EPA-460/3-76-008-b
March 1976
                                   STUDY
            ON OXIDES OF NITROGEN
            AND CARBON FORMATION
                  IN DIESEL ENGINES -
                 COMPUTER PROGRAM
                        USER'S MANUAL
      U.S. ENVIRONMENTAL PROTECTION AGENCY
          Office of Air and Waste Management
        Office of Mobile Source Air Pollution Control
          Emission Control Technology Division
             Ann Arbor, Michigan 48105

-------
                         ACKNOWLEDGEMENTS


       The CAPE-20-71 Steering Committee of the Coordinating Research Coun-

cil and the EPA originally defined  the project and guided the work to it's final

outcome.  The ultimate value of this project is largely due to the Committee,

without whose help and criticism  it would have been difficult to  complete.

The authors sincerely acknowledge their gratitude to the following individuals

who have served on the Steering Committee during the lifetime of the project:
       F. J. Hills, Committee Chairman
       J. L. Bascunana
       N. G.  Beck
       T. C. Belian
       J. E. Bennethum
       G. L. Borman
       W. L.  Brown
       J. C.  Hoelzer
       G. D.  Kittredge
       G. A. Lavoie
       D. F . Merrion
       P. C. Meurer
       J. M. Perez
       S. M.  Shahed
       A. D. Tuteja
       A. V.  Wilson
       A. E.  Zengel
Mobil Research & Development Corp.
Environmental Protection Agency
International Harvester
Coordinating Research Council
General Motors Research Laboratory
University of Wisconsin
Caterpillar Tractor
International Harvester
Environmental Protection Agency
Ford Motor Company
General Motors-Detroit  Diesel Allison
International Harvester
Caterpillar Tractor
Cummins Engine
General Motors-Detroit  Diesel Allison
Cummins Engine
Coordinating Research Council

-------
                         TABLE OF CONTENTS

                                                              Page No.

ACKNOWLEDGEMENTS                                              i

NOMENCLATURE                                                   v

I.      INTRODUCTION                                             1

II.     PROGRAM DESCRIPTIONS                                     3

III.    DESCRIPTION OF THE PROGRAM INPUT                         9

IV.     DESCRIPTION OF THE PROGRAM OUTPUT                       17

V.     SAMPLE CASE                                              21

(1)     INPUT                                                    22

(2)     OUTPUT                                                   23

VI.     PROGRAM STATISTICS            '                           39

VII.    REFERENCES                                               41

VIII.   APPENDIX ~ FORTRAN LISTING OF DIESEL ENGINE              43
                  PROGRAM
                                iii '

-------
                 NOMENCLATURE




C               Specific heat
 P


D               Gas binary diffusivity


P               Pressure


R               Gas constant


T               Temperature


U               Specific internal energy


erf              Error function


               Equivalence  ratio based on fuel-air mass ratio


$               Crank angle


P               Density

-------
                          I.  INTRODUCTION

       This document describes the computer program and serves as a user's
manual for a numerical model  on THE PREDICTION OF POLLUTANT FORMATION
IN DIESEL ENGINES.  The model is capable of predicting both engine
performance and formation of nitric oxide and soot in a direct injected
diesel engine combustion process.  The program is  sufficiently versatile to
investigate the  influence of several engine parameters,  such as geometry,
injection timing, compression ratio, load,  swirl, etc.,  and thus can be
considered as a tool readily accessible to  the design engineers.  The
physical and chemical processes, the detailed mathematical analysis and
the assumptions upon  which the model is based are discussed  in the full
report on this investigation.  This manual contains  brief descriptions of the
program subroutines, program input and output.  One sample case is also
given to illustrate the use of the program which is designed to facilitate
program check-out.
       The computer program  is coded in standard FORTRAN IV, and a version
is currently operational in CDC 6600 computer.

-------
                      II.  PROGRAM DESCRIPTIONS

       The main body of the program is the routine MAIN which simulates
the cycle thermodynamics of a reciprocating engine and also manipulates
                           \
the major input output mechanisms of the program. The cycle thermodynamic
routine is used as the skeleton and the model components,  coded as
separated subroutines, are linked together by CALL  statements, thus forming
the complete program.  The flow chart is  shown in Figure 1.
       A brief description of the subroutines included in  the program are
given below.

SUBROUTINE AMIX
       This subroutine estimates the rate of mixing between the "air" zone
and the burning zones.

BLOCK DATA
       This subroutine presents the coefficients for both the internal energy
polynomial, U(P, T, 0),  and the gas constant polynomial, R (P,T, 1.0) equilibrium combustion products.  The
coefficients are obtained for a specific fuel by curve-fitting the calculated
results from the NASA equilibrium program (Ref. 2).

SUBROUTINE CONHT
       The gross rate of  convective heat transfer from the entire charge
within the cylinder to the cylinder walls is computed in  this subroutine.
The calculation is based  upon  the mean charge temperature and the character-
istic charge Reynolds No.

FUNCTION ERF
       This subroutine estimates the error function of a given  argument x, i.e.,

                                            2
                     erf (x) = .        I  e    dr
       £      r*  /
(x) = 7=   \  e
    J 7T      I
    v        •'o

-------
SUBROUTINE EVAP
       The model requires that the premixed air-fuel packages are tracked
throughout their lifetime and this operation is handled in the subroutine
EVAP.  The vaporization rate of each droplet size groups and the air-fuel
vapor ratio of each package are defined in Lagrangian coordinates.  The
onset of ignition in each air-fuel package is also monitored.

SUBROUTINE FINTN
       The rate of fuel injection is calculated by calling this subroutine.

SUBROUTINE FUMEZ
       This subroutine computes quasi-steady flame structure by constructing
the diffusion field around  a confined burning droplet with finite space.  Flame
temperatures, flame  zone  thickness, fuel, O2 and temperature distributions
are determined.  Subroutine HETNOR is called in FLAMEZ to calculate the
production rate for nitric oxide during droplet burning.  The nitric oxide
produced during droplet burning forms the heterogeneous contribution to the
total emission.

SUBROUTINE HETNOR
       The nitric oxide formation rate within the flame structure defined by
FLAME is  determined in this subroutine by integrating the finite-rate NO
conservation equation.  This two-point boundary value problem is solved
by a trial  and error method.  An initial guess of the NO concentration at the
droplet surface is made.   The NO production equations which are based on
the Zeldovich mechanism are integrated and the calculated NO concentration
at the end points  is checked with the given value at the end point.

SUBROUTINE HOMNOZ  (HOMNOR)
       The homogeneous contribution to the total amount of NO produced
(which was not included in HETNOR) at the zonal NO formation rate is
determined by this subroutine.  The Zeldovich chemical kinetic mechanism
is also used as the basis  for the calculation of the homogeneous NO
formation.   Subroutine HOMNCR is used for that of the  "air" zone.

-------
SUBROUTINE RADHZZ  (RADHZ)
       This subroutine evaluates the zonal rate of radiative heat transfer.
Subroutine RADHZ is used for that of the "air" zone.
SUBROUTINE SIZED
       This subroutine determines the drop-size distribution of the fuel jet
by an upper-limit distribution function based upon the Weber number and the
Reynolds  number of the jet.

SUBROUTINE SOOTRZ(SOOTR)
       This subroutine calculates the zonal  soot formation rate both, prior
to and after ignition.  It also determines the soot oxidation rate based upon the
zonal pressure, temperature and equivalence ratio'.   Subroutine SCOTR is used for
that of the "air" zone.

SUBROUTINE SPECYZ (SPECY)
       Zonal equilibrium species distribution is obtained via table look up
for specified independent variables P, T,  and $ .  Subroutine TRIPIT is called
to perform'the three-dimensional linear interpolation. An error message will
be printed out whenever any independent variable lies outside the range of
the table.   Subroutine SPECY is used for that of the "air" zone.

SUBROUTINE SPRAY
       This subroutine calls subroutine SIZED to determine the drop-size
distribution  of the fuel spray.  The fuel jet is simulated by a steady jet
(free and  wall jets) theory. Therefore, the trajectories and over-all air-fuel
ratios of fuel elements are defined in Eulerian spatial coordinates.

SUBROUTINE TAPEIN
       This subroutine is called at the very beginning of MAIN to the input
species distribution tables from TAPE 8.

-------
SUBROUTINE T-PROPZ  (TPRCP)
       This is a subroutine to evaluate the thermodynamic properties of
the equilibrium combustion products.  The internal energy and gas constant
(R) are calculated as functions of P, T, and v by polynomial.   Expressions
and coefficients  of these polynomials are specified in DATA BLOCK.  The
partial derivatives (of U and R) with respect to P, T,  and 0 , are also
computed in subroutine TPROPZ.   Subroutine TPROP   is used to evaluate the
thermodynamic properties of the "air" zone.

SUBROUTINE TRIP IT
       Subroutine TRIPIT is a three-dimensional linear interpolation routine
called for in subroutines SPECY and SPECYZ.

SUBROUTINE VOLM
       This subroutine gives the instantaneous volume of engine cylinder.

SUBROUTINE WETBT
       This subroutine estimates wet-bulb temperature of a vaporizing fuel
drop at high ambient pressures and temperatures.  The Cox-Antonie equation
is used to evaluate the equilibrium partial vapor pressure.

-------
              INPUT
     Engine description
     Intake air. fuel and EGR
     properties
     Control parameters
     Empirical  parameters
      INITIALIZATION
   Physical constants &
   parameters
   Residual gas
   Properties of Initial cylinder
            VOLUME
     Cylinder volume (y0LM'<
          FUEL SPRAY
   Dropslze distribution (SIZED)
   Air/spray entralnment (SPRAY)
   Evaporator & Ignition (EVAP)
   Wet bulb temperature (WETBT)
        Air/product mixing
           (AMttt
EQUILIBRIUM COMPUTATION
Thermodynamlc properties (TPR<2t2
Species distribution (SPECYZ)
       DIFFUSION fUME
 Droplet burning rate (FLAMZ)
 Hetergeneous NO rate (IICTN0R)
             flEAT TRANSFIX
         Convolution (CONIIT)
         Radiation (RADM7.Z)
                                                                       HCMOGL-NEOUS NO RATC
                                                                       NO kinetics (HOMNC'Z)
         SCOT FORMATION
       • Soot kinetics (S0OTR2I
      CVCtE THERMODYNAMICS

• Integratlng'energy equation*
• Mass conservation equations
• N'O and soot conservation equations
  Determining Zonal
• Temperature and A/F
e NO and soot
  Define Over-all
• Temperature
e Pressure
• Mass of NO and soot

Yos
• Engine performance
• Exhaust pollutants
                                      Figure  1

-------
               III.  DESCRIPTION OF THE PROGRAM INPUT
                                      V


       The data input to the diesel engine program consists of three distinct
groups:
       (1)     Tape Input (Species Tables): The mole fraction distributions,
              X^ (P,T,v), of the equilibrium combustion products is read in
              as TAPE 8 from either a magnetic tape or magnetic disc.  This
              input is required only once for all  stacked cases having the
              same kind  of fuel.  Cases using different fuels cannot be
              stacked.

       (2)     Block Data Input (Thermodynamic Properties):  The internal
              energy, U  (P, T, 0), and gas constant, R(P, T, 0), of the
              equilibrium combustion products are calculated from fitted
              polynomials (detail, see Ref. 1).  The coefficients of these
              polynomials form an integral part of the program via the
              BLOCK DATA subroutine.  The BLOCK DATA has to be revised
              whenever a different fuel is used.

       (3)     Card Input (Engine Geometry, Operating Conditions and Air-
              Fuel Physical Properties):  Five  sets of input ca'rds are required
              in this group. All of them except the case identification card
              are input via the standard namelist format.

              The five sets of cards are described below according to their
              input order.  The definitions, format, and preset values of
              the variables in each set of input cards are described in
              functional  subgroups.  The order of the variables within each
              set of input data is arbitrary.

              (a)  Namelist GIVEN

              This set of input cards details the common constants of engine
              geometry,  engine operation,  and fuel physical properties.  The
              variables in the GIVEN namelist are presented in Tables 1,
              2 and 3.

              (b)  Case  Identification  Card

              A single card contains the case  identification information in
              Columns 1  through 80. When no identification is desired a
              blank card must be provided.

              (c)  Namelist CPARAM

              This set of card inputs provides the logic flow control parameters
              for the program. All the  parameters in this set of data are
              preset to nominal values and only  require to be input if it is
              desired to  alter the preset values.  These preset values apply to
              each individual  case, therefore, all charges must be made
              whenever required.

-------
When it is unnecessary to modify the parameters given
in Tables  4, 5 and 6, a $CPARAM$ card starting at
Column 2  must be included.  It should  also be noted
that when NSHEL and DTHMIN are specified, the
constraint:

          (DINJ/DTHMIN) x NSHEL £  100

must be satisfied.

(d)  Namelist EPARAM

The empirical parameters, which are preset, required by
the program are provided with this set of input cards.
These parameters which are preset prior to each individual
case need only to be input  if it is desired to alter the preset
values. Therefore, when the alterations are required, they
must be made in  every case.

If modification of the parameters listed in Table 7 is not
required,  a $EPARAM$ card starting at Column 2 must be
included.

(e)  Namelist GIVEN

The variables in  this set of input are the same as  that of (a).
This set of inputs serve as a modification or as an addition
to set (a). When neither a modification nor an addition
complement is desired a $GIVEN$  card  must be provided.

The order  of card input is illustrated in Figure 2.
                      10

-------
 Table 1.   Engine Geometry
FORTRAN
SYMBOL
DE
RFW
RL
CR
sc
TW
SCR
DN£ZZ
NNtfZZ
THEVC
THEV0
DBOWL
NSTROK
DESCRIPTION
Engine bore (cm)
Crank radius (cm)
Rod length (cm)
Compression ratio
Engine clearance (cm)
Mean engine wall temperature (°K)
Supercharge (atm)
Diameter of fuel nozzle (cm)
No. of fuel nozzles
Closing angle of intake valve (C.A.)
Opening angle of exhaust valve (C. A.)
Diameter of bowl on piston head (Cm)
No. of strokes per power cycle
FORMAT
+
F
F
F
F
F
F
F
F
F
F
F
F
I***
PRESET
NA**
NA
NA
NA
NA
NA
NA
MA
NA
NA
NA
NA
4
 Table 2.  Engine Operation
XMAI
XMRD
0MEGA
THEIJ
DINJ
XMFJ
PINT
TFT'
EGR
RPM
Mass of fresh air/powerstroke (gm) .
Mass of residue gas/powerstroke (gm)
Charge swirl angular velocity (rad./sec)
Fuel injection time (C.A.)
Duration of fuel injection (C.A.)
Mass of fuel injection/powerstroke (gm)
Fuel line pressure (atm)
Fuel line temperature ( K)
% of E.G.R. (base on total charge)
Engine speed (rpm)
F
F
F
F
F
F
F
F
F
F
NA
Option*
NA
NA
NA
NA
NA
NA
NA
• NA
  •\ Floating point
  * This value will automatically be calculated in program if not specified.
 ** Not applicable
*** Integer
                                  11

-------
Table 3.
Fuel Properties
w
XX
FDEN
CEN
API
XMUF
SURFT
TBPF
TCRITF
CPFL
CVFV
CPFV
DHFV
HFFL
HC0M
No. of C atoms in fuel molecule
No. of H atoms in fuel molecule
3
Density of fuel (gm/cm )
Centan No.
API Gravity at 60°F
Viscosity (gm/cm-sec) at TFT
2
Surface tension (gm/sec ) at TFT
Boiling point at 1 atm ( K)
Critical temperature ( K)
Liquid specific heat (cal/gm)
Vapor constant volume specific heat (cal/gm)
Vapor constant pressure specific heat (cal/gm)
Latent heat at 298°K (cal/gm)
Heat of formation at 298°K (cal/gm)
Heat of combustion (cal/gm)
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F.
NA
NA
Option
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Option*
Option*
 * If this value is not specified it will be calculated by program.
                                    12

-------
Table 4.   Pollutant Computation Control
FORTRAN
SYMBOL
INQfl
INGfc
s."1.
DESCRIPTION
Homogeneous NO rate calculation is to be
performed if INGflr^ 0
Heterogeneous NO rate calculation is to be
performed if IN02 ¥• 0
Soot kinetic calculation is to be performed if
ISfZfot / 0
FORMAT
I
I
I
PRESET
1
1
1 '
TableS.   Numerical Stability Control.
NTER
NAXIL
NSHEL
NS2G
NITST
DTHMIN
DTHMED
DTHMAX
THEMAX
EPSIT
EPSIP
Max. No. of iterations allowed for stable solution
No. of axial fuel jet stations (max. = 20)
No. of conical fuel jet shells (max. =4)
No. of droplet size groups(max. =3)
No. of spatial points in droplet field integration
(max. =50)
Integration step size (C.A.) used during fuel
injection and combustion
Integration step size (C.A.) used after combustion
Integration step size (C.A.) used before injection
Maximum crank angle to be integrated to
Relative error bound on averaged temperature
calculation
Relative error bound on pressure calculation
I
I
I
I
I
F
F
F
F
F
F
50
20
4
3
50
1.0
2.5
5.0
THEVC
2.0 E-3
2.0 E-3
                                   13

-------
  Table 6.    Output Control
FORTRAN
SYMBOL
NPRT
IDTAIL
IDRtfPP


ISECYP

&RATEP

DESCRIPTION
Print every NPRT integration steps
Print detailed zonal information if IDTAIL ¥• 0
Print detailed droplet information if IDR0P ^ 0
& IDTAIL ¥• 0
FORMAT
I
I
I

1
Print detailed species information of each zone if I
ISPECY 1 0 & IDTAIL ¥• 0
Print detailed rate information if IRATEP ¥• 0 &
IDTAIL * 0

I

PRESET
2
0
0


0

0

Table 7.
FORTRAN
SYMBOL
CA
CB
CNOR
CVIDI
CMIX
SEFJ
CEVAP
RH0D
CPBAR
XTLY02
HUTIM
SDEN
DSOOT
ASOTA
ASOTP
DESCRIPTION
Preconstant for rate for heat convection rate
Reynold's No. exponent heat convection rate
Multiplier of N<# rate constant
Vitiation/dilution ratio
Air/product dilution coefficient
Coefficient for swirl effect on jet entrainment
Crossflow effect on fuel vaporization rate
PD in droplet calculation fem/cm-sec)
C in droplet calculation (cal/gm)
Droplet extinction limit (oxygen mass fraction)
Droplet heat-up time (sec)
3
Density of soot particle (gm/cm )
Assumed mean soot particle size (cm)
Pre-constant for soot formation rate in burning
zone
Pre-constant for soot formation rate in
vaporizing zone
FORMAT
F
F
F
F
F
F
F
F
F
F
F
F
F
F .
F
PRESET
0.26
0.7S
5.37
0.1
7.8E-3
4.3
0.276
3.0 E-4 .
0.35.
0.02
2.0 E-4
2.0
1.0 E-4 -
3.52
3.52
                                    14

-------
                              /EN
                      i
                      /SEFAPAM
             $GIVEN
          r$ EPA RAM
" $C!-ARAM
i Case I.D. Card






SGIVEN
'$CPAFAM
st Case I.D. Card



                                                             —/nd Case
                                                 -J/^  1st Case
                                            Preset Engine and Fuel Parameters
                          Figure 2. Input Data
                               15

-------
                  IV.  DESCRIPTION OF PROGRAM OUTPUT

         The regular printed output of the computer program is described
below.  The description is presented in the order of its appearance.
         (1)  Printout of Program Input
         The program input group (III) is printed  out under namelist output
format.   Descriptions of these variables has been given in Section 3
under:

         NAMELIST GIVEN
         I.D. Card
         NAMELIST CPARAM
         NAMELIST EPARAM
         NAMELIST GIVEN
         (2)  Initial Conditions
         The printout of namelist INITL gives the initial conditions of the engine
and the charge in it. The elements of NAMELIST INITL are described below.

