3** * * 323      *   *«    «    *
               *2*2*2 * *     s*2*    *   3        *
              2*2«*22»«*             *                                              *
          •*•    **423*3* 23*2*2**    *   *         *
              3432*2  *3 2**2*** 22     «>   **          *
               42242  *B22* *••     * >2  2*    2     •
 21.OOO   *  2   88*8332*2*2* *    2**   2 *  *22*«  .    .  .  .
             »3942B3B48*3 3223*        2   • 2«*     ***  *           *
            *2B9B*B 223*3* 33*2      «» 4****2 • 33*  *
          •    757328*43*8*222*2*  3* 3  «•  «  •    «*»2   •  •   »**     *
             *44X8B463283*423*23*»*32 » >22* *2  **3*2 t      .     >  •*                .
              4899978*438333*3 *  2*2*3 2  22  «»*»2   >»***   .
 24.000   *    9X74XX487B3242 >3*32*2*»33*23***2*3  *2* 2  «                                        *
              4B887374B42344*342*4 »2 2234*  »**2B*»   22*    *
              88873333888828*3* 2* 2 2*4*3**22 2*2>    *           *
          »    8984B48B337SB34322432 *2222«>  2> 23  *** •  *            *   >
              898843379786484482* ***83  242 *3**  **  ***  2   **   *
              597XB448S77 733 83*3*443824*3  22222  2*  2*     3*
 20.000   *   *8»>8>B777B4B42*3*4«2»3*4828423> *3*  ...«      >  •
              4878>4K««82B9778*4E2334*334  «**2 4 2>  **233*  *2  >2     '
              *2eBBBXXB4BBBBSaa233E4B4*4842«*4*28*2»2* *  *  2              •
          •   2BB873X8X8X2478273BSXBSB7BX4888*4232* 232**  3* *«  •* ** •
             2479XXI7XX889a»7X2894BB84BB74S374*34**B3*42    3 2**** *      **
              4478BXXXXSB82*8874842B8374B23B2*22*2»  2*3**2**2*2        «
 18.000   •   4eS83XXBXXX478877XX88B4373288 *«3*32322   2**3> 2  « «*   **     •
             4877BX974XXXS8388837EB334S832B2*  722  «32*3>*2  .«  «  •    .         •     .           •
            «433977X9B679XS47S7B43*42232323432***B2*** *3*2  **  2   * > 2    *    «*
          •   22B979XB87B988XX8X2X7982524«3*782*  **6  »2332>  2   *•*         •
             2238B89XX99928X89BXBS893292332243*  2223***   **>     >     * »     *    *
            **'3B837S373S9XSS3B2B>88*72332 23  223**  2* 2« 2    »                               •     »
 12.OOO   *   **  49864679876B64S963B22**44S3S **223 332****                             *
            •  «22372»697X983628647S232«4«2««*  2* 2  ***  2«       »  *
               32B6S7434324B88 B2B3*22232»  4**« « «2    «                   >
          •    *2*8*23*32343433342  S33*32> *>   2**           *             *       *
                 • 2  222 2«23*4«* 4*«««2*   2   2  4  2»
              •  2  2«22*««   «  2 *
 8.OOOO   +     ••  3***   ****     **
                                                                                               FTPCO
                                                                                               27.OOO
                                                           4-1

-------
OCATTRN  VAR"11;3  INTERVAL"14..4O);(0,3.B)>•SCATTER  PLOT
UMPC
 AO.OOO   *                        *2
                      »   **»        2       *
                     *            2*   *  *
                   * *      *          *
          *       *   *     2      * *       *
                        »   *    ** * ***    *
                  *         mm  2**  *        *
              * *  *  *   22*
                 *     *    *2*  2   **   *  * *
          mm     *   *      **2* *   *    * ** *
         2****   *3    **2  **2   *** 2a     *
        2 •     2      *  *   * *    **  « * 2 2 *'* 2
                22*     *     * * «    **   **
              ** »•»*     **23* 3  33 ** * •***  *
                                                               «»92 OUT  Of B7I3  11.UMPC VS.  3.PTPNOK
                                                                                DATA BASE IS  CERT/EPA
 3D.OOO   4
 32 : OOO   *
            • 2
            •2
                32*
               •••2
           3   *     * *3**33322B*B****23 *      *
         • 2*33*2**  2* 24*3   4223243* 3 4*3*3*
          24 *2 3* *****2*2*2*2 2 4 42*42* 4**  *  ** **2
  *•  *4   2 42>*  •  222332*  3224322*8«4242*«   2 *   *  *
    •332**2  2442* 33*242422  7233*»3 8443*4233*  2*   2*
  •33***  22 B3 **22 22*3 44*8232373*22823 22*  2* 2   * *2
 2 3  4*3*»4 22* 222*4*3434S»2828•832*233*823*  •• 22** 322*
   •*2 *•  *2*2323**3B24E3432433222*73E*2222*2*22*  •*   *
  • *    2*3 •* 2**3423*B44B234B**B*34222***3*  2*3*3
 •3***2*  *2 2  4* 3 **24BB473374B*B23*S43324**224*       *
 •2*3**   **3*B**322*B*28343BBB3*44B2B44(34** 23  *2»    •
  •  ***2** 2233E24**  32248 374878738433833482*21•••    •
 •22  233 2 3BBB2* 3432BBB4B3  BB4427BBB34BB43. 2*2*2 * 2  *
 4 28* 3  3**372* 42244 8BB63BBB*44X2XB44•342842343*2 *2 22
• 3*323*2  •*342*332B2B*434SB242BB74BB44E33'^3*37B3*»2  **24*
   4** «  22*2BB3B4E3B4E34887BBa7BX42XB74B437a43B4332*24*2
 *3  * 3  2 *32234B32B44X73227BE87XBXtX7BXBBBa244424233222*
 »» *2***B2*432 »B  2448B22BB33X8BX83BBB8X34BB3*B3B3**  »•
 *«  2B   *4*2322 42S7B2747BX3XBaB48B37BBBX74BB2742232* •
 •   2**22344»E33a2*B*3323*2SaXB7XXEBBXBBB7BB2833223S4  *3
    •* 2* *   2 *B**2BBB23838738BX84BBBB73434832 48242* *
 •   ••   • « *3*2BB23» 4432X3BBB2X8X2XXXBB477Ba2*4B3322*B*
           ***2 2  443BBBB8e7Ba4X7BBXBXB887834aS*233E»2 *
    *       *     2 2*4*8 BBX3BB888BB8334B4333384*28*2B*2
               * *2S*4a34aB7BBBB3BBBBB334*23B*3 23** 42 *
                ••2322S223B  B*7BBSB4434*BB*3B24**4232*3*2
              *   *32 * ,4S42*B2B3*3232323 2*224*8*4*2*23*
           •*       » 44 B 32*4*3 3**•23*4282*222 22 2**
                       •• *3  3333*3 *2**** 2	
                        **   2** * * 3* *  *  *    2
                    *    *  * 3 mm*2*        **
                                                                       *•
                                                                   «3*  •  2*
                                                                    2   *22
                                                                    •  22
                                                                        • 2
                                                                     *• 22*
                                                                   «3 2*3 *
                                                                   2 2   *
                                                                    3   2*
                                                                    »   2*«
                                                                   *2   >2* *
                                                                   33 2««*«
                                                                   2 4««*
                                                                   «2   ««
                                                                   «* «2 .
                                                                     • * •
                                                                   •  *   * •
                                                                   t   4* •
                                                                    2 >   **
                                                                      *  •
                                                                   2*     •* •
                                                                   t  **•
                                                                                             FTPHOX
                                                                                             3.BOOO
<8CATTe«
HMPC
 4B.000
VAR*12;4  1 NTERVAK ( 1 O , 4B I ; < O . O . > » -SCATTER PLOT

 +•2*      * * *    *•               *
   *  ••2*         *  •
   ••4 ** *  *   *     *
 •   »2442 **
   t3  224 3       2    ««                      *
   22*42  «•       »              *     »
 •  >243B*22**
   »BB 2Bt t  «2«  «                         «
  •33*3S2* «   ••            «
 •  S42BB2*  2 *
   2BB434* • •  •   •             •        «
   32443*4* **2  *                           *
 *  4327S34 2««     ...       .       »   .
  •2BB74422*2«2  •*>       »
    7BBB4 «222  .        ..              2
 »>3BXa422 >2**3*   « •«     «            >
   BB7B724432*22>        * >•
   749BB333223 24  «   2**  • •           *
 ••6X7BBB34433* B2 *3  •   *    »  *2  *
  •BXX4424B24* ••***2*2  2** * *  * s **   *
   XBXB743B2 *7 >*2*> 222  •    2 «     «   «  «
 «  XBXXBBB3B*«223***»  •  2 »2****   «   3    «
  37XXX4BBB3*2*42  •     >  22»» •           **
  2XBX973234*2«* 3 >»*2   2      *• >          *
 •»3XXBXBB7B43»22 «*2  *  32   •**     «   «»  •
  4X4XXB4B727B2* >3  »  3  » 2 23***   *  »  «
  •XXXBBSB2 3*32>   33*  22 * 3  22 >2
 »2XXXBB4B4B**4 4 **4 322>    3*«  2 «  '
  4BBXXX74B3 73* >*4  *•  >3 2      • «   • >2
  •KXXXXXX747 2 •« 32*  *  2 *     *      » «
 «3XXXXXX4BB42**4»    »?•  *      «  •    «  «  «»
  *XXXXXX7373323 2*222  *    2
  2XBBBXXeB2B3* 2B*3  »  •  »   , . .. .  .
 •>2XXXXXX7Ba4BB2*4B«21*  «« ««    >   2
  2XBXXXXXB433B2 *2B3*3 2  *2   2>    2**»    2
  373BXXX97XBS3 2243**2 «   • 2   «        >
 *3X3XXXX49B2743B22  « 2**  *<  22   »**  «  »   *
  278XXXXX6464*3* *  22**2  **** *• **       *
  *  4XXXX3XBB923323***   .. ..        >       «
 «*47BXXXX7XBBX274 2> »2*2     >   *2* * •
  3f BXXXXXX3XBBB423»2     «      *»
   2>XX7BaXB4B523>     «  2  «    «            2»
 f*34XXXBX9EBB»2*2*22** •  •  •
  •7B9XXXBXB2424 23    « «  «•     •
    S9XXaXB3S*>3 2**«>         2 «
 ••••2BXXXXEB23* >2  » * >  2* *    •
   *4XBXB2B4B*S* * *    *  •*      *      *
    37877322*2 «« «     «
 *  54*BE32  3       «       »            *
   2*422**  * »   *        *
   3*  '   •
 »  2      «
                                                            N* 4O12  OUT OP B7E3  12.HMPC  VS. 4 . PBHC
                                                                        2     » »
                                                                        2       *4
                                                                                             FEHC
                                                                                             .9OOOO
                                                         4-2

-------
-«C«TTI»  PLOT
 »3     *«2  ••
   32   ••	
  •• 3*   *2*  •
 »««4*.   2
  28*3*2
  24 »3  *•
 «3B4 32** *     ••   «
  8832*322           »•
  484*2*  2          3
 •385422***  *  *
  2X83442 *           *
  848*424          •
 **B83 3422   *•
  843443234*22     •<
  BX*B433 22*     •
 »BXXB43*32  **•*  •
  988823333******   •*
  9X132492222   ••« 3«*
 *SXBB78BB342»* 2* *3
  XBXBB83BB2* *2 *2 3*
  XXBB4SBB83**2  *223   *
 +XB7BX784BB  *S* 2 **3«* *2
  XX79B8B34B3 2* 2 *•    ••
  X4XB3B44B32*2«    2*    *
 +XXXXBBB744* 2*3* 222    •
  XXXX84B7888 *«B22* *2 **2
  XXB847BB34422* ••**•*
 *XX748B4B37B «*24«    •* ••* * *
  XX8XB8B2B284 *•    • «  « *2  2
  XXXXB44BB*3 3  33  •»*  « 2 2
 *XXXX7BB3B  44*33 2* **    *  *»*2*
  XXXXB8742B*43  •«? *4  ••*•     •
  XXXXBBB3332223»2** •• *2 *    2
 »XXXB9X74»4432**42*  3   •  *2 *»
  XXXX8487B3  *34*2 2." 32  *3  « «
  XXXBXS47B22**24 * *  2*  «  *** •
 4XXXXB4X3B  3323 3* * *2*2* *  *4 *
  XXXX387B*32233» *2     2 *   *
  XXX8BX74B»3 * ** 2**3 ***2  * * *
 *XXXXB8BB8*2B*2 2243* 38   • 2** *
  XXXX837B43*4» 223 2   «2*2  •*
  XXXXBB*233*3*2* 3*   *• *•• *
 «XXXX7B34*24  • **2  2 «   * * 2
  XXXXXX232*2*3*«       *      *
  XXXSB43*3   « «    •«        *  *
 *XX8X843***2*    •* 2 •  «    * 2
  XXXBB3B4    « 2    •  «          •
  B8B7B22 3   32*   *  •
 48942222    • *        •
  83  **2    **•
   4 •
                                                           Hi 402B OUT  Or S7B3  12.MM»C  VB.  B.PECO-
                                                                                DATA BASE  IS  CERT/EPA
                                     3  *"
                                     ** *
                                     * *a
                                           **     • •  •
                                             •    •
                                          • 2***  2* •
                                          • *   •  • •  •
                                              *   • •
                                                                                             reco
                                                                                             9.OOOO
.OOO
                               «*2
                             2>
VAR*12;B  INTERVAL*!1C.481;(O,14l>-8CflTTBR PLOT

 «3   *32          •
  23   2       *
  2*3 32         *
 •2»2»*   «       •
  844    »2*»          *
  33«»*   ••*    *   *        « *
 »8433*>  2 «   *    «
  X6*B2    ••          2         «   •  «
  993 2    3* « *     •      « «« «
 •8X232**   *
  XX48*     >  **»
  9848     *  «2
 *«X  74 **    2 **
  X747BB  *» *22*
  XX8B23  '   *3
 •XXB4B22 *    ***
  XX2843*2 2   **  *
  XX2X44  *24*    ••
 «XXBXX8*223   « *«
  XX9X932223**2 * 2
  XX7XX23 83 * *****
 »XXXXX48 3*4 3 «*• *•«««  «
  XXBX983*2» **• «« « «   2
  XXB88B3  2* * 3*2****     2   *»
 *XX8X943334  *>2* *    »•*«>
  XX7XX9*8S*222 «««•« ««  •*••  »
  XX4XX73 2 •« 2 •• * *      «
 +KX9X9X*44 s«2**** 322**  *
  XXBX8X2* ** «3 2* **««  «   «   »
  XXX9X43»S*>* *22   •*»     >    >
 •XX9X7B433**  223  22  •   *«  2
  XX7XBK3 4 5**2  • 2* •   •«
  XXXI87S222»3>  2   3* »**2*
 «XXXXS94*7»3 * 3*232         2
  XXXXX262344«*3*>    >3  2>   >2«*
  XXX8X444***2 *2«* 2« •   •
 •>XXXX8B8*3233***4»2  2* 2   »
  XXSXX66*3  2* *   « 2    *
  XXXX94**3232*3 2  «*•*   •    *
 «XX9X974 8026 *3>«*    ,    ,   ,
  XXX9X7*2B2 3*3*           *
  «XXBB84*4 *«*2>   *  *
 »XX9X38* 4 2* »*2
                                                           N* 4O4B  OUT OF B7B3  12.HMPC  VS. 8.PBCO
           XX783**  2
          +XXX724  *3«
           XX7X2*2  •*
           XX643*5 * *
          «X824 "    *
           9  **2 2>
           32
                                                                                             PECO
                                                                                             ia.ooo
                                                         4-3

-------
32>2  *22 2*32*«2«*    •       *
           * 2      *   *•* 2  ** *  • ••** »* 22 *  *2  * *
 3(.OOO   *•«  « «  *2  *   2    *«   23 2»2*3 2   2 •  •     «   ««      «       «_     «      •
          «2  • « « 2 «•  2  2«  2   4* 2*2*  2««* *2« « 2»  2 2«  2»                •  «
           • *   « 2    32 2    ««3»»«««4» « 2« «•     • 2*««*     •  «  «•                •
          *•  ••••»• *4*  2* *3   4*** 3 3*  2   *2 **2 *    * 23 *** * •*   » *    *    • *          *
          ••  32**3 3*2   **2*** 342 4*22***» 2****      •   2 **   •   •
           2**  4  « a   • « 3  »3 «•   2**3 > 2222**2222*  >2 *  •  • *   •««  '        •   •  •
 34.OOO   **2**«*2» 222 •••23*338 243**«3 4 2 32** •• 22 «3   •   *      *   ••
          *•  2  233 22*** 2*2T**24S3332*3322*22232  22**2** •• * •     •    «  « •
           3*«  232 22* *32*222>*43* ***2T «*B2 33  3   ••(• 4*4       «       •
          «24*   *• 2*22  » **2*3424* 3664363*•22522*4 22 * *    * 2*  «  «       •  *« •   *
          *7**«3 «• *2   • 2*2>32B3232B4434233B2*  ••   «2    •« *      *         *         2   « «
          •I •  **3*» • **222*   224*43*432*2322 3 3*2  3* « « ««   *         **•     * *
 30.OOO   »32**2«* **2  *3234422282B3343B53B   2 3 2  • 32 3*  **• •  ••          «                 *
          212 «44 2 3 •* 2 242223B347I*32>3»24**3**4*3 » » 3*** 2 2 *   ***2           *   *
          •322 2*22    2»3*23>B2**222*3B3«3*  *242(*»22  *• 3« «  2«  «           •        «
          »*43 22322**** *3 2*3*  •32432244•438234* 222   B * «2*  2  *   «2  «                *
          28* 3*4 4 *2  24332B 3234832* 333333222* 2322 "2  4 «  2  •     •     •
           B22*2*3**243>22232444*T4*XB3243B22** 33**** 2 4* «3 « 2 •• •       2    *•
 2>.OOO   »2S3 *3*3 **3*24B* 2*2B2B42B*42222433332B*  • 2*** ** 32*  *•••    • «          •
          *323*BB 2 *  *33T23B33 2B44443B22333 *3**222* ****23 *  ***
          232*2** 22 B *3 *32*4  »  4*B3*T3422B444223434*     *  2**    >2   *  «        •  •
          4-4   42 32 33224S*432*33SB7>4477B244*42B433S*22322»2  «*  • • *
          24*»342 e*3232«8 32•«33446•323833682644224••2 B2   3 3*  •  *•    • «   «
          2 3*  >24322»*232*23**>334B4*I447B*34B3233* 2 •*•*>  «2 2          *
 22.OOO   * 2*2  *333*3« 2*2B B4T3*S3*2B784233B*B*233B2B»* 3 2*  ***32* 3      •  «
          2**'  2** **32*42B2*3*3322B**2Ee3B222*43B3*223*2*3*2* 22 *>2   *      *
          «2«"3»   > 234 2B*2*3** 422B43B3* 3*S4B34B24> 2*2 2 2*    *•*   «  ** 2  »         >
          » . >  »  • 2 *»23322*2*432B24aBBBB*BBB3B4  >B4344*34 *2*  2*«   •   •   • 2      *      >•«
          •      **   3 222*22*3*82322X3333BBB2T3>23344223 >223 *2***>  •••  2
             «  »    2» «*222 ••  22 423227B482348233**32»*2**3 ••»•••«•  ..   .  . .       2
 18.OOO   *»          ~   *2*3222* 24443244*28423722*4 2** * 3****33***3  *        «  •  *«  •        >
                       4 *2 2882 23B43*3244238444B3*«2222   *3»»2*4   •• **  ««        2   ««    •
                    •  ««2 » 2 243>  23424232*22224 2*2242*3*2 *  2 •  2*  *2      *•            »
          •         «    2* *B* 3*24* 3 3323*2 **B338*> 8*32** *2* *2>   2  ' * 2 22*       •'     *
                          » 2  22*3 "44432263 2 2*2  42 3    3 »***   3  *3*   ««   •            > *
                  *    *    *3  22 ***2  22*3*** *2  2***** 22*  2 *               *         *
 14.OOO   *  •         •   **       22  2*** 2 22* **2 ****     •      *               **
                     *      **•     **  *•   2***              s«k              •
                •              *      «»   •    *
          +           *              *             •
                           *        *          •     *
                                                                            *
 1O.OOO   *
          *....+....*....+....«.**.«•...^....*....«...*«*...+....«....+....«....^....*....4..-*«•...«
       0.                  1.OOOO              2.OOOO              3.OOOO              4.OOOO    PENOX
                 .BOOOO             1.BOOO              2.BOOO             3.SOOO             4.8OOO
 2888  OUT OP 87B3  13.CMPC  VS.  1 . PTPHC
                                » 2
                                «*3*
                            *23
                                «2> 2
    2*   3  2
  •222*2*2
   22*2**2   ••
••••2*2  ••
  2 23*22    *•
  *233>3*3>  2*2
 24*  *34***2*
  B433«4 2*3
 • 3678   232  23*
  347737*«82
• 387B2> 4«4«4
•3448X74 «»2 2 2*««*
•328*438482  2322' • 4 ••  «
 • 2>B4742«83»«"   • •••   *
 3SBS7E7482233232«"2»2   «3
 •2863674  S32**4»* 22««4»*  •
  27 5848  642332» •••    «2
  38BX77BB*  422««*>*   •  2
 2«X3X7787432«33338>** ••••
 • 82X6643B>284»4 • >S2222  2
 •3SXX974*22B23322* 2 24*  3*
••22XX868842«4643  3 >32'25
 2«386447B242443743626*3«4»
 ••BXXXX26444eS3B863363B44  2
   48X456X28848857466224  2«*
 ••867389463568443572352  •2*
   386X6797923337366832 >222
  3348XX75773846S4B3532«»2««
   •356X4>67X563853345  42  •
   • 2389X797X78X72434522»  «
    27B274XX84B683683422>*  •
   • »3825464469X«3333242  «2
   •23S866XX8X5643>2322 2
   2353976644245354«3 2«>2«2
    33327662573422>2>*22  «•
    <2S44B>23>342>2««  *2*
  •  4»  3  22*  ••2*22** *•••
    •3*  •  2 3>22  2>
      2  «    •  «

              .6 OOOO
                                        2«««*
                                         22  •
                                           2  •
                                        *•   2*
                                          •••
                                        2«  4*>
                                        ••
                                         3    *
                                        23*  *2
                                        23>32
                                         3»  •
                                        2  "3
                                        3
                                        >    '
                                         22  ••
                                        «  -3
                                          •   •
                                          2   «
                                        ••
                                          2*
I   '1*1*
• 44
*  * a  •
•  • • •
• 2
                                                                                             FTPHC
                                                                                             2.7000
                                                          4-4

-------
                                           -,
              ••*•              •••                  2*
                • * *    *                         *                                b
          4    •* ««2       •*••               •
                 * 3B*    •    *        *      *     *    *
              •    •*  B2     *****                     *  *
 34.OOO   4     **23    *****     »••                  •
              *2*2**           •••            •••
             *   • 2*2*« **3      ••          •••.               ••
          4  •        • ••( *«3*  2** *••    *•      ••     •••*      •        •
               2*2* *•• *2 **3   *22« >             •      «3  •   3           •  •
               243332  2   • •«   33 •      •      ••    *       • 22 «  •
 3O.OOO   4     2*BB24"2*«"   •• «3 «  2     •    •    «2«2    «       2     2      *             •
            •  *«4«* 232*2 212* ••••      •••   2    •   • 2        •  *•       •
              •***23*24*2» 2 22   2 *3 2 •«   «2   *2  «2««2  ••  •
          4    24»S228*24*442**3*222*3 *«2     ••  ***2  •»  2    2  *•     * 2
              ••(2**2343»** «2***a2   • 2*  *2  *•  •     2* 2»  •    22*          *            *
              •«2« 22«4*3*3**4******  3*  ••   «3  • « • • *    •••2   •  ••
 26.OOO   4    >634B22232*27*2322* 22°"42     2*    3*« «4«  ««2 •  2*  2      «   >   *
              •373*42*23«3* ««22 *4*2«*  2  »    «233«  3   ••••*»     « 3     *
               33*«3*  4228*«3B  33 • 2> •    • •  2«2   *•• * * ««22      •          •
          4    ••• 3B42*4S*I 3323*222* «* •  2   **2>2*   2«« * *•     ••     >2    •
              •3843 27*(2B43BB*«2****2 •  « **2*  *   2* 2  **•    •  «*  2 «  •    •*      *
              "3382333432 232 '23283 *2 2""3*2  *  2 ******  2*   *  * * *
 22.OOO   4    ••••2843*7839 4**2223*  **2   *2  2"**222* 22*3 *2*     *    »«•     «••       *
              2223822*4874222433234*2223 *   *  4*  *  2342B* 3  2* *•   «2«     *   *  *
             •  2 424* 32884343* 2*2*4 32.3•24B«38*2« 4 3  2* 3*  2  2 «• «       2
          4    .3 5472483628853322*242328228*4.B*3*2*422**2 3*23"  22 •• *  *2     2*'    •• •*  *
                34428584743 3433*4847*3232   224  324**4* 3*2*2" *2» "22   *  *     * *
              ••2322346*2*32523*23346* 522*3 43   3*222*322    *2»   * * *2  »  *2  *2  * *            *
 18.OOO   4    «22 242S*B43B2BB 22*4*4686 *2«23 *   3*«2 3*  •*•» 2*2 *     2* *      * *      *
              2*3*849833 6B3344B3222 *33 2  B  22  «  32 *42 2*2*     *2 22*     *2   »*  *«
              •32 83*28(23 3B82  32*2428*322**4*   «    32*32  *   2 ** *•*  •  2*    *     *    *  *
          4     4 2B*2*43224*2*4433SB3324242422(*  *4"2 *«*24*2 »   **32   • « «   2    *       *
               ...337352.33254.23353322324.4.7"  33 "«2" *3* *    *2«  >    «     >
              • **«4* 33«25 24234473B* 432* *4S   *   «22   *     **2      »     »
 14.OOO   4  •  2***5435333**23733*4323 3632**4*2*  2**2* 2 **    *  22    *   *             *    *
            *  ** '2233*834622546 432*2 222*  32**  •* B   * *   2*   * 2*                 *
                 »«*32** 34*842  5*242 3*   .22 22  * *  *»   *    *»     «« «  2   «
          4      **«43* 4* * 22*2 3332* »   2 *  2"  *****      2
                   **   *   . 2*2222  *  *   **   2*  *• *   2      •  *• **
                 • • 2** ••222*****             *
 IO. OOO   4     *           * * *       .
          4-*..4.-.»4_.-.4..».4-*-..4...-4«*.-4---.4----4----4----4----4----4----4*---4>---4----4----4
        O.                  4.0OOO             B.OOOO              12.OOO              IB.OOO    FTPCO
                 2.OOOO             B.OOOO             1O.OOO             I 4.OOO              I 6.OOO
13;3 INTCRVAL>< 1O,48>: IO . 3.B»-SCATTER PLOT       M.  2BBB OUT Of B7S3   13.CMPC VS.  3.PTPNO>
CMPC
 4B.OOO   *                       *      *
                 *        2                     *         *                                    *
                *****    ••     * «    *           *
                • *    *    *          *    ••••***
                         **      * 2*  •  *•*•   2    **    *      *
                       *    *     *2***2*     **  *  2
                2»*    *     *•*     *2  * *                 *
              *        4*  *  2      *   2*2 **    * * *
                 «2    *• 2 «     « *2»*22  2*2 *   3   2    «*•
            •   2*  *  *  *       * * *•** 2**  3 2** * 42 **         2
            *    2    *  *  2 •* ** **3 2**    3** 2 3**  3    **    • •        •
            •*  *     «322 ••   «>22 4«*422  * 2*   222*** 2  *        *  »
           *  *• *2*  *«3**2   * * 242  *2**323*** **2 *        *3 *•      *  *    *
           •  * «2    «•   4**»   2 2* 22»*3 * *22>2224>2«         2 2 ««   *        *
              2*2 *  *  33** ***4*»S33*••2  2SB **B3*** *•  *  **   **2 * *        *
              2  »3 22  *    «   22*43*2422  *2223*2»»*22 ««2 *        «•   •     •
            *   >    **** > 2 < 42*  23*2EB322 *2223**32   **        «  * *
            «   *•  ««2  2  22*S*3*2428242*2>43333344 3* *   «««*  2     «   , »
             • 2      **3*» *•*  2 23822  3B6**22222*6•• 3*32  *•              *
             2       *«*3***2  *2*B 3*4******426»2*3» *  « 3     «  **   * •
             * 22*   *«*3*234 2 '  22*2* 42222*233 *••2222422**•  «     2         *
            22*  22*  2*2 ***23224*43***2322GS7423*2425  *  **     2
             2  • 2    2223*3  32 322**4*2 234*8332444*222222   *    * >         •
            4«2*» * *   44 *42* « 5*54  543 72B2228** * 4*22 •  ***     2  *        *
             *3*» 2**2*2* 2*3842*3*22322427*44246443* *34 *2    ***   **     *     **  * *
               2*1    »  2*3*  *2*»23*33  3B33S4344722*232443*3**   *22<     **22   *   *
            '* »  3 2  32  *22S *4*4B4*«4B»4BS9«447B4B4*3434»3* 22**2* *****    »   •
             2  *•«  *  32**23 > 3B222434«2B433B47S449*2734S*  22* » »  «   2  **    «    »
                24**  3  2»3**2344 322*  4B334B44 '34592234 4*«22  *            *   2
            2    » 3  2**3 *6  3*242*»438*4933*338B47332*  332   *     >          *
            *   *  2  2*2  2  S*224*S«3*» 64 3373SB36 3844324 2*«  33 * * > *> 2    >       **
                **      »*»3  2324 24  22432B34229 X32444322  3*   «  *   *»«  * *  *
                  *        **2 2*3 2382244*97X267874248*23  24*  *  2    3 *   *    *
                              22 244248433  84346482833242432 *2*2  3*   2     *  *
                       *  ** » 3   322**43*3*64244*B223332*>42*  3222 22   2
                            * 2 334247446S83342S232B33 42  2   3 2* « «  *   **   **
                             «2* 8 4 4*6BB325S23S22 3*3423*34  2     •*•»««
                             **2*   33«2*824*S*3**23««** 2  3*2   22** »2 *   *    * * *
                         *    ** 3 28**  **2  3 **2**3*22**  3 2***3    2              •
                       *          32  *3  *2* *2*2*  • *   *     *** «2 *        *
                                      >3*«*«*23      » 2  2    •
                                   .2*           «

                          .80000             1.6000             2.4000             3.2OOO     FTPNOX
                 .4OOOO              1 . 2OOO              2.0OOO              2.8OOO              3.60OO
                                                         4-5

-------
(SCATTER
UMPC
 2t.OOO
         VAR*11;1  CASES'ALL INTERVAL*! 1O.2I) ; < 0 .(»-SCATTER PLOT
                                                                     N* (113 OUT  OP  aSB7   It.UMPC V(.  1.PTPHC
                                    * *
                                                                                  DATA  BASE  IS E-F.
          4-    *2432**23*  * * *              *
             ***44**22*2**3* *24 2   •   *                                                   •     *
             •  "322423"4"32 **»2 *2* 2    *•
          »   *323  2*2 32242'" 2*22   2 *   *  *          *  *
             32*534'  '35222' •*•••• 3 •     •     •
              2364*222*22 2*43 22** «2   2       2  "                      *
          «  •*  332   »2223***2**2 *2   2*2                  *
              •732*3* *3**3*S»  * 3*  * 22     >•                        *
              B422  *  3 *3 2*24*2** • ••   3 2* *  *   *               **                  *           *
          *  '242286   3*«3232* 322*'  4«"  * 2*      *2                                    *
              **2422*3E*2244 3*2** * »2*»  •  •  «   2   «              **   «
             •2*3 432*4***233 2*2** 23»>»    *•      •     *     *•
          •  232*4»22 *423***2222 2* ••  2  «•     *  * *        *    *    *                 *
             •S3 442*2*4  4 *3»2*3***  * * 2*2 **2  •  2        *    •
             642*2'**t 2323  2*242 3**"'  »•  *  *»  * »2    *                            *
          * *4S2S*23244»2>     B««*«* 3   •••    «  «•  2         *  *  *
             37443724B 32322*4*24  322*  • '3*«  "2     *        *
             36623*232«*333 *•* *2*2 «223*3*«   *         ««            •
          *  48242«33**'22**33« '3222*2*   «•*•««*        **•*         •                •
            229752832*2" »«**4*  *22*222 *2 2  •**   *    *          *         *           *
             37454438**3 22 .*  2  •• 4*«22  •*•            *•••           *
          *  663774*232**433> 22  222*** 33*«*  ««         •«  2  «          •
             6635XX22*326«**3**2 •••••••2 «2  •••  *•*••«         *       *                *
            »X4>886222*6424« ••2*2*2***  ••••2222«''«            *
          * •7XSSBB74BBSS3434* "333 *3 **  *2*       * *  *    *  *2          *       *
             X777>438664433*5*23*23 * *2 3*3 «3* 2***   2*      ••     ••           •
             XXBXX76B46654342* 6"2" ••2322* •  3"    2    • •***     «•            «             •
          •  XXXXX485644XB5 3S22 322"2' '*>222222"  *«   *  *      *2 *                       * *
            *EBSXBXaaBBa4SS32E*2B 32**E*4*  '2*22  2*2     2 « •« *     *   *         *
             BX8(XXX(B48S3(3E3843**2*S223222*E4* **2*  *»  *   *  »•* «    *»*2    *     *     *
          •  B8X87X7BX7BX84B344E33*24242*B3****2««    2*   *»«*** * *  *                        '
            *•  BXXB7XXXEB3B3B33442422**42444S2 3*23*   2 22** "3 *2 2    2*    •
             •43XX6XXaS3X346BE2E3B*E2 34E3**24 36  * 2****  *3   *  2    *  **  *       *
          *   BBXXXXXX2X8B234744B22B *6* « 3 2233*23*2*3*33****** **2 «  *2  *   * •*         *
             • B(XXXXXX8X83BB4B7722233*3B2SS3» 4333323*38233>« ««2»"    22         *
             •*XXXXaaXXX7877332* 4*3882 4 34 BB42333  2243*43 •* 3 *  * *   *2**   *•*    *    *•     *•
          »  *3BXXXXX8XBX8743B4X33 «35«42553382323  2  * *42**3  2**  • 2***       •  2    *       2
             .«XXXXXXB7BX878a8*3434723744428*73*43333243  53" 4 * *      **S  2  *  **  *   ***32*   »
            *34XXXXXXXB7X27364aSa*44BB7B42*«4B424  462*2S*E*3*22 2*2  32* 2   2*  **   *****   **
          »  *8XXXXXXXXXXBB878Sa3B23842X*32*4B*43»*22BE»3*E33222S* 2 8 3**2**2   * *  •* *3   3    *
             3XXXXXXXXXXXXX783»7323673B84747BBS3337B4B*2B 2*822222*223  4" 3*32**2    *  *2»*2* * 2
              7XXXXXaXX7X3X8388BB7334SB83B*3B73*2BB362322284234233**223  22****4**4  *          * 2*
          »  228XXXXXXXBXXX27483(8B38B*a232243S44B273B422423*S4*84» 22 2  2****2  *    * * *22 **«    *
             3*XXXXXXXXXX4B768X3B3X37737B232333S4BB4S  4E732S2232223* 2 23*2*2**322»    **    2 * * *«
             2BXXXXX7XXXBBB77228444E8SB34BB4B7S7B3  4S33«8324*«234«»2«* 43 43 **  2*>  •  2"   ***   * *
          *  •BXXXXXBX7XB43BBB3SB24E42B44*B44*S3724*8423S24*2>3»3 3E**232 *«*2*2* 3**  22*3***'  *
              24XXXXXX«aSB75B(4487SB*74SX24SB3BE7BB3S4442S *«8****3  322* 2  2*** •* 322  2  • 2* * 2
              *BXXXXBXaB73BBaSS3B3433833223B38322423E  243*S723»23*E24 2***2 32"  «•  *  « •   2*    *
          *   28X3BXX8*B3*3323433»E3S334*344 34B473B2»42243**2* 833  23*23 2 •  •  •  **2**> *2 2  ** *
               BX7XBS2B22B*332***2448 **334*27232*4328*3  *42242*4*33B22 2'*''   3*     » » *  *
              • 23X82423482 3422E324 723** *2«2*234'**3*2*«*2** 23 *2 2 •   2  ••»  ••      **      * *
          »    2S83E  * *2222 2*»   332 24*   2*  *2    2»*  »»*222*        *       *

        O.                  2.OOOO              4.OOOO              8.OOOO             8.OOOO    FTPHC
                 1.OOOO              3.OOOO             8.OOOO              7.OOOO              9.OOOO
(SCATTER
UMPC
 3S.OOO
                                     2 ***  * * * *
                                       • 3
                                                    2
                                                   * * •
                                                          • 2
VAR>11;2  1NTERVALX 1O.28) ; I O , SO »-SCATTER  PLOT

 »     «2    *           *
   *    *42*4***3        • "      '      *
        3324*** *
 +    *3  22*62*'**     *  '  *            *
    •2*33**42*2*3*3«2 *2 •    *            *
    '*  32  5  *8  '2322*  2*2"  *   *      '  *
 »  *  3*4433*3  *  2*2* *
    22*34*52272" *«* 3 2
     **26*32**2 24  25*  2
 •f    *4«3*  «2*22««** 23  *    »    •  «2«
      233523**2«  * 3*2**2 « " «*22  «   •
     2234   *2 *6 2**23**»*3* 222*  *
 »  2  *E272>*«32222* 22* *  22***2 3*2*
     *  3*2*3224342*2  2*3»*2*>       *«
     2*22  22*3** 2  42**32"2" *     *•
 • *2*242*  *2232* 2«*  *3 2> 2  * *  ***2
    2632  62   *2  3 *3 322  **2   *3**  2*   **
    *44423  ** 3*6 *22" 2 2  *****   * *   *
 » *6248  24  2   «2  * «4* 2  ••   «  « 3«  «   «
    6637233  * 42»2**2»2**2 3  2 42*  **•*  2*3
    433*32322222 2" *»«2  **  *  ••*     32  *2*
 »  562*7»4«2«2* **32* *2**« *    2  «  «*«2 3
  • 2*76424  *224 3"  333*2*2  • • "* >*2***
   422243733*2*3 22 ""  22*2 •      *   *   »  "    ' »
 » 43442332* 43*4*233*22"  »  «    »4 •   "2  22   *  3
    463B7332422**2**2**24**     «*   «2«   2« *«  «       «
   2SX984B233   47***** «*»>*2**3   «    «««   2    2 *  **
 *  7XXX734444363*2 «6«« »22 • *2223  •  •  *  *«2«    «* *«
   2X8XEB563383332*"32 2 3    2*25 »**>2  * 4 *2 2    *
   *8XX4774E2224 E7S45323 "222  <*2* 332  2 *22****«2  2
 » 27XXX6X477S22«6*2S44* 5    23 43 2*****     3*«»  **2*5
   *866Xg7X4387437434232** 3  *3"2""*   *22** *  *4 2 *
   '3XXXX76*8525E34362 *4*  2  * 242*2*3** 52** * "  >3 22
 » 333X8X35BX4356243446622322443'*2  232    32*3*23"* > >
   • 29886X66767274  «22426324** * * 3**«2«6** * * 32 23*3*4*32
                                                               7BOB OUT OP  8887   It.UMPC VS. 2.PTPCO
                                                      3»
                                                      2*22
                                                       2*
                                                                          2*
                                                                         2 «  2
                                                                       2  >
                                                                2«* »   »   «S
                                                               I  3** 2   2«
                                                                  * • 2   * *
                                                               I  «2»«2  «22«
            3B46X88367482SB3B3>4 2*323 *2332   3  3   SB*««*442*3*32* ***   *  3  *2  2
            48BXXX8784932S368S232»3***3  **2*233344   22>*3*  223*** *   222
            6XXtX8XX84E4428SS26S3444424253B34**233222 *3***34»2 *3*>  **23>3«2* •
                   BSX3BSB4443«6 «3*4234E42E2*3*3  34343**3** 24** 323 1 »*2«  323* *
                                                                       **2  *
                                                                       2  2
                                                                             * *
                                                                             2»
>    2**
'  2*
 22*  *
    3  *
 «  22  «
    * * *
2
2*
            3BXXX8XXBXBX9XB83*S36333222422>322«2*  2  32*22 *322*2***4 «*  **  2    * > *2*  *  >
            *7XX9XX88XS8663736«6S*3332SS*22  24*42S*4*2»7  *K**4**2B 2 >3*22*2*42** * * «2**2* 2* *»
            8BX9X7XXXBXSS896*43 44427324  7*32  *2342223*32 «35  B222 *3243  2**2  *4»  *2*2*«   *
           *6XXBXXXXXXX7376427*66243673322*6443632233** 322*  2*4 3S22 2**  * 22242232   ***   *3*
            SXXXXXXX7X9XS4B27SB46745636573543*45262* 2*32344*2 3333BB26447362423 *22 »*232 3*** 22*
            *7XXXXXXXXBX8X386376362*EB3*2233426222B323 >3 2*273*4486 3 **2E2*4222 442** 3*3  5**3   *2
            27XX7XXX8X8X78E2S83S3*532325>85  343*24*234*2B434S*4*433333B*3  2  **72»2*» 2 2*»*3 222* 22*
            *6SBXXXXBBBXX77B6346267384*762*E49»233S3333B2B22 3***32  44  6234*3*  «2'2 2222«3  *222 *222
            *7XXX79XB67e9B4B66*433363S2S22S6e32S»243S34323**244 4*2 *3«28234 *2*2 3> *43* 3 * 222  *4
            *XXXBX8XSSB647E64523 3382S2S*  43223E3**35 2*22*43332  >433*  2*333*3** 3*222**42» 2*2*** 22
            *8«9XX8XX72378336923264442436S32246*43» 443242653*243 6442*2332* 4  3«223«* *2222  2 2*3*
            •4XXS9XE929444S 726462*44** 32*3*38  343*24*3*2273 2 223*23*332  2*«22*32*2*2*•23223*2 ** ***
            446496S445S624 7262*33*2 «2  2 * * 2** * * 2**222** 2 433*  *22<* 3  3  2*33*3*2 3*6223* **2»>**2 3*
             354X567234*332283 3**»3**24   4*4*2* * *3 **32 52  * *2 2 2*  *  *    2 *»• 22* 32**»22 3> «2
             '5524326*3 34**23'4"3 3"2*2  **2223*2»2  *233 • 2* 2*    «**2  *2*2> 3        "23 2 >
            *  223332**222 2«* 2«  « "  •   ««2  «  "  «" " » "    «   »   « *3   «  *   **   2***
                           20.OOO
                                               4O.OOO
                                                                  60.OOO
                                                                                     80.000
                                                                                               FTPCO
                                                                                               go.ooo
                                                          4-6

-------
 OCATTER
 UMPG
 28.000
V«R«1I;3  INTERVAL*!10.31);IO,I.4)>•1CATTIR  PLOT

 . +                   "* * 2   *      •  -----
                  *   * 2 *222*   • • •*     *   *
                     2* *32     2  «   «    ««     >
                                                                M«  7(43 OUT OF HIT  1 1 . UMPG VS.  3.FTPNOX
                                                                                     DATA  BASE  IS  EF
                     *    *  >2  «234«*3«  ««2«  2*    23
                      >*     8322  *2*22223***3*  •  «  •
                  *     *   * 2***4»2 3*2***  2 2  222*   *    •
                     *    *«   2 8  *33 3»  22  ***3222*****  '  «
                  •    *    **3 2423*42*2  » 4  *   ***** 2     *
                          *  » « 2***22*24** 2 22*  2  '  *** **
                    > *   *23>2> ** 222*48** * •  2  r   *  2*
                       • •*  ****3** 344*  *2  ** **2 *• 2*  *2*
                 »        *2*22*222*2*222 32  22*»2 3**22**2*
                    ***** 23222*33*  3**3* 2*  2  *  2 «   2**
                >      *• *  3 482*32 2 *22* 4*  «      **2  **
                 *  *  *• •*   *34*8****2  *3**42  •• 22  *»2
                  *  *222**3*****  2***22  4   2 2  *  *2 •* *3 *3
                 *• 2***2 * *3**   2*** 3223*43  *•* 2** *  *2*
                 *  *•  23*22  »32422B23*22*« 2 ***** 2  *
                  •34 2*3*243*7*43****42  *2  »»*43 *•    *
                   •2* **33*2322*4>*22  4  2 23 22*2 * *  *
                 *  2   34* 2* 2**4*2 *3*4 322*   *332  ***I3*
                                                           2  «
                                                           **
                                                       *    2
                                                        2  3*
                                                        ***    *
                                                      ***
                                                      *«*  *•*  *
                                                            • tt
                                                       22*   »
                                                    **
                 • 3  2*2*3*2843(33*4*2 **2 2    **22*      *3  *  *   *  ••  *
                    3«*2 3   24*8*442* 4 *4«23*2*«    «2 ««   2    2
                •>* 222322 2428 2222*222332**    *24  * **2 **     2     ** *»
              •  ***322 42*042534322228  4*2* 2  *»2  2  *«*2* 3   »**2  •
             • «23»B***2*4«53*5223243 *2 »4 22 3  432**  *3 32*  *   «2  *  *
             * 3 **»«« 34**42*44(44(2*4442*2 22* 3* 4242* **3*  3««2    *  *3
               3332*»33(434 B4 2237*25264*«4442352*2*222   •  2*23 2  «*   *      *        *  *2
              2**  222*2823*3*237332244 2BB4* * 224***:: 3*** *2**  3*324 *«*3 **3**«     2  *  2»*   «*2
              *  2*8434824 144 2144432* 4 • 45 33332* B S»4 •.4 *B**23 2*  23* *2*3 2*  »    **2   32    *    *
              * 2  »222B327 «*63X36328423863 537*44., S **22*  * *»2  2** 3 *2   »   ***   *
              *2»  ** 42233*2E34BS33(S3BB33*646333*3.'44732 3242** 3  ** *»  *2  *42   *   *   *  *2*2 *
               *    *2B**2B234B3B82443444(B472 44433.3432*5 3 422******  32  **2    **2 ***   «*
                  22 3*32 *232B42324683233342B4682*32B2322B2  4*2*3*  2332  222**2 3*** *2      4»*23
                22** * 3*33 32BB*3S7(B*B3B7433(24*3B:.,4243*24* 323  233**43
                2*2 «2**24 3384324X29X873778732382331-2244 94 *2****32***   22
                       *23377364347B6BB78BBB83X833332S4443S34*33»  *3*23 2*3*
                                                                                3*32
                  3 32«24372B4433B87(X8SX(4(4(4 2422BB2 7323  38*38322***222222*3  **
                  * *2»*B 8438484488(9(7X6X7788228823*8233332 24**22232   3>   «*2>2 3
                                                                             2  *
                                                                             *  2*2
                                                                             *« 2*
                                                                             • •22
                                                                             *2 2
                                                                    *2* * *
                                                                                  •    «    2*
                                                                                   22****
                                                                                   * * *  3*   *
                                                                                     • 4*   * *
           *222324B24(BB(77(77((XXS(BB4B474B23B  2334  2*24***33  42*3*287*  2*3       32    32 2*
      ** 2* *BS28373(B7B7X4X47XX«XBX(B9XS3B*343*322BB4*  *334*4*2**32*22   3  *2»   2**    *   *•
     ***  *2* 2***2S484XX87XXXXX296677((47((433BB2B3BX3(B4*322  3B24»3(4*  22*34   2*3*2  *»2*3
        **  *3223374BX(X((87XX(B(8(X(BXB7SB744BBB3743S7232433 3**332  322422 4*42*3*222   ** 2
           **3B* 32BBB<6XX(4(7B44X«7aBB64989B9(BB4E2B332643323324B3342**»3* 4*  3423  *  *  32
      *  2    **424B48X66X4XX787776X6743X7362X24B42B24B33*334B4*2BB48***2*22**3*3*B2*B  ** 4
          > «3*«2**B(4449B(7XX9(97(X(9XX3(S(4B73B4EE  6*3  33B**3*2  32*2682(232****   3  *22*3*
          232*3* 27(34(X3748BXBB((X(X(*(BX97B434724B282*4BB  232*8428*2228**2  *32  2823  23**
        *  24»*423B33B4277478B74X7XB788(6X9*3B43B*32*2*2*4343*8«4*4*3332  222*2*   22224*  43
        *   •2324*23844B3BB(2B(42(7B27378X7(7B47434823B22S6434B8246 (442  32 2*  2*33*  242223*
      * 2** 22 2*224834738 748B*BBB78S 27B3B74B(4442222*3**424*(324*3222342*4222  *2*2   »22 2
       2**   *2 *• 3***2B3B24BSB37234B4B42BB82*242*42B24**323 3333*2**3 32  *42  22*2*3*2    *
          ** 222  234*8*3B4237B73B(3434(4237*3*223234*  (3   2**2  3  3«*  4*243**233     *2*»    *
        *•   2  *3*»*2*7S43333* 36 *32 B»323243*23  2  32*6  3  2**22*  *  2  2*  *  2***  22**  *2*
           •   2   ** 2*2*3****342** 3    22 2  ** *   2**2   **3  *•*  *   *2*2* 2*   **    *
                            1.2OOO
                                                2.4OOO
                                                                    3.(OOO
                                                                                        4.(OOO
                                                                                                   PTPNDX
                                                                                                   8.40OO
  **
            24232**»2
                       » *2
               2** *2
                  »  3
               *    * * * 3*
                         * *
                     * * *
                                  *2
                               *****
                                    2*
  24*34*2*
  4B*3**4 .*2  *«
» 234322222  *3>*
  *43S*>*    2
  •33 32* 3 2*
+ 3BB4** * 2  * 2
  2S223 **2  *3 2
 •((2 3»*3 2   4 *    42
* 447*2 2 22* 22** *  « *
 264** *2*  3 *2   3* *2
 *4S4243**2    *** * • **
»3786232222***232  2**2 *
  XXSB6*4*»3  *2  *   ***
 3XX63* **>2*2 *4* *
+ K63644*   * ***  3*2
 *XX4 732322 22      ***
  X7S333** 22*   »  «   «
**8X4443*3»   * 3* «2 2* * *
 3X74(2 42  **3 22*   * «  »
 «9(X742*  3  2 ** * **2»  2
* X99S3463343 *2*» **«2    >
 *B(X37234***2 ** 2 2* >
  X9746B3**4* ** **2*  «
»*XXB93S3  432  2  *•   3**
 2XXXB384S 3* 32 * 2  2
 3XX(XB422B2*44 **** « • *
• 5XXX7S7462S  3*  *.  •    **
 2XXXX7BC.3433324* »*32  •
 3XXX79XBB3472S >2 22 2  • «
• XXBBXBB49B246****4«*2  **'
  XXXX9XX36923S33  2* 2 >*3*
 2XXXXX8X746XS422424
* XXXXXXB43X2342*7B4*23 2
  XXXXXXX557737*33  >32 2* 2
  XXXXXXXX4872O42 2>  • * >
»3XXXXXX(X693B43 22   2 »
 *XXXXXXX7XXXS(B2*4 24222 **
  XXXXXXXXXX9(53S*323> 5" 2
i- XXXXXXXXXX6784B3443223* 5*
  XXXXXXXX778BB344*36BX2*234
  XXXXXXX688B46644365 5*4*32
* XXXXXXXXXX232*4543*35**4**
  9XXXXX9BB95444* 232>*4 2 3
 *XXXXXXX72SX373>43623332223
* XXXXXXX669334*432*»  2**
  XXXXX7BB775253222*3  2*2
  *XX5(623526 52 533>  2  3
* 2256243 24   «** >   2 *

                  .8OOOO
                                           * * *
                                           2 3*
                                      3 2*»

                                      2  '
                                           *        2*.
                                       •  2*2
                                        « **  «2  » 2  «
                                       3 *   2 «   «  «
                                      ****  2*  *2  *
                                      « *   2
                                       *  * *    • *
                                                   * *
                                             * * *
                                        *« 3
                                               2 4
                                        ** s *
                                       *   »       «
                                         *2
                                          *
                                         2*  •  2 «
                                         *  *  * *
                                       « 2 « 23
                                      * 3 * s *   *  2**
                                      *2*22*3  23   2*
                                          «  * 3**2**2
                                              »«  » 2 «
                                       * *•* *  c * 3***
                                       3*  *4 » *4  2
                                      2** 3S2 2 *2**22*
                                       2   ***4  *2 4**
                                      2*3332**«2 " 432*
                                      *2»*2  22**232
                                      2423 <2«* 22
                                                  « 2
                                                *2  *2
                                              *4*
                                              »2
                                                3
                                                          2  > 2
                                                         2  22**
                                                         * * * 2 *
                                                  2 * *
                                                   * * * * *
                                            «22**3«2*»
                                       2  2» «*2« 2» 3
                                       > 3 * >*  >  22
                                        2 »*  2*
                                               2*
                                               2
                                              * * *
                                                                                                  PEHC
                                                                                                  3.GOOO
                                                            4-7

