United States
Environmental Protection
Agency
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor. Michigan 48105
EPA 460/3-84-003
April 1984
Air
&EPA AMES BIOASSAY OF EXHAUST
SOLUBLE ORGANICS EMISSIONS
-------
EPA 460/3-84-003
BIOASSAY OF EXHAUST
SOLUBLE ORGANICS EMISSIONS
by
Steve R. Haworth
and
Timothy E. Lawlor
Microbiological Associates
5221 River Road
Bethesda, Maryland 20816
Contract No. 68-03-2923
EPA Project Officer: Craig Harvey
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
April 1984
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from
the Library Services Office, 2565 Plymouth Road, Ann Arbor, Michigan 48105.
This report was furnished to the Environmental Protection Agency by
Microbiological Associates, 5221 River Road, Bethesda, Maryland 20816, in
fulfillment of Contract 68-03-2923. The contents of this report are
produced herein as received from Microbiological Associates. The opinions,
findings, and conclusions expressed are those of the author and not
necessarily those of the Environmental Protection Agency. Mention of
company or product names is not to be considered as an endorsement by the
Environmental Protection Agency.
Publication No. EPA 460/3-84-003
-------
TABLE OF CONTENTS
« Page No.
Title Page • ii
Disclaimer V ' ' .. iii
Introduction . 1-2
Background 2-10
Methodology " 11-37
Bibliography 38-44
Appendix 4 5
Group 1 - Fuel Effects, Variable: Fuel Parameters in Diesel Fuel 46-53
Group 2 - Gasoline/Diesel Comparison 54-59
Group 3 - Particulate Control Methods, Base-Line Tests 60-65
Group 4 - Heavy Duty Diesel Catalyst, Variable: Catalyst/No Catalyst 66-69
Group 5 - Fuel Effects, Variable: Diesel Fuel Parameters 70-82
Group 6 - Salt Mine Air Test 83-86
Group 7 - Heavy Duty Dual Fueled Engine Comparison 87-116
Group 8 - Fuel Effects, Variable: Base Fuel Vs Synthetic Fuel Blends 117-129
Group 9 - Heavy Duty Diesel Evaluation, Variables: A) Malfunction Vs
No Malfunction, B) Test Cycle 130-137
Group 10- Particulate Trap Evaluation, Variable: Various Traps Vs.
No Traps 138-159
Group 11- Light Duty Methanol Evaluation, Variables: A) Fuels,
B) Catalysts 160-164
Group 12- Heavy Duty Methanol Evaluation, Variables: Fuel - To be
Compared to HD Diesel and Gasoline Engines 165-170
Group 13- Fuel Effects (Heavy Duty Diesel), Variable: Base Fuel Vs
Synthetic Fuel Blends 171-183
Group 14- Particulate Trap Evaluation, Variable: Mileage Accumulated
on Vehicle/Trap 184-205
Group 15- Heavy Duty Diesel Evaluation, Variables: Engines, Test Cycles,
Fuels 206-298
Group 16- Prototype Vehicle Evaluation 299-307
Group 17- Gas-Phase HC Evaluation 308-324
Group 18- Gas-Phase HC Evaluation 325-330
Group 19- Gas-Phase HC Evaluation 331-336
Group 20- Gas-Phase HC Evaluation 337-342
Group 21- Prototype Vehicles 343-358
Group 22- Prototype Vehicles 359-369
Group 23- In-Use Vehicles 370-411
Technical Report Data Sheet 412
-------
EPA 460/3-84-003
AMES BIOASSAY OF EXHAUST
SOLUBLE ORGANICS EMISSIONS
by
Steve R. Haworth
and
Timothy E. Lawlor
Microbiological Associates
5221 River Road
Bethesda, Maryland 20816
Contract No. 68-03-2923
EPA Project Officer: Craig Harvey
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
April 1984
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from
the Library Services Office, 2565 Plymouth Road, Ann Arbor, Michigan 48105.
This report was furnished to the Environmental Protection Agency by
Microbiological Associates, 5221 River Road, Bethesda, Maryland 20816, in
fulfillment of Contract 68-03-2923. The contents of this report are
produced herein as received from Microbiological Associates. The opinions,
findings, and conclusions expressed are those of the author and not
necessarily those of the Environmental Protection Agency. Mention of
company or product names is not to be considered as an endorsement by the
Environmental Protection Agency.
Publication No. EPA 460/3-84-003
111
-------
This report summarizes the results obtained from the testing
of 201 extracts of engine exhaust particulates in the Salmonella/
v •'• '
Mammalian-Microsomre Mutagenicity Assay (Ames Test) from June 1980
to December 1982 by Microbiological Associates (Microbiological
Associates purchased EG&G Mason Research Institute's Genetic
Toxicology Laboratory in January 1982). The samples have been
subdivided into 23 different groups determined by the experi-
mental procedures used to generate the samples.
The workscope for this project consisted of the following
segments:
1. The EPA collected methylene chloride soxhlet extracts of
exhaust particulate samples captured primarily from diesel
engines operated under various experimental conditions.
2. The samples were shipped to Microbiological Associates where
they were evaluated for mutagenic activity using the Ames
test. The exact experimental protocol used for these
studies will be discussed in detail in the body of this
report.
3. Once the data from the Ames test was collected it was sent
to the Data Management Branch of the EPA's Biometry Division
in RTP in North Carolina where it was entered into a
computerized data base and was then statistically analyzed
using the method of Stead, et al (1,2).
-------
The overall objective of the project was to gather suffi-
cient data toicompare the mutagenic activity in exhaust from
different engine types under" different load conditions using
different fuel mixtures.
The Ames test is a logical choice for evaluating the muta-
genic activity of exhaust particulate extracts as it has been
clearly shown to be a sensitive indicator of such activity and it
is economical in terms of time and cost when compared to other
mutagenicity test systems.
This report will not attempt to discuss the comparisons of
mutagenic activity present in the samples described herein, but
will make such comparisons easier by the extensive compilation
and tabulation of the key data from the Ames tests and subsequent
statistical evaluation.
BACKGROUND
It is recognized that there are well over 50,000 chemicals
presently in use in this country with a conservative estimate of
600-800 new chemicals being synthesized each year. The percen-
tage of these chemicals which are potentially genetically active
is not known. However, any chemical to which we are exposed in
our environment and which exhibits genetic activity should be
considered potentially harmful for at least two reasons:
A. the chemical could cause detrimental mutations in germ
cells which could increase the genetic load of the human
population, and
-------
B. the chemical could cause somatic mutations which are
thoucjht to be at least in part the cause of neoplastic
transformations in "animals and in man.
It is imperative that we have the ability to quickly
identify the dangerous chemicals in our environment in order to
remove them or control their levels of use. Long term bioassays
are not the solution as these assays are extremely time consuming
and expensive. The inability of long term in vivo assays to
evaluate large numbers of chemicals in a timely manner clearly
reinforces the need for rapid, sensitive, and reliable in vitro
assays for screening large numbers of compounds for genetic
activity. Chemicals found active in these screens could then be
further evaluated in test systems utilizing higher organisms.
The Salmonella/Mammalian-Microsome Assay (Ames test, as it
is often referred to after its developer, Dr. Bruce Ames) is one
in vitro test that has been successfully utilized around the
world as a screening tool for the detection of chemicals with
potential genetic activity. Its short duration, sensitivity and
economy have resulted in its inclusion in almost every compre-
hensive battery of tests designed to detect genetic activity.
Its use as a screening tool by the EPA's ECTD is a good example
of the role assigned to this versatile test system.
The induction of mutations, even by very powerful mutagens,
is a rare event which requires large test populations in order to
be detected at statistically significant levels. Whereas sample
sizes rarely exceed 10 individuals in in vivo rodent test
-------
systems, target populations in bacterial test systems easily
8 "
exceed 10 individuals and thus provide much greater resolving
power in the detection of induced mutations. Of the bacterial
test systems currently available, the Ames test is the most
widely used for detecting gene mutations. This assay has proven
to be an extremely sensitive, reliable and economical assay for
the routine screening of environmental samples for mutagenic
activity. (3,4,5,6,7)
Ames has developed a number of extremely sensitive tester
strains for use in mutagenesis screening. Among the most useful
have been strains TA1535, TA1537, TA1538, TA98 and TA100 (8).
Each of these strains possesses a mutation in the histidine
operon which renders it dependent upon the presence of exogenous
histidine for growth. Mutagenic activity is detected by the
induced reversion of one or more of these tester strains to
histidine prototrophy on selective medium. Since base substi-
tution mutations are reverted only by base substitution mutagens
and frame-shift mutations are reverted only by frame-shift
mutagens, in a reverse mutation assay like the Ames test, it is
necessary to use more than one tester strain in order to detect
both base substitution and frame-shift mutagens.
All of the tester strains contain, in addition to a mutation
in the histidine operon, two more mutations which enhance their
sensitivity to some mutagenic compounds. The rfa mutation causes
a loss of one of the enzymes responsible for the synthesis of
part of the lipopolysaccharide layer of the cell wall. The
-------
resulting cell wall deficiency increases the permeability of the
cell to compoynds possessing large ring systems (9).
*''•'.
The second"mutation is a deletion in the uvrB gene which
results in a deficient DNA excision-repair system (9). This
deficiency results in greatly enhanced sensitivity to some
mutagens. Since the uvrB deletion extends through the bio gene,
all of the tester strains containing this deletion also require
the vitamin biotin for growth.
Strain TA1535 possesses a missense mutation, hisG46, that
alters one codon of the gene coding for the first enzyme of the
histidine biosynthetic pathway (9). This resulting defective
protein cannot function normally in the synthesis of histidine.
The hisG46 mutation is a missense mutation where a G-C base
pair substitution has occurred for an A-T base pair (10).
Reversion to histidine prototrophy presumably occurs primarily by
the A-T base pair substitution for the aberrant G-C base pair.
Tester strain TA100 is identical to TA1535 except that TA100
possesses the R-factor plasmid, pKMlOl. The presence of this
plasmid greatly enhances the sensitivity of the tester strains to
many chemical mutagens. The mechanism by which this plasmid
increases sensitivity to mutagens has been suggested to be due to
its coding for an error-prone DNA repair polymerase (11,12).
Strain TA1537 possesses a frame-shift mutation, h_isC3076,
caused by an addition of a single base pair to the hisC gene (9).
Like TA98, it is reverted by compounds which cause base additions
-------
or deletions that are generally of a different class of frame-
shift mutagens" than those which revert TA98.
V ''• '
Strains TA1538 and TA98 possess a frame-shift mutation,
hisD3052, which is in the gene coding for histidine dehydro-
genase. It has been suggested that this frame-shift mutation is
located near a repetitive sequence of eight -GC- bases which
represents a "hot spot" in the DNA (13) . This mutation is
reverted by mutagens which cause base pair additions or
deletions. Like TA100, TA98 possesses the pKMlOl plasmid and is
therefore often more sensitive to certain frame-shift mutagens
than is TA1538.
TA1535, TA1537, TA1538 and the plasmid containing strains
TA98 and TA100 have been used routinely as part of most mutagen
screening programs utilizing Salmonella typhimur ium. In
addition, Ames and co-workers have developed additional tester
strains which either have specialized applications or exceed the
sensitivity of currently used tester strains under the same
conditions (14,15,16).
While the basic test system described above is immediately
valuable in detecting many direct acting mutagenic compounds, it
is ineffective in detecting promutagens, those compounds which
require metabolism by NADPH-dependent mammalian microsomal
enzymes to become mutagenic. Bacteria lack these enzymes and so
are incapable of effecting the metabolic transformations
necessary for the conversion of most promutagens to mutagens. To
alleviate this deficiency, Ames and co-workers refined the
-------
Salmonella mutagenesis assay to incorporate a mammalian
microsomal fraction in the soft agar overlay (17). This system
successfully activates a wide range of promutagens.
While most mammalian tissues are capable of activating
promutagens, the liver is the body's major site of this type of
metabolism. The microsomal multienzymatic complex prepared from
liver is capable of catalyzing a variety of reactions necessary
for activating different classes of promutagens. As examples,
the amino, dimethylamino and acetylamino groups of a variety of
compounds are converted to mutagenically active nitroso-
hydroxylamino and hydroxylacetylamino derivatives (18). In
addition, many pol.ycyclic hydrocarbons are converted to potent
mutagenic epoxides (18).
For routine screening of compounds Ames recommends using
microsomal preparations (S-9) from the livers of Aroclor 1254
induced rats (8,14). Although a wide variety of compounds will
induce microsomal enzymes including drugs, food additives,
pesticides and polycyclic hydrocarbons (19), for general
screening purposes Ames recommends using Aroclor 1254 because of
its induction of a broad spectrum of enzymatic activity including
the various P-450 cytochromes. For activating specific known
compounds, other inducing agents or other tissues or animals may
be more appropriate.
The standard plate incorporation assay using Aroclor 1254
induced rat liver is not effective for detecting all classes of
promutagens. Short chained nitrosamines (8,20), safrole (4), and
-------
some azo dyes (4,21) are examples of test materials that are not
readily detected in the standard assay.
i-
A number of workers have demonstrated that hamster S-9 is
more efficient for certain chemicals such as the nitrosamines
(20,22), azo dyes (21), p-rosaniline (3),and phenacetin (23). We
have used both Aroclor 1254 induced rat and hamster S-9 routinely
in parallel assays for the past four and one-half years and have
found the hamster S-9 to be very valuable in clarifying weak
mutagenic responses and have in fact found some promutagens that
were activated only by hamster S-9 and not rat S-9.
A second modification that has enhanced the sensitivity of
the Ames test is the preincubation method, originally described
by Yahagi (23). A number of chemicals are more readily or only
detected using the preincubation approach. These include many
nitrosamines (24,25), azo dyes (21,23) formaldehyde (26) and
classical mutagens such as aflatoxin B.. , benzidine, benzopyrene
(27) and 2-aminoanthracene (28).
One clear limitation of the preincubation method however, is
its sensitivity to the cytotoxic effects of the test article or
of some useful solvents such as ethanol or acetone (29). Our
laboratory has documented at least one case where a very
cytotoxic but weak mutagen would be judged negative using the
preincubation method but would be detected as a mutagen in the
plate incorporation assay (26). Due to the cytotoxicity of the
test article, a lower range of concentrations was tested in the
preincubation assay.
8
-------
There is now little question about the effectiveness of the
Ames test as a~ general screening tool for mutagens. Journals
such as Mutation Research arid Environmental Mutagenesis are full
of examples of the versatility of this test system. To cite the
varieties of chemicals and complex mixtures that have been tested
is beyond the scope of this document, but the examples include
body fluids, cigarette smoke, industrial air and water effluents,
foodstuffs, Pharmaceuticals, and internal combustion engine
by-products.
Much attention has been focused on the potential genetic
activity of diesel exhaust in recent years. As early as 1978,
Huisingh, et al (30) reported that extracts of diesel exhaust
particulates were mutagenic in the Ames tests. With projected
dramatic increases in light-duty diesel powered vehicle use in
this country coupled with evidence of its potential carcino-
genicity (31), the Government and the automotive industry greatly
expanded their efforts to determine if diesel exhaust represented
a serious genotoxic health threat to the increasingly exposed
human population. Since 1978, much effort has been expended in
characterizing the emissions from both diesel and gasoline
powered vehicles. The Ames test has played a major role in the
evaluation of these emissions for the presence of genetic
activity. Reports in the literature have indicated the presence
of at least 200 different chemical entities in diesel exhaust
(32). Many of these chemicals have been demonstrated to be
mutagenic in the Ames test or other short-term test systems and
some have been identified as animal carcinogens. A large number
-------
of the Ames positive chemicals are nitro substituted polyaromatic
hydrocarbons iPAH).
V
An as yet unresolved dilemma concerns the possible arti-
factual creation of mutagens in diesel exhaust during the sample
collection process. It has been demonstrated that passage of
nitrogen oxides across a PAH compound present on a filter can
generate a nitroarene that is a direct acting mutagen in the Ames
test (33,34).
There is little doubt that regardless of artifactual
contributions of mutagens by the collection process, diesel
exhaust particulates do contain mutagenic materials that are
extractable by organic solvents. A question of interest however
is, are these tightly bound mutagens released upon entrapment in
the lung or entry into the digestive tract? Weak mutagenic
activity has been demonstrated with simulated biological fluid
extracts of diesel particulates (35,36). The observed mutagenic
activity was greatly decreased over that observed when the same
particles were extracted with methylene chloride, however.
10
-------
METHODOLOGY
•
\
"-..-• General Approach
Exhaust particulates collected on filters were subjected to
a 24-hour soxhlet extraction with methylene chloride. After
determining the percent organic extractables present in the
sample, the solvent was exchanged for dimethyl sulfoxide (DMSO)
and the sample was then sent to EG&G/Microbiological Associates
to be tested in the Salmonella/mammalian-microsome plate
incorporation mutagenicity assay (Ames Test).
Each sample was assayed at least twice in the Ames test in
two separate experiments conducted over a period of several
weeks. Each Ames test was conducted using up to five Salmonella
typhimurium strains, TA98, TA100, TA1535, TA1537 and TA1538 both
with and without metabolic activation by Aroclor induced liver
microsomes. Very often, when the amount of available test
article was limited, only one or two tester strains were used.
Five dose levels of each exhaust sample were tested in tripli-
cate. When possible, the top dose level was toxic to the tester
strains to ensure that the highest practical dose level had been
tested. Each tester strain was thoroughly checked for the
presence of the rfa mutation and the pKMlOl plasmid where
appropriate was run with appropriate solvent and positive
controls.
11
-------
Media Preparation and Identification
•
Supplemented "Eop Agar Preparation
All of the top agar required for the day's assays was melted
at the same time and was then maintained in a water bath at
approximately 50 C. To those bottles containing top agar to be
used on plates without metabolic activation, 25 ml of sterile,
deionized distilled water was pipetted aseptically. Two and
one-half ml of this agar was added per overlay tube. Those
bottles containing top agar to be used with metabolic activation
did not receive additional HO. Only 2.0 ml of this agar is
dispensed per overlay tube. However, 0.5 ml of S-9 mix will also
be added to the overlay tube at the time of plating. The
procedure just described yields the same total plating volume
with or without activation and ensures that the histidine-biotin
supplement is the same both with and without metabolic
activation. Bottles containing agar for use in the strain
titering and characterization procedures was labeled 10XSA by the
same method described above.
1XSA Top Agar for Use with Metabolic Activation
On the day of its use, an appropriate number of bottles each
containing 100 ml of solidified top agar was sufficiently heated
to melt the agar and maintained in a water bath set at approx-
imately 50°C. To each bottle was added 10 ml of 1XSA
histidine-biotin supplement. The batch number of the top agar
and the batch number of the 1XSA supplement was recorded.
12
-------
1XSA Top Agar for Use Without Metabolic Activation
•
On the d$y of its use, an appropriate number of bottles,
each containing'100 ml of solidified top agar, was sufficiently
heated to melt the agar and maintained in a water bath at
approximately 50°C. To each bottle was added 10 ml of 1XSA
histidine-biotin supplement and 25 ml of sterile deionized,
distilled H^O. The batch number of the top agar and the batch
number of the 1XSA supplement was recorded.
10XSA Top Agar Preparation
On the day of its use, an appropriate number of bottles,
each containing 100 ml of solidified top agar, was sufficiently
heated to melt the agar and placed in a 50 C water bath. To each
bottle was added 10 ml of 10XSA histidine-biotin supplement. The
batch number of the top agar and the batch number of the 10XSA
supplement was recorded.
Bottom Agar
Vogel Bonner minimal bottom agar was routinely prepared in 5
liter batches and dispensed in 25 ml aliquots into 15 x 100 mm
sterile plastic petri dishes. Each agar batch consisting of
approximately 200 plates was given a unique sequential number,
and the lid of each plate containing agar from that batch was
stamped in permanent ink with that number. Documentation of this
procedure was recorded in the appropriate section of the media
notebook.
13
-------
The same agar batch number was used for plating of a given
strain throughout the assay, including strain titer, strain
characterization,.mutagenesrs assay both with and without
metabolic activation, and positive controls.
Tester Strain Diluent
On the day of its use, the diluent was prepared as follows:
85 ml of sterile, deionized distilled H_0 was decanted into
a 100 ml sterile graduated cylinder. The H^O was then decanted
into a sterile 125 ml screw cap bottle. To the bottle was added,
by sterile glass pipets, 5.0 ml of a sterile 20X Vogel Bonner
salt solution and 10 ml of sterile Oxoid Nutrient Broth No. 2.
The contents of the bottle were mixed thoroughly by swirling.
The batch numbers of the 20X Vogel Bonner salts and the Nutrient
Broth were recorded.
Inoculation Procedure for Overnight Cultures
A frozen aliquot of tester strain to be cultured was removed
from the liquid nitrogen freezer and allowed to thaw (approx-
imately 5 minutes). A 250 ml glass Erlenmeyer baffled shake
flask, with a stainless steel cap, was filled by aseptically
decanting approximately 50 ml of sterile Oxoid Nutrient Broth No.
2 from a 500 ml glass screw cap bottle. A flask was filled for
each culture to be inoculated, plus one extra flask which was
designated as "control". A loopful of thawed aliquot was
14
-------
aseptically transferred to the appropriate labeled shake flask.
The remainder^of each thawed aliquot was discarded. The
inoculated shake f-lasks were" transferred to a 37 C shaker
incubator.
Cultures were incubated overnight and removed when they had
achieved a predetermined optical density as indicated by reading
a sample of the culture on a spectrophotometer. The optical
density and any manipulations of cultures to be used in the assay
were recorded. As each culture reached the proper density, it
was transferred to a 4 C refrigerator until its use in the day's
assays.
Frozen aliquots of tester strains were identified by strain
designation and the freeze date of the aliquot. The source of
the inoculum for the frozen aliquots, and all pertinent tester
strain and freeze information, was recorded below the freeze date
in the Cell Freeze Notebook, WL-31. The freeze date of the
aliquot used to inoculate cultures of the tester strains was
recorded.
Plate Labeling Procedures
A felt tipped pen containing permanent ink was used to label
all plates. All markings were placed on the side of the bottom
of the petri dish.
Each tester strain titer plate was labeled with the
following information: tester strain, batch number, total
15
-------
dilution factor, and date of the experiment. An example of this
method would lie:
TA100 5/25 2 x 107 5/26
total date
batch dilution of
number factor experiment
Tester Strain Characterization
Each tester strain characterization was labeled with the
following information: tester stain batch number, the letters
"AMP" (abbreviation for ampicillin), a plus sign, the letters
"CV" (abbreviation for crystal violet), and the date of the
experiment. An example of this method would be:
TA100 5/25 AMP + CV 5/26
I
ampicillin
tester strain crystal violet date of
batch abbreviation experiment
Mutagenesis Experiment
Each plate in the mutagenesis experiment was labeled with
the test article MRI#, an experiment ID, a tester strain code
number, a test article dose level code number, and the letter "A"
if the plate contained liver microsomes. The code numbers for
the tester strains were:
16
-------
1 - TA98
2
3
4
5
TA1535
TA1537
TA1538
The dose level code numbers were:
0 - Solvent
1 - Highest test article concentration
2 - Next highest test article concentration
3 - Intermediate test article concentration
4 - Next lowest test article concentration
5 - Lowest test article concentration
An example of this labeling method would be:
299B1-2-0-A
MRI#"
Experiment
I.D.
TA100
Strain
Code #
Solvent
Code
Indicates
Microsomes
Present
Positive Controls
Each positive control plate was labeled with the positive
control chemical code, the tester strain batch number, the word
"on", and the date of the experiment. The codes for the standard
positive control chemicals were:
17
-------
- 2AA; 2-Aminoanthracene
- PS; 1,J-propane sultone
V
- 9-AAD; 9-aminoacr idin'e
- 2NF; 2-nitrofluorene
An example of this labeling method is;
2AA TA100 5/25 on 5/26
positive
tester date of
control chemical strain experiment
code batch #
Preparation and Storage of Liver Homogenate Used in Preparing
the Microsomal Enzyme Activation Mixture
Liver homogenate was prepared from livers excised from
Fischer 344 male rats. Five days before sacrifice, the animals
were injected i.p. at 500 mg/kg with a 200 mg/ml suspension of
Aroclor 1254 in corn oil. The animals were given food and water
ad libitum until 12 hours before sacrifice, when they were denied
access to food.
The animals were sacrificed by decapitation. After
sacrifice, the animal was immediately transferred to a 4 C cold
room where the remainder of the extraction procedure was carried
out.
The animal was pinned to a dissecting board, swabbed freely
with 95% alcohol about the thorax and abdomen, and dissected with
sterile scissors.
18
-------
The liver was usually extracted in three or four pieces,
with care beifcg taken not to penetrate the pleural cavity or
digestive tract, "
The excised liver was placed in a pre-weighed beaker
containing approximately 30-40 ml of 0.15 KC1. The livers from
two animals were pooled in one beaker. After weighing the
livers, the KC1 was decanted and the livers were washed again
with approximately 40 ml of 0.15M KC1.
The weighed livers were placed in two volumes of 0.15M KC1
(2 ml/g tissue) and minced with scissors. The livers from two
rats were minced and immediately homogenzied using a 55 ml Bellco
homogenizer with a teflon pestle attached to an electric variable
speed drill. Each batch of liver was homogenized by two complete
cycles of the pestle through the length of the homogenizer tube
at low speed. The homogenate was distributed into 50 ml poly-
carbonate centrifuge tubes and centrifuged at 9000 x g at 4 C for
10 minutes.
After removal of the fatty surface layer, the supernatant
was decanted into a large sterile bottle. After all supernatants
were collected and pooled, aliquots of appropriate size were
distributed into freezing ampules which were then stored in
liquid nitrogen or in a -80 C ultra low freezer.
19
-------
Determination of Liver Homogenate Activity
Each newibatch of liver homogenate was checked for activity
by plating reaction mixtures containing from 10 ul to 100 ul per
ml of homogenate with benzo(a)pyrene, 2-aminoanthracene,
2-aminofluorene, and 4-aminobiphenyl.
S-9 Mix Storage
A single batch of S-9 mix was prepared for the day's assays.
The S-9 mix was stored in a refrigerator in an ice bath when it
was not being dispensed in a plating experiment. The S-9 mix was
stored in an ice bath when being dispensed in a plating
experiment.
Recipe for 1 ml of S-9 Mix
Before the S-9 mix was formulated, the total volume
necessary for the day's assays was determined and recorded in the
S-9 mix log. The total volume of each day's ingredients was then
calculated and recorded on the form. The sum of the required
volume of the the individual ingredients was totaled and verified
as being equal to the required total volume originally entered on
the form. Once verification was completed, the ingredients were
aseptically added in descending order by glass pipets to a 250 ml
screw-cap Erlynmeyer flask maintained in an ice bath. Docu-
mentation of these procedures was recorded as shown in Figure 1.
20
-------
deionized distilled H20 0.56 ml
l.OM NaH2P04/K2HP04, pH 7.4 0.1 ml
0.05M GlOfcose-6-phosphate 0.1 ml
0.04M NADP 0.1 ml
1.65M KC1 0.02 ml
0.4M MgCl 0.02 ml
S-9 liver homogenate 0.1 ml
21
-------
Figure 1
CHECK LIST - S-9 MIX
Batch No. ' Date Prepared
Ingredients for 1 ml added in the order listed;
Batch Amount Amount
No. per ml* added Initials
Water, sterile deionized
1M sodium-potassium
phosphate buffer 0.1
0.05M glucose-6-phosphate 0.1
0.04M NADP 0.1
1.65M KC1 0.02
0.4M MgCl2 0.02
S-9 homogenate
Total Volume
* Total volume in this column must equal 1 ml.
22
-------
TEST ARTICLE STORAGE AND DILUTIONS
•
Most of ^he samples were received as blown down extracts
shipped in dry ice. The samples were stored at -80 C after
receipt by Microbiological Associates. A small percentage of the
samples were received already dissolved in DMSO. These were also
stored as described above.
Approximately 70% of the samples were received subdivided
into two or three aliquots. This enabled us to dissolve the
extract in DMSO and prepare the dosing solutions immediately
before they were used in the mutagenicity assay. In those cases
where only one aliquot of an extract was received, the entire
extract was dissolved in DMSO and the dosing solutions were
frozen after their initial use. For the repeat experiment, the
frozen dosing solutions were thawed immediately before their use
in the repeat assay. We did not notice any consistent reduction
in mutagenic activity due to the freeze thaw methodology.
Dose Range Selection
Due to the limited quantities of extracts and due to the
fairly consistent toxicity characteristics of the extracts, dose
range finding studies were not conducted. Instead, if sufficient
extract was available, a top concentration of 2,000 ug per plate
was used in the initial mutagenicity assay. When there was
insufficient extract available, the dose range was lowered
appropriately. In those cases where the sample was cytotoxic at
the higher doses, the dose range was lowered appropriately in the
23
-------
repeat assay.. Five dose levels separated by one-half log
intervals werfc routinely plated. Depending upon the amount of
extract available," an appropriate number of tester strains, as
designated by the Project Officer, would be plated with each
sample.
Mutagenesis Plating Procedure
General Description
The mutagenesis assay of each extract was conducted by first
plating the appropriate dose levels of the test article on the
appropriate tester strains with metabolic activation, and then
the same dose levels of the test article were plated on all of
the tester strains without metabolic activation. The tester
strains used in the experiment were fresh overnight cultures
inoculated the previous day. Aliquots of each tester strain
culture were pipetted into two capped 13 x 100 mm glass tubes
which were stored at 4 C until used in the assay. One of the
tubes contained cells used in the plating with activation and the
other tube contained cells used in the plating without acti-
vation. The plating sequence for a test article was to plate the
solvent first and then proceed from the lowest test article dose
level up to the highest test article dose level.
Plating Procedures with Metabolic Activation
Two ml of 1XSA top agar will be added, using a 5 ml Cornwall
Syringe, to an appropriate number of 13 x 100 mm glass culture
24
-------
tubes maintained in constant temperature blocks preheated to
45°C, + 0.5°Ci One-half ml of S-9 mix was dispensed by
V
Re-Pipettor to six of the glass tubes. To each of the same six
tubes was micropipetted 50 ul of an appropriate tester strain
q
culture with a titer of approximately 1 x 10 /ml. Immediately
thereafter, a 50 ul aliquot from the lowest test article
concentration was micropipetted to the three remaining inoculated
tubes. The first tube inoculated was then vortexed and its
contents were poured onto 25 ml of Vogel Bonner minimal bottom
agar contained in a sterile plastic petri dish. The remaining
tubes were then plated in the same manner. The plating sequence
always followed the delivery sequence of solvent or test article
dilutions. After all six of the above tubes were plated, the
sequence of procedures was repeated using the same S-9 mix and
tester strain until all the test article dose levels were plated.
The flask containing the S-9 mix was swirled gently immediately
before dispensing each group of six aliquots to assure equal
distribution of microsomes.
The plating sequence described above will be repeated
exactly each time using a different tester strain until all
tester strains have been plated with activation.
Plating procedures without metabolic activation were exactly
like those with metabolic activation, except that 2.5 ml of 1XSA
top agar per plate was used and no liver microsomes were added.
25
-------
After each plate was poured, it was placed upon a level
surface until "the top agar had solidified. After all the plates
I
had solidified, they were stacked inverted in an appropriate
container and placed in a 37°C incubator for 48 hrs. After the
48 hr. incubation period, the plates were removed from the
incubator and the number of colonies on each plate was counted
and recorded. If the plates could not be counted immediately,
they were stored at 4°C until they could be counted.
Positive Controls
Positive controls were included with each day's assays to
show that each tester strain was responding to a known mutagen in
an appropriate manner and to show that the S-9 mix was capable of
activating a known promutagen to induce an appropriate number of
revertants per plate. The positive control/strain combinations
are shown below.
2-aminoanthracene All strains 1 ug/plate
1,3-propane sultone TA100, TA1535 0.04 ul/plate
2-nitrofluorene TA98, TA1538 10 ug/plate
9-aminoacridine TA1537 75 ug/plate
Tester Strain Titer Determination
Determination of the tester strain titers yields results
that give a general indication of the health of the overnight
cultures. All cultures were harvested at an optical density that
q
yields cultures with titers of approximately 1 x 10 /ml. At this
density, the cultures are in late log stage of growth. Allowing
26
-------
the cells to go further into stationary phase could lower the
overall sensitivity of the culture to some mutagens due to the
V - 9
lowered physiological state. Titers of much less than 1 x 10 /ml
are fully viable, but may not allow for optimal test article-
tester strain interaction.
Tester Strain Characterization
Each overnight culture was checked to ensure that it
possessed the proper genotype. The following characteristics
were checked :
(1) Ampicillin Resistance, which indicated that the pKMlOl
plasmid was present in the TA98 and TA100 cultures.
(2) Crystal Violet Sensitivity, which indicated that the r f a
wall mutation was present in the individual cultures.
(3) A spontaneous reversion frequency that was historically
characteristic of the respective tester strains of
Salmonella typhimur ium used. This also indicated the
presence of the pKMlOl plasmid in the TA98 and TA100
cultures .
Modeling the Ames Test
All of the data generated under this contract was forwarded
to the Biometry Division of the EPA's Health Effects Research
Laboratory in Research Triangle Park, North Carolina. A detailed
description of the statistical evaluation conducted by that
Division has been published elsewhere (1,2).
27
-------
For the purposes of this report, I am including excerpts of
a memorandum Discussing the statistical evaluation used for these
\r
studies as originally written by Robert W. Dickinson, CTAB. This
communication was dated March 4, 1981 and was sent to Charles L.
Gray, Director, ECTD through Karl H. Hellman, Chief, CTAB.
