United States
Environmental Protection
Agency
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
EPA-460/3-82-002
November 1981
Air
&EPA
Characterization of Diesel Emissions
From Operation of a Light-Duty
Diesel Vehicle on Alternate Source
Diesel Fuels
-------
EPA-460/3-82-002
Characterization of Diesel Emissions From
Operation of a Light-Duty Diesel Vehicle on
Alternate Source Diesel Fuels
by
Bruce B. Bykowski
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
Contract No. 68-03-2884
Task Specification 3
EPA Project Officer: Robert J. Garbe
Task Technical Officer: Thomas M. Baines
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
November 1981
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from
the Library Services Office (MD-33), Research Triangle Park, North
Carolina 27711; or, for a fee, from the National Technical Information
Service, 5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by
Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas,
in fulfillment of Task Specification 3 of Contract No. 68-03-2884.
The contents of this report are reproduced herein as received from
Southwest Research Institute. The opinions, findings, and conclusions
expressed are those of the author and not necessarily those of the
Environmental Protection Agency. Mention of company or product names
is not to be considered as an endorsement by the Environmental Protec-
tion agency.
Publication No. EPA-460/3-82-002
ii
-------
FOREWORD
This project was conducted for the U.S. Environmental Protection Agency
by the Department of Emissions Research, Southwest Research Institute. The
laboratory testing phase of the project began in June 1980, and was completed
in October 1981. The work was performed under EPA Contract No. 68-03-2884,
Task Specification Number 3, and was identified within Southwest Research
Institute as Project 05-5830-003. The scope of work defined by EPA is located
in Appendix A of this report. The EPA Project Officer was Mr. Robert J. Garbe,
and the Task Technical Officer was Mr. Thomas M. Baines, both of the Character-
ization and Technical Applications Branch, Emission Control Technology Division,
Environmental Protection Agency, 2565 Plymouth Road, Ann Arbor, Michigan. The
Southwest Research Institute Project Manager was Charles T. Hare, and the
Project Leader and Principal Investigator was Bruce B. Bykowski.
111
-------
ABSTRACT
This report describes laboratory emissions evaluation of several alter-
nate-source fuels in a 1980 Volkswagen Rabbit Diesel. Fuels tested included
a No. 2 petroleum diesel as base, base plus coal-derived liquids, shale oil
diesel fuel and jet fuel, and a blend of petroleum blend stocks with coal and
shale liquids. Nine fuels were investigated in all, including the base fuel.
Vehicle operating procedures used for test purposes included those
specified in Federal Regulations (FTP)^* and several steady-state modes.
Both regulated and unregulated gaseous and particulate emissions were measured
using a CVS-PDP and dilution tunnel operating on the entire exhaust stream of
the engine. DOAS odor analysis was performed on raw exhaust samples during
steady-state operation. Biological response evaluation, BaP measurement, and
HPLC fractionation were conducted on the organic soluble portion of the par-
ticulate. The majority of the sampling and analytical procedures used were
developed during earlier EPA Contracts 68-02-2494<2} 68-03-2707<3} 68-02-1230
and 68-03-2440.
Numbers in parentheses designate references at the end of this report.
IV
-------
TABLE OF CONTENTS
Page
FOREWORD iii
ABSTRACT iv
LIST OF FIGURES vii
LIST OF TABLES viii
I. INTRODUCTION 1
II. SUMMARY AND CONCLUSIONS 3
III. TEST VEHICLE AND FUELS 7
A. Test Vehicle 7
B. Test Fuels 9
IV. INSTRUMENTATION AND ANALYTICAL PROCEDURES 13
A. Vehicle Operation and Smoke Measurements 13
B. Regulated and Unregulated Gaseous Emissions 14
C. Particulate Collection, Mass Rate, and Aerodynamic Sizing 14
D. Analysis of Particulate Composition 21
E. Analysis of the Soluble Fraction of Particulate Matter 21
V. TEST PLANS AND OPERATING SCHEDULE 23
VI. GASEOUS EMISSION AND ODOR RESULTS 27
A. Regulated Gaseous Emission Results 27
B. Aldehyde and Phenol Results 31
C. Results of Odor Analysis 34
VII. SMOKE AND PARTICULATE EMISSION RESULTS 43
A. Visible Smoke Emissions 43
B. Particulate Mass Emission Rates 44
C. Particulate Size Distribution 46
D. Analysis of Particulate Composition 46
E. Composition of Organic Solubles in Particulate Matter 51
F. Gas Chromatograph "Boiling Range" Analysis of Organic
Solubles 51
G. Fractionation by Relative Polarity 54
H. Benzo(a)pyrene (BaP) in Organic Solubles 59
I. Mutagenic Activity by Ames Testing 61
REFERENCES 65
v
-------
TABLE OF CONTENTS (CONT'D)
APPENDICES
A. Contract 68-03-2884, Task Specification Number 3
Scope of Work
B. Volkswagen Rabbit Lab-To-Lab Correlation Results
C. Gaseous Emissions Data
D. Particulate Emission Results
VI
-------
LIST OF FIGURES
Figure Page
1 Heated Hydrocarbon Analyzer System 15
2 Schematic Diagram of Exhaust Dilution Tunnel 18
3 Volkswagen Rabbit During Test 19
4 Unloading of 20x20 Filter from Holder 19
5 Particle Sizing Impactor, Disassembled 20
6 Filter Weighing in a Temperature- and Humidity-
Controlled Chamber 20
7 Regulated Gaseous Emissions During FTP (Composite) 30
8 Regulated Gaseous Emissions During HFET 32
9 Fuel Consumption Emissions During FTP and HFET 33
10 "Total" Aldehyde and Phenol Emissions During FTP 36
11 "Total" Aldehdye and Phenol Emissions During HFET 39
12 Odor Analysis at Three Steady-States 41
13 Particulate Mass Emissions During FTP and HFET cycle 45
14 Cumulative Particle Size Distribution by Impactor 49
15 HPLC Response to BaP and 9-Fluorenone 55
16 HPLC Response to Extract Generated from Base DF-2 55
17 HPLC Response to Extract Generated from Shale Diesel Marine 56
18 HPLC Response to Extract Generated from Paraho JP-5 56
19 HPLC Response to Extract Generated from Coal Case 5A 57
20 HPLC Response to Extract Generated from Broadcut 57
21 HPLC Response to Extract Generated from 25% SRC-II 58
22 HPLC Response to Extract Generated from 25% EDS 58
23 BaP Emissions During FTP 60
vii
-------
LIST OF TABLES
Table Page
1 Description of Test Vehicle 7
2 Comparative Emission Data, Three Laboratories . 8
3 Comparison of FTP Emissions from Two VW Rabbits 9
4 Fuel Properties and Composition 10
5 Heated Hydrocarbon Analyzer Overflow Calibration and
Sample Flow Schematic Component Description 16
6 Outline of Chemical and Physical Exhaust Evaluations 24
7 Test Plan for Each Fuel 25
8 Average Regulated Gaseous Emissions Data During FTP 28
9 Average Regulated Gaseous Emissions Data During HFET
and Steady-State 29
10 FTP Aldehyde Emissions Data 35
11 FTP Phenol Emissions Data 37
12 HFET Phenol and Aldehyde Emission Data 38
13 Results of Odor Analysis at Steady-State 40
14 Summary of Visible Smoke Data 43
15 Average Particulate Mass Emission Data 44
16 Particulate Size Distribution 47
17 Cumulative Particle Size Distribution During Cold and
Hot Start 17
18 Carbon and Hydrogen in Exhaust Particulate Matter 50
19 Composition of Organic Solubles from Particulate Matter 52
20 Chromatograph Analysis of Organic Solubles in
Particulate Matter 53
21 BaP Present in Organic Solubles During FTP + FTP 59
c h
Vlll
-------
LIST OF TABLES (CONT'D)
Table Page
22 Summary of Ames Bioassay Analysis of Organic Solubles
from Particulate Matter Collected During FTP 62
23 Summary of Ames Bioassay Results in Revertants Per
Distance During FTP 64
IX
-------
I. INTRODUCTION
The world's supply of crude oil is being depleted, creating incentives
for discovery and utilization of alternate sources of fuel. This study was
designed to determine whether or not currently available alternate-source
diesel fuels would disproportionately increase regulated or currently unreg-
ulated emissions. A light-duty diesel vehicle was used for test purposes.
Diesels offer more sensitive evaluation of alternate fuel effects than gas-
oline cars do. No exhaust aftertreatment system has to be used on diesel
automobiles to meet HC and CO standards for 1982, but a catalytic converter
system is used on gasoline-fueled vehicles. Changes in diesel exhaust emis-
sions due to alternate fuels thus affect the atmosphere and the recipient
directly, but the catalyst on a gasoline vehicle tends to reduce the impact
of changes in emissions seen in the raw exhaust.
This study began with optimism that alternate non-petroleum fuels were
available in sufficient quantities for vehicle testing. As the search went
on for sources, a more realistic view surfaced. Alternate fuel research is
basically still in its infancy in terms of large-volume production. Pilot
plant yields are small, and the cost for pilot plant production of quantities
suitable for testing in this program was prohibitive. Materials available
in test quantities mostly represented first-generation alternate-source
materials. As second-generation processes move from laboratories and pilot
plants to larger volume production, studies such as this one could be
applied to the resulting specification-quality materials for comparison
purposes. It is the intent of this report, therefore, to report findings
on the effects of first generation alternative-source liquids on emissions
from a light-duty diesel vehicle. In many cases, these currently-available
liquids did not have the specifications to run "as is". These liquids were
blended with a petroleum base fuel to permit observation of any changes in
emissions.
Selection of compounds and mixtures was made on the basis of avail-
ability, variety, and anticipation of second-generation compositions. Sub-
stances investigated include coal-derived liquids from both the Solvent
Refined Coal (SRC-II) and Exxon Donor Solvent (EDS) processes, shale oil
products, a broadcut fuel containing n-butane among other stocks, and a
mixture of coal, shale and petroleum products.
-------
II. SUMMARY AND CONCLUSIONS
The major objective of this project was to study the effects of avail-
able alternate-source fuels on exhaust emissions from one diesel vehicle, a
1980 Volkswagen Rabbit. The vehicle was operated on a Chassis dynamometer
following two transient cycles (FTP and HFET), and periodically, several
steady-states. Nine fuels were tested. Some of the test fuels were blends
of a base No. 2 diesel and alternate-source materials, while others were
fuels formulated in another study dealing with refinery modeling for alter-
native fuels.
One of the major challenges in performing this work was acquisition of
sufficient quantities of "state-of-the-art" alternate-source materials. In
most cases, these materials were still in the laboratory on pilot plant
phases of production. Such processed materials were described as "second-
generation" alternate-source materials. Only second-generation shale oil
liquids were available in sufficient quantities for test. First-generation
coal-derived liquids from two refinery processes (SRC-II and EDS), however,
were available in sufficient quantities for test. It was therefore the
intention of this study to report the effects of currently available alter-
nate-source fuels on light-duty diesel emissions, and to perform detailed
analyses of their compositions.
The test format was designed to produce the maximum amounts of emis-
sions characterization information with as little vehicle operating time as
possible. Physical and chemical properties of the fuels tested varied widely.
Gaseous and particulate emissions collection and analyses were performed using
techniques developed in earlier work.
The most important observations and conclusions reached as a result of
this project (not necessarily in order) are listed below. Unless stated
otherwise, all fuels will be compared to the base fuel.
1. First-generation coal-derived liquids exhibiting boiling
ranges similar to petroleum-based diesel fuels could not
be used "as is" in a diesel engine. Cetane numbers for
the straight liquids used in this study were approximately
25 or below. Blends with petroleum-based diesel fuel were
required.
2. Second-generation shale oil liquids exhibiting boiling ranges
similar to petroleum-based diesel fuels had cetane numbers
greater than 44, and could be used "as is" in a diesel engine.
-------
3. High gum levels in some blends (60 mg/100 m£) did not
affect short-term engine operation.
4. The greatest regulated gaseous emission increases during
the FTP were observed with the Broadcut and 25% SRC-II
test fuels. Hydrocarbon emissions more than doubled with
these two fuels. All fuels tested showed increased NOX
emissions.
5. No "total" aldehyde increases were observed during the
FTP and HFET. Decreases were seen with the two coal-
derived liquid blends, 25% SRC-II and 25% EDS.
6. The 25% EDS blend doubled the "total" phenol emissions
during the FTP, but a large increase was not observed
during the HFET. The 25% SRC-II blend did not affect
phenol emissions during the FTP, but increased phenol
emissions during the HFET by a factor of 14.
7. Instrumental odor analysis indicated that the Coal Case
5A and the Broadcut fuel slightly increased odor inten-
sity in three steady-state modes.
8. Visible smoke production was generally increased with
use of test fuels containing coal-derived liquids.
9. During the FTP, the 25% SRC-II blend increased the par-
ticulate mass rate 56 percent over the base fuel. However,
during the HFET, the particulate rate was similar to the
base. The other coal-derived fuel blends increased par-
ticulate emissions slightly. Broadcut fuel reduced par-
ticulate emissions 16 percent during the FTP, and 32 percent
during the HFET.
10. Organic soluble increases of 39 percent were associated
with the Broadcut and SRC-II test fuels during the FTP.
During the HFET, the Broadcut fuel again increased the
amount of solubles, but the SRC-II blend did not.
11. Carbon and hydrogen analysis of the organic soluble por-
tion of the particulate matter indicated no appreciable
difference between the fuels tested.
12. The boiling range determination of the organic solubles
showed that the Broadcut fuel yielded the largest amount
of compounds boiling under 640°C.
-------
13. HPLC analysis on the organic solubles generated during the
FTP indicated the presence of substantial amounts of PNA-
type compounds from all the fuels tested. Considerable
response in the transition area was observed with use of
the Paraho JP-5, Broadcut, and Coal Case 5A.
14. BaP emissions were significant for all fuels tested.
Levels were about 10 times higher than seen in other
studies. Coal Case 5A was associated with the highest
BaP emission during the FTP. Other increases were ob-
served with the Shale Diesel Marine, Paraho JP-5, Broadcut,
and 25% EDS test fuels.
15. The organic extract of the particulates from all fuels
tested yielded positive Ames response, as has generally
been observed in most studies. In the majority of cases,
metabolic activation reduced Ames activity on all five
strains, implying the presence of direct-acting mutagens.
The greatest Ames responses were associated with the 25%
SRC-II and the Broadcut fuel on strain TA-100.
-------
III. TEST VEHICLE AND FUELS
The major criteria used for selection of a test vehicle were avail-
ability, and the potential to utilize a data base acquired on a similar
vehicle during previous studies. Fuel selection was principally a matter
of availability of alternate-source (non-petroleum) materials. Alternate-
source materials were subjected to thorough analyses to establish the
properties of each fuel tested in detail.
A. Test Vehicle
The vehicle chosen was a 1980 Volkswagen Rabbit. A description of
the vehicle is provided in Table 1. This Rabbit was supplied to the Con-
tractor by EPA for test purposes.
TABLE 1. DESCRIPTION OF TEST VEHICLE
Vehicle Model
Engine Model
Model Year
V.I.N.
Engine No.
Body Type
Inertia equivalent, kg (lbm)
Transmission
Displacement
Cylinders
Power, kW (hp) @ rpm
Injection System
Combustion Chamber
Compression Ratio
Distance on Vehicle, km
Volkswagen Rabbit
Family D
1980
17A0926720
CK591126
2-Door Hatchback
1021 (2250)
5 speed manual
1.47 (90)
4
(48) @ 5000
Bosch
Swirl Chamber
23:1
2806
At end of project
Baseline comparison tests were performed on the vehicles as received,
using the fuel remaining in the vehicle tank from EPA tests. The test results
are summarized in Table 2, with EPA and Volkswagen of America (VWOA) data.
-------
HC, g/km
CO, g/km
NOX, g/km
Parti culate, g/km
Fuel, a/100 km
VWOAa
0.25
0.92
0.65
6.14
EPA
0.33
0.80
0.63
0.22
5.88
SwRI
0.33
0.95
0.67
0.29
6.22
TABLE 2. COMPARATIVE EMISSION DATA, THREE LABORATORIES
Average FTP Emissions Average FET Emissions
EPA SwRI
0.11 0.19
0.43 0.71
0.44 0.47
0.15 0.22
4.35 4.89
a.
Fuel not identical to that used at EPA and SwRI
Complete test results can be found in Appendix B, pages B-2 through B-5.
The dynamometer on which the tests were performed at SwRI was checked
thoroughly after the tests, and the speed and load calibrations were ac-
curate. Coast-down checks on the SwRI dynamometer indicated that the
actual power absorption was slightly higher than the curve used. The dif-
ference (2.9%) was not considered sufficient to have caused the entire
difference between SwRI FET results and those of EPA. Gas analyzers used
for the test work were calibrated just after the runs and found to be
accurate.
An additional retest was performed with comparable results. The
additional retest exhausted the supply of fuel which was in the fuel tank,
so further direct comparison testing between laboratories was no longer pos-
sible. A fourth, and final, comparison test using another No. 2 diesel fuel
was performed. These results, along with a summary table and computer print-
outs, are located in Appendix B, pages B-6 through B-10. It should be noted
that all comparison testing involved vehicle operation through all 5 gears,
inertia set at 1077 kg (2375 Ib), and actual road load of 5.1 kW (6.8 hp) .
Vehicle operation during actual testing of alternative-source fuels
attempted to simulate that of a 1977 Volkswagen which was used in an earlier
study.(6) inertia setting was 1021 kg (2250 Ib), and actual road load was
5.4 kW (7.3 hp). During tests, only 4 of the 5 gears were used, to be con-
sistent with the older Volkswagen's 4-speed manual transmission. It was
hoped that the two Rabbits would give similar baseline results, so that the
data base of the earlier study could be coupled with the results generated
in this study. The results of a cross comparison between the two Rabbits
is shown in Table 3. Fuels run in each Rabbit were both "National Average"
No. 2 diesel, but were not from the same lot. The properties of the two
fuels were almost identical. Results comparing the two Rabbits over other
cycles are listed in Appendix B, page B-ll.
-------
TABLE 3. COMPARISON OF FTPa EMISSIONS FROM TWO VW RABBITS
Earlier Rabbit, Current Rabbit,
Emissions Fuel EM-239-F Fuel EM-329-F
HC, g/km 0.20 0.31
CO, g/km 0.51 0.96
NOX, g/km 0.65 0.62
Particulate, gAm 0.218b 0.249C
Fuel, VlOO km 5.60 6.38
a.
3-bag composite
Based on 47 mm glass fiber filters
Based on 47 mm Pallflex filters
B. Test Fuels
Acquisition of alternate-source (non-petroleum) fuels in quantities for
vehicle testing was a major effort. Contact with potential sources indicated
a lack of availability of several fuels which were originally intended for
test. Apparently second-generation materials were available only in limited
quantities from laboratory-scale processes. The term "second-generation"
refers to materials derived from alternate sources with some degree of after-
treatment. Examples of aftertreatment are catalytic cracking, hydrogenation,
and so forth. Cost for acquisition of these materials was extremely high.
First-generation alternate-source materials were eventually found in quanti-
ties sufficient for testing. "First-generation" refers to materials derived
from alternate sources with little or no aftertreatment. It was felt that
reporting the effects of these available alternate-source fuels would be an
important first step in building a useful data base. As second-generation
materials move from the laboratory to larger-volume production, similar
studies can be performed for comparison purposes.
Two second-generation alternate-source materials were available in suf-
ficient quantities, largely due to previous interest and manufacture for U.S.
Navy studies. These two materials were derived from a Paraho shale oil crude
refinery run, and were identified as Paraho JP-5 and Shale Diesel Marine.
Complete fuel characterization was a part of this study. Properties of these
two fuels and the others tested in this study are listed in Table 4. Fuel
chosen as the base fuel represented a "National Average" No. 2 diesel.
First-generation materials available were coal-derived liquids from two
different refinery processes: Solvent Refined Coal (SRC-II), and Exxon Donor
Solvent (EDS). Analysis of three liquids manufactured by these processes are
located in Appendix B, page B-12. Due to their poor ignition quality (cetane
numbers <25), vehicle operation on the straight liquids was not possible.
-------
TABLE 4. FUEL PROPERTIES AND COMPOSITION
Substance
Fuel Code (EM-
Cetane No. (D613)
Cetane Index (D976)
Gravity, "API @ 60°F
Density, g/ml @ 60°F
Carbon, wt. %
Hydrogen, wt. %
Nitrogen, ppm (oxid. pyrolysis)
Sulfur (lamp) , %
Calculated H/C, numeric
Carbon No. range (G.c.)
Aromatics , vol . %
Olefins, vol. % (D1319)
Paraffins, vol. %
Viscosity, cs @100 °F (D445)
Gum, mg/100 ml (D481)
Total solids, mg/2.
Metals in fuel, x-ray
Boiling Range, °C (IBP-EP, D86)
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
95% point
Residue, wt. % (D86)
Base
DP- 2
329-P
50
52
37.5
0.837
85.8
13.0
48
0.24
1.81
8-^24
21.3
1.7
77.0
2.36
14.3
7.4
Oa
191-340
219
231
242
251
260
269
278
290
307
323
1.3
Shale Diesel
Marine
453-F
49
56
37.9
0.835
86.3
13.4
5
<0.005
1.85
9-20
28.5
2.1
69.4
2.61
0.3
0.3
Oa
207-317
236
246
252
259
266
272
278
286
295
302
1.0
Paraho
JP-5
473-F
45
46
43.6
0.808
85.9
13.7
<1
0.005
1.90
10-15
22.0
2.0
76.0
1.38
1.4
0
179-248
189
192
196
198
202
206
211
218
228
237
1.5
Coal Case
5A
474 F
42
41
31.1
0.870
86.5
12.4
1600
0.10O
1.71
9-24
34.9
1.4
63.7
3.08
38.8
0
192-366
234
244
253
259
267
276
277
292
330
353
1.5
35%
SRC-II
475-F
31
29
28.2
0.886
86.2
11.8
3400
0.31
1.52
8-20
47.0
0.6
52.4
2.53
89. 7b
13.1
0
171-328
207
215
225
234
243
252
263
274
292
309
1.0
Broadcut
^id-Continent
476 F
35
52
44.1
0.806
86.1
13.2
1000
0.17
1.83
3-24
16.2
0.0
83.8
1.53
23.8
0
21-354
53
121
151
178
216
239
255
270
303
327
1.0
25%
SRC-II
478-F
38
38
31.7
0.867
86.4
12.3
2000
0.23
1.70
8-20
39.9
1.2
58.9
2.45
30.1
7.2
9ppm Fe
178-327
209
220
: 231
240
250
259
270
281
303
319
1.0
25%
EDS
482-F
44
42
33.8
0.856
86.5
12.7
267
0.16
1.75
8-20
36.4
0.0
63.6
2.37
60.0
3.1
0
179-353
207
218
227
239
251
263
276
293
316
336
1.5
25% EDS
Naphtha
485-F
45
47
38.3
0.833
86.3
13.3
142
0.28
1.84
7-20
25.5
0.5
74.0
1.76
13.1
1.2
0
108-334
157
182
203
223
238
254
267
281
302
319
1.5
<10 ppm of
' Sample not
-------
TABLE 4 (Cont'd). FUEL PROPERTIES AND COMPOSITION
Substance
Fuel Code (EM-
Boiling Range, °C (IBP-EP, D2887)
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
95% point
Residue, wt. % (D2887)
Composition, Volume %
Kerosene
Petroleum
Shale JP-5
Diesel
Petroleum
Shale DFM
Coal
Light Cycle Oil (petroleum)
LSR Naptha (petroleum)
HSR
Petroleum
Shale
Coal (Simulated)
N-Butane
Base
DF-2
329-F
104-387
197
220
239
256
268
280
292
307
330
347
0.0
0.0
0.0
100.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Shale Diesel
Marine
453-F
118-341
216
237
254
265
274
285
297
307
319
325
0.0
0.0
0.0
0.0
100.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Paraho
JP-5
473-F
157-286
175
187
195
201
210
216
224
234
244
254
0.0
0.0
100.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Coal Case
5A
474-F
140-416
217
238
254
264
271
284
299
315
344
367
0.0
17.3
0.0
66.7
0.0
16.0
0.0
0.0
0.0
0.0
0.0
0.0
35%
SRC-II
475-F
103-346
158
178
196
207
219
229
240
255
278
295
0.0
0.0
0.0
65.0
0.0
35.0
0.0
0.0
0.0
0.0
0.0
0.0
Broadcut
Mid-Continent
476-F
24-399
68
123
155
196
233
251
262
280
314
342
0.0
22.0
0.0
23.0
0.0
6.2
5.2
7.4
4.8
20.9
0.0
10.5
25%
SRC-II
478-F
129-508
193
214
232
243
259
271
285
302
321
345
0.0
0.0
0.0
75.0
0.0
25.0
0.0
0.0
0.0
0.0
0.0
0.0
25%
EDS
482-F
128-419
192
210
228
243
257
273
289
305
332
356
0.0
0.0
0.0-
75.0
0.0
25.0
0.0
0.0
0.0
0.0
0.0
0.0
' 25% EDS
Naphtha
485-F
72-455
139
174
197
225
249
264
279
298
314
336
0.0
0.0
0.0
75.0
0.0
25.0
0.0
0.0
0.0
0.0
0.0
0.0
<10 ppm of Cr, Fe, Hi, Cu, Zn, and Mg; <70 ppm Pb; <100 ppm Al and Si
-------
Consequently, blends with the base fuel were formulated in order to permit
reasonable vehicle operation, and to compare emissions from fuels derived
from the two processes. Properties of these blends are listed in Table 4.
Selection of two other alternate-source materials made use of informa-
tion from another study(7'8) which investigated regional refining models for
fuels. This study demonstrated how syncrudes might be used to make specifi-
cation products in the year 1995. Two fuel blends from the refining study
were chosen to represent combinations of shale oil, coal-derived, and petro-
leum liquids. These two fuels were described as "Coal Case 5A", and "Broadcut
Mid-Continent". Properties of these blends are listed in Table 4. It should
be noted that the petroleum portion of the two blends was not the base fuel,
EM-329-F. The blends were previously prepared for use in the refining model
study, and were available in sufficient quantities for inclusion in our work
following receipt of permission from the Department of Energy.
12
-------
IV. INSTRUMENTATION AND ANALYTICAL PROCEDURES
Analytical procedures and equipment used to measure regulated and unreg-
ulated emissions are described briefly in .this section. These procedures
were used in earlier EPA contracts(2,3,5,6)f an<3 are routinely used in present-
day emission testing.
A. Vehicle Operation and Smoke Measurements
The VW Rabbit was operated to simulate road experience on a 2-roll Model
ECE-50 Clayton light-duty chassis dynamometer, of the type qualified for
Federal light-duty certification.'^' Inertia and power absorption settings
used for all test work on this dynamometer were set to simulate operation of
an earlier model VW Rabbit tested in a previous study. Discussion regarding
inertia and horsepower settings was given in Section III. A. of this report.
Care was taken to insure that the vehicle's fuel system was purged prop-
erly before testing of each fuel. All test fuels were withdrawn from individual
19 liter cans. Prior to test, a 2 liter sample of test fuel was used to run
the vehicle, with the return line routed to a container subsequently discarded.
After this purge, the vehicle was operated for approximately 30 minutes, fol-
lowed by FTP and HFET driving cycles, to remove any residuals from other fuels,
and to insure that the vehicle fuel system contained only the fuel to be
tested.
In order to test the Broadcut fuel, EM-476-F, an additional electric fuel
pump was required at the fuel container. This pump was necessary because the
Broadcut had a high vapor pressure, due to the presence of 10.5 percent
n-butane. Attempting to withdraw this fuel from the can using the engine's
fuel pump caused vaporization of the n-butane in the fuel line. The n-butane
"bubbles" caused very poor driveability and stalling. The electric fuel pump
was used to supply the fuel under pressure rather than subjecting it to pres-
sures substantially below atmospheric.
Exhaust smoke measurements were made using an optical light-extinction
smokemeter, of the type specified in Federal regulations for heavy-duty diesel
engine smoke certification.^ ' The smokemeter was mounted on a 51 mm (2 in.)
O.D. tailpipe extension when in use. The control/readout unit for the smoke-
meter was mounted remote from the vehicle under test, and continuous record-
ings of smoke opacity were made concurrently with vehicle speed traces. Smoke
measurements were made over the first 505 seconds of the cold-start FTP cycle,
while the vehicle was operated on the chassis dynamometer. This procedure
was developed for research purposes on an earlier EPA Contract, No. 68-03-2417
13
-------
B. Regulated and Unregulated Gaseous Emissions
Regulated gaseous emissions of hydrocarbons (HC), carbon monoxide (CO),
and oxides of nitrogen (NOX) were collected and analyzed using procedures
and equipment described in the Federal Register.^' The method of hydro-
carbon analysis was an updated version of that proposed, and eventually
adopted for the 1980 Federal Register. ^10^ The apparatus for hydrocarbon
analysis is shown schematically in Figure 1, and the components are
described in Table 5.
The unregulated gaseous emissions measured were aldehydes, phenols, and
odor. Aldehydes were measured using the 2,4-dinitrophenylhydrazine (DNPH)
method.^ The method consists of withdrawing a continuous sample of dilute
exhaust at a rate of 0.24 m3/hr, and bubbling the sample through glass im-
pingers, containing DNPH in hydrochloric acid. This process forms the alde-
hydes' phenylhydrazone derivatives, which are eventually injected into a gas
chromatograph equipped with a flame ionization detector, for separation and
identification.
Phenols were measured using the ether extraction procedure.^ ' The first
step was to collect dilute exhaust in impingers containing aqueous potassium
hydroxide, at a rate of 1.02 m-^/hr. The contents of the impingers are acid-
ified and extracted with ethyl ether, and are eventually injected into a gas
chromatograph equipped with a flame ionization detector.
Exhaust odor was evaluated using the A.D. Little "Diesel Odorant Analyt-
ical System" (DOAS). The procedure used in this study was the same as used
in previous studies(5,11), and described in detail in the final report on
another study.'12) The vehicle was operated at 3 steady-state modes, idle,
50 kph, and 85 kph. Raw exhaust samples were taken for a specified time so
that the required amount of exhaust would pass through the Chromosorb 102
traps. TIA (total intensity of aroma) values are defined by either:
TIA = 1 + Iog10 (LCD, Ug/£)
or
TIA = 0.4 + 0.7 Iog10 (LCA, yg/fc),
whichever generates the highest value. "LCO" represents liquid column oxy-
genates, and "LCA" represents liquid column aromatics.
C. Particulate Collection, Mass Rate, and Aerodynamic Sizing
Particulate collection for this project was performed using a 457 mm
(18 inch) diameter by 5 m (16 feet) long dilution tunnel operating on total
vehicle exhaust. Other associated equipment includes probes, pumps, and fil-
ter holders to withdraw and collect the particulate on filters, and a balance
to determine the mass of particulate collected.
14
-------
QC's
Air Zero
HC Span 1
HC Span 2
HC Span 3
Dilution
Tunnel
Heated Probe
(5/8" SS)
Denotes sample line components
heated to 375°F
VI
V8
FL1
V9
Beckman 402 HFID OR
SwRI Build with 402 Detector
FL2
FL3
Cal gas
(not used)
Vent
V10
Vent
FID Fuel
FID Air
Figure 1.
HFID
Detector
Heated hydrocarbon analyser system.
-------
TABLE 5. HEATED HYDROCARBON ANALYZER OVERFLOW CALIBRATION
AND SAMPLE FLOW SCHEMATIC COMPONENT DESCRIPTION
Component
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Designation
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Description of Function
regulating valve for zero air
regulating valve for HC span gas
regulating valve for bag sample
span/zero selector valve in HFID (not used)
sample backpressure regulator
FID fuel pressure regulator
FID air pressure regulator
HC span selector valve
HC span/zero/bag sample selector valve
leak check flow diverter valve
Restrictor
Restrictor
Restrictor
Rl
R2
F3
sample capillary
FID fuel restrictor
FID air restrictor
Gage
Gage
Gage
Filter
Filter
Pump
Pump
Flowmeter
Flowmeter
Flowmeter
Gl
G2
G3
Fl-
F2
PI
P2
FL1
FL2
FL3
sample backpressure gage
FID fuel pressure gage
FID air pressure gage
heated 7.0 cm filter (probe)
heated 7.0 cm filter (oven)
bag sample pump
FID heated sample pump
overflow flowmeter
FID bypass flowmeter
leak check flowmeter
16
-------
The dilution tunnel is similar to that used in a previous study^\ but
modified by installing an additional 114 mm (4.5 inch) probe at the downstream
end of the tunnel. This large probe was used to withdraw a dilute exhaust
sample at a rate of 3.4 m3/min (120 SCFM) through a 500 x 500 mm (20x20 inch)
Pallflex filter (Pall Corporation). The dilution tunnel used is shown schemat-
ically in Figure 2. Some of the equipment necessary for collecting particulate
and relating it to undiluted vehicle emissions is not shown in the schematic.
It includes a constant volume sampler (CVS) operating at a nominal capacity of
12.6 m3/min (450 CFM) to withdraw and measure unsampled air/exhaust mixture,
and the positive-displacement pump (capacity 3.4 m3/min) used for the 500 x 500
mm filter system. The modified system was used initially in a study(3) just
prior to this one, with very satisfactory results.
Figure 3 shows the vehicle in test configuration. The dilution tunnel
and filter sampling probes protruding from the tunnel can also be seen in
Figure 3. In the foreground, left side, the tunnel exit and the location of
the large probe used for the "20x20" system are visible. Figure 4 shows the
"20x20" filter holder and the removal of a particulate-laden filter after
test. Also visible in Figure 4 is a close-up of the probe system used to
withdraw samples through 47 mm filters.
Particle sizing was accomplished using a radial-slot impactor. The im-
pactor system contained stainless steel stages on which particulate matter
was supposedly fractionated by size, and a final Pallflex backup filter.
The impactor was located at the downstream end of the dilution tunnel. Fig-
ure 5 shows the impactor system disassembled with the stages, plates, and
filter removed from their holder for clarity. In operation, each stage was
placed on a plate such that the slots in each stage decreased in width from
sample entrance down to the filter. Each stage was rotated 45 degrees so
the particulate matter passing through the slots impacted on a solid portion
of the following plate. Particle retention characteristics were related to
the slot size and flowrate through the impactor. The flowrate was controlled
using a metal bellows vacuum pump, pressure gauge, and flowmeter. The flow-
rate was maintained at 2.8 £/min (0.1 CFM) to achieve particle sizing down
to 0.1 micron.
The mass of particulate matter collected on sample filters and impactor
discs was determined on a microbalance. This balance is enclosed in a
vibration-resistant, temperature- and humidity-controlled chamber to minimize
outside interferences. Filters and other materials for weighing were allowed
to stabilize in the chamber for a minimum of 12 hours before they were
weighed. The sensitivity of the balance is 1 yg. Air to the chamber flows
at about 17 m3/hr on a one-pass basis, and keeps the chamber pressure at
about 2.5 kPa above atmospheric. The control system keeps chamber conditions
at 22.2 ± 0.6°C and 63 ± 2 percent relative humidity, and air entering the
chamber is filtered through a 99.99 percent OOP-efficient filter. Figure 6
shows a technician weighing a 47 mm filter after test, using the weighing
chamber.