-------
;<0.SO)>-SCATTER PLOT       N* S96O OUT OP 1617   12.HMPG VS.  « . PKCO
HMPC

 «2-808   *;.;: ,  .             ,                                               DATA BASE IS  EF
          4B » *•   •                                                           ^~"~~~~~~
         »2332«* ••      *       «
          38*6*2 •  • •
          >S 32 •  •«     «
 3I.OOO   *7S83*4*  2 •
          31*6 •• « 3  2       •
          46624 * **2*  *2**   *    •   *      *
         +614432*  4*«2*    »   • :
          742S««3 «•   •    *«
          •67*34 ***•  *••      • *     *    •
 36.OOO   »T6«4«  •  2*22     «««-««
          4SS22233  *2  • *  4   *  2
          112574* 2 ***2  2  *«««•«        •
         »4X4233«3« S***   « « «   «  •   ••  «
          2IS23233*3 «  «•  « *•*            *          •
          6713*318  •*    22*****      *   *
 33.000   «X9442434« *2*«*  2 >23     *   2    •     >
          XX14334*4   •*•««*  »   3         •                  *
          XX8 *6>3***       2**2           *   *
         '9X23242322   •   2     •        •  •*         *
          XXS4I*4*2 2*    3    3     • *   *                         *
          7>4344 3  2*   *   *     *     2*  *    *          «2    •
 3O.OOO   »6XX«3 22  **22*22 *•          2  •*     «   «
          XXB23432*   2    •     «
          XXI2«2I**>**  *2    2  *
         »XXB62423     22****** •*•
          XX3S*43 «•«.«.2   2   *
          XXS6*623      **  2      •
 27.OOO   +XX7I7* 332 **«**2 •*»
          XXS7I6*43  *2«   ** *
          XXXX7B*24*4*>*   *   •
         »XXXSB32*  »«•  «       *« «                                   «
          XXXX642 2*4      «    2     «         2«  •     ««   22                       *
          XXXXS6432**2  *  *  * •     2*2 >         *2 2               «    «
 24.OOO   *XXXXX664***4  «  •**•• *  2  «    *****             2            «      •  «
          XXXX(I627«222   * 3  3*3*   «       «     «       •       *                     2
          XXXX6X366322*23*2»  •* • «  2***2   *       •       •  ««
         »XXXX6X7*33233B*3 4  • *32  *  *«2«2 ** « «           «  '  •  «
          XXXXTB483S2*4 2*222 *** «2     **«**3        •  «« *   .          *    *
          XXXXXB23*3233 «*       «   ««     2 *  *2* 2   **•   **         *  *2   •
 21.OOO   +XXXXX6743*24*22*    2     *222*     *22       *      *              *     *
          XXXXX6B*8262232  *333B •   ««   «  «  « »»**   •   *>22>     >   ••>«         .
          XXXXXX4B3S334S2  «232 ***2    2  «2 2*22* «2 «   * *  2*»   *  *»
         •XXXXXXBS7 324*833>  **• 2  2*  222     »  2*   3  * 222    «        ••  «                *
          XXXXXXXS73B  2*  3**4*2 33*  «*• 2*  2 ••*««*«   2  2  *   »    «      *           •
          XXXXXB4436222*4232* *** «•  2 •«  «•  2   22 •**  *2* 2  * >            **
 11.OOO   »XXXXXXX73B4*3 4  3»**2 2 B  4*2 «*  « *  3  ««  «    «3  •     «           *            •
          XXXXXXX7B462* *324*2  22  • »   2   « *22   2«««      «2*   2                            •
          XXXXXXX7**3**23**32**3* **3*  *2**    .......      .. 2 ««      « •      3 2  •  *
         »XXXXXX632*6  33*3*22  •     •  *2**2 *   . *       •» •  *• *4     • *       *  *
          XXXBXX72B22*  *2  4   *•* ***2    **• **>.*2»**«            •*       *   *     •
          XX6X9664  3 22*222 2> 3 ««2*        *       *         ......           t
 16 . OOO   + 4BB 738***  2    **•* «•**»*            •
          + . ...+....*....+....«. ...4.. ... + .. ..»....».... + .... + ......».. ..+....*. -.. + ....*..--.»- ...4... .+
       0.                 20.OOO             40.OOO             SO.OOO              6O.000    FECO
                 10.OOO              3O.OOO              BO.OOO             70.OOO             BO.OOO
12;6 1NTERVAL»<1B,42):IO.7.2)>-SCATTER PLOT  .     N» 6O77 OUT  OF «917  12.HHPC  VS. <.PENOX
HMPC
 42.OOO   *                 *»«••«
                 *            . *    *       *    *           *
                           *  * 2  3 * *  *    *   *      *
         + '                 *  **2    ••  2  *"   2   *      •        .
                        * *   *****22*  **    *2      » * *       .
                         *3»2*22*2*«   '     *      *   *
 39.OOO   *        *       *22 3*    .  4*  .   » 2*** *2    *       **    *
                   «     .  «2  2  *•«   «3 222 22'»*   2   '   >    *2
                   •  *  * 2* *2*3  242*2**   * *2   *2  *2  »  •         *
         »              * ***«2 3*4   2B* 3*2  3*.    •  *   * *   «      .
                        **2**3*422*     *•*     **•..                 •
                     *     * 22 **3  *    223*22*  •«..     *     *          *.
 3B.OOO   *        «••   3* ««« 2«*3  «•  •« «222  «2    «2  *  *         *  »   **
                  2   «     « 2* 2  33  ** 322   *2 22  «      2   «        •« •
                2*2   2*  '3222  «44*   4**3 2  *2  *22     *   *  **                  *
         *       3   222  2**  *2*4>  »34   * >   * **2*  3*  * *   ' 2
                 *2»  «  2 *2  2* 242*»22     »    >2**>**2       *      *
             > ..      ..   ....««4>. 22** 2   .  , ..   222   ««  2          • 3   •
 33.OOO   *   *2*2 **  ***42**22 *2223*2*32 **** **2***  *  ***     *2  *  *                   *
           •    22  «  233*2*2242*383*2  3*22*****2  32   >  2   * 2                *         *
             * 2***2***3 2*43*** 22*32322 **3 3* *    *  *  2* *
         +  •*  ••»*• 2  **2222**  5*22  *32  *      *s *******   . *2                        *
            .. . >3«>«»22*3**22*22  32242 *3*«.     •   • •   >  *2   *           *      *
           •**2 •  2  *2*2 23* 5 3   **22232  « *  **2*  >      *           *
 30.OOO   * 2*   2****3*****24*4 .  3***  4 23**   2 22*3       ** *  *      2
           .2 *  «  «« «  344 4*3B3  32*  232**  *   2  2  *     •*»  '     '
            •2* *2**  3*2*3243342*  42*>B* 22 2      *     **        *  * ***           *  *
         «•• «2   2*3*42**2*3334 S344*  «3B 2*3      * 2  2*«2        2                   *    «
              «23  «2   3*44«2*«*«  »32S22332222 •*«  . ««   .  »     .  .
            .... 3**322*32  327BS234>23*23  **2««  *...«»..»     .             *
 27.OOO   • 2»3224*S33 **222S277243232*2*322  **   * * 2**  "  ***
           S22 *632*3*2***253»334*S3 222**S2*  2*23* 2  *2* 2  "      ** ** «     *   *
           **2 43 2  2*34**37*«22S5  534*2 22*4  3 *22**  2  **2    ....  *2*         *      *
         » 22 44B 2  2*3233425332133* 333* 222 2    «**  2   2* 3      **>    »>3       2  ...
           34*2  33*42222»3574X952BBBB  246 2*2* *3   «»4*4«* «*  .   ««*   *    ...  2   *     *
           *232**24»3246S3S5682375S644B38243**2*i4 *2***  ........ 2 2  •».   *«      «  >
 24.000   **2«3 * 243. 24*6 *324S7BB3S2443 2343*  >2 *23  2  3  «*3 3         *2 2** *  *   **  * «  «
             >* 2*32  523544S879X1XB2436B274»2 532**24 *22    33 *2* ....     .     « * «2*»
          . **. 3*3532375S4756SB72323445424***5533****63  4****   .   ** 4***     **    *     « «
         *   22*2*22  B3561XXXB39B7934B6243443S3*22223*323   **2   *3* 2**  • 2***   * 2        **
           22"«3 322233SB2X4391157B742343223S42*B«**3  2*2 > 2«*»*2  « 2 2*   *   ««     *    *
           2*2*2* 263344BS7BE7SXX765736S*43B44242343*»3  *32  2*22"    >*2 2 •       •    .  .« 3  « «
 21.OOO   • «4*23**  2*31BSB97B22XBSSB5B3X4S754B5 *B2*2 *42*22  32*5***** *>2    ......  2  >
            *  2*23BSB45949X1XX971XX7XXX3743B4B«4*232323**22322*2 2*2  2** **  *22       *  '  « «
               *5B2333B2XB91X5XXXX9X555347eBBBB23B73S2  2*334*2 **323 2> '*3 > »2*3 « «  >   «2 ««  »>
         •    *«*«2SBX466BX9XX53771aBXB441XX7SB875373e23BS4326  *«332»2 42* *> 3*    .  . .  ...     .
               2*23222*451XX4BXX7BXB5X4477XXSB7S556BBei3B8*2B42332**333 22** 2     **>*>      .. .
             22 5«.43.242 599B 7 X78 54489 X446 X13S37845423* 552422233* 3*4*«322*«     « «*   *  2 >  2  >
 11.000   +    2*333*227454463B5SXX379X953B47B7B54673*3S3233>36222242*2232*32 2  22   » 2*»**2 *'   *
             2  23»  *4427X345SB367543SXX37 44574347643*3352 «3E   **2 3   2*5*     * 2   >   •  2*2 •
            . **  2*33333X4142426X4493X254X43463*4535*33*22224 **342** *2* 3232  *   >3  *>     2* * >
         *     <**6*2»343*!B52443S645S7656944434 4 44433"*43 322 "42.224  2**3 >  2  2 *  2     «  •
                2 2**33352444424432353B4*72»233*3*2S5 52  22*244. *232* 2*»3****22           * * 2 **'
              «    2««  2233«.«*342322«72  S3*2** 24.222"  2  **232 2«2*«.**4  3«     .....   J  ..
 15.OOO   +     »   **2»  " « ..* ."  22  23  22   *•« "2     »«     2*    *      *  *****    .

       O.                   1.6000              3.2000             4.1000      .        G . 4OOO    FENOX
                 .1OOOO             2.4OOO              4.OOOO             S.60OO             7.2OOO
                                                        4-e

-------
2« 3 • 4222«*2*2       •    •
   •*3*3**2T322*2*   »22«    «    «   «
 * 23 22 2 4> * 22>  «  2    «•  «
 •2*2222*2*2*343** **2>*2   2
  •*B42»2**3»2233*222*   3  «     «            •
 • 28232*42*222 22**   >*   ***•      «   •        •
  •3322    4* 422R • 2     « •     * « •
 2343233  •* 3424   3  *«*   2**  •• *       •             •
•222*323 2324 2232 II*** *2 * 2    •   •
 • 7 48«242«33«32  *2*2**2   2*  ••                   •
  31*43 >3*33*8*32 3*  2                 *
 8t» 438*3* 2*  2**2*2*>*   2*       *     *  ••
 4337*43377*2  *   *22** 4      ••           *     *
 215344434 32***  2*2*  •»•   *          •              *
 •BB322432233«2**32*23  *2**2  • •  •   •
 •*8242332*«*42 «223*2  *32     2   •
 3X8823222*2334 ***3   4   •   *•*    •**            * *
•3IB388 3 *32*«3  * *   * »3  **2    2       ••             •
•48T447332 ****3* 2 •*«*   «*         *         *  *
 874X7822*83(24 43 2** *2*3   **•••  •      •         «
 7((2X(344**3(232 *3*22«   2        *        *
2(XXXX72***(44( 4 *   2»*    2 ••• *
 X7>XX4(2333423*2 2*233     «« «               *   •
 X(1SX(4(1B4(B2 343  •      3       3*                     •
*XXBXX77XX73B22(24*3324     *2 **2* *2*    •      «  •    «•
 XXBXX8X(2X7X4B*24 B*3*»2*4   «   *2*> 2  •   •   «
*(7(XXXXX8S>7S7333»44**332»4  223**   ••» *              •
 7XXa4X7XX4B7BS348B72334*«2242*4 • «2 •   »    «     •
  27XXXX7X8B8B7B8333S322*3433*»*   •• 2 2  2       *
  S(X(X(X9BBB7343(334B23*  32*8* •  222**  ***22>**   **   •
 •47XXXXX9B7X47B733B232B44  232  »**22 •  »*3*          ••
« 38XXX8(((XXB44BB(824 222>2B**3 «4» 3*222*2*32*  **2    •
 ••XXXXXX8XXXX8B7B3B4323B32B 423*22*B*>   2* *4>  •  •
 3*XXXXXXXXBX7((7B*2B4 33246 44  222*2*2*224 *22*        •
 •BXXXXXXXSXXBX487BX3*4444B44*4*»3>  *2«2 **2    • «  «  ••
  B7XXXXXXXXXS9(BB78B*344743**2234*32 *22 333* 2*« *' ««
 3XXXXXXB(XXXBB2XBB78SB273*S42 244424234*86 *   «« *» *  2
  BXXXXXXXXXX(X(BB7BXBB4BB4(242334  2 B3**222>24*»
 3 XXXXXXXXXX8XI37B44732BB3B2 3*142*222*2*  42** *3* 22  •**
 *3XXXXXXX98XXBBB3822*X3233B433 22343 >32«* 3 2*   **•
 2BXXXXXex7(8BB2(8B7>44BB3B4B**3B 33232*3**  * *«* ••  >  ••
 234XXXXXXBX8X79736BS3*4433222222 **3*2*3* *(4 2**> 2> 2
   «XXXXXX8XX*2B7B2 33 *3B322*B *42>4**3 * 2* *2**2 2
  337BXB767B724243234223232»3****2*222 ** >  «3* 3  « 4
   4X8X7283834*823 * **232«*  3  ••••23 2 2*2      •  3*
  •  324*42«********   •**    *«  • 2   **2 2  •  2  «•
                                                                                   DATA  BASE  IS EF
                                                                            *2
                                                                       • 332
                                                                        * **
                           2.OOOO
                                               4.OOOO
                                                                                                FTPMC
                                                                                                B.OOOO
23*2>2*    «    •  »
          +    *234*3338***32*     *2*  *       •   •
                24*83  8«*3   2*222     ••       «•  «      «
             •  *S2*2*2 * 2 2*  *    *    2**  *             •
 29.BOO   *   *  2  824*  *2* 2222 ****2*   *   •*  •    •      *
                8*23824 »**2 • »32* •  2  4     '22
             •••334  *«427   »B*   •  *    •   »   *     *  *
                                                               N*  BIBB OUT OP BBB7  13.CMPC VS.  2.PTPCD
                                     2
                                     * * *
                                • •
                              23> •
            ••3*423 2«*3*33> *  3
             2  32**4 3**2232*2 24  23 »     •         2«   «  2
          *   2*3448 2 223*«*4> 3*3**  •  •    4  «*    •        •
             •4»S23*2**2 3* 3 •• 3*2«* * « • 2           •  2
             3SS3*S**42 24 *2    •* 2* 22      *•  •      •    *2      •
          •   S447*44   42*2 3224**  •   •*•       2        •
             B7*SS*42  3  ««2*** 2* 2**   «* * *           *       * *
            2283B33** *23«*4 ••2*22* •   • ••• '*»2  •«  ««     •   2 «
          »   2333>4B»(«2* •  2 2«»  •  •  •    «2  »2«   «*  *2«««    •
             37SB23 4 43*3* 2 • 2 B«2 •« • • *••  •   ••   2«       •
            324B224 2»2332*2 2 22> •            ••••  »   ««     •
          •*2234BB24*»34 »««»>2*2* *>•  •    ••   •«    •      •
            4SB6S6B2»32«S43* 23 »2 «2   ••   3*   »   2   •  2       • ••
            24BSBB3222B334 *222«2« 2» «4*«2*  •  ••
          »   XXXX9B8423*2«222*3* •• «2 • 2«*2   2>     2  **     2
            2BXBB72**S324B22*2*«2  *• «• 2    •  •  «2«  **2  »   •   ••  •
            •8866aB6B47*4>22*232* 33  22  2 •   2  »        •   2   2«
          »   XXXX7X3B42432B64432«4>***2  *3 32 *«4*   »«2  •   • »  2 •
            2BXBX7B62SS33*B424323* 4 ••2>3S2 *2  **   2  ••    2*'    2  •
            «29X9X7X67SB735*B24732* 2 *2  2  *2*    •*  *2*23»  **2  •
          •  23BXXXX3B9BB2S27*2 B243222**2B  *32  «  23 «23»322    2    >
            3 BB7X7XXXB4*g338S3222222«232*33**»32   242    *3«> «   •  «
            • *.*«X8XB2B43S5«2SS«S«3«2222»«4«* >B3*2  «2  •••••  2**»    •
          «  SBXXXBXB3B7S3SBB23S2 33«2 32543*'  »223>       3  23«22*'2>
                                                          • 3 2
                                                           >3  3
            SXXXXX999BSBB793BB2S3*6*3232»3*32  2*3*32*   •  2*23*3 2*2 2 •  * 4  2
          »  4XXXX5XXBX9B(B>X*2«48»23222433*343*****2»2  *2   22* •  *23 32    >2
            BX7XXXXBXSX97X4B23B34222734B*2233*22*2  424*2  «332  2  4  « 4  • **2
           •4XX7XXXXXXXBBBB449 SBS24S5•224*2«3 324«*  3*2  *   *222«»2 ***2 «» *•
          »  aX7XXXXX99(X3B*BB433444«443452373222243  **  3>332*2* 2423«232424> 2
            *BXXXXXXXXX77X7*BB675*4B27S332323  •33B32*2**232*** 2»334*22 3 2**32
            • 79XXXXX7X9XXBBBBB*B44B2B« 34***S4*>  23*3B«2*«** * 23 332' 22 3 4*>32*
          »  •7XXXX»79BXX8533B47*3SB*3*24*22224*32 2*223** 22422• 332t 3*2' 2*«
            2BBXXXBX77BSBe72BS2B*3>73 23*2**2>3422*3B>•3*3  **B«*3  «322 43**2 3*
            *BBX(X9XB727SE282B*43*3325>22235353>2*2253>23   B *2   24*3 • •  •**•
          t  •S7BXXXSB2S*G743B23**3»B2  4222*22*2  S2  2 ••  »$*•• 2 >3>   2«  22
            43524SS592B4223*4B322* «2>3  >2**2*22*   **• 22242*  2»  < ••• 2  •
             3426644853234*2 »*2****4222* 2««  «.•    «2 *«»**     «••     •»*•««
          *    *2******2 2B «22 3*        2***«*     2a     *2**
                                                                        2  •   3*<
• 4***
 • * •
• 2*2
2*2 2
2 >2
  >2
                                                                         2   •  2   >
                                                                       2*>  2 • 3**
                                                                        2 3«  •
                                                                       2««2«    2  •
                                                                        2     «2
                                                                        •2«3  2    *•
                         _ 2O.OOO
                                               4O.OOO
                                                                  60.000
                                                                                               FTPCO
                                                                                               9O.OOO
                                                          4-9

-------

                    *   *  * 3***32*2232»22 *   23   *    *     *  *  «*
                     •        *42*4**3»*  •      *******                •
 21 . BOO    *        *    2*   *   232**3   3  3  * *2** *  2     *• 2   •*      *         *
                    >   ***»2*22 3222*322  * 232**   ***•      *    *           *      *
                  *      *  2*2* 2****23***2* 2 3*3**** *2   •* *
          *            *  2* 43*3 *»    2  42*  *  *  *     2** 3                               *
                   •     ***2*  ** 242  31*  2 4*2  22*2  *2*    «« «   •         •               •
                      •    **33242422232 *• ** •   »32*    *«»•*«       *
 21.OOO    *         * 2»**2*2  422**S2*«  33* **  32    *3     *** *2        •»
               •    *  * *2 **4 *2*3  224**2**   *  *2*     ••    2** *     **     •
                *• 22 2222*** 232**3  **«2  2 S*  •  •  22   2**   * *       »          •
          *         2*  2*  234332**3*l**2*24 23 «•        *     *     *2*    *      *
                2* **  3*  *2*2*4*T22** *33* «   23    2>2       *     *  2      *  *
                  •*2* *2I322432223 4  22  8*2*24   «3««       2             *
 24.tOO    »      •  **22**2***3333***2  2  3*221  ••  22  •  ••   *        *•   *  *
                * 22>* 4*»*4l323a*34  »222  2 3  *  *•*   •    ••       «        •            •
               *• "2*224 ••22115111  «B*3 22     ••   • •  ••        ••
          *     2* 22* 22*  B23*3**B3  *3  3* 4 *•   2**    «     •  «                 •
              • **3**323S3»23*2II3*3*3B*242*2  232  ****2*         2«>*              •*
             • • 2* •• (2*224 3*4*2323443233*2 3  22   •«  «2  •««...«.         *         *
 22.OOO    »   *  *2322*2*3B  41*32119}  23322424 3 *222**22*   2*** *       2*   *   *  *             *  *
             «• 2**2323333»4*B4>433   2**32»*3  *2  2***22*  *2 *1*     «    2     • *     *           •
             322* 2223B4*332*«*34»*1B422*43*233» 2*42*   *««2**2*2           *         *
          •    3 **4322B*4l22B239BX»2BB*3a3*222»B*  44*22* 21**** *21  * *  2«*   2  * »•       •«    «
             **2*   443B2»3472a3*B2*2234933232*B4*323***232  «23 *3*  *   * 2 2   *** •   *    2    *  *
             •*2  *424B*32I2 2B3B244B3*39B42B342222(242222*2  * 2*3  *2*«   3*     2 *3     *2   *
 1I.BOO    *     3  *23 33233 22B7B74B3*444*IB*BBX342*44*322*332**   *2*2 2**   *2»  *  *             *
              •*  •   **2**23273B33Ba(24aB74SB324S23*S3E3 23**4 3 * 4**   22 *23 * 2*        *   *
              *   3* «*32434437*34474«31343B222B4 3B22*B  243 3* *2»2***3*  4  *•     • •         •
          4     **2**B*l*422B2B32344XIB2T7B474a323344B**B 52 **3  « « « *2*  *•     3*        2**>
             • *2  **3*2*24a74441B7aXBBa4BB74449243B22BB*S*4   2 *33*22 **2 • 2 2*« • ••*  3 •      *
             • •  •• ••• B4a2B2S2Be7S77BtaXBXB4TB3B32*4e*22S3«2*3»24422** « 2 * 4 3*»* •      * •     •
 17.OOO    «    •   « 3* 3423B47393BB9BXXXXBa7X3B 2(B4»IB* «2» 24223 *3  22*  22* «2 * *  *   *    *   *   •
               *  * *l«22S2B2a33BX99TBBXXXa99BaB94aB*3B3 IS *2>4 2*22*2 2**2 *1B  • ••    2      *
                  2 **Bl*27B44IBBBXaa>7XI4Xa7B3X7337BB*434*3*7a*43B2*2* 222S* 22* »2*   *  2>*      •
          »        >   «21 214BBXBB7BBaxal3I7BiBB44BX47327BB3B42B4332B4* * *4«*   **«2 3**  4   *2
                •  «* 2B24*32XBXXXXBBXXXa47XXXBBB(a7SB5aB23233*2 32*   2223*232 *»• "2*  <*2«  •    *2
                  2****4*3* BBB47BB4aXX7BB9XX4a4X7a3e3(327B4B*3322224*2223*3222»23*2     *  ••  «  «
 14.BOO    »        •  *22 *2 94474a9474a9B4aaa4B3473Ba24B34B3BB*4* ***2224 *2*4 3**»3  22***  2  *
 1 2.000   «
•• 224*4* 323244aB4B39aX4tBXB3434SBX4B333B*43>* 2* 2222242223****
•22* 2 **223233B44*24B723«BtB4*23aa2BBa423*42*3« >222 322> 22
*2*** 3* *32433*4233433*3*23324*32 3 213* * *3 22 *
1.2OOO 2.4000 3.BOOO
BOOOO 1.4OOO 3.OOOO 4.
• ••* 2* 2**
* 1 *2* • 22 222
3 •••
* ^« • •
4.4000 PTPNOX
1OOO! B.4OOO
                                                           4-10

-------

                                                  *2 2   22
                                                           2**«2
           • «**2 2*
       ***3 **• •
      2»*343 2   *
    >  ••4234*     «3
         33232     2
      2324322324*  2*
      42BB7 '2232
      •48332 3       «
      2 B7B48  *    *
   *• 43732542*22  3
      BBX743B** *
   2 *Ba4B7B33323
   •3B2BB7X8B52213**
     B37BXB4B443342   2*
    247BBX«XXB2BB*4*3     •
   32BBXXBXBXaXBB2* *«  *3
   23BX7XXXXX*3»4»3 23*  2«««»»«
   2BBXXXXXXX7234* 2 3**  22*2               ** •
    8BXXXXBX73X422273 «  *« «    «« **o*  «S2    *««  * 2
   ••XXXXXXXX3B8*B74»*«433 2 22  •*» *    2* **         •«
  •7XXXXXXXXX9X768823B24  2 • 32*2 * 22  *3*22   2*   4   3*
   2XXXXXXXXXXBXB7B243B   4* * «2««2  *«>2*2*3   *
    BXXXXXXXXXXXB74*3 32  3«*«« «  22*2**  > *        * ««••
   38XXXXXXXXXXX7XXa*44**3*  • * *2» *   B  •* 2*3* *2    *  *
   BBXXXXXXXXXXaBXB43B3B3B3«3 •4«2*3*433»2 ••* 3* 3* *    *
   42BXXXXXXXXXXXX437224*24*34*(2*B* •**  4 *3  ••2*322  •* 3
  2*aBXBXXXXXXXXXBB3BB7B  2B 3»*B2*B*222**** 2  B* •* *  • «
 **  BBXXXXXXXXXX8XX72BB*2B43433B4244* *2*B4 35 332* 3*      •>:«
    >7XXXXXXXXXXXX9B98B53382X7*B732* 32***4»3* 2»* * **2
   *2XXXXXXXXXXXXXXXXB7X4X7BXBBXX»B3 224  S3*    *4*3> • • •*  *
  *22BXXXXXXXXXXXXXXXXXIBB77X*3243BBB2B3  B**3*2*334   *4«*    i 2
  •  3EBXXXXXXXXXXXXXBX8B4X7B733a4*B23B3*  *2*32*2 *  *22*« **. *2»
    S7XXXXXXXXXXXXXXXXXB4XXBBX2B(8B3*B4332 *33 *  32* 2* 2**«*2«
   •3XBXXXXXXXXXXXXXXXXX4X34XB7XB3B22S *  32 22*     **  ***   2 2.
    S8XXXXXXXXXXXXXXXB7S*Sa37B*BS23424S2***2 **2 *   •   •     •
    *BBXXXXXXXXXXXX4XX372X7aX3B43282 84  *  **  * **•         *
  **2B28XXXXXXXXXXXXXXBX4XXBXB*BB283*4«2*2        •
     3287XXXXXXXX9BXXXaa3BB*B*347»B» 4«*  ** 2     *      *
    *»  24B78XXXXXXXX7XBB4>2273424 222B*3****2   *  *
       ••BX4XX8BBBB73432  343 ••••••**•          •
       ••38 XX43*332 *2B2B 22*3 **         « *• •    •         '
      22'7«*72*B232 32*22 2 *2 23 22 »•  ••       2          •
     ••  2288872  2» 2 3  •» *••  •            *
     **32*43>***      *
         *  *2          * *
                                                                                            PTPMC
                                                                                            1.SOOO
I1;2 I NTERVAl* ( 4 . . 4O I ; ( O . I ( »-SCATTER PLOT
UMPC
 4O.OOO   *     2*
             • 23**
                                                         N« 973B  OUT  OP  1O42B  t1.UMPC  VS. 2.PTPCO
                   • 2  «
             *2*2 2***  22
               »    **3*2*
              **    «*222
             3 2* **322*  *
            24*«3*  3  «  «
            ***2 *  **2  2 **
             224 23 223322
             744**22  2B23     *       *
              B422*»  3  2 *•*  > *
             2*23*3»*32B3*  2  •• *
             •833*42*34*244 2*  •"»  •
              47B33BB*B« «   «        *
             *BB23B3*3342*2*32    >  «2
              e*< BBB4247B 3*4 *2*2
            23>87B7B44X44B3>23* ••*  •
             > 3SXX3B*B3XB842 S2»3*  •
                                22
                                 2
                                                             2>
                                                     • *3*«*
                                                     2 »  «
•  •BX84>344948B424S4«33B*3 *2**3  •    2
   XXX8X8BBX8BXB34B*B*2*4  3 3 *  2*   •
•**6X49eB7aXX78S72S44*3*  ***2 •  22     • 2 32* *32**2  •  *  •
 237XXXXXBX79932B879332233**32 * *2*   *  »*2222* ******   ***4
 S8XXXXXXXXXXX947I7BB3BB3 3 • 2*2 32  *2B* • 42*2** 2*22 *•» •
 2B8XXXXXXXXXXXXBXS749*B33 2B 2*»»  »*2****2 **   2*>  2*  *
 2B8XXXXXXXXXXI988X8BB44 3 •••2* *3  2222**>2*   2 «  «2   2*
 2BBXXXXXXXX8X9B2XB8232B4*3233B24442  *22> 33 3«*32* 2*  **
  46XXXXXXXXXX777XX*B34B432S444 3223*8454*«22** 5222*2**** 4
            3BXXXXXXXXXXXXXXBX27XXB*9  493 **433*42«*   2*2*3 *22*
           * 55XBXXXXXXXXXX9XXB447XBB4384227243 2232  *23* 32*2 2
             *XXXXXXXXXXXXX9XX7734X7B43BX4 4333*3324*  *S**2332 *
             3BXXXXXXXXXXXXXXX99BB7XX48X5B2Ba2S*72X2329B*25 39 2
            43XXXXXXXXXXXXXXXXX9BXX9X3BBXXSX8778434828744 5564*3
           • SX8XXXXXXXXXXX4XXBXB7X4BB2X392B4B424S5*  44345 3242*
            S28XXXXXXXXXXXXXXXX729XXX8BXBB26B9734S8842843 2**33»
             58XXXXXXXXXXXXXXXXBX7B7446X7S*444323eB23»*5*43*423*
            *XXXXXXXXXXXXXX7XXX748BB82XS54 25322555324*8822*32 *
             S3XXXXXXXXXa9XBXXX67X7784B79S339BB*e37234264*3**S*B
            *58XXXXXXXXXXXX8XX9B86XB84448B232B4»3454*BB4 242*3 2
            *37XB8XXXXaX9B787583297*B54532*3253***72*3* 2*«2*23«
             •*33 8773595X86798845732348382*483 222   3*42*23 3 «
               •  3*53333572788354442  *832 2233«**3>       3> »*
                  4233«*233424B2 **2 *«*2  2 222333*  * > *** 2
               22 3  22 2 *2*2223*2S6 *3* 2  522 2 •    *** *
           2   ** 44224342 **222**3 * *«    *  * *    •
                  42*  »*»*2**2    **       *
                                                     «2
                                                     « «3*
                                                     23*33
                                                     22244
                                                  *2  2*33
                                                      223
                                                      2243
                                                  •••33 2 •
                                                  22» 2«»«
                                                     2 2
                                                  «22»2
                                                   • 2* *4
5*
*• **  2 *   *
 • 2     *  • •
  2    ««
22324>2*
 •2*23  «• •
 22***2   2*
|  2*22* **
! •   • • 3
  22    2  **

 2 * *  • *
                                                                                            FTPCO
                                                                                            t 8.OOO
                                                        4-11

-------
OCATTBK V»«*11;3 1NTBRVAL«I 4. .40I :(0,3.S)>-SCATTER PLOT      »• B7B2 OUT OF tO*2l   11 .UMPC VS. 3.PTPNOX
UMPG

-"•°P°   *                   3." .'•  . .                         -            DATA  BASE- IS CERT/M^R
                          *  2* 3 * 2*             **
         +                3* 32   *2*     »        •
                          »2>3*                '  *2
                    •tft    >*   *   2      2**    *
 31.OOO   *       *•   3t  ««22***»*    *    **
                   *  2  * 2  2  * ***3*   *   «* *2 »
                   2 23*    «          2 • «  «2 2
         *         « *24*  2*27** *   **•  *    4*2   *
                   * *22***4B*2**2 to**        3 *•*•*        *
                 *  *• * • 2** 42     **2  *•  * *  2
                   S232*    223*     • **2*
                  **2**43*  *344B*     *  *B *
               •    * 23*24B*232*2»*  * *     3
                    **2B 343T333 * * 22*2 **2
                *•*  3*2B7327BZ*22*3  «**22232
 *•2* **  *
    2  2232
 23  2  **2
22    «2«*
 2222433***
                 •3 3 22332*a34B24I*4*2*B 2B2 B44  4**2B2»
                 233**27B32XB7324*72*2* S*3*B*3 22 *3 222
            • 22**»*4B*SXa7BXX222*X2 2**3BB »22423B34B23**
             2 *2 B3432B42B4BB»2*>34 •33»B4B*S4•«•S32B142«       •
         »   »»3*(33S23XXX2  X4*B34B234»422BIB*2224B32B**2  **
             •4*3 3323*I(XI37B4B2***4 22(7B4B*2IB443*B3B2 *
             2  3422IBBtXB7BXX7B*3X3BB443B77B2>t433* 32*24  2
         +  *  *32B3B34XXXXXXX7XI7X24X*IBXBXB43744B2B443*223  *2
          • *• 4*2B B»BXXXXXXXBXX3XB434BBBXBX4IBX»27BB323 34
          * ••• 2B3BBB XBXXXXXXXXBBI433B7XXtB(3l742X233  4* 2
         *• *2422434B3BlXXXXtXXX(BXXI3B77X2BXBB7BB*472*B(3  * 2
             3*213BSXBBXXtXXXtXBXIX7XX7l3B7X*B7tXXI7B4B2B*2 *•
          »*324232327aXXXXXIXX7XBBXB7XXXX4BXIX7XXXX2B74BB32»3 *•
         «« * 43B342BBXIXXXXXX2X2B77BXXIXB7B7XB2BBXB74S3B434 • •
            •4SB377BXXXXXXXXXX1B4B43B3BB7XXXXBX7B7BXB747S 3232
          «*24* *44BB4XX7XXBXXXXXB34BB7XXXBIIXB7XX7BBa4732B2 «      *
         »2 3SB737X3SBBXXKXXXXXXXaaaTXXXXXX7XXX4XX99X7X472334** *• ••*
          3  4S24944g*XXXXXXXXXXXXXX4XXXXXXXXXXaXXBXXXBaX94S*33 3 2*
          • *2*44SBS3XXXXXXXXXKBBBB7XStXXXXXX4XXXIBX7BBB44  *2***2
         *•  **3*2BSXXXXXXXXXXXXXXXB77XKXXXX>XXXXXIXX9B432»223**    »
          3 2**2BB34aaXXXXXXXXBXXBXXaXX7BBXX7XXBXX4XSBa47B4** **2*
          4 «  *  232777XXXXXXXXXBXXBBBXBBax7XXXBXX7IBBB3432 **4  •   *
         •4       2»»4BXXX«XXXXXXXXXX77XBXXXXBBXX4XX4I743B4*****  3* *
          3      ** 444BXXXXXXXXXXXXX7BBXB7XXXXBX3XIB4B34S2 22    •
          2     « « 2 *BSBX9XXXXXBXS7B74B2B478TB34S3S3SB433222   • *•
         »•   «       23234B»3SB8BXaXX4SXaSB4S34a73B23 *2*3>  2     *
                    >      3*243aBB2»B>BBBX44*3»324323  >*2«    *
                     «     >**3**33B7243**233 4B23 4    222*2**»  2
         +              >**   •• 3 *2 34*23222*3  4B*34B2**« 3 *  *•
                     2 27743     • *22 22* "*3 «» «2 «  ** »
                      *•  *    ** *• 2 3 23   *   **
                                                                                         FTPKOX
                                                                                         3.BOOO
12:4  1 NTEKVAl* ( 1C . 4B I ; I O . O . I ) > -SCATTER PLOT     N* BBOB  OUT OP 1042B  1 2 . HMPC  VS. 4 . PEHC
HMPC
 4B.OOO   *  * 22      *   •
           232B*22   *2 «                                             >
            34**2*22  «
         « *3B4*3 3 «                                                                 «
           22675*  «»«»••              >                                    *
           4224B4  * a      »                                         *•
 •2.00O   » 244X732 22*                                                         >           >
           2BBBBBS4 >                       «   •                     >                 »
           34B(4B3 «»3*»*>                           >                   •              *
         « 2BX4B322 33>      *                «       «          •  «•            *          *
           4X974B333  »     >            •      *                            •
           79BB4S32 5    •               •                                     »      «
 31.OOO   » BBXXBB4242> **                          >••>                   >  «                  >
          •B77XXS3  2** *   ***    *                 »  *             •        »               **
          2X349263***   2  «           **                       •               *    *
         »*XXXXaB42*  «  ***  2           «         «           «                       2
          2BXXXXS*B7B42**  22***>  •                 «                       •• • «            •
          • XBXXBB2 B2* 4*3*  **2* *•  >              ''                  •
 34.000   »2XXXXX2BB3S2 2S25*  4*2  .      .         ,         .             •
          *XXXXB7XS*47 34333  >  2**    •   •     «  « *           **                *
           XXXXSB76244 324**3    *     *2            «      «  «          *         *
         •2XXXB9XBBB33422B322 «*2*  2****»2*«           *        •       '
          2XXXXXXX«BS9242*322  *   2 •      ,    t ,       >
          *9XXXXX73*2632*4*32** 5         *«s                •**                  *
 3O.OOO   +3XXXXXXX9432 332*4  >  *••    *2             •  «•                  >
          BXXXXXXXB44334223**    3  *3*   »••••••««        .              «
          3XXXXB7543442 **   «2*  *2«* •  *       •       »   »        *         •
         *3XXXXX9Be4a434 2*'   442   »•>  I  . .  .2  • 2  •  «              «•
          BXXXXXX2XXXBB*«*3»3 3 *«22  «•«»     .. .             «•>      .
          2XXXXXXX9XB23*33*4*3  «"*  • »    « *««  «  «            «    «                          *
 26.OOO   +4XXXXXXXXX9362S3*23  *222*  2**    *      * *          •                            *
           7XXXXXXX2X74B22«2  >*2    *2    •            «  »
          4aiXXXXXXaB42B43»222e***   2 «* «        **    2*    «      *        •
         •»*XXXXXXXXXX7BBTBB23243>   « ** «    »                       * «                      >
          *BXXXXXXXXXXa34BS>4»> 3  2«      ,.,,,»,.          ,
           BBXXXXXX7aaBBa3»3  *»« *»* 2>   *    *   »2«  •    «  *«       <
 22.0OO   +2BXXXXX7XXB77C222S32***  «   »  •       « «     *  *«*  >    «« »
           7XXXXXXXXaaXB4*3S*43322>*                .  . ..
           2XXXXXXXXXB7BE222  22 •  •  •      *«      >        >       *
         » 37XXXXXXXBXX>4**32*2 *2    »    «                                   >
            7XXXXX9B4S34 73**> 3*        «    2
            4X9XX867X445 24*   2                   *
 IB.OOO   ««4XXXXBXX2X3424   42 2 »  *                                         '
           I3BX9XXX3BB3 »**»«                            >        »
            39aB334B4>3  *2               '                    >    *
         » »BXBXSBBB2*    •     >
          O4BXSB352 *2* '    •                                     •
           •4B4S332  «
 14.000   » -22302     •                        >
          ,.  ,  2  .
          22
         * *2
                                                                                         FEHC
                                                                                         .9OOOO
                                                       4-12

-------
 BI74 OUT OF 1O42B   12.MMPC VI.  8.PBCO
         * * *2**
          • 7B «•- 22
          34B 22  *
•	—    •*
                                                           DATA  BASE  IS  CERT/MFR
                            ••*
                                 • ***
                         **•

                         • 2
                                « 2
                                  2
                                       B* 2
                                       3 323
                          2     2
                          •>
                           <">•    3
                           •**     *
                                               2*«2  *  «•«
 4B2B3 2
 BX4 2*
»4X7B73«
 4XX3* 2*2  •   '
 3BX4B3** 2
»SX74«34  3*«3
 3BX4((***22 ••
 BX4BB 282*22  <
»BX(X3*433*2*  '
 2XBX3B *3*«* 2 '
 BXB32** 24*3*  '
*SXXXX33X3  2  *2
 XXXX(S4732432**2
 XX*BBX27tB*         *  *  *
*XXX377BX434*322 *22 * *  2**
 XXXXBBXB7  833*232 3«* 2
 XXX37(3B343*22 «2  •  2 2  '
«XXXXX7(B383 3** 3 2* *2 *  *
 XXXXXX949242 334324*22**  3*     *
 XX7I7XX7((«224*3**4***    2*  «  •
*XXXX(X(BX7( 22*   *2* ••  2* •
 XXXXX9XX9B92B22*     •   2  *  * **
 XXX17B4S4B73*3  2     2*   ••  *•              *
»XX»X7433II9722**2***2**°    *2 •*• 2   *  *   *2*
 XXXXXX447B2*2 22822*22 *•  *  4 • 2* 2*  *2  * *
 XXXXXX7X43«SI2*« *2»3 «2  22   * ••  4   ••  *  * *
•XXX97XB7BX14334 322   *32 32***4**«*  *  *
 XXXXX799BBB22*322*4 2*23* **  * **2   •*   * *
 XXXXX97 94X3*222 **3*2 2*3      •       22*  *  •'
+XXXXX994797234     2*22  222  *22****2    **•
 XXXXXXBBB4 3224*2 2S2**22 ••  2**** * *   22
 XXXXXXX47*2222234 2*2 2  ••*  2* •• 3***2  **  * 2*
*XXXXXX9XBBB4*4*B2«*  *22*2  »  ** 2 32  «*2»*  * *
 XXXX9X797BBB7B *23 22 2 BB  3* **  •*    « «« «
 XXXXBXB9732*2B32 •  ***2*2  *«*2>         *
*XXXXX9*BB7S***(*4 •      ****3   « 2     •     *2
 XXX9942333B23*32» «2*   •   «•   *.*   *    *
 XXXX743*B  3*B »*2 •  *•   *   *    ••  «
*XXXXXB*4*23**3 2*    » *»     2      *
 XXX9BBS32**32 **  *   • »•        2  *  *  *
 XX3B3*3 *     *••  *  *      *
+XXX(8*2B*  *2** *                   *  *     *
 XX3X2B  *•*•   **           •             «
 54334 •  **3 * *           *
«22B*   «•   •  «   «
                                                         •»

                                                          2
                                                                                            PECO
                                                                                            6 .OOOO

XX223* * ** « • «
7X933 *2 «3 2 « «
*XX*7233 ***2 ** *
7X97232 **• • •
XX8278 * *• *
»XX7BB4 *2*» **2 »
XX9243*** 2 * * 2 *2
XX3237* 3 ** 2 ' *
«XXXX92*2 • 2* 2
XXXX992222* 2 * 2 * *
XX9XX3 *» • • «• «
»XXXXX7S223**22 * * «
XX7XX44424*2 • • 3 2
XX9X974O* 22 *B*2 «* •
•XXXX7B3233 3» 3B3 2* 3 »
XXXXX(*9(B23*4 ••• 2* »
XXXXXX724B** 3* > 3**2 2*
+XX9XXX4* 3*2 3* * * *
XXXXXXB4 • 2**** 222«»2 «
XX99BX4*2 322 *
+XXX9XK422242 3*2 2** *3 2
XXXXX49*233232*** 4****« *
•CXXXXXXBBS2 425-823 ••
XXXXXX33B43422»*3 2 « • 2
XXXXXX3322423* * 4* *2
•XXXX9X7 232 9*42*3 *2 2
XXXXX94B2942322»3 >*22
XXXXX4337322 32*2 44***2*
•XXXXXX42B* B22**24«23*«* »
XXXXXXX28*32BB4>* 2 **** 2*
XXXXXB742 23*323 *
*XXXXXX28B> 34 » 2 * 32
XX9797933*2 * 2 ** * » *
XX87848>3«« •• **«
*XXXSBS4 3 * * 2 • *
XXBXBB2*** «* 2 **»
XX34* *2* ' *
*XX63»«3»- ** *
XX37 3« 2 * *
9B8> 5* « •
»4B **• • »
1(»-




*








»
•




*
*

•

* •
*•



«
« »
« * »
*•
* * •
«
* • *
2 «
*
*
s
*

« »

•




                                                         N* SB17 OUT  OF  1O428  12 HMPC  VS. B.FBCO
                                                                                            FECO
                                                                                            t 8 . OOO
                                                        4-13

-------
                                                                                DATA  BASE  IS  CERT/MFR
OCATTBR  VAR«t2;B INTERVAL*(10.41)|(O.I.3)>-tCATTCR PLOT      N* 9821 OUT OP IO»2B   12.MMPC V«.  I.PENOX
HM»B
 4B.OOO    *          *     •**••        *
             • *2*   *  *2      *    2**22 2      *     *•
              *2  ••••2  **      * • •  *   *   *
          + •    •* *423 »     *        3*         • *** •*
             *3 *22  2   *    *2  *  **   *   3   **•              *
           * 2  222 23 3  •  *       »   «  2 ***
 42.POO    *2     22***B*3   4   * *22332* • *•   » «
          • •» • 32244  3  >  ***222 34 4    ««  32    •
          • 22* 4> *2222>*   ««« 2«224*(   «*2      •
          *«2 23*** *2     *•  23* 2*34433  *22 *•  ••  ** *
          5423*2 22>2  23*8*  22 2*33 2  *2«*     **
          • ••2   23   42*>  *2«424*   *4*3   22«*«
 34.000    *2**2222 *24B2332  343422«2S32«  2  «3*2  ••
          322324*** 42*3  27   «3*2 4 3**2 2  3*  2*
          •2 *2»*4  24*44***»2*2**2*  »  ••••**  *•  t
          •42333*3*233323*2***3*243*4422**233**2 2**
          «*.**34347*B3BE323»2283*«434B4324*2**2*3 2 *  *
          22 43*3316*333*72323424 *33423  2*  * 2  *      *
 34.0OO    »37343e**B74«2B4827334433*4424232«23*  *** 2**
          3*B4*IB444*474  B444S*3B4*47342 44**3*   2      «            *
          •73*B223B*3*3»2B242322t(l«»332>22 2** **2 •*  *
          4-388EB B2B2B2342IBX34B334I33X43  22*224  *  *  • «  2
          IX374B22 3223*B«7988X44B324B3B*«  *32   • 2*   *2*  *          *
           SX24E233332*24«**84BB7374 838*232**33
          «3B242324 24339•4883734*23478*73B343  *
           4B3294423*XX4BX87XB8747349B*9«4«2*   •
           32 3433 2 44 212*444IBB*4*472224***3*
                                              •23   • **•
                                              32 2
                                              2*
                                              >*2
          «9X2*944*248389442437X9337833779  4333
           4X34XXX448B948798X7878848873233733*2
           2X84X8X8878X4348999971*939433*4823  3
          •2X9298987887878849X99997483328238 *•  * *3   •• «
           374888833X73844XXS4394X998384332*2>*  3 *  *    *
           4B*BI9X7BXf * * 88 X9 98 X XX44897523 **   *    «« «•  •
          4-34 24B7XB1B8XX9X7XXXXXX4XB97B3842 2   *2         •
           *3*89X7XX4X4X73X7XXXXXX8X2477433*>  ••  •  •       2
           **»22Ea9eXB7S87XgBX984778a42B»2342*2* 8    *2    2
          *3X3243BB92XB9BBXXB7a(B9a9BX998322424** *  *         *
           4B3*7B4237X8S434XB9279XX3794aaBB2732  2* «*     *
           2*23322338  3B9K8B9BX44BX793BB3482*2«422 2*   *
          ••••»323*22397aBaaX477BX89Baa7842344*>**2 «2         *  *
           «• 22**2 4348S338488843BB7432*4**« 3 * *   *2 2  *
           *   * 2* **3  «344aa2X*882S732*32B32  *  *   *
          *2*  ***2 *23389B7BSBaB33B43B8*38***2*    *   * *  *
           ••  •  • «*322272B44B4E2243232423222*3 » 23   *««•••
               *        »42  2B32433423*  •  2*42** * *  *     *
          *        2 * *B424234444*2*3 2  *3*   •*  **2    **    •
           •       * * 2*334223327334 **   2 **2» »  **
           •      2  * «*«  *2 *«2 3 •*• 2*««   •*  «
          »       2       *     28****        *         *
              •             *****
                 *           2 •
                                                                                             PENOX
                                                                                             B.3000

                     2*                                        «
                *    *
 42.OOO    *          *  « 2        *
                    2   *   *    •   *        *                >
                  2*  3««                 ,  « •
          »       2«  23*2      •«         .'•            «
               •**2***      2         '                        **
                 •••2***                i    *     *
 3B.OOO    »       2««45  •            »           «
                  3424» «««•«»,«                  «•
                 « S32            »  *           «               •
          «       *232*23   «   ««     *  «
               > 3*442222   «     »     •                          •
                  2S27332
 34.OOO    <•    2  2*47SS*2   3*
               22434B22***«>
                 134X165 «•« •    •     »
          *      *Ba2aB68***3»*  *2  *   «2   •
               2924888382*  3* *>    **
                *237B428*22» *  22  •   *
 3O.OOO    *    *337XXX93S433   •     2   2  «
              444X97X898*34*  22  ***  *  •»'
              34S3B8XBS7*32 232 »** 2
          «


 26.OOO    +
'244X8X89X484 32 *22*
»38X878X9XXX48B73223
'42XXXXX9XX87S* 222*3
2»4XXXX8XBXBXBB3*4323<
*4B2XBXXS8XB*2B33**2*
****2
* * *
«3»22*
22 4*
*42**2
2 •« * 3
•* 2*«2
3 *2 «2*
B**42
73 ** 3
2
*2
242

2
*
,
2«
22
** * 2
*« 3
* * *
3 « «2
23* *
** *2
2
*
2 **
* *
 22.000    »     37BXXXXXXX87363 3744*22 *2*373B2>    33 2  2***22>  «     *
               *48XXXX8XB89BE48863B33*284237»*2 4 2 3« «  »»2  •  «•     >
               «22XXXXXXXXX87SS7>B32S44X4388*3« 223  2"    3  •  «        '          *
          *      S«eaXXXXXX88B8BB8X98XB9X334B3234«42 3 2    2*'   22     >2       2
               >298XXXXXXXXX48344832XB2X32BB*822*22 32 *32"*"*>* •  *  3      >
               343X9XXXXXXX7XSB43563X7235224 7> SB3*>* 43   2 2** ***    •     «   «
 18.OOO    *    *»B54XXXX9XX8XBB87983*eB*BB»74333*S>  2 »3  '   »  *«
               2347XXXXXXXXXB34257B3XB XX  734B 24>  *•» 2*>     *   *     *•
               3 *2287B8874XS23X4373944S24S43E3 S322  •  '      «   »
          »     « • 2XX7XX7B978B4848 X329«224 *2 3B  *     *  «            *
                * 4398XS8329X247267>23294»74 B*»S»* 2« 2           «
             «    2*B32BB*6«3432B22272 S*2 »223 3  >       *  «
 14.000    »      > 32BS2XX3797444334224*B22*2 > *2*3  « 2*             »
                   • B33S7SB326E23*  3"  «   • «« *           *
                 >**2B*8B332332   4 3 2>**> **            '  *
          *      «22 53*7«  3 3  22 *332 «•  3  «   «      «  "           »
                    *  2*2** 2**  *2  «   » *       •     «                     •
                *  *****  s»  *  2*       *
                  * *  2            * «*

                          .4OOOO             . AOOOO             1 . 20OO             1.6OOO    FTPHC
                 .20OOO               BOOOO              1.0000              1.4000             1 . 8OOO
                                                        4-14