SYMBOL                   DESCRIPTION
THETAI       Initial C.A. for integration (or compression)
THEMAX      Maximum or final C.A.; the integration is terminated when
               6  = THEMAX
P             Initial pressure (atm)
T             Initial charge temperature (  K)
                                      3
V             Initial charge volume (cm )
UA           Specific internal  energy of charge (cal/gm)
HA           Specific enthalpy of charge  (cal/gm)
XMAGf         Total mass of initial charge
                                     17

-------
SYMBOL
                     DESCRIPTION
AMWA
FARA
PHEA
FAR0S
XMEGR
XMAEGR
XMFEGR
XMRD
XMARD
XMFRD
AMWF
FDEN
HHV
HFFL
HFJ
VC
VDIS
VFJGf
              Molecular weight of charge content
              Fuel-air mass ratio of charge content
              Equivalence ratio of charge content
              Stoichiometric fuel-air ratio
              Mass of EGR  (gm)
              Mass of pure air contained in XMEGR (gm)
              Mass of fuel  contained in XMEGR, (gm)
              Trapped or residual gas  (gm)
              Mass of pure air contained in XMRD (gm)
              Mass of fuel  contained in. XMRD (gm)
              Molecular wt. of fuel
              Stoichiometric oxygen-fuel mass ratio
              Oxygen mole  fraction in charge
                                       3
              Liquid fuel density (gm/cm )
              High heating  value of fuel (cal/gm)
              Heat of combustion (cal/gm)
              Heat of formation of fuel  (cal/gm)
              Enthalpy of injected fuel  (cal/gm)
                                         3
              Engine clearance volume (cm )
                                      3
              Engine displacement ( cm )
              Initial velocity of fuel injection  (cm/sec)
         (3)  Printout of Current Information at Each Specified Print Station
                           .                       •
         The program will printout averaged over-all charge properties and rate
information at the specified print station controlled by NAMELIST CPARAM and
every ignition step  (from the onset to the end of zonal ignition).  The elements
of the printout are described below.
                                    18

-------
 SYMBOL
         DESCRIPTION
 THETA
 P
 V
 T
 U
 PHEE
 DPDTH
 WP
 DFJDTH
 SMOOTH
 SMVDTH
 DQRDTH

 SVBDTH
 SDBOTH
 SLDDTH
 SUMQL

 SUMFB
 DFBDTH

 WKNET

 RR
UCHAP
DVDTH
DELE12
Crank Angle (in degree), zero at TDC
Pressure (atm)
                                          3
Instantaneous engine (or charge)  volume (cm )
Mass averaged temperature (  K)
Mass averaged specific internal energy (cal/gm)
Over-all equivalence ratio
Step-averaged pressure derivative, -77  (atm/C.A.)
                                 da
Step-averaged work rate, P-TV  (cal/C.A.)
                          C1C7
Fuel injection rate (gm/C.A.)
Step-averaged over-all dilution rate (gm/C.A.)
Step-averaged over-all vitiation (air) rate (gm/C.A.)
Step-averaged over-all rate of radiative heat transfer to the
cylinder wall (cal/C.A.)
Step-averaged over-all premixed burning rate (gm/C.A.)
Step-averaged over-all droplet burning rate (gm/C.A.)
Step-averaged over-all  mass rate of ignition of liquid fuel (gm/C.A.)
Cumulated (time  integrated) heat loss(convective and radiative heat
transfer) to the cylinder wall,  (cal.)
Cumulated mass  of fuel burned to equilibrium products
Over-all mass burning rate (gm/C.A.)
                                   dv
Cumulated net work (cal),  i.e.,
dp'
                              A
Mass averaged gas constant (cm  - atm/gm - °K)
Characteristics charge velocity (cm/sec)
                     3
Engine Volume rate (cm /C.A.)
Over-all numerical error involved in integration of the system energy
conservation equations, (normalized by total chemical energy released
i.e. XMFJ * HCOM).
                                      19

-------
SYMBOL            DESCRIPTION
ITERPC        No.  of iterations per step
XMN<#E       Over-all mass of NO (gm) per power stroke
YN0E         Mass averaged NO mass fraction
XNOE         NO concentration (ppm)
S00TE        Over-all mass of soot (gm) emission per power stroke
        (4)   Engine Performance and Exhaust Pollutants
        The computed engine performance parameters and pollutants in the exhaust
gas are printed at the  end of engine cycle (i.e.  6 - THEV<#) or at the end of
integration (i.e.  6 =  THEMAX).  They are:
SYMBOL
I.M.E.P.
I.H.P.
I.S.F.C.
NITRIC
GfXIDE
       DESCRIPTION
Indicated mean effective pressure (psi)
Indicated engine horse-power (hp)
Indicated specific fuel consumption (Ib/hp-hr)
                               3
Exhaust soot concentration (mg/m  at standard  conditions)
Exhaust nitric oxide concentration (ppm)
                                    20

-------
                           V.  SAMPLE CASE

       The program input and output of a sample case is  presented in the
following pages to facilitate program checkout.
                                     21

-------
                                (1)  INPUT
                                            .n , SC=0 . 2032 , TV: =5 00 . 0 ,
 CTNJ=17. ,
      RTTF='5f 7.,
      HFFl.= -?f-««.
., THPTJ=  20
7 .6 ,rf*FL = 0 .5 t ,CPF V = Q . 33? ,
 = ;?'?1.,  PNC77 = C . C? r^ .
           CCASE   000
                                                                        = 0 . .! 2 ,
                                                                             f, fl =
-------
(2)   OUTPUT
{GIVEN
or
RFU
RL
CR
SC
TH
RPM
SCP
PNQ7.2
NNOZZ
OflOWL
THEVC
TMEVO
XM4I
F.G?
XMRO
OMEGA-
NSTROK
THEIJ
DIMJ
XMFJ
PINJ
TFJ
H
XX
FOEN
CEN
ftPI
XHUF
SURFT
TOPF

= 0
= 0
= 0
= Q
= a
= 0
= 0
= 0
= 0
= 6
= 0
= -0
= Q
s Q
= 0
= 0
= 0
= "2
= -0
= 0
= 0
= 0
2 0
= 0
= 0
= 0
= 0
= Q
= 0
= 0
— 0

.1397E*05»,
.762E»C1,
• 33UBE + 02 i
« 17E»0? f
.2032E»00,
.5c*03,
.15E»C«,, '
.1£*01.
.2S<,c.01,
t
.82E+01,
.15E»03,
» l^c + C 3 t
• ?**£ * 0 1 i
.0,
.c,
.6E>03,

.2E»02,
.17E*02,
.1£»,0,
.231E+03,
.35E»03t
.7E*01,
.12E»C2,
.0. •
.<»fi7E + 02,
.?«.5E*02,
.12E-01,
.27E»02,
,3776E>05,
           23

-------
TCPITF  =  O.S67E+03.




CPFL    =  0.5lE*OOt
CPPV



CVFV



OHFV




HFFL



HCOH




SENO
           0.332E»00.
        =   0.0,
                                   24

-------
*»•»» A/F = ?«»., THFIJ=  23  3EC.8TOC,  H£0.  
-------
 SCP4P.UM




 INOt




 IN02




 ISOOT    =




 IBUG     =




 NTER     =




 NPRT     =




 NAXTL    =




 NSHEL    =




 NSZG     =




 ICROPP   f




 IRflTEP   =




 ISPCYP   =
=  It



=  It



=  It



=  0,



=  50,




=  Zt
   3,




   0,



   0,




   0,
IDTAIL  =  0,



NITST   =  50,




OTHMIN  =  O.le+ai,



OTHMEO  =  0.25E«Clf



OTHMflX  =  fl.5E»01,




THEMAX  =  0.3£f02,



EPSIT   =  0.2E-02,




EPSIP   =  0.2E-02,
SEND
                         26

-------
SPPftRftM
CA =
ca =
CNOR -
CVIOI =
CMIX =
SOEN =
OSOOT =
ASOTA =
ASOTP =
HUflH =
OTPHY =
SEFJ =
COCHG =
CSVAP =
AIGNO =
RHOO =
CPBAR =
XTUY02 =
«ENO

0.26E+OQ,
0.75E+00,
0.537E»01f
0.1E»QQ,
0.78E-03,
O.ZE^Ol,
O.ie-03.
0.352E*fllt
C.352E»fll,
0.2E-03,
0.2S-02,
0.«».Ti + Cli
0.1E+01,
G.278E»GOt
G.1(»6E-C3,
0.'3£-03,
0.35£*00,
0.2E-Qli

27

-------
*GIV€N
OE
RFN
RL
CR
SC
TM
RPM
SC"
ONOZZ
NNOZZ
oeowu
THEVC
THEVO
XM4I
EGR
XMRO
OMEGA
NSTROK
THEIJ
OIMJ
XMFJ
PINJ
TFJ
H
XX
FOEN
CEN
API
XHUF
SUPFT
TBPF

= 0.13T7E»02,
= 0.762E+01,
- C.30ME»02,
= 0.17E»02t
= 0.2012CtOOi
= 0.5£*03j
= 0.15E»Cit,
= 0.1£*01,
= 0.25«tE-Qlt
= 6,
= 0.82E>01,
= -0.15E+03,
= C.1«»E»C3,
= 0.2t»E»01t
= 0. Cf
= 0.0,
= 0.6£>03t
- i».
= -0.2£*02,
= C.17E+02,
= 0.1£*UO,
- 0.231E+03,
= 0.35E»03,
= 0.7E*Qlt
= 0.12EHJ2,
= 0.0,
- O.«.67'£»02,
= 0.31*55*02,
- 0.12E-C1,
- 0.27c»02,
= 0.3776E»03,
28

-------
        ="  0.567E»C3,




CPFL    =  0451E»00,




CPFV    =  0.332E+00,



CVFV    =  0.33E»OOi



OHFV    =  U.92865E»02,



HFFL    = -0,26«»39E*03,




HCOM    s  O.Ct




SEND
                       29

-------
THETAT




TMCMAX




P




T




V




UA




HA




XMAO




A MM A




FA?9200235'»5E-01 ,



=  0.2523<»5<500a931E-02,



=  0.96E«-C2,



=  0.3.?203066666667E»01,




=  0.2G353«»26216717EtOCt



=  0.8S1932859887«.1E*00,
=  0.1C2'»93Q555555oE«-051



= -0.26«»39E*03,




= -0.2ol33'fc2«»1365aE*03,



=  3.1U599»13601726£*03,




-  0.23J59701762761£»0'»,



=  0.20'.399'»172532flE»G5,
                        30

-------
           ai"  -U5. aO   JMAIMM  1.3<»6E»JS  V(CH3I= ?.319E«03  T(K»= J
npQ»H»»t"/::»i = ^.fszc-JJ  MP(CAL/CA»=-2.i3«c-oi  HFJOTHIGH/CAIE a.
fO':['!M«r.AL/CA»s-«i.3S7E-01  aORnTMIC»L/CA(=-?.9aSE-OS   SVBOTH (GM/CA1 »
Su>^HC»U = -Z.l79E»aO  SUHF3JGMI*  0.          SFOniHCGM/SA) * 0.
UCMA3IC-1/SEO * 2.1<.7E»03  OVOTHCCH3/CAI =-9.273E»80  OCU 12s-8.23aE-05
                                                                                   UICAL/GM) =-2.
                                                                               SMDOIH< a.
                                                                                    SOHOTH (GM/CAI * 0
                                                                                                           PHEE» l.<.bBE-aZ
                                                                                                           SIVOTHCGH/CAI* c.
                                                                                                                SLOOIH (GK/CA) =  0.
                                                                           HKNEI CCAl J s-1.069E»90
                                                                           ItERPC*    1
                              Z.2F.1F-7S  XNOE(PPM)= 2.2PlOb9  SOOTt (GM) «  8.160E-31
                                                                                                   »RICHJ-ATN/GM-KI= Z.a«.Ot»JO
           Aj*  -\3*. oo   P«ATMI=  i.i5tE»ta  VICMJ>= 2.zi^f*03  T«K>=
OPQTH|«IM/C»I=  l.ili.E-02  H»= 0.          SMOOTH«GH/C»» * . 0.
Oir.rtM|r:Bl./C»l=-3.'»0
5'1'ICL (C5L) --b.l2?C»JD  SUKF3(Gm=  0.          SFOOTHI GM/C A> = 0.         MKNEI ICAL ) =-3.879E»00
UGHf>«:M/3ECI=  2.1«5E«33  OVOTHCCHJ/CAI =-1 .183c«01  PELE1Z= t.OmE-Od  ITfRPC*     1
y-t'(OriGrtl=  6.5i»l.t-71  YI40E= 2.657E-71  XIIO£IPPM)« 2.555E-65  SOOTEIGMM
                                                                                                           PHEE= i.«.68E-oz
                                                                                                           SHVDIHIGM/C4 ) = 0.
                                                                                                  s 0.          SLOOTMIGM/CAI 3  a.
                                                                                                   RR(CH J-ATM/GM-K I =
t *:J4 =  1.28SE»30  V(CM3I=  2.t43F«03  T(K)= 3.825£»02  UICAL/GH) =-1 .739E»Q1   PHEE-
 QpniHUI"/CA>=  I.ii23£-02  HPICAL/r.AJ =-l,.132€-01  OFJOIHCGH/CA) = fl.          SMOOTH! GM/C9) = Q.          SMVOTH«G«/CA) = S.
 Or,r.i;'H(CAL/CA|i-3.257E-11  OQKOIH (CAL/CAI =-2 .598E-05   S«1!OIH(GM/CAI = 0.          SOBOIH IGM/CAI = 0.          SLDCI H t GM/CA) =  0.
 S'-Jint lC&LI=-9.515r.«C3  SUKF:1(OMI=  0.          SFROI H I GM/C Al = 0.         MKNEI ICAL > =-7 .727E»00  RR (CM3-A IM/GM-K ) = 2.3ttOE»3li
 u<:tit?icn/s£ri«  z.z3ic»B3  O\»OTHIC»I/CM =-i.«.25E«oi  OFLEIZ^ z.uif-0'.  ITERPC=    i
 H-.'lCi IGll *  «,.555f-67  tNOfs  1.8I.9E-67  XNOMPPM»= 1.77HE-61  SOOIF.(GHI=  Z.719E-Z8
                     uO   P«AIM)= l.«,59f»JO  VICH3>=  t.929t»03  T= o.          SMOOIHIGM/CAI = o.          srivO!H«Gi-/c»i= c.
 CTC.!lH(CaL/CiM-2.7£9F- = -l .21«.-C»C1  au^Fj«GM)=  0.          SFnnTIMr.H/SAI = 0.         HKNEI(CAL!=-1.283E»Ol  RR(CM3-A TH/GM-K 1=
              >=  2.212E»C3  OWOTH(CM3/CA| =-1 .6«.7£»01  Of.LE12= 3.2o6t-C«.  ITERPC=     1
                     3  YNOE=  l.OS'.F-fi'J  XNOE(PPH}=  1.013E-S7  SOUIt(GM|=  3.756E-27
                -100. SO
                          PUIH)
                                                                  T(K)= <..2<,OE»Q2  U tCAL/G«l =-1 .u^l.E»Ol   PHEE=
OPOIifiTH/rtJi  2.«.')7E-02  WP(CAL/r«t =-7.G6tE-ul  OF JOIH ( GH/CAI = 0.          SHHOTH 'IClL/CA|:-?.ll.5t-Jl  OQiiOIH(rAL/CA)=-2.C'7i.r-05   awU'J IH(Gn/CAI =  J.          SUGOIH CGH/CAI
<|J-CI (C»L)=-1 ,<«tiOc»Jl  SUMFltCM|=  3.          SFUOIH1GM/CA) = 0.         HKNEHOALI = -1 .9<«7E «0l
U~MSr--(':i/3£CI=  2.J3JE»H  Orf01Hir.s3/C4t =-l.«38E«01  OrtF 12= i».3i.3f-ai.  HERPC=    1
                    9'  YNOt=  5.8Gir-=  5.061E-26
                                                                                                   a.
                                                                                                           SHVOt H (G"/C1 ) - 0.
                                                                                                                SLOOI H(GM/CA> =  G.
                                                                                                                 -K >= Z.bi.uE»OC
         ..GA)=  -95. ui   PIATKI = 2.005£»03  V(CM3)=  1.56.1E«03  T(KI= "..i.lJ5L«02  U PQIH(4TH/CA)= 1.i.)SE-?2  HP(C«L/Ci) =-9.07fcE-Ot   DFJDTHI GM/C A) = 0.          SMnOIH(GH/CA) = C.          SMtfOIHJGM/Cl) = 0.
 D.CPT MC«L/CAl=-1.550E-01   nQPQTH (CAL/C A) =-1 . M.OE-0';   SVBQTH (Grt/CA> =  a.          SOBOTll (GM/CAI =  0.          SLO-irM (GH/CAI =  0.
 S'J^'JKCSLl--! .515^»J1  SUMFIICiHs  0.      '    SFnniH( GM/r. Al = 0.         MKNFT ICAL ) =-Z .SOZEtOl  RR (CM3-ATM/GM-K 1= 2.3<.0£»oO
 UCHa3(;c/SrC)= 2.J79?»J.'  OVOI HlC-'l/CAl =-1 .985E »U1  OEL::i2= 5.<4t75-OH  11ERPC=    1
 >>-NC,f IG1>=  ».fi12E-56  YtJOfz  S.^JP^t-SG  XNOF(PPMI=  3.39UE-50  SOOU(GMI=  6.95CE-25
                    . iO   P(ATN)=  2.".Oi.E»00  V(CM3>=  1..T09E.OJ  I(KI= «..7(,8il»02  U (OAL/GUI =-1 ,320E»aO   PH£E= I.«.b8r.-i2
 OaDIn( JI-/C«I=  U.flt>7£-02  HP|CAL/CA>=-1 ,161F*GO  UF jni II ( GH/CAI = 0.          SMDDIMC SM/C4I = 0.          SMtfOT H(GM/C5 1 = 0.
 01C:)THIC»L/CAI=-9.0Z8E-OZ   OOKOTH ICAL/C A) s-9.H6t.E- 06   3«iil)TH(GM/Ci) =  3.          SOODIM (GM/CAI =  0.          SLDOIHI GM/GA» =  C.
       (CSU=-1.7i.2c»:i  SUHFJCGMIS 0.          Sf aOrH(GK/CAl = O.         HKNETCCAL»=-3.895£»ai  RR
-------
                -75.00    PCftTMl* 3.101f»00  V= j.          SOBDIHC&H/CAJ* a.          SLOOIHICM/CAM «.
           = -1.77'IE»C1   SUHF3(GMI= 0.          SF80TH1GM/CAI = 0.         WKNET «CAL )=-5.293E*01  RR (CN3-AT M/GM-K 1=  Z.6<>CE«30
              | = Z.it31E»GJ  (WOTHICKS/CAI =-2.100E«Ol  OFLEUa 7.619E-Clt  ITERPC=     1
                >3£-C-:  I.UtlF^OZ  IIKI= 5.=-1.7l3f KM  SUKFTIC,MI= 0.          SFnOIHI GH/CA) = 0.         HKNEF «CAL I =-7 ,0»ZE»Ol  RRICHJ-Af rt/GH-K I =
 OChAKCM/SECI'  2.".27E«03  OVHl H(r.«3/Ci>l =-i.Oiif!e»01   OELE12= 1.29«t-UJ  IT£RPC=     ?
 X1NOMGM)=  1.591E-I.3   YNOE= li . 461 (->><*   XNOE(PPHI= I..290E-36  SOOTE(GHI= 2.856E-21
                                  5.61QF»00  V(CM3I= 7.«.3U«02  TIKI= 5.968E»OZ   U(CAL/GH>- 2.072E»01  PHEE=
 Or>iJIH(trM/CAI=  1.732E-CI  K"ICAl/C»ls-2.<.i.8E»(]0   OFJOIH (GM/CA) = 0.          SMOOTH(5M/CA) = 0.         SMVOIH IGM/CA) = 0.
 nr;jTHicoL/cA) .  i.7?9t-oi  ooi?nrH(CAL/CA)= 1..066E-05   svnoiH (GM/ct »= o.          snnniH«i>i/CAi = a.         SLOOIMIGM/CAM j
       (C«L)=-1.511f »G1   SUHFQIGH)=  D.          SFtiOlH 1 GM/C Al = 0.         HKNET ICALJ =-9 . 385E»0 1  RRCCH3-ATM/GM-K ) =  Z.8»tCAL/CA»=-J ,158E*00   OF JDTH ( GM/C A) = 0.          SMODTlH GM/CA) s 0.         SMVDTH1CH/C4) - 0.
 OTX TH(CAL/CAI= 3.11ZE-ai  nQROTH (CAL/CA) = 9.5uZE-Or>  SVdOlH (GM/CA )= 0.          S08DTH (GM/C A » = 0.          SLOOTHIG.1/CA J « C.
 SUlOLICAlls-l.Jli«E«ai  SUMF1tGMl= 0.          SFOOTHIGt1/CAI= 0.         HKNEt (CAL ) =-1 .235E*02  RRICH3-ATH/GM-K 1=  Z.8liOE»aO
           itC»=  Z.352E»S3  OiMlT HICM3/CA) =-1 .70CE*01   OCLtlZ= 1.91•' IA(.1£G.C4>=   -35.00   P(4IMI= l.ZO^ftfit   V1CM3)=  <..05f.t»02  T(K»= 7,Z62E»OZ   U«CAL/GM)= >  SVIIOIH(GM/CA>= a.          SOOOIHOI   nfttiz= 2.4.U7O03   ITERPC=     ^
 X1N-3FIG")= 1.572t-3i   VMOf= 6.3PZF-31   XNOE(P<>M)=  6.1.17E-25  SOOTt(GM)=  2.65U-17
                 -25.30   (GMI= 0.          SFQOIHIGH/CAI = 0.         HKNEI (CAL ) =-Z .=  Z.8t>CE»3C
 OC'(t''(CH/sECI=  2.156E»33  OtfOT HICM3/CA) =-8 .Zll E*00  OELE1Z= 3.67UE-03  ITERPC=     1
 Xir«QE(G1l= 3.   YMOE= 1.1«9k-Z«.   XNOE(PPM)* 1.336E-18  S001t(GMI= 2.622E-15