Within the past few months, we received some of the long
awaited and much sought after Ames test data. These data were
analyzed by Larry Claxton and other HERL personnel using a
computer program that produces a statistical model of the Ames
test. The following is an explanation of the basis for this
computer program and of the data it produces.
The Ames test has become a standard laboratory procedure,
but the analyses and reduction of data derived from this test are
still rather arbitrary and not consistent from laboratory to
laboratory. Results from different laboratories are difficult to
compare quantitatively, and results from a single laboratory are
considered quantitatively comparable only when the tests are run
on the same day.
A detailed discussion of Dr. Claxton's model is contained in
an addendum to this paper. Only some general aspects and a
definition of specific activity will be given here. Dr.
Claxton's model differs from other models by being based on a
Poisson distribution instead of a normal distribution. The
Poisson distribution is an accepted and established method for
describing count data. Its use is valid if the following two
criteria are met: 1) each cell has an equal chance of mutating,
28
-------
and 2) if the variance of the plate counts divided by the means
of the plate Counts approximates one variance of plate counts =
v • •
mean of the plate 'counts. in the majority of cases, this is true
of the Ames tests.
For Dr. Claxton's model, the specific activity and slope are
essentially the same. The slope value represents the average
slope of the curve from the 0 dose level to the maximum dose
level (the maximum dose level being the highest dose level that
does not show effects of toxicity (explained in addendum), or the
rate of formation of revertants.) The specific activity is the
number of revertants at a certain dose level as projected by the
slope value, i.e., if the slope value is 2 revertants/microgram,
the specific activity at 200 ug is 200 times 2 or 400 revertants.
Therefore, at a one microgram dose level, the specific activity
and slope value are the same. For the rest of this memo, the
specific activity dose level is assumed to be one microgram.
When comparing Dr. Claxton's model to a model based on a
normal distribution, one should observe the two following events.
The specific activities derived by Dr. Claxton's model should be
generally higher than those derived by a model based on a normal
distribution. This is to be expected since Dr. Claxton's model
compensates for toxicity. Toxicity is the lethal effect a
substance has on the bacteria used in the Ames test. This lethal
effect lowers the specific activity since it reduces the number
of bacteria which can mutate. If the toxicity of the sample were
negligible, one would expect the specific activities derived by
29
-------
the two models to be approximately the same. These two events
were observed ."in the Ames data and help substantiate the use of
\r •'• '
this model. .-
The computer program also gives 95% confidence limits for
the specific activity. A 95% confidence limit means that there
is a 95% chance that the actual value falls within the range of
the values given as limits. If the confidence limits for
specific activities of two samples overlap, they are not
statistically different. Unfortunately, the significance is not
clear when specific activities of samples do not overlap. In
this group of data, 90 tests were repeated. Of these 90 tests,
the specific activity confidence limits of 36 samples did not
overlap with the specific activity of the repeat test (using the
original sample material). This was not due to sample
decomposition, since, neither the initial tests nor the repeat
tests were consistently higher or lower than the other. This
observation leads one to question the assumption that a
statistically different Ames test response indicates a
significant difference in mutagenicity.
The effect of toxicity on specific activity was mentioned
previously. In developing his model, Dr. Claxton uses a
parameter he describes as a toxicity parameter. In a classic
positive Ames test dose response curve, there is an initial
increase in the number of revertant colonies and a following
decrease in the number of revertant colonies. The "toxicity
parameter" estimates this decrease in the number of revertant
30
-------
colonies. The parameter is not an actual measure of toxicity
but, rather, a measure of the lack of mutagenic response.
\r
Further, the "toxi-city parameter" uses a decay curve to
approximate the decrease in the number of revertants. This
approach allows for a rough estimate of the toxicity, but does
not generate precise numerical values. The "toxicity" values
given in the tables indicate that toxicity is present, but these
values should not be used for comparative purposes for reasons
already mentioned.
The final value which the computer program calculates is the
specific activity calculated by the linear model. It is included
as a comparative v.alue to give an idea of the difference between
the two models. The linear model value may be used instead of
Poisson if a researcher so desires.
31
-------
ADDENDUM
•
This disdussiori of the Ames test data reduction system used
by Dr. Claxton shall center around the specific activity it
calculates. Microbiological Associates feels justified in using
this approach because the specific activity is the focus of
interest. An in-depth discussion of the statistics and math-
ematics underlying the model calculations can be found in a paper
entitled "Modeling the Ames Test" by Andrew Stead, et al. This
discussion will be limited to the explanation of the subjects
which appear as headings on the previous tables.
The discussion will begin with an explanation of the 3 and 4
parameter models and the importance of their convergence to
specific activities. It is always best to begin at the
beginning, so, the following is a definition of the parameters:
B - spontaneous reversion counts
(background counts)
B, - scale and noise parameter
(compensates for laboratory variations)
B» - rate of revertant colony formation
B_ - rate at which system becomes toxic
These parameters are used in an equation which
mathematically defines the Poisson distribution Dr. Claxton's
32
-------
model is based upon. This equation is as follows:
/ ,;B + B log x\ _
Vi^o+ie )(e 3 »
i = mean of Poisson distribution
X. = dose level
This equation is solved for the parameters by using the
maximum likelihood approach. This approach is to the Poisson
distribution as least squares is to normal distribution, except
maximum likelihood is much more complex.
The convergence of the 3 and 4 parameter models is related
to the way the Poisson equation is solved. The spontaneous
revertant count is derived from the actual data, and initial
estimates for BI, B_, and B, are estimated using a linear
approach. These initial estimates are plugged into the Poisson
equation. The final parameter values are arrived at by
repetitive estimations. One of two things may happen; the
parameter values may approach and equal the Poisson mean
(vergence of the model) or, after 500 estimates, the parameters
do not equal the Poisson mean (does not converge). How
convergence of the 3 and 4 models relate to specific activity
involves the Poisson equation and what shall be called the
"toxicity term". The Poisson equation is given below with the
"toxicity term" in brackets:
B. -i- B- log x.
Y- =(B + e 1 ^
1 - l o
33
-------
This term estimates the downward curve of the classic Ames
dose/responsejcurve (as described earlier). In cases where the
curve does not e'xhibit this downward trend, this term (B-) is not
used in the model computations. If the "toxicity term" is not
used, only three parameters are used in the model computations,
if it is used, 4 parameters are used in the model computations,
hence the terms "3 parameter model and 4 parameter model". From
the above description, one would expect the 3 parameter model to
converge when toxicity is not present and the 4 parameter model
to converge when toxicity is present. In interpreting the data,
the convergence of the four parameter model is the more important
of the two. If the 4 parameter model does not converge and the
curve is downturned, the data should be considered spurious. The
corollary is true of the 3 parameter model, if it does not
converge and the curve is not downturned, the data should be
considered spurious.
Two more terms which appear as headings on the previous
tables and which are important in the interpretation of the data
are the P values for the model and for adequacy. Both these
values are chi - square goodness-of-fit derived, i.e. measure-
ments of how well the data fits a hypothesis. In the case of the
P value for the model, the P value measures how well the data
complies with the Poisson hypothesis (variance of plate counts =
mean of plate counts). A low P value signifies a statistically
significant departure from the Poisson hypothesis. The P value
for adequacy measures how well the calculated Poisson curve
34
-------
passes through the means of the actual data points. A low P
value for adequacy indicates a significant deviation of the
calculated Poisson- curve from the actual data. If the test shows
a low P value for either the model or adequacy, the actual data
should be checked for large variations in individual plate counts
or data points which don't fit the expected curve. Large
variations in individual plate counts render the specific
activity ineffectual for comparison.
Data points which do not fit the expected curve may or may
not render specific activity invalid for comparison. This
decision must be made by the person reviewing the data. If the
raw data is checked for these two variations, and neither is
found, the data should be assumed to be acceptable and the
specific activity valid for comparison.
The specific activity that appears on the preceding tables
is not the B« value but a value calculated separately from the 4
parameters already discussed. The specific activity is calcu-
lated using the B, and B« values in the following equation:
Bn + B0 X
e 1 2 m
Specific activity = X
^ •* m
BI = scale and noise
B_ = rate of revertant colony formation
X = maximum dose
m
35
-------
The use of the BI and B? values is the reason why the
validity of ttje specific activity depends on the model values
'*? '
discussed above, i-.e. 3 and "4 parameter model convergence and the
two P values. The maximum dose is the highest dose not showing
the gross effects of toxicity. The mathematical description of
this dose makes use of the standard deviation of the revertant
colonies. A simple example is easier than an explanation. One
has the following two truncated data sets:
dose (ug)
650
1000
dose (ug)
650
1000
Set A
rev./colonies*
750
900
Set B
rev./colonies*
775
820
Standard deviation
50
25
Standard deviation
50
25
*Represents the average of three plates.
In data set A, the 1000 ug dose represents the maximum dose
since it gives the highest number of revertant colonies. In data
set B, the 650 ug dose is the maximum dose because the number of
revertant colonies at the 1000 ug dose does not exceed the limits
of the number of revertant at 650 ug set by the standard devia-
tion, i.e., the upper limit would be 775 + 50 or 825.
36
-------
The equation represents the average slope from 0 dose level
to the maximuia dose level. The slope represents the increase of
'*,-•'
revertant colonies over background or the specific activity at a
one microgram dose level. The 95% confidence limit is calculated
from the variance and covariance of B.. and B-.
37
-------
BIBLIOGRAPHY
1. Stead, A^G.y. V. Hasselblad, J.P. Creason and L. Claxton.
Modeling ttte Ames test. Mutation Research 8_5:13-27, 1981.
2. Hasselblad, V., A. Stead, J. Creason, and V. Kasica. Users
Guide, the Ames test curve fitting program.
EPA-600/2-80-184, September, 1980.
3. Dunkel, V.C. Collaborative studies on the Salmonella/
Microsome Mutagenicity assay. J. Assoc. Off. Anal. Chem.,
62: 874-882, 1979.
4. McCann, J., and Ames, B.N. Detection of carcinogens as
mutagens in the Salmonella/Microsome test: Assay of 300
chemicals: Discussion. Proc. Natl. Acad. Sci. USA 73;
950-954, 1976.
5. McCann, J., Choi, E. , Yamasaki, E., and Ames, B.N.
Detection of carcinogens as mutagens in the
Salmonella/Microsome test: Assay of 300 chemicals. Proc.
Natl. Acad. Sci. USA. T2_: 5135-5139, 1975.
6. Purchase, I.F., Longstaff, E., Ashby, J. , Styles, J.A.,
Anderson, D. , Lefevre, P.A., and Westwood, F.R. Evaluation
of six short term tests for detecting organic chemical
carcinogens and recommendations for their use. Nature,
264(5587): 624-627, 1976.
38
-------
7. Sugimura, T., Yahagi, T., Nagao, M., Takeuchi, M. , Kawachi,
T. , Haraj K., Yamasaki, E., Matsushima, T., Hashimoto, Y. ,
V '
and Okada, M; Validity of mutagenicity tests using microbes
as a rapid screening method for environmental carcinogens.
Screening Tests in Chemical Carcinogenesis ed. Montesano,
R. , Bartsch, H., and Tomatis, L. No. 12, pp. 81-101, IARC
Scientific Publications, Lyon, Switzerland, 1976.
8. Ames, B.N., McCann, J., and Yamasaki, E. Methods for
detecting carcinogens and mutagens with the Salmonella/
Mammalian-Microsome Mutagenicity test. Mutation Research,
J3JL: 347-364, 1975.
9. Ames, B.N., Lee, F.D., and Durston, W.E. An improved
bacterial test system for the detection and classification
of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA.
70; 782-786, 1973.
10. Hartman, P.E., Hartman, Z., Stahl, R.C., and Ames, B.N.
Classification and mapping of spontaneous and induced
mutations in the histidine operon of Salmonella. Adv.
Genet., 16_: 1-34, 1971.
11. McCann, J., Springarn, N.L., Kobori, J., and Ames, B.N.
Detection of carcinogens as mutagens: Bacterial tester
strains with R factor plasmids. Proc. Natl. Acad. Sci. USA
72: 979-983, 1975.
39
-------
12. Walker, G.C. Plasmid (pKMlOl)-mediated enhancement of
repair aad mutagenesis: Dependence on chromosomal genes in
Escherichia coli K-12. 'Mol. Gen. Gent., 152: 93-103, 1977.
13. Isono, K. , and Yourno, J. Chemical carcinogens as
frameshift mutagens: Salmonella DNA sequence sensitive to
mutagenesis by polycyclic carcinogens. Proc. Natl. Acad.
Sci. USA TL* 1612-1617, 1974.
14. Maron, D.M. and Ames, B.N. Revised methods for the
Salmonella mutagenicity test. Mutation Research, 113;
173-215, 1983.
15. Levin, D.E., Yamasaki, E., and Ames, B.N. A new Salmonella
tester strain, TA97, for the detection of frame-shift
mutagens: A run of cytosines as a mutational hot-spot.
Mutation Research, 94; 315-330, 1982.
16. Levin, D.E., Hollstein, M.C., Christman, M.F., Schwiers,
E.A. and Ames, B.N. A new Salmonella tester strain (TA102)
with A:T base pairs at the site of mutation detects
oxidative mutagens. Proc. Natl. Acad. Sci., 79; 7445-7449,
1982.
17. Ames, B.N., Durston, W.E., Yamasaki, E., and Lee, F.D.
Carcinogens are mutagens: A simple test system combining
liver homogenates for activation and bacteria for detection.
Proc. Natl. Acad. Sci. USA 70: 2281-2285, 1973.
40
-------
18. Miller, E.G., and Miller, J.A. The mutagenicity of chemical
carcinogens: Correlations, problems and interpretations.
!- '
Chemical Mutagens; Principles and Methods for their
Detection ed. A. Hollandder, vol. I, pp. 83-119. Plenum
Press, New York, 1971.
19. Conney, A.H., and Burns, J.J. Metabolic interactions among
environmental chemicals and drugs. Science, 178; 576-586,
1972.
20. Prival, M.J., King, V.D., and Sheldon, A.T. The
mutagenicity of dialkyl nitrosamines in the Salmonella plate
assay. Environ. Mut., ^: 95-104, 1979.
21. Prival, M.J.,and Mitchell, V.D. Analysis of a method for
testing azo dyes for mutagenic activity in Salmonella
typhimur ium in the presence of flavin mononucleotide and
hamster liver S-9. Mutation Research, 97; 103-116, 1982.
22. Bartsch, H., Malaveille, C., and Montesano, R. In vitro
metabolism and microsome-mediated mutagenicity of
dialkylnitrosamines in rat, hamster and mouse tissues.
Cancer Research, 35: 644-651, 1975.
23. Yahagi, T.M., Degawa, M., Seino, Y., Matsushima, T. , Nagao,
M., Sugimura, T., and Hashimoto, Y. Mutagenicity of
carcinogenic azo dyes and their derivatives. Cancer
Letters, 1: 911-916, 1975.
41
-------
24. Shudo, K., Ohta, T., Orihara, Y., Okamoto, T., Nagao, M.,
Takahashi, Y. , and Sugimura, T. Mutagenicities of
\.
phenacetin and its metabolites. Mutation Research, 58;
367-370, 1978.
25. Yahagi, M., Nagao, Y., Seino, T. , Sugimura, T. , and Okada,
M. Mutagenicities of N-nitrosamines on Salmonella.
Mutation Research, 48; 121-130, 1977.
26. Haworth, S., Lawlor, T., Mortelmans, K., Speck, W. and
Zeiger, E. Salmonella mutagenicity test results for 250
chemicals. Environmental Mutagenesis, (In press).
27. Matsushima, T-. , Sugimura, T. , Nagao, M., Yahagi, T. , Shirai,
A., and Sawamura, M. Factors modulating mutagenicity in
microbial tests. Short Term Mutagenicity Systems for
Detecting Carcinogens, eds. K. Norpoth, and R.C. Garner.
pp. 273-285, Springer-Verlag, Berlin, 1980.
28. Raineri, R., Poiley, J.A., Pienta, R.J., and Andrews, A.W.
Metabolic activation of carcinogens in the Salmonella
mutagenicity assay by hamster and rat liver S-9
preparations. Environ. Mut., ^: 71-84, 1981.
29. Maron, D., Katzenellenbogen, J., and Ames, B.N.
Compatibility of organic solvents with the Salmonella/
Microsome test. Mutation Research, 88; 343-350, 1981.
30. Huisingh, J.L., Bradlow, R., Jungers, R., Claxton, L.D.,
Zweidinger, R., Tejada, S., Bumgarner, J., Duffield, F.,
42
-------
Waters, M., Simmon, V.F., Hare, C., Rodriquez, C., Snow, L.
Application of bioassay to the characterization of diesel
particle emissions. In Waters, M.D., Nesnow, S. , Huisingh,
J.L., Sandhu, S.S., Claxton, L.D. (eds): Application of
short-term bioassays in the fractionation and analysis of
complex environmental mixtures II. EPA-600/9-78-027,
Research Triangle Park, North Carolina: U.S. EPA,pp 1-32.
31. Kotin, P., Falk, H.L., Thomas, M. Aromatic hydrocarbons
III. Presence in the particulate phase of diesel engine
exhausts and the carcinogenicity of exhaust extracts. AMA
Arch. Ind. Health _!].: 113-120, 1955.
32. Claxton, L.D. Characterization of automotive emissions by
bacterial mutagenesis bioassay: A review. Environmental
Mutagenesis _5:609-631, 1983.
33. Pitts, J.N., Jr. Photochemical and biological implications
of the atmospheric reactions of amines and benzo(a)pyrene.
Philos. Trans. R. Soc. Lon. 290:551-556, 1979.
34. Herr, J.D., Dukovich, M., Lestz, S.S. The role of nitrogen
in the observed direct microbial mutagenic activity for
diesel engine combustion in a single cylinder diesel engine,
Society of Automative Engineers, 820467, 1982.
35. Brooks, A.L., Wolff, R.K., Royer, R.E., Clark, C.R. ,
Sanchez, A., McClellan, R.O. Biological availability of
mutagenic chemicals associated with diesel exhaust
particles. In Pepelko, W.E., Danner, R.M., Clarke, N.A.
43
-------
(eds): Health effects of diesel engine emi-ssions:
Proceedings of an international symposium.
EPA-600/9-80-.057a, Cincinnati, Ohio: U.S. EPA, pp. 345-359,
1980.
36. Siak, J.S., Chan, J.L., Lee, P.S. Diesel particulate
extracts in bacterial test systems. Environ. Int.
5:243-248, 1981.
44
-------
J
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA 460/3-84-003
2.
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE . -.-
Ames Bioassay of- "Exhaust Soluble Organics Emissions
5. REPORT DATE
April 1984
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Steve R. Haworth
Timothy E. Lawlor
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Microbiological Associates
5221 River Road
Bethesda, Maryland 20816
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2923
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
Mobile Source Air Pollution Control
2565 Plymouth Road
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final report (6/80-12/82)
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report summarizes the results.obtained from testing 201 extracts of engine
exhaust particulates in the Salmonella/mammalian-microsome mutagenicity assay
(Ames test) from June 1980 to December 1982. Exhaust particulates collected on
filters were subjected to a 24 hr soxhlet extraction with methylene chloride.
Each blown down sample was shipped to Microbiological Associates where it was
assayed at least twice in the Ames test in two separate experiments conducted
over a period of several weeks. Each Ames test was conducted in triplicate at
five dose levels using up to five Salmonella typhimurium tester strains, TA98,
TA100, TA1535, TA1537 and TA1538, both with and without metabolic activation by
Aroclor induced Fischer rat liver microsomes. Very often, when the amount of
available test article was limited, only one or two tester strains (TA98, TA100)
were used. The resulting mutagenicity data was sent to the Data Management
Branch of the EPA's Biometry Division in RTP in North Carolina where it was
entered into a computerized data base and was statistically analyzed using the
method of Stead, et al (1,2).
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Air Pollution
Motor Vehicles
Diesel Engines
Gasoline Engines
Exhaust Emissions
Particulates
Mutagens
Ames Bioassay
Organic Extracts
18. DISTRIBUTION STATEMENT
release unlimited
19. SECURITY CLASS (This Report)
unclassified
21. NO. OF PAGES
48
20. SECURITY CLASS (Thispage)
unclassified
22. PRICE
EPA Form 2220-1 (9-73)
45
-------
GROUP 1
•
tf . '•'.. . FUEL. EFFECTS
VARIABLE: FUEL PARAMETERS IN DIESEL FUEL
CABS-79-0761 M-B 240D very oily (Dl + add.) C/H FTP
0781 " " (Dl
0931 " (Dl + add.) C/H FTP
0940 " " 85 kph
0961 " (Dl + add.) C/H FTP
0970 blank filter
46
-------
/
GROUP ID: /
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE/MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
FTP
fyJL
c,/
/ f-i P Tf°
- 2a - 073 /
Fit0
21f-
^f
"V
".V
H prp
3.
-;< • e $-
*f-
-------
/ •-.-
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
- S9
e
3
3
-•2.
d"
•
3
±
f
3
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
tsnes,* E>a.-hs.; /3./,
-------
S^nple I.D.
Date Tested
Activation
train Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
i'oxici ty
B,
Value
Adequ
Met
2 Paramet
Converaed
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
-r/m
£>//
.£>
fc/7
-1
-T/O
0.7
O.OC03C
y
y
2O -5>
90-67^
V-7
01 $3
c/
D.C
D.O
0.4
O.LI7
t/
acco
/•I
/•V
I/
2.5-^
3.1
3.7
- s
-D
J-
S-
3.V
c. cccll
0.53'/
O.CCQ'S
I/
1 1
0,0
D.O
0.7
-------
Sanple I.D.
Date Tested
Activation
train Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
valid
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
1-2.1 tlj SO
ico
C. CO/8 9
cxst
i/
-8
I/
I/
©•9*7
L/
aeoo
1 1
C-8
At
sicoo
£2D
Ol
o
u/
a
II
3
V-/
/V-
I/
2-725
ao->
n
II
&.*
CABS -SO- OH/
ii
3.0
3-t,
1.037
G.&coSl
i
6*. 3
0-0/9
0.00013
30C&
ttceo
-------
ionple I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
TO.
535-
f?ir OIL
o.o
.D
6.0
i /•
ii
it
o./
u/
I/
If
if
O
c./
C'.i
I/
30 ->
il
C-2.
O.C33
e-.ocyco
i/
i/
i/
acco
'(.So
if
e.c
t-C
I/
7
4c&
1 1
C.I
0/3
(.2.
n
n
fc.o
OJ
O.fo
u
O-O
0.0
O.fe
0-OC2-
if
b.C
-C.C30
3? ooo
/fcr
0.0
. C
O.OCOIC
-------
s-inple I.D.
ate Tested
Activation
train Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Si
Value
Poisso
Valid
equ
t
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
/2/3//SO
537
C
D3
o
02,
o.z,
0. /S3
30 ->
It
D.z-
c-nz
o.ccos/
u/
Z.3
c/
t/
O.I
0-2,
0-5
c
I/
t/
accc
Ln
NJ
II
6.2.
6.ILZ,
C1 1
C. 1
O.I3Z
'2 So
0-7
0. IIS
ecc
0-t
0.8
0./54
I/
I
lV
JCCO
O.I
0.024
I/
IBI
Taw. cat
-------
Sar.ple I.D.
Date Tested
Activation
Strain Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
redicted
Slope
(Mean)
Toxicity
B,
Value
C
O
T)
W) -rt
H ^
O «)
0. >
r
e
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
Tfl
1539
,-;
6.7
StSo
.s
I/
t/
P.?
OlCi.
1-2,
tX
c/
flcoo
D.3
D-7
b.251
(?. Otfo 3 3
y
CPQS-11-Cltl
O.t-
e.fc
I/
D.4
D.t,
I
->
-5
7.b
6/3
I/
0.3
0.5"
tX
*/
-------
-GROUP 2
GASOLINE/DIESEL COMPARISON
full power leaded
CABS-80-0131 HD Chevrolet 366 lean (gasoline) 2300 rpm
54
-------
/
GROUP ID: ^
SAMPLE ID
£*&< -/>•£ A3 /
VEHICLE/
ENGINE TYPE
?-/£> &s\?>'r-die /-
3£fc CL,-o
£3a^,t i ,s-,'' + 1-t.i.a
-------
•
t
SAMPLE ID
G-AQS- f
-------
i j.- ;. 1 1: I . D .
CA&S-W-6I3I
//
//
/i
jte Tested
a/£/«i
•> i
a fat /ii
2 la* A/
Strain
r/f
?f
5000
'/
'/
4/0--^
^04"
Max
Rev/
Dos a
?£/
/aw
iiy
/sicco
~"?
/70
Common t»
I.ttfufFftrtm
Mta r^fl.
rfftf&rAcM- An/U*
-------
1.0.
te Tested
Strain
Activation
t Nmnfier
Model
Prcdicced
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
oKicity
8,
Value
C
0
in -0
in *i
^ 'H
0 1
0. >
Parat
onveed
Dose
Range
ested
(UCS)
Rev/
Dose
Comments
Tfi
[60
IL
J
&OOG
'I
t&ot
hi
L±L
>t
~r
Ul
oo
-------
1.0.
Tested
Strain
Activation
Lot Number
Model
Prudictud
Slope
-Ow Mean High
Linear
egression
redicted
Slope
(Mean)
oxicicy
B,
Value
0
i/l 13
W -H
1 r-«
O <0
a, >
Dose
Range
c-sced
(DCS)
Max
Rev/
Dose
ConvnonCi
ow
u/
&•<>•-?
70
Ln
id
-------
GROUP 3
PARTICULATE" CONTROL METHODS,
BASE-LINE TESTS
CABS-80-4011 MB 300 SD (D2) B/L C/H FTP
4031 VW Rabbit (D2) B/L C/H FTP
4051 Olds Delta 88 (D2) B/L C/H FTP
60
-------
/
GROUP ID: ^
SAMPLE ID
&A&3 • ?(>- J/.£,/i
CA£&- ?o-*fo3f
C/3&S. - ?c> -VoS"/
VEHICLE/
ENGINE TYPE
O}ts-C
VaJ ^a.fcfc)'.-V
/5i^- /^//A i?}?
DRIVING
CYCLE/MODE
K
C?
/f^f'/Tvj}
(?
/'7»5">oT^.
/
COMMENTS
.•v*'"' •• •:
-------
•
f.
SAMPLE ID
£S>&& - £a -#£>//
dA£S- ?£> -VA3'/
£/
-------
Sar.pl e 1.0.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
oxicity
8,
Value
Adequa
Met
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
(VIS
KUoit
3.1
. 5
5.576
1-770
3/7
C-. C'OC'7/
y
.2.36
Lto
L Z,
b.Z
S.L
2.113
Zcae
C^
W
flub/i
1,5
TS
C-OC/93
3-5
•/.c
1.013
t
i/
CflBS
0.0007^
2000
, r
•/.(=
n
.5
S.T
O.O6/33
8.T
a.s
.2c.cc,
-------
Sample I.D.
ate Tested
ctivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
81
Value
Poisson
Valid
•a
a I
a
>
vfi
aj
r
n
si
o
N U
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
rp,
is
\i
t-z.
.s
C885
3.7
G.CCOS&
SJtco
U.S
4,3. L
ts.t
t/
t-3
i-Sn
I/
ON
J>
6.6
0.139
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
o rc
n. >
a
o-
•O HI
a; I
0. C
o
v o
m >
0. c
O
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
A8S-9C-
Tfi
n
0.1
/.s
I/
acoc
ACC'C?
).(*
V-o
4.3
O.C-CC48
y
x/
3.CC-0
5.1 5.z
3.0
3.3.
ON
Ui
Tfi
3.?
I/
Ate
. HO
o.co/ot
zo— >
a
3o-3>
/.So/
I/
TA
-?
5.0
$.<*
O.S8T
2.3
a.s
3.5
o.fe-3/
I/
t.S
O.OO^'/f
fc5c
,OHZ.
-------
GROUP 4
HEAVY DUTY' DIESEL CATALYST
VARIABLE: CATALYST/NO CATALYST
CABS-80-4071 HD Caterpillar 3208 w/catalyst
w/o catalyst
66
-------
/
GROUP ID:
SAMPLE ID
&tAs BO -4^7/
C*<3S ~&Cr ¥£>Z(
VEHICLE/
ENGINE TYPE
H D GaJerfx 1 >a~r-
3*6% ^/Oxrzx/tys/-
\J
H£> Cauterp', i \o-t-
33L& 8 t^/O GoufAJt^
DRIVING
CYCLE/MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
7-2^5/005,.
U
/ 36 »J9>
U
COMMENTS
.•v • •• •:
1
-------
•
t
SAMPLE ID
#4As-g^-Vo7/
&)&S>-ZO~ tAV 1
TESTER STRAIN
TA98
+ S9
*
- S9
/
/
TA100
+ S9
- S9
/
/
TA1535
+ S9
- S9
/
1
TA1537
+ S9
- S9
/
/
TA1538
+ S9
- S9
1
\
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
/ - e*ferim&nJ ZWe 'VsV'TO
68
-------
Sample I.D.
te Tested
ccivacion
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
Adequa
Met
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
93
.2-
£.3
£.222.
•X
ff— 7
tiCO
J.-/
3.3
43
A 750
•X
y
lico
rA
/oc
0.7
u/
I/
tLQCL
It
I/
35"
. )
C'.O^O
i/
o.c.
C'.o
a o 9
L/
iz.cc>
ra
/S37
6.C
5.C
O.03L
v/
'9-7
Sj,
'
tiCO
0.5
08
y
WS,
-o 7
-rA
/53S
0.2.
a 2.
I/
u/
t
/ZCO
1100
A3
6.00053
-------
GROUP 5
FUEL" EFFECTS
VARIABLE: DIESEL FUEL PARAMETERS
CABS-80-4101 M-B 240 D various Diesel fuels FTP
4111
4121
4131
4141
4151
4161 "
4171
4181 " " 85 kph
4191 " " 85 kph
70
-------
/
GROUP ID: Jf
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
OA&S - ?0
Jf-7
i ne.
FT?
yO.Se +IsQr.t2_/rtah
FTf
Base + Li *\ht Ends
- F
Frf
1" CLC-3
6*3/3 -S-
3^30
-------
S
SAMPLE ID
£>- &£> -
7*1/t.
TESTER STRAIN
TA98
+ S9
3-
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
V
V
•y
TA1538
+ S9
3
- S9
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
'
-------
i Ample I.D.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
8,
Value
Poi sson
Valid
Adequ
Met
V. 01
>
(X C
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
2/2Z/gO
'•3
C-OCC3O
cX
2c->
2CCO
2.3
3-3
o.V&i
O.CCCfoS
•X
0*47
Z.J
3.0
o.ccct/
vX
IT73,
icoo
O.CC077
^ctx>
i.3
M
2-C
O.CC-t-55
iX
IT"
0.123,
C.CC631
3.Z
37
oco^^
-------
Sample I.D.
CP6i-^-'/'6/
cr»gs-3c-4/7 i
CA6s-&'6-4-i//.v<pt
Valid
0^4
t/
10
Adequacy Criter
Met
»/
.C\7C)
-*
I
i -o
01 01
5 2
k< V
0. C
0
•» o
c/
IX
I/
^
'O
)
M
0)
*J »O
i m
a £
^ a
(X c
o
n o
t/
iX
^
T)
>
araCTeter
veroed
a. c
o
IN U
I/
fc/
2COO
2D-->
JCCO
Max
Rev/
Dose
ISS},
ZCC&
• 3S>
^A)
/ao/,
2£>6O
/t7O
2CCO
Commontti
.y»- • •:'
-------
I.D.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisson
Valid
Adequa
Met
ra
eroed
Dose
Range
'ested
(UCS)
Max
Rev/
Dose
Comments
TO
2C-5
1-5
25-
0372
X
Z.COO
I.I
1-4
I.*!
ztfic
^coc
1-4
2.4
X
(X
ecoo
i.O
1.3
l.fc
iX
ZCoc
0-1
2.0
0.^/45
O-CCO iS
X
X
X*
^j
On
2/z.
i-ICtc
(X
2323
/•c.
2.3
3.2
i/
x'
ZC-?
x'
H
2.0
O.OOC35"
IX
8
t/
cX
•/•V
CftSS -8c-
w
5-1
2.4/2.
0.000*15
X
X1
2ccO
20-7
5.5
vX
3.o
•5-3
0.921
X
-------
Sample I.D.
CMS&-41U
Cftg£-Sc- &-7I
CfflB.*>-**/
c*as-sc-W
ate Tested
*.//?/*>
-
«•
••
Strain
Tfr
IDC
••
• •
••
ctivation
ot Number
—
Model
Predicted
Slope
Low
fe-z.
13.5
•U
3-\
Mean
t t
H.c
M.T
3-t
High
7.0
/*C
54
M.2.
Linear
Regression
Predicted
Slope
(Mean)
2.70fe
Z 7-73
0/135-
0.797
Toxicity
B,
Value
C.CCfZS
C-CCZ3V
f*. f^s* f-. ~^ €t
lull ' ^_*LJ ^. / /
c.oocii
c
o
Poisson Assu,-npt.
Valid
.y
,/
03.S
a
Adequacy Criter
Met
.orzr
.0/^2-
^
^
-o
> "
1 °
v* a;
A. C
o
w O
/
s
I/
^
„
1
i f
I £
n a
a. c
0
n U
s
s
r_t
T3
)
1
i 4>
j £
U
20-9
20-?
2^c!
Max
Rev/
Dose
(^t*c
"%*
^ooo
^
Comments
.•v-v:
-------
Sample I.D.
ace Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisso
Valid
r
Conve
Para
Converoe
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comjncntii
ft
C.C
O.D3»
(r
20 ->
o.c
e.i
O.z
tX
1 1
1 1
o.c
4-0
u/
fi.O
e-V
t/
I/
C.c
6.C
C.I
o.t
0-014
I/
26-?