-------
(SCATTER VAR*13;2 INTERVAL* ( 1C, 48);(0. IS»-SCATTER PLOT      N« SOS7 OUT Or 1O42B   13.CMPG  Vt . 2.PTPCO
CMPC
                                                                                   DATA BASE  IS  CERT./MFR-
                                                     2*2  **»2    1
                                                     « **••         *  •
    «     2« «
         *****     *        *     *
   * *  *2 * **                   *
  * *2** *2*»  *  *      *      *
 ******2                **
  *****    •**_*             *
 * 28  *  * **•    *   _ ^--"2
    2*322 *2*_-* *—~  *      *   *  *    *
   2**22**       *•*             *
  ** *22>*2 2*2*     *         *
  •222 32*4* **2      *           *
   * 4243*24   *  *•                  *3*
  • 33422B ** 2 *32  **2 »*        * * *»
 * '233423 22 2*  *» **  2  **    ***2    »
 •* 274344(2*32*2 2*  2 *         2 *
   2S33S2S(34**23*******      *«
 **3 43B4I24* *42 4*3*   * *
    •23S 2 14 *B  *4  **2 4     »*
* 2 8*18(48834282*442*233*
   (87287228844*47443 4 »      •*
*  >2tt44*2B3te ****42>*    «23
  •BX2B244(X44B((34B4*3**   *>  *    2* ••** »22*2* •• 3 •• ** 2  *    *       *»
   33X4(44X(S7B4*B423334»4»232*2 *22 **4*22 *2 2** •**    **2  *  *      *
   2B83*4XB2B«B32*2E  4*3*23**  **   3*** •  2*23* * ** 2 »* **   *        *
    >X4Xt87(838B33433*234   *   2  *2» 22*2   2 * *»* ********              *
  *2B(BXX7S32B4«*X7243  52   *B  224*4* 2322 2**   ***   2    * *****    *          *
   *2(3(4((BBSSB434233  3*32»*23  *42 222B *22  2* 82 2 •«  2     *      *
   *X«BX4T7tBB84B4t 384228*33*2**42 242  2 **2   ** 2              *
  *38X8X3784 *4>  * • ****2» **«   2  *      *
   23BS388XXXXB887434 4B4B32474  3**3 432*2 35   232 >  **  «»«»  «    «   2*
 * 3B8*8XX8BX8XBI382242B73«*7B3  332*3227222242 **3B      2332     *   *      *      -
  27BBBBBB42BXXBB8XB72BBB82BBB82BX24BS443*34*3*4* E* ****3 **  222*  *       «
   22XBXXXXBXX3X77X7B228733»BB7242(4»2242 3*222243322***  * 2   3*33  *  •*   »
  2*3BXXB7X7X8X7BBX3224X2342S3>*3423 44**32444  *2** * S  »22* 3****3>     *       2
  22484XBXB7XBBBBBBB22BB*8*4a422*44223273 *3 33* 2*2*3    ***2  >.  2*  *•
  7B88XXXXBX7BX88SX84B3BB3  *44B  4*43**434422B22B***2 23* 2 3***  **  2*        *
 •384 3433488*84  233*3S42**8843**833*3*73*3 B ** 24 3   2**   *   '    23**   •
  2 2444S73*88B4288443B22B*3B4*3*432*244****4*232 **2*****    *»3    « »  «   >
    232B4373B4B33B4BB*3B22*234B  2*22**234 B4 *«22*B*« 2**  *2       •      *    »
   •*3 *2***B2SB  4223 2*332*2  ** *B2 • 2 >* *2»2  *2**  **  2  2    **    *
    4* BB4**4*3B334B3423 B2 73   **4* «*2> 3**«  * * *  *«2*** »*3»**« »     >
    •  3 222*22B*BB22>24    22  3*«23  2*2        2  >                      *
       42B2**3432233    **   *3*   2  »****2»     *  *2          >  »     «
    *2 2 2 *2  2***222*3B   2*    222 2 2  «*•          *    *           * *
        **• *  *    23  *2 *  **  *   * *    *
       «*2* •  «   • «   2   «      •
       2*         *         *    * •
----+.---*----+--.-+----+---.»....+»...+....:»----+----*••-•+-•••+»--»*--••*•-••*----+----+
               4.OOOO              B.OOOO              12.OOO             1B.OOO    FTPCO
      2.OOOO             B.OOOO              1O.OOO              14.OOO              18.OOO
(SCATTER  VAR>13;3  IHTERVAl«(1O.48>;<0.2.7)>-SCATTER PLOT       M*  8OB3  OUT OP  1O42B  13.CMPC VS. 3.PTPNOX
CMPC
 4B . OOO   *                                   •*
                      *     '   * * *  3 *        *      *         *•     * *   ,
                       *   * *     »  »  *                  2****
                        *        * •  2    * *       •*            *
                      •*2***    3    *    * *                 *      *•
                       *   *  2 22 **   2         2    *    **   3   *•                 •
                       **        * ***           *            *  *2*    **•                      *
                        * *   *     * *  *         **2*     *  *  2 *    •••
                *     *      * *  23* *         *   ***  **2*   *   2* *
                       ***** 3*2*2** *•*      **  •  2    *    2       2
                         22 • 2222**4«  *       2*   «  *«  222*2* '   «•  *
               *  *2 »  * » " 2 *22*  *   ***•*«   **  3 *2  2*2 *242»          *
               >      2   *2*2B3*«22*3232 *        2 32*  '  *2* 2     ***   «
              * *    »*  *  *2«  334B3*    *> 2***  32 23  3*2** «2232*2*** *
                 *  »2**3» 3222*232* *   *«• '     2*3  3>  2>  '  432*2*23
               *** * * ** 2****32*22** 2*2  *     *2  *  2**   ******  32  *
               2*2 232* 2«»*3*42 2B 2*  *2***»**2343*32  33*2*  * 2**4* 2 * **                   *
               3 242 *2»**4S28E3 3B**«   * 2 2**  24B**3*4  »*2»**2  22**2>  •       *
              *   * 3 **3 3*22*4B  «    »  «* 4  2*3*8*323*223*242  2332   *
              **  *3*32B3 *22***332* 4*2  **  2*  «B3BX2B732**23  3 6  S32 3*2
               • *2 3*8 *4237334*42343252 4  * * 38*2444B2B833*432B2*22  **23*2 «                      >
               ****  32 *32>4*» 3*2322*3**2»222228434G  28*324422 24  3*2 *«  2   «
              * . ** 22»*22>2*3423»2243B222*22 22S22BXB2243  *B325 43222* 33 «    >
              *3 ***3 *« *22344*22** S3*422*3*32224B436394*34473323*42**32*2*   2
             '  • **2 222 *<3*23>33 «*4»3*2*433 * 2 32*42378*33823822228*344* *    *
               23423 »4*2S32S2»224833B3322»B2424444*2»32338B*8342B4B22442 « 2« *
             3  2*3** '333233*42322S32*42**3234B24X33843B2334B2228»33244233*233*
             2*  4*4*3432  > 422528334 24224  2*»3  4B2  2334433*88233*344*2*** *  •
             *  3>   '332 5*2*645888958 4223 3*3*2780897884932285782*55*352 222 * «                *
              » 34**22223B2334222894B*632*432*24228544B6325B3B6258B4336*3 **2  *            •  *
                **42>2 3 25324E3E*43B25*S333 35475377842X488388443724*2244** 2*    2» «« »   «
               ' 22 ' ' 3 232242773448*2*4482 3473488X97776XB 7X849BB BB43232 B2«  » 3   »       •
              *3  •**23**22545392BB7BB4«*532*323477B4X8B794SX9324SX8BB32B43*3*2* ' '
              2>  3 2*B2333247544382243B323435235734BBX43I3888X75B4333532> »*' >2  '
              « 2   *  «*322225S*24348*743**24646B644X8X2S8949S832834434B**3  » "
               »  **** 2*24SBB44B347433B2384SB*eB34B9S7XB48B84XX467B343> 44***'  2"* >    *
                    *3    >233324*2**5 2*222324B2B* 364447382388543*8433232 >   «2  » «
                     3   *  »   «22«23 4*3*424323E43B7889XB98*24S3*3B4«232** 2»  «   » «
                    >  > • «2«  «2 " «2* 88388*2272*499348943  94743*443323  '                   *
                        *  *   ' *    <4 3 *«*344  4*23*438543 >B2  322***3< **          2          '
               «                 2*  3*** B297S4B38B3443B242»*35*252232  *»» '     *       *
                                    ***  3322* ***B*2426S2  **2*22*  *3 **  » 2 *  *   *
                          *        ** 3 *3* 322   24   3333  4  32* *4»    ***  »   * *     *
                                 **  *«*» 2 2 22«  22*22  2  2 «4  32  2  *2« « «  22      «
                                «             2»   2    »  2   ***22 2*     «        «
                                               '  3 >3*  '*          2
                           * » *            *            *  *    »
            ....+..--+-..-+..--+---.*-.-•*.--.+....+....+---.+-.--+----*--.-+-.--+----*•••-*•--•*----'+
                           .BOOOO              1.2OOO               1.8OOO              2.4OOO   PTPNOX
                 .30000              .9OOOO              1.5OOO              2.100O             2.7OOO
                                                           4-15

-------
               Appendix  5

Results from Stepwise Backward Regression
        of Vehicle Parameters and
      Emissions versus Fuel Economy

-------
Ul
I
               

SELECTION OF REGRESSION  <1> TAYR:81*FTYP:(1-7,10-17)*VTRN:(CA,CA.CA)
ANALYSIS AT STEP O FOR 11.UMPG  N= 97 OUT OF 198

SOURCE               OF   SUM OF SORS  MEAN SQUARE   F-STAT

                                                     76.138
REGRESSION
ERROR
TOTAL
1 1
85
96
1675.5
170.04
1845.5
152.32
2.0005
MULTIPLE R = .95282  R-SQR=  .90786  SE= 1.4144
     VARIABLE
                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
ANALYSIS AT STEP  1 FOR  11.UMPG  N= 97 OUT OF  198

SOURCE               OF   SUM OF SORS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
1O
86
96
1675.3
170.19
1845.5
167.53
1.9789
                                F-STAT

                                84.658
MULTIPLE R=  .95278  R-SQR=  .90778  SE=  1.4O67
     VARIABLE
                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                           SIGNIF

                                            .OOOO
                                           SIGNIF

22
23
24.
27.
40.
1 .
2
3
4
5
6
CONSTANT
.VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
.FECO
. FENOX

. 12906
-.21762
-.28686
-.21535
.62636
-.05356
.04779
-.05756
. 029O6
-. 13759
-.0693O
9.9789
. 14232
-.94206 -2
-.23881 -1
-.57307 -1
51554.
-1 .3776
.64247 -1
- . 54008
.96623
-.20991
- .43213
3.5123
. 11861
.45829 -2
.86502 -2
.28186 -1
6959.2
2.7860
. 14565
1 .0161
3.6O53
. 16390
.67474
2.8411
1 . 1999
-2.O556
-2.7607
-2.0332
7 . 408O
-.49446
.44111
-.53152
.26800
-1 .2807
-.64044
.OO56
.2335
.0429
.OO71
.0452
.OOOO
.6223
.6603
.5964
.7893
.2038
.5236
                                     SIGNIF

                                      .OOOO
                                                                SIGNIF

22
23
24.
27.
40
1
2
3
5
6
CONSTANT
, VDHP
DISP
.RTHP
.NSVR
. ETWM1
.FTPHC
.FTPCO
.FTPNOX
.FECO
.FENOX

. 12702
-.21673
-.28613
-.21714
.62643
-.04783
.04441
-.06234
-. 1436O
-.O7067
10.O33
. 13957
-.93786 -2
-.23815 -1
-.57736 -1
51580.
-1 . 1918
.59214 -1
-.57931
-. 18692
-.44042
3.4875
. 1 1753
.45555 -2
.86000 -2
.27988 -1
6920.9
2.6839
. 14365
1 .OO01
. 13891
.67039
2.8769
1. 1875
-2.0588
-2.7693
-2.0629
7.4527
-.44408
.41221
-.57926
-1 .3456
-.65696
.OO51
.2383
.0425
.0069
.0421
.OOOO
.6581
.6812
.5639
. 1820
.5130
     REMAINING
                   PARTIAL    SIGNIF

-------
                 4.FEHC
                                  .02906
                                            .7893
              ANALYSIS AT STEP 2 FOR 11.UMPG  N= 97 OUT OF 198

              SOURCE               OF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   9
  87
  96
1675.O
170.52
1845.5
186. 1 1
1.96OO
              MULTIPLE R= .95268  R-SQR= .90760  SE= 1.40OO
                                  F-STAT

                                  94.952
                                     SIGNIF

                                      .OOOO
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                              SIGNIF
Ul
I

22
23
24
27
40
1
3
5
6
CONSTANT
.VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPNOX
. FECO
. FENOX

. 12087
-.22191
-.28715
-.21693
.62696
-.02547
-.05164
-. 13749
-.08255
10.075
. 1 3050
-.95725 -2
-.23921 -1
-.57734 -1
51674.
-.49117
-.45923
-. 17522
-.50236
3.4693
. 11490
.45095
.85550
.27855
6884. 1
2.0670
.95214
. 13533
.65021


-2
-2
-1





2.9042
1 . 1358
-2.1227
-2.7962
-2.0727
7 . 5063
-.23762
-.48231
-1 .2947
-.77262
.0047
.2592
.0366
.0064
.0412
.0000
.8127
.6308
. 1988
.4418
                   REMAINING

                 2.FTPCO
                 4.FEHC
PARTIAL

 .04441
 .02306
  SIGNIF

   .6812
   .8311
              ANALYSIS AT STEP 3 FOR 11.UMPG  N= 97 OUT OF 198

              SOURCE               OF   SUM OF SORS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   8
  88
  96
1674.9
170.63
1845.5
2O9.36
1.9390
              MULTIPLE R= .95265  R-SQR= .90754  SE= 1.3925
                                  F-STAT

                                  107.97
SIGNIF

 .0000
                   VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                              SIGNIF

22.
23.
24.
27
40.
CONSTANT
.VDHP
DISP
.RTHP
.NSVR
. ETWM1

. 12290
-.22127
- . 30408
-.21912
.62862
10.019
. 13243
-.95431
-.24484
-.58214
51789.


-2
-1
-1

3.4426
.11399
.44835
.81768
.27632
6830. 1


-2
-2
-1

2
1
-2
-2
-2
7
.9103
.1617
.1285
.9943
. 1O67
.5824
.OO46
.2485
.0361
.0036
.0380
.0000

-------
   3.FTPNOX
   5.FECO
   6.FENOX
-.05174  -.46027      .94701      -.48603      .6282
-.14141  -.17908      .13364      -1.3400      .1837
-.0957O  -.55214      .61222      -.90187      .3696
     REMAINING

   1.FTPHC
   2.FTPCO
   4.FEHC
                   PARTIAL
                             SIGNIF
-.02547    .8127
 .01822    .8654
 .01694    .8748
ANALYSIS AT STEP 4 FOR 11.UMPG  N= 97 OUT OF 198

SOURCE               DF   SUM OF SORS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   7
  89
  96
1674.4
171.09
1845.5
239.20
1.9224
MULTIPLE R=  .95252  R-SQR=  .90729  SE= 1.3865
     VARIABLE
                                  F-STAT

                                  124.43
                   PARTIAL  COEFFICIENT  STD ERROR   T-SfAT
                                     SIGNIF

                                      .OOOO
                                                                SIGNIF

22,
23
24
27
4O
5
6
CONSTANT
, VDHP
.DISP
. RTHP
. NSVR
. ETWM1
. FECO
. FENOX

. 13294
-.22466
-.30662
-.21673
.62742
-. 14O49
-. 15172
9.8343
. 14163
-.96883
-.24704
-.57556
51650.
-. 1781 1
-.72290


-2
-1
-1



3 . 4068
.11193
.44543
.81291
.27480
6794.8
.13305
.49922


-2
-2
-1



2,
1
-2
-3
-2
7
-1
-1
.8867
.2654
. 1750
.O390
.0944
.6014
.3387
.4481
.0049
.2090
.0323
.0031
.O391
.0000
. 1841
. 1511
     REMAINING

   1.FTPHC
   2.FTPCO
   3.FTPNOX
   4.FEHC
                   PARTIAL
          SIGNIF
-.02567     .8102
  .00570     .9575
-.O5174     .6282
  .026O3     .8076
ANALYSIS AT STEP 5 FOR  11.UMPG  N= 97 OUT OF  198

SOURCE               DF   SUM OF SQRS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   6
  90
  96
1671.3
174. 17
1845.5
278.56
1.9352
                                  F-STAT

                                  143.94
SIGNIF

 .OOOO
MULTIPLE R=  .95164  R-SQR=  .90562   SE=  1.3911

-------
                    VARIABLE
                                  PARTIAL  COEFFICIENT   STD ERROR    T-STAT
                                                                SIGNIF

23
24.
27.
4O.
5
6.
CONSTANT
DISP
RTHP
,NSVR
. ETWM1
. FECO
. FENOX

-.20866
-.34521
-. 17959
.65366
-. 14746
-. 17085
12.312
-.89726
-.27437
-.43938
47003.
-. 18846
-.81514

-2
-1
-1



2.7970
.44330
.78630
.25370
5736.3
. 13324
.49552

-2
-2
-1



4,
-2
-3
-1
8
-1
-1
.4020
.0240
.4894
.7319
. 1941
.4144
.6450
.0000
.0459
.OOO8
.0867
.0000
. 1607
. 1035
                    REMAINING

                 22.VDHP
                  1.FTPHC
                  2.FTPCO
                  3.FTPNOX
                  4.FEHC
                   PARTIAL

                    .13294
                   -.03501
                   -.02421
                   -.O7265
                    .O1960
  SIGNIF

   .2090
   .7418
   .8198
   .4937
   .8537
I
oo
               ANALYSIS AT STEP 6 FOR 11.UMPG  N= 97 OUT OF 198

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
                      5
                     91
                     96
1667.5
178.04
1845.5
333.50
1.9565
MULTIPLE R= .95054  R-SOR= .90353  SE= 1.3988
                                                     F-STAT

                                                     170.45
SIGNIF

 .OOOO
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                               SIGNIF

23
24
27
40
6
CONSTANT
.DISP
.RTHP
.NSVR
. ETWM1
.FENOX

-.2O477
-.34552
-. 19037
.65307
- . 1 3O9 1
12. 124
- .88948
-.27758
-.47013
47393.
-.59618

-2
-1
-1


2 . 809 1
.44570
.79029
.25415
5761. 1
.47329

-2
-2
-1


4.
-1 ,
-3
-1 ,
8
-1 ,
.3160
.9957
.5124
.8498
.2265
.2596
.OOOO
.O490
.0007
.0676
.0000
.2110
                    REMAINING

                 22.VDHP
                  1.FTPHC
                  2.FTPCO
                  3.FTPNOX
                  4.FEHC
                  5.FECO
                   PARTIAL

                    .14O3O
                   -.05265
                   -.O5737
                   -.07120
                   -.O5997
                   -.14746
  SIGNIF

   . 1822
   .6182
   .5870
   .5000
   .5701
   . 1607
               ANALYSIS AT STEP 7 FOR 11.UMPG  N= 97 OUT OF 198

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE   F-STAT
                                                                SIGNIF

-------
REGRESSION
ERROR
TOTAL
   4
  92
  96
1664.4
181.15
1845.5
4 16 . 09
1.9690
MULTIPLE R= .94966  R-SQR=  .9O185  SE= 1.4032
                                                     211.32
                                                                 .OOOO
     VARIABLE

     CONSTANT
  23.DISP
  24.RTHP
  27.NSVR
  40.ETWM1
                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
          12.271
-.26152  -.10874 -1
-.32732  -.25856 -1
-.17113  -.4194O -1
 .64577   45957.
              2.8156
              .41841  -2
              .77820  -2
              .25174  -1
              5665.O
             4.3583
            -2.5989
            -3.3225
            -1.6660
             8.1124
SIGNIF

 .0000
 .0109
 .OO13
 .O991
 .OOOO
     REMAINING
                   PARTIAL   SIGNIF
22.VDHP
1 . FTPHC
2.FTPCO
3.FTPNOX
4.FEHC
5.FECO
6.FENOX
. 15534
-.O98O8
-.07625
-. 13551
-.03O18
-.09798
-. 13091
. 1371
.3496
.4676
. 1953
.7740
.35O1
.2110
REGRESSION OF 11.UMPG USING BACKWARD SELECTION
STEP
        R-SQR  STD ERROR  # VAR
                                      VARIABLE
                                                       PARTIAL  SIGNIF
O
1
2
3
4
5
6
7
.9O786
.90778
.90760
.90754
.9O729
.9O562
.9O353
.90185
1 .4144
1.4067
1 . 4OOO
1 .3925
1 .3865
1 .391 1
1 .3988
1 .4O32
11
10
9
8
7
6
5
4

4.
2.
1 .
3.
22
5
6

FEHC
. FTPCO
. FTPHC
. FTPNOX
.VDHP
. FECO
. FENOX
IN
OUT
OUT
OUT
OUT
. OUT
OUT
OUT

.02906
.04441
-.02547
-.05 174
. 13294
-. 14746
-.13091

.7893
.6812
.8127
.6282
.2090
. 1607
.2110

-------
                                                                                     ST|
                                                                                            50
                                                                36
                                                                  10
                                                                               V28
                                                                    .4)
Ul
I
              SELECTION OF REGRESSION  <1> TAYR : 81 *FTYP : ( 1 -7 . 10- 17 )*VTRN: (CM.CM.CM)
              ANALYSIS AT STEP 0 FOR 11.UMPG  N= 107 OUT OF 233

              SOURCE               OF   SUM OF SORS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
 1 1
 95
106
3210.6
347.83
3558.4
291 .87
3.6613
                                 F-STAT

                                 79.718
              MULTIPLE R= .94987  R-SOR= .90225  SE= 1.9135
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
              ANALYSIS AT STEP 1 FOR 11.UMPG  N= 1O7 OUT OF 233

              SOURCE               DF   SUM OF SORS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
 10
 96
1O6
3210.6
347.83
3558.4
321.06
3.6232
                                 F-STAT

                                 88.613
              MULTIPLE R= .94987  R-SQR= .9O225  SE= 1.9035
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .0000
                                                                              SIGNIF

22
23
24.
27
40.
1
2.
3.
4.
5.
6.
CONSTANT
, VDHP
.DISP
. RTHP
. NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
. FECO
, FENOX

. 16O15
. 10123
-.42421
-.28486
.74209
.21225
-.36298
.O6603
- . 00005
-.01161
.04386
7. 1304
.25523
.83965
-.73042
-. 1 1174
71856.
6.8089
-1 .2555
.74025
- . 50066
-.95846
.32678


-2
-1





-2
-1

4.3368
. 16140
.84662 -2
. 15997 -1
.38578 -1
6659.0
3.2163
. 33067
1 . 1477
1O. 631
.84708
.76371
1 .6442
1.5814
.99177
-4.5659
-2.8965
10.791
2. 1170
-3.7969
.64498
-.47O96 -3
-.11315
.42789
.1034
.1171
.3238
.OOOO
.0047
.OOOO
.O369
.0003
.5205
.9996
.91O2
.6697
                                     SIGNIF

                                      .0000
                                            SIGNIF

22.
23.
24.
27
40.
1
2.
3,
5
6.
CONSTANT
.VDHP
DISP
.RTHP
.NSVR
. ETWM1
.FTPHC
.FTPCO
.FTPNOX
.FECO
.FENOX

. 16206
. 10226
-.42729
-.28894
.75341
.24016
-.37663
.O6605
-.O1592
.O4420
7 . 1 3O8
.25522
.83959 -2
-.73043 -1
-.11174
71855.
6 . 808 1
-1 .2555
.74026
-.961 18 -1
.32674
4.2337
. 15861
.83359 -2
. 15774 -1
.37786 -1
6400 . 6
2 . 8086
.31516
1 . 1413
.61622
.75367
1 .6843
1 . 6O9 1
1 .OO72
-4.6306
-2.9571
11 .226
2.4240
-3.9835
.64859
-. 15598
.43353
.0954
.1109
.3164
.OOOO
.0039
.OOOO
.0172
.OOO1
.5182
.8764
.6656
                   REMAINING
                                 PARTIAL   SIGNIF

-------
   4.FEHC
                   -.OOOO5
                              .9996
ANALYSIS AT STEP 2 FOR 11.UMPG  N= 107 OUT OF 233

SOURCE               OF   SUM OF SORS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   9
  97
 106
3210.5
347.91
3558.4
356.73
3.5867
MULTIPLE R= .94986  R-SQR=  .90223  SE= 1.8939
     VARIABLE
                                  F-STAT

                                  99.456
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .0000
                                                                SIGNIF

22
23
24
27
4O
1
2
3
6
CONSTANT
. VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FENOX

. 16143
. 1044O
-.44424
-.28881
.75442
.245O8
- . 393O8
.07126
.044O4
7 . 2003
.25180
.85295 -2
-.73717 -1
- . 1 1 170
71760.
6.8752
- 1 . 2690
.77943
.32557
4. 1891
. 15629
.82499
. 15095
.37595
6339.4
2.7615
.30141
1 . 1O78
.74983


-2
-1
-1





1 .7188
1.6111
1 .0339
-4.8837
-2.9710
11.320
2.4897
-4.2103
.70362
.43419
.0888
. 1 1O4
.3038
.OOOO
.OO37
.0000
.O145
.O001
.4834
.6651
     REMAINING

   4.FEHC
   5.FECO
PARTIAL   SIGNIF
-.01089
-.01592
   .9152
   .8764
ANALYSIS AT STEP 3 FOR  11.UMPG  N=  107 OUT OF 233

SOURCE               OF   SUM OF SORS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   8
  98
 106
32O9.9
348.59
3558.4
401.23
3.5571
MULTIPLE R=  .94976  R-SQR=  .90204  SE=  1.8860
                          F-STAT

                          112.80
                        SIGNIF

                         .OOOO
     VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                SIGNIF

22.
23
24.
27.
40.
CONSTANT
VDHP
.DISP
.RTHP
.NSVR
. ETWM1

. 17665
. 10418
-.44271
-.29018
.76663
6.7380
.26826
.85195
-.72905
-. 11231
72423.


-2
-1


4.0347
. 15099
.82157
. 14916
.37413
6127.4


-2
-1
-1

1
1
1
-4
-3
1
.6700
.7766
.0370
.8876
.OO18
1 .819
.0981
.0787
.3023
.OOOO
.0034
.0000

-------
   1.FTPHC
   2.FTPCO
   3.FTPNOX
 .24343   6.8272      2.7478      2.4846      .0147
-.39462  -1.2749      .29986     -4.2516      .0000
 .17271   1.1618      .6693O      1.7358      .0857
     REMAINING

   4.FEHC
   5.FECO
   6.FENOX
                   PARTIAL
          SIGNIF
-.O0646    .9494
-.O1546    .8793
 .O4404    .6651
ANALYSIS AT STEP 4 FOR 11.UMPG  N= 1O7 OUT OF 233

SOURCE               DF   SUM OF SQRS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   7
  99
 106
3206.0
352.42
3558.4
458.00
3.5598
MULTIPLE R= .94919  R-SQR= .90096  SE= 1.8867
     VARIABLE
                                  F-STAT

                                  128.66
                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .OOOO
                                             SIGNIF
CONSTANT
22.VDHP
24.RTHP
27.NSVR
4O.ETWM1
1 .FTPHC
2.FTPCO
3. FTPNOX

. 16297
-.46100
-.31861
. 77008
.23559
- . 39087
.21354
8.2543
.24566
-.64389 -1
-. 12156
70630.
6.6113
-1 .2670
1 .3814
3.7618
. 14947
.12457 -1
.36347 -1
588O.6
2.7410
.29988
.63516
2. 1942
1.6435
-5.1690
-3.3444
12.O11
2 . 4 1 20
-4.2252
2. 1748
.O306
. 1034
.OOOO
.0012
.0000
.O177
.0001
.0320
     REMAINING

  23.DISP
   4:FEHC
   5.FECO
   6.FENOX
                   PARTIAL   SIGNIF
 .1O418
-.O0277
-.O2601
 .O4351
   .3023
   .9781
   .7973
   .6673
ANALYSIS AT STEP 5 FOR 11.UMPG  N= 107 OUT OF 233

SOURCE               DF   SUM OF SQRS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   6
 100
 106
3196.4
362.03
3558.4
532.74
3.6203
                                  F-STAT

                                  147. 15
                                     SIGNIF

                                      .OOOO
MULTIPLE R= .94777  R-SQR= .89826  SE= 1.9027

-------
     VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                SIGNIF
CONSTANT
24.RTHP
27.NSVR
4O.ETWM1
1 .FTPHC
2.FTPCO
3.FTPNOX

-.47041
- .28375
.77699
.23016
-.39295
. 204O5
11 .346
-.66582 -1
-. 10324
66628.
6.5367
- 1 . 2908
1 .3337
3.2852
. 12490 -1
.34888 -1
5398.2
2.7638
. 30206
.63988
3.4537
-5.3308
-2.9591
12.343
2.3651
-4.2733
2.0844
.OOO8
.OOOO
.0039
.OOOO
.020O
.OOOO
.0397
     REMAINING

  22.VDHP
  23.DISP
   4.FEHC
   5.FECO
   6.FENOX
PARTIAL

 .16297
 .07818
 .03518
 .00074
 .08161
SIGNIF

 . 1034
 .4371
 .7269
 .9942
 .4172
REGRESSION OF 11.UMPG USING BACKWARD SELECTION

STEP    R-SOR  STD ERROR  H VAR       VARIABLE
                                                       PARTIAL  SIGNIF
o
1
2
3
4
5
.90225
.90225
.90223
. 90204
. 90096
.89826
1 .9135
1 .9035
1 .8939
1 .8860
1 .8867
1 .9027
1 1
10
9
8
7
6

4.FEHC
5.FECO
6.FENOX
23.DISP
22. VDHP
IN
OUT
OUT
OUT
OUT
OUT

- . OOO05
-.O1592
.O4404
. 10418
. 16297

.9996
.8764
.6651
.3023
. 1O34

-------
I
h-1
•O
               SELECTION  OF  REGRESSION   <1>  TAYR:81*FTYP:(1-7.10-17)*VTRN:(LA,LA)
               ANALYSIS  AT  STEP  0  FOR  11.UMPG  N=  63  OUT  OF  140

               SOURCE                DF    SUM OF SORS   MEAN SQUARE    F-STAT

                                                                    55.376
               REGRESSION
               ERROR
               TOTAL
11
51
62
312.30
26.148
338.45
28.391
.51270
               MULTIPLE  R=  .96059   R-SQR=  .92274   SE=  .71603
                    VARIABLE
                                  PARTIAL   COEFFICIENT   STD  ERROR    T-STAT
               ANALYSIS  AT  STEP  1  FOR  11.UMPG  N=  63 OUT  OF  140

               SOURCE                DF    SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
1O
52
62
312.11
26.344
338.45
31.211
.50662
                                F-STAT

                                61.6O7
               MULTIPLE  R=  .96O29  R-SQR= .92216  SE= .71177
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                           SIGNIF

                                            .0000
                                           SIGNIF

22.
23.
24.
27.
40.
1 .
2.
3.
4.
5
6
CONSTANT
VDHP
DISP
RTHP
.NSVR
ETWM1
FTPHC
. FTPCO
, FTPNOX
. FEHC
FECO
. FENOX

-. 18428
-.61733
-. 15213
- . 19583
.52819
-.25446
. 10770
.45293
.08627
-. 11779
-.34244
20.4O1
-. 12310
-.25572 -1
-.74497 -2
-.42972 -1
27964.
-4.2266
.91243 -1
2.3989
3 . 908 1
-.18839
-1 .2723
2.4956
.91935
.45633
.67774
.30132
6295.0
2.2493
. 11794
.66122
6.3194
.22239
.48881

-1
-2
-2
-1







8. 1747
-1.3390
-5.6O39
-1.0992
-1.4261
4.4423
-1.8791
.77363
3.6281
.61843
-.84711
-2.6O29
.OOOO
. 1865
.0000
.2768
. 1599
.OOOO
. 066O
.4427
.OOO7
.539O
.4009
.O121
                                     SIGNIF

                                      .OOOO
                                                                               SIGNIF

22
23
24
27
40
1
2
3
5
6
CONSTANT
.VDHP
.DISP
.RTHP
.NSVR
. ETWM1
.FTPHC
.FTPCO
.FTPNOX
.FECO
.FENOX
20.047
- . 1 704 1
-.61391
-. 15655
-. 18382
.53469
-.25480
.0784O
.45351
-.08973
-.33628




11162
25380 -1
76878 -2
39802 -1
28385.
-3

2

-1
.3868
60137 -1
.4108
66472 -1
.2466
2.4149
.89506
.45256
.67262
.29516
6220.9
1.7825
. 10604
.65700
. 1O231
.48414

-1
-2
-2
-1






8
-1
-5
-1
-1
4
-1

3

-2
.3015
.2471
. 6O81
. 143O
.3485
.5627
.9O01
567 1O
.6693
64969
.5749
.0000
.2180
.OOOO
.2583
. 1833
.OOOO
.O63O
.5731
.O006
.5187
.O129
                    REMAINING
                                  PARTIAL   SIGNIF

-------
   4.FEHC
                    .O8627
                              .5390
ANALYSIS AT STEP 2 FOR 11.UMPG  N= 63 OUT OF 140

SOURCE               DF   SUM OF SQRS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   9
  53
  62
311.95
26.507
338.45
34.661
.50013
MULTIPLE R= .960O4  R-SOR=  .92168  SE=  .70720
     VARIABLE
                                  F-STAT

                                  69.303
                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .0000
                                                                SIGNIF

22
23
24
27
40
1
3
5
6
CONSTANT
.VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPNOX
. FECO
.FENOX

-. 15451
- .61533
-. 16833
-. 1704O
. 53064
-.24869
.44861
- .O635O
-.34716
20.O72
-.96890
-.25517
-.82255
-.35907
27868.
-2.8986
2.3734
-.431O4
-1 .2842

-1
-1
-2
-1



-1

2.3990
.85104
.44902
.66163
.28521
6114.4
1 .5507
.64950
.93O46
.47650

-1
-2
-2
-1



-1

8.3665
-1. 1385
-5.6829
-1.2432
-1 .2590
4.5578
-1 .8692
3.6542
-.46325
-2.6950
.OOOO
.2600
.0000
.2193
.2136
.0000
.0671
.0006
.6451
.OO94
     REMAINING

   2.FTPCO
   4.FEHC
                   PARTIAL   SIGNIF
 .0784O
 .04436
   .5731
   .7501
ANALYSIS AT STEP 3 FOR  11.UMPG  N= 63 OUT OF  14O

SOURCE               DF   SUM OF SQRS  MEAN SQUARE
REGRESSION
ERROR
TOTAL
   8
  54
  62
311.84
26.614
338.46
38.980
.49286
MULTIPLE R=  .95988  R-SQR=  .92136   SE=  .702O4
                                  F-STAT

                                  79.089
SIGNIF

 .OOOO
     VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                SIGNIF

22
23
24
27
4O
CONSTANT
.VDHP
.DISP
.RTHP
.NSVR
. ETWM1

-. 17057
- .6158O
-. 16492
-. 16917
.52917
2O. 151
-.10511
-.25586
-.80582
-.35708
27811.


-1
-2
-1

2.3755
.82628
.44549
.65582
.28310
6068 . 5

-1
-2
-2
-1

8
-1
-5
-1
-1
4
.4828
.2720
.7433
.2287
.2613
.5828
.0000
.2088
.OOOO
.2245
.2126
.OOOO

-------
                   1 .FTPHC
                   3.FTPNOX
                   6.FENOX
-.25953  -3.0059      1.5221      -1.9749      .0534
 .44742   2.37O2      .64472       3.6764      .O005
-.34227  -1.2370      .46212      -2.6769      .0098
                     REMAINING

                   2.FTPCO
                   4.FEHC
                   5.FECO
                                   PARTIAL   SIGNIF
 .O46O4
-.03238
-.0635O
   .7386
   .8144
   .6451
                ANALYSIS AT STEP 4 FOR 11.UMPG  N= 63 OUT OF 140

                SOURCE               OF   SUM OF SQRS  MEAN SQUARE
                REGRESSION
                ERROR
                TOTAL
   7
  55
  62
311.09
27.358
338.45
44.442
.49743
                MULTIPLE R= .95873  R-SQR= .91917  SE= .70528
                                  F-STAT

                                  89.344
                                     SIGNIF

                                      .0000
ui
I
                     VARIABLE
                                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                                SIGNIF

22.
23.
27.
40.
1 .
3.
6.
CONSTANT
.VDHP
DISP
.NSVR
. ETWM1
.FTPHC
. FTPNOX
, FENOX

-. 13387
-.78279
-.21140
.53510
-.27289
.45115
-.33582
19.979
-.8073O -1
-.29464 -1
-.44230 -1
28512.
-3. 1995
2.4229
-1 .2274
2.3824
.80582
.31583
.27574
6069.6
1 .5209
.64627
.46419

-1
-2
-1




8
-1,
-9,
-1.
4.
-2,
3
-2,
.3864
.0018
.3291
.6041
.6975
. 1O36
.7490
.6441
.OOOO
.3208
.OOOO
. 1144
.0000
.0400
.OO04
.0107
                     REMAINING

                  24.RTHP
                   2.FTPCO
                   4.FEHC
                   5.FECO
                                   PARTIAL   SIGNIF
-.16492
  .06975
-.O2487
-.O5354
   .2245
   .6095
   .8556
   .6951
                ANALYSIS AT STEP 5 FOR 11.UMPG  N= 63 OUT OF 140

                SOURCE               DF   SUM OF SQRS  MEAN SQUARE
                REGRESSION
                ERROR
                TOTAL
   6
  56
  62
310.60
27.858
338.45
51.766
.49746
                                  F-STAT

                                  104.O6
                        SIGNIF

                         .OOOO
                MULTIPLE R= .95796  R-SQR= .91769  SE= .7O531

-------
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                        SIGNIF
CONSTANT
23.DISP
27.NSVR
4O.ETWM1
1 .FTPHC
3.FTPNOX
6.FENOX

- .77842
-. 17474
.53217
- .28179
.45288
-.34509
18.660
-.29027 -1
-.34039 -1
28551 .
-3.3304
2.4539
-1 .2715
1 .9853
.31281 -2
.25629 -1
6O69 . 7
1 .5154
.64555
.46211
9.3992
-9.2794
-1 .3281
4 . 7O38
-2. 1977
3.8O12
-2.7515
.OOOO
.OOOO
. 1895
.OOOO
.O321
.0004
.0080
                   REMAINING

                22.VDHP
                24.RTHP
                 2.FTPCO
                 4.FEHC
                 5.FECO
           PARTIAL

           -.13387
           -.12651
             .O1270
           -.05457
           -.08202
             SIGNIF

              .3208
              .3484
              .9253
              .6868
              .5442
Ul
I
              ANALYSIS  AT  STEP  6  FOR  11.UMPG   N=  63  OUT OF  140

              SOURCE               DF    SUM OF SQRS   MEAN SQUARE    F-STAT

                                                                    122.87
              REGRESSION
              ERROR
              TOTAL
              5
              57
              62
           309.72
           28.735
           338.45
           61.944
           .50412
              MULTIPLE  R=  .95661   R-SOR=  .9151O   SE=  .71002
              SIGNIF

               .OOOO
                   VARIABLE
            PARTIAL   COEFFICIENT   STD  ERROR   T-STAT
                                                                              SIGNIF
CONSTANT
23.DISP
40.ETWM1
1 .FTPHC
3.FTPNOX
6.FENOX

-.77173
.55091
-.24360
.47170
- .32324
18.563
-.28812 -1
23388.
-2.7841
2 . 5909
-1 . 1887
1 .9972
.31448 -2
4692.9
1 .4682
.64151
.46095
9.2945
-9. 1618
4.9838
-1 .8963
4.0388
-2.5789
.OOOO
.0000
.0000
.0630
.0002
.0125
                    REMAINING

                 22.VDHP
                 24.RTHP
                 27.NSVR
                  2.FTPCO
                  4.FEHC
                  5.FECO
                                  PARTIAL    SIGNIF
            -.05804
            -.17631
            -.17474
             .00791
            -.O3891
            -.05924
              .6652
              . 1855
              . 1895
              .9530
              .7718
              .6587
               REGRESSION  OF  11.UMPG  USING BACKWARD SELECTION

               STEP     R-SQR   STD  ERROR  # VAR       VARIABLE
                  0
                  1
.92274
.92216
.71603
.71177
11
10
                                                PARTIAL   SIGNIF
                                                   4.FEHC
 IN
OUT
                                                                       .08627
                                                                                .5390

-------
                 2   .92168   .7O720        9     2.FTPCO       OUT   .O7840   .5731
                 3   .92136   .70204        8     5.FECO        OUT  -.06350   .6451
                 4   .91917   .7O528        7    24.RTHP        OUT  -.16492   .2245
                 5   .91769   .70531        6    22.VDHP        OUT  -.13387   .3208
                 6   .91510   .71002        5    27.NSVR        OUT  -.17474   .1895
Ul
I

-------
I
I-1
VD
               

              SELECTION OF REGRESSION  <1>  TAYR:8 1 *FTYP:(1-7,1O-17)*VTRN:(CM,CM,CM)
              ANALYSIS AT STEP 0 FOR 12.HMPG  N=  107 OUT OF 233

              SOURCE               DF   SUM OF SQRS  MEAN SQUARE   F-STAT

                                                                   71.276
              REGRESSION
              ERROR
              TOTAL
  11
  95
 106
4351.9
527.31
4879.2
395.63
5.5506
              MULTIPLE R=  .94442  R-SQR=  .89193  SE= 2.3560
                   VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
              ANALYSIS AT  STEP  1  FOR  12.HMPG   N=  107 OUT OF 233

              SOURCE               DF   SUM OF SORS  MEAN  SQUARE
              REGRESSION
              ERROR
              TOTAL
  1O
  96
 106
4351.7
527.51
4879.2
435. 17
5.4949
                                  F-STAT

                                  79.195
              MULTIPLE  R=  .9444O   R-SQR=  .89189   SE=  2.3441
                    VARIABLE
                                  PARTIAL   COEFFICIENT   STD  ERROR   T-STAT
                                             SIGNIF

                                              .0000
                                                                              SIGNIF

22
23
24
27
40
1
2
3
4
5
6
CONSTANT
. VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
. FECO
. FENOX

-.41494
-.29967
-.29259
- .581OO
.61891
. 15397
-.31942
. 13156
. 1 139O
- .04838
-.01944
45.357
-.88332
-.31913 -1
-.58742 -1
-.33049
62969.
6.0146
-1 .3376
1 .8279
14.626
- .49236
-. 17824
5.3397
. 19872
. 1O424 -1
. 19697 -1
.47500 -1
8199. O
3.9601
.40714
1 .4131
13.089
1 .0430
.94033
8.4942
-4.4450
-3.0615
-2.9823
-6.9577
7.6801
1 .5188
-3.2854
1 .2935
1 . 1174
-.47207
-. 18955
.OOOO
.OOOO
.OO29
.0036
.OOOO
.OOOO
. 1321
.O014
. 1990
.2666
.6380
.8501
                                     SIGNIF

                                      .0000
                                                                              SIGNIF

22.
23.
24.
27.
40.
1 .
2.
3,
4.
5
CONSTANT
VDHP
DISP
RTHP
NSVR
. ETWM1
.FTPHC
.FTPCO
.FTPNOX
.FEHC
.FECO

-.42618
-.29934
-\29549
-.58O82
.62449
. 15636
-.31925
. 18277
.11236
-.04699
45.580
-.89140
-.31874 -1
-.59107 -1
-.33036
62664.
6.0848
-1 .3371
1 .6205
14.313
-.47679
5. 1817
. 19312
. 10370 -1
. 19504 -1
.47256 -1
7998.9
3.9229
. 4O508
.88966
12.919
1 .0345
8
-4
-3
-3
-6
7
1
-3
1
1

.7965
.6159
.0738
.0306
.9909
.8341
.5511
.3007
.8214
. 1079
46089
.OOOO
.0000
.0028
.0031
.0000
.OOOO
. 1242
.0014
.0717
.2707
.6459
                    REMAINING
PARTIAL   SIGNIF

-------
                  6.FENOX
                                  -.O1944
                                              .8501
               ANALYSIS AT STEP 2 FOR  12.HMPG  N=  107 OUT OF 233

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
                   9
                  97
                 1O6
        435O.5
        528.67
        4879.2
483.39
5.4503
               MULTIPLE R=  .94427  R-SQR=  .89165  SE= 2.3346
                                                  F-STAT

                                                  88.691
                                             SIGNIF

                                              .OOOO
Ln
I
NJ
00
                    VARIABLE
  REMAINING

5.FECO
6.FENOX
                PARTIAL  COEFFICIENT  STD ERROR   T-STAT
PARTIAL   SIGNIF
                                   -.04699
                                   -.01566
           .6459
           .8783
                                                                               SIGNIF

22.
23,
24.
27.
40.
1 .
2
3.
4.
CONSTANT
. VDHP
DISP
RTHP
NSVR
ETWM1
FTPHC
. FTPCO
. FTPNOX
. FEHC

-.42507
-.29601
- . 30076
-.58590
.62998
. 19245
-.35965
.20775
. 10978
45.401
-.88930
-.31059 -1
-.60019 -1
-.33288
63132.
6.8456
- 1 . 4099
1 .7534
10.267
5. 1460
. 19228
. 1O176 -1
. 19324 -1
.46748 -1
7902 . 1
3.5442
.37142
.83822
9.438O
a
-4
-3
-3,
-7
7,
1
-3
2
1
.8225
.6251
.0522
.1059
. 12O7
.9893
.9315
.7961
.0918
.0878
.OOOO
.OOOO
.0029
.0025
.0000
.0000
.0563
.0003
.0391
.2794
               ANALYSIS AT STEP 3  FOR  12.HMPG  N=  107 OUT OF 233

               SOURCE               DF    SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
                   8
                  98
                 1O6
        4344.1
        535.12
        4879.2
543.01
5.4604
               MULTIPLE R=  .94357   R-SQR=  .89033   SE=  2.3368
                                  F-STAT

                                  99.444
                        SIGNIF

                         .OOOO
                    VARIABLE
                                   PARTIAL  COEFFICIENT  STD  ERROR   T-STAT
                                                             SIGNIF

22.
23
24
27.
40
CONSTANT
.VDHP
,DISP
.RTHP
.NSVR
. ETWM1

-.41315
-.29118
-.28220
-.59512
.65727
44.052
-.84021
- . 3067 1 - 1
-.53817 -1
-.33982
65543.
4.9989
. 18708
. 10179
. 18481
.46354
7591.8


-1
-1
-1

8.
-4,
-3.
-2
-7
8
.8122
.4912
.0131
.9120
. 33O9
.6334
.OOOO
.0000
.OO33
.OO44
.OOOO
.0000

-------
Ul
I
N3
                 1.FTPHC
                 2.FTPCO
                 3.FTPNOX
 .22901   7.9291      3.4045      2.3290      .0219
-.36117  -1.4245      .37152     -3.8342      .0002
 .193O1   1.6148      .82926      1.9473      .0544
                  REMAINING

                4.FEHC
                5.FECO
                6.FENOX
PARTIAL   SIGNIF

 .10978    .2794
 .04036    .6917
-.00460    .9639
             REGRESSION OF  12.HMPG USING  BACKWARD  SELECTION

             STEP    R-SQR  STD  ERROR   »  VAR        VARIABLE
                0    .89193   2.3560
                1    .89189   2.3441
                •2    .89165   2.3346
                3    .89033   2.3368
          11
          10
           9
           8
6.FENOX
5.FECO
4.FEHC
      PARTIAL  SIGNIF

-, IN
 OUT  -.01944   .8501
 OUT  -.£4699   .6459
 OUT, "'.10978   .2794

-------
                                                                                        ST
                                                         SO:
                                                          ,36:
Ul
I
OJ
o
                 SELECTION OF  REGRESSION  <1> TAYR:81*FTYP:(1-7.10-17)*VTRN:(LA,LA)
                 ANALYSIS  AT  STEP 0 FOR 12.HMPG  N=  63 OUT  OF  14O

                 SOURCE                OF   SUM OF SORS  MEAN SQUARE
                 REGRESSION
                 ERROR
                 TOTAL
11
51
62
356.91
84.263
441.17
32.446
1.6522
                                F-STAT

                                19.638
                 MULTIPLE  R=  .89945  R-SQR= .8O90O  SE= 1.2854
                      VARIABLE
                                    PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                 ANALYSIS AT STEP 1  FOR 12.HMPG  N= 63 OUT OF 140

                 SOURCE                OF   SUM OF SORS  MEAN SQUARE
                 REGRESSION
                 ERROR
                 TOTAL
1O
52
62
356.89
84.288
441 . 17
35.689
1.62O9
                                F-STAT

                                22.O17
                 MULTIPLE R= .89941   R-SQR= .80895  SE= 1.2732
                      VARIABLE
                                    PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .OOOO
                                           SIGNIF

22
23
24.
27
40
1
2
3
4
5
6
CONSTANT
. VDHP
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
. FECO
. FENOX

-. 17840
-.53207
.01744
- .64928
.58755
-.O8297
-.04978
.42458
-.02540
' .05296
-.30684
31 .939
-.21369
-.36762 -1
. 15158 -2
-.32977
58597.
-2.4O08
-.75358 -1
3.9751
-2.0584
. 15119
-2.0202
4.4799
. 16504
.81917 -2
. 12166 -1
.54091 -1
1 1 300 .
4.0378
.21 172
1 . 187O
1 1 .344
.39922
.87748
7. 1294
-1.2948
-4.4877
.12459
-6.0967
5. 1853
-.59458
-.35593
3.3490
-. 18144
.37872
-2.3023
.OOOO
.2012
.OOOO
.9013
.OOOO
.OOOO
.5548
.7234
.OO15
.8567
.7065
.O254
                        SIGNIF

                         .0000
                                           SIGNIF

22
23
27
40.
.1 .
2.
3.
4.
5.
6
CONSTANT
, VDHP
DISP
.NSVR
. ETWM1
, FTPHC
FTPCO
.FTPNOX
.FEHC
.FECO
.FENOX

-. 18310
-.65045
-.66160
.58863
-.08122
-.05301
.42457
-.O2643
.05396
-.30767
31 .963
-.21688
-.36053 -1
-.32794
58450.
-2.3180
-.79355 -1
3.9637
-2. 1387 .
. 15387
-2.0248
4.4334
. 16149
.58383 -2
.51543 -1
11132." -
3.9448
. 2O729
1 . 1722
1 1 .218
.39486
.86837
7.2095
-1 .343O
-6. 1753
-6.3623
5.25O7
-.5876O,
-.38282
3.3815 ,
-.19064 .
.38968
-2.3317
.0000
. 1851
.0000
.OOOO
.0000
.5593
.7034
.0014
.8495
.6984
.0236
                      REMAINING
                                    PARTIAL
                                              SIGNIF

-------
                 24.RTHP
                                    .01744
                                              .9O13
               ANALYSIS AT  STEP  2  FOR  12.HMPG  N=  63  OUT  OF  14O

               SOURCE                DF    SUM OF SORS   MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   9
  53
  62
356.83
84.347
441 . 17
39.647
1.5915
               MULTIPLE  R=  .89934   R-SQR=  .8O881   SE=  1.2615
                                  F-STAT

                                  24.913
                                     SIGNIF

                                      .OOOO
I
UJ
                     VARIABLE
                     REMAINING
                  24.RTHP
                   4.FEHC
                                   PARTIAL  COEFFICIENT  STD ERROR    T-STAT
                                   PARTIAL   SIGNIF
 .01891
-.02643
   .8920
   .8495
                                             SIGNIF

22
23
27.
40.
1
2.
3
5
6
CONSTANT
. VDHP
.DISP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FECO
. FENOX

-. 19268
-.651O7
- .66812
.58944
-. 12127
-.04618
.42398
.06588
-.31065
32. 159
-.22346
-.36O98 -1
-.32952
58206.
-2.7719
-.62622 -1
3.9563
.87164 -1
-2.0393
4.2733
. 15632
.57804 -2
.50407 -1
10957.
3. 1 166
. 18607
1 . 1608
. 18133
.85712
7.5254
-1 .4295
-6.2448
-6.5372
5.3121
-.88939
-.33654
3 . 408 1
. 48O69
-2.3793
.0000
. 1587
.OOOO
.0000
.0000
.3778
.7378
.0013
.6327
.021O
                ANALYSIS AT STEP 3 FOR 12.HMPG  N= 63 OUT OF 140

                SOURCE                DF   SUM OF SORS  MEAN SQUARE
                REGRESSION
                ERROR
                TOTAL
   8
  54
  62
356.65
84.528
441 . 17
44.581
1.5653
                MULTIPLE R= .89911  R-SQR= .80840  SE= 1.2511
                                  F-STAT

                                  28.480
                                     SIGNIF

                                      .OOOO
                     VARIABLE
                                   PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF

22
23
27.
40
1
CONSTANT
.VDHP
.DISP
.NSVR
. ETWM1
.FTPHC

-.21757
- .65496
-.67943
.59567
-. 16O87
32.145
-.24O40
-.35686 -1
- .33299
58696.
-3.2658
4.2379
. 14677
. 56029
.48935
10771.
2.7267


-2
-1


7
-1
-6
-6
5
-1
.5850
.6380
.3692
.8046
.4496
. 1977
.0000
. 1072
.0000
.0000
.0000
.2362

-------
                 3.FTPNOX
                 5.FECO
                 6.FENOX
 .42813   3.9915      1.1466      3.4813      .0010
 .05159   .62401 -1   .16437      .37965      .7057
-.30754  -2.0013      .84266     -2.375O      .0211
                   REMAINING

                24.RTHP
                 2.FTPCO
                 4.FEHC
                                 PARTIAL
                                           SIGNIF
 .02521    .8550
-.04618    .7378
-.OO436    .9748
              ANALYSIS AT STEP 4 FOR  12.HMPG  N= 63 OUT OF  140

              SOURCE               OF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   7
  55
  62
356.42
84.753
441 . 17
50.917
1 .541O
              MULTIPLE R=  .89883  R-SQR=  .8O789  SE=  1.2414
                                  F-STAT

                                  33.042
           SIGNIF

            .OOOO
I
U)
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                              SIGNIF
CONSTANT
22.VDHP
23.DISP
27.NSVR
40.ETWM1
1 .FTPHC
3.FTPNOX
6.FENOX

-.21 164
-.65465
-.67970
.59597
-. 15507
.42824
-.32318
32.O25
-.22778
-.35703 -1
-.33353
58800.
-3. 1162
3.9977
-2.0693
4. 1931
. 14183
.55589 -2
.48532 -1
10683.
2.6770
1 . 1375
.81702
7.6374
- 1 . 6060
-6.4226
-6.8723
5 . 504 1
-1 . 1641
3.5145
-2.5327
.0000
. 114O
.OOOO
.0000
.OOOO
.2494
.OOO9
.0142
                   REMAINING

                24.RTHP
                 2.FTPCO
                 4.FEHC
                 5.FECO
                                 PARTIAL   SIGNfF
 .O2232
-.02121
 .O4232
 .05159
   .8703
   .8767
   .7568
   .7O57
              ANALYSIS AT STEP 5 FOR  12.HMPG  N= 63 OUT OF  140

