United States
Environmental Protection
Agency
Office of Air Noise and Radiation
2565 Plymouth Road
Ann Arbor, Michigan 48105
EPA-460/3-86-002
May 1987
f/EPA
Air
Application of Electronic Fuel Injection to
the Optimum Engine for Methanol
Utilization
-------
RK2RDO
CONSULTING ENGINEERS
EPA 460/3-86-002
APPLICATION OF ELECTRONIC SEQUENTIAL FUEL INJECTION TO THE
OPTIMUM ENGINE FOR METHANOL UTILIZATION
FINAL REPORT
Prepared for
United States Environmental Protection Agency
Office of Air, Noise and Radiation
2565 Plymouth Road
Ann Arbor, Michigan 48105
JULY 1986
-------
RK2RDD
CON>UITING ENGINEEftS
This report was furnished to the Environmental Protection Agency by Ricardo
Consulting Engineers, Bridge Works, Shoreham-By-Sea, Sussex, BN4 5FG
England, in fulfilment of contract 68-03-1968. The contents of this report
are produced herein as received from Ricardo Consulting Engineers. The
opinions, findings, and conclusions expressed are those of the author and
not necessarily those of the Environmental Protection Agency. Mention of
company or product names is not to be considered as an endorsement by the
Environmental Protection Agency.
Publication No. EPA 460/3-86-002
-------
RK2RDO
CONSULTING ENGINCfNS
SUMMARY
Ricardo Consulting Engineers have carried out a development programme to
apply electronic sequential fuel injection to the optimum engine for
methanol utilisation. The programme was based on a production 1.5 litre
Volkswagen gasoline engine, the combustion system of which was converted to
HRCC (high ratio compact chamber) with a compression ratio of 13:1. This
engine had been developed to run on methanol using a carburettor and
mechanically controlled ignition and EGR system prior to this program.
The electronic engine management system applied to the engine was a Ricardo
Microprocessor Engine Controller (MEC) which enabled mapped control of
sequential fuel injection as well as ignition timing and Exhaust Gas
Recirculation (EGR) rate.
The application of sequential port fuel injection of methanol showed that
the combustion process was sensitive to injection rate; sensitivity to
injection timing was also shown to vary with fuel injection
characteristics.
Two engine control strategies were developed, a best economy zero EGR
strategy and a reduced NOx strategy using EGR and ignition retard. The
characteristics of these strategies were derived from the observed response
of the engine on the testbed to mixture distribution, EGR and ignition
retard. Modelling of a number of possible control strategies showed that
a revised fuelling strategy wide range of HC and NOx emissions was
possible. However, it was evident that control strategies for reduced HC
emissions could result in large increases of NOx emission. The best
economy strategy was based on a lean part load mixture strategy having a
typical equivalence ratio of 0.7 with optimum ignition timing. The reduced
NOx strategy used richer mixtures, EGR and ignition retard to strike a
balance between NOx reduction, HC increase and fuel consumption penalty.
Simulation over the LA4 drive cycle for an Audi 5000 vehicle predicted the
following results:-
Methanol
HC NOx CO Fuel Cons.
g/mile miles/US gallon
Best economy strategy 1.92 1.75 3.37 16.3
Reduced NOx strategy 1.82 .67 14.52 15.4
Initial optimisation of transient and warm-up strategies were carried out
on the testbed but it was recognised that further development would be
required to refine driveability with the engine installed in the vehicle.
The mechanical condition of the engine and fuel handling system remained
satisfactory throughout the test programme.
Recommendations for further work were made.
-------
RK2RDO
CONSULTING CNGlNf ENS
CONTENTS
1. INTRODUCTION
2. THE HRCC ENGINE
2.1 General
2.2 Engine Characteristics
2.3 Basic Engine Specification
2.4 Inlet System
2.5 Exhaust System
2.6 Fuel System
2.7 Engine Management System
2.8 EGR System
3. CHARACTERISTICS OF METHANOL FUEL
4. TEST EQUIPMENT AND DATA ANALYSIS
4.1 Testbed Installation and Instrumentation
4.2 Test Fuel
4.3 Data Processing
4.4 Reduced NOx Strategy Optimisation
4.5 Vehicle Simulation Work
5. ENGINE DEVELOPMENT
5.1 Comparison of the AC Delco and Bosch/MEC Ignition Systems
5-2 Engine Performance Comparison between Correct and
Incorrect Injectors
5.2.1 Full Load Performance
5-2.2 Injection Phasing
5.2.3 Part Load Performance
5-3 Comparison with Carburetted Engine Performance
5-3-1 Full Load Performance
5.3-2 Part Load Performance
5.3.3 Exhaust Gas Recirculation Tests
5.4 Engine Performance Mapping
5.4.1 Best Economy Strategy
5.4.2 Reduced NOx Strategy
5-5 Development of Transient Fuelling Strategies
5.6 Development of Cold Start Strategy
5-7 Overun Fuelling
5.8 CYSIM Simulation
5.9 General Engine Condition
-------
RK2RDO
LIST OF CONTENTS (continued)
6. SUMMARY OF ENGINE DEVELOPMENT WORK
7. CONCLUSIONS
8. RECOMMENDATIONS FOR FURTHER WORK
9. REFERENCES
-------
RK2RDO
CONSULTING ENGINEERS
LIST OF APPENDICES
I. MEC Application.
II MEC User Note.
Ill MEC-Best Economy Strategy Maps.
IV MEC-Reduced NOx Strategy Maps
V Tabulated Test Results
6
-------
LIST OF TABLES
1. Methanol Fuel Specification
2. LA4 Drive Cycle Predicted Results
RK2RDO
CONSULTING ENGINEERS
-------
RK2RDO
LIST OF FIGURES
1. Ricardo Multi-Cylinder HRCC
2. Ricardo Multi-Cylinder HRCC Inlet Port Design
3. HRCC Cylinder Head
4. EGR System
COMPARISON BETWEEN AC DELCO AND BOSCH/MEC IGNITION SYSTEMS
5-8 Mixture loop at 40 rev/sec, 2.5 bar bmep
9-12 Mixture loop at 60 rev/sec, 5-5 bar bmep
13 Key Point Test Conditions
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
14 - 17 Full Load Power Curve 20-90 rev/sec
18 Injection Timing Swing over 720 C Cycle
19-46 Mixture Loop Tests
47 - 58 Ignition Timing Swing Tests
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
59 - 62 Full Load Power Curve 20-90 rev/sec
63 - 74 Mixture Loop Tests
75 ~ 78 Ignition Swing at 15 rev/sec idle
EGR LOOPS AT 4 EQUIVALENCE RATIOS (CORRECT INJECTORS)
79 - 82 40 rev/sec, 1.5 bar BMEP
83 - 86 40 rev/sec, 2.5 bar BMEP
87 - 90 40 rev/sec, 5.5 bar BMEP
91 - 94 60 rev/sec, 2.5 bar BMEP
95 - 98 60 rev/sec, 5.5 bar BMEP
99 - 102 60 rev/sec, 7.0 bar BMEP (2 equivalence ratios)
103- 114 NOx, HC and Fuel Consumption Trade-off Curves
ENGINE MAPPING - "BEST ECONOMY/MET IGNITION TIMING STRATEGY"
115 Brake Specific Fuel Consumption (g/kWh)
116 Equivalence Ratio
117 Brake Thermal Efficiency (%)
118 Ignition Timing (°E)
119 Brake Specific NOx (g/kWh)
-------
RK2RDO
CONSULTING ENGtNEEM
120 Brake Specific HC (g/kWh)
121 EGR Control strategy trade-off
ENGINE MAPPING - "REDUCED NOx STRATEGY"
122 EGR contours (%)
123 Brake Specific Fuel Consumption (g/kWh)
124 Equivalence Ratio
125 Brake Thermal Efficiency (%)
126 Ignition Timing (°E)
127 Brake Specific NOx (g/kWh)
128 Brake Specific HC (g/kWh)
129 Transient Air/Fuel Ratio Response (Example)
130 Cold Start Air/Fuel Ratio Response (Example)
-------
RK2RDO
CONSULTING ENGINEERS
APPLICATION OF ELECTRONIC SEQUENTIAL FUEL INJECTION TO THE
OPTIMUM ENGINE FOR METHANOL UTILIZATION
1. INTRODUCTION
In the future supplies of conventional, petroleum based, fuels for road
vehicles are likely to be less readily available and probably more
expensive than at present. The potential for many alternative energy
sources to supplement or, in some vehicle applications, to entirely replace
conventional fuels has been evaluated by numerous investigators and the
relative merits of many of the possible alternative fuels are now quite
well understood. Methanol has various characteristics which are desirable
attributes of future alternative fuels - it can be produced from a variety
of raw materials (some of which are renewable), production technology
already exists, the fuel is in liquid form which facilitates storage,
transportation and handling and its energy density is moderately high which
therefore provides an adequate vehicle range for a quite modest weight of
fuel.
Of the properties of methanol which specifically relate to its suitability
as a fuel for conventional light duty engines, its poor self ignition
characteristics - low cetane number - ensures that it is not easily
utilised in diesel engines. Conversely, its high octane quality implies
fairly ready application in spark ignited engines. The octane number of
methanol is significantly higher than that of current motor gasoline so
that it lends itself for use in engines having relatively high compression
ratios with inherent thermal efficiency advantages over current gasoline
engines. Methanol also has good lean burn properties, so offering further
advantages in terms of thermal efficiency and low exhaust emissions when
employed in a spark ignited engine.
In recent years several research organisations have worked on the
development of engine concepts capable of successfully utilising high
compression ratios. The Ricardo HRCC (high compression ratio, compact
combustion chamber) engine is one example of this approach which, by
careful design of the combustion chamber permits the use of a high
compression ratio (with a relatively low fuel octane requirement) together
with an ability to successfully utilise lean mixtures or tolerate high
levels of EGR. Both are important attributes with regard to fuel economy
and exhaust emissions.
Considerations of the major performance characteristics of the HRCC
combustion system and some of the properties of methanol fuel suggested
that they compliment each other to a large extent. It therefore appeared
that an HRCC unit was a promising basis for the development of an optimum
engine for methanol utilisation. In order to confirm this theory a
10
-------
RI0RDO
CONSULTING ENGINEERS
practical engine test programme aimed at investigating the potential
performance, fuel economy and exhaust emissions of an HRCC engine when
fuelled with methanol was carried out by Ricardo on behalf of EPA (1).
This resulted in the production of a methanol fuelled, high compression
ratio, compact chamber (HRCC) engine in which air/fuel mixture strength was
controlled using a simple carburettor and ignition timing was varied using
a conventional distributor with vacuum advance. This engine showed
considerable potential with regard to high thermal efficiency and low
exhaust emissions; however, it was apparent that the relatively simple
engine control system used, imposed significant limitations on several
aspects of engine performance. The aim of the current project, as defined
in Contract No. 68-03-1968 was the application of an electronic sequential
fuel injection system to the engine to replace the carburettor. The
quantity of fuel delivered, together with the other control parameters of
ignition timing and EGR rate, were also to be controlled by the electronic
management system. With this arrangement various possible engine control
strategies, capable of maintaining low exhaust emission levels and
providing high thermal efficiency were to be investigated. This report
describes the experimental techniques used and the engine management system
utilised for this particular programme.
The installation of the engine in and subsequent testing of an Audi 5000
vehicle were to be carried out by EPA.
2. THE HRCC ENGINE
2.1 General
The Ricardo HRCC gasoline combustion system has been the subject of
considerable research and development work over a number of years (2-6).
This work culminated in the derivation of general guidelines for the design
of combustion chambers capable of operating at compression ratios of 1 to
2.5 numbers higher than conventional combustion chambers, when using fuel
of equal octane quality, resulting in economic improvements of the order of
5%. The HRCC arrangement was also found to permit utilisation of leaner
air/fuel mixtures than was possible with conventional combustion chambers
while still maintaining an adequate safety margin from the misfire limit
and consequent vehicle driveability problems; this yielded further fuel
economy improvements, making a total of the order of 10%. Furthermore it
was found that increases in brake mean effective pressure (BMEP) of 5-10%
over much of the engine's speed range were generally achieved with HRCC
combustion systems.
The ability of HRCC engines to operate well with lean air/fuel mixtures
ensured that NOx and CO emissions were relatively low. HC emissions were
somewhat increased over those produced by well developed conventional
Numbers in parentheses indicate reference numbers in Section 9-0
1.1
-------
RK2RDD
CONSULTING ENGINEERS
combustion chambers operating at a lower compression ratio but were
nevertheless maintained at a reasonable level.
Most of the initial HRCC investigations were carried out using single
cylinder research engines. Later the experience gained with the single
cylinder units was applied in a Ricardo research exercise to the design of
an HRCC version of a production l.^L, four cylinder, Volkswagen engine.
After a short development programme this engine was installed in a
passenger car in which application it exhibited good performance, fuel
economy and exhaust emission characteristics when operating on 97 RON
gasoline (7).
As a basis for the development of an optimum engine for methanol
utilisation a unit identical to the original HRCC version of the 1.5L
Volkswagen engine used in Ricardo's research work was employed (See Figures
1,2 and 3).
2.2 Engine Characteristics
The particular engine to be used for this work had been developed during a
previous exercise (1) in the form of a carburetted methanol fuelled HRCC
engine. Most of the main components including cylinder block, crankshaft,
oil pan, exhaust manifold, oil and coolant pumps were production Volkswagen
parts. Some components were particular to the HRCC combustion system, i.e.
cylinder head assembly and pistons. Other special components were mandated
because of the use of methanol fuel; carburettor, intake manifold, intake
heating element. A high energy, Delco-Remy, ignition system was
incorporated in order to improve the engine's lean operating capability.
For the present exercise the main components of the engine were retained
but the use of sequential fuel injection and an electronic management
system dictated that some new parts were required. These are outlined in
Sections 2.6 and 2.7
2.3 Basic Engine Specification
Configuration
Bore diameter
Stroke
Displacement
Compression ratio
Cylinder block
Cylinder head
Combustion chambers
Valve gear
Inlet valve inner seat dia.
4 cylinder, in-line
79.5mm
73.4mm
1.457 litres
13:1 nominal
cast iron with integral cylinder bores
aluminium with uni-sided inlet and
exhaust ports.
HRCC type in cylinder head under exhaust
valve. 1 inlet and 1 exhaust per
cylinder. Single spark plug.
Direct attack with an overhead camshaft.
30.5mm
12
-------
RK2RDD
CONSULTING CNGINEEKS
Exhaust valve inner seat dia. 29.5mm
Inlet valve opens 8 BTDC
closes 52° ABDC
max. lift 9-3mm
Exhaust valve opens 52 BBDC
closes 8° ATDC
max. lift 9-3mm
Fuel system multipoint sequential injection
(See section 2.6)
Ignition system Bosch Transistorised Ignition
Spark plugs Champion BN60Y
Engine management system Ricardo MEC (See section 2.7)
2.4 Inlet System
In order to accommodate the fuel injection system, the carburettor and
intake manifold assembly used during earlier work on the engine were
replaced by the components listed below. In addition, existing bosses on
the cylinder head were machined to permit attachment of the fuel injectors;
machining was also carried out to provide for location of an inlet charge
temperature sensor in the inlet port downstream of the fuel injector.
1 x intake manifold Volkswagen Part No. 06? 133 201L
1 x throttle body assembly Volkswagen Part No. 06? 133 063K
1 x rubber elbow Volkswagen Part No. 06? 133 357
1 x Air filter assembly Volkswagen Part No. 067 133 837F
1 x Air cleaner top Ricardo Part No. 3355~38
1 x Throttle bypass valve Bosch Part No. 0 280 140 107
2.5 Exhaust System
A Volkswagen Passat vehicle exhaust system was used being modified to
incorporate an un-catalysed ceramic monolith. This ensured exhaust back
pressures similar to those likely to be encountered in a US model vehicle
with an exhaust catalyst fitted.
2.6 Fuel System
Fuel was delivered from the tank, via a filter, to a fuel rail by a pump.
The pressure in the fuel rail was maintained at 2.6 bar by a regulating
valve. Excess fuel was routed from the valve back to the tank. Solenoid
operated injectors were sealed to the fuel rail by suitable '0' rings.
The fuel pump was primarily intended for use with gasoline and was likely
to require periodic replacement when handling 100# methanol. The suppliers
(Bosch) recommend replacement after 100 hours.
13
-------
RI0RDO
CONSULTING ENGINEERS
The fuel filter was a special component designed to be entirely compatible
with methanol fuel and was supplied by Bosch.
Gates GP80 was used for all flexible pipework. The fuel rail was
fabricated from stainless steel and should therefore be unaffected by
methanol.
A standard production, gasoline, pressure regulator was used. The
suppliers (Bosch) claimed that this component would operate satisfactorily
with methanol.
The fuel injectors specified were special methanol proof units having the
necessarily high flow rate capacity.
The fuel system comprised the following main components:-
1 x Fuel Pump - Bosch Part No. - B580 112 498
1 x Fuel Filter - Bosch Part No. - B450 024 182
1 x Fuel Rail - Ricardo Part No. - 3355~39
1 x Pressure Regulator - Bosch Part No. - 0-280-160-200
4 x Fuel Injectors - Bosch Part No. - B280-412-372/2 U-895
1 x Location Plate-Injectors - Ricardo Part No. - 3355-40
2.7 Engine Management System
A Ricardo microprocessor engine controller (MEC) was used to control
fuelling, ignition timing and EGR rate. The MEC unit input signals were
provided by the following sensors:
Throttle movement AC Delco Part No. P36-D70603
Engine Speed/Crank Position Orbit Controls Part No. 80D1102
Cam Position/Cylinder Phasing Radio Spares 308-578
Manifold Absolute pressure Bofors Electronics - PT-310JA
Charge Temperature Universal Thermosensors
T15-DKN-310-YP-600
Coolant Temperature Platinum resistance thermometer Type PRT
100 No. P445001
Ambient Temperature Platinum resistance thermometer Type PRT
100 No. P445001
The general principles of operation of the engine management system are
outlined in Appendix 1.
The ignition system comprised of the following production components:
Coil - Bosch Part No. - 1-220-522-011
Ignition Module - Bosch Part No. - 1-227-022-008
1.4
-------
RK2RDO
CONSULTING ENGINEERS
2.8 EGR System
The purpose of the EGR system was to re-circulate modulated quantities of
exhaust gas to the engine air intake. The presence of this largely inert
exhaust gas in the working charge of the engine serves to lower peak
combustion temperatures and so reduce the formation of NOx. Excessive
quantities of EGR can cause an increase in HC emissions and fuel
consumption. It was therefore important that EGR rate be accurately
controlled over the operating range of the engine.
The EGR system used for this work is shown in Figure 4. The basic EGR
circuit was conventional, comprising 10mm bore pipework and a vacuum
operated control valve. The vacuum applied to the EGR valve was modulated
by an electro-pneumatic transmitter. This transmitter was electrically
connected to a control unit which received a voltage signal proportional to
the required extent of opening of the EGR valve from the MEC and a signal
from a linear position sensor fitted to the EGR valve spindle indicated
actual valve opening. The control unit adjusted the vacuum signal produced
by the electro-pneumatic transmitter so that actual opening of the EGR
valve equalled that required -by MEC.
EGR control valve - Pierburg Part No. T^KR.7.114
Electro-pneumatic transmitter - Pierburg Part No. 7.21.031.00
Control unit - Pierburg Part No. PV12.300
The definition of the Design Specification of the EGR System was reported
in (8).
3. CHARACTERISTICS OF METHANOL FUEL
Several of the properties of methanol are particularly noteworthy regarding
its use as a fuel for spark ignited engines. These are summarised in the
paragraphs below.
It has a high knock resistance; several different values of RON and MON are
quoted in the literature, the variation being mainly due to the
difficulties involved in applying a test procedure developed for use with
relatively low octane, wide boiling range, gasolines to high octane, single
boiling point, methanol which has a high latent heat of vaporisation. The
high knock resistance favours the use of high compression ratios.
A very significant adverse property of methanol, which affects its use in
engines, is its strong tendency to pre-ignite (9). Many earlier
investigations of methanol utilisation have encountered this problem. It
can be alleviated by attention to cooling of combustion chambers and by
employing an appropriate grade of spark plug, but has been found to be a
troublesome feature in some engine application exercises.
15
-------
RK2RDO
CONSULTING ENGINEERS
The calorific value on a weight basis of methanol is only 45% of that of
gasoline hence a considerably higher fuel flow is required at any given
engine operating condition. This implies the need for changes in the fuel
metering system when changing from gasoline to methanol operation.
The density of methanol is higher than that of gasoline hence fuel
consumption on a volumetric basis is not as high as might be anticipated by
consideration of its calorific value only.
The high boiling point of methanol together with its high latent heat of
vaporisation are responsible for the poor cold starting characteristics
often associated with engines using this fuel. The most popular means of
overcoming this problem, cited in the literature, is by using either a fuel
additive which has a low boiling point, e.g. isopentane (10), or a
supplementary fuel, such as conventional gasoline, which is used only for
starting (11). Both of these approaches involve significant inconvenience
and/or complexity. A more desirable approach is the use of supplementary
heat applied to the ingoing charge which may assist charge vaporisation and
obviate the formation of ice in the intake system during conditions of high
ambient humidity.
It is well established that methanol has generally a wider mixture strength
combustion limit than gasoline. This is largely due to the higher flame
speeds which occur in methanol/air mixtures (12).
Combustion temperatures of methanol/air mixtures are significantly lower
than those occurring in gasoline/air mixtures even when initial mixture
temperatures are equal (13)- In practice the high latent heat of
vaporisation of methanol ensures that the temperature after compression of
a methanol/air mixture is considerably lower than that of an equivalent
gasoline/air mixture. Lower combustion temperatures favour lower heat
losses, hence producing higher thermal efficiency, and also inhibiting the
production of NOx during the combustion process.
Combustion of methanol produces a greater number of moles of combustion
products than is the case with gasoline. The combustion equations for
stoichiometric air/fuel mixtures of the fuels are as follows:
For a typical gasoline -
CH + 1.45 (0 + 3-77 N ) CO + 0.9 H 0 + 1.45 (3-77 N )
1.8 2 2 2 2 2
i.e. for every 6.92 moles of air consumed 7-37 moles of products are
formed, a ratio of 1.065.
For methanol:
CH 0 + 1.5 (0 + 3.77 N ) CO + 2H 0 + 1.5 (3.77 N )
4 2222 2
1.6
-------
RK2RDO
i.e. for every J.l6 moles of air consumed 8.66 moles of product are formed,
a ratio of 1.209.
The greater number of moles of product from methanol combustion favours the
production of a higher pressure in the cylinder, hence a greater engine
power output and the attainment of a higher thermal efficiency.
Methanol can chemically attack some of the materials commonly used in
engine fuel systems, notably the magnesium alloys often used in
carburettors. Such corrosion is a particular problem when water is also
present. Some polymers often used as sealing materials may also suffer
chemical degradation or be liable to swelling when in contact with
methanol.
4. TEST EQUIPMENT
4.1 Test Bed Installation and Instrumentation
The engine was installed on a testbed and coupled to a Schenck W70 eddy
current type dynamometer. Instrumentation was provided for the control and
monitoring of lubricating oil and cooling water temperatures; these were
regulated to 80 C for oil inlet/water outlet. Inlet air temperature was
measured at the throttle inlet and exhaust gas temperature was measured at
a point about 100mm downstream of the junction of the twin downpipes and
950mm downstream of the exhaust valve. An exhaust gas sample probe was
fitted at the same location. Inlet manifold and exhaust back pressure were
determined using a Druck pressure transducer. Fuel mass flow was calculated
using data from a calibrated volumetric burette, stopwatch and
thermometer. The ignition timing, fuelling and EGR rate were changed and
monitored by the Ricardo microprocessor engine controller. (See Appendix
II).
Samples of exhaust gas were analysed using a Ricardo emissions trolley with
the following analysers:
CO, COp, Inlet C0_ - Analytical Developments NDIR
NOx - Thermoelectron Corp. Model 10 chemiluminescent
analyser.
HC - Ratfisch RS5 FID fitted with a separate,
heated (120°C) sample line.
0_ - Servomex paramagnetic type OA250
All HC measurements were converted to a base of ppm carbon before
calculation of brake specific HC emissions.
17
-------
RI0RDO
The FID analyser was calibrated using propane following normal Ricardo
practice and no special allowance was made during the test programme for
the fact that methanol is an oxygenated HC species fuel. (No legislation
currently exists to differentiate between gasoline and methanol HC
measurement methods). The measurements made using an FID instrument are
not mass related, the ionisation indicated depends on the property of the
particular HC species being assessed. Oxygenated HC species result in a
different FID sensitivity and current practice is expected to under
estimate total HC emission by 20-30#.
A Lambdascan instrument was used to give an instantaneous air/fuel ratio
trace during the transient and cold start tests by analysis of the exhaust
emissions. This instrument has a response time of about 300 msec and is
therefore sensitive to rapid changes in mixture strength.
4.2 Test Fuel
All testwork was carried out using methanol fuel. The specification and
other relevant data used during this programme is shown in Table 1.
4.3 Data Processing
Raw testbed data was processed utilising the Ricardo 'in-house' computer
progam EMS. This used formulae taken from the EPA Federal Register Volume
42 No. 1?4 dated 8th September 1977. This provided correction of full load
performance measurements to 20 C and 760 mmHg using the method described
in (14) . Brake specific fuel consumption and exhaust emissions were also
calculated. BSNOx results were corrected to 75 grains/lb humidity using
the EPA correction formula. In order to facilitate comparison of brake
specific fuel consumption, when methanol fuelled this was converted to
brake thermal efficiency by using the calorific value of the fuel noted in
Table 1.
Mixture strength air/fuel ratio, and hence equivalence ratio, was
calculated from emissions data using a method derived by Brettschneider
(15).
Equivalence ratio defined as:- stoichiometric air/fuel ratio
actual air/fuel ratio
was used when considering results of dilution tolerance tests.
Volumetric efficiency and brake specific air consumption were determined
from measured fuel flows and the calculated air/fuel ratios.
EGR rate was defined as the flow rate of recycled exhaust gas divided by
the total flow rate into the engine and was calculated as follows:-
18
-------
RK2RDO
CONSULTING ENGINEERS
% EGR = Inlet C02 with EGR - Inlet C02 without EGR x 100
- Exhaust CO- with EGR
4.4 Reduced NOx Strategy Optimisation
A Ricardo computer program "CONTROL" was used to analyse testbed engine
data on fuel consumption and emissions to enable examination of the
trade-off between exhaust emissions levels and fuel consumption. The
programme also calculates the most fuel efficient equivalence ratio and EGR
strategy to comply with specified sets of emission limits using a simple
'keypoint1 drive cycle model. This model can thus identify fuel efficient
strategies for emission reduction to aid initial control strategy
development.
The use of this program is based on a simple cycle simulation which
represents the LA4 drive cycle using keypoint operating conditions. Also
required is the response of emissions and fuel consumption for each of
these keypoint equivalence ratio conditions of equivalence ratio and EGR
values. Program output is calculated for the LA4 Urban driving cycle.
Using the engine response characteristics the program is able to derive
control strategies for a range of exhaust emissions each of which is a best
economy solution. In other words for each level of predicted exhaust
emissions the control strategy identified is the optimum solution.
However not all strategies are necessarily practical and engineering
judgement may therefore be required to implement a particular strategy to
an engine.
4.5 Vehicle Simulation Work
Since the ultimate objective of the project was to produce a methanol
fuelled engine capable of providing good vehicle performance it was
considered important to assess the likely fuel economy and exhaust
emissions of a vehicle fitted with the engine. In order to provide
approximate predictions of these characteristics a Ricardo computer
simulation program (16) was employed.
The computer program used (CYSIM) is primarily designed to predict the
levels of exhaust emissions and fuel consumption to be expected from a
vehicle during operation over a prescribed velocity cycle (in this case the
1975 FTP). Vehicle performance, in terms of acceleration times, can also
be predicted.
Essentially the program analyses the driving cycle and, from a knowledge of
vehicle characteristics, calculates the engine speed and BMEP required to
drive the vehicle over each velocity increment in turn. Knowing these two
parameters the levels of exhaust emissions and fuel consumption are
19
-------
RK2RDO
CONSULTING ENGINEERS
extracted from engine test bed performance maps which are represented in
the program input data by two dimensional numerical arrays.
The emissions data used as input to the simulation program and hence the
predicted results produced by it refer to 'engine-out' exhaust conditions.
The effects of any exhaust after treatment system, such as the oxidation
catalyst to be fitted by EPA for the vehicle application tests, is not
accounted for.
It should be emphasised that the predicted results produced by the
simulation program are very approximate due to the use of several
simplifying assumptions which are incorporated in the program in order to
facilitate its use. The principal sources of errors are:-
i) The computer program produces simulated results of transient tests
using engine performance and emissions data derived under steady
state conditions, it is likely that under true transient operation
engine performance and emissions levels will show some variation
from predicted results.
ii) All engine data used as input is nominally acquired at normal
operating temperatures. In actual 1975 FTP tests, the engine
starts from cold and hence its performance and emissions during
the early part of the test may be considerably different to what
is predicted.
ill) Engine testbed data is normally not available under conditions
such as motoring or in the transition area between positive and
negative BMEP. Combustion under these conditions can result in
high levels of EC emissions
(These three points have been confirmed in previous work in which
simulation results were compared with measured data when some divergence,
especially in the case of HC emissions, has been observed).
It has been observed in previous exercises that the computer predicted
values of HC and CO emissions were generally lower than those observed
during actual vehicle tests, primarily due to the fact that the effects of
cold start mixture enrichment and the enrichment normally occurring during
transient manoeuvres in a real vehicle installation are ignored in the
simulation program. Similarly NOx emissions can be expected to be reduced.
For the vehicle simulation exercises the engine was assumed to be installed
in a Audi 5000 passenger car. The main characteristics of this vehicle
were taken as:-
20
-------
RK2RDO
CONSULTING ENGINEERS
Inertia weight 1477 Kg (3250 Ib)
Mass weight 1318 Kg (2900 Ib)
Transmission manual, 5 speed
Ratios 12345
3.6 1.94 1.23 0.86 0.68
Final Drive Ratio 4.78
Tyre rolling radius 0.3m
Polar movement of inertia of:
engine and gearbox 0.18 Kg.m_
driving wheels 1.3 Kg.m
5. ENGINE DEVELOPMENT
The engine was received from EPA in carburetted form. Before installation
on the test bed the engine was stripped down, inspected, modified and
re-assembled in fuel injected form. Inspection of the engine component
parts showed that these were in satisfactory condition.
Once installed on the testbed, the engine was run-in for a period of 8
hours to ensure that it had "bedded in" after the rebuild. The calibration
and operation of the instrumentation was checked before testwork commenced.
5-1 Comparison of A.C. Delco and Bosch/M.E.C. Ignition Systems
The engine was initially installed with the A.C. Delco ignition system as
received form EPA. This was to enable a comparison to be made with the
Bosch electronic ignition unit with which the MEC system is compatible.
Two part-load mixture loops each having different speed and load values
were carried out the results of which are presented in figures 5 to 12.
The test data at both engine conditions shows that the performance with
each ignition system results in very similar levels of thermal efficiency
and exhaust emissions for a particular equivalence ratio. The results also
indicate that the dilution tolerance is unchanged between systems although
there is a trend for the Bosch ignition to result in a lower level of HC
emissions. Ignition timing for MET was also similar with the exception of
lean operation at the higher speed and load condition where the Bosch unit
resulted in a reduced MET value.
The conclusion drawn from these tests was that the Bosch system results in
similar ignition performance characteristics and was therefore suitable for
21
-------
RK2RDO
CONSULTING ENGINEERS
the project. All further engine test work was carried out using the Bosch
unit.
5.2 Engine Performance Comparison between Correct and Incorrect Injectors
Soon after testwork started in March 1985 it became apparent that the
injectors supplied by Bosch were not able to deliver sufficient fuel for a
full load power curve over the engine speed range. The fuelling rate could
not be maintained above 60 rev and the throttle had to be progressively
closed to maintain a safe air fuel ratio.
While Ricardo made repeated efforts to obtain a set of correct
specification injectors from Bosch it was decided to continue with the
part-load testwork so that some reference data could be established for
comparison with correct injectors.
The effects of mixture strength, ignition timing and injection timing on
engine performance were to be investigated as appropriate, at 7 key point
load/speed conditions. These were taken from Appendix I of Ricardo report
(17) and are reproduced below:-
Speed (rev/sec) Load BMEP (bar)
15 0 (idle)
40 1.5
40 2.5
10 5-5
60 2.5
60 5-5
60 7-0
These key points (illustrated in figure 13) were derived from the Ricardo
vehicle drive cycle simulation program, CYSIM, as those key point engine
speed/load conditions during which the most significant proportions of
total fuel consumption and exhaust emissions occur.
5-2.1 Full Load Performance
The full load performance comparison is shown in figures 14 - 17. Whilst
it is clear that correct injectors enable full load operation over the
speed range the low speed performance is noticeably reduced. This is
because of a change of volumetric efficency which may be attributed to the
change of fuel injection rate. The lower rate injectors would have a
greater potential for charge air cooling because the fuel air mixing times
are approximately doubled. This trend is confirmed throughout the part
load test results, particularly at higher power levels, when reduced
manifold air pressure is accompanied by long injection periods.
22
-------
RI0RDO
CONSULTING ENGINEERS
5.2.2 Injection Phasing
A comparison of injector phasing sensitivity is shown in figure 18. For
this test the end of injection (E.O.I.) was set at 18 points equispaced
around the 720 cycle, performance and emissions readings being taken at
each point. It can be seen that the HC emission results obtained with the
incorrect injectors show a marked increase from 180° BTDCNF to 180°
ATDCNF which is probably due in part to injecting whilst the inlet valve is
open, allowing for a proportion of the fuel to pass directly into the
exhaust system.
The results obtained with the correct injectors show that HC emissions do
not exhibit the same sensitivity to injection timing although the trend
shown is similar with HC emissions increasing over the period of EOI 180 to
540° CA.
For both injector types little sensitivity for NOx and fuel consumption is
evident although absolute levels are different.
Since little sensitivity was 'measured with the designated injectors the EOI
timing could be made based on dynamic engine performance considerations.
When applying sequential fuel injection to an engine it is desirable to
inject fuel as late as possible during a cylinder cycle so that the
injected quantity can most closely match that required. EOI timing was
therefore chosen as 30 BTDC on the non-firing cycle, i.e. just before
intake valve opening.
This injection timing was retained throughout the ensueing test work.
These injection phasing considerations are based largely on pseudo-static
considerations. The possibility therefore exists for these considerations
not to hold true during transient engine operation. This may be
particularly relevant with respect to fuel wetting of the intake port
walls, during transients and possibly during cold start operation.
However, transient end of injection timing control is not a feature of the
MEC system, nor is it thought to have been investigated by other workers.
5.2.3 Part Load Performance
The comparison of injector type under part load conditions is shown in
figures 19 to 58 which show the mixture range curves at the seven keypoint
engine conditions together with three ignition timing "sequence" tests.
These results generally demonstrate that with the correct injectors brake
thermal efficiency improves, especially at leaner running conditions, HC
emissions reduce by up to 3 to 4 g/Kw h and NOx emissions increase,
particularly in the range 0.9 to 1.0 equivalence ratio. Another consistent
trend shows the MET ignition timing to reduce.
23
-------
RK2RDO
CONSULTING ENGINEERS
The changes in HC emissions correlate well with those observed during the
injection timing sensitivity tests. However the changes of NOx emissions,
thermal efficiency and ignition timing indicate a change of combustion
characteristics. Such changes have been observed on a number of engines
where fuel injection characteristics have had a marked effect on the
combustion process and whilst this is a recognised phenomenon, insufficient
work has been done in this area to identify the controlling parameters.
5-3 Comparison with Carburetted Engine Performance
The performance of the engine with the correct fuel injectors is compared
in this section with that previously measured by Ricardo on the same engine
when fitted with a carburetter (1).
5.3-1 Full Load Performance
To assess the full load performance the engine was run with wide open
throttle over the speed range with the mixture strength and ignition timing
optimised for best torque at each speed. The results are shown in figures
59 ~ 62 where it is evident that the BMEP and power is significantly
increased when compared to the carburetted levels. Maximum BMEP increases
from 10.1 to 10.7 bar and peak power at 90 rev/s increases by 8 Kw to 59
Kw. The improved high speed volumentric efficiency is due to the improved
intake manifold design possible for a port injected engine while higher
brake thermal efficiency is attributed to better fuel distribution between
cylinders.
The carburetted engine had exhibited little sensitivity to pre-ignition
with ignition timings 10 in advance of MET possible over most of the
speed range. Although the injected engine could also be run with MET
ignition over the speed range some sensitivity to pre-ignition was
experienced whilst running. with optimum mixture strengths above 60
rev/sec. This increased sensitivity may be as a result of the higher power
output. To reduce the risk of pre-ignition richer mixture strengths were
utilised at high engine speeds.
5.3-2 Part Load Performance
Direct comparison of the response to mixture strength was possible at a
limited number of part load test conditions where the speed and load values
coincided with those previously used. A comparison of the response to
mixture strength and ignition timing at idle is also made. These results
are shown in figures 63 - 78.
The mixture range loops show improvements in thermal efficiency for the
injected engine, particularly at the low load condition, and these may be
attributed to improved mixture distribution and the direct effect that fuel
injection characteristics have been observed to have on this engine. The
combustion process is certainly changed with ignition timing for MET
24
-------
RK2RDO
CONSULTING ENGINEERS
reduced by up to 10° CA for the injected engine. This indicates a
shorter combustion period, further substantiated with reduced exhaust gas
temperatures. HC emissions 'tend to be lower whereas , NOx emissions are
similar at lean mixtures. No significant advantages in lean limit were
measured suggesting that this was not a significant problem with the
carburetted engine under part load conditions. In both configurations the
engine was able to tolerate very lean mixtures, typically to 0.6 ER.
Mixture settings for maximum brake thermal efficiency were also similar to
that with the carburetted engine at about 0.7 equivalence ratio.
The result of a mixture range loop under idling conditions showed the
injected engine to have a very distinct advantage. The tolerance to
dilution was significantly improved and this difference is associated with
fuel preparation. The very low gas velocities predominant under these
conditions can result in poor fuel preparation with a carburetted system.
These results are also significant in the context of oxidation catalyst
application since the idle condition can be set lean of stoichiometric
ensuring oxidation conditions. This would not have been possible with the
carburetted engine without an additional air device.
The response to ignition timing under idling conditions shows the injected
engine to have little sensitivity to ignition timing with the fuel
consumption varying little more than 2% over a range of ignition timing
from 30 to 5 CA BTDC. HC emissions remained consistently lower than
with the carburetted engine.
5.3-3 Exhaust Gas Recirculation Tests
A description of the EGR control system is given in Section 2.8 and a
schematic layout is shown in figure 4.
For this part of the programme, EGR loops were to be carried out at
equivalence ratios of 1.0, 0.9, 0.8 and 0.7 at each of the 6 part load
keypoint test conditions. The results are shown in detail in figures 79 ~
102.
Only a limited amount of EGR work was carried out with the carburetted
engine and a comparison of this is made in figures 83 and 84. These
figures show that at 0.8 equivalence ratio the carburetted engine had
relatively poor EGR tolerance and this was attributed largely to fuel and
EGR distribution problems. EGR tolerance with the injected engine is high,
and up to 30# EGR could be tolerated with stoichiometric fuelling. Over
the equivalence ratio range tested from 1.0 to 0.7, EGR tolerance reduced
as the combined (air + EGR) dilution tolerance of the combustion system was
reached. The exception to this was the tolerance at higher speeds and
loads where high rates of EGR were not possible because there was
insufficient pressure drop across the engine. This was an anticipated
limitation which did not affect the final EGR strategy.
25
-------
RK2RDO
The response of the engine to EGR was considered to be typical for its type
and the results showed that considerable reductions in NOx would be
possible with little increase in fuel consumption. The interaction between
HC and NOx emissions with fuel consumption at the part load test conditions
is shown in figures 103 to 114. These trade offs exhibit similar trends at
each test condition. For NOx control it is clear that a given level
(g/kWh) of NOx emission can generally be obtained using a number of
combinations of mixture strength and EGR. As expected, strategies with
richer mixtures, and higher EGR rates, result in reduced economy for a
given NOx rate. The HC emission and fuel consumption trade off curves
clearly demonstrate the conflict between HC emission, NOx control and fuel
consumption. The fuel efficient low NOx strategies result in high levels
of HC strategies
The choice of EGR strategy would therefore be dependant on the limits of
fuel economy penalty, increase of HC emissions, and driveability. The
latter could not be assessed during this testbed programme. However, it
was evident that a minimum NOx strategy, predominantly attained by running
with lean mixtures and high EGR rates, would result in very severe
increases in HC emissions often over 100%. This would result in an
unacceptable strategy and a compromise solution between NOx reduction, fuel
economy penalty, HC emission increase and driveability would have to be
developed.
5.4 Engine Performance Mapping
5.4.1 Best Economy Strategy
The test results from the mixture range tests at the keypoint conditions
indicated that highest brake thermal efficiency was achieved at an
equivalence ratio of 0.7- It was considered, from vehicle experience of
applying control strategies to this engine type (18) that a control
strategy with 0.7 equivalence ratio could be developed in a vehicle for
satisfactory driveability given sophisticated transient fuelling
compensation. Ignition timing would need to be optimum as retard from MET
has been demonstrated to degrade engine response to an unacceptable level.
The engine was run over the load range at 20, 40, 60 and 80 rev/s to
determine MET ignition timings with 0.7 ER up to 900 mbar absolute inlet
manifold pressure. Above this, the mixture was progressively enrichened
for full load conditions. The fuelling level and ignition timing required
for each load and speed was entered in a set of MEC maps. Following this
the engine was run with the fuelling level and ignition timing
automatically controlled by the MEC to obtain performance and emissions
.readings from which a set of specific performance maps was derived (see
figures 115 - 120).
These results show that the engine control parameters may be precisely
calibrated over the entire operating range of the engine. The equivalence
26
-------
RI0RDO
CONSULTING ENGINEERS
ratio map clearly shows this where the desired mixture strengths can be
achieved over the range of operation. This precise calibration results in
efficient engine operation and a maximum brake thermal efficiency of over
33# was achieved. Comparison with the carburetted engine shows measured
improvements of efficiency of up to 10% under low load conditions.
The HC map shows the adoption of lean mixtures and MBT ignition timing
results in high levels of HC emissions under low load conditions. NOx
levels during lean operating conditions, below about 6.0 bar are low,
typically half that achieved with the carburetted EGR version of the
engine. NOx levels peak in the range 7 to 9 bar where fuel/air mixtures
correspond to those for maximum NOx production.
5.4.2 Reduced NOx Strategy
In order to determine an effective strategy for reduced NOx using exhaust
gas recirculation a Ricardo computer program "CONTROL" was used to analyse
the test results from the EGR loops. (A brief description of this program
was given in Section 4.4).
The objective of this analysis was to devise an alternative control
strategy that would result in a maximum reduction in NOx emissions with
minimum penalties of HC emission and fuel consumption. Exploration over
the range of mixture strengths and EGR rates established the operating
envelope shown in figure 121. It is clear from this data that the best
economy strategy already represents a strategy towards the lower range of
NOx emissions possible with MBT ignition timing. Furthermore, there is a
strong link between reducing HC and increasing NOx emissions indicating
that a simultaneous reduction of both is difficult to achieve, and the
direction for minimum NOx is similar to that for fuel consumption penalty
indicating that reduced NOx will result in increased fuel consumption.
This simple keypoint model also indicated that the limits presented by the
test data resulted in a minimum NOx level of about 1 g/mile for the Federal
Test Procedure if MBT ignition timings were used. From this trade-off data
it was decided to pursue a strategy which would result in a minimum NOx
strategy without a significant HC emission penalty i.e. towards minimum NOx
as shown in figure 121.
The 'CONTROL' program enabled the equivalence ratio and EGR rate for the
required strategy to be identified for the keypoint loads and speeds. This
indicated that relatively rich mixtures of 0.8 to 0.9 equivalence ratio,
should be used with high rates of EGR to obtain NOx reduction without
penalising HC emissions. This strategy, using MBT ignition timings,
resulted in a CYSIM NOx level prediction of 1.07g/mile with a level of HC
emissions similar to the best economy strategy. It was evident that a
control strategy with MBT ignition timing would not enable the project goal
of 0.7 g/mile NOx to be achieved. The primary reason for the difficulty in
achieving 0.7 g/mile NOx compliance was considered to be the choice of
vehicle which resulted in a poor power/weight ratio and subsequent high
27
-------
RlflRDO
CONSULTING ENGINEERS
engine duty cycle. It was therefore necessary to apply 7 - 10
ignition retard in the mid-upper load range from 20-60 rev/s in order to
achieve the required level of 0.7g/mile NOx. This strategy resulted in a
reasonable compromise between NOx reduction, HC emissions and fuel
consumption. However, experience has shown that when operating at, or
close to, the dilution tolerance limit of an engine, the use of ignition
retard can result in a significant deterioration of driveability.
Following calibration of the control strategy the engine was then run with
auto fuelling/auto ignition/auto EGR to obtain performance and emission
readings from which the Reduced NOx strategy specific performance maps were
derived (see Figures 122 - 128) .
These Figures show that up to 15% EGR is used under medium load conditions
and part load equivalence ratios are in the range 0.8 to 0.9- Brake
thermal efficency was slightly reduced with the maximum reduced by 2% to
31#. Comparison of the maps shows that at low load conditions significant
reductions have been achieved but increased HC emissions are evident at
higher loads. Conversely NOx emissions are somewhat increased at low load
conditions although they remain at a low absolute level but are very
significantly reduced in the medium to high load range where the peak NOx
level of 12 g/kW h is reduced to 2 g/kW h over the range of engine speed
using during the FTP drive cycle.
5.5 Development of Transient Fuelling Strategies
Conventional practice is to carry out the development of transient fuelling
strategies with the engine installed in the vehicle and utilising a chassis
dynamometer. This is to enable driveability to be assessed in addition to
modifying the fuelling char.acterisics to give smooth mixture strength
transitions. However, the testwork with the engine installed in the
vehicle was to be carried out by EPA and was not part of the test programme
at Ricardo. It is expected therefore that further development of the
control strategy maps would be required with the car on the chassis
dynamometer and on the road to achieve the desired driveability and
emission characteristics.
In order to simulate transients on the test bed, moveable "stops" were
fitted to the throttle actuator so that the engine load could be rapidly
changed from one known test condition to another. Tests were conducted at
20, 30, 40 and 50 rev/sec with several different load increments. Throttle
movements were rapid with a transition period of typically 0.2 s. This
type of load transition is most demanding on the control system and
experience has shown that the needs of slower transitions are also
satisfied. The instantaneous exhaust air/fuel ratio was measured by a
Lambdascan instrument and displayed on a chart recorder. The test
conditions chosen were representative of those experienced during the LA4
drive cycle. Modifications were made to the "H" "C" and "K" maps in the
MEC (see Appendix 2 for definition) so that a smooth transition in
28
-------
RK2RDO
CONSULTING ENGINEERS
equivalence ratio was achieved when "accelerating" from one test condition
to another. The objective being to avoid rich or lean mixture excursions
from those defined during the steady state calibration.
Examples of the transient performance of the engine whilst on the test bed
are shown in figure 129.
The transient fuelling algorithm in MEC is based on a manifold wall wetting
model (19). The model shows us that the fuelling compensation required
during an acceleration is mathematically the reverse of that required
during a deceleration. The results clearly show that having optimised
transient fuelling during the acceleration the control of fuelling is
equally well defined. The limit on deceleration fuelling control is that
negative fuelling rates are not possible so that some rich excursions may
be experienced under certain operating conditions.
5-6 Development of Cold Start Strategy
The "X1 map in the MEC enables compensation to be made to the fuelling and
EGR rates for cold starting and warming up by sensing the coolant or inlet
manifold temperatures. The objective of the warm-up control strategy
development is to maintain driveability with minimum fuelling and emission
penalties.
A throttle bypass valve was fitted to the engine to bleed air past the
throttle to compensate for the increased idle air required under cold
running conditions. This valve is sensitive to engine temperature and also
has internal heating thus giving a time and temperature control regime.
Because of the location of the fuel injector close to the inlet valve it
was not anticipated that the provision of evaporative devices would be
either practical or necessary to achieve satisfactory starting
performance. The intake of liquid fuel and the high compression ratio was
expected to result in adequate cold start behaviour down to moderate
temperatures. Experience with the engine showed this to be the case and
although it was not possible to carry out starting tests under very low
temperatures adequate performance was evident down to 10 C.
The development of a cold start and warm-up strategy is dominated by the
requirement for driveability. The additional transient fuelling
compensation is predominantly required to account for the larger amounts of
liquid fuel in the intake manifold and this can be compensated for using
the transient fuelling strategy. However, this type of development is not
readily carried out on a test bed and although cold start and warm-up
strategies have been implemented for the methanol engine it is anticipated
that this will be an area of significant further development during the
vehicle application stage.
29
-------
RK2RDO
CONSULTING ENGINEERS
The steady state fuelling has been calibrated to be about stoichiometric
immediately following a cold start and a trace of air/fuel ratio with time
following a cold start is shown in figure 130.
EGR is not required during the initial stages of the warm-up period since
NOx levels are low and EGR tolerance is poor at low temperatures. A
strategy for the gradual introduction of EGR above a water temperature of
kO C has been implemented. This strategy will also require verification
and development during the vehicle application.
5.7 Overrun Fuelling
The use of port fuel injection facilitates overrun fuel cut off enabling a
fuel saving and HC emission reduction under these conditions. This
strategy is commensurate with an oxidation catalyst approach. Both best
economy and reduced NOx control strategies have been calibrated using
overrun fuel cut off as shown in appendices 3 and 4 where this condition is
indicated by OVRUN on the fuelling maps. This instruction causes a step
change of fuelling level ensuring that intermediate air/fuel ratios are not
encountered by the engine. Conversely the demand for engine power will
result in a step increase of fuelling to the desired level. Clearly this
is a further area where driveability and transient fuelling optimisation
may require further development.
5.8 CYSIM Simulation
The two strategies developed for the engine were entered as data to the
CYSIM drive cycle program. The vehicle details were for the Audi 5000
vehicle as described in Section 4.5- These results are summarised in Table
II for the FTP LA4 drive cycle and are compared with the following:-
Simulation No.
1 and 2 The carburetted version of this engine when fitted to a
VW Rabbit vehicle.
3 and 4 The current (injected) engine fitted to a VW Rabbit
vehicle.
7 Audi 5000 diesel engine vehicle.
The results show the fuel injected methanol engine to exhibit a significant
economy advantage over the carburetted engine even when fitted in an Audi
5000 vehicle which has a much higher inertia weight than the VW Rabbit
vehicle.
The NOx emissions reduce by 0.8 g/mile in the VW Rabbit vehicle when
changing from carburettor to injected fuelling. There is however a penalty
0.5 g/mile NOx if the injected engine is fitted in the Audi 5000 vehicle.
30
-------
RK2RDD
CONSULTING ENGINEERS
The EGR strategies exhibit the same trend in NOx emissions and fuel
consumption as those outlined above for the 'Best Economy1 strategies. The
injected Audi 5000 maintains a fuel economy advantage over the carburetted
Rabbit vehicle.
