United States
Environmental Protection
Agency
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
EPA 460/3-82-011
August 1983
c/EPA
Air
Light-Duty Diesel Organic
Particulate Control Technology
Investigation
-------
EPA 460/3-82-011
Light-Duty Diesel Organic Particulate Control
Technology Investigation
by
Charles M. Urban
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
Contract No. 68-03-2873
EPA Officer: Larry C. Landman
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
August 1983
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from
the Library Services Office, Environmental Protection Agency,
2565 Plymouth Road, Ann Arbor, Michigan 48105.
This report was furnished to the Environmental Protection Agency by
Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas,
in fulfillment of Contract No. 68-03-28.73. The contents of this
report are reproduced herein as received from Southwest Research
Institute. The opinions, findings, and conclusions expressed are those
of the author and not necessarily those of the Environmental Protection
Agency. Mention of company or product names is not to be considered
as an endorsement by the Environmental Protection Agency.
Publication No. EPA 460/3-82-011
11
-------
FOREWORD
This project was initiated by the Control Technology Assessment and
Characterization Branch, Environmental Protection Agency, 2565 Plymouth
Road, Ann Arbor, Michigan 48105. The effort on which this report is based
was performed by the Department of Emissions Research, Southwest Research
Institute, 6220 Culebra Road, San Antonio, Texas 78284. This project was
authorized by Contract 68-03-2873, began on September 17, 1978, and was
completed on March 16, 1983.
This project was identified within SwRI as 05-5810, and the Project
Leader was Mr. Charles M. Urban. Mr. Charles T. Hare was the Project
Manager, and was primarily responsible for the technical and fiscal nego-
tiation of the initial project. The initial Project Officer at the Environ-
mental Protection Agency was Mr. Andrew Kaupert. In chronological order,
the subsequent Project Officers were Mr. John McFadden, Mr. Robert Wagner
(acting), Mr. John Pointer, Mr. Robert Wagner (acting), and Mr. Larry Landman.
Mr. Robert Wagner maintained a close involvement with this project throughout
the entire period.
111
-------
ABSTRACT
Methods for particulate, and associated organics, emissions control
were evaluated in several diesel cars. Of the methods investigated, only
"particulate traps" provided large reductions in particulate emissions.
Traps evaluated included metal mesh and ceramic monolithic configurations,
catalyzed and uncatalyzed. One of the cars, with a ceramic trap installed,
completed eighty thousand kilometers of distance accumulation. No significant
deterioration of emissions occurred over those eighty thousand kilometers.
IV
-------
TABLE OF CONTENTS
Page
FOREWORD
ABSTRACT
LIST OF FIGURES
LIST OF TABLES
I. SUMMARY AND CONCLUSIONS 1
II. INTRODUCTION 7
A. Project Objective 7
B. Particulate Emission Controls Evaluated 7
C. Emissions Measurement Procedures 7
D. Vehicles Evaulated 7
III. TEST PLAN, EQUIPMENT AND INSTRUMENTATION 9
A. Test Plan 9
B. Dynamometer and CVS System 10
C. Exhaust Sampling and Analysis 10
D. Emissions Test and Mileage Accumulation Procedures 12
E. Fuels and Lubricant 12
IV. VEHICLE PROCUREMENT AND BASELINE EMISSIONS 15
A. Vehicle Procurement - Task I 15
B. Baseline Emissions - Task II 17
V. PARTICULATE EMISSION CONTROL - TASK III 27
A. Test Plan Development 27
B. Topical Index to the Evaluations Conducted 28
C. Evaluations with the Mercedes 300SD - Car 61 31
D. Evaluations with the Oldsmobile Delta 88 - Car 62 47
E. Evaluations with the Volkswagen Rabbit - Car 63 58
F. Water Injection in a 1981 Mercedes - Car 64 69
G. Organic Extractables 72
VI. SYSTEM OPTIMIZATION AND DURABILITY TESTING 75
A. Durability Criteria and Preparation 75
B. Johnson Matthey Particulate Trap 77
C. Texaco Particulate Trap 79
D. Corning Particulate Trap 82
E. NGK Particulate Trap 88
v
-------
TABLE OF CONTENTS (CONT'D)
REFERENCES
SELECTED BIBLIOGRAPHY
APPENDICES
A. GENERAL INFORMATION
B. COMPUTER PRINTOUTS OF THE BASELINE TESTS
C. PARTICULATE CONTROL SCREENING EVALUATIONS WITH THE MERCEDES
D. PARTICULATE CONTROL SCREENING EVALUATIONS WITH THE OLDSMOBILE
E. PARTICULATE CONTROL SCREENING EVALUATIONS WITH THE VOLKSWAGEN
F. WATER INJECTION EVALUATIONS WITH A 1981 MERCEDES
G. DURABILITY OF CORNING TRAP ON THE MERCEDES
H. DURABILITY EVALUATION OF NGK TRAP ON THE DATSUN
VI
-------
LIST OF FIGURES
Figure Page
1 Dynamometer, dilution tunnel and filter sampling
systems 11
2 Dual-fuel modofication of Volkswagen Rabbit Diesel 65
3 Examples of diesel particulate traps 76
Vll
-------
LIST OF TABLES
Table Page
1 Description of Number 2 Diesel Fuels Used 13
2 Description of Diesel Test Cars 16
3 Tune-up After 6400 Kilometers I8
4 Average Baseline FTP Emissions and Certification Values 21
5 Baseline FTP Emissions Tests Results 22
6 Baseline Organic Extractables 25
7 Diesel Particulate Control Screening Evaluations 28
8 Topical Index to Evaluations Conducted 29
9 Properties of the Fuels Evaluated 29
10 Emissions Results with the Mercedes 300SD - Car 61 32
11 • Corning Noncatalyzed Trap 1980 Mercedes Benz 300SD 34
12 Texaco Noncataluzed Trap 1980 Mercedes Benz 300SD 39
13 W.R. Grace Noncatalyzed Axial-Flow Trap 1980 Mercedes
Benz 300SD 41
14 W.R. Grace Catalyzed Radial-Flow Trap 1980 Mercedes
Benz 300SD 42
15 W.R. Grace Noncatalyzed Radial-Flow Trap 1980 Mercedes
Benz 300SD 45
16 Emissions Results with the Oldsmobile Delta 88 - Car 62 48
17 Properties of the Diesel Test Fuels 50
18 Results with Various Fuels in the Oldsmobile Delta 88 51
19 Results with Road Draft and Carbon Canister in Car 62
1980 Oldsmobile Delta 88 54
20 Corning Catalyzed Trap 1980 Oldsmobile Delta 88 56
21 Johnson Matthey Catalyzed Trap 1980 Oldsmobile Delta 88 59
22 Results of Idle Shut-Off with VW Rabbit 61
viii
-------
LIST OF TABLES (CONT'D).
Table Page
23 Hot-Start Results with Dual Fuel-Dual Injection VW
Rabbit 67
24 Effect of Water Injection on Emissions 70
25 Hot-Start UDDS Water Injection Evaluations 71
26 Summary of Organic Extraction Data 73
27 Regrouped Organic Extraction Data 73
28 Emissions Summary for Corning Trap Durability 87
29 FTP Results for Corning Trap Durability 88
30 NGK-Datsun Durability Emissions 91
IX
-------
I. SUMMARY AND CONCLUSIONS
The objective of this study was to investigate technology with potential
for control of organic material emitted by light-duty diesel vehicles. The
study was designed to broaden the data base on particulate emissions from
light-duty diesels, and to demonstrate the durability of the most effective
technology evaluated. Involved in this study were baseline evaluations,
screening of methods for particulate control, and system optimization and
durability.
Three 1980 model diesel automobiles, representing a range of engine
types and sizes, were used for the majority of the testing. They were a
Mercedes-Benz 300D, an Oldsmobile Delta 88, and a Volkswagen Rabbit. The
Mercedes-Benz and a subsequently-obtained 1982 model Datsun Maxima were
involved in the durability evaluations, and a 1981 Mercedes-Benz was in-
volved in an evaluation of water injection.
The emissions measurement procedure utilized in this study was the
light-duty Federal Test Procedure. Trap durability and other distance
accumulation utilized the 55 mph alternate Mileage Accumulation Procedure.
Extraction of large filter samples, for determination of percent organic
extractables and Ames evaluation, was conducted using methylene chloride
as the solvent.
SCREENING FOR PARTICULATE CONTROL METHODS
Initially, a number of methods were evaluated to determine their
potential for controlling particulate and organic emissions. The methods
evaluated can be separated into three general areas: fuels, engine or
operational modifications, and particulate traps.
Fuels - At the time this study was initiated, alternate fuels were of
significant interest. Therefore, alternate fuels were included among the
limited number of fuels evaluated in this study. The fuels evaluated covered
a fairly wide range of fuel properties, and no really dramatic reduction in
particulate emissions was obtained. None of the fuels evaluated indicated
any reasonable possibility of meeting a 0.124 g/km (0.2 g/mi) particulate
standard, with the Oldsmobile, through fuel formulation alone. In addition,
the current emphasis is toward more lenient, rather than more restrictive,
fuel specifications.
Engine and Operational Modifications - A number of engine and operational
modifications were evaluated with the Oldsmobile, the Volkswagen, and a second
Mercedes. With the Oldsmobile, road draft of the crankcase, removal of crank-
case vent filters, and TRW elastomer rings were evaluated. None of these
modifications had any noticeable effects on emissions. These data illustrate
that, with an engine in good condition, potential reduction of crankcase
blowby (all of these three modifications) or oil consumption (the TRW
-------
elastomer rings) had essentially no effect on particulates. Actual tests
were not conducted to determine actual reductions.
With the Volkswagen, the modifications included engine shut-off at idle,
and a dual-fuel, dual-injection system. Shutting-off the engine at idle, in
FTP evaluations, reduced particulates and fuel consumption by approximately
five percent. NOX emissions were also reduced, while HC and CO were
essentially unchanged.
The dual-fuel, dual-injection system evaluated with the Volkswagen
used diesel pilot injection, with methanol as the primary fuel. This system
provided good hot-start performance and resulted in significant reduction of
particulates. HC, CO and energy specific fuel consumption increased sub-
stantially, however, and these values could not be reduced within the limit
of effort allotted to this system.
A Mercedes 300SD with an experimental intake water injection system was
evaluated. Although the purpose of this system was NOX reduction, rather than
particulate reduction, water injection was included in this study due to the
reported interactions between particulate and NOX emission control. With
water injection, at an optimized rate of 60 to 70 percent of the fuel flow,
NOX was reduced 20 to 25 percent and particulates increased by approximately
ten percent.
An important consideration is that the current NOX humidity correction
factor is inappropriate with water injection. The higher the humidity in the
test cell, the greater the resultant effect of water injection on NOX reduction.
This effect of humidity is a very important factor in comparisons between NOX
data obtained when using water injection.
Exhaust Particulate Traps - A number of particulate traps were evaluated
to determine trapping efficiency, increase in exhaust backpressure, and ease
of regeneration. The trap substrates evaluated (in catalyzed and uncatalyzed
form) included: ceramic honeycomb, ceramic foam, and metal mesh. The traps
are representative of the various trap designs available at the time this
study was conducted.
With these various traps, total particulates were initially reduced by
50 to 80 percent, and the amounts of organic extractables were reduced by 75
to 85 percent. In addition to reducing particulates, the catalyzed traps
significantly reduced HC, and two out of three catalyzed traps reduced CO.
An alumina-coated metal mesh trap also significantly reduced HC. NOX was
reduced with the traps that were installed on the Oldsmobile, probably due
to the increase in EGR flow rate resulting from the increase in exhaust
backpressure.
In general, regeneration of the traps could not be initiated below about
600°C (1100°F). With three of the traps, a Corning catalyzed and a W.R. Grace
radial-flow catalyzed and uncatalyzed, effective regeneration was not obtained.
-------
With the Corning catalyzed trap, burn-off of the carbon was apparently ob-
tained, but return to near the initial pressure-drop across the trap did not
occur. Incomplete regeneration of the two W.R. Grace radial-flow traps was
due to a large temperature gradient along the outside diameter of the sub-
strate. Regeneration of the entire trap would have required a trap inlet
temperature about 750°C (1350°F).
Exhaust temperatures necessary for regeneration were generally obtained
by throttling of the intake air at somewhat higher than highway speed and
power (generally about 100 km/hr and 1.5 times the normal power requirement).
All regenerations were conducted during operation on the chassis dynamometer
in the laboratory. The total regeneration cycle (warm-up burnoff-cooldown)
required ten to fifteen minutes. No attempt was made to develop a regen-
eration method or system that would be applicable to actual production
vehicles, and the regeneration method used is only applicable to laboratory
evaluations.
Other Particulate Control Evaluations Considered - A number of other
evaluations related to particulate control were considered, but such eval-
uations were not directly included in this study. These included the
following areas: turbocharging, air injection, engine modification, fuel
system, and other items. Coordinated modifications to the combustion
chamber and the injection system, along with parameter optimization, were
beyond the scope of this study.
PREPARATION FOR TRAP DURABILITY
Initially, it was planned to conduct some evaluation of durability with
each of three traps: a Corning noncatalyzed, a Johnson Matthey catalyzed,
and a Texaco noncatalyzed. As the study progressed, 80,000 kilometers
(50,000 miles) of durability was performed with the Corning trap, durability
of the Johnson Matthey and Texaco traps was deleted, and durability of a NGK
trap was initiated. The Corning and the NGK trap substrates were installed
into their respective containers at this laboratory, using Interam insulation,
in accordance with recommendations provided by a representative from Walker
Manufacturing Company. The Johnson Matthey and Texaco traps were provided
to this laboratory as complete assemblies.
Johnson Matthey Trap - It was indicated by the representative from
Johnson Matthey that the catalyzed Johnson Matthey JM-13 trap could be
effectively regenerated on the Oldsmobile, in spite of the lower exhaust
temperatures produced. It was determined, however, that unless significant
oxidizable compounds were present in the exhaust, this trap required
essentially the same exhaust temperature as did all the other traps to
initiate regeneration. While evaluating various methods suggested by the
trap supplier, a catastrophic regeneration occurred, resulting in meltdown
of the trap substrate. Ey the time a replacement trap could be obtained,
Johnson Matthey was well along in conducting a durability demonstration of
its own. Therefore, a decision was reached to delete the durability
evaluation of a Johnson Matthey trap from this study.
-------
Texaco Trap - A relatively rapid decrease in trapping efficiency was
experienced with the Texaco trap at relatively small increases in pressure
drop across the trap, and regeneration of this trap on the Oldsmobile was
very difficult. As a result of these factors, primarily the decreases in
efficiency and regeneration difficulties, durability evaluation of the
Texaco trap was deleted from this study.
NGK Trap - A durability evaluation was initiated with the NGK trap on
the Datsun Maxima. Throttling of intake air at highway speed and power
setting was the method selected for use in regeneration of the trap. During
the set-up of the regeneration technique, a catastrophic regeneration occurred,
resulting in meltdown of the trap ceramic substrate. After installation of a
replacement trap substrate, the set-up of the regeneration technique was
completed.
Eight thousand kilometers (5000 miles) of durability was accumulated on
the Datsun Maxima with the NGK trap. Trap regenerations were conducted every
320 kilometers of operation, when the pressure across the loaded trap was
approximately double the pressure drop across the trap just after regeneration.
After the 8000 kilometers, the particulate emissions were double the
initial values. Examination of the trap substrate revealed that a radial
crack had occurred at about the longitudinal center of the substrate, and
that the substrate had separated into two segments. The increase in parti-
culates was due to bypassing at this crack. Due to limitations in the level
of effort available, no further durability evaluation of the NGK trap was
performed.
Corning Trap - Durability testing on the Corning trap was conducted on
the Mercedes 300SD. With this system, good control was consistently main-
tained during regeneration. All regenerations were conducted in the labo-
ratory on the chassis dynamometer, and all mileage accumulation was conducted
in operation on the road. Nominal conditions for regeneration were a vehicle
speed of 100 kilometers per hour, a dynamometer power setting of about 1.5
times the FTP power setting, and intake air throttling to obtain exhaust
conditions of over 630°C (1160°F) temperature and about 3.5 percent oxygen
concentration.
Doubling of the pressure drop across the trap occurred in four hours, or
less, of vehicle operation over the service accumulation cycle. Such frequent
regeneration would result in excessive operating costs, so an effort toward
extending the interval between regenerations was evaluated. The interval was
extended to eight hours (about 320 kilometers), and this change did not result
in any driver complaints on performance of the vehicle or serious detrimental
effects on regeneration. It did, however, extend the primary burning time
for removal of the majority of the particulate from the trap. This eight-hour
interval resulted in a trap loading of up to 100 grams of particulate and
about a four-fold increase in pressure drop across the trap (from about 5 kPa
or 20 inches 1^0 after regeneration, to 20 kPa before regeneration at 64 km/hr)
-------
The established regeneration cycle generally involved the following:
two to three minutes, after throttling of the intake air, to initiation of
carbon burn off; two to four minutes to burn off the majority of the parti-
culate; and eight additional minutes to assure complete burn off of the
particulate. Maximum exhaust gas temperature at the trap exit during regen-
eration was 760°C (1400°F), and the maximum temperature increase of the
exhaust gas across the trap was 100°C. The rate of particulate burning was
primarily controlled by the inlet temperature and the amount of oxygen
available in the exhaust gas.
Emissions were measured during regeneration, and CO was the only emission
that increased by a relatively large amount during regeneration. Regeneration
of a fully loaded trap produced about 50 to 60 grams of CO. The overall average
CO emission rate, for 2000 kilometers of city driving plus one regeneration,
would be about one gram per kilometer. Smoke (opacity) measurements were not
made during regeneration, but visual observation of the exhaust as it exited
the stack did not indicate high levels were occurring.
The 1980 Mercedes 300SD, with the Corning noncatalyzed trap installed,
was operated over 80,000 kilometers (50,000 miles) of service accumulation.
The overall average values and the standard deviations for the entire
80,000 kilometers are as follows:
FTP Emissions in g/km
HC CO NOX Part.
Average
Without Trap
With Trap
Standard Deviation
Without Trap
With Trap
Ratio of Avg. in %
With/Without
0.10 0.61 0.96 0.28
0.07 0.61 0.92 0.027
0.01 0.02 0.05 0.04
0.01 0.02 0.05 0.004
70% 100%
96%
10%
Fuel,
£/100 km
9.7
9.8
0.2
0.2
101%
With the trap, particulate emissions were reduced by ninety percent and HC
by thirty percent. Effects of the trap on CO, NOX, and fuel consumption were
relatively minor. The calculated particulate deterioration factor was .0.82
with the trap and 1.09 without the trap. By omitting one outlier data point,
the deterioration factor without the trap installed would be 1.02. With the
trap, the deterioration remained significantly below a value of 1, even with
omission of any one data point. It appears that some improvement in trapping
efficiency actually did occur during the durability period. No unscheduled
maintenance was performed on the engine or the trap throughout the 80,000
kilometers of service accumulation, following the actual start of trap
durability.
-------
CONCLUSIONS
Of the evaluations conducted in this study, only particulate traps pro-
duced large decreases in exhaust particulates from light-duty diesel vehicles.
Of the control methods considered, but not evaluated in this study, only
coordinated modifications to the combustion system, injection system, and
operating parameters are considered to have good possibilities for producing
large reductions in particulates.
This study demonstrated that a particulate trap can function over 80,000
kilometers of service accumulation, when good control is maintained over the
regeneration process. It also demonstrated that loss of control during the
regeneration process can significantly affect the trap, with the effect
ranging from efficiency loss to catastrophic failure. It is concluded that
development of a reliable in-service regeneration process remains as the
main obstacle to the application of particulate traps on production vehicles.
-------
II. INTRODUCTION
This report describes the effort to investigate methods for reducing
total and organic particulate emissions from light-duty diesel vehicles.
A. Project Objective
The primary objective of this project was to determine the potential
of various particulate emission control methods for control of total and
organic particulate matter from light-duty diesel vehicles. Additional
objectives were to broaden the data base for total and organic particulates,
and to provide an initial demonstration of the potential durability of the
most promising particulate control methods.
B. Particulate Emission Controls Evaluated
Evaluations conducted involved: fuels, engine and operational modifi-
cations, and particulate traps. The fuels ranged from a low sulfur No. 1
Diesel fuel to the addition of alcohols.
Engine and operational modifications involved such things as the crank-
case vented to the atmosphere, zero blowby piston rings, engine shut-off at
idle, dual-fuel with dual-injection, and water injection. Several particu-
late traps from a number of manufacturers were evaluated, including Corning,
Johnson Matthey, Texaco, W.R. Grace and NGK. Trap configurations included
were ceramic honeycomb, ceramic foam, and metal mesh. Several configurations
were evaluated in both catalyzed and noncatalyzed versions.
C. Emissions Measurement Procedures
For all emissions, except particulates, the procedure for certification
of light-duty diesel-powered vehicles was followed.(1)* For particulates,
the Proposed Rules for particulate regulation was followed initially, until
the final rule was published.^' The organic extraction of large filter
samples was performed by this laboratory, and the Ames analyses were per-
formed by another EPA contractor.
D. Vehicles Evaluated
Diesel cars included in this project were: a 1980 Mercedes 300SD, a
1980 Oldsmobile Delta 88, a 1980 Volkswagen Rabbit, a 1981 Mercedes 300SD,
and a 1982 Datsun Maxima. The 1981 Mercedes 300SD and the 1982 Datsun
Maxima were each included in only one specific phase of this project.
*Numbers in parentheses designate references at the end of this report.
-------
The cars are briefly described as follows:
Car Description Engine*
61 1980 Mercedes-Benz 300SD 3.0 Liter 1-5 TC
62 1980 Oldsmobile Delta 88 5.7 Liter V-8 NA
63 1980 Volkswagen Rabbit 1.5 Liter 1-4 NA
64 1981 Mercedes-Benz 300SD 3.0 Liter 1-5 TC
65 1981 Datsun Maxima 2.8 Liter 1-6 NA
*TC - Turbocharged, NA - Normally Aspirated
-------
III. TEST PLAN, EQUIPMENT AND INSTRUMENTATION
This section describes the test plan and the facilities, instrumentation,
procedures, and fuels utilized in this project. The cars utilized in this
project are described in Section IV.
A. Test Plan
This project was divided into five tasks: vehicle procurement, baseline
testing, evaluation of particulate and organic emission control technology,
system optimization and durability testing, and final reporting. This basic
test plan was followed throughout the project. Due to the rapidly changing
technology for particulate control, however, the details of the plan changed
considerably as the project progressed. For example, particulate traps were
initially intended to be only one of many aspects of this project. Of the
methods and systems evaluated, however, only particulate traps provided
large reductions in particulate. Thereafter, evaluations of particulate
traps dominated all subsequent activities in this project.
It was desired that the three primary diesel cars for use in this project
provide reasonable representation of the range of sizes and types of engines
available. The cars initially selected were a Mercedes 300D, an Oldsmobile
with a 350 CID diesel, and a Volkswagen Rabbit diesel (the Mercedes 300D was
subsequently changed to a 300SD). These cars were considered to be repre-
sentative of over three-fourths of all the diesel cars in operation in the
United States at the time of selection. Subsequently, two additional cars
were obtained for use in specific evaluations.
Each of the initial three cars was to undergo about 6400 kilometers •
(4000 miles) of distance accumulation, followed by triplicate emissions
tests. This was to be followed by a relatively extensive tune-up to
manufacturer's specifications and a repeat of the emissions testing. The
emissions testing was to include measurement of gaseous emissions by the
certification procedure^ ' and particulate emissions by the proposed
rules.(2) (The rules for particulate emissions became final before the
end of this project). In addition, large filter particulate samples were
to be collected and extracted for use in Ames analyses.
The evaluation of potential particulate control methods and systems
(screening evaluations) was to include a wide variety of approaches. The
scope was initially limited only by the availability of necessary components;
this subsequently proved to be a major limitation. Combustion chamber
modifications and fuel injection system modifications were not included in
the final list of methods to be evaluated.
System optimization and durability testing were to be conducted on
up to three of the most promising control methods identified by the
screening evaluations. The goal of the durability testing was 80,000
kilometers (50,000 miles). Duplicate gaseous and particulate emissions
-------
evaluations were to be conducted initially and after each 8000 kilometers,
with and without the control system on the vehicle. Large filter samples
were initially required at the zero and 80,000 kilometer test points; this
was subsequently changed to more frequent intervals.
In summary, this project was conducted during a period of rapidly
changing technology for, and attitudes toward, the control of diesel parti-
culate. The test plan for this project changed accordingly. The methods
and systems that were evaluated are described in Section V of this report.
B. Dynamometer and CVS System
A Clayton Model ECE-50 chassis dynamometer, with a direct drive variable
inertia flywheel system, was utilized for all transient testing. This system,
SwRI Dynamometer Number 2, enables simulation of equivalent weights of vehicles
from 454 to 4026 kg in 57 kg increments (1000 to 8875 pounds in 125 pounds
increments).
The constant volume sampler (CVS) used in this project was SwRI CVS
Number 3. This unit has a nominal capacity of 12.6 m-^/min (445 scfm) . An
auxiliary system used with the Mercedes and Oldsmobile had a capacity of
3.4 m-Vmin (120 scfm); this provided a total capacity of approximately
16 m^/min (565 scfm). A nominal 460 mm (18 inch) diameter by 5 m (16 feet)
long dilution tunnel was used between the intake filter and the CVS to
enable sampling of particulates. During operation on the dynamometer, a
142 m3/min (5000 cfm) cooling fan was placed in front of the car's radiator.
Views of the chassis dynamometer, the dilution tunnel, and the CVS are
shown in Figure 1. The dynamometer and CVS were calibrated, maintained, and
operated in accordance with the manufacturer's instructions and the appro-
priate sections of the Code of Federal Regulations applicable to light-duty
diesel vehicles.^'
C. Exhaust Sampling and Analysis
Exhaust samples taken were continuous for HC emissions, bags for other
regulated gaseous emissions, and 47 mm Pallflex filters for particulates.
Additional samples occasionally taken were 500 mm by 500 mm (20 inch)
Pallflex filters for organic extraction, and 47 mm glass fiber or Fluoropore
filters for various other analyses. The sampling of the 47 mm Pallflex
filters was conducted in accordance with the rules for particulate emissions
from light-duty vehicles.^2' Similar sampling criteria were utilized for all
other filter samples.
The bagged samples were evaluated for CO, CC>2 and NOX using an emissions
measurement cart (SwRI Bag Cart Number 1) meeting the requirements for certi-
fication of light-duty vehicles.(D Hydrocarbon emissions were measured con-
tinuously using heated sample lines and a heated detector (maintained at
190°C), and the emissions rate was determined by integration of the continuous
sample. The amount of particulate collected was determined by weighing the
10
-------
Car Installed on Dynamometer
450 mm Diameter Dilution Tunnel
Particulate Sample Probes for 47 mm Filters
500 mm by 500 mm Filter Sampling System
Figure 1. Dynamometer, dilution tunnel and filter sampling systems.
-------
filter on a microbalance before and after sampling. For all filter samples,
the temperature in the sampling zone was maintained below 52°C (125°F).
Large (i.e., 500 mm) Pallflex filters were used to collect particulate
for extraction. These filters are weighed to determine the particulate
loading, then stored inglassine bags within a brown paper envelope. These
envelopes are then sealed in Tedlar bags purged with nitrogen, and the
Tedlar bags are stored in a freezer until needed for extraction. These
steps generally take place within a few hours of sample collection, and are
carried out under yellow light (ultraviolet light filtered out using Kodak
''yellow chrome II" film) .
As required, the respective filters are removed from freezer storage
and extracted in soxhlet extractors. After adequate cycling time, the
solvent (methylene chloride) containing the extractables is filtered, then
evaporated to "dryness" in a preweighed vial using blown-in nitrogen.
The weight of the "dried" extract is determined, and the SOF percent of
total particulate calculated. "Dried" refers to the complete removal of
the solvent. The vial contents are either distributed for analysis or
stored in the freezer for subsequent analysis or shipment. As with filter
handling, all extraction steps were carried out under yellow light. Details
of the extraction procedure are given in Reference 3.
D. Emissions Test and Mileage Accumulation Procedures
The primary emissions test procedure utilized in this project was the
Federal Test Procedure, used for certification of light-duty vehicles.
This procedure uses the Urban Dynamometer Driving Schedule (UDDS) which
is 1372 seconds in duration. The UDDS, in turn, is divided into two
segments, the first is a transient segment of 505 seconds, and the second
is a stabilized segment of 867 seconds. This Federal Test Procedure con-
sists of cold-start transient and stabilized segments followed by a hot-
start transient.
The Modified Durability Driving Schedule (MODS) was used for distance
accumulation on the road.(4) This driving schedule consists of starts and
stops, wide-open throttle and normal accelerations, and has considerable
idling time. The maximum speed is 88 km/hr (55 mph), and the average speed
is between 40 and 48 km/hr (25 and 30 mph).
E. Fuels and Lubricant
The Number 2 Diesel fuels used for baseline emissions evaluations and
for distance accumulation are described in Table 1. Differences between
these three batches of fuels are relatively minor.
An engine oil was selected that could be used in all of the initial
three cars. The Oldsmobile specified SAE 30 above 30°C (86°F), and the
Mercedes listed only seven factory-approved standard single-viscosity oils.
12
-------
TABLE 1. DESCRIPTION OF NUMBER 2 DIESEL FUELS USED
Compliance Diesel Fuel DF-2a
Cetane Number
Distillation Range, °F
IBP
10% Point
50% Point
90% Point
EP
Test Fuel
Specification^1^ EM-408b
42-50 47
340-400 373
400-460 443
470-540 506
550-610 602
580-660 659
EM-456C EM-487°
45.3
345
423
498
581
635
45.3
354
417
486
570
632
Gravity, °API 33-37 36.3 34.9 35.9
Density, g/m£ — 0.843 0.850 0.845
Total Sulfur, % 0.2-0.5 0.28 0.29 0.26
Hydrocarbon Composition, %
Aromatics 27 minimum 32.7 31.6 32.8
Flash Point, °F (minimum) 130
Viscosity, Centistokes 2.0-3.2
178
2.8
161
2.7
154
2.5
Blended by Amoco Oil Company Laboratory Services
Used in Task II and part of Task III
C"1 I
Used in Task III, and used for emissions testing of the
Mercedes in Task IV
Used for distance accumulation of the Mercedes and the Datsun, and for
emissions testing of the Datsun, in Task IV.
An oil for Service API/SE CC was specified for all three cars. Based on
these criteria, along with oil brand market share and availability, Quaker
State HD Motor Oil SAE 30 was selected for use throughout this project.
Pennzoil Multi-Duty Motor Oil SAE 30, for Service API/SF CD, was used in
the 1982 Datsun Maxima.
13
-------
IV. VEHICLE PROCUREMENT AND BASELINE EMISSIONS
These project tasks involved locating and procuring three selected
light-duty diesel cars, and conducting baseline emissions evaluations.
A. Vehicle Procurement - Task I
After making a comparison of the advantages and disadvantages of leasing
and of purchase with subsequent resell, leasing was selected for use in
this project. Three 1980 model-year, diesel cars (VW Rabbit, Mercedes-Benz
300SD, and Oldsmobile Delta 88) were acquired on renewable, twelve-month
lease agreements. All three were new cars obtained by the lessor through
local new car dealerships. These cars are described in Table 2.
The Mercedes and the Oldsmobile had three-speed automatic transmissions,
while the VW Rabbit had a four-speed manual transmission. The engines in
the Oldsmobile and VW Rabbit were naturally-aspirated, and the engine in
the Mercedes was turbocharged. The weight of the VW Rabbit was a little
over half that of either the Mercedes or the Oldsmobile.
The chassis dynamometer setting given in the table were those used in
certification. It was noted that the dynamometer power to weight ratio was
significantly different for the Mercedes (Car 61), relative to the other
two cars in the program at that time. This difference is illustrated as
follows:
Car Inertia, Power, Power -r Inertia
Number Pounds Horsepower Actual Relative
61 4000 13.0 0.0033 113%
62 4250 12.2 0.0029 100%
63 2375 6.8 0.0029 100%
As shown, the Mercedes (Car 61) was tested at a power to weight ratio
that is 13 percent higher than the ratio for the other two cars included in
this project. It appeared logical that the Mercedes should have had an
actual power to inertia ratio about equal to that for the other two cars.
If that is true, then the horsepower setting on the Mercedes should have
been about 11.5.
A representative of Mercedes-Benz was contacted concerning the certi-
fication horsepower value. He stated that Mercedes-Benz used a horsepower
based on frontal area for 1980 and plans to determine and use actual horse-
power for future years. Based on the limited data he had available, he
anticipated a ten to fifteen percent reduction from the current 13.0
horsepower (for the 1982 model year, the Mercedes 300SD was certified at
11.5 horsepower, with 4000 pounds inertia as is the case with Car 64).
15
-------
TABLE 2. DESCRIPTION OF DIESEL TEST CARS
Vehicle
Car
Number
61
62
63
64a
65
Car
Number
61
62
63
64
65
Year
Make and Model
1980 Mercedes-Benz 300SD (116120)
1980 Oldsmobile Delta 88
1980 Volkswagen Rabbit (175391)
1981 Mercedes-Benz 300SD
1982 Datsun Maxima
Disp. Cyl.
3.0 1-5
5.7 V-8
1.47 1-4
3.0 1-5
2.8 1-6
Engine
Description
Turbocharged
Naturally Aspirated
Naturally Aspirated
Turbocharged
Naturally Aspirated
Body
Type Serial Number
4-dr
4-dr
2-dr
4-dr
4-dr
116120-12-019282
3N69NAX 133393
17A0837864
WDBCB20A7BB000501
JN1SU1S4CT014423
Serial Number EGR
617950 12
—
—
617951 12
019581 No
Yes
No
000497 Yes
LD28/079804 Yes
Chassis Dynamometer Settings
Car
Number
61
62
63
64
65
Car
Number
61
62
63
64
65
Car
Number
61
62
63
64
65
Inertia,
Kilograms
1814
1928
1077
1814
1474
Transmission
Automatic-4
Automatic-3
Manual-4
Automatic-4
Automatic-3
Odometer
Miles
39
44
26
1700
370
Power Inertia,
Kilowatts Pounds
9.7' 4000
9.1 4250
5.1 2375
8.6 4000
7.0 3250
Tires
Michelin 185 HR 14XVS
Goodyear 75R15 Radials
Michelin XZX 155 SR 13
Power
,
Horsepower
13.0
12.2
6.8
11.5
9.4
Radials
Pirelli Cinturado P3 195/70 SR
GT Special Steel 185/70 SR 14
Source
Alamo Leasing Co. (56)
Alamo Leasing Co. (5932)
Alamo Leasing Co. (1836)
Other
A/C, P/S &
A/C, P/S &
A/C
14 A/C, P/S &
A/C, P/S &
P/B
P/B
P/B
P/B
Mercedes-Benz of North America
Alamo Leasing Co. (9376)
Additional information on Car 64 is included in Appendix A-l.
16
-------
Use of a modified horsepower setting on the Mercedes (Car 61), more in
line with that for the other two cars, was considered. Such a setting was
considered to be more applicable for the future and enable better comparison
of the data between the three cars. The decision reached by the EPA Project
Officer, however, was that the certification horsepower value of 13.0 should
be utilized in this project.
B. Baseline Emissions - Task II
This project task involved 6440 kilometers (4000 miles) of distance
accumulation, followed by triplicate emissions evaluations, conducted before
and after tune-up to manufacturer's specifications. Cars 61, 62, and 63
were involved in this task.
1. Mileage Accumulation and Maintenance
In accordance with the break-in recommendations in the operator's
manuals, moderate engine speeds and vehicle accelerations were maintained
for the first 1600 kilometers. At 1600 kilometers, each of the cars re-
ceived an inspection and the engine oil and the oil filter were replaced.
The inspections of the Mercedes and the VW Rabbit were warranty requirements
and were conducted by the dealers from whom the cars were obtained. The
inspection of the Oldsmobile was conducted by a qualified technician at
this laboratory.
Service and scheduled maintenance, with the exception of oil and
filter replacement, were conducted in accordance with the specified require-
ments of the respective manufacturers. The engine oil and the oil filter
were replaced after the first 1600 kilometers (1000 miles) and then at 4800
kilometer (3000 miles) intervals on all three of the cars. These distances
are equal to the minimum specified among the three cars and, therefore, are
less than those specified for two of the cars.
A single batch of Number 2 Diesel fuel was used throughout this
baseline evaluation task. This fuel met the requirements for service
accumulation and emissions testing, and was representative of the 1979
overall national average for 2D fuels. A single-viscosity motor oil, for
service API/SE CC, was used in all three of the cars. This oil met the
specifications for all three of the cars.
No problems were encountered with any of the cars throughout the
6400 kilometers of distance accumulation. During the testing after the 6400
kilometers, one of the fuel injectors on the Oldsmobile developed a leak,
which was readily repaired. Following the initial series of tests, con-
ducted after the 6400 kilometers, each car was given a thorough inspection.
In each case, the inspection and tune-up was conducted by a local
new car dealership. At each dealership, the basic requirements were dis-
cussed with the service manager and he in turn passed the intent of these
17
-------
tune-ups to the service writer assigned to the job. The results of the
tune-up are summarized in Table 3. No significant problems were noted with
any of the three cars.
TABLE 3. TUNE-UP AFTER 6400 KILOMETERS
Cars
Description
61-Mercedes
62-Oldsmobile
63-Volkswagen
Standard Maintenance:3 5000
Adjustments Required Exh. Valves
Injection Timing
Injection Quality:
Spray Pattern
Injection Press.,psic
Leakage
Cylinder Compression,
Ibs.
Other Problems Noted
were .016-0.21
set @ .016
Met Factory
Specs.
27,000 & 30,000 mile 15,000 mile
Idle was 680/690 None
Idle set 600/750
Adj. Alternator belt
Met Factory Specs. was 1.10 mm
Adj. to 1.15 mm
300-341
None
1100-1200
Bleed O.K.
400-440
None
Good
1700
None
450-475
None
Maintenance mileage selected to provide thorough inspection. A few
non-essential items were omitted.
Additional inspections performed were valve clearance and idle speed.
Pressure at which injector opens (called crack, breaking or popping
pressure)
2. Sampling Zone Temperature
The proposed standard specified that the sampling zone temperature
should not exceed 51.7°C (125°F). This requirement presented a difficulty
with the Mercedes 300SD. Some of the pertinent factors concerning this
situation are briefly described as follows:
• The EPA reportedly ran a Mercedes-Benz with a CVS flow
of 540 scfm and did not exceed 125°F
• In initial determinations in this project using 560 scfm,
the peak temperature reached 143°F.
This was discussed in detail with the EPA Project Officer, who in turn
discussed this problem with other individuals at the EPA. It appears that:
18
-------
• The difference in peak temperature at the two laboratories was
apparently due to the laboratory practices followed.
• By following the laboratory practices reportedly used at the
EPA, it should be possible to maintain the peak temperature at
or below the 125°F limit.
Additional discussion involved methods that could be applied to enable testing
of the Mercedes:
• Waiving of the 125°F Limit - The SwRI system utilized a tunnel
heater to preheat the tunnel to 100°F. In one hot-start tran-
sient test the heater was inadvertently left on and the results
were as follows:
Peak Particulate, Efficiency,
°F mg %
63 BL-1 124 2.6 97
63 BL-2 121 2.8 97
63 BL-3 125 2.4 97
63 BL-3 135* 2.8 96
*Greater than 125°F for 100 seconds of the 505 total
This one data point does not indicate that there is any extremely
important effect of sample zone temperature.
Higher CVS Flow Rates - Using the current laboratory practices
at SwRI (such as short connections from vehicle exhaust to the
tunnel, mid-range test cell temperature, and preheating of the
tunnel), a CVS flow rate over 800 scfm would be required to keep
the peak temperature below 125°F. Such high dilution has detri-
mental effects on emissions measurement accuracy and could make
it impossible to get a two milligram loading on the filter when
control systems are used. In addition, such a high dilution
volume was not anticipated (based on the results obtained at the
EPA) and was not readily available for use in this project.
Use of Actual Horsepower - As discussed in Section IV.A., the
13.0 horsepower setting is out-of-line relative to the horse-
power settings of the other two cars. A horsepower setting
around 11.5 could have been more appropriate, and would have
reduced the peak temperature by an unknown amount.
19
-------
• Use of Double Dilution - Double dilution would have required
development and verification of a system which was outside the
scope of work in this project. Also, the 500 mm Pallflex
filter temperature would still have to be taken into account
when large filter samples are taken. Therefore, double dilution
would have only resolved one part of the problem.
• Following of Specific Requirements in the Standard - When the
Mercedes was tested at the EPA, the exhaust connection was
longer than that used at SwRI, and the tunnel was not preheated.
Also, the test cell temperature may have been somewhat lower.
By using a longer exhaust connection, deletion of tunnel pre-
heating, and reduced test cell temperature, the 125°F limit
could be met. This appeared to be the most feasible method,
allowed by the proposed standard, for use in this project.
The criteria that was evaluated, for keeping the sample zone
temperature below 125°F with the Mercedes, are as follows:
• Use of 12 feet of 4.0 inch diameter tubing between the vehicle
and the dilution tunnel.
• Reduce test cell temperature as necessary, to as low as 68°P.
• Discontinue preheating of the tunnel, if necessary.
These criteria were considered to be a feasible means of meeting
the specified requirements in the proposed particulate standard and were
generally in keeping with the laboratory practices reportedly utilized at
the EPA in testing a Mercedes. Preheating of the tunnel, to the average
temperature obtained during the test, was retained; since it is considered
to be a good operating practice and was found to have an almost negligible
effect on the peak tunnel temperature.
3. Baseline Emissions Test Results
Triplicate emissions evaluations were conducted on each of the
three cars, before and after the tune-up at 6400 kilometers of service
accumulation. These evaluations involved the Federal Test Procedure, with
determination of HC, CO, NOX and particulate.
The results of these baseline emissions evaluations are given in
Tables 4 and 5, and the computer printouts are included in Appendix B. in
Table 4, the certification values and the standards are included, along
with the average values for the baseline emissions results. The tests are
identified by the test number as follows:
BL - Initial Baseline Evaluations
TU - Evaluations after Tune-Up
20
-------
TABLE 4. AVERAGE BASELINE FTP EMISSIONS
AND CERTIFICATION VALUES
Emissions, g/km
Car 61-Mercedes
HC
CO
NOX
Particulate
Initial
0.11
0.51
1.02
0.22
Tuned-Up
0.10
0.52
1.08
0.22
Cert.
0.13
0.67
1.03
—
Standard
0.25
4.35
1.24
(0.37)a
Car 62-Oldsmobile
HC 0.39* 0.32*
CO 0.87 0.74
NOX 0.75 0.75
Particulate 0.32 0.28
0.25
4.35
1.24
(0.37)a
Car 63-Volkswagen
HC 0.15 0.17
CO 0.58 0.54
NOX 0.74 0.74
Particulate 0.22 0.22
0.23
0.72
0.65
0.25
4.35
1.24
(0.37)j
* Values which exceeded the emission standards.
a Particulate standard for 1983.
Referring to the data in Table 4, except for HC emissions from
the Oldsmobile, all emissions were below the standards for 1980. The emis-
sions from the Mercedes and the Volkswagen were in reasonably good agreement
with the certification emissions values. Based on particulate emissions data
for similar vehicles obtained from the EPA Project Officer, the particulate
data on these three cars appear to be within the range of values that would
be expected.
In the third test after tune-up with the Volkswagen, the fuel
consumption was significantly lower than in the first two tests. There-
fore, a fourth test was run and the results were as follows:
Emissions, g/km
Test
63TU-4
HC
0.20
CO
0.55
NOX
0.81
Part.
0.238
Fuel,
km
6.28
These results indicate that the decrease in fuel consumption was real.
21
-------
TABLE 5. BASELINE FTP EMISSIONS TESTS RESULTS
Test Results for 1980 Mercedes 300SD
Emissions, g/km
Test
61BL-1
61BL-2
61BL-3
61BL
61TU-1
6 ITU- 2
6 ITU- 3
61TU
Description
At 6500 km
At 6500 km
At 6500 km
Average
After tune-up
After tune-up
After tune-up
Average
HC
0.12
0.13
0.09
0.11
0.11
0.10
0.10
0.10
CO
0.52
0.49
0.52
0.51
0.54
0.49
0.52
0.52
NOX
1.01
1.03
1.03
1.02
1.06
1.07
1.10
1.08
Part.
0.211
0.218
0.216
0.215
0.226
0.213
0.230
0.223
Fuel,
VlOO km
9.84
9.78
9.75
9.79
10.06
10.49
10.18
10.24
Test Results for 1980 Volkswagen Rabbit
Emi s s ion s , g/km
Test
63BL-1
63BL-2
63BL-3
63BL
63TU-1
63TU-2
63TU-3
63TU
Description
At 6500 km
At 6500 km
At 6500 km
Average
After tune-up
After tune-up
After tune-up
Average
HC
0.13
0.15
0.16
0.15
0.17
0.17
0.16
0.17
CO
0.56
0.60
0.57
0.58
0.54
0.61
0.48
0.54
NOX
0.72
0.76
0.74
0.74
0.73
0.79
Oo71
0.74
Part.
0.211
0.230
0.214
0.218
0.218
0.229
0.213
0.220
Fuel,
VlOO km
6.50
6.49
6.50
6.50
6.62
6.57
6.20
6.46
Test Results for 1980 Oldsmobile Delta 88
Emissions,
Test
62BL-1
62BL-2
62BL-3
62BL
62TU-1
62TU-2
62TU-3
62TU
Description
At 6500 km
At 6500 km
At 6500 km
Average
After tune-up
After tune-up
After tune-up
Average
HC
0.40
0.35
0.43
0.39
0.33
0.34
0.28
0.32
CO
0.81
0.91
0.90
0.87
0.72
0.76
0.73
0.74
NOX
0.76
0.74
0.77
0.75
0.78
0.75
0.72
0.75
Part.
0.295
0.328
0.333
0.319
0.270
0.307
0.258
0.278
VlOO km
12.11
12.04
12.30
12.15
11.43
11.59
11.49
11.50
22
-------
4. Organic extractions
In the baseline evaluations, particulate samples were taken on 500
millimeter square (20 by 20 inch) Pallflex filters, and these filters were
shipped to an EPA-designated organization for analyses. Additional parti-
culate samples, taken on 500 millimeter square Pallflex filters, were sub-
sequently extracted at this laboratory to determine the percent of organic
extractables in the particulate.
Initially, it was planned to determine the percent of organic
extractables by extraction of 47 mm filters. The low total loading of
particulates, along with the relatively large extraction analysis error,
generally produced results having unacceptable large variations. The
error associated with the extraction process, was found to be approximately
0.2 mg and to be essentially independent of the total amount of solubles
present. As an example, consider a particulate loading 4.5 mg (mid-point
of the 2 to 7 mg recommended in the standard), with 20 percent organic ex-
tractables. The nominal extraction analysis error would be about one-fourth
of the organic extractables present. With 2 mg particulate and 10 percent
extractables, the error would equal the amount of extractables present.
With the 500 mm square filter, relative to the 47 mm filter, the
total loading of particulates is over 100 times as great and the extraction
analysis error is only about five times as large. In the previous examples
given, the extraction analysis error, when using 500 mm filters, would only
be about one percent and five percent, respectively, of the total amount of
extractables present. Therefore, with the concurrence of the EPA Project
Officer, all determinations of organic extractables involved the use of the
500 mm square Pallflex filters.
Results of organic extractions conducted in the baseline evaluations
are given in Table 6. The organic extractables, with the Oldsmobile and the
Volkswagen, were 20 to 30 percent of the total particulate collected. With
the Mercedes, however, the organic extractables were only 7 to 8 percent of
the total particulate. Two sets of filters, one set before the tune-up and
one after, were extracted to verify these re.sults with the Mercedes. The
reason for the significantly lower organic extractables, with the Mercedes,
is not known. This was discussed with a representative of Mercedes, and
the pre-chamber designs for each of the three engines were examined. It
appears that pre-chamber design could be a significant factor. Engine
combustion system modifications, in an attempt to determine the reason for
the low organic extractables, was considered to be outside the scope of
work for this project.
23
-------
TABLE 6. BASELINE ORGANIC EXTRACTABLES
Car & Test
Mercedes 61TU-1
Olds 62TU-1
VW 63BL-3
Mercedes 61BL-2
UDDS
Cycle
Cold
Hot
c
Composite
Cold
Hot
c
Composite
Cold
Hot
c
Composite
Cold
Hot
c
Composite
Filter
Number
-5
-6
6010
6011
6006
6007
-3
-4
Particulates, mg
Total
685
628
653
751
631
683
602
508
548
637
552
589
Extractable
49.8
46.4
47.9
170
153
160
152
167
161
49.2
45.7
47.2
Percent
Extrac.*
7.3
7.4
7.3
22.6
24.2
23.5
25.3
32.9
29.3
7.7
8.3
8.0
Using a 500 mm square Pallflex filter
^Percent Extrac. = Extractables 4- Total x 100%
'Composite = 0.43 x Cold + 0.57 x Hot
5. Fuel Consumption Comparisons
The baseline fuel consumption values, along with the values from
the 1980 Gas Mileage Guide, are as follows:
Average Fuel Consumption, VlOO km
Car
61 Mercedes
62 Oldsmobile
63 Volkswagen
Distance
Accum.a
11.2
12.6
6.5
Initial
9.8
12.2
6.5
FTP
Tuned-Up
10.2
11.5
6.5°
GMGb
9.8
10.7
5.9
Average value from 1600 to 6440 kilometers of distance
accumulation
Gas Mileage Guide
Average of the third test and an additional test (TU-3 and
TU-4) was 6.2,
For the distance accumulation, fuel consumption was determined from the
volumetric amount of fuel added. For the FTP evaluations, fuel consumption
was calculated using the carbon balance method.
24
-------
Fuel consumption during the distance accumulation was equal to or
greater than in the FTP evaluations. This is in agreement with the results
that were obtained with gasoline cars in a previous project.(5) Fuel con-
sumption, after tune-up in the baseline FTP evaluations, was within three
to ten percent of that given in the Gas Mileage Guide. The ten percent
difference occurred with the Volkswagen. Using the average for the third
test and an additional test (TU-3 and TU-4), the difference was only six
percent, rather than ten percent.
25
-------
V. PARTICULATE EMISSION CONTROL - TASK III
This task involved evaluation of particulate emission control tech-
nology and the screening of selected control methods. Significant changes
occurred in this task as the evaluations progressed, in accordance with the
status of control technology.
A. Test Plan Development
Initially, the EPA was to provide the system hardware and this labora-
tory was to conduct a prescribed test sequence on each control system pro-
vided. It was subsequently determined that some systems could not be
readily obtained in this manner and that the same test sequence was not
appropriate for all of the systems or methods evaluated. Therefore, the
EPA Project Officer requested that this laboratory become involved in
procuring several of the items and systems (including purchase or fabri-
cation) and to modify the test sequence as appropriate for each system or
method evaluated.
Significant changes occurred in the list of control systems and methods
to be evaluated. One of the major changes in emphasis was associated with
diesel particulate traps. Initially such traps were to have only a minor
involvement in this task. As this task progressed,- however, the evaluation
of particulate traps consumed a considerable portion of the effort.
The primary criterion utilized in these screening evaluations was
reduction of total particulates and organic fraction. Initially, it was
considered desirable to utilize the results of Ames evaluations, but the
long delays associated with obtaining Ames analyses made this impractical.
A number of control technology items, which were considered for possible
inclusion in this task, were not evaluated. Reasons for excluding these items
were unavailability, an apparent low probability of success, or their being
considered outside the scope of work in the project. Most of these items
are listed as follows:
Control Technology Items Considered, But Not Evaluated Experimentally
1. Variable Area Turbocharger 10. N/V Optimization
2. High Pressure-High Rate Injection 11. "Computer" Fuel Control
3. Lubricant Evaluations 12. EGR
4. Turbocompounding 13. Intake Throttling
5. Insulated Engine Components 14. Turbo Retrofit
6. Close Coupled Catalysts 15. CAV Microjectors (poppet type)
7. Combustion Chamber Modifications 16. Air Injection
8. Variable Compression Ratio 17. Hypergolic Injection
9. Fumigation
27
-------
The particulate control systems' and methods evaluated are listed in
Table 7. The term "trap" has been used to identify all devices that remove
and store the particulate. Test numbers were developed from a prioritized
list that was obtained from the EPA Project Officer. Subsequent changes,
involving deletions and additions of evaluations and the performance of the
evaluations on another car, resulted in some gaps in the test numbers. Not
shown in the table are the many baseline check evaluations that were run
periodically. These were run to assure that no major changes in emissions
had occurred with any car in its standard configuration.
TABLE 7. DIESEL PARTICULATE CONTROL SCREENING EVALUATIONS
Test Identification Numbers
Mercedes Oldsmobile Volkswagen Mercedes
Car 61 Car 62 Car 63 Car 64
Baseline No. 2 Fuel 611 621 631 641
No. 1 Low Sulfur Fuel 622
Low Sulfur Shlae Oil 623
10% n-Butanol in No. 2 624
Road Draft 625
TRW Easltomer Rings 626
Corning Catalyzed Trap 627
J-M Catalyzed Trap 628
2 Cylinder - 1700 IW 632
Idle Shut-Off 633
Dual Fuel-Dual Injection 636
Corning Noncatalyzed Trap 613
EGR and Water Injection 644
Texaco Catalyzed Trap 616
W.R.Grace Axial Non-Cat. Trap 617
W.R.Grace Radial Cat. Trap 618
W.R.Grace Radial Non-Cat. Trap 619
Add Methanol at 64 km/h 62S 63S
B. Topical Index to the Evaluations Conducted
This section arranges the evaluations conducted by topics, describes
the systems evaluated, and identifies the section of the report in which the
results are presented. The resultant topical index is given in Table 8.
1. Fuels Evaluated
Fuels evaluated in the Task III screening evaluations were a 1-D
low sulfur diesel fuel, a low sulfur "2-D type" fuel derived from shale oil,
and a blend containing 90 percent 2-D fuel and 10 percent n-butanol. The
properties of these fuels are briefly summarized in Table 9, with additional
detail given in subsequent Table 17. Additional fuel-related evaluations
involved the addition of methanol to 2-D fuel just prior to the injection pump,
and the addition of methanol into the combustion chamber using a dual-injection
system.
28
-------
TABLE 8. TOPICAL INDEX TO EVALUATIONS CONDUCTED
Test Reported
Identification in
Number Section
Fuels:
Diesel No. 2 Emissions Tests
Diesel No. 1 Low Sulfur
Low Sulfur Shalr Oil
10%n-Butanol in No. 2
Dual Fuel-Dual Injection
Add Methanol at 64 km/h
Engine Modifications:
Road Draft
TRW Elastomer Rings
2 Cylinder - 1700 IW
Idle Shut-Off
Dual Fuel-Dual Injection
EGR and Water Injection
Particulate Traps:
Corning Catalyzed
J-M Catalyzed
Corning Noncatalyzed
Texaco Catalyzed
W.R. Grace Axial Non-Cat.
W.R. Grace Radial Catalyzed
W.R. Grace Radial Non-Cat.
TABLE 9. PROPERTIES OF
DF-1
Test ASTM EM-455
Gravity, °API D287 42.8
Viscosity, Cs D445 1.64
Sulfur Content, wt % D1266 0.06
Cetane Index D976 51.1
Distillation Temp. , °F
IBP 324
10% 378
20% 430
End Point 516
FIA, % D139
Aromatics 15.4
Olefins 1.7
Saturates 82.9
6X1
622
623
624
636
6XS
625
626
632
633
636
644
627
628
613
616
617
618
619
V.D.3.
V.D.3.
V.D.3.
V.D.3.
V.E.5.
V.D.3.&5.
V.D.4.
V.D.5.
V.E.4.
V.E.3.
V.E.5.
V.F.
V.D.6.
V.D.7.
V.C.3.
V.C.4.
V.C.5.
V.C.6.
V.C.7.
Page
49
49
49
49
63
52S68
53
54
61
61
63
69
55
58
36
37
40
40
43
THE FUELS EVALUATED
1979
Avg.
42.5
1.68
0.07
50.9
351
384
426
525
—
—
—
DF-2
Baseline Low S
EM-408 EM-459
36.3 38.1
2.80 2.79
0.28 0.00
50.0 54.0
373 362
493 450
506 504
635 585
32.7 25.8
1.8 1.6
65.5 72.6
1979
Avg.
35.3
2.80
0.26
49.2
381
434
507
643
—
—
—
29
-------
2. Engine Modifications Evaluated
The evaluations involving modifications to the engine are briefly
described as follows:
Road Draft - Disconnect the crankcase ventilation tube from the
engine air inlet and vent the crankcase fumes to the atmosphere
outside of the test cell.
TRW Elastomer Rings - Use of special piston rings which are
designed to reduce oil consumption and blowby.
2 Cylinder-1700 IW - Disabling two cylinders of the four-cylinder
VW engine and conducting the tests based on an inertia setting
of 770 kg (1700 pounds) on the dynamometer.
Idle Shut-Off - Shutting off the engine as the engine speed
approaches idle, and restarting the engine a couple of seconds
prior to the next acceleration.
Dual Fuel-Dual Injection - Two separate independent injection
systems, one for diesel fuel and the other for methanol.
EGR and Water Injection - A 1981 Mercedes 300SD equipped with
exhaust gas recirculation and a system for the injection of
water into the intake prior to the turbocharger.
3. Particulate Traps Evaluated
A total of seven particulate traps were evaluated. These are:
Corning Noncatalyzed - Corning EX-47 monolithic ceramic honeycomb
substrate mounted in a container fabricated by Walker Manufacturing
Company (Walker).
Corning Catalyzed - Corning EX-47 monolithic ceramic substrate,
with a noble metal catalyst washcoat applied by Engelhard,
mounted in a container fabricated by Walker.
JM-13 Catalyzed (Radial Flow) - Complete catalyzed particulate
trap assembly obtained from Johnson Matthey. The trapping media
consisted of a number of metal mesh disks.
Texaco Non-Catalyzed (Axial Flow) - Complete particulate trap
assembly obtained from the Texaco Research Center, which con-
sisted of coarse metal mesh with an alumina coating. Identified
by Texaco as a diesel exhaust filter (DBF).
30
-------
W.R. Grace Non-Catalyzed (Axial Flow) - A series of ceramic foam
disks from W.R. Grace, mounted in a container fabricated by Walker.
W.R. Grace Catalyzed (Radial Flow) - A hollow cylinder of ceramic
foam with a catalyst coating, obtained from W.R. Grace. This
trap was mounted in a container fabricated by Walker.
W.R. Grace Non-catalyzed (Radial Flow) - A hollow cylinder of
ceramic foam, from W.R. Grace, mounted in a container fabricated
by Walker.
It should be noted that these devices are called traps by some and
filters by others. In this report the term "trap" has been selected for
use. Among other things, use of this term eliminates any possibility of
confusion between the filtration used in particulate measurement and fil-
tration used for particulate control.
C. Evaluations with the Mercedes 300SD - Car 61
The 1980 Mercedes 300SD, with a turbocharged diesel engine, was primarily
utilized in the evaluations of particulate traps. One definite advantage of
the use of the Mercedes for particulate trap evaluations was the ability to
consistently attain the exhaust temperature necessary for trap regeneration.
This temperature was attained using intake throttling at a speed only slightly
above legal highway speed.
1. Summary of the Results
A total of five particulate traps were evaluated using the Mercedes
(Car 61). These traps were obtained from Corning, Texaco and W.R. Grace
(three different traps from W.R. Grace). Results of the evaluations con-
ducted with the Mercedes are summarized in Table 10. The odometer reading
on this car was approximately 4000 miles at Test Series 61TU, and was below
6000 miles at Test Series 6191. In this table, the average values of the
after tune-up baseline results, along with the results of the baseline
checks, were used in making the comparisons. Also, percent changes from
baseline were calculated only for those changes which could be considered
statistically significant. From these results it appears that:
• Three of the traps evaluated reduced particulate emissions
by 75 to 80 percent of baseline values
• HC was significantly reduced by the catalyzed trap and by one
non-catalyzed trap. No significant change in HC was apparent
with the other noncatalyzed traps
• No significant change in CO occurred with any of these traps,
• Some apparent increase in NOX and fuel consumption occurred with
the two traps producing relatively higher exhaust backpressures
31
-------
TABLE 10. EMISSIONS RESULTS WITH THE MERCEDES 300SD - CAR 61
Test
Series
6 ITU
Initial
Final
—
6131
6161
6171
w 6181
6191
—
Change
6131
6161
6171
6181
6191
Emissions, g/km
Description
After Tune-Up
Baseline Check
Baseline Check
Overall Baseline Average
Corning Non-Cat.
Texaxo Non-Cat.
W.R. Grace Axial Non-Cat.
W.R. Grace Radial Cat.
W.R. Grace Radial Non-Cat.
1985 Standard
c,d
from Baseline Average,
Corning Non-Cat.
Texaco Non-Cat.
W.R. Grace Axial Non-Cat.
W.R. Grace Radial Cat.
W.R. Grace Radial Non-Cat.
HC
0.10
0.10
0.11
0.10
0.09
0.04
0.09
0.07
0.11
—
_ _
-60%
—
-30%
— —
CO
0.52
0.50
0.63
0.56
0.55
0.57
0.54
0.62
0.58
—
__
—
—
—
—
NOX
1.08
1.08
1.01
1.05
i.iob
1.14
1.20
1.08
1.07
—
__
+
+
—
— —
Part-
0.22
0.23
0.26
0.25
0.05b
0.06b
0.06
0.14
0.13
0.124
-80%
-75%
-75%
-45%
-50%
Fuel
V100 km
10.2
10.2
10.1
10.1
10. 3b
10.5
10.4
9.9b
10.3
—
__
-+
'+
—
~~
Initial
Exh. Press.
at 97 km/h,
kPaa
5
10
21
43
11
10
—
+100%
+300%
+700%
+100%
+100%
.Initial exhaust backpressure value (1 kPa equal 4"
Relatively large variations in the test results
,— indicates no significant change
+ indicates some apparent increase
-------
The results of the evaluations with the Corning noncatalyzed trap
are summarized in Table 11. With this trap, particulates were initially
reduced about 75 percent, and the trapping efficiency appeared to increase
with distance accumulation. In addition to the major reduction in parti-
culates, the NOX and fuel consumption results appeared to change with
distance accumulation. These particulates, NOX and fuel consumption results
are summarized as follows:
Exhaust
Distance B.P. at 97 NOX, Particulate Fuel
Ac cum. , km km/h, kPa g/km g/km % Reduction VlOO km
Average B.L. — 1.05 0.25 — 10.0
30 11 1.17 0.06 76 10.6
130 19 1.05 0.05 80 10.1
250 22 1.06 0.05 80 9.9
After Regen. 13 1.13 0.03 88 10.7
The NOX and fuel consumption were highest initially, and after the trap
was generated, and decreased as distance was accumulated.
For this regeneration, the intake manifold pressure was throttled
to minus 13 kPa (-4 inches Hg) at 97 kilometers per hour (60 mph). The
normal intake manifold pressure with the trap installed was plus 23 kPa;
resulting in a total throttling of 36 kPa (11 inches Hg). The sequence
followed was:
Intake
Time Speed, E.B.P., Man., Trap Temp., °C
Sequence Min. km/h kPa kPa Before After
Warm-up 4 64 12 +7
Pre-Check 4 97 25 +23 357 353
Regeneration 8 97 10 -13 627 668*
Post-Check 4 97 14 +23 371 377
Subsequent Check - 97 13 +23
* Maximum temperature in the initial regeneration
After the first few minutes of regeneration, the temperature before and after
the trap had essentially reached stabilization. At that time, the temperature,
after the trap, began to increase and the exhaust backpressure began to de-
crease. Near the end of the regeneration, the after-trap temperature began to
decrease. This wan an indication that regeneration was complete, or that the
rate of regeneration had decreased significantly.
33
-------
TABLE 11. CORNING NONCATALYZED TRAP 1980 MERCEDES BENZ 300SD
Exhaust
B.p. at 97 Emissions, g/km
Test (FTP or 60 mph) Description km/h, kPa
Average Baseline w/o trapa
10 km
6131C1 30 km
6131C2 130 km
6131C3 250 km
320 km
6131C4 After Regen.
Average with trap
Trap/Baseline
Reduction with Trap, %
60 mph with trap
60 mph Regen.
5
11
13
19
22
25
13
—
—
—
—
—
HC
0.10
0.10
0.09
0.09
ND
0.09
—
—
0.04
0.03
CO
0.56
0.56
0.58
0.49
0.56
0.55
—
—
0.3
4.5
NOX
1.05
1.17
1.05
1.06
1.13
1.10
+
—
1.3
0.8
Part
0.25
0.06
0.05
0.05
0.03
0.05
20%
80%
0.07
0.09
Fuel,
Si/100 km
10.1
10.6
10.1
9.9
10.7
10.3
+
—
9.6
11.9
Value given is the average of the after tune-up baseline and baseline check evaluations
-------
Due to the small number of tests conducted with each of these traps,
the changes in NOX and fuel consumption are not considered to be statisti-
cally significant. Based on the directional agreement between the test
results, however, it appears that the traps producing the higher exhaust
backpressures also caused some increases in NOX and fuel consumption.
The exhaust backpressure produced by the W.R. Grace axial-flow trap,
test series 6171, is considered to be unacceptably high. Backpressures with
the other traps evaluated are considered potentially acceptable. The Corning
trap produced large reductions in particulates with moderate increase in
exhaust backpressure. The increases in backpressure with the W.R. Grace
radial flow traps were also moderate, but particulate reduction obtained
was considerably less (around fifty percent). This reduction in particulate
was not sufficient to enable meeting the level of 0.124 g/km (0.2 g/mile)
with this test vehicle. For vehicles with lower engine-out particulate
levels, 50 percent efficiency may be adequate.
Regeneration, using intake throttling, was successful in three of
the traps evaluated. Successful regeneration was not obtained with the two
W.R. Grace radial-flow traps. This was due to the inability to obtain the
relatively high temperature necessary for regeneration throughout the trap.
2. Baseline Evaluations and Baseline Checks
Baseline evaluations were conducted before and after tune-up at
6500 kilometers, and baseline checks were conducted periodically throughout
the evaluations of the particulate control systems. The average values for
the initial after tune-up baseline and for the baseline checks are summarized
as follows:
Emissions, g/km Fuel
VlOO km
9.8
10.2
10.2
10.0
10.1
10.1
Each baseline consists of one to three individual tests.
Excludes the values for the initial baseline
As the testing progressed, there appeared to be some increase in
CO and particulate and some decrease in NOX. Over the entire duration of the
evaluations of the particulate emission controls, these apparent changes were
35
Baseline
After 6500 km
After tune-up
6131
6171
6191
b
Average
HC
0.11
0.10
0.10
0.10
0.11
0.10
CO
0.51
0.52
0.50
0.60
0.63
0.56
NOX
1.02
1.08
1.08
1.04
1.01
1.06
Part.
0.215
0.223
0.233
0.276
0.257
0.25
-------
approximately plus 20 percent for CO, plus 15 percent for particulate, and
minus 5 percent for NOX. The HC emissions and fuel consumption were not
sufficiently different or consistent to indicate any apparent changes as
the testing progressed. Over the relatively long time span, there were
some minor system and calibration changes, a change in drivers, and a
change in the batch of fuel used. Also, a number of trap regenerations,
using intake throttling, had been conducted on this car.
Upon reviewing the baseline data, it was decided to utilize the
overall average baseline values in making comparisons in this report.
Since relatively large reductions in particulates are required to meet the
1985 standard, the apparent baseline increase in particulates has an essen-
tially negligible effect on the percent reduction for all viable particulate
control systems.
3. Corning Noncatalyzed Trap
The Corning diesel particulate trap consisted of a round monolithic
substrate, EX-47, 144 mm in diameter by 305 mm long (5.66 by 12.0 inches).
This substrate had cells 2.54 millimeters square (200 square cells per square
inch), with a wall thickness of 0.43 millimeters (17 mils). This trap sub-
strate was procured from the Corning Glass Works. Fabrication of the con-
tainer, and the initial mounting of the trap into the container, was per-
formed by Walker Manufacturing Company.
The trap assembly was mounted under the right-front floorboard of
the Mercedes 300SD. This was essentially the same location where the cata-
lytic converter is mounted on a gasoline-fueled Mercedes. To facilitate
attaining the temperature required for regeneration, the trap and the section
of exhaust pipe from the manifold to the trap were insulated with ceramic
fiber. Throttling was accomplished by mounting a throttle-plate in the
adapter fitting between the turbocharger and the intake manifold. Exhaust
backpressures (EPS), with and without the trap, are summarized as follows:
Exhaust Backpressure, kPa
Speed
Standard
System
2
3
5
Container
Only
3
5
7
Trap,
Initial
5
7
11
km/h mph
64 40
80 50
97 60
The evaluation sequence involved duplicate emissions tests,
followed by operation of the car over the FTP cycle until the exhaust back-
pressure reached 25 kPa (100 .inches H20) at 97 km/h. At 25 kPa exhaust
backpressure, which initially occurred after 330 km of operation, the trap
was regenerated on the dynamometer using intake throttling, at a speed of
97 km/h.
36
-------
An item of interest is that the weight gain on the 47 mm Pallflex
back-up filters, during an FTP, was approximately the same with the trap as
was previously obtained without the trap. Collection efficiency of the first
filter decreased from about 97 percent without the trap to less than 90
percent with the trap. Therefore, it appears this trap effectively filtered
out the particulate that was removed by the primary filter, but did not
effectively remove the "particulate" that was collected on the back-up
filter.
Large filter samples of particulate, collected with the trap in-
stalled, were extracted to determine the amount of organic solubles. These
are compared with previous baseline values as follows:
b
Composite Particulate Values
Milligrams Percent
Car Test Total Extract Extract
Mercedes Baseline 620 48 8
Mercedes Corning Trap 107 22 20
Olds Baseline 680 160 24
VW Baseline 550 160 29
Average of two tests
Composite values determined using factors of 0.43 and 0.57
for the cold and the hot segments of the FTP
The total particulates were reduced about 80 percent with the Corning trap,
but the organic extractables were only reduced by about 50 percent. As pre-
viously discussed in Section IV.B.4, the baseline percent extractables were
considerably lower with the Mercedes than with the Oldsmobile and the Volks-
wagen.
4. Texaco Noncatalyzed Trap
The Texaco noncatalyzed trap, identified as a diesel exhaust filter
(DBF) by Texaco, was initially scheduled to be evaluated on the Oldsmobile.
The Mercedes, however, was subsequently selected for these initial screening
evaluations on the basis of the ease of attaining conditions necessary for
regeneration, and the difficulties that were encountered in regeneration
attempts with the Oldsmobile. Trap sizing criteria are within ten percent
on these two cars. The primary intent was to evaluate the trap; rather than
the regeneration system. Length of the DBF is longer than the previously-
evaluated traps, and exhaust system modifications were required for its
installation. The filter bed volume of this trap was approximately seven
liters.
37
-------
Texaco provided information and several recommendations. Maximum
recommended soot accumulation was stated to be 7 mg soot per gram of filter
packing or 3.3 grams soot per liter of filter bed volume. The maximum
recommended accumulation for the trap provided was about 23 grams. Regen-
eration temperature was stated to be 650°C (1200°F) at the inlet to the DEF.
Regeneration was considered to be completed when the exit temperature of the
DEF reached about 600°C (1100°F), with a minimum of 6 percent oxygen in the
exhaust. Following regeneration, the exhaust flow rate should be maintained
until the temperature of the DEF drops below 300°C (575°F).
The results with the Texaco trap are summarized in Table 12. As
shown from the data in Table 12, this trap produced reductions in particu-
lates and hydrocarbons of 75 and 60 percent, respectively. There were small
apparent increases in NOX and fuel consumption.
The distance accumulated prior to the initial regeneration was
based on the maximum safe loading of 23 grams specified by Texaco. The
loading of particulate on the trap was calculated, using the reductions
in particulate and CH emissions as follows:
Accumulation, km = 23 g/[(0.18 + 0.06) g/km] - 100 km
Using subsequent particulate emission values, the safe distance accumulation
comes out to be somewhat lower. The two subsequent regenerations, however,
were primarily based on having a specific increase in the exhaust back-
pressure, rather than on reaching the maximum allowable distance accumulation.
The regenerations were obtained by warming up the engine and then
throttling the engine air intake, at a vehicle speed of 97 km/h (60 mph), to
obtain over 600°C (1100°F) exhaust gas temperature at the trap inlet. Shortly
after the inlet temperature reached 600°C, the rate of temperature rise of
the outlet flow increased significantly, indicating burn-off was occurring.
The outlet temperature generally continued to rise until it was equal to or
exceeded the inlet temperature; then it began to decrease, indicating a
decrease in the rate of burn-off. The oxygen level decreased during the
actual regeneration and was generally between 4 and 5 percent when regen-
eration was completed.
Emissions measured during the regeneration are reported at the
bottom of Table 12. During the regeneration cycle (relative to values
without throttling), particulates, CO, and carbon balance fuel consumption
increased, while HC remained essentially unchanged and NOX decreased. The
increases in emissions do not appear excessive when compared against the
values for an FTP and the emission standards.
With the Texaco particulate trap, the initial and the after-regen-
eration backpressures of 21 and 25 kPa could be considered relatively high.
The initial backpressure, the increase with distance accumulation, the regen-
erations, and the reductions in HC and particulates were discussed with a
representative from Texaco. He concluded that the results of these evalu-
ations appeared to be realistic.