17
-------
T~
610mm
(24in)
CO
610mm
(24in)
(16ft)-
840mm (33in)
1
450mm
(17.7in)
DILUTION AIR
FILTER ENCLOSURE
76mm (Sin) RAW
EXHAUST TRANSFER TUBE
230mm (Sin)
MIXING ORIFICE
J
TO CVS
114mm
(4-1/2in)DIA
I
r
700mm (27.5in)
SAMPLE
AIR+
EXH.
u
r
4EA1/2inlD
SAMPLING PROBE
114mm
(4-1/2in)DIA
500 x 500mm
(20in x 20in)
FILTER HOLDER
Figure 2. Schematic diagram of exhaust dilution tunnel.
-------
Figure 3. Volkswagen Rabbit during test.
Figure 4. Unloading of 20x20 filter from holder.
19
-------
Figure 5. Particle sizing impactor, disassembled.
Figure 6. Filter weighing in a temperature- and humidity-controlled chamber.
20
-------
D. Analysis of Particulate Composition
Particulate samples were acquired by several methods for various analyses.
After determining particulate matter weights, the samples were subjected to
analysis for major elements and trace elements. Some particulate samples were
collected in order to obtain the soluble fraction of particulate matter. Anal-
ysis of the soluble fraction is discussed in the next section.
1-. Trace Elements
Analysis for trace elements (metals and sulfur) in the particulate
matter was performed on 47 mm Fluoropore filter samples. As provided in the
contract agreement, these determinations were made at EPA's Research Triangle
Park laboratories as part of the EPA in-house measurement program. The in-
strumentation used for these analyses was a Siemens MRS-3 x-ray fluorescence
spectrometer.
2. Major Elements
Samples collected on 47 mm glass fiber filters were sent to Galbraith
Laboratories and analyzed for carbon and hydrogen content by combustion and
subsequent gas analysis. The equipment used was a Perkin-Elmer Model 240B
automated thermal conductivity CHN analyzer. Results of this analysis was
reported in percent of submitted mass and weight of element detected on the
filter. These results make the filter weighing accuracy very important.
L
E. Analysis of the Soluble Fraction of Particulate Matter
The soluble fraction of particulate matter was obtained by extraction
from the 500 x 500 mm (20x20 inch) Pallflex filters. This large filter enabled
enough soluble material to be extracted so that the total amount could be
divided into smaller aliquots, then analyzed for a variety of constituents.
1. Total Soluble Organics
The 500 x 500 mm filters were weighed before and after test to
determine the weight of particulate matter. Each filter was extracted using
methylene chloride in a Soxhlet apparatus. The solvent volume was reduced at
low temperature and under vacuum. The remaining solvent/solubles were trans-
ferred to a preweighed container, and the solvent was evaporated by nitrogen
purging. The total mass of solubles was determined gravimetrically, and the
percent of solubles in the particulate matter calculated.
2. Major Elements
One aliquot of the dried, weighed soluble extract was submitted to
Galbraith Laboratories and analyzed for carbon, hydrogen, oxygen, and sulfur
21
-------
by the technique and instrumentation described in Section IV, D.2 (Perkin-
Elmer 240B). An additional aliquot of soluble extract was submitted to SwRI's
Mobile Energy Division for nitrogen analysis by oxidative pyrolysis and
chemiluminescence.
3. Solubles Boiling Range and Individual n-Paraffin Analysis
Another aliquot of soluble extract was submitted to SwRI's Mobile
Energy Division for determination of the boiling range and reference to nor-
mal paraffins. The procedure is a high-temperature variation of ASTM D2887-73.
Each aliquot was dissolved in carbon disulfide, and an internal standard (Cg
and GH compound) was added for quantitative results. The maximum temperature
that this column reached was 450°C, eluting compounds boiling up to 650°C.
4. Benzo(a)pyrene (BaP) and Ames Bioassay
An additional 500 x 500 mm (20x20 inch) filter was extracted, and
the extract was divided into eleven aliquots. One aliquot was used to deter-
mine the BaP content of the soluble extract. This analysis was performed by
SwRI's Department of Emissions Research. The procedure, developed by others^13;
is based on high-performance liquid chromatography to separate BaP from other
organic solubles in particulate matter; and it incorporated fluorescence
detection to measure BaP. The instrument used was a Perkin-Elmer 3B liquid
chromatograph equipped with a MPF-44 fluorescence spectrophotometer. Excita-
tion was at a wavelength of 383 nm, and emission was read at 430 nm. The
remaining ten aliquots were shipped on dry ice to EG&G for Ames bioassay
testing. The Ames test refers to a bacterial mutagenesis plate assay with
Salmonella typhimurium, according to the method of Ames. I**'
5. Fractionation by Relative Polarity
The composition of the organic soluble portion of the particulate
matter is complex, and its separation into individual compounds is very dif-
ficult. Fractionation of the solubles by high performance liquid chromatog-
raphy (HPLC) separates the sample into a series of fractions of increasing
molecular polarity. This procedure is discussed in detail in a CRC report.
Briefly, an organic solubles sample is initially carried in a solvent com-
posed of 95 percent hexane and 5 percent methylene chloride, a relatively
non-polar mixture. After a period of time, the ratio of methylene chloride
to hexane, and therefore solvent polarity, is increased at a rate of 5 percent
methylene chloride per minute. At 100 percent methylene chloride, the carrier
solvent is moderately polar. A fluorescence detector is used at an excitation
wavelength of 303 nm and an emission wavelength of 418 nm. A UV detector is
used at wavelength of 254 nm. At these wavelengths fluorescence and UV
responses of compounds are mapped as a function of column elution time,
reflecting polarity.
22
-------
V. TEST PLANS AND OPERATING SCHEDULE
The following sections describe the test plan, sequences, and schedule.
A summary of the exhaust constituents evaluated is summarized in Table 6.
Test efficiency was achieved by grouping similar sample collection techniques
together, to minimize vehicle running time. Discussion of the analysis
techniques are presented in Section IV of this report.
The vehicle followed two transient cycles, FTP and HFET, during most
sample collection and measurement runs. These cycles are routinely used in
emission testing and are well documented in other works.d'3,6,11) Smoke
evaluation was performed separately during the cold transient portion of the
FTP (first 505 seconds). The cold transient portion incorporates all of the
most interesting modes from a smoke standpoint, including cold engine start,
first idle, first acceleration, second idle, and second acceleration. Steady-
state modes at idle, 50 kph, and 85 kph were used to obtain raw exhaust sam-
ples for odor analysis. Vehicle running time on the steady-state modes was
governed by the sample volume requirements of the odor measurement procedure
(DOAS).
The test plan incorporating the cycles and evaluations for each test
fuel is given in Table 7. Samples taken over each 2-bag FTP were defined as
a "cold FTP" or a "hot FTP." Testing for each fuel required a minimum of
three days. After the first day of testing, as many of the results as pos-
sible were reviewed to determine whether or not replicate analysis would be
required on the second day of testing. It was important to determine the
validity of the tests as early as possible, to avoid costly reruns and de-
pletion of limited test fuel quantities by repurging the fuel system. Pro-
cedure for fuel system purging between test fuels is discussed in Section IV.
Duplicate filter samples were collected on Day 2, and retained for possible
replicate analyses. In some cases, samples were stored in their most stable
form, then submitted for analysis as a group (rather than individually) to
minimize the effects of day-to-day variability in an analytical procedure.
Utilizing this test plan on nine test fuels yielded a total of 30 runs,
including baseline repeats and additional runs to support unexpected results.
At the Project Officer's request, several initial tests were performed to
determine lab-to-lab correlation of test results on the vehicle. Also, some
testing was requested to determine whether or not the vehicle used in the
study could be run to simulate an earlier model used in another study. These
efforts are discussed in Section III, Part A.
23
-------
TABLE 6. OUTLINE OF CHEMICAL AND PHYSICAL EXHAUST EVALUATIONS
Exhaust component
under study
Constituent(s) analyzed for
Collection
Method
Analysis technique(s)
Smoke
smoke (visible)
EPA smokemeter (continuous)
gases
HC, CO, CO2/ NOX
aldehydes
odor
phenols
sample bag
wet impinger
DOAS traps
wet impinger
constant volume sampler
DNPH
DOAS analyzer
extraction, GC
particulate
total mass
size distribution
sulfur & trace elements
carbon, hydrogen in
particulate
organic extractable substances
BaP in organic solubles
molecular weight range of
organic solubles
carbon, hydrogen in solubles
biologidfel response of
solubles
polarity profile of solubles
Pallflex filters
impactor-filter
filter, 47 mm
Fluoropore
filter, 47 mm
glass fiber
"20x20" filter
gravimetric
gravimetric
x-ray fluorescence
combustion (commercial)
soxhlet extraction
LC, fluorescence detection
GC
combustion (commercial)
Ames bioassay
HPLC
-------
TABLE 7. TEST PLAN FOR EACH FUEL
Analysis or Sample
gaseous HC, CO, NOX, CO2
sulfur & trace metals
particle size distribution
organic extractables
total particulate mass
C & H in particulate
odor
aldehydes
phenols
BaP and Ames bioassay
smoke
Day 1
Cold FTP
X
X
X
X
X
-
-
-
-
-
Hot FTP
X
X
,b
X
X
X
-
-
-
-
-
HFET
X
X
X
X
X
-
-
-
-
-
Day 2a
Idle
X
-
X
-
X
-
-
-
-
50 kph
X
-
X
-
X
-
-
-
-
85 kph
X
-
X
-
X
-
-
-
-
Cold FTP
X
-
X
-
X
X
X
X
-
Hot FTP
X
-
X
-
X
X
X
X
-
HFET
X
-
X
-
-
X
X
X
-
Day 3
cold transient
(505 seconds)
-
-
-
-
-
-
-
-
X
KJ
(Jl
Repeat samples optional
One sample collected for entire 4-bag FTP
COrganic extractables divided into aliquots for HPLC, carbon & yydrogen, and boiling
range analyses
-------
VI. GASEOUS EMISSION AND ODOR RESULTS
This report section includes presentation and discussion of results on
regulated gaseous emissions, aldehydes, phenols, and exhaust odor. Data on
regulated gaseous emissions, including CO2 and fuel consumption, were obtained
by analysis of bag samples collected from the CVS-diluted exhaust. In most
cases, confidence limits could not be calculated due to an insufficient num-
ber of data points. For a few emissions, sufficient replicate tests were
performed on base fuel only to allow computation of confidence limits. Where
applicable, these limits are shown as the standard error bar on the graphical
presentations. Emissions repeatability was good in most cases, -with replicate
results on the same fuel deviating 5 percent or less from results of the first
run. When emissions differed by more than about 5 percent between runs on
different fuels, the emissions variation was considered likely to be a result
of fuel property variation.
A. Regulated Gaseous Emission Results
Data on regulated gaseous emissions, including CO2 and fuel consumption,
were obtained by analysis of bag samples collected from the CVS-diluted exhaust.
These results are summarized in Tables 8 and 9. The results are reported for
each individual bag, a calculated 3-bag FTP, and a calculated 4-bag FTP. The
computer printouts for each test are located in Appendix C, pages C-2 through
C-71.
Vehicle performance using fuel blend EM-475-F, base fuel and 35 percent
SRC-II, was marginal. A complete FTP was not possible due to the high level
of emissions, causing sample system plugging. The only results obtainable
were for the first 505 seconds of a cold-start FTP. The gaseous emissions,
as shown in Table 7, indicate significant increases in HC, CO, NOX, and fuel
consumption. Probable cause for these increases was the inability of the
engine to produce normal power at normal rack settings on this low cetane
number (31) fuel. Use of EM-475-F required more rack opening to operate the
vehicle over the FTP driving schedule. This increase in rack position, and
consequent larger volume of fuel injected, is confirmed by the increase in
fuel consumption noted. With overall richer off-design engine operation, an
increase in emissions was expected.
The "3-bag" composite values for HC, CO, NOX from Table 8 are shown as
a bar graph in Figure 7. The greatest hydrocarbon and carbon monoxide in-
creases, as compared to the base fuel, were observed with the Broadcut and
the 25% SRC-II blend. Hydrocarbon emissions with these two fuels more than
doubled as compared to the base fuel. An earlier study ^ ', using a similar
vehicle operating on various petroleum-based fuels, reported increases in HC
27
-------
TABLE 8. AVERAGE REGULATED GASEOUS EMISSIONS DATA DURING FTP
Fuel
Base
DF-2
EM-329-F
Shale Diesel
Fuel-Marine
EM-453-F
Paraho JP-5
EM-473-F
Coal Case
5A
EM-474-F
Broadcut
EM-476-F
35% SRC-II
EM-475-F
25% SRC-II
EM-478-F
25% EDS
EM-4B2-F
25% EDS
Naphtha
EM-485-F
Item
HC
CO
C02
NO,
Fuel
HC
CO
C02
NOx
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOx
Fuel
HC
CO
C°2
NO
Fuel
HC
CO
CO
NO
Fuel
Emissions (q/km) and Fuel Usaqe (i/100 km)
FTP Bag Number
1
0.40
1.23
179.
0.67
6.94
0.42
1.33
187.
0.68
7.31
0.48
1.41
182.
0.71
7.30
0.51
1.49
187.
0.84
6.92
1.04
1.58
181.
0.65
7.36
3.52
3.05
222.6
0.98
8.52
1.18
1.48
191.
0.78
7.17
0.48
1.50
181.3
0.72
6.83
0.41
1.37
190.9
0.76
7.38
2
0.26
0.82
164,
0.67
6.33
0.26
0.88
167.
0.67
6.49
0.28
1.04
163.
0.69
6.53
0.30
1.00
166.
0.85
6.11
0.55
1.35
162.
0.67
6.51
0.47
1.29
171.
0.76
6.36
0.26
0.94
159.9
0.74
5.98
0.29
1.05
167.8
0.78
6.47
3
0.33
1.03
156.
0.64
5.95
0.34
1.17
163.
0.67
6.37
0.49
1.33
156.
0.68
6.30
0.46
1.39
160.
0.79
5.94
0.65
1.27
158.
0.60
6.36
0.41
1.22
163.
0.73
6.08
0.35
1.26
154.6
0.71
5.81
0.39
1.23
160.4
0.71
6.21
4
0.25
0.80
163.
0.66
6.32
0.27
0.84
164.
0.68
6.37
0.29
1.00
158.
0.69
6.32
0.32
1.03
157.
0.83
5.78
0.61
1.36
157.
0.64
6.34
0.42
1.26
159.
0.75
5.. 93
0.25
0.95
153.6
0.73
5.74
0.25
0.96
159.8
0.75
6.15
3-baq
FTP
0.31
0.96
165.
0.66
6.37
0.31
1.06
171.
0.67
6.63
0.38
1.20
165.
0.70
6.62
0.39
1.21
169.
0.83
6.23
0.68
1.38
164.
0.65
6.64
__
0.60
1.31
173.
0.76
&.4S
0.33
1.14
162.8
0.73
6.11
0.34
1.16
170.6
0.76
6.59
4-bag
prppa
0.31
0.95
165.
0.66
6.36
0.32
1.04
170.
0.68
6.59
0.38
1.19
165.
0.69
6.56
0.39
1.22
166.
0.82
6.13
0.70
1.38
163.
0.64
6.59
__
__
0.59
1.30
170.
0.7
6. 33
0.32
1.14
161.0
0.73
6.04
0.33
1.14
168.2
0.75
6.49
Calculated
28
-------
TABLE 9.
AVERAGE RESULTED GASEOUS EMISSIONS DATA DURING HFET AND STEADY-STATE
Fuel
Base
DP- 2
EH-329-F
Shale Diesel
Fuel-Marine
EM-453-F
Paraho JP-5
EM-473-F
Coal Case
5A
EM-474-F
Broadcut
EM-476-F
35% SRC-II
EM-475-F
25% SRC-II
EM-478-F
25* EDS
EM-482-F
25* EDS
Naphtha
EM-485-F
Item
HC
CO
CO2
NOX
Fuel
HC
CO
CO2
NOX
Fuel
HC
CO
C02
NOx
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOx
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
CO
2
NO
Fuel
HC
CO
CO,
NO2
Fuel
Emissions (g/tan) and Fuel Usage (H/100 km)
HFET
0.35
1.04
133.
0.61
5.17
0.37
1.20
146.
0.67
5.66
0.79
1.60
139.
0.66
5.71
0.46
1.41
145.
0.84
5.38
0.61
1.18
138.
0.58
5.57
0,28
0.92
142.
0.76
5.25
0.34
1.12
136.1
0.71
5.12
Steady-State
Idlea
2.13
9.30
1136.
5.78
0.44
2.94
9.45
1169.
6.09
0.45
2.10
11.3
1067.
6.90
0.43
7.23
22.1
1176.
6.18
0.45
11.0
24.5
1117.
5.67
0.47
11.6
26.4
1097.
0.75
0.43
6.60
18.09
1097.
5.79
0.42
50 kph
0.17
0.54
124.
0.53
4.77
0.24
0.70
123.
0.54
4.73
0.09
0.39
107.
0.51
4.25
0.45
0.51
108.
0.42
3.99
0.20
0.47
106.
0.41
4.21
0.64
0.56
118.
0.45
4.39
0.17
0.37
103.0
0.43
3.84
--
85 kph
0.39
1.20
134.
0.67
5.22
0.40
1.35
142.
0.69
5.49
0.61
1.81
142.
0.72
5.79
0.63
1.79
148.
0.92
5.55
0.71
1.29
135.
0.61
5.49
__
__
0.25
0.83
144.
0.84
5.34
0.31
1.11
136.5
0.82
5.13
Mission in g/h instead of g/km, fuel in l/ti instead of I/] 00 km
29
-------
HC=I
1.25
I
= 95% conf.
limit
Broadcut
Shale
Diesel
Marine
Paraho
JP-5
1.00
fi
o
H
[fi
IT;
Base
DF-2
i
0.50
0.25
In
Figure 7. Regulated gaseous emissions during FTP (composite)
-------
and CO emissions of up to 4 times the base fuel level. The cetane numbers
of the two fuels in that study were 49 and 42. The cetane number spread
between the fuels in this study was greater (50 to 35 and 38), but smaller
HC increases were noted. Probable cause for the Broadcut fuel's low cetane
number was the presence of low molecular weight paraffins, while the 25%
SRC-II fuel's low cetane was probably attributable to its rather high aromatic
content.
All the test fuels resulted in higher NOX emissions than the base fuel.
Use of the Coal Case 5A material resulted in higher NOX emissions than the
other blends. Another study(3) resulted in developing prediction equations
for several emissions as a function of fuel properties. NOX emissions were
associated with fuel aromatic and nitrogen content. The Coal Case 5A fuel
contained high aromatics and nitrogen. The prediction equations themselves
could not be used per se, as they contain a constant term which is applicable
to the specific vehicle/engine tested (Mercedes-Benz 240D). A similar statis-
tical analysis incorporating the wide variance in fuel properties of this
study could yield similar prediction equations. Comparing the two middle-
distillate coal-derived fuel blends, 25% SRC-II and 25% EDS, the SRC-II blend
was associated with high emissions. The 25% middle-distillate and the 25%
EDS naphtha gave almost identical HC, CO and NOX emissions.
Figure 8 shows HFET results in bar graph form similar to Figure 7. The
25% EDS naphtha was not run on the HFET. It was only used on a limited basis
for very few tests. Complete evaluation of the 25% EDS naphtha may occur in
another study if preliminary results generated during this study are of suf-
ficient interest. Paraho JP-5 was associated with more substantial HC and
CO increases on the HFET, as compared with the base fuel, than was the case
for the FTP. Coal Case 5A increased HFET NOX over baseline more than the
other blends, and it also increased CO about 40 percent. It is interesting
to note that the 25% EDS blend gave slightly higher HC and CO (NOX about the
same) as compared with the 25% SRC-II. Similar comparison between these two
blends during the FTP indicated the opposite trend.
Fuel consumptions for the test fuels during both transient cycles are
shown graphically in Figure 9. During both cycles, all the test blends showed
slightly increased fuel consumption except Coal Case 5A and 25% EDS. The 25%
EDS appears to result in the same or slightly lower fuel consumption as com-
pared with the base fuel. Coal Case 5A showed increased fuel consumption over
the base fuel during the HFET, but was about the same during the FTP. FTP and
HFET results indicate that the 25% EDS blend was associated with between 5
(FTP) and 12 (HFET) percent less fuel consumed as compared with the 25% SRC-II
blend.
B. Aldehyde and Phenol Results
Concentrations of a number of individual low-molecular weight aldehydes
were determined in CVS-diluted exhaust. The results for each aldehyde species
31
-------
w
to
1.50
1.25
1.00
tn
to
c
o
rH
to
| 0.75
0.50
0.25
Shale
Diesel
Marine
Figure S. Regulated gaseous emissions during HFET.
-------
CO
Ul
7.0
e 6.5
o
o
-2 6.0
-p
W
a
o
o
S 5.5
5.0
A
^^
r
A
A = Base DF-2
B = Shale Diesel Marine
C = Paraho JP-5
D = Coal Case 5A
E = Broadcut
F = 25% SRC-II
G = 25% EDS
H = 25% EDS Naphtha
T= 95% conf. limits
FTP HFET
Figure 9. Fuel consumption during FTP and HFET
-------
and their sums during the FTP are presented in Table 10. "Total" aldehydes
refers to the sum of the aldehydes determined using the procedure discussed
in Section IV. This "total" for each of the test fuels is shown graphically
in Figure 10. Table 11 contains the phenol results during the FTP and the
"total" phenols are also shown graphically in Figure 10.
"Total" aldehyde emission decreases, as compared with the base, were
observed with the 25% SRC-II and the 25% EDS blends. Both blends gave sim-
ilar aldehyde emissions (~3 mg/km). No aldehyde increases over the base were
seen with the fuels tested during the FTP. Paraho JP-5 and Broadcut test
fuel were associated with decreases in FTP phenol emissions as compared to
base fuel. The 25% EDS blend doubled the base fuel's phenol emissions during
the FTP. It is interesting to note that although the aldehyde emission rates
for the 25% SRC-II and 25% EDS blend were approximately the same, the 25%
SRC-II blend did not increase phenols as did the 25% EDS blend.
Aldehyde and phenol results during the HFET are listed in Table 12.
Their "total" values are shown as a bar graph in Figure 11. As seen in the
FTP results, no "total" aldehyde increases were observed when compared to the
base fuel's results. Again, aldehyde decreases were seen with the 25% SRC-II
and 25% EDS blends. Phenol decreases during the HFET were associated with
the Paraho JP-5 and the Broadcut test blend (same trend as FTP). The 25%
SRC-II blend, however, increased phenols to over 14 times the base fuel level
during the HFET. The same blend did not affect phenols during the FTP. A
similar situation occurred with the 25% EDS phenol results. No change was
observed during the HFET, but an increase was seen during the FTP. Coal Case
5A more than doubled the base fuel's phenol emissions during the HFET.
C. Results of Odor Analysis
This subsection contains results from instrumental odor evaluations
(DOAS). The chromatographic procedure separates an oxygenate fraction
(liquid column oxygenates, LCO) and an aromatic fraction (liquid column
aromatics, LCA). Studiesd2'16) have been made in an attempt to correlate
instrumental analysis to a panel of trained human evaluators. One study
indicated that TIA (LCO-based) of less than 1.0 would be rated by a trained
panel at less than "D"-l. A perceived odor intensity of "D"-l by the Turk
method is considered a light (barely perceptible) odor. It should be noted
that since the TIA (total intensity of aroma) is calculated using a logarithmic
equation, each increase of one unit in the TIA value relates to a concentra-
tion increase by a factor of ten.
Results of the odor analysis are listed in Table 13. The TIA values
(LCO-based) are shown graphically in Figure 12. During idle operation, the
Broadcut and 25% SRC-II blends increased odor as compared to the base. A
slight reduction was observed with the Paraho JP-5. At the 50 kph cruise
condition, the Coal Case 5A was associated with the highest odor levels as
34
-------
TABLE 10. FTP ALDEHYDE EMISSIONS DATA
Operating
Schedule
Cold FTP
Hot FTP
Calculated
1981 FTP
Compound ( s ) mg/km
Formaldehyde
Acetaldehyde
Acetone3
Hexanaldehyde
Benzaldehyde
"Total"
Formaldehyde
Acetaldehyde
Acetonea
Hexanaldehyde
Benzaldehyde
"Total"
Formaldehyde
Acetaldehyde
Acetonea
Hexanaldehyde
Benzaldehyde
"Total"
Fuel Description and Code (EM-XXX-F)
Base
DF-2
329
7.
2.
2.
0.0
0.0
11.
10.
2.
3.
0.0
0.0
15.
9.
2.
3.
0.0
0.0
14.
Shale
Diesel
Marine
453
7.
1.
0.0
0.0
2.
10.
6.
1.
0.0
0.0
2.
9.
6.
1.
0.0
0.0
2.
9.
Paraho
JP-5
473
8.
2.
0.0
0.0
8.
18.
6.
3.
0.0
0.0
0.0
9.
7.
3.
0.0
0.0
3.
13.
Coal
Case
5A
474
4.
0.0
0.0
0.0
0.0
4.
7.
3.
0.0
0.0
0.0
10.
6.
2.
0.0
0.0
0.0
8.
Broad-
cut
476
14.
0.7
0.0
0.0
3.
18.
6.
0.0
0.0
0.0
3.
9.
9.
0.0
0.0
0.0
3.
12.
25%
SRC-II
478
3.
0.0
0.0
0.0
0.0
3.
2.
0.0
0.0
0.0
0.0
2.
2.
0.0
0.0
0.0
0.0
2.
25%
EDS
482
5.
0.0
0.0
0.0
0.0
5.
0.0
0.0
0.2
0.0
1.
1.
2.
0.0
0.1
0.0
0.6
3.
OJ
tn
Included acrolein and propanol
-------
U)
en
05
C
o
iH
05
Cfi
-H
w
25
20
15
10
"Total"
Aldehydes
"Total"
Phenols
Base DF-2
Figure 10. "Total" aldehyde and phenol emissions during FTP.
-------
TABLE 11. FTP PHENOL EMISSIONS DATA
Operating
Schedule
Cold FTP
Hot FTP
Calculated
1981 FTP
Compound ( s ) rag/km
Phenol
Salicylaldehyde
m-Cresol + p-Cresol
Group 5a
2,3, 5-trimethylphenol
2,3,5, 6-tetramethylphenol
2-n-propylphenol
"Total"
Phenol
Salicylaldehyde
m-Cresol + p-Cresol
Group 5a
2,3, 5-trimethylphenol
2,3,5, 6-tetramethylphenol
2-n-propylphenol
"Total"
Phenol
Salicylaldehyde
m-Cresol + p-Cresol
Group 5a
2,3, 5-trimethylphenol
2,3,5, 6-tetramethylphenol
2-n-propylphenol
"Total"
Fuel Descrij
Base
DF-2
329
0.0
0.0
1.
4.
0.4
0.3
7.
13.
0.0
0.0
0.1
2.
0.1
0.2
8.
10.
0.0
0.0
0.7
3.
0.3
0.3
8.
12.
Shale
Diesel
Marine
453
0.0
0.0
3.
0.0
0.0
0.0
8.
11.
0.0
0.0
0.6
0.0
0.0
0.0
10.
11.
0.0
0.0
2.
0.0
0.0
0.0
9.
11.
Paraho
JP-5
473
0.0
0.0
0.0
0.0
0.0
0.5
0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.5
0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.5
0.0
0.5
3tion and Code (EM-XXX-F)
Coal
Case
5A
474
0.0
0.0
0.0
0.5
0.0
000
16.
17.
0.0
0.0
2.4
0.0
0.0
0.0
9.8
12.
0.0
0.0
1.4
0.2
0.0
0.0
12.5
14.
Broad-
cut
476
0.0
0.0
0.5
0.0
0.0
5.
0.0
6.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.0
2.
0.0
2.
25%
SRC-II
478
0.0
3.
1.
0.2
0.4
14.
0.0
19.
0.0
0.0
0.5
0.0
0.0
7.
0.0
8.
0.0
1.
1.
0.1
0.2
10.
0.0
12.
25%
EDS
482
0.9
1.
1.
1.
0.6
5.
0.0
10.
0.0
0.0
0.4
0.4
0.6
33.
0.0
34.
0.4
0.4
0.7
0.7
0.6
21.
0.0
24.
Group 5 consists of p-ethylphenol, 2-isopropylphenol, 2,3-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol
-------
TABLE 12. HFET PHENOL AND ALDEHYDE EMISSION DATA
Compounds
Phenols, mg/km
Phenol
Salicylaldehyde
m-Cresol +p-Cresol
Group 5a
2,3, 5-trimethylphenol
2,3,5, 6-tetramethylphenol
2-n-propylphenol
"Total"
Aldehydes, mg/km
Formaldehyde
Acetaldehyde
Acetone-'-1
Hexanaldehyde
Benzaldehyde
"Total"
Fuel Description and Code (EM-XXX-F)
Base
DF-2
329
0.0
0.0
1.
2.
0.03
0.6
4.
8.
9.
1.
5.
0.0
, 0.0
15.
Shale
Diesel
Marine
453
0.0
0.0
0.2
0.5
0.0
0.0
8.
9.
8.
0.0
3.
0.0
2.
13.
Paraho
JP-5
473
0.0
0.0
0.0
0.0
0.0
0.0
1.
1.
6.
0.0
0.0
0.0
7.
13.
Coal
Case
5A
474
2.
0.0
0.5
0.9
0.0
0.0
14.
17.
6.
1.
0.0
0.0
0.0
7.
Broad-
cut
476
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.2
11.
3.
0.0
0.0
2.
16.
25%
SRC-II
478
0.0
210.
0.0
0.4
0.0
4.
0.0
214.
0.0
0.0
0.0
0.0
0.0
0.0
25%
EDS
482
1.
0.5
0.0
0.0
0.3
8.
0.0
10.
1.
0.0
0.0
0.0
2.
3.
CD
Group 5 consists of p-ethylphenol, 2-isopropylphenol, 2,3-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol
Included acrolein and propanol
-------
E
,y
tn
E
(ft
c
o
H
CO
CO
-H
Shale
Diesel
Marine
Figure 11. "Total" aldehyde and phenol emissions during HFET.
-------
TABLE 13. RESULTS OF ODOR ANALYSIS AT STEADY-STATES
Date
12-12-80
1-19-81
5-6-81
5-19-81
5-27-81
7-17-81
8-3-81
Fuel Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
Fuel Type
Base DF-2
Shale
Diesel
Marine
Paraho
JP-5
Coal Case
5A
Broadcut
25% SRC-II
25% EDS
Condition
Idle
50 kph
85 kph
Idle
50 kph
85 kph
Idle
50 kph
85 kph
Idle
50 kph
85 kph
Idle
50 kph
85 kph
Idle
50 kph
85 kph
Idle
50 kph
85 kph
LCA, yg/1
55.
110.
400.
7.5
23.
60.
9.6
35.
5600
27.
76.
160.
297.
220.
592.
143.
17.
14.
78.
360.
129.
LCO,yg/l
3.7
7.5
21.
4.4
12.
15.
1.4
3.1
23.
6.3
25.
67.
13.
12.
53.
13.
3.5
3.2
6.5
16.
24.
TIA
LCA
1.6
1.8
2.2
1.0
1.4
1.6
1.1
1.5
2.3
1.4
1.7
1.9
2.1
2.0
2.3
1.9
1.3
1.2
1.5
1.7
1.5
LCO
1.6
1.9
2.3
1.6
2.1
2.2
1.1
1.5
2.4
1.8
2.4
2.8
2.1
2.1
2.7
2.1
1.1
1.1
1.8
1.2
2.4
40
-------
Idle
50 kph = g^l
85 kph =
0)
W
(0
A
O
o
M
0
O
Base DF-2
Coal Case
5A
Broadcut
25% EDS
Figure 12, Odor analysis at three steady-states.
-------
compared with the base. The 85 kph cruise results show that the Coal Case 5A
and the Broadcut were associated with the highest odor levels. Lowest odor
level was observed with the 25% SRC-II blend. In summary, the Broadcut and
Coal Case 5A test fuels generally exhibited the highest odor levels during
the three steady-state modes. Only at idle did the 25% SRC-II and 25% EDS
test fuels' odor levels exceed the base fuel's. Shale diesel marine gave
results similar to base fuel during the three steady-states.
42
-------
VII. SMOKE AND PARTICULATE EMISSION RESULTS
This section of the report presents summary data and discussion on vis-
ible smoke, total particulate mass emissions, particle size distribution, and
particulate matter elemental analysis. In addition, it includes information
on organic solubles in particulate matter, elemental analysis of the solubles,
BaP in solubles, boiling range of organic solubles by gas chromatograph anal-
ysis, polarity profile of the solubles, and bioassay analysis.
A. Visible Smoke Emissions
Visible smoke was measured using an EPA-type smokemeter over the first
505 seconds (the "cold transient phase") of the FTP. Data, taken on a 2-pen
strip chart recorder, consisted of vehicle speed and smoke opacity versus
time. The traces, which were analyzed manually, are located in Appendix D,
Pages D-2 through D-9. The results are summarized in Table 14.
TABLE 14. SUMMARY OF VISIBLE SMOKE DATA
Condition
Cold Start peak
Cold idle, avg.
(after start)
1st accel. peak
Idle at 125 sees,
avg.
Accel, at 164 sees,
peak
Smoke Opacity, %, by fuel, EM-XXX-F
329
21.2
0.2
28.2
0.7
37.5
453
46.8
1.0
44.2
0.5
27.2
473
36.0
1.4
61.5
0.8
20.0
474
66.0
0.4
40.5
0.6
71.2
476
33.0
3.0
44.2
0.5
20.6
475
66.0
60.0
92.0
21.0
59.0
478
58.8
3.5
63.5
1.0
42.0
482
58.2
4.0
67.8
1.7
41. 3
These data indicate rather dramatic smoke effects when running EM-475-F,
the 35% SRC-II blend. Its smoke levels were very high at the start and even
at the 125 second idle, by which time all the other fuels show very little
smoke production at idle. Base fuel EM-329-F generally exhibited the lowest
smoke levels. At the 164 second acceleration, however, several fuels did
give lower smoke readings than the base fuel. Shale diesel marine (453),
Paraho JP-5 (473), and the Broadcut (476) all showed reduced smoke at the
43
-------
164 second acceleration. With the exception of the 35% SRC-II, the greatest
smoke level increases were generally associated with the other test fuels
containing cokl-derived liquids; Coal Case 5A (474), 25% SRC-II (478), and
25% EDS (482)1 Smoke levels for the two blends containing 25% coal-derived
middle distillate (from different processes), 478 and 482, are almost
identical.
B. Particulate Mass Emissions
Particulate mass emissions during the two transient cycles and the three
steady-states are summarized in Table 15. Individual run data are located on
the computer printouts in Appendix C. FTP and HFET results are presented
graphically in Figure 13. The trends by fuel are similar for both operating
cycles except for the 25% SRC-II. The 25% SRC-II particulate mass rate was
56 percent above the base fuel rate during the FTP, but the rates were the
same during the HFET. One possibility is that the combustion of the SRC-II
material improves as the vehicle warms up. Particulate mass emission increases
were observed with the Coal Case 5A, and to a lesser extent with the EDS blends.
These results are not unexpected, based on an earlier study.^ In that study,
a regression equation for particulate mass emissions from a single vehicle was
formulated. Particulate increases were associated with fuel aromatic content
and fuel nitrogen increases. The 25% SRC-II blend had the highest aromatic
and nitrogen levels of the blends tested. As stated earlier in the report,
the 25% EDS naphtha test blend was evaluated only on selected cycles, and for
selected emissions. Broadcut fuel decreased particulate emission 16 percent
during the FTP, and 32 percent during the HFET as compared with the base. The
poor combusion characteristics of the 35% SRC-II are shown in Table 15 as a
significant particulate increase. Filter plugging prevented further testing
of this material.