It should be noted that the results for the injected VW Rabbit vehicle are
not representative because the control strategies were optimised for the
Audi 5000 vehicle. The change of vehicle weight would require
re-optimisation of the engine control strategy since different engine
speeds and loads are used.
The comparison of the diesel engine vehicle shows this to have low HC
emissions but NOx emissions indicate that optimisation of the control
strategy and/or EGR is required. A comparison of the fuel consumption
shows the methanol concept to be favourable.
The acceleration times shown in Table II are also derived from the CYSIM
program and are calculated as follows:-
The engine torque curve and the speeds between which the acceleration time
is required are entered into the program.
Acceleration = Fw
m
where Fw = force applied to the road by the driving wheels
under the prevailing conditions.
m = vehicle mass
The program calculates the force to accelerate the vehicle starting at the
driving wheels and allowances are made for tyre slippage, efficiency losses
in the final drive and gearbox, vehicle drag and engine and wheel inertia.
Working in one second increments the program calculates the required engine
speed and torque for acceleration. The program iterates to match the
required force to the torque available from the engine under the prevailing
conditions. If the engine speed rises above the set limits the next gear
is selected. The program finally calculates the acceleration time between
the given vehicle speeds.
The acceleration times for all three vehicles are thought to be pessimistic
due to the fact that the CYSIM program cannot model clutch control and
wheelspin at the start of the accelerations. This means that maximum
torque cannot be applied during this period.
The CYSIM calculated acceleration times for the methanol injected version
of the engine are also compared in Table II. These show that there is a
significant advantage if the engine is fitted in a VW Rabbit vehicle rather
31
-------
RK2RDD
CONSULTING ENGINEERS
than the Audi 5000 vehicle for both 0-50 and 30 - 50 mph accelerations.
However, the Audi 5000 vehicle still retains a distinct advantage over the
diesel engined Audi 5000.
5.9 General Engine Condition
Previous work with the carburetted version of the engine had shown the
tolerance to running with methanol to be satisfactory with no areas for
major concern identified. This situation remained for the fuel injected
engine development phase.
The limited area of the intake port exposed to methanol was inspected
following the engine development phase to show that there were no deposits
attributable to the use of methanol fuel.
The major differences between the engines are in the fuel handling system
and this is where some problems were encountered. Those components
specified as methanol proof i.e. fuel filter and fuel pressure regulator
have performed as such through the project with the engine development
period spanning more than 1 year with a 6 month break in between. Some
fuel injector failures were encountered but subsequent analysis by Bosch
has revealed that these were due to corrosion of the coil wire. Since this
area is not normally in contact with methanol the failures are not
associated with the use of methanol and as such are unexplained. The fuel
pump was recognised as having a limited life and was replaced at intervals
of about 3 months. Failure was not encountered during the test programme.
6. SUMMARY OF ENGINE DEVELOPMENT WORK
The Bosch/MEC ignition system was shown to result in similar performance
compared with the A.C. Delco ignition system and was adopted for the
subsequent engine development program. This result showed that the high
energy ignition system previously used did not offer any significant
advantage to the methanol engine concept.
Compared with the carburetted engine the injected engine has a much reduced
ignition requirement at part load by 6 to 10 degrees with reduced HC
emissions and higher brake thermal efficiency. Some of these differences
were evidently directly due to the mechanism of fuel preparation since the
engine was shown to be sensitive to fuel injection rate and timing.
At full load the changes to mixture preparation, fuel distribution and
Intake manifold geometry led to a significant improvement in BMEP above 50
rev/s and an increase in brake thermal efficiency of 2.5% over the speed
range. Volumetric efficiency is however some 5~8# lower at 20 to 40 rev/s
because the manifold geometry favours high speed running.
32
-------
RI0RDO
Pre-ignition was encountered whilst running at optimum mixture strength
above 60 rev/sec at full load. This caused slight damage which
necessitated fitting a new piston. This was an unforseen problem as test
work with the carburetted engine had indicated that the engine could be
over advanced by up to 10 CA before encountering preignition when BN-60Y
sparking plugs were fitted. Richer mixtures were later used to prevent
reoccurance of pre-ignition.
The mixture strength for best economy without significant HC emissions
penalty was generally found to be at an equivalence ratio of 0.7 and this
mixture strength was used for the "Best Economy" maps. This equivalence
ratio was the same as that established as optimum for the carburetted
engine but maldistribution and lack of adequate transient fuelling control
meant that this lean potential could not be utilised. This was not the
case for the injected engine so that the full potential of the engine
concept could be realised in the vehicle application. The result of this
was a fuel economy improvement of 18# despite the increase of vehicle
weight from 2500 to 3250 Ibs.
A second control strategy, using EGR and 6-10 ignition timing retard was
identified to reduce the NOx emission level below that obtained with best
economy and comply with the project objectives of less than 0.7 g/mile
NOx. The control strategy optimisation showed that NOx emissions could be
reduced by 62% with an insignificant increase of HC emission by selecting a
suitable strategy for EGR, mixture strength and ignition timing. This
strategy increased predicted fuel consumption by a penalty of 6%. It was
felt that the low vehicle power/weight ratio, which at about 43 kw/tonne is
well below that typical of current gasoline engine vehicles at 50 to 60
kw/tonne, combined with lean air/fuel mixtures, EGR and ignition retard
would result in a vehicle concept whose driveability may be unsatisfactory.
Simulation of engine transients was carried out on the test bed by
actuation of the throttle lever between "stops". A smooth transition
between engine loads was achieved by calibration of the MEG maps. It was
well recognised that it was not possible to fully calibrate transient
engine performance on the engine testbed and further development of engine
transients would be required when the engine is fitted to the vehicle by
EPA.
The engine "cold start strategy" was set up to enable an unaided start to
be achieved at an ambient temperature of 10 C. Tests were unable to be
conducted at lower temperatures because the test cell had no cooling
facility. Initial strategies for warm-up compensation and modulation of
EGR rate during the warm-up phase were also devised using testbed data and
Ricardo experience gained from similar applications. Again this area is
recognised as ~ane where further development during the vehicle phase will
be required.
33
-------
RI0RDO
The condition of the engine and fuel handling equipment indicated that
adequate tolerance to methanol was evident. The intake system was free of
attributable deposits.
7. CONCLUSIONS
The application of electronic sequential fuel injection and electronic
engine management to the optimum engine for methanol utilisation was
successfully carried out during this project.
The effect of fuel injection was to improve the engine performance when
compared to that previously obtained with the carburetted version of the
engine. At full load maximum BMEP increased by 6% and peak power output by
16/K, however some increased sensitivity to pre-ignition was evident. Under
part load conditions brake thermal efficiency increased and HC emissions
reduced. The engine was noted to be sensitive to fuel injection
characteristics such as fuel injection rate.
The part load vehicle calibration for best economy was able to be carried
out at a leaner mixture strength than that of the carburetted engine, 0.7
ER, instead of 0.8 ER due to improved mixture preparation and distribution
with sequential fuel injection, as well as the sophisticated transient
fuelling control possible with the Ricardo MEC unit.
The .use of alternative mixture strengths mapped EGR and ignition retard
showed that a control strategy was possible to enable NOx emissions to be
reduced by 62% without a significant HC emission increase and a fuel
economy penalty of 6%. This control strategy was considered to be
representative of what could be achieved for a 32501b vehicle over the LA4
drive cycle. The vehicle results were predicted as
Methanol
HC NOx CO Fuel consumption
g/mile miles/US gallon
Best economy strategy 1.92 1.75 3-37 16.3
Reduced NOx strategy 1.82 .67 14.52 15.4
The selection of vehicle by EPA for application of the methanol engine
resulted in a poor power/weight ratio and this may result in poor vehicle
driveability compared to that typical of current automotive practice.
Transient and cold start strategies were carried out on the test bed and
were set up so that unaided starts at an ambient temperature of 10 C and
smooth transitions of air/fuel ratio between engine loads were achieved.
It was recognised that some modification of the transient and warm-up
strategies will be necessary to optimise driveability when the engine is
installed in the vehicle.
-------
RK2RDO
CONSULTING ENGINECRS
The condition of the engine and fuel handling equipment following the test
programme indicated satisfactory tolerance to methanol.
8. RECOMMENDATIONS FOR FURTHER WORK
1. Following installation in the vehicle the cold start, warm-up and
transient fuelling strategies should be verified and developed for
driveability. The warm-up EGR strategy should also be developed.
2. The performance of the engine and control system when fitted in the
Audi 5000 vehicle with a suitable oxidation catalyst should be
assessed.
3. The engine concept has been shown to be particularly sensitive to fuel
injection characteristics. Further investigation of fuelling
characteristics should be carried out to investigate the potential.
4. The cold starting characteristics at very low temperatures should be
evaluated including the need for any heating devices, and fuel spray
patterns.
5. The methanol engine should be applied to a more suitable vehicle and
the control strategies reoptimised.
6. An investigation into the affects of modulation of end of injection
timing control during engine transients and cold start operation should
be carried out.
9. REFERENCES
1. OPTIMUM ENGINE FOR METHANOL UTILISATION
EPA-460/3-83-005 April 1983
2. Overington, M.T. and Thring, R.H.
GASOLINE ENGINE COMBUSTION - TURBULENCE AND THE COMBUSTION CHAMBER
(SAE 81001?)
3. Overington, M.T. and Thring, R.H.
GASOLINE ENGINE COMBUSTION - COMPRESSION RATIO AND KNOCK
(VW Conf. on 'Knocking of Combustion Engines', Wolfsburg 1981).
4. Thring, R.H. and Overington, M.T.
GASOLINE ENGINE COMBUSTION - THE HIGH RATIO COMPACT CHAMBER
(SAE 820166) .
35
-------
RI0RDO
CONSULTING ENGINEERS
5. Overington, M.T.
HIGH COMPRESSION RATIO GASOLINE ENGINES AND THEIR IMPACT ON FUEL
ECONOMY
(Automotive Engineer, Feb/March 1982).
6. Collins, D. and Mears, C.R.
HIGH COMPRESSION LEAN BURN ENGINES FOR IMPROVED FUEL ECONOMY AND LOWER
NOx EMISSIONS
(US-Dutch Internal. Symp. on Air Pollution by Nitrogen Oxides,
Maastricht 1982).
7. de Boer, C.D.
THE RICARDO HRCC COMBUSTION CHAMBER APPLIED TO A MULTI-CYLINDER ENGINE
AND VEHICLE
(Ricardo Internal Report DP 83/111, 1983).
8. ELECTRONIC SEQUENTIAL FUEL INJECTION SYSTEM TASK IV - DEFINITION OF
DESIGN SPECIFICATION OF EGR SYSTEM.
(Ricardo DP 85/502)
9. Downs, D.
AN EXPERIMENTAL INVESTIGATION INTO PREIGNITION IN THE SPARK IGNITED
ENGINE
(Proc I.Mech.E (AD) 1950-51).
10. Menrad, H., Decker, G and Weidmann, K.
ALCOHOL FUEL VEHICLES OF VOLKSWAGEN
(SAE 820968).
11. Menrad, H., Lee, W., and Berhardt, W.
DEVELOPMENT OF A PURE METHANOL FUEL CAR
(SAE 770790).
12. LoRusso, J.A. and Tabaczynski, R.J.
COMBUSTION AND EMISSIONS CHARACTERISTICS OF METHANOL, METHANOL-WATER
AND GASOLINE - METHANOL BLENDS IN A SPARK IGNITION ENGINE
(Proc. llth Intersoc, Energy Conv. Eng. Conf. 1976).
13. Hagen, D.L.
METHANOL_AS—A-EUEL-^-A-P,EV-I-BW WITH BIBLIOGRAPHY
(-SAE-770792)
14. DIN 70020
VERBRENNUNGKRAFTMACHINEN FUR KRAFTFAHRZEUGE
15. Brettschneider, J-.
BERECHNUNG DES LUFTVERHALTNISSES VON LUFT-KRAFTSTOFF-GEMISCHEN UNO DES
EINFLUSSES VON MESSFEHLERN AUF
(Bosch Techn. Berichte 6, 1979).
36
-------
RK2RDO
CONSULTING ENGINEERS
16. Green, R.P.
USERS GUIDE FOR THE CYCLE SIMULATION PROGRAM CYSIM
(Ricardo Internal Report DP 81/1163, 1981).
17. PREPARATION OF DESIGN DOCUMENTATION AND TESTING PROCEDURES FOR AN
AIR/FUEL METERING SYSTEM
DP 85/141
18. L.C. van Beckhoven, R.C. Rijkeboer and P. van Sloten
AIR POLLUTION BY ROAD TRAFFIC - PROBLEMS AND SOLUTIONS IN THE
EUROPEAN CONTEXT.
SAE 850387
19. S.D. Hires, et. al.
TRANSIENT MIXTURE STRENGTH EXCURSIONS - AN INVESTIGATION OF THEIR
CAUSES AND THE DEVELOPMENT OF A CONSTANT MIXTURE STRENGTH FUELLING
STRATEGY
SAE 810495
37
-------
RK2RDO
CONSULTING ENGINEERS
Appearance
TABLE I
FUEL SPECIFICATION
METHANOL (BS 506:1966)
Clear, colourless, free from suspended matter
and sediment.
Relative Density li 15.5/15-5 C
IBP°C
35%-fc C
FBP°C
Water Content
Aldehydes and Ketones
Alkalinity
Acidity
Sulphur and Sulphur Compounds
Composition % by weight
Carbon
Hydrogen
Oxygen
Octane Quality (from literature)
RON
MON
Stoichiometric Air/Fuel Ratio
Measured Calorific Value kJ/kg
0.798 - 0.795
>64.5
<65-25
<65-5
<0.5# by weight (measured - 571ppm)
<.015% by weight, as acetone
<.0005% by weight, as ammonia
<.003% by weight, as formic acid
<.0001$ by weight, as sulphur
37-5
12.5
50.0
104-114
87-97
6.46
19940
Latent Heat of Vaporisation kJ/kg 1100
(from literature)
38
-------
RK2RDO
CONSULTING ENGINEERS
TABLE II
PREDICTED FTP LA*t RESULTS USING CYSIM
DRIVE CYCLE SIMULATION PROGRAM*
HC NOx CO miles/US gal. Accel.time
g/mile (sees)
Gasoline 0-50 30-50
Methanol/ Equivalent mph
Vehicle/Engine/Strategy
l.VW Rabbit/Carb/0.8 ER 1.61 2.07 1.17 13-85 28.61
2.VW Rabbit/Carb EGR 1.35 0.98 1.75 14.76 30.49
3.VW Rabbit/Injected/0.7 ER 1.95 1.29 3-35 16.84 34.80 15.0 9.1
4.VW Rabbit/Injected/EGR 1.70 0.59 8.77 16.48 34.05 15.0 9-1
5.Audi 5000/Injected/0.7 ER 1.92 1.75 3-37 16.30 33-68 18.0 11.0
6.Audi 5000/Injected/EGR 1.82 0.67 14.52 15.40 31.82 18.0 11.0
7.Audi 5000/Diesel no EGR 0.11 2.15 - - 32.85 22.9 14.4
* Steady state simulation - no cold start adjustment
Note: VW Rabbit - 2500 Ibs inertia weight
Audi 5000 - 3250 Ibs inertia weight
39
-------
RK2RDO
CONSULTING ENGINEERS
APPENDIX I
MEC APPLICATION
40
-------
DP83/1097
Unrestricted
ENGINE CONTROL STRATEGY DEVELOPMENT
USING THE RICARDO MICROPROCESSOR
ENGINE CONTROL UNIT
CA CLARK & C.D. de BOER
ABSTRACT
The advent of electronic management systems for the control of internal
combustion engines requires a systems approach to engine and control unit
design. To augment its traditional expertise in the field of internal combustion
engine design and development, Ricardo have developed a Microprocessor
Engine Controller (MEC) for the development of engine control strategies.
Emphasis has been placed on producing a unit capable of accepting a large
number of control input variables and a wide range of possible control outputs.
The unit can thus be used to control fuelling, timing and/or EGR rates on both
diesel and gasoline engines.
An ergonomic user interface allows the ready modification of control parameters
during engine running both on the test bed and in the vehicle and these can be
retained within the unit's non-volatile memory for later examination by the test
engineer.
41
Paper to be presented at the International Symposium on Automotive Technology
and Automation - ISATA - Cologne, 19-23 September, 1983.
-------
CONTENTS
Page
1. INTRODUCTION 1
2. DESIGN PHILOSOPHY 1
2.1 Overview
2.2 Basic Strategy Implementation
2.3 The Control Element
2.4 Operator facilities
2.5 Knock Capability
3. IMPLEMENTATION 3
3.1 Hardware
3.2 Central Processing Unit
3.3 Interface Board 1
3.4 Interface Board 2
3.5 Software
4. TEST EXPERIENCE 4
4.1 Initial Objectives
4.2 Testbed Use
4.3 Vehicle Evaluation
5. FUTURE EXPLOITATION 4
6. CONCLUSIONS 4
42
-------
ENGINE CONTROL STRATEGY DEVELOPMENT
USING THE RICARDO MICROPROCESSOR
ENGINE CONTROL UNIT
1. INTRODUCTION
Engine development has traditionally been a relatively
slow process where innovation and change has taken
some time to permeate through the process of design,
development and manufacture. In the last five years,
however, a dramatic change has taken place in the
area of electronic control for gasoline engines particu-
larly in the USA but also in Japan and Europe. This
change has been largely driven by emissions and fuel
economy legislation but recently great interest has
been shown in applying this technology to new areas
including diesels and drive train control. Such trends
mitigate against a traditional sub-assembly approach
to automotive engineering and suggest that in future a
systems approach will need to be applied as each
constituent of the vehicle is inter-connected via the
electronic control unit. Whether the electronic control/
display function is carried out centrally or in an
arrangement using distributed computing elements,
remains to be debated. The impact of these changes
needs to be embraced at virtually every stage of the
conception, design and production of the automotive
system.
Ricardo are well known for their involvement in the
research, development and design of internal com-
bustion engines and in order to fulfil this role with
future generations of automotive and off-highway
applications of internal combustion engines, have
developed an in-house Microprocessor Engine Con-
troller (M EC). This is intended to provide Ricardo and
client funded projects with the means to evaluate the
impact of electronic control on areas of interest in a
given system and to arrive at a production strategy
where necessary. The Ricardo MEC provides a cost
effective means of evaluating the benefits of engine
management systems without the large cost associ-
ated with the development of the electronic control
system itself.
2. DESIGN PHILOSOPHY
2.1 Overview
Ricardo have traditionally been active in research and
development of both diesel and gasoline engines. The
control device produced thus had to be suitable for
application to both engine types and also to a wide
number of variations within these broad classifi-
cations. This is conceptually not difficult to achieve as
the basic requirement of a system into which some
input variables are fed, and by means of which some
dependent variables are derived, is common to all
engine types. However, care has to be taken that a
wide variety of input and output sensors can be
catered for with the minimum of extraneous condition-
ing hardware. For example, intake manifold pressure
may well be chosen as a signal with a dependence on
load for the gasoline engine but in non-throttled diesel
engines the load dependant signal must be derived in
some other manner. In view of this a unit was designed
with a variety of possible input parameters to cover not
only analogue voltages and on-off digital inputs but
also to allow frequency and time parameters to be
measured.
2.2 Basic Strategy Implementation
The basic engine control strategy is based on the
framework of a series of two-dimensional maps, there
being at least one two-dimensional map for each
controlled variable. These maps have for their axes
engine speed and a load dependent variable. The
maps can be dimensioned to facilitate varying require-
ments. Initially, the maps have been arranged as a 9 by
10 load/speed matrix. The matrix resolution can be
modified readily in software and could be increased
by a large factor if this was considered necessary. The
required controlled ouptut is then derived by a series
of linear interpolations based on the actual speed and
load values as measured at a given time. Initially the
43
-------
unit is being applied to the Ricardo family of research
engines based on the VW1.6 litre engine and manifold
pressure has been selected as the load dependant
variable, although other suitable variables such as air-
flow could easily be accommodated if desired.
Correction factors for temperature and transient
speed and load conditions are applied to these basic
maps. This is an area of considerable interest and
room for flexible transient control strategies has been
accommodated in the design of the unit. Currently
transient fuelling strategies have been implemented
for both single and multi-point injection systems on
this family of gasoline engines.
2.3 The Control Element
The system is primarily aimed at a research and
development role, the hardware and techniques used,
however, are intended to typify the principle of
approach being used in the automotive industry. The
Texas Instruments TMS9995 microprocessor, a
modern, fast 16 bit processor, was selected as the
control element for the MEC unit. This provides the
capability of implementing complex control strategies
and additional operator features to enable the user to
inspect system variables.
2.4 Operator Facilities
The user interface presents the operator with both
measured parameters and the derived values being
delivered to the engine in engineering units. Con-
tinuous updates of speed, manifold pressure and
engine temperatures are provided as is a display of
the primary controlled variables of ignition timing and
fuelling levels. For testbed operation a conventional
visual display unit is used but in order to provide this
facility in the vehicle a custom display unit has been
installed in the console to enable the parameters to be
monitored.
From the outset it was considered important to provide
a means of altering the maps whilst the unit was
actually controlling the engine. In order to achieve this
the user may alter individual map entries, areas of the
map, or the complete map by means of the visual
display unit keyboard. The software for the unit is
based on a real-time, multi-tasking, operating system
which enables the modification of the maps to be
carried out whilst the main function of controlling the
engine is maintained. This feature enables develop-
ment of empirical features, such as driveability, to be
developed in the vehicle outside the laboratory. In
order to benefit and retain the modifications
developed in this manner, a facility has been in-
corporated to retain the maps in non-volatile Elec-
trically Erasable Programmable Read Only Memories
(EEPROMs) for later utilization and analysis.
The operator may select (in the software) any of the
control variables, such as fuelling, to be output as an
analogue signal. Four such channels are presently
available and provide a powerful development tool
when optimizing transient, strategies. The analogue
signal ports may alternatively provide a closed-loop
engine control facility such as idle speed control. In
this mode the control data is derived from engine input
variables and the look-up and modify routines
described earlier.
In addition a 'hold' facility enables the operator to store
the engine operating condition for any given cycle.
This facility is useful in locating intermittent driveability
problems which may subsequently be analysed or
reproduced from the knowledge of the engine con-
dition.
16 Bit Address
16 Bit Data
Crankshaft Ref. I/P
Ignition 0/P
> Fuel Injection 0/P
Analogue Signal
Conditioning
Knock Sensing etc.
Fig.1
Microprocessor
Engine Controller
Functional Diagram
44
-------
Crankshaft Timing Reference
Camshaft Sync. Pulse
Inlet- Manifold Vacuum
Inductive
Proximity
Detector
Hall Effect
Sensor
Map
Pressure
Trans.
urn
^Warious
Temperature
12345 Inputs
Platinum
Resistance
Thermometers
Fuel Injection Outputs
Ignition Signal
EGR Control Signal
Fuel
Injectors
-------
4. TEST EXPERIENCE
4.1 Initial Objectives
Application of the MEC unit to the Ricardo research
gasoline engines was a prime consideration. The
system is thus capable of providing ignition timing,
fuelling control and EGR rate modulation. The unit
also has the capability of operating a cold start
enrichment strategy.
As control of engines employing the High Ratio
Compact Chamber (HRCC) combustion system was
contemplated, the inclusion of knock detection was
considered important.
4.2 Testbed Use
The MEC unit was first tested on a 1.61 VW engine
installed on a testbed. The cylinder head was adapted
to take multi-point injection equipment and the
existing ignition modified for use with electronic
control. The engine was then optimized for fuelling
levels and ignition timings and the values so derived
were input into the MEC unit. Subsequent testing of
the unit's performance indicated that it produced the
optimum fuelling and ignition timing. The unit func-
tioned reliably and repeatably. Examination of the
processor timing function indicated that the TMS9995
was only 12-15% utilized at 6000 rpm.
4.3 Vehicle Evaluation
Subsequently the unit has been evaluated in a vehicle
using a similar engine. Apart from some installation
problems the unit has proved satisfactory in operation.
The facility for modifying the fuelling and ignition map
values whilst in the vehicle has proven invaluable in
improving driveability, fuel economy and emissions
performance.
on engine running determined without the need for
manufacture of prototype mechanical components.
The 'drive-by-wire' concept, where the direct control of
the engine is replaced with an electronic link between
driver and the engine offers many potential advan-
tages. In terms of engine transient control the need for
costly, high speed transducers and complex compen-
sation routines is removed when the engine controller
is in full control of the transient. The potential is there
for reduced fuel consumption and emissions. Add-
itional features such as cruise control may be readily
incorporated. However, it is in the field of engine and
transmissions matching where significant advances
are currently being made. The need to match the
demands of the engine and transmission to that of the
driver is a complex situation where a system such as
the one developed by Ricardo can provide a powerful
development and diagnostic tool.
Further work is proposed into the development of EGR
strategies on both gasoline and diesel engines and
into advanced knock detection mechanisms.
6. CONCLUSIONS
Ricardo have developed a Microprocessor Engine
Controller for the development of engine control
strategies. The unit can be applied to both gasoline
and diesel engines and is well suited to testbed and in-
vehicle use.
The system has demonstrated its ability to be an
effective tool in engine development and has illus-
trated its capability to act as an engine controller to
implement complex control strategies.
CAC/COdeB
5. FUTURE EXPLOITATION
Future exploitation of MEC is based on the capability
designed into the unit. The ability to monitor a large
number of functions, whether these be engine based
or elsewhere, together with the powerful, high speed,
computing capability, allow a wide spectrum of
applications to be undertaken.
Conventional engine parameter control through the
use of look-up tables is enhanced by the software
based modifying facility. The capacity of the system is
such that many additional parameters may be con-
trolled using the engine speed and load as a basis.
EGR is an obvious candidate but the control of engine
auxiliaries, such as turbocharger waste-gate or
cylinder disabling, are readily applied.
The flexibility of the system as a development tool
means that its application is not confined to purely
electronic based systems. Based on the engine input
parameters the MEC can be programmed to emulate
mechanical systems. Changes in design can be
readily accommodated in the software and the effects
46
-------
MICROPROCESSOR ENGINE CONTROLLER Mk II.
ENGINE SPEED
INLET PRESSURE
IGNITION ADVANCE
INJECTION VOLUME
WATER TEMPERATURE 85
20.00
500
30.00
15.30
85
rev/s
mbarabs.
deg. BTDC
cu mm3/inj
deg. C
*** FUEL INJECTION TABLE ***
Fig.3
Microprocessor Controller
In-Vehicle Screen Display
1
N
L
E
T
P
R
E
S
S
u
R
E
1000
900
m
b 8OO
a
r 700
a 600
b
s 500
.
400
300
200
4000
2900
2550
2200
1875
1530
1230
0000
0000
, SPEED r/s | 10
MODIFY ENTRIES (Y/N)?
SINGLE OR ALL (S/A)?
SURE (Y/N)?
4100
3000
2600
2250
1900
1530
1230
0000
0000
20
4200
3100
2700
2300
1950
1560
1230
0000
0000
30
4300
3200
2800
2400
2000
1590
1240
0000
0000
40
4400
3300
2900
2480
2050
1620
1250
0000
0000
50
4500
3400
2960
2520
2090
1630
0000
0000
0000
6O
4600
3450
3030
2600
2130
1630
0000
0000
0000
70
4700
3460
3040
2700
2200
1620
0000
0000
0000
80
4800
3470
3050
2800
2250
1620
0000
0000
0000
90
FOR HELP PRESS
TO SAVE
MAPS PRESS
TO DISPLAY FUELLING
PRESS
TO DISPLAY TIMING PRESS
• i
5100
3480
3050
2900
2300
1620
0000
0000
0000
j
1OO I
"H"
"D"
"P
"1"
A TYPICAL DISPLAY ON THE USER TERMINAL IN THE VEHICLE
-------
RK2RDO
CONSULTING ENGINEERS
APPENDIX II
MEC USER NOTE
48
-------
RKS1RDO
APPENDIX II
MICROPROCESSOR ENGINE CONTROLLER USER MANUAL
( For Software Revision 2.8.3 )
1. INTRODUCTION
2. MAP ACCESS
3. MAP UNITS
3.1 X MAP
k. TERMINAL INTERACTION
5. MAP EDITING
5.1 Table Update
5.2 Increment
5.3 Single Change
6. VARYING END OF INJECTION TIMING (EOI)
7. MAP STORAGE AND RECALL
8. TRACE MEMORY
9. VISUAL DISPLAY TESTING
10. REFERENCES
Figures
Appendix II Fig. 1
Appendix II Fig. 2
Appendix II Fig. 3
Appendix II Fig. 4
Appendix II Fig. 5
Appendix II Fig. 6
Computer Hardware.
Block Diagram
Software Summary
Ignition Strategy
Fuelling Strategy
Signal Timing Diagram
49
-------
RK21RDO
SUMMARY
This is the user manual for the Microprocessor Engine Controller (MEG).It
supersedes Ricardo DP 84/1193- The manual outlines the purpose and
function of the MEC. The use of the MEC maps to control engine fuel,
ignition advance, etc, is described.
1. INTRODUCTION
Ricardo have developed a versatile Microprocessor Engine Controller
(MEC) for use specifically as a tool in the development of engine
control strategies.
The strategy operates by defining the ignition advance and fuel injector
pulse length given engine speed rev/s and manifold absolute pressure (MAP).
Several temperature inputs (ambient, inlet manifold, and coolant) are used
to modify certain derived variables in the strategy during warm up
periods. Further details of the system hardware configuration and control
strategies for fuelling and ignition are presented in Figures 1 to 6.
The control strategy structure is fixed, but is tunable by ten maps (of 10
by 10 elements). The elements of these maps may be individually edited.
Permanent or temporary offsets may also be added to every element of the
specified map.
The state of MEC can be constantly displayed on a Lear Seagler ADM 5 or
ADM 11 terminal. A trace of input and output variables may also be
stored in volatile memory, and subsequently retrieved for display. The
required changes to maps are also made via the terminal.
Since the original manual (DP84/1193) was wr>itten tne details of the
use of the "X MAP" have changed and EGR control has been added. This
revision of the manual relates to the MEC software revision 2.8.3-
MAP ACCESS
The 10 by 10 maps are accessed by using the two input values as indexes
(after normalisation), such that a block of four map values are
identified as surrounding the true 'map operating point'. The map
output is then computed by linear interpolation within this block.
The temperature compensation coefficients in the X map are also
linearly interpolated between adjacent defined values.
50
-------
RKMD
CONSULTING ENGINEERS
3. MAP UNITS
Map Name
Select Horizontal Axis
Charac ter para,uni ts,range
Steady State F
Fuel
Idle Fuel
Exp. Impulse
Height
Throttle Angle
Derivative
H
Idle WW height W
Exp. Impulse
Time Constant
K
Advance Table I
Idle Ignition J
Map
EGR valve E
rev/s,-, 20-100
rev/s,-, 2-20
rev/s,-, 20-100
rev/s,-, 2-20
rev/s,-, 10-100
rev/s,-, 10-100
rev/s,-, 20-100
rev/s,-, 2-20
rev/s,-, 20-100
Vertical Axis Map Output
para,units,range para, units
MAP, mbar 100-1000 Fuel Inj.
Fuel/100
arbitrary
unit
MAP, mbar 100-1000 Fuel/Inj.
Fuel/100
arbitrary
unit
Fuel/Inj, 5-50 Trans, height,
% of SS fuel
Fuel/Inj, 5-50 Trans, height
% of SS fuel
Fuel/Inj, 5-50 Trans, time
constant, mS
MAP, mbar 100-1000 Derivative
coef, arbitrary
unit
MAP, mbar 100-1000 Ign. advance,
deg BTDC/100
MAP, mbar 100-1000 Ign. advance,
deg BTDC/100
MAP, mbar 100-1000 0-1000 EGR,
arbitrary unit.
In order to ensure that the EGR valve is fully closed when no EGR is
required the scaling of the control voltage from MEC has been set so that
the valve begins to open at a control value of approximately 230. The
valve is fully open at a value of approximately 950- The EGR control
system as described in more detail in ref 1.
To keep the operator informed of the state of the EGR control two values
have been added to the display of engine parameters.
"EGR = xxxx" This is the current value calculated from the EGR map.
"EGRPOS = xxxx" This is a value calculated from the position of the EGR
valve as measured by the position potentiometer. This is on a scale of
51
-------
RK21RDO
CONSULTING ENGINEERS
0 to 1000 corresponding to fully closed to fully open, respectively.
3.1 X MAP
There are five temperature compensation tables explicitly referred to.
Each consists of 10 values which scale the control value and 10
temperatures used to determine the selection of the scaling value from
the line above. The tables are for steady state fuelling compensation
factors controlled by coolant temperature, two transient fuelling
compensation controlled by the manifold charge temperature, and EGR
compensation controlled by coolant temperature.
These tables are expressed as subsets of a 10 by 10 map (the X map) and
therefore may be edited using the same mechanisms as the standard 10 by
10 maps. The format of these tables in the X map is shown below:
CCCCCCCCCC Transient time constant. %
TTTTTTTTTT Manifold charge temp. K
CCCCCCCCCC Transient height coef. %
TTTTTTTTTT Manifold charge temp. K
CCCCCCCCCC Steady state fuelling %
TTTTTTTTTT Coolant temp. K
100 100 100 100 100 100 100 100 100 100 (These fields must be
100 100 100 100 100 100 100 100 100 100 set to 100)
CCCCCCCCCC EGR •%
TTTTTTTTTT Coolant temp. K
The C fields above are % values, thus to leave a parameter unmodified,
a value of 100 must be selected. The corresponding T fields are
temperature values expressed in degrees Kelvin and can be arbitrarily
distributed throughout the temperature range of interest.
4. TERMINAL INTERACTION
On power-up MEG writes a heading at the top of the screen and then writes
several lines of variable names together with their current values. These
values are only updated when the engine is running, consequently at power-
up the values have no significance.
The final line of this display field prompts for a character to be
entered.
MAP EDITING
If the character is one corresponding to a map (as defined previously)
then the corresponding map will be displayed, together with a prompt
for map modification. Entering 'Y' will then result in a prompt for
one of three modification methods, any other character will cause
resumption of the continuous display of variables.
52
-------
RI0RDO
CONSULTING ENGINEERS
5.1 Table Update (T)
Entering a T will cause a prompt for a numerical value (of the
format indicated by the prompt message); this number is then added
to every detail of the internally held version of the displayed
map, and the continuous display update is resumed.
5.2 Increment (I)
Entering an I will cause a prompt for either a 'U' (up) or 'D1
(down character to be entered. The current number of
increments/decrements is displayed. This 'inducing' facility can
only be used in conjunction with the fuelling maps (F, G) and the
ignition maps (I, J). In the case of the fuelling maps, a single
integer (increment/decrement) causes a change in fuelling of 0.1,
and in the case of those ignition maps a change in advance angle
of 1 degree.
5.3 Single Change (S)
Entering an S allows the editing of individual map elements (the
cursor is initially placed at the top left hand corner of the
map). Use of the four 'arrow* keys moves the cursor around the
map. To update a value type the number according to the format
shown in the prompt. This format consists of five characters.
The first is a " + ", "-", or a space. The next four are numbers.
A variation on this format occurs on the fuel maps where an "0"
for the first character selects overrun (OVRUN) and gives no fuel.
Typing an R terminates the editing session.
6. VARYING END OF INJECTION TIMING (EOI)
This function is selected by entering the character 'V. The MEC will then
request an EOI angle. This must be given in the range of + 360 degrees.
The given value defines the end of injection. However the hardware cannot
allow injection to continue through the 70 BTDC reference. If this will
cause a problem with the given EOI and fuel quantity then injection is
commenced at the 70 degree mark. EOI will then vary with the fuel
quantity. In either case the EOI is displayed on the engine panel on the
MEC screen. It can also be "traced" for detailed analysis. The defined
EOI value is part of the set of maps and will be saved and recalled along
with these.
There is no provision for variation of EOI during transients in the current
software.
53
-------
RI0RDO
CONSULTING ENGINEERS
7. MAP STORAGE AND RECALL
Whilst the display is being continuously updated (and prompting for a
key press), other characters can be entered which perform loading and
saving operations with the non-volatile memory (NVM). On power-up,
maps from NVM1 or NVM2 are used. This is selection is determined by
the position of the map select switch when the MEC is switched on.
Subsequent moving of the switch has no effect. Maps from NVM 1-6 can
be loaded by entering R (Recall) and following the ensuing prompt a
number in the range 1 to 6. Similarly the current set of maps (all ten)
can be saved into any of the six NVMs by entering S (Store) and the
required number (following the prompt). Storage of the maps takes 40
seconds. During this time the engine is not controlled and should
therefore be shut down. As an operational procedure, it is advisable
to keep a back up of the current set of maps in more than one NVM.
8. TRACE MEMORY
A trace facility is provided for diagnostic purposes. Trace formatting
and trace display are achieved by entering '!' (Shift 1) which clears
the screen and causes a prompt for further characters. Entering 'A'
will abort a trace in progress, 'T1 will start a trace. 'F1 displays
the available format option and allows assignment of variables for
trace and analogue channels simply by entering the appropriate variable
character. Up and down arrows allow the cursor to be moved up and down
the format field.
Up to ten variables, from a pre-defined set, may be stored, every
occasion control of the engine is invoked. Memory capacity is such that up
to 800 cycles may be retained, the oldest cycles are continually rejected
until entering 'A1 . Up to four of the variables may be output onto
analogue channels, with the facility to determine the gain of individual
channels.
In order to display the contents of the trace memory enter 'D', which
displays the oldest page of data. Entering 'E' whilst in this mode
displays the end of the trace (newest data). Entering either '-' or
'+' space causes adjacent pages of information to be displayed.
The values of the variables displayed in the trace display are in
internal units without decimal point information being displayed.
The analogue channel gains require a four digit decimal number.
Entering 0100 sets the output to unity gain. To terminate the format
session enter 'ESC'.
9. VISUAL DISPLAY TERMINAL
The MEC is programmed to use a Lear Siegler ADM 11 Visual Display
54
-------
Terminal (VDT)
be as follows
CLICK
ONLINE
CURSOR
STATUS
WRAP
NEWLINE
BPS
BITS
BITS
PTY?
PTY
RI0RDO
CONSULTING ENGINEERS
This has a number of internal settings. These should
NO
YES
NO
BLANK
NO
NO
9600
7
1
YES
EVEN
HDX/FDX
CHR/FNC
FNC/NVM
SO/SI
HZ
HNDSHK
XON/XOFF
BUSY
ANSBK
SCRNSAVE
FDX
8
NO
GT EX
50
DTR
DC1/DC3
LO
NO
YES
55
-------
RK21RDO
CONSULTING ENGINEERS
10. REFERENCES
1 Incorporation of Exhaust Gas Recirculation (EGR) Control in the
Micro Processor Engine Controller (MEC). DP85/1466
56
-------
RK2RDO
FIG. No. I
Drg. No.
Date APRIL,
MICROPROCESSOR ENGINE CONTROLLER
HARDWARE
MICROPROCESSOR
RAM
PROM
EEPROM
A/D
D/A
MAP INPUT
- TMS9995 - 16 BIT INTERNAL DATA BUS
- 32K
- 32K
- 12K (STORES 6 MAP SETS)
- UP TO 16 CHANNELS, 12 BIT RESOLUTION
- 4 CHANNELS, 12 BITS
- DIGITAL INTEGRATOR PROVIDES MEAN MAP
OVER i REV
TIMING CONTROLLER - MEASURES SPEED
- PROVIDES INJECTION PULSE OF DEFINABLE
DURATION AND DELAY
- PROVIDES IGNITION PULSE OF DEFINABLE
ADVANCE AND DWELL
INJECTOR DRIVERS - DIRECT DRIVE OF FUEL INJECTORS
IGNITION DRIVER
OPTO - ISOLATED OUTPUT FOR DIRECT
DRIVE OF PROPRIETARY ELECTRONIC
IGNITION UNIT
57
JPM LTD.
6448 MT
-------
RK2RDD
RICARDO MICROPROCESSOR ENGINE CONTROLLER
FIG. No. 2
Dr»N2I
TIMING
CONTROLLER
58
-------
RK2RDO
Drg.Na & 11924-
Date A^RIL. »8
-------
RICARDO M.E.C. IGNITION STRATEGY
IS
7Q
M.A.P. >
rev/s >
Ignition
Map(l,J)
M.A.P.
rev/s
Knock
^ Ignition
Output
Ignition
Advance
* P
M.A.P. - Manifold Absolute Pressure
Letters in brackets indicate relevant maps
r o
« 8
-------
RICARDO M.E.C. FUELLING STRATEGY
32
£
TO
MAP*
rev/s -
Fuel Map
(F,G)
Fuel Inch
M.A.P. - Manifold Absolute Pressure
s - Differential Operator ^~
Letters in brackets indicate relevant map
^
:h
^
^
Temp.
Comp.(X)
t
Water Temp
Low Pass
Filter
Height Map
(H,W)
rev/s
t
Time Const.
Map (C)
Steady
State +/\.
Fue
f^
Ma
^
Iling Vf
j
Wall V
Co
?\
9+
scf
l4St
/etting
mp
Temp.
Comp.(X)
+/C
Tim€
Const!
-^
Gain(C
J
I • i
A
nifold Charge Temp
Temp
Comp. (X)
I
^
r+
kdO
dt
v !
Throttle T
Impulse A
/
- Impulse
Height(k)
Impulse
Height
Map (K)
f
M.A.P.
t
rev/s
Fuel
Output
Throttle
Angle (9)
O O -n
5*5
2 - (n
-------
RI^RDO
FIG. No. &
Drg. No. »1(927
Date Af>RIL. '&(•
PEG. CRANK
CAM. PULSE
TEST BOX CAM.
SIGNAL
CPANK SIGNAL
MBC SEQUENCE OP EVENTS
0 180 360
I I I
540
720
CYLINDER FIRING
VALVE PERIODS.
CYLINDER 1
" 3
4
70 PEG. BTDC
REF. PULSE
IGNITION
IN
EXH
EXH
IGN &T
INJECTION
END OF INJECTION BEFORE
IVO.
IN
IN
I EXH T
EXH
IN
EXH
1.
DEC. CRANK
I
0
180
62
. 360
540
720
JPM LTD.
644SMT
-------
RK2RDO
CONSULTING ENGINEERS
APPENDIX III
MEC-BEST ECONOMY STRATEGY MAPS
63
-------
RK2RDO
EEPRCM BEST
EOONCMY/OPT IGN.FEB 1986
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0080
0090
0100
0110
0120
0130
0140
0150
0150
0150
1
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
A.- RJEL(*5) «
0030
0030
0035
0040
0045
0050
0055
0060
0060
0060
2
0035
0030
0035
0040
0045
0050
0055
0060
0060
0060
3
0030
0040
0050
0055
0055
0060
0060
0065
0065
0065
4
.A.- MAP(mB*100) «
0140
0160
0180
0200
0220
0240
0270
0300
0300
0300
0200
0310
0330
0340
0350
0375
0400
0450
0450
0450
0200
0280
0300
0320
0340
0360
0380
0400
0400
0400
Exp. Inpulse Time Constant(mS) - "C" >
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
5
Throttle
0200
0150
0170
0210
0240
0260
0280
0300
0300
0300
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
6
Angle
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
7
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
8
Derivative - '
0200
0200
0200
0200
0200
0200
0000
0200
0200
0200
1234567
H.A.- RPS(*10), V.A.- MAP(mB*100)« Advance Table(deg/100
10
9
8
7
6
5
4
3
2
1
0500
0500
0500
0600
0000
0600
0600
0600
0600
0000
1
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0500
1600
1900
2100
2300
2300
2300
2300
2300
0000
2
0900
1700
2000
2100
2300
2300
2300
2300
2300
0000
3
A.- MAP(mB*100)
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1300
1900
2100
2200
2300
2300
2300
2300
2300
0000
4
1400
2000
2200
2300
2300
2300
2400
2400
2400
0000
5
< Idle Ign.
0000
0000
0000
0000
0400
0400
0400
0400
0400
0000
0000
0000
0000
0000
0600
0600
0600
0600
0600
0000
1500
2200
2300
2400
2500
2500
2500
2500
2500
0000
6
Map -
0500
0500
0500
0600
0600
0600
0600
0600
0600
0000
1600
2200
2400
2600
2600
2600
2600
2600
2600
0000
7
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
8
BTDC) -
1700
2200
2600
2700
2700
2700
2700
2700
2700
0000
8
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
9
K" »
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
9
"I" »
1700
2200
2600
2700
2700
2700
2700
2700
2700
0000
9
0050
0050
0050
0050
0050
0050
0050
0050
0050
0050
10
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
10
1800
2200
2600
2700
2700
2800
2800
2800
2800
0000
10
"J" (deg/100 BTDC) >
0500
0500
0700
0800
0800
0800
0800
0800
0800
0000
0500
0800
1000
1200
1200
1400
1600
1600
1300
0000
0500
1000
1400
1600
1700
1800
2000
2000
1600
0000
0500
1600
1900
2100
2300
2300
2300
2300
2000
0000
10
64
-------
RI0RDO
CONSULTING ENGINEERS
EEPRCM BEST ECONOMY/OPT IGN.FEB
1986 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100)« Fuel Injection
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
4100
2380
2130
1850
1580
1350
1100
0900
OVRUN
OVRUN
2
4600
2575
2275
1980
1690
1420
1160
0915
OVRUN
OVRUN
3
A.- MAP(mB*100)
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
4950
2710
2395
2080
1770
1470
1170
0930
OVRUN
OVRUN
4
5350
2800
2470
2125
1830
1520
1220
0970
OVRUN
OVRUN
5
< Idle Fuel
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
H.A.- RPS(*10), V.A.- FUEL(*5) «
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
H.A.- RPS(*2), V
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
0030
0050
0070
0080
0090
0100
0110
0120
0120
0120
2
0030
0040
0045
0050
0060
0070
0080
0090
0090
0090
3
0030
0040
0050
0055
0060
0065
0075
0080
0080
0080
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
5450
2815
2480
2165
1840
1530
1220
1010
OVRUN
OVRUN
6
Map -
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Exp. Impulse
0030
0045
0060
0070
0080
0085
0090
0100
0100
0100
5
.A.- MAP(mB*100) « WW Idle
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
5
65
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
6
Height
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6
Table( Fuel/100) - "F" »
5700
2930
2590
2240
1950
1640
1320
1050
OVRUN
OVRUN
7
5900
2990
2650
2305
1970
1640
1320
1200
OVRUN
OVRUN
8
6100
3050
2700
2380
2020
1670
1350
OVRUN
OVRUN
OVRUN
9
6300
3100
2750
2450
2100
1700
1400
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
4100
2380
2130
1850
1580
1350
1100
0900
1200
OVRUN
10
Height(%) - "H" »
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
7
- "W"
0060
0060
0080
0080
0100
0120
0140
0160
0160
0000
7
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
8
»
0060
0060
0060
0080
0100
0120
0140
0160
0160
0080
8
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9
0060
0060
0060
0060
0060
0120
0120
0120
0120
0060
9
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
10
0060
0060
0060
0060
0060
0120
0125
0125
0125
0060
10
-------
RK2RDD
CONftUlTINC iNGiNflMS
EEPROM BEST EOONCMY/OPT IGN.FEB
H.A.- RPS(*10), V.
10 ! 0000
9
D
rj
6
5
4
o
2
^
0000
0000
0000
0000
0000
0000
0000
0000
0000
1986 recalled
A.- MAP(iriB*100) < E.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
G.R. 0 to 1000 >
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4
8
10
5 Two Line Temp. Gcnp. Tables
10
9
p
•7
6
5
4
3
^
1
0200
0270
0200
0270
0350
0270
0100
0100
0000
0270
0200
0280
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
(OCMP./TEMP.
0200
0295
0200
0295
0160
0290
0100
0100
0000
0290
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
), TEMP(KELVIN), OCMP(%)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
0100
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
4
8
10
66
-------
VKMJU
APPENDIX IV
MEC-REDUCED NOx STRATEGY MAPS
67
-------
RK2RDO
CONSULTING ENGlNKEftS
EEPROM REDUCED NOX STRATEGY JUNE
H.A.- RPS(*10), V.
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
86
A.- MAP(mB*100)« Fuel Injection
4100
2660
2170
1830
1540
1300
1210
0900
OVRUN
OVRUN
2
4600
2750
2250
1900
1690
1420
1190
0915
OVRUN
OVRUN
3
H.A.- RPS(*2), V.A.- MAP(mB*100)
10
9
8
7
6
5
4
3
2
1
6000
4500
4200
3800
3000
2600
2000
OVRUN
OVRUN
OVRUN
1
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0110
0110
0120
0120
0130
0140
0140
0150
0150
0150
1
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
6000
4500
4200
3800
3000
2600
1900
OVRUN
OVRUN
OVRUN
2
6000
4500
4200
3800
3000
2400
1800
1500
1800
OVRUN
3
4950
2820
2280
1960
1750
1470
1175
0920
OVRUN
OVRUN
4
5350
2930
2340
1980
1800
1500
1250
1000
OVRUN
OVRUN
5
< Idle Fuel
6000
4500
4000
3500
2700
2200
1600
1400
1600
OVRUN
4
.A.- FUEL(*5) «
0110
0110
0120
0120
0130
0140
0140
0150
0150
0150
2
0020
0030
0030
0030
0030
0050
0060
0060
0060
0060
3
0040
0040
0045
0045
0050
0050
0055
0055
0060
0060
4
6000
4400
3700
3200
2400
2000
1600
1300
1500
OVRUN
5
5450
3030
2365
2000
1820
1510
1290
1080
OVRUN
OVRUN
6
Map -
6000
4200
3400
3000
2100
1700
1480
1200
1200
OVRUN
6
Exp. Impulse
0020
0020
0025
0025
0030
0030
0035
0035
0040
0040
5
A.- MAP(mB*100) « WW Idle
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
6
Height
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
Table( Fuel/100) - "F" »
5700
3900
2700
2280
2000
1670
1360
1100
OVRUN
OVRUN
7
5900
5000
2970
2550
2200
1820
1470
1200
OVRUN
OVRUN
8
6100
5400
3000
2620
2240
1850
1490
OVRUN
OVRUN
OVRUN
9
6300
5700
3050
2650
2300
1900
1520
OVRUN
OVRUN
OVRUN
10
"G" (Fuel/100) >
6000
4000
3200
2600
2000
1700
1370
1020
1200
OVRUN
7
6000
4000
3200
2600
2000
1600
1280
0950
1200
OVRUN
8
Height(%) - "H1
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
7
- "W"
0060
0060
0080
0080
0100
0120
0140
0160
0160
0000
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
8
»
0060
0060
0060
0080
0100
0120
0140
0160
0160
0080
6000
4000
3200
2600
2000
1600
1250
0900
1200
OVRUN
9
1 »
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
9
0060
0060
0060
0060
0060
0120
0120
0120
0120
0060
4100
2600
2170
1830
1540
1300
1210
0900
1200
OVRUN
10
0030
0030
0030
0030
0030
0030
0030
0030
0030
0030
10
0060
0060
0060
0060
0060
0120
0125
0130
0130
0060
8
10
68
-------
RI0RDO
CONSULTING CNGINfim
EEPROM REDUCED NOX STRATEGY JUNE
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2 I
1 !
