xvEPA
United States
Environmental Protection
Agency
Motor Vehicle Emission Lab
2565 Plymouth Rd.
Ann Arbor, Michigan 48105
EPA-460/3-79-006A
September 1979
Air
Effect Of Ambient
Temperature On Vehicle
Emissions And
Performance Factors
-------
EPA-460/3-79-006A
Effect of Ambient Temperature
on Vehicle Emissions
and Performance Factors
By
R. S. Spindt
R. E. Dizak
R. M. Stewart
W. A. P. Meyer
Gulf Research & Development Company
Cheswick, PA 15024
Contract No. 68-03-2530
EPA Project Officer: F. Peter Hutchins
Prepared For:
Environmental Protection Agency
Office of Air, Noise and Radiation
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Characterization and Applications Branch
Ann Arbor, Michigan 48105
September 1979
-------
This report is issued by the Environmental Protection Agency to disseminate technical
data of interest to a limited number of readers. Copies are available free of charge to
Federal employees, current contractors and grantees, and nonprofit organizations—in
limited quantities—from the Library, Motor Vehicle Emission Laboratory, Ann Arbor,
Michigan 48105, or, for a fee, from the National Technical Information Service, 5285
Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by Gulf Research
and Development Company, Cheswick, PA 15024, in fulfillment of Contract No.
68-03-2530. The contents of this report are reproduced herein as received from Gulf
Research and Development Company, Cheswick, PA 15024. The opinions, findings, and
conclusions expressed are those of the author and not necessarily those of the
Environmental Protection Agency. Mention of company or product names is not to be
considered as an endorsement by the Environmental Protection Agency.
-------
FOREWARD
Ambient temperatures have been reported to affect automotive emissions
and fuel economies since 1966. Federal automobile emission standards
and the measured fuel economies are currently based on results obtained
using the 1975 Federal Test Procedure and the Highway Fuel Economy Test.
Both tests must be conducted at ambient temperatures from 68°F (20°C) to
86°F (30°C). Since cars in service must start and run over a much
broader temperature range than this, the U.S. Environmental Protection
Agency wanted to know how well the various car age groups and emission
control technologies available today would perform at the more extreme
ambient temperatures using the above test procedures as well as other
specialized tests. It was also desired to know how the use of a car's
air conditioner would affect exhaust emissions and fuel economies.
This report presents the results of exhaust emissions (regulated
and unregulated) and fuel economies associated with fourteen selected
vehicles tested at ambient temperatures ranging from 0°F (-18°C) to
110°F (43°C) using the various test procedures.
iii
-------
SUMMARY
The effect of ambient temperature on exhaust gas emissions, fuel
economy, catalyst light-off time,* exhaust gas temperatures, and driveability
were studied using 14 automobiles at eight ambient temperatures which
ranged from 0°F (-18°C) to 110°F (43°C). The vehicles consisted of
groups of noncatalyst, 49 State standards, California standards, and
prototype cars. The studies were conducted using the 1975 Federal Test
Procedure, the Highway Fuel Economy Test, the Sulfate Emission Test, the
New York City Cycle, and the Federal Short Tests.
The current automobile emission standards and the measured fuel
economies are based on results from the 1975 Federal Test Procedure and
the Highway Fuel Economy Test. Both tests are normally performed at
temperatures from 68°F (20°C) to 86°F (30°C). The other tests used in
this program were specialized tests and their test temperature limits
have not been specified. The Sulfate Emission Test was used to measure
the sulfate and the particulates being emitted by the various catalyst
systems. The New York City Cycle, which simulates selected New York
City driving conditions, was used in lieu of the Federal Short Tests for
some of the cars. Some parts of the Federal Short Tests have been
considered for emission measurements in inspection stations. In this
program, a garage type instrument (Stewart Warner) was compared to a
scientific type instrument (Beckman) using the steady state conditions
of the Federal Short Tests. The two instruments did not agree on the
amount of hydrocarbons in the exhaust gas but they did agree on the
amount of CO present.
In addition to the regulated exhaust gas emissions (HC, CO and
NOX), unregulated emissions (aldehydes, hydrogen sulfide, sulfate,
particulates and individual hydrocarbons by gas chromatography) were
also measured.
The results from this program showed that hydrocarbons, carbon
monoxide and nitrogen oxides generally increased as the ambient temperature
decreased from the normal ambient temperature limits specified for the
Federal Test Procedure. The hydrocarbons and the carbon monoxide emissions
* Catalyst light-off time is defined in this report as the time into
the Federal Test Procedure at which the temperature of the exhaust
gases leaving the catalyst first exceeded the temperature of the
exhaust gases entering the catalyst.
-------
were more responsive to ambient temperatures than the nitrogen oxide
emissions were. The hydrocarbon and carbon monoxide variations observed
at the lower temperatures using the cold transient phase of the Federal
Test Procedure appeared to be a function of the emission control technology
used in the vehicle. At temperatures above the normal ambient temperature,
the results varied with the vehicle with some vehicles showing higher
emissions.
The use of the vehicle's air conditioner usually increased the
hydrocarbon, carbon monoxide, and nitrogen oxide emissions as well as
the fuel consumption.
In a very few cases, hydrogen sulfide was detected in the exhaust
gases using the Federal Test Procedure. The highest concentration
detected was 18 mg/km and this occurred at 0°F (-18°C).
The aldehydes detected in the Federal Test Procedure composite
sample showed no consistent trend with test temperature. Two of the
noncatalyst cars produced the highest concentrations of aldehydes while
the third noncatalyst car gave results similar to several of the catalyst
equipped cars. Several of the catalyst equipped cars gave aldehyde
emissions that were less than half of those emitted by the noncatalyst
cars.
The sulfate produced using the Sulfate Emission Test was always
very low. The noncatalyst cars gave much lower concentrations of sulfate
than the catalyst cars and only the three highest emitters gave sulfate
emissions greater than 1 mg/km. There was no relationship between
sulfate emissions and the ambient temperature.
The particulates measured during the Sulfate Emission Tests produced
a variety of results. The noncatalyst cars gave particulate emissions
that varied from 6 to 32 mg/km while those of the catalyst cars ranged
from 3 to 36 mg/km. Some cars gave maximum particulates at 0°F (-18°C)
while others produced maximum particulates at 110°F (43°C) or intermediate
temperatures.
Individual hydrocarbons and hydrocarbon groups found in the exhaust
gases obtained using the Federal Test Procedure were analyzed by a gas
chromatographic method. The concentrations of about seventy-five specific
hydrocarbons were determined for each phase of the Federal Test Procedure
at all eight ambient test temperatures. These were also grouped in
terms of methane, saturates, acetylene, olefins, aromatics and unknowns.
The results were quite varied. For the cold transient phase of the
Federal Test Procedure, the methane concentrations varied from 2.6 to
12.9% of the hydrocarbons for the noncatalyst cars as compared with 7.4
to 36.3% for the catalyst equipped cars. For this test phase, the
saturates accounted for 30 to 50% of the hydrocarbons, the acetylenes 0-
15%, the olefins 6.6 to 34.7%, the aromatics 7.8 to 32.2%, and benzene
1.4 to 6.3%.
v
-------
The fuel economies obtained during the cold transient phase of the
Federal Test Procedure were very sensitive to ambient temperature. The
poorest economies occurred at 0°F (-18°C). The use of air conditioning
reduced fuel economy in nearly every case. For the stabilized and hot
transient phases, the fuel economies improved substantially as compared
to the cold transient phase.
The light-off times and light-off temperatures of the catalyst
obtained using the cold transient phase of the Federal Test Procedure
varied widely for the different catalyst systems. The light-off times
for all cars with catalyst at all test temperatures varied from 67 to
419 seconds and the light-off temperatures ranged from 400 to 1100°F
(204 to 593°C). There was no consistent relationship between light-off
time and ambient temperature. There were larger differences in exhaust
gas temperatures between catalyst systems than there were between test
procedures or ambient temperatures.
A considerable number of driveability problems occurred at 0 and
20°F (-18 and -7°C) using the cold transient phase of the Federal Test
Procedure. However, some driveability problems were encountered at
higher ambient temperatures and with other test cycles. Driveability
problems usually Increased most of the exhaust gas emissions.
This report was submitted in fulfillment of Contract 68-03-2530 by
Gulf Research and Development Company under the sponsorship of the U.S.
Environmental Protection Agency. This report covers the period April 1,
1977 to September 1, 1979, and experimental work was completed as of
July 1, 1979.
VI
-------
CONTENTS
Foreword iii
Summary iv
Figures viii
Tables ix
Abbreviations xii
1. Introduction 1
2. Conclusions 3
3. Equipment and Material 6
Chassis Dynamometer 6
Sampling Equipment . 10
Analytical Equipment 12
Test Vehicles 17
Fuels and Lubricants 17
4. Test Procedures 20
Facility Verification 20
Operational 27
Analytical 35
5. Results and Discussions 37
Emissions 38
Fuel Economy 136
Catalyst Temperatures 149
Driveability 159
6. References 160
Appendices
A. Test Results for All Vehicles EPA-460/3-79-006B
B. Plot of Exhaust Gas Catalyst Out Temperatures EPA-460/3-79-006B
C. Gas Chromatographic Results EPA-460/3-79-006C
VII
-------
FIGURES
Number Page
1 Chassis dynamometer test cell . . 6
2 Dynamometer loading system 8
3 Exhaust gas sampling system 10
4 Effect of ambient temperature on hydrocarbon emissions
for the three phases of the FTP 39
5 Effect of ambient temperature on hydrocarbon emissions
for different test cycles 41
6 Effect of ambient temperature on carbon monoxide
emissions for the three phases of the FTP 58
7 Effect of ambient temperature on carbon monoxide emissions
for the different test cycles 60
8 Effect of ambient temperature on uncorrected nitrogen
oxide emissions for the FTP 77
9 Effect of ambient temperature on uncorrected nitrogen
oxide emissions for the test cycles 79
10 Effect of ambient temperature on corrected nitrogen
oxide emissions for the FTP 81
11 Effect of ambient temperature on corrected nitrogen
oxide emissions for the test cycles 83
12 Effect of ambient temperature on aldehyde emissions
for the composite FTP 107
13 Effect of ambient temperature on sulfate emissions for
the sulfate emission test 111.
14 Effect of ambient temperature on particulate emissions
for the sulfate emission test 114
15 Effect of ambient temperature on fuel economies for the
three phases of the FTP 137
16 Effect of ambient temperature on fuel economies for
different test cycles 139
v 1.
-------
TABLES
Number Page
1. Analysis of Gas Cylinders 15
2. Description of Test Vehicles !8
3. Test Fuel Composition 19
4. Exhaust Pipe Temperature Studies-Field Data 21
5. Exhaust Pipe Temperature Studies-Dynamometer Data 22
6. Exhaust Emission Comparison 23
7. Dynamometer Coast-down Time Comparison 24
8. Compressed Gas Cylinder Exchange Data 25
9. Gulf and Industry Data on Scott Exchange Samples 26
10. Sulfate Analysis Comparison . 27
11. Federal Short Cycle Driving Schedule 29
12. Federal 3 Mode Operating Conditions 30
13. Temperature Sequence and Test Cycles for
Cars 1-7, and 10-14 . 31
14. Temperature Sequence and Test Cycles for Cars 8 and 9. ... 32
15. 49 State and California Emission Standards 37
16. FTP Cold Transient-Hydrocarbons 43
17. FTP Stabilized-Hydrocarbons 44
18. FTP Hot Transient-Hydrocarbons 45
19. FTP Composite-Hydrocarbons 46
20. Highway Fuel Economy Test-Hydrocarbons 48
21. Sulfate Emission Test-Hydrocarbons . .- 49
22. Federal Short Cycle-Hydrocarbons 50
23. New York City Cycle-Hydrocarbons 51
24. 80 km/h (50 mph) Loaded Steady State-Hydrocarbons 52
25. 48 km/h (30 mph) Loaded Steady State-Hydrocarbons 53
26. 2500 rpm No Load Steady State-Hydrocarbons 54
27. Idle, In Drive, Steady State-Hydrocarbons 55
28. Idle, In Neutral, Steady State-Hydrocarbons
(Before 2500 rpm) 56
29. Idle, In Neutral, Steady State-Hydrocarbons
(After 2500 rpm) 56
30. FTP Cold Transient-Carbon Monoxide 57
31. FTP Stabilized-Carbon Monoxide 62
32. FTP Hot Transient-Carbon Monoxide 64
33. FTP Composite-Carbon Monoxide 65
34. Highway Fuel Economy Test-Carbon Monoxide 66
35. Sulfate Emission Test-Carbon Monoxide 68
36. New York City Cycle-Carbon Monoxide 69
37. Federal Short Cycle-Carbon Monoxide 70
38. 80 km/h (50 mph), Loaded, Steady State-Carbon Monoxide ... 71
ix
-------
TABLES (Continued)
Number Page
39. 48 km/h (30 mph), Loaded, Steady State-Carbon Monoxide ... 72
40. 2500 rpm, No Load, Steady State-Carbon Monoxide .73
41. Idle, In Drive, Steady State-Carbon Monoxide 74
42. Idle, In Neutral, Steady State-Carbon Monoxide
(Before 2500 rpm) 75
43. Idle, In Neutral, Steady State-Carbon Monoxide
(After 2500 rpm) 75
44. FTP Cold Transient-Nitrogen Oxides 76
45. FTP Cold Transient-Average NOX and NOXC 85
46. FTP Stabilized-Nitrogen Oxides 86
47. FTP Stabilized-Average NOX and NOXC 87
48. FTP Hot Transient-Nitrogen Oxides 88
49. FTP Hot Transient-Average NOX and NOXC 89
50. FTP Composite-Nitrogen Oxides 90
51. FTP Composite-Average NOX and NOXC 91
52. Highway Fuel Economy Test-Nitrogen Oxides 92
53. Highway Fuel Economy Test-Average NOX and NOXC 9.3
54. Sulfate Emission Test-Nitrogen Oxides 94
55. Sulfate Emission Test-Average NOX and NOXC 95
56. New York City Cycle-Nitrogen Oxides 96
57. New York City Cycle-Average NOX and NOXC 97
58. Federal Short Cycle-Nitrogen Oxides 98
59. Federal Short Cycle-Average NOX and NOXC 99
60. 80 km/h (50 mph), Loaded, Steady State-Nitrogen Oxides ... 100
61. 48 km/h (30 mph), Loaded, Steady State-Nitrogen Oxides . . . 101
62. 2500 rpm, Unloaded, Steady State-Nitrogen Oxides 102
63. Idle, In Drive, Steady State-Nitrogen Oxides 103
64. Idle, In Neutral, Steady State-Nitrogen Oxides
(Before 2500 rpm) . 104
65. Idle, In Neutral, Steady State-Nitrogen Oxides
(After 2500 rpm) 105
66. FTP Composite-Aldehydes 106
67. FTP Composite-Hydrogen Sulfide 108
68. Sulfate Emission Test-Sulfate 110
69. Sulfate Emission Test-Particulates 113
70. Gas Chromatographic Analysis-Cold Transient FTP-Methane . . 115
71. Gas Chromatographic Analysis-Stabilized FTP-Methane .... 116
72. Gas Chromatographic Analysis-Hot Transient FTP-Methane ... 117
73. Gas Chromatographic Analysis-Cold Transient FTP-Saturates . 118
74. Gas Chromatographic Analysis-Stabilized FTP-Satu^ates . . . 119
75. Gas Chromatographic Analysis-Hot Transient FTP-Saturates . . 120
76. Gas Chromatographic Analysis-Cold Transient FTP-Acetylene. . 121
77. Gas Chromatographic Analysis-Stabilized FTP-Acetylene. . . . 122
78. Gas Chromatographic Analysis-Hot Transient FTP-Acetylene . . 123
79. Gas Chromatographic Analysis-Cold Transient FTP-Olefins . . 124
80. Gas Chromatographic Analysis-Stabilized FTP-Olefins .... 125
-------
TABLES (Continued)
Number
Page
81. Gas Chromatographic Analysis-Hot Transient FTP-Olefins . . . 126
82. Gas Chromatographic Analysis-Cold Transient FTP-Aromatics. . 127
83. Gas Chromatographic Analysis-Stabilized FTP-Aromatics ... 128
84. Gas Chromatographic Analysis-Hot Transient FTP-Aromatics . . 129
85. Gas Chromatographic Analysis-Cold Transient FTP-
Benzene, % 130
86. Gas Chromatographic Analysis-Stabilized FTP-Benzene, % ... 131
87. Gas Chromatographic Analysis-Hot Transient FTP-Benzene, %. . 132
88. Gas Chromatographic Analysis-Cold Transient FTP-
Benzene, mg/km 133
89. Gas Chromatographic Analysis-Stabilized FTP-
Benzene, mg/km 134
90. Gas Chromatographic Analysis-Hot Transient FTP-
Benzene, mg/km 135
91. FTP Cold Transient-Fuel Economy 136
92. FTP Stabilized-Fuel Economy 141
93. FTP Hot Transient-Fuel Economy 142
94. FTP Composite-Fuel Economy 143
95. Highway Fuel Economy Test-Fuel Economy 144
96. Sulfate Emission Test-Fuel Economy 146
97. New York City Cycle-Fuel Economy 147
98. Federal Short Cycle-Fuel Economy 148
99. Light Off Time-Seconds, Federal Test Procedure 149
100. Light Off Temperature-F, Federal Test Procedure 150
101. Maximum Catalyst Temperature-F, Federal Test Procedure . . . 151
102. Maximum Catalyst Temperature-F, Highway Fuel
Economy Test 152
103. Maximum Catalyst Temperature-F, Sulfate Emission Test . . . 153
104. Maximum Catalyst Temperature-F, New York City Cycle .... 154
105. Maximum Catalyst Temperature-F, Federal Short Cycle .... IS4
106. Minimum Catalyst Temperature-F, Federal Test Procedure . . . 155
107. Minimum Catalyst Temperature-F, Highway Fuel
Economy Test 156
108. Minimum Catalyst Temperature-F, Sulfate Emission Test . . . .157
109. Minimum Catalyst Temperature-F, New York City Cycle .... 158
110. Minimum Catalyst Temperature-F, Federal Short Cycle .... 158
111. Average Driveability Ratings 159
XI
-------
LIST OF ABBREVIATIONS AND SYMBOLS
ABBREVIATIONS
AC -- Air Conditioner
API -- American Petroleum Institute
B -- Beckman Exhaust Gas Analyzer (Scientific Type)
CAL — California
CALIF. — California
CO -- Carbon Monoxide
CVS -- Constant Volume Sampler
dm -- Decimeter Cubed or One Litre
EPA -- Environmental Protection Agency
FST — Federal Short Tests
FTP — Federal Test Procedure
FU-INJ — Fuel Injection
F3M — Federal 3 Mode
HC — Hydrocarbon
HFET -- Highway Fuel Economy Test
H2S — Hydrogen Sulfide
IR — Infrared
km/h -- Kilometers per hour
I/km -- Litres per kilometer
L/KM -- Litres per kilometer
MAX -- Maximum
MIN -- Minimum
mpg — Miles per gallon
MPG — Miles per gallon
mph — Miles per hour
NOX — Oxides of nitrogen
NYCC — New York City Cycle
PPM — Parts per million
rpm — Revolutions per minute
RVP -- Reid Vapor Pressure, Ibs.
SAE -- Society of Automotive Engineers
SE — Engine oil performance rating that meets current new
car warranty requirements
SET — Sulfate Emission Test
STW — Station Wagon
SW -- Stewart Warner Exhaust Gas Analyzer (garage type)
49S — 49 State
xn
-------
SECTION 1
INTRODUCTION
Ambient temperatures have been reported to affect automotive emissions
and fuel economies since 1966 (1-7)*. Federal automobile emission
standards and the measured fuel economies are currently based on results
obtained using the 1975 Federal Test Procedure (FTP) and the Highway
Fuel Economy Test (HFET). Both tests must be performed** at ambient
temperatures from 68°F (20°C) to 86°F (30°C) Since cars in service must
start from and operate over a much broader temperature range than this,
it was desired to identify how well the various car age groups and
emission control technologies available today would perform at the more
extreme ambient temperatures. It was also desired to identify how the
use of a car's air conditioner would affect exhaust emissions and fuel
economies.
In addition to the FTP and the HFET, other specialized tests were
run at selected ambient temperatures. These were the Sulfate Emission
Test (SET), the New York City Cycle (NYCC), and the Federal Short Tests
(FST). The SET was used to evaluate the amount of sulfate and particulates
being emitted by the various emission control systems. The NYCC, which
simulates selected New York City driving, was used in place of the FST
for a number of the cars. Some parts of the FST have been considered
for emission measurements at inspection stations. In this regard, one
garage type instrument (Stewart Warner) was compared to a scientific
type instrument (Beckman) using the steady state conditions of the FST.
In this program, fourteen cars were evaluated for emissions, fuel
economy, driveability, catalyst light-off time, and exhaust gas temperatures
at eight controlled ambient temperatures which varied from 0°F (-18°C)
to 110°F (43°C). The vehicles consisted of groups of noncatalyst, 49
State standards, California standards and prototype cars. Duplicate
tests at each temperature were conducted in nearly every case. In
addition to regulated emissions (HC, CO, and NOX), unregulated emissions
(aldehydes, hydrogen sulfide, particulates, sulfate and individual
hydrocarbons measured by means of gas chromatography) were also measured.
*Numbers in parentheses designate references at the end of the report.
** Throughout this program, performance of a test at a specified temperature
means that the vehicle was soaked at and operated over the test
cycles at the specified temperature.
-------
Catalyst light-off times and exhaust gas temperatures before and
after the catalyst were measured during the FTP. Maximum and minimum
exhaust gas temperatures out of the catalysts were measured during all
of the test cycles but only the FTP data were plotted.
Driveability problems encountered while running the FTP were recorded
nd an attempt was made to determine their influence on emissions.
-------
SECTION 2
CONCLUSIONS
Hydrocarbon (HC) and carbon monoxide (CO) emissions were generally
higher than normal at all ambient temperatures below about 60°F (16°C)
for the 1975 Federal Test Procedure (FTP).
The HC and CO emissions were much more responsive to changes in the
ambient temperature during the cold transient phase of the FTP than they
were during the other two phases. The HC and CO emission variations
observed at the lower ambient temperatures with the cold transient phase
appeared to be a function of the emission equipment technology used in
the vehicle.
Some very high HC and CO emissions occurred at 110°F (43°C) with
some emission control equipment while running the New York City Cycle.
The use of a vehicle's air conditioner usually increased the HC,
CO, and NOX emissions as well as the fuel consumption.
NOX emissions were affected by the ambient temperature but to a
lesser degree than the HC and CO emissions.
Tests conducted at the lower ambient temperatures were frequently
complicated by starting and driveability problems which in turn affected
the emission levels.
The aldehydes detected using the FTP showed no consistent trend
with ambient temperature. Two of the noncatalyst cars (1974 Chevrolet
and 1978 Honda) gave the highest aldehyde concentrations with a maximum
of 322 mg/km for the Honda at 20°F (-7°C). The third noncatalyst car,
the 1972 Chevrolet, gave aldehyde concentrations that were similar to
those obtained with some of the catalyst cars.
In a very few cases, hydrogen sulfide was detected in the exhaust
gases. It was generally below detectable limits. The highest concentration
detected was 18 mg/km and this occurred at 0°F (-18°C) in the 1978
Buick. The next highest level was 10 mg/km and this occurred in the
same car at 110°F (43°C).
Four cars (all catalyst cars) produced sulfate emissions greater
than 1 mg/km. These four cars were the 1977 California Plymouth, 1978
Chevrolet, 1979 Dodge and 1980 prototype Mercury. A maximum in one test
-------
of 23 mg/km was found in the 1978 Chevrolet at 40°F (4°C). There was no
clear relationship between sulfate formation and ambient temperature.
The particulates measured during the Sulfate Emission Tests produced
a variety of results. The noncatalyst cars gave particulate emissions
that varied from 6 to 32 mg/km while those of the catalyst cars ranged
from 3 to 36 mg/km. Some cars gave maximum particulates at 0°F (-18°C)
while others produced maximum particulates at 110°F (43°C) or intermediate
temperatures.
As determined by gas chromatography, the methane produced during
the cold transient phase of the FTP by the noncatalyst vehicles was
relatively small (2.6 to 12.9%) as compared to the catalyst equipped
cars (7.4 to 36.3%).
The saturates accounted for 30 to 50% of the hydrocarbons for all
cars with the cold transient phase of the FTP.
The acetylenes produced during the cold transient phase of the FTP
varied from 0 to 15% for all cars with the higher concentrations occurring
at the lower test temperatures.
The olefins produced by the noncatalyst cars varied from about 8 to
50% of the total hydrocarbons for all three phases of the FTP. The
olefins emitted from the catalyst equipped cars were substantially lower
than those obtained with the noncatalyst cars, especially after the
catalysts were warmed up.
The percent aromatics found in the exhaust gas hydrocarbons from
the cold transient phase of the FTP showed little effect of ambient
temperature or emission control system. For the stabilized phase, the
aromatics were markedly reduced by some emission control systems.
The benzene found in the exhaust gases for the FTP varied from 0%
to 11% of the total hydrocarbons. During the cold transient phase of
the FTP, the exhaust gases contained approximately 1 to 7% of benzene.
The fuel economies obtained by all of the cars during the cold
transient phase of the FTP were very sensitive to the ambient temperature,
with the poorest economies occurring at 0°F (-18°C). The use of air
conditioning reduced fuel economy in nearly every case. For the stabilized
phase, the fuel economy improved substantially as compared to the cold
transient phase of the FTP and again raising the test temperature improved
the fuel economy.
The hydrocarbon emissions measured by the Beckman and the Stewart
Warner instruments during the Federal Short Tests were frequently in
very poor agreement. However, the CO emissions measured by these two
instruments were nearly always in good agreement.
-------
The light-off times and the corresponding catalyst out exhaust gas
temperatures during the FTP varied widely for the different catalyst
systems. The light-off times for all eight ambient temperatures varied
from 67 to 419 seconds and the light-off temperatures ranged from about
400 to 1100°F (204 to 593°C). There was no consistent relationship
between light-off time and ambient temperature. The maximum exhaust gas
temperatures measured were usually obtained during the HFET. The maximum
exhaust gas temperature measured was 1,462°F (794°C). There were larger
differences in exhaust gas temperatures between catalyst systems than
there were between test procedures or ambient temperatures.
Most of the driveability problems were encountered during the cold
transient phase of the FTP during the 0°F (-18°C) and 20°F (-7°C) ambient
temperature tests. However, a considerable number of driveability
problems were encountered in some cars at the higher test temperatures
and during the other test phases.
-------
Section 3
EQUIPMENT AND MATERIAL
CHASSIS DYNAMOMETER
The chassis dynamometer employed is an all-weather test facility.
Material used in its construction can withstand large changes in ambient
operating conditions. This facility was designed to duplicate all of
the operating conditions to which a vehicle is subjected during highway
operation. Vehicles as large as a Sceni-cruiser bus and as small as a
compact car can be tested.
Test Cell
The room that contains the test vehicle is the only area that is
heated or refrigerated. This room is 14 m (46 ft) long and 5.5 m (18 ft)
wide. The chassis dynamometer test cell is shown in Figure 1.
REFRIGERATION EQUIPMENT
HUMIDIFIER
COOLING
COILS
BLOWER
Figure 1. Chassis dynamometer test cell
Temperature and Humidity Capabilities and Recorders—
Ambient temperatures from 70°F (-56°C) to 120°F (49°C) can be
maintained along with controlled humidity. Moisture is supplied to the
room as steam to obtain the desired humidity. Makeup air can be passed
-------
through a drying system, if necessary, to reduce its humidity. The
temperature and humidity are regulated from an exterior control panel.
A thermocouple located 91 cm (3 ft) in front of the vehicle grill and
91 cm (3 ft) above the floor was used as the measurement source for the
automatic temperature controller. A Honeywell Model R-15 controller and
a disc-type recorder is used to control the room temperature. This
controller is set to the temperature desired, and it then controls the
entire refrigeration system. The disc chart records the cell temperature
for 24 hours.
The humidity is also controlled at the console control panel. A
Nullmatic M/P Controller is set to automatically regulate the humidity
of the cell. A Dewcel sampler constantly analyzes the air and signals
the Nullmatic. The dewpoint in the room is recorded on a Foxboro disc-
type recorder, similar to the temperature recorder. Relative humidities
from 5 to 95% can be controlled by this instrument.
Vehicle Restraints and Tread Rolls--
Both rear-wheel and front-wheel drive vehicles can be tested on
this dynamometer. Concave floor blocks engage the front of the idle
wheels, then adjustable saddles slide over and clamp the rear portion.
The saddles are adjustable to accommodate different tire sizes, and the
blocks are fastened to slide rails and are adjustable for various length
wheel bases. When a test vehicle is mounted on the dynamometer, the
drive wheels are positioned on top of two 122 cm (4 ft) diameter steel
rolls which are 61 cm (2 ft) wide. These rolls are connected to the
inertia and windage loading system in an adjacent room.
Loading System—
The road inertia of vehicles with curb weights from 907 kg (2000 Ib)
to 3266 kg (7200 Ib) can be simulated. Four fly wheels, sized to
permit an equivalent increase in inertia of 91, 181, 363, and 454 kg
(200, 400, 800, 1000 Ib) can be independently engaged or disengaged
from the drive shaft that connects the tread rolls to a 112 kW (150 hp)
motoring, 298 kW (400 hp) absorbing dynamometer. This connection is
made via a three-speed gear box that can be shifted to underdrive,
overdrive, direct drive, or neutral. This shift changes the inertia
load of the system so that four ranges of loading are available.
The road load horsepower of a vehicle is simulated by driving a
centrifugal air blower which is also coupled to the dynamometer shaft
via a three-speed gear box. With blower speed flexibility in combination
with an air flow damper on the fan output, road load horsepower settings
can be obtained to conform to the values listed in the Federal Register (8)
Additional loading can be applied electrically using the absorbing
dynamometer motor. The arrangement of the dynamometer loading system is
shown in Figure 2.
-------
THREE SPEED
GCAft BOXES
UNIVERSAL
DYNAMOMETER
ROTATING
CRADLE
BEARINGS
Figure 2. Dynamometer loading system
Vehicle Cooling-
Frontal cooling is supplied from a telescoping duct 122 cm
(4 ft) high and 122 cm (4 ft) wide. The duct is baffled to direct the
air to the vehicle grill and undercar area. This air is recycled through
the humidifier and cooling coils. A Pitot tube is mounted at the end of
the duct to measure air speed. This reading is indicated on a Magne-
helic gauge which is calibrated in miles per hour. Air velocity is
normally matched to vehicle speed automatically, but it can be set to
any constant value.
Exhaust System—
The vehicle exhaust is connected to the sampling system by a thermo-
statically controlled heated flexible line which is 3.7 m (12 ft) in
-------
length and 6.4 cm (2.5 in) in diameter. This insulated line is Type BCU
interlocking stainless steel hose with air-tight Marmon flange connectors
and is routed through the dynamometer floor to a 10.2 cm (4 in) stainless
steel gate valve which directs the flow to a dilution tunnel or to a
mixing chamber.
Mileage Counter and Recorder--
A revolution counter on the driveshaft of the dynamometer rolls is
coupled to a digital counter and printer. The driver of the test vehicle
presses a button which sends a print command to the printer when mileage
is to be recorded. The mileage counter system generates 21,008 counts
per mile of vehicle travel with an accuracy of 0.00016 km (0.0001 mi).
Display Panel--
A vehicle speed gauge and tractive effort gauge are mounted on a
suspended portable panel in the test room. This panel straddles the car
hood and is anchored just outside the windshield of the vehicle where it
can be observed easily by the driver. A red flashing light is also
mounted on the panel to alert the driver of any malfunctioning equipment
or unsafe conditions. If any of the dynamometer safety circuits are
activated, this light flashes.
Vehicle Accessories
Several items necessary for the test are transferred from vehicle
to vehicle when a new test is started.
Drivers Aid--
A Hewlett-Packard Model 680 instrument, made especially for displaying
and recording cyclic operation, was used for this program. Rolled
charts with preprinted speed traces are displayed to the driver; and a
recording pen indicator, indicating the vehicle speed, is used to follow
the prescribed test cycle speeds. Charts are available for the Federal
Test Procedure, Highway Fuel Economy Test, Sulfate Emission Test,
Federal Short Cycle, and New York City Cycle. The last two mentioned
were made with a computer plotter from data supplied by EPA. The other
charts were standard purchasable items.
Tachometer and Vacuum Gauge--
At specified test times, engine rpm and manifold vacuum readings
were obtained. These were observed visually and recorded manually.
Engine rpm was indicated by a Snap-on Model MT 417 inductive lead pickup
tachometer. Vacuum in inches of mercury was observed with a Crosby
Model AAO gauge with 6.4 mm (0.25 in) subdivisions.
-------
Temperature Measurement--
Engine coolant, crankcase oil, carburetor air, and exhaust gas
temperatures were monitored with Conax premium grade ungrounded iron-
constantan thermocouples mounted at their respective locations during
vehicle preparation. A junction box in the test cell provides plug-in
connections that lead to a temperature recorder in the sampling room.
Communications System--
To correlate the sampling procedures with the driving procedures,
sound-powered microphone headsets were used. They are David Clark Model
H 5040 plug-in units. Several junction boxes were mounted in the dynamometer
area to provide greater versatility.
Air-Conditioning Duct--
When test runs were made at 80°F (27°C) and above, and the vehicle
air conditioning system was not used, auxiliary air conditioning was
supplied to the vehicle interior. This air conditioning was supplied by
way of a 20.3 cm (8 in) flexible hose connected to a portable room air
conditioning unit located outside the test cell.
SAMPLING EQUIPMENT
A room directly below the rear portion of the dynamometer test cell
contains all of the exhaust gas sampling apparatus. A cement and tile
ceiling 56 cm (22 in) thick provides insulation from the test cell area.
Figure 3 is a sketch of the exhaust gas sampling system.
MUFFLER
DILUTION
AIR
FILTERS
Figure 3. Exhaust gas sampling system.
10
-------
Regulated Emissions
CO, C02, HC, and NOX are the regulated emissions sampled for
analysis. A Scott Model 301 Constant Volume Sampler, employing a positive
displacement pump, is used to dilute, measure, and sample the vehicle
exhaust in accordance with the procedure specified in the,Federal
Register.(9) The pump capacity is approximately 141.6 dm /sec (300
ft /min). The unit utilizes an air to air heat exchanger which controls
the inlet air to the displacement pump and sample bag. The sampling
system was modified to add another outlet for an air bag so that simultaneous
dilution air and exhaust bag samples could be obtained for each phase of
the FTP. The collection bags are constructed of 0.05 mm (2 mil) Tedlar
(polyvinyl flouride) enclosed within a black plastic3shield to minimize
photochemical reactions. They have a 120 1 (4.25 ft ) capacity. The
dilution air required for the system is ducted from outside the building
through an electrically heated duct and then through a three-stage air
filtration system. When the outside ambient temperature is low, the air
can be heated to 68°F (20°C). In the summer, tests are conducted in the
morning so that ambient temperatures do not exceed 86°F (30°C). The air
filtration system consists of an Aeromold filter to remove large airborne
particulates, a charcoal adsorber cell to remove hydrocarbons and a fine
glass fiber filter (absolute) to remove small particulates. The flow of
the dilution air from the filters to the mixing tee in front of the heat
exchanger is always through the dilution tunnel. With the air heated,
condensation in the system when exhaust gas is admitted is minimal.
Unregulated Emissions
Dilution Tunnel--
Particulates and sulfates are sampled using a dilution tunnel
5.49 m (18 ft) long and 318 mm (12.5 in) in diameter. It is constructed
of type 304 stainless steel with a wall thickness of 1.59 mm (1/16 in).
A baffle plate with an opening one-half the diameter of the tunnel is
mounted at the exhaust inlet location and sample probe tips are downstream
4.05 m (13.3 ft) from the baffle. The probes are 19.1 mm (0.75 in) in
diameter with tips ground to a knife-edge. Two probes are mounted
equidistant from the centerline of the tunnel. The filters used to
collect the particulate samples are attached to the probes at their
exits. The filter holders are disc-type 47 mm in-line stainless steel
units made by Gelman Instrument Company. The inlets to the holders and
the connecting fittings were machined to provide an unbroken interior
surface from the probe tip to the filter surface area. The filters are
47 mm Fluoropore membrane discs with a pore size of 1.0 micron. The
system uses a Gast rotary-vane pump capable of pulling a vacuum up to
94.6 kPa (28 in Hg) and a free flow of 0.235 m3/min (8.3 ft3/min). It
draws the sample through the probe, filter, flowmeter, and regulating
valve of two identical systems. Each flow is constantly monitored to
maintain an isokinetic gas velocity through the probe and dilution
tunnel. The pump discharge is routed through a variable area flow meter
and into a Rockwell No. 250S bellows-type dry gas meter. The inlet
11
-------
temperature is monitored with an iron-constantan thermocouple, and the
outlet pressure with a Dwyer Magnehelic pressure gauge. As mentioned
earlier, the CVS dilution air always flows through the tunnel. The
vehicle exhaust is directed either to the tunnel by a Jamesbury stainless
steel wafer-sphere butterfly valve with a positive sealing seat, or to a
mixing tee in front of the CVS heat exchanger.
Aldehyde and Hydrogen Sulfide Extraction Apparatus--
Two separate sample lines and systems located downstream from the
positive displacement pump on the CVS unit are used to sample the diluted
exhaust. Each system contains an Air Control, Inc., diaphragm pump that
draws the sample through two 100 ml impingers submerged in an ice bath,
a moisture trap, a Brooks flow indicator, and a regulating valve. The
pump discharge is through a Rockwell 150 S bellows-type dry gas volume
meter. The inlet temperature is monitored with an iron-constantan
thermocouple to standardize the volume readings. The outlet of the
meter is to the atmosphere, resulting in negligible pressure drop; thus,
the reading is standardized using barometric pressure.
Gas Chromatography Samples--
Hydrocarbon samples which are to be analyzed by gas chromato-graphy
are extracted from the CVS bag sample. A diaphragm pump is used to
transfer the diluted samples from the larger sample bag to a smaller
7.07 1 (0.25 ft ) bag constructed from 0.05 mm (2 mil) Tedlar and
covered with black plastic which acts as a light shield against photo-
chemical reactions.
Temperature Recorders—
A 12-channel Leeds & Northrup Type 6 Speedomax Chart recorder with
a range of 0°F (18°C) to 400°F (204°C) is used to obtain a record of the
following temperatures: (a) test cell ambient, (b) engine water out,
(c) crankcase oil, (d) carburetor air, (e) CVS gas sample,
(f) dilution tunnel probes, (G) sulfate gas meter, (h) CVS room ambient,
(i) dilution tunnel in, (j) aldehyde gas meter, (k) hydrogen sulfide
gas meter (1) outside ambient. Each temperature was recorded on the
chart every 40 seconds.
A Doric Digitrend Model 220 Recorder is used to monitor and record
vehicle exhaust gas temperatures. The time between each temperature
reading varied from one second to one minute.
ANALYTICAL EQUIPMENT
The regulated emission analysis equipment is located in a room
adjacent to the sampling equipment. This provided an immediate analysis
of the samples. The equipment used to analyze the unregulated emission
samples is located in an adjacent building. The expediency of their
analysis was not as critical.
12
-------
Regulated Emissions
Analyzer Bench--
An analytical system complete with all of the hardware specified in
the Federal Register (10) was used. The specific instruments and their
ranges are:
CO - Beckman Model I.R. 315B, Dual Cell: Three Range
330 mm (13 in) cell: 0-300 ppm, 0-1500 ppm, 0-5000 ppm
6.35 mm (1/4 in) cell: 0-0.7%, 0-7.0%
CO- - Beckman Model I.R. 315B, Dual Cell: Single Range
* 6.35 mm (1/4 in) cell: 0-3%
0.79 mm (1/32 in) cell: 0-15%
HC - Beckman Model 400 Flame lonization Detector. Three ranges:
0-10 ppm C3, 0-100 ppm C3> 0-1000 ppm C3
NO/NOX - Thermo Electron Model 10A Chemiluminescent with an NOX
Converter. Three ranges:
0-100 ppm NO/NOX, 0-250 ppm NO/NOX, 0-2500 ppm NO/NOX.
This bench contains a refrigeration system with traps and filters
which permits the analysis of raw exhaust samples. It also is equipped
with a Honeywell Model 1508 Visicorder direct writing oscillograph that
simultaneously records the output of all the instruments.
Garage-Type Analyzer--
A Stewart-Warner Model 3160-A Infrared Exhaust Emission Analyzer
(portable and self-contained) was used in the analysis of Federal 3-Mode
raw exhaust gas samples. CO and HC were measured by the dual-beam
nondispersive infrared principle. Each meter has two ranges: 0-2% and
0-10% CO; 0-400 ppm and 0-2000 ppm HC. This unit contains its own pump,
filters, and traps, plus a cylinder of calibration gas to set the span
of the instruments. A mechanical sample span check is included for
routine calibration verification. The exhaust gas sample is obtained
via a 6.35 mm (1/4 in) stainless steel tube that was routed through the
heated flexible vehicle exhaust line and extended into the tailpipe
approximately 30.5 cm (12 in).
Calibration Gas System--
To calibrate and span the analytical instruments, a total of forty-
five gravimetric grade and twenty-six volumetric grade size A cylinders
of gas were purchased from Scott Environmental Technology, Incorporated.
The gravimetric grade accuracy was listed as 1% and the volumetric as
2%. The volumetric grade gases were used as daily span gases and the
gravimetric grades were used to generate calibration curves. All of
13
-------
these gas cylinders were shipped to EPA. in Ann Arbor where they were
analyzed and then sent to Gulf, along with analyses of the gases. The
EPA analyses were used for the calculations. The cylinder numbers,
along with both EPA. and Scott analyses, are listed in Table 1. In
addition to those listed, HC-free air,40% H2/60% He, and N2 zero gas
cylinders were purchased. Also purchased for this system were sixty-one
dual-stage cylinder pressure regulators. An electronically controlled
solenoid manifold system combined with these gases and regulators enabled
quick selection of a calibrating gas.
Unregulated Emissions
Particulate Weighing Facility--
An air-conditioned room controlled to 40% relative humidity and an
ambient temperature of 68°F (20°C) was used to stabilize and weigh the
47 mm Fluoropore filters. The scale used was a Metier Model H 51 five-
place microgram balance. A chemical hood area with a desiccator and
vacuum pump arrangement was used to ammoniate the filters prior to the
stabilization period. Ammonium hydroxide was used for this process.
Petri dishes and forceps were used to handle the filters.
Sulfate Analysis System--
An assortment of standard laboratory glassware and fittings, a
technicon Auto Analyzer proportioning pump (Model 1), a Technicon Colori-
meter Model 1 with a 50 mm tubular flowcell and a Bristol Company (Model
64 AT 1) roll chart recorder were used in the analysis of sulfate. The
necessary chemical supplies are isopropyl alochol, ammonium sulfate
crystals, Rexyn 101, barium sulfate, and distilled de-ionized water.
Aldehyde and Hydrogen Sulfide Analysis System—
Standard laboratory chemicals and equipment were used to prepare
reagents for the 2,4-Dinitrophenylhydrazine method of measuring carbonyl
compounds in vehicle exhaust. The resulting derivatives were measured
colorimetrically by a Bausch & Lomb Model 70 Spectronic Colorimeter.
The reagent for the collection of hydrogen sulfide was an alkaline
suspension of cadmium hydroxide. The collected sulfide was subsequently
determined by spectrophotometric measurement using a Bausch & Lomb Model
710 Colorimeter.
Hydrocarbons by Gas Chromatography--
The chromatographic apparatus consisted of a modified Perkin-Elmer
Model 900 Gas Chromatograph with a flame ionization detector and subambient
temperature accessory. A heated gas sampling valve compartment and an
automatic sequential timer as well as other small modifications were
added to the original equipment. A heated box for sample conditioning,
a Fisher Model 5000 Recorder and a Hewlett Packard Computer Model 3350
were used in the system.
14
-------
TABLE 1. ANALYSIS OF GAS CYLINDERS
Gulf
Cyl.
No.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
43
39
44
40
45
41
46
42
47
Cylinder
No.
AAL-209
AAL-152
AAL-297
AAL-171
AAL-166
AAL-151
MH-387
A-383
MH-112
XJ-6008
XA-478
XA-1039
A-5372
A-1744
XJ-50452
MH-197A
A- 7005
XJ-93781
A-1046
A-4621
A-5152
A-4321
A-11427
XJ-94441
XA-715
XEL-26052
A- 316 9
XJ-94533
A-3914
XA-3584
XA-761
A-3281
Analysis
Scott
CO
45.1
89.2
134
179
223
270
452
674
900
1120
1350
2250
3000
3740
4510
6470
1.05
2.10
3.14
4.17
5.26
6.25
240
240
1180
1180
3920
3920
5930
5930
6.14
6.14
EPA
- Carbon Monoxide
43.7
87.8
131.4
176.2
221.5
268.7
449.9
672.5
899.1
1121.4
1341.9
2235.5
2975. .8
3712.7
4485.8
6407.8
1.05
2.1
3.1
4.2
5.2
6.2
236.3
235.6
1168.7
1169.9
3933.4
3943.3
5879.6
5893.7
6.2
6.2
(CONTINUED)
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
Z
z
Z
z
z
z
PPM
•PPM
PPM
PPM
PPM
PPM
PPM
PPM
Z
Z
,Scott-EPA
( Scott X 100)
Z Difference
3.10
1.56
1.94
1.56
0.67
0.48
0.46
0.22
0.10
-0.12
0.60
0.64
0.80
0.72
0.53
0.96
0.00
0.00
1.27
-0.71
1.14
0.80
1.54
1.83
0.95
0.85
-0.34
-0.59
0.84
0.61
-0.97
-0.97
15
-------
TABLET. (CONTINUED)
Gulf
Cyl.
No.
48
49
50
51
52
53
54
55
56
57
58
59
61
60
62
63
83
64
65
66
67
69
68
70
84
85
Cylinder
No.
XA-890
-974
-3758
A-9837
XA-3105
XJ-60165
A-4936
XJ-46714
XJ-93787
A-10779
A-3253
A-4407
XA-739
A- 344 8
XJ-94509
A-4611
XA-2351
A-4123
A-6670
A- 37 97
A-3763
A-5790
A-3292
A-5098 or 89
A-3734
XA-1244
Analysis
Scott
C02 -
4490.0
8970.0
1.34
1.81
2.25
2.70
4.46
6.74
8.93
11.3
13.3
2.35
2.35
12.30
12.30
NO
50.0
99.4
249.0
1240
2510
83.5
80.9
2040
2020
206
208
EPA
Carbon Dioxide
4489.0
8968.1
1.35
1.81
2.25
2.72
4.47
6.74
8.95
11.3
13.3
2.36
2.35
12.17
12.16
- Nitric Oxide
51.2
99.3
254.5
1243.1
2479.6
83.6
78.4
2081.9
2064.7
209
210.7
(CONTINUED)
PPM
PPM
Z
Z
Z
%
Z
Z
Z
Z
Z
Z
Z
Z
Z
PPM
PPM
. PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
.Scott-EPA .
( Scott X 100)
Z Difference
0.02
0.02
-0.74
0.00
0.00
-0..74
-0.22
0.00
-0.22
0.00
0.00
-0.42
0.00
1.05
1.13
-2.40
0.10
-2.20
-0.25
1.21
-0.11
3.09
-2.05
-2.21
-1.45
-1.29
16
-------
TABLE 1. (CONTINUED)
Gulf
Cyl.
No.
Cylinder
No.
Analysis
Scott
EPA
HC - Hydrocarbon as
71
72
73
74
75
76
77
80
78
81
79
82
XA-2141
A-4988
XA-2367
A-5811
A-4970
A-4955
MH-2153
XA-4575
XEL-33077
XA-1313
A-2417
A-4904
5.0
10.0
50.1
99.4
502
991
8.06
8.04
80.3
80.3
826
826
5.0
10.0
51.1
98.1
506
995.2
8.3
8.3
80.3
80.4
755.9
758.4
Propane
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
PPM
.Scott-EPA
( Scott x 100)
Z Difference
0.00
0,00
-1.99
1.30
-0.79
-0.42
-2.97
-3.23
0.00
-0.12
8.48
8.18
TEST VEHICLES
A total of 14 vehicles were tested. Three were noncatalyst cars:
a 1972 Chevrolet, a 1974 Chevrolet, and a 1977 Honda Civic. Three were
49 state standards: a 1977 Ford, a 1977 Plymouth, and a 1978 Buick.
Five were California standards: a 1977 Plymouth, a 1977 Chevrolet station
wagon, a 1978 Ford, a 1978 VW Rabbit, and a 1979 Dodge. Three were
prototype vehicles: a 1980 Mercury, a 1980 Buick, and a Datsun. The
prototype cars and the 1979 Dodge were supplied by EPA. All other
vehicles were company-owned or rented. A more complete description of
these vehicles is shown in Table 2.
FUELS AND LUBRICANTS
Two grades of unleaded fuel were blended from commercial unleaded
base gasoline having an intermediate volatility. To make the summer
grade fuel, that was used for tests at 60°F (16°C) and above, a standard
low volatility reference fuel made from reformate and alkylate was added
as needed to obtain the desired Reid vapor pressure. To make the winter
grade fuel, used at 40°F (4°C) and below, butane was added to the base
fuel. These fuels were used in all vehicles, including the noncatalyst
cars.
17
-------
TABLE 2 - DESCRIPTION OF VEHICLES
VEHICLE: Make CHEVROLET
Model Impala
Model Year 1972
CHEVROLET
Impala
1974
Odometer, km (ml) 104,948 (65,212) 47,641 (29,603)
Emission Standard Federal
Federal
Emission Control Tuned engine Tuned engine
Engine: Configuration ¥-8
Displacement 5.7 liter
V-8
5.7 liter
Distributor No. 1112005-2E1 1112844-3G31
Fuel System Carb. 2 bbl Carb. 2 bbl
Carburetor No. 132 2DO
Transmission Type Automatic
Axle: Ratio 2.74:1
Number NA
Tires: Manufacturer General
Construction Radial
Size GR 70-15
Air Conditioning *es
Vehicle Weight, kg Mb) 1932 (4260
Inertia Weight, kg
-------
TABLE 3. TEST FUEL COMPOSITION
Summer Winter Preconditioning
Gravity, °API, D 287
Carbon, wt %
Hydrogen, wt %
Sulfur, ppm
Hydrocarbon Analysis, D 1319:
Aromatics, % vol
Olefins, % Vol
Saturates, % Vol
Benzene, % Vol
Octane Number:
Research D 2699
Motor D 2700
Antiknock Compound:
61.4
86.09
13.91
309
15.0
10.5
74.5
0.3
91.8
84.2
68.6
85.34
14.66
294
11.5
13.0
75.5
0.2
91.8
84.5
65.7
85.68
14.32
301
13.0
15.5
71.5
0.2
92.6
83.8
As Pb by D 3237 gm/gal
As Mn by AA gm/gal
Vapor Pressure, Reid, D 325, Ib
Distillation, D 86:
Over Point, °F (°C)
50% Point, °F (°C)
End Point. °F (°C)
% @ 158°F (70°C)
<0.005
0
8.4
94 (35)
232 (111)
383 (195)
9
0.018
0
12.0
77 (25)
200 (93)
298 (203)
30
<0.005
0
11.1
83 (28)
200 (93)
426 (219)
32
The crankcase oil used in all tests was a premium commercial SAE 10W40,
API Service SE.
19
-------
Section 4
TEST PROCEDURES
FACILITY VERIFICATION
Before carrying out the program, a series of tests were conducted
to demonstrate the equipment's capability and to verify that the required
test conditions could be met.
Exhaust Temperature-Road vs. Dynamometer
Thermocouples were attached to the exhaust system of a catalyst
equipped vehicle (1977 Chevrolet, Test Car No. 2539) to measure four
exhaust pipe skin temperatures. These four locations were: (1) directly
in front of the catalyst, (2) just behind the catalyst, (3) just in
front of the rear wheels, and (4) 23 cm (9 in) from the end of the
exhaust pipe. The vehicle was then operated on a level road at low
ambient temperatures and low humidity conditions until the exhaust pipe
temperatures stabilized. These temperatures were recorded and then the
vehicle was operated in the test cell under the same road load and
ambient conditions, and the temperatures at the same exhaust pipe
locations were recorded. These data are presented in Tables 4 and 5.
It was established that to obtain data comparable to that on the
road, the car not only had to be driven on the dynamometer at the same
conditions, but also had to go through a similar operating cycle. When
this was done, the dynamometer results were in good agreement with
results on the road. The one exception was the thermocouple located
close to the end of the tailpipe. Since the tailpipe was attached to a
flex tubing to dispose of the exhaust gases, it was believed that this
may have increased the temperature at this point. However, the temperature
was close enough to be considered satisfactory from an exhaust gas
reaction viewpoint.
Ambient Temperature & Humidity Capability -
Exhaust Emission Sampling and Analysis Verification
Ten test runs were made on a 1975 Ford Torino at temperatures of
0, 40, 80, and 110°F (-18, 4, 27, and 43°C). It was demonstrated to
EPA's satisfaction that this vehicle could be driven and tested satisfactorily
at these extreme conditions using the specified test procedures. The
required tolerance for 40°F (4°C) and below was -4°F (-2°C); for temperatures
above that level the tolerance was -2°f (trc). It was not possible to
20
-------
TABLE 4. EXHAUST PIPE TEMPERATURE STUDIES - FIELD DATA
TYiermocouple: No- 1
1st Run
2nd Run
3rd Run
X
Range
X +107.
1st Run
2nd Run
3rd Run
X
Ran fee
X ±107.
1st Run
2nd Run
3rd Run
X
Range
X +107.
1st Run
2nd Run
3rd Run
X
Ranx,u
X +107.
CONDITION - IDLE
483°
433°
516°
477
83-
430- 525
CONDITION - 20 MPH
433°
400°
433°
422
33
380 - 464
CONDITION - 40 MPH
400°
433°
416°
416
33
375- 458
CONDITION - 55 MPH
500°
466°
500°
489
34
440 - 538
Temperatures: °F
No. 2
50'0°
466°
5jr
500
67
450- 550
466°
483°
466^
472
17
425- 519
500°
483°
483°
489
17
440- 538
550°
561°
549°
553
12
4i>8 - 609
No. 3
316°
350°
3751
347
59
312- 382
316°
333°
3_331
327
17
295 - 360
350°
350°
350°
350
0
315- 385
416°
416°
416°
416
0
375 - 458
Ambient
No. A Air: °F
133°
216°
.2501
233
V*
210 - 256
183°
216°
2161
205
33
185- 226
233°
233°
250°
239
17
215 - 263
283°
316°
316°
30:>
33
275 - '136
33
32
32_
32
32 !
32
12.
32 '
32
32
32.
32
32
32
32
32
21
-------
TABLE 5. EXHAUST PIPE TEMPERATURE STUDIES - DYNAMOMETER DATA
Thermocouple:
CONDITION
1st Run
2nd Run
Aver
Road Values
CONDITION
1st Pass
2nd Pass
3rd Pass
4th Pass
Road Values
CONDITION
1st Pass
2nd Pass
3rd Pass
4th Pass
Road Values
CONDITION
1st Pass
2nd Pass
3rd Pass
4th Pass
Road Values
Temperatures,
No. 1 No. 2 No. 3
-- IDLE
449 513 347
469 481 334
age 459 497 341
X ±10% 430-525 450-550 312-382
--20 MPH
415
475
300
_
X ±10£ 380-464 425r519 295-360
-- 40 MPH
462
505
350
_
X ±10% 375-458 440-538 315-385
-- 50 MPH
500
601
433
- - .
X ±10% 440-538 498-609 375-458
*T?
fig, ^ Ambient Air.
261 32.0
263 31.3
262 32
210-236 32
30.7
31.1
31.1
328 31.0
Avg. 31
185-226 32
32.0
31.7
31.6
285 31.6
Avg. 32
215-263 32
32.2
32.5
32.2 <
34« 31.6
Avg. 32
275-336 32 |
22
-------
control humidity at 50% relative at 40°F (4°C) and below. However, the
absolute humidity at temperatures below 40°F (4°C) is so Tow that it
cannot have much effect on emissions.
Vehicle Exchange Data--
This 1975 Ford Torino was shipped to the EPA in Ann Arbor for an
exhaust emission test. Their data were obtained using a Clayton dynamometer
with the car hood open at an ambient temperature of 75°F (24°C). The
cooling air was constant at 25 dm /sec (53 cfm) and the vehicle air
conditioner was on. For these comparison tests, we ran the chassis
dynamometer under the same conditions and then ran another set with the
hood closed and cooling air varied with car speed. The FTP and HFET
procedures were run at both labs at an ambient temperature of 75°F
(24°C). The results, summarized in Table 6 were considered satisfactory.
TABLE 6. EXHAUST EMISSION COMPARISON
Gulf - open hood Gulf - closed hood EPA - open hood
FTP Bag
FTP Bag
FTP Bag
HFET
1 HC g/km
CO g/km
NOXC g/km
C02 g/km
km/1
2 HC g/km
CO g/km
NOXC g/km
C02 g/km
km/1
3 HC g/km
CO g/km
NOXC g/km
C02 g/km
km/1
HC g/km
CO g/km
NOXC g/km
CO? g/km
km/1
0.99
27.38
1.09
512.96
4.19
0.29
7.07
0.88
534.26
4.29
0.32
12.59
1.36
450.93
4.97
0.14
4.64
1.57
334.16
6.85
0.93
24.19
1.18
512.12
4.24
0.33
6.71
0.89
524.08
4.37
0.45
12.66
1.30
431.61
5.17
0.19
4.93
1.54
333.54
6.86
0.71
22.24
0.99
482.60
4.51
0.25
8.14
0.81
524.22
4.38
0.28
13.60
1.24
418.60
5.31
0.54
19.00
1.34
291.93
7.25
Coast-down times at two speed regimes for the Gulf chassis dynamometer
and the EPA Clayton dynamometer were also measured using the 1975 Ford
Torino. The averages of these times are listed in Table 7. The results
showed that the Gulf dynamometer coast-down time was a little slower at
23
-------
TABLE 7. DYNAMOMETER COAST DOWN TIME COMPARISON
88 to 72 km/h (55 to 45 mph) AC Off
48 to 32 km/h (30 to 20 mph) AC Off
88 to 72 km/h (55 to 45 mph) AC On
48 to 32 km/h (30 to 20 mph) AC On
Gulf
Time, Sec.
8.05
61.83
7.30
32.96
EPA
Time, Sec.
7.86
64.14
7.14
35.25
80 km/h (50 mph), but a little faster at 40 km/h (25 mph). This offset,
along with the small differences in fuel economy noted in Table 6,
suggests that there may be a slight difference in the loading characteristics
of the two types of dynamometers. This small difference was not considered
to be significant for the comparisons that were to be made in this
program.
Gulf/EPA Gas Cylinder Exchange Data--
Eleven Size C compressed gas cylinders, with contents unknown to
us, were supplied by EPA for analysis with our analytical bench instruments.
Two of these cylinders contained three-component gas blends while the
others were single components with the balance being nitrogen. Our
results compared favorably with the EPA analyses. The data are listed
in Table 8.
24
-------
TABLE 8. COMPRESSED GAS CYLINDER EXCHANGE DATA
Cylinder No.
13378
14974
Component
(?l'8
Gulf
17.46 ppm
9.66 ppm
EPA
16.94 ppm
9.81 ppm
12137 CO 2140 ppm 2109 ppm
D-1142
D-1153
D-1157
14939
12346
13357
Blend "B"
Blend "C"
NOX
NOX
NOX
C02
C02
C02
C3H8
CO
C02
C3H8
CO
C02
112.64 ppm
74.83 ppm
10.06 ppm
2.37 %
1.69 %
1.41 %
7.48 ppm
405 ppm
1.14 %
7.48 ppm
1020 ppm
1.55 \
115.95 ppm
74.97 ppm
10.91 ppm
2.38 %
1.68 %
1.38 %
7.59 ppm
401 ppm
1.13 %
7.59 ppm
1008 ppm
1.53 %
Scott Cross Reference Exchange Data--
Gulf subscribes to a cross reference service provided by Scott
Environmental Technology, Inc. Each quarter Scott sends a compressed
gas cylinder to be analyzed for C3Hg, C02, CO, and NO-NOX. This service
provides an accurate check of the analytical bench instruments. Between
20 and 40 participants receive these exchange samples and report their
analyses. Scott tabulates the data and distributes to the participants
quarterly reports containing statistical analyses of results and listing
individual results. Table 9 is a tabulation of results obtained using
the instruments in service for this contract. Our analyses have been
well within acceptable limits.