TABLE 15. AVERAGE PARTICULATE MASS EMISSION DATA
Fuel Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-475-F
EM-478-F
EM-482-F
EM-485-F
Fuel Type
Base DF-2
Shale Diesel Marine
Paraho JP-5
Coal Case 5A
Broadcut
35% SRC-II
25% SRC-II
25% EDS
25% EDS Naphtha
Grams Particulate per Kilometer
Calculated
1981 FTP
0.25
0.27
0.25
0.32
0.21
2.06b
0.39
0.28
0.30
HFET
0.25
0.27
0.26
0.35
0.17
0.24
0.28
Steady-State
Idlea
0.71
0.60
0.48
1.14
0.84
1.53
1.05
50 kph
0.17
0.18
0.08
0.14
0.08
0.13
0.17
85 kph
0.28
0.36
0.26
0.46
0.20
0.24
0.28
Emissions in g/h instead of g/km
Calculated on basis of cold 505 data
44
-------
0.5
A = Base DF-2
E = Broadcut
B = Shale diesel marine F = 25% SRC-II
C = Paraho JP-5
D = Coal Case 5A
G = 25% EDS
H = 25% EDS naphtha
D
FTP HFET
Figure 13. Particulate mass emissions- during FTP and HFET cycles.
-------
Steady-state data show that the idle mode is the chief contributor to
the increases observed in the FTP data for the coal-derived liquid blends
(Coal Case 5A, 25% SRC-II, and the two EDS fuels). These data also help to
explain the particulate emission decreases for 25% SRC-II from the FTP to the
HFET. At higher speeds the 25% SRC-II particulate emissions are lower than
the base fuel.
C. Particulate Size Distribution
Data from impactor runs were analyzed and are presented as percent of
the total particulate mass by stage in Table 16. Table 16 shows that in most
cases, over half the particulate mass was composed of particles smaller than
0.2 urn. Coal Case 5A generated the smallest particles (about 90-percent
<0.2 ym). Largest particles were seen with the 35% SRC-II blend, although
these particles were collected only during the cold 505 seconds of the FTP;
while the other samples were collected during an entire "4-bag" FTP.
Table 17 lists the particle size distributions as cumulative mass per-
cent smaller than stage cutoff diameter, and these data are shown graphically
in Figure 14. This graph indicates a fairly wide variation in size distribu-
tions by fuel, with a substantial fraction of the variation occurring on the
back-up filter. The 25% EDS blend generated about the same distribution of
particle sizes as the 25% SRC-II blend.
D. Analysis of Particulate Composition
This subsection includes data on major elements and trace elements. Car-
bon and hydrogen analyses were performed on particulate collected using 47 mm
glass fiber filters. Particulate collected on 47 mm Fluoropore filters was
analyzed for trace elements.
Carbon and hydrogen data are listed in Table 18. As seen in an earlier
study (3); the data show fairly high carbon content, indicative of "dry" or soot-
like particulate material in most cases. The 25% SRC-II blend gave somewhat
lower carbon percentage in particulates, indicating a more oily material. The
hydrogen content of this particulate sample, however, does not support the
oily material supposition. The technique used to analyze carbon and hydrogen
content of particulate collected on glass fiber filters appears somewhat ques-
tionable based on these results and others.' '^ A new procedure is needed to
insure correct and accurate analysis of particulate collected on glass fiber
filters.
Data on trace elements are given in Appendix D, page D-10. As a whole,
these elements made up 0.3% to 1.6% of the particulate mass. The trace elements
found most commonly in the particulate matter were sulfur, iron, nickel, calcium,
and zinc. Possible sources of iron and nickel are wear products from the engine
and exhaust system. Sulfur, calcium, and zinc can probably be attributed to
46
-------
TABLE 16. PARTICULATE SIZE DISTRIBUTION
Fuel Code
EM-329-F
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-474-F
EM-476-F
EM-475-F
EM-478-F
EM-482-F
Fuel Description
Base DF-2
Base DF-2
Shale Diesel Marine
Paraho JP-5
Coal Case 5A
Coal Case 5A
Broadcut
35% SRC-II
25% SRC-II
25% EDS
Percent of Total Particulate
Stage 3
9.5 uma
4.9
6.8
2.0
0.0
0.70
0.0
3.1
1.5
5.2
2.1
Stage 4
5.8 yma
2.7
6.3
2.7
3.0
3.7
0.90
3.7
2.2
3.6
3.1
Stage 5
3.7 uma
6.3
2.0
0.91
8.0
0.0
0.68
3.8
2.4
2.7
2.7
Stage 6
2.1 yra
4.4
2.3
1.8
8.0
1.8
4.9
5.1
3.6
3.9
4.6
Stage 7
1.2 uma
8.2
5.7
2.9
5.0
1.4
4.2
3.6
2.9
7.2
4.8
Stage 8
0.8 uma
5.0
2.3
4.2
4.1
0.0
0.23
3.6
8.3
4.4
3.8
Stage 9
0.5 ym
6.1
2.7
3.3
9.1
0.87
0.0
2.3
23.
5.9
3.8
Stage 10
0.2 yma
7.9
6.7
2.6
0.0
0.0
0.0
0.0
16.
6.8
7.0
Filter
55.
65.
80.
63.
92.
89.
75.
40.
60.
68.
Vehicle
Total
Particulate
g/ cycle
5.81
6.05
6.58
6.00
7.80
7.82
5.12
17.85b
8.49
7.12
abased on 47 mm Pallflex for 4-bag FTP
based on 903 seconds of first FTP only
-------
TABLE 17. CUMULATIVE PARTICLE SIZE DISTRIBUTION DURING COLD AND HOT FTP
Fuel Code
EM-329-F
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-474-F
EM-476-F
EM-475-F
EM-478-F
EM-482-F
Fuel Description
Base DF-2
Base DF-2
Shale Diesel Marine
Paraho JP-5
Coal Case 5A
Coal Case 5A
Broadcut
35% SRC-II
25% SRC-II
25% EDS
Cumulative Percent of Total Particulate
Stage 3
9.5 yma
100.5
99. a
100.4
100.2
100.5
99.9
100.2
99.9
99.7
99.9
Stage 4
5 .8 ym
95.6
93.0
98.4
100.2
99.8
99.9
97.1
98.4
94.5
97.8
Stage 5
3.7 yma
92.9
86.7
95.7
97.2
96.1
99.0
93.4
96.2
90.9
94.7
Stage 6
2.1 yma
86.6
84.7
94.8
89.2
96.1
98.3
89.6
93.8
88.2
92.0
Stage 7
1.2 yma
82.2
82.4
93.0
81,2
94.3
93.4
84.5
90.2
84.3
87.4
Stage 8
0.8 yma
74.0
76.7
90.1
76.2
92.9
89.2
80.9
87.3
77.1
82.6
Stage 9
0.5 ym
69.0
74.4
85.9
72.1
92.9
89.0
77.3
79.0
72.7
78.8
Stage 10
0.2 yma
62.9
71.7
82.6
63.0
92.0
89.0
75.0
56.0
66.8
75.0
Filter
55.
65.
80.
63.
92.
89.
75.
40.
60.
68.
Vehicle
Total
Particulate
g/cycle
5.81
6.05
6.58
6.00
7.80
7.82
5.12
17.85b
8.49
7.12
00
fbased on 47 mm Pallflex for 4-bag FTP
based on 903 seconds of first FTP only
-------
Base DF-2
Shale Diesel
Marine
Paraho JP-5
» Coal Case 5A
«» Broadcut
35% SRC-II
. . . 25% SRC-II
25% EDS
0.2
20
40 60 80 90 95 98 99
Cumulative Percent Smaller than BCD
99.9
Figure 14. Cumulative particle size distributions by impactor.
49
-------
TABLE 18. CARBON AND HYDROGEN IN EXHAUST PARTICULATE MATTER
Fuel
Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
Fuel
Description
base DF-2
shale diesel
marine
Paraho JP-5
Coal Case 5A
Broadcut
25% SRC-II
25% EDS
Cycle
FTPc
FTPh
HFET
FTPc
FTPh
HFET
FTPc
FTPh
HFET
FTPc
FTPh
HFET
FTPc
FTPh
HFET
FTPc
FTPh
HFET
FTPc
FTPh
HFET
Weight Percent
Carbon
81.6
80.3
83.6
84.8
86.6
91.0
88.6
90.8
93.7
87.5
88.2
87.4
83.3
78.1
77.9
68.8
65.9
41.9
78.9
82.5
84.3
Hydrogen
2.89
2.73
2.95
2.53
2.30
2.05
2.32
2.74
2.39
2.02
2.28
1.76
2.91
3.13
3.00
3.14
2.20
0.97
1.75
2.00
4.96
Vehicle Total
Particulate , g/testa
2.708
2.575
2.512
3.630
2.556
3.882
2.949
2.104
3.359
3.507
2.817
5.117
2.505
1.941
2.512
2.677
2.129
3.444
3.943
2.921
4.569
Based on 47 mm Pallflex
50
-------
fuel sulfur and lubricating oil additives. The 25% SRC-II blend was associated
with measureable amounts of lead, manganese and bromine in the hot FTP and
HFET, while samples taken with the other fuels exhibited little of these ele-
ments, if any.
E. Composition of Organic Solubles in Particulate Matter
The organic soluble portion of the particulate was obtained from particu-
late samples collected on 20x20 inch Pallflex filters, using Soxhlet extraction
procedures (methylene chloride as solvent). The amounts of organic solubles
extracted are presented in Table 19 as percent of the total particulate mass.
This result gives an indication of the split between soot and condensed organ-
ics in the total particulate matter. During the FTP, the Broadcut and 25%
SRC-II test fuels generated particulate with substantially higher solubles
than the base fuel (25% vs 18%). These values indicate a more oily particu-
late, possibly containing more unburned fuel. Gaseous hydrocarbon increases
were also seen with these two fuels, supporting this supposition. During the
HFET, the Broadcut again increased the amount of organic solubles; but the 25%
SRC-II gave about the same levels as the base fuel. The 25% EDS naphtha gen-
erated particulate matter with solubles lower than those for the base fuel
during both the FTP and the HFET.
A portion of the organic soluble material was analyzed for carbon and
hydrogen. The results are given in Table 19. All the elemental data are
indicative of hydrocarbon-like materials (numeric H/C ratio between 1.79 and
1.83). Overall, there is no appreciable difference between the seven fuels
or the two cycles regarding carbon and hydrogen content of the resulting
organic solubles.
F. Gas Chromatograph "Boiling Range" Analysis of Organic Solubles
The organic soluble portion of particulate matter resembles a very heavy
oil or a varnish. A high-temperature GC-simulated boiling point distribution,
with an internal standard, was determined by an analysis of organic soluble
material from particulate generated with each fuel. Table 20 summarizes the
results for samples generated during both the FTP and HFET. The chromatograms
for each of the samples summarized in Table 20, along with an example analysis
of a crude oil and a calibration run, are located in Appendix D, Figures
D-9 through D-25.
FTP results show that solubles from tests on the Broadcut, 25% SRC-II
and 25% EDS test fuels show slightly lower boiling ranges as compared with
the base fuel for the first 40%. The percent recovery for the solubles indi-
cates that in some cases, a sizeable amount of material (over 30 percent)
boils over 640°C. Based on recoveries, Broadcut fuel yielded the largest
amount of organic solubles boiling under 640°C. Most of the test fuels emitted
more organic soluble compounds whose boiling points were under 640°C for the
HFET than for the FTP. Over ninety percent of the compounds generated using
51
-------
TABLE 19. COMPOSITION OF ORGANIC SOLUBLES FROM PARTICULATE MATTER
Fuel
Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
Fuel
Description
base DF-2
shale diesel
marine
Paraho JP-5
Coal Case 5A
Broadcut
25% SRC-II
25% EDS
Cycleb
FTP
HFET
FTP
HFET
FTP
HFET
FTP
HFET
FTP
HFET
FTP
HFET
FTP
fIFET
Weight Percent
Carbon
85.2
85.5
85.6
85.7
85.4
85.6
85.6
85.6
85.5
85.2
85.3
85.0
84.8
85.5
Hydrogen
12.9
12.9
13.0
13.0
13.1
13.0
12.9
13.0
13.0
12.9
12.8
13.0
12.8
13.0
Vehicle Total
Solubles, g/test
1.150
0.810
1.098
0.838
0.801
0.661
1.488
0.750
1.181
0.682
1.771
0.658
0.955
0.602
% of Total
Particulate
18.0
18.0
17.7
17.0
12.2
16.4
17.6
12.0
25.2
23.9
25.6
16.4
13.1
12.7
Ul
to
based on 20x20 Pallflex filters
"4-bag" FTP's
-------
TABLE 20. CHROMATOGRAPH ANALYSIS OF ORGANIC SOLUBLES IN PARTICULATE MATTER
Fuel Description
Fuel Code
IBP
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
EP
Recovery @ 640 °C
Fuel Code
IBP
10% point
20% point
30% point
40% point
50% point
60% poiny
70% point
80% point
90% point
EP
Recovery @ 640 °C
Boiling Temperature, °C, at Distillation Point by Fuel during 4-bag FTP
Base DF-2
EM-329-F
318
365
388
416
451
494
537
605
70.0
Shale Diesel
Marine
EM-453-F
307
358
379
402
429
463
499
531
603
80.1
Paraho JP-5
EM-473-F
337
374
397
422
451
482
510
548
77.5
Coal Case 5 A.
EM-474-F
307
357
376
396
425
472
525
67.0
Broadcut
EM-476-F
235
357
381-
401
422
449
493
539
599
86.0
25% SRC-II
EM-478-F
249
347
367
389
427
495
581
65.0
25% EDS
EM-482-F
251
357
377
396
421
455
497
539
611
82.8
Boiling Temperature, °C, at Distillation Point by Fuel during HFET
EM-329-F
325
374
400
429
462
492
526
582
71.7
EM-453-F
314
365
384
409
436
469
503
549
~~
78.8
EM-473-F
236
367
394
419
446
471
498
526
572
630
91.4
EM-474-F
336
378
399
422
445
471
495
520
569
~^
85.6
EM-476-F
239
363
387
410
435
466
500
537
600
~~-
84.6
EM-478-F
242
358
385
412
442
476
510
552
611
~~
83.6
EM-482-F
238
363
384
407
432
461
490
520
566
639
90.2
Ul
u>
-------
Paraho JP-5 and 25% EDS middle distillate boiled under 640°C. This fraction
is high compared to the 72 percent base fuel value.
G. Fractionation by Relative Polarity
Composition of the soluble organic fraction of the particulate is com-
plex, and its separation into individual compounds is very difficult. Frac-
tionation of the organic solubles by high performance liquid chromatography
(HPLC) separates the soluble portion into a series of fractions of increasing
molecular polarity. This procedure(15) is not quantitative, but provides a
method to collect fractions with generally different polarities. All samples
were analyzed at the same time, having the same ratio of organic extract and
carrier solvent. Therefore, the results can be compared to one.another on a
relative basis to estimate increases or decreases of compound classes which
differ from each other by molecular polarity. Figure 15 through 22 show the
HPLC chromatographic outputs for direct comparison of the relative response
of increasingly polar compounds at the wavelengths discussed in Section IV,
Part E-5 of the report.
Each figure contains three traces, one representing the carrier solvent
composition, a second representing the ultraviolet detector response, and
the third representing the fluorescence detector response. Figure 15 shows
the response of BaP and 9-fluorenone. BaP and similar compounds elute in
this non-polar region. Near the end of the transition period (i.e., solvent
polarity now polar) 9-fluorenone elutes. With 100 percent methylene chloride,
even more polar compounds elute. For example, acridine elutes during this
polar period (at about 70 minutes).
A CRC study( $' indicated that compounds which fluoresce in the transi-
tion fraction (i.e. 20 to 30 minutes elution time, which is a fraction of in-
termediate polarity) yielded the highest Ames response (i.e. mutagenic acti-
vity). During this period, 20.9 percent of the Ames activity was associated
with 2.5 weight percent of the organic soluble material. Figures 16 through
22 show that the greatest fluorescence response in this fraction (20 to 30
minutes elution time) was associated with the Paraho JP-5. The Broadcut and
Coal Case 5A fuels also showed a high fluorescence response in this fraction.
On the other hand, the 25% EDS material did not yield any response in this
fraction, while the base fuel responded only slightly. The 25% SRC-II blend
gave a peak shape similar to the Broadcut and Coal Case 5A fuels, but with a
smaller total area. In summary, based on the results of the aforementioned
CRC data, increases in Ames activity as compared to the base fuel may be
observed for all the fuels except the 25% EDS blend.
In the period between 2 and 10 minutes elution time, polynuclear com-
pounds, which are relatively non-polar (such as BaP), elute. Several of
these compounds are mutagenic. The particulate extract from all of the test
fuels show high UV fluorescence response in this fraction. The 25% EDS blend
54
-------
SOLVENT POLARITY
Time, minutes
Figure 15. HPLC response to BaP and 9-fluorenone,
SOLVENT POLARITY
-I [FLUORESCENCE
i ;
60
50 40 30
Time, minutes
20
10
Figure 16. HPLC response to extract generated from Base DF-2.
55
-------
SOLVENT POLARITY
FLUORESCENC
T ~
50 40
I
70
60
Time, minutes
Figure 17. HPLC response to extract generated from Shale Diesel Marine.
^SOLVENT POLARITY
i
40 30
Time, minutes
Figure 18. HPLC response to extract generated from Paraho JP-5.
56
-------
SOLVENT POLARITY __
I .
i i
I -- FLUORESCENCEU-
i
50 40 30
Time, minutes
Figure 19. HPLC response to extract generated from Coal Case 5A.
SOLVENT POLARITY
T 1 T
50 40 30
Time, minutes
Figure 20. HPLC response to extract generated from Broadcut.
57
-------
SOLVENT POLARITY
40
Time, minutes
Figure 21. HPLC response to extract generated from 25% SRC-II.
( 1-
j i
T" 1 "
i
.
h-
.
r -1
!
1
1
_. |
-
-
^
-
SOLVENT POLARITY
-t-i 'I
-4_,_.i..._L_4I
_ :_ ._ i
FLUORESCENCE
40
Time, minutes
Figure 22. HPLC response to extract generated from 25% EDS.
58
-------
responses appear different from any of the other samples in this fraction
with a single large fluorescence peak and no UV activity, reminiscent of the
run with compounds shown in Figure 15. Treating the entire HPLC chromatograms
as "fingerprints", it is interesting to note that Coal Case 5A and the Broad-
cut fuel generated almost identical traces.
H. Benzo(a)pyrene (BaP) in Organic Solubles
BaP results are presented in Table 21, and are shown graphically in Fig-
ure 23. The BaP present in the organic soluble portion of the particulate
for the fuels tested is substantially higher (about a factor of 10) than that
found in other studies.(3/6,17) Time was spent to verify these results by
checking the procedure, solvents, calculations, and parameters. This group
of samples was also run between samples generated on other in-house studies.
The results of the samples that bracketed this study's samples indicated
typically low BaP values, substantiating the unexpectedly high values for
this test vehicle. HPLC analyses showed a large amount of non-polar poly-
nuclear compounds similar to BaP.
TABLE 21. BaP PRESENT IN ORGANIC SOLUBLES DURING FTP + FTP
c h
Fuel Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
EM-485-F
Fuel Description
base DF-2
shale diesel marine
Paraho JP-5
Coal Case 5A
Broadcut
25% SRC-II
25% EDS
25% EDS naphtha
Filter No.
5830.3-
P20-82,83
P20-48,49
P20-57,58
P20-69,70
P20-72,73
P20-98,99
P20-107,108
P20-lll,112
Part.
Rate,
g/kma
0.25
0.32
0.27
0.34
0.23
0.28
0.34
0.29
% Organic
Extract.
14.6
14.8
13.6
15.0
25.0
20.7
14.6
12.7
% BaP
in Extract
0.042
0.071
0.087
0.085
0.053
0.017
0.050
0.023
BaP Rate
yg/km
14.9
34.0
31.6
44.1
30.2
10.0
24.3
8.7
based on 20x20 Pallflex filters
59
-------
en
o
Shale Diesel Marine
10
20
30 40
BaP Emissions yg/km
I
50
60
70
Figure 23. BaP emissions during FTP.
-------
The largest BaP emissions was associated with the Coal Case 5A fuel
about 3 times higher than for the base fuel. Values up to twice the base
fuel level were seen with the Shale Diesel, Paraho JP-5, Broadcut, and 25%
EDS. Slight reductions were observed with the 25% EDS Naphtha and 25% SRC-II.
Comparing the 25% EDS middle distillate with the 25% SRC-II shows that the
25% EDS produced twice the BaP associated with the 25% SRC-II. However, a
lighter cut of the EDS material, 25% EDS naphtha, resulted in approximately
the same BaP emissions at the 25% SRC-II.
I. Mutagenic Activity by Ames Testing
The Ames test, as employed in this program, refers to a bacterial muta-
genesis plate assay with Salmonella typhimurium according to the method of
Ames.(14) This bioassay determines the ability of chemical compounds or mix-
tures to cause mutation of DNA in the bacteria, positive results occurring
when histidine-dependent strains of bacteria revert (or are mutated) genetically
to forms which can synthesize histidine on their own. Samples of the soluble
organic fraction representing transient composites were submitted for bioassay
over five tester strains, TA1535, TA1537, TA1538, TA98 and TA100.
All five tester strains are histidine-dependent cells by virtue of muta-
tions within the histidine functional genetic unit. When these histidine-
dependent cells are grown on minimal medium agar plates containing a limited
amount of histidine, only those cells that revert to histidine independence
are able to form colonies. The trace amount of histidine allows all the
bacteria plated to undergo a few divisions, which is essential for mutagenesis
to occur. It is these histidine-independent revertants which are scored as
colonies against a slight background growth consisting of histidine-requiring
cells that have depleted the histidine present within the minimal medium.
In addition to mutations in the histidine functional genetic unit, all
the tester strains have a defective lipopolysaccharide coat which allows
large molecules to permeate the bacterial wall, thus increasing bacterial
sensitivity to mutagenic aromatic compounds. Furthermore, a UV mutation
decreased bacterial sensitivity to additional mutagenic agents. TA1535 and
its plasmid-containing counterpart, TA100, detect base pair substitutions;
while TA1537 (and TA1538 with its plasmid-containing counterpart, TA98)
respond to frameshift mutagens. The plasmids present in TA98 and TA100 are
believed to cause an increase in error-prone DNA repair leads to
more mutations. Thus, the five tester strains in tandem provide a very
sensitive method for the detection of potentially mutagenic environmental
samples.
Table 22 summarizes the results in revertants per microgram of extract.
In most cases, the two EDS blends, EM-482-F and EM-485-F, exhibited the
61
-------
TABLE 22. SUMMARY OF AMES BIOASSAY ANALYSIS OF ORGANIC
SOLUBLES FROM PARTICULATE MATTER COLLECTED DURING FTP
Fuel Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
EM-485-F
Description
base DF-2
shale diesel
marine
Paraho JP-5
Coal Case 5A
Broadcut
25% SRC-II
25% EDS
25% EDS
naphtha
RLI-16
Activation
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Model Predicted
Mean Slope, revertants/yg extract
TA-1535
0.5
0.1
0.5
0.1
0
0.2
0
0.1
0
0.2
0.6
0.1
0.1
0.2
0
0.1
TA-1537
1.9
1.4
4.3
4.8
4.8
1.9
5.8
4.0
5.5
4.2
6.3
7.0
12.5
8.2
13.2
12.2
TA-1538
3.7
3.5
6.6
11.0
6.8
10.3
8.3
8.7
9.6
10.6
10.0
12.0
11.4
10.9
18.5
16.2
TA-98
6.0
3.1
.12.0
6.3
5.5
4.0
13.2
5.2
13.4
5.0
10.4
5.3
24.3
8.8
19.8
9.0
TA-100
17.1
7.2
30.5
14.5
14.3
5.7
23.8
20.7
44.6
14.2
61.3
13.7
19.7
16.3
17.4
8.6
62
-------
greatest number of revertants per microgram of extract for strains TA1535,
TA-1537, TA-1538, and TA-98. This relationship occurred whether or not
metabolic activation was applied. Results for strain TA-100 without activa-
tion indicated that the 25% SRC-II and the Broadcut fuel were associated with
the greatest number of revertants per microgram. Once metabolically activated,
the extracts from the 25% SRC-II and the Broadcut fuel tests acted much like
those from the 25% EDS, Coal Case 5A, and shale diesel marine evaluations.
It is interesting to note that the TA-100 strain responded equally to both
the 25% EDS naphtha blend and the base DF-2.
A comparison of "distance specific" Ames activity is shown in Table 23.
These data take into account the particulate rate and percent organic extract-
ables from each fuel blend, resulting in Ames activity as revertants per
kilometer. Data in this form indicate that the base DF-2 and the Paraho JP-5
generally yielded lower Ames responses than the other fuels for all five
strains. Strain TA-100 without metabolic activation indicated that the 25%
SRC-II blend and the Broadcut blend were associated with the most revertants
per kilometer. Once activation was applied, the revertants were reduced to
approximately the same levels as those for some of the other blends. In the
majority of cases, metabolic activation reduced Ames activity on all 5 strains.
This trend implies that the organic soluble portion of the particulate matter
from the fuels tested probably contained direct-acting mutagens as well as
indirect-acting mutagens.
The Paraho JP-5 fuel, EM-473-F, was associated with the greatest fluor-
escence response during the transition period on the HPLC polarity profile,
and twice the level of BaP generated with the base DF-2 fuel. It was antici-
pated that the Paraho JP-5 would show high Ames response, based on a CRC
study d^) an(j the fact that BaP is a known mutagen; but the Ames data did not
support this supposition. The greatest Ames response was associated with the
25% SRC-II and the Broadcut on strain TA-100. Samples generated using two
blends also had much higher HPLC ultraviolet responses at both 8 and 38 min-
utes, as compared to the other blends. The 25% EDS sample also had a high
peak at 38 minutes, but no response at 8 minutes. At 8 minutes, in the non-
polar region, BaP and similar PNA compounds elute. Broadcut fuel was associated
with higher BaP emissions than base fuel, while the 25% SRC-II did not. It
is possible that some of these fuels emitted organics which contained PNA's
and possibly BaP isomers that were not detected in the BaP analytical procedure,
but were seen in the HPLC polarity profile and also caused high Ames responses.
63
-------
TABLE 23. SUMMARY OF AMES BIOASSAY RESULTS IN
REVERTANTS PER DISTANCE DURING FTP
Fuel Code
EM-329-F
EM-453-F
EM-473-F
EM-474-F
EM-476-F
EM-478-F
EM-482-F
EM-485-F
Description
base DF-2
shale diesel
marine
Paraho JP-5
Coal Case 5A
Broadcut
25% SRC-II
25% EDS
25% EDS
naphtha
RLI-16
Activation
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Model Predicted
Mean Slope, 103 revertants/kma
TA-1535
18
4
24
5
0
7
0
5
0
12
34
4
5
10
0
4
TA-1537
70
51
204
227
177
70
296
204
316
242
365
406
620
407
486
449
TA-1538
135
128
313
521
250
378
423
444
552
610
580
696
566
541
681
597
TA-98
219
113
568
298
202
147
673
265
771
288
603
307
1206
437
729
331
TA-100
624
263
1444
687
525
447
1214
1055
2564
817
3553
794
978
809
641
316
Calculation incorporates particulate mass rates based on 47mm Pallflex filters,
percent organic solubles extracted from Pallflex "20 x 20" filters, and data in
Table 21.
64
-------
REFERENCES
1. Federal Register, Vol. 44, No. 23, Part IV, Thursday, February 1, 1979.
2. Smith, L.R., Parness, M.A., Fanick, E.R., and Dietzmann, H.E., "Analytical
Procedures for Characterizing Unregulated Emissions from Vehicles Using
Middle-Distillate Fuels." Interim Report, Contract 68-02-2497, U.S.
Environmental Protection Agency, Office of Research and Development,
April 1980.
3. Bykowski, B.B., "Characterization of Diesel Emissions as a Function of
Fuel Variables." Final Report, Contract 68-03-2707, U.S. Environmental
Protection Agency, Office of Mobile Source Air Pollution Control, April,
1981.
4. Hare, C.T., "Methodology for Determining Fuel Effects on Diesel Partic-
ulate Emissions." EPA 650/2-75-056. U.S. Environmental Protection
Agency, Office of Research and Development, March 1975.
5. Hare, C.T., Springer, K.J., and Bradow, R.L., "Fuel and Additive Effects
on Diesel Particulate-Development and Demonstration of Methodology." SAE
Paper No. 760130, Detroit, Michigan, February 1976.
6. Hare, C.T., "Characterization of Gaseous and Particulate Emissions From
Light-Duty Diesels Operated on Various Fuels." Final Report Contract
68-03-2440, U.S. Environmental Protection Agency, July 1979.
7. Sefer, N.R., Russell, J.A., "Regional Refining Models for Alternative
Fuels Using Shale and Coal Synthetic Crudes." Annual Report for period
20 March 1979 to 19 March 1980, Contract DOE/CS-50017-1, U.S. Department
of Energy, Office of Transportation Programs, November 1980.
8. Sefer, N.R., "Regional Refining Models for Transportation Fuels from
Shale Oil and Coal Syncrudes." SAE Paper No. 810442, Detroit, Michigan,
February 1981.
9. Federal Register, Vol. 42, No. 124, Tuesday, June 28, 1977-
10. Federal Register, Vol. 45, No. 45, Wednesday, March 5, 1980.
11. Springer, K.J., and Baines, T.M., "Emissions from Diesel Versions of
Production Passenger Cars." SAE Paper No. 770818, Detroit, Michigan,
September 1977.
12. Levins, P.L., and Kendall, D.A., "Application of Odor Technology to
Mobile Source Emission Instrumentation." CRC Project CAPE 7-68 under
Contract No. 68-03-0561, September 1973.
65
-------
13. Swarin, S.J., and William, R.L., "Liquid Chromatographic Determination
of Benzo(a)pyrene in Diesel Exhaust Particulate: Verification of the
Collection and Analytical Methods", Research Publication GMR-3127,
General Motors Research Laboratories, Warren, Michigan, October 23, 1979.
14. Ames, B., McCann, J., Yamasaki, E., "Methods for Detecting Carcinogens
and Mutagens with Samonella Mammalian-Microsome Mutagenicity Test."
Mutation Research, 31, pp. 347-364, 1975.
15. Perez, J.M., et al, "Informational Report of the Measurement and
Characterization of Diesel Exhaust Emissions." CRC-APRAC Project No.
CAPI-1-64, Coordinating Research Council, Inc. Atlanta, Georgia, December
1980.
16. Springer, K.J., "Investigation of Diesel-Powered Vehicle Emissions VII."
Interim Report, Contract 68-03-2116, U.S. Environmental Protection Agency,
Office of Mobile Source Air Pollution Control, February 1977.
17. Williams, R.L., and Swarin, S.J., "Benzo(a)pyrene Emissions from Gasoline
and Diesel Automobiles." SAE Paper 790419, Detroit, Michigan, March 1979.
66
-------
APPENDIX A
CONTRACT 68-03-2884
TASK SPECIFICATION NUMBER 3
SCOPE OF WORK
-------
Alternate Fuels - Task 3
Scope of Uork
The objective of this work is to characterize in. a well controlled
manner the mobile source emissions effects of alternate fuels. The
results of the completion of this work will be a data base on the
emissions characteristics of soraa specific alternate fuels, as compared
to conventional petroleum-derived national average Diesel fuel and
gasoline. In order to achieve the objectives of this ^work, the following
tasks shall be performed,
Task I Obtain Representative Fuels
The contractor shall obtain test quantities of up to nine suitable fuels
in accordance with the Project Officers technical direction, it is
expected that EPA shall do much of the initial work to locate suitable
fuels, but the contractor should be prepared, to follow-up the acquisition.
efforts with regards to shipping and receiving the candidate fuels.
Also, the contractor should be prepared to expend effort toward contacting
potential sources.of alternate fuels upon the direction of the Project
Officer.
A list- of potential fuels for this effort are included below.
Diesel' Fuels
1. National Average D2 (Baseline)
2. Oil Shale D2 Parahoe Process (Clean)
3. Oil Shale D2 Precursor
A. Oil Shale D2 (Alternate Refinery Process)
5. Solvent Refined Coal D2
6. Wide Boiling Range D2
7. Oil Shale D2 (From Army)
S. Safety-D2 Low Emissions (From Army)
9'. High Nitrogen Shale-derived fuel
A-2
-------
Tank II. - Fuel r.'naractcrizatioa
In order to better understand the performance and eraxssiony behavior of
the candidate fuels obtained for this contract, the contractor shall obtain
a detailed analysis of the fuel composition- The types of information,
at a laininum, which will be required on each fuel, are listed below.
Fuel Composition Data
1. Gravity API
2. Cloud Point
3. ASTM Distillation
4. Flash PC.
5. Sulfur Wt%
6. Cetane Index 0 l *
7- . Fuel Composition (Paraffins, Olef±n,e, Aromatics)
8. PNA. level and, composition
9. Carbon/Hydrogen Ratio
10. Metal content
11. Nitrogen content
The contractor shall prepare a short report when "requested by the Project
Officer for each fuel, which will contain the compositional information
above, as well as a discussion of the suitability of the fuel for vehicular
use. An informed discussion of the source of the fuel and the suita-
bility of the fuel as a representative sample of its class (ex. a shale
oil fuel compared to what would be expected) by using contacts with
responsible government and industry '.scientific personnel shall also be
included.
A-3
-------
Task III - Emir.sion. Testing
In. order to characterize the emissions characteristics of these fuels
the contractor shall conduct an emissions testing program for regulated
and unregulated emission compounds.
Vehicle Selection
The vehicle used for this part of the program shall be a VW Rabbit
Diesel or similar vehicle vhich will be supplied by the manufacturer
thru EPA, Upon receipt of the vehicle it shall be inspected and adjusted
to conform to raanufacturers specifications.
Emissions Characterization Procedure
For each fuel, the vehicle shall be tested over triplicate repetitive
FTP's. Duplicate tests of the HFET shall also be run. During 2 of 3
FTP tests regulated and unregulated emissions shall be measured. Regu-
lated emissions, fuel economy and particulate mass shall be measured
during the remaining FTP and during the KFET.also.
A proposed test sequence is represented below. While this is expected
to be the most logical sequence for this program, other alternates, with
similar total effort, may be examined. A discussion, of the emission.
measurements to be made will be detailed in the next" section.
Test Sequence
1. Verify and/or adjust.vehicle to manufacturers specs.
2. Fill vehicle with candidate fuel.
3. Operate vehicle to purge the previous fuel remnants.
A. Test vehicle over following sequence
1975 FTP, HFET
1975 FTP, HFET
1975 FTP, Ames tent collection cycle x times.
First 505 of the LA'» for snoke emissions data.
A-4
-------
The above test sequence shall be run for each fuel selected for tasting.
In addition, this sequence shall be run 2 tines with baseline: fuel at
the onset of the testing to establish a vehicle baselines Also,, i;incc
sons time may elapso before testing sor?.e: o£ the fuel candidates, n. brief,
series of tests (FTP's) nay be required to establish thr: condition of
the test vehicle after any prolonged testing pause.
Emissions Measurements
1. HC, CO, NOx, CO and Fuel Economy shall be Treasured, in. accordance
with published EPA procedures- over each PTP and K?ET excluding the
particulate collection replicates. Results of these measurements
shall be reported in. metric units and English equivalents.