0035
0040
0045
0050
0055
0060
0065
0070
0070
0070
1
H.A.- RPS(*10), V
10
9
8
7
6
5
4
3
2
1
0000
0330
0340
0350
0360
0370
0380
0390
0400
0400
1
86 recalled
.A.- FUEL(*5) «
0030
0035
0035
0040
0040
0045
0045
0050
0050
0050
2
0085
0090
0095
0100
0105
0110
0115
0120
0120
0120
3
0050
0055
0060
0065
0070
0075
0075
0080
0080
0080
4
.A.- MAP(mB*100) «
0220
0230
0240
0250
0260
0270
0280
0290
0300
0300
2
0120
0130
0140
0150
0160
0170
0180
0190
0200
0200
3
0260
0280
0290
0300
0310
0320
0330
0340
0350
0350
4
Exp. Inpulse Time Oonstant(mS) - "C" >
0080
0090
0100
0110
0120
0130
0140
0150
0150
0150
5
Throttle
0320
0330
0340
0350
0360
0370
0380
0390
0400
0400
5
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
6
Angle
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
6
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
7
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
8
Derivative -
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
7
H.A.- RPS(*10), V.A.- MAP(mB*100)« Advance Table (deg/100
10
9
8
7
6
5
4
3
2
1
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2
H.A.- RPS(*2), V.
10
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0500
0700
1000
2000
2100
2100
2100
2100
2000
0000
3
0700
0900
1200
2100
2100
2100
2100
2100
2100
0000
4
A.- MAP(rriB*100)
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0800
1000
1200
2100
2100
2100
2100
2100
2100
0000
5
0900
1000
1200
2200
2200
2200
2200
2200
2200
0000
6
< Idle Ign.
0000
0000
0000
0000
0400
0400
0400
0400
0400
0000
0000
0000
0000
0000
0600
0600
0600
0600
0600
0000
1000
1000
1200
2300
2400
2400
2400
2400
2400
0000
7
Map -
0500
0500
0500
0600
0600
0600
0600
0600
0600
0000
1600
2100
2200
2400
2400
2400
2400
2400
2400
0000
8
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
8
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
9
"K" »
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
9
0150
0150
0150
0150
0150
0150
0150
0150
0150
0150
10
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
10
BTDC) - "I" »
1700
2100
2300
2500
2500
2500
2500
2500
2500
0000
9
1700
2100
2400
2500
2500
2500
2500
2500
2500
0000
10
1800
2100
2400
2500
2500
2600
2600
2600
2600
0000
"J" (deg/100 BTDC) >
0500
0500
0700
0700
0800
0800
0800
0800
0800
0000
0500
0800
1000
1200
1200
1400
1600
1600
1300
0000
0500
1000
1400
1600
1700
1800
2000
2000
1600
0000
0500
1600
1900
2100
2100
2100
2100
2100
2000
0000
8
10
69
-------
RK2RDD
CONSULTING CN&INCERS
EEPRCM REDUCED NOX STRATEGY JUNE 86 recalled
H.A.- RPS(*10), V.A.- MAP(mB*100) < E.G.R. 0
10 ! 0000
9
8
7
6
5
4
3
2
1
0000
0000
0000
0000
0000
0000
0000
0000
0000
1
5 Two Line Tenp.
10
g
o
r-j
6
5
4
3
2
1
0200
0270
0200
0270
0350
0270
0100
0100
0000
0270
0000
0240
0250
0260
0240
0220
0200
0000
0000
0000
2
0000
0350
0350
0370
0330
0280
0230
0225
0000
0000
3
Corp. Tables
0200
0280
0200
0280
0250
0280
0100
0100
0000
0280
0200
0290
0200
0290
0200
0285
0100
0100
0000
0285
0000
0450
0430
0440
0400
0320
0230
0225
0000
0000
4
(OOMP
0200
0295
0200
0295
0160
0290
0100
0100
0000
0290
0000
0500
0475
0550
0470
0350
0240
0225
0000
0000
5
./TEMP.
0200
0300
0200
0300
0140
0295
0100
0100
0000
0295
to 1000 >
0000
0550
0500
0650
0560
0370
0260
0000
0000
0000
6
0000
0420
0400
0550
0440
0330
0240
0000
0000
0000
7
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
10
), TEMPCKELVIN), COMP(%)
0180
0305
0180
0305
0125
0305
0100
0100
0000
0305
0160
0310
0160
0310
0115
0310
0100
0100
0020
0310
0140
0317
0140
0317
0110
0320
0100
0100
0040
0320
0100
0323
0100
0323
0100
0330
0100
0100
0070
0330
0100
0328
0100
0328
0100
0340
0100
0100
0100
0340
8
10
70
-------
RI0RDO
CONSULTING ENGINEERS
APPENDIX V
TABULATED TEST RESULTS
71
-------
kPA/VK HKCC MKTHANUl (7'?.r.mm X 7t.4mm)
INITIAL trsTs niTH DISTKIPUTUU IUMITIUN
MIXTURt LOOP /.I 4
I [NG1NF. Sf'LTI) (HEV/S)
« FUtL VflLOMf ( CC )
2 DRAM LUAO
S KIEL TIMF ( StC )
6 FIIKL TrMPtKATURK ( L )
fl AIM rifTtH TF.MPEHAtUKF ( C )
11 IMTAKF MANIFIILD PWESS. (mm.Hg)
?6 tXHAUST tt'IP. (POST TUKU(I)
27 tXHAUST PKrSSDRE (POST 1HKHU)
13 CAHUOli MUNOXlDF. ( X )
IS LAHHOM DIUXIDK ( X )
16 UXYUF.N ( X )
12 HVDH'ICAIIPU'IS ( PPI'C )
11 OXIbtS I)F MlTHOGrn ( PPh )
40.00
12.00
102.50
29.00
44. IS
12.00
16.00
40.00
17.00
102. SO
29.00
1M.OS
12.00
17.00
40.00
19.50
102.50
29.00
SO. OS
12.00
17.00
40.00
21.00
102. SO
29.00
51.35
12.00
1 7.00
40.00
26.50
102.50
29.00
51. SS
12.00
17.00
40.00
36.00
102.50
29.00
49.95
12.00
17.00
421.H7-4|H.86-40l.5/-.47S.2S-V43.66-2HS.7»>
•406.0
H.3
2.450
13.SOO
.150
3300.0
S20.0
'112.0
9.0
• 550
14.400
.500
2130.0
fl 1 0 . 0
407.0
10. S
.220
13.100
2.600
2040.0
HOO.O
196.0
12.0
.ISft
1 1.500
S. 100
24611.0
3 40. il
391.0
14.3
.14t>
9.HOO
7.250
i'RHO.O
120.0
373.0
1W.H
.214
H . 0 0 0
9.700
4HOO.O
SO.O
-------
H'A/V/. MKCC MfTHAHiil. (79.b'nn> X 73.1mnO
1NIIIAL TtSTS hITH 01 SIR I tUM f>K IGNIUO'l
I.U'iP AT <|0 KKV/SKC 2.S HAN U'-U.P (r>uO K
REFER TO FIGURE NOS. 5-8
DATK |9/ 3/HS
TtSF HI).
HAIWFTFK
>1M.H<;
l»tr HlILP lfMP(TJ 10.0
DhY HULh UMt>(C) Jb.b
RtLATlVl IIIMIDI
HUMIDITY COHREC
GRAINS UF rtATff
1Y =
rjUfJ FAC10K =
/I. II Uf'Y A1H =
40.66
3?!l3
: IF I'dHCH = 0.0 P| SIILTS LI5TLO AS G/K«-HK Al't ACIUALLY U/HN :
SPF.H)
W£V/S
10.0
10.0
'10.0
to.o
10.0
40.0
PlIhM' HMF.I'
KU II 4 1'
7.29
/.29 f
7.29 «'
7.2" ?
7.2'* 2
/.2V 2
.so
!so
.SO
.r>0
.r>0
.so
HI MILTS IN (HWACKF.TS) A«t CALCUl.ftTtD FKUM AIR MtlfcK UAlA
TUHl-nt FUF.L VOLUMF FHIC A1K FUtL tl . I . F_ . h C
N.M
?•*.()!)
i-'V.OO
2'*. 00
c"V.OO
P9.00
2V.nO
r./Kw.Hi«
911.1
M3V.9
Hub. 4
7«6.0
7H2.9
H08.0
1 FFlClfc'ICY(X)
30.21
3l>.6(
32. 8(
36. 5(
41. 1(
1 9 . V (
.0)
ill)
.0)
.0)
.0)
.0)
Mt/X
C U C02
hC « NH*
KAIIU X G/K«.Mk G/Kft.ht^ (,/Krt.Mh b/Kn.r.^ b/h.'.HK
5.1(
6.4 (
7.K
H.I (
') . 3 (
10. M
.0) 1^.
. 0 ) 1 1 .
.0) 22.
.0) 22.
. 0 ) 25.
.0) 22.
7 j V » c h
£J U S V 0
3V 6.0rt
97 t».2(<
Ob 11.02
34 22.40
2.16
S.39
S.73
2.66
1.10
.S6
120.31 1011.62
26.61 loVn.uo
11. «/ 10/S.4U
V.2H 1 u 42.71.
V . / 7 1 0 i 0 . 1 0
17.3V lUtM.63
1 1 .42
11.2V
1 1 .* 1
10. V2
12.12
22. Mi
-------
HHCt: METHANUL <79.Smm X 73.1mm)
INITIAL TlSTS t«ITH If'A I»ISTH IMUTUH
MIXTUHt LOOP AT 60 UEV/SLC S.S IIAK HMfP
REFER TO FIGURE NOS. 9-12
BOPt
79.50
STROKE
73. '10
rjU'tllF.H OF
CYUUnhHS
K
CYCLl.
TYPF
1.
HttAKK
COfiSTAfil
1S9.1V>1
AIK MEIEK
CONSTANT
.OOOOOU
FlilL
S.G.
./''50
HAI1U
3.V7
CALO»|f-|C
VAUUt
J9VaO.OO
TMkHoCMA|
OH 1 1 in
U
DAY
19
MONTH
3
YEAH
SS
TFST
UUHHFR
1.00
HAKOMFTIK
r.79
WET BOLH
ThMPFMTUKK
13.00
DHY HUL"
UMl'tKATUHt
19.So
PlinfcH
CUHhECT HIM
0
f-KKMON
OPTIOh
0.
UOIHUl
OP I ION
X
11
27
13
IS
It.
12
ENGINE SPEED (REV/S)
IGNITION TIMING
FU1L VOLUME ( CC )
rtRAKT LOAD
FIJFL TIMF ( St-C )
FUKL TEMPERATURE ( C )
INTAKE MANIFOLD PRESS,(mm.Ho)
FXHAIIST TE"I'. (POST TUMHO)
EXHAUST PKESSUKE. (POST
LARHON MONIIXlL'f ( X )
CAKndN DIUXIDk ( X )
r )
HYDMOCAHHUtJS ( PPKC )
OXIDES OF NITROGEN ( Pl'» )
60.00
1 S . 0 0
P03.00
63.80
36. SS
12.00
1 fl . 0 0
60.00
19.00
203.00
63.HH
39.70
12.00
19.0(1
27S. 23-269. 22
SS8.0
'11.1
2.600
13.100
.200
2010.0
B20.0
Sfl^.O
'16.6
.S20
I a. son
.'ISO
1260.0
1 7 n ,1 . o
60.00
20.00
203.00
63.l>0
11.30
12.00
20.00
60.00
23.00
203.00
63.ttO
11. «S
12.00
1 9 . 0 0
-236.13-18B.OO
S72.0
SI. I
.1HO
13.000
2.600
720.0
1700.0
S '1 2 . 0
S7.9
. lit
11.100
S.I 00
loSo.o
/an.it
60.00
29.00
203.00
63. HO
12.20
12.00
20. Ou
-127.09
S1S.O
69.2
.US
9.700
7.3SU
1620.0
19S.O
60.00
18.00
203.00
63.80
'10. 7S
12.00
19.00
-S2.61
1*9.0
86. S
.166
fl.100
9.200
276(1."
10S.O
-------
FPA/Vi" HUCC 'IFTHANML (7V.5 J S fl< I rtHIOK IfiUllI
MlXTIIkl. LUIIP A7 60 WfV/SEU 5.S MAP HMEP
REFER TO FIGURE NOS. 9-12
PATfc 19/ J/«S TLSf Nil. '1
f'FLATIVt MMIUITY =
HU'.'IDITY COHHKCTIUN FACTOH =
CHAINS OF WATEK/Lii DRY AIK =
.0 H A l.
: 16.77
16.12
'OMFrfH 7S7.79 MM.HG rET 1'ULf IFMP(C) 1J.O
hHY HULb 1EMP(D 19.5
: IF I'flUKK = 0.0 WFSUL1S LliiTtlJ AS G/Kri-MK A»E ACTUALLY G/MK :
spftn
REV/S Krt
60.0 21.05
60.0 2.«( .0)
6.4( .0)
7.2{ .0)
H . 4 ( . 0 )
9.5( .0)
1 0 . 7 ( . 0 )
*
27.
29.
30.
31 .
31.
30.
EK UATA
.t. H C
G/K-.Hk
24 1.25
5V ^.b1
7B I. 5V
19 2.6H
MS «.66
37 V.2H
NOX
U/Kn.MR
1.32
a. 66
9.51
«. 7/
l.«?
.89
C 0
G/KK.HK
9^.75
IB. 32
e.97
6.1?
5.79
9.76
CU2
(,/K«.MH
750.06
M02.6U
7V0.55
7/7. B1
766.79
7/5.92
riC » •'
-------
EPA/VU HHCC MFTHANUI. (79.5mni x 7i.4mm)
INITIAL TESTS WITH FPA DISTPIIUITUR IUNITION
FULL LOAD IMlrtCK U'KVF.-LUT mi l.L IUtJ,MHT TG" TIMING
REFER TO FIGURE NOS. 14-17
IIDRE STROKE NUMIifK OF
CVl. INOfKS
79.50 73.40 4
DAY MONTH YEAR
CYCLf
TYPE
4.
Tf.ST
HUMIIF.R
20 3 US
t
2fl
4
2
5
6
ft
II
?<•
27
13
IS
16
12
14
ENGINE SPKI 0 (REV/3)
IGNITION TIMING
FUtl. VOLUME ( CC )
HrtAKE LOAD
FUCL TIMF ( sec )
FUFL TFMPIRATURE ( t )
Alt' METER TEMPERATURE ( C )
INTAKE MAMFOLO PRK.SS. (mm.llcj)
FXMAUST TEMP. (COST ri'Rbm
EXHAUST PRESSURE (POST ItlHIlO)
CARUPN MONOXIDE ( X )
CARHUN OIUXIDE ( % )
oxruEn ( * )
HYDROCARBONS ( PPMC }
OXIUES OF MIRIH;F.N < t-pn )
20
10.
203.
100.
7S.
14.
14.
-1.
SH9
15
b"AKk AlK rtl-.TFR FUEL H/CAKh'lN CALOKlMC f Un.iuCMAKUEl)
COM5TONI tUNSTAUl S.G. KAlIO VALUE U^IIOJ
159.15SI .000000 .7-V50 i.'<7 1W40.00 0
HAROMETKK V.kT HULb OHY UULH PUAEH FRlCIIOn UUI^UI
TEMPtRAlURC HiMPERAdJKt COHhEtTlUN OPTJUN UHllON
5.00
00
PO
00
10
OS
00
Oil
50
.0
.0
2.200
13.000
.2
SI 00
Lino
50
.0
.0
30.
14.
203.
110.
4H.
14.
14.
-2.
467
?'l
00
no
no
xo
75
00
oo
26
. 0
. 1
2.300
1 l.sno
3600
1 100
00
.0
.0
757. H6
40.00
16.00
304.00
1 17.90
52.05
14.00
14.00
-3.01
540.0
4H.1
2.500
13.500
.200
3600.0
11 00.0
|4.50 21.00 1 0. 1
50.
10.
304.
130.
37.
13.
15.
-3.
S93
H4
00
00
00
30
95
00
00
76
.0
.2
2.6(10
13. SOU
mf
2910
1 150
00
.0
.0
60.00
17.00
507.00
126.40
56.00
13.00
17.00
-4.51
(>2o.O
114.3
2. 100
14.000
.300
1 740.0
1350.0
70.00
1 8 . 0 0
507.00
104.00
55.90
13.00
IB. 00
00.00
11.00
507.00
82.90
55.95
1 J.OO
| A. 00
-103. 02-195.20
631.0
114.3
2.401)
13.700
.200
1140.0
1100.0
6 ib.O
I 14.3
2.700
13.600
.200
7Hu.ll
1 0 0 0 . 0
-------
Et'A/V.v MPCC METHANUI. (7V.Smm x 73.4mm)
INITIAL USTS MTH KPA
SPUD
Kt V/S
20.00
30.00
10.00
SO. 00
60.00
70.00
80.00
MAN.PRES
I^M.HG
-1 .50
D !> t
-c.26
-3.01
-3.76
-1.51
•103.02
•193.26
DATE 20/
HELATIVt
HUM10JTY
PUI/E
UM.Cllf'H
12.58
20.8V
29.63
10.93
17.65
15.7/1
11.67
MATJ. TEMP
r
.0
.0
.0
.0
.0
.0
.0
HC-PPM MC-PPM
wer UHY
3919.5 5100.0
2768.2 3600.0
2762.8 3600.0
2231.0 2910.0
1330.1 1710.0
873.0 1110.0
596.5 780.0
PAHTJCULATCS
C./ll
.00
.00
.00
.00
.00
.00
.00
C./KI-. .11
.000
.000
. n it (i
.000
.000
.000
.000
--••-••....-.t/itjinj r>u 1 UK J t,1* 1 I 1 UN
FULL LOAD PUrtFH CHHVE-LHT FUfLU llu.fill f JGM 1JMNG
JuSom TEST ""• :-,%.HoB"""'EIFM 7"'-6 »>••" "" BOLH
CONHECTTliri FACTilh = .91
R-(Kh)
Cul'H
12. IB
20.73
2V. 11
10.70
17.51
•5.71
11.61
»I t J T A k f « A
J '» 1 A n t. /
FNEE
.0000
.0000
.0000
.0000
.0000
.0000
.0000
H C
G/M
121 .11
132.86
181.07
203.88
138.77
VI .12
61.87
H C
G/KW.M
9.630
6.3(.2
6.212
•4.9(11
2.912
1 .V99
1.185
P^fp
UM.fm?K
0.63
V.S5
10.16
11.23
10.90
8.97
7. IS
I K— ( M3/S
AFT. MM
.0000
.000 0
.0000
.00110
.0000
.0000
.0000
NOx-PPI-',
it. T
999.1
815.8
811.2
881 .7
1032.2
812.1
761.fi
MUX
li/KrJ.M
6.122
S.085
1.966
S. 119
5.9J]
r> . 0 1 'i
1 . 9 rt 0
REFER TO FIGURE NOS . 14-17
IErtP(C> 11.5 u*1 HULb iKMP(t) 2I.O
GKAlr-S OF rtATEK/Lb
-(har)
CORK
a. 57
9.18
1 0 . 0 9
11.17
10.87
8.96
7.11
) AIM-MAS
KG/S
.0000
.0000
0 0 0 0
.000 o
.0000
.0000
.0000
•inx-PPM
OHY
t 3(10.0
1100.0
1 1 0 0 . 0
1150.0
1350.0
1 1 (i o . o
lood.o
1 • fl
U LI
(,/Kf..H
72.663
71 .091
75.1S7
77.835
61 .176
73.SVS
89.Mi't.6
1017.1
1229.3
1001.6
V 1 0 . 6
r ti2
r; / K h . H
7 0 S . 7 «
6 5 S . o 3
MO .23
6 3 ') . 0 0
61 $.95
66(1 . Oil
7 1 1 . 1 1
- ( NM )
Cu"R
99. 3S
10V.97
117.02
129.55
126.11
103.91
82.85
Ft)
G/IlK
7718.
11929.
16731.
22968.
25959.
26005.
25982.
LL-tUftiSUMt
MM3/INJ
67.62
09.1Q
73.01
BO. 11
75.15
61.78
56.61
3fI(JM
MG/LlTKt
117.66
151.55
159.12
175. OB
161.90
111.60
123.79
-VUL.EFF. VDL.hFF. MAMFULU-VUL.E FF .
SPIMOT AFT. MET AJK-M£T. SPIwOT
7 0 * 1 *? n n n r. L .- f* ,.
7 p ->ii
' C * C "
75.49
K T 3 M
o i » /: o
81.19
69.33
60.10
MUX
G/h
80.78
1 0 (. . 2 1
117.15
21(i. 79
281 .67
230.77
207. Si
S T A li ?
I iv.I .
o
• 0
• 0
ll
. "
0
_
. 0
• v -i
« 0 0
.00
.00
.00
. 0 0
1 1 1)
» V ''
CU-PPM
.«tT
16907.6
t 768S.9
191u',.8
19933.7
16056.2
I837V.<>
2 0 6 '1 8 . 1
fill
I -j (
j '
-------
EPA/V
TYPE CONSTANT CONSTANT S.G. KAllO VALUE UPIIUH
4. 1S9.1iSl .OOiiOOO .79SO 3.97 19940.00 0
TEST HAKflMfTEK A'ET I1ULH DRY bllLM POWEK FKJCHOM oUIKUf
NUMMF:K TE.IPEKAIOKE U.MPE^AIUHE CUKKECUON UPTJUU UPIION
13.00 7S9.02 13.00 19.50 00. 4
40.
l'».
102.
63.
30.
13.
in.
-;'ss.
476
19
2.4
00
00
50
no
10
00
00
68-
.0
.6
00
1 4.600
.200
MYOKOCAKHOUS ( PPMC )
I9SO
.0
OX IOCS OF MTK.Or.EN ( PPM ) 79U.O
40.00
16. Si)
102. SO
63.HU
31.75
12.00
18.00
2S2.67-
490.0
20.3
.600
14.50')
.soo
1 440.O
14SO.il
40.00
in. so
102. SO
63.80
52.60
13.00
19.00
215. 8,f-
479.0
22.6
. l'1^
12.900
2.«»0o
1 3«0.0
ISOO.O
40.
20.
102.
63.
32.
13.
19.
179.
469
26
00
00
SO
80
(40
00
00
40.
22.
102.
63.
32.
13.
19.
73-129.
.0
.3
4fiO
40
.1
00
00
SO
80
ss
00
00
34
.0
.8
35
11.400 9.90U
5.200
1980
740
.0
.0
7.200
2740
200
.0
.0
40.00
30.00
102. SO
63.80
31.40
12.00
17.00
-4S.12
442.0
41 .4
.218
8. 100
9.500
3600.0
42.0
-------
FPA/Vx HI-'CC MFTHANOL (79.5mm X 7.l. AS G/IV.1-IIK AHL ACMJALLY G/Hh :
KESUl.TS ItJ (IH'ACKE 1 S ) ol^t CALCULATE!' H"IM A]K MFTKK DAT A
SPEIO
w L V / S
•'4 0 . 0
•40.0
40.0
40 . 0
40.0
'10.0
I'U/lf- R
KH
10.03
I r>. 03
16.03
10.03
16.03
16.03
nf.rH
I.AI;
c, _ r, „
s|so
r-..so
S.SU
S . ri 0
rj . 5 0
TIIKulif
I4.M
b 3 . P 0
t-3.HO
6 3 . H 0
t> 3 . M 0
b 3 . H 0
f- 3 . fl 0
F-HFL
G/KW.h"
60H.O
S77Jfi
S6?..5
SSB.8
S63. 1
SH'1.2
VOLUME IX1C
hPFlCIt'-JCYl*)
as.ac .u)
4lj.6( .0)
S1.7( .0)
S».0( . U)
6S.H( . ii )
79.'l( .0)
Alrt FUEL
HATIU
'> . 'M . '• )
t> . '1 ( . 0 )
7 . 3 ( . 0 )
i . a i . o )
''./>( . 0 )
i o . HI . n j
H. r.L. M c uux
X (,/R«.llP G/KA.HW
^.'•S 3.67 3.7-3
3I. 1.3»
30.90 li.lt- .36
C U CU2
(i/Krt.HK U/K«.hK
78. V<; 7o.6'4
IV. h9 /Si .^0
S.ul /bb.^b
6.0J 7^S.41
6.'4'D /«3. 1 I
l^.MU /«9.ii
HC » NU
U/Ko. UK
7.«2
9.'&7
1.1.02
9.16
8.H>4
12. «H
-------
EPA/VH hHfC MF'TMANOL (79.5mm X 73.4mm)
M.t.C./HUSCH PlSTKIllUTUR IC.fHTHIN
MJXTUPfc LIIUP AT 60 KEV/SFC 2.S ri»K HMfP
REFER TO FIGURE NOS. 31-34
HUKK
79. bo
STKUKF
73. '10
NUMHKK UT
C»lINOEHS
4
r.YCl.K
TYPE
'1.
HKAKE
CONSTANI
» I h> MkTKH
CWISTAIJl
.1100000
FUtL
S.G.
.79SO
fl/CAklillh
HAHU
3.9/
VALKfc
19940.00
1 UHOUCMAKUtl-
uHllUN
0
DAY
21
MOUTH
3
YEAH
6S
TKST
14.00
V'tT llULh WKY HULH PUrtfcH FK1CIIUN
AlUKf HMPtKATUHt COWKLtUliri IIPIION
13.00 19.SO 0 0.
IHJIPUI
uPl \\irt
4
1 F. NO INF SPEED (HCV/S)
Zf- lUfJlTIPN TlrtlMP.
4 FUEL VOLUME ( CC )
? MRAKC l.UAO
5 FUtL UMf ( SEC )
6 FULL Tr.Mf'J KATlIKE ( C )
H AH' MF.TKH Tf MPtHArilKF ( t )
11 INTAKI MA.IIFULI) PKtss.(mtn.iM)
26 tXhAUST TtilP. (P«'ST TUPHU)
27 rxMAiiST pwrssune (PUSI IIIUMH)
13 CAI'HON MIJI.OXIMF ( S )
15 CAKUON OIMXIDE. ( Z )
16 OXYGCN ( X )
12 HYI>K(>CAKHHMS ( PPMC )
14 CIXJDf.S lir UITKUUF.H ( PPM )
60.00
16.00
203.00
29.00
S8.90
12.00
1 « . 0 0
60.00
18. SO
205.00
?9."0
63.90
13.00
19.011
60.00
20.50
203.00
29.0o
66.70
13.00
20.00
60.00
23.00
203.00
29.00
67. 4S
13.00
19.00
60.00
2 1> . S 0
203.00
2t».00
67.60
13.00
19.00
60.00
42.00
204.00
29.00
63.45
12.00
1 /.OO
4 36. 1 6- H 3 3. 9 0-41 2. H<3-3fl4. 27-^47. '4 2-2 72. 2 i!
.'IS 'l.o
16. S
2 . '1 'I 0
13.500
.200
16T.O.O
460.0
•49S.O
1 « . n
.sso
14.700
.SOD
1020.0
790.ii
490.1)
21.1
.1*2
1 i.OOO
2.900
H'10.0
6PO.O
47S.O
24. 1
. i <;4
1 1.000
S . 4 o 0
1350.0
2SO.O
4r>6.0
2«.6
.117
9. 700
7.400
1S60.0
90.0
422.0
42.9
.227
7.600
1 0 . 4 0 U
S'100.0
20.0
-------
KI'A/VH IIK'CC MF TIIA KIL (7V.Sum A /S.U
•'.e .r./rt(isi:n (UST-MIIUMIK II-.NIUDIJ
LOIIC AT t>» kfc I//SF..C f. S HAH
REFER TO FIGURE NOS. 31-34
OAU 27/ 4/HS Tty! Nil. I'l.O H»l
Hit AT1VI. IHMI01 1Y r /Ih.7<
l< t « / -'i * '•'
bO.
60.
b(l .
6(1.
hO.
'•0.
0
I)
0
I)
0
0
10
1 (1
1 0
1 II
10
1 u
."
.93
.93
.93
.93
.93
: It- I'tirtK.K = o.o
KrsuLTs in (MI;
huff Toi'uue: Fiif-L
I,A" H.H I1/KW.I1I*
2.r.0 29.00 90U.7
."".TiO 29.00 H33.2
2. ''() 29.00 79H.i>
2. SO 29. uO 7«9.3
2. SO 29.00 7«7.6
2.50 29.00 ti 39. 8
HIIKfrCK 7S9.
02 i*M.H
I! "LI HULB (EMP(C) 13.0
IIKY HOLb IFMP(C) 19. S
'.« (
7.3(
U . '1 (
9.S (
1. H
FKt'M AIK
"IfcL
IU
.0)
.0)
.0)
.0)
.0)
.CO
MtlEH DATA
O.T.C. M C
X O/MN.HtV
19.96 «.73
21.67 2.77
22.62 2. S3
22. «7 <4.73
22. 92 7.32
21. SO 27.10
MUX C
G/Ki^»rtK G/isw
3.27 118.
S.12 26.
S.I7 9.
2.21 7.
.90 «.
.25 IV.
U
.HK
1"
10
b«
01)
06
9J
CU?
1 0 7 <« . 7 V
HC * f<0»
G/KH. flK
e.oo
?I/o
27^3S
-------
LPA/Vh' MRCL MCTMANW. (79.Smir. < 7).4miu1
M.S.C./MOSCH 01S1RIHUTUH IGNITION
MIXTURE LOOP AT '40 REV/SLC 2.5 IIAIO I)M( P (UH'fAT HF EPA.7J
REFER TO FIGURE NOS. 23-26
r.oKt
7V. SO
DAY
fROKE MUMiK R ClF
CYLINDERS
7 3 . a 0 a
MONTH
i
1 (TNGIfJE SPEEf)
28 IGNITION I[MING
« FULL VOLUKF ( CC )
2 bRAKf! UOAU
5 FUEL TIME ( SIC )
6 FUfL TKMPLHATIIHE ( C )
P AIR HfTEH TEMPEHATIIRf: ( C )
11 INTAKE MANIFOLD PKESS.(mm.H
13.00
20.00
595.11
9.M
.1 5H
1. I0d
s . a o u
iiai'.u ,
Prto.o
a (i.oo
2H.OO
1 02. SO
29. OU
S 1 ,9S
13.00
-------
KPA/Vw Ill'Cr nFTtlAfJ'lL (/'J.S-imi X 7.1.«.mn)
M.F.c./iKiscn DisruioDruK icNiriun REFER TO FIGURE NOS. 23-26
MlXIHKf Him- A1 '10 Kl.tf/SFC 2.S HAH rt'-ttl' (KKPLAT UF- LPA.7)
I'ATL
Ttf. I rjn. 17.0
HAH(I.*F"II:H 76<4.o<» MM.HI;
I'ltl Uul.H IFHPCCJ li.d
n«v
HFLATJVE IIIIMIOIIY
hUMIMITr cnHKECTION
r.KAINS DF
= J.i.S'l
ACT Ok = ,*U
I)!A 1 A
3PHJ> PO«K*
F* h. V / S K n
10.0 7.2<>
tO.O 7. 2^
't 0 . 0 7.24
"0.0 7 .2*1
^0 . 0 '.<*''
ao.O 7.2''
liMKI' TO"(IHL HMFL VIlLIIMf
n«ic
hftl-' N.'l i;/Ki.llli l-.FHICIt-NCYlX)
2. "JO 2''. 00 HfV.3 3(1. 1(
2. So PV.UO HI**. 6 "<0.3{
2. So c'^.OO 7l»2.2 32. 6(
2.50 2'-».l)0 771.0 36.WC
2.50 f"V.(iO 776.2 '11. 5(
2. So 2 ''.00 MO '1.0 I'J.'M
.0)
. u)
.0)
.0)
.0)
.0)
AIK f-'ltl.
KAl 1U
S . '» ( . 0 )
6.5( .0)
7 . 1 ( . 0 )
H.3( .0)
*>. ^( .0)
10.71 . 0 )
H . T . t .
*
20. «h
22. OS
22. 7V
2 i . 1 2
23.26
22. «S
h C MOX
d/KiJ.hh (,/Krt.hW
5.06 2.71
3.16 S.3S
3.63 6.00
6.K7 2.2«
10. OS 1 . IS
21.72 .S3
C 1) CU2
U/Hrt.Mh U/^«.Hh
1 15.72 1016.60
2S.V«> 10/S,t3
V.3u iOo3.V1
6.13 10^7. It
9.22 lu^'4.«43
16.22 101V.6S
hC » '^OX
U / K ^t • nti
7.81
B.SI
V .0-4
^.15
1 1 .24
22.24
-------
EPA/VU HtfCC Mf. JHAtlllL (/«».«iiiini X 74.1mm)
M.C.C./IIOSCM nisrPiiuiTiiK lunjTKM
inr: s.«iNr, AT 40 utv/st.r 2.S ni\» O.H FUIIIV. KATIO
REFER TO FIGURE NOS. 51-54
HOHt
79. SO
STKOKF
73.40
'JUI1HFR OF
CYI.l"OH
a
CYCLl
TYPt
4.
Hi(AKt
tU'JSlAfll
Alh ,-lKIFK
I.UilSIANl
.000000
H)tL
5.G.
,7'JSO
H/CAHlliiN
K*IIU
3.97
VALUt
I9V40.00
(J? 1 1 U '<
(/
DAY
30
MONTH
3
Yt«'<
TtST
HlMHKH
ilAKOMF. TF.N
753.60
*t T HOI.II
IKfKA CUKE
13.50
ok r IIIILII
IhfiPfeKA IU*t
19.00
I'U'-EN
. 1
.0
.rt
45
1 1 . '1 0 0
4 .'*
2040
'1 H 0 . 0 3*0
Oil
.'1
.0
.00
.00
.50
.00
.20
.00
.00
40
15
102
29
5^
12
19
.25-373
.00
.00
.50
.00
.00
.00
.00
.f»
394.0 'ID 0.0
.
1 1 .
'4.
9.M
145
500
90 u
20 '10.0
.
11.
'1.
''.'*
1 40
soo
'Mill
2040.11
290. o 20
5.0
•40.
10.
102.
29.
so.
12.
19.
00
00
50
00
45
00
00
40
5
102
29
47
12
21
-*t>4.9/-342
4 1 (>
9
. 1
.0
.0
30
1 1 .500
4.901)
2040
130
.0
.0
44
.
11.
4.
.00
.00
.50
.00
.S5
.0(1
.00
.91
3.0
•>.«
113
500
'/DO
2040.0
80.0
-------
M'A/Vh MWf
r. flFTHA
NHL (7V
t'.F ,f. /oll.SCM niSTI'ItMITllH
JG'-IITKIN S
I'AIL iO/ 3/rtS TtSF Nil. 1«.
K'tLATIVl; HHMJPllY =
Hl.i'-'IlMTY LIlrt'UCTHlM FACTHK =
(.KAF'.'S OF WATFK/LI» I'HY ATK =
: IF I'IMtH
Kt'SlfLTS
SHCK' I'liwt!' (IMF 1' Till'uUE
KF. V/S M. MAR N.M
'10.0 '.?'' ?.fiO c'V.OO
^0.0 /.t^'' c'.'iO ?9.(K)
'jo.u /.«.'•' r.'io f'v.oc
«0.0 '.i?' i.'.c'0 «"y.OO
« 0 . 0 7.i?" >' . r> 1) ? •< . U ft
a 0.0 /.i"» .'.'in P9.00
UlfM, AT
.Snini X 7 i.'lir.m)
1KM 1 lUi'l
'40 wrv/src ^.b HAH 11.1 njui
0 liAI. i
.W.'l
/Si.bll •IH.MC. «t F
DHY
LISTtU AS b/KvJ-MH AWL
REFER TO FIGURE NOS . 51-34
V. KA 1 III
ilULb TLMP(C) 13. S
HULH IF.MP(C) 19.0
ACTUALLY G/HH :
AHt CALCULATtl) FKUM AIK MUtk 0»fA
[ TiMC AIi( F UtL
It.MCY(%) rtATFU
( . 0 ) « . 1 . (I )
( . 0 ) (1.1 . 0 )
( . 0 ) H.I . II )
( . 0 ) P.I . (1 )
( . l> ) 8.1 . 0 )
'1 0 . 0 ( . U ) H . I . II )
B.T.t. H (, NUX C U CO?
X G/K-.MK G/KK.MK l,/K,..,ll< U/rft.rtK
?3.^6 6.7i 4.1i 9.1^ 1U33.0/
«;i.i3 6.7re i.^S «.ib 1U31.H3
i'i.i'j h.bh .*I6 H.^7 1041.11
2i.?«> b.bB 1.7S M.Ut1 UJ4S.S1
i?.S7 6.VO I.I '4 7.O1* lKbH.^4
21.37 7.3.i ,7b 7.10 Nib. 01
MC t NuX
O/Krt.HK
10.65
9.97
9.12
8.<4J
8.04
h.07
-------
r. HKCC MFTHAHUl. (79.Sinn. X 73.«mm)
M.E.L./HUSCH OlSTf'lHOTiJK I (.NIT 1(111
ir;i\l] TlOtt ShIMG AT tO HIV/Se.C S'.S I>AK O.H IUUIV. I'ATIU
REFER TO FIGURE NOS. 55-58
79.50
DAY
31
MONTH
3
YEAK
i EM:II!( SPEI.I)
2« I GNU I UN T i Mine
1 FUfL VdLUML ( CC )
2 (ItfAKr LOAD
S FUEL TW C :Hf )
6 FUfL Tf.nrEKATIIRE ( C )
8 AI« MrTtR Tt 'tHEHATUKF. ( f
11 INTAKE MAi.IFOLD »'Rr.S5i . (mm .
36 EXHAUST TKflC. (POST TOPHI!)
27 F.XHAl'ST F'DFSSUHE (CUST Tlli«
13 CAklillN MOMIXIDF ( X )
IS CARhllN I) IUX ] HE ( * )
16 OxYliE'* ( i )
12 IIYDKMCAHMUnS ( PPMC )
I'l OXIIJF.S OF fJlTKOOrN ( PI'M )
! (IF
'fKS
CYCLF
TYI'f:
lll'AKt
CONSTANT
fl. 159.15S1
IF
Kil IM
PJ I 'M
a o . o o
30.00
203.00
63.no
63.20
12.00
) 21.00
MO) -16'). 95
"469. 0
I'O) 27.1
. 1 4B
1 1.500
'4.900
20'40.0
1200.0
T,T h
UK 1*
0 0
4 0 . 0 »
25.00
203.01)
6 3 . H 0
63.95
12.0 o
21.00
-172.21-
U65.o
27. 1
.150
1 1.500
'l.'Kin
1950.il
9SO.I)
All* HE TEH
f.llll.-il A 'IT
.000000
AHIIMtTfN tit ] IIULt>
75R.20
'10 . 0 0
20.00
203.00
63. HO
60.15
12.00
21.00
173.71-
"4 6 6 . II
27.1
.155
1 1 . 0
1950.0
750.0
'10.00
15.00
2 0 3 . 0 (1
63. MO
63.05
12.00
21.00
16V. 20
1 7 U . I)
27. 1
. 1 "4H
1 1.500
'4. 9 II II
1950.11
520. ii
r i 'i f\ i *."'
H 0 . 0 0
10.00
203.00
6 ^ . rt 0
61.25
1 2. no
22.00
-157.92
192.0
27.1
. 136
1 1 .500
a. 900
1950.0
320.0
OK'
2
MO. 00
5.00
203.00
63.HO
5H.<45
12.00
22.00
-13H.37
516.0
27.1
.12H
11.500
•1.900
1''50 .0
1 P 0 . 0
./950
il/CANIHM
HAT 10
3.97
ALDKl F- 1C
VALUE
199KO.OO
1C I
!
UIJ I 1 OIM
U
Oil I PUT
UP I |nr,
-------
FHA/V* MUtC MKTHAHiiL (79.Vim X M.'inim)
REFER TO FIGURE NOS. 55-58
*'.f .C./iUlSCH l>Uil«li|H|(iK lUralllU.-J
Ii,'HT|n,j SKirn; A! ao KEV/bEL S.S HAM O.H hui'iv. hAiiu
HATE 31/ VHS n.SI Nil. ,M.O liAioiiNC H.K 7SH.20 IM.itr. WE. 1 'HILb IEMP(CJ 1S.S
IJKY UULt) IEH('(C) t-3.0
t'Uf-'lDnY LOHI'ECl I0!l FACIilli = .92
r.KAIIKS Of- I All-.IVLil UliY A J It = S« . 7 1
: If I'll.JI K = n.O KL3ULT3 LISTtl.' AS
t,/Kn-IIK AI'E ACIUALLY (J/Ml. :
KI-.SULT3 [N (HKALXTS) AIU. LALCUL ATt.l." f-'KOM A 1 1< MElKU UATA
SHfLP
RE
'10
'40
'40
'10
to
10
V/3
.0
. o
.0
.0
.0
.0
Po
K
lh
lt>
lo
K>
[o
It.
HtW
-1
.03
.1" J
.03
.03
.03
.03
,,,.,KP
II AK
S.50
S.'iO
s . s o
'..So
'j.^ll
S . 'i 0
TlJWuUt..
M . !•'
63. HO
h i . rt 0
(' 3 . " li
63.^0
6 3 . M 0
h 3 . K 0
Hlf 1.
G/KW.IIK
'j 7 (I . 9
SOH.1
b('h. '4
S76.2
S93.2
<>?! .6
VOLUME liUC
H f-ICIEMfYd)
S9.2( .0)
•5«.6( .0)
SH.Sf .0)
59..'l( .0)
61 .<4( .0)
h«.3( .0)
AIU Hltl.
i< A 1 I U
".!( .0)
H.K .0)
« . 1 ( . 0 )
H . 1 ( . 0 )
H.H .0)
" . 1 ( . 0 )
a . I . t . H (.
X (,/M'i.HK
31. «l «.9S
31. 7« t.66
31. «d 14. 7o
31.33 <«.7<4
SO.^t li.BV
29.01 b.13
"IIIX C U CU2 HC
G/l.0l t>.29 7'3?.93 10
-4.77 6.S3 /bS.Oo 9
3. 4« t>.3o /o«.H« b
2.12 b.9»> /V2.21 7
1 ,2b b. «>» M30.MU b
» .^0
* * hr<
.61
.t>9
.'4?
.od
.01
.37
-------
EPA/Vl' .IHCC MClMAtMIL (79.Smm X 73,'lmm)
M.t.t./HUSC'l DISTRIBUTOR 1 i,til T 1'Jh
h LIHIP AT 'HI PfcV/SLC l.r> tlAI! f'M| P
REFER TO FIGURE NOS. 19-32
R0"t
79. SO
STKdhf
73.10
UF
cvi.
TVPI-
I1KAKK
COf'SrA
1S9.
A|H
CUWSTANl
.000000
M/ChKh'iM
KATlu
3.W
L*LilKtHC
VALUE.
I O r< H 0 L > i A !< I, ( IJ
MflrtTH
-4
Tear
ijlJMIIfR
ISAKDMF. ff l<
HtT HUI.I1
H.MP|:KA HIKE
1«.SO
o"LH
IF-lt'tRAlUKh
21.00
FhlcllU«(
uMIHu!
CUKftC T 1 HI.
0
1 ENGltih SPEED (RtV/S)
2B IGNITION TIMING
1 FUtL VOLUME ( CC )
2 HKAKf LOAD
5 FUtL TIMK ( litC )
6 FUfL TFMPKRATUKE ( C J
8 A1K f'ETEP TEMPF.KA1NKE ( C )
11 INTAKE K.AUlFdLn PKES8. (inm.lliiV
26 EXHAUST TEMP. (POST TUUItO)
27 IXHA'IST PKEbSUHt (P'JSf
13 CARMIIM MIKJOXIDP ( '/. )
1? CAKbOfl DIOXIDE ( i )
16 nXYI.FN ( X )
12 HYDKUCAHIUirjS ( PPMC )
I'l PX1DFS UF iJJTHDfirM ( PPM )
10.00
16.00
102. SO
17.10
SM.OO
13.00
22.00
.02-
363.0
S.3
2 . H II 0
1 i.SOO
.200
2130.0
260.0
10.00
IH.SO
102.SO
1 7.10
61.»S
1 5.00
22.00
'173.01-
372.0
S. 3
.000
11. 400
.6SO
1 320.0
So o.O
10.00
2o.OO
102. So
17.10
6
10.00
37.00
102. SO
I/. 10
63.10
13.00
21.00
369.23
31«.0
12.0
.211
7.900
9.600
IrtOO.O
3'l.0
-------
( t'f./V.a Hiu:c 'It Tlc'.inH, t7V.u>i"in V
>i.l .r./itnsril DISTk ludliiK K.MII
•iixiiiht. LUOP AI ui) iSll
.'"'0
. 'i'l
.Sil
• *^ ''
.r")
(- PIWil K
lit SIIL1 S
UIMjIlt
f. . M (
/ . U ()
/ . '4 1)
/.'ID
/.'ID
7.«n
/.'UP
= n.n i'i
.111 (HUM
FIlf.L
;/KW.MI'
ISC. 7
llMh.h
II '1 1), h
D 1 M . ?
II 1 7 . S
II*. I). II
lillLTb LIbTH' AS
i.( .n )
2^.S( . D )
3i.i>( .n)
'IO.K .11)
U/K'<-HK A'*L A(
ATLO FKtiM AIK
Al'< FULL
-b
17.73
17 . 7 '4
1 /.03
rIK :
A
M C
/nn.ii
7 ,(,6
".77
S.30
tt.17
1 '4 . '1 i'
<^.0(J
i; / f. t< . \ i K
C D r.u^
/H'l.hh Cj/*ft.t
•1.73 3/.V3 I" <:-0 . }«
'».! 1 3. 1'( MuJ.lD
r".0^ ll.O'l li'Jrt.Si
1 . 0 / 1') . / f)
HC » MO)
t, / K .» . M n
10.11
i u. •> ij
5 0 . 1 b
-------
tPA/VI liKCC HKTHANIIL (79.Smm X 73.-4mm)
M.E.C./fUISCH IJISTRIHUTUR IGNITHM
MIXTUKf LOOP Al 60 KtV/StC S.S I'AH |IM|P
REFER TO FIGURE NOS. 35-38
HOPt
79.
7 5 . '10
MIIMHK'ii OF
CYl.IfJUt.KS
'4
CYClt.
TYIT
HKAKt
CONSFAHF
IS9.IbSl
All* Ml. UK
CONSTANT
. l> 0 y (1 (1 (1
FULL
H/CAHUUN
KA1 )(i
1L
VALUE
>.UO
UP 1 IuN
u
DAY M'lflTh
1 «
YEAH
HS
TtSl
NUMilFK
26.00
!(>'
TEMPI-
11.'i
UHY OULH
TtrtPEKA tuivt
?1.00
I UN
OH Finn
0.
UUIPul
UP I [U'J
M
SPtfl> (RKV/S)
?e
'I FUFL VOL" IMF ( CC )
2 BRAKE Lii/li)
5 FtltL TlMt ( SFC )
«> FUIL TrMPFPATIIKE ( C )
fl AIR MFltK TlMI'tUATUKf ( C )
11 tNTAKt MAN1HU.P f'Kl SS. fmm.Mq)'
?6 KXHAUST TtMC. (I'PtiT TMPllO)
?7 FXHAIIST ivrssuRt U'usi
13 CARIfiN HOi'JOXUH. ( X 1
IS CAPltOU DIUX1DL ( Z )
16 OXYGCH I I )
1^ MYDKIICARMUNS ( PPMC )
i 'i iixiDrs fir riin/iiGfu ( I'
60.00
1<>. SO
203.00
63. HO
37. OS
1 '1 . 0 0
24.00
2l/ft.')6-
'>5<4.0
'•2.9
2.SOO
13.SOO
.200
1 oHO.O
H'10.0
dO.OO
1 « . (1 0
203.00
6 3 . « 0
39.no
1 3.00
2 ? . 0 0
261 .70
577. 0
1>>.6
.600
14.100
.SSn
IOSO.O
1SSO.li
60.00
20.00
203.00
63. no
'U .30
11.00
2«.00
-253.12
S6K.O
10.9
.170
1 3.0(iO
2 . '» 0 0
720.0
1 6 n o . 0
60.0 0
22.00
203.00
63. HO
'12. IS
1 '1 . 0 1)
2 3 . 0 1)
-]Hi.ttO.(l
ss.o
-------
f I'A/Vl Mi'LC '!! TIlVIIIL (7V.Snm X 74..|,im)
M.I .r./.iiiscit oisiHrnuTdH ICMUIH REFER TO FIGURE NOS. 35-38
MXTIIM LUMP AT M> Kfv/si:c s.s UAK O'-ILP
HAH I/ <|/H', TL
i(U AT 1 VL IIIIMIIU fY
IHif'lOIlY CilKI-'l-r lllJU
r.I'M'IS IIF KATl 1. /I..H 1)
M't 1 n Pur.'KW UMIIP
I't-V/Ti K.'i HAP
Ml . U ^ '«.()') S.'iO
<|».U 2 '(.05 'j.Mi
Ml.!) rt.oS S.'jd
i-o.o r'l.os s.sii
t.0.11 c'l.ilS r>.rMl
'.(P. II i"l.0'.l 1'.t"l
sr nn. .
=
(ACTllh =
i.1 Y ;> 1 K =
: lh PUiUKK
HrSHLTS
r.nuait
n . f
f> .5 . H n
'. 3 . ft (>
d 4. (Ml
o5.l.o
t< 'i .Ho
i. s.nn
(1 I'M'llM U K
1H.H7
.yl
S 4 . 1 H
= II. 0 KtSULTS
111 cti'ACKi: rs>
1 ut t i/nuiiMf
r/KK.HU- t. FHCI
(,'„'.(, V».6(
hilrt.O ')0.'l(
SHS.a '>u.^(
S74.<> M.^(
'i7?.'» 7().0(
S«»'..i x^.t't
7S'i.hS ih.ni.;
LJSTtl' AS U/lv»J-
AKt LALCULATtl)
1 W1C AIH F
I'lLYli) HAl
.U) b.4(
. C ) 6 . '1 (
.11) 7 ,d(
. 11 ) H . i {
.0) '<.S<
. <> ) 1 0 . / I
ftK 1
I)K Y
UK Alit
FKHM A
UtL
JU
.0)
.0)
.0)
.0)
.0)
.«)
HUl o It MP(C ) 1 1.S
aULu rmpcc) d\.(t
AClUALLY (J/HK :
IK MtTtK UAlA
H.T.t. II C
X G/M..HK
?7.67 3.3V
^V .nV 3
H.I? i\-,\f /Ve.'4V 10.^-*
V.?/ O.b/ /0*»./1 lO.Mh
'I.SJ 6.11 ll\.m 6.VJ
l.3V 7/1. 4-5 lU.cf?
-------
EPA/V-J HUCC MKTHANOL ITt.'yng, X 73.0 Kt.V/SKr. 7.n IIAH
REFER TO FIGURE NOS. 39-42
MORE.
79.b
STKOKC
/ 3 . '10
WJMI>ri< uF
CYI INIIF K:;
'4
TYPl
CONSTANT
159.1551
ft IK MI-. TF.rt
CUM3TANI
. I) 0 0 01) I)
Fuf L
vS . I,.