25
-------
TABLE 9. GULF AND INDUSTRY DATA ON SCOTT EXCHANGE SAMPLES
C3»8
CO
C02
NO
NOX
C3H8
CO
COz
NO
NOX
ppm
ppm
%
ppm
ppm
ppm
ppm
%
ppm
ppm
Gulf
131.
1800
3.
1893
1908
8.
1210
1.
934.
939.
5
89
17
11
5
0
Industry
Avg.
1977 - Sample
131.6
1835
3.96
1915
1932
1978 - Sample
8.10
1204
1.09
940.1
945.1
Std.
Dev.
3
3.
39
.
54
79
1
0.
32.
0.
24.
29.
05
07
43
7
02
5
3
Industry
Gulf Avg.
40
246
2
147
149
876
923
2
82
82
1977
.8
.23
.6
.8
1978
.71
.1
.3
- Sample
40.3
251.5
2.21
146.5
148.2
- Sample
900
903
2.71
81.2
82.1
Std.
Dev.
4
0.
9.
0.
6.
6.
2
28
11
0.
4.
6.
8
3
01
9.
9
04
8
0
1978 - Sample 3
1978 - Sample 4
C3H8
CO
C02
NO
NOX
ppm
ppm
%
ppm
ppm
91
627
3
1246
1249
.01
.61
90
617
3
1254
1262
.67
.62
2.06
.17
0.09
32.5
40.9
17.
152.
0.
440.
441.
3
0
86
9
8
17
156
0
437
441
.3
.5
.86
.8
.7
0.82
5.0
0.03
11.6
13.9
Gulf and EPA Sulfate Exchange—
Another cooperative program was conducted with EPA to evaluate the
sulfate analysis procedure. Six sulfate extract exchange samples were
analyzed by Gulf and by EPA. The results shown in Table 10 indicate
that the laboratories agreed very well.
26
-------
TABLE 10. SULFATE ANALYSIS COMPARISON
Sulfates, ug/Samples
Sample No. Gulf EPA
1-4 227*
1-8 464
Avg. 464 Avg. 464
II-2 120
II-8 121
Avg. 121 Avg. 121
III-l 48
III-2 52_
Avg. 50 Avg. 51
Outlier
- OPERATIONAL
The following describes the operational procedure followed with
each vehicle.
Vehicle Preparation
When new cars were used, they were operated in normal over-the-road
service for approximately 6500 km (4000 mi) to break in and condition
the engine. Rented or borrowed cars had already been driven in this
manner. The vehicles were then inspected for both tire and exhaust
system condition. A record was made of the car's odometer, the serial
numbers of the carburetor, distributor, transmission, and rear axle.
The rear axle ratio was measured and the emission control system was
described. Any defective parts were replaced. The cars were then
weighed with fuel tanks adjusted to one-fourth full. A Marmon flange
was attached to the tailpipe to provide a sealed connection to the
exhaust system. Driving wheel tire pressures were adjusted to 310 kPa
(45 psi) and their description recorded. Spark plugs, points, condensers,
fuel filters, air filters, and PCV valves were replaced on the older
vehicles and replaced, if needed, on new cars. Ignition timing, emission
controls, carburetor, and choke settings were all adjusted after previously
checking in the "as received" condition. No adjustments were made on
27
-------
the prototype vehicles or the 1979 Dodge Aspen. The engine oil and oil
filters were changed except for the prototype Mercury and Buick. The
battery condition and antifreeze were checked to ensure proper operation
at cold temperatures. The air conditioning systems were checked for
proper operation. The fuel tanks were drained, flushed, and filled with
the preconditioning fuel.
Instrumentation of the cars consisted of installing thermocouples
to measure water jacket, carburetor air, engine oil and exhaust temperatures,
The water jacket thermocouples were usually installed at the location of
the manufacturer's temperature sending unit. In the case of the prototypes,
we were requested not to disturb these fittings so a wire thermocouple
was slid under the bypass hose and clamped into the coolant stream. The
oil temperature was measured by a sealed dipstick thermocouple the same
length as the dip-stick and installed in the dipstick access hole. The
carburetor inlet air temperature was measured at the inlet port of the
air cleaner. Except for the prototype vehicles and the 1979 Dodge, the
exhaust gas thermocouples were installed in the exhaust stream through
airtight gas taps. On catalyst equipped cars, thermocouples were
installed approximately 5 cm (2 in) ahead of and behind the catalyst.
If more than one catalyst was used, before and after thermocouples were
installed for each catalyst. On noncatalyst cars, only one thermocouple
was installed 50 cm (20 in) downstream from the exhaust manifold junction
with the tailpipe. With the prototype cars and the 1979 Dodge, we were
not permitted to drill holes in the exhaust system. In these cases
outside surface-mounted thermocouples were installed at the selected
locations, and skin temperatures, not the exhaust gas temperatures, were
measured.
Vehicle Preconditioning
All of the vehicles except the prototypes and the 1979 Dodge Aspen
were preconditioned by being driven for 1600 km (1000 mi) on a Clayton
dynamometer. The preconditioning fuel containing 0.03% sulfur was used
for conducting the EPA Durability Driving Schedule (11). Cycle control
was established by using tape recorded audible instructions to the
driver. The prototype 1980 Mercury and 1980 Buick vehicles were each
given a 160 km (100 m) preconditioning run and the prototype Datsun and
1979 Dodge Aspen were each given a 400 km (250 mi) preconditioning run.
After preconditioning, the cars were moved to the test cell and mounted
on the chassis dynamometer for testing.
Driving Cycles
Initially, four different driving cycles were involved in the
testing sequence. After the first six cars, the New York City Cycle
replaced the Federal Short Tests.
28
-------
Federal Test Procedure--
The EPA Urban Dynamometer Driving Schedule published in the Federal
Register (12) was used as the Federal Test Procedure at each test temperature.
It is of 1371 sec. duration and the distance traveled is 12.1 km (7.5 mi).
After a ten-minute soak period, the first 505 seconds of the schedule is
repeated for a total traveled distance of 17.86 km (11.10 mi).
Highway Fuel Economy Test--
This driving schedule also appears in the Federal Register (13),
and it was used at each test condition. It was not preceded by a conditioning
run but followed either the Federal Test Procedure or the Sulfate Emission
Test. Total sampling time is 765 seconds and distance traveled is 16.48
km (10.24 mi).
Sulfate Emission Test--
Labeled the EPA Congested Freeway Driving Schedule, this cycle is
1398 seconds in duration and the distance traveled is 21.72 km (13.50 mi).
When it was run in the testing sequence, it followed the Federal Test
Procedure.
Federal Short Tests--
These tests consisted of a Federal Short Cycle (FSC), Federal 3
Mode (F3M), and a 2500 RPM unloaded test. The FSC is a nine-mode test
of 125 second duration with a distance traveled of 1.21 km (0.75 mi) as
shown in Table 11.
TABLE 11. FEDERAL SHORT CYCLE DRIVING SCHEDULE
Mode* Time in Mode (sees)
0-26 km/h ( 0-16 mph) acceleration 6
26-47 km/h (16-29 mph) acceleration 23
47 km/h (29 mph) cruise 10
47-60 km/h (29-37 mph) acceleration 18
60-68 km/h (37-42 mph) acceleration 4.5
68-60 km/h (42-37 mph) deceleration 2.5
60-32 km/h (37-20 mph) deceleration 32
32-0 km/h (20-0 mph) deceleration 7.5
idle 21.5
Total 125.0 seconds
The dynamometer loadings and transmission shift
points follow the procedure as required for the
75 FTP.
29
-------
The F3M consists of 80 km/h (50 mph) and 48 km/h (30 mph) steady-
state cruises with the dynamometer loaded to simulate the average power
which occurs at the respective speeds of the 1975 FTP as shown in
Table 12. The dynamometer inertia weights are disengaged. The third
mode of the F3M is conducted at idle with the automatic transmission in
neutral and then in drive. The vehicle is operated in each mode for
approximately one minute until the emissions stabilize. At test temperatures
of 90°F (32°C) and above, it is necessary to turn on the cooling fan to
prevent the engine from overheating. The hoods of the vehicles remained
closed for all tests.
TABLE 12. FEDERALS MODE OPERATING CONDITIONS
Vehicle Inertia
Weight Class
High Speed Mode Low Speed Mode
Transmission Speed Load Speed Load Idle
Range mph hp mph hp Mode
Up to 2500 Ib
2501 to 3500 Ib
3501 to 3500 Ib
Above 4501 Ib
In drive or 50 21 30 9
lower gear
for 30 mph
test
In drive or 50 26 30 12
high gear
In drive or 50 31 30 15
high gear
In drive or 50 36 30 18
high gear
Automatic
transmission
in neutral
and in drive
The 2500 rpm unloaded test was run with the transmission in neutral
and the throttle held open to hold the engine at 2500 -100 rpm until an
exhaust sample was taken. The engine was then idled at closed throttle
in neutral for another exhaust sample reading.
New York City Cycle--
Starting with the seventh car, the Federal Short Tests were replaced
by the New York City Cycle (NYCC). This cycle is 599 seconds in duration
and a distance of 1.90 km (1.18 mi) is traveled. The average speed is
11.41 km/h (7.08 mph) with a maximum speed of 44.6 km/h (27.7 mph). The
driving schedule was provided by the EPA. The driving charts for the
driver's aid were made using a computer plotter.
.30
-------
Temperature Sequence and Tests Required
Replicate valid tests were conducted with each car at each test
temperature. Cars equipped with air conditioning had replicate valid
tests run at 80, 90, and 110°F (27, 32, and 43°C) with the vehicle air
conditioner in operation and set to deliver maximum cooling. Vehicles
are numbered in the order of testing. Cars 1 through 7 and 10 through
14 followed a schedule outlined in the original scope of work, but the
NYCC was run in place of the Federal Short Tests in cars 7 through 14.
Cars 8 and 9 were requested to have a varying schedule due to program
goals and vehicle availability. These schedules are listed in Tables 13
and 14.
TABLE 13. TEMPERATURE SEQUENCE $ TEST CYCLES FOR CARS
1-7, § 10-14
Temp. °F (°C)
(Cars 1-6)
75 FTP SET HFET FST
(Cars 7, 10-14)
NYCC
60 (16) X - X - X
70 (21) X - X
80 (27) X X X X X
80 AC (27) X X X - X
90 (32) X - X -
90 AC (32) X - X -
110 (43) X X X X X
110 AC (43) X X X - X
110 AC (43) X X X - X
110 (43) X X X X X
90 AC (32) X - X -
90 (32) X - X -
80 AC (27) X X X - X
80 (27) X X X X X
70 (21) X - X -
60 (16) X - X - X
40 (4) X X X X
20 (-7) X - X - X
0 (-18) X X X X
0 (-18) X X X X
20 (-7) X - X - X
40 (4) X X X X
X = test run
- = test not run
-------
TABLE 14. TEMPERATURE SEQUENCE AND TEST CYCLES FOR CARS 8 AND 9
Temp. °F (°C)75 FTP'SETHFETNYCC
40
20
20
90
90 AC
110
110 AC
110 AC
110
80
80 AC
70
60
70
80
(4)
(-7)
(-7)
(32]
(32)
(43)
(43)
(43)
(43)
(27)
(27)
(21)
(16)
(21)
(27)
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
-
-
-
X
X
X
X
X
X
-
-
-
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
-
-
X
X
X
X
X
X
-
X
-
X
When fuel changes were made, the cars were removed from the test
cell, the fuel tanks drained and flushed, and then filled with the next
test fuel and again placed on the dynamometer. Two FTP test cycles were
driven to condition the vehicle when fuel was changed or added or when
there was a shutdown of 36 hours or more. In normal operation, the
regular testing sequence constituted the conditioning for the next day's
run. Any tests that were declared void were repeated in their entirety.
The speed/time tolerances listed in the Federal Register (14) were
adhered to for all testing. If any of the tests within a test set were
completed satisfactorily, the data were reported. Only one set of
tests was conducted daily resulting in a soak period from 20 to 24
hours.
Deviations from Federal Test Procedures
For this entire program, four variances from the regulated procedures
were in effect. These are: the evaporative emission test normally
conducted with the FTP was omitted; the hoods of the cars were closed
and the cooling air was matched to the vehicle speed; the 10% road load
increment for AC equipped cars was not used; and in addition to humidity-
corrected NOX (NOXC), measured NOX was reported.
Calibrations
Before the test vehicle was placed on the dynamometer, the inertia
weights, road load horsepower at 80 km/h (50 mph) and the loaded horsepower
required for the Federal 3 Mode test were determined. The corresponding
dynamometer settings were made and calibrations performed with the
torque system and dynamometer coast down procedure. All of the analytical
32
-------
instruments and the CVS unit were calibrated using the Federal Register
procedures (15).
Daily Test Operation
The test cell temperatures and the humidities for the previous 12-
hour period were checked to be sure they were within limits before
testing began. The sequence of procedures used varied in a specific
manner given in Tables 13 and 14. If a certain procedure was not to be
run at the prevailing temperature, it was skipped and the next procedure
in the sequence was run.
Federal Test Procedure--
The FTP was always run first. Regulated emissions were sampled by
the CVS three-bag procedure. In addition to the normal analysis for HC,
CO, C02, and NOX, samples from each of the three diluted exhaust bags
were extracted for analyses using a gas chromatograph to measure individual
hydrocarbons. During this FTP three-phase test, separate sample lines
from the CVS-diluted-exhaust supplied the sample gas to the aldehyde and
hydrogen sulfide impingers.
The 12-channel L&N temperature recorder was on for the entire daily
testing sequence. When the sampler was activated for the start of the
test, the Doric temperature recorder began recording the exhaust gas
temperature and time intervals. If the vehicle had just one catalyst,
only two (before and after) temperatures were recorded and the time
intervals were one second. If four temperatures were recorded, the time
interval was two seconds; and if six, intervals of four seconds were
obtained. When the exhaust temperature out of the catalyst exceeded the
exhaust temperature into the catalyst, this was called light-off time
and the recorder was reset to record the remainder of the test at one-
minute intervals. As soon as each phase of the FTP was completed, the
sample and dilution air bags were analyzed. During the driving cycle
the driver made comments on the vehicle driveability. These were recorded
along with the idle rpm and vacuum readings obtained at the initial idle
in "neutral" and the idle in "drive" after the first mode of the driving
schedule. After completing the sampling period for the FTP, the driver
let the engine idle in neutral while the driver's aid charts were
changed and the sampling system prepared for the next test. Maximum
elapsed time between procedures was three minutes.
Sulfate Emission Test--
The SET was run next if it was scheduled. If it was not scheduled,
the next test (HFET) was run. To run the SET, the exhaust from the
vehicle was directed into the dilution tunnel. At a command from the
driver, the CVS sampler and the particulate and sulfate sampling system
were activated. Two sample probes in the dilution tunnel provided two
separate filter samples from this test. The filter flow rate was held
constant to provide an isokinetic flow for the entire test. At the
33
-------
conclusion of the SET, the driver again let the engine idle in neutral
while the driver's aid charts were changed and the sampling system
prepared for the next procedure. The exhaust flow was changed to bypass
the dilution tunnel and the CVS bags removed for normal analysis of HC,
CO, CO^. and NOX. The maximum time between procedures was three minutes.
Highway Fuel Economy Test--
At a command from the driver, the HFET sampling was begun. At the
conclusion of this test, the driver stopped the engine for three minutes
while the driver's aid charts were changed and the sampling system
prepared for the next test. The CVS bags were analyzed in the same
manner as for the FTP.
Federal Short Tests/New York City Cycle—
The FSC was run next for the first six test vehicles if it was
scheduled. For the last eight vehicles tested, the NYCC could be on the
schedule and would be conducted at this time. If either test was scheduled,
the driver would start the engine after a three minute shutdown and idle
in neutral for three minutes. The sampling period for either the FSC or
NYCC would then begin. At the conclusion of the NYCC procedure, testing
for the day was terminated. When the FSC was run, the driver would stop
the engine for three minutes, disengage the dynamometer inertia weights,
turn off the vehicle cooling air (wind tunnel) and preset the electrical
dynamometer load for the F3M test. The FSC sample bags were analyzed in
the same manner as they were for the SET and HFET.
Federal 3 Mode--
After three minutes downtime, the engine was started and idled in
neutral for three minutes before starting the loaded cruise conditions
for the F3M. For the remainder of the testing, raw exhaust only is
analyzed. The sample was obtained through the stainless steel line
inside the flex tubing attached to the vehicle tail pipe. The exhaust
was analyzed for HC, CO, and NOX using the Beckman and Thermo-Electron
instruments. Simultaneously, the raw exhaust was analyzed for HC and
CO using the Stewart-Warner garage-type analyzer. The 80 km/h (50 mph)
cruise was run first. When the emissions stabilized (approximately one
minute) all readings were recorded and the 48 km/h (30 mph) mode was
run. The idle mode was then run, first in neutral and then in drive
with wheels braked on automatic transmission cars. If the engine water
or catalyst temperatures exceeded safe limits, the dynamometer cooling
air was used. The 2500 rpm unloaded test was then performed. Another
set of readings at idle in neutral were obtained. This concluded the
testing for the day.
Data Handling--
All of the temperature and humidity recording charts were removed,
identified and placed in a packet labeled with the vehicle and test
numbers. The Visicorder chart with the regulated emission analysis
34
-------
results from the instrument bench was manually converted to concentrations
and these data entered on computer input sheets. The tread roll revolution
counts from all of the cycles were converted to miles and the average
temperatures necessary for flow corrections were also entered. Later,
when all of the unregulated emission analysis information was received,
the computer input sheets were completed, cards were punched and sent to
the main computer for processing. Temperature plots of the catalyst
"out" temperature versus time of the FTP were made. The plot starts
when the catalyst "in" temperature reached 200°F (90°C) and continues at
twelve-second intervals until light-off is reached, then continues at
one minute intervals for the remainder of the test. The maximum and
minimum temperatures of the other driving cycles were recorded but not
plotted. The drivers charts with inked recordings of the actual cycle
operation were checked for driving errors. If errors were determined,
the day's testing was rescheduled for the following day, otherwise the
test cell was set for the next scheduled temperature. All of the data
were then placed in their packet and filed for future handling.
ANALYTICAL
Detailed procedures for component analysis and reporting methods
are contained in the Federal Register and EPA Publications.
Regulated Emissions
CO, C02, HC, NOX (and NOXC) were sampled, analyzed, and calculated
as required by the Federal Register (16). Calibration tests of the
analytical and sampling instruments were also performed as required.
The frequency of these calibrations was varied slightly so they would
occur at the start of testing for each car.
The fuel economy results were calculated using the carbon balance
method described in the Federal Register.(17)
Unregulated Emissions
Individual Hydrocarbons-
Gas chromatography was used to detect and measure C, through C1?
hydrocarbon components. These gas samples were obtained from each of
the three diluted exhaust bags collected during the FTP.
A Perkin-Elmer 900 chromatograph was modified for the rapid routine
analysis of automotive exhausts and similar samples. The apparatus and
operating procedure are modeled after the proposed Standard CRC-APRAC
Chromatographic Method for Automobile Exhaust (18). However, other
modifications were made whenever they seemed advantageous.
Exhaust analyses can be made over a concentration range of 50-2000
ppmc with a mimumum reproducible detection of about 1 ppmc per component.
Liquid samples such as gasoline fuels and condensed fuel vapors can be
35
-------
blended in cylinders with nitrogen to 500-2000 ppmc and analyzed as a
gaseous blend. The analysis of C, and Cp hydrocarbons is performed on
packed columns while an open tubular column is used for C~ through C-.^
components.
Aldehydes--
The procedure for the measurement of carbonyl compounds in exhaust
by the 2,4-Dinitrophenylhydrazine (DNPH) method was used for this program.
A composite sample from the three phases of the FTP was analyzed by a
modification of the procedure shown in reference (19).
Hydrogen Sulfide--
A gas chromatographic procedure was used for the first four vehicles
tested. No H~S was detected with this method of analyzing a diluted
exhaust bag sample. It was later learned that N02 apparently reacts
with HpS. Thereafter, a procedure entitled "The Measurement of Hydrogen
Sulfide in Exhaust," published by the Department of Emissions Research,
Southwest Research Institute, was used (20). It is accomplished by
passing the diluted exhaust through glass impingers containing a cadmium
hydroxide solution. A composite sample from the three phases of the FTP
was taken. The absorbing solution is treated with N, N dimethyl-paraphenylene
diamine sulfate and ferric ammonium sulfate. The highly colored methylene
blue compound is formed and analyzed with a colorimeter.
Sulfate and Particulates--
Within one hour of the sulfate test, the filters are removed from
the collection system and placed in an open petri dish. This dish is
then placed in a desiccator and exposed to concentrated ammonium hydroxide
(NH.OH) vapors for at least 30 minutes. The sulfuric acid (H^SO,) is
thus converted to ammonium sulfate and water. The water quicRly evaporates
from the filters and their weight is stabilized within two days when
conditioned in the temperature and humidity-controlled weighing room.
The tare weight of the filter had been established prior to the test and
the weight gain was attributed to particulates and ammonium sulfate.
These filters were then processed and analyzed by using the barium
chloranilate system to obtain the sulfate equivalent mass on the filters
which is then corrected for the ammonia added. Two probes and filters
were used and, thus, two sets of results were obtained to check the
reliability of the system. The data were extremely close, so the average
only was reported.
36
-------
Section 5
RESULTS AND DISCUSSIONS
The individual test results are tabulated in Appendices A, B, and
C Appendix A contains individual test results on catalyst temperatures,
driveability, and emissions for each test procedure. Appendix B contains
graphs of the exhaust gas temperatures leaving the catalyst plotted
versus time from initial start. An indication of whether these temperatures
were higher than those entering the catalyst is also given. Appendix C
contains all of the component chromatographic data obtained using the
1975 Federal Test Procedure (FTP).
The discussions which follow are based on the results shown in the
summary tables and figures included in the text. In the figures, the
average emissions for each car on each test cycle are plotted against
ambient test temperatures. In the tables, periods represent test conditions
that were not run, either because there was no air conditioner or because
a triplicate test was run at one or more temperatures and not at the
remaining temperatures.
The 49 State and California emission standards that these test cars
were designed to meet at temperatures from 68°F (20°C) to 86°F (30°C)
are shown in Table 15. v
TABLE 15. 49 STATE AND CALIFORNIA EMISSION STANDARDS, g/km
49 State
1972*
1974*
1977
1978
1979
1980
HC
1.88
1.88
0.93
0.93
0.93
0.25
CO
17.5
17.5
9.3
9.3
9.3
4.35
NOX
,__
1.93
1.24
1.24
1.24
1.24
HC
1.77
1.77
0.25
0.25
0.25
0.25
California
CO
17.5
17.5
5.6
5.6
5.6
5.7
NOX
1.93
1.27
0.93
0.93
0.93
0.62
Calculated on the EPA approved equivalency basis
for the 1975 Federal Test Procedure.
37
-------
EMISSIONS
Hydrocarbons (HC)
Figure 4 shows the average hydrocarbon emission results for each of
the three phases of the Federal Test Procedure (FTP) by car. Figure 5
shows the average emissions for the Composite FTP, the Highway Fuel
Economy Test, the Sulfate Emission Test and either the Federal Short
Cycle or the New York City Cycle, depending on which of the two tests
was run. All tests run without the vehicle air conditioner being used
are connected by a line through their corresponding symbols. Results
from the tests where the air-conditioners were used cars have corresponding
symbols plotted, but do not have connecting lines.
Federal Test Procedure - Cold Transient Phase - HC--
Table 16 summarizes the hydrocarbon emission data in grams per
kilometer (g/km) for the cold transient phase (C-TR) of the Federal Test
Procedure. This condition, where the car was soaked at least 12 hours
and normally 24 hours, showed the greater variability in emissions and
in repeatability. If stalls or hesitations, occurred, hydrocarbons
increased.
The first three cars listed in Table 16 were noncatalyst cars.
Their HC emissions were the highest at 0°F (-18°C).or 20°F (-7°C).
This was true of all of the cars tested. The minimum hydrocarbons
occurred at 90°F (32°C) for the 1972 and 1974 Chevrolets and 110°F
(43°C) for the Honda. The use of air conditioning in the 1972 Chevrolet
increased its hydrocarbon emissions at 80 and 90°F (27 and 32°C) but not
at 110°F (43°C).
The next three cars (the 1977 Ford, the 1977 Plymouth, and the 1978
Buick-turbocharged) were all certified to meet current 49 State emission
standards. The 1978 Buick had exceptionally high hydrocarbon emissions
at 0, 20, and 40°F (-18, -7, and 4°C). The (49 State) Plymouth was high
in hydrocarbon emissions at 0°F (-18°C) but decreased to a very low
value at 110°F (43°C). The use of air conditioning generally produced
more hydrocarbons with the Ford, but less with the Buick. The Plymouth
had no air conditioning.
The next five cars (the 1977 Plymouth, the 1978 Chevrolet, the 1978
Ford, the 1978 VW, and the 1979 Dodge) were all certified to meet California
emission standards. These five cars generally had lower hydrocarbon
emissions at all temperatures than the three preceding 49-state cars.
The Chevrolet, the Ford, and the Dodge produced high hydrocarbon emissions
at 0°F (-18°C). The VW, at 0°F (-18°C), had the lowest hydrocarbon
emissions of all the cars tested. Its emissions increased some at 110°F
(43°C) from its low which occurred between 60 and 90°F (16 and 32°C).
The last three cars (the Mercury, the Buick and the Datsun) were
all prototype cars designed to meet 1980 or later emission standards.
38
-------
1972 OCVWLET IHPHA
19711 CMEVWLET INPSUI
in :_:_ O FT? Cold Tr«n»l«nt_j_
FTP St«blll«cd =j=
FTP Hoc Tr«n«teoc
: hri
IX
1977 rtUWB CIVIC 19 STATE
F o 10
C-II -T
10 ico in '
O-l
1977 FWD LTD <49 STRTE
1977 H.TWUTN FlUT U9S
F 0
C-ll
10D 120 ',
• «9 !
1976 BUiCK V6 TURBOCHRHGE
i
F 0 2Q tO tO •) 100 120
(Data points not connected by a line are the results of air conditioning runs.)
Figure 4. Effect of ambient temperature on hydrocarbon emissions for the three phases of the FTP.
-------
PIP Cold Treulut
PTP Stabilised
1978 «M I««IT OH FU-INJ
-
C -It -I t
T& nt&oa
DBTSUH PtWtOTTfl
*—' '' I i ! I t~
!—(-
•3
FM
' (>
f o at
e-ii -»
-------
1972 CHEVROLET IWflLfl
i
O FTP Composite
^ O HFET I
A SET :
O FSC :
1000
100
c
£.
* I0
c
1
0.1
r-
-
— i
•
~
i—
r—
—
n
c
A
O
=f
— — •
— —
—
FTP Composite
HFET
SET
' FSC
>r
t
•=a
k^.
P—
=4
H
H
M
ts
d
l_
1977 HONOR CIVIC 49 STRTE
f 0 20 40 GO BO 100 12C
C- " " T& wl'.ENT " "
—
—8
f
t-
) —
C
z
c
=e
— i
— i
FTP Composite
» HFET
k SET
> NYCC
l^
)
*\
=
N
h
¥-"
N
— -4
Ur
M
— I
M
^—-
M
— •
i —
^
0 20 10 60 80 100 120
1977 FORD LTD 19 STflTE
Q FTP Composite
O HFET :
A SET :
O FSC :
1000
100
c
i
S
2 10
fcf
\
c
1
0.1
—
1=
— (
(
0
fcc
>—
c
c
/
*1
]
> I
i .
V j
L-
•=;
FT!
IF£
>E1
t
L±=
— n
HO
' C
T
^
s=-
— .,
Offl]
>
-^
^
GO
103
|
-— .
-^
it
-—,
i -4
'eo
•
/
f1
/
r*
,/
/j
/•
)
120
1976 BUICK V6 TURBOCHflRCE
—
Ei
r
c
A
C
i
~<
—
i
B
k S
> t<
^ —
=9
f—
TP
[FE1
El
rec
— n
— <
—
Cc
T
C
^s
**~
>~^
nip
^j
1 — (
OS
1^
1— (
Lte
<
h
H
,
j
/
—
./
T*
/
/
,/*
r
i
L
^-
-i
t-
b a no GO n in 120
(Data points not connected by a line are the results of air conditioning runs.)
Figure 5. Effect of ambient temperature on hydrocarbon emissions for different test cycles.
-------
1977 PLYMOUTH FURT CRLIF
1978 CHEVROLET ST H-CflLIF
1978 FORD PINTO CRL 3 NflT
O FTP Composite
O HFET
A SET
O FSC
5fe
C-18 -7 II 16
TEHP »I5EMT * "
~~.'-t.~
D FTP Conposite
O HFET
A ^ET
O FSC
PH^'lENT
i
Q FTP Composite
O HFET
A SET ;
C-18 -7 1 16
1
1000
100
10
1
"•',
1
\
O FTP Composite
O HFET
A SET
O SYCC
3
t
***
fr Of Hf CO
U-
^
^
/
•A
$
$4
i
/
T*
r eo 100 120
C -!• -7 »
TEHP^ENT" "
K)
1979 DODGE RSPCN CBLIF.
1980 MERCURT PROTOTTPE
1380 BUICK RECflL PROTOTTP
OHTSUN PROTOTTPE
Q FTP Composite
O HFET
A SET
Q NYCC
Q FTP Composite.
O HFET
A SET
D:
i
4
— .
-Q FTP Composite
O HFET
A SET
O NYCC
— "T,
—
f=
kl
h-
t
-si
M
H
^1
kl
^
Sr=
•uS
^
i-(
— <
1
te
' TEKP KHflEMT " "
(Data points not connected by a line are the results of air conditioning runs.)
Figure 5. (continued)
-------
The Mercury and the Buick were not tested at 0°F (-18°C) and only
single tests were conducted at five of the test conditions. This was
done to expedite the return of the cars. Hydrocarbon emissions from all
three cars were generally low, but all showed some increase in emissions
at the lower temperatures.
TAULt 16
TCNPEUATUMt F O
13.08
12.49
7.56
8.29
6.H9
14.94
13.63
22.4?
24.no
23.64
4 .83
S. Hh
b.34
16. Ob
10. 6t>
8.36
9.02
12.01
9.60
3. SO
3.34
IO.&7
7.43
9.00
•
*
4. JO
3.f2
4.01
20
7.27
7.31
7.29
22.90
13.06
17.99
17.00
9.00
13.00
6. 45
4.62
6.79
10.11
16.69
14.29
15.49
2.32
2.23
2.S2
2. SI
4.64
7. Ob
S.Bb
2.0H
1 .95
2.01
7.02
2.88
4.95
6.90
7.61
7.30
2.96
2.5H
2.77
2.32
2.74
2.t>3
riP <-HLI> IfaANIiir.NI
40
4.*1|
6.2M
4.90
3.42
10.91
7.17
3.49
17.09
10.29
3.2B
3. IS
3.22
2.76
10.91
7.M4
16.27
12.05
1 .53
1.37
1.21
3.24
3.95
3.60
1.31
I.J.I
1 . .12
3. .IV
4.60
4 .00
3.61
3.6S
2. JO
2. JO
1 .VI
1 .40
1.49
60
1 161
2.90
J.ll
2.97
2. no
3.14
3.02
1.90
2.3U
2.1.1
6.01
3.23
4.14
3.76
3.9S
1.20
O.HB
I.Ob
O.B2
1 .06
0.94
I.I 1
l.fjH
1.34
1.19
1.19
1.34
I.J4
1 . I'J
1 .07
70
1211
2.44
2. HO
2.02
2. 72
2.2
O. 7O
3.64
I.HI
3.32
2.72
3.02
O.76
1.43
1.16
1 .29
o.nn
0.91
0.90
O.64
2.76
1.70
0.70
1.02
O.f>6
0.79
0. 74
0.77
0.72
0. 7H
- IIYDUUCAMIONS (./KM
no
(2/1
2.19
2.74
3.15
2.34
2.7!,
1.70
2.02
1 .86
1.95
1.97
1.96
2.30
1.77
2.03
2.43
2.12
2.28
.
0.61
1.66
0.-.7
l.ll
0.71
0.9O
O.84
0.50
2.01
1.26
0.77
0.72
0.74
0.73
O.M-.
0.71
O.S9
O.IS7
0.63
80AC
(271
3.01
m
•
'•
2.05
2.06
2.06
2.30
2.08
*
2.19
O.72
0.7S
1.35
0.92
1 .14
f
0.64
1.64
1.14
O.B2
0.82
0.97
0.97
•
90
1321
1.97
2. 2O
2.09
2.38
2.17
2.27
1.32
1.31
1.31
1.61
1.53
I.S7
1.14
1 .4t>
1.29
1.52
1.74
1.63
0.79
0.76
0.77
0.6S
O.42
0.62
O.72
0.91
0.82
O.SS
0.73
0.64.
1.16
1.16
0.79
0.79
0.48
0.48
90AC
(321
2.46
2. 35
2.41
•
•
2.18
1.97
2.08
1 .47
1.98
1.7.1
O.73
I.IH
0.96
0.84
0.82
0.50
O.SI
O.SO
•
0.41
0.6b
O.S3
1.31
1.31
0.77
0.77
•
no IIOAC
(431 (431
2.39
2.53
2.46
3. OS
2.74
2.90
I.I 1
1.12
l.ll
2.13
1.84
I.9K
0.85
O.92
O.89
1.21
2.89
2. OS
O.S7
1 .16
O.FI6
1 . Jij
0.7/
1 .06
1.94
O. 76
c
l.3b
1.09
1 .26
1.17
0.60
0.66
0.63
2.12
1.72
1.92
0,7V
O.SH
0.60
O.SO
0.46
0.4U
2.10
2.34
2.22
•
.
2. OB
2.47
2.28
I.4S
0.99
1.14
1 .84
1.32
0.93
0.80
0.86
O.54
O.6O
0..60
0.6t-
•
0.71
0.74
0.72
0.93
1.04
0.98
O«74
0.57
0.66
•
-Federal Test Procedure - Stabilized Phase - HC--
Table 17 summarizes the results of the hydrocarbon emissions for
the stabilized phase (STAB) of the FTP. This phase, which continues
without shutdown from the cold transient phase, generally produced the
lowest emissions of the three phases. The cars, after 8.4 minutes
driving in the cold transient phase were warmed up substantially. This
is demonstrated by the low hydrocarbon emissions at 0 and 20°F (-18
43
-------
and -7°C) relative to corresponding temperatures of the proceeding cold
transient phase. Driveability problems were generally not encountered
during this phajse.
IAIILL ] 7
Tt'MCLBATUMt f
197? CMLVHOLET IMPALA
1974 CMtVROLET IMPALA
AVE
1977 HONUA CIVIC 49 STAIt
AVC
1977 fUUO LTD 49 STATE
AVC
1977 PLYMOUTH FURY 4OS
AVt
19/B HUICK V6 TURHOCMANGL
AVC.
1977 PLYMOUTH FUfcV CALIF
AVt
I97B CHtVNOLtT SI *-CALIF
AVf-
19/B FUND PINTO CAL 3 WAV
AVL:
1978 V* HAHbIT CAL HJ-INJ
AVt
1979 DUCJGb ASPLN CALIF.
AVE
I960 MEHCLDV PRUTOTVPC
AVC
l«80 6UICK KF.GAL PRIITOTVP
AVC
DAI1UN PHOTOTYPE
AVI
O
I-IM
1 .63
1 .',J
0.93
O.HI
m
O.ll/
2.J2
2.bb
7.44
1.01
1.07
0.96
1 .02
!..*»
0.12
t
1 .10
0. Jt*
O.Jfi
0.4O
0. JH
0.17
O.O/
O.O9
O.IJ
0.72
O.IH
0.36
1 .ul
O.U4
0.7b
0. JJ
1 .04
0.69
0.30
0..17
0.31
B
.
•
.
.
•
O.ll.
0.16
.
0.17
20
<-7>
1.28
0.9B
0.94
m
0.96
2.66
2.27
2.46
0.6b
t
0.60
o.&n
I.OI
4
0.79
0.36
O.JO
•
O.OH
O.O8
O.OH
O.ltt
0.28
0.23
O.b J
O.66
O.bO
0.13
O.I 1
0.35
O.2I
0.2B
O.29
0.71
0.27
O.lb
o.to
0.12
0.14
0.17
.
0.16
r i f s IAHILI/I a
40
<4>
. 12
.JH
.4 1
^
1.40
0.4.1
O.b3
0.4U
o. j«
O.t?
.
0.4b
0.27
O.b6
. 4
0.39
0. 16
0.2M
•
O.O/
0.07
0. l'>
O.IH
0. Ill
0.24
O.b3
0. Jn
0.13
O.I 1
0.24
O. 19
0.21
0.2b
.
0.2%
O.OI
.
0.01
O.I /
O.lb
0.16
0.16
6O
(16)
1. J7
1 .2.1
1 .6b
V. .46
l./ll
0.44
O.*>7
0.4U
0.4 7
0.44
.
0.46
0.2K
O.JO
O.JI
0. .13
U.i-l
0.2!.
•
O .6 /
0.14
O. IO
O.CJH
0.70
0.14
O. J6
.
0. 14
0.14
0.2'..
0.24
0.7t.
O.lb
.
O.lb
0.06
.
0.06
O.IH
O.K.
.
0.17
70
( :• 1 1
1.36
I.2J
7.O6
.
1 .64
O.'jO
O.bl
O.bl
0.49
O.60
.
O.b4
O .06
0.66
0.21
O.JI
0.2U
•
0.0.)
O. 14
^
O.OX
0. 12
C. II
0.12
O.JI
O.JO
•
O.16
0.17
0.2J
0.74
0.74
O.I/
O.lb
O. 16
0.06
0.06
0.06
0.14
O.IJ
.
O.IJ
- MViJW
HO
IS- 71
.Jfi
.43
.4 1
.
1 .47
O.bO
0.48
O.49
O . 4 H
0.46
.
0.4b
0.23
0. I/
.
0.20
0.20
0.23
•
O.O4
0 .O'j
m
O.Ob
O.I 1
0. 18
0. 14
O.4I
O.JI
•
0.7b
O.I'J
0.22
O.7I
O. 14
0.21
0.1 /
O.OH
O.O/
O.O/
0. 13
0.13
.
O.IJ
OCABHONS GXKM
aoAc
(27>
1 .40
1 . JO
.
.
•
.
.
•
0.67
0.77
•
O.'/2
.
.
.
•
O.7 1
O.V'I
*
O.IJ
O. 16
B
O.lb
O.Ofl
O.ll
0.10
O.JH
O.77
•
.
-
0.22
0.21
O.2I
0. IB
.
0.18
0.06
.
0.06
f
.
.
r •
90
132)
.18
.32
.43
•
1 «b4
O.b3
O.b7
O.b2
O.bO
0.42
.
0.46
0.22
0.7«
•
0.76
O.2 J
0.40
O.O6
0. 10
.
0.10
0.10
0. 1 3
0.12
0.37
O.23
O.IH
0 .2 6
0.31
O. t>2
0.4 1
0.22
0.21
O.22
0.22
.
O.22
0.09
.
0.09
0.12
0.13
.
0.13
90AC 110 1IOAC
(J2> (43)
1 .bl 1 .49
1 .48 1 .66
. 1 .22
. 1 .40
. .
. 1 »3 1
0.71
. O.6.I
. 0.67
1.21 I.J6
O.F4 I.Oh
. •
1.02 1.22
O.Vb
. 0.67
. .
. O.b 1
O.?b O.4J
0.24 0.32
0.7J 0.10
O.lb O.I->
, .
0 . 1 0 0 . 1 J
0.10 0.11
O.OO O.lb
0.06 0.16
0.20 0.27
0.17 0.39
0.19 O.3I
0. 7V
. o i a j
. o.ei
O.2O O.29
0.22 0.2fi
0.21 0.27
O.lb O.lb
O.I /
O.lb 0.16
0.06 0.09
O.O/
0.06 O.OH
0.14
. O.IJ
. .
0.14
(43)
1 «9b
2.36
2.16
•
.
•
.
•
•
2.07
2.1 1
•
2.09
.
•
.
•
0.37
0.33
•
O.M
O.3b
0.36
0.17
O.lb
0.16
0.19
0.19
0.34
0.24
•
0.24
0.2?
0.23
O.lb
O.I 1
0.13
0.17
0.16
0.16
m
_
.
•
The stabilized phase data demonstrate that the emissions were
reduced as the vehicles were designed to meet the more stringent standards.
This was generally true at all temperatures.
The effect of the air conditioners (AC) in operation can still be
observed in this phase. The 1972 Chevrolet, the 1977 Ford, and the 1977
(California) Plymouth all had higher hydrocarbon emissions with their AC
on. However, the 1978 California Pinto had reduced hydrocarbon emissions
with its AC on. The remaining AC cars showed little effect from the use
of their AC.
44
-------
Federal Test Procedure - Hot Transient Phase - HC--
Table 18 shows the average hydrocarbon emissions for the hot
transient phase (H-TR) of the FTP. This phase includes a start after a
ten-minute soak following the stabilized phase. Therefore, hydrocarbon
emissions in this phase were more than those in the stabilized phase.
Driveability problems did not usually occur during this phase. The
effect of reduced temperature was not pronounced in this phase unless
there was a starting or driveability problem, such as occurred with the
1978 Buick at 0°F (-18°C). Again, use of the air conditioners gave
mixed results. With a few cars, their use gave higher hydrocarbon
emissions while with the remaining ones they either had no effect or
gave less hydrocarbon emissions.
TABLE 18
FTP HUt TRANSIENT
- HVDHOCAUHONS G/KM
TEMPERATURE
1972 CHEVROLET IMPALA
AVb
1974 CHEVROLET IMPALA
F O
(Oi-ie> (
1.64
1.35
1 .49
1 .64
1.62
20
.54
.39
.47
.35
.69
4O
14)
.70
.52
.95
.54
60
116)
i.ae
1.69
1 .78
I.H8
2.01
7O
(21)
1.54
1.62
1.511
2.O5
1 .97
BO
<27>
1.59
1.89
1.74
2.98
2. BB
80AC
127)
2.04
l.bl
I.B2
.
"
90
(32)
1.93
1.74
2.92
2.95
9OAC
(32)
1.83
1.58
1.70
.
•
no
(43>
1.80
2.30
2.11
3.51
1 10AC
(43)
2.11
2.19
2.15
.
•
1974
1977
1977
1977
1978
1977
1978
1978
1970
1979
19BO
I9ao
CHEVROLET IMPALA
AVE
HONDA CIVIC 49 STATE
AVC
FORD LID 49 SIAfE
AVL
PLYMOUTH FUMY 495
AV6
BUICK Vb TUWBUCHAKGE
AVt
PLYMOUTH FUHV CALIF
AVE
CMtVBUUtT ST H-CAL1F
AVE
FURD PINTU CAL 3 WAY
AVt
VW MAUMIT CAL flf-IHJ
AVf
DUDU- ASPEN CALIF.
AVC
MtRCUMY PHOTOTYPE
AVE
BUICK REGAL PKUTDTYP
AVE
DA r SUN PHUTOIYPE
1 .64
1.62
1 .(>J
I.OJ
1 .05
1.04
O.HH
1 .01
1.19
1.03
1.23
0.77
f
1.00
1.45
8.95
e.ji
6.24
0.52
0.47
0.40
O.J4
0.31
0.41
0.44
O.4O
0.42
0.35
0.4.1
O.i'll
O-*"
.
.
•
^
.
.
0.2H
O.JJ
»
.35
.69
I.5Z
0.93
0.80
0.86
0.73
O.92
i
0.82
0.78
0.«8
f
O.BB
1.04
O.61
.
0.82
0.27
0.23
0.25
O.36
0.55
O.46
0.45
0.54
0.49
O.JO
O.JO
O.JO
0.33
o.:i9
O. J6
0.95
o.«a
0.11
O.J6
O.54
0.45
0.21
0.2B
.
:S
1.74
O.74
O.B3
0.79
O.A9
O.H5
,
0.87
0.4b
O. 74
^
O.60
0.72
.
0.65
0.25
0.21
0.2J
O.J2
O.JJ
O.l.J
O.JO
0.4H
B
O.JO
0. Jl
O. II
O.JI
O.JJ
0.4'J
O. 39
O.UH
.
O.SIB
0.27
.
0.77
0.2-1
0.24
0.26
I.H8
2.01
1 .90
I.9J
0.74
0.95
0.85
1.04
0.06
.
1.00
0.58
O.5J
O.6I
0.57
0.3H
0.51
.
0.44
0.67
0.42
^
0.55
O.lfc
0.2O
0.10
O.J'-,
O »5M
m
O.4 /
O • ."1 0
0.41
0.35
1:%.
o. jr.
0.50
.
0.5U
O.2 1
.
0.21
0.29
0 »? 3
.
2.O5
1 .97
2.OI
I.OO
0.80
0.9O
I.O9
.
1.16
0.21
0.62
0.51
0.45
0.40
0.52
.
0.46
0.39
0.37
f
0. 38
0.22
0.22
0.22
0.41
0.51
.
0.46
0.44
0.45
0.44
O. J4
0.34
0.4H
0.26
0.37
0.2?
0.26
0.24
O. 11
0.17
.
2.98
2.8B
2.93
o.ei>
0.77
O.nj
1.44
I.J5
•
1.39
0.76
O.56
.
O.b6
O.4I
0.84
.
0.63
0.52
0.50
.
0.51
0.23
0.27
0.25
0.45
.
O. J(>
0.5M
O.54
0.56
O.J/
0. Jf
"••"
3.49
O.b9
2.09
O.I')
o.?o
0.20
O. 17
0. IS*
.
•
•
.
.
•
1.43
1 .82
.
1.63
.
.
•
•
0.01
0,65
.
0.53
0.68
0.58
.
0.bJ
O.2O
0.18
0.10
0.43
0.28
.
O.J6
.
•
•
O. JH
0.4O
0.39
0.39
.
O.J9
0.15
.
0. 15
.
.
.
2.92
2.95
2.94
0.91
o.ao
O.86
1.29
I.JI
.
1.3O
O.72
0.6b
•
0.70
O.64
0.75
.
0.70
0.31
0.37
.
0.37
0.29
0.32
0.30
0.31
0.24
0.17
O.24
O.6O
0.73
O.67
0.41
O.39
0.40
0.67
.
0.6/
o.in
.
0.18
O.lb
0.16
.
*
•
.
•
•
2. 2O
1.77
.
1.99
.
•
.
•
0.7O
0.73
*
0.72
O.bb
0.4b
.
0.56
o.ie
0.12
0.15
0.22
0.2V
.
0.25
.
.
•
O.24
O.4 1
0.32
0.7(1
.
O.78
0.1H
.
0. le
.
.
.
3.51
2.99
3.25
0.94
0.96
O.95
2.25
2.28
•
2.27
1 .?/
1 .28
.
1 .27
1 .86
0.86
.
1 .36
o.ej
0.59
.
O.71
O.24
0.31
0.27
0.39
0.4H
.
O.4 3
1.13
1 . IO
1.16
0.4O
0.34
0.37
1.16
0.45
o.ao
0.37
0.26
0.32
0.2H
0.20
•
*
•
.
.
•
4.15
3.17
•
3.66
.
•
.
•
2.39
1.17
•
1.78
O.9I
1.30
1 .19
1 .14
0.24
0.30
0.30
0.34
0.27
0.45
0.35
.
.
•
0.42
0.41
0.42
O.63
0.40
0.52
0.36
0.47
0.42
.
.
.
45
-------
Federal Test Procedure - Composite Samples - HC--
Data on Hydrocarbon Emissions for composite samples of the FTP are
presented in Table 19. These values indicate whether or not a vehicle
is within certification limits. The emission standards are listed in
Table 15. Most of the cars met the hydrocarbon emission standards at
temperatures of 70 and 80°F (21 and 27°C).
TABLE. 19
TEMPfRATOBC F
197? CHI VROLET
i«74 CHEVROLET
(01
IMPALA
AVE
IMPALA
AVf
1977 HfJNOA CIVIC 49 iTATE
1977 FOMO LTD
I97H HUICK Vb
1977 PLYMOUTH
I97B CHLVHOLl
AVE
49 STATL
AVE
AVt
TUtmUfHAkC-E
AVf
F UR Y 1 AL 1 1-
AVF
T f.T W— CALIF
AVI:
AVt
0
-101
3.96
3. 75
3.Hb
5.O4
4.bi>
a
4. «5
3.9J
4. JO
4.11
2.32
t.fj
2. .17
4.1(1
3.141?
6.92
7.21
J'.L*
1.21
1.37
I.79
1 .fa
2.5O
3. or.
1 .17
1979 DUO Of ASPEN CALIF. ?..!•<
1980 NfuCUHY
1980 HtllCK HI:
[JAI SUN
PUUIUTYHE
AVt
&AL PHL, 1U1YP
AVI
MHUIUI Yf'f.
1 .77
m
.
'
.
1.03
0.94
•
20
(-71
2.58
2.59
2.58
5.50
3.b2
.
4.60
5.09
3.24
4.17
t.ai
1.54
1 .68
1.92
2.41
3.B9
3.24
3. 57
0.5b
0.59
O.58
O.HI
1.6.5
ol55
1.73
O.SI
I.B6
1.94
1 .90
O.7A
0.72
O . 7t*
0.01
o.r?
•
FTP COMPOSITE
40
(41
1 .98
2.1 7
2.07
1 .96
3.40
,
2.6M
1.15
3.9M
2.57
1.12
1. 13
o.fi?
1.79
1 »•>!»
3.-.I,
2.H?
0. J'j
O.4I
^
0. JB
0.4b
1 .04
0.4O
0.41
0.91
1 . 1'.
I.It,
.
I.IC,
O.t*
0. '..'.I
O.4H
0.4t>
0.44
60
I I6>
1.79
1.91
I.B5
1. 79
1.93
2.47
?.07
1.0?
1.17
1 .10
O.92
.
0.95
O. ft.
0.99
I.I 1
I.Ob
1 .03
1.05
0.41
O.4 J
.
O.4?
O.2V
U.Tk'J
O .40
O..II,
0.4 J
0.', /
n.4f.
.
O.4f,
o • :ir.
O. J<.
O.4 1
O. 34
0.37
7O
(2I>
1.63
1.72
I.6B
I.KO
2.13
.
1.9*.
I.OO
O.93
0.96
1 .Ol
1 .06
I.O4
O.73
O.b?
O.7I
O.B9
O.H3
O.Bb
O.2b
0.51
.
O.39
0.2M
o.v-
0.41
O.39
0.34
0.7R
0.36
0.3n
O.3t>
O.25
o.?:,
o.^t*
0.27
0.27
•
- HYDROCARBONS &/KM
BO
(27>
1.60
1.86
1.73
2.21
2.00
.
2.11
O.H5
o.att
O.Bb
1.04
1 .02
1.03
O.BO
O.70
0.71
0.7V
O.It
0.2b
O.?b
.
0.26
O.30
0.3b
o.-.v
0.47
0.4C.
O.JO
1. 17
0.4»
O.HI
0.24
0»?3
O.24
O.S.I
0.20
0. ?J>
80AC
(271
1.80
1.76
1.78
.
•
.
•
.
.
•
1.16
1 .32
1.24
.
*
•
0.72
O.71
0.72
0.41
O.4O
.
0.41
0.25
0.27
0 .26
0.59
O.ttO
.
0.3T>
0.4t>
0.37
.
0.37
0.27
0.27
.
.
•
9O
(321
1.55
1.64
1.59
2.15
2.00
.
2.07
0.79
O.76
0.78
0.95
O.B9
0.92
0.55
0.64
0.59
0.60
0.77
0.69
0.29
0.30
.
O.30
O.29
0.31
0.30
0.44
0.32
O.22
0 .4tl
0.34
0.31.
0.53
.
0.53
0.26
0.26
0.21
0.21
0.2 1
90AC
(32)
1.79
1.67
1.73
.
•
.
•
.
.
•
1.68
1 .32
1.50
.
',
•
0.62
0.73
0.6ft
0.45
O.44
.
0.45
0.28
0.23
O.27
0.27
0.27
.
0.25
0.36
0.30
O.56
.
O.Sb
0.24
O.24
.
•
•
no
(431
I.7T
2.12
1.95
2.22
2.1 1
.
2.16
0.85
0.82
0.84
1.76
1 .56
1.66
1.01
0 .89
0.95
0.98
I.OO
0.99
0.39
0.46
.
0.44
O.44
0.32
O.3B
0.62
0.49
0.55
O.94
1 .01
O.9R
O.J/I
0.3b
O.37
O.B2
0.56
0.69
O.3I
O.23
0.27
O.25
0.22
0.24
I10AC
<43>
2.02
2.31
2.17
.
•
.
•
.
.
•
2.63
2.47
2.55
.
.
•
1.14
0.76
0.95
0.56
O.85
0.89
0.77
0.35
0.34
O.34
0.30
0.29
: O.46
0.35
•
0.38
0.38
0.38
O.44
0.38
0.41
0.34
0.32
0.33
.
•
•
46
-------
Again, the hydrocarbon emissions for all cars were the highest at
0°F (-18°C) and were frequently quite high at 20°F (-7°C). The effect
of air conditioning was varied. Some cars, such as the 1972 Chevrolet,
the 1977 Ford, and the 1977 (California) Plymouth had increased hydrocarbon
emissions with AC on, while the other cars emissions were either variable
or showed little effect.
Highway Fuel Economy Test- HC—
While hydrocarbon emissions are not required to meet an emission
standard for any test other than the FTP, their level is of interest.
The Highway Fuel Economy Test (HFET) was run either following the FTP or
the Sulfate Emission Test (SET) after a three-minute maximum engine idle
period. Because the SET test was run only at 0, 40, 80, and 110°F
(-18, 4, 27, and 43°C) the cars running the HFET would be even more
stabilized at these temperatures since the HFET was always run following
the SET procedure. This effect is shown in Table 20 where the hydrocarbon
emissions at 0°F (-18°C) are close to those at 20°F (-7°C). Hydrocarbon
emission increases occurred at higher temperature in some of the vehicles
while others showed little change.
It was noted that test repeatability was much better in warmed up
engines than in cold engines. Even so, there were still substantial
deviations. While the California version cars and prototype car gave
the lowest hydrocarbon emissions, the 49 State cars were close behind.
The 1977 Honda without a catalyst was also close to the hydrocarbon
emission levels of the California cars.
Sulfate Emission Test - HC--
The Sulfate Emission Test (SET) was run immediately after the FTP
following a maximum three-minute engine idle. This moderately high-
speed continuous operation test gave hydrocarbon emissions that were
generally low as is shown in Table 21.
As expected, the 1972 and 1974 Chevrolets, without catalysts, had
the highest emissions. The 1977 Ford also had surprisingly high emissions.
Except in the 1977 Ford, the use of air conditioning had only a small
effect on hydrocarbon emissions.
47
-------
TABLE 20
MIGIWAY FUEL ECONOMY TEST - MYDHOCAHBONS G/KM
1972
1 974
1977
1977
lEMPEHATUXe F
O.b9
O.74
0.71
0.73
0.71
^
0.72
0.18
0.2b
0.22
0.4.1
O.2V
20
(-7)
0.76
0.74
0.75
O.69
O.BO
^
O.75
0.30
0.15
0.23
0.26
0.22
40
14)
0.77
0.7V
0.76
0.80
O.bb
.
0./3
O.IO
0.17
O.ll
0.22
0.27
( 16)
1 .Ob
0.94
0.99
0.8V
0.8V
O.H7
O.h8
0.14
0.12
O.I3
O.33
O.20
7O
121)
1.19
0.66
1.02
0.83
I.OI
.
O.92
0.14
0. 13
0.13
O.42
0.4O
8O
(27)
1.24
0.93
i.oa
O.Sb
O.9I
.
0.88
0. !•>
0.13
O.I4
O.M
O.4b
80AC
(27»
1.2b
0.76
I.OI
.
.
.
•
.
•
•
0.44
0.4b
90
(32)
1.17
0.66
1.03
0.99
O.6b
V
0.92
0.14
0.15
0.15
0.43
0.32
90 AC
132)
1.13
0.73
O.93
.
.
.
•
.
.
-
0.75
O.b4
110
(431
1.36
t.lft
1.27
I .00
0.84
*
0.92
0.2O
O.I8
0.19
1.61
1 .33
IIOAC
(43)
1 .43
1 .1 1
1.27
.
•
*
•
.
.
•
1.31
1 .99
1977
1977
1978
1977
1978
1978
1976
197V
1980
ICDO
FCIWO LTD 49 STATE
AVt
PLYMOUTH FURY 49S
AVL
BU UK Vb lUKUULHAKCt
AVt
PLYMOUTH FUI4V CALIF
AVC
CHEVROLET M * -CALIF
AVt
FOWL) PI Nil) CAL J HAY
AVC
VK WAHUI1 LAL FU-INJ
AVF
DODGE ASPFN CALIF.
AVf
MERCUUV PNOTOTYV€
AVL
HU1CK HECAL PkUTUTYP
AVL
BAT SUN PHOTOTYPE
AVt
0.«J
O.2V
0.27
O.JJ
O.2«
0.24
^
0.24
0.17
O.IW
O.iO
0« IV
O.Of
O.O7
0.07
OtlJ
O.l!>
0.13
o.on
O.IO
O.ll
a. on
o.oc
o .ut>
O.I/
0^11
O.li-
.
.
•
.
0.04
O.I2
O.IO
0.26
0.22
.
O.2&
0.21
0.21
f
0.21
O.lb
0.12
.
0.13
o.oe
o.os
0.06
O.ll
0.14
0.13
O.I 7
O.I3
.
O.Ob
O.07
O.Ob
O.I 1
O.IO
O.I 1
0.13
0. ie
O.lb
0.07
0. Ob
0.06
O.07
0.09
O.OB
0.22
0.27
.
0.24
O.IH
0.^3
•
0.21
0. I'.
0.14
.
0.14
O.O4
0.0?
O.OJ
O.IO
O.IO
O.IO
0.07
0.2J
-
' O.Ob
0.06
O.Oo
O.O9
0.12
0. 10
O.I2
0.12
0.04
0.04
0.06
O.Ot)
0 .08
0»Oh
O.33
O.20
.
0.27
O.lt>
0.12
0.14
0.14
O.OV
O.I J
.
O.I 1
O.O.I
O.Ofi
^
0.04
0.0'..
O.Ot.
o.oc.
0.14
0.12
•
0.07
O.IO
0.09
O.OH
O.OV
O.OV
O.Ob
0.011
0.04
0.04
o.ov
0.0 /
—
O.OIt
O.42
0.4O
.
0.41
O.Ob
O.ll
O.O9
O.OV
O.ll
O.ll
.
O.I 1
O.O2
O.Ot.
f
0.04
O.O6
0.07
O.Ob
O.01I
0.06
.
0.00
0.13
O.ll
o.oa
O.ll
O.OV
0.13
0.09
O. 11
O.O7
0.04
O.Ob
O.Ob
O.Ob
.
O.O6
O.M
O.46
.
O.49
0.12
O. 10
.
O.I 1
O.IO
0.13
.
O.I2
0.04
0.03
.
O.04
0.07
O.Ob
O.Ob
O.08
O.Ob
o.ie
O.20
0.19
0.07
O.09
O.OB
0.07
O.IL
O.09
O.Ob
0.04
O.04
0.07
O.Ob
.
O.O6
0.44
0.4b
.
0.4&
.
.
.
.
0.11
O.ll
.
O.I 1
O.Ob
O.Ob
.
O.O6
O.O4
o.oe
O.O6
0.14
0.07
O.ll
.
•
O.O8
O.oa
O.OH
0.09
O.O9
0.04
.
O.O4
m
.
•
0.43
0.32
.
