EPA-460/3-76-008-b
March 1976
STUDY
ON OXIDES OF NITROGEN
AND CARBON FORMATION
IN DIESEL ENGINES -
COMPUTER PROGRAM
USER'S MANUAL
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
ACKNOWLEDGEMENTS
The CAPE-20-71 Steering Committee of the Coordinating Research Coun-
cil and the EPA originally defined the project and guided the work to it's final
outcome. The ultimate value of this project is largely due to the Committee,
without whose help and criticism it would have been difficult to complete.
The authors sincerely acknowledge their gratitude to the following individuals
who have served on the Steering Committee during the lifetime of the project:
F. J. Hills, Committee Chairman
J. L. Bascunana
N. G. Beck
T. C. Belian
J. E. Bennethum
G. L. Borman
W. L. Brown
J. C. Hoelzer
G. D. Kittredge
G. A. Lavoie
D. F . Merrion
P. C. Meurer
J. M. Perez
S. M. Shahed
A. D. Tuteja
A. V. Wilson
A. E. Zengel
Mobil Research & Development Corp.
Environmental Protection Agency
International Harvester
Coordinating Research Council
General Motors Research Laboratory
University of Wisconsin
Caterpillar Tractor
International Harvester
Environmental Protection Agency
Ford Motor Company
General Motors-Detroit Diesel Allison
International Harvester
Caterpillar Tractor
Cummins Engine
General Motors-Detroit Diesel Allison
Cummins Engine
Coordinating Research Council
-------
TABLE OF CONTENTS
Page No.
ACKNOWLEDGEMENTS i
NOMENCLATURE v
I. INTRODUCTION 1
II. PROGRAM DESCRIPTIONS 3
III. DESCRIPTION OF THE PROGRAM INPUT 9
IV. DESCRIPTION OF THE PROGRAM OUTPUT 17
V. SAMPLE CASE 21
(1) INPUT 22
(2) OUTPUT 23
VI. PROGRAM STATISTICS ' 39
VII. REFERENCES 41
VIII. APPENDIX ~ FORTRAN LISTING OF DIESEL ENGINE 43
PROGRAM
iii '
-------
NOMENCLATURE
C Specific heat
P
D Gas binary diffusivity
P Pressure
R Gas constant
T Temperature
U Specific internal energy
erf Error function
Equivalence ratio based on fuel-air mass ratio
$ Crank angle
P Density
-------
I. INTRODUCTION
This document describes the computer program and serves as a user's
manual for a numerical model on THE PREDICTION OF POLLUTANT FORMATION
IN DIESEL ENGINES. The model is capable of predicting both engine
performance and formation of nitric oxide and soot in a direct injected
diesel engine combustion process. The program is sufficiently versatile to
investigate the influence of several engine parameters, such as geometry,
injection timing, compression ratio, load, swirl, etc., and thus can be
considered as a tool readily accessible to the design engineers. The
physical and chemical processes, the detailed mathematical analysis and
the assumptions upon which the model is based are discussed in the full
report on this investigation. This manual contains brief descriptions of the
program subroutines, program input and output. One sample case is also
given to illustrate the use of the program which is designed to facilitate
program check-out.
The computer program is coded in standard FORTRAN IV, and a version
is currently operational in CDC 6600 computer.
-------
II. PROGRAM DESCRIPTIONS
The main body of the program is the routine MAIN which simulates
the cycle thermodynamics of a reciprocating engine and also manipulates
\
the major input output mechanisms of the program. The cycle thermodynamic
routine is used as the skeleton and the model components, coded as
separated subroutines, are linked together by CALL statements, thus forming
the complete program. The flow chart is shown in Figure 1.
A brief description of the subroutines included in the program are
given below.
SUBROUTINE AMIX
This subroutine estimates the rate of mixing between the "air" zone
and the burning zones.
BLOCK DATA
This subroutine presents the coefficients for both the internal energy
polynomial, U(P, T, 0), and the gas constant polynomial, R (P,T,)/ for
lean (0 s 1.0) and rich (*> 1.0) equilibrium combustion products. The
coefficients are obtained for a specific fuel by curve-fitting the calculated
results from the NASA equilibrium program (Ref. 2).
SUBROUTINE CONHT
The gross rate of convective heat transfer from the entire charge
within the cylinder to the cylinder walls is computed in this subroutine.
The calculation is based upon the mean charge temperature and the character-
istic charge Reynolds No.
FUNCTION ERF
This subroutine estimates the error function of a given argument x, i.e.,
2
erf (x) = . I e dr
£ r* /
(x) = 7= \ e
J 7T I
v •'o
-------
SUBROUTINE EVAP
The model requires that the premixed air-fuel packages are tracked
throughout their lifetime and this operation is handled in the subroutine
EVAP. The vaporization rate of each droplet size groups and the air-fuel
vapor ratio of each package are defined in Lagrangian coordinates. The
onset of ignition in each air-fuel package is also monitored.
SUBROUTINE FINTN
The rate of fuel injection is calculated by calling this subroutine.
SUBROUTINE FUMEZ
This subroutine computes quasi-steady flame structure by constructing
the diffusion field around a confined burning droplet with finite space. Flame
temperatures, flame zone thickness, fuel, O2 and temperature distributions
are determined. Subroutine HETNOR is called in FLAMEZ to calculate the
production rate for nitric oxide during droplet burning. The nitric oxide
produced during droplet burning forms the heterogeneous contribution to the
total emission.
SUBROUTINE HETNOR
The nitric oxide formation rate within the flame structure defined by
FLAME is determined in this subroutine by integrating the finite-rate NO
conservation equation. This two-point boundary value problem is solved
by a trial and error method. An initial guess of the NO concentration at the
droplet surface is made. The NO production equations which are based on
the Zeldovich mechanism are integrated and the calculated NO concentration
at the end points is checked with the given value at the end point.
SUBROUTINE HOMNOZ (HOMNOR)
The homogeneous contribution to the total amount of NO produced
(which was not included in HETNOR) at the zonal NO formation rate is
determined by this subroutine. The Zeldovich chemical kinetic mechanism
is also used as the basis for the calculation of the homogeneous NO
formation. Subroutine HOMNCR is used for that of the "air" zone.
-------
SUBROUTINE RADHZZ (RADHZ)
This subroutine evaluates the zonal rate of radiative heat transfer.
Subroutine RADHZ is used for that of the "air" zone.
SUBROUTINE SIZED
This subroutine determines the drop-size distribution of the fuel jet
by an upper-limit distribution function based upon the Weber number and the
Reynolds number of the jet.
SUBROUTINE SOOTRZ(SOOTR)
This subroutine calculates the zonal soot formation rate both, prior
to and after ignition. It also determines the soot oxidation rate based upon the
zonal pressure, temperature and equivalence ratio'. Subroutine SCOTR is used for
that of the "air" zone.
SUBROUTINE SPECYZ (SPECY)
Zonal equilibrium species distribution is obtained via table look up
for specified independent variables P, T, and $ . Subroutine TRIPIT is called
to perform'the three-dimensional linear interpolation. An error message will
be printed out whenever any independent variable lies outside the range of
the table. Subroutine SPECY is used for that of the "air" zone.
SUBROUTINE SPRAY
This subroutine calls subroutine SIZED to determine the drop-size
distribution of the fuel spray. The fuel jet is simulated by a steady jet
(free and wall jets) theory. Therefore, the trajectories and over-all air-fuel
ratios of fuel elements are defined in Eulerian spatial coordinates.
SUBROUTINE TAPEIN
This subroutine is called at the very beginning of MAIN to the input
species distribution tables from TAPE 8.
-------
SUBROUTINE T-PROPZ (TPRCP)
This is a subroutine to evaluate the thermodynamic properties of
the equilibrium combustion products. The internal energy and gas constant
(R) are calculated as functions of P, T, and v by polynomial. Expressions
and coefficients of these polynomials are specified in DATA BLOCK. The
partial derivatives (of U and R) with respect to P, T, and 0 , are also
computed in subroutine TPROPZ. Subroutine TPROP is used to evaluate the
thermodynamic properties of the "air" zone.
SUBROUTINE TRIP IT
Subroutine TRIPIT is a three-dimensional linear interpolation routine
called for in subroutines SPECY and SPECYZ.
SUBROUTINE VOLM
This subroutine gives the instantaneous volume of engine cylinder.
SUBROUTINE WETBT
This subroutine estimates wet-bulb temperature of a vaporizing fuel
drop at high ambient pressures and temperatures. The Cox-Antonie equation
is used to evaluate the equilibrium partial vapor pressure.
-------
INPUT
Engine description
Intake air. fuel and EGR
properties
Control parameters
Empirical parameters
INITIALIZATION
Physical constants &
parameters
Residual gas
Properties of Initial cylinder
VOLUME
Cylinder volume (y0LM'<
FUEL SPRAY
Dropslze distribution (SIZED)
Air/spray entralnment (SPRAY)
Evaporator & Ignition (EVAP)
Wet bulb temperature (WETBT)
Air/product mixing
(AMttt
EQUILIBRIUM COMPUTATION
Thermodynamlc properties (TPR<2t2
Species distribution (SPECYZ)
DIFFUSION fUME
Droplet burning rate (FLAMZ)
Hetergeneous NO rate (IICTN0R)
flEAT TRANSFIX
Convolution (CONIIT)
Radiation (RADM7.Z)
HCMOGL-NEOUS NO RATC
NO kinetics (HOMNC'Z)
SCOT FORMATION
• Soot kinetics (S0OTR2I
CVCtE THERMODYNAMICS
• Integratlng'energy equation*
• Mass conservation equations
• N'O and soot conservation equations
Determining Zonal
• Temperature and A/F
e NO and soot
Define Over-all
• Temperature
e Pressure
• Mass of NO and soot
Yos
• Engine performance
• Exhaust pollutants
Figure 1
-------
III. DESCRIPTION OF THE PROGRAM INPUT
V
The data input to the diesel engine program consists of three distinct
groups:
(1) Tape Input (Species Tables): The mole fraction distributions,
X^ (P,T,v), of the equilibrium combustion products is read in
as TAPE 8 from either a magnetic tape or magnetic disc. This
input is required only once for all stacked cases having the
same kind of fuel. Cases using different fuels cannot be
stacked.
(2) Block Data Input (Thermodynamic Properties): The internal
energy, U (P, T, 0), and gas constant, R(P, T, 0), of the
equilibrium combustion products are calculated from fitted
polynomials (detail, see Ref. 1). The coefficients of these
polynomials form an integral part of the program via the
BLOCK DATA subroutine. The BLOCK DATA has to be revised
whenever a different fuel is used.
(3) Card Input (Engine Geometry, Operating Conditions and Air-
Fuel Physical Properties): Five sets of input ca'rds are required
in this group. All of them except the case identification card
are input via the standard namelist format.
The five sets of cards are described below according to their
input order. The definitions, format, and preset values of
the variables in each set of input cards are described in
functional subgroups. The order of the variables within each
set of input data is arbitrary.
(a) Namelist GIVEN
This set of input cards details the common constants of engine
geometry, engine operation, and fuel physical properties. The
variables in the GIVEN namelist are presented in Tables 1,
2 and 3.
(b) Case Identification Card
A single card contains the case identification information in
Columns 1 through 80. When no identification is desired a
blank card must be provided.
(c) Namelist CPARAM
This set of card inputs provides the logic flow control parameters
for the program. All the parameters in this set of data are
preset to nominal values and only require to be input if it is
desired to alter the preset values. These preset values apply to
each individual case, therefore, all charges must be made
whenever required.
-------
When it is unnecessary to modify the parameters given
in Tables 4, 5 and 6, a $CPARAM$ card starting at
Column 2 must be included. It should also be noted
that when NSHEL and DTHMIN are specified, the
constraint:
(DINJ/DTHMIN) x NSHEL £ 100
must be satisfied.
(d) Namelist EPARAM
The empirical parameters, which are preset, required by
the program are provided with this set of input cards.
These parameters which are preset prior to each individual
case need only to be input if it is desired to alter the preset
values. Therefore, when the alterations are required, they
must be made in every case.
If modification of the parameters listed in Table 7 is not
required, a $EPARAM$ card starting at Column 2 must be
included.
(e) Namelist GIVEN
The variables in this set of input are the same as that of (a).
This set of inputs serve as a modification or as an addition
to set (a). When neither a modification nor an addition
complement is desired a $GIVEN$ card must be provided.
The order of card input is illustrated in Figure 2.
10
-------
Table 1. Engine Geometry
FORTRAN
SYMBOL
DE
RFW
RL
CR
sc
TW
SCR
DN£ZZ
NNtfZZ
THEVC
THEV0
DBOWL
NSTROK
DESCRIPTION
Engine bore (cm)
Crank radius (cm)
Rod length (cm)
Compression ratio
Engine clearance (cm)
Mean engine wall temperature (°K)
Supercharge (atm)
Diameter of fuel nozzle (cm)
No. of fuel nozzles
Closing angle of intake valve (C.A.)
Opening angle of exhaust valve (C. A.)
Diameter of bowl on piston head (Cm)
No. of strokes per power cycle
FORMAT
+
F
F
F
F
F
F
F
F
F
F
F
F
I***
PRESET
NA**
NA
NA
NA
NA
NA
NA
MA
NA
NA
NA
NA
4
Table 2. Engine Operation
XMAI
XMRD
0MEGA
THEIJ
DINJ
XMFJ
PINT
TFT'
EGR
RPM
Mass of fresh air/powerstroke (gm) .
Mass of residue gas/powerstroke (gm)
Charge swirl angular velocity (rad./sec)
Fuel injection time (C.A.)
Duration of fuel injection (C.A.)
Mass of fuel injection/powerstroke (gm)
Fuel line pressure (atm)
Fuel line temperature ( K)
% of E.G.R. (base on total charge)
Engine speed (rpm)
F
F
F
F
F
F
F
F
F
F
NA
Option*
NA
NA
NA
NA
NA
NA
NA
• NA
•\ Floating point
* This value will automatically be calculated in program if not specified.
** Not applicable
*** Integer
11
-------
Table 3.
Fuel Properties
w
XX
FDEN
CEN
API
XMUF
SURFT
TBPF
TCRITF
CPFL
CVFV
CPFV
DHFV
HFFL
HC0M
No. of C atoms in fuel molecule
No. of H atoms in fuel molecule
3
Density of fuel (gm/cm )
Centan No.
API Gravity at 60°F
Viscosity (gm/cm-sec) at TFT
2
Surface tension (gm/sec ) at TFT
Boiling point at 1 atm ( K)
Critical temperature ( K)
Liquid specific heat (cal/gm)
Vapor constant volume specific heat (cal/gm)
Vapor constant pressure specific heat (cal/gm)
Latent heat at 298°K (cal/gm)
Heat of formation at 298°K (cal/gm)
Heat of combustion (cal/gm)
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F.
NA
NA
Option
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Option*
Option*
* If this value is not specified it will be calculated by program.
12
-------
Table 4. Pollutant Computation Control
FORTRAN
SYMBOL
INQfl
INGfc
s."1.
DESCRIPTION
Homogeneous NO rate calculation is to be
performed if INGflr^ 0
Heterogeneous NO rate calculation is to be
performed if IN02 ¥• 0
Soot kinetic calculation is to be performed if
ISfZfot / 0
FORMAT
I
I
I
PRESET
1
1
1 '
TableS. Numerical Stability Control.
NTER
NAXIL
NSHEL
NS2G
NITST
DTHMIN
DTHMED
DTHMAX
THEMAX
EPSIT
EPSIP
Max. No. of iterations allowed for stable solution
No. of axial fuel jet stations (max. = 20)
No. of conical fuel jet shells (max. =4)
No. of droplet size groups(max. =3)
No. of spatial points in droplet field integration
(max. =50)
Integration step size (C.A.) used during fuel
injection and combustion
Integration step size (C.A.) used after combustion
Integration step size (C.A.) used before injection
Maximum crank angle to be integrated to
Relative error bound on averaged temperature
calculation
Relative error bound on pressure calculation
I
I
I
I
I
F
F
F
F
F
F
50
20
4
3
50
1.0
2.5
5.0
THEVC
2.0 E-3
2.0 E-3
13
-------
Table 6. Output Control
FORTRAN
SYMBOL
NPRT
IDTAIL
IDRtfPP
ISECYP
&RATEP
DESCRIPTION
Print every NPRT integration steps
Print detailed zonal information if IDTAIL ¥• 0
Print detailed droplet information if IDR0P ^ 0
& IDTAIL ¥• 0
FORMAT
I
I
I
1
Print detailed species information of each zone if I
ISPECY 1 0 & IDTAIL ¥• 0
Print detailed rate information if IRATEP ¥• 0 &
IDTAIL * 0
I
PRESET
2
0
0
0
0
Table 7.
FORTRAN
SYMBOL
CA
CB
CNOR
CVIDI
CMIX
SEFJ
CEVAP
RH0D
CPBAR
XTLY02
HUTIM
SDEN
DSOOT
ASOTA
ASOTP
DESCRIPTION
Preconstant for rate for heat convection rate
Reynold's No. exponent heat convection rate
Multiplier of N<# rate constant
Vitiation/dilution ratio
Air/product dilution coefficient
Coefficient for swirl effect on jet entrainment
Crossflow effect on fuel vaporization rate
PD in droplet calculation fem/cm-sec)
C in droplet calculation (cal/gm)
Droplet extinction limit (oxygen mass fraction)
Droplet heat-up time (sec)
3
Density of soot particle (gm/cm )
Assumed mean soot particle size (cm)
Pre-constant for soot formation rate in burning
zone
Pre-constant for soot formation rate in
vaporizing zone
FORMAT
F
F
F
F
F
F
F
F
F
F
F
F
F
F .
F
PRESET
0.26
0.7S
5.37
0.1
7.8E-3
4.3
0.276
3.0 E-4 .
0.35.
0.02
2.0 E-4
2.0
1.0 E-4 -
3.52
3.52
14
-------
/EN
i
/SEFAPAM
$GIVEN
r$ EPA RAM
" $C!-ARAM
i Case I.D. Card
SGIVEN
'$CPAFAM
st Case I.D. Card
—/nd Case
-J/^ 1st Case
Preset Engine and Fuel Parameters
Figure 2. Input Data
15
-------
IV. DESCRIPTION OF PROGRAM OUTPUT
The regular printed output of the computer program is described
below. The description is presented in the order of its appearance.
(1) Printout of Program Input
The program input group (III) is printed out under namelist output
format. Descriptions of these variables has been given in Section 3
under:
NAMELIST GIVEN
I.D. Card
NAMELIST CPARAM
NAMELIST EPARAM
NAMELIST GIVEN
(2) Initial Conditions
The printout of namelist INITL gives the initial conditions of the engine
and the charge in it. The elements of NAMELIST INITL are described below.
SYMBOL DESCRIPTION
THETAI Initial C.A. for integration (or compression)
THEMAX Maximum or final C.A.; the integration is terminated when
6 = THEMAX
P Initial pressure (atm)
T Initial charge temperature ( K)
3
V Initial charge volume (cm )
UA Specific internal energy of charge (cal/gm)
HA Specific enthalpy of charge (cal/gm)
XMAGf Total mass of initial charge
17
-------
SYMBOL
DESCRIPTION
AMWA
FARA
PHEA
FAR0S
XMEGR
XMAEGR
XMFEGR
XMRD
XMARD
XMFRD
AMWF
FDEN
HHV
HFFL
HFJ
VC
VDIS
VFJGf
Molecular weight of charge content
Fuel-air mass ratio of charge content
Equivalence ratio of charge content
Stoichiometric fuel-air ratio
Mass of EGR (gm)
Mass of pure air contained in XMEGR (gm)
Mass of fuel contained in XMEGR, (gm)
Trapped or residual gas (gm)
Mass of pure air contained in XMRD (gm)
Mass of fuel contained in. XMRD (gm)
Molecular wt. of fuel
Stoichiometric oxygen-fuel mass ratio
Oxygen mole fraction in charge
3
Liquid fuel density (gm/cm )
High heating value of fuel (cal/gm)
Heat of combustion (cal/gm)
Heat of formation of fuel (cal/gm)
Enthalpy of injected fuel (cal/gm)
3
Engine clearance volume (cm )
3
Engine displacement ( cm )
Initial velocity of fuel injection (cm/sec)
(3) Printout of Current Information at Each Specified Print Station
. •
The program will printout averaged over-all charge properties and rate
information at the specified print station controlled by NAMELIST CPARAM and
every ignition step (from the onset to the end of zonal ignition). The elements
of the printout are described below.