D.I
C-i
C.3
6-034,
t/
CftBS -SO -«//»/
G.I
O.I
6.034
I/
1 1
5.0
£>.!
0
0,037
I/
1 1
0.0
, ctcz
7
/2c
caes-sc-a/s
C.C
C.CCCCfc
20 -5»
0.0
0-0
CO
-c.
0-c-
O-O
y
•ay
/
I (
0.0
0,0
o.c
-0.0/1
D.O
c.o
'^ccc
-------
— 1
oo
Sample I.D.
CMSMO-'Ufci
C»»-Vi7/
, HvS *"c3'^~* ^ / v 1
^rtCfe— 55^- ^li^l 1
ate Tested
//i3/*/
./
ir
//
Strain
Sf
"
\ 1
„
ctivation
oc Number
—
—
—
Model
Predicted
Slope
Low
D.O
D.D
fc.O
C-.o
Mean
D.O
c.o
6.C
CC
High
c.\
C 1
\-ftf
e t
Linear
Regression
Predicted
Slope
(Mean)
O-Ot8)
-o.ccs
-c cai
C.6C3
Toxicity
B,
Value
.
—
Poisson Assumption
Valid
^
S
Adequacy Criteria
Met
01 $1
arajneter Model 1
veraed 1
a, c
•
^
•
arameter Model
veroed
(X C
o
!•> O
(X
c/
^
•
Model
araneter
veroed
. c
o
IN U
s
^
s
^
Dose
Range
rested
(UGS)
aw>
IS
a^
2060
Max
Rev/
Dose
2-Q
*x*
/Zc
%
Comments
.•v-v:
'.
-------
Sample I.D.
Date Tested
ccivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
S3
Value
Poi
Val
Adeq
Met
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
TA
531
0-1
.3
0.133
C. tCC 31
(X
>
2.CCC
O.T,
0.3
C-3
0.3
C-5
o.s
O.COC5/
iX
c/
t-b
1. 1
O-Cc/OZ.
iX
Sicc
o.s
(-3
*x
.2.
0-S
v/
i/
.3
c.5
O.
(X
1 1
o
L/
t/
c.3
0.4-
M
o.ze>.
0-H3
&.CCCZ3
.X
I/
02.
0-2-
c?. m,
o
0.3
I/
i
£>.
•X
Vi
c.3
0.5
t.8
c. co
-------
OO
O
Sample I.D.
,.MD<5"C^- ^rl vt
'rtQC .&f*.—L}{~1l
CM*-*-***
c**as-so-v/9/
ate Tested
2/3//30
it
i,
i.
Strain
^7
li
..
r,
ot Number
___
Model
Predicted
Slope
Low
0-Z.
c.u
D.I
t>4.
Mean
e-3
C.T
C-l
O.i
High
e.s"
J.O
O.I
c.Z.
Linear
Regression
Predicted
Slope
(Mean)
0.13 1
a.*w
a,^
C.tbS
Toxicity
Value
C£C#4
Comments
.A--' .. •:
-------
Sample I.D.
ace Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Moan)
Toxicity
Value
Poisso
Valid
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
Tfl
0-3
0-4
.X
t-1
.ci
1-2.
0.534
J/
J
Slcec
i.C
i/
y
ST
b.1
03M8
6 • 0604*)
I/
£l
u/
co
t/
CfljSS -
I.C
C-453
J
iO-i,
•3 ceo
ao -•>
6.1
0-1
ac->
o.s
0.1
t.s
t.s
C.CCC3-2-
c/
0.3
o.l
(."'-OCC7S'
(X
CrtSS -SO-0.//
CABS -&> -
e-CcclS
IX
icoo
l.'S
.5/1/
I/
,0/fc
04
o.S
C-.T
I/
I/
CA8S-&0-V/V
&.C£074
at
I/
eot,
n
I.';
.035*
-------
00
NJ
Sample I.D.
CP8s -66- «-| 1 1 )
CttSs-Sfc-am
ca-6s-9&-4isr/
CPt6s^>-vV9/
ate Tested
'ZM&D
1 '
1\
(l
Strain
TA
&3^-
\l
1.
U
ot NumCer
—
Model
Predicted
Slope
Low
t D
/•i
0.3
0-4
Mean
\-~i-
1-1
t-f
l-S
High
1-^
/•9
0.-7
O.T
Linear
Regression
Predicted
Slope
(Mean)
O-ac§
C..5c>.s
c. 5»si
D-253
Toxicity
Bi
Value
O.«CoOS5"
t.oor%4
G-Cc^^
O.occS^
Poisson Assumption
Valid
iX
Adequacy Criteria
Met
I/
L/
v/
4 Parameter Model
Converoed
(/
•
t/
V
3 Parameter Model
Converged
J
(/
(/
•
(U
T3
)
2 Parameter
Converoed
/
(/
y
c/
Dose
Range
Tested
(UCS)
av-*
<3Ccc
ao-b
6»a£o
.20-?
ac££
2-e-?
5t06(^
Max
Rev/
Dose
<4z^
2C££>
4s>
w
Z£OO
5^
•^&>o
Communes
.-
-------
GROUP 6
SALT MINE AIR TEST
CABS-81-0010 Windsor Salt Mine Air Sample
83
-------
/
oo
GROUP ID: &
SAMPLE ID
Crt&S- %/-&£>/&
VEHICLE/
ENGINE TYPE
U)f1CtsOr-StL/1-
/>? i /•> <£. Ai r~
^O-tt^-oif
1
DRIVING
CYCLE /MODE
^/^
/}f/>/ita£{z-
FUEL TYPE/
BLEND
/.•'vt- .
^/>«? /t* * //e-
TOTAL MG
EXTRACTABLES
/T7^.
COMMENTS
/
."V J •- •.
;
-------
(f> ...
•
j.
SAMPLE ID
GA&S-VI'OG/O
TESTER STRAIN
TA98
+ S9
*
/
- S9
/
TA100
+ S9
/
- S9
/
TA1535
+ S9
/
- S9
/
TA1537
+ S9
/
- S9
/
TA1538
+ S9
1
- S9
/
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
85
-------
Sample I.D.
ate Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
BJ
Value
Ad
Me
e
ed
2 Parame
Converge
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
-1-81
T/W
o. c
y
x/
4U1
aooo
d.O
O.I
0^7
x/
A1, fc 7
o.c
1.3
o. oo/
•s
v/
s/
0.0
(3/0
C.O
v/
00
<^
0.0
V/
3000
T/froo
O.o
0,0
v'
d.o
0.0
y
0,0
y
\/
Ox)
6.0
4,0
\/
y
n-3o -d
-------
GROUP 7
HEAVY .DUTY DUAL FUELED ENGINE COMPARISON
VARIABLE: A) FUELS
B) STRAIGHT DIESEL ENGINE BS DUAL-FUELED ENGINE
CABS-80-4201
81-0020
0021
0030
0040
0050
0060
0070
0080
0090
0091
0100
0110
0120
0130
0140
0150
0171
0230
0240
0241
0250
0260
0270
0280
0290
0300
0310
SDSB-80-4221
4231
4141
4251
HD Volvo
Volvo Diesel + MeOh
Volvo Diesel + MeOH (w/catalyst)
Volvo Diesel + Ethanol
Volvo Diesel + Ethanol (w/catalyst)
87
-------
/
GROUP ID: 7
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
6//O-D
Yo'Uo
ij-c/a
Vo/Vo
22^-
^T
V/6/i/O
(Lc r*i p £> S / V 6
n^
o
/hocU.
o o
^
*t-
n^
JZ.3-.0 o / / a-o
bf-
7 VK^^
3. OS~3
-------
oo
v£>
GROUP ID: 7
SAMPLE ID
- F/-
/
90
VEHICLE/
ENGINE TYPE
Vo IVo
Vo
l/O/J/O
Volvo
DRIVING
CYCLE/MODE
/<£/?/
2,
cLi,
a. &
-------
/
GROUP ID: 7
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
v^
/i
\ e 1
7 / '/
«o
o
tl
-------
7
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ 59
- S9
TA1538
+ S9
- S9
a.
/- 0 OiD
a.
- tf'-oofo
- 6070
-&I- 6620
- 9 1-
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
91
-------
7
•
I
SAMPLE ID
&A&S- 8V -633t>
GA&S-Z i-ozLfj
QA As-? /-a 3.to
£#&&-$/ -oASb
&rt &$-&/-<} a_& 0
Oft & 5- SV- 6 U. -70
GAG>^>-'S'/~03-&b
CA&s-g'/~czL.e?0
&A&S-F/-6 3£>o
&9>3.S-gV-$&g'o-¥<3a-/
&><$&- go -y~z3/
5DS3 -gft- VJ.y/
SQS& -Z-a-y^s?
TESTER STRAIN
TA98
+ S9
*
/
/
/
/
/
/
/
/
/
/
6
3
3
3
4
^
•4
^
- S9
/
/
/
/
/
/
/
/
/
/
3
3
3
3
*
i
4-
-f
TA100
+ S9
i
X
3
3
3
3
t
t
-f
V
- S9
i
2.
3
3
3
3
t
1
-¥
H-
TA1535
+ S9
i
2
S
3
3
3
4
y
i
•v
- S9
2
2
3
3
J
J
4
f
•f
y
TA1537
+ S9
2.
i
3
3
3
3
*/
Y
Y
y
- S9
-i
i
3
3
3
3
-V
-f
y
y
TA1538
+ S9
a
^
3
3
3
3
y
y
y
y
- S9
=e.
2.
3
3
3
3
*
y
¥
t
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
A. -
r-i it\ p
92
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B3
Value
od
te
ed
Pa
Conve
Parame
onverge
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comnents
si
AT-/7
0-377
6,66033
yy
y
Stoo
7^
CAf>S VI-CC16
TA
ts
CrtJ&S
' 1
•0,436
O'QOQfA
y
f /
i-sw
d-e>6CX I
y
VO
10
y
It
it
ffl -6066
tt-3
6,66/7%
II
&L
y
r r
2$
J
J
73V
'1
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
83
Value
£2
s s;
a. c
o
O
ged
Parameter
nverged
Dose
Range
Tested
(uos)
Max
Rev/
Dose
Comments
T/9
3.^77
tQLLL
/ r
' 1
6,66/9*
HA
3J15
0.6631%
y
VO
-K /-&/&)
fr
itd.tl£.tL
6 ,
n
t.lj
t-b
,03/0
y
'1
4.3
' I
0,663.
64
6,
1,
6.3*1
y
'1
b.AOfllf
-------
Sanple I.D.
ate Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
O a
a. >
3
tr
01 U
T3 0)
< X
Parame
nverge
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
rfi
SLL
.y
y
f(
1*0
X
/I
in&L
I/
- W-&&0
y
II
n
0,
VO
(Ji
'^03)0
y
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
Ad
Me
ete
ed
H CD
ro >
0. C
O
m o
te
ed
Par
onve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
rft
0,379
3666
77^
/&000
Li
6,5
y
y
/J/COQ
y
tf
VO
(5 ,/}£0 ,
3006
4AX277
Li
7-
I/
J
2-52
t-l
/.y
6, 66 fit y
X
I/
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B3
Value
Adequacy
ete
ed
nj >
o. c
s
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
C/fdS- */-/«)
41
1A
6-M/tl
6.7
0.6/3
y
l.i
36—>
&66O
/so
1.7 £0
VO
Vl-6/fO
6, 660 $
y
6-/6J
0,66639
.4*7
y
/ r
•7
y
'r
. (,
0-
y
tr
6%
S.37C,
793S
rL^
-------
Sample 1.0.
ate Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
0
tn T3
Pamt
Conveged
et
ed
te
ed
2 Pa
Conve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
fl«//1
Tfl
*/
£2
b.COiZA
y
j
*/
75%
Ir
fi.SZ*
*/
r
i.vot
I/
J
VO
00
' 1
6. It,
-------
Sanple I.D.
ace Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
•D OJ
< X
•o
o o
h
&$
0. C
o
Dose
Range
Tested
(UUS)
Max
Rev/
Dose
Comments
aow-7
4660
- ma
> i
313
3,
I/
> i
^^j
-------
Sample I.D.
ate Tested
ctivation
,ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
83
Value
O Q
0. >
*D (U
tC X
a >
I
0? 0)
01
W -D
«J
>
0.
o
IN O
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T/9
L2
o-tSJ
3*00
Vtoo
.A-1"'
I/
teJ
/isc>
it
HiS
tl
/ 1
i r
o
o
*&
x^x^XT 9-t^-C
<% *jLs-A-y—
~
-------
Sample I.D.
ate Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisson
Valid
Adequacy
Met
e
e
e
e
3
Co
0 Qj
32
>-, 111
10 >
a. c
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Tf)
£35
6-0
6,6/7
/I
*"
6/tf
JOO
-------
iu.-.ple I.D.
ate Tested
ctivation
,ot Number
Model
Predicted
Slope
Low Moan High
Linear
•o
I«
o
n >
c:
o
u
Dose
Flange
rested
(UCS)
Max
Rev/
Dose
Comments
0,0
XI
fl.O
0
V
-6,0/0
-------
I.D.
ate Tested
ctivadon
oc Number
Model
Predicted
Slope
Low Moan High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Ade
Met
P
Converged
Ck C
o
Par
Conve
Dose
Range
Tested
(UCJS)
Max
Rev/
Dose
Comments
n?
0,073
6,
, toe 73
£.
a,MO 31
66
6,00*3%
y
y
y
/ 1
/
Jr
o
U)
&5
A.OOM3
-------
iu.-ple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low
Moan
ligh
Linear
Regression
Predicted
Slope
(Moan)
Toxicity
B,
Value
Ul -^
-rt rH
O (Q
T3 ft)
< £
0. C
0
V (J
Param
Converg
Dose
Range
tested
(UUS)
Max
Rev/
Dose
Comments
I/
I/
Atao
0-3
6,6601?
y
n
6, 666 76
if
a,6o6i7
6.MM/
J
o
-P-
>r
o./
-------
S-i.-.ple I.D. Date Tested
ctivation
at Number
Model
Prodicted
Slope
Low Moan High
Linear
egression
Prtdictud
Slope
(Moan)
Toxicity
83
Value
O
(X C
o
-O
0 tl
Dose
Range
Tested
(uus)
Max
Rev/
Dose
Communes
70
cfiAS
J
.A*1*' •
0,7
6.$
6.6Q03Q
n
o>5
ft 66660
I/
37^
m&
6,606X2.
y
y
(L3.(L
0.336
-------
ij.-.ple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low
lean
ligh
Linedr
Regression
Predicted
Slope
(Mean)
Toxicity
Bj
Value
Po
Va
Ad
Me
•o
i>
6°
Oi
>
c
0
N U
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Tfl
y
y
-x
y
*/
y
't
,606? 0
6l6i
y
y
>r
LI
13.
'r
-------
Sample I.D.
Date Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6>
Value
rt X
"8
•» o
Paramet
nverged
Mod
eter
ed
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
fell
&2LL
1-1
0.660
*/
n
my
/aptt
if
11
hi
A 5
6-7/1
0, 6003 T
st
H-UI
0.0O2/5T
37.537,
17,
-------
Sample I.D.
>ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
c
O
in 'O
tfl *H
Adequacy Criter
d
Me
u
X-a
V
is £
*§
O
Pareunet
Converged
ete
ed
2 Par
Conve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
tilX~lt,
1$
a
1,607
/e
ft
(,&
O
co
- to -
3.1
3-P
3-3
I/
6.0031$
>f
13
10, y
0.0631 7
I/
*/•/
1SV
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
redicte
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
14
01
*J
.H
Uc
O
&
a
i z
14 01
h
S*
y 01
I?
&§!
o. c
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comnents
-rrt
u.
M
ffocc
o.V
C.tl'J
II
X
'1
0-3L
hone.
0,6
0,0
fl-0
tl
at
36
0,0
0.0
07
SQS& -
0,010
J
J60
/?5
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
03
Value
3
C
2 Parameter
Converged
Dose
Range
Tested
' (UGS)
Max
Rev/
Dose
Comments
Tf)
Ifi.
t-S
LQ.
6.33
6.00*4*
'i
3.0
3.0
S.O
6.06160
1.1
I-/33
£&
6-3
J
i(C
A, 661 1
MttC
6.
6 .0001 ^
rf
1,1
6.739
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
c
O
in TJ
«
•O V
< X
Parameter
onverged
3 Paramet
Converged
2 Par
Conve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Tfl-
3,0
3.4
6,6
7,70
- fto -
5.1
Ln\nio
1.73/
nw
none.
M
m i£j
6.60/30
Wo
S.1
£$
-------
Sample I.D.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
son
d
Ade
Met
I
U V
9 >
U
«J
0. C
2 aramete
Converged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comment!
la v^
S-l
'r
6.6Df?3L
i/
& go -
(,.£
1,0
0-66093
V
N)
6.00/9?
'f
a*-?
iss
S.3L
-------
Sample I.D.
ate Tested
Strain
\ctivatlon
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
01
Value
0 (0
a. >
n >
c
0
u
IP
U V
>
g
u
ar
ve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
no
IA
J
See
57^4/6
73
6-6612 1
i/
WO
J
£0-?
130 1
IS67/
6,663/1
(373
130
^
-------
Sanple I.D.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
(egression
Predicted
Slope
(Mean)
Toxicity
8,
Value
Adequ
Met
h u
a >
c
Dose
Range
Tested
(UUS)
Max
Rev/
Dosa
Coimenta
Tfl
&£L
kl
0-1
'
0,6/013
t/
0-1
A5
y
0-0
1 r
0.0037
•r
fl'
6-5-*
'c
6-4
6.
-------
Sar.pl e I.D.
ace Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
degression
Predicted
Slope
(Mean)
Toxicity
B)
Value
O a
0. >
3
cr
•u u
•O u
•C I
•D
SE
b V
1 >
0, C
S«
s&
tl
1 >
"• §
u
u u
gff
13?
a. c
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comnenti
1 1*7/
ZL
>££L
6.00061
X
A6CO
!(/£
if
1A
f f
0.
X
1360
Ui
'f
J
I/
HOG
60
/5./50//0
-------
Sanple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
•O Ol
< a;
1
*J -0
a. c
o
O
v 01
201
0 >
c
o
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
rfl
A 3,1
£.100
co
L03\
&&L
'r
>t
I/
6.603S4
WO
30-?
S7£
0*6/663
V
J
-------
GROUP 8
FUEL- EFFECTS
VARIABLE: BASE FUEL VS SYNTHETIC FUEL BLENDS
Alternate
CABS-81-0320 VW Rabbit Diesel fuels C/H FUEL
0330
0340
0350
0360
0370
0380 " " "
0390
117
-------
/
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
FTP (U<<-a
FT1" HoT
I.SJi. i.~
FTP /4«T
y , to ,
F-rr HOT
'^
oo
i=-Tf* HOT
^
UL>.
-------
a -..
2,
•
\-
SAMPLE ID
Grf&S- F/-033-0
fi/»6-S- ?l-Q33o
GA&s-$f-03<£e>
&}£3~F/-&3'&Q
&?&s-9/- fiz&Q
CA AS- •%/-£> 370
&&5>-'x'/-03FO
&&3-9t-£>^t)
TESTER STRAIN
TA98
+ S9
*
/
/
;
/
/
)
/
/
3
3
3
3
3
3
3
3
- S9
/
/
/
/
/
/
/
/
3
3
3
3
3
3
3
3
TA100
+ S9
/
/
/
/
/
/
/
/
*t
•V
4
t
y
v
q
H
- S9
/
/
/
/
/
/
/
/
4
4
V
^
1
y
y
^
TA1535
+ S9
i
^
i
2
JL
J
J
>
of
5
5
TA1538
+ S9
3
3
6
3
3
3
,3
3
3"
-------
ijnple I.D.
Date Tested
Activation
Lo t N um£> e r
Model
Predicted
Slope
Low
lean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Ad
Me
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
CLOtiO
y
it
5-, I
z.sn
,000^5"
y
y
1767
H,ci
,00106"
y
11
5.3
v.y
3. Its'
N)
O
1.1
3.14.7
6.0
7.775-
,60/63
y
y
it
oi.00
U
a
y
II
U
as
V/
It
.200
J3.1
,<>1<
y
il
/O.I
a
av.
y
ii
1C
its
io,
-------
Sar.pl e 1.0.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
can High
Linuur
gression
redicted
Slope
(Mean)
oxicity
8,
Value
Adequ
Met
** -\j
V a
C. o
« h
*• -\j
11 Si
I E
u
•D
O
£
h4
s«
h il
«i
•V
eft &<*-
),£
6.66/3 /
-3
1O
,£i 7
650
7.3L
t*
HA
I/
&
Ai
3.J1I
0,00/92.
660
to.2.
i/
C figs
1/4
(=60
so
1 1
(£0
IS.
7,^
-v(./«?O/o
ir
if
K.
-------
-------
Sair.ple 1.0.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linuar
egression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisso
Valid
3
CP
HI u
•O 0)
X I
>
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
10/12 l
?l
Tfi
too
&T-6/7
I/
50
CA&S -VI -0
st
iSO
/y
'££6
/I
*
1H&
^M
I/
(>,£->
NJ
t/
/V-v?
&SO
(>.$-*
C&7SL
1,110
i
(=60
/yso
1 1
0.3
660
f(
£5(3
-------
iar.pl e I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
Low
lean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
8,
Value
O *
0. >
•O 111
x
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
0.1
.(Jd/5'tf
y
.0
.8
y
U
I?
->?) -03 Y0
0,1
.5-
03-ri
y
0.0
04
1.0.
y
i/
6,0
0388
y
y
y
y
31
4.0
OJ
y
y
H
ro
/.o
.07?
,00^67
y
y
.200
0.0
y
v/
6.5"
y
ii
/.I'
,
-------
a-L*
ln->
£5
Sanple I.D.
ate Tested
Activation
Lot Number
Model
Predicted
Slope
igh
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
C
O
V) *D
•O OJ
< £
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
it-gyp
&T-QJ 7
.610
0,07,2
y
X
X
6.D
X
y
, // V
X
At/
Voo
A
(.60
V
/SCO
to
Ln
'11-63*6
X
(
650
6,0
0.31
0.7
0.0037?
t/
IcSC,
0-0
o.o
(£0
.S
ff
It
1 r
6.0
00
0,0
i/
(,•£-* W
'1
6.0
X
6.0
0,0
6,0
660
A
0.0
(,60
5V-
I/
650
-------
Sar.ple I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
icjh
Linear
egression
Predicted
Slope
(Moan)
Toxici ty
Value
0
U) *O
U) -^
O >D
P. >
3
CT
d) *J
•O OJ
X
Dose
Range
'ested
(UGS)
Max
Rev/
Dose
Comments
/o- A-
,x
.67
,(50104,
VV6,
; a.
.7
,1
. 001/5"
3.7
76
3,g
i 1
7,6
I'l
y
II
7.7
y
122.
..8
A/dA/c
J76
v/
I/
&COO
II
y
4.S
(.51
y
=2 00
6,3
7.3
v/
^00
l/.o
M
13 .
-------
jor.ple I.D.
ace Tested
Strain
Activation
.ot Number
Model
Predicted
Slope
a* Mean High
egression
redicted
Slope
(Mean)
'oxicity
B,
Value
Poisso
Valid
w v
n
o
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Coovnonts
rf)
1/537
^/r-fl/7
,0
0-6?
I/
V,o
6,00)37
Mt
i/
.1
0,
d.OOI/f
I/
•X
660
2,3
I/
Q.I
.73 A"
O.tOIQfi
I/
ISO
3.0
v-s
i/
(>60
~ 039 <9
AJ37
I/
y-
X
JL
3.5
3X3
Of/?Q
y
660
i?
I/
I
J
ss
ZOO
360
XX)
7.(p
f-a
s
-------
iar.ple I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
igh
Linear
egression
Predicted
Slope
(Mean)
oxicity
Bi
Value
O rc
ft. >
Dose
Range
ested
(DCS)
Max
Rev/
Dose
Comments
Rtro/7
,9
/, 444
y
M
a/1
Ii
7,7
,00344)
v/
.1
0, (,
il
K>
OO
7,3
b',7
O.i
v/
7.6
,108
5X3
3.7
f.4,
1.765*
h
4.C*
.003? 6
627
7.3
1.0
ace
it
8.3
M
.2.336,
v/
II
JQJ
K,/
v/
Ii
.001
/I
-------
j .ir.p 1 e I . D .
ace Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
can High
Linuar
gression
redicted
Slope
(Mi;an)
oxicity
e,
Value
O 4
0. >
«
3
(T
01 U
•O u
a. X
*l -D
V V
c o
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
CAM Vt-c&}0
T/9
^
^60.
P'l
^^oy
i/
II
,00333
U/
If
II
0.
I/
y
(&>
f. rf M-<<> -01 70
f,
so
N)
/b.3
W7
650
p.
(,£0
II
/
37
71/
6art
It
63/0
(,£0
ff
/AT
(1,
.**
I/
s
kSO
&0.
-------
GROUP 9
HEAVY DUTY DIESEL EVALUATION
VARIABLES: A) MALFUNCTION VS NO MALFUNCTION
B) TEST CYCLE
CABS-81-0400
0410
0420
0430
DDAD
Baseline S.S. Comp.
Baseline C/H trans.
Malfunction S.S. Comp,
Malfunction C/H trans,
130
-------
/
GROUP ID:
SAMPLE ID
(Lrt &£>-$/- o y/o
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
No.i
TOTAL MG
EXTRACTABLES
COMMENTS
-£>£>/}£>
/ 2)
-
l£d;">y> 0& i
/ £>,£ 1
vn^
-------
9 .,
»
*r
SAMPLE ID
#»65-2/--oy0o
Ca&s-Zi- oyvo
&&&&- 2/-OV-.20
&\£S- Sl-C^O
TESTER STRAIN
TA98
+ S9
*
t
/
1
(
3
3
5
3
- S9
/
/
/
/
3
3
3
3
TA100
+ S9
/
/
/
/
^
4
-V
V
- S9
/
/
/
1
Y
-y
Y
-V
TA1535
+ S9
^
a
3.
a.
•V
^/
¥
V
- S9
i
^.
i
o2
^
>/
^
•i
TA1537
+ S9
i
a
a
a>
^r
5"
5"
5
- S9
o^
2.
3
5.
5
. 5
/f
5
TA1538
+ S9
3
3
3
3
S
5
5-
5
- S9
3
3
3
3
5"
5"
^
S"
3-
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
t <9-A-i-e • 9/cJ/sr/ ^-~ f*?/^ /->%_«. /-i t-
-------
3-ir.ple I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
B,
Value
equ
t
a. c
o
!>
-------
iar.ple 1.0.
Dace Tested
Activation
Lot Number
Model
Predicted
Slope
can High
Linear
egression
Predicted
Slope
(Mean)
oxicity
Bi
Value
so
d
Po
Va
Adeq
Met
01
u TJ
Oj 01
1°
**
"•§
(N U
Pet-fa
Dose
Range
ested
(UGS)
Max
Rev/
Dose
y P.J-.
pr/Vvf- Out
Comments
.H
0,5
Or-
0^3_
N
, 3
y
y
J
y
.(c
O.to
*•
J
i.a.
18
LO
hi.
v/
y
'^600
1 5-81
0,5"
GUIS
0,-S
X-
v/
y
0.1
103.3
y
Ao
6, (
a,*
J.o
0,0006"?
1315
v
i.C,
V/
2-3
.?.&
-------
S-mple I.D.
Date Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Value
01 "4
rt rH
O <0
a. >
a
3
cr
a> *J
'O 01
< X
Para
onveroed
recoc
JiecL b
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
FUion
.o
.O
6.
y
v/
y/
I/
0.0
0,01*1
y
a/
o.ocy
y
y
30
Ad
AO
y
I/
0.0
do
v/
J
v/
OJ
Ul
v/
^000
0.0
y
y
y
U
I-
GS'
0,0
0.0
v/
y
0.6
o, on
U
d.o
v/
ll
33
O.I
fl.3
C.03.1,
0,
M
QOOO
(1,1
3
o.on
y
y
y
il
d.O
d.i
0,3
0,
v/
u
d.d
133
2-i
a ooo
6,0
(3.6
v/
v/
4,0
d.Q
o.o
D.OGS'
03V-
-------
iar.ple I.D.
Date Tested
Activation
Lot Number
Model
Prudictcd
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
oxicity
8,
Value
o n>
0. >
equ
t
2 Paramete
Conveoed
Dose
(ange
ested
(UCS)
Max
Rev/
Dose
?• ^
. TJ"B
Comments
v/
y
00(5
,0
y
1'
£.000
C^fiS-tf l-
0.0
.c
6.0
(3.0
16
O.J
0.0
v/
y
,0
y
0.0
iJri
J.O
0,$
y
y
y
u
73
0.0
0)5-0
•y
ii
<*>
6.1
O.I
y
->
y
-0410
dJ
U
O.o 3 i
y
y
-Hood
./
•x
o'.d
y
y
(D
CD
C). (1
y
o.
y
•y
y
65-0
V
y
y
.5(3—
-------
Sonple I.D.
ate Tested
Activation
Lot Number
Model
Prudicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
value
Adeq
Met
D
-------
GROUP 10
PARTICULATE- TRAP EVALUATION
VARIABLE: VARIOUS TRAPS VS NO TRAP
CABS-81-0441 Toyota dummy trap LA-4s
0501 Mercedes UOP EX-47 trap LA-4s
0561 Toyota NGK #1 trap LA-4s
0661 Mercedes NGK #2 trap LA-4s
0691 Mercedes NGK #2 trap HFETs
0721 Mercedes NGK #2 trap regeneration
138
-------
z.
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
(ra
ey-47
A/6K
OJ
VO
-------
•
t
SAMPLE ID
OWS-8/-OW4/
O36S-3/ -£S"0/
Cfl8S-St -£S6/
C/fgS-S/-o&£/
CA6S->S/-0^
-------
Simple I.D.
CfiBS-SI-oWl
CLflBS-SI-cSU
Oftfi'i-'iJ-o'H'
cUteS-si-oS^I
ate Tested
-7//3IS3.
-rlolsi
7/«ai»J-
i/y^lsa.
Strain
•D-H?
/<
f»w
^<7*
t
I
,ot Number
Region
Rt^oi-T
Model
Prudictocl
Slope
Low
3,5
o.u>
M
a.;
Mean
3-T
0,1
4./
-3,3
ligh
5.<*
/,0
v.v
a.^
Llnu.ir
Regresiaion
Predicted
Slope
(Mean)
0.-7SO
0,3-70
3,600
0-84'
Toxicity
83
Value
0. 000 7 8
0,00033
Q.oclo^
0.0tlS?>
Poisson Assumption
Valid
.03)3
/
/
Adequacy Criteria
Met
/
fl.oi'3
/
/
4 Parameter Model I
Converoed
/
/
/
/
3 Paraineter Model j
Converoed
/
1
i
i
2 Parameter
Converoed
/
J
/
J
-
Dos a
Range
rested
(UGS)
3.0^)
Sooc
3Q-^>
aooc.
Oc-9
JIOCO
AO-^
2cco
Max
Rev/
Dose
SUX
XJODO
77^
^00
133^
^^60
S7£^
aso
Comments
•v«- ^ •:'
':
•
-------
* It
•
Saiiple 1.0.
CflBS-Sl-offl
dflBs-tl-osU
~l
0' 00 *J*i*f
Poisson Assumption
valid
W
Adequacy Criteria
Met
/
Converoed 1
/
J
/
..._
Converoed
2 Parameter
Converoed
/
J
J
/
Doso
^ange
Tested
(UGS)
To
-------
Sanple I.D.
C'flftS-'Sl-o^l
dflfra-'SI-cS.U
dftevgJ-o1/*/'
dfl6S-«l-o50.l
yc.i
O.I
^(3.1
liqh
O.I
?0.\
Q.Ji
l.o
I.incj.ir
(egreasion
Predicted
Slope
(Mean)
0-0 2*
0, ook
0.0 V3
"0.0/3.
Toxici ty
8,
Value
0.000^3
(Jcr LisVtct
O.OC//V
(Jor L;sK«t
Poisson Assumption
Valid
O'/OI
/
/
Adequacy Criteria
Met
/
/
/
4 Parameter Model I
Converoed
J
J
J
i
Converoed
J
/
l/
J
u
2 Parameter
Converoed
/
/
/
J
Dose
Range
Tested
(UCS)
«-9
2000
ao-^
a. ooo
,zc^>
aooc
JJ6 -^
Jooo
Max
Rev/
Dose
y
/(pSO
*/
ASO
^
^(,5 306
3r
/ao
_ . ..
Contnentu
•v»' •• •:'
._.. .
-------
1
Sample I.D.
C«fiBS-3|-o«W|
Cflfi'S-'JI-oSU
hl
7/lAlv-
lll*\1*-
Slrain
miST7
ir
•Hi/fir/
M
cuvjt lun
ot Number
Ruion
RLrCo.-r
Model
Predicted
Slope
Low
0-*
o.y
0^
VJ^T
>">iK4
Mean
1.3
o.z
;,s
o.i.
Ugh
1.1
0.?
J.S
Met.
irsM
Linu.ir
Rucjre'jsi ion
PredicLed
Slope
(Mean)
0- 3ICI
O.o?*
O.W3
0./7V
Toxicity
6,
Value
O.occ^l
O.oocg-7
. oo / y?
tf.0oi?9
Poisson Assumption
Valid
/
'V
/
Adequacy Criteria
Met
/
/
,o\y>
/
/
« Parameter nooei i
Converoed
/
s
/
..,_
3 Parajneter MOOCI |
Converoed
/
/
/
2 Parar«ter
Converoed
/
/
/
/
-
Dose
Range
Tested
(UCS)
JO -9
a.oco
Jo-^
3occ
Jc --9
3ccc
o?tf-7
aooo
Max
Rev/
Dose
vV
^COO
•x/
/Jocc
z<*y
x^so
/*/
A,5o
Conuiiciiti;
A~-»- • .;'
*
-- - •
-------
Sanple I.D.