0.36
0.1 1
0.16
•
O.I3
0.12
0.21
.
0.17
0.04
O.O4
.
0.04
O.Ob
o.o*.
O.Ob
O.OV
O.Ot
O.Ob
O.O7
O.3b
O.bO
0.4?
0.07
0.07
O.OV
0.16
.
O.16
0.07
.
O.O7
0.06
O.Ob
.
0.06
U.7b
0.64
.
0.64
.
.
.
.
0.13
0.12
.
O.I 2
O.OH
0.06
.
O.Of)
o.os
0.04
O.Ob
0.09
O.Ob
.
0. O7
.
•
O.O7
o.oe
0.07
O.I9
0.19
O.Ob
•
O.Ob
.
.
.
1.61
1 .33
•
1.57
0*29
0 .25
•
0.27
0.26
0.19
•
0.23
0.09
0.23
.
O.lb
O.OH
0.12
O.IO
O.OO
O.I 1
0.10
0.6b
0.61
0.83
0.1 1
O.IO
O.IO
0.07
0.09
o.on
O.I9
0.07
0. 13
O.OS
0.07
•
O.OA
1.31
1 .99
•
1 »6&
•
•
•
•
O.lb
0.22
*
0.19
O.IV
0.17
0.20
O.lb
O.IO
0.13
O.I 1
0.07
0.15
O.I 1
0.11
.
.
•
0.10
0.07
0.09
O.I3
O.20
O.17
0.19
0.14
O.lb
.
*
•
48
-------
TABLE 21
SULFATt LMISSIUN TES1
- HYDROCARBONS G/KM
1972
1 974
1977
1977
1977
1 978
1977
1978
1978
1978
1979
1980
I960
TEMPERATURE F
CHEVROLET IMPALA
AVt
CHEVROLET IMPALA
HONDA CI
FORD LTD
PLYMOUTH
BUICK V6
PLYMOUTH
AVE
VIC 49 STATE
AVE
49 STATE
AVt
FURY 49S
AVE
TURBOCHARGE
AVE
FURY CALIF
AVE
CHEVROLET ST M-CALIF
AVF
FORD PINTO CAL 3 WAY
AVE
Vtt RABBIT CAL FU-INJ
AVE
OOOGE ASPEN CALIF.
MERCURY
AVf=
PROTOTYPE
AVE
0
( -1H)
0
1
1
1
1
1
0
0
0
0
0
O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.96
.05
.01
.04
.04
.04
.60
.77
.6H
.60
•t>8
•bfc
.be
.t.i
.33
.42
.26
•22
.25
.24
.09
.08
.
• O9
.1 1
.16
.13
.18
• 19
.19
.19
.21
.20
.20
• 17
.16
.17
.
.
0
0
0
0
0
0
O
0
0
0
0
0
0
0
40
• 12
.19
.16
.34
.41
.38
.32
.38
.35
.47
.57
.
.52
.27
.43
.35
.£3
.16
.
.20
.05
.04
.
0*05
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.12
.12
.12
.13
.34
.
.24
.20
.21
.20
• 13
.16
.15
.20
.20
• 0.20
BUICK RE CAL PROTOTYP .
DATS UN
AVE
PROTOTYPE
AVE
0
0
0
0
.
•
.It.
.12
.13
.13
0
0
0
0
0
0
0
.04
.04
.04
.10
.09
•O9
.09
80
(27>
.54
.33
.43
.48
.59
.54
O.40
0.38
0.39
0.73
0.70
.
0.71
0.20
0.22
0.21
0.14
0.22
.
0.18
0.06
0.07
.
0.06
0.08
0.10
0.09
0.20
0.11
.
0.16
0.35
0.35
0.35
0*12
0.14
0.13
0.13
0.17
0.15
0.07
0.06
0.06
0.06
O.Ob
0.08
0.08
80 AC
(27)
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•51
.13
.32
.
,
.
•
.71
.72
.
•*.»
.
.
•
.23
• 19
.
.21
.09
.12
.
• 10
.06
.08
.07
.24
.13
c
• 19
,
.
•
• 13
. 12
.12
.17
.17
.17
.05
.OS
.05
f
.
•
•
110
(43)
•57
.71
.64
.80
.37
.59
0.52
0.53
0.52
1.64
1 .46
.
1 .55
0.71
0.57
0.64
0.83
0.56
.
0.69
0.14
0.36
.
0.25
0.13
0.14
0.14
0.17
0.23
»
0.20
0.97
0.99
0.98
0.17
0.15
0.16
0.15
0.13
0.14
0.19
0.11
0.15
0.68
0.10
0.39
0.39
110AC
(43>
1.63
1.55
1.59
^
.
•
m
.
•
1.91
2.77
*
2.34
,
.
•
0.62
0.59
.
0.60
0.21
0.23
0.51
0.32
0.09
0.19
0. 14
0.13
0.26
,
0.20
.
.
•
0.18
0. 13
0.15
0.20
0.21
0.21
0.28
0.25
0.26
^
.
.
•
49
-------
Federal Short Cycle - HC--
The Federal Short Cycle (FSC) was run on the first six cars tested
as listed in Table 22. These tests were run with the car in the fully
warmed up condition following the HFET. Again, it was observed that
hydrocarbon emissions were the highest at the higher temperatures.
TABLE 22
FEDERAL SHORT CYCLE - HYDROCARBONS G/KM
TEMPERATURE F
(c
1972 CHCVROLET 1MPALA
AVE
1974 CHEVROLET IMPALA
AVL
1977 FOHD LTD
AVC
1977 PLYMOUTH FUttY 495
AVf.
1977 PLYMOUTH FUWY CALIF
AVfr
1978 CHEVROLET ST K-CAL1F
AVfc
0
) (-18)
.26
. 12
. 16
.37
O.4S
0.40
0.34
0.40
0.61
0.68
O.6S
0.09
0.11
0.10
0.39
0.49
0.44
40
(4)
1.12
1 .30
1 .21
2.04
1 .70
1 .87
0.36
0.34
0.35
O.33
0.5b
0.44
0.12
0. 1O
0. 1 1
0.30
0.33
0.32
80
(27)
1.57
1.91
1.74
1.87
2.30
2. OB
1.09
0.71
0.90
0.37
0.26
0.31
O.OB
0.22
0.15
0. 16
0.21
0.18
110
(43)
2 .15
2.12
2.05
1 .48
1 .76
4 .92
4.44
*
4 .68
1 .65
1 .4ft
1 .56
0.46
0 »82
0.64
1 .08
0.19
0.63
The 1977 Ford had surprisingly high emissions at 110°F (43°C).
While the catalyst cars had generally lower hydrocarbon emissions, only
the 1977 (California) Plymouth emissions approach the low levels achieved
with the HFET or the SET procedures.
The FSC has been considered as a quick test to replace the FTP for
inspection stations. Comparing data for the appropriate cars at 80°F
(27°C) from Tables 19 and 22 shows that the results from FTP divided by
results from the FSC gives ratios which vary widely. This indicates
that the results from the two procedures do not agree well. The precatalyst
cars, however, were in better agreement.
50
-------
New York City Cycle - HC—
The FSC was replaced by the New York City Cycle (NYCC) procedure
during the program. This NYCC procedure was designed to evaluate the
emissions in severe stop and go driving. This procedure was run last in
the sequence after stopping the engine for three minutes and then
idling for three minutes. Data are presented in Table 23.
TABLE 23
NEW YGMK CITY CYCLIT
- HYDHOCARRONS O/KM
1977
1 978
1978
1 97H
1 979
I 980
1980
TE.MPERATUWH ¥
(C)
HONDA CIVIC 49 STATt
AVb
BUICK V6 TURBOCHAkGE
AVt
FORD PINTU CAL 3 WAY
AVE
VW RABBIT CAL KU-INJ
AVE
DODGE ASPEN CALIF.
AVE
MERCURY PROTOTYPE
AVE
BUICK HEGAL PROTOTYP
AVE
OATS UN PROTOTYPE
Avt;
20
(-7)
2.40
1.74
2.07
O.B1
O.B'J
0.85
1 .02
1 .95
1 .4(1
0.34
0.40
0.37
1.20
1.01
1 .10
0.79
1 .14
0.96
0.39
0.23
0.31
0.36
0.53
Oo45
60
( 16)
2.37
2.1 8
2.28
0.97
1.88
1 .43
0.73
1.00
O.67
0.28
0.42
0.35
0.81
0.99
0.90
0.37
0.37
0.37
0.15
0.15
0. 15
0.44
0.4G
0.42
80
(27)
2.32
2.12
2.22
1.03
0.77
0.90
1 .06
0.59
0.82
0.49
0.45
0.47
0.79
0.79
0.79
0.61
0.45
0.53
0.20
0.12
0.16
0.39
0.36
0.37
80AC
(27)
•
1. 14
3.30
2.22
1.02
0.72
0.87
*
0.80
0.85
O.B2
0.43
0.43
0.43
0. 19
0. 19
0. 19
»
1 10
(43)
2.bO
2.86
2.83
14.25
4.21
9.23
3.46
2.2S
2.86
.B2
.96
.89
.19
.01
.10
0.61
O.S7
0.59
0.22
0.40
0.31
1 .87
1.19
1 .53
1 10 AC
*
20.98
3.32
12. 15
2.23
7.26
4. 75
•
1.26
0.8?
1.04
0.49
0.48
0.48
1 .10
0.86
0.98
B
This procedure gave emissions that were quite high in hydrocarbons.
The Honda, the only noncatalyst car tested, generally gave hydrocarbon
emissions that were several times higher than those observed using other
test procedures.
Test temperature had little effect on the HC emissions from the
Honda. The 1978 Buick turbocharged vehicle had surprisingly high emissions
at 110°F (43°C) along with poor repeatability. The high emissions may
be in part attributed to driveability problems. Only the 1979 Dodge,
the 1980 Mercury prototype, and the 1980 Buick prototype showed temperature
effects and they were small. Both Buicks and the Pinto hydrocarbon
emissions increased when their air conditioner was operating at 110°F
(43°C).
51
-------
Federal 3 Mode - HC—
The next six tables present the hydrocarbon emission data obtained
from the Federal 3 mode (F3M) procedure. These tests were conducted
following the FSC tests. These tables compare the raw exhaust gas
analyses obtained using a laboratory-type instrument equipped with a
flame ionization detector with those obtained using a garage-type
nondispersive IR instrument. While single values are reported for each
test, the readings were not steady and a rough average estimate was used
to establish a reading.
80 km/h (50 mph) loaded steady-state - hydrocarbons—Table 24
presents the results of tests conducted at 80 km/h (50 mph) and at a
specified load. Each car at each speed had its own specified load. For
the first three cars, the laboratory-type instrument (Beckman) gave
higher readings than the garage-type (Stewart Warner) instrument. For
the last three cars, the reverse was generally true.
TABLE 24 80 KM/H fSO MPIQ . LOADED. STEADY STATE - HYDROrAKRONS PPMP6
TEMPERATURE F
(C)
INSTRUMENT
1972 CHEVROLET 1MPALA
AVt
1974 CHCVROLET IMPALA
AVL
1977 FOWD LTD
AVt
1977 PLYMOUTH FUKY 49S
AVE
1977 PLYMOUTH HUttV CALIF
AVE
197t, CHEVROLET ST W-CALIF
AVE
0
(-18)
e
14
100
67
46
41
44
57
13
ftl
50
9
10
10
2
3
3
9
9
9
S*
36
23
29
30
3<>
33
3 1
2ft
20
26
23
20
22
30
29
3O
?. 1
21
21
40
(4)
B
127
125
126
197
38
1 18
36
66
•
52
7
-------
48 km/h (30 mph) loaded steady-state - hydrocarbons—Table 25
presents the hydrocarbon emissions from the cars which were run at
48 km/h (30 mph) and at a specified load. Some very large differences
in hydrocarbon concentrations were observed with the 1974 Chevrolet.
There was no evident reason for the poor repeatability observed here.
TABLE 25 48 KM/H C50 MPH). LOADED, STEADY STATE - HYDROCARBONS PPMC6
TEMPERATURE F
(C)
INSTRUMENT
1972 CHLVROLET IMP ALA
AVC
1974 CHEVROLET IMP ALA
AVC
1977 FOHD LTD
AVE
1977 PLYMOUTH FURV 49S
AVE
1977 PLYMOUTH FURY CALIF
AVE
197B CHEVROLET ST W-CALIF
AVE
(-
B
19
126
72
49
b2
51
14
2
12
9
14
17
16
B
10
9
t>
7
7
0
-18)
SW
4 3
32
3H
31
3b
33
10
1 1
1 0
10
2.1
22
?A
2O
22
2b
18
16
1H
40
(4)
8
273
241
2b7
1 17
64
91
14
1 1
•
13
10
16
13
10
8
9
b
7
6
SW
75
78
77
42
4O
41
10
20
•
Ib
16
19
19
24
20
22
19
18
19
80
(27)
B
393
260
326
2370
335
1353
14
2
•
8
33
34
34
7
15
1 1
5
4
5
SW
170
100
135
1200
190
695
20
12
•
16
3b
2b
30
23
21
22
Ib
1 3
14
110
(43)
8
404
333
369
104
73
89
316
59
•
188
216
55
136
9
6
8
8
38
23
SW
150
100
125
48
49
49
121
150
•
136
200
45
123
18
20
19
20
18
19
it - BECKMAN SW = STEWART WARNER
2500 rpm no load steady state - hydrocarbons—Table 26 presents
the hydrocarbon concentrations found when the vehicles were operated at
2500 rpm with no load. Again, it is difficult to explain the differences
between instruments which in some cases vary by a factor of six.
53
-------
TABLE 26 2500 RPM, NO LOAD, STKADY STA'lli - HYDROCARBONS PIWC6
TEMPERATURE F
(C)
INSTRUMENT
1972 CHfcVROLt T IMP ALA
AVE
197A CHtVRQLET IMPALA
AVfc
1977 FOHD LTD
AVE
1977 PLYMOUTH FURY 495
AVfc
1977 PLYMOUTH FURY CALIF
AVE
1976 CHfcVROLET ST W-CALIF
AVE
0
(-18)
fi
13
55
34
33
40
37
100
9
35
48
50
74
62
t>2
62
57
67
68
66
SW
15
13
14
3B
2H
33
70
60
22
51
45
60
53
55
60
5«
62
65
64
40
(4)
B
261
190
226
43
51
47
21
34
•
2b
17
1 1
14
61
67
64
31
52
42
SW
40
4O
40
35
35
35
50
35
•
43
22
?5
24
60
75
68
50
60
55
80
(27)
B
462
282
372
73
47
60
30
4
•
17
20
12
16
37
26
32
12
1 1
12
SW
70
60
65
50
42
46
34
20
•
27
20
22
21
45
25
35
20
21
21
110
(A3)
H
243
304
274
39
35
37
365
63
•
214
260
32
146
12
16
14
13
47
30
SW
52
5O
51
28
32
3O
130
120
•
125
25O
?5
138
IS
20
18
20
20
20
8 - BECKMAN SW = STEWART WARNER
Idle in drive steady state - hydrocarbons—Table 27 shows the
hydrocarbon concentrations from measurements made with the engines
idling and the automatic transmissions in drive. The 1977 Ford and the
1977 California Plymouth, in this case, had low hydrocarbon emissions
while the 1977 49-State Plymouth exhibited significantly higher hydrocarbon
emissions.
54
-------
TABLE 21 IDLE, IN DRIVE, STEADY STATE - HYDROCARBONS PPMC6
TEMPERATURE F 0
(C) (-18)
INSTRUMENT
1972 CHtlVHOLLT IMPALA
AVt
19/4 CHLVROLffT IMPALA
AVt
1977 FURD LTD
AVK
1977 PLYMOUTH FUKY 49S
AVE
1977 PLYMOUTH F-URY CALIF
Ave
197fa CHLVROLhT ST W-CAL1F
AVt
E)
30
203
1 17
i?8
161
14fa
8
1
8
6
291
?fS4
273
7
7
7
7
7
7
SW
80
74
77
i>2
59
Sb
1 1
1 0
y
10
170
14t>
15H
22
20
2 1
17
1 H
ia
40
(4)
B
267
241
254
236
isy
199
10
t>f
•
39
16
21
?0
7
R
H
7
e
H
SW
100
9b
98
75
HO
78
11
19
•
Ib
2O
18
19
2
lb
9
17
18
1H
80
(27)
ft
305
247
276
2726
619
1673
6
2
*
4
326
68
1
-------
TABLE 28 IDLE IN
NEUTRAL STEADY STATE*
- HYDROCARBON
PPMC6
TEMPERATURE F
(C)
INSTRUMENT
1972 CHEVROLET IMPALA
AVE
1974 CHEVROLET IMPALA
AVE
1977 FORD LTD
AVE
1977 PLYMOUTH FURY 495
•
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST W-CALIF
AVE
0
(-18)
fi
72
1 24
98
124
94
1 09
36
4
44
26
26
24
25
6
9
8
24
20
22
SW
250
32
141
100
100
100
25
1 6
2S
22
30
25
2M
22
21
22
26
28
2H
40
(A)
80
(27)
B SW B SW
310 f-0
221 70
266 75
369 1 HO
371 230
370 205
29 25
45 32
. .
37 29
19 20
19 19
19 20
5 20
17 21
11 21
20 31
30 30
2t> 31
355 100
470 80
41 3 90
100 100
727 410
414 255
19 22
5 2?
. .
12 22
463 140
166 80
316 110
7 23
9 21
8 22
15 20
10 18
13 19
B
374
341
358
80
76
78
133
23
.
78
505
218
362
10
15
13
9
105
57
1 10
(A3)
SW
120
100
110
42
82
62
90
42
.
66
400
100
250
14
20
17
20
25
23
'BEFORE 2500 RPM CONDITION
TABLE 29 IDLE IN
TEMPERATURE F
(C)
INSTRUMENT
1972 CHEVROLET IMP ALA
AVE
1974 CHEVROLET IMPALA
AVC
1977 FORD LTD
AVE
1977 PLYMOUTH FUMY 49S
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST W-CALIF
AVE
B =
BECKMAN
NEUTRAL STEADY STATE*
(
B
541
125
333
74
1 19
97
34
5
10
16
32
29
31
6
15
1 1
29
8
19
0
-18)
SW
1750
36
893
52
50
51
21
20
12
IB
J2
27
30
22
25
24
32
20
26
40
(A)
B S*
310 90
264 70
287 80
412 21O
288 200
350 205
10 28
25 2b
. .
18 28
22 20
22 28
22 24
6 22
10 29
H 26
34 49
36 35
35 42
SW = STEWART WARNER
- HYDROCARBON
80
(27)
r H sw
437 130
338 100
388 1 1 5
92 7O
796 230
444 150
22 30
4 20
. .
13 25
304 1 1 0
121 35
213 73
14 30
20 32
17 31
21 19
21 29
21 24
PPMC6
8
430
366
398
1 14
228
171
365
46
.
206
305
61
183
1 1
14
13
13
162
110
(A3)
sw
90
120
105
50
82
66
79
40
.
60
225
40
133
15
20
18
22
40
87 31
*AFTER 2500 RPM CONDITION
H
56
- UECKMAN
SW = STEWART
WARNER
-------
Carbon Monoxide (CO)
Figure 6 shows the average CO emissions, by car, for all three
phases of the Federal test procedure plotted against test temperatures.
Figure 7 presents similar plots of average CO emissions for the composite
FTP as well as those for the HFET, the SET and either the NYCC or the
FSC tests. The non-air conditioned car results have been connected by
lines; the air-conditioned car data points stand alone. A semi logarithmic
scale was used in these figures to compress the data because carbon
monoxide showed a wide variation in emissions depending on the temperature
and emission control system employed by the various cars.
Federal Test Procedure-Cold Transient-CO—
As shown in Table 30 and Figure 6, this phase of the FTP gave high
HULL 30
KIP COLO TRANSIENT
- CAMHON MONOXIDE G/KM
TtMCCUATUHt F O
IOI-IOJ
1972 CHrvNOLFT IMPALA
AVE
1974 CHI VHOLfc T IMPALA
AVE
1977 FOhU LTD 49 STATC
IV77 PLYMOUTH FUKY 4'>i
AVF
I97U BUICK VI. TUHBOCHAKCe
AVF
1977 PLYMUUIH FUWV CALIF
AVt
1970 OtlVHOLfT Sf K-fALIF
AVE
1076 FOI.O PINTO CAL 3 HAY
AVE
I97H VII « Ant) IT CAL FU-INJ
AVt
197V OOUOt A*>PKN CALIF.
AVt
1980 MrMCUHY PHQIUTYP*
AVC
IV8O HUICK HE6AL PROIOrvl'
AVC
DAI SUN PRUTUIVPE
AVt
IB4.6I1
103.17
IBJ.nn
£\ B.I*
1 bb.OI
m
192.00
93. bo
B9..JI
42.94
146. Jo
1 37. itH
1 4 1 • 77
137. J7
1 4 3 . 74
140. bt.
07.04
70 . -IS
1.9 . 1 b
44.50
4fl .t>4
*6.t>2
96.01
108.14
1 10.4V
104. BO
44.54
4J.J3
44.4.1
1 12.40
102.92
107.66
.
m
•
.
.
•
40. 49
37. 40
^
48.92
20
(-71
91.92
148.90
1 Li 7 . 1 4
f
ioe.70
76.02
..6.06
.
97.37
1 O4. 6*»
100.79
94.08
m
•»7.64
41 .67
42.54
42. IO
37. 1 1
42.38
.14 . 74
76.04
B
77.17
41.19
13.02
J7.IO
H6.02
•>7. 10
71. S6
120.69
1 17.70
II8.««
63.34
£»O.96
b7.!6
2S.37
20. OS
,
25.71
40
14)
137. 64
128.19
,
H6.93
77.4.9
51.64
.
76.47
no. 7B
t
76.0.?
2O.OO
29.7?
28.04
27.77
27. »7
27.!»7
2O. 9'j
07.09
B
44.02
25.06
23.17
24.09
46.06
70. fir
58.14
67. TO
.
67.70
bO.04
.
50. OJ
70.4H
.
19.14
19. HI
60
1 161
40.91
52.00
44.17
47.44
44.17
25.70
41 .59
•
.
4f,..,b
,
47.J1.
IH./I
16.77
f
17.21
1 7.bl
14.10
Ib.HO
19.10
B
19.4 1
17. J6
1 9. Iff
18.27
1 7.10
17.77
It,. 71
.
lt>.7l
14.71
.
14.21
Ih.-JJ
1 l.on
.
1.1.50
70
(21)
41 .41
45.93
4J.!>li
.
37.03
19. B6
47.72
33.94
.12.95
44.0*i
41 . 74
a
42.UO
20. .W
^
16.02
12. B7
12.27
12.57
17.24
14. on
.
15. 6b
16.71
18.55
17.63
10.70
21.75
16.23
6.17
9.111
7. OH
I3.VH
II. O/
12.52
lO.Ob
7. 71
.
B.aa
BO
(27)
35.96
43.74
20.09
.
31.72
19. 14
39.04
•
?9. 1 7
3t>.Jb
J4.bt>
*
35.46
10.70
13.61
^
12.15
9.46
7.70
8. SB
12.83
8.79
.
10.81
IS. 48
15.64
IS. 61
9.O3
14. b8
II. Ob
5. 70
6.70
s.vn
10.20
9.49
9.79
7.V4
8.O5
.
7.99
80AC
127)
46. 7O
61.22
.
.
•
•
55.05
"
42.37
40.01
.
41.19
22.09
16.42
,
19.26
10.90
II. OO
10. 95
14.92
8.20
.
11.60
.
•
•
10.00
IB. 67
14.28
7. O2
.
7. O2
9.07
.
9.07
.
«
.
.
9O
(421
3S.I7
39.07
76.22
.
24. at>
16*1 J
15. OO
15.57
44.16
I&.I9
10* 1 J
1 6.66
JO. 74
2&.06
•
27.90
15.47
16.66
,
16.66
7.33
4.91
6.12
4.60
3.66
2.63
3.63
IS. SO
19. IO
17.34
9.08
11.87
10. 4B
7.9?
.
7.92
12.03
.
12.03
5.76
5.67
.
S.46
9OAC
(32)
42.41
43.83
.
.
•
"
63.83
S9.26
•
31.37
.
45.49
26.47
34.98
.
30.72
7.3*
9.49
8.42
4.48
4.30
.
4.39
.
.
•
7. SO
IS. 86
II. 6B
8.74
.
8.74
14.12
•
14.12
.
.
.
»
no IIOAC
1*3) (*3)
38.00
46.36
42 .18
28.7O
27.34
.
28.02
11.17
10.98
1 1 .07
67. 6O
SI .39
I2.S6
10.49
14 .02
20.29
4S.O7
.
32.68
21.66
28.76
.
2S.2I
9.64
9.64
9.64
S.64
6.92
•
6.28
22.87
27. 4O
25.13
12.93
12.08
12. SI
B.S9
7.27
7.93
9.04
8.86
8.94
4.26
4.8*
.
4.SS
46.72
SI .90
49 .31
.
.
*
•
64.76
69 .OB
66.92
•
39.67
31.66
.
3S.62
30.86
52.46
62.49
48.60
25. IO
16.18
20.64
4.97
2.56
1O.03
S.86
.
.
•
21.13
20.69
20.91
7. BO
8.9*
8.24
11.67
12.69
12.18
.
.
.
•
57
-------
1973 OCVROLCT 1IWLB
Q FTP Cold Tranaiant;
FTP Stabilised
FTP Hot Transient
r o a> a n n
<- " '
1977 MMR CIVIC «9 STDTt
1977 FOB LIB W STRTt
OO
1977 PITHJUTM FXflT 1195
1978 auicx ve
•y;
i •
i > •!
•- v — P,
1 i
•f
(•
L 1 Y '
\~
\
* t f '
if
,/f
r
f
i
N
M
r/f—
i
!
•
i
i
C -H -1 «
T&> ORIENT
(Data points not connected by a line are the results of air conditioning runs.)
Figure 6. Effect of ambient temperature on carbon monoxide emissions for the three phases of the FTP.
-------
1977 PLTK8UTM FURT CflLIF
--
\
•>
D
0
A
-4
S
t
n
Fl
Fl
k_
i —
L
\^
tP
IT
CP
-— "
\
Co
St
Ho
>^
/
/
J
Id
abi
t 1
1
-t
f
Tr
11
ra
H
e —
ans
zed
usi
;
ie
•
en
— ^
>-<
nt
t
/
*
/
— 1
^|
/'
1
X1
1-
1
1
F 0 20 40 GO 60 1DD 120
C-10 -7 < II
1978 OeVRSLFT ST H-CRL1F
197B FOBO PINTO CfiL 3 KBT
197B VH RR881T CRL FU-INJ
to
C -18 -7 «
\
:HF
so GO 100
P IWBIENT ffl
3E«?
0 20 tt) 60 80 100 120
1979 OOOZ BSTtN CALIF.
1980 KERCURT PROTOTYPE
K
^c
0 20 <*0 60 80 100 120
1980 BUICK RECRL PROTOTTP
OBTSUN PROTOTYPE
F 0 20 IU
c-8 -' '
GO 160 120
F 0 20 «0 GO GO 160 120
(Data points not connected by a line are the results of air conditioning runs.)
Figure 6. (continued)
-------
1972 CHEVROLET 1HPRLR
O FTP Composite
O HFET
A SET
O FSC
""h
197M CHEVROLET IKPRLfl
1977 HONDfl CIVIC 19 STBTE
-t-t-t—h
O FTP Composite
O HFET
A SET
O FSC
r o 20 vo $o m 100 120
C-'8 " ' TE&P RMfW "
Q FTP Composite
O HTET
A SET
O HVCC
1977 FORD LTD U9 STfiTE
Q FTP Composite
O HFET
A SST
O FSC
1977 PLYMOUTH FURT 195
—
—I
(
KT
r~
C
C
t
0
^
— <
FTP Composite
HFET
i SET
FSC
^
^f
^— "
'
1
_-<
r<
>s
(,
y-
^
^
/
— 3
/
/
^
71
^
1
f 0 20 «W GO
C-18 -7
r"
s
-=<
H
i— ^
K|
=-
| '
L
l
H
¥
1
\
7
1
1
|
o a no eo n 100 120
(Data points not connected by a line are the results of air conditioning runs.)
Figure 7. Effect of ambient temperature on carbon monoxide emissions for the different test cycles.
-------
1977 PLYKOUTH FUHT CRLIF
Q FTP Compos Its
O HFET
A SET
;=O FSC
1978 CHEVROLET ST H-CRLIF
1978 FORD PINTO CflL 3 KST
A\
F 0 20 VO GO 60 100 120
C-8 " " T& BlI'lENT " "
O FTP Composite
O HFET
A SET
; O PSC
100
10
1
0.1
F
|
1
_y
/
- (
3
O
A
LO
~-f
4
*— '
a
1
-T-
G
A
FTP Compos It
HFET
SET
KYCC
/
w
\
1
1
I,
^.
/
/
— ^
^
1 — 1
\
-
a"
N|
kA—
HR-
>
,^<
^
^
^
^
i>
/
<
— <
/*
J
(
i-
)
J —
0 20 10 60 80 100 120
um
100
10
1
0.1
[
1
G FTP Composite
O HFET
A SET
O NYCC
^
U
^
b=
P
>
g
<
f
&
1
<
y
(-
cd
-i
A
?
FO 20 «0 60 SOUDIZO
C-IB -7
" TEMP flteiE
1979 OOOOf RSPEN CALIF.
1980 HERCUBT PfBJTOTTPE
MM
; O FTP Composite
' ; i O HFET
A SET
O" fee
r o
c-is -7
100
10
1
0.1
—
O FTP Composite
O HFET
A SET
O NYCC
1
—
t
k
^5
r-
^i
LJ
J3
^
•— —
fc=
UJ
V
-^
~<
n!
~^
>-<
n
R
3
M
E=
rH
M
b=
^
=
"—
i~.
»«
=^
^~
F 0 20 10 60 SO 100 120
c-ie -7 n i
1000
100
10
1
0.1
F
c
-f
c
c
, — <
FTP Compost t«
i HFET
I SET
> NYCC
1-
^=
—f
1
-1
N
(j
^
I4
T
"r
^
/I
m
0 20 10 GO 80 100 120
TEMP (*£ENT
1000
100
10
1
°-',
1
^
O FTP Composite
= O HFET =
-L
(
^
\ SET
> NYCC
i —
1
***
— (
h-
r~*
s
5*
*>*•
^
*
~"
M
H
*-j
it
|jr
r
r
^
F±
J — ,
j
/
/
n
i—
20 110 60 80 100 120
C -18 -7 «
TEHP
(Data points not connected by a line are the results of air conditioning runs.)
Figure 7. (continued)
-------
CO concentrations at 0 and 20°F (-18 and -7°C) for all of the cars. The
1980 prototype Mercury gave over 100 g/km of CO at 20°F (-4°C) despite
an advanced catalyst system. CO was the highest for the two Chevrolet
noncatalyst cars. The Honda, which was lower at 0 and 20°F (-18 and
-7°C) than several of the catalyst cars, was also quite low at 110°F
(43°C). The use of air conditioning usually increased CO, primarily as
the result of increased load. The VW Rabbit showed the least change in
CO emissions with ambient temperature. Overall, the Datsun prototype
gave the lowest CO emissions for this cold transient phase of the FTP.
Federal Test Procedure-Stabilized Phase-CO--
This phase of the FTP (Table 31) gave some very low CO emissions.
TABLE 31
FTP STABILIZED
- CARBON MONOXIOL G/KM
TEMPF MATURE F
0
CCM-IU)
1972 CHEVROLET 1MPALA
AVE
1974 CHtVROLtT IMPALA
AVE
1977 HONDA CIVIC 49 STATE
1977 FORD LTD 49 STATE
AVt
1977 PLYMOUTH FURY 495
AVE
1978 BU1CK VC> TUHBOCHARGE
AVL
1977 PLYMOUTH FURY CALIF
AVT
1976 CHEVROLET ST W-CALIF
AVE
1978 FOHO PINTO CAL 3 WAY
AVE
1978 VW ftABUIT CAL FU-INJ
AVC
1979 DODGE ASPUN CALIF,.
AVt
1980 MERCURY PHOTOTYPE
AVE
I960 BUICK REGAL PROTOTYP
AVE
OATSUN PROTOTYPE
AVE
34. U°
38.O2
36.46
9^53
I0.il
f
9.8f>
?4.o6
?.8.65
20. 3t
25.63
23.42
26. 2O
39 46 1
1 1 .Ob
f
26.33
1.31
0.47
0.41
0.73
0.30
l.lb
0 .76
0.20
0.61
0.44
2.M2
26.75
72.71
17.42
11.44
31.53
21.48
1.37
1.37
1.37
•
m
'
.
m
•
0.59
0.39
€
O.49
2O
(-7)
25.23
28.03
26. 63
8.22
8.22
f
b.22
16.25
21.f>3
14 .b8
17. .36
.
16.02
Be22
1O.5O
B
9.30
0.40
0.87
O.t>3
0.66
0.25
0.46
O.20
0.19
0.19
1.66
17.26
9.46
2.73
1.87
2.30
1 .94
0.57
1.25
2.07
1.6b
1.86
0.95
1.04
0.99
0.7U
O.48
.
0.63
40
(4)
22.91
34.99
28.95
7.65
7.90
.
7.77
3.27
3.46
11 .37
14.63
.
13. OU
2.56
4.60
B
3. US
1.07
•
1.41
0.21
0.20
0.20
0.42
0.33
0.37
0.19
10.75
.
5.47
2.78
1.64
2.21
0.97
0.79
O.Ob
1.33
,
1.33
0.57
»
0.57
O.fll
0.67
0.82
0.77
60
< 161
26.63
24.97
25.90
6.69
8.15
7.94
7.59
3.32
3.5P
14.34
12.71
.
13. 28
2.51
4 .20
2.86
3.19
I.1H
•
1.25
0.50
0.90
^
0.70
0.15
0.17
0.16
0.58
0.90
«
O.74
3.03
3. 01
3.32
O.9/
1.14
1.05
0.47
.
0.47
0 t&O
.
0.80
1 .96
1.65
.
1.81
70
(21 )
26.99
26.69
26.84
7.65
9.98
,
e.ui
3. 12
3.53
15.53
20.06
.
17.79
5.47
8.54
1.19
5.07
1.56
l.aZ
0.25
1.05
^
0.65
0.19
0.23
0.22
0.63
0.35
,
0.49
3.bl
4.24
3.87
1.02
1.08
I.O5
0.59
0.57
0.56
0.85
0.68
O.77
1.69
1.06
•
1.38
HO
(i!7>
26.12
26.35
27.23
10.61
15.31
.
12.96
3.16
3.19
3*1 7
15.52
18.10 '
.
16. HI
1.67
1.61
.
1.64
2.13
»
1.93
2.01
1 .02
f
1.52
0.19
0.18
0.19
1.14
0.2O
,
0.70
5.90
5.41
5.65
0.87
1.20
1.03
0.42
1.13
0.77
0.67
1.38
1.12
1.66
2. 13
.
1.89
8U/XC
(27)
29.95
31.21
30.58
.
.
.
•
•
*
26. bS
29. 8A
.
28.28
.
.
*
•
1*33
«
1.93
1.43
2.71
.
2.07
0.49
.0.25
0.37
1.10
0.22
,
0.66
.
•
•
0.95
0 t91
0.93
0.67
r
0.87
1 .25
.
1.25
.
.
•
«
90
(32)
i'9 . 7 1
29.23
29.47
.7.66
12.06
•
9.86
3.09
3.22
3el 6
18.05
15.54
•
16.79
2.47
3.07
.
2.77
1.81
„
2.19
1.01
1.81
.
1 .81
0,29
0.12
0.21
0.96
0.46
O.36
0.60
6.09
9.34
7.71
1.31
0.97
1.14
0.72
.
0.72
0.44
.
0.44
2.04
2.42
.
2.23
90AC
(32)
40.46
40.31
40.38
.
•
.
•
.
•
45.71
34.78
.
40.24
.
.
.
•
4.22
.
4.19
6.07
4.99
,
b.53
2.24
1.01
1.63
0.94
0.43
.
0.68
.
.
.
1.O6
1.09
1.06
1 .13
.
1.13
0.76
t
0.76
.
. .
.
.
110
(43)
43.97
61.21
52.59
20.17
I4c29
.
17.23
3.21
3.47
3.34
40.47
33.65
.
37.06
17.47
12. 2S
•
14.86
20.04
16.77
2.54
4.30
.
3.42
2c49
0.92
1.71
0.70
1.35
.
1.02
12.02
12.32
12.17
0.97
1.85
1.41
0.71
0.47
0.59
1 .36
1.26
1.31
4.10
4.00
.
4.05
1 10 AC
(43)
64.95
02.9(3
73.96
.
c
.
•
.
.
75.02
ea.67
•
76. Bb
.
•
.
•
29.77
22 .2S
26.01
6.62
30.76
22.74
20.1 1
I8«7b
9.96
14.36
2.36
1.16
2.82
2.12
.
.
.
3.41
2.63
3.12
1.09
0.55
0.82
3.90
3.83
3.66
.
.
.
«
62
-------
Note that the 1978 (49 state) turbocharged Buick, the 1977 (California)
Plymouth, the 1978 (California) Chevrolet, the 1979 (California) Dodge,
the 1980 Mercury (prototype), the 1980 Buick (prototype) and the Datsun
(prototype) all had CO emission of less than 2 g/km from 0 to 80°F (-18
to 27°C). However, rich operation as indicated by the high CO levels at
the higher temperatures was evident in all cars, some more than others.
At 110°F (43°C) the use of air conditioning often resulted in CO emissions
that more than doubled.
The 1977 Ford may have had a catalyst problem or an air-fuel ratio
problem. This is suggested by the high CO emission produced at all
temperatures. Hydrocarbon emissions, Table 17, were not excessive for
this car.
Federal Test Procedure-Hot Transient-CO--
Data in Table 32 show that the 10-minute soak and the startup still
had an impact at reduced temperatures. Again, higher temperatures and
particularly the use of air conditioners increased CO emissions. The
1977 Ford continued to have high CO emissions, as great as or greater
than the 1974 Chevrolet without a catalyst. The 1978 Chevrolet had the
lowest CO emissions at all temperatures other than 110°F (43°C) where
several cars appeared to perform better. The 1980 Mercury (prototype)
had the lowest CO emissions at 110°F (43°C), particularly with the air
conditioners in operation.
-------
FTP '"It I..ANSICNT
- (AltnON MUNOXIDf b/KM
TCMPtWATUHE F
(Cl
1972 CHHVHCLLT IMPALA
AVt
IQ74 Ct*VkULCT IMPALA
AVL
1977 HUN DA CIVIC *» STAIL
19/7 flHIO LID 49 S1ATC
AVt
AVI.
1978 HUICK V6 TUHHUCMAKGL
AVt
1977 PLYMOUTH FUMY CALIF
AVt
I97U CMLVMOLtT ST X-CALIF
AVE
1978 fOHO PINTO CAL 3 WAV
AVE
1W78 V* HAT1UIT CAL FU-INJ
AVL
1979 OOllCt ASPEN CALIF.
AVt
198O MERCURY POOT OT YPE
AVt
1««0 HUIC.K KCGAL. PWIITOTVP
Avr
OAlbUN PMOtOlYPE
AVfE
0
(-la)
26.50
i'2.b7
19.44
21 cOI
13.55
14.16
23. 4O
?5il5
23.52
24 .O.1
7.53
10. 04
12.12
Ib.JV
10.79
3.23
4.11
3.67
1.07
0.94
1 .00
1 .04
- 4.44
0.77
2.09
6.H2
9.2H
8. Ob
3.44
1 .H*J
•
•
•
.
1.116
1 .511
9
1.72
io
(-71
22.37
22.38
18. 54
16.30
1 7.42
1 1.69
9.26
la. 73
,
19.19
10.39
9.41
6.37
4.00
.
5.19
I.4P
1.49
1 .46
O.BO
1 .62
1 .25
O.HI
7.82
B
4.31
6.1 1
5.36
5.73
2.12
1.33
1.7]
4.17
3.34
6.09
7.07
A.sn
I.I?
1 .40
m
1.26
40
18. JH
23.22
20. bO
14.77
14.23
14 .bO
7.21
8. 76
17.41
2O.OO
.
16.70
8. rib
6.44
4.94
6.62
.
5.7H
1 .?•;>
1 .92
f
1.73
0.92
1 .19
1.06
O.64
6.O4
^
3.34
6.46
5.71
6.08
2.b9
3.34
2.U6
4 .25
4.25
3.46
1.63
1 .12
1.29
1 .34
1,0
1 16)
24.1 J
;'2.b6
14.09
13. « r
I4./C.
7.311
9.3B
2 1 .MO
.
b . 3 '
H.02
7.'/H
7.1?
b.20
/.JJ
»
6.27
6*1)0
f
5.17
O.L'O
O.O2
O.HI
1 .H4
2.04
,
1 .94
6.16
B./4
7.45
2.O4
1.44
1.74
2.27
2.27
,
4 . if.
2.21
2.20
.
2.21
TO
22.^3
22. ?0
22.30
16. 4H
I7.H3
1 /.Ib
II. 14
8.3H
8 . 36
24. HI
28. 77
.
26.79
10.71
9. IH
(,.71
»•"'
7.6li
.
7. 12
b.b»
7.25
f
6.42
1.28
0.91
1 .10
2.04
1 .49
.
1. 77
10. H3
10.97
10.90
1 .86
4 .00
?.-»7
2.22
2.79
2. SO
3.92
4. Ill
1 >H7
1 .60
.
1.74
tlO
(27)
24. f. 2
26.40
25.46
23. ">7
23.09
23. ^3
10. IX
9.0M
29.73
33.42
.
31. 5«
9. Ob
8. 12
H.60
4.111
12.39
•
8.29
H.ll:
6.15
.
8.15
O.97
0.98
0.9H
3.18
1.77
.
2.47
13.61
12.0'.
12. H J
3.U3
4.56
3. HO
3.9'.
3.60
3.7/
3.0'i
2.77
2. Ob
2.66
•
2.4b
HOAC
(27)
27.9V
33.67
3O. 63
.
•
•
.
•
J9.PI
J7.35
•
38. ?«
•
•
6 1 ';.'<=
.
7.62
8.97
11 .31
.
10.14
2.6B
1.35
2.OI
4.55
2.O9
.
3.32
•
•
5.25
4.b7
4.91
2.36
2.36
f
3.62
.
.
.
•
9O
(321
26.82
27. O7
27.94
25.28
23.1 1
24.19
9.31
6.44
8.87
30.00
27.58
•
28.79
ri.84
9.7O
9.27
7.7V
8.64
.
U.22
10.19
9.17
.
9.1 7
2.12
1.36
1.74
3.42
1.29
O.79
1.83
13.22
I6«2*i
14.73
4.10
5.68
4.69
2.60
2.50
2.17
3.20
2.86
.
3.03
9OAC
(32)
31.91
38.55
35.27
.
•
•
.
•
60.69
45. 4O
•
53. O4
:
•
14.98
14.76
.
14.87
19.45
18.53
.
18.99
8.10
2.25
5.1 7
2.12
1 .56
•
1.85
•
•
4.63
6.96
5.80
2.6O
2.60
2. 78
2.7H
.
•
•
•
110
(43)
40.02
54 *76
47.39
52.77
4 1 .52
47.15
9.37
9.13
9.25
56.92
59.16
*
58.04
26.98
23.911
25. 4H
46.37
22. 6/
*
34.52
21.35
26.8S
.
24.10
8.31
8. 51
8.41
3.01
4.96
.
3.99
28. 2O
30. 6S
29.43
10.41
11.26
IO.83
2.28
2.53
2.41
5.96
3.93
4.94
6.H2
6.26
•
6.64
1 10AC
(43)
52.62
74.71
63.66
.
•
•
.
•
90.04
83.58
.
86. B 1
•
•
65.76
39.03
•
52.40
31 .06
49.47
55.42
45.32
21.4 1
28.08
24.74
5.29
2.80
6 • 1 it
4.73
:
•
15.53
13.30
14.41
2.82
3.46
3.14
7.74
13.72
10.73
.
•
•
•
64
-------
Federal Test Procedure-Compos1te-C0--
Again the composite results are the basis for the standards previously
shown in Table 15. The results shown in Table 33 should be within the
emission standards at temperatures of 70 and 80°F (21 and 27°C). Most
of the cars met their respective CO standard. These CO data repeated
very well.
FTP CUMPIJ3III
- CANIIUN MONOXIDE (./KM
TEMPCHATURL f 0
(CX-18)
197* CHF.VRUL6T IMPALA
AVF
1974 CHEVROLET IMPALA
AVt
1977 HUNDA CIVIC 49 SIAtF.
AVL
1977 FORD LTD 49 STATfc
AVF.
1977 PLYMOUTH FUMY 4*S
AVE
I97t BUICK V6 TUHBUCHAHGC
AVt
1977 PLYMOUTH FURY CALIF
AVC
I97U CMt VKOLfcT ST K-CALIF
AVF
1976 FUKD HINTU CAL 3 WAV
AVE
1976 V» MABbll CAL tU-INJ
AVC
1979 OUOGE ASPFN CALIF.
AVE
I960 NEMCURY PROTOTYPE
AVE
IV80 HU1CK REGAL PHMUTYP
AVt
OATSUN PROTOTYPE
63.20
06 .03
04.42
56.25
44.77
50.61
36.09
38. Ol»
36. S5
40.02
36.0V
37.91
36.01
64. hi
36.39
46. GO
32.03
1 1 >b9
33.91
Ib.lfc
16. Jl
lbt/3
9.b6
10.47
10 .06
37.38
31 .2i
lb.75
27.92
22.34
24.07
22.27
23.42
•
•
«:°.l
20
38.02
•jl.ftO
44.81
47.78
39.42
43.60
27.25
29.32
26.29
30.47
32.97
31.72
76.81
31.53
29.17
i-2.59
20.93
21.76
9.43
9.41
9.42
7.96
7. 2O
7.59
16.03
27.22
22.03
1 1.54
9.21
10.37
19.38
12.36
15.87
27.29
26.66
15.17
12.60
13.98
5.88
40
(41
32.60
t>2.O4
42.32
17.43
34.38
25.90
9.16
20.04
14. 6O
21.32
24.98
23.15
14.89
26.11
21.50
17.67
19.26
18.43
6.29
6.71
6.50
6.07
6.22
6.16
4.6H
20.98
12.76
6.34
7.16
7.75
10. bb
16.64
13.16
15.86
15.66
11.62
11.62
5.O4
3.HM
4 .70
bO
( Ib)
3O.bl
29.57
30.09
lb.90
17.11
18. 2O
17. O7
8.63
9.66
9.15
21.97
21.71
21.84
7.36
14.01
12.91
1 1.43
1 1.97
12.04
I2.OO
4.9G
6.64
5.30
3. SB
3.19
3.64
4.78
4.91
4.86
6.78
8.1 7
7.47
4.5V
4.74
4.67
4.O6
4.06
4.50
4.60
4.83
3.73
70
(211
28.70
29.43
29. O6
15.06
19. Ol
17.03
a.l r
8.16
8.16
24.65
27.95
26.30
12.72
16.49
9.17
12.79
11.58
11.41
11.50
4.06
6.3H
3.10
2.9O
3.0O
4.39
3.46
3.92
8.17
9.OO
8.59
3.21
6.11
4.66
2.16
2.92
2.54
4.51
3.66
4.10
3.45
2.57
80
(271
27.70
3O.96
29.33
19.75
19.65
19.70
8.OI*
7.76
7.91
24.33
28.47
26.40
8.19
9.06
8.62
9.67
11.36.
10.52
».47
5.67
*
5.52
2.31
1.94
2.12
4. OB
2.40
3.24
• 9.95
9.28
9.61
3.12
4.88
4.0O
2.44
2.84
2.64
3.21
3.47
3.34
9.05
3.5*
80AC
94.31
j
•
35.90
35.06
*
11.15
11.85
11.50
7.74
7.86
7.79
3.22
2.75
2.99
4.83
2.37
3.6O
•
9.97
5.55
4.T6
2.52
2.52
9.51
9.51
"•
90
(32)
30.68
30.67
3O.62
15.70
1 7.99
16.84
7.44
7.O5
7.26
26.69
23.2O
24.9*
6.80
7.99
7.40
9.39
8.85
9.09
6.48
6.88
6.88
2.22
1.44
1.83
2.98
1.99
0.94
1.56
9.95
13.21
11.58
3.66
4.48
4.O7
2.6T
2.67
9.26
9.26
9.01
9.20
90AC
(321
38.56
4O.5S
39,66
9
m
*
53.53
41.73
47.63
*
*
*
12.69
14.29
13.49
13.94
14.86
14.40
4.88
3.09
9.99
I.9T
1.63
1.75
*
3.34
5.70
4.52
3.07
3 .07
4. O3
4.O3
•
110 1 1 OAC
(43> (431
41.68
56.38
49.03
30.78
24.40
27.59
6.51
6.5*
6.52
46.46
44.22
46.34
19.04
16. 1O
17.57
27.29
22.45
24.87
11.58
IS. 48
13.63
5.66
4.77
5.16
2.32
3.47
•>
2.89
18.57
20.39
19.48
5.97
6.46
6.22
2.72
2.40
2.56
4.15
3.51
3.83
4.87
4.78
67.90
74.33
66.12
*
*
9
76.99
80.14
78.57
;
41.51
28.73
35.12
18.31
40.27
39.80
32.79
20.77
16.15
18.46
3.67
1.88
5.16
3.57
•
10.29
9.28
9.78
2.86
3.03
2.94
6.51
a. 27
7.99
*
*
65
-------
Highway Fuel Economy Test (HFET)-CO--
The effect of running the SET before the HFET at 0°F (-18°C) but
not at 20°F (-7°C) thereby providing further engine warm-up at 0°F
(-18°C) is shown in Table 34. In most cases, emissions at 0°F
(-18°C) were less than or equal to those observed at 20°F (-7°C). Again,
CO emissions were the greatest at 110°F (43°C) and higher with the air
conditioners on. The 1977 Ford had the highest CO emissions at the
higher temperatures.
The four California cars (excluding the VW) and the three prototype
cars had the lowest CO emissions, particularly at temperatures of 90°F
(32°C) and below. Some of these emissions were very low. Repeatability
in this test, where the cars were well warmed up, v/as much improved.
lAULt 34
HIGtWAV fUKL ECONOMY TF.ST - CAMUON MONOX1DF b/RM
TEMPERATURE F O
(CM-1M)
1972 CHEVROLET IMPALA
AVE
1974 CHEVROLET IMPALA
AVC
1977 HONDA CIVIC 49 STATL
AVE
1977 FORD LTD 49 STATE
1977 PLYMOU1H FURY 49*
AVt
197A BUICK V6 TUWBOCHAMCE
AVt
1977 PLYMOUTH FURY CALIF
AVt
1978 CHCVHOLtT SI K-tALIF
AVE
1978 FOHO PINTO CAL J HAY
AVE
1978 V* RABBIT CAL FU-1NJ
AVE
1979 DODGE ASPEN CALIF.
AVE
i960 MERCURY PROTOTYPE
AVE
I960 BUICK RECAL PROTOTYP
AVE
OATSUM PROTOTYPE
AVL
10.69
14.72
12.71
6.4H
5.42
5.46
.11
• 93
.52
1 .46
.76
.20
1.64
1 .00
1.27
0.36
0.21
0.42
O.23
0.3O
0.09
O.lb
0.12
0.13
0.10
0.34
0.19
0.66
0.6O
0.63
0.63
0.65
0.64
•
•
O.ll
0.10
O.ll
20
1-7)
12.63
13. 5O
13.01
6.27
6.28
6.28
4.67
2.36
3.63
9.58
6.0O
1.79
1.27
1.53
O.46
O.42
o.ia
0.21
0.19
O.ll
O.33
0.22
0.22
1.62
I.OZ
0.73
0.93
0.83
0.64
0.18
0.41
U.6I
0.52
0.57
0.52
0.3O
0.41
0.21
0.10
0.16
4O
10.19
14.86
12.53
4.8V
4.37
4.63
1.66
1.86
1.71
6.V2
7.82
O.V3
1.30
I.I 1
0.64
O.64
0.13
0.12
O.I3
0.14
O.OB
0.11
0.07
1 .71
0.69
0.74
0.69
0.72
O.44
0.45
O.44
0.46
0.46
0.48
0.48
0.16
0.14
O.ll
0.14
60
(16)
14.64
14.43
14.64
4.76
6.76
5.33
5.28
I.9C,
1.73
1.84
12.36
9.00
1.20
1 .20
1.73
I.Jb
0.19
0.83
0.51
0.4O
O.7b
O.57
0.06
O.O7
O.O6
O.66
0.36
0.50
1.22
1.80
1.51
0.46
0.38
O.42
0.3H
0*38
O.47
O.47
0.31
0.22
0.27
7O
(21)
17.05
15. Bl
16.43
6.23
7.31
6.27
1.93
1.95
1.94
15. ao
15.24
16.62
1 .03
O.«9
0.99
0.'97
O.H3
0.33
O.S«
O.4b
0.70
O.58
O.ll
0.19
0.26
0.13
0.19
1.93
2.70
2.32
O.4I
0.72
0.57
O.24
0.58
0.41
2.18
0.57
1 .30
0.29
O.2I
0.25
80
(27)
16.34
16.80
16.57
6.99
6.62
6.30
1 .98
1.60
1.89
20.57
21.16
20. a?
1.03
1 .01
1.02
0.61
1.00
0.76
0.72
0.63
0«67
0.62
0.30
0.41
0.31
0.16
0.25
3.42
3.36
3.39
0.41
0.98
0.69
0.30
0.55
O.42
0.61
O.68
0.5V
0.34
0.36
0.35
80AC
(271
17.76
18.18
17.97
•
•:
1 7.66
19.81
I8.H3
0.82
0.92
0.87
1.50
2.03
1 .77
0.4O
0.44
0.42
1.31
0.16
0.73
^
0.42
O.41
0.41
0.44
0.44
O.R4
0.84
•
90
(32)
16.15
17.60
16. 9b
6.36
7.56
6.97
1.85
2.25
2.06
I7.7O
10.70
14.20
0.92
1.61
1.21
0.52
2.07
1 .29
I.I 1
1.56
1.56
0.21
0.2b
0.23
0.13
0.17
0.12
0.14
5.86
9.44
7.64
0.42
0.4O
O.4I
0.34
0.34
0.53
0.53
0.50
0.42
O.46
90AC
132)
20.24
19. SI
20.03
;
m
34.11
24.56
29.34
1.12
1.26
1.19
3.83
3.28
3.65
0.98
0.79
O.88
0.64
0.24
0.39
*
0.48
0.69
0.59
0.63
0.63
O»94
0.94
j
110
(43)
29.35
30.62
26. Ott
16.6V
11.93
13.61
2.78
2.57
2.67
TO .42
46. 6«
69.56
5.23
4.OI
4.62
17.62
5.31
II .57
6. O2
7.30
6.69
3.78
4.46
4.13
0.53
O.57
0.55
2O. 4J
17.93
19.16
I.O9
0.99
1.04
O.32
0.21
0.27
3.07
1.48
2.28
10.93
2.61
6.77
1 IOAC
(43)
25.92
36.67
31.29
:
.
48.61
1O0.4I
74.51
17.64
8.61
13.12
10.71
13.46
16.25
13.46
14.83
11.71
13.27
O.4B
1.96
1.22
1.22
.
2.O6
O.72
1.40
1.27
0.36
0.62
4.70
3.67
4.18
•
66
-------
Sulfate Emission Test-CO--
The SET test, which was run following the FTP and after a three-
minute engine idle period, showed higher CO emissions (Table 35) than
the HFET but generally lower CO emissions than the hot transient phase
of the FTP. This test is operated at higher speeds and faster accelerations
than the HFET which may in part account for higher CO emissions. Again,
the 1977 Ford had exceptionally high CO emissions and again the higher
temperatures and the operation of the air conditioner usually increased
the CO emissions.
67
-------
TABLE 35
SULFATE EMISSION TEST
- CARBON MONOXIDE G/KM
1
1
1
1
1
1
1
1
972
974
977
977
977
978
977
978
1 978
1
1
1
978
979
980
I960
TEMPERATURE F
(C)
CHEVROLET IMPAUA
AVE
CHEVROLET IMPALA
AVE
HONDA CIVIC 49 STATE
AV6.
FORD LTD 49 STATE
AVG
PLYMOUTH FURY 49S
AVt
BUICK V6 TUWBOCHARGE
AVF
PLYMOUTH FURY CALIF
AVfc
CHtVROLET ST W -CAL IF
AVt
FORD PINTO CAL 3 MAY
AVC
VW RABBIT CAL FU-INJ
AVE
DODGE ASPCN CALIF.
AVE
MERCURY PROTOTYPE
AVE
BUICK REGAL PROTOTYP
AVF
DATSUN PROTUTVPt
AVE
0
( -18)
16
20
18
12
12
12
9
10
10
20
18
17
.73
•62
.67
.?4
• 91
• 57
.59
• 4fi
.0?
.la
.02
.20
18.4/
6
3
5
1
0
0
1
0
0
0
0
0
0
0
I
0
0
5
'4
4
0
0
0
1
C
1
1
.46
.92
.20
.7J
.60
.61
.04
.M5
.59
.
.72
.?6
.51
.30
.6V
.00
.61
.73
.0?
.86
.94
.92
.94
.93
.
.
•
.
.
•
.20
.83
.01
.01
14
19
16
11
11
11
4
5
5
16
17
40
(4)
.23
•44
.83
.98
.42
• 70
.54
.74
.14
.22
.61
.
16*92
3
5
4
1
1
1
0
0
0
0
0
0
0
5
2
5
5
*
O
0
0
1
1
1
0
0
0
1
1
O
t
.91
.44
.67
.77
.56
.
.66
.46
.63
.
.55
.12
.25
.19
,3f>
.03
•
.69
.13
.39
.26
.76
• 96
.86
.66
.66
.66
•91
.91
.91
.12
.09
.99
.07
80
(27)
20
20
20
19
12
IS
5
5
5
29
29
.92
• 70
.81
.07
.72
.89
.60
.25
.43
.75
.49
.
29*62
3
4
4
2
3
2
3
3
. 3
0
0
0
1
0
1
9
9
.98
.85
.42
.02
.94
.
.98
.89
.61
*
.75
.66
.41
.53
.59
.73
.
. 16
.76
.03
80 AC
(27)
26.14
25.31
25.72
.
.
•
.
.
•
29.36
30.87
•
30.11
^
.
•
8.02
5.59
•
6.80
5.32
7.68
.
6.50
1.70
0.95
1.33
3.56
1.10
.
2.33
•
•
9.39 .
0
1
0
0
1
1
1
0
1
1
2
1
1
.91
.00
.96
.81
.43
.12
.12
• 99
• O6
.50
.19
.84
.84
1.30
1*09
1.20
1.24
1.24
1.24
1*37
1.37
1.37
w
.
.
•
110
(43)
33.93
44*09
39.01
35.74
31.39
33.57
7.23
7.52
7.38
58.14
55.73
.
56.93
18.00
14.35
16.17
37.31
22.52
.
29.92
16. A8
27.61
.
22.25
10.32
7.68
9.00
1 .48
2.58
*
2.03
27.52
27.78
27.65
3.46
3.52
3.49
1.01
0.85
0.93
4*06
2.41
3.24
28.99
ft. 03
17.01
17.01
11OAC
(43)
35.83
56.51
46.17
m
.
•
t
.
•
81.37
1 16.81
.
99.09
^
.
•
37.39
24.55
.
30.97
22.34
33.51
38.99
31.62
19.44
21.32
20.38
1.69
5*29
.
3.49
,
.
•
5.42
2.71
4.07
2.84
1.37
2.11
6*78
6.67
6.72
.
m
.
•
68
-------
New York City Cycle-CO--
Table 36 summarizes the CO emissions obtained using the NYCC, a
cycle made up largely of idle conditions plus several sharp accelerations
and decelerations. Even the California cars and the prototype cars have
significant CO emissions when operated on this cycle. The Honda was the
only noncatalyst car tested using this cycle.