-------
f HEIA8E: 2.C-45f»OZ   IIK)-  fl.7S^£»03  IIICAL/GMM  7.38<,E»01  PHEE= 1.17JC-U1
 l)PTlH(4IK/Ct)=  l.Z5SE»00  WP(CAl/CA)=-S.2?6E«UO  OF JOIMI CM/C A I =  S.842E-03  SMOOIH( GH/C41 =  0.          SMVOIHCCH/CA) = 0.
 nccn!-«c= i.iiot«oo  OOJOIH ICAL/CAI = S.SAIE-O<<  s«nufH(on/CAi= a.         SOBOTHIG.H/CAIS o.         SLDOIHIGM/CA»»  o.
 SU"OL K «L) =  7.?^I.F»uO  SUMFRCCM):  0.          SFOOT Hl&M/C Al = 0.          HKNET (CAL I =-2. 5 10E»02   R9.CCM3-AT M/GH-K ) = J.8i.OE»DO
 OCM«"«C1/S£CI=  2.562E4Q3  OtfDI HICM3/CAI =-7.389t • 00  OELC12= 3.679E-03  ITERPd    1  .
 X1MOL«GM»=  1.C76E-23  *NOt= <..3h«£-2'«   XNOEJPPM)= I..202E-14   SOOIE(G.1)= «..078£-15
fHCTA ("€<•,. CA)=   -Ift.OC   PCATMI*  J.O^ZE»J1   VICM3I= 2.023E»Q2   IIK»= 8.8ZSF«02  U(CAL/GM):  7.i.67E«01  PHEE= 1.515E-01
 CPQIri(ATH/CA)= 1.24i^«00  HP (C AL/CAI =-5 .189£»GO  OFJOTM (GH/CAI =  5.B62E-03  SMOOTH ( &M/CA) =  0.          SMVOI HI&M/CA) = 0.
 O^CCT^ICAL/CA): 1.357f>00  DOROIH (CAL/C A> = 5.flJ8f-0=  8.622E»Ca  SUMF3ir,M)=  0.          SFnOTH(GM/SAI =  0.          HKNEI ICAl l = -2 .S6ZE»02   RR (CM3-A IM/GM-K I = 2.C39E«00
                 2.7<<2E«C3  OWD t H«CM3/CAI =-6.972£»00  OELfl2=  3.7C5E-O.T  ITERPC=    I
             1.991E-2J  VNOf'=  8.J77F-2«i   XNOE(Pf'M>= 7.7«2E-18   SOOTt(GH>= 5.Ci,6t-15


IHEIS (OtC.CA»=   -l^.OC   PIATHI:  3.1A2F»01   V(CN3I= t.<)S&F»02   f(KI= 8.B91EH12  U(CAL/GM)=  7.5«,I.E»01  PHEE= 1.8S7E-01
 no"lM(iT-/Cil - 1.3Qlf»03  MP(f.AL/C«»=-S .098t»60  OFJOTHir.H/CAI=  5.AA2£-03  SMOOTH IGH/CA) =  0.          SMVOTHIGH/C J I - 0.
 07CD1HICAL/CA): l.i.&6f»aO  OQKOTH(CAL/CA)= 6.G32E-0<>  SVIIOFH «GH/CA) = 0.         SOOOIH (GH/CAI =  0.          StDOIHCGM/CA) =  0.
 SUMQIIC«L)=  J.003F»fil  SUKF:I(GMI=  0.          SFOniHI GH/CA) =  C.          HKNEI E»30
 U.:"*°(C-/SECI=  3.c&eE»03  nuni Hini.i/r.ai =-f>.i jor •oo  oim»2=  3.73ME-03  IIERPC=    i
                     3  YMOE= 2.bA9f-23   XNOt«PPHI- 2.60«.E-17   SOOTKGMH 7.611E-15
rHI'snt&.C*)*   -13. CO   P(4THI=  .3.7lH,f.»Ul   V(CM3I= l.HJ5(«02   TIKI=  9.d62E>02  U(CAL/GMI=  7.598£*01  PHE£= 2.>;i2£-ul
 OPTlM(AI-/CO|s  1.75i.E»00  MP(CAL/CAI=-5.070£«GO  OF JOIH( CM/CA* =  ';.8«2£-03  SMODIH(GM/C Al =  3.01BE-03  SMtfOTH(GM/CA I = 3.018E-0<.
 Oa'-.DT!((CAl./CAI= 1.503F»i)0  OOKDIH (C»L/C A) = «. . 1A3t -02  r,\MiOTH(GM/CA I = S.759E-03  S030TH(GM/CAI =  I..182E-D'.  SLOOI H(GM/CA) =  S.CCfcE-33
              1.3J".E*C1  J3  SF3nTH(Gn/r.A| =  7.177E-03  HKNE T :  2.05SE-05  YNOE- 8.333f-C6   XNO£(PPM»= 8.CG8F.»(iO   300IF(iiM|i 1.2oE-01  SVBOTH (GM/CA) = S.820E-03  SOBOIH IGH/CAI =  8.
-------
                C IMDCC.CAI *   -11. DC   P«ATM> • «• .63<>t »ul   V(Cn1>= t.7?HF»02
                               2.29<>E»aj  H<>ecAL/r.Ai=-5.<«iBE»oo
                                2.cfc?r»0q  OCPOTHCCAL/CA» =
                         Ia  1.72f.E»Gl  SUMF3(CM)=  1.91SF-02  SFI10TH«G«/CAI = 6.GVU-03
                CMC& (CM/SEC I*  3.l.98E»03  OV01 HCCMVCAI =-<..8air«02   T(K)=  1.1«6E«03  UICAL/GHM  7.703E»01  PMEE= 3.^6tt£-ul
 nPl)JHl»lf/CA|=  2.«.'.JE»ia  W«CfcL/CAl=-5.397f.*aa  OFJOTHIGH/CA»=  5.tt8?£-03  SHODIHCGM/CAI s  1.113E-02  SHVOIHtGM/CA) =  1.1UE-CJ
 O'.ruTHIC 'L /C»)= ?.3fi5r*00  30POIH (CAL/r,a) i 2.879E-01  SVbll IH (GM/Cft ) =  i.?51E-03  SOQOTH (Grt/CA) =  2.<>71E-03  SLOOT H( GM/C« I =  9.«.1<.E-03
 Stl-= 2.255E-C5
THETtdUG.CA):    -9.00   P I AIM ) = 5 .317E» 01   V(CM3I= 1.6<.OFt02   T(K)=  1.222E»03  UIC«L/GH)=  7.7S2E»Ot  PHEE= 3.S10J-01
 OPUTHI&r'VCAis  2.S11E«G1  HP(C AL/CAI =-5 .236E »iO  OF JOIH (GH/CA) =  >j. 882^-33  SMOOTH (GM/Cft> =  1.293E-02  SMVOTH IGH/C* I =  1.293E-C3
 COCCTH(C&L/CA)s 2.(i7«E»CG  OOHOIM  =-T.977E*OS  OtLiil2=  LOSIE-OS  IIERPC=    2
 X'1MCE(GMI=  S.ftZJE-u't  VN3£= 2.33fiC-3l.  XNOE(PPM)= 2.?J1E«1)2   SOOIta2E-C3
 OCrUtH(CU/CS)= 2.M8E»Oa  OQRQTH(C4L/CM= 3.921E-01  SVBDTH IGM/CAl = 3.901E-0<4  SilODTH (G1/CA) =  3.1«5E-03  SLOnt H( GH/C1 1 =  5.I.92E-03
 r/j:«.L(CaL)=  2.567E«C1  SUMFKGMIs  J.IS'IC-CZ  r.FHOIH(GM/CA) s  3.5751-03  HKMET (CAL J =-2 ,977E»02   RR«Ci13-ATH/GM-K) - 2.857E»uC
                                          =-3.5«.CE»00  OfL£12=  1.8uHE-03  IIERPC=    2
                                          XNOs(PPMI= S.ZISEtoZ  SOOTE(GHI- 5.518E-05
TMtTt I'jEG.CM -    -7.00   P(AT«t= 5.130t»01  VICM3I- l.lioHEtOZ   T(KI=  1.2'17E»a3  U(CAL/GM)=  7.799E»01  PHEE= '(.5:»5L-Cl
 OPOIH(ATM/CA)=  2.I.78E*00  *JP «C AL/CAI =-<» .635€ » rjfl  OF JOTHIGM/CA) =  5.882E-G3  SMOOTH ( GM/C4I •=  !.&82E-a2  SMOOTH (GM/C4 )=  1.&12E-C3
 O^C3t-OF»00  OQPOTM (CAL/C A) = it.li32F-Oi  SVODTHIGM/CA I =  i..OOf.E-0<.  SPBDIH IGM/CAI =  3.305E-03  SLOnTHC&H^CA J =  5.«.42£-03
 S'JMJL(CAL):  2.)17t«31  S:JMF1(CM>=  3.523C-02  SFnOlH(GM/CA) = 3.70&E-03  MKNET JCAL I =-3. 02i>E«a2  RRICM3-AIH/GM-K ) = 2.170E»00
 UCHARICM/SEC)=  3.99I.E403  OVf)l HICM3/CAI =-3. 1 01E »30  OfLE12= 2.'«92E-fl3  ITERPC=    2
 XHH3E= 7.510E-C5
THETAC"'EG.CA)=    -6.00   P|AIM)= 6.237r»01  \MCH3)= l,5'tli£«02   I(Kl=  l'.336E*03  U(CAL/GH|s  7.792EtCl  PH£E= <,. 937^-31
 OP3IHI AT1/CAI*  2,M5SF»03  HP 1C Al /CA) =-<« .23UE* GO  OF JOTH ( Gr/CAl =  5.882£-03  SMOOTH ( GH/CAI =  1 .B9dE-C2  SHVOTHIGM/CA) -  1.89CE-C3
 D;COlHICAL/CA)= 2.9GO£«00  OQROTH ICAL/C Al = >i.969E-01  SV DOTH (GM/Cft t =  "..USt-O".  SDDOIHCGH/CAI a  3.50«.E-03  SLOHT H 1 GM/CAI =  5.1.72E-OJ
 S'lMai(CALI=  3.227E»C1  S'IMFT(GH)=  3.9151-02  SFltDTHI GM/CA) =  3.910E-03  HKNEI CCAL > = -3.066E »02  RR (CH3-ATM/GH-K )=  2.373E»aO
 VJCHtliiCM/SEOs  = 6.515E«-J1  V(CM3)= 1.51',l«02  T(K)=  1.374E«03  UICAL/GM)=  7.751E»01   PHEE- 5.279E-01
               OnCTH(ATH/CA)£  2.l.li= 3.7it3E-o3  SLDorncGH/CAia
 S'J"OIIC»L>=  3.9«><.£«ei  ?UHF3«GM>= <, . 733^-0?  SFBOTH(GM/CA t = I..173t-03  HKNEKCAU =-3.136E»02  RR«CN3-ATM/GM-KI= 2.879FOO
 UCMtMCH/SECJz  I..J25E»03  OtfDTH(C*3/CAI =-1.777F*00  OH.E12* <..S78F-03  IIERPC=    2
          ): 2.271F-03  YNOT= 9.0<<8E-C<<   .4QE»02  T/C&>=  Z.r06f«JQ  WP(C AL/CAI =-Z.bl5E»00  OFJQTH(GH/CA)= 5.882E-33  SMnoTM ( CM/CAI = '2 . S'.'.E- 02   SHVOIH (GK/C4 ) - 2.5<|liE-C3
                                              e.6S2E-ot  SVUDIH«.388E-oit  SOBOTHI&H/CAI=  3.8&3E-03  SLODIH(GM/C«>=
                                                SFODTH«GM/C A) = <,.3ul«>03  HKNET (CAL>=-3. 162E»02  RR(CM3-ATH/G«-K)= 2.8S2E»00
                            OVOTri(CM.1/CA» =-t.333£*00  OFLE12' 5.170C-03  M£P,PC=    2
             2.7J2E-03  YNOC= I.C7I.E-CJ   XNOE(PPM»s 1.019E«J3  SOOIi (GHI= 1.702E-0".
 HcIAinEO.CAIi    -2. CO   P«AIM)= 7.377?»31   «90E«03  U(CAL/GM)= 7.53S£»01   PHEE= 5.963E-01
 DPUIH(1IM/CA)=  1.99i«E«ja  MiMCAL/t;AI=-l .9",1F«00  OFJDIHIGM/C A) =  0.          SMOOTH! GH/CAI = 2.767E-02   SMVOTHCGM/C* ) = 2.767E-03
 niriUHICAL/CAI= 3.<.33E»OG  OOROIH (CHL/C'l = 7.23I.F.-Ot  SveOTHIGH/CA)=  <«.i>72E-Oit  SOUOTH(Grt/CA» - i».Q73E-03  SLOOTH(G*1/CA) = 5.I.35E-03
 S'JHCLICAU*  «..7/7t«Cl  SUr.Fl(GHI= 5.621t-02  SFROTHIGH/CA> = 4.521L-03  HKNEI (CAL » =-3. 1«1E«02  RR (CM3-ATM/Grt-KI= 2.88fcE»00
 UtHi^ (Ci/5£CI=  '..'"•m»C3  0«OIH«C!13/C\> S-8.B92E-01  OFLei2= 6.031!-03  ITERPC=    2
            3.lODe-Q3  YNOt= 1.230E-03   XHOE(PPMI= 1.166E»03  SOOTL(GH)=
IH£I4(0£G.CA>=    -l.CO   °<»IM)= 7.622£»J1   «(CM3»= t.<<62E>C2  T(K(=  1.538£»03  U(CAL/GHI= 7.5UE«01   PHEE= 5.963E-01
 DP3IH(1H/CAI=  1.72CE»i>i)  M?(CAl/Cft)=-l .205E + JO  DF JOTH ( GH/CA) =  0.          SMOOI H I GM/CAI = 2.923E-02   SMVOTH1GM/C*) = 2.923E-03
 tncr THSTMi.7E-01  OHEJ2= 6.3&GC-03  IItRPC=    1
                                       S   XNO£= 7.91bE»Jl   «(CM3>= l.'Olri(4I-/CAI=  2,?01E-C1  MCICAl/CA)=  ».t29F»00  OF JOI H( Gri/CAl =  0.          SHOOTHC GM/CAl = 3.168E-02   SMVOTH(GM/C» ) = 3.168E-U
 U^CIiTHlCH/CAl:  .^.A03F»JG  OQR OIH ICAL/C Kl -  3.6u7E-tU  SVHDTH (GM/CAI =  0.          SDBOIH (SH/CA) ~ 2.3/7E-03  SLOOTHIGH/CA) = C.
 SUKGUC»U=  7.3I.6E«01  SUMF;I(GHI=:  7. l/U "-£2  SFHOIH( GM/CA) i  2.3/7i.-03  HKNEt  = 1.199E-02   S1VnTMIGM/C»» = 3.199E-03
 CTCrtM(CttL/CAI=  3,»23E«00  HGR01 H tCAL/C A) =  1.719E-01  SVCUIIUGM/CA) =  a.          SDQOTH IGM/CAI = 2.23I.E-03  SLODTH (GM/CAI = 3.
           )=  7.515t»Cl  SUHF3(CM>= 7.398E-02  SFnOt H(GM/CA) = 2.2J<.£-03  HKNET (CALI =-3.129E »02  RR (CM3-AIH/GM-K )=
                 i».S.lie»C]  OVOI H(CM3/CA» =  1.777E»JO  0£LE12= <«.877E-03  IIERPC=    1
 X1NQF(G«)= I..812E-U3  Y.'40E= 1.897E-03   XNO£(PPM»= 1.790E + 03  SOOIt (GMl =  2.96«.E-0'.

-------
IHETA(D*G.CA|a     5.00    P(»TM|* 7.«56E»31  VIC*3I =  1.516E»OZ  MKI =  1.619E»03  U(CAL/GM> = 5.877E«01   PHEE = 5.9&3£-01
 cp*Mhiu«/CM*-it. = -Z.991E»OZ  RR (CN3-AI M/GM-K ) = 8.397E»00
                li.533E«a3  OrfOT HIC.13/CAI =  3.101E»00  HFLFIZ^ I..37ZC-03  ITERPC=    I
            S.Z39E-03  YNOE= Z.060E-03   KNO£(PPMI= 1.9i,i)£t03
THCTAIOFG.CA):     9. CO   PIATHM 7.393£>01   V.Z33E»i)l
 DPnlh(«IM/CAI = -1.535E»00  HP(CAL/CAI=  6.709£»00  DFJOTHCGH/CA) = 0.          SHOOTHIGN/CA) n J.17ZE-OZ   SC.VOIH«GM/Cil = 3.17Zc-IJ3
 OOCOTH|CAL/C«>=  3.75".E*J3  aOROIH i)l   W(CH3I= 1.7Zatf<]Z  I(K)-  l.G«.6E«03  UICAL/GM): 3.256E»01   PHE£= 5. 9^3i-0l
 CPi)IIIIATM/C&) = -l.H7fF»Ou  HP(CAL/CA)=  7.987£*aO   OF JOIH t CM/3AI= C.          SMOD1 H( GM/CA) « 3.068E-02   SMVDtH (SM/C1 ) = 3.u88E-C3
 nr.COTHCCAL/CA)-  3.6frlE»00  DQi = l.J^6E-03  MKUEI ICAL I =-Z .7BBE»02  RR (CM3-AIH/&M-K » = 2.»96E»3b
                = Z.7(CAL/rA|=  fl.i.9?FtOO  OF JOTHI GM/C A) = 0.          SMOniHlGH/CA) - 3.035E-OZ   SHVOTH IGK/C&) - 3.035E-03
 P?':CTH(CAl/CA)3  3.<>CliE*00  3QROTH (CAL/C Al =  7.4'tCf-Ol  SVBHTH (GI1/CAI =  3.          SOOOTH (GM/CA) =  1 .Z10t-03  SLDOTHIGM/CA I = u.
 S'JMOt (CiL)=  1.119E + &2  SUHF-MGM>=  8.711E-02  SFBOTH1 GM/CA> = 1.210L-03  WKNET ICAL I =-2.623E*OZ  RR(CM3-ATM/GM-KI= Z.396E*00
 UCHiP(Cy/SEC)= «..5J3F*C3  OKDTHICM3/CA) = S.Z76E»00  UFL£1Z= 3.315E-03  IIERPC=    1
 X-.NO£IG")= 5.MI.E-03  YNOE= 2.229E-03   XNO£(PP«I= 2.1CIE«C3  SODIMGHI=  3.272E-C«i