Date Tusted
ctivation
ot
Model
Predicted
Slope
Low
Muan
litjh
l.inuiir
Rcgreuiiiun
Prudicted
Slope
(Muan)
Toxicity
Bi
Value
Poisson
Valid
para
Converoed
0. C
o
arar
veroed
Doso
Range
Tested
(UGS)
Max
Rev/
Dose
Coniinciitu
3-3
I 3
V-a
0.00017
J.o
0. OOQ 1(*
Oftfi •&-*/-
3-1
55
Pooc.
Oi
-------
ijnple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low
Mean
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Po
Va
Adeq
Met
Para
Converoed
Paa
Convee
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Connnentti
O./
1.3
a.-/
7//S/5
1LS.
O.ooiij-
0,00/S/
73H?
^000
-P-
ON
13.
/5.o
7.5
Jooo
/- o
-------
ianple I.D.
(LfiRS-gi-oScl
C4fiS-<2|-OU>(
4. MS'* 1-6^11
dAAs-g/'CZtl
daBs-xt-c>(Jsi
£>Ss- xi - o 0*7 /
ate Tested
-7//S/S3.
1 1
l«
-7//s/8'a.
ii
t >
Strain
Tfl/dT)
//
>/
T^KO
/I
I/
-...
ot Number
£.Lpc,n
g.(_j:ci-7
RUOI7
Model
Predicted
Slope
Low
35.1
«6*l
U'^M
-7-t
7.^
T3.^
MtT
U*^
Moan
31,5
a.i
?.o
7,2
n.2
^7.1
High
-tf.2
M.
UiHd
«./
7,3
S'/.'i
wrf .
U»W
Linc-dr
Regression
Predicted
Slope
(Mean)
'0,300
k.~7>0
5.«75
1,(*n
6>.fcya.
5/S(3.
Toxicity
s,
Value
0.00(,|3
0.003*^8'
(3-061 3/
Wot LiiK^
^•0//57
O.o/o/t,
Poisson Assumption
Valid
Adequacy Criteria
Met
/
4 Parameter Model j
Converoed
/
/
I/
/
arameter Model
verged
o
m u
J
•J
2 Parar>eter
Converoed
/
/
/
J
/
/
Dose
Range
Tested
(UGS)
310 ^>
5ooo
A^
^occ
ao^»
iooo
JlC-9
a ooo
Jo^?
Scoo
Po^?
a.coc>
Max
Rev/
Dose
•aafx^
/aoo
**/
/J.OO
13^
/ZOO
is y
/fc5
S^
/*GQ
i3oy
^00
.... _-.
Comnunts
•v»- .. .;
i
.e-
~j
-------
Sample I.D.
CJteS-Sf-OtoW
dflss-8/'OOt*l
)ate Tested
-7//5/to
-7//5/SA
Scrain
1?hS3E
7f/s^s
!
1
ot Number
RLJ-ol-7
Model
Predicted
Slope
Low
O.I
0.0
Mean
0.3.
ligh
.*>
3.1
Linujr
Regression
Predicted
Slope
(Mean)
0.0^1
~ 0.017
Toxici ty
Bj
Value
0. OOttl
UcT Ulkcl
Poisson Assumption
Valid
/
Adequacy Criteria
Met
/
4 Parameter wooei
Converoed
/
3 Parameter noaei
Converoed
/
/
2 Parameter
Converoed
y
/
Dose
Range
Tested
(UGS)
JJO-=9
2000
ao ^
^ooo
Max
Rev/
Dose
3
-------
Sanple I.D.
d/tes-a/'Ot^i
C.fiHS-'Hi- C(eC«/
ace T us cud
ills!?*.
~7ltshx
Strain
77»/arr
7W53T
ccivation
oc NuinCur
Kc-^on
Model
Prudicced
Slope
Low
?.
-------
Sample I.D.
dflfiS-*, cfcU
0/MS-»»-OOrt/
<"*flAS- x/- ouui
<**-«-oc^
ate Tc-sced
lisls*
It
7/I5/83-.
"
Strain
/53^
7%53f
I
ot Number
*&»->
o/7
Modul
Prudicted
Slope
Low
(,,(a
j
7,3
.
Mean
».fc
a,l
7,?
*,*
High
30. "7
/.a.t.
?,3
a««
—
Linuar
Regression
Predicted
Slope
(Mean)
A 53/
(o.OOC
J. /(.?
6,.02(»
Toxici ty
Value
c7.oo^ya.
003SO
O.ootac,
O.OOb/7
Poisson Assumption
Valid
/
Adequacy Criteria
Met
0.0/V5
/
1 Paraneter KoaeJ I
Converaed
/
/
/
/
•-
ara.-wter Moaei
vcroed
0
n u
2 Parameter
Converged
/
/
/
/
Dose
Range
Tested
(UCS)
a dec
2o^
Joeo
-20OO
Max
Rev/
Dose
<&(y
/a oo
V21
'%
Conunentii
•,--v:
(Jl
o
-------
Sunple I.D.
£QflS-9/-cV'//
d/?8S-S'-o5<«l
dfljfts-s/-ow/
Cdfis-sf-osu
Ute Tested
~i\n\^
-jl*-) ITS.
-7/a-7/»a.
-?/n/8a_
St rai n
TTH8'
1ft 5?
17W
•???r
ctiv-ition
ot. Number
RC^oi^
f?i_3:ci"7
Model
Predicted
Slope
Low
3.L
O.V
io
O.T
Mean
3.fc
0,7
^
/.a
liijh
LL,
i.o
v.v
a./
Linciir
Regression
Predicted
Slope
(Mean)
0.767
M/*
^>./2"3-
/
-------
Sanple I . D.
Date Tested
Ifttojo_
TBioo
ctivation
,ot Number
Modol
PrcJictod
Slope
Low Mean
V.o
Linear
Regression
Predicted
Slope
(Mean)
Toxici ty
Value
Poisso
valid
J
w
t. oi
>
o. c
o
N u
Dose
Rangu
rested
(UGS)
aooo
6.50
Max
Rev/
Dose
(JSG
Continents
•V
.3.1'/
c/c.3
J
6.50
Ul
-------
10
Sample 1.0.
£06S-*/-cV'//
dflfis-K/-o5<«l
liflflS'S/-oW/
C/teS-8/-o5w.|
ate Tc-steJ
-7/r7/?a
7/a-7lra
"7/3T l?0.
-7/n/8i.
Strain
-^1535
mis^s
rftisss
ffKS*
ct iv.ii.iun
ot Number
RC^oi-7
f^l-IOlf
•
Model
Predicted
Slope
Low
70.1
>O«.|
O-o
l*n*
UMkd
Mean
70J
O.|
0.0
fl.O
llcjh
o./
0.3.
0,0
JCM«-
u,-,\«J
Linear
(egression
Predicted
Slope
(Muan)
-0.0*11
O.OHO
-Q.jno
0.003
Toxicity
Bi
Value
0. 00/V7
0,00(^3
MmcUvkJ
0.oo;c'7
Poisson Assumption
Valid
,0373
/
/
Adequacy Criteria
Met
/
<;,sV5<*
.... ..
1 TJ
OJ 01
5 2
14 U
0, C
o
u
n, «,
I E
t, u
0. C
o
n o
/
/
;
arsneter Model
feroed I
D. C
o
04 U
/
/
/
V
/
Dose
Rangu
rested
IOCS)
ao-^9
.2cct
ao ^
aoco
c.s^
6 So
to-S-^
6. So
Max
Rev/
Dose
y
'AC,
V"50
V
A.s
2^/
x^.s
._ .
Conununi u
•v»- •- •:
.
;
Ul
U)
-------
Sample I . D.
Date Tested
cciv.it ion
ot Number
Model
Predicted
Slope
Low
Mean
litjh
Linear
egression
Prudicued
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
Adequ
Met
o. c
0
N O
Dose
Range
rested
(UCS)
Max
Rev/
Dose
ConanunCu
HcT
o. ns
0/000 ?G
0-2
1.0
0,0-77
3000
,7
/cl
AO
G-So
(a SO
Ul
-------
Sample I.D.
dQas-vi-cill
dfl8S-S/-05(«l
tirtfiS'SJ-oW/
c^ss-sy- osc^i
ace TcstcJ
~7/Jl-7/?l
"7/^-7 (?a
-?/a-7 /Si
-?/n/8a_
S c ra i n
ffllS**
•TWIS3V
1fr/S3S
•7»/53S
ccivation
ot Number
Rt^xon
f^-^oiT
Model
Predicted
Slope
Low
3.7
1.6
/,5
)-a-
Mean
V-2
»•«
2,-i
A 5
liijh
V.7
a,3L
3,5
/.7
Linear
Degress ion
Predicted
Slope
(Mean)
y.joa
o. s-s^
0,3^5
0.7^(o
Toxicity
B,
Value
0.00/fS
£.00113.
O.OC2"gCl
O.ooZlo
Poisson Assumption
Valid
/
,OV«7
t/
Adequacy Criteria
Met
0-om
o-o-Jt
/
arajneter Modei I
veroed 1
a. c
-5
/
y
/
/
arameter Model
veroed
o. c
o
<1 o
/
/
/
a
(
u -O
C) O
12
^ QJ
IX C
0
IN O
/
/
/
y
,.-
Dose
Range
rested
(UGS)
ao-9
^?coc
3C^7
^000
6/5^=?
6,30
6.S^
6.SU
Max
Rev/
Dose
•y
^50
Yoo/
A5C
3SS^
X^SO
l^j/
A50
Comments
•v»- • •:
'.
Ui
-------
10
Sanple I.D.
ce Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Po
Va
Adeq
Met
4 P
Con
Parart
Converoed
Doso
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
33.1
.0377
J
1,50
lUJ.
OfgS-81- O-o&l
Ho.
,5
0. OC3C./
J
Ol
o\
(,50
* 5
7,7
y.so/
.C^TC
-------
Sample I.D.
d#BS-B!-Ct*il?*
-1/331X3.
7/jf /«-*.
7/,79/gi
Strain
Tft/CC
77?(OC
r?>(oc
-Wioo
I. ..
,oc Number
RU*CI-I
pu-^on
Model
Predicted
Slope
Low
3./
o.V
17,1
/o,7
Mean
3.1
//.v
f.5
//.?
ligh
y-7
2,5
1-1
3.S
Linuar
Regression
Predicted
Slope
(Moan)
5 773
3.c7y
S.tZ'J
5,0V?
Toxici ty
Si
Value
o. 003 ?v
U.ocaV3
O-QoHl^
tf,oc3C>y
Poisson Assu-nption
Valid
6',0/VV
Adequacy Criteria
Met
/
4 Parameter Mooel
Converaed
/
/
y
/
3 Parameter Model
Converoed
•o
o
iS
U 0,
ID >
O
-------
Sjjnple I.D.
d083-8/-0(oO/
aflBS-SI-Okbl
ate Tested
"7/1? /?*
7/Af/fO.
Sera in
T7H5V7
TB15.V7
ot Number
gi_:ror7
Model
Predicted
Slope
Low
a^
3.0
Mean
3-2
3.5
High
5.o
4*
..
Lincjr
Regression
Predicted
Slope
(Mean)
0. <&*<*>
/,SSo
Toxici ty
B3
Value
aoo/w
cj.ooV/S'
Poi sson Assumption
Valid
x>m
fl.flV.37
Adequacy Criteria
Met
Q.Oibl
4 Parameter Moaei |
Converoed
/
/
...
3 Parameter Model I
Converoed
/
/
Model
2 Parameter
Converoed
/
/
-
Dose
Range
Tested
(UGS)
6,5-*
(e SO
6.5^9
6, SO
Max
Rev/
Dose
57?/
Xso
*?
/JOO
Comments
•v • • r •:'
Ul
oo
-------
OVfcWY'
1C
Ul
Sample I . D.
c/»as-*i-ow.i
cues-*,- MI
d**s-»/-oe.fcl
C*5-»-OH/
ate Tested
-7/^/r*
^,/S.
jhifSj.
Va,/?a
Strain
rilS38
Q] /53J
T^SiS'
- -
1 — "
i .
ot Number
RL^fo/7
^?Uo'7
Model
Predicted
Slope
Low
7.3
(..(,
I/-7
13.'*
Mean
3,5
I./
»s
HI
High
*7
7.5
».y
/*,»
Linuar
Regression
Predicted
Slope
(Muan)
/.«.??
723^1
3.J*?0
S,6oa
Toxicity
83
Value
0/0033O
o/ooVV^
O.OOdiS/
0/00^76
Poisson Assumption
Valid
/
a«v7
AW9I
Adequacy Criteria
Met
^
4 Parameter Moael
Converged
^
/
/
^
3 Paraineter Moaei
Convcraed
/
•3
2 Parameter
Converged
/
/
/
/
Dose
Range
Tested
(UGS)
6.5-?
650
650
650
6.50
Max
Rev/
Dose
'fcSO
^
0(0 I/
/£ 00
''loo
Continents
i
-------
GROUP 11
LIGHT DUTY METHANOL EVALUATION
VARIABLES:
A) FUELS
B) CATALYSTS
CABS-82-0010
0020
0030
0040
0050
0060
0070
0080
Escort
Escort
Escort
VW Rabbit
VW Rabbit
Escort
Escort
VW Rabbit
(cat.) Indolene
(cat.) Anafuel
MeOH
MeOH
Indolene
MeOH
MeOH
MeOH
C/H LA-4
(cat.)
(cat.)
(cat.)
(base cat.)
(no cat.)
(base cat.)
160
-------
/
GROUP ID: //
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
del &
f^'-C
^-^ He>-r
•V'
A
na.
/r-a -
-60-30
f'6,4, £.-
CJZt
UOO
On 1
tf_:_o*L(;. f.e>.C-ii
/M
C.I, t L-f-
I ^ot-(ject OocieJL UQG
•7 HOT
1 -c,e4L C
•7 t+QT U.OO&
*
/l/l e y-A A /i o /'
n^
/Kef 4
-------
h
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
- S9
-Z.
2.
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
/- ex-pe-r-tr^i^r
nt
162
-------
i-n-.ple I.D.
Date Tested
Activation
train Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
81
Value
c
O
in T3
o. >
*o
-------
a-inple I.D.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
0
tn 13
in -i
• rl ^i
0 a
a. >
Para
Converoed
Dose
Range
'ested
(UGS)
Max
Rev/
Dose
Comments
s.o
aoa.
V.A
,01
N/
=2000
/,«*/?
0,03.
a ooo
3.000
0,0.40
V
3000
n
0.3
aooo
^000
ON
0.
,00103
s/y
aooo
ii.3
3.7
y
y
JflOO
aooo
a?
,00/07
0.03
3000
X.OOC
0-3
/.o
, 00
v/
— >
AH
1-3
3LOOC
3.600
a •
0007/
2147
aooo
3,1
3,1
1*637
•3000
2075"
oiOOO
I.S
. OQl O't
1.3
-------
GROUP 12
HEAVY DUTY METHANOL EVALUATION
VARIABLES:
FUEL - TO BE COMPARED TO HD DIESEL
AND GASOLINE ENGINES
CABS-82-0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
HD M.A.N. engine
it
methanol
1600 rpm/2% load
1600/50
1600/100
idle
2200/100
2200/50
2200/2
cold transient
extract from 3 blank filters
extract from used oil
165
-------
/
GROUP ID: /2_
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
WP
35 WK <2-»r>-rcvo'b
Djstfc
3o
tfc.CC rp.n
1 5"
eaes-
vvA.Cv.iO.
icttci
35 me
Ml Cc»cl
Hi
^A.(^.^^,
- 6/9O
oC
E"rtquie. C; I
-------
»
t-
SAMPLE ID
CA6S-«^- OC^O
Cfts&-sa-£>ieo
CftE>5-$a-6l 1C
CA6s-93.-e.i3ic
CP-fcs-aa-oi'Sc
CFV6S-93- CH4O,
CP(R>S-8a-o /
TA1535
+ S9
1
r^
- S9
(
)
TA1537
+ S9
1
- S9
1
TA1538
+ S9
1
1
- S9
1
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
167
-------
jjr.ple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisso
Valid
Adequa
Met
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
T7W
O.I
a ooo
•v
u
o.o s
0,077
V
1,1
I/
.2000
^000
3-35--^
/.H
v/
6 -TO
o,3
y
li
SIS
y
3.0 OtJ
"^006
i i
00
.000 Sc
y
v/
.5- ->
13
V-A4-&I
0,3
a.333
v/
v/
y
y
0.1
0,1
v/
v/
5.00O
0,04
O.I
y
2.000
i 1
a?
/.Co
0
\/
3000
-------
Sample I.D.
Date Tested
Activation
train Lot Number
Model
Predicted
Slope
Low Mean
igh
Linear
egression
Predicted
Slope
(Mean)
Toxicity
8)
value
Poisson
Valid
Adequ
Met
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
3 -
a./
o.oSl
.20 —>
•v
1 1
o./
0-5-
O.P
d, 375-
33
3.0
J.3
0,1
0,693.
v'
dOQ.
6,5-0
ON
VO
3.6
20 —>
d.O/
5.903
3,0
J.7
.2,640
y
0*-
0/05
y
.iooo
(i
0.3
0,1
v/
.2006
O
y
aooo
o.o i
H-il-8*.
0,3
0,377
v/
o
(0,006
.36 ->
'*
o
-------
Sample I.D.
ate Tested
ctivacion
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
0 U]
0. >
Adequa
Met
u
•>
c
0
«» u
u
V >
c
o
c
o
n u
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
/.I
0.38^
N/
<2ooo
HL
•2.0 oo
a
d.6|
v/
0,5-
0,6-
o.sn
V/
3.QOO
0
0,111
,000^3
v'
v/
y
//a?
0
O
0
6,00(0
y
~j
o
0
0
0
I/
y
y
3000
3
0,1
6, OSS'
^000
6.1
OJ
6. OSS'
. 5"
AOOO
o.'i
O.'-llO
J
<2ooo
65*0
-------
GROUP 13
FUEL EFFECTS ("HEAVY DUTY DIESEL)
VARIABLE: BASE FUEL VS SYNTHETIC FUEL BLENDS
CABS-82-0190
0200
0210
0220
0230
HD Mack EM6-300
it
Alt. Fuels
C/H trans,
it
171
-------
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
Meek
Tes f Cef / -3*
3--O
Slc>4 my
35% tPS
•h
25*
CAfls-
Tise Cell
fki:
-3co
BtenJ
CA6S - 9a - £2.30
6M6- -3oc
T«&*-Cell
-------
2.
*
t
SAMPLE ID
Cf*8S~82-0/?0
CftBS- 23-O3 00
Cftss-s-z-oa/c
Cfl8s~%a -&azc
C46S-2-.2-6Z30
TESTER STRAIN
TA98
+ S9
*
I
if
4
to
&
/
/
/
1
/
- S9
4
(o
4
4
4
1
1
1
1
)
TA100
+ S9
lo
4
6
t
(o
3
3
3
3
3
- S9
4
4
4>
6
4
3
3
3
3
5
TA1535
+ S9
5
5
f
4
fc
- S9
5"
5-
5"
^
6
TA1537
+ S9
t
4
V
4
<•/
4
4
4
- S9
*/
^
V
4
•/
4
4
d
TA1538
+ S9
4
4
£
L
(e
a
2,
2-
a
2-
- S9
4
4
4
4
4
2.
2.
^
2.
2.
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
. V- fKper,«Uf.fl- "Daft '
4 -
^ E YP« rt
-------
Sample I.D.
ate TtisteJ
ctivjtion
oc Number
Model
Predicted
Slope
Low Mean High
Linujr
Regression
Predicted
Slope
(Mean)
Toxici ty
Value
Poisso
Valid
Param
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
•//.*> i
0.2.
3-7
o -=?
jooo
00 C
•V
S/A3/S*
S//3/S-
I-"7
3.3.
3.C
3oco
0-1
1.7
0,000|"7
J
aooo
0.5
0.1
0.3S3
3.000
3.000
O.I
O.I
0.0 So
L/
30-9
a.coo
3000
•~J
->
Q.I
1.0
y
JJOOC
- oaoo
0.712
^00 0
acoo
3-0
.V
3-7
O.OOO?/
y
3000
1353^.
cZOOO
If) IX
70.1
3-0.1
7C.I
y
JJooc
-------
a-inple 1.0.
Date TusCird
ccivation
ot Number
O.fc
MOCi^l
Prtdicced
Slope
Mean
2.*
ligh
Linuar
egreasion
Pradicted
Slope
(Miian)
Toxicity
Bi
Valuu
O.ooo^o
so
d
Po
Va
l/
ac •-»
Joco
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
JtOOO
Conuncnt^
toe
17H5381
(.0
-W/53S'
O.s
/.O
0,000 ll«
Ku.r
6,3
A3
0.000&I
y
3000
70.1
70, 1
70.1
•~J
<-n
Ob
/.O
0-/37
0-000?^
JO -9
Jooo
JLCOO
a
1.3
A3
. oc /a r
AY
.oo /y?
y
Mete.
oaao
Lisitd
0.7
o.aW
d. Co/5/
£3.0/7
Nc
I/
3QOQ
-------
Simple I.D.
te Tested
ccivacion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Ad
Me
C
O
o
•o
«>
d
w, m
>
P. c
o
N 0
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
TBioo
,5
0,0003V
PC -9
<2ooc
•V
1.7
3-5
-0:1 co
"Phoo
.2OCO
Tftioo
3.0
.ooo Si
<^ps-
- 023.0
I.I
J.a-
A 0/7
aocc
N-.'nt
Iftioo
O./
O.I
J
2-000
-~j
ON
Tft tQO
f.o
O.OO/Vi
•J
3000
(i.50
Tftloo
7.3
(?.00/SO
3.0/0
7.2
7.S
3,0/3.
loo
OJ
OJ
OJ
0.079
jtcao
-------
Sample I.D.
ate Tested
ccivjcion
,ot Number
MoJcl
Predicted
Slope
Low Mean High
Line. ir
Regression
Predicted
Slope
(Mean)
Toxici ty
Bi
Value
Poi sso
Valid
Ad
Me
t
oed
nj >
o. c
o
N u
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
TM5TI
Kj.Xol-7
0.3
J
PC -=>
aooo
1.0
1?1I537
^101-7
O.X
0,6
/.*
O.HQ
0,00007
J
3000
Tmssi
O.I
O.I
0,1
J
y
7^537
0. /
70.1
J
I/
y
.2000
•^i
-~j
o. ;
0.3
0.5
0.073
0. 000 51
y
y
y
So -9
3.000
3000
?0-
0.1
0,0103.
C/)8.S- tfa-cu/o
T»|S37
0,1
ftV
0,t
O.tfS
3000
3.?-
0, 000 g
-------
Sample I.D.
C06S-3X-0.200
C^K?S-fJl-Oj|0
cJ/qes-ra-cuac
C/)/?S- Si- 0.100
C^JSS-S-J- 0.2/0
eLdfiS-tfJI-CUiO
ate Tested
ni.
UskJ
?Q.\
50.1
^0.1
0.0
7O/»
Mean
1-3
o./
70.1
70.1
7C.I
70. /
ligh
b.<%< ,
t-,bt«J
1,3.
70.1
o.»
o.?
70. /
Linear
Regression
Predicted
Slope
(Mean)
0-01.3
0/oaa
0,0/3
0.0/2.
~ o.ooa
O.OO/
Toxicity
Bi
Value
0.001*11
o.occzi
Not u M
<3,00/JZ^
N«t L'.ateA
^.ooocS
Poisson Assumption
Valid
,/
/
/
Adequacy Criteria
Met
,/
I/
/
4 Parameter Model 1
Converoed
\J
J
/
...
3 Parameter Model I
Converged
I/
I/
/
/
/
/
1
;
*J T>
Oj a.
12
kc
O
tN U
,/
y
/
i/
/
y
Dose
Range
Tested
(UCS)
Jo^
2ooc
.30 -=»
JOCC
Jo^=>
20UU
,ao-->
2ooo
30 -?
^000
J?o -^
Jooc
Max
Rev/
Dose
&7^
'zooo
(^
*300C
3^
'JO
o>-
-------
'-3
Sample I.D.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low
Mean
iigh
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poi sso
Valid
Adequa
Met
Para
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
O.fc
0.7
O-1?
C), oco/3
»?000
Jooo
2.1
CVteS-82-OAIO
3,0
3/7
0,00013
^000
- 03.2.0
o, 00066
^000
- 0230
76. \
»^l
VO
/.y
3.0CO
- cjoo
^ la If 3
J.t,
3.0
3000
0,013-3.
3000
C/)BS- 8-2- owo
/.o
0.000^7
C/J8S-S2- 03-30
70. /
(.J
/>oo
-------
1.0.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low
Mean
iigh
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bj
Value
Ad
Me
a
Converoed
a
r
Para
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Conuncntii
TB-loo
^3:01-7
3-5
V.7
c^OOO
1ft )oo
3.3
Y.O
y
7ft ASP
p.V
3.5
5.1
0-0333.
3000
3.Y
Y.3
0.00074
•7/3
JK.S
TW/oo
OJ
0-ooczl
y
317
oo
o
TTV/oo
5.3
sv
JOOO
6,50
TWloo
//.V
9/3/fr
T^/oo
5.7
6.0
p, // ?
9/3 /S-
TTHoo
3.V
:3.7
0.00/0-7
aooo
WoT L-,5
1- £2-0 030
T^/oo
OJ
o./
O./
0.0-70
y
-------
<3
Sample 1.0.
Cirt05-S2- 03,0
cfw><>- a 3- owe
Otes-^-oaio
^)65-^-0330
)ate Tested
<^/3/ga
V3/J?*
«? /3 /?i
,/w,,
Strain
77MS3S
^?&?6
mess
77^/535
i ._.
ot Number
fitter,
KLior?
Model
Predicted
Slope
Low
70.1
*0.|
£).0
0.0
lean
0-3
70.1
0.0
>o./
ligh
*<.
70.1
0.0
A.I
Linear
Regression
Predicted
Slope
(Mean)
0.051
0.0(2.
"0.011
0-02,5
Toxicity
Value
C.QOO-7%
Net Liskd
|sJ0r L-,,U
0.000/7
Poi sson Assumption
Valid
y
.c,a»
/
/
Adequacy Criteria
Met
/
/
/
4 Parameter «oaei
Converoed
y
—
/
y
Converoed
/
/
/
y
araneter Model
veroed
O
IN U
y
y
y
y
Dose
Range
Tested
(UGS)
o-?
*«c
£000
-------
S anp 1 e I . D .
dftfeS --JJ.' cuo
Cftfis- 8a- oaao
^.^ ^
OWS'to-caio
^A^^-O^o
ace Tested
"7/3 !?i
lls}**-
T/-3)6j.
9/3 /SJL
^fex
7/3/S"3-
-
Strain
Hte*7
TWS^
TftlSV?
ITH537
rjl-ler-T-i
TW/S37
1
Lot Number
^L^oi-7
ftuion
Ri-i-oO
Model
Predicted
Slope
Low
O.I
50.1
0.0
(Jot
MiT
>fl.l
Mean
0.3
0.2
O./
M
0.4
70.1
ligh
0.7
».3
^v.a
Met
Lt 4Ttl
1 i"i^J
O.I
Linear
Regression
Predicted
Slope
(Mean)
o.isi
o.o
-------
»3
S anp 1 e I . D .
Date Tested
ctivjtion
o t N uinti e r
Model
Predicted
Slope
Low
Mean
ligh
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisso
Valid
PariiT
onveroed
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
o.VV/
y
y
/3/SO
3,V
V.o
o.<*n
(3.0008-5
y
(LfiftS'32- 0-3-1 0
•7^/53?
O.'if
0,^0
y
y
- CL2SI.O
,5
O.occ-io
o./
oo
u>
0.7
O.ooiil
o.ont*
y
aooc
73
- 03.10
f /3
/.O
0.01^
y
4
0,
. oo/Sjz
y
Wet
=•0.)
70. /
0.1013.
-------
GROUP 14
•
t
.PARTICULATE- TRAP EVALUATION
VARIABLE: MILEAGE ACCUMULATED ON VEHICLE/TRAP
CABS-82-0240 Mercedes 300 SD trap 5K C/H LA-4
0250 " trap 15K
0260 " trap 25K
0270 " trap 40K
0280 " trap 50K
0290 " w/o trap 5k
0300 " w/o trap 15k
0310 " w/o trap 25k
0320 " w/o trap 40k
0330 " w/o trap 50k
ISA
-------
/
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
Boost)
FTP
frcdd
a coicJ + 9! Wot- UPPS
<0\
RP
Qxr
FT?
U aid * S /fef USDS)
oo
Ui
FT?
3C:O
rvjc
Cxxr 4,1
FTP
(a cold + a itv
i^SO-
FT?
FT?
Wet
*3 ^
(990-
a o:.'ci -e a
-------
»
\.
SAMPLE ID
CftQS-'Sa-O24O
CflRS-ZZ. -O35O
Cft&s-sa.-oadO
CAGG-Sa-oalO
C^es-sa.-o^so
CA6S-Sa.-03%>
£#8s-Sa-£30o
C#8S-sa-O3>0
CA&S-SA -63-30
cass-sa_o33o
TESTER STRAIN
TA98
+ S9
*
1
1
i
i
/
i
/
I
/
/
8
9
9
S
9
?'
*
S
$
3
- S9
/
/
/
/
/
/
/
/
/
/
3
3
9
Y
3
$
9
$
?
B
TA100
+ S9
2-
2~
2
^
3-
JL,
a-
3-
5-
Ji
7
7
7
7
7
7
7
7
7
7
- S9
5.
a
2-
3.
a
2.
i.
X
3.
^_
7
7
7
7
7
7
7
7
7
7
TA1535
+ S9
5
5
5
5
£
5
^"
5*
- S9
5-
5"
5"
5"
S
5
6
£
TA1537
+ S9
V
^
V
y
^
4
4
^
- S9
*/
y
V
^
*/
y
^
4
TA1538
+ S9
3
f
3
9
3
3
3
3
«»
3
1
I
6>
!
f
\
i/
(,
I
- S9
3
9
3
7
3
3
3
3
3
3
\
\
<0
I
I
I
I
I
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
186
-------
GROUP 14
Experiment Number Date Plated
1 9/24/82
2 10/01/82
3 10/06/82
4 10/08/82
5 10/14/82
6 10/22/82
7 10/27/82
8 11/03/82
9 11/10/82
187
-------
Sanple I.D.
ate Tested
ctivation
,ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B3
Value
son
d
Po
Va
Adequa
Met
v* a;
>
c
o
•» u
t
ed
k. o
>
B. C
o
u
Dose
Range
rested
(UGS)
Max
Rev/
Dose
Comments
77?^^
ao.~Z.T7
(J.0033S
j
m
<30CO
401
ll.oo.
y
30 -*
PoOC
as.<»
as.9
y
Jooo
Not
titir
acoo
n.f
aooo
oo
oo
0,003/7
iOO
11,3.
11.1
20.07V
O.OC3T7
Jo--?
Nit
Jcoo
3^.0 V-
< 7,
(J.OC30J
50CC
-------
I.D.
e«fi;LJ
oo
i I 1 .1 1 I; ' Li
:civaLion
it Number
ai.o
Model
Predicted
Slope
Low
ns
1V,7
us.*
13- 1
51.1
Mean
tJ.f
5.*
75; fc
Linuar
Regression
Predicted
Slope
(Muan)
/S.3TZ2.
/fc. ?•?(«.
Toxici ty
B,
Value
, oo 36**
CI.OOL.-7?
iJ.ocScci.
Poisson
Valid
(J.03M
O.o) >/
&
>
£. c
0
t U
Do^o
kangu
Tested
(UCS)
.5000
Jooo
Max
Rev/
Dose
t~)3S
/JOO
Conuncnti.
-------
' i
I.D. Djte TesCcJ
it >-_.-.• »a-
•-Ifffi'a ' a l-C-
VD I —
o
- 03.30
/O
111.1 Lot. NujuDer
35,-a-
^/C>
Model
ruJi-CCc
Slope
Low Mean
23.0
31,5
tt.1
u ns
77. /
.2;?,*
a/. 5
-yo.7
.,
tisfcj
.-T .
skJ
Linear
Regresision
Predicted
Slope
(Mean)
23.113-
Toxicity
B,
Value
0.
0.00707
0.
Qsayt
0.00^75
0.005^
0,00 57?
Poisson
Valid
Adequ
Met
C
CN O
Dobu
Rangu
Tested
(UCS)
6,60
Max
Rev/
Dose
Comments
•V
-------
-,-nr.ple I.D.
Activation
Lot number
Model
PrcJiccc-d
Slope
Low Mean High
Linear
. c
c
N U
Doau
Range
rested
(UGS)
Max
Rev/
Dose
Conununu,
f tfftv ia-
VO . :
Y/.V
6. So
o.ocisz
L/
15.1
0-013^
US
35.
-------
I.D.
ite Tinted
Activation
Lot Nujiicer
Model
Predicted
Slope
Low Mean High
Linujr
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Ad
Me
v* o
a> >
C
o
o
•O
is.
'1 w.
3 >
e. r
o
o
Doau
Range
rested
(UCS)
Max
Rev/
Dose
Conancni j
-*1-
- 10-03*0
NJ
^0,7
6..S-?
iSC
O'OlllS
31.5
5J7.il
0,03*11(1
. 2 H
0,013*15
J
33.3
33.7
..
uitel
33.C.