This cycle, run with a warmed-up engine, gave several times the CO
emissions obtained with the HFET cycle. The Honda, with its modified
combustion system and no catalyst, was egual to many of the catalyst
cars and much better than some at 110°F (43°C).
TABUt 36
NEW YOHK CITY CYCLK
- CARBON MONOXIDE G/KM
TEMPERATURE F
(0
1977 HONDA CIVIC 49 STATE
AVE
1978 BUICK V6 TURbOCHARGE.
AVE
1978 FORD PINTO CAL 3 WAY
AVE
1978 VW RABBIT CAL FU-INJ
AVE
1979 DODGE. ASPEN CALIF.
AVE
1 980 MERCURY PROTOTYPE
AVE
198O BUICK REGAL PROTOTYP
AVE
OATS UN PROTOTYPE
AVE
20
(—7)
17.90
13.84
15.87
5«6i.
9.90
7.78
1.85
33.76
17. Ml
5.19
6. 13
5.66
12.16
10.73
1 1.44
6.13
6.91
6.52
2.32
.53
.92
.92
.89
.90
60
< 16)
16.55
13.83
15.19
1 6 .74
?2.26
19.50
2.9M
3.02
3. Ob
6.67
• 9.32
8.00
8.26
14.44
1 1 .35
2.78
2.78
2.78
1.67
1.87
1 .87
3.86
4.0?
3.94
HO
14.57
12. 8O
13.68
Ibel4
17.17
17.66
5.66
2.78
4.22
10.12
9.56
9.H4
10.32
9.21
9.76
5.60
3.79
4.70
2.34
1 .65
1*99
4.82
5.39
5.1 1
80AC
(27)
•
37.10
40.44
38.77
7.46
4.09
5.78
•
10.38
12.65
1 1.52
3.50
3.50
3.50
2.47
2.47
2*47
*
110
(43)
28.59
23.15
25.87
194.19
117.72
155.95
32.65
25.71
29.18
55.51
50.46
52.98
20.38
17.3O
18.84
3.57
4.42
3.99
19.31
10.75
15.03
35.58
31.10
33.34
110AC
(43)
•
293. 18
133.78
213.46
30.81
798.37
414.59
•
26. 13
16.09
21.11
5.98
3.78
4.88
36.37
20.66
28.51
*
69
-------
Federal Short Cycle-CO--
Table 37 shows the CO emissions obtained using the FSC, a cycle
designed for fast analysis of vehicle emissions. Of most interest is
its correlation with the FTP. In general, the CO emissions obtained
with the FSC were much lower than FTP composite values at temperatures
below 110°F (43°C). At 110°F (43°C) CO emissions were very high.
TABLE 37 FEDERAL SHORT CYCLE - CARBON MONOXIDE G/KM
TEMPERATURE F
(C)
197? CHt-Vf»(JI_L T IMP ALA
AVI:
197* CHEVkOLfciT 1MPALA
AVi-
1977 F(JI?D LT'J
AVI.:
1 4
0.34
40
(4)
1 1 . /t>
19.06
IS. 40
b.67
4.1?
4 .90
3.24
4.62
.
3.93
1 . 39
2.bO
2.10
1 .29
1.11
1 . ? •_.
0.10
0. 1U
0. 10
80
(27)
?3.29
18.9?
^'1.10
9.60
6.bO
e. 16
29. 16
2 1 . 36
•
?5. 26
2 . k f
\ .69
2.?3
.? . 0 1
4.4?
3. n
0. 14
0.0 /
0.11
110
(43 )
46.08
68.03
52.06
34. 6S
19.72
27.19
99.55
1 10. 5S
.
1 05.05
62 .73
37.80
45 .?7
:?8.G2
'c. 4 . H 1
26 .ni
11 .64
^.3^
O . 4 .7
70
-------
Federal 3 Mode-CO--
The test conditions of the F3M were selected to find high emitters
of either CO or hydrocarbons. Only the idle tests and 2500 rpm, no load
tests do not require a dynamometer.
80 km/h (50 mph), loaded, steady state-CO--Data obtained at this
condition are shown in Table 38. Since CO is measured by the Non-Dispersive
Infrared (NDIR) principle in both the Beckman and Stewart Warner instruments,
it is not surprising that the results are generally in good agreement.
TABLE 38 80 KM/I! (50 MPH), LOADIil), .STTiADY STATR - CARBON MONOXIDE %
1972
1974
1977
1977
1977
1978
TEMPERATURE F
(C) <-
INSTRUMENT 8
CHEVROLET IMPALA 0.40
0.62
AVE 0.51
CHEVROLET IMPALA 0.65
0.41
AVE 0.53
FORD LTD 0.77
0.85
0.95
AVE 0.86
PLYMOUTH FLRV 49E 0.02
0.04
AVE 0.03
PLYMOUTH FURY CALIF 0.02
0.01
AVE 0.01
CHEVROLET ST W-CALI11 0.02
0.01
AVE 0.01
0
•18)
SM
0.40
0.65
0.52
0.68
0. 72
0. 70
0.55
0.8?
0.73
0.70
0.02
0.03
0.02
0 .04
0.03
0.03
0 .02
0.02
0.02
40
(4)
0.
B
90
1 .05
0.
0.
0.
0.
1 .
0.
0.
•
0.
0.
0.
0.
0.
0.
0.
0.
0.
97
40
40
40
00
85
92
03
0?
03
08
0 I
04
01
01
01
SW
0.05
1.25
1.10
o.i a
0.50
0.34
0.52
0.70
0.61
•
0.02
0.0 2
0.02
0.02
0.02
0.02
0.02
0.02
0.02
80
(27)
B
1.
1 .
1 .
2.
1 .
1.
1 .
2.
1.
•
0.
0.
0.
0.
0.
0.
0.
0.
0.
50
15
32
28
00
64
60
12
86
01
02
02
00
05
03
01
02
0?
1
1
1
2
0
1
1
2
1
0
0
0
0
0
0
0
0
0
SW
.60
.10
.35
.00
.80
.40
.74
.00
.87
•
.02
.03
.02
.02
.03
.02
.04
.01
.02
110
(43)
B
1 .51
2,70
2.10
1.55
1 .40
1.47
4. 15
3.80
3.97
•
0.04
0.02
0.03
0.1 0
6.05
3.07
0.01
0.00
0.01
SW
0.53
2.80
1 .66
1.45
1.53
1 .49
4.20
1 .03
2.61
•
0 .02
0.01
0.01
0.08
6.30
3.19
O.O2
0.02
0.02
= HECKMAN SW = STEWART WARNER
71
-------
48 km/h (30 mph). loaded, steady state-CO--Data obtained at this
condition are shown in Table 39. With a few exceptions, the results
obtained with the two instruments were in good agreement.
'TABLE 39 48 KM/H (7>0 MPK1 , LOADl'I), STRAW STATF. - CARBON
TEMPERATURE F 0
(C) (-18)
INSTRUMENT
1972 CHEVROLET IMPALA
AVE
1974 CHEVROLET IMPALA
AVF
1977 FORO LTD
AVE
B
0.45
0.60
0.52
0.10
0.09
0.09
0.05
0.02
0.02
0.03
SW
0.50
0.70
0.60
0.03
0.02
0.02
0.03
0.03
0.03
0 .03
2.
1 .
2.
0.
0.
0.
0.
0.
0.
.
40
(4)
B
45
57
01
12
08
10
25
02
1 1
SW
3.00
1 .70
2.35
0.1 3
O.I 0
0.1 1
0.03
0.03
0.03
.
3.
2.
2.
2.
0.
1 .
0.
0.
0.
.
80
(27)
B
80
00
90
58
12
35
08
02
05
1.
2.
1 .
1.
0.
0.
0.
0.
0.
.
sw
00
20
60
51
15
83
09
03
06
110
(43)
B
3.15
4.50
3.82
1.00
0.86
0.93
4.08
2.78
3.43
*
SW
0.85
4.20
2.52
0.75
0.58
0.66
3.60
0.34
1 .97
.
1977
1977
1978
PLYMOUTH FURY 49S
AVE
PLYMOUTH FURY CALIF
AVE
CHEVROLET ST W-CALIF
AVE
0.02
0.03
0.02
0.01
0.01
0.01
0 .0 1
0.01
0.01
0.02
0.02
0.02
0.02
0.03
0.02
0.02
0.01
0.01
0.
0.
0.
0.
0.
0.
0.
0.
0.
02
02
02
08
01
04
01
01
01
0.02
0.0 1
0.01
0.01
0.03
0.02
0.02
0.02
0.0?.
0.
0.
0.
0.
0,
0.
0.
0.
0,
.20
.01
.10
.00
.02
.01
.01
.02
.0?
0.01
0.01
0.01
0.02
0.02
0.02
0.04
0.00
0.02
0.80
0.02
0.41
0.06
0. 10
0.08
0.01
0.00
0.01
0.60
0.01
0.30
0.07
0.05
0.06
O.O1
0.01
0.01
B = BFCKMAN SW = STEWART WARNER
72
-------
2500 rpm. no load, steady state-CO—In most cases, as shown in
Table 40, the Beckman results agreed well with those of the Stewart
Earner instrument. Repeatability was rather poor at the higher con-
:entrations.
TABLE 40 2500 RPM, NO LOAD, STEADY STATE - CARBON MONOXIDE PERCENT
TrMPFRATURF F
(C)
INSTRUMENT
1972 CHPVHCLF.T IMPALA
AVE
1574 CMFVHOLFT IMPALA
AVF
1977 FORD LTD
AVF
1Q77- PLYMOUTH FUMY 49 S
AVE
1977 PLYMOLTH FURY CALIF
AVE
1S7C CHEVROLET ST »-CALIF
AVF
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(-18)
?T
.?0
.90
.55
.09
.1 0
.09
.05
.02
.02
.03
.04
.03
.03
.01
.01
.01
.02
.01
.01
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5W
.'10
.85
.82
.12
.05
• on
.03
.01
.03
.03
.03
.02
.02
.02
.01
.01
.07
.02
.02
3
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
40
(4)
8
.05
.35
. 70
. 1 1
. 06
.08
.05
.02
.03
.03
.02
.02
. 18
.01
.09
.01
.01
.01
Sfe
3.40
2.23
2.81
0.13
0.12
0.12
0.03
0.03
0.03
0.02
0.02
0.0?
0.0 1
0.01
0.01
0.02
0.02
0.02
80
(27)
ff
6.80
3.50
S. 15
0.42
0.10
0.26
0.01
0.03
0.02
0.01
0.02
0.02
0.0 1
0.02
0.01
0.01
0.02
0.02
SW
4.20
3.40
3.80
0.53
0.13
0.33
0.03
0.03
0.03
0.02
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.0?
1 10
(43)
B
2.60
3.75
3.17
0.45
0.56
0.50
2.31
2.45
2.38
2.15
0.04
1 .09
0. 10
0.14
0.12
0.01
0.00
0.01
SW
0.72
3.30
2.01
0.46
0.59
0.52
1.60
0.53
l!o6
2.00
0.01
1 .00
0.07
0.18
0.12
0.02
0.01
0.01
R = BECKMAN SW = STEWART WARNER
-------
Idle, in drive, steady state.-CO—Data for this condition are shown
in Table 41. Again, there is good agreement between the Beckman and
Stewart Warner results. Except at higher concentration levels, repeatability
was good.
TABLE 41 IDLE, IN DRIVE, STEADY STATE - CARBON MONOXIDE PERCENT
TEMPERATURE F O
(C) (-18)
INSTRUMENT B
IS72 CHEVROLET I MPALA 0.58
0.54
AVE 0.56
1974 CHEVROLET IMPALA 0.30
0.20
AVE 0.25
1977 FORD LTD 0.01
0.02
0.02
AVE 0.02
0.
0.
0.
0.
0,
0.
0.
0,
0.
0.
SW
,55
.50
.52
.27
,15
.21
.03
.03
.03
.03
4
1
2
0
0
0
0
0
0
40
(4)
B
.00
.40
.70
.19
. 1 3
. 16
.05
.02
.
• 03
sv»
3.20
1.15
2.17
0.22
0.20
0.21
O.03
0.03
.
0.03
2
1
1
3
0
1
0
0
0
80
(27
O
.00
. 15
.57
.25
. 12
.68
.03
.03
,
.03
2
0
1
2
0
1
0
0
0
)
SW
.50
• 99
.74
.60
.30
.45
.0.3
.03
.
.03
110
(43)
B
1 .50
4.00
2.75
0.36
1.45
0.91
0.14
0. 10
.
0.12
sw
0.63
4.20
2.41
O.SO
0.71
0.60
0.23
0.03
.
0.13
1977
1977
1978
PLYMOUTH FURY 49S
AVE
PLYMOUTH FURY CALIF
AVF
CHEVROLET ST Vl-CALIF
AVE
1 .30
1.05
1.17
0.01
0.01
0.01
0.01
0.01
0.0 1
1 ,
I .
1 ,
0.
0.
0.
0,
0.
0.
.10
.10
.20
.02
.02
.02
.02
.01
.01
0.02
0.02
0.02
0.08
0.01
0.04
0.01
0.01
0.01
0.02
0.01
0.01
0.00
0.02
0.0 1
0.02
0.02
0.02
1.68
0.85
1.26
0.00
0.02
0.01
0.01
0.02
0.02
1.70
0.40
1.05
0.02
0.01
0.01
0.03
0.01
0.02
3.05
0.80
1.92
0.02
0.01
0.02
0.01
0.00
0.01
3
0
1
0
0
0
0
0
0
.00
.80
.90
.01
.00
.00
.01
.01
.01
B = BECKMAN SW = STEWART WARNER
Idle, in neutral, steady state.-CO—This condition was measured
both before and after the 2500 rpm condition. The results are shown in
Tables 42 and 43. The agreement between the first and second tests was
reasonably good.
74
-------
TABLE 42 IDLE, IN NEUTRAL, STEADY STATE* - CARBON MONOXIDE PERCENT
TEMPFRATURE F 0
(C) (-18)
INSTRUMENT fT 4w
1972 CHFVRCLFT IMPALA 0.11 0.30
0.3ft 0.4*7
AVE 0..14 0.17
1S74 CHEVROLCT IMPALA 0.15 0.02
0.14 0.01
AVE 0.14 0.0?
1S77 FORD LTD 0.05 0.03
0.03 0.03
0.02 0.03
AVF 0.03 0.03
1977 PLYMOUTH FURY 49S 0.02 0.01
0.03 0.01
AVF 0.02 0.01
1977 PLYMOUTH FURY CALIF o .0 1 0.02
0.01 0.01
AVF 0.01 0.01
1978 CHEVROLET ST W-CALIF 0.01 0.0?
0.01 0.02
AV«i 0.01 0.02
40
(4)
R . S*
2.80 3.40
1.45 1 .ISO
2.1? 2.50
0.16 0.22
0.12 0.15
0. 14 0. 1 8
0.01 0.03
0.02 0.03
0.01 o!o3
0.02 0.02
0.0? 0.0?
0.02 0.02
o.oa o.ot
0.01 0.02
0.04 0.01
0.01 0.02
0.01 O.Ot
0.01 0.01
80
(27)
(1 SW
2.80 3.40
0.75 0.87
1.7-f 2.13
1.50 0.72
0.25 0.30
O.flfl 0.51
0.03 0.03
0.01 0.03
o!o2 o!o3
3.15 2.25
0.60 0.5?
1 .87 1 .38
0.02 0.02
0.02 0.01
0.0? 0.01
0.01 0.03
0.02 0.01
0.0? 0.02
1 10
(43)
n sw
1.51 0.55
2.90 3.20
2.20 1.87
0.50 0.4S
0.90 0.63
0.70 0.54
0.12 0.10
0.10 0.03
O^ll 0*06
3.15 3.10
0.59 0.50
1 .86 1 .80
0.02 0.01
0.00 0.00
0.01 0.00
0.01 0.02
0.00 0.01
0.01 0.01
TABLE 43 IDLE, IN NEUTRAL, ST
EADY STATE* *-
CARBON MONOXIDE PERCENT
TFMPF.RATURe F 0
m (-18)
INSTRUMENT 3 SW
1972 CHEVROLET IMPALA 0.26 0.30
0.35 0.40
AVE 0.30 0.35
1974 CHEVROLET IMPALA 0.12 0.22
0.13 0.14
AVE 0.12 0.18
1977 FORD LTD 0.05 0.03
0.02 0.03
0.02 0.03
AVE 0.03 0.03
1977 PLYMOUTH FURY 49S 0.04 0.05
0.03 0.02
AVE 0.03 0.01
1977 PLYMOUTH FURY CALIF 0.01 0.0?
0.01 0.02
AVE 0.01 0.0?
1978 CHFVROLFT ST W-CALIF 0.01 0.0?
0.01 0.02
AVE 0.01 0.02
40
(4)
8 SW
2.70 ?.80
1.30 1.10
2.00 1.95
0.16 0.21
0.11 0.1 8
0.13 0.1 9
0.01 0.03
0.02 0.03
0.01 0.03
0.02 0.0?
0.0? 0.02
0.02 0.02
0.18 0.02
0.01 0.02
0.09 0.02
0.01 0.02
0.01 0.02
0.01 0.02
80
(27)
n sw
2. 95 3.20
1.65 1.80
2.30 2.50
1.04 0.82
0.20 0.23
0.62 0.52
0.02 0.03
0.01 0.03
. •
0.01 0.03
1.20 1.10
0.58 0.50
0.89 0.80
0.00 0.02
0.02 0.0?
0.01 0.02
0.01 0.02
0.02 0.02
0.02 0.0?.
1 10
(43)
B sw
1.00 1.02
1.45 1.80
1.22 1.41
1.101 .05
0.56 0.59
0.33 0.82
0.50 0.03
0.02 0.03
• •
0.26 0.03
1.15 1 .20
0.07 0.10
0.61 0.65
0.05 0.03
0.01 0.02
0.03 0.02
0.01 0.02
0.00 0.01
0.01 0.01
*BEFORE 2500 RPM CONDITION
*'*AFTER 2560 RPM CONDITION
= 3ECKMAN SW = STEWART WARNER
75
-------
Nitrogen Oxide (NQX)
Figure 8 shows the uncorrected nitrogen oxide (NOX) emissions
plotted against ambient temperatures from each of the three phases of
the FTP. Figure 9 presents similar plots of the uncorrected NOX emissions
for the composite FTP, HFET, SET and either the NYCC or the FSC tests
procedures. Figures 10 and 11 show the NOX data after applying a humidity
correction. The applicability of the current humidity correction factor
at temperatures outside those normal for the FTP is questionable.
Federal Test Procedure-Cold Transient-NOX—
Table 44 lists the measured NOX emissions in g/km for the cold
IAHLK 44
f I f CC'LO
OXIDE:. <.XKM
TtMPt'HATURC F
(CM
IV72 CMC VROLK 1 IMPALA
AVL
1974 CHLVWOLtT IMPALA
1977 HONDA CIVIC 4V bTAIt
AVt
1977 FUHO LTD 49 SlAlF
AVL
Avr
1 V7fi HUICK V6 ImvHOCMAWG*-.
AVC
IVIt I1.VMOUIII HWV CALIF
Avr
1970 CHrvBULtT b? B-CALIf
AVL
1V7B Fn»O MINTCI CAL J WAV
AVK
IV7C V* KAHI1I1 CAL I-U-INJ
AVL
19/9 (>UC'C»r ASPtN CALIF.
Avr
198O MCUCURV PMOTOTVPE
AVC
1980 BUICK REGAL PRUTOTYP
AVE
OATSUN PHOTOTYPE
AVE
0
-1")
1 .77
\.rt
1 .14
.
Z.IM
1 .94
2.06
2.KJ
3,b7
3.JB
3.V6
2.VO
i.'ll,
I .64
1 .HU
J.'.if
J.S<*
J!M,
1 .bl
I.7H
l.bb
0.7B
O.MV
I.OI
o.»«
l.6b
1 .6b
l.l-b
0.73
0.7/
0.7f>
-
.
•
'.
1.9V
2.1b
2.07
20
2.14
2.01
1.43
l.bB
2.42
2.15
2.9b
2.70
.
2.82
J.10
l.9h
2.27
.
2.13
3.03
-1.2ft
f
3.16
I.H4
l.bl
l.bB
0.64
0.62
0.03
1.79
1.47
I.3B
0.77
1.49
1.13
0.7b
0.77
1.28
ll4l
1.84
2.O4
1.94
4O
(4)
2.70
2. Ml
1.9V
2.79
1 .OJ
2.71
3.0V
3.01
.
3. Ob
3.74
1.95
I.Htt
m
1.91
7.7b
1.96
2.10
1 .41
LIB
I.Jj
O.BO
0.67
0.74
1 .12
1. IB
l.lb
O.U2
0.79
O.B6
0.87
0.87
1.09
1 .09
1 .87
1 .96
1 .92
60
< 16)
2.4(1
2.41
1 .31
1 .40
2.27
2 .4b
2.36
1.61
1.54
.
l.bB
l.b?
I.6J
I.b4
1.63
.
l.bn
1..'.
1 .00
t
I.I l
0.99
I.OI
1 .00
1 .bu
m
l.r>*
O.H9
0.9W
0.94
1 .1 1
1.03
O.H6
0.86
1.27
1.77
l.7b
1.72
1.74
70
1 .Hb
2.02
1 .3H
1 .29
1 . 33
2.77
2.43
2.3b
1.26
1.47
.
1.34
1.71
1.40
1 .79
1.30
1 .33
.
1.31
O.8?
0.71
,
0.77
o.nt>
0. V7
0.89
1 .20
1.30
.
I.Z!»
0.94
0.97
0.93
O.H4
1 .09
O.97
0.93
1.09
I.OI
1.19
1.27
1.23
1.63
1.60
1.61
f>0
(27)
2 • 16
1.71
1.94
1.10
1 .06
1 *bu
2.33
2.29
1.23
1.12
•
1 . IB
O.92
1.03
1 .Ob
O.VB
.
I.OI
0.6O
O.b6
.
O.bl
0.81
0.78
0.79
1.16
1.14
.
1. Ib
O.Bb
0.70
0.7B
O.Ob
I.O7
O.96
e.ai
0.89
a. as
1.05
I.Ob
I.Ob
1.34
1.29
1.31
aoAC
(77)
2.07
2.30
•
•
\
.
•
1.3.;
1.24
.
I.2B
.
1 .Ib
1.20
.
1.17
0.49
0.6O
,
O.b4
1.17
1.09
1.13
1 .34
1.34
.
1.34
.
.
•
1 .OO
1.14
1.07
. 0*96
0.96
1.32
1.32
.
•
90
(32)
2.0O
l.bl
1.75
0.89
0.86
0.87
2.04
2.01
2.02
O.b2
0.52
.
O.52
O.87
0.97
0.97
0.81
0.96
•
o.ae
O.44
0.39
.
O.39
0.71
0.68
0.70
o.ai
0.79
0.80
0.69
0.61
O.6b
0.72
0.92
0.8?
0.87
0.87
0.73
0.73
1.02
0.99
I.OI
90AC
(32>
2.49
2.03
2.26
•
•
B
.
•
0.70
O.67
.
O.69
.
0.99
I.O2
.
1.01
0.47
0.41
.
O.42
0.84
0.9V
0.92
0.97
0.86
.
0.93
.
•
•
0.77
0.96
0.86
0.81
0.81
0.96
0.96
.
•
110
143)
1 .35
1.10
1.22
0.64
0.39
0.52
1.94
1.87
1.90
O.55
0.43
.
0.49
0.76
0.75
0.76
O.55
0.60
.
0.57
0.34
O.37
.
O.36
0.50
0.53
0.52
O.45
0.61
.
O.S3
0.48
0.40
0.44
0.43
O.52
0.4T
0.59
0.52
0.55
0.52
0.36
0.44
0.68
O.S3
O.6I
IIOAC
(43)
1 .62
1.41
1.51
•
•
^
.
•
0.6O
0.57
•
O.59
.
O.46
O.66
.
O.b6
0.35
0.26
0.37
0.33
0.67
0.68
0.67
0.64
0.61
0.79
0.6B
.
•
•
0.51
0.91
0.52
0.6*
O.68
0.69
O.T7
0.83
o.ao
•
•
76
-------
1973 OdffiBLET
19711
1977 MMR CIVIC «9 STRTE
5
K*
I
D FTP Cold Transient
O FTP Stabilized
A FTP Hot Transient
*
-x. 3
£
i
5*
1
_
._
'
L
1
1
i
!
i 1 1
1
)
1 i
! '
F 0 20 « CD B 100 IB
1977 FORD LTD 19 STBTt
v|95
1978 BUIO VE
(Data points not connected by a line are the results of air conditioning runs.)
figure 8. Effect of ambient temperature on uncorrected nitrogen oxide emissions for the FTP.
-------
1977 PtTNOUTH fan W.IF
O FTP Cold Transient i
O HP Stabilised |
A FTP Hot Transient
1976 DOUBLET ST M-CR.1F
1978 FOW PINTO Ot. 3 WT
rr
in* ant fern our.
CO
B
I
I960
I960 BUICK PECd PH010IIP
OBTSW
C-M •> «
100 120 '
• a'
C •!• -» <
(Data points not connected by a line are the results of air conditioning runs.)
Figure 8. (continued)
-------
1972 CHEVROLET 1MPBLH
Q FTP Composite
O HFET
A SET
FSC
197H CHEVROLET IHPRLR
1
(
-18
u.
C
(
i
<
-i
a
-7
3
5
>
K
FT
HF
stn
FS(
-1
-~*
' r
!T
r
k.
fc-^
om
^
•~«.
poi
Hi
-•»,
li
s
— 1
•
^
=3
i
00 GO BO 100 120
1977 HONDR CIVIC 19 STflTE
"FT
i i i
Q FTP ComposIce
O HFET
A SET
" NYCC
1977 FORD LTD «9 STRTE
1977 PLTHOUTH -fURT »9S
1978 BUICK VE TURBDCMRRIX
-O
. __ NITROGEN OX10E. CM/KM
° - ~ « .
«« «
I
(
h-
•-,
a
o
A
O
— i
~^
F
H
S
F
r-
TP
FE-
ET
SC
-(
Co
r
"s
^r
imp
">
t>i;
1
'l
»-<
[•
,
,
^Su
r
i
i*
*
0 20 W GO •> 100 120
- -' ' TErVft^IENT" '"
1
I
•
(
f
r—
\r~
a
Q
/i
c
^
F
H
6
f
\
FE
ET
SC
N
,— <
.
Cc
r
"s
•^
•>
*^
«np
^
t
OS
s
t«
~5
M
*^.
>4
H
<•" ". ' TEfc^IENT- "
O FTP Compoatte
O rjFET
A SET
HTCC
(Data points not connected by a line are the results of air conditioning runs.)
Figure 9. Effect of ambient temperature on uncorrected nitrogen oxide emissions for the test cycles.
-------
00
O
T
1977 PLYMOUTH FURY CRLIF
1978 CHEVROLET ST H-CRLIF
1978 FORD PINTO CRL 3 HHT
1978 VH RRBBIT COL FU-INJ
Q FTP Composite
-O HFBT
A SET
O rse
1979 OOOCE BSrtM CH.IF.
11
8
§
Z 2
2
1
f.
p=
a
r
1
i
rp Co
mp
\
JSl
1
1
te
O HFET
A SET
O
=*
F
>==
:c
5t
~t
3^
h
H
1-
>=
i
[1
5
^^^
a
^,
F 0 20 HO 60 80 10) 120
C-8 " ' T& nAENT "• "
1980 KEflCURY PROTOTYPE
4
§
£2
z
0
c
i i
TP
c
rap
OB
itl
i
O HFET
A SET
O HTCC
{
x
i—
x
-^
^
(~
/
^
\
H
L 1
H|4
MJM
L
t=
O FTP Composite
O HFET
A SET
I960 BUICK REGAL PROTOTTP
Q FTP Composite
O HFET
A SET
O HYCC
F 0
c-ie
20 10 60 80 100 120
O FTP Composite
O HFET
A SET
O
DSTSUN PROTOTTPE
I
O FTP Composite
O HFET
A SET
O
(Data points not connected by a line are the results of air conditioning runs.)
Figure 9. (continued)
-------
1972 CHEVROLET IMPflLR
O FTP Cold Transient
Q FTP Stabilized
FTP Hot Transient
C-18 -7 1
TEMP *MSENT
19711 CHEVROLET IMPflLR
5
R>
r 6 »
-------
1977 PLYMOUTH FURT CRLIF
1979 CHEVROLET 5T H-CflLIF
-O FTP Cold Transient-
CD FTP Stabilized
A FTP Hot Transient
1976 FORD PINTO CHI 3 MAT
F o a no so n 100 la
1978 VM RHBBIT CRL FU-INJ
F 0 20 HO 60 • 60 100 120
C-l» -7 t _JS_ __J7 X
oo
tv)
1979 DODGE MKN W.IF.
T
I960 MBCURT pnOTOTTPE
I960 BU1CK RCGRL PROTOTTP
i
u
i
F 0 20
C-16 -7
I
GO fO 100 120
OBTSUN PROTOTTPE
F 0 20 HO 60 BO 100 120
c"' -' ' i& niim" "
(Data points not connected by a line are the results of air conditioning runs.)
Figure 10. (continued)
-------
1972 CHEVROLET INPBLR
197U. CHEVBOLET IMPflLH '
1977 HONOR CIVIC 49 STBTE
p
a
o
A
O
a
r
H
S
F'
rr
n>
'El
rr
>c
— <
Co
f
op<
^
)Sl
H
te
(
J
(
[
|
k-M,
X^
I
F " o 20
C-IB -7
GO BD 100 120 '
JB «
O FTP Composite
O HFET
A SET
O FSC
I
O FTP Composite
O HFBT
A SET
O OTCC
~F 0 20
C-l» -7
60 80 10D MO
3B «9
BHflENT :
1977 FOBD LIB W STHTE
00
O FTP Composite
O HFET
A SET
O FSC
TEMP f
1977fl.T«OHTH FIW UK
1978 BUICK V6 TURBOCHRBCE
5
O FTP Composite
O BFET
A SET
FSC
TEHP CENT-
O FTP Coaposi.ee
O HFET
A SET
O HYCC
(Data points not connected by a line are the results of air conditioning runs.)
Figure 11. Effect of ambient temperature on corrected nitrogen oxide emissions for the test cycles.
-------
1977 PLYMOUTH FURY CHLIF
I97B CHEVROLET ST H-CflLIF
1978 FORD PINTO CRL 3 HBT
1978 VH RflBBIT CRL FU-INJ
Q FTP Composite
O BFBT
A SET
O FSC
C-18 -7 ., 1
100
TEMP fwIlENT "
O FTP Composite
O HFET
A SET
PSC
TEMP AM&ENT ''
Q FTP Composite
O HFET
A SET
NYCC
" TEMP RMBIENT
Q FTP Composite
O HFET
A SET
O NYCC
C -IS -7 •
1979 DOOK R9PCN OLIF.
1380 MERCUBT PROTOTYPE
1980 BU1CK RECBL PROTOTYP
OBTSUN PROTOTYPE
oo
; | Q FTP Composite
: ! O HFET
i i A SET
_O
Q FTP Composite
O HFET
A SET
O
i
5
Q FTP Composite
O HFET |
A SET
O NTCC
«
5
5
°S
i_>
i
2
0
[
(
1
O FTP Composite
O HFET
A SET
O NYCC
*»(
K
-H
k=
=4
bf
—i
s
U:
N
I
(Data points not connected by a line are the results of air conditioning runs.)
Figure 11. (continued)
-------
transient phase of the FTP. The total range of average values obtained
by all of the cars at all of the temperatures was from 0.33 g/km for
1977 California Plymouth to 3.74 g/km for the 1977 49-State Plymouth.
NOX emissions generally decreased at constant relative humidity as the
temperature increased above 40°F (4°C). This is believed to be due, in
part, to the higher absolute humidity at the higher temperatures. In
almost every case, NOX emissions increased when the air conditioners
were on. This result was probably due to increased engine load.
Table 45 compares the average NOX emissions with the average NOX
corrected (NOXC) emissions. These results show that the correction
decreased NOX at temperatures below 70°F (21°C) and increased them at
temperatures above 80°F (27°C) indicating that the current humidity
correction should not be applied at temperatures outside the normal FTP
range.
TABLE 45
TEMPERATURE F O
(Cl(-ia)
1972 CHEVROLET IMPALA
NOX AVF
NOXC AVC
1974 CHCVROLt.T IMPALA
NOX AVC
NOXC AVt*
1977 HONDA CIVIC 49 STATE
NOX AVf
NOXC AVE
1977 FUIIL) LTD 49 STATE
NC1X AVE
1977 PLYMOUTH FURY 49S
NOX AVC
NOXC AVE
1978 BUICK V6 TURBOCHARCE
NOX AVt
NOXC AVF
1977 PLYMOUTH FURY CALIF
NOX AVE
NOXC AVE
1978 CHEVROLET ST K-CALIF
NOX AV*
NOXC AVE
1976 FOHO PINTO CAL 3 DAY
NOX AVE
NOXC AVC
1978 VW UABHIT. CAL FU-INJ
NOX AVE
NOXC AVC
1979 DODGE A SPIN CALIF.
NOX AVF
NOXC AVE
1980 MCHCUNY PHOTnlYPF
NOX AVF
NOXC AVt.
I9BO QUICK REGAL PMOTOTVP
NOX Ave
NOXC AVC
DAT SUN PHOTOTYPE
NOX AVC
NOXC AVF
1.73
1 ..10
1.49
1.13
2.O6
3.26
2.90
1.82
1 .36
3.56
2.69
1.65
1.25
0.8V
0.67
1.24
0.75
O.S6
:
2.07
1.56
20
(-71
2.01
1.52
1.56
I.IH
2.lb
1.63
2.02
3.10
2.36
2.1 J
1 .61
3.16
2. .IB
1.68
0.63
0.48
1 .38
I.O4
I.IJ
O.M5
0.77
O.S9
1.4 1
I.O7
1.94
1.48
FTP CULD TRANSIENT
40
(41
2.bH
2. OS
1.67
1.30
2.21
1 . C4
3. Ob
3.74
2.98
1.91
l.*>3
2.10
1 .67
I.3J
1.06
0.74
0.5B
1. 15
0.90
O.86
0.6S
O.H7
0.69
1.09
0.86
1 .99
1 .58
6O
1 161
2.41
2.07
1 .40
1 .20
2.36
I.S8
2.1?
1 ,H3
1 .58
1 .3*
I.I 1
O.9S
1 .00
O.A6
1 .52
1.30
0.94
O.8O
1 .03
0.9O
0.86
0.74
1.27
1 .09
1 .74
1 .SO
7O
(?ll
2.0?
1.86
1.33
1 .23
2.35
2.16
1.34
1.23
1 .29
1.19
1 .31
1.21
0.77
0.71
O.A9
1.25
1. 15
0.91
0.85
n.97
o.oa
1 .01
0.93
1.23
1.13
1.61
1.49
AVCMAGE NOX C NOXC - G/KM
80
127)
1.94
1.07
1.08
1.13
2.29
2.29
i.ia
1.24
1 .03
I.OS
1.01
1.04
0.58
.0.60
0.79
0.80
1.15
1.17
0.78
0.79
0.96
0.97
0.85
0.87
1.05
1.07
1.31
1.35
80AC
(?7»
2.30
?.J2
•
•
1.28
.
1.17
1.21
0.54
0.5A
1.13
1 .15
1.34
1.38
•
1 .07
1.09
O.V6
0.98
1.32
1.33
90
(32)
I.7B
2.04
0.87
1.0?
2.02
2.36
0.52
0.61
0.92
1.08
0.88
1.03
0.44
0.52
0.70
0.82
0.53
0.6?
0.65
0.75
0.82
0.96
0.87
0.92
0.73
0.82
1.01
1 .17
90 AC
(32)
2.26
2.62
•
:
0.69
0.84
I.OI
1.18
0.42
0.52
0.92
1.08
0.93
1.07
•
0.86
1.02
O.8I
0.96
0.96
1.07
1 10
(43>
1.2?
2.39
0.52
0.98
1 .90
3.00
0.49
0.9?
0.76
1.26
0.57
0.96
O.36
0.56
0.52
0.94
0.53
0.94
0.44
O.75
0.47
1.02
0.55
0.90
0.44
0.88
0.61
1.08
IIOAC
(431
I.M
2.74
•
•
0.59
1.12
O.56
0.97
0.33
0.59
0.67
1.12
0.68
I. 0«
•
0.52
1.12
0.69
I. IT
o.ao
I.M
85
-------
Federal Test Procedure-Stabilized-NOX--
Table 46 gives the NOX emissions for the stabilized phase of the
FTP. This condition, which lead to the lowest CO and hydrocarbon emissions
also produced the lowest NOX emissions. The total range of average NOX
emissions was from 0.14 for the Datsun at 110°F (43°C) to 2.49 for the
1977 (49 State) Plymouth at 20°F (-7°C).
FTP SIAOILI/fU
- NI1MOGCN OX I Off, G/KM
TtMPCHATURE r 0 20
(-7)
1972 CHt.Vfcl>LET IMPALA
AVE
1974 CHI VMOLtT IMPALA
.11
t<*b
.70
• 24
.1 t
.^3
.69
.61
.1 1
• O /
40
14)
1 .69
1.57
I.6J
1 .01
0.97
6O
) lo>
i .37
i ..i.)
1 ,3S
O.HV
O.MV
70
<2i>
1 .29
1.17
1 .? )
O.ftl
O.U 1
80
(27)
l.?0
1.09
1 . 1 •>
o./o
O.C7
eoAc
(27)
1 .55
1 .4(1
1 .Ul
•
90
(32)
O.94
0.90
0.9?
0.61
0.14
90AC
132)
1.56
1.44
1 .50
•
1 10
(43)
O.S7
0.46
0.51
0.41
0.41
1 10AC
(43)
0.65
0.84
0.84
•
1974
1977
1977
1 977
I97B
1977
1978
I97H
1976
19/9
1980
iseo
CHI VHOLtT IMPALA
AV^
HONDA CIVIC 49 STATL
FUMU LTU 4">'S1ATL
AVt
AVE
BUICK V6 TURBUCMAWGf.
AVE
PLYMOUTH FUHV CALIF
AVC
CHLVHOLf. T ST K-CALIF
AVC
FOWO PINTO CAL 3 KAV
AVt
V» KAULJIT CAL KU-1NJ
AVt
ODU<.t ASPL'N CALIF.
AVE
HERCURV PRUTOTVPC
AVC
8UICK k£GAL PROTUTVP
AVE
DAI SUN PROTOITPE
AVt
.24
.1 /
.
1.21
Z*Jt
0.7t>
O.uJ
0 . n* .
O.HI
1 .06
!.'»
O.OI
1 .02
O.93
0.95
O.92
O.MD
0.90
o.nr>
0.79
O .1*2
U.6/
0.43
0.4R
o.r.j
0.97
0.77
O.b/
1 .lb
O.H&
I.OO
•
.
.
•
•
0.9J
o.ir
O.QS
.1 1
.O/
1.09
2>'O
O.HB
O.VO
O.b9
I.b7
7.49
O.B3
0.6Z
•
0.72
0.7J
0.73
•
0.73
O.7J
a. 71,
0.60
0.7H
0.44
1.01
I.OO
1 .Ol
0.69
I.2J
O.U6
0.5 r
O.&9
0.16
O.OS
1 .IS
0.60
0.57
0.62
•
0.60
1 .01
o.tr
0.99
1 .9*>
1.27
0.92
1 *O9
1.07
.
O.Bb
0.59
0.45
0.52
O.69
0.59
•
0.64
0.6H
0.1>!>
0.47
O.?7
O.-17
0.82
0.9H
0.90
O.49
I.I 1
0.80
0.50
•
0.5O
I.JV
.
1.39
0.54
0.52
O.54
O.bJ
O.H7
O.HV
O.M.I
O.H6
1 «tl^
o.vo
0.9A
Oi'iJ
O.H9
0.87
0.77
0.4 j
0.45
0.44
0.67
O.65
.
0.6O
O.6M
O.O9
0.7b
0.91
O.M J
O.bO
0. /I
0.6!>
O.34
O.39
O.J6
0.3H
.
o.je
1.21
1.21
0.50
O.43
.
0.47
O.AI
O.U 1
O-.ll
1 ./n
O.RO
0.7K
0.79
O.R9
O.B6
0.86
0.42
0.3A
0.4O
0.55
0.65
0.60
0.61
0.64
O.M1
0.4t>
0.52
0.56
0.4?
O.49
O.M
O.39
O.JO
O.J7
O.34
0.35
1. 1?
1.21
1 .16
0.40
0.40
O.4O
O./O
O.C7
.
O.6H
1 .60
0.74
0. l\
•
0./2
0.83
.
O.b?
O.3J
0.31
O.J2
O.58
O.t.4
O.56
0.52
0.57
0.50
0.42
0.46
O.JI
O.?ti
0.20
O.Jfc
O. 38
0.37
0.32
0.37
0.34
1 .04
I.OO
I.O2
0.29
0.29
O.29
•
•'
*
0.90
0.94
0.92
•
0.43
0.49
0.46
0.59
0.73
.
0.66
0.79
O.7a
0.7.1
0.6 J
0.68
•
O.42
0.41
0.41
0.43
.
0.43
1.19
1.19
.
0.61
0.54
0.5»
1 .61
1 .52
0.60
0.66
.
0.6J
0 .84
0.65
0.84
0.26
0.31
0.29
0.48
0.48
.
0.48
0.51
0.50
0.29
0.34
O.32
0.25
0.11
0.21
0.30
0.33
0.31
0.36
.
0.36
0.83
0.83
0.27
0.29
O.28
.
.
*
0.71
0.89
.
0.80
•
O.3H
0.4O
0.39
O.6I
0.59
0.60
0.6H
0.7A
0.6?
0.4?
O.47
.
O.40
0.32
0.36
O.44
•
0*44
o.en
•
0.90
•
•
•
0.41
0.41
•
0.41
1.80
1.71
0.4O
0.3ft
0.39
O .6 1
O.63
.
0.62
0.14
0.27
0.21
O.4O
0.37
0.38
0.39
0.42
0.26
0.31
O.29
0.24
0.22
0.23
0.23
0.2.3
0.23
0.29
0.24
0.26
0.21
0.21
0.21
0.13
O.15
0.14
•
•
•
•
0.55
0.54
0.54
.
0.17
0.21
0.19
O.48
0.27
0.41
0.39
0.53
0.57
0.41
0.53
0.53
0.49
.
.
0.25
0.27
0.26
O.39
0.40
0.3V
0.23
0.23
0.23
.
.
86
-------
Table 47 compares the average measured NOX and the average corrected
NOX data. These results show that at 110°F (43°C) the corrected NOX is
much higher than the measured NOX while at 0°F (-18°C) corrected NOX is
appreciably lower.
TABLE 47 FTP :,
TFMPEHATURE F 0
(CH-IA)
1972
1474
1977
1977
1977
1978
1977
1978
1978
1978
1979
I960
1980
CHFVHOLLT IMPALA
NOX AVF
NOXC AVE
CHFVKOLKT IMPALA
NOX AVF
NOXC AVE
HONDA CIVIC 49 STATE
NOX AVE
NOXC AVt
FORD LID 49 S1ATF
NOX AVF
NOXC AVt
PLYMOUTH FURY 49S
NOX AVE
NOXC AVE
8UICK V6 TURBOCHARGE
NOX AVE
NOXC AVE
PLYMOUTH FURY CALIF
NOX AVE
NOXC AVF
CHEVROLET ST K-CAL1F
NOX AVC
NOXC AVE
FORD PINTO CAL 3 KAY
NOX AVC
NOXC AVE
VW RABBIT CAL FU-INJ
NOX AVE
NOXC AVt
DOOCE ASPEN CALIF.
NOX AVF
NOXC AVE
MERCURY PROTOTYPE
NOX AVE
NOXC AVE
QUICK REGAL PROTOTYP
NOX AVE
NOXC AVC
OATSUN PROTOTYPE
NOX AVE
MOIIC AVE
1.70
1 .?•»
1 .21
0.91
2.41
I.H?
0.81
0.61
1 .95
1 .46
O.<»5
O.7I
0.9O
0.68
O.B2
0.6?
0.53
0.40
0.87
0.65
I.OO
0.75
;
0.85
0.64
20
(-7)
1.61
1.72
1 .09
0.83
2.42
1.84
0.89
O.A8
2.49
I.H9
0.72
O.S5
0.73
O.SS
0.74
0.57
0.44
0.34
1.01
0.76
O.96
0.73
0.58
0.44
O.6O
0.46
0.60
0.46
40
11 t
1.28
0.78
1.96
I.SS
1.04
0.87
0.86
0.69
0.52
0.4?
0.51
0.67
0.53
0.37
0.30
0.90
0.70
0.80
0.61
O.50
0.40
1.39
I .10
O.S3
0.4?
IAB1LE/ED
6O
( 16)
1 .35
1.16
0.86
O.74
1.67
0.93
0.79
O.77
0.67
0.44
0. >b
0.57
O.68
0.59
0.83
0.71
0.6S
0.56
0.36
0.32
0.38
0.33
1.21
I.O4
0.47
0.40
70
1.23
1. 13
0.81
1.86
1.71
0.79
0.7?
O.H6
0.79
0.40
0.17
0.56
0.62
0.57
0.52
0.47
0.49
0.44
0.39
0.3S
0.35
0.33
1.16
1.07
O.4O
0.37
AVERAGE NOX C NOXC - GXKM
80
(27)
1.15
0.6H
0.71
1.64
1.63
0.72
0.76
0.82
O.J?
0.33
o.»8
O.Si
0.56
0.46
0.47
0.28
0.28
O.37
0.37
0.34
0.35
1.02
1.04
0.29
0.30
BOAC
(27)
1.51
1 .5J
•
:
0.9?
0.96
•
0.46
0.47
0.67
O.78
0.8O
0.68
0.70
-
0.41
0.42
0.43
0.44
1.19
1.20
90
(3?)
0.9?
1.07
0.58
0.67
1 .5?
1.77
0.63
0.74
0.84
0.9B
0.29
0.34
0.56
O.5O
0.59
0.21
0.25
O.2I
0.25
0.31
0.37
0.36
0.38
0.83
0.92
0.28
0.32
90AC
(32)
1.50
1.75
•
:
0.80
O.9B
:
0.39
0.46
0.74
0.73
0.86
0.47
0.54
•
0.36
0.42
O.44
0.52
0.98
1.09
*
no
(43)
0.51
1 .00
0.41
0.78
1.71
2.69
0.39
0.73
0.62
1 .03
0.21
0.34
0.38
0.61
0.40
0.73
0.29
O.5O
0.23
0.39
0.23
0.5O
0.26
0.43
0.21
0.42
0.14
0.25
110AC
(43)
0.84
1.52
•
:
0.54
1.03
•
0.19
0.33
0.39
0.64
O.SS
0.91
0.49
0.78
•
0.26
0.56
0.39
0.67
O.23
0.46
87
-------
Federal Test Procedure-Hot Transient-NOX--
Table 48 lists the NOX emissions for the hot transient phase of the
FTP. These emissions were much like those of the cold transient phase
with a range of average values from 0.22 g/km for the 1978 Buick at
110°F (43°C) with AC to 3.16 g/km for the 1977 Honda at 0°F (-18°C). As
before, the use of the air conditioners generally resulted in increased
NOX emissions.
HIJI IKAN'ilfMI
* NIfHtJGLN OMIUF.S C/KM
TTMPKUA rufce f o
( <. 1 ( . - 1 « )
1972
1974
1 977
IV77
1977
1978
1977
19 'US
1978
1976
1979
1980
1980
CHI. VWOLLT IMPALA
AVF
CMIVROLLT IMPALA
AVt
HIMDA CIVIC 4*> STAIE
AVt
rOWD LTD 49 STATL
AVt
PLYMOUTH FUHY 49S
AVF
RUICK Vb TURBOCHAR&t
AVt
PLYMOUTH l-UWr CALII-
AVt
CMFVKOLET si H-CALIF
FORU PINTO CAL J WAY
AVF
V* RABHIT CAL FU-INJ
AVR
DODGE ASPEN CALIF.
AVE
MERCURY PROTOTVPC
AVE
BUICK HCGAL PRUTOtYP
AVE
OAT SUN PWOTOTYP*
AVE
2.41.
2.4 J
1 .b'J
1 .t.b
^
1 ,'j/
J .Ol>
3. Ib
0*117
O.VJ
O.VI
O.VO
1 .77
l.bJ
B
I.7U
1.40
1 .4.1
1 .41
0 .HO
O.B7
0 .H7
1 .OA
1 .01
1 • JI-.
I.IH
I.J2
1.2V
1 .00
1.16
1.90
1 .8b
1 .87
•
.
•
.
2. Ob
1.91
f
1 .on
20
(-71
2.70
2.56
1 .2b
1 .45
m
1 . -i?>
5. OH
0.116
O.U7
•
0.87
1.47
I.J9
f
1.43
I.JO
1 .1 1
,
1 .21
0.74
0.9J
0.83
O.VO
1 .03
1 .Ol
1.02
1.16
1.28
1.22
1.5V
I.7O
1.64
0.72
0.65
0.69
1 .42
1 .25
I.J3
1.34
I.J2
f
1 .33
(41
2..'1H
2.17
1.47
1 .OJ
.
1.25
2.b4
2.!/n
O.H4
O.«2
•
1 .15
t.4b
.
1 .JO
fllbb
.
O.no
0. 7b
O.f.b
m
0. 71
O.(1H
O.bb
m
0.8J
0.9J
1 .18
I.Ob
1.24
1 .38
0.63
0.63
I.IJ
I.IJ
I .18
I.I 1
1.25
1.1(1
,,:::
2 .4b
2 . O 7
1 .Ib
1 .27
1 .7f)
I.7J
'Ibb'
0 »MV
O.HI
•
O.V J
o.vn
O.VI
O.V4
0.7J
0.80
.
0.7b
0. 7 J
O.r>9
f
0.71
0. 7V
1 .b4
1.40
.
1.47
0.74
0.76
0.76
0.83'
I.O4
0.94
0.4V
O.49
1.16
1.16
1.05
1 .04
.
I.O4
70
(21)
2.V»
1. Ib
I .on
.
1 .12
2.40
7. J7
0. 77
0. 70
-
0.90
0.91
0.90
0.9O
O.b9
0. JO
.
0,49
0 . >>b
O.b7
f
0.1,1
0.69
1.09
0.92
,
1.01
0.54
0.57
0.55
O.90
0.92
O.VI
0.49
0,48
0.49
I.OJ
1 .0?
1,03
O.8O
0.89
.
O.H9
MO
(27)
2. 12
1 ,b(l
O.Vb
O.Hb
.
0.9O
2 » 1 H
2. 17
2.15
0.7J
O.bl
•
0.9J
O.V3
.
0.9J
O.bb
0.49
.
O.b2
O.bb
O.b9
m
O.b7
O.64
O.65
O.H7
0.7b
.
O.82
0.43
0.46
O.44 '
0.74
O.88
0.81
0.46
0.46
0.46
O.H4
0.95
0.90
0.75
0.67
•
0.71
HOAC
(77)
2.l«
2.1 J
2.16
.
.
•
•
0.84
O.HH
0 B6
.
.
•
O.8O
0.72
.
0.7b
O.bV
O.7I
.
0.65
0.78
O.fl2
0.8O
1 .01
1.09
.
1.05
.
.
•
0.81
O.9I
0.86
0.59
0.59
0.97
0.97
•
.
•
90
( J2 )
I.B7
1 .34
1 .58
0.77
0.78
•
0.77
2.0J
2.00
0.53
O.bb
O.54
0.94
O.85
•
0.90
0.43
0.54
.
O.48
0.49
O.48
»
0.411
0.59
O.64
O.bl
0.55
0.64
O.59
0.41
0.42
0.41
0.56
O.63
0.59
0.51
0.51
0.66
0.66
0.62
0.61
.
0.62
9OAf
(32)
2.10
1 .89
1.99
•
•
•
.
0.76
O.89
O.82
.
.
•
0.55
0.50
.
0.57
0.53
0.55
.
0.54
0.61
0.66
O.64
O.87
0.80
.
0.83
.
.
•
0.76
0.72
0.74
0.56
0.58
0.77
0.77
•
•
•
1 10 1 IOAC
(431 (43)
1.07
0.88
O.4O
0.46
.
O.43
1 .94
1.84
1 .89
0.31
O.36
O.34
0.72
0.73
.
0.73
O.15
0.40
.
0.27
0.35
O.3O
.
0.3J
0.37
0.42
0.4O
O.4 t
O.62
.
O.52
o.»o
0.33
0.37
0.33
0.33
0.33
0.44
0.41
0.43
O.23
0.25
0.24
0.45
0.36
•
0.41
1 .04
1 .05
1 .04
•
.
*
•
O.6O
O.61
O .6 1
.
.
•
0.17
O.26
.
O.22
0.38
0.25
0.30
0.31
O.60
O.49
0.55
0.62
O.92
O.70
0.75
.
.
•
0.35
0.41
0.38
0.51
O.SS
0.53
0.31
0.34
0.33
.
•
•
88
-------
Table 49 compares the average NOX with the average corrected NOX
(NOXC). The same decreases in NOX at low temperatures and increases in
NOX at high temperatures as a result of the correction were again noted.
HOT IRANSIENT
AVfcRA&t: NOX t NOXC - G/KM
TEMPERATURE f O
tctt-lat
1972 CHLVHOLCT 1MPALA
NOX AVE
NOXC AVE
1974 CHEVROLET IMPALA
NOX AVE
NOXC AVE
1977 HONDA CIVIC 41 STAFF
NOX AVF,
NOXC AVI:
1977 FOBD LTD 49 STATE
NOX AVE
NOXC AVK
1977 PLYMOUTH FURY 49*
NOX AVC
\ NOXC AVC
1978 QUICK V6 TURBOCHARCE
NOX AVE
NOXC AVC
1977 PLVMOUTH FURY CALIF
NOX AVE
NOXC AVF
1978 CHEVROLET ST K-CALIF
NOX AVC
NOXC AVF
I97B FORD PINTO CAL 3 WAV
NOX AVE
NOXC AVE
1978 V» RABBIT CAL FU-INJ
NOX AVE
NOXC AVE
IQ79 OOOCE ASPEN CALIF.
NOX AVE
NOXC AVE
1980 MEHCURV PROTOTYPE
MOX AVF
NOXC AVE
1900 BUICK REGAL PROTOTYP
MOX AVC
NOXC AVE
OAT SUM PHOTOTYPE
NOX AVE
NOXC AVE
2.45
1 .84
1.57
1.19
3.16
2. an
0.90
O.OH
I.7O
1.26
1.41
1.05
0.87
0.66
1.0%
0.79
1.29
0.97
1.18
0.89
1.87
1.41
.
•
.
.
1 .98
1.50
20
(-71
2.38
1.80
1.35
1.02
3.08
2.34
0.60
1.43
1.09
1.21
0.91
. 0.63
0.63
0.93
0.71
1.02
0.78
1.22
0.92
1.64
1.24
0.66
0.52
1.33
1.02
1.33
1.01
40
141
2.23
1.75
1.2%
0.9U
2.68
2.O3
0.66
I.3O
1.04
0.80
0.64
0.71
0.56
O.H6
0.66
0.63
0.66
1 .06
0.83
1.38
1.04
0.63
0.50
1.13
0.89
1.18
0.93
6O
1 161
2.26
1.94
1.23
1 .05
2.56
2.18
0.73
0.94
0.82
0.76
0.6ft
0.71
0.61
0.83
0.71
1 .47
1 .25
0.76
0.6S
0,94
0.82
0.49
0.42
1 .16
0.99
1.04
0.90
70
(211
2.0*
1.89
1.12
1.03
2.37
2.18
0.67
0.90
0.83
O.49
0.45
0.67
0.61
0.72
0.65
LOT
0.92
0.55
0.51
0.91
0.83
0.49
O.4&
1.03
0.94
0.89
0.02
60
(27)
1.85
1.87
0.9O
0.94
2.l!>
2.15
0.67
0.71
0.03
0.94
O.S2
0.53
0.57
Q.59
0.65
0.66
0.82
0.83
0.44
0.45
0.81
0.82
0.46
0.47
0.90
O.92
0.71
0.72
aoAC
(27>
2.16
2.16
.
.
.
0.86
0.90
.
O.76
O.78
0.65
0.67
0.80
0.82
1.05
1.O8
.
0.86
0.87
O.59
0.60
0.97
0.97
•
9O
(32)
1.56
1.84
0.77
0.90
2.00
2.33
0.54
0.63
0.90
t .04
0.46
0.56
0.49
0.50
0.61
0.73
0.39
O.46
0.41
0.48
0.59
0.69
0.61
0.54
0.66
0.73
0.62
0.71
90 AC
(321
1.99
2.32
•
•
o.a?
1 .01
:
0.57
0.67
0.54
0.67
0.64
0.7S
0.83
0.96
•
•
0.74
0.87
0.58
0.68
0.77
0.86
.
1 IO
(43)
0.88
1.71
0.43
0.82
1.89
2.97
0.34
0.63
0.73
1.21
0.27
0.4A
0.33
0.51
0.40
0.72
O.52
O.91
0.37
0.62
0.33
0.72
O.43
O.69
0.24
0.48
0.41
0.72
I10AC
(43)
1.0«
1.89
•
•
0.61
1.15
•
0.22
0.38
0.31
0.52
0.55
0.91
0.75
1.19
.
.
0.38
0.82
0.53
0.9O
O.33
0.64
•
.
89
-------
Federal Test Procedure-Composite-NOX—
Table 50 lists the composite flOX data from all three phases of the
FTP. It should be noted that all of the vehicles, except the Honda, met
the appropriate standard, as given in Table 15, when evaluated at 70 or
80°F (21 or 27°C) which are the only temperatures that meet the specified
temperature range for this procedure.
The composite results showed the same trends as the individual
phases. Some vehicle technologies produced lower NOX emissions than
others. All of the vehicles produced the lowest NOX emissions at 110°F
(43°C) and all of those tested with their air conditioners on generally
gave increased NOX emissions.
TABLF 50
- NIT«OC*M OXIDES liXHH
1972
1974
1977
1977
I97T
1 •*/«
1977
1970
I97H
1976
1979
I9OO
1980
tCMPt«»tU»t f
ICI
CHEVROLET IMPALA
AVt
CMt. VMOLIT IMPAUA
Ayr
AVC
FOND LTD 49 STATE
AVE
PLYMOUTH FURY 49S
AVC
8UICK V6 TUIItJOLNAWCC .
AVC
PLYMOUTH n/R» CALir
Ave
CHCVROltl it •-CALIT'
AVt
rOMU flNTO CAL J OAT
AVI
V* WAUL.lt CAL. FU-INJ
Ave
OOUGC ASPCN CALIF.
AVE
MEMCLKV PROTOTYPE
AVC
UUICK HFCAL. POOTUIYP
AVt
DAI3tM PHUTCTYPl
AVC
O
1.9*
1 .410
1.41
1.37
1.41
—
l.i»
2.M
2.:/4
1.21
1 O»
1 .34
i.ie
I.VO
^
2..*
1 «24
I.JI
1.46
1 .43
1.45
I.O3
1 .Ob
1.05
o.uo
O./7
O.H7
O.PI
I. tO
I.OJ
l.ll
1.27
I.IO
l.llt
.
.
•
'.
1.45
I.J6
1.40
20
2.02
1.21
1.38
,
1.26
2.4*
2.S*
I.3O
1.76
,
1.28
2.87
1.79
.
2.33
1 .19
1.09
1.21
1.32
1.26
I.OI
O.97
0.99
O.77
O.O4
l.ll
1.17
1.14
O.9ft
1.41
i.ia
0.65
O^bft
0.67
1 .26
0.97
1.03
I.IO
1.07
40
141
1*98
I.-W
I.J4
1.07
.
I.2O
2.O6
2.18
1.02
I.J*
,
1.42
1.15
2.01
.