38
-------
TABLE 12. TEXACO NONCATALYZED TRAP 1980 MERCEDES BENZ 300SD
Exhaust
Test (FTP or 60 mph)
6161C1
6161C2
6161C1
Average with Trap
Trap/Baseline
Reduction with Trap,
Q
60 mph with Trap
Q
60 mph Regen. 1
60 mph Regen. 2
60 mph Regen. 3
Description
Baseline
26
56
80
Regen. ,
After
27
42
Regen. ,
After
24
40
55
Regen. ,
After
w/o trap
km
km
km
103 km
Regen.
km
km
63 km
Regen.
km
km
km
68 km
Regen.
B.P. at 97
km/h, kPaa
5
21
23
25
—
23
26
29
—
25
26
27
28
—
25
—
—
—
—
—
—
Emissions, g/km
HC
0.10
0.04
0.04
—
—
0.04
0.04
40%
60%
0.02
0.02
0.01
0.02
CO
0.56
0.57
0.57
—
—
0.59
0.58
—
—
0.35
1.29
1.51
1.78
NOX
1.05
1.13
1.16
—
—
1.13
1.14
+
—
1.56
0.92
0.88
0.95
Part.
0.25
0.072
0.053
—
—
0.051
0.06b
25%
75%
0.032
0.062
0.064
0.068
Fuel
£/100 km
10.1
10.65
10.48
—
—
10.40
10.5
+
—
10.1
11.3
11.7
11.9
Factors for 64 and 80 km/h are 0.43 and 0.67
^Excluding initial test 6161C1, the average is 0.05
'Over total distance approximately equal to an UDDS
-------
In summary, the Texaco trap reduced particulates to 0.05 g/km
and HC to 0.04 g/km, and produced some increase in NOX and fuel consumption.
The trap was successfully regenerated several times. However, the recom-
mended distance accumulation between regenerations was only about 100 kilo-
meters, and the post-regeneration exhaust backpressure was about 24 kPa
(100 inches of water). Emission rates during the regenerations were not
considered to be excessive. Therefore, with the shortcomings mentioned,
this trap was shown to produce large reductions in particulate and to be
regenerable.
5. W.R. Grace Noncatalyzed Axial-Flow Trap
Ceramic foam trap material from W.R. Grace, about 150 mm diameter
by 300 mm long, was installed into one of the existing trap containers by
Walker Manufacturing Company. This particulate trap was installed onto the
Mercedes (Car 61) and subjected to a series of evaluations. The emission
results and the system backpressure are given in Table 13.
As shown from the data in Table 13, this trap produced a large
reduction in particulates and some reduction in HC. The NOX emissions
were increased by about ten percent, and fuel consumption increased. Also,
as shown, this trap produced relatively high exhaust backpressures of about
50 kPa (200" H20).
An interesting, but unexplainable, occurrence was the relationship
between the HC and particulate emission rates measured at 97 km/h (60 mph).
In the initial tests (SI and Rl), HC was lower and particulate was higher
than in the repeat tests (S2 and R2). Of interest, however, is that HC
plus particulate, for the same type test, remained essentially constant.
The emissions during regeneration were not considered to be excessive.
Results obtained in these evaluations were discussed with a re-
presentative from W.R. Grace, and he concluded that they appeared to be
realistic. The primary concern with this W.R. Grace axial-flow trap was
the high exhaust backpressure.
6. W.R. Grace Catalyzed Radial Flow Trap
A W.R. Grace catalyzed radial flow trap, made of ceramic foam,
was mounted into a container fabricated by Walker Manufacturing. The ceramic
foam trap was approximately 110 mm OD and 50 mm ID by 200 mm long (4.5
inches OD and 1.9 inches ID by 8 inches L). It was designed for exhaust
flow to enter through the outside wall and exit from the inside wall.
Results of the evaluations conducted are summarized in Table 14.
These results show that the initial backpressure was a relatively moderate
11 kPa (44 inches of water) and that it increased at a moderate rate of
approximately 2 kPa per 100 kilometers. This catalyzed trap reduced HC
by 30 percent (having essentially the same effect on HC as did the previous
40
-------
TABLE 13. W.R. GRACE NONCATALYZED AXIAL-FLOW TRAP 1980 MERCEDES BENZ 300SD
Exhaust
Test (FTP or 60 mph)
Average
—
—
6171C1
6171C2
—
—
—
—
—
—
—
—
—
6172C1
Average with Trap
Trap/Baseline
Reduction with Trap, %
60 mph with Trap SI
60 mph with Trap S2
c
60 mph Regen. Rl
60 mph Regen. R2
Description
Baseline w/o Trap
0 kmb
15 km
42 km
76 km
103 km
Regen. , 140 km
After Regen.
24 km
50 km
106 km
Regen. , 164 km
After Regen.
21 km
48 km
B.P. at 97
km/h , kPa
5
43
44
45
46
48
—
45b
46
48
51
—
47b
48
50
—
—
—
—
—
Emi s s ion s , g/km
HC
0.10
0.10
0.07
0.08
0.08
80%
20%
0.06
0.03
0.60
0.01
CO
0.56
0.56
0.52
0.62
0.57
__
—
0.4
0.4
2.0
1.9
NOX
1.05
1.20
1.19
1.15
1.18
110%
—
1.2
1.5
0.9
0.9
Fuel
Part. £/100 km
0.25 10.1
0.059 10.4
0.058 10.3
0.060 10.5
0.06 10.4
25% +
75%
0.04
0.07 10.2
0.07 12.0
0.12 11.5
Factors for 64 and 80 km/h are 0.43 and 0.67
DValue obtained from extrapolation to 0 miles
"Over total distance approximately equal to an UDDS
-------
TABLE 14. W.R. GRACE CATALYZED RADIAL-FLOW TRAP 1980 MERCEDES BENZ 300SD
Test (FTP)
Description
6181C1
6181C2
Baseline w/o trap
0 kmb
43 km
72 km
130 km
172 km
Regen. Attempt, 190 km
After Regen. Attempt
Regen. Attempt, 220 km
After Regen. Attempt
267 km
348 km
Regen. Attempt, 365 km
After Regen. Attempt
Exhaust
B.P. at 97
km/h, kPa
11
12
13
14
15
15
14
14
17
17
Emissions, g/km
HC
0.10
Average with Trap
Trap/Baseline
Reduction with Trap
Factors for 64 and 80 km/h are 0.43 and 0.67
Value obtained from exprapolation to 0 miles
Regeneration attempt using throttling only. Inlet at 580°C
and 3.5% oxygen
Regeneration attempt using partial throttling and propane.
630°C (1170°F) and 3.0% oxygen
Regeneration attempt using throttling only. Inlet at 590°C
and 3.5% oxygen
70%
30%
CO
NOX
0.56 1.05
Part.
0.25
0.07 0.62 1.08 0.148
0.07 0.61 1.08 0.137
0.07 0.62 1.08 0.14
55%
45%
Fuel
VIOO km
10.1
10.0
9.8
9.9
(1080°F) and outlet at 575°C (1070°F)
Inlet at 570°C (1060°F) and outlet at
(1100°F) and outlet at 590°C (1100°F)
-------
non-catalyzed axial-flow W.R. Grace trap), and had no significant effect
on CO, NOX or fuel consumption. Particulates were reduced approximately
45 percent.
The regeneration attempts had only a minimal effect on exhaust
backpressure. The initial attempt was conducted in the same manner as used
with the previous regenerations on the non-catalyzed traps. This method
involved throttling the intake air to attain a trap inlet temperature of
about 600°C (1100°F) with over three percent oxygen in the exhaust. The
absence of a definite temperature rise in the exhaust during the attempted
regeneration, along with lack of decrease in exhaust backpressure, indi-
cated that regeneration did not occur.
Propane injection, along with slightly less throttling, was
utilized in the second regeneration attempt. This regeneration appeared
to be only slightly more effective than the first, with an apparent small
reduction in exhaust backpressure.
Since the ends of this trap were not flat and perpendicular to
the cylindrical axis, there was some concern that possibly leakage could
have occurred to account for the results obtained. Therefore, the trap
was disassembled and carefully examined. The clean appearance of all
three gaskets involved in this assembly indicated that no leakage had
occurred. The trap was reassembled, additional distance was accumulated,
and regeneration was attempted. As with the previous attempts, however,
this regeneration attempt was not successful.
Examination of the trap showed that some of the pores on the
exterior surface, downstream of the inlet, were plugged. It appeared that
stratification of the exhaust flow may have occurred in the trap; resulting
in nonuniform loading of the particulate and/or nonuniform heating during
regeneration. The trap was reassembled and reinstalled onto the car, and
after and additional 120 kilometers, another regeneration was attempted.
On the basis of exhaust backpressure, regeneration was not successful.
7. W.R. Grace Noncatalyzed Radial-Flow Trap
A W.R. Grace noncatalyzed particulate trap was mounted into one
of the containers previously fabricated by Walker Manufacturing. This
trap was then installed on the Mercedes (Car 61) and was subjected to a
series of evaluations. In previous evaluations, a W.R. Grace radial-flow,
catalyzed particulate trap did not regenerate in several attempts. These
evaluations, with the noncatalyzed trap, were to determine whether or not
a radial-flow, noncatalyzed particulate trap would regenerate, and if not,
to attempt to determine the reason.
This particulate trap was the same size as the catalyzed trap
described in the preceding section of this report, a hollow cylinder
approximately 110 mm OD and 50 mm ID by 200 mm long. It was designed for
the exhaust flow to enter at the outside diametrical surface and exit from
the inside diametrical surface.
43
-------
The results of the evaluations with this trap are summarized in
Table 15. This trap reduced particulate by approximately 50 percent, and
had essentially no effect on HC, CO, NOX, or fuel consumption. Regeneration
did not occur even though the inlet and exit temperatures were sufficiently
high, based on previous regenerations with other traps. Maximum temperatures
attained during regeneration attempts were 610°C (1130°F) inlet and 593°C
(1100°F) outlet, with over three percent oxygen in the exhaust.
By installing a thermocouple downstream of the inlet of the trap
at T2, it was determined that a significant temperature stratification was
occurring. The temperatures during a regeneration attempt were as follows:
Temperatures During Regeneration Attempt
°C 610 488 593
°F 1130 910 1100
The temperature at T2 was only 488°C (910°F), which is below the ignition
temperature of the carbon particulate. Also, upon disassembly, the trap
visually appeared to be more heavily loaded with particulate at the down-
stream end than at the upstream end.
It is possible that the following phenomena were occurring with
this trap configuration:
• The larger particles tend to separate out of the flow and
continue toward the downstream end of the trap. This results
in heavier particulate loading at the downstream end of the
trap.
• The flow rate through the downstream end of the trap is lower,
and the wall quenching area is relatively large for those
exhaust gases reaching the downstream end. This results in
significant temperature reduction at downstream.
44
-------
TABLE 15. W.R. GRACE NONCATALYZED RADIAL-FLOW TRAP 1980 MERCEDES BENZ 300SD
Exhaust
Test
—
—
6191C1
6191C2
—
—
Average with Trap
Trap/Baseline
Reduction with Trap
Description
Baseline w/o trap
11 km
40 km
138 km
200 km
Regen. Attempt
Regen. Attempt
B.P. at 97
km/h , kPa
5
10
13
15
17
17
17
—
Emissions
HC CO
0.10 0.56
0.12 0.59
0.09 0.57
0.11 0.58
—
, g/km
NOX
1.05
1.10
1.03
1.07
—
Part.
0.25
0.14
0.12
0.13
50%
50%
Fuel
£/100 km
10.1
10.4
10.2
10.3
—
Stabilized trap inlet temperature was about 315°C (600°F)
-------
• In the regeneration attempt, the required regeneration tem-
perature is attained only at the upstream end of the trap and
within the interior cavity of the trap.
• Any regeneration that occurs at the upstream end of the trap
has essentially no effect on the temperature at downstream.
The final evaluation conducted with this trap was to see if regen-
eration could be accomplished by reversing the flow through the trap.
During this regeneration attempt, however, a longitudinal fracture occurred
in the trap. This probably resulted from the combination of the pressure
and thermal stresses that occurred within the trap under this condition.
In summary, this W.R. Grace trap had reasonably good particulate
control with low initial backpressure. Some development is required with
the overall system, however, to obtain uniform flow, uniform particulate
loading, and uniform temperature distribution over the entire surface of
the trap.
8. Summary of Trap Evaluations with the Mercedes
Three of the traps evaluated reduced particulate emissions by 75
percent or more. With one of the three, however, the increase in exhaust
backpressure was considered to be excessive. Two versions of a fourth trap
configuration had relatively low exhaust backpressure, but the reduction in
particulate emissions was not sufficient to enable meeting the level of the
1985 particulate standard with this particular vehicle. None of the traps,
catalyzed or noncatalyzed, had any noticeable effect on CO emissions, but
two of the traps reduced hydrocarbons. High exhaust backpressure appeared
to result in some effect on NOX emissions and fuel consumption with the
car tested.
The results are briefly summarized as follows:
Initial Exhaust
Particulate, Backpressure at
Exhaust Configuration g/km 97 km/h, kPa
Standard 0.124a
Baseline w/o Trap 0.25 5
Corning Non-Cat. 0.05 10
Texaco Non-Cat. 0.06 21
W.R. Grace Axial Non-Cat. 0.06 43
W.R. Grace Radial Non-Cat. 0.13 10
W.R. Grace Radial Cat. 0.14 11
Standard for 1985
46
-------
Based on the results of these initial evaluations, it appeared that the
Corning and the Texaco particulate traps were acceptable candidates for
additional evaluations.
D. Evaluations with the Oldsmobile Delta 88 - Car 62
The 1980 Oldsmobile Delta 88, with a naturally-aspirated diesel engine,
was utilized in evaluating a number of different fuels, engine modifications,
and particulate traps.
1. Summary of the Results
Average results, for the primary evaluations conducted with the
Oldsmobile, are given in Table 16. The odometer reading on this car was
approximately 4000 miles at Test Series 62TU and below 6000 miles at the
final Test Series. Significant reductions in particulates were obtained
with two of the fuels evaluated and with the two particulate traps. In
addition, decreased emissions of HC and CO were obtained with the No. 1
diesel fuel and the two catalyzed particulate traps evaluated. The other
methods and systems evaluated, with one possible minor exception, did not
have any apparent effect on emissions or fuel consumption. The 1985
particulate standard, 0.124 g/km, was met only with one of the particulate
traps.
Difficulties were encountered in the attempts to regenerate the
Corning catalyzed trap, and satisfactory regeneration of this trap was not
achieved. With the Johnson Matthey JM-13 catalyzed trap, the temperature
required to initiate regeneration, appeared to be somewhat lower than
with any of the other particulate traps evaluated in this project.
2. Baseline Evaluations and Baseline Checks
Baseline evaluations were conducted before and after the tune-up
at 6500 kilometers, and baseline checks were conducted before each group
of control system evaluations. Average values for these baseline results
are summarized on the following page.
Since large variations in HC occurred (0.27 to 0.43 g/km) in these
baseline evaluations, and there were sufficient evaluations around each group
of control methods, a separate baseline value has been calculated for each
group of control methods. Baseline values, utilized in the tables for making
comparisons with the control systems results, were calculated using an
average of the baseline tests before and after (or in a couple of instances,
nearest to the evaluation of) each group of control methods.
47
-------
TABLE 16. EMISSIONS RESULTS WITH THE OLDSMOBILE DELTA 88 - Car 62
Test
Series
62TU
Initial
Final
Average
Average
62F2
62F3
62F4
o^ Average
6251
6252
Average
6253
Average
6261
Average
6271
Average
6281
Description
Emissions, g/km
Fuel
After Tune-Up
Baseline Check
Baseline Check
Overall Baseline Average
Fuels Baseline
No. 1 Diesel Fuel
Shale Oil DFM Low S.
10% 1-Butanol in No. 2 Diesel
Road Draft Baseline
Road Draft of Crankcase
Carbon Canister in Crankcase Vent
a
Vent Filter Baseline
Crankcase Vent Filters Removed
a.
TRW Rings Baseline
TRW Elastomer Rings
£«
Trap Baseline
Corning Catalyzed Trap
Trap Baseline
Johnson Matthey Catalyzed Trap
HC
0.32
0.30
0.30
0.34
0.36
0.21
0.40
0.41
0.40
0.39
0.34
0.44
0.43
0.36b
0.40
0.30
0.18
0.30
0.09
CO
0.74
0.79
0.89
0.82
0.80
0.66
0.81
0.89
0.83
0.79
0.80
0.88
0.89
0.81b
0.82
0.89
0.43
0.89
0.27
NOX
0.75
0.77
0.87
0.77
0.75
0.80
0.75
0.74
0.76
0.81
0.77
0.76
0.74
0.71
0.87
0.63
0.87
0.78
Part
0.28
0.30
0.32
0.29
0.28
0.23
0.23
0.25
0.28
0.29
0.27
0.29
0.30
0.27
0.28
0.32
0.08
0.32
0.14
£/100 km
11.5
11.2
12.0
11.2
11.1
11.2
11.1
11.3
11.1
11.1
11.3
11.2
11.5
11.3
11.4
12.0
11.6
12.0
11.7
Effect Produced
Decreased HC, CO & Part.
Decreased Part.
Possible Decrease of Part.
No Apparent Effect
Decreased HC
No Apparent Effect
No Apparent Effect
Decreased HC, CO, NOX & Part.
Decreased HC, CO, NOX & Part.
Average of baseline check runs before and after the fuels or system evaluations
^There were variations in the individual values
'Without EGR (EGR was disconnected to enable installation of a throttle in the intake)
Less than ten percent change in emissions described as "No Apparent Effect"
-------
Baselinea
After 6500 km
After Tune-Up
Fuelsb
Road Draft
b
TRW Rings
After TRW Rings
Traps
d
Durability
Emissions, g/km
HC
0.39
0.32
0.34
0.39
0.43
0.27
0.30
0.25
CO
0.87
0.74
0.79
0.81
0.86
0.74
0.89
0.78
NOX
0.75
0.75
0.77
0.74
0.77
0.72
0.87
0.87
Part.
0.32
0.28
0.03
0.27
0.29
0.26
0.32
0.31
Fuel
£/100 km
12.2
11.5
11.2
11.0
11.3
11.4
12.0
11.7
f'Each baseline consists of one to three individual tests.
Conducted before evaluation of the designated control method
or system
°EGR disabled to enable installation of a throttle in the air
intake prior to this test.
Throttle removed and the EGR reconnected prior to this test.
In order to incorporate intake throttling on the engine for the
particulate evaluations, it was advantageous to disable the EGR system.
This appeared to result in some increase in NOX and in particulates.
However, after the throttle was removed and the EGR was reconnected, the
NOX and particulates did not decrease. Therefore, baseline NOX values had
apparently changed, or the EGR system was not functioning properly. Due
to the higher exhaust backpressure with the trap installed, higher EGR
rates will occur and should be taken into consideration if EGR is used
with particulate traps. Such higher rates of EGR could affect gaseous
and particulate emission rates and fuel consumption.
3. Fuels Evaluated
Three fuels were evaluated in the Oldsmobile, in addition to the
baseline No. 2 diesel fuels. An additional evaluation involved blending
of methanol into the baseline diesel fuel. The fuels evaluated include:
• No. 2 Diesel Fuel used for Baseline Evaluations (EM-408)
• No. 1 Diesel Fuel (EM-455)
• Low Sulfur No. 2 type fuel made from shale oil (EM-459)
• No. 2 Diesel Fuel plus 10 percent 1 -Butanol (EM-456)
49
-------
Chemical and physical properties of these fuels are given in Table 17. With
the exception of a lower initial boiling point and a lower flash point, the
No. 1 diesel fuel evaluated had properties very similar to the national
average. The low sulfur No. 2 type fuel had no measurable sulfur and a
relatively high cetane index. The other properties of this fuel were
generally between those for a No. 2 and a No. 1 diesel fuel.
TABLE 17. PROPERTIES OF THE DIESEL TEST FUELS
No. 1 Fuel No. 2 Fuel
1979 Baseline Low S 1979
Test ASTM EM-455a Avg.b EM-408C EM^459d; Avg.b
Gracity, °API
Specific Gravity
Viscosity, cS
Sulfur Content, wt %
Cetane Index
D287
D455
D1266
D976
42.8
0.812
1.64
0.06
51.1
42.5
1.68
0.07
50.9
36.3
0.843
2.80
0.28
50.0
38.1
0.834
2.79
0.00
54.0
35.3
2.80
0.26
49.2
99.1
324
378
430
482
516
—
3516
378
426
481
525
97.5
373
493
506
602
635
99.3
362
450
504
560
585
—
381
434
507
593
643
Distillation Temp., °F
Vol. Recovered D86
IBP
10%
50%
90%
End Point
FIA, % D1319
Aromatics 15.4 — 32.7 25.8
Olefins 1.7 — 1.8 1.6
Saturates 82.9 — 65.5 72.6
Flash Point, °F D93 120 138f 178 178 167
Gulf No. 1 Commercial Diesel Fuel
Diesel Fuel Oils, 1979, BETC/PPS-79/5, 12/79
No. 2 Emissions Test Fuel blended by Howell Refinery
dNo.
e 2 Low Sulfur DFM from Shale Oil Crude Stock D.F.S.C. No. 79-7299-5
..Minimum was 300°F
Minimum was 120°F
50
-------
Table 18.
Results of the evaluations with these fuels are summarized in
TABLE 18. RESULTS WITH VARIOUS FUELS IN THE OLDSMQBILE DELTA 88
HC,
CO,
NOX,
Part
Fuel
g/km
g/km
g/km
. , g/km
, £/100
EM-408
EM-455
EM-456
EM-459
EM-408
BL
Check,
F1-3&4
0.34
0.79
0.77
0.30
km 11.2
EM-455
DF-1
Low S.
F2C2&3
0.21
0.66
0.80
0.23a
11.2
- No. 2 Emissions Test
- Gulf No.
1 Commercial
EM-459 EM-456 EM-408
Low S. 408 + 10% BL
Shale Oil 1-Butanol Check,
F3C2&3 F4C1&2 F1-5&6
0.40a 0.41 0.
0.81 0.89 0.
0.75 0.74 0.
0.23 0.25 0.
11.1 11.3 11.
Fuel blended by Howell Refinery
Diesel Fuel
39
81
74
27
0
- 10% 1-Butanol in EM-408
- No . 2 Low
Sulfur DFM
from Shale Oil Crude Stock
Difference between the runs was greater than 10%
Relative to the baseline check evaluations, all three of the other fuels
appeared to produce somewhat lower particulate emissions; reductions were
as much as 20 percent with the No. 1 and the zero-sulfur fuels. Also,
with the No. 1 fuel, HC and CO emissions decreased, and NOX increased.
With the fuel containing 10 percent 1-butanol, CO emissions and (apparently)
fuel consumption increased. The volumetric heating value of this fuel blend
is 98 percent of that for the No. 2 diesel fuel. Therefore, fuel consumption
would be expected to increase by about two percent with this blended fuel.
A change of two percent, however, cannot be determined with statistical
significance using only duplicate evaluations.
Operating difficulties occurred with the Oldsmobile at the start
of evaluations with the No. 1 diesel fuel. The results of the initial
evaluations with the No. 1 fuel were significantly different from what was
expected. Therefore, tests were conducted with the No. 2 diesel and these
results were significantly different from the initial baseline results.
The results of these evaluations, along with the initial baseline results,
are briefly summarized on the following page.
51
-------
No. 2 Diesel Fuel
HC, g/km
CO, g/km
NOX, g/km
Part., g/km
Baseline
BL
0.39
0.87
0.75
0.32
Results
TU
0.32
0.74
0.75
0.28
Baseline
Check
0.17
0.64
1.07
0.32
No. 1
Fuel
0.11
0.61
1.08
0.36
It was noted that the engine ran roughly during cold-start idle operation.
After checking the EGR system and the fuel supply system the car was returned
to the dealer for repair. The service department verified that the engine
was not idling properly, and examined the systems which could cuase this
problem. This servicing included checking the injectors. The problem
cleared up without their finding any specific cause. Subsequent tests
with the No. 2 fuel produced results which were in good agreement with
the initial baseline results. Results given in Table 18 are from evalu-
ations conducted after this problem cleared up.
Diesel-Methanol Blend - Methanol was added into the fuel system
of the Oldsmobile just prior to the injection pump. The diesel-methanol
mixture then passed through the transfer pump, which should assure reasonably
good blending of these nonmiscible liquids. With the car operating at a
steady 72 kilometers per hour (45 mph), methanol was added until engine
operating was noticeably changed. Such change was based primarily on engine
roughness. The methanol flow rate was then decreased until smooth engine
operation was reattained. This process was repeated several times to assure
that the engine roughness repeatedly occurred at the same methanol flow rate.
This rate was then defined at the "maximum amount" of methanol that can be
added without readily apparent engine roughness. Optimization of engine
parameters, such as injection timing, was not conducted.
The emissions results without and with methanol, from ten minutes
of steady state operation, were as follows:
Values at 74 km/hr (45 mph)
Emi s s ion s , g/km
Fuel
Diesel
Die. +Meth.
Diesel
Diesel
Die.+Meth.
Die.+Meth.
Test
Avg.
Avg.
62SS-1
62SS-2
62SSC1
62SSC2
HC
0.06
o.na
0.06
0.05
a
0.11
o.na
CO
0.29
0.36
0.28
0.29
0.34
0.37
NOX
0.79
0.58
0.73
0.84
0.54
0.62
Part.
0.096
0.044
0.099
0.092
0.043
0.044
Fuel Con sump.,
Diesel
7.22
5.00
7.25
7.18
5.03
4.98
Meth.
0
4.93
0
0
4.95
4.90
VlOO km
Diesel %
100,
69b
100
100
•u
69
69b
bBased on exhaust HC made up ot 86.6% and 13.4% H, by weight
Relative to runs with diesel fuel only
52
-------
The addition of the methanol increased hydrocarbons and decreased oxides of
nitrogen and particulates. The mixture supplied to the injection pump was
essentially half methanol and half diesel fuel. This mixture resulted in a
thirty percent decrease in the amount of diesel fuel consumed, based on the
measured fuel input ratio and fuel consumption calculated by carbon balance.
The next investigation was to determine the "maximum amount" of
methanol with the glow plugs left on continually. The glow plugs were found
to clear up minor roughness obtained with a five to ten percent increase in
methanol, over the previously discussed "maximum amount". Emissions were not
measured during this investigation.
4. Road Draft Evaluations
These evaluations involved modifications to the crankcase venti-
lation system. In the standard configuration, the crankcase fumes are vented
into the intake of the engine. Modifications evaluated included: venting
into the atmosphere, flowing through a carbon canister, and removal of the
crankcase ventilation filters from the system. These modifications are
described as follows:
Road Draft - The crankcase was vented into the atmosphere outside
of the test area, rather than into the intake of the engine.
Carbon Canister - A container filled with activated carbon was
installed into the vent tubing between the crankcase and the engine intake.
The portion of the container filled with 6 to 14 mesh activated coconut
charcoal was approximately 65 mm in diameter by 100 mm long.
Vent Filters Removed - Removal of the oil separating filters that
are located in the crankcase ventilation system above the valve cover.
The crankcase vent system design on the Oldsmobile is such that the vacuum
in the intake, although slight, could possibly draw fresh air into the crank-
case under some conditions. With the road draft configuration, the crankcase
always remains under slight pressure and no fresh air can enter. Results of
these evaluations are summarized in Table 19.
Except for the apparent small decrease in HC with the carbon
canister and the apparent small increase in the HC with the vent filters
removed, changes in emissions and fuel consumption were generally within
normally experienced repeatability.
53
-------
TABLE 19. RESULTS WITH ROAD DRAFT AND CARBON CANISTER IN CAR 62
1980 Oldsmobile Delta 88
EM-408 No. 2 Diesel Fuel
HC, g/km
CO, g/km
NOX, g/km
Part., g/km
Fuel, a/100 km
BL
Check,
F1-5&6
0.39
0.81
0.74
0.27
11.0
Road
Draft
51C1&2
0.39
0.79
0.81
0.29
11.1
Carbon
Canister
52C1
0.34
0.80
NDa
0.27
11.3
BL
Check
52-1
0.40
0.81
0.76
0.28
11.3
Crankcase
Vent Filters
Removed
0.43
0.78
0.78
0.29
11.2
Road Draft - Crankcase blowby exhausted out of test cell
Carbon Canister - Crankcase ventilation passed through activated
carbon
NOX value was guestionably low at 0.68 g/km
Since it is possible for significant changes in organic extractables
to occur, even with the negligible changes in total particulates, large filter
samples were extracted. The results, along with previous baseline results,
are summarized as follows:
Test
Road Draft 6252C1
Baseline 62TU-1
UDDS
Cycle
Cold
Hot
Composite
Composite
Filter Particulates, mg %
No . Total
-17 842
-18 652
734
683
Extract
172
157
163
160
Extract
20.4
24.0
22.2
23.5
As shown, there was no significant difference in percent or organic extrac-
tables with the baseline and the road draft configurations.
5. TRW Elastomer Rings
The standard piston rings were removed from the Oldsmobile engine
and were replaced with piston rings obtained from the Ramsey Corporation, a
54
-------
subsidiary of TRW, Incorporated. Installation required reworking the ring
groove for the lower compression ring. Tests were run after about 130 kilo-
meters of break-in, a distance considered to be more than adequate by a
representative of TRW.
The results of the evaluations with the TRW elastomer rings are
summarized as follows:
Emissions, g/km
Test Series
Average
6261CX
Description
Associated Baseline
TRW Rings
HC
0.36a
0.40
CO
0.8ia
0.82
NOX
0.74
0.71
Part.
0.27
0.28
Fuel,
Si/100 km
11.3
11.4
a
There were relatively large variations in the individual values
As shown, there were no readily noticeable changes in emissions with the TRW
elastomer rings.
The primary purpose of these rings is reported to be the elimina-
tion, or at least minimization, of blowby. Therefore, the effects could be
expected to be virtually equivalent to those obtained in the road draft
evaluations, where the crankcase blowby was exhausted into the atmosphere
rather than into the intake manifold. These results are summarized as
follows:
Emissions, g/km
Test Description
TRW Elastomer Rings
Road Draft
HC
0.40
0.39
CO
0.82
0.79
NOX
0.71
0.77
Part.
0.28
0.29
Fuel
a/100 km
11.4
11.3
The values for the TRW rings and the road draft evaluations were virtually
the same for all emissions, with the possible exception of NOX.
6. Corning Catalyzed Trap
A catalytic coating was applied to a Corning EX-47 (5.66 inches x
12.0 inches) substrate by Engelhard Industries (Order No. 80-099-05115, Unit H-
025504). This unit was installed into one of the containers fabricated by
Walker Manufacturing. The results of evaluations conducted with this unit
are summarized in Table 20.
Some differences were apparent in the trap baseline results relative
to the initial baseline. At the time, it was assumed that the disabling of
the EGR was associated with the increase in NOX and CO in the trap baseline
55
-------
TABLE 20. CORNING CATALYZED TRAP 1980 OLDSMOBILE DELTA 88
Exhaust
Test
62BL-X
62TU-X
—
6271C1
6271C2
6271C3
—
Regeneration Attempt
Partial Regeneration
Average with Trap
Reduction with Trap
Description
Initial Baseline
After Tune-Up B.L.
Trap Baseline
42 km
71 km
124 km
154 km
B.P. at 97
km/h , kPa
._
—
9
15
16
20
22
28
23
—
Emissions, g/km
HC
0.39
0.32
0.30
0.21
0.19
0.14
0.18
40%
CO
0.87
0.74
0.89
0.56
0.43
0.29
0.43
50%
NOX
0.75
0.75
0.87b
0.63
0.64
0.60
0.62
>15%
Part SO4
0.32
0.28
0.32
0.07 0.003
0.09
0.08 0.006
0.08 0.005
75%
Fuel
VlOO km
12.2
11.5
12.0
11.5
11.7
11.7
11.6
—
Factors for 64 and 80 km/h are 0.57 and 0.75
EGR disabled
-------
tests. Subsequent evaluations, however, indicated that a baseline shift had
possibly occurred at some point. The basic conclusions, however, are not
affected by any such baseline shift within the range of the baseline values
obtained.
As the testing of the trap progressed,.HC and CO emissions decreased;
whereas NOX, particulates, and fuel consumption remained essentially constant.
With the trap installed, relative to baseline values, NOX decreased slightly
and particulates decreased by greater than 75 percent.
Sulfate emissions, with the trap, were approximately three milli-
grams per kilometer. It should be noted, however, that all exterior surfaces
of the core were coated with the precious metal catalyst. Therefore, it is
conceivable that sulfate could form on the inlet side of the trap and be
retained by the trap.
This catalyzed Corning particulate trap was loaded up to an exhaust
backpressure of approximately 25 kPa (100 inches of water), and a regen-
eration was attempted. In previous conversations with various EPA and industry
personnel, the impression received was that the temperature required to
initiate regeneration would be lower with a catalyzed trap than with a non-
catalyzed trap. This influenced the approach taken toward regeneration.
Initially, without the trap installed, the intake to the engine
was throttled and the exhaust was visually observed. The exhaust was not
readily visible at 34 kPa of intake manifold vacuum and became visible at
37 kPa. Therefore, 34 kPa was taken to be the probable useful limit for
regeneration. At 34 kPa the maximum temperature attained was 455°C (850°F)
and light-off of the trapped particulate did not occur. A short excursion
to 40 kPa produced a maximum temperature near 540°C (1000°F), again without
light-off. The trap and catalyst manufacturers (Corning and Engelhard)
were contacted to discuss regeneration. In each case, they accepted the
apparent finding that catalyzing did not significantly lower the temperature
required to initiate regeneration.
In a second regeneration attempt, propane was added into the exhaust,
through a multi-hole probe, prior to the catalyzed trap. To maintain some
consistency with the method previously used to regenerate the non-catalyzed
trap in the Mercedes, throttling to 30 kPa at 96 km/h was used along with the
addition of propane. Carbon monoxide was measured continuously during this -
regeneration attempt. With the 30 kPa of throttling, the temperature after
the trap reached approximately 425°C. As propane was added, the trap temp-
erature increased until light-off of the trapped particulates occurred at
approximately 600°C. At this point (temperature stability had not been
reached when light-off occurred), and CO increased over an order of magnitude
and the temperature rapidly increased to greater than 800°C. The propane was
shut-off and the temperature began to decrease. A subsequent check at 96 km/h
showed that the exhaust backpressure has decreased from a pre-regeneration
value of about 28 kPa down to 22 kPa.
57
-------
Since complete regeneration of the trap had apparently not been
achieved, the process was repeated. The temperature was increased to over
660°C without achieving additional noticeable oxidation of the particulates.
The trap assembly was then removed and visually examined. The trap substrate
was uniformly dark gray on the entrance end and was uniformly light gray on
the exit end. Other than the dark coloration on the inlet end, there was no
build-up of particulates apparent.
7. Johnson Matthey Catalyzed Trap
A Johnson Matthey JM-13 catalyzed trap was evaluated on the 1980
Oldsmobile. This trap was received as a complete assembly from the supplier.
Application of this trap required only the installation of appropriate con-
nector flanges into the inlet and outlet of the trap.
The emissions and backpressure results, with the Johnson Matthey
trap, are summarized in Table 21. This trap produced average reductions of
55 percent for particulates and 70 percent for HC and CO. This trap did not
appear to have very significant effects on NOX and fuel consumption. The
exhaust backpressure and the change in backpressure with distance accumulation
were relatively low.
Regeneration was initiated at a trap inlet temperature as low as
400°C (750°F). The method used for these regenerations, however, was to run
the engine at full governed speed in neutral for 90 seconds. Based on the
exhaust backpressures after the regeneration, however, it appeard that com-
plete regeneration may not have been achieved. This trap, however, did not
reduce the particulate sufficiently for the vehicle to achieve the 0.124 g/km
(0.2 g/mi) level required by the standard for 1985. A representative of
Johnson Matthey stated that the 1980 Oldsmobile they had tested had lower
baseline emissions than the one we were using in this program. Even so,
however, he said that this trap should have reduced the particulate emissions
to values significantly below the standard. He indicated that this unit
appeared to be somewhat defective, and he agreed to provide a replacement unit.
In summary, this Johnson Matthey catalyzed trap produced relatively
large reductions of HC and CO and moderate reduction of particulates. Exhaust
backpressure produced by this trap was relatively low. In the evaluations
conducted, however, particulates were not reduced sufficiently to meet the
0.124 g/km level.
E. Evaluations with the Volkswagen Rabbit - Car 63
The 1980 Volkswagen Rabbit, with a naturally-aspirated diesel engine,
was primarily used to evaluate engine and fuel system modifications. These
modifications included: shutting off the engine at idle, a two-cylinder with
737 kg (1625 Ib) inertia weight configuration, and a fuel dual-dual injection
system. An additional evaluation involved the blending of methanol into the
baseline diesel fuel.
58
-------
TABLE 21. JOHNSON MATTHEY CATALYZED TRAP 1980 OLDSMOBILE DELTA 88
Exhaust
Ul
Test
62BL-X
62TU-X
6281-2
—
6281CL
—
6281C2
—
—
—
Reinsulation of Exhaust
—
6282C3
Average with Trap
Description
Initial Baseline
After Tune-Up B.L.
Trap Baseline
18 km
40 km
97 km
125 km
193 km
342 km
c
90 sec at Qov.
WOT Accel.
System
478 km
90 sec. at Gov.
507 km
B.P. at 97
km/h, kPa
—
9
12
13
13
13
13
15
15
136
15
14S
14
Emissions ,
HC CO
0.39 0.87 0
0.32 0.74 0
0.30 0.89 0
0.11 0.23 0
0.13 0.34 0
0.03 0.24 0
0.09 0.27 0
g/km
NOX Part
.75 0.32
.75 0.28
.87b 0.32
.75 0.14
.77 0.14
.81 0.13
.78 0.14
Fuel
£/100 ]
12.2
11.5
12.0
11.8
11.6
11.7
11.7
Reduction with Trap — 70% 70% — 55%
factors for 64 and 80 km/h are 0.52 and 0.73. Stabilized trap inlet temperature was about
225°C (490°F)
EGR system was disabled
°With the system hot, and the transmission in neutral, the accelerator was pushed to the floor
and held for 90 seconds
With the system hot, a high-load WOT acceleration in each gear was performed
eMaximum inlet temperature was approximately 400°C (750°F)
-------
1. Summary of the Results
Of the control configurations evaluated with the Volkswagen Rabbit,
only the dual fuel-dual injection system produced significant reduction in
particulates.
Shutting-off the engine at idle reduced particulate emissions and
fuel consumption by approximately five percent. The two-cylinder 740 kg
inertia weight configuration, as evaluated, resulted in higher particulates
and fuel consumption. With the dual-injection system, using methanol to
replace seventy percent of the baseline consumption of diesel fuel (in
£/100 km), particulate and NOX emissions were reduced by approximately
fifty percent. However, HC and CO emissions increased several hundred
percent, and fuel consumption, on the basis of heat content, increased
by more than ten percent.
2. Baseline Evaluations and Baseline Checks
Baseline evaluations were conducted before and after the tune-up
at 6500 kilometers (4000 miles), and baseline checks were conducted peri-
odically throughout the evaluations of the particulate control systems. The
odometer reading was below 6000 miles at the conclusion of these evaluations.
These baseline evaluations are summarized as follows:
Emissions, g/km Fuel
Baseline51 HC CO NOX Part £/100 km
After 6500 km 0.15 0.58 0.74 0.22 6.5
After Tune-up 0.17 0.54 0.74 0.22 6.5
63TU-4 0.20 0.55 0.81 0.24 6.3
Idle Shut-off 0.17 0.56 0.80 0.23 6.0
Two-Cylinder 0.15 0.55 0.74 0.21 6.1
Averageb 0.17 0.55 0.76 0.22 6.2
Each baseline consisted of one to three individual
tests
Excludes the values for the initial baseline after
6500 kilometers
A fourth test (63TU-4) was run, after tune-up, due to a significant
decrease in fuel consumption in the third test. The fuel consumption in the
fourth test was in agreement with that in the third test. Fuel consumption
in subsequent tests decreased by an additional amount. Therefore, it appears
that a baseline shift of about six percent in fuel consumption did occur.
60
-------
3. Engine Shut-Off at Idle
This evaluation involved shutting-of f the engine as the engine speed
approached idle, during the FTP evaluations, and restarting the engine about
two seconds prior to the next acceleration. For this evaluation, the shutting-
of f and restarting was performed manually by the driver. Results of this
evaluation are summarized in Table 22. As illustrated by the data in Table 22,
the measured particulate and fuel consumption decreases appear to be in
agreement with projections based on time in mode at about five percent.
With HC and CO there was no apparent change, whereas the projection was an
eight percent decrease. NOX appeared to decrease by more than ten percent,
whereas the projection was a six percent decrease. It should be noted that
two tests do not constitute a statistically significant sample. Even so,
however, it appears applicable to conclude that reduction in particulates,
with idle shut-off, was relatively small.
TABLE 22. RESULTS OF IDLE SHUT-OFF WITH VW RABBIT
Idle Change, %
Shut-Off Baseline Measured Projected
0.17 N.A.C.C -8
0.56 N.A.C. -8
0.80 -14 -6
0.23 -4 -5
6.0 -5 -5
.Average of two repeatable evaluations
Projection based on modal data from Final Report
EPA-460/3-79-008
Q
N.A.C. designated No Apparent Change
NOX in the baseline checks was 8 percent higher than
in the averages of the before and after tune-up
baseline at 6500 kilometers
4. Two-Cylinder with Reduced Inertia Weight
The engine in the VW Rabbit was converted to a configuration having
only two operable cylinders. This was accomplished by removing the injectors
and deactivating the valves on two of the cylinders. The two injectors were
removed from the cylinders and were replaced with dummy injectors. The in-
jectors removed were allowed to inject into pieces of tubing from which the
injected fuel ran into a collection can. The valves on two of the cylinders
were deactivated by grinding the corresponding lobes off the camshaft. The
pistons in the two deactivated cylinders were not removed or modified.
61
HC , g/km
CO , g/km
NOX g/km
Part. , g/km
Fuel, a/100 km
0.17
0.56
0.68
0.22
5.7
-------
Firing order on the engine was 1-3-4-2, and cylniders 2 and 3 were
deactivated. This resulted in having one power stroke for each revolution
of the engine. The pistons were left in the deactivated cylinders to main-
tain dynamic balance. It should be noted, however, that this results in
retaining mechanical friction from the pistons operating in the two non-
firing cylinders.
Choices of inertia settings around 771 kg (1700 Ibs) were 737 and
794 kg. The 737 inertia was selected due to the difficulty experienced in
following the driving cycle with this two-cylinder configuration. Using
several assumptions, it was estimated that operating this engine on two
cylinders with 737 kg inertia is about the equivalent of operating the
engine on four cylinders with 1814 kg (4000 Ibs) inertia. With the addi-
tional friction of the two non-power producing pistons, the equivalency
would probably still be greater than 1633 kg (3600 Ibs) inertia.
The dynamometer power setting used was 3.7 kW (4.9 hp). This was
based on a ratio of 0.0048 kW per kg of inertia (0.0029 hp per pound), a
value found applicable to the VW and the Oldsmobile cars used in this project.
By remaining in each gear until the maximum safe engine speed was
reached, the FTP driving trace could essentially be followed, except for the
one high speed acceleration to 90 km/h. This, however, required operating
the engine at greatly different speeds than were required in the baseline
configuration. The shift points used were as follows:
Shift Out
of Gear
1
2
3
4
Car Speed, km/h
4-cyl. 2-cyl.
15 24
25 44
40 N.A.a
Final Gear —
Could not accelerate in 4th gear
The results of the two-cylinder evaluations were as follows:
Dist. at
Emissions, g/km Fuel 505 sec.
VlOO km km
6.0 5.7
7.3 5.4a
8.5 5.4a
Deviation from the baseline value was due to the inability to follow
driving trace above 50 mph
Test voided due to dynamometer brake malfunction. Test has been reported
to show effect of the increased load on emissions and fuel consumption
62
Configuration
Baseline Avg.
Two Cyl. Avg.
Two Cyl. Malf.b
HC CO NOX Part.
0.15 0.54 0.74 0.22
0.27 0.91 0.81 0.28
0.38 1.11 0.92 0.42
-------
The two-cylinder configuration resulted in increases in all emissions and
fuel consumption. This increase in probably related, at least in part, to
this significant amount of time at which the engine had to be operated at
maximum speed and load when in the two-cylinder configuration. As pre-
viously stated, the overall relationship of this system was estimated to
be equivalent to a 1814 kg (4000 Ib) inertia car with a four-cylinder engine.
In converting a four-cylinder engine to a lesser number of oper-
ating cylinders, there are several factors that should be taken into con-
sideration:
• There are two ways to simulate a two-cylinder engine with a
four-cylinder engine when the firing order is 1-3-4-2
Method 1 - Fire cylinders 1 and 4,.or 3 and 2
Method 2 - Fire cylinders 1 and 3, 3 and 4,
4 and 2, or 2 and 1
In either case, there is at least one compression stroke
occurring without an associated power stroke. One of the
methods could require balance weights (and possibly a larger
flywheel) and the other could require a significantly larger
flywheel. The power losses in the water pump, injection pump,
and drive system, and the losses due to the weight of the
vehicle on the dynamometer, will remain essentially constant.
Therefore, a two-cylinder modification will not necessarily
be fully representative of a well designed two-cylinder
automobile.
• Dynamometer horsepower setting is primarily a function of
vehicle frontal area. Horsepower setting should either be
based on the selected frontal area or on the horsepower
requirements with existing minicars.
• if the performance of the simulated car is to be equivalent
to that of the 1981 VW Rabbit, the inertia weight setting will
probably have to be 1000 pounds or less (0.5 x 90/70 x 2375 x 0.9).
• Performance characteristics could also be modified by changes
in transmission or axle ratios.
5. Dual Fuel-Dual Injection
This system consisted of the standard Bosch diesel injection system,
and an auxiliary injection system for methanol. For this auxiliary system,
the methanol injectors were mounted in the glow plug holes. A Lucas CAV
Minimec, four-plunger in-line pump (Model P5178/4E) was used as the methanol
pump. This pump is used in England on Ford York light-duty swirl chamber
63
-------
engines and has an injection advance curve almost identical to that of the
stock Bosch diesel pump. The injection rate (over 2.5 times that of the
Bosch pump) and the duration of this Lucas pump was consistent with the
expected requirements for using methanol in a swirl chamber engine.
This Lucas pump had a separate oil gallery for lubrication of all
moving parts, except for the plunger. With the concurrence of Lucas, straight
methanol (without any added lubricants) was used. No problems occurred with
this injection pump due to operating on straight methanol.
Selection of methanol injectors was primarily controlled by the
constraints of the space available. Stanadyne (Roosa Master) external-
opening poppet valve injectors with a 90° fuel inlet were selected. These
nozzles were designed by Stanadyne for use in swirl chamber engines. Pres-
sure transducers were installed in the diesel and methanol injection lines
to assist in tuning of the system. Photographs of the nozzles installed in
the cylinder head and of the entire system installed in the car are shown in
Figure 2.
In the dual fuel mode, the diesel pump is set at the rate
required for a slightly higher than specified idle speed. Only a minimal
quantity of methanol is injected at idle. The throttle is connected to the
methanol pump, so vehicle operation is controlled by the rate of methanol
injection. The rate of diesel fuel injected per stroke is reduced somewhat
by the Bosch pump governor as the engine speed increases.
For good acceleration from low engine speeds, an idle fuel setting
resulting in 1000 to 1100 rpm was required. For all other operating con-
ditions, a lower diesel fuel injection rate was found to produce acceptable
performance. Best performance was obtained with standard diesel injection
timing and with the injection of the methanol at idle occurring 14 crank
angle degrees after the diesel.
Since the glow plugs were removed to accommodate this modification,
cold-start evaluations were inappropriate. After several minutes of warm-up,
however, the car in the dual-fuel mode had good acceleration and driveability,
produced no visible emissions, and could readily follow the FTP driving cycle.
Performance, in fact, was subjectively equivalent to operation on diesel fuel.
This system, however, was not problem-free. During the initial
hot-start emissions test, the performance dropped off and the hydrocarbon
emissions peaked-out offscale. The problem was traced to failure of the
diesel injection pump. Failure of the pump was primarily attributed to the
increased side load on the pump pulley resulting from the increase in power
to drive the methanol pump. This factor is abstruse and was not foreseen
in the initial layout of the dual-injection system. It did not become
apparent until a careful analysis was made of the pump failure.
64
-------
Belt-Driven Alcohol Injection Pump Mounted
on the Vehicle
Modified VW Rabbit Diesel Head with Alcohol Nozzle and
Cylinder Pressure Transducer Installed
Figure 2. Dual-fuel modification of Volkswagen Rabbit Diesel
65
-------
The diesel injection pump was replaced, and pulley adapters were
fabricated to drive the methanol injection pump directly from the engine
crankshaft. With the new diesel injection pump installed, HC and NOX emis-
sions increased about 50 percent and fuel consumption remained the same,
relative to the previous baseline values. A representative from Bosch
verified that the replacement pump was the correct model. He stated that
pumps installed at the factory are identified by an "005", whereas replace-
ment pumps are identified by an "007" and a "P" (the "P" designated that
special preservatives have been applied to increase shelf life). He further
stated that the pumps with an "005" and an "007" are identical in every
aspect. Several additional checks failed to uncover any specific cause
for this shift in emissions. Therefore, a new baseline was established
and the dual-fuel emissions evaluations were resumed.
Results of representative emissions tests over the UDDS cycle
(505 plus 867 of the FTP), with the engine warmed-up, are given in Table 23.
In dual-fuel operation, HC and CO emissions and fuel consumption increased,
and NOX and particulates decreased. Directionally, these results are as
expected, although some increases were greater and some decreased were
somewhat less than desired. Considering the required system compromises
and the limited amount of system optimization allotted to this task, the
results are considered to be quire promising. With dual-fuel operation,
the amount of diesel fuel used was reduced by 70 percent.
The two areas of primary concern are HC and fuel consumption, and
these will be discussed in some detail. Generally, the other emissions were
in apparent good agreement with other data; such as that obtained with a
Volvo TD-100C, evaluated in another project.(6) Results with the Volvo for
two 13-mode tests (01-03 and 06-01) were as follows:
_HC CO NOX Part. Fuel
Dual Fuel/Diesel 140% 310% 45% 45% 104%*
*105% when adjusted for differences in maximum power
It should be noted that the Volvo had undergone an order of magnitude more
development and optimization toward operation over the respective test
procedure and that the 13-mode and FTP tests are not directly comparable.
With these qualifications, it appears that the results for the two different
engines were similar.
Reductions in HC and fuel consumption would be expected by the
following modifications to the VW Rabbit:
• Optimization of the methanol injection location and direction
• Optimization of the diesel pilot injection system
• Optimization of injection timing and duration over the speed
and load range of the engine
• Optimization of the compression ratio
66
-------
TABLE 23. HOT-START RESULTS WITH DUAL FUEL-DUAL INJECTION VW RABBIT
Grams
Fuel, grams
Portion of
FTP Cycle
505
768
UDDS
505
867
UDDS
D+M/D
D/D Baseline
Emissions
Fuel
D
D
D
D+M
D+M
D+M
HC
0.22
0.23
0.22
0.81
0.96
0.89
400%
125-140%
CO
0.60
0.65
0.63
2.30
2.03
2.16
340%
80-95%
, g/km
NOX
0.81
0.85
0.83
0.30
0.42
0.37
45%
90-95%
Part.
0.15
0.15
0.15
0.10
0.08
0.09
60%
65-70%
CO?
904
1051
1955
963
1101
2064
—
—
Total C
as CO2
913
1062
1975
999
1139
2138
114%b
96-100%
Diesel
298
346
644
86
104
190
30%
96-100%
Meth.
0
0
0
599
649
1248
—
—
Equiv.
Diesel
298
346
644
357
397
754
117%
—
Total C from HC, CO and CO2
Adjusted for total BTU content of the hydrocarbon portion of the fuel for the diesel
plus methanol evaluations (1.054 Factor)
c
Values in current test with diesel compared to range of values in the baseline tests
-------
Other possibilities are:
• Effect of a glow plug on warmed-up operation
• Design of the prechamber
Some of the above could also affect particulate emissions. The level of
effort allotted to these dual-fuel evaluations, however, did not allow for
extensive optimization.
Some of the known contributors to the increase in fuel consumption,
over the UDDS cycle, are as follows (values are approximations):
• Increase in diesel flow rate at idle 2.5%
• Higher HC and CO emissions 2.5%
• Power to drive methanol injection pump 2.5%
Total from sources listed above 7.5%
The increase in heat input with dual-fuel operation was about 15 percent, and
approximately half of that can be accounted for by the three contributions
listed.
Characteristics of the system, the installation, the adjustments
made, and the test results are briefly resummarized as follows:
• Glow plugs were removed and alcohol injectors were installed
in their place
• Start of injection was set to provide best compromise over
speed and load range
• Maximum alcohol injection rate was set to give an acceleration
rate equivalent to that obtained with diesel between 48 and 97
km/h (30 to 60 mph).
• A constant diesel pilot injection pump setting was utilized.
With dual-fuel (diesel pilot and methanol primary), relative
to diesel only, HC and CO emissions and total fuel consumption
increased, and NOX and particulate emissions decreased. Con-
sumption of diesel fuel decreased by 70 percent.
6. Diesel-Methanol Blend
A determination of the maximum percentage of methanol that can be
utilized, and still produce satisfactory operation at a steady-state condition,
was conducted with the VW Rabbit. Above this "maximum amount," engine roughness
became noticeable. The methanol was introduced into the fuel supply line at
the entrance to the injection pump assembly. The results with and without
the addition of methanol were as follows:
68
-------
Values at 64 km/hr (40 mph)
Emissions, g/km
Fuel
Diesel Fuel
Diesel & Methanol
HC
0.07
0.24
CO
0.26
0.52
NOX
0.40
0.44
Part
0.10
0.15
Fuel Consumption, A/100 km
Diesel Meth. Die.%
4.17
3.71
0
1.07
100
89*
*Relative to initial run with diesel fuel only
Addition of 1.07 A/100 km of methanol decreased the consumption of
diesel fuel by 0.46 A/100 km/ This amounts to an 11 percent reduction in
diesel fuel by addition of the "maximum amount" of methane!, without readily
apparent engine roughness. Assuming lower heating values of 44.2 kJ/g
(19,000 Btu/lb) for the diesel fuel and 20.0 kJ/g (8,600 Btu/lb) for methanol,
there was only a few percent difference in total energy input per kilometer
between the two fuels. HC, CO, and particulate emissions increased with the
addition of the methanol.
F. Water Injection in a 1981 Mercedes - Car 64
A 1981 model Mercedes-Benz 300SD, with experimental EGR and water
injection systems, was obtained from Mercedes-Benz. In this car, the water
is injected into the intake prior to the turbocharger, at flow rates
scheduled by an electronic control unit. An adjustable control on the
electronic unit enabled changing the rate of water injection.
Initially, the car was evaluated as received, without the water injection,
to verify that no significant changes occurred during shipment. The results
of these evaluations are summarized as follows:
Data
Source
Mercedes
SwRI
SwRI/Mer.
Mercedes
SwRI
SwRI/Mer.
Emissions, g/km
Test
FTP
FTP
HFET
HFET
HC
0.16
0.23
145%
0.11
0.13
120%
CO
0.70
0.63
90%
0.73
0.47
65%
NOX
0.62
0.65
105%
0.42
0.40
95%
Part.
0.19
0.23
120%
Fuel
A/100 km
9.4
9.7
103%
8.1
8.1
100%
As shown, the NO and fuel consumption values agreed within plus or minus
five percent between the two laboratories. The CO was somewhat lower, and
the HC and particulates were higher in the results obtained by SwRI.
69
-------
The results with water injection, at a rate of 60 to 70 percent of the
fuel flow, are shown as a percentage of the baseline values in Table 24.
TABLE 24. EFFECT OF WATER INJECTION ON EMISSIONS
Data Water Injection/Baseline, percent
Source Test
HC
92
93
87
92
CO
107
135
71
123
NOx
71
76
83
80
Part
113
108
Fuel
100
104
100
107
Mercedes FTP
SwRI FTP
Mercedes HFET
SwRI HFET
With water injection, the reduction in HC and NOX and the increase in parti-
culates were consistent between the results obtained by Mercedes and SwRI.
The CO emissions and fuel consumption increased with water injection at SwRI
and remained essentially the same or decreased at Mercedes. It should be
noted that these fuel consumption increases at SwRI are based on the results
of one test for the HFET and two for the FTP.
In these evaluations with this water injection system, particulates
increased approximately ten percent, and the hydrocarbons decreased by an
equivalent amount. The relatively samll changes in carbon monoxide and fuel
consumption are not considered to be of any major significance. Oxides of
nitrogen were reduced by 20 to 30 percent with water injection.
A series of hot-start evaluations were then conducted to determine
whether the water setting used was optimum, and to determine the effect of
water injection on fuel consumption. The actual water flow rates were not
essential to optimization and were not determined. Results of these hot-
start emissions tests, over one UDDS, are summarized in Table 25.
Based on the data in Table 25, the optimum water flow setting was
somewhere between 2.5 and 7.5 on the control knob. Also, a 2.5 to 5.0
setting produced emissions which were similar to those obtained with the
control set on "automatic." Therefore, the water flow rate with the control
set on "automatic" appears to be a good compromise between water flow rate
and reduction of NOX emissions. At the 2.5 and 5.0 settings, the average
reduction in NOX were 25 and 30 percent. These values are within the range
of the reductions obtained with the control set on "automatic" in the hot-
strat and cold-start evaluations. In the hot-start tests at the 5.0 setting,
HC increased by about 30 percent and CO by about 20 percent. In the previous
cold-start tests, there were no significant changed in HC. Based on the
results of this series of hot-start tests, water injection did not have any
significant effect on fuel consumption.
70
-------
TABLE 25. HOT-START UDDS WATER INJECTION EVALUATIONS
Test
No.
6440H1
6449H1
Water
Setting3
Autom.
Autom.
Emissions, g/km
EC
0.17
0.17
CO
0.70
0.64
Fuel,
a/100 km
9.25
9.33
NOX as %
of "Off"
Value
70
75
64HO-1
64H1C1
64H3C1
64H5C1
64H7C1
64H9C1
Off
0
2.5
5
7.5
10
0.14
0.14
0.17
0.19
0.19
0.18
0.60
0.55
0.64
0.70
0.73
0.71
0.64
0.63
0.50
0.45
0.42
0.44
9.09
9.13
9.18
8.95
9.00
9.28
100
75
70
65
65
64H5C2
64HO-2
5
Off
0.17
0.13
0.66
0.57
0.47
0.68
9.12
9.18
70
644XH2
25%*
0.15
0.65
0.56
85
a Setting based on control knob fully counter clockwise at 0 (no water) and
fully clockwise at 10.
k Water flow rate by volume as a percentage of the fuel flow rate.
At a composite water flow rate of about 25 percent of the fuel flow
rate, NOX was reduced 10 to 15 percent. This data point further verifies
that a substantial water flow rate is reguired to obtain a substantial
reduction in NOX emissions.
Not shown directly by these data is that the measured reduction in cal-
culated NOX emissions at high water flow rate is significantly affected by
the humidity within the dynamometer test cell. If water injection becomes
a viable method for controlling NOX emissions in diesel cars, the question
of appropriate humidity correction factors should be evaluated. This
subject is discussed in Appendix A-2.
Filters were extracted from tests with and without water injection (in
automatic mode), to. determine whether water injection affected the amount of
organic extractables. The results are summarized as follows:
6441-2
6441C2
Water
Inj ection
No
Yes
Particulates
g/km
0.226
0.241
Organics,
Percent*
9.3
9.5
*Based on the extraction of 500 mm by 500 mm
Pallflex filters
71
-------
With water injection, the percent of organic extractables was essentially
the same as without water injection. The amount of extractable organics
increased in essentially direct proportion to the increase in total parti-
culates. Therefore, it appears that a nominal 25 to 30 percent reduction
on NOX was attained, using water injection, with a nominal ten percent
increase in total and organic particulates.
G. Organic Extractables
A primary interest in this study was reduction of the amount of organic
extractables. The organic extractable portion of the particulate produces
a positive response in Ames evaluations.
Results of all data from organic extractions conducted in this project
(including those from the following section on trap durability) are summarized
in this section. All data presented are from extractions of 500 mm by 500 mm
(20 inch by 20 inch) Pallflex filters using methylene chloride as the solvent.
A milligram per kilometer value has been calculated using the particulate
rate derived from 47 mm Pallflex filters along with the fraction of extrac-
tables derived from the 500 mm Pallflex filters.
The results of the organic extraction data are given in Table 26. The
cars are identified as follows:
Car Year and Description
61 1980 Mercedes-Benz 300SD
62 1980 Oldsmobile Delta 88
63 1980 Volkswagen Rabbit
64 1981 Mercedes-Benz 300SD
65 1981 Datsun Maxima
To facilitate review, these data have been reformatted, and the results are
given in Table 27. There are two findings of primary interest derived from
these data.
One finding is that the percent of extractable organics with the two
Mercedes 300SD cars was only about one-third that of the other three cars
evaluated. The Mercedes in the baseline configuration emitted organic
extractables at a rate similar to those of two of the other cars with parti-
culate traps.
Another finding was that there did not appear to be any relationship
between the efficiency of a trap for removal of total particulate and for
removal of organic extractables. In fact, it appears that all of the traps
evaluated had similar efficiencies for reduction of organic extractables.
Catalytic treatment appeared to have no effect on organic extractables.
Metal mesh trapping media, however, did appear to be somewaht more effective
than the ceramic substrates for reducing organic extractables. This finding
has a number of potentially significant implications, and could be worthy
of additional evaluation.
72
-------
TABLE 26. SUMMARY OF ORGANIC EXTRACTION DATA
Particulates, mg/km Percent
Car Configuration Total Org. Ext.a O.E.a
61 Baseline 220 18 8
Corning Trap 40 8 20
Texaco Trap 70 4 5
W.R. Grace-Non Cat. 130 10 8
Durability w/o Trap 270 17 6
Durability-Corning Trap 27 4 14
62 Baseline 280 65 24
Corning Cat. Trap 80 17 21
Johnson Matthey Trap 140 11 8
63 Baseline 220 65 29
64 Baseline 230 21 9
Water Injection 240 22 9
65 Baseline 160 45 28
NGK Trap 40 12 30
Organic Extract
TABLE 27. REGROUPED ORGANIC EXTRACTION DATA
Particulates, mg/km Percent
Car Configuration Total Org. Ext.a O.E.a
61 Baseline 220 18 8
62 Baseline 280 65 24
63 Baseline 220 65 29
64 Baseline 230 21 9
65 Baseline 160 45 28
Percent Removal
Configuration Total Org. Ext.
Corning Trap-Initial 80 55
Corning Trap-Durability 90 75
NGK Trap 75 75
Texaco 70 80
Corning Catalyzed Trap 70 75
Johnson Matthey Trap 50 85
W.R. Grace-Non Cat. 40 75
a
Organic Extract
Percent reduction relative to respective baseline value
73
-------
VI. SYSTEM OPTIMIZATION AND DURABILITY TESTING
Particulate traps were selected to undergo durability evaluations.
System "optimization" involved only those "preparations" necessary to enable
conducting durability evaluations of the particulate traps. The durability
testing involved distance accumulation on the road, with the trap mounted
on a vehicle. All regenerations were conducted in the laboratory with the
vehicle operating on a chassis dynamometer.
A total of four different particulates traps were considered for eval-
uation in this project task. Included were two metal mesh traps, a Johnson
Matthey catalyzed and a Texaco noncatalyzed; and two noncatlyzed ceramic
substrates, a Corning and a NGK. Examples of diesel particulate traps
evaluated are shown in Figure 3.
A. Durability Criteria and Preparation
The durability goal was 80,000 kilometers (50,000 miles) of distance
accumulation with the particulate trap mounted on a vehicle. Distance
accumulation was to be accomplished in operation on the rpad. The regen-
erations could either be performed on the road or in the laboratory, as
appropriate.
The purpose of the durability evaluation was primarily to determine
if traps could remain effective over 80,000 kilometers of operation. It
was recognized early that development of an automatic, road-worthy regen-
eration system was beyond the scope of this project. Therefore, no attempt
was made to regenerate the traps during operation on the road.
Regenerations, however, were to be performed with the trap remaining
on the vehicle. Also, a regeneration method that was self-contained on
the vehicle was preferred to methods requiring external inputs for obtaining
the trap temperature needed for regeneration.
Preparation of the ceramic traps for durability initially involved
assembly of the trap substrate into the container. A minimum of one con-
tinuous layer of 3M Interam Heat Expandable Ceramic insulation (Part No.
WZ7311, 1050 g/m2, BT 212, Lot No. 9001, Roll No. 8) was wrapped around the
ceramic substrate prior to installation into the container. The criteria
used was a tight fit that barely allowed insertion of the substrate into
the container using a moderate force applied by hand. A gasket material
obtained from Walker Manufacturing Company, consisting of woven wire sur-
rounded by heat resisting fibers, was used to seal and cushion the entrance
and exit of the substrate in the container.- The preload in these end gaskets,
upon closure of the container, was controlled such that total collapse of
these gaskets was nearly attained. This resulted in the substrate being
securely held in place with no appreciable radial or axial preload. All
metal mesh particulate traps evaluated were received at this laboratory as
complete assemblies.
75
-------
Ceramic Trap Substrate and Container
Texaco Particulate Trap
Trap Container After 80,000 Kilometers
Figure 3. Examples of diesel particulate traps
76
-------
The outside of the trap container was then insulated with two layers of
a ceramic fiber insulation (WRP-A-AQ FELT made by Refactory Products Company)
and protected by a thin sheet metal covering. The exhaust pipe from the
engine to the trap was also insulated. The traps were mounted under the
front floorboard of the vehicles. After mounting the trap in the exhaust
system on the vehicle, supports and a protective shield under the trap were
fabricated, as appropriate. Minimum road clearance of the cars was generally
reduced with a trap installed.
Following installation of the trap, efforts were expended toward
developing a method for satisfactory regeneration. Based on the previous
experience in the particulate emission control task of this project,
throttling of the intake air was the method of choice. With the two
systems that completed a significant amount of distance accumulation in
this durability testing task, throttling of the intake air provided satis-
factory regeneration.
B. Johnson Matthey Particulate Trap
A decision was reached to initiate durability evaluation of a Johnson
Matthey catalyzed metal mesh trap on the 1980 Oldsmobile Delta 88 diesel.
The trap evaluated in the particulate emission control task was modified by
Johnson Matthey to increase trapping efficiency. The EGR system on the
Oldsmobile was to remain operable for this durability evaluation.
The Johnson Matthey trap utilized radial flow of the exhaust through
the catalyzed metal mesh filter. A relatively small amount of alumina was
reportedly used.
The replacement trap was received from Johnson Matthey, and the results
of the initial (zero distance) baseline test on the Oldsmobile, with and
without the trap installed, are summarized as follows:
Emissions, g/km Fuel
Condition HC CO NOX Part. £/100 km
Without Trap 0.25 0.74 0.90 0.265 11.65
0.24 0.71 0.85 0.304 11.56
0.25 0.73 0.88 0.28 11.6
With J-M Trap 0.05 0.20 0.80 0.106 11.68
0.06 0.19 0.75 0.113 11.72
0.06 0.20 0.78 0.11 11.7
Particulate emissions with this particulate trap were lower than with the
previous unit, and were below the level of the 0.124 g/km standard. Other
emissions and fuel consumption, both with and without the trap, are in
agreement with results previously obtained.
77
-------
Difficulties were experienced in the regeneration attempts with this
trap. Initial regeneration attempts utilized the 90-seconds-at-WOT-in-
neutral method that was recommended by the representative from Johnson
Matthey. The loading of the trap and the regeneration attempts are de-
scribed as follows:
Condition
Without Trap
Initial with Trap
After First Rest
After Final Test
190 km on Road
3 min WOT in neutral
90 km on Road
6 min WOT in neutral
90 km on Road
Distance
On trap,
km
0
55
250
450
465
575
575
685
Exhaust
Backpressure
at 64 km/hr, kPa
Before After
Regen. Regen.
7
8
10
17 15
15 12
20
20 12
24 N.A.
Regeneration
Temperatures, °C
Inlet
Outlet
420
480
415
500
530 560
"See Text"
As illustrated by these data, good regenerations were not obtained.
Effort was directed toward achieving good regeneration. At first, the
trap temperature was increased by maintaining the WOT in neutral for six
minutes, rather than three minutes. It should be pointed out that the temp-
erature halfway down the outside of the cylindrical substrate was consistently
about 50°C lower than the temperature at the trap inlet. After complete re-
generation was not achieved by extending the WOT in neutral, the two methods
previously recommended by the representative from Johnson Matthey were com-
bined in an attempt to achieve the temperatures necessary for complete
regeneration. The procedure used was: run at WOT in neutral for 4 minutes
to get the trap warmed-up, put transmission into drive and WOT accelerate
to highway speed, and then repeat if temperature traces indicated that a
good regeneration had not been acheived. Immediately after backing off
from the WOT acceleration, however, a catastrophic temperature rise occurred
within the trap. The trap outlet temperature exceeded the 1000°C fullscale
temperature on the.recorder, resulting in significant meltdown of the trapping
material and "burning" a hold through the trap container.
The Johnson Matthey trap damaged during the attempted regeneration was
returned to Johnson Matthey. The representative from Johnson Matthey indi-
cated that the damage experienced was the most severe he had seen. He
stated that the use of an air pump, to provide additional air at conditions
above about two-thirds of maximum throttle, should eliminate the recurrence
of the situation we had experienced. He also stated that the trapped parti-
culate become harder to ignite after unsuccessful regeneration attempts and
that, when ignited, the rate of combustion tends to be more rapid.
78
-------
Prior to the time a replacement trap could be provided, Johnson Matthey
was well along on a durability demonstration of their own, involving a
Johnson Matthey trap on a Volkswagen Rabbit. Based on the several factors
involved, it was decided not to duplicate such a durability demonstration.
C. Texaco Particulate Trap
The Texaco noncatalyzed, alumina-coated, metal mesh particulate trap
was considered as a candidate for durability evaluation. The available
Texaco trap was returned to Texaco for replacement of the metal mesh filter
and structural strengthening modifications, since the original configuration
(EO 1&2) was prone to structural failure after repeated temperature cycling.
Durability testing of the Texaco trap (£A 31&32) on the Oldsmobile
was attempted. The primary expected difficulty in the use of the Oldsmobile
for evaluating the Texaco trap, was attaining the temperatures necessary for
regeneration. Preparatory effort involved the development of a method for
regeneration and a determination of whether a muffler was needed when the
Texaco trap was used.
In sound level determinations, made with the standard exhaust system
and with the trap installed and muffler removed, it was found that the Texaco
trap provided adequate sound attenuation. The determinations was made two
ways: using a sound meter, and subjectively. Conditions evaluated were idle,
acceleration, and 64 km/h steady-state operation on the road. These evaluations
were conducted from inside the car and from the side of the road. In all cases,
the sound levels with the trap were equal to, or slightly lower than, the sound
levels with the standard muffler. Therefore, the muffler was removed when
this trap was used.
Texaco provided some data on temperature and oxygen level requirements
for good regeneration. In addition, they recommended use of the same regen-
eration method utilized at Texaco. That method involved removing the trap
from the car (or providing an exhaust by-pass switching system) and regen-
erating the trap in exhaust which is heated by the catalytic oxidation of
propane fuel added to the exhaust. This regeneration method was not used
because of time and cost and because it deviated from the self-contained,
on-the-vehicle concept of regeneration that was desired.
Readily obtainable operating parameters were evaluated, without the
trap installed, in an effort toward development of a suitable regeneration
method. The wide-open-throttle-in-neutral method was investigated, with
and without throttling of the intake air. With intake throttling, the
required temperature and oxygen concentrations could be achieved, but the
resulting surging of the engine, at the governed engine speed, produced
excessive amounts of black smoke in the exhaust.
The next method evaluated was operation on the chassis dynamometer with
various combinations of transmission gear, dynamometer loading, and intake
79
-------
throttling. It was found that the best overall condition was a combination
of low gear, maximum dynamometer horsepower at 56 km/h (35 mph), and
throttling as needed to get the required temperature. Exhaust with a tem-
perature of 650°C and about five percent oxygen, and with no readily visible
exhaust emissions, could readily and repeatedly be attained. This method
was found to be effective for regeneration of the Texaco trap on the
Oldsmobile.
This regeneration method involved operation of the 1980 Oldsmobile at
56 km/h (35 mph) in low gear with a dynamometer power setting of 32 kilowatts
(45 horsepower), and with intake throttling as required to increase the
exhaust temperature to greater than 600°C with exhaust oxygen greater than
3.5 percent. After "light-off" of the collected particulate, the trap exit
temperature increased significantly and the exhaust oxygen content decreased
to a very low value. This limitation of available oxygen appears to be the
controlling factor in the rate of regeneration. In the several regenerations
conducted, the maximum exhaust temperature at the exit of the trap was
approximately 800°C.
The zero distance, baseline emissions testing was then initiated with
the Texaco trap on the Oldsmobile. During the emissions testing with the
trap installed, however, it was determined that the trap was leaking exhaust
at the sealing surfaces of the assembly flanges. This same situation occured
in the previous evaluations with the initial Texaco trap assembly. The solu-
tion at that time was to disassemble the flanges, install gaskets, and replace
many of the assembly bolts. These traps came with metal-to-metal contact at
these flanges. The methods again applied to resolve these leaks were to
assure that the surfaces were flat, install gaskets, and use high-strength
bolts.