0:
31- 3
33.2
33. »
(o&i
--\~-
-------
ijnple I.D.
act Tested
•ccivacion
,oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Prt-dicced
Slope
(Mean)
Toxici ty
Value
Poisson
Valid
Adequ
Met
Prat
Conveed
Dosu
Range
Tested
(UGS)
Max
Rev/
Dose
Conuncncii
0.
4,50
(rf.5
O.c/izo
a*)./
3c.3
3^7,*
3H.IT1
.0:3^3
lot.o
lli.o
0-03C75
VO
U)
3633
3SI.G
VhT
-------
I.D.
Activation
Model
Predicted
Slope
Low Mean High
Regre-jsion
Predicted
Slope
(Mean)
Toxici ty
Bi
Value
3 a
Converoe
Dosu
Range
Tested
(UCS)
Max
Rev/
Dose
Continent;*
.3,2
70,7
5.
.200
- W-caro
(,0,3
65.1
5,36)
27.1
30.1
O.
0'03-F)
NiT
"
'2-83
(J.Oi'??'?
3S.7
.0/V.3?
loci
vo
.p-
»- 0330
JS.O
(?, 00*35
1
/5.S
13.147
w-/
1,5.1
0.011^3.
-------
J jr.pl e 1 . D.
.lie Tested
Accivation
Strain! Lo t N uiixi c r
Model
Prc-dicted
Slope
Low
Muan Hujh
Li near
xtcj reii s ion
Predict, eci
Slope
(Moan)
Toxicity
Value
Ad
Me
4 a
Convcr
et
ed
2 a
Conv
Doau
Range
rested
(UCS)
MdX
Rev/
Dose
300
3133
3/0.1
31-7.1
75.0
0,0*511
Ui
/Bi- Sa-03'xc
5S.I
./.0
0.03C11/
, 0/7.3
•/0.-7
V5.V
-------
>^i t VAl^y ™ I
Sample I.D.
ate Tested
ccivacion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
81
Value
Poisso
Valid
ra t
eraed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Conuncncs
CftS-X-Z-ea^O
3.1
o.sr/
y
0,0/3 1
J
/.S
a.-/
,00 3 -s-y
Met r,»
0,5
J
VO
ON
- 03/0
1.0
3,5
o.in
J
1,0
0,307
J
J
J
-------
-inple I.D.
ate Tested
Ctl VaClOn
oc Number
Model
Predicted
Slope
Low Mean High
^eg rey s ion
Predicted
Slope
(Mean)
Toxicity
Value
Poisson
Valid
Ad
Me
a. c
0
T U
D. r.
0
Dosu
Range
esced
(UGS)
HdX
Rev/
Dose
Commune^
o.s
0.oa.tf
33X
ac
- M-caro
0,5
2.7
o.nc,
5-0.)
75.V
5
cVfCr *2 - 03/0
o.a
1.5
0.043
WiT
?0.1
(JJ
O.f
70,1
O-/
y
30^
((,,£
J
-------
1.0.
JCe Tested
Activation
Lot Number
Model
Predictiid
Slope
Low Mean High
Llnujr
Regression
Prodicced
Slope
(Mean)
Toxicity
Value
Poi
Val
Ad
Me
at
roed
2 Parariet
Converged
DOSB
Range
Tested
(UGS)
Max
Rev/
Dose
Commence
W/6
0,020 S3
6,50
•v
71/77,7
- W-cairo
0,0033^
311.0
0' 03^70?
31.7
s
Nor
N.-T
vO
oo
- 03/0
Mot
Xi.1
33.U
-------
l.D.
\ccivation
Lot NuiMJur
Model
Predicted
Slope
Low
Mean
Hiyh
Linear
Regression
HreJicted
Slope
(Mean)
Toxici ty
value
O «
0. >
Ad
Me
a
r
Dosa
Range
rested
(UGS)
Max
Rev/
Dose
Continent. :•
/O
4.0,7
U.-0
(pSCJ
JfVli
vW
y
0-03537
53fl.7
370.5
VO
v£>
331.1
J-3/.0
2V/.3
i.1
2/-72V
--»-
-------
ur.pl
IX C
0
(N u
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
ConuncniJ
34.*
a ^.-7/3
s
N3
O
O
Nut
Usfcd
KJcT
57.1
i-X-z -03-10
,2-7,75'b
t — ',--
-------
^j :••.;-!« I.D.
N)
O
-03 }o
JLc TcaCcJ
r
ActivjLion
Lot Number
Model
Predicted
Slope
Low Mean Higti
MOT
V57
38.3
a, 7,7
?ar.o
17.8
m./
MiT
skJ
in
4KS
Linu.ir
Predicted
Slope
(Mean)
/S.3-7V
tfJSc
/(o,
Toxici ty
6)
Value
Q.oWl
0,
Poisso
Valid
y
Ad
Me
0
V U
I/
j
y
j
Doso
Range
Tested
(UGS)
G50
Max
Rev/
Dose
3.0
Conununiu
-------
.;:. 1 c! I . D .
- Vi-
o
ro ;
ate Tea Cud
A /.-*? 3-
1221
ACLlvat ion
Lot Number
13,3
Model
PreJicced
Slope
Low Mean
I.5
063
Sifl
yv.s
1/7,5
50,0
llS.5
tll.l
53.1
Linear
Regression
Predicted
Slope
(Mean)
4(««S1
4.100
ToxiciCy
Vulue
0.00930
so
d
Po
Va
y
y
y
Douu
Range
rested
(UCS)
Max
Rev/
Dose
300
3/03
^00
Conuncnt^
-------
I.D.
fitly. -
K)
O
OJ
i- Va-
- 0 3 30
Acun/jtion
Loc
xn
Modal
Prc-diccud
Slope-
32 .
Mean
VIoT
tJC.1
High
/oo.z
57. /
Regression
PrcUictud
Slope
f.t 75
13.011
. 5-70
Toxicity
Valut:
0.0//73
0,00^2.
so
d
Po
Va
Adeq
Met
P
Con
Para
Converoed
J
Dosu
Range
I'esced
(UCS)
Max
Rev/
Dose
.300
-------
3-inple I.D.
ate Tested
ctivjtion
Lot Number
Model
Predicted
Slope
Low Mean High
Li near
Regression
Predicted
Slope
(Mean)
Toxicity
B5
Value
Po
Va
a
r
Ad
Me
at
roed
a
rged
Dose
Range
rested
(UGS)
Max
Rev/
Oose
Comments;
•v
0.0/SV3
AQO
NJ
O
-p>
lox.s
30,12.0
0-02^
' 032.0
a-w.7
-------
1 . 0.
Lot N LUIU u r
Model
Prcdiccud
Slope-
Moan Hiijh
Li nua r
Hegru^sion
PrcdictcU
Slope
(MtJdll)
Toxicity
Bi
Valuu
Po
Va
Ad
Me
*• T)
a, OJ
j2
w. o
c
0
tN U
Do so
Tested
(UCb)
Max
Rev/
Dose
Commune^
T/.s
6,50
J
7V, V
IX)
O
J
, 0^-70 i
J
155
sis
0.02.1*1
"*•""• "• * ' t
-------
GROUP 15
HEAVY DUTY DIESEL EVALUATION
VARIABLES: ENGINES, TEST CYCLES, FUELS
SDSB-79-0011
0081
0121
0161
0231
0281
0331
80-4021
4041
4051
4061
4071
4091
4101
4111
4131
4151
4161
4172
4182
4192
4202
4212
4173
4174
DDAD
8V71N
1H DTI 466 B
DDAD 6V92 TA
Mack ETAZ
Mack ETSX
Cummins VTB-903
ii
11 malfunction
Caterpillar 3406 DITA
Cummins NTC 350
DDAD 8V TITA
IH DT 460
DDAD 6V92 TA
Cummins NTC 290
5-engine composite
5-engine composite
(D2) C/H trans.
(D2) Cold trans.
(D2) Hot trans.
(Dl) C/H trans.
(Dl) Cold trans.
(Dl) Hot trans.
(Dl) Hot bus cycle
Cold +
(D2) Hot trans.
(Dl) C/H trans.
(D2)
(D2) C/H
(D2) Cold trans.
(D2) C/H trans.
(D2) C/H trans.
(Dl) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) C/H trans.
(D2) Cold trans.
(D2) Hot trans.
206
-------
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
7 / /^
(Lt 1 et.
22^
HOT Trains,
^
"I/A.
N3
O
-~J
//or
7/4
HOT
*fr
H or/ •
7A.C>O Erf/^-2
*t~
-2f-
-------
/<*•
/
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
/ tf /) /
-52)3/3 - f Q -4-/ST/
M^fr
£*L-rerp, //
d/
'H-
0)0.
IH
^~
1 H £T ^ 0
H
tni
™fr-
Tc.
T6
-------
/a.
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
- S9
n
t,
L
V
L
t
A3
IZJ3
13
5
2.
Z-
^
IH-
/¥•
/t
AZ.?/
Al
V/
f
2
to
10
/o
3.
3
5.
.3
A?
/O
/o
^
32.
n
SDS&-
rt
io
/o
/o
/(J
/O
/o
2
n
n
'f
n
/7
' X7
n *> n
=30
n CA? /? 20
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
.
209
-------
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
S9
- S9
j£ 24 &
J
- S><9-
2L ?_Z
•**
A?
23-
2-3
2V-
23
cay- 23^^
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
210
-------
Exper4ment Number Date Plate-d
1 6/04/80
2 6/09/80
3 6/13/80
4 7/01/80
5 7/02/80
6 7/07/80
7 7/08/80
8 7/28/80
9 8/05/80
10 8/08/80
11 8/21/80
12 8/26/80
13 8/29/80
14 ' 9/05/80
15 9/08/80
16 9/09/80
17 9/10/80
18 9/12/80
19 9/18/80
20 9/24/80
21 9/25/80
22 10/06/80
23 10/27/80
24 11/07/80
25 11/17/80
26 2/06/81
27 2/10/81
28 2/20/81
29 2/24/81
211
-------
Sanple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low
Mean High
Linear
(egression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
Adequ
Met
•o
91
&2
h «i
i >
o. c
o
N O
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
7 /as /s
tX
6
» -3/0
6-7
0-/SS"
3-5
IX
/•S"
So*
NJ
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
03
Value
Poisso
Valid
Adequa
Met
t
onverged
Parzme
Converged
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
7/3? /go
.JL3-1
,•00013-
o-S
6-5-
Q-0-zf-t i 'j
0*
L/
£-2
NJ
I—"
U>
/•y-
A
-------
NJ
1— >
JN
Sanple 1.0.
<303/2> %(>-l
SOsfl-^-vrf,
'•5QS&~%()-ifi3f
3>S6-*>-V<*/
•S DS/3- ?2>- 4^3 ? i
5oS/3> -%O~m3i
)ate Tested
7/<3o /£o
«.
•/
',
i,
/,
Strain
w/a
V
'.
./
•'
ot Number
^(^iOi'S
',
;
A/i!A/ g-
ii
•-
Model
Predicted
Slope
Low
*r
^, «,"
^
d?
6+
3.2-
Mean
1.6
0-7
6-L
o.t
O.I,
0-5
ligh
,J>
/•s-
o-l
tf.?
0-g
o.t
Linear
tegress ion
Predicted
Slope
(Mean)
6-W+
C3./7^
0,/fC
6-3&J
0.1,,
6.'*>
Toxici ty
6,
Value
d ccoy^
o.^n
6-*v»*l
C), trot t~f
0.**,*
0 . aro
V. C
0
t\ U
, -
~*'
,
t--
Dose
Range
•ested
(UGS)
Jb-r*
'
-
=s^
41
••
Max
Rev/
Dose
S-P
Jfe-TP
3>
tpi^Z)
"osb
<^
^
Conuncnts*
•v- .. .:
-------
Sample I.D.
ate Tested
ctivation
ot tJumOcr
Model
Predicted
Slope
Low
Mean
igh
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
H
u u
ra >
O
N u
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Cominuntis
1,3-
tX
IX-
(X
IX
0.3
£>.
IX
S3
I—'
Ln
£•"7
IX
733
-^fTTL
t.C,
-------
Sanple I . 0.
Dace Tested
ccivacion
ot Number
Model
Predicted
Slope
Low Mean High
Lint;ar
Regression
Prcdicced
Slope
(Mean)
Toxicity
Bi
Value
Poisso
Valid
Adequa
Met
Co
t>
w£
V< 01
H> >
P. C
0
N U
Dose
Range
•ested
(UCS)
Max
Rev/
Dose
Conuncntu
- A
• cv-o /S"
&> +
NJ
>-•
Ov
3-1-
Ob /<3>
3-J-- tf
-------
Sample I.D.
ate Tested
.ctivation
.ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
8,
Value
so
d
Po
Va
Adequa
Met
a
Converoed
2 Pra
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
6-9
t).
LX
.570
6-1
At
O- OOOi
to
i—"
^j
-------
K)
)-•
oo
Sjnple I.D.
;5b5a-&>"£//3/
SD.S6-a-Y,3,
ate Tcsctd
IftJ®
1 I
crain
TAiS3Z
<\
oc Number
TlLl*6
/y/oAie
Model
Predicted
Slope
Low
d&
0,1
Mean
0-7
0-1
lujh
/.o
OIL
Linear
Regression
Predicted
Slope
(Mean)
6. Itl
-£)• #S7
Toxicity
8,
Value
o-£X>o6y
fr.O'W'X
Poisson Assumption
Valid
(^
Adequacy Criteria
Met
,6Jtf:
i^
4 Parameter noaei
Converoed
i^
Lx
3 Parameter Mooei
Convoroed
L^
L*
2 Parameter
Converoed
4 .
^
Dose
Range
Tested
(UCS)
^•-?
.Pra-z
Ot>-*
c2
-------
to
Sample I.D.
Sos<5 - -h~ooft
^czk-'n-teii
ate Tested
7/5-/SD
-
Strain
Trig
if
ot Number
RLIOf^
AJ0A/6
Model
Predicted
Slope
Low
b*
0.3-
Mean
o.r
O.f
High
/.o
07
Linear
Regression
Predicted
Slope ,
(Mean)
Q.H3
0- /s-s-
Toxicity
BI
Value
O'tmZb
O-CTTZ) >//
Poisson Assumption
Valid
u-^
ofcf
Adequacy Criteria
Met
^
\S
4 Parameter Model
Converoed
L-^
3 Parameter Moael
Converged
^
i~^
••
Model
2 Pararieter
Converged
^
Dose
Range
"ested
(UGS)
^20-*
9
-------
NJ
O
Sample 1.0.
^>ose>--ifi-M(i
5DS8- 7*7 •££//
late Tested
S/sr/gfl
/y
train
7/9 /dZ>
i/
ot Number
^^Zb/^
A/We
Model
Predicted
Slope
Low
d e>
/.i
Mean
0-^
AS
High
47
=2-6
Linear
Regression
Predicted
Slope
(Mean)
O'l77>'-i
b-6tl?t>
Poisson Assumption
Valid
Adequacy Criteria
Met
LX"
< Parameter «ooei
Converoed
^
f_^
3 Parameter noaei
Converged
L^
C-
».
1
2 Parameter
Converoed
^
<_.
K
Dose
Range
Tested
(UCS)
^fe>->
o^^TTTO
Max
Rev/
Dose
£73
3?TZ>
•a^3
5S-rz>
Comments
A»-» . .;'
-------
NJ
S3
Sample I.D.
3&S&-'ft-ooH
&>s# 1^,
ate Tested
?/5/^
"
Strain
'•
ctivation
ot Number
A/toAfc
Model
Predicted
Slope
Low
^).J.
-•/
Mean
63
O.I
High
o.f
0-1
Linear
Regression
Predicted
Slope
(Mean)
£>. /S"?
C.6K>
Toxicity
S)
Value
0 trm 3£,
Poisson Assumption
Valid
04 a-
Adequacy Criteria
Met
^
^
•n
0
kc 0)
*fi
^
i -a
I Z
h U
0. C
0
^
^
""'
Model
if!
o. c
o
IN U
(_^
^
*
Dose
Range
Tested
(UGS)
3^
S^>
Max
Rev/
Dose
537
•a^-rj)
Comments
•v« - .:
'.
-------
NJ
N3
I-O
Sample I.D.
S'DS.jS- 7?-00//
^56- 7-, .60U
ate Tested
SX^/SB
u
Strain
7/97?
ctivation
ot Number
/ec/o/r
tJc*/t
Model
Predicted
Slope
Low
O-l
0,J
Mean
b-3-
0-3.
High
^3
0.Q.
Linear
Regression
Predicted
Slope
(Mean)
D-0«?7
£>• && 7
Toxicity
Bi
value
^.iyT^o^
6-c^-cx^
X
Poisson Assumption
Valid
^
L/
Adequacy Criteria
Met
LS-
OZ(>
' 13
01 111
5 2
^ 0)
o, c
o
V o
£,X
•o
aj IK
I ?
H U
(X C
o
n u
C/
\^
••
i
)
4J «O
o, 0)
iS
ijs;
P. c
.5
£-
*x
•
Dose
Range
Tested
(UGS)
^r-?
6s&t>
j>s->
&£OD
Max
Rev/
Dose
££'
-^s^z
^6p
"Gxoi
Comments
•V» ,. .;'
':-•-
•
-------
NJ
NJ
CO
Sample I.D.
SOS&- 7',-COt/
SDS& -fy-ooij
ate Tested
%/£>-lko
t,
Sera in
%/tfZ>
'»
Lot Number
^dis/S'
A/'^>V6
Model
Predicted
Slope
Low
0-6
0.4
Mean
d.f
67
High
A/
6.?
Linear
Regression
Predicted
Slope
(Mean)
G-3--7&
o-/yf
Toxicity
0)
Value
tf --r /6.
6-&a-i3*>
Poisson Assumption
Valid
^
Adequacy Criteria
Met
<03#
,033
4 Parameter Model 1
Converoed
LX
'./
3 Parameter Model 1
Converged
vX
•*.
t
•0
>
2 Para^neter
Converoed
1 -
I*
Dose
Range
rested
(UGS)
£JT^>
-------
S3
Sample I.D.
Z>b5&- •jr^&Oti
•5/X5/3 7ff~DOfi
ate To seed
*fa/*o
/ 1
train
TA,'S$,
r
ot Number
^Pcjro/^"
//We
Model
Predicted
Slope
Low
0J.
O-O
Mean
O-'JL
^•1
High
0 3
6-3
Linear
Regression
Predicted
Slope
(Mean)
6.070-
o.oyo
Toxicity
B,
Value
^. Ctrc, <£:.
0 Crm><3.
Poisson Assumption
Valid
&&}
Adequacy Criteria
Met
^
« Parameter nooei
Converoed 1
^
3 Parameter Mooel
Converoed
S
LS
h.
1
2 Paraoneter
Converoed
^
_
k
Dose
Range
Tested
(UGS)
Gs-^-
£Jbt>
//
Max
Rev/
Dose
563
£
-------
Sample 1.0.
'So'S6'7f!-6iy
SOB&~7fi-6i£>t
ate Tested
?/3*#„• -»•
eiV-7-Z
«#
Max
Rev/
Dose
3r^x
£&
S£2_
<3trr-O
b
Comments
•v» ..^ ,•'
',
-------
N3
ro
Sample I.D.
•£*££.£- 79 ~£/6/
3O-3/3 ~ ?•/ -6/t,/
ate Tested
Zlj4>fco
if
Strain
T/J/O.
•i
ot Number
/PC/Off
AJ'CN €>
Model
Predicted
Slope
Low
6-4
G-4
Mean
o-r
6-6
ligh
C
/• O
Linear
Regression
Predicted
Slope
(Mean)
AVfc'y
<5-SY/
Toxicity
6)
Value
0 • s-aec?
Poisson Assumption
Valid
\^
Adequacy Criteria
Met
•^
\^'
4 Parameter «ooei
Converoed
\^
^
3 Parameter Mooei
Converged
i^
t— '
'
1
2 Parar>eter
Converoed
< •
I-*
Dose
Range
Tested
(UGS)
)a~9
&<~t~&
••
Max
Rev/
Dose
'OStf*
"53-/S
/^.ll
3f*-0
Comments
v* •• •:
':
-------
N>
NJ
Sample I.D.
£<£>sd-'7?--«5/fc/
•5/05*6- TV -*?/£>/
ate Tested
tym/to
••
Strain
T/)/^
/ ,
ot Number
?4/£/iT
*){>rf&-
Model
Prudicted
Slope
Low
9'J
O. 1
Mean
£>•<£'
6,1
High
-T
C-3
Linear
Regression
Predicted
Slope
(Mean)
0-/S-7
^•^^- if.i
O C3T>>5
Poisson Assumption
Valid
vX
i/
Adequacy Criteria
Met
L;'
•opfr.
< Parameter Model
Converaed
i^"
t^
3 Parameter Model
Converged
^
^
•<
Model
2 Parameter
Converaed
t —
£^-*
Dose
Range
Tested
(UGS)
cO* -*
Ar-n
Sr
Max
Rev/
Dose
J^,
okrz^
/83^
^7T>
Comments
•v» ...^ .:'
-------
ro
ro
oo
Sanple I.D.
•SJ35«3-77'tf/^
SDSS- 74-0 /&
ce Tested
*z&b&
ii
Sera in
73 7f
/'
ccivation
ot Number
/P^/5
A/£>*je
Model
Predicted
Slope
Low
0-2-
&l
Mean
ay*
e>. i
High
l.d
d-f
Linear
Regression
Predicted
Slope
(Mean)
b. /$-/
0- t(C>
Toxicity
Bi
Value
Q-ffWfZ
Poisson Assumption
Valid
^
^
Adequacy Criteria
Met
Ls'
^
I
•a
»
E, °
u
u a;
fl. c
0
T U
^
l*^
•a
=5^^
&}~t~0
Max
Rev/
Dose
^3-
&
-------
NJ
N>
VO
Sample I.D.
&DS&- 77- a k, (
SOS&-7V-0/6/
ate Tested
V«??/gZ)
>i
Strain
Tfim
ii
,ot Number
/?Lr<5«-
flofe
Model
Predicted
Slope
Low
5-i
J-3
Mean
0-3
.?
High
^3
«?./
Linear
Regression
Predicted
Slope
(Mean)
0 331
d • V />
Toxicity
Bj
Value
,). C*03/
Poisson Assumption
Valid
^
vx
Adequacy Criteria
Met
,GI(4
L^
4 Paraneter Model I
Converoed
< — '
3 Parameter Model I
Converqed
\S
I/
"•
Model
2 Parameter
Converoed
^x
^^
»
Dose
Range
Tested
(UGS)
^—7
&>-**
Max
Rev/
Dose
!?/S>
'^Sftt
3f*$
Comments
•v» >-t •:
-------
Co
O
Sample I.D.
-?>
£
^tnrz>
/7^
&r>rt>
Comments
••*••• •• •:'
'.
-------
N3
CO
Sample I.D.
5ob&- Ti t^i
'5f>A--$>-'h3l
£c>s6''ff-o33;
SC&A-'Zto-^o^i
ace Tested
f/tr/ft
>
i.
a
Strain
7/m
V
/ /
• •
ot Number
%UOf?
tt
dtrfe
> »
Model
Predicted
Slope
Low
0-*
t>'l
6'/
l-'W
d- 07*)
0-SOj
Toxicity
0)
Value
O c+v-t 3s
fr.0T£,S?
O'CmO^O
Poisson Assumption
Valid
03&
^~-
^
ozy,
Adequacy Criteria
Met
(/
^
^
4 Parameter Model I
Converoed
*^-'
^
i^
\/
3 Parameter Moael I
Converged
_^
^
(,
i^
<-»
i
i
2 Pararwter
Converoed
_
^
L.-
i^-^
Dose
Range
Tested
(UGS)
^tc->
•Jrt-C
£k>->
^rrt>
^r-5*
• Jf-n>
A.V
A-n)
Max
Rev/
Dose
3-23,
2fri>
34,3,
'Zrev
l^£
je-r-D
f^-
*2r»1>
Comments
•v»-» • .;'
'<
-------
ro
CO
Sample 1.0.
s»s<3- ri-o'^t
Sbs^-JB-^oJ/
&Vi& 13<
Ste&-&-*t6ii
)ate Tested
^^7-20
*f
1 1
•'
train
TAiiTD
••
'»
••
ot Number
12.i-if»^
ii
/Otf/Jt
c
Model
Predicted
Slope
Low
O'l
3.i
ab
3-1
Mean
o."5
3-t.
&.L
J?3
High
i>.3
^/
l.i.
a.<4
Linear
Regression
Predicted
Slope
(Mean)
6.302-
/•s"3"3"
6^37
A^3 1-
Toxicity
B,
Value
6-. -?TO ^i->-
0 -cnrb^-j
Poisson Assumption
Valid
Lx'
*W-
Adequacy Criteria
Met
04*2
'OiO^
4 Parameter Mooei
Converoed
^
L/
3 Parajneter noaei
Converoed
L^-
IX
**i
2 Parameter
Converaed
6-
t-'
_^
^
*
Dose
Range
Tested
(DCS)
Jo-Tf
Arr»
X ''
-*>*
J60T>
•t
Hax
Rev/
Dose
T^TX
^30TT>
r'_3j..
<3e-rt
~tl£,
3fTt>
tT^
^f~tn>
Comments
•v • ••_ •:
;.
i
-------
NJ
U>
U>
Sample 1.0.
^^r,-o^
S1&&-&W
***- 7^33/
SOSB,-*-**
ate Tested
9/sVr,c
''
'i
"
Strain
rAis£
••
*t
'•
ot Number
\ £- T^ / ^"
'•
t\j & A/^
-
Model
Predicted
Slope
Low
0,3
J-3
6.1
^
Mean
6.L
a-i
6.1
<~t
High
A3
3-3
/>./
7f
Linear
Regression
Predicted
Slope
(Mean)
U* II Jl
a.sn
6-oto
^^
Toxicity
Value
C).^crv^i
D-a-roT)
0.6a Vci/
Poisson Assumption
Valid
^
^
^
o*-
Adequacy Criteria
Met
03*
^
^
4 Parameter Mooei
Converged
^
^
^
^
•o
' "
Z
k4 CJ
o
d u
^
tr>-
^,
Model
2 Parameter
Converoed
^
_-
( ,
I/
Dose
Range
rested
(ucs)
^^
'1
Jcrrv
"
Max
Rev/
Dose
^ro
'<*n,
^
i?3
Common ts
T- .,,-
'!
i
-------
NJ
OJ
•P-
Sample 1.0.
5OS/3 -7?- 02&,
^bS&-®Oj
•5DS&- Tf-633/
^DSB~&-4fr2j
ate Tested
9 //?/
'/
•t
'~t
Strain
TAT?
it
•v
••
,ot Number
#L£0/6
1 1
/I/We
c
Model
Predicted
Slope
Low
£>.'
^ 6
Ci,f
a.*
Mean
fl.^.
5d
0- '
.3-r
High
0.3
3-
&2)3
L-"'
« Parameter MooeJ I
Converoed
lS
^,
u-'
U
•*
3 Parameter Model 1
Converged
^.
i_^
*-''
^
••*
r-i
1
1
2 Parameter
Converoed
>^-
t
i^.
l^
Dose
Range
Tested
(UGS)
(*$--?
L'&i
?>*-?
6T->
fcSZ?7>
<£*-*
^3erv
Max
Rev/
Dose
¥6
37^-
%S7IT>
ft?
t^Aj *>'$
Comments
•v» . ,•
(
•
-------
N3
CO
Ul
Sample I.o.
^OSG~ 7*7 -o33'
sosa-axoj,
SOSA-^33,
5DS6-*)-**
ate Tested
?/i /eo
//
•-
'
Strain
T7»/tf>
-
I/
"
ctivation
,ot Number
^^,
1 i
A/We
'•
Model
Predicted
Slope
Low
*-'JL
+<
o.^
&*
Mean
A t ~)
j* (^
0.?
*,
High
At
s-s-
At
^£
Linear
Regression
Predicted
Slope
(Mean)
0-,'l?
c-W
O.H*
I W
Toxicity
01
Value
O.ffmi>>
0- CTTV %&
6 ovt> /F
6-Ot
o*-r?
-£St
>T»
Max
Rev/
Dose
J37,,
"£55-3
J^3«f
-to?^
^
Contnents
'•v- . .:
-------
Sample 1.0.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
Adequa
Met
Paramet
Converged
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
31
0110
~c 33/
C.I
IX"
A 7
OJ
-------
Sample 1.0.
ate Tested
ctivacion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Muan)
Toxicity
Bi
Value
C
o
U) t)
O
a
Conver
Para
Converoed
Dose
Range
rested
(UCS)
Max
Rev/
Dose
Communes
fate ft
7-3
3-*
a,/
ro
-------
Sample I.D.
Date Tested
ctivation
-ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Muan)
Toxicity
B)
Value
Poisso
Valid
Adequ
Met
Conve
Para
Converged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
3-1
020 (.
l/
N)
U)
00
-------
KJ
OJ
Sanple 1.0.
ZiDse>-¥i-hs-(
3DSj6-^~V£/
SOG6"ft>-77
Ct-cm ^o
(O'^rp < r/j.
0- OT //jt
-
c
0
Poisson Assumpt
Valid
'£>/«!
a
Adequacy Crater
Met
^
IX
-037
j «0
gj o
§ 2
v» U
0. C
0
v O
i^
lX
U-
ix/
F-l
araroeter Mode
verged
0. C
0
co O
^
^
^
ix"
"
cH
•D
)
I
v «O
g°
W u
B. C
0
IM O
,__
6.'
^
<-•
Dose
Range
Tested
(UCS)
A>-»
ytrrC.
•/
'-oA?-»
*?G~*~~9
'/
Max
Rev/
Dose
/?07
-^TJl)
l*&l
2fT-»
7/^
tsz>
3'/^
%«2>
Comments
A--» •• •:'
•.
-------
S^nple I.D.
ate Tesced
ctivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
0)
Value
Parzc
onverged
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Common EG
SDS6 -
Qt-lbf
3-i
6"-?
L,-
/ 7
o
NJ
4>
O
5. /
1-1
J-7
-------
Sample I.D.
ate Tested
ctivation
ot Nu/nber
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Adeq
Met
3
Co
Parame
nveroe
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Common ts
5056 -•
£> crm
Ao
/;
/5-iV.
A/Wfc
CO
4>
3.S"
3-~
f/C
-------
Sample I.D.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
so
d
Po
Va
4
Co
a
roed
P
on
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Convncnts
Sb
0 •
01
3/7
O-
O/OJ
t--
i-S
X.fc
V/
tx
N3
'. 3
37
-------
Ni
4^
CO
Sample t.D.
SDS&-%0-&$
SOS6-8>'-/oS7
3DS£ -&>-<«> f/
•SASA-2MteS7
ate Tested
Vj5"/f2>
/«
V
/*
Strain
-W^2
tt
t/
if
at Number
*iu,t.
'/
ftorJZ,
i>
Model
Predicted
Slope
Low
6.1
6. '6
6.1
0-3.
Mean
tf.fe
is-r
0.2-
'3f
Toxicity
3,
Value
6-660 co3j
F
frocot?
f>-e>t>o^
c
O
Poisson Assumpt
Valid
ix-
0^6
i^
v^
a
quacy Criter
•a 01
< z
i^
~s
(^
£4V>
arajneter Mode
veroed
0
-*-
J*nrt>
„ ••
*>-^
oStfTTB
(y
-
Max
Rev/
Dose
36«x
J*-rz>
f^
&n>
£-
•£rn
Comments
•V»-» . .;'
',
•
-------
Sample I.D.
SD56- %0'ttot,
5D56-fi>-4*oSV
505e^0- yo^
SfiS«-i?a-V<>^<
late Tested
elfaf /&>
-re/3
tf.^'^3^
Poisson Assumption
Valid
ix-
»/
Adequacy Criteria
Met
iX
\^
IX
.0/6^
4 Parameter Model
Converged
"iX
~X
tX
3 Parameter Moael
Converged
X
ix'
C-^
^^
«
2 Parameter
Converoed
1
^
^
U-
£--
Dose
Range
Tested
(UCS)
o^>->
JB-T-C
I/
-*-#•
3BW
//
Max
Rev/
Dose
7^
<&m>
95^
Sr»v
1ST,
^firo
lift/
-^3frO
Comments
•v»
',
-------
ro
.e-
Ul
Sample 1.0.
SOS6-^*>W
56s^^-^r,
*>^**«,
5D^6 ~xZ) - W^/
ate Tested
tteto
.,
,,
"
Strain
T^*
"
7/>(^
ccivation
ot Number
\CT &/(c>
it
««€
"
Model
Predicted
Slope
Low
0.2-
13.
to
&./
Mean
0.f
&
0,1
o.y
High
o-7
6.9
0y
/.j-
Linear
Regression
Predicted
Slope
(Mean)
b-,15
0.23*
0.1^
£>.«*
Toxicity
S,
Value
0-00030
0.0*0^
t>.cooW
Poisson Assumption
Valid
I —
IX
^
Adequacy Criteria
Met
^
^
^
•
-> ..
ii
• 1
X"
Max
Rev/
Dose
V^'-f^
£el-e
£OGT>
**£
*%*
Comments
•v- - ,'
',
•
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Lou Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
Adequ
Met
3
Co
am
rged
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
03
0
. /
6-066
t-2.
0
0-3
/-a.
Jt-o-o
Ao
3^0
O\
&•(.
6-
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
•O d>
X X
4 Para
Converoed
3
Co
z
roed
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
0.3
77
•X
Arro
.ary-a
•v
A3
0-3
•'1
57
6-3
A 4
A3
0-377
N>
*-
-^1
o.y-
6?