2. Particulate
a). Mass rate of particulate emissions shall be determined under
both FTP and HFET driving schedule according to recommended
EPA practice for testing light duty dxesel-povered vehicles-
b) Size distribution should be determined over the FTP cycle for
each fuel tested.
" c) Metal content of total -particulate shaT.1 be Treasured for those
fuels for which the fuel analysis data indicates a high level
of metal additives or contaminants.. The decision, of what
fuels to test and x^hat .metals to analyze for will be deternined
by-the Project Officer uith contractor input.
A-5
-------
3. Orgnnics: A methodology should be-, employed for Che rapid collection
of quantities oC particulate that are sufficient" for organics
analyses. The following analyses shall be performed:
a) Total mass emissions of soluble organics (this analysis will
be performed by EPA on filters- supplied by SwRI).
b) Boiling range of soluble organics,
c) Carbon, hydrogen, nitrogen and sulfur content. Also, selected
oxygen content analyses shall be performed.
d) Polycyclic organic natter (POM). ~ Art indication of the POM
emissions will be made By analyses of the benzo-a-pyrene (BaP)
content of the particulate emissions. This will be achieved
by obtaining filter samples and sending then to Dr.. KoT>ert
Jungers, EPA/RTP.
e) Current research has indicated that the analysis of the organic,
*
extract from Diesel particulates by High Performance Liquid
Chronrntography may provide useful data for comparing, different
fuels emission properties. Thus the contractor shall be
prepared to a limited number (one per fvrel) of KPLC analysis
of the Diesel particulate organic extract. The measurement
taethod used for this analysis should be fully qualified by
comparison via round robin sample analysis with similar proce-
dures within the research community-
4. Odor: A limited number of odor measurements shall be made using
the CRC Cape-7 DOAS odor measuring instrument. The specific
conditions which these measurements are to be made uill be deter-
mined by the Project Officer, with contractor input.
5. Smoke: Smoke emissions uill be determined for all fuel vai'iables
over the first 505 seconds of the LA'» driving cycle. The PUS
smoke motor shall be employed as well as an in-line, smoke meter.
A-6
-------
G." Ai;ics Tosi: Sawplcs: The Contractor shall obtain one sample over the'"
FTP for each fuel, store the sample and send, the sari'.plc to the
designated laboratory performing the Arr.es test. A total of 150 rig
of extracted organic material x.'ill probably be needed for each.
sample. The contractor shall gather the resultant data and include
it in the Final Report.
7. Bioassay Sample
The contractor shall collect for at least four fuels a quantity of
particulate sample for inclusion into an in vitro battery of biological
tests. The particulate shall be collected in accordance with previously
mentioned EPA procedures for collecting sanple for Awes tests
except that a much larger quantity (approximately 1 gram of organic
natter) will be needed. The sample will be collected using a series
of back-to-back test cycles, either the IA4 or I1PET cycles, immediately
after the-Ames test samples are collected. The specific test cycle
will be .selected by the Project Officer prior to the start of the
emission testing tasks..
A-7
-------
APPENDIX B
VOLKSWAGEN RABBIT LAB-TO-LAB CORRELATION RESULTS
-------
TEST NO, EPA-1 RUN 1
VEHICLE MODEL 30 VU RABBIT
ENGINE 1.5 L( 90. CID) L-4
TRANSMISSION M5
BAROMETER 741,93 MM HG(29,21 IN HG)
RELATIVE HUMIDITY 73, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN, H20)
SLOWER INLET P MM, H20(IN, 1-120)
BLOWER INLET TEMP, DEG, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
tp C02 SAMPLE METER/RANGE/PCT
^ C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY C3 L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER EPA-1
BAROMETER MM HG 741,9
HUMIDITY G/KG 13,1
TEMPERATURE DEG C 22,8
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 7/16/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULD TEMP, 22,3 DEG C(73,0 DEG F)
ABS, HUMIDITY 13,1 GM/KG
1
COLD TRANSIENT
.35
1.10
185,6
,65
7,01
504,
5,70
STABILIZED
711,2 (28,0)
563,9 (22,2)
37,2 ( 99,0)
13332,
105,9 ( 3740.)
36,6/il/ 37,
3,9/ 17 4,
55.3/13/ 53,
.5/13/ "0,
34, 7/ 3/ ,58
2,4/ 3/ ,04
17, 4/ 2/ 17.
,57 2/ 1,
22.75
33.
51, !'
,55
16,9
2,01
6,29
1057,3
3,72
1,99
711,2 (28,0)
563,9 (22,2)
36,1 ( 97,0)
23381,
179,3 ( 6331,)
20.4/11/ 20,
3,3/ I/ 3,
30,3/13/ 27,
,5/13/ 0,
21, I/ 3/ ,34
2,3/ 3/ ,04
12, 6/ 2/ 13.
,6/ 2/ 1,
33,83
17,
26.
,31
12,0
1.77
5.47
1005,0
4,47
1.86
,29
,73
6,16
868,
6,16
TEST WEIGHT 1077,
ACTUAL ROAD LOAD
DIESEL EPA
ODOMETER 1873, KM(
KG( 2375, LBS)
5,1 KU( 6.8 HP)
1164. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,08
HOT TRANSIENT
708,7 (27,9)
561,3 (22,1)
38,3 (101,0)
13329,
105,7 ( 3731,)
37,4/U/ 37,
3,3/ I/ 3,
49.2/13/ 46,
,3/13/ 0,
30,4/ 3/ ,50
2,3/ 3/ ,04
17,3/ 2/ 18,
,7/ 2/ 1,
26,22
34,
45.
.47
17,1
2,09
5,47
907,3
3,75
1,99
,37
.66
6,04
504,
5.68
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
166,9
6,30
,32
,95
,<59
.325
(4-EAG)
< 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
( 0.000)
-------
TEST NO, EPA-1 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1*5 L< 90. CID) L-4
TRANSMISSION M5
BAROMETER 741,93 MM HG(29.21 IN HG)
RELATIVE HUMIDITY 49, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP, DEG, C
-------
TEST NO. EPA-2 RUN 1
VEHICLE MODEL SO VW RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M5
BAROMETER 740.41 MM HO(29.15 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H2Q(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
I-IC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
w C02 SAMPLE METER/RANGE/PCT
I C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER EPA-2
BAROMETER MM HG 740,4
HUMIDITY G/KG 10,7
TEMPERATURE DEB C 25,0
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,!
DATE 7/17/30
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C<77,0 DEG F)
ABS, HUMIDITY 10.7 GM/KG
1
COLD TRANSIENT
708,7 (27,9)
553,8 (22,0)
37,8 (100,0)
13327,
105,6 ( 3729,)
40,3/H/ 41,
3,6/ I/ 4,
53.7/13/ 51,
1.1/13/ 1,
34,6/ 3/ ,58
2,6/ 3/ ,04
17.?/ 2/ 13.
1,1/ 2/ 1,
22,81
37,
49,
,54
16,8
2,28
5,99
1045,1
3,40
1,94
,40
1,06
184,3
,60
6,97
504,
5,67
STABILIZED
706,1 (27,8)
553,8 (22,0)
36,4 ( 97,5)
23506,
179,9 ( 6353.)
21,7/H/ 22,
3,0/ I/ 3,
30.7/13/ 23.
,5/13/ 0,
21.O/ 3/ .34
2,8/ 3/ ,04
13,I/ 2/ 13,
,9/ 2/ 1,
39,01
19,
27,
,30
12,2
1,95
5,60
978,1
4,20
1,29
,32
,91
159,6
.69
6.03
868,
6,13
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5,1 KW( 6,8 HP)
DIESEL EPA
ODOMETER 1914. KM( 118?, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
HOT TRANSIENT
711,2 (28,0)
563,9 (22,2)
38,3 (101,0)
13747,
104,8 ( 3699.)
29,9/il/ 30,
3,0/ I/ 3,
48.4/13/ 45,
,49
,04
18,
29, 9/ 3/
2,7/ 3/
17, 3/ 2/
1,1/ 2/
26,73
27,
44,
,45
16,7
1.63
5,33
871,0
3,35
1,57
.29
,94
153,9
,59
5,31
504,
5,66
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/K«
OXIDES OF NITROGEN G/KM
PARTICULARS G/KM
STABILIZED
3-BAG
163,2
6.16
,33
,95
.64
.254
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO, EPA-2 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L~4
TRANSMISSION M5
BAROMETER 740,16 MM HG(2?,14 IN MG)
RELATIVE HUMIDITY 52, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOU STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD HETER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
HC
HC
CO
CO
C02
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
BFCf WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER?
BAROMETER? MM HG
HUMIDITY? G/KG
TEMPERATURE? DEG C
CARBON DIOXIDE? G/KM
FUEL CONSUMPTION? L/100KM
HYDROCARBONS? G/KM
CARBON MONOXIDE? G/KM
OXIDES OF NITROGEN? G/KM
FET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE MO.l
DATE 7/17/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 24,4 DEG C(76,0 DEG F)
ABS, HUMIDITY 10,2 GM/KG
FET
716,3 (28,2)
571,5 (22.5)
38,3- (101,0)
20935,
202,6 ( 7155.)
29,1/H/ 29,
2,6/ I/ 3,
52.1/13/ 49,
,59
,04
21.
TEST WEIGHT 1077, KG( 2375, LB3)
ACTUAL ROAD LOAD 5,1 KW( 6,8 HP)
DIESEL EPA
ODOMETER 1938, KM( 1204, MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
35, 3/ 3/
2,6/ 3/
21, 2/ 2/
1,1/ 2/
22,37
27,
47,
,55
20,1
3.11
11,17
2052,4
7*68
3,52
766,
,955 ( .939)
1,000 ( ,978)
202.6
43.47
16,30
EPA-2
740.2
10.2
24.4
125,9
4,74
,19
,69
,47
-------
TABLE B-l. REGULATED EMISSIONS FROM 1980 VW RABBIT DIESEL 5-SPEED
HC , g/k.m
CO, g/km
NOX , gAm
Particulate, g/km
Fuel, A/100 km
FTP
(Avg)
vwa
0.65
2.38
1.69
6.14
(Avg)
EPA
0.85
2.06
1.63
0.578
5.88
SwRI
1
0.83
2.46
1.79
0.842
6.31
2
0.85
2.46
1.66
0.663
6.16
3b
0.85
2.41
1.63
0.553
.5.85
4c
0.73
2.46
1.75
0.653
6.16
FET
(Avg)
EPA
0.30
1.11
1.13
0.386
4.35
SwRI
1
0.47
1.87
1.24
0.553
5.05
2
0.49
1.79
1.216
0.560
4.74
3b
0.47
1.82
1.22
0.502
;4.58
4C
0.65
1.24
0.539
4.54
CO
Fuel different than at EPA
Dynamometer load suspect
"Fuel different than at EPA, new load cell and calibration
-------
TEST NO. EPA-3 RUN 1
VEHICLE: MODEL so vw RABBIT
ENGINE 1.5 L( 90. CID) L-4
TRANSMISSION H5
BAROMETER 744.98 MM HG(29,33 IN HG)
RELATIVE HUMIDITY 34, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN, H2C)
BLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP. BEG. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
HC
CO
CO
CQ2 SAMPLE METER/RANGE/PCT
w C02 BCKGRD METER/RANGE/PCT
i, NOX SAMPLE METER/RANGE/PPM
NOX HCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CO
C02
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS CRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 CRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/IOOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER EPA-3
BAROMETER MM HG 745.0
HUMIDITY 0/KG 7,0
TEMPERATURE DEC C 25,6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 10/ 3/80
BAG CART NO. 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEC C(78.0 BEG F)
ABS, HUMIDITY 7.0 CM/KG
7,
46.
,1,
.51
.03
20,
1
COLD TRANSIENT
708.7 (27,9)
561,3 (22,1)
34,4 ( 94,0)
13845.
107,1 ( 3782.)
45,5/li/ 46,
7.0/ I/
48.7/13/
i.2/13/
30. 6/ 3/
2. I/ 3/
19, 6/ 2/
,7/ 2/
26,00
39,
44.
,48
18,9
2,40
5,47
932.6
3.45
,43
.97
165.8
,61
6,28
504.
5.62
STABILIZED
711.2 (28,0)
561,3 (22,1)
35,6 ( 96,0)
23835.
183.9 ( 6495.)
25.8/il/ 26.
7.0/ I/ 7.
31.4/13/ 28,
1.1/13/ 1,
20,3/ 3/ .33
3,0/ 3/ ,05
13,4/ 2/ 13,
,7/ 2/ 1,
40.35
19.
27.
.28
12,7
2.02
5,80
949,6
3,98
,33
,96
157,7
.66
5,96
868.
6.02
TEST WEIGHT 1077. KG( 2375. LBS)
ACTUAL ROAD LOAD 5,1 KW( 6.8 HP)
DIESEL EPA
ODOMETER 1986, KM( 1234, MILES)
NOX HUMIDITY CORRECTION FACTOR ,89
39,
1,
.45
,05
18.
1,
HOT TRANSIENT
708.7 (27.9)
561.3 (22,1)
35.6 ( 96,0)
13848.
106.9 ( 3774.)
29.8/1I/ 30,
7,0/ I/
42.1/13/
l.i/13/
27.5/ 3/
3.2/ 3/
18.3/ 2/
,6/ 2/
29,25
23,
37,
,40
17,7
1,42
4,65
790,6
3,22
,83
141,2
,58
5,33
504,
5,60
CARBON DIOXIDE
FUEL CONSUMPTION
HYDROCARBONS (THC)
CARBON MONOXIDE
OXIDES OF NITROGEN
STABILIZED
G/KM
L/100KM
G/KM
G/KM
G/KM
3- BAG
154,8
5,05
,33
.93
.63
(4-BAG)
( 0.0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
-------
TEST NO, EPA-3 RUN 1
VEHICLE HODEL SO VU RABBIT
ENGINE 1.5 L( 90. CIB) L-A
TRANSMISSION M5
BAROMETER 743,71 MM HG(29,28 IN HG)
RELATIVE HUMIDITY 34, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN. H20)
BLOWER INLET P MM, H20CIN. H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRB METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
HC
HC
CO
CO
BCKGRB METER/RANGE/PPM
to
03
CO
CO?
NOX
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
RUN TIME SECONBS
DFC, WET (BRY)
SCF, WET
-------
TEST NO, EPA4 RUN 1
VEHICLE MODEL 30 VU RABBIT
ENGINE 0,0 L( 0, CIIO L-4
TRANSMISSION H5
BAROMETER 741,93 MM HG<29.21 IN HG)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
BAG NUMBER-
DESCRIPTION
BLOWER DIP P MM. H20(IN, H20>
BLOWER INLET P MM, H20(IN, 1-120)
BLOWER INLET TEMP, DEE. C(DEG, F)
BLOWER REVOLUTIONS
TOT PLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANCE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PFM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
w
i
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/iOOKM
RUN TIME
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER EPA4
BAROMETER MM HG 741,9
HUMIDITY G/KG 10,4
TEMPERATURE DEG C 25,6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-006
VEHICLE NO.l
DATE 10/10/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(7Q,0 DEG F)
ABS, HUMIDITY 10,4 GM/KG
1
COLD TRANSIENT
708,7 (27,9)
566,4 (22,3)
36,1 ( 97,0)
13854,
106,3 ( 3752.)
33,7/il/ 34,
7,8/ I/ 8,
54,1/13/ 51.
2.2/13/ 2,
34,O/ 3/ ,57
3,S/ 3/ ,06
13,3/ 2/ 18,
,7/ 2/ 1,
23,27
26,
48,
,51
17,6
1,61
5,97
995,7
3,55
1,78
,28
1,04
173,3
,62
6.54
505,
5,74
STABILIZED
708,7 (27,9)
'566,4 (22,3)
35,0 ( 95,0)
23322,
183,1 ( 6467.)
22,0/il/ 22,
5,9/ I/ 6,
31.2/13/ 23,
2.1/13/ 2,
22,2/ 3/ .36
3,6/ 3/ ,06
13,?/ 2/ 14,
,7/ 2/ 1,
36,30
16,
26,
,31
13,2
1,72
5,52
1024,4
4,58
1,39
.28
,89
165.9
,74
6.25
867.
6,18
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5.1 KW( 6,8 HP)
DIESEL EM-339-F
ODOMETER 2041, KM( 1263, MILES)
NOX HUMIDITY CORRECTION FACTOR ,99
HOT TRANSIENT
708,7 (27,9)
566,4 (22,3)
36,1 ( 97,0)
13343,
106,2 ( 3751.)
32,1/H/ 32,
5,9/ I/ 6,
58,4/13/ 56,
10.5/13/ 9,
30,O/ 3/ ,50
3,5/ 3/ ,05
17.7/ 2/ 18,
.6/ 2/ 1,
26.57
26.
46.
.44
17.1
1.62
5.67
863.6
3.44
1,50
.28
,99
150.8
,60
5,70
504,
5,73
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
163,3
6,16
,28
,95
,60
,252
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
( 0,000)
-------
TEST NO, EPA2 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 0,0 L( 0, CID) L-4
TRANSMISSION M5
BAROMETER 741.93 MM HG(29,21 IN HG)
RELATIVE HUMIDITY 50, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, H20(IN. H20)
BLOWER INLET P MM, K20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRB METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
M DILUTION FACTOR
7 HC CONCENTRATION PPM
M CO CONCENTRATION PPM
0 C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
RUN TIME SECONDS
DFC* WET (DRY)
SCFx WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER/ MM HG
HUMIDITY* G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION, L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDEF G/KM
OXIDES OF NITROGEN* G/KM
FET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-006
VEHICLE NO.l
BATE 10/10/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABS, HUMIDITY 10,4 GM/KG
FET
713,7 (23,1)
581.7 (22,9)
39,4 (103,0)
21024,
203,6 ( 7183.)
40,3/il/ 40,
5,6/ I/ 6,
77,7/13/ 77,
16.0/13/ 14,
34,3/ 3/ ,57
3,I/ 3/ ,05
21,2/ 2/ 21,
.6/ 2/ 1,
22,92 :'
35,
62,
,53
20,6
4,10
14,67
1966.4
7,94
766,
,956 ( ,941)
1.000 ( ,979)
203,6
43,99
16,41
EPA2
741,9
10,4
25,6
119.8
4,54
,25
,48
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5,1 KW( 6,8 HP)
DIESEL EM-329-F
ODOMETER 2041, KM( 1268, MILES)
NOX HUMIDITY CORRECTION FACTOR .99
-------
TABLE B-2. COMPARISON OF AVERAGE OR TYPICAL REGULATED EMISSIONS
FROM CURRENT TESTS TO THOSE FROM CONTRACT 68-03-2440a
Operating Sequence
Program
HC, gAm
CO, g.km
NOX , gAm
Particulate , gAme
Fuel, VlOO km
FTP
Earlier
0.52
1.32
1.69
0.563
5.60
Current
0.81
2.48
1.59
0.644
6.38
HFET
Earlier
0.26
0.98
1.48
0.370
4.52
Current
0.90
2.61
1.58
0.644
5.16
IDLE
Earlier
6.48b
12. 5b
4.89:?
3.41°
Current
2.13*
9.30*
0.70*
50 kph
Earlier
0.18
0.60
0.89
0.177
3.55
Current
0.42
1.38
1.35
0.451
4. .76
85 kph
Earlier
0.26
0.93
0.87
0.386
4.38
Current
1.014
3.089
1.738
0.724
5.20
td
i
^"National Average" fuels in both case - EM-329-F (current) and EM-239-F (earlier)
g/hr instead of g/mi
dTypical
Single value
Earlier particulate based on 47 mm glass fiber filters; current particulate based on 47 mm
Pallflex filters
-------
TABLE B-3. PROPERTIES OF COAL-DERIVED LIQUIDS USED AS BLENDING COMPONENTS
Fuel Code
Fuel Description
Gravity, "API
Specific Gravity
Distillation, D-86, °F
IBP
5
10
20
30
40
50
60
70
80
90
95
EP
Recovery, %
Aromatics
Olefins D-1319
Paraffins
Carbon, wt. %
Hydrogen, wt. %
Nitrogen, wt. %
Oxygen, wt. %
Sulfur, Wt. %
Viscosity, cs @ 100 °F,
D-445
Gum, mg/100 mfc, D-481
Cetane Number, D613
EM-472-F
SRC-II
Middle Distillate
14.3
0.970
353
327
396
411
423
435
446
457
471
485
501
518
566
99.0
88.3
0.6
11.0
86.2
8.6
0.83
3.9
0.27
3.68
156.9
16
EM- 4 80 -F
EDS
Middle Distillate
18.6
0.943
408
428
433
447
458
476
500
526
556
592
660
94.0
83.7
0.0
16. 3
88.6
10.7
0.08
0.01
3.30
228.6
23
EM.-481-F
EDS Naphtha
43.1
0.810
186
228
238
256
271
284
298
312
324
336
348
358
394
99.5
25.9
1.5
72.6
85.2
13.1
0.05
__
0.45
59.4
25
B-12
-------
APPENDIX C
GASEOUS EMISSIONS DATA
-------
TEST NO, 329FTP RUN 1
VEHICLE MODEL GO VU RABBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION M4
BAROMETER 736,85 MM h'G(29,01 IN MG)
RELATIVE HUMIDITY 46, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, C(DEG, F>
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
KC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
n NOX BCKGRD METER/RANGE/PPM
^ DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CE L/iOOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFf DRY
DFC, WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 329FTP
BAROMETER MM KG 736,9
HUMIDITY G/KG 9,8
TEMPERATURE DEG C 25,6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.i
DATE 12/ 0/80
BAG CART NO, 1 / CVS NO, 3
DYNO NO, , 2
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABS, HUMIDITY 9*8 CM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL, ROAD LOAD 5,4 KU< 7,3 HP)
DIESEL EM-329-F
ODOMETER 2176, KM( 1352, MILES)
NOX HUMIDITY CORRECTION FACTOR ,97
1
:OLD TRANSIENT
711,2 (28, Q)
558,0 (22,0)
38,9 (102,0)
13879,
135,0 ( 4766,)
33. A/11/ 34,
7,0/ I/ 7,
49,2/13/ 46,
5.4/13/ 5,
28, 5/ 3/ ,47
3,2/ 3/ ,05
15, O/ 2/ 15,
,3/ 2/ 0,
28,10
27,
41,
,42
14,7
2,09
6,38
1042,3
3,69
1,76
,36
1,11
181,2
,64
7,00 ,
505, t
5,75
,981
,973
1,000
i
2
STABILIZED
711.2 (28,0)
571,5 (22,5)
34,4 ( 94,0)
23842,
233,4 ( 8240.)
19,2/H/ 19,
4,7/ I/ 5,
26.3/13/ 24,
5.5/13/ 5,
18, O/ 3/ ,29
3.2/ 3/ ,05
9,5/ 2/ 10,
,2/ 2/ 0,
45,87
15,
19,
,24
9,3
1,96
5,11
1025,1
4,03
1,26
,32
,82
165,4
,65
6,38
868.
6,20
.982
( ,959)
( ,992)
368,4
78,63
11*95
6,67
CARBON
3
HOT TRANSIENT
711,2 (28,0)
558,8 (22,0)
36,9 ( 98,5)
13868,
135,3 ( 4779.)
31,1/H/ 31,
4,7/ I/ 5.
43.5/13/ 41,
4.0/13/ 4,
24, 8/ 3/ ,40
2,7/ 3/ ,04
14, 2/ 2/ 14,
.!/ 2/ 0.
32,59
27,
36,
,36
14,1
2,07
5,72
902,2
3,55
.1 , 55
,36
,99
156,1
,61
6,03
505,
5,78
.981
,975 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (TOO G/KM
CARBON
OXIDES
MONOXIDE G/KH
OF NITROGEN G/KM
PARTICIPATES G/KH
4
STABILIZED
711,2 (28,0)
571,5 (22,5)
35,0 ( 95,0)
23834,
233,0 ( 8228,)
17, 8/1 I/ 18,
4,5/ I/ 5,
23.3/13/ 21,
2.9/13/ 3,
17, 7/ 3/ ,28
2,8/ 3/ ,04
9,2/ 2/ 7,
,.!/ 2/ 0,
46,74
13,
IS,
,24.
9,1
1,79
4,97
1027,8
3,94
0,00
,29
,81
166,5
,64
6,41
868,
6,17
,982
.961)
,982)
368,4
70,54
11,95
6.23
3-BAG (4-HAG)
166,1 ( 166,4)
6,41 < 6,42)
.34 ( ,33)
.93 ( ,92)
64 ( ,,53)
.242 ( 0,000)
-------
TEST NO, 329FET RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 736,85 MM HG<29,01 IN HG)
RELATIVE HUMIDITY 46, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, H20(IN, H20)
BLOWER INLET F MM, H20(IN, H20)
BLOWER INLET TEMP, BEG. C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy UET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETER* MM HG
HUMIDITYy G/KG
TEMPERATUREy DEO C
CARBON DIOXIDEt G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN? G/KM
n
U)
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l.
DATE 12/ 8/80
BAG CART NO. 1
DYNO NO, 2
CVG NO, 3
DRY BULB TEMP, 25,6 BEG C(78,0 BEG F)
ABS. HUMIDITY 9,8 CM/KG
HFET
711,2 (28,0)
569.0 (22,4)
37,8 (100,0) '
21013,
204.4 ( 7219.)
52,4/H/ 52,
4,8/ I/ 5,
73.1/13/ 72,
2.0/13/ 2,
36,7/ 3/ ,62
3.0/ 3/ .05
26,O/ 2/ 26,
,!/ ?./ 0,
21,30
48,
68,
.57
25,9
5,64
16,16
2144,8
9,84
4,06
765,
.953 < ,939)
1,000 ( ,979)
204,4
43,55
16,53
329FET
736,9
9,8
25,6
129,7
5,03 :
,34
,98
.60
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7.3 HP)
DIESEL EM-329--F
ODOMETER 2202, KM( 1368, MILES)
NOX HUMIDITY CORRECTION FACTOR .97
-------
TEST NO. 329FTP RUN 2
VEHICLE MODEL SO VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,20 MM HG(29,26 IN HG>
RELATIVE HUMIDITY 31, PCT
PAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN, H20>
BLOWER INLET P MM. H20(IN, 1-120)
BLOWER INLET TEMP, DEO. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
?
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF* DRY
BFC» WET WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 329FTP
BAROMETER MM HG 743.2
HUMIDITY G/KG 6.4
TEMPERATURE DEC C 25.6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 12/ 9/80
BAG CART NO, 1 / CVS NO, 3
DYNO NO, "2
DRY BULB TEMP. 25,6 DEC C(78.0 DEC F)
ADS, HUMIDITY 6,4 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU< 7,3 HP)
DIESEL EM-329-F
ODOMETER 22.18, KM( 1378. MILES)
NOX HUMIDITY CORRECTION FACTOR .130
1
:OLD TRANSIENT
711,2 (28,0)
561,3 (22,1)
35,0 ( 95,0)
13S70,
137,4 ( 4853,)
38.1/11/ 33,
5,3/ I/ 5,
53.4/13/ 51,
2.9/13/ 3.
28, O/ 3/ ,46
3,2/ 3/ ,05
16, I/ 2/ 16,
,6/ 2/ 1,
28,57
33,
47,
,41
15,5
2,61
7,55
1038,9
3,57
1,92
.45
1.29
177.2
,61
6,87
505,
5,06
.986
,974
1,000
2
STABILIZED
711,2 (28.0)
561,3 (22,1)
32.2 ( 90,0)
23814.
237,3 ( 8378.)
17,6/H/ 18.
6,0/ I/ 6,
24. 5/1 3/ 22.
2.7/13/ 2,
17. 7/ 3/ .28
3,0/ 3/ ,05
10, I/ 2/ 10,
,6/ 2/ 1.
46,73
12,
20,
,24
9,5
1,60
5,44
1033,4
3,70
1,26
.25
,86
163,0
,60
6,31
068,
6.31
,987
( ,964)
( ,987)
374,7
80,61
12,17
6,58
CARBON
3
HOT TRANSIENT
711,2 (28,0)
561,3 (22,1)
35,0 ( 95,0)
13856.
137.3 ( 4848.)
30,9/U/ 31.
6.0/ I/ 6,
47.9/13/ 45.
5.2/13/ 5,
25. 3/ 3/ ,41
3,4/ 3/ ,05
15, 5/ 2/ 16.
,5/ 2/ 1.
31,08
25,
40.
.36
15.0
1,98
6,35
910,9
3.45
1.71
,34
1,10
157.6
,60
6.10
505,
5,78
,986
,975 <
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/K«
OF NITROGEN G/Krt
PARTICIPATES G/KM
4
STABILIZED
711.2 (28,0)
561.3 (22,1)
32,8 (91.0)
23819.
237,1 ( 8370,)
17,2/il/ 17,
5,0/ I/ 5,
25.8/13/ 24,
4.7/13/ 4,
17, 6/ 3/ ,28
3, I/ 3/ ,05
10. O/ 2/ 10,
,5/ 2/ 1,
46.99
12.
19,
,23
9.5
1.68
5.28
1018.6
3.70
0.00
.26
,83
160,3
,59
6.17
868.
6,36
.987
,965)
.987)
374.4
80.55
12.14
6.14
3-BAG (4-BAG)
164,9 ( 163.8)
6,37 ( 6.33)
.32 ( ,32)
1.01 ( 1.01)
.60 ( .60)
.252 ( O.QQO)
-------
TEST NO, 329FET RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1.5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,46 MM HG(29.27 IN H6)
RELATIVE HUMIDITY 31, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM, H20UN, H20)
BLOWER INLET TEMP, DEG, C
ADS, HUMIDITY 6,4 GM/KG
HFET
711.2 (28.0)
561,3 (22,1)
40,6 (105.0)
21014,
205,3 ( 7248,)
54,6/11/ 55,
5,2/ I/ 5,
77.7/13/ 77,
2,8/13/ 3,
37.A/ 3/ ,63
3.2/ 3/ ,05
29,3/ 2/ 29,
,5/ 2/ 1,
20,73
50,
73,
,59
20,8
5,87
17.33
2205,0
9,91
4,26
765,
.952 ( ,942)
1,000 ( ,984)
205,3
44,03
16,61
329FET
743,5
6,4
25,6
132,8
5,15
1,04
,60
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-329-F
ODOMETCR 2243, KM( 1394, MILES)
NOX HUMIDITY CORRECTION FACTOR ,88
-------
TEST NO, 329FTP RUN 3
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 751,08 MM MG(29.57 IN HG)
RELATIVE HUMIDITY 22, PCT
DAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER7RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
? DILUTION FACTOR
en HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CD L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFr DRY
DFC, WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
OMPOSITE RESULTS
TEST NUMBER 329FTP
BAROMETER MM HG 751.1
HUMIDITY G/KG 4.5
TEMPERATURE DEG C 25.6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,
BATE 12/10/80
BAG CART ND..1 / CVS NO, 3
DYNO NO. 2
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABS, HUMIDITY 4,5 GM/KG
TEST WEIGHT 1021, KG( 2250, LDS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-329-F
ODOMETER 2260, KM( 1404, MILES)
NOX HUMIDITY CORRECTION FACTOR
,83
1
lOLD TRANSIENT
711,2 (23.0)
574.0 (22,6)
36,1 ( 97,0)
13745,
137,1 ( 4840.)
34,17117 34,
5,07 I/ 5,
52.3/13/ 50,
3.9/13/ 4,
27, 6/ 3/ ,45
3,3/ 37 ,05
16,77 27 17,
,7/ 2/ 1.
29,04
29,
45,
.40
16.0
2,31
7,24
1014,6
3.48
1.92
,41
1,27
178,4
.61
6,91
501,
5,69
,989
,974
1,000
2
STABILIZED
721,4 (28.4)
531.7 (22.9)
32.2 ( 90,0)
23797,
238,8 ( 8434.)
15.1/11/ 15.
4.4/ I/ 4,
23.8/13/ 22,
4,9/13/ 4,
17, 5/ 3/ ,28
3,0/ 3/ ,05
10, 6/ 2/ 11,
,6/ 2/ 1,
47,33
11,
17.
,23
10,0
1,48
4,78
1025.5
3,79
1,27
,24
.77
166,1
,61
6,39
868,
6,17
,990
( ,967)
( .990)
375,9
80,34
11,86
6,64
CARBON
3
HOT TRANSIENT
713,7 (28,1)
581,7 (22,9)
35,0 ( 95.0)
13875,
138,5 ( 4890.)
25,1/il/ 25,
4,4/ I/ 4,
40.6/13/ 38,
2.7/13/ 2,
24,17 3/ ,39
3,0/ 3/ ,05
15, 9/ 2/ 16.
,6/ 2/ 1,
33,65
21,
35,
,35
15,3
1,66
5,63
880,8
3,37
1,59
,29
,98
153,8
.59
5,94
506,
5.73
,989
.976 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN 0/KH
PARTICULARS G/KM
4
STABILIZED
713,7 (28,1)
581,7 (22,9)
32,2 ( 90,0)
23788,
238.7 ( 8430.)
13.8711/ 14,
4,5/ I/ 5,
20.5/13/ 19,
2.3/13/ 2,
17, O/ 3/ ,27
2,8/ 3/ ,04
10, 9/ 2/ 11.
,6/ 2/ 1,
48,85
9,
16,
,23
10,3
1,29
4,56
1001,6
3,91
0,00
,21
,74
161,9
,63
6,22
867,
6,18
,990
,969)
,990)
377,2
80,54
11,91
6,09
3-BAD (4-BAG)
165.3 ( 164,0)
6,37 ( 6,32)
.29 < ,28)
93 ( ,92)
61 < .61)
.253 ( O.OOO)
-------
TEST NO, 329FET RUN 3
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 750,82 MM HG(29,56 IN HG)
RELATIVE HUMIDITY 19, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, M20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C
BAROMETER? MM HG
HUMIDITY? G/KG
TEMPERATUREy DEG C
CARBON DIOXIDEy G/KM
FUEL CONSUMPTION? L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN? G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11 --5830- 003
VEHICLE NO...
DATE 12/10/00
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
BRY BULB TEMP, 25.6 BEG C(78,0 BEG F)
ABS, HUMIDITY 3,9 GM/KG
HFET
711.2 (28,0)
581,7 (22,9)
39,4 (103.0)
21018,
208,0 ( 7344.)
46,6/H/ 47,
4,?/ I/
71.3/13/
2.1/13/
36, I/ 3/
2,8/ 3/
30, O/ 2/
,7/ 2/
21,71
42,
67,
,56
29,3
5,03
16,11
2151,3
9,53
,85
TEST WEIGHT 1021, KG( 2250. LBS)
ACTUAL ROAD LOAD 5.4 KM( 7,3 HP)
DIESEL EM-329-F
ODOMETER 2232, KM( 1418. MILES)
NQX HUMIDITY CORRECTION FACTOR ,82
5,
70,
2,
,61
,04
30,
.954 ( ,948)
1,000 ( ,980)
208.0
44,84
16,18 '"
329FET
750.8
3,9
25,6
132,9
5,15 :
,31
1,00
,59
-------
TEST NO, 329SOO RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 748,79 MM HG(29,48 IN HG)
RELATIVE HUMIDITY 29, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
o NOX BCKGRD METER/RANGE/PPM
i DILUTION FACTOR
00 HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFC» WET (DRY)
SCFf WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERf
BAROMETER* MM HG
HUMIDITYf G/KG
TEMPERATURE? DEG C
CARBON DIOXIDE, G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN; G/KM
0 KPI-! VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO, ,
DATE 12/11/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP. 22,0 DEC C(73,0 DEG F)
ABS, HUMIDITY 5,1 GM/KG
0 KP
716,3 (28.2)
571,5 (22,5)
37,8 (100,0)
32923,
325,5 (11494.)