The EGR system on the car was left in operable condition throughout the
evaluations of this trap. This was expected to increase the rate of parti-
culate build-up on the trap, due to a probable increase in particulate output
of the engine as the trap loads with particulate. As the trap loads with
particulate, the exhaust backpressure increases. The EGR rate increases as
the exhaust backpressure increases, and higher EGR rates can produce higher
particulate rates.
Zero distance, baseline emissions testing, with and without the Texaco
trap on the Oldsmobile, are summarized on the following page.
With Test 6200T2, the particulates increased and there was a question
relative to fuel consumption. Therefore, Test T3 was run, and the particu-
late increased even more. Between Tests T3 and T4, some hot-start evalu-
ations were conducted, and the trap was regenerated. The cause for the
shift in fuel consumption could not be determined.
80
-------
Emissions, g/km Fuel,
Condition Test HC CO NOX Part. £/100 km
Without Trap
Texaco Trap
6200-1
6200-2
0.23
0.22
0.23
0.80
0.77
0.79
0.90
0.97
0.94
0.332
0.339
0.34
6200T1
6200T2
6200T3
6200T4
0.08
0.13
0.12
0.10
0.11
0.77
0.86
0.99
0.92
0.89
0.69
0.63
0.65
0.66
0.66
0.112
0.153
0.242
0.133a
—
(10.9)
(10.9)
12.4
11.8
—
Immediately after a regeneration
The results of a series of hot-start tests over one UDDS (Bag 2 and
Bag 3) are summarized and compared with prior and subsequent cold-start
tests as follows:
Test Emissions, g/km Fuel,
Condition Series HC CO NOX Part. £/100 km
Cold Start T3 — 0.12 0.99 0.65 0.242
After Test T3 62HS-1 0.12 0.96 0.64 0.270 11.6
After Regen. 62HS-2 0.09 0.82 0.65 0.135 11.7
Cold Start T4 — 0.11 0.92 0.66 0.133
W/0 EGR 62HS-3 0.08 0.65 0.84 0.093 11.2
These results, along with the previously summarized cold-start results,
clearly indicate that the trapping efficiency of this trap decreased as the
trap loaded with particulates, and that the trapping efficiency improved
greatly following regeneration.
This decrease in trapping efficiency was discussed with the Texaco
representative. He stated that they had experienced some decrease in
efficiency with loading, but that they had never seen it occur at so rapid
a rate. At Texaco, however, the EGR system was disabled in all trap evalu-
ations using an Oldsmobile diesel.
In the zero mile emissions testing, the trapping efficiency decreased
by fifty percent after only 90 kilometers of operation. In the hot-start
series of evaluations with the trap installed, one test was run with the
EGR system disabled. In that test without EGR, CO and particulates were
reduced by approximately thirty percent and NOX was increased by thirty
percent. This NOX level with the trap and without EGR, however, was about
81
-------
the same as the baseline NOX level without the trap. The EGR rate is directly
affected by an increase in exhaust backpressure, theoretically as a function
of the square root of the backpressure. In addition, the amount of residual
exhaust in the cylinders is also affected by an increase in exhaust back-
pressure. The particulate emission rate generally increased with increase
in EGR. This factor probably accounts for the difference in the rates of
decrease in trapping efficiency reported by Texaco.
These findings with the Texaco trap indicate that:
• This system, as evaluated, exceeded the level of the 0.124 g/km
particulate standard shortly after regeneration.
• Based on the increase in pressure drop across the trap, about
200 kilometers can be driven before this trap would require
regeneration. Based on the emissions results, however, there
would be little overall decrease in particulate emissions.
• Without development of a more efficient regeneration method,
regeneration at intervals of less than 160 kilometers was
considered to be very costly considering the available funds.
• The EGR appears to be a major contributor to the problems
encountered with this trap. Disabling the EGR should be
considered, if evaluation of the trap itself is the primary
purpose.
Accordingly, durability of the Texaco trap was not evaluated in this project.
D. Corning Particulate Trap
The Corning cellular, monolithic, ceramic substrate (EX-47, 5.66 inch
diameter x 12 inch length) was to undergo durability evaluation on the 1980
Mercedes 300SD. This was the same unit as previously tested in the particu-
late emission control task of this project.
Following duplicate baseline evaluations of the 1980 Mercedes, without
the trap installed, the trap was mounted on the car and readied for dura-
bility testing. For operation over the road, the trap was firmly supported
and a metal shield was mounted under the trap. The clearance between the
bottom of the metal shield and the road was approximately four inches. In
a test drive around the road route to be used, this clearance appeared to be
acceptable. This small clearance did require that the drivers maintain
adequate caution.
The results of the initial (zero miles) baseline tests, with and without
the trap installed, were as follows:
82
-------
Emissions, g/km Fuel,
HC CO NOX Part. V.100 km
Without Trap 0.11 0.63 1.07 0.302 10.13
0.11 0.59 1.06 0.302 10.04
0.11 0.61 1.07 0.30 10.1
With Corning Trap 0.07 0.60 1.11 0.026
0.08 0.62 1.03 0.034
0.08 0.61 1.07 0.030
In general, these results were in good agreement with the results from
the most recent previous evaluations. It appears that the particulate emis-
sions, without the trap installed, had increased somewhat. Particulate
emissions were about 0.23 at the start of Task III and about 0.27 at the
end of Task III. For this baseline, the particulates were at 0.30. With
the trap installed, the particulate emissions generally agreed with the
results obtained in the final evaluation of this trap in the previous
Task III.
EPA specified that particulate sufficient to yield 150 mg of extract
be collected on 500 mm by 500 mm (20 by 20 inch) Pallflex filters. These
filters were to be stored until the end of the project, at which time they
were to be extracted. The available 20x20 Pallflex filter system sampled
approximately 20 percent of the total diluted exhaust. Without the trap,
the 150 mg requirement could be readily met. With the trap, however, meeting
this requirement became difficult, requiring a,number of FTP evaluations.
With the trap, 20 by 20 Pallflex filters were taken during the two FTP
evaluations plus one day of hot-start operation over the UDDS cycle (the
505 second transient plus the 867 second stabilized portions of the FTP).
This resulted in 20 by 20 Pallflex filter samples being taken over a total
of 16 UDDS cycles, and was expected to result in approximately 150 milli-
grams of organic extract. At a few of the test points, a minimum of 60
milligrams of extract was specified.
Service accumulation was initiated with the Corning trap installed on
the Mercedes. The exhaust backpressures are summarized as follows:
Exhaust Backpressure, kPa
Before Regeneration After Regeneration
64 km/h 97 km/h 64 km/h 97 km/h
Initial When New — 11
After Baseline Testing — — — 13
Initial for Durability — — 7 15
After 0 Mile Testing — — 8 16
After 182 km 18 35 9 19
After 365 km 19 36 13 24
83
-------
As apparent from these data, the regenerations did not reduce the backpressures
to the initial values. After the 365 kilometers of service accumulation, the
backpressure after regeneration remained at such a high level that continuation
was considered to be impractical. At this point, the trap was disassembled.
In appearance, the trap substrate was clean in the center cells and was
nearly plugged up around the outside cells. It was also noted that, due to
the lack of diametrical uniformity of the ceramic substrate, a continuous
layer of insulation had not been installed between the substrate and the
container. It appeard that the temperature within the outside row of cells
did not get high enough for regeneration. The next time regeneration was
attempted, the row just inside of that row apparently did not get hot enough.
This process then apparently continued to each successive regeneration
attempt.
The substrate was then placed into an oven and heated to 1300°F with
some air circulating through the oven. After attaining the 1300°F and
holding this temperature for several hours, the oven was shut off and
allowed to cool before removal of the substrate. The substrate, except
for some slight discoloration, appeared to have completely regenerated.
Any loose particulates remaining within the substrate was removed by gentle
bumping against a soft surface.
In order to allow for the installation of a uniform layer of insulation
around the ceramic substrate, the diameter was reshaped by careful rubbing
against a flat concrete surface. Upon reinstallation into the container,
a continuous layer of 1.6 millimeter thick Interam insulation was installed
around the substrate. After assembly, the trap was reinstalled on the
Mercedes and the backpressure readings were as follows:
Exhaust Backpressure, kPa
Before Regeneration After Regeneration
64 km/hr 97 km/h 64 km/h 97 km/h
Initial for Durability — — 7 15
Regeneration in Oven 13 24 7 15
After 190 km 14 27 7 15
Therefore, it appears that the trap had been effectively regenerated in the
oven and during the subsequent regeneration on the car. For this, and all
subsequent regenerations, special effort was made to assure essentially
complete regeneration of the trap.
Initially, an exhaust backpressure of 12.5 kPa (50 inches of water) at
64 km/h (40 mph) was selected as the point at which the car should be brought
in for regeneration. This, however, resulted in the car arriving at incon-
venient times, at which regeneration would have to be delayed. Therefore,
84
-------
an investigation was made as to whether a higher limit on the exhaust back-
pressure would have any readily noticeable effect on the operation of the car.
It was subsequently determined that a pressure drop across the trap as
high as 25 kPa at 64 km/h did not produce any change in performance of the
car that was of concern to the driver. Therefore, in order to greatly
improve the efficiency of the distance accumulation evaluation, it was
decided to regenerate once per eight-hour work shift. With this change,
the trap was regenerated in the morning, then the car went onto the road
for about seven hours, after which the trap was again regenerated. The
car then went onto the road for up to eight hours in the evening. The
pressure drop across the trap normally approached 25 kPa at 64 km/h prior
to regeneration. Distance accumulation between regenerations generally
ranged from 250 to 350 kilometers.
The pressure drop across the trap after regeneration was found to be
a function of the "effectiveness of the regeneration." Complete regeneration
was found to be more difficult when the trap was lightly loaded, and for one
or two attempts following an incomplete regeneration.
For the regeneration, a dynamometer power setting about 50 percent
higher than the certification setting and a speed of 100 km/h were utilized.
During the regeneration, the fuel throttle was fully depressed against a
stop and the speed was controlled by an air throttle, installed by SwRI in
the air intake just after the turbocharger. With a clean trap, under these
operating conditions, the oxygen level in the exhaust was approximately
3.5 percent. During regeneration, the exhaust oxygen level after the trap
decreased in accordance with the rate of particulate burn-off.
A regeneration cycle of fourteen minutes, from start of intake air
throttling to cooldown of the trap, was used. Of the fourteen minutes in
the regeneration cycle, about two to three minutes were required to initiate
burn-off of the particulate and about two to four minutes were required to
burn-off most of the particulate. The additional eight minutes at regen-
eration conditions were to assure that regeneration had been carried out
to completion.
Maximum exhaust gas temperature at the trap exit during regeneration
was 760°C (1400°F), and the maximum temperature increase of the exhaust
gas across the trap was 100°C. The rate of particulate burning was primarily-
controlled by the inlet temperature and the amount of oxygen available in
the exhaust gas.
Overall, this regeneration method was concluded to be the simplest and
most reliable method of regeneration control for use in this evaluation.
Without good control over the regeneration, the durability evaluations could
end up being a test of the reliability of the regeneration method, rather
than of the durability of the trap.
85
-------
Emissions were determined during regeneration, and these results are
summarized as follows:
Values in g.km with Trap Installed
Hydrocarbons
Carbon Monoxide
Oxides of Nitrogen
Particulates
Sulfate
FTP
Values
0.08
0.6
1.0
0.03
— —,
Actual
Regen . a
0.02
4.5
1.3
0.03
0.001
Regen.
Cycleb
0.01
1.8
1.3
0.03
~~
Previous Data
97 km/h
0.02
0.4
1.6
0.03
— —
Value obtained during regeneration of aloaded trap at 100 km/h
with throttling
Regeneration cycle of 100 km/h with throttling conducted on a clean trap
Carbon monoxide and particulates were increased by regeneration, but such
increase did not appear to be excessive.
Assuming FTP's were used for distance accumulation and assuming a total
accumulation, including regeneration, of 200 kilometers per complete regen-
eration cycle, the results would be as follows:
Emissions in g/km
HC
0.08
0.07
CO
0.6
1.1
NOX
1.0
1.0
Part.
0.030
0.033
FTP Test
FTP's & Regen.
These data indicate that the emissions produced during regeneration do not
greatly increase the overall emission rates of this car. In addition, a
relatively low rate of sulfate emissions (0.001 g/km) was produced during
regeneration.
At the start of the distance accumulation, the pressure drop across the
trap, at 64 kilometers per hour following a good regeneration, was about 4 kPa
(16 inches of water). Toward the 80,000 kilometer completion of distance
accumulation, the pressure drop following a good regeneration was about 5 kPa.
Toward the end of the distance accumulation, regeneration was somewhat more
difficult to accomplish that at the start. The difference, however, was not
great.
The average results of the emissions tests conducted during the distance
accumulation are summarized in Table 28. The averages and the standard
deviations for the entire 80,000 kilometers of distance accumulation are
summarized in Table 29.
86
-------
TABLE 28. EMISSIONS SUMMARY FOR CORNING TRAP DURABILITY
1980 Mercedes 300SD with Corning Noncatalyzed Trap
Average of the Test Values, at distance in km
STANDARD CONFIGURATION (Without Trap)
Hydrocarbons ,
Carbon Monoxide,
Oxides of Nitrogen
Particulates ,
g/km
g/km
, g/km
g/km
Fuel Cons., £/100 km
WITH CORNING TRAP
Hydrocarbons ,
Carbon Monoxide,
2 Oxides of Nitrogen
Paritculates,
g/km
g/km
, g/km
g/km
Fuel Cons,, A/100 km
WITH TRAP DIVIDED
Hydrocarbons
Carbon Monoxide
Oxides of Nitrogen
Particulates
Fuel Cons.
0
0.11
0.61
1.07
0.30
10.1
0
0.08
0.61
1.07
0.030
10.4
8000
0.11
0.65
0.99
0.29
9.9
8000
0.07
0.61
0.92
0.029
9.7
16000
0.12
0.60
0.92
0.27
9.6
16000
0.08
0.60
0.88
0.028
9.6
BY WITHOUT TRAP
0
0.73
1.00
1.00
0.10
1.03
8000
0.64
0.94
0.93
0.10
0.98
16000
0.67
1.00
0.96
0.10
1.00
24000
32000
0.09
0.60
0.97
0.26
9.7
24000
0.06
0.65
0.93
0.030
9.8
24000
0.67
1.03
0.96
0.11
1.01
0.08
0.58
0.91
0.24
9.7
32000
0.07
0.58
0.87
0.023
9.7
32000
0.88
1.00
0.96
0.10
1.00
40000
0.09
0.58
0.97
0.25
9.9
40000
0.06
0.59
0.88
0.032
9.7
40000
0.61
1.02
0.91
0.13
0.98
48000
0.09
0.61
0.91
0.28
9.7
48000
0.07
0.63
0.94
0.024
9.9
48000
0.78
1.03
1.03
0.09
1.02
56000
0.10
0.61
0.94
0.37
9.7
56000
0.05
0.61
0.96
0.021
9.8
56000
0.53
1.00
1.03
0.08
1.01
64000
0.09
0.58
1.00
0.26
9.7
64000
0.06
0.62
0.87
0.033
9.9
64000
0.67
1.08
0.87
0.13
1.02
72000
0.09
0.61
0.93
0.27
9.3
72000
0.04
0.61
0.90
0.026
9.6
72000
0.45
0.99
0.97
0.10
1.02
80000
80000
0.07
0.58
0.91
0.020
9.5
80000
0.68
0.91
1.01
0.07
1.01
different CVS, a cleaned tunnel, and a new charcoal filter were utilized
-------
TABLE 29. FTP RESULTS FOR CORNING TRAP DURABILITY
Emissions in g/km
Average
Without Trap
With Trap
Standard Deviation
Without Trap
With Trap
Ratio
With/Without
HC
CO
0.10 0.61
0.07 0.61
0.01 0.02
0.01 0.02
NOX Part.
0.96 0.28
0.92 0.027
0.05 0.04
0.06 0.004
Fuel,
km
70%
100%
96%
10%
9.7
9.8
0.2
0.2
101%
With the trap, particulate emissions were reduced by ninety percent and HC
by thirty percent. Effects of the trap on CO, NOX and fuel consumption were
relatively minor.
The calculated particulate deterioration factor was 0.82 with the trap
and 1.09 without the trap. By omitting the data point at 56,000 kilometers,
a data point that appeared somewhat out of line relative to the other data,
the deterioration factor without the trap installed would be 1.02. With the
trap, the deterioration remained significantly below a value of 1, even with
omission of any one data point. It appears that some relatively minor
improvement in trapping efficiency actually did occur during the durability
period.
No unscheduled maintenance was performed on the engine or the trap
throughout the 80,000 kilometers of service accumulation, following the
actual start of trap durability.
E. NGK Particulate Trap
NGK cellular, monolithic, ceramic substrates (DHC-101, 5.66x12, 12 mil/
200 cpsi) were obtained from NGK-Locke, Inc. for durability evaluation. With
the exception of having twice as- many cells per unit of cross-sectional
area, this trap substrate is very similar to the Corning substrate. This
ceramic substrate was installed into a trap container using the same pro-
cedure that was used for the Corning substrate. This procedure has been
described in the previous section of this report.
Preliminary evaluations, using the orifice to increase exhaust back-
pressure, indicated that the combined usage of a particulate trap and EGR
could result in operational difficulties. When simulating the backpressure
of a trap loaded to maximum capacity with particulate, driveability was
88
-------
affected. With the Datsun EGR system, the rate of EGR should be essentially
proportional to the square root of the exhaust backpressure.
The collection rate of particulate and the increase in exhaust back-
pressure per unit of particulate collected, however, were such that appre-
ciable vehicle operation could be accumulated without significantly affecting
the operation of the Datsun. Therefore, the decision was reached to leave
the EGR system operable for the durability evaluation.
A regeneration technique for use with the 1982 Datsun Diesel Maxima was
then developed. As with the Mercedes, the regeneration involved throttling
of the intake air at a speed of approximately 100 kilometers per hour.
Operational criteria for regeneration were initially established, using
an orifice plate to simulate the exhaust backpressure expected to occur
with a trap, prior to installing the actual trap. In the initial attempt
to regenerate the trap, however, uncontrolled combustion occurred within
the trap and a partial meltdown resulted. Therefore, additional development
using trap simulation was again performed before another regeneration
attempt was conducted on the other available trap substrate. The second
regeneration attempt went smoothly and resulted in reasonably good regen-
eration of the trap. After several regenerations, the technique was con-
sidered to be sufficiently developed to initiate baseline testing and
service accumulation.
The destructive regeneration that occurred was the second destructive
regeneration experienced in this project; the initial one being with a trap
from Johnson Matthey. It might be worthwhile to point out that both de-
structive regenerations in this project occurred during initial regeneration
attempts. The likelihood of a destrictive regeneration appears to be a
function of the extent of the development of the regeneration technique;
the type of trap does not appear to be as important a factor. An unsuc-
cessful, or only partially successful, regeneration attempt appears to
increase the likelihood of a destructive regeneration, since the subsequent
regeneration appears to become more difficult to initiate an more difficult
to control.
With the two destructive regenerations experienced in this project,
control of the regeneration process could not be regained once it was lost.
The time factor involved has been too short. Also, as previously stated,
in both cases the destructive regenerations occurred during the initial
attempts toward development of a regeneration technique. It has been
found possible to incorporate safeguards into the regeneration process,
once it has been developed into a functional procedure.
Several factors made regeneration somewhat difficult with the Datsun.
This car has a temperature-controlled cooling fan. When this cooling fan
came on, the overall operating conditions during regeneration were greatly
affected. This difficulty was overcome by operating the car until the
cooling fan came on before starting the regeneration cycle. On this car,
89
-------
the rack setting was very sensitive near maximum fuel rack. An almost
infinitesimal increase in fuel rack resulted in a decrease in the exhaust
oxygen concentration from four down to as low as one percent. Operation
for even short periods at one percent exhaust oxygen would result in setting
up a condition within the trap that is conducive to subsequent rapid burning
of the particulate, which produces high temperatures. This difficulty was
overcome by careful adherence to a precise regeneration procedure.
Following baseline emissions evaluations, distance accumulation of the
Datsun with the NGK trap was initiated. The trap was regenerated each eight
hours of operation on the road. This involved a distance of about 320 kilo-
meters, during which the pressure drop across the trap about doubled
The results of the initial emissions tests are summarized as follows:
Zero km Emissions, g/km Fuel
km
HC
0.20
0.19
0.20
0.18
0.18
0.18
CO
0.76
0.74
0.75
0.77
0.71
0.74
NOX
0.62
0.63
0.63
0.62
0.62
0.62
Part.
0.171
0.158
01.65
0.033
0.040
0.037
Without Trap 0.20 0.76 0.62 0.171 8.79
8.64
8.72
With Trap 0.18 0.77 0.62 0.033 8.93
8.98
8.96
The results, without the trap installed, agree reasonably well with the
reported results for certification vehicles. Only HC is above or below
the range of the values reported for two certification vehicles. HC for
the car tested in this program is abour one and one-half times the HC
values for the certification vehicles. With the trap, particulate emissions
decreased by about eighty percent, and fuel consumption appeared to increase
about two percent. The trap did not appear to have a significant effect on
HC, CO or NO., emissions.
J\.
The initial pressure drop across this trap at a vehicle speed of 64
kilometers per hour was about 1.5 kPa (6 inches of water). The stabilized
post regeneration pressure drop, after several regeneration cycles, was
about 2 kPa (8 inches of water) .
Eight thousand kilometers (5000 miles) of operation was accumulated
on the Datsun with the NGK trap. Results of the emissions evaluation at
zero and 8000 kilometers of distance accumulation are summarized in Table 30.
The particulate emission rate after 8000 kilometers with the trap was
about double the initial particulate emission rate. No such drastic changes
occurred with the other emissions.
90
-------
TABLE 30. NGK-DATSUN DURABILITY EMISSIONS
km
Ac cum.
0
8000
HC
0.20
0.21
Emissions, g/km
CO NOX
0.75 0.63
0.75 0.61
Part.
0.165
0.141
Without Trap
Without Trap
With Trap 0 0.18 0.74 0.62 0.037
With Trap 8000 0.22 0.84 0.54 0.081
Some apparent, but not immediately definite, decrease in pressure drop
had occurred between 3000 and 5000 kilometers of distance accumulation. It
appears to have occurred following a regeneration in which a trap exit tem-
perature of 815°C (1500°F) occurred. The rate of temperature rise, although
more rapid than normal, was not considered to be excessive. It should be
pointed out that a fast-response temperature measurement system was used,
resulting in accurate readings of the exhaust gas temperatures at the trap
inlet and outlet. Temperatures within the trap and temperature stratifi-
cation across the trap, however, could differ significantly from the bulk
exhaust gas temperature. Visual examination indicated that some internal
problem was apparently present in this trap. On the exit of the substrate
some of the cells were blackened. This indicated some bypassing had
occurred. Visual examination and probing of the substrate cells, however,
did not enable determination of the specific cause(s) for the increase in
particulate emissions. The trap assembly was x-rayed. This x-ray indicated,
but did not clearly show, the presence of a radial crack in the ceramic
substrate.
To assure that exhaust was not bypassing aroung the trap, the end cap
of the trap container was removed to enable examination of the assembly.
The substrate was still snug in the container and all insulation appeared
to have remained in place. Using a new gasket, the container end cap was
replaced and a single emissions evaluation was conducted. The results are
summarized, along with previous results, as follows:
Emi s s ions in g/km
HC
CO
NOX
Part.
Initial
0.18
0.74
0.62
0.037
8000 km
0.22
0.84
0.54
0.081
Post Exam.
0.24
0.84
0.61
0.052
91
-------
Particulate emissions decreased relative to the value at 8000 kilometers,
but were still significantly greater than the initial value. If a radial
crack were present in the substrate, the axial pressure of reassembly could
have reduced the width of such a crack.
The NGK trap was then removed from the container, and it was found that
the trap substrate had cracked into two pieces. The radial crack occurred
at a point nearly halfway between the entrance and exit of the trap substrate.
No visual or physical signs of excessive overtemperature were apparent.
This trap was subsequently returned to NGK for evaluation. A representative
from NGK, on the basis of the visual appearance of the crack, indicated
that thermal stressing was the probable cause for failure
A feature of this trap substrate, as received, was multiple surface
cracks on the outside diameter of the substrate. Prom classical "strength
of materials," it is known that cracks can contribute to the failure rate
of materials in many applications. However, it is not known whether
surface cracks have a significant effect on the durability of monolithic
ceramic trap substrates.
Due to limitations in the level of effort available, no further
durability evaluation of the NGK trap could be performed.
92
-------
REFERENCES
1. Code of Federal Regulations, Title 40, Chapter 1, Part 86, Subpart B.
2. "Standard for Emissions of Particulate Regulation for Diesel-Fueled
Light-Duty Vehicles and Light-Duty Trucks," Federal Register, Volume 45,
Number 45, March 5, 1980, pp 14496-14525.
3. Warner, Mary Ann, "Filter Extraction Procedures and Results for Various
EPA/ECTD Particulate Samples," Final Report EPA 460/3-82-008, August 1982.
4. 55 mph Alternate Mileage Accumulation Procedure (MSAPC A/C No. 37),
December 20, 1983, Enclosure 1) .
5. Urban, Charles, "Regulated and Unregulated Exhaust Emissions from
Malfunctioning Non-Catalyst and Oxidation Catalyst Gasoline Automobiles."
Final Report to Environmental Protection Agency under Contract No.
68-03-2499, January 1980.
6. Ullman, Terry L. and Hare, Charles T., "Emission Characterization of an
Alcohol/Diesel-Pilot Fueled Compression-Ignition Engine and Its Heavy-
Duty Diesel Counterpart," Final Report EPA-460/3-81-003, August 1981.
93
-------
SELECTED BIBLIOGRAPHY
NOTE: Technical papers, rather than the associated reports, have been listed
in this bibliography.
Hillenbrand, L.J., and Trayser, D.A., "A Concept for Catalyzed Ignition
of Diesel Soot," SAE Paper 811236.
Bykowski, B.B., Hare, C.T., and Baines, T.M., "Effects of a Narrow-Cut No. 1
Fuel, and Variation in Its Properties, on Light-Duty Diesel Emissions,"
SAE Paper 811193.
Bouffard, R.A., and Beltzer, M., "Light-Duty Diesel Particulate Emissions -
Fuel and Vehicle Effects," SAE Paper 811191.
Greeves, G., and Wang, C.H.T., "Origins of Diesel Particulate Mass Emission,"
SAE Paper 810260.
Cross, R.K., Lakra, P., and O'Neill, C.G., "Electronic Fuel Injection Equipment
for Controlled Combustion in Diesel Engines," SAE Paper 810258.
Wade, W.R., White, J.E., and Florek, J.J., "Diesel Particulate Trap Regen-
eration Techniques," SAE Paper 810118.
Howitt, J.S., and Montierth, M.R., "Cellular Ceramic Diesel Particulate
Filter," SAE Paper 810114.
Kollbrunner, T.A., "Comprex Supercharging for Passenger Diesel Car Engines,"
SAE Paper 800884.
Mayer, W.J., Lechman, D.C., and Hilden, D.L., "The Contribution of Engine
Oil to Diesel Exhaust Particulate Emissions," SAE Paper 800256.
Eisele, H., "Electronic Control of Diesel Passenger Cars," SAE Paper 800167.
Naegeli, D.W., and Moses, C.A., "Effect of Fuel Molecular Structure on Soot
Formation in Gas Turbine Engines," ASME Paper 80-GT-62.
Radovanovic, R.S., and Djordjevic, M.S., "Diesel Precombustion Chamber
Design and Its Influence on the Engine Performance and Exhaust Pollutants,"
SAE Paper 790496.
Hare, C.T., and Bradow, R.L., "Characterization of Heavy-Duty Diesel Gaseous
and Particulate Emissions, and Effects of Fuel Composition," SAE Paper 790490.
Hare, C.T., and Baines, T.M., "Characterization of Particulate and Gaseous
Emissions from Two Diesel Automobiles as Functions of Fuel and Driving Cycle,"
SAE Paper 790424.
95
-------
SELECTED BIBLIOGRAPHY (Cont'd).
Gaffney, J., Sapienza, R., Butcher, T., Krishna, C., Marlow, W., and
O'Hare, T., "Soot Reduction in Diesel Engines: A Chemical Approach,"
BNL-27067.
Khatrim, N.J., Johnson, J.H., and Leddy, D.G., "The Characterization of the
Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter," SAE Paper
780111.
Bro, K., and Pedersen, P.S., "Alternate Diesel Engine Fuels: An Experimental
Investigation of Methanol, Ethanol, Methane and Ammonia in a D.I. Diesel
Engine with Pilot Injection," SAE Paper 770794.
Hare, C.T., and Bradow, R.L., "Light-Duty Diesel Emission Correction Factors
for Ambient Conditions," SAE Paper 770717.
Springer, K.J., and Stahman, R.C., "Removal of Exhaust Particulate from a
Mercedes 300D Diesel Car," SAE Paper 770716.
Springer, K.J., and Stahman, R.C., "Diesel Car Emissions - Emphasis on
Particulate and Sulfate," SAE Paper 770254.
Hare, C.T., Springer, K.J., and Bradow, R.L., "Fuel and Additive Effects on
Diesel Particulate Development and Demonstration of Methodolody," SAE Paper
760130.
96
-------
APPENDICES
A. GENERAL INFORMATION
B. COMPUTER PRINTOUTS OF THE BASELINE TESTS
C. PARTICULATE CONTROL SCREENING EVALUATIONS
WITH THE MERCEDES
D. PARTICULATE CONTROL SCREENING EVALUATIONS
WITH THE OLDSMOBILE
E. PARTICULATE CONTROL SCREENING EVALUATIONS
WITH THE VOLKSWAGEN
F. WATER INJECTION EVALUATIONS WITH A 1981
MERCEDES
G. DURABILITY OF CORNING TRAP ON THE
MERCEDES
H. DURABILITY EVALUATION OF NGK TRAP ON THE
DATSUN
-------
APPENDIX A
GENERAL INFORMATION
-------
APPENDIX A-l
DESCRIPTION OF THE 1981 MERCEDES 300SD WITH WATER INJECTION
Information As-Recived from Mercedes-Benz
Model 300 SD 1981 126.120-12-000 501
VIN WDBCB 20 A7BB 000 501
Engine family BMB3.0D9JB 3 modified to water injection
Exempt status from EPA. Effective data of exemption Dec. 9, 1980
5 cylinder indirect injection diesel engine
prechamber
EGR
Net hp-rpm
Net torque/rpm
CID
C.R.
Maximum engine speed
Transmission
Rear axle ratio
Tire size
N.V ratio
Road load hp
Fuel tank capacity
IW Class
ETW
Curb weight
120/4350
170 ft.lb./2400
183 (3.OH)
21
4600
A4
3.07
195/70 SR 14
44.8
11.5 (w A/C)
20.3
4000
4000
3822 (without water injection equipment)
A-2
-------
APPENDIX A-2
EFFECT OF TEST CELL HUMIDITY ON NOX CORRECTION FACTOR
WHEN WATER INJECTION IS USED
To illustrate the effect of test cell humidity, the NO.
correction factor for certification is used.
x humidity
This factor is as follows:
K = 1/[1 - 0.0047 x (H - 75)]
ti
Where: H = Humidity in grains/pound of air
Assumptions and simplified calculations are utilized in the following
illustration. This example, however, should suffice in showing that
ambient humidity can be an important factor:
Using water injection at a rate of 53 percent of the fuel
flow, and assuming an average composite air/fuel ratio of 50,
the added humidity is equal to about 75 grains per pound of
air:
Added H - 7000 x 0.53/50 - 75 grains/pound of air
The humidity correction factor, the relative NOX values and
the resultant NOX with 75 grains of water injection (per Ib
intake air) are summarized as follows:
Humidity (H) ,
Grains/lb
of Air
0
25
50
75
100
125
150
175
Humidity
Correction
Factor
KH
0.74
0.81
0.89
1.00
1.13
1.31
1.54
1.89
Relative
Actual
NOX Value
1.35
1.24
1.12
1.00
0.88
0.77
0.65
0.53
Resultant NOX
with 75 Grains
of Water Added
Into Intake*
0.74
0.71
0.68
0.65
0.60
*Relative NOX at Htotai times KH at H of the test cell
These calculated values illustrate that, as the ambient humidity
increases, the same amount of water injection appears to become
more effective. For example, when 75 grains of water per pound
of air is added by water injection, the calculated NOX reduction
is 32 percent at a test cell humidity of 50 grains and 40 percent
at 100 grains.
A-3
-------
APPENDIX B
COMPUTER PRINTOUTS OF THE BASELINE TESTS
Test
Pages Description Series
B-2 through B-4 Mercedes Baseline 61BL
B-5 through B-7 Oldsmobile Baseline 62BL
B-8 through B-10 VW Rabbit Baseline 63BL
B-ll through B-13 Mercedes Tuned-Up 6ITU
B-14 through B-16 Oldsmobile Tuned-Up 62TU
B-17 through B-20 VW Rabbit Tuned-Up 63TU
-------
FTP VEHICLE EMISSIONS RESULTS
PRGJECT 11-5610-001
TEST NG, 61BL-1 RUN
VEHICLE MODEL 7? MERCEDES EENZ
ENGINE 3.0 LU83. CID) 1-5
TRANSMISSION A3
BAROMETER 7
BA'J RESULTS
BAG NUMBER
DESCRIPTION
DATE 4/16/80
SAG CART MO, 1
D;;NGJO, , 2
Uvii NC» 3
DRY EULr TEMP, 24.-1 DEG C(7£.
A3S, HUMIDITY 7,5 GM/KG
TEST HEIGHT 1814. KGi 4000. LBS)
ACTUAL ROAD LOAD 9.7 KU( 13.0 HP)
DIESEL EM-408-F
ODOMETER 6474. KM( 4023. MILES)
NOX HUMIDITY CORRECTION FACTOR .90
T7FT;
HOT TRANSIENT
STABILIZED
BLOWER DIF P MM. H2G(1N. H:
BLOwER INLET F MM, H20;IN.
BLOWER INLET '
BLGUER^REVGLU-
TO i FLGw aTD ,
HC SAMPLE MF"1
HC BCKGRD ME"
CO "^pP: r M^"
CO BCKGRD MET
C02 SAMPLE HE'
,— • r* •"*• f- p-i •• f- pi TI xi rr ^
L-U- cLKaRD ME
Wnv CAMDi r ME"1
TMP. DEG. C(I
'IONS
CLJ, METRES -;3C
T?
'EF
"EF
rEF
"^F
"EF
ri— r
/RANGE /'PPn
/RANGE/PPM
/RANGE/PPM
/RANGE/PPM
/RANGE/PCT
/RANGE/PCT
/S'AWJ^r /DDM
f NOX BCKGRD METER/RANGE/PPM
to DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRA'ION PPM
C02 CONCENTRATION PCT
NGX CONCENTRATION PPM
HC MASS GRAMS
CD MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61BL-1
BAROMETER MM HG 743.7
HUMIDITY B/KG 7.5
TEMPERATURE DEG C 24.4
' O'^
oVa
G5S
37
135
•( rr
ivJ*
4*
24*
k
43 v
jL 4
•"vrr
•Zw' *•
^
C7 ;. /-, -,
r< t -~"T\
o o * *:*:
rS (10
13965*.
^ 9 * 4
•"? / -i •! /
4/il>
"^ / -, ~ /
9/1 3>
O/ 3/
D/ 3/
O/ 2/
3/ 2/
18*17
11.
20.
.70
24 + 7
.37
3.23
1731, S
5.80
1.41
.15
.56
301.8
1,01
11.28
506.
5.74
.5)
.CO
0*0)
797.)
15,
4.
i"* *~»
"i!
.73
.04
25.
o;
£98
(TKTQ
wOu
35
231
10.
3.
15.
*
25.
O
i. +
15.
*
fT ,-' '"j T
.8 (22.
,0 ( 95
23713.
.9 ( 81
O/ll/
5/ I/
3/13/
9/13/
2/ 3/
6/ 3/
7/ 2/
4/ 2/
32.41
7.
12.
.37
15,3
.88
3.37
1582.1
6.13
1.22
.14
.54
255.2
.99
9.54
867.
6.20
5)
f\ "•
' J /
M }
90.)
10.
4.
14.
1.
.41
.04
16.
0.
69S
553
36
135
7.
3.
19.
*
36.
2,
25.
¥
.5 C27.
.8 (22.
.7 ( 98
13880.
5)
0)
.0)
,B ( 4794.)
5/117
5/ I/
5/13/
6/13/
6/ 3/
U 3/
9/ 2/
4/ 2/
21.70
4.
16.
.58
25.5
.32
2.59
1434.3
5.98
1.22
.06
.45
249.3
1.04
9.31
506.
5.75
7.
4.
17.
1.
.61
.04
26.
0.
CARBON DIOXIDE B/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
263.2
9.84
.12
.52
1.01
(4-BAG)
0.0)
0.00)
0.00)
0.00)
0.00)
0.000)
-------
w
I
OJ
TEST NO, 61BL-2 RUN
VEHICLE MODEL 79 MERCEDES BENZ
ENGINE 3.0 L(183, CID) 1-5
TRANSMISSION A3
BAROMETER 747.78 MM HG(29.44 IN HG)
RELATIVE HUMIDI
BAG RESULTS
BAB NUMBER
DESCRIPTION
56, PCT
BLOWER DIP ? MMv H20(IN,
BLOWER INLET P MM.
BLOWER INLET TEMP,
BLOWER REVOLUTIONS
H20CI1-L H20)
DEG, C(DEG.
TOT
HC
HC
CO
CO
rn?
METRES(SCF)
E5DM
METER/RANGE7PFM
METER/RANGE/FF'M
HETER7RANGE7PPH
METER7RANGE7PCT
METER7RANGE7PCT
ME7ER/RANGE/FPM
HETER/RftNGE/PF'M
FLOU ST
SAMPLE
BCKGRD
SAMPLE
BCKGRD
SAMPLE
UU2 BCKGRD
NOX SAMPLE
NOX BCKGRD
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION FCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61BL-2
BAROMETER MM HG 747,8
HUMIDITY G/KG 9,2
TEMPERATURE DEG C 21.7
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
VEHICLE NO,61
DATE 4/17/30
TV A ."i /"i *, T--, -v > l f~i H
J5HL3 'whlK I WU. 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP. 21,7 DEG C(71,
ABS, HUHIDITY 9,2 GH7KG
TEST WEIGHT 1814. KG( 4000, IBS)
ACTUAL ROAD LOAD 9.7 KU( 13.0 HP)
DIESEL EM-408-F
ODOMETER 6508. KM( 4044, MILES)
NOX HUMIDITY CORRECTION FACTOR .95
1
COLD TRANSIENl
rvTATiTi T-rr-v.
3 ! HDJ.i-12c.if
HOT TRANSIENT
'" O O £" ' *""• ~> *? \
oVb, j i*;/ »j)
558,3 (22,0)
37,2 ( 99,0)
13896,
136.7 ( 4828.)
13,9/117 14,
3,0/ I/ 3,
99,9/-j^/ ?r> .
"il/13/ ^0,
42, 1/' 3/ ,72
2.8/ 3/ ,04
24,37 2/ 24,
,77 2/ 1,
18,61
11.
19,
,68
23,6
.87
3.04
1693.1
5.89
1.58
.15
.52
292,5
1.02
10.93
507.
5.79
698,5 (27,5)
jj3,B (22,0)
35,0 ( 95,0)
23794,
234,9 ( 8293.)
9.07117 9,
3.07 17 3,
13,67137 12,
,17137 0,
25,07 37 ,41
2,67 37 ,04
15.47 27 15,
.67 27 1.
32.71
6.
12.
.37
14.8
,83
3.17
1587.0
6.35
1.29
.13
.51
254.3
1.02
9.50
867.
6,24
698,5 (27.5)
558,8 (22.0)
36.1 ( 97.0)
13854.
136.8 ( 4829.)
10.57117 10,
3,07 17 3.
17.8713/ 16.
.2/13/ 0.
37.17 37 .62
2.57 3/ .04
25.07 2/ 25.
.6/27 1.
21.38
8.
15.
.59
24.4
.60
2.41
1471.5
6.09
1.15
.10
.41
252.7
1.05
9.44
505.
5.82
STABILIZED
3-BAG (4-BAG)
CADIOXIDE G/KM 261,8 ( 0,0)
FUEL CONSUMPTION L/100KM 9.78 ( 0,00)
HYDROCARBONS (THC) G/KM ,13 ( 0,00)
CARBON MONOXIDE G/KM ,49 ( 0,00)
OXIDES OF NITROGEN G/KM 1.03 ( 0.00)
PARTICULATES G/KM ,218 ( 0.000)
-------
TEST NO* 61BL-3 RUN
VEHICLE MODEL 79 MERCEDES
ENGINE 3.0 LU83. CID) 1-5
TRANSMISSION A3
BENZ
BAROMETER 740,66 MM HG(29,16 IK HG)
RELATIVE HUMIDITY 49* PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN* H20)
BLOWER INLET ? MM. H2GCIN* H2Q)
BLOWER INLET TEMP* DEG* C(DEG, F!
BLOWER REVOLUTIONS
TOT FLOW STB* CU* METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRB METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
CQ2 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
w NOX BCKGRB METER/RANGE/PPM
i DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61BL-3
BAROMETER MM HG 740.7
HUMIDITY G/KG 8,1
TEMPERATURE DEG C 21,7
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
VEHICLE ND.61
DATE 4/22/80
BAG CART NO* 1
DYNO NO. 2
CVS NO, 3
BRY BULB TEMP. 21
o
COLB TRANSIENT
*7 DEG C'71.0 BEG F)
1 -3M/KG
STABILIZED
TFST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KU( 13.0 HP)
DIESEL EM-40S-F
ODOMETER 6556. KM( 4074. MILES)
NOX HUMIDITY CORRECTION FACTOR .92
HOT TRANSIENT
711.2 (23.0)
571.5 (22.5)
37:2__(_ 99*05
138b5»
134,8 ( 4758.)
11, 6/1 I/ 12,
3.5/ I/ 4*
25.0/13/ 22*
,3/13/ 0.
43. 4/ If ,74
2,9/ 3/ ,04
26. 9/ 2/ 27.
,9/ 27 1.
17,99
8,
21.
.70
26.1
,65
3,37
1725,7
6,17
1,47
,11
,58
298,5
1,07
11,15
505.
5.78
711,2 (28*0)
571,5 (22,5)
34*4 ( 94,0)
23802*
232*5 ( 8211,)
7,7/H/ S,
3,5/ I/ 4,
14.8/13/ 13,
,3/137 0*
25.27 3/ .41
2.9/ 3/ .04
16,37 2/ 16,
1.1/27 1.
32.44
4*
12,
,37
15,2
,58
3,38
1567.1
6.23
1.32
.09
.55
253.2
1.01
9.46
869.
6.19
711*2 (28.0)
571.5 (22.5)
36.7 ( 98.0)
13865.
135.0 ( 4765.)
8.6/117 9.
3.57 17 4.
18.67137 16.
.1/137 0.
37.07 3/ .62
3.0/ 3/ .05
26. 7/ 2/ 27.
1,07 27 1.
21.45
5,
16,
.58
25.7
.41
2.51
1429,4
6.11
1.12
,07
,43
247.2
1.06
9.23
505.
5,78
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
261,0
9,75
.09
,52
1,03
.216
(4-BAG)
( 0.0)
( 0.00)
( 0*00)
( 0.00)
( 0,00)
< 0.000)
-------
CTp
TEST NO. 62BL--1 RUN
VEHICLE MODEL 30 OLDS DELTA88
ENGINE 5.7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 737,36 MM HG(29,03 IN KG)
RELATIVE HUMIDITY 27, PCT
BAG RESULTS-
BAG NUMBER
DESCRIPTION
BLOWER DIF P fiH, K20-IN. H20)
BLOWER INLET P MM, H2G(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF5
SAMPLE METER/RAHGE/PPH
BCKGRD METER/RANGE/PF"
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/FCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC
HC
CO
CO
C02
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 62BL-1
BAROMETER MM HG 737.4
HUMIDITY G/KG 5.4
TEMPERATURE DEG C 25.0
M/KG
PROJECT ii-3810-001
VEHICLE NG.62
DATE 3/24/80
BAG CART NO, 1
DYNG HO, 2
CUE NO. 3
DRY BULB TEMP. 25
ABE, HUMIDITY 5.
6-~^n IT t n~~> ^ \
7D*J ij^/*J;
553 r o (22»0)
37,2 ( 99,05
13867,
134,2 ( 4738,j
39,9/1I/ 40,
2,I/ I/ 2.
~1O 1 .M 7 / T?
O U , i_ > 1 O ' w vj .
.1/13/ 0.
47,8/ 3/ ,32
2,5/ 3/ ,04
18,9/ 2/ 19>
,8/ 2/ 1,
16.10
38.
34.
.79
18.1
2.93
5.34
1938,6
3,97
2.80
.51
,92
334,3
,68
12,55
505,
5,80
TEST WEIGHT 1928, KG( 4250. LBS)
HUM ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL
ODOMETER
-iD LOAD
EM-403-F
6453. KM( 4010. MILES)
DEG F)
NOX HUMIDITY CORRECTION FACTOR .85
STABILIZED
HOT TRANSIENT
673, 1 ('^'6,5)
558*8 (22 Io')
36,7 ( 98,0)
23820.
230.8 ( 8149,)
T1 Ll*.\l T"!
X.1.O/ 1 1 J j^*L .
^ * / * r ^
il . "t 1 .if Ji>
r*,r\ Tt / •) "T :' n r
2^:, /•/ 1 j/ 20,
, 1/13/ 0.
32. I/ 3/ .53
2.5/ 3/ .04
14. 6/ 2/ 15.
.3/ 2/ 1.
24.94
19,
20.
.50
13.8
2.57
5.32
2098,2
5,20
1,43
,41
^,35
336,3
,83
12,61
363,
6,24
673,1 (26,5)
558,8 (22.0)
37.8 (100.0)
13860,
134,1 ( 4735.)
23.4/11/ 23,
2,4/ I/ 2,
29.0/13/ 26.
.1/13/ 0,
42, I/ 3/ ,72
2,2/ 3/ .03
18, 3/ 2/ 18.
,6/ 2/' 1.
18.56
21.
26.
,69
17,7
1.63
3.98
1682,2
3,88
1,62
,28
,69
289,9
,67
10,86
505 .
5.30
CARBON DIOXIDE
FUEL CONSUMPTION
HYDROCARBONS (THC)
CARBON MONOXIDE
OXIDES OF NITROGEN
F'ARTICULATES
STABILIZED
G/KM
L/100KM
G/KM
G/KM
G/KM
G/KM
3-BAG
323 . 1
12.11
.40
,82
,76
.295
(4-BAG)
( 0.0)
( 0,00)
( 0.00)
( 0,00)
( 0.00)
( 0,000)
-------
TEST NO, 62BL-2 RUN
VEHICLE MODEL 80 OLDS DELTA3S
ENGINE 5,7 L(350, CID) V-3
TRANSMISSION A3
BARDr^TER 740 16 MM K3(29,14
RELATIVE HUMIDITY 46,
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF F MM, H2G(IN, H2G)
BLOWER INLET P MM, H2Q(IH. ri2G;
BLOWER INLET TEMP, DEG, CCDEG, F)
BLOWER REVOLUTIONS
TOT FLOW STIU CU, METRES'3CF)
HC SAMPLE METER/RANGE/P--H
HC BCKGRD METER/RANGE/PPH
CO SAMPLE METER/RANGE/PPH
CO BCKGRD METER/RANGE/PFM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE HETER/RANGE/FPM
NOX BCKGRIi METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS-
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 62BL-2
BAROMETER MM HG 740,2
HUMIDITY G/KG 7,3
TEMPERATURE DEG C 22,2
03
VEHICLE EMISSIONS RESULTS
PROJECT 11-5E10-001
yl—1 1 T ^| r- Jl.-l ; r^
truuL-n. iVJ.s^:
DATE 3/25/SO
BAG CART NO. 1
DYNO NO, 2
Cl'S NO, 3
DRY BULB TEMP,
AB3, HUMIDITY
22,2 DEG C-72,0 DEG F)
7,8 GM/KG
TEST WEIGHT 1928, KG< 4250, IBS)
ACTUAL ROAD LOAfJ 9,1 RQZ 12,2 HP)
DIESEL EM-408-F
ODOMETER 6479, KM( 4026, MILES)
NOX HUMIDITY CORRECTION FACTOR ,91
HOT TRANSIENT
f r; ri TT / O • rr \
O/CJriJ \*1-J * w /
558,8 (22,0)
36.1 ( 97,0)
13S7S.
135,1 ( 4769,)
42.1/li/ 42,
3.0/ 1 - 3,
42, 5/1 3/ 39,
, 9/13/ 1,
47,9/ 3/ ,83
2,6/ 3/ ,04
17, 7/ 2/ IS,
1,2/ 2/ 1,
16,05
39,
37.
,79
16,6
3,06
5,90
1952,1
3,91
2,91
,53
1,02
336,5
,67
12,64
505,
5,80
69S,5 (27,5)
558,8 (22,0)
37,2 ( 99,0)
23829,
231,5 ( 8176 )
18. 2/1 I/ 18
3,8/ I/ 4
26,0/137 ?:?
1.0/13/ 1
31, 7/ 3/ ,53
2,6/ 3/ ,04
13. 7/ 2/ 14.
1.2/ 21 1,
25,28
15,
22,
,49
12,5
1,94
5,92
2068,2
5.07
1,72
,31 "
,95
331.4
,81
12,42
363,
6,24
696,5 (27,5)
558,3 (22,0)
36,1 ( 97,0)
13869,
134,9 ( 4763,)
24.5/11/ 24.
3,8/ I/ 4,
32.0/13/ 29,
,6/13/ 1,
42, 5/ 3/ ,72
2.9/ 3/ ,04
17. 4/ 2/ 17.
1.2/ 2/ 1,
18,36
21.
28,
,68
16.3
1.62
4.36
1685,4
3.83
1.72
.28
.75
290,2
,66
10,87
506,
5,81
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICIPATES G/KM
STABILIZED
3-BAG
321,2
12,04
,35
,91
,74
,328
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
< 0,003
( 0.000)
-------
FTP VEHICLE 'EMISSIONS RESULTS
PROJECT 1--531C-001
TEST NO* 62BL--3 RUM
VEHICLE MODEL 30 OLDS DELTASS
ENGINE 5*7 L(350* CID) L-5
TRANSMISSION A3
BAROMETER 739.39 MM HG(29.1i IN HG5
RELATIVE HUMIDITY 51, PCT
BAG RESULTS-
BAG NUMBER
DESCRIPTION
BLOWER DIP F MH* H20(IN, H2Q)
BLOWER INLET P MM* H2GCIN, H2G)
BLOWER INLET TEMP* DEG* C(DEG* F
BLOWER REVOLUTIONS
TOT FLOW STD. CU* METRES-;SCF5
HC SAMPLE METER/RAN6E/PPM
HC BCKGRD METER/RANGE/PFM
CO SAMPLE HETER/RANGE/PFM
CO BCKGRD METER/RANGE/FFH
C02 SAMPLE METER/RANGE/FCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PFM
w NOX BCKGRD METER/RAMGE/PPM
^j DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/iOOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 62BL-3
BAROMETER MM HG 739*4
HUMIDITY G/KG 9*3
TEMPERATURE DEG C 23*3
VEHICLE NO* 62
BATE 3/26/80
BAG CART NO. 1
DYNG NO, 2
CVS MO. 3
DRY BULB TEMP. 23,3 DEG C(74*
ABS* HUMIDITY 9.3 GM/KG
F)
TEST WEIGHT 1928* KG< 4250* LBS)
ACTUAL ROAD LOAD 9*1 KU( 12*2 HP)
DIESEL EM-408-F
ODOMETER 6503* KM( 4041, MILES)
NOX HUMIDITY CORRECTION FACTOR .96
1
:OLD TRANSIENT
STABILIZED
HOT TRANSIENT
713,7 (28*1)
566,4 (22,3)
37,8 (100,0)
13860,
134*5 ( 4748.)
49, 1/1 I/ 49.
3*5/ I/ 4*
42.1/13/ 39,
,3/13/ 0*
49. 6/ 3/ *B6
2.3/ 3/ ,04
16*S/ 2/ 17*
,S/ 2/ 1.
15*44
46,
38,
,83
16.1
3.55
5,87
2034*8
3,95
3.47
.61
1.01
350.3
.68
13.16
505.
5*81
"7 -i 7 "7 ,' H O < \
/.Lot/ V. i_ u + J- /
566,4 (22,3)
38*3 (101.0)
23829*
230.9 ( 3152,)
24, 7/1 I/ 25*
4,0/ I/ 4*
25.9/13/ 23*
*5/13/ 0*
32 *2/ 3/ *54
2,6/ 3/ ,04
12.9/ 27 13*
,3/ 2/ 0.
24*83
21,
22.
,50
12.6
2.77
, 5.97
2100.3
5.32
1.67
,44
,95
335.3
.35
12.58
868.
6.26
713.7 (28,1)
566.4 (22.3)
38.3 (101*0)
13872,
134,4 ( 4747.)
23.7/11/ 24.
4*0/ I/ 4.
30.4/13/ 28.
.7/137 1.
43.17 37 .74
2.67 37 .04
17*07 27 17*
.97 27 1*
18*09
20,
26.
.70
16,1
1.55
4.09
1718.5
3.97
1,50
.27
.71
296.6
.69
11,11
505.
5.79
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
327.8
12.30
.43
.90
.77
,333
(4-BAG)
( 0,0)
( 0.00)
( 0*00)
( 0*00)
( 0.00)
( 0.000)
-------
TEST NO. 63EL-1 RUM
VEHICLE KOBEL BO VU RABBIT
ENG^iE 1.5 L( 90, CID) L-4
TRANSMISSION H-1
BAROMETER 739.90 MM HG-29.13 IN HS)
RELATIVE HUMIDITY 21. PCI
BAG RESULTS
BAG NUMBER
DESCRIPTION
to
CD
BLOWER
0(IN',
BLOWER INLET P MM, H20(IN. H2G)
BLOUER INLET TEMP, BEG. C(DEG, F5
BLOWER REVOLUTIONS
TOT
HC
HC
CO
CO
FLOw S
SAMPLE
BCKBRD
SAMPLE
BCKGRD
SAMPLE
TIKTCU,r METRES (SC
HETER7RANGE7FpH
METER7RANGE7FPM
"il^7,^^5^^!;
i ib. ! Lr\/ rvHiiLJc./ r'L i
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE7PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY S/KG
TEMPERATURE DEG C
63BL-1
739,9
4,2
25,0
VEHICLE EMISSIONS RESULTS
PROJECT ii-S8iO-OOi
DATE 3/24/60
BAG CART NO, 1
DYNG NO* 2
CvS NO, 3
DRY BULB TEMP, 25,0 DEG C<77,0 BEG F)
ABS, HUMIDITY 4,2 GM/KG
COLD TRANSIENT
STABILIZED
TEST WEIGHT 1077. KG( 2375. LBS)
ACTUAL ROAD LOAD 5,1 KtJ( 6,8 HP)
DIESEL EM-408-F
ODOMETER 6441. KM( 4002, MILES)
NOX HUMIDITY CORRECTION FACTOR ,82
HOT TRANSIENT
69B,5 (27,5)
539 ,8 (22,0)
35,0 •: 95,0)
13B54,
105,3 ( 3754,)
17.1/11/ 17,
3,S/ I/ 4,
33,4/137 30,
,1/137 0,
36,27 37 ,61
3,27 37 ,05
24, 4/ 2/ 24,
,6/ 2/ 1,
21,88
13,
30,
,56
23,3
,82
3,68
1091,7
3.99
1,87
,14
,64
139,2
,69
7,09
505,
5.77
698,5 (27,5)
558,8 (22,0)
36,1 ( 97,0)
23816,
182.3 ( 6439,)
9,7/117 10,
2,87 17 3,
17,7/137 16,
,1/13/ 0,
23, O/ 37 ,37
3,17 37 ,05
17,47 27 17,
l.O/ 27 1,
35.69
7,
15.
.33
16,4
.73
3,26
1091,1
4,72
1,01
.12
.52
174,0
,75
6,51
868,
6*27
698,5 (27,5)
558,8 (22.0)
36.7 ( 98.0)
13843.
105,9 ( 3739.)
15.8/11/ 16,
2,8/ 17 3.
29,57137 27.
.2/137 0,
30,97 37 ,51
2.57 37 .04
23.67 27 24,
,97 2/ 1.
25,97
13,
26,
,47
22,7
,80
3,21
920,8
3.80
1,26
.14
.56
161.0
.66
6,04
505,
5,72
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L7100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICIPATES G/KM
STABILIZED
3-BAG
173,6
6,50
,13
,56
,72
.211
C4-BAG)
( 0,0)
( 0,00)
( 0.00)
( 0,00)
( 0,00)
< 0.000)
-------
FTP
f~i P" '""• 1 I • "•" •""*
REa'JL. I a
PROJECT
11-5310-001
TEST NO, 63BL-2 R'JN
VEHICLE MODEL 80 VU RABBIT
ENGINE 1.5 L( 90, CIIO L-4
TRANSMISSION A3
BAROMETER 741,17 KM HG(29,13 IN HG)
RELATIVE HUMIDITY 49, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF F MH, H20(IN, H20)
BLOWER INLET P MM, H2CUN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STt., CU* METRES (SCF)
HC SAMPLE HETER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RAMBE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
to
i
HC
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 63BL-2
BAROMETER MM HG 741,2
HUMIDITY G/KG 8.0
TEMPERATURE DEG C 21,7
7 ."}'?. /g.-'.
BAG CART^NCC 1
r? '•/•«. i r** V i i"t •r'-
J ; Ixb nu * -;
PMC ^Qt "I
DRY BULB TEHF, '
AB3, HUMIDITY
1
COLD TRANSIENT
D.V Ui"!/!\U
ST*TjT' T
i Hjrfit-i
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5,1 KU< 6.8 HP)
DIESEL EM-408-F
ODOMETER 6463, KM( 4016, MILES)
HOX HUMIDITY CORRECTION FACTOR ,92
HOT TRANSIENT
698
558
36
106
20,
4,
36,
•i
i ,
35 ,
2,
24,
1,
,5 (27.
.3 (22,
,7 ( 98
13853,
5)
0)
.0)
,2 ( 3748,)
8/1 1/
5/ I/
67137
5/137
6/ 37
67 3/
5/ 27
47 27
22.26
16.
31.
.56
23.2
1.01
3.88
1085.9
4.32
1.81
.17
.67
186,8
,74
7,01
505,
5.81
21.
5,
34.
1.
,60
,04
25.
1.
693
>r cr rs
J JO
35
183
11,
3.
20,
1,
22,
n
jL. *
16,
1,
t w \ *i. / *
,8 (22,
,0 ( 95
23339,
,3 C 64
871 1/
57 17
3/137
27 137
27 37
77 37
77 27
A/ 9/
37,00
8,
17.
.32
15.3
,89
3.55
1070.5
4,94
1,18
,14
,57
170,7
,79
6,40
868,
6,27
rr x
0)
,0)
71.)
12,
4,
18,
1.
,36
,04
17,
1.
698
558
35
106
17,
3,
32,
,
32,
2.
23.
1,
,5 (27.
.8 (22.
,6 ( 96
13875,
5)
0)
.05
.5 ( 3762.)
7/117
5/ I/
8/137
6/13/
2/ 37
67 37
17 27
27 27
24.83
14.
29.
.50
21,9
,88
3.54
969,3
4.11
1,45
,15
,61
166,8
,71
6.26
505.
5,81
18.
4,
30,
1 1
,54
,04
23.
1.
CARBON DIOXIDE G7KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
173,0
6,49
,15
,60
,76
(4-BAG)
0,0)
0,00)
0.00)
0.00)
0.00)
0,000)
-------
TEST HO* 63BL-3 RUN
VEHICLE MODEL 80 VU RABBIT
ENGINE 1.5 L( 90. CID) L-4
TRANSMISSION A3
BAROMETER 739.14 MM HBC29.10 IN HO)
RELATIVE HUMIDITY 50. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20JIN* H
BLOWER INLET P MM. H2G(IN,
BLOWER INLET TEMP. HEG. Ci
SLOWER REVOLUTIONS
HC SAMPLE METERXRAH6E/PPH
HC BCKGRD HETER/RANGE/PPH
CO SAMPLE HETER/RANGE/FF'M
CO BCKGRD Hh.TER/RANGE/FFH
C02 BCKGRD METERXRANGEXFCT
NOX SAMPLE METERXRANGEXPPM
NOX BCKGRD METERXRANGEXPPM
b DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMSXKM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMSXKM
FUEL CONSUMPTION BY CB LX100KM
RUN TIME - SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 63BL-3
BAROMETER MM HG 739.1
HUMIDITY GXK6 3.9
TEMPERATURE DEG C 22.8
tfl
i
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
VEHICLE NO.63
DATE 3/26/30
BAG CART NO. 1
DYND NO. 2
CVS NO. 3
DRY BULB TEMP. 22.S DEG C(73,0 DEG F)
ABS. HUMIDITY B.9 GM/KG
TEST WEIGHT 1077. KG( 2375. LBS)
ACTUAL ROAD LOAD 5.1 KU( 6.8 HP)
DIESEL EM-408-F
ODOMETER 6484. KM( 4029. MILES)
NOX HUMIDITY CORRECTION FACTOR .94
COLD TRANSIENT
STABILIZE!!
HOT TRANSIENT
711*2 ( 2 8 »
(TCTQ Q ('•"•}•">
a35.*6 ("96
13864,
0)
0)
.0)
106,1 ( 3747.)
22, 0X1 IX
4, IX IX
34.8/13X
.7X13X
36. IX 3X
2,7/ 3X
22, 3X 2X
.7X 2X
21.93
18,
30.
.57
21.6
1.10
3.75
1100,5
4,14
1,59
,19
,66
193,9
,73
7,27
IT ACT
5,68
22,
4,
32,
1,
,61
.04
22.
1.
711.2 (28,0)
558,8 (22,0)
35.0 ( 95.0)
23836,
182,7 ( 6450.)
11.SX11X 12,
3.7X IX 4.
17.9X13X 16,
.6X13X 1.
22. IX 3X ,36
2,6X 3X ,04
14, 5X 2X 15,
,2X 2X 0,
37.20
8,
15.
.32
14.3
.87
3.19
1066.2
4.71
1.12
.14
.51
170.7
.75
6,39
868.
6.25
711.2 (28.0)
558.8 (22.0)
38.3 (101.0)
13853.
105.5 ( 3724,)
19.0X11X 19.
3.7X IX 4.
32.9X13X 30.
.4X13X 0.
31. 7X 3/ .53
2.5/ 3/ .04
21. 8X 2X 22.
.!/ 2/ 0.
25.24
15.
29.
,49
21,7
,94
3,54
944,8
4.13
1.33
.16
,61
162.9
.71
6,11
505.
5,80
CARBON DIOXIDE 6/KM
FUEL CONSUMPTION LX100KM
HYDROCARBONS (THC) 6/KM
CARBON MONOXIDE GXKM
OXIDES OF NITROGEN GXKM
PARTICULATES GXKM
STABILIZED
3-BAG
173,3
6,50
.16
.57
.74
,214
(4-BAG)
( 0,0)
< 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
TEST NO. 61TU-1 RUN
VEHICLE MODEL 79 MERCEDES BENZ
ENBINE 3,0 L<183. CID) 1-5
TRANSMISSION A3
BAROMETER 740.41 MM HG(29,15 IN HG)
RELATIVE HUMIDITY 60, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
HC
HC
CO
CO
CO
CO?
BLOWER DIP P MH, H20CIN. H20)
BLOWER INLET P MM, H20(IN. K20)
BLOWER INLET TEMP, DEG, CCDE6,
BLOUER REVOLUTIONS
TOT FLOW STB* CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/F'FM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61TU-1
BAROMETER MM HG 740,4
HUMIDITY G/KG 9,6
TEMPERATURE DEG C 21,1
F)
VEHICLE NO. 61
DATE 5/ 2/SO
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP. 21,1 DEG C(70,0 DEG F)
ABS. HUMIDITY 9.6 GM/KG
1
COLD TRANSIENT
711,2 (28,05
571.5 (22,5)
36,7 ( 98.0)
13881,
134,7 ( 4758,)
13,1/li/ 13,
3,0/ I/ 3.
26.3/13/ 24,
.4/13/ 0.
44,57 3/ ,76
2.S/ 3/ .04
,27 2/
17,50
10,
23,
.72
25.0
,30
3.53
1780,4
6.21
1.61
.14
,61
306,7
1.07
11,46
506.
5.81
0,
STABILIZED
711,2 (28,0)
571,5 (22,5)
33,9 ( 93,0)
23830,
232,4 ( 8205.)
8,2/117 8,
2.8/ I/ 3.
15,4/13/ 14,
.3/13/ 0,
25.7/ 37 .42
2,6/ 37 ,04
15,27 27 15,
.17 27 0,
31.76
6,
13.
.38
15.1
.74
3.51
1622.2
6.47
1.30
TEST WEIGHT 1814, KG( 4000, LBS)
ACTUAL ROAD LOAD 9,7 KU( 13.0 HP)
DIESEL EM-408-F
ODOMETER 6943, KM( 4314, MILES)
NOX HUMIDITY CORRECTION FACTOR ,96
HOT TRANSIENT
711,2 (28,0)
571,5 (22,5)
35,6 ( 96,0)
13868,
134,9 ( 4762.)
8.5/117 9,
2,87 17 3,
19,8/137 18.
,1/137 0.
38,07 37 ,64
2.77 37 ,04
25,37 27 25,
.27 27 0,
20.83
6.
17.
.60
25,1
.46
2,66
1485.0
6.25
1,27
,12 ,08
,56 ,46
260,7 257,0
1.04 1,08
9,74 9,59
868, 505,
6,22 5.78
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
269.2
10.06
,11
,54
1.06
.226
(4-BAG)
( 0.0)
( 0,00)
( 0,00)
( 0,00)
( 0.00)
( 0.000)
-------
to
I
TEST NO. 61TU-2 RUN
VEHICLE MODEL 79 MERCEDES EENZ
ENGINE 3.0 L<183. CUD 1-5
TRANSMISSION A3
BAROMETER 739.65 MM HG<29.12 IN HG)
RELATIVE HUMIDITY 33. F'CT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM, H2CKIN. H20)
BLOWER INLET TEMP. DEG, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU» METRES(SCF)
HC SAMPLE METER/RAMGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RAMGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
o CQ2 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/FPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61TU-2
BAROMETER MM HG 739.6
HUMIDITY B/KB 7.1
TEMPERATURE DEG C 23.9
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5316-001
VEHICLE NO.61
DATE 5/ 5/SO
BAG CART NO, 1
DYNQ NO, 2
CVS NO, 3
DRY BULB TEMP. 23,? DEG CC75.0 BEG F)
AES. HUMIDITY 7.1 GH/KC
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-408-F
ODOMETER 6980. KM( 4337. MILES)
NOX HUMIDITY CORRECTION FACTOR .89
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
693*5 (27.5)
553.3 (22,0)
36.7 ( 98.0)
13379,
134.9 ( 4765.)
11.3/11/ 11,
2,77 17 3,
23,8/137 21.
,4/13/ 0,
46.67 37 .80
3,17 3/ .05
28.87 27 29,
1.17 2/ 1.
16,64
9,
20,
,76
27.8
,68
3.20
1871,0
6.41
1.08
.12
.55
322.1
1.10
12.03
506.
5,31
693.5 (27,5)
553,3 (22,0)
35.6 ( 96.0)
23764,
231.4 < 3172.)
7*5/117 3,
2,57 17 3,
13.9/13/ 12,
.37137 0,
27.87 11 .46
3,3/ 11 .05
17.77 27 18.
1,27 27 1.
29.22
5.
12.
.41
16.5
,69
3,16
1728,1
6,55
1.39
,11
,51
276,4
1.05
10.32
866.
6.25
698.5 (27.5)
558.8 (22.0)
36.1 ( 97.0)
13876.
135,0 ( 4767.)
7.6/117 8.
2,57 17 3,
17.8/13/ 16.
.2/13/ 0.
38.67 37 .65
3.17 37 ,05
28.47 27 28,
1.27 27 1.
20.49
5,
15,
,61
27.3
,41
2,39
1499,4
6,29
1,26
.07
,41
258,3
1,08
9.64
506.
5,80
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
280,9
10,49
,10
.49
1.07
.213
(4-BAG)
( 0.0)
( 0,00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO. 61TU-3 RUN
VEHICLE MODEL 79 MERCEDES BENZ
ENGINE 3,0 LU83. DID) 1-5
TRANSMISSION A3
BAROMETER 738*53 MM HG(29,03 IN HG/
RELATIVE HUMIDITY 60. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, H2G5
BLOWER INLET P MM, H2C(IN. H20)
BLOWER INLET TEMP. BEG, CCDEG, F
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF5
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CD BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
w MOX SAMPLE METER/RANEE/PFM
' MOX BCKGRD METER/RANGE/PPM
w DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 61TU-3
BAROMETER MM HG 738.6
HUMIDITY G/KG 9.6
TEMPERATURE DEG C 21.1
VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
VEHICLE NO*51
BATE
6/BO
BAG CART NO,
DYNO HO.
CvS NO,
DRY BULB T
ABS. HUMII
:OLD TRANSIENT
673.1 (26.5)
558,8 (22,05
36.1 ( 97,05
13862.
134,7 ( 4757.)
ll.l/ll/ 11.
jL t
22,
0.
24.1/13/
.2/13/
44.0/ 3/ ,75
3.0/ 3/ ,05
27. 5/ 2/ 28,
1,7/ 2/ 2,
17,73
9,
21,
,71
25.9
.69
3.24
1749*6
6.44
1.49
.12
.56
304.6
1.12
11,38
505.
5.74
21.1 DEG C(7C.O DEG F
9,6 GM/KG
STABILIZED
TEST WEIGHT 1814. KGC 4000. LBS)
ACTUAL ROAD LOAD 9.7 KU( 13.0 HP)
DIESEL EM-40S-F
ODOMETER 6997. KM( 4348. MILES)
NOX HUMIDITY CORRECTION FACTOR .97
HOT TRANSIENT
£73.1 (25*55
"^P 0 ,' ^T ". i
LJljO.lJ '. *_ ^ , W /
34.4 ( 94.0)
23776.
231.7 ( 3181.)
7.2/11/ 7.
2.8/ I/ 3.
14.8/13/ 13.
.2/13/ 0.
26. O/ 3/ .43
2,5/ 3/ .04
16. 3/ 2/ 16,
.8/ 2/ 1.
31.38
5.
13.
.39
15.5
.60
3.38
1646.1
6.64
1.36
.10
.55
268.3
l.OB
10.02
867.
6.14
673.1 (26.5)
558.8 (22.0)
36.1 ( 97.0)
13855.
134.6 ( 4754.)
8.0/ii/ 8.
2.S/ I/ 3.
17.9/13/ 16.
.1/13/ 0.
37. 5/ 3/ ,63
2.3/ 3/ .04
26. 2/ 2/ 26,
»5/ 2/ 1.
21.14
5.
15.
.60
25.7
.41
2,39
1474.0
6.39
1.29
.07
.42
256.2
1,11
9.56
505.
5.75
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
272.5
10.18
.10
.52
1.10
.230
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
JC'gT l\|n .iTT||_1
VEHICLE'MODEL ' so OLDS DELTABB
ENGINE 5,7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 745,24 m HG(29,34 IN HG)
RELATIVE HUMIDITY 40, F'CT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP F MM. H20(IN. H20)
BLOWER INLET P MM, H20CIN. H2C)
BLOWER INLET TEMP, DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PFM
HC BCKGRD METER/RANGE/PFK
CO SAHPLE METER/RANSE/PPM
CO BCKGRD HE~ER/F;ANGE/?PM
C02 SAMPLE KETER/RANGE/FCT
C02 BCKGRD METER/RANGE/FCT
„ NOX SAHPLE HETER/RANGE/PPH
¥ NOX BCKGRB HETER/RANGE/FPM
H DILUTION FACTOR
•* HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 62TU-1
BAROMETER MM HG 745,2
HUMIDITY G/KG 6,4
TEMPERATURE DEG C 21.1
DATE 4/ 4/80
BAG CART NO, 1
DYNG MO, 2
CVS NO, 3
T; D V p! !: I? T'"';.'-. D O 1
i' f-. T D U..- i,- i CI i ' x. j. i
AlrC L}L!MTT:TTV i :
h i,: ^ * H vJ i I J. i- J, ! . (J r '
COLD TRANSIEN1
STABILIZED
DIESEL EM-408-F
ODOMETER 6920, KM(
4300, MILES)
NOX HUMIDITY CORRECTION FACTOR ,88
HOT TRANSIENT
5r>r\ rr / '•.— « IT l
7 D » ij \ *: / * j i
t^.r-Q O ,' T^ ,n, \
t_>b/C*w \ £, x. t V /
37,3 (100,0)
13971,
136,6 { 4822,)
34, 1/1 1/ 34,
2.5/ I/ 3,
36.5/13/ 33,
,1/137 0,
45, 9/ 3/ ,79
2,7/ 3/ ,04
18. O/ 2/ 18,
,5/ 2/ 1.
16,85
32,
32,
,75
17,5
2,50
5,15
1874,9
4,01
2,52
,43
.89
322,1
,69
12.09
506,
5,82
698,5 (27,5)
558,8 (22,0)
36,7 ( 98.0)
238G4.
233,3 ( 8238.)
15,8/il/ 16,
2,5/ I/ 3,
19.6/13/ 17,
,1/13/ 0,
29, 6/ 3/ ,49
2.3/ 3/ ,04
14. 2/ 2/ 14,
,5/ 2/ 1,
27,25
13.