18
-------
SYMBOL
DESCRIPTION
THETA
P
V
T
U
PHEE
DPDTH
WP
DFJDTH
SMOOTH
SMVDTH
DQRDTH
SVBDTH
SDBOTH
SLDDTH
SUMQL
SUMFB
DFBDTH
WKNET
RR
UCHAP
DVDTH
DELE12
Crank Angle (in degree), zero at TDC
Pressure (atm)
3
Instantaneous engine (or charge) volume (cm )
Mass averaged temperature ( K)
Mass averaged specific internal energy (cal/gm)
Over-all equivalence ratio
Step-averaged pressure derivative, -77 (atm/C.A.)
da
Step-averaged work rate, P-TV (cal/C.A.)
C1C7
Fuel injection rate (gm/C.A.)
Step-averaged over-all dilution rate (gm/C.A.)
Step-averaged over-all vitiation (air) rate (gm/C.A.)
Step-averaged over-all rate of radiative heat transfer to the
cylinder wall (cal/C.A.)
Step-averaged over-all premixed burning rate (gm/C.A.)
Step-averaged over-all droplet burning rate (gm/C.A.)
Step-averaged over-all mass rate of ignition of liquid fuel (gm/C.A.)
Cumulated (time integrated) heat loss(convective and radiative heat
transfer) to the cylinder wall, (cal.)
Cumulated mass of fuel burned to equilibrium products
Over-all mass burning rate (gm/C.A.)
dv
Cumulated net work (cal), i.e.,
dp'
A
Mass averaged gas constant (cm - atm/gm - °K)
Characteristics charge velocity (cm/sec)
3
Engine Volume rate (cm /C.A.)
Over-all numerical error involved in integration of the system energy
conservation equations, (normalized by total chemical energy released
i.e. XMFJ * HCOM).
19
-------
SYMBOL DESCRIPTION
ITERPC No. of iterations per step
XMN<#E Over-all mass of NO (gm) per power stroke
YN0E Mass averaged NO mass fraction
XNOE NO concentration (ppm)
S00TE Over-all mass of soot (gm) emission per power stroke
(4) Engine Performance and Exhaust Pollutants
The computed engine performance parameters and pollutants in the exhaust
gas are printed at the end of engine cycle (i.e. 6 - THEV<#) or at the end of
integration (i.e. 6 = THEMAX). They are:
SYMBOL
I.M.E.P.
I.H.P.
I.S.F.C.
NITRIC
GfXIDE
DESCRIPTION
Indicated mean effective pressure (psi)
Indicated engine horse-power (hp)
Indicated specific fuel consumption (Ib/hp-hr)
3
Exhaust soot concentration (mg/m at standard conditions)
Exhaust nitric oxide concentration (ppm)
20
-------
V. SAMPLE CASE
The program input and output of a sample case is presented in the
following pages to facilitate program checkout.
21
-------
(1) INPUT
.n , SC=0 . 2032 , TV: =5 00 . 0 ,
CTNJ=17. ,
RTTF='5f 7.,
HFFl.= -?f-««.
., THPTJ= 20
7 .6 ,rf*FL = 0 .5 t ,CPF V = Q . 33? ,
= ;?'?1., PNC77 = C . C? r^ .
CCASE 000
= 0 . .! 2 ,
f, fl =
-------
(2) OUTPUT
{GIVEN
or
RFU
RL
CR
SC
TH
RPM
SCP
PNQ7.2
NNOZZ
OflOWL
THEVC
TMEVO
XM4I
F.G?
XMRO
OMEGA-
NSTROK
THEIJ
DIMJ
XMFJ
PINJ
TFJ
H
XX
FOEN
CEN
ftPI
XHUF
SURFT
TOPF
= 0
= 0
= 0
= Q
= a
= 0
= 0
= 0
= 0
= 6
= 0
= -0
= Q
s Q
= 0
= 0
= 0
= "2
= -0
= 0
= 0
= 0
2 0
= 0
= 0
= 0
= 0
= Q
= 0
= 0
— 0
.1397E*05»,
.762E»C1,
• 33UBE + 02 i
« 17E»0? f
.2032E»00,
.5c*03,
.15E»C«,, '
.1£*01.
.2S<,c.01,
t
.82E+01,
.15E»03,
» l^c + C 3 t
• ?**£ * 0 1 i
.0,
.c,
.6E>03,
.2E»02,
.17E*02,
.1£»,0,
.231E+03,
.35E»03t
.7E*01,
.12E»C2,
.0. •
.<»fi7E + 02,
.?«.5E*02,
.12E-01,
.27E»02,
,3776E>05,
23
-------
TCPITF = O.S67E+03.
CPFL = 0.5lE*OOt
CPPV
CVFV
OHFV
HFFL
HCOH
SENO
0.332E»00.
= 0.0,
24
-------
*»•»» A/F = ?«»., THFIJ= 23 3EC.8TOC, H£0.
-------
SCP4P.UM
INOt
IN02
ISOOT =
IBUG =
NTER =
NPRT =
NAXTL =
NSHEL =
NSZG =
ICROPP f
IRflTEP =
ISPCYP =
= It
= It
= It
= 0,
= 50,
= Zt
3,
0,
0,
0,
IDTAIL = 0,
NITST = 50,
OTHMIN = O.le+ai,
OTHMEO = 0.25E«Clf
OTHMflX = fl.5E»01,
THEMAX = 0.3£f02,
EPSIT = 0.2E-02,
EPSIP = 0.2E-02,
SEND
26
-------
SPPftRftM
CA =
ca =
CNOR -
CVIOI =
CMIX =
SOEN =
OSOOT =
ASOTA =
ASOTP =
HUflH =
OTPHY =
SEFJ =
COCHG =
CSVAP =
AIGNO =
RHOO =
CPBAR =
XTUY02 =
«ENO
0.26E+OQ,
0.75E+00,
0.537E»01f
0.1E»QQ,
0.78E-03,
O.ZE^Ol,
O.ie-03.
0.352E*fllt
C.352E»fll,
0.2E-03,
0.2S-02,
0.«».Ti + Cli
0.1E+01,
G.278E»GOt
G.1(»6E-C3,
0.'3£-03,
0.35£*00,
0.2E-Qli
27
-------
*GIV€N
OE
RFN
RL
CR
SC
TM
RPM
SC"
ONOZZ
NNOZZ
oeowu
THEVC
THEVO
XM4I
EGR
XMRO
OMEGA
NSTROK
THEIJ
OIMJ
XMFJ
PINJ
TFJ
H
XX
FOEN
CEN
API
XHUF
SUPFT
TBPF
= 0.13T7E»02,
= 0.762E+01,
- C.30ME»02,
= 0.17E»02t
= 0.2012CtOOi
= 0.5£*03j
= 0.15E»Cit,
= 0.1£*01,
= 0.25«tE-Qlt
= 6,
= 0.82E>01,
= -0.15E+03,
= C.1«»E»C3,
= 0.2t»E»01t
= 0. Cf
= 0.0,
= 0.6£>03t
- i».
= -0.2£*02,
= C.17E+02,
= 0.1£*UO,
- 0.231E+03,
= 0.35E»03,
= 0.7E*Qlt
= 0.12EHJ2,
= 0.0,
- O.«.67'£»02,
= 0.31*55*02,
- 0.12E-C1,
- 0.27c»02,
= 0.3776E»03,
28
-------
=" 0.567E»C3,
CPFL = 0451E»00,
CPFV = 0.332E+00,
CVFV = 0.33E»OOi
OHFV = U.92865E»02,
HFFL = -0,26«»39E*03,
HCOM s O.Ct
SEND
29
-------
THETAT
TMCMAX
P
T
V
UA
HA
XMAO
A MM A
FA?9200235'»5E-01 ,
= 0.2523<»5<500a931E-02,
= 0.96E«-C2,
= 0.3.?203066666667E»01,
= 0.2G353«»26216717EtOCt
= 0.8S1932859887«.1E*00,
= 0.1C2'»93Q555555oE«-051
= -0.26«»39E*03,
= -0.2ol33'fc2«»1365aE*03,
= 3.1U599»13601726£*03,
- 0.23J59701762761£»0'»,
= 0.20'.399'»172532flE»G5,
30
-------
ai" -U5. aO JMAIMM 1.3<»6E»JS V(CH3I= ?.319E«03 T(K»= J
npQ»H»»t"/::»i = ^.fszc-JJ MP(CAL/CA»=-2.i3«c-oi HFJOTHIGH/CAIE a.
fO':['!M«r.AL/CA»s-«i.3S7E-01 aORnTMIC»L/CA(=-?.9aSE-OS SVBOTH (GM/CA1 »
Su>^HC»U = -Z.l79E»aO SUHF3JGMI* 0. SFOniHCGM/SA) * 0.
UCMA3IC-1/SEO * 2.1<.7E»03 OVOTHCCH3/CAI =-9.273E»80 OCU 12s-8.23aE-05
UICAL/GM) =-2.
SMDOIH< a.
SOHOTH (GM/CAI * 0
PHEE» l.<.bBE-aZ
SIVOTHCGH/CAI* c.
SLOOIH (GK/CA) = 0.
HKNEI CCAl J s-1.069E»90
ItERPC* 1
Z.2F.1F-7S XNOE(PPM)= 2.2PlOb9 SOOTt (GM) « 8.160E-31
»RICHJ-ATN/GM-KI= Z.a«.Ot»JO
Aj* -\3*. oo P«ATMI= i.i5tE»ta VICMJ>= 2.zi^f*03 T«K>=
OPQTH|«IM/C»I= l.ili.E-02 H»= 0. SMOOTH«GH/C»» * . 0.
Oir.rtM|r:Bl./C»l=-3.'»0
5'1'ICL (C5L) --b.l2?C»JD SUKF3(Gm= 0. SFOOTHI GM/C A> = 0. MKNEI ICAL ) =-3.879E»00
UGHf>«:M/3ECI= 2.1«5E«33 OVOTHCCHJ/CAI =-1 .183c«01 PELE1Z= t.OmE-Od ITfRPC* 1
y-t'(OriGrtl= 6.5i»l.t-71 YI40E= 2.657E-71 XIIO£IPPM)« 2.555E-65 SOOTEIGMM
PHEE= i.«.68E-oz
SHVDIHIGM/C4 ) = 0.
s 0. SLOOTMIGM/CAI 3 a.
RR(CH J-ATM/GM-K I =
t *:J4 = 1.28SE»30 V(CM3I= 2.t43F«03 T(K)= 3.825£»02 UICAL/GH) =-1 .739E»Q1 PHEE-
QpniHUI"/CA>= I.ii23£-02 HPICAL/r.AJ =-l,.132€-01 OFJOIHCGH/CA) = fl. SMOOTH! GM/C9) = Q. SMVOTH«G«/CA) = S.
Or,r.i;'H(CAL/CA|i-3.257E-11 OQKOIH (CAL/CAI =-2 .598E-05 S«1!OIH(GM/CAI = 0. SOBOIH IGM/CAI = 0. SLDCI H t GM/CA) = 0.
S'-Jint lC&LI=-9.515r.«C3 SUKF:1(OMI= 0. SFROI H I GM/C Al = 0. MKNEI ICAL > =-7 .727E»00 RR (CM3-A IM/GM-K ) = 2.3ttOE»3li
u<:tit?icn/s£ri« z.z3ic»B3 O\»OTHIC»I/CM =-i.«.25E«oi OFLEIZ^ z.uif-0'. ITERPC= i
H-.'lCi IGll * «,.555f-67 tNOfs 1.8I.9E-67 XNOMPPM»= 1.77HE-61 SOOIF.(GHI= Z.719E-Z8
uO P«AIM)= l.«,59f»JO VICH3>= t.929t»03 T= o. SMOOIHIGM/CAI = o. srivO!H«Gi-/c»i= c.
CTC.!lH(CaL/CiM-2.7£9F- = -l .21«.-C»C1 au^Fj«GM)= 0. SFnnTIMr.H/SAI = 0. HKNEI(CAL!=-1.283E»Ol RR(CM3-A TH/GM-K 1=
>= 2.212E»C3 OWOTH(CM3/CA| =-1 .6«.7£»01 Of.LE12= 3.2o6t-C«. ITERPC= 1
3 YNOE= l.OS'.F-fi'J XNOE(PPH}= 1.013E-S7 SOUIt(GM|= 3.756E-27
-100. SO
PUIH)
T(K)= <..2<,OE»Q2 U tCAL/G«l =-1 .u^l.E»Ol PHEE=
OPOIifiTH/rtJi 2.«.')7E-02 WP(CAL/r«t =-7.G6tE-ul OF JOIH ( GH/CAI = 0. SHHOTH 'IClL/CA|:-?.ll.5t-Jl OQiiOIH(rAL/CA)=-2.C'7i.r-05 awU'J IH(Gn/CAI = J. SUGOIH CGH/CAI
<|J-CI (C»L)=-1 ,<«tiOc»Jl SUMFltCM|= 3. SFUOIH1GM/CA) = 0. HKNEHOALI = -1 .9<«7E «0l
U~MSr--(':i/3£CI= 2.J3JE»H Orf01Hir.s3/C4t =-l.«38E«01 OrtF 12= i».3i.3f-ai. HERPC= 1
9' YNOt= 5.8Gir-= 5.061E-26
a.
SHVOt H (G"/C1 ) - 0.
SLOOI H(GM/CA> = G.
-K >= Z.bi.uE»OC
..GA)= -95. ui PIATKI = 2.005£»03 V(CM3)= 1.56.1E«03 T(KI= "..i.lJ5L«02 U PQIH(4TH/CA)= 1.i.)SE-?2 HP(C«L/Ci) =-9.07fcE-Ot DFJDTHI GM/C A) = 0. SMnOIH(GH/CA) = C. SMtfOIHJGM/Cl) = 0.
D.CPT MC«L/CAl=-1.550E-01 nQPQTH (CAL/C A) =-1 . M.OE-0'; SVBQTH (Grt/CA> = a. SOBOTll (GM/CAI = 0. SLO-irM (GH/CAI = 0.
S'J^'JKCSLl--! .515^»J1 SUMFIICiHs 0. ' SFnniH( GM/r. Al = 0. MKNFT ICAL ) =-Z .SOZEtOl RR (CM3-ATM/GM-K 1= 2.3<.0£»oO
UCHa3(;c/SrC)= 2.J79?»J.' OVOI HlC-'l/CAl =-1 .985E »U1 OEL::i2= 5.<4t75-OH 11ERPC= 1
>>-NC,f IG1>= ».fi12E-56 YtJOfz S.^JP^t-SG XNOF(PPMI= 3.39UE-50 SOOU(GMI= 6.95CE-25
. iO P(ATN)= 2.".Oi.E»00 V(CM3>= 1..T09E.OJ I(KI= «..7(,8il»02 U (OAL/GUI =-1 ,320E»aO PH£E= I.«.b8r.-i2
OaDIn( JI-/C«I= U.flt>7£-02 HP|CAL/CA>=-1 ,161F*GO UF jni II ( GH/CAI = 0. SMDDIMC SM/C4I = 0. SMtfOT H(GM/C5 1 = 0.
01C:)THIC»L/CAI=-9.0Z8E-OZ OOKOTH ICAL/C A) s-9.H6t.E- 06 3«iil)TH(GM/Ci) = 3. SOODIM (GM/CAI = 0. SLDOIHI GM/GA» = C.
(CSU=-1.7i.2c»:i SUHFJCGMIS 0. Sf aOrH(GK/CAl = O. HKNETCCAL»=-3.895£»ai RR
-------
-75.00 PCftTMl* 3.101f»00 V= j. SOBDIHC&H/CAJ* a. SLOOIHICM/CAM «.
= -1.77'IE»C1 SUHF3(GMI= 0. SF80TH1GM/CAI = 0. WKNET «CAL )=-5.293E*01 RR (CN3-AT M/GM-K 1= Z.6<>CE«30
| = Z.it31E»GJ (WOTHICKS/CAI =-2.100E«Ol OFLEUa 7.619E-Clt ITERPC= 1
>3£-C-: I.UtlF^OZ IIKI= 5.=-1.7l3f KM SUKFTIC,MI= 0. SFnOIHI GH/CA) = 0. HKNEF «CAL I =-7 ,0»ZE»Ol RRICHJ-Af rt/GH-K I =
OChAKCM/SECI' 2.".27E«03 OVHl H(r.«3/Ci>l =-i.Oiif!e»01 OELE12= 1.29«t-UJ IT£RPC= ?
X1NOMGM)= 1.591E-I.3 YNOE= li . 461 (->><* XNOE(PPHI= I..290E-36 SOOTE(GHI= 2.856E-21
5.61QF»00 V(CM3I= 7.«.3U«02 TIKI= 5.968E»OZ U(CAL/GH>- 2.072E»01 PHEE=
Or>iJIH(trM/CAI= 1.732E-CI K"ICAl/C»ls-2.<.i.8E»(]0 OFJOIH (GM/CA) = 0. SMOOTH(5M/CA) = 0. SMVOIH IGM/CA) = 0.
nr;jTHicoL/cA) . i.7?9t-oi ooi?nrH(CAL/CA)= 1..066E-05 svnoiH (GM/ct »= o. snnniH«i>i/CAi = a. SLOOIMIGM/CAM j
(C«L)=-1.511f »G1 SUHFQIGH)= D. SFtiOlH 1 GM/C Al = 0. HKNET ICALJ =-9 . 385E»0 1 RRCCH3-ATM/GM-K ) = Z.8»tCAL/CA»=-J ,158E*00 OF JDTH ( GM/C A) = 0. SMODTlH GM/CA) s 0. SMVDTH1CH/C4) - 0.
OTX TH(CAL/CAI= 3.11ZE-ai nQROTH (CAL/CA) = 9.5uZE-Or> SVdOlH (GM/CA )= 0. S08DTH (GM/C A » = 0. SLOOTHIG.1/CA J « C.
SUlOLICAlls-l.Jli«E«ai SUMF1tGMl= 0. SFOOTHIGt1/CAI= 0. HKNEt (CAL ) =-1 .235E*02 RRICH3-ATH/GM-K 1= Z.8liOE»aO
itC»= Z.352E»S3 OiMlT HICM3/CA) =-1 .70CE*01 OCLtlZ= 1.91•' IA(.1£G.C4>= -35.00 P(4IMI= l.ZO^ftfit V1CM3)= <..05f.t»02 T(K»= 7,Z62E»OZ U«CAL/GM)= > SVIIOIH(GM/CA>= a. SOOOIHOI nfttiz= 2.4.U7O03 ITERPC= ^
X1N-3FIG")= 1.572t-3i VMOf= 6.3PZF-31 XNOE(P<>M)= 6.1.17E-25 SOOTt(GM)= 2.65U-17
-25.30 (GMI= 0. SFQOIHIGH/CAI = 0. HKNEI (CAL ) =-Z .= Z.8t>CE»3C
OC'(t''(CH/sECI= 2.156E»33 OtfOT HICM3/CA) =-8 .Zll E*00 OELE1Z= 3.67UE-03 ITERPC= 1
Xir«QE(G1l= 3. YMOE= 1.1«9k-Z«. XNOE(PPM)* 1.336E-18 S001t(GMI= 2.622E-15
-------
f HEIA8E: 2.C-45f»OZ IIK)- fl.7S^£»03 IIICAL/GMM 7.38<,E»01 PHEE= 1.17JC-U1
l)PTlH(4IK/Ct)= l.Z5SE»00 WP(CAl/CA)=-S.2?6E«UO OF JOIMI CM/C A I = S.842E-03 SMOOIH( GH/C41 = 0. SMVOIHCCH/CA) = 0.
nccn!-«c= i.iiot«oo OOJOIH ICAL/CAI = S.SAIE-O<< s«nufH(on/CAi= a. SOBOTHIG.H/CAIS o. SLDOIHIGM/CA»» o.