I.5M
o.ao
I.OJ
O.«9
^
O.96
0.9O
O.MI
0.85
O.46
0.&7
0.91
1.07
0.99
0.76
1.15
0.97
0.61
0.61
1.26
1.76
0.99
I.OI
1.07
I.OI
60
I Ibl
I.oa
1.76
i.ei
I.O*
1.12
1.07
1.07
2 • U
2.78
2.20
I.O*
I.OJ
»
1.04
l.l«
1.09
1.02
I.IO
0.79
o.ao
O. 73
^_
0.76
0.77
O.MO
0.79
1.17
1.17
B
1.14
O.69
0.79
O.74
0.6U
0.71
U.66
O.SI
O.6I
1.21
1.21
O.9O
0.86
^
o.aa
70
121)
1.7ft
1.47
1.61
1.02
0.90
.
I.OO
2*03
2.17
2.18
0.88
0.84
.
0.89
0.93
0.47
0.9*
O.9»
O.'Jfc
0.6*
0.67
a
O.6ft
O.68
0.73
0.70
O.7ft
^
0.80
0.63
O.t>0
0»»4
0.61
O.68
0.6ft
O.5J
O.ftZ
l.ll
1.17
I.I*
0.711
0.76
,
O.78
80
127)
1.64
1.3ft
1.50
0.8ft
o.ao
.
O.O7
1.93
1.91
O.8*
0.77
.
o.ao
O.07
0.92
•
0.9O
O.bO
0.58
O.56
9
0.57
O.6I
0.64
8.63
0*74
O.66
m
0.79
0.45
8.40
O.47
0.5*
O.6ft
0.61
0.40
O.ftO
0.48
0.99
1.00
0.99
0.63
0.6O
v
0.61
8OAC
1271
1.92
1.77
1.8ft
.
.
.
•
•
0.97
0.99
•
0.98
•
.
.
•
0.70
O.S7
0.70
»
O.63
0.87
o.as
0.86
O.VJ
O.9O
»
0.91
.
.
•
0.6S
0.69
0.67
0.58
O.66
l.lft
1*16
9
*
>
90
(32)
1.40
I.IS
1.27
0.71
O.67
.
0.69
1.69
0.6*
0.60
.
0.68
0.87
0.87
.
O.87
O.47
O.ftl
0.46
0.47
0.4*
.
O.46
0.57
0.57
0.67
O.46
O.ftl
O.49
0.38
0.33
0.36
0.4ft
O.ftl
0.49
O.ftO
#
O.ftO
O.76
0.76
0.52
O.S2
*
0.67
90AC
132)
1.90
1.68
1.79
.
.
•
*
•
0.72
0.8*
.
0.78
.
.
•
"
O.6B
O.ft6
0.56
0.64
•
0.56
O.69
0.79
0.7*
0.7O
O.62
.
0.66
•
8>
*
0*67
O*6ft
O.ft7
0.55
o.sa
0.92
m
O*92
.
•
•
110 1
(43)
0.86
0.6S
0476
O.46
O.42
.
0.4*
1.87
1.71
i.eo
0.40
0.34
.
0.39
O.67
O.68
.
o.aa
O.23
0.37
0.3O
O.37
0.3ft
•
O.36
0.41
0.**
0.43
0.3*
O**6
.
0*4O
O.33
0.29
0.31
0.29
O.32
O.3I
O.J9
0.3*
0.37
o.2a
0.2ft
O.26
0.33
0.18
.
0.31
IIOAC
(43)
I.OA
I.OI
1.01
.
.
.
*
•
0.58
0.56
•
0.57
.
*
.
O.23
O.J2
0.27
0.42
O.26
0.37
0.3ft
0.58
O.57
0.57
O.ftl
O.65
0.63
0.60
.
•
•
0.33
O.36
0,3ft
0.48
O.SO
0*49
0.36
0.38
0.37
.
•
•
90
-------
Table 51 compares the measured average NOX with the corrected
average NOXC. As before, the correction reduced NOX at the lower
temperatures but increased them at the higher temperatures.
IABII: 51
f IP CQMMnS ITL"
AVERAGE NOX (. NOXC - GXKM
TEMPEWAfUWt F 0 20 40 60 7O 80 BOAC 90 90AC 1 10 1 IOAC
ICM-|fl) <~7) (4) (16) (21 ) (27) (27) (32) (32) (43) (*3)
1972
|9/7
1977
I97H
I 97P
I97H
I97<»
19HO
CHEVROLET IMPALA
NCJX AVt
NOXC AVF
NON AW
NOXC AVr
HONDA CIVIC 4<* MAIL
NOX AVt-
NOXC AVC
NOX AVt
NOXC AVt
NOX AVt
NOxr AV*
flUICK V6 TUHBOCHAHt.r
NlJX AV
NOXC AVf;
NOX AVF
NOXr. AVt
CMf VMILC T Of * -CAL IF
NOX AVf
NOX AVf
NdXC AVI
v* MAI in i T CAL i U-IN j
NOX AVI
NOXC AVf
OODGI. A',PI. N CAL IF «
NOX AVF
NOXC AVr
MCWC'JHY I-HJUTOT YPt
N(JX AVtl
NOX«. AVt.
HUI TK 14 1." CAL PfcU Itll Y(>
NOX AVt
NOXC AVF
OAT SUN PROTOTYPE
NOX AVf.
NOXC AVE
1 .91 1 .«*0 1 -**M | .Ml I .(SI 1 .bO 1 .H*. 1.27 1 ,7Q 0 . 7*> 1 .03
|..M> 1 ,2ft I.^O 1.07 I.OO 0»ft? . O.e>9 . 0.44 *
? ,S4 2.^4 ^. 111 ?..**O 2. IO t .91 . I . 7'.* . I .HO
1.14 1.2M 1.4,' I.O4 0 . M'l O.nO O.'IH O.'.H O. 7H 0 . J'* O.S7
^.OH 2. J J 1 .SH 1 . 1 0 Q.tt, O.'JU . O.H 7 . O . ttf .
I.S(. t./7 1.26 O.'/S O.M'J O.**l . I.O? . 1.11 »
0.94 0 . M7 0.71 0 .*> j O.Sfi O.S.S 0.^1 O.*i4 0. f>6 0 . SO 0*47
I.4S 1.26 0*96 O./6 0.6S O.S7 0.63 0.47 O.Sb O.3ft O*3b
1 .OS 0.<»*» O.MS 0.7 9 0.70 O.ft.l O.fb O.S7 0.74 O.43 O.b7
O.HI O.r>4 O.'.i7 1*14 O.HO 0.70 O.'*l O.-fl 0.66 O. «O 0.60
1 . 1 1 1.14 O.-J9 0. /4 0. *>•» 0.42 . 0..16 . O . .1 1 .
O.fiA O.D r> o.7fi o.r»i n.s4 0.4.1 . o . 4 1 . o.^;i .
. 0.6t> (J.M D.M O.t>2 0.4H O.'.H O.'.iO O.St/ 0.37 0.49
. 0.44 O.4H O.44 0.4H 0.4U O.S4 O*^3 0»6^> O.6O O.fl3
. 0.07 l.;>6 1.21 1.14 O.9<> I.IS 0.7r. 0.92 O.26 O.37
. 0.74 0.9^ I.O4 1 ,O6 t.OI 1 . 1 (> O.Ht> I*O3 0.^3 O.73
I.4O 1.U7 l.UI O.fib O. 7ft 0.61 . 0.*.;* . 0.31 .
1 .Ob O.H2 O.HO 0.76 0.72 O. A3 . 0 »t-O . 0 . V., .
91
-------
Highway Fuel Economy Test-NOX—
Table 52 shows the NOX emissions for the HFET procedure. While
most of the cars produced maximum NOX emissions at low temperatures,
some showed small changes in NOX emissions with temperature. The 1972
Chevrolet showed a maximum at 60°F (16°C). Nearly all of the cars
showed an increase in NOX emissions when the air conditioners were used.
TAHLI- '.2 NIfaM«AY FULL I C IINOMT Tt !.T - NIIHUCCN OXIOC& C.XKM
TEMPEHAIUNt F 0
132) (32)
3.17 2.14 2.90
1.61 0.99 1.59
2.39 1.57 2.25
0.7J .
. O.7I .
...
. 0.72 .
. 1 .4 2 .
. 1.42 .
. 1.42 .
0.45 0.36 0.44
0.39 O.3J 0.43
0.42 0.35 0.43
. 0.71 .
. O.58 .
...
. 0.65 .
110 IIOAC
(43> (43>
1.17
0.60
O.89
O.4O
0.49
•
0.45
1.41
1.45
0.24
0.22
0.23
O.69
O.76
.
0.73
1.25
1.04
1 .14
•
.
•
•
•
0.31
0.19
0.25
^
.
.
1977
1978
1977
1978
1978
1978
1979
1980
I960
PLYMOU1H FU«Y 495
Avr
BUICK V6 TUHBOCHARGE
AVE
PLYMOUTH FUMY CALIF
AVt
CHE VMOLtT ST K-CALIF
AVC
POMD PINTO CAL 3 »AY
AVE
VM HABBIT CAL FU-INJ
AVE
DCIU&t ASPEN CALIF.
AVE
MERCUHY PROTOTYPE
AVE
BUICK REGAL PROTOTVP
AVE
OAT SUN PHOTOTYPE
AVE
0.79
0.74
0.77
1.24
1.26
1 .23
1 .24
O.b?
0 .61
0.60
O.72
O.7I
0.71
I .34
1 • Ib
1 .24
1 .24
1.21
1.14
1.17
I.OO
1 .00
1 .00
.
.
.
.
l.ll
1.16
1.13
0.90
0.87
O.R8
1.18
0.84
1.01
O.66
0.73
0.67
O.7O
0.68
1.05
O.6I
0.83
1.27
1.17
1.22
1.03
1.99
1.51
U.3V
0.34
0.37
1.12
1 .07
1.09
1.13
i.oa
l.ll
O.SO
O.H9
0.84
O.HI
0.74
m
0.77
0.51
0.49
0.57
0.54
0.56
l.ll
0.49
^
o.ao
l.ll
1.23
1.17
0.97
1.83
1.40
U.JI
0.31
O.84
0.84
1.02
0.97
1.00
1.00
O.5B
0.57
O.6P
0.73
0.78
^
0.75
0.62
O.56
0.58
0.57
O.t>7
I.ZO
1.17
^
1.19
O.ai
0.97
0.89
0.84
0.88
0.86
0.34
O.34
0.77
0.77
0.89
0.9O
0.9O
0.63
O.66
O.6I
O.63
0.70
0.67
,
O.frft
o.?vo
0.49
0.54
0.54
0.54
0.99
O.83
m
0.91
O.68
0.62
0.65
O.81
0.81
o.ai
o.zr
0.30
0.28
0.6O
0.58
0.59
0.78
O.8I
0.79
0.72
0.67
0.69
O.59
O.bl
»
0.55
O.55
0.5O
0.4B
0.45
0.46
0.80
0.73
.
0.77
0.33
O.32
0.32
0.77
0.77
0.77
0-22
0.28
0.25
0.48
0.51
O.49
0.64
O.6I
0.62
-
•
0.72
0.77
.
0.75
0.48
0.48
0.48
O.6I
0.59
0.60
1 .11
1.05
.
i.oa
-
•
0.65
0.88
0.87
O-3O
0.30
O.56
0.56
•
•
0.71
O.58
0.65
0.37
0.48
.
0.43
O.4I
0.37
O.37
0.46
O.SO
O.4B
O.S2
0.67
0.59
0.3O
O.3B
0.34
0.71
1.87
1.29
0.26
0.25
O.38
0.38
0.56
0.52
0.54
•
•
0.58
0.67
.
O.63
O.43
0.44
0.44
O.S7
O.63
0.6O
0.85
0.86
.
o.es
^
•
O.87
0.76
0.62
O.34
0.34
0.48
0.48
.
•
O.69
O.76
0.73
O.I 1
O.2O
.
0.15
O.27
0.16
0.2?
0.39
0.43
0.41
0.35
0.58
•
0.46
0.37
O.36
0.37
0.23
0.42
0.3*
O.X3
o.ze
0.2*
0.16
0.17
O.I6
O.25
O.22
0.24
•
•
0»15
O.29
.
0.22
0.31
O.31
0.28
0.30
0.40
0.46
0.42
0.78
0.91
O.84
0.84
•
'
O.49
0.96
O.Bt
o.cv
O.31
0.3O
0.29
0.29
0.29
*
•
92
-------
Table 53 compares the average measured NOX with the average corrected
NOXC emissions. Again, the correction reduced NOX at the lower temperatures
and increased MX o
0.34
0.30
0.77
0.66
0.90
0.78
7O
(21)
1 .90
1.75
1.01
0.93
1.70
1.56
0.52
O.4D
0.63
0.6«
0.68
0.63
0.49
0.46
O.M
0.49
0.91
O.H4
O.iSi
0.6O
0.81
0.74
0.20
0.26
0.»9
O.54
0.79
0.73
60
(27)
1.71
1.73
0.87
0.91
1.49
1.49
0.4%
0.48
0.69
O.70
O.SS
0.56
0.50
0.52
0.46
0.47
0.77
O.78
0.32
0.33
0.77
0.78
0.21
0.25
0.49
0.50
0.62
0.64
8OAC
(27)
2.39
2.41
,
•
•
•
0.42
O.44
.
•
0.75
0.77
0.48
0.49
0.6O
0.61
1 .08
l.ll
.
.
0.87
O.H8
O.JO
0.31
0.56
0.56
.
.
9O
(32)
1.57
1.62
0.72
0.64
1.42
1.66
0.35
O.4I
0.65
0.75
0.43
o.bo
0.41
0.48
0.48
0.57
0.40
O.46
0.34
0.39
1.29
1.49
0.25
0.27
0.38
0.42
0.54
0.62
90AC
(32>
2.25
2.61
.
*
»
•
0*43
0*53
*
•
0.63
0.74
0.44
0.54
0.60
0.71
0.85
0.98
*
.
0.62
0.96
0.34
0.40
O.48
0.53
.
•
110 IIOAC
(431 (43)
0.89
1.73
0.45
0.85
1.45
2.28
O.23
0.44
O.7J
1.21
0. IS
O.26
0.22
0.33
0.41
O.74
0.46
0.61
0.37
O.63
0.32
0.70
0.2?
0.3A
0.16
0.33
0.24
0.42
1.14
2.07
.
.
.
•
0.25
0.47
*
•
0.22
O.38
0.30
0.51
0.42
0.72
0.56
0.87
•
•
0.57
1.12
0.3O
O.SI
0.29
0.56
•
•
•Sulfate Emission Test-NOX—
Table 54 lists the NOX data for the SET procedure. This procedure
operates at a more nearly warmed-up condition than the FTP and usually
gave higher NOX emissions than the HFET. The increase in NOX with the
use of air conditioners and reduction of NOX at 110°F (43°C) was again
observed.
93
-------
TABLE 54
SULFATE EMISSION TEST
-NITROGEN OXIDES G/KM
1972
1974
1977
1977
1 977
1978
1977
1978
1978
1978
1979
1 «SO
1980
TEMPERATURE F
(C)
CHEVROLET IMPALA
AVE
CHEVROLET IMPALA
AVE
HONDA CIVIC 49 STATE
AVE
FORD LTD 49 STATE
AVE
PLYMOUTH FURY 49S
AVE
BUICK V6 TURBOCHARGE
AVE
PLYMOUTH FURY CALIF
AVE
CHEVROLET ST W-CALIF
AVE
FORD PINTO CAL 3 WAY
AVF
VW RABBIT CAL FU-INJ
AVE
DODGE ASPEN CALIF.
AVE
MERCURY PROTOTYPE
AVE
BUICK HE GAL PROTOTVP
AVt
DATSUN PROTOTYPE
AVE
0
1-16)
1.95
2.00
1 .98
1.3S
1 .32
1.34
2.51
2.51
2.51
o.e>2
a. 62
0.61
0.62
•07
.02
.04
.26
.32
.25
•28
0.61
0.69
.
0.65
O.HO
0.79
• O.79
.23
.12
.13
.16
.10
.06
.08
0.97
0.97
0.97
•
•
•
*
•
•
1.25
1.26
1 .25
1.25
40
(41
.99
.81
.90
.20
.21
.21
2.22
2.16
2.19
O.S2
o.sn
•
0.60
1.01
1 .22
1.12
0.86
0.73
•
0.80
0.51
0.4S
»
0.48
0.65
0.62
0.64
1 .04
0.49
•
0.77
0.86
1.O1
0.93
0.85
1 .34
1.10
0.51
0.51
0.61
0.90
0.90
0.90
1.02
0.95
0.97
0.98
80
C27)
2.15
1 .28
1 .72
0.86
0.81
0.84
1.82
1 .78
1 .80
0.64
0.52
•
0.58
0.7O
0.72
0.71
0.56
O.S1
•
0.53
0.39
0.41
*
0.40
0.52
0.54
0.53
0.81
0.76
•
0.79
0.36
0.39
0.38
0.65
0.67
0.66
0.33
0.39
0.36
0.55
0.64
0.60
0.56
0.57
O.57
0.57
80 AC
127)
2.65
1.71
2.18
•
•
•
•
.
•
0.60
0.53
*
0.56
•
. •
•
0.59
0.66
•
0.62
0.40
0.46
•
0.43
0.62
0.67
0.64
1.00
0.94
.
0.97
.
.
•
0.74
0.73
0.73
0.44
0.44
0.44
0.71
0.71
0.71
•
•
•
•
1 10
(43)
1.07
0.60
0.83
0.38
0.42
0.40
1 .64
1.63
1 .64
0.28
0.24
•
O.26
0.54
0.58
0.56
0.13
0.28
•
0.20
0.21
0.19
•
0.20
0.30
O.35
0.33
0.33
0.52
•
0.42
0.34
0.31
0.32
0.33
0.33
0.33
0.31
0.32
0.31
0.21
0.23
0.22
O.lft
0.26
0.22
0.22
1 10 AC
(43)
1.11
0.97
1 .04
•
•
.
•
.
•
0.41
0.24
•
0.32
.
•
•
0. 16
0.29
.
0.23
0.28
0.24
O.24
0.25
0.44
0.42
0.43
0..70
0.71
•
0.71
.
.
.
0.39
0.43
0.41
0.39
0.49
0.44
0.38
0.35
0.37
•
.
.
•
94
-------
The comparison of the measured NOX with corrected NOXC is given in
Table 55.
TABLE 55 SULFATC tMISlilUN TEST
- AVFRAGE NOX t NOXC - G/KM
TEMPERATURE F O
(C> ( -IB)
1972
1974
1977
1977
1977
197ft
1977
1978
1978
1978
1979
I960
I960
CHrVROLC
T IMPALA
NOX AVE
NOXC AVE
CHEVROLET IMPALA
NOX AVF
NOXC AVF
HONDA CI
FOWD LTD
PLYMOUTH
BUICK V6
PLYMOUTH
CHEVROLE
VIC 49 STATF
NOX AVF
NOXC AVt
49 STATE
NOX AVC
NOXC AVF.
FURY 495
NOX AVF
NOXC AVE
TURHDC MARGE
NOX AVF
NOXC AVE
FURY CALIF
NOX AVE
NOXC AVE
f ST W-CALIF
NOX AVE
NOXC AVE
FORD PINTO CAL 3 WAY
NOX AVE
NOXC AVE
VW RAHHI
T CAL FU-INJ
NOX AVC
NOXC AVE
DODGE ASPEN CALIF.
NOX AVE
NOXC AVt
MERCURY
PROTOTYPE
NOX AVE
NOXC AVE
1
1
1
1
2
1
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
*
*
•
•
»
:
.
.
.
.
.
.
.
.
.
.
.
.
.
0
V8
49
34
01
51
62
46
04
7H
9to
6t»
40
79
60
16
87
08
61
97
73
BUICK REGAL PWOTUTYP
NOX AVE .
NOXC AVF .
OAT SON
PROTOTYPE
NOX AVE
NOXC AVE
1.25
0.95
4O
(4)
1 .90
1 .49
1 .21
o.ys
2.19
1 .73
0.60
o.4n
1.12
O.H9
O.ftO
0.64
0.48
0.3H
0.64
O.bO
0.77
0.61
0.93
0.73
1 . 10
O.S3
0.51
0.41
0.90
0.71
0.96
0.77
SO 60AC
(27) (27)
1.72
1 .75
0.84
O.87
1 .80
1 .79
0.5b
0.61
0.71
0.72
o.;.>3
0.55
O.4O
0.42
0.53
0.54
0.79
0.80
0.3H
0.39
0.66
0.68
0.36
0.37
0.60
O.6I
0.57
0.58
2.18
2. 2O
•
•
0.56
0.59
•
O.62
0.64
0.43
0.44
0.64
0.66
0.97
1 .00
*
0.73
0.74
O.44
O.45
O.7I
0.72
9
1 10 1
(43)
0.83
1.63
0.4O
0.77
1 .64
2.58
0.26
0.49
0.56
O.94
0.2O
0.34
0.20
0.31
0.33
0.59
0.42
0.75
0.32
0.55
0.33
0.73
0.31
O.S1
0.22
0.43
0.22
0.40
10AC
(43)
1.
1 .
•
•
0.
0.
•
O.
0.
0.
0.
0.
0.
0.
1.
.
0.
0.
0.
0.
0.
0.
•
04
88
32
61
23
39
25
43
43
64
71
10
41
a7
44
75
37
73
95
-------
New York City Cycle-N'OX—
Table 56 summarizes the NOX data obtained using the NYCC. The
average NOX emissions are compared to the corrected NOXC emissions in
Table 57.
TABLE 56
NEW YORK CITV CYCLE
-NITROGEN OXIDES GXKM
1 977
1 976
1978
1 978
1 97V
1980
1960
TEMPERATURE F
CO
HUNOA CIVIC 49 STATE
AVE
BUICK V6 TURBOCHARGt
AVE
FORD PINTO CAu 3 WAY
AVF.
VW RABBIT CAL FU-INJ
AVE
DOOGE ASPEN CALIF.
AVE
MERCURY PROTOTYPE
AVE
BUICK REGAL PWOTOTYP
AVE
DATSUN PROTOTYPE
AVE
20
(-7)
4.S9
3.09
3.84
1.34
0.98
1.16
0.89
0.7O
0.79
1.39
l.?2
1.31
0.43
1.17
O.8O
1.20
1.08
1.14
1.98
1*84
1.91
1.22
1.29
1 .26
60
(16)
2.36
3.16
2.76
0.75
0.8H
0.62
1.O1
1 .03
1 .02
0.67
0.62
0.74
0.44
0.42
0.43
1.92
1.92
1.92
1.73
1.73
1.73
1.07
1.17
1.12
60
<27)
2.49
2.42
2.46
0.59
0.59
O.b9
0.63
0.69
0.66
0.46
0.39
0.43
0.41
0.43
0.42
0.49
0.50
0.49
1 .40
1.40
1.40
0.87
0.65
0.86
80AC
(27)
•
*
•
0.61
0.87
0.74
0.92
0.73
0.83
•
*
•
0.46 •
0.47
0*47
0.59
0.59
0.59
1.84
1.84
1.84
•
•
•
110
(43)
1.80
2.O3
1 .92
0.14
0.21
0.17
0.28
O.41
0.34
0.29
O.19
0.24
0.24
0.26
0.25
0.42
0.36
0.39
O.O8
0.22
0.15
0.25
0.21
0.23
110AC
(43)
•
#
•
O. 16
0.25
0.20
0.61
0.52
0.56
•
•
*
0.27
0.33
0.30
O.61
0.61
0.61
O.2O
0.17
0.19
•
•
•
96
-------
TABLE 57
NE* YORK CITY CYCLE
- AVERAGE NOX t NOXC - G/KM
TEMPERATURE F O
(CU-I8)
1977
1978
1978
1978
1979
198O
198O
HONDA CIVIC 49 STATE
NOX AVE
NOXC AVE
BUICK V6 TURBOCHARGE
NOX AVE
NOXC AVE
FORD PINTO CAL 3 WAY
NOX AVE
NOXC AVE
VW RABBIT CAL FU-INJ
NOX AVE
NOXC AVE
DODGE ASPEN CALIF.
NOX AVE
NOXC AVE
MERCURY PROTOTYPE
NOX AVE
NOXC AVE
BUICK REGAL PROTOTYP
NOX AVE
NOXC AVE
DATSUN PROTOTYPE
NOX AVE
NOXC AVE
3.84
2.91
I .16
0.88
0.79
0.60
1.31
0.99
O.80
0.61
1.14
0.87
1.91
1 .46
1.26
0.96
4O
(4)
2.76
2.36
0.82
0.7O
1.02
0.87
0.74
0.63
0.43
0.38
1.92
1 .66
1.73
1.48
1.12
0.96
8O 6OAC 11O 1
(27) (27) (43)
2.46
2.45
0.59
0.61
0.66
0.67
O.43
0.44
0.42
0.43
0.49
0.50
1.40
1.43
0.86
0.88
1*92
. 3.O1
0.74 0.17
0.76 0.29
O.83 0.34
0.85 0.60
0.24
. 0.4O
O.47 0.25
0.48 0.54
0.59 0*39
O.6O 0.64
1.84 O.15
1.86 0.3O
0.23
. O.42
10 AC
(43)
•
•
0.2O
0.35
0.56
0.8B
•
•
0.30
0.65
0.61
1.04
0. 19
0.37
•
•
97
-------
Federal Short Cycle-NOX—
Table 58 presents the NOX emissions for the FSC. Only the 1977 (49
State) and California Plymouths had NOX emissions at 80°F (27°C) that
were comparable to the composite FTP results. All of the other results
showed NOX emissions less than those found with the composite FTP.
TABLE 58
FEDERAL SHORT CYCLE - NITROGEN OXIDES G/KM
TEMPERATURE F
(C)
1972 CHEVROLET 1MPALA
AVE
1974 CHEVROLET IMPALA
AVt
1977 FORD LTD
AVE
1977 PLYMOUTH FURY 49S
AVE
1977 PLYMOUTH FURY CALIF
AVL
1978 CHEVROLET ST W-CALIF
AVC
0
(-18)
• 5«
.65
.61
.08
.00
.04
0.86
0.87
0.85
0.86
1.23
1.02
1.1?
0.64
0.73
0.68
0.56
0.56
0.56
40
(4) .
1 .54
1.46
1.50
0.82
0.83
0.83
0.67
0.68
•
0.68
0.72
1.73
1.23
0.58
0.69
0.63
0.46
0.44
0.45
(80)
(27)
1.37
0.97
1.17
0.61
0.57
0.59
0.63
O.51
.
0.57
O.91
0.94
0.92
0.55
0.69
0.62
0.42
0.41
0.42
llf
(43)
0.59
0.20
0 .39
0.20
0.33
0.26
0.40
0 .14
•
0.27
0.27
0.37
O.32
0.16
. 0.13
O.14
O.14
0.19
0.17
98
-------
Table 59 compares the average measured NOX emissions with the average
corrected NOXC emissions.
TABLE 59 FEDERAL SHORT CVCLE
- AVERAGE NOX t NOXC - G/KM
TFMP6RATURF. F 0
(ex-Ian
1972
1974
1977
1977
1977
1978
CHEVROLET IMPALA
NOX
NOXC
CHEVROLET IHPALA
NOX
NOXC
AVE
AVE
AVE
AVE
1
1
1
0
• 61
• 21
.04
• 79
40
(4)
1
I
0
O
.50
.18
.83
.65
80
(27)
1
1
0
0
.17
.19
.59
.62
80 AC 110 1
(27) (43)
0.00 0
O.OO 0
. 0
. 0
.39
.77
.26
.50
10AC
(43)
0.00
O.OO
•
»
FORD LTD 49 STATE
NOX
NOXC
AVE
AVE
0*86
0
.64
0
O
.68
.54
0
0
.57
.60
0.28 0
0.29 O
.27
.50
O.OO
O.OO
PLYMOUTH FURY 49S
NOX
NOXC
AVE
AVE
1
.12
0*84
1
0
.23
.98
0
0
.92
.94
0
. 0
.32
.53
•
*
PLYMOUTH FURY CALIF
NOX
NOXC
AVE
AVE
0
0
.66
.52
0
0
.63
.50
0
0
.62
.64
O.OO 0
0.00 0
. 14
.23
O.OO
0.00
CHFVROLET ST W-CALIF
NOX
NOXC
AVE
AVE
0
0
.56
.42
0
0
.45
.36
0
0
.4?
.42
O.OO 0
O.OO O
.17
.30
0.00
O.OO
99
-------
Steady State-NOX—
These data are not normally obtained during inspection tests.
are presented here to serve as a baseline for other studies.
They
80 km/h (50 mph), loaded, steady state-NQX—Data in Table 60 show
the concentrations in ppm of the NOX obtained at 80 km/h (50 mph). Most
of the data showed poor reproducibility. In general, NOX concentration
decreased with ambient temperature at constant relative humidity.
TABLE 60 80 KM/H (50 MPH) , LOADED
, STEADY STATE - NITROGEN OXIDES PPM
1972
1974
1977
1977
1977
1978
TEMPERATURE F
(C)
CHtVRULLT 1MPALA
AVE
CHHVROLhT 1MPALA
AVfc
FOWL) LTD
AVC
PLYMOUTH FURY 495
AVt
PLYMOUTH FURY CALIF
AVF
CHEVROLET ST W-CALIF
AVF
0
(-18)
1659
1670
1 76 b
913
833
873
210
259
229
233
S3i:
439
486
354
292
32. »
b06
500
503
40
(4)
1529
1506
1619
669
826
74 H
224
190
207
437
390
414
291
287
2b9
422
372
397
80
(27)
2229
1 106
166C
352
S25
439
224
169
197
f.26
429 1
478
224
231
228
317
365
341
110
(43)
14
4B2
248
264
325
295
115
&
62
74 S
066
9O6
96
42
69
144
198
171
100
-------
48 km/h (30 mph), loaded, steady state-NOX— The NOX concentrations
at 48 km/h (30 mph) are given in Table 61. With the exception of both
Plymouths, NOX concentrations were lower at 48 km/h (30 mph) than at
80 km/h .LSQ-mnh)..
TABLE 61 48 KM/H (30 MPH),
TEMPERATURE F
(C)
197? CHLVHOLCT IMPAI_A
AVL
1974 CHEVHOLLT IMPALA
AVff
1977 FOKD LTD •
AVF
1977 PLYMOUTH FUHY 49S
AVE
1977 PLYMOUTH FURY CALIF
AVL
1978 CHFVWULtT ST W-CALIF
AVt
LOADED, STEADY STATE - NITROGEN OXIDES PPM
0
(-18)
10H1
1007
1044
76
42t>
251
18
16V
167
1 If
174
16?
16H
*72
40b
48^
19V
1 80
18«,<
40
(4)
69f>
7bt>
742
36(3
363
366
176
161
-
163
23
167
s»b
421
436
4?9
169
I4b
1S7
80
(27)
959
55b
7&7
Ibb
352
264
13b
134
»
13b
2O55
2561
2308
531
6 IB
574
181
1 89
18S
110
(43)
470
181
325
161
186
174
83
2
t
43
1240
1600
1420
259
80
169
96
13?
114
101
-------
2500 rpm, unloaded, steady state-NOX--The concentrations of NOX at
2500 rpm are presented in Table 62.
NOX concentrations. This result was
fixation has been shown to depend mor
factor. (21).
TABLE 62 2500 RPM, UNLOADED,
TEMPERATURE F
(C) (-
197^ CHFlVWOLbT IMPALA
AVC
1974 CHt VKOLFT IMPALA
AVE
1977 FORD LTD
AVt
1977 PLYMOUTH FUWY 49S
AVC
1977 PLYMOUTH FURY CALIF
AVF
197« CHCVROLt. T ST W-CALIF
AVE
This unloaded condition gave low
not unexpected since nitrogen
'e on engine load than on any other
STEADY STATE - NITROGEN OXIDES PPM
0
18)
261
23S
24ft
42
lOb
74
110
lOb
1 1 1
106
1 13
110
90
7t
8?
51
52
52
40
(4) (
159
182
170
93
94
94
56
119
88
193
181
187
74
77
75
56
36
46
80
27)
71
127
99
70
86
78
1 13
95
104
333
339
336
94
100
97
73
69
71
110
(43)
114
101
107
55
31
43
80
1
41
68
215
142
52
51
52
46
54
50
102
-------
Idle in drive, steady state-NOX—Table 63 lists the NOX concentrations
when the idle is in drive. Except for the 1977 Ford, the concentrations
were comparable to the results obtained at 2500 rpm (See Table 62).
TABLE 63 IDLE, IN DRIVE, STEADY STATE
TEMPERATURE F 0
(C) (-18)
1972 CHIfVROLET IMPAuA 18b
174
AVfc 180
1974 CHCVROLCT 1MPALA 76
7b
AVti 7fc
1977 FORD LTD 794
789
754
AVfc 779
1977 PLYMOUTH FURY 49S 103
1 li>
AVE 1O9
1977 PLYMOUTH FURY CALIF 80
96
AVEf 89
1978 CHEVROLET ST W-CAL1F 62
66
AVt 64
- NITROGEN
40
(4)
163
160
162
69
66
68
167
753
460
21O
149
180
93
77
85
56
50
53
OXIDES PPM
80
(27)
121
143
132
43
58
51
77
665
371
106
123
1 15
74
78
76
69
63
66
110
(43)
92
77
85
52
44
48
373
80
?27
110
63
87
59
55
57
61
55
58
103
-------
Idle in neutral, steady state-NOX--Tables
concentrations at idle. The first set of data
2500 rpm condition was run whi
le the second was
64 and 65
show the NOX
were obtained before the
run after the 2500 rpm
condition. Results between the two tables agreed reasonably well and
the reproducibility was good.
even for the 1977 Ford.
TABLE 64 IDLE, IN NEUTRAL
TEMPERATURE F
(C)
1972 CHfcVRGLtT IMPALA
AVC
1974 CHtVROLfcT IMPALA
AVC
1977 FORD LTD
AVC
1977 PLYMOUTH FUKY 49S
AVL
1977 PLYMOUTH FURY CALIF
AVh
197ft CHtVWOLfcT ST W-CAL1F
AVE
However, concentrations were all low,
, STEADY STATE* -
0 -
(-18)
H2
8?
«2
42
44
4.1
^27
19ti
186
204
71
83
77
bO
7*
61
26
31
2H
NITROGEN
40
(4)
W4
74
79
38
38
31'
177
210
197
74
69
72
47
46
47
28
23
26
OXIDES PPM
80
(27)
71
67
69
42
37
40
263
1 17
190
61
62
62
46
50
48
30
31
31
110
(43:
50
54
52
35
33
34
27
44
36
52
42
47
40
41
40
31
27
29
*BEFORE 2500 RPM CONDITION
104
-------
TABLE 65 IDLE, IN NEUTRAL,
1972
1974
1977
1977
1977
197b
TEMPERATURE F
(C)
CHLVWULET IMP ALA
AVE
CHtVRQLET IMPALA
AVt:
FORD LTD
AVE
PLYMOUTH FURY 49S
AVE
PLYMOUTH FURY CALIF
AVC
CHEVROLET ST W-CAL1F
AVt
STEADY STATE*
0
(-13)
64
79
a?
4if
44
43
229
?OJ
194
209
64
83
74
4M
48
4h
2t>
59
4?
- NITROGEN
40
(4)
76
64
70
37
37
37
17S
208
192
7f>
70
73
46
44
4S
20
22
21
OXIDES PPM
80
(27)
72
66
69
39
34
37
129
132
131
61
59
60
43
46
45
29
26
26
110
4tS
57
53
33
31
32
103
116
11 1
48
49
49
41
40
4O
74
26
49
*AFTER 2500 RPM CONDITION
105
-------
Unregulated Emissions
Federal Test Procedure-Aldehydes--
Table 66 and Figure 12 give the aldehyde emissions in mg/km for the
composite FTP. The 1974 Chevrolet and the Honda showed the greatest
aldehyde emissions; they were noncatalyst cars. Air conditioning
generally showed greater aldehyde emissions at 80 and 110°F (27 and
43°C) but less at 90°F (32°C). The total range for average values
varied from 19 mg/km in the 1980 Buick prototype to 285 mg/km in the
Honda. The car with the lowest aldehyde emissions, the 1980 Buick, had a
range from 19 to 78 mg/km. The Honda, with the highest aldehyde emissions,
ranged from 164 to 285 mg/km.
rIP LUMPUSI
* ALPtMYOtib MG/KM
TEMPERA TUNE f a
(C) (-lu)
1972
107*
1977
1977
1977
I97a
1977
1978
1978
1978
1979
IMO
1984
CHEVROLET IMPALA
AVE
CHtVROLCT IMPALA
AVE
HONDA CIVIC 49 STATr
AVE
FOHD LTD 49 STATE
AVE
PLYMOUTH FURY 49S
AVE
BUICK V6 TURBOCHARGE
AVE
PLYMOUTH FURY CALIF
AVE
CHEVROLET ST • -CAL IF
AVE
FOKO PINTO CAL 3 KAY
AVE
V* RABBIT CAL FU-INJ
AVC
DUOd! ASPEN CALIF.
AVC
HMCIftV MOTOTVPK
AVE
BUICK ReCAL PROTOTVP
AVE
OATSUN PROTOTYPE
AVC
92.6*
IOO.4I
96.33
244.21
I A4.O/
.
214.14
277.22
270. flh
274.04
149.97
1 13.36
70.11
II 1.15
121.31
108. OH
1 1 4 .69
77.73
119. S2
111.41
102.04
74.91
77.82
•
76.37
69.38
78. 53
73. 95
73.14
69.83
89.00
75.99
SI .14
6O.66
55. 9O
116.80
79.73
98. 2ft
.
.
53.02
62«6A
.
57.84
20
C-71
IO3.3I
99. 84
IOI.S7
206. it,
175.04
.
190. ao
J22.44
247.61
265.03
106. BO
84.46
95. 6J
114.37
•
114.37
118.76
II 1.3*
•
115. O7
57.53
57.15
57.34
63. O3
95.16
79.09
S7.I7
61.14
59.10
48.1 1
76.32
62.22
111.75
71.46
91.61
48.12
52.49
50.31
59.19
40.76
49.97
100.80
49.9T
75.38
4O
<•»
79.55
85. 03
H2.?V
202. t)7
285.26
.
244. O7
10?. HJ
272. JO
232.56
99.96
84.50
92.23
102.92
130.41
116.66
62.98
64.40
63.69
56.85
45.19
51.02
64.65
61. S9
63.12
68.17
4S.40
56.79
57.80
57. SO
57.65
96.35
72.15
84.2ft
fit.ZS
62.25
62.88
•
52.88
76.32
57.01
8O.84
71.39
6O
1 lt>>
loo.ai
90.07
V±>.44
139.19
?OO.27
i-
118.12
77.51
97.82
•
•
*
*
•
82. JT
75.16
78.76
•
135.71
90.28
•
112.99
44. IB
55.84
5O.OI
37.25
63.56
9O.4O
38.43
31.64
•
35.04
.
.
99.15
101.20
1OO.17
41. O8
•
41.08
51.15
•
51.15
*
»
•
.
110
(431
136. 9«i
88.30
1 1 2 . 64
198.97
700.34
199.66
170.83
195.23
183.03
81.10
66.94
74.02
62.7!>
85.99
.
74.37
157.31
93.34
•
125.32
35.37
5O.3I
42.84
30.95
40.81
35.88
42.34
34.56
38.45
83.62
33.16
68.39
115.22
113.03
114.12
62.87
9*. 42
5 1.14
58.78
39.16
47.97
64.22
28.04
•
46.13
IIOAC
(431
98.40
89.39
93.89
•
.
81.76
81 .24
81.50
.
.
127.56
123.17
.
125.37
46.53
58.01
49.08
51.21
54.99
50.88
52.94
45.67
31.08
81. 2O
52.65
.
.
.
105.58
138.13
ltl.85
44.9]
57.7*
61.33
.54.36
102.01
78.18
•
•
*
106
-------
MM Cmf».T5I CPW
Q 1972 Chevrolet Inpala
O 1974 Chevrolet lopala
A 1977 Honda Civic
CSTHLTST cms
0 f o ao «6 n ab " 100 tab
C-ll -7 1.1
Q 1977 Ford LTD
O 1977 Plymouth Fury
A 1978 Bulck V6 Turbocharged
W.irMMIA CBTSLT3T CAMS
O 1977 Plynouth Fury
O 1978 Ch«vrol*t Stittoo Wagon
no A 1978 Ford Plnco
1978 W Rabbit
1979 Dodge Aapan
MO
O 1980 Mercury Prototype
A 1980 Bulck Regal Prototype
O Dattun Prototype
CRTRLTST CMS
III.
(Data points not connected by a line are results of air conditioning runs.)
Figure 12. Effect of ambient temperature on aldehyde emissions for
the composite FTP.
107
-------
Federal Test Procedure-Hydrogen Sulfide--
The first four cars tested were evaluated with a gas chromatographic
procedure that was known to work with hydrocarbon gases. Unfortunately,
nitrogen oxides found in automotive exhaust gas destroyed the H2S. We
were not aware of the problem until these cars had been tested. Therefore,
there are no data available for these four cars.
With four exceptions, every test on the remaining cars gave hydrogen
sulfide concentrations that were below the sensitivity level of the EPA
recommended procedure. All of the other values listed in Table 67 are
based on the minimum detectability levels of the procedure.
TABLfc 67
FTP COMPOSITE
- HVORGGtN SULFIDE MO/KM
TEMPERATURE f O
IOC-I8I
197?
1974
1977
1977
1977
1978
1977
1976
1978
1978
1979
I9BO
l««0
CHEVROLET IMPAL*
AVE
CMtVBOLET IMPAL A
AVE
HUNOA CIVIC 49 STAfE
AVE
FORD LTD 49 STATE
AVE
PLYMOUTH FURY 49S
AVE
BUICK V6 TURBOCHAMGC
AVE
PLYMOUTH FUBV CALIF
AVE
CHEVROLET ST X-CALIF
AVE
FOND PINTO CM. 3 WAV
AVE
V» RABBIT CAL FU-INJ
Avr
OOOCC ASPEN CAL IP.
AVC
NCHCIMV PHOTOTYPE
Ave
3UICK REGAL PHOTOTYP
AVE
OATSIM PHOTOTYPE
AV6
•
•
•
•
0.74
O.2J
0.23
•
•
O.Ofl
0.02
.
0.05
0.24
17.93
0.2?
6.13
•
.
O.22
0.25
0.24
0.24
0.24
0.75
0.24
0.26
O.26
0.26
0.25
0.23
0.24
•
•
0.23
O.25
0.24
20
(-7)
.
-
•
.
O.25
0.2J
0.24
*
»
*
*
O.OJ
•
*
O.Oj
o.?t>
0.3ft
.
0.25
-
.
*
0.22
0.22
0.26
0.25
0.25
0.27
0.24
0.26
0.24
0.24
0.24
0.25
0.24
0.24
0.27
0.29
0.28
O.24
O.24
0.24
4O
(4)
.
-
•
.
0.26
0.23
0.25
•
.
.
0.10
0.03
.
O.O6
0.24
0.25
0.25
.
•
O.28
0.26
0.27
0.25
O.24
0.25
0.26
0.25
0.25
0.24
O»24
0.24
0.27
•
0.27
0.26
0.26
O.24
0.24
0.25
O.24
60
( 161
.
-
•
.
0.20
O.25
0.2b
.
.
.
.
0.03
O.O3
0.03
0.25
0.26
0.25
•
•
0.26
0.30
0.211
0.23
0.25
.
O.24
0.26
0.26
O.26
0.?4
0.24
O.24
O.26
•
0.25
O.27
0.27
0.24
0.26
•
0.25
70
(21)
.
.
•
.
0.27
0.2->
0.26
•
•
•
•
•
0.21
O.O3
0.12
0.25
0.27
0.26
•
.
.
0.27
0.30
0.28
0.25
O.26
.
0.25
0.26
0.26
0.26
0.23
0.24
O.24
0.>6
O.27
0.26
0.26
0.26
0.26
0.26
0.24
O.25
80
(271
.
•
•
•
0.25
0.25
0.75
•
.
•
.
O.03
0*03
0.24
0.27
•
0.26
.
•
1.30
0.27
0.78
O.23
0.25
0.24
O.26
0.26
O.26
0.74
O.27
0.2S
O.26
O.25
0.26
O.27
0.26
0.27
0.2S
O.25
O.25
80AC
(27)
.
•
•
*
•
.
*
•
•
.
•
0.2»
0.27
•
0.2.6
•
.
9.58
0.28
4.93
0.74
0.7,4
*
0.24
.
*
•
0.22
0.26
0.24
0.26
0.26
0.28
O.28
•
.
•
*
90
(321
.
•
•
»
*
0.25
0.26
0.7,5
•
.
0.03
O.O3
0.27
0.27
.
O.27
•
•
.
O.77
O.27
0.27
0.2S
O.2S
0.27
0.25
O.26
0.26
O.2b
O.24
0.24
0.24
0.25
•
0.76
0.28
•
0.28
0.23
0.26
6.24
90 AC
<32)
.
*
•
•
•
•
*
•
•
•
•
•
»
0.29
0.28
.
0.29
.
•
0.26
0.27
0.26
0.23
0.28
.
0.25
«
»
•
0.24
0.23
O.23
O.ZB
•
o.z«
0.27
.
O.27
•
•
110
(431
.
•
.
.
.
0.25
0.25
0.25
•
.
O.O3
0.0.1
10. O6
0.29
.
5.17
.
•
O. 27
O.26
O.26
0.27
O.25
•
O.26
0.26
0.26
O.26
0.23
0.22
O.22
O.CT
0.27
o.rr
0.26
O.25
O.26
0.25
O.25
O.25
IIOAC
(43>
.
.
•
•
*
•
•
•
•
*
O.29
0.29
•
O.20
•
*
•
•
0.26
0.26
0.26
0.26
0.27
O.26
O.26
•
0.23
0.22
0.23
O.M
O.27
O.CT
0.38
O.24
0.31
•
•
108
-------
Sulfate Emission Test-Sulfate--
Table 68 and Figure 13 show the sulfate emissions in mg/km. The
noncatalyst 1972 and 1974 Chevrolets had very low sulfate emissions.
The Honda had at least three times the sulfate obtained with the two
noncatalyst Chevrolets.
Of the catalyst equipped cars, only the 1978 Chevrolet, the 1980
prototype Mercury, the 1977 (California) Plymouth, and the 1979 Dodge
Aspen produced sulfate emissions greater than 1 mg/km. There is no clear
relationship between sulfate formation and ambient temperature. The
1978 Chevrolet and the 1977 (California) Plymouth had the most sulfate
at 40°F (4°C). The other two cars produced over 1 mg/km of sulfate at
80°F (27°C), with and without the air conditioning. The Datsun, the
1980 prototype Buick, the VW and the 1977 (49 State) Plymouth gave
sulfate emissions as low as those obtained with the two noncatalyst
cars.
109
-------
SULTATF
TFST
1V72
1*74
197 f
1977
H577
1S78
1977
1S7C
IS78
1978
1 979
Tl
CHF. VHCLTT
CHFVHULF T
HON )A C IV
FCJRH LTf;
PL VMOOfH
BUICK V6
PLYMOUTH
CHCVRGLKT
( C
I M P At A
AVE
IMP ALA
AVF
1C 49 STATF.
AVF
4-V STAIc
AVE
FUKV 4^5
AVt
TLKBCCHAHCF.
AVF
FUHY CAL IF
AVC
ST fc-CALlF
AVC
FORD PINTO CAL 3 »AY
AVE
VW RAOOIT
CAL FiJ-INJ
AVC
COOf.E ASPEN CALIF.
AVF.
0
) ( -18 )
0.06
0.05
0 .00
0.01
O .0 3
0.03
0.4?
0.16
0.29
0.77
(J .30
0.22
0.41
0.14
0.12
0.13
0.24
0.1 ft
0 .?5
0.?2
1.06
0 ,7H
0 .<>?
tt.VSI
4.92
6 .96
0.1 5
0.17
0 .27
0.20
0.38
0 .3.3
0.36
0 .20
0.13
0.19
1*60 MERCURY PROTOTYPE .
AVE
I960
HUICK HFGAL FfiOTOTYP .
AVE
OATSUN PHGTOTYPF.
AVK
J .09
0.06
0.04
40
( 4)
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
3
1
2
2
2.3
! 7
20
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
.05
.05
.05
.02
.07
.30
.15
.21
.24
.12
. Oh
.1C
.41
.3'»
.37
.40
. 11
. in
. 18
. 18
.22
.29
.25
.31
.14
.22
.24
.71
.48
.04
.04
.30
.30
.09
.09
.09
.09
HO
( 27
O.
0.
0.
0.
•J.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
8.
a.
0.
0.
1 .
0.
0.
0.
0.
1.
3.
8.
3.
6.
0.
0.
0.
80AC
) (27)
06
Of
36
OS
04
04
2 C
2 1
2 1
29
i 1
2C
24
IV
22
26
42
35
16
J5
36
1 5
76
1 3
16
1 5
69
52
16
98
07
1 1
O7
OS
0
0,
0
0
0
0
0
a
0
0
•J
0
.1
4
0
0
o
?
1
8
8
0
0
.09
. OS
.07
•
.35
.34
. 3S
;
.20
.25
. Ou
. 12
. 10
.1 1
.77
.sn
.74
:•
.95
.07
.51
.86
.86
. 15
.15
0.12
0.1 5
0.14 .
no i:
(43)
O. 10
0.04
0.07
0 .06
0.05
0.06
0.25
0. 1 7
0.21
0.58
0.10
0.34
0.30
0.24
0.29
0.39
0.34
0.36
O.I 0
0.13
0.1 S
0.78
0.30
0.54
0 .64
0.37
0.50
0.16
0.21
0.18
O.35
0.35
0.35
3.97
9.06
6.51
0.21
O.I 7
0.19
0.34
0.24
0.29
1 OAC
( 43)
0.12
O.09
0. 10
•
•
0.27
0.21
0.24
•
0.20
0.12
0.16
0.15
0.16
0.18
0.16
0.48
0 .42
0.45
1 .26
0.72
0.99
•
0.40
1 .40
0.90
2.29
5.25
3.77
0.40
0.23
0.32
•
110
-------
I am tsi core
195TBTE CfltdTST CPRS
' ' ' I ', I ', ', '• ' I
' O 1972 Chevrolet Inp«l«
O 1974 Chevrolet Inpele
A 1*77 Bond. Civic
l&f fMJIENT
-i~.
~r-
• O 1977 Ford LTD
10 i O 1977 Plymouth Fury
! A 1978 Bulek V6 Turbocherged
CRTRLTST CflW
WOTOTTPt CBTBLTST CUBS
O 1977 Plymouth furj
O 1978 Chevrolet Station Vegon
|A 1978 Ford Plato
O 1978 W Rebblt
0.01 *. 1979 Dodge A.f.a
F 0 » « «0 10 1» l»
to
.1
«/l
I
0.1
i
0
1
(
(1
1
D
-
98i
98(
eti
a
> ^
) i
iun
-
.««
er
ul
P
— (
^4
«
BU:
Bk
rol
^
*x
K-
7
Re
.ot
X,
K
Pr
ge
yp
^
3tl
1 I
1
•1
^
^
K
I
ty
>ro
r^
~
pe
to
^
X1
100
1
typ
;=>
"
«
V
h-"
120
(Data points not connected by a line are results of air conditioning runs.)
Figure 13. Effect of ambient temperature on sulfate emissions for
the sulfate emission test.
Ill
-------
Sulfate Emission Test-Particulates--
The particulate emissions, listed in Table 69 and illustrated in
Figure 14, show a variety of results. The noncatalyst cars, even though
they were run on unleaded gasoline, had average particulate emissions
that varied from 8 to 23 mg/km. The three 49 State cars varied from 2 to
36 mg/km and the five California cars varied from 3 to 33 mg/km. The
three prototype vehicles varied from 3 to 22 mg/km. Air conditioning
did not produce a consistent effect.
112
-------
TAMLf: 69
SULFATT EMI£bl.JM TEST
- PAHTICLLATEs
TCMPFRATUHt r 0
( C ) < - J . (I )
1572
1974
1977
1977
1977
1578
1977
1978
1978
1978
1979
I960
I960
CHEVROLET
CHEVROLET
I M F AL A
I M f AL A
AVE
AVC
HONDA CIVIC 49 STATE
rOHO LTD
PLYMOUTH
RUICK V6
PLYMOUTH
CHEVROLET
AVE
45 STATE
FUHY
A Vt
495
AVE
TUrfECCHAMGE
FUHY CAL
AVE
IF
AVE
ST W-CALIF
FORD PINTO CAL 3
V* HAOBIT
CAL FU-
AVE
WAY
AVE
INJ
AVE
DOOGE ASPEN CALIF.
AVE
7
1 0
9
23
1 9
21
.J?
1 4
23
1
19
1 1
1 0
10
7
V
2
1
3
2
H
1
4
18
7
12
0
1 3
17
13
25
24
25
4
5
4
.91
.80
.,36
.9 7
.44
.70
.5(1
.29
.43
.90
.06
..31
. 75
.38
.82
. 10
.61
.49
.14
.4 1
.00
.92
.56
.02
.72
.87
.96
.53
.35
.28
.46
.75
.10
.00
.80
.90
MEHCURY PROTOTYPE
AVE
.
•
BUICK REGAL PNOTOTYP
AVC
CATSUN PROTOTYPE
AVE
4
2
3
.
.
.06
.75
.
.41
40
( 4)
9 .65
7.54
6.59
1 7 .82
V.53
1 3. ft 7
13.82
7.60
10.71
20.07
1 1 .96
.
16.02
7.47
7 .65
7.56
t .HO
4 .20
.
'• .5.1
1 .61
S.20
3.40
33.97
31 .43
32. 70
12.37
25.33
.
18.85
23.61
6.95
15.38
6. 74
45.39
26.06
12.04
.
12.04
22.00
.
22.00
6.69
3.39
6.42
5.50
80
(27)
10. 1 7
5.58
7.ae
15.38
31. 12
23. 3«
15.26
11.73
13. 5C
55. 76
15. 4 1
.
35.55
7. 25
7.96
7.63
4.42
1 .48
.
2.9S
8.44
J. 63
6. O3
14.12
9. I 5
11.64
21.67
S.52
.
15. 10
5.63
7. 36
6.50
7. 00
I 1.95
9.47
22. 07
10.95
16.51
3.5<
10.58
7.07
9.24
1 I .95
m
10.60
fJOAC
(27)
10
16
13
24
18
21
4
4
4
(>
4
5
12
u
10
46
12
30
10
1 1
10
16
16
b
6
.43
.35
. 3')
.
s
.
•
.23
.20
.
.22
.
•
.50
.66
.
.5H
.46
. 97
*
.72
.60
.23
.41
.05
. 15
.
. 10
^
.
•
.17
.01
.5'J
.69
.
.69
.24
.
.24
.
.
9
,
110 1
(43)
30.95
1 1 .56
21.25
22.50
16.25
19.37
22.04
9.13
15.58
38.14
9.91
.
24 .03
16.67
I 5.60
16.14
1 1.64
24.00
.
1 7.H2
1 0.79
14.63
12.71
0.82
1 1 .72
10.27
12. 76
20.89
.
16.32
10.1 1
14.63
12.37
12.49
fl.86
10.67
8.82
16.34
12.58
7.89
7.30
7.85
26. 71
1 7.43
22.07
IOAC
(43 )
1 I . 44
24.65
18.05
.
^
•
.
.
•
24. 10
14.77
^
19 .44
.
.
.
8.30
7.84
.
rt.07
2 .79
15.58
0 .52
o. an
22.44
11 .38
9.82
52 .26
t
31 .04
.
.
•
13.71
16.92
15.31
8.37
11.07
9.72
10.24
12.45
1 1 .34
^
113
-------
NON WTHL1ST CflW
Q 1972 Chevrolet Impnla:
O 1974 Chevrolet Impale,'
A 1977 Honda Civic
to
TEHP
too . _._,r_.
M9STBTE CflTflLYST CPR5
D 1977 Ford LTD :
,O 1977 Plymouth Fury :
A 1978 Bulck V6 Turbocharged
i j ' ~jb~ " iff 'eg" •" 100 Tao
C-tl -7 « J
CBTflLTJT CMS
rfOTOTTPC CBTflLTST CARS
| Q 1977 Plymouth Fury
3 O 1978 Ch«vrol«t Station Wagon
£ A 1978 Ford Pinto
£ O 1978 TO Rabbit
0.1 IK 1979 Dodga Aapan
x w to u too ix
"" " ' TEMPRMfiEMT" "
O 1980 Mercury Prototype
A 1980 Bulck Regal Prototype
0 Oataun Prototype
r o 20 no 80 ' a' uioo L1a>
(Data points not connected by a line are results of air conditioning runs.)
Figure 14. Effect of ambient temperature on particulate emissions for
the sulfate emission test.
114
-------
Hydrocarbons by Chromatography—
Tables 16, 17 and 18 (presented earlier) show the hydrocarbon
emissions in g/km for all three phases of the FTP. It is of interest to
compare the relative amounts of the different hydrocarbons as a function
of test temperature. Complete chromatographic data for each test are
given in Appendix C. Selected results will be discussed here.
Methane—Table 70 lists the percent methane that was obtained using
the cold transient phase of the FTP. The three noncatalyst cars had
relatively small methane contents (2.6 to 12.9%) in this high emitting
phase of the cycle. The catalyst equipped cars generally had more
methane; from 7.4% for the 1977 Ford at 0°F (-18°C) to 36.3% for the
1979 Dod.ae Aspen at 90°F (32°C) with air conditioning.
TABLE 70
CAS CHROMA inr,HAOH 1C ANALYSIS
TEMPERATURE T 0
(CM-IS)
COLO TRANSIENT FTP - METHANE- X BY «T
20 40 60 70 80 80AC 40 90AC
(-71 (4| (16) 1211 (27) (27) (321 (32)
I 10 IIOAC
(431 (431
1972 CHEVROLET
1974 CHEVROLET
IMPALA
AV£
IMPALA
AVE
1977 HONDA CIVIC 49 STATE
1*77 FOMO LTD
1977 PLYMOUTH
1978 BUICK V6
1977 PLYMOUTH
1978 CHEVROLET
AVC
49 STATE
AVC
FUMY 49S
AVE
TUNROCHARae
AVT
FURY CALIF
AVE
ST W-CALIF
AVE
1978 FORD PINTO C 4L 3 WAY
1978 V» HA801 T
AVE
CAL FIJ-INJ
AVE
1979 nODCE ASPEN CALIF.
AVR
9.7
10.8
10.3
1 1 .9
10.4
.
1 1.2
10.3
9.0
9. A
7.9
A. 8
7.5
7.4
9.2
11.0
.
10.1
7. 1
9.4
a.M
8.1
1 1.1
1 3.4
.
12.4
!.l
9.0
6. 1
11. I
10. 5
9.9
10.5
8.7
10.0
9.4
11.2
14.1
12. 7
1980 MEWCURY PHOTCTYPf .
AVB
.
•
I960 HUICK HECAL FPrmiTVP .
OArSUN 0
AVR
ROTOTYPg
AVE
•
7.H
8.0
.
7.9
1 1.7
10.7
11.2
9.4
10.4
.
9.9
8.4
10.0
9.2
7.6
7.2
.
7.4
14.1
9.5
.
1 1 .1
8. 3
8.7
.
8.5
11.2
19.1
.
1 6.2
9.6
9.4
9.9
15.2
1 I..3
.
1.1.3
1 1.6
1 1.4
1 I.S
1 3.0
19.6
16.3
14.9
13.9
1 0.4
13.7.
1 4.3
1 J.H
5.2
tt.r.
.
8.4
. 8.8
10.0
9. 4
6.9
13.8
.
10.4
7.1
4.4
3.8
8. 1
7.9
.
8. 0
14.1
13.0
.
11.6
12. <•
7.7
.
10. 1
17.7
21 .7
.
t'y .4
14. V
10.0
14.9
17. fl
IA.2
f
17.0
11.9
11. ;
II. 5
1 3.6
16. 6
IS.I
14. •>
.
14.5
11.4
11.4
11 .5
10.7
11.3
II .2
7.2
7.3
7.2
8.8
7.6
6.4
7. A
7.7
7.3
7.5
8.7
8.0
.
8.4
7.7
7.0
11.6
"•'•
10.9
1 1.6
.
II.'
l.t.9
1 3.6
.
13. a
14.0
9.4
1 1.7
2J.A
1 £>•<>
.
19. n
15.1
1 1.8
13.4
SI. 7
1 4.H
1 (1.0
1 '.7
.