11,7/li/ 12.
7.5/ I/ 8,
12.0/13/ 11,
2.9/13/ 3,
7,I/ 3/ ,11
3,0/ 3/ ,05
4,3/ 2/ 4,
,6/ 21 1,
119,39
4,
8,
,06
3,7
,00
3.09
384,3
! 95
,22
1200,
,992 ( ,982)
1,000 ( ,990)
325,5
71,06
5,00
329SOO
748,8
5,1
22,8
76,9
2,98 :
,16
.62
,39
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-329-F
ODOMETER 2311, KM< 1436, MILES)
NOX HUMIDITY CORRECTION FACTOR ,84
-------
TEST NO, 329S50 RUN 1
VEHICLE KODEL 00 VU RABBI"
ENGINE 1,5 L( 90, CUD L-4
TRANSMISSION M4
BAROMETER 748;79 MM
RELATIVE HUMIDITY ;
BnG RESULTS
TEST CYCLE
HG(29,48
5* PCT
IN f-IG)
o
BLOWER DIP P MM, H20(IN, H2Q)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC. C(DEG, F)
BLOWER REVOLUTIONS
TOT
HC
I-IC
CO
CO
CO 2
C02
NOX
NOX
FLOW STD. CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
METER/RANGE/PPM
METER/RANCE/PPM
METER/RANGE/PCT
METER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/PPM
PPM
PPM
PCT
PPM
SAMPLE
BCKGRB
SAMPLE
BCKGRD
SAMPLE
BCKGRD
DILUTION FACTOR
HC CONCENTRATION
CO CONCENTRATION
C02 CONCENTRATION
NOX CONCENTRATION
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PfiRTICULATE MASS GRAMS
RUN TIME
)JFC» WET (DRY)
:;CFy WET (DRY)
VOL (CCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERr
BAROMETERr MM HG
HUMIDITY? G/KG
TEMPERATURE? DEG C
CARBON DIOXIBEr G/KM
FUEL CONSUMPTION? L/100KM
HYDROCARBONSt G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN? G/KM
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,
BATE 12/11/80
BAG CART NO, 1
BYNO NO, -'2
CVS NO, 3
DRY BULB TEMP, 24,4 BEG C(76,0 BEG F)
6,7 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAB LOAB 5.4 KM< 7,3 HP)
DIESEL EM-329-F
ODOMETER 2303, KM< 1431, MILES)
NOX HUMIDITY CORRECTION FACTOR ,88
27,
2,
,39
,05
17,
1,
50 K
716,3 (28,2)
571,5 (22,5)
35,0 ( 95,0)
16474,
163,3 ( 5767.)
20,1/il/ 20,
5.0/ I/ 5,
29.4/13/
2.2/13/
24,2/ 3/
3,3/ 3/
16.6/ 2/
,5/ 2/
33,64
15,
25,
,34
16,1
1,43
4,60
1030,6
4,45
1,44
600,
,970 (
1,000 (
163.3
35,37
0,31
329S50
748,8
6,7
24,4
124,0
4,77
,17
,56
,54
,959)
,985)
-------
TEST NO, 329S85 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1.5 L( 90, CID) L~4
TKANShlSSION M
BAROMETER 74G,?9 MM HG(29,48 IN HG)
RELATIVE HUMIDITY 30, PCT
BA!": RESULTS
fEST CYCLE
?
M.GWER
DIP P
INLET
INLET
rtM, H2CKIN, H20)
P MM, H20(IN, H20)
TEMP, DEG, C(DEG, F)
HLOWER REVOLUT
FOT
HC
HC
CO
CO
CQ2
C02
NOX
NCX
FLOW STD, CU, METRES (SCF)
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PCT
METER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/PPM
CO
CO 2
NOX
HC
CO
CQ2
NO*
SAMPLE
BCKCRD
SAMPLE
BCKGRD
SAMPLE
BCKGRD
SAMPLE
BCKGRD
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy WET (DRY)
SCF» WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERS'
BAROMETER? MM HG
HUMIDITY? G/KG
TEMPERATURE 7 DEG C
CARBON DIOXIDEi G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDEy G/KM
OXIDES OF NITROGEN/ G/KN
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,
DATE 12/11/80
BAG CART NO, 1
DYNO NO, > 2
CVS NO, 3
DRY BULB TEMP, 23,3 DEG C(74,0 DEG F)
ABS, HUMIDITY 5,4 GM/KG
85 K
716,3 (28,2)
571,5 (22,5)
40,6 (105,0)
16465,
161,4 ( 5698,)
77,2/il/ 77,
5,0/ I/ 5,
48,5/12/ 102,
,7/12/ 1,
40,I/ 3/ ,68
2.9/ 3/ ,04
37,O/ 2/ 37,
,5/ 2/ 1,
19,22
72,
99,
,64
36,5
6,74
18,54
1883,5
9,60
1,32
600,
,948 ( ,939)
1,000 ( ,984)
161,4
35,19
14,32
329S85
748,8
5.4
23,3
131,5
5,13
,47
1,29
,67
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-329-F
ODOMETER 2321, KM< 1442, MILES)
NOX HUMIDITY CORRECTION FACTOR ,85
-------
TEST NO, 329SOO RUN 2
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L--4
TRANSMISSION M4
BAROMETER 745,24 MM HG<29,34 IN HG)
RELATIVE HUMIDITY 27, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, H2CKIN. H20)
BLOWER INLET P MM, H2D(IN, H20)
BLOWER INLET TEMP, BEG, C(BEG., F)
BLOWER REVOLUTIONS
TOT FLOW STB, CD, METRES(SCF)
HC SAMPLE METER/RANGE/FPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
n
HC
CO
MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME
BFC, WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
SECONDS
TEST NUMBER>
BAROMETERy
HUMIDITY,
TEMPERATUREy
CARBON DIOXIDE,
FUEL CONSUMPTION?
MM HG
G/KG
BEG C
G/KM
L/iOOKM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
0 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5030-003
VEHICLE NOi.i
DATE 12/12/80
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 BEG C(77,0 BEG F)
ADS. HUMIDITY 5,4 CM/KG
0 KP
713,7 (28,1)
576.6 (22,7)
37,8 (100,0)
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KM( 7.3 HP)
DIESEL EM-329--F
ODOMETER 2350, KM( 1460, MILES)
NOX HUMIDITY CORRECTION FACTOR .85
323,9 (11437,)
9, 4/1 I/
6. I/ I/
11.2/13/
2.0/13/
7, 1/ 37
3, I/ 3/
4, I/ 2/
,5/ 2/
119,71
3,
8,
.06
7 /.
O * (J
,62
3,11
371 , 3
V,90
9,
6,
10,
2.
,11
,05
4,
1,
1200,
,992 ( ,983)
1,000 ( ,990)
323,9
70,32
5*00
329SOO
745,2
5,4
25*0
74,7
,12
,62
,38
-------
TEST NO, 329350 RUN 2
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 745,24 MM HG(29,34 IN HG)
RELATIVE HUMIDITY 32, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM. H20(IN, M20)
BLOWER INLET P MM, I-!20(IN, H20)
BLOWER INLET TEMP, DEC, C
-------
TEST NO, 329S05 RUN 2
VEHICLE MODEL SO VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 744,98 MM HG(29,33 IN HG)
RELATIVE HUMIDITY 27, PCT
BAG RESULTS
' TEST CYCLE
BLOUER DIF P MM, H20CIN, H20)
BLOWER INLET P MM. H20(IN, 1-120)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME
DFC» WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
o
i
TEST NUMBER,
BAROMETER* MM HG
HUMIDITY. G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS > G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KN
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,
BATE 12/12/00
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3.
DRY BULB TEMP, 26,7 DEG C(80,0 DEG F)
ABS, HUMIDITY 5.9 GM/KG
85 K
711,2 (28.0)
571,5 (22.5)
37,8 (100,0)
14478.
162.1 ( 5723.)
52,A/11/ 53*
5,9/ I/ 6,
87,7/13/ 08,
2,9/13/ 3,
41,6/ 3/ ,71
3,3/ 3/ ,05
36,5/ 2/ 37.
,6/ 2/ 1,
18,57
47.
83,
,66
35,9
4,40
15.75
1957,6
9,61
4.02
AGO,
,946 ( ,938)
1,000 ( ,935)
162,1
35,39
14,32
329S85
745,0
5,9
26,7
136,7
5,30
,31
1,10
,67
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-329-F
ODOMETER 2350, KH< 1460. MILES)
NOX HUMIDITY CORRECTION FACTOR .06
-------
TEST NO, 329FTP RUN A
VEHICLE MODEL SO VU RABBIT
ENGINE 1,5 L( 90, CID) L~4
TRANSMISSION M4
BAROMETER 749,30 MM HG(29,50 IN HG)
RELATIVE HUMIDITY 62, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIF P MM, H20(IN, 1-120)
BLOUER INLET P MM, M20(IN, H20)
BLOWER INLET TEMP, BEG, C(PEG, F)
BLOUER REVOLUTIONS
TOT FLOW STB, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRB METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
o NOX CONCENTRATION PPM
' HC MASS GRAMS
E CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
BFCr WET (BRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR
-------
TEST NO, 329FET RUN 4
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 749,55 MM KG(29,51 IN HG)
RELATIVE HUMIDITY 25, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM. H2CKIN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C(BEG, F>
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
MC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NDX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
RUN TIME SECONDS
DFC, UET (DRY)
n
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER*
HUMIDITY*
TEMPERATURE,
CARBON DIOXIDE»
FUEL CONSUMPTION?
MM HG
G/KG
DEC C
0/KM
L/100KM
HYDROCARBONS^ C/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO,
DATE 12/19/80
BAG CART NO, 1
BYNO NO, 2
CVS NO, 3,
DRY BULB TEMP, 23,9 BEG C(75.0 BEG F)
ABS, HUMIDITY 4,6 CM/KG
HFET
711,2 (20,0)
571,5 (22,5)
37.8 (100.0)
20994.
214.3 ( 7568.)
55,5/H/ 55,
5,7/ I/ 6,
86.6/13/ 87,
12.7/13/ 11,
36,9/ 3/ ,62
3,1/ 3/ ,05
31,9/ 2/ 32,
,8/ 2/ 1,
21,12
50,
74,
,58
31,1
6,18
18.47
2257.4
10,63
765,
,953 ( ,945)
1,000 ( ,986)
214,3
50.68
16,41
329FET
749,6
4,6
23,9
137,6
5,34
,38
1,13
,65
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KM( 7,3 HP)
DIESEL EM--329-F
ODOMETER 2443, KM( 1518, MILES)
NOX HUMIDITY CORRECTION FACTOR ,83
-------
TEST NO, 329F15 RUN 5
VEHICLE MODEL 81 VU RABBIT
ENGINE 5,7 L(350, CID) V--G
TRANSMISSION A3
BAROMETER 744,47 MM HG(29,31 IN I-IG)
RELATIVE HUMIDITY
BAG RESULTS
BAG NUMBER
DESCRIPTION
62, PCT
BLOWER BIF P MM, H20(IN, H20)
BLOUER INLET P MM, H20
-------
TEST NO, 329F17 RUN 1
VEHICLE MODEL 81 VU RABBIT
ENGINE 5,7 L(350, CID> V--8
TRANSMISSION A3
BAROMETER 745,74 MM HG(29.36 IN I-IG)
RELATIVE HUMIDITY 47, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIF P MM, H20UN, H20)
BLOUER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEB, C(BEG, F)
BLOUER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRB METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
o
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONB5
MEASURED DISTANCE KM
SCF, BRY
DFC» WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 329F17
BAROMETER MM HO 745.7
HUMIDITY G/KG 10,1
TEMPERATURE DEC C 26,1
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 7/ 9/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
BRY BULB TEMP, 26,1 BEG C(79,0 BEG F)
ABS, HUMIDITY 10,1 GM/KG
TEST WEIGHT 1021, K0( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KM< 7,3 HP)
DIESEL EM-329-F
ODOMETER 3829, KM( 2379, MILES)
NOX HUMIDITY CORRECTION FACTOR
98
1
lOLD TRANSIENT
701,0 (27,6)
571,5 (22,5)
35,6 ( 96.0)
13G49,
135,6 ( 4708.)
17.5/12/ 35,
4,0/ I/ 4,
49.7/13/ 47,
,9/13/ 1.
28, 4/ 3/ ,47
2,8/ 3/ ,04
14, 4/ 2/ 14.
,3/ 2/ 0,
28,19
31,
45,
.43
14,1
2,43
7,10
1057,4
3,59
1,58
,43
1,24
185.0
,63
7,16
504.
5,72
,981
,974
1,000
2
STABILIZED
711,2 (23,0)
581,7 (22.9)
32.2 ( 90.0)
23803,
234,4 ( 8276.)
7.6/12/ 15,
4,0/ I/ 4,
21.2/13/ 19,
1.0/13/ 1,
17, O/ 3/ ,27
2,6/ 3/ ,04
9,7/ 2/ 10,
,4/ 2/ 0,
48,82
11,
18,
,23
9,3
1,52
4,93
996,2
4,09
,96
,25
.80
161.9
.67
6,23
868.
6,15
,982
( ,959)
( .982)
370,0
78,55
11,87
6,68
CARBON
3
HOT TRANSIENT
703,6 (27,7)
571.5 (22,5)
35,6 ( 96,0)
13925.
136.3 ( 4314.)
14.1/12/ 28,
4,0/ I/ 4,
40.9/13/ 38,
,9/13/ 1,
24, A/ 3/ ,40
2,7/ 3/ ,04
14, 3/ 2/ 14,
,7/ 2/ 1,
32,91
24,
36,
.36
13,6
1,91
5,79
900,1
3,48
1,34
,33
1,01
157,2
,61
6,08
508.
5,73
.981
.976 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
711.2 (28,0)
581,7 (22,9)
32,2 ( 90,0)
23825,
234,6 ( 8283.)
7.8/12/ 16,
4,0/ I/ 4,
21.2/13/ 19,
1.3/13/ 1,
17, O/ 3/ ,27
2,4/ 3/ .04
9,9/ 2/ 10,
1,0/ 2/ 1,
48.81
12,
18,
,24
8,9
1,57
4,86
1010,0
3.93
,99
,26
,79
164,4
,64
6,33
869,
6,14
,982
,961)
,982)
370,9
78,73
11,87
6,21
3-BAG (4 -BAG)
165.4 ( 166,1)
6,38 ( 6,41)
.31 ( ,31)
,95 ( ,95)
,64 ( ,63)
,202 ( ,204)
-------
TEST NO, 329F16 RUN 6
VEHICLE: MODEL ei vw RAPE IT
ENGINE 5,7 L(350, CID) V--8
TRANSMISSION A3
BAROMETER 743.97 MM HG(29,29 IN KG)
RELATIVE HUMIDITY 55, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P
BLOWER INLET
MM, 1-120 (IN, h'20>
P MM, H20(IN. H20)
C(DEG, F)
HC
HC
CO
CO
9
BLOWER INLET TEMP, DEG,
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
GRAMS
GRAMS
PARTICULATE MASS GRAMS
HC
CO
C02 MASS
?Q
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/iOOKM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF» DRY
UFC» WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/IOOKM
COMPOSITE RESULTS
TEST NUMBER 329F16
BAROMETER MM HG 744,0
HUMIDITY G/KG 10*9
TEMPERATURE DEG C 24,4
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
BATE 6/25/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 24,4 DEG C(76,0 DEG F)
ABS, HUMIDITY 10,9 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KM< 7,3 HP)
DIESEL EM-329-F
ODOMETER 3777, KM( 2347. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,01
1
:OLD TRANSIENT
706,1 (27. G)
571.5 (22,5)
35,0 ( 95,0)
13045,
135,3 ( 4779.)
17.1/12/ 34,
4,6/ I/ 5,
44.9/13/ 42,
1.2/13/ 1,
27, 3/ 3/ ,45
3,0/ 3/ ,05
14. I/ 2/ 14,
,!/ 2/ 0,
29,43
30.
40,
,40
14.0
2,32
6,29
999,7
3,64
1,49
.41
1,11
176,2
,64
6,81
505,
5,67
.978
.975
1,000
2
STABILIZED
706,1 (27,8)
571,5 (22,5)
31,7 ( 89,0)
23833,
234,6 ( 8283.)
9.0/12/ 18,
4,6/ I/ 5,
20.6/13/ 19,
1.1/13/ 1,
16, 6/ 3/ ,26
2.7/ 3/ ,04
9,2/ 2/ 9,
,2/ 2/ 0,
49,99
13,
17,
,22
9,0
1,82
4,74
961,9
4.06
1,53
,30
,-78
157,6
,67
6,07
869.
6,10
,980
( ,957)
( ,979)
369,9
78,38
11,78
6,43
CARBON
3
HOT TRANSIENT
706,1 (27,8)
571,5 (22.5)
35,0 ( 95,0)
13845,
135,3 ( 4778,)
13.7/12/ 27,
4,6/ I/ 5,
43.8/13/ 41.
1.2/13/ 1.
25, 4/ 3/ ,41
2,5/ 3/ ,04
15, 3/ 2/ 15.
,2/ 2/ 0,
31,81
23,
39,
,38
15,1
1,79
6,12
935,4
3,93
1,52
,32
1,08
164,7
,69
6,36
504,
5.6S
,978
,974 <
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM ,
PARTICULATES G/KM
4
STABILIZED
706,1 (27.8)
571,5 (22,5)
33,9 ( 93,0)
23841,
233,5 ( 8245,)
7.5/12/ 15.
5,0/ I/ 5,
22.9/13/ 21,
1.4/13/ 1,
18, 4/ 3/ ,29
3,2/ 3/ ,05
10, 7/ 2/ 11.
,3/ 2/ 0,
44,95
10,
19,
,25
10,4
1.35
5,22
1054,6
4,67
1,46
,22
,85
172,4
,76
6,63
869,
6,12
,979
,957)
,979)
368,8
78,39
11,80
6,50
3-BAG (4-BAG)
163,4 < 167,8)
6,31 ( 6,47)
«33 < ,30)
,93 ( ,95)
,67 ( ,70)
,258 ( ,254)
-------
TEST NO,
?9F18 RUN
VEHICLE MODEL Cl VW RABBIT
ENGINE 1.5 L< 90* CID) L-4
TRANSMISSION M4
BAROMETER 741,93 MM HG(29,21 IN HG)
RELATIVE HUMIDITY 48, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIF P MM, 1120(IN, H20)
BLOWER INLET P MM, M20(IN, 1120)
BLOWER INLET TEMP. DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKfiRD METER/RANGE/PPM
(1ETER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PCT
METER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/PPM
o
HC
HC
CO
CO
CO 2
C02
NOX
NOX
CAMPLE
BCKI3RD
SAMPLE
BCKGRD
BAMPLE
BCKGRD
DILUTION FACTOR
HC CONCENTRATION
CO CONCENTRATION
CONCENTRATION
CONCENTRATION
C 02
NOX
HC
CO
C02
NOX
PPM
PPM
PCT
PPM
KX'J
^oc;
GRAMS
PARTICULATE MAGS
HC CRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION
BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFCy WET (DRY)
SCFv WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 329F18
BAROMETER MM HG 741,9
HUMIDITY G/KG 10,7
TEMPERATURE DEG C 26,7
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 7/14/81
BAG CART NO,. 1 / CVS NO. 3
DYNO NO, 2
DRY BULB TEMP, 26,7 DEG C<80,0 BEG F)
ADS, HUMIDITY 10,7 GM/KG
1
COLD TRANSIENT
STABILIZED
706,1 (27,0)
574,0 (22,6)
37,2 ( 99,0)
13815,
134,1 ( 4734,)
15.7/12/ 31.
4.0/ I/ 5,
47.3/13/ 44,
,6/13/ 1,
27, 9/ 3/ ,46
2,6/ 3/ ,04
15, 21 21 15,
,2/ 2/ 0,
28,76
27,
43,
,42
15,0
2,08
6,69
1031,1
3,84
1,72
,36
1,17
180,6
,67
6,98
503,
5,71
,980
,974
1,000
703,6 (27,7)
576,6 (22,7)
33,3 < 92,0)
23815,
232,6 ( 8214.)
7.7/12/ 15,
4,6/ I/ 5,
21.2/13/ 19,
,5/13/ 0,
17, 3/ 3/ ,28
2,8/ 3/ ,04
9,9/ 2/ 10,
,4/ 2/ 0,
47,93
11.
18,
,23
9.5
1,47
5,00
997,3
4,23
1,06
,24
,81
161.1
,68
6,20
868,
6,19
,982
( ,959)
( ,981)
366,7
70,07
11,90
6,57
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KW< 7,3 HP)
DIESEL EM-329--F
ODOMETER 3870. KM( 2405, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
i-IOT TRANSIENT
703.6 (27.7)
574,0 (22,6)
36,1 ( 97.0)
13832,
134,5 ( 4747,)
14.8/12/ 30,
4.6/ I/ 5.
43.2/13/ 40.
,3/13/ 0.
24,3/ 3/ .40
2.7/ 3/ ,04
14,7/ 2/ 15,
.7/ 2/ 1.
33,31
25,
39.
,36
14,0
1,94
6,13
874,0
3,60
1,44
,34
1,07
153.1
,63
5,92
504.
5,71
,981
17,
0,
.26
,04
10,
1,
,977 ( ,961)
1,000 ( ,982)
367,1
78,03
11,82
5,90
STABILIZED
706,1 (27,8)
576,6 (22,7)
33,3 ( 92,0)
23819,
232,6 ( 0214.)
7.3/12/ 15,
4.0/ I/
19.2/13/
.2/13/
16.4/ 3/
2.B/ 3/
9.0/ 2/
,87 2/
50.71
11.
17,
,22
9,0
1,42
4,59
933,1
4,01
,97
,23
,75
152,9
,66
5,88
860,
6.10
,902
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KH
3-BAG
162.9
6.28
,29
.96
,67
.220
(4-BAG)
( 160.5)
( 6,19)
( ,29)
( ,94)
( ,66)
( .216)
-------
TEST NO, 329F19 RUN 0
VEHICLE MODEL 00 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
DAROMETER 739,65 MM 1-10(29,12 IN HG)
RELATIVE HUMIDITY 48, PCT
1JAG RESULTS
HAG NUMBER
DESCRIPTION
BLOWER DIP P MM, I!20(IN, H20)
BLOWER INLET P MM, H2CKIN, H20)
BLOWER INLET TEMP, BEG, C(DEG, F>
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKfiRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKfiRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
(VOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS ORAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
NJ
o
HC
I-1C
CO
CO
DC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF, DRY
BFC, WET (DRY)
SCF* WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE BEG C
329F19
739,6
9,1
23.9
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
BATE 8/20/31
BAG CART NO, 1 / CVS NO, 3
BYNO NO, ,2
DRY BULB TEMP, 23,9 BEG C(75,0 BEG F)
ABS, HUMIDITY 9,1 CM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-329-F
ODOMETER 4407. KM< 2788, MILES)
NOX HUMIDITY CORRECTION FACTOR ,95
1
lOLD TRANSIENT
696,0 (27,4)
569.0 (22,4)
35,0 ( 95,0)
13041,
134,4 ( 4745,)
32,6/H/ 33.
6,0/ I/ 6.
47.9/13/ 45,
,5/13/ 0,
28, 4/ 3/ ,47
2,9/ 3/ ,04
15, O/ 2/ 15,
,9/ 2/ 1,
28,22
27,
44,
,42
14,1
2,08
6,81
1044,2
3,45
2,27
,36
1,19
102,2
,60
7,04
504,
5,73
,980
,973
1.000
2
STABILIZED
701,0 (27,6)
574.0 (22,6)
32,8 ( 91,0)
23815.
232,1 ( 8195,)
14.1/11/ 14,
6,0/ I/ 6,
19.8/13/ 18,
,3/13/ 0,
17, 8/ 3/ .20
2,97 3/ .04
9,S/ 2/ 10.
,4/ 2/ 0,
46,58
8,
17.
,24
9,4
1,10
4.70
1024.4
3.97
1,32
,18
,76
164,8
,64
6.33
368.
6.22
,982
( ,958)
( ,981)
366.5
77,51
11,95
6,67
CARBON
3
HOT TRANSIENT
698,5 (27,5)
571,5 (22.5)
33,3 ( 92,0)
13832,
134.6 ( 4754,)
26.8/11/ 27.
6,0/ I/ 6,
43.5/13/ 41.
1.3/13/ 1,
25, 6/ 3/ ,42
2,9/ 3/ ,04
14, 8/ 2/ 15,
,27 2/ 0,
31,55
21,
39,
.38
14,6
1.63
6.05
924,7
3.57
1.52
,28
1,05
160.1
,62
6.18
504,
5,78
,981
,975 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/1QOKM
HYDROCARBONS (TMC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
P ARTICULATES G/KM
4
STABILIZED
703,6 (27,7)
576,6' (22,7)
30,6 ( 87,0)
23811,
233,2 ( 8235.)
14.3/11/ 14,
6,5/ I/ 7,
21.0/13/ 19,
1.9/13/ 2,
17, 5/ 3/ .28
3,0/ 3/ ,05
9.8/ 2/ 10,
,!/ 2/ 0.
47,39
8,
17,
,23
9,7
1,06
4.64
1001,4
4.11
1,00
,17
,75
161,8
,66
6,22
868,
6.19
,982
,960)
.981)
367,9
77,43
11,96
6,20
3-BAG (4-BAG)
167.1 ( 166,2)
6,43 ( 6,40)
,24 ( ,24)
,92 ( .92)
.63 ( ,63)
,264 ( .249)
-------
TEST NO, 453FTP RUN 1
VEHICLE MODEL SO VU RABBIT
ENGINE 1,5 L( 90, CID) L--4
TRANSMISSION H4
BAROMETER 743,71 MM HG(29,23 IN I-IG)
RELATIVE HUMIDITY 30, PCT
DAG RESULTS
o
to
BAG NUMBER
DESCRIPTION
BLOWER
BLOWER
BLOWER
BLOWER
DIP P
INLET
INLET
REVOLUTIONS
MM, 1-120(IN, H20)
P MM, H20(IN. H20)
TEMP, DEC, C(DEG, F)
TOT FLOW STI), CU, METRES(SCF)
HC SAMP!. E METKR/RANGE/PPM
HC D(:i;GRIJ MfTER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKTvRD METER/RANGE/PPM
CO? SAMPLE METER/RANGE/PHT
CO? BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX PCKGRli METER/RANGF/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
CDl1 CONCENTRATION PCT
NOX CONCENTRATION PPM
I!C MASS GRAMS
CO MASS GRAMS
CO? MASS GRAMS
NOX MASS CRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
CO? GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION
BY CB L/100KM
SECONBS
KM
RUM TIME
MEASURED DISTANCE
SCF, DRY
DFC» WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER
HUMIDITY
TEMPERATURE
453FTP
MM h'O 743,7
G/KG 6,0
DEC C 25.0
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE N0,l
DATE 1/14/81
BAG CART NO, 1 / COS NO, 3
DYNO NO, ; 2
DRY BULB TEMP, 25,0 DEC C(77,0 DEC F)
ABS, HUMIDITY 6,0 CM/KG
1
:OLB TRANSIENT
721,4 (23,4)
581, 7 (22,9)
35,0 ( 95,0)
13076,
137,5 ( 4054.)
35, 0/1 1/ 35,
3,87 I/ 4,
51.9/13/ 49,
,1/13/ 0,
28,87 3/ ,47
2,77 37 ,04
16 «3/ 2t 16,
,37 27 0,
27,76
31.
48,
,43
16,0
2,48
7,70
1093,5
3,64
2,26
,43
1,34
190,6
,64
7,57
505,
5,74
,986
,973
1,000
9
STABILIZED
723,9 (28,5)
504,2 (23,0)
30,0 ( 86,0)
23890,
239,3 ( 8448,)
15,4/117 15,
3,4/ 17 3,
20.5/13/ 19,
,37137 0,
17,67 37 ,28
2,87 37 ,04
10,27 27 10,
,47 27 0,
47,10
12,
18,
,24
9,0
1,67
5,05
1047,9
3,89
1,30
,27
,02
170,4
,63
6,73
870,
6,15
,9B8
( ,964)
( ,987)
376,7
81,34
11, G9
7,14
TEST WEIGHT 1021,
ACTUAL ROAD LOAD
DIESEL EM-453-F
ODOMETER 2544. KM(
KG( 2250, LBSJ
5,4 KW( 7,3 HP)
1581, MILES)
NOX HUMIDITY CORRECTION FACTOR ,37
HOT TRANSIENT
723,9 (28,5)
504,2 (23,0)
35,0 ( 95,0)
723,9 (20,5)
584,2 (23,0)
31,1 ( 38,0)
23795,
CARBON DIOXIDE
FUEL CONSUMP
HYDROCARBONS
CARBON MONOX
OXIDES OF NI
PARTICULATES
137,1 ( 4842,)
25,17117 25,
3,47 17 3,
45,6/137 43,
,3/137 0,
25,47 3/ ,41
2,6/ 3/ ,04
16,57 2/ 17,
,77 27 1,
31,81
22,
42,
,38
15,8
1,73
6,66
944,2
3,59
1,74
,30
1.17
166,4
,63
6,60
505,
5,60
,987
,975 (
1,000 (
IDE G/KM
PTION L/100KM
IS (TI-IC) G/KM
iXIDE G/KM
IITROGEN G/KM
:s G/KM
237,5 ( 8387,)
10.0/11/ 10,
2,9/ 17 3,
20.1/13/ 18,
,3/13/ 0,
17.37 3/ ,28
2,8/ 3/ ,04
10, 6/ 2f 11,
,7/27 1,
47,91
15.
18,
,23
9,9
2,08
4,91
1018,4
3,90
0,00
,34
,80
166,5
,64
6,59
867,
6.12
.988
,966)
,987)
374.7
80.68
11,79
6,59
3-BAG (4-BAG)
173,5 ( 172,3)
6,37 ( 6,93)
,31 ( ,33)
1,03 ( 1,02)
.63 ( ,63)
,275 ( 0,000)
-------
TEST NO, 453FF.T RUN 1
VEHICLE MODEL 30 V(J RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,71 MM 1-10(29,28 IN
RELATIVE HUMIDITY 26, PCT
lir'iC RESULTS
lilST CYCLE
?
DlCUER
IH OUER
BLOWER
BLDWEfi
TOT FLOW
HC
HC
C'l
CO
C02
dl?
('MX
NO*
CO 2
NOX
HC
CO
D.T.F P MM, H20(IN, H20)
INLET P MM, H20(.TN, H20)
INLET TEMP, DEO, C(DEG, F)
REVOLUTIONS
STIi, CU, METRES (SCF)
SAMPLE METER/RANGE/PPM
BCKGRn METER/RANGE/PPM
SAMPLE METFR/RANGE/PPM
DCKGRfi METER/RANGE/PPM
SAMPl. F METER/RANGF/PCT
fCKGRD rtf.ITER/RANGE/PCT
SAMPLE Ml TER/RANGE/PPM
KCKiMi METER/RANGE/PPM
ITII-JN FACTOR
CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MAJ
RUN TIME
DFC* WET
SCF.
GRAMS
SECONDS
(DRY)
(DRY)
VOL CGCM)
GAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER, MM HG
HUMIDITY* G/KG
TEMPERATURE» DEC C
CARBON DIOXIDE. G/KM
FUEL CONSUMPTION> L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE? G/KM
OXIDES OF NITROGEN, G/KM
FET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE N0,l
DATE 1/14/81
BAG CART NO, 1
DYNO NO, . 2
CVS NO, 3"
DRY BULB TEMP* 26.1 DEG C(79,0 DEC F)
ADS, HUMIDITY 5,5 GM./K'G
FET
718,8 (28,3)
58.1,7 (22,9)
38,3 (101,0)
21042,
206.0 ( 7304,)
53.1/11/ 53.
2.9/ I/ 3,
82.5/13/ 82,
,1/13/ 0,
39, 7/ 3/ ,67
3,0/ 3/ .05
32, 3/ 2/ 32,
,3/ 2/ 0,
19,55
50,
00,
,63
32,0
6,00
19,30
2380,5
10,82
4,39
766,
,949 ( ,941)
1,000 ( ,985)
206, 8
44,65
16,41
453FET
743,7
TEST WEIGHT 1021. KG< 2250, LDS)
ACTUAL ROAD LOAD 5.4 KU( 7,3 HP)
DIESEL EM-453-F
ODOMETER 2564. KM( 1593, MILES)
NOX HUMIDITY CORRECTION FACTOR .05
5,
26,1
145,0
5,61
,37
1,18
,66
-------
TECT NO, 453FTP RUN 2
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L( 90, CID) L~4
TRANSMISSION M4
BAROMETER 751,33 MM 1-10(29,53 IN MO)
RELATIVE HUMIDITY 32, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, 1120)
BLOWER INLET P MM, M20UN, H20)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW OTD, CU, METRES(SCF)
IIC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS CRAMS
n
HC
CO
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KH
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
DFC, WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 453FTP
BAROMETER MM HO 751,3
HUMIDITY G/KG 4,9
TEMPERATURE BEG C 20,6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5030,003
VEHICLE N0,l
DATE 1/16/81
BAG CART NO, 1
DYNO NO, .1 2
CVS NO, 3
DRY BULB TEMP, 20,6 DEG C(69,0 DEC F)
4,9 GH/KG
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KM( 7,3 HP)
DIESEL EM--453-F
ODOMETER 2639, KM( 1640. MILES)
NOX HUMIDITY CORRECTION FACTOR ,04
1
OLD TRANSIENT
726,4 (28,6)
506,7 (23,1)
34,4 ( 94,0)
13054,
138,7 ( 4890,)
29.7/11/ 30,
3,8/ I/ 4,
47.7/13/ 45*
,8/13/ 1,
20, 7/ 3/ ,47
3,3/ 3/ ,05
17, V 2/ 17,
,6/ 2/ 1.
27*92
26,
43,
,42
16,8
2,09
6,99
1076,3
3,74
1.C9
,36
1,22
187,8
,65
7.23
505,
5,73
,974
1,000
9
STABILIZED
734,1 (28,9)
591,3 (23,3)
29,4 ( 85,0)
23Q07,
241,1 ( 8512,)
13,7/il/ 14,
3,5/ I/ 4,
22.3/13/ 20,
,6/13/ 1,
17, 3/ 3/ ,28
2.7/ 3/ .04
10, O/ 2/ 11,
,6/ 2/ 1,
47,95
10,
19.
,24
10,2
1,43
5,47
1040,2
3,95
1,03
.23
,88
166.7
,63
6,39
867,
6,24
( ,964)
( ,906)
379.8
81.37
11,97
6,79
CARBON
3
HOT TRANSIENT
729.0 (28,7)
509.3 (23.2)
33.3 ( 92.0)
13050.
138,8 ( 4903,)
27.0/11/ 27,
3,5/ I/ 4,
44.9/13/ 42,
,0/13/ 1.
25. 7/ 3/ ,42
3,4/ 3/ ,05
17, 9/ 2/ 13.
>6/ 2/ 1,
31.41
24,
41,
.37
17,3
1,09
6.56
938,9
3,86
1 , 54
.33
1,14
163,5
,67
6,30
504,
5.74
,975 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE C/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
731.5 (28,8)
591,0 (23.3)
29,4 ( 85.0)
23000 ,
240,9 ( 8504,)
12.3/11/ 13.