17.
,45
13,7
1.81
4.60
1942,1
5,36
1.39
,29
.74
311,7
,86
11,67
868,
6,23
698.5 (27.5)
558,8 (22.0)
37,8 (100,0)
13867,
135,7 ( 4792,)
26.S/11/ 27.
2.5/ I/ 3,
24.1/13/ 22,
.1/13/ 0.
40. 3/ 3/ .68
2,6/ 3/ ,04
1B,4/ 2/ IS,
,5/ 2/ 1.
19,47
24,
21.
.65
17,9
1,91
3.31
1604.0
4,07
1,36
,33
.58
279,3
.71
10.46
506.
5.74
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN C/KM
F'ARTICULATES G/KM.
STABILIZED
3-BAG
305,0
11,43
.33
,72
,78
,270
(4-BAG)
( 0,0)
( 0,00)
( 0.00)
( 0,00)
( 0,00)
( 0.000)
-------
td
i
TEST NO. 62TU-2 RUN 1
VEHICLE MODEL ^ 30 OLDS DELTA3S
TRANSMISSION'
BAROMETER 735.03 MM hG(28,94 IN H3)
RELATIVE HUMIDITY 42, PCI
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P
BLOWER INLET
MM. H20CIN, H2G)
P MM. H20(IN, H2G)
BEG. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB. CU, METRES(SCF)
HC SAMPLE MEPER7RANGE7FPM
HC BCKGRD HETER/RAN3E/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE7PPM
C02 SAMPLE METER/RftNGE/FCT
C02 BCKGRD METER/RANGE/FCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 62TU-2
BAROMETER MM HG 735.1
HUMIDITY G/KG 11.6
TEMPERATURE DEG C 30.0
FTP VEHICLE EMISSIONS RESULT
PROJECT 11-5310-001
VEHICLE HC.62
DATE 47 7/30
BAG CART NO. 1
BYNO NO. 2
CVS NO, 3
r- V ' \; *"*
ui'i/ Ku
COLD TRANSIENT
STABIL
TF. = 1 HEIGHT 1928. KG( 4250. LBS)
•:;.:Ljfci_ ROAD LOAD 9.1 KU( 12.2 HP)
DIESEL EM-408-F
ODOMETER 6952. KM( 4320. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.03
HOT TRANSIENT
ZOO I~ / ^ ~T ^ \
6rd. j (Z/ . jj
553. 8 (22*0)
• 36,7 ( 98.0)
13S5Q.
133.6 ( 4716.)
36. 5/1 17 36.
3. I/ I/ 3.
37,8/137 35.
,3/137 0.
46.67 37 .80
2.37 37 ,04
15.07 27 15.
.27 27 0.
16.56
34.
33.
.77
14.8
2.59
5.21
1880.3
3.90
3.52
.45
.90
323.8
.67
12.15
505.
5.81
/on cr / t~i~r r-\
6 7 O - vJ \ *_ / » wf /
558.6 (22.0)
37.8 '.100*0
23816,
229.4 ( 8099.)
19 .9/1 I/ 20.
3.2/ 17 3.
21.17137 19.
.47137 0,
30.47 37 .50
2.47 37 .04
11.37 2/ 11.
.27 27 0.
26.45
17.
18.
.47
11.1
2.22
4.81
1963.2
5.02
1.43
.36
.78
317.5
.81
11.90
868.
6.18
698.5 (27.5)
558.8 (22.0)
37.2 ( 99.0)
13839.
133.8 ( 4725.)
19.3/117 19.
3.27 17 3.
26.57137 24.
.4/137 0.
41.57 37 .71
2.57 37 ,04
15.27 27 15.
.37 27 0.
18.87
16.
23.
.67
14.9
1.26
3.56
1640.4
3.93
1.29
.22
.61
283.3
.68
10.60
504.
5.79
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) 6/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
309.4
11.59
.34
.76
.75
.307
(4-BAG
( 0.0
( 0.00
( 0.00
( 0.00
( 0,00
( 0*000
-------
CTi
TEST NO. 62TU-3 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5.7 L(350, CID) V-8
TRANSMISSION A3
BAROMETER 746,51 MM HG(29.39 IN HG)
RELATIVE HUMIDITY 13, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOUER DIP P MM, H2GCIN, H205
BLOWER INLET P MM, H20: IT.J, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 BEG
ABS, HUMIDITY 2,5 GM/K3
1
COLD TRANSIEN1
STABILIZED
TEST WEIGHT 1928, KG( 4250, LBS)
ACTUAL ROAD LOAD 9,1 KU< 12,2 HP)
DIESEL EM-40S-F
ODOMETER 6973. KM( 4333, MILES)
NOX HUMIDITY CORRECTION FACTOR ,79
HOT TRANSIENT
/ n n rr / f~, ~t cr v
U 7 3 , J >, i / , J J
558,8 (22,0)
37,8 (100,0)
13860,
136.0 ( 4301,)
31, 3/1 I/ 31.
2,17 I/ 2,
35.3/13/ 32.
,2/13/ 0.
45. 7/ 3/ ,78
2, 1/ 3/ ,03
1S,6/ 2/ 19,
.8/' 2/ 1,
16,94
29,
31,
,75
17,8
2,30
4.98
1878.7
3.65
2.09
,40
.86
323.5
.63
12.13
505.
5.81
6n o c / f~< -» i- ••
7 fa , v,1 l. i. / , J 1
553,8 (22,05
37, S (100,0)
23826,
233,8 ( 8254,)
15, 6/1 1/ 16,
2, I/ I/ 2,
19.9/13/ IS,
,1/13/ 0,
29, 7/ 3/ ,49
1.8/ 3/ ,03
14, 4/ 2/ 14,
,!/ 2/ 0,
27,15
14.
17,
,46
14,3
1,83
4,72
1985.3
5.03
1.36
.29
.76
317,7
.31
11,90
868,
6,25
698.5 (27,5)
558,8 (22,0)
37,8 (100,0)
13841.
135,8 ( 4794.)
15,3/il/ 15,
2, I/ I/ 2,
24.2/13/ 22.
,1/13/ 0.
39, 6/ 3/ ,67
2, I/ 3/ ,03
18, 5/ 2/ 19.
,2/ 2/ 0.
19,88
13.
21.
,64
18.3
1,04
3.35
1590.6
3.74
1.48
.18
,58
273,4
.64
10.22
505.
5,82
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
306.7
11.49
.28
.73
.72
.258
(4-BAG)
( 0.0)
( 0,00)
( 0,00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO, 63TU-1 RUN 1
VEHICLE MODEL SO VW RABBIT
ENGINE 1*5 L( 90. CID) L-4
TRANSMISSION A3
BAROMETER 746*00 MM H3C29.37 IN KG/
RELATIVE HUMIDITY 20, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP F MM, H2Q(IN, H20)
BLOWER INLET p MM, H2u(IN, H20)
BLOWER INLET TEMP* DE8* C(DEG* F)
BLOWER REVOLUTIONS
1
TOT
HC
HC
CO
CO
C02
CQ2
NOX
NOX
FLOU STD, CU, METRES (3CF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
BCKGRD METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
£ DILUTION FACTOR
HC
CO
C02
NOX
HC
CO
C02
CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 63TU-1
BAROMETER MM HG 746.0
HUMIDITY G/KG 3.8
TEMPERATURE DEC C 24,4
VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
VEHICLE NO.=3
DATE 4/ 4/80
Ei. r-. r* * <-. -r t}.-. 4
i-U3 UfiP. ! flu , 1
DYNG NO, 2
CVS NO* 3
DRY BULB TEMP, 23,4 DEG C<7£,0 DEE
A3S* HUMIDITY 3*9 GM/KG
'd IABILIZED
TEST WEIGHT 1077. KG( 2375, LBS)
AC FUH;. ROAD LOAD 5,1 KU( 6,8 HP)
DIESEL EM-408-F
ODOMETER
KM( 4301, MILES)
NOX HUMIDITY CORRECTION FACTOR .82
HOT TRANSIENT
698*5 (27*5!
553,3 (22*0)
35,6 ( 96*0)
13860,
107*2 ( 3784*)
19,1/il/ 19,
2.0/ I/ 2,
3 4. 0/1 3/ 31.
,1/13/ 0,
35* I/ 3/ ,59
2.4/ 3/ ,04
24, 8/ 2/ 25,
,5/ 2/ 1.
22,62
17,
30,
,55
24,3
1,06
3,79
1084,1
4,06
1.74
.18
.65
187,2
,70
7,02
505.
5.79
f n Q ~ f n~7 tr '•
O 7 O * ^ \ £ / * J ,'
cr r: Q Q i") n r\ '-,
iJ iJ Q *• U V *- *~ * \j • f
36,1 ( 97,05
23816*
134,0 ( 6495 )
11, 3/1 if 11
2,4/ I/ 2
16*7/13/ 15
,1/13/ 0
22. 4/ 3/ ,36
2. I/ 3/ .03
17. O/ 2/ 17,
,3/ 2/ 0.
36,69
9.
14.
,33
16,7
,95
3.10
1116.3
4,79
1.15
,15
,50
178,3
,77
6,68
868,
6,26
698,5 (27.5)
558,8 (22,0)
36,1 ( 97,0)
13848,
107,0 ( 3777.)
19,2/H/ 19.
2.4/ I/ 2.
29.1/13/ 26.
*1/13/ 0.
31, 5/ 3/ .52
2.2/ 3/ .03
23, 8/ 2/ 24.
,3/ 2/ 0,
25.43
17.
26,
,49
23.5
1.04
3.21
960.0
3.92
1.29
.18
.55
165.5
.68
6,21
505,
5,80
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
176.6
6.62
.17
.54
.73
.218
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
( 0,000)
-------
ro
i
M
oo
TEST NO, 63TU-2 RUN 1
VEHICLE MODEL 80 VU RABBIT
ENGINE 1,5 L( 90. GIB) L-4
TRANSMISSION M4
BAROMETER 734.82 MM HG(23*93 IN HG)
RELATIVE HUMIDITY 62, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM* H20(IN, H20)
BLOWER INLET P MM* H2D(IN* H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CD SAMPLE METER/SANGE/PPM
CO BCKGRD METER/RANGE/PPM
CQ2 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE hETER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
CG2 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KH
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 63TU-2
BAROMETER MM HG 734,3
HUMIDITY G7KG 12.0
TEMPERATURE DEG C 23.9
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
VEHICLE NO,63
DATE 47 7780
BAG CART NO* 1
DYNG NO* 2
CVS NO* 3
DRY BULB TEMP. 23,9 DEG 0(75*0 DEO F)
ABS* HUMIDITY 12*0 GM/KG
COLD TRANSIENT STABILIZED
m
DIESEL EM-408-F
ODOMETER 6949. KM( 4318, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,04
HOT TRANSIENT
693*5 (27,5)
558,3 (22,0)
36*1 ( 97,0)
13863,
105,4 ( 3720 )
22, 3/1 I/ 22
3,67 I/ 4
36,S/13/' 34
,7/137 1
35,27 37 ,59
2.47 37 ,04
20,77 27 21,
,77 27 1.
22,53
19,
32,
,55
20.0
1,14
3,94
1069.3
4.21
1.66
.20
.68
184.9
.73
6.94
505.
5.78
698,5 (27.5)
558,6 (22,0)
37.2 ( 99,0)
23S45,
ISO, 9 ( 6387,)
13,57117 13,
3,67 17 4,
20,47137 13,
,3/13/ 0,
23. O/ 3/ ,37
2,57 37 .04
14.97 27 15,
,57 27 1,
35,63
10,
17.
.34
14,4
1.04
3.66
1112.1
5.20
1,24
.17
.59
177.8
.83
6.67
368.
6.26
69S.5 (27.5)
558.8 (22.0)
36.7 ( 98,0)
13839,
105,1 ( 3710,)
19,87117 20.
3.67 17 4.
33,2/137 30,
,2/137 0.
32*17 37 ,53
2.77 37 ,04
21,37 27 21.
,57 27 1.
24.90
16,
29.
,49
20.8
.99
3,56
949.5
4,36
1.43
,17
.61
163,3
.75
6.13
504,
5.82
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
175.3
6.58
,17
.61
.79
,229
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0.00)
( 0,000)
-------
TEST NO, 63TU-3 RUN 1
VEHICLE MODEL SO VW RABBIT
ENGINE 1,5 L( 90, CID) L-4
TRANSMISSION A3
BAROMETER 747,27 MM HG(29.42 IN HG)
RELATIVE HUMIDITY 11. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. H20)
BLOWER INLET P MM, H2C(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOU STD. CU, METRES
-------
TEST NO, 63TU-4 RUN 1
VEHICLE MODEL 30 VU RABBIT
ENGINE 1,5 L( 90. CID) L-4
TRANSMISSION M4
BAROMETER 733,30 HM HG(23,S7 IN HG>
RELATIVE HUMIDITY 63, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP
BLOWER INLET
HM. H2CKIN. H205
- MM, H20(IN> H20)
NJ
O
BLOWER INLET TEMP, DEG, C\BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STIU CU, METRES(SCF)
HC SAMPLE HETER/RANGE/PPM
HC BCKGRH HETER/RANGE/PPH
CO SA?
-------
APPENDIX C
PARTICULATE CONTROL SCREENING EVALUATION
WITH THE MERCEDES
-------
FTP
TFPT WO.
''
A171-1 PIIW 1
at\ MFprrnrq
~
RFW?
TN R
BAROMETER 73?;?0 MM HR(2? 1
RELATIVE HllHTnTTY""Ai" 'PPT
RAR''pFQfil TQ '
PAG 'NUMBER
DESCRIPION
RI ni.iFp nip P MM, H?ruTN.
BLOWER INLET P MM;~H2ri(iN-~H2n)
w~ni.iFP riafFT TFMP! "'
BLOWER RESOLUTIONS
fnf pi ni,i
""§i
§!
li!
~9!
.47
'.ft*.
7P
147?
" "-6*
3! 2
'
1:36
.11
79
' '
TFCT UFTRHT 1P1A. J(B/ 4000- ' Rt})
ipfi'iAi"~pniifi i nan " cT? j
> 9/
9/y7"4P
"A."
is!
IZi
24:7
~ J4«;
. -
i.'
6738
1:3
•42
.'I
9
FUEL CONS'MPTnN f'/Vn'oKM.
HYDROCARBONS (THf)
CARBON MONOXJ™^
O.XIPE9 OF 'MTfpnrsF_w
STABILIZED
7-R4R
279 .'5
loTi?
~ " : 16
-Srt
i='o«
= 233
/4-PAR)
A'.'O)
0:66)
0-00)
6'66}
-------
FTP VEHICLE EMISSIONS RESULTS-6131C1 - EX-47 TRAP-lOkm
TEST HO: 4131C1
UFUTpi'F-'MnnFian Mrprrnrq RFM?
ENGINE~3:O'CTl07" ~r'ffiY~T-s~
' ~'
BAROMETER 738:8? MM HG(2?'0? TN HR)
RELATIVE HUMIDITY ?~*~
BAR" PFQUI T
RAR'NUMRFP
DESC
P!_ni.lFp TiTF P MM. H')n(TW.
BLO'/JER INLET P MM-'H^n/
BLOWER INLET TEMP • ^'EG • "r ( nFR~ ' p )
BLOWER REMOLUTTHkiP
f of "FLOW'STDI cu "METRES (srF)
wr CAMP! F 'MFTFP/PAMRF'/PP'M"'
ur Rr'^hpTi Mrtrp'/pAWRF'/ppM
CO SAMPLE MEtER/RANGE/PPM
CO BCkORI1 MEtER'RAN^E/PPM
C02 SAMP' E MEtEP/PAN^E/P^T
o C02 BCKGRD METER/RANRE/PCt
1 NOX SAMPLE METER/RANGE/PPM
00 NOX BCKGRP MEtER/RANGE/PPM
riri iiTTnij pArfnp .........
HC CONCENTRATION PPM
rn rnwrFw'Tp'ATTn'M PPM
C02 CONCENtRAtiON PCT
NOX CONCENTRAtlON PPM
HC MASS~GRAMS"~ ......
rn MAR^ GRAMS
rn-j MA55 RRAMP
Mnv MJiqc RPA'M'CJ
PARTICOLATE MASS GRAMS
HC GRAMS/KM
rn
rn-7 .
wnv GRAMS/KM
FUEL "CONSUMPTION BY CP L/IOOKM
pfiw~TTMF " "SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TFQT~MiiMRFP "
BA.ROMETER" MM HG 73?
HiiMTnfjv G/KG 13:1
TFMPFPATIIPF flFR'r ••>•> . B
TFCT METRHT i*»M: KG( 4000: LBS)
Arfi'iAi" RfiAn i nifi" o'T? K.u("i7:0 HP)
nfFBFf EM-408-F
nnnMFTFP 712$""KM( 4429: MILES)
npv RI ii R TFMP • T> fl riE:R r (77 0 r'Ff:! F)
ABS:"HUMIDITY 137i~OM/KO~NOX HUMIDITY CORRECTION FACT5R 1:0?
TlATTF 7/2/80
BAG~CART NO7 "1
DYNO'NO! 2
'jn'
1
COLD TRANSIENT
7QA.1 I.??. Si)
' '
i .A/I i /
24 s/ / 25:
~ll/ "li
22-
7 -44
186
"
.11
I7i5
9! 17
~
STABILIZED
711 •?
(22-4)
~
4
7:7/1 if 8:
Liil/13/ 14-i
2£:?'/~3/ :44
I A '. ZV 2/ i 6 :
"Iis/ 2/ ~2.'
70"?=;
4
14 ?
" '!AA
.11
'
PAO
HOT TRANSIENT
711.9 (Ofl.rt)
'
p.1/11/ fl.
5 IP'/"?'/ T!
18:
"n!
K9/"7/ .AA
[ioV TI/ '6^
;!i/ 2/ 2*7
'!§/ ?/ ~2 i
~"s7'
17:
9775
A.AA
:07
•47
B-4
l7l7
nrnvrnF
rnMcfiMpf 7nw
HYDROCARBON^ (THr)
CARBON iMONnXTTiF (?'/j(M
nYTTIFC HF"NTfpnRFN R/KJ4
PAPTTrilfATFC (3/ic'iyi
STABILIZES
7-TtA.R
''
1:17
:05S
/4-RAR)
( rt.6)
n7AA\
6
'
0:000)
-------
TFQT tin.
'''
A17ir9
PIIW 9
Mt'prrnrQ
~
RFM?
FTP VEHICLE EMISSIONS RESULTS-6131C2 - EX-47 TRAP-130 km
pc-n iFrr n-^pin-AAi
F Wn.
'
DATE
RAR~
DY~
TFPT MFTRHT 1B14. I
'"""«!pT "prt""
npv PHI R TFMP. 94.4 nFR r/7A.ft IFR F>
'''1?'7'RM~K-R~ "
NOX HUMIDITY CORRECTION FACTOR 1:03
RARwMRFP
DESCRIPTION
BLOWER nTF P MM: H20(IN: H20)
TM! FT p MM'. '
TMI~FT TFMp'j DEG-'CtDEGT F)
BLOWER REUOLL'tlONS
TOT "FLOW'ST D! CU:"METRES ( SCF )
HC SAMPLE "
lir prKRpr!
CQ SAMPLE MEtER/RANOE/PPM
rn Bri -04
:?/ 2/ 15:
• ?/ 2/ " 1 ':
797"l 4
i" '
14!
738
14-0
" ".in
1*04': (T
":27
.ift
.'Zi
RAO.
HOT TRANSIENT
716:3 (28:2)
563 !? (22^2)
~ ~~
13814:
134~o"( 47"*0- )
"o.'o/n" / " in! '
4 !=;>"?'/ "«;.'
10'.
"l:
:63
!fti
9.'
37:2/3/
~b.^'/ 7/
93! A'/ 9>
6
17.
7"!O
997p
-47
2-71
1 446-0
" *~04
"i24
:08
•47
9eI9.'9
"IT
§773
CARBON DIOXIDE
FUEL "CONSUMPT THM i" Vi'oOKM
HYDROCARBON^ (THr) R/KM
rapfinN' MnMriv Tiic R'/J
-------
VEHICLE EMISSIONS RESULTS-6131C3
P" --
- EX-47 TRAP - 230 km
TFQT Wn. A171T7 PIIM 9
UFHtri'F'Mnnn PA MFprVriFQ
FMRTMF~lYs"l 7 OA7"
PAGCAR~
'
TFCT I.IFTRHT 1014- KG( 4000: LBS)
6rfriai"~pnAn i nan" 9!? »ru? 13.A HP)
EM-40S-F
~~ MTI
BAROMETER 740:41 MM HG(29;15 IN HG)
PF|_ATTIIF uilMTTlTTY A7~ prf~~
PAG RE^i"11 TS
PAR~MfiMBFP
DESCRIPTION
BLOWER DIP P MM: H20(IN: H20)
sfnuFp TMI FT P MMY~H9n"/TwY~u9n)
BLOWER INLET TEMP i DEG; ~C(n^T P?
PI niJFp PFoni
Tnf"pi'ni,i
HC SAMPLE"
HC PCKGRD METER'FAN^E''PPM
CO SAMPLE MEtER/PANGE/PPM
rn Rrj^hpfi MFTFpVpAMRFVppM
fn9 SAM'PLF
o C02 PCKGRD
m NOX SAMPLE MEtFP/RANGE/PPM
NOX PCKGRD MEtER/RANGE/PPM
nTMiffrijj FArfnp
HC "CONCENtRATION PPM
rn rniJrFMTpi'TTnM PPM
C02 CONCENTRAtiON PCT
NOX CONCE.NTRATION PPM
HC '""
rn
C02 MASS GRAMS
NQX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
rn RPAMC/K.M
rno '
jSnv
FHFI ~rnw§ijMPTTnM py rp L/100KM
pflN~TTMF' "' """
MEASURED DISTANCE KM
RESULTS
TFQT~wi IMPFP ' " 61 31 r7
" MM HG 740:4
G/KG 12:9
' 9«?, ft
DRY BULB TEMP:
ARQ. iJUMTflTTY
COLD TRANSIENT
723:? <2B:5>
=;Io '. n i 22 • 4 )
"' ~
G C: G F)
nj44747. )
Tri.4/1 1 i / " i A- '
"" "
"=;
/ 7
/ 5V
V 5V
i7~7fl
" i: "
20.'
~71
ri'. 5
'49
3! 12
"
3042
" i . i o
1 1 .' 7S
T
(28:5)
{22-4)
34! 4 ("94. ri
" '9771? .
S
4!
-04
'
7 8/11/
7!^V"?V
4! 1/1 7/
-2/13/
~
't?/ 2/
32~44
4.' '
12:
777
177i
: 59
7. 91
1S77~4
A. 47
: 30
09
.e:9
2527^
1~04
9 : 43
A. 97
wnv HiiMinTTV mppFrrrnw FArrnp
HOT TRANSIENT
9. (28:5)
177.P (
"674/ii/
7!«?'/"?'/
""-3/13/
77!A/~7/
"7,'ftV iV
97 !R'/ 5V
~li§/ 5V
91~0
"=;?"
9. 77
°
8:
!
9
A. 17
" i 32
-07
[49
4 '4
i -09
-4
'
CARPON DInXTnE
FUEL " CO.NSUMPT I nN '"''10OKM
HYDROCARPONS (THC) G/KM
CARPON MONOXIDEG/KM
np"wTfpnRFw R/ifw
ATFQ R'/ifi4
STABILIZED
3-BAG
26^-7
~9l85
.-09
.•49
0:0)
0' 66 ?
OJ66)
6:66)
ft. Art
-------
FTP i.'EHTCLF FMTPPTHMC; PFPMI TP-6131C4 - EX-47 TRAP-POST GEN,
ppn IFPT iT_qqiA_Arii""
TEST NO: 6131C4 R"N *
UFMTprj: Mnnntin pFn"MFPPFnFQ
ENGINE 3:0~L7lB3~"rTJ:') L'~A'
TP,6MPMTPPTnN-A7~'
BAROMETER 743:97 MM HO (29. 29 IN HG)
RELATIVE Hi'MIDITY ^7" "
PAG ESULTS
'
DEIPTI
PI nUFP flip P MM H9n(TW.
BL^MER INLFT P MM ~H™(T .
BLOWER INLEt TEMP ! ^FR • "C ( nrrT F)
BLOWER REMOLJ 'tl ONS
fnf"pi'ni,i~cfr!~ ' '"~
UP' QAMPI '
tip fir'KRRn HFtER"'RANRF''/PPH
rn PAMF'i p MEtEpVpAWRF'/ppM
o rn JJp'KRPn HFfpp"/p'AMRE'/PPH
i PIT? RAMP' E MEtER^'AN*^ 'P^t
°^ rn9 PCK'GRD MrtER/RAN''E/pct
WRY fiAMF'i p MFTFp"/pAWRF/PPM
NOX BCKGRD MEtER/RANGE/PPM
DILUTION FACTOR .........
HC "CONCENTRAflON PPM
rn rnMrcMTP6'ffnw PPM
rrb rnMrFMTPAJTriw pry
Sny PnNrFMfpAtfnM PPM
Hr MASS~GRAMS"" ......
rn M6CQ RP&MC
Fn-3 J46Q5 RPAM§
wnv M&QC RRAMC
PARTICULAT E MASS GRAMS
MP RPAMQ/lfM
pn RRAMS/kM
RAM§/kM
PAMQ/hTM
p'riwciiMpTTnM RV PR i
TSF"""" " TcF
MEASURED DISTANCE KM
COMPOSITE RESULTS
fFQT~MiiMRFP " 6131C4
BAROMETER MM HG 744:0
ui !MT ii T T v' ' 'R /KG " 12.9
PF PEG C 26:7
VEHICLE N0.il
flATF P/9R/RA
BAG~CART~N"~' ~i
PYNO'NQ! 2
p()q"wn'7 3
nPV Rill B TFMP. 9A.7 TlFR P/RA.A FiFR Ft
1
COLP TRANSIENT
7A/1 1 / "7!
3iO/"^'/ ^~
26-3/13/ 24!
~1 7/17 / ~1 '.
23.-S/ 2/ 24
•?/ 2/ ~i-
17~01
"' 4~"
21 i
74
97'. n
-33
7! 39
A. 40
".•22
11 .OP
STABILIZED
711 •?
'O
'
2 -4)
'
d.Q/11/ =;.
1 :
~2i9/ 3/ i04
15!gV 9/ i*'
"i!ftV 9/ "?!
14.
3, 72
174.
"
.Aft
7Rft77
"~.\k
10- 4s
RAH."
A~1R
TEST HEIGHT 1814: KG( 4000: LBS)
&pfiiAi"~pnAn i nip 9~.j iriJ?"i7~n"
riTFPFT PMlZftR-F
" *- MILES)
NOX HUMIDITY CORRECTION FACTOR 1:08
7
HOT TRANSIENT
7QA.1 (97-B)
''
A. ft/11 /
5!s>"? V
19! 5/1 T"/
•7ft/
A.
7!
IP'.
"ft!
. A7
•04
94.'
"i!
4.
17!
7A7
977ft
~"i28
2:67
~
47
971 . 1
~
CARBON PIOXT^E R/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THr) R/KM
CARBON MONOXTpFR/KM
OXIDES OF NTTRnRFw R'/KM
PARTICULATES
STABILIZED
3-BAS
296:4
1 .17
.-033
(4-BA5
{ 0:0)
6! 66)
6! 66)
ft!ftft\
.-( 0:000)
-------
n
TEST NO. 6161C1 RUN 1
VEHICLE MODEL 30 MERCEDES BENZ
ENGINE 3.0 L(1S3. CID) 1-5
TRANSMISSION A3
BAROMETER 742.19 MM HG<29.22 IN HG)
RELATIVE HUMIDITY 51. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P Mil. H2Q(IN, i-120)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD* CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
COMPOSITE RESULTS
TEST NUMBER 6161C1
BAROMETER MM HG 742.2
HUMIDITY G/KG 9.8
TEMPERATURE DEG C 23.9
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11--5810-001
VEHICLE NO .(41
DATE 4/ 2/01
BAG CART NO. 1
DYNO NO. 2
CVS NO. 3
- TEXACO PARTICULATE TRAP
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-408--F
ODOMETER 7612, KM(
KG(
9,7
4000. LBS)
KW( 13.0 HP)
4730. MILES)
DRY BULB TEMP, 23.9 DEG CC75.0 BEG F)
ABS. HUMIDITY 9,0 GM/KG
7.
25.
2.
.80
.05
28.
1.
1
COLD TRANSIENT
711.2 (20.0)
571.5 (22.5)
36.1 ( 97.0)
13854.
135.0 ( 4767.)
10.0/11/ 10.
7.0/ I/
27.8/13/
1.9/13/
46.7/ 3/
3.3/ 3/
27.9/ 2/
,9/ 2/
16.60
3,
23.
,76
27,1
,27
3,63
1869.6
6.77
.57
,05
.62
320.4
1.16
11,96
505,
5.83
,976
STABILIZED
716,3 (20,2)
584,2 (23,0)
35,6 ( 96,0)
23784,
231,7 ( 81S2.)
8.1/11/ 3,
6,8/ I/ 7,
17.2/13/ 16.
1.6/13/ 1,
27.6/ 3/ .45
2,7/ 3/ ,04
17,2/ 2/ 17,
l.O/ 2/ 1,
29,42
2,
14.
,41
16,2
,21
3.74
1753.2
6,97
.36
.03
.59
278.6
1,11
10.40
866.
6.29
,979
NOX HUMIDITY CORRECTION FACTOR ,97
HOT TRANSIENT
716.3 (28.2)
534.2 (23.0)
36.7 ( 98.0)
13357.
134.7 ( 4758.)
3.8/11/ 9.
6.8/ I/ 7.
23.1/13/ 21.
2.1/13/ 2.
40.4/ 3/ ,69
3,0/ 3/ .05
27.3/ 2/ 27.
.9/ 2/ 1.
19,47
2,
19,
,64
26.4
,18
2,93
1582.8
6,61
.46
.03
.50
271,7
1,13
10.14
505.
5.83
.977
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
285.4
10.65
.04
.57
1.13
.072
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0,00)
( 0,00)
( 0.000)
-------
FTP VEHICLE EMISSIONS RESULTS - TEXACO PARTICULATE TRAP
PROJECT 11-5010-001
TEST NO, 6161C2 RUN 1
VEHICLE MODEL 80 MERCEDES BENZ
ENGINE 3,0 L(183, CID) 1-5
TRANSMISSION A3
BAROMETER 729,74 MM HG(28.73 IN I-IG)
RELATIVE HUMIDITY 51, PCT
BAG RESULTS""
BAG NUMBER
DESCRIPTION
BLOWER Dlf P MM, H20(IN, H20)
BLOWER INLET P MM, H20CIN. M20)
BLOWER INLET TEMP, DEG, C(DE6, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFr DRY
o
i
03
COMPOSITE RESULTS
TEST NUMBER 6161C2
BAROMETER MM HG 729,7
HUMIDITY G/KG 11.2
TEMPERATURE DEG C 26.1
VEHICLE NO,61
DATE 4/ 3/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 26,1 DEG C(79.0 DEG F)
ABS, HUMIDITY 11,2 GM/KG
TEST WEIGHT 1814. KG( 4000, LBS)
ACTUAL ROAD LOAD 9.7 KW( 13,0 HP)
DIESEL EM-465-F
ODOMETER 7643, KM< 4749, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,02
1
COLD TRANSIENT
698,5 (27,5)
563,9 (22.2)
37,2 ( 99,0)
13796.
132,0 ( 4660.)
9.6/li/ 10.
5,9/ I/ 6,
26.5/13/ 24,
,1/13/ 0.
47.6/ 3/ ,82
3,S/ 3/ .06
27.6/ 2/ 28.
l.l/ 2/ 1.
16,26
4.
23,
.77
26,6
.31
3,60
1851,8
6,81
,37
,05
,63
322*3
1,18
12,03
505,
5,75
,976
STABILIZED
711.2 (28,0)
571.5 (22.5)
36.1 ( 97.0)
23063.
228.2 ( 8058.)
7.6/11/
6,0/ I/
15.6/13/
,2/13/
27, 4/ 3/
3, I/ 3/
17. 5/ 2/
l.l/ 2/
29.66
\ 2.
• 14,
.40
16.4
,24
3,62
1686,8
7,28
,35
,04
,58
272.1
1.17
10,16
869.
6.20
.980
8,
6.
14,
0.
.45
,05
18.
1,
HOT TRANSIENT
701,0 (27,6)
569.0 (22,4)
37.8 (100.0)
13863.
132,3 ( 4673,)
8.6/li/ 9.
6.4/ I/ 6.
20.9/13/ 19.
,3/13/ 0,
40.O/ 3/ .68
3,3/ 3/ .05
26,2/ 2/ 26,
1,0/ 2/ 1.
19,69
3.
18.
.63
25.3
.19
2.81
1525.9
6,49
.23
.03
.49
266.2
1.13
9.93
505.
5,73
,977
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARDONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
280.9
10,48
.04
.57
1.16
,053
(4-BAG)
( 0.0)
( 0.00)
( 0,00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO. 6162C1 RUN 1
VEHICLE MODEL 00 MERCEDES 300SD
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 741.17 MM HG(29.10 IN HG)
RELATIVE HUMIDITY 46. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H2QCIN, H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NQX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC
CO
CO
CO?
n
i
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
COMPOSITE RESULTS
TEST NUMBER 6162C1
BAROMETER MM HG 741.2
HUMIDITY G/KG 9.7
TEMPERATURE DEC C 25.6
FTP VEHICLE EMISSIONS RESULTS
PROJECT ii-5810-001
VEHICLE NO.61
DATE 4/ 9/31
BAG CART NO. 1
DYNO NO. 2
CVS NO. 3
DRY BULB TEMP. 25.6 DEG C(78.0 BEG F)
ABS, HUMIDITY 9.7 GM/KG
- TEXACO PARTICULATE TRAP
1
COLD TRANSIENT
711.2 (28,0)
563.9 (22.2)
36.7 ( 98.0)
13874.
135.1 ( 4770.)
7,6/il/ 8.
5.0/ I/ 5.
26.7/13/ 24.
1.1/13/ 1.
45.5/ 3/ .78
2.9/ 3/ .04
26.4/ 2/ 26.
.7/ 2/ 1.
17.09
3.
23.
.74
25.7
.23
3,59
1828.4
6.44
.36
.04
,63
320,6
1,13
11,97
505,
5.70
.978
STABILIZED
711.2 (28,0)
571.5 (22.5)
33,9 ( 93,0)
23823.
232.9 ( 8224.)
6.4/11/ 6.
4.5/ I/ 5.
17.9/13/ 16.
2.0/13/ 2.
26.I/ 3/ ,43
2.8/ 3/ .04
17.3/ 2/ 17.
1.2/ 2/ 1.
31.23
2.
14.
.39
16.1
.27
3.84
1643.1
6.97
,31
.04
.63
267.5
1.13
9,99
868,
6,14
.981
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9,7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 7755. KM( 4819. MILES)
NOX HUMIDITY CORRECTION FACTOR .97
HOT TRANSIENT
711.2 (28.0)
571.5 (22.5)
37,2 ( 99,0)
13873,
134,9 ( 4762.)
6.9/11/ 7.
4.5/ I/ 5.
25.2/13/ 23.
4.7/13/ 4.
39.I/ 3/ .66
2.7/ 3/ .04
26.9/ 2/ 27.
1,3/ 2/ 1.
20.18
3.
18,
.62
25.7
.20
2.90
1535.3
6.41
,25
.04
.50
267.3
1.12
9.98
505.
5.74
.979
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3- BAG
278.4
10.40
.04
,59
1,13
.051
(4-BAG)
( 0.0)
( 0.00)
( 0,00)
( 0.00)
( 0.00)
( 0,000)
-------
FTP
VEHICLE EMISSIONS RESULTS - W.
PROJECT 11-5810-001
TEST NO, 6171C1 RUN 1
VEHICLE MODEL 80 MERCEDES 300SD
ENGINE 3,0 L(183, CID) L-5
TRANSMISSION A3
BAROMETER 7-44,73-MM MG(29,32 IN !IG>
RELATIVE HUMIDITY 60, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. 1120)
SLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP. BEG, CCDEG, F)
BLOWER REVOLUTIONS
TOT PLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER7RANGE/FCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CD L/lGOKh
RUN TIME
MEASURED DISTANCE KM
SCF> DRY
n
i
COMPOSITE RESULTS
TEST NUMBER 6171C1
BAROMETER MM IIG 744,7
HUMIDITY G/KG 12,6
TEMPERATURE BEG C 25.6
VEHICLE NO,61
BATE 4/17/01
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
R. GRACE PARTICULATE TRAP
TEST WEIGHT 1G14, KG( 4000, LBS)
ACTUAL ROAD LOAD 9,7 KW( 13,0 HP)
DIESEL EM-465-F
ODOMETER 7913, KM( 4917, MILES)
DRY BULB TEMP, 25,6 BEG C(78,0 DEC F)
ABS, HUMIDITY 12,6 GM/KG
6.
27.
4,
.79
,04
26,
1
COLB TRANSIENT
711.2 (28,0)
576,6 (22.7)
37,2 ( 99,0)
13073.
135,7 ( 4790.)
12,0/H/ 13,
6,2/ I/
29.2/13/
4.0/13/
45, 8/ 3/
2,6/ 3/
25, 7/ 2/
,9/ 2/
16.95
7,
23.
,75
24,9
,54
3.56
1861,3
6,88
,38
,09
,62
324,2
1,20
12.11
505,
5,74
,973
STABILIZED
711,2 (28.0)
576,6 (22.7)
35.0 ( 95,0)
23805,
233,6 ( 8248,)
10,5/H/ 10,
5,0/ I/ 5.
17.7/13/ 16,
3.0/13/ 3,
25,7/ 3/ .42
2.7/ 3/ ,04
16.I/ 2/ 16.
.7/ 2/ 1,
31.72
6,
13,
,38
15,4
,76
3.55
1624,4
7,35
,37
.12
,58
263,1
1,19
9,83
867,
6,17
.977
NOX HUMIBITY CORRECTION FACTOR 1,07
HOT TRANSIENT
711,2 (28,0)
576,6 (22.7)
38.3 (101.0)
13862,
135.3 ( 4777,)
9.47117
5.07 17
22.7/13/
3.3/13/
39, 3/ 37
2,77 37
25,67 27
,77 27
20.07
5.
17.
,63
24,9
,36
2.72
1549,2
6,88
,29
.06
,46
272,2
1.21
10.16
505,
5.69
,974
9,
5.
21,
3.
,66
.04
26.
1,
STABILIZED
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIBES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
278.2
10,39
,10
,56
1,20
,059
(4-HAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
( 0,000)
-------
TEST NO. 6171C2 RUN 1
VEHICLE MODEL 80 MERCEDES 30030
ENGINE 3,0 LUB3, CID) L-5
TRANSMISSION A3
BAROMETER 740,16 MM-HG(29,14 IN HG)
RELATIVE HUMIDITY 58, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. 1120)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG. C(DEG, P)
BLOUER REVOLUTIONS
TOT PLOU STD, CU, METRES(SCF)
SAMPLE METER/RANCE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANCE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
o
i
HC
HC
CO
CO
CO?
HC
CO
C02
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF* DRY
COMPOSITE RESULTS
TEST NUMBER 6171C2
BAROMETER MM HO 740,2
HUMIDITY G/KG 13.6
TEMPERATURE DEG C 27.2
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
VEHICLE NO,61
DATE 4/20/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 27,2 DEG C(81,0 DEG
ABS, HUMIDITY 13,6 CM/KG
- W. R. GRACE PARTICULATE TRAP
1
COLD TRANSIENT
711.2 (28,0)
571,5 (22,5)
37,8 (100,0)
13878,
134,2 ( 4730.)
11.4/11/ 11.
6,17 I/ 6,
27.5/137 27,
6,4/137 6,
44.97 37 ,77
3,57 37 ,05
22,77 27 23.
.17 27 0.
17,33
6.
21,
.72
22.8
.44
3,26
1766,8
6.46
,39
,08
,57
307,6
1.12
11,48
505,
5,74
,974
STABILIZED
711,2 (28,0)
571,5 (22,5)
35,0 ( 95,0)
23759,
230,8 ( 8149,)
9.7/117 10,
6,47 17 6,
20,6/137 19,
6,8/137 6,
26,97 37 .44
3,47 37 ,05
15,I/ 27 15,
,17 27 0,
30.21
4.
12.
,39
15.0
.47
3.34
1649.7
7.31
.33
.08
.54
267.0
1,18
9,97
868.
6,18
,977
TEST WEIGHT 1814,
ACTUAL ROAD LOAD
DIESEL EM-465--F
ODOMETER 7953, KM(
KG(
9,7
4000, LBS)
KW( 13,0 HP)
4942, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,10
HOT TRANSIENT
711,2 (28.0)
571,5 (22.5)
35.6 ( 96,0)
13859.
134,4 ( 4746.)
10,3/li/ 11,
6,9/ I/ 7,
24.6/137 22,
5,9/137 5,
40.57 37 .69
3.97 37 .06
25.67 27 26,
.37 27 0,
19,41
4,
17,
.63
25.3
.33
2,63
1551.0
7.18
.33
.06
,46
270.4
1.25
10,09
505.
5.74
.975
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIBEG OF NITROGEN G/KM
PARTICIPATES G/KM
STABILIZED
3-BAG
276.3
10.32
.07
.52
1.19
.058
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0,000)
-------
FTP
VEHICLE. CMISCIONG RESULTS - W. R. GRACE PARTICULATE TRAP
o
M
to
TEST NO, 6172C1 RUN 1
VEHICLE MODEL QO MERCEDES 3003D
ENGINE 3,0 L<183, CID) L-5
TRANSMISSION A3
BAROMETER 736,60 MM HG(2?,00 IN MG)
RELATIVE HUMIDITY 66, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P hM. H20(IN, H20)
BLOWER INLET P M. 1120(IN, 1120)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METCR/RANQE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANCE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE HASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/iOOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFf DRY
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE DEG C
6172C1
736,6
12,2
23.3
VEHICLE NO.61
DATE 4/23/31
BAG CART NO, 1
&YND NO, 2
CVS NO, 3
DRY BULB TEMP. 23,3 BEG C(74,0 DEG F)
ABC, HUMIDITY 12,2 GM/KC
TEST WEIGHT 1014, KG( 4000, LBS)
ACTUAL ROAD LOAD 9,7 KW( 13,0 HP)
DIESEL EM-465--F
OBQNETER 8237, KM( 5110, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,05
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
706
5
1
1
66
36
34
2,
4,
30,
4
o
.I
I,
6,
3,
5,
,
,1 (27,
,4 (22,
,7 ( 98
13878,
,2 ( 47
6/li/
// I/
0/13/
6/13/
8/ 3/
I/ 3/
2/ 2/
2/ 2/
16,55
8,
25,
,76
25.0
.63
3.94
1869,8
6.76
.37
,11
,69
326,2
1,18
12,19
505.
5.73
,971
S)
3)
,0)
37,)
13,
5,
28,
1,
.81
,05
25,
0.
706
566
35
230
8,
4,
18,
1,
27,
3.
15,
,
,1 (27,
,4 (22,
,0 ( 95
23817,
8)
3)
.0)
,9 ( 8152,)
1/1 1/
5/ I/
1/13/
7/13/
O/ 3/
4/ 3/
3/ 2/
I/ 2/
30,11
4,
15,
.39
15,2
.50
3.90
1657.8
7.07
.37
,08
.63
268.2
1.14
10.02
867.
6,18
,975
8,
5,
16,
2.
.44
,03
15,
0,
706
566
37
133
9,
5,
23,
1,
40,
3,
25,
,
,1 (27,
.4 (22,
,8 (100
13875,
8)
3)
.0)
,9 ( 4729.)
9/1 1/
7/ I/
8/13/
5/13/
5/ 3/
3/ 3/
O/ 2/
6/ 2/
19.42
4,
20,
,64
24,4
,34
3,08
1567.0
6,59
,32
,06
,54
273,1
1.15
10.20
505.
5.74
.972
10,
6,
22,
1,
,69
,05
25.
I ,
CARBON DIOXIDE B/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THC) G/'KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
G/KM
STABILIZED
3--BAG
281.6
10,52
,08
,62
1,15
,060
(4' -BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0.00)
( 0,000)
-------
TEST NO, 6171-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300 SD
ENGINE 3.0 L(183, CID) L-5
TRANSMISSION A3
BAROMETER 741.43 MM HG(29.19 IN HG)
RELATIVE HUMIDITY44, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN, H20)
BLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFf DRY
COMPOSITE RESULTS
TEST NUMBER 6171-2
BAROMETER MM HG 741.4
HUMIDITY G/KG 9.5
TEMPERATURE DEG C 26.1
n
i
OJ
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
VEHICLE NO.61
DATE 5/12/31
BAG CART NO. 1
DYNO NO. 2
CVS NO. 3
DRY BULB TEMP. 26.1 DEG C(79.0 DEG F)
ABS. HUMIDITY 9.5 GM/KG
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465--F
ODOMETER 8332. KM( 5177,
KG( 4000, LBS)
9,7 KW( 13.0 HP)
MILES)
NOX HUMIDITY CORRECTION FACTOR .96
1
COLD TRANSIENT
STABILIZED
711,2 (28,0)
569.0 (22.4)
37,8 (100,0)
13885.
135,1 ( 4771.)
16,0/H/ 16,
9,6/ I/ 10,
46.5/13/ 44.
22.5/13/ 21.
44. 8/ 3/ .77
3.4/ 3/ ,05
26, 7/ 2/ 27,
,6/ 2/ 1.
17,32
7,
23,
,72
26,1
,54
3,67
1777,8
6.49
1.88
.09
.64
307.8
1.12
11.50
506.
5.78
.979
711.2 (28,0)
574,0 (22,6)
36,1 ( 97.0)
23876,
232.8 ( 8219.)
12.5/11/ 13,
8,2/ I/ 8.
33.7/13/ 31.
19.0/13/ 17.
25. 9/ 3/ .42
3.3/ 3/ .05
15, 2/ 2/ 15.
,4/ 2/ 0,
31.34
5.
14.
.37
14.8
.62
3.77
1595.3
6,34
1.66
.10
.61
257.3
1.02
9.62
869.
6.20
.982
HOT TRANSIENT
711.2 (28.0)
569.0 <22.4)
38.3 (101.0)
13898.
135,0 ( 4760.)
12.5/11/ 12,
7.4/ I/ 7.
33.8/13/ 31,
14.2/13/ 13.
37.4/ 3/ ,63
3.0/ 3/ ,05
26.O/ 2/ 26.
,6/ 2/ 1.
21.14
5,
18,
,59
25.4
.42
2,88
1448.6
6.32
1.46
.07
.50
250.6
1.09
9.36
506.
5.78
,980
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) 6/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
265.9
9.94
.09
.58
1.06
.276
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO, 6171-3 RUN 1
VEHICLE MODEL 80 MERCEDES BENZ
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 744.98 MM HG(29,33 IN HG)
RELATIVE HUMIDITY— 37. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
n NOX SAMPLE METER/RANGE/PPM
' NOX BCKGRD METER/RANGE/PPM
E DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
COMPOSITE RESULTS
TEST NUMBER 6171-3
BAROMETER MM HG 745.0
HUMIDITY G/KG 7.6
TEMPERATURE DEG C 25,6
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO.61
DATE 5/20/81
BAG CART NO, 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ABS. HUMIDITY 7,6 GM/KG
4,
28,
3.
,76
,04
28.
1
COLD TRANSIENT
701.0 (27.6)
574.0 (22.6)
36,7 ( 98.0)
13879,
136.1 ( 4804.)
11.9/11/ 12,
3,9/ I/
30.7/13/
3.8/13/
44, 3/ 3/
2,9/ 3/
27. 6/ 2/
,7/ 2/
17.58
8.
24,
,72
26.9
.65
3.85
1784.7
6.37
2.01
.11
.66
307.3
1,10
11.48
505,
5.81
.981
STABILIZED
698.5 (27,5)
571,5 (22,5)
35,6 ( 96.0)
23841.
234.2 ( 8268.)
8.9/11/
3,4/ I/
19,8/13/
3.1/13/
25, 7/ 3/
2,9/ 3/
15. 7/ 2/
,6/ 2/
31,72
6,
15,
,38
15.1
.76
4.09
1615.5
6,15
1.67
,12
.65
257.8
.98
9,64
868,
6,27
.984
9.
3.
18.
3,
,42
.04
16.
1.
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 8496. KM( 5279. MILES)
KG( 4000. LBS)
9.7 KW( 13.0 HP)
NOX HUMIDITY CORRECTION FACTOR .91
HOT TRANSIENT
698.5 (27,5)
571.5 (22.5)
37.2 ( 99.0)
13902,
136,2 ( 4809.)
9.0/11/
3.4/ I/
23.4/13/
2.1/13/
37. 7/ 3/
2.8/ 3/
26. 2/ 2/
,5/ 2/
21.00
6,
19.
.59
25.7
.45
3.02
1482,1
6.09
1,39
.08
.52
254,5
1.05
9.51
506,
5,82
.982
9,
3.
21.
2,
.64
.04
26,
1,
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
267.1
9.98
.11
.62
1.02
.275
(4-BAG)
( 0.0)
( 0,00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO. 6181C1 RUN 1
VEHICLE MODEL 80 MERCEDES DENZ
ENGINE 3.0 L(183, CID) L-5
TRANSMISSION A3
BAROMETER 741.17 MM HG(29.18 IN HG)
RELATIVE HUMIDITY 52. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. H20)
BLOWER INLET P MM. H20(IN, H20)
C(DEG. F)
HC
HC
CO
CO
n
i
BLOWER INLET TEMP, DEG.
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
CO
C02
NOX
HC
CO
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFf DRY
COMPOSITE RESULTS
TEST NUMBER 618C-1
BAROMETER MM HG 741.2
HUMIDITY G/KG 10.2
TEMPERATURE DEG C 24.4
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO.61
DATE 5/21/81
BAG CART NO. 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP. 24,4 DEG C(76,0 DEG F)
ABS. HUMIDITY 10.2 GM/KG
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 8539. KM(
KG( 4000. LBS)
9.7 KW( 13.0 HP)
5306. MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
1
COLD TRANSIENT
701.0 (27.6)
571,5 (22,5)
36.7 ( 98.0)
13867.
135.2 ( 4773.)
10.0/11/ 10,
5.0/ I/ 5.
28.3/13/ 26,
45,
3.
26,
,
3/ 3/
I/ 3/
9/ 2/
3/ 2/
17,16
5.
24.
.73
26.6
.41
3.75
1813.0
6,77
.89
.07
.65
312.6
1.17
11.67
505.
5,80
,976
.78
,05
27.
0.
STABILIZED
696.0 (27.4)
569,0 (22.4)
35.6 ( 96,0)
23833,
232,8 ( 8220.)
7.7/11/
4,5/ I/
18.4/13/
1.4/13/
26. I/ 3/
3, I/ 3/
15. 3/ 2/
.5/ 2/
31,22
3.
15.
.38
14.8
,45
4,09
1623.2
6.49
1,00
.07
.66
259,9
1.04
9.71
868.
6.25
.979
6.
5,
17.
1.
.43
.05
15.
1.
HOT TRANSIENT
701,0 (27.6)
574.0 (22.6)
37.2 ( 99.0)
13877,
135.1 ( 4771.)
9.1/11/ 9,
4.5/ I/ 5,
23.0/13/ 21,
1.7/13/ 2.
37.9/ 3/ ,64
3,4/ 3/ .05
25.1/ 2/ 25,
,4/ 2/ 0,
20.88
5.
19.
.59
24.7
.37
2.98
1457.8
6.29
.71
.06
.52
252,7
1,09
9.44
505,
5,77
.977
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
268.9
10.04
.07
.62
1.08
,148
(4-BAG)
( 0,0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO, 6181C2 RUN 1
VEHICLE MODEL 80 MERCEDES BENZ
ENGINE 3,0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 736.85 MM HG(29,01 IN HG)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
9 NOX BCKGRD METER/RANGE/PPM
M DILUTION FACTOR
* HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
COMPOSITE RESULTS
TEST NUMBER 6181C2
BAROMETER MM HG 736.9
HUMIDITY G/KG 11.0
TEMPERATURE DEG C 26.1
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO.61
DATE 5/22/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 26,1 DEG C(79.0 BEG F)
ABS, HUMIDITY 11,0 GM/KG
1
COLD TRANSIENT
696.0 (27,4)
563,9 (22,2)
36.7 ( 98.0)
13864,
134,1 ( 4734.)
10.0/11/ 10.
4,8/ I/ 5.
28.8/13/ 26.
,78
,05
26,
0.
45, 5/ 3/
3,5/ 3/
26, 2/ 2/
,!/ 2/
17.08
5,
25.
.73
26.1
.42
3.88
1793.2
6.76
.82
.07
.67
310.8
1.17
11.61
505.
5,77
,977
STABILIZED
696.0 (27,4)
563.9 (22.2)
36.1 ( 97,0)
23810,
230,4 ( 8137,)
7.5/11/
4. I/ I/
17.9/13/
1.1/13/
25. 4/ 3/
3.2/ 3/
14.5/ 2/
,2/ 2/
32.14
4.
15.
.37
14.3
.47
4.00
1548.8
6.37
.85
.08
.65
250,3
1.03
9.36
867,
6.19
,980
8,
4,
16,
1,
.41
.05
15,
0.
TEST WEIGHT 1814,
ACTUAL ROAB LOAD
DIESEL EM-465-F
ODOMETER 8568. KM(
KG( 4000. LBS)
9.7 KU( 13.0 HP)
5324. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.01
HOT TRANSIENT
696.0 (27.4)
563,9 (22.2)
37,2 ( 99.0)
13870.
134,0 ( 4732.)
8.8/11/
3,9/ I/
22.3/13/
1.2/13/
37. 4/ 3/
3.8/ 3/
24, 9/ 2/
.6/ 2/
21,19
5.
19,
.57
24.3
.39
2.93
1408.7
6,30
.75
.07
.51
243,4
1,09
9,09
505,
5,79
.978
9.
4.
20,
1,
.63
.06
25,
1.
STABILIZED
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
260.9
9.75
.07
.61
1,08
.137
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
< 0.00)
( 0.00)
( 0.000)
-------
FTP VEHICLE EMISSIONS RESULTS - BASELINE CHECK
PROJECT 05-5810-001
TEST NO, 6191-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3,0 LC183. CID) L-5
TRANSMISSION A3
BAROMETER 743,71 MM HG<29.~28 IN HG)
RELATIVE HUMIDITY 57, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H2CKIN, i-120)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
o
i
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF» DRY
COMPOSITE RESULTS
TEST NUMBER 6191-1
BAROMETER MM HG 743,7
HUMIDITY G/KG 11.9
TEMPERATURE DEG C 25,6
VEHICLE NO,
DATE 6/29/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,6 DEG C(78,0 DEG F)
ADS, HUMIDITY 11,9 CM/KG
1
COLD TRANSIENT
698,5 (27,5)
571,5 (22,5)
36,7 ( 98,0)
13350,
135,1 ( 4771,)
14,4/li/ 14,
3,0/ I/ 3,
33.3/13/ 31,
4,4/13/ 4,
46,O/ 3/ ,79
2,9/ 3/ .04
24,O/ 2/ 24,
,4/ 2/ 0,
16,86
12,
26,
,75
23,6
,91
4.10
1852,5
6,35
1,71
,16
,71
321,2
1,10
12,01
504,
5,77
,974
TEST WEIGHT 1814, KG( 4000, LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 8977. KM( 5578, MILES)
NOX HUMIDITY CORRECTION FACTOR 1.04
9
STABILIZED
701.0 (27.6)
571,5 (22.5)
34,4 ( 94,0)
23826,
233,3 ( 8237.)
10.1/11/ 10,
5,0/ I/ 5.
20.3/13/ 18,
3.9/13/ 4,
25, 3/ 3/ ,41
2.6/ 3/ .04
13, I/ 2/ 13,
,3/ 2/ 0,
32,24
5,
15.
,37
12.8
,70
3,98
1598,6
5,94
1,56
,11
,64
256,8
,95
9.60
868,
6,23
,978
CARBON
3
HOT TRANSIENT
696.0 (27,4)
566.4 (22.3)
36,7 ( 98,0)
13843.
135,1 ( 4770.)
10.7/11/ 11,
5.0/ I/ 5,
25.0/13/ 23.
2.8/13/ 3,
38, 4/ 3/ .65
2,7/ 3/ ,04
22, 4/ 2/ 22.
.!/ 2/ 0.
20.57
6.
20.
.61
22,3
,46
3,11
1505.8
5.99
1.39
,08
,54
261,3
1,04
9,76
504,
5,76
,976
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
STA
3-BAG
271.3
10.14
,11
.63
1.01
PARTICULATES G/KM ,2S7
(4-BAG)
0,0)
0.00)
0.00)
0.00)
0.00)
-------
FTP VFHICLE EMISSIONS RESULTS - W.R. GRACE RADIAL
PROJECT 05-5810-111
TEST NO. 6191C1 RUN 1
VEHICLE MODEL 00 MERCEDES 300D
ENGINE 3,0 L(1B3, CID) L-5
TRANSMISSION A3
BAROMETER 741,93 MM HG(29,21 IN HG)
RELATIVE HUMIDITY 60, PCT
BAG RESULTS
BAG NUMBER-
DESCRIPTION
BLOWER DIP P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
HC
HC
CO
CO
SAMPLE METER/RANGE/PPM
o
i
M
CO
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME
MEASURED DISTANCE KM
SCF, DRY
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE DEG C
6191C1
741,9
12,2
25,0
VEHICLE NO,61
DATE 7/ 1/81
BAG CART NO. 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP, 25,0 BEG C(77,0 DEG F>
ABS, HUMIDITY 12,2 GM/KG
TEST WEIGHT 1814, KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KU( 13.0 HP)
DIESEL EM-465-F
ODOMETER 9019. KM( 5604. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.05
1
COLD TRANSIENT
703,6 (27,7)
571,5 (22.5)
37,2 ( 99,0)
13G63,
134,7 ( 4757.)
14.5/11/ 15,
6,5/ I/ 7,
31.8/13/ 29,
5.2/13/ 5,
46.4/ 3/ .80
3.0/ 3/ .05
25,9/ 2/ 26,
,7/ 2/ 1.
16.70
8,
24,
.75
25.2
,65
3,76
1862,2
6.83
,84
.11
.65
320,5
1,17
11,97
505.
5,81
,973
STABILIZED
706,1 (27,8)
574,0 (22,6)
35,0 ( 95,0)
23867,
232,7 ( 8215,)
11.4/11/ 11,
5,0/ I/ 5,
20.5/13/ 19,
4.5/13/ 4,
26,6/ 3/ .44
3,0/ 3/ .05
15,I/ 2/ 15,
,8/ 2/ 1.
30.56
7.
14.
.39
14.3
.88
3.87
1666.2
6,69
,85
HOT TRANSIENT
698.5 (27.5)
571.5 (22.5)
36.7 ( 98,0)
13845.
134.6 ( 4754.)
10.8/11/ 11.
5.0/ I/ 5,
24.3/13/ 22.
3.2/13/ 3.
39.5/ 3/ .67
3.3/ 3/ .05
24.2/ 2/ 24.
,6/ 2/ 1.
19,95
6.
19.
.62
23.6
.47
2.95
1529.4
6.39
,72
,14 ,08
,62 .51
264.8 267.1
1,06 1.12
9.90 9.98
869, 504,
6,29 5.73
,977 ,975
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3--BAG
276,9
10.35
.12
,59
1,10
,135
(4-BAG)
( 0.0)
< 0.00)
( 0.00)
( 0,00)
( 0.00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5010-00!
- W.R. GRACE RADIAL
TEST NO, 6191C2 RUN 1
VEHICLE MODEL GO MERCEDES 300D
ENGINE 3,0 L(103, CID) L-5
TRANSMISSION A3
BAROMETER 738,63 MM HG(29,08 IN 1-iG)
RELATIVE HUMIDITY 50, PCT
PAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(JN, H2G)
SLOWER INLET P MM, 1120(IN, H2Q)
BLOUER INLET TEMP, DEG, CCDEG, F
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGC/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NGX SAMPLE METER/RANGE/PPM
NO.s, BCKGRD METER/RANGE/PPM
DILUTION EACTQR
HC CONCENTRATION PPM
n CO CONCENTRATION PPM
' C02 CONCENTRATION PCT
^ NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CE L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF. DRY
DFC» WET (DRY)
SCFy WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/iOOKM
COMPOSITE RESULTS
TEST NUMDER 6191C2
BAROMETER MM i-IG 730,6
HUMIDITY 6/KG 11,0
TEMPERATURE DEG C 26,1
VEHICLE NO,61
DATE
7/ 2/81
BAG CART NO, 1 /
DYNO NO, 2
CUB NO, 3
DRY BULB TEMP, 26,1 DEG C(79,0 DEG F)
ABS, HUMIDITY 11,0 GM/KG
1
:OLD TRANSIENT
690,5 (27.5)
571,5 (22,5)
37,2 ( 99,0)
13048,
133,7 ( 4721,)
10,4/li/ 10,
3,6/ I/ 4.
27,4/13,' 25,
i.7/13/ 2,
46,2/ 3/ ,79
3,0/ 3/ ,05
25,3/ 2/ 25,
,5/ 2/ 1,
16,00
7,
23,
,75
24,8
.54
3,57
1830.9
6,41
,70
,09
,62
317,8
1,11
11,87
505,
5,79
.976
,958
1,000
16,
2,
,43
,05
14,
0,
r T A r. T i T -T c Ti
•_• i hi> lu i i_C.!.<
69C.5 (27,5)
571,5 (22,5)
35,3 ( 95,5)
23G15,
230,6 ( 8143.)
7,9/1I/ 0,
3,4/ I/ 3,
17.5/1J/
2.1/13/
26,3/ 3/
3,0/ 3/
14,3/ 2/
,4/ 2/
30.97
5,
14,
,39
13,9
,61
3,68
1629,1
6,19
,69
.10
,59
261.2
.99
9.76
868.
6,24
.980
( .942)
( ,979)
364,3
77,27
12,02
10,77
TEST WEIGHT 1814, KG( 4000, LBS)
AfTfUfil ROAH LOAD 9.7 KW( 13,0 HP)
l^ESEL t-h 465-F
ODOMETER 9115, KM( 5664, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,01
CARBON DIOXIDE
FUEL CON
HYDROCAR
CARBON M
OXIDES 0
PARTICULATES
3
MOT TRANSIENT
693,4 (27,3)
•J O -j * '/ ( .i. *:'. * £- '
36.7 ( 98,0)
13S57,
134.0 ( 4731.)
0.7/11/ 9,
3.4/ I/ 3.
23.0/13/ 21,
2.4/13/ 2.
39 ,0/ 3/ ,66
3.0/ 3/ ,05
23. 8/ 2/ 24,
,3/ 2/ 0.
20,24
5.
18,
,62
23,5
.42
2,86
1509.9
6.08
,79
,07
,49
260,8
1.05
9,74
505.
5.79
, 978
,962 (
1.000 (
!IDE G/KM
IPTION L/100KM
IS (THC) G/KM
iXIDE G/KM
iITROOEN G/KM
'R G/KM
4
STABILIZED
698,5 (27,5)
571.5 (22,5)
35,0 ( 95.0)
23814,
230,7 ( 0146.)
8.2/11/ 8,
3,5/ I/ 4.
17.7/13/ 16,
2.5/13/ 2,
25, 5/ 3/ ,42
3.5/ 3/ ,05
13, 6/ 2/ 14,
,4/ 2/ 0.
32.00
5,
14,
,36
13.2
,64
3,64
1538.9
5,88
.71
,10
.58
247.2
.94
9.24
868,
6.23
.980
,946)
,979)
364,7
77.30
12.02
9.48
3 -BAG (4-BAG)
272.8 ( 268,7)
10,19 ( 10,04)
,09 ( ,09)
.57 ( ,57)
1.03 ( 1,02)
1 T1 1 1 "M \
-------
APPENDIX D
PARTICULATE CONTROL SCREENING EVALUATION
WITH THE OLDSMOBILE
-------
'Tr; jr rwTOOTHMO :-r
ESL'LT? - FUELS PRE-OHECK B.L.
TEST NO: 6.2F1-3 RUM 1
5irMTr[_F Mnnci" ~ QA nTfic; nn~
ENGINE 5:7~L75''.}~"CI|Ti" "-8
"
_
EM-«?08-F
"~
4250: LB5)
iai7 12:2 HP)
MTlFP>
p 770 £^ M,y LJf
PCLATIUE Hl!MTr|TTY 'V3-
BG'
>.l:--Y UiSMTTlTTY rrippFPf TOM CArTftP
PTARTI T7FT1
o
BLOKER DIP P MH-. M20(!f-!;
BLOk'EP INLET P ''*!!•' w2Q/'''
~' "
BLOHER REVQLL'TIOMS
THT ETl'nj.i i-f'; r:' "
"• :~! c A dj c- i_ r :•/: c T £ r / ::• f, ;, : p .' c- :• ;•.;
rn fiHi:1^??; !/£trb'.'fc:Xv.SrVbDJ.!
CD 2 i'^WC'LE. Mrrrp'.'pXJjrir'/pr'T
rr:? sr:i--:bpr i/^TfK'/pX.kiriF.'brT
N Q v B C K ? F! ~: ••'• E T E P •' s A N " E •' D p M
" ......... ~
11.". 7 : .1 •
.1 i 2 •' 7 /
•") C .' "I /
1 r 7 / 2 •'
'• . T / "> ''
~
23761.
25~3/li/"20''
~"'3/13/ "6.
~2' // 3/ . 0^!
"T!rsV 9/ "T'
-rtfi D i'/V'
~37^8 •!IOC"6)
" 31:" "
"
18:5/11/ 19.
2.7/ 3/ :0<
16:2-' 2/ 16:
wnv
PPM
rn MA RPAWC
rriT MAP 5 pb.vv.5
rn
I
'
5 • 63
~
7 1 .
70
7,riQ'
3:
i
3: 67
153875
""^.ToR
1 • 66
.2
'
F RES'JLTS
TF'PT wiiMficp'" 62F1-3
FAROMETHP:~" MM HG "73?:6-
" ^VVJ" 1.2
'
FUEL COMS'JMF' ION L/100KM
S (T) .....
PARTI
G/
")
6-66'1
6-66)
'
n".r\n\\
-------
TF'-T XI Q
UFUTPI f '
=* p!IM 1
PA r»i_"?.!i nrr
"" ~ ~
FTP llfTUITpi F CMTCC'
RE?.iJLT9- FUELS PRE-CHECK B.L.
TITCT I.IFTRHT 192B; KG-! 4250: L
niri"' ijT-i "
MT! FQ'
*?.QMETEF: 719.1 •* MM HG'2- '0
IT; .A,TT!IF UMMTT'jTTV ^ A E-P7
""~
wrjv HIIMTTtTTV
F&PTHP 1.ft7
unr TPAWC-TFWT
QTARTI TTFTI
a
00
E!_p,i,!pp nip P MM U'/P. / TM y
sfriuFP TKifirf TFMP HEn "H/r
p l_ p I • IF P C- r: : H: !_! T T p. ;\! C-
i-ip C'.VvIC : LT iv:rT~C' .'£:.-.;:<:';Z' /C'i-'.v.
LI:'" 'Df" ::'.Z^~i V::TTL"!V ,'~ .-'.j-.lf'JC /DC'M
MQY p.-'i/pr.' M£TFp/!RF -'PPM
HT! I ITTHNj F.",pTnCi
H r "'" " r n *" I r p ;•.• T P A T T n :-•'. o C' M
Rt
HC
CD ?R*H§/Kr:
rr>2 SsAMcViVw
jjny Sp'AM5Vi.-:M
n"iF'i_~rnw§ijMp
flij TTMF '
L/100KM
71O P i'2'~' 7)
n:'?? ' ^, ,'^2 ^''l
70 7 ,MA1 A1.
1 7C7'"
2 i :' 7 / , ft 4
J r; ^ / n / -i tr
7 / P J A .
j ~j j t-j
1 P7
71.i 7 ,'2'p 2'1
>=;7? r ,' PP ' ^;,
229 i !. 9073. )
i p " s 7' i i /"" i q ' '
"p'^'/'T/ ~V
.p/ 7/ ft 4
7V 9> i 9
.5/ 2/ "l!
P7 i p
IB."
li .5
~2 IP
I.R7
7P
297:6
. 5-
11 TZ
7i^ .3 . _.
TZ'i/i •)' / " TZ!
7q/7'/ . .A 7
!/ 27 15
i/ 2/ "o!
"14 :"
25 i
. A7
i A"5
" 1 i 08
7! PR
, 10
' Z.7
TC
MM yR
KG
779 i
7-PAR
p/
F!
til
.n
n1
P,
PCPW riTnvrr.r
F: PHMCMMPTTHW
rjPHPAPpfUjq ,'T^-tP^
pRnw"yn!T!nYTr;F""
T-HFC- nF MTTpnrsrw
pTTP:_!i_,*,TFq
R f}f»
1 /Iftftk'M
G/KM
R/k-:M
R ,'l-f M
G/KM
?P7. 1
77
'7P
,7R
.937
(jj-pArs;
'! ' 5Vo)
/ 0!56)
/' 6;66>
{ 0. ftA)
/ ft"ftftft\
-------
VEHICLE E«I5SIQM= RE£ULTS - NO. 1 DIESEL FUEL
TFST wn. 62F2C2 F!|N '•
UFHTn'F\Mnrin_' "PA n^ris PFI~TACI=
FWRTWF'^V^'rf 7 =;,"*"" rfr^'tilq
fiATF "7 .' 7 /5A
PAR I-APT' wn'.' *•
r,vMn~Vih" "~' ^
K'Ri' ,i9n:A . I P.q',
DIESEL
nnriMFTFP
FM-455-F
79777 ~k'M'
MT|
BAROMETER 741.68 MM HG''29.2C IN
pri',ST"f:'!u"ui''.MTriTTv.""AV" E/TT""
BAG NUMBER
DESCRIP'TION
pi_ni,ipp prr p MM. H2n''I?': H2n!
PLOVER INLET R MM^HiO'IN.' HI
P;_nii!Fp T;.!i_rT CFMP . PFQ r/rirr.
TOfFLO"' ^'^?i" CL1'. "METRE?'0"1-:
rn OAMPI_F
CAMPi r
Rpk-Rpri MFfFp/pMiRF'/prf
qZMpTr HETER/RANGE/PPM
MOV pri;'hpF] MFTFP'/PAKIRC ,'ppM
;;nv
HC
CO MASS GRAMS
CG2 M:-:i§ §P:-!H§
ND ?
Aj nw PPM
RRH
prf
PPM
HC GRAMS /!f M
rn RpAHq'/i>;M
CQ2 GRAMS/KM
"
TnM PV rp
"' "cc
ESURED ISTANCE KM
PFRIII TC
TFQf~wiiMRFp' "
BAROMETER"" MM HG
ui IMT rirf y H/k'b"
TFMPFPATMPF F)Fri~r
13 2
716 3 (28 2'-
"7q"7 i^M~.h-
17^,0 ( .4^9fl
7A A /I 1 ••' 71
1
7R
45; 3/ 3.-'
14 i O/ 2/ 14:
30:
17' P
3:87
9'77
:80
71 A~i
76
791 . ,4 f2p- 4'
^71]^, ,'2'^' -5?
"79'* (107 A)
9701 A.
22?7"9"{"8118.:
11.R/11 / 12 -
"I'^VTV "7'
is'^.Vi7V IA]
__.
-i
I / 9/
"28740
6.'"
4: 11
1B6674
""§"40
1:14
. 19
'. ZZ
. R7
11128
PAP. "
A~9A
wnv UHMTTKTV
TRANSIENT
718.8 (28:3?
=•,7?'=; i99'.^\
79
"7
13838:
1337§~?"4723:?
9/11/ ?9-
7 9/"l/ "1:
4/17V 99'
7/1 T/ ~T!
9/~7V .A.A
7> 7V '.ft*:
9/ 9/ 1^7
TV 5V "A'.
~207ll
91 "
3:20
1505~7
""•4720
1 '. 7 A
10:20
s"7.i.
r&p-Rnw
F'JEL"CQN90MF'fl!}N
HvfipnrAt?RnMp 7riJr 't R",'I<-M
OF
PAPTTrMr'ATFq
R/VM
THW FAPTflP 1 . AO
STABILIZED
3-E'AG
II720
•66
.9JSA
fJS-J&R)
A. AA^
-------
TEST HO:
!jFt4TriF
£
P"N
L ( 350
""'
'.'EHICLE EMISSIONS .RESULTS - NO. 1 DIESEL FUEL
ppn SFPT 11 —E'lQi r.—r>.nii
R ''-•"•
r; PAPT M
1Q9R.
f\6.r,~ '
tfRf 42^0; LBS)
.i .K "2~2~H'
MTI
71\ '!.(J; L! ;7 / ^ C' v ,*: T M
PAG PESPTE'
" """
-
pnc-PFPTinw FAPTDP
PHI r;
QTAETi T7FTI
pi_ni.:pp TJTC & MM H2n'TN H2r:'
BLOWER INLET p"MM'.' H2^!''P-: H2"'
pi_n!,!£P- •p.!1. FT TiTM.o r:Fn C'PE""'
TJl fiMFP pf.-|!nM|TTrt;\!C
TOT Fi_ni,! QTf: P!l yFTPFSfpPF'.