1 f.r
1 8.7
18.7
12.7
11 .1
.
1 l.H
7. 9
4.1
5.8
S.I
7.3
.
6.2
8.6
7.9
8.3
8. A
7.8
,
0.?
14.4
11.7
IS. 1
1 l.ft
10.5
1 1.5
.
1 1.0
15.7
11.7
.
1 1. 7
11.7
12.7
12.7
18.3
19.8
.
19.2
17.0
1 1.8
11.9
'1.7
II. 1
71 .5
? 1. •!
t 1.6
75. r
II. 1
1 1 .7
17.2
10.0
II. 1
,
10.5
2.8
2.5
2.6
3.2
3.3
.
4.3
9.2
9.2
9.2
8.1
7.3
.
7. 7
10.2
7.2
.
8.7
12.0
17.0
.
17.0
23.')
P4.4
.
24. 1
14.7
12.2
1 3.4
13. P.
40.2
.
71.7
12.0
10.9
I I.S
J4 .1
13.2
?3..i
27.6
l»6.7
.74.6
17. 1
1 1 .7
1 1 .»
17.''
1.1.3
.
1.1. 1
5.2
3.1
5.1
f
.
.
.
f
.
•
10.6
8.0
.
1.3
f
.
.
•
1 .'. . 1
IS. 4
.
14.2
21.0
18.1
.
19.6
1 1.2
13.11
1 3.5
1 7.9
17.3
.
17.6
B
.
•
26.3
1 6. A
21.5
20. 1
.
JO. 3
v.u
9.9
.
,
B
•
7.0
4.4
3.7
3.7
4.6
,'
4.1
16.2
9.6
12.9
10.4
8.9
.
9.7
14.9
11.3
,
1 3.2
16.2
I i.n
.
1 3. A
23.2
IA."
.
1A.'
11 .3
8. 1
9.7
21.5
19.4
30.4
73.7
13.4
10.7
12.0
29.4
28. 1
28.7
15.8
B
13.8
12.1
17.1
17.9
12.8
^
12.8
6.4
4.3
3.4
.
.
.
*
m
,
•
8*7
7,0
,
7.9
^
,
,
•
13.4
14.2
.
14.8
22.7
20.9
,
21.8
10.1
1 1.3
10.7
26.8
28. 1
.
27.4
.
.
•
3«.6
32.9
J6.J
14.0
a
14.0
13.3
13.3
B
^
•
6.7
3.5
S.I
3.3
3.3
^
3.3
9.3
10.0
9.6
8.)
7.3
.
7.8
12. 7
1 3.3
.
13. 1
1 3.0
1 3.0
.
13.3
27. V
12.1
.
20.0
9.3
12.4
10.8
7.1
20.6
,
13.9
9.7
10.1
9.9
33. a
31.2
• 33.3
9.6
9. 7
9.7
11.7
13.4
13.6
1 0. 1
14.1
12.1
8.2
2.8
3.9
.
»
^
•
*
.
*
9.9
8.3
*
9.1
,
,
^
.
16.7
1 7.8
,
17.2
20.7
21.6
IS.O
19.1
15.3
14.8
13.1
24.5
19.2
24.8
22.8
.
.
34.2
33.0
34.6
13.1
1 4. 3
14. 7
12.8
14.6
13.7
*
•"
115
-------
Table 71 compares the methane percentage for the stabilized phase
of the FTP. This phase of the FTP had the lowest total hydrocarbons
(Table 17). Except for the Honda, with about 10% methane, the noncatalyst
cars had only small percentages of methane. The catalyst cars, which
generally had very low total hydrocarbons in this phase had quite large
fractions of methane. Above 80°F (27°C) the percentage of methane
varied from 10.9% for the 1977 Ford to 75% for the 1978 Buick. Clearly,
the small amount of hydrocarbons present in this phase has a very high
portion present as methane.
TAOLf 71
GAS CHP'IMATOGKAPHIC ANALYSIS
TEMP ERA TURF T 0
(CH-11)
1972 CHrVROLET IHPALA
AVE
1974 CHEVROLET IMP ALA
AVF.
1977 MONOA CIVIC 49 STATE
AVF
1977 FORU LTD 49 STATE
AVF
1977 PLYMOUTH FURY 4<>S
AVE
I«7H BUICK V6 TUHBOCHAHGE
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST K-CALIF
AVE
1978 FORO PINTO C AL 3 HAY
AVE
1976 V* RABBIT CAL FU-INJ
AVF.
!»?• OOOCC A»»tN CALIF.
AVE
!••• MPOCUHY PROTOTYPE
AVE
l««0 BUICK REGAL OROTOTYP
AVE
DAT SUN PROTOTYPE
Ave
6.3
t.9
4.1
4. 1
4. i
4.2
11.6
10. 3
11. 0
. io.o
9.7
9. 1
9. A
14.1
19.1
#
16.6
31.4
2S. 0
24.1
26.8
32.3
37.4
^
34.8
33.4
22.2
27.8
1 1.0
18.2
19.0
16.1
11.5
17.8
24.6
SO. 2
55.5
52.8
•
•
•
.
•
•
49.2
3fl.7
,
42.4
STABILIZrn FTP -
20 40
(-7) <4I
4.4
5. a
S.I
l.s
2.1
a.s
1 1.9
10.2
1A.3
1 1.5
•
1.1.9
23.0
IS.O
.
19.0
29.3
42.6
•
35.9
10.7
57.3
f
44.0
52.0
18. 3
35.3
25.6
19.7
.
22.6
47.1
50.9
49.0
56.6
39.8
48.2
45.7
41.1
43.4
38.3
34.6
36.4
41.9
41.6
*
47.8
1.7
9.0
6.4
2. A
2.7
12.3
r . i
'). 7
15. S
11 .S
,
13.5
36. 1
16.8
,
2ft. 4
38. 1
15.9
.
17.0
12. 1
53.0
B
42.6
27.8
22.6
25.1
34.5
74.5
.
29.5
42. ;
57.0
49.6
30. <
41 .6
46. 1
52.2
*
52.2
32. 0
,
32.0
35.9
46. 1
22.2
34. t
• MTTHANT- « BY •
AO 70
( IM I PI I
6.7
5.4
S.fl
2.H
1 .6
t.t
17.8
9.9
1 3.4
16.6
16.3
•
IA.S
?4.7
25.1
26.3
25.1
61 ./
59. a
•
60.7
15.6
24.0
a
29. n
13.8
13.6
25.7
43.6
41.1
.
42.4
44.6
47.8
46.2
47.1
45. O
46.0
60.6
.
60.6
61.9
.
61.9
49.9
51.2
.
4«. 5
7.0
?.«
4.H
1.1
2. A
10.3
12.9
11.2
19.9
16.1
.
16. 0
in. 3
19. 7
J5.S
?a.s
59.?
47.3
•
93.2
40. 1
31.4
m
.IS. 9
18. 5
35. S
37. 0
4.1. S
33.4
.
.18.4
35. 9
35.8
3S.8
37.6
53.2
45.4
19.4
64.3
41.8
61.6
62.8
62.2
41.7
55.0
.
49.3
>T
ao
(27)
S.O
1.6
3.3
3. A
3.0
.
1.1
11.".
10.'
11.1
16. 7
17.7
.
17.2
J1.9
34. 7
.
33.3
70.3
64. 8
•
67*5
49.7
sc. a
f
SI. 2
39.2
27.6
33.4
11.8
34.4
•
33.1
30.5
28.0
29.2
54. A
54.7
B4.7
62.4
57.2
59.8
60 .S
65.5
63.0
92.7
51.0
•
91. »
80AC
(271
l.R
4.4
4. 1
•
,
•
,
•
•
16.2
16.)
.
16.3
•
*
,
«
67.0
39.6
•
53.3
35.4
24.6
.
30.0
53.4
38.3
45.9
33.3
40.8
•
37.1
.
.
.
44.1
S6.S
50.3
44.9
.
44.9
77.1
.
77.1
.
.
.
.
90
(32)
9.0
3.0
7.0
4. 1
4.0
4.0
10.5
10.0
10.2
16. A
15.8
.
16.2
37.2
34.7
.
36.0
45.1
43.4
•
54.3
18.3
49.3
.
49.3
S3. 0
5.7
29.4
40.4
45.7
52.5
46.2
29.9
16.2
23.1
51.8
S3. 4
52.6
41.2
.
41.2
46.6
*
46.6
49.5
60.2
• •
94.9
90AC
(32)
7.9
4*6
6*3
•
.
•
.
*
•
1 1.0
13.5
.
12.2
*
•
.
*
68*1
36-2
.
63.1
36.0
21.6
,
28.8
61.5
47.2
54.3
51.3
57.8
•
54.5
•
.
•
45.2
52.8
49.0
47.8
.
47. a
60*2
.
60*2
•
•
•
•
110
(43)
11.2
S.S
0.3
3.2
5.3
.
4.3
10.3
9.7
10.1
10.9
10.9
.
10.9
20.2
24.3
.
22.3
76.1
74.0
.
75. I
'21.6
91.8*
*
26. r
43.4
53.8
48.6
42.6
28.9
•
35.8
11.8
16.4
14.1
48.3
49.9
49.1
52. 8
45.9
49.3
52.5
70.5
61.5
49.7
42. S
*
46.1
I10AC
(43)
1 1.1
2.8
7.0
•
•
•
•
.
•
11.2
10.8
•
1 1.0
.
.
•
•
75.6
74.2
.
74.9
' 38.9
41.8
40.5
40.4
57.8
60.4
59.1
54.1
36.8
38.4
49.8
•
.
.
5».«
S*.t
•7.8
54.7
48.5
51 .6
37.7
31.5
34.6
*
•
•
•
116
-------
Table 72 gives the methane percentages for the hot transient phase
of the FTP. The noncatalyst cars continued to produce low concentrations
of methane. The catalyst cars generally produced much larger percentages
of methane. The 1977 Ford was an exception and, as previously discussed,
m.ay havejhad_ a_deteriorated catalyst.
TA8LR 72
TFMPFBATUI1E T 0
(CM-IK)
1072
1974
1977
1977
1977
I97H
1977
l«7«
1970
19 in
1979
1980
l»BO
r.MFVROL»T IMOALA
AVK
CHEVMOLFT IMPALA
AVt
HONDA CIVIC 4'( STATF
AVF
F1IPO LTO 4V *5TATR
AVt:
AVI*
niJITK V6 TUMOUCHAPCE
AVF
PLYMOUTH FURY CALIF
AVf!
CHFVMOLFT ST *-CALIF
AVF
<=or*f> PINTO CAL 1 «AV
AVE
V» WABOIT CAL FU-INJ
AVE
(X)0«F ASPFN CALIF.
AVE
MERCURY PROTOTrPF
AVE
WIICK NFCAL PROTtJTYP
AVF
•)ATSIIN PROTCTYPE
AVE
6.0
3.9
4.')
4. 1
5.4
3.«
11. 1
1 3.0
13.1
10.1
9.4
7.3
9. 1
10.6
14.9
I2.fl
14. 1
3.2
3.3
1.2
5.7
16.3
1 I.I
1 7.5
tS.6
'16.5
2ft. 6
79.4
26.9
14.1
in. 4
18.7
41.0
19. 0
41.0
•
•
25.5
19.6
.
22.5
r.A-i CMPOMATOCHAPHIC ANALYSIS
HOT TMANSIFNT FTP -MRTHANT- « OY WT
20 40 00 70 89
(-7) («) (16) (21) (?7>
].•>
1.6
2.1
i. 1
z.r
2.5
1 1.1
10.7
1 I.'J
12. H
8.1
1 0.4
14.6
12.6
13.6
13.4
21.3
18. 3
17.1
31.7
.
23.4
I2.H
It. 2
12.0
28.1
23.1
20.0
21.4
?0.7
ft6. 1
24.1
43. Z
16.9
13.3
16.1
IB. 9
13.4
16.2
23.9
22.3
?3.l
3.4
?. 7
1.1
2.6
7 . 7
V. . tj
9.1
10. 0
9.«
•t.'-i
9. f
«).5
13.4
14.4
13.9
23.4
?1. 3
?••.«
0.0
.1? . .1
K- • 1
4. 0
12.7
9.3
H. 7
?.",. \
!«.*
eo.«
f.0,1
33.5
22.?
?7.fl
1M. 1
l«. 1
17.7
17.7
21.6
27.9
20. 7
21.7
3.0
2. 7
I. A
l.O
2.4
2.4
2. ft
10.1
'/. 3
9.'l
'I.V
e.B
12.7
14.0
9.1
1 1.9
16. •*
13.2
Jl.I .
12. 1
13.4
12. X
47.9
1 7.8
1?.9
13.7
21. 1
23.1
11.')
20. H
13. 'i
24. R
2V. 3
21.9
21 .9
?4.S
24. a
2?.?
?6 .7
.
?4.b
3. 6
2.1
?. 7
2.1
2. ft
rt»t,
1,-\
9.6
S.O
H.9
1 2. 8
14.6
15.7
14.7
3! .1
27.5
29.4
1 3.4
16.1
14.8
24.0
71.3
22.7
1.1.6
73.6.
16. 6
16.3
1 6.4
27.8
16.0
31.9
23.3
40.2
31 .9
26.5
2.1.7
75.1
77.3
30.7
26. 6
4.9
?. H
7.0
7.4
9.2
1.4
9. 1
9.0
8.4
10. 5
14.0
12.2
14.1
21.4
.
2ft.H
11.2
13.2
12.7
22.6
19.4
21.0
76.1
2V. 2
14.6
13.1
13.8
79. H
32.4
31.1
S.4
20.2
13.1
29.1
2S.2
2H.6
30. 1
30.5
30.3
80AC
(271
J.9
.
.
.
8.3
7.5
.
30. 9
32.7
.11 .6
10.4
12.7
11. 5
33.6
21.5
77.8
33.3
38.0
33.7
.
.
27.0
32.1
29. »
23.3
23.1
33.4
38.4
.
90
( 32)
3.1
2.7
2.3
2.3
9.0
9.3
9.3
7.2
7.3
11. 3
11.2
.
12.3
31.6
19.0
23.7
73.1
10.3
10.1
29.2
15.4
22.1
42.7
40.9
46.4
43.3
14.7
11.0
12.8
30.7
14.7
3?.. 7
18.6
.
la. 6
27.9
27.9.
37.2
.19.1
•
715*7
90 AC
( 32)
6.5
4*5
•
•
•
•
*
7.0
6.9
34.1
31.3
12.8
18.9
22.6
20.7
43.8
46.6
46.2
46.8
41. 3
44.1
•
42.8
JZ. 6
37.7
17.7
•
17.7
31.1
•
31.1
•
•
110 1 10 AC
(431 143)
8.4
6.6
3.2
4.1
4.7
9.3
0.7
9.0
a. a
7.8
12.3
13.5
13.0
35.7
36.6
.
36.1
12.6
20. 3
16.4
36. *>
39.7
38.1
34.1
23.0
•
29.6
9.0
10.6
10. 1
38.5
36.2 '
37.4
13.9
28.0
20.8
18.3
25. 3
21.9
23.3
30.9
28.1 .
8.8
3.8
6.3
•
•
•
•
7.8
9.4
.
8.6
.
•
28.1
34.7
31.4
IS. 4
15. a
18.6
16.6
37. 1
46.4
41.8
42.1
49. 0
31.7
39.7
.
.
38.2
37.7
37.9
24.3
23.0
23.8
21.1
16.9
19.0
*
• •
117
-------
Saturates—Of the remaining nonmethane hydrocarbons, a very large
fraction was saturates. Data in Table 73 show that whether the car had
a catalyst or not, the saturates (excluding methane) accounted for 23.3
to 53.6% of the total hydrocarbons for the cold transient phase of the
FTP. Saturates were a major component of the test fuel.
TABLE 73
GAS CHKCIMATOGHAPHIC ANALYSIS
TEMPERATURE F 0
(CM-181
1972 CMFVBOLFT IMPALA
AVE
1974 CHFVftOLF.T IMRALA
AVC
1977 HONDA CIVIC 49 STATE
AVF.
1977 FOWD LTD 49 STATfi
AVE
1977 PLYMOUTH FUMY 49S
AVF
1978 BUICK Vft TURBOCHAMQE
AVE
1977 PLYMOUTH FURY CALIF
AVE
I97B CHFVBOLET ST K-CALIF
AVC
1978 FORD PINTO C AL 3 WAY
AVE
1978 VV RAUBIT CAL FU-INJ
AVE
1979 OODOC ASPEN CALIF.
AVE
I960 MEIVCURV PHOTCTYPE
AVE
198O BUICK REC.AL PROTOTYP
AVE
nATSUN PHOTOTYPE
AVF
42.3
40. 1
41.2
43.7
40.2
»8.B
41.8
40. 3
48.3
SO. 2
47.2
48.6
42.2
43.9
.
41.0
44.1
43.4
41.1
43.5
45.3
47.2
4A. 3
61.4
49. 0
48.8
44. 1
48. 3
47.1
40.0
38.2
39.1
41.3
39.9
40.6
.
.
.-
.
.
•
49.7
52.7
.
SI. 2
COLO TRANSIENT t
20 40
(-7) (41
13.9
34.1
34.1
41.8
43.4
44.0
18.8
41.4
48.2
48.8
48.5
18.1
48.9
.
41.5
42.1
40.7
.
41.5
45.2
18.9
46.7
47.6
47.2
40.4
47.5
.
43.9
38.1
37.6
37. B
39.7
34.0
36.8
30.5
35.5
31.0
30.9
29.0
29.9
52.6
50.6
.
91.6
15.9
34.9
14. 2
38.0
40. 4
49. A
49.0
47. B
49 .0
.
4*1. 4
1A.1
40.9
,
3D. A
41. 1
45.4
.
41.3
19.8
3T.3
44.0
40. A
42.3
35.0
39.2
.
37. 1
37. 1
39.6
38.4
35. ;
30.7
35.5
33.3
.
33. 3
35.3
*
35.3
43.3
46. 2
47.9
45.8
•Tl> - SATUPATCS-
AO 70
(16) (?1 )
1ft. 0
'44.1
.15.0
18. >
19. ft
14.'.
13.7
15.1
19.5
41 .9
.
40.7
36.7
48.9
1.1.1
19.6
36.7
•
16.8
41 .8
49.2
•
40.4
41 .1
40.9
11.5
41.2
.
.17.1
18. V
1A.4
17. 7
14.4
41.8
in. i
46.0
.
46.0
51 .9
.
51.8
19.2
46. 7
.
42.9
11.4
41.',
38.9
43.0
44.9
30.8
29.9
10.3
40. 2
42.9
,
41.3
11 .8
12.2
27.1
10.4
38.5
IS. 9
*
37.2
51 .0
46.4
•
16. A
19.8
38.2
42.3
39.4
,
40.8
35.6
37.0
13.6
46.2
19.9
49.9
51 .8
50.9
31.4
35.6
13.5
11.6
44. ft
.
38.1
« BY in
83
54.4
50.4
57.4
48.8
49.1
77.1
27.2
27.2
41. 1
42.8
.
41.9
40.1
42.0
.
41.0
36. 3
34.6
.
35. 5
47.2
15.9
•
4 1. 2
4f, .3
44.3
48.2
17. A
.
47.9
37.3
38. 1
37.7
3f: .2
42.7
39.0
51.3
48.9
50.1
36.6
37.9
37.2
43.1
44.1
.
43.6
aOAC
25.9
38.3
31.9
'•
•
•
•
41.1
43.4
•
47.2
.
.
•
33.8
32.0
.
32.9
38.1
43.3
•
43.9
42.9
43.4
43.3
43.2
.
43.2
•
•
34.5
18.9
36.7
52.8
.
52.8
39.9
,
39.9
.
.
.
•
90
(32)
IS. •»
37.1
.16.5
48.1
49.4
46.8
21.4
21.3
22.3
38.2
39.0
.
38. 1
29.6
34.3
.
11 .9
35.7
39.0
*
37.3
16.6
42.4
•
48.0
4-J.1
48.7
46.6
46. n
46.7
4A.7
17.3
34.4
35.8
30.9
32.6
31.8
53.5
.
53.5
39.6
.
39.6
41.0
33.4
.
17.2
90AC
(32)
36.3
3H.O
J7.1
•
•
•
•
38.8
34.9
.
16.8
•
.
•
36.7
13.1
.
35.0
35.1
32.3
33.8
46.4
42.8
44.6
39.2
1U.2
.
38.7
•
•
32.9
32.7
32.8
53.6
*
S3 .6
33.3
.
33.3
.
.
.
•
110 110AC
(43> (43)
39.1
45.5
42.3
SO. 1
51. t
50.6
24.2
24.5
24.4
39.9
38.1
.
39.0
34.2
30. a
.
.32.5
38.8
37.5
•
38.1
35.1
46. a
40.9
52.4
46.0
49.2
47.8
44.3
•
46.0
34.7
32.7
33. 7
29.6
31.5
30.5
54.9
51.6
53.3
3S.9
32.8
34.4
38.3
44.1
*
41.2
35.6
39.0
37.3
•
•
•
•
35.9
39.2
•
37.6
.
•
•
32.0
31.9
.
31.9
35.8
37.6
39.4
37. 6
34.8
39.8
37.3
43.2
48. 4
38.1
42.2
.
•
27.*
29.2
28. B
49.6
S3.S
SI. 5
36.6
36. S
36.6
.
.
^
•
118
-------
The stabilized FTP results which are presented in Table 74 show a
similar trend. It is of particular interest to compare Tables 71 and
74. The sum of the methane and saturates frequently totaled over 90% at
the higher temperatures, particularly for the prototype cars. Since the
total hydrocarbon emissions were low in this test phase, there was
little reactive material present in the remaining hydrocarbons.
TA'ILE 74
T «MP*,RATU«r F
0
1 C ) ( - 1 B )
1*7? f HrVHfJI r T ' 1MPAI.A
AVC
AVF
1*377 MONOA CIVIC 49 OTATC
AVC
1977 FOWO LTD 4T STATT
AVf
AVF
AVC
197A vw I'AFiniT CAI. KU-1NJ
AVK .
1979 [jonGE ASPFN CA1.1F.
AVE
' I9MO MrnCUPY PWOTCTYPE
AVF
I98O (1'JICK KeGAL PHOTIJTYH
AV
DAT SUN PPOTOTYPr
AVE
S4.?
30.1
11. «
30.1
31.5
JO. A
43.
47.7
4?.n
.
4?. 3
19.4
.
19.4
51 .0
44.0
.
47.5
70 10
""
4O. 0
12.4
14.9
13.7
14.7
17. 3
•
.11.1
'9.9
11. H
52.1
.
44.4
57.1
52.4
54. S
10.4
115. 1
13.0
!b. A
42.0
.19. 3
AA.4
17.1
52.9
••9.4
42. 7
41.1
lrt.5
45. 1
.
41. B
C?7)
40 .0
47.?
4A. 0
15.0
15.0
15.4
50.4
40.4
•
la.O
•
M.I
39. 1
.
40. 1
57.0
57.3
33. 3
14.9
15.1
42.?.
19.6
40.9
40.1
41 .H
41.0
40 .H
34.5
37.7
4d.O
44. H
.
46.4
80 AC
(27)
1H.5
•
•
.
.
•
36. 1
35.0
•
.
•
10.4
66. A
.
60.4
51 .0
46. 7
54.0
.
.
•
16.5
39.7
38.1
41 .1
.
41. 1
26.2
.
26.?
f
.
,
•
90
( 3?)
28.4
47.1
43.1
45.1
17.'
1A.1
16.6
19. 9
34.6
•
36.4
48. 3
17.0
.
37.9
84.7
64.8
49.2
52.4
13.1
14.3
34.1
45.4
41.P
41.3
53. A
,
53.6
49.6
.
49.6
41 .2
39.7
40.4
90 AC
(32)
24.3
38. «
26.6
•
. •
,
.
•
3 a. 7
35.9
.
•
37.6
6«. 4
.
55.6
41 .4
37.4
46.9
44.8
.
.
•
37.3
44.7
41 .0
43.2
,
4.3.2
32.3
,
32.3
.
B
•
110 1IOAC
(43)
27.5
37.5
32.5
52.2
40.6
46.4
19.6
14.5
19.6
39.4
36.2
27.0
23.0
46.0
.
55.6
45.0
47. 9
52.0
55.9
S3.U
32.5
33.2
32. 8
44.9 '
41.2
43.1
44.1
45.7
44.9
41.8
31.6
36.7
42.4
36.7
^
39.5
(43)
27.3
35. 7
31.5
*
•
.
•
•
37.8
37.6
.
•
24.0 •
35.6
jr.s
32.6
28.2
27.5
41.7
40. S
51.3
44.5
.
.
•
32.0
16. r
]4.3
45.0.
47.9
46.4
48.0
51.S
90.1
.
^
•
119
-------
Table 75 shows the percent of saturates in the hydrocarbon emissions
obtained during the hot transient phase of the FTP. Again, a very high
fraction of saturates was found for all vehicles. This reflects the
nature of the gasoline.
TABLE 75 GAS CMMUMATflOH AI'H I C ANALYSIS
HOT TRANSIENT TTC -3ATI1PATFS- *
1972
1974
1977
1977
1977
t *? 76
1977
t 978
t
1978
1979
19BO
1980
TFMPCUATDRF F
(CM
CMfTVWOLFT 1MPALA
Avr
CHCVROLFT IMPALA
AVf!
HONDA CIVIC 49 STATE
AVE
Frjtif) LTD 4Q STA TF
AVE
PLYMOUTH F'JPV 49S
AVE
HUICK V6 TUHHOCHARGE
AVR
PLYMOUTH FUMY CALIF
AVff
THrvpOLKT ST W-CALIF
AVf
AVI:
V« HABBIT CAI FU-INJ
AVC
nonce ASPCM CALIF.
AVF
MFPCURY PHOTOTYPE
AVS
flUICK KEGAL PHOTOTYP '
AVE
DATSUN PROTOTYPE
Avr
0
-ia>
• 0.0
• 1.3
44. 6
46.1
40. 8
.
46. S
19.9
70.5
20.2
4 fl. 9
44.9
so.a
40.2
40.0
45.?
.
42. A
52.2
30.0
• .
56. 0
64.2
61. I
60. 1
52.7
44.9
39.4
42.2
46.5
50. 4
48.5
^
.
.
f
.
•
56.8
58. 1
,
57.5
20
1-71
33. 7
40.5
38. t
52.1
52. 1
.
02.2
18. t
22.6
20.4
49.0
49.2
45.4
40.4
.
42.9
58.3
.
6 T. 0
70.2
66.6
54. 1
47.8
46. 7
44.8
26.6
55. 3
4 1.0
51.2
60.0
55. «
48. 1
56.7
52.5
63.2
66.0
.
64. 6
40
14 I
4?. 1
31.0
J7.^
54.4
54.5
.
04 .4
?->, ..?
25. )
17.5
IB. 7
48.7
5.1.2
49.?
50.5
24.?
21.7
2J.'/
46. i
4H.6
45.4
35.1
13.2
38.5
46.V
.
12 .S
50.4
5T.1
45 .6
40.1
42.9
49 .2
49.7
49.1
.
49.1
50. '5
.
50. 'j
64.6
59. 1
,
61 .9
. 70
(21 >
14.3
19.3
55. 1
49.1
.
•J2.2
74.3
26. fl
SO. 5
46. 0
49.1
43.5
16.8
39.6
40.0
60.1
.
'•O. 4
61.4
60.1
41.1
39.3
40. 3
53.8
49.3
•51. ?
41.3
46.3
45.4
51. 1
48.2
•J3. 7
60. O
t
56.8
HY ITT
80 80AC
.?> (271
42.) 37.0
"<«. 2 .
ftO. *t .
. .
r.7. i
27..-!
2 1.8 .
•SS.'i .
4V. 't bO.9
49. '1 4 ft. 9
49.3 .
50.1 .
. .
4 '1 . 7
O4.M *i7.4
•
60.2 54.9
54.4 50.2
51.9 . '
16.2.
44. 1
SO. 8 56.2
49.4 52.2
55.5 43. V
52. 1
53. V 48.9
52.9 43.9
50. t
51.5 43.9
•it). 1
•!«••> .
. .
•J7.1
90
( 32)
ia.9
37.8
58..'
.
5H.O
28.2
2 J.S
26.9
30.6
50.0
.
50.3
«1.2
4S. 1
.
45. a
52.7
46. r
•
57.7
SI. !
51 .0
40. 1
16.8
18.5
52.6
49.1
55.7
.
55.7
57.3
,
57.1
51.4
32.0
,
31. 7
90AC
( 32)
13.3
33.9
.
.
.
•
,
.
42 .8
48 .0
4S.4
.
.
.
42. 1
4 2 .H
32.1
38.7
45.6
f
49.0
.
.
•
19.3
42.6
•>B,6
.
53.6
47.7
.
47.7
.
.
.
.
1 10 I
(43)
36.3
44. S
40.4
52.8
•>4.2
.
53.5
2U. B
27.2
28.0
45.2
47.3
.
46.3
39.0
29. 9
•
34.5
30.6
.
39. 1
39.1
.
47.5
33.2
03.6
54.4
30.7
34.5
35.6
40.9
41.3
53.3
44.9
49.1
50.0
30.8
30.4
60.0
52.8
.
S6.4
1 10 AC
(43)
33.8
48.0
41.9
.
.
.
•
.
•
48.1
42.2
4S.1
•
.
•
•
40.0
38.0
39» 4
35.3
51.6
48. 4
37. 7
43.7
44.3
33.3
47.2
.
•
•
40.0
41.1
03.1
46.5
49. a
44.1
44.1
44.1
,
.
.
.
120
-------
Acetylene—Tables 76-78 present the percent of acetylenic compounds
in the hydrocarbons present in the exhaust gases. At one time, acetylene,
the principal component in these tables, was thought to be a good tracer
for automotive exhaust in the air. This was because non-catalyst cars
produced acetylene concentrations which varied from 2 to 14% of the
hydrocarbons present in their exhaust gases, as shown in all three
tables. However, with the advent of catalysts, the amount of acetylene
TFMPEMATUHr F 0
ICK-lftt
1977 CHEVROLET IMP ALA
AVE
Ki 4 CHF5VKX.FT IMPALA
AVF
1977 HONCA CIVIC 41 STATE
AVE
1977 FC1&O LTO 49 STATE
AVF
1977 PLYMOUTH TtHV 495
Ave
197H HUICK W> TUWROCHAWG"
AVE
AVF
AVE
I.? H.D 3.O
r>.7 10.1 ri.l 1.4
7.1 1.R 9.1 T.I
....
fj.l 10.0 4. ft Q.I
4.7 3.^ 1.7 1.7
6.? 4.4 4.4 3.1
A.« 4.1 4.3 3.4
7.7 f.4 3.0 7.3
5.4 '•.I 'i.l •>.(!
....
&.A 5.3 5.6 2.f.
1.4 5.5 4.0 ?.9
4.2 3.3 .1.5 1.3
1.4 4.4 3.7 3.1
1.2 ?,.». 1.2 2.4
3.0 4.M 2.7 .1.0
2.1 5.1 '.0 ?.7
H.2 7.O 3.1 4.0
. . ,!.A 7.1
1.? .».0 7.M 3. 4
4. ft 0.0 7. f 1.1
• . ?•? 2«'t
4.6 'i.o ?.•> :;.2
0.1 3.1 1.1 1.1
1.6 1.2 1.1 0.1
1.7
1.4 ?.'. 1.2 1 .0
5.7 7.0
. 1.5
. 4.2
l.fl
. 7.4
6. 1
A. 9
0.7 0.7
O.H O.n
. 5.7
4.0
. .
. 4. A
0.0 ».4
V.O 6.0
. .
«.H 7.7
2.3 2.-)
7.4 1.7
3.0 7.3
1.7 1.7
2.4 1.7
2.3 1.7
3.7 1.7
1.0
2. 7 1.5
. 3.7
. 1.0
2. A
1.5 2.2
3.1 2.1
1.3 2.2
2. 1 5. 7
. .
7.1 5.7
2.7 •>.(,
. .
7.2 2 .
-------
in the exhaust gas has dropped dramatically. This is shown in Tables 77
and 78. Where the time to warm up the catalyst was important, the
results presented in Table 76 show that acetylene was still produced,
sometimes in large amounts.
TABLE 77
CAS CHHfJMATOGKAPHIC ANALYSIS
STAHILI7EO FTP
1972
1974
1977
1977
1977
1 978
1977
1978
1978
1 978
1*7*
!•••
!•••
TEMPSHATUflE F '
(CM
CHF.VHOLET IMPALA
AVF
CHEVROLET IMPALA
AVE
HONM CIVIC 49 STATE
AVE
FORO LTO 49 STATE
Ave
PLYMOUTH FURY 49S
AVF.
BUICK V6 TUR8OCH4RGC1
AVF
PLYMOUTH FURY CAL IF
AVE
CHEVROLET ST K-CALIF
AVC
FORO PINTO CAL 3 KAY
AVE
W RABBIT CAL FIJ— IN J
AVC
ooooe A*»CN tm.tr.
AVC
•ncurr MOTUTWC
AVE
BUICK RECAL PROTOTYP
AVE
OATSUN PROTOTYPE
AVE
0
-18)
4.0
.1.1
.1.2
,
3.1
7.9
6.0
7.0
O.I
0. 1
0.1
O.I
1.2
0.6
.
0.9
0. 0
0.0
0.0
0. 0
0.0
2.4
0.0
0.0
0.9
0.0
0.2
1.2
0.6
0.0
0.0
0.0
.
.
.
.
.
.
O.O
0.0
.
0.0
20
(-71
3.9
3.2
1.4
2.9
^
2.1
7.2
a. 4
7.8
0.0
0. 3
0.2
1.0
1.2
,
1.1
0.0
0.0
0.0
0. 0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.
0.0
40
(4)
9. 1
6.4
2. 1
2.3
,
2. 3
9.4
3. 7
7.«!
0.0
0.0
0.0
1. 4
1 . 1
,
1 .2
0.0
0. 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.
0.0
0.0
.
0.0
0.0
0.0
0.0
0.0
- ACFTYl.TNE * TOTAL HC
60
( 14)
3.0
3.2
2. (I
2.4
1 .4
2.2
4.4
7.7
8.3
0.0
0.0
0.0
0.7
1 .8
1 .0
1.2
0 *0
0.0
0 .0
0.0
0* 3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.
0.0
0.0
.
0.0
0.0
0.0
.
0.0
70
(21 )
2. 5
4.7
1.1
1.0
.
2.f,
7.0
7. ft
7.4
0.0
0. 1
o.t
0.9
1.0
1.0
1.0
0.0
0.0
0*0
1.1
0. 0
4*0
0* 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
. .
0.0
no
(27)
1.1
3.3
?.3
f. V
.
1.1
9.6
8.6
9.1
0.0
0.0
0.0
1.2
.
0.6
0*0
0*0
0.0
O* 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.
0.0
aoAC
(271
4 *0
4.0
4.0
,
.
»
•
.
.
•
O.I
0*2
.
*
•
•
.
0* 0
*
0.0
.
0.0
0.0
0.0
0.0
.
0.0
0.0
.
o.o
,
.
9
.
90
021
7 • A
4.2
3.9
2.7
3.1
.
2.9
4.0
A.9
7.3
0.0
0.2
0*9
1* t
*
1 *0
*
.
0* 0
0.0
0.0
0. 0
o.o
0.0
0.0
0.0
0.0
0.0
.
0.0
0.0
.
0.0
0.0
0.0
3
0.0
90 AC
(32)
6*4
3.9
5*1
.
*
•
•
,
•
•
0.1
0.1
.
•
.
•
.
0*0
0.0
1
0.0
0.0
0.0
o.o
,
o.o
0.0
.
o.o
m
.
^
.
I 10
<43)
tf • 9
4.3
6.7
2.0
1.3
.
2.7
7.0
7.3
7.2
0.2
O.I
0.9
I.I
.
1.0
0.0
.
0* 0
0.0
0* 0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.
0.
O.
0.
0.
^
0.0
I10AC
<43I
fl* 1
2.0
s. t
*
*
*
*
*
*
•
0.3
0.4
*
«
«
»
0.0
0,7
O.O
0.0
0.0
o.o
.
o.«
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
.
.
^
.
122
-------
TABLE 78
GAS CHhOMATOr.HAPHI C ANALYSIS
TEMPFRATURF f 0
(CK-18)
HOT TRANSIENT FTP -ACFTYLCNF X TOTAL HC
20 40 AO 70 no 80AC 90 90*C 110 HO AC
(-7> (41 (IAI (21 > (271 (?7> (32) (32) (43) (431
1972 CHEVROLET IMPALA
AVE
1974 CHEVROLET IMFALA
AVE
1977 HUNOA CIVIC 49 STATE
AVF
1977 FORD LTD 49 STATE
AVE
1977 PLYMOUTH FURY 493
AVE
I97A QUICK VA TUR6OCHARCE
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST V-CALIP
AVE
1976 FORO PINTO CAL 3 MAY
AVE
1976 V* RABBIT CAL PU-INJ
AVE
1979 DOOSC aSPBH CALIF.
AVE
1980 MERCURY PROTOTYPE
AVE
1900 BUICK RESAL PROTOTVP
AVE
OATSUN PROTCTYPE
AVE
6.2
4.0
9.1
7.8
2.6
*
2.7
7.8
0. 3
0.4
0.1
7.4
1.4
.
1.9
4.6
1.4
2.4
2.8
0.3
1.8
m
I.I
0. 0
0.7
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.
.
.
•
.
•
0.0
0.0
.
0.0
4.0
1.8
2.9
2. 1
2.3
.
2.7
7.9
0.4
0.3
•
1.3
2.2
•
1.7
0.6
0.2
•
0* 4
0.9
2.0
•
1.4
0.0
0.0
0. 0
0.0
•
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o
0.0
3.e
f..t
3.2
2.3
2.2
•
2.2
6.7
0.4
0.9
•
1 .9
t . «
.
1 .7
0. 4
0.6
•
0*3
1 *4
1.4
•
i .«
0.0
0.0
0. 6
0.0
•
0.}
0.0
0.0
0.0
0.0
0.0
0.0
0.4
•
0.4
0.0
.
0. 0
0.0
0.0
0.0
0.0
4.9
2.8
3.9
2. A
2.2
1.9
7.7
A. 9
0.4
0.3
•
1 .3
2.1
6.1
3.1
0.0
O.I
•
0* t
0.8
0.7
.
0.8
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
.
o.o
0.0
•
0.0
0.0
0.0
•
0.0
6. 1
2.3
4.7
2. 1
2.0
•
2.0
«.I
1.3
0.6
.
I.A
3.0
1.6
2.1
0.0
0.4
•
0* ?
0.0
0.9
.
0.9
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.3
0.0
O.I
0.0
0.0
0.0
0.0
0.0
•
0.0
9.5
1.6
3.9
2.4
1 .A
.
7.0
9.9
0.8
0.3
•
I.A
0.8
.
1.2
0.0
3.1
*
0.0
2.0
.
1.0
0.0
0.0
0.2
0.0
0. 1
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
O.I
0.0
0.0
0.0
0.0
0.0
•
0.0
4.1
4.4
4.2
B
•
.
•
•
0.3
0.3
•
*
•
*
*
0.0
1.0
•
1.2
1 .1
.
1.1
O.O
o.o
0.0
0.0
0.0
a
.
.
0.0
0.0
0.0
0.2
•
0.2
0.0
•
0.0
•
•
*
•
4.6
4.2
4.4
1.8
1.6
•
1.7
5.8
S.9
9.8
0.3
0.3
•
1.3
1.6
•
1.9
0.9
0.2
•
1.2
0.9
*
0.5
0.0
0.3
0.0
0.0
0.0
0.0
0.1
0. 1
0.0
0.0
0.0
O.I
•
o.t
0.0
•
0.0
0.0
0.0
.
0.0
9.6
3.9
4.8
•
•
.
•
•
•
•
0.3
0.2
•
•
«
•
*
0.2
1.3
•
0.9
1.4
•
1.2
0.0
0.0
0.0
0*0
^
.
*
0.0
0.0
o.o
0.2
•
0.2
0.0
^
0.0
.
•
0
•
7.0
*. 1
9.6
3.1
2.3
•
2.7
9.3
S.4
9.4
0.4
0.2
•
2.9
3.6
.
3.1
1.4
0.7
•
1*0
0.9
1.3
•
0.9
0 0
0.9
0.3
O.O
0.0
0.6
1.0
0.8
0.0
0.0
0.0
0.1
0.3
0.2
0.0
0.0
0.0
0.0
0.0
a
0.0
7.4
3.1
9.2
•
*
•
•
e
•
*
1.9
0.3
1*2
*
•
•
•
1.7
0.8
•
0.8
0.7
1.2
0.9
OA
• V
0.0
0.0
0*0
o.o
o.o
•
.
•
0.0
0.0
0.9
0.0
OoO
0.0
OoO
0.0
0.0
.
^
.
123
-------
01efins--01efin data for the three phases of the FTP are given in
Tables 79-81. The noncatalyst cars had exhaust gas with typical olefin
fractions which varied from 13 to 48%. Except for the 1977 Ford, 1977
(49 State) Plymouth and 1978 VW, the catalyst cars generally produced
much lower olefin levels, particularly in the stabilized phase of testing.
TABLE 79 GAS CHROMA TObBAMHI C ANALYSIS
TEMPCNATUWT f 0
(CH-IH)
1972
1974
1977
1977
1977
I97B
1977
1976
197(1
I97B
1979
I9HO
I9HO
CHt VRf JLC T 1 M PAL A
AVE
CHEVROLET 1MPALA
Avr
HUNUA CIVIC 49 STATE
AVK
fOhD LTD 49 SI ATI
AVt
PLYMOUTH FUMY 495,
AVL
HUICK Vt* IUWHUCHAWGC
Avr
PLYMOUTH FUMY CALIT
Avr
CHrvPOLfT ST rf-CALIt-
AVL
FOHD PIN10 CAL 3 *AY
AVfe
VK M Ann IT CAL ru-INj
DOUGE ASPCN CALIF.
AVt
MEWCUWV PROTUIYPE
AVF
HUICK MFGAL PUUIUTVP
AVE
DAT SUN PHOTOTYPE
AVL
20.4
20. 1
20.3
Id. 4
la.u
19.7
20.1
20.3
2O. S
21.5
20. rt
14.3
1 7.2
IS. 7
12.4
12.4
13.1
12. b
1 7.3
17.2
17.3
10. H
IS. 7
13.2
IS. 4
IS.B
1 7.6
IH.S
23.4
2?. 3
22. V
•
14. O
1 3.6
COLD TRANSIENT FTP - OLCFINS- X
2O 40 60 70
(-7) (4) (161 (21)
19.0
19.3
19.2
16. S
16.3
16.4
2O. 3
22.5
21 .4
21.2
22.2
21.7
IH.b
17.3
la.i
1 1 .6
1 1 .5
1 I.S
in.s
19.4
19.0
IS. 9
i s.e
is.e
20.2
in.s
17. S
20.2
26.0
19.4
22.7
19.0
1 7.5
IX. S
22.9
2S.8
11.8
12.6
IS. 8
17.7
16.7
21 .H
18. H
20.3
21.6
in. &
21.7
23.4
22 .b
23.9
16.0
19.9
13.2
1 1.4
12.3
19.1
19.4
19.2
2O. (J
in. 9
19. S
19.8
19.3
19.3
19. S
2N.S
23.7
26.1
IH.7
Ifl. 7
20. H
14.3
13. H
13.4
24.0
IH.9
2 I.S
26.2
24.7
20.6
2S.B
23.2
19.4
21.3
27.9
24.9
20.4
19. S
1 3.2
IH. 6
17.1
1 1.6
1 !.*>
tit. 6
14.1
IS. 4
17.7
IS. 6
16.7
9.H
2 I.O
ID. 1
9.6
ft.O
n.H
IU.9
IO. y
9.0
9.3
9. a
28.2
13.6
20.9
21 .H
27.H
24. H
24. S
22.8
23.6
27.2
24 .4
25. B
24.1
1H.O
2S.I
22.4
13.2
12.7
9.7
IS. 3
12.5
1 3.7
17.9
IS.H
•
19.2
I9.O
19.1
7.1
B.S
B.3
9.1
H.7
22.4
20. b
7.3
H.I
BY «T
nn
2S.H
10. S
22.6
22.0
22.3
28.4
27.9
2H.2
24.6
24. a
20.9
19. H
20.3
14 .6
14. S
7.S
19.5
13.5
17.3
IS. 7
16. S
•
20.1
IH.I
19.1
9.4
r. i
fl .4
B.3
/. 1
r.i
19.9
19. S
H.H
9.3
80AC 9O
(271 13?)
2O. S 30.7
17.3 14.1
IH.9 22.4
22.5
22.2
. 22.3
. 32.5
29.8
31 .1
22.4 28. R
2S.2 25.8
23. a 27.3
27. H
. 26.1
27.0
10.4 15.6
IS. 9 17.7
19.7 20.4
16.1 14.3
17.9 14.3
16.7 I2.H
16. H 14.7
16. n 13.7
6.9
. 21.6
21.9
21. B
10.7 10.2
0.3 1 1 .2
IO.O IO.7
9.2 V.3
9.2 9.3
16.3 18.7
9. 1
7.1
. n.i
90AC
(.12)
26.1
14.2
20.2
"
•
29.1
24.2
26.6
•
15.9
17.7
19.5
24.4
21.9
12.2
17.4
14. a
9.O
8.6
10.8
9.7
9.2
9.2
17.0
1 7.0
.
1 IO
(43)
26.2
13.8
2O. 0
21 .3
19. H
20. S
33.6
34.7
34.1
27.4
24 .6
26.0
29.1
28. S
28.8
22.5
16.5
19.5
18.3
13.1
It. 7
9.0
16.1
12.6
9.4
24.7
25.3
25.0
1 1 .0
10.4
10.7
9.0
IO.I
9.6
IS. 7
17.5
1 6.6
6.6
8.5
7.5
IIOAC
(4.1)
29.7
e.2
19.0
-
•
29.0
26. a
27.9
20.9
23.4
22.2
18.9
17.3
20. 1
18. B
22.5
IH.I
2O. 3
6.7
a. 3
IO.9
9.3
13.2
13. S
13.4
9.7
IO.6
IO.I
16.7
20.9
18.8
124
-------
TABLE 80
CAS CHROMATOGRAMMIC ANALYSIS
STABILIZED FTP •
TEMPERATURE F
(CM
1972 CHEVROLET 1MPALA
AVt
1974 CHEVROLET IMPALA
AVE
1977 HONDA CIVIC 49 STATC
AVC
1977 FOMD LTD 49 6TATt
AVE
1977 PLYMOUTH FURY 49S
AVF
1978 BUICK Vb TURHOCHARCe
AVt
1977 PLYMOUTH FUMY CALIF
AVC
1978 CHEVROLET ST • -CAL IF
AVE
1978 FOMO PINTO CAL 3 HAY
AVC
1978 V* RABBIT CAL FU-INJ
AVE
1979 OOOGE ASPEN CALIF.
Ave
1980 HEBCUAV PROTOTYPE
AVC
1980 BUICK REGAL PROTOTVP
AVt!
DAT SON PROTOTYPE
AVC
0
-18)
23.1
B.9
16.O
20.9
21.9
,
21.4
26. O
27.6
27.8
I7.b
16.1
16.0
16.9
3O. B
24.6
,
27.7
3.6
4.1
3.6
3.2
3. 1
4.5
5.5
3.8
I7.J
15.9
12.3
21.1
32.4
26.7
4.7
.
•
.
.
•
4.O
5.5
.
4.7
2O
t-rt
18. 1
23.0
20.6
16.9
25.8
f
21.3
27.2
25.9
16.8
16.2
#
16.5
2J.O
27.9
*
3.5
2.4
3.0
2.5
*
2.8
7.7
16. 5
7.9
4.0
5.9
7*4
2.6
1.8
2.1
a. 7
3.0
4.3
4.O
3.7
.
3.9
40
(4)
14.3
32.0
23.1
22.2
21.7
,
21.9
34.6
42.1
12.1
18.2
f
15. 1
14.8
22.1
f
18.5
3.4
I. 5
2.6
3.9
7.0
8.7
6.4
2.9
4.7
9.1
2.2
.
2.2
13.2
.
13.2
3.0
3.2
I.I
2. a
- OLE FINS- X HY HT
60
1 16)
23.1
la. 6
20.9
34.5
21.8
16.9
24.4
48.4
47.2
16. a
It. 3
.
16.0
l*.8
13.7
Ih. 1
• 14.2
4.7
3.9
4.3
9.6
6.4
3.3
la.i
8.4
11.7
a.o
1.2
.
1.2
0.0
.
0.0
1.9
3.5
.
2.7
70
(21)
32.1
11.4
21.7
21.6
20.1
.
20.9
4a.o
47.7
14.8
18.9
.
16.6
19.7
22.7
13.2
18. a
8.1
3.2
5.6
O.O
•
5.9
5.6
12.6
11.4
12.0
4.7
4.0
I.I
2.5
0.0
0.0
0.0
2.8
2.4
.
2.6
80
1271
22.3.
8.0
15.2
23.8
22.3
.
23.1
49.1
46.0
16.8
17.8
.
17.3
14.6
16.3
.
15.4
3.0
1 .4
5.1
5.4
14.8
13.8
14.3
4.1
0.6
1.9
1.3
0.9
2.2
1.6
1.6
4.6
.
3.1
80AC
<27)
17.4
16.4
16.9
.
.
.
•
.
22.2
22.9
.
22.6
.
.
.
4.1
a. 6
*
6. a
10.7
a. 8
2.8
.
a.i
3.0
.
3.O
O.O
.
0.0
a
.
.
.
9O
(32)
32.9
17.0
24.9
22.1
23.0
.
22. a
47.8
47.6
47.7
19.3
16.7
.
18.0
IS. 3
16.0
.
15.7
5.2
2.8
•
4.2
4.2
2.5
2.6
2.7
16.7
22. O
19.3
4.1
3.7
4.9
.
4.9
3.4
.
3.4
1.0
2.8
.
1.9
9OAC
(32)
28.1
15.4
21.7
.
•
.
•
•
25.4
24.6
.
25.0
.
.
.
*
4.6
10.6
•
4.9
6.5
3.0
2.5
.
2.7
2.8
9.8
.
9.B
2.1
.
2.1
^
.
.
.
110 IIOAC
(43)
32.8
15.3
24 .O
14.4
25.1
.
19*8
45 .6
46.3
45.9
27.2
23.9
.
25.6
31.4
27.4
.
29.4
5.2
2.2
2.6
6.9
3.6
7.4
32.9
24.4
28.7
a.i
4.8
4.1
3.4
3.8
2.0
2.5
2.3
2.0
4.2
*
3*1
(43)
32.7
e.e
20*7
.
•
.
9>
*
28.0
26.6
.
27.3
.
*
*
*
•
5.2
31.5
11.8
10.9
1 O* 1
13.4
13*2
13*3
3.3
1.7
4.5
•
.
•
3.9
3.9
3.8
8.2
6.0
4.2
9.0
6.6
^
.
.
.
125
-------
TABLE 81
GAS CHROMATOGRAPHIC ANALYSIS
TEMPERATURE F O
HOT TRANSIENT FTP -OLFFINS- « OV DT
70 *0 60 70 80 80AC 9O 9OAC 110 I1OAC
<-r» I4> (161 (2I» (27> (27> (321 (32> («3> (43)
1972 CHEVROLET IMPALA
1474 CHEVROLET IMPALA
1977 HONDA CIVIC 4« STATE
AVt
1977 FONO LTD 49 STATE
1977 PLYMOUTH FURY 49S
I97S QUICK V6 TURBOCHARGE
1977 PLYMOUTH FURY CALIF
1978 CHEVROLET ST K-CALIF
AVE
I97B FORD PINTO CAL 3 KAY
AVC
I97B VW RABBIT CAL FU-INJ
l*7» OOOOe «*»CM CALIF
I98O MERCURY PROTOTYPE
198O BUICK REGAL PHOTOTYP
J
OAT SUN PROTOTYPE
A
AVE
A
AVE
STATE
AVt
ATt
AVE
Y 49S
AVE
MARGE
AVE
.ALIF
AVF
•CALIF
AVE
AVE
•U-INJ
AVE
.IF.
AVE
fPE
AVE
1TOTYP
AVE
tee
AVE
26.6
16.6
21.6
22.0
28.4
•
26.2
39.1
38.2
38.7
27.4
20.7 .
20.1
2I.O
27.2
22.8
•
26.0
16.5
16. ft
10. ft
14.5
1.0
11.2
•
e.s
9.fl
e.s
9.1
9.2
5.4
7.J
17.3
23.4
20. 3
7.3
7.3
7.3
•
•
*
•
•
-
6.0
4.9
.
s.»
17.9
M.I
13.0
20.1
19.2
•
19.6
41.3
4O.I
40.7
21.7
ia.2
.
20. O
23.2
27.6
.
Z&.4
15.6
9.2
.
12.4
10.3
11.6
•
IO.9
9.7
IO.2
IB. 2
•
13.1
16.9
15.2
16.1
2.9
It. 6
7.2
IO.O
7. a
8.9
15.1
12.5
13.8
3.S
4.8
.
4.1
17.3
12.0
14.7
20.8
2O. 6
.
20.7
37.7
38.5
38.1
19.0
22.1
.
2O. 6
18.7
26.1
.
22.4
14.0
7.9
.
II .O
12.5
13.5
*
13.0
4.8
6.1
Ib.l
.
1 1.4
16.8
15.9
16.4
9.3
11.8
10.5
11.3
.
11.3
14.4
•
14.4
4.9
4.5
4.8
4.8
25.6
13.7
19.7
22.9
20.8
19. I
21.0
36.6
56.1
35.9
21.7
21.6
•
21.6
17.7
17.3
32.7
22.6
12.3
12.5
•
12.4
1 1.2
12.9
•
I2«O
2*9
16.7
16. O
16.3
8.1
9.6
8.9
7.9
•
7.9
9.8
.
9.8
3.2
3.8
.
3.5
31.3
11.3
21.3
21.0
18.3
.
19.7
35.4
32.7
34.0
21.4
22.5
.
22.O
22.3
21.6
18.6
20.8
11.6
I2.O
.
II. 8
9.7
13.1
•
11.4
IO*3
•
18.3
13.9
16.1
4.7
B.I
6.4
11.3
a. 3
9.8
11.7
10.9
11.3
2.2
4.0
•
3.1
28.2
9.1
18.7
18.7
17.3
*
IB.O
33.4
35.3
34.4
21.6
23.1
*
22.3
19.3
11.4
•>
15.4
• 9.1
13.3
•
11.2
10.3
14.7
•
iz*&
*
11.3
IS. 5
14.9
6.4
6.2
6.3
a. 3
7.7
a.o
6.5
7.2
6.8
2.9
3.7
•
3.3
23.8
17.1
20.4
—
*
«
•
•
•
•
24.2
21.0
.
22.6
•
.
•
•
10.9
12.1
.
11. 5
12.4
13.7
*
13.0
•
•
*
•
5.1
7.2
6.2
10.5
•
10.5
7.6
•
7.6
•
•
.
•
28 .4
17.7
23.0
18.5
17.3
•
17.9
34.0
35.5
34.7
23.1
23.0
•
23.1
20.4
2O.9
•
20.7
13.7
13.0
*
13.4
15.5
8.?
•
8.2
4.4
2O. 6
22.9
21.8
5.3
6.1
5.7
8.9
•
8.9
7.2
.
7.2
2.2
2.8
*
2. a
27.5
14.7
21.1
•
•
•
•
m
m
•
23.6
23.5
*
23.5
•
•
•
•
12.6
11.3
•
11.9
16.8
16.1
.
16.5
9.6
•
•
*
*
8.3
7.3
7.8
9.7
.
9.7
6.0
•
6.O
•
•
•
•
30.1
16.1
23.1
19.7
18.9
.
19.3
32.6
33.1
32.8
26.3
23.4
•
24.9
24.9
26.9
.
25.9
15.7
12.2
•
13.9
13.8
17.5
•
15.6
7.0
•
25.5
25.3
25.4
8.O
7.5
7.T
8.7
12.9
IO.8
12.8
a. 2
IO.S
4.T
3.6
*
4.2
29.3
12.7
21.0
•
•
•
•
•
•)
•
23.0
26.7
•
24.8
•
•
•
•
16.3
14.3
•
15.3
12.4
14.2
16. B
14.5
1 O*3
12.2
11.3
7.6
•
•
•
T.2
7.O
7.1
a. 7
IO.6
9.6
13.9
1 6.*
IS.I
—
•
•
•
126
-------
Aromatics—Table 82 lists the percent aromatics in the exhaust
hydrocarbons for the cold transient phase of the FTP.
TABLt- 82
CHKUMAILH.HAPHIC ANALYSIS
TtMPIkATUWF. F 0
(CX-IM)
1972
1974
1977
1977
1977
1978
1977
1978
1978
1978
1979
1980
1980
CHF.VHOLCT IMPALA
AVE
CHtVHOLET IMPALA
AVE
HUNOA CIVIC 49 STATE
AVE
FOWL) LTD 49 STATE
AVL
PLYMOUTH FUKY 49S
AVL
BUICK V6 TURBOCHAHGE
AVE
PLYMOUTH t-URY CALIF
AVE
CHEVROLET ST H-CALIF
AVE
FOMD PINIO CAL 3 KAY
AVE
VV RAPUIT CAL FU-INJ
AVF
OOOCC ASPCH CALIF.
AVt
MERCURY PROTOTYPE
AVE
BUICK REGAL PRU1OTVP
AVE
OAT SUN PHOTOTYPE
AVE
11.0
10.9
10.9
13.4
9.7
1 1.5
Ib.l
16.6
14.4
1 J.I
13.9
I3.»
17.0
l?.9
.
14.9
1 7.7
17.1
17.0
17. J
16.4
IX. T
m
14.0
11.9
13.4
12.7
16.5
Ib.l
13.0
14.9
21.5
2O. 6
21.0
16.1
16.2
16.1
.
.
•
.
.
•
17.0
15.7
.
16.3
CULO TRANSIENT FTP - AUOMAT ICS-
20 40 60 70
(-7) (4) 1 16) (21)
14.7
16.7
15.2
11.2
12.5
1 1.9
16.1
Ib.B
13.5
13.5
.
1 3.5
17.9
10.7
.
1 1.8
20.0
16.9
.
18.5
IS. 3
13.6
,
14.4
14.7
lb.0
14.9
14.5
13.4
.
1 3.9
21.7
18.6
20.2
fj.O
17.2
16.1
16.1
17.8
IA.9
20.2
19.4
19.8
17.1
16.6
.
16.9
21.7
19.7
20.7
14. B
11.6
1 J.2
1 r.l
16.6
lb.9
16.3
II. J
.
13.3
12.1
12.6
.
12.3
in. 9
17.3
.
Id. 1
16.6
14.3
.
IS. 4
11.3
15.4
1 J.3
I3.!>
13.1
.
13.3
21.1
18.2
19.7
15.8
Ib.l
15.5
16.*
.
15.8
16. d
•
is. a
19.1
19.1
17.7
18.6
10. 1
2. 1.?
1 9.6
Ib.l
16.9
Hl.B
IA.9
74.9
2 l.b
IA.4
19. .»
.
|7.n
27.0
I9.O
27.9
23.0
24.0
27.1
.
23.1
ft.it
16.2
.
18.7
20.2
21.6
2O. 9
21.2
72.0
.
21.6
13.7
25.0
19.3
24.0
24.4
24.2
20.0
.
to. o
13.5
.
13.6
24.2
24.6
.
24.4
15.1
25.!-
20. .1
17.2
II .»
14.3
24.2
76.2
76.2
18.7
19.4
.
19.0
18.0
23.0
21.3
20. B
23.9
23.1
.
23. 5
21. A
19.1
.
2O. 3
28.1
21.7
24.9
21. &
19.5
.
20.5
21.4
24. B
23.1
20.1
25.0
22.6
11.7
12.1
11.9
26.4
25.3
25 .a
39.4
25.7
.
32.6
x UY «r
eo
(27)
7.8
22.7
16.9
1 7.9
16.9
23.6
23.2
23.4
18.7
19.7
.
19.2
19.2
23.9
.