SU"OL K «L) = 7.?^I.F»uO SUMFRCCM): 0. SFOOT Hl&M/C Al = 0. HKNET (CAL I =-2. 5 10E»02 R9.CCM3-AT M/GH-K ) = J.8i.OE»DO
OCM«"«C1/S£CI= 2.562E4Q3 OtfDI HICM3/CAI =-7.389t • 00 OELC12= 3.679E-03 ITERPd 1 .
X1MOL«GM»= 1.C76E-23 *NOt= <..3h«£-2'« XNOEJPPM)= I..202E-14 SOOIE(G.1)= «..078£-15
fHCTA ("€<•,. CA)= -Ift.OC PCATMI* J.O^ZE»J1 VICM3I= 2.023E»Q2 IIK»= 8.8ZSF«02 U(CAL/GM): 7.i.67E«01 PHEE= 1.515E-01
CPQIri(ATH/CA)= 1.24i^«00 HP (C AL/CAI =-5 .189£»GO OFJOTM (GH/CAI = 5.B62E-03 SMOOTH ( &M/CA) = 0. SMVOI HI&M/CA) = 0.
O^CCT^ICAL/CA): 1.357f>00 DOROIH (CAL/C A> = 5.flJ8f-0= 8.622E»Ca SUMF3ir,M)= 0. SFnOTH(GM/SAI = 0. HKNEI ICAl l = -2 .S6ZE»02 RR (CM3-A IM/GM-K I = 2.C39E«00
2.7<<2E«C3 OWD t H«CM3/CAI =-6.972£»00 OELfl2= 3.7C5E-O.T ITERPC= I
1.991E-2J VNOf'= 8.J77F-2«i XNOE(Pf'M>= 7.7«2E-18 SOOTt(GH>= 5.Ci,6t-15
IHEIS (OtC.CA»= -l^.OC PIATHI: 3.1A2F»01 V(CN3I= t.<)S&F»02 f(KI= 8.B91EH12 U(CAL/GM)= 7.5«,I.E»01 PHEE= 1.8S7E-01
no"lM(iT-/Cil - 1.3Qlf»03 MP(f.AL/C«»=-S .098t»60 OFJOTHir.H/CAI= 5.AA2£-03 SMOOTH IGH/CA) = 0. SMVOTHIGH/C J I - 0.
07CD1HICAL/CA): l.i.&6f»aO OQKOTH(CAL/CA)= 6.G32E-0<> SVIIOFH «GH/CA) = 0. SOOOIH (GH/CAI = 0. StDOIHCGM/CA) = 0.
SUMQIIC«L)= J.003F»fil SUKF:I(GMI= 0. SFOniHI GH/CA) = C. HKNEI E»30
U.:"*°(C-/SECI= 3.c&eE»03 nuni Hini.i/r.ai =-f>.i jor •oo oim»2= 3.73ME-03 IIERPC= i
3 YMOE= 2.bA9f-23 XNOt«PPHI- 2.60«.E-17 SOOTKGMH 7.611E-15
rHI'snt&.C*)* -13. CO P(4THI= .3.7lH,f.»Ul V(CM3I= l.HJ5(«02 TIKI= 9.d62E>02 U(CAL/GMI= 7.598£*01 PHE£= 2.>;i2£-ul
OPTlM(AI-/CO|s 1.75i.E»00 MP(CAL/CAI=-5.070£«GO OF JOIH( CM/CA* = ';.8«2£-03 SMODIH(GM/C Al = 3.01BE-03 SMtfOTH(GM/CA I = 3.018E-0<.
Oa'-.DT!((CAl./CAI= 1.503F»i)0 OOKDIH (C»L/C A) = «. . 1A3t -02 r,\MiOTH(GM/CA I = S.759E-03 S030TH(GM/CAI = I..182E-D'. SLOOI H(GM/CA) = S.CCfcE-33
1.3J".E*C1 J3 SF3nTH(Gn/r.A| = 7.177E-03 HKNE T : 2.05SE-05 YNOE- 8.333f-C6 XNO£(PPM»= 8.CG8F.»(iO 300IF(iiM|i 1.2oE-01 SVBOTH (GM/CA) = S.820E-03 SOBOIH IGH/CAI = 8.
-------
C IMDCC.CAI * -11. DC P«ATM> • «• .63<>t »ul V(Cn1>= t.7?HF»02
2.29<>E»aj H<>ecAL/r.Ai=-5.<«iBE»oo
2.cfc?r»0q OCPOTHCCAL/CA» =
Ia 1.72f.E»Gl SUMF3(CM)= 1.91SF-02 SFI10TH«G«/CAI = 6.GVU-03
CMC& (CM/SEC I* 3.l.98E»03 OV01 HCCMVCAI =-<..8air«02 T(K)= 1.1«6E«03 UICAL/GHM 7.703E»01 PMEE= 3.^6tt£-ul
nPl)JHl»lf/CA|= 2.«.'.JE»ia W«CfcL/CAl=-5.397f.*aa OFJOTHIGH/CA»= 5.tt8?£-03 SHODIHCGM/CAI s 1.113E-02 SHVOIHtGM/CA) = 1.1UE-CJ
O'.ruTHIC 'L /C»)= ?.3fi5r*00 30POIH (CAL/r,a) i 2.879E-01 SVbll IH (GM/Cft ) = i.?51E-03 SOQOTH (Grt/CA) = 2.<>71E-03 SLOOT H( GM/C« I = 9.«.1<.E-03
Stl-= 2.255E-C5
THETtdUG.CA): -9.00 P I AIM ) = 5 .317E» 01 V(CM3I= 1.6<.OFt02 T(K)= 1.222E»03 UIC«L/GH)= 7.7S2E»Ot PHEE= 3.S10J-01
OPUTHI&r'VCAis 2.S11E«G1 HP(C AL/CAI =-5 .236E »iO OF JOIH (GH/CA) = >j. 882^-33 SMOOTH (GM/Cft> = 1.293E-02 SMVOTH IGH/C* I = 1.293E-C3
COCCTH(C&L/CA)s 2.(i7«E»CG OOHOIM =-T.977E*OS OtLiil2= LOSIE-OS IIERPC= 2
X'1MCE(GMI= S.ftZJE-u't VN3£= 2.33fiC-3l. XNOE(PPM)= 2.?J1E«1)2 SOOIta2E-C3
OCrUtH(CU/CS)= 2.M8E»Oa OQRQTH(C4L/CM= 3.921E-01 SVBDTH IGM/CAl = 3.901E-0<4 SilODTH (G1/CA) = 3.1«5E-03 SLOnt H( GH/C1 1 = 5.I.92E-03
r/j:«.L(CaL)= 2.567E«C1 SUMFKGMIs J.IS'IC-CZ r.FHOIH(GM/CA) s 3.5751-03 HKMET (CAL J =-2 ,977E»02 RR«Ci13-ATH/GM-K) - 2.857E»uC
=-3.5«.CE»00 OfL£12= 1.8uHE-03 IIERPC= 2
XNOs(PPMI= S.ZISEtoZ SOOTE(GHI- 5.518E-05
TMtTt I'jEG.CM - -7.00 P(AT«t= 5.130t»01 VICM3I- l.lioHEtOZ T(KI= 1.2'17E»a3 U(CAL/GM)= 7.799E»01 PHEE= '(.5:»5L-Cl
OPOIH(ATM/CA)= 2.I.78E*00 *JP «C AL/CAI =-<» .635€ » rjfl OF JOTHIGM/CA) = 5.882E-G3 SMOOTH ( GM/C4I •= !.&82E-a2 SMOOTH (GM/C4 )= 1.&12E-C3
O^C3t-OF»00 OQPOTM (CAL/C A) = it.li32F-Oi SVODTHIGM/CA I = i..OOf.E-0<. SPBDIH IGM/CAI = 3.305E-03 SLOnTHC&H^CA J = 5.«.42£-03
S'JMJL(CAL): 2.)17t«31 S:JMF1(CM>= 3.523C-02 SFnOlH(GM/CA) = 3.70&E-03 MKNET JCAL I =-3. 02i>E«a2 RRICM3-AIH/GM-K ) = 2.170E»00
UCHARICM/SEC)= 3.99I.E403 OVf)l HICM3/CAI =-3. 1 01E »30 OfLE12= 2.'«92E-fl3 ITERPC= 2
XHH3E= 7.510E-C5
THETAC"'EG.CA)= -6.00 P|AIM)= 6.237r»01 \MCH3)= l,5'tli£«02 I(Kl= l'.336E*03 U(CAL/GH|s 7.792EtCl PH£E= <,. 937^-31
OP3IHI AT1/CAI* 2,M5SF»03 HP 1C Al /CA) =-<« .23UE* GO OF JOTH ( Gr/CAl = 5.882£-03 SMOOTH ( GH/CAI = 1 .B9dE-C2 SHVOTHIGM/CA) - 1.89CE-C3
D;COlHICAL/CA)= 2.9GO£«00 OQROTH ICAL/C Al = >i.969E-01 SV DOTH (GM/Cft t = "..USt-O". SDDOIHCGH/CAI a 3.50«.E-03 SLOHT H 1 GM/CAI = 5.1.72E-OJ
S'lMai(CALI= 3.227E»C1 S'IMFT(GH)= 3.9151-02 SFltDTHI GM/CA) = 3.910E-03 HKNEI CCAL > = -3.066E »02 RR (CH3-ATM/GH-K )= 2.373E»aO
VJCHtliiCM/SEOs = 6.515E«-J1 V(CM3)= 1.51',l«02 T(K)= 1.374E«03 UICAL/GM)= 7.751E»01 PHEE- 5.279E-01
OnCTH(ATH/CA)£ 2.l.libf-03
7. V.i,f -0
-------
|H£T> (D?O.CM= -<«. 95 P ( ft TM> = S .«? 7?» ul VtCHJ)= l.S S.OSOF-OI SVBUIH= 3.7it3E-o3 SLDorncGH/CAia
S'J"OIIC»L>= 3.9«><.£«ei ?UHF3«GM>= <, . 733^-0? SFBOTH(GM/CA t = I..173t-03 HKNEKCAU =-3.136E»02 RR«CN3-ATM/GM-KI= 2.879FOO
UCMtMCH/SECJz I..J25E»03 OtfDTH(C*3/CAI =-1.777F*00 OH.E12* <..S78F-03 IIERPC= 2
): 2.271F-03 YNOT= 9.0<<8E-C<< .4QE»02 T/C&>= Z.r06f«JQ WP(C AL/CAI =-Z.bl5E»00 OFJQTH(GH/CA)= 5.882E-33 SMnoTM ( CM/CAI = '2 . S'.'.E- 02 SHVOIH (GK/C4 ) - 2.5<|liE-C3
e.6S2E-ot SVUDIH«.388E-oit SOBOTHI&H/CAI= 3.8&3E-03 SLODIH(GM/C«>=
SFODTH«GM/C A) = <,.3ul«>03 HKNET (CAL>=-3. 162E»02 RR(CM3-ATH/G«-K)= 2.8S2E»00
OVOTri(CM.1/CA» =-t.333£*00 OFLE12' 5.170C-03 M£P,PC= 2
2.7J2E-03 YNOC= I.C7I.E-CJ XNOE(PPM»s 1.019E«J3 SOOIi (GHI= 1.702E-0".
HcIAinEO.CAIi -2. CO P«AIM)= 7.377?»31 «90E«03 U(CAL/GM)= 7.53S£»01 PHEE= 5.963E-01
DPUIH(1IM/CA)= 1.99i«E«ja MiMCAL/t;AI=-l .9",1F«00 OFJDIHIGM/C A) = 0. SMOOTH! GH/CAI = 2.767E-02 SMVOTHCGM/C* ) = 2.767E-03
niriUHICAL/CAI= 3.<.33E»OG OOROIH (CHL/C'l = 7.23I.F.-Ot SveOTHIGH/CA)= <«.i>72E-Oit SOUOTH(Grt/CA» - i».Q73E-03 SLOOTH(G*1/CA) = 5.I.35E-03
S'JHCLICAU* «..7/7t«Cl SUr.Fl(GHI= 5.621t-02 SFROTHIGH/CA> = 4.521L-03 HKNEI (CAL » =-3. 1«1E«02 RR (CM3-ATM/Grt-KI= 2.88fcE»00
UtHi^ (Ci/5£CI= '..'"•m»C3 0«OIH«C!13/C\> S-8.B92E-01 OFLei2= 6.031!-03 ITERPC= 2
3.lODe-Q3 YNOt= 1.230E-03 XHOE(PPMI= 1.166E»03 SOOTL(GH)=
IH£I4(0£G.CA>= -l.CO °<»IM)= 7.622£»J1 «(CM3»= t.<<62E>C2 T(K(= 1.538£»03 U(CAL/GHI= 7.5UE«01 PHEE= 5.963E-01
DP3IH(1H/CAI= 1.72CE»i>i) M?(CAl/Cft)=-l .205E + JO DF JOTH ( GH/CA) = 0. SMOOI H I GM/CAI = 2.923E-02 SMVOTH1GM/C*) = 2.923E-03
tncr THSTMi.7E-01 OHEJ2= 6.3&GC-03 IItRPC= 1
S XNO£= 7.91bE»Jl «(CM3>= l.'Olri(4I-/CAI= 2,?01E-C1 MCICAl/CA)= ».t29F»00 OF JOI H( Gri/CAl = 0. SHOOTHC GM/CAl = 3.168E-02 SMVOTH(GM/C» ) = 3.168E-U
U^CIiTHlCH/CAl: .^.A03F»JG OQR OIH ICAL/C Kl - 3.6u7E-tU SVHDTH (GM/CAI = 0. SDBOIH (SH/CA) ~ 2.3/7E-03 SLOOTHIGH/CA) = C.
SUKGUC»U= 7.3I.6E«01 SUMF;I(GHI=: 7. l/U "-£2 SFHOIH( GM/CA) i 2.3/7i.-03 HKNEt = 1.199E-02 S1VnTMIGM/C»» = 3.199E-03
CTCrtM(CttL/CAI= 3,»23E«00 HGR01 H tCAL/C A) = 1.719E-01 SVCUIIUGM/CA) = a. SDQOTH IGM/CAI = 2.23I.E-03 SLODTH (GM/CAI = 3.
)= 7.515t»Cl SUHF3(CM>= 7.398E-02 SFnOt H(GM/CA) = 2.2J<.£-03 HKNET (CALI =-3.129E »02 RR (CM3-AIH/GM-K )=
i».S.lie»C] OVOI H(CM3/CA» = 1.777E»JO 0£LE12= <«.877E-03 IIERPC= 1
X1NQF(G«)= I..812E-U3 Y.'40E= 1.897E-03 XNO£(PPM»= 1.790E + 03 SOOIt (GMl = 2.96«.E-0'.
-------
IHETA(D*G.CA|a 5.00 P(»TM|* 7.«56E»31 VIC*3I = 1.516E»OZ MKI = 1.619E»03 U(CAL/GM> = 5.877E«01 PHEE = 5.9&3£-01
cp*Mhiu«/CM*-it. = -Z.991E»OZ RR (CN3-AI M/GM-K ) = 8.397E»00
li.533E«a3 OrfOT HIC.13/CAI = 3.101E»00 HFLFIZ^ I..37ZC-03 ITERPC= I
S.Z39E-03 YNOE= Z.060E-03 KNO£(PPMI= 1.9i,i)£t03
THCTAIOFG.CA): 9. CO PIATHM 7.393£>01 V.Z33E»i)l
DPnlh(«IM/CAI = -1.535E»00 HP(CAL/CAI= 6.709£»00 DFJOTHCGH/CA) = 0. SHOOTHIGN/CA) n J.17ZE-OZ SC.VOIH«GM/Cil = 3.17Zc-IJ3
OOCOTH|CAL/C«>= 3.75".E*J3 aOROIH i)l W(CH3I= 1.7Zatf<]Z I(K)- l.G«.6E«03 UICAL/GM): 3.256E»01 PHE£= 5. 9^3i-0l
CPi)IIIIATM/C&) = -l.H7fF»Ou HP(CAL/CA)= 7.987£*aO OF JOIH t CM/3AI= C. SMOD1 H( GM/CA) « 3.068E-02 SMVDtH (SM/C1 ) = 3.u88E-C3
nr.COTHCCAL/CA)- 3.6frlE»00 DQi = l.J^6E-03 MKUEI ICAL I =-Z .7BBE»02 RR (CM3-AIH/&M-K » = 2.»96E»3b
= Z.7(CAL/rA|= fl.i.9?FtOO OF JOTHI GM/C A) = 0. SMOniHlGH/CA) - 3.035E-OZ SHVOTH IGK/C&) - 3.035E-03
P?':CTH(CAl/CA)3 3.<>CliE*00 3QROTH (CAL/C Al = 7.4'tCf-Ol SVBHTH (GI1/CAI = 3. SOOOTH (GM/CA) = 1 .Z10t-03 SLDOTHIGM/CA I = u.
S'JMOt (CiL)= 1.119E + &2 SUHF-MGM>= 8.711E-02 SFBOTH1 GM/CA> = 1.210L-03 WKNET ICAL I =-2.623E*OZ RR(CM3-ATM/GM-KI= Z.396E*00
UCHiP(Cy/SEC)= «..5J3F*C3 OKDTHICM3/CA) = S.Z76E»00 UFL£1Z= 3.315E-03 IIERPC= 1
X-.NO£IG")= 5.MI.E-03 YNOE= 2.229E-03 XNO£(PP«I= 2.1CIE«C3 SODIMGHI= 3.272E-C«i
IHEIAtTdG.CAl = 13.00 P (ATM I = 6 .61 3E» Ul V«CM3»= l.H33E»l)2 HKI= 1.61)= 2.12i.f.«C3 SOOItl(GMI= 3.277E-CI)
THETA(UEG.CAI= 15. OQ P(ATH)= 6.1&8£»Jl V(CM3)= 1.4?&E«02 TIKM 1.633E*J3 UICAL/GHI= 1.139E*01 PHEE= 5.963E-J1
CPniHI AH/C«) = -Z.235E»03 HP(CAL/CAl= l.e'.'.EtOO OFJOIHCGM/C At = (i. SMOOTH (GM/CA» = Z.8<>OE-02 SMtfOTH(GK/CAI = Z.8-.CE-03
OnCJTHlCAL/CA|s ?.l40ZE*00 nQRDTH(CAL/SA)= 7.257E-OL SVOOIH (GH/P.AI = 0. SOBOTH (3M/C A) = 9.021E<0<> SLODTH ( GM/CB) = C.
S'JiCL(CAL)= 1.ZI.&EO? SUKFR(GM)= q.Ol2c-CZ SFnOTH(GH/CA)= 9.CZlc-0
-------
s 17.00 PIATHI* 0.7t«.E»1l VCCM1)= 2..,<)SF»02 T» '/C&>:-2.?53<:»aO H(MCAl./CAI» 1.0|.1E«C1 OF JOf't (Ch/CAl = 0. SMOOI HICH/C«I « 2.693E-62 SHVO I HIGM/C1 1 - 2.69.H-03
00-OIH(CH/C4I= 3.2S2C»Ga OQROIH (CAI/CA) = 6.767E-U1 StfODTHIGM/CAl- 0. SOCOIH (GH/CAI = 7.0BliE-0<, SLOOIHIGH/CAI = 6.