H C S -'-• Mf;' L E "; ^ T E ~ •''D * M p E •'D p M
M p S p I,-' f: p fi V, r~£ r- .' r, ^ ;g p. £ / r, j;.«
CD Tpi::'"
rn
CD2
o rr)2
<-n HDX S^M^'LE ME7EF:'-'P-'>NGE -'PPM
kjnv pri>-'i~-cTi wctfrp/pAJJnr'
i'ILL!T!DH"p*C:T:5p "
Mr rvQMr;EM:;:D*^"T'DN PPM
CD CDN!TENTR*tlDN PPM
r'nn ^•n^•i^•E^^'-'''•TION PCI
wnv rnwr-FMTpATrnw PPM
HC" "
rn
Fn2
WHY
PAPT!CULAfE MA£9 OPAM'r
Mr
CD
PQ2
WHY RpAMQ/|:'M
ifriF!_"r:nki§ijMpTTr}w py rp L/100K.H
pi~' TTMF -- . -
'
rMPDSITE RESULT?
MM
"235S2."
11.S/li/""l2•
V . D / 1 .' 1
18:2/13.'' 16.
0 •' 3/
! i .' §/
^ / '
'
A7
A . 04
~0
=; .47
.
11 47
"
7: 3 (2:2)
'
37-3 (1
" 8"
12 :/l/
2 9 / i ','
27 '9/1.7','
"J4/13/
77 S/ 7.'
~2: 1/ 3.-'
1 ^ . 7 / 2'
""'?/ 2y
"71 11
~~
72
1 . 1s
14 80? 6
4 0"
1 ! I§
3
71
1014
"
,47
F'JEL CONfC'HF'tGM
' '
'-'i'OOM
'
T~iZ
"""^T
'II
P.F MT
PARTICULAT
-------
FTP VEHICLE EMISSIONS RESULTS - SHALE OIL DFM LOW S.
TFCT wn.
iJFHTri'F'
FWRT MF"
'
P"N 1
an n\_fic; I-IFI
f7T=;o~ " fTn ) "uI5
'" '
BAROMETER 742:1? MM HO (2? =22 IN HO)
PFI ATTUF UIIMTnTTY A7 . PPT
"
BAG NUMBER
DESCRIPTION
pi niJFP HTF P MM. H20(IN-
"~
BLOWER INLET TEMP- DEG:C{DEG. F)
RrfiiJFP PFuni i if TfiijQ
tot "FLOH~stD~. cu : "METRES (SCF?
Hr Q6MP!_F MFTFP/pAWRF/PPM"
HP Rrk'RPfi MFfFp'/pAWRF/PPM
rn RAMpi'F MFTFJJ/PANRF/PPM
rn nrk'hpfi METER/RANGE/PPM
rn1? ^AMPLP
f-m Brip'AMRF/PPM
rTnp .........
HC CQNCENTRAT ION PPM
rn CONCENTRAtlON PPM
rn1? rnMrFMTpAfTniJ PPT
MHY rnMrFw'tRAT'mN PPM
HC MAS§~GP.AMS"" ......
rn
rn?
wny
PARTICULAf E MASS GRAMS
ur RRAM" 'KM
rn
rn1? R
jony RP'AMQ/KH
FI'IFI 'rniJQiiMpTTnM BY rn i /100KM
pfij!i~TfMF "' """
MEASURED DISTANCE KM
rnMpncTTF PFQIII TQ
fFcf'wiiMRFP" A9F^n
BAROMETE'R"" MM HO "74212
ui iMTnT R/R 1 2 : 3
VEHICLE NO -62
TFCT I.IFTRUT 1 QOR . j
SAQ!O f?5!4)
"37 !R /Too .'6)
"'
424/13/ 39
~ If/13/ ~i-
A&.fi/'^/ .77
'•i'.y'f T.'/ !o4
14! O/ ^/ ii-'
" ' '. i / 5> "o '
' " 1 7~bc:
"477"
77!
777
17'. 7
1797
" 777'?
;A7
11 . 77
'
STABILIZED
716:3 (28:2)
=17? !s /'?'5!=:.j
"77 .'5 /~97o)
' "
1 /
27 '
"
A/17/
!?'/"^/
:?/ 3/
!n/ 5V
iiV 5V
19
"44
10 •'?'
1
.40
:'04
i i
"6:
i 24
. 4A
5A77
'
UIIMTnTTY mPB-FrTTnN FAPTOP
HOT TRANSIENT
71A.7 (2B-2)
571 1 5 (22^5)
"77 !§ /To67n)
"
20-
'
97! 7V 17V
"' '.A'/17V
79!A'/~7V
"7! 5V 7V
14! ZV 5V
" ".At 5V
' "1P7"RA
"iiT"
93.
7A9
7.AA
.A7
!n^
ii7
~n'.
.91
;i3
9A7.A
.AA
'
R/h'M
FUEL"CONSUMPTION L/lbOKM
HYDROCARBONS (THr)
CARBON MONnXTriF
HP"jSVfpnRFM
RTARTI T7FFI
3-BAR
9P7'.'p
Ti"o3
"" J47
J09
•74
.240
(4-BAR)
f 6-6)
'. o!66)
/
/
(
t
:)
'
-------
FTP VEHICLE EMISSIONS RESULTS - SHALE OIL DFM LOW S.
D
r
TEST NO: 62F"*C2 R>'N 1
UFUTri'F'MnnFr "RQ ni'n'Q nr
ENGINE"?'/?" C7350"" CID > "»-§
TPAMQMTCPTnW A7
BAROMETER 740:66 MM HG(29 1A TN HR>
ppi 'ATT UF "uiiMTnTf""AT r"
"
RARMMRFP
DESCRIPTION
BLOWUP nTF P MM- H9n
BLOWER REVOLUtlQNS
tot "FLOW sff'T 'CD'-'"METPPC!(SCF?
UP QAMPI F'MFTFp/PAMriF/pPM"
UP RrK:Rpfl MFtFP/PAMRF'/PpM
rn CAMPLE HEtpp"/PANRp'/PPM
CO BCKGRD HEtER/RANGE/PPM
'
C02 BCKGRD *EER/RANGE/PC
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
nri iiTTriw FArfhp .........
HC CONCENTRATION PPM
CO CONCENTF'AtlON PPM
C02 CONCENTRAtlON PCT
NOX CONCENTPAtlON PPM
HC MASS~GRAMS~~ ......
rn MACC RP'&MQ
rn? MAPQ RP'AMC
Mnj? MAQC RPAMQ
PTULAT E MASS GRAMS
ur
rn
wnv RPA'MQ/K'M
FI'IFI "rnwQiiMPTTnw py rn i /100KM
p.riM~TTMF " "SECONDS'"
EED DISTANCE KM
_
TFQT~MiiMRFP' 62F3C2
RAPriMFfFP" MM HR 740 1 7
HiiMTriTJv" G/KG" 9:7
TFMPFPATIIPF flFri'r 9^ . A
DFMTri F Mn. A9
fiATF 7/i^7fl
BAG~CART N"!' "
nvwn~Mn!
CVS "NO I 3
DRY BULB TEMP:
1
COLD TRANSIENT
711:2 (28:0)
" 13839 "
134~fi~? 4779 )
47:6/ll/ 47
4l!7/13/ 39
4=;!sV~7/ . 7fl
2-. §/ 3/ io^i
17. ft/ 2/ 17
~2:3/ 2/ ~2
1A~P7
"43".
37:
14.0
"7! 7,4
§; 77
ifli7.it
~~7'. AQ
1 i§6
:58
1 iOO
'I*'*7*
Sfts02
5-78
A
-
9=;. A fiFR rf7q.A TIFR
0.7 RM/k-R
0
STABILIZED
711:2 ?28:0)
77 . R M AA . A \
" 23776 " " "
230?2 (~8129; )
20: 7/1 I/ 21:
22;5/13/ 9A.
9oi7'/"7V .in
~2i7/ 3/ .-04
14.97 2/ 15:
7. ft/ 9/ ~7.
27750
"ifl""
19.'
ii4o
°9! 79
5i 12
1RAR . P
"~^TA7
1. 19
:37
'•*2
2?B81
RA7~~
6^26
TAPRntJ
TEST "EIGHT 1928:
APTII6I pnAFl 1 nAD
DIESEL EM-459-F
niinMFTFP 7SftA~ ' KM
KG' A250: LBS)
p'Tl KU!~ 1979"HP>
C 4AA4. MTI FQ1
F)
wny MiiMTniTV rnppFrTinw F^rTnp .P?
7
HQT TRANSIENT
711.2 (28:0)
"77!fl /Tftft2M
1 7R79 .
1347o"(~4730: )
18: 5/1 I/ 18 i
27i2/13/ 24.'
38-9/~3/ -.66
"2.-6/ 3/ i04
9ft! 9/ 2/ 20:
"7 ! sV 5V ~i '.
20726
"is. "
23 i
IA'P
"i ! ifl
3: 61
is? pTZ
~~2'. ifl
1 i29
.91
i63
773
SAA"
§"79
riTnYTHF R/KM
FUEL CONSUMPTION L/100KM
TAPRnw
MnunvrnF R/R-M
nvrriFq nF wfTpnRFM R'/J/M
PARTICULATES G/KH
STABILIZED
3-BAG (4-BAG)
292: 9 ' ft'.'ftS
Ti~iA i A?AA^
:37 ( 0:00)
. Rft f ft . ftft >
;7S f ft.ftft\
:227 ( OlOOO)
-------
TEST NO: 42F4C1 RUN 1
tJFHTri £ MnnFi "tin nrfic nFi'
ENGINE 5 • ?"f"7T=;o""rim"i)I5
''~ '
FTP
VEHICLE EMISSIONS RESULTS- 10 PCT BUTANOL IN DF-2
ppn IFPT 1 i-SRift-rtni
lATF
BAG~CART "
'
TFRT I.IFTRUT 1Q9R. KR( 4250- LBS?
ArfMAi"~pnATi i nAn" o'7i Ki7i("i'?:2 HP)
rifFPFT FM-45/.-F
nfinMFTFP 77AA7~KMf A11;??. MTI
BAROMETER 740 :16 MM HG(2?:14 IN HR)
RELATII)E "HUMIDITY 4?" PCT"
" TQ ...... "'
PRY BULB TEM^P: 27^8 (0 D F)
' ~ "
DESCRIPTION
BLOWER DIF P MM: H20(IN: H20)
TWI FT MM.~9fV/TM.~9n
BLOWER INLET TEMP: DEG: Cd'EG: F)
jfii'ru'ER REUOLUTIONS
TOT FLQ!'.i~STD7 CU:~METRES(SCF)
HF RAMpI F MCTFp/pAWRF/ppM"
Ur BCKGRD MEtER/RANGE/PPM
CO SAMPLE MEtER/RANGE/PPM
Fn9 RAMpi 'F MFTFp"/PAWRF>prT
Y C02 BCKGRD MEtER/RANGE/PCt
NOX BCKGRD MEtER/RANGE/PPM
riri iiTTriw FArfnp
HCCONCENTRATION PPM
CO CONCENTRAtlON PPM
C02 CONCENtRAtiON PCT
wnv rnwrFMTpATTnN PPM
HC MASS GRAMS""
CO MASS GRAMS
C02 MASS GRAM§
PARTICULATE MASS GRAMS
HC GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL'CONSUMPTION BY CB L/IOOKM
pflM~TTMF " ~RFr
MEASURED DISTANCE RR"
COMPOSITE RESULTS
fFRT~Wl' JMRFP ~ A9F4P1
BAROMETER" MM HG "74o72
TFMPFPATIIPF nFR"r 97'. H
1
COLD TRANSIENT
723:? (29:5)
'
~372 ??976)
" 13544. ' "
134~9~/ 4710.
47,'s/ii / " 47!
' 1'"
47.
'
:?/ 3/
! p'/ •?'/
:4/ 2/
~
.7=;
!04
14.'
"
40
:'?i
17'. 4
"T! AA
A',^
i748~§
" T'SA
2\ 08
STABILIZED
721:4 (2B:4)
200(120:
7!
2/
2/
77"A
207
22-
744
1H377
"~4"?*
1 .71
:42
'05
iI7
"
.
~ 781
11 '.*&
'
UIIMTDTTV rOPPFrTTOW FAfTnP 1.07
HOT TRANSIENT
721: (:
'
"79 ! 9 (102~0)
"138557
1 3379" 7 "4707. )
1979/11 / " oft.
""
97.
"i !
l
i/i7
RlA'/~7/
"7! TV 7>
14-.8/ 2/
!A/ 9/
~90~41
"17.
26:
~
1 74
4! 01
149*78
" '7~7A
l!33
.94
•71
9A9-. T
FUELCONSUHPTION L/1OOKM
uvnpnrAppnwi; 7flir) R/KM
CARBON MONOXIDE
'' nF"M'ffp.nRFM
'
CTARTI T7Fn
7-BAR
990/0
11722
""'41
o?
(4-fiAR)
( ' ' iO)
.
(
/
(
/
O 00)
6:66)
6-66)
~
-------
FTP VEHICLE EMISSIONS RESULTS- 10 PCT BUTANOL IN DF-2
D
I
VD'
TEST NO- A2F4C'? R"N 1
F MnriFi on ni'fiq nn'r oo
~~"
BAROMETER 741:68 MM H0(2?:20 IN HO)
pFrATTlJF "HMMTTiTTY "" li~. Prj""
PAG RESULTS
RAR'MIIMRFP
DESCRIPTION
BLOWER 1'IF P MM; H20(IN: H20)
aTnUFp' TMi_FT P '~~
PLOVER INLEt TEMP- ripR .'~r'(nFR
BLOWER RE"™
rnf "n'ni,~
HC SAMPLE
'
i-r fir'^hprt MFJFpYp AMRF /PPM
rn QAMPi'F MFfFp/pAMRF/pPM
C02 PCKGRP MEER/RANGE/PC
WnY QAMpi F MFTFp/PAWRF/PPM
NOX PCKGRD MERRAE/PPM
nrniTTrw
HC 'CONCENTRATION PPM
CO CONCENTPATION PPM
C02 CONCENTRATION PCT
WRY rnNCFWTpAf rnw PPM
Mr" MAC§~RpAMC"" ......
rn MAQR RpAMS
rn2 MA^S GRAMS
NQX MA^S GRAMS
PARTICULAT E MASS GRAMS
HC GRAMS/KM
rn RPAM5/K:M
'
pTiFi_"rHwqiM'pTTnw RY rp L/100KM
pflW TTMF "' "
MEASURED DISTANCE KM
PF«;III TR
i'iMPFp" 62FC42
PAROMETER" MM HG "741.7
HUMIDITY G/KG 12:3
TEMPERATURE DEG'C 24 : 4
VEHICLE NO: 62
flATF 7/11/0
PAG'CART wn~
r?YMn~Mri '.
TlPY PI II R TFMP .
ARQ. UIIMTnTTY
1
COLD TRANSIENT
721:4 ?2S:4)
S71 '.e, f 99. SI
77 . 0 M ftft . ft>
1 7PS4 .
13474"? 47^6: ?
sft.s/1 i / " si ' '
"7! ?'/"?"/ "T!
41 | A/if'/ 39!
~'i/13/ "ft-
Ad!7/~7/ 7 A
'2 js/ 7> !h4
i5i!T/ 9/ ii.
" :4/ 2/ "6:
177"J7
"48:
37 ':
779
13:7
~3:6?
s!oi
17777s
" 3:73
2J25
:64
1:01
""•65
1 9 . ft?
SftS .
s "73
TFQT UFTRMT
ft ArfiiAi "pnAii i
1090. KR( A9Sft. LPS)
nAn" ' b'7i ifij7"i9~9"up>
1 DIESEL EM-456-F
7 nnnMFTFP 775
94.4 riFR ri7A.r\ TIFR F^
19.7 RM/KR WnY HIIMTFiTTY
9 7
STAPILIZED HOT TRANSIENT
716:3 ?28:2) 721:4 (28:4)
S74 . ft /99.A} S71 . S /99.S\
77.9 1 QP.ft} 77.0 Mftft.ft}
97S77. 17Q71 .
99Q.ft ( PftP5 ) 134:2 ( 4737.-)
9T.A/ii/""99 To.'o/ii / " 9n! '
"T!?/"?'/ "3 "ilo/"?'/ "3!
23-*/13/ ''I 2?'^/13/ i? .
|l/17/ "ft !l^l3/ 6:
9o]5'/"7/ ,ifl 7Q!l"/~7/ .AA
~2i?'/ 3/ i04 "2:7/ 3/ -04
i T ! 3 V 9 / i i ' i Z .' iV 9 / i i .
" " '. s / 9 / " T " ' '. s / 9/ ~ i '
~27~3? " °9ft7"i7
"i?"' "i?!"
9ft . 9A .
"45 ~62
10:8 137?
"9-^e: "l!7ft
s ! 44 4 ! ft7
1OAA.7 1S97?7
~~s7ft? ~"7'.70
1:32 Ii40
. dft .97
:88 .71
""7oT '. AA
1 1 .74 1ft!79
862: Sfti7~
i7l5 §~7i
rAPRnw ninYTnF R/KM
FIIFI rnwpiiMPTTnw i /iftfti
WYnpnrAppnMQ nur\ R/KH
rAppnw MnNnvrriF K/KH
nyrriFc; nF MTTpnRFw R/K-M
PAPTTrill ATFQ R/KM
ft. KM( 4S09. MTI FQ}
rnppFrTTnw FArrnp 1 . ftA
QTAPTI T7FD
3-PAG (4-PAR^
90S. ft ( 6:6)
-------
FTP VEHICLE EMISSIONS R"'!!"- FUELS POST-CHECK B.L.
ppn IFPT n
TEST NO: 62F1-5 RUN 1
VEHICLE MODEL " §0 OL^S DELTASS
ENGINE 5:7~C73507"CID)"V-B
A7~
VEHICLE Nn i"7
DATE 7/1^/90
pAR~rAPT' wn'. ' " i
nvwn"wn'. 9
"
TFQT UFTRHT 109R. h'R( 4250- LB?)
'~ LOAD" 9~:i KH("i2:2 HP)
FM-iftR-F
"" . MTI
BAPnMFTFP 7R.R MM MR 99. 9 TW UR)
"'"" '
DR ULB P: C F)
~
wiiMTTiTTv mppFrTtnu
.OR
BAG EUL
DESCRIPTION
BI ni.iFP nip p MM. W9n(rw. w'>n)
Twi_ET P MM ~H2n"(i'N '.""
" ~
COLD TRANSIENT
717.7 f?Q .1)
INLET TEMP EO:C(BE0
BLOWER REVOLUTIONS
TOT FLoi'i~sfD7 cuV ~ METRES (SCF>
HP' S&Mpi F MFTFP/PAWRF/PPM"
HC BckoRD HETER/RANGE/PPH
CO SAMPLE METER/RANOE/PPM
CO BCKGRP METER/RANGE/PPM
rnr> qAMpi'F MFTFp/pAWRF/prf
o rn5 BCKGRD HETER/RANGE/PCf
H N^X SAMPLE M^tER/PANGE/PF1M
O MnV prj^hpfl MFfFP/PAWRF/ppM
nfi'ntTHw"FArTnp .........
DF rnwrFWTrpifTnw PPM
rn rnMrFwfb'AJTnM PPM
rnn rnwrFwtp'affnw PPT
wnj? rnjjrFWTpATTnw PPM
HC RAS§~GRAMS"" ......
rn MACQ RRAM5
rn-? MA'QQ
wnj? MA'CC
PARTICC'LATE MASS GRAMS
ur RRAMC /KM
rn RPAMQ/kM
C02 GRAMS/KM
NOX GRAMS/KM
priFi_"rnMciiMPTTnw py rB L'lOOKM
RUN TIME " "SECONDS
MEASURED DISTANCE KM
PFQIII TS
iiMBFp' " ^2Fl-5
BAROMETER" MM HG ~73§;?
Qi I'M T HT f v' R /KR " ' 1 0 • 6
TFMPFPAfllPF nFR'r 5^ '. ft
17207:
"6"r 9.
2 ?//
:3
3:
.5/ 3/
'. P '/ 9 /
i / 9/
iA~97
"44'.'
7fl!
"75
14'. 9
~7'7P
5-86
1R97"T
""7". 79
2 I 31
:59
1 02
717"R
""':6§
11 ;5§
' "
A .
"
STABILIZED
717.7 (9Q.1)
97A17
~"
97.2/13/ 21
~
22/ 3/ 0
19! A/ 9/ 13"
~7!/ *5V "i!
9ft
"44
11 .'A
2:52
5! 99
•41
!(54
29773
~ ,RO
1l'. 1 A
§677"
A~9jj
HOT TRANSIENT
717.7 (OR.1)
17097
177~9~7' 470=;.
iRTft/11 / " IR!
"3-. 4/"l/ "3-.
9A./17 9,
7fl/7/ .AS
"9!p/ 7/ !ft4
IA! A/ 9/ ii.'
"ijft/ 9/ "I:
~'~9ft~47
"is."
97!
~
T !i4
7!
7. 4
T! AI
2601
1*7
9:73
«=;/>«;'."
"
R/J<;M
F'EL'CONSOMF'flON L/100KM
HYDROCARBON5 (THr) R/KM
"MriMnyTfiF R'/J
-------
FTP
TEST NO: 62F1-6
'.'EHICLE MOP^L ^
ENGINE™!- : 7~ L"7350~
~
R
'
l'-
BAROMETER 73?: 65 MM H0(2?:12 IN HO)
pri ATTUF HiiMTriTfy ""sji" 'PPT"
Fcni TP '
~RAR~M7iMRFp
DERIPO
FLOWER DIF P
RI niViFp Twi_FT
FLOWER INLET
F p'tlni'
-
'
TEMP- FR .rnFR p>
HC
HC
CO
CO
C02
C02
NOX
NOX
pi'
HC~
rn
C02
wnv
SAMP'
pck'GRp HETER/PANGE/PPM
SAMPLE METER/PANGE/PpH
PCkORP MEtER/RANGE/PPM
SAMPLE METER/RANGE/PCT
FCKGRP MEtER/RANGE/PCt
SAMPLE METER/RANGE/PPM
FCKGRP METEF:/RANGE/PPM
TI^N "FACTOR .........
CONCENTRATION PPM
rnNrFwyRafTnia PPM
CONCENtRAtlON PCt
rnwrFWTpAfTnw PPM
MASS~GP.AMS"~ ......
RPAMQ
GRAM^
PARTICULAT E MASS GRAMS
wr
rn
rn-?
MOY R
pun "rnwciiMpTTnM PV rn i /100KM
priw~TTM£ " "SECONPS
UREP PISTANCE KM~~ "
'.'EHICLE EMISSIONS RESULTS- FUELS POST-CHECK B.L.
ppn IFPT 1 I_=;QIA-AAI
t)FMTriF
FAGCART N0~ I
PYNO NO ; " 2
CMS" NO"' 3
PRY FULP TEMP: 23:3 PEG C(74:0 PEG F)
ABC. "uilMTfiTTY 1 Fi''" .....
1
COLP TRANSIENT
711:2 (29:0?
77.9 / PP . A "I
17Rc;9 ,
1 7A"7~7~d7j»9 . >
49 . A/1 1 ' / ,49 ', '
3.-4/"l/ 3 1
41 1 7/1 3/ 39 1
1 '. A/17'/ "i '.
A*,'.7/~T.'/ 7R
2:7/ 3/ 164
15 1 it/ 2/ 15:
~|4/ 2/ ~5I
"39. "
77!
"7=:
14". 7
"j! Ad
5-72
1934:2
"7 .'AP
2l31
:53
71P"4
. A4
12:66
505:
9
STAFILIZEP
713:7 (29:1)
"7!; 7 PPR"A\
23790:
27A~7 7~R14A.
9? "p/1 1 /~"99 .
~7!9/~1/ ~7~
22I3/13/ 26!
!fl/i7/ ~i !
9P . 9/ 7/ . d.P
~2ll/ 3/ .-04
12 |iV 9/ 12:
:5/ 2/ 1.
~1P°"
IP!
TAA
11 '.A
~9!si
§.'62
1971"!
"~">~A1
II 41
:40
30ll4
"""si
1 1 !71
9697~
TEqT WEIGHT 1928: KG( 4250: LFS)
Arfi'iAi pnAfi i nAn" Q~i KW("i2.-''~HP)
i'lESEL EM-40S-F
7<=;Q&~~\(M( 4710. MTI
.QR
wnv uiiMTnrTv mppFmnM FAPTOP
HOT TRANSIENT
717.7 f9P.1t
7A.7 ( Pi
"i7RA7'.
1R.7/1 1 /
~3l2/~l/
97!A/17/
IS:
94 '.
2:9/ 3/
151S/ 2/
"19~PR
"15: "
97.'
1 : 19
3155
1=I77~A
"~7". R7
1:47
.91
267~4
;67
1 A! AI
:04
16 :
"A.
CTARTI T7FH
5 7
75
LTS
"
FAROMETER MM HG 739=6
UJ iMTHTTY R /KG 10:0
TFMPFPATIIPF fiFR"r 97 ! 7
R/k'M
FUEL CONSUMPTION L.
G/KM
R'/'I
( A ." " "
/ / "'
-------
TFQT Mn. A9^1P1 PIIH 1
0 S
~~
A7
FTP 1.IFHTPI F FMTCQTnMC pFCIII Tq
PRQJECT~il-5SiO-0
'.'EHICLE NO 62
DATE 7/22/80
PAR PAST Mf}" "1
nYMn'ij'ri'. 9
rys'wHT'
ESULTS - ROAD DRAFT
TFCT UFTR14T 1 09R . h[R( A1?^.. LBS>
ArriAi"~pnAn i nA.fi" ' o'Ti KH7"i2~2"HP)
A71R . MTI FQV
RApnMFTFP 740 :1A MM HR(2?-14 IN. HG>
pn'aTTi)F"HiiMTnffv 71" prj"
" '
DRY PULP TFM.P-
APCi.'uilMTflTTY'
r(-
"
unv uiiMTniTV pnppFpTTnw FAPTnp 1.1 A
DESCRIPTION
m nuFP nip P MM. H2n(IN: H2n?
VE NL MY~H2(iN:~H20)
"
ni_n(,iFp wi FT TEMP- FR. /riFR F>
PI niJFp PEnQLHTIDN^
yrif FLOk'~SfD7 CU; ".METRES (SCF)
UP SAMP1 E"~
HP RP'KRRD
Pn RAMpi'F MFTFp"/p'aMRF/ppM
Tfi SrifRpfi MFtFP/'pAWRC'/pPM
rn2 SAMP! F MFT FP /PAMRF VPPT
rn-7 ppjfhpn MFTFP/PAMRF/PPT
MOY CAKpi'r MFTFP"/PAWRF'/PPM
O jjnY PPtfRP.ri MFfFp'/pAWRF/ppM
H nTi'iiTTfiM"FArfnp .........
M Up""pnMPFMTpAf'fnM PPM
p'n pnwrFJJt'pAtTnM PPM
C02 CQNCENt.RAtlQN PCI
Nfiv ^nMPFWTPATfnM PPM
HC MA5§~"" ......
pn MAP§
CQ2 MA§§ GRAMS
Mnv MAQC RRAM^
PARTICULAf E MASS GRAMS
UP GRAMS/KM
p'n RPAMP>ifM
rQ2 GRAM§/KH
jSnv RPAMQ/K'M
pTiFi "priwciiMp'TTnw nv PR i /100KM
pflM~TfMF "' """
MEASURED DISTANCE
nCTTF PFQIJLTQ
TFQf~MiiMBFp'"
RAPnMF'fFP~" MM MR
uiiM?nrfv" R'KR" 'IA!S
TFMPFPAfllPF fi"FR"P OS ! ft
COLD TRANSIENT
716:3 (20:2)
-0 -
13799.
133l§ ("4725
i / " ^7
43 5/137 41
T!A/17/ 1
4^.'7>~7> .7P
'5!h> i/ !
15 '.?/ 2/ i
" T ! A'/ 9 V "
7P.
"74
14-4
~3-! BO
^•93
1824:3
"A. '9ft
2" AR
. AA
1 !A7
317:4
" " : 73
1 1 -94
' '
STAPILIZED
713.7 (28:1?
56? : 0 (22-4)
"77 '.h ("99.6)
"' 97R1V. ' ' "
970~7~(~R145-
22"9/ii/~~23-
'~' ~
13 O/ 2/ 13-
"9". ft'/ 9/ ~9!
97~Hft
"
"44
li 1
~2| AA
A!RA
1R777A
~""
.Aft
• 79
295:4
.oft
iiiio
RAfl7
A7lA
HOT TRANSIENT
71A.7 (28-2)
571:5 (2215?
"39 .'Z MftiT5)
""17959"
17AT5' 7~47«;9. )
9ft. 'A/I i / " 91 '. '
~&\ A/"?/ "5!
9A.9/17/ 9AJ
"
ftA
17.'
"
~
9
~
97'.
~A7
1552:6
4.97
ll65
.99
2687?
77A
PAPBRM .
FUEL'CONSUMPTION L/IOOKM
HYnpnpApRnMc; (THP> R/KM
CARBON MONQXIDEG'KM
OF
CTARTI T7FH
7-RAR
994'.'?
Ti .'ftT
•40
•
(A-PAR)
ft'.'ft)
o"66)
6-66)
6:66)
-------
FTP
"EHICLE EM71315!™5 pfiii TR - ROAD DRAFT
'"~
u
I
TEST NO: £2^11"? PIIM i
('EHICi E wnnri RA ni'nc nFi'
ENGINE"?V^'L^^O" "
TPANQMTQQTnM A7"'
PAROM^TER 737. 7A MM HR(9Q.A7 TW
PFi ATTuF'wilMTnTfy '"AA~'prT~~
PAR''pFCfil TC '
PAG "NUMBER
DESCRIPTION
FLOWER DIP P MM: H20(IN H2n)
FLOWER INLET P MM-~H20(i'N ™
BLOWER INLET TEMP! DE§: "C'.DEG
BLOWER REVOLUTIONS
TOT FLQW~STD~ CU • "METP^C^T)
HC SAMPLE METER/RAN^E/PPM"
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
rn pr'kfRpri MFTFP/P'AMRF/PPM
Fn1? QAMpi'F MFfFp'/pAWRF/prT
C02 BCKGRD HEtEP/RANGE/PCt
F MrfFp'/PAMRF/PPM
MFfFp'/pAMRF/pPM
.........
ur rnwrFWTpAnw PPM
rn rnwrFWTpAfTnw PPM
C02 CONCENTRATION PCT
NOX CONCENTRAtlON PPM
HC MAS§~GP.AMS"" ......
CO MASS GRAMS
rn? M'ACQ
wny MA'QQ
PARTI CULATE MASS GRAMS
HC GRAMS/KM
rn RPAMS/KM
C02 GP.AMS/kM
NOX GRAMS/KM
FUFI "rnwciiMPTTnw py rp L/100KM
~ "' """
MEASURED DISTANCE
KM
PFCIII TC
Ni'MRFR
BAROMETER"" MM HO 737 ; 4
MMMTnTTv' R/h'R 12:2
TFMPFPATIIPF flFR P 25:0
iJFHTri F wn . A9
DATE 7/237PA
BAG~CAPT N0"7 "i
riYwn'kin! 9
rucTwn" ' 3
DRY BULB TEMP- 2*:
TFQT UFTRHT 1 Q9P . KRI ^250: LFS)
irTriAi'~pnAfi i nAn~ ' pTi ^ij7"i9~9"wp^
DIESEL EM-40!
nfinMFTFP 7A4P?
A HFR P 1 77 . A TlFR F ^
n-F
~KHI 47S9. MTI FC^
AfiQ.~unMTflTTVl9~9 RM/k'R WRY MIIMTDTTY mPPFrTTnM FAPTOP 1 . AS
1
COLD TRANSIENT
709:7 (27:9)
SA7! '(•?') '.h'}
"37 i 9 (10676)
" 17RHA? "
177. P 1 4797. t
^ = 5/1 1/ 42:
4? ! A/17/ 7o i
'~!S'/IT"/ ~A!
4s!A"/~7'/ . 7R
'9!fl> 7> .'AA
17 ! A/ 9/ 17:'
~ i i 4/ 2/ " i i
77!
774
15:7
"3:03
§! 77
1 B9A'. 9
""Z~99
2 .-32
:53
1:00
~~~77
Ili99
9 7
QTARTI T7Fn HnT TPAMQTFWT
7AB.7 f97.0^ 7AP.7 /97.P}
^AT.P f99.9> SAT.P ^99. 9^
~77!p /TAA.A^ "7pi7 /IAI'A^
97474. 17949.
997~A if PA14 . 1 n77i"/~471 A. 1
~4;A/"i/ ~di ~4:A/~i/ "4!
99!A/17/ 9A '. f)L.(\/'\~i/ 97!
7/?7/ "A! !^Vi7V "A!
7A;A/"7/ ;5A 4A!9/"7/ . AR
~2 is/ 3/ i04 2 is/ 3/ i04
1 A . A / 9 / 1 ^ . 1 R ! 7 / 9 / IP.
~9JP/ 9/ "§i "§i2/ 2/ ~3.'
"ill ~99^
"is ~ZA
11:9 1^~7
"2i41 "i!in
4 . 97 7 . is
1PRR.9 1SAJ/P
""§739 ""4-20
1:39 iii4
:39 :20
. RA j AA
"797 "' "73
11:46 10il2
C*RBOW I^TnYTTlF R /K'M
FUEL "CONSUMPTION L/IOOKM
uYripnrApnnwQ fTur^ R/KM
rAPPnw MnwnYiriF R/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
QTARTI T7Fn
3-BAG (4-BAG)
299 : 1 ( 6-0 )
Ii:i§ ( o"66)
.77 / A '. AA \
.79 ( 6i60)
:PA i A!AA>
:277 ' A"AAA>
-------
FT n-
1 P"M
RO ni'nQ nr
35o~ " CID") ~ v-i
" '
FTP
VEHICLE EMISSIONS RESULTS - CARBON CANISTER
ppn itrrr 1 I-SR-I A-
VEHICLE NO: 62
DATE 7/'>4~flA
~' "
DYNQNQ-
'"
TEST '.-.'EIGHT 1920: KG< 4250: LBS)
' i n.Ari" ejTi KU!" ^2~~
MTI
PAPnMFTFP 717. 7A MM
RELA'flVE HUMIDITY 56~ PCt~
TW MR)
PY -
T|ER r(7 0 rifr(:: F)
"
WHY HIIMTTlTTY mPRFrTTnW FAPTOP 1 . ft?
DESCRIPTION
BLOK'ER DTF P MM: H20(IN: H20?
prnwiirp' iwi FT P 'MM ~H^ri(iN~
Si niViFP T wTFJ TFMP ! jnFR .' " r i nFR
' p }
TOT FLQWs' CU:METRES(SCF)
wr' QAMPI F'MFP/P&WRF/PPM
HC BCK'DRD METER/RANGE/PPM
Hn RAMpj'p MFTFp"/pAMRF/PPM
rn nrh:Rpn MFtFp/p'aN'RF/ppM
rm CAMpi'F MFTFp"/PAMRF>prT
rn? p'rifRpp HEtER/RANGE/PCt
I WOY C&MPi'F MFTFp"/P4WRF'/PpM
1-1 NOX BCKGRD HEtER/RANGE/PPM
riTMiTTriw"FArTnp .........
wr "rnMrFMTpif'fnM PPM
CO CONCENtRAtlON PPH
rn? CONCPNTRAtlON PCT
NOX CONC^NtRATION PPH
HC ~~" ......
rn
C02 MASS GRAMS
MHY HA'CQ fip'A.M5
PARTICOLATE MASS GRAMS
HP
rri
CQ2 GRAMS/KM
WnY nPAMQ/KM
FOEL'CONSijMPTION BY CB L/100KM
pnw~TTMF " : "SECONDS
MEASURED DISTANCE KM
rnwpncjTTF PFQIII TR
"
MM HR 777 A
G/KG" li:4
TFMPFPATIIPF FlFR'r ^ '. ft
1
COLD TRANSIENT
706:1 (27:3)
55p!5 (22-0)
"37 !P (lo6"6)
" 13948"
137? Z" "1 .
3:
7fl!
"i!
.Pft
2:9? I/"
ft!7/17/
"'7/17V
A.'7>~7>
'7'. iV 7>
-
i
"
36
~76
13:3
~-
7. p
1
STABILIZED
7fiA . 1 (77. R)
563-9 (^^-2)
~37-2 (~99To?
"" ^7574'. ' " '
227~7~( 9039:
20~T/i i / ^o""
~" '7'. /' i /"" 7.
ft
.^o
:04
^6-
"n!
'.S'/17>
7fi!5'/"7V
~2:7/ 3/
1ft- 4/ '/
"" 'i'/ 5V
' "9A~A7
~177"
IP!
TAA
1ft. '7
"2^21
4- 99
is'.i
I'Aft
.7A
74
111 56
PAR""
HOT TRANSIE
. 2
~
3933:
132"9~("4693:
1777/1 i / IP'."'
'V. i/' 1 /"'T.
4ft4/7/ .AQ
'2:?/ 3/ :04
14 1 i/ 2/ 14:
" ' ! i / 2/ "6!
"i 9744
" i •=: .' '
14/
"i !ii
7! 79
' 9
7. 'AS
.10
!^A
272"§
~ -M
1-''0
"
CARBON DIOXIDE G/KM
FUEL "CONSUMPTION "
HYDROCARBONS (THC) G/KM
CARBON MONOXIDER/KM
' riF"w'ffpnRFM R'/VM
' R/ifM
CTARTI T7FTI
7-RAR
7ftV.'Z
11 .7ft
":34
.Pft'
!AR
.077
(4-PAR)
0:5)
ft 7 Oft)
ft'.ftft)
6:00)
6'6'
'
-------
FTP
VEHICLE EMISSIONS RES"LTS- ROAD DRAFT POST-CHECK B.L.
ppn IFPT 11 -CI
TEST NO: £252-1 P"N 1
MEH.iCLE MODE1 " &0 ni'fiQ np
FWRT MF~S. 7" r?7so"" rim ~\>-a
''" '
BAROMETER 739:65 MM HRf?-1'1' TN HR)
RELATIVE 'HUMTfiTfv""As~ 'r
"
DESCRIPTION
PI nkipp TUP P MM. H2n(TN
BLOWER INLET P MM: H^OC™.-
BLOWER TMTpj TFMp! riFR. ~r(riFf5
BLO'/FR REuOL
TOT "FLOy~STD
HC SAMpi_F'
HC BCkbRD
CO SAMPLE MEtER/RANOE/PPM
rn Rrhrhpri MFTFP/PAWRF/PPM
rfi? QAMPJ '§ MFTFP VpAWRF /prj
co2 BckoRD HETER/RANGE/PCT
WnY Q&Mpi'p MFTPp/paWRF/ppM
wnV Rrk:Rpn MPTPP/PAMRP'/PPM
'" .........
HC CONCENTRATION PPM
rn rnwrpkiTpaTTnw PPM
rn-7 rnwrPwtpATfnw prj
Nn.X ^ONCENtRATTnw PPM
~~~ ......
CO MASS RRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICQLAT E MASS GRAMS
Mr RPAMQ /h'M
rn Rp6M§/k;M
C02 GRAMS/KM
MOY RPAMP/i)
~7A!7 /~Pfl?A>
13852:
17/l7§ ~!~ A7&A . \
~tF) . A/1 1 ' / AQ.
3 !.£/"?/ '4!
42IZ/13/ 40:
TI4/13/ i:
47. A/ 7/ .HI
7! 7V iV !AR
i§!§y 2/ i6l
1 : O/ 2/ 1
1 A . 7R
"44""
77!
77A
14:6
§178
1 974 . "=;
""T.'flft
2:24
:60
1 . A1
325 "5
~66
sosf
1 riTFQFI FM
5 FlfinMFTFP 7A
22 ^ DFR C'79-^ DER P"1
lT~9~RM7i?R" " "' " WHY miMTTlTTY
9 7
QTARTI T7Fn UnT TPAWQTFMT
7nA. 1 /'97.P1 71 1 .9 (?R.r\\
569:0 (22:4) C'69:0 (22:4^
"7=;!^ /'~PS.'A^ "77! 9 / PP.n^
9779D. 17H79.
971~T' / ~R1 A9. 1 1777p"7~J77n.
22;7/il/ '77- 9n.7/n/ 9rt.
"3 IP/"?/ "4! ~3 !?/"?/ ~4l
22:8/13/ 20: 27:4/13/ 25:
l.rt/17/ ~? . ~1.fi/17/ ~1 !
9P. S/ 7/ .^P drt.7/ 7/ .AH
"2 !§/ 3/ |04 3! I/ 3/ |05
19.7V 5V 19. i^!6V 5V ii7
!A/ 2/ "II "IS/ "5V "?!
'~97~9P "' "iQ.iiR
IP. "17."
?P! 97!
:45 .^i
11:5 1573
SI 09 T!^P
188513 156^77
"! . 1 7 ~"77pP
1 1 46 1 1 54
•A1 .99
I S3 - AT
30673 2747P
;84 ~ :70
11 : 49 1 fl • 1Q
6:16
CARBON DIOXIDE R/KM
FIIFI rnMQIIMPTTnW 1 /I A/
HYDROCARBONS (THC"1 G/K'M
rAPRnw 'MnwnYTriF R/ifM
nYTnpc; OF WTTPORFW R/KH
PARTICULATE^ K/KM
-4AR-F
Rp""hrMf ^77P. MTI pq^
rnppFrTinw PArTnp 1.A9
STABILIZED
^
7-RAR f4-RAR^
7A1 /7 I ' ' n'.'fi)
ik'M ??779 i i\~.nr\\
:40 ( 0:00^
! HI / 6l6ft^
1 76 ( 6 1 66 )
.977 / A.AAA^
-------
TEST NO: A252-2 R"N 1
F \MnnFi PA nine NFI'TAPP
~"""
RApnMFTFp 77R.PQ MM UR^Q.AP TW MR)
RELATlOE"HURlDltY""57~"P^t"
" TR'
BAG"NUMBER
DESCRIPTION
BLOWER nTF P MH; H2Q(TN H20)
BLOWER INLET F MM: H2Q(IN: ~H20)
RJ~.n[,iFP TMfFf TFMp" TJFR .''H/nFR? ' F)
I' QyER PEOOLUtlfiNS
TOT FLO!-! STD~ cu:"METRES(SCF)
)JF RAMP' F'MFTFP/PANRF7?^PM~'
HP firjfhpn MFTFP/PAMRFVPPM
rn QAMpVF MFfFp'/pAMRF/ppM
rn RrVhpr! '
rn2 '
rn^
Mny
wny firifRpn MFTFP/PAWRF'/PPM
rifi'iifTHjj"pArTnp
Hr"""rnMrFMTpAfTnM PPM
Hn rnwrFkJtp'&tfnw PPM
rn9 rnwrFMTPATTnid prir
NOX CONCENtRATION PPM
ur MAQQ RPAMQ"
CO MASS GRAMS
rn? MAQP RRAM^
wnv MA§5 RRAMS
PARTICL'LA?E MASS GRAMS
wr
rn
GRAMS/kM
§RAM^/KM
piri "rnMQiiMPTTnM RY rn i /!QOKM.
pfiM~TfMF " ~Sf""
MEASL'REP DISTANCE KM
PnMPnQTTF PFQIII TQ
~" A252-2
MM UR "77fl.P
R/K'5'" ii-9
TFMPFPiTIIPF nFR"r 9S! A
FTP VEHICLE EMISSIONS RESULTS - ROAD DRAFT POST-CHECK B.L.
PPH
ripy RIII R TFMP. ^^.A riFR r<7R.A ncr;
ARQ. "" '" " " "
COLD TRANSIENT
711:2 <2S:0)
13890-
"3"7"
. 1 7i 1 /
'
-S
a
15: 1
"7! 1 A
§ i 94
1B64-9
""4.0=1
322 ?
~70
1 o .' i i
40
6!
-
STABILIZED
7 (2
2741
~ ~
7/1 7/ 97
9! A/ 7>
22 i
"4=;
11 .'s
"7! 00
_§!§2
18§i"2
""§128
1.-52
:48
!o7
999 '. 9
"' '. PA
ji J27
RAO"
TFQT MFTRWT 1 Q9R . KR( 4'>c!0 '
~ " o'Ti "
.
7R'n'?"h'Mf AP-4R. MTI
MHY UIIMTTlTTY mPPFrTTOW FAPTRP 1 . t\A
HQT TRANSIENT
'7
133:5 ( 4714:!
99?=i/1 1 / " 97! '
~Z!7/~?'/ ~A'.
2:2/ 3/ :03
":?/ 2/ ~1:
"JR."
~65
"i!49
3! 97
1592:4
:25
977"6
CARBON DIOXIDE
pijtT "rnwQriMpfTnw
HYDROCARBONS (THr)
"
G/KM
f
OXIDES OF
PAI1
CTARTI T7FTI
3-BAG
298:6
(4-RAR)
6:6)
n~.r\n\
-)
6
-------
FTP - CRANKCASE VENT FILTERS REMOVED
TEST NO:
UEH!C' E
ENBiNE~5:7~ L ( 350~
'A7~
PIIM •?
ni'fii; riF!~TARH
CID ) "' '-5
F MR *9
DAT /
DY
TEqT
ACTUAL R^.AD LOAD" ?~i
DIESEL EM-408-F
nfiHKFTFP 7H9l"~k'M/
B
MTIFQ1
RApDMFTFp 741. Afl MM URC3Q.9Q TW HR)
RELATlOE HUMIDITY A?" PCT~"
PAR PFQIII TQ
BAG "NUMBER
DECRIIO
DRY BULB TEMP 23 9 DER £(.?c--Cf
'' TTn' RM~k'R" " " ' "
1
OLD RANENT
B
WHY UIIMTnTTY PflPPFPTTHW FAPTRP
A
QTARTI T7FFI
a
i
BLOWER DIP P MM H9n(TN
BLOWER INL.ET P MMV~H20(iN: ~H20)
BLOWER INLET TEMP' I>FfV~pi;nFf:~ F)
BLOWER REUOL
fnf pi_ni,i~c;fri~
HC SAMPLE" METLR\/RANGE7'PPM~
HP sp'irhpri MF^FP/PANRF'/PPM
CO SAMP' ^ MET^pVpANrcFVppM
CO BCKGRD MEtER/RANOE/PPH
C02 SAMPLE METER/PiANOE/PCT
rn? nriv:hpri MrTrp'/pAWRF Vprj
WHY CAMpi'F MFTFp"/pAWRF>ppM
wny §r'h:hpTi MFTCPVPAWRF'/PPM
DILUTION FACTOR .........
HC "CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRAtlON PPM
HC MASS~bRAMS"" ......
CO MASS GRAMS
C02 MASS GRAMS
wnv MAQQ RpjiMC
PARTICULAT E MASS GRAMS
Ur RpA.M.Q/k'M
P'n RpAM§'/k:M
Fn1? RpAMQ"/k:M
WHY RpAM5Vi 'JV
"i*73
"79"
38 i
"79
1', i
1924-i
"'T.'BO
2:45
:52
1 .rt7
737"'?
~~~
47.
5'
40 ':
i'.
. fli
•04
•io.'
723:9 (28; 5)
571 '^ (2^-5)
~7A!T ("97" 6)
""'•17947! '
97r)~T"/ R1Q
' "
716:3 (28:2)
5.Z7.5 (22-2)
" ~
29
~r>
1 /
4
A/17/ 22
7'/17/ ~7)
nV~7/ . ifl
2777
~22 •
21 i
.4^
11 .'•>
107.
.49
.'97
. 6
"""04
1 1 ! A/
21 :4/l/ 21
"7 .'«?'/" TV "4
29^ A/17'/ V7
'• 4/13 / ~0
'"
.
i!s/ 7V
IA!P'/ 5V
"5!iV 5V
19758
"inT"
2A !
~
1 • 40
4! 61
1587:9
~~7 .OP
:25
?T
2°0-0
-70
10-49
i?
PFCIII TQ
TFRT Mil'MPFp"
^APOMETER MM HG
HUMIDITY G/KG"
TFMPFPATI IPF HFR P
-B
'
741.?
ii is
97 . Q
CARBON DTnXTT1E R/KM
FUEL"CONSUMPTION L'iOOKM
HYDROCARBONS (THC) G/K.M
CARBON MONOXIDE G/KM
nYTnFc HF wVfpnRFM R/k:M
PAPTTrilfATFC R/KM
49
"" :43
.no
•7*
(4-RAR)
( 00)
(
(
(
/
.-)
0^00)
-------
FTP
UEHICLE EMISSIONS RESULTS - VENT FILTER POST-CHECK B.L.
pp'n iFrr"V i I=;R i irw
TEST N:
''
nn niQ HFITARR
FMRTMF =;.7 i (7=10.
"AT"'
U-R
BAROMETER 740 :A* MM HO(29-1A IN HR)
RELATIVE "HUMIDITY 661 ""
RAR"PFPUI TR '
~
DESCRIPTION
RI ni,iFp TITF P MM. u9n(TW. i-pnj
BLOWER INLET P MM:~H2^(iNV~H20)
'"~'
PLOWER TNLET TPMP:
BLOWUP RE^OI "TIONS
TOT FLoi'Tsf D~ cO: "METRES ( SCF ?
HC SAMPLED METEF^RANBE/FPM"
HC PCKORD MEtER/RANGE/PPM
CO SAMPLE METER/RANGE/PPH
Fn srifRpn MFTFP/pAHRr/ppM
C02 SAMPLE ETER/RANGE/PCT
a
M
03
WHY nr'Rpr MFTFp/p6!RFPpM
DILUTION FACTOR .........
ijr rnwrFMirpATTnw PPM
CO r*ONCENtPAtlON PPM
Fn? rnwrFWTpaffnw pry
wnv rnw'pFMyp'Affnw PPM
wr" ~'"" ......
rn MAQQ R
rrb
PARTICULAT E MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/kM
urn RP&MQ/KM
FOEL"CON§UMPTION PY CP L/IOOKM
~ " "COND
COMPOSITE RESULTS
TEST ~N' 'M^^P " A252-3
"" MM UR ~74ft.7
'" '-
TFMPFPATIIPF nFRr 97 .
VEHICLE NO: 62
fiATF S/'R/RA
BAG~CART~NQ~ "i
FiS°J°-: '~ 2
nPV Pill R TFMP 97 .
Afcq. gilMTTlTTY 19.1
1
COLD TRANSIENT
71 A 7 /2B-'7'1
56^'^ f99!9;i
~7A!i /~P77"f^
17flc;p.
134~§~( 4761 : )
45:67117 46-
4:07 I/ 4:
JA!9/17/ A1
'l! 77137 I:
47 ' 37 ~ 37 -82
'7! A/ 7/ '. AS
15 1 47 27 15T
~ ~ '. R'/ 5V " i '.
' "l6~27
A9.
38:
777
14:6
"7 . 911;
A! A?
1906:1
2J50
.SA
1 [Aid
329 "?'
""'. Afl
19; 7Q
505"
5:78
7 TlFR rtfA.r\ TlFR
RM /h'R
n
STABILIZED
^A7.P ^99.9\
716:3 (2§':2)
' 7^! A /"oi'n1.
"~97RAR.
229:4 ( 9102:)
27 271 1 /"~27;
A A/ 1 / A.
25 57137 23-
~1 47137 ~1 •
9O &f 7/ .Aft
2 87 37 :04
11 §/ 97 12:
77 27 " 1 •
27~35
97""
9? .
~AA
1 i .' i
"7! AQ
S. A9
186379
li51
:50
]5l
7AA. P
.H7
11:30
867"
A" IP
PAPRHM
TFRT UFTRHT 199H.
ArTi'iAi"~pnAfi i fJAri"
DIESEL EM-409-F
ODOMETER 7857 "~KM'
F\
K-RC 49SA. !_BS^
p'7i l
569:0 (22:4)
"77! 9 ( 99:6)
" i 3846 •
17d7Z~ /" A~7A7 . )
24:17117 24:
A . A/ 1 / 4 .
9P.Z'/17/ 97]
!7/?7/ ~i !
AA!i'/~7V .AH
'9 '.. 77 37 ;04
1 s ! 7 '/ 9/ i =; .
" " i 67 27 " 1 '-.
~ 19757
~9A .
25 i
T'ZA
1477
" 1 . *i7
T! PA
1576:2
1J57
•27
IAP
275:0
~ 169
1 A!7A
505T"
§J77
TlTnYTTlF R/N-M
FIIFI rnMCIIMPTTHW 1 /1AAh'M
HYriPnr
TAPRnW
nYTnFR
APRDMq fTUP> R/K'M
MnWHYTTiF R/lfM
OF WTTPORFW R/K'M
PARTICULATES G/^H
RTABTI T7FTI
7-RAR /A-RAR1!
9PP.'5 i ' ' A'.'A'I
11:25 ( 0"66)
:45 ( ^-66)
!(J7 i (\'.rtn\
:7f ( 6:66)
9PP / A.AAAS
-------
FTP VEHICLE EMISSIONS RESULTS - TRW ELASTOMER RINGS
PROJECT 11-5810-001
G
H
TEST NO, 6261C4 RUN 1
VEHICLE MODEL 30 OLDS DELTA88
ENGINE 5.7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 734.57 MM HG(23.92 IN HG)
RELATIVE HUMIDITY 57. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. K20(IN, H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCK6RD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 6261C4
BAROMETER MM KG 734,6
HUMIDITY G/KG 12.0
TEMPERATURE DEG C 25.6
VEHICLE NO.62
DATE 10/17/80
BAG CART NO. 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP. 25.6 DEG C(78,0 DEG F)
ABS. HUMIDITY 12,0 GM/KG
TEST WEIGHT 1928. KG( 4250, LBS)
ACTUAL ROAD LOAD 9,1 KW( 12.2 HP)
DIESEL EM-408--F
ODOMETER 8135, KM( 5055, MILES)
NOX HUMIDITY CORRECTION FACTOR 1.04
1
COLD TRANSIENT
708,7 (27.9)
569.0 (22.4)
37.2 ( 99.0)
13866.
133.5 ( 4715,)
51.7/11/ 52.
7.7/ I/ 8.
46.2/13/ 43.
4.4/13/ 4.
47.3/ 3/ .82
2.9/ 3/ .04
15.I/ 2/ 15.
1.6/ 2/ 2.
16.25
44.
38.
.77
13.6
3.42
5.94
1891.3
3.63
2.71
.59
1.02
323.8
.62
12.17
505.
5.84
STABILIZED
HOT TRANSIENT
708.7 (27.9)
569.0 (22.4)
37.2 ( 99.0)
23816.
229.3 ( 8098.)
28.5/11/ 29.
5.7/ I/ 6.
26.3/13/ 24.
4.2/13/ 4.
30. 4/ 3/ .50
2,9/ 3/ ,04
12. 5/ 2/ 13,
1.9/ 2/ 2,
26.38
23.
20.
.46
10.7
3.04
5.21
1931.8
4.89
1.49
.48
.83
306.4
.78
11.50
867.
6.30
708.7 (27,9)
569,0 (22,4)
37.2 ( 99.0)
13374.
133.6 ( 4718.)
24. 3/1 I/ 24.
5,7/ I/ 6.
30.1/13/ 27,
2.7/13/ 2.
41. 7/ 3/ ,71
3.3/ 3/ .05
15. 8/ 2/ 16.
1.7/ 2/ 2.
13.75
19.
24.
.66
14.2
1.46
3,76
1618.5
3.79
1.59
.25
.65
279,5
.65
10.46
505.
5.79
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
302.7
11.36
.44
.82
.71
.294
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0,00)
( 0.00)
( 0.000)
-------
FTP
VEHICLE EMISSIONS RESULTS - TRW ELASTOMER RINGS
PROJECT 11-5810-001
TEST NO. 6261C5 RUN 1
VEHICLE MODEL 30 OLDS DELTA38
ENGINE 5.7 LC350. CID) V-8
TRANSMISSION A3
BAROMETER 744.93 MM HG<29,33 IN HG)
RELATIVE HUMIDITY 34. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
VEHICLE NO.62
DATE 10/20/80
BAG CART NO. 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP. 25.6 DEG C(73.0 DEG F)
ABS. HUMIDITY 7.0 GM/KG
COLD TRANSIENT
BLOWER DIF P
BLOWER INLET
MM. H20(IN. H20)
P MM. H20(IN. H20)
C(DEG. F)
o
i
to
O
BLOWER INLET TEMP. DEG
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
fiOMP HHKS
STABILIZED
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL EM-408-F
ODOMETER 8171. KM( 5077. MILES)
NOX HUMIDITY CORRECTION FACTOR ,89
HOT TRANSIENT
713.7 (28,1)
574.0 (22.6)
35.6 ( 96.0)
13872,
136,2 ( 4811.)
49.5/11/ 50,
6.2/ I/ 6.
46.0/13/ 43.
4.0/13/ 3.
46. 9/ 3/ .81
3.3/ 3/ .05
16. I/ 2/ 16.
.8/ 2/ 1.
16.41
44.
39,
,76
15.3
3.43
6.13
1896.4
3.56
2.39
.59
1.05
324.1
.61
12.18
505.
5.85
716,3 (28,2)
576.6 (22.7)
35.0 ( 95.0)
23321.
234.1 ( 8267.)
24.3/11/ 24,
8.0/ I/ 8,
26.3/13/ 24.
5.4/13/ 5.
30. 6/ 3/ .51
3.6/ 3/ .06
12. 3/ 2/ 13.
,7/ 2/ 1.
26.22
17.
19.
.45
12.1
2.25
5.09
1942,9
4.83
1.41
,36
,81
308.3
.77
11.56
868.
6.30
711.2 (28.0)
571.5 (22,5)
37,8 (100.0)
13839.
135.5 ( 4786.)
21.8/il/ 22.
8.0/ I/ 8.
29.8/13/ 27.
3.8/13/ 3.
41. 2/ 3/ .70
4.0/ 3/ .06
16. 3/ 2/ 16.
,7/ 2/ 1,
19.01
14.
23.
.64
15.6
1. 11
3.66
1592.9
3.61
1.48
.19
.64
277.4
,63
10.38
504.
5.74
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
303,1
11,37
.36
,81
.70
.271
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0,00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5810-001
TEST NO. 6261-1 RUN 1
VEHICLE MODEL 30 OLDS DELTA38
ENGINE 5.7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 743.54 MM HG(29,47 IN HG)
RELATIVE HUMIDITY 20, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP. DEG. C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
D
I
t\j
HC
CO
CO?
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE DEG C
6261-1
748.5
4.2
26.1
VEHICLE NO,62
DATE 11/13/80
BAG CART NO. 1
DYNO NO, 2
CVS NO, 3
DRY BULD TEMP, 26,1 DEG C(79,0 DEG F)
ABS, HUMIDITY 4,2 GM/KG
COLD TRANSIENT
711,2 (2B.O)
56?, 0 (22.4)
37, S (100,0)
13846,
136,9 ( 4834.)
34,7/il/ 35,
2,8/ I/ 3,
40.2/13/ 37,
,81
.05
13,
47, I/ 3/
3,3/ 3/
17, 8/ 2/
,6/ 2/
16,37
32,
35,
,76
17.2
2.53
5,55
1914,9
3,72
2.19
,43
,95
328,5
,64
12,33
504,
5.83
STABILIZED
711.2 (28.0)
571,5 (22.5)
41,9 (107,5)
23333,
233,3 ( 823S.)
16.0/11/ 16,
3,3/ I/ 3,
20.9/13/ 19,
1.7/13/ 2,
29,9/ 3/ ,49
2,6/ 3/ ,04
14.3/ 2/ 14,
,6/ 2/ 1,
26,94
13,
17,
,46
13,7
1.73
4.69
1946.1
5,05
1,22
.28
,75
310.9
.81
11.64
868.
6,26
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL EM-408-F
ODOMETER 3266, KM( 5136, MILES)
NOX HUMIDITY CORRECTION FACTOR ,82
HOT TRANSIENT
711,2 (28.0)
571.5 (22.5)
36,7 ( 98,0)
13848.
137,1 ( 4840.)
14.4/11/ 14,
3.3/ I/ 3.
25,3/13/ 23.
1.1/13/ 1.
40,5/ 3/ ,69
2.B/ 3/ ,04
17.9/ 2/ 18.
,6/ 2/ 1,
19,40
11.
22.
,65
17.3
,89
3,47
1622.2
3.74
1.66
.15
,59
276.9
.64
10.35
504.
5,36
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
305.2
11.43
.27
.75
.73
.257
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0.000)
-------
TEST NO. 6261-2 RUN 1
VEHICLE MODEL 30 OLDS DELTASS
ENGINE 5.7 L(350, CID) V-8
TRANSMISSION A3
BAROMETER 743.54 MM MG(2?.47 IN HO)
RELATIVE HUMIDITY 24. FCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN, H20)
BLOWER INLET P MM, H20(IN, M20)
BLOWER INLET TEMP, DEG, C(DEG, F5
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
CO
CO
o
NJ
CO
C02
NOX MASS CRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 6261-2
BAROMETER MM HG 748.5
HUMIDITY G/KG 4.7
TEMPERATURE DEG C 25.0
FTP VEHICLE EMISSIONS RESULTS
PROJECT 11-5010-001
VEHICLE NO,62
DATE 11/19/30
BAG CART NO, 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 4,7 GM/KG
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL EM-408-F
ODOMETER 8205. KM( 5148. MILES)
NOX HUMIDITY CORRECTION FACTOR ,83
1
COLD TRANSIENT
711.2 (28,0)
571,5 (22,5)
37,2 ( 99.0)
13377,
137,3 ( 4840.)
33.A/11/ 34.
4.G/ I/ 5,
40.7/1.3/ 33.
5.7/13/ 5.
45,6/ 3/ ,78
3,5/ 3/ ,05
16,4/ 2/ 16,
,37 27 0,
16.96
29.
32.
.73
16.1
2,30
5,15
1841,3
3,53
1.93
.40
.89
316.4
.61
11.87
505.
5.82
STABILIZED
711,2 (28,0)
571.5 (22,5)
38.1 (100.5)
23303.
235.3 ( 8308.)
16.
4,
22,
4.
30.
3.
13.
(
3/ii/
8/ I/
8/13/
3/13/
I/ 3/
2/ 3/
3/ 2/
2/ 2/
26.74
12.
17.
,45
13.1
1.66
4.59
1939,7
4.92
1,37
,27
,74
312.2
,79
11,69
867,
6.21
17.
5.
21,
4,
.50
.05
13.
0.
HOT TRANSIENT
711.2 (28.0)
571.5 (22.5)
38.1 (100,5)
13854.
136,9 ( 4834.)
15,3/117 15.
4.8/ I/ 5.
25.2/13/ 23.
2,8/137 3.
39.87 3/ .67
3.27 37 .05
16.67 27 17.
.27 27 0.
19.77
11.
20.
.63
16.4
.85
3.22
1572.7
3.59
1,50
,15
,56
271,5
,62
10.15
505.
5.79
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
301.9
11.30
.26
.72
.71
.255
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0,00)
( 0,000)
-------
RESULTS - CORNING CATALYZED TRAP
O
I
K)
U)
TEST NO, 6271C1 RUN 1
VEHICLE MODEL 79 OLDS DELTA88
ENGINE 5,7 L(350, CID) V-8
TRANSMISSION A3
BAROMETER 747,27 MM HG(29,42 IN HO
RELATIVE HUMIDITY 26, PCT
BAG RESULTS
BAG NUMBER-
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H2GdN, i!2C)
BLOWER INLET TEMP, DEG, CcDEG, F,
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGL/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE MtTER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE KETER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
CO? GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CE< L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS-
TEST NUMBER 6271C1
BAROMETER MM HG 747,3
HUMIDITY G7KG 5,0
TEMPERATURE DEG C 24,4
VEHICLE EMISSIONS RESULTS
PROJECT li-5810-OCi
ljE;-tICLt MO,62
DATE 12/22/80
BAG CART NO, 1
DYNO NC. 2
Cl'C NC, 3
DRY BULB TEMP, 24,4 DEG C(76,0 DEG F)
ABS, HUMIDITY 5,0 GM/KG
TEST WEIGHT 1928, KGC 4250, LBS)
ACTUAL ROAD LOAD 9,1 KW( 12,2 HP)
r.'IESEL EM-408-F
ODOMETER 8428, KM( 5237. MILES)
NOX HUMIDITY CORRECTION FACTOR .84
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
711.2 (29,0)
561,3 (22,1)
33,9 ( 93,0)
13866.
136,0 ( 4802.)
35, 5/1 I/ 36,
4,6/ I/ 5,
31.2/13/ 29,
1.1/13/ 1,
46, A/ 3/ ,30
3,9/ 3/ ,06
14, 9/ 2/ 15,
,6/ 2/ 1,
16,58
31,
27,
,75
14,3
2,45
4,29
1856,7
3,13
,61
,43
,75
324,4
,55
12.16
505.
5,72
711,2 (28,0)
561,3 (22,1)
36,1 ( 97,0)
23794,
232,5 ( 8209,)
12.4/11/ 12,
3,9/ I/ 4,
16.4/13/ 15,
1.4/13/ 1,
30, 5/ 3/ ,50
3,6/ 3/ .06
12, O/ 2/ 12,
,4/ 2/ 0,
26.42
9,
13.
.45
11.6
1,16
3,63
1921,7
4,34
.35
,19
.59
311.8
.70
11,65
867,
6,16
713,7 (28,1)
571,5 (22,5)
36,1 ( 97,0)
13878,
135,5 ( 4783.)
10.3/11/ 10,
3.9/ I/ 4,
16,0/13/ 15,
1,3/137 1,
41, 6/ 3/ ,71
3,6/ 3/ ,06
15, I/ 2/ 15,
,4/ 2/ 0,
18,37
7,
13,
,66
14.7
.52
2,07
1625.2
3.21
,44
.09
.36
283,5
.56
10.58
505,
5.73
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
306,6
11.46
.21
,56
.63
.072
(4-BAG)
( 0,0)
( 0,00)
( 0,00)
( 0,00)
( 0,00)
( 0,000)
-------
RESULTS - CORNING CATALYZED TRAP
TEST NO, 6271C2 RUN I
VEHICLE MODEL 79 OLDS OELTA88
ENGINE 5,7 L(350, CID) V-3
TRANSMISSION A3
BAROMETER 740,92 MM HO(29,17 IN HG>
RELATIVE HUMIDITY 45, PCT
ZfAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET p MM, h'Z'OdN, H20>
BLOWER INLET TEMP. DEG, C(DEG, FJ
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO DCK3RD METER/RANGE/PPM
C02 SAMPLE hETER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
D
I
HC
CO
CO?
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 6271C2
BAROMETER MM HG 740+9
HUMIDITY G/KG 3,8
TEMPERATURE 2EG C 24,4
FTP VEHICLE EMISSIONS RESULTS
PROJECT U-5810-OCi
VEHICLE NO,62
DATE 12/23/60
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 24,4 DEC C(76,0 DEC F)
ABS, HUMIDITY 3,8 GM/KG
TEST WEIGHT 192S, KG< 4250, LBS)
ACTUAL ROAD LOAD 9,1 KW( 12,2 HP)
DIESEL EM-408-F
MILES)
NOX HUMIDITY CORRECTION FACTOR ,94
1
:OLD TRANSIENT
688,3 (27,1)
558,8 (22.0;
38,9 (102,0)
13861,
105,7 ( 3731.)
37,2/il./ 37,
4,I/ I/ 4,
34.0/13/ 31.
,4/137 0.
59,87 37 1.06
3.37 37 .05
18,07 27 18,
,87 27 1,
12,57
33.
30.
1,01
17,3
2,04
3,69
1958,7
3.28
,94
.35
,64
339.4
,57
12,70
504,
5.77
STABILIZED
HOT TRANSIENT
688,3 (27,1)
558, B (22,0)
40,0 (104.0)
23835.
181.1 ( 6395.)
14, A/117 15,
3,97 I/ 4,
14, A/13/ 13,
.6/137 1,
38,07 3/ ,64
3,27 37 ,05
13,97 27 14,
,67 27 1.
20,83
11,
12.
,59
13.3
1.14
2.61
1969,7
4,34
,40
,18
,42
315,5
,70
11,78
867,
6,24
688,3 (27,1)
558,8 (22,0)
37,8 (100,0)
13877,
106,1 ( 3748.)
12,0/li/ 12,
3,9/ I/ 4,
17.4/137 16,
.9/137 1.
51. 8/ 3/ .90
3, I/ 3/ ,05
17, 8/ 2/ 18,
,6/ 27 1.
14,81
8,
15,
,86
17.2
,51
1,80
1666,7
3,29
,55
,09
,31
288,7
,57
10.77
505,
5,77
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULARS G/KM
STABILIZED
3-BAG
313,1
11.69
.19
,43
,64
.093
(4-BA6)
( 0.0)
( 0.00)
( 0.00)
( 0,00)
( 0.00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS - CORNING CATALYZED TRAP AT 22 kPa
PROJECT 11-5810-001
TEST NO, 6271C3 RUN 1
VEHICLE MODEL 79 OLDS DELTA88
ENGINE 5.7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 741,68 MM HG(29,20 IN HG)
RELATIVE HUMIDITY 44, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN. H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRD METER/RANGE/PPM
SAMPLE METER/RANGE/PCT
BCKGRD METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
COMPOSITE RESULTS
TEST NUMBER 6271C3
BAROMETER MM HG 741,7
HUMIDITY G/KG 9.9
TEMPERATURE DEG C 26.7
HC
HC
CO
CO
C02
C02
NOX
CO
C02
VEHICLE NO,62
DATE I/ 6/80
BAG CART NO, 1
DYNO NO* 2
CVS NO, 3
DRY BULB TEMP, 26,7 DEG C<80.0 DEG F)
ABS, HUMIDITY 9,9 GM/KG
8,
25,
3,
,82
,06
13,
1,
1
COLD TRANSIENT
708,7 (27,9)
566,4 (22,3)
37.2 ( 99,0)
13874,
135,3 ( 4777.)
29.6/11/ 30,
7,8/ I/
27.7/13/
3,2/13/
47,7/ 3/
3,6/ 3/
13,2/ 2/
l.l/ 2/
16.18
22.
22.
,77
12.2
1,74
3,41
1910.0
3,07
,71
,30
,59
330,9
,53
12,38
505.
5.77
STABILIZED
708.7 (27,9)
566,4 (22,3)
37,2 ( 99,0)
23788,
231,9 ( 8190,)
12.7/11/ 13,
7,6/ I/ 8,
7.5/13/ 7.
2.6/13/ 2.
31.3/ 3/ ,52
3,4/ 3/ ,05
10,5/ 2/ 11,
1,1/ 2/ 1,
25,73
5.
4,
,47
9,4
,72
1,15
1990,8
4,08
,40
,12
,19
323,8
,66
12,07
867,
6,15
TEST WEIGHT 1928, KG( 4250, LBS)
ACTUAL ROAD LOAD 9,1 KW( 12.2 HP)
DIESEL EM-408-F
ODOMETER 8496, KM( 5279, MILES)
NOX HUMIDITY CORRECTION FACTOR ,97
HOT TRANSIENT
711,2 (28,0)
569.0 (22.4)
37.8 (100,0)
13871.
135.1 ( 4770.)
12.8/11/ 13,
7,6/ I/ 8,
12.5/13/ 11,
1.9/13/ 2.
42,O/ 3/ ,72
3.8/ 3/ .06
13.4/ 2/ 13.
l.l/ 2/ 1,
18,68
6,
9,
.66
12,4
,44
1.44
1632.1
3.11
.53
.08
.25
283.5
,54
10,57
505,
5,76
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
314,2
11,72
,14
,29
,60
.084
(4-BAG)
( 0,0)
( 0.00)
( 0,00)
( 0,00)
( 0.00)
( 0.000)
-------
FEST NO, 6201-2 RUN 2
VEHICLE MODEL 00 OLDS DELTA 58
ENGINE 5,7 L(350, CID) V-S
TRANSMISSION A3
:-!G(29,10 In HCO
53 < PUT
;' 73v.l4
wELATIUE MUiilDITr
BAG RESULTS
BAG NUMBER
DESCRIPTION
SLOWER IIIF !••
BLOWER INLET
SLOWER INLET
BLOUER
rsh- ii20(!N; lu'GJ
P MM, 1 120 (IN, N2C;
TEMP, DEC. CCDES,
ONS
TOT
FLOiJ STO. CU, METRES' SC
SAMPLE MCTER/RANGL/PPM
BCKGRD HETER/RANGE/PPM
SAMPLE fir7ER/RANGE/PPf»
METER/RANGE /PPM
flCTEP/RANGE/PCT
METER/RANGE/PCT
M
BCKGRIi
5AMPL.F
BCKGRD
SAMPLE
BCKGRD
MFTER/RANGE/PPfi
PPH
PCT
PPM
HC
ro
CO
C02
C02
NOX
NOX
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION
C02 CONCENTRATION
NOX CONCENTRATION
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KH
NOX GRAMS/KM
FUEL CONSUMPTION DY CB L/100KM
RUN TIME
MEASURED DISTANCE
SCF* DRY
SECONDS
KM
COMPOSITE RESULTS
TEST NUMBER 6281-2
BAROMETER MM HG 739,1
HUMIDITY C/KG tl,2
TEMPERATURE DEG C 25,6
vij JUT CM:SCIONS RESULTS - BASELINE CHECK
PROJECT 05-5G10 o:;s
i ifTI ITf*' F i1'"' -' ~
*• U11J. L-;_ t._ I ^ u •; u A;.