IHEIAtTdG.CAl =    13.00   P (ATM I = 6 .61 3E» Ul   V«CM3»= l.H33E»l)2  HKI=  1.61)= 2.12i.f.«C3  SOOItl(GMI=  3.277E-CI)
THETA(UEG.CAI=    15. OQ   P(ATH)= 6.1&8£»Jl   V(CM3)= 1.4?&E«02  TIKM  1.633E*J3  UICAL/GHI= 1.139E*01   PHEE= 5.963E-J1
 CPniHI AH/C«) = -Z.235E»03  HP(CAL/CAl=  l.e'.'.EtOO  OFJOIHCGM/C At = (i.          SMOOTH (GM/CA» = Z.8<>OE-02   SMtfOTH(GK/CAI = Z.8-.CE-03
 OnCJTHlCAL/CA|s  ?.l40ZE*00  nQRDTH(CAL/SA)= 7.257E-OL  SVOOIH (GH/P.AI =  0.          SOBOTH (3M/C A) = 9.021E<0<>  SLODTH ( GM/CB) = C.
 S'JiCL(CAL)=  1.ZI.&EO?  SUKFR(GM)=  q.Ol2c-CZ  SFnOTH(GH/CA)= 9.CZlc-0
-------
              s    17.00   PIATHI* 0.7t«.E»1l  VCCM1)=  2..,<)SF»02  T»  '/C&>:-2.?53<:»aO   H(MCAl./CAI» 1.0|.1E«C1   OF JOf't (Ch/CAl =  0.          SMOOI HICH/C«I «  2.693E-62  SHVO I HIGM/C1 1 - 2.69.H-03
 00-OIH(CH/C4I= 3.2S2C»Ga   OQROIH (CAI/CA) = 6.767E-U1  StfODTHIGM/CAl- 0.         SOCOIH (GH/CAI = 7.0BliE-0<,   SLOOIHIGH/CAI = 6.
              1.325F»&2  SU«F3.S<»4E«5.1   OV01HICM3/CAI = 7.3I*9£»OG   OlLi:i2 = Z.61?L-03  IIfRPC=    1
 XMNOMGH):  5.85I.F-J3  YNOE=  J.3C3E-OJ  XNO£(PPH)- 2.1?5E*C3  SOOI£(r,H>= 3.27SE-0'/CA|:-2.2C6E«Oa  W>(COL/CA)= 1.0«.3F»01   OF JOIH (C.M/CAJ =  0.          SHOOIHIGM/CAI s  z:5<= 6.2a7F-01  Stfl)OIHIGM/CAI= O.          SOnOIM(GM/C»»= 5.«97E-a<»   SLODrH(GM/CA)= to.
 SU-ir.llC«LI=  l.«.Jlf»32  SUf1FT fcG.CA):    23.00 '  P <»TM I = <• .!•<. OE« 01  V(CM3»=  2.612(-»02  T =  2.239E-02  SMtfOTHC&M/Ci) = 2.23SE-J3
 Df:Cniri(C«L/Cei= 2.7 = 2.097E-C3
 O^CDIHlCK'./CAIs 2.65CFOC   OQI DIM (CAL/CH) - <• .98'.E-0 1   StXIOTH (GM/Cftl =  J.         SOfll}IM=  l.s;<.F*C2  S'JMF'-i (CM) = 9.5i<.t.-02   5FnorH(G:VCA> = 2.»7°i.-0.S6eF*31   OtfOI M(C«3/CAI = l.OSeOOl   Oi.Lri2= l.JJ(.l'-03  IiERPC=    1
             5.961E-u3  TflOF= 2.33C£-03  XNOE«PPM>= 2.205-:«C3  SOOIt(GM)=
                  30. tC   P(ATH): 3.252CK.1  V(CM3I=  3.39U«02  I(K)=  I.lt9<.t.»03  U (CAL/GHI =-6.9<.8E»Dl  PHcE*  5.963£-01
 nPTlH(4T-/Cll=-1.521E«JC  WP(CAL/CA)= 9.961EHIO   OF JOIH( GM/C A! =  C.          SMOOIHI GM/CA) =  1.837E-G2  SHVDIH (GM/C1 1 = 1.837E-03
 Or,CCTH(C3L/Ci)3 2.<.li.E»uij   TQ?nrn  SLOOl HI GM/C4) - C.
           )=  1.751E*C?  SJMFSCGMIs  9.633E-02   SF3nTHIGM/Cft> = 2.
          IHO'CAIEO EHGIKt PE^FOPrtACE AND ENGINE  EMISSION

                    I.H.C.P.(PSI)=    /.l.53£»01
                    I.H.P.eHP)=    2.015£«31
                    I.S.F.C.«LB/Hr>-H=   2.207£»03

-------
                       VI.  PROGRAM STATISTICS
        The computer program is coded in standard FORTRAN  IV, and the
version is currently compiled and optimized in FTN (FORTRAN Extended)
mode and ran on a CDC 6600 computer.  The computer statistics (based on the
sample case presented in preceding section ) are shown in the Table below.
          Compilation Time
          Run Time
          Core Used
          Tape Required
          Compilation  I/O Time
          Run I/O Time
 71 sec.
128 sec.
120 K (octal)
  1 (7 track)
 98 sec.
  6 sec.
                                   39

-------
                        VII.  REFERENCES
        Kau, C.T., Tyson, TJ. and Heap, M.P. "Study of the Oxides
        of Nitrogen and Carbon Formation in  Diesel Engines".  Final
        Report Phase II and III, Ultrasystems, Inc., June, 1975.
2.      Gordon, S. and McBride, B.J". "Computer Program for Calculation of
        Complex Chemical Equilibrium Compositions, Rocket Performance,
        Incident and Reflected Shocks, and Chapman-Jouguet Detonation",
        NASA SP-273, NASA Lewis Research Center, 1971.
                                     41

-------
APPENDIX:   FORTRAN LISTING OF DIESEL ENGINE PROGRAM
The subroutines follow the main program are listed in alphabetical
order.
                            43

-------
'DECK MAIN
      PROGRAM MAIN(INPUT, OUTPUT , TAPF. 5= INPU T, TAPE& = OUTPUT , TAPEtt )
C     SINGLE-CYLINOERED DIESEL  ENGINE ENGINE ANALYSIS
C CYCLE THERMODYNAMICS MODIFIED • <1 2/2/7i»,CJK)
C CYCLE THERMODYNAMICS MODIFIED  (12/5/7^,CJK)
C EQUILIBRIUM COMPOSITION CALCULATIONS MODIFIED  (1/30/75,CJK)
C VITIATION  ADDED AMD IGNITION  DELAY MODIFIED  (2/12/75,CJK)
C Q-S THIN FLAHE IN FINITE SPACE  FOR HET. NO RATE INCLUDED (3/27/75,CJO
C NUMERICAL  SCHEME REFINED ( ^/30/75 , C JK)
C ENTIRE  PROGRAM CLEANED AND STORED  IN A PERMANENT FILE  (5/12/75,CJK)
C VERSION B  	 IMPROVE COMPUTATIONAL EFFICIENCY r)Y  20 PERCENT (6/1/75,CJK)
      DIMENSION  100(3)
      DIMENSION  DT3DTH(1QQ) ,ONODTH(100),DMSOTH(100) ,OAPDTH(1QO) ,
     1 DP HO TH (ICO) ,XFIDTH(1GG) ,XAIOTH(1QO>, Q8MUGG),OMDDTH(100),
     ?. OMVOTH(ICQ) ,OCMDTH(100),BTABM (1GG),G9M( 1 0-0 ) , A AM (10 0) ,88M(100) ,
     3 YNO(IOO) ,YS (100) ,XMNO(100)
      DIMENSION  TBMO(IOQ),DT3DTO(1CG),XMNOO(100),DNODTO(100),XMSOTO(IOC)
     2          ,DMSDT0(100),XMFBMO(100),XMPAMO(iOO)
     3          , XFIDTO(10Q),XAir>TO
-------
                     AM/ INT1,IN02,ISOOT,IBUG        ,NTES,NPRT,MAXIL,NSHEL
      1                 ,NSZG,IDROPPflRATEP,ISPCYP,IWETBT,IDT AIL,NlTST
     "2                 , DTHMIN,DTH>1EO,OTHMAX,THEMAX
      3                 ,F:3SIT,EPSIP,FPSINO,EPSIST
       N A MEL 1ST/-EPA RAM/ CA,C8.CNOR,      CVIDI,CMIX,SIEN,DSOOT,ASOT A,A S3TP
      1                  ,HUTIM,OTPHY,3EFJ      ,COCHG,CEVAp,CBUPN,AIGNO
      2                  ,*HOQ,CPOAR,XTLY02
       MAMELIST  /PIITL/ THETflI,THEHAX,P,T,V,UA,HA,XMAO,AMWA ,FflRA,PHEA,

      2                  OXST,X02A,COEN,HHV,HCOM,HFFL,HFJ,VC,VOIS,VFJO
 C    CONSTANTS
 C  UNIVERSAL GAS  CONSTANTS IN CM3-AT^/G-fOLE-K

 C  UNIVERSAL GAS  CONSTANTS IN CAL/G-MOLE-K

 C   THERMAL CONDUCTIVITY  SAL/CM-SEC-K

 C  S-3 CONSTANT  IN  CAL/SEC-CM2-K4
       STG= l.o5.38E^!2
 C  HEAT OF FORMATION (CAL/MOLE)  OF  C02, H2C AT 29?  K
       HFC02=~C?'+ «'"'C5E3
       HFH20=-6S .3  E5
      'OHVH20= lu.5E3
       HFH20G= HFH20+  1HVH20
 C   CONVERSION FACTORS
       PI= 3. 14159 2 55'-t
       XJ= 4.18574E7
       ATD= 1.G1325E6
       OTR= 3.14159/13G.
       RORU= R/RU
       ATOXJ= ATO/XJ
 C  INPUT EQUILIBRIUM COMPOSITION T3RLES FROM TAPE3
       HALL TAPE IN
 C  SPECIES TABLE  RANGES
       PRANGi= ?TB(1)
       PPANG2= PTR(NPTO)
       TS?A"JG1= TT3(1)
       T^ANG2= TT3(NTT3)
       PHE?G1= PHETSd)
       PH£RG2= PHET3(,MaHT3)
'C  PPE-SET ENGINE PARAMETERS  AND FUtLING  PROPERTIES
       HFFL= 0.0
       XHRQ= Q.O
       FD£N= G.G
       HCOM= O.D
       READ (5, GIVEN)
       WRITE(6,GIVEN)
     1 CONTINUE
 C  PCE-SET CONTROL  PARAMETERS
 C   INTEGERS
       IN'01= 1
       IN02= 1
       ISOOT= 1
       NPRT= 2
       IOTAIL= G
       I-7ATEP= 0
       IS P " Y P =  0
       NTER= 5C
       NSZG= 3
                                       45

-------
    NSHEL-  4
    NAXIL=  20
    MITST=  50
    I8UG=  0
    IWErBT= 0
    ICRITA= Q
    NSTROK= 4
INTEGRATION STEP SIZE   (IN DEGREE  C.fl.)
    OTHMIN= 1.0
    DTHMED= 2 .5
    QTH'4AX= 5 .0
    THEMAXr THEVO
RELATIVE ERROR BOUNDS
    EPSIT=  2.CE-3
    EPSIP=  2.GE-3
    EPSINO= 1.0
    EPSIST= 1.0
PRE-SFT EMPIRICAL CONSTANTS
AIR/PROOUCT MIXING
    CMIX=7.P.E-3
    CVI3I=  G.I
HETEROGENEOUS  8RUNING RATE
    CBURM=   0.0
    XTLY02= G.02
VAPORIZATION
    CEVAP=  0.276
    HUTIM=  2.0£-«f
IGNITION DELAY
    AIGNO=  l.«f60E-'t
EMPIRICAL  PARAMETERS ACCOUNT  FOR SWIRL EFFECT  ON  3PRAY GROWTH
    SEFJ=  4.3
NOZZLE DISCHARGE
    COCHG=  1.0
IGNITION DELAY
    OTPHY=  2.GE-t*
HEAT CONVECTION
    CA= Q.26
    CB= 0.75
DROPLET
    RHOO=  3.0E-4
    CPSAR=  0.35
NO KINETICS
    CNOR=  5.37
SOOT KINETICS
    SOE^=2.0
    DSOOT=1.0E-t*
    ASOTA=  3.52      .
    flSOTP-  3.52
COEFFICIENTS  FOR VftPOR PRESSURE  (COX-ANTONIE EQ.)
    A= it.091                                                 •
    B= 1324.77
    C= 53.74
    °HEFG=  3.0
    WRITE(6,107)
INPUT CASE  IDENTIFICATION
    PEAO  (5,99)(IQD(I),1=1,8)
    IF (EOF(5M  999,34
 34 CONTINUE
    Wt?ITE(6,99)(IDO(I),I=l,3)
MGOIFIC1TIGM  OF  CONTROL PARAMETERS  THROUGH  NAMELIST  INPUT

                                  46

-------
       *EAO  < 5, C FAR AM)
       WRITE (6,CPARA*)
C MODIFICATION  OF EMPIRICAL PARAMETERS  THROUGH  NAMELI3T  INPUT
       READ  <5,EPARAM)
       WRITE ( 6, E PAR AM)
Z MODIFICATION  OF ENGINE  PARAMETERS AND  FUELING PROPERTIES THROUGH  INPUT
       READ  (5, GIVEN)
       UKITE<6, GIVEN)
       DTROT =  FPM* 3,1<*159/3C.
       nTHOT=5.0*RPM
       OTOTH=1.0/OTHOT
C MFAN  SWIRL  AND MEAN PISTON VELOCITIES
       USI=  C .25
       UP3AR=
C  FUEL  COMPOSITION C
-------
         = (TFJ-TBPF) 'CPFL-t-UFLBP
      HFJ= UFJ +  PIMJ/FOEN*ATOXJ
C CRITICAL FUEL  PROPERTIES
      UFC*IT= < TCRITF-T8PF) *CPFLf  UFL3F
C  ENGINE DISPLACEMENT AND CLEARANCE  VOLUME
      VDIS=  0.^*S.l
-------
    ra=  TI
    RHO =  XMAO/V
    CALL  TPRQPdA.^.VXAiCVAtCPAiUA ,HA,AMWA,GAMAfRA,PHEA)
    CALL  SFECY(P,TA ,PHEA,AMWA,XH2A,XH20A,XCOA,XCO,2A,XN2A,XNOA,XOHA,
     XHA,XOA, XNA,X02A,XCHt*A>
    YMOA=  XNOAM3J ./AMWA.)
    XHNOA-  XMA'YNOA
    XMOANE= XNOA
    XMNOAO= XMNOA
    YSA=  0.0
    XMSOTA= G.0
    XMSTAO= XMSOT4
    S(JMM=  XMAO
    EO- XMAO*UA
    QTHETA= DTHMAX
PRINT  IIMITIAL  CONDITIONS
    WRITE(6,INITL)
    WRITE <&,9fl)
  SET  ZERO
    G F G = 0 . 0
    STAFG=O.Q
    XMFL=G .0
    XHFG = C .0
XMO =
XMV =
XMFV =
XMFLO=
XMFQ8=
XMFLB=
XMFP3=
XMAP3=
XHAFA=
SUMFJ=
SUMF8=
SUMWK=
SUMQL=
WKN£T=
SUM3M=
OPOTH=
nTIOTH
TFL= 0
HFV= G
UFL= 0
TFG= G
UFG= G
TFL3=
UFL3 =
HFOS =
TFGG =
11= 0
111= G
IPRT =
IIOLO=
KOUMT=
IGEMO=
0.0
0. 0
0 . G
0. 0
D. 0
0 . 0
i] • 0
0 . G
0 . U
0. D •
0 . 0
0. 0
G. 0
0. 0
0. 0
G. 0
= 0 .0
.0
.;)
fi
• J
r,
• u
.0
0.0
0.0
0.0
0.0


G
r
0
0
    aRT  THE INTEGRATION
    CONTINUC
                                    49

-------
C  INTEGRATION STEP SIZE  CONTROL
       IF  (THETAI.GE.THEIJ)  OTHETA= OTHMIN
       IF  ((THETAI.LT.THEIJ)  .AND. ((THETAI+OTHETA).GT.THEIJ))  DTHETA=
     1  THEIJ-THETAI
       IF  (SUMFFV.GT .XMFJ95 )  OTHETA= OTHMED
       IF  ((THETAI + QTHETAI.GT.THEVO)  OTHETA=  THEVO-THETAI
       OTH£T2= 0.5*OTHETA
       DT=  QTHETA*DTQTH
       OT2=  0.5*OT
C CHARACTERISTIC VELOCITIES
       UP  =OSDTH*OTHOT
       XXX=  USI*USIHJP *UP
       UT =  SORT(XXX)
       XXXX= {XMAO*XXX+SUMFJ*VFJO*VFJO)/(XMAO* SUMFJ)
       UCHAR= SORT(XXXX)
C CHARATERISTIC RENOLOS NO.
       XMU  = '1.25E-5MT  **1.5)/(T *110.)
       REP3AR= RHO*UPBAR*:J£/XMU
       REI=  RHO*L)T*DE/XMU
       REJ=  P,HO*UCHAR*OE/XMU
C***   TOTAL CONVECTIVE  H,T,
       CALL  CONHTCREPBAR ,T,OQCDTH,CA,CB)
       SKAPB= 0.0
       SV3QTH= 0.0
       DFGOTH= 0.0
       OFV3TH= 0.0
       OFJOTH= 0.0
       SLDDTH= 0 .0
       AP9QTH= Q.0
       XMSOTU= 0.0
       IF  (THETAI.LT.  THEIJ)  GO TO 8 C
       IF  (IBUG.NE.Q)  IPRF=0
       IF  ( (THEFAI-.OTHETA) .GE .THEIJ)  GO  TO  3
C ESTIMATE  SPRAY TRAJECTORIES
       OELP= PINJ-  P
       CALL  SPRAY(RHOA,OMEGA,QELP»SEFJ,COCHG)
C INITIAL  FUEL PROPERTIES
       CALL  WETOT{P,TA,AMHA,AMWF,A,B,C,TFL,DHFVP)
       UFL=  UFFL+- CPFL*(TFL-298.)
       TFG=  TFL
       HFL=  UFL> P/FQEN*ATOXJ
       HFV=  HFL+ DHFVP
       UFG=  HFV- RFG*TFG
       TFLO= TFL.
       UFL3- UFL
       TFGO= TFG
       IF  MC'RITA.E.Q-.O).  GO TO 17
       HFOS= UFC9IT
       TF03= TCRITF
       GO  TO 3      .
   17  CONTINUE
       HF03= HFL
       TFOS= TFL
    3  CONTINUE
C RATF  OF  FUEL INECCTION
       IF  (THETAI.LT.THEEIJ)
     1C ALL  FTNJN(THETAI,OFJTTH,XMFJ)
       IIOLO= [I
C ESTIMATE  THE VAPORIZATION  OF FUEL SPRAY
       IF  (KOUNT.GT. NSS )  GO TO 25

                                     50

-------
   IFPsT-0
   CALL  EVAP (P, T,T A, TFL ,CPA , OMEGA , F IN , RHGA , XX XX , XM AF A , KOUNT ,CEV AP ,
  1 AIGNO,XMSOTU)
   XKAA =  XMA-XMAFA
   DFG3TH= ,( XXXX-XMFG)/DTHFTA
   IF  (XMAA.LT.0.3)  XMAA=0.0
   IF  (XM AA.LE.O. 0 )  KOUNT=NSS
   IF  dl.LE.O) GO TO 25
   IGENO-  IOFNO+ 1
   IF(IIOLD.tQ.II) GO TO  25
 INITIAL  CONDITIONS FOR NEW   ZONE
   IG£MD-=  0
   IIOLD1=  TIOLO+  1
   00  21  I = IIOLOi, II
   AMHBM ( I  ) = AHMA
   XHAPBI=  XM3M (I>
   OAP'DTHm = XMAP3I/OTHFTA
   X02(I) =  X02A
   XNONEQd  )= XNOANE
   YNO(I ) =  YNOA
   X,-'NO(I  )=  XHAo:5I*YMO(I)
   TSM(I) =  T A
   UCM(I) =  ua
   HSH (I) =  HA
   CPBM(I)-  CPA
   P n M ( I ) =  R A
   AFR(I  )-  APR A
   PHEd ) =  PHEA
   ETAA=  1.0/(i.0f AFRA)
   ALPA=  1.0- ETA A
         (l)=  XMBMt I) *ETAA
         ( i) =  XMSM { I) *ALPA
   XHFLI(I)=  DLOOTH(I) 'DTHETA
   3TARM(I  )= 8TAA*(XM3M(I  J/XMA)
   GBM(I  )=  GA*(XM8M(I  ) /XM A ) **0 . 6666667
   8TAA=  BTAA- 3TA3K(I)
   QA= GA-GBMd)
   YS(I)=  XMSOOT(I)/XM3M(I)
   SL03TH=  SLDOTHt DLDOTH , XMFLI d)
   00 aC  L=1,NS'ZG
   WRITE(6,1G9)  L, Did  ,LI,XNOI(I ,L),OMFLI(I ,L)
20 CONTINUE
21 CONTINUE   .
   SUMBM-  SUM3M+' 3MAP3
   XMA= XMA-  SMAPB
   Ic (XMA.LT.G.Q) XMA=C.O
   XMAA=  XHAA-  SMAPB
   IF (XMAA.LT.0.0 )  XMAA=O.Q
   IF CX^AA. LE.O.Q )  KOUNT=  NSS
   XHFA=  XMA*ETAA
   XMPAA=  XM£*AL°A
   XMNOA=  XMA* YNOA
   XMSOTA= XMfl*YSA
   flP3'JTH= SMAP3/DTHETA