1.325F»&2 SU«F3.S<»4E«5.1 OV01HICM3/CAI = 7.3I*9£»OG OlLi:i2 = Z.61?L-03 IIfRPC= 1
XMNOMGH): 5.85I.F-J3 YNOE= J.3C3E-OJ XNO£(PPH)- 2.1?5E*C3 SOOI£(r,H>= 3.27SE-0'/CA|:-2.2C6E«Oa W>(COL/CA)= 1.0«.3F»01 OF JOIH (C.M/CAJ = 0. SHOOIHIGM/CAI s z:5<= 6.2a7F-01 Stfl)OIHIGM/CAI= O. SOnOIM(GM/C»»= 5.«97E-a<» SLODrH(GM/CA)= to.
SU-ir.llC«LI= l.«.Jlf»32 SUf1FT fcG.CA): 23.00 ' P <»TM I = <• .!•<. OE« 01 V(CM3»= 2.612(-»02 T = 2.239E-02 SMtfOTHC&M/Ci) = 2.23SE-J3
Df:Cniri(C«L/Cei= 2.7 = 2.097E-C3
O^CDIHlCK'./CAIs 2.65CFOC OQI DIM (CAL/CH) - <• .98'.E-0 1 StXIOTH (GM/Cftl = J. SOfll}IM= l.s;<.F*C2 S'JMF'-i (CM) = 9.5i<.t.-02 5FnorH(G:VCA> = 2.»7°i.-0.S6eF*31 OtfOI M(C«3/CAI = l.OSeOOl Oi.Lri2= l.JJ(.l'-03 IiERPC= 1
5.961E-u3 TflOF= 2.33C£-03 XNOE«PPM>= 2.205-:«C3 SOOIt(GM)=
30. tC P(ATH): 3.252CK.1 V(CM3I= 3.39U«02 I(K)= I.lt9<.t.»03 U (CAL/GHI =-6.9<.8E»Dl PHcE* 5.963£-01
nPTlH(4T-/Cll=-1.521E«JC WP(CAL/CA)= 9.961EHIO OF JOIH( GM/C A! = C. SMOOIHI GM/CA) = 1.837E-G2 SHVDIH (GM/C1 1 = 1.837E-03
Or,CCTH(C3L/Ci)3 2.<.li.E»uij TQ?nrn SLOOl HI GM/C4) - C.
)= 1.751E*C? SJMFSCGMIs 9.633E-02 SF3nTHIGM/Cft> = 2.
IHO'CAIEO EHGIKt PE^FOPrtACE AND ENGINE EMISSION
I.H.C.P.(PSI)= /.l.53£»01
I.H.P.eHP)= 2.015£«31
I.S.F.C.«LB/Hr>-H= 2.207£»03
-------
VI. PROGRAM STATISTICS
The computer program is coded in standard FORTRAN IV, and the
version is currently compiled and optimized in FTN (FORTRAN Extended)
mode and ran on a CDC 6600 computer. The computer statistics (based on the
sample case presented in preceding section ) are shown in the Table below.
Compilation Time
Run Time
Core Used
Tape Required
Compilation I/O Time
Run I/O Time
71 sec.
128 sec.
120 K (octal)
1 (7 track)
98 sec.
6 sec.
39
-------
VII. REFERENCES
Kau, C.T., Tyson, TJ. and Heap, M.P. "Study of the Oxides
of Nitrogen and Carbon Formation in Diesel Engines". Final
Report Phase II and III, Ultrasystems, Inc., June, 1975.
2. Gordon, S. and McBride, B.J". "Computer Program for Calculation of
Complex Chemical Equilibrium Compositions, Rocket Performance,
Incident and Reflected Shocks, and Chapman-Jouguet Detonation",
NASA SP-273, NASA Lewis Research Center, 1971.
41
-------
APPENDIX: FORTRAN LISTING OF DIESEL ENGINE PROGRAM
The subroutines follow the main program are listed in alphabetical
order.
43
-------
'DECK MAIN
PROGRAM MAIN(INPUT, OUTPUT , TAPF. 5= INPU T, TAPE& = OUTPUT , TAPEtt )
C SINGLE-CYLINOERED DIESEL ENGINE ENGINE ANALYSIS
C CYCLE THERMODYNAMICS MODIFIED • <1 2/2/7i»,CJK)
C CYCLE THERMODYNAMICS MODIFIED (12/5/7^,CJK)
C EQUILIBRIUM COMPOSITION CALCULATIONS MODIFIED (1/30/75,CJK)
C VITIATION ADDED AMD IGNITION DELAY MODIFIED (2/12/75,CJK)
C Q-S THIN FLAHE IN FINITE SPACE FOR HET. NO RATE INCLUDED (3/27/75,CJO
C NUMERICAL SCHEME REFINED ( ^/30/75 , C JK)
C ENTIRE PROGRAM CLEANED AND STORED IN A PERMANENT FILE (5/12/75,CJK)
C VERSION B IMPROVE COMPUTATIONAL EFFICIENCY r)Y 20 PERCENT (6/1/75,CJK)
DIMENSION 100(3)
DIMENSION DT3DTH(1QQ) ,ONODTH(100),DMSOTH(100) ,OAPDTH(1QO) ,
1 DP HO TH (ICO) ,XFIDTH(1GG) ,XAIOTH(1QO>, Q8MUGG),OMDDTH(100),
?. OMVOTH(ICQ) ,OCMDTH(100),BTABM (1GG),G9M( 1 0-0 ) , A AM (10 0) ,88M(100) ,
3 YNO(IOO) ,YS (100) ,XMNO(100)
DIMENSION TBMO(IOQ),DT3DTO(1CG),XMNOO(100),DNODTO(100),XMSOTO(IOC)
2 ,DMSDT0(100),XMFBMO(100),XMPAMO(iOO)
3 , XFIDTO(10Q),XAir>TO
-------
AM/ INT1,IN02,ISOOT,IBUG ,NTES,NPRT,MAXIL,NSHEL
1 ,NSZG,IDROPPflRATEP,ISPCYP,IWETBT,IDT AIL,NlTST
"2 , DTHMIN,DTH>1EO,OTHMAX,THEMAX
3 ,F:3SIT,EPSIP,FPSINO,EPSIST
N A MEL 1ST/-EPA RAM/ CA,C8.CNOR, CVIDI,CMIX,SIEN,DSOOT,ASOT A,A S3TP
1 ,HUTIM,OTPHY,3EFJ ,COCHG,CEVAp,CBUPN,AIGNO
2 ,*HOQ,CPOAR,XTLY02
MAMELIST /PIITL/ THETflI,THEHAX,P,T,V,UA,HA,XMAO,AMWA ,FflRA,PHEA,
2 OXST,X02A,COEN,HHV,HCOM,HFFL,HFJ,VC,VOIS,VFJO
C CONSTANTS
C UNIVERSAL GAS CONSTANTS IN CM3-AT^/G-fOLE-K
C UNIVERSAL GAS CONSTANTS IN CAL/G-MOLE-K
C THERMAL CONDUCTIVITY SAL/CM-SEC-K
C S-3 CONSTANT IN CAL/SEC-CM2-K4
STG= l.o5.38E^!2
C HEAT OF FORMATION (CAL/MOLE) OF C02, H2C AT 29? K
HFC02=~C?'+ «'"'C5E3
HFH20=-6S .3 E5
'OHVH20= lu.5E3
HFH20G= HFH20+ 1HVH20
C CONVERSION FACTORS
PI= 3. 14159 2 55'-t
XJ= 4.18574E7
ATD= 1.G1325E6
OTR= 3.14159/13G.
RORU= R/RU
ATOXJ= ATO/XJ
C INPUT EQUILIBRIUM COMPOSITION T3RLES FROM TAPE3
HALL TAPE IN
C SPECIES TABLE RANGES
PRANGi= ?TB(1)
PPANG2= PTR(NPTO)
TS?A"JG1= TT3(1)
T^ANG2= TT3(NTT3)
PHE?G1= PHETSd)
PH£RG2= PHET3(,MaHT3)
'C PPE-SET ENGINE PARAMETERS AND FUtLING PROPERTIES
HFFL= 0.0
XHRQ= Q.O
FD£N= G.G
HCOM= O.D
READ (5, GIVEN)
WRITE(6,GIVEN)
1 CONTINUE
C PCE-SET CONTROL PARAMETERS
C INTEGERS
IN'01= 1
IN02= 1
ISOOT= 1
NPRT= 2
IOTAIL= G
I-7ATEP= 0
IS P " Y P = 0
NTER= 5C
NSZG= 3
45
-------
NSHEL- 4
NAXIL= 20
MITST= 50
I8UG= 0
IWErBT= 0
ICRITA= Q
NSTROK= 4
INTEGRATION STEP SIZE (IN DEGREE C.fl.)
OTHMIN= 1.0
DTHMED= 2 .5
QTH'4AX= 5 .0
THEMAXr THEVO
RELATIVE ERROR BOUNDS
EPSIT= 2.CE-3
EPSIP= 2.GE-3
EPSINO= 1.0
EPSIST= 1.0
PRE-SFT EMPIRICAL CONSTANTS
AIR/PROOUCT MIXING
CMIX=7.P.E-3
CVI3I= G.I
HETEROGENEOUS 8RUNING RATE
CBURM= 0.0
XTLY02= G.02
VAPORIZATION
CEVAP= 0.276
HUTIM= 2.0£-«f
IGNITION DELAY
AIGNO= l.«f60E-'t
EMPIRICAL PARAMETERS ACCOUNT FOR SWIRL EFFECT ON 3PRAY GROWTH
SEFJ= 4.3
NOZZLE DISCHARGE
COCHG= 1.0
IGNITION DELAY
OTPHY= 2.GE-t*
HEAT CONVECTION
CA= Q.26
CB= 0.75
DROPLET
RHOO= 3.0E-4
CPSAR= 0.35
NO KINETICS
CNOR= 5.37
SOOT KINETICS
SOE^=2.0
DSOOT=1.0E-t*
ASOTA= 3.52 .
flSOTP- 3.52
COEFFICIENTS FOR VftPOR PRESSURE (COX-ANTONIE EQ.)
A= it.091 •
B= 1324.77
C= 53.74
°HEFG= 3.0
WRITE(6,107)
INPUT CASE IDENTIFICATION
PEAO (5,99)(IQD(I),1=1,8)
IF (EOF(5M 999,34
34 CONTINUE
Wt?ITE(6,99)(IDO(I),I=l,3)
MGOIFIC1TIGM OF CONTROL PARAMETERS THROUGH NAMELIST INPUT
46
-------
*EAO < 5, C FAR AM)
WRITE (6,CPARA*)
C MODIFICATION OF EMPIRICAL PARAMETERS THROUGH NAMELI3T INPUT
READ <5,EPARAM)
WRITE ( 6, E PAR AM)
Z MODIFICATION OF ENGINE PARAMETERS AND FUELING PROPERTIES THROUGH INPUT
READ (5, GIVEN)
UKITE<6, GIVEN)
DTROT = FPM* 3,1<*159/3C.
nTHOT=5.0*RPM
OTOTH=1.0/OTHOT
C MFAN SWIRL AND MEAN PISTON VELOCITIES
USI= C .25
UP3AR=
C FUEL COMPOSITION C
-------
= (TFJ-TBPF) 'CPFL-t-UFLBP
HFJ= UFJ + PIMJ/FOEN*ATOXJ
C CRITICAL FUEL PROPERTIES
UFC*IT= < TCRITF-T8PF) *CPFLf UFL3F
C ENGINE DISPLACEMENT AND CLEARANCE VOLUME
VDIS= 0.^*S.l
-------
ra= TI
RHO = XMAO/V
CALL TPRQPdA.^.VXAiCVAtCPAiUA ,HA,AMWA,GAMAfRA,PHEA)
CALL SFECY(P,TA ,PHEA,AMWA,XH2A,XH20A,XCOA,XCO,2A,XN2A,XNOA,XOHA,
XHA,XOA, XNA,X02A,XCHt*A>
YMOA= XNOAM3J ./AMWA.)
XHNOA- XMA'YNOA
XMOANE= XNOA
XMNOAO= XMNOA
YSA= 0.0
XMSOTA= G.0
XMSTAO= XMSOT4
S(JMM= XMAO
EO- XMAO*UA
QTHETA= DTHMAX
PRINT IIMITIAL CONDITIONS
WRITE(6,INITL)
WRITE <&,9fl)
SET ZERO
G F G = 0 . 0
STAFG=O.Q
XMFL=G .0
XHFG = C .0
XMO =
XMV =
XMFV =
XMFLO=
XMFQ8=
XMFLB=
XMFP3=
XMAP3=
XHAFA=
SUMFJ=
SUMF8=
SUMWK=
SUMQL=
WKN£T=
SUM3M=
OPOTH=
nTIOTH
TFL= 0
HFV= G
UFL= 0
TFG= G
UFG= G
TFL3=
UFL3 =
HFOS =
TFGG =
11= 0
111= G
IPRT =
IIOLO=
KOUMT=
IGEMO=
0.0
0. 0
0 . G
0. 0
D. 0
0 . 0
i] • 0
0 . G
0 . U
0. D •
0 . 0
0. 0
G. 0
0. 0
0. 0
G. 0
= 0 .0
.0
.;)
fi
• J
r,
• u
.0
0.0
0.0
0.0
0.0
G
r
0
0
aRT THE INTEGRATION
CONTINUC
49
-------
C INTEGRATION STEP SIZE CONTROL
IF (THETAI.GE.THEIJ) OTHETA= OTHMIN
IF ((THETAI.LT.THEIJ) .AND. ((THETAI+OTHETA).GT.THEIJ)) DTHETA=
1 THEIJ-THETAI
IF (SUMFFV.GT .XMFJ95 ) OTHETA= OTHMED
IF ((THETAI + QTHETAI.GT.THEVO) OTHETA= THEVO-THETAI
OTH£T2= 0.5*OTHETA
DT= QTHETA*DTQTH
OT2= 0.5*OT
C CHARACTERISTIC VELOCITIES
UP =OSDTH*OTHOT
XXX= USI*USIHJP *UP
UT = SORT(XXX)
XXXX= {XMAO*XXX+SUMFJ*VFJO*VFJO)/(XMAO* SUMFJ)
UCHAR= SORT(XXXX)
C CHARATERISTIC RENOLOS NO.
XMU = '1.25E-5MT **1.5)/(T *110.)
REP3AR= RHO*UPBAR*:J£/XMU
REI= RHO*L)T*DE/XMU
REJ= P,HO*UCHAR*OE/XMU
C*** TOTAL CONVECTIVE H,T,
CALL CONHTCREPBAR ,T,OQCDTH,CA,CB)
SKAPB= 0.0
SV3QTH= 0.0
DFGOTH= 0.0
OFV3TH= 0.0
OFJOTH= 0.0
SLDDTH= 0 .0
AP9QTH= Q.0
XMSOTU= 0.0
IF (THETAI.LT. THEIJ) GO TO 8 C
IF (IBUG.NE.Q) IPRF=0
IF ( (THEFAI-.OTHETA) .GE .THEIJ) GO TO 3
C ESTIMATE SPRAY TRAJECTORIES
OELP= PINJ- P
CALL SPRAY(RHOA,OMEGA,QELP»SEFJ,COCHG)
C INITIAL FUEL PROPERTIES
CALL WETOT{P,TA,AMHA,AMWF,A,B,C,TFL,DHFVP)
UFL= UFFL+- CPFL*(TFL-298.)
TFG= TFL
HFL= UFL> P/FQEN*ATOXJ
HFV= HFL+ DHFVP
UFG= HFV- RFG*TFG
TFLO= TFL.
UFL3- UFL
TFGO= TFG
IF MC'RITA.E.Q-.O). GO TO 17
HFOS= UFC9IT
TF03= TCRITF
GO TO 3 .
17 CONTINUE
HF03= HFL
TFOS= TFL
3 CONTINUE
C RATF OF FUEL INECCTION
IF (THETAI.LT.THEEIJ)
1C ALL FTNJN(THETAI,OFJTTH,XMFJ)
IIOLO= [I
C ESTIMATE THE VAPORIZATION OF FUEL SPRAY
IF (KOUNT.GT. NSS ) GO TO 25
50
-------
IFPsT-0
CALL EVAP (P, T,T A, TFL ,CPA , OMEGA , F IN , RHGA , XX XX , XM AF A , KOUNT ,CEV AP ,
1 AIGNO,XMSOTU)
XKAA = XMA-XMAFA
DFG3TH= ,( XXXX-XMFG)/DTHFTA
IF (XMAA.LT.0.3) XMAA=0.0
IF (XM AA.LE.O. 0 ) KOUNT=NSS
IF dl.LE.O) GO TO 25
IGENO- IOFNO+ 1
IF(IIOLD.tQ.II) GO TO 25
INITIAL CONDITIONS FOR NEW ZONE
IG£MD-= 0
IIOLD1= TIOLO+ 1
00 21 I = IIOLOi, II
AMHBM ( I ) = AHMA
XHAPBI= XM3M (I>
OAP'DTHm = XMAP3I/OTHFTA
X02(I) = X02A
XNONEQd )= XNOANE
YNO(I ) = YNOA
X,-'NO(I )= XHAo:5I*YMO(I)
TSM(I) = T A
UCM(I) = ua
HSH (I) = HA
CPBM(I)- CPA
P n M ( I ) = R A
AFR(I )- APR A
PHEd ) = PHEA
ETAA= 1.0/(i.0f AFRA)
ALPA= 1.0- ETA A
(l)= XMBMt I) *ETAA
( i) = XMSM { I) *ALPA
XHFLI(I)= DLOOTH(I) 'DTHETA
3TARM(I )= 8TAA*(XM3M(I J/XMA)
GBM(I )= GA*(XM8M(I ) /XM A ) **0 . 6666667
8TAA= BTAA- 3TA3K(I)
QA= GA-GBMd)
YS(I)= XMSOOT(I)/XM3M(I)
SL03TH= SLDOTHt DLDOTH , XMFLI d)
00 aC L=1,NS'ZG
WRITE(6,1G9) L, Did ,LI,XNOI(I ,L),OMFLI(I ,L)