              SOURCE           '    OF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   6
  56
  62
354.33
86.841
441 . 17
59.055
1.55O7
F-STAT

38.082
SIGNIF

 .OOOO
              MULTIPLE R=  .89619  R-SQR=  .80316   SE=  1.2453

-------
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR
                                                                    T-STAT
                                                                               SIGNIF
CONSTANT
22.VDHP
23.DISP
27.NSVR
40.ETWM1
3.FTPNOX
6.FENOX

-. 22238
-.65776
- .67038
.58331
.45547
-.31133
31 .518
-.24196
-.36291 -1
-.321 12
56954.
4.2732
-2.0047
4. 1837
. 14175
.55534 -2
.47497 -1
1O598.
1 . 1161
.81771
7.5336
- 1 . 7069
-6.5348
-6.7609
5.3740
3.8287
-2.4516
.OOOO
.O934
.OOOO
.OOOO
.0000
.0003
.0174
                    REMAINING

                 24.RTHP
                  1.FTPHC
                  2.FTPCO
                  4.FEHC
                  5.FECO
PARTIAL

 .00589
-.15507
-.09332
-.01982
 .02803
SIGNIF

 .9653
 .2494
 .4899
 .8836
 .8361
Ln
I
CO
               REGRESSION OF  12.HMPG USING BACKWARD SELECTION

               STEP    R-SQR  STD ERROR  # VAR       VARIABLE
                                    PARTIAL  SIGNIF
o
1
2
3
4
5
. 8O900
.80895
.80881
.8084O
.80789
.80316
1
1
1
1
1
1
.2854
.2732
.2615
.251 1
.2414
.2453
1 1
10
9
8
7
6

24.
4.
2
5
1

. RTHP
. FEHC
. FTPCO
. FECO
.FTPHC
IN
OUT
OUT
OUT
OUT
OUT

.01744
-.O2643
-.04618
.05159
-. 155O7

.9013
.8495
.7378
.7057
.2494

-------
Ul
 I
OJ
SELECTION OF REGRESSION  <1> TAYR:81*FTYP:(1-7,10-17)


ANALYSIS AT STEP 0 FOR 13.CMPG  N= 267 OUT OF 571

SOURCE               DF   SUM OF SQRS  MEAN SQUARE   F-STAT

                                                     215.73
               REGRESSION
               ERROR
               TOTAL
 1 1
255
266
                           9737.7
                           1046.4
                           10784.
885.24
4.1034
               MULTIPLE  R=  .95O25   R-SOR=  .9O297   SE=  2.O257
                    VARIABLE
                                  PARTIAL   COEFFICIENT   STD  ERROR    T-STAT
               ANALYSIS AT STEP 1  FOR 13.CMPG  N= 267 OUT  OF  571

               SOURCE                DF   SUM OF SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
 10
256
266
                           9737.3
                           1O46.8
                           1O784.
973.73
4.0889
F-STAT

238. 14
               MULTIPLE  R=  .95023  R-SQR= .90293  SE=  2.O221
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                            SIGNIF

                                            O.
                                            SIGNIF

22,
23
24
27
40
1
2
3
4
5
6
CONSTANT
. VDHP
.DISP
. RTHP
. NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
. FECO
. FENOX

.04181
-. 16464
-.25403
- . 50O98
.71945
. 11483
-. 17649
. 14693
-.02068
-.01949
-.07647
12.846
.638OO -1
- . 1O959 -1
-.33358 -1
- . 2 1 1 20
76745.
3.77O7
-.37671
1 .7999
-1 .4159
-.60926 -1
-.64243
2.7572
.95466
.41113
.79534
.22848
4639.6
2.0428
. 13157
.75878
4.2869
. 19570
.52453

-1
-2
-2
-1







4.6590
.66830
-2.6655
-4. 1942
-9.2436
16.541
1 .8458
-2.8633
2.3721
-.33O29
-.31132
-1 .2248
.0000
.5045
.O082
-OOOO
.OOOO
.0000
.0661
.0045
.O184
.7414
.7558
.2218
SIGNIF

O.
                                            SIGNIF

22.
23
24.
27.
40.
1 .
2.
3.
4.
6
CONSTANT
.VDHP
DISP
.RTHP
.NSVR
. ETWM1
, FTPHC
FTPCO
FTPNOX
FEHC
.FENOX

.O4O46
-. 16410
-.25378
-.50254
.71986
. 12391
-. 19264
. 14656
- .04244
-.07445
12.854
.61561 -1
-. 10918 -1
-.33326 -1
-.21 167
76798.
3.9353
- . 390O5
1 .7952
-2.2574
-.61904
2.7522
.95027
.41020
.79387
.22759
4628.2
1 .9697
. 12418
.75729
3.3216
.51820

-1
-2
-2
-1






4.67O5
.64783
-2.6616
-4. 1979
-9 . 3OO4
16.593
1 .9979
-3. 1410
2 . 37O5
-.67962
-1 . 1946
.OOOO
.5177
.O083
.0000
.0000
.OOOO
.0468
.0019
.0185
.4974
.2334
                    REMAINING
                                  PARTIAL
                                            SIGNIF

-------
                  5.FECO
                                  -.01949
                                             .7558
               ANALYSIS AT STEP 2 FOR 13.CMPG  N= 267 OUT OF 571

               SOURCE               OF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
                 9
               257
               266
9735.5
1048.5
10784.
1O81.7
4.0797
               MULTIPLE R= .95014  R-SQR=  .90277  SE= 2.0198
                                                F-STAT

                                                265. 15
SIGNIF

0.
Ul
I
u>
Ul
                    VARIABLE
REMAINING
                 22.VDHP
                  5.FECO
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
              PARTIAL   SIGNIF
               .04O46
              -.01637
   .5177
   .7935
                                                                               SIGNIF
CONSTANT
23.DISP
24.RTHP
27.NSVR
40.ETWM1
1 .FTPHC
2.FTPCO
3.FTPNOX
4.FEHC
6. FENOX

- . 16O16
-.26667
-.50314
.74987
. 12288
- . 19536
. 14268
- .03878
-.07030
13.846
-. 10562 -1
-.34399 -1
-.20921
75482.
3.9042
-.39526
1 .7349
-2.0548
-.58102
2.2845
.40604 -2
.77552 -2
.22415 -1
4154. 1
1 .9669
. 12378
. 75069
3 . 303 1
.51429
6.O606
-2.6012
-4.4356
-9.3335
18. 171
1 .9850
-3. 1934
2.3110
-.62208
-1 . 1298
.OOOO
.0098
.0000
.0000
.OOOO
.O482
.O016
.0216
.5344
.2596
               ANALYSIS AT STEP 3 FOR  13.CMPG  N= 267 OUT OF 571

               SOURCE               OF    SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
                 8
               258
               266
9734.0
1050.1
10784.
1216.7
4.0700
               MULTIPLE R=  .95007  R-SQR=  .9O263   SE=  2.0174
                                                F-STAT

                                                298.96
SIGNIF

0.
                    VARIABLE
              PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                               SIGNIF
CONSTANT
23.DISP
24.RTHP
27.NSVR
40.ETWM1
1 .FTPHC

- . 16O67
-.27020
- .50351
.74958
. 11796
13.837
-. 10603 -1
-.34798 -1
-.20952
75470.
3.691 1
2.2818
.40550 -2
.77195 -2
.22382 -1
4149. 1
1 .9345
6 . 064 1
-2.6147
-4.5078
-9.3608
18. 189
1 . 90S 1
.0000
.0095
.0000
.0000
.0000
.0575

-------
                 2.FTPCO
                 3.FTPMOX
                 6.FENOX
-.19870  -.40134
 .14910   1.7988
-.06934  -.5733O
              .12324
              .74273
              .51353
            -3.2565
             2.4219
            -1.1164
.OO13
.O161
.2653
                   REMAINING
                22.VDHP
                 4.FEHC
                 5.FECO
PARTIAL   SIGNIF

 .03659    .5577
-.03878    .5344
-.O3725    .5507
              ANALYSIS  AT  STEP  4  FOR  13.CMPG  N=  267  OUT  OF  571

              SOURCE                DF    SUM  OF SQRS   MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   7
 259
 266
9728.9
1055.1
1O784.
1389.8
4.O739
              MULTIPLE  R=  .94982   R-SOR=  .90216  SE=  2.0184
                                  F-STAT

                                  341.16
                                     SIGNIF

                                     0.
Ul
I
OJ
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD  ERROR    T-STAT
                                             SIGNIF

23
24
27
40
1
2
3
CONSTANT
.DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX

-. 17055
-.26625
-.50353
.74982
. 10722
-. 18947
. 14139
14.245
-.11 202 - 1
-.34266 -1
- . 20999
74727.
3 . 3048
-.37673
1 .2171
2.2534
.40213
.77O84
.22389
4097 . 3
1 . 9O42
. 12131
.52952

-2
-2
-1




6.3213
-2.7856
-4.4453
-9.3794
18.238
1.7355
-3. 1054
2.2985
.OOOO
.0057
.OOOO
.OOOO
.OOOO
.0838
.0021
.O223
                   REMAINING

                22.VDHP
                 4.FEHC
                 5.FECO
                 6.FENOX
PARTIAL

 .O2862
-.O3700
-.02856
-.06934
  SIGNIF

   .6460
   .5526
   .6467
   .2653
              REGRESSION OF  13.CMPG USING BACKWARD SELECTION

              STEP     R-SQR   STD ERROR  ff VAR       VARIABLE
                                    PARTIAL  SIGNIF
0
1
2
3
4
.90297
.90293
.90277
.90263
.9O216
2
2
2
2
2
.0257
.0221
.0198
.0174
.0184
11
10
9
8
7

5
22
4
6

. FECO
. VDHP
. FEHC
. FENOX
IN
OUT
OUT
OUT
OUT

-.O1949
.O4046
-.O3878
-.06934

.7558
.5177
.5344
.2653

-------
               <5ELECT  BYST  aPTiONS=STEPWlSE,BACKWARD VAR = 13;22-24.27,40,1-6  MAXIM=1O  STRAT = V5O:81+V36:(1-7,1O-17)*V28:( 1 ,6.8 )>

               SELECTION  OF  REGRESSION  <1> TAYR:81*FTYP:(1-7,1O-17)*VTRN:(CA,CA,CA)
               ANALYSIS  AT  STEP  0 FOR  13.CMPG  N=  97 OUT  OF  198

               SOURCE                DF    SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
11
85
96
1877.7
205.98
2083.7
170.70
2.4233
               MULTIPLE  R=  .94929  R-SQR= .9O115  SE= 1.5567
                                F-STAT

                                7O.442
                                     SIGNIF

                                      .OOOO
                    VARIABLE

                    CONSTANT
                 22.VDHP
                 23.DISP
                 24.RTHP
                 27.NSVR
                 40.ETWM1
                  1.FTPHC
                  2.FTPCO
                  3.FTPNOX
                  4.FEHC
                  5.FECO
                  6.FENOX
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                           SIGNIF

12158
24191
3444O
30931
55216
05445
08697
07065
O3777
10772
04163
19.672
-. 14743
- . 11594 -1
-.32199 -1
-.93025 -1
46767.
-1 .5416
. 12902
-.73025
1 .3828
-. 18020
-.28529
3.8656
. 13055
.50440 -2
.95204 -2
.31022 -1
7659.3
3.0663
. 16030
1 . 1183
3.9680
. 18039
.74262
5.0889
-1 . 1293
-2.2986
-3.3821
-2.9987
6. 1059
-.50275
.80490
-.65298
.34849
-.99897
-.38417
.0000
.2619
.0240
.OO11
.0036
.OOOO
.6164
.4231
.5155
.7283
.3206
.7018
I
to
               ANALYSIS AT STEP 1  FOR 13.CMPG  N= 97 OUT OF 198

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
10
86
96
1877.4
206.27
2083.7
187.74
2.3985
               MULTIPLE R= .94921  R-SQR= .9O101  SE= 1.5487
                    VARIABLE
                                F-STAT

                                78.274
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                     SIGNIF

                                      .OOOO
                                           SIGNIF

22.
23.
24.
27.
40.
1 .
2.
3.
5.
6
CONSTANT
VDHP
DISP
RTHP
.NSVR
. ETWM1
.FTPHC
. FTPCO
. FTPNOX
. FECO
. FENOX

-. 12516
- .24O7O
- .34342
-.31 14O
.55223
-.04651
.08278
-.07679
-. 10331
-.04338
19.749
-. 15137
- . 1 1534 -1
-.32105 -1
-.93639 -1
46804 .
-1 .2757
. 12182
-.78639
-. 14731
- .29715
3.8395
. 12939
.5O152 -2
.94679 -2
.30813 -1
7619.4
2.9547
. 15815
1 . 1010
. 15293
.73804
5. 1438
-1 . 1698
-2.2998
-3.3909
-3.0389
6.1427
-.43177
.77030
-.71425
-.96320
-.40262
.0000
.2453
.0239
.0011
.0031
.0000
.6670
.4432
.477O
.3381
.6882
                    REMAINING
                                  PARTIAL   SIGNIF

-------
                  4.FEHC
                                   .03777
                                             .7283
               ANALYSIS  AT  STEP  2  FOR  13.CMPG   N=  97  OUT  OF  198

               SOURCE                OF    SUM OF SORS   MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   9
  87
  96
1877.0
2O6.66
2083.7
208.56
2.3754
              MULTIPLE  R=  .94912   R-SQR=  .90082   SE=  1.5412
                                  F-STAT

                                  87.799
SIGNIF

 .OOOO
Ul
I
U)
00
                    VARIABLE
                    REMAINING

                  4.FEHC
                  6.FENOX
                                  PARTIAL   COEFFICIENT   STD  ERROR    T-STAT
                                  PARTIAL   SIGNIF
 .03969
-.04338
   .7135
   .6882
                                             SIGNIF

22.
23,
24
27
40
1
2
3
5
CONSTANT
. VDHP
DISP
. RTHP
.NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FECO

-. 12342
-.25389
- .34468
- . 30992
.55106
-.06833
.09470
-. 12286
-.09622
19.788
-. 14925
-. 11953 -1
-.31080 -1
-.93165 -1
46632.
-1 .7337
. 1 3609
-1 .0392
-. 13398
3.8197
. 12866
.48822
.90748
.30642
757O.6
2.7138
. 15338
.89998
. 14859


-2
-2
-1





5. 18O6
-1 . 16O1
-2.4484
-3.4248
-3.04O4
6. 1595
-.63884
.8873O
-1. 1547
-.90168
.OOOO
.2492
.O164
.0009
.0031
.0000
.5246
.3774
.2514
.3697
               ANALYSIS AT STEP 3 FOR 13.CMPG  N= 97 OUT OF 198

               SOURCE                DF   SUM OF SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   8
  88
  96
1876. 1
2O7.63
2083.7
234.51
2.3594
               MULTIPLE R= .94887  R-SQR= .90O35  SE= 1.536O
                                  F-STAT

                                  99.391
                        SIGNIF

                         .OOOO
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                               SIGNIF
CONSTANT
22. VDHP
23. DISP
24. RTHP
27. NSVR
40.ETWM1

-. 12688
- .26416
-.35548
-.31217
.55312
19.724
-. 15364
-. 12383 -1
-.31923 -1
-.94040 -1
46913.
3.8055
. 12804
.48194 -2
.89479 -2
.3O508 -1
7532.3
5. 1829
-1. 1999
-2.5693
-3.5677
-3.0825
6.2282
.OOOO
.2334
.0119
.0006
.0027
.OOOO

-------
                  2.FTPCO
                  3.FTPNOX
                  5.FECO
 .067O5   .76497 -1   .12134      .63045      .5300
-.12613  -1.0684      .89579     -1.1927      .2362
-.08766  -.12113      .14672     -.82555      .4113
                    REMAINING

                  1.FTPHC
                  4.FEHC
                  6.FENOX
PARTIAL   SIGNIF

-.06833    .5246
 .02120    .8436
-.06624    .5374
               ANALYSIS  AT  STEP  4 FOR 13.CMPG  N= 97 OUT OF 198

               SOURCE                DF    SUM OF SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   7
  89
  96
1875. 1
208.57
2083.7
267.87
2.3435
               MULTIPLE  R=  .94863  R-SQR= .8999O  SE= 1.53O8
                                  F-STAT

                                  114.31
                        SIGNIF

                         .OOOO
t_n
I
U)
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF

22.
23.
24.
27.
40.
3.
5.
CONSTANT
VDHP
DISP
RTHP
NSVR
, ETWM1
. FTPNOX
FECO

-. 14152
-.27O31
-.34996
- . 30920
.55162
-. 11132
- .074O1
19.882
-. 16897
-. 12666 -1
-.31054 -1
-.93164 -1
46827.
- . 90099
-.99558 -1
3.7844
. 12529
.47821
.88111
.30373
75O5.6
.85260
. 14220


-2
-2
-1



5.2536
-1 .3486
-2.6487
-3.5244
-3.0673
6.2390
-1 .0567
-.7O015
.0000
. 1809
.0096
.0007
.0029
.0000
.2935
.4857
                    REMAINING

                  1 .FTPHC
                  2.FTPCO
                  4.FEHC
                  6.FENOX
                                  PARTIAL   SIGNIF
-.01333
  .067O5
  .02397
-.06422
   .9007
   .5300
   .8225
   .5476
               ANALYSIS AT STEP 5 FOR 13.CMPG  N= 97 OUT OF 198

               SOURCE               DF   SUM OF SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   6
  90
  96
1874.0
209.72
2083.7
312.33
2.3302
F-STAT

134.04
SIGNIF

 .0000
               MULTIPLE R= .94834  R-SQR= .89935  SE= 1.5265

-------
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                                                               SIGNIF
CONSTANT
22.VDHP
23.DISP
24.RTHP
27.NSVR
40.ETWM1
3.FTPNOX

-. 13711
-.26566
-.35376
-.31712
.55544
-.09838
19.667
- . 16377
-. 12437 -1
-.31458 -1
-.95496 -1
47263.
-.78113
3.7613
. 12471
.47573 -2
.87674 -2
.30104 -1
7458.5
.83287
5.2289
-1.3131
-2.6142
-3.5880
-3. 1722
6.3367
-.93788
.0000
. 1925
.0105
.0005
.0021
.0000
.3508
                    REMAINING

                  1.FTPHC
                  2.FTPCO
                  4.FEHC
                  5.FECO
                  6.FENOX
PARTIAL

-.O1583
 .04777
-.O1845
-.O7401
-.04338
  SIGNIF

   .8816
   .653O
   .8622
   .4857
   .6831
*-
O
               ANALYSIS AT STEP 6 FOR  13.CMPG  N= 97 OUT OF  198

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   5
  91
  96
1871.9
211.77
2083.7
374.38
2.3271
               MULTIPLE R=  .94782  R-SQR=  .89837  SE=  1.5255
                                  F-STAT

                                  160.88
                        SIGNIF

                         .OOOO
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF
CONSTANT
22.VDHP
23.DISP
24.RTHP
27.NSVR
40.ETWM1

-. 1 1880
-.29970
-.34633
-.30891
.54998
19.267
-.13903
-.13681 -1
-.30738 -1
-.92781 -1
4663O.
3.7346
. 12181
.45654 -2
.87279 -2
.29945 -1
7423.1
5.1592
-1.1414
-2.9967
-3.5218
-3.0984
6.2818
.0000
.2567
.0035
.0007
.0026
.0000
                    REMAINING

                   1.FTPHC
                   2.FTPCO
                   3.FTPNOX
                   4.FEHC
                   5.FECO
                   6.FENOX
                                  PARTIAL   SIGNIF
-.O3729
 .02121
-.O9838
 .OO778
-.0524O
-.09336
   .7241
   .8409
   .3508
   .9413
   .6198
   .3761
               ANALYSIS AT STEP 7 FOR  13.CMPG  N= 97 OUT OF  198

               SOURCE               DF    SUM OF  SQRS  MEAN SQUARE
                                  F-STAT
                                     SIGNIF

-------
                REGRESSION
                ERROR
                TOTAL
              4
             92
             96
1868.9
214.80
2083.7
467.22
2.3348
                                                                     2OO.11
               MULTIPLE  R=  .94706   R-SQR= .89691   SE=  1.5280
                     VARIABLE
                                   PARTIAL  COEFFICIENT  STD ERROR    T-STAT
                                                                                 .OOOO
                                                        SIGNIF
CONSTANT
23.DISP
24.RTHP
27.NSVR
40.ETWM1

-.30758
-.32870
-.37588
.65551
16.825
-. 14127 -1
-.28289 -1
-. 10665
51360.
3.O660
.45562 -2
.84740 -2
.27412 -1
6168.8
5.4877
-3.1006
-3.3383
-3.8907
8.3257
.OOOO
.0026
.0012
-OOO2
.OOOO
                     REMAINING
                                   PARTIAL
                                             SIGNIF
22.VDHP
1 .FTPHC
2.FTPCO
3.FTPNOX
4.FEHC
5.FECO
6.FENOX
-. 11880
-.022O5
.04974
-.07O35
.01256
-.05O1 1
-.07598
.2567
.8338
.6359
.5028
.9049
.6334
.4691
Ul
I
-P-
                REGRESSION OF  13.CMPG USING BACKWARD SELECTION
                STEP
R-SOR  STD ERROR  H VAR
                                                      VARIABLE
                                                                       PARTIAL  SIGNIF
0
1
2
3
4
5
6
7
.901 15
.90101
. 90O82
.90035
.8999O
.89935
.89837
.89691
1 .5567
1 .5487
1 .5412
1.5360
1 . 53O8
1 .5265
1 .5255
1 .5280
1 1
10
9
8
7
6
5
4

4.FEHC
6.FENOX
1 .FTPHC
2.FTPCO
5.FECO
3.FTPNOX
22.VDHP
IN
OUT
OUT
OUT
OUT
OUT
OUT
OUT

.03777
-.04338
-.06833
.06 705
-.07401
-.09838
-. 1188O

.7283
.6882
.5246
.53OO
.4857
.35O8
.2567

-------
             SELECTION OF  REGRESSION   <1>  TAYR:81*FTYP:(1-7,10-17)*VTRN:(CM,CM,CM)
                                                                                                                  /28:|
                                                                                       1.4)1
ui
I
             ANALYSIS AT  STEP 0  FOR  13.CMPG  N=  107  OUT  OF  233

             SOURCE               OF    SUM OF  SQRS   MEAN SQUARE
             REGRESSION
             ERROR
             TOTAL
 11
 95
106
3653.6
383.63
4O37.2
332.14
4.O382
                                 F-STAT

                                 82.251
             MULTIPLE  R=  .95130   R-SQR=  .9O498   SE=  2.OO95
                  VARIABLE
                                 PARTIAL  COEFFICIENT   STD  ERROR    T-STAT
             ANALYSIS  AT  STEP  1  FOR  13.CMPG  N=  107  OUT  OF  233

             SOURCE                DF    SUM OF SQRS   MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
 10
 96
106
3653.4
383.81
4037.2
365.34
3.9980
                                 F-STAT

                                 91 .380
             MULTIPLE  R=  .95128   R-SQR=  .9O493   SE=  1.9995
                   VARIABLE
                                 PARTIAL   COEFFICIENT  STD ERROR    T-STAT
                                     SIGNIF

                                      .OOOO
                                                                              SIGNIF

22.
23.
24.
27.
40.
1 .
2
3
4.
5,
6.
CONSTANT
VDHP
DISP
, RTHP
.NSVR
. ETWM1
. FTPHC
FTPCO
. FTPNOX
. FEHC
. FECO
. FENOX

-.O3677
-.03389
-.40202
-.41240
.72318
.20501
-.36316
.08948
.O3225
-.O2194
.O28O7
18.457
-.60782 -1
-.29388 -2
-.71897 -1
-. 17876
71372.
6.8956
-1 .3193
1.0554
3.511O
-. 19029
.21949
4.5545
. 16950
.88912 -2
. 16800 -1
.40515 -1
6993.3
3.3777
.34727
1 .2053
1 1 . 164
.88960
. 80205
4.0526
-.35860
-.33053
-4.2795
-4.4122
10.2O6
2.0415
-3.799O
.87561
.31449
-.21390
.27366
.0001
.7207
.7417
.0000
.0000
.OOOO
.0440
.OO03
.3835
.7538
.8311
.7849
                                     SIGNIF

                                      .OOOO
                                            SIGNIF

22.
23
24.
27.
4O.
1 .
2.
3.
4
6.
CONSTANT
.VDHP
DISP
.RTHP
.NSVR
. ETWM1
.FTPHC
.FTPCO
.FTPNOX
.FEHC
, FENOX

-.03663
-.O3O58
- .40576
-.41646
.72592
.23488
-.39671
.09352
.02364
.02988
18.4O3
- . 6056 1 - 1
-.26124 -2
-.72287 -1
-. 17975
71534.
7.2027
-1.3482
1 .0924
1 .8822
. 23300
4.5248
. 16865
.87156 -2
. 16618 -1
.4OO50 -1
6917.4
3.0422
.31838
1 . 1869
8. 1235
.79558
4.0672
- . 359O9
-.29974
-4.3498
-4.4881
10.341
2.3676
-4.2344
.92036
.2317O
.29286
.0001
.7203
.7650
.0000
.OOOO
.0000
.0199
.0001
.3597
.8173
.7703
                   REMAINING
                                 PARTIAL   SIGNIF

-------
                 5.FECO
                                 -.02194
                                            .8311
              ANALYSIS AT STEP 2 FOR 13.CMPG  N= 107 OUT OF 233

              SOURCE               DF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   9
  97
 106
3653.2
384.03
4037.2
405.91
3.9590
              MULTIPLE R= .95125  R-SOR=  .90488  SE= 1.9897
F-STAT

102.53
                                             SIGNIF

                                              .OOOO
Ln

.p-
U)
                   VARIABLE
                   REMAINING

                 4.FEHC
                 5.FECO
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
PARTIAL   SIGNIF
 .02364
 .OOOO8
   .8173
   .9993
                                                                              SIGNIF

22.
23.
24.
27.
4O.
1 .
2
3
6
CONSTANT
. VDHP
DISP
.RTHP
NSVR
ETWM1
, FTPHC
, FTPCO
. FTPNOX
. FENOX

-.03244
-.02975
-.41477
-.42183
.73893
.25083
-.39736
. 09084
" .03237
18. 182
-.52487
-.25408
-.71195
-. 18099
71939.
7 . 4040
-1 .3505
1 .0455
.25128

-1
-2
-1






4.4O1 1
. 16420
.86675 -2
.15859 -1
.39498 -1
6660.3
2.9012
.31666
1 . 1638
.78779
4. 1312
-.31964
-.29314
-4.4894
-4.5822
1O. 801
2.5520
-4.2647
.89834
.31897
.0001
.7499
.7700
.0000
.0000
.0000
.0123
.0000
.3712
.75O4
              ANALYSIS AT STEP 3 FOR  13.CMPG  N=  1O7 OUT OF 233

              SOURCE               DF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   8
  98
 106
3652.8
384.37
4037.2
456.60
3.9221
              MULTIPLE R=  .95121  R-SQR=  .90479  SE=  1.9804
                                  F-STAT

                                  116.42
           SIGNIF

            .0000
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF
. CONSTANT
22. VDHP
24. RTHP
27. NSVR
4O.ETWM1
1 .FTPHC

- .02856
-.49095
-.42651
.75404
.25346
17.731
-.45777 -1
-.73737 -1
-. 17823
72472.
7.4686
4.1O38
. 16184
. 13217 -1
.38179 -1
6376.9
2.8794
4.3206 .
- . 28285
-5'. 5787
-4.6681
1 1 .365
2.5938
.0000
.7779
, .OOOO
.OOOO
.0000
.0109

-------
                  2.FTPCO
                  3.FTPNOX
                  6.FENOX
-.39790  -1.3528      .31509     -4.2935      .0000
 .08672   .97927      1.1363      .86178      .3909
 .03244   .25192      .78410      .32129      .7487
                    REMAINING
                 23.DISP
                  4.FEHC
                  5.FECO
                                  PARTIAL
                                            SIGNIF
-.02975    .7700
 .O2256    .8246
 .00314    .9754
               ANALYSIS AT STEP 4 FOR  13.CMPG  N=  107 OUT OF 233,

               SOURCE               DF   SUM OF SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   7
  99
 106
3652.5
384.68
4037.2
521.79
3.8857
                                  F-STAT

                                  134.29
               MULTIPLE R=  .95117  R-SQR=  .90472  SE=  1.9712
                                   / SIGNIF

                                      .0000
-C-
•P-
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF
CONSTANT
24.RTHP
27.NSVR
40.ETWM1
1 .FTPHC
2.FTPCO
3.FTPNOX
6.FENOX

-.49178
-.45033
.79251
.25353
-.39719
.09545
.02623
17. 111
-.73219 -1
-. 18153
73284.
7.4736
-1.3496
1 . 05 1 5
. 19750
3.4553
. 13029 -1
.36174 -1
5667.8
2.8659
.31342
1 . 1021
.75659
4.9523
-5.6197
-5.0184
12.930
2.6O78
-4.3O62
.954O4
.261O4
.OOOO
.OOOO
.0000
.0000
.0105
.0000
.3424
.7946
                    REMAINING
                 22.VDHP
                 23.DISP
                  4.FEHC
                  5.FECO
PARTIAL

-.02856
-.02547
 .01626
-.OO126
  SIGNIF

   .7779
   .8014
   .8724
   .9901
               ANALYSIS AT  STEP 5  FOR  13.CMPG   N=  107 OUT OF  233

               SOURCE               DF    SUM OF SORS  MEAN  SQUARE
               REGRESSION
               ERROR
               TOTAL
   6
 1OO
 106
3652.3
384.94
4037.2
608.71
3.8494
                                  F-STAT

                                  158. 13
                                     SIGNIF

                                      .OOOO
               MULTIPLE R=  .95113   R-SQR=  .90465   SE=  1.962O

-------
                  VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                   SIGNIF
CONSTANT
24.RTHP
27.NSVR
40.ETWM1
1 .FTPHC
2.FTPCO
3.FTPNOX

-.492 (9
-.44974
.79728
.25265
-.39871
. 19063
16.956
-.72821 -1
-. 18115
73525.
7.4416
-1 .3542
1 .2813
3.3876
. 12879 -1
.35976 -1
5566.4
2.8499
.31 148
.65981
5.0053
-5.6541
-5.0354
1 3 . 209
2.6112
-4.3476
1 .9419
.0000
.0000
.OOOO
.0000
.O1O4
.OOOO
.05 SO
                  REMAINING

               22.VDHP
               23.DISP
                4.FEHC
                5.FECO
                6.FENOX
PARTIAL

-.02124
-.02644
 .02001
 .OOOO3
 .02623
SIGNIF

 .833O
 .7930
 .8426
 .9998
 .7946
Ui
I
-P-
Ul
             REGRESSION  OF  13.CMPG  USING BACKWARD  SELECTION

             STEP     R-SOR   STD  ERROR   H VAR       VARIABLE
                                                                     PARTIAL   SIGNIF
0
1
2
3
4
5
.90498 :
.90493
.90488
.90479
.90472
.9O465
2.0095
.9995
.9897
.98O4
.9712
.962O
1 1
10
9
8
7
6

5
4
23
22
6

FECO
FEHC
DISP
VDHP
FENOX
IN
OUT
OUT
OUT
OUT
OUT

-.02194
.02364
-.02975
-.02856
.02623

.8311
.8173
.770O
.7779
.7946

-------
Ol
                SELECTION OF  REGRESSION   <1>  TAYR:81*FTYP:(1-7.1O-17)*VTRN:(LA,LA)
                ANALYSIS  AT  STEP 0  FOR  13.CMPG  N= 63 OUT Of  140

                SOURCE               OF    SUM OF  SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
1 1
51
62
327.39
34.993
362.38
29.763
.68613
                                F-STAT

                                43.378
               MULTIPLE  R=  .95049   R-SOR=  .90344   SE=  .82833
                     VARIABLE
                                   PARTIAL   COEFFICIENT   STD  ERROR   T-STAT
                ANALYSIS  AT  STEP  1  FOR  13.CMPG   N=  63  OUT  OF  140

                SOURCE                DF    SUM OF SORS   MEAN SQUARE
                REGRESSION
                ERROR
                TOTAL
10
52
62
327.29
35.094
362.38
32.729
.67489
                                F-STAT

                                48.496
                MULTIPLE  R=  .95035   R-SQR=  .90316   SE=  .82151
                     VARIABLE
                                   PARTIAL   COEFFICIENT   STD  ERROR    T-STAT
                                     SIGNIF

                                      .0000
                                                                                SIGNIF

22.
23.
24
27.
40
1
2
3
4
5
6
CONSTANT
. VDHP
.DISP
. RTHP
, NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FEHC
. FECO
. FENOX

-.21717
-.61911
-.09230
-.46373
.58291
-.21616
.06556
.46436
.05379
-.06678
-.35605
24.839
-. 16898
-.29721 -1
-.51900 -2
-. 13029
37309.
-4. 1140
.64020 -1
2.8641
2.8121
-. 12296
-1.5387
2.8870
. 10635
.52789 -2
.78403 -2
.34857 -1
7282.3
2 . 6020
. 13644
.76492
7.3105
.25727
.56547
8.6O37
-1 .5889
-5.63O1
-.66196
-3.7379
5. 1232
- 1 . 58 1 1
.46922
3.7443
. 38466
-.47794
-2.7211
.0000
. 1183
.0000
.511O
.0005
.0000
. 1200
.6409
.OOO5
.7O21
.6347
.OO89
                                     SIGNIF

                                      .0000
                                                                                SIGNIF

22.
23.
24.
27.
40.
1 .
2.
3.
5.
6.
CONSTANT
VDHP
DISP
RTHP
NSVR
ETWM1
FTPHC
FTPCO
FTPNOX
FECO
FENOX

-.21089
-.61767
-.09533
-.46212
.58772
-.23022
.04712
.46506
-.04134
-.35298
24.585
-. 16072
-.29583 -1
-.53614 -2
-. 12801
37611 .
-3.5O97
.41637 -1
2.8726
-.35235 -1
-1 .5202
2.7872
. 10331
.52234 -2
.77633 -2
.34067 -1
7180. 1
2.0573
. 12239
.75831
. 11809
.55878
8.82O4
-1.5558
-5.6636
-.69061
-3.7577
5.2382
- 1 . 7060
.34O19
3.7882
-.29838
-2.72O5
.OOOO
.1258
.OOOO
.4929
.0004
.OOOO
.094O
.7351
.0004
.7666
.0088
                     REMAINING
                                   PARTIAL    SIGNIF

-------
                 4.FEHC
                                   .05379
                                             .7021
              ANALYSIS AT STEP 2 FOR 13.CMPG  N= 63 OUT OF 140

              SOURCE               DF   SUM OF SQRS  MEAN SQUARE
              REGRESSION
              ERROR
              TOTAL
   9
  53
  62
327.23
35.154
362.38
36.359
.66329
              MULTIPLE R=  .95026  R-SOR=  .90299  SE=  .81442
                                  F-STAT

                                  54.816
                                     SIGNIF

                                      .0000
                   VARIABLE
                                 PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                             SIGNIF
Ul
I

22.
23.
24.
27.
40.
1 ,
2.
3
6.
CONSTANT
. VDHP
DISP
RTHP
NSVR
. ETWM1
. FTPHC
. FTPCO
. FTPNOX
. FENOX

- .21369
-.61889
- .09555
-.46080
.58684
-.22779
.03329
.46377
- . 35O98
24.645
-. 16274
-.29664 -1
-.53783 -2
-.12692
37445.
-3.4638
.26929 -1
2.8613
-1 .4971
2.7560
. 1O219
.51714
.76961
.33578
7096.8
2.0338
.11106
.75082
.54863


-2
-2
-1





8.9423
-1 .5925
-5.7362
-.69884
-3.7799
5.2764
-1 .7031
.24247
3.8109
-2.7288
.0000
. 1172
.0000
.4877
.0004
.0000
.0944
.8094
.OO04
. OO86
                   REMAINING

                 4.FEHC
                 5.FECO
PARTIAL

-.01178
-.04134
  SIGNIF

   .9326
   .7666
              ANALYSIS  AT  STEP  3  FOR  13.CMPG   N=  63 OUT OF  14O

              SOURCE                DF    SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   8
  54
  62
327.19
35.193
362.38
40.899
.65172
               MULTIPLE  R=  .95O20  R-SQR=  .90288   SE=  .80729
             F-STAT

             62.755
SIGNIF

 .0000
                    VARIABLE
                                  PARTIAL  COEFFICIENT   STD  ERROR   T-STAT
                                                                               SIGNIF

22.
23,
24.
27.
40,
CONSTANT
, VDHP
.DISP
.RTHP
.NSVR
, ETWM1

- .21559
-.61950
-. 10160
-.46377
.58748
24.636
-. 15415
-.29708
-.56597
-. 12523
37228.


-1
-2


2.7316
.95016
.51229
.75415
.32554
6978.4

-1
-2
-2
-1

9
-1
-5

-3
5
.0189
.6224
.7992
75047
.8467
.3348
.OOOO
. 1105
.0000
.4562
.OOO3
.0000

-------
                   1.FTPHC
                   3.FTPNOX
                   6.FENOX
-.24279  -3.2191      1.7503     -1.8392      .0714
 .46294   2.8454      .74138      3.8379      .OOO3
-.36384  -1.5253      .53141     -2.87O4      .O058
                    REMAINING

                  2.FTPCO
                  4.FEHC
                  5.FECO
PARTIAL   SIGNIF

 .03329    .8094
-.00665    .9616
-.O2441    .8596
               ANALYSIS AT STEP 4  FOR  13.CMPG  N= 63 OUT OF  140

               SOURCE               DF   SUM OF SQRS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   7
  55
  62
326.82
35.560
362.38
46.689
.64655
               MULTIPLE R=  .94967  R-SQR=  .90187   SE=  .804O8
                                  F-STAT

                                  72.213
                                     SIGNIF

                                      .0000
Ul
CO
                    VARIABLE
                                  PARTIAL  COEFFICIENT  STD  ERROR   T-STAT
                                                                               SIGNIF

22
23,
27.
4O,
1
3.
6
CONSTANT
. VDHP
.DISP
.NSVR
. ETWM1
.FTPHC
. FTPNOX
. FENOX

- . 19718
-.77199
-.49046
.59225
-.25245
.46656
-.36O84
24.516
- . 137O3
-.32432 -1
-. 13121
37721 .
-3.3551
2.8823
-1 .5185
2.7161
.9187O
. 36008
.31437
6919.8
1 .734O
.73680
.52922

-1
-2
-1




9
-1
-9
-4
5
-1
3
-2
.0262
.4916
.0070
. 1739
.4511
.9349
.9119
.8694
.0000
. 1415
.0000
.0001
.0000
.0582
.0003
.O058
                    REMAINING

                 24.RTHP
                  2.FTPCO
                  4.FEHC
                  5.FECO
PARTIAL   SIGNIF
-.1O160
  .048O5
-.00227
-.01871
   .4562
   .7251
   .9868
   .8911
               ANALYSIS AT  STEP  5  FOR  13.CMPG  N=  63 OUT OF  14O

               SOURCE               DF    SUM OF  SORS  MEAN SQUARE
               REGRESSION
               ERROR
               TOTAL
   6
  56
  62
325.38
36.999
362.38
54.231
.66069
             F-STAT

             82.082
SIGNIF

 .0000
               MULTIPLE R=  .94758   R-SQR=  .8979O   SE=  .81283

-------
                    VARIABLE
PARTIAL  COEFFICIENT  STD ERROR   T-STAT
                                   SIGNIF
CONSTANT
23.DISP
27.NSVR
40.ETWM1
1 .FTPHC
3.FTPNOX
6.FENOX

-.76145
-.45810
.5853O
-.264O2
.46634
-.37125
22.276
-.31690 -1
-.11391
37787.
-3.5773
2.9349
-1 .5934
2.2879
.36050 -2
.29537 -1
6995.0
1 .7464
.74396
.53256
9.7365
-8.7906
-3.8566
5.4020
-2.0484
3.9450
-2.9921
.OOOO
.OOOO
.OOO3
.0000
.0452
.0002
.0041
                    REMAINING

                 22.VDHP
                 24.RTHP
                  2.FTPCO
                  4.FEHC
                  5.FECO
PARTIAL

-. 19718
-.04935
-.03185
-.04720
-.06255
SIGNIF

 . 1415
 .7154
 .8141
 .7274
 .6439
-P-
               REGRESSION OF 13.CMPG USING BACKWARD SELECTION

               STEP    R-SQR  STD ERROR  H VAR       VARIABLE
                                    PARTIAL  SIGNIF
0
1
2
3
4
5
.9O344
.90316
.90299
.90288
.90187
.89790
.82833
.82151
.81442
.80729
.80408
.81283
11
10
9
8
7
6

4
5
2
24
22

. FEHC
. FECO
. FTPCO
. RTHP
.VDHP
IN
OUT
OUT
OUT
OUT
OUT

.05379
-.04134
.03329
-. 10160
-. 19718

.7021
.7666
.8094
.4562
.1415
               

-------
          Appendix 6




Residual and Ratio Regressions

-------
61. U.D. Jose is the urban fuel economy  "delta-residual" using  the  Bascunana
    equation.

62. U.D. Dill  is  the urban fuel  economy "delta-residual"  using the Murrell
    equation.

63. U.D. J.P.  is  the  urban fuel  economy "delta-residual"  using  the Cheng
    equation.

64. U.R. Jose is the urban fuel economy  "ratio-residual" using  the  Bascunana
    equation.

65. U.R. Dill  is  the urban fuel  economy "ratio-residual"  using the Murrell
    equation.

66. U.R. J.P.  is  the  urban fuel  economy "ratio-residual"  using  the Cheng
    equation.

   .When U is replaced by H,  urban fuel economy becomes  highway  fuel economy.

    When U  is  replaced by  C, urban  fuel  economy  becomes  composite  fuel
    economy.
                                      6-1

-------


LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 61.UD.JOSE  N = 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                         1  8.8443
                       263  1005.4
                       264  1014.3
 8.8443
 3.8230
     MULT R= .09338  R-SOR= .00872 SE= 1.9552
                                                  2.3135
                                                            SIGNIF

                                                             . 1295
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
                            .63058
                  -.O9338  -2.2958
 .33410
 1.5094
 1.8874
-1.5210
SIGNIF

 .0602
 . 1295
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 62.UD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .17837
     REGRESSION
     ERROR
     TOTAL
                         1  .5599O
                       263  825.55
                       264  826.11
 .5599O
 3.139O
     MULT R=  .02603  R-SQR=  .OOO68 SE=  1.7717
                                                            SIGNIF

                                                              .6731
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                             .21263
                  -.02603  -.57764
STD ERROR

 .30274
 1.3677
 T-STAT

 .70235
-.42234
SIGNIF

 .4831
 .6731
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 63.UD.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT    SIGNIF

                                                  .91198 -1   .7629
     REGRESSION
     ERROR
     TOTAL
                         1   .31441
                       263  906.71
                       264  907.03
 .31441
 3.4476
     MULT R=  .O1862  R-SQR=  .O0035 SE=  1.8568
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                             . 16228
                  -.01862  -.43287
STD ERROR

 .31728
 1.4334
 T-STAT

 .51147
-.30199
SIGNIF

 .6095
 .7629

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 64.UR.dOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  2.2956
     REGRESSION
     ERROR
     TOTAL
                         1  .16764 -1
                       263  1.9207
                       264  1.9374
           .16764  -1
           .73029  -2
     MULT R= .O9302  R-SQR=  .OO865 SE=  .85457 -1
                                                            SIGNIF

                                                             . 1309
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
                                                            SIGNIF
                            1.0262     .14603 -1  70.279    0.
                  -.O93O2  -.99954 -1  .65971 -1 -1.5151      .13O9
LEAST SQUARES REGRESSION                        '     .,--


ANALYSIS OF VARIANCE. OF 65.UR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
                                                            SIGNIF
     REGRESSION
     ERROR
     TOTAL
                          1   .43762 -3   .43762 -3   .68481 -1   .7938
                       263   1.6806      .63903 -2
                       264   1.6811
     MULT R=  .01613  R-SQR=  .OOO26 SE=  .79939 -1
     VARIABLE

     CONSTANT
   1 .FTPHC
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
                                                            SIGNIF
                             1.O078      .13660 -1  73.779    0.
                  -.01613  -.16149 -1   .61711 -1 -.26169      .7938
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 66.UR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT    SIGNIF

                                                              .7815
     REGRESSION
     ERROR
     TOTAL
                          1
                       263
                       264
.5391O -3
1.8394
1.8399
.53910 -3   .77083  -1
.69938 -2
     MULT R=  .01712  R-SQR=  .OOO29 SE=  .83629 -1
     VARIABLE

     CONSTANT
    1.FTPHC
                  PARTIAL
                             COEFF
                                       STD  ERROR
                                                  T-STAT
                                                            SIGNIF
                             1.0077      .14290-1  7O.518    O.
                  -.01712   -.17924 -1   .64559 -1 -.27764      .7815

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 71.HD.dOSE  N= 265 OUT OF 571

     SOURCE             OF  SUM SQRS   MEAN SOR   F-STAT

                                                  .76549
     REGRESSION
     ERROR
     TOTAL
                         1  6.4400
                       263  2212.6
                       264  2219.1
 6.4400
 8.4130
     MULT R= .05387  R-SOR= .00290 SE= 2.9005
                                                            SIGNIF

                                                             .3824
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                           -. 16283
                   .O5387    1.9591
STD ERROR

 .49563
 2.2391
 T-STAT

-.32854
 .87492
SIGNIF

 .7428
 .3824
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 72.HD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  1.9509
     REGRESSION
     ERROR
     TOTAL
                         1  15.056
                       263  2029.8
                       264  2O44.8
 15.056
 7.7177
     MULT R= .08581  R-SQR=  .00736 SE= 2.7781
                                                            SIGNIF

                                                              . 1637
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                           -.61347
                   .08581   2.9955
STD ERROR

 .47471
 2.1446
 T-STAT

-1.2923
 1.3967
SIGNIF

 . 1974
 . 1637
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 73.HD.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  1.5237
     REGRESSION
     ERROR
     TOTAL
                          1   12.890
                       263   2224.9
                       264   2237.7
 12.89O
 8.4595
     MULT R=  .O7590  R-SQR=  .00576 SE= 2.9085
                                                            SIGNIF

                                                              .2182
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
                           -.52557
                    .O7590   2.7716
 .497OO
 2.2453
-1.0575
 1 .2344
SIGNIF

 .2913
 .2182

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 74.HR.dOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM-SQRS   MEAN SOR   F-STAT

                                                  .57969
     REGRESSION
     ERROR
     TOTAL
                         1  .47380 -2  .47380 -2
                       263  2.1496     .81734 -2
                       264  2.1543
     MULT R = .04690  R-SQR=  .00220 SE= .90407 -1
                                                            SIGNIF

                                                             .4471
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                   .04690
                             COEFF
                                      STD ERROR   T-STAT
                             .99616     .15448 -1  64.483
                             .53138 -1  .69792 -1  .76137
                                                            SIGNIF
                                     0.
                                      .4471
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 75.HR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                         1   . 12233 -1
                       263   2.0592
                       264   2.0715
                .12233 -1   1.5624
                .78297 -2
     MULT R= .O7685  R-SQR=  .00591 SE=  .88486 -1
                                                            SIGNIF

                                                             .2124
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                    .07685
                             COEFF

                             .98270
                             .85383 -1
                                      STD ERROR   T-STAT
                .15120 -1
                .68309 -1
64.993
1.250O
                                                            SIGNIF
O.
  .2124
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 76.HR.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  1.3160
     REGRESSION
     ERROR
     TOTAL
  1  . 1141O -1
263  2.2803
264  2.2917
                                        .11410 -1
                                        .86703 -2
     MULT R=  .07056  R-SQR=  .00498 SE=  .93114 -1
                                                            SIGNIF

                                                             .2524
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                    .07056
                             COEFF

                             .98630
                             .82461 -1
               STD ERROR   T-STAT
                .15911 -1
                .71882 -1
61.988
1.1472
                                     SIGNIF
0.
  .2524

-------
ON
I
LEAST SQUARES REGRESSION



ANALYSIS OF VARIANCE OF 81.CD.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
                                                                            SIGNIF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R= .
VARIABLE
CONSTANT
1 .FTPHC
LEAST SQUARES
O2937 R-SQR=
PARTIAL
-.02937
REGRESSION
ANALYSIS OF VARIANCE OF 82.
SOURCE
OF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R=
VARIABLE
CONSTANT
1 . FTPHC
LEAST SQUARES
.O3956 R-SQR=
PARTIAL
.O3956
REGRESSION
ANALYSIS OF VARIANCE OF 83.
SOURCE
DF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R=
VARIABLE
CONSTANT
1 . FTPHC
.O3070 R-SQR=
PARTIAL
.03070
.97346
1127.6
1128.6
.00086 SE=
COEFF
.24461
-.76166

CD. DILL N=
SUM SQRS
1 .4807
944.80
946.28
.00156 SE=
COEFF
-. 18803
.93937

CD.d.P. N=
SUM SQRS
1 .O476
1110.3
1111.3
.00094 SE=
COEFF
-. 15913
.79015
.97346
4.2876
2.07O7
STD ERROR
.35383
1 .5985

265 OUT OF
MEAN SQR
1 .4807
3.5924
1.8954
STD ERROR
.32387
1 .4632

265 OUT OF
MEAN SQR
1 .O476
4.2216
2.0547
STD ERROR
.35109
1 .5861
.227O4

T-STAT
.69132
-.47649

571
F-STAT
.41217

T-STAT
-.58O56
.64201

571
F-STAT
.24816

T-STAT
-.45324
.49816
.6341

SIGNIF
.4900
.6341


SIGNIF
.5214

SIGNIF
.5620
.5214


SIGNIF
.6188

SIGNIF
.6507
.6188

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 84.CR.dOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SOR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                         1  .17618 -2  .17618 -2  .28235
                       263  1.6411     .62397 -2
                       264  1.6428
     MULT R= .03275  R-SOR=  .00107 SE= .78992 -1
                                                            SIGNIF

                                                             .5956
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
     CONSTANT               1.0099      .13498 -1  74.816
   1.FTPHC        -.03275  -.32403 -1   .60980 -1 -.53137
                                                            SIGNIF
                                                            0.
                                                              .5956
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 85.CR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                         1   .27560 -2  .27560 -2  .48586
                       263   1.4919     .56725 -2
                       264   1.4946
     MULT R=  .O4294  R-SQR=  .OO184 SE=  .75316 -1
                                                            SIGNIF

                                                             .4864
     VARIABLE

     CONSTANT
   1.FTPHC
                  PARTIAL
                    .04294
                             COEFF
                                      STD ERROR
                                                  T-STAT
                             .993O2      .12870 -1  77.160
                             .40527 -1   .58142 -1  .69703
                                                            SIGNIF
O.
  .4864
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 86.CR.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .22573
     REGRESSION
     ERROR
     TOTAL
                          1   .14246 -2   .14246 -2
                       263   1.6598      .63112 -2
                       264   1.6613
     MULT R=  .O2928  R-SQR=  .OO086 SE=  .79443 -1
                                                            SIGNIF

                                                              .6351
     VARIABLE

     CONSTANT
    1.FTPHC
                  PARTIAL
                    .02928
                             COEFF
                                      STD  ERROR
                                                  T-STAT
                             .99579      .13575 -1  73.355
                             .29137 -1   .61328 -1  .47511
                                                            SIGNIF
0.
  .6351

-------
               

               LEAST  SQUARES REGRESSION


               ANALYSIS  OF  VARIANCE  OF  61.UD.JOSE   N=  265  OUT  OF  571

                   SOURCE              DF   SUM SQRS   MEAN SOR   F-STAT

                                                                 8.9623
                    REGRESSION
                    ERROR
                    TOTAL
                    1  33.425
                  263  980.86
                  264  1O14.3
33.425
3.7295
                                                       SIGNIF

                                                        .0030
                    MULT  R=  .18153  R-SOR=  .O3295 SE=  1.9312
                    VARIABLE

                    CONSTANT
                  2.FTPCO
             PARTIAL    COEFF

                       .79283
             -.18153  -.29846
                                                     STD ERROR
                                                                 T-STAT
.24345     3.2566
.99697 -1 -2.9937
SIGNIF

 .OO13
 .OO30
               LEAST  SQUARES  REGRESSION
I
oo
               ANALYSIS  OF  VARIANCE  OF  62.UD.DILL   N=  265 OUT OF  571

                    SOURCE              DF   SUM SQRS   MEAN SQR   F-STAT

                                                                 5.8904
                    REGRESSION
                    ERROR
                    TOTAL
                    1  18.097
                  263  8O8.02
                  264  826.11
18.O97
3.O723
MULT R= .148O1  R-SQR= .O2191 SE= 1.7528
                                                       SIGNIF

                                                        .0159
                    VARIABLE

                    CONSTANT
                  2.FTPCO
                                 PARTIAL
                                            COEFF
                       .56163
             -.148O1  -.21961
                                                     STD ERROR
                                                                 T-STAT
.22097     2.5417
.9O487 -1 -2.4270
SIGNIF

 .O116
 .0159
               LEAST  SQUARES REGRESSION


               ANALYSIS  OF  VARIANCE  OF 63.UD.J.P.   N= 265 OUT OF  571

                   SOURCE              DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 5.9366
                    REGRESSION
                    ERROR
                    TOTAL
                    1  20.022
                  263  887.00
                  264  907.03
20.022
3.3726
                    MULT  R=  .14857  R-SQR= .02207 SE= 1.8365
                                                       SIGNIF