                                   51

-------
 25 CONTINUE
    nFVOTH= OFGOTH* SVBOTH
 80 CONTINUE
   . ITERPC= 0
    P0= P
    T0= T
    TAO = TA
    TFGO=  TFG
    TFLO=  TFL
    WPO= WP
    HAO= HA
    HFGO=  HFG
    HFOSO= HFDS
    DPOTHC= OPOTH
    DTOTHO= OTIDTH
    XMOO   = XMD
    XMVO   = XMV
    XMFVO  = XHFV
    XMFAO= XMFA
    XMAP90= XMAP3
    XMPAAO= XMPAA
    XMFLOO= XMFLO
    XMFP80= XMFP3
    XMFQ8C= XMF08
    XMNOAO= XMNOA
    XMSTAO= XMSOTA
    SUMFJO= SUMFJ
    IF (II.LE .0)  GO TO 53
    00 52  1 = 1 ,11
    T5MO(I)=  TBM(I)
    XMNOO(T)=  XMNO
-------
      IF  (II  .LE.O) 30 TO  79
C BURNING  SYSTEMS
C   MIXING FATE OF AIP.-3URNING  SYSTEM
      CALL A MIX (XMA.A, SUM'3?-1, UCHAR ,8TA 3M , AFR ,OMQr>T H , DHVOTH ,CMIX ,C V ID I)
      00  18  1=1,11
      Sf»QOTH = SMOOTH* OMOOTH(I)
      S*VOTH= SMVQTH* DMVOTHd)
   Id CONTINUE
      ETAA=  1.Q/(1.:J4-AFRA)
      ALPA =  1.0- ETA A
      XAAOTH=       - ALPA'SMOOTH
      XFADTH=       - ETAA*SMOQTH
C  EQUILIBRIUM CALCULATION
      CALL TPPOPZ
C SPECIES  DISTRIBUTION
      CALL SPECYZ
      00  55  1=1,11
      VRM(I)= V*8TA3M(I)
   55 CONTINUE
C  DIFFUSION  BURNING RATE  OF  THE  SYSTEM
C ESTIMATE HETEROGENEOUS NO PRODUCTION1 RATE
      CALL FLAMEZ
-------
      SUM5=  SUM?* AAM(I)*XMBM(I)*(R9M(I>+TBM{I)*PRPT3M(I))
   71 CONTIMUF
   79 CGNTIHUE
C LIQUID  FUEL SYSTEM  (VAPORING)
      IF  (XMFL.LE.0.0 ..OR.  IMET3T. EQ..Q I GO TO  27
C THE TEMPERATURE OF VAPORIZING  LIQUIO FUEL  IS  ASSUMED TO BE  THE  STABLE
C HET-BULR TEMPERATURE
      GALL W£TBT
     • VA=V*eTAA
      RHOA=  XHA/VA
      CALL RAOHZtTA,   XMFA,VA,ORAOTH)
      DQROTH= DQRDTHf DRADTH
      QCAQTH=GA*OaCDTH
      QEVOTH= (HFV-UFL)*OFVOTH-  (UFJ-UFL)*QFJOTH+ XHFL*CPFL*OTLDTH
      QA= QRAnTH+OCAQTH+QEVDTH-  (HFJ-JFJ)*DFJDTH
      XX1=  (RA*TA/P-PUPP-TA*PRPP)*XMA
      XX2=  (PUPT+RA*-T A*PRPT)*XMA
      XX3= XMA* (PUF»F* TA*?RPF)
      XXi+= 0.0
      SNOOTH= 0.0
      SMSOTH= Q.0

                                         54

-------
     IF (II    .LE.O)  GO TO  38
     DC 37  1=1,11
     XX
-------
   XFIDTO (I)=  XFIOTH(I)
   XAIOTO(I) =  XAIDTH
      XMFQB=  XMFQBO+
      Xf!FA =  XMFAO  +
      XMPAA=  XMPAAO+
      AFRA=  XMPAA/XMFA
      F6RA=  1.0/AFRA
      PHEA=  FARA/FAR35
      SUM3M=Q.O
      XMFL8=  Q.Q
      IF  (II.LE.O)  GO TO 5
      00  9 1=1,11
             I)= XMFBMO(I)* (XFIQTHm+XFIDTOm ) *DTHET2
             I)= XMPAMO(I)*- (XAIOTHdJ + XAIQTOm >*OTHET2
      XHBM
-------
      X;-:FLB=  XMFLD- XMFDQ
      XMFG  =  XMFV- XMFPB
      IF  (XMA.LT. (i.OE-5*XMAO) )  XMA= 0.0
      IF  (XMFL.LT.0.0) XMFL =  0.0
      IF  (XMFG.LT. (1. QE-5*XMFJ) )  XMFG= 0.0
      GA =  0.0
      GFG=  0..3
      STAA= o.o
      8TAFG=  Q.G
      IF  (II .L£ .0)  GO TO 29
      00  .30 1 = 1, II
      3TA3M ( T)=C.O
      GBM (I ) = 0.0
   30 CONTINUE
   29 CONTINUE
      SUMR=0 .0
      SUMG=G .0
      SUMU=G .0
      SUMRT=O.Q
      IF(XMA .LE.O.Q)  GO TO 31
      TST:  TAO +  (QTAOTD+QTADTH) *DTHET2
       IF  (XMNOA .LT .G . 0) XMNOA=  0.0
       XMSOTAs XMSTAO*  ( AMSOTO* AMSOTH ) *OTH£ T2
       IF  (TA .LT .TP.ANGl .OR.  TA .G T . TR ANG2 ) WRITE ( o , 103.)  THET A I , T a , PHEA , P ,
     1 L'TAOT'H,QTADTO, TAO
       IF  (PHEA .LT.PHE9G1  .OR.  PHEA . GT . PHERG2 J  WRITE(6tlC8) THETAI,TA,P,
     i P.HEA , XMFA,XMPA A
       YNOa-=  XMNOA/XHA
       XNOANE=  ( AMWA/ 30.3 'YMOA
       Y 3 A =  G . G
       IF  (XM AA . GT. 0.0 >  YSA=  XMSOTA/XMAA
      GA=   (TA-TM) *( GA
          J=  SUM1?* XM4*RA
      SUMU=  SUHU + XMA*UA
      SUMRT=  SUMRT+ 3TAA
   31 CONTINUE
      IF  (XMFG.LE.0.0) GO  TO  73
      TFG=  TFGO+ (TF30TO«-TFGOTH) *DTHET2
      UFG=  UFLOP* (TFG-T8PF)*CVFV
      IF  ITFG.LT.O.0) WRITE(6,1CO)  TFG,TFGOTH,AAFG,33FG,OPDTH,OFVDTH
     1                              ,X,HFG
      RTAFG=X,WFG*RFG*TFG
      GFG=  (TFG-TW)*(RTAFG*-(.6666667))
      SUMG=  SUMG+ GF3
      SUMR=  SUMP* XMFG*RFG
      SUMU=  SUMU* XMFG*UFG
      SUMRT=  3UMRT+ BTAFG
   3? CCNTTMUE
      SUMU=  SUHIJ+ XHFL*UFLf  XMFL8*UFL3
      IF  (II .LT .1)  GO TO 75
      DO  72  1=1,11
      IF  (I . GT. HOLD) GO TO  67
      TnM(I)= TSMOm+ (OTBOTOm+OT30TH
-------
   OMOAVX=  0.5*(QMOOTH(I)+OMDOTO(I))
   QMVAVX=  0 .5* (OMVDTHd) tOMVOTO(I) )
   OLBAVX=  0.5*.LT.O.Q)  XMNO(I)= C.O
   XMSOOT(I)=  XMSOTO(I)* (OMSOTO(I)+DMSOTH{I})*DTHET2
   IF (TBM(I).LT.TRAN51   .OR. T9M(I) .GT .TRAN62)  WRITE(6,109)  I,THETftI,
  1TBMII ) ,PHE(I),OT80TH(I),OT30TO(I),TBMO(I) ,OPDTH
  2  ,OL8DTH(I) ,OV30TH(I) .OMOOTHd) ,DMVOTH(I)
   IF (PHE(I).LT.PHERG1   .OR. PHE {I) .GT.PHERG2)  WRITE(6,109)  I,THETAI,
  1 T3M(I),PHE.(I)
   YNOd)=  XMNO(I) /XM3M(I.)
   XNONEO(I)=  (AMM3H(I)/.^0.)*YNO(I)
   YS(I)= XMSOOTCI)/XHBM(I)
   8TA3M(I)=                XMBH(I)* RBM(I)*   TBM(I)
   GBM(I) =  BTA3M(IJ*»{,6666667)*(TBM(I)-TW)
   SUMG=5UMG+GBM(I)
   SUMU=  SUMU^-  XM3M(II *UBM( I)
   SUMRT= SUMRT+BT ABM (I )
   SUMR=  SUMR4-XHBH (I)*RBM
-------
C GROSS CYLINDER PROPERTIES
c AVERAGE!!  DENSITY SNO INTERNAL  ENERGY
      KHQ =  SUMM/V
      U=SUMU/SUMCKM
C AVERAGED  GAS CONSTANTS IN  CM3- ATM/G1 -K
      RR = ( S UMR /SU MM ) *R ORU
C   AVERAGED  PRESSURE
      =>=' SUMRT/VRO^U
C   AVSPAGtC  TEMPERATURE
      T= P*V/(SUMM*F,R)
C OVER-ALL  POLLUTANTS
      XMNOE=  XMNOA
      SOOTE=  XMSOTAf XMSOTU
      IF (II .LE.O) GO TO 60
      00 59  1=1,11
      300TE=  SOOTE* XMSOOT(I)
      XMNOE=  XMMOE+ XMNO(I)
   59 CONTINUE
   bO CONTINUE
      IF (ITEPPC.EQ.O ) GO TO 64
3  ACCUPACY  CHECK
      CH
-------
       IF  (II .EQ .1)  GO TO 10
       IXX=IPRT/NPRT
       IXX=IXX*NFRT
       IF  (  IPRT.NE.IXX ) GO TO 77
   10  CONTINUE
C PRINT OUTPUT
C  OVER ALL  ENERGY  BALANCE
       £1= SUMU-EO
       E2 = HFJ*5UMFJ-  WKNET- SUMQL
       DEL£12=  (El-  E2)/(XMFJ*HCOM>
C AVERAGED  POLLUTANT  FORMATION
       SUMMW= XMA*AMW4* XMFG*AMWF
       SUMPAE=  XMPAA
       SUMPFE=  XKFA* XMFL* XHFL3+ XMFG
       IF  (II .LE.O)  GO TO 23
       00  16  1=  1,11
       SUMMW= SU*MW+ XM3M(I.)*AMWBMtI)
       SUMPAE=  SUMPAE+ XMPAM(I)
       SUMPFE=  SUMPFE* XMFBM(I)
   16  CONTINUE
   ?J  CONTINUE
       PHEE=  SUMPFE/SUMPAE/FAROS
       AMWE=  SUMMW/SUMM
       YNOE=  XMNOE/SUHM
       XNOE=  (AMWE/JO.)*YNOE*1.0E6
C GROSS OUTPUT
       WP3    =  0 .5* (WP    t WPO   )
       OPOTHB-  0.5MDPOTH + OPOTHO)
       OFJOTB=  Q.5*(OFJOTH+ OFJOTO)
       nQCOTB=  G.5*(OQCDTH+ DQCDTO)
       OQRDTB=  C .5*(OQ;?DTH+ OQROTO)
       SMOOT8=  0.5*(SMOOTH* SMDOTO)
       SMVDTB=  0.5*(SMVOTH+ SMVOTOJ
       SVBOTB=  0 .5MSVBDTH+ SVBOTO)
       S09QTB=  0.5*(SOBOTH* SOBOTO)
       SLOOTB=  0 .5*(SLOOTH* SLOOTO)
       SF30TB=  SV30TB* SOBOTB
       WRITE (6,101)  THETAI,P,V,T,U,PHEE,
     1              OPDTH3,WPB,OFJOTB,SHOOTS,SHVDTB,
     2              OQCOTa,OQROTB»SVeDTB,SDBOT8,SLOOTB,
     2              SUMQL»SUMFB,SFBOT8»WKNET,RR,
     J*              UCHAR,nVDTH,OELElZ,ITERPCt
     5              XMNOE,YNOE,XNOE,SOOTE
       INEW'P= INEWP+ 1
       IF  ((  (INEWP/7) *7.EQ.INEWP)  .AND.  (IDTAIL.EQ.i3l) WRITE(6t98)
       IF  (ID TAIL.Ed.0) 60 TO 77
C  DETAIL .OUTPUT.           ;
       WRITE (6,108).             .-•.-'
       XXXXX=   XMFA* XMPAft
       WRITE(6,1C5)XHA,TA,UA,PHEA,3TAA,XMNOA,  XNOANE,XMSOTA»XXXXX,XMPAA,
     1             XMFA
       IFCTHETAI.LT. THEIJ) GO TO 77
       WRITE(&,10^)XMFG,TFG,UFG,PHEFG,BTAFG
       WRITE(6,i03)  XHFL ,TFL ,UFL
       WRIT£(6,103)  XMFL8,TFLB,UFL8
       IF  (II .LT . 1.)  GO TO 77
       00  78  1=1,TT
       WRITE(6,1G6J  I,XM3M(I),T3M(T),UBM(I),PHE(I),BTA8M(I>,XMDF(I),
     1 XNOMEQd ) ,XMSOOT (I) ,XMFLI (I ) , XMPAM(I) ,XMF3M(I)
   7*  CONTINUE
                                        60

-------
    IF  (ISPCYP.EQ.O) GO  TO  12
    WRITE (6, 110)
    IF  (XMA.GT.C.j) HRITE<6,lu9>  1 1 , XH2A , XH20A ,XCO A , XC02A , XH2 1 , XNO A ,
   1                                  XOHA,XHA,XOA, XNA, X02A, XCHM
    00  11  1=1,11
    WRITE (6, 109)  I,XH2CI),XH20{I),XCO=  300.
    VST?=  (P*V/T)* ( TSTP7PSTP)
    XISOOT= SOOTE*! .u£3/(VSTP*l,OE-{j)
    WRITE (6,1 16)  XIMEP,XIHP,XISFC,XISOOT,XNOE
PROCEOE  TO  THE  NEXT CASE
    GO TO  1
 FO'MAT  STATEMENTS
 97 FORMAT  ( 1X,*ITE°ATIQM  HOES NOT CONVERGE  TO  THE CORRECT  TEMP*/
   1 2T5,1P7F10.37)
 93 FORMAT (1H1)
 99 FORMAT <8 A 13)
100 FORMAT (8E1 0.3)
1.01 FORMAT (//1X,*THETA(OEG.CA)=*,F3.2, 3X , *P ( ATM ) =* , 1PE10 . 3 , 2X , *V ( CM 3 )
   1=*,£10.3,2X,*T(K)=*,F1Q.3,2X,*U X , * XMSOOT (G?-1) *,2X,
   2 ?XMFL I(GM» *,2X , * AIR(GM) *, IX,* FUEL (GM) *)

                                       61

-------
103 FORMAT (IX ,*L .FU EL* , 1P9E1 2 .3, OP 2F7 . <*)
10 ^ FORMAT (lX,*G.Fl)EL*,lP9E12.3t QP2F7.1+)
105 FORMAT (IX,* AIR  *, 1P9E12 • 3 , OP2F 7.<+>
1G6 FORMAT (IX ,!*» ,2X , 1P9E12. 3 » OP2F7 .4 )
107 FORMAT (1H1)
108 FORMAT(  5X.1P11E11.3)
109 FORMAT (1X,I5,1P12E10.2)
110 FORMAT (//5QX,*MOLF FRACT IONS*//I X, *SYSTEM* ,<*X , *H2* , 8X ,*H20*, 7X ,*CO
   l*,8X,*CC2*,7X,*M2*,8X,»NO*,8X,*OH*t8X,*H*t  9X,*0*i  9X»*N*,9X,*02»,
   2 9X,*CHU*)
ill FORMAT (IX,'FORMATION  OF  A NEW SYSTEM *,15,1P10£10.3)
112 FORMAT (/5X,*L*t3X,*0(CM)*,3X,*NO. DROPS*,2X,'MASS(GM)*)
114 FORMAT(/1X,» RATE INFORHAT ION*/1X ,*S YSTEM   OT3DTH* , 3X , *C'MOOTH* , 
999 CALL  EXIT
    END
                                       62

-------
    rU°.PnUTTNF  AMTX (XMAA,SUMEV,HCHAR,PTA9^, AFP, OPEC TH,nMVCTH,CMTX,
THIS f-.CUTTNf  F^TIfATES THE  RATF  CF  MIXING BETWEEN  AIR AND BUPNIfsG  ZONES
    niMENSICN  OMGGTHMOO) ,8TASK< 100) , AFR (100) ,Df VCTHtlOO)
    COMMON/ INT EG S/ IN01,IMO?,ISOCT,IW£TBT,NPRT,ICTAIL,NTER,NAXIL,
   1                MSHEL t NS ZG , NT TS T , I?UG , 1 1 , 1 1 1
                   VFJC.
     = VC+
     L3AR=  V/AP
    CCMIX=  CVIX'UCHAR/XLCHAR/RPM
    IF  (XMAA.LT.0.0)  XMAA=0.0
    5Uyr3Tfl=  1.0
    DO 1  1=1,11
    SUMOra=  3HMPTA*. OTARM(I)
  1  rCNTINUF
    no 2  1=1,11
    n*'D-1TK( I)=  (QTASN(I)/SUM8TA)*GMADTH
    C%'V3Th(T)=  CVIOI*nMOOTh (T)
  ?  CONTINUF
    FKO
                                   63

-------
»OFCK BDATA
      ILGCK  DATA     .
C     POLYNOMIAL COEFFICIENTS  FOR  THERMOOYNAKICC DATA  OF  C(K)H(1.7N) COMBUSTI
0     PF'.OOUCTS   U(P,T,PHE)  IN  CAL/GH-OF AIR AND R(PfT,PHE)  IN CAL/Gf-OF-A IR^K
C       P  IS  TN  ATM, T IS IN K,  PHE  IS EQUIVALENCE  RATIO
C*****   H/C=1.71
      COMMON  /HPCOE/ AA1(5) , BB 1 ( 6),001(11)»&R1<8),  AA2(6) ,E02(6)»DC 2(11)
     1               ,PR2(8)
C LEAN  PRODUCTS
      DATA A A 1
     1  / -5.5<*9?336E*01,  7 . 837^7'58E-02 ,  1.673*»7«»5E-0«» t  -1.1376329E-07,
      D ft T A  B B1

     2   -l.£*i*35963E-ll,  9.9489198E-16 /
      DATA  001
     1  /   1.370G202E»01, -1. 10 17 39CE + 0 0 ,  -«=. 71559C9E - 0 1,  -2 . &7?0<*69E + 0 1,
     2     7.2
-------
* D E H K r C ! s1 H T
      SUBROUTINE  CCNHT ( RE I , TT , CCCH TH , CA ,CP )
c THIS POUTINE  FSTT^-ATES OVER-OIL  CCNVECTIVE HEAT TRANSFER  TO  AN  UNIFORM
C TEMPEETUPEO CYLINDER WALL BASED  CN  MASS  AVERAGED GAS TEMFERATU'RE
      CCMMON/CCMVF/ X J , A TO , OTR , X K , S I G t R ,PU , C T DT H , D THOT , OTRO T
      COMMCN/ENGEO/ OEtRFW,PL,VCtSC,S,USI,CR ,RF^fTK,ONOZZ,^lNOZZ,D8CWL1
     1               VFJO
      HW-CC  ^VK* (RET**CB)/CE
      AH=  G.7P
      AP=/\H
       AT=  AHfAP+ASLVI
       GTG-  HW'AIMTI-
      RETURN
      E^!D
'DECK F P F
      FliNCTICN'  FRFJ?)
C ERRHP FUNCTION  EVALUATION
      • X = 7
      A = 1 . 0
      IFfX ,t.T .0 . ) A--1.G
      X = ft * X
      XI=- (X**?)
      T-l. 0/( 1. «-.3
      "MIX2 = EXP (XT
      RETURN
      CND
                                     65

-------
* 0 F C !<  I? V a P
       SUE°OUTTNE EVAP
                    DJF,XS(20),YS(?0,'-*) ,yS(20,^),^HCF(^0,'4) ,AFT(20,t»),
     1              PTIM<2fl,U),ETAI{2a,5) ,OVS(20i«»l t  GOSZC3) ,S2BAR ( 31 ,
     2              C(25,«4,3)
     7              AFV(25-, u)
     «.              IOIG(25ftt
       PF= 1.0
       PR3=  FR**0. 333313
            =  Q.5*G9CWL
      CMFIJT=  njF'TT
      XMUA= l.?5E-?*/(TAt-110.)
      XL.=  XL293*nTCRTTF-TL)/
      TF  (TIM.GT.DTINJ) GO  TC  2k
C ISSUING  A NFW  SUBSYSTEM
      111=  III>1
      DC  22 J=l, NSHEL
      TAFV(1II,J)= TA
      XMSCT (III ,J)=0. 0
      IDIGCIII, J)=a
      TO (ITT. ,J)= T
      POdlT, j)= P
      DC  a3  L=l, NSZG
      0 (III , J,L)= SZBAf
-------
   11 CCNTIt'UJF
      WCITF(&,100)  I,J
      GO  TO  f
   12 CONTINUE
      TnMl =  TO-l
      OPT- PTIfMIHtJ) - PTIfMTCKl.J)
      npTl=(FTIM(ID,J)-TIMI)/npr
      OPT2- (TI^T-PTTMdDMl »J») /DPT
      XSS(I,J)=  XS(IOMl)   »OPT1  * XS(ID)  *OP72
        YSS(I,J)=    YSdOMl , J)*0DT1 *   YS(IO,J)*DPT2
      1VSS(T,J)=   OYSdOMl ,J)*DPT1 4  n YS ( TG , J) *OPT 2
      RHQFT=    PHOF{nm,J)*DPTl*RHOF(ID,J)»OPT2
      AFTT=      AFT= SCRT(02)  '
   Id nxXX=  GOS7(t) Mi.,l-(D (I, J,L)/SZ3AP(L) )**3)
      XMFVS(I,J)= XHFVS(I,J)#  GXXX
    "? CONTINUE
      SAVFflF=  AFTI/XMFVS (I,J)
      AFV(I,J)= SAVEAF
      TAFV(ItJ)-  !TL*AFV(I,J)*TA)/(1.Q+AFV(I,J))
C SOOT  FO°H.flTICN
      flFVJ=  AFV/(I,J)
      T/>FVJ=  TflFV(I,J)
      VIJ= 2.0*PI*TfSS 
-------
    7 CONTINUE
C COLLECTING  THE  RUNNING SYSTEMS  (I.E.  DEFINING BURNING RATE)

      11=  11*1
      KOUMT=  KOUNT*!
      XMSGCT(Tt)=  XMSQT(I,J)*NNCZZ
      XM'3M(II)=  NNCZZ*AFTI*OMFIJT
      nV3QTh(II)=  NNOZZ»XMFVS
06)
( XSS
( YSS
(DYSS
(XMFVS
( AFV
(TAFV
(III
(III
(III
(III
_
-
-
-
(III-
(III
-
1*1
1*1
1*1
1*1
1*1
1*1
,J)
tJ)
,J>
,J)
,J)
,J>
,1=1,
,1 = 1,
,1=1,
,1 = 1,
,1=1,
,1=1,
III
III
III
III
III
III
)
)
)
)
1
)
CONTINUE
WRITE (6
FORMAT (
FORMA T<
FORMAT
FORMAT (
FORMAT (
FOPMAT(
FORMAT (
FORMAT(
.RF'TUP-N
END :
,99)
/)
IX
(1
IX
IX
IX
IX
IX



.*
X,*
i*
,*
!*a
,*T
V*



I=*,I3,»

J =

*
	 SYSTEM
X *, IP
10E1
Y »,1P10E1
/FV *,1P
AVF *, IP
DY *,!»