DftTC ?/ 2/83
3AG "ART rfC, 1
OYNO NO; 2
CVS NO, 3
:':.'< UCI5MT 1928, KG( 4250, LBS)
Ai.liJAi. ROAD LOAD 9.1 KW( 12,2 IIP)
!!).!:i:C;.. E* 465-1
OliOnLFER 9010. KM( 5599, MILES;
DRY DUuB TEMP, 25«6 DEG C(70,0 DLO F;
ADS, HUMIDITY 11,2 GM/KG NOX nUrtlDITY CORRECTION FACTOR 1,02
COLD TRANSIENT
STABILIZED
MOT TRANSIENT
693,4 (27,3;
563,9 (22.2)
36,7 ( 95. 0)
13841,
134,0 < 4732,)
48. 0/1. I./ 48,
4, A/ I/ 5,
51,5/137 49,
2.2/13/ 2,
48. 7 / 3/ ,04
3,3/ 3/ ,05
17,17 2/ 17.
,6/ 2/ 1,
15,73
44,
45.
,79
16,5
3,37
7,06
1949,9
4,31
2,68
,58
1,22
337,3
,75
12,69
505,
5,78
.975
y Of". ET / 17 i=; \
U / U i w- \. il / + v.1 .•
571.5 (22,5)
36,1 ( 97,0)
23790 ,
230,3 ( 8133,)
17, 0/1 I/ 17,
4,6/ I/ 5,
24.3/13X 22,
2.0/13/ 2,
31.4/ 3/ ,52
2,87 3/ ,04
14, O/ 2/ 14,
-7/ 2/ 1,
25,55
13,
20,
" ,48
13,3
1,67
5,34
2022,2
5,97
1,65
,27
,86
325,7
,96
12,20
867,
6.21
,978
693,4 (27,3)
563.9 (22,2)
36,7 ( 90,0)
13855,
134,1 ( 4736,)
14, 9/1 I/ 15,
3,P/ I/ 4,
30.3./13/ 28,
1.8/13/ 2,
43,57 3/ ,74
2,7/ 3/ ,04
18, 5/ 2/ 17,
,8/ 2/ 1,
17,93
11,
25,
,70
17.7
.87
3.98
1729,3
4.63
1,77
,15
,69
298,4
,80
11,16
505.
5,80
,976
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS CTHC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
320,6
12,01
.30
,89
,87
,318
(4-BAG)
( 0.0)
( 0.00)
( 0,00)
< 0,00)
< 0,00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS - JOHNSON MATTHEY CATALYZED TRAP
PROJECT 05-5010 001
TEST NO, 62B1C.1 RUN 1
VEHICLE MODEL GO OLDS DELTA 08
ENGINE 5,7 LC350, CID) V--8
TRANSMISSION A3
BAROMETER 744,98 MM HOC29,33 IN HG)
RELATIVE HUMIDITY 46, PCT
BAG RESULTS
DAG NUMBER
DESCRIPTION
BLOWER DIP P flM. I!2DUN. i!20)
BLOWER INLET p MM, H20aN, H2G)
BLOWER INLET TEMP, DEG. CcDEG, P)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
SAMPLE METER/RANGE/PPM
MFTER/RANCE/PPM
MFTER/RANGF/PPM
METER/RANGE/PPM
METER/RANOE/PCT
METER7RANGE7Pf;T
HC
HC
no
D
i
to
--J
METER/RANGE/PPM
PPM
PPM
PCT
PPM
BCKGRD
SAMPLE
DCKGRD
SAMPLE
CC2 KCKGRfi
NOX SAMP',
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION
CG CONCENTRATION
C02 CONCENTRATION
NOX CONCENTRATION
HC MASS GRAMS-
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS-
MEASURED DISTANCE KM
SCF» DRY
COMPOSITE RESULTS-
TEST NUMBER 6281Cl
BAROMETER MM HG 745,0
HUMIDITY G/KG 9,2
TEMPERATURE DEG C 25,0
VEHICLE NO,62
DATE I/ 8/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 PEG C(77,0 DEG
ABS. HUMIDITY 9,2 GM/KG
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW( 12,2 HP)
DIESEL EM-465-F
ODOMETER 9049, KM< 5623. MILES)
NOX HUMIDITY CORRECTION FACTOR .95
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
690,9 (27,2)
566.4 (22.3)
35,6 ( 96,0)
13661,
135,0 ( 4795,)
33, 6/1 1/ 34,
5.9/ I/ 6,
30.3/13/ 28,
2.I/13/ 2,
46, O/ 3/ ,79
3,3/ 3/ ,05
15, I/ 2/ 15,
,6/ ?./ 1,
16,82
23.
25.
,74
14.5
2.20
4.00
1S47.2
3,60
1,10
,38
,70
321,6
,63
12,05
505,
5.74
.970
706,. 1 (27,0)
576,6 (22,7)
33,9 ( 93,0)
23309,
233,7 ( 0252,)
6,7/ll/ 7.
5,2/ I/ 5,
4.7/13/ 4,
1.9/13/ 2,
31,57 37 ,52
3,17 37 ,05
12,77 27 13,
.67 27 1,
25.59
2,
3,
,46
12,1
.23
,68
2040,4
5.17
.83
.04
,11
328,3
,83
12.22
868,
6.22
.980
698,5 (27.5)
571,5 (22.5)
36,7 ( 98,0)
13854.
135,4 ( 4781,
6.5/117 7.
4.97 17 5.
6.4/137 6,
1.6/13/ 1,
42, I/ 3/ ,72
3,87 37 .06
16,97 27 17,
.87 27 1,
18.66
o
tL. *
4,
,66
16.1
.15
.67
1640.6
3.99
,74
.03
.12 x
286,6
,70
10.67
505,
5,72
,979
CARBON DIOXIDE 6/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
(••ARTICULATES G/KM
STABILIZED
3-BAG
315,5
11,76
,11
.23
.75
.144
(4-BAG)
( 0.0)
( 0.00)
( 0,00)
( 0.00)
( 0,00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS - JOHNSON MATTHEY CATALYZED TRAP
PROJECT 05-5810-001
TEST NO. 6281C2 RUN 1
VEHICLE MODEL 80 OLDS DELTA 88
ENGINE 5,7 L(350. CID) V--8
TRANSMISSION A3
BAROMETER 744.22 MM HG(29,30 IN HB)
RELATIVE HUMIDITY 52, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
CD
BLOWER DIF P
BLOWER INLET
MM, H20(IN. 1-120)
P MM, H20(IN, (-120)
C(DEG, F)
BLOWER INLET TEMP, DEG
BLOWER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
1C SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
HC
CO
MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF> DRY
DFC* WET (DRY)
SCF> WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6281C2
BAROMETER MM HG 744,2
HUMIDITY G/KG 10.2
TEMPERATURE DEG C 24.4
VEHICLE NO.62
DATE 7/ 9/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO, 2
DRY BULB TEMP, 24,4 DEG C(76,0 DEG F)
ABS, HUMIDITY 10,2 CM/KG
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9,1 KW( 12,2 HP)
DIESEL EM-465-F
ODOMETER 9128, KM( 5672. MILES)
NOX HUMIDITY CORRECTION FACTOR .98
1
:OLD TRANSIENT
708,7 (27,9)
579,1 <22,8)
35,0 ( 95,0)
13854,
135,5 < 4786.)
35.4/11/ 35,
4.87 I/ 5.
35.7/13/ 33,
1.8/13/ 2,
47. 2/ 3/ .01
2,9/ 3/ ,04
15, 4/ 2/ 15,
,5/ 2/ 1.
16.34
31,
30,
.77
14,9
2.41
4.81
1915,1
3.80
1,09
,42
.84
334.2
.66
12,53
505.
5.73
.976
,954
1,000
2
STABILIZED
706,1 (27,8)
579.1 (22.8)
33,9 ( 93,0)
23810,
233.4 ( 8242,)
6,8/H/ 7,
4,27 17 4.
7.2/137 6,
1.6/137 1,
29,97 37 ,49
3.27 3/ ,05
12, O/ 2/ 12.
,3/ 2/ 0.
27,06
3.
5.
,45
11.7
,37
1.35
1909.0
5,14
,69
.06
.22
310.8
.84
11.58
868.
6,14
.979
( ,930)
( ,978)
369.0
78,84
11,87
12,04
CARBON
3
HOT TRANSIENT
701,0 (27.6)
574,0 (22,6)
37,2 ( 99,0)
13845,
135,1 ( 4769.)
6.7/11/ 7.
4.2/ 17 4.
9.5/13/ 9.
1,4/137 1.
42.17 37 ,72
3.27 3/ .05
16, 5/ 2/ 17.
.3/ 2/ 0,
18.65
3,
7,
.67
16.2
,21
1.12
1658.3
4,12
.77
.04
.20
288.7
.72
10.75
505,
5.74
,977
.957 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN C/KM
PARTICULATES ~'
4
STABILIZED
703,6 (27.7)
574,0 (22,6)
36,1 ( 97,0)
23801 ,
232.6 ( 8212.)
6,77117 7.
4.0/ I/ 4.
6.8/137 6.
1.3/13/ 1.
29, 6/ 3/ ,49
3,0/ 3/ ,05
12. 3/ 2/ 12,
,3/ 2/ 0,
27.36
3,
5.
,44
12.0
.38
1.32
1891,8
5,25
.66
,06
.21
303.2
,84
11.30
868.
6.24
,979
.941)
,978)
367,6
78,84
11,98
11,04
3-BAG (4-BAG)
309.6 ( 307,4)
11.55 ( 11,47)
»13 ( ,13)
.34 ( .34)
,77 ( ,77>
-------
TEST NO. 6282C3 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5,7 L(350. CID) V-8
TRANSMISSION A3
BAROMETER 739,90 MM HO(29.13 IN HG)
RELATIVE HUMIDITY 46. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN, H20)
BLOWER INLET P MM. H20(J.N, H20)
BLOWER INLET TEMP. DEC, C(DEG. Fr>
BLOWER REVOLUTIONS
TOT FLOW STU. CIJ, METRES(SCF)
flf; SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCI
C02 BCKGfoD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD Hf-TER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS CRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFr DRY
D
I
to
<£>
COMPOSITE RESULTS
TEST NUMBER 6282C3
BAROMETER MM HG 739,9
HUMIDITY G/KG 9.3
TEMPERATURE DEG C 25.0
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO.62
DATE 7/24/81
BAG CART NO. 1
DYNO NO. 2
CVS NO. 3
- JOHNSON MATTHEY CATALYZED TRAP
TEST WEIGHT 1928, KG< 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL EH-465-F
ODOMETER 9516. KM( 5913. MILES)
DRY BULB TEMP, 25,0 DEG C<77,0 DEG F)
ABS. HUMIDITY 9,3 GM/KG
1
COLD TRANSIENT
698,5 (27,5)
571,5 (22,5)
34,4 ( 94,0)
13849,
134,6 ( 4751,)
12.5/11/ 12,
4,9/ I/ 5,
22.3/13/ 20,
,30
,04
17,
0.
46, 7/ 3/
2,7/ 3/
17, I/ 2/
,4/ 2/
16,60
8,
19,
,77
16,7
.61
3.01
1884.8
4,11
,85
.11
,52
326.5
.71
12.19
505.
5.77
,978
STABILIZED
703,6 (27,7)
576.6 (22,7)
33,9 ( 93.0)
23800,
231,4 ( 8170.)
4,9/H/ 5,
4,5/ I/ 5,
5.2/13/ 5,
,51
,04
13,
0,
31. O/ 3/
2,B/ 3/
13, 4/ 2/
,4/ 2/
26,05
1,
4.
,47
13.0
.07
1.05
2000.9
5.51
.74
.01
.17
323.6
,89
12.05
868.
6.18
.980
NOX HUMIDITY CORRECTION FACTOR .96
HOT TRANSIENT
698.5 (27,5)
571.5 (22.5)
36,7 ( 98.0)
13852.
134.1 ( 4735.)
5,9/n/
4,5/ I/
7.5/13/
1.1/13/
42. 3/ 3/
3.3/ 3/
17. 4/ 2/
,4/ 2/
18.56
2.
6,
,67
17.0
,12
,88
1651.8
4.17
.81
.02
.15
285.6
.72
10.63
505.
5.78
.979
6.
5,
7.
1,
,72
,05
17.
0,
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3-BAG
313.8
11.69
.03
.24
.81
.131
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0,00)
( 0.000)
-------
OJ
O
TEST NO, 6200-3 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5,7 L(350, CID) V--8
TRANSMISSION A3
BAROMETER 741,43 MM HG(29,19 IN HB)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20
-------
TEST NO, 6200-4 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5.7 L(350. CID) V--8
TRANSMISSION A3
BAROMETER 742,44 MM HG(29.23 IN HG)
RELATIVE HUMIDITY
BAG RESULTS
BAG NUMBER
DESCRIPTION
52, PCT
o
u>
BLOWER DIF P MM, H20UN. H20)
BLOWER INLET P MM, H20(IN, M20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STU, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANCE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF? DRY
DFC* WET (DRY)
SCF» WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6200-4
BAROMETER MM HG 742.4
HUMIDITY G/KG 10.2
TEMPERATURE DEG C 24.4
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO,62
DATE 9/11/81
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 24,4 DEG C(76.0 DEG F)
ABS, HUMIDITY 10,2 GM/KG
TEST WEIGHT 1928, KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KM( 12.2 HP)
DIESEL EM-487-F
ODOMETER 9850. KM( 6120. MILES)
NOX HUMIDITY CORRECTION FACTOR .98
1
:OLD TRANSIENT
703.6 (27,7)
576.6 (22.7)
35.6 ( 96.0)
13875,
135.5 ( 4786.)
34.3/11/ 34.
6.0/ I/ 6,
42.6/13/ 40.
7.1/13/ 6,
46. 3/ 3/ .80
3, I/ 3/ ,05
17, 4/ 2/ 17,
,5/ 2/ 1,
16,68
29.
33.
.75
16,9
2,24
5,14
1865,1
4,32
2,61
.39
.89
321.4
.74
12.05
505.
5,80
.976
,953
1,000
2
STABILIZED
703,6 (27,7)
576.6 (22,7)
35,6 ( 96,0)
23807,
232,6 ( 8212,)
16.3/11/ 16.
5.37 I/ 5,
24.4/13/ 22,
6.3/13/ 6.
31, 2/ 3/ .52
3, I/ 3/ .05
14. I/ 2/ 14,
,6/ 2/ 1,
25,73
11,
16,
,47
13,5
1,50
4,42
2007,6
5.92
1,60
,24
,71
320.3
.94
11,98
867.
6.27
,978
( .937)
< .977)
368.1
78.32
12.07
12.02
CARBON
3
HOT TRANSIENT
703.6 (27,7)
576.6 (22,7)
37,2 ( 99.0)
13853.
135.0 ( 4768.)
15.0/11/ 15.
5.3/ I/ 5,
28,2/137 26.
5.0/13/ 5.
41, I/ 3/ .70
3.4/ 3/ .05
18. O/ 2/ 18,
,7/ 2/ 1.
19,08
10.
21.
.65
17.3
.78
3.28
1604,2
4,40
1.65
.13
.57
277.7
.76
10.38
505.
5.78
.977
,957 (
1,000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
703,6 (27,7)
576.6 (22.7)
36.7 ( 98,0)
23802.
232,2 ( 8199.)
17,2/H/ 17,
5.8/ I/ 6,
23.7/13/ 22.
4.3/13/ 4.
30. I/ 3/ .50
3.2/ 3/ .05
13. 9/ 2/ 14.
.7/ 2/ 1.
26,73
12.
17.
.45
13,2
1.55
4,71
1914.3
5.78
1.49
.25
.76
311.1
.94
11.65
867,
6.15
,979
.941)
.978)
367,3
78.31
11.93
11.03
3-BAG (4-BAG)
308.9 ( 306,1)
11.56 ( 11.46)
.24 ( ,24)
.71 ( ,72)
,85 ( ,85)
,304 ( .300)
-------
TEST NO, 6200T2 RUN 1
VEHICLE MODEL 00 OLDS DELTA88
ENGINE 5,7 L(350, CID) V--8
TRANSMISSION A3
BAROMETER 743,97 MM HO(29.29 IN KG)
RELATIVE HUMIDITY
PAG RESULTS
PAS NUMBER
DESCRIPTION
PCT
D
I
Co
NJ
BLOWER DIF P MM, H20(IN, 1-120)
BLOWER INLET P MM. H20(IN, H20)
BLOWER INLET TEMP. DEG, C(BEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF, DRY
DFC> WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6200T2
BAROMETER MM HG 744,0
HUMIDITY G/KG 10,2
TEMPERATURE DEG C 26,1
FTP VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO,62
DATE 9716/01
BAG CART NO, 1 7 CVS NO, 3
DYNO NO, 2
DRY BULB TEMP, 26,1 DEG C(79,0 DEC F)
ABS, HUMIDITY 10.2 GM/KG
TEST WEIGHT 1928, KG( 4250, LPS)
ACTUAL R(JAH LOAD 9,1 KW< 12,2 HP)
DIESEL EM-487--F
ODOMETER 10009. KM( 6219, MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
1
:OLD TRANSIENT
698,5 (27,5)
571,5 (22.5)
35.6 ( 96,0)
13856,
135.6 ( 4790,)
15.4/11/ 15.
5.0/ I/ 5,
22,2/137 20,
,1/13/ 0,
46. 2/ 37 ,7?
3, 1/ 3/ ,05
17, A/ 2/ 17.
,6/ 2/ 1,
16,00
11.
20,
.75
16.8
.84
3,09
1861,9
4,29
.81
,15
.54
324.6
.75
12,12
505.
5,74
,977
,954
1,000
o
STABILIZED
703.6 (27,7)
576.6 (22,7)
34.4 ( 94,0)
23008,
233,4 ( 8242.)
5,1/117 5,
4, I/ I/ 4,
2.4/13/ 2,
,1/13/ 0,
30,57 37 .50
2,87 37 .04
13,37 27 13,
1,57 27 2,
26,52
1,
2.
.46
11,9
,15
.55
1980,1
5.20
.58
.03
.09
322.3
.85
12,00
868,
6,14
,980
( .940)
( .979)
369,1
78,21
11.88
12.06
3
HOT TRANSIENT
698.5 (27,5)
571,5 (22.5)
36,7 ( 98,0)
13333,
135,2 ( 4773.)
5,9/117 6,
4,17 17 4,
6,0/137 5,
,3/137 0,
41,77 37 ,71
2.87 37 .04
18,07 27 13,
,97 27 1,
18,86
2,
5.
,67
17.1
,16
.79
1655.4
4.35
,59
,03
,14
288,8
,76
10,75
504,
5,73
,978
,957 (
1.000 (
4
STABILIZED
703.6 (27,7)
576,6 (22,7)
35,6 ( 96,0)
23818,
233,0 ( 8228.)
5.0/11/ 5,
4.0/ I/ 4,
2.7/13/ 2,
,5/13/ 0,
30. I/ 37 ,50
2,77 3/ .04
13. O/ 2/ 13.
.87 2/ 1,
26,90
1,
2,
.46
12.2
.15
.53
1952,6
5.35
.53
.02
.09
315,7
,87
11.75
868.
6,19
,980
.942)
.980)
368,2
78,13
11,92
11.27
3-BAG (4-BAG)
CARBON
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/Krt
313,6 < 311,7)
11,68 ( 11
,05 (
,20 (
.80 (
.106 ( ,
.61)
,05)
.19)
,81)
104)
-------
TEST NO, 6200T3 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5.7 L(350, CID) V--0
TRANSMISSION A3
BAROMETER 740,92 MM HG(29.17 IN HG)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN, H20)
BLOWER INLET P MM. H20
-------
FTP VEHICLE EMISSIONS RESULTS - ZERO KM W/O TRAP
PROJECT .05-5010 001
TEST NO, 6200-1 RUN 1
VEHICLE MODEL 00 OLDS DELTAB8
ENGINE 5,7 L(35Q, CID) V--8
TRANSMISSION A3
BAROMETER 737,07 MM HG(29,05 IN HG)
RELATIVE HUMIDITY 60, PCT
BAG REGULTG
BAG NUMBER
DESCRIPTION
BLOWER BIF P KM, II20(IN. 1120)
BLOWER INLET P MM, H20(IN< M20)
BLOWER INLET TEMP, DEC, C(DEG, F.)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(CCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT, MG (EFFICIENCY* X)
HC MAGG GRAMS
CO MASS GRAMS
C02 MAGS GRAMS
NOX MAGG GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFCr WET (DRY)
TOT VOL (SCM) / GAM BLR (GCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
D
I
TEST NUMBER
BAROMETER
HUMIDITY
TEMPERATURE
6200-1
MM HG 737.9
G/KG 12-, 2
DEG C 25,0
VEHICLE NO,62
DATE 11/13/G1
DAG CART NO, 1 /
DYNO NO, 2
CMS NO,
DRY DULB TEMP, 25,0 DEB C(77.0 DEC D
GM/KG
1
COLD TRANSIENT
711,2 (20,0)
501.7 (22,9)
37,G (100,0)
13G26,
133,6 ( 4716.)
35.3/11/'
10,9/ I/
43.0/13/
4.0/13/
35:
11.
40,
4,
,03
,05
10,
1,
STACILIZED
711,2 (20,0)
581,7 (22,9)
37,0 (100.0)
23015,
230,0 ( 8122.)
19,6/117 20,
8,67 I/
9,
9?.
3,2/ 3/
17,6/ 2/
,5/ 2/
16,06
25, -
35,
.78
17.1
4,814 (98.)
1.93
5,51
1909.5
4,61
2.85
,52
,05
14,
0,
24.4/13/
3.7/13/
31.3/ 37
3,3/ 37
13,7/ 21
,4/ 2/
25,62
llr
19.
,47
13.3
2,712 (97.)
1.51
4,96
1980.7
6.17
1.60
,34 .24
.,95 .80
330.8 319.5
,80 ,99
12.40 11,96
504, 867.
5,77 6.20
,973 .975 .976
,952( ,934)
363.6/ 77.33
11,97
12,17
TEST WEIGHT 1920, KG( 4250, LBS)
ACTUAL ROAD LOAD 9,1 KU< 12,2 HP)
DIESEL EM-487-F
ODOMETER 11492, KM( 7141, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,05
HOT TRANSIENT
711,2 (28,0)
501,7 (22.9)
35,6 ( 96,0)
13023,
134,0 ( 4731,)
18,1/il/ 18,
8.6/ I/ 9.
31,1/137 29.
245/137 2,
42.27 37 ,72
3,27 37 ,05
17,37 27 17,
,47 27 0,
10.52
10,
26.
,67
16,9
3.394 (98.)
,77
3,99
1649.7
4,56
2,02
.13
,69
286,7
,79
10.72
504.
5,75
,974
8.
21,
2.
,51
.05
14,
0.
.975
,956( ,938)
364.67 77.50
11.96
11,28
STABILIZED
711.2 (28,0)
581,7 (22,9)
36,7 ( 98,0)
23830.
230,6 ( 0143.)
17.9/117 18.
8,17 I/
22,0/13/
2,2/137
30.77 3/
3.07 3,'
13.6/ 27
,47 2/
26,17
10,
18,
,46
13,2
2,676 (97,)
1,34
4,92
1959.0
6.14
1.60
.22
.79
315.5
.99
11.81
860.
6,21
.976
CARBON DIOXIDE G/KM.
FUEL CONSUMPTION L7100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULARS G/KM
3-BAG
312.9
11.71
.23
" ,00
.90
.332
(4-BAG)
( 311.7)
11,67)
.22)
.80)
,90)
.332.)
-------
FTP - VEHICLE EMISSIONS RESULTS - ZERO KM W/O TRAP
PROJECT 05-5810-001
D
u>
01
TEST NO, 6200-2 RUN 1
VEHICLE MODEL 80 OLDS DELTA S3
ENGINE 5,7 L(350. CID) V--0
TRANSMISSION A3
BAROMETER 739,70 MM HG(29,13 IN MS)
RELATIVE HUMIDITY 50, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20 (IN, H2Q)
BLOWER INLET P MM, 1 120 (IN, 1120)
BLOWER INLET TEMP, DEC. C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU, METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT, MG (EFFICIENCY* X)
SIC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION DY CB L/100KM
r TIME
ASURED DISTANCE
SECONDS
KM
SCF,. DRY
DFC> WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE DEC C
6200-2
739.9
10.5
25,6
VEHICLE NO,62
DATE 11/19/01
BAG CART NO, 1 / CVS NO, 3
DYNO NO. 2
DRY DULB TEMP, 25,6 DEC C(78,0 DEC F)
TEST WEIGHT 1920. KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KU( 12.2 HP)
DIESEL EM-407-F
ODOMETER 11516. KM( 7156, MILES)
NOX HUMIDITY CORRECTION FACTOR ,99
1
:OLD TRANSIENT
711,2 (20,0)
584,2 (23,0)
35,0 ( 95,0)
13049,
134.3 ( 4741.)
28,9/li/ 29,
7,0/ I/ 7.
38.7/13/ 36,
1.1/13/ 1,
47, 2/ 3/ ,81
2,6/ 3/ ,04
19, 2/ 2/ 19,
,4/ 2/ 0,
16,35
22,
34,
,78
18.8
4.464 (84.)
1.73
5.30
1907,9
4,80
3,21
,30
.92
331,6
.83
12.42
505.
5,75
2
STABILIZED
711.2 (20,0)
504,2 (23,0)
35,0 ( 95,0)
23815,
230,9 ( 0153,)
15,1/ii/ 15,
4.7/ I/ 5.
20.5/13/ 19.
.9/13/ 1.
30, 9/ 3/ ,51
2,4/ 3/ ,04
15. 6/ 2/ 16.
,3/ 2/ 0.
26,02
11,
17.
.48
15,3
2.606 (97.)
1.41
4,68
2014.3
6.71
1.58
,23
.76
326,5
1.09
12.22
868.
6.17
,976 ,978 ,979
.953(
365. 2/
11.
12.
.938)
76.47
92
32
CARBON
3
HOT TRANSIENT
711.2 (28,0)
584,2 (23,0)
36.1 ( 97.0)
13842.
134,0 ( 4731.)
13.7/11/ 14,
4.7/ I/ 5,
20.0/13/ 26,
,6/13/ 1,
42. 5/ 3/ .72
2.6/ 3/ .04
19, 7/ 2/ 20,
,3/ 2/ 0,
10.40
9.
24.
.69
19.4
3.213 (98.)
,72
3,81
1684.9
4,94
1.91
.12
.66
292.1
.86
10.92
504,
5,77
,977 ,979
4
STABILIZED
711,2 (28.0)
584,2 (23.0)
35,0 ( 95.0)
23806.
230.9 ( 8152.)
13.4/11/ 13,
3.6/ I/ 4.
19.9/13/ 18.
.7/13/ 1.
29. 6/ 3/ .49
2.5/ 3/ .04
15, O/ 2/ 15,
,4/ 2/ 0,
27.26
10.
17.
.45
14,6
2.564 (97.)
1,32
4,58
1909.4
6.40
1.54
.21
.74
309.2
1,04
11.57
868.
6.17
.979
,957( .941)
364. 9/ 76
11,94
11.26
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.51
3-BAG (4 -BAG)
318.1 ( 313.0)
11.90 ( 11,71)
.22 ( ,21)
.77 ( ,76)
.97 ( .96)
,339 ( .338)
-------
TEST NO. 6200T1 RUN 1
VEHICLE MODEL 00 OLDS DELTA 88
ENGINE 5,7 L(350, CID) V-8
TRANSMISSION A3
BAROMETER 751.59 MM HG(29,59 IN HG)
RELATIVE HUMIDITY 30. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H2GCIN. 1-120)
BLOWER INLET TEMP, DEC. C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
o C02 CONCENTRATION PCT
i NOX CONCENTRATION PPM
cr. FILTER UT, MG (EFFICIENCY* %)
!!C MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC» WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6200T1
BAROMETER MM HG 751.6
HUMIDITY G/KG 6,3
TEMPERATURE DEC C 25,6
FTP •• VEHICLE EMISSIONS RESULTS -
PROJECT .05-5810-001
VEHICLE NO,62
DATE 11/20/01
BAG CART NO, 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25,6 DEG C(7C.O DEC F)
AEG, HUMIDITY 6,3 GM/KG
1
COLD TRANSIENT
736.6 (29.0)
604.5 (23.8)
33.9 ( 93,0)
13044,
136,8 ( 4830.)
16,2/li/ 16,
8,4/ I/ 8,
41.3/13/ 3G,
3.7/13/ 3,
43.8/ 3/
,75
.05
16.
1.
STABILIZED
736,6 (29,0)
604.5 <23.8)
32.2 ( 90.0)
236.1 ( 8337.)
8,5/1I/ 9.
5.2/ I/ 5.
20.B/13/ 19,
3.0/13/ 3.
28,7/ 3/
3,1/ 3/
15.6/ 2/
,5/ 2/
17,77
B.
34,
,70
15.1
1,293 (97.)
.66
5,48
1763.2
3.45
.81
,11
.95
304.4
,60
11,39
3.2/ 3/
,47
.05
12.
0.
12.3/ 2/
,4/ 2/
28.19
4.
16,
,43
11,9
,896 (95.)
.48
4.40
1838.5
4,69
,56
.08
.71
296,9
.76
11.09
505. 868.
5.79 6.19
,983 ,985 ,986
«957( .947)
372,9/ 78,54
11.99
11,24
TEST WEIGHT 1928. KG( 4250. LBS)
ACTUAL ROAD LOAD 9.1 KW< 12,2 HP)
DIESEL EM-487-F
ODOMETER 11552, KM< 7178, MILES)
NOX HUMIDITY CORRECTION FACTOR .07
HOT TRANSIENT
736.6 (29,0)
604.5 (23.8)
35.0 ( 95.0)
13858.
136,6 ( 4024.)
9,
5.
29,
2.
.68
.05
16.
0.
9.2/11/
5.2/ I/
31.9/13/
2.5/13/
40.O/ 3/
3.2/ 3/
16.I/ 2f
,3/ 2/
19.66
4,
27.
.63
15.3
1,215 (98,)
.34
4.23
1578.8
3,61
.75
,06
.74
274,5
.63
10.26
505,
5,75
.984
,985
.959( ,950)
371,8/ 78.47
11,93
10.57
STABILIZED
736.6 (29,0)
604.5 (23.8)
33,9 ( 93,0)
23Q05,
235.2 ( 8304.)
8.0/11/ 8.
4.9/ I/ 5,
20.6/13/ 19,
2.8/13/ 3,
28,5/ 3/ ,47
3.5/ 3/ .05
11.4/ 2/ 11.
,3/ 2/ 0.
28,41
3.
16.
.42
11,1
.893 (96.)
.45
4.38
1796.6
4.36
.56
.07
.71
290,7
.71
10,86
868.
6.18
.986
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (TI-JC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
292.3
10,93
.08
.77
.69
(4-BAG)
( 290.5)
10.86)
,08)
.77)
.67)
.112)
-------
TEST NO, 6200T2 RUN 1
VEHICLE MODEL 80 OLDS DELTA88
ENGINE 5,7 L(350, CID) V-8
TRANSMISSION A3
BAROMETER 739,65 MM HG(29,12 IN HG)
RELATIVE HUMIDITY 57, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, BEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
V HC CONCENTRATION PPM
co CO CONCENTRATION PPM
^ C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER UT, MG (EFFICIENCY, Z)
MC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS ORAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFy DRY
DFC» WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6200T2
BAROMETER MM HO 739.6
HUMIDITY G/KG 12.0
TEMPERATURE DEG C 25.6
FTP - VEHICLE EMISSIONS RESULTS -
PROJECT 05-5010-001
VEHICLE NO,62
DATE 11/23/01
BAG CART NO, 1 / CVS NO, 3
DYNO NO, 2
DRY DULB TEMP, 25,6 BEG C(70,0 DEG F)
ABS. HUMIDITY 12.0 GM/KG
1
COLD TRANSIENT
STABILIZED
TEST WEIGHT 1928. KG( 4250, LBS)
ACTUAL ROAD LOAD 9.1 KW( 12.2 HP)
DIESEL EM-487-F
ODOMETER 11589. KM( 7201, MILES)
NOX HUMIDITY CORRECTION FACTOR 1.04
HOT TRANSIENT
711.2 (28.0)
584,2 (23,0)
36.7 ( 98,0)
13871,
134.0 ( 4733,)
18.8/11/ 19.
4,2/ I/ 4,
46.6/13/ 44,
,9/13/ 1,
44, 7/ 3/ .77
2.B/ 3/ ,04
12. A/ 2/ 13,
,4/ 2/ 0,
17,36
15.
42.
.73
12.2
1,926 (98.)
1.14
6.48
1780.6
3.27
1.16
.20
1.12
307.3
.56
• 11.52
505.
5.79
723,9 (28,5)
584,2 (23,0)
36,1 ( 97,0)
23529,
227,6 ( 8035.)
8,5/U/ 9,
3,8/ I/ 4.
21.7/13/ 20,
1.4/13/ 1,
28, 6/ 3/ ,47
2,9/ 3/ ,04
9.8/ 2/ 10,
,57 2/ 1,
28,30
5,
18.
.43
9.3
1,186 (94.)
.64
4.78
1783.1
4.23
.76
,10
.77
287.2
.68
10,74
858,
6,21
.975 .976 .977
,956(
361.6/
12.
11,
.939)
76.43
00
12
CARBON
711.2 (28.0)
584.2 (23.0)
36.7 ( 98,0)
13868,
133.9 ( 4729.)
12,4/11/ 12,
3,87 17 4,
36.4/13/ 34.
1,6/137 1.
40.57 37 .69
2.97 37 ,04
13.17 27 13.
.57 27 1.
19,38
9,
31.
.64
12,6
1.632 (99.)
,68
4.88
1581.4
3.37
1.01
,12
,85
274.7
.59
10.28
505.
5,76
.975 .977
584.2 (23.0)
711.2 (28,0)
36,7 ( 98,0)
23793.
227.9 ( 8046.)
10.1/11/ 10.
4.2/ I/ 4.
22.7/13/ 21.
1.5/13/ 1.
29. 5/ 3/ .49
3.0/ 37 ,05
9.9/ 2/ 10,
,47 27 0.
27.36
6.
19.
,44
9.5
1.023 (97.)
.79
5.00
1846.1
4.32
.62
.13
.81
297,7
,70
11,14
868.
6.20
.977
.958( .940)
361.87 76
11,96
10.72
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN C/KM
PARTICULATES G/KM
,10
3-BAG (4- BAG)
287.9 ( 291.0)
10,78 ( 10,89)
.13 ( ,13)
,86 ( ,87)
,63 ( ,64)
,153 ( , 14M
-------
FTP - VEHICLE EMISSIONS RESULTS -ZERO KILE DURABILITY
PROJECT 05--5310-001
TEST NO. 6200T3 RUN 1
VEHICLE MODEL 00 OLDS BELTA88
ENGINE 5,7 L(350, CID) V~0
TRANSMISSION A3
BAROMETER 744.98 MM HG(29,33 IN HO
RELATIVE HUMIDITY 52, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN. H20)
BLOWER INLET P MM. M20(IN, H20)
BLOWER INLET TEMP, DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/F'PM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
' HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, '/.)
HC MASS GRAMS
MASS GRAMS
MASS GRAMS
D
I
U)
CD
CO
C0
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
SECONDS
KM
MEASURED DISTANCE
SCF> DRY
DFC, WET
-------
FTP VEHICLE EMISSIONS RESULTS -ZERO KILE DURADJiJ T';
PROJECT 05-5810-001
a
i
OJ
TEST NO. 6200T4 RUN 1
VEHICLE MODEL GO OLDS DELTACO
ENGINE 5.7 L(350. CID) V-0
TRANSMISSION A3
BAROMETER 742,19 MM I!G(29,22 IN MG)
RELATIVE HUMIDITY 54. PCT
BAG RESULTS
DAG NUMBER
DESCRIPTION
BLOUER BIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20UN, 1120)
BLOUER INLET TEMP, BEG, C(DEG, F)
BLOUER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 DCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKCRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT, MG (EFFICIENCY, X)
HC MAGS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MAGS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF> DRY
DEC* WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM MG
HUMIDITY G/KG
TEMPERATURE BEG C
6200T4
742.2
11.7
26.1
VEHICLE NO.62
DATE .12/10/01
DAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP, 26,1 BEG C(79,0 BEG F)
ADS, HUMIDITY 11,7 GM/KS
1
:QLD TRANSIENT
723,9 (28,5)
509,3 (23,2)
33,3 ( 92,0)
13029,
135,2 ( 4773,)
15,0/1 I/ 16,
4,3/ I/ 4,
45.7/13/ 43,
1 / /H 7 / 1
IfU/J, tJ/ J.+
47, 4/ 3/ ,02
2,7/ 3/ .04
12. Q/ 21 13,
,4/ 2/ 0,
16,20
12,
40,
,70
12,4
1,302 (97.)
,92
6,31
1926.7
3.32
.82
,16
1,09
334.0
,57
12.51
504,
5.77
,975 ,9
.953(
36 7, 9/
11,
12,
O
STABILIZED
723,9 (20,5)
509,3 (23,2)
35.6 ( 96,0.)
23907,
232,0 ( C218.)
8, 4/1 1/ 0,
4,4/ I/ 4.
24.2/13/ 22.
1.0/13/ 2,
30, 6/ 3/ .51
2,0/ 3/ ,04
10, O/ 2/ 10,
,3/ 2/ 0,
26.31
4.
20,
,47
9,7
,993 (73.)
,56
5,41
19S2.2
4,46
,81
,09
.87
318.7
.72
11.92
072.
6.22
77 .978
.937)
77.60
99
20
TEST UETGHT 1920. KG( 4250, LBS)
ACTUAL ROAD LOAD 9.1 KU( 12.2 HP)
DIESEL EM-487" F
UDOMETER 11774. KM( 7316, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,0:
i!0 F TRANSIENT
509,3 (23,2)
35,0 ( 95,0)
13344,
134,9 ( 4762,)
10,3/H/ 10,
4,4/ I/
38.2/13/
1.9/.1.3/
43,2/ 3/
3,2/ 3/
13,5/ 2/
/
4,
35.
2.
.74
.05
14,
0,
10,06
-,6t
WiJ *
,69
13,2
1,322 (98.)
,48
5,14
1706.7
3.52
.77
.08
,89
293,8
,61
10.99
STABILIZED
723,9 (20,5)
539,3 (23.2)
36,7 ( 98,0)
23700.
231.0 ( 8150.)
9.0/11/ 10,
4.27 I/
26.0/13/
1.7/13/
31,2/ 3/
2,9/ 3/
10,O/ 2/
,2/ 2/
25.75
6.
4,
24,
2.
.52
,04
10.
0,
.47
9,8
1,042 (97.)
,76
5,04
2006,0
4.47
,63
.12
.93
321,0
,72
12,01
505.
5.81
.976
,977
,955( ,939)
365, 9/ 77,33
12,06
11.52
867,
6,25
,978
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS CTHC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICIPATES
G/KM
3--BAG
315.0
11,78
,10
.92
,66
,133
(4-BAG)
( 315.7)
< 11.01)
( .11)
( .94)
( .66)
( ,124)
-------
TEST NO, 62HG 1 RUN
VEHICLE MODEL CO OLDG DEL TABS
ENGINE 5,7 LC350, CID) V-S
TRANSMISSION A3
BAROMETER 749,55 MM HG(29,5; IN
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER BIT P
ni niJT« Ti,ij r-T
i) l_ U W L_ 1 \ 1 1 ^ U, L_ 1
JER
SLOWER
TOT FLOW STB,
D
HC
CC
CO
C02
CC2
NGX
TERYRANGE/PPM
SAMPLE METER/RANGE/PPM
r. r- L-- r? r» r, Mr"rrI71'!~*At('" '~ .-' p P 'r*
iiut\unjU nL (i_(W uriituu/ f i n
O- f. -uL HI f f? u r •!- r r > * pA * j i~ r" j'r-' P T
wnfii Uu ; IL. i u,K/ (VhttUi- / i L i
DCKCRD METEr
CAMPLE MCTEI
PPf!
PF'h
PCT
DILUTION FACTOR
1-iC
CO
:02 CONCENTRATION
CONCENTRATION
CNCLNTRAilCN
NOX CONCENTRATION PPH
FILTER WT, MG (EFFICIENCY. %)
HC MAGG GRAMfi
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MAGS GRAMS
HC GRAMC/KM
CO GRAMG/KM
CC2 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CD L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
GCFi DRY
j-trrp i ITT f r>oy \
TOT VOL'(SCM)''/ SAM DLR (SCM)
KM (MEASURED?
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 62HS-1
BAROMETER MM HO 749,6
HUMIDITY G/KG 11,0
TEMPERATURE DEG C 25,6
HFTP VEHICLE Efil^IONG RECULTS
PROJECT 05-505.0 005
VEHICLE NO-,',;-!
BAIT 12,' 9/01
BAG CART NO, i / c'v'C NO. 3
DrNO NC« ;;
rrriT WLt'RHT 1928, KG( 4250, LOS)
ACTUA! RCftD LOAD 9,1 KU( 12,2 UP)
MC'SEL EM--487-f
ODOMETER 116S3, KM( 7260, MILES)
DRY D-.JLD TL^r. 25,-- ',;':.'.• C(78-0 TiuG F)
ADC, HUMIDITr li,0 CM/KG NOX HUMIDITY CORRECTION FACTOR 1,01
HOT TRANSIENT
596,9 (23,5)
34»4_(_94,0)
136t
-------
TEST NO, 621 IS- 2 RUN
VEHICLE MODEL 00 OLDS DELTAOO
ENGINE 5,7 LC35G, CID) V-Q
TRANSMISSION A3
BAROMETER 747,27 MM HO(29,42 IN !IG)
RELATIVE HUMIDITY 48, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIE P MM, H20CIN, 1-120)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEC, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKCRD METER/RANCL/PPrt
SAMPLE nCTER/RANGE/PPfl
BCKCRD METER/RANGE/PPM
HFTP - VEHICLE EMISSIONS RESULTS •• AFTER
PROJECT 05-5810-001
VEHICLE NO,62
BATE i2/ 9/01
BAG CAR! NO, 1 / CV3 NO, 3
DYNO NO, 2
DRY BULB TEMP, 26,7 BEG f:Hn!' i-u.
METER/RANGE/PCT
M:TER/RANGE/PPM
METER/RANGE/PPM
ACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER U
MAS
HC
rn
MC (EFFICIENCY
GRAMS
GRAMS
GRAMS
PARTICULATE MAGS
C02 MASS
NOX nb^
RAMS
HC
CO
pnr
UUt
NO)
GRAMC/KM
GRAMS/KM
GRAMS/KM
GRAMS/KM
FUEL CONSUMPTION BY CD L/100KM
SECONDS
KM
RUN TIME
MEASURED DISTANCE
SCF, DRY
DEC* UET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 62HS--2
BAROMETER MM HG 747,3
HUMIDITY G/KG 10,6
TEMPERATURE DEC C 26,7
IN, 45 U20
TFST UEIGUT 1923, KG( 4250, LDS)
ACTUAL ROAD LOAD 9,1 KU( 12,2 HP)
DIESEL. EM-4Q7-F
ODOMETER 11723, KMC 7284. MILES)
OX HUMIDITY CORRECTION FACTOR 1,00
HOI TRANSIENT
723-9 (20,5)
5V6.9 (23.5)
34.4 ( 94,0)
13046,
235,6 i 47S7,)
STABILIZED
723,9 (20,5)
596.9 (23,5)
34,4 ( 94,0)
23019,
233,2 ( 0235,)
9, 4/1 1/ 9,
3,8/ I,' 4,
35.5/13/ 33,
,6/13,' 1,
42, 6/ 3/ ,73
2,8,' 3/ ,04
13, 5/ 2/ 14,
,rj/ ••?/ i ,
10,35
6,
31,
.69
,13.0
1 ,333 (00, )
,46
4,95
1702,4
3,36
,92
.00
,86
295,3
,58
1 1 , 04
505,
5,77
7, 9/1 1/
3,0,' !/
'I A CT fl -T i
£. U + iJ if AUy
7/17^
* •*} t J. Uj /
31, I/ 3/
2,7/ 3/
10,3/ 2/
,4/ 2/
25,07
4,
T ftt
,40
9,9
1,025 (94
,53
4,07
2030.8
4,40
.69
,09
,79
329,3
,72
12.32
860,
6,16
8,
4,
19,
0,
,52
,04
10.
0,
,)
,970 ,979 ,980
CARBON
.956(
368, S/
11.
11.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
1! YD ROC
CARBON
OXIDES
ARSONS (THC) G/KM
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
,941)
70.42
92
70
313.3
11.71
,09
,02
.65
,135
-------
TEGT NO, 62i-
VEHICLE MODEL
ENGINE 5,7 L(2
TRANSMICGICN A3
-3 RUN
00 QLBG DELTA8Q
CID) V-C
HFTP VEHICLE EMISSIONS RESULTS -DISCONNECTED TOR
PROJECT -05-5010 001
VEHICLE NO,62
BATE 12/ 9/01
,*RT m, 1 / CVS NO, 3
NO, .:.'
BAROMETER 746,76 MM h'G(29,40 IN I-IG)
RELATIVE HUMIDITY 44, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLQUER D.IF P MM, M20(IN, 1120)
BLOWER INLET P MM, H20(IN. 1120)
GLOWER INLET TEMP, .DEC, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(3CF)
HC SAMPLE MCTER/RANGE/PPM
HC BCKGRB METER/RANCE/PPM
CO SAMPLE METER/RANCE/PPH
CO BCKCRD METER/RANCE/PPM
p j-j-7, i-^ A <-^ pi i r~ *i p -- - r • t r% A vi rj rr f p p T
co2 BCKCRD" M'ETER/RANGLYPCT
NCX SAMPLE tfLTLR/RANCE/Ppr
NOX BCKCRD METEtf/RANGC/PPM
a DILUTION FACTOR
i ' < P P ni1 ^ ~ *•j T ^ M T T n *•' P TI i*
I ML- LUttU(_r^ / nri ' i JM ( i • t
^ CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT, MG (EFFICIENCY, %)
HC MAGG GRAMG
CO MAGG GRAMS
C02 MAGG GRAMS
NOX MAGG CRAMS-
PART ICUL ATE MAGG GRAMG
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMG/KM
FUEL CONSUMPTION BY CB L/100KM
A T'
HL
-: r\ r c
. * •• J.'L w
O O P v, / t,-'
/ t V uu/ i\
A r* r p r "
* v i.'L_(..' ! >
SECONDS
KM
RUN TIME
MEAGUREB DISTANCE
SCF» DRY
DFCy WET (DRY)
TOT VOL (SCM) / GAM BLR (GCM)
KM (MEASURED)
FUEL CONSUMPTION L/10CKM
COMPOSITE RESULTS
TEST NUMBER 62HS-3
BAROMETER KM KG 746,8
HUMIDITY G/KG 9,9
TEMPERATURE BEG C 26,7
iJur i?20, KG< 4250, L.BS)
r-'ffAf' LOAD 9,1 KW( 12,2 !IP>
EM 487- T
R 11735, KM( 7292, MILEG)
MirlDITY CORRECTION FACTOR
;;::! TRANSIENT
???,? (28,5)
c-r,/ r ,'
-------
APPENDIX E
PARTICULATE CONTROL SCREENING EVALUATION
WITH THE VOLKSWAGEN
-------
TFQT WH. A771-1 PIIM
i.JEH'''rrr'Mnn§r~~ nn LI'
ENGINE lV5~L( ?o7"iD) ''~~
~
VEHICLE
PRO JECT~1 1-5910-001
MEHICLE NO: 6
DATE" ~ 6~/;i7
PAG CAPT'NH'.'
nvwn'kin'
'in".'-
JFQT MFTRUT 1077- .
ACAL ROAD LOA ' 5~.
IRC)
7fofiK'M/ 9417. MTI
BAROMETER 739:14
RELATTl)E
"
R
HR'29 • 1
4~ 'PPT~
DESCRIPTION
BLOWER DIF - MM. H2Q(IN.- H20)
BLO'-.'ER INLET P MM H2D(IN'.' H2Q'
prn!.:£S TMfE-T rrMp ' yirn '~'r:/riF5~ '
JJI_.r::,;£D ^r!!,": ! ! ~f V fj \; X
HC
Mp
^ rn _
i rn Br!-;'ftRI! METEP/f;'Ayr;!- •/F'pivi
10 rnv SAMPLE HETEF'/R^NPE''PrT
C^2 BCKGRD METER/RANGE /PCT
tony CAMPLE
Mny PCKRPP
riTi'fiTTnw "cA
i4r-~"rnivirrMTpATTnw PPM
rn FnwrFMtp'XTTnw PPM
rn? rnkirfMTPATTnw pry
NOX CONCENtRAti™ PPM
HC" MAS§~5RAHs~~ .....
'rn MAQC GRAH?
^2 MAS? GRAMS
MHY MA^^ GRAMS
PARTl'CUL ATE" HASS GRAMS
HC GRAMS/KM
rn RPA'MC /KM
rn2 GPAM9/K.H
wnv RPA'MQ'/FM
"rnwQiiMp'TTnh! -ay rn t /100KM
TMF "' ~5F""
NEASUREP DISTANCE KM
PFCIH Tq
~
DRY BULB TEMP: 26.7 DEG C(-90>0 PER
~ "
HliMTTlTTV rflPPFrTTHW FAPTnp
MM HG
MiiMfnfjv" G/KG~ 12 ; 2
TPMPFPitllPF flFR T ?A.7
1
COLD TRANSIENT
711:2 (28:0)
617:2 (24:^)
"37-S (100 "6)
""
15 -
~"
34 . 4/13''
0 •
22:9
~~
53
2673
~i '
4:29
1 !§4
. IP
!Ii
17A7-?
" 775
'
STABILIZED
70S:7 '27:9)
6-14:7 (24:2?
"37'-. S (100 6 )
97794"
1 Rfl , 4 ( A745 )
' /1 1 /~~19.' '
.j,>"TV "7'
1P
7,'17/
l/~3/
TV 7/
5V 9/
6/ 2/
"in""
15-
"99
" -99
7! 97
?7i~2
T! Tn
~" 1A
0'
.74
•05
is"
"T.'"
784
r.. 94
8"
HOT TRANSIENT
708:7 (27:9)
612-1 (24^1)
~37:8 (16676)
" i^siT""'"'
inc:"T"7~77i 1 .)
?o"^7'i i /"' T5!'
"2'AV'iV "7.
71'7/17/ 90!
"!V/iTi/ ~6'
30-5/~3/ :50
~7!9/ 3/ -0^
9ft '.Af 5V 9ft"
--"!^V 9/ ~i'
'"9A.71
~177"
9R.
~46
19.'9
"i !67
7!79
fi§67i
"Z79T
1 ^4^
. 1B
•^•9
1597?
~~~77
^!72
^O1^' '
177A
CARBON
FUEL ~ CON§|"iHpf T ™ ----- !r / 1 0OKM
' (fj4r> SVpA .....
"
CARBON MOHQXTT'p"
OXIDES OF NTTprtRFH R'/k'M
PARTICULATE§---"~ ''
T7FP
•17
/ 6-00)
-------
FTP
iJFMTn F
WC prciji_TC
'""
TEST NO • £331-2 RUM
VEHICLE MODEL" BO 'A'"
ENGINE 1:5~L( PC""CID) L-4
' ' "
|!EHTri E Nn •J--~1-
DATE"" 77'i/so
TJAiVpAPT' MD"' "•!
TEST '.-.'EIGHT 1077: KB(
DIESEL EM-409-F
FjfiOMFTFP 71AR.
6:8 HP)
. MTI FC\
BAROMETER 740.6i
PELATIME 'HUMIDITY'
pA«"K'ribri| yc ''
BAG'HUMBER
i HG(2? If I!'! HG)
nrr, jv.-i-r
BLOER REUOLL'lDMS
THT ri_niri Q^Ti ^!_! MFTptrc I cpr ',
r n s r \f K P fi v. '£ y E - '"' "' ''i w •"•' ^ •' R F M
CD * EF
M !- T c P •' R & H R r •' R R M
N 0 Y .
WQX BCKORD METER/RAHGE/P^H
' ' .........
HCCONCEHTF:* ION PPM
pn rnypFWTp6TTnw PPM
C02 CDNCENTRAtiDN PCT
NOX CONCENTRATION PPM
HC
rn
RAPTICL'LAT E MASS GRAMS
HP RPAMQ/h'M
p'n RpAM'q/JfM
C02 GRAMS/KM
NOX GPAMS/KM
~ PV PP
SECONDS
KM
6331-2
MM HR "740:7
G/KO" ll .i-
TFMPFPATIIPF flFR P 7/1 . A
TlpV t'!|i P TFMP 2'~ 4 T;ER C/7A-
A?-' UilMTViTTV 1 1 i RM .•'!('R
COLD TF
A OP . ^
!X HUMIDITY CORRECTION FACTOR 1:03
7
CTARTI T7Ffl
AQP,*; /7->,c;\
699:5
^5§'§ (22!5?
"7 ~9"
~"i7p7i ' '
1 "t,i~7~ i1 ""JT^A . '.
1 P . Q / 1 1 .' 10
~ 7: ' V/ "TV " 7 .
7T . 0/1 7 ./ 70 .
"l!2/l?7 ~1:
7AJFI/ 7/ S"?
3 5,-' 3/' : 05
T 1 A •' 9 ••' 91
' A'/ n> ~i '
"23742
~16 :
97 .
:52
^6 • 8
PA
"7 "7 O
1 ^72
17
!-§ij
17573
" 776
A JS7
5057
5:73
"3B01 •
192.2" ("i
11 6 / 1 1 /
~^ ' n'.'"T','
1_7 . A /1 3/
!5/i?7
91 ' A/'T/
3.2-' 3 *
1 ^ . 9 f 9 / '
" ~ ' ?'/ 2.'
' ' 7P /,P
"p."
15:
7 30
1 A~^,
' ' '. Q.4
7 . 17
1 .16
. 15
'. s<
16679
" :84
A . n7
RAP""
A." 17
13990 :
*35: "' 106"3~ ' "3752: )
H '-. ' I9757ii/" 19' '
"7 "o!^V"i/ "7.
16: 31.2/13/ 29:
~A ' ~T ! r//?7/ ~i !
.7"=; 9o'p/ 7/ ,2p
• 05 3 '•. 5/ ?7 • 05
i§7 21:0/ 2/ 2l"
"7 ' ^7/ 9/ ~i
94~qp
177"
97 .
~44
20:3
~i . n1^
RAA37
liil
. IB
' ^R
15676
" " " 7S
5:66
"^AA?"
5:71
PAPRnM flTOYTriF R /k'M
niri pnMqiiMPTtnw i /IAAKM
wvriPnpAPpnwq CTUP-I R/KM
PAPsnw MnMnYTfiF R/IV'M
nYTTiPq OF WTTPORFM R/k'M
P APT TTI II ATFq R/KM
7-P6R //l-PAR^
161: 1 ' n.rn
"6764 ( 0-66)
: 54 ( A ! ftA ^
; 90 ' A.AA>
.2?5 ' A.AAA>
-------
TE9T NO _
()EH'''CLE MODEL"" 9°
ENGINE J:5 L' 9A • "CIr''' '''-4
"" '
ryp I'EHTLE FMTQCTfiMc; pFQtll TC
' P?.'D JECT~1!--0 "
i/309C'
"" ~
TFCJT MFTRHT 1077-
ACTUAL ROAD LOAD ' 5~! Ri!H~ '
DIESEL ' EM-409-F
nfinMFTFC' 7'5'?i~~h'Mi' AAW7. MTI
PAE*
26 1 nrr; r/7P.ri TIFT-
'"
riESCF:IPTI'_.(':
PLQ'.'JEP TlTF :;' MM
?! OHEP Twi_^'T C;"MM
pfnUFP TMI nr TFWp
BLOWER REUCLUTIGN?
TOT pi 'f>i,i"qTr!~ ' PU'/'MCTPFQ/ er
HP ' q,iMP|_!T ' "
HC PCKGRD
Hn cAMpi_'r
p n R r K P P n M F T F P / p A w R F / P P M
CD2 SAMPLE HEtER/RA'NGE/PCT
r-n2 fi^KG'RD METER ''RANGE -'PCT
NOX SAMPLE H
wn '
i DILUlON FACTOR
•^ ur ""rnwrFMfpflfVnjo PPM
CD CONCENTRATION PPM
PH2 C™!CEN'''PAtl':'N P^T
wny rnwrrkifPAtfnw PPM
wr Ma53~RpAMQ~" ......
rn MAC§ PP6MQ
rnT
wnv
PA.RTICULAf E H.AS? GRAM?
UP RPAMQ Xk'M
rn ' '
rno
NO.X
FUFI ""r'nNQiiMPTTnw nv rn i /100K.M
"' "SECONDS"
DISTANCE KM""
in TC
'"' 6331C2
MM WR 740 • 7
G/KG" 'io.-?
fsFR'r OA . i
rni_ri TPAM(?TE-!T
7 ,••-'77
7 / O !i '
p ~ o / 1 1 /
i o/ i/
32: 5/1 3/
;3/13/
~7 ' T'/~7 '/
~3:3/ 3/
1? ?/ 2/
" • §/ 2X
"~
30:
~
1 ."1
1 A
'. A A
A7~4
2R
~
-
S'
7H ,2 ..
~§i'J /~07~c;i
""23909.
1 p-i . 9" J ATOP
I37i7ii/""i3.'
~3.6/"i'/ ~3-
17!Q'/17V IA!
'J S / 7.'
12: 9' 2/
''
15.
728
~
3 9=;
76"?
04
13:
"i '
149?
"AO
MOV UMMTntTY mpPFrTTHKI FAPTnp
HOT TRANSIENT
70R-7 (.1?• 9)
Xi4'7 f?4"?;i
"7-?!b /TA'A~O'V
"'13960""' "
-1 .^"""("T^I 7 . 'i
I?~A~'ii/" I?'
29-9/13/ 27'
! i'/i7'/ ~6-
29'6/"3/ :4S
19 • 3/ 2/ i 9:
27~77
~17:
"44
19:4
1 r»o
1-40
17
.§A
!45~6
"A^
^•47
505 "
CARBON DIOXIDE G/KM
FUEL COMiUMPTION L'/1OOKM
( T Hr ? ^ '/KM .....
"" '
O
CT&RTI T7FH
(4-P6R)
'. 0:0)
( o'ooj
/ 0-66)
( 6-66)
i. 6- 66
-------
TEST NO: 6331C3 R"N
VEHICLE M^E'I§0 ul~
NN~ ^" 5 "^ > -
FTP
C CMTC-QTHMC P
!)EHTrLE iV!n i~l
fiATF~ "V 7/QA
PAG CART NO 7 "I
'n.
T '/.'IGHT 077: KG( 2375: LPS?
" ' ' '" "' ~~
. MTI
PARCMETER 733.i3 MM HG(29:0P IM
REL'-'TI'-'E Hl.!!'TriITv Cf'! FrT
FCM! ye
AG "
PLO!'.'ER D!F P MM: H20( 7H H2nii
pLoi'-Ep I:":LE:T' P"MM'-' Hi^H'1!" H2
PLOi'JEP I^LE^" TFMP" T!FR ' "r.'rit'n"
TOT FLO'.'?TDT CL'V "METRES (?CF)
UP Q*,MDI r MryFp/pXwRr/pPM~'
i-ir p p j>-:(; 5 fi MFTFp"/_pAWR£'/ppM
rn §AMp|_r '
CO PCKGRD
M co2 ?*H'PL'E ^ETER ''RANGE '•f?r'i
i rn2 pri-.'Rpn MFT FP'/PAMRC /pry
01 NOX SAMPLE '
wnV
'ri7M
HC CQNCEHTRA ION PPM
rn rnwrFwypAyrnw PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MAS§~ORAMS~"
rn M&QQ RpAMC
^02 MASS GRAMS
NOX MA^S GRAMS
PARTIC'JLATE MASS GRAMS
HC RPAMS/KM
rn np6M5/K;M
GRAMS/KM
RP'AM'C'/K-:M
FiFi_~rnw5iiMpTTnw RY rfi i /100KM
pfiw TT.ME" ...... " """
MEASQ.RED DISTANCE KM
pESULTS
ilMPFp '"
PAROMETER MM HG
HUMIDITY G/KG 12:0
TFMPFPAT-IIPF nFfi~r 97 . 9
T)
"3
IS
3/ 2/
T / o /
~~
-
. 92
1 145
, 1 A
! A7
11 "o
04
':' BULB TEMP 27:2 DEG C(31
COLD TRANSIENT
711,9 (9R.A*
77 . R ; 1 AA , fvxi
577
' ("3720:?
'i V "2'
7/J7> "i '
WHY UHMTDTTV mPPFTTTfUl F/SPTOP 1
77 Q
"'97797'
iBoTcT (' ^
i D . 9 /11 /
~2' A'/"TV
15! A/17/
7, 1 / 7/
L2-1/ 2/
""•2/ 2/
"a 1~ir
l?
" ~ • 93
7! 79
01A .9
4~')9
i jjn
•ISA'A
"~"
BAR
A'AR
11
17'
"i '
.79
•05
"A"
TPAWQTFWy
711.2 (28:0?
563-9 (22:2)
"70'i f:TA7~A\
/
"2-0/~1/
71 ' 1/17/
~~-.7/12/
29- 4 /"7V
3 ' "?/ 3^
10 :4/ 2/
"~.-2/ 2/
'~97~77
~17~.'
27;
~44
10-2
"l -05
3:29
941 .5
~~
. 10
1
CTAPTI TTFfl
rifnvrriF
FL'EL CONSUMPTION L/100KM
HYDROCARBONS (THC) .....
CARPON HONOXIDE
OXIDES OF "FfT'TPnftEN
PARTICl'LATES
7-PAR
"
IA
0-0)
A " AA j
6:66)
A . AA )
A! AA"!
-------
•505 VEHICLE EMISSIONS RESULTS - DIESEL FUEL ONLY
PROJECT 11-5010-001
TL'ST NO, 6363- 1 RUN 1
VEHICLE MODEL 80 W RABBIT
ENGINE 1,5 L( ?0, CID) L' 4
TRANSMISSION M4
BAROMETER 737,3? MM HG(2?,05 IN HG)
RELATIVE HUMIDITY 28, PCT
0 BAG RESULTS
TEST CYCLE
.BLOWER DIP P MM, M20(IN, i!20)
BLOWER INLET P MM, M20(IN, H20)
BLGkElY .fNLEr TEMP, BEG, C(DEG, F)
M..OWLK REVDLUTIONi
H
TOT
f-C
HC
CO
CO
C02
C02
NOX
NOX
li I LI
HC
CO
C02
NOX
HC
CO
C02
NOX
FLGkl 5TD, CU, METRE3CS1
SAMPLE M F 7 fc R / R A N G F / P P h
BCKGRD METER'/RANGE/PPM
SAMPLE HETER/RANGE/PF-M
BCKGRD METER/RANGE/PPM
SAMPLE METER/RAN8E/PC T
BCKGRD METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
3CKGRD METER/RANGE/PPM
iliQh FACTOR
CONCENTRATION PPM
CONCENTRATION PPM
CONCENTRATION PCT
CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
MASS GRAMS
MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCf UET (DRY)
SCF? WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER»
BAROMETER? MM HG
HUMIDITY» G/KG
TEMPERATURE? BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONSr G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGENy G/KM
VEHICLE NO, 63
DATE 5/ 5/31
BAG CART NG< 1
DYNO NG, 2
CVS NO, 3
DRY BULB TEMP, 27, 3 BEG C(82,0 BEG
ADS, riUrflEITY 6,C GM/KG
H-505
700,7 (27,9)
561,3 (22,1)
33,9 ( 93,0)
13C59,
106,2 ( 3752,)
27,6/il/ 28,
7,4/ I/ 7,
31,7/13/ 29,
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5,1 KM( 6,8 HP)
DIESEL EM-465-F
ODOMETER 8446, KM( 5248. MILES)
NOX HUMIDITY CORRECTION FACTOR ,89
31,0/ 3/ .51
3,3/ 3/ ,05
27, O/ 2/ 27,
1,0/ 2/ 1,
25,81
20,
28,
,46
26,0
1,25
3,47
904,4
4,69
,87
505,
,961 ( ,952)
1,000 ( ,906)
106,2
0,00
5,79
6363-1
737,9
6,8
27,8
156,3
5.87
,22
,60
,81
-------
TEST NO, 6363-1 RUN 1
VEHICLE MODEL 30 !v'U RABBI1
ENGINE 1.5 L( 90, DID) L-4
TRANSMISSION M4
BAROMETER 737,07 MM 110(29,05 IN (IG)
RELATIVE HUMIDITY 20, PCT
0 DAG RESULTS
TEST CYCLE
fd
i
BLOWER
BLOWER
BLOWER
BLOWER
TOT
HC
(1C
L'U
CO
C02
C02
NOX
NOX
DIP P
INLET
INLET
RITVOL
FLOW GT
SAMPLF
BCKGRD
SAMPLE
BCKGRD
SAMPLE
BCKGRD
SAMPLE
t'CKCRD
i 120 (IN, 1120)
DEC, CCDEG, F)
MM,
P MM,
TEMP,
.'TIONS
TB, CD, METRES(SCF.)
MCTER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPM
METER/RANGE/PPH
METER/RANGE/PCT
HETER/RANGE/PCT
luLJTION
HC CONCENTRATION
CO CONCENTRATION
CONCENTRATION
CONCENTRATION
METER/RANGE/PPM
METER/RANGE/PPM
ACTOR
PPM
PPM
PCT
GRAMS
GRAMS
IS
GRAMS
MASS
C02
NOX CONCENTRATION PPM
HC MAJ:
CO MAE
C02 MASS
NOX MASS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
DFCf WET (DRY)
SCF? WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASUREB)
TEST NUMBERt
BAROMETER y MM JIG
HUMIDITY* G/KG
TEMPERATURE* BEG C
CARBON DIOXIDE? G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE!- G/KM
OXIDES OF NITROGEN> G/KM
H-867 VEHICLE EMISSIONS RESULTS
PROJECT 11-5310-001
VEHICLE NO,63
BATE 5/ 5/Q1
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
- DIESEL FUEL ONLY
BRY BULB TEMP, 27,8 BEG
ADO, HUMIDITY 6,0 GH/KG
H-867
70S, 7 (.27,9)
561,3 (22,1)
35,0 ( 95,0)
23055,
132,4 ( 6441,)
(82,0 BEG F)
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5.1 KU( 6,8 HP)
DIESEL EM-465--F
ODOMETER 8444, KM< 5248, MILES)
NOX HUMIDITY CORRECTION FACTOR ,89
21,0/1I/
7,4/ I/
2i,9/13x
21,
7,
20,
0,
22.Z/ 3/ ,36
3,I/ 3/ ,05
1C.67 2f 19,
1.6/ 2/ 2,
36,71
14,
1?,
.31
17.0
1.45
4.00
1051.2
5.27
.88
869.
.973 ( .964)
1.000 ( ,987)
182.4
0,00
6.23
6363-1
737.9
6.G
27.8
168.6
6.34
,23
.65
.85
-------
TEST NO, 6363C1 RUN 1
VEHICLE MODEL 80 VW RABBIT
ENGINE 1.5 L( 90, CID) L-4
TRANSMISSION M4
BAROMETER 730,63 MM HG(29,00 IN 110)
RELATIVE HUMIDITY 45, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER DIP P MM, H20(IN. H20)
BLOWER INLET P MM. 1-120(IN. H20)
BLOUER INLET TEMP, BEG, C(BEG. i
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES(SCD
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/ PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS-
RUN TIME SECONDS
DFCf WET (DRY)
SCF. WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
I
CD
TEST NUMBER,
BAROMETER? MM HG
HUMIDITY? G/KG
TEMPERATURE? BEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION? L/lOOKM
HYDROCARBONS*. G/KM
CARBON MONOXIDE? G/KM
OXIDES OF NITROGEN* G/KM
H-505 VEHICLE EMISSIONS RESULTS
PROJECT 11 -5810-001
VEHICLE NO,63
BATE 5/ 5/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
BRY BULB TEMP, 26,7 BEG CC80.G BEG F)
H-505
708,7 (27,9)
563.9 (22,2)
36,1 ( 97,0;
13874,
105,9 ( 3741,
21.0/13/ 04,
8,0/ I/ 3,
51.7/12/ 110,
0.
.s;?
- DIESEL PLUS METHANOL
TEST WEIGHT 1077, KG( 2375, LBS)
ACTUAL ROAD LOAD 5,1 KU( 6.0 HP)
METHANOL EM-464-F
ODOMETER 8393. KM( 5215, MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
32,i/ 3/
2,5/ 3/
9,1/ 2/
,3/ 2/
24,26
76*
107,
,50
8,8
4.66
13.20
963,2
1,75
,57
505.
.959 (
1,000 (
105,9
0,00
5.73
6363C1
738,6
10,0
26,7
160,0
13.56
.81
2.30
,30
,
,04
9,
0,
945)
981)
-------
TEST NO, 6363C1 RUN I
VEHICLE HPICL CO VW RABBIT
ENGINE 1,5 LC 90, CID) L-4
TRANSMISSION H4
BAROMETER 730,38 MM HO(29,07 IN
RELATIVE HUMIBn
0 BAG RESULTS
TEST CYCLE
45, PCT
H
I
BLOWER DIF P MM, H20(IN, H2Q>
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEO, CdJEG, !
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/FTM
MC BCKCRB METER/RANGE/PPH
CO SAMPLE METER/RANGE/PPM
CO BCKCRB METER/RANGE/PPh
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
RUN TIME SECONDS
BFCy WET (DRY)
SCF» WET (DRY)
VOL CSCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER*
BAROMETER v MM ilG
HUMIDITY* G/KG
TEMPERATURE* BEG C
CARBON DIOXIDE, G/'KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
G67 VEHICLE EMISSIONS RESULTS
PROJECT 11-5010- 001
VEHICLE NO,63
DATE 5/ 5/81
BAG CART NO, i
DYNO NO, 2
CVG NO, 3
DRY DULD TEMP, 26,7 BUG C(00,0 DEC F
H-067
698,5 (27,5)
558,0 (22,0)
36,1 ( 97,0;
23D43,
182,1 ( 6431,)
16.2/13/ 65,
0,0/ If 8,
63.B/13/ 61,
.7/13/ 1,
22, 5/ 3/ ,36
2,3/ 3/ ,04
C,2/ 2/ 6,
,5/ 2/ 1,
35,D6
57,
60,
,33
7,7
5,90
12,63
1101,1
2,63
,48
868,
,972 ( ,958)
1,000 ( ,902)
182,1
0.00
6.21
6363C1
738.4
10,0
26,7
177,4
14,07
,96
2,03
,42
- DIESEL PLUS METHANOL
TEST WEIGHT 1077. KG( 2375. LBS)
ACTUAL ROAD LOAD 5,1 KU( 6.8 HP)
(1ETMANOL EM-464-F
ODOMETER 0399. KM( 521P. MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
-------
APPENDIX F
WATER INJECTION EVALUATIONS WITH A 1981 MERCEDES
-------
FTP VEHICLE EMISSIONS RESULTS - W/O WATER INJECTION
PROJECT 11-5810-001
TEST NO, 6441-2 RUN 1
VEHICLE MODEL 01 MERCEDES 300SD
ENGINE 3,0 L(183, CID) L-5
TRANSMISSION M3
BAROMETER 739*65 MM HG(29,12 IN MG)
RELATIVE HUMIDITY 44, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, i 120 (IN, H20)
BLOWER INLET P MM. H2Q(IN, 1-120)
BLOWER INLET TEMP. BEG, CCDEG, F)
BLOWER REVOLUTIONS
TOT FLOW STB, CU, METRES (SCF)
SAMPLE METER/RANGE/PPM
BCKGRB METER/RANGE/PPM
SAMPLE METER/RANGE/PPM
BCKGRB METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRB METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRB METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
MASS GRAMS
MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC
HC
CO
CO
HC
CO
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
DFCr DRY
COMPOSITE RESULTS
TEST NUMBER 6441-2
BAROMETER MM HG 739,6
HUMIDITY G/KG 9.5
TEMPERATURE BEG C 26.1
VEHICLE NO,64
BATE 2/20/81
BAG CART NO, 1
DYNO NO, 2
CVS NO, 3
BRY BULB TEMP, 26,1 BEG C(7?,0 BEG F)
ABS, HUMIDITY 9,5 GM/KG
1
COLB TRANSIENT
711,2 (28,0)
581,7 (22,9)
36,1 ( 97,0)
13869,
134.6 ( 4752,)
20,6/H/ 21,
4,8/ I/ 5,
31.2/13/ 29,
,1/13/ 0,
43,7/ 3/ ,75
3,0/ 3/ .05
15,I/ 2/ 15.
.6/ 2/ 1.
17.32
16.
23.
.70
14,5
1.25
4.36
1733.7
3.60
1.54
.22
.75
299.7
,62
11,22
505.
5.79
.979
STABILIZED
716.3 (28,2)
584.2 (23,0)
30,6 ( 87,0)
23790,
233,4 ( 8243.)
14,3/H/ 15,
4,0/ I/ 4,
16.1/13/ 15,
,1/13/ 0,
24,9/ 3/ ,41
3.I/ 3/ .05
10.4/ 2/ 10.
.8/ 2/ 1.
32.78
11.
14.
.36
9.6
1.47
3.86
1538.0
4.14
1.37
.24
.63
249,9
.67
9.36
867,
6.15
,982
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 8.6 KU< 11.5 HP)
DIESEL EM-465-F
OBOMETER 3075, KM( 1911. MILES)
NOX HUMIDITY CORRECTION FACTOR ,96
HOT TRANSIENT
711,2 (28,0)
581,7 (22,9)
34,4 ( 94,0)
13872,
135.0 ( 4766.)
15,8/li/ 16,
4.0/ I/ 4.
22.9/13/ 21,
,1/13/ 0,
37,5/ 3/ .63
3,I/ 3/ .05
15,2/ 2/ 15,
,7/ 2/ 1.