3.7/ I/ 4,
20.0/13/ 19,
.7/13/ 1,
10. O/ 3/ ,29
3,5/ 3/ ,05
11. 3/ 2/ 11.
.6/ 2/ 1,
46,05
9,
10,
,24
10.7
1,28
5,06
1037.9
4,14
0,00
.21
.81
167.2
.67
6.41
867.
6.21
.964)
.987)
379.7
81.22
11,95
6.35
3- BAG (4- BAG)
170.2 ( 170.3)
6.54 ( 6,54)
,28 ( .28)
1.02 ( 1,00)
,65 ( ,66)
.293 ( 0.000)
-------
TEST NO, 453FET RUN 2
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 751,08 MM HGC29.57 IN HG)
RELATIVE HUMIDITY 27, PCT
SAG RESULTS
TEST CYCLE
BLOWER DIP P MM, 1-120(IN, M20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP, DEC, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKORD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRB METER/RANGE/PPM
to
HC
HC
CO
CO
C02
SAMPLE METER/RANGE/PCT
C02 BCKCRB METER/RANCE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
IIC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MAGS GRAMS
PARTICULATE MASS CRAMS
RUN TIME SECONDS
BFC» WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERx
BAROMETER> MM HG
HUMIBITYr G/KG
TEMPERATUREr BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION? L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDEF G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
BATE 1/16/81
BAG CART NO. 1
DYNO NO, .. 2
CVS NO, 3
DRY BULB TEMP, 25,0 BEG C(77.0 BEO F)
ABS, HUMIDITY 5,3 GM/KG
HFET
716,3 (28,2)
584,2 (23,0)
37,3 (100,0)
20968,
209,0 ( 7379,)
52.9/11/ 53,
3»7/ I/ 4,
85.7/13/ 86,
TEST WEIGHT 1021,
ACTUAL ROAB LOAD
DIESEL EH-453-F
ODOMETER 2617, KM<
KG(
5,4
2250, LBS)
KU( 7,3 HP)
1626, MILES)
NOX HUMIDITY CORRECTION FACTOR ,85
40, I/ 3/ .68
3,0/ 3/ ,05
33, 2/ 2/ 33,
,4/ 2/ 0,
19,33
4?,
83,
,64
32,8
5.95
20.21
2433.6
11,12
4,61
764,
,948 ( ,940)
1,000 ( .985)
209,0
45,34
16,51
453FET
751,1
5.3
25,0
147,4
5.70
,36
1.22
.67
-------
MO. 453^00 RUN
vTirtf;! r Kiinn no vu RAr:;i
I. NC.1NL 1,5 L( 00, CiriJ I. 4
TRANSMISSION (14
BAG
Mfi i 10(29,20 IN MO)
40 - PI.T
o
NJ
Ln
.
TECT CYCLE
[(LOWER
iiLOUER
TOT
HC
HC
CO
C02
C02
NOX
NOX
Jill"
MM, H20CCN, H20)
P MM, H20(IN, H20)
J;:R INLET TEMP, DEC, CIDEG, F)
JER REVOLUTIONS
FLOW GTD, CU, MFTREG(GCF)
SAMPLE METER/RANGE/PPM
DCKGRH METER/RANCE/PPM
GAMPU- flFlER/RANGE/PPM
LiCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
DCKGRD HETER/
(ANCE/PCT
C02
NOX
HC
CO 2
NOX
GAMPLE flEVEf;'/ I'ANCE/PPM
ICKGRD METER/(ANGE/PPM
!11..LIT [ON FACTOR
1C CONCENTRATION PPM
;0 CONCENTRATION PPM
CONCENTRATION PCT
CGNCENTRAllON PPM
MAS'.) GRAMS
MAGS GRAMS
MAGS GRAMS
MASS GRAMS
PARTICULATE MAGG CRAMS
RUN TIME SECONDS
[iFC* WET (DRY)
SCFr WET (DRY)
VOL (GCri)
SAn DLR (GCfi)
KM (MEASURED)
TEST NUh'DER,
BAROMETFRy MM HG
HUMIDITY, (,/KG
TEMPERATURE. DEC C
CARDON DioxiDEy G/KM
FUEL CONSUMPTION* L/100KM
G/KN
0/KM
NITROGEN* G/KM
CARBON
rj>'jnr;n
I DLL VEHICLE EMISSIONS RESULTS
PROJECT 11-5030-003
VEHICLE NO.l
DATE I/1.9/01
BAG CART NO, 1
DYNO NO, 2
Cl'G NO. 3
ADS, HUMIDITY 6,1 CM/KG
IDLE
736,6 (29,0)
,
~! 9 o o r>
330, ?' (1.1676.)
10,1/117 10,
5,0/ I/ 5»
J4.1/13/
5,0/13/
6,9/ 3/
2,0/ 3/
3,9/ 2/
,2/ 2/
TEST WEIGHT 1021. KC( 2250, IBS)
ACTUAL ROAD LOAD 5,4 KU(
DIESEL EM-453-F
ODOMETER 2657, KM( 1651, MILES)
IP)
NOX HUMIDITY CORRECTION FACTOR ,07
,
5,
,11
,04
4,
0,
122,02
8,
.06
3,7
,98
3,1.5
3H9.7
2,03
,20
1201,
,992 ( ,979)
1,000 ( ,906)
330 , 7
71,02
5 , 00
453SOO
741,7
6,1
20,6
or
-------
TEST NO, 453S50 RUN 2
VEHICLE MODEL 00 VW RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 740.92 MM HO(29.17 IN HG)
RELATIVE HUMIDITY 43. PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM. 1-120(IN. H20)
BLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG» F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
IIC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
IIC CONCENTRATION PPM
? CO CONCENTRATION PPM
sj C02 CONCENTRATION PCT
* NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFC* WET (DRY)
SCF* WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE/ G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NOil
DATE 1/19/01
BAG CART NO, 1
DYNO NO, ' 2
CVS NO, 3
DRY BULB TEMP. 20,6 DEG C(69.0 DEG F)
ABS. HUMIDITY 6,7 GM/KG
50 K
734.1 (23,?)
589,3 (23,2)
31,7 ( 89.0)
16477.
163,4 ( 5771,)
28,7/117 29.
7,07 I/ 7.
36,4/137 34,
2,07137 2,
24,37 37 ,40
3.27 37 ,05
17,07 27 17,
,37 27 0*
33,37
22,
31,
,35
16,7
2,06
5,95
1041.0
4.61
1,49
600,
,970 ( ,956)
1.000 ( .932)
163.4
35,11
3,47
453S50
740,9
6,7
20,6
122.9
4,73
,24
,70
.54
TEST WEIGHT 1021, K0( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW< 7,3 HP)
DIESEL EM-453-F
ODOMETER 2657, KMC 1651, MILES)
NOX HUMIDITY CORRECTION FACTOR .OS
-------
TEST NO, 453S85 RUN 2
VEHICLE MODEL DO VU RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 740,66 MM IIG<29,16 IN MG)
RELATIVE HUMIDITY 32, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20UN, H20)
BLOWER INLET P MM, H20(IN, M20)
BLOWER INLET TEMP, DEC, C(DEC, F)
BLOWER REVOLUTIONS
o
i
NJ
HC
HC
CO
CO
HC
CO
CU, METRES
SAMPLE METER/RANGE/PPM
BCKGRB METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANCE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
MC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
SS GRAMS
SS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM ELR (SCM)
KM (MEASURED)
TEST NUMBERy
BAROMETER? MM MG
HUMIDITY; G/KG
TEMPERATUREr DEG C
CARDON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSy G/KM
CARDON MONOXIDEy C/KM
OXIDES OF NITROGEN* G/KM
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 1/19/01
BAG CART NO, 1
DYNO NO, > 2
CVS NO, 3
DRY BULB TEMP, 22,2 DEG C(72,0 DEG F)
ABS, HUMIDITY 5,4 GM/KG
85 K
716,3 (28,2)
581,7 (22,9)
30,9 (102,0)
16504,
161,0 ( 5634.)
70.3/11/ 70.
7,9/ I/ 8,
50,9/12/ 100,
TEST WEIGHT 1021, K0( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 h'l
DIESEL EM-453-F
ODOMETER 2667. KM( 1657, MILEC)
NOX HUMIDITY CORRECTION FACTOR ,85
3/12/
43,3/ 3/
3,2/ 3/
38,6/ ?./
1,
,74
,05
39,
0,
17,70
63,
104,
,69
38,2
5,83
19,51
2043,2
10,02
5,16
601.
,944 ( ,934)
1,000 ( ,903)
161,0
34,52
14,43
453SS5
740,7
5,4
22,2
141,6
5,49
,40
1,35
,69
-------
TEST NO, 453F10 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION M4
BAROMETER 741,93 MM HG(29,21 IN HG)
RELATIVE HUMIDITY 49, PCT
[:AC RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(1N. H20)
BLOWER INLET TEMP, BEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STH, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKORB METER/RANGE/PPM
002 SAMPLE METER/RANGE/PCT
!.;f)2 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NUX BCKGRJJ METER/RANGE/PPM
DILUTION FACTOR
!!C CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NQX MAGS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFv DRY
DFC» WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 453F10
BAROMETER MM HG 741,9
HUMIDITY 0/KG 10*0
CO
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5830--003
VEHICLE NO,01
BATE 4/30/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 25,0 DEC C(77,0 DEC F)
ABS, HUMIDITY 10,0 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KM< 7,3 HP)
DIESEL EH-453-F
ODOMETER 2850, KM< 1771. MILES)
NOX HUMIDITY CORRECTION FACTOR ,93
TEMPERATURE DEG C
J.O
1
;OLB TRANSIENT
701,0 (27,6)
563,9 (22,2)
37,2 ( 99,0)
13872,
106,3 ( 3752,)
54.4/11/ 54,
8,0/ I/ 9,
73,8/137 72,
4,3/137 4,
35,97 37 ,60
3,47 3/ .05
22, 8/ 21 23,
,9/ 27 1,
21,80
46,
67,
,55
21,9
2,82
8,25
1074,7
4,35
2,01
,48
1,42
184,0
,75
7,14
505,
5,81
,979 ;
,966 (
1,000 (
2
STABILIZED
706,1 (27,8)
569,0 (22,4)
35,6 ( 96,0)
23829,
182,9 ( 6460,)
23, 2/1 I/ 23,
7*37 17 7,
34.8/13/ 32,
4,1/137 4,
22,27 37 ,36
3,37 37 ,05
14,37 2/ 14,
,6/ 27 1,
36,75
16,
28,
,31
13.7
1,70
5,94
1038,4
4,68
1,37
,27
,95
165,5
,75
6,36
868,
6.27
,981
,951)
,980)
239,2
0.00
12,09
6,74
CARBON
3
HOT TRANSIENT
698.5 (27,5)
563,9 (22*2)
36,7 ( 98.0)
13872,
106,4 ( 3755.)
43,5/117 44,
7*37 17 7,
64.2/13/ 62.
4,0/137 4,
32,37 3/ ,54
3,8/ 3/ ,06
21,77 27 22.
,67 2/ 1,
24,49
37,
57,
,48
21.1
2,24
7,04
936,5
4.19
1,49
,39
1,21
161*2
,72
6,22
505,
5.81
,979
.960 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTI CULATES G/KM
4
STABILIZED
706,1 (27,8)
569,0 (22.4)
35,6 ( 96,0)
23834 ,
183,0 < 6461,)
21.6/11/ 22,
6.7/ I/ 7,
33.2/137 31,
3.7/13/ 3,
21, 6/ 3/ ,35
3.4/ 3/ ,05
14, 2/ 2/ 14,
,6/ 2/ 1,
37,85
15,
27,
,30
13,6
1,59
5,70
999.0
4,65
0,00
,25
,91
159,1
,74
6,11
868,
6,28
,981
.953)
.980)
289,3
0,00
12,09
6,17
3-BAB (4-BAO)
168,3 ( 166,4)
6,48 ( 6.41)
.35 ( ,34)
1,12 ( 1,11)
.74 ( ,74)
,255 ( 0.000)
-------
TEST NO, 473F01 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L~4
TRANSMISSION M4
BAROMETER 740,66 MM HG(29,16 IN HG)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER niF P MM, M20(IN, 1-120)
BLOWER INLET P MM, ll2()
-------
TEST NO, 473F03 RUN 1
VEHICLE MODEL GO VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M-
BAROMETER 740,66 MM HG<29.16 IN HO)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIE P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, 1-120)
BLOWER INLET TEMP, BEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW 8TD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
f:0 BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
Cfl? BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
n CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NDX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DFC> UET (DRY)
SCFi- UET (DRY)
V.OL (SCM)
SAM BLR (SCM)
KM (MEASURED)
U)
o
TEST NUMBER»
BAROMETER)' MM HG
HUMIDITY, G/KG
TEMPERATUREy BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYTiROCARBONSt G/KM
CARBON MONOXIDE^ G/KM
OXIDES OF NITROGEN>
IDLE VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 5/ 6/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 BEG C(77,0 DEG F)
ABS, HUMIDITY 10.7 CM/KG
IDLE
716,3 (28,2)
574,0 (22,6)
32,2 ( 90,0)
3994?,
323,5 (11424,)
9,0/li/ 9,
5,3/ I/ 5,
12.1/13/ 11,
,11
,06
4,
TEST UEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KU< 7.3 HP)
DIESEL EM-473-F
ODOMETER 2982. KM( 1853, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
7,4/ 3/
3.A/ 3/
4,3/ 2/
,6/ 2/
114. SI
4,
10.
3,7
.69
3,75
355,7
2,29
,16
1200.
,991 ( .974)
1.000 ( ,982)
323.5
68.18
5.00
473103
740.7
10.7
25.0
71,1
2,06
,14
,75
.46
-------
TEST NO, 473H02 RUN 1
VEHICLE MODEL 00 VU RAHHTT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
AROMETER
MM
RtLATTWF HUMIDITY
DAG RESULTS
TEST CYCLE
HG(29,16
.3, PCT
IN HO)
?
u>
MM, H20CIN, M20)
P MM, H2DUN, H20)
DI-G, CCBEG, F)
BLOWER DIF P
BLOWER INLET
EiLOUER INLET TEMP.
HLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
Mi; SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANCE/PPM
CO SAMPLE METER/RANOE/PPM
CO BCKGRB HETER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX CAMPLE METER/RANGE/PPH
NOX I'^CKGRD METER/RANGE/PPM
DILUTION' FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MAGS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
BFC> WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETERy MM HG
HUMIDITY* G/KG
TEMPERATURE, BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION. L/100KM
HYDROCARBONSr G/KM
CARBON MONOXIBE/ G/KM
OXIDES OF NITROGEN? G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11-5030-003
VEHICLE N'0,1
DATE 5/ 6/01
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3!
BRY BULB TEMP, 25,0 DEG C(77,0 BEG F)
ABS, HUMIDITY 10,7 CM/KG
HFET
716,3 (28,2)
579,1 (22,8)
3G.9 (102,0)
21018,
203,6 < 7109,)
*#**/!!/ 101,
5,2/ I/ 5,
55.0/12/ 113,
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU(
BIESEL EM-473-F
ODOMETER 2966, KM( 1843, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
39, 5/ 3/ .67
3,4/ 3/ ,05
29, 5/ 2/ 30,
,8/ 2/ 1,
19,42
96,
114,
,62
28,7
11,27
27,04
2307,6
11,19
4.24
765,
,949 ( ,932)
1,000 ( ,977)
203,6
43,34
473M02
740,7
10,7
25,0
142,2
5,78
,69
1,67
,69
-------
TEST NO, 473504 RUN
BAROMETER 740,16 MM HG(29,14 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP F1 MM, H20(IN. H20)
DL.OUER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, CXDEG, F)
BLOWER REVOLUTIONS
n
to
TOT
Hi'
HC
CO
CO
r:02
C02
NOX
NOX
FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
ECKGRD ilETER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PCT
HETER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/F'PM
SAMPLE
ECKGRD
SAMPLE
BCKGRD
:,YiMPLE
DCKGRD
DILUTION FACTOR
CONCENTRATION
CONCENTRATION
CONCENTRATION
CONCENTRATION
MASS GRAMS
CO?
Nfl.X
HC
CO
C02
NOX
PPM
PPM
PCT
PPH
MAE
GRAMS
MAGS GRAMG
MASS GRAMS
PARTICIPATE MASS GR(
RUN TIME
DFC» UET (DRY)
SCF* WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER*
HUMIDITY*
TEMPERATURE»
CARBON DIOXIDE?
FUEL CONSUMPTION*
HYDROCARBONS*
CARBON MONOXIDE*
OXIDES OF NITROGEN*
MM HG
G/KG
BEG C
C/KM
L/100KM
G/KM
G/KM
G/KH
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11-5330-003
VEHICLE NO.l
DATE 5/ 6/81
TEST WEIGHT 1021, KG< 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7.3 HP)
SfeS?3KM~( 1853. MILE
)
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(7G,0 DEC F)
AUG. HUMIDITY 11,2 GM/KG
50 K
711,2 (28,0)
563,9 (22,2)
34,4 ( 74,0)
16493.
161,4 ( 5698.)
13,2/il/ 13,
4,9/ I/ 5.
20.4/13/ 19,
,7/U/ 1,
22, O/ 3/ ,36
3.5/ 3/ .05
14, 6/ 2/ 15.
l.l/ 2/ 1,
37,34
8,
18,
,30
13,5
,73
3,29
896,8
4.24
,69
601.
,973 ( ,957)
1.000 ( ,980)
161,4
34,21
8.38
473504
740,2
1.1,2
25.6
107,1
4,25
,09
,39
,51
NOX HUMIDITY CORRECTION FACTOR 1.02
-------
J NO,
iff; IF MO DTI
",l.Ni: 1,5 Li
:, RUN 1
00 (>(! R ADD IT
Ci:D) L- 4
U)
ER 739,A5 MM 110(29.12 IN !!G)
JJLOUFR /HE !' MM, 1-120 (IN, 1120)
Si PWrK1 INLET I"' MM, 1120(IN. 1120)
;,- uwER INLET TEMP, DEO, C(DEG. F>
!;U;UER REV'Oi [1TIONS
TOT FLOW STlj, CU, hETREC(GCF>
i-!C CAMPLE METER/RANGE/PPH
!!C SCKGRD MFTLR/RANGF/r'PM
uO SAHPi-i: METER/RANCE/PPH
CO RCKGRfi rtF.TF.R/RANG!:/PPH
i' n o r A M PI r M n' T r r> / r« /i > i r: f /' p r T
UUt. vTinf LL ML.. It. U/ IVHITL.U-/ I L- I
C02 liCKGRD flf-TER/RANGr/PCT
NOX CAMPLI: .MLTER/RANGE/PPH
Nnx ;.(:;Kf"i!Vn firTCR/RAfJGiVPPri
nti.U'i'lUN FACTOR
iiP CDNCrwTRATION PI'-'H
n CO CONCENTRATION PPM
i C02 CONCENTRATION PCT
NOX CONCENTRAI'ION PPri
CO MASb' GRAMS
NOX MAOO CR'ArtC
RART1CJLATF MAGG GRAMS
VOL (GCM)
SAM DL.R (80M)
KH (MEASURED)
DIOXIDE*
MM IIG
0/KG
DEG C
G/KM
L/100KM
85 KPI-! VEHICLE EMISSIONS RESULTS
PROJECT 11-5030-003
VEHICLE N0..1
DATE 5/ 6/31
DAG CART NO, 1
HYNO NO, 2
CVS NO, 3.
DRY BULB TEMP, 25,6 DEG C(70,0 DEC F)
A.OS, HUMIDITY 10,5 GM/KG
05 K
716,3 (20,2)
574,0 (22,6)
40,0 (104,0)
16407,
157,3 ( 5624.)
52,7/127 105,
5,4/ It 5,
TEST WEIGHT 1021, KG( 2250, I.BS)
ACTUAL ROAD LOAD 5.4 KW( 7,3 ,'[,'
DIECEL Eh 473' \
ODOMETER 2992, KM( 1059, MILES)
NOX HUMIDITY CORRECTION FACTOR ,99
43,47 3/
3,0/ 3/ ,05
35,
1,
35,27
1,1/ 2/
1.7,50
100,
139,
,70
34,2
9.?1
25,85
2035,7
3,70
4 OC,
,943 < ,920)
1,000 ( ,977)
159,3
34,00
14.30
473005
739,i
i 0.5
25,6
142,4
! i Y D R u C A R !"f 0 N C- y. G / K M
r^RFOr. MOr-IOXiDE? G/K(1
ox-inr1'; or NITROGEN* G/KM
,64
1,81
.72
-------
HC
\IC
CO
CO
TEST NO, 473F06 RUN 2
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 739,39 MM HG(29,11 IN HG)
RELATIVE HUMIDITY 47, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
DLOUER DIF P MM, H20(IN, 1-120)
BLOWER INLET P MM, H20
-------
TEST NO, 473M07 RUN 2
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L( 90, GIB) L-4
TRANSMISSION M4
BAROMETER 739,90 MM HG(29,i3 IN
RELATIVE HUI'/HUTY -42* PCT
DAG RESULTS
TEST CYCLE
HO)
n
BLOWER
BLOWER
BLOWER
BLOWER
DIF r
INLET
INLPT TEMP,
REl'fiLUTJONS
MM, H20
-------
TEST NO, 4731-100 RUN 3
VEHICLE MODEL 80 VU RABBIT
ENGINE'1,5 L( 90, CID) L-4
TRANSMISSION H4
BAROMETER 737,62 MM HO (29, 04 IN HG)
RELATIVE HUMIDITY 56, PCT
BAG RESULTS
TEST CYCLE
BLOUER DIE P MM. H2Q(IN. 1-120)
BLOWER INLET P MM, H20(JN, H20)
KIJ3UER INLET TEMP, BEG, C(BEG, F)
fil.nWER REVOLUTIONS
THT H.CW STD, CLU METRES (SCF)
Hi: SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
i:0 PCKGRD METER/RANGE/PPM
i:02 SAMPLE METER/RANGE/PCT
CO? BCKGRD METER/RANGE/PCT
NOX GAMPIE METER/RANGE/PPM
NQX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC
CO
C02
NOX
HC
CO
C02
NOX
RUN
CONCENTRATION
CONCENTRATION
CONCENTRATION
CONCENTRATION
PPM
PPM
PCT
PPM
GRAMS
MASS
MASS
MASS GRAMS
TIME SECONDS
DFC* WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER* MM HG
HUMIDITY? G/KG
TEMPERATURE* BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSy G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 11-5830-003
VEHICLE NO.l
DATE 5/ 0/01
DAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77»0 BEG F)
ADS, HUMIDITY 11.5 GM/KG
HFET
711,2 (28,0)
571,5 (22,5)
38.3 (101,0)
21014,
202,2 ( 7141,)
29.0/13/ 116.
4,3/ I/ 5,
55.7/12/ 120,
3.7/12/ 7,
39,I/ 3/ ,66
2,9/ 3/ ,04
20,3/ 2/ 28,
,5/ 2/ 1,
19,58
112,
110.
.62
27,8
13.02
25,93
2291,7
11,05
765,
.949 ( ,932)
1,000 ( ,976)
202,2
43.44
16,40
473H08
737.6
11.5
25.0
139.7
5.69
.79
1,58
,67
TEST WEIGHT 1021, K'G( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EH--473--F
ODOMETER 3109. KM< 1932. MILES)
NOX HUMIIHTY CORRECTION FACTOR 1,03
-------
TEST NO, 473305 RUN 1
VEHICLE MODF.L 00 VU RAPBIT
ENGINE 1,5 L( 90, CID) I.-4
TRANSMISSION M4
BAROMETER 739,65 MM HG(29,12 IN HG)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIE P MM, H20(IN, M20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(OEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CD, METRES(SCF)
'-1C SAMPLE MFTER/RANGE/PPH
HC FiCKGRD METER/RANGE/PPM
CD SAMPLE METER/RANCE/FFM
CO BCKGRB METER/RANGE/PPM
CU2 SAMPLE METER/RANGE/PCT
C0:> FCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX. BCKGRD METER/RANGE/PPM
IHLUrtON FACTOR
HC
DO
C02
NOX
HC
CO
CO?
NOX
CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
MASS CRAMS
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DFC* WET (DRY)
SCFi- WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE, DEG C
CARBON DIOXIDE, G/KM
FUEL CONSUMPTION, L/100KM
HYDROCARBONS, G/KM
CARKQN MONOXIDE* G/KM
OXIDES OF NITROGEN? G/KM
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 11--5830--003
VEHICLE NO.l
DATE 5/ A/01
DAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABC, HUMIDITY 10,5 DM/KG
85 K
716,3 (28,2)
574.0 (22,6)
40,0 (104,0)
16437,
159,3 ( 5624,)
52,7/12/ 105,
5.4/ I/ 5,
64,7/12/ 144,
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-473-F
ODOMETER 2992, KM( 1059, MILES)
NOX HUMIDITY CORRECTION FACTOR ,99
43,4/ 3/ ,74
3,0/ 3/ ,05
35,2/ 2/ 35,
1,1/ 2/ 1,
17,50
100,
139,
.70
34,2
9,21
25,85
2035,7
10,33
3,70
600,
,943 ( ,920)
1,000 ( ,977)
159,3
34,08
14,30
473805
739,6
10,5
25,6
142,4
5,7?
,64
1,81
,72
-------
TEST NO, 474F01 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L~4
TRANSMISSION M4
BAROMETER 742,70 MM HG(29,24 IN HB)
RELATIVE HUMIDITY 35, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20CIN, H20)
BLOWER INLET P MM, H20(IN, 1-120)
BLOUER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
n
w
00
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
DFCr WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 474F01
BAROMETER MM HG 742,7
HUMIDITY G/KG 7,9
TEMPERATURE DEG C 26.7
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE N0,l
BATE 5/19/81
BAG CART NO, 1 / CVS NO. 3
DYNO NO, ,2
DRY BULB TEMP, 26,7 DEG C(80,0 DEG F)
ABS, HUMIDITY 7,9 GM/KG
TEST WEIGHT 1021,
ACTUAL ROAD LOAD
DIESEL EM-474-F
ODOMETER 3264, KM(
K6( 2250, LBS)
4,0 KW( 5,3 HP)
2028, MILES)
NOX HUMIDITY CORRECTION FACTOR ,91
1
lOLD TRANSIENT
706,1 (27,8)
571,5 (22,5)
35,6 ( 96,0)
13872,
136,1 ( 4806,)
20.2/12/ 40.
4,2/ I/ 4,
57.2/13/ 55,
1.5/13/ 1.
29, 5/ 3/ ,49
3, 1/ 3/ ,05
20, I/ 2/ 20,
,6/ 2/ 1,
27,01
36,
52.
.44
19,5
2.85
8,26
1099,2
4,65
2,57
,49
1,43
190,2
,80
7,03
505,
5,78
.984
.972 (
1.000 (
2
STABILIZED
701,0 (27,6)
574,0 (22,6)
33,9 ( 93,0)
23S20,
234,4 ( 8277,)
8.6/12/ 17,
4,4/ I/ 4,
24, 9/1 3/ 23,
1.1/13/ 1,
18. 2/ 3/ .29
3, 1/ 3/ ,05
12, 6/ 2/ 13,
,7/ 2/ 1,
45,40
13,
21,
,24
11,9
1,74
5,85
1050,6
4,88
1,52
,28
,94
169,7
.79
6.24
868,
6,19
,986
,961)
,985)
370,5
79,73
11,97
6,62
CARBON
3
HOT TRANSIENT
706.1 (27,8)
571,5 (22,5)
36,1 ( 97,0)
13867,
135,9 ( 4800,)
17.5/12/ 35,
4,4/ I/ 4,
53.5/13/ 51.
.7/13/ 1,
26. 4/ 3/ ,43
3.2/ 3/ ,05
19, 4/ 2/ 19,
,7/ 2/ 1,
30,42
31,
49.
.38
18,7
2.41
7,78
957,2
4,45
1,95
,42
1,34
165,3
,77
6,12
505,
5,79
.985
.974 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
698,5 (27,5)
571,5 (22,5)
34,4 ( 94,0)
23821,
234,2 ( 8269,)
8.7/12/ 17,
4,2/ I/ 4,
26.5/13/ 24.
.8/13/ 1,
17, 8/ 3/ ,28
3,2/ 3/ ,05
12, 8/ 2/ 13,
,9/ 2/ 1,
46.43
13,
23,
,24
11.9
1.81
6,31
1014,2
4,88
1,51
,29
1.01
162,7
,78
5,99
868,
6,23
,986
,963)
,985)
370,1
79,66
12,03
6,05
3-BAG (4-BAG)
172,7 ( 170,7)
6.37 ( 6,30)
,36 ( ,36)
1,15 ( 1.17)
,79 ( .78)
,312 ( .311)
-------
TEST NO, 4741-102 RUN 1
VEHICLE MODEL CO VW RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,46 MM HG(29,27 IN HG)
RELATIVE HUMIDITY 34, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DFC? WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
n
OJ
TEST NUMBER>
BAROMETER? MM HG
HUMIDITY? 0/KS
TEMPERATURE/ DEC C
CARDON DIOXIDE? G/KM
FUEL CONSUMPTION? L/iOOKM
HYDROCARBONS? G/KM
CARDON MONOXIDE? G/KM
OXIDES OF NITROGEN* G/KM
MFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO,01
DATE 5/19/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABS, HUMIDITY 7,0 CM/KG
HFET
696,0 (27,4)
569,0 (22.4)
37,2 ( 99,0)
21008,
205,8 ( 7268,)
16.7/13/ 67,
4,2/ I/ 4,
48,A/12/ 102,
.2/13/ 0,
40,O/ 3/ .68
2,9/ 3/ .04
38,6/ 2/ 39.
,6/ 2/ 1,
19,30
63,
100,
.64
38,0
7,48
23,92
2395,4
13,35
5,85
765,
,940 ( ,938)
1,000 ( ,983)
205,8
44,07
16,44
474H02
743,5
7.0
25,6
145,7
5,42
,45
1.46
,01
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 4,0 KW( 5,3 IIP)
DIESEL EM-474-F
ODOMETER 3289. KM( 2044. MILES)
NOX HUMIDITY CORRECTION FACTOR .89
-------
TEST NO, 474103 RUN 1
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 743.20 MM HG(29,26 IN HG)
RELATIVE HUMIDITY 32, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
o CO CONCENTRATION PPM
' C02 CONCENTRATION PCT
o NOX CONCENTRATION PPM
HC MAES GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFC» WET (DRY)
SCF* WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETERc MM HG
HUMIDITYr G/KG
TEMPERATURE> DEG C
CARBON DIOXIDE/ G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSy G/KM
CARBON MONOXIDE? G/KM
OXIDES OF NITROGEN, G/KM
IDLE VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 5/19/81
BAG CART NO, 1
DYNO NO. ,2
CVS NO, 3
DRY BULB TEMP, 26,7 DEG C(80,0 DEG F)
ADS, HUMIDITY 7,2 GM/KG
IDLE
711,2 (28.0)
579,1 (22,8)
33,9 ( 93,0)
32923,
324,3 (11450,)
8.6/12/ 17,
4,4/ I/ 4,
22.1/13/ 20.
.5/13/ 0.
7.I/ 3/ .11
2,9/ 3/ ,04
4,0/ 2/ 4.
,3/ 2/ 0,
117,84
13,
19.
.07
3.7
2.41
7.35
391.9
2,06
,38
1200,
,992 ( ,981)
1,000 ( ,989)
324,3
69,47
474103
743,2
7,2
26,7
TEST WEIGHT 1021, KG< 2250, LBS)
ACTUAL ROAD LOAD 4,0 KW( 5,3 HP)
DIESEL EM-474-F
ODOMETER 3306. KM( 2054. MILES)
NOX HUMIDITY CORRECTION FACTOR ,90
-------
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
TEST NO, 474504 RUN 1
VEHICLE MODEL 00 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,46 MM HG<29.27 IN HG)
RELATIVE HUMIDITY 36. PCT
SAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO DCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
" C02 CONCENTRATION PCT
A NOX CONCENTRATION PPM
^ HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy UET (DRY)
SCF* WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE> G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
VEHICLE NO.l
DATE 5/19/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS. HUMIDITY 7,3 GM/KG
50 K
696.0 (27,4)
569,0 (22,4)
35,6 ( 96,0)
16472,
161,9 ( 5717.)
22.3/12/ 45,
TEST WEIGHT 1021,
ACTUAL ROAD LOAD
DIESEL EM-474-F
ODOMETER 3306, KH( 2054, MILES)
KG( 2250. LBS)
4,0 KU( 5,3 HP)
NOX HUMIDITY CORRECTION FACTOR ,90
4,0/ I/
25, 6/1 3/
,6/13/
21, 6/ 3/
3,0/ 3/
.13, 0/ 2/
,3/ 2/
37,68
41,
22,
,30
12,7
3,79
4,24
901,8
3,53
1,16
600,
,973 ( ,
1,000 ( ,
161,9
34,67
8,36
474504
743.5
7,3
25,0
107,9
3,99
,45
,51
,42
4,
23,
1.
,35
,05
13,
0,
962)
985)
-------
TEST NO, 474805 RUN 1
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 743,46 MM HG(29,27 IN HG)
RELATIVE HUMIDITY 42, PCT
BAG RESULTS
TEST CYCLE
RLOWER DIP P MM. I-I20(IN, H20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
n
HC
HC
CO
CO
C02
3AMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy UET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERt
BAROMETERr MM HG
HUMIDITYr G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE> G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS? G/KM
CARBON MONOXIDEy G/KM
OXIDES OF NITROGEN* G/KM
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.i
DATE 5/19/81
BAG CART NO, 1
BYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 24,4 DEG C<76,0 DEG F)
ABS, HUMIDITY 0,2 GM/KG
85 K
696,0 (27,4)
569,0 (22,4)
37.8 (100,0)
16480,
161.2 ( 5693.)
25.4/13/ 101,
4.4/ I/ 4,
63.4/12/ 141,
TEST WEIGHT 1025, KG( 2260, L.BS)
ACTUAL ROAD LOAD 4,0 KW( 5,3 HP)
DIESEL EM-474-F
ODOMETER 3315, KM( 2060, MILES)
NOX HUMIDITY CORRECTION FACTOR ,92
44, 3/ 3/ ,76
2,9/ 3/ ,04
46, 7/ 2/ 47,
,5/ 2/ 1,
17.13
97,
136,
.72
46.2
9,04
25.58
2115,3
13,15
6,60
600.
,942 ( .929)
1,000 ( .980)
161,2
34,46
14,27
474805
743,5
8,2
24,4
148,2
5,55
,63
1,79
,92
-------
TEST NO, 474F03 RUN 3
VEHICLE MODEL SO VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 737,07 MM HO(29.05 IN HG)
RELATIVE HUMIDITY 50, PCT
FAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS CRAMS
o
>£.