I UC J.
10E1
10E1
10E1


2
2
2
2
2



,13
*,?
.3)
.31
.3)
.31
. 3 )



,*
13,









ELEMENT
* IS








IMPINGES A NEGHBOR JET*)
EURNNEC »,1P6E12.3)














                                    68

-------
    FINJK
    SimcUTINF  FINJN(THETAI,CFJOTH,XMFJ)
THIS ROUTINE GIVES  CONSTANT FUEL INJECTION  RATE
  ASSUMING  CONSTANT  INJECTION ?ATE
    DFJOTH=O.C
    IF((ThETAT.LT.THEIJ).CR.(THETAT.GE.(ThEIJ*OINJ))) RETURN
    DFJHTH=  XN'FJ/DIMJ
    PE TURN-
    END
                                69

-------
       FLAME7
       SUBROUTINE FLAMEZ(TL,TLC,CFL,CNOP)
C COMPUTATION OF Gl'ASI-STEA OY  THIN  FLAME STRUCTURE  (WITHIN A FINITE SPACE.)''
       COMMON/INTEGR/ IN01, INC2 ,.ISOCT , IWET8T , NPRT , LOT AIL , NTER, NAXIL,
      1                MSHEL , NS ZG , NITST, IBU.G , 11,111
       COM?10N/CCNVF/ X J, A TO , CTR , XK , S IG , R, RU , CTCT H ,C THDT , OTRDT ,PI
       COMMCN/^PECYI/  XH2(100I,XH?C<10C),XCC(10C),XCC2(100),XN2(100),
      1                 XM0(100),XOH(100),XH(100),XC(100.),XN(100),X02(100)
      ?                 ,XCHM100) rXNCNEQ(lC)C)
       COMMON/PRA TFT/ DNODT1 (100) ,ONCOT2(100) ,DMSOT1(100),DMSDT2(100),
      1                ORMDTH(IOO),OLSOTH(100),XfOF{ 100)
       COHMCN/TPROPI/ P,TBM(.IOO) ,UBM(IOO> ,Her-(icc),vEM(ioo),CPBM(ioo),
      1                AMWBM(IOO) ,Ri3H(100)tPHE(100) , APR (10 0 > , XMFBM ( 1 0 0 ) ,
      2                XMPAM(IGO)
       CCMMOM/SCA./ THEMAX,THEIJ,THEIG,DINJ,THEKE,THE\»0,THEVC,OTINJ,
      1             DTHMIN,OTHMED-,DThMAX,DTHE1fl,DT
      .CGNMON/O^CPC/ HUTIM,OTPHY,XTlYC2,CPeAR,RHOO,TCRITF,XL29fl,
      1        4      XMBM(IOO),CVBOTH(10Q1,OLnnTH(lGO),XMFLI (100),
      2               01(100,3) ,OMFLI (100,.3),CMLCT(10Q,3),XNGI(100f3),
      3               XKK(100,3)
       CG«MCN/FUELP/W,XX,YFX,ZFL,YSTOA,ZSTOA,API,FCEN,FAPOS,AMWF,SURFT
      1             ,XMUF,CtN,OXST,HCOM
       COMMON/FLAMES/ AMWMP,RKAX,YN2L,TF,RF,XMDCT,RL,R8,TDF(50),YFDF(50),
      1               Y020F(50),YN20F(50),YNCOF(5G),WCOT(50),RDF(50)
       CCP=  HCCM/CPEAR
       NITST1- NITST- 1
       NITST2= NITST/5
       NITST3= NITST?!- 2
       DO  20 1=1,11
       XMQF(I)=  C.O
       DL9DTH(T)= 0.0
       CNCnT2(I)= 0.0
       HO  19 L=1,NSZG
       XKKfT,L)= 0.0
       OMLOT(I,L)= Q.O
   19  CONTINUE
       CLBTT-  0.0
       OMLDTI= 0.0
       IF  (XMFLI(I).LE.O.Q)  GO  TO 20
      •Y023= X02(I)-»-32./AMWOM(I)
       YM23= XN2(I)*28./AMWRM(I)
       YN03- XNONEQ(I)*30./AMW8M(II
       T«= TBM(I)
       AMWMP=  AMWRM(I)*P
       Y028J=  YG23/OXST
       XVXHDF= 1 2. 566,37062* AMWMP/82.05^
C DROPLET SPA-CTNG         .      .                   '     .
       SUMNOT= 0. 0   . '     '   '•
       00  g'  L=l ,NS7G
       IF  (01(1,1.) .GT. 0.0) SUMNDT= SUMNDI+  XNDI(I,L)
    9  CONTINUF
       \/MAX'= V3M (I) XSUMNOI
       RMAX= '(G.23873*VMAX) **C, 333337
       DO  ID L-1.NS7G
       IF  (II -(I,L> .LE.O. 0) GO TO  in
       RL= Ci. 5*0 I (I,LI  •
       IF  (YC28.LT.XTLY02) GO TO  12
       IF  ((TCPTTF-TL).LE.l.OE-6) GG TO 15
C' SUBCRTTICAL ASSUMPTION
       XI = XL2987' ( (TCRITF-TL  )7 ( TCR ITF-298. ) ) **C . 38

                                   70

-------
      GO  TO  16
   PITICAL CNIGN'  SKIN ASSUMPTION
   15 XL= CFL'fTL-TLO)
   Ifi CPLXL=  CPRAR/XL
      82 = CPLXL* (T3-TL+ QCP*Y028J)
      ALCG2=  ALOG( l.G+fi2)
      YCL = 1. 0- ( 1. G+Y028J) /( 1. n + 8?)
      flLOG<+ =  ALCG(1.Q+YFL/ (l.Q-YFL)
      AAA- ALOG2/ALCG<+
      TF=  (T3+TI *YC2<3J/YFL + QCP*YQ?8 J     ) / ( 1 . 0* YQ28 J/YFL )
      TFT^=  TF/T8
      DRS=  -0 .
      DO 1  ITF"=l,«iO
      Pft= P84  OR 8
      IF (RP.LF.RL)  GO TO 12
      y X x =
      PFPL=  XXX/ (XXX-1. 0)
      RF= RL'RFPL
      XXXX;=  XMDOT/PF
      IF (XXXX.GT.2CO.) XXXX=?00.
      r R F = EX°t-XXXX)
      IF  (XVyy.GT.200.) XXXX=  200.
      OPT-  (P^AX-PF)/30.
      CI= RF-  QFI
      SU^=0 . G
      °0 2  IR=1,^0
      RI= K I + no I
      rc.= tXPf-XMOOT/'I)
      XITGD=  (FP.F-ER)*PI*RI/((ERF
      IF (XITGO.LT.Q.n)  XITGO=0.0
      SUM-  SU'"+  XITGO
    ? CON'TINUf
      CHK=  (XLHS-X3HS) /XLHS
      IF  (ITEP.EQ.l)  GO TO ^4
      Tr  (ARS(CHK) ,LT .0.01) GO  TQ  3
      THKX= CW
-------
       GO  TO  11
     3  CONTINUE
C e URN IMG  RATE
       nf*LOTI=  12.56e:37062*RHCC*XMnCT
       IF  (IN02.EG.O) GO TO  11
C MASS  FRACTION OF N2 ON SURFACE
       HXX<»-  w +  0.25'XX
       XXX1=  i»it. 0*(*»' + WXX*»*XC02m/XC2(I))
       XXX2 =  1«.Q*( 0.5*XX*WXyt»*XH20(I)/XG2(I)>
       XXX 3=  2 ?. . 0*(WXXif*XN2 ( I1/XG2(I) )
       XXX=  - YG?8E*(ERF-ER)
       YFOF(I«)= 0.0
C N? OTSTRIRUTION
    7  CONTINUE
       YN2QF(IR)= YN28* YN2L 3E* (ER-ERfl )
    3  CONTINUE                                     .
G CALCULATE  HFTF.RGENOUUCTION PATE  APOUND A BURNING CROPLET
       IF  {OMLDTT.LT.1.0E-15V GO  TO  11
       CALL  HETNOR(P, YM08, .AMWSMd) , SHOD, NITST , CNOR , CNODT I )
       f!f^COT2(I)= CNCOT2(I)+ DNCC TI'XNOI ( I , L )
C MASS  INVOLVED IN  HETEROGENEOUS  FORMATION
       XMCF.I=  o.o
       DO l«t  IP = NITST.3,NT'TST
       RI=  0.5*(RDF(I^>* ROF(IP-D)
       RI2=  FI*PT
       r!RI=  ROF(IR) -  ^HFlIP-l)
       :HFAV=  0.5* ITCF (IP) + TOFdR-ii)
            =  XMDFI+  RT2*ORI/TOFAV

                                      72

-------
   lit CCNTIt-':U"
      Xl-lO^m-  ywOF(I)+ XNGHI,L)*XXXMDF*XMCFI
   11 CfiNTlNUF
      CML'IT (I,L)= OKLOTI
      XKK(T,L)=  (3.6366197723/FDEN/RL) *DMLDTI
      nL.-?OT=  CL80T+ QMLOTI'XNni (T,L)
   10 CONTINUE
C GVFo-/it_L DIFFUSIVE ZONAL BURNING  PiTF
       Ir  (CLBDTHfT) 'DTHETA.GT.XMFLKD )  DL8DTh(I)=  X KFLI ( I ) /DTHFT A
   ^0  CCNTINUF.
  100  PfSMAT (1X,I5,1P1ZE1Q. 3)
  101  FCPMAT(//IX,*. ... FPPOR  IN  FLAME   ITERATION  ...*,iP7Eic.3)
       P r T u P N
                                    73

-------
  ECK  HFTNCR
       SUBROUTINE HETNOR (P, YNC8  » AMW , RHOD ,NI TST , CNCR ,CNODT I)
  Hf.TERGENOUS  NO FORMATION  FATE
       HIMENSION  YK501 ,Y2(5Q) ,HOOT1C5'0) ,XK2 (50 I ,XK3 (50) rSAVEl(51l ,
     .1  SAVE-2(51) ,WCGTAV(50)
       COMMON/FLAMES/ «MWMP , RM AX , YN2L , T F , RF , XMOO T ,FL ,R8 ,TDF ( 5 0 ) , YFOF < 50 )
     1               Y02QF150) tYN2HF{50) , YNCCF (5 0 ) , WCCT { 50 ) , RDF (50 )
       NITST1=  NITST- 1
       DO 7  T=1,NITST
       WDGT1 (I) =0.0
       XK2(I)=  0.0
       XK3(I)=  0.0
       IF  (YC2DF(I) .LE.0.0)  GO  TO  7
  9 A IF.  CONSTANTS
       XKF1=       1.
       XKB1=       3.12E13»EXP(-t*00./RT)
       XKF2-  1.33E10*TDF(I)»EXP(-7080./-RT)
       XKEQ3=  5.0*EXPf-5830Q./RTJ
       XK1=  CNOP*5.095E-i«*(XKFl*XKEC3)
       WDOT1 (!)•= XKl*((AMWMF/TDF(m**1.5)*YN20F(I)*SCPT(Y02nF(I)}
       XK2(IJ= n.q955*(XK31*XK32/(XKFl*XKF2))/(YN20F(I)*Y02CF(Il)
       XK3(I)= 1.1^2^*(XKB1/XKF2)/YC2DF(I)
    7  CONTINUE
C INTEGRATING NO CONSERVATION  ECUATION
       DY1=  2.0E-«t
       IF  (YNCS.GT.2.0E-3) DY1= 0.1*YN08
       Yl(l.)=  2.0E-«»- DY1
       WOCT(1)= O.Q
       ITER-=  0
       I LOM=  0
       IUPR=  0
       CHKUPR= 1.0E10
       CHKLOW=-1.0E10
    2  CONTINUE
       Yl (11=   YK114- OYl
    6  CONTINUE
C INITIAL CONDITIONS
       IF  (ITER.CE.KITST) GO TO k
       Y2(l)=  XMOOT*Y1(1)
       YNOnF(i)=Yl(l)
       GO  1  I=1,NITST1
       RI= 0.5MPOFCI*!) 4-RDFd) )
       CPT=  RDF{I*1)-SDF(I)
       RI2=  PI*RI
    •YlCT*l)=Yl(I»*(Y2n)/RI?)*CRI
       IF  (Yl M + l) .LT.-1.0E-20V Y 1 { I* 1) = -1 . CE-20
       IF  (Y1(I>1) .C-T.1,0) Y1(I + 1)=  1.0
       Yf CDF (1*1)= YKH-li
C PRODUCTION  RATES
            =  l.Q- XK2(I*1)*( YNGCF (H-1)*YNOCF (I-H) >
            =  1.0+ XK3(H-1) *YNOrF(I+11
       CCRR=  COPR1/CORR2
       WOOT(I+1)= WOGT1 (1+1) *COR"
       wnOTAy (1)-= 0.?*(WDOT(I)+WDCT(I + 1))
       Y2 (1 + 1)= Y2(I> + «XMDOT«;Y?a)/PI2)-(RI2*WDOTAV(I)/PHOC))*DRI
       CONTINUE
       ITER=  ITEP*- 1
       SAVE1 (ITEP)'= Yl(l»

                                     74

-------
    S/W£2< =  YKNITST)- YN03
    IF  ( ( (ArjSCHK.LT .1 .OE-6) .ANH. (Yl (NITST) .GE .0.0) )  .OR.
   1    < ABSrHK.LT. 0.005*YNC3M  GC  TO 2
 IMPROVING  INITIAL GUESS
    IF  (ILCW.EG.O .AND. CHX.LT.0.0) GC TC  1 <4
    TF  (I!JP°.cQ.G .ANT. CHK.GT.O.G) GO TC  15
    IF  {CHK.LT.G.O .AMD. CHK .GE .CHKLOW) GC  TC  1^
    TF  (CHK.GT.0.0 .AMD. CHK . LE . CHKUPR ) GC  TC  15
    GO  TC  16
 lit OCNTIhUF
    TLT/<=  1
    YIOLCW=  Yid)
    Y18LCW=  SAVE?(ITE!?)
    C H K L 0 W =  CHK
    GO  TC  17
 1«5 CONTTNU"
    IU?-3-  1
    Y10UP°=  vl (1)
    CHK'JPP=
 17 H 0 N T I NU F
    lUPLC-  I
    IF  (IUPLC.LE.G)  GO TO  16
    Yi(l)=  ( v10tCW*CHKU°P-  YICUPR'CHKLOW) / (CHKUFR-CHKLOW)
    1^  (Y18LGW.LE.O .0)  Yl(l)=  0 .«;*.< Y10LOW+  YIOUP^)
    GO  TO  6
 16 CCNTIRJF.
    IF  (ITCP.EQ.l) GO TO 2
    ITET1-  TTT0-!
    Ic  {ARS(SflVE2  I=j ,NITST1
    11= Q.5*(ftOF (1*1) +ROF (I) )
    DPI=  FDF(I + 1) -P.QF (I)
    CMCTTI=  QMCCTI* MOOT A V ( I ) *P,T*R I
  ~ CONTTNUF
100 FCRMAT(1X,I5,1P12£1Q.3)
101 Fr?MAT(//lX,   *.. FPRCR  IN  HETNCR ITERATION  ..* ,  I3,lP9E10.2)
                                  75

-------
*DFCK HGMNOR
      SUBROUTINE  HCMNOR(P,T,XNC,XN2,X02,XNGNEG,CNCR,XNOnTl)
C THIS ROUTINE  CALCULATES HOHOGENECUS  NC PRODUCTION RATE
      RT=  1.937*T
C RATE CCNSTAN'TS
      XKF1=.       1.36El
-------
* n E r K H c- M N c z
      SU9°OUTINE HONQZ(CNOR)
C THTS PCUTINF  CALCULATES  HOMOGENEOUS NC PPGOUCTICN "1TF
      COMMON/I NTEGR/ IN01, IMG? , ISOCT , I KETBT , NFRT , 1C T A IL , NTER , N AX IL ,
     1                NSHELiNSZG,NITST,IBUG,II,III
      CCMMCN/SPFCYI/  XH2(100),XH2C(100),XCC(100),XCC2(100) ,XN2(100) ,
     1                 XNO(.10Q),XGw<100},XH(10Q),XC(10Q>,XN(100),X02<100)
     2                 ,XCH£*(10G),XNCNEG(100)
      r.GHMGN/PRATEI/ ON GOT 1 (10 0 ) , DNCO T2 ( 1 0 C ) , Of. SOT 1 ( 1 0 0 ) , OMSOT 2 ( 1 0 0 ) ,
     1                DRMOTH (100),DLeOTH(100),X^OF(1001
     t
     2                XMPAM(IOO)
      CCtfMON/n°CPC/ HUTIM,DTPHY,XTLY02,CPBAf;tPHOn,TCRITF,XL298,
     1               XMBM(100),nvenTH(lGO),CLODTH(1QG),XMFL1(100),
     2               ni(100,3),CNFLI(10C,3),DKLCT(lGQ,3),XNOI(100,3),
     3               XKK(100,3)
      DC  1  1=1,IT