9/3.
=?7
1113
-------
to
4>
00
Sample 1.0.
D35-&- •&>»*'/
sosa -a- v^ j
SoSB-a,-^,
*>»-g^,
SfoSB-'Zl-y-ofi
S03e-£3-}0/
)ate Tested
/0/,/j6
-/
y
V
it
>i
train
*iS*
"
t
"
"
"
ot Number
^L/ 0 'A
* /
'*
A/£A/£
••
'
Model
Predicted
Slope
Low
A2
17?
o,iu
O-^o
*.*&
0.'*+
£>.3£7>
Toxicity
Value
6.6066,2.
0 .ooo-ig
0.0**®
Poisson Assumption
Valid
LX
^
^
\^
s
Adequacy Criteria
Met
^
l-X
i —
^
^
IX
4 Parameter noaei
Converged
^
^
^
^
C.
•o
Ol
a
h4 OJ
m >
o
PI O
IX
L*
^
^
^s-
u
2 Parameter
Converged
LX
^«
^^
c-
«^-
c»-
Dose
Range
Tested
(UGS)
C>E£? "^
-v_____.
•aJorlj
t*
"
f^a-e-o
"'
"
Max
Rev/
Dose
*T
337,
*^
Itf
a&r,
*%*
Comments
•
•
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poi
Val
Adequ
Met
•o
o
Cl
u
a, c
ra
erged
3
Co
aonet
rged
Co
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
Aj.
0.1,
xX
A,-*
LX
o.S
1-1
a -7
.*>-?
•O
VO
-------
N>
Ul
O
Sample I.D.
&DS& -?a-¥/6/
32>i'6 9e> *,,j
3&S6-?o-W
$(&& -To- w/i
ate Tested
•7/«3/?-2-
' <
i>
ft
Strain
~1ft<£t
tt
•i
i.
ot Number
^"C/ £>/£
it
*JGA/£
tt
Model
Predicted
Slope
Low
>-3
/ 7
sv/
a-j
Mean
/.i"
^»/
3,0-
3 /
High
•7
2.7
3&
33
Linear
Regression
Predicted
Slope
(Mean)
CxC.1l
C'Jtrt
/. 3/<-
A^VO
Toxicity
81
Value
0. 0-«>3'S'"
0.yi
6- tf'' o tf-i.
0'fOlG~}
Poisson Assumption
Valid
Adequacy Criteria
Met
^
. any-
Converged
***
t/
^
3 Parameter Moael I
Converged
L^
^
\~S
'•
i
2 Parameter
Converged
^
t_-
Dose
Range
Tested
(UCS)
jSft)
<9
S*°2
^.»-*-o
/ "
Max
Rev/
Dose
/_£££
Sro
3e^t
•3^5
/oS£.
-^
/o^o,
"£?D
Comments
•v» • •:'
'(
•
•
-------
Sdnple I.D.
ate Tested
ctivation
ot Numcer
Model
Predicted
Slope
Low Mean High
Linuur
Regression
Predicted
Slope
(MuanJ
Toxicity
Value
Po
Va
Ade
Met
•rS
art
roed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T/)/S3fi
67
Strrt
/-S
6-$
0-3
(J.f
6.2T
ro
Ui
-------
ISJ
Ui
M
Sample I.D.
SOS/6-^0-^'Z3
60S/3-80-^7(i
?as<3-2>-^/73
soss-a-^/rv-
JBs,g -tfo-y/0/
ate Tested
/<3/W?o
»»
V
••
>>
Strain
t7M«
• f
• ^
a
t,
ot Number
*?<-/ 0/fc
I *
A/^/Vfc
/ ^
//
Model
Predicted
Slope
Low
a. 8
6.?.«
t.C.
a.sr
Mean
/. /
0-<
4-A,
tf-7
<9.(.
High
At
0-<
J.(,
6,<6
d-?
Linear
Regression
Predicted
Slope
(Mean)
0-7/6-
o.*tt,i
6-660
Cl^s-f
6-3.37
Toxicity
Si
Value
6, <900 J.2.
6-60& y/
D.OQ0l*j
6.0TO £
Poisson Assumption
Valid
uX
,/
i/
« o//6
cX
Adequacy Criteria
Met
.03SS
LX"
^
L/
« Parameter Mooel
Converoed
J^-
iX
\S
^
•O
Hi
a
V4
K O
"0 >
a. c
o
n u
tX
^
iX
<^
4^
V*
1
1
1
2 Parameter
Converged
(^
i-'
iX
c-
Dose
Range
Tested
(UGS)
dfe->
oZ#«»
(^
*4
/f
**
^
Max
Rev/
Dose
^
Six>o
7v^/
•im)
'53£
"^£>err>
ItV
^y*6&
&*/
-^trrv
Comments
•v» - .;'
.
-------
Sample I.D.
ace Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Adequa
Met
a
Converoed
t
ged
PaTne
Converged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
a. 3
=3.3
ATS
d-t,
D.C,
4.7
f.f
5-6
Ul
Co
-------
Sainple 1.0.
<£>S6 ffO-^173
SDS6- £&-<£/ 7
5D5B-2,-fl73
SOsft-gO-(fr7f
SDS8 #>-/*)
ate Tested
/'a/?//* 3-
,/
'/
f *
II
S era in
-TOifiB
««
• /
••
K
ctivation
ot Number
-?/./ 0/6
r
X^Ve
**
tt
Model
Predicted
Slope
Low
6-1
<3'X
9*1
o.±
6.1
Mean
C-g
o,r
AO
0-f
o-3
High
/.o
6-f
i.a-
1.0
t> v
Linear
Regression
Predicted
Slope
(Mean)
o.s'a.i
t>-$<~f
6.4^1
Q.K/3
V3
Poisson Assumption
Valid
\^
IS'
\^s
Adequacy Criteria
Met
i/
^
\S
^
^
H -D
U OJ
i £
t. m
a. c
0
» o
/
l^
IS*
<^s
l^"
arameter Model
verged
^
•20 CO
tt
H
Max
Rev/
Dose
tt>(>2>,
M&Q
vyi/
&m)
3ofe-
•S5ZI
^^
JtfOc^
JV^
£**&
Comments
v" •- •:
'.
i
-------
to
Ln
Ln
Sample I.D.
SOS ft- ®- ¥T7¥
SDS& -So-fiJJ,
£bS&~8>~y-n<(.
ate Tested
"A/Jri
•i
'•
Strain
7*7?
1
-.
oc Number
Ruoit
/Jo/ve
ti
Model
Predicted
Slope
Low
Ov3
;• 7
0-5
Mean
6-7
3-1-
t>.f
High
AS"
5-V^
tf.?
Linear
Regression
Predicted
Slope
(Mean)
^•^'5-
6- T73
O-t-zg
Toxicity
Bj
Value
• <50oi^3
6.000 fc?
Q-actoC.
Poisson Assumption
Valid
\^
\-^
Adequacy Criteria
Met
^
i_^
4 Parameter Model
Converoed
^,
^
3 Parameter Model
Converged
^
^,
• V
«
2 Parameter
Converged
fc--
Dose
Range
(UGS)
AJ-*
'^rt-D
^*°~*
^em>
n
Max
Rev/
Dose
s-s^/
e»mrt
Wb
ftFr-U
??*,
/*m
Comments
v*1" • •:
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Po
Va
Adequa
Met
a
r
•o
. 41
12
t, u
i >
0. C
o
N O
Dosa
Range
Tested
(UCS)
Max
Rev/
Dose
Cbmments
6.00035
o.s
*'<>
$••0
£.1
ho
Ui
ON
-------
(S3
Ul
Sample I.D.
SOSQ- £b-4n
a. c
o
i/
(-S
Us
«
Parameter
'onveroed
.
C^
iX
Dose
Range
Tested
(UGS)
9o-*
J«r^-»
iO-3^
"4U>«H
Max
Rev/
Dose
757.
3m)
33?
£&>
33£/
Arrfi
Comments
v»-- .. .;'
-------
S3
Ui
oo
Sample I.D.
<%>$& -%>-4n*>
ate Tested
fnfao
Strain
77} ^f
ctivation
ot Number
Ruo/c*
Model
Predicted
Slope
Low
3-7
Mean
3 -S
High
V.I,
Linear
Regression
Predicted
Slope
(Mean)
6-^2
Toxicity
8)
Value
6- 0004*7
Poisson Assumption
Valid
L/
Adequacy Criteria
Met
(_^.
araneter Model
veroed
o. c
0
f U
l^
arameter Model
verged 1
0. C
o
m o
Model
arameter
verged
o. c
o
(N U
^
•
Dose
Range
Tested
(UGS)
&+-*>
^
Max
Rev/
Dose
nb£,
~£fr-O
Comments
v' •- •:
-------
N)
Ul
VO
Sample I.D.
*3osft-Z6-•».
Model
2 Paraoneter
Converged
Dose
Range
Tested
(UGS)
.Je->
uAf y £l
Max
Rev/
Dose
'332,
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Lou Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
BJ
Value
Poisson
Valid
a c
01
>
c
0
v O
•D
«J «l
12
U HJ
ID >
O
O
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
10
Ad
d. 600 45
N3
ON
O
0.7
6?
Jo-*
-------
Sample I.D.
Dace Tested
ctivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
03
Value
Poisso
Valid
Adequ
Met
Para
Converoed
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
* ;
tx
ST)
/-a
J.o
V.6
()• CO It I
L-"
3,5
5-y
0-7 a a.
6, coo
317,
Mic
ce
1*77%
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
8,
value
0
« 'O
U1 -^
•rt H
o a
o. >
Adequa
Met
5
H
VH 01
1H >
C
o
Dose
Range
Tested
(UGS)
MAX
Rev/
Dose
Comments
303 G- -20-4,2;
s.tii
"fa/ 5*
±1
3 o
U/
NJ
0-Z-
0-7
O.Z
-------
Sample I.D.
Date Tested
ccivacion
ot Number
Model
Predicted
Slope
Low Mean High
Lincjar
Regression
Predicted
Slope
(Mean)
Toxicity
B>
Value
Poisson
Valid
Para
onveroed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
0,0 /L
- oot o3
\,
•5056^0-
A a
*S 3600
(>•*
0-7
3,0
0. 60067
CO
0>
U>
T/m
6.4-
6.0007
-------
Sample I.D.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bj
Value
Ade
Met
*J *o
o>
a Z
V
>
c
0
u
•o
Oi
62
4>
>
a. c
o
N o
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Conunents
0/4.
J.fc
3.0&-?
O.C-
L/
Puotf,
^-eoo
LL
M.
0.
J-eco
N5
<^
*-
3-0
37
0-735-
£>. 600 (. C
Tfl/fD
>-77
.3400
/Alf
-£5
50
-------
Sample I.D.
Dace Tested
ctivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
son
d
Po
Va
Adeq
Met
Para
onveroe
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
3.3
3.4
6-7 3*
6.0007'?
v/
tx- 2j>oo
Ay
A/
b>3S-l
Quote,
2000
fc. oofof
if
Ul
6 3.
6-
77K*
6-'7S
0- OOOSj
-------
NJ
ON
ON
Sample I.D.
6£>s6-Xo-ib7l_
SCS& $b-4ZM>l-.
3DS& KtvJni
SOS&- %0- 4Joi-
ate Tested
^J/6/fr/
J/6/?/
2/6 /2/
ill, /a
Strain
TAW
••
„
t*
ccivation
oc Number
Rl^LOlt,,
It
A/flA/e
i'
Model
Predicted
Slope
Low
«,?
6,0
£>.*
0,1
Mean
/- /
.3-
f.o
t>-l
High
'•Y
/•I
/.a-
6-\
Linear
Regression
Predicted
Slope
(Mean)
0-5-7?
b.i^<+
0-S~7/
O- ICJ
Toxicity
Bi
Value
6-6O033*
0- 6C6AC>
(>, 0602-g
*• 9 10 3U
c
o
Poisson Assu-npt
Valid
^
C/
./
0-43/
ID
Adequacy Criter
Met
O33U
^
U>i*j<
: ^
r-t
arameter Moat
veraed
vfi
\S
^
^
\*s
arameter Moot
verged
0. C
o
m u
( ,
t^
i/
\S
i_^
•0
>
araneter
veroed
0. C
0
IN U
^
^
^-
• ••
Dose
Range
Tested
(ucs)
A>->-
3-cco
ti
40-?
^OOO
,. !•
Max
Rev/
Dose
2l2/
•geci
3«^
20e-o
tlt,(,
J-000
ayy,
"55^o
Comments
%•••• • .;
:
-------
Sample I.D.
505/0 ZO-fl 7J_
SOS&- £ 0-2--
ate Tested
^-/ (D 1 ft f
-
tl
*•
Strain
*,«
"
„
-
ctivation
ot Number
<«0/t
1 1
V<"i/£
i.
Model
Predicted
Slope
Low
U
.3
3'v?
•f
Mean
J-a
a
3.r
-f
High
ZS
3
3?
y
Linear
Regression
Predicted
Slope
(Mean)
0-123
CMU
i-775
O-3-1I
Toxicity
Bi
Value
fr 00057
i.*t7
6-060¥
/• II 7j
Poisson Assumption
Valid
^
^
0.03^3
Adequacy Criteria
Met
.X
^
•C
QJ U
c, o
1 V.
k. CJ
Ct, C
0
•» u
l^/
*-
^^"
J/
1 'D
0) Ot
I 2
w u
0. C
0
m u
,
u-
^
OJ
•o
>
araineter
zeroed
0
^
Comments
'.
'
-------
NJ
C*
oo
Sample I.D.
SOS/3- £0"V/7i
SOS6-?0-VJL^J
Sbse-zo-myz.
6O5<3~&^^ai
ate Tested
V&/S?/
f/
/.
//
Strain
•(71/5 3f
1,
V
'•
ctivacion
Lot Number
RLlDlL
f
N/O^fe
,'r
Model
Predicted
Slope
Low
0.7
1-1
0.f
o./
Mean
6-E
,3
at
A/
High
/./
•b
6-1
O.I
Linear
Regression
Predicted
Slope
(Mean)
6-
0-'&3>
Toxicity
Bi
Value
O- CO£JU=
):OOOIL
6- a<3so
^>. ^^>4
Poisson Assu-nption
Valid
\S
V^
LX
IX
Adequacy Criteria
Met
\^
\^
f&Z
v/
-
arajneter Model
veroed
a. c
0
•t O
fc*-'
y
^/
vX
arajneter Model
veroed
0. C
0
m o
_
t-"
tX
J
•o
j
arajneter
zeroed
ft. c
o
(N U
<^s
^
jX
'*
Dose
Range
Tested
(UCS)
A) ->
J-£)OO
"
Zo-9
=&e*>T>
1 1
Max
Rev/
Dose
loo&s
<2£Co
-V^K
£ec&
*3T/
&«ci
A/9/
a^o
Comments
%»•• ,. .;"
'.
i
-------
K>
ON
VD
Simple I.D.
€aDS>& Zo-tiiz.
$OS&-go-tj.j.a3-.
SOS&^4/^
•^OSft-fa-v^JL-
late Tested
atachi
1 1
1,
It
crdin
TfiH
i>
it
i •
at Number
RLLoif.
it
A/o/vje
-
Model
Predicted
Slope
Low
°-l
6. a
(. 1
G.I
Mean
o.l
0-1.
/-3
Q.JL
High
I.I
6-'3
AS*
0.3.
Linear
Regression
Predicted
Slope
(Mean)
6-S75-
C.tOJ
t>Sf-L
oost
Toxicity
Bj
Value
bCO03&.
6- coo to
6'OCCWi
Q-OOOIf
Poisson Assumption
Valid
,/
^
^
Adequacy Criteria
Met
\^
-^
^
4 Parameter MoaeJ.
Converoed
\^
\S
I/
^^
3 Parameter Moaei
Converoed
^
L^
lS
&*
2 Parameter
Converoed
^
1 —
Ls
^
"
Dose
Range
Tested
(UGS)
<*»-*
J-OOO
AV->
-€^
2*00
I*-*
^£>&)L!
Max
Rev/
Dose
//7^
^000
~>A^
•%SBt>
H23 .
JL6CO
#
-------
KJ
•^4
O
Sample I.D.
•SB sQ-fo-'fi 7 i.
SOSB-^^2.
S>6<,a-So-^7i
SQS6-#fr-V^i
ace Tested
4 <9»/9l
It
V
It
Strain
T/)/<5Z>
//
IX
l>
oc Number
^6ZO/(,
6 ooofC.
.6&6JL3-*
Poi sson Assumption
Valid
S
Adequacy Criteria
Met
,/
4 Parameter Model
Converoed
t^-
•^
^
S
3 Parameter Model
Converoed
*-^
*/
t^
Model
2 Parameter
Converged
i^.
•
,
*X
• •»
Dose
Range
Tested
(UGS)
Jtf-?*-
'iZo^O
2^-?
^5i>o
JO-#
^><^ii>
^>->
t>5CX>
Max
Rev/
Dose
/S^J,
^COJ
/i*0
15^
ay^,
<50
/£t
T^o
Comments
%~ • • •:
'.
-------
to
--J
Sample I.D.
5056 -BO- V'7^.
Sose~g0-
0,[
Linear
Regression
Predicted
Slope
(Mean)
o-V4^
0
OP-*
^U»P
Jto-*-
^^v
Max
Rev/
Dose
?5^/
3
47S/
^sza
Comments
V- .. .;'
•
;
-------
272
-------
to
SAMPLE
I.D.
S£S&^ T)-M>it
\
EXPERIMENT
DATE
JflslfO
?/j.()&o
l*o
?UI*o
fflslffo
«l»|l«o
tflsfeo
V/ai/?^
S/6/&0
s-Li/fro
r/s'so
tffci I ?c
TESTER
STRAIN
-T7M?
/i
h
u
TPllQQ
tf
1 1
II
T»-;s'3tf
>/
H
t '
S-9
+
4
-
-
-1-
4-
-
-
•*-
•»-
-
-
SLOPE
REV/UG
A.4«p
r>./«3
0,3(*C>
0.//9
«,SO^
o.?yV
/, S3?
C»/-7V^
0«3*7/
o/a/'J
OiOti
A. O1)^-
PERCENT
EXTRACTABLES
6/.0
N
!
1
/
PARTICULATE
EMISSION RATE
G/KW-HR
7. M
\
J
REV/KW-HR
.^3/Y/.V
J^lL>~rLi>n
v •- •:
3.^3353, V
79/^3*7
333-77?- ^
<54l32V.<*
*
/022(n/t>.:3_
V^o/s.V
lioin.*}
/VS'6,73^
^3?5to,^
6J/-70.8
-------
SAMPLE
I.D.
S&S6-79-OOXI
\
f
EXPERIMENT
DATE
-rhlzo
-7hl?c
•7/1 /s-o
•7/7/FO
•-> h Ixo
->)-))9Q
-?)i IZG
7/-rl»fi
-7///S-0
7/-»jro
7///ro
-7/-7/KO
TESTER
STRAIN
-17111
tt
it
n
-/ft/00
:
li
4
-7>/S3f
ft
II
•-
S-9
-h
4-
-
.—
•f
•f
—
—
+
4-
-
-
SLOPE
REV/UG
£7.^V
f5,3'7
tf.^sV
0;3G>5
O.VH
6, 1*31
A3*??
/,??^
0,^*2
O-^sS
C>,S33
<3^03
PERCENT
EXTRACTABLES
^0,0
\
/
I
PARTICULATE
EMISSION RATE
G/KW-HR
A 0k
\
/
REV/KW-HR
/ ?^> 9 ?V. 0
^» V/ 0 VV,0
v" •• •:'
a-7p7W,fl
P3=/Y0,0
^(o/^^O/O
^tod AvV,0
yg"7/^??,0
//9?S'6,0,6
Pt>R3 9^,0
3V6P 6,0.0
3AS"?«y/0
I^^JbXiO
-------
N>
-~J
Ln
SAMPLE
I.D.
S/DS6-72-0A3/
\
i
EXPERIMENT
DATE
-J/ilso
~"//-7/yo
l/.ko
•"iblffft
-JllffO
-7/-7/?0
7/. )?o
-i\-)\%c>
-7/J?0
-?/-»/ 5?o
-J///SO
ihhb
TESTER
STRAIN
TTHS
71
T|
M
-iftioo
ii
it
ii
-flH63ff
r<
i/
ii
S-9
•*-
-H
—
—
-f-
-H
—
-
4-
4-
-
-
SLOPE
REV/UG
rt.,A/(,,
o.aua.
O. 3/a 3
0/333
0,5M-ff
0,433
6/7%
c.ats:
0/0^
PERCENT
EXTRACTABLES
6>/06V70rV
V" • •.'
/fct.?U.^
llo^^f'^.
Z> 1)333^
3-7^ 3-7 /»2
3^oaT7^ .0
V30-7^7,G
29//yj.C»
^oV?to,V
J33VS?.i
60^6?,
-------
NJ
vj
SAMPLE
I.D.
9&S6-73-0/&/
\
EXPERIMENT
DATE
HuJffo
j?/ii/sro
tflabhb
G, Iro
s-y^/fo
r/* /w
*/»•» /ro
y/j^/s'o
y/x«? /yo
TESTER
STRAIN
-771 '7?
ii
p
ii
"TWoo
K
Ii
it
-TWSSf
W
ll
Ii
S-9
4
-»-
-
—
-»-
-t-
—
-
+
+
-
—
SLOPE
REV/UG
0-73S
0<3i&>
O.SS'?
O,/^0
0,^-71
(7,337
O.fc^
Oi**J
o/^/sV
O, /^S'
(9.//ST
0.023-
PERCENT
EXTRACTABLES
69,6
v
f
PARTICIPATE
EMISSION RATE
G/KW-HR
tf/9o
^
/
REV/KW-HR
VS^V^5/0
^370G,6
v» . .;'
? so-SLa^O
6>«^;o/6
2o
g a -? 0^,0
3%/?34.o
-7^V^?/0
7^2.-7?>0
^O'/^^a/O
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-7/2.1*0
(Ol<0
, Cote
"7/S/SO
4-
N>
•4-
-7/i/S-O
7/Wyo
\/
-------
SAMPLE
I.D.
S££6-lcl~O3.Vi
\
EXPERIMENT
DATE
-7/i)5?0
-"Js/S'O
-7/a/Sc
-7 Is 1 SO
-7/2/70
7/?/yo
•7/JL/80
7/g>/PO
-jLlso
-7/57*0
7/a/SVD
7/?/?o
TESTER
STRAIN
-77H»
II
/>
..
-ftMOO
t/
I/
'1
TTWSay
(/
>(
/.
S-9
•4-
4-
-
_
4-
+
-
-
+•
+
-
—
SLOPE
REV/UG
O.SyV
0.78V
^/^*?7
0,Y3^/
fl,3JO
0.3(o~7
0,9(oO
0.4L&
0/4 ?<*
oiStT
o,Vso
c.^4
PERCENT
EXTRACTABLES
"7AO
Vy
PARTICULATE
EMISSION RATE
G/KW-HR
^3,^3
\
/
REV/KW-HR
3393?V.i
S;"7t7S/^.
%"•• .- •:'
/?6/D?,/'
a^feS-70.^-
PSo«?/y/0
5?V^330./
k32>8TS.O
30"703?,5
3^0 90S/?
;?V^330./
P 97/35 ;0
/^j/ya^
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
A/0
VO
0,530
•7^/53 sr
V
VI* fa
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
d.V?
1-13=1
3-S30
9/5/Vd
Ki
00
O
isixo
\
\/
-------
N)
00
SAMPLE
I.D.
SljS&'VO'WW
\
1
EXPERIMENT
DATE
^l>sl?o
ML, I SO
q l>e>)«o
/o)(J?o
qlasko
/o/iJtfO
<=)/as)go
/oAJra
i
-~rn/oo
>i
„
,/
•71^/53?
;•
VI
h
S-9
4-
•^
—
—
•+
+
_
_
•f-
•+•
_
—
SLOPE
REV/UG
O/S(oO
Ol(oll
O, ISO
0,^~7^
0'30
n,3^
O<£~T7
n,/f4o
O'3(t>0
0./7V
0./0t>
D.OS7
PERCENT
EXTRACTABLES
f^-7.^
\
/
PARTICULATE
EMISSION RATE
G/KW-HR
O/G>S
\
>
/
REV/KW-HR
^Q-F-lKO'O
2 ar,,^-? S i "$>
\- • •• •:
5S'S."7S*b
^/t/S/^/S
y /3^~)3 'O
I^Lf-lU .Q
^/3"7~7S''S
^?37/a.o.O
/333XO.O
G» V-/6,-7,0
3
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
/-7-700
JoApfgO
• O
t 5^67.3,0
l-o
00
tsj
V
V
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-77m
79/0
•nr/oo
V'S'oo/^-o
00
u>
flvlso
tlal to
V
\/
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-TTHff
/.=<»/
/. OS/
77^/536
NJ
00
33VV. V
-------
to
oo
Ln
SAMPLE
I.D.
SQ£A-$0'W7i
\
/
EXPERIMENT
DATE
(„// SO
t>/7 Izo
(ofr/tO
6/9/g-O
/oW/yo
tr\*ho
b Wlvo
L, te/yo
to/v/w
6/;Wso
TESTER
STRAIN
-7>58-
tt
-ffrtoo
II
•Tb\<£&>
i,
-7B-I537
ii
•7>Ht53S
ii
S-9
—
-
—
—
-
—
—
-
-
—
SLOPE
REV/UG
/,V3/
O/fc-S
V-^V^
3.-73T7
O<02-l
O.O/-2
O/331
o.yeo
O/(*S7
n.^ffte-
PERCENT
EXTRACTABLES
1^,0
\
/
PARTICIPATE
EMISSION RATE
G/KW-HR
0. 8<*
<»
/
REV/KW-HR
P2JS/?'?
/ O-JS'fflo.O
%"•'• •- .;
-74>5oP./,t.
S-7?^S-7,(p
3 aso ,5?
/ 81 S^7, CP
gofe/*?, t>
^^V;j,o
/0/-703/(p
; 5^633.?
-------
SAMPLE
I.D.
SOSA-M-ICftl
V
EXPERIMENT
DATE
-7 las
30
slslso
-?la«
W
glso
-7 Us
5?
80
£0
-7bJ*0
f
tfltfO
-iLslso
vis too
-rLnko
*/«ko
TESTER
STRAIN
"rms
»
..
-
"7^/00
i.
n
«
.^pvj i ^^"^ cy
f /7 / ^5 VJU
.1
«
-
S-9
•V
•*-
-
4-
+
-
+
-f-
-
-
SLOPE
REV/UG
ft,«W*/
0,31*?
/i/O4/
O,^^/
fl.«"/(.
0.?oV
3.«*fe
3.|ya-
0,9oo
a-7?7
(9-to03
0.3t«?
PERCENT
EXTRACTABLES
77.0
\
/
P ARTICULATE
EMISSION RATE
G/KW-HR
o.*l
\
/
REV/KW-HR
/3k S-73.?
6o<,-73,fe
v« - ,-•
/SaT0«?,3
/^iaaV,?
//(pV^V-^i
1 lo~) lo i &
56-70(1. */
vsyA./Y
M3 930/0
yo ^3679. *?
?3C33»/
39fcS~7,(p
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
0-
" 7.0
NJ
00
In
UffO
1*7
0.
n.
0.337
. fe
I&
\/
(3/3.83
\/
-------
SAMPLE
I.D.
SOSfr-XO-V/n
N
/
EXPERIMENT
DATE
//also
3 1 3-41 $0
^lij.Uo
^MlfrO
lllJ-l ?0
vl^lzo
fl&ko
f/idlxo
7/alxo
9/zWtt>
llfrlfi)
CjlitlzQ
TESTER
STRAIN
-TTH?
l<
ft
1'
-72/00
«
A
K
•7>/S^g
J<
li
(i
S-9
-f
-»•
-
—
-4-
->-
-
—
-ir
+
-
—
SLOPE
REV/UG
3.S03-
5? i?^(p
a, /so
/.730-
.P-/33
S?.^5
3. OSS
5.0/*-/
A^30
3 3'i^
O,9S/
0,1-70
PERCENT
EXTRACTABLES
Y0,0
\
PARTICULATE
EMISSION RATE
G/KW-HR
o/y>3
N
/
REV/KW-HR
(j> 53 W. 0
//S'4><37«3,0
v- • •:'
3t?roo«o
^2 °ntotj.o
3^(o?7(p,0
V^a^yo/o
S3//3G-0
'B't.aYO^/O
P63/(cOcO
S-73VVy'0
jLe?>S~73>Q
/it(,?y0,o
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
0, SS7
1*0
C./395
S 031,7
NJ
oo
VO
. /
5-7
-7 /a* fr
0,^50
O'/ 33-
VV07V.ST
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-r
lie h
I/oho
4-
10 1X6
V
/.(pO-7
\/
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
3.107
V
V
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
A
37,?
KJ
VO
NO
Is/
•h
d."773
V
\!/
V
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
nlnlzo
/o/jx-7/g-O
-TftlOO
A 933
Co
///-7/80
/O
V
\/
-------
SAMPLE
I.D.
saS#-£0-V/;7Y
\
/
EXPERIMENT
DATE
lobihro
nblso
ioU-?l«o
ulilso
/obnlxo
nMs&
/o)»-il»°
uUtao
/olaitas
llhl«0
joWllSO
TESTER
STRAIN
•TZHS
).
H
/i
-r^ioo
1 1
n
S-9
4-
-f
—
-
4-
4-
-
—
-)-
+
—
—
SLOPE
REV/UG
(J.V^O
O/U.SG
rt-6,20
fl,V?<5
0 i ^«*S
C3.<8H
S.o^S
O.WCp^)
6,36^
0.*/^"7
o.^>?o
PERCENT
EXTRACTABLES
^3./
\
/
PARTICULATE
EMISSION RATE
G/KW-HR
d,<*3
\
/
REV/KW-HR
/^V9f3.?
/-Tzi^-z>n
v— • •:
i^yio^od
A33Q /7.7
/697o(o,3>
/O^VSO.O
/3?3VVS'>V
j*s-?/x,4
S'tS^S^
/p^sy^.r
/?Vt,*/0,^
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-7/00
-f
3.
K3
vo
Ln
//o/J/
V. "7/0
4-
3, 6S7
373 J
\/
\/
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
Zlio (?/
aliolxi
Tftioo
d/SGO
3. 03O
0,3-72-
V
V
-------
VO
SAMPLE
I.D.
SE&grZO'tfaojs
\
/
EXPERIMENT
DATE
A)J*I
2-Uctal
«P-)(J?f
jz/aoltfj
iUsi
jlioUl
-zluUl
^Uolsi
.a/Jf/
pads)
a Ms/
^/aolsl
TESTER
STRAIN
-T7H?
«
ii
/i
-TKIOQ
'i
n
••
-nwss?
Jl
ll
.'
S-9
•f
4
-
-
4-
4-
-
-
4-
4-
-
-
SLOPE
REV/UG
0<^^i
0/^Oti
(0.//S1
O./50
0/2.-75
O.iL,^
O>3o
5-789J/S
g; 33^-7. sr
P<£SO.O
[CfCjj.O.O
-------
SAMPLE
I.D.
EXPERIMENT
DATE
TESTER
STRAIN
S-9
SLOPE
REV/UG
PERCENT
EXTRACTABLES
PARTICULATE
EMISSION RATE
G/KW-HR
REV/KW-HR
-n
-------
GROUP 16
PROTOTYPE VEHICLE EVALUATION
TAEB-80-0180 Prototype Comprex Diesel HWFE
0230
0240
299
-------
/
u>
o
o
GROUP ID: //j
SAMPLE ID
'ifles-sc-e/so
Tflr£8-$£>-02-3c
Trte-9c-c;uo
VEHICLE/
ENGINE TYPE
T>ie.*eJ
(Cowtpre^ i
^ve^el
C Covwpt'e^)
^>>est^
DRIVING
CYCLE/MODE
F/E
F£
F/t
FUEL TYPE/
BLEND
*2 -"Die&el
*A-t>-ie.fee.\
'tta-"Die&e\
i
TOTAL MG
EXTRACTABLES
-------
-p
*
i-
SAMPLE ID
Tftee-so-oiso
TAe3-#C-CZ30
TAe6-9D-oa4o
TESTER STRAIN
TA98
+ S9
*
1
1
/
a
3.
a
- S9
/
1
/
0.
A
2
TA100
+ S9
/
1
/
2
2.
2.
- S9
/
1
/
a
i
3.
TA1535
+ S9
- S9
TA1537
-t- S9
- S9
T.A1538
+ S9
/
1
/
^
a
X
- S9
/
/
1
2.
•2_
i
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
3.-
r,
"beef <•, • S ) 3tf / gO
301
-------
Sajnple 1.0.
ate Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
degression
Predicted
Slope
(Mean)
Toxicity
S,
Value
•
•O 11
< X
e
e
U 41
«
0.
-5
Dose
Range
Tested
(DCS)
Max
Rev/
Dose
Comments
Tfi
1*5
X
6.V
6.00/15
2606
u>
O
N)
/.£
J
sty
/ISO
If
jscfl
I
2066
-------
Sanple I.D.
dte Tested
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Degression
Predicted
Slope
(Mean)
Toxicity
B,
Value
0 «
0. >
3
D1
tl W
•O V
< X
o. c
0
-------
Sanple I.D.
dte Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
value
Adequ
Met
e
e
e
e
wo
'Si
d h
u, v
« >
c
Dose
Range
Tested
(UCIS)
Max
Rev/
Dose
Comments
Tft
\Jb
<3-3>rt
16
is
66
If
U
10-1
3600
1.0
1-4
y
2600
ce
TASA-
A3
e.