                                                        .0155
                    VARIABLE

                    CONSTANT
                  2.FTPCO
                                 PARTIAL
                                            COEFF
                                                     STD ERROR
                        .56545
             -.14857  -.23100
                                             T-STAT
.23151     2.4424
.948O7 -1 -2.4365
SIGNIF

 .0152
 .O155

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 64.UR.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  5.1377
     REGRESSION
     ERROR
     TOTAL
       1
     263
     264
.37122 -1
1.90O3
1.9374
           .37122  -1
           .72255  -2
     MULT R= .13842  R-SQR=  .O1916 SE= .85003 -1
                                          SIGNIF

                                           .O242
     VARIABLE

     CONSTANT
   2.FTPCO
PARTIAL    COEFF    STD ERROR   T-STAT    SIGNIF

          1.0268     .10716 -1  95.822    O.
-.13842  -.99466 -2  .43882 -2 -2.2666     .O242
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 65.UR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
       1
     263
     264
. 18843 -1
1 .6622
1.6811
           .18843 -1   2.9814
           .63203 -2
     MULT R=  .1O587  R-SQR=  .01121 SE=  .795OO -1
                                          SIGNIF

                                           .OB54
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
     CONSTANT                1.O196      .10022 -1  101.73
   2.FTPCO        -.10587  -.7O865 -2   .41O42 -2 -1.7267
                                                            SIGNIF
                                          0.
                                            .0854
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 66.UR.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  3.7364
     REGRESSION
     ERROR
     TOTAL
        1
     263
     264
.25773 -1
1.8141
1.8399
           .25773 -1
           .68978 -2
     MULT R=  .11835  R-SQR=  .01401 SE=  .83053 -1
                                          SIGNIF

                                           .0543
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
     CONSTANT                1.0217      .10470 -1  97.582
   2.FTPCO        -.11835  -.82878 -2   .42876 -2 -1.9330
                                                            SIGNIF
                                          0.
                                            .0543

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 71.HD.JOSE  N=

     SOURCE             DF  SUM SORS
     REGRESSION
     ERROR
     TOTAL
                                        1  14. 171
                                      263  2204.9
                                      264  2219.1
 265 OUT OF 571

 MEAN SQR   F-STAT

 14.171     1.6903
 8.3836
                                                                           SIGNIF

                                                                            . 1947
     MULT R= .O7991  R-SQR= .OO639 SE= 2.8954
     VARIABLE

     CONSTANT
   2.FTPCO
                  PARTIAL
                             COEFF
                                           .65622
                                 -.07991  -.19434
STD ERROR

 .36501
 .14948
 T-STAT

 1.7978
-1.3001
SIGNIF

 .O734
 . 1947
LEAST SQUARES REGRESSION
I
M
o
ANALYSIS OF VARIANCE OF 72.HD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .50399
     REGRESSION
     ERROR
     TOTAL
                                        1  3.9110
                                      263  2040.9
                                      264  2044.8
 3.9110
 7.76O1
     MULT R= .04373  R-SQR= .OO191 SE= 2.7857
                                                                           SIGNIF

                                                                            .4784
     VARIABLE

     CONSTANT
   2.FTPCO
                  PARTIAL
                             COEFF
                                            .22295
                                 -.O4373  -.1O2O9
STD ERROR

 .35118
 .14381
 T-STAT

 .63487
-.70992
SIGNIF

 .5261
 .4784
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 73.HD.O.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  3.0924
     REGRESSION
     ERROR
     TOTAL
                                        1  26.006
                                      263  2211.7
                                      264  2237.7
 26.006
 8.4097
     MULT R= .1O78O  R-SQR=  .01162 SE= 2.8999
                                                                           SIGNIF

                                                                             .O798
     VARIABLE

     CONSTANT
   2.FTPCO
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
                                            .60830
                                 -.1O780  -.26327
 .36558
 .14971
 1.6639
-1.7585
SIGNIF

 .0973
 .O798

-------
               LEAST  SQUARES  REGRESSION


               ANALYSIS OF  VARIANCE  OF  74.HR.JOSE   N=  265  OUT  OF  571

                    SOURCE              DF   SUM SORS   MEAN SOR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
       1   .75769 -2  .75769 -2  .92825
     263   2.1468     .81626 -2
     264   2.1543
                     MULT  R=  .O593O  R-SOR= .00352 SE=  .90347 -1
                                          SIGNIF

                                           .3362
                     VARIABLE

                     CONSTANT
                   2.FTPCO
                                  PARTIAL
                                             COEFF
                                                      STD ERROR    T-STAT
          1.0167     .11390 -1  89.267
-.0593O  -.44937 -2  .46641 -2 -.96346
                                                                            SIGNIF
                     O.
                      .3362
                LEAST  SQUARES  REGRESSION
ON
I
                ANALYSIS  OF  VARIANCE  OF  75.HR.DILL  N= 265 OUT  OF  571

                     SOURCE              DF  SUM SORS   MEAN SQR   F-STAT
                     REGRESSION
                     ERROR
                     TOTAL
       1  .14062 -2  .14062 -2  .17866
     263  2.070O     .78709 -2
     264  2.0715
                     MULT  R=  .02605  R-SQR= .00068 SE= .88718 -1
                                          SIGNIF

                                           .6729
                     VARIABLE

                     CONSTANT
                   2.FTPCO
PARTIAL    COEFF    STD ERROR   T-STAT    SIGNIF

          1.0045     .11184-1  89.811    O.
-.026O5  -.19359 -2  .45800 -2 -.42268      .6729
                LEAST SQUARES REGRESSION


                ANALYSIS OF VARIANCE OF 76.HR.J.P.   N=

                     SOURCE             DF  SUM SQRS
                     REGRESSION
                     ERROR
                     TOTAL
       1   .19343 -1
     263  2.2724
     264  2.2917
265 OUT OF 571

MEAN SQR   F-STAT    SIGNIF

.19343 -1  2.2387     .1358
.86401 -2
                     MULT R= .09187  R-SQR= .OO844 SE= .92952 -1
                     VARIABLE

                   .  CONSTANT
                   2.FTPCO
                                  PARTIAL
                                  -.09187
           COEFF

          1 .0186
         -.71799 -2
                                                      STD ERROR
                                                                  T-STAT
. 11718 -1  86.929
.47986 -2 -1.4962
                                                                            SIGNIF
0.
  . 1358

-------
               LEAST  SQUARES  REGRESSION
              ANALYSIS  OF  VARIANCE OF 81.CD.JOSE  N= 265 OUT OF 571
I
I-1
N3
SOURCE
DF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R= .
VARIABLE
CONSTANT
2.FTPCO
LEAST SQUARES
14754 R-SQR=
PARTIAL
-. 14754
REGRESSION
ANALYSIS OF VARIANCE OF 82.
SOURCE
DF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R= .
VARIABLE
CONSTANT
2.FTPCO
LEAST SQUARES
10O94 R-SQR=
PARTIAL
- . 10094
REGRESSION
ANALYSIS OF VARIANCE OF 83.
SOURCE
DF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R=
VARIABLE
CONSTANT
2.FTPCO
.13389 R-SQR=
PARTIAL
-. 13389
SUM SQRS
24.568
1 1O4. 1
1 128.6
.02177 SE=
COEFF
.63293
-.25588

CD. DILL N=
SUM SQRS
9.642O
936.64
946.28
.01019 SE=
COEFF
.34783
-. 1603O

CD.d.P. N=
SUM SQRS
19.922
1091 .4
1111.3
.01793 SE=
COEFF
.49543
- .23O42
MEAN SQR
24.568
4. 1979
2.O4S9
STD ERROR
.25829
. 10577

265 OUT OF
MEAN SQR
9.6420
3.5614
1 .8872
STD ERROR
.2379O
.97424 -1

265 OUT OF
MEAN SQR
19.922
4. 1498
2.0371
STD ERROR
.25681
. 10517
F-STAT
5.8523

T-STAT
2.4504
-2.4192

571
F-STAT
2 . 7O74

T-STAT
1.4621
-1.6454

571
F-STAT
4 . 80O7

T-STAT
1 .9292
-2. 1910
SIGNIF
.O162

SIGNIF
.O149
.O162


SIGNIF
. 1011

SIGNIF
. 1449
. 1011


SIGNIF
.O293

SIGNIF
.O548
.0293

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 84.CR.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SOR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                                       1  .19776 -1  .19776 -1  3.2O45
                                     263  1.6230     .61713 -2
                                     264  1.6428
     MULT R= .10972  R-SQR=  .01204 SE=  .78557 -1
                                     SIGNIF

                                      .0746
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
     CONSTANT                1.0186      .99033 -2  102.86
   2.FTPCO        -.10972  -.72597 -2   .4O555 -2 -1.7901
                                                            SIGNIF
                                                                          0.
                                                                            .O746
LEAST SQUARES REGRESSION
I
M
W
              ANALYSIS OF VARIANCE OF 85. CR. DILL  N= 265 OUT OF 571

                   SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                1.1070
     REGRESSION
     ERROR
     TOTAL
  1  .62646 -2  .62646 -2
263  1.4883     .56591 -2
264  1.4946
     MULT R=  .06474  R-SQR=  .OO419 SE=  .75227 -1
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
     CONSTANT                1.0101      .94835 -2   1O6.51
   2.FTPCO        -.06474   -.4O860  -2   .38836 -2 -1.0521
                                                            SIGNIF

                                                              .2937
                                                            SIGNIF
                                                                          0.
                                                                            .2937
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 86.CR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM  SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                                        1
                                     263
                                     264
     .196O4 -1
     1.6417
     1.6613
.19604  -1   3.1407
.62421  -2
     MULT R=  .1O863  R-SQR=  .01180  SE=  .79OO7  -1
                     SIGNIF

                      .0775
     VARIABLE
                  PARTIAL
                              COEFF
                                       STD  ERROR   T-STAT
     CONSTANT                1.0172      .99599  -2   102.13
   2.FTPCO         -.10863   -.72282  -2   .40787  -2  -1.7722
                                                            SIGNIF
                                                                          0.
                                                                            .0775

-------


LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 61.UD.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  9.3206
     REGRESSION
     ERROR
     TOTAL
                         1  34.716
                       263  979.57
                       264  1014.3
 34.716
 3.7246
                                                            SIGNIF

                                                             .0025
     MULT R = .18500  R-SOR= .03423 SE= 1.9299
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                   .18500
                             COEFF

                           -.62211
                            1.4213
STD ERROR

 .28121
 .46554
 T-STAT

-2.2123
 3.0530
SIGNIF

 .0278
 .O025
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 62.UD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  3.2744
     REGRESSION
     ERROR
     TOTAL
                         1  1O.159
                       263  815.95
                       264  826.11
 10.159
 3.1025
     MULT R= .11039  R-SQR=  .O1230 SE= 1.7614
                                                            SIGNIF

                                                             .O715
     VARIABLE     PARTIAL    COEFF

                           -.32780
                                      STD ERROR   T-STAT
     CONSTANT
   3.FTPNOX
                    .11O89
                             .76884
                                        .25665
                                        .42489
           -1.2772
            1.8095
           SIGNIF

            .2026
            .O715
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 63.UD.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  5.9862
     REGRESSION
     ERROR
     TOTAL
                         1  20.186
                       263  886.84
                       264  907.03
 20.186
 3.3720
     MULT R=  .14918  R-SQR=  .02225 SE= 1.8363
                                                            SIGNIF

                                                              .O151
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                             COEFF
                           -.52O76
                    .14918    1.O838
STD ERROR

 .26757
 .44296
 T-STAT

-1.9463
 2.4467
SIGNIF

 .O527
 .0151

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 64.UR.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SOR   F-STAT

                                                  10.562
     REGRESSION
     ERROR
     TOTAL
                         1
                       263
                       264
.74805 -1
1.8626
1.9374
.74805 -1
.70822 -2
     MULT R = .1965O  R-SQR=  .03861 SE= .84156 -1
                                                            SIGNIF

                                                             .OO13
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                    .19650
                             COEFF

                             .96947
                             .65976 -1
                                      STD ERROR
                                                  T-STAT
           .12262  -1   79.O61
           .20300  -1   3.250O
                                                            SIGNIF
                     0.
                      .0013
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 65.UR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                         1   . 17617 -1
                       263   1.6635
                       264   1.6811
           . 17617  -1   2.7853
           .63250  -2
     MULT R=  .10237  R-SQR=  .01048 SE=  .79530 -1
                                                            SIGNIF

                                                             .0963
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                    .10237
                             COEFF
                                      STD ERROR
                                                  T-STAT
                             .98693      .11588 -1  85.167
                             .32017 -1   .19184 -1  1.6689
                                                            SIGNIF
                                0.
                                 .O963
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 66.UR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                          1   .41685 -1
                       263   1.7982
                       264   1.8399
           .41685 -1   6.0967
           .68373 -2
     MULT R=  .15052  R-SQR=  .O2266 SE=  .82688 -1
                                                            SIGNIF

                                                              .O142
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
                             .97704      .12O48 -1  81.093
                    .15052    .49250 -1   .19946 -1  2.4692
                                                            SIGNIF
                                0.
                                 .O142

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 71.HD.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SOR   F-STAT

                                                  6.5594
     REGRESSION
     ERROR
     TOTAL
                         1  53.998
                       263  2165.1
                       264  2219.1
 53.998
 8.2322
     MULT R= .15599  R-SQR= .02433 SE= 2.8692
                                                            SIGNIF

                                                             .0110
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                             COEFF
                           -.72910
                   .15599   1.7726
STD ERROR

 .41806
 .69211
 T-STAT

-1.744O
 2.5611
SIGNIF

 .0823
 .O11O
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 72.HD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  3.3185
     REGRESSION
     ERROR
     TOTAL
                         1  25.480
                       263  2O19.3
                       264  2044.8
 25.480
 7.6781
     MULT R=  .11163  R-SQR=  .01246 SE= 2.77O9
                                                            SIGNIF

                                                              .0696
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                   .11163
                             COEFF

                           -.66170
                            1.2176
STD ERROR

 .40375
 .66841
 T-STAT

-1 .6389
 1.8217
SIGNIF

 . 1O24
 .0696
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 73.HD.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  3.6665
     REGRESSION
     ERROR
     TOTAL
                         1  30.767
                       263  2207.O
                       264  2237.7
 30.767
 8.3916
     MULT R=  .11726  R-SQR=  .O1375 SE= 2.8968
                                                            SIGNIF

                                                              .0566
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                    .11726
                             COEFF

                           -.68598
                             1 .3380
STD ERROR

 .42209
 .69878
 T-STAT

-1.6252
 1.9148
SIGNIF

 . 1053
 .0566

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 74.HR.JOSE  N=

     SOURCE             DF  SUM SQRS
     REGRESSION
     ERROR
     TOTAL
                                       1
                                     263
                                     264
.58894 -1
2.0954
2.1543
265 OUT OF 571

MEAN SOR   F-STAT

.58894 -1  7.3918
.79674 -2
SIGNIF

 .OO70
     MULT R= .16534  R-SQR=  .02734 SE=  .89261 -1
     VARIABLE     PARTIAL    COEFF    STD ERROR   T-STAT    SIGNIF

     CONSTANT                .97507      .13006 -1  74.970    0.
   3.FTPNOX        .16534    .5854O -1   .21532 -1  2.7188      .OO7O
LEAST SQUARES REGRESSION
I
K-1
~J
ANALYSIS OF VARIANCE OF 75.HR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                                       1
                                     263
                                     264
.21948 -1
2.0495
2.0715
.21948 -1  2.8165
.77928 -2
     MULT R=  .10294  R-SQR=  .0106O SE=  .88277 -1
     VARIABLE

     CONSTANT
   3.FTPNOX
                  PARTIAL
                    .10294
                             COEFF
                                      "STD ERROR
                                                  T-STAT
                                          .98076     .12863 -1   76.248
                                          .35737 -1  .21294 -1   1.6782
                                                            SIGNIF

                                                              .O945
                                                            SIGNIF
                                O.
                                  .0945
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 76.HR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                                       1   .28946 -1
                                     263   2.2628
                                     264   2.29J7
           .28946 -1  3.3644
           .86O36 -2
     MULT R=  .11239  R-SQR=  .O1263 SE=  .92756 -1
                     SIGNIF

                      .0678
     VARIABLE     PARTIAL    COEFF    STD ERROR   T-STAT    SIGNIF

     CONSTANT                .98085      .13515 -1  72.573    0.
   3.FTPNOX         .11239    .4104O  -1   .22375 -1  1.8342      .O678

-------
               LEAST SQUARES REGRESSION
               ANALYSIS OF VARIANCE OF 81.CD.JOSE  N= 265 OUT OF 571
 I
M
00
SOURCE
REGRESSION
ERROR
TOTAL
MULT R= . 19399
DF
1
263
264
R-SQR=
VARIABLE PARTIAL
CONSTANT
3.FTPNOX
19399
SUM SQRS
42.470
1086. 1
1 128.6
.03763 SE=
COEFF
-.77378
1 .5720
MEAN SQR
42.47O
4. 1298
2.0322
STD ERROR
.2961 1
.49022
F-STAT
10.284

T-STAT
-2.6131
3.2068
SIGNIF
.0015

SIGNIF
.0095
.OO15
LEAST SQUARES REGRESSION
ANALYSIS OF VARIANCE
SOURCE
REGRESSION
ERROR
TOTAL
MULT R= . 10682
OF 82.
DF
1
263
264
R-SQR=
VARIABLE PARTIAL
CONSTANT
3.FTPNOX
10682
CD. DILL N=
SUM SQRS
10.797
935.48
946.28
.01141 SE=
COEFF
-.42815
.79262
265 OUT OF
MEAN SQR
10.797
3.557O
1 .886O
STD ERROR
.27481
.45495
571
F-STAT
3.O354

T-STAT
- 1 . 5580
1 .7422

SIGNIF
.0826

SIGNIF
. 1204
.0826
LEAST SQUARES REGRESSION
ANALYSIS OF VARIANCE
SOURCE
REGRESSION
ERROR
TOTAL
MULT R = .12181
OF 83.
DF
1
263
264
R-SQR=
VARIABLE PARTIAL
CONSTANT
3.FTPNOX
12181
CD.J.P. N=
SUM SQRS
16.489
1094.8
1111.3
.01484 SE=
COEFF
-.53245
.97954
265 OUT OF
MEAN SQR
16.489
4. 1629
2.0403
STD ERROR
.29729
.49217
571
F-STAT
3.9610

T-STAT
-1 .7910
1 .9902

SIGNIF
.O476

SIGNIF
.0744
.0476

-------
                LEAST SQUARES  REGRESSION
                ANALYSIS OF  VARIANCE  OF 84.CR.JOSE  N= 265 OUT OF 571
ON

(-•
VO
SOURCE
OF
REGRESSION 1
ERROR 263
TOTAL 264
. MULT R= .
VARIABLE
CONSTANT
3.FTPNOX
LEAST SQUARES
20526 R-SQR=
PARTIAL
.20526
REGRESSION
ANALYSIS OF VARIANCE OF 85.
SOURCE
OF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R= .
VARIABLE
CONSTANT
3.FTPNOX
LEAST SQUARES
.O9099 R-SQR=
PARTIAL
. 09099
REGRESSION
ANALYSIS OF VARIANCE OF 86.
SOURCE
OF
REGRESSION 1
ERROR 263
TOTAL 264
MULT R=
VARIABLE
CONSTANT
3.FTPNOX
.11499 R-SQR=
PARTIAL
. 11499
SUM SQRS
.69217 -1
1 .5736
1 .6428
.04213 SE=
COEFF
.96840
.63464 -1

CR.DILL N=
SUM SQRS
. 12375 -1
1 .4822
1 .4946
.00828 SE=
COEFF
.98669
.26835 -1

CR.J.P. N=
SUM SQRS
.21965 -1
1 .6393
1 .6613
.01322 SE=
COEFF
.98222
.35751 -1
MEAN SQR
.69217 -1
.59833 -2
.77352 -1
STD ERROR
. 1 1271 -1
. 18659 -1

265 OUT OF
MEAN SQR
. 12375 -1
.56359 -2
.75073 -1
STD ERROR
. 10939 -1
. 18109 -1

265 OUT OF
MEAN SQR
.21965 -1
.62331 -2
.78950 -1
STD ERROR
. 11504 -1
. 19045 -1
F-STAT
11 .568

T-STAT
85.921
3.4012

571
F-STAT
2. 1958

T-STAT
90.202
1 .4818

571
F-STAT
3.5239

T-STAT
85.383
1 .8772
SIGNIF
.0008

SIGNIF
0.
.OOO8


SIGNIF
. 1396

SIGNIF
O.
. 1396


SIGNIF
.0616

SIGNIF
0.
.0616

-------
               

               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 61.UD.JOSE  N= 265 OUT OF 571

                    SOURCE             DF  SUM SORS   MEAN SQR   F-STAT

                                                                 4.2776
                    REGRESSION
                    ERROR
                    TOTAL
       1   16.233
     263   998.05
     264   1014.3
 16.233
 3.7949
                                          SIGNIF

                                           .O396
                    MULT R= .12651  R-SOR= .0160O SE= 1.948O
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
          .43330
-.12651  -6.1138
STD ERROR

 .17958
 2.9561
 T-STAT

 2.4129
-2.0682
SIGNIF

 .O165
 . O396
               LEAST SQUARES REGRESSION
ON
I
               ANALYSIS OF VARIANCE OF 62.UD.DILL  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 1.3045
                    REGRESSION
                    ERROR
                    TOTAL
       1   4.0773
     263   822.03
     264   826.11
 4.O773
 3.1256
                    MULT R= .O7O25  R-SQR= .OO494 SE= 1.7679
                                          SIGNIF

                                           .2544
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
          .23211
-.07025  -3.0641
STD ERROR

 .16297
 2.6828
 T-STAT

 1.4242
-1.1421
SIGNIF

 . 1556
 .2544
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 63.UD.J.P.  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 2.5563
                    REGRESSION
                    ERROR
                    TOTAL
       1  8.7314
     263  898.29
     264  9O7.03
 8.7314
 3.4156
                    MULT R=  .09811  R-SQR=  .00963 SE=  1.8481"
                                          SIGNIF

                                           .1111
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
                                                     STD ERROR   T-STAT
          .27596
-.09811  -4.4839
 .17O37
 2.8045
 1.6198
-1.5989
SIGNIF

 . 1O65
 .1111

-------
               LEAST  SQUARES  REGRESSION


               ANALYSIS  OF  VARIANCE  OF 64.DR.JOSE   N=  265  OUT  OF  571

                    SOURCE             DF   SUM SQRS   MEAN SOR   F-STAT
                     REGRESSION
                     ERROR
                     TOTAL
                    1  .27433 -1  .27433 -1  3.7774
                  263  1.910O     .72623 -2
                  264  1.9374
                    MULT  R=  .11899   R-SQR=  .01416  SE=  .85219 -1
                      SIGNIF

                       .0530
                    VARIABLE

                    CONSTANT
                   4.FEHC
                                  PARTIAL
                                             COEFF
                       1.0170
             -.11899  -.25134
STD ERROR   T-STAT    SIGNIF

 .78558 -2  129.46    O.
 .12932    -1.9436     .0530
                LEAST  SQUARES  REGRESSION
I
NJ
                ANALYSIS  OF  VARIANCE  OF  65.UR.DILL  N= 265 OUT OF  571

                     SOURCE              DF  SUM SQRS   MEAN SOR   F-STAT
                     REGRESSION
                     ERROR
                     TOTAL
                    1   .31472 -2  .31472 -2  .49329
                  263   1.6779     .63800 -2
                  264   1.6811
MULT R= .O4327  R-SQR=  .00187 SE=  .79875 -1
                                                       SIGNIF

                                                        .4831
                     VARIABLE

                     CONSTANT
                   4.FEHC
                                  PARTIAL
                                             COEFF
                                                      STD ERROR   T-STAT
                        1.O083      .73631 -2  136.94
             -.04327  -.8513O-1   .12121    -.70235
                                                                            SIGNIF
                      0.
                       .4831
                LEAST  SQUARES REGRESSION


                ANALYSIS OF VARIANCE OF 66.UR.J.P.   N= 265 OUT OF 571

                     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                  1.4074
                     REGRESSION
                     ERROR
                     TOTAL
                     1   .97938 -2   .97938 -2
                  263   1.8301      .69586 -2
                  264   1.8399
                     MULT R= .07296  R-SQR= .00532 SE= .83418 -1
                                                       SIGNIF

                                                        .2366
                     VARIABLE

                     CONSTANT
                   4.FEHC
                                  PARTIAL
                                             COEFF
                                 STD ERROR   T-STAT
                        1 .0108
             -.07296  -.15017
                      SIGNIF
  .76898 -2  131.45    0.
  .12658    -1.1864      .2366

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 71.HD.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SORS   MEAN SOR   F-STAT

                                                  1.4797
     REGRESSION
     ERROR
     TOTAL
                                        1   12.415
                                      263   2206.6
                                      264   2219.1
 12.415
 8.3903
     MULT R= .07480  R-SQR=  .00559 SE= 2.8966
                                                                           SIGNIF

                                                                            .2249
     VARIABLE

     CONSTANT
   4.FEHC
                                 PARTIAL    COEFF

                                           .48399
                                 -.0748O  -5.3468
                                      STD ERROR   T-STAT
 .267O2
 4.3955
 1 .8126
-1.2164
SIGNIF

 .07 10
 .2249
LEAST SQUARES REGRESSION
ON

N3
ANALYSIS OF VARIANCE OF 72.HD.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .86819
     REGRESSION
     ERROR
     TOTAL
                                        1  6.728O
                                      263  2038.1
                                      264  2044.8
 6.728O
 7.7494
     MULT R= .05736  R-SQR=  .OO329 SE= 2.7838
     VARIABLE

     CONSTANT
   4.FEHC
                                 PARTIAL    COEFF

                                           .18353
                                 -.05736  -3.9360
                                      STD ERROR   T-STAT
 .25662
 4.2243
 .71517
-.93177
                                                                           SIGNIF

                                                                            .3523
SIGNIF

 .4751
 .3523
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 73.HD.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .87503
     REGRESSION
     ERROR
     TOTAL
                                        1  7.4205
                                      263  2230.3
                                      264  2237.7
 7.4205
 8.48O3
     MULT R=  .O5759  R-SQR=  .00332 SE= 2.9121
                                                                           SIGNIF

                                                                             .3504
     VARIABLE

     CONSTANT
   4.FEHC
                  PARTIAL
                             COEFF
                                           .23414
                                 -.05759  -4.1337
STD ERROR

 .26845
 4.4190
 T-STAT

 .87219
-.93543
SIGNIF

 .3839
 .3504

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 74.HR.dOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SORS   MEAN SQR   F-STAT

                                                  1.3604
     REGRESSION
     ERROR
     TOTAL
                         1
                       263
                       264
.11086 -1
2.1432
2.1543
.11086  -1
.81492  -2
     MULT R= .07173  R-SQR=  .00515 SE=  .90273 -f
                                                            SIGNIF

                                                             .2445
     VARIABLE

     CONSTANT
   4.FEHC
                  PARTIAL
                             COEFF
                            1 .0144
                  -.07173  -.15977
          STD ERROR   T-STAT    SIGNIF

           .83217 -2  121.89    O.
           .13699    -1.1663     .2445
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 75.HR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                  .7O059
     REGRESSION
     ERROR
     TOTAL .
                         1   .55034 -2  .55034 -2
                       263   2.0659     .78553 -2
                       264   2.0715
     MULT R=  .O5154  R-SQR=  .00266 SE=  .88630 -1
                                                            SIGNIF

                                                              .4O33
     VARIABLE

     CONSTANT
   4.FEHC
                  PARTIAL
                             COEFF
                             1.OO54
                  -.O5154  -.11257
          STD ERROR   T-STAT    SIGNIF

           .817O2 -2  123.06    O.
           .13449    -.83701      .4033
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 76.HR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
                          1   .42297 -2   .42297 -2   .48631
                       263   2.2875      .86976 -2
                       264   2.2917
     MULT R=  .O4296  R-SQR=  .00185  SE=  .93261 -1
                                                            SIGNIF

                                                              .4862
     VARIABLE

     CONSTANT
   4.FEHC
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
                             1.0078      .85971 -2  117.23
                  -.O4296   -.98690 -1   .14152    -.69736
                                                            SIGNIF
                                0.
                                  .4862

-------
              LEAST SQUARES  REGRESSION


              ANALYSIS OF VARIANCE OF 81.CD.JOSE   N=  265 OUT  OF  571

                   SOURCE             DF   SUM  SQRS   MEAN  SQR   F-STAT

                                                                 3.0669
                   REGRESSION
                   ERROR
                   TOTAL
       1   13.009
     263   1115.6
     264   1128.6
 13.009
 4.2419
                   MULT R=  .10736   R-SOR=  .O1153  SE=  2.0596
                                          SIGNIF

                                           .0811
                   VARIABLE

                   CONSTANT
                 4.FEHC
                                 PARTIAL
                                            COEFF
          .33519
-.1O736  -5.4733
STD ERROR

 . 18986
 3. 1253
 T-STAT

 1 .7655
-1 .7513
SIGNIF

 .O786
 .OS 11
              LEAST  SQUARES  REGRESSION
ON
I
K3
              ANALYSIS OF VARIANCE  OF  82.CD.DILL   N=  265  OUT  OF  571

                   SOURCE              DF   SUM  SORS   MEAN SQR   F-STAT
                                          SIGNIF
REGRESSION 1 3.O18O
ERROR 263 943.26
TOTAL 264 946.28
MULT R=
VARIABLE
CONSTANT
4.FEHC
.O5647 R-SQR= .00319
PARTIAL COEFF
. 12540
-.05647 -2.6362
3.0180 .84147
3.5866
SE= 1.8938
STD ERROR T-STAT
.17458 .71833
2.8738 -.91732
.3598

SIGNIF
.4732
.3598
               LEAST  SQUARES  REGRESSION
              ANALYSIS  OF  VARIANCE  OF  83.CD.J.P.   N=  265  OUT  OF  571

                    SOURCE              DF   SUM SORS   MEAN SQR   F-STAT
                                          SIGNIF
REGRESSION 1 5.2814
ERROR 263 1106.0
TOTAL 264 1111.3
MULT R=
VARIABLE
CONSTANT
4.FEHC
.06894 R-SQR= .00475
PARTIAL COEFF
. 16203
-.06894 -3.4873
5.2814 1.2558
4 . 2055
SE= 2.05O7
STD ERROR T-STAT
. 18904 .85712
3.1119 -1.1206
.2635

SIGNIF
.3922
.2635

-------
               LEAST  SQUARES  REGRESSION


               ANALYSIS  OF  VARIANCE  OF  84.CR.JOSE   N=  265 OUT  OF  571

                   SOURCE              DF   SUM SORS   MEAN SOR   F-STAT

                                                                 2.7277
                    REGRESSION
                    ERROR
                    TOTAL
       1
     263
     264
. 16863 -1
1 .6260
1.6428
. 16863 -1
.61823 -2
                    MULT  R=  .10132   R-SQR=  .01O26 SE= .78628 -1
                                          SIGNIF

                                           .0998
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
          1 .0121
-.10132  -.19706
          STD ERROR    T-STAT     SIGNIF

           .72482 -2   139.63     O.
           .11931    -1.6516      .0998
               LEAST  SQUARES  REGRESSION
I
to
               ANALYSIS  OF  VARIANCE OF 85.CR.DILL  N= 265 OUT OF  571

                    SOURCE              DF  SUM SQRS   MEAN SQR   F-STAT    SIGNIF

                                                                 .27583     .5999
                    REGRESSION
                    ERROR
                    TOTAL
       1  .15659 -2  .15659 -2
     263  1.4930     .56770 -2
     264  1.4946
                    MULT R= .O3237  R-SQR= .OO105 SE= .75346 -1
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
                                                     STD ERROR   T-STAT
          1.0041     .69456 -2  144.57
-.03237  -.60048 -1  .11433    -.52520
                                                                           SIGNIF
                                O.
                                 .5999
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 86.CR.J.P.  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
       1   .23426 -2   .23426 -2  .37139
     263   1.6589      .63077 -2
     264   1.6613
                    MULT R= .O3755  R-SQR= .00141 SE= .79421 -1
                                          SIGNIF

                                           .5428
                    VARIABLE

                    CONSTANT
                  4.FEHC
                                 PARTIAL
                                            COEFF
                                                     STD ERROR   T-STAT
           1.0051      .73213 -2  137.29
-.O3755  -.73446 -1   .12052    -.60942
                                                                           SIGNIF
                                O.
                                 .5428

-------
               

               LEAST SQUARES REGRESSION


               ANALYSIS OF  VARIANCE OF 61.UD.JOSE  N= 265 OUT OF 571

                    SOURCE              OF  SUM SQRS   MEAN SOR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
                    1  25.244
                  263  989.04
                  264  1014.3
 25.244
 3.7606
                    MULT  R=  .15776  R-SQR= .02489 SE= 1.9392
                                                                 6.7129
                                                       SIGNIF

                                                        .O1O1
                    VARIABLE

                    CONSTANT
                  5.FECO
                                 PARTIAL
                                            COEFF
                       .31744
             -.15776  -.34475
STD ERROR

 .13437
 .133O6
 T-STAT

 2.3624
-2.5909
SIGNIF

 .0189
 .0101
               LEAST SQUARES REGRESSION
I
ho
               ANALYSIS OF VARIANCE OF 62.UD.DILL  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 3.3809
                    REGRESSION
                    ERROR
                    TOTAL
                    1  10.485
                  263  815.63
                  264  826.11
 10.485
 3.1O12
MULT R= .11266  R-SQR= .O1269 SE= 1.7610
                                                       SIGNIF

                                                        .0671
                    VARIABLE

                    CONSTANT
                  5.FECO
                                 PARTIAL
                                            COEFF
                       . 19712
             -.11266  -.22218
STD ERROR

 .12202
 .12084
 T-STAT

 1.6154
-1.8387
SIGNIF

 . 1074
 .O671
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 63.UD.J.P.   N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 4.9056
                    REGRESSION
                    ERROR
                    TOTAL
                    1  .16.608
                  263  890.42
                  264  9O7.03
 16.6O8
 3.3856
                    MULT R= .13532  R-SQR= .01831 SE= 1.84OO
                                                       SIGNIF

                                                        .O276
                    VARIABLE

                    CONSTANT
                  5.FECO
                                 PARTIAL
                                            COEFF
                        .2035O
             -.13532  -.27963
STD ERROR

 . 12749
 .12625
 T-STAT

 1 .5962
-2.2149
SIGNIF

 .1116
 .O276

-------
               LEAST SQUARES REGRESSION
               ANALYSIS OF VARIANCE OF 64. DR. JOSE  N=  265 OUT OF 571

                    SOURCE             DF   SUM  SQRS    MEAN  SQR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
                    1
                  263
                  264
.44267 -1
1.8932
1.9374
.44267  -1   6.1497
.71983  -2
                    MULT
                             .15116  R-SQR=  .02285 SE=  .84843 -1
SIGNIF

 .0138
                    VARIABLE

                    CONSTANT
                  5.FECO
                                 PARTIAL
                                            COEFF
                                 STD ERROR   T-STAT
                                                                           SIGNIF
                       1.O123     .58788 -2  172.2O    O.
             -.15116  -.14437 -1  .58216 -2 -2.4799      .0138
               LEAST SQUARES REGRESSION
I
to
               ANALYSIS OF VARIANCE OF  65.UR.DILL  N=  265 OUT OF 571

                    SOURCE              DF   SUM  SQRS    MEAN  SQR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
                    1  .16692 -1  .16692 -1  2.6377
                  263  1.6644     .63285 -2
                  264  1.6811
MULT R= .O9965  R-SQR=  .00993 SE= .79552 -1
                                                       SIGNIF

                                                        . 1056
                    VARIABLE
                                 PARTIAL
                                             COEFF
                                                      STD  ERROR   T-STAT
                    CONSTANT                1.0086      .55122  -2   182.98
                  5.FECO          -.09965   -.88652  -2   .54586  -2  -1.6241
                                                                            SIGNIF
                                                       0.
                                                         . 1056
               LEAST SQUARES  REGRESSION


               ANALYSIS OF VARIANCE OF 66.UR.J.P.   N=  265  OUT OF 571

                    SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
                     1
                  263
                  264
.30796 -1
1.8091
1 .8399
.3O796 -1   4.4770
.68787 -2
                    MULT  R=  .12937   R-SQR=  .01674  SE=  .82938  -1
                                                       SIGNIF

                                                        .0353
                    VARIABLE
                                  PARTIAL
                                             COEFF
                                                      STD  ERROR    T-STAT
                    CONSTANT                1.0096      .57468  -2   175.69
                  5.FECO          -.12937   -.12041  -1   .56909  -2  -2.1159
                                                                            SIGNIF
                                                       O.
                                                         .0353

-------
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 71.HD.JOSE  N= 265 OUT OF  571

                    SOURCE             OF  SUM SQRS   MEAN  SQR    F-STAT

                                                                  5.3053
                    REGRESSION
                    ERROR
                    TOTAL
                    1
                  263
                  264
43.878
2175.2
2219.1
43.878
8.2706
                    MULT R=  .14062  R-SQR=  .01977  SE= 2.8759
                                                       SIGNIF

                                                        .O220
                    VARIABLE

                    CONSTANT
                  5.FECO
                                 PARTIAL
                                            COEFF
                                                      STD  ERROR    T-STAT
                       .45415
             -.14062  -.45452
           .19927
           .19733
           2.2791
          -2.3033
SIGNIF

 .0235
 .O220
               LEAST SQUARES REGRESSION
I
N>
OO
               ANALYSIS OF VARIANCE OF  72.HD.DILL   N=  265  OUT  OF  571

                    SOURCE              DF   SUM  SQRS   MEAN SQR   F-STAT

                                                                  3.O5O6
                    REGRESSION
                    ERROR
                    TOTAL
                    1  23.446
                  263  2021.4
                  264  2044.8
           23.446
           7.6858
MULT R = .10708  R-SQR= .01147 SE= 2.7723
                    VARIABLE

                    CONSTANT
                  5.FECO
                                  PARTIAL
                                             COEFF
                       .16046
             -.1O7O8  -.33225
                                                      STD  ERROR    T-STAT
           .1921O
           .19O23
            .83532
          -1.7466
                                                       SIGNIF

                                                        .OS 19
SIGNIF

 .4043
 .0819
                LEAST  SQUARES  REGRESSION


                ANALYSIS  OF  VARIANCE  OF 73.HD.J.P.   N=  265  OUT  OF  571

                    SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT

                                                                  2.4492
                     REGRESSION
                     ERROR
                     TOTAL
                    1  20.647
                  263  2217.1
                  264  2237.7
           2O.647
           8.4300
                    MULT  R=  .O9605   R-SQR=  .00923  SE=  2.9035
                                                       SIGNIF

                                                         . 1188
                     VARIABLE

                     CONSTANT
                   5.FECO
                                  PARTIAL
                                             COEFF
                        .19256
             -.09605  -.31178
          STD ERROR

            .20118
            .19922
           T-STAT

           .95715
          -1 .5650
SIGNIF

 .3394
 . 1188

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 74.HR.JOSE  N=

     SOURCE             DF  SUM SQRS
     REGRESSION
     ERROR
     TOTAL
       1   .36739 -1
     263   2.1176
     264   2.1543
           265 OUT OF 571

           MEAN SQR   F-STAT

           .36739 -1   4.5629
           .80517 -2
                                          SIGNIF

                                           .0336
     MULT R= .13059  R-SOR=  .01705 SE=  .89731 -1
     VARIABLE

     CONSTANT
   5.FECO
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
          1.0133
-.13059  -.13152 -1
           .62175 -2  162.97
           .61570 -2 -2.1361
                                                            SIGNIF
                     O.
                      .0336
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 75.HR.DILL  N=

     SOURCE             DF  SUM SQRS
     REGRESSION
     ERROR
     TOTAL
       1
     263
     264
.18341 -1
2.0531
2.0715
265 OUT OF 571

MEAN SQR	f-^STAT    SIGNIF

.18341 -1' 2.349.4--"'" .1265
.78065 -2
     MULT R=  .O941O  R-SQR=  .OO885 SE=  .88354 -1
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
     CONSTANT                1.0O47      .61221 -2   164.11
   5.FECO         -.0941O   -.92926  -2   .60626 -2  -1.5328
                                                            SIGNIF
                                          O.
                                            . 1265
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 76.HR.J.P.  N= 265 OUT OF 571

     SOURCE             DF   SUM  SQRS   MEAN  SQR   F-STAT

                                                  1 .2910
     REGRESSION
     ERROR
     TOTAL
       1  . 11194 -1
     263  2.2805
     264  2.2917
           .11194 -1
           .86711 -2
     MULT R=  .06989  R-SQR=  .OO488  SE=  .93119  -1
                                          SIGNIF

                                           .2569
     VARIABLE
                  PARTIAL
                              COEFF
                                       STD  ERROR   T-STAT
     CONSTANT                1.0067      .64522  -2   156.03
   5.FECO          -.06989   -.72599  -2   .63895  -2  -1.1362
                                                            SIGNIF
                                          0.
                                            .2569

-------
           LEAST SQUARES REGRESSION


           ANALYSIS OF VARIANCE OF 81.CD.JOSE  N= 265 OUT OF 571

                SOURCE             DF  SUM SORS   MEAN SQR   F-STAT

                                                             6.7398
                REGRESSION
                ERROR
                TOTAL
                    1  28.20O
                  263  110O.4
                  264  1128.6
 28.200
 4.1841
                MULT R=  .15807  R-SOR=  .O2499 SE= 2.0455
                                                       SIGNIF

                                                        .O100
                VARIABLE

                CONSTANT
              5.FECO
                             PARTIAL
                                        COEFF
                       .25751
             -. 158O7  - .36438
STD ERROR

 . 14173
 .14036
 T-STAT

 1.8168
-2.5961
SIGNIF

 .O704
 .0100
           LEAST SQUARES REGRESSION
,
-I
U)
o
           ANALYSIS OF VARIANCE OF 82.CD.DILL  N=

                SOURCE             DF  SUM SQRS
                REGRESSION
                ERROR
                TOTAL
                    1  10.559
                  263  935.72
                  264  946.28
 265 OUT OF 571

 MEAN SQR   F-STAT

 1O.559     2.9677
 3.5579
MULT R= .1O563  R-SQR=  .01116 SE= 1.8862
                VARIABLE

                CONSTANT
              5.FECO
                             PARTIAL
                                        COEFF
                        .11O16
             -.10563  -.22296
STD ERROR

 .13O7O
 .12943
 T-STAT

 .84287
-1.7227
                                                       SIGNIF

                                                         .0861
SIGNIF

 .4001
 .0861
           LEAST SQUARES REGRESSION


           ANALYSIS OF VARIANCE OF 83.CD.0.P.  N=

                SOURCE             DF  SUM SQRS
                REGRESSION
                ERROR
                TOTAL
                    1   13.310
                  263   1098.0
                  264   1111.3
 265 OUT OF 571

 MEAN SQR   F-STAT

 13.310     3. 1880
 4. 1750
                                                                        SIGNIF

                                                                         .0753
                MULT R=  .10944  R-SQR=  .01198  SE=  2.0433
                VARIABLE

                CONSTANT
              5.FECO
                             PARTIAL
                                        COEFF
                                                  STD  ERROR   T-STAT
                        .12102
             -.10944  -.25033
 .14158
 .1402O
 .85480
-1.7855
SIGNIF

 .3934
 .0753

-------
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 84.CR.JOSE  N= 265 OUT OF 571

     SOURCE             DF  SUM SORS   MEAN SOR   F-STAT
     REGRESSION
     ERROR
     TOTAL
       1   .36751 -1  .36751 -1   6.O182
     263   1.6061     .61067 -2
     264   1.6428
     MULT R= .14957  R-SQR=  .02237 SE= .78145 -1
                    SIGNIF

                      .0148
     VARIABLE

     CONSTANT
   5.FECO
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
          1.0093     .54147 -2  186.40
-.14957  -.13154 -1  .53620 -2 -2.4532
                                                            SIGNIF
                    0.
                      .0148
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 85.CR.DILL  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
       1  .11913 -1
     263  1.4827
     264  1.4946
.11913 -1   2.1131
.56376 -2
     MULT R=  .08928  R-SQR=  .00797 SE=  .75084 -1
                                                            SIGNIF

                                                             . 1472
     VARIABLE
                  PARTIAL
                             COEFF
                                      STD ERROR
                                                  T-STAT
     CONSTANT                1.O049      .52O26 -2  193.15
   5.FECO         -.08928  -.74891 -2   .51520 -2 -1.4536
                                          SIGNIF

                                          O. .
                                           . 1472
LEAST SQUARES REGRESSION


ANALYSIS OF VARIANCE OF 86.CR.J.P.  N= 265 OUT OF 571

     SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
     REGRESSION
     ERROR
     TOTAL
       1   . 13848 -1  . 13848 -1  2.2107
     263   1 .6474     .62639 -2
     264   1.6613
     MULT R=  .0913O  R-SQR=  .00834 SE=  .79145 -1
                     SIGNIF

                      . 1383
     VARIABLE

     CONSTANT
   5.FECO
                  PARTIAL
                             COEFF
                                      STD ERROR   T-STAT
          1.0O56     .54840 -2  183.37
-.0913O  -.80745 -2  .543O6 -2 -1.4868
                                                            SIGNIF
                     0.
                      . 1383

-------
              

              LEAST SQUARES REGRESSION


              ANALYSIS OF VARIANCE OF 61.UD.JOSE  N=

                   SOURCE             DF   SUM  SORS
                   REGRESSION
                   ERROR
                   TOTAL
                    1  21.292
                  263  992.99
                  264  1014.3
 265 OUT OF 571

 MEAN SOR   F-STAT    SIGNIF

 21.292     5.6394     .0183
 3.7756           /-''  "
                   MULT R=  .14489  R-SOR=  .02099  SE=  1.9431
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                           COEFF
                      -.19055
              .14489    .77445
STD ERROR

 .18865
 .32612
 T-STAT

-1.0100
 2.3747
SIGNIF

 .3134
 .0183
              LEAST SQUARES REGRESSION
 I
OJ
              ANALYSIS OF VARIANCE OF 62.UD.DILL  N=  265 OUT OF  571

                   SOURCE             DF   SUM  SQRS    MEAN  SQR    F-STAT

                                                                 1 .4278
                   REGRESSION
                   ERROR
                   TOTAL
                    1  4.4607
                  263  821.65
                  264  826.11
 4.4607
 3.1242
MULT R= .07348  R-SQR= .OO540 SE= 1.7675
                                                       SIGNIF

                                                         .2332
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                  .07348
                        COEFF

                      -.65472 -1
                       .35448
STD ERROR

 .17161
 .29666
 T-STAT

-.38152
 1.1949
SIGNIF

 .7031
 .2332
              LEAST SQUARES REGRESSION


              ANALYSIS OF VARIANCE OF 63.UD.J.P.   N=  265  OUT  OF  571

                   SOURCE             DF   SUM  SQRS   MEAN SQR   F-STAT

                                                                 1.6535
                   REGRESSION
                   ERROR
                   TOTAL
                    1  5.6669
                  263  9Q1.36
                  264  9O7.03
 5.6669
 3.4272
                   MULT R=  .07904   R-SQR=  .OO625  SE=  1.8513
                                                       SIGNIF

                                                         . 1996
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                           COEFF
                      -.10611
              .07904   .39954
STD ERROR

 .17974
 .31071
 T-STAT

-.59036
 1.2859
SIGNIF

 .5555
 . 1996

-------
              LEAST  SQUARES  REGRESSION


              ANALYSIS  OF  VARIANCE OF  64.UR.JOSE  N= 265 OUT OF  571

                  SOURCE              DF  SUM SQRS   MEAN SOR   F-STAT

                                                                3.9562
                   REGRESSION
                   ERROR
                   TOTAL
                    1
                  263
                  264
.28712 -1
1.9087
1.9374
.28712  -1
.72575  -2
SIGNIF

 .O477
                   MULT  R =  .12174   R-SQR= .01482 SE= .85191  -1
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                 . 12174
                                           COEFF
                                                    STD ERROR   T-STAT
                       .99286     .82711 -2  12O.04
                       .28439 -1  .14298 -1  1.9890
                                                                          SIGNIF
                                O.
                                 .0477
              LEAST SQUARES REGRESSION
I
OJ
LO
              ANALYSIS OF VARIANCE OF 65.UR.DILL  N= 265 OUT OF 571

                   SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                .24383
                   REGRESSION
                   ERROR
                   TOTAL
                    1   .15571 -2
                  263   1.6795
                  264   1.6811
           . 15571  -2
           .63860  -2
MULT R= .03043  R-SQR=  .00093 SE= .79913 -1
                   VARIABLE

                   CONSTANT
                 6.FENOX
             PARTIAL


              .03043
                                           COEFF
                                                    STD ERROR   T-STAT
                                                       SIGNIF

                                                        .6219
                                                                          SIGNIF
1.0015     .77586 -2  129.08    O.
.66229 -2  .13412 -1  .49379     .6219
              LEAST SQUARES REGRESSION


              ANALYSIS OF VARIANCE OF 66.UR.J.P.   N= 265 OUT OF 571

                   SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                .52407
                   REGRESSION
                   ERROR
                   TOTAL
                     1   .36590 -2   .3659O -2
                  263   1.8362      .69819 -2
                  264   1.8399
                   MULT R= .04459  R-SQR= .OO199 SE= .83558 -1
                                                       SIGNIF

                                                        .4698
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                           COEFF
                                                    STD ERROR
                                             T-STAT
                                                       SIGNIF
                        .99947      .81126 -2  123.20    O.
               .04459    .10152 -1   .14024 -1  .72393      .4698

-------
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 71.HD.JOSE  N= 265 OUT OF 571

                    SOURCE             OF  SUM SORS   MEAN SQR   F-STAT

                                                                 2.6SO5
                    REGRESSION
                    ERROR
                    TOTAL
                      1
                    263
                    264
22.388
2196.7
2219.1
22.388
8.3524
                    MULT R= .10044  R-SQR= .01009 SE= 2.8900
                                                         SIGNIF

                                                          . 1028
                    VARIABLE

                    CONSTANT
                  6.FENOX
                                 PARTIAL
                                            COEFF
                                                     STD ERROR
                        -. 11393     .28059
                .10044    .79414     .48505
                      T-STAT

                     -.4O6O4
                      1.6372
                     SIGNIF

                      .6850
                      . 1028
               LEAST SQUARES REGRESSION
01
I
               ANALYSIS OF VARIANCE OF 72.HD.DILL  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 1.0692
                    REGRESSION
                    ERROR
                    TOTAL
                      1  8.2792
                    263  2036.5
                    264  2044.8
           8.2792
           7.7435
                    MULT R= .06363  R-SQR= .O0405 SE= 2.7827
                                                         SIGNIF

                                                          .3021
  VARIABLE

  CONSTANT
6.FENOX
                                 PARTIAL
                                            COEFF
                                          - .21109
                                  .06363   .48293
          STD ERROR

           .27017
           .46704
           T-STAT

          -.78131
           1.O340
SIGNIF

 .4353
 .3021
               LEAST SQUARES REGRESSION


               ANALYSIS OF VARIANCE OF 73.HD.J.P.  N= 265 OUT OF 571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT

                                                                 2.O487
                    REGRESSION
                    ERROR
                    TOTAL
                      1  17.296
                    263  2220.4
                    264  2237.7
           17.296
           8.4428
                    MULT R= .08792  R-SQR= .00773 SE= 2.9056
                                                         SIGNIF

                                                           . 1535
                    VARIABLE

                    CONSTANT
                  6.FENOX
                                 PARTIAL
                                  .08792
                          COEFF

                        -.26578
                          .69801
          STD ERROR

           .28211
           .48767
           T-STAT

          -.94212
           1.4313
SIGNIF

 .347O
 . 1535

-------
              LEAST SQUARES REGRESSION


              ANALYSIS OF VARIANCE OF 74.HR.JOSE  N= 265 OUT OF 571

                   SOURCE             OF  SUM SQRS   MEAN SOR   F-STAT
                   REGRESSION
                   ERROR
                   TOTAL
                    1  .21243 -1  .21243 -1  2.6192
                  263  2.1331     .81106 -2
                  264  2.1543
                   MULT R= .O993O  R-SOR=  .00986 SE=  .90059 -1
                                                       SIGNIF

                                                        . 1068
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                  .0993O
                                           COEFF
                                                    STD ERROR   T-STAT
                       .99617     .87437 -2  113.93
                       .24462 -1  .15115 -1  1.6184
                                                       SIGNIF
                      0.
                       . 1068
              LEAST SQUARES REGRESSION
I
LO
01
              ANALYSIS OF VARIANCE OF 75.HR.DILL  N= 265 OUT OF 571

                   SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
                   REGRESSION
                   ERROR
                   TOTAL
                    1  .59035 -2  .59035 -2  .75167
                  263  2.0655     .78538 -2
                  264  2.0715
MULT R= .O5338  R-SQR=  .00285 SE=  .88622 -1
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                  .05338
                                           COEFF
                                                    STD ERROR
                                                                T-STAT
                        .99456      .86042 -2  115.59
                        .12896 -1   .14874 -1  .86699
                                                       SIGNIF

                                                        .3867
                      SIGNIF

                      O.
                       .3867
              LEAST SQUARES REGRESSION


              ANALYSIS OF VARIANCE OF 76.HR.J.P.  N= 265 OUT OF 571

                   SOURCE             DF   SUM SQRS   MEAN SQR   F-STAT

                                                                1.4430
                   REGRESSION
                   ERROR
                   TOTAL
                     1   .12505 -1
                  263   2.2792
                  264   2.2917
 .12505 -1
 .86661 -2
                   MULT R=  .O7387  R-SQR=  .00546  SE=  .93092 -1
                                                       SIGNIF

                                                        .2307
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                PARTIAL
                                  .07387
                        COEFF

                        .99492
                        .18769 -1
STD ERROR

 .9O382 -2
 .15624 -1
T-STAT

11O.08
1.2013
SIGNIF
0.
  .2307

-------
              LEAST SQUARES  REGRESSION


              ANALYSIS OF VARIANCE OF 81.CD.JOSE  N=  265  OUT OF  571

                   SOURCE             DF   SUM  SQRS    MEAN SQR    F-STAT

                                                                 4.7768
                   REGRESSION
                   ERROR
                   TOTAL
                    1  20.133
                  263  1108.5
                  264  1128.6
 2O.133
 4.2148
                   MULT R=  .13356   R-SOR=  .01784  SE=  2.O530
                                                       SIGNIF

                                                        .0297
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                 PARTIAL
                                            COEFF
                                 STD ERROR   T-STAT
                      -.25007     .19932
               13356   .75308     .34457
           -1 .2546
            2. 1856
           SIGNIF

            .2107
            .0297
              LEAST SQUARES  REGRESSION
o^
u>
              ANALYSIS OF  VARIANCE  OF  82.CD.DILL   N=  265  OUT  OF  571

                   SOURCE              DF   SUM  SQRS   MEAN SQR   F-STAT

                                                                 .79811
                   REGRESSION
                   ERROR
                   TOTAL
                    1  2.8629
                  263  943.42
                  264  946.28
 2.8629
 3.5871
                   MULT R=  .0550O   R-SQR=  .00303  SE=  1.8940
                                                       SIGNIF

                                                        .3725
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                 PARTIAL
                                            COEFF
                      -.12121
              .O55OO   .28398
STD ERROR

 .18388
 .31788
 T-STAT

-.65918
 .89337
SIGNIF

 .5104
 .3725
               LEAST  SQUARES  REGRESSION


               ANALYSIS  OF  VARIANCE  OF  83.CD.J.P.   N=  265  OUT  OF  571

                   SOURCE              DF   SUM  SQRS   MEAN SQR   F-STAT

                                                                 1.0030
REGRESSION
ERROR
TOTAL
                                        1   4.2221
                                      263   1107.1
                                      264   1111.3
 4.2221
 4.2O95
                   MULT  R=  .06164   R-SQR=  .00380 SE=  2.O517
                                                       SIGNIF

                                                        .3175
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                 PARTIAL
                                            COEFF
                                 STD ERROR   T-STAT
                      -.15041
              .06164    .34487
 .1992O
 .34435
-.75508
 1.0015
SIGNIF

 .4509
 .3175

-------
              LEAST SQUARES  REGRESSION


              ANALYSIS OF VARIANCE  OF 84.CR.JOSE   N=  265  OUT OF  571

                   SOURCE             OF   SUM SQRS   MEAN SOR    F-STAT
                   REGRESSION
                   ERROR
                   TOTAL
       1
     263
     264
.22586 -1
1.6202
1.6428
.22586  -1   3.6662
.61606  -2
                   MULT  R=  .11725   R-SQR=  .01375  SE=  .78489  -1
                                          SIGNIF

                                           .0566
                   VARIABLE

                   CONSTANT
                 6.FENOX
                                 PARTIAL
                                            COEFF
                                                     STD  ERROR    T-STAT
                                                                           SIGNIF
          .99186     .76205 -2  13O.16    0.
 .11725   .25223 -1  .13173 -1  1.9147     .O566
               LEAST  SQUARES  REGRESSION
I
UJ
               ANALYSIS  OF  VARIANCE  OF  85.CR.DILL   N=  265  OUT  OF  571

                    SOURCE              DF  SUM SQRS   MEAN SQR   F-STAT     SIGNIF

                                                                 .81606  -1   .7754
                    REGRESSION
                    ERROR
                    TOTAL
       1  .46362 -3  .46362 -3
     263  1.4941     .56812 -2
     264  1.4946
                    MULT  R=  .O1761   R-SQR= .00031  SE=  .75374  -1
                    VARIABLE

                    CONSTANT
                  6.FENOX
                                 PARTIAL
                                  .01761
                                            COEFF
                                                     STD ERROR
                                T-STAT
          .99977     .73179 -2  136.62
          .36138 -2  .12650 -1  .28567
                                                                           SIGNIF
                                0.
                                 .7754
               LEAST  SQUARES  REGRESSION


               ANALYSIS  OF VARIANCE OF  86.CR.J.P.   N= 265 OUT OF  571

                    SOURCE             DF  SUM SQRS   MEAN SQR   F-STAT
                    REGRESSION
                    ERROR
                    TOTAL
       1
     263
     264
.11715 -2
1.66O1
1 .6613
.11715 -2  .18560
.63121 -2
                    MULT  R=  .O2656  R-SQR= .OOO71  SE= .79449 -1
SIGNIF

 .6670
                    VARIABLE

                    CONSTANT
                  6.FENOX
PARTIAL


 .02656
                                            COEFF
          STD ERROR   T-STAT
                     SIGNIF
.99923     .77136 -2  129.54    0.
.57446 -2  .13334 -1  .43081     .6670

-------
            Appendix  7

Plots of Emissions and Fuel Economy
   from  Special  Engines over Time

-------
Two variable plots of the ratio of  the Combined  Fuel  Economy  of
each  year,  divided   by   the  Combined  Fuel  Economy  of  the
corresponding  base  year  (usually  1979)  versus  each  of  FTPHC,
FTPCO, FTPNOX, and FENOX.