      IF  (irOl.EQ.G .OP. T?H(I) .LT.1HOO.  .CF.  X02 (I> .LE . 1 .£-15)  GO  TO 1
      T=  THM(I)
      CT=  1.987«T
      XKF1=       1.36F.l«4*EXP(-75«iQO./RT)
      XK31=       3.
      XKF?=  1 ,.13Eia
      XK12>-  3.2EQ*T     *EXP(-3';10C./I?T)
      XKFQ3=  5.0*EXP(-5-"300./RT)
      X K1= CNQP ?- 0 . 22 0 7.°, 2 * ( X KF 1 *X KE C3 )
      X K ? =  (XKB1<'X'
-------
-'HECK RAOHZ
      SUBROUTINE  RQDHZ(THP,   XMF
-------
       CCQHZZ
       SUPROUTTNT. RAOHZZ
C PflTE  OF  RADIATIVE H.T. PRO*  INDIVIDUAL HGT ZCNE  TG  THE WALL
r. BASED  CN  LOCAL ZGNE TEMPERATURE
       COMMON/ IN TEGR/ IN01,INC2,ISnCT,IWETBT,NPKT,ICTAIttNTEP,NflXIL,
     1                NSHEL»NSZG,NITST,ieilG,II,IIT
                     XJ,ATD,OTR,XK,SIG»P,RU,CrnTH,OrHOT,DTRDT,PI
                      ONODT1 (100) ,TNODT?(1QC) ,D^SDT1 (10Q) ,OMSDT2(10n) ,
                      DRMDTH(100),OLGOTH(10Q),XKOF(iaO)
       COV,-v|CN/TPPf!FI/ P,TEM(lGO)
                      XMPAM(IOG)
                     DF,RFW,PL,VC,SC,S,USI,CP
                     VFJO
      ALFAS=0.?5
      XLI=S*SC
      AH=  1.57G7963?7*OE*OE
      flLPH=
      DO  1  1=  1,TI
      5HCFI-0.0
      IF  U'9M
-------
"DECK STZFO
      SUBROUTINE  S IZEQ(OELP , RHOA ,FCEN , SURFT , XMUF , CNCZZ , SZBAF , GOSZ ,NSZG)
C THIS ROUTINE  CALCULATES THE INITIAL  DROP-SIZE  DISTRIBUTION OF A  FUEL  JET
      DIMENSION  GQSZt  5),SZ8A
      CM=  37.5
      OEL-Q.85
      DPXX=  DELP*1.Q1325E6
      OMAX =  CM* (ONCZZ**.5l *
-------
* r c r K  SOCTP
       -IJEROUTIV^ SCCTP(P,T8,AFV,Y02P ,V,T,  ICIGI,XPSCT
     1  HMSOT1 tOMSCTZ)
r. THIS  RCUTTNF ESTIMATE  THE SCCT FORMATION AND DESTRUCTION FATE
       COMMON /AI»,P./  XMAI.XMPJtXMEGR^MPOiXNAOiXPARC.XMAEGRiXMFRO, XKFEGP. t
     1                AMWA ,fl.FS>A,Ffl(?A,PHEA
       CnMMON/FijFLP/W,XX, YFL, ZFL , YSTOA , ZSTOA , API , FCEN , FAROS , AMWF, SU^FT
     1              ,XMUF,CEN,CXST,HCCf1
       GO^MCM/D^CPC/  HUTIM,OTFHY,XTLY02,CPRACfRHOO,TCRITF,XL?98»
     t                XMRM{lOO)»nvenTH(10QJ,CL DO 1H(1CG),XMFL 1(100),
     2                OI(100,3),DfFLI(10Ct3),DMLCT(100,.-?),XNDI(lCO,3),
     •"                XKK(13D,.3)
       COMMON /^OOTP/  SOEN,DSCOT, ASOTP , ASOT A t Xf'SOCT ( 1 00 )
       IF(TOIGT.GT.2)  GO  TO  2
r VCPORiziNG ZONE
    1  CONTINUE
       PFU=  F/(1.0+AFV)
C r"J0f'l!r;G  ZCNF
    •'  CONTINUF
C SCOT  FORMATION R
       PHE'3-=  1. O/ (AFV'FAROS)
C ^OOT  CXIOT7ATION "ATE
                                               **2)*P   *EXP(-20000./T8)

                                       )/(SCEN*OSCCT»SCRT(T8))»EXP(-l(=650./
C \ F. T  f^OQUCTION K A T F
       T'^OT=  OMSOT1- HMSOT2
       RETURN
                                      81

-------
*DEC* SOOTR7
      SU930UTINE  SOQTRZ(TAV,V)
C THIS RCUTINE  ESTIMATE THE SOGT FORMATION  ANC DESTRUCTION RATE
      COMMON/INTEGRA  IN01,ING?,ISOCT,IWETBT,NPRT,10TAIL,NTER,NAXIL,
     1                NSHEL,NSZG,NITST,IPUG,II,III
      COMMCN/SPECYI/   XH2(100)».XH2C.(10G),XCG(100),XCC2(100),XN2(10G),
     1                 XNO(lDO),XOH(iaO),XH(100),XO(100)tXN(100),X02(100)
     2                 , XCH/» (100) tXNGNECdOO)
      COMMCN/PRflTEI/  ONODTltlOO),nNOOT2(10C),OHSGTl(10Q),OMSOT2{lCO),
     1                ORMDTH!1QO),DLBOTH(100),XMDF(1QO)
      COVHCN/TPROPI/  P,TBM<100),UnK<100)tH8M100),VeMflOO),CPBM(100),
     1                AMWBM(IOO),R3M(100),PHE(1CO),APR(100),XMFBM{100),
     ?                XMPAM(IOO)
      COMMON  /AIRP/  XMAI,XMFJ,XMEGR,XMRD,XKAO,XMARC,XMAEGRtXMFRO,XMFEGR,
     1               AMWA,AFRA,FARA,PHEA
      COHMCM/FUELP/W,XX,YFL,ZFL»Y?TCAtZSTOfl »API , FCEN , FAROS , A MWF , SL'RFT
     1             ,XMUF,C£N»OXST,HCCM
      COMMON/DRCPC/  HUTIM,OTPHY,XTLY02,CPBAR,RHOO,TCRTTF,XL298,
     1     '          XM9M(100),CVeOTH(1001,CLODTH(10G).XMFLIC100),
     ?               01(100,3),OMFLI(10C»3) ,OHLOT (10Q,3) ,XNOT(100,3),
     ?>               XKK(1QO,3)
      COMMON  /SOOTP/  SOEN,OSOOT, ASCTP, ASOT/5 t XMSCCT (1 001
      DO 1 1=1,11
      CMSDT1(T)=  0.0
      nHSOT2(I>-  0.0
      IF (ISOCT.EQ.G)  GO TO 1
      T8=  TOM(T)
      YC28  = X02(I1*32./A-MWBM(T)
      AFO\/AL= XHPAM(I)/(XMFB'C(I1+X«FLI(I1)
      PHEB= 1.0/CAFOVAL'FAROS)
C SOOT FORMATION  PATE  •
      DMSnTl(I)=  ASGTfl* (V8M(I)'V8M(I)/V)*(TAV/T8)*(PHEB**3) »P*
     1            EXP(-200nO./T8)
C ?COT OXIDIZATION RATE
      CMSOT2(I)=  6.51£it*(XMSOOT (I) *YG23*P   ) / (SDEN*QSOOT*SGRT (T8 ) ) *
     1            EXP(-19650./TS>
    1 CONTINUE
      RETURN
                                    82

-------
"-OFCK spfv~;Y
      SUBROUTINE SPECY(PX,TX,PHEX,AMMC,XH2,XH2C,XCC,XC02,XN2»XNO*XCH
     1   , XH,XC,XN,XG2,XCH<4)
C THIS  PC'JTINF CALCULATES  THE  EQUILIBRIUM  SPECIES DISTRIBUTION  OF  A GIVEN
0 STATE  T..E.  ,XO?TE <7tl ?.,!!), XCH«4Tn(7, 13, 11)
      COMMCN/XXCON/ IDP , ICT , IDPHE,
     1               IDPl,IOTl,IOPHl,nELPtD€LT,DELFHE,OPl,nTt ,DPHE1,
     2               OP2,OT2,CPHE2
      T=TX
      DO  I  IDP=2,NPT3
      IF  (P.GF.FTB(IOP-l)  .ANH.  P . LE .PTE ( If.P M  GG TC 2
    1 CONTIMUT
      WPITE(6,1GG1 P
  100 FORMATC e"RC??....  P  OUT  CF RANGE  *,  1PE10.2)
      IF(P.LT.PT?(1))GOTC7
      c-  PTP(NPTB)
      IOP=  MPT"
      GO  TO 2
    7 CONTlN'jr
      c =  P T 5 ( 1 )
      IDP=  2
    ? CONTTNUF
      CO  3  ICT=2,NTT3
      IF  (T .GE.TTR (IOT-1 )  .AND.  T . LE . TTR ( IDT ) )  GC TC U
      WPITf(^,101)  T
  1C1 FCP.VflTC ERSOR .....  T  OUT  OF i?ANGE  *  ,!PtiC.3)
      IF  (T.LT.  TTE(l)) GO  TO  ?
      T=  TTP(N!TTR)
      T?T=  MTTP
      GO  TO  k
    8 CONTINUE
      T=  TTC ( 1)
      IDT=  ?
    it CONTINUE
      OC  5  IOPHE= 2, NPHTH
      IF  (PHE.GE.PH£TR(IOPHE-1)  .ANC. PHE . L E . PHETE { IDPHE )) GO  TO  P
  1S2 F^^MATC  FRROE .....  PHE  OUT OF RANGE *,1PE1C.3)
      IF  (PHE.LT.PHETB(l) )  GO  TG  9
      r>HE= . FHFTfMNPHTB)
      ir-PHE=- NPHTB
      GC  TO  6
    9 CONTINUE
      PHE=PH£T3(1)
      Tr)°HE=  2
    ^ CONTINUE
      ID°1=  IDP-1
      ir>Tl=  IDT-1
      TOPHI-  TOPHE-1
      OFLP=  PTO(ICP)- PTB(IDPl)
      OFLT=  TT-T(IQT)- TTR(IOTl)

                                      83

-------
DELPHE= PHET9CIOPHE) - PHETD(IDPHl)
DP1=  
-------
"DECK SPECY7
      SUBROUTINE  SFECYZ
0 THIS FCUTINF  CALCULATES THE FCUTLJBP. IUM SPECIES DISTRIBUTION OF A GIVEN
C STATE  I.E.  (P,T,PHE)  FOR A SPECIFIC  FUEL FRCf TRIFLE  TABLE  INTERPCLATION
      COMMCK/INTFGR/ I MO 1, ING2 , ISOCT , I WF TBT , NF'PT , 1C T A IL , MTER , NAXIL ,
     1                MSHEL,NSZG,NITST,IEUG,II,1II
      OPKMCNY^PECYI/  XH2<1CQ),XH?C(1QC),XCC(1CO>,XCC2(10Q),XN2(10C»,
     1                 XNC(IOO) ,XOH{100) ,XH<100) ,XC(100) ,XN(100),X02 (100)
     ?                 , XCHM1CO) .XNON'r C( 100)
      COMMON/PR ATE I/ DNOCTl(10G),ONnOT2(lQO),ONSQTl(iaO),DKSOT2<100),
     1                QRMOTH(100),aiRDTHI10fl»tXrl.LT.PT° (1) )  GO TC 7
      Pl= PTO(NFTB)

      GO TO 2
    7 CONTINUE
      P 1 = P T R ( 1)
      10?= 2
    2 CONTINUE
      DC 10 1=1,II
      Tl= TPM(I)
      PHE1-- PHF«T)

      IF (Tl ,GE.TT9(IOT-1) .AMD. T 1 .LE .TTB (1C T ) ) GG TO  <»
    T CCNTINUF
      KnITE(6,101)  Tl
  101 FOPMAT(*  F9RCR 	 T OUT OF  RANGE * ,1FF1G.3)
      IF (Tl.LT.  TTP(1)) GO TO  8
      Tl= TTB(NTTB)
      JOT- NTTT
      GO TO k
    ° CONTINUE
      Tl= TTO(1)
    U rONTlNUF
      00 5  IOPHF-  2,  NPHTB
      IF (PH^l.GE.PHETR(IDPHE-1)  .AND.  PKE1.Lt.PHETE(TOPHF))  GC  TO

      WPITE(6,102)  FHE1
    '2 FGRMATC  F.^RGk  	 PHF CUT^CF  RANGE  *,1PF1C.3)
      IF (PHEl.LT.PHETHd) ) GO TO  9
      P H EI=  PHETB(NPHTB)


                                     85

-------
   GO TO 6
   CONTINUE'
   PHE1= PHETim
   IDPHE= 2
   CONTINUF
   IGP1 = TDP-1
   IOT1= IDT-1
   QFLP = PTRflOF)- PTB(IDPl)
   QELT= TTB(IOT)- TTB(TDTl)
   H€LPHE= PHETBdnPHE)-  PHET8 ( IDPH1 )
   DP1= (Pl-PTB(IDPl) )/OELP
   HT1= [Tl-TTB (IOT1) )/OELT
   CPHE1= (PHEl-PHETB(TDPHl) ) /DELPHE
   DP?.- (PTB(IDP>-P1)/DFLF
   DT2= (TTB (IDT) -TD/DELT
   DPHE2= (PHETB(IDPHE)-  PHED/CELPHE
   CfiLL TRIPIT(XH2TB,XH2(I})
   CALL TRIPIT(XH20T3,XH20(T))
   CALL TRIPIT(XCOTB,XCO(I) )
   CflLL TP.IPIT(XC02T3,XC02 (I) )
   CflLL TRIPIT(XN2TB,XN2(T) )
   CALL TRIPIT(XNOTB,XNO(II )
   CALL TRTPTT(XGHTB,XOH(I) )
   CALL TRTPTTCXHT^XHfll )
   CALL TRIPTT(XOTB,XO(T) )
   CALL TRIPTT(XNT3,XN(I»
   CALL TRIPTT(XG2TB,X02(T) )
   CALL TRIPIT(XCH 10.*XNO»  16.»XCHi»CI)
10 CONTINUF
   RETURN
   END
                                 86

-------
* r P c: K  s F ' A Y
       SUBROUTINE SPRAY(RHOR,OMEGA,CELPtSEFjtCDCHG)
: THIS  PCUTTNF SIMULATES THE  STEADY STATE FUEL JET  SPRAY ANC DEFINES  THE
C TRAJECTORIES Cc FUEL ELEMENTS  AND A/F  VIA SIMILARITY ASSUMPTION
       DIMENSION gneceo)
       CCMMCN/INTEGR/ iNOli INCZ , ISCOT, I KFT8T ,NPRT., IDTAIL, NTE-fi, NAXIL,
     1                NSHEL.NSZG,NITST,I5UG,II,III
       COMMCf-./SCA/ THEMAX,THFIJ,TKEIG,OINJ,TI-ENE,TH£VOfTHEVC,OTINJ,
     1             CTH HIM, DIMMED ,niHw>VX,rTHETA,DT
       CCf^lON/ENCEO/ OE,RFW,RL,VCtSC,S,USI.CR,RPM,Tfc-,CNGZZ,NNOZZtCnCWL,
     1               VFJO
       COMMCN/FUF.LF/''I,XX,YFL,ZFL,YSTOA,ZSTOA,API,FDEN,FAPOS,AMWF,SUPFT
     1             ,XMUF,CEN,OXST,HCOM
                    PTIM«20,««I »ETAI(20,5) ,DY3(2C,i*) ,  CDS Z ( 3 ) , SZB AR ( 3 ) ,
                     XJ,ATO,nTR,XK,SIG,P,RU,CTDTH,DTHOT,DTRCT,PI
                                 T,Xf
-------
    X= XI+(I-1)*CX
    TF(X.GT.XWALL)   GO TO 8
FREE JET REGION
    8= BI + CJFMX-XT)
    P.B= XJF/(RHCK*8*B*XIF3)
    CC= -RB*VFJO
    XXX= BB*?B-'+.0*CC
    VCL= 0.5M-88 + SORT (XXX))
    IF (VCL.GT.  VFJO) VCL= VFJC
    RHOFCL=  XJF/(VCL* B*8*XIF3)
    AFCL= RHOR/RHOFCL
    GO TO k
  8 CONTINUE
    IF ( (X-OX>.GT.XWflLL) GO TO 12
WALL TRANSIENT  ZCNF
    8W= 8
    X0= X-OX
    RHQCLP=  XI2*XJF/(BW*BW*VCL*XIF2*XI3)
    XXX- XI2*(RHOR*XIF6*-RHOFCL*XIF7) / ( XIF2* < RHOR *XI6*RHOCLP*XI7))
    VCLP= VCL*SCRT(XXX)
    90P= XIF2*BW*VCL/(XI2*VCLF)
    XJMP= VCLP*VCLP*8W*80P*(RHGR*XI't«-RHOCLP'll'XI5»
    IF (IBUG.EG.O)  GO TO 1«»
    WRITE (6,113)
    WPITE(6,112»  S,RHOFCL,VCL,XJK
    WRITF.(6t113)  90P,RHOCLP,VCLP,XJMP
 1U CONTINUE
    VCL= VCLP
     0= DCP
    RHOFCL=  RHOCLF
WALL REGION
 12 CCNTINUF
    RX= X-XO
    8= 9 + CWF'RX
    AA= (RX+RW) *B*RHOR*XI4
    P9= XI5/XI3*XJF
    CC--XJMP
    XXX= B8*8B-  <«.0*AA*CC
    VCL= -BB*SQPT(XXX)/(2.0»AA)
    RHOFCL=  XJF/(VCL*(RX+8W) *B*XI3)
    AFCL= RHOR/RHGFCL
    WPITE(6 ,10«t)  I,B,XP2,XNlt!,XN2U,XMM,USItVCL,RHCFCL,AFCL
  t+ CONTINUf
    ETAI(T,1)=  0.0
    ETA! (I,NSHEL+.1)=  1.0
    ETA=0,1
    00 ? J=1,NSHEL    .            :
    IF (X..GT.  XWALL)  GO  TG 7
FREE JET REGION
    IF (J.EQ.NSHFL)  GO TO 16
    Gn=(FLOATtJ)    )*DJF/ (2 . 0*PT«'I?HOFCL«1VCL*B*B )
    DO 5 ITFP=1,2'0
    ETA1= 0 .5* (ETA*ETA)
    ETA3=  0 ,6;F
-------
      FO  1.C-ETA2?
      OGQE=  (FC**3)*ETA
      ETA=  ETC-  G/OGOE
      IF(ETA.LT.Q.G) ETA=n.0001
      IF(ETA.GT.l.C) ETA = 0.9C'-39
    5 CONTINUE
      WP I TIE (6,1 03)  J,T,G,TC,ETA
      STOP
C A/P,  VELOCITY  DISTRIBUTIONS	  FREE JET REGION
    6 CONTINUE
      F.TAK I, j+l)=  ETA
   16 PC=  1 .0-(0.5METAI(T
      <:HOF(I,J)= RHOFCL*FC
         REfi=  PI*
           Z=  OJF/RHCF (T, J)/DflREfl
      AKT(I,J)=  (1 ,0/VS( I, J) )-l. 0
      CFT?I,J1=  9HCS/RHOF 'I, J)
      GO  TO  9
C WALL JET  REGION
       IE  (J.EO.MSHEL)  GO TO  17
       C0= FLCATrj)»DJF/(2.a*FI»(RX4BW)*e*VCL*RHCFCL»
       00  10  ITE0=1,20
       ET11=  ETA
       ETA2=(?.0/2.5»*(ETA.**2.5)

       ETA-S= (1.0/5.5)*(ETA**5.5)

       C K'<=  ABS(G/GC>
       TF  (CHK.LT.l.OF-5 ) GO  TO  11
       ETA32-  ETA** 1.5

       CGOE=  FGVJ113
       ETA=  ETA-  G/C-GOd
       IF(ETA.IT.0.0)  ETA=0.0001
       IF(ETA.GT.l.C)  ETA=0.gc9o
   10  CONTINUE
       WR!TE(*il33) J,I-,G,00,ET5

   11  CONTTNUF
C A/F, VELOCITY  HISTRIRUTTCNS	  HALL  JET REGICN
       FTAI
-------
     ?  C.CNTTNUE
       XS(I)   = X                     •
       BB8 (!)•=• 8
     1  CONTINUE   :. :'.; •-:; •  V •  '   ;   -,        •        .
C 'EFFECT OF  SWIRL ON  ENTRINNKENT    .
       USB-A« = 0;25*C80WL*CMEGA                          .
       ER-  1.0+ SEFJMUSBAP/VFJC)
       00 21  J=1,NSH£L
       DO 21  I=1,NAXIL
       AFT(I,J)= ER*AFT(I,J)
   21  CONTINUE
C DETAIL OUTPUT
       IF  (IDTAIL.EG.01  GO TO  2?
       WRITF(6,116)  (T*I=1,NSZG)
       HRITEC6,117J     (S2BARII)tI=l,NSZG)
       WRITE(6rll51     (  GOSZ(I)«I-1«NSZG)
       WRITE<6,98)
       WRITE(6,107)    fXS-tl  ),I=1,20>
       HRITEC6,1061    (BBB(I)  ,1=1,20)
       DO 20  J=1,NSHEL
       WRITE(6,98)
       WRITE<6t108)    (   YS (I,J),1=1,20)
       WFITE(6,11<*)    (  OYS{I,J),I=1,20)
       WRITE(6,109)  (RHOFtI,J),1=1,20)
       WRITE(6,119)  (AFT(I,J),1=1,20)
       WRITE(6,110)    (VStltJI,1=1,20)
       WPITE(6,111)      (PTIM(I,J),1=1,20)
   20  CONTINUE
   22  CONTINUE
   98  FORMAT(/)
  103  FORMATC/1X,» JET  SPRAY LOCUS  ITERATION  GOES NOT CONVERGE *,2I5,
     1  1P5E10.3)
  106  FORMATC1X," B *,20F6.2)
  107  FORMATdX,* X *,20F6.3)
  108  FORMATC1X,* Y *,20F6.^)
  109  FORMAT(lX,*RQF*,20F6.
-------
"OFCK TAP'7 IN
C  SPECIE
            TABLE  INPUT FPQM A  TAPE
      CGf MCN/SPTAB/ MPT3,NTTB,NFHTe,PTE-<7),TTQ<13),PHET8(ll>t
                     XH2TB( 7,1 •?,!!) , XH2CT8 < 7 , 1 3 , 1 1 ) , XCOTO<7, 13,11) ,
                     XCC2T3<7.1?,11 ),XN2T3(7,13,ll>tXNOTP.<7-,13,ll),
                     XOHTBC7, 13,11) ,XHTB(7,13, 11) ,XGTB(7,13,11) ,
                     XNTB(7,13,11),X02TB(7,13,11),XCH*»T9<7,13,11)
NPT? =
NTT 3 =
MFHTO
C SET ZERO
TO Bt»
PT3(I
00 11
HO 81
Q C" A O
^ JT A f^
7
13
= 11
1 = 1, 120«*3
)= 0.0
IPHT3=1, NPHTR
(8,121) PT3(IPT9) .PHF.TB
(8,122) (TTB (I) ,I=1,NTT
IF (PHFT? (
O c jr^
PFAQ
RFAD
5EAO
a -3 !~! 0K'T I
P F A T
' 'FAQ
(8,1
(8,1
(8,1
(8,1
M)r
(6,1
(8 ,1
TF(°HETP(
a Farj
RE AH
83 C C M T I
irr >\o
PFflO
PF 20
TF(PH
^EAD
81 CONTT
1 ? 1 E C R M A
1?2 FQSMfl
(8,1
(8 ,1
NUT.
(8,1
T°Hr9)
22) (X
22) (X
?2 ) (
,\.e.
H?T
M20
xco
.0
B (
TP
TB
22) (XC02T3