21.10
12.
20.
.59
14.5
.93
3.18
1448,8
3.61
1.16
,16
.55
250.5
,62
9,37
505.
5.78
.980
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS CTHC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN 6/KM
PARTICULATES G/KM
STABILIZED
3- BAG
260.4
9.75
.21
.63
.65
.226
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0,000)
-------
FTP VEHICLE EMISSIONS RESULTS - W/O WATER INJECTION
PROJECT 11-5310-001
TEST NO, 6441-3 RUN 1
VEHICLE MODEL 81 MERCEDES 300SD
ENGINE 3.0 L(183, CID) L-5
TRANSMISSION A3
BAROMETER 740,16 MM HG(29.14 IN HG)
RELATIVE HUMIDITY 49, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NQX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
DFCf DRY
COMPOSITE RESULTS
TEST NUMBER 6441-3
BAROMETER MM HG 740.2
HUMIDITY G/KG 10.0
TEMPERATURE DEG C 25.0
i
U)
VEHICLE NO.64
DATE 2/25/31
BAG CART NO. 1
DYNO NO. 2
CVS NO. 3
DRY BULB TEMP, 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 10,0 GM/KG
1
COLD TRANSIENT
711.2 (28.0)
581,7 (22.9)
35,0 ( 95,0)
13865.
134,0 ( 4730.)
24.5/11/ 24,
6.2/ I/ 6,
32.6/13/ 30.
43.3/ 3/
3,I/ 3/
14.4/ 2/
,3/ 2/
17,99
19,
27,
.69
14.1
1,44
4.28
1703.6
' 3,53
1,80
.25
.75
297,4
,62
11.13
505.
5.73
.977
,74
,05
14.
0.
STABILIZED
713.7 (28,1)
584.2 (23.0)
30.6 ( 87,0)
23812.
232.2 ( 8201.)
18.2/11/ 18.
6.3/ I/ 6,
17.6/13/ 16.
1.6/13/ 1,
24.4/ 3/ ,40
3.2/ 3/ .05
9.9/ 2/ 10.
,4/ 2/ 0,
33.45
12.
14.
,35
9.5
1,62
3.85
1486,7
4.13
1.26
.27
.63
242,8
.67
9.10
867.
6,12
.980
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 3112. KM(
KG( 4000. LBS)
8.6 KW( 11.5 HP)
1934. MILES)
NOX HUMIDITY CORRECTION FACTOR ,98
HOT TRANSIENT
711,2 (28.0)
504,2 (23.0)
35,6 ( 96,0)
13871,
133.8 ( 4726.)
20.2/11/ 20,
6.3/ I/ 6.
23.6/13/ 22,
1.0/13/ 1,
37.I/ 3/ .62
3.2/ 3/ ,05
15.3/ 2/ 15.
l.O/ 2/ 1.
21.33
14.
20.
.58
14.3
1.10
3,13
1414,9
3.59
1.19
.19
.55
247,0
,63
9.24
505.
5.73
.978
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
STABILIZED
3 BAG
255.3
9.56
.24
.63
.65
.229
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0.00)
( 0,000)
-------
HFET VEHICLE EMISSIONS RESULTS - W/0 WATER INJECTION
PROJECT 11-5810-001
TEST NO* 6441-3 RUN 1
VEHICLE MODEL 81 MERCEDES 300SD
ENGINE 3.0 L(136, CID) L-5
TRANSMISSION A3
BAROMETER 739.65 MM HG(29.12 IN HG)
RELATIVE HUMIDITY 49. PCT
0 BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN» H2Q)
BLOWER INLET P MM, H20(IN. H20)
BLOUER INLET TEMP, DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
« C02 CONCENTRATION PCT
i NOX CONCENTRATION PPM
* HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
RUN TIME SECONDS
DFC* WET (DRY)
SCFr WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETER* MM HG
HUMIDITY* G/KG
TEMPERATURE* DEG C
CARBON DIOXIDE* G/KM
FUEL CONSUMPTION* L/100KM
HYDROCARBONS* G/KM
CARBON MONOXIDE* G/KM
OXIDES OF NITROGEN* G/KM
VEHICLE NO.64
DATE 2/25/81
BAG CART NO. 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP. 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 10,0 CM/KG
HFET
713.7 (28.1)
581,7 (22,9)
36,7 ( 98,0)
21024.
201.7 ( 7121.)
22.5/1I/ 23.
4.5/ I/ 5.
37.0/13/ 34,
.4/13/ 0,
57.I/ 3/ 1.01
3,8/ 3/ .06
18.7/ 2/ 19.
1.5/ 2/ 2,
13,25
18,
33,
.95
17,3
2.14
7.69
3513,9
6.53
766.
,925 ( ,910)
1,000 ( ,975)
201,7
41.99
16.32
6441-3
739.6
10.0
25.0
215,3
8,05
,13
,47
,40
TEST WEIGHT 1814. KG( 4000, LBS)
ACTUAL ROAD LOAD 6.6 KW( 11.5 HP)
DIESEL EM-465-F
ODOMETER 3135. KM( 1948. MILES)
NOX HUMIDITY CORRECTION FACTOR .98
-------
FTP VEHICLE EMISSIONS RESULTS - WITH WATER INJECTION
PROJECT 11-5810-001
TEST NO. 6441C1 RUN 1
UEHICLE MODEL 81 MERCEDES
ENGINE 3.0 L(183« CID) L-5
TRANSMISSION A3
BAROMETER 731.77 MM H6(28.81 IN HG)
RELATIVE HUMIDITY 56. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN, H20)
BLOWER INLET P MM. H20(IN. H2Q)
BLOWER INLET TEMP. DEB, C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKBRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
VEHICLE NO.64
DATE 3/ 3/81
BAG CART NO. 1
DYNO NO, 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 11.6 GM/KG
i
Ul
COMPOSITE RESULTS
TEST NUMBER 6441C1
BAROMETER MM HG 731.8
HUMIDITY G/KG 11,6
TEMPERATURE DEG C 25.0
1
COLD TRANSIENT
711.2 (28.0)
571.5 (22,5)
35,6 ( 96,0)
13877.
133.1 ( 4699.)
24,9/li/ 25.
4.6/ I/ 5.
43.5/13/ 41,
,80
.05
11.
0,
46. 6/ 3/
3, I/ 3/
11. I/ 2/
.3/ 2/
16,58
21,
39.
.76
10.8
1.58
5.99
1845.5
2.84
.27
1.03
316.1
,49
11,85
505,
5.84
.974
STABILIZED
711.2 (28.0)
571.5 (22.5)
33.9 ( 93.0)
23370.
229.6 ( 8108.)
16.1/11/ 16,
4.7/ I/ 5.
24.2/13/ 22,
i.0/13/ 1.
27.O/ 3/ ,44
2.9/ 3/ .04
7.7/ 2/ 8,
.4/ 2/ 0.
30,02
12.
21,
.40
7.3
1.53
5.52
1680,4
3.31
TEST WEIGHT 1814, KG< 4000, LBS)
ACTUAL ROAD LOAD 8,6 KU( 11.5 HP)
DIESEL EM-465-F
ODOMETER 3161, KM( 1964, MILES)
NOX HUMIDITY CORRECTION FACTOR 1,03
HOT TRANSIENT
711.2 (28,0)
571,5 (22.5)
35.0 ( 95,0)
13846,
132.9 ( 4693,)
18.0/li/ 18.
4.7/ I/ 5,
33.3/13/ 31.
1.3/13/ 1.
40,5/ 3/ ,69
3,I/ 3/ ,05
10.5/ 2/ 11,
.5/ 2/ 1.
19.37
14.
29,
.64
10.0
1.04
4,44
1562,4
2,63
,24 ,18
,88 ,75
266,5 265.6
.52 ,45
9,99 9.94
869. 504.
6.31 5.88
.978 .975
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
STABILIZED
3-BAG
276,5
10.36
.23
.87
.50
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0,00)
( 0.00)
-------
HFET VEHICLE EMISSIONS RESULTS - WITH WATER INJECTION
PROJECT 11-5810-001
en
TEST NO, 6441C 1 RUN 1
VEHICLE MODEL 81 MERCEDES
ENGINE 3,0 LU83, CID) L-5
TRANSMISSION A3
BAROMETER 730,50 MM HG(28.76 IN HG)
RELATIVE HUMIDITY 45, PCT
0 BAG RESULTS
TEST CYCLE
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN. H20)
BLOWER INLET TEMP, DEG, C(DEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RAN6E/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
RUN TIME SECONDS
DFC, WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
TEST NUMBER,
BAROMETER, MM HG
HUMIDITY, G/KG
TEMPERATURE, DEG C
CARBON DIOXIDE, G/KM
FUEL CONSUMPTION, L/100KM
HYDROCARBONS, G/KM
CARBON MONOXIDE, G/KM
OXIBES OF NITROGEN, G/KM
VEHICLE NO,64
DATE 3/ 3/81
BAG CART NO, 1
DYNO NO, 2
CVS NO. 3
DRY BULB TEMP, 27,2 DEG CC81.0 DEG F)
ABS, HUMIDITY 10,7 GM/KG
HFET
711,2 (28,0)
571,5 (22,5)
39,4 (103,0)
21011,
198,8 < 7019.)
21,3/li/ 21,
4,8/ I/ 5,
47,6/13/ 45,
1.6/13/ 1.
61,8/ 3/ 1,10
3.I/ 3/ ,05
14.6/ 2/ 15.
,8/ 2/ 1,
12,12
17.
42,
1.06
13.9
1.94
9,68
3840,4
5,26
765.
,918 ( .904)
1.000 ( .975)
198,8
42.22
16,68
6441C1
730,5
10,7
27,2
230,2
8.61
,12
.58
.32
TEST WEIGHT 1814, KG( 4000, LBS)
.ACTUAL ROAD LOAD 8,6 KW( 11.5 HP)
DIESEL EM-465-F
ODOMETER 3178. KM( 1975. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
-------
FTP VEHICLE EMISSIONS RESULTS - WITH WATER INJECTION
PROJECT 11-5010- 1
TEST NO, 6441C2 RUN 1
VEHICLE MODEL 81 MERCEDES 3005D
ENGINE 3,0 LU83, CID) V--8
TRANSMISSION A3
BAROMETER 74.1,43 MM HO(29,19 IN HG)
RELATIVE HUMIDITY 39, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, H20(IN, H20)
BLOWER INLET P MM, H20(IN, H20)
BLOWER INLET TEMP, DEG, CCDEG, F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU, METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
M C02 .BCKGRD METER/RANGE/PCT
7 NOX SAMPLE METER/RANGE/PPM
-J NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFf DRY
COMPOSITE RESULTS
TEST NUMBER 6441C2
BAROMETER MM HG 741.4
HUMIDITY G/KG 7,9
TEMPERATURE DEG C 25,0
VEHICLE NO,64
DATE 3/ 5/31
BAG CART NO, 1
DYNO NO. 2
CVS NO, 3
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 7,9 GM/KG
TEST WEIGHT 1814, KG( 4000, LBS)
ACTUAL ROAD LOAD 8,6 KU( 11.5 HP)
DIESEL EM-465-F
ODOMETER 3233, KM< 2009. MILES)
NOX HUMIDITY CORRECTION FACTOR ,92
1
COLD TRANSIENT
711.2 (28,0)
57.1,5 (22,5)
34,4 ( 94,0)
13876,
135,6 ( 4788.)
18,9/H/ 19,
2,I/ I/ 2.
40.2/13/ 37,
,5/13./ 0,
43,7/ 3/ ,75
3,0/ 3/ ,05
12,2/ 2/ 12.
,5/ 2/ 1,
17,31
17,
36,
,70
11,7
1,32
5,68
1746,8
2,79
1,49
.23
,98
301,3
,48
11,29
505,
5,80
,980
STABILIZED
721,4 (28,4)
584,2 (23,0)
29,4 ( 85,0)
23816,
235,2 ( 8306,)
ll.O/ll/ 11,
1,S/ I/
21,8/13/
.5/13/
24,7/ 3/
2,8/ 3/
3,2/ 2/
,6/ 2/
33,05
9,
19.
,36
7.6
1,26
5,21
1554,1
3,14
1,52
20,
0,
,40
,04
8,
HOT TRANSIENT
713,7 (28,1)
581,7 (22,9)
33,3 ( 92,0)
13878.
135,8 ( 4794.)
12.4/11/ 12,
1,8/ I/ 2,
29,3/13/ 27,
0,
,65
,06
12.
38.7/ 3/
3,6/ 3/
11,9/ 2/
,6/ 2/
20.38
11.
26,
,60
11.3
.84
4,08
1494,3
2,70
1,30
,20 ,14
.84 ,70
249,5 256.3
,50 ,46
9.35 9,59
867, 505,
6.23 5.83
,984 ,981
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
STABILIZED
3-BAG
262,1
9.82
.19
.83
,49
,241
(4-BAG)
( 0.0)
( 0.00)
( 0.00)
( 0.00)
( 0,00)
( 0.000)
-------
APPENDIX G
DURABILITY OF CORNING TRAP ON THE MERCEDES
-------
TEST NO. 6100-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 734.06 MM HG(28.90 IN HG)
RELATIVE HUMIDITY 63. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
tn
NJ
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET
-------
FTP
VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
TEST NO. 6100-2 RUN
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 738.89 MM HG(29.09 IN HG)
RELATIVE HUMIDITY 63. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20HN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
O
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS /KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6100-2
BAROMETER MM HG 738.9
HUMIDITY G/KG 12.5
TEMPERATURE DEG C 24.4
VEHICLE NO.61
DATE 8/27/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 24.4 DEG C(76.0 DEG F)
ABS. HUMIDITY 12.5 GM/KG
TEST WEIGHT 1814. KG< 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 9656. KM( 6000. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.06
1
OLD TRANSIENT
698.5 (27.5)
571.5 (22.5)
36.7 ( 98.0)
13834.
134.4 ( 4746.)
19.7/11/ 20.
14. O/ I/ 14.
34.0/13/ 31.
7.5/13/ 7.
44. 7/ 3/ .77
3.6/ 3/ .06
23. 4/ 2/ 23.
.4/ 2/ 0.
17.38
6.
24.
.71
23.0
.50
3.76
1756.8
6.28
2.11
.09
.66
308.4
1.10
11.52
504.
5.70
.973
.959 (
1.000 (
2
STABILIZED
698.5 (27.5)
571.5 (22.5)
34.4 ( 94.0)
23845.
232.5 ( 8210.)
15.0/11/ 15.
9.8/ t/ 10.
21.7/13/ 20.
6.6/13/ 6.
25. 7/ 3/ .42
3.3/ 3/ .05
13.6/ 2/ 14.
.3/ 2/ 0.
31.66
5.
14.
.37
13.3
.74
3.67
1578.7
6.28
1.72
.12
.60
256.6
1.02
9.59
869.
6.15
.976
.939)
.975)
366.9
77.65
11.85
10.52
CARBON
3
HOT TRANSIENT
696.0 (27.4)
569.0 (22.4)
36.1 ( 97.0)
13837.
134.6 ( 4753.)
14.2/11/ 14.
9.8/ I/ 10.
25.6/13/ 23.
4.9/13/ 4.
38. 9/ 3/ .66
3.3/ 3/ .05
23. 8/ 2/ 24.
.5/ 2/ 1.
20.27
5.
19.
.61
23.3
.38
2.90
1501.5
6.37
1.68
.07
.51
262.0
1.11
9.78
504.
5.73
.974
.962 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
703.6 (27.7)
576.6 (22.7)
34.4 ( 94.0)
23811.
232.1 ( 8196.)
12.8/11/ 13.
9.6/ I/ 10.
19.1/13/ 17.
4.2/13/ 4.
25. 1/ 3/ .41
3.4/ 3/ .05
13. 7/ 2/ 14.
.4/ 2/ 0.
32.50
3.
13.
.36
13.3
.46
3.59
1524.9
6.27
1.55
.08
.58
246.4
1.01
9.21
868.
6.19
.976
.943)
.975)
366.7
77.67
11.92
9.48
3-BAG (4-BAG)
268.8 ( 265.8)
10.04 ( 9.93)
.10 ( .09)
.59 ( .58)
1.06 ( 1.06)
.302 ( .294)
-------
FTP - VEHICLE EMISSIONS RESULTS -TEST 6100T2
PROJECT 05-5810-001
TEST NO. 6100T2 RUN 1
VEHICLE MODEL 80 MERCEDES3 OOD
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 740.66 MM HG(29.16 IN HG)
RELATIVE HUMIDITY 67. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20CIN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
O
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6100T2
BAROMETER MM HG 740.7
HUMIDITY G/KG 13.7
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 9/ 4/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 13.7 GM/KG
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 9799. KM(
KG( 4000. LBS)
9.7 KW( 13.0 HP)
6089. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.11
1
:OLD TRANSIENT
690.9 (27.2)
563.9 (22.2)
36.7 ( 98.0)
13848.
134.8 ( 4760.)
14.4/11/ 14.
11.3/ I/ 11.
34.9/13/ 32.
9.3/13/ 8.
46. 6/ 3/ .80
3.6/ 3/ .06
24. O/ 2/ 24.
.I/ 2/ 0.
16.61
4.
23.
.75
23.9
.224 (77.)
.29
3.66
1851.3
6.84
.18
.05
.63
319.5
1.18
11.93
505.
5.79
.971
2
STABILIZED
703.6 (27.7)
576.6 (22.7)
35.0 ( 95.0)
23802.
232.0 ( 8192.)
12.0/11/ 12.
8.7/ I/ 9.
24.3/13/ 22.
8.3/13/ 7.
26. 8/ 3/ .44
3.3/ 3/ .05
13. 5/ 2/ 14.
.2/ 2/ 0.
30.29
4.
14.
.39
13.3
.209 (76.)
.48
3.90
1657.4
6.55
.17
.08
.63
266.8
1.05
9.97
868.
6.21
.973 .974
.957( .936)
366.
1
1
8/ 77.24
2.01
0.91
CARBON
3
HOT TRANSIENT
690.9 (27.2)
563.9 (22.2)
36.7 < 98.0)
13838.
134.7 ( 4756.)
11.9/11/ 12.
6.7/ I/ 7.
27.2/13/ 25.
6.3/13/ 6.
40. I/ 3/ .68
3.5/ 3/ .05
24. I/ 2/ 24.
.5/ 2/ 1.
19.61
6.
19.
.63
23.6
.150 (80.)
.43
2.95
1550.3
6.75
.11
.07
.51
268.0
1.17
10.01
504.
5.78
.972 .974
4
STABILIZED
698.5 (27.5)
571.5 (22.5)
35.0 ( 95.0)
23807.
232.2 ( 8197.)
10.3/11/ 10.
6.7/ I/ 7.
21.2/13/ 19.
5.9/13/ 5.
25. 9/ 3/ .42
3.4/ 3/ .05
14. O/ 2/ 14.
.4/ 2/ 0.
31.44
4.
14.
.37
13.6
.180 (73.)
.52
3.70
1584.8
6.71
.15
.08
.59
254.4
1.08
9.51
868.
6.23
.974
.961( .940)
366. 8/ 77
12.01
9.75
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.21
3-BAG (4-BAG)
278.1 ( 274.4)
10.39 ( 10.25)
.07 ( .07)
.60 ( .59)
1.11 ( 1.12)
.026 ( .025)
-------
FTP
VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
TEST NO. 6100T3 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 742.70 MM HG(29.24 IN HG)
RELATIVE HUMIDITY 60. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
0 CO CONCENTRATION PPM
i C02 CONCENTRATION PCT
01 NOX CONCENTRATION PPM
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
SCF, WET (DRY)
VOL (SCM)
SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6100T3
BAROMETER MM HG 742.7
HUMIDITY G/KG 12.1
TEMPERATURE DEG C 25.0
VEHICLE NO. 61
DATE 9/ 8/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 12.1 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 9897. KM( 6150. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.05
1
:OLD TRANSIENT
690.9 (27.2)
563.9 (22.2)
36.7 ( 98.0)
13871.
135.4 ( 4782.)
12.1/11/ 12.
5.5/ I/ 6.
34.2/13/ 32.
6.5/13/ 6.
46. 6/ 3/ .80
3.5/ 3/ .05
23. I/ 2/ 23.
.5/ 2/ 1.
16.62
7.
25.
.75
22.6
.54
3.96
1863.6
6.15
.21
.09
.68
321.5
1.06
12.01
505.
5.80
.973
.957
1.000
2
STABILIZED
698.5 (27.5)
571.5 (22.5)
35.0 ( 95.0)
23821.
233.0 ( 8228.)
8.4/11/ 8.
5.1/ I/ 5.
22.5/13/ 21.
6.2/13/ 6.
26. 9/ 3/ .44
3.4/ 3/ .05
13. 7/ 2/ 14.
.4/ 2/ 0.
30.20
3.
15.
.39
13.3
.46
3.98
1665.8
6.23
.22
.07
.64
267.4
1.00
9.99
868.
6.23
.977
( .939)
( .975)
368.5
78.11
12.03
10.96
CARBON
3
HOT TRANSIENT
698.5 (27.5)
571.5 (22.5)
36.7 ( 98.0)
13856.
135.2 ( 4775.)
9.6/11/ 10.
4.8/ I/ 5.
25.8/13/ 24.
4.3/13/ 4.
39. 6/ 3/ .67
3.4/ 3/ .05
23. O/ 2/ 23.
.5/ 2/ 1.
19.89
5.
19.
.62
22.5
.39
3.03
1536.9
6.11
.20
.07
.52
264.6
1.05
9.88
505.
5.81
.975
.961 (
1.000 (
DIOXIDE G/KM
FUEL CONSUMPTION L/tOOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
4
STABILIZED
703.6 (27.7)
576.6 (22.7)
35.0 ( 95.0)
23804.
232.8 ( 8220.)
8. 3/1 1/ 8.
4.8/ t/ 5.
19.3/13/ 18.
3.6/13/ 3.
25. 9/ 3/ .42
3.8/ 3/ .06
13. 5/ 2/ 14.
.5/ 2/ 1.
31.47
4.
14.
.37
13.0
.49
3.79
1563.5
6.08
.20
.08
.61
249.6
.97
9.33
868.
6.26
.977
.943)
.976)
368.0
78.12
12.07
9.60
3-BAG (4-BAG)
277.8 ( 272.6)
10.38 ( 10.18)
.08 ( .08)
.62 ( .61)
1.03 ( 1.02)
.035 ( .034)
-------
TEST NO. 6105-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 744.73 MM H6(29.32 IN HG)
RELATIVE HUMIDITY 46. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER OIF P MM. H20(|N. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES
-------
FTP
- VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-00)
TEST NO. 6105-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 741.17 MM HG(29.18 IN HG)
RELATIVE HUMIDITY 58. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
D C02 CONCENTRATION PCT
^ NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6105-2
BAROMETER MM HG 741.2
HUMIDITY G/KG 10.7
TEMPERATURE DEG C 23.3
VEHICLE NO.61
DATE 11/16/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 23.3 DEG C(74.0 DEG F)
ABS. HUMIDITY 10.7 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 18882. KMO1733. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
1
OLD TRANSIENT
736.6 (29.0)
604.5 (23.8)
36.1 ( 97.0)
13849.
134.5 ( 4749.)
16.4/11/ 16.
4.3/ 1/ 4.
31.9/13/ 29.
.9/13/ 1.
44. 3/ 3/ .76
2.7/ 3/ .04
24. 4/ 2/ 24.
.3/ 2/ 0.
17.57
12.
28.
.72
24.1
3.393 (99.)
.95
4.33
1771.3
6.20
2.02
.17
.75
307.1
1.08
11.49
505.
5.77
.974 .976
2
STABILIZED
736.6 (29.0)
604.5 (23.8)
33.9 ( 93.0)
23808.
232.1 ( 8196.)
10.6/11/ 11.
5.4/ I/ 5.
18.2/13/ 17.
1.0/13/ 1.
25. I/ 3/ .41
2.5/ 3/ .04
13. 6/ 2/ 14.
.3/ 2/ 0.
32.52
5.
15.
.37
13.3
2.732 (98.)
.72
4.12
1582.1
5.91
1.61
.12
.67
256.9
.96
9.61
868.
6.16
.977
.960( .942)
366. 6/ 77
11.93
10.52
.82
CARBON
3
HOT TRANSIENT
736.6 (29.0)
604.5 (23.8)
36.7 ( 98.0)
13840.
134.3 ( 4742.)
11.0/1J/ 11.
5.4/ I/ 5.
24.7/13/ 23.
1.0/13/ 1.
37. 3/ 3/ .63
2.7/ 3/ .04
22. 4/ 2/ 22.
.3/ 2/ 0.
21.23
6.
21.
.59
22.1
2.843 (98.)
.45
3.29
1447.0
5.68
1.70
.08
.57
252.6
.99
9.44
504.
5.73
.975 .977
4
STABILIZED
736.6 (29.0)
604.5 (23.8)
33.9 ( 93.0)
23829.
232.3 ( 8204.)
9.2/11/ 9.
5.0/ 1/ 5.
16.8/13/ 15.
1.1/13/ 1.
24. 0/ 3/ .39
2.4/ 3/ .04
13. 1/ 2/ 13.
.5/ 2/ 1.
34.13
4.
14.
.35
12.6
2.489 (98.)
.58
3.76
1508.5
5.60
1.51
.09
.61
244.7
.91
9.15
869.
6.17
.978
.964( .946)
366. 6/ 77
11.89
9.29
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.97
3-BAG (4-BAG)
266.2 ( 262.5)
9.95 ( 9.82)
.12 ( .11)
.66 ( .64)
.99 ( .98)
.290 ( .285)
-------
TEST NO. 6105T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 749.81 MM HG(29.52 IN HG)
RELATIVE HUMIDITY 34. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
O C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6105T1
BAROMETER MM HG 749.8
HUMIDITY G/KG 6.9
TEMPERATURE DEG C 25.6
CO
FTP - VEHICLE EMISSIONS RESULTS -
PROJECT 05-5810-005
VEHICLE NO.61
DATE 11/ 9/81
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG C(78.0 DEG F)
ABS. HUMIDITY 6.9 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 18562. KM(11534. MILES)
NOX HUMIDITY CORRECTION FACTOR .89
1
:OLD TRANSIENT
736.6 (29.0)
604.5 (23.8)
33.3 ( 92.0)
13867.
137.3 ( 4849.)
9.7/11/ 10.
3.7/ 1/ 4.
29.7/J3/ 27.
1.7/13/ 2.
44. 5/ 3/ .76
2.6/ 3/ .04
25. 9/ 2/ 26.
.2/ 2/ 0.
17.50
6.
25.
.72
25.7
.190 (76.)
.49
4.02
1822.0
6.01
.15
.08
.70
314.8
1.04
11.76
505.
5.79
.982 .984
2
STABILIZED
736.6 (29.0)
604.5 (23.8)
33.3 ( 92.0)
23827.
236.0 ( 8334.)
6.3/11/ 6.
3.3/ 1/ 3.
16.8/13/ 15.
1.5/13/ 1.
24. 1/ 3/ .39
2.7/ 3/ .04
14. O/ 2/ 14.
.!/ 2/ 0.
34.00
3.
14.
.35
13.9
.184 (72.)
.43
3.76
1520.6
5.58
.15
.07
.60
243.8
.89
9.11
869.
6.24
.986
.960( .950)
373. 4/ 79
12.03
10.39
.70
3
HOT TRANSIENT
734.1 (28.9)
596.9 (23.5)
35.6 ( 96.0)
13852.
136.8 ( 4830.)
7.8/11/ 8.
3.3/ 1/ 3.
23.2/13/ 21.
.7/13/ 1.
37. 1/ 3/ .62
2.2/ 3/ .03
24. 2/ 2/ 24.
.4/ 2/ 0.
21.37
5.
20.
.59
23.8
.208 (73.)
.37
3.20
1483.0
5.54
.17
.06
.56
258.4
.97
9.65
505.
5.74
4
STABILIZED
736.6 (29.0)
602.0 (23.7)
33.9 ( 93.0)
23798.
235.6 ( 8319.)
6.2/11/ 6.
3.3/ 1/ 3.
15.9/13/ 14.
.6/13/ 1.
23. 7/ 3/ .39
2.4/ 3/ .04
14. O/ 2/ 14.
.4/ 2/ 0.
34.62
3.
14.
.35
13.6
.179 (75.)
.41
3.74
1507.4
5.45
.15
.07
.61
244.8
.89
9.15
868.
6.16
.983 .985 .986
.965(
372. 4/
11.
9.
.954)
79.86
90
39
3-BAG (4-BAG)
CARBON
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
262.5 ( 262
9.81 ( 9.
.07 (
.61 (
.94 (
.8)
82)
07)
61)
94)
.026 ( .026)
-------
FTP
- VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-OOt
TEST NO. 6105T2 RUN f
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 751.84 MM HGC29.60 IN HG)
RELATIVE HUMIDITY 24. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
VEHICLE NO.61
DATE 11/10/81
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
O
I
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6105T2
BAROMETER MM HG 751.8
HUMIDITY G/KG 5.2
TEMPERATURE DEG C 26.7
DRY BULB TEMP.
ABS. HUMIDITY
26.7 DEG C(80.0 DEG F)
5.2 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 18593. KMU1553. MILES)
NOX HUMIDITY CORRECTION FACTOR .85
1
:OLD TRANSIENT
736.6 (29.0)
604.5 (23.8)
33.9 ( 93.0)
13836.
137.6 ( 4860.)
10.7/11/ 11.
5.6/ I/ 6.
31.3/13/ 29.
6.6/13/ 6.
41 .O/ 3/ .70
2.9/ 3/ .04
24. 3/ 2/ 24.
1.0/ 2/ 1.
19.14
5.
23.
.65
23.4
.242 (81.)
.42
3.62
1648.7
5.20
.18
.07
.62
283.9
.90
10. 60
504.
5.81
.986 .988
2
STABILIZED
736.6 (29.0)
604.5 (23.8)
32.2 ( 90.0)
23926.
238.9 ( 8435.)
6.8/11/ 7.
4. 1/ I/ 4.
19.6/13/ 18.
5.2/13/ 5.
23. 3/ 3/ .38
2.5/ 3/ .04
14. 4/ 2/ 14.
.5/ 2/ 1.
35.21
3.
13.
.34
13.9
.219 (78.)
.39
3.63
1491.4
5.38
.17
.06
.58
239.0
.86
8.93
873.
6.24
.989
.963( .956)
376. 5/ 81
12.05
9.74
.66
CARBON
3
HOT TRANSIENT
736.6 (29.0)
604.5 (23.8)
35.6 ( 96.0)
13846.
137.2 ( 4845.)
9.0/11/ 9.
4. 1/ I/ 4.
26.7/13/ 24.
2.6/13/ 2.
38. I/ 3/ .64
2.3/ 3/ .04
25. 3/ 2/ 25.
.3/ 2/ 0.
20.75
5.
22.
.61
25.0
.283 (79.)
.40
3.48
1530.3
5.55
.23
.07
.60
264.9
.96
9.90
505.
5.78
.986 .988
4
STABILIZED
736.6 (29.0)
604.5 (23.8)
33.9 ( 93.0)
23818.
236.7 ( 8360.)
6. 6/1 I/ 7.
3.6/ I/ 4.
17.3/13/ 16.
2.1/13/ 2.
24. 0/ 3/ .39
2.6/ 3/ .04
14. 3/ 2/ 14.
,3/ 2/ 0.
34.15
3.
14.
.35
14.0
.221 (80.)
.42
3.76
1524.2
5.37
.17
.07
.61
245.4
.86
9.17
869.
6.21
.989
.964( .956)
374. O/ 81
11.99
9.52
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.46
3-BAG (4-BAG)
255.4 ( 257.3)
9.54 ( 9.61)
.07 ( .07)
.60 ( .60)
.90 ( .90)
.032 ( .032)
-------
FTP - VEHICLE EMISSIONS RESULTS -16000 WITH OUT TRAP
PROJECT 05-5810-001
TEST NO. 6110-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 730.25 MM HG(28.75 IN HG)
RELATIVE HUMIDITY 62. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
-------
FTP
- VEHICLE EMISSIONS RESULTS -16000, WIT OUT TRAP
PROJECT 05-5810-001
TEST NO. 6110-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 743.46 MM HG(29.27 IN HG)
RELATIVE HUMIDITY 23. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
tn C02 CONCENTRATION PCT
' NOX CONCENTRATION PPM
M FILTER WT. MG (EFFICIENCY, %\
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6HO-2
BAROMETER MM HG 743.5
HUMIDITY G/KG 4.0
TEMPERATURE DEG C 22.8
VEHICLE NO.61
DATE 12/23/81
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
DRY BULB TEMP.
ABS. HUMIDITY
22.8 DEG C(73.0 DEG F)
4.0 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 27291. KM(16958. MILES)
NOX HUMIDITY CORRECTION FACTOR .82
1
:OLD TRANSIENT
711.2 (28.0)
584.2 (23.0)
33.9 ( 93.0)
13859.
135.9 ( 4800.)
15.6/11/ 16.
8.5/ I/ 9.
31.1/13/ 29.
3.8/13/ 3.
43. 2/ 3/ .74
2.9/ 3/ .04
25. O/ 2/ -25.
.7/ 2/ 1.
18.06
8.
25.
.70
24.3
2.886 (99.)
.59
3.92
1731.5
5.19
1.79
.10
.67
296.9
.89
11.09
505.
5.83
.986 .988
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
32.2 ( 90.0)
23820.
234.5 ( 8281.)
10.6/11/ 11.
5.5/ 1/ 6.
18.5/13/ 17.
3.1/13/ 3.
24. 6/ 3/ .40
2.8/ 3/ .04
14. 5/ 2/ 15.
.5/ 2/ 1.
33.22
5.
14.
.36
14.0
2.533 (99.)
.71
3.79
1541.9
5.15
1.58
.11
.61
247.2
.83
9.25
868.
6.24
.989
.961( .953)
370. 5/ 78
12.07
10.14
.57
CARBON
3
HOT TRANSIENT
711.2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
13848.
135.7 ( 4791.)
10.4/11/ 10.
5.5/ 1/ 6.
24.6/13/ 22.
2.2/13/ 2.
36. 9/ 3/ .62
3.1/ 3/ .05
23. 1/ 2/ 23.
.4/ 2/ 0.
21.48
5.
20.
.58
22.7
2.864 (99.)
.40
3.19
1428.9
4.83
1.79
.07
.55
246.6
.83
9.21
504.
5.79
.987 .988
.965( .
4
STABILIZED
711.2 (28.0)
584.2 (23.0)
32.2 ( 90.0)
23826.
234.5 ( 8281.)
8. 3/1 I/ 8.
5.0/ I/ 5.
16.9/13/ 15.
1.8/13/ 2.
23. 7/ 3/ .39
2.5/ 3/ .04
14. I/ 2/ 14.
.5/ 2/ 1.
34.59
3.
14.
.35
13.6
2.549 (99.)
.47
3.70
1494.1
5.01
1.60
.08
.59
239.2
.80
8.94
868.
6.25
.989
957)
370. 2/ 78.55
12.04
9.07
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTI CULATES G/KM
3-BAG (4-BAG)
257.4 ( 255.0)
9.62 ( 9.53)
.10 ( .09)
.61 ( .60)
.84 ( .83)
.280 ( .281)
-------
FTP - VEHICLE EMISSIONS RESULTS -16000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6110T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 754.38 MM HG(29.70 IN HG)
RELATIVE HUMIDITY 15. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
CO2 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
9 C02 CONCENTRATION PCT
»-> NOX CONCENTRATION PPM
^ FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
CO2 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6110TJ
BAROMETER MM HG 754.4
HUMIDITY G/KG 2.6
TEMPERATURE DEG C 23.3
VEHICLE NO.61
DATE 12/18/81
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
DRY BULB TEMP.
ABS. HUMIDITY
23.3 DEG C(74.0 DEG F)
2.6 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 27040. KMM6802. MILES)
NOX HUMIDITY CORRECTION FACTOR .79
1
OLD TRANSIENT
716.3 (28.2)
589.3 (23.2)
30.6 ( 87.0)
13819.
138.7 ( 4899.)
11.4/11/ 11.
5.1/ 1/ 5.
34.5/13/ 32.
8.2/13/ 7.
43. 3/ 3/ .74
3. I/ 3/ .05
24. 6/ 2/ 25.
.4/ 2/ 0.
18.02
7.
24.
.69
24.2
.166 (85.)
.52
3.93
1764.5
5.07
.12
.09
.67
300.1
.86
11.21
504.
5.88
.988 .990
.961( .
2
STABILIZED
716.3 (28.2)
589.3 (23.2)
31.1 ( 88.0)
23806.
238.7 ( 8428.)
7.2/11/ 7.
4.7/ I/ 5.
21.1/13/ 19.
6.8/13/ 6.
24. O/ 3/ .39
3. I/ 3/ .05
14. O/ 2/ 14.
.2/ 2/ 0.
34.11
3.
13.
.34
13.8
.139 (74.)
.37
3.63
1504.0
4.97
.12
.06
.57
238.0
.79
8.89
868.
6.32
.992
957)
377. 4/ 80.86
12.20
10.01
CARBON
3
HOT TRANSIENT
716.3 (28.2)
589.3 (23.2)
34.4 ( 94.0)
13834.
137.7 ( 4861.)
8.8/11/ 9.
4.7/ 1/ 5.
26.5/13/ 24.
5.2/13/ 5.
37. I/ 3/ .62
2.9/ 3/ .04
24. O/ 2/ 24.
.I/ 2/ 0.
21.36
4.
19.
.58
23.9
.208 (88.)
.34
3.11
1466.7
4.97
.15
.06
.53
251.3
.85
9.38
504.
5.84
.990 .991
4
STABILIZED
716.3 (28.2)
589.3 (23.2)
32.2 ( 90.0)
23813.
238.1 ( 8407.)
7.1/11/ 7.
4.3/ I/ 4.
19.0/13/ 17.
4.9/13/ 4.
23. 2/ 3/ .38
1.9/ 3/ .03
14. I/ 2/ 14.
,2/ 2/ 0.
35.37
3.
13.
.35
13.9
.140 (80.)
.40
3.55
1517.9
5.00
.11
.06
.57
242.1
.80
9.05
868.
6.27
.992
.965( .960)
375. 8/ 80
12.11
9.21
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.87
3-BAG (4-BAG)
254.5 ( 255.8)
9.51 ( 9.55)
.06 ( .07)
.58 ( .58)
.82 { .82)
.021 ( .021)
-------
FTP
- VEHICLE EMISSIONS RESULTS -16000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6110T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LO83. CID) L-5
TRANSMISSION A3
BAROMETER 735.08 MM HG(28.94 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
-------
FTP - VEHICLE EMISSIONS RESULTS -24000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6115-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 735.84 MM H6(28.97 IN HG)
RELATIVE HUMIDITY 52. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %1
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICIPATE MASS GRAMS
-------
FTP
- VEHICLE EMISSIONS RESULTS -24000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6115-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 738.12 MM HG(29.06 IN HG)
RELATIVE HUMIDITY 57. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20ON. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
-------
FTP - VEHICLE EMISSIONS RESULTS -24000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6115T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CIO) L-5
TRANSMISSION A3
BAROMETER 736.35 MM HG(28.99 IN HG)
RELATIVE HUMIDITY 65. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
V C02 CONCENTRATION PCT
£ NOX CONCENTRATION PPM
^ FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6115T2
BAROMETER MM HG 736.3
HUMIDITY G/KG 11.8
TEMPERATURE DEG C 22.8
VEHICLE NO.61
DATE 1/19/82
BAG CART NO. I/ CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 22.8 DEG C(73.0 DEG F)
ABS. HUMIDITY 11.8 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 35628. KM(22138. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.04
1
:OLD TRANSIENT
711 .2 (28.0)
584.2 (23.0)
35.6 ( 96.0)
13862.
134.1 ( 4734.)
13.3/11/ 13.
7.2/ I/ 7.
30.4/13/ 28.
2.6/13/ 2.
43. 7/ 3/ .75
3. I/ 3/ .05
22. 6/ 2/ 23.
.3/ 2/ 0.
17.84
6.
25.
.70
22.3
.170 (79.)
.50
3.87
1723.6
5.92
.13
.09
.67
297.2
1 .02
11.10
505.
5.80
.972 .974
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
36.7 ( 98.0)
23789.
229.7 ( 8111 .)
8.9/11/ 9.
6.6/ I/ 7.
19.4/13/ 18.
2.6/13/ 2.
25. 1/ 3/ .41
3.3/ 3/ .05
12. 8/ 2/ 13.
.3/ 2/ 0.
32.53
2.
15.
.36
12.5
.119 (66.)
.33
3.99
1515.4
5.69
.10
.05
.64
242.4
.91
9.06
867.
6.25
.975
.960( .940)
363. 8/ 77
12.05
10.04
.31
3
HOT TRANSIENT
711 .2 (28.0)
584.2 (23.0)
39.4 (103.0)
13852.
133.0 ( 4697.)
10.7/11/ 11.
7.3/ I/ 7.
24.3/13/ 22.
2.1/13/ 2.
37. 5/ 3/ .63
2.7/ 3/ .04
22. I/ 2/ 22.
.2/ 2/ 0.
21.11
4.
20.
.59
21.9
.106 (70.)
.29
3.05
1442.1
5.77
.09
.05
.52
247.9
.99
9.26
505.
5.82
.973 .974
4
STABILIZED
711 .2 (28.0)
584.2 (23.0)
37.8 (100.0)
23785.
229.3 ( 8097.
9.2/11/ 9.
7.3/ 1/ 7.
18.1/13/ 16.
2.0/13/ 2.
24. 7/ 3/ .40
3. I/ 3/ .05
13. 4/ 2/ 13.
.3/ 2/ 0.
33.10
2.
14.
.36
13.1
.120 (71.)
.28
3.81
1496.1
5.95
.10
.05
.61
239.8
.95
8.96
867.
6.24
.975
)
.963( .943)
362. 3/ 77
12.06
9.10
.23
3-BAG (4-BAG)
CARBON
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
255.2 ( 254.5)
9.54 (
.06 (
.61 (
.96 (
.017 (
9.51 )
.06)
.60)
.97)
.017)
-------
FTP
- VEHICLE EMISSIONS RESULTS -24000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6115T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 737.11 MM HG(29.02 IN HG)
RELATIVE HUMIDITY 41. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
_, HC CONCENTRATION PPM
I CO CONCENTRATION PPM
i- C02 CONCENTRATION PCT
^ NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, ?)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6115T1
BAROMETER MM HG 737.1
HUMIDITY G/KG 6.5
TEMPERATURE DEG C 21.1
VEHICLE NO.61
DATE 1/18/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 21.1 DEG C(70.0 DEG F)
ABS. HUMIDITY 6.5 GM/KG
1
COLD TRANSIENT
711 .2 (28.0)
584.2 (23.0)
36.1 ( 97.0)
13839.
133.6 ( 4718.)
11.0/11/ 11.
5.5/ I/ 6.
30.7/13/ 28.
1 .2/13/ 1 .
45.6/ 3/ .78
2.7/ 3/ .04
24.5/ 2/ 25.
.3/ 2/ 0.
17.03
6.
26.
.74
24.2
.467 (89.)
.45
4.11
1820.3
5.44
.32
.08
.72
316.5
.95
11.82
504.
5.75
.980 .982
.959( .
364.O/ 77.97
12.00
10.54
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 35472. KM(22041. MILES)
NOX HUMIDITY CORRECTION FACTOR .88
2
STABILIZED
711 .2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
23789.
230.4 ( 8135.)
6. 5/1 I/ 6.
5.0/ 1/ 5.
16.6/13/ 15.
.1/13/ 0.
25. 2/ 3/ .41
2.7/ 3/ .04
14. 7/ 2/ 15.
.3/ 2/ 0.
32.43
2.
15.
.37
14.4
.300 (77.)
.22
3.93
1565.1
5.58
.24
.03
.63
250.5
.89
9.36
867.
6.25
.983
3
HOT TRANSIENT
711 .2 (28.0)
584.2 (23.0)
36.7 ( 98.0)
13850.
133.6 ( 4718.)
9.2/11/ 9.
5.0/ I/ 5.
30.9/13/ 28.
8.4/13/ 8.
38. 7/ 3/ .65
2.7/ 3/ .04
23. 1/ 2/ 23.
.3/ 2/ 0.
20.39
4.
21.
.61
22.8
.343 (90.)
.34
3.20
1502.9
5.13
.23
.06
.55
259.6
.89
9.69
505.
5.79
.981 .982
4
STABILIZED
711 .2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23781 .
230.0 ( 8122.)
7.2/11/ 7.
4.9/ 1/ 5.
21.3/13/ 19.
6.6/13/ 6.
24. 9/ 3/ .41
2.5/ 3/ .04
14. O/ 2/ 14.
.5/ 2/ 1 .
32.81
2.
13.
.37
13.5
.267 (86.)
.33
3.56
1553.1
5.23
.19
.05
.57
248.7
.84
9.29
867.
6.25
.983
6) .963( .950)
97
CARBON
363. 6/ 77
12.03
9.48
DIOXIDE G/KM
FUEL CONSUMPTION L/1 OOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.68
3-BAG (4-BAG)
266.6 ( 266.0)
9.96 ( 9.94)
.05 ( .06)
.63 ( .61)
.90 ( .89)
.042 ( .040)
-------
FTP - VEHICLE EMISSIONS RESULTS -32000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6120-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
IN HG)
BAROMETER 748.03 MM HG(29.45
RELATIVE HUMIDITY 19. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU . METRES
-------
FTP
- VEHICLE EMISSIONS RESULTS -32000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6120-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LC183. CID) L-5
TRANSMISSION A3
BAROMETER 749.05 MM HG(29.49 IN HG)
RELATIVE HUMIDITY 30. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(LN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. CCDEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
O C02 CONCENTRATION PCT
M NOX CONCENTRATION PPM
^ FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS 'GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6120-2
BAROMETER MM HG 749.0
HUMIDITY G/KG 5.9
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 2/11/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 5.9 GM/KG
1
COLD TRANSIENT
711.2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
13854.
136.9 ( 4832.)
13.0/11/ 13.
4.6/ 1/ 5.
28.8/13/ 26.
1.8/13/ 2.
44.2/ 3/ .76
2.6/ 3/ .04
25.9/ 2/ 26.
1.0/ 2/ 1 .
17.62
9.
24.
.72
25.0
2.675 (99.)
.68
3.87
1801.4
5.64
1 .69
.12
.67
311 .1
.97
11.62
505.
5.79
.983 .985
.960( .
372.5/ 79.27
12.24
10.31
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 44186. KM(27456. MILES)
NOX HUMIDITY CORRECTION FACTOR .86
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
33.9 ( 93.0)
23832.
235.7 ( 8322.)
8.2/11/ 8.
5.0/ I/ 5.
17.1/13/ 16.
1.9/13/ 2.
25. 0/ 3/ .41
2.9/ 3/ .04
15. 1/ 2/ 15.
.9/ 2/ 1 .
32.69
3.
14.
.36
14.2
2.235 (98.)
.45
3.74
1573.2
5.54
1.41
.07
.58
244.1
.86
9.12
868.
6.45
.987
1 )
27
CARBON
3
HOT TRANSIENT
711 .2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
13829.
136.6 ( 4824.)
9.0/11/ 9.
5.0/ I/ 5.
22.8/13/ 21.
1.9/13/ 2.
38. O/ 3/ .64
2.7/ 3/ .04
24. 9/ 2/ 25.
.6/ 2/ 1 .
20.82
4.
19.
.60
24.3
2.427 (99.)
.33
2.98
1504.2
5.49
1 .52
.06
.51
256.7
.94
9.59
504.
5.86
4
STABILIZED
711.2 (28.0)
584.2 (23.0)
33.3 ( 92.0)
23849.
236.1 ( 8337.)
8.3/11/ 8.
6.1/ I/ 6.
16.8/13/ 15.
1.9/13/ 2.
24. 2/ 3/ .39
2.6/ 3/ .04
14. 1/ 2/ 14.
.5/ 2/ 1 .
33.84
2.
13.
.36
13.6
2.190 (98.)
.33
3.67
1535.2
5.31
1.41
.05
.58
243.4
.84
9.09
869.
6.31
.984 .986 .987
.964(
372. 7/
12.
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.954)
79.22
17
33
3-BAG (4-BAG)
261.2 ( 261.0)
9.76 ( 9.75)
.08 ( .07)
.58 ( .58)
.90 ( .90)
.245 ( .246)
-------
FTP - VEHICLE EMISSIONS RESULTS -32000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6120T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L<183. CID) L-5
TRANSMISSION A3
BAROMETER 741.93 MM HGC29.21 IN HG)
RELATIVE HUMIDITY 16. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
NJ
O
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTtCULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6120T1
BAROMETER MM HG 741 .9
HUMIDITY G/KG 2.7
TEMPERATURE DEG C 22.2
VEHICLE NO.61
DATE 2/ 8/82
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
KG( 4000. LBS)
9.7 KW( 13.0 HP)
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 43979. KM(27327. MILES)
DRY BULB TEMP.
ABS. HUMIDITY
1
COLD TRANSIENT
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
13857.
135.7 ( 4793.)
15.4/11/ 15.
9.4/ I/ 9.
28.7/13/ 26.
2.5/13/ 2.
43.8/ 3/ .75
3.0/ 3/ .05
25.2/ 2/ 25.
.4/ 2/ 0.
17.80
7.
24.
.71
24.8
.192 (85.)
.51
3.75
1753.5
5.10
.13
.09
.64
301 .3
.88
11.25
505.
5.82
.988
22.2 DEG C(72.0 DEG F)
2.7 GM/KG
NOX HUMIDITY CORRECTION FACTOR .79
.990
.960( .955)
369.2/ 79.36
12.13
10.13
2
STABILIZED
711 .2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
23804.
233.4 ( 8243.)
11.4/11/ 11.
8.1/ I/ 8.
17.5/13/ 16.
2.3/13/ 2.
24. 6/ 3/ .40
2.8/ 3/ .04
15. I/ 2/ 15.
.4/ 2/ 0.
33.22
4.
14.
.36
14.7
.152 (79.)
.48
3.72
1534.8
5.20
.11
.08
.59
243.2
.82
9.09
867.
6.31
.991
3
HOT TRANSIENT
711.2 (28.0)
584.2 (23.0)
36.1 ( 97.0)
13856.
135.5 ( 4784.)
11.7/11/ 12.
8. 1/ 1/ 8.
22.3/13/ 20.
1.7/13/ 2.
36. 5/ 3/ .61
2.5/ 3/ .04
24. O/ 2/ 24.
.7/ 2/ 1 .
21 .74
4.
19.
.58
23.3
.170 (72.)
.31
2.92
1430.5
4.78
.14
.05
.50
244.0
.82
9.11
505.
5.86
.989 .991
4
STABILIZED
711 .2 (28.0)
584.2 (23.0)
36.1 ( 97.0)
23834.
233.1 ( 8229.)
10.5/11/ 10.
9.5/ 1/ 10.
18.2/13/ 17.
3.5/13/ 3.
23. 8/ 3/ .39
2.5/ 3/ .04
14. 9/ 2/ 15.
.4/ 2/ 0.
34.41
1 .
13.
.35
14.5
.125 (74.)
.17
3.60
1492.1
5.12
.10
.03
.57
236.4
.81
8.83
868.
6.31
.991
*5) ,965( .960)
36
CARBON
368. 5/ 79
12.17
8.97
DIOXIDE G/KM
FUEL CONSUMPTION L/1 OOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.36
3-BAG (4-BAG)
255.4 ( 253.4)
9.54 ( 9.47)
.07 ( .06)
.58 ( .57)
.83 ( .83)
.021 < .020)
-------
FTP
- VEHICLE EMISSIONS RESULTS -32000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6120T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CLD) L-5
TRANSMISSION A3
BAROMETER 748.79 MM HG(29.48 IN HG)
RELATIVE HUMIDITY 24. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DLF P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
I C02 CONCENTRATION PCT
£ NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, ?)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6120T2
BAROMETER MM HG 748.8
HUMIDITY G/KG 3.9
TEMPERATURE DEG C 21.7
VEHICLE NO.61
DATE 2/ 9/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 21.7 DEG C(71.0 DEG F)
ABS. HUMIDITY 3.9 GM/KG
1
OLD TRANSIENT
711 .2 (28.0)
584.2 (23.0)
29.4 ( 85.0)
13837.
138.4 ( 4888.)
14.7/11/ 15.
7.5/ 1/ 8.
27.9/13/ 26.
.8/13/ 1.
43. O/ 3/ .73
2.7/ 3/ .04
25. 1/ 2/ 25.
.I/ 2/ 0.
18.16
8.
24.
.69
25.0
.267 (86.)
.61
3.92
1761 .1
5.41
.19
.1 1
.68
303.2
.93
11.33
504.
5.81
.985 .987
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
30.6 ( 87.0)
23815.
237.5 ( 8387.)
7.1/11/ 7.
4.0/ I/ 4.
15.1/13/ 14.
.5/13/ 0.
24. 1/ 3/ .39
2.2/ 3/ .03
15. 1/ 2/ 15.
.1/ 2/ 0.
34.01
3.
13.
.36
15.0
.152 (77.)
.44
3.61
1562.8
5.57
.12
.07
.58
252.2
.90
9.42
868.
6.20
.989
.961< .954)
376. O/ 79
12.00
10.35
.43
TEST WEIGHT 1814. KG( 4000. IBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 44086. KM(27394. MILES)
NOX HUMIDITY CORRECTION FACTOR .82
HOT TRANSIENT
711 .2 (28.0)
584.2 (23.0)
35.6 ( 96.0)
13876.
136.9 ( 4834.)
7.9/11/ 8.
4.0/ 1/ 4.
21.2/13/ 19.
.1/13/ 0.
36.9/ 3/ .62
2.5/ 3/ .04
25.6/ 2/ 26.
.5/ 2/ 1.
21 .50
4.
19.
.58
25.1
.248 (83.)
.32
3.00
1464.0
5.37
.19
.05
.51
249.5
.92
9.32
506.
5.87
.987 .988
.965( .958)
372.I/ 79.42
12.14
9.04
STABILIZED
711 .2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23811.
235.1 ( 8303.)
6
4
13
23
2
15
.7/11/
.4/ 1/
.9/13/
.1/13/
.2/ 3/
.3/ 3/
.1/ 2/
.4/ 2/
35.42
2.
12.
.34
14.7
.270 (86
.32
3.37
1473.5
5.40
.20
.05
.54
235.1
.86
8.78
867.
6.27
.989
7.
4.
13.
0.
.38
.04
15.
0.
.)
CARBON DIOXIDE
FUEL CONSUMPTION
HYDROCARBONS (THC)
CARBON MONOXIDE
OXIDES OF NITROGEN
PARTICULATES
G/KM
L/1 OOKM
G/KM
G/KM
G/KM
G/KM
3-BAG
262.1
9.79
.07
.58
.91
.026
(4-BAG)
( 257.0)
( 9.60)
( .07)
( .57)
( .90)
( .029)
-------
FTP - VEHICLE EMISSIONS RESULTS -40000 KM W/OUT TRAP
PROJECT 05-5810-001
TEST NO. 6125-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 734.31 MM HG(28.91 IN HG)
RELATIVE HUMIDITY 48. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20CIN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6125-1
BAROMETER MM HG 734.3
HUMIDITY G/KG 9.2
TEMPERATURE DEG C 23.9
O
to
to
VEHICLE NO.61
DATE 3/ 3/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 23.9 DEG C(75.0 DEG F)
ABS. HUMIDITY 9.2 GM/KG
1
COLD TRANSIENT
711.2 (28.0)
584.2 (23.0)
35.6 ( 96.0)
13859.
133.8 ( 4723.)
17.1/11/ 17.
8.0/ I/ 8.
27.4/13/ 25.
.7/13/ 1.
44.9/ 3/ .77
2.9/ 3/ .04
24.4/ 2/ 24.
.5/ 2/ 1.
17.32
10.
24.
.73
23.9
3.152 (99.)
.74
3.70
1782.6
5.83
1.95
.13
.63
303.7
.99
11.35
505.
5.87
.977
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 52608. KM(32689. MILES)
NOX HUMIDITY CORRECTION FACTOR .95
.979
.959( .
363.8/ 77.56
12.18
10.27
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
35.6 ( 96.0)
23826.
230.0 ( 8121.)
11.0/11/ 11.
7.2/ 1/ 7.
15.0/13/ 14.
.1/13/ 0.
25. 4/ 3/ .41
2.9/ 3/ .04
13. 9/ 2/ 14.
.5/ 2/ 1.
32.14
4.
13.
.37
13.4
2.312 (98.)
.53
3.53
1564.7
5.62
1 .46
.08
.56
248.0
.89
9.27
868.
6.31
.981
3
HOT TRANSIENT
711.2 (28.0)
584.2 (23.0)
36.1 ( 97.0)
13840.
133.5 ( 4713.)
1 1.4/1 I/ 11.
7.2/ I/ 7.
20.5/13/ 19.
.1/13/ 0.
38. 2/ 3/ .64
3.0/ 3/ .05
22. 8/ 2/ 23.
.5/ 21 1.
20.70
5.
18.
.60
22.3
2.421 (99.)
.35
2.81
1467.8
5.43
1 .50
.06
.48
250.9
.93
9.37
504.
5.85
.979 .980
4
STABILIZED
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23832.
230.2 ( 8130.)
10.9/11/ 11.
5.8/ 1/ 6.
14.9/13/ 14.
.3/13/ 0.
24. 6/ 3/ .40
3.1/ 3/ .05
13. 4/ 2/ 13.
.5/ 2/ 1 .
33.25
5.
13.
.35
12.9
2.090 (98.)
.70
3.47
1494.8
5.42
1.33
.11
.55
235.7
.85
8.81
868.
6.34
.981
4) .963( .948)
56
CARBON
363. 7/ 77
12.19
9.08
DIOXIDE G/KM
FUEL CONSUMPTION L/1 OOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.53
3-BAG (4-BAG)
260.3 ( 256.7)
9.73 ( 9.59)
.09 ( .09)
.55 ( .55)
•92 ( .91)
•259 ( .253)
-------
FTP - VEHICLE EMISSIONS RESULTS -40000 KM W/OUT TRAP
PROJECT 05-5810-001
TEST NO. 6125-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 732.79 MM HG(28.85 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. CCDEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %1
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6125-2
BAROMETER MM HG 732.8
HUMIDITY G/KG 10.9
TEMPERATURE DEG C 25.0
cn
I
to
VEHICLE NO.61
DATE 3/ 4/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 10.9 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 38111. KM(23681. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
STABILIZED
711 .2 (28.0)
584.2 (23.0)
36.1 ( 97.0)
13872.
133.4 ( 4710.)
15.6/11/ 16.
7.6/ 1/ 8.
28.8/13/ 26.
1.2/13/ 1.
44. 5/ 3/ .76
2.6/ 3/ .04
24. I/ 2/ 24.
.7/ 2/ 1 .
17.49
8.
25.
.72
23.4
2.598 (98.)
.65
3.82
1769.6
6.01
1 .58
.1 1
.66
307.5
1 .04
1 1.49
505.
5.76
.976 .978
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23821 .
229.5 ( 8103.)
1 1 .0/1 I/ 11.
6.5/ I/ 7.
17.5/13/ 16.
1.0/13/ 1.
26. O/ 3/ .43
2.7/ 3/ .04
14. 8/ 2/ 15.
.6/ 2/ 1 .
31 .33
5.
15.
.39
14.2
2.292 (99.)
.63
3.91
1618.0
6.27
1 .44
.10
.63
259.1
1.00
9.69
868.
6.24
.979
711 .2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
13856.
133.5 ( 4713.)
1 1.4/1 1/ 11.
6.5/ I/ 7.
22.8/13/ 21.
1 .0/137 1.
37.77 3/ .64
2.3/ 3/ .04
23. 2/ 2/ 23.
.87 2/ 1.
20.99
5.
19.
.60
22.4
2.399 (99.)
.40
3.01
1470.4
5.75
1 .50
.07
.53
256.8
1 .00
9.59
505.
5.73
.977 .978
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23817.
229.4 ( 8102.)
10.3/117 10.
6.67 17 7.
17.8/13/ 16.
2.2/13/ 2.
24. 4/ 37 .40
2.67 37 .04
13.97 27 14.
.87 27 1 .
33.52
4.
14.
.36
13.1
2.200 (98.)
.52
3.71
1506.4
5.79
1.39
.08
.60
244.3
.94
9.13
868.
6.17
.979
.959( .942)
362.97 77.21
12.00
10.55
.964( .947)
362.97 77.15
11 .89
9.35
CARBON DIOXIDE
FUEL CONSUMPTION
HYDROCARBONS (THC)
CARBON MONOXIDE
OXIDES OF NITROGEN
PARTICULATES
G/KM
L/1 OOKM
G/KM
G/KM
G/KM
G/KM
3-BAG
268.5
10.03
.09
.61
1 .01
.248
(4-BAG)
( 264.1 )
( 9.87)
( .09)
( .60)
( .99)
( .247)
-------
FTP - VEHICLE EMISSIONS RESULTS -40000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6125T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CIO) L-5
TRANSMISSION A3
BAROMETER 744.47 MM HGC29.31 IN HG)
RELATIVE HUMIDITY 33. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20CIN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
0 CO CONCENTRATION PPM
I C02 CONCENTRATION PCT
£ NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6125T2
BAROMETER MM HG 744.5
HUMIDITY G/KG 6.6
TEMPERATURE DEC C 25.0
VEHICLE NO.61
DATE 3/ 2/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 6.6 GM/KG
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 52521. KM(32635
KG( 4000. LBS)
9.7 KW( 13.0 HP)
MILES)
NOX HUMIDITY CORRECTION FACTOR .88
1
:OLD TRANSIENT
711.2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
13840.
135.9 ( 4799.
12.8/11/ 13.
5.3/ I/ 5.
30.3/13/ 28.
1.5/13/ 1.
44. 7/ 3/ .77
2.9/ 3/ .04
23. 7/ 2/ 24.
.7/ 2/ 1 .
17.41
8.
26.
.72
23.0
.496 (88.)
.62
4.10
1801 .6
5.28
.35
.11
.70
308.1
.90
11.51
504.
5.85
.982
2
STABILIZED
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
23805.
) 233.5 ( 8246.)
7.7/11/ 8.
5.5/ I/ 6.
17.2/13/ 16.
1.5/13/ 1.
25. 3/ 3/ .41
2.7/ 3/ .04
14. 6/ 2/ 15.
.6/ 2/ 1 .
32.28
2.
14.
.37
14.0
.283 (87.)
.32
3.82
1594.0
5.52
.20
.05
.60
252.0
.87
9.42
868.
6.32
.984 .986
.959( .949)
369
.4/ 78.81
12.17
10.42
CARBON
3
HOT TRANSIENT
711 .2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
13840.
135.7 ( 4793.)
8.8/11/ 9.
5.5/ 1/ 6.
22.7/13/ 21.
1.5/13/ 1.
38. 0/ 3/ .64
2.9/ 3/ .04
23. O/ 2/ 23.
.6/ 2/ 1 .
20.82
4.
19.
.60
22.4
.324 (86.)
.28
3.00
1487.3
5.13
.24
.05
.51
255.0
.88
9.52
504.
5.83
4
STABILIZED
711.2 (28.0)
584.2 (23.0)
35.6 ( 96.0)
23815.
233.4 ( 8240.)
8.0/11/ 8.
7.2/ I/ 7.
16.2/13/ 15.
1.4/13/ 1.
24. 1/ 3/ .39
2.9/ 3/ .04
13. 6/ 2/ 14.
.6/ 2/ 1 .
33.99
1 .
13.
.35
13.0
.220 (85.)
.14
3.59
1490.8
5.12
.16
.02
.57
237.1
.81
8.85
868.
6.29
.983 .985 .986
.964(
369. I/
12.1
9.1
DIOXIDE G/KM
FUEL CONSUMPTION L/1 OOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.954)
78.76
2
8
3-BAG (4-BAG)
264.4 ( 260.0)
9.88 ( 9.71)
.06 ( .05)
.60 ( .59)
.88 ( .86)
.040 ( .038)
-------
TEST NO. 6125T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 752.35 MM HG(29.62 IN HG)
RELATIVE HUMIDITY 32. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, jO
HC MASS GRAMS
FTP - VEHICLE EMISSIONS RESULTS -40000 KM
PROJECT 05-5810-001
VEHICLE NO.61
DATE 3/ 1/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 24.4 DEG C(76.0 DEG F)
ABS. HUMIDITY 6.1 GM/KG
WITH TRAP
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 52341. KMC32523. MILES)
NOX HUMIDITY CORRECTION FACTOR .87
CD
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
STABILIZED
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6125T1
BAROMETER MM HG 752.3
HUMIDITY G/KG 6.1
TEMPERATURE DEG C 24.4
711 .2 (28.0)
584.2 (23.0)
33.9 ( 93.0)
13845.
137.8 ( 4867.)
12.2/11/ 12.
8.4/ I/ 8.
33.0/13/ 30.
6.5/13/ 6.
44. 4/ 3/ .76
3.2/ 3/ .05
25. 0/ 2/ 25.
.9/ 2/ 1 .
17.53
4.
24.
.71
24.2
.251 (88.)
.34
3.88
1801 .7
5.53
.18
.06
.66
305.5
.94
1 1.41
711 .2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
23808.
236.8 ( 8360.)
8.5/11/ 9.
6.5/ 1/ 7.
20.3/13/ 18.
5.6/13/ 5.
24. 5/ 3/ .40
3. 1/ 3/ .05
14. 4/ 2/ 14.
.8/ 2/ 1.
33.37
2.
13.
.35
13.6
.163 (78.)
.30
3.67
1529.7
5.36
.13
.05
.58
243.5
.85
9.10
711.2 (28.0)
584.2 (23.0)
35.0 ( 95.0)
13838.
137.5 ( 4854.)
10.6/11/ 11.
6.5/ I/ 7.
25.0/13/ 23.
4.6/13/ 4.
37. 1/ 3/ .62
3. 1/ 3/ .05
23. 2/ 2/ 23.
.8/ 2/ 1 .
21 .36
4.
18.
.58
22.4
.200 (86.)
.35
2.95
1457.0
5.12
.15
.06
.50
249.3
.88
9.31
711.2 (28.0)
584.2 (23.0)
34.4 ( 94.0)
23823.
236.9 ( 8365.)
11.2/11/ 11.
9.7/ 1/ 10.
18.1/13/ 16.
3.8/13/ 3.
23. 5/ 3/ .38
3.2/ 3/ .05
13. 5/ 2/ 14.
.7/ 2/ 1 .
34.87
2.
13.
.33
12.8
.148 (76.)
.24
3.55
1448.5
5.05
.12
.04
.56
230.1
.80
8.60
505. 868.
5.90 6.28
.983 .985 .986
.960( .950)
374.6/ 80.21
12.18
10.22
504. 868.
5.85 6.30
.984 .985 .986
.965( .955)
374.4/ 80.23
12.14
8.94
CARBON DIOXIDE
FUEL CONSUMPTION
HYDROCARBONS (THC)
CARBON MONOXIDE
OXIDES OF NITROGEN
PARTICULATES
G/KM
L/100KM
G/KM
G/KM
G/KM
G/KM
3-BAG
258.0
9.64
.05
.58
.88
.024
(4-BAG)
( 254.0)
( 9.49)
( .05)
( .57)
( .86)
( .024)
-------
FTP - VEHICLE EMISSIONS RESULTS -48000 KM W/0 TRAP
PROJECT 05-5810-OOt
TEST NO. 6130-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LC183. CID) L-5
TRANSMISSION A3
BAROMETER 748.28 MM H6(29.46 IN H6)
RELATIVE HUMIDITY 25. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER OIF P MM. H20UN. H20)
BLOWER INLET P MM. H20CIN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
ro
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTI CULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/IOOKM
COMPOSITE RESULTS
TEST NUMBER 6130-1
BAROMETER MM HG 748.3
HUMIDITY G/KG 4.2
TEMPERATURE DEG C 22.2
VEHICLE NO.61
DATE 3/26/82
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 60511. KM(37600. MILES)
DRY BULB TEMP.
ABS. HUMIDITY
22.2 DEG C(72.0 DEG F)
4.2 GM/KG
NOX HUMIDITY CORRECTION FACTOR
.82
1
IOLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
13880.
136.4 ( 4816.)
13.8/11/ 14.
5.3/ I/ 5.
30.0/13/ 28.
1.2/13/ 1.
40. 7/ 3/ .69
2.9/ 3/ .04
24. I/ 2/ 24.
.7/ 2/ 1.
19.29
9.
26.
.65
23.4
2.777 (98.)
.69
4.12
1620.0
5.04
1.74
.12
.72
283.9
.88
10.62
505.
5.71
.986
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
30.0 ( 86.0)
23813.
236.7 ( 8359.)
8.8/11/ 9.
5.0/ I/ 5.
16.4/13/ 15.
1.3/13/ 1.
24. 3/ 3/ .40
2.9/ 3/ .04
15. t/ 2/ 15.
.9/ 2/ 1.
33.69
4.
14.
.35
14.2
2.502 (95.)
.53
3.73
1527.3
5.31
1.56
.09
.61
250.7
.87
9.37
868.
6.09
.987 .988
.962( .954)
373.
1
I/ 78.10
1.80
9.97
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
13877.
136.7 ( 4827.)
9.5/lt/ 10.
5.0/ I/ 5.
22.4/13/ 20.
1.6/13/ 1.
34. 7/ 3/ .58
2.8/ 3/ .04
23. 4/ 2/ 23.
1.0/ 2/ 1.
22.98
5.
19.
.54
22.4
2.284 (99.)
.37
2.97
1349.8
4.83
1.42
.07
.52
236.3
.85
8.83
505.
5.71
.987 .988
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
32.8 ( 91.0)
23874.
235.4 ( 8310.:
8. 3/1 I/ 8.
5.4/ I/ 5.
15.9/13/ 14.
1.6/13/ 1.
23. 9/ 3/ .39
2.8/ 3/ .04
14. 9/ 2/ 15.
1.0/ 2/ 1 .
34.29
3.
13.
.35
13.9
2.354 (97.)
.41
3.51
1494.9
5.17
1 .47
.07
.57
244.6
.85
9.14
862.
6.11
.988
)
.966( .958)
372. I/ 78
11.82
8.99
.23
3-BAG U-BAG)
CARBON
DIOXIDE G/KM
FUEL CONSUMPTION L/IOOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
253.6 ( 251.8)
9.48 (
.09 (
.61 (
.87 (
.265 (
9.41)
.08)
.60)
.86)
.260)
-------
FTP - VEHICLE EMISSIONS RESULTS -48000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6130-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LC183. CID) L-5
TRANSMISSION A3
BAROMETER 742.44 MM HG(29.23 IN HG)
RELATIVE HUMIDITY 64. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20CIN. H20)
BLOWER INLET P MM. H20CIN. H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
NJ
--J
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6130-2
BAROMETER MM HG 742.4
HUMIDITY G/KG 10.3
TEMPERATURE DEG C 21.1
VEHICLE NO.61
DATE 3/29/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 21.1 DEG C(70.0 DEG F)
ABS. HUMIDITY 10.3 GM/KG
KG( 4000. LBS)
9.7 KW( 13.0 HP)
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 60865. KM(37820. MILES)
NOX HUMIDITY CORRECTION FACTOR .99
1
:OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13866.
135.0 ( 4766.)
14.5/11/ 15.
5.5/ I/ 6.
29.4/13/ 27.
1.1/13/ 1.
43. 5/ 3/ .74
2.8/ 3/ .04
23. 4/ 2/ 23.
.8/ 2/ 1.
17.93
9.
25.
.70
22.6
3.168 (98.)
.73
3.95
1736.9
5.76
1.93
.13
.69
303.4
1 .01
1 1.34
505.
5.72
.972 .974
.960( .
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23807.
232.8 ( 8220.)
9.3/11/ 9.
5.2/ I/ 5.
16.6/13/ 15.
.8/13/ 1.
25. 6/ 3/ .42
2.8/ 3/ .04
14. O/ 2/ 14.
.8/ 2/ 1.
31 .87
4.
14.
.38
13.2
2.612 (97.)
.58
3.78
1605.1
5.80
1.63
.09
.61
260.5
.94
9.74
870.
6.16
.975
940)
367. 8/ 77.46
1 1.89
10.51
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
13865.
135.4 ( 4780.)
10.4/11/ 10.
5.2/ I/ 5.
22.3/13/ 20.
1.0/13/ 1.
36. 6/ 3/ .61
2.5/ 3/ .04
22. 2/ 2/ 22.
1.5/ 2/ 2.
21.68
5.
19.
.58
20.8
2.735 (98.)
.42
2.97
1433.8
5.30
1 .65
.07
.51
248.4
.92
9.28
505.
5.77
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23745.
232.2 ( 8200.)
9.1/11/ 9.
6.6/ I/ 7.
16.3/13/ 15.
1.0/13/ 1.
24. 7/ 3/ .40
2.8/ 3/ .04
14. 5/ 2/ 15.
1.8/ 2/ 2.
33.11
3.
14.
.36
12.8
2.584 (98.)
.36
3.65
1534.3
5.58
1.55
.06
.59
248.9
.91
9.30
868.
6.16
•974 .975 .Q76
.964(
367. 6/
11.