Details of the data used may be found in Tables  IV. F-l  through
IV. F-5 in Section IV. F.
                                  7-1

-------
FDR[> ' 5  .2.3   LITER  ENGINE   OVER   TIME
      1.20
      LIB
   m
   h
   m
   DL
   z
   \
   ID
   DL
i.00
      H.aa
      0.H0
                        ME?b0EL   YE
                                               A  URBRN MPE CnUTd TRHN5>
                                               Q  HIEHNRY MPE CRUTD  TRRN5>
                                               <>  COMBINED MPE CRUTO TRRN5 >
                                      H
Bl.B

-------
        FDR[>  ' 5   2.3   LITER   ENGINE   DVER   TIME
i
U)
               1.20
               I.IB
m
h
m
CL
z
\
m
               1.00
              0.30
              0.B0
MC?C>EL   YE
                                                      0
                                                            URBRN MPE CMHN  TRHNS>
                                                            HIBHWRY MPB 
                                                        BI.0

-------
    COMBINED  MPG  V5.  URBRN  HC
FDRD ' 5  2.3  LITER ENGINE  PVER  TIME
    I.IB
  m
  h
  m
    1.00
  \
  LU
  a.
  x
   H.30
       0.00
0.10
                         A NPN DETERIDRRTED CRUTD TRRNa
                         Q DETER IDRRTED CRUTD TRHN3
0.M0
0.50

-------
     COMBINED  (IP
FDRD'5  2.3 LIT
E VS. U
ER ENE 1
s|
Jfl
\
V
                                   HC
                             El  OVER  T I ME
    1.10
  m
  h
  LD
  H
  X
  \
  in
  DL
  z
1.00
    0.30
        0.00
         0.20
                              A NON DETER IDRHTED CMRN TRRN3
                              t3 DETER I DRRTED C MHN TRRN 3
B0
1.00
1.20

-------
     COMBINED MPG V5.  URBRN CD
FDRD'5  2.3 LITER  ENE I NE  QVER T I ME
    LIB
  m
  m
  CL
  y 1. 00

  \
  LD
  EL
   0.30
                        A NPN DETER InRHTEO CRUTD TRRN3
                        El DETER I DRRTED C RUTD TRRN 3
               1	I	I	I   I
       0.0  1.0  2.0
.0 B.0 3.0 10.0

-------
    COMBINED  MPE  V5.  URBRN CD
FDRD'5  2.3  LITER ENEINE OVER  TIME
    LIB
  HI
  h
  m
  EL
  z
  \
  m
  a.
  z
.00
   0.90
                        A NDN DETERinRRTED CMRN TRRN3
                        Q DETERIDRRTED CMRN TRRN3
   0.00   I.0H    2.00
                             M.00   5.00

-------
         COMBINED MPE VS.  URBRN  NDX
     FDRD ' 5  2.3  LITER  ENGINE  OVER  T I ME
i
CO
         I. IB r-
       m
       h
       m
       CL
         I.00
       \
       LD
       D.
       Z
         0.30
                             A NDN DETER IORRTED CHUTD TRRN3
                             H DETER IDRHTED CRUTD TRHN3
            0.00 0.20
                     X
0.E0
I.H0 I.B0

-------
     COMBINED  MPE VS.  URBRN  NDX
FDRD'5 2.3  LITER  ENGINE DVER  TIME
    1.10
       r
  m
  h
  13
  DL
    1.00
  \
  13
  CL
    0.50
       0.00  0.20
                 X
                          A NPN DETER 1DRRTEI> C MRN TRRN 3
                          0 DETERIQRRTED CMRN TRRN3
0.E0
1.20  I.H0 I.E0

-------
   CDMBINED-MPE VS.  HIEHWRY  NQX
FDRD'5  2.3  LITER ENGINE  OVER  TIME
I
(-•
o
    LIB
  m
  h
  ID
  \
  ID
  DL
  z
    I.BB
    0.30
       B.0B
                               A RUTDMRTK: TRRNSMISSIDN
                               Q MRNURL TRRN5M15SIDN
                   0.SB    I.BB    I.SB

                     NOX   C E/M I >
2.00
2.50

-------
CHRYSLER'S    1.7   LITER   ENGINE   OVER   TIME
            1.20
        LJ
        Ul
        IE  '-IB
        ffl
         i
        m
        a.
        x
        \  1.00
        ID
        Q.
        Z
            0.E0
A  URBRN MPB  
Q  HIBHWRY MPB 
0  COMBINED MPB CHUTO  TRHN>
                                         EL
                                                          0
           BI.0

-------
       CHRYSLER'5   1.7  LITER  ENGINE   OVER  TIME
                 1.20
i
M
to
Id
in
IE

 i
in
Q.

\
ID
H
                 I.IS
                 I.IB
                 1.05
                 B.SK
                                                             A URBHN MPB 
                                                             Q HIBHMHY MPB  
                                                             4> CPMBINED MPB 
                                    Mt3t?EL   YEFfft
                                            B
BI.B

-------
       CHYR5LER'5    1.7   LITER   ENGINE   OVER   TIME
                   1.15
i
M
u>
U
Ul
EC
CD
 1
ID
EL
E
\
LD
n.
£
                   I.IB
1.05
                   1.00
                   0.35
                                                                  A LJRBRN  MPE CMHN. TRRN
                                       Ml31>HEL   YE
                                                0
                                                          BI.0

-------
        CDMB
CHRYSLER'5
        NED  MPE  V5.  URBflN HC
         1.7  LITER  ENGINE  OVER  TIME
I
M
*-
       I.IB
    m
    r-
    m
    n
    z
    \
    m
    EL
    Z
I.BB
      B.SB
          H.00
                      B.IB

                       HC
                                  A NON DETER IDRHTED CRUTD TRRN3
                                  EJ DCTCR I ORRTCD C RUTO TRRN 3
                  B.2B

                 C B/M I
H.3H
B.HB

-------
       COMBINED  MPE  V5.  URBRN  HC
CHRYSLER'S  1.7  LITER ENGINE DVER TIME
      i.is
    s-
    CE
    to
    i
    Ifl i.0s
    QL

    \

    [L I.BB
      B.9S
                              A NDN DETERIORATED CMHN. TRRN3
                              t3 DETERIORATED C MHN. TRRN 3
                              + NDN DET. CMHN. TRRN3
                              X DET. CMRN.
TRHN3 B.BB B.IB, B.HB B.5B

-------
        CDMB
CHRYSLER'5
        NED  MPB V5.  URBRN  CD
        1.7  LITER  ENGINE OVER  TIME
      LIB
    m
    h
    m
    D.
    z
    \
    ID
    Q.
I.BB
      B.9B
   B.BB
                                A NDN DETER IDRRTED CRUTD TRRN3
                                Q DETERIDRRTED CRUTD TRRN3
                2.
B.BB
B.BB

-------
        CDMB
CHRYSLER'5
                    NED  MPE  VS.  URBRN  CD
                    1.7  LITER  ENGINE DVER TIME
       1.20
I
\->
^4
     LJ
     Ul
     E
     m
     i
     LD
     D.
     £
     \
     Lfl
     Q.
            IB
            ,00
       H.30
                                   A NDN DETER IDRRTEO CMRN. TRRN3
                                   El DETERIDRRTED C MHN . TRHN 3
                                   + NDN DET. CMRN.ET. CMHN.
TRRN 3 0.0 2.0 10.0 12.0 IM.0.

-------
          COMBINED MPE  VS.  URBRN NDX
   CHRYSLER'S  1.7 LITER  ENEINE  OVER
                                      T I ME
H-
00
         LIB
m
h
m
Q.
£
\
ID
EL
I.BB
         B.30
                                   A NON DETER IDRRTED CRUTO TRRN3
                                   Q PETER1ORHTED CRUTO TRRN3
            B.BB B.2B B
                            .MB I.BB t.BB

-------
        COMBINED MPE  VS.  URBRN  NDX
CHRYSLER«5  1.7  LITER ENGINE  OVER  TIME
       1.20
     LJ
     in
     n
     m
     i
     ID
     IL
     z
     \
     in
     DL
     Z
LIB
1.0e
       B.9B
                            A NDN DETER IDRRTED CURN.  TRRN3
                            H DETERIQRRTED CMRN. TRRN3
                            + NDN DET. CMRN. TRRN3
                            X DET. CMRN.
TRRN3 0.H0 0.2S H.KH B.75 I.BB I .25 I .SB NOX C B/M I > 1.75 2.BB

-------
         COMBINED MPE  VS.
    CHRYSLER'5  1.7  LITER
                       HIEHNRY  NDX
                       ENE I NE DVER  T I ME
          1.20
i
NJ
o
LJ
in
C
ffl
1
m
Q.
        13
        Q.
          LIB
          I.BB
          H.3H
             B.BB
                                   A RUTDMHT1C TRHN5HI 55ION
                                   El MRNURU TRHNEMIEEIDN
                                   4> MRNURU
TRRNSM 155 I UN H.BB 5.BB

-------
              EMf5    I.B   LITER   ENBINE   OVER   TIME
                   1.30
i
N>
                   I.2H
m
h
ID  *-
CL
               a

               z
                   '•"
                  H.3H
                  H.aa
                                                   A  URBRN MPH CnUTO TRHN>
                                                   H  HIEHWRY MPB CRUTO TRRN>
                                                   •  COMBINED  MPB 
                                                              B
                                                              BI.B

-------
                EM'S    I.E   LITER   ENEINE   OVER   TIME
                    I.IB
—i
i
NJ
N>
                m
                    I.HB
in
Q.
2;
\
in
a.  B*3B
z
                    B.BB
                                                                       A URBHN MPB CMHNUHL TRHN>
                                                                       ID HIBHMHY  HPB  
                                                                       • COMBINED MPB CMHNUHL TRHN>
                                                                   B
                                                                  BI.B

-------
             CDMBINED  MPE VS.  URBRN  HC
         EM'S  I.E  LITER  ENEINE  DVER  TIME
            1.20
i
N>
OJ
01
r*
in
Q,
x
\
LD
CL
            I.IB
            I.BB
           B.SB
           B.BB
               B.BB
                                       A NDN DET. CRUTP TRHN/STD ENB3
                                         DET. CRUTO TRHNsETD ENE3
                                         NDN DET. CRUTP TRF1N; HO ENB 3
                                       X DET. CHUTCl TRHN/ HO ENB 3
                               B.BB
I.BB

-------
            COMBINED MPE VS..  URBRN HC
        EM'S  I.E LITER ENGINE  DVER  TIME
          I.IB
i
ro
p '-HH
ID
EL

\

D. B'3B
Z
          B.BB
             B.BB
            B
ffc
                                    A NDN DET. CMRN TRRN^STD ENS3
                                    D DET. CMRN TRRN^BTD ENB3
                                    + NDN DET. CMRN TRRN; HP ENB3
                                    X DET. CMRN TRRN; HD ENB3
B.EB
B.BB

-------
             COMBINED  MPE  V5.   URBHN  CD
         EM ' 5  I  . B  L I TER ENE I NE OVER  T I ME
           I.2B
i
N3
Ul
         m
           I.IB
           I.BB
ID
D.
Z
\
ID
Q.
^ B.3B
           B.BB
                                        A NDN DET. CRUTD TRRN/STI> ENE 3
                                        El DET. CRUTC3 TRRN;BTI> ENB 3
                                        + NON DET. CRUTO TRRN^ HO ENB3
                                        X DET. CHLJTD TRRN^ HO ENE 3
               B.B
           2.B
IB.B
12.B
IH.B

-------
          COMBINED MPB VS.  URBflN CD
       EM'S  I.G  LITER  ENGINE OVER TIME
         I.IB
•-J
•I
S3
\n
CL
2:
\
LD
DL
         H.BH
            0.0
                                   NDN J>CT. CMflN TRHN^STD ENS 3
                                   DET. CMHN TRRN^STD ENE3

-------
    COMBINED  MPE  VS.  URERN.CD
EM'S  I .B LITER ENEINE DVER TI ME
  1.15
m
h
m
a.
z
\
IE
CL
Z
I.BB
  B.B5
      B.B
                           A NDN DET. CMHN TRRN* HO ENB3
                           Q DCT. CMHN TRHNJ HO CNB3
                         B.B
1B.B

-------
         CDMB  NED  MPG-V5.  URBRN  NOX
      EM ' 5  I . E  LI TER  ENE I NE  OVER  T I ME
       I .30
i
N3
OO
m
h
LD
Q.
z
\
LD
D.
Z
       i. is
       i .
       0.BS
       0.70
          A NDN
          13 DET
          + NDN
          X DET
                                   DET. ET. CRUTD TRRN
                                    CRUTP TRRN^ HD
                                                    ENS>
                                                  ENB>
                                                  HD ENB>
                                                  ENE3
          0.00
              0.S0
               NDX
 i .00
C EXM
i. so
2.00

-------
   CDMB  NED  MPB  V5.  URBRN  NDX
EM ' 5  I - .  B  LI TER ENE I NE  OVER  T I ME
  i. is
m
Is*
\n.
CL
z
\
ID
Q.
z
1.00
0.BS
  0.70
                              A NDN DET. CMRN TRRN.»STD ENB 3
                              El DET. CMRN TRRN/STD ENB 3
                              -I- NDN DET. CMRN TRRN> HD ENB 3
                              X DET. CMRN TRRN; HD ENE3
      0.00
           0.S0
           NDX
I .£0
2.00

-------
  COMB
EM '5  I
             NED  MPE  V5.  H  GHWRY NDX
             .ELI TER  ENE I NE  OVER  T I ME
       I .20.
       I . IB
-o

Co
O
    01
CL
z
\
LD
CL
       1 .00
      0.30
      0.B0
                                 A RUTD TRRN5. < STD ENE.)
                                 1 RLJTD TRRN5. < HD ENE.)
                 0.S0

                 NDX
                    if/ M
1 .50
2.00

-------
        CDMB
      EM ' 5
         NED  MPG  V5.  HIGHWHY  NDX
       I  . B  L I TER  ENE I NE  DVER  T I ME
      Dl
i
oo
        I .20
        I . 10
        I .00
LH
EL
Z
\
ID
CL
2- 0.e0
        B.BH
                                   A MRNURL TRRNS
                                   C3 MRNURL TRRNS
                                        
            0.00
             0.50
             NDX
 i .00
C EXM
I .50
2.00

-------
             EM'5   2.5   L   FWD   ENGINE   OVER   TIME
S
m
13
EL
ID
DL
       1.20
       I.IS
LIB
1.00
      0.9S
      0.30
                                                  B0.0

                                      MODEL   YERR
                                                                A URBRN  MPH  CRUTO.  TRHNJ
                                                                Q HICHMHY MPB  
                                                                O COMBINED MPB 
-------
       EM'S   2.5   L   FND   ENEINE   OVER   TIME
8
m
ia
CL

\
m
CL
z
i.is
I.IB
I.US
I.BB
B.B5
B.9B
B.BS
                                            BB.B

                                MDDEL   YEHR
                                                                          URBRN  MFC  CMRN.  TRRN>

                                                                          HIBHHHY MPB 

                                                                          COMBINED MPB 
                                                                                     BI.B

-------
        COMBINED  MPE  V5.   URBHN  HC
    EM'S 2.5  L  FWD  ENGINE OVER  TIME
I.BS
 H
 m
 m
Sn-
"Z
 \
 ID
 CL
 Z
1.00
0.9S
0.30
0.BS
                                       A NDN-J>ETER. 

                                       Q DETERIQRRTCD CRUTD TRRN>
          0,00   0.05   0.10   0.15  0.20   0.25   0.30   0.35

                         HC  < E/M I }
                                                0.M0

-------
             COMBINED  MPE  VS.   URBRN HC
         EM'S  2 . £  L  FWD ENE 1 NE  PVER  TI ME
     i.0s
 m
     I.0B
Sn.
 \
 13
 IL
 Z
     0.95
     B.90
                                           A NDN-DETER. 
                                           0 DETERIORATED CMRN TRRN>
     0.BS
0.BB
0.0S
0.10
0.15
0.20
                                    0.25
                         HC  CE/M I >
0.30
0.35
B.MB

-------
        COMBINED  MPE  V5.  URBRN  CD
    EM'S 2.5  L  FWD  ENGINE OVER  TIME
I. HS
s
ra
LD
CL

\
ID
D.
r
I.BB
B.95
0.B0
B.BS
                                       A NDN-DETER. CRUTD TRRIO
                                       Q DETER I DRRTEI> CRUTO TRRN>
     B.BB   D.5B
                    I.BB   I.SB   2.BB  2.SB

                        CD  C E/M 1 >
3.BB   3.SB  M.BB

-------
              COMBINED  MPE VS.   URBRN  CD
         EM'S  2.5  L  FWD  ENE 1 NE  OVER T I ME
 (SI

 ID
rtL
 \
 ID
 tL
 Z
     I.0S
     1.00
     0.95
     0.H0
     0.B5
                                             A NON-PETER. 
                                             HI DETER IDRRTED CMRN TRRN>
           0.00  0.S0   1.00
1.50  2.00  2.S0  3.00

  CD  < E/M I >
3.S0  H.00  H.50  S.00

-------
            COMBINED  MPE  VS.  URBRN  NDX
        EM'S  2.5  L  FWI>  ENGINE  OVER  TIME
 H
 ffl
 LD
r
 \
 m
 DL
     1.05
     I.BB
    B.35
    B.BH
    0.BS
          B.HB   0.20
                                          A HUTOMHTIC TRRNSMIS5IDN

                                          H MHNUHL TRRNSMISSIDN

                                             
B.MB   B.EB   B.BH   I .OB


   NOX  C E/M I >
I.2B   I.HB
I.BB

-------
         COMBINED MPE  VS.  HIEHWRY  NDX
       EM'5  2.5 L  FWD ENGINE  OVER  TIME
    i.0s
ra
in
o.
Z
\
ID
DL
Z
    t.00
0.9S
   0.S0
   B.BS
                                       A RUTOHHTIC TRRNSMISSIDN

                                       HI MRNUHL TRFIN5HI SB I ON
        0.00
                    0.E0     0.S0

                  NOX CE/MI
1.20
I.S0

-------
            EM'5   3.B   LITER   ENGINE   OVER   TIME
                 1.20
i
*-
o
DJ  ,.,.

ID
Q.
Z
\

D.  I-0B
Z
                0.30
                                                              A URBHN MPB 
                                                              Q HIBHWRY MPB  
                                                              O COMBINED  MPE  
                                         73.0
                                      MODEL
                                               B0.0
                                         YERR
BI.0

-------
—i
            EM'5   3.B   LITER    ENEINE   OVER   TIME
        m
a.
z
\
LD
EL
Z
             I. IB
             1.00
             0.H0
                                                             A  URBRN MPE CMHNURL TRRN53
                                                             Q  HIBHWRY  MPE  CMRN  TRHNS3
                                                             O  COMBINED MPE CMRN TRHNE3
             0.B0
                                        73.0
                                      MDOEL
                                                    B0.0
                                            YERR
BI.0

-------
           CDMBIN
      EM'S 3.B
              D  MPB  V5.  U-KKHN  H(.
              ITER  ENEINE  OVER  TIME
         I .20
i
*-
to
m
h
m
[L
z
\
m
n
z
         I .IB
         0.H0
            0.00
                                  NDN DETER IDRHTED CHUTD TRHNS3
                                  DETER1DRRTED CRUTD TRRN53
            0.20    0.H0    0.B0
               HC    CE/M! 3
0.B0
I .00

-------
    COMBINED  M
EM'5  3 . B  LITE
                           E V5.  URBRN  HC
                            ENEINE  DVER  TIME
->j

OJ
         1.10
       m
       h
       ID
       Q.
  i.00
       \
       in
       Q. 0-90
       z
         0.B0
             0.00
                                   A NDN DETERIdRHTED CMHN TRHN3
                                   0 DETCRIORHTED CMHN TRHN3
             0.20    0.M0    0.E0
               HC   C E/M I 1
0.B0
1.00

-------
    COMBINED  M
EM'S  3.B LITE
                PE  V5.  UR
                R ENEINE
BRN CD
OVER  T I ME
  1.20
01
h
LU
EL
Z
\
LIB
  1.00
  0.30
                         A NDN OETERIDRHTED CRUTP TRHN?
                         Q DETER IORRTED CRUTD TRRN3
      0.00   1.00
               .00
 5.00   B.00

-------
           COMBINED  MPE VS.  LIRBRN  CD
       EM'S  3 . B
             LITER  ENEINE
                OVER  T I ME
         LIB
—i
i
m
h
m
a.
z
\
ID
Q.
£
         1.00
         0.B0
                                A NDN DETERIDRHTED CMHN TRHN3
                                0 &ETERIDRHTED CMHN TRHN3
      0.00  1.00  2.0
^D3'BBcfeB>MSn
                                 5.00  B.00  7.00  B.00

-------
   COMBINED-MPG V5.  URBRN  NDX
EM'5  3.B  LITER  ENGINE  OVER  TIME
  1.20
m
h
m
a.
z
\
LD
Q_
Z
1.10
1.00
  0.90
     0.00
             0.S0
             NDX
1.00
                              NDN DETERIDRHTED CRUTD TRRh
                             Q DETERIDRRTED CRUTD TRRN3
                              NDN DETERIDRRTED CMRN TRNR!
                              DETERIDRHTED CMRN TRRN3
I.SB
                 C E/M I

-------
  CDMBINED  MPE V5.  HIEHNRY  NDX
EM'B  3.B   LITER  ENBINE  OVER  TIME
   1.20
   LIB
01
h
LD
Q.
Z
\
If]
H
I .00
  0.30
  0.B0
                                 A RUTDMRTK: TRRNSMISSION
                                 Q MRNURL TRRN5MI55IDN
    0.00  0.20  0.
                                    I.H0  I.B0

-------
         Appendix 8




Multicollinearity Discussion

-------
Appendix 8 - Multicollinearity Discussion


A.  Introduction


This appendix discusses the regression equations presented  in  Section  IV  and

the impact that multicollinearity had on these equations.


    Interpretation  of  the  multiple  regression   equation  depends
    implicitly on  the  assumption that the explanatory variables  are
    not  strongly   interrelated.    It  is   usual   to  interpret   a
    regression coefficient as  measuring the  change in the  response
    variable  when  the   corresponding   explanatory   variable   is
    increased by  one unit and  all other  explanatory variables  are
    held constant.   This  interpretation may  not be  valid  if  there
    are   strong   linear    relationships   among   the   explanatory
    variables.  It  is  always conceptually  possible to increase  the
    value of  one  variable  in an estimated regression  equation  while
    holding   the   others   constant.   However,  there  may  be   no
    information about  the  result  of such  a  manipulation  in  the
    estimation data.   Moreover,  it may be  impossible to change  one
    variable while  holding all  others constant in the process  being
    studied.  When  these  conditions exist,  simple  interpretation  of
    the regression coefficient as a marginal effect  is lost.

    When there  is a complete  absence of  linear relationship  among
    the explanatory  variables,  they are said  to be  orthogonal.   In
    most regression applications the explanatory variables are  not
    orthogonal.    Usually  the lack  of orthogonality  is  not  serious
    enough to affect the  analysis.   However,  in some  situations  the
    explanatory variables  are  so  strongly  interrelated  that  the
    regression results  are ambiguous.

    The condition  of severe  nonorthogonality  is also referred  to  as
    the  problem  of  collinear  data,  or  multicollinearity.   It   is
    recommended that one should  be extremely cautious about any  and
    all  substantive conclusions based  on a  regression  analysis  in
    the presence of multicollinearity.*

In  order  to address  the  concerns  discussed  above,  the  three  -regression

equations, Cheng,  Murrell and Bascunana, (see  Section  IV. D) were  investigated

for the presence of multicollinearity.


    Multicollinearity is a question of  degree and not of kind.   The
    meaningful  distinction  is  not  between  the  presence   and  the
    absence of multicollinearity, but between its various  degrees.**
*   Chatterjee and  Price,  Regression Analysis  By Example, John  Wiley &  Sons,
    1977, pages 143 and 144.
**  Jan  Kmenta,  Elements of Econometrics,  Macmillan Publishing  Co.,  1971,  p.
    380.
                                      8-1

-------
         Given that some multicollinearity almost  always  exists,  the
         question   is,   At    what   point   does   the   degree   of
         multicollinearity   cease   to   be   "normal"   and   become
         "harmful"?   This  question  has  not   been  satisfactorily
         resolved.  According . to one  criterion  sometimes  used  in
         practice, multicollinearity  is regarded  as  harmful  if  at,
         say,  the 5%  level  of  significance,  the  value of  the  F
         statistic is significantly  different  from zero but none of
         the  t  statistics  for  the  regression  coefficients  (other
         than  the  regression  constant)  is.   In this  case we would
         reject the hypothesis  that  there is no  relationship between
         Y£  on   one   side  and  Xi2 >   ^3, • • • >Xj[jr  on   the   other
         side, but we  would not  reject the  hypothesis that any  one
         of  the  explanatory variables  is  irrelevant in  influencing
         Y-£.   Such   a   situation   indicates   that  the   separate
         influence of  each  of  the  explanatory   variables  is  weak
         relative  to   their   joint   influence   on  Y^.    This   is
         symptomatic of  a  high  degree  of  multicollinearity,  which
         prevents us  from disentangling the  separate influences  of
         the explanatory variables*.

The objectivity of this test  makes it  a desirable method for  the  detection of

multicollinearity, but as  Kmenta  alluded to in his  following  statement,  there
are other  harmful effects  caused by multicollinearity which  may  be  present,

but not brought to light by the use of this  method.
         The disadvantage of this criterion is  that  it  is too strong
         in  the  sense  that  multicollinearity   is  considered  as
         harmful only when  all  of the influences of  the  explanatory
         variables on Y cannot be disentangled.*

With  respect  to  the  detection  of  multicollinearity,  Chatterjee  and  Price

stated** the following:


         Multicollinearity  is  associated  with  unstable  estimated
         regression  coefficients.   This  situation  results from the
         presence   of   strong    linear   relationships   among   the
         explanatory   variables.    It   is   not   a   problem   of
         misspecification.    Therefore,  the  empirical  investigation
         of  problems  that   result from  a collinear  data  set  should
         begin  only   after  the   model   has  been   satisfactorily
         specified.   However,  there  may  be  some  indications  of
         multicollinearity  that  are  encountered  during  the  process
         of  adding,   deleting,  and  transforming  variables  or  data
         points  in   search  of   the  good  model.    Indications  of
         multicollinearity   that   appear  as   instability   in   the
         estimated coefficients are as follows:
*   Kmenta, op. cit., p 390.
**  Chatterjee and Price, op. cit., p. 155-156.
                                      8-2

-------
      1.    large  changes  in the  estimated coefficients  when a  variable  is
added or deleted,
                                                          D
      2.    large changes in the coefficients when  a data point is altered  or
droppped.

Once  the  residual plots  indicate  that  the  model  has  been satisfactorily
specified, multicollinearity may be present if

      3.    the algebraic signs  of the estimated coefficients  do not  conform
to prior expectations or
                                                          4. V
      4.    coefficients of variables  that are expected  to  be important  have
large standard errors.

      The presence of multicollinearity  is also indicated by  the size of the
      correlation coefficients that exist  among  the explanatory variables.   A
      large correlation  between a pair  of explanatory  variables  indicates  a
      strong  linear  relationship  between  those  two  variables.   [A  table  of
      correlation  coefficients   (r)  will  be  referred  to  as a  correlation
      matrix.]

      The  source  of  multicollinearity  may  be  more  subtle  than  a  simple
      relationship between two variables.  A linear relation can  involve  many
      of the  explanatory variables.  It  may not be  possible  to detect such  a
      relationship with a simple correlation coefficient.
B.
Discussion
I.   Cheng Equation
         MPG = A(ETW   )   +  B(VDHP)  +   C(DISP)  +    D(RTHP)

         +  E(N/V)  +  F
                     urban
                       highway    composite
         A

         B

         C

         D

         E

         F
70,077
0.2908
-0.0044
-0.0291
-0.1047
4.0439
80,599
-0.4058
-0.0301
-0.0271
-0.4356
34.546
77,444
0.0458
-0.0084
-0.0366
-0.2187
13.560
       The following observations, with respect to urban fuel economy, suggest

       that multicollinearity is present:

                                      8-3

-------
a.     The  positive  sign  for  coefficient  B   for  urban  and  composite fuel
       economy is  counter-intuitive.   It  means that for  this equation, urban
       and composite fuel economy increase as dynamometer  horsepower increases.

b.     Displacement  (DISP) was  expected  to  be an important  variable  for its
       effect on fuel economy, yet  for this  equation it was  not  statistically
       significant  for  predicting  urban  fuel economy  at  a  90% confidence
                                                                2
       level.  Its  partial  correlation (r)  was only  -0.077  (r   =  .006);   in
       other words,  it  only  explained 0.6%  of the variation in fuel  economy
       (see tables  8-1  to 8-3).   The t-statistic  for displacement was  -1.5562
       with  an  attained significance  of  0.1204.   When  a  variable  which was
       expected to  be important  is  found  to  not be statistically  significant,
       the cause of the  paradox could be multicollinearity.

c.     The correlation  coefficients  (r) for  the variables (see table 8-1) are
       as  high  as  0.89.  This  indicates  thai:  there is  a  high degree   of
       correlation between some of the explanatory variables.

d.     The standard  error for  displacement (.0028),  relative to the magnitude
       of the coefficient, is large.      '.
2.     Conclusion;  Multicollinearity is present in the Cheng equation used  to
predict urban  fuel  economy.   There is probably multicollinearity in the other
two versions also.  This would  tend  to  imply caution in the use the equation,
but since  the  equation was (1) used for a residual analysis and  (2)  used  on
the same data  from  which it was generated,  the appropriate caution in the use
of the equation has been employed.
                                      8-4

-------
Variable
                                                       Table 8-1
                                  Correlation Matrix for the Cheng Variables - FTP Data
UMPG
1/ETW
VDHP
DISP
RTHP
*? CMPR
U:
AXLR
N/V
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
1.00
.93
-.57
-.82
-.85
.45
.49
.59
-.27
-.17
-.04
-.21
-.13
.07
1.00
-.66
-.89
-.84
.47
.62
.73
-.29
-.13
-.12
-.18
-.08
.02
1.00
.59
.49
-.21
-.25
-.42
.13
.01
.04
.16
.11
.02
1.00
.84
-.50
-.69
-.78
.27
.09
.23
.15
.01
.11
1.00
-.47
-.47
-.61
.30
.11
.04
.23
.09
-.06
1.00
.38
.38
-.06
-.07
-.10
-.05
.02
-iOl
1.00
.71
-.25
-.15
-.32
-.10
.05
-.19

1.00
-.28
-.09
-.22
-.10
.04
-.11


1.00
.51
.15
.26
.04
.14



1.00
.12
.18
.28
-.01




1.00
-.17
-.22
•73
                                                                                                  1.00
                                                                                                    .63    1.00
                                                                                                  -.16    -.28
                                      1.00
           UMPG    1/ETW   VDHP    DISP    RTHP    CMPR    AXLR    N/V
FTPHC   FTPCO   FTPNOX  FEHC
FECO   FENOX

-------
                                            Table 8-2
                      Correlation Matrix for the Cheng Variables - HFET Data
HMPG
1/ETW
VDHP
DISP
RTHP
CMPR
AXLR
00
a. N/V
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
1.00
.86
-.65
-.77
-.78
.42
.42

.42
-.18
-.13
-.02
-.20
-.14
.08
1.00
-.66
-.89
-.84
.47
.62

.73
-.29
-.13
-.12
-.18
-.08
.02
1.00
.59
.49
-.21
-.25

-.42
.13
.01
.04
.16
.11
.02
1.00
.84
-.50
-.69

-.78
.27
.09
.23
.15
.01
.11
\
.1.00
-.47
-.47

-.61
.30
.11
.04
.23
.09
-.06


1.00
.38

.38
-.06
-.07
-.10
-.05
.02
-.01



1.00

..71
-.25
-.15
-.32
-.10
.05
-.19





1.00
-.28
-.09
-.22
-.10
.04
-.11






1.00
.51
.15
.26
.04
.14







1.00
.12
.18
.28
-.01








1.00
-.17
-.22
.73
                                                                                       1.00
                                                                                        .63    1.00
                                                                                       -.16    -.28
                                                                      1.00
HMPG    1/ETW   VDHP    DISP
RTHP
CMPR
AXLR
N/V
FTPHC   FTPCO   FTPNOX  FEHC
FECO   FENOX

-------
                                                          Table 8-3
                                 Correlation Matrix for the Cheng Variables - Composite Data
CO
I
CMPG
1/ETW
VDHP
DISP
RTHP
CMPR
AXLR
N/V
FTPHC
FTPCO
FTPNOX
FEHC
FECO
FENOX
1.00
.92
-.61
-.82
-.84
.45
.47
.54
-.24
-.16
-.03
-.21
-.14
.07
1.00
-.66
-.89
-.84
.47
.62
.73
-.29
-.13
-.12
-.18
-.08
.02
1.00
.59
.49
-.21
-.25
-.42
.13
.01
.04
.16
.11
.02
1.00
.84
-.50
-.69
-.78
.27
.09
.23
.15
.01
.11
1.00
-.47
-.47
-.61
.30
.11
.04
.23
.09
-.06

1.00
.38
.38
-.06
-.07
-.10
-.05
.02
-.01


1.00
.71
-.25
-.15
-.32
-.10
.05
-.19



1.00
-.28
-.09
-.22
-.10
.04
-.11




1.00
.51 1.00
.15 .12 1,00
.26 .18 -.17 1.00
.04 .28 -.22 .63 1.00
.14 -.01 .73 -.16 -.28 1.00
             CMPG    1/ETW   VDHP
DISP
RTHP
CMPR
AXLR
N/V
FTPHC   FTPCO   FTPNOX  FEHC
FECO   FENOX

-------
II.    Murrell Equation
                   MPG = A(CID x N/V)~°'8   +  B (ETW)~°*67
                   +  C(RTHP/ETW)   +  D(RTHP/CID)
                   +  E[(CMPR°*4 -1)/CMPR°'4]   + F
       Coeff.      urban       highway     composite
A
B
C
D
E
P
7501
5764
-47.36
-5.025
16.20
-17.03
29,878
3,956
227.2
-16.80
-1.843
-10.69
14,989
5602
36.28
-10.09
-1.700
-8.915
Tables  8-4,  8-5, and  8-6 show  the correlation  matrices for  this  equation.
Multicollinearity probably exists.
III.   Bascunana Equation

                   MPG = A[ (ETW)3 (DISP)b (N/V)C  ]

       Coeff.      urban       highway     composite
A =
a =
b =
c =
141,482
-0.8659
-0.1889
-0.2403
959,401
-0.7840
-0.3301
-0.6450
436,918
-0.8831
-0.2323
-0.4086
Tables 8-7, 8-8, and 8-9 show the correlation matrices.
Multicollinearity is present.
                                       8-8

-------
                                                    Table  8-4

                                 Correlation Matrix for  the Murrell  Variables  -  FTP  Data
                          Variable
                          UMPG       1.00
                              -0.67
                          ETU         .93       1.00
                          RTHP
                          	       -.41       -.28       1.00

-------
                                                 Table 8-5

                             Correlation  Hatrix  for  the  Murrell Variables -  HFET Data
                      Variable
                      HttFG       t.OO
                          -0.67
                      ETU         .86        1.00
                      RTHP
i
00                     	       -.37       -.30       1.00
                      ETU
                      RTHP
                      	        .42         .57         .29        1.00
                      CID

                        .4
                      CR  - 1
                      	      .42         .48        -.28         .26       1.00
                        .4
                      CR

                            -.8
                     /CID\
                     I	       .90         .87        -.38         .60         .45       1.00
                     \ N/V/

                                                                              .4           -.8
                                               -.67     RTHP        RTHP       CR  -1   / CID
                                 HHP6        ETU        	        	      	   I	
                                                       ETM         CID           .4    \ H/V
                                                                              CR

-------
                               Table 8-6


       Correlation Hatrix for the  Hurrell  Variables  -  Composite Data
Variable
CMPG       1.00
    -0.67
ETU         .91        1.00
RTHP
	       -.46       -.33       1.00
ETU
RTHP
----        .40        .55        .28       1.00
CID

  .4
CR  - 1
.......     .44        .47       -.26        .30        1.00
  .4
CR

      -.8
 CID
-----       .89        .86       -.41        .58         .46        1.00
 N/V
                                                         .4           .— . 8
                         -.67    RTHP       RTHP       CR -1    / CID
           CMPG       ETU        ----       — -      .......     .....
                                 ETU        CID           .4     \ N/V
                                                        CR

-------
                                            Table 8-7
                     Correlation Matrix for the Bascunana Variables - FTP Data
                   Variable
                   UHPG       1.00

°
                   ETU        -.94       1.00

                       b
                   DISP       -.90        .96       1.00

                        c
                   
-------
                                            Table 8-8
                        Correlation Hatrix for the Bascunana Variables -  HFET Data
oo
                      Variable
                      HHPG       1.00

                         a
                      ETU        -.87       1.00

                          b
                      DISP       -.83        .94       1.00

                           c
                      
-------
co
I
                                                       Table 8-9
                              Correlation Matrix for the Bascunana Variables -  Composite Data
                            Variable
                            CHPG        1.00

                               a
                            ETU        -.92       1.00

                               b
                            DISP        -.88         .95       1.00

                                c
                            (N/V)        .58       -.76       -.81       1.00

                                                    a           b          c
                                       CNP6       ETU        DISP      (N/V)

-------
C.   Summary

The  multicollinearity  present in  the three  equations implies  that  caution
should be used in their application.  Especially sensitive applications would
be those involving predictions of the effect of individual variables or their
use to to predict MPG  from vehicles whose design parameters were not  related
in  the  same  way as   those  design  parameters  are  in the  MY81  data base.
However, such  applications were not  made for  this  report.   The use  of  the
equations,  "played back" on  the  same data set  from which their  coefficients
were based,  is appropriate for the residual analysis that was done in  section
IV.  For the use of the Cheng  equation  to generate "adjusted MPG" in  section
IV, it is assumed  that the equation's coefficients  developed from MY81  data
are adequate for use on the MY79  and MY80 data bases  also.
                                   8-15

-------
             Appendix 9

Plots of Ton-Miles per Gallon versus
Emissions by Emission Control System

-------
Two variable  linear regression  plots of  Ton-Miles per  Gallon
for Urban Fuel  Economy  (UMPGETW)  and  Combined  Fuel  Economy
(CMPGETW), each plotted agains FTPHC,  FTPCO,  and FTPNOX.
                                     /
Data  from EPA/CERT  Data  Base,  restricted  to  non-durability,
non-Diesel vehicles  of  test active years  1979,  1980, and  1981
were used.

Stratification by emission control  system.   (See Section  IV. H.)
                                  9-1

-------
 STRAT»V1O2  <1>  STKTOIM  CA»ES«TAY« : (71 • • 1 I  N»  III  OUT Of 241  41.UTE.S.2K  VS.  1.PTPMC
UTE.S.2K
 IS.OOO   *
 BO.OOO,  »
                       *•••**           >
                     3    •  «  • • •
          »            22  2  •
                     •  *   •      *
                     • •   4*     * **
 3B.OOO   *          ««2«     «•  •           •
                   3  •  »24  •  «   •
                   **22    2  «2      «2       •               •
          *       • ••    3»  2*     4      »2          *  2i   2  «  •  •
                     •      *  3*    •        •                       • •
                  •   *  4  •           *2***  **   *  * ••         •
 30.OOO   •'+          •*   • »  •    • •    22**2     *•••
                   *•    **22*     *   *•    •
 10.000
        0.                   .3OOOO               .IOOOO               .IOOOO               1.2OOO     FTPHC
                   .1IOOO                4BOOO               .TBOOO              1 .OBOO               t . 3BOO
SCATTER PLOT  <2> SY»ITO«:2   CASBS'TSYR: I7t•11 >   N«  1IB  OUT  OP  129  41.UTE.S.2K VS. 1 .PTPMC
UTE.S.2K
 SB.OOO   *
 SO.OOO   »
                      •                •«**•*
                           • •                 *   *
                     ••      **       >****   *x   2
                      **                s*»«*3
                     >>t<        2«     2    «2»2«
                        22   «•    •««   »4«2*     2«
                        2 ««      «      2       322      •    •
                      *  *    •    **   «2» 2  2« **2 * 2 2*
                  2    •*»*           *     *2***
                     •      *     **»2       **
 25.000   •
 IS.OOO   *
                             .30000               .60000               -8OOOO               I.2OOO    FTPHC
                    15000                15000               .75OOO               1.0SOO              1.3SOO
                                                          9-2

-------
SCATTER  PLOT   <3>  SVS1TO*:3  CASBt*T«rRTJJM-• I >    N« 4lt OUT OP I11___"4 1.. UTB . I . 2K VS. t.PTPHC
UTE.S.ZK
 ss.ooo    »
                        • ••      *•
                       •2* ••***•                ••               *
                      2***2* *3*32*» *2    **•              ••    *    *
                       4«2*2233232*  **     • «          »*       •
                    *    2332424*3 «f.«2*2*«   •    *«  ••
                       **(*32*S     22 **32**«*   «2 •  »      2*   «
                    *  222*  33*32 >2  3 *2**2*  2  23     2*   «  * • •
                   *  «  3*«33* 3 2***24*2*«   •     *«*3   2 •  «    «    2
                   •  **2 43 S343*«33 *«**2*2 2   *  •«  » *2»       *
                   '  *  223*a*3 *2*32  3    *2   *•*  2 **
                         3*2* *32*22 *2*   *  *    **      *  *       *  *
                         22**3322     * •*•*        **•      «
                       3*3  22  22* « •
                         *•***•*•               •
                     ••  **  **2   s*
                        2  *    *     *       *
                                                                                                     FTPNC
                                                                                                     I.3SOO
SCATTER PLOT   <4>  SY»tTOe:«  CASES*TAVR: 17»-11 I    N*  178 OUT OF 243  41.UTE.S.2K  VS.  1 .PTPHC
UTE.S.2K
 SS.OOO   f
                                * *
                     • *  * *     •   •
                       2**2    2    2*
                   **•*  *2B**2*   *
                      **42  3****   •
                    2  225*362*2   22*** >
                    •22  22  *    >
                    • 2>  4  33   22 "
                       >2*3223»*2 2
                   .2.4.  22*    '

                       **   2
                                                                                                     FTPMC
                                                                                                     1.3SOO
                                                          9-3

-------
SCATTER  PLOT   SYS1TOI:B   CASES•TA»R: <71- 41 >    N> 121 OUT  Or  II*  41.UTE.1.2K  »•.  1.PTPMC
UTE.5 . 2K
 5S.OOO    «                                "                           .._                       .  _
 4B.UOO    *
 40.000    *
 39 . -tOO    «
 2B.OOO    »
                 * • 2 •   2
                  * *  *
                  •   * •**]
                 * •*  ••••
                      • 2
                    • • • *
                              2**   3 • •
                                                                                                       FTPHC
                                                                                                       1 .3500
SCATTER PLOT   <•> STSITO«:6   CASES*TAYR:(T«-11)    N« IB OUT OP »»   41.UTE.S.2K »S.  1.FTPHC
UTE.S.2K
 BB.OOO    »
 BO . OOO    •*•
 40.000    »
 30.000   »
                              .3OOOO
                   .15OOO               .46OOO
                                                           9-4
FTPHC
I.3500

-------
tCATTER PLOT  <7> ITI1TO*:T  CASBS«T«TP. : (7t - 5 I >    Mm 148 OUT Of 2O3  41.UTE.S.2K VS.  1.PTPMC
UTE.S.2X                 	      ^_                          	
 ss.ooo   *
 10.000   *
 40.OOO   •
                      2     •
 35.000   «             ••••
                  2««2* •
          »      323*223 4««
                  • 3** 2 2**   *•
                •1*332 22 *23
 3O.OOO.   *      2 43* *3* *• 2*
                 • ••  * 2      *  •
                   •      2 2 ••   «
          *       •    «2    2  «•
                      *•    •       • • »
                    •      *  •
 2S.OOO   •           »•

                       2  «  «
 15.000   •
                            .3000O               BOOOO               .tOOOO               1 .2OOO     PTPHC
                  .I5OOO              .45OOO              .7BOOO               I .O5OO               1 . 35OO
SCATTER PLOT  <8> STS1TO(:<  CASES*TBYR:<7i-»1 I    M-  86  OUT  OP  75   41 .UTE.S.2K  VS.  1 .PTPHC
UTE.S.2K
 55.OOO   »
 40.OOO   »
 3S.OOO   »
                 •2          «
                    «        •
                      2   «    •   2
 2O.OOO   •»
 1 O . OOO   •*
                            .3OOOO               . BOOOO   '            .9OOOO              I . 2OOO    FTPHC
                   15OOO              .45000               .75OOO               I. 0500              I . 3SOO
                                                        9-5

-------
42i1 C»«B»«VBO:171-11 I  »T««T«V102 <1> ITtlTOt:)  CAItt'fATM: 3Y51TOB:2  CASES'TAYR: (78-81 )    N* 12O OUT OP 229   42 . CTE.S.2K  VS .  1 . TTPMC
CTC.S.2K
 96.OOO   *
 46.OOO   +
 4O.OOO   *
                                          *    2»»
                                     2   2  *   *2*
                                      »  * «««  *  3
 30.OOO   +
 20.OOO   *
 t 0.OOO   +
                            .3OOOO               .6OOOO               .9OOOO               1 .2OOO     FTPHC
                   15OOO               .450OO               .75OOO               1.O5OO               1.35OO
                                                        9-6

-------
SCATTER MOT   <3>  ITftT01:3  C**KS«T*VR;(7»-« t )   N» 114 OUT OP  lit   42. CTt.».«-»«.  t.PTPMC
CTE.S.2K                                                            ~                 "  '
 II.OOO   «
 41.OOO   *
                         •     «  • *                    •
 40.OOO   *            *  2   •  »  2  2*                •
                      2«2  «2 «3><  «  »»    ••            •
                       •****332  4  **  •«     «*            k
          +         *     3«4**2  »  ••    *2              *
                       ••4*  *••       2**   *      * *      *
                    *  »*3 «2 23  *••  *  *   • 2 *   2
 31.OOO   «            «  I  2223  •*•  2   «J     ** «3»«   « •
                  •    3«2««* •   2   *3*2   *  •     • •   2*
                    *• «2  • 3**   *3  «  2*  *2     *     >
          +            2  3*3**  «*3  2  *  *  ••*       »  *  •
                         •••2   V3***         *    *
                       ••3«2***3«     *  *        **       •
 30.OOO   *              2  322    2  «  •«              >
                      *•*•••    *     *       •
                    *  2  *    *  *          *                *
          *            *    t   *  2           *
 25.OOO   *
 2O.OOO   *
 IB.OOO   *
 IO . OOO   4
                             .3OOOO                SOOOO              .9OOOO               1 .20OO     PTPMC
                   . 15OOO               .4BOOO              .7BOOO               I .OBOO               1 . 3BOO
SCATTER PLOT  <4> SYStTO(:4   CASCS'TATR: (79 -•1 I    N> M9 OUT OF 243  42.CTE.S.2K VS   t .FTPHC
CTE-S.2K
 BB.OOO   •
          «           s  * •  *   x
                   • 2 ' 3    •
                  •   »2 2  •
 4O.OOO   *        •*  22  *     ••
                     * * • 2  • •    *
                    •**32«2* 2    •
          +        «   2 *2  >•
                     2   22    ••«
                  *•  »2*>*  *
 3 S.OOO   •         ••••22*'
                    »*• » «2
 30.000   *
                                                         9-'
                                                                     .9OOOO              1.2OOO    PTPHC
                                                           .TfiOOO               1 . OBOO              1.3BOO