22) (
22) (
IPHT9)
2">\ (
22) (

22) (
(8,12?) (
(8 ,1
ETO(
(8,1
^:UF
T (IX
T (6X
22) (
IPHTfi)

XN2

TB
XMOTB
.LE
XOH
XH

XO
XM
X02
.LE
22) (XCH'»

,1P3E1
, 1P13E

0.3
1C.
.0
T8
TB

Tn
T3
TO
.0
T3

)
3)
. 05)
TPT3,
(IPTP
(TPTP
(IPTB

(IPTP
( IPTP
.05)
(IPTB
dprn

(TPTE
( TPT3
(IPTF
. G5)
(IPTP



r
\3
I
,
,
,

,
,
G
,
,

,
,
,
G
,1
I,
I,
I,

I,
I,
0
I ,
I,

I,
I,
I,
GO
,



I,



(IPHTB
E)
TO 82
PHT9) ,
IPHTE)
IPHTB)
IPHTP)

IPHTB)
TPHTB)
TO 83
I0HT6)
IPHT8)

IPHTB)
IPHTB)-
IPHTB)
TO 81
IFHTE)



)

1 = 1,
,1=1
,1=1
,1=1

,1 = 1
,1=1

,1-1
,1=1

,r=i
,1=1
,1 = 1

,T=1





NTT
,NT
, NT
, NT

,NT
,NT

,NT
,NT

.NT
,NT
,NT

,NT





B)
T.?)
TB)
TB )

TH1
TE)

TB)
TE5)

TP)
TB)
T5)

TO)



PFTIJPN
F vn











                                    91

-------
      TPROP
      SUBROUTINE TPPOP ( TX , PX ,V , CV, CP,U *H  ,AMW,GAP   ,R,PH£X)
              THIS ROUTINE CALCULATES ---- -----
             EQUILIBRIUM THERMODYNAMICS OF CCMOUSTICK  PRODUCTS
             U(P,.T,FHE) AND P(P,T,PHE)  AND THEIS DERIVATIVES
      COMMON/FUELP/*,XX,YFL,ZFL,YSTCA,ZSTOA,API,FCEN,FAROS,AMWFfSURFT
     1             ,XMUF»CEN,OXST,HCOM
      CCKMCN/RANGS/ TRANG1 , TRANG2 , PR ANG1 ,PF ANG2 , PHESG1 , PHERG2
      COMMON /PCRVT/ PUPP,PUPT,PRPF,PUPFtPRFT,PPPP
      COMMON /HFCOE/ AAK6I ,BB1 (6) ,D01<11) ,RR1(8) ,  A A2 ( 6) ,BE2 (6> , 002 (11 )
     1               ,RR2(8)
      PI- PX
      Tl= TX
      PHE= PHEX
      IF  (PX.GT. PRANG?) Pl=  P9ANG?
      IF  (TX.f,T.TRflNG2) Tl=  TRANG2
      IF  (PKEX.GT.PHERG2) PH£=  PHERG2
      TT=1000./T1
      T2= T1*T1
      T3= T2*T1
      Tt»= T3*T1
      T5= T<4*T1
      PHE? = PHE'PHF
      PH£3=  PHE*PHE2
      ALCGP= ALOGIF1)
      IF  (PHE.GT.1.0)  GO TO  2
    1 CONTINUE
C FUEL LEAN
      A=  AAKD+AA1 (2)*T1*AA1 (?)*T2  *AA1C*)'T3  fAAl(5)*Tt»  «-AAl(fi)*T5
      3-  B91 ( 1) *f5BK2)*Tl + 3ei(3)*T2  *B81C»)*T3  +BRK5)*Tt»  +581(6)*T5
      01=  D01
     1RP,1(8)*ALOGP
      IF  (XXX. LT. -200.) XXX=-20D.
      C=  FXF(XXX)
      ^X= RRKD+ SR1(2)*PHE *  C
      HX-UX+RX»T1
      AP= AAK2) +2.0*AA1(3)*T1*  3. 0* A A 1 U) *T2+  A . 0*A A 1 ( 5) *T3+ 5.0*AA1(6)
     1    *T<»
      BP= BB1CZI*.-2.0»BB1(3I:*T1*  3. C* B81 ( «») * T2+  <» . G* 681 ( 5) *T3 +5. 0 *G8 1 (6)
      02P-  -(DOl(V)* 001 (5)*PHE-»-  DD1 (6)*PHE3)*100C./T2
      D3P=  -(001(10)+ 001(11) *PHE) *1000./T2* ALOGF
      OP =  GMn2P + D3P)
      CVX=  flP-fJP'PHE + OP
      ! UNIT  TO   PER  MASS OF
      •XBASE-  1. 0+EAR.OS*PHE
      Fl=  1.0/X9ASE
      U- UX*Fl
      H= HX'Fl
      AMH=  1.987/P

                                     92,-

-------
       \l •=  U 1 . b "' P "• T 1 / p 1
       CV=CVX*F1
       CP=CPX*F1
       GAM-  CP/CV
C  PARTIAL  DERIVATIVES  OF  U AND R fc.R.T.  P,T, AND FhE
       D1FF  =  001(2) +3.0*001 <3)*PHF2
       D2PF  r  (GDI (5) f3.0*001 (6)*°HF.2) *TI
       C.^P^  =( (DDK1?) +3.0*001 (?) *PHE2) 4-  HOI ( 1 1 ) *T I ) * ALCGP
       PF1PF= -Fl*F 1*
       o|ipr>=     F1*C* (D30/°l)
       PUPT  = CV
       FUPF=  Fl*(-9+GPF)+  PF1PF"UX
       prpo-  F1*C*CP=  e°2(2) f2. 0*882(3) -T1+ 3.. 0*R(?2 < «» I * T 2+ *PHE'} *TI
      HiPF  =( (0.02(8) *-3. 0*002(9) *PH£?) +  D02 ( 1 1 ) * T I) * 3LCGF

                                      93

-------
OFF- D* (01PF+02PF*-D,3PF)
PF1PF- -Fl*Ft*FAROS
PUPP=     F1*0»(030/P1)
FUPT = CV
PUPF= F1*'«-G + DPF) + PFIPF'UX
PRPP= F
PRPT= -
FRXPF= RR?(2)+  C*(RP2<3)+ RR2(t»J»TI+  RR2 ( 5) *ALCGP
PRPF= Fl^PRXFF* PF1PF*RX
RETURN
END
                             94

-------
*DEC.K  TPROP?
       SUBROUTINE TPPOPZ
c * s ***,><• ** *   THIS ROUTINE  CALCULATES --------
C**********  EQUILIBRIUM  THERMODYNAMICS OF CCM«?l;STIGN PRODUCTS
C**********  U(P,T,FHE) AND  P(P,T,PKt) AND THEIR  DERIVATIVES
       COMMON/ INT FGF./ INC1,TNC2,ISOOT, I WETS T ,NFFT,TCTAIL,NTER,NAXIL,
     1                NSHEL,NSZG,NITST,ISUG,II,III
       CC*MC>/TPPOFIX P,TeM(lQO),U'3M(lOO),HeMlC01,V3H(lCO>,CPBM(iaO),
     1                AMW8M(100),R1fM100),PHE(100),AFR(100),XMFBM(lCO),
     2                XMPAM(IOO)
       CnMMON/FUpLP/W>XX,YFL,ZFL»YSTGA,ZSTOA,AFI,FOEN,FAROS,Ar'WF,SUP.FT
     1             ,XMiJF,CEN,OXST,HCOM
       COKMC NX PANGS/ TRANGl,TSANG2,FRANGl,PRflNG2,PHERGl,PHERG2
       COMMON/ POP VIZ/ PUPPQM(100),FUPTBM(100)fPRPFBM(100)fPUPFeM(100),
     1                P«?PTf3N (100) tPPFPBK (ICC)
       COMMCK  /HCCOE/ AAKo) ,931 (6) »D01 (11) ,C,P1<8),  A A2 ( 6) »6P2 < 6) , DD2 ( 11 )
     1               ,RR2(3)
       Pl=  P
       IF  (PI. GT .PRONG?)  Pl= PRANG?
       CO  10  1 = 1, IT
      Tl=  THM(I)
       cppt-  PHE(I)
       TP  tTl .GT.TPAMG2)  Tl= TPANG2
       IF  (PHEi .GT.FHEPGZ)  PHE1=  PHERG2
       TI=inrO./Tl
       T2=  T1*T1
       T7=  T2*T1
       JU-  T3*T1
       T5=  TU*T1
       PHE2  =  PH£l*cHc;i
       PHE3=  PHC1*PHE2
       ALOGD=  aLOG(Fl-)
       IF  (OHE1. .C-T.l.G) GO  TO 2
    1  CONTINUE
C PfEL LC.^.N
       0-  aAl(i)+AAH2)*Tl«-Afli(3)»T2 »-Afil{it»»T3  4AAl(5)*Tt» +AA1(6)*T5
       2=  331 (1) *«31 (2).*T1*B81(3) »T2 *r361(£4)»T3  +C51(5)*TI» +E31(5)'T5
       01=   DDK1) 4-CD1 (2)*PHE1*  001(3)*PHE3
       02=  (P01 C+) *f;01 (5)*PHF1+  OH1 (6) *PHE?) *TI
       D30=((Dr>H7)+Cni(8)*PHEl*  DO 1(9) *F HE 3 ) *  (001 (10) +00 1(11) *PHE1) *TI )
       03=  03C*ALOGF
       XXX=01+D2*03
       IF, (XXX.LT.-2Dn.}  XXX=-200.
       n=  EXP{XXX)
       UX=  A-  ?*PHEU H
       XXX=  (RP1(3)+ ^R1C«)*TI*  RR1 (5)*ALOGF)*PHE1*  RR1(6)> RR1(7)*TH-
     1RP1 (8 )'ALOGP
       IP  (XXX, LT. -200. V  XXX = -200.
       C--  -IXP(XXX)
       RX=  «R1(1)» ^P1(2)*DHF1+  C
       HX=UX+PX*TI
       AP=  AA1(?) *2.Q*AA1 (3) *T1*  3 . C* Afl 1 ( U ) * T2+  U. C * A A 1 ( 5) *T3 +  5.0*AA1(6)
     1     "' T k
       BP=  =P1 (2) *-2.0*aP1 (3) *T1*  3.0r9Rl (£») *T2*  ^ . 0 '09 1 ( 5 ) ?T 3  *-5.Q*E81(6)
     1     * T U
       OZ°=  -
-------
CONVF3T  UNIT TO  PF.R  MASS  OF  MIXTURE
       XHASE= 1.0 + FA
       Fi=  l.C/XBASE
       UBM(I)= UX*F1
       HBM-(!)- HX*F1
       PBM(T) = RX'Fl
       VX=  <+1
       CV=C\/X*F1
       CPBM(I)= CPX*F1
       GAM=  CPP.M(I)/CV
   PARTIAL  DERIVATIVES OF U  AND  R  K.3.T. P,T,  AND  PHE
       01PF  =  001 (2)+3. 0*001(3) »PKE2
       D2PC  =  (D01(5)«-3. 0*001 (6)*PHE2)*TI
       D3PF  =( (001(8)+3. 0*001(9) *PHE2) + C01 ( 1 1 ) *TI) *ALOGP
       OFF-  C*(D.1PF+C2PF + 03PF)
       PF1PF=  -F1*F1*FAROS
       PUPP8MfT)= F1*0*(030/P1)
       PUPTBM(I)  = CV
              I)- Fi*(-B*OPF)+  FF1PF*UX
              I)= Fl*C*C?Rl(5)*PHEl*RRl(8n/Pl
       FPPTHIM T')= -F1*C* (R=>1 (^)*'PH£1*RR1(7J )*10CO./T2
       RPXPF-=  PPK2)* C*(RP1(3)+  Rr?l(«*)*TH- RR1 ( 5) *ALOGP.)
       PRPFB^(I)= F1*PRXPF+  PFIPF'RX
       GO TO 10
    2  .^CNTIMIF
C FUEL  RICH
       A= AA2C1) *AA2(2)*T1>AA2(3)*T2 <-AA2(*»)*T3  *AA2(5)*Ttt *AA2f6)*T5
       8= c'32(l)+8e2(2)*TH-Be2(3)*T2 +BE2C*)*T3  +Be2(5)*Tt» +eB2(6)*T5
     .01= '  002(1-1 +OC2(2)*PHE1*  002(3) *'PHE3
       02=  (OD2(«+) »-CC2(5)*PHEl»-  002 ( 6) *PHE3 ) »TI
       030=( (DT32f7) +002 ( 8 > *PHE1+  002 <9 ) *PHE3 ) +  (002 (1 0) *-DD2 < 111 *PHE1 )»TI)
       03= 030'Al.OnP
       XXX=D1+D2+03
       IF (XXX. LT. -200.1 XXX=-?00..
       0= EXP(XXX)
       UX= A-  5*PHE1+ 0
       XXX=  (RP2(3)+ RR2( t»)*TI*  RR2 ( 51 * ALOGP ) -»PHE1 +  RR2(6)+
       IF  (XXX. LT. -200.) XXX = -200.
       C=  €XP(XXX)
       RX= RR2(1)+ KR2(2)*PHEH-  C
       HX='jy*RV*Tl
       AP= AA2(2) *2.0*AA2(3I*T1*  3. 0* AA2 (k\ *T2* t». 0» fl A2 ( <5) *T 3+ 5.0*AA2(6>
     1     *T«»
       BP= 092(21 *2.0*B82(3) *T1+  3. 0* 8B2 C» ) »T2+ k + 0 *SB2 ( 5) *T3 +5.0*582(6)
      02P=  -(D02C»)> 002(5)"«PHE1+  002 (6 ) *PHE3 ) * 10 C 0 ,/T2
      03P=  -(002(10)+ 002(11 )*PHE1)*1000./T2* ALCGP
      HP =  0* (02P+03P)
      CVX=  flP-np*PHEl+OP
      CPX-CVX + R.X
CONVERT UNIT  TO  PER  MASS OF  MTXTUPE
      xeaSE=  l.G+FAP,OS*PHEl
      Fl= 1.0/XBASE
      L'PV|(I)=  UX*F1
      HPM(I)=  HX'Fl
             =  PX'Fl
             I)= 1.987/RBW(I1
      VX.= <*l.e*R3M(I)*Tl/Pl

                                      96

-------
   CV-CVX*F1
   CP8M(I)= CPX'Fl
   GAM- CPnM(I)/CV
PARTIAL GEPIVATIVES  OF  U MD R W.R.T. P,T,  AND  PHE
   D1PF = P02<2) +3 .G*C02(3) *PH£2
   02PF = (OD2(5) +T. n*DD2(6) *PHE?) * TI
   D3PC •=( (DD2<8) 4-3.0*002 (9) «PHE?) + C02 ( 1 1 ) 5 T I) *flLOGP
   OPPr r* (D1PF+C2PF*03PF)
   ppiop- -Fl*Fl*FflROS
          
-------
•CECK TFIPIT
      SUBROUTINE  TRIPIT(G,QI)
C  TRIPLE INTERPOLATION- OF A TABLE FUNCTION  Ql* Q(   IDF1,IDT ,IOPH1)*DP?
      CJKt =  Q(   ICPtinil,ICPHE)«OP1+ G(   ICP1,IDT1,IOPHE)*DP2
      QJK  =  Q(   IDP,IDT1, IDPH1)*DP1+ Q(   ICP1»IDT1,IDPH1)»CP2
      G2= GJ1K1*DT1*  QJK1«'DT2
      Cl= CJIK'QTI*  QJK*OT2
      01    =  G2*DPH£1* Q1»OPHE2
      RETURN
      END
'DECK VGLM
      SUBROUTINE  VOLM(THETAI,DSDTH,DVOTH,V)
        THIS ROUTINE  CALCULATES THE TOTAL VOLUME  AT  CURRENT CA
      COMMON/ENGEO/ OE, RFW »RL , VC,SC , S , US I , CF, RPP, TW , ONOZZ t NNOZ2, OBOWL,
     1              VFJO
      CCMMON/CONVFX XJ, A TO ,DT9 , XK , SIG , R , RU , DTOTH ,CThDT , OTRGT ,PI
      XX2= THETAI*OTR
      COST= COS (XX2)
      RLR= RFW/RL
      XXX= 1. 0-lRLR*SINT)
      XXX= SQRT(XXX)
      S- SFW*(1.0-COST  +(1.0-XXX>/RLR)
      DSDTH= 9FW *SINT  * (1 . 0+CCST*RLR/ XXX )   *DTR
      nVTTH= 0.7853951635*OE*DE*03DTH
      V= VC+ 0.7«53981635*DE*DE*S
      RETURN                      —-•
      FNO
                                   98

-------
    Si 1?^ OUT I MF  WET3T(P,T8,AMWA,ANWF,A,e,C,TWtXL>
    E^TTMITE  STABLE WET-BULB  TEMPERATURE  (N-HEPTANE)
    COMMON' /PRO PC/ HUTIM,DTPHY,XTLYC2,CPEAC,RHOD,TCRITF,XL298,
   1               XM6M(100),CVEnTH
-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
1. REPORT NO.
   EPA-460/3-76-008-b
                                                           3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
  Study on Oxides of  Nitrogen And Carbon Formation
  In Diesel Engines - Computer Program User's  Manual
                                   5. REPORT DATE , __-
                                    Issued May 1976
                                   6. PERFORMING ORGANIZATION CODE
7. AUTHORISE
                                                           8. PERFORMING ORGANIZATION REPORT NO.
  C. J. Kau and T. J.  Tyson
9. PERFORMING ORG \NIZATION NAME AND ADDRESS
                                                           10. PROGRAM ELEMENT NO.
  Ultrasystems, Inc.
  2400 Michel son Drive
  Irvine, California  92715
                                    11. CONTRACT/GRANT NO.
                                                            68-01-0436
 12. SPONSORING AGENCY NAME AND ADDRESS
  U.S. Environmental  Protection Agency
  Office of Air and Waste Management
  Office of Mobile Source Air Pollution Control
  Ann Arbor, Michigan 48105	•   	
                                    13..TYPE QF REPORT AND PEAIQO COVERED,,
                                    Final Report June vj-June  v6
                                    14. SPONSORING AGENCY CODE
 19. SUPPLEMENTARY NOTES
  Co-sponsor:  Coordinating Research Council,  30 Rockfeller Plaza,  New York,
  New York, 10020	    	
 16. ABSTRACT
  A mathematical model  describing heat release  and pollutant formation  in direct injec-
  tion diesel engines  has been developed and  tested.  The model includes several empi-
  rical constants which can be tuned to fit the requirements of a  particular engine.
  Sensitivity studies  indicate that the model  is most responsive to  those constants
  which control fuel/air mixing.  Numerical experiments strongly suggest that diffusion
  flames modelled by spherical droplet flames  are unsuitable for this  type of system.
  The model has been tested against results obtained with a single cylinder diesel
  engine.  Reasonable  predictions of the influence of engine design  and operation para-
  meters on NO  emissions were obtained.  However, predictions of  smoke emissions were
  not satisfactory.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                      b.lOENTIFIERS/OPEN ENDED TERMS
                          c.  COSATI Field/Croup
 Diffusion Flames
 Air Pollution
 Diesel Engines
 Combustion
 Emission
 Nitric Oxide  (NO)
 Nitrogen Oxides
Mathematical Modeling
Soot
Computer Program
Fuel Sprays
Internal Combustion
 Engine
Fuel Consumption
Mobile Sources
Exhaust Gas  Recircu.llatior
Divided Chamber Engine
21-07 (Recipro-
 cating Engines)
21-02 (Combus-
 tion)
      lIBUTION STATEMENT
     Release Unlimited
                                              19. SECURITY CLASS (ThisReport)
                                                 21. NO. OF PAGES

                                                       106
                      20. SECURITY CLASS (This page)
                                                                         22. PRICE
EPA Form 2220-1 (9-73)
                                            100'

-------