CO
HC
CO
MASS
C02 MASS GRAMS
NOX MAGS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF-% BRY
DFC» UET (DRY)
SCFf UET (BRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 474F08
BAROMETER MM KG 737,9
HUMIDITY G/KG 11,0
TEMPERATURE BEG C 26,1
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 5/22/8.1
BAG CART NO, 1 / CVS NO, 3
DYNO NO, ' 2
DRY BULB TEMP, 26,1 BEG C(79,0 DEC F)
ABS, HUMIDITY 11,0 GM/KG
TEST WEIGHT 102.1, KG( 2250, LBS)
ACTUAL. ROAD LOAD 4,0 KW( 5,3 HP)
DIESEL EM-474-F
ODOMETER 3344, KM( 2078, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,01
1
COLD TRANSIENT
STABILIZED
3
HOT TRANSIENT
STABILIZED
693,4 (27,3)
561,3 (22,1)
34,4 ( 94,0)
13870,
134,7 ( 4758,)
20.6/12/ 41,
4,4/ I/ 4,
62.5/13/ 60,
1.1/13/ 1,
30, O/ 3/ ,50
4,5/ 3/ ,07
20, 5/ 2/ 21,
, 5/ 2/ 1 ,
26,50
37,
58.
,43
20,0
2,07
9,04
1058,5
5,21
2,7.1
,50
1,57
184,0
,9.1
6,82
505,
5,75
,979
,972 (
1.000 (
693,4 (27,3)
563,9 (22,2)
34,4 ( 94,0)
23823,
231,4 ( 8170.)
9,1/12/ 18,
5,0/ I/ 5,
28.0/13/ 26,
1.1/13/ 1,
18, 3/ 3/ ,29
3,7/ 3/ ,06
14, I/ 2/ 14,
,8/ 2/ 1,
45,07
13,
25,
,24
13,3
1,78
6,71
1005,8
5,95
1,55
,29
1,08
162,2
,96
5,98
868,
6,20
,981
,956)
,980)
366.1
77.88
11.95
6,38
CARBON
696,0 (27,4)
563,9 (22.2)
36,7 ( 98,0)
13G48.
134.0 ( 4732.)
20.2/12/ 40,
5.0/ I/ 5.
5R.6/13/ 56,
1.0/13/ 1,
26, I/ 3/ ,43
4,3/ 3/ ,07
19, ?./ 2/ 19,
,7/ 2/ 1.
30,71
35,
54.
,36
18,5
2,74
8,39
890,4
4,79
2,13
,48
1,46
154,7
,03
5,75
505,
5,76
,980
.975 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS G/KM
CARBON
OXIDES
MONOXIDE G/KH
OF NITROGEN G/KM
PARTICULATES G/K«
693,4 (27,3)
563.9 (22.2)
35,6 ( 96,0)
23822,
230,9 ( 8155,)
9.1/12/ 18,
4,4/ I/ 4,
27,5/13/ 25,
1.1/13/ 1,
17, 5/ 3/ ,28
3,9/ 3/ ,06
13, 6/ 2/ 14,
,7/ 2/ 1,
47,23
14,
24,
,22
12,~9
1,84
6,37
934 , 0
5.76
1,45
,30
1,04
152,0
,94
5,61
868,
6.14
,981
.959)
.981)
365,0
77,83
11,90
5,67
3-BAG (4-BAG)
164,7 ( 161,6)
6,09 ( 5,98)
,38 ( ,39)
1,29 ( 1,27)
,91 ( ,91)
,328 ( .324)
-------
HFET VEHICLE EMISSIONS RESULTS
TEST NO, 474H09 RUN 3
VEHICLE MODEL 80 VW RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 737,11 MM 1-10(29,02 IN HO)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM* H20(IN, H20)
BLOWER INLET P MM, H20(IN. M20)
BLOWER INLET TEMP, BEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
? CO CONCENTRATION PPM
iL C02 CONCENTRATION PCT
^ NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
BFCv WET (BRY)
SCFf UET (BRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETERy MM MG
HUMIDITYf G/KG
TEMPERATURE* DEO C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE? G/KM
OXIDES OF NITROGENr G/KM
VEHICLE NO.l
DATE 5/22/81
BAG CART NO, 1
DYNO NO, ' 2
CVS NO, 3
BRY BULB TEMP, 25,6 BEG C(78,0 BEG F)
ABS, HUMIDITY 11,3 GM/KG
HFET
£93,4 (27,3)
563,9 (22,2)
39,4 (103,0)
21016.
201,8 ( 7126.)
17.4/13/ 69,
4,4/ I/ 4,
48.9/12/ 103,
.70
.06
37.
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 4,0 KU( 5,3 HP)
DIESEL EM-474-F
ODOMETER 3368, KM( 2093. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,02
41, 3/ 3/
3,8/ 3/
37, I/ 2/
.8/ 2/
18,64
65,
99.
,65
7,59
23.34
2389.9
14,28
5,56
765,
,946 ( .930)
1,000 ( .976)
201,8
43,05
16,52
474H09
737,1
11,3
25,6
144,7
5.38
,46
1,41
,86
-------
TEST NO, 474F06 RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L.( 90, CID) L-4
TRANSMISSION H4
BAROMETER 740,41 MM HG(29,15 IN HG)
RELATIVE HUMIDITY 43, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H2Q
-------
TEST NO, 474H07 RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M5
BAROMETER 739,65 MM HG(29,12 IN HG)
RELATIVE HUMIDITY 46, PCT
DAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC
HC
CO
CO
CO?
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DFCr WET (DRY)
SCFf WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERF
BAROMETERr MM HG
HUMIDITY* G/K6
TEMPERATURE, DEC C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION? L/100KM
HYDROCARBONSr G/KM
CARBON MONOXIDEF G/KM
OXIDES OF NITROGENr G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO,
DATE 5/15/01
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3'
DRY BULB TEMP, 25.6 DEG C(78,0 DEC P)
ABS, HUMIDITY 9,8 GM/KG
HFET
696.0 (27,4)
569,0 (22,4)
37,8 (100,0)
21006.
204,3 ( 7215.)
17.9/13/ 72,
4,4/ I/ 4.
95.0/13/ 96,
,5/13/ 0,
39,7/ 3/ ,67
2.9/ 3/ ,04
37,3/ 2/ 37,
,5/ 2/ 1,
19,46
67,
93,
,63
36,8
7,95
22,17
2357,2
13,96
5,71
765,
,949 ( ,934)
1.000 ( ,979)
204,3
43,60
16,46
474H07
739,6
9,8
25,6
143,2
5,33
,43
1,35
,85
TEST WEIGHT 1021,
ACTUAL ROAD LOAD
DIESEL EM-474-F
ODOMETER 3232, KM(
KG( 2250, LDS)
3,9 KU( 5,2 HP)
2008, MILES)
NOX HUMIDITY CORRECTION FACTOR ,97
-------
TEST NO, 476F01 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L--4
TRANSMISSION M4
BAROMETER 737,62 MM HG(29,04 IN HG)
RELATIVE HUMIDITY 49, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG. C(DEG. F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
o C02 CONCENTRATION PCT
' NOX CONCENTRATION PPM
-j HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SLTr DRY
DFCy WET (DRY)
SCF» WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 476F01
M METER MM HG 737,6
Dm G/KG 11,8
TEMPERATURE DEG C 27,8
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 5/27/01
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 27,8 DEG C(82,0 DEG F)
ABS, HUMIDITY 11,8 GM/KG
TEST WEIGHT 1021,
ACTUAL ROAD LOAD
BIESEL EM-476--F
ODOMETER 3457, KM(
KG( 2250, LBS)
5,4 KW( 7,3 HP)
2148, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,04
1
lOLD TRANSIENT
696,0 (27,4)
563,9 (22,2)
36,1 ( 97,0)
13856,
134,6 ( 4752,)
43,3/12/ 87,
20, 8/ I/ 21,
63,2/13/ 61,
1.2/13/ 1.
28, 5/ 3/ ,47
3,2/ 3/ ,05
14. 5/ 2/ 15.
,3/ 2/ 0,
27,71
67,
58,
.42
14,2
5,16
9,14
1039,3
3,79
1,51
,90
1,60
101,6
,66
7,35
505,
5,72
,980
,973
1,000
9
STABILIZED
690,9 (27,2)
563,9 (22,2)
35,0 ( 95,0)
23813,
231,7 ( 8183,)
23.3/12/ 47,
19, 8/ I/ 20,
36.4/13/ 34,
i.2/13/ 1.
17, 5/ 3/ ,28
2,9/ 3/ ,04
9,5/ 2/ 10.
,5/ 2/ 1,
46,62
27,
32,
.24
9.0
3,63
8.62
1001,5
4.14
1,14
,58
1,38
160,6
,66
6,48
868,
6,24
,982
( .958)
( ,981)
366.3
78,00
11.96
6.90
CARBON
3
HOT TRANSIENT
696,0 (27,4)
563,9 (22,2)
36,7 ( 98,0)
13856,
134,5 ( 4748.)
37.8/12/ 76,
19. 8/ I/ 20,
57.8/13/ 55,
,9/13/ 1,
27. 2/ 3/ ,45
3,8/ 3/ ,06
15, 2/ 2/ 15,
,8/ 2/ 1,
29,19
56,
53,
,39
14,4
4.37
8.31
959,6
3,85
1,31
,73
1.39
160,9
,64
6.51
505,
5,96
,980
.973 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
P ARTICULATES G/KM
4
STABILIZED
690,9 (27,2)
563,9 (22,2)
36,1 ( 97,0)
23818,
231,4 ( 8169.)
24.6/12/ 49,
16, O/ I/ 16.
38.3/13/ 36,
,7/13/ 1,
18, I/ 3/ ,29
3, I/ 3/ ,05
9,9/ 2/ 10,
,8/ 2/ 1,
44,98
34,
34,
,24
9,1
4,49
9,21
1029,9
4,18
1,20
,69
1,42
159.3
,65
6,44
868,
6,47
.982
.958)
,981)
365,8
77,97
12,43
6,47
3-BAG (4-BAG)
165,0 ( 164,6)
6,67 ( 6,65)
,69 ( ,72)
1,43 < 1,44)
,66 ( ,65)
,209 ( .210)
-------
TEST NO, 476H02 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION M4
BAROMETER 737,62 MM H6C29.04 IN HO)
RELATIVE HUMIDITY 42, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRB METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
CG2 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
o C02 CONCENTRATION PCT
! NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFC» WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
oo
TEST NUMBERF
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE? BEG C
CARBON DIOXIDEr G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONSy G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
BATE 5/27/81
BAG CART NO, 1
DYNO NO. 2
CVS NO, ,3
DRY BULB TEMP, 30,0 DEG C(G6,0 BEG F)
ADS, HUMIDITY 11,6 GM/KG
HFET
690,9 (27,2)
563.9 (22,2)
37.8 (100,0)
20985,
203,7 ( 7191.)
27.6/13/ 111.
16.O/ I/ 16.
91.0/13/ 92,
1.0/13/ 1.
39,5/ 3/ ,67
3,0/ 3/ .05
25,O/ 2/ 25,
,9/ 2/ 1,
19,46
95,
88,
,62
24,1
11,19
20.96
2329.9
9.69
2,95
765,
,949 ( .936)
1,000 ( ,980)
203,7
43,41
16,34
476H02
737,6
11,6
30.0
142,6
5.77
.69
1.28
,59
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAB 5,4 KW( 7,3 HP)
DIESEL EM-476-F
ODOMETER 3481, KM( 2163, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,03
-------
TEST NO, 476103 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CUD L-4
TRANSMISSION M4
BAROMETER 737,87 MM i-IG(29,05 IN HO
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
TEST CYLL.E
BLOWER BIF P MM. H20(IN, H20)
BLOWER INLET ? MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
9
i-ic
I-IC
CO
CO
SAMPLE HETER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE HETER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFC» WET (DRY)
SCF7 WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETER, MM HG
HUMIDITY* G/KG
TEMPERATURE? DEC C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION/ L/100KM
HYDROCARBONS? G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
IDLE VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 5/27/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP. 25,6 BEG C(78,0 BEG F)
ADS, HUMIDITY 11,2 GM/KG
IDLE
701,0 (27,6)
571,5 (22,5)
32.2 ( 90,0)
32923,
322,6 (11393.)
16.9/12/ 34,
14.2/ I/ 14,
25.2/13/ 23,
1.0/13/ 1,
7,2/ 3/ ,11
3,2/ 3/ ,05
3.7/ 2/ 4.
,7/ 21 1»
114,32
20,
22,
,06
3,0
3,66
8,16
372.2
1,89
,28
1200,
,991 ( ,974)
1,000 ( ,982)
322,6
68.37
476103
737,9
11.2
25,6
TEST WEIGHT 1021, K0( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-476-F
ODOMETER 3455, KM( 2147. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,02
-------
TEST NO. 476504 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 738,12 MM HG<29.06 IN I-IG)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOUER INLET TEMP, BEG. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANBE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
CU2 MASS GRAMS
NOX MASS GRAMS
('ARTICULATE MASS GRAMS
RUN TIME
DFCy UET (DRY)
SCFy WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
o
01
o
TEST NUMBERr
BAROMETER, MM HG
HUMIDITYy G/KG
TEMPERATURE» DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSr G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 5/27/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3j
DRY BULB TEMP, 26,1 BEG C(79,0 DEG F)
ADS, HUMIDITY 11,0 Gtt/KG
50 K
696.0 (27.4)
569,0 (22,4)
35,6 ( 96,0)
16474,
160.3 ( 5662,)
15.7/12/ 31,
13, 6/ I/ 14,
24.6/13/ 22,
,35
.06
12,
TEST WEIGHT 1021. KG< 2250, LBS)
ACTUAL ROAD LOAD 5.4 KU( 7.3 HP)
DIESEL EM--476-F
ODOMETER 3455. KM( 2147, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,01
21,97 3/
3,6/ 3/
11, 7/ 2/
,7/ 2/
37,29
18,
21,
,30
11,0
1,68
3,96
881,7
3,41
,70
600,
,973 (
1,000 (
160,3
34,07
8,35
476504
738,1
11,0
26.1
105,6
4,21
.20
.47
.41
957)
980)
-------
TEST NO. 476805 RUN 1
VEHICLE MODEL 00 VW RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 738,12 MM HG(29.06 IN HG)
RELATIVE HUMIDITY 54, PCT
BAG RESULTS
TEST CYCLE
BLOWER BIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP. BEG, C(BEG. F)
BLOWER REVOLUTIONS
TOT FLOW STB. CU, HETRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
CQ2 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
o
£ HC MASS GRAMS
M CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONBS
BFC» WET (BRY)
SCF? WET (DRY)
VOL. (SCM)
SAM BLR (SCM)
KM (MEASURES)
TEST NUMBER?
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE* BEG C
CARBON DIOXIDE? G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS? G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN/ G/KM
85 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 5/27/01
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 26,1 BEG C(79,0 DEC F)
ADS. HUMIDITY 11,7 CM/KG
85 K
693,5 (27,5)
569,0 (22,4)
40,0 (104,0)
16467,
158,9 ( 5611.)
30.8/13/ 123,
13, 6/ I/ 14.
49.2/12/ 104,
,71
.05
28,
TEST WEIGHT 1021. KG( 2250. LBS)
ACTUAL ROAD LOAD 5,4 KWC 7.3 HP)
DIESEL EM-476-F
ODOMETER 3508, KM 2180, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,04
41, 8/ 3/
3,3/ 3/
28, 3/ 2/
,7/ 2/ 1,
18,26
110,
100,
,66
27,6
10,10
18,44
1930,5
8.69
2,90
600,
,945 ( .929)
1,000 ( ,976)
158,9
34,04
14,26
476805
738,1
11.7
26,1
135,3
5,49
.71
1,29
,61
-------
TEST NO, 476F06 RUN 2
VEHICLE MODEL 00 W RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 738,63 MM HG(29,08 IN I-IG)
RELATIVE HUMIDITY 46, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANCE/PCT
BCKGRD METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
1S
MASS GRAMS
C02
NOX
HC
CO
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFCi WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 476F06
BAROMETER MM HG 738,6
HUMIDITY G/KG 11,0
TEMPERATURE DEG C 27.8
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
BATE 5/28/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 27,8 DEG C(82.0 DEC F)
ABS, HUMIDITY 11.0 GM/KG
TEST WEIGHT 1021.
ACTUAL ROAD LOAD
DIESEL EM-476-F
ODOMETER 3523, KM(
KB( 2250, LBS)
5.4 KU< 7,3 HP)
2189, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,01
1
COLD TRANSIENT
696,0 (27.4)
563.9 (22.2)
37,2 ( 99,0)
13861,
134,7 ( 4755.)
46.2/12/ 92,
STABILIZED
696,0 (27,4)
569.0 (22.4)
35.6 ( 96.0)
23826.
231,9 ( 8190.)
15.0/12/ 30,
HOT TRANSIENT
696,0 (27,4)
569,0 (22.4)
36,7 ( 98,0)
13859.
134,7 ( 4756,)
23.6/12/ 47.
STABILIZED
690,9 (27,2)
563,9 (22,2)
35,0 ( 95,0)
23827,
232,3 ( 8201.)
15.2/12/ 30,
8
59
27
3
14
,0/ I/ 8,
,7/13/ 57.
.9/13/ 1,
,9/ 3/ ,46
,4/ 3/ ,05
,!/ 2/ 14,
,4/ 2/ 0,
28,32
85,
55,
,41
13.7
6,57
8,63
1006,3
3,57
1,61
1,18
1,55
181,1
,64
7.37
505,
5,56
,981
.974
1,000
6,8/ I/ 7,
33.2/13/ 31,
«8/33/ 1,
17.4/3/ ,28
3,2/ 3/ ,05
9,4/ 2/ 9,
,4/ 2/ 0,
47,22
23,
29.
.23
9,0
3.13
7.92
975,9
4,04
1,08
,52
1.32
162,3
,67
6,53
868,
6,01
,983
( ,959)
( ,982)
366,6
77,85
11,57
6,93
CARBON
6,8/ I/ 7,
45.6/13/ 43.
,5/13/ 0,
24, 5/ 3/ ,40
3, I/ 3/ .05
12, 6/ 2/ 13,
,4/ 2/ 0,
32.86
41,
41.
.35
12.2
3.16
6.49
870.2
3,18
1.10
.56
1,15
154,1
,56
6,20
505,
5,65
,982
,976 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KH
PARTICULATES G/KM
6,6/ I/
32.8/13/
,5/13/
16, 6/ 3/
2,9/ 3/
8,9/ 2/
,4/ 2/
49,55
24,
29,
.22
8.5
3,21
7,90
939,6
3,82
,98
,53
1,30
155,0
,63
6,24
868,
6,06
,983
,962)
,982)
366,9
77,83
11,71
6,22
3-BAG
163,9
6,61
,67
1,32
.207
7,
30.
0.
,26
,04
9,
0,
(4-BAG)
( 161
( 6,
( ,
( 1,
(
.8)
53)
67)
32)
X,?i
< .202)
-------
TEST NO, 476H07 RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 738,38 MM HG<29.07 IN HG)
RELATIVE HUH1DITY 51, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20UN, H20)
BLOWER INLET P MM, H20CIN, H20)
BLOWER INLET TEMP, DE6, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
I-IC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO DCKGRD METER/RANGE/PPM
CO? SAMPLE METER/RANGE/PCT
CO? BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NfJX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CD CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy UET (BRY)
SCF* WET (DRY)
VOL
-------
TEST NO, 478F01 RUN 1
VEHICLE MODEL 00 VU RABBIT
ENGINE 1,5 L( 90, CIO) L-A
TRANSMISSION M4
BAROMETER 741,17 MM HG(29,18 IN HG)
RELATIVE HUMIDITY 50, FCT
BAG RESULTS
BAG NUMBER
INSCRIPTION
BLOWER OIF P MM, H20(IN, H20)
BLOWER INLET P KM, 1120(IN, H20)
BLOWER INLET TEMP, BEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC
HC
CO
CO
C02
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
9 CO CONCENTRATION PPM
i>, C02 CONCENTRATION PCT
* NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURES BISTANCE KM
SCFf DRY
DFC? WET (DRY)
SCF» WET (BRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KH
COMPOSITE RESULTS
TEST NUMBER 470F01
BAROMETER MM HG 741.2
HUMIDITY G/KB 10,5
TEMPERATURE DEC C 25.6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 7/17/01
BAG CART NO, 1 / CVS NO, 3
BYNO NO, . 2
BRY BULB TEMP, 25,6 BEG C(78,0 BEG F)
ABS, HUMIDITY 10,5 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7.3 HP)
DIESEL EM-478--F
ODOMETER 3964, KM( 2463, MILES)
NOX HUMIDITY CORRECTION FACTOR
,99
1
:OLD TRANSIENT
701,0 (27.6)
571,5 (22,5)
36,7 ( 98,0)
13850,
134,8 ( 4759.)
27.6/13/ 110,
7,2/ I/ 7,
60.4/13/ 58,
2.7/13/ 2,
28, 6/ 3/ .47
2,9/ 3/ ,04
17, 4/ 2/ 17,
,5/ 2/ 1,
27,49
103,
54.
.43
16,9
0,04
8,49
1056,2
4,32
2,8S
1,42
1.50
186,3
,76
7.04
505,
5,67
.980
,973 (
1,000 (
2
STABILIZED
70J.6 (27,7)
576,6 (22.7)
32,8 ( 91.0)
23809.
233.1 ( 8229.)
7.4/13/ 30,
6,0/ I/ 6,
35.1/13/ 32,
2,1/13/ 2,
18, O/ 3/ ,29
3,2/ 3/ ,05
10, 7/ 2/ 11,
,5/ 2/ 1,
45,58
24,
30,
,24
10,2
3,22
8,12
1023.8
4,51
2.69
.52
1.32
166,6
.73
6,21
868,
6,14
,981
,957)
,981)
367,8
77,96
11,81
6.61
CARBON
3
HOT TRANSIENT
703,6 (27.7)
571,5 (22,5)
34,4 ( 94,0)
13846,
135,1 ( 4771.)
9.8/13/ 39,
6.0/ I/ 6.
52.4/13/ 50.
1.8/13/ 2,
25, 4/ 3/ .41
3,0/ 3/ ,05
16, 9/ 2/ 17.
,5/ 2/ 1.
31.66
33.
47,
,37
16,4
2,59
7,37
915,5
4,21
1,70
,45
1,29
160,4
.74
5,97
505,
5,71
,980
.976 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KH
PARTICULATES G/KM
4
STABILIZED
703.6 (27.7)
576,6 (22,7)
31,7 ( 89,0)
23825,
233,8 ( 8255.)
6.1/13/ 24,
5.6/ I/ 6.
33.7/13/ 31,
1.6/13/ 1.
16, 7/ 3/ ,27
2.5/ 3/ .04
10, 8/ 2/ 11,
,5/ 2/ 1,
49,34
19,
29,
,23
10,3
2,55
7,91
978.7
4.57
1,22
,42
1,29
159,5
,75
5.94
869,
6,13
.981
.960)
,981)
36,8,9
77,94
11.84
5,95
3-BAG (4-BAG)
169,0 ( 166,9)
6,32 ( 6,24)
,69 ( ,66)
1,35 ( 1,34)
.74 ( .74)
.414 ( .343)
-------
TEST NO, 478H02 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 741,17 MM HG(29,10 IN HG)
RELATIVE HUMIDIFY 53, PCT
BAfi RESULTS
TEST CYCLE
BLOWER DIF P MM, I-!20(IN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP. DEG, C(DEG, F)
BLOWER REVOLUTIONS
o
Ul
TOT
HC
HC
CO
CO
C02
002
NOX
NOX
FLOU STD, CU» METRES(SCF)
CAMPLE METER/RANGE/FPM
SCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
RCKCRD METER/RANGE/PPM
CAMPLE METER/RANGE/PCT
BCKGRD METER/RANGE/PCT
CAMPLE METER/RANGE/PPM
BCKGRU METER/RANCE/PPh
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASG GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETERy MM HG
HUMIDITYy G/KG
TEMPERATUREy DEG C
CARBON DIOXIDEy G/KM
FUEL CONSUMPTIONy L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NOil
DATE 7/17/81
BAG CART NO, 1
DYNO NO. .= 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C<78,0 DEG F)
HFET
703.6 (27.7)
571,5 (22,5)
37,2 ( 99,0)
21020,
204,1 ( 7206.)
9.5/13/ 38.
4.0/ I/
63.3/13/
1.3/13/
37,67 3/
2,4/ 3/
30, 6/ 2/
TEST WEIGHT 1021. KG( 2250, LDS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-478-F
ODOMETER 3903, KM( 2475, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,02
5,
61,
1,
,63
,04
31,
0,
20,84
33,
58,
,60
30,2
3,92
13,80
2236,1
11,98
3,78
766,
,952 ( ,936)
1,000 ( ,977)
204,1
43,42
16,32
4781-102
741,2
11,2
25,6
137,0
5,07
,24
,85
,73
-------
TEST NO, 478103 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L4
TRANSMISSION M4
BAROMETER 740,92 MM HG(29,17 IN MG)
RELATIVE HUMIDITY
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STl'U CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMfLC METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
IIC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DEC* WET (DRY)
SCFr WET (DRY)
VOL (SCtt)
SAM BLR (SCM)
KM (MEASURES)
n
TEST NUMBERr
BAROMETER» Mil HG
HUMIDITY* G/KG
TEMPERATUREf DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSi G/KM
CARBON MONOXIDEr G/KM
OXIDES OF NITROGEN, G/KM
IDLE VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 7/17/81
BAG CART NO, 1
DYNO NO, ' 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 BEG F)
AB5, HUMIDITY 10,7 GM/KG
IDLE
703,6 (27,7)
574,0 (22,6)
27,8 ( 82,0)
32906,
326,1 (11515.)
6.6/13/ 26,
6,0/ I/ 6,
26.9/13/ 25,
1.1/13/ 1,
6,8/ 3/ ,11
2,9/ 3/ ,04
3,0/ 2/ 4,
,2/ 2/ 0.
121,47
21,
23,
,06
3,6
3,86
8,01
365,8
2,25
,51
1200,
,992 ( ,975)
1,000 ( ,982)
326,1
67,95
47BI03
740,9
10,7
25,0
73,2
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KU< 7.3 HP)
DIESEL EM-478-F
ODOMETER 4006. KM( 24S9. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
-------
TEST NO, 470504 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 740,92 MM HG(29,17 IN HO
RELATIVE HUMIDITY 49, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H2Q(IN, H2Q)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
n
(SI
TOT
HC
I-IC
CO
CO
C02
C02
NOX
NOX BCKGRD
DILUTION FACTOR
I-IC CONCENTRATION
CO CONCENTRATION
CONCENTRATION
C02
NOX
I-IC
CO
C02
NOX
FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
AMPLE METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PCT
METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
METER/RANGE/PPM
PPM
PPM
PCT
PPM
S3CKGRD
SAMPLE
HCKGRD
CONCENTRATION
siSS GRAMS
}SS GRAMS
*SS GRAMS
WS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy WET (DRY)
SCFt WET (DRY)
VOL (5CM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETER? MM HG
HUMIDITY? G/KG
TEMPERATURE, DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION, L/100KM
MYflROCARBDNSj G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN? G/KM
50 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 7/17/81
BAG CART NO, 1
DYNO NO, . 2
CVS NO, 3
DRY BULB TEMP. 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 10,0 CM/KG
50 K
703,6 (27,7)
574,0 (22,6)
33,9 ( 93,0)
16462,
160,6 ( 5671,)
15.9/13/ 63,
6,0/ I/ 6,
28,9/13/ 27,
1.1/13/ 1,
23,O/ 3/ ,37
2,6/ 3/ ,04
12,8/ 2/ 13,
,2/ 2/ 0,
35,09
58,
25,
,33
12,6
5.34
4,67
903,2
3,78
1,11
600,
,972 ( ,956)
1,000 ( ,981)
160,6
34,00
8,36
478504
740,9
10,0
25,0
117,6
4,39
,64
,56
,45
TEST WEIGHT 1021, KC< 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-478-F
ODOMETER 4006, KM( 2489, MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
-------
TEST NO, 470805 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 740,66 MM MG<29,16 IN tIG)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20CIN, H20)
BLOWER INLET P MM, H20CIN. 1-120)
BLOWER INLET TEMP, BEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
Hi: SAMPLE METER/RANGE/PPM
IIC BCKCRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
o
i
CD
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME
DFC* UET (BRY)
SCF. WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETER» MM MG
HUMIDITY, G/KG
TEMPERATURE* DEC C
CARBON DIOXIDE/ G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
35 KPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
BATE 7/17/81
BAG CART NO, 1
DYNO NO, -2
CVS NO, 3
DRY BULB TEMP, 25,6 BEG C(78,0 BEG F)
ABS, HUMIDITY 10,5 GM/KG
85 K
703,6 (27,7)
574,0 (22,6)
37,8 (100,0)
16457,
159,4 < 5627.)
11.4/13/ 46,
7,2/ I/ .7,
68.1/13/ 66,
1.1/13/ 1,
43,7/ 3/ ,75
3,1/ 3/ ,05
39,4/ 2/ 39.
,2/ 2/ 0,
17,68
39,
63,
.70
39,2
3,57
11,72
2049,0
11,85
3,36
600,
,943 (
1,000 (
159,4
33,90
14.20
TEST WEIGHT 1021, KG< 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU( 7,3 HP)
DIESEL EM-478-F
ODOMETER 4015, KM( 2495, MILES)
NOX HUMIDITY CORRECTION FACTOR ,99
,928)
,977)
478805
740,7
10,5
25,6
144,3
5,34
,83
,84
-------
TEST NO, 478F06 RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 741,93 MM HG(29.21 IN HG)
RELATIVE HUMIDITY 46, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, H20)
SLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STIi, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKfiRO METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NQX CONCENTRATION PPM
HC MAGS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
n
171
RUN TIME
MEASURED DISTANCE
SCF> DRY
DFC, UET (DRY)
SCF; WET (DRY)
SECONDS
KM
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 478F06
BAROMETER MM HG 741,9
HUMIDITY G/KG 9,3
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 7/20/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 9,3 GM/KG
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KU( 7,3 HP)
DIESEL EM-478-F
ODOMETER 4046, KM( 2514, MILES)
NOX HUMIDITY CORRECTION FACTOR ,95
TEMPERATURE BEG C
5,0
1
:OLD TRANSIENT
706,1 (27,8)
576.6 (22,7)
35,6 ( 96,0)
13834,
134,7 ( 4758.)
19.2/13/ 77,
6,8/ I/ 7,
59.5/13/ 57,
1.9/13/ 2,
30, 3/ 3/ ,50
3,0/ 3/ ,05
10. U 2/ 19.
,!/ 2/ 0,
26,06
70,
54,
,46
10,5
5,46
8,46
1127,0
4,55
4.12
,94
1,46
194,9
,79
7,30
504,
5,78
,981
,971
1.000
2
STABILIZED
708,7 (27,9)
579,1 (22,8)
32,8 ( 91,0)
23817,
233,1 ( 8232,)
6,0/13/ 24,
5,2/ I/ 5,
33.2/13/ 31,
1.8/13/ 2,
18, 8/ 3/ ,30
3,2/ 3/ ,05
11. 5/ 2/ 12.
,!/ 2/ 0,
43,69
19,
28,
,25
11,4
2.56
7,72
1031,8
4,85
1.63
,41
1.25
175,2
,79
6,51
868.
6,18
,982
( ,957)
( ,982)
367,9
77,90
11,96
6,89
CARBON
3
MOT TRANSIENT
706,1 (27,8)
579,1 (22.8)
35,6 ( 96.0)
13854,
134,9 ( 4763,)
8.1/13/ 33,
5,2/ I/ 5,
47.5/13/ 45,
1.6/13/ 1,
26, 7/ 3/ .44
3,2/ 3/ ,05
17, I/ 2/ 17.
,!/ 2/ 0,
30,12
27,
42,
,39
17,0
2,14
6,63
963,0
4,19
1,85
.37
1.15
166.7
,72
6,19
505,
5,78
,901
,974 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
706,1 (27,8)
579.1 (22.8)
32.8 ( 91,0)
23799,
233,0 ( 8227.)
6,0/13/ 24.
4,8/ I/ 5,
32.9/13/ 30,
1.6/13/ 1,
17, 9/ 3/ ,29
3,6/ 3/ ,06
11, I/ 2/ 11,
,!/ 2/ 0,
45,96
19,
20.
,23
11,0
2,58
7.69
990.4
4,68
1,35
.41
1.23
159,1
,75
5,92
868,
6,23
,983
,960)
,982)
367,9
77,88
12.00
6.05
3- BAG (4-BAG)
176.9 ( 172.2)
6,58 ( 6.41)
,51 ( ,51)
1,27 ( 1.26)
,77 ( ,76)
.373 ( ,359)
-------
TEST NO, 4781-107 RUN 2
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 LC 90, CID) L-4
TRANSMISSION M4
BAROMETER 741,43 MM HG(29,19 IN HG)
RELATIVE HUMIDITY 44, PCT
DAG RESULTS
TEST CYCLE
SLOWER DIP P MM* H2QCIN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
MC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME
DFCy U'ET (DRY)
SCFy WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
n
CTi
o
HC
HC
CO
CO
CO?
TEST NUMBERy
BAROMETER? MM HG
HUMIDITYt G/KG
TEMPERATUREy DEG C
CARBON DIOXIDE, G/KM
FUEL CONSUMPTION/ L/100KM
HYDROCARBONS» G/KM
CARBON MONOXIDEy G/KM
OXIDES OF NITROGEN* G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE N0,l
DATE 7/20/81
BAG CART NO, 1
DYNO NO, -' 2
CVS NO. 3
DRY BULB TEMP, 26,1 DEG C(79,0 DEG F)
ABS, HUMIDITY 9,5 GM/KG
HFET
706,1 (27.8)
579,1 (22,8)
38,3 (101,0)
21069,
204,3 ( 7215.)
12.6/13/ 50,
7.6/ I/ 8.
72.8/13/ 71.
1.4/13/ 1,
39,8/ 3/ .67
2.5/ 3/ .04
34,5/ 2/ 35,
,4/ 2/ 0.
19,53
43,
68,
,64
34,1
5.08
16,20
2306,0
12,82
4,02
768,
,949 ( ,935)
1,000 ( ,980)
204,3
43.45
16,33
478H07
741.4
9,5
26.1
146,1
5,42
,31
,99
.79
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KW( 7,3 HP)
DIESEL EM-478-F
ODOMETER 4070, KM( 2529. MILES)
NOX HUMIDITY CORRECTION FACTOR
,96
-------
TEST NO, 475F01 RUN 1
VEHICLE MODEL 81 VW RABBIT
ENGINE 5,7 L(350, CUD V~8
TRANSMISSION A3
BAROMETER 742,70 MM h'G<29,24 IN HG)
RELATIVE HUMIDITY 58* PCT
BAG RESULTS
TEST CYCLE
o
MM, H2G(I.N, 1-120)
P MM, 1-120(IN, 1120)
OEG, C(DEG, F)
BLOWER BIF P
BLOWER INLET
BLOWER INLET TEMP,
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE ME1ER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NQX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MAGS GRAMS
MASS GRAMS
PARTIOU! ATE MAGS GRAMS
RUN TIME SECONDS
DFC, WET (DRY)
SCF, UET (DRY)
NOX
HC
CO
C02
NOX
VOL
SAM
KM
(SCM)
BLR (SCM)
(MEASURED)
TEST NUMBER.
BAROMETER,
HUMIDITY >
TEMPERATURE y
CARBON DIOXIDE*
FUEL CONSUMPTION/
CARBON MONOXIDE/
OXIDES OF NITROGEN>
MM HG
G/KG
DEC C
G/KM
L/100KM
G/KM
G/KM
G/KM
C505 VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE N0,l
DATE 4/10/81
BAG CART NO, 1
DYNO NO, i 2
CVS NO, 3
DRY BULB TEMP, 23,3 DEC C(74,0 DEG F)
ABS, HUMIDITY 10,7 GM/KG
C505
703,6 (27,7)
566,4 (22,3)
35,0 ( 95,0)
13344,
135,3 ( 4776,)
21,7/ 3/ 217.