20 CONTINUE
21 CONTINUE .
SUMBM- SUM3M+' 3MAP3
XMA= XMA- SMAPB
Ic (XMA.LT.G.Q) XMA=C.O
XMAA= XHAA- SMAPB
IF (XMAA.LT.0.0 ) XMAA=O.Q
IF CX^AA. LE.O.Q ) KOUNT= NSS
XHFA= XMA*ETAA
XMPAA= XM£*AL°A
XMNOA= XMA* YNOA
XMSOTA= XMfl*YSA
flP3'JTH= SMAP3/DTHETA
51
-------
25 CONTINUE
nFVOTH= OFGOTH* SVBOTH
80 CONTINUE
. ITERPC= 0
P0= P
T0= T
TAO = TA
TFGO= TFG
TFLO= TFL
WPO= WP
HAO= HA
HFGO= HFG
HFOSO= HFDS
DPOTHC= OPOTH
DTOTHO= OTIDTH
XMOO = XMD
XMVO = XMV
XMFVO = XHFV
XMFAO= XMFA
XMAP90= XMAP3
XMPAAO= XMPAA
XMFLOO= XMFLO
XMFP80= XMFP3
XMFQ8C= XMF08
XMNOAO= XMNOA
XMSTAO= XMSOTA
SUMFJO= SUMFJ
IF (II.LE .0) GO TO 53
00 52 1 = 1 ,11
T5MO(I)= TBM(I)
XMNOO(T)= XMNO
-------
IF (II .LE.O) 30 TO 79
C BURNING SYSTEMS
C MIXING FATE OF AIP.-3URNING SYSTEM
CALL A MIX (XMA.A, SUM'3?-1, UCHAR ,8TA 3M , AFR ,OMQr>T H , DHVOTH ,CMIX ,C V ID I)
00 18 1=1,11
Sf»QOTH = SMOOTH* OMOOTH(I)
S*VOTH= SMVQTH* DMVOTHd)
Id CONTINUE
ETAA= 1.Q/(1.:J4-AFRA)
ALPA = 1.0- ETA A
XAAOTH= - ALPA'SMOOTH
XFADTH= - ETAA*SMOQTH
C EQUILIBRIUM CALCULATION
CALL TPPOPZ
C SPECIES DISTRIBUTION
CALL SPECYZ
00 55 1=1,11
VRM(I)= V*8TA3M(I)
55 CONTINUE
C DIFFUSION BURNING RATE OF THE SYSTEM
C ESTIMATE HETEROGENEOUS NO PRODUCTION1 RATE
CALL FLAMEZ
-------
SUM5= SUM?* AAM(I)*XMBM(I)*(R9M(I>+TBM{I)*PRPT3M(I))
71 CONTIMUF
79 CGNTIHUE
C LIQUID FUEL SYSTEM (VAPORING)
IF (XMFL.LE.0.0 ..OR. IMET3T. EQ..Q I GO TO 27
C THE TEMPERATURE OF VAPORIZING LIQUIO FUEL IS ASSUMED TO BE THE STABLE
C HET-BULR TEMPERATURE
GALL W£TBT
• VA=V*eTAA
RHOA= XHA/VA
CALL RAOHZtTA, XMFA,VA,ORAOTH)
DQROTH= DQRDTHf DRADTH
QCAQTH=GA*OaCDTH
QEVOTH= (HFV-UFL)*OFVOTH- (UFJ-UFL)*QFJOTH+ XHFL*CPFL*OTLDTH
QA= QRAnTH+OCAQTH+QEVDTH- (HFJ-JFJ)*DFJDTH
XX1= (RA*TA/P-PUPP-TA*PRPP)*XMA
XX2= (PUPT+RA*-T A*PRPT)*XMA
XX3= XMA* (PUF»F* TA*?RPF)
XXi+= 0.0
SNOOTH= 0.0
SMSOTH= Q.0
54
-------
IF (II .LE.O) GO TO 38
DC 37 1=1,11
XX
-------
XFIDTO (I)= XFIOTH(I)
XAIOTO(I) = XAIDTH
XMFQB= XMFQBO+
Xf!FA = XMFAO +
XMPAA= XMPAAO+
AFRA= XMPAA/XMFA
F6RA= 1.0/AFRA
PHEA= FARA/FAR35
SUM3M=Q.O
XMFL8= Q.Q
IF (II.LE.O) GO TO 5
00 9 1=1,11
I)= XMFBMO(I)* (XFIQTHm+XFIDTOm ) *DTHET2
I)= XMPAMO(I)*- (XAIOTHdJ + XAIQTOm >*OTHET2
XHBM
-------
X;-:FLB= XMFLD- XMFDQ
XMFG = XMFV- XMFPB
IF (XMA.LT. (i.OE-5*XMAO) ) XMA= 0.0
IF (XMFL.LT.0.0) XMFL = 0.0
IF (XMFG.LT. (1. QE-5*XMFJ) ) XMFG= 0.0
GA = 0.0
GFG= 0..3
STAA= o.o
8TAFG= Q.G
IF (II .L£ .0) GO TO 29
00 .30 1 = 1, II
3TA3M ( T)=C.O
GBM (I ) = 0.0
30 CONTINUE
29 CONTINUE
SUMR=0 .0
SUMG=G .0
SUMU=G .0
SUMRT=O.Q
IF(XMA .LE.O.Q) GO TO 31
TST: TAO + (QTAOTD+QTADTH) *DTHET2
IF (XMNOA .LT .G . 0) XMNOA= 0.0
XMSOTAs XMSTAO* ( AMSOTO* AMSOTH ) *OTH£ T2
IF (TA .LT .TP.ANGl .OR. TA .G T . TR ANG2 ) WRITE ( o , 103.) THET A I , T a , PHEA , P ,
1 L'TAOT'H,QTADTO, TAO
IF (PHEA .LT.PHE9G1 .OR. PHEA . GT . PHERG2 J WRITE(6tlC8) THETAI,TA,P,
i P.HEA , XMFA,XMPA A
YNOa-= XMNOA/XHA
XNOANE= ( AMWA/ 30.3 'YMOA
Y 3 A = G . G
IF (XM AA . GT. 0.0 > YSA= XMSOTA/XMAA
GA= (TA-TM) *( GA
J= SUM1?* XM4*RA
SUMU= SUHU + XMA*UA
SUMRT= SUMRT+ 3TAA
31 CONTINUE
IF (XMFG.LE.0.0) GO TO 73
TFG= TFGO+ (TF30TO«-TFGOTH) *DTHET2
UFG= UFLOP* (TFG-T8PF)*CVFV
IF ITFG.LT.O.0) WRITE(6,1CO) TFG,TFGOTH,AAFG,33FG,OPDTH,OFVDTH
1 ,X,HFG
RTAFG=X,WFG*RFG*TFG
GFG= (TFG-TW)*(RTAFG*-(.6666667))
SUMG= SUMG+ GF3
SUMR= SUMP* XMFG*RFG
SUMU= SUMU* XMFG*UFG
SUMRT= 3UMRT+ BTAFG
3? CCNTTMUE
SUMU= SUHIJ+ XHFL*UFLf XMFL8*UFL3
IF (II .LT .1) GO TO 75
DO 72 1=1,11
IF (I . GT. HOLD) GO TO 67
TnM(I)= TSMOm+ (OTBOTOm+OT30TH
-------
OMOAVX= 0.5*(QMOOTH(I)+OMDOTO(I))
QMVAVX= 0 .5* (OMVDTHd) tOMVOTO(I) )
OLBAVX= 0.5*.LT.O.Q) XMNO(I)= C.O
XMSOOT(I)= XMSOTO(I)* (OMSOTO(I)+DMSOTH{I})*DTHET2
IF (TBM(I).LT.TRAN51 .OR. T9M(I) .GT .TRAN62) WRITE(6,109) I,THETftI,
1TBMII ) ,PHE(I),OT80TH(I),OT30TO(I),TBMO(I) ,OPDTH
2 ,OL8DTH(I) ,OV30TH(I) .OMOOTHd) ,DMVOTH(I)
IF (PHE(I).LT.PHERG1 .OR. PHE {I) .GT.PHERG2) WRITE(6,109) I,THETAI,
1 T3M(I),PHE.(I)
YNOd)= XMNO(I) /XM3M(I.)
XNONEO(I)= (AMM3H(I)/.^0.)*YNO(I)
YS(I)= XMSOOTCI)/XHBM(I)
8TA3M(I)= XMBH(I)* RBM(I)* TBM(I)
GBM(I) = BTA3M(IJ*»{,6666667)*(TBM(I)-TW)
SUMG=5UMG+GBM(I)
SUMU= SUMU^- XM3M(II *UBM( I)
SUMRT= SUMRT+BT ABM (I )
SUMR= SUMR4-XHBH (I)*RBM
-------
C GROSS CYLINDER PROPERTIES
c AVERAGE!! DENSITY SNO INTERNAL ENERGY
KHQ = SUMM/V
U=SUMU/SUMCKM
C AVERAGED GAS CONSTANTS IN CM3- ATM/G1 -K
RR = ( S UMR /SU MM ) *R ORU
C AVERAGED PRESSURE
=>=' SUMRT/VRO^U
C AVSPAGtC TEMPERATURE
T= P*V/(SUMM*F,R)
C OVER-ALL POLLUTANTS
XMNOE= XMNOA
SOOTE= XMSOTAf XMSOTU
IF (II .LE.O) GO TO 60
00 59 1=1,11
300TE= SOOTE* XMSOOT(I)
XMNOE= XMMOE+ XMNO(I)
59 CONTINUE
bO CONTINUE
IF (ITEPPC.EQ.O ) GO TO 64
3 ACCUPACY CHECK
CH
-------
IF (II .EQ .1) GO TO 10
IXX=IPRT/NPRT
IXX=IXX*NFRT
IF ( IPRT.NE.IXX ) GO TO 77
10 CONTINUE
C PRINT OUTPUT
C OVER ALL ENERGY BALANCE
£1= SUMU-EO
E2 = HFJ*5UMFJ- WKNET- SUMQL
DEL£12= (El- E2)/(XMFJ*HCOM>
C AVERAGED POLLUTANT FORMATION
SUMMW= XMA*AMW4* XMFG*AMWF
SUMPAE= XMPAA
SUMPFE= XKFA* XMFL* XHFL3+ XMFG
IF (II .LE.O) GO TO 23
00 16 1= 1,11
SUMMW= SU*MW+ XM3M(I.)*AMWBMtI)
SUMPAE= SUMPAE+ XMPAM(I)
SUMPFE= SUMPFE* XMFBM(I)
16 CONTINUE
?J CONTINUE
PHEE= SUMPFE/SUMPAE/FAROS
AMWE= SUMMW/SUMM
YNOE= XMNOE/SUHM
XNOE= (AMWE/JO.)*YNOE*1.0E6
C GROSS OUTPUT
WP3 = 0 .5* (WP t WPO )
OPOTHB- 0.5MDPOTH + OPOTHO)
OFJOTB= Q.5*(OFJOTH+ OFJOTO)
nQCOTB= G.5*(OQCDTH+ DQCDTO)
OQRDTB= C .5*(OQ;?DTH+ OQROTO)
SMOOT8= 0.5*(SMOOTH* SMDOTO)
SMVDTB= 0.5*(SMVOTH+ SMVOTOJ
SVBOTB= 0 .5MSVBDTH+ SVBOTO)
S09QTB= 0.5*(SOBOTH* SOBOTO)
SLOOTB= 0 .5*(SLOOTH* SLOOTO)
SF30TB= SV30TB* SOBOTB
WRITE (6,101) THETAI,P,V,T,U,PHEE,
1 OPDTH3,WPB,OFJOTB,SHOOTS,SHVDTB,
2 OQCOTa,OQROTB»SVeDTB,SDBOT8,SLOOTB,
2 SUMQL»SUMFB,SFBOT8»WKNET,RR,
J* UCHAR,nVDTH,OELElZ,ITERPCt
5 XMNOE,YNOE,XNOE,SOOTE
INEW'P= INEWP+ 1
IF (( (INEWP/7) *7.EQ.INEWP) .AND. (IDTAIL.EQ.i3l) WRITE(6t98)
IF (ID TAIL.Ed.0) 60 TO 77
C DETAIL .OUTPUT. ;
WRITE (6,108). .-•.-'
XXXXX= XMFA* XMPAft
WRITE(6,1C5)XHA,TA,UA,PHEA,3TAA,XMNOA, XNOANE,XMSOTA»XXXXX,XMPAA,
1 XMFA
IFCTHETAI.LT. THEIJ) GO TO 77
WRITE(&,10^)XMFG,TFG,UFG,PHEFG,BTAFG
WRITE(6,i03) XHFL ,TFL ,UFL
WRIT£(6,103) XMFL8,TFLB,UFL8
IF (II .LT . 1.) GO TO 77
00 78 1=1,TT
WRITE(6,1G6J I,XM3M(I),T3M(T),UBM(I),PHE(I),BTA8M(I>,XMDF(I),
1 XNOMEQd ) ,XMSOOT (I) ,XMFLI (I ) , XMPAM(I) ,XMF3M(I)
7* CONTINUE
60
-------
IF (ISPCYP.EQ.O) GO TO 12
WRITE (6, 110)
IF (XMA.GT.C.j) HRITE<6,lu9> 1 1 , XH2A , XH20A ,XCO A , XC02A , XH2 1 , XNO A ,
1 XOHA,XHA,XOA, XNA, X02A, XCHM
00 11 1=1,11
WRITE (6, 109) I,XH2CI),XH20{I),XCO= 300.
VST?= (P*V/T)* ( TSTP7PSTP)
XISOOT= SOOTE*! .u£3/(VSTP*l,OE-{j)
WRITE (6,1 16) XIMEP,XIHP,XISFC,XISOOT,XNOE
PROCEOE TO THE NEXT CASE
GO TO 1
FO'MAT STATEMENTS
97 FORMAT ( 1X,*ITE°ATIQM HOES NOT CONVERGE TO THE CORRECT TEMP*/
1 2T5,1P7F10.37)
93 FORMAT (1H1)
99 FORMAT <8 A 13)
100 FORMAT (8E1 0.3)
1.01 FORMAT (//1X,*THETA(OEG.CA)=*,F3.2, 3X , *P ( ATM ) =* , 1PE10 . 3 , 2X , *V ( CM 3 )
1=*,£10.3,2X,*T(K)=*,F1Q.3,2X,*U X , * XMSOOT (G?-1) *,2X,
2 ?XMFL I(GM» *,2X , * AIR(GM) *, IX,* FUEL (GM) *)
61
-------
103 FORMAT (IX ,*L .FU EL* , 1P9E1 2 .3, OP 2F7 . <*)
10 ^ FORMAT (lX,*G.Fl)EL*,lP9E12.3t QP2F7.1+)
105 FORMAT (IX,* AIR *, 1P9E12 • 3 , OP2F 7.<+>
1G6 FORMAT (IX ,!*» ,2X , 1P9E12. 3 » OP2F7 .4 )
107 FORMAT (1H1)
108 FORMAT( 5X.1P11E11.3)
109 FORMAT (1X,I5,1P12E10.2)
110 FORMAT (//5QX,*MOLF FRACT IONS*//I X, *SYSTEM* ,<*X , *H2* , 8X ,*H20*, 7X ,*CO
l*,8X,*CC2*,7X,*M2*,8X,»NO*,8X,*OH*t8X,*H*t 9X,*0*i 9X»*N*,9X,*02»,
2 9X,*CHU*)
ill FORMAT (IX,'FORMATION OF A NEW SYSTEM *,15,1P10£10.3)
112 FORMAT (/5X,*L*t3X,*0(CM)*,3X,*NO. DROPS*,2X,'MASS(GM)*)
114 FORMAT(/1X,» RATE INFORHAT ION*/1X ,*S YSTEM OT3DTH* , 3X , *C'MOOTH* ,
999 CALL EXIT
END
62
-------
rU°.PnUTTNF AMTX (XMAA,SUMEV,HCHAR,PTA9^, AFP, OPEC TH,nMVCTH,CMTX,
THIS f-.CUTTNf F^TIfATES THE RATF CF MIXING BETWEEN AIR AND BUPNIfsG ZONES
niMENSICN OMGGTHMOO) ,8TASK< 100) , AFR (100) ,Df VCTHtlOO)
COMMON/ INT EG S/ IN01,IMO?,ISOCT,IW£TBT,NPRT,ICTAIL,NTER,NAXIL,
1 MSHEL t NS ZG , NT TS T , I?UG , 1 1 , 1 1 1
VFJC.
= VC+
L3AR= V/AP
CCMIX= CVIX'UCHAR/XLCHAR/RPM
IF (XMAA.LT.0.0) XMAA=0.0
5Uyr3Tfl= 1.0
DO 1 1=1,11
SUMOra= 3HMPTA*. OTARM(I)
1 rCNTINUF
no 2 1=1,11
n*'D-1TK( I)= (QTASN(I)/SUM8TA)*GMADTH
C%'V3Th(T)= CVIOI*nMOOTh (T)
? CONTINUF
FKO
63
-------
»OFCK BDATA
ILGCK DATA .
C POLYNOMIAL COEFFICIENTS FOR THERMOOYNAKICC DATA OF C(K)H(1.7N) COMBUSTI
0 PF'.OOUCTS U(P,T,PHE) IN CAL/GH-OF AIR AND R(PfT,PHE) IN CAL/Gf-OF-A IR^K
C P IS TN ATM, T IS IN K, PHE IS EQUIVALENCE RATIO
C***** H/C=1.71
COMMON /HPCOE/ AA1(5) , BB 1 ( 6),001(11)»&R1<8), AA2(6) ,E02(6)»DC 2(11)
1 ,PR2(8)
C LEAN PRODUCTS
DATA A A 1
1 / -5.5<*9?336E*01, 7 . 837^7'58E-02 , 1.673*»7«»5E-0«» t -1.1376329E-07,
D ft T A B B1
2 -l.£*i*35963E-ll, 9.9489198E-16 /
DATA 001
1 / 1.370G202E»01, -1. 10 17 39CE + 0 0 , -«=. 71559C9E - 0 1, -2 . &7?0<*69E + 0 1,
2 7.2
-------
* D E H K r C ! s1 H T
SUBROUTINE CCNHT ( RE I , TT , CCCH TH , CA ,CP )
c THIS POUTINE FSTT^-ATES OVER-OIL CCNVECTIVE HEAT TRANSFER TO AN UNIFORM
C TEMPEETUPEO CYLINDER WALL BASED CN MASS AVERAGED GAS TEMFERATU'RE
CCMMON/CCMVF/ X J , A TO , OTR , X K , S I G t R ,PU , C T DT H , D THOT , OTRO T
COMMCN/ENGEO/ OEtRFW,PL,VCtSC,S,USI,CR ,RF^fTK,ONOZZ,^lNOZZ,D8CWL1
1 VFJO
HW-CC ^VK* (RET**CB)/CE
AH= G.7P
AP=/\H
AT= AHfAP+ASLVI
GTG- HW'AIMTI-
RETURN
E^!D
'DECK F P F
FliNCTICN' FRFJ?)
C ERRHP FUNCTION EVALUATION
• X = 7
A = 1 . 0
IFfX ,t.T .0 . ) A--1.G
X = ft * X
XI=- (X**?)
T-l. 0/( 1. «-.3
"MIX2 = EXP (XT
RETURN
CND
65
-------
* 0 F C !< I? V a P
SUE°OUTTNE EVAP
DJF,XS(20),YS(?0,'-*) ,yS(20,^),^HCF(^0,'4) ,AFT(20,t»),
1 PTIM<2fl,U),ETAI{2a,5) ,OVS(20i«»l t GOSZC3) ,S2BAR ( 31 ,
2 C(25,«4,3)
7 AFV(25-, u)
«. IOIG(25ftt
PF= 1.0
PR3= FR**0. 333313
= Q.5*G9CWL
CMFIJT= njF'TT
XMUA= l.?5E-?*/(TAt-110.)
XL.= XL293*nTCRTTF-TL)/
TF (TIM.GT.DTINJ) GO TC 2k
C ISSUING A NFW SUBSYSTEM
111= III>1
DC 22 J=l, NSHEL
TAFV(1II,J)= TA
XMSCT (III ,J)=0. 0
IDIGCIII, J)=a
TO (ITT. ,J)= T
POdlT, j)= P
DC a3 L=l, NSZG
0 (III , J,L)= SZBAf
-------
11 CCNTIt'UJF
WCITF(&,100) I,J
GO TO f
12 CONTINUE
TnMl = TO-l
OPT- PTIfMIHtJ) - PTIfMTCKl.J)
npTl=(FTIM(ID,J)-TIMI)/npr
OPT2- (TI^T-PTTMdDMl »J») /DPT
XSS(I,J)= XS(IOMl) »OPT1 * XS(ID) *OP72
YSS(I,J)= YSdOMl , J)*0DT1 * YS(IO,J)*DPT2
1VSS(T,J)= OYSdOMl ,J)*DPT1 4 n YS ( TG , J) *OPT 2
RHQFT= PHOF{nm,J)*DPTl*RHOF(ID,J)»OPT2
AFTT= AFT= SCRT(02) '
Id nxXX= GOS7(t) Mi.,l-(D (I, J,L)/SZ3AP(L) )**3)
XMFVS(I,J)= XHFVS(I,J)# GXXX
"? CONTINUE
SAVFflF= AFTI/XMFVS (I,J)
AFV(I,J)= SAVEAF
TAFV(ItJ)- !TL*AFV(I,J)*TA)/(1.Q+AFV(I,J))
C SOOT FO°H.flTICN
flFVJ= AFV/(I,J)
T/>FVJ= TflFV(I,J)
VIJ= 2.0*PI*TfSS
-------
7 CONTINUE
C COLLECTING THE RUNNING SYSTEMS (I.E. DEFINING BURNING RATE)
11= 11*1
KOUMT= KOUNT*!