. /950
H/CAKbilN
KAl KJ
3.97
CALUKlPIC
VALUt
.110
Uf'l HJiJ
DAY
I
MONTH
YKAH
TEST
MUhllFI
^7.00
hAROMt'lKK
I'.'tT itULb
rtMPI-.HATUKK
1'I.SO
? 1 . 0 0
FKICl Jlli-i
DPI 1>IN
0.
p I I ON
'I
1 ENOI'.'F SI't.ED (KEV/S)
8H JGfJjTlUfJ HMIia;
1 FUCL VOLUMF. ( CC )
? l.7o
I '1 . 0 0
?.?. 00
IV1.76
S7h.O
S7.Q
^.300
1 i.SOn
.<>UO
1 7'ltl.d
9SO.O
6 o . d n
1H. 00
50U.no
HI .?0
'I''.M'>
1 J.oo
23.00
-181 .->«
60^.0
(.?.«
.(.no
1<4. SOO
.sso
JOi'O.O
19(10.0
hO.OO
19. SO
Joi.ou
HI .20
51 .(Hi
13.00
?1.0(.i
-14S. I'l
501.0
M).9
.15M
13.300
2 . 1 0 U
570.0
lttno.0
60.00
21.00
3 0
-------
HAIL I/ '4/HS
Iff. LATlVf. HllrlJiUlY
n.r>r mi.
HKCr MUMANdL {79.Smni X 73. '»i'm)
r./ndSf:H oi s it< j mi run iGMiiiu'i
LIHIP AT 60 Kf.V/IiKl 7.0 DAK HMtP
7SU.65 MM.Hi;
REFER TO FIGURE NOS. 39-42
WE.T HULH 1KMP(C) l«.b
DKY HULb UMP(C) 21.0
rlllrini TY rurtlu CTIUfl
FACTHH =
KY A IK =
.''I
: H PIMKK = 0.0 kriiULTS Llbft.l' AS l./KW-UH AWL ACTUALLY (
i;tv/s
00.0
60.0
60.0
60.0
6 0 . 0
60.li
Pl).(( H
30 .6 |
30.6]
30.61
30.61
30.61
30.61
HA"
7.00
7.0U
7.00
7.0o
7 . o o
7.00
KI.SI'LT
M . !• i
Kt.2.1
n i . f o
f. J . «• o
11 . 1 0
(' 1 ,0
M .£?0
,/MK :
:> KJ (m>Aciu:is) A'*L CALCULATLD FWOM AIK m rtw UAIA
FUKL VOLIIMK TKlC AI* FULL tl.T.h. M C
G/KM.M? FFFKlt 'KY 1%) RATIU X G/KH.HK
60V.,'
S71.?
S'I0.7
S3M.7
'j 3 'i . 7
S'll .rt
SV.K
6 0 . 3 (
6(1. H(
71. 7(
80. 3 (
"6. 1 C
.0)
.0)
.0)
. . | ( . I) )
'» . 7 ( . n )
2^.6<4
31 .61
3?.8t
33.76
33.76
33.32
3.26
1 .*?'!
1 . 16
1.92
3.30
t.Hl
UUX C
(i/Kn.HK b/K
'1.66 /b
V.lt) 19
V.S9 b
1.66 i
? . IS S
I . i« 6
U CU2 MC » NUX
rt.Hk (,/Kh.MK U/Kn.MH
.29 70V.HO 7. VI
.9b 7"4M.IS l).'42
.62 /M-i.il 10. 7S
.19 7^1.03 6.S8
,2« /1/.39 S.'IS
.2-4 7e!l .S3 6. 18
-------
v. HRft MriHAI.'OL (7°.5mm X 7i.'lmm)
M.t.(. ./HIJ.SCH 1USMMHUTOH Ii.filTHM
MIXTliHE LUUC AT 15 Kt.V/ShC I OH
REFER TO FIGURE NOS. 43-46
I'OHE STHilKK
7V. SO 73. '10
OAY M)NTH
1
«?fl
u
2
5
6
H
1 1
?6
27
13
15
1 6
12
11
2 'I
IUG1NI SI'tKU IHt
1 UNIT I ON HMlUr.
FIJI L VOLUME ( cc
UKAKE LOAD
FUEL TIKI ( StC
FIIIL TlMI'fcrUTIIHE
All' Ml HR TIMPFH
INTAKE MANIHiLD
nUMHfK OF CYCl
CYI IW)I MS TYI'I
1 II.
YKAK TEST
jJUMIll-K
I
MS 2».00
V/H)
)
)
( C )
ATUMF ( f )
I'lTSS. (mm.Mvl)
I-XMAUST TEMI'. (PdSl TUmiM)
EXHAUST I'HF'SSUHE
CAKttor* Moi.nxiliF
CAf'Bnfj OJDXIHE (
(IXYUffJ ( Z )
MYDHCicAKnuNS ( p
nxinf s OF NITIUK:
(PdSI IdKHU)
( % 1
•/. )
('ML )
f li ( HI'H )
IS .00
20.00
S2.no
.00
1 '1 0 . 1 5 1
12.00
29.00
-562.50-5
10S.O
.0
2.600
12.VOO 1
1 . 1 110
3600.0 3
12.0
IS
2ft
S2
'17
1?
.16
ti 1
1 0
1.
i.
1 .
1,0
.00
.00
.00
.00
.20
.00
.00
.2S
o.O
.0
t>00
2 00
600
11. 0
I '1 . 0
HMAKf
CIIN3TAH!
hAKO'lF f[ K
766. SO
IS. 00
20.00
S2.00
."0
IS2.10 1
12.00
^2. "0
-SS7.23-S
10V.O
.0
. H 0 0
12.VOO 1
2.300
3600.0 i.
I'l.O
IS
20
S2
Sh
12
i'l
Su
1 1
.
<-- •
A.
IvS
1
A IK itlEK
CUii.STAilT
. 0 0 0000
V'F T ItULI*
fL-^PLKAfUHE IF
.00
.00
.00
.00
.VO
.00
.00
.'16
1 . 0
.0
250
200
o 0 0
0.0
<.o
IS. SO
IS. 00
20.00
52.00
.00
ISO.no
12.00
SS.OO
-SIS.'^S-
1 1 h . 0
.0
.220
1 1 . 100
S . '1 0 0
SI 00.0
12.0
15.
20.
S?.
.
156.
12.
*6.
530.
121
1 0 . (1
FUfU n/CAHhi)li
S . ti . M A T 1 ( i
. y '> s o .i . g /
I.IRY bULH I'OrtEK
HI'L^AIIIHt CuKWKCllUU
23. SO 0
00
UO
00
00
IS
00
ou
91
.0
.0
UO
00
/ . 0 0 0
6600
10
.0
.0
CAL')N|F|C
VALUt
H
-------
lll'ir 'M TiiA Jill. (T^.bnim X M.'ln'ni)
s.r .r./i>'isrn nisTiMHiiion i r, ,-j j i lo ,'j REFER TO FIGURE NOS . 43-46
nixllllil LUIU> AT IS Kfv/btL JI'l.F
TATt ?/ U/MS UST Nil. «.(> IIAi'OMllfK /(jh.SU -IM.H!; *t r HUI h TIplPIC) 1S.S
IJKY KULU H-MPIC) 2i.b
"i LAT i vi: hiMiuii Y
Mii'iil'lTr i
OlvAIf.S liF
t I n
v/:;
i '•> . 0
IS.u
Ib.n
1'J.U
1Y
rim/ r
:
fi[ i'
/> >-•
. no
.no
. On
. nu
. on
. " u
AC inn :
Y All* :
U IMi.il
: '1 !
II = n.o KI.SULTS LISTLO AS U/KW-HK Al .
s>',S.7
t FF
1 J
1 0
1M
IS
lh
1C
ICHMCYU)
. /(
. ? (
.S'f
.S(
. e>(
. 'K
.0)
.0)
.11)
.0)
.0)
.11)
HAT 1 1)
i» . 0 I . 0 )
(. . U ( . 0 )
t> . « I . 0 )
7 . '4 ( . 0 )
l( . 0 I . I) )
M . 7 ( . 0 )
Mt IEK UAl A
h . r . t . M C
X o/Kn.HK
.00 1.U2
.00 i a . o o
.1)0 It-.Sfa
.IIU l/.l
.00 <• 1 . i 1
.OU <^M.9i
NUX C U Cu2
l,/Kn.MK U/Kn.llk I./IS1.MK
.10 1S1 . /V 1 Itli. 11
.1? ^J.b/ l^l^.Vb
,13 <4M.h^ l.'>b
.12 Ih.io l Ib. IV li^b'I.UU
.11 1 H . '4 0 1 U •* . J n
HC * Mi
U/h...Ml
12.12
12.16
12. bV
1 7.2S
2 1 . 't 0
2'>.OS
-------
EPA/VW HHCC METHAMOI. (7«».5mm X 73.'4mm)
M.E.C./HUSCM OISTPJIHITUK 16MJTIOU
IGNITION S*JN<; AT is REV/SEC nn.t srincn. AK-K
REFER TO FIGURE NOS. 47-50
MORE
79. SO
STKOKf:
73.10
of
CVLlM'tfKS
CYCl I
TYPf
'4.
HKAKt
CtiriSTA'Jl
AIK MTltH
CONSTANT
.000000
FUt.L
S . li .
M/CAKKON
KAllU
LALOWIHC
VALtlf
Tltro^uCriAniit 1.'
uPliuj
U
DAY
MONTH
YKAH
Hr.
TLST
HAROME TE'<
766.50
WI..T tlULH
TtMPKKA rilKE
15.50
I)KY HOLH
TEMPEI'ATURt
23.50
PiJi-itK
CUKKEtTldN
0
H 0 . 0
13.0
1 10.0
.0
1.500
1 3.300
1 .350
3150.0
12.0
15.00
10.00
52.00
.00
112.00
12.00
37.00
15.00
5.00
52.00
.00
137.70
12.00
37.00
-561. 71-556. Itt
1 1 '4 . 0
.0
1 .400
1 ?.400
1 .'100
26>IO.O
1 l.n
120.0
.0
1 .
-------
H'A/tfh MUi:C 'IFTHA'IIIL (7V.bn'ii X 7J.'lmm)
".t.c./unsui i.isnviminiH ir.Nin.jN REFER TO FIGURE NOS. 47-50
II1NITIIIU S'fllUi. Al Ib HFV/.-SEC II/LF, STOICM. AFK
"AfL S/ 'I/MS Tt.'iT Ml. 2'».0 MAHUhMEH /bb.bO ••IH.MU rtET HUL» IF.MP(C) 15.S
PHY HULtt H.HHIC) i?3.b
I't I AT 1 Vt HUMIDITY = ' = SV. <«
: ii- co«i if = o.o Rr.siiLia LibTto AH (,/K«-MK AKE ACMJALLY
G/HW :
m :>HLT,S in (IU;>(,.
.00 1 08 *. 7
VOLUME!^
t F F I C It • 1
1 1 . n (
1 U . £_' (
1 (4. 3 (
1 <*. 3(
1 '1 . V (
1 S . 3 (
1C
C Y ( % )
.0)
.0)
.0)
.0)
.0)
.0)
AlK FUEL
KAT IU
b . a ( . 0 )
I>.M .0)
<>.3( .0)
6 . 3 ( . 0 )
6 . ')( . 0 )
'' . a ( . o )
b. I .t.
*
.00
.00
.00
.00
.00
.00
H C
0/Krt.HK 1
13.|fc
12. 1 0
1 1 .oV
10. o9
V.«? 1
7.Vb
ilOX
i;/Krt.hi<
.M
.1 1
.11
.1 1
.10
.OS
L 0 CU MC »
1,/h.J.hli G/Kri.MK G/K->
91. M4 1<;1.01 13.
Vb.'il IPlfl.VO 1^.
rl8.bU l(?«iM,Vo 11.
«9.0H l^'JO.Qb 10.
-------
IIHCC Mt THAijuL (/".Smni « 75.4mm)
foOSCH/M.C.C. Il.MTliHJ - criKRtCT H.'tL INJfTTlWS
MILl LO/U) I'lltVFK CUKVE-LIIT HIELL INO, .HuT ItliJ TIMING
REFER TO FIGURE NOS.14-17 and 59-62
IIURE
79.SO
STKtllvE
73.40
f.'UMMEK (IF
CYLINoEKR
4
CYLLI HRAKE A1K HL1LK FUtL H/CAII|: uPHui-i
'I. 1S9.ISS1 .000000 ,79'jO 3.9/ 19940. Ou 0
DAY
2S
MU.TH
11
TEST
Jlii'lMF
56.1(0
«tf ilULIl
TEMPI HATUkK
13.00
UMY
H-MPhl-'AHlME
22.00
POntH
I'irJ
IIP I i ur«
0.
UP! Inn
1
i ENGINE SPEED (I>EV/:>)
26 IGNITION TTMIM;
4 f-UEL VOLUME ( CC )
2 CKAKF I.IIAO
5 FurL TIMK ( stc )
6 FUFL TI-MPEUATIIHH ( C )
R KlU METER Ft MPF.KA ItlKK ( C )
11 INTAKE MAMFOLO PHf.SS. (ram.llo)
26 EXHAUST TEMP. (POST TUHHd)
27 EXHAUST PHFSSUKE (Pusr TMHIIUJ
13 CAKbON NONOXinE ( X )
15 CAHMON DlUXlhi: ( X )
16 nxyt,fN ( i )
12 IIYI)KUCAKHU,'4S ( PTMC )
14 OXIuFS Of- NITKOGFN C PPM )
20.00
7.00
205.00
9rt. 00
/'>.<) U
14.0 II
17.00
-.7S
57K.O
16. S
2.100
13.700
,2Sii
1470.0
1 OS 0.0
30.111)
1 1 .00
203.00
107. SO
H 9 . M 0
1 '4 . 0 0
1 h . 0 0
-1 .SO
4Sl>.0
24. 1
2.SOO
13. '.00
.200
10MI.O
9SO.O
40.00
14.00
304.00
113.40
VI. 30
13.00
19.00
-l.So
S 1 9 . 0
14 'I
2.300
13.SOO
.20(1
1920.0
1100.0
S 0 . 0 0
10.00
304.0(1
12S. 7o
59. 10
13.00
1 ft . 0 rt
-2.2i
S/7.0
7 H . 2
2.6UO
13.300
.200
2S20.li
1 2 0 (i , 0
00.00
1 6 . 0 0
S (I 7 . 0 0
122.90
SS.50
1 3.00
1 M . II 0
-5.01
611.0
1 0 7 . S
2.300
1 5.SOO
.2SO
ISOII.O
1 3SO.O
70.00
17.00
SO 7. 00
1 I8.KO
47. SO
13.00
19.00
-4. SI
633.0
14-4.4
3.000
13.0UO
.200
1260.0
osn.o
HO. 00
18.00
S07.00
1 1 7.2u
40.30
12.00
20.00
-h.02
6SS.O
197.0
2.900
13.500
.200
2190.0
1 1 U o . 0
90.00
20.00
S 0 7 . 0 0
1 13.60
5o.20
12.00
22.00
-7.S2
691 .1)
243. b
2 . H 0 0
13. SCO
.200
2100.0
1 3SH.O
-------
fl'A/Vi-, IH.'CC MF lll/.iiliL (7V.5mm x 74.4mm)
iiuscii/M.f..r. ir.NMin'i - conned FOFL u
FnLL L'lAi' Pill.F i.' CIIUvt.-Mir FOI LL |.ili,M' Tl.r.r nil. 3o.O ItAUOf"! If K 7li5.21 plM.in;
I'l 1 AT 1 VI HIMJ|>| 1 Y =35.51
iilifHT'lTY L'MI.'I f"T lo.'l F AC I up = .H'l
REFER TO FIGURE NOS. 14-17 and 59-62
;•!£ T HOLU IFMP(C) 1.4.0
UKAU'S OF «ATUpf ri)
K F V / S
20.00
3 0 . 0 0
'in . no
5 || . 0 U
60 . no
7 0 . n o
H 0 . 0 0
vu.no
•IIN.PI.'L
t- M.iir.
-.75
-1.50
- 1 . r> 0
-?.?6
-3.01
-4.51
-6.02
-7.S2
ore. nil'!/"
12.32
i' •> . 2 6
.'".'MI
3v. 4V
'J 6 . 3 3
S2.25
•>» . vi
64. 2 '4
S MAN. If Ml-
r
. o
.0
. 0
. .1
. i'
. 0
. .1
.«
fiC-PPM IIC-IM'M
WF.T
1 1 r v . a
1427.H
1 'I 7 6 . H
1V3H.5
I 1 '"' 3 . 7
" 7 0 . 0
167V.H
1607.3
PAHT
f./h
.0(1
.00
. 00
.00
.no
.00
.00
.00
UK Y
1 '1 70 .n
1 M.f .0
] ''20.0
2'Vo.o
1 500.0
1 2 1> 0 . !l
2 IV 0 . II
21 00.il
1LOL All S
(./KI..II
.oo'i
. noo
.(inn
.OoO
. 000
. 00 J
.000
.000
•(Ki.)
1 ? . 1 7
19. VV
2" .26
4l'.oV
'IS.H6
S 1 . M |
S'1 .') 1
64.02
H'iUKL-A
H(i:l
. 00 n ii
. 00 (ill
. ooiiii
.(101) 0
.OOnil
.0000
. 00 on
. l) U 0 0
i' r
(;/n
43. Vi
67.1'V
V6. Jo
1 74.VO
123.16
1 1"'.S6
240 . 7tl
255.61
ii i;
C/KIV .11
2. 755
3.311
3 . 3 n 1
•1 . 4 0 4
2.6SM
2 . 1- » 0
•4 . 0 h 7
5.V7V
Uf'.filPK
H.iis
V.2 7
V. 7R
1 0 . H 4
10.60
10.24
10.10
v.7'<
lK-("3/U)
AFI.HM
. OOllO
. 0 0 II 0
.0(100
.0000
. o o o o
. u n o o
.on or
. 0000
iinx-PPix
nl I
Mil 6. 7
72''. 3
('. '16.1
•Vi. 1
103H.4
731 .3
''.'13.7
1033. 3
IIOX
G/M-.'.H
4.756
II. II MM
4.6H2
5.06V
S . 7 ••< 4
4.170
'I. go2
<• . 1 H <•
0>"rm,w
P.3S
'» . 1 4
V.61'
10.73
Id. 4V
10.16
10.0 -1
V.7o
AlP-l'ASS
K (-, / r>
.000 II
.0000
. o o o o
.0(10(1
. 0000
.('Odd
. (Minn
. on on
DUX-PPM
[n,'Y
I o 5 o . o
V50.0
1 1 o o . o
1200.0
1350.0
V50 .11
1100.0
1 450.11
C n
H/hri.H
6'l.«36
7/.h'in
70.h'l|
7V.'U.'l
71.29?
'>5.2''2
''1.666
•>t'.7'iv
orolrT.p^
VH.no
107.50
1 1 5.4(1
125.70
1 2 2 . V 0
i n< . H o
1 1 7.20
113.60
-di'i)
Tili-'K
V6.MI
1 06.11 4
112.44
1 2 4 . 'I d
121 .65
117.7V
116.41
1 1 3 . ;> 1
FUtL-CUNSiIMP
U/llH Ml'3/ IUJ
7361.
1 1677.
16052.
222V2.
26 1 V2.
30604.
36) 04.
401V/I.
64.24
67. V4
o9. Vt>
77.75
76.13
76.24
7H.63
77. H|
1 "ION
M(i/Ll l«t
140.2H
14H.35
1S2.V6
16V.V3
166.3V
lbo.6'4
172.01
17U.22
H)l ( -AlP-VUL.FFI . VilL.|-FH. v ni-tl FULU-VHL . r.FF .
AliV-.-ll r.
.00
.00
.00
.00
.1)0
.00
. 00
.110
"IIIX-4-Trt
oi< 1 .con .
HH3. 4
7'").?
V2'i.4
1 0 0 V . S
1 1 35. 7
7V v.2
V 2 5 . 4
1 1 4',. 7
CO?
l./Kc.M
1 OS. 60
660.44
65 3. 34
63H. 73
65 7 .14H
6.|H .M
6112. 16
7n3.01
SI' IN 01
6R.52
7 0 . h 3
7 4 . ? 6
HI .01
MO.V4
7V. 07
HI .')()
b2.()b
IIO«
1,/H
5 H . 5 7
H,"'.'t3
133.44
200. 16
267. V2
2 1 7 . H •'
2V2. 32
4V7. IV
bTAI'l
INJ.
.0
.0
.0
.0
.0
.0
.0
.0
Ah r.Hf;i
.00
.00
. 00
.00
.00
.00
.00
.00
CU-PPM
.IK 1
16134. H
1 V 1 V 1 . 0
1 76VU.6
2 0 0 0 0 . 6
1 76VU.6
230V5.1
22243.4
21431.1
LMI)
INJ.
.0
.'•
.0
.0
."
.0
.0
.0
AlM-Ht I
.00
.00
.00
.00
.00
.00
.00
.00
CO-l'Prf
riKY
21000.0
25000.0
23000.0
26000.0
23000.0
30000.0
2VUOO.O
2 H U 0 0 . 0
STAI'I
ciiMh.
.0
.0
.0
.0
.0
.0
.0
.u
SPlHIll
64.57
66. V«
6V. 50
76.07
76.00
74.00
76. 4V
76.01
C U
b/M
H4/.72
157 7. 2V
20) V.Ol
3 1 3 H . t i.
330i. 10
4 V 7 V . 0 H
5576. d6
5V61 .36
I UNI II, IN
I I.HIN(;
7.0
11.0
14.0
16.0
16.0
17. u
1 « . 0
2(1.0
1) jf C nUSCH Cl Uk bCU
^V7.7 .n .0
576.4 .(i .0
•J63.2 .0 .u
56(i.5 .u .(j
^>65. 5 .0 .0
5H5.7 .0 .u
<>I2.V .n ,(j
62S.7 .0 .0
Alh/hilkL-HATll) fciUlVALL
AlK-Mtl. SPIUOl Aln-i-iKI.
.00 5 . V V . u 0 0
.no 5.M7 .000
.IK) 5. VI .000
.00 5.H2 .000
.o« 5.V4 .UOu
.nu 5. 7rt .000
.no 5./H .UUO
.00 5. HI .UOO
Cl'2-(i) CU2-U) CH2
•»(• T OKY l./H
10.53 5.70 l»t>M-y.5
10.36 3.50 133H2.7
lo.3« 3.5u 1H62U.1
10.24 3.3(1 25223. «;
10.3fl 3.5u 3046^.5
I0.nl 3.00 33VOO./
lO.c'O 3. 4o 40 Mo. 6
10.33 3.5o M 5 1 6 o . 6
C'lrtrtt C ' tU
A|H FL()''ISLA||
.0000
.0000
.0000
. IM) 0 0
.n noo
.0000
.000 0
.onuO
MCt-KAl ID
EiMSSIOfcS
.0/6
.OV7
.ovo
. 106
.014
.1 IS
.115
.109
0 2
%
.«:S
.20
.20
.20
.25
.20
.20
.20
LXHAOSt MttAHE L.b.K. houSl MKtSS.
It^'P.L lHkh"«.LFF (1)
37H.i| 30. 2 u .uo
456.0 31.34 .Ou
SlV.u 42. u5 .OU
577.0 3I.VH ,ou
611.0 51 .V4 .OU
643.0 30. H2 .no
655.0 2V.4C> ,uu
6V 1 . u 2tf , H6 . llu
h A U 0
. VVV
. VV1
.vvi
. VV7
. VV6
.VV'4
.W2
.wo
-------
LF'A/Vi. IIHCC METHANOL f79.5mm X 73.1rom)
M.t.c./iioscH IUNITIOH - tnKfitrr n.Jtcrnus
MTXTDHf LOOP Al 10 IfEV/SEC ?.S HAH HMKP
REFER TO FIGURE NOS.
23-26 and 63-66
HUl't
79.So
MUHbCU OF
V 3. '1 o
CYCLF/ HRAKt rtlh 'ItTEK FUtL
1YCI CONST AMF CONSTANl 3.C..
1. I59.|55l .000000 .7950
rl/CAKhijN CAU'JMF-lt
KAllli VALUt
I urtlHJCh'ihok I'
U»' I lU.'J
U
DAY
MONTH
1
YFAK
fit.
Tl 3T MAKOMI IEK
10.00 77?.20
.1LT IIULH
TtMHFKATUHF.
9.SO
FFMt'tKATuKt
I / . U 0
Punt H
rfKtCI1
U
UK I
0.
liu I Pol
I/HI lUI.
't
3PEFI) (HtV/S)
2B IGNITION TIMING
U FUKL VHLIIMK ( CC )
2 MltAM LOAD
5 FUFL TJMF ( SLC )
6 FOIL TFMPLUATOKE ( C )
B AIR MF TER H.iMI'r.KATURF ( C )
11 INTAKE MANIFOLD PPF1SS . (mm.llp) •
26 EXHAUST TEf'P. (POST TI.IHHO)
?7 EXHAUST PKt.SSIIKt: (COST 1IIKIIII)
13 CAI'HON MIlUnXlDK ( X )
IS CAf'HDN OlOXIdt ( X )
16 HXYGE'i ( * )
1?. MYOkOCAHIiUNS ( PPMC )
11 IIXIIJCS Of NITKHGEN ( Pfrt )
•in.
1 1.
10?.
2".
16.
1 1.
1?..
111.
t»fl
9
00
00
SO
00
IS
00
00
10.
12.
102.
29.
19.
1 1.
12.
35-111.
. 0
.0
106
9
00
00
so
00
HO
00
00
31
.0
. 0
2.600 .SOU
1 •> . 7 o o
1 030
-120
o o
.0
.0
10.
13.
10?.
29.
51 .
1 1.
12.
-395.
00
00
SO
00
10
00
00
SS
10
ID
1 "2
29
53
1 1
1 1
-36o
.00
.00
.50
.00
.10
.00
.00
.22
10
21
102
29
53
1 1
1 1
-333
t
.
.
.
.
.
.
.
399.0 3H9.0 j79
10
.1
.5
30
11 .BOO 13.200
c^
750
-760
00
.'1
.0
? .5
hio
-M80
•10
.0
. 0
12.0 12
^
1 1 .
S .
132
- <3
1 1 5
300
20D
0.0
0 . 0
f
1
00
00
50
00
65
00
00
B9-
.0
.«
15
9 . 7 1.1 0
7.
201
-1 1
5ofl
0
0
.0
.0
10.0 (1
33.00
102.50
29.00
SI. 70
11 .00
12.00
275.93
361.0
16. S
.193
7. BOO
10.000
>9QO.O
-3'l.(/
-------
I I'A/Vn HHCC "f THAIJOL (7<».Siim X 73.'I mm)
n.e .r./niisc H iuMino'4 - cu"i<
/.2T
/.2T
/.2^
7 . ?y
7.2''
/.2T
iiMTI' TliUuHK FHF.l
HAI! ri.fi (./KW.M1-'
2. SO r"V.I)0 «7S. i
2. So ,?'».nn HI 1.2
2. SO Py.OO 7')o.S
2. SO 2^.00 7bO.H
2. ''(I 2V. OH 7S3.0
2. So 29. UO 7M | ,0
VOL IIM{. 7
h F F 1 C 1 1
2tt.'K
2H.H (
3 ] . i (
31. 6(
39. "4{
'1 H . i (
me
-JlYt i)
.0)
.0)
.0)
.0)
.0)
.0)
AIK FiitL
KAI IU
S.9( .0)
6 . 0 ( . 0 )
7 . 2 ( . 0 )
H.3( .0)
9 . 4 ( . 0 )
11.2( . 0 )
H.7 .t .
X
20.63
22. 2o
22. HI
23.73
23.9tt
2J.11
H C
b/M-..hi
2. HP
1 .9*
tf.^H
a.3b
7 ,bb
18. 1 /
'JUX C u Cu2 MC * NUX
^Mfi.MK li/Kn.HK t;/h»..nW
3.31 121.il) U>0'l.27 6.22
6.1o 23.07 10/2.93 ».o«
3.0« 6.63 1022. W 7.39
."42 lb.71 9VM.VV 1B.S9
-------
OATt
ri'A/ViD DHL!" Ml. TMANiil. (7V. bum X 7 4.4mm)
M.F .C./H"SCH ICMfUHl - COKKKCI ]NJtCT(JI<
LOOP AT 40 KF.V/SF.C S.S UAH I'MtP
UN 772..JO MM.HG
REFER TO FIGURE NOS. 27-30 and 67-70
TKST Mil. 41.0
"tT HUI.B IFHPCC) 9.5
OKY HULU )LMP(C) J 7 . U
I'fLATIVt HUMIDITY i
HUMIDITY CHUKtrTIOfl FACTHK =
r.WAH.S OF UATtU/Lh URY AIK :
: 34.73
: .7V
: IF Prn.F.K = o.o Uf.sJLTa USTtU AS I./K^-IIK
A«L ACTUALLY 1.1 /UK :
RESULTS IN (MI'ACKETS) A'
40.0
40.0
40.0
40.0
40.0
40.0
ru,ti>
Ki,
16.03
16.03
Io.o3
16.03
16.03
16.03
HMFP
MAI;
5. so
s.bo
5. SO
b.SO
S.SO
S.50
TORUIIL
T4.M
63.80
63i«0
63. Hli
f • 3 . « 0
63. »(>
63. H"
FUKL
i;/KW.HK'
h47.6
602.6
SH'I.?
S6V.S
SSH.6
S6S.1
VULIIMtr
F F H C 1 1
'1 6 . 7 (
'1 / . 3 (
S0.3(
S7.7(
6 5 . V f
7 3 . 7 (
i'IC
•lUY(X)
.0)
.0)
.0)
.0)
.0)
.0)
AIK FULL
KATIU
S.V(
6.4 (
'.1C
« . 3 (
''. 3 (
1 0 . 6 (
b. 1 .t. M C
X U/Kn.Hh
.0) i!7.fl« .S3
.0) ^V.Vb d.\if
.0) id. VI 1.V4
.0) 31.70 3.0V
.0) 3?.3/KA.Nrt li/K^.MK
6.^0 H4.,e>>
1 ? . (i 1 17.33
1 4 .R6 3.rt /
6.h6 S.U4
f'.r'b b.4?
. 7 / K Iri . M K b / !•
/bo . S3 M
/Vb.eM 14
/V| . 41 It,
?O<4 ,b4 10
1 1 'I . V 4 7
?<«. id 6
t ,4UX
ft.MK
. 74
.04
.«')
.S7
.'< I
. 16
-------
F.PA/VN HUCC HflHAtaiL (7<>.Smii X 73.'l"'n)
M.L .C./iiDOCH IWiITlOi; - ttlKHtr. I 1MJI CTUI.'S
MlxrilWf LPUP 4T .10 1'l.V/SE.r S.S liAH fU|_H
ItMPtl'ATUKL
1 7.00
PuwtK
FhlCl lu'i
OH IION
0.
UUIPUT
UP I ION
F UF.L
Fl;f L
1 I NC. lr;l Ul'tt P IK'tV/'
?H K,r,irioN TiMinr,
« FULL VMLUi'-'F ( CC J
5
h
tt
1 1
26
27
15
16
1?
•10.
1 1.
Mi.
o5.
1 1 .
1 5.
Tl'-lf ( SET )
Tl iiPl.UATl.lHE ( i: )
I-TIU TtL'lHfKAlllHF ( C )
MAM FOLD PK[ SS. (mm.l'vi)-,"
FXHAllSl Tf.MP. (PHS1 TUK'l(ll)
( XllMilST PUrSSUUt (I'MT)! IIIKF'il)
CAKMON MOriOxIliF ( % )
CAi'ito'i oiux inF ( i )
nxvi,r.'i ( % ) .2
HYnkdCAUHUUS t PPMC ) 1260
"Xlor.b UF iJlTWOUFN ( ('I'M ) -lu«0
00
00
HO
15
00
on
t'.H-
.0
.3
'i o . i) o
1 i.nd
20S.UO
6 3 . H 0
60. ^5
1 1 .00
1 i . i.i 0
235.12
«8'I.O
?\ ,n
. S 0 0
1 'I . 6 0 0
.son
1 070.0
7050.0
U (I . 0 0
I'l.bo
203.00
6 3 . fl 0
67.75
11.00
13.00
-run. 30
'177.0
71 .»
.106
1 3 . » 0 0
2.20 0
930.0
-2H50.0
'1 0 . 0 0
1 7 . u i)
203.00
63. HO
63.WS
11.00
1 '1 . 0 0
-160.93-
157.0
2S.6
.117
t 1 .300
S. 2bo
150ii.li
-1000.0
a o . o o
20.00
203.00
63. HO
65. 10
11.00
IS. 00
1 15.06
a a 14 . o
70.6
.112
9.HOO
7.100
1 tMMI.O
- i 0 0 . 0
a o . o o
26 . 00
203.00
63. HO
614 .35
11.00
IS. 00
•"5.M7
<432.0
33. «
. t 57
8.500
9.100
2310.0
-M5.0
-------
EPA/V:v ht FUEL TEMPERATURE ( C )
« AIR METER TEMPEKAMJKF ( c )
11 INTAKE MAHIHILD PRf. 5>S . (mm . ilij ) •
26 EXHAUST TE"IJ. (POST TIIRUO)
27 EXHAUST PKf.SSlME U'USI |UkHII)
13 CAHHON MONOXIDE ( i )
IS CARHfIN DIOXIDE ( X )
16 OXYGEN ( X )
12 OYPKIICARflurib ( I'PMir )
14 OXIDES OF MlTKOUEIi ( HPH )
TK
NUM
'•2.
40.0 0
11.00
'j2.no
1 7 . '1 0
29.70
11.00
1 S . 0 0
• 1 7 ') . 7 1
357.0
6.0
2. "» on
1 i . 6 0 0
.200
1 0 2 0 . 11
-2'IS.O
CYCLI:
TYPI
4.
sr
HI: I-.'
00
uCrl«il OUIHUI
TE"1HEKATUKE TKMHU*AIUKt CUi
-------
M.r .C./miSCII IGNIIJO'-I - CUi
-------
[ I'A/Vlr. rtRir MCTMrthOL (7V.Sum A 7*.1mm)
M.f .r./llOSCH ir.hlTION - CUWKFCr INJt
MIXTIIlif LUMP AT 6" KEV/SFC 2.b DAK HMtl
REFER TO FIGURE NOS. 31-34
PATE 26/ 1/86
TK.ST Nil. 13.0
HAh'OHF. IF.R 772.1') MM. HP.
WET HULb IEMP(C) 12.11
DRY liULo IF.MP(C) 22.0
RELATIVE HUMIDITY =
. HUMIDITY CORRECTION FACTOR =
r.RMfia OF r»ATEK/LH DRY AlK =
Sl'Etn
REV/S
60.0
60.0
60.0
60.0
h 0 . n
60.0
fU.it R
K'A
10.93
10.93
10.93
1 0 . 9 \
10.93
10.9 3
hfil P
I',AP
2. SO
2. SO
2. So
2. SO
2. SO
2.50
: IF I'OMt.
TilltuUK
N . I'i
29.0(1
29.00
29.00
29.00
29.00
29.00
27.10
.80
30. 'IB
H = 0.0 KESULT3 LISTED A3 ll/Krt-HK
• ••••••••••••••»•«*•»•••••••••••••
AKL ACTUALLY
li/MH :
3 Hi (lll!ACM:r«) AKt CALCULATED FROM AIR METKK HA 1 A
FUEL
C/K/..HI:
9 n 6 . '4
616.7
M 2 . 'I
7 9 « . 3
7 H « . 1
H26.9
VOLUME OUT
I FFICIt JtYU)
29. 4 ( .0)
30. 0( .0)
32. 0( .0)
36. 3( .0)
10. b( .0)
50. 9( .0)
Alrt FUEL
KATIO
S.9(
6.5(
7 .2 (
H. 3(
9.1 (
1 1.2(
.0)
.0)
.0)
.0)
.0)
.«)
b. 1 .E.
*
19.92
21 .32
22.22
22.73
22.90
21 ,«3
h C
G/^•^.tlK
^.Sb
1 '.bl
1.8<4
3.99
6.31
17.80
••IUX
G/Kn.HW
o. (Ib
9.29
10.73
S. 1 <4
1.S7
.S3
C 0
b/M'i .MK
lltt.97
21. 7S
«.07
/. /«
7.b3
17.30
CU2
i.;/<»i.rirt
i o b 1 . i a
1 lt!0. 12
109H.61
10oH.22
1 (I b '1 . 0 9
1000. 11
MC t I'JU*
li/IVrt.tll,
9.01
10.90
12. b*
9.13
7.91
1«.34
-------
tt-'A/V." MHft '-It niA'JuL (/l.^.mm X 73.ilmm)
M.L.l ./I'OSCH HiNITlllr, - C^KI-'I.C.l INJECTORS
MIXTIJPL Li'uP AT 60 hlV/SLT ?.S Pal,' HM( P
REFER TO FIGURE NOS. 31-34
/''.Sn
HAY
26
STHUKK
7 3 . '10
MIIUTM
1
fluMHLi* uF
rri.iMK us
i i Ni;i'it sn HJ (t'KV/;;)
8H l r,K>n I'itJ 1 IMii.r,
H FIIH VOLPi-iF ( CC )
2 HKAKL LdAlj
S HJfL Tliif C SEC )
6 FOKL Tl MPI KATti'ft ( C )
" AID rf rtf TLN-i't-rtATuwr ( r )
II lliTAKt MANIFOLD I'HFSS. (mm.Mci)
?(> fXHAHSl Tl I'P. (POST TIIIWM)
?7 tXHAI'ST Pi UXYtiFU ( I. )
12 MYln.
63.
10.
1 1 .
'1 1 H.
4SM
?,'
DO
So
00
00
OS
00
00
86-
.11
.6
.SOI!
1 4 . S 0 0 1 4 . u o o
.2011 .SlIO
••1 II (I
-/60
. 0
. II-
57n
1100
.0
.0-
AKI'^t. TFK1
1
77?. IS
60.00
20.00
203.00
29.00
6S.6S
11.00
11.00
40S.33
4R3.0
21 .»
.ISO
13.000
2.400
600.0
1200.0
60
22
203
?">
67
1 1
1 1
-374
^
B
.
.
•
•
B
46H
2
a
11 .
'.1 .
'1
1
1
A IK MKTEK FUtL
Ui'lSU'll S.i;.
.000000 . 79!>U
•U. T nULu DPY hULH
h"PFKAlUkE IFMPtKATURt
00
00
00
00
IS
00
on
74
.0
,H
00
200
1140
-S20
.«
.0
12.00
61).
2S.
203.
29.
67.
1 1 .
10.
- 3 4 1 .
4S'I
25
.1
00
00
00
00
6b
00
00
4 1
.0
.6
10
1 . H 0 0
7.2i)y
1620
-145
.0
.0
60
'M
203
29
64
11
10
-2 72
22.00
.00
.00
.00
.00
.bo
.00
.00
.22
427.0
37.6
•
7.
to.
200
MOO
POO
3600.0
(•.u
ll/CAKl)ln»
KAI III
VALUL
I9V40.00
FKICTlUii
OH ( I ')N
U.
riION
U
UHIPUI
UPf !U'4
-------
f: HRCC MtTHANUl. (79.5niiii X 73.1mm)
f-'.t-.C./IIOSCM TRITIUM - CORRECT INJECTORS REFER TO FIGURE NOS. 35-38
M1XTUKF" LOOP AT Ml KfV/SKC 5.5 (JAR Hi-lEP
DATE 26/ l/rt6 TEST .'JO. 11.0 HARurtE I F.R 772.15 MM.HG WET HULM |t:ol'(C) 12.0
DRY HULo [EMP(O 22.0
RELATIVl HUrtlDITY = 27.10
HUMJUITY CORRECTION FACTOR = .00
C.kAINS OF WATtrR/LI) DRY AIR = 30.1«
:::::::::::::::::::::::::::::::::::::::::::
: ih POHCR = o.o RESULTS LISTED AS G/KII-HH
ARE ACTUALLY C
/HK :
RESULTS IN (hl'ACKt'TS) ARE CALLUl.ATEL" FROM AIR Mf TER UATA
SPEhH
REV/S
60.0
60.0
60.0
60.0
60.0
60.0
PCME'R
KM
21.05
21.05
21.05
?1. 05
2<«.05
21.05
HMFP
MAR
5.50
S.50
5.50
S.5U
5.50
r>.50
TORUUE
N.M
63. «0
63. HO
63. HO
63.80
63. HO
63. BO
FUEL
C/KW.HR
6/19.7
601.1
5»)
-------
U'A/Vl' llwCC MF1 HANOI. (79.S«im X 74.4mm)
M.L .c./iiuscM iMinioN - (,i'i«t 1
TLMPl
12
riULu
HAfURE
.00
F-UfcL
S.&.
. T'SU
OKY BULrt
U-IPt-HAIHKt
22.00
H/CAKHuN
hAl IU
3.97
POrttK
CUKKKCTJUN
0
CAi.il* |(-]C
VAL'»t
19940.00
OPI ION
U.
lliKHuC.iA
DPI 1UN
0
UU
UP
S
6
R
1 1
27
IS
16
12
1 'I
MJCIfil SI'LFI) {UEV/SJ
iG'jn ION i IMJNH
ruiu VOLUME ( cu )
IIKAM I OAl)
FUKL UMb ( stc )
FUfL TI'MI'tlJATtlHK C C )
A If* MElt'R TF'-lPf iJATUHE
( C. )
IIJTAKL MANIFDLO PHFSS. (mm.lly)-
( XHAtlST TE'-ip. (P"3T
t XIUiUST I'KFSSOKk (I'll.'
CAMU1N MIIMIXlUF ( \ ]
fAI-'nON HJIIXll't ( X )
r,xv(,t.fi ( i )
HYDHOLAWl'tiNS ( PPMC )
OXIufS UF tilTkU(,Fn (
t'I'M )
h 0 . 0 0
is.no
2 o 3 . o 0
63. >' 0
47. 3S
io.no
lo.no
261.70-
S'16.0
'1 3 . (.
2.SOO
1 3.SOO
.300
930.0
611.00
16.0 0
203.00
6*. HO
1 0 . 1 S
in. oo
12.00
•2VI.93
S7o.il
H.SOO
9.100
19BO.O
-/S.O
-------
EPA/WI HPCC MKTMANIII. (79.5mm X 7/t.<4nim)
M.L.c./i'uscH IUMITION - t;nwi.'n.:i IIJJKCTOKS
MIXTUI'f LPUP AT 60 HKV/SEf 7.0 HAD (JMKP
REFER TO FIGURE NOS. 39-42
HOP.K
79.So
STKMKK
73.10
tlllMUF'H UF
HS
CYCI r
TYPh
'1.
CONSTANT
IS9.1SSI
AtH MKTfiK
CUNSTAUl
. 0 () II0 0 0
FUEL
S.G.
.79SO
H/CAHttlJN
KAl |0
L*LOHIF1C
VALUt
199*40.00
llJNItuCHANGh M
UP I I UN
U
DAY
26
I'KINTH
1
YKAK
TE.ST
HUHHf!<
u •>. n o
772.IS
•itT hULb
TtMPf.KATUNE
12.00
UHY HULH
TEMPEKATUHt
?2.00
f-HiCT (UN
0.
UUIPUI
unrIUN
14
•i
?
S
6
fl
11
i'h
27
13
IS
16
i?
)
fNcric spfccu
I GMT I Ofl TfMIfJI,
Furt vnni;ir c CL
BKAK.F LOAD
Fill L T IMr ( SIC )
FlltL TCM('tK«TilKL ( C )
AII> MULC TtMPl.KATUKr ( C )
INTAKE MAf.IFDin CHESS . (mm. Hg) •
KXHAHS1 ThMP. (PIKjT TlllUtn)
fXHAHST PKKSSUPh (PUST TIIKIill)
CAKhfiri Mill. IIX 11)1 ( X )
IMdXIDL ( X )
( x )
is ( Pi'rit )
uf niTKni;cN ( PCM >
CAKIION
nxvi,f.f«
60.00
1 S . 0 0
3 0 '1 . 0 0
K1.20
'17.05
11.0 0
12.00
60.0(1
16.00
3 0 '1 . 0 0
PI .20
SO.SS
1 1 . 0 (i
13.00
60.00
16.50
301.00
HI. 20
S2.SS
1 1.00
13.00
1 7R.9rt-lb9.20-1 36.r><>
S/5.0
V7.9
2.20(1
1 3.500
.200
900. (I
1 i 0 0.0-
S96.0
61 ./
.600
1 '1.6 00
.SO 0
600. 0
•2300.0
VI2.0
6 '1.7
.100
1 3.200
2. '100
1 2 0 . 0
-2*50.0
60.0 0
Irt.So
30*4. 00
HI .20
54. 10
1 1.00
13.0(1
-H2. 72
SS'I.O
/3.7
.112
ll.SOO
'1.90 0
720.0
-1 100.0
60.00
23.00
30*1.00
fll .20
S3.6S
1 1.00
13.00
-37.60
S26.0
HI .2
.111
1 0 . 2 0 0
6.600
1 1 '1 0 . 0
-nbo.n
60.00
29.00
3 0 *4 . 0 0
PI .20
S3. 15
1 1 .00
13.00
-6.02
S 1 3 . 0
8B.O
.1 16
9.500
7.700
1S60.0
-235.0
-------
M'A/VU HI'CC MMH'i'inL. (79.Smm X VJ.llniin)
''.( .c./no.s(.H ic;.11 Kir-1 - I:I)"KFCI ifj.iKC luwsi REFER TO FIGURE NOS. S9-.42
MlXTUi't LOOP AT hi) i<{ tf/SFC /.li tlAK HMt.>>
PATI ,_'»./ 1/H6 It.Sl 1,1). ')">. 0 I'AKIIKF TCK 77c'.l'5 MM.KG t,t I HULB 1FMP(C) 1 i, 0
OK'
I'M AT 1VL MlMIOI TY = Z7.10
HIK'lI'lTr CllMKF.C I IUfJ r-Afllll' = .HO
C.KAIUS uf Udlth'/LM DKV AtK = ?().1'(
: !(• l'lioM< = 0.0 HhSULT.S LISltK AS G/K.I-HK AH£ /
\(. rt 1
h 0.0 i it . (> 1
ii 0.0 ^0.01
(> 0 . 0 J U . 0 1
1. 0.0 50.01
lll-TH
HAI;
/.no
7 . 0 »
7 . U o
7. flu
7.0(1
7.00
Tiif.'ulit fllH. \dTLIIMIr 1KJC
IJ.M R/Kfc.Hi; f FH i c: it 'ILY ( t )
fll ..9( .0)
»' 1 . c1 0 S 3 1 . 7 7 a . 8 ( . 0 )
«1 ./O S3''. ? M). 7( .0)
A1K HJtl.
K A T I U
<>.0( .0 ) •
<>.'!( . 0 )
7 .?( .0)
t?.2( .0)
V. 1 ( .0)
V . 7 ( . 0 )
O.T.t. H C I'UX C U CUt! HC » i^O
X U/M'.M" I,/K*.HK G/Kii.MK L./Krt.MK G/K.«.HK
29.78 1.73 7.H7 73. «« l\i.tl 9.7
33. 9<> i?.91 3.1y ^.V'j 714. H<4 6.31
33. o« t.elH 1.77 5.b7 /lb.9t> b.os
-------
EPA/v.1.' HHCC f-lTHAmiL ,('9.Smm X 75.'lmm)
M.K.C./MDSCM IGfilTJdr. - fdi'Pfcrl liJJICTOI'S
p AI is PI v/r.r:r intt
REFER TO FIGURE NOS. 43-46 and 71-74
U
in
g
£2
X
>
l;
CO
>
—
£
x:
a;
o
v?
_*
o
a-
CT
-c
CO
0
c
t/1
HOKE STKlIKi: DiP'tittf OF
t YL U'i>( «:;
7 9 . S 0 7 3 . .'1 0 '1
RAY MONTH YKAH
26 1 «'.
1 tNGIf'l M'l-rii (KtV/S)
2" I lira T i ON i inw;
U FUtL VOLUMf ( CC )
2 IIKAKL 1 UAh
s Fnm i i"ii ( str )
6 FllfL TmPEHATllWE ( C )
l< AIK 1 f If I.' Tl.rPr.HAfllWE f C )
11 IMAKF .'lAUff 01.1) PHESS. (nin.Ha)
26 FXH*'IST U.I'P. (POST TUI'MO)
27 EXHAUST pKF.ss'H'E (Pusr TMKI.II)
1 3 CAHhl'N Mlllidx InK ( H. )
IS PAK"dN l)IIIXI!;t ( & )
1 i- tlxn.F fj ( % )
12 HYPf Of AKMH';S ( PPhC )
1 'i MX ii)f;s nr ':I rkiH,FfJ ( PPM )
TK
nlllM
<*6.
IS. 00
20.nO
S2.00
.00
1 3 3 . H 0
12.00
2 '1 . 0 0
-S3tf . '13
IS 0.0
.0
2. 'ISO
1 3. Mifl
.7SO
3150.0
-t'M.O
CYCLF
TYPI;
'1.
,ST
IIF.K
00
15.00
20.0(1
S2.oo
.00
1«2. 7(.
12.00
2 ? . n o
-S3H . 1 3
11 H . 0
. I)
1 .200
1 3 .600
1 .201,'
3060. 0
-51 .11
lif'AKE
HUNS tAM
159. 1 SSI
iiAKOMFTF-K rt
TfM
772.15
15.00 15.00
20.00 20.00
52.00 52.00
.00 .00
11V.1' 5 l'IV.30
12.00 12. Oft
22.00 23.00
-S33.92-S1S.R7
116.0 119.0
.0 .0
.'100 .20*
13.100 11.600
2.20 0 '1.90 0
3000.0 'If' 00.0
-2H.O -22.0
A IK -IKICK
f.nflSl AliT
.000 0 0 0
LT HUL8
12.00
15.00
20.00
52.00
.00
1 ') 7 . H 0
12.00
23.00
-'I9M.S8
129.0
.0
.2-15
9 . « 0 0
6.900
5700.0
- 1 '< . 0
FUEL
S. G.
.7950
22.00
• l/CAKHUli
KAl 111
C(l'
-------
f 1'A/V* HKCC MF. THAf'UI (79.5mm X 73.1mm)
»1.t .C./UdSCM If.unidl! - CUWhCCT I
-M|XTIH,t LdriP AT IS I'tV/SEC IDLE
REFER TO FIGURE NOS. 43-46 and 71-74
2
03
C
6>
DATE 2<>/
TLST NO. 'l».0
IF K 7/2. 15 MM.KG
TLATIVK HUMIDITY = ?7.10
IIU"iriTY ( DKRt CTIUfi FAC!('f< = .80
-AIC = 30. «8
ntl OuLH TtMR(CJ 12.0
dKY MULM IEMP(C) 22.0
UNA I'lli OF f.'ATEK/Lb
: IF i-dwrn = o.o >v| SIILTS i.TSTM) AS I;/KW-HH AWE ACIUALLY G/HK :
IftM'LTS IN (lU'A(.HFTS) AKk CAl.Cdl.ATEO FHUM
sHn.n
P K V / S
15.0
15.0
15.U
15.0
15.0
Poi'Ck
*'j
.00
.0(1
.DO
.00
.00
HMF.H
HA';
.00
.00
.00
.00
.00
Timm't: FUEL
I..M K/HW.HU
.00 1115.3
.00 1 0 'I S . M
.(1C 9V5.2
.00 99V >«i
.00 1009.7
VdLMMKTHIC
I'F-FIClf UCY(X)
1 « . 0 ( . 0 )
1 '1 . 0 ( . 0 )
1 t . i ( . 0 )
1 h . S ( . 0 )
1 1 . 7 ( . 0 )
AIM FUEL
« A 1 I U
h.U(
6 . '1 (
6 . 9 (
7.9(
K.M(
AJK MF.IEH L>/\IA
0)
0)
0)
0)
0)
b.T.E.