-------
SCATTER PLOT     SVSITOItB  CASES"TAT*i<7t••1)    N>  12 OUT OP  1«4  42.CTB.S.3K VS.  1.PTPHC
CTE.S.2K
 •B.OOO   *
 BO.OOO   +
 4B.OOO   *
                        • 2 2
                      •   *
 40.OOO  . +           *  *      *
                 * *«»      «   •
                   *      * 3  *
          +      •   * « *  *3*    *
                 *        *  ** *2
                *  ***••  222  **
 3f.OOO   +      •  *      • *       »  «
                * *2»   *           *
                    * *   *     *
          *           **
                   2    «*    *
                  *
 3O.OOO   *               *
 as.ooo    +
 1B.OOO    *
        o.                  .30000              .eoooo              .aoooo              i.2000    FTPHC
                  .1BOOO              .«§OOO              .7BOOO              t.OBOO              1.3BOO
SCATTER  PLOT   <•> SV«1TO«:6  CASES-TAVR:(7»- ft 1 )   Hm 42 OUT OP 68  42.CTE.S.2K  VS.  1 .FTPHC
CTC.5.2K
 BS.OOO    *
 45.OOO    *
                 2     *
                      *  »
 40.OOO    *                 *
                            * * *
                 «2   *      * * * •
                     *     »   *
 35.OOO    *             »«•*««
 SO.OOO    *
 25.OOO    *
                         « * »   *
 15.000    +
                           .3OOOO              .6OOOO              .9OOOO              I.2OOO    FTPHC
                 .1SOOO              .4BOOO              .7SOOO              1.O5OO              1.3SOO
                                                      9-8

-------
SCATTER  PLOT   SYS1TO«:7   CA1COTATR : < 71 - S t )    N> *2 OUT DP 2O3   42.CTE.S.2K  V*.  1 . PTPHC
CTE.S.2K
  BB.OOO    *
 4B.OOO    «
 4O.OOO    »
                         *»•*  •
                        ••22
                   • **  2   *     •
                         *  2
                    2       • 2*    •
                              .3OOOO               .8OOOO               .900OO               1.2OOO    PTPHC
                   .1BOOO                4BOOO               .78000               1.OBOO               1.3BOO
SCATTER PLOT   <»>  SYS1TOS:»  CAIES'TATR: (T»- 91 )   Mm  33  OUT OP It  42.CTE.S.2K VS. 1 .PTPHC
CTE.S.2K
 BE.OOO    +
                      2      *
 3O.OOO    *
 to.OOO    *
          .3OOOO               .6OOOO
. ISOOO               . 45OOO
                                                                                            1.2OOO    PTPHC
                                                                                                      t . 3SOO

-------
<3CATTER  BYIT V*«*4I;2 CASIS*VBO:(7t-»1>  BTKAT.V1O2 <1> ITS1TO*:1  CASESUTATK: (7«-«I )  NB let  OUT  OF 24B  41.UTE.S.2K VS. 1.FTPCO
UTB.S.2K                     	
 • B.OOO    *                 	                    _  _J ._ .
 BO.OOO    *
 4B.OOO    *
 40.OOO    •
               22 2 « «
          +         «22  «  •
                  •  • •   *
              •• 2** *    2                           *         *
 If .OOO    «   «   •   • «2         ••       •
               2 *2* •«  2  *  •  •      •
                2*2 *2  *     • **    *          .•  •              *
          *       * * 20**    22*        2    *• •  •    •    2   *2       • • •
                    •*•••        2        **•                     *
                2*  •     2«*   *           *•      •»*        2**«>
 3O.OOO    *        «*2**    •           **»2*****                 •    *
                    •   23*       *        *                   2   *    *   *
                            2        •             «
          *                     *     *            •     *
                                                *                   .*
                            •                  •
 25 . OOO    »
                          4.OOOO             S.OOOO             12.OOO              1B.OOO    FTPCO
                 2.OOOO              6.OOOO              10.OOO              14.OOO             I« OOO
SCATTER  PLOT  <2> ST81TO«:2  CAlESiTATK: <79•«1 )   N> I8S  OUT OF 22»  41.UTC.S.2K VS.  2.FTPCO
UTE.5.2K
 BS.OOO   *
 3B.OOO   *
                                    * *   * 2      *     •  «
                                  2  «   «*2       «  2*«  •
                                   •2***      *4*   ••*
                                 •    2     »3    «    «  «2
                                  ***  «  * 2 22**** *2   »»*
 2O.OOO   *
 1 O . OOO   •»
       0.                 4.OOOO             6.OOOO              12.OOO              16.000    PTPCO
                 2.OOOO              6 . OOOO              1O.OOO             I 4.OOO             18.OOO
                                                      9-10

-------
SCATTER PLOT  <1>  8TSITO»:3  CASESeTAVR:<7B-«1>   N« »O2 OUT OP lit  4t.UTE.S.2K VI. 2.PTPCO
UTE.S.2K    ,
 •5.000   »  '
                       * *
              •  • * •   *
                  * ••**24*    *
           »  * »**4*  2 *«4 4*  * 2     *  *
             •«  I  •33322*2 32     « « *   2
             *•  *2 *4  S4**432  * 2 3 •   ••*• •    * *
            > 2332*233"  2   *2«  4     . .  ..        3
             • •  •» 3>3»2 43*4   «3«»4«*»*3     »
              3  *2*2**23B*«22 3»3 42 22* **    •*    ••>  »
             < « 22»»»S*62 32*2»32* 222*   *   « «  2*   2322*
                22***2322« 242.23 > »23*   *    *  •*
                 •* ...3*233 *  3* ****   2    *
              2 2   *3* 2*  •* *  •* *****      •  •**
            ..  2 > *  .2" 2*   « •  *Z
                 *****    **               •
              4   •••**       •*
                 *    *    2  «   «
                                       *            .    *
                 * *                     •
                                                                                    FTPCO
                                                                                    It.OOO
SCATTER PLOT  <4> SVS1TO0:4  CASES*TAVR: (71 - 81 >   N*  176 OUT OP 243  41.UTE.S.2K  VS. 2.PTPCO
UTE.S.2K
 It.OOO   »
 BO.OOO  »
        *        *    *
               * 2 * * *
            *  ****  3*   **
 36.OOO  »     223232  2 **
              •4  *2  23 * >  *
             *2**46 4  224   32  .*
        «    2 2* 2*    *2«
              *  225*32**   « *
              ** 322  • 3 ***** 2*
 30.OOO  »     **4  3*  * 22*
 26.OOO  «
                        A.OOOO            B.OOOO             I 2.OOO             I S . OOO    FTPCO
               2.OOOO            6.OOOO             1O.OOO            14.OOO            18.OOO
                                                  9-11

-------
SCATTER PLOT  <(> SYSITOtrB  CASES"TAV*: (71 • 11 )    N«  126  OUT  Of  t!4   41.UTE.S.2K  VS. 2.FTPCO
UTE.S.ZK
 SS.OOO   *
 40.OOO   •                          •
                                    *
                   •  •                *
          *                *  *    *    • *
               •   *2  •    *      *      *
                       • •   •       •
 n.oeo   *   *    •  3   • *•  *
                 *   2   •  »  »«•
              •   2***«2**      •  2
          *         2    •   22*  ••  2  ••  *    *
                 • *  •      *22      *  *   *
                   •  2* *22*2  2*  *   *         *   *     *
 3O.OOO   *         2 *  ••    •       *          ••••
 2S.OOO   *
 1B.OOO   *
                            4.OOOO               a.0000               12.OOO              IB.OOO    FTPCO
                  2.0000               B.OOOO               10.000              i4.ooo              it.ooo
SCATTER PLOT  <•>  SVS1TDS:B   CASES'TAV*i(7»•61)    N«  4« OUT OP «»  41.UTE.S.2K VS. 2.FTPCO
UTE.S,2K
 SB.000   »
 BO.OOO   »
                   2       «
               •«»2      •    *     *
          +          * *   • 2
               »   «2       «
               «  2       •  «
 30. OOO   *    *  >   2  ••
 IS.OOO   »
 10.OOO   *
                            4.OOOO              t.OOOO              12.OOO              IB.OOO    FTPCO
                  2.0000              G.OOOO              1O.OOO              14.OOO              It.000
                                                        9-12

-------
ICATTBK  PIOT     >Vt1T01:7  CAIES'TAV*: <71•I I)    N> 14B OUT OF 2O3   4I.UTI.I.2K  VS.  2.PTPCO
UTB.S.2K     _^_;	  _                                             ' —	
 IB.OOO    «
 4O;OOO   »
                 2         *
 3C.OOO   *      2    «      »
                 •2   2«   2
               2««22«    •         •
          *    2 •2I2**2«2»2
                 *S2  • *  •*••
              ••232«*3   2*    *   *
 3O.OOO   *      2 3B«2   •]  »
               • •»   • *.*     2    *
                 •    3 •     •   2
          +      »»»2     •**
                 *    *     «2  *
                         •   *•
 2B.OOO   *            «      •
 16.OOO   4
                             4 . OOOO               ft . OOOO              12.OOO               1B . OO,O     FTPCO
                  2.OOOO               6.OOOO               1O.OOO              14.OOO               1B.OOO
SCATTER PLOT  <*> STS1TOB:B  CASCOTAVR : (7« - BI I    H>  BB  OUT OF 7(  4I.UTC.S.2K VS. 2 . FTPCO
UTE.S.2K
 BS.OOO   *
 BO.OOO   •
 40.OOO   •
                2     •
                 2     •
              *   * • *
                   3   «
               > 22 2*>
               2   «   »
 3O . OOO   •»
 2S.OOO   *
                            4.OOOO               1.0000               12.0OO              16.000    FTPCO
                  2 OOOO              6.OOOO               1O.OOO               14.OOO              1 ft.OOO
                                                         9-13

-------
<£CATTe« BY«T VflR-42;2 CABBB-VBO:  BTRAT-V1O2 <1> SY*1TOB:1  CASBS«TAVR:(79-01)  N» 127 OUT Of 241  42.CTB.S.2K
CTB.S.2K                            	                                                                      .-..
 ••.000   *
 BO.OOO   +
                * *    2* *
          +          2*
                   * *       *
               •  •  2*     *
 4O.OOO   **>***2*                            *
                         2        **         «               *
                  *  * *   «« *    • *               *                2
          *       2     *          *   •              *           *             **
                   2  •*      *                    *                   2           *
                    **» 2  *                  *       *           2         «
 3 B . OOO   *        •**••    **           *«  * •«     99       9         *2    *
                  *   *      *                   •       *  *
                 *   *     *       *                     *                 *
          *              * *  *                             »     •   *
                          «            *           «

 30.OOO   *                   *                                         *
 26.OOO   *
 2O.OOO   *
 IB.OOO   *
        O.                   4.OOOO              B.OOOO              12.OOO              1B.OOO     FTPCO
                  2.OOOO              B.OOOO              1O.OOO              t 4.OOO               16.OOO
SCATTER PLOT  <2> SrS1TOB:2  CASCS'TATM: (78-81 t    ttm  12O OUT  OP  22*  42.CTE.S . 2K  VS.  2 . PTPCO
CTE.S.2K
 BS.OOO   *
 SO.OOO   +
               »                                    *   •
 4O.OOO   +      *    »                  *       s *          *
                        *  *  ' X       *       *     9   *
                          *    *    2       2     **  «*     «         »
          *       * •                  **•»           * *         >«
                2                      * *  »       * 2     *         *
                   *           t*    999     99       *   2   *      *
 36.OOO   *        9           9    992   *  *  2     9  9     99  9     9                *
                   •                t*s**»*3»*         *   *
 30.OOO   *
 25.OOO   +
 15.OOO   +
        0.                   4.OOOO              6.OOOO               12.OOO               16.OOO     FTPCO
                  2.OOOO              B.OOOO               1O.OOO               14.OOO               1B.OOO
                                                         9-14

-------
1CATTH«~HOT   <3> SVS1TO«:3  CAIIS'TAVR:(71-tt)   N- 338 OUT  Of  111  42.CTE.S.2K VS.  2.FTPCO
CTE.S.2K
 SB.OOO   *
 so.eeo   »
 4B.OOO    *
 *e.eoo    »
 90.000    *




ft

ft








*2

•
•



•«




2*
*

•
2

*
2









3

*
2
•
*
•


»
*


*

•

•


2
2



*
• • 2
*3
2223
• • •
• *
2 24
*•*•
2»2

«•»
» •
» *
«« 3
2
• •
2«
•*3
32 *
2**
2«
322
*3
3 2
• 2
*
*23«
**2

*
2


2
•
3


2

•

ft



ft
2

2
•




3
2

*•* «
2

>




*

*
•

*2
2*

223
• 2
*
2*2
*
• «



* ft *
• » •
* 2
* * ft*
• 23 *
2 * ft ft* 3 *
» ** * « • 2
• 22 * * * » » »
*** * . * *
22 "
* * ft * *
* **
* * •
 2B.OOO    +
 IS.OOO    *
 10.OOO    *
                                                                                    16.000    FTPCO
                                                                           t4.ooo              te.ooo
SCATTER  PLOT   <«> SVSITOS:4  CASESITAVR:<71-«1)    N«  119  OUT OP 2*3  42.CTE.S.2K  VS. 2.FTPCO
CTE.S.2K
 56.OOO    +
         +    *
               * 2    * *»
               «2 « 2 •»«
 40.OOO   »
 3S.OOO   *
                3» « 2
               •2222*    >2
   •22"   »
  a   *   *  »«2
*  4ft*2   *
* * a  3*  *
   *
        2 *
 25.OOO   +
 2O.OOO    +
                           4.OOOO              8.OOOO
                 2.OOOO             6.OOOO              1O.OOO
                                                 12.OOO              16.OOO    FTPCO
                                                          14.ooo             ia.ooo
                                                       9-15

-------
SCATTER PLOt  <«> SYS1T04:!  CAIEKTAVR : I 71-St )    H«  12 OUT OP  t!4   42.CTE.1.2K  VC.  2 . FTPCO
CTE.S.2K
 K.OOO   »
 IO.OOO   »
 4S.OOO   +
                  *«      *     *
               «      «   2
          +   *        »a   **    • • *     **
                  •       * *«•    *
              *    a   * *2* »3««      *
 II. OOO   *        •*     •   •       •
                 •  «3      •
                  • •                *
          *                  •  •
                a    •  •          ••
                 •
 3O. OOO   *             *
 20.ooo   »
                            • oooo              t.oooo               12.000              te.ooo    FTPCO
                  2.oooo              e.oooo               10.ooo     '          i«.ooo              i».ooo
SCATTER PLOT   <•>  SV8ITO«:B   CASEOTAYR : I Tl - > 1 )    M»  *2  OUT  OF  «•  42.CTC.S.2K VS. 2 . FTPCO
CTE.S.2K
 II.OOO   *
 SO.OOO   »
 2O.OOO   *
                            a.oooo              a.oooo              12.000              16.000    FTPCO
                  2.oooo               e.oooo               10.000              ia.ooo              i8.ooo
                                                        9-16

-------
SCATTER PLOT  <7> IYS1TOS:7  CASBS-TAYR:<71-•I(   N« 12 OUT Of 203  42.CTE.S.2K VS.  2.FTPCO
CTB.S.2K
 •5.OOO   *        	
 BO.OOO   +
 4O.OOO   *         *   *
              2***2 *  **
               *2* *     *    *
             *  2** *   •**
             • 2** *   * 2*
 3ft.OOO   *      2   *   *
             « 22 «*       *
                •    * * * •
         +    2   2*2
                   *  *   *
                 2      *
 30.OOO   +               *
 20.000   +
                        4.OOOO            A.OOOO            12.OOO            16.OOO   FTPCO
               2.OOOO            6.OOOO            1O.OOO            14.OOO            16.OOO
SCATTER PLOT   SVS1T06:•  CASES*TAYR:
-------
<8CATTBR BYST VAR*42;3 CASES-VtO:<71-41) STRAT-V102  <1>  SVB1TOS:1   CASES*TAY*:(7S-4I)  N« 127 OUT OF 24S  42.CTE.S.2K VS.  3.FTPNOX
CTE.S.2K
 BB.OOO   *
 BO.OOO   +
 4B.OOO   +                         *        *
                                   *       a  *                *
                                          *  *«*                      *     *
          4                       *                                *    «
                                      *                      t  *
                                *   **                          *     *          *
 4O.OOO   +                    2    *  *                      2    *          *•«
                                «                               «»      »»                   *
                           •                     *       *    2       * *    *   **          *
          4                     *                   *      «      2        *   *         *       *
                                              *      *    *         *   *     •      a  *•
                                          •    •            *  *     •     *»        ao    *«
 3 S.OOO   *                                        **«        o*"*«*22*»       « e * a    *
                            *                                   »      2                     «
                                       *            *           •**   «
          *                    «*                               *  *       «  »
                                                                •    a   *

 3O.OOO   +
 20.OOO   4
                             .SOOOO               1 .OOOO               1 .SOOO               2.OOOO    FTPNOX
                  .2BOOO               .7BOOO               1 .2BOO               1 .TSOO               2.2BOO
SCATTER PLOT  <2> SVS1TOS:2  CASES'TAVR:(7»-«lI   ttm  it*  OUT  OF  22t   42.CTE.S.2K  VS.  3.PTPNOX
CTE.S..2K
 SB.OOO   +
 BO.OOO   +
                                                   **«
 30.OOO   4
 2S.OOO   4
 20.000   4
 15.OOO   4
 tO . OOO   4
                            . 5 OOOO              1 . OOOO               1'. 5 OOO               2 . OOOO     PTPNOX
                  . 25OOO              . 75OOO               1 . 2SOO               1 . 75OO               2 . 2SOO
                                                         9-18

-------
SCATTER PLOT  <3> SYS1TO«:3  CASES>TAYR :'< 7* • > 1 >   N*  131  OUT  OP  It 1   42.CTC.S.2K  VS.  3.PTPNOX
CTE.S.2K  '             _        _              	
 is.ooo   *
 BO.000   *
 40.OOO   «
 3S.OOO   *
                                                                   2 «       3     *
                                                                   •  *3* *  **•  •
                                                                 3*2 2   2  « 2  2      «•
                                                                       »*•••  • 2   2**
                                                                       • **     2
                                                                        * •  ***2  *   *
       *    * * •     *
*             2   *
     *     * *  *  *     *  *
     *  *  2*  *•* * *       *
*  *•  * *  • 2  ••   *2  • »
«      2«« >  2***   2 >22* 24
 •      2  2* *2   • »*•    >
 *       • ** «2  **22.  *3»* *
  .*2**  * •*•• • *• 22 * *3
 *      *  *•••    • 2*« *  •  2
        •  •    «2« »**    *3*3   2
*   2  *  *••*    * »  *  *        * »
   ***•      *            »*2     *
     *****             **      *
         * *                 *  * * *
                                                                         ** *   4*3   *
                                                                           « •» 2
                            .SOOOO              1.0000              I.50OO              2.OOOO    FTPHOX
                  .2BOOO              .TBOOO              1.2BOO               I .TBOO              2.2BOO
SCATTER PLOT  <4> SrS1TOS:4  CASES'TAYR: 11* • a 1 )    N* IK OUT OF 243  42.CTC.S.2K VS. 3.PTPHOX
CTE.S.2K
 SB.000   «
                               » » 2   * *
                                •  3       >
                             **  •••  3*  *
                               * *   *    *• *
                          2*  22«*     3 «
                            •  2 3 2
                         *   32   ***       t
                           ***•  • 3 *  **
                        ***   s     »*•  2
                        *   **   * t  *       •
 3O.OOO   *
 2B.OOO   »
                                                         9-19
                                                                                        2.OOOO    FTPNOX
                                                                                                  2.2SOO

-------
 •1CATTIR PLOT  <(> SY«ITO*:B  CAIEOTAYR : I 7B-11)    N>  12  OUT  OP  II*   42.CTE.I.2K  »§.  3.FTPMOX
-CTB.S.2K                    —
  i8.eoe   »
  4B.OOO   *
                       *  2
                      * •
  4O.OOO   *           •       •    •
                     • 2                2   •
                             *        •       •   *•  •
           »         *  ••    •   2     *•         •*
                       *        *  *»    •
                      ••     *•       *2   •*   •••*    *
  36 . OOO   *          •   •        »    •      •       •
                       •   •  *      •               *   •
                              *• •      »   •


  30.OOO   *                        •
  2B.OOO   «
  IB.OOO   »
                             .BOOOO               t.OOOO               I.BOOO              2.OOOO    PTPHOK
                   .2BOOO               .TBOOO               1.2BOO               1.7BOO              2.2SOO
 SCATTER PLOT  <1>  SYS1TOI:B   CAIES'TATR:<79-81)    N»  42  OUT OP 4*  42.CTE.5.2K VS. 3.PTPMOK
 CTC S.2K
  BB.OOO   »
  BO.OOO   *
  40.OOO   «
  IE.OOO   »
  30.OOO   »
  2O.OOO    *
  1 6 . OOO    •*
                             .5OOOO               1.OOOO              I.5OOO              2.OOOO    FTPNOX
                   .25OOO               .TBOOO               1 .2SOO              1.7BOO              2.28OO
                                                         9-20

-------
SCATTER PLOT  <7> fY»1TOi:7  CASES'TAYH:(T«-«I I    Mm «2 OUT OP 2O3  »2.CTE.t.2K  V«.  3.FTPNOX
CTE.S.2K
 BB.OOO   «
 BO.000   +
 40.OOO   +    «   •
              2 2** *2   •
               2   ** **•
             *    2 ••  • 2   *   *
             2 • •  3  •«    •
 3B.OOO   «      • ••           >
                  2*    2 •     >
              • *     *             *    *
          +     •     •  •   •  •    *
               *     *             •
                      • «.  *
 3O.OOO   4    «
 IO.OOO   »
                            .50000              1.OOOO               t.SOOO              2.OOOO    FTPNOX
                  .2SOOO              .7BOOO               1.2BOO               1.7KOO              2.2BOO
SCATTER PLOT  <•>  SVS1TO*:>  CBSES*TAYR: (7»-•1 I    N*  33  OUT OF It   <2.CTE.S.2K VS. 3.FTPNOX
CTE.S.2K
 55.OOO   «
 40.000   •     •
 3S.OOO   *
 30.OOO   +     **
                     2  *
 2B.OOO   *
 2O.OOO   *
                            .5OOOO              1 .OOOO              1 .5OOO              2.OOOO    FTPNOX
                  .2KOOO               .75OOO              1.2SOO              1.7SOO              2.2SOO
                                                        9-21

-------
               Appendix  10

  Plots of Ton-Miles per Gallon versus
Emissions by Emission Control System and
            Transmission Type

-------
Two variable linear regression plots  of  Ton-Miles  per Gallon for
Urban   Fuel   Economy   (UMPGETW)   and   Combined  Fuel   Economy
(CMPGETW), each plotted against. JFTPHGr^FTPCO,, and FTPNOX.

Data  from  EPA/CERT  Data  Base,  restricted  to  non-durability,
non-Diesel vehicles of test active years 1980 and 1981 was used.

Stratification  by  emission  control   system  and by  transmission
type (CA, CM, and LA).  (See Section IV.  H.)

Only graphs containing at least 12 points are included.
                                10-2

-------
   I(0..0.9)>
   SCATTER PLOT  <1> |SY£lTOb:_lj«VjTHN: 
-------
    SCATTER PLOT  <3> jSYSlT08l3J»V{TKNnCA,CA.CA)j
               N« 89 OUT OF 125  67.UMPGTETW VS.  l.FTPHC
    UMPGTETW
     55.000   *
     50.000   *





     45.000   «
»

              »
&

     40.000   *
&

     35.000   «
                                           »  «3
                                          ««» 2
                               • »«»  «»    3         ««   «
                              2* «    « 3  32  «   •*         2
     30.000   »                       «    «  *
                               «    ««« «      *   «    »
     25.000   »
&
                                              «
              *
&

     20.000   »
e>

              *
t>

     15.000   *
&

              *
t>

     10.000   *

            0.                   .20000               .40000              .60000              .80000    FTPHC
                       .10000               .30000              .50000              .70000              .90000

-------
  SCATTEK PLOT  <4> I
             N» 42 OOfDF t>r
  UMPGTETW
   55.000   *
   50.000   »
   45.000   *
   40.000
c
   35.000   »
   30.000
   25.000   *
«« «  *
««» « 3  2*
     «    i; *    »
  • •   2      «2
   20.000   »
   15.000   *
   10.000
          0.                  .20000              .40000              .60000              .80000    FTPHC
                    .10000              .30000              .50000              .70000              .90000

-------
  SCATTER PLOT  <5> SYS1T08»5«VTRNJ
-------
»              N* 34 OUT OF 41  67.UMPGTETW VS. l^FTPHC
    UMPGTETW
     55.000   »
1
1

     50.000   »
     45.000   «
)

              *
I

     40.000   »
     35.000   «         «
$                        2   •
                         \       • • g    **     .  .
     30.000   *                     ...   ...
                                      .«       «
     25.000   *
     20.000   *
     15.000   »
     10.000   »

            0.                  .20000              .40000              .60000              .60000    FTPHC
                      .10000              .30000              .SOOOO              .70000              .90000

-------
i)
    SCATTER PLOT  <7> SYSlTOUi7«VTKN:(CA.CA,CA)
?)              N» 65 OUT OF 89  67.UMPGTETW VS. l.FTPHC
    UMPGTETW
     55.000   »
     50.000   »
     45.000   »
     40.000   «
      25.000    «
      20.000    »
9

      15.000
      10.000   *
     35.000    *                     *  *  *
                           2   »  •
   !_,                    •««•      •««
   o           *         ••  •«• • •«  «2
   do                       	
                       •   «•* *  *    ««  «
     30.000    »          «     *      *    *
                         «« o      2                *
                                                                                                          *
             0.                  .20000              .40000              .60000              .60000    FTPHC
                       .10000              .30000              .50000              .70000              .90000

-------
    SCATTER PLOT   <8>  SYS1T08«8*VTHNJ(CA.CA.CA)
               N=  31 OUT  OF  42  67.UMPGTET* VS. l.FTPHC
    UMPGTETW
     55.000    »
     50.000    *


               »


     45.000    »


               »
s

     40.000    »
3

               »
5

     35.000    »
    o          «
    vo                              *   *  *
                                              «                    *,
     30.000    *                           *                      / ^
                                 «         «
                                          *                ..,-•-"'
               *                    •  «          »     ..--•"'
                                       «           ,.--"""
                                      »     *
     25.000    *                *       **
     20.000
     15.000    *
a
     10.000    «

            0.                   .20000               .40000               o60000               .60000     FTPHC
                       .10000              .30000               .50000               .70000               .90000

-------
    SCATTER PLOT  <9> SYS1T08Jl^VTHN:(CM,CM,CM)
               N» 61 OUT OF 85  67.UMPGTETW VS. l.FTPHC
    OMPGTETW
     55.000   «
>
     50.000   «

              •
S
    '45.000   *
     40.000   *           •
                               «  ««     « 2
                            2      * «  *   «  «
              *                 2     »  •

                            » «    3        «  «
     35.000   *                  2»      » *     *
                         «»  »    33
   M                                « «  «
   o          »         •         •     •  • •
   M                                    2 «
   o                   *       «
     30.000   *           --- ___
     25.000   »
     20.000
     15.000   *
     10.000   «

            0.                  .20000              .40000              .60000              .80000    FTPHC
                      •10000              .30000              .50000              .70000              .90000

-------
SCATTER PLOT  <11> SYsTCSet3»vTJ?NJ (CM.CM.CM)
           N» 53 OUT OF 72  67.UMHGTETW VS. l.FTPHC
UMPGTETW
 55.000   *
 50.000
 45.000
 40.000   »
 35.000   »                     »
                              o •     •   •
                           **      *       «    •
          »                  *   • •   ««     2
                               •  «   «          «
                       •      «  »    »    «
 30.000   »                *•• 3  *   •         •
 25.000
 20.000   »
 15.000
 10.000   »

        0.                  .20000               .40000               o60000               .80000     PTPHC
                  .10000               .30000               .50000               .70000               .90000

-------
    SCATTER PLOT  <12> SYS1TOBJ4«VTKNI(CMtCMtCM)
               N= M OUT OF 57  67.UMPGTETW  VS.  l.FTPHC
    UMPGTETW
     55.000   *
!>

     50.000   «
     45.000   »
     40.000   »
     35.000   »
3
  H-                              •    •    «»
   Is0                              » 2   *      *
     30.000   *                    «
                                       «   ««
                                      « .  «. -
     25.000   »
     20.000   »
      15.000    »
      10.000   *

            0.                   .20000               .40000              .60000              .80000    FTHHC
                       .10000               .30000               .50000              .70000              .90000

-------
  SCATTER PLOT   <13> SYS1TOB:5«VTKN:(CMiCMtCM)
             N»  33 OUT OF 46  67.UMPGTETW VS.  l.FTPHC
  UMPGTETW
   55.000    »
   50.000    »
   45.000    *
   40.000    »
o
I
    35.000
    30.000    *
    25.000    »
    20.000    +
    15.000
  »  •
 «  «
• »   «

    «
    *
   *     •
      «
   «
  2
*   *
    10.000   »
                               ,20000
                             .40000
                              ,60000
                                                                     .80000
                     ,10000
                   .3UUOO
                    .50000
.70000
FTPHC
.90000

-------
SCATTER PLOT  <14> SYS1T06I6«VTRNMCM.CM.CM)
           N« 24 OUT OF 36  67.UMPGTETW VS. l.FTPHC
UMPGTETW
 55.000   »
 50.000   »
 45.000   •
 40.000   *
 35.000  . *
 30.000   »
 35.000   «
 20.000
 15.000   *
 10.000
        0.                  .20000              .40000              ,60000              .60000    FTPHC
                                      .30000              .50000              .70000              .90000

-------
SCATTER PLOT  <15> SYSlT08:7»VTRNt(CM.CM.CM)
           N« 58 OUT OF 82   67.UMPGTETW  VS.  l.FTPHC
UMPGTETW
 55.000   «
 50.000   *
 45.000
 40.000   »
 35.000   *       ..._              «
                       «  "• "• "• *

                         3          «
                           *   « O
 30.000    »           «2»3 •  *2 • .   « •

                                   »
           »          •--.         *
                       '"• .     *      *
                          «...        •    »
 25.000    *                  • .
 20.000    *
  15.000
  10.000    *

         0.                   .20000              .40000               .60000               .80000    FTVHC
                   ,10000              .30000               .bOOOO               .70000              .90000

-------
SCATTER PLOT  <16> SYS1T0818«VTRNI•

 25.000   «                  r''


          »


 20.000   »


          »


 15.000   »
 10.000    *

        0.                   .20000               .40000              .60000               .80000     FTPHC
                   .10000               .30000              .50000              .70000               .90000

-------
SCATTER PLOT  <19> SYSTTO»l3^t (LA»LA)
           N* 71 OUT OF 87  67.UMPGTETW VS. l.FTPHC
UMPGTETW
 55.000   «
 50.000
 45.000   *
 40.000   *
 35.000   »            ------      »"  »•—»—»-»•
                         •   •  *«  • •      «*  •
                            ••» ««« «•» 2 2*      •
          «                 •«*»»•  »»2
                               2  ** •*              *•
                                       •        «•
 30.000   »                   • «  *
                               2   *« 2
 25.000   *
 20.000
 15.000   *
 10.000   *

        0.                  .20000              .40000              .60000               .80000    FTPHC
                  .10000              .30000              .bOOOO               .70000              .90000

-------
 SCATTER  PLOT   <20>  SYS1TOB«4»VTRN: (LAfLA)
            N*  86  OUT  OF  114   67.UMPGTETW VS.  l.FTPHC
 UMPGTETW
 55.000    *
  50.000    »
  45.000   »
  40.000   »
  35.000   »
CO

  30.000   »
  Z5.000   *
  20.000
  15.000
  10.000   *

         0.                  .20000              .40000              .60000              .80000    FTPHC
                                       .301^^              000                tflOOO              .yOOOO

-------
SCATTER PLOT  <21> SYSlT08lb«VTRN:(LAtLA)
           N" 22 OUT OF 30  67.UMPGTETW VS. l.FTPHC
UMPGTETW
 55.000   »
 50.000
 45.000
 40.000   »
 35.000   *
 30.000
 25.000
 20.000   »
 15.000
 10.000

        0.
.20000
,40000
.60000
                                                                                         .80000
                   ,10000
          ,30000
          .50000
          .70000
FTPHC
.90000

-------
    SYS1TOBI1'VTKNI(CAtCA.CA)
              N= 50 OUT OF 63   67.UMPGTETW VS. 2.FTPCO
   UMPGTETW
    55.000   »
    50.000    *
    45.000    *
    40.000   *


             •              « •      «
                         •     *    »
                       »
    35.000   *          *
                       « »    »
i-1                     2 •*  2
*p            »           ••«»
M                          «»
                       2*2
    30.000   •           •      «
                                «*«
    25.000
    20.000   »
    15.000   *
    10.000   •

           0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                                         4,50^^          ^^500^^          ^£-500

-------
SCATTER PLOT  <3> SYS1T08»3»VTHN:(CA,CA,CA>
           NX 89 OUT OF 125  67.UMPGTETW VS. 2.FTPCO
UMPGTETW
 55.000   *
 50.000   *
 45.000   »
 40.000   +
                 •     *  »     »            -.. . .
 35.000   *             •  •       «        «
              »       »   2   °    3  *    *
                 *   •       o  *   »  o
          *     * •    » *     2** 2*°*   *  *
 •              •    2***2  **      *         *
                •*  • «  2 22 *  <*"°         *
 30.000   »          «» *
                 »         «    «      *« *•    «
 25.000   *
 20.000   *
 15.000
 10.000   +

        0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                  1.5000              4.5000              7.5000              10.500              13.500

-------
SCATTER PLOT
           N
UMPGTETW
 55.000   »
                     SYSlTOtt»4«VTKN: (CAtCA.CA)
                    OUT OF 61  67.UMPGTETW VS. 2.FTPCO
    50.000
    45.000   »
    40.000   *
    35.000   +

,o
-i
    30.000
    25.000
    20.000
    15.000   *
                            - *    «
                               •-. *
    10.000   »

           0.
                             3.0000               6.0000               9.0000               12.000    FTPCO
                                       4.5000               7.5000               10.500              13.500

-------
    SCATTER PLOT   <5> SYSTT778:5*VTRN: (CA.CA.CA)
J>              N=  65 OUT OF  79   67.UMPGTETW  VS.  2.FTPCO
    UMPGTETW
     55.000   *
     50.000    *
     45.000    »
D
     40.000    «
D
     35.000
   o
    I
   ro
   LO
     30.000
     25.000    *
     20.000    *
     15.000    *
     10.000    «

             0.
          3.0000              6.0000              9.0000              12.000    FTPCO
1.50UO              4.5000              7.5000              10.500              13.500

-------
    SCATTER PLOT  <6> SYS1T08!6«VTRN:(CAtCA.CA)
               N* 34 OUT OF 41  67.UMPGTETW VS. 2.FTPCO
    UMPGTETW
     55.000   *
     50.000   «
     45.000   »
S>
     40.000   »

                 *
     35.000   *          •
a-                    •  2
     30.000   *     «   •   a  •*
       •                         *            • •
     25.000   *
     20.000
      15.000
      10.000    *

             0.                  3.0000              6.0000              9.0000               12.000    FTPCO
                                          4.5000              7.5000               10.500              13.500
                                                               *

-------
    SCATTER PLOT  <7> SYS1TOBI7«VTKN»(CA.CA.CA)
               N» 65 OUT OF 89  67.UMPGTETW VS. 2.FTPCO
    UMPGTETW
     55.000   »
     50.000    »
     45.000    *
     40.000    *
                      ^        .—.—^^

     35.000    »        •    •        » 	-^
                       2   «     «
  ,_,                 **** • '     •
  o           »     •* •  *  «• *»» 2

  K)                    2**        * *
                                 «»        *
     30.000   +       *   «      2
                    *» •    » «           «

                     *    ii»
              «           .. o »»       «
                                       *


     25.000   »
     20.000   *
     15.000   *
     10.000   *
)               +__-_ + -___*-__-».___ + ____«. _-__«_-__*.___ + ____«.___-»____ + _---»----*---- + ----»_--.»----«.----,»
            0.                  3.0000              6.0000               9.0000              12.000    FTPCO
                      1.50UO              4.5000               7.5000               10.500              13.500

-------
 SCATTER PLOT  <8> SYS1TOBJ8«VTHN:
-------
   UMPGTETW
    55.000    »
                                    (CM.CMtCM)
              N»  61  OUT  OF  ttb   67.UMPGTETW  VS.  2.FTPCO
    50.000
    45.000    *
    40.000    »
    35.000    *
o
I
  ••  • *  •
   22 *•    •
         2 «   •

  2  »* • »
*         «  » 2
  »•   ««  •   2

           *  «
    30.000
    25.000
    20.000   »
    15.000   *
    10.000   »

           0.
          3.0000              6.0000              9.0000
1.5000              4.5000              7.5000              10.500
                                                                         12.000    r iPCO
                                                                                   13.500

-------
  SCATTER  PLOT   <11>  SYSlT08:3«VTRNMCM,CMtCM)
             N«  53  OUT  OF  72   67.UMPGTETW VS.  2.FTPCO
  UMPGTETW
   55.000    »
    50.000
    45.000    »
    40.000    »
c
I
CC
    35.000    *
    30.000    »
        *  »    »   •
• *     « •        *
     •  «*«  *  *
   •     *«     «
          ««   «2
         «  «« «»    4
                        2  •
    25.000    *
    20.000
    15.000   »
    10.000   »

                     1.5
                        lOoiL
                               3.0000
                    4.50
6.0000              9.0000
            3000              10.500
00              7.5C
12.000    FTPCO
          13.500

-------
 SCATTER PLOT   <12> SYSlTOBt<»«VTRN: (CMtCM.CM)
            N* 41  OUT OF 57  67.UMPGTETW VS. 2.FTPCO
 UMPGTETW
  55.000   »
  50.000    »
  45.000   *
  40.000   *
  35.000   *       «•   *             ^—^
                    «        3

s          *       *   • *
ro                         *      *      •  *
vo                      «**•««
  30.000   »                    »  •
                    _   * --*•
  25.000   *
  20.000
  15.000   +
  10.000   *

         0.                  3.0000              6.0000              9.0000               12.000    FTPCO
                   1.5000              4.5000              7.5000              10.500              13.500

-------
    SCATTER PLOT  <13> SYS1TO«J5«VTRNI(CM.CMiCM)
)              N* 33 OUT OF 46  67.UMPGTETW VS. 2.FTPCO
    UMPGTETW
     55.000   *
9

              *
!>

     50.000   «
     45.000
     40.000   »
     35.000   »
 «  «•
•    *
 2     *
                                          * *
     30.000
     25.000   *
     20.000   «
     15.000
                        e  « •
     10.000

0.
        3.0000
                  4.5
                                                    6.0000              9.0000              12.000    FTPCO
                                                              7.5000              10.500              13.500

-------
SCATTER PLOT  <14> SYSlTo8t6«VTHNMCM»CMtCM)
           N= 24 OUT OF 36  67.UMP6TETW VS. 2.FTPCO
UMPGTETW
 SS.OOO   »
 50.000   »
 45.000   »
 40.000   «
              \»
 35.000   *
 30.000   »
 25.000   *
 20.000   »
 15.000   *
 10.000   *
           4
        0.
          3.0000              6.0000              9.0000              12.000     FTPCO
1.5000              4.5000              7.5000              10.500              13.500

-------
    SCATTER PLOT  <15> SYSlTObl7«VT«N:(CM,CM,CM)
               N= 58 OUT OK 8*  67.UMPGTETW VS. 2.FTPCO
    UMPGTETW
     55.000   +
     50.000   »
     45.000   »
     40.000   «
     35.000   •        •

                     *     •»  X •
 v-                      3 •
 o           *         2«32 « .
 OJ                  «•?   *  • *
 N3                 «» «»«» *          «\
     30.000   »  -.,  •  «42« •   *• ••
     25.000   »
     20.000   *
3
     15.000   «
»
     10.000   *

            0.                  3.0000              6.0000              9.0000               12.000    FTPCO
                                          4.5000              7.5000              10.500              13.500

-------
  SCATTER PLOT  <16> SYSlTOttld«VTKN«(CMtCM.CMi
             N* 12 OUT OF 19  67.UMPGTETW VS. 2.FTPCO
  UMPGTETW
   55.000   »
   50.000   *
   45.000   *
   40.000   «
o
OJ
   35.000   »
   30.000   *
   25.000   *
   20.000   «
   15.000   *
.  10.000   *

        0.

                    1.5000
                              3.0000
                                      4.5000
6.0000              9.0000              12.000    FTPCO
          7.5000              10.500              13.500

-------
     SCATTER  PLOT   <19>  SYSlTOBi;j»VTRN» (LAtLA)
                N*  71  OUT  OF  87   67.UMPGTETW VS. 2.FTPCO
     UMPGTETW
      55.000    «
      50.000
     45.000    »
     40.000    *
D
   o
   I
   LO
9

D
      35.000    *
      30.000  .  «
      25.000    »
      20.000    *
      15.000    *
\
                 •3«  V
                         2»
                        2»
            32***  *  * * \
            *  23*     **   \
            *  *
      10.000    *

             0.                   3.0000               6.0000
                                                     9.0000              12.000    FTPCO
                                                               10.

-------
  SCATTER  PLOT     SYSlTOtt»4«VTRNt (LA.LA)
             N=  86 OUT OF  114  67.UMPGTETW VS.  2.FTPCO
  UMPGTETW
   55.000    *
   50.000   *
   45.000    »
   40.000    *
                        \
o
I
U)
   35.000   *
30.000   »
                       2  •
                       *  *
                              *  *
                               *2
                    •2»
                    **
                    •  *» *     «  « *    «

                    -•-..2 ________ 2_. ___ •
   25.000
   20.000   »
   15.000   *
   10.000
                              3.0000              6.0000              9.0000              12.000    FTPCO
                    1.5000              4.5000              7.5000              10.500              13.500

-------
   SCATTER  PLOT  <21> SYS1TOB:5«VTRNMLA,LA>
              N= 22 OUT OF 30  67.UMPGTET* VS. 2.FTPCO

   UMPGTETW
    55.000    *
    50.000    +
    45.000    »
    40.000    »
    35.000    *              *



o            «.          ...            **•••«''

w                      '  "^"	           •
ON                                   ' *••«	                         . .--»

    30.000    •	•_»       »
    25.000
    20.000   *
    15.000   «
    10.000   *


           0.                  3.0000               6.0000               9.0000              12.000    FTPCO
                     1.5000              4.5000               7.5000              10.500              13.500

-------
     t (2»3.**> » ( i tVJ  INicnvALa no* t3b. * » kU . i


               N« 50 OUT OF 63  67.UMPGTETW  VS.  3.FTPNOX
    UMPGTETW
     55.000   *


              *


     50.000   *
     45.000
     40.000   «
i
                                                                          *
              »                            •    		—		    »'
»                               	- ••	•"                     *            «
                              '"    •   •                                 »
     35.000   »                      «                                        «
3                                                       »              »    «    *
 .,_,                   .               «            • •     »      •  •          *

 ?            *                      *                *          	
	                                                          «   «
 ~J                               *        •   »                        *#    «
     30.000   •                                                           « <
j                                   «                                    «»
     25.000   *


              *
j

     20.000   »
-4

              •
•3

     15.000   »
     10.000   *

            0.                   .50000               1.0000              1.5000              2.0000    FTPNOX
                       .25000               .75000               1.2500              1.7500              2.2500
3

-------
    SCATTER PLOT  <3> SYS1T08:3«VTRN:(CA.CA.CA)
               N« 89 OUT OF US  67.UMPGTETW VS. 3.FTPNOX
    UMPGTETW
     55.000   -«•
     50.000   *
     45.000   »
     40.000   «
3
i:


     25.000
     20.000
* •
3

     15.000   *
4

              *
»  .

     10.000   »
     35.000   *                                                    *    *        *    *
                                               «       ••               »    ««** •« .  «  «
 ' i_,                                                      •-            ••       «    .      2 «
 


-------
                                     (Ca.
-------
  SCATTER PLOT   <5>  SvSlTOa«5«VTRN:(CA.CA.CA)
             N-  65 OUT  OF  79   67.UMPGTETW VS.  3.FTPNOX
  UMPGTETW
   55.000    •
    50.000    »
    45.000    »
    40.000    *
    35.000   »
o            »           2    •  *  *»                 *
.p,                        •  • *                 •   « «
o                             •  *  g  «2  ••••••
    30.000   *                    2           ««
    25.000   *
    20.000   *
    15.000   *
    10.000   »
              »--._»--_-»--_-»-..-»__-_».._-»_---»---.»..-_»--_-«._-._»_..-»-.--»----+----»--.-»----»----*
           0.                  .50000              1.0000              1.5000              8.0000    FTPNOX
                     .25000              .75000              1.2500              1.7500              2.2500

-------
    SCATTER PLOT  <6> SYSiTOS!6*VTRN»(CAtCA.CA)
               N« 34 OUT OF 41   67.UMPGTETW VS.  3.FTPNOX
    UMPGTETW
     55.000   «
     50.000   »
     45.000
     40.000   •
     35.000   *               •
                                   •     2
                                         •     *
              >                        •        •
                                     •  «   «
                             *      «4  •    •
     30.000   »        	._.         2»« *  •  •
     25.000   »


              »


     20.000   *


              »
i

     15.000   •
j

              •
i

     10.000   »

            0.                  .50000              1.0000              1.5000              2.0000    FTPNOX
                      .25000              .75000              1.2500              1.7500              2.2500

-------
SCATTER PLOT  <7> SYS1T08»7«VTRNMCA,CA,CA)
           N» 65 OUT OF 89  67.UMPGTETW VS. 3.FTPNOX
UMPGTETW
 55.000   »
 50.000   «
 45.000   »
 40.000   *
35.000
          *    » •  •-
             3«
30.000   «
               •  •*•**»  o  »
                   »2*     * *
                * *22    **
                  2   • •
                        «2
                •     *   •
 25.000   »
 20.000   »
 15.000   *
10.000   »

       0.
.50000              1.0000
          .75
                                        ^^
                                                                    1.5000              2.0000    FTPNOX
                                                                             ^^500

-------
UMPGTETW
 55.000   *
           N« 31 OUT OF <»2  67.UMP6TETW VS.  3.FTPNOX
 50.000   »
 45.000   »
 40.000   *
 35.000   *
 30.000
                 »\
                 • *•
                      •*  •
                                        2*"""*
                                »  •
25.000   *
                     Z • .
 20.000   *
 15.000   »
 10.000   »

25000
         .50000
.75000
          1.0000
1.2500
          £.5000
                                                                                        2.0000
                                                                              1.7500
                                                                                                   FTPNOX
                                                                                                   2.2500

-------
SCATTER PLOT  <9> SYS1T08I1«VTRN:(CM,CM,CM)
           N* 61 OUT OF 85  67.UMPGTETW VS. 3.FTPNOX
UMPGTETW
 55.000   »
 50.000   *
 45.000   •
 40.000   »                                 «
                                  *   •   « •»            «           *
                                       •  •  «  «            *«  «•
          «                       «          «»                          •
                               o
                                2   »«                      »   »  »
 35.000   »                    *                           .«»••»
                           •   *      2  *                   •         •• »
                                              «                      *
          *                «         «                    *        •
 30.000    *
 25.000    *
 20.000    •
  15.000    *
  10.000    *

         0.                   .50000               1.0000              J.5000              2.0000    FTPNOX
                                       .75000              1,2500              1.7500              2.2500

-------
   SCATTER  PLOT   <11>  SYSlTOa«3.«VTRN: (CM.CM,CM)
              N»  53  OUT  OF  72  67.UMPGTETW VS.  3.FTPNOX
   UMPGTETW
   55.000    *
   50.000    *
   45.000    *
    40.000    *
o
-F-
    35.000    »
30.000   «
                                                   •  *        »  »
                                                          *
                                                  «    *
                                                                               *  *•
                                                    *     «
                                                                 2    **
    25.000
    20.000
    15.000    *
    10.000

           0.
                           .50000               1.0000
                 .25000               .75000               1.2500
1.5000               2.0000     FTPNOX
          1.7500               2.2500

-------
  SCATTER PLOT  <1Z> SYS1TOB:4«VTRN:(CM.CM.CM)
             N« M OUT OF 57  67.UMPGTETW VS. 3.FTPNOX
  UMPGTETW
   55.000   *
   50.000
   45.000
o
   40.000   *
   35.000   •
   30.000
   25.000   +
   20.000
    15.000   '*
    10.000    *

                               ,50000
1.0000
                                          75000
            ?500
1.5000
          K75'
      2.0000
00
FTPNOX
2.2500

-------
SCATTEfnTbT
UMPGTETW
 55.000   *
           N= 34 OUT OF 46  67.UMPGTETW VS. 3.FTPNOX
 50.000
 45.000   •
 40.000
 35.000
                      ""**-.