XMSGCT(Tt)= XMSQT(I,J)*NNCZZ
XM'3M(II)= NNCZZ*AFTI*OMFIJT
nV3QTh(II)= NNOZZ»XMFVS
06)
( XSS
( YSS
(DYSS
(XMFVS
( AFV
(TAFV
(III
(III
(III
(III
_
-
-
-
(III-
(III
-
1*1
1*1
1*1
1*1
1*1
1*1
,J)
tJ)
,J>
,J)
,J)
,J>
,1=1,
,1 = 1,
,1=1,
,1 = 1,
,1=1,
,1=1,
III
III
III
III
III
III
)
)
)
)
1
)
CONTINUE
WRITE (6
FORMAT (
FORMA T<
FORMAT
FORMAT (
FORMAT (
FOPMAT(
FORMAT (
FORMAT(
.RF'TUP-N
END :
,99)
/)
IX
(1
IX
IX
IX
IX
IX
.*
X,*
i*
,*
!*a
,*T
V*
I=*,I3,»
J =
*
SYSTEM
X *, IP
10E1
Y »,1P10E1
/FV *,1P
AVF *, IP
DY *,!»
I UC J.
10E1
10E1
10E1
2
2
2
2
2
,13
*,?
.3)
.31
.3)
.31
. 3 )
,*
13,
ELEMENT
* IS
IMPINGES A NEGHBOR JET*)
EURNNEC »,1P6E12.3)
68
-------
FINJK
SimcUTINF FINJN(THETAI,CFJOTH,XMFJ)
THIS ROUTINE GIVES CONSTANT FUEL INJECTION RATE
ASSUMING CONSTANT INJECTION ?ATE
DFJOTH=O.C
IF((ThETAT.LT.THEIJ).CR.(THETAT.GE.(ThEIJ*OINJ))) RETURN
DFJHTH= XN'FJ/DIMJ
PE TURN-
END
69
-------
FLAME7
SUBROUTINE FLAMEZ(TL,TLC,CFL,CNOP)
C COMPUTATION OF Gl'ASI-STEA OY THIN FLAME STRUCTURE (WITHIN A FINITE SPACE.)''
COMMON/INTEGR/ IN01, INC2 ,.ISOCT , IWET8T , NPRT , LOT AIL , NTER, NAXIL,
1 MSHEL , NS ZG , NITST, IBU.G , 11,111
COM?10N/CCNVF/ X J, A TO , CTR , XK , S IG , R, RU , CTCT H ,C THDT , OTRDT ,PI
COMMCN/^PECYI/ XH2(100I,XH?C<10C),XCC(10C),XCC2(100),XN2(100),
1 XM0(100),XOH(100),XH(100),XC(100.),XN(100),X02(100)
? ,XCHM100) rXNCNEQ(lC)C)
COMMON/PRA TFT/ DNODT1 (100) ,ONCOT2(100) ,DMSOT1(100),DMSDT2(100),
1 ORMDTH(IOO),OLSOTH(100),XfOF{ 100)
COHMCN/TPROPI/ P,TBM(.IOO) ,UBM(IOO> ,Her-(icc),vEM(ioo),CPBM(ioo),
1 AMWBM(IOO) ,Ri3H(100)tPHE(100) , APR (10 0 > , XMFBM ( 1 0 0 ) ,
2 XMPAM(IGO)
CCMMOM/SCA./ THEMAX,THEIJ,THEIG,DINJ,THEKE,THE\»0,THEVC,OTINJ,
1 DTHMIN,OTHMED-,DThMAX,DTHE1fl,DT
.CGNMON/O^CPC/ HUTIM,OTPHY,XTlYC2,CPeAR,RHOO,TCRITF,XL29fl,
1 4 XMBM(IOO),CVBOTH(10Q1,OLnnTH(lGO),XMFLI (100),
2 01(100,3) ,OMFLI (100,.3),CMLCT(10Q,3),XNGI(100f3),
3 XKK(100,3)
CG«MCN/FUELP/W,XX,YFX,ZFL,YSTOA,ZSTOA,API,FCEN,FAPOS,AMWF,SURFT
1 ,XMUF,CtN,OXST,HCOM
COMMON/FLAMES/ AMWMP,RKAX,YN2L,TF,RF,XMDCT,RL,R8,TDF(50),YFDF(50),
1 Y020F(50),YN20F(50),YNCOF(5G),WCOT(50),RDF(50)
CCP= HCCM/CPEAR
NITST1- NITST- 1
NITST2= NITST/5
NITST3= NITST?!- 2
DO 20 1=1,11
XMQF(I)= C.O
DL9DTH(T)= 0.0
CNCnT2(I)= 0.0
HO 19 L=1,NSZG
XKKfT,L)= 0.0
OMLOT(I,L)= Q.O
19 CONTINUE
CLBTT- 0.0
OMLDTI= 0.0
IF (XMFLI(I).LE.O.Q) GO TO 20
•Y023= X02(I)-»-32./AMWOM(I)
YM23= XN2(I)*28./AMWRM(I)
YN03- XNONEQ(I)*30./AMW8M(II
T«= TBM(I)
AMWMP= AMWRM(I)*P
Y028J= YG23/OXST
XVXHDF= 1 2. 566,37062* AMWMP/82.05^
C DROPLET SPA-CTNG . . ' .
SUMNOT= 0. 0 . ' ' '•
00 g' L=l ,NS7G
IF (01(1,1.) .GT. 0.0) SUMNDT= SUMNDI+ XNDI(I,L)
9 CONTINUF
\/MAX'= V3M (I) XSUMNOI
RMAX= '(G.23873*VMAX) **C, 333337
DO ID L-1.NS7G
IF (II -(I,L> .LE.O. 0) GO TO in
RL= Ci. 5*0 I (I,LI •
IF (YC28.LT.XTLY02) GO TO 12
IF ((TCPTTF-TL).LE.l.OE-6) GG TO 15
C' SUBCRTTICAL ASSUMPTION
XI = XL2987' ( (TCRITF-TL )7 ( TCR ITF-298. ) ) **C . 38
70
-------
GO TO 16
PITICAL CNIGN' SKIN ASSUMPTION
15 XL= CFL'fTL-TLO)
Ifi CPLXL= CPRAR/XL
82 = CPLXL* (T3-TL+ QCP*Y028J)
ALCG2= ALOG( l.G+fi2)
YCL = 1. 0- ( 1. G+Y028J) /( 1. n + 8?)
flLOG<+ = ALCG(1.Q+YFL/ (l.Q-YFL)
AAA- ALOG2/ALCG<+
TF= (T3+TI *YC2<3J/YFL + QCP*YQ?8 J ) / ( 1 . 0* YQ28 J/YFL )
TFT^= TF/T8
DRS= -0 .
DO 1 ITF"=l,«iO
Pft= P84 OR 8
IF (RP.LF.RL) GO TO 12
y X x =
PFPL= XXX/ (XXX-1. 0)
RF= RL'RFPL
XXXX;= XMDOT/PF
IF (XXXX.GT.2CO.) XXXX=?00.
r R F = EX°t-XXXX)
IF (XVyy.GT.200.) XXXX= 200.
OPT- (P^AX-PF)/30.
CI= RF- QFI
SU^=0 . G
°0 2 IR=1,^0
RI= K I + no I
rc.= tXPf-XMOOT/'I)
XITGD= (FP.F-ER)*PI*RI/((ERF
IF (XITGO.LT.Q.n) XITGO=0.0
SUM- SU'"+ XITGO
? CON'TINUf
CHK= (XLHS-X3HS) /XLHS
IF (ITEP.EQ.l) GO TO ^4
Tr (ARS(CHK) ,LT .0.01) GO TQ 3
THKX= CW
-------
GO TO 11
3 CONTINUE
C e URN IMG RATE
nf*LOTI= 12.56e:37062*RHCC*XMnCT
IF (IN02.EG.O) GO TO 11
C MASS FRACTION OF N2 ON SURFACE
HXX<»- w + 0.25'XX
XXX1= i»it. 0*(*»' + WXX*»*XC02m/XC2(I))
XXX2 = 1«.Q*( 0.5*XX*WXyt»*XH20(I)/XG2(I)>
XXX 3= 2 ?. . 0*(WXXif*XN2 ( I1/XG2(I) )
XXX= - YG?8E*(ERF-ER)
YFOF(I«)= 0.0
C N? OTSTRIRUTION
7 CONTINUE
YN2QF(IR)= YN28* YN2L 3E* (ER-ERfl )
3 CONTINUE .
G CALCULATE HFTF.RGENOUUCTION PATE APOUND A BURNING CROPLET
IF {OMLDTT.LT.1.0E-15V GO TO 11
CALL HETNOR(P, YM08, .AMWSMd) , SHOD, NITST , CNOR , CNODT I )
f!f^COT2(I)= CNCOT2(I)+ DNCC TI'XNOI ( I , L )
C MASS INVOLVED IN HETEROGENEOUS FORMATION
XMCF.I= o.o
DO l«t IP = NITST.3,NT'TST
RI= 0.5*(RDF(I^>* ROF(IP-D)
RI2= FI*PT
r!RI= ROF(IR) - ^HFlIP-l)
:HFAV= 0.5* ITCF (IP) + TOFdR-ii)
= XMDFI+ RT2*ORI/TOFAV
72
-------
lit CCNTIt-':U"
Xl-lO^m- ywOF(I)+ XNGHI,L)*XXXMDF*XMCFI
11 CfiNTlNUF
CML'IT (I,L)= OKLOTI
XKK(T,L)= (3.6366197723/FDEN/RL) *DMLDTI
nL.-?OT= CL80T+ QMLOTI'XNni (T,L)
10 CONTINUE
C GVFo-/it_L DIFFUSIVE ZONAL BURNING PiTF
Ir (CLBDTHfT) 'DTHETA.GT.XMFLKD ) DL8DTh(I)= X KFLI ( I ) /DTHFT A
^0 CCNTINUF.
100 PfSMAT (1X,I5,1P1ZE1Q. 3)
101 FCPMAT(//IX,*. ... FPPOR IN FLAME ITERATION ...*,iP7Eic.3)
P r T u P N
73
-------
ECK HFTNCR
SUBROUTINE HETNOR (P, YNC8 » AMW , RHOD ,NI TST , CNCR ,CNODT I)
Hf.TERGENOUS NO FORMATION FATE
HIMENSION YK501 ,Y2(5Q) ,HOOT1C5'0) ,XK2 (50 I ,XK3 (50) rSAVEl(51l ,
.1 SAVE-2(51) ,WCGTAV(50)
COMMON/FLAMES/ «MWMP , RM AX , YN2L , T F , RF , XMOO T ,FL ,R8 ,TDF ( 5 0 ) , YFOF < 50 )
1 Y02QF150) tYN2HF{50) , YNCCF (5 0 ) , WCCT { 50 ) , RDF (50 )
NITST1= NITST- 1
DO 7 T=1,NITST
WDGT1 (I) =0.0
XK2(I)= 0.0
XK3(I)= 0.0
IF (YC2DF(I) .LE.0.0) GO TO 7
9 A IF. CONSTANTS
XKF1= 1.
XKB1= 3.12E13»EXP(-t*00./RT)
XKF2- 1.33E10*TDF(I)»EXP(-7080./-RT)
XKEQ3= 5.0*EXPf-5830Q./RTJ
XK1= CNOP*5.095E-i«*(XKFl*XKEC3)
WDOT1 (!)•= XKl*((AMWMF/TDF(m**1.5)*YN20F(I)*SCPT(Y02nF(I)}
XK2(IJ= n.q955*(XK31*XK32/(XKFl*XKF2))/(YN20F(I)*Y02CF(Il)
XK3(I)= 1.1^2^*(XKB1/XKF2)/YC2DF(I)
7 CONTINUE
C INTEGRATING NO CONSERVATION ECUATION
DY1= 2.0E-«t
IF (YNCS.GT.2.0E-3) DY1= 0.1*YN08
Yl(l.)= 2.0E-«»- DY1
WOCT(1)= O.Q
ITER-= 0
I LOM= 0
IUPR= 0
CHKUPR= 1.0E10
CHKLOW=-1.0E10
2 CONTINUE
Yl (11= YK114- OYl
6 CONTINUE
C INITIAL CONDITIONS
IF (ITER.CE.KITST) GO TO k
Y2(l)= XMOOT*Y1(1)
YNOnF(i)=Yl(l)
GO 1 I=1,NITST1
RI= 0.5MPOFCI*!) 4-RDFd) )
CPT= RDF{I*1)-SDF(I)
RI2= PI*RI
•YlCT*l)=Yl(I»*(Y2n)/RI?)*CRI
IF (Yl M + l) .LT.-1.0E-20V Y 1 { I* 1) = -1 . CE-20
IF (Y1(I>1) .C-T.1,0) Y1(I + 1)= 1.0
Yf CDF (1*1)= YKH-li
C PRODUCTION RATES
= l.Q- XK2(I*1)*( YNGCF (H-1)*YNOCF (I-H) >
= 1.0+ XK3(H-1) *YNOrF(I+11
CCRR= COPR1/CORR2
WOOT(I+1)= WOGT1 (1+1) *COR"
wnOTAy (1)-= 0.?*(WDOT(I)+WDCT(I + 1))
Y2 (1 + 1)= Y2(I> + «XMDOT«;Y?a)/PI2)-(RI2*WDOTAV(I)/PHOC))*DRI
CONTINUE
ITER= ITEP*- 1
SAVE1 (ITEP)'= Yl(l»
74
-------
S/W£2< = YKNITST)- YN03
IF ( ( (ArjSCHK.LT .1 .OE-6) .ANH. (Yl (NITST) .GE .0.0) ) .OR.
1 < ABSrHK.LT. 0.005*YNC3M GC TO 2
IMPROVING INITIAL GUESS
IF (ILCW.EG.O .AND. CHX.LT.0.0) GC TC 1 <4
TF (I!JP°.cQ.G .ANT. CHK.GT.O.G) GO TC 15
IF {CHK.LT.G.O .AMD. CHK .GE .CHKLOW) GC TC 1^
TF (CHK.GT.0.0 .AMD. CHK . LE . CHKUPR ) GC TC 15
GO TC 16
lit OCNTIhUF
TLT/<= 1
YIOLCW= Yid)
Y18LCW= SAVE?(ITE!?)
C H K L 0 W = CHK
GO TC 17
1«5 CONTTNU"
IU?-3- 1
Y10UP°= vl (1)
CHK'JPP=
17 H 0 N T I NU F
lUPLC- I
IF (IUPLC.LE.G) GO TO 16
Yi(l)= ( v10tCW*CHKU°P- YICUPR'CHKLOW) / (CHKUFR-CHKLOW)
1^ (Y18LGW.LE.O .0) Yl(l)= 0 .«;*.< Y10LOW+ YIOUP^)
GO TO 6
16 CCNTIRJF.
IF (ITCP.EQ.l) GO TO 2
ITET1- TTT0-!
Ic {ARS(SflVE2 I=j ,NITST1
11= Q.5*(ftOF (1*1) +ROF (I) )
DPI= FDF(I + 1) -P.QF (I)
CMCTTI= QMCCTI* MOOT A V ( I ) *P,T*R I
~ CONTTNUF
100 FCRMAT(1X,I5,1P12£1Q.3)
101 Fr?MAT(//lX, *.. FPRCR IN HETNCR ITERATION ..* , I3,lP9E10.2)
75
-------
*DFCK HGMNOR
SUBROUTINE HCMNOR(P,T,XNC,XN2,X02,XNGNEG,CNCR,XNOnTl)
C THIS ROUTINE CALCULATES HOHOGENECUS NC PRODUCTION RATE
RT= 1.937*T
C RATE CCNSTAN'TS
XKF1=. 1.36El
-------
* n E r K H c- M N c z
SU9°OUTINE HONQZ(CNOR)
C THTS PCUTINF CALCULATES HOMOGENEOUS NC PPGOUCTICN "1TF
COMMON/I NTEGR/ IN01, IMG? , ISOCT , I KETBT , NFRT , 1C T A IL , NTER , N AX IL ,
1 NSHELiNSZG,NITST,IBUG,II,III
CCMMCN/SPFCYI/ XH2(100),XH2C(100),XCC(100),XCC2(100) ,XN2(100) ,
1 XNO(.10Q),XGw<100},XH(10Q),XC(10Q>,XN(100),X02<100)
2 ,XCH£*(10G),XNCNEG(100)
r.GHMGN/PRATEI/ ON GOT 1 (10 0 ) , DNCO T2 ( 1 0 C ) , Of. SOT 1 ( 1 0 0 ) , OMSOT 2 ( 1 0 0 ) ,
1 DRMOTH (100),DLeOTH(100),X^OF(1001
t
2 XMPAM(IOO)
CCtfMON/n°CPC/ HUTIM,DTPHY,XTLY02,CPBAf;tPHOn,TCRITF,XL298,
1 XMBM(100),nvenTH(lGO),CLODTH(1QG),XMFL1(100),
2 ni(100,3),CNFLI(10C,3),DKLCT(lGQ,3),XNOI(100,3),
3 XKK(100,3)
DC 1 1=1,IT
IF (irOl.EQ.G .OP. T?H(I) .LT.1HOO. .CF. X02 (I> .LE . 1 .£-15) GO TO 1
T= THM(I)
CT= 1.987«T
XKF1= 1.36F.l«4*EXP(-75«iQO./RT)
XK31= 3.