X
.00
.00
.00
.00
.00
M C
G/*.«.MH
10.93
1 0 ,V<
10.59
17.17
27.1 1
NUX C U CU2 HC + NU
U/Kn.nH t;/(v-<.ltt> l,/-(..i.M" li/K.I.HK
.29 I«H.7S li'b^.'^u 11.23
.32 72.t>'j 1294.73 10. VI
.29 2'4.O9 129».i>2 lO.rtrt
.26 la.M/ 1302.93 17. «2
.Irt 20.3.1 1200. H8 27. 2>
C
o
o
o
•
-------
tCA/V.' HkCt ,.|( TilA'ait (79.Smai X 7i.Mnim)
M.f .C./l'OrCH IGNITION - LUKI'hCI I'JJKTTORS
H.Nllini.1 IMIIJI, SUING AT '40 KIV/SI.C P.. S liAl' l'''tr'
REFER TO FIGURE NOS. 51-54
79.5U
L!AY
(UN Tit
1
YKAK
of
US
CYCLt
TYPt
1.
TF.ST
NUMlf -K
17.00
IJKAKt
CUhSTANl
1S9. ISSI
iiAiuiMF IKK
7 b 0 . 1 1
Ati< Il.TKrt
UONSTAul
.000000
•it r i-iJth
Tt. MPF HA IUHE
H. SO
FUtL
S.G.
.7960
OKY bl'LH
Th.MHtKAlURt
22.00
H/CAKbilN
KAI III
PUrttK
CUKKtt MOM
0
CALUHIF- JC
VALUt
F-NIC 1 ION
OPTION
0.
T u«uuChAK(,t Ii
uPl (ui«
0
(JOIPUI
UPI IUN
1
I lh(;llT SPF.TIi (f'FV/S)
?H l i.i 11 I n. T iMiuf;
4 I UK VnLlMf ( CC )
2 itHAnC LHni>
S FiltL T Mr ( SET J
^ FUl L I CMI'tfA I lll>¥. ( (. )
II All "MCI' TM P( I/ATOKT f f. )
11 IM1AKI HANIKUI) KIO h.r,. (inm.Hn)
P(> f XMAl'ST TL'll'. (POST TOPHI')
27 fXHAUST rnrb3OI?E (I'DSI lOI'HU)
1"^ CAinniN IICNIIXIDL f i )
1'. fAI'h'ifj OI'iXIl;t ( '/. )
Id dXYoM' C I )
IP I'YI'hilf AHlMi'J.'i ( I'Pltr >
1 '4 DXlur.S IT JlFKDGtH I I'l'H )
'10
3S
|ilr>
3
1
1
P. ''
SI
1 1
17
4't
1
^
1 .
ii .
in
. rni
. 0 0
.So
. 00
.70
.00
.no
,'IU
n.o
P. o
130
3oo
9(1(1
0.0
-rti'O.o
uo
ill
10?
29
S2
IP
17
- .
1 32
-70
.'10
. 'I ii
.SO
.00
.40
.00
.00
. '» '1
f, .11
P. 0
1 p. 1'
7, ii i)
null
(1.0
0 . n
1 0 . 0 0
2.S. Oo
102. SO
29.00
SP. 7S
1 P . 0 0
1 if . 0 0
-JS^.IS
4«1.0
12.0
. 1 P'l
1 1 . 400
S . 0 0 0
1 J'jO.O
-Slo.o
10.
20.
1 02.
29.
S3.
12.
K*.
-3Sti.
^tl<)
1 J
11 .P
no
00
So
oo
O'j
00
00
'IS
.0
. s
2o
00
S.i) on
1 }*»0
-191'
. o
.0
'4 0.00
is. oo
102. SO
29.00
S2.9S
12.00
1 H . 0 0
-3SS.70
* H / . 0
12.0
.111
I ) .300
S . 0 0 0
1 3 fl 0 . 0
-300. 0
'10.
10.
102.
29.
S2.
12.
1«.
-3S1 .
497
IP
.1
00
00
so
00
2S
00
00
9'l
.0
.0
01
1 1 . 400
1.900
1P60
-Pio
.0
.0
10.00
s.oo
1 OP. So
29.00
SO.feO
IP. 00
If .00
-31h.6/
1 1 S . 0
12.0
.092
1 1 .300
1.900
1200.0
-110.0
-------
Ft'A/Vf. HI'Cr h.FTH.MJi.iL (T^.'jmm X /3.4min)
t'.t .r./niiscM K.MiriotJ - COKKKCT INJE-CTUKS REFER TO FIGURE NOS. 51-54
1 UNIT ION TIMING Sniiur. AT 11) Kt.V/StC . 5 HAK HMF H
I'ATF
!/«<>
TLSF
'I7.U
TKH 760.11 MM.HG
rfLl FHJLH lEnP(C)
I>KY HULo
I'FlATIVt ItlMinilY = Hi.?<>
Mtlf-'lDlTY mukecF inn FACTdi; = .90
TRAINS UF KATtl'/l.u I>I'Y AIK = '19.(.6
SF'CtP
H E v / 5
'10.0
'10.0
10.0
10.0
10.0
'40.0
') 0 . 0
: IF-
I.
7 .2'' r'.50 ?9.
7.29 2.£>o 29.
7.29 P.Sii ?<).
7.2° ?.50 2V.
7.29 t.Mi i'9.
7.29 ?.SO i'9.
f'llnl.K
til'LTS
UMK
l-i I
on
on
U 0
0 ii
00
on
on
= 0
in
.0
HtSULTS
(HUAOF'TS)
L
VULUPr.
LlSTtO AS G/KW-FIK
«lft
IIUC
.;/K*».HI. F.FFlLItNCY
7H1
771
7t,S
7 Ml
762
772
797
.')
.7
. 1
,H
.2
.'1
• **
30. 3(
3h. 1 (
3S.9(
3b . 7 (
3S.»(
3b.H
37. 3(
w
,
•
•
•
•
A«t AC
CALCULAttl' F«DM AIM
AIK FUtL
U) KATIU
0 ) « . 2 (
0 ) '1 . 2 (
<> ) *' . 2 (
o) H.T(
0 ) " . 2 (
0 ) » . 2 (
0) 8.2(
.«)
.0)
.0)
.0)
.0)
.")
.")
HIALUY IJ/MK :
MtTEK UAlA
d . I . t . M C
X b/hrt.hh
23.11 «.6o
23.10 'i.«l
23. 6u '•.U?
23.73 t.bM
23.f><' 'i.bb
23. 3/ <4.22
22. M4 l.lh
MOX
U/K*.Hrt
fl.5«
/!3tt
S.33
'4.08
4.13
2.Sa
1 .^>3
C II CO2 HC » ^U
U*K*-«Mk i* / K ft p 1 1 (^ G/K^I«HK
7.61 10UH.7" 13.20
7.<*7 I03(j.b2 11.79
/.!'< \0dl .1 1 V.»"0
6.V7 10*1. «««. B.67
6.b« |(I2'4.S1 V.oH
6.09 luto.21 6./6
b.b/ 10/S.81 b.o9
-------
01
C
Cl
C
C
o
(J
o
T3
M'A/Viv MDCC MFTHAIJUI. (79.5mm X
M.F .C./HU3CM ir,MT Tl'Ph.' - CDHhfcL T
n TIMING Si1l"!(; AT MO KtV/StC 5.5 HAH
REFER TO FIGURE NOR. 55-58
DATE 27/ l/«6
4H.o
760.'11 MH.HR
2
m
o
5
a
v.tT BULB TEMP(C) 14.5
DKY HULK TEHP(C) 22.0
I?FI ATIVf; HIIMIblfY = 13.29
'UH'iniTY COURtCTIuri FACTniv = .90
GHAINS 'IF hATEK/LU'KKY All' = 19.66
Sf| Hi
KEV/S
«o.o
uo.o
40.0
«o.o
10.0
40.0
'•0.0
40.0
16.03
16.03
16.03
16.03
16. n 3
16.03
16.03
16.03
: if- PUiir.i
1 = 0.0 CtSULTS LISTtl) AS G/Kw-HR AKt ACTUALLY
G/HR :
HI.SIILTS IN (F»KALnETS) ARE CALCULATED FKOM AJK ME TEH UATA
ItN't I-'
MAT
5. So
5.50
5.50
•5.50
5.50
S.SO
5.50
5.50
TOFMIIIE
M . M
61. HO
61. HO
63. HO
63.8(1
63. HO
61. HO
63. HO
6 3 . 8 0
FUFL
f./K!..Hl>
S72.6
571 .7
570.4
569.5
568.1
S6°.9
575. ft
583.?
VOLUMETRIC
tf F1CH
5«. K
59! Of
5B.S(
58. 7 (
58. b I
58. 7 (
"58.9 (
59. 7(
JCYC.)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
All* FUEL
IJATIIJ
8 . 1 ( . 0 )
«.2( .0)
fl.2( .0)
H.2( .0)
« . 2 ( . 0 )
'!.«?( .0)
« . 1 ( . 0 )
« . 1 ( . 0 )
b.T.E.
*
31.53
31. SH
31 .65
31. '0
31.76
51. 6*
31 . 3o
30.96
n C
U/K /(.HN
3.94
3.93
3.91
3.87
3.«6
3. HI
3.85
3.»6
NUX
U/KIS.MH
17.73
12.87
10.89
9.32
7.60
6.53
4.00
3.01
C 0
1,/K «.IIK
-4,/h
5. in
S.iri
5.37
S.3o
S. lt<
5.2.!
4.94
002
(,/«,.. M!(
/o-i.Sl
7oo.bt>
'o'4.5d
/ o i . '1 2
7ol .03
7t>4. I
-------
C
'01
c
UJ
O
c
o
CJ
o
-o
EPA/VU HKCC MFTHANIIL (79.Snim X 73.<4nim)
M.r.i./nnscn ji;.'UTior, - comcT
I CM TI Of. TIMINl, Sri INS AT 10 KTV/Sf-C S.5 H/U' Iv'F.P
REFER TO FIGURE NOS. 55-58
2
CD
0!
tf
T3
nokt
79. SO
HAY
27
STKUKE
73.10
fillllDi
1
IIF
YE A I?
rU>
1 INGirt srr.FI) (K'KV/S)
1 FUfl. VOLUME ( CC )
2 IIHAKF LUAL)
S FUfL II Mr ( StC )
6 TUfL TtMPtNATURE ( I )
« All? I'tTtH TF.MPFN.A7HKF ( C )
11 IflTAKr MAMHILI) PMCSS. (mm.Mci).
26 KXHAI'ST Ttl-'P. (POST TUNIJO)
27 [ XMAlJST CNESSUKE (COST TIIHIU])
13 CAfUON MfWOXJIlE ( X )
IS rANUON DIOX1UF ( X )
OXYGI N ( 1 )
( Pf'MC )
16
12
11 liXIUt.S OF rjl TI-tOiir.N ( PPM )
CYCLF
TYPI
TFST
llllMHFR
'1 H . 0 0
'10.0 0
i5. 0(1
203.00
63. '»0
6 3 . 1 S
12.00
17.00
11S.11-
'161.0
2S.6
.112
1 1 .SOO
1.900
162H.O
23»0.0-
10.0 0
30.0 C
2o3.no
63."o
63. SS
12.00
JR. III.
1 1 8 . t 'I
'! S » . 0
2S.(>
.120
11.300
'j . 0 0 ii
1590.0
1650.0
Ul'AKt AIf< MtTF.K
rONbTA'll CONJlAiJT
1 59. IbSl . 01)0000
liAKCIMrTK'K K't 1 UULrt L)P'
TE^Pl'KA IUHE IKMP|
760. 'U
10.00
25.00
203.00
63.T.O
63.70
12.00
1 « . 0 0
'40.0 0
20.00
203.00
63.80
63.80
12.00
18.00
-1'I9.6S-ISO.'40
1S6.0
26.3
.125
1 1 .300
1.90(1
1590.0
-1100.0
'153.0
25.6
.12S
1 1 .300
5.000
lb/5.0
-1200.0
l't.50
'1 0.00
17.00
203.00
63.80
63.95
12.00
1 H . (I 0
-150.10
'1 S '4 . 0
25. 6
.125
1 1 .300
5.000
1575.0
-9HO.O
FUlrL
S.G.
.7950
^PArilHt
22.00
'40.00
15.00
203.00
63.80
63.75
12.00
18.00
10.00
10.00
203.00
63.80
63.10
12.00
18.00
-1'I9. 65-115. 89
•458.0
25.6
.125
1 1.300
5.000
1560.0
-H<40.0
168.0
26.3
.121
11.100
4.900
1560.0
-590.0
H/CAKU'
HArill
3.97
PlMEW
I)
•40.00
5.00
203.00
63.80
62.30
12.00
18.00
-137. 62
189.0
27.8
.113
1 1.100
1.900
1545.0
-380.0
CALDKIF 1C
VALUt
199i«).,M)
FK1C I III ,
OP 110H
0.
*t\>
OPI IU-4
OUTPUI
OPT ION
4
-------
fcl'/i/VW HKCC f-il.TMANUL (79.Smrn X 74.1n.Ti)
M.l.C./iniSCH Iill'ITHIft - CUKHKCl JfjJICTlll'S
IGNITION TJMJ'li; SW1HG AT IS KCV/ai.C Jill.I.
REFER TO FIGURE NOS. 47-50 and 75-78
Illll'f STKdKt N'UIHtEH ilF
C.YI.lflUl 1(3
79. SO 73.00 0
OAY MONTH YkAH
27 1 nt,
2tl
'4
2
5
(,
H
1 1
26
?7
] ^
15
lh
1?
1«
E NT, I ME SPEEI> U>'EV/3)
101. ITION HMIriG
FU1-L VULUMf ( CC )
l< U A K F 1. 0 A I.'
FUEL TIMf ( SEC )
FULL TEHPLKATUKE I C )
All? MHEK Tl "MPEHA TIIKf ( C )
INTAKE MAN t KILO PHLSS. (mm.Mal -
EXHAUST Th'IP. (POST TUKUO)
fXliAIIST Prtf'SSUI'E (PUS1 TIlKf'J)
CAiaKiu Moudxinr ( % )
CAktlOM UIOXJDE ( X )
OXYC.tN ( '<. )
Hyi!l 00.0
-30.0
2S.
52.
•
103.
12.
20.
520 .
1 in
1 .2
HKAKfc A IK nElEK
CONSTANT CONSTANT
1S9.1SS1 .000000
I1AKOMI-TEK "El HUl.ii
TEMPfHATllHK Tl
01
00
00
on
Sn
DO
OH
V(l-
.0
.0
01
13.50!
1 .3
3301.1
-?H
0 i
f (
. 1
is
2(i
52
1 00
12
20
527
11
1 .
13.
1.
.00
.00
.00
.00
. 10
.00
.00
. 15-
5.0
.0
300
SOO
300
315U.O
0.0
15.00
15.00
52.00
.00
103.55
12.00
20.00
526.00
112.0
.0
1.20 0
13. So:)
1 .350
3060.0
-22.0
IS
10
52
102
12
20
-520
1 1
1.
13.
1.
.00
.00
.00
.00
.65
.00
.00
. 10
0.0
.0
200
olid
300
2VOO.O
-2
0.0
IS.
5.
52.
.
101.
12.
20.
-521 .
121
1 .1
FufL H/CAHhild CALOklFIC 1 lIKbuCMAKUt U
S.G. KAlllj VALUk OPIIU'J
IJKY bULU POWfcK I-HIC110H uUTPUl
MPEPAIUKE COHKECTJON OPIlUn UPllUiv
22.00 0 0. 1
00
00
00
00
50
00
00
10
.0
.0
00
13.600
1 .2oo
2000
-1H
.0
.0
-------
FPA/V.i HKCC ''tTHAMIIL C79.S"tm X 73.Mmm)
f'.f .r./rlOSLH IGMI1IHN - CUKkECl INJtCHlHS
IRfiJTIOi. TlMJhG SHINi; AT IS RtV/StC lULt
REFER TO FIGURE NOS. 47-50 and 75-78
27/ 1/H6
TEST Nil
BAKUwETTK 756.36
WtT HULtt 1£MP(O 11.5
lihY HULtt IF.MP(C) 22.0
("CLATIVE HUMIDITY =
IIUririTY tlMK'tt'.T IIIM FACTOH =
GKAir. S III IvATK.H/Ltt DUV A 1 1< =
: IF POM.
13.39
SO. OS
R = 0.0 KI.3ULTS
k'tyllLTb JN (bPACKFTS)
SHI t 1)
HEV/S
15.0
15.0
1S.O
1'j . 0
15.0
15.0
Pu.VI.P
K ./
.00
.00
. 0 0
.00
.ou
.00
IIMFP
II A R
.no
.00
.no
.00
.00
.00
TOPHI jfc
H . H
.0"
.00
.00
.00
. 0 0
.00
Flit L
G/M..MK
104S.O
1 03"?. 9
J035.6
10 39. 6
1046.1
ln'il.<>
VOLUME
1 FFIUI
1 4 . 2 t
1 4 . 3 (
1 '1 . 2 (
1 4 . 3 (
1 4 . 4 (
1 4 . fa (
»*•**•*••
LISTEK AS U/K^-HH APE ACTUALLY
• •••••
• •••••
G/HK :
AH{_ CALCULATED FKUh Alh MEIEH DATA
tHIC
t '1C Y ( X )
.0)
.0)
.0)
.0)
.0)
.0)
AIrt ^EL
KATIU
6.3( .0)
6 . '1 ( . 0 )
*>.4( . 0 )
6 . 4 ( . 0 )
6 . 4 ( . (I )
<•.<»( .0)
d. 1 .E.
X
.00
.Ou
. 0 0
.ou
.00
.00
H C
G/Krt.HK
12.11
1 1 .42
10. /9
10.60
10. IV
6.47
MIX
(,/Kr>.MK
.31
.32
.27
.2b
• c .5
.21
C
U/K
78
72
/ /
72
72
hi
Li
rt.ll*
.37
.01
.90
./»
,/4
.91
CU2
C./H«.HK
12/rt./M
12B4.S1
12/0.90
12BS. 12
129S.21
1319. IV
HC » "lux
(i/K«.HK
12.75
11.74
11. Ob
10. MS
10.12
«.6H
-------
EPA/VW HRCC MFTHANOL (79.Smm X 73.1mm)
M.e.c./rtuscn IGNITION - COKRECI INJECTORS
E.G.H. LOOP AT 40 REV/SEC 2.5 HAW bMEP 1.0 E.K.
REFER TO FIGURE NOS. 83-86
MOKE STROKE fJUMIJF.K UF CYCLE URAK£ AIR METER FUEL H/CARbON CALORIFIC lUKHuChAKGEO
CYl. 1MDEKS TYPf CONSTANT CUMSTANl S.G. RATIO VALUE UPTluH
79.50 73.40 4 4. 159.1551 .OOOOOU .7950 3.97 19940.00 0
DAY MONTH YEAR TEST HAROMFTER WET nuLb UPY bi'LB PGIER FRICTION UUIPUT
NUMHtR TEMPERAIURE TEMPERATURE CURPECT1UN OPTION OPI10N
30 1 «6
1
2 P.
/I
2
5
6
fl
I t
26
?7
1 5
15
16
1?
14
17
30
R.r.INF. SPEED (REV/SJ
IGN1TIOM TIMINi;
FUEL VCLUME ( CC )
DRAKE LOAD
FULL Tli-lt ( SEC )
FUEL TEMPtPATURE ( C )
AIR k'ETEP TFMPrRAIIHfr ( C )
INTAKE MANIFOLD f'KF.SS . (mm.Hn)
EXHAUST TEMP. (PUST TORiHiJ
FXHAUST PRF.SSUKE (POST TI.IKMO)
CARUON MONOXIDE ( X )
CARIHir. OIOXll'E ( X )
OXYliFti ( * )
IIYDROCAKIUiMS ( Pf'MC )
OXIDES OF fllTROUFN ( PCM )
INTAKF MANIFOLD cd2 ( t )
AMH1FNT C02 (X)
51.
'10.0 0
1 1.00
102.50
29.00
'49. PS
12.no
1 fl . 0 0
-392.54
397.11
9.8
.550
14.500
.500
720.0
-780.0
.030
.030
00
40.00
14.00
102.50
29.00
51.10
12.00
19.00
-373.7-1-
3^7.0
V.I)
.600
I 'i . A o o
. S 0 0
fl 'I o . n
-360.0
.870
.030
749.61
40.00
17.00
102. SO
29.00
51.00
12.00
20.00
341.41
395.0
9.8
.500
14.&00
.600
10*0.0
-180.0
1.690
,0?0
10.00
40.00
21.00
102.50
29.00
50.50
12.00
20.00
-317.34-
388.0
9.0
.600
14.500
.650
1440.0
-100.0
2.320
.030
40.00
24. Ou
102.50
29.00
49.65
12.00
20.00
14.50 00. 4
40.00
27.00
102.50
29.00
49.15
12.00
17.00
40.00
29.00
102.50
29.00
48.80
12.00
1 7.00
280. 50-245. 15-21 5. Of
384.0
9.0
.600
14.600
. 700
1 740.0
-55.0
2.9BO
.030
38^.0
9.0
.650
14.600
.700
1950.0
-36.0
3.540
.030
3M.O
9.0
.700
14.500
.800
2280. 0
-23.0
3.980
.030
-------
FPA/VV- ill.'Cr MKTHAIHIL (79.bmm X 73.1mm)
M.K.c./itnscti luMinucj - cui'wtuT iMtcruRS
( ,f..l'. LOiiP AT '1C K'FV/StiC: i. S IIAH MHE.H 1.0 (-. H .
REFER TO FIGURE NOS. 83-86
in/ 1/H6
TtST NO. Sl.O
719.61 MM.HG
>-E.l HUL8 1EMPCC) 10.0
UhY hULo UwP(C) 1I-:Y AIK =
.Pri
: IF I'llriKh = 0.0 WI..SULTS LISTED! AS U/Krt-HK
AKE ACTUALLY G/MK :
Hf.yllLTS 111 (HKACKFIS) AKL CALCULATED FKI1M AIK Mf.lfK DATA
SHE 1 [.< Pl'f.ti*
Hf V/S «'•
10.0 7 . 2 '»
10.0 / . 2 9
10.0 7.29
10.0 7.2''
1U.U 7.29
10.0 7.2V
10.0 7.29
H'.ifP TilHIHiE Hlf.L
hAP «.(•( (Vhn.HK
r.'.SO ?9.(|0 K0«».(>
e" . S 0 ? 9 . 0 II 7 H 'J . 8
2.50 ft. 00 791.1
2. SO 2l'.00 7"">.?
2. SO i"y.ufi Mir*. 9
.0l! ?9.(l(l H?1 . 1
2.^0 i'9.nii B27.0
VflLIIMETUlC
I F F I C 1 1
30. 2(
29 .5 (
2 !> . b (
30. 0(
5o.->(
3 0 . 1 1
30. 7 (
:JCY(»)
.0)
.u)
.0)
.0)
.0)
.0)
.0)
AI« FUEL
H A 1 1 1 )
6 . 1 (
6.4(
6,r> (
6. 1 (
f..1(
6.1(
Cl.'l(
.0)
.0)
.0)
.0)
.0)
.0)
.0)
h. 1 .t . H
X U/Urt
22.30 1.
22. H6 2.
22. HI 2.
22. S9 4.
2?. 21 1.
21 .99 b.
21. M3 6.
C
.HK
93
1 7
HI
77
bO
1«
1 1
NUX
f./Kn.MH
6.6b
2.97
1 .19
.83
.16
.31
.20
C 0
G/Krl.IlK
2S.7b
27.12
22. 7b
27.51
27.71
30.22
32.d2
CU2
u/ftn-hl<
1000.73
1036. 7u
1013. V3
1011. b/
1060.73
1 066.no
106h.o/
HC * NUX
G/ld.Hx
W.57
b.11
1.30
l.bl
b.Oo
b.<49
6.31
-------
EPA/VW MKCC MfTHANol. (79. "mini X 73.Mmm)
n.E.c./H)srii K.NITIUN - toKUtn IU.HCTIIPS
t.U.K. LOW AT '10 KF.V/Sf-C b.b OAK !, . 8 U
(Hi. 3d
1 . 0 U
17.00
(1 0 . 0 0
1 '1 . 0 0
203.011
6 i . H I)
(.1 .ns
I2.no
|K.O(J
JM'l.i.?- !««.?'!
'l.'li.O
?^.h
.bOO
1 '1 . 6 0 0
. s u o
11 '1 0 . 0
i»ono.fi-
.010
. 0 '1 li
17h.fl
21 ."
.SoO
I'l. 700
.'>oo
162».0
1 'i o n . o
.770
. 0 '1 (i
10.00
1 6 . 0 0
203. 0 U
<• 4 . H U
61 ,3S
12.00
IB. 00
-132. 3b
« 7 U . 0
21 .«
.600
1 '1 . b 0 0
.600
1700.0
- / « 0 . U
1 ,<460
.040
'10.00
1 V . 0 0
203.00
63. HO
h 1 . '4 0
12.00
1M.OO
-9H.S1
'I6H.O
21.1
.600
lu.SOO
.600
1 H 3 (1 . 0
-SS'I.O
1 .«90
.oao
-------
ft'A/W hl'U ME IHAI'iul. (79.Smn, A /3.'""»i)
",f .c./imsi .11 HifJiilu'j - cnKhfLi [NJtr.iuKS REFER TO FIGURE NOS. 87-90
I.G.I>'. LI>»|' Al 'Id I'KV/Str 5.S MAR I.Mf.P 1.0 K.^.
DATt il/ I/Ho TUiT iJO. ')?.() hrtK'ilhElUK 753. t.0 (-iM.liG Wtt HULb IEMP(C) 10.0
I.'HV HlH.b lEff'lC) 14. b
Ht L AT I Vl MIIMTOl IV = Sh. 12
GI'AINS UF lf.'ATKN/Ll> LiKY All' = «n.'l<*
: It- PiihfK = 0.0 INSULTS Lli>TLI> AS G/KW-HP. A"t AC lUnLLY G/HK :
HI bllLTS J'l (HKACKKTS) Ai'L LALCULA ft(> FKDM A1K ME It H DATA
SPt L'' PIH--I l<
IJl tf/S
'10.0
10.0
'1 0 . 0
'40.0
K '•;
\».
K>.
l»>.
16.
I) <•
03
o3
03
IIHLC Tui'tJllf. HI(L VdLU'll- PMC
!U.lf N..X R/KV».Ht-: hf^f1 1C 1L'J(,Y (X)
S."5fl '.i.hO bO?.S 'I9.K .0)
'>.'30 '>i.M» SQr5.1 '!«.'<( .0)
ri.r>li (>4.Mn b''»?.? Irt.t't .0)
ri.S» (>3.i)D S'M.7 'IH.U .0)
AIU UltL ti. 1 .t . h C
HA11U i G/Kn.HH
'>.'!( .0) ?'*.<>o 2.^h
6.t( .0) 3o.3'4 i.l^
h.'K .0) 30. '19 3.37
<>.'4( .0) 30. SI 3.b'4
NUX C U CU
U/Ky.H^ l*/i^»>.MK Ij/KM.hli
1 1?.60 1 1 ,3t' 79'J .S 1
«.6« lb.V<» /O^.S
-------
tt'A/VW HrtCC MtTHAMtiL (/'J.'imm X 73.1mm)
M.h .t./'4
1 (NOINF. SPLFI) (I>'EV/:;)
2R IGNITION TIHING
« FUFL VdLOMf. ( CC )
? IIRAKF LOAH
s FUH. Tinr ( SEC )
b FUI L If.MPEKATUPF: ( C )
P AIM ft TER Tt^Pf.RATtlrtE ( C )
11 INTAKE 1ANIFOLO PHFSP.(mm. lln).
2t> FXHAHST TEMP. (POST HIPrid)
f7 EXHA'.ISI PKf SSUIft. (POST THKI'IJ)
13 r.AHbori Mounxiuc ( x )
15 CAKllCN DlllXlflt ( X )
16 OXYIjrN ( X )
1? MYllKOC/'.MIIUUS ( PPHC )
I'l IIXIUFS OK rJlTfOUfN ( PI'M )
17 INTAKE MA III FOLD Cu ( « )
30 AMiuc:rn en? (%)
'in.uo
1 '4 . 0 0
?()3.(IO
(.3.80
<>3.as
1 ?. . 0 (I
16.00
1V1 .76
'172.0
.'?.. 6
.137
13.300
^.bOO
1 2 0 0 . 0
-------
EPA/Vh HkCC MF.THANOL (79.5mm X 73.4mnU
M.F.C./tlOSCH IGNITION - CORRECT INJECIURS
F..G.H. LftOP AT '40 fchV/SEC 5.5 OAR HMtP 0.9 E.R.
REFER TO FIGURE NOS. 87-90
OATE 31/ 1/86
TtST NO. 55.0
BAROMETER 753.31 MM.HG
RELATIVE HUMIDITY = 35.41
HUMIDITY CORRECTION FACTOR = .82
GRAINS OF WATER/LO DRY AIR = 3'4.00
dtT PULb TEHP(C) 11.0
OKY BULB TEMP(C) 19.0
: IF I'UWKK = 0.0 RESULTS LISTED AS G/Krt-HR
ARE ACIUALLY
U/HR :
RESULTS IfJ (HKACKETS) ARE CALCULATE!* FROM AIR METER UAlA
SPEED
REV/3
40.0
40.0
40.0
40.0
POV.'ER
KV<
16.03
16.03
16.03
16.03
HAP
5.50
5.50
5.50
5.50
TORQUE
N.M
63.80
63.80
63.60
FUFL
574.4
571.7
565.5
569.5
VOLUMETRIC
FFFICIENCYU)
52. 0( .0)
51. 6( .0)
50. 8( .0)
51. 2( .0)
AIi< FUEL
RATIO
7.2(
7.K
7!lt
.0)
.0)
.0)
.0)
b.T.E.
X
31.43
31.58
31.93
31.70
H C
G/KH.HK
2.54
3.03
3ie2
NUX
G/KK.HR
14.25
/.86
4.84
3.62
C 0
G/Kn.HR
4.71
5.08
5.38
5.55
C02
G/Kn.hR
774.92
/69.2B
763^28
HC t NUX
G/Kti.HR
16.79
10.89
8.3J
7.44
-------
LPA/Vi. Hi-
2
1
2
1
1
1
P
4
I
S
6
H
1
6
7
3
r>
Ifc
1
1
1
2
'1
7
3"
1 . 2
FNUlMf SPEHJ (HCV/S)
ir.HITlCfj 1 III ING
FIIH. VOLUH: c r.c j
Hi-iAKE LOAD
FULL TIMI ( SEC )
FULL TF.fint.PATur'E ( C )
All? "F TtP Tt.lPl MA tlJKF
INTAKE NAUIFIIL!) PHKSS.
EXHAUST TKMP. (PCST TU
EXHAUST PKCSSUKE (F'dSl
CAIVOHN M(ii\flXII>F ( * )
CAMI1HN OldXIOt ( * )
UXYGfh ( 2 )
HY|"Hnt AKF'.dllS ( PPMC )
nxiurs or NiTxuiifN ( p
INTAKf i-IANHOLH Cui.1 (
AMH1F >if C02 (X)
B6
11)
Id
20.i
6i
b'l
10
( C ) I'l
(mm. MM ) -1 S3
(! tt 0 ) t S
rili
1
00
00
00
no
OS
on
00
fl i
. o
.6
3 A
700
1 .600
C Y C L
TYPE
'• .
:;i
on
(10
17
203
(> <•
(>'l
10
16
-121
'IS
•/
.
1 1 .
a.
t
1
.00
.no
.00
. ." o
. 3S
. 00
. '10
.07
'4.0
'1 . H
1 39
70(1
7 0 n
it>2n.o inno.o
PM ) -iir.
z )
u
0
.0
-6BO.il
•
SOO
IIKAKE
CONST ANT
1S9.1SS1
' AHTIMF TF.M
7S3
'10
19
203
6 <
bU
1 1
l«.
-HH
145
f
.
1 1 .
•1.
.70
.00
.00
.00
.MO
.SO
.00
.00
.7t
2.0
t .B
I 'IB
700
700
1900.0
-t«O.U
^
.020 .1120
46U
020
'10
20
20i
6i
6<4
1 1
16
-71
11
i
*
U .
'i.
AIM -it TEH FUEL M/GAMBIIM CALOMIFIC itiKUuCriAKGLiJ
CO.J.-jTANT S.G. KATlo VALUE UPIIUi4
.000000 ./°SO J.V7 199(10.00 U
.
-------
I PA/Vf. MIJCT MfcTHAM.iL (79.'jmm x 73.<4mm)
M.E.c./niistH ir.NiniiM - COKKECT INJECTUKS REFER TO FIGURE NOS. 87-90
E.G.If. LOIIP AT 'Hi '?EV/8tC "5.5 rtAH IIMEP O.R L.K.
PAIF t/ 2/06 TtSf Ml. 5-4.0 HAKdNETFK 753.70 MN.MG rttT HUl« TEMP(C) 12.U
I)KY HULb (EMPICJ 1H.O
IJtLATlVE HdrttDITY = 'IH.<49
IIIIMJ['1TY CH»I»ECTIUN FACTOK = .67
GH«If-4S OF riATEK/LH DHY AlK = '43.76
: IF
HtinEK = 0.0 KtSULTS LISTED AS U/M1-HK AKE AC1UALLY
G/HK :
iu SHUTS IN (MKACKFi.'i) AWL CALCULATED FKIJM AIK MLTEK DAIA
SIM I 1)
KEV/S
10.0
'1 0 . (I
'10.0
«0.0
I'UUf K
Ml
16.03
16.03
1 h . n 3
lb.o3
,,MKH Til
I'. AC N
5 . 5 u (-3
S.SlI hi
S.Sil 83
5. Til) ('3
1,'unt
.M
.«n
.no
.HI)
.80
FH|:L VOLHMI IR1C
n/KW.HH e FF1CHNLY(S.)
5(>H.3 r>6.8( .0)
S6S.6 57. 0( .0)
5(, jS.fl c)6.7( . 0 )
56 3. '4 5o.7( .0)
A IK FUEL
MAT IU
8. IK .0)
8.0( .0)
« . 0 ( . 0 )
a . o ( . 0 )
H.T.E.
X
31 .77
31.92
3?. 02
3?. 05
H C
(,/Mi.hK
3.HU
1.2't
U.63
<4.H«
MOX
C/KA.HK
«.<40
1)93
3. -46
3.12
C 0
G/K'».HK
5.51
5.7?
6 . 0 6
5.VO
CU2
G/Kn.HK
761 .67
756. 6U
752.17
751.32
MC + 40X
U/K-».MK
12.2-4
9.17
a. to
».oo
-------
EPA/VU HHCC MFTMANUL (/o.smni x 7.4.'iipm)
H.I..c./cosui ir-'JiriiiN - ci'KKFci jfMfcTiiws
l.G.K. LOOP AT 'HI HLV/SFL S.5 M.M' il*'EP f'. 7 E.W.
79.br
UAY
1
REFER TO FIGURE NOS. 87-90
STnr!Kt NUMlU l< Of CYCLl HKAKk AIK lEIEK FUfL M/C AKDUN CALOKlUC HlKUuCltA«i,EU
cYLirn^nr, TYPF. CONSTANT CONSTANT S.G. HATIO vALOt OPIIUN
73. '40 4 '1. I59.1SS1 .000000 .79bO 3.97 199(40.00 0
MnuTii YEAK TEST I.IAKOMKTEK wt T DULM DRY bum PU^EM FHICMON
NUHIEF? Tt'-tPEKATOHt: Te Ml'fcl' ATOHE Coi S'i.00 753.70 1^.00 Itt.OO 0 0.
OP 1 lOiv
spteo
a
S
5
6
8
1 1
26
27
13
15
1 6
12
1«
17
50
FULL VOLHI-'F. ( CC )
UK«.l\t t OAli
FUEL T I'1F ( SIC )
FIIF.L TfcMPt KATOWt ( t )
AI^ ^•FTEf< TFMPFHATIPIU ( C )
INTAKE. MANIFOLI1 PHF SS . (mm . Hg )
KXHAI'ST TF.^P. (POST IIIKK(l)
t'Xl'AOST PHrSSUI'K (PllSI lllt'lKI)
CAkHON MOIiilXIliF ( '.: )
CAPuDN UIIIXIDL ( t )
MXYI.Fh ( X )
IUPH11(.«RHONS ( PF>iL" )
OXIUf S OF MITKIIUF N ( PPM )
INTAKF p'1Ali[F-ULt> Co2 ( 7. )
AMHIENT ri)2 C*)
203.00
6 .4 . ft 0
6S.OS
1 1 .00
16.0 0
- 1 0 3 . 7 B
'1 '1 1 . 0
29. 3
. !?">
9.90 0
b . 9 0 0
2100.0
-290.0
.030
.030
in. o o qn.no a o.o o
-------
KI'A/Vft HKCC MtTHAIlOl (7V.Snim X 73.'lmm)
M.fc.c./iinscM ic.f.iTion - cuKkttr iMjtcniKS REFER TO FIGURES 87-90
F..O.R. LniiC Al ')0 Rt-V/SbC 5.b liAR HMtP 0.7 E.H.
DATE I/ «?/Bb TEST Mil. V>. 0 MAIillME TEH 7SJ.70 MM.HO v«tT HULK TEHP(C) l^.U
I^KY MULb IEHP(C) 1«.U
KfLATIVK MUMIUirV = /IH.O'J
MllflDlTY COKHLCTTIIH fACTnK = .«7
GHAlfiS (If- /JATf.R/Ln DRV Alt* = '13.76
SPIED rn.-iEK
WEV/S KH
« 0 . 0 ) 6 . 0 3
'io.o 1 t> . u 3
It I) . U 16.03
: IF POUCH = o.n RESULTS LISTED AS G/KW-HK ARE ACIHALLY G/HM :
RESULTS Itl (MKACKFTS) AKE CALCULATED FKOM AIR MMErt DATA
HMCf' KlIM.Uh FH[ L VMLdMF.ruiC AI« FUEL n.F.t. H C
I«AP ''.(•• U/KW.MR hFFICIE'>ltYC-t) MATIll X G/IVfl.HK
S.5u 1.3. «0 SS'J.li 6'4.7( .0) 4.,?( .0) 3^.30 b.73
S.SO 63. «0 SS7.ll 6'l.b( .0) >>.2l .0) St'.S/ b.Vb
b.r>0 (.3.^0 b56.o 6'4.6( .0) ''.?( .0) 32.«
-------
EPA/vm MHC(. •••1|-"|HANUL (/''.Smm x 73.4mni)
M.K.L./KU5CH tt.MTlUCi - CCHf'hCT IN.ir.CTlWS
t.U.h. I Oi'l' AT <40 Kt V/i>[ L 2.S hAK l*"tl' 0 . V I . (V.
REFER TO FIGURE NOS. 83-86
tnlKK STKdKf
79. SO 73. HO
DAY MJUTh
MUMurH uF
CYLIfJDC KS
YtAH
CYCLF HHAKt AlK rtKlHH
TYI'F CONSTANT CONSrAlll
'1. 159.1 SSI .0001)00
TLSf HAKHMEIFK W[- T HULM U«Y
rgliH'tK
1
2P
a
?
5
h
0
1 1
1 2
merit SPI-CIJ a>E
ir,niT]iiN TTMJMC;
FutL VflLUMf ( CC
RRAKF LOAi)
FULL TI-F: ( 3tC
FUFl. H;M|'( RATHKH
A J w MF Ttl' Tf'PLK
INIAKF MAI.IHILD
Hh
V/S)
) 1
)
( C J
ATIIKF; ( r )
PKFSS. (mni.H
1?
I'l
17
30
LXhAIIST CHf SSIIRF
CARMON rriMlXlliE.
CAHUON II1DX1"F. (
nxYi.i i! ( i )
HYDMlf AWUifJS ( P
d'lim HIRHD)
( X )
1 ) 1
Pr-IC )
S6.
'4 (1 . 0 0
13.00
0 2 . l> 0
2''. no
SI. OS
11.00
17.00
"2.02
3''S.II
9.H
. 1 '1 0
4.200
2. SOO
M'ln.O
UXtmS IIF UlTKUliFM C l'l'"l ) -H20.0
1N1AH/ MANIFOLD
AMHIffiT CD? (X)
C02 C 1 )
.030
.030
00
ao
JS
102
29
SI
1 1
17
-3SM
3'»
.
13.
2.
.00
.00
.so
.on
.hS
.III)
. on
. /n-
i'.n
9.14
13M
< (1 o
'1 0 0
1 02 (I. 0
-3 '4
.
,
il. 0
7 HO
(1 3 o
7S3
'•0
17
1 02
29
S?
1 1
17
330
3"
.
li.
2.
.70
.00
.00
.so
.00
.20
. oo
. Oil
FUKL H/CAKI>ufo CALOKIFIC 1 UKKuCnAK(iF.I>
S.i;. HAl 111 VALIIK UP 1 104
.7950 3.97 199ao.OO 0
HULH PO«fcK FKJCUOn UUlHuI
TfcMPCKArilRK TtMf'LPAlURt CUKKtCUOf, dPTION uPllON
'10.00
21.00
102. So
29.00
SI . 75
11.0 o
17.00
12.00
10.0 0
2-4.00
1 02.50
29.00
SI .30
11.00
17.00
Ib
'10.0 0
27.00
102.50
29.00
SI .00
11.00
17.00
.00 0 0. «4
10.00
29.00
1 02.50
29.00
50.65
11.00
17.00
. 13-30 O.US-2/0. 72-20?. 90-20 3. 79
9.0
9.0
132
2UO
SOO
1320.0
-190.0
1.
»
'400
030
3H3.0
9.0
.1'42
13.200
2.<4SO
K'Bli.O
-12S.O
2.P20
.030
3«1 .0
9.0
.1-47
13.200
2.50(1
1950.0
-90.0
2.-4HO
.030
37H.O
9.0
. 160
1 S.300
2.500
2 1 b 0 . 0
-6
-------
I'PA/VV Itl'Cr. MbThUNilL (79.^,mm X 73." = 0.0 HrSULTS LISrtO AS (,/KW-HK Aht ACTUALLY U/HH :
lATA
PI'tH) POJf
M V/S K.-I
10.0 7 . ,
'1 1) . II l.i
tO . I) / .<
'•ill . 0 7 . <
i u . o / . i
"II . I) / . (
10.0 / . <
"H MtfFP TuPUIIK F"H. VOLUMl IH1C A1K HJtL
MAR IM.II r./Kh.HK I FFICIM'CYtl) MAlIU
'.1 r.r>0 ?9.uO 7'M.* 3i?.7( .0) 7.2( .0)
"> f'.V>l) <"?'*. no 7H2.1 32. 0( .0) 7.
"' »'.SO ?9.oo 7/*.<» 31. 0( .0) 7.
i'l .'.'ill «.'">. 00 /HO.h 31. 9( .U) 7.
^ c'.bO 29. uo 7R7.'l 32. 2( .0) 7.
V 2. 50 <"'.0d 7'>2.1 32. i( .0) 7.
;*' 2.r-u 2l'.im 7'J7.<. J2. 1C .U) 7.
( .1))
( . II )
( .0)
( .0)
I . 0)
( .0)
H . i . c . H c
X U/K1.HK
22. H2 ^.
-------
fcPA/YW IIKCC MtlHAriuL (79.Smm X 73.4mm)
M.t.C./BOSCH Ibf.'ITlON - LOHI'fCT IMJtCTDKS
F.G.K. LOOP AT 10 KKV/SFC 2. S HAH itMfcl' 0.8 E.»<.
REFER TO FIGURE NOS. 83-86
HOIft STHOKf:
fJUMurw OF
CYCLf
HI'AKt
CYLIMUfclvT' TYPE COHS
79
D
.bO
AY
7 3 . '1 0
MONTH
'1
YM«
4
TEST
•
1
b/iRO
59.
HF r
lA'll
1551
EC
NUHIIE-H
1
2P
4
2
5
6
8
11
26
27
13
15
16
12
14
17
30
2
ENGINE
I UNI Tin
2
H6
SPlrEII (PKV/S)
IV TIMING
FUEL VOLUME ( CC )
b7.0() 75R.'iO
40.
1 J •
102.
00
00
SO 1
'40
17
02
.00
.00
.50
(iKAKE LOAl> 29.00 2<>.00
FUEL TIME ( SEC
FUEL TEMPtHATUSE
A IK MET
INTAKE
EXHAUST
EXHAUST
CAHhllN
CAfuOH
OXYGEN
hf TE'ipfrt
MANIFOLD
)
( C )
ATH..
75
11(1
00
'15-3
Tt"P. (POST TUI'iin) S»S.O
PKKSSL'Ht
MOullXIliE
uiuxioe (
( 1 J
1 POST TllKMll)
( 7. )
* )
12
m 1
.0
?5
11.500 1
1.70 0
HYOKUCAHPO'IS ( PPKC )
(IXIDFS
IHTAKl
AMB1FMT
OF UITkOUEN 1 PPM J
MANIF-PLO
C02 (X)
CU2 C X )
1260
-'MU
. 0
.0
53
1 1
17
2S
38
1
^
1 .
'1.
.50
. 00
.00
.62
5.0
1.5
1 22
50(1
700
.0 162li.il
.0 -
20
Id
.
.
0.0
ooo
020
'40
20
10?
29
53
11
17
-2B6
.00
.00
.50
.00
.00
.00
.00
.51
'in
2<4
102
2V
52
1 1
17
-<"IO
AlK Mt.IEK FUEL H/CAKhiH, LAL"H1F1C 1 H«lnjCl-iAKl>LU
CUMSTAT! s.u. hAUu VALUL oPiiu>t
.000000 ,7-*50 3.V/ lV9gO.Ofl 0
'«ET IJiULh l)Kt bULIi PU^tK (-KlCllU^ uiJIPUl
IL^PFKAlllKK TEMPhKA f UKt LU^KtC 1 IDr. dHllilu u^lli/'.
12.00 20.00 0 0. 4
.00
.00
.50
.00
.25
.00
.00
.6-'l
iH2.0 37I..O
1
,
1 1.
'1.
1.3
134
500
700
19HO.U
1
,
11 .
'1.
1.3
172
soo
KOO
2020.0
-H5.0 -52.0
1 .
.
51 u
020
2.
.
060
020
-------
ilt-'LC METHAfiOL (79.^'Tiro X ll.Umm)
M.F.C./IJOSCM ir.NiTK.iM - cuf'KlCl iNJtciOKS REFER TO FIGURE NOS. 83-86
F.c..i:. LCiil1 AT in KLV/SLC ?.s HAK IU-.EP O.H K.(<.
2/ 2/ft6 TEST Nil. b/.O fiAHOhF ICK 7SH.bO MM.11(1 t.'t T MUL« FtHP(C)
HhY HOLb TECiP(C)
IfFI.ATlVE HUMIOITY = 3h.93
HUMIDITY tOKIJtC.ITlifl TArfOK = .HI
GCMNS DH NATLI
SPfED I'UnLH I'llKt-
K'tV/S MV HAP
10.0 7.i!9 ?.Su
10.0 7.29 2.5n
10.n 7.2Q ?.5u
10.0 7.29 2.5D
: IP HlnF.M = 0.0 H
1 SULTS LISTED AS
PI SULTS Ifi (MI-'ACKPTS) A'U
TIIKUIII;
N.M
?9.0<>
?v. no
?9.(l(l
29.UII
HlEt
C./Kr.-.HI'
7hS.ft
7S7.9
762. 2
773.1
G/K''I-HK Al
-------
tl'A/VW I'HCC irrHANUI (79.5mm X 73.4mni)
M.r.C./nilSCH IliNITlllil - CUKfffct I INJfCTHHS
t.G.K. LUnp AT '10 KKV/SKC i.'it HAH H'«tP 0.7 t.K.
REFER TO FIGURE NOS. 83-86
73. ««
wurwr.H iiF
CVLlMlK MS
'1
CYCLI:
TYPF
bl'flKt
CUNSTAMI
15'».lS5l
All< MflKk
CtHISTA JT
.000000
S.C..
.79SO
H/CAKHili,
KAl III
1.97
CALUHIHC
lUKrtoCrtAKlifcli
UP I ION
0
DAY
2
MONTH
2
VKAK
TtST
NUMHI |.
SP.OO
MAKOMFlFk
wt T BULh
TKMHf -KATUBH
1>HY bt)LH
fKMPtKAIUKt
COHHtCTIiliJ
0
f-HJCl ION
DPI 1OM
0.
ouipur
oPl IIIN
a
1 ENBI'Jf spjro (Ktv/S) to.on 'to.on
-------
EHA/Vln hl.'Lr NFTHAfulL (79.binr> » 75.1mni)
'•I.I .C./nUSf;n IChlTlUM - CURHfLT jriJtCTllKS
r.O.I'. LOill1 Al <4
'•0.0 7.2')
'10. l; 7.29
M'-ltP TIlI'DUf
HAP N.I-
2.00 29.00
2.5n 29.0(1
2. SO 29.00
2. So T9.00
H'l.L
(;/K«.nr
7',7.1>
7S7J2
770.''
7 H '( . '4
rs LISIfcO A3 U/Ml-HH Al't AtlllALLY
S) AKL CALr
vfiLUMt liMC
tFh
'40
J9
no
'(0
1CII iJLY Ci)
. 0 ( . 0 )
.?( .0)
. 2 ( . 0 )
.6( .«)
IILAILD FHUM
A IK HUtl.
r(A 1 1 1)
9 . 2 (
9.2(
9.K
9 . 0 (
C/HK :
Alh ML ILK UAIA
B . T . t .
X
0) 2i.«
0) 2J.rt1
0 ) «i 4 . 1 2
0) 25.02
H C
G/rrt.HK
6.80
9.01
11.35
1«.05
NUX L
!./*«. H* li/IN
1.72 7
.n't 9
.'•4 12
..in li
o
A.llK
.9d
!/7
. 19
.61
Cu2
(,/ IVA.HIV
101 0. 4o
10U0.2«4
10uri.96
101 /.So
MC « '<
b/h...i1
rt.51
9.68
1 1 . 73
14. 3*
-------
E.f'A/Vi, HHCC fl TMAf.UL (79. Slim X 73.1mm)
M.fc.C./nilSCH HiNIUllll - COkkl-r.l lll.lfCTUKS
F.G.H. l.IKH' AT '10 »
CYLlNI>thS TYI'F COMSTAfit fONSlANl S.C.. KA 1 U.' VALUE uPHOi<
7V. S«. 73.10 1 1. 1S9.1S51 .000000 . /VSo 3.^7 1V440.UU y
l)AY MONTH YFAK TEST UAKOMF TFK .'Iff U'lLB LlKY ttllLU PlMER FNldlOn UUIPOI
NIIMHFU ItMPEHATUKE lEMPEKATUKt COKKKC I 1'IN UPUlllM UPI10N
2 2 «6 5-9.00 7SH.SO 12.00 20.00 00. 4
1 ENGT't SI'tf-.l) (RF.V/S) Id. 00 lO.'ll) 10.00 10.00 'Id. 00 10.00 Id. 00
?P
n
2
5
6
8
1 1
?fo
27
13
IS
16
12
11
17
50
Hifil r KIN I IMIUO
run VOLUME ( cc
KKAKE LIIAI>
FUtL TIMfc ( SEC
FUKL lEHI'fcHATUKE
)
)
( t )
AIK Mf Tt.K 7F.MHEHA7IIKF ( C )
INlAKF HAUIHOLI)
FXMAIIST Te'lP. (P
EXHAUST I'I . 0 0
112. 10-1
36'j.n
'• . •'*
.(,110
la
S2
1
3
1
1
1
7
?