                      2«   *
                     2
                    * 2
 30.000   «
 25.000   *
 20.000
 15.000   *
 10.000   *
           4
        0.
          .50000              1.0000
.35000               .75000              1.2500
bOOO              2.0000    FTPNOX
        1.7500              2.2500

-------
SCATTER PLOT  <14> SYS1T08:6«VTHN:(CMtCM.CM)
           N» 24 OUT OF 36  67.UMPGTETW VS. 3.FTPNOX
UMPGTETW
 55.000   *
 50.000   *
 45.000   *
 40.000
          *          *
                     *   * * — -.
                        *       ~  * ------ •_
 35.000   *                         «•
                                * «  •
                                •«  •
                    "
 30.000
 25.000
 20.000
 15.000
  10.000   »

        0.                   .50000               1.0000               l.SOOO               2.0000     FTPNOX
                   .25000               .75000               1.2500               1.7500               2.2500

-------
 J

    SCATTER PLOT   <15>  SYSlTOa»7*VTT

               *
a                                »

     35.000    »      --	    	—«-

  !_.                   «*  «  *
  •>                2              • ««2
  ^°                   «2 *   • » *  «
     30.000    ««»42»«»0*
     25.000   >
<»
     20.000    »
     15.000
      10.000    *
             0.                   .50000              1.0000              1.5000              2.0000     FTPNOX
                       .25000              .75000              1.2500               1.7500               2.2500

-------
     SCATTER  PLOT   <16>  SYSlTOa:a«VTRN»(CM,CM,CM)
                N»  12  OUT  OF  19   67.UMPGTETW VS.  3.FTPNOX
     UMPGTETW
      55.000    »
      50.000    *
      45.000
3


9

      40.000
                      *
      35.000    »

3
  o           *•      •
   I

  o                        «
      30.000    *

                       *

5&                         *    *

      25.000    *     »
•»                    *
      20.000   »
4D
               »
9
      15.000   *
      10.000   *

             0.                  .50000              1.0000              1.5000              2.0000    FTPNOX
                                           .7500^             1.25^^          ^^7500

-------
SCATTER PLOT  <19> SYSlTOa«3*VTRN:
-------
  SCATTER PLOT  <20> SYS1T08»4»VTNNJ (LAtLA)
             N= 86 OUT OF  114   67.UMPGTETW  VS.  3.PTPNOX
  UMPGTETW
   55.000   »
   50.000    *
   45.000    »
   40.000    *
                                  2   ««
                                 «      «*»«
    35.000    »                    • •  »3» *2   *     *
                                  »  » «« 3  **    «
M                             22»4«*4 *  3 3  *  *
«P            *                «    2 » •   «
Un                                  »       « »
1x0                          «««««•««
    30.000    *                  *    * 3  »
    25.000    »
    20.000    *
    15.000
    10.000    *

           0.                   .50000              1.0000              1.5000              2.0000    FTPNOX
                                         .7SOOO              1.2500              1.7500              2.2500

-------
    SCATTER PLOT   <21>  SYSiT08l5»VTRN:(LA.LA)
               N»  22  OUT  OF  30   67.UMPGTETW VS. 3.FTPNOX
    UMPGTETW
     55.000    •
     50.000
     45.000   *
 1
3

     40.000   »
     35.000    »           •

 M
 cj->            *                             2         »   •   * «
5Ui                                       -.^                «
 u)                                        •» ••...  •    *
     30.000    »                           «     \   2


               *
t

     25.000    +
     20.000    *
     15.000
i)
     10.000    +

            0.                   .50000              1.0000              K5000               2.0000     FTPNOX
                       .25000               .75000              1.2500               1.7500               2.2500
I

-------
    SYS1T08J1«VTKN:(CA.CA.CA)
              N=  34 OUT OF 63  69.CMPGTET*  VS.  l.FTPHC
   CMPGTETW
   55.000    *
   50.000    *
   45.000
    40.000    »                   •    •
                            *           *
                            * •    2    Z
             «            »  «
                          *     •   »
                                  «» «
    35.000    *                  ««       •
                           »
M                       -..     *2
o            .          .-,..
Ui                                  tt
_p»                                    •-•-..  ..
    30.000    «
    25.000
    20.000
    15.000
    10.000   *

           0.                  .20000               .40000              .60000               .80000     FTPHC
                     . ywwin               .SOilillL.              .50000              .70000               .90000

-------
              N* 61  OUT OF 125  69.CMPGTETW VS. l.FTPHC
   CMPGTETW
    55.000   »
    50.000
    45.000   •
    40.000   *                *           «   »    • "
                            »   »      «   *•      *      »
                                        ««  *«       »
             4             •     •« »»  «»
                                   *   *            «
                             •• •    *  «3 «  •*
    35.000   *                   «  •   2«  *           «
o            »                «  «
ui                                     •
Ui                                      «
    30.000   •
    25.000   *
    20.000   *
    15.000   *
    10.000   *

           0.                  .20000              .40000              .60000              .80000    FTPHC
                     .10000              .30000              .50000              .70000              .90000

-------
  SCATTER PLOT  <4> SYS1T08»4«VTKNMCA.CA,CA)
             N» 30 OUT OF 61  69.CMPGTETW VS. l.FTPHC
  CMPGTETW
   55.000   »
   50.000
   45.000   *
   40.000
            t-             •    *   «
                            »«    g*         **
                        • *    *   *      »    «
   35.000   *              * «     «     •     •
o
I
Ul
   30.000   *
   25.000   *
   20.000   »
   15.000   *
    10.000   *

          0.                  .20000               .40000              .60000               .80000    FTPHC
                    .10000              .30000              .50000              .70000              .90000

-------
  SCATTER  PLOT   <5>  SY?H?>B«^*VTTiN: (TTTtAt
              N»  51 OUT  OF  79   69.CMPGTETW VS.  l.FTPHC
  CMPGTETW
   55.000    •
o
I
Ul
   50.000    *
   45.000
    40.000    *
    35.000
    30.000    *
    25.000    *
    20.000    *
    15.000   *
    10.000
           0.
          .20000              .40000              .60000              .80000    FTPHC
,10000               .30000              .50000              .70000              .90000

-------
   SCATTER  PLOT   <6>  SYSlTOd:6»VTHNJ(CA»CA»CA)

              N=  27 OUT OF  41   69.CMPGTETW VS. l.FTPHC

   CMPGTETW

    55.000    *
    50.000
    45.000    »
    40.000    »
    35.000    «•
                               *        *    *
                                 » *  *  •  « I
o

l_n
00
    30.000   +
    25.000
    20.000   *
    15.000
    10.000   »

           0.
.20000              .40000              .60000               ,80000    FTPHC
           304M_             .cjoonn              .70000              .90000

-------
               N= 39 OUT OF 8V  69.CMPGTETW  VS.  l.FTPHC
    CMPGTETW
     55.000   *
     50.000   »
     45.000   *
     40.000   *                            	
                               « ... «.—-—•	     «
                         _.,	—-"""~   » * * *
              «        *  •      »  *»«
                          2    •      «   •
                        *  *        •
     35.000   »                • •
                        » •» »   »
  M                                    «
  o           »            g            •»*       •
  Ul
  VO                              •             «

     30.000   »                                 •
     25.000   »
1
i

     20.000   *
     15.000
     10.000   »

            0.                   .20000               .40000               .60000              .80000    FTPHC
                      .10000               .30000               .50000              .70000              .90000

-------
   SCATTER  PLOT   <8>  SYS1T08:8*VTRN«
-------
            N»  40  OUT  OF  85   69.CMPGTETW  VS.  l.FTPHC
CMPGTETW
 55.000    »
 50.000    «
 45.000    »
 40.000    *
 35.000    *
o
I
OS
  30.000    »
  25.000    *
  20.000
  15.000
  10.000
         0.
          .20000               .40000
.10000               .30000               .50000
,60000
                                                                               .70000
.80000    FTPHC
          .90000

-------
SCATTER PLOT  <11> SYS1T08:3»VTRNI(CM,CM,CM)
           N= 35 OUT OF 72  69.CMPGTETW VS. l.FTPHC
CMPGTETW
 55.000   »
 50.000
 45.000   *
 40.000
                           «   2
                       »     «   »
 35.000   »                 • «   «
                      *
                         *   «
 30.000
 25.000
 20.000
 15.000   »
 10.000   +

        0.                  .20000              .40000              .60000              .80000    FTPHC
                                      .30000              .SOOOO              .70000              .90000

-------
  SCATTER PLOT  <13> SYS1TOBI4»VTRNI(CM.CMfCMl
             N» 29 OUT OF 57  69.CMPGTETW VS. UFTPHC
  CMPGTETW
   55.000   »
   50.000   »
   45.000   »
                              #
   40.000   •»            «       •

                        \
            *            \    « «  «

                           \

   35.000   »                «\
                                    .
O           »                       ^v «

c^
to                                  e

   30.000   *
   25.000   *
   20.000   •
   15.000   *
   10.000   »

          0.                   .20000               .40000               .60000            .   .80000    FTPHC
                    .10000               .30000               .50000               .70000              .90000

-------
  SCATTER PLOT  <13> SYS1T08«5»VTRNI(CMtCM.CM)
             N» 22 OUT OF 46  69.CMPGTETW VS.  l.FTPHC
  CMPGTETW
   55.000   *
   50.000   *
   45.000   »
   40.000   *
   35.000
                                       •        »
                                             .»—•"
i
ON
   30.000   »
   25.000   »
   20.000   *
   15.000
10.000   »

       0.                  .20000
                 • H
.40000              .60000              .60000    FTPHC
                                 000
                                                                                ^^£

-------
  SCATTER PLOT  <14> SYS1T08:6*VTRNJ(CM.CM.CM)
             N» 12 OUT OF 3b  69.CMPGTETW VS. l.FTPHC
  CMPGTETW
   55.000   »
   50.000   *
   45.000   «
   40.000    *
   35.000    »
o
Ui
   30.000   *
   as.ooo    »
   20.000
    15.000    »
    10.000
          0.
          .20000              .40000              .60000              .80000     FTPHC
.10000              .30000              .50000              .70000              .90000

-------
  SCATTER PLOT  <15> SYS1T08I7»VTRNI(CM.CM.CM)
             N= 34 OUT OF B2  69.CMPGTETW  VS.  l.FTPHC
  CMPGTETW
   55.000   »
   50.000   *
   45.000    *
   40.000    *                *    *
                      » * 2* «
                         «  «     «
             «                »   * «
   35.000
o
i
    30.000    «

                                         \
             »


    25.000    *
    20.000
    15.000    +
    10.000    *
              »----»----»----*----»----»----»----»---.+----+----»--_-*_-«-»_-._»____+_.>.+_•_-»«_-_»___.»
           0.                   .20000               .40000               .60000               .80000     FTPHC

-------
   SCATTEH PLOT   <19>  SYS1TOflz3«VTRN:(LA.LA)
              N»  57 OUT OF «7  69.CMPGTETW  VS.  l.FTPHC
   CMPGTETW
    55.000    »
    50.000    *
    45.000    »
                                          *   *  «
    40.000    *                      2     «       **
                             *    «   «  *   *  2        *
                                *«      2 *   2«   *
     35.000    »                    «*    *   •
r                                 » «      •
 M                                     2

 ?
I ON                                 »
                                   2
     30.000    *                      *»
     25.000
     20.000    »
     15.000    »
     10.000    *
               «---.«..._*.-.-*--__ «..-_-»__._«-._.«..__«_.-_« __._«.-_..«__--«----+--_-»---. + __-. *-_-.»-.--«
            0.                   .20000               .40000              .60000              .80000    FTPHC
                      .10000               .30000              .50000              .70000              .90000

-------
   SCATTER PLOT  <20> SYS1TOB»4»VTRNJ(LA.LA)
              N« 57 OUT OF 114  69.CMPGTETW VS. l.FTPHC
   CMPGTETW
    55.000   *
    50.000   »
    45.000   *
             »                •     *    •
                             *  * 2*
                         *    o »  «»   •
    40.000   *                  *•    •        «  •
                             *  * *2    **
                            »* 22**°2 *  *       *
             «                           * «
    35.000   *                  «      »«
                           »     *      «
M

?
O**                                    4
00

    30.000   *
    25.000   •
    20.000   »
    15.000   *
    10.000   *

           0.                  .20000              .40000              .60000              .80000    FTPHC
                                         .30^0^          ^^500^^          ^^0000              .90000

-------
  SCATTER PLOT  <21> SYS1TOBI5«VTRN:(LA.LAI
             N* 12 OUT OF 30  69.CMPGTETW  VS. l.FTPHC
  CMPGTETW
   55.000   *
   50.000   »
   45.000   »
   40.000   *
   35.000   «
S
   30.000    »
   25.000   *
   20.000    »
   15.000   *
    10.000   *

          0.                   .20000               .40000               o60000               .80000    FTPHC
                     .10000               .30000               .50000               .70000              .90000

-------
   ^SCATTER  BYSt  VAR*69I2 STRAT*V102*V28» <1t6»B)»(3*3.A)»(7t9>  INT£RVAL=(10.t55.)MO.113.5)>

   SCATTER  PLOT   <1> SYS1T08U«VTRN:(CA.CA,CA)
              N*  3<>  OUT OF 63  69.CMPGTETW  VS.  3.FTPCO
   CMPGTETW
    55.000    *
    50.000    *
    45.000    »
    40.000   *
     «
             »
    * «

                     * »
•   •  •      * *         *
 2
    35.000   *
                        •    * • •
3
    30.000   «
    25.000   »
    20.000
    15.000   »
    10.000   *
              4
           0.
                     1.
        3.0000
6.0000
9.0000
                  4.5
          L.50
+_---+-___+___.+-__«»
       12.000    FTPCO
500              J^SOO

-------
   SCATTER PLOT  <3> SYS1T08I3«VTRN:(CA»CA,CA)
              N"  61  OUT  OF 125   69.CMPGTETW VS.  2.FTPCO
   CMPGTET*
    55.000   *
    50.000
    45.000
    40.000    »             ••       *  •
                    •        •«  •    2
                         »         «   » *
             »       •     ««     «   g
                   «                   * *
                       »«  •• «2  •   «
    35.000    «     «   2 *    •«
                         • •    *
o
-L,
    30.000
    25.000    »
    20.000
    15.000    »
    10.000
           0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                     1.5000              4.5000              7.SOOO              10.500              13.500

-------
  SCATTER PLOT  <4> SYS1T08»4»VTRN»(CA.CA.CA)
             N= 30 OUT OF 61  69.CMPGTETW VS. 2.FTPCO
  CMPGTETW
   55.000   «
   50.000   «
   45.000   +
   40.000   »
   35.000   *        « •
                      »

o
i            »
Ni
                      *
   30.000   *
   25.000
   20.000   *
    15.000   *
    10.000   *

          0.                  3.0000              6.0000              9.0000               12.000    FTPCO
                                        4.50^^^          ^^^500^^^          ^L^SOO              ^USOO

-------
             N» 51 OUT OF 79  69.CMPGTETW VS. 2.FTPCO
  CMPGTETW
   55.000   »
   50.000   *
   45.000   *
   40.000   »                    •
                                     «
                       »  •  «  «    * »
                  •         *  2*   * 2 *         *
   35.000   »            * "            *      •  •
                     *    3        «
M                                              •
o     •
^J                          »   »           • »
U)

   30.000   +                  «
   25.000
   20.000
   15.000   *
   10.000   *

          0.                  3.0000              6.0000              9.0GOO               12.000     FTPCO
                    1.5000              4.5000              7.5000               10.500               13.500

-------
  SCATTER  PLOT   <6>  SYS1T08»6«VTRN:(CA«CA»CA)
              N«  21 OUT  OF  41   69.CMPGTETW VS. 2.FTPCO
  CMPGTETW
   55.000    •
    50.000    *
    45.000    *


             »
                *    •

    40.000    »

                       2*                    •            »
             »
                    2             •                           «
                   2       *
    35.000    »        •   • •                  *  •                   «
                     »         •

M                          *
O            4             • «       »

•~J                ...........   *

    30.000    *
    25.000   *
    20.000   »
    15.000   »
    10.000   »

           0.                  3.0000              6.0000              9.0000               12.000     FTPCO
                     1.5000              4.5000              7.5000              10.500               13.500

-------
SCATTER PLOT  <7> SYS1T08I7»VTHN:(CAtCA.CA)
           N= 39 OUT OF 89  69.CMPGTETW VS. 2.FTPCO
CMPGTETW
 55.000   »
 50.000   *
 45.000   *
40.000   *
                 ••          »
                    *  *
                        «• •
                  2         *
          «     •  •»     «• •   *         /
                '
 35.000   »        «          •
                  » 2 *   •
 30.000   *
 25.000   •
 20.000
 15.000
  10.000    »
        0.                   3.0000               6.0000               9.0000               12.000    FTPCO
                   1.5000              4.5000               7.5000               10.500              13.500

-------
SCATTER PLOT  <8> SYS1T08»8«VTRN:(CA.CA.CA)
           N« 17 OUT OF 42  69.CMPGTETW VS. 2.FTPCO
CMPGTETW
 55.000   »
 50.000
 45.000   *
 40.000   •»           '«.
                   *
                   «   *  *'•••
          *           •    •
 35.000   *
                *
 30.000   »
                     * « *  *
 25.000
 20.000   »
 15.000   *
 10.000   *

        0.                  3.0000              6.0000              9.0000               12.000     FTPCO
                  1.5000              4.5000              7.5000               10.500               13.500

-------
  SCATTER PLOT  <9> SYS1T08J1»VTKN:
-------
   SCATTER PLOT  <11> SYS1T08:3«VTRN:(CM.CM.CM)
              N* 35 OUT OF 72  69.CMPGTETW VS. 2.FTPCO
   CMPGTETW
    55.000   »
    50.000
    45.000
                        *      2    •*
                          «
                              »   •*  •
    40.000   »
    35.000   »                      2*
                           *

•M                         *      •
O

^J                              *
CO                                   »

    30.000   *
    25.000   »
    20.000
    15.000
10.000   *


       0.                  3.0000              6.0000              9.0000              12.000    FTHCO
                                     4.5000              J.5000              10.500              13.500
                                            000            ^J.5000               10.5

-------
   SCATTER PLOT  <12> SYS1TOB:4«VTRN»(CMiCMtCM)
              N* 29 OUT OF 57  69.CMPGTETW VS. 2.FTPCO
   CMPGTETW
    55.000   »
    50.000    »
    45.000
o
i
    40.000   *
    35.000   *
    30.000   *
    25.000   *
    20.000
    15.000   »
                      •
                     *«
« «

2
    10.000
             *

           0.                  3.0000              6.0000              9.0000              '" nnn    fr'c"'
                     1.5000              4.5000              7.5000              10.500
                                                            12.000    FTPCO
                                                                      13.500

-------
I 00
 o
   SCATTER PLOT  <13> SYS1T08:5«VTRNJ(CM.CMtCM)
              N= 22 OUT OF 46  69.CMPGTETW VS. 2.FTPCO
   CMPGTETW
    55.000   *
50.000   »


         *


45.000   »

                  "	•

               o       «

40.000   »             «
                   **   <


                    »

35.000   *           *

                   #  •
         »


30.000   »


         +


25.000   »


        . *


20.000   »


         *


15.000   «
     10.000    *
              *—-*--—»----»----*—--»----+----*---.*—-»-—-*---.*—--«-—*_-_-»—.»._-.»—_.»«__.»
            0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                      1.^^              4.5000           ^J.SOQ^^            10.500              13.500

-------
  SCATTER PLOT   <14> SYS1T08:6«VTKN:(CM.CMtCM)
             N=  12 OUT OF 36   69.CMPGTE7W  VS. 2.FTPCO
  CMPGTETW
   55.000   *
   50.000
   45.000    »
o
I
oo
   40.000    »
   35.000
    30.000
   25.000    *
   20.000
    15.000    *
                           \

                              \
                                  «K
    10.000    »

           0.
          3.0000              6.0000
l.bOOO              4.5000              7.5000
9.0000              12.000    FTPCO
          10.500              13.500

-------
SCATTER PLOT  <15> SYSlTOtt:7«VTRN:(CM.CMtCM)
           N" 34 OUT OF 82  69.CMPGTETW VS. 2.FTPCO
CMPGTETW
 55.000   *
 50.000   »
 45.000   »
                   *  \
 40.000   *             X   *
                 •  •• 2 *'•-
                      2*   \
          »  '  •      ••      \
                t   * * *
                 • « »       *•
 35.000   »        r     *
 30.000   *
                                X
                   «             X
 25.000   *
 20.000
 15.000   *
 10.000   »

        0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                                      4.5000              7.5000              10.500              13.500

-------
  SCATTER PLOT  <19> SY?HT>8l J'VtTlNl (LA.LA)
             N= 57 OUT OF 87  69.CMPGTETW  VS.  2.FTPCO
  CMPGTETW
   55.000   *
   50.000   *
   45.000   *
   40.000    *          *       •     «    ••
                      2    •     ««  «       *«
                      •    2*2* *     *
             «         »•      « 2**  *          *
                    •  •  • •      *  «
                                       »
   35.000    *              «      •  •           «
                                  «       *    *
oo
   30.000    »
   25.000    »
   20.000    *
    15.000
    10.000    *

           0.                   3.0000               6.0000              9.0000              12.000    FTPCO
                     1,5000               4,5000              7.5000              10.500              13.500

-------
  SCATTER PLOT   <20>  SYS1T08:4«VTNN:(LA.LA)
             N=  57  OUT  OF  114   69.CMPGTETW  VS.  2.FTPCO
  CMPGTETW
   55.000    »
    50.000    «
    45.000    *
             *        ••        •
                      *  •   2   •
                    * •  »»«•
    40.000    *           •   •     *  *
                                *      •*
o
00
    35.000    *
    30.000    *
    25.000    *
    20.000
    15.000    *
    10.000    +

           0.
3.0000              6.0000              9.0000
          4. 5
                                                                                           12.000     FTPCO
                                                                                                         00

-------
o
oo
              N= 12 OUT OF 30  69.CMPGTETW VS. 2.FTPCO
   CMPGTETW
    55.000   »
    50.000   *
    45.000   »
    40.000   »
    35.000   «                                                «
                                                                       *
    30.000   «
    25.000   »
    20.000
    15.000
    10.000   »

           0.                  3.0000              6.0000              9.0000              12.000    FTPCO
                     1.5000              fe.5000              7.5000              10.500              13.500

-------
   SYS1T08I I'.VTRN: (CA,CA»CA)
             N= 34 OUT OF  63   69.CMPGTETW  VS.  3.FTPNOX
  CMPGTETW
   55.000   *
   50.000    »
    45.000    *
o
oo
    40.000    *                     •   * •                     •
                                   »                                      •
                                                   »      »   »        »   «   *
             *                      »
                                                      *             •                «
                                                               *         «        *
    35.000    »                                                          ***•
    30.000
    25.000
    20.000
    15.000   »
    10.000   *

           0.                  .50000              1.0000              1.5000              2.0000    FTPNOX
                     .25000              .75000              1.2500              1.7500              2.2500

-------
SCATTER PLOT  <3> SYS1T08«3»VTRN:(CA.CAtCA)
           N= 61 OUT OF 125  69.CMPGTETW VS. 3.FTPNOX
CMPGTETW
 55.000   »
 50.000   »
 45.000
 30.000   *
 25.000
 20.000   »
 15.000   »
 10.000   »
 40.000   *                                                 *~*             •    * "
                                                  »            «   •  *•*»
                                                    «            »       •     •      *
          »                                a     *    a                «          2  °
                                           «     «       «
                                          «    *  * 2        **         *
 35.000   *                   •       «       »«              «   •
                                                           «          *
        0.                  .50000               1.0000              USOOO              2.0000    FTPNOX
                  .25000              .75000              1.2500              1.7500              2.2500

-------
   SCATTER  PLOT   «*> SYS1T08»4«VTRN:(CAfCA.CA)
               N* 30 OUT OF 61  69.CMPGTETW  VS.  3.FTPNOX
   CMPGTETW
    55.000    «•
    50.000    »
    AS.000    «•
    40.000
 o
><5o.
 oo
    35.000    *
     30.000    +
     25.000    *
     20.000
     15.000
                             ••32
                               •••      -2 ••'  ••••
     10.000   *
                                .50000               1.0000               l.bOOO              2.0000     FTPNOX
                                           .75000               1.2500              1.7500               2.2500

-------
                                    51 OUT OF 79  69.CMPGTETW VS. 3.FTPNOX
CMPGTETW
 55.000   »
   50.000
   45.000
   40.000   »
   35.000   *
o
I
00
   30.000   »
   25.000   *
                                          \            *
                                           *v         ••
                                            * V
                                              \
                            «        *      •  ** «
                      »    •  2     *
                              »   *
                      •    ««      *?«    *«*
                                                      \
   is.woo
          0.                  .50000              1.0000              K5000              2.0000    FTPNOX
                    .25000              .75000              1.2500              1.7500              2.2500

-------
  SCATTER PLOT  <6> SYS1T08:6«VTRN:(CA.CA.CA)
             N= 27 OUT OF 41  69.CMPGTETW  VS.  3.FTPNOX
  CMPGTETW
   55.000   «
   50.000
   45.000    »
   40.000    »

                             •           3      «
             •
                                  »  *  »*

   35.000    »                     2  2      •»

                          «
             «             «            «     : •
                                                  »
O

    30.000    *
    25.000    •
    20.000
    15.000    *
    10.000    »

           0.                   .bOOOO               1.0000               1.5000               2.0000    FTPNOX
                                         .75,^0^              1.25jy^          ^^7500

-------
  SCATTER PLOT   <7> SYS1TOB«7*VTRN:(CA.CAtCA)
             N=  39 OUT OF 69  69.CMPGTETW  VS. 3.FTPNOX
  CMPGTETW
   55.000    +
   50.000    »
   45.000    •
   40.000    »
                  2     *    •
                *  »     «o  •
    35.000    »         •«
                     a«     2
M             .  \    '    *
O            «••«•*
I
vO
M                        «•    •
    30.000    »     •
    25.000    »
    20.000    *
    15.000
    10.000    »

           0.                   .50000               1.0000               U5000               2.0000     FTPNOX
                     .25000               .75000               1,2500               1.7500               2.2500

-------
   SCATTER  PLOT   <8>  SYS1T08:8«VTHN:
-------
   SCATTER PLOT  <9> SYSlTOtf«1«VTKNI(CM.CM,CM)
              N» 40 OUT OF 85   69.CMPGTET* VS.  3.FTPNOX
   CMPGTETW
    55.000   »
    50.000
    45.000   »
    40.000
    35.000   »
O
I
vo
OJ
    30.000   +
    as.ooo   *
    80.000   *
    15.000   *
    10.000   »

           0.                   .50000              1.0000              1.5000              £.0000    FTPNOX
                     .35000              .75000              1.2500              1.7500              3.2500

-------
   SCATTER  PLOT   <11>  SYS1TOB:3*VTRN:
-------
  SCATTER PLOT   <12>  SYS1T08:4«VTRN:
-------
  SCATTER PLOT  <13> SYSlTOa:5«VTRNt(CMtCM.CM)
             N= 22 OUT OF 46  69.CMPGTETW VS. 3.FTPNOX
  CMPGTETW
   55.000   »
   50.000   *
   45.000   *
   40.000   *
                      «2
o
i
VD
                      «  «
   35.000   »
   30.000   »
   25.000   *
   20.000   *
   15.000
   10.000   »

          0.                  .50000              1.0000              1.5000              2.0000    FTPNOX
                                        .75000              1.2500              1.7500              2.2500

-------
o
i
   SCATTER PLOT  <14> SYS1T08:6«VTRN: (CMtCMtCM)
              N= 12 OUT OF  36  69.CMPGTETW VS.  3.FTPNOX
   CMPGTETW
    55.000   »
    50.000   *
    45.000   *
    40.000   »              \    «
                                    °2
    35.000
    30.000   *
    25.000   *
    20.000
    15.000
    10.000   *

           0.                  .50000              1.0000              1.5000              2.0000     FTPNOX
                     .25000              .75000              1.2500              1.750U              2.2500

-------
 SCATTER PLOT  <15> SYS1T06:7»VTRN:(CMtCM.CM)
            N* 34 OUT OF 82  69.CMPGTETW VS. 3.FTPNOX
 CMPGTETW
  5S.OOO   *
  50.000   «
  45.000   *
  40.000   *    «
               2
I
oo
                    o  «HK
35.000   *
              . . •  »
              \  "
  30.000   »
  25.000
  20.000   *
  15.000   *
  10.000

         0.
                            50000              1.0000              1.5000               2.0000     FTPNOX
                                                                           	L..7500               2.2500

-------
  CMPGTETW
    55.000    *
              N=  57  OUT  OF  87   69.CMPGTETW  VS.  3.FTPNOX
   50.000
   <>5.000    »
o
i
   40.000    »
    35.000
    30.000    *
    25.000    *
    20.000    *
    15.000
    10.000
           0.                   .50000               1.0000               1.5000              2.0000    FTPNOX
                     .25000               .75000               1.2500              1.7500              2.2500

-------
  SCATTER PLOT  <20> SYSlTOb:4«VTRNt(LA.LA>
             N= 57 OUT OF 114  69.CMPGTETW VS. 3.FTPNOX
  CMPGTETW
   55.000   +
   50.000   +
   45.000
   40.000   *
       o  2   «
        »  2       »     «
         *  «  3
       o •   »    «« *
  «*  22«      3 *      **   *
   35.000   »
      «  00
«            o  o
    »    « *
o

M
O
O
   30.000   *
   25.000
   20.000   *
   15.000
   10.000   *
          0.                  .50000              1.0000              1.5000              2.0000    FTPNOX
                                        .75000              1.2500              1.7500              2.2500

-------
  SCATTER PLOT  <21> SYS1T08:5«VTRN:(LAtLA)
             N= 12 OUT OF 30  69.CMPGTETW VS. 3.FTPNOX
  CMPGTETW
   55.000   »
   50.000   *
   45.000
   40.000   *

   35.000   *
O
H  30.000   *
   Z5.000   »
   20.000   »
   15.000   *
   10.000   *
             4

          0.

.50000
1.0000
                    .35000
          ,75000
          1.2500
1.5000
          1.7500
2.0000
FTPNOX
2.2500

-------
                  Appendix 11

     Adjusted Fuel Economy versus Emissions
by Emission Control System and Transmission Type

-------
Two  variable  linear  regression plots  of  "Adjusted  Urban  Fuel
Economy"   (UMPGMINU)   and   "Adjusted   Combined  Fuel   Economy"
(CMPGMINU), each plotted against FTPNOX.

Data  from  EPA/CERT   Data  Base,  restricted  to  non-durability,
non-Diesel vehicles of test active year 1979 to 1981 was used.

Stratification  by  emission  control  system  and by  transmission
type (CA, CM,  and LA).  (See Section IV.  H.)
                               11-1

-------
CSCtTTtft   lYtT V»K-t«;3 »T«»T-YJ««»107     SCATTER HOT   <1> VT»N : CH'SlfS 1 TOi : 1    N> Tl OUT  OF It   U.UMPGMINU VS.  J.FTPNOI
UMPBMINU
 37.OOO    4                                                           -  '
 34.OOO    4
 11.oeo    4
 21.000    4
 at. ooo    *                      •                                           •
                                                 *               '             •
                                                       •         •     •               *
           4                      ••                   »                          *
                                                    *                      * •           •
                                          •                   • •         • 2 *
 22.OOO    *                      •                          •    • ••*  •      •    •   • •
 II . OOO    4
 1B.OOO    4
 13.OOO    4
 1O.OOO    4
                               .SOOOO               1.OOOO               1 .BOOO                2.0000     FTPNOX
                    .3SOOO                .7SOOO               1.2SOO                I  7BOC                2.2BOO
SCATTER  PlOt  <2>  »TRN:CM'SYS1T06:1   N*  (2  OUT OF •«   14.UMPCMINU VS. 3.FTPNOK
UMPCM1NU
 37.0OO    4
 34.OOO    4
 31.000    4
 28.OOO    4
 26.OOO    4                                                    »

                                                      *  •     •     •
 22.000    4
 K.OOO    4
 IB.000    4
 13.OOO    4
                               .SOOOO         •      1.0000               I.SOOO                2.0000     FTPNOX
                    . 2SOOO                . 7BOOO           ..   „ t . 2SOO               1 . 7BOO                2 . 2SOO

-------
SCATTER HOT   VTNN:LA*tYSlTOa:1   N" 27 OUT OP 27  14.UMP6M1NU VS.  3.FTPNDX
UMPOM1NU
 37.OOO   *
 2*.OOO   *
 at.ooo   4
 22.000   *
 tt.ooo   *
 1 6 . OOO   *
 1O.OOO   *
                         .SOOOO             1.OOOO             I.iOOO             2.OOOO    FTPNOX
                .28OOO             .TBOOO             1.2COO             1.7SOO             2.2SOO
SCATTER PLOT  <4> VTRN:CA«SYS1T0«:2   No 1OI OUT OF lOt  14.UMPCMINU VS.  3-fTFNOX
UMPCM1NU
 37.OOO   *
 31.OOO   *
                                                     »     *  •     22*22 *•     •    **      *
 1S.OOO   *                                                  »    » »2 « » »     *
                              *          *  *       t          »•  • 2     *      •*•*
                                        *                • *  s  222              * *        *
         «                                  s  •  »       •      *•*«••*••*«
                          *  »                        *                   *   2         *
                                   >                             •       *
 1C. 000   +                  2     «     »                   »    »              *
                                 «                    2                         *
 10.000   *
                         .SOOOO  '           1.OOOO             1.SOOO             2.OOOO    FTPNOX
                 .25000             .75000             1 . 25OO             J . 7BOO             2 . 25OO
                                               11-3

-------
ICATTER  HOT  <•> *TRN:CM*STS1 TO!:2   M* *4  OUT OF (4  14.UMP6MINU VS. a.PTPNOI
UMPEM1NU
 37.000    4
 14.000    •
 SI.000    4
 XI. OOO    *                   •             •
                                   • •    •   2
 22.OOO    4
                                                             •    •
 1•.OOO    »
 13.OOO    4
 to.ooo    4
        O.                  .5OOOO              1.OOOO              1.5000             2.0000    PTPNOX
                 .2SOOO             .7SOOO              1.2SOO              1 .76OO              2.J500
SCftTTCR  PLOT  <•> VTRN:L«»STStT0>:2   N> 1  OUT OF  1  1«.UMFBM1NU VS. 3.FTPNOX
UMPBMINU
 37 . OOO-   4
 34.OOO    4
 31.000   4
 je.ooo    4
 25.000    •
 22.000   4
 tt.OOO    4
 I(.000   4
 13.OOO    4
 10.OOO    4
                           .5OOOO        •      t.OOOO              1.SOOO             2.OOOO    FTPNOX
                 .25000              15000             1.2SOO              1.7SOO              2.2SOO
                                                  11-4

-------
SCATTER  PLOT  O>  VTNN:CA*STS1TOt:3   N> 27O OUT Of 271  M.UMPCMINU VS.
UMPCMINU
 37.OOO   4
 94.OOO   *
 2*.OOO   4
 2K.OOO   4
 23. OOO   4
                                                      **••     • •   •   *
 18.OOO   4                                *.*         •*•*»•»
                                            *• »*      ****«•  2*222  •  2"  **   •      •
                                 »     •      •  •   2  2 •*• **»  *»2 *    *  *3   *
         4                        »«   **•*  s*2* * «**   3  • • *2  *2*»   *  2  2 *  *   *   *
                                 *     2*   * •• • 2 *2«2   «»2*    *  V •«  • «» *  *
                           *     •  •    *  2* ** *3*2 »***3«    •    «••    *      » •   »   •
 16.OOO   4                               *  •      •»t«»2*«          **>       *
                                       •    t    2 * * * 2  * 2        ••*    *
                                        •22  2 2**   »2*   **     •   •
         4                         *       •      *2*»»* *     »*     *
                                     *«   *2*   •   ***    •   «
                                   •                   ******              •
 13,OOO   4                                             •»••**
 10.0OO   4
       O.                 .60000             1.OOOO             t.8000             2.OOOO    FTPNOX
                 .28000             7BOOO             1.26OO             1 7BOO             2.2SOO
SCATTER PLOT   VTRN:CM"ET£1T08:3   N> 138 OUT OF 139  14.UMPCMINU  VS . 3.FTPNOX
UMPCMINU
 37.OOO   4
 31.OOO   4
 26.OOO   4
         «                        **       *••*       »••          2*         **
                                *   *        •***                *              »
                              •»     •      *•**             2**"        «**»
 22.OOO   4                     »          •    *»      »2»   «••••••   2«
                               *                     * «»                 a
                              *          s•• 2   • * 2*               **•
         4                         »     »    »         * *              »  «
                                            •*«s   t    *  m*               t     *
                                     « 2 *     » *  *
 19.OOO   4                                 » »     »                    *
                                      *«    •  •          * *
 16.OOO   4
 to.ooo   *
                          50000 •            1.0000             1.5000             2.OOOO    FTPNOX
                 .25OOO             .7SOOO             1.2SOO             1.7SOO          •   2.25OO
                                               11-5

-------
ICflTTBR HOI  <•> VTKN:LA»TttTOI:l   N> II OUT Or It  14.UMPDMINU Vt .  J.rTPNOX
UMPCMINU
 37.OOO   «
 34.OOO   *
 II.OOO   *
 21.OOO   »
 2S.OOO   *
 21.000   •
 II.OOO   •
                                     •    t      >   2 • •    • * » •
 1B.OOO   *                                      ««2«2«2»«2t
                                       • •  * 2 *   •   2*  2***»«
                                      •    * I    • • •     •
 I 3.OOO   •
 10.OOO   •
                      .SOOOO           1.OOOO           t.lOOO           2.0000   PTPNOX
              .21000           .78000           1.2BOO           1.7100          2.2SOO
SCATTER HOT   TTRN : CA> S VS 1T01 : 4   N« 4B OUT OF 41  14.UMPCMINU VS. 3.FTPNOK
UMPGM1NU
 37.OOO   *
 34.OOO   •
 2B.OOO   •>
 22.OOO   *
        *          •  «    •  2  •
                   •      2   »
                   .  ... J.  . .   2
 18.OOO   •              2    2 • •   •
 18.OOO   •
 13.OOO   •
                      .SOOOO      *     1.OOOO           1.5OOO           2.OOOO   FTPNOX
              .25OOO           .75OOO           1.25OO            I.750O          2.25OO
                                        11-6

-------
ICtTTER MOT   <11> VTRN ! CMtSTS 1 TO* : 4   *•  41  OUT Of 41  14 . UMPGMINU VS .  3 . PTfNOK
UMPCM1NU
 37.OOO   4
 34.OOO   4
 at.ooo   *
 it.ooo   •
 K. ooo   *
 22 . OOO    4
 19.OOO    4
 le.ooo   4
 10.000   *
                           .KOOOO             1.OOOO             1.BOOO             2.OOOO    PTPNOX
                 .2>OOO              .75OOO              I.2BOO              1.TSOO             2.2BOO
SCATTER  PLOT  <12> VT««:LA«SIS 1 TO*:4   N>  >C OUT OP IB  14.UMPCM1NU VS.  3.FTPNOK
UMPBHINU
 37.00O   •
 34.000   *
 31.OOO   •
 22.OOO    »
 19.OOO    4
                          » «•   S 3*3
                          2» • 4 a * • • •   •  * » 2 *
                              • 3>  3
                            «J    >   ]• •
                               J   .    . ..
                                 3
                           .SOOOO '            1 .OOOO             1. SOOO      "        2 .OOOO    FTPNOX
                 .25OOO             .7SOOO              1.25OO              1.7SOO           •  2.25OO
                                                 11-7

-------
SCATTER  HOT   <13> VTRN I CA«ITC 1 TOt : t   N«  7O OUT OF 1O  14.UMPGM1NU  VI  3.FTPNOX
UMPBMINU
 37.000    •
 34.000    «
 n.eoo    *
 2>.ooo    «
 It.COO    «
                     * •   •      •  •
                     2********               *•
                          •   2 •           •     •
 10.000    *
                           -IOOOO             1.OOOO              t.BOOO              2.OOOO     PT^NDX
                  .JBOOO              .7500O              I.28OO             1.7500              2.IIOO
SCATTER  PLOT    VTRN : CM« TS 1 T0> : 5   »•  37 OUT OP 37  14 . UH
UM'CMINU
 37 . OOO'    *
 je ooo   •
 25.OOO   *
 I 9.OOO   »
 1C.OOO   •
                           .5OOOO       "       1.0OOO              1.5OOO              2.OOOO    PTPNOK
                  .25000              .75000              1 .25OO              I.75OO              2.25OO
                                                  11-8

-------
SCATTER PLOT   <1B>  VTRN:LA*SYS1T08:B    Mm 22  OUT DP 22   14 . UMPCM1 NU' VS .  3.FTPNOI
UMPCM1NU
 17 .OOO    «
 34.OOO   4
 31.OOO   4
 21.OOO   4
 21.OOO   4
 23.OOO   4
                        •   •                        * *    •
 19 OOO   4                                •
                                            2
 It.000   4
 13.000   4
 1O.OOO    4
                                .50000                1.OOOO                t.SOOO                2.OOOO    FTPNOX
                    .75000                .75OOO                1.3500                1  7SOO               2.2SOO
SCATTER  PLOT   <1t> VTRN:CA'SVS1T00:8    tt> 3B OUT  Of 38   14.UMPCMINU VS. 3.FTPNOX
UMPGHINU
 37.OOO    4
 34.OOO    4
 31 .OOO    4
 28.OOO    4
                                         •      •
 22.OOO   4
 11.000    4
 I 8.OOO    4
 13.OOO   4
                                .SOOOO '               1 .OOOO                1 .5OOO                2.OOOO    FTPNOX
                     .25000         .       .7(000                1.2800                1 .7BOO               2.2SOO

-------
•CCTTE* HOT   <11>  VTRN:CM>SrSIT01:l    II*  21  OUT  OP 21   14.UHPBMINU »» .  l.PTPNO*
UMPEMINU
 17.000   «
 34.OOO   «
 2B.OOO   «
 2S.OOO   »
 13.000   »
         O.                     .BOOOO                 1.OOOO                1.KOOO                2.0OOO     PTPHOX
                     .2SOOO                .TSOOO                1 .2SOO                 1.7(00                2.2BOO
SCATTER PLOT   
UMPCMINU
 17.OOO    »
 34.OOO   »
 31.OOO    *
 22.000    *
 13.000    •
                                .SOOOO          '       1.OOOO                 1.SOOO                2.OOOO     FTPNOX
                     .2(000                 .75000                I 2SOO                I.750O                 2.2SOO

-------
SCATTER HOT   VTUN : C»«»T1 1 T0» : 7   *• 7«  OUT Or 14  1 « . UMPCMI Hi) Vt . J.FTPNOX
UMPCMINU
 J7.0OO   *
 34.000   *
 31.OOO   «
 21.OOO   »
 22.OOO   *     •  •
           • • • *  *
                  •  2 •  •  • •
                  2 *
                  7«
 16.000   •
 13.OOO   *
 10.0OO   »
                                          1.OOOO             1 . BOOO            2.OOOO    PTPNDX
                                  .7SOOO             1.2SOO            1.7SOO             2.2SOO
SCATTER
UMPCM1 NU
 37.000
            <2O>  VTRN : CM»S »S 1 T0« : 7   N> 71 OUT OF 71  14.UMPEMINU  VS. 3.FTPNOX
 31.OOO   •
 25.OOO   *
                 22   *
 22.000   »   «»2 «  2«
             • 3  « •
             • » * *  *»•
 IE.000   *
                                          1.OOOO             1.SOOO            2.OOOO    FTPNOX
                                  . 75OOO       .. „  , J . 25OO            1 . 7SOO             2 . 25OO
                                             ii-ii-

-------
SCATTER PLOT  <22>  »TRN:C*•«YS1T0» : 6   N« 14 OUT OP J4  M.UMPCMINU VS. 1.PTPNOX
UMPCM1NU
 37.000  »
 34.OOO  4
 31.000  »
 2I.OOO  »
 22.OOO  *
 11.OOO  4
 16.OOO  4
 13.OOO  4
 10.OOO  4
       O.               .60000           1.OOOO           1.SOOO           2.00OO    PTPNOX
               .2IOOO            .76OOO           1.2EOO            1.71OO            2.2SOO
SCATTER  PLOT  <23>  VTKN:CM'STS1T0<:6   N« 13 OUT OP 13  M.UMPCMINU VS.  3.PTPNOX
UMPCMINU
 37.OOO   4
 34.OOO  4
 31.OOO  4
 26.OOO  4
 2S.OOO  4
 22.OOO  4
 11.OOO  4
 16.OOO  4
 13.OOO  4
 1C.OOO  4
                       .50000      '     1.0000            1.6000            2.OOOO    FTPNOX
               .25OOO            .76OOO           1.26OO            1.7SOO            2.26OO
                                          11-12

-------
ICATTtR PLOT  <2«> VTBN : LA«I Y» 1 T01 : •   N» I OUT OP I  t4.UMPEMINU VS. LPTPNOK
UMPCM1NU
 3T.OOO   *
 11.OOO   *
 2B.OOO   *
 2B.OOO   *
 II.OOO   «
 1B.OOO   *
 1O.OOO   •
      O.              .BOOOO           1.OOOO           1.VOOO           2 . OOOO    PTPNOK
              .2>OOO           .15OOO           1.2COO           1.7600           2.2BOO
                                        11-13

-------
 VTRN:CA*STS1TOI:t   N« 12  OUT  OF 71  1I.CMPBM1NU  »S .  l.FTPNOX
CMPEMINU
 4I.OOO    »
 42.OOO    *
 ji.eoo    *
 34.OOO    4
 ao.ooo    «
                                                                          *••••
                                                                                     •     •
                                                                         * •  •
 22.OOO    4
 It.OOO    *
 to.000    4
                              .10000               l.OOOO               l.COOO               3.0000    FTPNOX
                   .25OOC               .75OOO               1.2100               l.TSOO               2.2BOO
SCATTER PLOT   <2> VTRN:CMtSTS1TOi:1    N» 13 OUT  OF  (4  K.CMFCM1NU  VS.  3.FTPHOX
CMFCMINU
 48.OOO    4
 34.OOO    4
 30.OOO    4
 2S.OOO    4
 22.0OO    4
 11.OOO    4
 14.000    4
 10.000    4
                              .5OOOO        *       l.OOOO               1.SOOO               2'.OOOO    FTPNOX
                    25000               .75000                1.25OO                1.7BOO               2.2SOO

-------
SCATTER PLOT   »TKN:L»•$T»tTO*:1   N> 22 OUT DP 27  1I.CMPGMINU VI. 3.PTPNOK
CMPCMINU
 41.OOO   «
 43.OOO   »
 II.OOO   «
 14.OOO   «
 2>.OOO   «
 22.OOO   •
 I 4 .OOO   *
 10.000   *
                      .SOOOO           I.OOOO           1.SOOO           2.OOOO    PTPNOX
              .25000            .7IOOO           1.J5OO           1.7SOO           2.2SOO
SCATTER PLOT  <4> VTRN:CA«SYSIT0«:2  N> 76 OUT OP  tOt  1C.CMPCMINU VS. 3.PTPNO>
CMPCMINU
 4S.OOO   *
 42.OOO   *
                                                   ***2***2
 1O . OOO   •»
      O.               .5OOOO '          l.OOOO       .    t.SOOO           2.OOOO    FTPNOX
              .25OOO       .     .75OOO           t.25OO           1.75OO           2.25OO
                                         11-15"°

-------
SCATTER  PLOT  <» VTIIN : CM* S YS 1 TOI : 2   K« 41  OUT  OF ««  II.CMPCM1NU V(.  ].PTPNO«
CMPCM1NU
 •I.OOO   «
 «2.OOO   «
 It.OOO   «
 K.OOO   «
 IO.OOO   »                           • «                  •  •   •
                                                           *        •  •
                                               »         • •  »
                                                         •     • 2
 K.OOO    *
                          .SOOOO              1.OOOO             l.ftOOO              2.OOOO    PTPNOX
                 .2SOOO              .7(000             1.2BOO             1 , 78OO             3. HOC
SCATTER  PLOT  <«> VTRH:L»«SYS1T0»:2   *' 1  OUT  OP  1  tl.CMPCMINU VS. I.FTPNOX
CMPBM1NU
 4I.OOO    •
        O.                  50000       •      1.0000             I.SOOO             2.0000    PTPNOX
                 .25OOO              .75OOO             1.2SOO              1.75OO             2.25OO
                                                 11-16

-------
SCATTER PLOT   O> VTRN:CA«tV*ITOB:3  N> tit  OUT OP 271  H.CMPCM1NU VS. 3.PTPNOX
CMPCMINU
 4I.OOO   *
 42.ooo   4
 34.OOO   4
 34.000   *
 30.OOO   4
 SB.OOO   4
 22.OOO   4                               *              •
                                           *   •        » * »  2'**  2*  • « *
                                            «•   *  2* 2 * »2*  3* *2 ••  2 «2«
         4                             **»•»«  *2* * 2  *      *3  *
                                               * 2» * *    *        *       •  *
 1B.OOO   4                 *     **      *     *2     »***     •    * t
                                       *    »   *     *a 2 *              *   *»
                                  * * *   2*2      *    * •   • *   *
         4                              **     • •««  2       *  »
       O .                 .BOOOO            1 . OOOO             I . SOOO            2.OOOO    PTPNOX
                .75000  .           .76000             1 . 2SOO             1 .T6OO             2.2BOO
SCATTER PLOT   VTRN:CM*SVS1TOB:3   N* B7  OUT OP  13B  tC.CMPCMINU VS. 3.PTPNOX
CMPCMINU
 4B.OOO   4
 42.OOO   4
 3B.OOO   4
 34.OOO   *
 30.OOO   4
                                                          *           2
                                                         •  *      *   »
 26.OOO   4                              *   •                    « *     •
                              2      »*»**•    *    •     * *
                                  *     *       ««   »             »*•
         4                                   * *  *        »             •
                                    •  *    * *    m   *   *   *
                                     *        *
 22.OOO   4                             » »   2    •    *     •          *
 i a.ooo   4
 14.000   4
 10.OOO   4
                         .6OOOO '            1.OOOO             1.SOOO            2.OOOO    PTPNDX
                .25000             .75000             1.25OO            1.7BOO             2.25OO
                                             11-17

-------
SCATTER HOT  <» VTRN:LA*SV11TOI:3   N« 7O OUT  Or II  1I.CMPGMINU VI. 3.FTPNOX
CMPCMINU
 4I.OOO   •  '                                    '
 43.OOO   4
 at.coo   4
 IO.OOO   «
 91.000   «
 22.000   «
                                             ••      •••22222**»
                                             • •     *  •   »   «•*     «  •
                                             ••            ••••2
 to.ooo   •
       0.                 .60000             l.OOOO             1.5000             2.OOOO    FTPNOK
                 .2BOOO             .760OO             t .I5OO             1 .7EOO             2.2SOO
SCATTER PLOT  <10> »TRN:C»«SIS ITOB:*   H* 33 OUT  OP ««  It.CMPCMINU VS. 3.PTPNOX
CMPCMINU
 4S.OOO   «
 •2.OOO   «
 26.OOO   •
         4                 •   *
                           •    2  «
                      •   J.    >
 22.000   «             2     >   2
 14.OOO   «
                          .50000             1.0000             1.5000             2.OOOO    PTPNOX
                 .25000             .75000             1.2SOO             1.7SOO             2.2SOO
                                                11-18

-------
SCATTtR MOT  <11>  VTRN:CM«ST§1TOB:4   N> 21 OUT OF 41   1I.CMPCMINU «( . J.FTPHOX
CMPCMINU
 4S.OOO   «
 42.OOO   »
 14.OOO   »
 JO.000   «
                         «    2     •
                             •
 2I.OOO   »              •      •
 ie.ooo   4
       O.                .50000             I.OOOO             l.BOOO            2.OOOO    FTPNOX
                .2(000            .7SOOO            1.2SOO            1 . T8OO             2.25OO
SCATTER PLOT  <12> VTRN : L»STS 1TOB : 4   «• (1 OUT OF *C  It.CMPCMINU VS. 3.FTPNOK
CMPCMINU
 4B.OOO   •>
 IB.000   •
 14.000   <
 30.000   •
 22.OOO   +                     •«     »     »
                           •        •
                     *       * «•   2 *
         •               • »     2*3     «   2
                       »•• 2*2***      *
                       *   **••      **2
 IB.OOO   •                  * *
                            « 2 •
       O.                .SOOOO'            I.OOOO             1.SOOO            2.OOOO   FTPNOX
                .26OOO.      .      .7SOOO            1.2SOO            1.7SOO            2.2SOO
                                             11-19

-------
(C*TTER PLOT  <1J> VT»N:C»«ITI1TO«:I   N» II OUT OP 1O  tl.CMPCMINU VI. 3.FTPNOK
CMPCM1NU
 41.000   «                  .                        •
 42.OOO   *
 31.OOO   «
 34.OOO   *
 30.000   •
 22.OOO   +
 18.OOO   *
 I*.OOO   *
                          2*«     •
                          .IOOOO             1.0OOO             1.1000             2.000O    FTPNOX
                 .21000             .11000             1.2(00             1.7SOO             2.2100
SCATTER PIOT  <14> YTPm tCM'SYS1T0»:I
CMPCMINU
 4S .OOO'   *
                                   N> 21 OUT OF 31  IS.CMPCMINU  VS. 3.FTPMO«
 42.000   «
 30.000   *
 It OOO   *
 22.OOO   *
                                                11-20
                                                                                2.0000    FTPNOX
                                                                                         2.2500

-------
SCATTER HOT    VTRN:LA««T*1TDi:»    N> 12 OUT  OF 22   tl.CMPUMINU  VI. 3.PTrNOK
CMPEM1NU
 »I.OOO   «
 42.0OO   4
 34.0OO   •
 30.0OO   4
 25.OOO   4
 1>.OOO   4
         O.                    .5OOOO                1.OOOO                1.500O                2.00OO     FTPNOI
                    .2SOOO                .1(000                1.2100                1.7SOO                2.2SOO
SCATTER  PLOT   <1C> VTRH:C«>SYS1T0«:<    N>  2> OUT  OF  3>   16.CMPBM1NU  VS.  3.FTFNOX
CMPGMINU
 46.OOO    4
 42.OOO   4
 3ft.OOO   4
 34.OOO   4
 3O.OOO   4
 2<.OOO   4
 22.OOO   4
 1 ft.OOO   4
 14.OOO   4
                                .50OOO                1.OOOO                1.6000                2.0000     FTPNOX
                     .2SOOO.        .       .7SOOO                1.25OO                t.TSOO                2.2SOO

-------
SCATTER PLOT   VTRN:CM>1VS1 TO*:I   *• 12 OUT OP 21  1I.CMPGMINU It. 3.PTPNDK
CMPCH1NU
 4S.OOO   «
 02.OOO   «
 3*.000   »
 3O.OOO   *
 21.OOO   »
 22.0OO   »
 M.OOO   «
                      .BOOOO           t.OOOO           I.SOOO           2.0000    PTPNO>
              .2EOOO           .7SOOO           1.25OO           1.7(00           2.2IOO
SCATTER PLOT  <1«>  VTRN:L««SYS1T0«:t   N. 1  OUT OP •  1I.CMP6MINU VS. 3.PTPNOX
CMPCMINU
 4B.OOO   *
 29.OOO   *
                      .BOOOO      "     1 .OOOO           I.SOOO           2.OOOO   PTPNOX
              .35000           .75000            1 . 2SOO           1.7BOO           2.2SOO
                                        11-22

-------
SCATTER  HOT   »T»N : C»«t Y$ I T0« : 1   Mm «2  OUT OP 74  tI.CMPEMINU VS. ».PTPNO«
CMPGMINU
 44.OOO   *
 34.OOO   4
 34.OOO   *
 ae.ooo   *
 22.000   4
                   t   •      * •
 14.OOO   4
 10.OOO   *
                                                                                          PTPMO«
                                                                                          2.2SOO
SCATTER PLOT  <2O>  VTRN:CM-ST!1T04:1   N.  4O OUT OF 71   1«.CMPGMINU  VS. 3.FTPNO»
CMP6MINU
 41.OOO   *
 14.OOO   *
 30.000   4
             •  *   •     •
 26 . OOO   4   >     • • •
             * * 21 • •   •
 22.OOO   4
 14.OOO   4
 14.OOO   4
 10.OOO   4
                                            I.OOOO
                                    75000              1^.2500
                                                 11-23
1.5OOO          *   2.OOOO    FTPNOX
         1.75OO             2.2SOO

-------
SCATTER HOT   <22> VT«H : CA'SYS 1 T0« : •   N* II OUT OF 1*  tl.CMPGMINU »S .  3.FTPNOI
CMPGM1NU
 4I.OOO   4
 42.OOO   «
 at.ooo   »
 34.000   «
 30.OOO   *
 21.OOO   4
 22.000   4
                               *   * •
                 •             •
 1ft.OOO   +     »                         •   *
 14.000   *
                         .SOOOO             I.OOOO             1.SOOO             2.0OOO    FTPMOI
                .25000             .7(000             I.2500            I.7ROO             2.28OO
SCATTEK PLOT  <23> VTRN:CM»STS1TD«:B   N* • OUT  OF 13  18.CMPCM1NU VS. 3.FTPNOX
CMPCM1NU
 4C . OOO'   +
 22.OOO   *
 it.ooe   4
 14.OOO   4
 10.0OO   4
                         .SOOOO       •      I.OOOO             1.5OOO             2.OOOO    FTPNDX
                .25000              15000             1.2SOO             I.7SOO             2.2SOO
                                               11-24

-------
SCATTER FIDT  <24> VTUN:LA'STS1T0»:t   N« ( OUT OF  I  1I.CMPGHINU VS.  1.fTHID«
CMPCMINU
 41.OOO   *
 42.OOO   »
 It.oee   *
 IS.OOO   •
                          .10000             1.0000             l.SOOO             2.OOOO    FTPKOII
                 .2SOOO             .75000             1.2SOO             1 .7BOO             2.3SOO
                                                11-25

-------