XKF?= 1 ,.13Eia
XK12>- 3.2EQ*T *EXP(-3';10C./I?T)
XKFQ3= 5.0*EXP(-5-"300./RT)
X K1= CNQP ?- 0 . 22 0 7.°, 2 * ( X KF 1 *X KE C3 )
X K ? = (XKB1<'X'
-------
-'HECK RAOHZ
SUBROUTINE RQDHZ(THP, XMF , VI , DOROTh )
G FAT^ OF RADIATIVE H.T. FROM INDIVIDUAL HOT ZONE TC THE WALL
C BASED ON LO^ftL ZONE TEMPERATURE '
CGKMON/CCNVF/ XJ,ATD,DTR,XK,SIG,fi,PU,CTOTH,GTHOT,OTRDTtPI
COMHCN/ENGEC/ OE» RFW ,RL , VC ,SC , S,USI,CR ,RPM, T^ ,CNOZZ , NNOZZ, OBOWL,
1 VFJO
ALFAH=C.9
flt.FAS=0.?5
XLI=S+SC
AH= 1.570796227*DE*DE
ASLVI= 3.1«tl59*DE*XLI
flLPH- ( AH*ALFAH*ASLVIJ'ALFAS) /( AH+ASLVI)
RHGFI=0.0
IF (VI .GT. l.OE-10) PHOFI= XMFB/VI
VZE= VI/NNOZZ
XXX= 6.0*VZE/PI
PL=XXX"(0. 33
AZE= 3. 1«»
EPSA= ALPH*(1.0-EXP(-RCP*FL)
- NNOZZ*EPSA*AZE*XXX
CC!?QTH=QRF*OTOTH
RETURN
END
78
-------
CCQHZZ
SUPROUTTNT. RAOHZZ
C PflTE OF RADIATIVE H.T. PRO* INDIVIDUAL HGT ZCNE TG THE WALL
r. BASED CN LOCAL ZGNE TEMPERATURE
COMMON/ IN TEGR/ IN01,INC2,ISnCT,IWETBT,NPKT,ICTAIttNTEP,NflXIL,
1 NSHEL»NSZG,NITST,ieilG,II,IIT
XJ,ATD,OTR,XK,SIG»P,RU,CrnTH,OrHOT,DTRDT,PI
ONODT1 (100) ,TNODT?(1QC) ,D^SDT1 (10Q) ,OMSDT2(10n) ,
DRMDTH(100),OLGOTH(10Q),XKOF(iaO)
COV,-v|CN/TPPf!FI/ P,TEM(lGO)
XMPAM(IOG)
DF,RFW,PL,VC,SC,S,USI,CP
VFJO
ALFAS=0.?5
XLI=S*SC
AH= 1.57G7963?7*OE*OE
flLPH=
DO 1 1= 1,TI
5HCFI-0.0
IF U'9M
-------
"DECK STZFO
SUBROUTINE S IZEQ(OELP , RHOA ,FCEN , SURFT , XMUF , CNCZZ , SZBAF , GOSZ ,NSZG)
C THIS ROUTINE CALCULATES THE INITIAL DROP-SIZE DISTRIBUTION OF A FUEL JET
DIMENSION GQSZt 5),SZ8A< 5>
CM= 37.5
OEL-Q.85
DPXX= DELP*1.Q1325E6
OMAX = CM* (ONCZZ**.5l *
-------
* r c r K SOCTP
-IJEROUTIV^ SCCTP(P,T8,AFV,Y02P ,V,T, ICIGI,XPSCT
1 HMSOT1 tOMSCTZ)
r. THIS RCUTTNF ESTIMATE THE SCCT FORMATION AND DESTRUCTION FATE
COMMON /AI»,P./ XMAI.XMPJtXMEGR^MPOiXNAOiXPARC.XMAEGRiXMFRO, XKFEGP. t
1 AMWA ,fl.FS>A,Ffl(?A,PHEA
CnMMON/FijFLP/W,XX, YFL, ZFL , YSTOA , ZSTOA , API , FCEN , FAROS , AMWF, SU^FT
1 ,XMUF,CEN,CXST,HCCf1
GO^MCM/D^CPC/ HUTIM,OTFHY,XTLY02,CPRACfRHOO,TCRITF,XL?98»
t XMRM{lOO)»nvenTH(10QJ,CL DO 1H(1CG),XMFL 1(100),
2 OI(100,3),DfFLI(10Ct3),DMLCT(100,.-?),XNDI(lCO,3),
•" XKK(13D,.3)
COMMON /^OOTP/ SOEN,DSCOT, ASOTP , ASOT A t Xf'SOCT ( 1 00 )
IF(TOIGT.GT.2) GO TO 2
r VCPORiziNG ZONE
1 CONTINUE
PFU= F/(1.0+AFV)
C r"J0f'l!r;G ZCNF
•' CONTINUF
C SCOT FORMATION R
PHE'3-= 1. O/ (AFV'FAROS)
C ^OOT CXIOT7ATION "ATE
**2)*P *EXP(-20000./T8)
)/(SCEN*OSCCT»SCRT(T8))»EXP(-l(=650./
C \ F. T f^OQUCTION K A T F
T'^OT= OMSOT1- HMSOT2
RETURN
81
-------
*DEC* SOOTR7
SU930UTINE SOQTRZ(TAV,V)
C THIS RCUTINE ESTIMATE THE SOGT FORMATION ANC DESTRUCTION RATE
COMMON/INTEGRA IN01,ING?,ISOCT,IWETBT,NPRT,10TAIL,NTER,NAXIL,
1 NSHEL,NSZG,NITST,IPUG,II,III
COMMCN/SPECYI/ XH2(100)».XH2C.(10G),XCG(100),XCC2(100),XN2(10G),
1 XNO(lDO),XOH(iaO),XH(100),XO(100)tXN(100),X02(100)
2 , XCH/» (100) tXNGNECdOO)
COMMCN/PRflTEI/ ONODTltlOO),nNOOT2(10C),OHSGTl(10Q),OMSOT2{lCO),
1 ORMDTH!1QO),DLBOTH(100),XMDF(1QO)
COVHCN/TPROPI/ P,TBM<100),UnK<100)tH8M100),VeMflOO),CPBM(100),
1 AMWBM(IOO),R3M(100),PHE(1CO),APR(100),XMFBM{100),
? XMPAM(IOO)
COMMON /AIRP/ XMAI,XMFJ,XMEGR,XMRD,XKAO,XMARC,XMAEGRtXMFRO,XMFEGR,
1 AMWA,AFRA,FARA,PHEA
COHMCM/FUELP/W,XX,YFL,ZFL»Y?TCAtZSTOfl »API , FCEN , FAROS , A MWF , SL'RFT
1 ,XMUF,C£N»OXST,HCCM
COMMON/DRCPC/ HUTIM,OTPHY,XTLY02,CPBAR,RHOO,TCRTTF,XL298,
1 ' XM9M(100),CVeOTH(1001,CLODTH(10G).XMFLIC100),
? 01(100,3),OMFLI(10C»3) ,OHLOT (10Q,3) ,XNOT(100,3),
?> XKK(1QO,3)
COMMON /SOOTP/ SOEN,OSOOT, ASCTP, ASOT/5 t XMSCCT (1 001
DO 1 1=1,11
CMSDT1(T)= 0.0
nHSOT2(I>- 0.0
IF (ISOCT.EQ.G) GO TO 1
T8= TOM(T)
YC28 = X02(I1*32./A-MWBM(T)
AFO\/AL= XHPAM(I)/(XMFB'C(I1+X«FLI(I1)
PHEB= 1.0/CAFOVAL'FAROS)
C SOOT FORMATION PATE •
DMSnTl(I)= ASGTfl* (V8M(I)'V8M(I)/V)*(TAV/T8)*(PHEB**3) »P*
1 EXP(-200nO./T8)
C ?COT OXIDIZATION RATE
CMSOT2(I)= 6.51£it*(XMSOOT (I) *YG23*P ) / (SDEN*QSOOT*SGRT (T8 ) ) *
1 EXP(-19650./TS>
1 CONTINUE
RETURN
82
-------
"-OFCK spfv~;Y
SUBROUTINE SPECY(PX,TX,PHEX,AMMC,XH2,XH2C,XCC,XC02,XN2»XNO*XCH
1 , XH,XC,XN,XG2,XCH<4)
C THIS PC'JTINF CALCULATES THE EQUILIBRIUM SPECIES DISTRIBUTION OF A GIVEN
0 STATE T..E. ,XO?TE <7tl ?.,!!), XCH«4Tn(7, 13, 11)
COMMCN/XXCON/ IDP , ICT , IDPHE,
1 IDPl,IOTl,IOPHl,nELPtD€LT,DELFHE,OPl,nTt ,DPHE1,
2 OP2,OT2,CPHE2
T=TX
DO I IDP=2,NPT3
IF (P.GF.FTB(IOP-l) .ANH. P . LE .PTE ( If.P M GG TC 2
1 CONTIMUT
WPITE(6,1GG1 P
100 FORMATC e"RC??.... P OUT CF RANGE *, 1PE10.2)
IF(P.LT.PT?(1))GOTC7
c- PTP(NPTB)
IOP= MPT"
GO TO 2
7 CONTlN'jr
c = P T 5 ( 1 )
IDP= 2
? CONTTNUF
CO 3 ICT=2,NTT3
IF (T .GE.TTR (IOT-1 ) .AND. T . LE . TTR ( IDT ) ) GC TC U
WPITf(^,101) T
1C1 FCP.VflTC ERSOR ..... T OUT OF i?ANGE * ,!PtiC.3)
IF (T.LT. TTE(l)) GO TO ?
T= TTP(N!TTR)
T?T= MTTP
GO TO k
8 CONTINUE
T= TTC ( 1)
IDT= ?
it CONTINUE
OC 5 IOPHE= 2, NPHTH
IF (PHE.GE.PH£TR(IOPHE-1) .ANC. PHE . L E . PHETE { IDPHE )) GO TO P
1S2 F^^MATC FRROE ..... PHE OUT OF RANGE *,1PE1C.3)
IF (PHE.LT.PHETB(l) ) GO TG 9
r>HE= . FHFTfMNPHTB)
ir-PHE=- NPHTB
GC TO 6
9 CONTINUE
PHE=PH£T3(1)
Tr)°HE= 2
^ CONTINUE
ID°1= IDP-1
ir>Tl= IDT-1
TOPHI- TOPHE-1
OFLP= PTO(ICP)- PTB(IDPl)
OFLT= TT-T(IQT)- TTR(IOTl)
83
-------
DELPHE= PHET9CIOPHE) - PHETD(IDPHl)
DP1=
-------
"DECK SPECY7
SUBROUTINE SFECYZ
0 THIS FCUTINF CALCULATES THE FCUTLJBP. IUM SPECIES DISTRIBUTION OF A GIVEN
C STATE I.E. (P,T,PHE) FOR A SPECIFIC FUEL FRCf TRIFLE TABLE INTERPCLATION
COMMCK/INTFGR/ I MO 1, ING2 , ISOCT , I WF TBT , NF'PT , 1C T A IL , MTER , NAXIL ,
1 MSHEL,NSZG,NITST,IEUG,II,1II
OPKMCNY^PECYI/ XH2<1CQ),XH?C(1QC),XCC(1CO>,XCC2(10Q),XN2(10C»,
1 XNC(IOO) ,XOH{100) ,XH<100) ,XC(100) ,XN(100),X02 (100)
? , XCHM1CO) .XNON'r C( 100)
COMMON/PR ATE I/ DNOCTl(10G),ONnOT2(lQO),ONSQTl(iaO),DKSOT2<100),
1 QRMOTH(100),aiRDTHI10fl»tXrl.LT.PT° (1) ) GO TC 7
Pl= PTO(NFTB)
GO TO 2
7 CONTINUE
P 1 = P T R ( 1)
10?= 2
2 CONTINUE
DC 10 1=1,II
Tl= TPM(I)
PHE1-- PHF«T)
IF (Tl ,GE.TT9(IOT-1) .AMD. T 1 .LE .TTB (1C T ) ) GG TO <»
T CCNTINUF
KnITE(6,101) Tl
101 FOPMAT(* F9RCR T OUT OF RANGE * ,1FF1G.3)
IF (Tl.LT. TTP(1)) GO TO 8
Tl= TTB(NTTB)
JOT- NTTT
GO TO k
° CONTINUE
Tl= TTO(1)
U rONTlNUF
00 5 IOPHF- 2, NPHTB
IF (PH^l.GE.PHETR(IDPHE-1) .AND. PKE1.Lt.PHETE(TOPHF)) GC TO
WPITE(6,102) FHE1
'2 FGRMATC F.^RGk PHF CUT^CF RANGE *,1PF1C.3)
IF (PHEl.LT.PHETHd) ) GO TO 9
P H EI= PHETB(NPHTB)
85
-------
GO TO 6
CONTINUE'
PHE1= PHETim
IDPHE= 2
CONTINUF
IGP1 = TDP-1
IOT1= IDT-1
QFLP = PTRflOF)- PTB(IDPl)
QELT= TTB(IOT)- TTB(TDTl)
H€LPHE= PHETBdnPHE)- PHET8 ( IDPH1 )
DP1= (Pl-PTB(IDPl) )/OELP
HT1= [Tl-TTB (IOT1) )/OELT
CPHE1= (PHEl-PHETB(TDPHl) ) /DELPHE
DP?.- (PTB(IDP>-P1)/DFLF
DT2= (TTB (IDT) -TD/DELT
DPHE2= (PHETB(IDPHE)- PHED/CELPHE
CfiLL TRIPIT(XH2TB,XH2(I})
CALL TRIPIT(XH20T3,XH20(T))
CALL TRIPIT(XCOTB,XCO(I) )
CflLL TP.IPIT(XC02T3,XC02 (I) )
CflLL TRIPIT(XN2TB,XN2(T) )
CALL TRIPIT(XNOTB,XNO(II )
CALL TRTPTT(XGHTB,XOH(I) )
CALL TRTPTTCXHT^XHfll )
CALL TRIPTT(XOTB,XO(T) )
CALL TRIPTT(XNT3,XN(I»
CALL TRIPTT(XG2TB,X02(T) )
CALL TRIPIT(XCH 10.*XNO» 16.»XCHi»CI)
10 CONTINUF
RETURN
END
86
-------
* r P c: K s F ' A Y
SUBROUTINE SPRAY(RHOR,OMEGA,CELPtSEFjtCDCHG)
: THIS PCUTTNF SIMULATES THE STEADY STATE FUEL JET SPRAY ANC DEFINES THE
C TRAJECTORIES Cc FUEL ELEMENTS AND A/F VIA SIMILARITY ASSUMPTION
DIMENSION gneceo)
CCMMCN/INTEGR/ iNOli INCZ , ISCOT, I KFT8T ,NPRT., IDTAIL, NTE-fi, NAXIL,
1 NSHEL.NSZG,NITST,I5UG,II,III
COMMCf-./SCA/ THEMAX,THFIJ,TKEIG,OINJ,TI-ENE,TH£VOfTHEVC,OTINJ,
1 CTH HIM, DIMMED ,niHw>VX,rTHETA,DT
CCf^lON/ENCEO/ OE,RFW,RL,VCtSC,S,USI.CR,RPM,Tfc-,CNGZZ,NNOZZtCnCWL,
1 VFJO
COMMCN/FUF.LF/''I,XX,YFL,ZFL,YSTOA,ZSTOA,API,FDEN,FAPOS,AMWF,SUPFT
1 ,XMUF,CEN,OXST,HCOM
PTIM«20,««I »ETAI(20,5) ,DY3(2C,i*) , CDS Z ( 3 ) , SZB AR ( 3 ) ,
XJ,ATO,nTR,XK,SIG,P,RU,CTDTH,DTHOT,DTRCT,PI
T,Xf
-------
X= XI+(I-1)*CX
TF(X.GT.XWALL) GO TO 8
FREE JET REGION
8= BI + CJFMX-XT)
P.B= XJF/(RHCK*8*B*XIF3)
CC= -RB*VFJO
XXX= BB*?B-'+.0*CC
VCL= 0.5M-88 + SORT (XXX))
IF (VCL.GT. VFJO) VCL= VFJC
RHOFCL= XJF/(VCL* B*8*XIF3)
AFCL= RHOR/RHOFCL
GO TO k
8 CONTINUE
IF ( (X-OX>.GT.XWflLL) GO TO 12
WALL TRANSIENT ZCNF
8W= 8
X0= X-OX
RHQCLP= XI2*XJF/(BW*BW*VCL*XIF2*XI3)
XXX- XI2*(RHOR*XIF6*-RHOFCL*XIF7) / ( XIF2* < RHOR *XI6*RHOCLP*XI7))
VCLP= VCL*SCRT(XXX)
90P= XIF2*BW*VCL/(XI2*VCLF)
XJMP= VCLP*VCLP*8W*80P*(RHGR*XI't«-RHOCLP'll'XI5»
IF (IBUG.EG.O) GO TO 1«»
WRITE (6,113)
WPITE(6,112» S,RHOFCL,VCL,XJK
WRITF.(6t113) 90P,RHOCLP,VCLP,XJMP
1U CONTINUE
VCL= VCLP
0= DCP
RHOFCL= RHOCLF
WALL REGION
12 CCNTINUF
RX= X-XO
8= 9 + CWF'RX
AA= (RX+RW) *B*RHOR*XI4
P9= XI5/XI3*XJF
CC--XJMP
XXX= B8*8B- <«.0*AA*CC
VCL= -BB*SQPT(XXX)/(2.0»AA)
RHOFCL= XJF/(VCL*(RX+8W) *B*XI3)
AFCL= RHOR/RHGFCL
WPITE(6 ,10«t) I,B,XP2,XNlt!,XN2U,XMM,USItVCL,RHCFCL,AFCL
t+ CONTINUf
ETAI(T,1)= 0.0
ETA! (I,NSHEL+.1)= 1.0
ETA=0,1
00 ? J=1,NSHEL . :
IF (X..GT. XWALL) GO TG 7
FREE JET REGION
IF (J.EQ.NSHFL) GO TO 16
Gn=(FLOATtJ) )*DJF/ (2 . 0*PT«'I?HOFCL«1VCL*B*B )
DO 5 ITFP=1,2'0
ETA1= 0 .5* (ETA*ETA)
ETA3= 0 ,6;F
-------
FO 1.C-ETA2?
OGQE= (FC**3)*ETA
ETA= ETC- G/OGOE
IF(ETA.LT.Q.G) ETA=n.0001
IF(ETA.GT.l.C) ETA = 0.9C'-39
5 CONTINUE
WP I TIE (6,1 03) J,T,G,TC,ETA
STOP
C A/P, VELOCITY DISTRIBUTIONS FREE JET REGION
6 CONTINUE
F.TAK I, j+l)= ETA
16 PC= 1 .0-(0.5METAI(T
<:HOF(I,J)= RHOFCL*FC
REfi= PI*
Z= OJF/RHCF (T, J)/DflREfl
AKT(I,J)= (1 ,0/VS( I, J) )-l. 0
CFT?I,J1= 9HCS/RHOF 'I, J)
GO TO 9
C WALL JET REGION
IE (J.EO.MSHEL) GO TO 17
C0= FLCATrj)»DJF/(2.a*FI»(RX4BW)*e*VCL*RHCFCL»
00 10 ITE0=1,20
ET11= ETA
ETA2=(?.0/2.5»*(ETA.**2.5)
ETA-S= (1.0/5.5)*(ETA**5.5)
C K'<= ABS(G/GC>
TF (CHK.LT.l.OF-5 ) GO TO 11
ETA32- ETA** 1.5
CGOE= FGVJ113
ETA= ETA- G/C-GOd
IF(ETA.IT.0.0) ETA=0.0001
IF(ETA.GT.l.C) ETA=0.gc9o
10 CONTINUE
WR!TE(*il33) J,I-,G,00,ET5
11 CONTTNUF
C A/F, VELOCITY HISTRIRUTTCNS HALL JET REGICN
FTAI
-------
? C.CNTTNUE
XS(I) = X •
BB8 (!)•=• 8
1 CONTINUE :. :'.; •-:; • V • ' ; -, • .
C 'EFFECT OF SWIRL ON ENTRINNKENT .
USB-A« = 0;25*C80WL*CMEGA .
ER- 1.0+ SEFJMUSBAP/VFJC)
00 21 J=1,NSH£L
DO 21 I=1,NAXIL
AFT(I,J)= ER*AFT(I,J)
21 CONTINUE
C DETAIL OUTPUT
IF (IDTAIL.EG.01 GO TO 2?