1
')
1
.Oil
.Oil
.10
.7'.
.00
.00
.31-
362.0
.
11.^00 11.
.700
fiin.ii i
-pio.n -
.'160
.Oil)
1
1
1
.
1
1
•
,
<>.h
b II 0
10 U
700
0.0
0.0
710
030
22.011
S2.00
1 7 ,111
32. /O
11.00
1H.OO
3M3.S2-
3SH.O
6. M
.700
11.100
. h 0 (I
1320.0
-6"j. 0
2.3HO
.030
26.00
S2.00
17.10
32. IS
11.00
14.00
32.00
S2.00
17.10
31. »S
12.00
IP. 00
3 'i . 0 0
S2.00
17.10
31. 2S
12.00
1 '> . 0 0
5h2. 16-326. 62-30 d.«2
3S6.0
f> .b
. 7'>0
11.300
.'»00
lc.20.0
-10,11
3.000
.040
3bl .0
6.0
.HU"
11. 1 on
.''Oo
2220.0
-2tt.'l
3.7bU
.030
3S2.0
b. B
.YOU
1 1. 1 HO
. 4bO
23" 0.0
-22.0
1.1 HO
. 0 S 0
-------
! KA/V.i ill'CC 'lETHAMii. (79.bmm X /t.'lmm)
M.f .C./H'ISCM ir.MIKIM - ClIK'KILl IN.Jt.CTMKS
L.G.I'. LIHir Al '4(1 I'l-V/Str l.b I>AH IIMH> 1.0 i . H.
REFER TO FIGURE NOS. 79-82
OATf.
itSI un.
IIAxdMKTt.K 7S8.bP
KtLATIVL HUMIDITY
IHJLH FFMP(C) 1^.0
HULh IEMP(C) iJO.O
GI'Alt.S Of nATtK/Lli OK'Y « 1 1< =
SPF »:!) I'dWL'R HUM'
KtV/.r. *rt HAI!
40.0 4.37
40.0 4.37
40.0 4.37
40.0 4.37
40.0 4 . 3 /
'10.0 4.37
40.0 "1.37
.50
.SO
."•II
.SO
.so
.so
.Sd
: 11- HII.I
: ,B4
= 37. 4b
K = 0.0 \f
i SHUTS LisTtn AS (,/K.I-HK ARt ACIUALLY I;/MK :
NL.SI'LTS Id (H'?ACM-;Ti>) /U.'U .0)
h . 4 ( . 0 )
*
7. Ob
/ . 1 M
7.31
7.<>H
7.1b
Ih.bb
1 •> . b 3
U/IUV.Hh
^.34
«;.vb
3.t)i
4.b3
b.60
7 .tt6
M.39
i;/i\rt.H«
4.Hb
?.£19
l.l*t
.70
.43
.31
.. S'4
.4^ JihM.rtl
HC » <
t>/^"'rt
7.1H
b.4
S.O 1
S.2.J
h.O'J
O.I/
d.b i
-------
El'A/Vrt HHCC MK.THANUL (7<>.5mm X 7}.'loim)
M.t.C./HOSCM HiMITlON - crWhCT INJftTHHS
E.U.W, LUOP AI tO RfV/ShC 1.5 II M< h"tP 0. 'I F.K.
REFER TO FIGURE NOS. 79-82
79.SO
STROKE
73.10
UUMltl h UF
CYLINDERS
'4
CYCl I
TYPI
'I.
MCAKt
CUN3TAMI
1S9.1SS1
A Il< MEIEK
(.(INSTANT
. 0 il 0 (I 0 0
f UtL
s.u.
.79SO
H/CARttON
KA I U)
3.97
LALnKll-1C
IIJKliUCMAKUtl)
DAY
3
MONTH
a
YKAH
B6
hO.OO
HAKOMFTEK
10.SO
lE'Ml'ERA lUHt
IB.00
FKlCUo.J
H
0.
UUIPUI
UP I IUU
U
1
20
ENGltlt SPEfl) (REV/S)
FUfl
H
11
?h
21
13
IS
16
12
11
17
30
( CC )
VIILUMK
LOAD
FUIL TlMf ( SLT )
fUFL TFMPERATUhiE (
A1K '1ETEK
IN7AKC HAM HOLD PHtSS.
[ XHAHST TL'MP. (POST
EXHAUST PKfSSIiKfc (P
CARItdN (H)rjLIXIDf ( %
CAKBOK UIOX1DI ( X
OXYGEN ( J )
MYt>KOCAHWlNS ( fPrC
OX I ut' S OF MITh'HiEN
INTAKF MAnIt-OLO UOi"
AMH1FMT C»i? (X)
)
f: ( c )
iS . ( nun . HVJ )
TORUII)
ST TURMO)
)
)
I'fM )
( X )
'io.no
n.oii
52.00
1 7 . 'I o
33. 2S
11.00
17.0U
-IIM. 19-'
S6B.O
7.S
.Ibb
13.200 1
2. SOU
M'tii.n i
-4AO.il •
.020
.(120
'10
1<>
s?
17
35
1 1
17
.on
.00
.(HI
.'to
• * ' J
.Oil
.00
'i r- . (i o
19. OU
S2.00
17.10
33. BS
11.0 0
17.0U
'10.00
22.00
S2.0(i
17.40
33.2S
U.oo
1 B . (i 0
*29.3°-'l01.Sb-370. /'I
3<>
.
1 3 .
2.
.
.
'). 0
7.S
16(1
3no
SO <)
"^ . o
I'.HO
(120
3M .0
b.B
.US
13.200
2. SHU
1320.0
-12S.O
1 .S10
,0?0
3S/.0
b.M
. 1 62
13.200
2.SOO
1*30.0
-SS.Q
2.290
.020
no.oo
2().00
S2.00
17.10
32. 6S
1 1.00
IB. 00
10.00
32.00
52.0(1
1 /.40
31 ,7S
1 1.00
i « . o o
-313.h6-31U.S'<
3SS.U
(>.B
.185
13.20(1
2. SOU
2K.O.O
-36.0
2.rtl'0
.02(1
.450.0
6.M
.220
1 4.200
c' . S 0 0
3tlOO.O
-30.0
3.1BO
.020
-------
FI'A/Vl'.1 Ili.'Cf: MI-TMAllnL (7V.bmm X / 3.'limn)
M.i_.r ./unset-) i r.((C) Irt.O
KFI ATIVL niiMiui TY
titiMiniTY coiwtci inn
(il'AINS UF iJATtl'/Lll U
spf.Ln
RF-V/S
40.1)
40.0
40.0
10.0
1 0 . 0
40.0
PY A IK :
: ]|- IM),«!
: 37.02
= 33!o9
.H = o.o KI.SULTS LisTLD AS I,/K^-MH At-'t ACHULLY I;/IIK
KIS'n.TS I'-' OtPACM. l!i) A'fL L AU.lM A I Cl> FKIIM AlK
Plii.H' »HI I" TUi:u"( H'M. VOLUht- It'll; Al>< FULL
AH
4.
4.
4.
4.
4.
M.
HAI-'
37
37
37
37
37
37
.50
.5u
.50
."i"
.Ml
.''0
H.f
17.4(1
17.40
1 7 . 4 (1
17.4 0
17.40
1 / . 4 fl
i;/K».tn. i
10?7.?
1 0 1 b . 0
10(19.0
1 llcf / .<•
1
-------
LPA/VH HkCC HtlMAMUL (79.5mm X 73.4mm)
M.t.C./KUSCH IGNITION - COUHllM IMJFCTOKS
F..G.H. LOOP AT H'!i
a
CYCLK"
TYPF
IIKWKt
AJK MC1EK
CONSTANT
. 0 0 0 0 0 0
f-UfcL
S.G.
H/CARHUN CALUKIHC
RAlUl VALOt
3."* 1 IVV'40.00
UPII UN
0
DAY
3
MOM r h
YF.AK
UST
NIIMMtl!
bl.OO
HAKOrlC FfK
10.00
[)«Y B'lLH
ItMHtKATUWK
16.00
PO«tK
CUKhfcCUUN
0
FH1CIION
UP I ION
0.
UOIPOI
OP i io;.
it
1 tNGINe SPEED (WEV/S) in.lM.i 17.'40 17.'I' 17.'40 II. MO
5 FUF.L TIMf ( SEC ) 33.65 33."' 13.HS 33.25
b FlItL TFMPfclJATUttt ( C ) 12.00 12.0(1 12.00 12.00
fl AIL' MFTEP. TtMPFKATUKF ( C ) 17.00 17.On 17.00 17.00
11 INTAKf MANIFOLD PHE ST. . (mm . HH ) -'127 . 1 D-H 1 2 . BS- 3H6 .S3-3SO . 1 i
26 EXHAUST TK''P. (POST TUMUP) W>6.0 3S9.il 3S6.0 351.0
27 EXHAUST PKF.SSUIft (PdT.I rUKl'll) H.< H.\ 7.5 7.S
13 tAHHori MOi.UXIOE ( y. ) .13i .133 ,1'I2 .107
IS CAUbON DIUXH'K ( X ) U.'lOd |1.S"0 11.500 11.500
16 OXYUfh ( i ) 't.HOO '1.7011 H. 700 '1.7(10
12 UYI)t'U( AHI'.KJS ( Pl'hr ) 1260.0 1170.0 17UD.O 22SO.O
11 HXIulS OF niTKOGIlU ( PPM ) -l'>5.0 -90.0 -55.0 -<4?.<1
17 HOAKt MAMHILf> CU2 ( X ) .020 ,7'IO 1.230 l.r<00
30 AMHItMT C02 (X) .020 .020 .020 .020
-------
KPA/Vn IIUCC MFTHAMilL (/V.Smn, X 7l.'lniin)
M.r.c./it'isrH liifJiTinn - ciittKt-cT iNJiLfoici
f. «;.(•:. LliliP AT 40 |1 IY
HUMIDITY LDrtiJECTlOfJ FACTOK
.HO
CHAINS OF- HATt I'/Lh
A ] l< =
: IF- F'ftiiO = 0.0 l-'l SULTS
SPEtn I'OhlF K
ULV/R h.l
40.0 1.37
10.0 4. J7
40.0 '1 . i 7
'10. 0 '1.47
HH[ •'
HAP
1.50
1 . '>0
1 .'.<(>
l.SO
wrsnui
T.i'^iie
H.-l
17.40
I 7. -10
1 / . in (hi'ArcFis)
HIFL VOLUMF:
LIbTLO AS G/Krt-»l« A«L ACTUALLY
G/Hh :
AIU. CALCULATtD FHIIM AlK METEK DA 1 A
nuc
(J/Kh.FHJ FFMClM'tYCU
10 14.1 ?«.(
1(IO(>.6 ?/.«(
IDIiH.I ?'/./(
ll)?f>,5 2<*.1(
.0)
.")
.1')
.0)
AlK HlltL
HAT IU
H . 1 ( . 0 )
H.0( .0)
H . 0 ( . (1 )
H.Ol .0)
H . I . t .
S,
17. »0
1 7.94
17.91
17. S9
F( C
G/K-'.MK
b.4tt
6. ih
/ .4«?
9.71
NUX t
Ij / K ft • H K G / K >^(
^.39 10.
1.09 9.
.66 10.
.SI !.
u
.MK
\d
9 'I
00
»0
CU,?
(,/Hrt.«M
lio^.Sl
libo. ii
1 i4M . ^1
lioi. 11
MC » f«U
IJ/K 1.HH
7.H7
7.i7
e. u9
10. ^i
-------
tf'A/VW MKCL MtlHAMul. f79.5i»i» X 73.1mm)
M.r.C./MIStH KiNtTln.J - c.i]H«.:tcT UJJH.TUHS
t.G.K. I UCH AT 10 HfV/SKC 1 . S IIAK (UIH1 0.7 f.rt.
REFER TO FIGURE NOS. 79-82
MOPE
79.SO
STkOKE
73.10
NUMIIE li lif
it
'1
CYCI f
1.
HKAKh
CUNSTAtil
159.15^1
AIM UtTF.K
CUNSrA NT
. 0 c) 0 0 0 0
FUfL
S.G.
.7950
R A T III
3.97
CALUH1FIC
VALUt
19910.00
T JKrtuChAKbtO
0
DAY
3
MONTH
a
YtAW
H6
NUMIIF H
62.00
HAKUMFTCK
H(. T HULIi
Tt'U'KiAIUKE
10.00
U«Y HULM
If MPtHAIUWt
ib.oo
HOWtK
CUKkECT Jun
0
IJiHPUl
Ul'TtDN
0.
1 f NO I'll SPEFP (REV/S)
i* HiMlTION TIHIU6
1 FllfU VOLUMC ( CC )
? HKAKf LOAD
S FIIIL TIMt. ( StC )
<> FUfL TCW'tRATUHf. ( C )
« AlK METER mif'FKAlUWt ( C )
II INlAKt 1ANIFOLO PKF.6S. (mm.Mri)
21, F.XMAIIST Tf-111. (PMST TURItn)
?7 I'XHAIIST Pi'FSSUKF. (Pt'Sl THHMI)
13 CAHttflN MfiNOXlDE ( » 1
15 CAChfiM DIuXIDt ( X )
16 OXYGEN ( X )
12 IIYnnnCAHIMJNS ( PI'Mt )
11 OXIOCS OF M1TKC1GEN ( I'I'M )
17 JNTAKF MANIF(IU') CUi ( % )
30 AMK1EIIT Cua (X)
10.00
22.00
S2.00
17.10
31. IS
1?.00
17.00
10.0 o
26.no
S2.00
17.10
31. OS
12.oo
17.00
1 0.00
i 1 . 0 0
S2.00
17.10
ii.6S
12.00
1 7.00
10.00
36.00
S2.00
17.10
V.9S
12.00
1 ?.00
1oo.«2-379.n| -3V4.9i-J3ti.rtfj
3SS.O
9.0
.131
9.9011
7.00 0
1 rt 1 0.n
-HO.O
.020
.020
3M .0
9.0
. 1 '.0
V.'MIO
(..vim
22?0.0
-SO. (I
.670
.020
316. U
H.3
. 1 1J2
9.900
7.000
31SO.O
-i2.0
1.200
,020
VJ7.0
H. J
.21S
9 . H 0 0
7.100
5900.0
-21'. o
1 .S60
.020
-------
l-.HA/Vl, llurC MflHAIiHL I79."jmm X M.tmm)
n.f .C./M05CH ir.Hiiiofj - coi'ffcf tNJKcruFvs
f. 'i.l-'. L'lUl' At /ID KtV/StC l.'i IIAIt MMKP 0.7 f-.R.
REFER TO FIGURE NOS. 79-82
I>ATE
TLSI un.
I)«V
KH.Aim. hllMlDllY = Ji.?K
MUVIOITV COMKtCllllM FACTIIk = .HO
f.RtltiS DF
10.0
1H.U
I[[[
: ) H I'UHIR = «.» I'LSULTli H.STll> AS l,/Kt<-IIH A».a<
q. | (
V. 1 (
V.H
h A1K MF. IEK UA1A
.0)
.() )
.0)
.0)
b.l.t.
i
IK. 07
16.01
1 /.HO
17.13
H C
U/Kta.MK
B.Vb
lo!t>«!
IS.iS
IV. »41
NOX C U CO
-------
tPA/Vfo "HCC MKTHANllL (7V.Snim X 7S.Mn.ir.)
M.t.C./HOSUM IGNITION - COKkU:l IMJC.C TOPS
F.U.P.. Lunl1 AT 6(1 HJ.V/SKC 2.S UAK tint' 1.0 I..K.
REFER TO FIGURE NOS. 91-94
Hunt
79.50
Nunn .« nr
CYI INDENT.
73. rutL TIML ( sec )
6 FUFL Tf;f*PEKATURE ( C )
B All* Mtrtl' Tf fll't HA1HKI ( L )
11 INlAht MAfJlf-OLU PPESS. (nfn.tl.|)
26 EXHAUST TFJ'P. (POST TMKhdJ
27 FXHAUST PHFSSUft (PUB! IHKIKI)
13 CAKUON MllNOXIUl ( X )
IS CAUUHN DfuXlOt ( X )
16 (ixY(;f;rj ( x )
1? HYDKOCArtHC.fli ( PPHC )
lu nxiDCS OF fJlTWncFu ( IM-M )
17 JUTAKfr MAhlFdLlJ CU? ( X )
30 AMHIF.NT CO 2 (t)
6(1.00
17.0(1
? 0 3 . 0 0
<"'. oo
62. 7S
12.00
1 S . 0 0
6(1.110
19.00
2(13.00
?o.OO
6?.'»S
12.110
16.11(1
n .0
2 1 . «
.soo
l't.600
.soo
S/O.U
1200.0
.0 40
.030
'186.0
21 .«
.SOO
1 ') . 6 0 ii
.SOO
630.0
-710.0
.661)
.M 40
60.00
2 1 . 0 U
?03.0u
2^.00
t>?.HS
12.00
16.0 1)
60.0 0
?'i.oo
203. 00
2 V . 0 0
62. SO
12.0(1
1 7.0H
3«<>. 66-307. S7
'l«i.O
21.1
.Sou
1 M.SOO
.SOU
M 7 0 . ()
-370.0
1 . J«»0
.030
T/S.O
21.1
.Sun
14. Soo
.SOO
1 080.11
-IttS.o
2. 1 bo
.Oi(l
-------
I PA/VV) III'CC riFTHAmiL (TV.bmni X M.'lrom)
•..t.c./.uusrh inhiiiou - CUKNFLT iNjtcrtms REFER T0 FIGURE NOS. 91-94
F.Ci.N. L'lOP AT 6 TEST Nil. ol.O HAh'iiMffFK 76j.hH -IM.lir. V.fc F IIUL« It.MHCC) 1J.O
liKY HUI.O IEMP(C) 1.S
RFLAT1VL HUMIDITY = 3S.92
HUMIDITY rilKKECTJIir; FACrOK = .«'.
GRAINS IIF llATt-'D/LU 0"Y AlK = 59.70
: .1- ».n,,LK = o.o ,•
FSULfS LISTED AS
U/K-f-HK Ai't ACTUALLY (;
/riK :
HEJiULTS I'» (ItUACMTS) «!<(• CALCULATED HS 2'l.oM 11 , 'to t.JO
-------
El'A/V" IIHCL MLlHAMoL (79.5mm X 7i.'lr,im)
M.t.C./liOSCH HifUTllill - COItHtCT 1MJKC1UHS
E.I..H. I "HP AT 60 k| V/SrC 2.S HAH lO'EI' 0.') E.K.
REFER TO FIGURE NOS. 91-94
MUWt
79.«,
STKllKF
73.10
cvn r
TYI'h
ruMST/U'l
A IK
. o no u i) o
f UH.
s. r,.
HAl In
LALKk'IHC
VAU/t
UP I 10 <
U
PA*
VI AK
Tf.ST
NUMHtK
6.2S Ml. OS
16.00 17.Ou I/.00
U79.0 1'Hi.o HT3.U 'I6l*.li
22.6 22.6 22.6 21.H
. 1S5 . I6'l .ISO . I 3H
13.200 13.200 11.200 13.200
2.SOO 2.'>00 2.SOO 2.SOU
b/0.0 720.0 960.0 I3'j0.0
11'jO.O -62(1.0 -i'HI.K -160.0
.030 .600 1 . 190 1 ,IWo
.030 ,r<() .030 .030
-------
Ff'A/Vn MKCr. l-il THAI, ill. (79.binn. X M.'l,i"»)
M.F..r./h.isr.M ii,Niiii)N - ciiHHfci irutcnihu
I .G.I'. LOOP AT <>0 KkV/ShC ^ . S HAH MMf I' I).1* t.K.
REFER
FIGURE NOS 91_94
DATE '»/ 2/«<>
HfLATIVL HHrtlUJlY
SP
KE
l>0
6U
60
hi)
ten IMI
V/S K
.0 10
.11 10
.0 10
.0 10
.ipr? i-.f\r*
il I!A«
!''3 ,'!M
.93 ?.5i
.93 ,».S<
Tt.ST .Jll. I'l.O MAku
. uKr AIK = 39.70
: 11 I'DhtH = U.O Ut
Kl SHUTS III (M|.«c
1 TljPUHt FHfL
N.H (;/!<», .Ml'
) <">9.0ft Hi (1. 7
' i'9.00 HI 6.7
) ?9.i((l M16.7
) <'9.00 H?1.2
SUl.Ta
hf-: IS)
7h3.6'4 HH.MI;
Lisrti> AS U/KK-
«ilK CALCULolED
V"L"MH»IC AIM ^
1 ^t iLlt rU. Y(* ) KAl
33il (
33. i?(
!*.«(
. u ) 7 . 2 (
. U ) 7 . f (
.U) 7.2(
.u) 7.l(
'.itT
OkY
MM AHk
t'ULb
HIILH
ACID
KKIIM Alk Ml
UtL
JU
.0)
.0)
.0)
.0)
H.
t?
FtMPCCJ 13.0
IfMI'CCJ 21. S
ALLY G/lIk :
:::::::::::
ItH UAfA
I .t. M C NOX C II C02
X U/KM.ilK b/Kn.MK b/^.^.^k (,/K,i.|m
.?3 I.?/ 10.99 «.<40 1124. 4/
.11 2.19 S.»2 ».?<• llu2.Mt>
.11 2.9^ 4.19 7.97 Ifvl.oU
.90 1.13 I.S1 7.SH HWi.ftM
MC » NOX
b/Ki.Hn
12. /b
n. 10
S.bl
-------
EPA/VH HKCL Ml.THAfJOL (7<».Sniro X 7j.1mm)
M.t.t ,/IUISCM Ji;iiITlUN - CfiHI'tCI INJrCTMHS
E.G.H. I.UUP AT 60 Kl.V/Sr.C 2.5 HJK lU'FP O.fl
REFER TO FIGURE NOS. 91-94
7V..SO
STK'IKC MiPnf <> dF
CYI INUt US
7 3 . '10 '4
CYCl T
IHfAh.t
COUtiTANl
IS'MSSI
A IK ;>iKit:i(
CUNSl Alii
.000000
H/CAKbllM
•VAl IU
CALONlUC
(tlKMuCMAK'ikl)
UP I I UN
0
MOUTH
YtAK
Tt ST
MAKOMt TI.N
•vtT tltlLH
ItMHKKAlOKE
15.00
UI'Y bULlt
IF.MF'EKAFUXL
DPI 1 UN
0.
UP I I
14
2B IUUITION IIMIM;
U FUfL VOLUriE ( UC )
? fiHAKT I.OAO
s FUCL TIML r src )
6 FIJI L Tl MPt WATUKE ( i: )
n All' f'tTLK Tt'll^HATUKC ( C )
11 IHIAKH HAHIF'ILO PKt SS . (mm. tl lux I DI. ( x )
16 HXYdf.M ( 1 )
I? HYMKtlCAHIUINS ( PPHC )
1« nXluK'i (if- MirKHGTU ( PPM )
17 IIITAKF MANIf-flLP CO? ( 2 )
JO AHH1IMT CUi? (1)
60.00
20.00
?03.00
2'). 00
60. SO
1 ?. 00
16.00
!)b-J.O
P<4.«
. 1 JO
ll.SOO
"4.700
1 1 .SOO
'1.700
INOO.O
-VO.O
1 .660
.030
-------
Fl'A/Vn HKCI. MMilAriOL (7V.'j'iii X M.'lni'n)
M.l.c./ti'isui ir.NiTHn - cui?nrci iu.in.ciocs REFER TO FIGURE NOS. 91-94
t:.''-.l-'. L'llll' Al 00 KtV/SIC »*.*> HAK III-.UP O.M K.N.
i/ 2/«(, Tt:;i no. o'>.o IU.M'MITIK 76i.t>'i MM.HI. ,jtl HUI.H ifncic) u.o
DKr hULtt HMP(C) ^l.S
lVt hUfllOirY = ^S.O?
nv COrtPfCIIHN FAClOk = .PS
s OF t>AriK/LH i)i:r AIK = ^v./o
: II- f'llwrK = (1.0 KKSDLlSi LlbFH' AS U/KVI-HK Al't ACIUALLf U/Mh :
SPFFO PuiJLK
F-'h
60
60
60
60
V/S K.K
.0 10.93
. I) 10.93
.0 1(1.43
.0 10.45
KFM'LT.S 111 (UfACKF I.S) A'U.
MMI.H lOlv'ullt. FUFL VOL'JilF. I'.'IC
IIAK M.'-i C/Kkv.ni' (FFILU'U.V
«'.S|, (>V.IM. 8M1.5 36. 6(
t'. SO ?4.uO 7V. 5 36. h(
2. SO 2V. (in 7VH.4 36.'l(
?.Sn ?4.iui M0(>.«? 36. b(
C'lLCUl ATtl) FKUM AlK MtlF.H iJAlA
m
0)
0)
0 )
u)
«IH HIC.L tt.l.F. h
HATIU i U/K
H.K .0) tJ.5<, 3
H.l( .0) ^^.S« 4
M.0( .11) ^^.6^ i
rt.0( .0) ^?.<40 6
t
A.HK
.iH
.S9
.!«
.3 '4
IlUX
C;/K
s
2
\
«, .HK
./'*
.50
, 10/1. 9H
.^v I'l/a.a^;
,sv io/o./y
.o« 10 />>. /*>
HC » iM«J
G/ K A . HK
9.0^
b.B9
6.66
7.^6
-------
tPA/Wi MKCC '-iFfHANUL (7«>.5mm X 73,'lrnni)
M.E.C./HUSCH IM.'ITION - CUKPtCT INJt CTIiUS
E.U.H. LOOP AT <>0 HFV/SF.C 2.S HAH HUM' 0.7 K.K.
REFER TO FIGURE NOS. 91-94
HURL
STKIlKF.
. 'in
CYL1UUI:KS
CYCU IJI'rtKt
TYPt COMSrAMl
'I. 1S9.1SS1
A1K MtlEH
criiiarAuT
. U 0 0 01) 0
s.c.
fl/CAHbllM
KAI1U
CALHKIHJC
VALUfc
Ul'l IU.I
U
DAY
'I
MIHJTlt
2
YhAH
TfST
HAHOMfH H
HULtj
S. 01)
OPTION
0.
UPll
>4
1 rwr-riC SPEED
2fl 1GM1T10N TlhlNf,
q FUKL VOLIIHr ( CC J
? MhAKE LDAH
b FUI-L TIMK ( 5tC )
b Hit I. TLMPLHATUKt (
8 AIM Ml- TH< tfc'IPPHAIUKr
11 INTAKt HANIhflLn PK'CS
26 t'XMAHST TKHC. (I'llST
?7 I XIIAHST PKl.SSUI.'F (PII
13 TAKtlON MOijilXlDfc ( X
15 CAKUOti OltlXlnt ( 2 )
1(. OXYGEN ( X J
1? HYDH'K AKIiUMS ( PPHC
1« OXIliFS OF IJlTHilUf-N I
17 INTAK1 MAHIH(ILI) CH2
3d AhHHMT CM?. (X)
)
r ( c )
S. (mnt.hg)
TUHMO)
ST Timim)
)
)
PPM )
( X )
6(1. 00
2 'i . o o
203.00
2'J.OO
6 7. OS
1 ? . 0 0
16.00
-32S.62-
<4Sf>.0
<>«.6
.121
V.900
7 . o n o
ISO 0.0
- 1 '1 11 . 0
.030
.030
60.no
2 f . n o
i> 0 J . 0 0
2^.00
67. SS
1 ? . 0 0
17.00
r"M.?M
HUH , t)
7.M
. 1 3d
9.') 00
7 . ii 0 0
l'12'l .0
-HO.O
. S 7 o
. 0 J i)
bO.no
3?. no
203.00 i
29.no
67. «U
i . o o
17.00
-f'S3.Ur'-<
1 3 V . 0
?7.H
.17S
V.800
7.100
?b'IO.O c
-SM.O
.V7o
.030
60.0 0
3u.OO
Jdi.ud
?V.O(I
66. SS
12.00
1 6. U»
V9.36
'IJ3.0
27.1
.IV,'
o.l'.OO
7.10H
!<>
-------
IHA/Vu HI'CC riKTHAMUl <79.Smro X 7J. llAK MMI.P 0.7 f- . (•» .
REFER TO FIGURE NOS. 91-94
OATL 4/ ?/«<>
TKRT tin. M..O
Tb'K
KfLATIVL lilMIIUTY = }t..'»?
HIIMJ01TY COKKKCIIHN FAClnW = .rt1,
GKAP'S OF V.ATEI IJI'Y Atl< = 59.70
,'iLr hUl H IFMP(CJ li.O
I'K» itOLB ItHP(C) dl.S
: IF
piimrk = o.o KLSDLTS LTSTH'> AS K/KI-HK A«t ACTUALLY U/HH :
ft: sm. fa IN (ui:/
SI'l tl) I'lUtl!
I'tV/S Hi.'
60.0 10.94
bU.O 10.9}
60.0 10.9.4
60.0 10. 9i
lihi;i' Tuifui.it
MAP '•<
2. Ml 29
2.50 29
,'.'>0 29
2.'»l> 29
.M
.0"
.00
.HO
.00
HIEU
C./Kh.HK
794.7
7HH.9
790.6
(100.7
U.hKTS) MKL
VULUMHKIC
FFFICII.MCY
41. 7(
'1 1 . i {
4 1 . i (
41 .S(
CALCUI-Aftl) HKUM AIK MLTtK IM 1 «
c;j
0)
0 )
0)
0)
AIK HJtL H.r.E. h
KAIIil X G/KW
9.i( .0) 22.72 b.
9.2( .0) 22. H9 7.
9.2( .11) 22. B4 10.
9.2( .0) 22. Sb 11.
C
.Hk
B6
40
19
44
NUX
G/Kn.rtK
1 .60
.90
.6S
.61
C u
G/K.1.HH
«.27
9.41
11. «2
1 3.07
tu?
r./,v,..hK
I062.9b
1 o 4 >y . o »
1 u i 'V . « u
1044. 2/
MC » NUX
li/m.HK
7.46
rt . i I
10. Ob
12.06
-------
tPA/Vil IIHCC riTTilANoL (79.5mm X 7J.«mro)
M.t.C./ru)SCH IljMlTldN - LfiHKtCT INJECTORS
t.G.H. HKII' AT 60 Ht;V/Sr.C 5.5 HAH HMtP I." t.K.
REFER TO FIGURE NOS. 95-98
PUKt
79.50
DAY
5
STHDKE
73. '10
MOUTH
2
NUf-'HF.Ii (If
CYLINUI KR
'1
Y K A \<
H6
CYCLP
TYPE
1.
Ttsr
ulll-lllf !•'
67.00
KI'AKt
CONS r AMI
159.1551
hAKOMl Ilk
760. 71
A IK MKTfK
ClIIISTANl
. 0 (1 0000
•U f nULB
TEMPI. KAfUhE
12.00
f UEL
t>.(;.
. 79SO
UI'V HULH
IthPfcKAlURh
23.50
H/CAHtMlrt
K A1 111
CALMKIHIC
l'. (I'nST Tll
21 fXIIAUST PKE3SIHJE (I'uSI
1J CAI'HUN UriHIIXIUf f \ )
IS CAI-'llfitl OJIIX10L ( X )
lt> (IXYI.I ti ( X )
12 HYOKdCftKIKlMU ( t'PMC )
11 MXII'T-S OF llirKOUIN ( f
17 INTAKt MANJKILO C.«f. (
30 AMI'IFMT C02 (2)
( r
(mm
\KliO
dO.OO
1 (> . 0 0
r'03.1'0
63.BO
49. 95
12.0(1
) 16.00
.Mg)-?22.SV-
) 577.0
1IIRHO) 'l».9
•I'M
t )
.500
1 '4 .50(1
.500
7 1 ' 0 . 0
) -2000.11-
. 0 '4 0
. 0 l| (1
60.00
Ih.oO
2o3.oo
6 ^ . H 0
'lo.io
12.01)
16.00
211.31-
S 7 0 . 0
'16.0
. S II 0
1 '1.600
.Min
750.ii
I '4 0 0.0-
. '1 3 0
.O'lO
60.00
17.00
2 U 3 . « 0
63. «U
'10. «5
12.0(1
1 (. . 0 0
IHS.7'4
560.0
'46.0
.500
1 '4.000
.500
rt'io.o
1050.0
.f 3o
. O'lil
60.00
1 h . (1 0
204.00
63. '10
4 0 . "4 5
12.00
10.00
-151. 16
Sol .0
<4S.I
.SoO
1 '1.600
.Sim
9hO.O
-720.0
I.."? 00
.u 'U/
hO.OO
I9.no
203. (10
6 4 . H 0
'10. 55
12.00
16.00
-120.34
550.0
'4 '4 . 14
.500
1 l.o '10
.'>00
1 020.0
-600.0
1 .'(9(1
.040
-------
I |'A/V» MKLC MF.TI'A'-inl. (W.'imin * M.'lurii)
M.t.r./ii'isui loniijiiN - CUUMLI INJUTTUKS REFER TO FIGURE NOS 95-98
f .(;.!». L'HIl' AT h'l Kl-V/StC H.', HAi: l!M| K> 1.0 f. .1*.
f'ATF r>/ i!/H«, ItSI fj(). «.7.0 HAI^il'F. TCH 760./I UK.Mil >'t I HULb IElP(C) 12.0
I'KY MULH rtHt>(C) ii.b
UfcLATIVt MIMIUITY = ?l.hO
Mllt'IDlTY COKf'U: I lUM FACT'K = .7fl
OF t.AltK/l.b I" S . H 0 6 0 6 . i
6i.H(l 6 II '1.0
(>3.fd SVH.M
6i.bO SVH.H
fii.Hd 600.5
KFFICIt.flCY(%)
4H.<>< .»)
'l«.7( .0)
'l^.r"! . 0 )
'!«.!( . 0)
1».?( .U)
KA1 10
6.bl
6.<4(
6,'M
<>.1(
6 . /U
.0)
.0)
.0)
.0)
.0)
X
^V.78
-------
K IIKfC rtf niANdl (7'».S«i»' X 74.<4rnnO
M.t.C./r.llSCH Ji.MITlOM. - cnnkllCl I'Uf'CTni.'S
t.O.K. LHOP AT 60 Hf.V/SfC S.S ll/»l< Hf-'[ I' 0. ^ t .K.
REFER TO FIGURE NOS. 95-98
HURt
7V.SO
DAY
5
MUMHf-K llF
73.40
MONTH
(16
1 hNfiltif SI'KCU (RF!V/S)
?H IGniriON 1IMING
u FUI L vnni-ii: ( CC )
? IHUKT I.UAH
*> rurt Tifir ( ;;tc )
6 FUtL TF.MI'tHArHHt ( t )
I* All-' I'MLH Tt^lPIKATHkF ( C )
II IHTAM -lAHIFlPLIJ Plif STi . (mn . M'l) '
/b I.'XHAUST Ttf|P. (PUS! THKIUiJ
py rxiiAi.isT PKI:S!UIHF; (Pnyi IUKIKJ)
13 CAKttON 'KllJilXIlif ( X )
IS CAI'linr; OIOXIDl ( X )
16 (ixYi;f N ( n )
I? HYt)l. KATUi
't. 15<>.1SS| .00001)0 ,7r'SO 3.'»7
Tt.ST HAKOMFIEK "tl MULtl I'KY W'LH PUWtH
NUHHHt ItMPt HATUHK IfMPLHAlUHt CUHke Cl 1 UN
6M.OO
6 0 . 0 0
1 ft . 0 0
1 0 3 . 0 0
63.PO
'11 .IS
li'.Od
1 '1 . 0 0
61). 0')
18. ltd
203. 0 0
6 < . M 0
'1 1 . '1 0
12.no
1 S . 0 0
760.71
60.00
1 9 . 0 0
2U3.00
65. MO
u l .ss
12.00
16.00
«.'Oli.OS-lH?.7J|-lS1 .9U
SS3.0
'1 1* . 1
.126
1 t.i?0»
«? . S 0 U
S70.0
SS3.0
OH. 1
. 1 '10
13.200
2. '.no
(>3(i . ii
1HSO.O-13SO.O-
.020
.020
.'J60
.020
Sbl .0
'•M. 1
.ISO
1 3. 10U
2. Sen
660.0
1000.0
. 7 <• 0
.020
12.00 23. SO 0
60.00
2u.OO
204.00
6 4. HO
tl .'(S
12.00
16.00
-12M.M
S M K . 0
'1 7 . '1
.ISO
13.100
2.SOO
7SO.O
-flOIP .0
1 .i'20
. r. d o
60.00
20.00
20 3.0«
6 3 . <* 0
'41.10
12.00
16.00
-^7.76
SMS.O
HI .«
.ISO
1 4.100
2.SOO
M 1 0 . 0
-7SO.O
1.210
.020
VAL'ifc
UH 1 |UJ
u
FKIC1 IUN
IIP I lou
u.
UUI PHI
UPI1UN
a
-------
HATl S/ 2/B6
Et'ft/Vh MiftC MFTHAMil (7V.Srim
".F .C./iJilSril lUMHO'J - (lli'Kli
t .(i.K. LiUJl' AT 60 UEV/StC S.V
M.'lmm)
INJECIUMS
Alv !!»• EH 0.'' ».K.
I>HY
REFER TO FIGURE NOS. 95-98
1EMP(C) 12.0
KELAT IVF. HIM ID I 1Y
IIU'-'IOITY COKKtf 1 IUII FAC10K
CHAINS IIF '.vATtl'/LiJ l>l C'U.ILH
PtV/S K,1
60.0 2'I.OS
60.0 2'l.o5
60.0 c1^. OS
60.0 ;>(».us
60.0 ?'t.uS
llrtH'
IIAI-
5.-..0
r. ,so
•i.SO
S.SO
s.so
: IF f'lln
HF.SHL
Tol-'uUl
u . r-i
6J.hO
'• 1 . 6 0
6 3 . H (I
63.no
63. Mi
LK = U.O
TS in (HI-
FHF.L
U/KW.MI*
SH'I.'I
SI'S . 1
SH2.V
SflM.'l
SUV. 5
Ht.SULTS L1STIH AS
ACKt'TSJ AUl LALCUI.
VOLUMl It! 1C'
I-FFICIK'ILYU)
S2.^( .0)
S«>./4( . 0)
S2.'l( .0)
S2.<*( .»)
S2.V( .0)
(i/KVt-MK Al'E ACIUnLLY G/IIK :
«TEI> FKUM AlK
A)H FUKL
KAI 10
7.2( .0)
7 . 2 ( . 0 )
7 . «.' ( . 0 )
7 . 2 C . " )
7.2( .11)
MF.1KM
rt . T . E
x
30. vo
3o. HO
30. V7
ill . Vo
30.63
UAl A
h C
(;/rw..HK
1.2-4
l!3>
1 1M
) .64
1.7V
MDX
G/KK.MR
11 .Si
rt .to
6.23
5.57
4.72
C H CO2 MC » NO*
t,/K.1.lll( C./rtn.hH U/ft.«.H«
<4.dl /Vl.Vtt 12. /S
S.3-1 7VI.7b V.77
S./'4 7e«.0i 7.o7
S./S 7oV.no 7.01
S.hi> /VS.// fi.Sl
-------
EPA/VU HKCC MtTHAUOl (79.S«im X 7i.4ir.rn)
M.E.C./l;n . o o
203.00
6 3 . P- 0
'12. 3S
12.00
1 S . 0 0
l69.r'S
S3 2.0
S 3.1
.130
1 1 .600
1.700
7SO.O
1 0 0 0 . 0
.030
.030
60. 0(!
19. Oil
203.00
6 3 . H 0
'»2. SS
12.00
1 6 . n 'i
-111 .3.'
S32. o
52.'>
.13'!
11.600
1.70 0
C.10.D
-600 . (P
.1'MI
.0 I"
60.00
20. 00
203.00
h3.flO
12. SO
12.00
16.00
- 1 0 6 . 7 «
S26.0
S2.6
.120
1 1 .600
1.70 0
V 3 0 . 0
-1'UI.O
.6HO
.030
60.0 0
21.0 0
203.00
63.80
'12.10
12,. 00
16.00
-79.71
S 1 7 . 0
bl.9
. 126
1 1 .SOO
1.70 0
1 0 B 0 . 0
-290.0
.PHO
.030
-------
FPA/Vh HKCC MtlH.MlflL (7V.S-nm X /S.'lmm)
M.L.r./i.nsnt IF.NITIUM - cui/hfci iNJtcruks REFER TO FIGURE NOS. 95-98
F.U.I;, l.llllf' AI (.11 IfF.V/fJLC S.S HAH hhl I* O.H (• . H.
PATE S/ i'/M<. TLST Nil. 6V.0 hAKOMlllN 760.71 .viM.tHi «,hT MULb IhMP(C) l^.n
DKY hULb lt^*'(C) ii.S
KeLATlVl HIIMIOI1Y = ?1 .hO
MtinlDITY CHKIU.CTIUH r«CTHH = .7H
r.l'AltiS ClF ttATlh'/LU Ut-'V Alh = •'n.^H
smr PuwLt*
IH.V/5 fUl
'< 0 . 0 ? '4 . H 5
60.0 ?'4.0r>
61). 0 P4.0H
MI.O ?1.05
: U I'H.i
KCSI'l.
liHCK Tillft.Dt
((»« H.h
S . S 0 h i . « 0
S.1)!) hi. HO
S.SlI bi.MO
S . r» 0 6^.00
if a - n.'i HCSULTS
TS IN (HKACKf TS)
HJH. VPLIIHF
C./KW.III' hFHJCI
•./I." S/.6(
S6<>.r> S7.1(
S6'>.') b/.SC
571.S r,7.6(
:::::::::::::::::::::::::::::::::::::
LlbTtl' Aii C/K^-MK AWt AC10ALLY U/HK :
Al'L CALC
fHlC
tMCYlt)
.11)
.0)
.11)
.«)
ULATED F-HUM AlK
A IK FlltL
KAlIU
a . J ( . o )
« . 1 I . 0 )
».U .0)
« . 1 ( . (»
Mf'TFM DATA
h. 1 .fc. ri C
X U/IV..I.HK
it.S/ l.»?
31 . 7c? .0<*
il.6« c.'.SM
Jl.oO c?.6i
uux c H
lj/(\w«HH ti/l\'i»MN
6.7i b.Sl
•I.Ol i.6't
?.^^i S.MO
l.''b S.io
CU?
1. / IVfi .
ni.d
loT.7
/ob.f).
/b-y..ii
hC *
-------
tf'A/vvJ IIKfC Mt-THA'JUI. (7<>.Snii>< X 7i.'lnira)
M.f .t./l'llRCil IGUITlOli - tXMAUST TFMP. (PUST TUI'lKD
?7 t XllAMST I'KI.SSUKE (I'OST IOHI'0)
U CAPhON MCUJdXIOF ( X )
15 CAKhtiN oiuxini-; ( j )
ih nxYi.t.ti ( x )
12 MYliHOCAKHiJMS ( PI'MC )
10 nxiors OF 'JltNOGCN C (-I'M )
17 IN1AM. MArJIFOLD COr' ( X )
50 AMhlfNT Cu? fX)
h II . 0 0 60. 0 0
d'l.OO PS.IIO
203.00 ?03.l<0
o3.f>0 63. "*0
'4P.7S <4.MO
-1
15.00
SO'I.O
61 ./
12.00
17.00
SOI .0
V.'JOO 9.H.OO
7.000 7.r oo
Id30.li I3MO.O
-300.0 -220.0
.030 .130
.030 .(HO
-------
HHCC .'iF.THAfiuL (TV.bmm X M.'lmro)
".F.r./nnsti. ir.Min.ri - CUIIKFU INJUJTUKS REFER TO FIGURE NOS. 95-98
r.c.c. LOOP AT 60 i-'iv/rit-r s.s hAH nMfp 0.7 F.K.
HATE S/ 2/M6 Ti.Sr (JO. hV.O DAI'MMF f(.K /60.71 MM.Ml; t'-Et HULb U'.MPlC) If!.I)
OKY HULtt TtMPCC) t!J.S
K'HAIItft HUMIDIFY = ?
'UIMHUTY COKKICI IUf! PACTnK =
(.KAIt'ti UF V'/
SPfEl' F'UrtlM
HIV/S KU
(.0.0 ?a. 05
60. u ?'i.ys
llm/l b I>CY AIK
• » • 1 •
U: 1'
:• • • •
• » • •
Htb
• * • • •
IMH*
• * • * •
I'IITS"
1.60
.7H
• * •
= 11
in
UUCP TllHuUC FH(:
KAt' N.H
S.S II f.i.f.
!> . r> 0 6 \ . H
C,
0
/K«
Sh6
S«.S
n
.0 l'|. SHLTS
( H (I A ( ' K t T S )
L VUL'JMr
LIS1LD AS
AKt CALCUI
TKIC
.HH tFFICItNCT(i)
.6 6S.6I
.9 t.6.l(
.0}
.0)
(i/KW-MK
!• • •
Al't
• • • •
ACTUALLY I./HK :
• ••••••*•••«*••
AltU FKUfc AIK Mt
A1K 1 -Utl
H&F It)
•».:s(
'
Cud HC » NUX
U/Kn.MK* U/K4.HH
7b-<.Hi! S. 70
/b/.lo 'J.'j'j
-------
rPA/V.% HKCC 'iF.THAiJIPL (7V.biiini A 7<.'lftim)
M.E.C./unscM KiMTXiN - nif'HLtr IINJICFOKS REFER TO FIGURE NOS. 99-102
F.C.M. LOOP AT 60 HI: V/SKC /.» KAI? HMH1 1 .0 h . *.
DATt 6/ ^/«6 ll.Sf wn. 71.0 HAWIIMF1EK I >>0. /1 MM.Hi; htT 1>ULB IEMPCCJ 1'4.0
UKY KULb 1tMP(C) IV.S
I'lLATlWt MUM1UHY = S<4.1i
MIJV.1PITV riMJRLC I ION FHClDK = .91
b lit hATtlVLli UKY AlK = C»!S^6
SPEbl) I'lHl K
t;tv/5 K»)
60.0 30.61
60.0 3 0 . 6 1
60.0 30.61
i:wr i'
MAC
7.00
7.00
7.0«».6
'LS'll.rS LISILIi AS U/KH-HK A«t ACH'ALLY (i/Hh :
(.KF fSJ ni>t tALCULAltD FUIIM AJK MtltK DAlA
vnt'lMfflMC AIH HJtL H.1.I-. H C
I.FF-K Ih -*tY(X) KAIIU X ti/i\iM.MK
S7.V( .()J (,.",( .0) 31.^0 !.£«!
S7.^( .ID t..S( .0) 3?. 06 1.34
S7.43.S4 M.m
-------
Ef'A/V1.-" MHCC METHArMUL <7<>.Srnm X 73.4r.mi)
M.t.C./IIIISUH IGNITION - COKI'tC' ItlJTCTdUS
t.G.H. I IHH1 AT 60 Kl V/SF.C 7.0 HC.H MCF P 1.0 t . rt.
REFER TO FIGURE NOS. 99-102
MORI
79. SO
DAY
6
STMIKE: miMttt K OF fruit
C:YI in\>\ KS TYPE
/ 3 , fl 0 1 'I .
i-lOijTM YfAH ThSf
uONiF R
H6 /1. 00
131'AKt
CONSfAM
IbO.lbSl
MAUMMI- 1FH
1
760.71
A IK ,M
H
5
O
B
11
26
?7
15
15
Ib
17
30
fuGltJt SPhFI) (KtV/S)
!(,'.'IT JON
FUl L
IIKAKF LUAU
FUtL TMF ( Str )
FUtL TtHPtHATUKt ( C )
AIM MMtK TtHPEHATUrtC ( C )
INTAhF MAIIIF-OLI) PKbSS. (mm.Hu)-
FXHAOST Tf.nP. (POST TMUUCi)
FXMAUST PHrSSUHK (POST Illhllll)
CADItON HOiMOXllJt ( % )
CAMBON 01 OX IDF ( % )
(IXYGHI ( S. )
MYi>Hor.AMnuNS ( PPM: )
OX JutS Uf MITPIIWFN ( PPM )
INlAKt MAMlFULll CO? ( r. )
AMIMf'JT CO,1 (X)
60.00 60.00 60.00
16.00 16.00 17.00
loa.oo 30fl.no 304.ou
m.i'o HI.^O 01. ?o
11.00 11.00 11.00
1".0 u 13.00 1S.0 0
Ibl .411-131 .60 -9<>.bu
'^9^.11 SH6.0 S".0
63.9 60.9 60.9
.600 .600 .bOO
1'i.boo ta.rioo 1'i.soo
,f>00 .600 .SOU
OdO.O Tf'0.0 HI 0.0
?l)'.iO.O-l?SO.O-l I 00.u
.(It'll ,'l°ll .rtr'O
.Oi'O . 0?() .U?ll
-------
fcPA/V,< HHCC MUTHANUL C7f».Smm X 7.4.Mmn,)
M.E.C./MUSCH lUNITlllfl - CHKPKCI INJECTORS
L.U.K. LOOP AT 60 KEV/SEC 7.0 hft« HI It I' O.V 1.. H.
REFER TO FIGURE NOS. 99-102
HURL ilttllKE NUMrtl l< UP
CYLINDERS
79.50 73.10 i|
1
28
u
2
5
6
R
11
26
27
H
15
16
12
1«
17
30
DAY MONTH YCAK
6 2 ttb
ENGINE SPL'ED (KEV/SJ
IGf'l T I OH 1 FMINK
FUEL voLiinr e re )
UKAhE LOAD
FUEL T1HC ( SET )
FUEL TEMPERATURE ( C )
AIR ft TEH TtMpfrtAiiiKC C t: )
INTAKE MANIFOLD PHE SS . (mm . tip) -
EXHAUST Tt'lP. (POST TUPUOJ
FXHAIJST PKCSSUHt IPUST IDKtHI)
CAHIUlfl MtlllOXlur ( i )
CAKbOM OIUX1DE ( S )
OXYGIN ( X )
HYOKOCAKPUIJb ( PPMC )
OXIUES or NITKOGEN ( I'PM )
JUTAKE MAI^[KiLI> CD? ( Z )
AMHJfMT CO? (X)
CYCLE bPAKE A I !< MtlE.
TYPE CIIHSTA'Jl inNSlAN
1. 1S9.1SS1 .00000
TEST nAKOMETEK >>LT HULb
NUMMFK 1EMPLKAIUHE
72.00 7t>0.71 11.00
bi>.oO 60.00
Iti.OO 16.00
30 'I. 00 304.00
M 1 . 2 0 H 1 . 2 0
5^.15 Ci2.'»0
11.00 11.00
13.00 1 (4 . 0 (I
121. M^ -91.7')
•>*«,0 571.0
t.1.7 6 '1.7
.10H .130
1 i . 2 0 0 1 3 . <•' 0 0
2.500 2.500
510.0 570.0
1 91)11.0-1 10 0.0
.030 .'110
.030 .040
f-UEL
S.ti.