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.944)
77.30
94
29
3-BAG (4-BAG)
266.1 (262.7)
9.94 ( 9.81)
.09 ( .08)
.60 ( .60)
.95 ( .94)
.285 ( .282)
-------
FTP - VEHICLE EMISSIONS RESULTS -48000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6130T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 733.55 MM HG(28.88 IN HG)
RELATIVE HUMIDITY 49. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
0 HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, ?)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6130T1
BAROMETER MM HG 733.6
HUMIDITY G/KG 10.1
TEMPERATURE DEC C 25.0
NJ
oo
VEHICLE NO.61
DATE 3/24/82
BAG CART NO. 1 /
DYNO NO. 2
CVS NO. 3
DRY BULB TEMP. 25.0 DEC C(77.0 DEG F)
ABS. HUMIDITY 10.1 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KWC 13.0 HP)
DIESEL EM-465-F
ODOMETER 60447. KMO7560. MILES)
NOX HUMIDITY CORRECTION FACTOR .98
1
:OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13877.
132.7 ( 4686.)
15.4/11/ 15.
7.9/ 1/ 8.
32.4/13/ 30.
2.3/13/ 2.
44. 8/ 3/ .77
3.0/ 3/ .05
24. 3/ 2/ 24.
1.9/ 2/ 2.
17.35
8.
27.
.72
22.5
.187 (69.)
.61
4.18
1760.4
5.60
.17
.11
.73
308.3
.98
1 1.52
505.
5.71
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23827.
229.2 ( 8094.)
11.9/11/ 12.
9.8/ t/ 10.
18.8/13/ 17.
2.3/13/ 2.
26. O/ 3/ .43
3.4/ 3/ .05
14. 8/ 2/ 15.
1.9/ 2/ 2.
31 .32
2.
15.
.37
13.0
.145 (58.)
.32
3.93
1572.2
5.57
.16
.05
.64
257.0
.91
9.60
868.
6.12
.977 .979 .980
.959(
362. O/
11.
10.
.943)
75.76
83
53
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
39.4 (103.0)
13864.
132.0 ( 4663.)
13.8/11/ 14.
9.8/ I/ 10.
28.5/13/ 26.
6.1/13/ 6.
38. 5/ 3/ .65
3.6/ 3/ .06
23. 3/ 2/ 23.
1.8/ 2/ 2.
20.49
5.
20.
.60
21 .6
.137 (76.)
.34
3.11
1444.4
5.35
.11
.06
.54
251.1
.93
9.38
505.
5.75
.978 .979
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23826.
228.7 ( 8076.)
11.9/11/ 12.
11. 4/ I/ 11.
22.2/13/ 20.
7.0/13/ 6.
25. 1/ 3/ .41
3.7/ 3/ .06
14. 2/ 2/ 14.
1.8/ 2/ 2.
32.48
1.
14.
.35
12.5
.130 (60.)
.12
3.66
1483.8
5.34
.14
.02
.59
241.1
.87
9.00
868.
6.16
.980
.963( .947)
360. 8/ 75
11.91
9.19
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.67
3-BAG (4-BAG)
266.0 ( 261.3)
9.94 ( 9.76)
.07 { .06)
•63 ( .62)
•93 ( .92)
.025 ( .074)
-------
FTP - VEHICLE EMISSIONS RESULTS -48000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6130T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 742.19 MM HG(29.22 IN HG)
RELATIVE HUMIDITY 35. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20CIN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. CCDEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, ?)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
0
RUN TIME
MEASURED DISTANCE
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) /
KM (MEASURED)
SECONDS
KM
SAM BLR (SCM)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6130T2
BAROMETER MM HG 742.2
HUMIDITY G/KG 7.9
TEMPERATURE DEG C 26.7
VEHICLE NO.61
DATE 3/25/82
BAG CART NO. I / CVS NO.
DYNO NO. 2
KG( 4000. LBS)
9.7 KW( 13.0 HP)
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 60688. KM(37710. MILES)
DRY BULB TEMP.
ABS. HUMIDITY
26.7 DEG C(80.0 DEG F)
7.9 GM/KG
NOX HUMIDITY CORRECTION FACTOR .91
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13884.
134.6 ( 4752.)
16.1/1I/ 16.
5.6/ I/ 6.
31.8/13/ 29.
.7/13/ 1.
44. O/ 3/ .75
2.7/ 3/ .04
23. 9/ 2/ 24.
.3/ 2/ 0.
17.70
1 1.
28.
.71
23.6
.208 (80.)
.84
4.38
1758.6
5.56
.16
.15
.76
306.6
.97
1 1.47
505.
5.74
.982 .984
.960( .9
367. 8/ 77
1 1.90
10.44
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
32.2 ( 90.0)
23833.
233.2 ( 8236.)
8.4/11/ 8.
6. I/ I/ 6.
16.6/13/ 15.
.9/I3/ 1.
25. I/ 3/ .41
2.9/ 3/ .04
14. 7/ 2/ 15.
.9/ 2/ 1.
32.55
3.
14.
.37
13.8
.141 (68.)
.34
3.80
1564.3
5.64
.13
.06
.62
253.9
.92
9.49
868.
6.16
.985
49)
.07
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13872.
134.4 ( 4747.)
9.8/11/ 10.
6. 1/ t/ 6.
22.7/13/ 21.
1.1/13/ 1.
37. 6/ 3/ .63
2.9/ 3/ .04
24. I/ 2/ 24.
.9/ 2/ 1.
21 .06
4.
19.
.59
23.2
.175 (81.)
.31
3.02
1454.9
5.47
.14
.05
.53
255.4
.96
9.54
505.
5.70
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23832.
232.4 ( 8205.)
8.4/11/ 8.
6.4/ I/ 6.
16.0/13/ 15.
.9/13/ 1.
24. 2/ 3/ .39
2.8/ 3/ .04
14. 3/ 2/ 14.
.9/ 2/ 1.
33.84
2.
13.
.35
13.4
.123 (64.)
.29
3.64
1498.2
5.46
.12
.05
.59
243.4
.89
9,. 10
868.
6.15
.983 .984 .985
.964(
366. 8/
It.
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTI CULATES G/KM
.953)
77.01
85
31
3-BAG (4-BAG)
265.2 { 262.1)
9.91 ( 9.79)
.07 ( .07)
.62 ( .62)
.94 ( .93)
.023 ( .027)
-------
TP - VEHICLE EMISSIONS RESULTS -56000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6135-1 RUN 1
VEHICLE MODEL 80 MERCEDES 3000
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 732.79 MM HGC28.85 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20ON. H20)
BLOWER INLET TEMP. DEG. CCDEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
O
Co
O
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6135-1
BAROMETER MM HG 732.8
HUMIDITY G/KG 11.3
TEMPERATURE DEG C 25.6
VEHICLE NO.61
DATE 4/16/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG CC78.0 DEG F)
ABS. HUMIDITY 11.3 GM/KG
TEST WEIGHT 1814
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 69036. KMU2897
KG( 4000. LBS)
9.7 KW( 13.0 HP)
MILES)
NOX HUMIDITY CORRECTION FACTOR 1.02
1
:OLD TRANSIENT
678.2 (26.7)
546.1 (21.5)
38.3 (101.0)
13831 .
132.8 ( 4688.)
17.0/11/ 17.
7.9/ I/ 8.
29.0/13/ 27.
.3/13/ 0.
44. 4/ 3/ .76
2.9/ 3/ .04
23. 1/ 2/ 23.
1.7/ 2/ 2.
17.53
10.
26.
.72
21.5
3.269 (99.)
.73
3.95
1746.1
5.57
1.99
.13
.68
300.5
.96
11.23
504.
5.81
.976 .978
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
34.4 ( 94.0)
23836.
229.9 ( 8118.)
11.8/11/ 12.
7.9/ 1/ 8.
15.7/13/ 14.
.1/13/ 0.
25. 7/ 3/ .42
3.2/ 3/ .05
13. 3/ 2/ 13.
1.1/ 2/ 1.
31.73
4.
14.
.37
12.2
2.575 (96.)
.55
3.69
1567.2
5.49
1 .55
.09
.59
251.4
.88
9.39
867.
6.23
.979
,959( .943)
362. 7/ 76
12.05
10.28
.35
CARBON
3
HOT TRANSIENT
683.3 (26.9)
556.3 (21.9)
36.1 ( 97.0)
13842.
133.1 ( 4701.)
13.1/11/ 13.
7.9/ 1/ 8.
22.7/13/ 21.
.1/13/ 0.
38. 9/ 3/ .66
3.3/ 3/ .05
22. 3/ 2/ 22.
.8/ 2/ 1 .
20.28
6.
20.
.61
21.5
2.418 (98.)
.43
3.10
1485.0
5.60
1 .49
.07
.54
257.3
.97
9.61
504.
5.77
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
34.4 ( 94.0)
23800.
229.5 ( 8103.)
11. 1/1 1/ 11.
7.2/ 1/ 7.
14.9/13/ 14.
.3/13/ 0.
24. 7/ 3/ .40
3.0/ 3/ .05
13. 4/ 2/ 13.
.7/ 2/ 1.
33.10
4.
13.
.36
12.7
2.323 (97.)
.54
3.45
1503.5
5.70
1.46
.09
.56
242.8
.92
9.07
867.
6.19
.977 .978 .979
.963(
362. 6/
11 .
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/1 OOKM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
.946)
76.24
96
33
3-BAG (4-BAG)
263.2 ( 260.7)
9.84 ( 9.74)
•09 ( .09)
•60 ( .58)
T) t ,-j-fl
PARTI CULATES
-------
FTP - VEHICLE EMISSIONS RESULTS -56000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6135-3 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 737.36 MM HG(29.03 IN HG)
RELATIVE HUMIDITY 66. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
002 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
002 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
o
u>
HC GRAMS/KM
CO GRAMS/KM
002 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6135-3
BAROMETER MM HG 737.4
HUMIDITY G/KG 12.2
TEMPERATURE DEC C 23.3
VEHICLE NO.61
DATE 4/20/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 23.3 DEC C(74.0 DEC F)
ABS. HUMIDITY 12.2 GM/KG
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 69116. KM(42947. MILES)
KG( 4000. LBS)
9.7 KW( 13.0 HP)
NOX HUMIDITY CORRECTION FACTOR 1.05
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
36.1 ( 97.0)
13859.
134.0 ( 4731.)
15.5/11/ 15.
4.7/ I/ 5.
30.5/13/ 28.
.8/13/ 1.
44.3/ 37 -76
2.9/ 37 .04
23.37 21 23.
•5/ 21 1.
17.57
11.
26.
.72
22.8
2.950 (99.)
.85
4.11
1757.6
6.16
1.81
.15
.71
303.0
1.06
11.33
505.
5.80
.972 .974
.960( .
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
23886.
231.1 ( 8161.)
9.4/11/ 9.
5.37 17 5.
16.8/13/ 15.
.8/13/ 1.
24. 8/ 3/ .40
3.2/ 3/ .05
13. O/ 2/ 13.
l.O/ 21 1.
32.96
4.
14.
.36
12.0
2.455 (98.)
.36
3.80
1509.0
5.60
1.49
.09
.61
241.5
.90
9.03
870.
6.25
.975
939)
365. I/ 77.41
12.05
10.14
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
13879 .
134.3 ( 4741.)
10.0/11/ 10.
5.3/ 11 5.
23.1/13/ 21.
.8/13/ 1.
37. 21 3/ .63
2.8/ 3/ .04
21. 6/ 21 22.
.11 21 1.
21.30
5.
20.
.59
20.9
2.445 (99.)
.38
3.08
1438.6
5.66
1.68
.07
.53
248.3
.98
9.27
505.
5.79
.973 .974
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
34.4 ( 94
23828.
.0)
231.0 ( 8155.)
8.7/11/ 9.
4.5/ I/ 5.
16.1/13/ 15.
•7/13/ 1.
23. 8/ 37
2.77 3/
.39
.04
12. 8/ 2 13.
.6/ 21
34.44
4.
14.
.35
12.2
2.280 (98
.57
3.65
1466.0
5.68
1.43
.09
.58
233.9
.91
8.74
867.
6.27
.975
1.
0
.964( .944)
365.27 77
12.06
9.00
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/lfM
.28
3-BAG
256.1
9.57
.10
.61
.95
" •; o
(4-BAG
253.8'
9.49'
.10'
.60'
.95
-------
FTP - VEHICLE EMISSIONS RESULTS -56000 KM W/TRAP
PROJECT 05-5810-001
TEST NO. 6135T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 733.30 MM HG(28.87 IN HG)
RELATIVE HUMIDITY 57. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20UN. H20)
BLOWER INLET P MM. H20ON. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
o
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6135T2
BAROMETER MM HG 733.3
HUMIDITY G/KG 12.6
TEMPERATURE DEG C 26.1
VEHICLE NO.61
DATE 4/15/82
BAG CART NO. 1 /
DYNO NO. 2
CVS NO. 3
DRY BULB TEMP. 26.1 DEG C(79.0 DEG F)
ABS. HUMIDITY 12.6 GM/KG
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13858.
132.7 ( 4684.)
12.6/11/ 13.
5.7/ 1/ 6.
31.2/13/ 29.
2.0/13/ 2.
45. 4/ 3/ .78
3.0/ 3/ .05
23. 5/ 2/ 24.
3.3/ 2/ 3.
17.11
7.
26.
.74
20.4
.259 (86.)
.56
4.03
1787.4
5.52
.18
.10
.70
308.7
.95
11.53
505.
5.79
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
36.1 ( 97.0)
23825.
228.6 ( 8070.)
7.7/11/ 8.
6.3/ 1/ 6.
17.6/13/ 16.
1.7/13/ 2.
25. 7/ 3/ .42
3. I/ 3/ .05
13. 5/ 2/ 14.
1.4/ 2/ 1.
31.74
2.
14.
.37
12.1
.152 (81.)
.21
3.75
1564.3
5.66
.12
.03
.60
251.2
.91
9.38
868.
6.23
.974 .976 .978
.959(
361. 2/
12.
10.
.941)
76.13
02
42
KG( 4000. LBS)
9.7 KW( 13.0 HP)
TEST WEIGHT 1814.
ACTUAL ROAD LOAD
DIESEL EM-465-F
ODOMETER 68993. KMU2870. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.07
HOT TRANSIENT
STABILIZED
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13859.
132.6 ( 4684.)
9.9/11/ 10.
6.3/ 1/ 6.
24.5/13/ 22.
1.9/13/ 2.
38. 6/ 3/ .65
3.2/ 3/ .05
22. 4/ 2/ 22.
1.3/ 2/ 1.
20.46
4.
20.
.61
21.2
.191 (79.)
.30
3.10
1469.7
5.73
.15
.05
.54
254.5
.99
9.50
505.
5.78
.975
685.8 (27.0)
558.8 (22.0)
36.1 ( 97.0)
23815.
228.4 ( 8066.)
7.8/11/ 8.
6. I/ 1/ 6.
17.5/13/ 16.
2.0/13/ 2.
25. 1/ 3/ .41
3.2/ 3/ .05
13. 8/ 2/ 14.
1.4/ 2/ 1.
32.55
2.
14.
.36
12.4
.144 (77.)
.24
3.66
1513.3
5.80
.12
.04
.59
244.1
.94
9.12
867.
6.20
.977 .978
.963( .945)
361.
1
1/ 76.07
1.98
9.30
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/1OOKM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATFC
3-BAG
264.0
9.86
.05
.60
(4-BAG)
( 261.9)
( 9.78)
( .05)
( .60)
-------
TEST NO. 6135T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 737.36 MM HG(29.03 IN HG)
RELATIVE HUMIDITY 67. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
V1 NOX BCKGRD METER/RANGE/PPM
w DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/1OOKM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/1OOKM
COMPOSITE RESULTS
TEST NUMBER 6135T1
BAROMETER MM HG 737.4
HUMIDITY G/KG 13.3
TEMPERATURE DEG C 24.4
FTP - VEHICLE EMISSIONS RESULTS
PROJECT 05-5810-001
VEHICLE NO.61
DATE 4/14/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 24.4 DEG C(76.0 DEG F)
ABS. HUMIDITY 13.3 GM/KG
-56000 KM W/TRAP
1
:OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13858.
133.4 ( 4711 .)
11.6/11/ 12.
6.2/ 1/ 6.
33.5/13/ 31.
2.7/13/ 2.
44. 6/ 3/ .76
3.1/ 3/ .05
22. 4/ 2/ 22.
1 .O/ 2/ 1 .
17.44
6.
28.
.72
21.5
.174 (85.)
.44
4.28
1756.7
5.97
.12
.08
.74
303.1
1 .03
11.33
505.
5.80
.971 .973
.959( .
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
23801 .
229.8 ( 8115.
7.4/11/ 7.
6.0/ 1/ 6.
18.9/13/ 17.
2.8/13/ 3.
25.77 3/ .42
3.0/ 3/ .05
13. 2/ 2/ 13.
.7/ 2/ 1.
31 .74
2.
14.
.38
12.5
.150 (79.)
.21
3.82
1579.2
6.01
.12
.03
.61
252.0
.96
9.41
867.
6.27
.975
938)
363. 2/ 76.44
12.06
10.33
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 68960. KMU2850. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.09
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.2 ( 99.0)
13859.
133.5 ( 4714.)
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23819.
230.2 ( 8128.
CARBON DIOXIDE
FUEL CONSUMP
HYDROCARBONS
CARBON MONOXIDE
OXIDES OF Nl
PARTICULATFS
9.6/11/ 10.
6.07 I/ 6.
24.7/13/ 23.
2.4/13/ 2.
37. 9/ 3/ .64
2.6/ 3/ .04
20. 8/ 2/ 21.
.77 2/ 1 .
20.87
4.
20.
.60
20.1
.123 (80.)
.30
3.08
1469.0
5.61
.10
.05
.53
253.8
.97
9.48
505.
5.79
.973 .974
7.9/117
6.07 17
18.2/13/ 1
2.5/137
24.67 37 .
2.97 37 .
12.77 27 1
.77 27
33.25
2.
14.
.36
12.0
.129 (76.
.28
3.73
1507.1
5.77
.11
.04
.60
242.3
.93
9.05
868.
6.22
.975
8.
6.
7.
2.
40
04
3.
1 .
)
.963( .943)
363. 77 76.
12.01
9.26
IDE G/KM
PTION L/100KM
S (THC) G/KM
XIDE G/KM
ITROGEN G/KM
47
3-BAG
263.0 (
9.82 (
.05 (
.61 (
no i
(4-BAG)
260.2)
9.72)
.05)
.61 )
t~t -» >,
-------
FTP
- VEHICLE EMISSIONS RESULTS -64000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6140-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LU83. CID) L-5
TRANSMISSION A3
BAROMETER 742.19 MM HG(29.22 IN HG)
RELATIVE HUMIDITY 60. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
*> HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6140-1
BAROMETER MM HG 742.2
HUMIDITY G/KG 12.7
TEMPERATURE DEG C 25.6
O
w
VEHICLE NO.61
DATE 5/17/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG C(78.0 DEG F)
ABS. HUMIDITY 12.7 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 78707. KM(48906. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.07
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13871.
135.1 ( 4770.)
12.7/11/ 13.
3. I/ I/ 3.
30.9/13/ 28.
3.1/13/ 3.
43. 4/ 3/ .74
2.8/ 3/ .04
22. 6/ 2/ 23.
1.3/ 2/ 1.
17.98
10.
25.
.70
21.4
2.924 (98.)
.76
3.91
1733.4
5.90
1.82
.13
.68
300.9
1.02
1 1.25
505.
5.76
.974 .976
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23834.
233.0 ( 8226.)
7.7/11/ 8.
4.0/ I/ 4.
18.5/13/ 17.
3.7/13/ 3.
25. 3/ 3/ .41
3. I/ 3/ .05
13. 6/ 2/ 14.
.9/ 2/ 1.
32.27
4.
13.
.37
12.7
2.304 (98.)
.51
3.58
1564.7
6.06
1.42
.08
.58
252.7
.98
9.44
867.
6.19
.977
,960( .941)
368. I/ 77
11.95
10.31
.75
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13870.
135.1 ( 4769.)
9.5/11/ 10.
4.0/ I/ 4.
26.8/13/ 25.
4.0/13/ 4.
37. 9/ 3/ .64
3.3/ 3/ .05
22. 5/ 2/ 23.
.9/ 2/ 1.
20.87
6.
20.
.59
21.6
2.584 (98.)
.45
3.21
1460.9
5.97
1.58
.08
.56
253.8
1.04
9.48
505.
5.76
.975 .976
.964( .
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23817.
233.3 ( 8238.)
7.8/11/ 8.
4.4/ I/ 4.
19.0/13/ 17.
4.2/13/ 4.
24. I/ 3/ .39
3. I/ 3/ .05
13.4/ 2/ 13.
1.0/ 2/ 1.
33.97
3.
13.
.35
12.4
2.358 (98.)
.47
3.59
1477.6
5.93
1.46
.08
.58
238.4
.96
8.91
868.
6.20
.977
945)
368. 4/ 77.72
11.95
9.19
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG (4-BAG)
263.0 ( 258.8)
9.83 { 9.67)
.09 ( .09)
.59 ( .59)
1.00 ( 1.00)
.259 ( .261)
-------
FTP
- VEHICLE EMISSIONS RESULTS -64000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6140-2 RUN 1
VEHICLE MODEL 80 MERCEDES 3000
ENGINE 3.0 LC183. CID) L-5
TRANSMISSION A3
BAROMETER 741.93 MM HG(29.21 IN HG)
RELATIVE HUMIDITY 56. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CD
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6140-2
BAROMETER MM HG 741.9
HUMIDITY G/KG 11.4
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 5/18/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 11.4 GM/KG
TEST WEIGHT 1814. KG(
ACTUAL ROAD LOAD 9.7
DIESEL EM-465-F
ODOMETER 77427. KM(48111
4000. LBS)
KW( 13.0 HP)
MILES)
NOX HUMIDITY CORRECTION FACTOR 1.02
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13884.
135.1 ( 4771.)
15.3/11/ 15.
5.7/ I/ 6.
36.6/13/ 34.
9.3/13/ 8.
44. 7/ 3/ .77
3.2/ 3/ .05
24. I/ 2/ 24.
1.3/ 2/ 1.
17.39
10.
25.
.72
22.9
3.085 (98.)
.77
3.94
1780.2
6.05
1.94
.13
.68
307.3
1.04
11.49
505.
5.79
.975 .977
.959( .
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23798.
233.0 ( 8226.)
9.8/11/ 10.
5.7/ I/ 6.
21.8/13/ 20.
7.7/13/ 7.
25. 6/ 3/ .42
3.2/ 3/ .05
14. 3/ 2/ 14.
I.I/ 2/ 1.
31.83
4.
13.
.37
13.2
2.417 (97.)
.58
3.46
1580.7
6.03
1.49
.09
.55
252.4
.96
9.43
866.
6.26
.978
942)
368. I/ 77.57
12.06
10.42
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
13826.
135.2 ( 4772.)
10.3/11/ 10.
5.7/ I/ 6.
26.9/13/ 25.
5.8/13/ 5.
38. 3/ 3/ .65
2.7/ 3/ .04
24. 2/ 2/ 24.
1.2/ 2/ 1.
20.63
5.
19.
.61
23.1
2.539 (98.)
.38
2.99
1501.9
6.10
1.57
.07
.51
258.5
1.05
9.65
505.
5.81
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
23858.
232.9 ( 8223.)
9.2/11/ 9.
6.3/ I/ 6.
19.5/13/ 18.
5.3/13/ 5.
24. 5/ 3/ .40
3.2/ 3/ .05
14. 4/ 2/ 14.
1.3/ 2/ 1.
33.37
3.
13.
.35
13.1
2.320 (97.)
.42
3.45
1498.1
5.99
1.45
.07
.55
238.2
.95
8.90
869.
6.29
.976 .977 .978
.963(
368. O/
12.
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.946)
77.55
10
26
3-BAG (4-BAG)
265.4 ( 261.2)
9.92 ( 9.76)
.09 ( .09)
.57 ( .57)
1.00 ( 1.00)
.267 ( .265)
-------
CFTP - VEHICLE EMISSIONS RESULTS -64000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6140T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 734.31 MM H6(28.91 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEC. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
O
U)
en
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6140T1
BAROMETER MM HG 734.3
HUMIDITY G/KG 11.3
TEMPERATURE DEC C 25.6
VEHICLE NO.61
DATE 5/13/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG C(78.0 DEG F)
ABS. HUMIDITY 11.3 GM/KG
TEST WEIGHT 1814. KG ( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 77324. KM(48047. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.02
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
36.1 ( 97.0)
13880.
133.8 ( 4724 )
10.9/11/ 11
3.7/ I/ 4
32.3/13/ 30
.8/13/ 1
45. 4/ 3/ .78
2.8/ 3/ .04
26. 5/ 2/ 27.
10. I/ 2/ 10.
17.11
7.
28.
.74
17.0
.249 (79.)
.58
4.38
1809.8
4.44
.19
.10
.75
311.6
.76
11.65
505.
5.81
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23837.
230.7 ( 8144.)
5.2/11/ 5.
3. 1/ I/ 3.
16.6/13/ 15.
.6/13/ 1.
25. 2/ 3/ .41
2.7/ 3/ .04
14. I/ 2/ 14.
2.5/ 2/ 3.
32.44
2.
14.
.37
11.7
.247 (75.)
.30
3.81
1567.0
5.26
.20
.05
.61
250.3
.84
9.35
868.
6.26
.976 .978 .979
.959(
364. 5/
12.
10.
.943)
76.50
07
46
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
36.1 ( 97.0)
13874.
133.7 ( 4722.)
7.4/11/ 7.
3.1/ I/ 3.
23.8/13/ 22.
.6/13/ 1.
37. 8/ 3/ .64
2.7/ 3/ .04
21. 5/ 2/ 22.
1.7/ 2/ 2.
20.94
4.
21.
.60
19.9
.165 (79.)
.35
3.21
1463.3
5.19
.12
.06
.55
252.5
.90
9.43
505.
5.80
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
23794.
230.2 ( 8129.)
4.8/11/ 5.
3.1/ I/ 3.
16.0/13/ 15.
.5/13/ 0.
24. 3/ 3/ .40
2.4/ 3/ .04
12. 7/ 2/ 13.
.9/ 2/ 1.
33.73
2.
14.
.36
11.8
.159 (74.)
.23
3.68
1516.9
5.31
.13
.04
.59
242.4
.85
9.06
867.
6.26
.977 .978 .979
.964(
364. O/
12.
9.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.947)
76.37
05
24
3-BAG (4-BAG)
263.6 ( 261.3)
9.85 ( 9.76)
.06 ( .06)
.62 ( .62)
.84 ( .84)
.029 ( .026)
-------
FTP
- VEHICLE EMISSIONS RESULTS -64000 KM W/TRAP
PROJECT 05-5810-001
TEST NO. 6140T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 739.39 MM HG(29.11 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
O
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6140T2
BAROMETER MM HG 739.4
HUMIDITY G/KG 10.7
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 5/14/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 10.7 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 77360. KM(48069. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
1
COLD TRANSIENT
STABILIZED
505. 867.
5.76 6.22
.976 .978 .979
.959( .943)
367.4/ 77.06
1 1.98
10.59
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
37.8 (100.0)
13870.
134.4 ( 4747.)
10.2/11/ 10.
4.4/ 1/ 4.
35.3/13/ 33.
4.8/13/ 4.
45. 4/ 3/ .78
2.9/ 3/ .04
22. I/ 2/ 22.
1.6/ 2/ 2.
17.1 1
6.
28.
.74
20.6
.721 (92.)
.47
4.32
1814.8
5.30
.49
.08
.75
315.3
.92
11.78
685.8 (27.0)
558.8 (22.0)
32.2 ( 90.0)
23808.
232.9 ( 8225.)
5.9/11/ 6.
4.0/ I/ 4.
20.3/13/ 18.
4.5/13/ 4.
25. 5/ 3/ .42
3. 1/ 3/ .05
12. 8/ 2/ 13.
.7/ 2/ 1.
32.00
2.
14.
.37
12.1
.182 (73.)
.27
3.84
1579.5
5.40
.15
.04
.62
253.9
.87
9.48
685.8 (27.0)
558.8 (22.0)
36.7 ( 98.0)
13852.
134.4 ( 4747.)
8.5/11/ 8.
4.0/ I/ 4.
27.2/13/ 25.
3.8/13/ 3.
38. 3/ 3/ .65
2.6/ 3/ .04
21. O/ 2/ 21.
.6/ 2/ 1.
20.63
5.
21.
.61
20.4
.178 (77.)
.36
3.29
1497.4
5.25
.14
.06
.57
260.0
.91
9.71
STABILIZED
685.8 (27.0)
558.8 (22.0)
35.0 ( 95.0)
23835.
231.9 ( 8188.
6.2/11/ 6.
4.0/ 1/
19.1/13/
4.
17.
3.
.40
.05
13.
1.
3.7/13/
24.5/ 3/
3.0/ 3/
12.5/ 2/
.5/ 2/
33.40
2.
14.
.35
12.0
.166 (76.)
.31
3.72
1504.5
5.33
.13
.05
.60
241.5
.86
9.03
505. 868.
5.76 6.23
.977 .978 .979
.963( .947)
366.3/ 77.05
11.99
9.35
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
268.2
10.02
.06
.63
.89
.037
(4-BAG)
( 264.6)
( 9.88)
( .06)
( .63)
( .89)
( .036)
-------
FTP - VEHICLE EMISSIONS RESULTS -72000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6145-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 741.93 MM HG(29.21 IN HG)
RELATIVE HUMIDITY 60. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER OIF P MM. H20HN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
-------
FTP - VEHICLE EMISSIONS RESULTS -72000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6145-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 741.93 MM HG(29.21 IN HG)
RELATIVE HUMIDITY 78. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
0 DILUTION FACTOR
I HC CONCENTRATION PPM
£ CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
CO2 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6145-2
BAROMETER MM HG 741.9
HUMIDITY G/KG 13.9
TEMPERATURE DEG C 22.8
VEHICLE NO.61
DATE 6/14/82
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
17
DRY BULB TEMP. 22.8 DEG C(73.0 DEG F)
ABS. HUMIDITY 13.9 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-487-F
ODOMETER 86129. KM(53518. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.12
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
4988.
146.9 ( 5186.)
15.7/11/ 16.
9.0/ I/ 9.
30.1/13/ 28.
1.9/13/ 2.
40. 1/ 3/ .68
2.7/ 3/ .04
20. 6/ 2/ 21.
1.8/ 2/ 2.
19.60
7.
25.
.64
18.9
2.863 (98.)
.61
4.28
1722.1
5.93
1.98
.10
.74
297.1
1.02
11.11
505.
5.80
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8573.
252.4 ( 8914.)
10.5/11/ 10.
7.0/ 1/ 7.
15.6/13/ 14.
1.6/13/ 1.
22. 4/ 3/ .36
2.6/ 3/ .04
12. 2/ 2/ 12.
1.4/ 2/ 1.
36.71
4.
12.
.32
10.8
2.217 (98.)
.53
3.62
1497.3
5.84
1.47
.08
.58
238.1
.93
8.90
867.
6.29
.969 .970 .972
.964(
399. 3/
12.
9.
.940)
77.88
08
96
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
40.0 (104.0)
4983.
146.5 ( 5174.)
11.9/11/ 12.
7.0/ I/ 7.
23.8/13/ 22.
1.7/13/ 2.
33. 9/ 3/ .57
2.6/ 3/ .04
20. I/ 2/ 20.
1.5/ 2/ 2.
23.55
5.
20.
.53
18.7
2.379 (98.)
.44
3.33
1415.7
5.84
1.66
.08
.57
243.9
1.01
9.12
504.
5.80
.970 .971
.968( .
4
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8572.
252.4 ( 8913.)
10.0/11/ 10.
7.0/ I/ 7.
15.3/13/ 14.
2.0/13/ 2.
21. 5/ 3/ .35
2.6/ 3/ .04
11. 9/ 2/ 12.
1.5/ 2/ 2.
38.34
3.
12.
.31
10.4
2.144 (98.)
.46
3.44
1425.6
5.63
1.42
.07
.55
226.7
.89
8.47
867.
6.29
.972
944)
399. O/ 77.83
12.09
8.78
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
3-BAG (4-BAG)
251.9 ( 248.5)
9.41 ( 9.29)
.09 ( .08)
.61 ( .60)
,07 ( Qf.t
PARTICULATES
-------
FTP - VEHICLE EMISSIONS RESULTS -72000 KM W/TRAP
PROJECT 05-5810-001
TEST NO. 6145T2 RUN 1
VEHICLE MODEL 80 MERCEDES 3000
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 742.95 MM HG(29.25 IN HG)
RELATIVE HUMIDITY 56. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20UN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
-------
FTP
- VEHICLE EMISSIONS RESULTS -72000 KM W/TRAP
PROJECT 05-5810-001
TEST NO. 6145T1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LO83. CID) L-5
TRANSMISSION A3
BAROMETER 740.66 MM HG(29.16 IN HG)
RELATIVE HUMIDITY 59. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
£ NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6145T1
BAROMETER MM HG 740.7
HUMIDITY G/KG 11.7
TEMPERATURE DEG C 24.4
VEHICLE NO.61
DATE 6/ 9/82
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
17
en
i
DRY BULB TEMP. 24.4 DEG C(76.0 DEG F)
ABS. HUMIDITY 11.7 GM/KG
TEST WEIGHT 1814. KG ( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 86011. KM{53445. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.03
1
:OLD TRANSIENT
927.1 (36.5)
901.7 (35.5)
38.3 (101.0)
4992.
146.5 ( 5174.)
9.8/11/ 10.
5.9/ 1/ 6.
27.3/13/ 25.
1.3/13/ 1.
40. 5/ 3/ .69
2.8/ 3/ .04
20. 2/ 2/ 20.
.6/ 2/ 1.
19.41
4.
23.
.65
19.6
.214 (74.)
.36
3.94
1734.3
5.68
.19
06
.68
297.9
.98
11.13
505.
5.82
975 .976
963 ( .
2
STABILIZED
927.1 (36.5)
901.7 (35.5)
38.9 (102.0)
8579.
251.5 ( 8880.)
6.8/11/ 7.
5.5/ 1/ 6.
14.7/13/ 13.
1.4/13/ 1.
22. 9/ 3/ .37
2.7/ 3/ .04
12. 2/ 2/ 12.
.9/ 2/ 1.
35.91
1.
12.
.33
11.3
.181 (76.)
.21
3.45
1524.6
5.63
.15
.03
.55
242.2
89
9.04
868.
6.29
.977
945)
398. O/ 76.91
12.12
10.05
CARBON
3
HOT TRANSIENT
927.1 (36.5)
901.7 (35.5)
37.2 ( 99.0)
4990.
146.9 ( 5185.)
8.4/11/ 8.
5.5/ 1/ 6.
22.6/13/ 21.
1.8/13/ 2.
33. 7/ 3/ .56
2.5/ 3/ .04
19. I/ 2/ 19.
1.0/ 2/ 1.
23.72
3.
18.
.53
18.1
.141 (76.)
.27
3.16
1413.0
5.26
.12
.05
.54
241.9
.90
9.03
505.
5.84
.976 .977
4
STABILIZED
927.1 (36.5)
901.7 (35.5)
38.3 (101.0)
8563.
251.3 ( 8875.)
6.7/11/ 7.
5.1/ I/ 5.
15.7/13/ 14.
2.1/13/ 2.
22. O/ 3/ .36
2.6/ 3/ .04
11. 8/ 2/ 12.
1.2/ 2/ 1.
37.45
2.
12.
.32
10.6
.143 (77.)
.25
3.53
1459.1
5.28
.12
.04
56
232.7
.84
8.69
867.
6.27
.978
.968( .949)
398. 2/ 76
12.11
8.86
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.80
3-BAG (4-BAG)
253.6 ( 250.8)
9.47 ( 9.37)
.04 ( .04)
.57 ( .58)
.91 ( .90)
.025 ( .024)
-------
FTP - VEHICLE EMISSIONS RESULTS -80000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6150-1 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 742.44 MM HG(29.23 IN HG)
RELATIVE HUMIDITY 56. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C {DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
THC SAMPLE METER/RANGE/PPM
THC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
THC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, f)
THC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
THC GRAMS/KM
CO GRAMS/KM
CO2 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
Q
£>
to
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6150-1
BAROMETER MM HG 742.4
HUMIDITY G/KG 11.4
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 7/ 9/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C(77.0 DEG F)
ABS. HUMIDITY 11.4 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 94584. KM(58772. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.02
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
34.4 ( 94.0)
4993.
148.5 ( 5244.
13.3/11/ 13.
5.7/ I/ 6.
28.6/13/ 26.
1.8/13/ 2.
38. I/ 3/ .64
2.9/ 3/ .04
18. 4/ 2/ 18.
.6/ 2/ 1.
20.73
8.
24.
.60
17.8
3.184 (99.)
.68
4.14
1632.2
5.18
2.13
.12
.73
286.9
.91
10.73
505.
5.69
.976
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
36.7 ( 98.0)
8569.
) 253.5 ( 8952.)
9.6/11/ 10.
5.6/ 1/ 6.
17.0/13/ 15.
1.9/13/ 2.
22. 3/ 3/ .36
3.2/ 3/ .05
11. 3/ 2/ 11.
.6/ 2/ 1.
36.88
4.
13.
.31
10.7
2.352 (98.)
.61
3.96
1453.9
5.32
1.63
.10
.64
234.5
.86
8.77
867.
6.20
.978 .979
,965( .948)
402
.O/ 76.84
11.89
9.71
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
37.8 (100.0)
4994.
147.4 ( 5203.)
10.3/11/ 10.
5.6/ 1/ 6.
23.0/13/ 21.
1.2/13/ 1.
32. 5/ 3/ .54
2.8/ 3/ .04
17. 6/ 2/ 18.
.4/ 2/ 0.
24.65
5.
19.
.50
17.2
2.435 (99.)
.42
3.32
1347.3
4.96
1.60
.07
.58
237.0
.87
8.86
505.
5.68
.977 .978
.968( .
4
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8571.
251.9 ( 8895.)
9.0/11/ 9.
5.5/ I/ 6.
16.6/13/ 15.
2.1/13/ 2.
21. 9/ 3/ .35
2.7/ 3/ .04
11. 1/ 2/ 11.
.5/ 2/ 1.
37.60
4.
13.
.31
10.6
2.107 (92.)
.53
3.78
1447.5
5.23
1.56
.08
.61
233.2
.84
8.72
867.
6.21
.979
951)
399. 3/ 76.89
11.89
8.79
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG (4-BAG)
246.0 ( 245.6)
9.20 ( 9.18)
.10 ( .09)
.64 ( .63)
.87 ( .87)
.291 ( .288)
-------
FTP - VEHICLE EMISSIONS RESULTS -80000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6150-2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 L(183. CID) L-5
TRANSMISSION A3
BAROMETER 744.47 MM HG(29.31 IN HG)
RELATIVE HUMIDITY 66. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20ON. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
THC SAMPLE METER/RANGE/PPM
THC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
THC CONCENTRATION PPM
n CO CONCENTRATION PPM
^ C02 CONCENTRATION PCT
w NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
THC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
THC GRAMS/KM
CO GRAMS/KM
CO2 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6150-2
BAROMETER MM HG 744.5
HUMIDITY G/KG 12.6
TEMPERATURE DEG C 23.9
VEHICLE NO.61
DATE 7/12/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 23.9 DEG C(75.0 DEG F)
ABS. HUMIDITY 12.6 GM/KG
TEST WEIGHT 1814. KG ( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 94617. KM(58792. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.07
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
36.1 ( 97.0)
4988.
148.1 ( 5228.)
14.1/11/ 14.
5.6/ I/ 6.
28.9/13/ 27.
1.3/13/ 1.
39. 8/ 3/ .67
2.6/ 3/ .04
21. O/ 2/ 21.
2.2/ 2/ 2.
19.76
9.
25.
.64
18.9
2.907 (98.)
.75
4.23
1724.8
5.71
1.93
.13
.73
297.9
.99
11.14
505.
5.79
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
37.8 (100.0)
8566.
253.2 ( 8942.)
9.0/11/ 9.
5.6/ I/ 6.
15.5/13/ 14.
1.5/13/ 1.
22. 4/ 3/ .36
2.4/ 3/ .04
12. 1/ 2/ 12.
1.4/ 2/ 1.
36.72
4.
12.
.33
10.7
2.282 (98.)
.52
3.65
1516.0
5.54
1.54
.08
.59
244.4
.89
9.13
867.
6.20
.972 .974 .975
.964(
401. 3/
11.
10.
.944)
76.96
99
10
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
37.8 (100.0)
4987.
147.6 ( 5213.)
10.4/11/ 10.
5.6/ I/ 6.
23.6/13/ 22.
1.2/13/ 1.
34. 3/ 3/ .57
2.9/ 3/ .04
19. 6/ 2/ 20.
1.2/ 2/ 1.
23.26
5.
20.
.53
18.5
2.639 (98.)
.43
3.41
1433.9
5.55
1.79
.07
.59
246.6
.95
9.22
505.
5.82
.973 .975
.968( .
4
STABILIZED
914.4 (36.0)
889.0 (35.0)
37.8 (100.0)
8567.
253.6 ( 8955.)
8.6/11/ 9.
5.3/ 1/ 5.
15.3/13/ 14.
1.6/13/ 1.
21. 4/ 3/ .35
2.5/ 3/ .04
11. 2/ 2/ 11.
.9/ 2/ 1.
38.54
3.
12.
.31
10.3
2.222 (99.)
.50
3.58
1431.3
5.34
1.51
.08
.57
229.3
.85
8.57
867.
6.24
.975
947)
401. 2/ 77.09
12.06
8.88
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG (4-BAG)
256.1 ( 251.7)
9.57 ( 9.41)
.09 ( .09)
.62 ( .61)
.93 ( .92)
.?B2 ( .280)
-------
FTP - VEHICLE EMISSIONS RESULTS -80000 KM W/ TRAP
PROJECT 05-5810-001
TEST NO. 6150T1 RUN 1
VEHICLE MODEL 80 MERCEDES 3000
ENGINE 3.0 L(183. CID> L-5
TRANSMISSION A3
BAROMETER 742.70 MM HG{29.24 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20ON. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
THC SAMPLE METER/RANGE/PPM
THC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
THC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
THC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
CD
THC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6150T1
BAROMETER MM HG 742.7
HUMIDITY G/KG 10.7
TEMPERATURE DEG C 25.0
VEHICLE NO.61
DATE 7/ 7/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 25.0 DEG C (77.0 DEG F)
ABS. HUMIDITY 10.7 GM/KG
TEST WEIGHT 1814. KG { 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW{ 13.0 HP)
DIESEL EM-465-F
ODOMETER 94375. KM(58642. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
35.6 ( 96.0)
4989.
148.1 ( 5230.
12.5/11/ 12.
5.3/ I/ 5.
27.1/13/ 25.
.9/13/ 1.
39. 2/ 3/ .66
3.0/ 3/ .05
19. 8/ 2/ 20.
.7/ 2/ 1.
20.10
7.
23.
.62
19.1
.170 (80.)
.64
4.02
1679.4
5.41
.14
.11
.69
287.9
.93
10.76
505.
5.83
.977
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
36.7 ( 98.0)
8582.
) 254.1 ( 8973.)
7.2/11/ 7.
5.3/ I/ 5.
14.8/13/ 13.
1.0/13/ 1.
22. 4/ 3/ .36
3.0/ 3/ .05
11. 4/ 2/ 11.
.6/ 2/ 1.
36.75
2.
12.
.32
10.8
.101 (83.)
.31
3.62
1479.3
5.25
.08
.05
.58
235.7
.84
8.81
868.
6.28
.979 .980
,964( .948)
402
.2/ 76.98
12.11
9.75
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
37.2 ( 99.0)
4987.
147.5 ( 5207.)
9.0/11/ 9.
5.3/ I/ 5.
21.8/13/ 20.
1.0/13/ 1.
34. 2/ 3/ .57
2.7/ 3/ .04
19. 7/ 2/ 20.
.?/ 2/ 1.
23.34
4.
18.
.53
19.0
.138 (73.)
.34
3.17
1435.4
5.36
.13
.06
.55
248.1
.93
9.27
505.
5.79
4
STABILIZED
660.4 (26.0)
889.0 (35.0)
37.8 (100.0)
8580.
257.6 { 9096.)
7.5/11/ 8.
5.4/ I/ 5.
14.9/13/ 14.
.9/13/ 1.
21. 5/ 3/ .35
2.5/ 3/ .04
11. 5/ 2/ 12.
.7/ 2/ 1.
38.37
2.
12.
.31
10.8
.112 (85.)
.34
3.72
1462.0
5.32
.09
.05
.59
232.5
.85
8.69
868.
6.29
.978 .979 .980
.968(
405. I/
12.
8.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.951)
76.92
07
97
3-BAG (4-BAG)
249.9 ( 248.9)
9.34 ( 9.30)
.06 ( .07)
.59 ( .60)
.88 ( .88)
.018 ( .018)
-------
FTP - VEHICLE EMISSIONS RESULTS -80000 KM W/ TRAP
PROJECT 05-5810-001
TEST NO. 6150T2 RUN 1
VEHICLE MODEL 80 MERCEDES 300D
ENGINE 3.0 LO83. CID) L-5
TRANSMISSION A3
BAROMETER 743.97 MM HG(29.29 IN H6)
RELATIVE HUMIDITY 64. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
THC SAMPLE METER/RANGE/PPM
THC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
THC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
THC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
O
I
01
THC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6150T2
BAROMETER MM HG 744.0
HUMIDITY G/KG 13.4
TEMPERATURE DEG C 25.6
VEHICLE NO.61
DATE 7/ 8/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG C(78.0 DEG F)
ABS. HUMIDITY 13.4 GM/KG
TEST WEIGHT 1814. KG( 4000. LBS)
ACTUAL ROAD LOAD 9.7 KW( 13.0 HP)
DIESEL EM-465-F
ODOMETER 94399. KM(58657. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.10
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
40.6 (105.0)
4994.
146.8 ( 5183.)
11.0/1I/ 11.
4.5/ I/ 5.
26.3/13/ 24.
.7/13/ 1.
40. 1/ 3/ .68
3.1/ 3/ .05
18. 8/ 2/ 19.
,7/ 2/ 1.
19.62
7.
23.
.63
18.1
.254 (84.)
.57
3.88
1705.2
5.59
.20
.10
.68
300.7
.98
11.24
505.
5.67
.973 .975
,963( .
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
41.1 (106.0)
8580.
251.8 ( 8892.)
6.7/11/ 7.
4.3/ I/ 4.
13.5/13/ 12.
.6/13/ 1.
23. 7/ 3/ .39
3.4/ 3/ .05
11. 2/ 2/ 11.
.7/ 2/ 1.
34.64
2.
11.
.33
10.5
.121 (81.)
.36
3.33
1542.1
5.56
.10
.06
.54
250.9
.90
9.37
868.
6.15
.976
943)
398. 6/ 77.12
11.82
10.27
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
4989.
147.0 ( 5191.)
8.4/11/ 8.
4.3/ I/ 4.
19.2/13/ 17.
.1/I3/ 0.
34. If 3/ .58
3.9/ 3/ .06
18. 5/ 2/ 19.
.7/ 2/ 1.
22.99
4.
17.
.52
17.8
.175 (82.)
.36
2.88
1407.9
5.50
.14
.06
.51
247.0
.97
9.23
505.
5.70
.974 .975
,966( .
4
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8572.
252.6 ( 8920.)
6.8/11/ 7.
4.5/ I/ 5.
13.1/13/ 12.
.4/13/ 0.
23. 2/ 3/ .38
3.7/ 3/ .06
11. 3/ 2/ 11.
.7/ 2/ 1.
35.43
2.
11.
.32
10.6
.129 (79.)
.36
3.29
1485.9
5.63
.11
.06
.53
239.6
.91
8.95
867.
6.20
.976
946)
399. 6/ 77.07
11.90
9.08
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
3-BAG (4-BAG)
260.1 ( 256.7)
9.72 ( 9.59)
.07 ( .07)
.56 ( .56)
.94 ( QAt
PARTICULATES ° ""'
-------
APPENDIX H
DURABILITY EVALUATION OF NGK TRAP ON THE DATSUN
-------
FTP - VEHICL
6500-1 RUN
TEST NO.
MiikE2V8~LU70: "CIO) "6
TRANSMISSION A3
iDEL __82_DATSUN MAXIMA
BAROMETER 743.20 MM HG(29.26
RELATIVE HUMIDITY 47. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
IN HG)
H20)
H20)
BLOWER DIF P NM. H20(IN.
BLOWER INLET P MM. H20(IN. ,,<.
BLOWER INLET TEMP. DEG. C(DEG
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
F)
DILUTION FACTOR
HC
CO
NCEN....
NCENTRA
C02 CONCENTRAT]
NOX CONCENTRAT
FILTER WT. MG
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
O
O
ON PPM
ON PPM
N PCT
N PPM
EFFICIENCY, %)
GRAMS
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME
MEASURED DISTANCE
SCF, DRY
SECONDS
KM
.._ ... .7 SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6500-1
BAROMETER MM HG 743.?
VEHICLE EMISSIONS RESULTS -0 KM W/0 TRAP
PROJECT 05-5810-001
VEHICLE NO.65
DATE 5/ 4/82
BAG CART NO. 1 / CVS NO.
DYNO NO. 2
DRY BULB TEMP,
ABS. HUMIDITY
COLD TRANSIENT
6JGfi/lGC(79-0 °EG F)
10.2
STABILIZED
690.9 (27.2)
561.3 122.1)
35.6 ( 96.0)
13889.
135.9 ( 4799.)
34.4/11/ 34.
6.0/ I/ 6.
38.3/13/ 36.
1.9/13/ 2.
38.0/ 3/ .64
2.9/ 3/ .04
15. 2/ 2/ 15.
.8/ 2/ 1.
20.69
29.
33.
60
A V
L* . J
1.920 (95.)
5*22
1489.3
3-69
1.20
.39
25*3
.64
9.65
506.
5.80
.979 .980
.964( .<
369. 6/ n
12.05
9.15
698.5 (27.5)
561.3 22.1)
33.9 { 93.0)
23809.
233.6 ( 8250.)
12.9/li/ 13.
6.2/ I/ 6.
20.6/13/ 19.
1.8/13/ 2.
23.6/ 37 .38
10. O/ 2/ 10.
'ltQ346B 1%
7.
17.
34
§*j*r
•9
1.460 (94.)
4!57
1449.0
3.96
.99
.15
•73
231.9
.63
8.69
867.
6.25
.981
)49)
j.li
1531. KG( 33?5..LBS)_
EM-487-F '
TEST WEIGHT
ACTUAL ROAD L'
DIESEL EM-._. .
ODOMETER 2290. KM( 1423. MILES)
>^\SI W m l_l«r*_/ /
KW( 9.7 HP)
NOX HUMIDITY CORRECTION FACTOR .98
HOT TRANSIENT
693.4 (27.3
561.3 22 '
35ty 96
loooo.
135.9 ( 4798.)
17.7/li/. "
.3)
.1)
6.0)
STABILIZED
27.3
693.4
566.4
6.2/ I/
30.6/13/
" 7/13/
3/ 37
j:i/ 37
14.47 27.
*j\j • v
^
18.
6.
28.
.56
.05
14.
8258.)
' 13.
18.
2.
:§?
11.
2.
233.9 4
w
20.0/13/
m
11.l/ 21
1-7/ 27
36.13
J:
.32
9.4
1.309 794.)
•-?D
1377.3
4.15
.88
.15
506.
5.79
.980
.66
8.26
867.
6.25
.981
CARBON
3IOXIDE
L CONSUMPTION
:ARBONS ITHC)
\l MONOXIDE
OXIDES OF NITROGEN
PARTICULATES
12.04
8.30
G/KM
L/1QOKM
^Bl
m
3-BAG
234.5
8.7?
(4-BAG)
?Q1 ?
ft AT
o.b/
:%
.63
.166
-------
FTP VEHICLE EMISSIONS RESULTS -0 KM W/0 TRAP
PROJECT 05-S310-001
TEST NO. 6500-2 RUN
VEHICLE MGDEL 02 DATSUN MAXIAM
ENGINE 2,8 L(170, CID) 6
TRANSMISSION A3
BAROMETER 741,17 MM 140(29,18 IN HG)
RELATIVE HUMIDITY 53, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM, K2D(IN. 1-120)
BLOWER INLET P MM. M20(IN. 1-120)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD, CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT, MG (EFFICIENCY, 7.)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF. DRY
DFCf WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER
BAROMETER MM HG
HUMIDITY G/KG
TEMPERATURE DEG C
6500-2
741.2
10.7
25.0
VEHICLE NO,65
DATE 5/ 5/82
BAG CART NO, 1 / CVS NO, 3
DYNQ NO, 2
DRY BULB TEMP, 25,0 DEG C(77.0 DEG F)
ABS, HUMIDITY 10.7 GM/KG
TEST WEIGHT .1531, KG( 3375, LBS)
ACTUAL ROAD LOAD 7,2 KU< 9.7 HP)
DIESEL EM--487-F
ODOMETER 2316. KH< 1439. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.00
1
COLD TRANSIENT
STABILIZED
HOT TRANSIENT
STABILIZED
685,8 (27,0)
55Q.8 (22.0)
37.8 (100.0)
1 7n / -i
L6o\j/ +
135,0 ( 4767.)
30. 1/1 1/ 30.
4,4/ I/ 4.
36.3/13/ 34,
.8/13/ 1.
37. 4/ 3/ .63
2,6,' 3/ ,04
15, I/ 2/ 15.
,6/ 2/ 1,
21,07
26,
32,
.59
14.5
2.052 (96.)
2.01
5.02
1462.8
3.75
1.28
.35
.87
251.9
.65
9.46
505.
5.81
.977 .979
685.8 (27,0)
558.8 (22.0)
32.2 ( 90.0)
23814,
233,7 ( 8253.)
11, 9/1 I/ 12,
4,97 I/ 5,
19.9/13/ 18.
.9/13/ 1,
23. O/ 3/ ,37
2.7/ 3/ ,04
9,5/ 2/ 10,
,6/ 2/ 1.
35.65
7.
17.
.33
8,9
1.353 (96.)
.96
4.60
1424.2
3.98
.86
.15
.73
226.5
.63
8.49
861.
6,29
,980
,965( ,948)
360. 7/ 70
12.10
8.95
.01
685.8 (27.0)
558.8 (22.0)
35.6 ( 96.0)
13877,
135,5 ( 4785.)
16,0/tl/ 16.
4.9/ .!/ 5.
2S.2/13/ 26.
,7/13/ 1,
33, S/ 3/ .56
2,9/ 3/ .04
14, O/ 2/ 14,
,6/ 2/ 1,
23,59
11,
25.
.52
13.4
1.417 (96.)
.88
3.87
1293,7
3.48
.89
.15
.67
222.4
,60
8.33
505,
5,82
685,8 (27.0)
558.8 (22.0)
32,2 ( 90,0)
23680,
232.8 ( 8219.)
11,8/li/ 12,
4,8/ I/ 5.
19.1/13/ 17.
.9/13/ 1.
22. O/ 3/ .36
2,9/ 3/ .04
9.6/ 2/ 10.
,6/ 2/ 1.
37.36
7.
16.
.31
9.0
1,200 (95.)
.95
4.38
1332.1
4.01
.77
.15
.71
214.5
.65
8.04
862.
6.21
,978 .979 ,980
.967(
368. 3/
12.
8.
.951)
77,76
03
18
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
230.6
8.64
,19
.74
.63
(4-BAG)
( 227.1)
( 8.51)
( .19)
( .73)
( .63)
-------
FTP - VEHICLE EMISSIONS RESULTS -0 KM WITH TRAP
PROJECT 05-5810-001
TEST NO, 6500T1 RUN
VEHICLE MODEL 82 DATSUN MAXIMA
ENGINE 2,8 LU70, DID) 6
TRANSMISSION A3
BAROMETER 739,14 MM HG(29,10 IN HG)
RELATIVE HUMIDITY 49, PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM, H20(IN, I, '20)
BLOWER INLET P MM. !-!20(IN, H20)
BLOWER INLET TEMP, DEG, C(DEG, P)
BLOWER REVOLUTIONS
TOT FLOW STD. CU, METRES (SCF)
HC SAMPLE METER/RANGE/PPM
IIC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02
NOX
BCKGRD METER/RANGE/PCT
SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
w DILUTION FACTOR
i HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, X)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CD L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCFx DRY
DFCf WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6500T1
BAROMETER MM HG 739,1
HUMIDITY G/KG 10,0
TEMPERATURE DEG C 25,0
VEHICLE NO,65
BATE 5/ 6/Q2
BAG CART NO, 1 /
DYNO NO, 2
CVS NO.
DRY BULB TEMP, 25,0 DEG C(77,0 DEG F)
ABS, HUMIDITY 10,0 CM/KG
1
COLD TRANSIENT
685.G (27,0)
558,8 (22,0)
35.6 ( 96,0)
13866.
135.0 ( 4767.)
31.1/11/ 31.
6.0/ I/ 6.
39.9/13/ 37.
2.1/13/ 2,
38,8/ 3/
15.3/ 2/
,8/ 2/
20.24
25,
34.
-.61
14,5
.366 (81.)
1,98
5.39
1515.8
3,67
.29
.34
.94
263.2
.64
9,88
,66
,04
15,
1,
STABILIZED
6S5.8 (27,0)
558,8 (22,0)
32,2 ( 90,0)
23832,
233,5 ( 8246.)
11,4/H/ 11,
5,8/ I/ 6,
21.2/13/ 19,
1.9/13/ 2,
24.O/ 3/ .39
2.9/ 3/ ,04
10,O/ 2/ 10,
l.l/ 2/ 1.
34,07
6,
17.
.35
8.9
.164 (73.)
.78
4.68
1484.4
3.90
,14
,13
.75
238,2
,63
8,92
505. 868,
5,76 6,23
.973 .980 .981
,963( ,948)
368.5/ 77.77
11.99
9,38
TEST WEIGHT 1531. KG( 3375, LBS)
ACTUAL ROAD LOAD 7.2 KU( 9.7 HP)
DIESEL EM-487-F
ODOMETER 2371, KM< 1473, MILES)
NOX HUMIDITY CORRECTION FACTOR .98
HOT TRANSIENT
685.8 (27,0)
558,8 (22,0)
36,1 ( 97,0)
13877.
135,0 ( 4766.)
16,3/li/ 16,
5,8/ I/ 6,
30.2/13/ 28.
1.8/13/ 2.
33.3/ 3/ ,55
2.8/ 3/ .04
14,6/ 2/ 15.
1,4/ 2/ 1,
23.96
11.
26.
,51
13.3
.298 (81.)
.84
4.01
1269.8
3.35
.23
.14
.69
219.5
.58
8,22
505,
5.78
.979
.980
.967( .952)
366.8/ 77.70
12,02
8.31
STABILIZED
685,8 (27.0)
558,8 (22.0)
35.0 ( 95.0)
23810.
231,8 ( 8185.)
11.4/11/ 11.
5,7/ I/ 6,
19.9/13/ 18,
1.7/13/ 2.
22.8/ 3/ .37
2,7/ 3/ .04
10,8/ 2/ 11,
1,6/ 2/ 2,
35.98
6.
16.
,33
9.2
,160 (71.)
.78
4.38
1397.8
4.01
.14
.13
.70
224.3
.64
8,40
863,
6.23
,981
CARBON DIOXIDE G/KK
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN R/KM
PAPTT--V" A —
3-BAG
238.2
8,93
.18
,77
(4-BAG)
( 234,1)
( 8.77)
( .18)
( .76)
-------
FTP
- VEHICLE EMISSIONS RESULTS -0 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6500T2 RUN
VEHICLE MODEL 82 OATSUN MAX I AM
ENGINE 2.8 LU70. CID) 6
TRANSMISSION A3
BAROMETER 744.47 MM HG(29.31 IN HG)
RELATIVE HUMIDITY 53. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20UN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
ffi C02 CONCENTRATION PCT
I NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, $)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME
MEASURED DISTANCE
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) /
KM (MEASURED)
SECONDS
KM
SAM BLR (SCM)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6500T2
BAROMETER MM HG 744.5
HUMIDITY G/KG 8.7
TEMPERATURE DEG C 21.7
VEHICLE NO.65
DATE 5/ 7/82
BAG CART NO. 1 / CVS NO. 3
DYNO NO. 2
DRY BULB TEMP. 21.7 DEG C(71.0 DEG F)
ABS. HUMIDITY 8.7 GM/KG
TEST WEIGHT 1531. KG( 3375. LBS)
ACTUAL ROAD LOAD 7.1 KW( 9.5 HP)
DIESEL EM-487-F
ODOMETER 2396. KM( 1489. MILES)
NOX HUMIDITY CORRECTION FACTOR .94
1
OLD TRANSIENT
685.8 (27.0)
558.8 (22.0)
33.3 ( 92.0)
13834.
136.2 ( 4811.
31.5/11/ 32.
5.3/ 1/ 5.
38.0/13/ 35.
2.0/13/ 2.
38. 5/ 3/ .65
2.5/ 3/ .04
18. O/ 2/ 18.
2.6/ 2/ 3.
20.41
26.
33.
.61
15.5
.376 (82.)
2.08
5.16
1530.6
3.79
.29
.36
.89
264.2
.65
9.92
504.
5.79
.977
2
STABILIZED
685.8 (27.0)
558.8 (22.0)
30.6 ( 87.0)
23790.
) 235.9 ( 8330.)
10.4/11/ 10.
4.7/ I/ 5.
19.1/13/ 17.
1.8/13/ 2.
23. 9/ 3/ .39
2.7/ 3/ .04
10. 3/ 2/ 10.
1.0/ 2/ 1.
34.25
6.
15.
.35
9.3
.261 (76.)
.80
4.23
1504.8
3.94
.22
.13
.67
239.3
.63
8.96
867.
6.29
.979 .979
.964( .947)
372
.I/ 78.24
12.08
9.42
CARBON
3
HOT TRANSIENT
685.8 (27.0)
558.8 (22.0)
33.9 ( 93.0)
13866.
136.4 ( 4817.)
14.4/11/ 14.
4.7/ I/ 5.
27.6/13/ 25.
1.4/13/ 1.
33. I/ 3/ .55
2.2/ 3/ .03
14. 8/ 2/ 15.
1.3/ 2/ 1.
24.14
10.
23.
.52
13.6
.349 (85.)
.78
3.72
1296.4
3.31
.26
.13
.64
222.5
.57
8.33
505.
5.83
4
STABILIZED
685.8 (27.0)
558.8 (22.0)
31.1 ( 88.0)
23798.
235.6 ( 8320.)
10.0/11/ 10.
4.9/ I/ 5.
18.3/13/ 17.
1.5/13/ 1.
22. 6/ 3/ .37
2.5/ 3/ .04
10. 5/ 2/ 11.
.9/ 2/ 1.
36.35
5.
15.
.33
9.6
.181 (77.)
.71
4.10
1418.9
4.06
.15
.11
.65
225.4
.65
8.44
867.
6.30
.978 .979 .980
.967(
372. O/
12.
8.
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
.951 )
78.26
12
38
3-BAG (4-BAG)
239.8 ( 235.7)
8.98 ( 8.83)
.18 ( .17)
.71 ( .70)
.62 ( .62)
.040 ( .037)
-------
FTP - VEHICLE EMISSIONS RESULTS -8000 KM W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6505-1 RUN 1
VEHICLE MODEL 82 DATSUN MAXIMA
ENGINE 2.8 L(170. CID) 6
TRANSMISSION A3
BAROMETER 736.85 MM H6(29.01 IN HG)
RELATIVE HUMIDITY 62. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER OIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
ffi
cr>
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET
-------
FTP - VEHICLE EMISSIONS RESULTS -80000 MILE W/0 TRAP
PROJECT 05-5810-001
TEST NO. 6505-3 RUN 1
VEHICLE MODEL 82 DATSUN MAXIMA
ENGINE 2.8 L(170. CID) 6
TRANSMISSION A3
BAROMETER 743.20 MM HG(29.26 IN HG)
RELATIVE HUMIDITY 59. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C
-------
FTP - VEHICLE EMISSIONS RESULTS -8000 KM W/TRAP
PROJECT 05-5810-001
TEST NO. 6505T1 RUN 1
VEHICLE MODEL 82 DATSUN MAXIMA
ENGINE 2.8 L(170. CID) 6
TRANSMISSION A3
BAROMETER 741.43 MM H6C29.19 IN HG)
RELATIVE HUMIDITY 57. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIP P MM. H20(IN. H20)
BLOWER INLET P MM. H20(IN. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES(SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, *)
HC MASS GRAMS
ffi
00
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
HC GRAMS/KM
CO GRAMS/KM
C02 GRAMS/KM
NOX GRAMS/KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6505T1
BAROMETER MM HG 741.4
HUMIDITY G/KG 11.9
TEMPERATURE DEG C 25.6
VEHICLE NO.65
DATE 6/11/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 25.6 DEG C(78.0 DEG F)
ABS. HUMIDITY 11.9 GM/KG
1
OLD TRANSIENT
914.4 (36.0)
889.0 (35.0)
38.9 (102.0)
4985.
146.4 ( 5168.)
24.4/11/ 24.
4.7/ 1/ 5.
38.2/13/ 35.
1.4/13/ 1.
35. 9/ 3/ .60
2.9/ 3/ .04
12. 8/ 2/ 13.
,7/ 2/ 1.
22.04
20.
33.
.56
12.1
.692 (92.)
1.68
5.66
1499.9
3.54
.50
.29
.97
258.1
.61
9.69
505.
5.81
.976 .978
.966( .
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8570.
251.3 ( 8872.)
11.7/11/ 12.
4.1/ 1/ 4.
21.6/13/ 20.
1.8/13/ 2.
22. I/ 3/ .36
3,0/ 3/ .05
7.8/ 2/ 8.
.7/ 2/ 1.
37.16
8.
18.
.31
7.1
.624 (91.)
1.12
5.16
1439.0
3.56
.45
.18
.82
228.6
.57
8.57
867.
6.30
.978
949)
397. 6/ 76.33
12.11
9.11
KG( 3375. LBS)
7.2 KW( 9.7 HP)
TEST WEIGHT 1531.
ACTUAL ROAD LOAD
DIESEL EM-487-F
ODOMETER 10651. KM( 6618. MILES)
NOX HUMIDITY CORRECTION FACTOR 1.04
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
44.4 (112.0)
4986.
144.5 ( 5102.)
18.3/11/ 18.
4.I/ 1/ 4.
31.8/13/ 29.
1.6/13/ 1.
30.9/ 3/ .51
3.0/ 3/ .05
11.8/ 2/ 12.
.9/ 2/ 1.
25.95
14.
27.
.47
10.9
.730 (92.)
1.20
4.56
1237.0
3.15
.52
.21
.78
212.2
.54
7.96
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8576.
251.4 ( 8878.)
12.1/11/ 12.
7.5/ 1/
21.0/13/
1.8/13/
21.4/ 3/
3.I/ 3/
8.5/ 2/
I.I/ 2/
38.44
5.
17.
.30
7.4
.551 (91,
.69
5.01
1377.7
3.72
.41
.11
.80
218.9
.59
8.20
8.
19.
2.
.35
.05
9.
1.
)
505. 867.
5.83 6.29
.977 .978 .979
,969( .952)
395.9/ 76.37
12.12
8.09
CARBON DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC) G/KM
CARBON MONOXIDE G/KM
OXIDES OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG
230.2
8.63
.21
.84
.57
.080
(4-BAG)
( 227.3)
( 8.53)
( .19)
( .83)
( .57)
( .078)
-------
FTP - VEHICLE EMISSIONS RESULTS -8000 KM WITH TRAP
PROJECT 05-5810-001
TEST NO. 6505T2 RUN 1
VEHICLE MODEL 82 DATSUN MAXIMA
ENGINE 2.8 L(170. CID) 6
TRANSMISSION A3
BAROMETER 741.43 MM HG(29.19 IN HG)
RELATIVE HUMIDITY 51. PCT
BAG RESULTS
BAG NUMBER
DESCRIPTION
BLOWER DIF P MM. H20(IN. H20)
BLOWER INLET P MM. H20ON. H20)
BLOWER INLET TEMP. DEG. C(DEG. F)
BLOWER REVOLUTIONS
TOT FLOW STD. CU. METRES (SCF)
HC SAMPLE METER/RANGE/PPM
HC BCKGRD METER/RANGE/PPM
CO SAMPLE METER/RANGE/PPM
CO BCKGRD METER/RANGE/PPM
C02 SAMPLE METER/RANGE/PCT
C02 BCKGRD METER/RANGE/PCT
NOX SAMPLE METER/RANGE/PPM
NOX BCKGRD METER/RANGE/PPM
DILUTION FACTOR
HC CONCENTRATION PPM
CO CONCENTRATION PPM
C02 CONCENTRATION PCT
NOX CONCENTRATION PPM
FILTER WT. MG (EFFICIENCY, %)
HC MASS GRAMS
CO MASS GRAMS
C02 MASS GRAMS
NOX MASS GRAMS
PARTICULATE MASS GRAMS
ffi
HC GRAMS /KM
CO GRAMS /KM
CO 2 GRAMS /KM
NOX GRAMS /KM
FUEL CONSUMPTION BY CB L/100KM
RUN TIME SECONDS
MEASURED DISTANCE KM
SCF, DRY
DFC, WET (DRY)
TOT VOL (SCM) / SAM BLR (SCM)
KM (MEASURED)
FUEL CONSUMPTION L/100KM
COMPOSITE RESULTS
TEST NUMBER 6505T2
BAROMETER MM HG 741.4
HUMIDITY G/KG 9.8
TEMPERATURE DEG C 23.9
VEHICLE NO.65
DATE 6/14/82
BAG CART NO. 1 / CVS NO. 17
DYNO NO. 2
DRY BULB TEMP. 23.9 DEG C(75.0 DEG F)
ABS. HUMIDITY 9.8 GM/KG
TEST WEIGHT 1531. KG( 3375. LBS)
ACTUAL ROAD LOAD 7.2 KW( 9.7 HP)
DIESEL EM-487-F
ODOMETER 10689. KM( 6642. MILES)
NOX HUMIDITY CORRECTION FACTOR .97
1
OLD TRANSIENT
914.4- (36.0)
889.0 (35.0)
38.3 (101.0)
4986.
146.3 ( 5166.)
28.1/11/ 28.
7.2/ I/ 7.
36.8/13/ 34.
.9/13/ 1.
36. 1/ 3/ .61
2.8/ 3/ .04
12. 8/ 2/ 13.
1.8/ 2/ 2.
21.90
21.
32.
.56
11.1
.613 (88.)
1.79
5.51
1513.2
3.01
.45
.31
.96
262.3
.52
9.85
505.
5.77
.978 .979
2
STABILIZED
914.4 (36.0)
889.0 (35.0)
38.3 (101.0)
8563.
251.2 ( 8872.)
13.5/11/ 13.
6.3/ 1/ 6.
20.5/13/ 19.
1.3/13/ 1.
21. 3/ 3/ .34
2.7/ 3/ .04
7.7/ 2/ 8.
.7/ 2/ 1.
38.62
7.
17.
.30
7.0
.622 (89.)
1.06
5.01
1396.4
3.27
.47
.17
.80
222.1
.52
8.33
866.
6.29
.980
.967( .951)
397. 5/ 76
12.06
9.06
.64
CARBON
3
HOT TRANSIENT
914.4 (36.0)
889.0 (35.0)
38.9 (102.0)
4980.
145.9 ( 5153.)
22. 2/1 I/ 22.
6.3/ 1/ 6.
32.7/13/ 30.
.5/13/ 0.
30. 4/ 3/ .50
2.9/ 3/ .04
11. 2/ 2/ 11.
.7/ 2/ 1.
26.38
16.
29.
.46
10.5
.802 (94.)
1.36
4.92
1229.4
2.85
.57
.24
.85
212.4
.49
7.98
504.
5.79
.979 .980
.970{ .
4
STABILIZED
914.4 (36.0)
889.0 (35.0)
39.4 (103.0)
8577.
251.0 ( 8863.)
15.1/11/ 15.
6.0/ 1/ 6.
20.0/13/ 18.
.5/13/ 0.
20. 8/ 3/ .34
2.8/ 3/ .04
7.7/ 21 8.
,6/ 21 1.
39.58
9.
17.
.29
7.1
.607 (93.)
1.34
5.07
1348.9
3.31
.44
.21
.81
216.0
.53
8.11
868.
6.25
.980
954)
397. O/ 76.76
12.03
8.05
DIOXIDE G/KM
FUEL CONSUMPTION L/100KM
HYDROCARBONS (THC ) G/KM
CARBON
OXIDES
MONOXIDE G/KM
OF NITROGEN G/KM
PARTICULATES G/KM
3-BAG (4-BAG)
227.7 ( 225.9)
8.55 ( 8.48)
.22 ( .23)
.84 { .85)
.51 ( .52)
.082 ( .081)
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO7
EPA 460/3-82-011
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
LIGHT-DUTY DIESEL ORGANIC PARTICULATE CONTROL
TECHNOLOGY INVESTIGATION
5. REPORT DATE
August 1983
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Charles
8. PERFORMING ORGANIZATION REPORT NO.
M. Urban
9. PERFORMING ORG MMIZATION NAME AND ADDRESS
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2873
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final Report(9-78/3-83)
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Methods for particulate, and associated organics, emission control
were evaluated in several diesel cars. Of the methods investigated, only
"particulate traps" provided large reductions in particulate emissions.
Traps evaluated included metal mesh and ceramic monolithic configurations,
catalyzed and uncatalyzed. One of the cars, with a ceramic trap installed,
completed eighty thousand kilometers of distance accumulation. No significant
deterioration of emissions occurred over those eighty thousand kilometers.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Exhaust Emissions
Diesel Engines
Motor Vehicles
b.IDENTIFIERS/OPEN ENDED TERMS
Light-Duty Vehicles
COSATI Held/Group
13. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (ThisReport)
Unclassified
1. NO. OF PAGEJ
257
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
2220-1 (9-73)
------- |