WRITF(6,116) (T*I=1,NSZG)
HRITEC6,117J (S2BARII)tI=l,NSZG)
WRITE(6rll51 ( GOSZ(I)«I-1«NSZG)
WRITE<6,98)
WRITE(6,107) fXS-tl ),I=1,20>
HRITEC6,1061 (BBB(I) ,1=1,20)
DO 20 J=1,NSHEL
WRITE(6,98)
WRITE<6t108) ( YS (I,J),1=1,20)
WFITE(6,11<*) ( OYS{I,J),I=1,20)
WRITE(6,109) (RHOFtI,J),1=1,20)
WRITE(6,119) (AFT(I,J),1=1,20)
WRITE(6,110) (VStltJI,1=1,20)
WPITE(6,111) (PTIM(I,J),1=1,20)
20 CONTINUE
22 CONTINUE
98 FORMAT(/)
103 FORMATC/1X,» JET SPRAY LOCUS ITERATION GOES NOT CONVERGE *,2I5,
1 1P5E10.3)
106 FORMATC1X," B *,20F6.2)
107 FORMATdX,* X *,20F6.3)
108 FORMATC1X,* Y *,20F6.^)
109 FORMAT(lX,*RQF*,20F6.
-------
"OFCK TAP'7 IN
C SPECIE
TABLE INPUT FPQM A TAPE
CGf MCN/SPTAB/ MPT3,NTTB,NFHTe,PTE-<7),TTQ<13),PHET8(ll>t
XH2TB( 7,1 •?,!!) , XH2CT8 < 7 , 1 3 , 1 1 ) , XCOTO<7, 13,11) ,
XCC2T3<7.1?,11 ),XN2T3(7,13,ll>tXNOTP.<7-,13,ll),
XOHTBC7, 13,11) ,XHTB(7,13, 11) ,XGTB(7,13,11) ,
XNTB(7,13,11),X02TB(7,13,11),XCH*»T9<7,13,11)
NPT? =
NTT 3 =
MFHTO
C SET ZERO
TO Bt»
PT3(I
00 11
HO 81
Q C" A O
^ JT A f^
7
13
= 11
1 = 1, 120«*3
)= 0.0
IPHT3=1, NPHTR
(8,121) PT3(IPT9) .PHF.TB
(8,122) (TTB (I) ,I=1,NTT
IF (PHFT? (
O c jr^
PFAQ
RFAD
5EAO
a -3 !~! 0K'T I
P F A T
' 'FAQ
(8,1
(8,1
(8,1
(8,1
M)r
(6,1
(8 ,1
TF(°HETP(
a Farj
RE AH
83 C C M T I
irr >\o
PFflO
PF 20
TF(PH
^EAD
81 CONTT
1 ? 1 E C R M A
1?2 FQSMfl
(8,1
(8 ,1
NUT.
(8,1
T°Hr9)
22) (X
22) (X
?2 ) (
,\.e.
H?T
M20
xco
.0
B (
TP
TB
22) (XC02T3
22) (
22) (
IPHT9)
2">\ (
22) (
22) (
(8,12?) (
(8 ,1
ETO(
(8,1
^:UF
T (IX
T (6X
22) (
IPHTfi)
XN2
TB
XMOTB
.LE
XOH
XH
XO
XM
X02
.LE
22) (XCH'»
,1P3E1
, 1P13E
0.3
1C.
.0
T8
TB
Tn
T3
TO
.0
T3
)
3)
. 05)
TPT3,
(IPTP
(TPTP
(IPTB
(IPTP
( IPTP
.05)
(IPTB
dprn
(TPTE
( TPT3
(IPTF
. G5)
(IPTP
r
\3
I
,
,
,
,
,
G
,
,
,
,
,
G
,1
I,
I,
I,
I,
I,
0
I ,
I,
I,
I,
I,
GO
,
I,
(IPHTB
E)
TO 82
PHT9) ,
IPHTE)
IPHTB)
IPHTP)
IPHTB)
TPHTB)
TO 83
I0HT6)
IPHT8)
IPHTB)
IPHTB)-
IPHTB)
TO 81
IFHTE)
)
1 = 1,
,1=1
,1=1
,1=1
,1 = 1
,1=1
,1-1
,1=1
,r=i
,1=1
,1 = 1
,T=1
NTT
,NT
, NT
, NT
,NT
,NT
,NT
,NT
.NT
,NT
,NT
,NT
B)
T.?)
TB)
TB )
TH1
TE)
TB)
TE5)
TP)
TB)
T5)
TO)
PFTIJPN
F vn
91
-------
TPROP
SUBROUTINE TPPOP ( TX , PX ,V , CV, CP,U *H ,AMW,GAP ,R,PH£X)
THIS ROUTINE CALCULATES ---- -----
EQUILIBRIUM THERMODYNAMICS OF CCMOUSTICK PRODUCTS
U(P,.T,FHE) AND P(P,T,PHE) AND THEIS DERIVATIVES
COMMON/FUELP/*,XX,YFL,ZFL,YSTCA,ZSTOA,API,FCEN,FAROS,AMWFfSURFT
1 ,XMUF»CEN,OXST,HCOM
CCKMCN/RANGS/ TRANG1 , TRANG2 , PR ANG1 ,PF ANG2 , PHESG1 , PHERG2
COMMON /PCRVT/ PUPP,PUPT,PRPF,PUPFtPRFT,PPPP
COMMON /HFCOE/ AAK6I ,BB1 (6) ,D01<11) ,RR1(8) , A A2 ( 6) ,BE2 (6> , 002 (11 )
1 ,RR2(8)
PI- PX
Tl= TX
PHE= PHEX
IF (PX.GT. PRANG?) Pl= P9ANG?
IF (TX.f,T.TRflNG2) Tl= TRANG2
IF (PKEX.GT.PHERG2) PH£= PHERG2
TT=1000./T1
T2= T1*T1
T3= T2*T1
Tt»= T3*T1
T5= T<4*T1
PHE? = PHE'PHF
PH£3= PHE*PHE2
ALCGP= ALOGIF1)
IF (PHE.GT.1.0) GO TO 2
1 CONTINUE
C FUEL LEAN
A= AAKD+AA1 (2)*T1*AA1 (?)*T2 *AA1C*)'T3 fAAl(5)*Tt» «-AAl(fi)*T5
3- B91 ( 1) *f5BK2)*Tl + 3ei(3)*T2 *B81C»)*T3 +BRK5)*Tt» +581(6)*T5
01= D01
1RP,1(8)*ALOGP
IF (XXX. LT. -200.) XXX=-20D.
C= FXF(XXX)
^X= RRKD+ SR1(2)*PHE * C
HX-UX+RX»T1
AP= AAK2) +2.0*AA1(3)*T1* 3. 0* A A 1 U) *T2+ A . 0*A A 1 ( 5) *T3+ 5.0*AA1(6)
1 *T<»
BP= BB1CZI*.-2.0»BB1(3I:*T1* 3. C* B81 ( «») * T2+ <» . G* 681 ( 5) *T3 +5. 0 *G8 1 (6)
02P- -(DOl(V)* 001 (5)*PHE-»- DD1 (6)*PHE3)*100C./T2
D3P= -(001(10)+ 001(11) *PHE) *1000./T2* ALOGF
OP = GMn2P + D3P)
CVX= flP-fJP'PHE + OP
! UNIT TO PER MASS OF
•XBASE- 1. 0+EAR.OS*PHE
Fl= 1.0/X9ASE
U- UX*Fl
H= HX'Fl
AMH= 1.987/P
92,-
-------
\l •= U 1 . b "' P "• T 1 / p 1
CV=CVX*F1
CP=CPX*F1
GAM- CP/CV
C PARTIAL DERIVATIVES OF U AND R fc.R.T. P,T, AND FhE
D1FF = 001(2) +3.0*001 <3)*PHF2
D2PF r (GDI (5) f3.0*001 (6)*°HF.2) *TI
C.^P^ =( (DDK1?) +3.0*001 (?) *PHE2) 4- HOI ( 1 1 ) *T I ) * ALCGP
PF1PF= -Fl*F 1*
o|ipr>= F1*C* (D30/°l)
PUPT = CV
FUPF= Fl*(-9+GPF)+ PF1PF"UX
prpo- F1*C*CP= e°2(2) f2. 0*882(3) -T1+ 3.. 0*R(?2 < «» I * T 2+ *PHE'} *TI
HiPF =( (0.02(8) *-3. 0*002(9) *PH£?) + D02 ( 1 1 ) * T I) * 3LCGF
93
-------
OFF- D* (01PF+02PF*-D,3PF)
PF1PF- -Fl*Ft*FAROS
PUPP= F1*0»(030/P1)
FUPT = CV
PUPF= F1*'«-G + DPF) + PFIPF'UX
PRPP= F
PRPT= -
FRXPF= RR?(2)+ C*(RP2<3)+ RR2(t»J»TI+ RR2 ( 5) *ALCGP
PRPF= Fl^PRXFF* PF1PF*RX
RETURN
END
94
-------
*DEC.K TPROP?
SUBROUTINE TPPOPZ
c * s ***,><• ** * THIS ROUTINE CALCULATES --------
C********** EQUILIBRIUM THERMODYNAMICS OF CCM«?l;STIGN PRODUCTS
C********** U(P,T,FHE) AND P(P,T,PKt) AND THEIR DERIVATIVES
COMMON/ INT FGF./ INC1,TNC2,ISOOT, I WETS T ,NFFT,TCTAIL,NTER,NAXIL,
1 NSHEL,NSZG,NITST,ISUG,II,III
CC*MC>/TPPOFIX P,TeM(lQO),U'3M(lOO),HeMlC01,V3H(lCO>,CPBM(iaO),
1 AMW8M(100),R1fM100),PHE(100),AFR(100),XMFBM(lCO),
2 XMPAM(IOO)
CnMMON/FUpLP/W>XX,YFL,ZFL»YSTGA,ZSTOA,AFI,FOEN,FAROS,Ar'WF,SUP.FT
1 ,XMiJF,CEN,OXST,HCOM
COKMC NX PANGS/ TRANGl,TSANG2,FRANGl,PRflNG2,PHERGl,PHERG2
COMMON/ POP VIZ/ PUPPQM(100),FUPTBM(100)fPRPFBM(100)fPUPFeM(100),
1 P«?PTf3N (100) tPPFPBK (ICC)
COMMCK /HCCOE/ AAKo) ,931 (6) »D01 (11) ,C,P1<8), A A2 ( 6) »6P2 < 6) , DD2 ( 11 )
1 ,RR2(3)
Pl= P
IF (PI. GT .PRONG?) Pl= PRANG?
CO 10 1 = 1, IT
Tl= THM(I)
cppt- PHE(I)
TP tTl .GT.TPAMG2) Tl= TPANG2
IF (PHEi .GT.FHEPGZ) PHE1= PHERG2
TI=inrO./Tl
T2= T1*T1
T7= T2*T1
JU- T3*T1
T5= TU*T1
PHE2 = PH£l*cHc;i
PHE3= PHC1*PHE2
ALOGD= aLOG(Fl-)
IF (OHE1. .C-T.l.G) GO TO 2
1 CONTINUE
C PfEL LC.^.N
0- aAl(i)+AAH2)*Tl«-Afli(3)»T2 »-Afil{it»»T3 4AAl(5)*Tt» +AA1(6)*T5
2= 331 (1) *«31 (2).*T1*B81(3) »T2 *r361(£4)»T3 +C51(5)*TI» +E31(5)'T5
01= DDK1) 4-CD1 (2)*PHE1* 001(3)*PHE3
02= (P01 C+) *f;01 (5)*PHF1+ OH1 (6) *PHE?) *TI
D30=((Dr>H7)+Cni(8)*PHEl* DO 1(9) *F HE 3 ) * (001 (10) +00 1(11) *PHE1) *TI )
03= 03C*ALOGF
XXX=01+D2*03
IF, (XXX.LT.-2Dn.} XXX=-200.
n= EXP{XXX)
UX= A- ?*PHEU H
XXX= (RP1(3)+ ^R1C«)*TI* RR1 (5)*ALOGF)*PHE1* RR1(6)> RR1(7)*TH-
1RP1 (8 )'ALOGP
IP (XXX, LT. -200. V XXX = -200.
C-- -IXP(XXX)
RX= «R1(1)» ^P1(2)*DHF1+ C
HX=UX+PX*TI
AP= AA1(?) *2.Q*AA1 (3) *T1* 3 . C* Afl 1 ( U ) * T2+ U. C * A A 1 ( 5) *T3 + 5.0*AA1(6)
1 "' T k
BP= =P1 (2) *-2.0*aP1 (3) *T1* 3.0r9Rl (£») *T2* ^ . 0 '09 1 ( 5 ) ?T 3 *-5.Q*E81(6)
1 * T U
OZ°= -
-------
CONVF3T UNIT TO PF.R MASS OF MIXTURE
XHASE= 1.0 + FA
Fi= l.C/XBASE
UBM(I)= UX*F1
HBM-(!)- HX*F1
PBM(T) = RX'Fl
VX= <+1
CV=C\/X*F1
CPBM(I)= CPX*F1
GAM= CPP.M(I)/CV
PARTIAL DERIVATIVES OF U AND R K.3.T. P,T, AND PHE
01PF = 001 (2)+3. 0*001(3) »PKE2
D2PC = (D01(5)«-3. 0*001 (6)*PHE2)*TI
D3PF =( (001(8)+3. 0*001(9) *PHE2) + C01 ( 1 1 ) *TI) *ALOGP
OFF- C*(D.1PF+C2PF + 03PF)
PF1PF= -F1*F1*FAROS
PUPP8MfT)= F1*0*(030/P1)
PUPTBM(I) = CV
I)- Fi*(-B*OPF)+ FF1PF*UX
I)= Fl*C*C?Rl(5)*PHEl*RRl(8n/Pl
FPPTHIM T')= -F1*C* (R=>1 (^)*'PH£1*RR1(7J )*10CO./T2
RPXPF-= PPK2)* C*(RP1(3)+ Rr?l(«*)*TH- RR1 ( 5) *ALOGP.)
PRPFB^(I)= F1*PRXPF+ PFIPF'RX
GO TO 10
2 .^CNTIMIF
C FUEL RICH
A= AA2C1) *AA2(2)*T1>AA2(3)*T2 <-AA2(*»)*T3 *AA2(5)*Ttt *AA2f6)*T5
8= c'32(l)+8e2(2)*TH-Be2(3)*T2 +BE2C*)*T3 +Be2(5)*Tt» +eB2(6)*T5
.01= ' 002(1-1 +OC2(2)*PHE1* 002(3) *'PHE3
02= (OD2(«+) »-CC2(5)*PHEl»- 002 ( 6) *PHE3 ) »TI
030=( (DT32f7) +002 ( 8 > *PHE1+ 002 <9 ) *PHE3 ) + (002 (1 0) *-DD2 < 111 *PHE1 )»TI)
03= 030'Al.OnP
XXX=D1+D2+03
IF (XXX. LT. -200.1 XXX=-?00..
0= EXP(XXX)
UX= A- 5*PHE1+ 0
XXX= (RP2(3)+ RR2( t»)*TI* RR2 ( 51 * ALOGP ) -»PHE1 + RR2(6)+
IF (XXX. LT. -200.) XXX = -200.
C= €XP(XXX)
RX= RR2(1)+ KR2(2)*PHEH- C
HX='jy*RV*Tl
AP= AA2(2) *2.0*AA2(3I*T1* 3. 0* AA2 (k\ *T2* t». 0» fl A2 ( <5) *T 3+ 5.0*AA2(6>
1 *T«»
BP= 092(21 *2.0*B82(3) *T1+ 3. 0* 8B2 C» ) »T2+ k + 0 *SB2 ( 5) *T3 +5.0*582(6)
02P= -(D02C»)> 002(5)"«PHE1+ 002 (6 ) *PHE3 ) * 10 C 0 ,/T2
03P= -(002(10)+ 002(11 )*PHE1)*1000./T2* ALCGP
HP = 0* (02P+03P)
CVX= flP-np*PHEl+OP
CPX-CVX + R.X
CONVERT UNIT TO PER MASS OF MTXTUPE
xeaSE= l.G+FAP,OS*PHEl
Fl= 1.0/XBASE
L'PV|(I)= UX*F1
HPM(I)= HX'Fl
= PX'Fl
I)= 1.987/RBW(I1
VX.= <*l.e*R3M(I)*Tl/Pl
96
-------
CV-CVX*F1
CP8M(I)= CPX'Fl
GAM- CPnM(I)/CV
PARTIAL GEPIVATIVES OF U MD R W.R.T. P,T, AND PHE
D1PF = P02<2) +3 .G*C02(3) *PH£2
02PF = (OD2(5) +T. n*DD2(6) *PHE?) * TI
D3PC •=( (DD2<8) 4-3.0*002 (9) «PHE?) + C02 ( 1 1 ) 5 T I) *flLOGP
OPPr r* (D1PF+C2PF*03PF)
ppiop- -Fl*Fl*FflROS
-------
•CECK TFIPIT
SUBROUTINE TRIPIT(G,QI)
C TRIPLE INTERPOLATION- OF A TABLE FUNCTION Ql* Q( IDF1,IDT ,IOPH1)*DP?
CJKt = Q( ICPtinil,ICPHE)«OP1+ G( ICP1,IDT1,IOPHE)*DP2
QJK = Q( IDP,IDT1, IDPH1)*DP1+ Q( ICP1»IDT1,IDPH1)»CP2
G2= GJ1K1*DT1* QJK1«'DT2
Cl= CJIK'QTI* QJK*OT2
01 = G2*DPH£1* Q1»OPHE2
RETURN
END
'DECK VGLM
SUBROUTINE VOLM(THETAI,DSDTH,DVOTH,V)
THIS ROUTINE CALCULATES THE TOTAL VOLUME AT CURRENT CA
COMMON/ENGEO/ OE, RFW »RL , VC,SC , S , US I , CF, RPP, TW , ONOZZ t NNOZ2, OBOWL,
1 VFJO
CCMMON/CONVFX XJ, A TO ,DT9 , XK , SIG , R , RU , DTOTH ,CThDT , OTRGT ,PI
XX2= THETAI*OTR
COST= COS (XX2)
RLR= RFW/RL
XXX= 1. 0-lRLR*SINT)
XXX= SQRT(XXX)
S- SFW*(1.0-COST +(1.0-XXX>/RLR)
DSDTH= 9FW *SINT * (1 . 0+CCST*RLR/ XXX ) *DTR
nVTTH= 0.7853951635*OE*DE*03DTH
V= VC+ 0.7«53981635*DE*DE*S
RETURN —-•
FNO
98
-------
Si 1?^ OUT I MF WET3T(P,T8,AMWA,ANWF,A,e,C,TWtXL>
E^TTMITE STABLE WET-BULB TEMPERATURE (N-HEPTANE)
COMMON' /PRO PC/ HUTIM,DTPHY,XTLYC2,CPEAC,RHOD,TCRITF,XL298,
1 XM6M(100),CVEnTH
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-460/3-76-008-b
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
Study on Oxides of Nitrogen And Carbon Formation
In Diesel Engines - Computer Program User's Manual
5. REPORT DATE , __-
Issued May 1976
6. PERFORMING ORGANIZATION CODE
7. AUTHORISE
8. PERFORMING ORGANIZATION REPORT NO.
C. J. Kau and T. J. Tyson
9. PERFORMING ORG \NIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
Ultrasystems, Inc.
2400 Michel son Drive
Irvine, California 92715
11. CONTRACT/GRANT NO.
68-01-0436
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Ann Arbor, Michigan 48105 •
13..TYPE QF REPORT AND PEAIQO COVERED,,
Final Report June vj-June v6
14. SPONSORING AGENCY CODE
19. SUPPLEMENTARY NOTES
Co-sponsor: Coordinating Research Council, 30 Rockfeller Plaza, New York,
New York, 10020
16. ABSTRACT
A mathematical model describing heat release and pollutant formation in direct injec-
tion diesel engines has been developed and tested. The model includes several empi-
rical constants which can be tuned to fit the requirements of a particular engine.
Sensitivity studies indicate that the model is most responsive to those constants
which control fuel/air mixing. Numerical experiments strongly suggest that diffusion
flames modelled by spherical droplet flames are unsuitable for this type of system.
The model has been tested against results obtained with a single cylinder diesel
engine. Reasonable predictions of the influence of engine design and operation para-
meters on NO emissions were obtained. However, predictions of smoke emissions were
not satisfactory.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lOENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Croup
Diffusion Flames
Air Pollution
Diesel Engines
Combustion
Emission
Nitric Oxide (NO)
Nitrogen Oxides
Mathematical Modeling
Soot
Computer Program
Fuel Sprays
Internal Combustion
Engine
Fuel Consumption
Mobile Sources
Exhaust Gas Recircu.llatior
Divided Chamber Engine
21-07 (Recipro-
cating Engines)
21-02 (Combus-
tion)
lIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (ThisReport)
21. NO. OF PAGES
106
20. SECURITY CLASS (This page)
22. PRICE
EPA Form 2220-1 (9-73)
100'
------- |