.7950
19.SO
H/CAKbUU
KAl lu
PliftfcH
COPMtCl I
0
1C
VALUt
HKIC1 U'.J
OPT I On
0.
IUA
UUII'Ul
-------
FPA/Vh HI?tC "ETHAflOL (7V.Sunn X 7i. H/M.MiMF.7tK l^O.ll Mi-I.Hi; .(tT BULB IF.MPCC) I '1.0
OKY hULU VtMP(L) IV.S
Kf.LATlVt MOMIDI I Y =50.15
IIOMI1UTY CUXKt-.ClTlirj FAT. I OH = .91
GRAINS UF i«ATtK/t.h Ut'Y ATK = S3.?h
: IF i'(.iwi;n = o.o KI.SIILTS L
ISTH1 AS U/KM-MK AWL ACTUALLY kj/llk !
KFiiULTS IN (HHA(.Krrr.) AHL CALCULATE.!.) HMOK A1K Mt H.H DA 1 A
SHFE.O
HEV/S
bO.O
MI.O
PlIi'ltR
Mrl
30.61
30. hi
1'.
Mtl'
bAR
7
7
.00
.00
TU'Ha't FUFL
il.^ G/KK.HIJ
«l.?o ^13.9
BI!«;O S'fiis
VIILIIHI- rmc
1 FUCIt
61. 7(
hi . 7 (
•ICY ixj
.0)
.0)
AIM HlfcL
i< A T 1 0
7.^( .0)
!./.(. .0)
h. 1 .t.
X
33. 2U
3^.?i
tl C N"X
U/MPl.MK li/KK.hH
1.10 1.«2
Lib V.dd
C U CO^ HC
l'/Rrt-tlk l'/«".»"« G/R
3.B't 73M.2/ 13
<4.ol 73h.l9 10
t NUX
n.HK
.<»?
.b»
-------
F.PA/VV. IIKCC Ht fHAijOL (79.S«I«. X 73.4mm)
M.F..C./I.IISCII, ii;riiTn»N - CIIKKECT ir;
r. AT .'o kfv/si L t.n.i. .vi» ATI-CF
REFER TO FIGURE NOS. 104-109
IKilT STHORL'
79.SO 73.10
HAY HDuTn
13 ?.
1 F'JGI"F SPEtU (IIF.V/S)
?».'. IGNITION TMIHG
1 Full VOLUME ( CC )
2 "HAM U')AI>
S Furt TIT ( SLI: )
h Flirt Tf MPLPAJUHt ( C
H All' MFTtl' TK'U'FNATURE
11 IMTflKF. lAMHILn PKF.SS.f
26 EXHAUST TI.MP. (POST
27 FxHAllST PHI SSUHK (IMISf
13 CAKIIUN MIIUIIXIIIC ( X
IS CAKriOti OIIIXIDh ( 1 )
Id UXYUH ( X )
12 HYOMfTAKIHHIS ( PPMC
11 UX1US OF UITKriGCN I
loivn « OF c^cLf
YLiriutwa TYP»
i 4
YtAK TKIT
flUMl'f
. **• "73 •»°
20.00
23.00
S2.00
'j.SO
^^.KO
) 11. on
( c ) IS. oo
UHllll) 217.0
T HIHIiil) 3.0
,20ri
9 . l< 0 0
7.100
3MIO.li 2
PPM ) -20.11
•
HI.'AKf
AIK HETF.K FutL
CIINSl'Ai'JT
159.
1SS1
CUNSlA'ir
.000000
HArttJUfltK ^1
ti
20. on
23. nn
S2.no
ll.7o
77 . 7 il
1 1 . 0 il
11.00
21S.O
3.i>
. 1 ' ' ''
9 . H n o
7.2OO
7M'.o
-3(>.o
(,(,.'49
20.00
23.00
St. 00
23.10
60.10
I 1 .00
13.00
231.0
J.tt
.I3S
9.HOO
7.200
2010.0
-7S.O
r
20.
22.
S2.
3S.
'19.
11.
1 i.
2bi?
5
.1
F^l
oo
00
00
so
so
00
on
.0
.3
JS
9 . « 0 0
7. 100
1 (1 3 tl
-120
.0
.0
:T IIULH
M.HAIUKI
•> . o o
20.00
19. SO
S2.00
'16.60
41.60
1 1.00
13.00
2H?.0
9.0
.133
9. BOO
7.100
1620.0
-190.0
£ Tf
20.
16.
S2.
SJ*.
3S.
11.
11.
324
12
UMY
S.G.
.79SO
HlU II
MPtKAlUHL
16
00
oo
00
SO
10
00
00
71
.0
.11
2'l
10.200
d.hOu
1SOO
-120
.0
.0-
.50
2o.oo
13.00
102. SO
70.80
S7.60
1 1 .00
14.00
-70.69
331.0
13. S
.101
12.SOO
3.900
11 10.0
H/CAKHilN
HA 1 III
3
PlM
.*7
tP
CIIHI'KC 11 UN
0
20.00
9. SO
102. SO
H2.SO
IB. 90
11.00
11.00
-SO . 3H
3S2.0
I '1.3
,2So
M.SOO
1 .100
1140.0
1900.0-<>OSi>.ll
20.
S.
102.
93.
3'>.
11.
IS.
™ •
3dO
IS
C»LUHIHC
VALUt
19V40.00
F.UCU.)
iil'll'jri
•1.
00
00
So
MO
20
oo
uo
fly
.0
.0
3.SOO
13.3»o
.200
ISno
-inn
.0
.0
UHI IU-1
\,
OlIIHUI
01'I K-.-
1
-------
I.PA/Vu HKCC METHAHOL (79. Smut X 7J.4«,.n)
K.E .C./IIOSCH IGMJTIH'4 - CUIlKfCl INJtCTUNS
mPI'Ihr. Al 20 I'EV/SfC t.O.I. 330 AIOCF
l-Aff IV 2/H6 Test Nll.T3.fl
I'lLATIVL' hUMIIUTV = 3J.95
= .T>
7b6.109
•"ET liOlb ItMP(C) 9.0 OhT HULB ll>P(t) In.5
UKMt.S OF «fAlEK/Lb OK* All. = 27.30
si'ci n
Rl V/S
20.00
20.00
20. oo
20.00
20.00
20.00
20.00
20.00
20.00
l*f«.PffS
>••»•. MK
172.21.
•121. MM
332. i«
•21(..bf.
1 65. '1 'I
-ib
5. of.
7.45
H.uo
10.37
11.7-1
1.;'7
2 . '"1
'1 . 1 h
S.l.1,
7.35
H.70
10.37
11.71
1)l'.CllPM
.17
l.nl
2.02
3. Ob
1.02
5.0.1
b". 1 0
'.11
M.llS
"»«. !(>»' I"1"AKE.-AIK-2o.O
1 Son.o
1 1 1 0 . 0
U i n . 0
1500.0
I'AI-'I It'll AlfS
G/H
.00
.no
.00
.00
.00
.no
.00
.00
.1)0
I'./M.'.H
.OHO
.000
.000
.000
. I/ 0 I)
. 1. 0 0
.OOn
.no 0
.000
FKFL
.0000
.011(1(1
.001)0
. 0 0 (i 0
.0000
. 0 0 II 0
.OOdli
. 0 0 II 0
.0000
M C
I;/H
?7.->5
2<>. t>7
2«4.8«
27 . ;•"
2'l.«|
30. «7
22. 31
23.0"
33.23
II C
(./hK.II
10.111
17.731
H.100
6.117
1."20
1.115
2.50M
2.227
2.H.M
Af 'T.M 1
.norio
. ii o o n
.0000
.mid,)
.Oil II (I
.0000
.11000
.noon
.01100
• HiX-PI'M
til- I
21.0
3(..o
75.0
120.0
190.0
120. o
1900.0
20'>ii.»
in o.o
:iux
U/lvW.II
.72**
. 1>2'S
.1*1.1
I.OH'I
l.Sl.'l
3.157
12. lid
ll.l.H-4
«!.«•"?
CUR"
.17
1 .01
2.02
3. ()»•
1.02
5.01
0.10
7.11
n.os
AlK-MASS
M./8
. 0 0 0 0
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
. 0 II 0 0
mix-ppH
I:I?Y
2".H
'i.3.1
M9.H
113.7
227.5
5 0 «» . 1
2375. K
0
5«.5d
70.MO
ri2.50
93.10
FKir.-AlH-VUL.C.FF.
A IK-MI 1 .
.00
.00
.00
.00
.00
.on
.00
.00
.00
•JIIX-PPM
OI'Y.CUM.
22.6
33.0
7 0 . <•
1 12.9
17W.7
3'' 7. 7
1 hhh.9
?('H I .6
'191.5
Cl'2
c, / K Vi . 1 1
3025.SP.
1730.22
1 1 1'>.97
-)00.21
H! 7 .9 |
lln.hf .
77b.ll
7 7 ft . 1 9
A«9.97
SPJMUT
22.59
27.17
35.32
12.99
51.27
59.5 /
60.12
(>1.6o
«>5.l.5
uUX
0/H
.50
2!'i7
'I.B'4
''.13
2J.21
107. Ml
121.14
31.-IM i
STAk'l
1'^J.
.0
.0
.0
.0
.0
.0
.11
.0
.0
HlfcL-Cll'iSUMPl 1011
(J/MH HKS/lhJ Mli/LlTKt
I61Q. 11.01 30.67
|'J JS.
2173.
3016.
359i .
'1255.
5112.
6021.
75H.
VOL.F.FF,
AF r.Mtr
.00
.00
.00
.00
.00
.no
.00
.00
.00
CO-PI'M
Mtr
1 7 1 o . >
13M6.0
1 127. h
1 127.6
1 | 1 0 . '•>
11)29.0
Mi 1.7
1941.7
•669H. 1
EM)
U•) 1 Ml,
23.0
23.0
23.0
22.0
1 9.5
16.0
14.0
9.5
5.0
hOFC
232«.6
1316.0
till.o
(.76.1
«> 1 3 . 1
57M.9
571.5
5d0.e
649^9
rtUSCH Cf.LH.1,0 Ci'KMLClEli
S-iUrt -Si-MiM-. H!K t-L'l" IStAl 1
.0 .0 .0000
.0 .U .JOOU
.0 .11 .IlllOO
. •) .0 .0000
.11 .U .0000
.0 .U .0000
.0 .u .000 o
.11 .0 .0000
.0 .u .OooO
AlK/H'tL-KAl lit t-'«UI ««LF.I.l_t -HA ( 10
A 1 h -i-'t
.00
.110
.00
.00
.00
.00
.00
.00
.on
tuc!-m
Mt 1
M . 1 l>
II. 1M
,1.19
M. J9
M.I9
M.lb
1 0. Ill)
1 1.22
10.15
t AMA'ISr
11 "K.L
217.0
215.0
241.0
2D2.0
2.I2.0
321.0
3.41 .0
352.0
4bO.O
1. SPlHIll AlK-ntl. tv|S^lUN3
9.10 .000 .?ll/
9.2-4 .01/11 ,h97
9.3.4 .0»0 .t.90
9.31 .000 .«'9<;
9.33 .000 .o9U
9.11 .OOu ./07
7.69 .000 .f3/
n.6/ .000 .9tit>
5,o9 .000 I.l3«f
C->2-(l> CU2 u 2
l)rt» U/rt T
9.BO 2091.1 /.10
9.MU 2514.9 /.2v)
9.0U 32Mi.b /.20
9. MO •! d I b . vl 7.10
9.MU -4/>>9.o 7.lo
I0.2o 5691.5 b.«0
12.50 b9o5.o 4.90
11. 5 0 MO/0.0 |.1(»
13.30 (109)}.,; .Ju
nKftist t-'.o.K. iiuoSI PxtSS.
THtHM.tFF ( *) nA 1 l-J
'.75 .»u ,3«14
13. 1 £ .»0 .'t-4t>
21 .-4 / .00 .5bo
2b.69 u u .b'n
29.11 .no ,7h-4
31.19 .00 .MMl)
31 .12 ,UO .900
41. 0< .00 .93'4
c'M.21 .00 ,99-y
-------
tPA/Vt; I'HL'C MCI HANOI. (/1.5mm X 7i.4n.ml
M.t .t./'tl'SCH K.NlTJi'il - COKI-'LCt IIUtCTllKS
NG AT bO
Ul'Y OlJLH
ILMPfcHAlUKt
Ib.SO
M/CAKli'M
KAl 10
3.47
PO.'tK
r.urtKtCT HIM
0
CAl_UI. (POST TUPii(l)
27 FXHAIISl PtO S:iUHt (I'llST TtlK'lui)
13 CARIHIN MiluOXlui: ( i )
IS CAWItOM l)]UXH>t ( "/t )
16 OXYUf '4 I X )
12 HYpKuCAwiious ( ppnc; )
14 (IX1DCS OF rilTKIIGFU ( PPM J
'II'.OO
2 4 . 0 0
'J2.00
'i . 4 0
4 h . 3 0
12.00
IS. no
H H .1 . 1: 0 -
324.0
S. <
. 1 H 0
10.1 (I 0
b.HOO
2 1 V 0 . 0
-40.0
40
23
S?
1 1
3^
1 f
IS
44H
33
,
j n
'•.
1 Hf»
-/>
.(Ml
. nf>
• 1 ' I'l
.»(>
.''II
. 0"
.on
.IV
'>. i'
'>. "
1'IS
i:i>n
'I(M)
0 . 0
(, .n
40.00
23.00
1 0 2 . S 0
2'l.nii
S<<.6o
12.00
IS. oo
- 3 6 'i . 4 P •
3SS.O
to.s
. 12S
V. VIII)
/.000
1 7 't o . o
-120.0
40.0"
23.00
1 o«:.5d
34. '»H
'4V. Ill
12.00
1 S . 0 0
• 2 V 7 . 0 4
4U2.li
1 '1 . 3
. 1 2 2
'» . '» 0 0
7.000
1 M.I 0.0
- 1 l> 0 . 0
40.0 0
21. SO
1 02. SO
4 6 . H 0
•I 0 . V u
12.00
1 S . 0 0
-221 .0V
402.0
l«.fi
.120
1 0 . '.) 0 1)
6 . V 0 0
1620.0
-2*0.0
to. oo
20. SO
203.00
57.40
70.20
12.00
IS. 00
-1S1.VO
42S.O
2'4.»
.126
V . V 0 0
6 . V 0 0
1»00.0
-280.0
40.00
1 V . n o
2 (I i . 0 0
69.30
61.40
12.110
16.00
-*V. 41*
1SO.O
30. 1
.120
10.000
6 . / 0 0
1SVO.O
-600 .0-
'40.00
1 H . 0 0
2 n 3. 00
«2. 10
S2./0
12.00
1 S . 0 0
-7S.VS
4B3.0
32. 3
.110
12. 100
i./OO
1200.0
4ii.HO
16. SO
203.00
V'l. '4y
4 Ii . 1 O
1 ..' . 0 0
16.00
-60. VI
S22.0
36. 1
. | My
1 3 . b 0 u
1 ,7no
12'Hi.o
22HO.O-2601I.O
40.00
14.00
204. On
104.00
36.10
12.00
1 0 . 0 0
-2V. i3
5UH.O
4 0 . 1)
4.201)
12.SOO
.200
2250.0
-SOU. i.i
40.00
13.00
2 0 3 . o n
1 OV.HU
3 '4.00
12.oo
1 t) . 0 0
-1 .'.0
Soo.o
43.0
s . ii o o
12.000
.2no
2040. 0
-320.0
-------
R'A/VW MRtC METHAMOl (79.5mm X 75.'(mm)
M.f-.C./HUSCM IGNITION - CORRECT INJECTORS
MAI-PING AT '40 RbV/StC E.O.I. 530 ATOCF
REFER TO FIGURE NOS. 104-109
. DATE 13/ 2/86 , TtSI' NO. 7'l.0 bAIUlMET F R 766.19 MM.KG HE T HOLri TEMP(C) 9.0 DKY HULrt ItnPCCJ lo.5
RELATIVE HUMIDITY = 33.95
HUMIDITY CORRECTION FACTOR = .79 GRAINS OF (VATER/L& DRY AlK = 27.30
Sf'EfO
Rl: V/3
10.00
40.00
10.00
10.00
40.00
10.00
10.00
10.00
10.00
10.00
10.00
MAN.P'Rb
MM.HG .
-188.80
-418. 19
-368.18
-297.04
-221.09
-151 .90
-69.19
-75.95
-60.91
-29.33
-1.50
PtlUbP1
UM.roRK.
1.36
2.97
6.03
8.77
11.76
11.45
1 7.42
20.63
23.73
26. 1 '1
27.60
s KAN. TEMP
C
.0
.0
.0
.0
. 11
.11
.0
.0
.0
.0
.0
HC-PPM HC-PPM
WET
1819.2
1548.3
1151 .1
1101.2
1318.9
1501.2
1323.9
1011.1
1009.9
1726.5
1566.5
PART
G/H
.00
.00
.00
.00
.00
.00
.00
DRY
2190.0
1860.0
1740.0
1680.0
1620.0
1800. 0
1590.0
1260.0
1290.0
2250.0
2040.0
1CULATES
r./KW.H
.000
.000
.000
.000
.000
.000
.000
- ( K >. )
CORK
1.36
2.97
6.03
8.77
1 1 .76
14.43
17.42
20.63
23.73
26.11
27.60
HMCP-
UN.COI'f.
.17
1.02
2.07
•-.. 3.01
4.03
4.9r>
5.97
7.08
8.14
8.97
9.47
IIJTAKE-AlR-C-li/S)
FREF
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
M C
G/H
33.61
33.67
12.82
19.38
56.66
73.18
73.38
56.45
57.77
107.26
101.59
H C
G/h.1.11
24. 7t>8
11.353
7.099
5.63d
1.817
5.073
4.213
AT T.MF F
.0000
.0000
.oouo
. o o o o
.000 o
. 0 000
. 0 0 0 0
.000')
.000 0
.0000
. o o o o
HOX-IM'M
rtf f
10.0
66 . 0
120.0
160.0
?80.0
280.0
600.0
2200.0
2600.0
000.0
320.0
NOX
G/Kfc.H
1.230
1.093
1.32S
1.152
?.?57
2.136
4.311
(bar)
CORR
.17
I1. 02
2.07
3.01
1.03
1.95
S.97
7.08
8.14
8.97
9.47
AIR-MASS
KG/S
.0000
.0000
. o o o o
.000 o
.0000
. 0 0 0 0
.0000
.0000 .
.0000
.0000
.0000
NOX-PPM
DRY
48.2
79.3
113.9
191.8
336.3
335.7
720.6
2733.6
3321 .0
6'JI .6
116.7
C 0
0/Kln.H
35.608
15.180
8.920
7.152
6.241
6.211
b.Sf.a
TOR OUt
on. CORR
5.10
11.80
24.00
34.90
'16.80
57.40
69.30
82. 10
94.40
1 ("4.00
109.80
-(N"U
CllRR
5 . 40
1 1 .80
2'l.00
34.90
16.80
57.40
69.30
82.10
94.40
104.00
109.80
HUr.-AlR-VUL.EFF
AIR-MET.
.00
.00
.00
.00
.00
.Oil
.00
.00
.00
.00
.00
MHX-Pf'M
DKY. COR.
57. 8
62.3
113.1
150.7
261.2
265.8
S66.2
211K.O
2609.6
512.0
327.5
CO?
G/Klf'.H
3 1 39 . 3 3
1677.41
1110.01
'' 1 1.83
817.17
766. 76
728.25
SPlhUl
22.16
26.40
35.79
42.75
50.98
58.87
66.9J
65.23
67.21
68.58
70.62
NOX
G/H
1.67
5.24
7.99
1 2 . 73
26.55
30. »2
75.08
276.52
335.78
70.13
46." 5
START
I N.I.
.0
.0
.0
.0
.0
.0
.0
FUEL-CONSUMPTION b^F C
G/HR
3223.
3740.
5020.
5991 .
7192.
8299.
9 'IBB.
110S5.
12637.
16138.
17135.
. VOL.EFF
AFT.MF.I
.00
.00
.00
.00
.00
.00
.00
.00
.Off
.00
.00
CO-PPN
•
-------
REFER TO FIGURE NOS. 104-109
.00 .000 0 h^t..'j7 .0 ' .0 .0 1 •!. 0 boe.o Hl I.h4f IS/.tllh S'^.l? .0 .0 .0 li.O SOO.U ^'J.od .Ou ,9^a
-------
EPA/VU MrtCC Mt'THANUL (79.Smm X 73.1mro)
M.I .t./nustH iiiNiTiou - con"i.r. r I.IJLCTOKS
MAFTitlG AT 60 1-CV/btC I..11.1. 330 ATOCF
REFER TO FIGURE NOS. 104-109
HOCt STROKE fjUI'HF/K UF
CYI.1MU.WS
79. SO 73. '10 1
DAY MOUTH YK/IN
1 3 2 H6
1 rNfUME SPtFli (I'KV/S)
?fl I GM IT inn TiMinr,
i run. vou'iiL ( tc >
2 ItRAI T L(IAI>
s pun. urn ( SK: )
6 FULL TtfirLl'ATliHE ( C )
« AH- l-'f T£l< TLMI'tHATIIKFJ ( C )
11 INTAKI". HAMIFOLP I'KI.SS. (mm.hii)-
?6 1 XHAMST Tl_''t'. (POST TUHIUIj
27 1 XHAIIST PKCSSUHt II'I'SI 1MI/-«;
131.0
21. 1
.130
9.VOO
7.000
2160.0 1
-120.0 -
AIR ML 1 1- R
NT COM3 FA'I F
SI .000000
hi" I
Ttl"Pt
9
oil. on
21.5 0
hOLt)
KAFIIKE
.00
60.00
23.50
DRY
FUFL
s.u.
. 7950
BI'LU
lEMl'EKAlUHt
16
60 . on
22.50
0.3.00 203.00 2o3.0(i
31. HO
61 .6(1
1 1.0(1
12.00
9U. 7H-^
ISc-.O
3;:. 3
. 1 ?l\
9.^00
7. (1 00
S4d.il 1
15o.li -
17.60
51 ./O
1 1 .00
12.00
I1.il-
175.0
15. 1
. 129
9.900
7.00 0
Soo.o
190.0
SM.30
11.90
11.00
12.00
1 i9.«7
196.0
57.2
.125
9.900
7.000
1290.0
-210.0
.50
60.00
22.00
203.00
69.20
39.90
1 I. 00
1 4.00
-6.4.9M
511.0
67.7
.121
10.100
6. 700
1 1 10.0
H/CARHllrt
KAl 1U
3.97
POrtfcR
CURKF.C F1DIM
0
60.00 60.011
21.00 l^».50
401.00 301.00
H2.10 91.^0
51.10 15.90
11.00 11.00
14.00 12.00
-73.70 -61.67
511.0 570.0
/2.2 77.5
.115 .100
12.000 14.500
1.500 2.600
7BO. 0 600.0
-30 0.0- 150 i).0-21oo. o-
CALDKIF-1C FUKc)UCllAK(iLI)
VALUt UP) lU.J
19910
HR1C
.00 0
IIUIJ UUIPUI
OPTION UP II Of*
0.
60.00
1U.50
401.00
1 Ol.tMl
11 .60
11 .00
13.00
-1». 1 1
603.0
bl .2
I .300
11.100
.600
7»0.0
2050.0
1
60.00
15.00
507.00
1 1 1 .bli
51.50
11.00
12.00
-3.01
555.0
100.0
5.500
I 1 .500
.400
2220.0
-310.0
-------
FPA/VW MKCC METMAKfH. (79.5rom X 75.'imin)
K.K .C./UOSCH IGlllHOII - CUKKF-CT IhJtCTOKS
MAPPIM; AT 6« i0.49 HM.HG
RELATIVE rilJMIMMY = 33.95
HUMIDITY CORRECTION FACTMK = .79
REFER TO FIGURE NOS. 104-109
NET HULb TEMP(C) 9.U DtiY HULb IfchP(C) 16.S
CHAINS OF rtATEK/LB DKY AIK = 27.30
SPEFU
RFV/S
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
AN.PRES
MM.MG
482.03
138.42
363.97
291.78
211.31
139. P7
-84.98
-73.70
-64.67
-48.13
-3.01
HC-PPM
WET
2100.2
1800. B
1801.3
1276.0
1250.9
1075. R
922.7
628.7
172.3
597.9
1710.9
Pin/LK-(KW)
UN. r (IKK
2.07
4.26
8.78
13.12
17.9/1
21.98
26.09
31.06
35.51
39.51
14.71
MAN. TEMP
c
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HC-PPM
DRY
2520.0
2160.0
2160.0
1530.0
1500.0
1290.0
1110.0
780.0
600.0
780.0
2220.0
PARTICIPATES
c;/n
.00
.00
.00
.00
.00
.00
.00
G/KK.H
.000
.000
.000
.000
.000
.000
.000
CORK
2.07
1.26
8.78
13.12
17.9/4
21 .96
26.09
31.06
35.51
39.51
11.71
HMCP-Oiar)
ufj.coKK CORR
.'17 .47
.97 .97
- 2.01 2.01
3.00 3.00
4.10 1.10
5.03 5.03
5.97 5.97
7.10 7.10
8.12 8.12
9/01 9,04
10.22 10.22
INTAKE-AIK-(M3/S) AIK-MASS
FRFt.
.0000
.0000
.0000
. 0 0 II 0
.0000
.0000
.0000
.0000
.0000
.000 0
.0000
II C
G/H
65.55
64.96
81.88
71.15
83.10
82.49
78.48
51.66
11.76
51.88
182.25
H C
G/Krt.h
31.613
15.219
9.322
5.124
4.631
J.753
3.008
AFI. MET KU/S
.odon .0000
. 0 0 0 0 .0000
.0000 ,0000
. o o ii 0 . o o o n
.0000 .0000
.0000 .0000
.0000 .0000
. 0 (1 0 0 .0000
.OOOf) .0000
.0000 .0000
.0000 .0000
l4()X-PITi NOX-PP'1
K'F r DRY
85.0 10?. 0
80.0 96.0
120.0 H3.9
150.0 179.9
190.0 227.8
210.0 2M.8
300.0 360.9
1500.0 1861.0
2100.0 3018.8
2050.0 2671.5
340.0 '441.?
r.'OX c 0
b'/Kbv.H ti/Krt.H
2.f89 40.593 "
.529 IV. 1/10
.40? 9.813
.43" 7.688
.568 (>.9(,6
.654 6.361
2.208 5.878
HlRljOe
Urj.roRK
5.50
t 1 .30
23.30
34.80
T/.60
58.30
69.20
82. '10
9-4.20
1 0 H . 8 0
1 18.60
FKtE-AIR
AII<-Hf 1 .
.00
.00
.00
.00
.00
.00
.00
.00
.00
.0(1
.00
WiX-Pf'M
III. Y.COK.
60. 1
75.4
113.1
141.3
1 79.0
197.9
.'83.6
I'll.?. 3
2495. 7
2101.6
446.7
C02
1,/M'I.H
\ '114. 14
9?0.80
1 74.22
9i)4.47
K39.V8
7'M ,b?
7S2.26
-CUM)
CORK
5 . 50
1 1 .30
23.30
34.110
47.60
58.40
69.?.0
82.40
94.20
104.80
1 16.60
-Vol. . EFF
.SPJM.il
24.80
28.78
36.25
44.62
53. 1 7
61 .36
6K.08
69.51
69.8V
67. «5
75. 15
I4UX
(;/n
5.9V
6.52
12.32
18.88
28.50
36.35
57.61
294.41
•179.09
401.66
81.77
sunr
lf«J.
.0
.0
.0
.0
.0
.0
.0
HJEL-Cllt'bOnPriUN
U/HK'
5378.
6178.
7768.
9466.
11279.
12987.
14614.
170U9.
19024.
20991.
28276.
. VOL. EFF
AFT. MET
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
CU-PPM
rtEf
1541.8
1292.2
1084.1
1034.2
1075.8
1042.5
1040.7
926.9
834.4
99o'l.4
42386.0
END
1NJ.
.0
.0
.0
.0
.0
.0
.0
MN3/1NJ
15.59
17.91
22.54
27.46
32.72
37.68
42.40
49.58
55.19
00.90
82.04
MG/LllHt
34. 16
39.25
49.35
60. 1.3 '
71.65
8 2. '5 (I
92.84
108.55
120.85
133.31
1 79.0/4
. MANIFuLO-VOL.EFF.
AIR-MET.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
CII-PPM
1>KY
1850.0
1550.0
1 300.0
1240.0
1290.0
1250.0
1240.0
1 150.0
1060.0
13000.0
55000.0
STAR!
CI'Mrt.
.0
.0
.0
.0
.0
.0
.0
SPINOI
64.24
74.55
93.90
115.17
137.24
158.38
175.11
176.7V
1 80.3V
173.50
193.98
C (1
li/M
8'4. 1 7
81.54
86.20
100.87
125.00
139.61
153.34
110.95
129.05
1512.52
78V7.87
Ib'rllTJUh
T iMIUii
25.0
25.0
25.0
24.5
23. •>
22.5
22.0
BSFC
G/M4.H
2593.0
1450.2
884.4
721.5
628.5
590.9
560.2
550. 1
535.7
' 531 .3
632.5
BOSCH CELFbCU CUKrtEClE
SMOKE dmiJKfc
. o .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .U
.0 .U
.0 .0
. 0 .0
AIR FLU«IS
. klOOO
.0000
. 0000
.0000
.0000
.OliOO
.0000
.0000
.0000
.0000
.0000
AlK/FUEL-HAU(J t'JlH V ALE'MCE-K Al 10
AIK-KE
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
C02-U)
fir
8.25
8.25
8.26
8.26
8.26
8.2o
8. -40
9.67
10.63
1 1.04
8.86
EXHA03 1
lE'lP.C
399.0
415.0
441 .0
452.0
4/5.0
496.0
511.0
1. SPINnr Alh-Mtl
9.10 .000
9.1V .0"0
9.21 .oOo
9.27 .000
9.27 .000
9.29 .000
9.13 .000
7.97 .OOu
7.22 .000
6.30 .000
5.23 .Ooo
L02-IZ) CU2
0*Y b/n
V.VO 707/.U
9.90 M102.6
9.VO 1(>31<4.<;
9.90 12o5i.2
9.90 15074.2
9.90 173va.7
10.10 1902M.7
12.00 24109.0
13.50 25824.9
14.40 20324.5
11.50 259'ib.O
bKAKE t.o.K.
IhEKM.EFH (A)
6.96 .00
12.45 .ou
20.41 .00
25.02 .00
28.72 .00
30.55 .00
J2.24 .00
. t*IbSIOiNb'
.707
. /oo
.699
.695
.6V5
.6V3
.705
.bod
.*
-------
REFER TO FIGURE NOS. 104-109
.00 .000 1.7S9 "V.47B M.b37 7'I3.
-------
EPA/VU MKCC MCTHAWlL C7*».Smm X 73.1("i'i)
M.F..C./MUSCH II.'JITIOU - UJrtRHT i'lJICTllKS
MAPPING AT HU KFV/Sr.C f. .".I. 430 ATDU
REFER TO FIGURE NOS. 104-109
hunt
79.50
DAY
13
STh')i\t
73. «
MOUTH
2
1 F.N&1UE Sl'trii (HtV/SJ
?e IGNITION TIM INC.
1 FUf.L VOLH'lt ( CC J
? I1KARF. LOAD
S FUfL TIMh ( SIC )
6 FOIL Tf MPLKATUUt ( (; J
8 AIR fFTF.1' TM1PI UAIIWI
II IUIAKF: ^AlilF'H.O I'Hl !>S. (
26 FXhAUSl ItMH. (PH6I lU
27 l.XHAIIST I'HE.SSUKK (I'llSl
13 CAKbllN MIINDXlUf ( Z )
15 CAKIlMN DlllXlUL ( X J
J<> OXYbFN ( Z )
I? MYliKOCArtlHHlS C IM'fit )
11 IIXIUFS ur M rnni;j;r< ( P
YLAM TC
CYCI.I
TYPI
1.
ST
HKAKt
COUSlANl
15°. 1551
iiAKDMKTF.I" *•
AIH MhlEl<
CUNSTANI
.000000
IT HU1. n |)KY
Fut L
S.O.
b»LH
H/CAKtHIU
l< A 1 1 0
3.97
NllMUt: K 1 L'lPtNA 1 UKK ItMPtKAlOKt ClMNtC 1 1 "N
M6 76.
rtO.OO
27.00
1 0 <.' . 5 0
11 .30
33.00
1 1 .00
( (. ) 13.00
( m nt * \ ', {4 ) * '1 $ ') • *^ 0
• Witc.) 157. 0
IHKlti!) 31.6
.155
9 . y o o
7.iiO o
loHO.O
I'd ) -110.0
00
BO.
?7 .
203.
2*.
SI.
1 1 .
13.
-3S9.
190
'45
. J
00
00
00
'40
60
On
00
1(>
.0
.9
3o
O.'MIII
7.1!
lr>60
-1 70
no
.u
.0
766.
MO.
27.
?03.
35.
13.
1 1 .
19
00
00
00 2
10
1 o
no
12.00
-?H'.i,
507
61
. 1
7o-<;
.0
.7
31
9.90 0
7.1
1 5 0 0
-2 IS
OU
.0 1
.0 -
HO.-UO
2t>.50
'03.00
I/. 10
36.50
11.00
13.00
13.57
529.0
M'..5
. 121
9. VOO
/.noo
? 0 (1 . (I
i 1 (. . 0
9.00
H 0 . 0 0
25.00
301 . DO
50.30
'47.60
11.00
1 3.00
-113.63
59.2
1 .100
11.3«IO
.000
9611. U
1500.0-2150.0-2300.0
VALOt
19910.00
FW1C 1 ION
IIPI ION
0.
HO. 00
1 7.00
507.00
1 1 7.60
3o.OO
11.00
16. UO
-6.02
f>3b.O
2U1.5
6.00 0
I 1.500
.2uo
26)0.0
-300.0
oUIPUl
OPIlUM
1
-------
IIIJCC MKTHAUHL (79.5mm X 7 3.'(him)
M.I .C./rtllSCH IGNJTIIM'J - CORRECT JHJECTDRS
MAPPING AT 80 RF.V/StC t.0.1. 330 ATUCF
MATE 13/ 2/86 TEST WO. 76.0 BAKOi-iEHK 766.49 MM.HG
(•'flATIVK HUHIDIT.Y = 33.95
HUMIDITY CORRECTION FACTOK = .79
REFER TO FIGURE NOS. 10
"ET HUltf 1EMPCC) 9.0 OkY OULti TtMP(CJ 16.5
GRAINS UF INATEX/LB DKY AIK = 37.30
SPEED
I'EV/S
5? 80.00
<" 80. 00
£ 80.00
«i no. oo
g eo.oo
% 80.00
^ flo.oo
a eo.oo
w eo.oo
_>• 80.00
o MAN.PRF.S
i MM.HG
5 -430.90
W -359.46
» -285.76
.-> -213.57
5 -143.63
H, -81.97
a -71.44
cii -63.92
•-• -48.88
1 -6.02
V.
y HC-PPM
§• WET
i 1102.9
•j-. 1300.9
E 1250.9
"3 1000.8
c 900.7
0 693.7
o 387.5
1' 354.6
3 736.5
K 2003.0
Pl)hER-(KW)
ufj.r.ijwk
5.68
11.76
17.64
23.68
29.30
35.04
41.87
47.05
52.83
59.11
HAN. TEMP
t.
.0
.0
.0
.»
.0
. o
.0
.0
.0
.0
HC-PPM
DlfY
1680.0
1,560.0
1500.0
1200.0
1080.0
H 4 0 . 0
480.0
450.0
"60.0
2610.0
PARTICULARS
G/H
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
G/KW.H
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
CORK
5.68
11.76
17.64
23.68
29.30
35.04
41.87
47.05
52.83
59.11
TNTftKE-*
FREE
.0000
.0000
.000 0
.0000
.0000
.00110
.0000
.0(100
.0000
.0000
H C
G/H
74.03
86.20
99.66
94.49
97.76
81.55
46.95
43.15
92.^2
297.123
H C
G/Kri.H
13.034
7.328
5.649
3.991
3.336
2.328
1.121
.917
1 .757
S.UZH
UMF.P-(har) TORQUE
UN. CORK
.97
2.02
3.03
4.06
5.03
6.01
7.18
8.07
9.06
10.14
'AFT. MET
.0000
.0000
.0000
.00011
.0000
.0000
.0000
.0000
.0000
.0000
NOX-PPh
1-.ET
110. 0
170.0
215.0
310.0
340.0
510.0
1500.0
2450.0
2300.0
300.0
NlJX
G/KH.H
2.307
2.162
2.192
2.791
2.843
3.864
9.799
14.306
12.354
1 .700
CilK'R
.97
2.02
3.03
4.06
5.03
6.01
7.18
8.07
9.06 .
10.14
) AIR-MASS
KG/S
.0000
.0000
.0000
.0000
.0000
.0000
. o o o o
.0000
. 0 000
.0000
iiux-ppn
DRY
131.7
203.9
257.8
371.7
407.7
617.6
1858.0
3108.7
29H9.9
390.9
L H
r;/ hh.it
21.034
10.682
8,629
7 . 2 1 'I
6. 754
5.962
4.740
5. 170
35.213
SOU. 1H2
IIP.COI.'R
1 1 .30
2 3 . 4 0
35.10
'17.1 (/
5H. Jo
"9.70
H 3 . .5 0
V3.60
105.10
1 1 7.60
FKEE-AIK'
AIR-MET.
.00
. 00
.00
.00
.00
.00
.00
.00
.00
.00
NOX-PPM
|)i(Y . C')R.
1 0 3 . 5 -.
160.2;,
202.6
,.>'. 1
320.4
485.3
1 '1 6 0 . 0
2142.8
23'ir'.4
507.2
CU2
G/Ki'i.H
2fl#9.5?
1278.15
102«.60
90 4.91
840.42
7VV.67
763.98
750.65
719.26
<> (I H . H 7
-(NMJ
COHR
11 .30
23.40
35.10
47.10
5«.30
69.70
63.30
93.60
105.10
117.60
-VOL.EFF
SPIUDT
31 .63
39.«1
48.04
56. "7
65.38
72.05
72.54
72.59
73.41
79.92
NlJX
G/h
13.11
25.43
38.67
66.08
63.32
135.37
410.30
6/3.09
652.66
100.51
STAPt
INJ.
.0
.0
.0
.0
.0
.0
.0
.0
.0
. o
FUEL-CONSUMPTION
G/HR
8.V22.
1 1257.
13529.
15976.
18345.
20791 .
23601 .
26066.
29966.
40454.
:. VOL.EFF
' AFT, MET
.00
.00
.00
.00
.00
.00
. 0 0
.00
.00
.00
,
CU-PPM
dfcl
1294.4
1084. l'
1092.4
1044.2
1042.5
1015.7
936.5
1142.7
6 4 6 1 . H
46046.7
END
inj.
.0
.0
.0
.0
.0
.0
.0
.0
.11
.0
MM3/1NJ MG/LlTKE
19.41 42.51
24.49 53.63
29.44 64.46
34.76 . 76.11 .
39.92 87.40
45.24 9V. «6
51.35 112.44
56.72 124.19
65.20 142.77
60.02 192.73
. MANIFOLU-VOL.EFF.
AIR-MET. SPINOI
.00 68.97
. .00 , 87.01
" .00 10.5.11
.OU "123.99
.00 142.55
.00 157.07
. 7 . 0
t>jSt> . O
1. SPINDI A IK -ME
9.26 .uOu
9.26 .UOO
9.31 .000
9.30 .UOO
9.31 .000
9.05 .UOU
8.00 .OOu
7.23 .000
6.33 .OOu
5.11 .uOO
C02-IX) CU2
ORY G/<)
9.60 11868.5
9.9d 15033. /
9.90 18077.2
V.90 2H23.6
9.90 24o2o.2
10.50 28010.5
11.90 3)986.7
13.40 35310.9
14.30 37997.0
11.50 35991. V
HRAKE E.ii.K.
THERM. EFF U)
11.49 .00
18.86 .00
23.54 .OU
20.76 .Ou
28.84 .Ou
30.42 .00
32.03 .uu
32.59 .Ou
41. Hi .Ou
2to..4d .OO
1. EMISSIONS
.695
.695
.692
.692
.691
.711
.605
.891
1.016
1.261
.U 2
X
7.00
7.UU
7.10
7.00
7.0-0
6. 7o
4.50
2.6U
.00
.20
riOUSl PRESS.
RATIU
.438
.531
.627
.721
.013
.694
.907
.917
. Vi6
.<»»£
-------
tPA/VH HKCC HF.lHAMiL (79.'5mm X 7^,'lmm)
M.E.C./KOSOI IGNITIWI - C'lHWtn INJICTOKS
f-AHPlNO AT 20 HFV/SFf; WITH AUTII E.K.H.
REFER TO FIGURE NOS. 110-116
M
1;
I?
DDRE
7>J.SO
[)AY
HIJMHFH OF
r: YI. ihofKS
73.10 1
MINTH
YEAI'
I
?H
a
2
5
8
11
?7
13
IS
16
12
I'l
17
30
ENRU;f SPEFI) (RfV/S)
IGMITIPN TIMIun
FIIFL VOLUPF ( CC )
IIKAKt LUAII
FUTL T]MT ( .'HC )
FUCL Tr^Ptl'ATUKE ( C )
AIR N'ETtP TF'U'F.HAIIIlU (
IH1AKF MAMIFdLO PUtSS.(mm.Mg) •
EXHAUST Tt"r. O'OST TUI?UH)
PRfSSlIKH (I'USl TIlMHH)
MUNOXIOF. ( ". )
C )
( X )
ilYOROCAHIIIIIIS I PPMC )
OXliJFS OF r.ITKIIUEN ( HP" )
INTAhF MAMFIILI' CU2 ( % )
C02 (X)
cvr.Lr
TYI'f
«.
TFST
77. OP
0
21.00
S2.no
s.so
<> r< . 0 II
1 S . 0 0
11.00
197 . M2-1
211.0
3.0
.IMS
11.SOO 1
1 .900
3 0 6 0.0 2
-ri6.0
.020
.020
20
?l
52
1 1
7H
17
I'l
2S
21
.00
.00
.00
.3"
.10
.00
.00
.63
3.0
3.0
HI.'AKt AIP KI:TK'<
CONSTANT CmiSTAUl
IS9.1SS1 .000000
HM((|M|~TFH 'II T MIJLH OKY
TRMPEKA IUI,
0
20.00
S.VO
102. Si)
H 1 . 1 0
19. JO
1 1.0 II
1 S . 0 0
-11.37
360,11
1't.i
. 700
11.6 (.< I)
.SO 0
ISbO.O
1120.0
.020
.020
0. 1
20.no
r> . (I 0
11/2. SO
"3.60
3 '' . '• o
1 1.00
10.00
-.7S
3*0. G
1S.O
3.200
13.300
.200
2 1 ') 0 . 0
-12(1.0
.020
.020
c
6
-------
f.PA/VH HRliC MFTNANOL (79.bmro X 7$.'lrorn)
c.r. .c./r»dsrH i I:N n urn - COKKFCT IN.IECTOKS
MAIM'Ilir, AI 20 RFV/3FC l»lTh AIJIH f.P.W.
OATE 28/ 2/«6 Tf.ST NO. 77.0
RtlATlVE HUMIDITY = 29.SV
HUMIDITY CORRECTION PAITMH = ,7H
IIAPQMr TF..K 763.61 I'M. KG
REFER TO FIGURE NOS. 110-116
Wf.T HULI) TEMP(C) 9.5 f:KY bUlb TEKRU) 18.0
GRAINS OF- WATER/l.b DRY AIR = 26.25
"; SPtEU
" REV/S
* 20.00
? 20.00
S 20.00
3 2n.no
"> 20.00
v 20.no
2o.no
o 2n.oo
£ 20.00
o
2 MAN.PPFS
J fM.HC,
M -197. P2
£-125.63
5-313.58
"• -227.86
?.,-11fl.90
.2 -90.99
en -67.68
2 -11.37
I -.75
3
? HC-I'PI"
=* hET
i 2181.5
•T 2237.1
i 1973.3
=? 1535.3
§ 1705.0
0 1369.2
° 1050.9
•-, 1199.6
1 >"5.3
pn'.vt P-(KW)
UN.CORR COPR
.69
1.12
2.89
1.17
5.87
7.39
8.71
10.23
1 1.76
M/SN. TEMP
C
.0
.0
.0
.0
.0
.0
.0
.0
.0
iir-pi'M
DPI
3060.0
276n.n
2130.0
1890.0
2160.0
1710.0
1350.0
1560.0
2190.0
PARTICHLftTFS
n/n
.00
.00
.00
.00
.00
.00
.00
.00
.no
G/Kh.H
.000
.000
.000
.000
.000
.oon
. 0 0 0
.000
.oon
.69
1.12
2.89
1.17
5.87
7.39
8.71
10.23
1 1 . 76
Mff-P-
UIJ.CI.IIJH
.17
.97
1 ,9fl
3.07
1 . 0 3
5.07
5.97
7.02
8.07
INTAKE-ATR-CI3/S)
FREE
.0000
.0000
.0000
. n n o o
.0000
.0000
. n o o o
.nnoo
.000 1)
H C
G/ll
19.99
21.75
25.13
21.37
iO. 27
27. '12
21.15
50.06
'48.56
H C
G/Kn.H
28.920
15.317
8.696
5.1'I7
5.157
3.71 1
2. 80»
2.938
1.129
AF-T.MF. 1
.000 0
.000 0
.0000
. 0 0 0 ci
.0(100
. 0 0 0 0
. (1 (i 0 0
.000 0
. 0 li IJ 0
NDX-PPK,
MI r
56.0
2 'i.O
36.0
80.0
220.0
Srto.o
1050.0
H2o. n
120.0
NOX
t;/K;v.H
1.161
,3on
.356
.636
1 .'192
2.30''
6.28M
7.796
2.320
(far)
CORK
.17
.97
l.OH
3.1)7
1.03
5.07
5.97
7.02
8.07
AlR-'-iASS
Kli/S
.0000
.0000
. 0 0 It 0
. 0 0 0 0
.0000
. 0 0 o o
.0000
. il 0 0 0
.noon
'jnx-ppc
DRY
69.0
29.6
'11.3
98.5
27'5.7
•482.9
1318.9
1 8 '1 6 . 6
S'l9.n
C li
G/hrt.M
40.582
18.637
10.516
6.956
6.181
5. '109
S.093
23.062
105.SI8
TIIRUUE-(NM)
UN. CORK CUIIR
5.50
1 1 .30
23.00
35.60
16.70
58.80
69.50
81 .10
93.60
S.50
11 .30
23.00
3S.6Q
16.7(1
5M.80
69.30
81.10
93.60
FRF.E-AIR-VdL.fFF
AIR-MCT.
.00
.on
.00
.00
.00
.00
.00
.00
.00
NIIX-PI'M
ORY.Ct'R.
53.8
23.1
31.6
76.M
217.5
.476.8
1052.1
1 110.7
128.3
f:i)2
(:/Klr, .11
2907.01
1769.22
1131.01
910. H2
872.71
791.28
811.61
755.76
689.08
SPIMlT
19.29
23.22
3i>.o'i
37. S8
12.35
1 n . 0 6
51.15
5H.6H
65. HI
•ItJX
(;/H
l.i'l
.52
1.03
2.M5
".75
17.06
51.76
7V. 75
27.29
START
ll«J.
.0
.0
.0
.0
.0
.0
.0
.0
.0
FHEL-CUIiSUMPT
G/HH M'<3/1NJ
1567.
1902.
2161.
3050.
3829.
1356.
5213.
5956.
7115.
. VOL.tFF
AFT. PHI
.00
.00
.00
. (I (1
.00
.00
.00
.00
.00
CO-PI'f
ftKT
1502.0
1556.2
1361.3
1121.0
1 168.2
1111.0
1089. H
53H2.9
21179.3
ENIJ
INJ.
.0
.0
.0
.0
.0
.')
.0
.0
.0
13.68
16.65
21 .52
26.61
33.12
38.01
15.76
51.98
61.71
(UN
MU/LIIRE
29.«>>
36.25
16.96
58.12
72.98
83.00
99.92
113.50
111 .30
. HAMFIILU-VUL.EFF.
Alf-MKT.
.00
.00
.00
.0(1
.1)0
.00
.00
.00
.00
CH-I'PH
PRY
1850.0
1920.0
1680.0
1 380.0
1180.0
1150.0
1100.0
7000.0
32000.0
START
CIIKK.
.0
.0
.0
.0
.0
.0
.0
.0
.f r
9.31
9 . '1 0
•>. 11
v.31
in. SO
1 II. 6«"
1 1 .05
1 1 .23
1". I/
i XH/.imr
riMi-.L n
211.0
213.0
236.0
260.1'
307.0
317.0
33(..U
3611.0
36li.ll
SPIGOT AlK-KE
7.9V .000
7.92 .000
7.96 .000
8.05 .000
7.12 .UOO
7.11 .000
6. 71 .o»0
6.37 . o 0 o
5.72 . o H 0
,ll2-U) CH2
.(. r ti/rl
1 .50 206-1. 'j
1 .60 2512.3
1 .51. 32«.o.V
1 .50 407-4.7
13.30 5121. /
13.50 SHOb.d
11.20 7067. •»
|1.6o 7730.6
13.30 8lob.u
MKAKH F.O.K.
itH'.LFH (*)
7.97 .00
13.18 11.90
21 .11 1 i.0«
26.18 12.87
27.67 12.11
30.63 I-..59
29.99 S.35
31.01 .Of
2«.M .no
1. (MISSIONS
^06
.813
.f-09
.MOO
.901
.906
.959
l.i.l 1
1 .126
li 2
i
•1.9-1
1. 7o
'•.70
U.tHI
2.f<0
2.5o
1 .20
.50
.20
I.UdSl KKESS.
PA1 111
. 31K
.«13
.569
.702
.H05
.I'M
.91 I
.912
.9V9
-------
EPA/VW liHCC fTTHAMOL (79.5mm X 73,'limn)
M.E.C. /BOSCH IGNITION - C'lRMf.CI INJE.CTDUS
MAPPING AT 40 hrv/sf.c wtm AI/TM E.(,.K.
REFER TO FIGURE NOS. 110-116
BORE STROKE MUMIII K OH
CYI.IMDF us
0
u.
in
Z
m
X
a
10
(.0
3
(0
a
e
M
jj-
p
~
C
c
j.:
•*
S
§
»
r;
cr.
•_>
o.
X
r
•jj,
C
L'J
O
C
3
M
C
o
0
o
T5
79.50 73. '10 4
HAY MOUTH YEAH
Tf
CYCLE
TYI'F
4.
ST H
HKAKh AIM MtTEU
COf'STANT
159.
MIMhFR
28 2 86
i ENGINE SPEED CREV/S)
?fl IGNITION 1IMING
a FUFL VOLUME ( CC )
? IIKAKE LOAD
5 FUEL TIME ( SfcC )
6 FUfL TEMPFKATUHE ( C )
B AIR METF.R TEMPERATURE ( C )
11 INTAKE MANIFOLD PRESS . (mm. II.) )
Sit EXHAUST TtMP. (1'HST TURHd)
?7 EXHAUST P«rSS»RE (POST HN<|n.)