6.06J73
at oo
7*2
u
7,7
&>/
too
-------
I.D.
date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
(egression
Predicted
Slope
(Mean)
Toxicity
8>
Value
v
3
tr
•ttj *J
•O 01
< X.
,8
"a
a
a °
^ u
V >
0. C
o
u
*> -D
IS
tl (I
« >
&• C
Dose
Range
Tested
(UCS)
Max
Rev/
Oosa
Comments
Tfl
M.
U
b,ZL6
a*-?
3060
74V
If
ff
0.
y
C66
II
Co
O
Ul
v/
3660
ISO
6,0
65O
-------
Sample I.D.
ate Tested
train
ctivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
(egression
Predicted
Slope
(Mean)
Toxicity
s>
Value
sU
in -H
•i-t t*
0 m
0. >
•o
.. f
I £
M V
0 >
°" 8
I*
•I
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comnenti
RS-R-fQ-bl &>
WO
u
I/
joco
>r
u
HJ.
a*-?
6.6666,1
a>?J/
6.66J94
3 060
24,1 n
1.3C 2
X
IK
(jj
o
1,2
-------
Sinplc I.D.
dte Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
cr
.(U
'O <
*
e
.. 21
^ U
« >
A. c
Dose
Range
Tested
(U(JS)
Max
Rev/
Dose
Commenti
i
•U
&L
Tft
U&_
If
1.1
sua
£UA
6,661 (>1
V
3,5
Jooo
Ir
'00163
U)
o
I/
46,3 2U 22,1
-------
GROUP 17
GAS-PHASE HC EVALUATION
Sample Initial FR Sample Initial Loading Sample Loading Test Position "Weight of
No. Loading Vehicle Test Vehicle Test Type Test Type of Filter Organic (gms) Bap (ng)
Comments
TAEB-80-
0320
0330
0340
0350
0360
0370
0380
0390
0400
u, 041°
o 0420
0430
0440
0450
0460
0470
0480
0490
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Mercedes
Mercedes
Mercedes
Mercedes
Mercedes
Mercedes
Mercedes
Mercedes
N/A
N/A
N/A
N/A
N/A
N/A
Oldsmobile
Oldsmobile
Oldsmobile
Oldsmobile
Mercedes
Mercedes
Mercedes
Mercedes
None
None
None
None
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
HFET
N/A
N/A
N/A
N/A
N/A
N/A
FTP
FTP
HFET
HFET
FTP
FTP
FTP
FTP
FTP
HFET
HFET
HFET
N/A
N/A
N/A
N/A
N/A
N/A
1st Backup
2nd Backup
1st Backup
2nd Backup
1st Backup
2nd Backup
1st Backup
2nd Backup
1st Backup
2nd Backup
1st Backup
2nd Backup
.33005
.14995
.17259
.0030
.00052
.00140
.16215
.04655
.12038
.08805
.05866
.04838
.06837
.06070
-.00562
. .00815
.00660
.00506
1252
528
312
BMD*
16
20
48
96
BMD
BMD
BMD
BMD
BMD
40
BMD
40
360
BMD*
No baking, sent
directly for analysis
No baking, sent
%** * » '
directly for analysis
No baking, sent
directly for analysis
Baked and sent
directly for analysis
Baked and sent
directly for analysis
Baked and sent
directly for analysis
No test vehicle -
100% Dilute Air
No test vehicle -
100% Dilute Air
No test Vehicle -
100% Dilute Air
No test vehicle -
100% Dilute Air
*Below measurable detection
-------
/
GROUP ID: /7
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE/MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
2)
Tfeftft- go- 03^0
/ 50. 0
Xc-
1 ~I?> , 0
^
Teflfe-So- 0-55.0
"3>its-t|
3,0
1>\csJ
-KO- 03-70
- so-
'"3
-- so -
- ffo-
FltZ
m/fl
- H
0V30
- HFET
-So-
rule. Se«
' HFET
6>/,C
^-
-------
GROUP ID: /7
SAMPLE ID
T£«ft-ffo-0'/'0Ll%0
-Tzftz-zo^to
VEHICLE/
ENGINE TYPE
TTWccJUs
"3>Usc\ / fv.|j?
yrwijus
TJ)\e.s«^ / »v.lft
l^Ux-uAni
1)ie.id / ml ft
\Wu**Ju*
D;«t\ / yv,|ft
DRIVING
CYCLE /MODE
fl& Cai
F/g 6^
r/(£ c^
Fie ^
FUEL TYPE/
BLEND
*:Z ~t)Ne.ic\
#3L ."Die s«.l
^,2 "I)',«Stl
**a ~t>;«.s«3
TOTAL MG
EXTRACTABLES
o« (^ ^^
y.Olhc
3r
(t>- (o r»»Q
-------
-1?
(a
*
SAMPLE ID
"T&ftR- So — 033.O
TEw-ao-owo
"T^fra-ffo -03^/0
, _oa>So
-re «K-S?o- 03(oO
-teAft-?0~ 03-70
Tfefts- so - o 3 s-o
"Tp-ftft-so — oS^o
T~Ert£ -^o- o4co
"JjS-fl-& *• So - o H to
lEfi-R- So -oVao
-7£#B~!To-OYVc
/ ^^ Lffl __ V /\ — • rt if'-s' i~\
/ t- fTD ft w v T>3 L*J
-mftR'-<)*•*>
'^^'^^fVY3 ..^ ?o **~^ fit &0
•vat- to- o^o
TESTER STRAIN
TA98
+ S9
*
1
/
1
J
1
I
/
/
,
/
/
3
2>
2,
3
3
3
3
3
3
3
3
- S9
1
1
i
1
1
1
1
}
\
i
i
i
/
l
i
i
i
i
3
3
3
2)
3
3
3
3
3
.3
3
TA100
+ S9
f
1
1
I
/
,
1
1
1
V
\i
d.
n
//
4
- S9
1
;
,
/
/
;
/
/
,
,
V
^
^
V
V
V
TA1535
+ S9
a
3,
a
a
- S9
a
^
*
,
T.A1537
+ S9
5
9-
3.
3-
- S9
3L
9L
3-
a
•
TA1538
+ S9
^
2
2.
2
A
V
V
V
V
V
- S9
2
a
*
A
A
v.
f
/
«/
y
X
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
Q
V/'«'*'
311
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
83
Value
0
U) "O
O nl
0. >
t
ged
Pa
onve
Paramete
onverged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T/*
o;
-2OO
I, /< ''
3-M-8I
A?.;*
13.5
3.33Z.
v/
/O.I
&£<•<{• J-t-
"0.00
/< '•
11.1
.6)775-
U)
5-9
5-9
// '•
3.3
/.(ft 3
.4 00 13
ttty
2-27 -ir/
0.3
o./ac
ex
0.3
0.3
fcS"
jl-27-J/
/3
jzcc
If. 7
o.occfo
V-578
0.009/6,
y
v/
_
/t^rt
iLVM.
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Adequa
arte
verged
Par
onve
Parame
onverge
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments .
18
t-y
650
/ 333
d'i '7
3'3.1-ft
It
/L-?
Hff
Jooo
3-3A-&1
//.O
Loo 4
2-539
-2OO
OJ
I—'
OJ
1 1
2o ->
/O.I
sc.S
4-376
6SD
ti U '1
3-M-tl
/J.t,
i7.o
0. 00
o.s
3 -3.1 -
It
o.3
•30.5-
o.
Jcoo
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
8,
Value
Poisson
Valid
Adequ
t
ged
P
Conv
P
on
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
TA
IS.Io
v/
0.3
-2.OO
-if
.X
ioc
-5o
OJ
J.o
03? 7
fc.S"0
c.o
0*039
?<"'
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
S3
Value
ete
ed
P
on
Dose
Range
Tested
(UUS)
Max
Rev/
Dose
Commente
33
iX
20-7
.201 c
7,0
7.2
t, 00/30
V"
£3
9.7
0-00(73
ZS
Z.Ji
3.1 H
1*77
N/
O.btt,
O.oc/33
20 ->
•J.C-OO
CO
I—'
Ul
7.3
d. 721
6.
/. 7
t.Cti/O
IX
-2COO
acct
0.6
'^ 5"
V"
I/
X-31-81
I-J-
-ZOCo
d-b
cX
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
83
Value
c
o
tfi 'O
tfl -H
-H ^
O <0
0. >
te
ed
ar
ve
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
TA
n
1.6
o.t,
C.j>t>7
Jd'JO
ooco
3-W-8I
0,0
0.3
7
d.
I/
I/
t/
I/
'•i-
,x
-tOJO
U)
d.l
t>.f
ay-
2.3
O-OCC75"
O2C)
It
0.1
O.I
A/
6,07?
I/
(.183
(X"
00 ->
3CCO
2.1
3.0
N/
703
I/
3-J.T-tt
6. /
acre.
//
0,1
OJ
v/
S
cw.
it o«--fc
-------
Sample 1.0.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
•H -H
O Q
0- >
Adequ
v T)
0) <0
10 I*
^ III
a >
o, c
o
o
Paramete
nverged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
- 0320
T/l
too
2.0 ^5>
JZ000
v
. All
,0//7
s
2-21 -Pi
65-
H. C ll
u>
'1
S.'/
Ot/3
zc-o
1,
6. CQ
v/
33X0
3.1
(£>
fcS"
w
Si.l
3-37-ti!
2.OC,
a-a.7-5-/
^?.>
£.043
U
21-6
0.00 (a^
v/
y
/Low
/
-------
CO
!-•
oo
Sample I.D.
r/teB-w-wo
,, /. //
TrffR'Xo-dfea
TA-fB-fc-Qilb
T#£&-80- &Mo
Tftf£>-W-wS3
ate Tested
a-31-81
1-IO~gl
Z-3L7-8I
2-3-1-&I
<2'21-&l
2-a?-
:}.£•
/-4
High
G>
V-/
'>-2-
J.^
^>
i.X
Linear
Regression
Predicted
Slope
(Mean)
3.7^
«2.^-y
V./7/
fl.sy-r
O.7S4
c J3o"
Toxicity
BJ
Value
G.OC7.-J9
0. CO Hli
o 0-0557
£>.OO^ 4.5"
C*.o«3»5i""
Poisson Assumption
Valid
'v/
^
Adequacy Criteria
Met
.X
^
4 Parameter. Model 1
Converged |
s/
^
t/
-^
IX
3 Parameter Model 1
Converged
v/
^
2 Parajneter Model 1
Converged I
*/
y
i/
^~
*^"
i/
Dose
Range
Tested
(UUS)
2-C->
*«>0
6--T-^
<£5~0
it>
^ccc
3C-i>
J-C-C'C
ao-^>
iOOD
^e-S>
3CCO
Max
Rev/
Dose
£^-
2^0
7V9
-^£00
^^0
ioc
B^
6-55
/07-L
65"
3ff
4:5-0
Comments
V* • • ..'
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
Poisso
Valid
met
ged
Adequ
ete
ed
met
ged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
J -03 20
rvf
/oo
ZOfcO
V
13.1
3.032.
v/
y
3L-X1-W
fc
9-7
X
7.5
t/
u>
(-.
VO
6.1
t-S"
a.
0.00/5';
iX
y-io-81
^75-
6.0
6.6
0.00
.<>/*'(,
t/
XI
3-0/fT
//.o
6.00301
I/
,3067
0, DO/IS"
^50
H-io-81
y.v
V.6
v/
5.0
0.00//7
*- I ~> i.
-------
Sample I.D.
T/)£8-M-Mio
•TftEK-Sb-MZz
TAZB-&-6WO
T#£B~80--ctrc
ate Tested
1-JO-8I
A~*7-8I
3-31-St
3.-27-8I
Strain
rA
lUo
n
/i
ii
Activation
Lot Number
RU*/C,
'i
'/
u
Model
Predicted
Slope
Low
«?.?
3-9
Z3.S
•23
Mean
3.3
*>
24.1
3./
High
3,7
f.-7
a5.»
v./
Linear
Regression
Predicted
Slope
(Mean)
/,5/?
l.LW
O..^ii
0.-5/3-
Toxicity
B3
Value
6.00I3.X
0.0013%
O.ce>yj.. deals'
Poisson Assumption
Valid
.otfJ*
Oi'J-J
Adequacy Criteria
Met
.oW
/
^
4 Parameter. Model 1
Converged |
(/
/
i/
*s
3 Parameter Model 1
Converged
,/
t/
2 Parameter Model 1
Converged ]
y
\s
I/
/
Dose
Range
Tested
(UCJS)
3* ->
J.OQQ
3C -=>
3C06
t\
t<
Max
Rev/
Dose
/<**£
•^ZGOC
tl99
C3t>
ZtU£
t5o
t\3S_
2.CH&
Comments
v* * •• •:'
';
LO
K>
O
Tfa t-/e>-#/ t^UtjL cxZ. /ut^^a^L^ ^W>?<
/tt^T
-------
Sample I.D.
T/}£B-X0 -d32 °
T/t£R-M -6?'5o
rA£B-&o-t>3it>
M£B~*t'-^*e>
TAfB-fo-6***0
TfifB'fc-ono
r/tEB-Xu-oMs
T3£2-&~&8&
ate Tested
3-6-8 1
" '(
i, " !<
4 :, •<
3-L-M
i,ii i,
/, '. i.
„ // //
Strain
rA
/~>*3S
11
'i
'i
Tf
/5'3,-f
if
>i
I,
Activation
Lot Number
—
I/
(J
i 1
"Ri-l fl(*
'/
'/
*i
Model
Predicted
Slope
Low
t
O.I
O.G
C.C
P. 2.
0.0
0. 1
0.0
Mean
D.I
C.L
0.0
o-«
0.3
o. /
0.3
0.0
High
V
5.0
C.O
2.520
at
C. ).
£.'7
fc.i;
Linear
Regression
Predicted
Slope
(Mean)
t'.OV"/
0-077
-o.iir
0'Qtf
o.c^y
e.o39
O.C'i'/
&.0/3
Toxicity
63
Value
C.O/^^D
£.oc/^-J
C-CfCV
fc.fOiS^
C.OOC3"*/
(J.C&-JL&~J
Poisson Assumption
Valid
t/'
iX'
^x-
• OiiX
^
Adequacy Criteria
Met
i^-
X
S"
^
I/
y
4 Parameter Model 1
Converged |
V
i/
^
<^
<^-
L^
»/
3 Parameter Model 1
Converged
./
L'
*^
IX'
~-
i_x-
-*
^
2 Parameter Model 1
Converged 1
tx'
tX
^
^^
~s
^-^
u/
Dose
Range
Tested
(UGS)
6.5->
i>5O
t"5S>
650
fc.S-^
C5'0
J.O->>
3-OC
i>
aco^
2P-^
ZOCO
J.O -=>
3OCO
2.O •*
UCCA
Max
Rev/
Dose
ST3_
tyo
i^-
^?-
o/_
b^T
32-
65-
^
65
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
so
d
Po
Va
Adequac
te
Converged
Par
Conver
2 Paramet
Converqed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
/•i,
I'l
i-3
£>./
(.50
2.7
too
0,4,
0.3.3^
O.VO'S-
22,5-
(,$•£>
-
in
3,9
O.O13J.3.
Jcc
Lo
M
NJ
T*
34
X
2C ->
ZCOt
/•V
3,3
O.CO2LO3
30 ->
650
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
83
Value
Poisson
Valid
eq
t
Paramete
Converged
Paramete
onverged
2 Parame
Converge
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
6.3
-to -
9.7
X
7.3
-2.057
(X
4/3.
1.3
/. / 7 7
0.
0/tffl
v/
X
X
Co
N)
/o
0.53^
.X
kSO
65D
1-fo-jf/
o-i
V.7
5 ~
o.r
0.7
O-S'/O
,200
Zoo
1.0
I/
iX"
3-1-&
1-1
ioT
3.b
e.sco
1=50
^00
.2.7
6.00713
V
X
-------
Sample l.D.
ate Tested
Strain
Activation
t Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
63
Value
Poisson
Valid
Paamete
Converged
Par
onve
2 Parameter Mod
Converged
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
Comments
y
3000
3-6-tt
i /
-7.3
1-1
2343
•X
3-fe -%
A)-,1?
//.o
a coo
0, 602 72.
I/
J.-7
A/47
OJ
0,
v/
-77,
n
2-0
C/.COO34
0./3S"
2.0}
aoc-o
jf/
-X- /Low ^^ tf'j^ yLr^iaji^ syi*t~ JASiS&n eTn.
-------
GROUP 18
GAS-PHASE HC EVALUATION
TAEB-80-0510 Turbo Buick w/knock sensor
0520 (gasoline)
325
-------
/
U)
Ni
GROUP ID : / .r^ «t)
BvA-cK oC>VK NO*
9ev"\Scr i.G>«&cl>oe-
DRIVING
CYCLE /MODE
*l£
F/e
FUEL TYPE/
BLEND
Unlefc-clecl I4O
drtlgtxdtti Wo
TOTAL MG
EXTRACTABLES
/ 3.
-------
«
«,
SAMPLE ID
Tftes-'s.c- &s>c
-raee>- so-osao
TESTER STRAIN
TA98
+ S9
*
1
1
- S9
1
{
TA100
+ S9
1
1
- S9
I
1
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
/
- S9
/
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
\-
327
-------
Sample 1.0.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
value
Parame
onveroed
Dose
Range
'ested
(UGS)
Max
Rev/
Dose
Comments
n.
It-t
V. 3 25"
2*2
+• *7+
0. 0
II- 1
/£.£,
u -j/ «•
f * Oo e
003.IJL.
feSO
u>
to
oo
-------
Sample I.D.
ate Tested
ctivatlon
ot NumCer
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
2 aramet
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Tfil&A
g-7
9-7
O03.0X-
L/
£00 .
ro
VO
-------
U)
w
o
Sample I.D.
Trte6-*0-^3o
rfifc&-1eQ -tfS^o
ate Tested
It,*,*,
~~o'
Comments
%~- • ,'
'
-------
GROUP 19
GAS-PHASE HC EVALUATION
TAEB-80-0530 VW E-80 3-cylinder Diesel
331
-------
/
U)
GROUP ID: /^
SAMPLE ID
Tft£Q-'*D- ££5o
VEHICLE/
ENGINE TYPE
VU) £90
3 tyl.
DRIVING
CYCLE /MODE
LA^'S C^
FUEL TYPE/
BLEND
£Pf\ *SL "Dic.se)
TOTAL MG
EXTRACTABLES
'b \ \ • 1 mq
COMMENTS
('
v • • .
p.
-------
C *-&*«-/
2-
*
i.
SAMPLE ID
1AE53- $0-0530
TESTER STRAIN
TA98
+ S9
*
1
X
- S9
1
2.
TA100
+ S9
1
2-
- S9
I
2_
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
/
£
- S9
/
i.
*Experiment Code - This number iden-tifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
P«f e : 4|'feJ8l
333
-------
Sample I.D.
ate Tested
Strain
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Para
Converae
Para
onver
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
S.i
2^Z
LS- 36bo
l.o
£00$
4 1* fa
&SO
LO
**?
•Ooo
-------
S^nple I.D.
Date Tested
Activation
Lot Number
Model
Prudicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
6,
Value
Poisso
Valid
Ad
Me
Dose
Range
ested
(UCS)
Rev/
Dose
Comments
+6
, C&llg
/•*-/
(•ftO
5-737
- 05 -i
£400
fl'A- «.3-
1 n
-------
Sample 1.0.
ace Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6j
Value
Poisso
Valid
Ad
Me
3 £
u
>
c
o
u
15 >
0
u
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
R^LOt.
r.f
?•*
IX
991
5-3
OJ
ON
3- .0
-------
GROUP 20
GAS-PHASE HC EVALUATION
TAEB-81-0051 Ford lean-burn (gasoline)
0080
337
-------
/
u>
to
oo
GROUP ID: ^Q
SAMPLE ID
~'C\£B -%i-O6Sl
TfttB-8l-Cc>SC
VEHICLE/
ENGINE TYPE
f-ord leAvT.-^c.ro
(°>
FUEL TYPE/
BLEND
/•/^D /^"
ti\/D \S
TOTAL MG
EXTRACTABLES
fe. 3 »T7^
'•^^ »nq
COMMENTS
v - , .
-------
1
\.
SAMPLE ID
-TAEb-^l-CCSI
TflEB-Sl-OCSC
TESTER STRAIN
TA98
+ S9
*
1
3-
- S9
1
^
TA100
+ S9
!
2-
- S9
1
2.
TA1535
+ S9
- S9
TA1537
+ S9
I
3L
- SB
\
2.
TA1538
+ S9
- S9
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
339
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poi sson
Valid
Ad
Me
Pararr
Converoed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
IfleA i 1 • OoSi
iclit.lt!
fi.7
tit lit
7.
OJ
4>-
O
-------
u>
Sample I.D.
\ft£&-%! -<3QS"/
£te6-2/-o<>S6
Hee-S-ocs,
~TA&& ~'%t-t>6%to
ate Tested
«.oio-v>
C.OoSU
*
6 C$737
c
o
Poisson Assumpt
Valid
^
„
Adequacy Criter
Met
•H
4 Parameter Mod<
Converoed
I/
v
p-t
3 Paraineter Mod*
Converged
•-.,
^
T)
)
2 ParaiT»eter
Converoed
^
t-'
^
^
Dose
Range
Tested
(UGS)
l*"^ • '^
^/J^A
^9 ^3 ^x
^t
t£*
Max
Rev/
Dose
"^&
"%-
-^fo5"
9<5*//'
Comments
%-•• • •:
-------
to
*-
N)
Sample I.D.
'f/lBft - $ I'OOS/
"FA 6-fi - % i -6oijo
TAe*-*,-**,
TAea-^-^sa
ate Tested
t-^-«y
7/1/Vl
V.L/91
•lllftl
Strain
1A
"
r
"
ot Number
C6xo,7
«LXC,fc
^t
4ru
6i
t.0<*0
Toxicity
Value
0.067't
*
4.0/37.3
Poisson Assumption
Valid
v/
Adequacy Criteria
Met
j/x"
^X"
,
4 Parameter nooei
Converoed
L/
^f
^
3 Parameter Model
Converqed
^^
^^
•-
I
i
2 Parameter
Converoed
^
LX
^
^
Dose
Range
Tested
(UGS)
22)
fc»^^^
,£)££ O
^
Max
Rev/
Dose
^5
'Zr,
3 A - . ->• .-^
-------
GROUP 21
PROTOTYPE VEHICLES
Sample
Number
TAEB-79-0680
0691
0840
0852
TAEB-80-0290
0310
0260
0280
0011
0040
Test
Vehicle
Peugeot
Peugeot
Peugeot
Peugeot
Peugeot
Peugeot
Mercedes
Mercedes
Mercedes
Mercedes
Trap
Baseline
Baseline
JM-4 #1
JM-4 #1
JM-4 #2
JM-4 #2
EX-47 12" non-cat.
EX-47 12" non-cat.
ICI 4th generation
ICI 4th generation
Test
Cycle
HWFE
LA-4
HWFE
LA-4
HWFE
LA-4
LA-4
LA-4
HWFE
LA-4
343
-------
/
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
~Pe
771 £8-3 D-63 to
/nci
3co"D
/fcB -
Pe 'UL^) eo fc
r
/Z
/feB-8/- OC//
5 n-f-eT
Mercedes
-------
C~
/-..
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
- S9
2-
*/
7
7
7
5"
7
5-
7
9
2
9
10
10
10
/O
io
-to 40
/O
1C
10
10
/£>
/o
*Experiment Code - This number iden-tifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
345
-------
GROUP -/
Experiment Number Date Plated
1 6/17/80
2 6/19/80
3 6/24/80
4 6/27/80
5 8/04/80
6 8/05/80
7 8/27/80
8 9/08/80
9 9/18/80
10 6/16/81
346
-------
Sample I.D.
ace Tested
ccivacion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisso
Valid
Adequa
Met
ar
roed
Dose
Range
'ested
(UCS)
Max
Rev/
Dose
Comments
TA
5co
5co
C. Co 33V
i/
oo
27.0
IS-"?-
I/
8/7V4
u/
I/
«7O
l\
5-9
SfcO
CO
-~j
I/
5-7
nc
IX.
u
JS.7
Z/.&37
O.CZiiS
03 1
50
C.3
/Z.8
&.OIC&C
I/
i/
5oc
no
1.*
3.1
5-5"
SbC
35
. 01871
I/
6CO
75"
O.OIZ74
I/
I/
Tft
i*±
u/
/Z.z
560
TTO
ttz
72U
1C-3
e.
no
1.1
3.002.
vX
-------
U)
*-
oo
Sample 1.0.
TflEB-79-OSito
-ffca-i't-o&sA
7Hes-r?-os#>
Tf\c.-&-V)^£S$a,
>ate Tested
fc//7/&>
1 1
'<
i.
Strain
-TA
S3*
»*
>(
i.
ot Number
RtfOis-
1 1
—
—
Model
Predicted
Slope
Low
3i.i
n.o
'*>
'
n.o
Mean
3a.<4
n.s
%
1
Toxicity
Bi
Value
Q.OC^IO
0-CC709
6-C/fcCj
O.cZc-79
Poisson Assumption
Valid
Adequacy Criteria
Met
Converged
I/
u/
u/
3 Parameter Model I
Converged
Sce>
5-=>
000
S^>
600
Max
Rev/
Dose
2.*4i<>
no
l/^.
'TTO
itl*.
no
3-/JT,
-^b
Comnunts
v- • •:
-------
Sample 1.0.
ace Tested
ctivacion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Muan)
Toxici ty
61
Value
Adequ
Met
ar^e
raed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
A7
3.3
t/
X
v-
l-o
/.fc
0.579
O.OO/O/
t/
5-=?
S'/t,
2.5
3.3
1.3/0
L/
5-=?
/oo
Sit
7.7
vX
X
2.2-
2./W7
v/
5"oo
/4-z.
/Ze
1-103
t/
no
5-3WO
I/
5oc
SCO
TA
I 7
I/
5Co
0.7
A/
/•i
I/
I/
Sbc
TAE6-77-C6SO
0.00^37
At
-------
Sample I.D.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
O
HI 4J
T3 Q)
< I
a
roe
Pa
nv
Dose
Range
rested
(UGS)
Max
Rev/
Dose
Communes
TA
95
So '
53.3
. "734
iX
5-5»
Seo
SfcO
28.1
6.0C335
i/
2:35^
iX
5to
(-70
TfV
(CiC
S.753
U)
Ln
O
47.8
70.
Sz.
-77*63 -77-
33.4
3S.S
w/
50o
2.5.953
500
TA
1.0
2.0
O-onz.4
xX
•X
5-=>
I
l-l
3--T
t/
5-7
5Co
7
X/-7C
O.i
e./
0.1*3
Soo
0-0
O.I
0-O>8
iX
V
-
/O.T
SCO
3CC
SOO
2C.2
22
•432*
500
no
2.0/9
00^75
5-0
Sec
nc
-------
Ln
Sample I.D.
TWi-C**
!&*-•*-<*&.
-J*&K-0*./
n.f
Mean
28 ST
*.»
/5
High
Z'/.t
3^.3
W.Z
2* <
Linuar
Regression
Prudicted
Slope
(Mean)
II.CK
1.132.
ICStlo
5.35-7
Toxicity
6,
Value
j *.D
QJ 4>
• o
a u
U 4J
a c
0
CN U
s
^
s
^
""
Dose
Range
Tested
(UGS)
5Co
s
^
£o
Max
Rev/
Dose
("?o
TTO
183^
no
V Z>^>
^^— o
Communes
v- .. •:
'(
-------
Sample I.D.
ace Tested
ctivacion
oc Number'
Model
Predicted
Slope
Low Mean High
Linuar
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
o
1 0
4 C
u
>
c
b£
^ QJ
m >
ft. c
o
N O
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
TA
2-4
^.4
Sbc
0.1
W.3
A33^
C.OC&SQ
OH'
O.C63O6
t/
5-*?
it
I/
SCO
-73^
IQD
2.3
5^3
I/
5-7
OJ
Ln
iA
Z.3
I/
Sec
IS.T
I/
(70
-06V
IZ.I
/3.0
\/
no
Tft
2.0
2-z.
i/
1.4
i/
3.T
1
I/
5--?
500
Z.o
z.t.
O-Soz.
O.CO5VO
SCO
-------
Sample I.D.
Dace Tested
ctivation
oc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
a
roed
P
on
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Conuncnts
TA
o.y/7
I/
tcoo
82^
at
i.l
Z.L
2.4
c/
833,
O.OOC+7
2000
•72.
7.9
&.CC2.C-7
U/
I/
650
zo •-
Co
Ul
Co
0.1
c. cccSd
i/
I/
Zcoc
D.I
(.3
i/
I/
2.0 ^>
7.CT-O
4.%
O.GCfS?
C.COi/75
I/
eo ->>
ZCo
21.
zc-p
jcoo
83.*
3.099
TA
1538
s.t
C.oc/72
200
13-4
-o.o a.
i/
3000
-------
Sample I.D.
te Tested
ccivacion
oc Number
Model
Predicted
Slope
Low
lean
ligh
Linejr
Regression
Predicted
Slope
(Mean)
Toxicity
Value
so
d
Po
Va
Ad
Me
>
0. C
o
v o
aj
ro
0. c
o
O
ar
ro
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T/4
Z.-0
Sf/s/ffo
((avis
IZ.I
/-7ZO
I/
IZCC
tX
/ice.
/Zoo
-03 /O
12.5
17.
-3 tto
- costs
I/
/Zee.
O
H
(_n
->
IC.6
//.z
t/
I/
ifCO
TA
/CO
O-O03C3
I/
IZ.CO
/S83,
^00
ft Sfi.
w
o
DO
8-3
v/
I/
t/
I/
rt-t
-7.337
izc
/ 0.370
/iOO
no
Ti
U.I
3.CV*
I/
i/
Tfl
I53S
//.O
\t.1
3.3S/
400
/ZCO
tic
Tfl£8 -£0-03/0
3.V
I/
2-5-9^
o. ocs So
v/
.0/fcfc
-------
LO
Ul
Ul
Sample 1.0.
Tfl£0-SO~0-.C
/Z-b
High
U~l
m.tf-
Linear
Regression
Predicted
Slope
(Mean)
/2.'/9<
z.iis
Toxicity
Bj
Value
o.o/zsa
C.CC375
Poisson Assumption
Valid
quacy Criteria
•O (U
< I
I/
•a
01 0)
5 i
^ V
»S
.X
I/
arameter Model
verged
0
f\ o
(/
1
1
araneter
veroed
o
IN O
,/
I/
••*•
Dose
Range
Tested
(UGS)
'i-»
'2CO
*^-5
^OC
Max
Rev/
Dose
Itcn.
'n.c
HO't
^HOO
Commence
v • • •:'
1
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
8,
Value
0 fl
0. >
Adequa
Met
01
2
u -o
I b
OJ
i >
c
•D
|S
3 k.
v< u
>
o. c
o
N O
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comnents
Tfl
"iff
c-t
c-co/ss
I/
/iCC'
Vco
2*3,
. a
t/
-*»£>- £70
/7.7
O.OO«/3C
i/
t/
VOO
•+CO
T(\
ICO
8.3
i/
I/
i/
Voo
Lo
Ui
&
-&C - 03CO
-02 70
Tec
113
I/
Vcc
TA
'4C7
M-S
t/
c/
11-5
3
I5.C
t/
M-t
^00
Z33
I/
a-*
Vco
-------
Sample 1.0.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
BJ
Value
O m
0. >
3
CT
HI 4J
•O V
x 3:
w. a
>
a. c:
8
Paramet
Converged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Z3.3
Z*jT 37. f
e.cc^t/
tX
Voo
Woo
n.s
(X
I/
Vfcfc
/oo
irt
y/
Vco
•in
s ess
d>. O/ Ofe /
v/
Vfec
no
3-*l
9.1
3
i/
t/
Ul
~j
2 t
Woo
I2.O
-------
Sample I.D.
ce Tested
ccivation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
0
U) 'O
0 in
0. >
•o
ti
O'
i<
V
>
0. C
o
•» o
•D
i&
H
O
N O
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T*
73
2-S/-7
4-u
2.03?
C3SI
i/
7.0/2.
Zcoo
ico
n.c 13.
5.743
O.CO'572.
V/
3060
•m
/CO
•3'-
'•fctl
v/
zcco
12.43
feSO
(jj
Ul
oo
15.0
iS-1
/45
0. 00 333
I/
2.COO
44. ff
a.
v/
I/
2000
82. 4
754
S-730
I/
1343
153-7
/-3-3S
I/
ZOH?
5.8
fcSO
Z2.7
1-78^
*/
I/
I/
ZOO
-------
GROUP 22
PROTOTYPE VEHICLES
Sample
Number
TAEB-79-0721
0771
0800
0891
0941
0971
Test Test
Vehicle Cycle
Mercedes 300 SD HWFE
1980 Cert. Vehicle
Mercedes 300 TD HWFE
1980 Cert. Vehicle
Mercedes 300 TD HWFE
1980 Cert. Vehicle
Peugeot 504 Turbo Diesel HWFE
1981 Calif. Prototype
141 CID (EGR)
Peugeot 504 Turbo Diesel HWFE
1981 Calif. Prototype
141 CID (EGR)
Peugeot 504 Turbo Diesel HWFE
1981 Calif. Diesel
141 CID (EGR disconnected)
359
-------
/
GROUP ID:
SAMPLE ID
VEHICLE/
ENGINE TYPE
DRIVING
CYCLE /MODE
FUEL TYPE/
BLEND
TOTAL MG
EXTRACTABLES
COMMENTS
F/E
L S
- -79 -£rn/
* ^ -Diesel
Ptesel O3I
*V\erc«cl«a 3COTI
ECnR.