1,9/ 3/ 19,
53.8/12/ 115,
2,4/12/ 4,
32,O/ 3/ ,55
3,1/ 3/ ,03
2.1,67 27 22,
*U23*,~15
199,
100,
,50
21,0
15,51
16,98
1239,4
5,43
15,52
504,
,957 ( ,939)
1,000 ( ,976)
135.3
20,66
5.57
475F01
742,7
10,7
0,44
2,79
3,05
,98
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL. ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-475-F
ODOMETER 3676, KM< 2284, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,00
-------
TEST NO, 482F01 RUN 1
VEHICLE MODEL 80 VU RASBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION M4
BAROMETER 739,65 MM 1-10(29,12 IN HG)
RELATIVE HUMIDITY 67, PCT
BAG F.'ESIJLTS
BAf: NUMBER
DESCRIPTION
BLOWER DIF P MM, 1-120(IN, 1-120)
BLOWER INLET P MM, 1-120(IN, H20)
ULOUER INLET TEMP, DEG, CfDEfi. F)
REVOLUTIONS
FLOW STB, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
BCKTMi METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
o
en
K)
TO)
HC
HC
CO
CO
C02
C02
NOX
BCKGRD
SAMPLE
NOX
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MAGS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF> BRY
DFC» WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 402F01
BAROMETER MM HG 739,6
HUMIDITY G/KG 13.7
TEMPERATURE DEO C 25,0
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 5/ 3/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 25,0 DE.G C(77.0 BEG F)
ABS, HUMIDITY 13,7 GM/KG
TECT WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KM( 7.3 HP)
DIESEL EM--432-F
ODOMETER 4159. KM( 2584. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,11
1
:OLD TRANSIENT
698,5 (27,5)
571,5 (22,5)
32,0 ( 91,0)
13074,
135,6 ( 4787.)
20.0/12/ 40,
8,4/ I/ 0,
08.6/13/ 89,
37.5/13/ 35,
28, 7/ 3/ ,47
3,7/ 3/ ,06
15, V/ 2/ 16.
,5/ 2/ 1.
27.62
32.
53,
.42
15,4
2,49
3,43
1037,3
-1,44
2,48
,43
1,47
100,5
,77
6 , 79
505,
5,75
,974
,973
1,000
9
STABILIZED
703.6 (27,7)
574.0 (22,6)
32.2 ( 90,0)
23824.
233,1 ( C230,)
9.3/12/ 19,
6,6/ I/ 7*
52.0/13/ 49,
30.8/13/ 28,
18, O/ 3/ ,29
3.3/ 3/ ,05
10, O/ 2/ 10,
,57 2/ 1,
45,50
12,
21,
,24
9,5
1,64
5,63
1017,3
4,71
1,13
.27
.91
164,4
,76
6,14
868,
6,19
,976
( .952)
( ,975)
368,6
77,50
11,94
6,45
CARBON
3
HOT TRANSIENT
703,6 (27,7)
571,5 (22.5)
35,0 ( 95,0)
13855,
134,8 ( 4760.)
15.2/12/ 30,
6,6/ I/ 7,
65.2/13/ 63,
20.4/13/ 19,
25. 5/ 3/ .42
3.4/ 3/ ,05
15. O/ 2/ 15,
,5/ 2/ 1,
31,50
24,
44,
,37
14,5
1,86
6,03
902.9
4,16
1,70
,32
1.19
157,2
,72
5,90
505,
5,74
.974
,975 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICIPATES G/KM
4
STABILIZED
706.1 (27,8)
576,6 (22.7)
32.8 ( 91.0)
23839,
232,9 ( 8222.)
8.7/12/ 17,
5,8/ I/ 6,
39,8/13/ 37,
16.7/13/ 15,
17, 3/ 3/ ,28
3,4/ 3/ ,05
9,8/ 2/ 10,
,5/ 2/ 1,
47,61
12.
22,
,23
9,3
1,50
5,03
959,7
4,61
1,08
,26
.94
155,4
,75
5,81
869,
6,17
,976
,954)
.975)
367,7
77,45
11,92
5,85
3-BAG (4-BAG)
165,7 ( 163.1)
6,21 ( 6.11)
,32 ( ,31)
1.10 ( 1.11)
.75 ( .75)
.266 < ,263)
-------
TEST NO. 4G2H02 RUN .1
VEHICLE MODEL 30 VW RABBIT
ENGINE 1,5 L< 90, CID) L-4
TRANSMISSION M4
BAROMETER 739,65 MM
RELATIVE HUMIDITY t
BAG RESULTS
TEST CYCLE
KG(29,12 IN HG)
.3, PCT
BLOUER DIE P MM. H20CIN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOUER INLET TEMP, BEG, C(BEG,
BI..OWER REVOLUTIONS
T01
HC
MC
CO
OH
Cd2
CO?
K'OX
NOX
OIL
HC
? C!J
CT> CO?
w NOX
HC
CO
CO 2
NOX
FLOW STK. CU, METRES(SCF)
SAMPL E METER/RANGE/PPM
DCfvGRD MET ER/RANGE/FPM
SAHPLr- METER/RANGE/PPM
):C!\ORIJ ttFTER/RANGE/PPM
SAMPLE METER/RANGE/PCT
HCKG!(D METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
BCKGRfi METER/RANGE/PPM
UriON FACTOR
CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MAGS fiRAMQ
MASS GRAMS
MAGS GRAMS
MASS GRAMS
F)
PARTICIPATE MASS GRAMS
RUN TIME SECONDS
DFCf UET (DRY)
SCF> UET (DRY)
VOL (SCM)
SAM
KM
DL.R (SCM)
(MEASURED)
TEST NUMBER,
BAROMETER?
HUMIDITY?
TEMPERATUREy
CARBON DIOXIDE?
FUEL CONSUMPTION!
HYDROCARBONS*
CARBON MONOXIDE*
OXIDES OF NITROGEN?
MM HG
G/KG
DEG C
G/KM
L/100KM
G/KM
G/KM
G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003
VEHICLE NO.l
DATE 8/ 3/81
BAG CART NO. 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP, 24,4 DEG C(76.0 BEG F)
ADS, HUMIDITY 12.-4 GM/KG
MEET
698,5 (27,5)
571,5 (22,5)
35.0 ( 75.0)
21050,
204.0 ( 7233.)
20,5/12/ 41,
5,4/ I/ 5.
78.2/13/ 77.
11.4/13/ 10.
30,O/ 3/ .64
2.8/ 3/' .04
27,O/ 2/ 2G,
,4/ 2/ 0,
20.54
36.
65.
.60
27,4
4.24
15,51
2250,1
11,39
4.12
767,
,951 ( ,932)
1,000 ( ,974)
204,8
43,04
16,30
482H02
739,6
12,4
24,4
138.0
5,17
,26
.95
,70
TEST WEIGHT 1021, KG< 2250. LBS)
ACTUAL ROAD LOAD 5.4 KW( 7,3 HP)
DIESEL EM-4G2-F
ODOMETER
NOX HUMIDITY CORRECTION FACTOR 1,06
-------
TEST NO, 482103 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 739,90 MM HG(29,13 IN HG)
RELATIVE HUMIDITY 60, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIE P MM, H20
-------
TEST NO, 402504 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L.( 90, CID) L-4
TRANSMISSION M4
BAROMETER 739,90 MM 1-16(29,13 IN HO)
RELATIVE HUMIDITY 66, PCT
BAG RESULTS
TEST CYCLE
BLOUER DIF P MM, H20(IN, H20)
iiLOWER INLET P MM. H20CEN, H20)
BLOUER INLET TEMP, DUG, C(DEG, F)
DI..OWER REVOLUTIONS
TO'f FLOW STD, CLI, METRES (SCF)
Hi; sifrHPLH HETFR/RANGF/PPM
MC ICKGRIi MF.TFR/RAN6E/PPM
::.T: -;AHPLE MEKR/RANGE/PPM
CO GCXGRD HETER/RANGE/PPM
t;n;-i CAMPLE MLTER/RANGE/PCT
Ci)2 BCKCRB METER/RANGE/PCT
NiiX b'AMI:'LE rtETER/RANGE/PPM
NOX FCKGRB HETER/RANCE/PPM
IJILUTION FACTOR
I-IC CONCENTRATION
9 CO CONCENTRATION
cr. C02 CONCENTRATION
^ NOX CONCENTRATION
HC MASS GRAMS
CO MASS CRAMS
C02 MASS GRAMS
NOX MASS GRAMS
50 MPH VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE O/ 3/01
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 23,9 DEG C(75,0 DEG F)
AUG. HUMIDITY 12,7 CM/KG
50 M
706,1 (27,8)
579,1 (22,8)
31.7 ( 89,0)
TEST WEIGHT 1021, KG( 2250, IBS)
ACTUAL ROAD LOAD 5.4 KU( 7,3 HP)
DIESEL EM-482-F
ODOMETER 4200. KM( 2610. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,07
PPM
PPM
PCT
PPM
PARTICULATE
RUN TIME
MACS GRAMS
HFC:
SCF
VOL
SAM
KM
UET (DRY)
WET (DRY)
(SCM)
.DLR (SCM)
(MEASURED)
SECONDS
TEST NUMBER*
BAROMETER t
HUMIDITY*
TEMPER A TURE>
CARDON DIOXIDE ,
FUEL CONSUMPTION*
HYDROCARBONS*
CARB'ON ilONOXIDC>
OX.TDES OF NITROGEN*
MM HG
G/KG
DEG C
G/KM
L/100KM
G/KM
G/KM
G/KM
161
10,
4,
O7
v-tj +
5,
20,
1
iL. k
11,
1
,5 ( 5702.)
0/12/
6/ I/
7/13/
4/13/
5/ 3/
7/ 3/
2/ 2/
4/ 2/
40,09
16,
16,
,29
10,8
1,45
3,08
057,1
20,
5,
22,
5,
,33
,04
11,
0,
3,57
1,40
600,
,975 ( ,954)
1,000 ( ,976)
161,5
33,05
8,32
482504
739,9
12,7
23,9
103,0
3,04
.17
,37
,43
-------
PROJECT 05-5830-003
TEST NO, 482805 RUN1 1
VEHICLE MODEL BO VU RABBIT
ENGINE 1,5 L( 90, CID) L--4
TRANSMISSION M4
BAROMETER 73V,90 Mil HG(29.13 IN KG)
RELATIVE HUMIDITY 71, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H2CKIN, 1-120)
BLOWER INLET P MM, I-!20(1N, H2Q)
BLOWER ]NLET TI-MP* DEC, C 8CKGRD
MX SAMPLE
NOX BCKGRD
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC, MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
RUN TIME
DFC* WET (DRY)
SCF> WET (PRY)
VOL. (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBERt
BAROMETER* MM H6
HUMIDITY* G/KG
TEMPERATURE, DEO C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
GX.U.e» OF NITROGEN* G/KM
VEHICLE N0,l
DATE 8/ 3/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3"
BRY BULB TEMP. 24,4 DEG C<76.0 BEG F)
ABS, HUMIDITY 14,0 CM/KG
85 K
690,5 (27,5)
571,5 (22,5)
38,3 (101,0)
16471,
159,5 ( 5632.)
25.8/12/ 52.
4,6/ I/ 5,
91,1/13/ 92,
4*4/13/ 4,
42.5/ 3/ ,72
4,I/ 3/ ,06
34.6/ 2/ 35,
,3/ 2/ 0,
18,15
47,
85,
,66
34,3
4,35
15,74
1941,7
11,73
3,92
600,
,945 ( ,923)
1,000 ( .971)
159,5
33,68
1,22
2805
39,9
14,0
24,4
136,5
5,13
,31
1.11
,82
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5.4 KU< 7,3 HP)
DIESEL EM--482-F
ODOMETER 4208, KM< 2615. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,12
-------
TEST NO, 432F06 RUN 2
VEHICLE MODEL 30 VW RABBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION «4
BAROMETER 741,93 MM HG<29,21 IN
RELATIVE HUMIDITY 63, PCT
BAG RESULTS
PAG NUMBER
DESCRIPTION
KG)
o
BLOWER
BLOWER
BLOWER
BLOWER
CO
HC
HC
CO
CO
C02
C02
NOX
NOX
DIP P
INLET
INLET TEMP,
REVOLUTIONS
MM, i-!20(IN, H20)
P MM, H20(IN, 1-120)
KG, C(DEG. F)
FLOW S7D, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
ECKBRI'i METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGff/PPM
METER/RANGE/PCT
METER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/PPM
SAMPLE
HCKGRD
SAMPLE
ilCKGRD
CAMPLE
BCKGRD
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
" CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
MASS GRAMS
C02
NOX
HC
CO
C02
NOX
PARTICIPATE MASS GRAMS
I-IC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION
BY CB L/100KM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCFy DRY
DFC» WET (DRY)
SCFf WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 4S2F06
BAROMETER MM HG 741,9
HUMIDITY G/KG 12,4
TEMPERATURE DEC C 24,4
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05--5830-003
VEHICLE NO.l
BATE B/ 4/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 24,4 BEG C(76,0 DEC F)
ABS, HUMIDITY 12,4 GM/KG
1 2
COLD TRANSIENT
TEST WEIGHT 1021, KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 NU< 7,3 HP)
DIESEL EM-482-F
ODOMETER 4225. KM< 2625. MILES)
NOX HUMIDITY CORRECTION FACTOR 1,06
HOT TRANSIENT
STABILIZED
698,5 (27,5)
571,5 (22,5)
35,6 ( 96,0)
13664,
134,5 ( 4750.)
21.8/12/ 44,
5.2/ I/ 5,
61.1/13/ 59,
,5/13/ 0,
29, O/ 3/ ,48
3,5/ 3/ ,05
16, 2/ 2/ 16,
,77 2/ 1,
27,46
39,
56,
,43
15,5
2,99
8,84
1049,7
4,23
2,35
,52
1,53
182,1
,73
6,86
505,
5,76
,975
,973
1,000
706,1 (27,8)
579,1 (22,8)
32,8 ( 91,0)
23832,
232,3 ( 8203.)
8.2/12/ 16.
5,4/ I/ 5,
26.0/13/ 24,
1.1/13/ 1,
17, S/ 3/ ,28
3,5/ 3/ ,05
9,9/ 2/ 10,
,5/ 2/ 1.
47.20
11,
22,
,23
9,4
1,48
6,01
965,3
4.43
1,23
,24
,97
155,3
,71
5,81
868,
6,22
,977
( ,953)
( ,976)
366,8
75,36
11.98
6,31
701,0 (27.6)
574,0 (22,6)
35,0 ( 95,0)
13861.
134,6 ( 4753.)
16.3/12/ 33.
5,4/ I/ 5,
53.2/13/ 50,
,7/13/ 1,
25, O/ 3/ .41
3,5/ 3/ ,05
15, I/ 2/ 15.
,3/ 2/ 0.
32,23
27,
48,
,36
14,8
2,13
7,59
876.3
4,04
1,90
,37
1,32
152,0
,70
5,72
505,
5,77
,976
.975 (
1.000 (
706,1 (27,8)
579,1 (22,8)
32,8 ( 91,0)
23G18,
232,2 ( 8199.)
8.0/12/ 16,
5,0/ I/ 5,
25.4/13/ 23,
,6/13/ 1,
17, 2/ 3/ ,27
3,5/ 3/ ,05
9,7/ 2/ 10,
,3/ 2/ 0,
48,15
11,
22,
,22
9,4
1.48
5,98
943,4
4.42
1,27
,24
,96
151,7
,71
5,67
868,
6,22
.977
.956)
.977)
366.8
75,35
11,98
5,70
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICIPATES G/KM
3-BAG
159.9
6,00
.33
1,18
.71
,295
(4-BAG)
( 158,9)
( 5,96)
( ,33)
( 1,18)
( ,71)
( ,297)
-------
n
oo
TEST HO, 482H07 RUN 2
VEHICLE MODEL 00 W RABBIT
ENGINE 1,5 L( 90, CTD) L-?
TRANSMISSION Ml
BAROMKTER 742,44 MM HG<29,23 IN HG)
RELATIVE HUMIDITY 63, PCT
BAG RESULTS
TEST CYCLE
BLOUER DIF P MM, H20(IN» H20)
BLOWER INLET P MM, I-!20(IN, H20)
BLOWER INLET TEMP. BEG. C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCNGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME . SECONDS
BFC» WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER>
BAROMETER? MM MG
HUMIDITY* G/KG
TEMPERATURE, BEG C
CARBON DIOXIDE, G/KM
FUEL CONSUMPTION. L/100KH
HYDROCARBONS* G/KM
CARBON MONOXIDEy 0/KM
OXIIO OF NITROGENt G/KM
HFET VEHICLE EMISSIONS RESULTS
PROJECT 05-5030-003.
VEHICLE NO.l
DATE 8/ 4/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 24,4 BEG C<76.0 BEG F)
ADS, HUMIDITY 12,4 GM/KG
HFET
703,6 (27,7)
576,6 (22,7)
36,1 ( 97,0)
21011,
202,3 ( 7143.)
28.5/12/ 57,
5.0/ I/ 5,
84.6/13/ 84,
A/13/ 1,
38,5/ 3/ ,65
3,5/ 3/ ,05
28*9/ 2/ 29,
,2/ 2/ 0,
20,19
52,
81,
,60
28,7
6,09
19,09
2218,3
11,75
4,61
765,
,950 < ,931)
1,000 ( ,974)
202,3
40,56
16,34
482H07
742,4
12,4
24,4
135,8
5,11
,37
1.17
.72
TEST WEIGHT 1021, KG< 2250, LBS)
ACTUAL ROAD LOAD 5,4 KW( 7,3 HP)
DIESEL EM-402-F
ODOMETER 4249, KM( 2640, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,06
-------
TEST NO. 432HOO RUN 3
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 744,22 MM HG(29,30 IN HG)
RELATIVE HUMIDITY 63, PCT
BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, 1120(IN, H20)
BLOWER INLET TEMP, BEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOU STB, CU, METRES(SCF)
SAMPLE METER/RANGF/PPM
METER/RANGF/PPM
METER/RANGE/PPM
METER/RANGL/PPtl
METER/RANGE/PCT
METER/RANGE/PCT
METER/RANGE/PPM
METER/RANGE/PPM
i
CT>
HC
HC
CO
CO
C02
C02
NOX
NOX
BCKGRD
SAMPLE
BCKGRB
SAMPLE
BCKGRB
SAMPLE
BCKGRD
DILUTION FACTOR
HC CONCENTRATION
CO CONCENTRATION
CONCENTRATION
CONCENTRATION
MASS GRAMS
PPM
PPM
PCT
l-'Ph
MASS
MASS
MAQQ
GRAMS
GRAMS
GRAMS
C02
NOX
HC
CO
C02
NOX
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCy WET (DRY)
SCFr WET (DPY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATUREy DEG C
CARBON DIOXIBEy G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSy G/KM
CARBON MONOnPEj G/KM
OXIDES OF NITROGEN G/KM
HFET VEHICLE EMISSIONS RESULTS-
PROJECT 05-5830-003
VEHICLE NO.l
DATE 8/ 5/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3.
DRY BULB TEMP, 24,4 BEG C(76.0 BEG F)
ABS, HUMIDITY 12,4 CM/KG
. HFET
690,5 (27,5)
571,5 (22,5)
37,8 (100,0)
21022,
202,3 ( 7142.)
28.5/12/ 57,
4,4/ I/ 4,
89.1/13/ 89,
,2/13/ 0,
38,O/ 3/ ,64
3,47 37 ,05
28,77 27 29,
,4/ 27 0,
20,46
.,59
2(3,3
6,16
20,34
2189,0
11,58
4,75
7A6,
.951 ( ,932)
,000 (. ,974)
202,3
40.30
1/..26
402HOO
744,2
12,4
24,4
13 4., A
5,00
,38
1,25
,71
TEST WEIGHT 1021. KG( 2250, LBS)
ACTUAL ROAD LOAD 5,4 KU< 7,3 HP)
DIESEL EM-482--F
ODOMETER 4*400, KM( 2058, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,06
-------
TEST NO, 485F01 RUN 1
VEHICLE MODEL SO VU RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 742,70 MM !-!G(29,24 IN I-IG)
RELATIVE HUMIDITY 55, PCT
SAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, M20CIN, 1-120)
BLOWER INLET P MM, H20(IN, N20)
BLOWER INLET TEMP, KG, C(DEG, D
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC
MC
CO
CO
C02
SAMPLE ,METER/RANGE/PPM
OCKGRB METER/RAK'GE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD ME TER/RANGE/PPM
SAMPLE METER/RANGE/PCT
CQ2 ECKGRP METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGR.ri METER/RANGE/PPM
n i i.u now FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
HC
CO
C02
NOX MASS GRAMS
P ARTICULATE MASS GRAMS
HC GRAMS/KM
CO CRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFr DRY
DFC» WET (DRY)
SCFc WET (DRY)
VOL. (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HO
HUMIDITY G/KG
TEMPERATURE BEG C
485F01
742,7
12,7
27,2
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5830-003
VEHICLE NO.l
DATE 8/14/81
BAG CART NO, 1 / CVS NO, 3
DYN'O NO, 2
DRY BULB TEMP, 27,2 DEC C(81.0 DEC F)
AEG. HUMIDITY 12.7 GM/KG
TEST WEIGHT 1021.
ACTUAL ROAD LOAD
DIESEL EM-485--F
OBOMETER 4394. KM(
K0(
5,4
2250, LBS)
KU( 7,3 HP)
2730, MILES)
NOX HUMIDITY CORRECTION FACTOR 1.07
1
:OLD TRANSIENT
698,5 (27,5)
571,5 (22,5)
35,0 ( 95,0)
13857,
135,2 ( 4773.)
21,7/12/ 43,
13, O/ I/ 13,
62.0/13/ 60,
S.9/13/ 8.
29, If 3/ ,49
2,9/ 3/ ,04
16, 4/ 2/ 16,
,4/ 2/ 0,
26,78
31,
50,
,45
16,0
2,40
7.93
1107,6
4,43
2,42
.41
1,37
190,9
,76
7,30
505,
5,00
,978
,972
1,000
9
STABILIZED
701,0 (27,6)
574,0 (22,6)
33,3 ( 92.0)
23844,
233.3 ( 8237,)
11.3/12/ 23,
9,2/ I/ 9,
34.6/13/ 32.
S.l/13/ 7.
18, 2/ 3/ ,29
3,0/ 3/ ,05
10, 6/ 2/ 11,
,3/ 2/ 0,
45,18
14,
24,
,25
10,3
1,82
6,57
1052,0
4,92
1,54
,29
1,05
167,3
,78
6,47
869,
6,27
,980
( ,955)
( ,979)
368.4
73,14
12,07
6,91
CARBON
3
HOT TRANSIENT
698,5 (27,5)
571,5 (22,5)
36,1 ( 97,0)
13039,
134,8 ( 4759.)
19. A/12/ 39,
10, 8/ I/ 11.
54.8/13/ 52,
6.3/13/ 6,
25. Q/ 3/ ,42
3,0/ 3/ .05
15, 3/ 2/ 15,
,3/ 2/ 0,
31,12
29.
45.
,38
15,0
2,24
7.11
930.5
4.14
1,30
,39
1,23
160,4
,71
6,21
504.
5.80
.978
,975 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/iOOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KH
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
698,5 (27,5)
571.5 (22.5)
33,3 ( 92.0)
23000,
233.0 ( 8227.)
11.0/12/ 22,
10. 8/ I/ 11,
30.1/13/ 28,
5.7/13/ 5,
17, 6/ 3/ .28
3, 1/ 3/ ,05
10, 2/ 2/ 10,
3/ 2/ 0,
46,85
11.
22.
,23
9,9
1,54
5,99
1001,2
4.72
1.47
,25
,96
159.8
,75
6,15
868,
6,27
,980
,957)
,979)
367.8
78,08
12,07
6,18
3-BAG (4-BAG)
170,6 ( 168,2)
6,59 ( 6.49)
.34 ( .33)
1,16 ( 1,14)
,76 ( ,75)
.299 ( ,295)
-------
APPENDIX D
PARTICULATE EMISSION RESULTS
-------
Ri"ETrtrcrrn o crreffTE i GRAPHIC coNincn.s crm
O
NJ
4-1
H
U
a
8?
g
o
tn
QJ
T!
OJ
(U
ft
10
Figure D-l. Smoke opacity and vehicle speed vs time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-329-F base fuel, 12/16/80
-------
o
w
H
U
o
CO
"tStart;
0 Sec
End-
505 sec
Figure D-2. Smoke opacity and vehicle speed vs time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-453-F shale oil fuel, 1/19/81
-------
o\°
u
IT!
I
10
Start
0 Sec
505 Sec
o
OJ
ft
w
(U
iH
H
E
Q)
QJ
Fiaure D-3. Smoke opacity and vehicle speed vs. time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-473-F, Paraho JP-5, 5/8/81.
-------
o
I
en
-P
H
O
o
E
10
4- .I - 20
30
; .. 40
50
60
0 Sec. ->
505 Sec.
o
£}
0)
0)
H
H
g
(1)
(1)
ft
Figure D-4. Smoke opacity and vehicle speed vs. time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-474-F, coal case 5A, 5/15/81.
-------
u
50
o
O.
o
cu
±£
o
00
13
O
CD
O.
CD
r<
i<
E
XT
CD
CD
O.
GO
30
20 ==E
10
0
End
Start
0 sec 505 'sec
Figure.D-S. smoke opacity and vehicle speed vs time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-475-F SRC-II medium cetane, 6/19/81
-------
D
I
40
50
60
o
f,
CD
ft
H
0)
0>
CO
t_
-Start
End
0 Sec
505 Sec
Figure D-6. Smoke opacity and vehicle speed vs. time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-476-F Broadcut Fuel, 5/29/81.
-------
a
i
03
D
O
JS
tt)
a,
W)
at
13
0)
0)
Start
0 sec -»
Figure D-7. Smoke opacity and vehicle speed vs time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-478-F, 25% SRC-II, 7/21/81
-------
o
I
10
20
! 30
40
50
0 __
End t
505 sec
3
0
J-j
0)
ft
CO
0)
iH
H
a
OJ
QJ
ft
Figure D- B. Smoke opacity and vehicle speed vs time for the first 505 seconds
of a cold-start FTP, VW Rabbit Diesel, EM-482-F, 25% EDS, 8-4-81
-------
TABLE D-l. PERCENT TRACE ELEMENTS IN PARTICULATE MATTER
D
M
o
Fuel
Cycle
Elements, pet
Mg
Al
Si
P
S
Cl
Ca
Ti
Fo
Zn
Sn
Ba
Cr
Ph
Mn
Dr
Cd
K
Cu
Mi
V
sb
Mo
Total 1. nf
Particulate
EM-329-F
FTPC
0.018
0.025
0.048
0.039
0.7-11
0.003
0.082
0.005
0 . 388
0.051
0.008
0.004
0.000
0.000
0.000
0.000
0
0.009
0
0.096
0.000
0.000
0
1.517
FTPH
0.011
0.009
0.022
0.029
0.427
0.005
0.035
0.000
0.145
0.040
0.003
0.000
0.008
0.000
0.000
0.017
0
0.003
0
0.016
0.000
0.000
0
0.770
FET
0.004
O.OT3
0.005
o.ooy
0.254
0.001
0.007
0.001
0.029
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0
0.001
0
0.005
O.OU1
0.000
0
0.329
EM-453-F
FTPC
0.006
0.005
0.008
0.009
0.157
0.004
0.034
0.001
0.036
0.000
0.000
0.000
0.000
0.000
0.000
0.017
0
0.006
0
0.000
0.000
0.002
0
0.2R5
FTPH
0.006
0.006
0.015
0.024
0.075
0.007
0.032
0.000
0.157
0.018
0.000
0.000
0.016
0.043
0.014
0.000
0
0.005
0
0.011
0.000
0.001
0
0.427
FET
0.007
0.002
0.007
0.023
0.060
0.015
0.019
0.002
0.077
0.033
0.000
0.000
0.010
0.000
0.008
0.014
0
0.002
0
0.005
0.002
0.001
0
0.287
EM-473-F
FTPC
0.032
0.019
0.048
0.041
0.115
0.013
0.112
0.008
0.415
0.033
0.000
0.000
0.000
0.000
0.000
0.000
0
0.009
0
0.053
0.000
0.000
0
0.898
FTPH
0.017
0.016
0.043
0.032
0.070
0.006
0.071
0.007
0.247
0.000
0.000
0.000
0.000
0.135
0.000
0.000
0
0.006
0
0.023
0.000
0.000
0
0.673
FET
0.006
0.007
0.025
0.017
0.057
0.009
0.041
0.002
0.167
0.000
0.000
0.000
0:000
0:037
0.000
0.000
0
0.004
0
0.020
0.000
0.000
0
0.392
EH-474-F
FTPC
0.008
0.010
0.018
0.028
0.250
0.005
0.037
0.000
0.174
0.045
0.000
0.000
0.000
0.053
0.000
0.000
0
0.003
0
0.041
0.000
0.000
0
0.600
FTPH
0.009
0.005
0.018
0.037
0.257
0.007
0.031
0.000
0.157
0.030
0.000
0.000
0.000
0.045
0.000
0.000
0
0.004
0
0.008
0.000
0.000
0
O.G08
FET
0.016
0.017
0.032
0.036
0.300
0.010
0.057
0.003
0.310
0.064
0.000
0.002
0.009
0.000
0.014
0.000
0.002
0.004
0
0.023
0.000
0.001
0
0.900
EM-476-F
FTPC
0.020
0.017
0.044
0.037
0.627
0.007
0.068
0.001
0.465
0.061
0.000
0.000
0.013
0.080
0.000
0.024
0
0.011
0
0.079
0.000
0.000
0
1.554
FTPH
0.015
0.010
0.032
0.041
0.551
0.007
0.046
0.003
0.242
0.056
0.006
0.005
0.041
0.085
0.042
0.026
0
0.009
0
0.018
0.000
0.002
0
1.237
FET
0.003
0.005
0.019
0.030
0.646
0.006
0.040
0.001
0.143
0.030
0.000
0.006
0.039
0.054
0.030
0.000
0
0.008
0
0.015
0.000
0.003
0
1.078
EM-478-F
FTPC
0.010
0.014
0.012
0.030
0.844
0.007
0.045
0.000
0.225
0.000
0.000
0.000
0.082
0.000
0.053
0.000
0
0.005
0
0.065
0.000
0.000
0
1.392
FTP,,
0.000
0.004
0.011
0.029
0.712
0.000
0.012
0.000
0.149
0.000
0.026
0.010
0.187
0.328
0.152
0.116
0
0.000
0
0.000
0.000
0.009
0
1 .745
FET
0.000
0.000
0.000
0.022
0.668
0.006
0.020
0.000
0.107
0.000
0.000
0.000
O.OB8
0.241
0.057
0.09B
0
0.003
0
0.000
0.000
0.000
0
1.310
EM-482-F
FTPC
0.011
0.013
0.011
0.027
0.641
0.002
0.025
0.000
0.269
0.019
0.000
0.000
FTPH
0.007
0.004
0.010
0.021
0.402
0.005
0.012
0.000
0.073
0.000
0.000
0.000
0.000 0.000
0.000
0.015
0.022
0
0,002
0
0.143
0 . 000
0.000
0
1.200
0.000
0.000
0.000
0
FET
0.003
0.002
0.003
0.017
0.457
0.002
0.008
0.000
0.038
0.018
0.000
0.000
0.000
0.000
0.000
o.ono
0
0.002 j U.001
0
0.006
0.004
0.000
0
0.546
0
! o.ooo
0.005
0.000
0.072
0.626
-------
Residue Standard Composition
Weight %
30.6
10.9
8.0
5.5
6.6
6.3
7.7
4.7
6.2
2.6
3.1
4.1
3.7
Component (s)
n-C12
n-C14
n-C15
n-C17
n-C18
n-C24
n-C32
n~c36
n-C40
Boiling point(s), °C
151-196
216
254
271
287
302
316
369
391
449
466
496
522
D
I
Figure D-9. Residue standard output from high-temperature gas chromatograph run,
-------
D
I
Figure D-10. "Altamont" crude oil output from high-temperature gas chromatograph run.
-------
Figure D-ll. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-329-F fuel during FTP,
-------
o
Figure D-12. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-329-F fuel during HFET.
-------
o
Figure D-13. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-453-F fuel during FTP.
-------
D
Figure D-14. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-453-F fuel during HFET.
-------
o
Figure D-15. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-473-P fuel during FTP.
-------
D
M
CD
Figure D-16. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-473-F fuel during HFET.
-------
o
i I
Figure D-17. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-474-F fuel during FTP.
-------
D
I
KJ
O
viJ
J5
-~r!
Figure D-18. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-474-F fuel during HFET.
-------
~r -
D
ro
Figure D-19. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-476-F fuel during FTP.
-------
O
I
ro
. -lj...L'J- L J --,-H-:.-
Figure D-20. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-476-F fuel during HFET.
-------
D
I
i '
! i
H-i
JLL
:r;-~j7prr
. ji it'iLl Jj;'|,
I I
Hit
H - :+
I I
Figure D-21. Chromatogram of organic solubles from participate matter,
vehicle operated on EM-478-F fuel during FTP.
-------
D
I
NJ
Figure D-22. chromatogram of organic solubles from particulate matter,
vehicle operated on EM-478-F fuel during HFET.
-------
o
I
to
Ln
.:,!_. i_J..J -L
Figure D-23. Chromatogram. of organic solubles from particulate matter,
vehicle operated on EM-482-F fuel during FTP.
-------
o
KJ
CT1
rr
- -: -j. - -L
i
j
_
i--
._ . _
.. !
i
r
1
n
- i
-,.F
i
u
' ! .
_. ;. ..,
.__U...L._^_
;:.L L i
.
- r- -t -
, t--l-- -1
1
iij.ii.'ij'jjj-
.;
1
II
Figure D-24. Chromatogram of organic solubles from particulate matter,
vehicle operated on EM-482-F fuel during HFET.
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO. '~
EPA 460/3-82-002
2.
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
CHARACTERIZATION OF DIESEL EMISSIONS FROM OPERATION
OF A LIGHT-DUTY DIESEL VEHICLE ON ALTERNATE SOURCE
DIESEL FUELS
5. REPORT DATE
November 1981
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
Bruce B. Bykowski
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2884
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
Mobile Source Air Pollution Control
2565 Plymouth Road
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Task Final Report 6/80-10/81
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Several alternate source diesel test fuels were studied to note their
effects on regulated and unregulated exhaust emissions from a 1980
Volkswagen Rabbit. Nine fuel blends were tested, including a No. 2
petroleum diesel as base, base plus coal-derived liquids (via SRC-II
and EDS processes) , shale oil diesel and jet fuel, and other blends of
coal-derived liquids, shale oil liquids, and petroleum stocks. Analyses
performed include gaseous hydrocarbons, CO, NOX, particulate mass,
phenols, smoke, odor, Ames tests, BaP, and polarity profiled by HPLC.
Smoke and particulate increases were generally associated with use of
coal-derived liquids.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Exhaust Emissions
Diesel Engines
Particulate
Diesel Fuel
Alternate Fuels
b.IDENTIFIERS/OPEN ENDED TERMS
Fuel Effects
Alternate Fuel Characterisation
Emission Test Procedures
Emission Characterization
c. COSATI Held/Group
DISTRIBUTION STATEMENT
Release Unlimited
Unclassified
256
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
------- |