21.6
23.1
22.9
.
23.0
21.0
16.4
.
18.7
19.2
20. 1
19.6
22.4
21. !S
.
21.9
22.5
24.1
23.3
18.6
26.9
22.7
12.9
1 J.7
13.3
24.7
23.6
24.2
26.3
26.7
.
26. O
aoAc
(27)
23.8
24.9
•
21. O
Id. 5
.
19.8
.
.
.
•
24.4
21.5
.
23.0
la. 4
18.5
.
ID. 4
21.4
21.3
21.3
21. O
20.6
.
20.8
.
.
•
22.0
25.9
23.9
14.4
.
14.4
25.7
.
26.7
.
.
.
•
90
(32)
15.3
29.5
22.4
17. 1
18.0
17.6
20.4
24.3
22.4
18.6
21.0
•
19.7
19.5
20.2
.
19.9
15.2
22.3
.
18.8
15.9
15.2
.
15.2
22.6
21.3
22.0
18.0
19.7
13.5
17.1
21.3
26.1
23.7
24.6
22.4
23.5
13.7
.
13.7
27.5
*
22.5
27.8
32.9
^
30.4
90AC
(32)
28.4
23.6
•
19. O
17.4
.
18.2
.
.
.
•
16.2
21.7
.
19.0
18.4
16.8
.
17.6
25.5
22.1
23.8
2O. 6
18.9
.
19.7
.
.
•
19.0
19.9
19. 9
17. O
p
17.0
27.2
.
27.2
.
^
•
no IIOAC
(43) (43)
17. 1
21.7
19.4
17.7
17.7
17.7
22.0
20.5
21.2
16.8
19.1
.
18.9
IB.B
20.6
.
19.7
IS. a
19.3
.
17.6
15.8
20.7
.
18.3
23.3
21.4
22.3
25.8
18.1
.
22.0
23.6
24. O
23.8
21.4
22.7
22. O
19.3
20.8
20.1
27.0
24.8
25.9
25.9
25.6
a
25.8
17.0
23.1
20. O
•
•
21.0
19.8
.
20.4
.
.
.
•
20.9
17.2
e
19.1
18.2
19.8
18.2
18.7
22.0
23. O
22.5
18.7
21.3
20.5
20.2
.
.
•
21.9
2O. 7
21. J
19.6
18.4
19. O
26.5
23.8
25.2
^
^
•
127
-------
Table 83, which lists the aromatics for the stabilized phase of the
FTP, shows that the aromatics may be selectively destroyed by catalysts
where very low aromatic concentrations were obtained. However, this was
not true for all catalyst systems under all conditions.
l«t)LL 83
GAS CHKfMAfOOHAMHIC ANALYSIS
TEMPLHAIUnt F 0
ICX -IB)
1972
1974
1977
1977
1977
1978
1977
1978
1978
1978
I97»
1980
19*0
CHEVNQLLT IMHALA
AVC
CHI VKOLtT IMPALA
AVU
MONO* CIVIC «'> M»TC
AVt
FOI'U LTD 49 STATt
AVF:
PLYMOUTH FUMY 49R
AVE
BUICK Vb TURBOCHAUGE
AVE
PLYMOUTH FURY CALIF
AVF
CHEVROLET ST M-CALIF
AVt
FORD PINTO CAL 3 KAY
AVE
V* RABBIT CAL FU-INJ
AVt
DOOM ASPEN CALIF.
AVC
HEHCURV PHOTOTYPE
AVE
BUICK HE SAL PROTOTVP
AVE
DATSUN PROTOTYPE
AVE
2V. 7
2b.9
27. M
2^.2
2 /.9
.
2t,.b
14.3
Ih.O
14.7
21.5
2 J.I
21.1
21.9
14.4
14. b
^
14. b
9.0
7.6
lb.8
1 I.I
21.7
Ib.b
m
IH.b
H.4
0.4
8.4
9.B
14.2
I4.V
17.9
17.4
17.0
17.2
b.b
8.2
b.9
.
—
•
f
.
•
2.5
2.9
.
2.7
SIAblLIZED FTP
20 40
(-7) (41
31.7
2U.3
30 .O
IV. 9
24.4
.
22.2
14.4
13.8
14.1
Ib.fc
20.9
.
IH.4
i i.o
14.2
m
13.0
11.3
b.O
.
a.i
12.6
4.6
m
8.6
3.2
6.0
4.6
5.3
1 b.2
1 O.2
10.1
8.5
9.3
7.5
4.6
6.1
12.5
8.1
10.3
4.O
6.2
5.1
5.1
3.5
.
4.3
36 a
10. b
27.11
lb.3
Ib.H
.
I0.«,
IO.7
lb.3
13.0
17.2
22.6
.
19.')
1 1 .1
14. b
.
12.0
1O. 2
14.6
.
12.4
14.3
1 I.I
t
17.7
J.O
J.J
3.2
b.2
1 1 . 1
8.2
15.4
9.6
12.5
4.4
5.U
4.7
4.8
,
4.8
13.4
.
13.4
2.3
1.8
32.2
12.1
- AIIOMAT I
bO
( It.)
21.3
J3.O
27. 1
!«,.->
IX. 1
20.0
IM. J
I3.S.
18. 1
Ib.H
19.4
27.1
.
23.2
1 7. b
17.0
20. b
IH.4
7.H
3.7
.
b. 7
13. b
b.O
t
9.H
8. 7
b. I
6.9
4.7
.
8.2
14.4
11.3
4.3
b.9
b.b
3.5
,
3.5
7.3
.
2.3
3.6
8.7
.
b.2
ic:;- x HV •!
tO 80 80AC
(21) (27) 177)
20.1
33. 1
26.6
17.7
16.5
.
It .9
17.5
16. O
17.1
24.4
25.9
.
25.2
16.6
23.1
13.3
17.7
11.6
14.6
.
13.1
25.0
12.1
.
18.5
H.4
b.2
6.8
4.0
.
21.2
21.5
21.3
18.8
ft. 5
12.2
9.5
A.f>
7.6
5.2
3.1
4.1
9.O
3.H
.
6.4
17. V 26.1
2b.9 27.3
2I.<> 27.7
lb.7
10. b
* •
17.4
In. 3 .
1 7.b .
17.9
lb.3 23.0
23. i 23.8
' . .
19.9 2J.4
11.7 .
14.9 .
. .
13.3 .
4.2 4.4
4.O 23.6
. .
4.1 14.0
17.7 6.6
6.7 b.6
t ,
9.7 7.1
4.8 7.0
4.2 2.7
4.5 2.4
b.O 6.8
.
18.1 .
22.0 .
20.0 .
5.7 18.1
6.1 5.5
5.9 II. 8
3.5 14.0
b.4 .
4.9 14. O
3.5 I.I
7.4 .
5.4 I.I
5.3 .
6.8 .
. .
b.l .
90
(32)
19. O
35.0
27.0
18.4
19.7
.
I9.O
lb.2
17.5
16.9
23.6
26.9
.
25.2
11.7
14.6
.
13.2
2.7
4.8
•
3.7
3.1
12.0
.
12. O
4.0
5.5
4.7
7.3
2.1
21.3
24.4
22.8
6.0
5.2
5.6
5.0
.
5.0
1.6
.
1.6
6.8
5.2
.
6.0
90AC
(32)
21.1
32.8
76.9
.
.
•
•
.
•
•
22.5
23.2
•
22.9
.
.
•
•
3.6
5.4
.
4.5
13.1
8.0
*
10.5
3.8
4.6
4.2
4.4
1 .8
.
•
16.0
5.9
10.9
4.4
.
4.4
2.0
.
2.0
.
.
.
•
110 II OAC
(43) (43)
17.5
25.1
21.3
24.3
19.4
.
21.9
17.3
16.4
16.8
20.3
23.7
•
22.0
20. O
20.2
•
2O. 1
4.5
8.0
.
6.3
6.9
14.2
.
10.5
5.4
1.4
3.4
5.5
9. '3
7.4
2O. 3
23.1
21.7
6.T
IO.5
a. 6
3.9
6.9
5.4
8.6
3.5
6.1
7.6
9.2
*
8.4
18.9
22.0
20.5
.
.
.
•
.
.
•
19.9
21.2
*
20.5
.
.
•
•
5.5
6.6
.
6.0
8.O
14.1
13.9
12.0
8.5
4.9
6.7
4.8
3. 7
b.S
4.7
.
•
12.1
7.9
IO.O
4.8
3.1
3.9
13. a
12.4
13.1
.
.
.
•
128
-------
The hot transient phase data given in Table 84 show the effect of
starting and warm up. The fraction of aromatics present for the noncatalyst
cars was reasonably comparable to data obtained during the stabilized
phase. The catalyst cars had aromatics fractions intermediate between
those levels found in the cold transient and the stabilized phases.
IAHLF 84
TEMPtMATUttfc f
7 PLYMOUTH FUKY 49S
AVC
1978 BUICK V6 TURBOC MARGE
AVE
1977 PLYMOUTH FUHY CALIt-
AVt
1978 CHEVRULCT ST W~~CALI^
AVt
197a FOHD PINTO CAL 3 WAY
AVt
1978 Vtf HAttblU CAL KU-INJ
AVL
1979 OOOCC ASPEN CAL IP.
AVC
1980 MERCUMV PHOTOTYPE
AVC
I960 BUICK HE CAL PROIO1YP
AVt
OAT SUN PROTOTYPE
AVF
0
1 (-!«>
Iti.H
IU.B
17.3
12.9
14. t
14.4
1 5. 1
14. U
14.6
16.2
15.7
IS.'j
14.1
14. J
^
14.2
12.2
I6.S
17.6
IS.4
H.4
9. f
m
9.0
10.3
6.3
B.3
6.7
8.4
5.7
6.9
16.3
1C. 4
16. J
8.U
6.6
7.7
.
.
•
.
.
•
11.6
14.6
«
13.1
CAS CH&UMATflCjttAI
JtllC ANALYSIS
HOT TRANSILNT f 1C -AUOMATILS- *
20 40 60 70
(-71 (4) IK.) <2II
27.1
31.9
29.5
15.2
IT..3
14.3
14.3
14.3
14.7
16.0
.
15.3
14.5
13.8
,
14.2
11.7
16.0
.
13.9
11.9
6.6
.
9.2
6.6
5.B
4.8
11.4
M.I
14.3
12. 5
13. 5
1.4
0.5
4.9
13.1
1 1.1
12.1
14.8
12.5
13.7
7.5
7.9
.
7.7
24.2
34.8
29. 'J
I.I.C.
IJ.I.
14.0
ij. a
13.9
13. 0
13. H
.
13.4
22.4
14.1
.
IH.2
B.3
21. 5
.
14.9
13.1
B.S
.
10.8
4 ..1
5.0
4.6
U.A
6.9
17.3
14.1
15.7
8.3
9.4
B.O
9.9
.
9.9
IO.4
.
IO.4
S.7
9.O
6.6
7. I
tr,.<,
.10.6
24. 1,
20. <
1 /.'o
lls.lt
1 **. i'
10. 0
I-..O
19.6
.
1 7.3
IV. 1
IB. A
15. O
1 7.6
1 1.2
12.3
.
11.7
26.4
111. 1
.
22.3
6. 3
6. ft
,,.2
7.0
U. 9
22.0
15.9
1 1.2
14.8
13.0
18. B
.
IB.B
17. 1
.
17.1
1 1.0
IO.3
.
IO.6
lo. r
2B.I
22.4
21 .5
"•"
la. 7
2O .9
19. a
14.9
18.6
.
16.8
17.3
2O .O
23.2
20.4
13.1
II .U
.
12.4
15.5
15.2
«
15.4
7.6
7. II
7.3
M.2
20.5
25.1
22. A
11.5
13.7
17.6
14.9
13.5
14.2
17.3
14.2
15.7
19.9
9.O
,
14.5
RY KT
80
(27)
16. H
21.. J
21.5
16.5
15.0
20.4
iO.3
20.4
14.9
15.9
»
15.4
16.9
21.4
„
19.2
IO.3
17.1
»
13.7
14.1
14.6
.
14.4
9.1
7.3
IO.3
20.0
23.9
22.0
13.3
14. B
14.1
22.2
17.7
19.9
12.1
13.3
12.7
12.3
12.9
.
12.6
(271
17.2
27.9
22.6
•
•
.
.
•
16.8
17. O
.
16.9
.
.
•
•
ii. a
12.3
»
12.1
15.4
13. a
.
14.6
10.5
9.6
6.9
a. 4
.
.
•
11.4
14. O
12.7
15.9
.
15.9
14.8
«
14.8
9
.
m
•
9O
(32)
14. B
2B.6
21.7
1 4. 6
15.7
15.1
19.1
19.9
19.5
15. B
16.3
.
16.1
15.1
18.3
.
16.7
8.5
12.9
»
10.7
15.7
48.0
.
4B.O
12.3
9.5
5.3
3.4
5.1
20.9
23.5
22.2
12.9
14.1
13.5
.14.1
.
14. 1
10.4
.
10.4
14.5
10.7
.
12.6
9OAC
(32)
IB. 6
31 .5
25.0
•
•
.
.
.
22.0
17.6
.
19.8
.
.
.
•
1O.O
13.4
.
11.7
11.3
17.6
.
14.5
7.1
8.1
6.0
6.9
—
.
•
14.4
15.2
14.8
12.6
.
12.6
16.1
.
16.1
.
.
a
•
110 IIOAC
(431 (43)
15. B
2O. 5
18.2
14.9
15. 1
15. O
19.6
19.9
19.8
16.1
I8.O
.
17.0
18.7
23.0
.
20.8
9.2
12.7
.
II. 0
11.9
17.1
.
14.5
9.7
9.5
7 6
10.0
B.B
21.7
23. O
22.4
14.6
16.6
15.6
18.2
14.2
16.2
18.0
16.1
17.1
13. O
15.1
a
14.0
16.2
IB. 1
1 7.2
•
•
.
.
•
14.9
16.6
.
15.7
.
.
.
•
11. a
12.2
.
12.0
14.1
15.4
14.6
14.7
1 2*6
I3.O
12. a
8.5
7.3
8.6
B
.
•
16. &
15.9
16.2
13.1
19.9
16.5
20.2
2O.4
20.3
.
.
0
•
129
-------
Benzene—Recently benzene has been of concern since it has been
shown to be a carcinogen. The fuels used in this study had benzene
concentrations of 0.3% and 0.2% for the summer and winter fuels, respectively.
Tables 85, 86 and 87 show that the exhaust gases from the various phases
of the FTP had a much higher relative concentration of benzene than the
original fuel.
T AHLE 85
GAS CHKfpMATOr.ilAPHIC ANALYSIS
TFMPPIMTUPE " 0
(C>( -18 )
1977
1974
1977
1977
1977
1978
1977
l«7«
1978
197fl
1979
ICHO
19«0
CHFVUOUET IMPALA
AVF
CHTVROLFT IMPALA
AV(.
HONDA CIVIC 41 STATE
AVf
FOnO I. TO 49 STAT<-
«vr
PLYMOUTH FUMY 49S
AVE
hUICK V*> TUMOOT.H ARftE
AVF
PLYMOUTH F11HY CALIF
AV E
CHFVROLFT ST H-CALIF
Ave
FORO PINTO CAL 1 KAY
AVF
V» MAHBIT CAL "U-INJ
AVF
nnoGF ASPCN CALIF.
AVE
MERCURY PROTOTYPE
AVE
P'JICK RFGAL PROTOTYP
AVF
PATSUN PROTOTYPE
AVe
2. 3
2.6
7.5
7.8
2. 7
.
7.7
2.7
2.4
2.e
.1.5
?. 2
.1.4
1. 7
1 .9
I.e.
I .8
1.9
1.4
1.9
2.9
.
1 . 1
2.0
1.5
7.5
2.5
2.J
2.4
3.2
T..1
J.i
3.0
3.0
1.0
.
.
•
.
.
•
3. 1
7.9
.
.1.0
COLD TRAM1IFNT TT(> - MFN^ENF.. * TOTAL HC
20 40 AO 70 80 80AC
(-7) (4) (I'.l (71) (77) (77)
7.9
7.6
7.7
?.4
2.5
.
2.5
2. A
2.4
7.5
3.3
1. 5
3.4
7.0
1.9
U9
i .r
1.7
.
1 .7
1. 1
.
2. 1
2.0.
'.0
2.5
2.4
.
2.4
3.5
3.1
3.3
2.9
3.5
3.2
7.. 7
3.0
2.8
3.1
3.2
3.1
3.2
2. A
.
2.9
? • 7
3. i
2.9
3.0
1.0
.
3. 1
7.4
1 .5
2. 0
1.8
-1 .«
2. 4
2. 1
7. 3
P.O
1 . 7
.
1 .1
1. fi
3.0
2..1
2.4
7.4
7.4
a. 4
.
2.4
J.«
7.0
3.7
3. 1
3.3
3.2
2.6
.
'•'•
1.0
.
1.0
2.
-------
T ABL T
TEMPERATURE F 0
(CH-lfl)
1972
1974
1077
1977
1977
1978
1977
1478
1978
1978
....
1980
ie«o
CMFVROLET IMPALA
AVE
CHEVROLFT IMPALA
AV6
HONDA CIVIC 49 3T ATF
AVE
FORD UTO 49 STATE
AVE
PLYMOUTH FURY 495
AVE
RUICK V6 TURBUCHARGE
AVE
PLYMOUTH FURY CALIF
AVE
CHEVROLFT ST B-CALIF
AVE
FORO PINTO CAL 3 HAY
AVE
VII RABBIT CAL FU-INJ
AVE
0004E AfMN CALIF.
AVC
MERCURY PROTOTYPE
AVE
8U1CK REGAL PAOTOTVP
AVC
OATSUN PROTOTYPE
AVE
3.7
l.V
2. 8
2.2
2.3
f
2.2
7.6
2.7
7.1
6.2
6. ft
2.6
3.X
*
2.0
1.0
0.7
0.8
0.9
0.8
0.9
t
0.8
1.9
1.3
1.7
1.3
3.9
4.0
3.1
4.6
I.I
t .1
I.I
.
•
.
.
•
0.7
0.6
•
0.6
86
C.AS CHKOMATnr.l'APHIC ANALYSIS
STAHILI/FO FTC -
20 40
(-71 ( 4 )
3.1
1. 7
2.1
,
1 .9
2. A
8.4
6.2
*
7* 3
2.9
2.9
.
2.9
0.8
0.6
,
0.7
0.8
0.0
^
0.4
1.1
1.0
I.I
1.2
4.9
.
3.0
3*4
1*4
1 .9
2.1
l.S
1.8
0.7
1.3
1.1
1.3
0.7
.
1.0
4.4
Z.I
2.1
,
?. 1
i.e.
4,4
A.H
6.9
4 ii A
2.5
«
2.5
0.9
O.I!
,
0.7
0.6
0.8
.
0.7
1 .1
2.3
1 .7
1. 0
5.3
.
3. 2
i.e
1.8
2. t
1. 8
*
1.8
1. t
«
1 .1
1.2
0.6
2.3
1.4
H=N/FHE, X TOTAL Hf.
OO 70 (JO
( 16) (21 I (27)
3.8
2.7
2.7
2.1
7. ft
».<*
A. 7
9.1
H.'t
.1.1
4.1
3. ft
1 .•»
1.3
.
1.4
1.2
2.0
.
1.6
0.7
3.2
2.0
1.5
1.6
.
1.6
4.4
2.8
2.7
1.2
.
1.2
1.2
.
1.2
1.9
2.9
.
2.4
2.1
1. 1
2.3
.
7. n
6.0
10.1
10.4
10.4
5.2
3.1
4.1
2.3
1.6
.
2.0
1. 3
2.4
,
1.9
1.0
1.2
1. 1
1.3
1.7
.
l.S
5*6
2**l
2. 2
2.2
1.6
1.9
1.1
I.I
1.1
1. 1
1.6
*
1.4
?. 1
3. t
3.0
.
.1.1
6.2
A.I
M.I
'''°
V • (1
1.9
.
1.5
.1 .'
1.9
.
1.8
1.3
0.9
.
I.I
0.8
0.9
0.9
7.4
1.8
.
2.1
6. 3
2.0
2.1
1.2
2.4
1.8
1.8
4.4
3.1
2.4
2.7
.
2.6
80AC
(27)
2.3
3. 1
2.7
.
.
*
.
0.7
10.9
".
.
•
1 .4
2.1
.
1 .7
2.7
1.8
.
2.2
1.1
0.7
0.9
2.1
1.2
.
1.6
1.7
2*1
2*0
2.1
.
2.1
l.t
*
1.1
^
.
*
*
40
( ir»)
5 • 1
3.4
4.2
2.9
3.2
.
3.1
5.8
6.1
4.0
10.3
9.1
3*0
3.6
.
1.3
1.4
2.0
.
1.7
1.1
3.3
.
.1.3
0.8
1.7
1.2
1.2
1.3
1.1
1.2
6.3
6.1
2.3
2*0
1.6
»
1.6
0.8
,
o.a
2.0
2.7
,
2.4
90AC
( 32)
3.3
3.7
.
•
*
•
V.J
10.3
.
.
•
2.3
2.3
.
2.5
4.5
2.2
.
3.3
1.6
2.4
2.0
1.7
1.2
.
1.5
1.8
2.1
2.3
.
2.3
1.0
,
1.0
^
.
.
.
110 1 1 0 AC
(43) (43)
5.4
3.6
4. S
1 .8
3. 3
•
2.6
5. 3
3.2
5.3
7.3
8.5
3.3
•
3.)
3.3
3.4
.
4.3
0.5
2.9
.
1.7
1.6
0.8
1.2
1.8
2.7
.
2.3
4.3
3.2
4.8
2.7
2* 7
2.1
1.7
1.9
4.0
3.7
3.8
4.7
4.2
.
4.4
5.0
2.0
3.5
.
•
*
.
s. a
6.2
.
.
•
4.3
3.3
.
4.9
2.7
S.9
3.7
4.8
6.6
3.4
S.O
2.8
2.2
2.6
2.5
•
3.1
3.S
2.1
1.6
1.9
8.3
7.9
a.i
s
.
.
.
131
-------
TAJIL6 87 OAS CHII'IMATOOIiAPHl C ANALYSIS
TEMPEftATUPF r 0
(CM-IS)
1972 CHrvROLET IMP At. A
AVE
1974 CHFVROLFT IMPALA
AVC
1977 HONDA CIVIC 49 STATF
AVE
l'*77 FOHH LTD 49 ST AT B
AVB
1977 PLYMOUTH FUKY 495
AVE
1978 BU1CK V6 TUBEOCHAHGP
AVF
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST X-CAL1T
AVE
1978 FORO PINTO C AL 3 MAY
AVE
1978 V«f KAOUIT CAL FU-INJ
AVE
1979 oooee ASPEK CALIF.
*ve
i960 MERCURY PROTOTYPE
AVE
1960 BUICK RFGAL PROTOTYP
AVE
DATSUN PROTOTYPE
AVE
3.2
7.4
2.8
2. 1
2. 1
2.2
4.1
4.0
4.1
7.2
3.6
3.5
6.1
2.7
7.6
^
2.7
1.9
1.9
1.6
1 .8
0.8
1.4
€
1.1
1.7
1.2
1.4
1 .6
1.9
1.1
1.3
4.2
3.9
4.1
2.0
1.7
1.9
^
.
: •
^
.
•
2.3
2.1
.
2.7
HOT TRANSIFHT FTP - nFII7Ffir. X TOTAL HC
70 40 60 70 40
(-71 ( 4) { IIS) (71 ) (7.7)
2.5
1.4
1.1
2.0
2.1
2.1
4.7
3.7
4.0
7.3
3.4
.
6.3
2.3
2.7
.
2.6
1.8
1 .6
.
1.7
1.7
1.4
.
l.A
0.9
1.2
1.0
1.0
3.8
.
2.4
4.0
3.8
1.4
1 .8
l.A
1.6
1.3
1.5
3.1
2.1
2.6
2.0
1.5
.
i.r
2. 1
2.0
2. 1
1 . ')
2.0
1 .9
3. 4
3.5
3.5
5. 7
6.5
.
6. 1
2.3
2. 7
.
a. 5
i .f
2. 1
.
I .n
2. 1
1. 7
.
1 .7
1 . 1
1 . 1
1 . 1
1.3
.1.2
.
2.3
1.3
3.7
2. 7
2. 1
2. 1
1 .8
.
1.6
2.5
.
2.3
1 . 7
1. 1
1 .4
1 .4
3.3
7 .r.
7.9
?.
7.-V
3. 1
1.2
.
3.2
3.!i
J.3
.
1.5
1 .4
1 .6
1 .5
2. 1
1 .2
.
1 .7
3.2
4.4
2.9
3.3
3.1
2.4
.
2.4
4.3
.
4.8
2.3
2.6
.
2.6
3.6
2."
?.•>
7.7
3.2
7.9
4. 9
4.4
4. 7
3. 7
7. 1
.
6. 4
1.2
1.8
1.0
1.1
.1. 1
1.3
.
1. 1
7. ft
7.5
.
1.1
1. 5
1 .4
1.4
2.2
1 .4
.
1 . 8
4.9
5. 4
2.3
1.7
1.1
2.4
3.6
1.0
3.0
5.0
3. 0
2.2
2.4
.
2.3
1.7
7.1
7.7
,".r,
r..r
2.4
4.2
4. I
4.:j
4. 9
'!.?
.
5.b
?. a
2.H
.
f..n
l. 0
3.3
.
1. ?
Z.H
3.0
.
2 .'>
1. 1
1.4
1 .4
.1.7
? .9
.
3.3
5.1
5.0
7.5
3.6
3.1
2.0
2.5
2.3
3.5
4.7
4. 1
2.H
3.6
.
3.?
80AC
(77 )
2.6
3.1
2.-V
.
•
•
f
.
*
6.0
5.1
•
5.6
,
.
»
•
3. a
1.7
.
3.7
i.»
7.1
.
2.->
2.6
I.A
2.1
7.9
2.2
.
2.6
.
•
1.1
3.4
3.2
3.2
.
3.2
5.M
.
5.9
.
.
.
.
90
(32 )
3.5
1.4
3.5
2.4
2.3
2.4
4.1
4.5
4.1
5.4
5.4
.
5.4
?."
1.2
.
1.0
3. 1
3.7
.
1.4
4. 1
7. .0
.
2.0
1 .4
1.6
1 .5
3.7
1.5
i.e.
7. 1
4.9
5.3
5.1
2.8
3.9
3.4
2.6
.
2.«
3.2
.
3.2
1.H
3.3
.
3.7
•<0»C
(321
3.8
3.6
3.4
.
•
•
.
.
•
4.7
5.5
.
5.1
.
.
.
• •
4.3
4. 7
.
4.5
3.3
4.7
.
4.0
4 .4
2.7
3.'.
7.7
1.7
.
2.2
.
•
4.4
4.4
4.4
i.a
.
i.a
4.8
.
4. a
.
.
.
.
110 110AC
(43) (43)
4.4
3.2
3. 8
i.a
2.6
2. 7
J.9
4.0
4.0
4.5
4.8
.
4.7
3. 7
3.7
.
3.7
4.4
3. a
.
5.1
3.0
4.8
.
3.9
3.3
4.4
3.9
2.2
3.3
..
2.7
4.0
3.7
3. 8
4.8
S.I
4.9
2.1
3.3
2.7
3.5
3.7
3.6
3.2
5.6
.
5.4
4.3
2.6
3.4
.
•
•
.
.
•
3.3
4.2
.
3.8
.
.'
.
•
4.8
6.2
.
5.5
3.7
4.2
4.9
4.2
6.9
7.4
7.1
3.7
2.7
3.0
3.1
.
•
6.2
5.7
6.0
2.2
3.1
2.6
6.6
6.1
6.5
t
.
.
.
132
-------
Because of the interest in benzene, its mass emissions (mg/km) are
given in Tables 88-90. The noncatalyst cars in the three phases of the
FTP produced average benzene levels from 17 to 494 mg/km. In the cold
transient phase of the FTP (Table 88) the maximum benzene emissions
occurred at 0°F (-18°C) or 20°F (-7°C). In the stabilized phase, most
of the cars had a maximum at 110°F (43°C), sometimes with their air
conditioners on. In the hot transient phase (Table 90) high levels of
benzene emissions also occurred mainly at high temperatures. The use of
catalysts, however, generally reduced benzene levels.
IAKLE »H
TFMPEHATUWf f 0
fCI <-!«>
1972 CHEVROLET
1974 CHFVHOLET
IMMALA
AVE
IMPALA
AVt
1977 HONUA CIVIC 49 STATE
AVE
1977 FOHO LTD
1977 PLYMOUTH
1978 BUICK V6
4« STATE
AVE
FURY 495
AVt
T UK BOC MARGE
AVE
1977 Pt-VMOUTH FURY CALIF
AVt
1978 CHEVROLET
ST M-CALIF
AVE
1978 FORD PINTO C AL 3 KAY
AVE
1976 VV RABBIT
l»T-» DOD«C A*»
CAL FU-INJ
AVE
CM CALIF.
AVt
2BJ.I
JO2.4
792.B
514. t>
473.1
4V4.0
102,2
793.0
797.9
*4'j.:>
246.3
724.1
23H.b
23?. 5
247. b
24O.O
529.6
392.2
442.9
454.9
13?. 6
132.4
132.5
16%. 7
97.0
131.3
199.5
212.0
254.6
222.1
107.2
102.7
105. O
293.8
211.5
2S2.7
l«*e MCRCURV PROTOTVPC
AVE .
I960 BUICK BE GAL PROTOTYP .
AVE .
OAT SUN PROTOTYPE
AVt
124.1
102.2
.
113. 1
GAS CHHOMATUGRAI'HIC ANALYSIS
COLO THANSIENT
70 40
(-7) 14)
196.0
175.4
IB5.7
519. b
311.1
415. 3
419. ft
202.6
31 1.0
702.4
150.2
176.3
127.7
176.9
152.3
262. B
227. B
24%. 3
66.3
60.2
63.2
48.7
46.4
47.5
109.5
157.4
.
133.4
6B.3
55.7
62.0
193.3
93.9
143.6
I7B.2
2IO.9
194.5
85.5
76.4
BO. 9
68.6
67.6
*
68.1
II 2. a
157. f
135.1
95.0
30H.8
2O 1.9
78.9
246.4
162.7
1 IB.?
110.3
1 14.3
63.4
217.8
I4O.6
148.3
262.0
205.2
43.3
43.2
43.2
25.9
29. B
27.9
72. O
9O.I
BI.O
43.3
36.6
39.9
99.7
142.8
121.2
BB.6
BB.6
63.6
63.6
43.1
44.6
4B.6
45.4
FTP - HtNIENt. M(,/KM
6O TO HO
1 161 1211 1271
80.9
113.3
9/.I
IOt>.4
86. H
101.6
97.9
87.5
87.9
87. /
98.2
ii r. i
107.7
69. H
I5O.7
105.6
IOB.7
102.5
94.3
98.4
33.5
37.2
35.4
24.9
27.5
23.7
40.3
52.0
46. 1
21.1
4O.4
3D. 7
37.1
39.3
38.2
43.3
43.3
36.5
.
36.5
33.6
37.8
.
33.2
77.8
77.6
77.7
91 .5
95.0
93.2
75.9
71 .5
73.7
III .O
116.8
1 13.9
22.0
104.0
66.8
64.3
84.1
69.6
76.9
24.1
53.7
38.9
75.4
24.6
25.0
38. 1
30.9
.
34.5
32.1
37.5
34.8
21.7
62.7
42.2
2O. 1
33.7
26.9
30.8
29.9
30.4
20.9
23.8
.
22.4
29.6
59.4
44 •!>
99.9
66. O
87.9
67.6
75.4
69.0
93.1
91 .3
92.2
67.5
67.9
65.2
63. B
56.7
6O.3
19.7
18.1
18.9
18.7
19.7
19.0
36 .O
20. B
.
28.4
31.2
33.3
32.2
14.8
52.6
33.7
23.2
21.3
22.3
26.1
23.8
25.0
17.5
75.4
.
21 .4
8OAC
(77)
56.3
BB.8
77.5
•
-
120.3
104 .a
1 12.6
.
73.5
71.9
72.7
33.5
27.6
30.5
23.3
23.8
23.6
36.7
21.0
•
28. ft
•
20. a
5O.4
35.6
22.6
.
22.6
27. B
27.8
•
•
•
90
(32>
74.4
62.2
68. 3
67.8
66.6
67.2
57.1
49.2
53.2
99.4
84.9
92.1
37.4
46.7
42. O
33.6
52.4
43.0
25.2
22.2
.
22.2
21 .1
19.7
20.4
IB. 6
17.3
9.4
13.4
28.5
41 .6
35.1
17.2
27 .O
22.1
32.2
»
32.2
25.7
*
25.7
14.4
12.4
•
13.4
90AC
(321
85.5
63.3
74.4
•
•
•
114.8
as. 2
.
101.5
*
•
•
37.5
57.0
47.2
31.6
47.6
39.7
21 .6
27. B
24.7
12.2
15.1
»
13.6
*
•
13.2
28.2
2O. 7
34.1
.
34.1
25.9
*
25.9
•
•
1 10
1431
89.6
67. B
78.7
87.3
73.6
77.9
41 .4
46.0
43.7
en. 4
a.i
48.3
26 .B
32.2
29.5
27.6
63.6
45.6
26.9
35.4
31 .1
3O.7
21.6
26.2
26.8
22.4
.
25.6
40.3
44.9
42.6
20. O
2O .8
20.4
49.9
38.0
43.9
23.0
22. 6
22.7
11.0
I3.O
.
17.0
IIOAC
1431
83.4
41 .9
62.7
.
.
.
•
112.1
117.5
»
114.8
.
.
.
48.9
38.8
43.8
36.3
52.6
66.2
SI. 7
4O.S
23 .8
32.2
15.6
14. O
26.7
18.7
•
•
35.*
36.6
36.1
24.8
30.9
27.9
26.0
21.7
23.9
•
•
133
-------
TABLE 89
CAS CHROMATOGRAPHIC ANALYSIS
STABILIZED FTP - HENZEME. MC/KM
2O 40 6O TO 80 80AC 9O 9OAC 110 11OAC
(-7) (4) lib) (211 (27) (27) (321 132) (43) (43)
TEMPEHATUWE F O
(CM-IS)
1972 CHEVROLET IMPALA
AVC
1974 CHtVBOLCT IMPALA
AVC
1977 HONDA CIVIC 49 STATE
AVE
1977 FOHO LTD 49 STATE
AVt
1977 PLYMOUTH FURY 495
AVE
1978 BUICK V6 TURBOCHAHCE
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST M-CALIF
. AVE
1978 FORD PINTO CAL 3 KAY
AVE
1978 V» RABBIT CAL FU-INJ
AVE
1979 DOD6C ASPEN CALIF.
*ve
I98O MERCURY PHOTOTYPE
AVE
I960 BUICK REGAL PflOTOTYP
AVE
DATSUN PHOTOTYPE
AVE
56.3
27.1
41.7
19.1
17.2
^
IB.I
58.5
63. O
60.7
67.5
62.6
63.2
33.9
24.5
.
29.2
3.5
2.4
3.2
J.O
0.9
0.7
2.3
3.1
2.7
4.5
37.4
31.8
24.6
16.5
38.5
27.5
3.1
3.3
3.2
a
.
•
a
.
•
1.0
1.0
.
1.0
31.8
3H.7
35.3
15.3
18. R
,
17.0
62.5
54.2
58.9
42.9
37.8
40.3
15.7
27.1
.
21.4
2.8
1.6
•
2.2
O. 7
.
0.3
1 .9
2.8
2.3
6.O
30.2
.
18. 1
4.6
2.6
3.6
4.7
3.9
4.3
5.9
3.4
4.7
.0
.3
. 1
.8
.2
.
1.5
24.7
59.1
41.9
28.3
27.D
.
28.0
21.0
1 7.9
19.5
24.2
31.4
2r.e
5.1
13.2
.
9.2
2.9
1.6
•
2.2
0 .4
1.9
3.9
2.9
2.2
26.5
.
14.4
5.1
2.4
3.8
4.2
3.7
3.9
4.3
.
4.3
0.2
,
0.2
1.9
0.9
3.4
2.1
42.9
4B.9
45.9
3O.7
42.4
52.2
41.8
24.2
28.6
26.4
3H.7
37.9
38. 3
9.3
1 1.5
1 1.8
IO. 9
J.O
3.O
•
0.5
6.2
3.4
3.8
5.5
,
4.7
5.0
6.8
5.9
5.9
6.2
6.O
1.7
.
1.7
0.7
,
0.7
3. 1
4.3
.
3.7
56.3
29.0
42.7
35.7
47.6
.
41.6
29.0
27. 1
28.4
48. O
57.9
52.9
2.4
32.1
6.1
13.5
4.4
3.6
•
1.1
1.3
1.2
3. a
4.7
.
4.3
8.3
IO.3
9.3
5.5
5.0
5.2
3.5
2.3
2.9
O.6
0.6
0.6
1.4
1.9
.
1.7
41 .5
29.4
35.4
42.1
39.6
.
40.9
29.4
27.9
28.6
36.1
44.9
4O.5
6.5
6.3
.
6.4
3.2
4.1
•
0.9
1.5
1.2
9.1
5.3
.
7.2
14.7
16.1
15.4
3.6
4.4
4.0
1.6
4.7
3.1
1.4
2.9
2.1
2.8
3.4
.
3.1
30.5
39.3
34.9
.
.
.
•
m
.
•
60.9
79.2
70.1
—
.
.
-
2.7
5.3
•
-
0.8
O.7
0.8
7.5
3.1
.
5.3
—
.
•
3.4
4.5
4.0
3.6
.
3.6
O.6
.
0.6
.
.
.
.
56.0
47.0
51 .5
44.8
43.6
.
44.2
28.6
3O.8
29.7
48.9
36.2
42.6
6.3
9.8
.
8.0
3.0
7.5
•
•
0.8
2.1
1.4
4.3
2.7
1.8
2.9
17.2
30.6
23.9
4.7
3.5
4.1
3.4
.
3.4
0.7
.
0.7
2.4
3.3
.
2.8
58 .9
44.5
51.7
.
.
.
•
%
.
•
105.2
81.3
93.2
^
.
.
•
6.0
5.7
•
*
6 5
1.6
1.3
1.4
3.2
2.O
.
2.6
—
.
*
3.3
5.O
4.1
3.3
m
3.3
O.6
.
0.6
.
.
.
.
75,0
61.2
66.1
21.1
43.8
*
32.4
3b.4
3O.9
33.1
93.4
86.4
89.9
46.0
34.4
.
4O.2
13.?
16.2
*
4.3
2.6
1.1
1.8
3.7
1O.I
.
6.9
32.9
40.3
36.6
7.6
6.0
6.8
2.9
2.7
2.8
3.2
2.4
2.8
6.2
a. 2
.
S.7
91.4
44.6
68.0
.
.
.
•
.
.
•
112.7
121.9
117.3
.
.
.
•
15.3
16.4
•
1 5*8
18.7
1 7.4
10.7.
4.8
7.7
S.I
4.O
8.2
5.7
.
.
•
6.0
e.t
7.»
3.O
1.7
2.3
13.2
II. T
12. a
.
.
.
.
134
-------
OAS CH**O*4A IOG*AI*M| C ANALV&I S
ItMPtMATUNE F O
(C) (-18)
1972 CHEVROLET IMPALA
AVE
1974 CHEVROLET IMPALA
AVE
1977 HONDA CIVIC 49 STATE
Ave
1977 FORD LTD 49 STATE
AVC
1977 PLYMOUTH FURY 49 S
AVC
1978 BUICK V6 TUBHOCHAHOF
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST B-CALIF
AVE
1978 FORD PINTO C AL 3 KAY
AVE
1978 VV RABBIT CAL FU-INJ
AVE
I9T» OOOCC ASPCM CALIF.
AVI
f 4*OO MCMCUHV MUM Ul VMC
AVC
I9BO BUICK REGAL PROTOTVP
AVE
DAT SUN PROTOTYPE
AVE
4H.7
31. O
39.9
34.9
32.5
^
33.7
40.1
39.3
3V. 7
59.6
53.6
61.3
5U.2
31. O
19.0
.
25.0
26.4
157.2
124.8
102.8
4.0
6.2
^
5.1
4.5
3.7
4.1
6.1
7.8
4.0
6.0
13.7
15.7
14.7
5.3
4.7
5.0
*
•
.
.
•
6.1
6.4
.
6.2
HOT TRANSIENt C If - HfHi
20 40 6O
( -7) (4) ( lb>
35.4
18.6
27.0
25.8
34.0
m
29.9
37.1
27.8
32.4
49.8
46.1
.
48.0
18.2
24.9
.
21.6
17.3
9.0
.
13.1
4.3
3.0
a
3.7
3.0
6.1
4.1
19.1
m
11.6
11.0
10.7
10.9
4.5
6.6
5.5
14.5
I 1.0
12.7
10.5
IO.8
10.7
3.9
3.8
.
3.9
34.1
25.6
29.9
34 .O
29.1
,
31.5
23.8
27.4
25. A
47.7
51.7
.
49.7
10.0
18.7
.
14.4
n.5
13.8
0
1 1 .2
4.9
2.3
^
3.6
3.1
3.7
14.7
*
9.2
11.1
IO.7
10.9
6.7
8.8
7.8
16.8
16.8
6.4
.
6.4
3.8
2.6
3.4
3.3
5H.2
39.6
48.9
51.9
50. 1
46.3
49.4
32.5
39.9
36.2
59.9
50.1
.
5U.O
lfc.4
14.4
15.2
15.3
11.9
15. O
.
13.4
22.2
13.9
^
18. 1
2.4
7.0
6.7
•>
6.9
8.9
16.8
12.8
7.1
13.9
10.5
1 1. 1
1 1.1
9.5
.
9.5
6.7
5.6
.
6.1
rfHt, NG/KM
7O 6O
(21) (27)
51.9
34.4
43.2
51.7
58.9
.
95.3
46.1
33 .O
39.6
65.7
72. O
.
68. V
6.?
22.1
14.4
14.2
1 1.7
17.3
.
14.5
9.7
12.1
B
10.9
3.1
8.4
6.6
.
7.5
20.2
22.7
21.5
7. a
11.9
9.9
IO.9
8.9
9.9
IO.4
12.0
11.2
3.8
3.8
.
3.8
47.9
36.9
42.4
69.4
63.5
.
66.4
34.9
31.3
33.1
66.4
78.6
.
72.5
20.2
14. B
.
17.5
.11.5
26.3
.
18. V
13.6
14.2
^
13.9
2.9
15.5
7.5
.
11.5
27.9
25.7
26.8
8.6
12.7
10.7
66.1
16.3
41.2
6.4
8.8
7.6
4.7
6.6
.
5.6
8OAC
50. O
49.2
49.6
,
.
.
•
.
.
•
81.2
86.6
.
83.9
.
.
.
•
18.1
18.9
.
18.5
17.9
15.9
^
16.9
4.9
a.a
ii. a
5.8
.
8.8
B
.
•
11.0
12.5
11.7
11.8
11.8
8.3
.
8.3
^
.
.
•
9O
(32)
62.8
50.1
56.5
66.9
64.0
.
65.4
34.9
33.7
34.3
65.5
66.9
.
66.2
18.9
20.2
.
19.6
18.5
25.8
.
22.1
11.9
7.2
.
7.2
3.8
4.2
9.2
3.3
2.6
5.0
27.5
36.2
31.9
10.9
14.3
12.6
16.3
16.3
5.4
.
5.4
5.6
S.3
.
5.S
9OAC
(J2)
64.7
45.2
55.0
.
.
.
•
.
.
•
97.3
92.2
.
94.8
.
.
.
•
28.6
32.7
.
30.6
2O .6
20.3
9
20.4
7.6
5.3
5.6
4.3
.
5.0
B
.
•
10.0
16.7
13.3
13.4
13.4
a.o
.
a.o
.
.
^
•
t IO
(43)
77.1
71 .9
74.5
90.7
73.2
.
82.0
34.6
36.1
35.3
95.2
102.9
•
99.0
44.3
44.4
.
44.3
77.7
46.9
.
62.3
23.3
26.3
.
24.8
7.5
12.8
10.2
8.0
14.8
.
11.4
42.0
41.4
41.7
17.9
16.3
17.1
22.3
14.1
18.2
19.5
13.9
16.7
13.6
10.3
—
I2.O
I1OAC
(43)
84.6
S3.0
68.8
.
•
.
•
.
.
•
128.1
125.0
.
126.6
.
e
•
•
107.6
67.7
.
87.7
31.6
SO .9
54. 4
45.6
15.3
25.2
20.2
11.6
6.8
12.7
1O.4
„
.
•
24.7
21.9
23.3
13.1
11.6
12.3
23.1
26. «
26.0
.
.
p
•
1.35
-------
FUEL ECONOMY
Fuel economy results were calculated using the carbon balance
method which is based on the total carbon consumed. The fuel economies
obtained by all of the various test procedures are discussed in the
sections that follow. Figure 15 illustrates the fuel economies obtained
with the three phases of the FTP while Figure 16 shows the fuel economies
for the composite FTP plus the other procedures run.
Federal Test Procedure-Cold Transient Phase-Fuel Economy--
Table 91 shows the fuel economy in kilometers per liter (km/1) for
TAULF Ul
f I P (.OLD FKANSII.'MI - fUfi. ECONOMY KM/L
1972
1974
lEMPEHAIUKt f 0
ll.H-lnl
CHtVKOLtT IMPALA 2.1)0
2 .6H
AVF 2.74
CHEVROLET IMPALA 7.4V
2.71
AVE 2 .50
70
l-7>
3.81
3.59
3.70
2.!>l
2.e/
a
2.b8
40
I4>
4.O4
3.04
3.47
4.01
3.41
3.bB
bO
(If,)
4. a 7
4.15
4.4ft
lj.89
4.41
4.24
4.75
70
(21)
5. Ill
4 .60
4. Mb
4.!>?
4.53
.
4.5?
ao
(271
5.12
4.90
5.0O
4.59
4 .96
.
4.77
aoAc
(27>
4.74
4.46
4.69
•
.
•
.
9O
(32)
5.1 r
5.02
5. IO
5.12
5.24
.
6. IB
9OAC
<32I
4.83
4.55
4.68
•
.
.
•
1 10
(43)
5.35
4.79
5. Oft
4.97
5.11
•
5.04
1 IOAC
(431
4.7i
4.40
4.56
•
•
•
1977 HUHDA CIVIC 49 S.JAIC
AVC
1977 FUUO LTD 49 SIAIt
AVE
1977 PLYMOUTH FUPV 49S
AVE
1978 BUICK V6 TUHEIUCHARbf
AVE
I97T PLYMOUTH FUMY CALIF
AVt
1978 CHEVROLET !>T X-CALIF
AVF.
1978 FUHU PINTft CAL 3 WAY
AVC
197H VK HAtiUIT CAL t-U-INJ
AVE
1979 DODGE ASPFN CALIF.
*ve
19*0 MCNcmr P«OTOTYP«
AVF
1980 BUICK UE&AL PMOTOTVP
AVC
DA I SIM PROTOTYPE
AVE
2.71
2.50
5.1H
5.23
5.20
3.71
3.47
3.41
3.41
3.43
f
3.42
3.2H
3.16
3.2J
3.47
3.47
3.47
3.2U
3.42
3. 35
4.28
4.23
3.7?
4. Ob
5.26
5.23
3 .21
3.3t
3.28
.
*
.
5.87
5.97
m
5.89
2.67
5.4O
5.66
5.53
3.63
3.69
^
3.66
3.U8
3.8O
a
3.89
3.7b
3.92
f
3.84
3.87
3.H2
3.84
3.82
3.92
3.87
4.89
4.98
4.93
5.6b
6.O?
5.83
3.65
3.90
3.77
3.50
3. ft 1
3.55
4.9?
5.07
5.0O
6.80
6.90
^
6.85
3.41
3.bB
5.72
6.56
3.94
4. Ob
f
4.OO
4.5n
3.nl
f
4. Ib
4 .3*1
4.08
a
4.22
4.1b
4 . IO
^
4.13
4.2'i
4.25
4.27
6.50
5. 13
^
5.74
6.45
6.46
6.45
4.35
3.M9
4.11
4. Jl
4.31
5.0?
5. O2
8.02
.
7.83
7.92
4.41
4.24
4.75
I1.3H
fa.57
H.47
4.51
4 .3H
f
4 .44
a
4 .40
4.bb
4.5.1
5.IU
5.2»>
«
5.2?
4.14
4.30
m
4.2?
4.(>H
4.t,7
4.67
5.74
5.82
^
5.78
7.23
7.28
7.75
5. 7O
6lib
t».o a
m
5.08
b.5/
.
ft. 57
8.67
8.98
»
8.8?
4.53
4.5?
8.88
9.O9
8.9B
4.7b
4.39
.
4.3?
I.Ht
4.11V
4.71
4.82
5.32
5.43
.
5.37
4.3?
4. 15
^
4.2.1
4.75
4 .85
4.80
6.20
6.46
—
6.33
7.40
7.47
7.43
5.40
5. on
5.24
5.67
5.57
ft.*?
6.7?
6.71
6.71
9. BO
9.77
.
9.78
4 .96
4.77
9.1 1
9.09
9.1O
4.71
4.39
.
4.55
5.4?
4 .9b
.
5.18
5.bB
5.70
.
5.b9
4 .8V
4.37
f
4.6?
5.01
5.03
5.02
6.55
7.IO
m
b.ai
7.87
7.93
7.9O
5.b7
5.41
5.54
5.69
5.53
5.61
b.bO
6.76
6.78
10.10
10.07
.
IO.09
•
•
4.39
4.76
.
4.57
.
.
.
•
4.91
5.24
.
5.O7
4.16
4.28
m
4.77
4.71
4.61
4.66
5.76
6.57
.
6.14
.
.
•
*.bl
5.76
5.43
5.58
.
5.58
6.34
.
6.34
.
•
•
•
5.24
5.18
9.42
9.43
9.42
4.64
4.93
.
4.78
5.31
5. 1 O
•
5. 2O
6.23
6.19
.
6.21
4.4O
4.47
.
4.47
5.15
5.07
5.1 1
7.29
7.2?
7.4 1
7.31
8.13
7.97
8.05
5.80
5.69
5.74
5.8?
.
5.8?
7.14
.
7.14
10.38
10.23
.
10.30
•
•
4.04
4.15
•
4.09
.
.
.
•
5.57
5.35
.
5.46
4.19
3.98
.
4.08
4.76
4.65
4.70
6.44
6.54
.
6.49
.
•
•
5.52
. 5.28
5.40
5.07
.
5.57
6.26
.
6.26
.
•
.
•
5.11
5.04
9.97
9.11
9.52
4.56
4.61
.
4.59
5.34
5.57
.
5.45
6.43
5 .51
.
5.94
4. 5O
4.35
.
4.43
5.23
5.16
5.19
7.26
7.36
.
7.31
6.13
8.01
8.O7
5. 58
5.72
5.65
6.O6
6.O*
6.O4
7.53
7.18
7.35
IO.79
11.11
.
IO.95
.
•
4.12
3.98
.
4.05
.
«
•
•
5.43
5.52
*
S.47
4.76
3.9O
3.71
3.95
4.46
4.80
4.62
6.94
7. SO
6.40
7.00
.
.
•
5.29
5.3?
5.31
5.42
6.63
5.62
6.51
6.45
6.46
.
•
•
•
136
-------
1972 OCMHOUT IMPW.B
- O FTP Cold Transient-
O FTP Stabilised
'A. FTP Hot Trajient
1977 HOWB CIVIC M9 STATE
r o
c-ii
Ij-r-* . ! i
i , ' ! :
i i 1
i
1
•> 100 120 •
19T7 FWD LID 19 STBTE
1977 PVTHJUTM FUIIT 1195
r o 20
C -18 -I
« co n 100 120
1978 BUICK V6
f
C-ll
20 « GO BO IOD
' TE«P fl«flENT
(Data points not connected by a line are the results of air conditioning runs.)
Figure 15. Effect of ambient temperature on fuel economies for the three phases of the FTP.
-------
a
« .
1977 PLTWJTH FlUT CflLIF I
1978 OCVMLET SI M-CH.IF
1978 FWO PIMTO CSL 3
FTP Cold Transient
FTP Subllized
FTP Hot Trmslont
1978 VM ween ca FU-IHJ
at.tr.
I960
10
5,
1980 BUICX RCGPL PflOTOTTP
DBTSIK CWTDTTPt
(Data points not connected by a line are the results of air conditioning runs.)
Figure 15. (continued)
-------
IB12 CHEVROLET IMPRLR
LIU
O FTP Composite
O HFET
A SET
O FSC
It
IS
11)
11
£
£10
i.
SB
_j
S
4
9
(
— i
i
"I
1 '
r—
\
19
74
CHE
O FTP Co
O HFET
A SET
O FSC
^H
— <
,-(
X
e=
r-—
^
VROLE1
T
|
IHPHLH
mpoalte
X*
^~-
— —
I
S
L
r^
^->
H
•— .
>--.
=
--(!
1977 HONOR CIVIC "19 STflTE
0
C-IB
20 «0 GO 80 100 ISO
19
s"
-."
f 0
C-1B
Q FTP Composite
O HFET
A SET
O NTCC
100 120
99 W
1977 F0«3 LTD M9 STRTE
1977 PLTHOUTH FURT H9S
1978 BUI01 V6 TURBKHRRGE
O FTP Composite
' O HFET
A SET
O FSC
-L
O FTP Composite
O BFET
A SET
O FSC
1
1
-1
)—_
f
a
o
A
O
— ^
^
r
si
s
IT
f—
1—
T Composite
FET
ET
rcc
— t
— i
>--
r^
f
H
t-*
=4
H
[
o 20 no GO aa
H
L
r1
i i
"-•
)
s
1
r
^
i
i
10) "120
-' ' TESp^lENI- "
(Data points not connected by a line are the results of air conditioning runs.)
Figure 16. Effect of ambient temperature on fuel economies for different test cycles.
-------
IS
iq
13
5 10
$9.
i8
UJ7
_<•
S
1
3
C
(
f
-IB
H"
!»—
D
O
A
O
— i
— (
FTP Composite
HFET
SST
FSC .
>-.
f—
•.^J
— f
1—
— <
1^
^
-a(
1
H
-.j
h
>~,
.
^
\-
i
— I
1
}
i
1
i
20 UO 60 00 100 120
-f * J6 27 30 49
IS
in
13
a:"
LU
5"
a:
"10
59
i-
a,
s.
5
V
; c
— <
(
i
-18
f=
i —
s—
Q
O
A
O
=i
-(
~x
-7
FTP Composite
HFET
SET
FSC
f
t—
—
-=«
fcj
i —
t
«—
^
ff
„— -
1-4
H
a«
-H
H
I
h<
•^
^
H
1 I
^
(=:
^~
i
•— i
r
N
c
»—
)
i
1
110 GO S3 100 120
M IS 27 38 in
-
c
c
) —
r-'
r*
—
_L
1.
G FTP Composite
O HFET
A SET
O trace
— (
^
|
y-
«•*
r"
/.
^
^
•
/
h
r"
\
n
^ •
-4
\
^
^-
^
i
^
f
—4.
r1
L
x-1
•^
1 (
t-4
1 1
^^
f-"
t
1 —
1
—
-1
f
-~<
1
1
15
III
13
s12
ec
fit
S
S
(
,
I
r'
r-
K
G
O
A
O
-"
^
<
1
FTP Composite
HFET
SET
HYCC
r-"
^
, — '
^
**
^
—
S
(-*
r^
---
^
i
M
H
r^
^
H
S
M
>—
—
I—
— <
— 4
— C
i
>
1
0 20 «0 60 80 100 "120
" TEMP RWIENT
1979 OODGE K9RN CKLIf.
I960 BUICK REGR. PROIOTTP
Q FTP Composite
O HFET
A SET
O
Q FTP Composite
O HFET
A SET
O NTCC
d
1
1
r
t-
A
-t
— —
r"
r-
c
^-~
^4
***
^
=al
»-*
^^
H
«=^
i
H
""I
<
t— •
(
I
{
r~
±=
)
1—
^
f
-— i
(
i
*• '
<
i
i
l
0 20 HO SO 10 100 120
- " ' TE&.«f5W" •
1980 NERCURT PROTOTYPE
G FTP Composite -
O HPET
A SET
TEMP MtflENT
ORTSUN PflOIOItPl
S"
3"
•B-
Q FTP Composite
O HFET
A SET
O NYCC
(Data points not connected by a line are the results of air conditioning runs.)
Figure 16. (continued)
-------
the cold transient phase of the FTP. This phase of the procedure gave
very poor economy with the poorest economy occurring at 0°F (-18°C). Air
conditioning operation reduced fuel economy. The lighter cars had the
best economy in general. Repeatability was considered to be satisfactory.
Federal Test Procedure-Stabilized Phase-Fuel Economy-
Table 92 lists the fuel economies for the stabilized phase of the
FTP. The fuel economy improved substantially over that obtained during
the cold transient phase of the FTP. Economy generally improved with
ambient temperature unless the air conditioners were on. The Honda and
Datsun gave the best economies.
TABLL 92
F 1 P S1ABILI7U)
- FUEL fCONOMV KM/L
TEMPERATURE F 0
(Oi-iai
1972 CHEVROLET IMPALA
AVE.
1974 CHCVROLLT IMPALA
AVE
1977 MONO A CIVIC 49 STA1E
AVt
1977 FORD LTD 49 STATE
AVE
1977 PLYMOUTH FURY 49S
AVE
1978 BU1CK V6 IURBOCHARGE
AVE
1977 PLYMOUTH FURY CALIF
AVE
1978 CHEVROLET ST X -CALIF
AVE
1978 FORD PINTO CAL 3 KAY
AVE
1978 VV RABBIT CM. FU-INJ
AVE
1979 DOOCE ASPEN CALIF.
AVE
I«M MEHCUBY MKITOTVPC
AVE
198O BUICK REGAL PROTOTYP
AVE
OATSUN PHOTOTYPE
AVE
4.20
4.13
4.17
3.85
4.37
a
4.O9
B. 16
8.22
8.19
4.13
4.34
4.34
4.27
4.75
4 .85
^
4. BO
5.71
5.63
5.47
5.6O
4.12
4.06
m
4.O9
4.43
4.63
4.53
6.32
6.23
5.B6
6.13
6. 5O
6.17
6.33
5.63
5. 5O
5.57
f
.
-
.
^
•
8.23
8.24
w
8.24
20
(-71
4.56
4.34
4.44
3.97
4.34
.
4.15
8.86
8.58
8.72
4.65
4.68
.
4.66
4.73
4.96
m
4.84
5.68
5.73
m
5.71
4.O6
4.12
^ '
4.09
4.62
4.57
4.59
6.38
6.15
.
6.26
6.94
7.IO
7*02
5.57
6.00
5. 78
4.68
4.83
4.75
7.01
7.09
7.05
8.B3
8.46
.
8.64
40
(4)
4.32
3.76
4.02
4.25
4.30
.
4.28
10. O6
10.15
10.11
4. 5O
4.65
.
4.58
4.87
4.85
^
4.H6
5.72
5.63
.
5.67
4.24
4.20
m
4.22
4.82
4.75
4.79
6.62
6.64
.
6.63
7.S6
7.21
7.3B
6.28
6.04
6.16
5.21
.
5.21
7.06
,
7.06
9.91
9.40
9.73
9.68
6O
1 10)
4.66
4.66
4.66
6.3?
4.6O
4.6O
5.02
IO.24
10.20
10.22
5.29
4.90
.
5.09
6.0V
5.O6
5.B4
5.63
6.59
6.1V
.
6.3V
4.61
4.45
.
4.53
4.8B
4.98
4. 93
6.8r
7toOO
.
6.93
a. 28
8.2*
B.25
6.50
6.4B
6.4V
5.83
.
5.83
7.73
.
7.73
10.55
10.21
.
10.37
70
4.9O
4.66
4. 78
4.74
4.67
.
4.71
10.89
10.84
1O.B6
4.93
4. BO
.
«.B6
5.3V
5.33
5.34
5.35
6.73
6.34
.
6.53
5.39
4.30
.
4. 78
5.15
5. 16
5.16
7.27
7./6
.