TAEB- 19-
iru
F|e
*v lot "P
5CM Tu/
a-y. -
N
...
\ ^i'occtio
-------
I
'>
SAMPLE ID
Tft£9-T?-oia/
•m£0-77-6-77,>
Tft£a-7?-£3oo
TRtfc-"^-^?/
Tfte8-79-09V/
TA£-B-TJ-C9"7/
TESTER STRAIN
TA98
+ S9
*
a
2.
JL
1
1
I
4
4
a
3
3
3
- S9
a
^
,2.
/
/
/
4
4
3
3
3
TA100
+ S9
a.
a
p-
/
/
I
4
4
*/
3
3
3
- S9
Z
a
2.
1
1
/
V
^
^
3
3
3
TA1535
+ S9
/
/
/
3
3
3
- S9
/
/
/
3
3
3
TA1537
+ S9
/
/
/
3
3
3
- S9
/
/
/
3
3
3
TA1538
+ S9
;L
xi
X
/
/
1
4
4
4
3
3
3
- S9
2,
2_
O.
/
/
f
4
4
V
3
3
3
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
3^. fcif«rimen4- ~Puf«-• t/as/so
a-
361
-------
Sample 1.0.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
61
Value
a
r
am
roed
arajr
Convero
Dose
Range
Tested
(UCS)
Hax
Rev/
Dose
Comments
ra
3-438
I/
I/
V
If)
2.1
I/
U/
I/
'3.3
3.3
3.3
t/
SCO
/C-3
i.'if-L
.OOZZ3
/»fi3-
5.1/
.I
^.^^eo
I/
4.5
I/
TA
loc
2.3
5."
y
SCO
2 518
I
y
SCO
U
il
2
0. CCC9S
I/
sac
"/.S
170
S-P
IS.'l
C.OOW53
V/
Tft
RuciS
o.O
c.f/
v/
I/
500
M
o.o
0-\
e.osi
u/
I/
o-o
O
1 1
0-0
M Z1
i
5co
co
-------
Sample 1.0.
te Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
Poi
Val
a
rged
P
on
Dose
Range
Tested
(UCS)
Max
Rev/
Dose
ComtnentB
Tfl
535-
o.c
1.8
C-CV7
O. COOS 3
6.C
o.t
O. Ola
L/
I/
5-9
v/
537
0.7
0.7
u/
3OO
0.4
6.4
0.4
I/
0/71
I/
i/
Soc
Co
CT\
CO
O.1?
a?
l/
(X
2.9
v/
I/
Sco
.X
<*.!
I/
IS*
SCO
TA
i (
23.
l. 3
cut
i
5oo
.03^
if
2-5
5^=?
M
2-070
3SJ,
no
5-7
3.1
I/
v/
Vi
-------
Sample I.D.
ate Tested
ctivation
oc Number
Model
Predicced
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
01
Value
Po
Va
Adequa
Met
w. 01
10 >
0. C
•a
, *
I <*
h OJ
>
0. C
OJ
T)
is
3 v.
o
>
C
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
Tfl
3-1
3.'
•52s.
1 1
H.'j
2.
v/
3^7
•X
Z.fcCO
0.003-45
U/
SCO
Soo
w
ON
*~
ao
MS
3 SZ.5
"Tft
(00
fUlOlS"
31
(..3
3.55O
6-OOCI/3
0301
v/
5-9
5CO
1 1
I (
Z.I.
Z-i
2^54
c/
•X
If
25
J
2ct
Z/.i
8J94
500
no
c.ccss /
II
II U
v/
SCO
RLT016T
9.5-
I/
50C
D.O
o.-z
2.3
ll
0-0
0.2.
I/
•ft,
'
O.o
fc.O
CM
0. 6O&&2.
-------
Sample I.D.
ate Tested
ctivation
,ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
S>
Value
c
o
If) T]
I/I -H
•rt ^1
o ni
a >
•o
91
O'
^>
V
>
o. c
0
o
a
rged
3
Co
ame
rged
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
T(\
t.b
v •
.o
O.3
I/
iX
j,
^
70
TfV
O.'/
/.o
M
I/
1 f
O.fe
O.fcifc
SbC
SCO
1.0
I.C
456
U)
ON
Ui
1.4
/ 7
W
6.3
0.
C'.fe
C .
£>• OO/O3
5--?
Sec.
3.0
/•303
IX
no
TR
S"-?
'360,
i i
2 t
2.1
2
v/
/•t
C»5C
St-c.
. I
2/44
t/
i
v
6.00693
•X
I/
nc
t-1
1
I/
500
JS*
I/
-------
Sample I.D.
te TusceJ
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxici ty
Value
Poisson
Valid
2 Paramete
Converaed
Dose
Range
Tested
(UGS)
Max
Rev/
Dose
Comments
-79-072*
TA
10:0/5
I3.i 5.J
I/
I/
V *
3.7
I/
C379
I/
SOO
3.*
7.3
5-5"
2
See
SCD
M.c
J-533
C/CO
5-7
SCO
LO
e^
It.!
n.s
13. rl
t/
u/
5"OO
t-1
7.5
i/
Tfl
/CO
7-Z.
//.i
I/
ffoc,
H.o
7-fc
3.30V
e.cctte
5oo
SCO
5--=?
C.GCCfS
5oo
32.2
6-cyccs'
t/
SCO
(70
ZZ.fc
I/
SCO
nc
L.c
no
c.V
2.c;
c\.l
Sec
4-5
&.COO/7
t/
2334
I/
2.30Z.
>co
SCO
-------
Sanple I.D.
twea-Tf-oTii
"(CE&- "\
)ate Tested
4AW3C
1 1
Scram
TA
••
i
ot Number
_
—
Model
Predicted
Slope
Low
S.T
3.9
Mean
<».*»
^z
ligh
C.I
*.<,
Linear
Regression
Predicted
Slope
(Mean)
2.WS
(.,^t
Toxicity
B)
Value
6.0otS5
C.C<1 «/'/•
Poisson Assumption
Valid
Adequacy Criteria
Met
4 Parameter noaei i
Converoed
s
•
—
3 parair«ter noaei i
Converoed
«
2 Parscrreter
Converoed
1 ^ 1
^
•
Dose
Range
•ested
(UCS)
X
5-7
Sbo
Max
Rev/
Dose
/7o
y*tfo
^&£3
..
Continents
V* * • •.'
-
-------
ianple I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisson
Valid
Adequa
Met
3 £
01
>
c
o
u
o
m u
aj
roed
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Conununcs
b.3
I/
ofcc
5bO
7.1
8.1
i/
See
75
11 n
m.S
734.
t/
t/
5.75ST
u>
ON
00
5-4
S.'-l
2.578
I/
SG6
\cc
13.0
C.CC2.2Z-
.0134
I/
I/
Soo
5oo
S.M
•X
SOo
500
H.o
C.
I/
S-?
5bo
33. S
5Co
Sod
1-70
—*7Y— *
\L.1
iS.5
J
/7o
13
•SCO
l.T
3.401
C.CO/t3
,01 5*
5co
5CD
2%
5O
-------
u>
<^
VO
Sjnple I.D.
Tfte&-1ci-c-n /
TftEG-Ti -ogee
)ace Tested
(zlZlJSo
\\
crain
TA
S3&
••
i
.at NumDer
—
—
Model
Predicted
Slope
Low
MZS
fe.'l
Mean
5^.^
1.1
High
£>.C>
8.C,
Linear
Regression
Predicted
Slope
(Mean)
l.
S>CG
Max
Rev/
Dose
29^,
no
34^
170
Conununt^
>^ - . .;'
-------
GROUP 23
IN-USE VEHICLES
Sample
Number
TAEB-79-0911
TAEB-80-0011
0031
0050
0060
0070
0080
0140
0150
0160
0170
0190
0200
0210
0220
0250
Test
Vehicle
Delta 88
Delta 88
Delta 88
Oldsmobile 98
Oldsmobile 98
Olds Custom Cruiser Wgn
Oldsmobile 98
Delta 88
Oldsmobile 98
Oldsmobile 98
Oldsmobile 98
Delta 88
Oldsmobile 98
Delta 88
Delta 88
Delta 88
Test
Cycle
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
HWFE
370
-------
/
GROUP ID:
SAMPLE ID
TftES-SC-cofcO
TKE&-SO-OCIG
VEHICLE/
ENGINE TYPE
Cl^'s
S3
i t;
Car
Cur -tt g
(0
DRIVING
CYCLE/MODE
P/g I
F/g '
P/e /
6)
Fe
FUEL TYPE/
BLEND
D.eael
Diesd
TOTAL MG
EXTRACTABLES
COMMENTS
. "Die&e./
- 0/5-0
LSUtny
i3
Olds c"\?> "Diesel
Car - I ^
F/£"
VSe.Vv - I
^«seJ J
F/e- /
-------
/
u>
GROUP ID: o?3
SAMPLE ID
TAe8-SO-033C
Tfl£®-'&^-- 62&o
VEHICLE/
ENGINE TYPE
T>«l-U S3
\leh-il
T>i^^t C9S)
DRIVING
CYCLE /MODE
l-F/£?
F!^
FUEL TYPE/
BLEND
#~Z -~D,ese/
"^-7D/ei.e|
TOTAL MG
EXTRACTABLES
S^^mc,
3S4.n7~ • .
'.
;
-------
2-
SAMPLE ID
TESTER STRAIN
TA98
+ S9
- S9
TA100
+ S9
- S9
TA1535
+ S9
- S9
TA1537
+ S9
- S9
TA1538
+ S9
- S9
- sc-eo//
7
7
2-
s
7
7
7
7
c?
- c
•7
3
3
/c
/o
ftES-SD-CSJCO
4
/O
/c
/C
/C
/c
/c
,
f
5"
II
v/
*Experiment Code - This number identifies all strains and activations
plated in the same experiment on the specific date noted below. Data
generated in the same experiment are comparable.
373
-------
Experiment ft Date Plated
I 7/29/80
2 7/30/80
3 7/31/80
4 8/01/80
5 8/04/80
6 8/11/80
7 8/15/80
8 8/18/80
9 8/19/80
10 8/20/80
11 8/27/80
12 9/08/80
13 9/18/80
14 10/27/80
37A
-------
Sample I.D.
ate Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
0
V) TJ
i/l •<"<
•H »H
o m
cu >
P
Conve
Parat
Converoed
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comment u
fAGS-dC-CCSe
2V/9
TR
13
Rcreis
OS
/.&
/. SCO
Tf^eB-80-ccfco
Cft
I/
o.o
I/
.o
-7-3
i-it*
O.CCC-32
ZCCO
ll.o
6-00/75"
I/
Co
•^J
Ln
//.O
II.?
6.00^, /
I/
U
23
/
-------
Simple I.D.
ace Tested
ctivation
ot Number
Model
Predicced
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisson
Valid
Adequ
Met
4 Pa
Conver
aj
nver
2 Para
Converoed
Dose
Range
ested
(UGS)
Max
Rev/
Dose
Comments
TA
1538
C.'l
2.T
3.417
CM 34
t/
I/
ZO-5>
Zcco
v -
1.0
Z. 993
.OO/^t
/Z.I
il.l
v/
I/
6-u
C.CO/55"
Zcco
s
It. to
n.4
(p.CCfct'3
U)
'5-0
/C.7
I/
ZCCO
tco
10.1
//.z.
n-7
5-3
£7
•X
tcoo
ZOO
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bs
Value
Poisson Ass
Valid
Adequacy Criteria
Dose
Range
Tested
Max
Rev/
Dose
Comtienta
Not
fSf?
3,7-75
0.0/33
y
y
500
IX
J
j
^00
3.133
0.
0.03-/!
y
OJ
-7
)30^
1,011
J
J
SOO
500
0.00*03
y
J
ll
11.3
U.5
500
-------
OJ
^J
CO
• Sample I.D.
••m£R--™_o9n
TPtft-tt-OCII
m-a-xo-ooai
TCtS-^-Glll
-o -ooM
s,6_0crsi
Date Tested
-7feo|*>
M
V*
-/bcbo
it
n
Strain
Tftlffh
i,
"
-miflo
•„
-
Activation
Lot Number
RLlo\5
\.
n
Model
Predicted
Slope
Low
1,6
an
1-s
11,2
10. 1
30.1
Mean
5,3
3,1
63
ttfl
11,1
,21.2
High
1,3
S7
?,?
U.T
»3
Linear
Regression
Predicted
(Mean)
3,-m
5.07?
3.01,0
7,YOo
X-7VC,
t-7^
Toxicity
B,
Value
O.ooouu
0/0007/
^oo/sr
0/\/\iJO/'
* ww™ ^ ^
0,00*7,-
0/005^?
Poi»son Ascuaption
Valid
/
y
Adequacy Criteria
Met
O.orjz
J
»-(
|
a.
y
\j
i!
J
I
S.
J
J
J
V.
s
J
0.
M
y
y
y
y
/
y
Dose
Range
Tested
goo
"
•
5oo
"
"
Max
Rev/
Dose
'^0
5oo
^00
^
500
y-70
Coments
v ' •• •: .
-------
OJ
-J
VO
Sample I.D.
"TftHft--7-09/l
TfjiHrt-'tfCi-OCII
IftfciS-aO-OO^l
•m£6-T?-G^ii
•TREP>"$G-OoM
TR^K-ifa-cc^l
ate Tested
7/AoJso
it
n
-/Uctac
11
••
Strain
iftessr
11
u
1ft^
ll
.(
Activation
Lot Number
RLlO\5
i>
'•
Model
Predicted
Slope
Low
5. 11(»
3.IV5
2,%3
l.1?^
a, o?5
Toxic! ty
61
Value
(idT USTtD
Net- |)
L ;i t« 4
McT
UsMct
(3,605??
0,fco|0
0,OC-35t.
Poisson Ascunption
Valid
O.C^S>
U^
O.cV'/'?
/'
Adequacy Criteria
Met
y
0,caV7
/
y
*
4 Parameter Model
j
y
/
y
/
f-t
V
1
M
S
S
M
«
Ot
n
y
7
y
j
j
r-4
«l
1
i4
S
I
0,
(N
/
J
y
/
;
J
Dote
Range
Tested
5 -=f
Sec
1 1
s-^?
-Soo
5^5
5oc
1 1
s -^
SOo
Max
Rev/
Dose
n&?/
ssco
I^S^
~SGO
\(op—
500
5o^
'no •
^^
500
37/_,
no
Connents
v - • •:' '
-------
Sample I.D.
Date Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
Poisson
Valid
Adequacy
Dose
Range
Tested
Max
Rev/
Dose
Comments
7/al 1
20-=?
*0
5*1
y
,2000
0,000^7
.2000
bfl
J.S37
V/
j
3.000
3,0^0
CO
00
o
(.ft
2.
(3^00/53
6> SO
1-1
7.5
(3,00/2?
0,50
-------
iojnple I.D.
ate Tested
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Poisson
Valid
Adequacy
Met
Dose
Range
Tested
Max
Rev/
Dose
Comment^
-/3,1
o
lift |oo
j
.2000
2000
iilo
fcso
6. so
in
. 3%
own?
y
y
,/TOJ.
(oSC
U)
oo
"TClGO
IS
73.6
0,00^1
y
j
f£ £-80-
/O,?
11,3
0.00^75
JlOO
-------
I.o.
ace Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B,
Value
O 10
0. >
Adequacy
Met
Dose
hange
Tested
Max
Rev/
Dose
Conroenta
lM*o
'1,1
J
000
12,2
J
o^OCC
•7.0
j
J
J
CO
oo
-7
tail So
J
Jo -=)
Pooo
poo
-fittrft- SO- 6VSO
7,?
/37.
ur?
J
J
5.2
J
-------
I.D.
Date Tested
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
B>
Value
Adequ
Met
Done
Range
Tested
Max
Rev/
Dose
Conments
r f-o*
ttf/t.
tta
n//
a,
11,7
ia.o
y
U)
oo
w
fiM
TfltifV ja- 03-10
11,1
y
I/
-------
l.D.
Dace Tested
ALLlVdClOn
LGC Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6}
Value
ump
8,,
» -H
•H <•*
o a
o. >
Dou a
Range
Tested
Max
Rev/
Dose
Comnents
1,5
2, (,51
J
J
J
.2060
t» so
'fH£B- ^6 - oaoc
7,1
0,00/53
650
30,5
3.1
650
U>
00
.2 DOC
0X50
^" 0300
7,5
j
31,1
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
Adequacy Cr
Met
Dose
Range
Tested
Max
Rev/
Dose
Comnents
J
aooo
6SO
J
J
-oaio
|0.7
l/.o
00
Ul
1503
-7.1
1,0
•7,2
-?3
- SO -
J
-------
ctivation
oc NumOer
Model
Predicted
Slope
Low Mean High
Linear
Regression
Prcdicced
Slope
(Mean)
ToxiciCy
B>
Value
• H rH
0 a
o. P-
'0 U
A I
Dosu
Range
Tested
(UUS)
MAX
Rev/
Dosu
ConnnunCii
7?
X
6116
&2
; i
V.
in
1360
U)
oo
-------
I.D.
Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
egression
Predicted
Slope
(Mean)
Toxicity
B,
Value
•O u
<< I
»et
ed
Dose
Ranye
Tested
(UCS)
Max
Rev/
Dose
Conimunci
r/9
/DC-
.co/o)
y
32t
1,7
C/
y /
f-5
I/
/7,0
nut
•X
0,0/7X5
/ZJ
oo
-V-
A*,
-------
l.D.
Tcitcd
cciv.it ion
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Vdluu
c
0
in •O
k t/
fl >
0. C
0
n u
Dosu
Range
Tcscud
(UG'S)
Max
Rev/
Dosu
ConunontK
LZ.
0,6/6
03ft
X
>M
7Ufd
&i
y
j
UG £-10 -fl5oo
i/
A -601 / /
J
y
M3
JO
if
w
U)
oo
oo
-------
1.0.
Date Tested
ctivation
ot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
so
d
Po
Va
Para^
Converge
Dose
Range
ested
(UCS)
Max
Rev/
Dose
Comments
53$
3.5
C.OCO33
I/
3.0
3. (OS
15-4
1-1
f/
^50
/a*
ZO&
to.s
(X
i/
L/
U)
oo
VO
MS
(..T,
CGctl*}
Tft
(V
9.7
/At
v/
iX
Z.I
263
22
a*
L2
2.
feSD
foSD
-------
ianple I.D.
te Tested
ctivation
ot Number
Model
Predicted
Slope-
Low
Mean
ligh
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
m
3
O'
HI a
•D QJ
< z
U 01
>
0. C
o
ai
r
u
p. c
o
N U
Dose
Range
rested
(UCS)
Max
Rev/
Dose
Comments
TA
t.S-J>
*L
64
^•347
(X
v -
7J
/
fc>SO
n.i
,cc/"7/
iX
l/
feSO
4-5-7
Vt
'3.7
foSb
VO
o
/33
tx
eso
TA
I CO
i/
i/
650
5.1
u/
I/
3.250
feob
M
zo. 4
\5.4
21.*
v/
i/
•3I.Z
&£
Zoo
loo
-------
Sample t.D.
-rflE&--7-Ocr/l
Tft£#- Sc,-ocii
Tfi£ft-U&-cc!SO
-mtP,-T?-cfln
ipefe-SG-cou
1ft£&-S<}-GGSO
ate Tested
*lisl*°
»
V 1
t Number
Ru'J^S
:|
It
Model
Predicted
Slope
Low
S.o
3.G
^5
11,1
S.I
in
Mean
5,1
3.T
6>,2
f/,0
10 iC
//.v
High
5i
3.1
?5
ft.*/
&.
/3,7
Linear
Regression
Predicted
Slope
(Mean)
5". 133
3.Tio
2.X(*0>
zmi
3.^/6
/, "J36
Toxicity
01
Value
MS.-T
LJsW«P
Wc.r 1
U*Ht*
(J.ooiH
(J.00351/
0/00 /S"f
0;OOi~7C
Poisson Assumption
Valid J
/
/
/
y
/
Adequacy Criteria
Met
y
/
y
y
4 Parameter Model
y
u/
j
J
i/
y
3 Parameter Model
J
,;
j
j
J
2 Parameter Model
J
J
j
j
j
j
Dose
Range
Tested
a'.S^
350
s-^
Soc
G.5^
&50
5,6^7
,350
5-^
500
G,S^9
(a 50
Max
Rev/
Dose
\3o(f^
SjSQ
Jisi-
Soo
1JJ£_
1o50~
^55-
"^50 '
j^sl.
500
/30
•
Coranenti
;
-------
Sample I.D.
-avc6--7«j-o«7
n
J
;
2 Parameter Model
y
J
/
y
y
y
DOS*
Range
Tested
a.s^
^50
sr-5
5oo
U>.5-=7
(o&O
5.5^
JSO
5-=?
-500
6.,s-T>
(o5o
Max
Rev/
Dose
13^
•^a^o
]s§2,
Sbo
3^22^.
(fl5o
/V3^-
^50
JJjl
soo
/^|3_
cPQO
Connents
%~ *• •• •: .
-------
Sample I.D.
ate Tested
Strain
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxlcity
0i
Value
PTT»A
SSV UOSSTOd
Adequacy Criter
DOS a
Range
Tested
Max
Rev/
Dose
Connents
3.
J
3. 50
3.0
y
•J
y
J
//30.
See
(c SO
TRIS#
/0.0
J
50
U>
- 'so- Oo\\
0,
J
5- -^
-50 O
"500
30,0
J
-------
Sample I.D.
1\\EB~11-Oe^
1ftEft-So-Wfl |
Iflea- TJ-ofn
•TftEe.-'So-OCSl
ate Tested
itaW -
sViW
tVslw
* \W\So
Strain
Tfm
ii
Uhr
>i
Activation
X5t Number
Rp:o\S
u
Model
Predicted
Slope
Low
fe.2
-J,«.
D,b
(i.(*
Mean
«'V
10,6
/>f,0
13.0
High
IP
la.-/
/5-Y
/^.t.
Linear
Regression
Predicted
Slope
(Mean)
V.03*/
^,053
3,1^
a.^^i
Toxicity
61
Value
0,oo/V7
0,coi~?5
£),00^3
O.OCZlS
Poisson Assumption
valid
/
Adequacy Criteria
Met
/
y
/
j
>H
!
h
3
3
U
0.
«
J
J
v'
J
M
s
§
H
10
0.
f}
J
/
2 Parameter Model
j
j
j
j
Dose
Range
Tested
5^>
5
-------
OJ
VO
Ln
Sample I.D.
-mtrt--7'/-o«iii
"Ipli'^-'SO'OC,^ 1
-iVIt-iVTi-c'M
-Vhi?&-*0-C.t3l
ate Tested
"ftl^ko '
^\i^o
^\\sho
vlwViO
Strain
TfllCfO
H
1W<^
ii
Activation
Lot Number
RlJoiS
1 1
Model
Predicted
Slope
Low
&
H
ac.c
5,3-
Mean
fcfl
7,2
30,(s
(.5
High
1-'
?,3
aU
^
Linear
Regression
Predicted
(Mean)
A.TJ3
3.31?
-7,6/7
fc.SOO
Toxicity
Bi
Value
O.OO..V
O.oc/VV
0,00532
O.oo^
PoiSBon Assunption
Valid
/
/
Adequacy Criteria
Met
0.0^
s
J
id
a
/
y
v
/
M
3
/
J
2 Parameter Model
j
j
J
/
Dose
Range
Tested
5 -*
-500
"
See
"
Max
Rev/
Dose
s'oo
JT^i-
S^OO
jtjliif
/jjifi— •
/70
Conments
>" * • • -.
-------
VO
Sample I.D.
~Ift£ li -"7*7-0 "ill
-IREft-fc-uai
"iftTft-Ti-olil
"jl^llii- ^ii'0t-3>i
Date Tested
Elista '
•slftVjiO
O\l<-\r>-\ *
O \ \ ^ V i\J
v \W\So
Strain
lftlS5?
II
T?^^
u
Activation
Lot Number
l-\ut
•«
Model
Predicted
Slope
Low
3.1
5. a
(p.O
3,5
Mean
3.?
3.3
^
3.-?
High
47
3.3
fcfl
*/,o
Linear
Regression
Predicted
(Mean)
3. a/4/
1..J35
a,G(.V
o ^ c*/^
**1 t v O W
Toxiclty
Bi
Value
O.ooo:y/
Met
0/005/6
0<005i/
Poisson Assumption
Valid
W«
Adequacy Criteria
Met
0/OI1/
/
/
/
j
3
I
/
/
y
y
•H
8
|
v/
y
y
2 Parameter Model
/
J
J
J
Dose
Range
Tested
5co
It
K)
-
Max
Rev/
Dose
JUJSJ-—
5OC
SOO
110
500
Comnents
V* * '• •. "
-------
iojnple I.D.
Uatu Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
son
d
S.5
tr
01 u
•o u
a. x
Dose
Range
Tested
Max
Rev/
Dose
Coranenta
0,3
1.5
0,00075
j
11.2
B.5
j
6., 5^?
5,;
(».*)
3,153
0/oooV?
6-50
-Tfl£6-SO-or70
3.IS5
0/00/3Z
OJ
VO
isjy.
s.4?
aooo
ll.o
6..S-9
6SO
(050
9,3
0,020?
y
j
(1
d.50
S.I
j
-------
a-imple I.D.
Dace Tested
Activation
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
8,
Value
unp
•o u
< I
Dos a
Range
Tested
Max
Rev/
Dose
Comnenta
"Wioo
1
2000
3.05J
O.CCiSO
G.S-9
650
an
0,CCC/i/
,0375
J
5,3
3 '
O.OCOV3
y
J
J
U)
VO
00
I/
^200
(7,0051?
J
6,50
13.1
0,0150
1.3.3
J
J
-------
I.D.
Hate Tested
AC ii vac ion
Lei Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
Adequacy
Dose
Hange
Tested
Max
Rev/
Dose
Commenta
wssr
0,00/22.
JZOOO
0,0310
y
J
(cSO
NOT
O.CII2
JZZ5-
3,3
y
J
J
0,00^-7.2
y
^000
650
11.2
-2.133
0-007V9
j
J
300
5',?
7.3
*»./
0.0131
-------
1.0.
Date Tested
AcLivoCion
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Value
0 «
o. >
Done
Range
Tested
Max
Rev/
Dose
Comments
-nFyt6-va-c.no
6.60
40
0,
15. 1
IS.?
. 03-13
•P- r
O :-
O
37,3
39,5"
j
13
0,00 SOU,
J
1-TVldg-
-------
1.0.
Date Tested
AOLI votion
Lot Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
Bi
Value
Poisson
Valid
Adequ
Met
Doua
Hdnye
Tested
Max
Rev/
Doge
Comnentu
0,G02~70
J
j
j
caoo
2.*
650
j
•fflESS
JO, IB
li.f
la ,3
3.S
y
6,
0,0153?-
j
-------
ionplc I. [i.
Date Tested
AcnvdCion
uoc Number
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicity
6,
Value
• i
£1
Adeq
Doua
Range
Tested
Max
Rev/
Dose
Cooinents
-am
&3
0,0 1?/
y
^353,.
7.1
11
I'4/
0.
6.SC
6 SO
o
N)
5.-I
"7,0/1
6.50
/o.')
~ CP-VO
6,50
-------
l.D.
Dace Tested
Tft
ccivjtion
oc Number
Model
Pcudiccccl
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicicy
Si
Value
O 10
0. >
o. c
0
o
Dosu
Range
u9Ced
(UGS)
#066
Max
Rev/
Dose
Conmuntfl
it
y
n
j
(llto
flcg- tf 0-620
o.-r ///--rue £l'
SCI '
it
l.S
'\—I
«^ooo /£jco \
6 \ /3too
tflfifl -
-------
1.0.
D-iti Tested
ctivacion
oc
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxici ty
Value
0 ")
0. >
3 v.
u v
>
o. c
o
» u
0. c
0
Dose
Range
Tuaced
(UCb)
Max
Rev/
Dosu
Conimuntg
r/f
74
.^-777
t/
y
y
y
?//?/&•>
J
I'o flirt: <• MO A
/ao
/JCO
r^
y//ir/fo
S3 3
HIS
Co .Jlfti'/Vl? ^(t
-------
1.0.
Date Tested
ccivation
Model
Predicted
Slope
Low Mean High
Linear
Regression
Predicted
Slope
(Mean)
Toxicicy
B>
Value
O IQ
0. >
fi
jne
oed
a, c
0
Dosu
Range
rusted
(ucis)
Max
Rev/
Dosu
Conununcu
-------
Sample I.D.
"^Erft-^d-tC^O
Date Tested
lUUo
Strain
TftlS3X
Activation
Lot Number
—
Model
Predicted
Slope
Low
1.2
Mean
-------
S-inple I . D.
T#£6-3C-C03C,
ace Tested
?/S/£C
Sc ra i n
T/*I535
ot NumUor
Model
Predicted
Slope
Low
It.
Mean
8.7
fiijh
0.4
Linear
eter Model
Convcroed
^
- —
o>
T)
3
v T3
a, qj
i2
u o>
It >
a c
0
CN U
^
...
•
Doso
Range
rested
(UGS)
fe.S^>
6^0
Max
Rev/
Dose
•2(2^
'&£
Conuncnts;
V* * • ..'
'.
-------
o
00
Sample 1.0.
-nflES-so-ciio
TftES-Sfc-caoo
Date Tested
^Iwko
lllsko
Strain
Tft)1^^
rfflR*
Activation
Lot Number
Hodel
Predicted
Slope
Low
&
/65
75^
,£.00
Comments
'V •
-------
S or i- 1 e 1 . D .
Tffffft-fD-fctffl
TA£&n-
Linear
Regression
Predicted
Slope
(Mean)
/ ^.^J f)
JT" f\t-J^£
Toxicity
Value
&'6fiA££
6,****
Poisson Assumption
Valid
/
Adequacy Criteria
Met
AWV
^
4 Parajneter .Model
Converoed
/
3 Parajneter Hodel
Converoed
/
/
Model
2 Parameter
Converoed
/
/
Dose
Range
Tested
(UOS)
Jcod
^60
Max
Rev/
Dosa
/afatO
**%*
Comnanca
•
O
VO
-------
Sori-le I . D.
T/w?«-*Mfflo
r**e~W-«ft
JaCe Tested
/«T /^
n
train
/40
"
ot N amber
/e/*-/6
'*
Model
Predicted
Slope
Low
i-5
d.3
Mean
W
W*?
ligh
7^
&
Linear
Regression
Predicted
Slope
(Mean)
3.3/4-
a^
Toxicity
8,
Value
,,^^
StQ&jyO
Poisson Assumption
Valid
/
Adequacy Criteria
Met
•
Converoed
y
/
3 Parajneter Model 1
Converoed !
2 Parameter
Converoed
/
y
Dose
Range
rested
(UGS)
*'"*
6&T
Max
Rev/
Dose
/250
IW
/*>&>
Convnunta
.p-
I—'
o
-------
S-iri-le I.D.
r*f*-*MU20
r»e&~to-u<6
Date Tested
ww*>
| y
train
/m
"
ctivation
ot Number
//tr-/^
V
Model
Predicted
Slope
Low
3,*
U
Mean
^
n
ligh
V
A4/
Linear
Regression
Predicted
Slope
(Mean)
/^ ^V*7 ^
o ^ ^^\
Toxicity
B,
Value
fl.^//f
d' CO i-^'ft
Poisson Assumption
Valid
Adequacy Criteria
Met
i -D
0
- U
0
t O
x
arajr>eter Model
tferoed
0. C
o
n o
/
1
1
arzoneter
i/eroed
A. C
0
(N O
J
J
Dose
Range
Tested
(UGS)
£7(5 " x^
£ QdQ
^
Max
Rev/
Dos a
/yooo
Commenta
(
•
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA 460/3-84-003
2.
3. RECIPIENT'S ACCESSION»NO.
4. TITLE AND SUBTITLE
Ames Bioassay of Exhaust Soluble Organics Emissions
5. REPORT DATE
April 1984
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Steve R. Haworth
Timothy E. Lawlor
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Microbiological Associates
5221 River Road
Bethesda, Maryland 20816
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2923
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
Mobile Source Air Pollution Control
2565 Plymouth Road
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final report (6/80-12/82)
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report summarizes the results obtained from testing 201 extracts of engine
exhaust particulates in the Salmonella/mammalian-microsome mutagenicity assay
(Ames test) from June 1980 to December 1982. Exhaust particulates collected on
filters were subjected to a 24 hr soxhlet extraction with methylene chloride.
Each blown down sample was shipped to Microbiological Associates where it was
assayed at least twice in the Ames test in two separate experiments conducted
over a period of several weeks. Each Ames test was conducted in triplicate at
five dose levels using up to five Salmonella typhimurium tester strains, TA98,
TA100, TA1535, TA1537 and TA1538, both with and without metabolic activation by
Aroclor induced Fischer rat liver microsomes. Very often, when the amount of
available test article was limited, only one or two tester strains (TA98, TA100)
were used. The resulting mutagenicity data was sent to the Data Management
Branch of the EPA's Biometry Division in RTP in North Carolina where it was
entered into a computerized data base and was statistically analyzed using the
method of Stead, et al (1,2).
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Air Pollution
Motor Vehicles
Diesel Engines
Gasoline Engines
Exhaust Emissions
Particulates
Mutagens
Ames Bioassay
Organic Extracts
13. DISTRIBUTION STATEMENT
release unlimited
19. SECURITY CLASS (This Report)
unclassified
21. NO. OF PAGES
412
20. SECURITY CLASS (This page)
unclassified
22. PRICE
EPA Form 2220-1 (9-73)
412
------- |