7.51
8.42
8.56
8.49
6.71
6.57
6.64
5.90
5.93
5.92
7.87
7.97
7.92
10.31
lo.ie
.
10.24
BO
(27)
4.15
5.03
4*55
4.8O
4. Ill
.
4. 61
10. Bl
10.77
10.79
5.41
5.07
•
5.23
5.62
5.53
.
5.57
6.62
6.33
.
6.47
4.51
4.63
.
4.57
5.16
5.15
5.15
7.52
8.03
.
7.7?
8.43
8.62
8.52
6.5V
6.40
6. 5O
5. 8V
5.80
5.85
7.67
7.78
7.72
1O.45
10. «?
.
10.44
eoAC
(27)
4.69
4.58
4 .63
»
.
.
•
.
.
•
4.7B
4.51
.
4.64
.
.
. ,
•
5.42
5.60
.
5.51
4.46
4.24
.
4.35
4.63
4 .62
4.62
6.it>0
6.95
.
6.77
»
.
•
6.3B
6. 3O
6.34
5.70
.
5.ro
6.92
.
6.92
m
.
.
.
90
(32)
4.83
4.91
4.87
4.86
4.95
•
4.9O
10.73
IO.9I
IO.82
5.26
5.26
.
5.26
5.60
5.6B
.
5.64
7. O2
6.44
.
6.72
4.51
4.53
.
4.53
5.2b
5.20
5.24
7.52
7.62
8.21
7.77
8.57
8.4 1
B.49
6.66
6.63
6.64
5.85
.
5.85
8.6O
.
8.60
10.59
9.93
•
10.25
90AC
(32)
4.33
4.33
4.33
.
•
.
•
.
.
•
4.21
4.4O
.
4.30
.
.
.
•
5.70
5.44
.
5.57
4.32
4.19
.
4.25
4.39
4.36
4.3B
6.66
6.72
.
6.69
.
.
•
6.34
6.30
6.32
5.50
.
5.50
6.9V
•
6.99
.
.
.
•
110 1 1 0 AC
(431 (43)
4.91
4.67
4.7V
4.5V
4. BO
.
4.69
II .0?
9.75
10. 31,
S.ll
5.OQ
.
5.10
5.4O
5.6V
.
5.54
6.31
5.50
.
5.86
4.57
4.76
.
4.66
4.97
4.97
4.97
7. BO
7.71
.
7.75
B.82
8.44
8.62
6.5O
6.56
6.53
6.12
6.13
6.13
B. 31
a. 01
8.16
13.04
10.40
.
II .57
4.18
3.8H
4.03
.
•
.
•
.
.
•
4.14
4 .05
.
4.09
.
•
.
•
5.1 1
5.01
.
S.O6
4.29
3.94
3.86
4.02
4.OO
4.17
4.oe
6.93
6.B7
7. IB
6.99
.
•
•
5.99
6.26
6.12
». S3
5.48
5.50
6.57
6.91
6.73
.
.
•
•
141
-------
Federal Test Procedure-Hot Transient Phase-Fuel Economy--
The fuel economies for the hot transient phase of the FTP are given
in Table 93. Generally, the fuel economies for this phase were a great
improvement over those obtained during the cold transient phase and also
better than those obtained during the stabilized phase. Again, fuel
economy improved with ambient temperature unless the air conditioners
were on.
TABLE 93
FTP HOI TRANSIENT
- FUEL ECONOMY KM/L
TtMCEKATUWt f O
ICH -ID*
1972
1974
1W77
1977
1977
1978
1977
1978
IV7(I
I97B
1979
I960
I960
CMKVRCILLT IMPALA
AVE
CHtVRULLT IMPALA
AVt
HUN DA CIVIC »9 STAIE
AVE
FORD LTD 49 STATE
Avr
PLYMOUTH FUHV 49S
AVL
QUICK VI, TUMHCCHAHGE
AVt
PLYMOUTH PURV CALIF
AVE
CHEVROLET ST V-CALIF
AVt
FOMO PINTO CAL 3 WAY
AVt
V» RAbBIT CAL FU-INJ
AVE
OUOGE ASPCN CALIF.
AVE
MERCURY PHOTOTYPE
AVE
BUICK REGAL PHDTO1VM
AVE
4.9J
4. 93
4.93
4.91
6. JO
m
5. JO
6.96
9.14
9.O6
4. 7fc
4.79
4.P.4
4 .HO
6.6B
5.61
a
5.64
O.04
1.17
5.30
5.49
4.U7
4.99
t
4.93
5.11
5.JI
5.21
6.B2
6.79
6.39
6.66
7.13
7.09
1 .11
6.B2
5.E3
5.B3
•
•
•
.
zo
1-7)
6.17
S.O6
5.11
5.OI
5.08
.
5.O4
9.60
9. as
9.6U
4.65
5.O3
.
4.94
b.&l
5.62
•
5.61
6.1 1
6.17
.
6.14
4.96
5.1 1
•
5.O3
a. 34
5.26
2.30
7. IB
7.13
^
7.16
7.87
7.M4
7.A5
6.09
6.19
6.14
5.26
b.66
5.41
7.2b
7.22
7.24
4O
(4)
5.30
5.66
5.47
4.95
5.22
»
5. OB
1O.I6
IO.2V
10.22
5.14
5.13
.
5.13
5.b4
5.86
.
5.69
6.29
6.14
.
6.21
5.04
5.O9
B
5.U7
5.62
5.41
5.51
7.. 13
7.4 19
.
7.40
a. 03
a. oo
e.oi
6.b7
6.17
6.36
5.72
5. 72
7.55
7.65
60
( 16)
5./7
b.6l
A. 69
r.O7
5.34
5.O3
6.69
10.59
10.57
10. IB
5.39
•j.JO
.
!>«35
5. an
5.69
6.ej
5. HO
6.B6
6.64
.
6.75
4. HI)
5.20
a
6.03
6.77
6.ai
5.79
7.34
7»47
.
7.40
8.96
8.79
8.B7
6.66
6.61
6.64
6.35
6.36
8.27
8.27
70
121)
5.94
5.66
5.73
6.19
5.46
.
5.79
10.74
10.97
IO.85
6. 19
5.O6
.
5.12
5.7!.
5.97
6. O7
5.93
7.01
6.80
.
6.9O
5.00
5.16
m
5.O7
5.B2
5.85
5.O4
7.76
8>2I
.
7.98
8.71
8.96
8. A3
6.76
6.56
6.66
6.6O
6.59
6 .60
8.46
8.21
8.33
80
<27>
6.04
5.92
5.98
6.OO
5.36
.
5.66
10.63
10. W6
10.79
5.36
5.14
.
6.24
6. IB
5.91
.
6.O4
6.99
6.61
.
6.79
5.17
5.17
,
5.17
5.86
5.88
5.86
a. 26
8.43
.
8.34
8.90
9.05
8.97
6.65
6.59
6.62
6.14
6.44
6.29
8.22
8. 18
8.20
80 AC
<27>
5.92
5.24
5.56
.
.
•
•
.
•
•
5.10
4.86
.
4.98
.
.
•
•
5.82
6.32
.
6.O6
4.88
4.89
.
4.88
5.41
5.38
5.39
6.75
7.71
•
7.20
.
.
•
6.52
6.41
6.46
6.3O
•
6.30
7.48
7.48
9O
(32)
5.82
5.78
5. BO
5.42
5.45
.
5.43
IO.8I
IO.99
10.90
5.54
9.45
.
5.49
6.25
6.02
.
6.13
7.12
6.91
•
7.01
S.22
5.26
.
5 .26
6.02
5.93
5.98
7.8B
B.3I
B.5O
8.22
9.O7
8. 75
8.91
6.74
6.6O
6.67
6.41
6.41
8.6O
8.60
90 AC
02)
5.58
5.13
5.35
•
•
•
•
.
•
"
4.62
4.82
.
4.71
.
.
.
• •
6.04
5.92
•
5.98
4.71
4.66
.
4.68
5.07
5.45
5.26
6.99
7. 33
.
7.16
.
.
•
6.58
6.25
6.41
6.34
6.34
7.45
.
7.45
IIO IIOAC
(43) (43)
S.9S
5.44
5.68
5.29
5.64
•
5.46
IO.82
IO.20
IO.5O
5.32
5.12
.
5.22
6.06
6.33
.
6.19
5.96
5.76
.
5.86
4.97
5.11
.
5.04
5.61
5.59
5.60
' 8.04
8.34
*
8. 18
8.99
8. 74
8.86
6.36
6.37
6.36
6.67
6.53
6.60
8.61
8.15
8.38
5. 52
4.56
4.99
•
.
.
•
.
•
.
4.33
4.42
.
4.38
.
-
.
•
5.11
5.32
.
5.21
4.51
4.09
4.07
4.22
4.83
4.66
4.74
7.41
7.41
7.60
7.47
•
.
.
5.8S
6.O9
5.97
6.13
6.10
6.16
6.63
7.13
6.87
DATSUN PROTOTYPE
9.bl
9.61
10.33
10.34
10.34
II .13
12.31
10.89
11 .41
I 1.78
I 1.46
12.05
I 1.7O
12.O5
12.OO
11.74
II .15
11.50
11.64
142
-------
Federal Test Procedure-Composite-Fuel Economy--
Table 94 gives the fuel economy results for the composite FTP.
Combining the results of the three phases gave fuel economies that were
better than those obtained during the cold transient phase but not as
good as was achieved during the other two phases. Again, the Datsun had
the best fuel economy, followed by the Honda and the VW.
TEMPERATURE f
(Cl
1972 CHFVROLLT IMPALA
AVE
1974 CMPVKOLErl IMPALA
AVt
AVE
1977 FOfcD LTD 49 STATE
AVE
1977 PLYMOUTH FUHY 495,
AVC
1978 UUICK V6 TUHBOCMAHfcF
AVE
1977 PLYMOUTH FUHY CACIF
AVE
1978 CHtVROLET ST W-CALlf
AVE
1978 FORD PINTO CAL 3 DAY
AVC
1978 VW M AMBIT CAL FU-INJ
AVF
IW79 OOObE A&Pf-N CALIF.
AVE
IMO MtUCURY PdOTOTVPC
AVE
1980 BUICK WE GAL PWUTOTYP
AVL
OAT SUN PHOTOTYPE
AVE
TAHLt
0
l-lf)
3. Ho
3.91
3.»5
4. Ob
3.P4
7. SO
4 .04
4.24
4 .in
4.b6
4.00
f
4lbM
4.91
4 .Ml
4 . /3
4 .til
4.13
4.12
4.13
4.46
4.36
5.87
5. BO
b.34
5.66
6.34
6. Ib
6.25
4.9,:
4.93
4.92
•
.
•
.
7.B9
7.91
^
7.9O
'J4
20
4.32
4.42
3.74
4.OH
^
3.90
a. 02
8.00
4.44
4.bl
B
4.48
4. 73
4.79
^
4.76
5.23
5.33
^
5.28
4.23
4.28
4.25
4.59
4.58
4.58
b.18
6.09
^
6.13
6.84
7.02
6.93
5.13
5.45
5.28
4.50
4.67
4.58
6.5O
6.t>9
6.54
8.64
8.49
^
8.S7
f 1 P C
4O
3.«4
4.19
4.37
4.27
^
4. 32
9.13
4 . b2
4 .63
,
4.bt>
4.9/
4 .HO
B
4 .fcU
5.bl
5.JJ
m
5.42
4.41
4.39
4.40
4.R9
4.70
4.B4
6.77
6.4b
f
6.bl
7.42
7.23
7.32
5.B2
5.b3
5.11
5.11
6.62
6.62
9.73
9.56
9.53
9.61
OMI-OM II
bO
I l>>)
4. 7b
4.H6
6.41
4./3
4.b7
•j.12
9.9 1
9.H9
b.l 3
4 .««
.
5.01
5.1,3
fi.Oft
b »bb
:,.n
b.Oh
.
6.19
4.b7
4.60
m
4.bU
5. OS
5.1 1
5. OH
b.72
b.B3
f
6.77
B.20
B.lb
8. IB
6.22
6.19
6.21
5.78
5.7B
7.59
7.59
10.39
10.22
.
IO.3O
70
(21 >
4.116
b.02
b.OI
4.»3
,
IO.46
10.42
4.B4
4.77
.
4. HI
5.3f
5.39
5.37
5. .17
b.4b
b.24
.
b.34
5.O3
4.47
m
4.73
•S.22
5.26
5.24
7.14
7.56
.
7.35
8.26
8.41
8.34
6.41
6.20
6.30
6. O2
6. O2
6.02
7.74
7.73
7.74
IO.6I
10.46
.
10.64
- euLL
HO
5.21
4 .96
5.0:1
4.9B
.
5.0U
10.42
10.39
b.2.1
4.93
.
5.08
5.71
5.49
.
5.6O
6.49
6.26
.
6.36
4.75
4.71
,
4.73
5.30
5.30
b.30
7.4U
7.92
»
7.69
8.43
8. 58
8.60
6.39
6.22
6.30
5.92
5.9O
5.91
7.61
7.64
7.63
10.76
10.73
.
IO. 75
fcC(JNUM>
aOAC
4.71
4.84
.
.
.
•
.
4.77
4.65
•
4.71
.
.
.
•
5.4O
5.69
•
5.65
4.bO
4.41
.
4.45
4.83
4.8O
4.82
6.45
7.O6
.
6.74
.
.
•
6.24
6. OH
6.16
5.82
5.82
6.93
6.93
m
•
•
t KM/L
90
(32)
b. 1 4
5.14
5.14
5.05
5.13
•
5.09
10.45
10.59
10.52
5.19
5.24
.
5.21
5.70
5.64
•
5.67
6.87
6.51
.
6.6B
4.66
4.70
.
4.70
5.43
5.3b
5.39
7.57
7.70
8.1 1
7.79
8.61
8.41
8.51
6. 48
6.4O
6.44
5.99
5.99
8.26
8.26
10.83
10.29
.
IO.56
90AC
(32)
4.7?
4.57
4 .64
.
•
•
•
'
4.27
4.45
.
4.36
.
.
•
•
5.76
5.54
.
5.65
4.39
4.26
.
4.32
4.64
4.67
4.65
6.7O
6.84
•
6.77
.
.
•
6.21
6.05
6.13
5.71
5.71
6.94
6.94
9
.
•
110 1
(43>
5.25
4.88
5.O6
4.84
5.07
.
4.95
10.73
9.72
IO.2O
5.O4
4.99
.
5.02
5.55
5.8.t
.
5.69
6.23
5.57
•
5. en
4.66
4.76
•
4.71
5.19
5.17
5.18
7.74
7.79
.
7.77
8.71
8.43
8.57
6.25
6.32
6.29
6.25
6.21
6.23
8.21
7.86
8.04
12.09
10.85
.
11.44
IOAC
<43>
4.59
4.15
4.3b
-
•
.
*
•
4.18
4.13
•
4.16
.
•
.
•
5.IH
5.19
•
5.18
4.34
3.97
3.88
4.06
4.29
4.41
4.35
7. O5
7. 18
7.1 1
7.12
.
•
•
6.80
6.00
***°
ft .70
9.48
5.69
6.57
6.87
6.72
•
*
"
143
-------
Highway Fuel Economy Test-Fuel Economy--
This procedure, with results given in Table 95, should give good
fuel economy since it approaches constant speed operation. The effect
of having run the SET test first at 0°F (-18°C), 40°F (4°C) and 80°F
(27°C) generally shows an economy improvement over those at 20°F (-7°C)
and 90°F (32°C). The same effect was not observed when comparing results
at 40 and 60°F (4 and 16°C) but this may have been the result of the
fuel change. Again, air conditioner operation reduced fuel economy.
lAiur '.IS
MIC.MVAV ll»L K.IWOMY ff.if - FUt L tCUNOMY KMXL
TEMPCNAlORt F O
ICH-IW)
1972 CHI VhOLf-T IMPALA
AVL
1974 CHl. VROLC.1 IMPALA
AVL
1977 HONDA CIVIC 49 bTAIE
AVI.
1977 FUWO LTD 49 blATC
AVt
1977 PLYMOUTH FUHY 495
AVC
1978 BUICK VO TOHOOCMAHOt
AVL
1977 PLYMOUIM FUKY CALIF
AVT
1978 CHEVROLET SI *-CALIF
AVF.
1978 FOWD PINTO CAL 3 «AY
AVt
I97U VII RABBIT CAL. FU-INJ
AVt
1979 DODGE ASPfN CALIF.
AVI
IWO MEHCUHY PHOTOTYPE
AVt
I960 BUICK REGAL PUOTOTYP
AVE
DAT&UN PROTOTYPE
AVC
7. .10
6. / 1
/.«.-'
6 • '->/
6.h**
6. 72
1 1 .no
1 1 .MI
II .lib
6.1?
6. 20
6.2.)
0. IH
7.IJ
7.3?
7.?3
u.fll
n.C'J
8.69
B./3
7.1V
7-?->
7.24
b.'tl
fc .I|U
6 .«**
9.01
9.91
9.11
0.33
9.46
9.2B
9.37
P. 00
8.0 J
b.O2
•
•
*
14 .2B
I4.2M
14.20
20
C-/I
6.9!>
6. /9
6.M7
6.60
6. 7U
fc.bb
II .9V
12. IH
12. OH
6.10
6.82
.
6.4O
7. It)
7.S2
7.35
a .60
fl.bB
•
H.S9
7.29
7.S2
7.40
A.**O
6.72
6.BI
9.^6
U.26
.
9.41
9.97
10.09
10.03
7.96
a. ob
6.00
7.86
7.72
9.ttl
9.71
9.76
14.1 1
14.31
14.21
4O
(41
6. 92
7. O.I
A . tl,
7.00
^
6. MB
I7.nt>
12.97
12.91
6.7b
6.92
6.H3
7.96
T.'Jl
m
7.94
a. 70
B.Bti
8.77
6.97
6.UB
6. 92
7.20
7.13
7.17
9.711
9. HI
9.74
IO.S4
10.43
10.48
8.66
8.O9
8.36
•
8.46
10.2 1
•
10.21
14.07
Ib. Oi-
lS. 1 1
IS. 00
>>o
< !'>>
7.!> 2
H.O2
9.».7
/.2f,
6.92
7.78
13.1 1
1 3. .Id
13.23
6.47
6.91
f>.b9
7.46
7.bl
7.64
7.S4
9.17
9.OO
9. OH
6. 74
7.09
6.91
7.39
7. .13
7.36
O.H*
10. IB
IO. 01
1 1.49
10.98
11.73
fl.t.O
a.t,<>
e.;>3
8.72
10.67
10.67
lft.69
IS. 49
I0.!>4
IO
(21 1
7.32
T.Ht,
7.41
6.93
.
7.1 7
13. 14
1 3.62
13.38
6. OB
6.O!>
6.07
7.61
8.00
7.4O
7.6B
9. 12
9. Ob
•
9. OH
6.B*>
6.111
'6.At>
7.47
7.49
7. 48
lO.Jb
10.96
10.64
1 1 .2b
1 1. IB
11.22
B.69
B.bt>
a. 62
9.O3
9.12
10.73
10 *a7
lo.ao
IA.OI
IA.J6
IS. 4 3
HO
(27)
7.79
n.24
7.36
7,'jH
.
7.47
13. ?/
13.37
13.3?
t>.84
6.14
5.98
8.f>6
a.ou
.
8.32
9.42
9.1 7
•
9.29
7.60
7.29
7.44
7.b7
7.73
7.6'.>
10. US
11.23
11.03
11.16
11.68
11.41
a.9o
B.7U
8.84
a. 98
9. OS
11.07
10.97
11.02
16.42
16.22
.
16*3?
8OAC
(27)
7. OB
7.43
.
.
•
•
•
6.69
6.33
6.51
.
.
•
7.S9
8.42
•
7.98
7.O3
6.6O
6. HI
7.39
7.44
7.41
9.44
IO.02
9.73
.
•
8.62
8.49
e.bs
.
a. TO
IO.OS
.
10. OS
.
.
•
90
(32)
a. 47
7.66
B.O4
7.47
7. 27
.
7.37
13.24
I3.2!>
13.24
6.62
7. 2O
6.9O
8.28
7.71
.
7.98
9.34
9. Ob
•
9.19
7.22
7.32
7.32
7.79
7.37
7.S7
10.48
10. 8O
11.11
10.79
1 1 .4b
IO.BI
11.12
e.eo
B.67
a. 73
9.1 1
10. en
10. ae
IS. 77
15.44
I5.6O
90 AC
(32)
7.52
6.73
7.10
.
.
.
.
•
5.61
6.21
5.89
•
•
•
•
T.7B
7.80
7.79
6.44
S.96
6.19
6.78
6.85
6.62
9.41
9. 7O
.
9.59
•
•
a. zs
a. 23
a. 2«
8.30
a. 30
9.53
.
9.53
.
.
1 10 1 IOAC
(43) (43)
8.55
T.fcS
a. 07
7.00
7.14
•
7.07
13.44
13.47
13.46
5.9O
6.35
6.11
8.49
8.86
.
8.67
a. ii
8.87
8.47
6.82
6.7O
6.76
6.89
7.O4
6.97
11.02
1 1 .07
11.05
11.62
II .21
11.41
8.72
8.4">
a. so
9.32
9.21
9.26
11.14
It.OO
11 .07
19. aa
15.62
1 7.49
8.31
6.37
7.21
.
.
"
•
.
.
6.59
5.04
5.71
.
.
•
7.06
7.O6
7.06
6.12
6. IB
S.79
6.02
6.10
6. IS
6.13
10.06
9.93
IO.OO
10. OO
.
.
6.03
a. 29
• .16
a.i«
».6T
a.4>
9.23
9.30
9.26
•
144
-------
Sulfate Emission Test-Fuel Economy--
The fuel economy results shown in Table 96 for the SET procedure
were somewhat poorer than those achieved with the HFET. This higher
speed test with more accelerations would be expected to give poorer fuel
economy results. The best fuel economy occurred most frequently at 80°F
(27°C) rather than at 110°F (43°C). Again the use of the air conditioner
reduced fuel economy.
145
-------
TABLC 96
SULFATE EMISSION TEST
- FUEL ECONOMY KMXL
TEMPERATURE F
(C)
1 972
1 974
1 977
1 977
1977
1 978
1 977
1 V78
1978
1978
1 979
1 480
I960
CHEVROLET
CHEVROLET
IMPALA
AVE
IMPALA
AVE
HONDA CIVIC 49 STATE
AVE
FORD LTD
PLYMOUTH
OOICK V6
PLYMOUTH
CHEVROLET
49 STATE
AVF
FUMY 49S
AVE
TURBO CHARGE
AVE
FURY CALIF
AVE
ST W-CALIF
AVE
FOHD PINTO CAL 3 WAY
AVL
VW R AHH I T
CAL FU-INJ
AVE
DODGE ASPEN CALIF.
AVE
0
(-18)
6.17
6. 10
6.14
5.83
6.14
5.9H
10.39
10.34
10.36
5.46
5.81
6.96
S.74
6.t>0
6. S3
6.67
7.78
7.75
7.64
7.72
6.3B
6.24
6.31
6.31
6.17
6.34
8.11
8.19
7.94
8.08
8.t,4
8.37
6.46
7.2t>
7.33
7.31
MERCURY PROTOTYPE .
•
AVL .
BUICK RKGAL Prt&TOTYP .
•
AVF. .
OATS UN PHOTOTYPE
AVE
1?.02
12.10
12.O6
12.06
40
<4>
6.39
6.24
6.31
6*05
6.09
6.07
1 1.7b
11 .86
1 I .81
6.29
6.26
6.28
7.00
7.14
7.07
7.70
7.7O
7.70
6.13
6.14
•
6. 13
6.57
6.69
6.63
8.45
10.03
•
9.24
9.56
9.45
9.50
8.02
7.53
7.77
7.24
7.24
7.24
9.31
9.31
9.31
13.1 1
13.15
13.32
13.19
8O
<27>
7.38
6.96
7.17
6.56
6.72
6.64
12.29
12.47
12. ^fl
S.77
6.08
•
5.92
7.34
7.45
7.40
8.35
8.09
«
8.22
6.70
6. 18
6.44
6.96
7.01
6.9b
9.55
10.14
.
9.85
10.30
10.56
10.43
8. 13
8.02
8.O7
8.03
7.89
7.96
10.13
9.87
10.00
14.53
14.07
14.30
14.30
80AC
(27>
6*92
6.41
6.66
•
.
•
•
•
.
6.20
6.21
*
6.21
.
.
.
6.52
7.4H
.
7.00
6.09
5.95
#
6.02
6.55
6.27
6.41
8.21
9. OH
8.65
.
.
.
7. ne«
7.81
7.85
7.77
7. 77
7.77
8.98
6.98
8. 98
•
•
•
•
110
(43)
7.23
6.59
6.91
5.93
7.31
6.62
12.33
11 .39
1 1 .86
6.03
5.97
•
6.00
7.28
7.45
7.37
6.70
6.67
.
6.68
5.94
5.83
5 .89
6.51
6.53
6.52
10.41
9.47
•
9.94
10.26
9.97
10.11
7.93
7.77
7.85
8.26
8. 14
ft. 20
10.19
10.2?
10.20
9.44
13.73
11.59
11 .59
110AC
(43)
7.04
5.47
6.25
•
*
•
•
•
•
5.28
4.64
•
4.96
•
•
* »
6. 17
6.07
•
6. 12
5.50
5.36
5.09
5.32
5.60
5.58
5.59
8.94
8.49
•
8*71
•
•
•
7.32
7.67
7.5O
7.42
7.61
7.51
a. 33
8.37
8.35
.
»
.
»
146
-------
New York City Cycle-Fuel Economy--
Table 97 shows that this procedure of idle and sharp accelerations
had a marked effect on fuel economy. The fuel economy fell more than
50% from that obtained during the HFET and was poorer than that obtained
during the cold transient phase of the FTP.
TABLE 97
NEW YORK CITY CYCLE
- FUEL ECONOMY KM/L
1977
1978
1978
1 978
1 979
1 98O
I960
TEMPERATURE F
(C)
HOMO A CIVIC 49 STATE
AVE
BUICK V6 TURBOCHARGE
AVE
FORD PINTO CAL 3 WAY
AVE
VW RABBIT CAL FU-INJ
AVE
DODGE ASPEN CALIF c
AVE
MERCURY PROTOTYPE
AVE
BUICK REGAL PROTOTYP
AVE
OATS UN PROTOTYPE
AVE
20
(-7)
5.40
6.11
5.75
3.55
3.58
3.57
3.78
3.66
3.72
4.46
4.4?
4.44
3.53
3.63
3.58
2.50
2.57
2.53
4.46
4.74
4.60
6.32
6.21
6.26
60
(16>
6.19
6*51
6.35
3.8?
3.65
3.74
4.12
4.28
4.20
4.95
5.06
5.01
3.84
3.57
3.71
3.25
3.25
3.25
4.95
4.95
4.95
6.68
6.46
6.57
80
<27>
6.43
6.57
6.50
3.78
3. 75
3.77
4.69
5.00
4.85
5.12
5.47
5.29
3.92
3.74
3.83
3.45
3.52
3.49
4.48
4.59
4.54
6.69
6.87
6.78
80 AC
(27)
•
C
•
3.00
3.11
3.06
3.93
4.34
4.13
•
•
•
3.71
3.59
3.65
3.42
3.42
3.42
4.10
4. 10
4. 10
.
.
.
110
(43)
6.45
6.54
6.49
2.55
2.99
2.77
4.17
4.43
4.30
5.17
5.02
5.09
3.75
3.76
3.75
3.4U
3.57
3.53
5.09
4.96
5.02
5.89
6.O9
5.99
110AC
(43)
•
•
•
2.22
2.66
2.44
3.81
1 .27
2.54
•
•
*
3.58
3.70
3.64
2.96
3.39
3.17
4.20
4.47
4.33
.
•
.'
147
-------
Federal Short Cycle-Fuel Economy—
The results listed in Table 98 show that the FSC, with a warmed up
engine, produced only a small temperature effect on fuel economy. The
best fuel economies were obtained at 80°F (27°C).
TABLE 98 FEDERAL SHORT CYCLE - FUEL ECONOMY KM/L
TEMPERATURE F 0
(C) (-18)
1972 CHEVROLET IMPALA 5.29
5.38
AVE 5.34
1974 CHEVROLET IMPALA 5.61
5.49
AVfc 5.55
1977 FOWD LTD 5.9tt
5.90
5.80
AVE 5.90
1977 PLYMOUTH FURY 49S 6.5S
6. OB
AVE 6.32
1977 PLYMOUTH FURY CALIF 5. 68
5.62
AVE 5.65
1978 CHEVROLET ST W-CALIF 5.70
5.93
A VE S . 8 1
40
(4)
5.92
5.41
5.66
5.5H
5.63
5.61
5.03
6.29
*
5.66
6.69
7. 12
6.90
5.81
5.77
5.79
5.97
5.96
5.97
80
(27)
6.?0
6.60
6*40
5.84
6. 19
6.02
5.89
6.29
•
6.09
7.65
7.67
7.66
6.48
6.?2
6.35
6.65
6*45
6.55
110
(43>
6.28
5.97
6.12
5.72
5.86
5.79
5. ft?
5,40
•
5.61
6.67
7.02
6.85
5.25
5.53
5.39
4.27
6.14
5.21
148
-------
CATALYST TEMPERATURES
Light-Off Time - Seconds
Table 99 gives the light-off times for the catalyst equipped cars.
The "Light-Off Time" was defined as the time in seconds from the start
of the cold transient phase of the FTP until the temperature of the
gases leaving the catalyst exceeded those entering. The catalyst had to
be working for this condition to exist.
The Datsun Prototype had the shortest light-off times at most
temperatures. Other cars with fast light-off times at low temperatures
were the 1977 (49 State) Plymouth, the 1979 Dodge Aspen and the 1980
Mercury Prototype. Gas temperatures were measured by thermocouples in
the gas streams except for the 1979 Dodge and three prototype cars. For
these cars, surface thermocouples were used. This was done to keep from
drilling holes in the exhaust pipes of the manufacturers' supplied cars.
Catalyst light-off times varied from 67 to 419 seconds.
99
UIOll UFI- TIML. StCUNDS FEDEHAL If St PROCEDURE
TEMPtHAIUNE F 0
(CX-IM
1977 I-'UCU LTD 49 SIATF 1f-U.
94<>.
95 /.
.7,:
1970 BUICK V6 TURUOCHAHGF 6nl.
67«.
69'j.
1977 PLYMOU1H FUMY CALIF* 1147.
1 97b CHkVROLCT ST W-CALIF 9/1.
670.
1978 VW UAPIOIT CAL FU-INJ TJ 1 .
19(10 MtUCUWY PUUTOIVIf.
20
(-71
962.
930
930
415.
633.
811.
8O4 .
836.
864.
526.
774.
760.
36S.
361.
40
(4)
994.
950.
950.
389.
543.
616.
869.
832.
804.
831.
IOOU.
737
745.
366.
375.
( 16)
603
616
468
566
530
675.
6*49
-•'
615.
666 .
6VO.
368.
352.
70
121)
653
600
609
45M
497
592
56?
7-"2.
74 7
776.
769.
59?.
667.
6H3.
3H4.
312.
BO
(271
666
640
640
5J7
463
573
551
733
761.
753.
628.
652.
648
397.
409.
BOAC
(27)
69O.
665.
665.
596.
56
OA1SLN PfiOTOfYPt
506.
503.
299.
256.
275.
340.
310.
4'JA.
519.
341 .
309.
349.
328.
531.
519.
397.
346.
553.
560.
149
-------
Light-Off Temperature - Degrees F
Table 100 gives the light-off temperatures associated with the
light-off times. This temperature varied from car to car but usually
ranged from about 400 to 1100°F (204 to 593°C). Temperatures of the
1979 Dodge and three prototype cars cannot be considered representative
of the exhaust gas temperatures because of the use of surface thermocouples.
However, trends in temperature direction were observed.
TABLE 100
LIGHT OFF lEMPtRATURE - F FEDERAL TKST PROCEDURE
TEMPERATURE F O
ICX-IUI
6O
< 161
TO
(21)
60 AC
127)
90
«32»
90AC
1321
no IIOAC
1431 143)
1977 FORD LTD 49 StATt
26*.
283.
280.
2*6.
Z9«
312.
3OO.
130.
139.
IJ3.
14*.
122.
137.
124.
133.
I3O.
133.
138.
139.
130.
144.
1977 PLYMOUTH
FURY 49S
79.
78.
128.
lib.
128.
121.
216.
130.
123.
136.
187.
123.
120.
130.
129.
129.
1978 BUICK V6 TURSOCHARGC
315.
345.
311.
344.
320.
332.
339.
326.
332.
328.
334.
33O.
337.
347.
347.
336.
338.
344.
327.
324.
330.
1977 PLYMOUTH FURY CALIF
1978 CHEVROLET ST W-CALIF
1970 FUMD PINTO CAL 3 WAY
I97» w RABBIT CAL FU-INJ
1979 DODGE ASPGN CALIF.
I98O MERCURY PRUTQTYPt
I98O BUICK weCAL PKUTOTYP
OAT SUN PROTOTYPE
I J3.
IJI.
276.
226.
I2u.
I2O.
130.
151.
140.
75.
67.
169.
165.
142.
145.
319.
319.
250.
189.
132.
131.
75.
at).
336.
316.
4 OB.
399.
122.
191.
121.
142.
310.
310.
131.
13.1.
71.
75.
I 33.
122
314.
310.
1 17.
126.
I «9.
137.
106.
I 17.
315.
314.
135.
140.
141.
138.
76.
69.
138.
129.
146.
I A3.
165.
I9H.
163.
122
120
326.
319.
Ibl .
IB9.
144.
143.
9b.
SB.
27V.
200.
4O7.
404.
iva.
191.
116
115
331.
329.
135.
I6O.
99.
107.
122
126.
310.
324.
311.
26O.
307.
I5J.
ISO.
too.
103.
118
125.
321.
322.
156.
187.
76.
8O.
19B.
192.
119
134
3IO.
3O9.
329.
318.
99.
1O2.
31 I.
31 1.
419.
4O5.
209.
197.
118.
117.
118
327.
327.
24S.
308.
190.
93.
9a.
315.
305.
4O6.
403.
150
-------
Maximum Catalyst Temperatures
Federal Test Procedure—
Table 101 gives the maximum exhaust gas temperatures observed after
the catalyst for the FTP. After monitoring light-off conditions at the
fastest recording rate, the instrument was switched to record at one
minute intervals. Because many accelerations and decelerations took
less than one minute, it is quite possible that true maximum temperatures
were not observed. With this limitation, the data in Table 101 and the
following four tables should be considered as indicative of trends only.
For each vehicle, the catalyst seemed to operate at a characteristic
maximum exhaust gas temperature independent of the ambient temperature.
It is generally true that use of the air conditioners resulted in higher
maximum temperatures.
TABLE 101 CATAt YS I I f Mf'tT I* A?UM . MAX, f U>r.HAU ?t.ST
1977
1977
1978
1978
1978
19/9
TCMPERATURE F 0
(CM -181
1030.
I0?6.
PLYMOUTH FURY 49S 860.
I0t>4 .
6 J7.
PLYMOUTH FURY CALIK I?OI.
II9H.
CMfVBOLCT ST K-CALIF 971.
97?.
FOHD MINtn CAL J WAY II4U
1 IO6
VW MABBIT CAL FU-INJ 4149
1 I6M
OOlJoe ASPEN CALIF. II6H.
1 164.
(-71
1021.
aoii.
860.
1 in/.
863.
89?.
894 .
1 1 4 !» .
1 143.
1 ll.l.
1 1 It..
476.
5V.J.
40 60 70 110 80AC 9O 90AC
(4) (If,) l?ll (?7) (27) (J?l (3?)
103?. 106*.. 1074. 1090. 1109. 1080. 1106.
980. 937. 964. 9b(.. 967.
989.
9SO. 8*O. 89H. 89?. B.'IB. 931.
9??. 861. 86.1. 8t>0. 90b. 909. 978.
869. HS3. 840. 846. 893. 874. 938.
96/. 1167. Illl. 10H/. 1O811. 9?2. 1O4I.
99«.
iijj. 1114. 1101. no;1. .1104.
1131. Illl. 1101. 1094. 1069.
1118. lOOt. 9*«4 9Sfi. 9JH. 8O6. 8?7.
1119. 9'4H. 9/H. 9L>b. 9t>4. 811. 8t>O.
448.
t.64.
1 1 0
(43)
lOBb.
944.
1 006.
1237
967.
979.
96!>.
I0?6.
lo?n.
866.
590.
IIOAC
(43)
IO69.
1056.
1243
1O37.
1354
990.
1029.
1127.
1141.
864.
863.
464.
626.
DAT-..UN MRUTOTYHE
bt,.l.
66t>.
63t.
6IB.
64 J.
64%.
677.
683.
151
-------
Highway Fuel Economy Test--
The maximum exhaust gas temperatures after the catalyst for the
HFET are given in Table 102. The differences in exhaust gas temperatures
between cars are greater than those between ambient test temperatures
and also between the HFET and FTP procedures.
TAHLE 102 CATALYST TFMMfrilATURE . MAXjHIGHWAY FUEL ECONOMY TEST
TEMPERA TUUe F
(C
1977 FUWD LTD 49 STATE
1977 PLYMOUTH PUHY 49S
1978 BUICK V6 TURBOC'IAUGC
1977 PLYMOUTH FUHY CALIF
1978 CHEVROLET ST »-CAL|F
I97b FORU PINTO CAL 3 KAY
1976 V« HAflUIT CAL FII-INJ
1979 DODGE AbPFN CALIF.
1 9BO MLMCUHY PROTOTVPb
I960 UUICK RfGAL PkUTOIVM
DATSUN PROTOTYPE
0
1 1 lf>
1137
1 130
1 020
1037
74H.
741 .
921.
912.
911 .
933.
972.
O-iO.
92K.
1173.
1 184.
821.
Htb.
MJ.
504.
20 40
(-7) (4)
1 lt.7. 1 I3h.
1O44. 1117.
999. 93*>.
904. 934.
633.
96%. 974.
694. 9b3.
916. 9?M.
94h. 9JO.
93O. 9O4 .
1006. 1064.
1 I'-J. 1 I4S.
1 146. 1 1 34.
834 . A 3'i.
831,. HOO.
4«4.
6u4 . 661 .
653.
53b. S42.
53M. 544.
51;'.
00 70
( 16) (2I>
123^. 1223.
II4H. 1196.
1022. IOI8.
1027. IO25.
10/1.
614. 8U9.
88b.
901 1013.
9M6. 1O4H.
«'.6. 949.
9IH. 941.
1041. 940.
9«1. 894.
1 133. 1 lr>3.
1 Ibl . 1 IM .
HM Bbrt
HM . 8*)9.
<>
-------
TABLE 103
CATALYST TEMPERATURE* MAX* SULFATE EMISSION TEST
1977
H977
11978
1977
1978
1978
J976
1979
i960
£980
TEMPERATURE F O
(CM-18)
FORD LTD 49 STATE 1O89.
1O88.
1O8O.
PLYMOUTH FURY 49S 953«.
10O8.
BUICK V6 TURBOCHARGE 767..
782.
799,
PLYMOUTH FURY CALIF 1029.
10OO.
CHEVROLET ST W-CAL1F 936.
951.
FORD PINTO CAL 3 WAY 1029.
965.
966.
VW RABBIT CAL FU-lNJ 11 SO.
1182.
DODGE ASPEN CALIF. 824.
825.
MERCURY PROTOTYPE
BUSCK REGAL PROTOTYP
DATSUN PROTOTYPE 591.
589.
4O
<4>
1098.
1070.
989.
925.
883.
958.
1027.
1O2O.
938.
958.
1054.
1 133.
1112.
832.
830.
517.
651 .
607.
6O8.
600.
8O
C27)
1 199.
1 164.
982.
1015.
921 •
964.
1 133
1082
973.
946.
1068.
925.
1 119.
1 119.
863.
861.
486.
506.
665.
677.
671
670.
8OAC
<27)
1171.
1184.
986.
952.
1 128
12OO
994.
98O.
1114.
979.
868.
874.
493.
754 «>
no
(43)
1095.
1130.
977.
979.
12411.
1156.
1356
1441
IO92o
1064.
976.
1O35.
1045.
1058.
904.
908.
5O9.
506.
685.
682.
758.
737.
1BOAC
«438
8837.
0124.
122O.
S 159.
1286
1318.
B 336
1919.
1133
noso.
1129.
922 »
9O5.
554.
535.
73B.
732.
New York City Cycle—
The maximum exhaust gas temperatures from the catalysts for the
NYCC are given in Table 104. In essentially every test, the temperatures
reported for this test were lower than for any of the three preceding
tests. This result was probably due to the great amount of idle time
included in this procedure.
153
-------
:. 104 CAIALYGT irwpf XA riJHL . MAX, NFW YORK CITY CYCLE
(C)
I97h NUICK Vt. 1UKBOCHAFAT«UN PWDTOTYPK
^') t,0
(-7) (10)
776.
7t.f.
hit,. a(-,7.
841. 7<>9.
67H. fJ4V>.
S74. flbO.
5H't . h 1 <>
t,97. 616.
510. 4O9.
51 .1. 543 .
5O7. 5(i4 .
SOO. 56*',.
P,0 80AC
(27) (27)
778. 904.
805. 861.
H.-1J. 893.
790. fl28.
B57.
83O.
6?9. 625.
416. 4 02 .
394.
550.
5M1 .
1 10
(43)
1 162.
IO37.
IO43.
997.
792.
806.
665.
677.
437.
4?l .
579.
568.
66.1.
663.
1 10AC
(43)
1141.
1 1O7.
967.
1 IO7.
667.
671 .
466.
432.
597.
596.
Federal Short Cycle—
The data in Table 105 show that the FSC maximum exhaust gas temperatures
were lower than those found in the SET procedure. This result was
probably due to the short duration of the FSC procedure and the moderate
accelerations.
TABLP 105 CATALYST
TEMPERATURE
. MAX,
FEDERAL
SHORT CYCLE
TEMPERATUHE F
(
197/ FORD LTD 4y STATE
1977 PLYMOUTH FURY 49S
IQ77 PLYMOLTH FURY CALIF
1S78 CHEVROLET ST »-CALIF
0
C) (-18)
847.
853.
877.
651 .
740 .
744 .
697.
73?.
803.
40
(4)
935.
901.
668.
585.
686.
702.
818.
807.
80
(27 )
864 .
884.
638.
660 .
736
783
834 .
841 .
80AC 110
(27) (43)
850. 767.
876.
676.
671 .
1 343
1296
983 .
947.
154
-------
Minimum Catalyst Temperatures
The next five tables show the minimum exhaust gas temperatures out
of the catalysts. Since every test starts at some particular ambient
temperature, the minimum temperature is defined as the lowest recorded
catalyst-out temperature after that temperature had reached a peak not
necessarily the maximum.
Federal Test Procedure--
Table 106 lists the minimum exhaust gas temperatures observed for
the FTPS The minimums did not appear to depend on the ambient temperature.
Air conditioner operation usually raised the minimums.
1Q6
CAlALYbl Tl MI-QIATUUf . M IN. f l.l>t H AL Tf.ST PHOCC.OUBE
TCMPKHATUHE F
It]
1977 FURO LTD 49 STATF
1978 BUICK V6 TURBUCHAMCF
1977 PLYMOU1H FURY CALIF
1978 CMCVOOLCT SI K-CALIF
1978 FOHO PINTO C AL 3 «A Y
1978 V* HAHHIT CAL FU-1NJ
1979 tXKK,t ASPf.N CALIF.
I9HO MEMCUWY PWOTUTVMt
DAI SUN PHOTOTYMt
0
1 1 - 1 H )
H;:H.
825.
5b3.
41.7.
703.
690.
6S5.
7O6.
7511.
6 16.
63O.
718.
614.
622.
7/i7.
e if..
57J.
t>l*>.
SI7.
20
(-7)
BIX.
602.
72J.
720.
747.
6b4.
629.
6 7t>.
77.1.
857.
"f:
4IO.
3H«.
49H.
4O
(4)
B22.
597.
712.
61 j.
76O.
72S.
6OO.
599.
609.
844.
590.
603.
4(14 .
512.
50H.
1.0 70
( 1 It ) (211
883.
743. 5(18.
742.
7->6 726.
761 . 80 1 .
743. 638.
722. 698.
7O9. 592.
P 19. S 11.
828. 874.
601 ftOh
622. 620.
Jftft. 370.
*•>•,. 549.
HO
(2D
VO 1 •
891.
*":
792.
550.
643
792
649.
641.
606.
587.
826.
80-1.
62O.
374.
482.
V>9.
80AC
913.
592.
568.
665
787
790.
677.
691 .
566.
6.13.
634.
31*0.
90
I32>
87O.
686.
59 7.
731 .
71 1.
78 J
777.
77?.
667.
635.
637.
639.
817.
799.
625.
613.
392.
505.
570.
90 AC
(32>
9O 1 •
«O5.
578.
592.
712
811.
852.
8O3.
71 1.
681.
640.
635.
421.
1 10
(43)
859.
869.
515.
545.
773.
640.
751
619
797.
78O.
693.
683.
812.
813.
667.
656.
392.
395.
502.
504.
513.
618.
1 10AC
(431
874 .
876.
648.
626.
843
972.
956
836.
807.
753.
688.
755.
666.
650.
417.
399.
536.
-------
Highway Fuel Economy Test—
The HFET minimum exhaust gas temperatures after the catalyst (Table
107) are equal to or up to 200°F (111°C) higher than those found on the
FTP.
TABLE 107 CATALYST TEMPERATURE. MIN,MIGH«AY FUEL ECONOMY TEST
TCMPEBATURE f 0
(CM-IH)
4O
(41
60
I IIS)
BO
<27>
90
(321
9OAC
(32)
110
(43)
IIOAC
(43)
FOMO LTI> 44 STATE IOO4. 1031. IO08.
999. 94O. 9611.
1000.
1096.
I02O. lOiO.
1127.
MOO.
1082.
1092.
1048.
1073.
IO87.
1087.
1002.
1 IO4.
I08S.
1O25.
1977 PLYMOUTH FURY 4«S 817.
856.
aoi.
7H9.
858. 847.
H47. 824.
933.
807.
833.
818.
887.
862.
836.
1978 BUICK V6 TURBOCHAMGF
606.
6H9.
673.
746.
808.
BIO.
7A9.
7H2.
832.
866.
874.
844.
903.
794.
950.
898.
II 81.
1022.
1135.
1022.
1977 PLYMOUTH FUMY CALIF
751.
7?4.
812.
807.
875.
AH9.
806
872
855
91?
936
931.
IO27
1340
1O06
IO52.
1103
IV78 CHCvBOLtT ST V-CALIF 849.
eou.
8B4.
814.
844.
864.
847.
878.
889.
847.
812.
978.
914.
985.
978.
1042.
1043.
1978 FURO PINTO CAL 3 WAY 865.
RI7.
940.
HSJ.
84H.
9.1 7.
BJ7.
835.
813.
8lb.
900.
856.
804.
834.
870.
888.
1978 V* RAHUIT CAL FU-INJ IO7j.
IO«b.
104%.
1036. IOSt><
1058. IO54.
I05U.
I04b.
1043.
1027.
955.
988.
1979 DODGE ASPCN CALIF. 676.
67S.
727.
7.16.
7J2.
741.
72O.
726.
72O.
702.
786.
783.
789.
768.
I9BO MEUCUNY PRUTUTYPF
J9Q.
40S.
395.
304.
440.
439.
480.
450.
I90O HUICK RCGAL PROTOTVM
OATSUN PRDTOTYI'F. 4C2.
5.17.
414.
4RS.
502.
50J.
577.
5JH.
59fl.
S69.
648.
645.
650.
639.
156
-------
Sulfate Emission Test--
The results of the SET minimum exhaust gas temperatures after the
catalyst are given in Table 108.
TABLE 108
CATALYST TETMPK WA TURE . MIN. SULFATE EMISSION TEST
TEMPER A TUWF F O
(CM -IB)
1977 FOrtD LTD 49 STATE 8B5.
8t>4.
856.
1977 PLYMOUTH FUHY 49S 74?.
80M.
1978 BUICK V6 TURBUCHAWGE 662.
715.
709.
1977 PLYMOUTH FURY CALIF 731.
719.
.
1978 CHEVROLET ST W-CALIF 70fc .
755.
1978 FOHO PINTO C AL 3 WAY 83b.
74?.
765.
19V8 VW WAHHIT CAL KU-1NJ 906.
930.
1979 DODGE ASPhN CALIF. 5H9.
608.
I9h0 MCRCUHY PPOTOTYPF
1980 BUICK RKGAL PROTOTYP
DAT SUN PHOTOTYPE 491.
49O.
40
(4 )
9O1 .
8/O.
724.
6flO.
760.
857.
793.
7*0.
764 .
776.
839.
8Mb.
870.
62?.
6?2.
4 OR.
490.
b2h.
625.
"117.
80
(27)
947.
94 I .
7«7.
773.
838.
854 .
828
82ft
766.
75M.
7i>2.
742.
891 .
833.
647.
6^3.
384.
379.
516.
520.
587
574.
80AC
(27)
9?6.
951 .
858.
849.
a 20
833
799.
770.
881 .
813.
655.
672.
403.
548.
1 1O
(43)
892.
906.
79Q.
816.
1067.
963.
1015
990
,
918.
893.
788.
79?.
842.
86«.
707.
7O5.
4 1 7.
420.
524.
543.
644.
645.
1 1OAC
(43)
907.
902.
1049.
1022.
1007
1110.
1118
961 .
999.
834.
955.
713.
689.
414.
424.
559.
566.
New York City Cycle—
The minimum exhaust gas temperatures out of the catalyst for the
NYCC are given in Table 109.
Federal Short Cycle--
The results of the FSC minimum exhaust gas temperatures after the
catalyst are presented in Table 110.
157
-------
TABLE 109
CATALYST TEMPERATURE, MIN. NEW YORK CITY CYCLE
TEMPERATURE F
(Cl
1978 BUICK V6 TURBOCHARGE
197B FORD PINTO CAL 3 WAY
1978 VW RABBIT CAL FU-INJ
1979 DODGE ASPEN CALIF.
1980 MERCURY PROTOTYPE
1980 BUICK REGAL PROTOTYP
OAT SUN PROTOTYPE
20
726.
642.
712.
751.
752.
499.
503.
422.
399.
430.
422.
49O.
485.
60
( 16)
730.
737.
681.
748.
755.
587
542.
334.
459.
544.
546.
80
(27)
737.
761.
697.
652.
761.
744.
588.
561.
342.
3O3.
474.
474.
525.
560.
80AC
(27)
820.
759.
727.
662.
588.
57O.
347.
490.
110
(43)
1O54.
969.
911.
834.
692.
707.
646.
618.
398.
368.
503.
496.
643.
642.
IIOAC
(43)
996.
992.
723.
SOU.
626.
624.
414.
382.
511.
513.
TABLE 110
CATALYST TEMPERATURE, MIN, FEOEPAL SHORT CYCLE
iy 77
1977
197 7
i<»7a
TEMPERATUHE F 0
( C) ( -IB )
FORD LTD 49 STATE H40.
831.
H67 .
PLYMOUTH FCMY 495 599.
716.
PLYMOUTH FUrtV CALIF 695.
CHEVROLET ST *-CALIF 683.
H02.
40
(4)
686.
854.
666.
5«56.
606.
647.
745.
7.16.
SO aOAC
(27 ) (27)
809. 815.
865.
609.
633.
733
709
764 .
763.
110
(43)
750.
798.
651 .
665.
1215
1 183
923.
807.
158
-------
DRIVEABILITY
The cars used in this program were a mixture of new, rented, or EPA
supplied cars. The rented cars had all accumulated at least 10,000
miles. The new and rented cars were tuned to manufacturers' specifications
with new spark plugs, points and condensers, etc. The carburetors were
not overhauled. The EPA supplied cars (1979 Dodge and three prototypes)
after normal inspections were tested in the as-received condition.
Table 111 lists the average driveability ratings for each car at
each test temperature. These ratings were based on the Coordinating
Research Council system of demerits (22). In this system, a stall at
idle has a demerit of 8 while a stall during running has a demerit of
32. Hesitation, stumble and surge have lesser demerits, depending on
their severity. Most of the driveability problems were experienced
during the cold transient phase of the FTP.
The vehicles differed substantially in their driveability
characteristics. Furthermore, within a given vehicle, driveability
varied with ambient temperature. In several cases, poor driveability
contributed to the high exhaust gas emissions noted. In other cases,
the high emissions encountered may have been due to reduced catalyst
activity rather than driveability problems.
TAIUJ-: 111 AWRACH IMtlVHAHILITY RATINCS
TEMPERATURE F
(C)
1972 CHEVROLET IMPALA
1974 CHIiVROLET IMPALA
1977 HONIJA CIVIC 49 STATE
1977 FORM ITU 49 STATK
1977 PLYMOUTH I1IRY 49S
1978 MUCK V6 TURBOC1IAKG:.
1977 PLYMOUTH FURY CALIF
1978 CHI-VROLET ST W-CALIF
l'.)7H F'OKl) Pltfro CAL 1 WAY
197H VW RABBIT CA1. FU-LS.J
1979 mixa; ASPEN CA1.IF
1980 Ml-IORY PROTOTYPE
1980 BUICK RP.CAI. PROTOTYPE
I1ATSUN PROTOTYPE
0
T-18J
45
70
92
89
39
7!)
4
72
fi
45
11
143
20
f-7)
If)
30
90
44
10
37
0
12
22.
5
3
1
0
55
40
MJ
3
Hi
90
32
1
27
0
1
1
0
2
1
0
2(i
r,o
(Hi)
12
19
91
'.1
95
H>
13
9
18
0
1
18
3
0
70
(21)
18
1
11
18
311
h
20
1
f>7
0
30
18
1
0
80 80AC
(27) (27)
51 41
24
0
1 0 9
82
1 0
1 1
2 10
27 43
0
28 17
9 I)
8 I
2
90 90AC
(32) (32)
32 48
10
0
0 .9
28
0 0
3 1
9 1 0
9 27
0
2 1
1 0
1 (I
1
110
(43)
17
1
12
7
1
26
0
2
47
0
2
18
1
1
110AC
(43)
33
29
21
4
4
59
5
18
7
159
-------
REFERENCES
1. McMichael, W.F., and J. E. Sigsby, Jr. Automotive Emissions After
Hot and Cold Starts in Summer and Winter. Presented at Annual Meeting
of Air Pollution Control Association, San Francisco, CA, June, 1966.
2. Polak, J.C., Effect of Cold Weather on Motor Vehicle Emissions. Report
EPS 4-AP-41, 1974.
3. Polak, J.C., Cold Ambient Temperature Effects on Emissions from Light-
Duty Motor Vehicles. SAE Paper No. 741051, 1974.
4. Ostrouchov, N. Effect of Cold Weather on Motor Vehicle Emissions and
Fuel Economy. SAE Paper No. 780084, 1978.
5. Karin, G.A., et al. The Effect of Very Low Air Intake Temperature
On The Performance And Exhaust Emission Characteristics of Diesel
Engines. SAE Paper 740718.
6. Ashby, H.A., R. C. Stahman, B. H. Eccleston and R. W. Hum. Vehicle
Emissions-Summer to Winter. SAE Paper 741053, October 1974 SAE
Meeting.
7. Ostrouchov, N. Effect of Cold Weather on Motor Vehicle Emissions
and Fuel Consumption-11. SAE Paper 790229.
8. Environmental Protection Agency, Road Load Power and Inertia Weight
Determination. Federal Register, Volume 42, No. 124, Section 86.129-78,
June 28, 1977, p. 32966.
9. Environmental Protection Agency, Exhaust Gas Sampling System. Federal
Register, Volume 42, No. 124, Section 86.109-78, June 28, 1977.
p. 32955.
10. Environmental Protection Agency, Exhaust Gas Analytical System. Federal
Register, Volume 42, No. 124, Section 86.111-78, June 28, 1977.
p. 32956.
11. Environmental Protection Agency, Durability Driving Schedule. Federal
Register, Volume 42, No. 124, Appendix IV, June 28, 1977. p. 33002.
12. Environmental Protection Agency, Urban Dynamometer Driving Schedule.
Federal Register, Volume 42, No. 124, Appendix, June 28, 1977.
pp. 32989-32992.
160
-------
REFERENCES (Continued)
13. Environmental Protection Agency, Highway Fuel Economy Driving Cycle.
Federal Register, Volume 39, No. 200, Appendix I, October 15, 1974.
pp. 36895-36896.
14. Environmental Protection Agency, Urban Dynamometer Driving Schedule.
Federal Register, Volume 42, No. 124, Section 86.115-78, June 28, 1977.
p. 32959.
15. Environmental Protection Agency, Calibrations; Frequency and Overview.
Federal Register, Volume 42, No. 124, Sectidn 86.116-78, June 28, 1977.
p. 32959.
16. Environmental Protection Agency, Calculations; Exhaust Emissions.
Federal Register, Volume 42, No. 124, Section 86.144-78, June 28, 1977.
p. 32973.
17. Environmental Protection Agency, Equation To Calculate Fuel Economy
of a Vehicle. Federal Register, Volume 39, No. 200, Appendix,
October 15, 1974. p. 36894.
18. Gas Chromatography Panel, CAPI-2-58 Sampling and Analysis Group.
Tentative CRC Procedure for the Determination of Hydrocarbons in
Auto-Exhaust—High Resolution GC Method. May 20, 1971. 17 pp.
19. Papa, Louis J., Colorimetric Determination of Carbonyl Compounds in
Automotive Exhaust as 2,4 Dinitrophenylhydrazones, Environmental
Science and Technology 3(4):397-8, 1969.
20. Department of Emissions Research, Southwest Research Institute. The
Measurement of Hydrogen Sulfide in Exhaust. February, 1978. 12 pp.
21. Spindt, R.S., Wolfe, C.L., and Stevens, D.R., Nitrogen Oxides,
Combustion and Engine Deposite, SAE Transactions 64:797-807, 1956.
22. Analysis and Report Writing Panel, Driveability Performance of 1977
Passenger Cars at Intermediate Ambient Temperature-Paso Robles,
CRC Report 499, p. 4, Coordinating Research Council, Inc., 219 Derimeter
Center Parkway, Atlanta, GA 30346.
161
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
I. REPORT NO.
EPA-460/3-79-006A
3. RECIPIENT'S ACCESSIOf*NO.
4. TITLE AND SUBTITLE
EFFECT OF AMBIENT TEMPERATURE ON VEHICLE EMISSIONS
AND PERFORMANCE FACTORS
6. REPORT DATE
September, 1979
6. PERFORMING ORGANIZATION CODE
r
. AUTHOR(S)
R. S. Spindt, R. E. Dizak, R. M. Stewart, W.A.P. Meyer
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Gulf Research & Development Company
Cheswick, PA 15024
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
EPA 68-03-2530
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
Environmental Protection Agency
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Characterization & Applications Branch, Ann Arbor,MI 48
Final Report
14. SPONSORING AGENCY CODE
05
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Ambient temperatures have been reported to affect automotive emissions and
fuel economies since 1966. Federal automobile emission standards and the measured
fuel economies are currently based on results obtained using the 1975 Federal Test
Procedure and the Highway Fuel Economy Test. Both tests must be conducted at
ambient temperatures from 68°F (20°C) to 86°F (30°C). Since cars in service must
start and run over a much broader temperature range than this, the U.S. Environmental
Protection Agency wanted to know how well the various car age groups and emission
control technologies available today would perform at the more extreme ambient
temperatures using the above test procedures as well as other specialized tests.
It was also desired to know how the use of a car's air conditioner would affect
exhaust emissions and fuel economies.
This report presents the results of exhaust emissions (regulated and
unregulated) and fuel economies associated with fourteen selected vehicles tested
at ambient temperatures ranging from 0°F (-18°C) to 110°F (43°C) using the various
test procedures.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATi Field/Group
Vehicle emissions*, Vehicle fuel economy*,
Ambient temperatures*, Air conditioning,
Short tests, Federal Test Procedure,
Highway Fuel Economy Test, Sulfate
Emission Test, New York City Cycle,
Driveability, Catalyst temperatures
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
161
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (»-73)
-------
|