13 CARhON MONOXIDE ( Z )
15 CARBON DIOXIDE ( X )
16 OXYGEN ( X )
12 HYDROCARBONS ( I'PCC )
14 OX I |'f S OF IIITHDGFN ( I'PM )
17 INTAKE MANIFOLD cu2 ( x )
30 AVHIF.NT C02 (X)
7H.
40.0 0
21.00
52.00
5.90
45.90
10.00
13.01)
00
'40.00
21 .00
52.00
1 1 .90
39.50
10.00
13.00
763.64
40.00
21.00
102.50
23.80
5 R . 4 0
10.00
14.0 0
1551
Fn< rtl
CONSTANT
. 0 0 U 0 0 0
T PULH
DkY
MJEL
s.t,.
.7950
HULI)
TtMfKhATlIHE TEMPfATURE
40.00
21.00
102.50
34.60
47 .ho
10.0 it
14.00
9.50
40.00
11. HO
102.50
46. nil
3H.30
14.0 0
18.00
18
40.0 0
i o . a o
102.50
32.30
14.00
20.00
-4H5.79-439.92-356.45-2(i5.'lb-15H.(j7-115.Bl
521 .0
5.3
.204
1 1.700
4.500
2130.0
-40.11
1.000
.020
334. 0
6.0
.162
1 1 .50(1
4.600
1^30.0
-54.0
1 . « 2 0
.020
365.0
7.5
.162
1 3,600
2.400
16HO.O
-IV. 0
2.100
.020
5H3.0
12.0
.145
12.500
3.300
2(i40. 0
-1 30.0
1 .920
.020
413.0
15.8
.145
12.000
4. 1(1(1
2 2 H 0.0
-1 00.0
1 .46(1
.020
4 4 ft . 0
19.6
.15*)
13.100
2.9(10
2160.0
-270.0
1 . 500
.020
.00
40. OU
9.90
203.00
69.30
5H.OO
14.00
19.00
-Bl .97
479.0
2'l. 1
.170
13.MOO
2.100
1 7 1 0 . (I
-450.0
1 . 0 '1 0
.020
H/fAI'hlll,
HA1III
3
Ptl*v
.97
EC
COKKEC1 lOf.
0
40.00
9.40
203.00
« 1 . 5 0
49.70
14.00
19.00
-63.92
505.0
30.1
l.oo 0
1'I.MMJ
.500
1M30.0
-6MI . 0
.700
.020
40. 00
ft. 7o
203.0(i
95. /(I
40.5 0
1 4.00
1 H.I) II
-36. «5
502.0
36.1
3.700
1 2 . * o u
.20(1
2:540.0
-3MO.O
. 1 *0
.020
CALOh IF 1C TUht'.ljCHAM.t |
VALUt UP 1 IUH
19V40.00 0
FRici roi, ijint'ui
liHTllIN nl' 11 UN
0. 1
40.00
6.00
203.00
1 04.50
33.10
14.00
19.00
- 1 3 . 5 '1
492.0
40.6
6.00 0
11.4(0
.200
3120."
-IMi.o
.020
.020
-------
rPA/Vw IIKCC METMANOL (79.5,iim X 73.'4mm)
H.I..C./IJIISCH IGNITION - COOKFCT INJICTOKS
MAPPI'Jli AI 10 HEV/3FC HITH AIITU E.b.K.
REFER TO FIGURE NOS. 110-llt
OATfc 2R/ 2/86 TES1 NO. 711.0 HAROKF.Tl-K 76.5.6'! MM.KG *tT hULM TFMP(C) 9.5 l>fr HULU TFMIMC) 1«.U
RELATIVE HUMIDITY = 29.59
HUPIP1TY CORRECT TUIJ FACT'lk = ,7« GKAIf-S OF WATEK/Lh DRY « I h = 26.25
SPEFD
REV/S
10.00
£ 10.00
«» 10.00
^ 10.00
ui 10.00
5 10.00
S 10.00
W 10.00
(3 10.00
OT 10.00
c MAN.PKES
o MM. Mi;
i -1*5.79
5 -139.92
w -356.15
« -265.16
S -158.67
?. -115. Bl
a -81.97
6 -6.3.92
M -36. H5
u -13.51
5 nc-PPr-1
? >'F.T
§> 1723.1
£ HP6.2
•j: 1319.7
I 1630. »<
j 1B37.2
c 1710.1
<° 1336.9
o 1102. fl
1 1795.5
'> 239B.3
(C
POIitl'-(Mf') IIKFP-
UN.COPP
1.1H
2.99
5. 98
B.70
11.71
11. 7«
17. -42
20. 'iH
23.55
26.26
MAN.It'-'P
C
.0
.0
.0
.0
.')
.0
.0
.0
.0
IIC-PP*
ORY
2130.0
1830.0
16flf, .0
2010.0
2280.0
2160.0
1710.0
1*30.0
2 3 '1 0 . 0
3120.0
PARTICIIIATFS
G/H
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
r./Ki-i.ii
.000
.000
.000
.000
.000
.noo
.000
.000
.000
.000
C"UH
1 ,'IH
2.99
5.98
n.7o
11.71
11.78
17.12
20. '4tt
23.55
26.26
uii.niHR
.51
1 .03
2.0r>
2.98
-4.02
5'. 07
5.97
7.03
H.O'I
9.01
INTAKt-AIll-O'i/S)
FHtf
.0000
.0000
.0000
.0000
.0000
.0000
. o o o o
.001)0
.OODO
.0000
n r
G/H
28.63
29.21
50.13
1(1.91
70.63
72.86
60.62
67. "3
100.39
IS/I. 73
M C
K/KN.II
19.306
9.776
5.087
5.62*
6.011
'4.930
3.1«0
3.312
1.263
5.891
AFT.^KT
.000 :i
. 0 0 1) I)
.0000
.0000
.0000
. 0 0 0 0
.0000
. 0 U 0 0
.O"uo
. U 0 0 0
MlX-PPr-i
*F.T
'40.0
5-1.0
W2.0
13o.o
100.0
27n.O
150.0
6 M U . 0
380.0
In 0.0
• mx
(i/Kli.H
1 . oo'l
.796
.70''
1 .006
.736
1.7-1 S
2.622
3,S9fl
2,02.'
,«H1
(har)
cnpp
.M
1 .03
2,0',
2.98
'1.02
'..07
5.97
7.03
M . 08
9.H1
AJk-MASS
Mi/Ii
.000 0
.0000
.0000
.oonn
.0000
. 0 0 0 II
.(11)011
.0000
.0000
.000 o
i-mx-pp*
PHY
19. '1
66.5
lOI.'l
162.6
12-1.1
?1I .0
S71. 7
BH7.I
-195.2
208.1
C n
I;/KIV.II
32.3H
15.136
8.580
6.997
6.7o9
6.30P
6.0S2
51.652
1 1 7.8')«
1-18.171
TOKUUK-
UN. r OCR
5.90
11 .90
23.80
31.60
16.60
Sfl.80
69.30
81 .50
93.70
101.50
•(NM) F Oh 1. -CON SUMPTION
COI^rt r,/lll<
5.90 3257.
11.90 37flS.
21. HO 5016.
3'l.60 6165.
'16.60 7666.
5.8.80 9090.
6". 30 10026.
81.50 11701.
93.70 H3SH.
10-4. r>0 1756H.
FKfcF-AIK-VUL.f-.K-F. VflL.tFH
A ifV-f F T.
.00
. 0 0
.00
.00
• 00
. 0 0
.00
.00
. 0 0
.00
NMX-PPH
PRY.COH.
3»,6
51.9
fll .'1
126.9
9 6 . (I
266. 1
H U l\ . '4
692. 1
316. (1
1 6 2 . '1
CO 2
G/KK.II
2911.13
1688.29
1131.7/4
9'47.73
fl72.35
821.79
771.93
726.09
6/10.85
5«M .bl
SPIMDT rtl:T.KF:l
19.70 . 0 (I
23.17 .UO
27.19 .00
35.21 .00
16.21 .00
51.71 .00
5-1.77 .00
57.69 .00
62.»<3 .00
70.07 .00
unx CO-PPM
G/M i\EI
l.«9 1650.6
2.i« 1315.7
'1.21 1272.5
".75 1159.1
M.62 1168.'!
2S.79 12-J0.9
15.67 1331.1
73.70 7665.5
17.63 28369.8
2 3 . I 'I '16120.9
SI AM tNI)
[I-.J. IllJ.
.U .0
.0 .0
.U .0
.0 .0
.0 .0
.0 . n
.0 .0
.0 .0
.0 .0
.0 .0
M^3/lf!J
11.16
16.16
21 .91
26. HO
33.15
39.67
13.75
51.UO
62.65
76.66
, MAMFUl
Alh-MtT
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
CII-PPM
UMY
2010.0
1620.11
1620.0
1150.il
1150.0
15(50.0
1700.0
10000.0
37000. (I
611000.0
SI AIM
CIIMH.
.0
.0
.('
.0
.0
.0
.0
.0
.0
.0
MG/lITKl
11 .01
36. U6
18.08
5H.75
71.05
16.62
95.5'l
111. 19
136. f>2
167.10
li-VOL.EFF.
. SPINuT
51.68
6 0 . « 0
71. b7
92.05
119.16
132.12
110.7-4
11H.25
162.00
180.06
C 0
G/H
17.96
15.27
51.32
OO.M'I
78.57
91.22
105.11
61H.31
2776.13
5201.7U
lUHlTJOh
T1U. ItiG
21.0
21.0
21.0
21.0
11.1
10. M
9.9
9.14
1.7
8.0
IKS! •(; bOSCM
CLLtbtU
ll.MRfcCIf i.
li/l\.'.h Sf-.UKf: Swlmt. All' FLIIMStAII
2196.6 .0
126S.5 .0
8/11.6 .0
/o^.U .0
6S'I.6 .0
615.1 . 0
5/5.7 .0
571.2 . u
609. / .11
6I.H.S .1)
A Ih/HlEL-l- AI 10
MK-MiT. SKINDI
.00 7. 87
. U 0 7.97
.OU 7.07
.0(1 7.11
. 1) 0 7.71
.00 ?.23
.11(1 6.96
.
-------
EPA/Vt< IIHCC KETHAHOL (79.Sum X 73.'from)
M.E.C./BOSCH I(;r))
26 EXHAUST TK"P. (POST TUBHO)
27 EXHAUST PRESiiURF. (1'UST TIlMllfl)
13 CARhOU MONOXIDE ( X )
IS CAfMllIN DIOXllifc ( X )
16 OXYGEM ( X )
1? HYDROCARBONS ( PPfC )
It OXIDES OF MlTKOfiE'N ( PPf )
17 INTAKE MANIFOLD co2 ( % )
30 AKHIFMT Cll? (X)
Tl
CYCLf:
TYI'I
1.
SI t
HKAKI. A IN *»HTF.
CUriSTAllT
159.
IAH..KFTI
NMMIlEH
79.
60.0 0
2'l.00
102.50
6.10
55.70
1 1 .00
M.OO
503. «1
3 ''6.0
7.S
.175
1 1 .Hill)
1.20 0
IOKO.0
-220.0
.fl»0
.020
00
60.00
20.00
102.50
11 .30
1H.20
11.00
15.00
763.61
60.0 0
21.00
102.50
23.30
i«.20
11.00
15.00
K
CONSTANl
1551 .000000
-K •<(
Tf-lf
60.00
23.50
203.00
31.60
6) .60
1 1.00
15.00
-160.22-357.95-259.4(1-
111.0
11.3
. 1 hS
1 1 .50n
1.700
1 S 3 o . 0
-125.il
.720
.020
136,0
16.5
.ISfl
1 3.000
2.500
1 sno.o
-170.0
1.H30
.020
'160. 0
21.1
.150
1 2 . M 0 0
2.700
1 5 0 0 . 0
-2uO.(i
1 .H90
.020
T HUI M
THATUHF:
9.50
60.00
13.10
203.00
16.60
50.00
11.00
20.0 0
172.21-
17S.O
33.1
.130
12.0 0 0
1 . 0 0 0
1710.0
-160.0
1 .200
.020
ORY
FIIFL
s.t,.
.7950
HULH
ll/t At'HIII.
LALOMHC
fcATIU VAL'H
3
POh
.97
LR
TEMPERATURE COt'Kh CT 10H
IB
60.00
11 .20
203.00
5H.60
12.20
11.00
19.00
127. HI
512.0
11.1
.13"
13.300
2.900
1200.0
-290.0
1 . 1 3i»
.020
.00
60.00
10.20
203.00
69.30
37.10
11.00
21 .00
-90. 2«
561.0
51.9
. 165
11.200
1 .MOO
b 1 o . 0
-190.0
1.060
.020
0
60.00
10.00
301.00
HI. HO
4 H . o o
11.00
in. oo
-71.15
559.0
57.9
1 .300
1'I.SOO
.300
1050. o
-510.0
.rthi)
,020
6 1) . 0 0
lo.o o
3ll'4 .00
93.50
39.00
11.00
jn.on
-15,12
SoS.o
73.7
3.900
12.700
.300
I'l 10 .11
-21 o.o
. 1 II II
.020
19910
FI'K
HPI
0.
60.00
10.00
3 0 « . 0 11
103.10
31.50
11.00
1 h . 0 o
-26. J2
5b 4.0
HS.7
5.200
12.200
.200
1560.0
-200.0
,'iiO
.020
.00
1 IUN
ION
60
1 0
301
1 12
29
H
It
-1
5n
IIIKhuChAKl-Kli
UP 1 III 1
"
IJII 1 Hill
UH1 I OK
1
.00
.00
.00
.10
.10
.00
.00
.51
1 .0
102.3
6.
l'i.
*
500
f-ot
2 "I)
2 7 i| 0.0
-1 ll/.n
.
,
02 1
020
c
o
O
o
13
-------
M'A/Vh HHCC I'F TMANflt (79.5mm X 73.Imp)
M.L.C./UUSrh JGNITltJf) - CURKIiCT INJFCTORS
MAPPING AT hi) RF.V/ShC .'UTh AUTO E.G.H.
REFER TO FIGURE NOS. 110-116
MATE 28/ 2/86 TR.r-T NO. 7'».0 H APflC'E Tl K s /63.61 HM.Iir, rtfc'T MULh TEMP(C) 9.5 DHY HULh TtMMfJj 1H.O
RfLATIVt HUM10ITY = 29.51
llllt-'lMTY COKRFCIION FACTOR = .7(1 GHAIM'S UF WATEH/LH I;MY Alh = 26.25
SPEED
Hf.V/S
60.00
f? 60.00
UV 60.00
7 60.00
60.00
_> 60.00
S HAN.PRES
i MM.HG
o -503.81
w -160.22
« -357.95
S -259.11
5 -I 72. 2 I
a -127.81
o -90.21
£ -7«.«5
•-• -15.12
1 -26.32
I -"'51
§, HC-PPI"
iS " E T
•j 872.7
E 1212.5
'i 1091.3
c 1193.3
0 H02.3
o 917.3
| 630.3
803. 6
*• 1101.6
1192.1
2087.1
Pl)Wt'K-(Kh) HHF.P-(har)
UN. CORK
2. 3D
1.26
8.78
13.01
17.57
22.09
26.13
30.81
35.25
38. 9R
12.31
MAN. TEMP
1 c
.0
.0
.0
.0
.0
.0
.0
.')
.0
.1)
.0
Mf.-PPK
OK Y
1080.0
1530.0
1380.0
1500.0
1710.0
1200.0
810.0
1050.0
1110.0
1560.0
2700.0
PARTICIPATES
G/M
.00
.00
.00
.00
.00
.00
.00
G/K»..M
.000
.000
.000
.000
.000
.000
.non
CORK
2.30
1.26
8.78
13.01
17.57
22.09
26.13
30.84
35.25
38.98
12.31
INTAKE
FRET
.0000
.0000
.0000
.000 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
ii r.
G/ll
23.62
39.51
10.00
51.19
82.23
60.')8
13.9 il
59.H8
91.56
112.11
221.53
H C
r./Kw.n
10.272
9.282
1.553
1.155
1.681
2 . 7 *> 0
I .b'ti>
OM.UIRR
.53
.97 (
2.01
2 . 9 H
1.02
5.05
5.97
7.05
8.06
8.91
0.68
-ATK-C'3/S)
AFT. '•'FT
.OHOO
.0(100
. 0 0 0 0
.0000
.0000
.OiiOO
.0000
. 1)01)0
. 0 << 0 0
. ii o o o
.000 o
rjnx-i'PM
«* I" 1
220.0
125.0
1 70.0
2 I) 0.0
16(1.0
290.0
190.0,
51(1.0
2 10.0
200.0
110.0
mix
U/KW.H
5.MO/I
2.093
1 .586
1 .561
1.197
1 . 8 9 '1
i' . '• 3 I
CORK
.53
.97
2.01
2.9H
1.02
5.05
5.97
7.05
8.06
8.91
9.6H
AIR-MA3S
KG/S
.0000
.0001)
. 00 0 1)
.0000
.01)00
. 0 0 0 (1
.0000
.0000
.0000
.00(1 0
.000 (i
iiMX-ppr
IM
273.8
261.7
112.3
C (1
G/Kn.li
29. 1 11
17.50H
9.119
7.267
6.117
5.552
S. V'JJ
TOR'IUF.
UN. TURK
6.10
1 1.30
23.30
31.60
1 6 . 6 0
58.60
69.30
81 .80
93.50
103.10
112.30
FREE-AIR
AIH-HKT .
.00
.00
.00
.00
. 0 0
.00
.00
.00
.00
.00
NHX-PI'M
DRY. CUM.
212.1
120. 1
167.3
19h.l
151.9
286. (>
1'M. 3
550.5
213.6
201.2
1 1) .0
U02
G/M'.'. II
3081.50
1917.30
1 178.87
971.55
887.21
8 1.30 .0(1
70.01 .00
75.58 .00
M)X CO-PPM
G/|( *KT
13.35 I'M 1.2
8.9?- 1310.0
13.93 1252.9
20.36 ,1193.3
21.03 1017.7
11. fib 1089.1
76.57 1281.0
90.20 9 y /> •) . /|
10.30 29 91 5.1
12.17 39756.5
26.53 50211.')
START END
tNJ. IHJ.
. 0 .0
. 0 . 0
.0 .0
.0 .n
.0 .0
.» .0
.11 .0
MM3/1MJ Mi;/LITRf
15.31 33.58
17.72 3M.60
22.36 18.96
27.16 60.13
33.83 73.88
10.09 87.51
15.60 99.57
52.78 115.25
63.97 139.70
73.13 160.35
85.01 185.61
. MANIFULD-VOL.hFF.
AIR-MET. SPINiiT
.00 59.51
.00 70.<45
.00 79.11
.00 9H.18
.00 128.97
.00 111.02
.00 155.55
.00 161.57
.00 177.32
.00 193.13
.00 208.11
CU-PPM C U
HKY G/h
1750.0 66.95
1650.0 71.58
1580.0 80. 10
1500.0 9 '4 . 7 9
1300.0 107.17
1380.0 122.66
1650.0 156.57
13000.0 129o. MM
39000.0 1179.19
52000.0 653«.18
65000.0 9151.61
STAKI IGNITION
CUMFi. TIMING
.0 21.0
.0 21.0
.0 21.0
.0 23.5
.0 13.1
.« 11.2
. l> I 0 . P
h S 1- C
G/M. .1-
2298.6
1133.9
877.5
725.7
602. 0
623.8
600.0
SMft.3
623.9
6'47.5
690.3
AIli/FUei.
AIK^F 1 .
.00
.00
.00
.00
.00
.0(1
.00
.'III
.00
.00
.00
cn2-m
It f
9. SI
9.31
10.31
1 1) . 1 11
9 . 6 /
10.5 II
1 1.05
11.10
9.71
9.32
8 . 35
tXHAIibT
TL"H.( T
396.0
1 1 ') . 0
i 3('. 0
160.0
'175.0
512.0
ShO. 0
BOSCH
SXJKt
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-RA1 ID
sriNUt
7.83
(5.02
7.11
7.22
7.72
7.27
6.90
6.2')
5.61
5.32
1.96
C02-U)
U»V
1 1.80
11.50
13.0 0
12.80
12.00
13.30
11.20
11.50
12.70
12.20
1 0.80
H)v/IKK
HF Hiw.tFF
7.65
12.59
20.58
21. 8H
27.27
?6.9'j
io.o •>
CFLC6CU C(i«i'tCle.l<
SMOKE
.0
.0
.('
.0
.0
.0
.0
.l<
.1)
.0
.0
A l'< F-LO" I Si. A f I
. o o ii o
.0000
.01' 00
. o o o o
. (j o o o
.0000
.0000
. o o o o
.0000
.0000
. o o o (>
tUU'lVftLEr.Ct-f'Al 1U
AlM-ffc
.000
.000
.000
.000
.000
. 0 (1 0
.000
.000
. 0 II U
.000
.000
me!
G/M
70 ''3. 2
81 !>/ . X
10355.0
12/')9.3
I55H6.3
l»'57l. 7
211/1.2
22727.'!
229J9.5
21103.0
2161)2. 7
t: .U.K.
(i)
.51
6.09
1 4.92
11.61
V.«3
Ii. ib
t . 5«f
T . f" I SSI ilfcS
.822
.M02
.901
. P.w^
.635
.F-85
.933
1 . u3^
1 . 1 1 a
1.209
1 .29t)
|i 2
"L
1.20
1./0
2.50
2 . / '.i
f.OO
2.9u
1 .80
.30
.30
.20
.20
hliUSI F'KetiS.
!• A I 1 U
,31D
.39/
.531
.6 Ml
. / 71
.•-33
.l-He-
-------
REFER TO FIGURE NOS. 110-116
.00 .oon i.9'i2 ;!.()2r> m.n^t 737.00 .u .0 .0 in.o r>v>.o 5o.h-» s.^3 ,vu
.00 .000 2.6H3 1.115 127.083 hSU.22 .0 .0 .0 10.0 bhS.O P8.V4 2."V .lf.J3 .0 .0 .0 10.U b()3.l> ?7.*N .Oil .<">
.00 .000 S.503 .627 2t'S.<«?J SH3.02 .0 .0 .0 lu.O bM.u 2fa.l*> .uu .''V
Z
CD
V)
IB
x
c
r.
'w
c
rj
c>
c
-------
Ef'A/V'l liHCC HTMAfJllL f79.S-nm X 73.'lmm)
M.t.c./niisr.ii H.fijTiiui - crnviuri IHJK.TUKS
MAPPIUU AT 80 KCV/SI t trilTII AU1H I.C.K.
REFER TO FIGURE NOS. 110-116
O
7.
u]
a.
Ml
5
u
U4
•j;
flUHf STKiiKl" flUHHl K lit ( YCl
CYI IMIil.KS TYI'I
79. SO 73. HO '1 '1.
OAY MlllTll YtAK U.ST
,
?H
4
?
S
fa
fl
1 1
i'(>
£7
13
IS
16
1?
I'l
17
30
^ 3
FNr.i'Ji srtru
1GMTICH IJM
Futt vni.tir.r;
HHAlvC LdAO
FOIL 11 Ml (
FUFL TFMPIKA
A III Ml Ttr.1 TF
(
'.! h H o . 0 0
(K
tuc.
t.V/S)
( CC )
PKC
TUK
•UT.
INTAKt. MANIM'tri
I XMAIIST TF'-IH
I XI'AdST t'KFIi
CAI'DUN MOi.llX
rAKr*nr.i oiuxj
IIXYM '1 ( i )
HYPi'or.AKnu'is
iix IDF s ur .'ii
IHTAM MA'lll
AMMll'NT Ml?
)
1. ( C )
MAMlHC
f'HFSS.
*o.oo
^s.on
1 (It .SO
13.00
3 1 . '' o
H.Oti
( ( ) 1 .4 . 0 0
BO
r"S
?t
(
TKII
I1LK
(X)
h (PIISI
( i )
( x )
('('PC )
UF Ii ( 1'
Cli.' (
IHHIMI) ,?7.1
. ld«
1 1 . S 0 0
'1 . / 0 0
9M.I.O
PH ) -Hiiti.U
% ) .000
.000
SO
>,
.
1 1 .
a.
H'l
.(Ml
.00
.0(1
.so
.10
.00
.00
. Oh
S.O
''.''
IStf
soo
/I CD
'.» . o
-fi6H.I>
•
•
'IIMI
TOO
i)K«Kt AIK MK1KK t UK L •1/CAKntlu CALORIFIC
Clll'STAMI CIlMSTAMl 5.1.;. KAlltl VALOt
1S9.1SS1 .0110000 ./9SII 4.97 19940. JO
HAKfirtLltK l'LT llULl> l)l-'Y hdLK I'Onttf fKlC'lU'J
It •'I'FKA ItlKH UMPtHAfdi't CUKKt L 1 1 .IN HP 1 I UN
767.00
HO. 0(1
if S. OH
?0.4.i'U £
.4 '1 . '1 i)
<4f .6(1
9.00
1 '1 . II U
»0.
?<3.
M.
'•/.
36.
V.
l«.
-4.4 J.I!9-(.I1.
5i?h.o
S1.1
. 11'j
11. SOU 1
'1.100
O-'IO.II
-H,'0.0-l
.OlMI
.00(1
S'lli
7,'
. 1
1 .S
'1 . *'
7S(i
1 00
.1'
.0
(Ml
(Ml
00
10
00
00
(Ml
?.9Q
4 0 '4 . 0 0
h9.00
'U .90
11.00
1 '> . 0 (1
1 b (i . '» 1
S9H.O
1 06. U
. 1^1
1 . '1 0 0
.1.000
tiid.O
16.00 0 0 .
rt 0 . 0 0
?£.'!()
b 0 7 . 0 II
HI .90
"O.SO
11.00
^0.00
-1'I8.90
hift .0
|^^>.h
.700
I'l. 000
1 .000
'IHO.O
I9l)l).0-i?h00.0
. 0 0 0
. 0 0 (I
. II 0 0
.000
(If I 1 o *
u
UJIPUI
ut' I I lid
1
c
o
O
-------
ri'A/Vft MKCC Ml-ThAf'UL ( 7w .'jinin X 7 S . H )
*•.! .r./rt'iscii MINI i in1; - CUKKILI iriJtciiiK.s
MAI'I'TM, Al PO HF.V/SI-C KITH- AtiKI |-.i;.H.
REFER TO FIGURE NOS. 110-116
PAIE «V 3/M6 TtKI MM. 1)0.0 HAi'ii'il- Fbl< /iV7.00 i-H.HC uM niH.b lt-*lP(C) «. b OKU HULc IIM'U.) lo.O
HFLATIVl I.IMHU IY = V.'M
HUMIDITY C'lKKKCrillN FACT III. = .711 UPAlnS UK • UK1 Alh = r^b.bc1
SPtED
Kt V/S
80.00
O H n . 0 U .
ui fl 0 . 0 0
£ 9 n . o o
to I* 0 . 0 1)
* MO. oo
in
•ft
3 MAN.PIi't S
a MM. HP,
$ -460.98
> -100.06
* -333.09
g _?6H.'lb
t -166.9U
5 -l'l«.9(!
at
« Mf-fM'M
£ l'« t T
? 779. b
» 6*2.3
'v 6*2.3
i 6 (1 9 . 3
336. -4
a 372. S
PH',"tW'
iifi.ruPK
6 . r> 3
1 I.HI
1 /.Vt
?4.bH
34.6!i
'11.17
"AH . 1 h MP
t
.0
.0
.0
.0
.n
.0
HC-I'PM
DRY
9t>0 . 0
* '1 0 . 0
C '4 (1 . 0
7So . o
420.0
'IHd.ll
2 PAMTICHLAlKS
S, r>/M
E .00
"a -O"
= .00
•3 .no
c ."0
,5 ."o
o
(;/i\v .11
.000
. o o o
.000
.000
.000
,000
-(Kiri)
conn
6. S3
1 1 .MI
1 7 . b 4
23. 6»
:4'4.6B
'41.17
I JT AK t ~u
FPtt
.0000
.000 0
.000 0
.0(100
.000 0
. II 0 0 0
H C
n/n
37 .''O
40. 7b
'«9.10
bl ,9S
i'l."4
49.17
II C
I:;/KW.M
b. 797
3.4SO
2. 799
2 . 1 9 <4
1 . 0 0 *4
.9S2
nMrP-
IIM.llll.'K
1.1?
2 . 0 i
i.ol
4.06
S.9S
/.06
TK— (fIX/S)
Ah 1 .Mf I
.0000
. o o o o
.ooo'i
. ooon
. OOIIII
.OI'O'I
UIIX-PI'M
•H 1
'llvll.O
(.bo.n
",'0.0
I 1 00.0
1 9 0 0 . Il
2MHI.O
,'IIIX
U/Kn.ll
7.634
7 . 'I '1 n
7. Son
h . h 14 ,'
1 2.6bO
lfl.IV;'
(Uar)
COI.'K
1.1?
,'.05
3.01
'1.06
S.9S
7.06
AIP-MASS
KU/S
. o o o o
. iltlfl 0
.000 0
.0000
. 0 0 1) 0
.0000
'•aix-ppr
I.KV
b6(. .'1
M 1 ?.h
1009. s
1 .4S4. 1
i?37«'.S
3 4'.. o.o
C U
U/hn.ll
1 7. i"l'l
1 0 . " 1 9
M . 4 S I
7 .06?
b . 1 1* 6
?M.t'7l
1 MUnui '-(I»M 1 F'H "L-COt'SllMP 1 10U 1>SH; b')bCH Ci-LhoC
Hii.rilliK
1.4.00
e. <, . b H
4'l.9o
'1 / . 1 0
(>9.on
M|. 9,)
t 1'L 1 « f I [J
« IK-HE. T.
.00
.00
.00
. II il
.00
.HO
'MX-I'PM
lll'f.COK.
'Ill 0.0
'•31 .5
"VI ,f
1 ll'Jl.9
1 H*i^.9
?b»?.3
CM?
f./K'r .U
190K.i|.'l
1?''M.01
1I1H4. Id
9d4.bM
f. 1 4 . / 7
7 1.,'./ 2
tUCK
1 4.00
. 1 '4
6| ,'l£?
rin>
CVII
49.'iB
07.9M
131 . 70
,• U 9 . i 3
'149.0ft
610.17
61 AMI
luJ.
.0
.0
.0
.0
.0
.0
r./MK
9.JM4.
113M7.
13/13.
1(1£>,> 7 m
^oa4l .
^407?.
VOL i H-
MNi/ JHJ
i 0 . 1 b
cf'1.73
i?9.78
4b.4
4S. 3b
b?.4»
i> /. ri [tin
ML./LI I'
14b.b2
144. bl
C il
ii/n
1 lb.9S
12H.9H
1 4 ;l . 1 1>
1 6 / . 2 0
1 79. MS
999. 1^
IGlll riDN
1 II-.INU
2b.O
2S.O
2S.O
2S.O
22.9
22.4
(• / M4 . 1 1
1420. W
VdU.O
7»1 . 7
6Mb. '4
6 II II. 9
b«4.7
A 1 K-r>fc
.00
.00
.00
.00
.00
.00
C02- (% )
•U 1
9. 44
9.34
9. 4*4
9.3'4
9.94
10. ft/
tX.IAUol
11 V0J.C
462.0
SOS.o
b 2 b . 0
b4b.u
b9M.O
64H..I
tli1l)^^..
.0
.0
.0
.0
.0
. "
, . wiJ * T i ( i
1. SPliii.il
".0'
M . 1
«.12
0.1 •
7.6 •
6 ,bo
1,112- ( \)
UIS.
h»l 111
. 499
.4/0
.Sbb
.obO
. 7B2
.«0r>
-------
FPA i .SL Mure vw
13:1 CH
FULL LOAD Pl)k.FI<
REFER TO FIGURE NOS. 51-&-*
H04E STkCIKF. MIJMfiEH OF
CYI. mi'F :HS
79. SO 73.00 <4
DAY MONTH YEAH
1
1
?
3
s
6
P
12
13
14
IS
16
2«
?f>
11
|f> 8 H?
ENGINE SPtFl' (KtV/S)
HKAKF LOAD
fUFL MASS ( GKAMS )
TUFL TJMF ( SCC )
FUEL. TCMPKRAIUHE ( c )
AH? (-FUN KMPFMATUHE ( r )
MVL'R'ICAKHUNS ( PPML )
CAHHMN MOMOXIDF. ( X )
IIXIDIS UF r.'lTKOGFN I PPM )
CAIfHON OIOXIHL ( X )
OXYGEN ( X )
TCNITI'IH TIMING
EXHAUST TC.MP. (POST TUK'IIM)
INTAKF MANIFOLD PHCSS. (mm.Uti
CYCI (
TYPt
«.
TF3T
UUMIJFI'
MHAKI AlK rtElfK FUEL
rilf'yTA'll COHSTA'JT S.G.
V.06'l(l .000000 ,81»0
HAKIIMF IEK rttT HULh OKY bULH
91.00
20
s
ISO
6S
if
26
.CO
.?s
.Oil
.00
.00
.00
30.
6.
?0n.
S'l.
??.
?6.
-1 /10.ll-22«i>
S.
-1 rt?
11.
^
9
000
0.0-
uoc
900
.00
3^ 7.0
)
.00
00
10
10
70
II 0
0 0
."-
'1 .'100
• l«vn
12.1
.0-
00
.700
12.
'177
.
00
.0
on
76,?, 10
ao.o o
6.S6
?so.oo
S?.C)6
2?. 00
26.00
IhHO.d
3.700
1 '130.0
12.600
.600
IS. 00
S47.0
.(III
Sil.OO
h.6S
2SO.OO
< H . 2 0
23.00
2S.OO
-I ibS.o
S.600
-Hao.o
1 ? . 3 0 0
.'>00
in. oo
Sdl.O
.00
17.00
6 0 . 0 0
<..so
2SO.OO
3?. 60
2'j.OO
30.00
- 1 '1 1 0 . 0
s.hao
-/wo.o
1 1.200
. '1 '•> 0
20.00
i>91.0
.00
?3.00
70.0(1
6.t2
2SO.OH
28.00
23.0H
31.00
-49SO.O
S.70U
00.0 0
6. IS
2SO.OU
2S.
-------
f PA l.SL IIRCC V*
13:1 d<
FOIL LOAO POWFR CURVE
REFER TO FIGURE NOS. 51-54
HATE 16/ 8/8?
TEST ND. 9U.O
HAROMF TER lhf.\(>
HFLATIVE MUMTDIIY = 5/1.SI
H1IMIOITY CnRRECUON FACTOR = 1.26
GRAINS OF hATt.K/l.b DRY AIR = 66.SS
•JET HUL» H'MP(C) 17.0
DRY HULB rtMP(C) 23.0
a*
A
£
n
o
X
10
=
"\
6
tn
•j
a
?
•u
5>
iU
?
"3
c
o
o
•p
5
u
rf.
: IH P'lnER = 0.0 ('(SIILTS LISTED A
S (,/KW-HK ARt ACTUALLY U/HK :
• ••••••••••••••••••••••••••a*
RESULTS IN O.«9
60.0 13.63
70.0 SO. 36
«0.0 S5./I1
90.0 'j6.3/l
HMfP TOIM.OE FUFL VOLUMETRIC
llAC N.M f;/KW.HI( tFF ICIF'ICY (S )
fl.OS 92. H7 717.? 7/«.0( .0)
•>.3b 107.9) 6M.ri 79.1( . (j)
10.06 116.01 S«7.0 79, 0( .01
10. IB 117.1/1 6/12.5 R1.5( .0)
10.03 IIS.?1) 6/1 1.1. 79. a ( .(;)
9.93 111. SI 61h.} 77. 9( .»)
9.^6 lid. 2'4 6S2.B 78. 1( .0)
H.6'l 99.6/1 703.9 76. 3( . » )
AIR FUtL H.I .£. h C NUX
RATIO x U/MV.HK i;/K«.hi<
5.b( .0} 2S.17 a.7M 11.73
5.6( .0) 27.69 5.77 12.91
'j.7( .OJ 30.76 3.90 «.97
5./l( . 0) 2iH.ll 3. 1i» S.I 6
•5.3C .0) 2B.11 3.«5 5. BO
S.?( .0) 27. «5 11. HI 7.00
S.3( .0) 27.66 1.69 8.62
5.3( .(i) 2S.6b 5.26 9.60
C 0 CU2
U/KU.HR G/KI..MK
!B«.o7 6/5. SO
119.3o 615.35
111.99 61S.26
173. B2 5v9.Mb
Ifl5.'yi 560.06
1H3.17 5/0.55
179.1*0 601.62
196.2H 614.4. 5H
HC » 'JD
G/K*.HK
IB. 51
IB. 61
12. B6
B.el
9.25
1 H . « '4
13.30
ll.rt?
-------
40HLV/S 2.
MlxlUUE Limp
HN60Y
REFER TO FIGURE NOS. 55-58
79.50
STWI'Kt
73.00
K l)F
KS
CVCI.F
TV PI
n.
HRAKL
9.0640
A I K Ml. I ¥ H
LUMSIA'JI
.0002.H1
Ftll-L
S.t,.
.8)60
H/CAKtMHl
KA1 IU
a. oo
CAL.DKIHC
VAL'JL
19940.00
I IU <
DAY
fl
MllrlTH
V
«2
IKST
Ml'MIIM'
5H.OO
767.«0
TtMPtKATUKK
17.50
DRY hULH
I UN
CUi FULL tf dl'KI!ATl)KK ( c )
7 Alh MCHR WEARING
9 AIU MMER L'H'KESSION (mn.Hii)
fl AlH MfTtK Tt'M'KHA I'llKC ( t )
12 HYDHdCAHHUNS ( PI'MC )
13 CAMjON MIlNnxIliF ( X )
i'i nxiDis OF nuudurN ( PPM )
IS CAinniN (iinx IIH ( x )
Ifc OXYUFN ( X )
2^ KXHADS1 TIJI'P. (HUbT TUIMII)
11 IIJTAKf MAuIt-dLI) PMI Sfi. (mm.llu)
') (I . 0 0
1 .f>4
loo. no
VI. 40
2 ti . 0 0
34.00
1 .20
2'l.00
1200.0
1 .hOO
-S30.0
1 3 . rt o o
. JbO
17.00
43". 0
'10. On
1 .6'!
100.00
')9.hil
26. Oil
36.00
1.27
24.00
-900.H
.140
-730.0
1 3.'lOi>
2.00"
2.1 .00
442.0
40.00
1 64
100. 0 ll
60.20
2'. .00
37.20
1.S2
2S.no
- 1 o s o . o
.140
- / H 0 . 1)
1 2 . / 0 0
i . 1 0 0
23.00
437.0
40.0 0
1 ,6'l
1 (10.00
<>1 .30
26.00
'10.30
1.4',
2b. 00
-1 VIII . 0-
.130
- W 0 . 0
1 1 .300
S.OOo
2S.OO
'122.0
'l 3S. 00-420. On-'i 12. S 0-393. 7S-
40.00
1 .64
1 00.00
62. Ml
26.00
44.10
1 .SH
2S.OO
1 H 0 0 . 0
.120
-1 3S.O
10.100
/.loo
30.00
413.0
363. 7b
40.00
1.64
111 0.00
(.1 .20
26.00
Si. 60
1 .93
24.00
-4300.0
. 190
- 1 « . 0
7.HOO
9 . 9 0 (i
39.00
393. 0
-300.00
-------
V./t|
MU'IIDITY COHRLC1 ION FACTOK = .Vb"
= 7S.S'I
IF Him K = o.o Hr.suLls LISTED AS I,/K.I-HK A^E ACTUALLY U/HK :
-J.
?.
SI
VI
•g
en
"a.
i/i
5
•a
!7»
u
UJ
?
'2
c
o
O
SPEED f'Ul'l"
KFV/S hk.
10.0 7.2'l
'10.0 7.2'l
10.0 7 . 2 '(
'10.0 7.2*4
'(0.0 7.2'l
•!£ Y ID
2. So i'H.bO Vm./l 32. S( 32.6)
2. SO i'H.HO HJ/l.6 33. 9( 3'I.S)
?.S'0 ?«.HO H2(,.3 3S.6( 3S.-5)
2. bo ?)'.HII «11.'4 3B.7( 5H.b)
2. So ?t5.B(l 7VI.6 12. 7( '12.1)
?.S() i'H.HO HI?. 8 r)2.V( Si. 3)
ULAltl) FhtIM AIK Mf. IEN |)AIA
AIK FUEL tt. 1 ,fc. H C NUX
KAtlt) X O/lvM.HK i;/Rft.rlK
h.2( h.2) IV. 7b 4.S ".22 H.28
H.21 H.2) 22. 2S S.Vb '4.26
9.3( V.I) 2?. 72 8.20 1.66
11.31 10. V) 22.21 IB. 63 .20
C U
li/^n.^1K
12. 2S
7 ..«3 10. 8-)
1 1 1 1 .So 12-^V
10bo.1V 10.21
lobft.bV 9.9U
10MO. 3V l«.9o
-------
inREV/S S.SItAR
MIXTURE LOUR
HN60Y
REFER TO FIGURE NOS. 59-62
79.SO
STROKE
73.00
R (IF
H
CYCl.C
TYPL
BRAKE
CONS TAUT
9. ()6'HI
AJH MEIER
CONSTANT
.000281
FUF.L
S.t,.
.8180
KAIIO
1.0U
F(C
VALUt
IV910.00
IjPI 1
U
DAY
10
filth TM
•i
Yt.«K
H?
TEST
'10.00
HARCW TFR
767.30
HULB
OI'Y tlULU POKER FRICTION
TFMPtRATURE CUKKtCIJUN OPfION
2<<.80 0 1 .
UIJl PUT
UP I ION
1 F.NG1NF SPEEO (RfcV/S)
? HHAKT l.OAU
3 FUEL MASS ( GrtAMS )
S FUEL TJMf f HFT )
6 FUEL H'MPtHATtJKE ( C )
7 A1H METER HE AD IU«
<> All* MfTfcH liEPKFSSI'lN (mm.H'i)
P A1P MfTEP TFMPfcKArnkr ( C )
1? MYORnCARCUMS ( PPMC )
13 CARBON MONOXIDE ( X )
It OX 1l)fS OF NITROGEN ( I'f'M )
15 CAPtlOU IJI OX IDE ( 1 )
( x )
TIMING
it, EXHAUST TfcMP. (POST TUPIID)
II JN1AKL MAN1FULO PRESS, (mm.li^ )•
<* 0 . 0 0
3.60
ISo. oo
SS.6H
26.00
S'S.OO
1.97
2V. 00
1 0 ?. 0 . 0
l.sno
-K20 . 0-
1 3.900
. 1 0 0
I7.oo
S 0 H . 0
2/0.00-
10.1 0
3.60
1 S 0 . 0 0
S6. /O
26.00
S7. 70
2 . OH
2H.OO
-•'oo.o
.200
1 2?'i . 0-
1 3.600
1 . ') 0 0
22.00
S ()'».(;
? 1 7 . S 0 -
10.0 0
3.60
ISO. 00
S~ 7 . P. 0
26.00
60.40
2 . 1 '<
2 1 . 0 0
-990.0-
.100
1 1SO.O
12.800
3.2oo
21.00
196.0
Pi2. SO-
il 0 . u 0
i.oO
1 S 0 . 0 0
S9.00
20.00
fcS.SO
2. i /
2»i.OO
12/S.O-
.1 10
-7HC.O
1 ) . '1 0 0
S . 0 0 0
27.00
1 / / . 0
1 9h. /S-
10.00
5.60
ISO. 00
6 0 . (( 0
2M.OO
71.00
2.S7
27.00
10.00
3.60
ISO. 00
S9.90
2M.OO
HI .90
2.99
27.00
1S6 0.0 -2 19 0.0
.110
-290.0
9 . / 0 0
6.900
29.00
'162.0
1 S / . 'i 0
.130
-7H.O
H . 1 0 0
'» . 0 0 0
31.00
'110. 0
-M2. SO
-------
flOI'tV/S S.5HAM
nixTimi LIIUP REFER TO FIGURE NOS. 59-62
I' 460Y
f'ATE 10/ 9/82 TEST NO. 'in.O HAI'UMFTFK 767.30 HM.llG "El HULO TEHP(U) 20.2
liKY fiULb lEMClC) 24.H
RtLATIVL HUMIDITY s 65.61
IIIIMIOITY COKRECrjUti F4C-TOK = .97
GRAINS I)F WATER/UN Ul.21 599.5
S.4B 63.21 5HH. 1
S.'IB 63.21 572.?
5.4H 63.21 562.7
S.'IM 63.21 567.4
VDLUMK1H1C
f TF-ICIEUCYU)
50. 7( 51.9)
53. H( •>«.(>)
S6.5C 57.2)
60. 6 ( 62.0)
6 7 . 3 ( 67.4)
77. «( 77.6)
AiK H«)tL
KA 1 ID
ti . 2 ( 6 .
7.0( 7.
7.5( 7.
** . 2 C *> .
9 3 ( ')
10.7( 111.
AlK MfcTF.If ilAl'A
4)
1)
6)
«)
3)
7)
H. r.t.
X
2H.51
3o!l2
30.70
31.55
32. OH
31 ,H2
M C
G/KM.HK
2.71
2.4H
2.B2
3. Bo
i.27
6.31
M)t
U/KH.HK
S.92
9.06
1.90
6.U9
2.69
.«2
C U
(,/K.I.HK
S3.4M
7 .54
3.V5
4./2
5.42
7.34
CU2
t/MI.Mrt
7/H.61
«05.09
794.11
76B.29
750.31
'45.41
HC t HU
o/Kn.HK
H.6J
11.54
11. /2
10. 55
7 .96
V.I J
-------
Ml* LOOP
n;u LOOP
IMibOY
REFER TO FIGURE NOS. 63-66 and 67-70
MOKE
79.SO
PAY
r.
STH.IKJ
73.00
MUNTH
1
f'UMHEH Ut-
i|
YEAH
83
1 ENGINE SPLI l> (HEV/S)
2 (U
-------
MIX LUOP
IbfJ '"nl'
REFER TO FIGURE NOS. 63-66 and 67-70
OATE 15/ l/«3
TKST Nil. 9A.O
tJAKUK.MFR 761.70 ''M.HG
•(£ 1 I'ULtt lEMP(C) 11.0
liKY HULb If-Mf'(C) 20. u
»?FLATIVfc HUMIDITY :
HUMIDITY COKHECTI'IM FACTlIK :
filvAINS OF WATKU/l.u Lift A1K =
= 51.00
= 1.19
= 51. 6«
: ]^ pn«rK = o.o HI.SHLTS LISTED AS C/K*-IIH Ant ATIUALLY U/HK :
Kt.SIH.TS Iti (UHACKKfS) AHl CALCULATtl) FKHM AIK MfTEK UATA
SPI'.Ef)
PFV/S
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
IS.o
PWt.»
IV H
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
f.MFf
r
.00
.00
.on
.00
. f 1 0
.00
.00
.00
.00
.00
.00
.no
IIIUijI'l:
U.h
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.on
HtlEL
r;/KH.HI<
1265.1
1 0 '1 H . 0
1013.5
1 21 h.?
1100.9
997.?
1 (I 3 h . 0
1090. >i
1016.9
1007.0
VOLKMfTim:
tFFlCIE'JCYI J.)
11. »(
11. K
15. 2(
1 1 . 1 (
11. 0(
I 3 . 7 (
11. 2(
15. 0(
13. 1(
11.1 (
11. ?-(
1 1 . o (
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
AIK HltL
K A 1 I U
5 . 3 ( . 0 )
6 . 3 ( . 0 )
6.7( .0)
5 . 5 ( . 0 )
5.9( .0)
6.2t .0)
6.2( .0)
6 . 2 ( . 0 )
6.3( .0)
6.3( .0)
6.3( .ID
b . 3 ( . 0 )
B . I . E .
I
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
h C
1,/hfi.HK
2B.97
13. M7
19.81
11.33
12.69
12.61
10. 6U
11.12
11.67
20.01
14.01
mix
G/Kft.HW
.13
.11
!o9
.10
!l3
.14
.13
.14
.11
.11
C » CU2
G/Kn.HH G/Kn.HM
381.01 1055.90
95. 1M 1252.52
50.79 1296. H9
306.79 113'I.Hl
172.75 12U2.01
103.37 11/3.05
10P.24 121rt.»*7
101. Bl 1
-------
RK2RDO
R.1CARDO MULTl- CVUIKIPg-R,
C.R.M. /L.M.
FIG. No. I
Org. No. ft. seO'ft
Date MARC H ' 8%
Transverse Section
View on Cylinder Head Face
-------
RK2RDO
R.1CAKDO
HKCC
t .S>. D. /
FIQ. No. 1
Drg. No. »
MAV
UR.C.C
•••1LT/MJ1
-------
RIG1RDD
FIG. 3 HRCC CYLINDER HEAD
-------
UK.
RK2RDO
EGE SYSTEM
FIG. No.
Drg. Na SIM 73
Date MARCH '85
THROTTLE
J
FROM
AIR CLEANER
INLET MANIFOLD
LINEAR POTENTIOMETER
INDICATING EGR VALVE
OPENING ^ VALVE
EGRFLOW
, MODULATED VACUUM
T0 EGR VALVE.
TO VACUUM
X
if ATMOSPHERE / SUPPLY
-
PNEUMATIC
TRANSMITTER
NON-RETURN VALVE
VACUUM
RESERVOIR
_ (7-10 VOLT SIGNAL FRC7VI
M.E.C. PROPORTIONAL TO
REQUIRED EGR VALVE
OPENING.
N
OS-
E:GR VALVE
ELECTRC7-PNEUMAT1C TRANSMITTER
CONTROL UNIT
T4XR 7.114-
7.21.031.00
PV 12.300
JPM LTD.
6448MT
-------
RK2RDO
x-
Flg.No. 5
Drg.No.
VW HRCC METHANOL 1.457L<79.5mm x 73.4mm) Datt, 30 Apr ,986
COMPARISON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 40 REV/SEC 2.5 BAR BMEP
-x
A.C. DELCO IGNITION SYSTEM
BOSCH/MEC IGNITION SYSTEM
150,
VAIENGE RATIO
0.5
0.6
1.2
1 .3
-------
Drg.No.
VW HRCC METHANOL 1 .457L(79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 40 REV/SEC 2.5 BAR BMEP
-X A.C. DELCO IGNITION SYSTEM
•-0 BOSCH/MEC IGNITION SYSTEM
550r
500
i ...I .... i _ .. I L *».
I I i c.
10
0.5
0.6
0.7
1.2
1 .3
-------
RKMD
VW HRCC
COMPARIS
MIXTURE
y w
A
3000
2000
1000
0
3-
2-
1-
J
0,
6000
4000
2000
0
^.___— — *
...............
T. ?
Q_
QL
"X" —
a
~.
x'
o
o
o
IE. .
a.
a.
•a» — ~
O
0
„„... „
LEAh
>
Fifl.No. 7
Drg . No .
METHANOL 1 .457L (79.5mm x 73.4mm) Dat«. 30 Apr 1986
ON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
LOOPS AT 40 REV/SEC 2.5 BAR BMEP
fc.C. DELCO IGNITION SYSTEM
BOSCH/MEC IGNITION SYSTEM
... _ . .... ...
••
• j
\
-,..
,.
I
i
i ' i
i i
i !
j
i
i
•"
1
i
;
i i
• j
„ .j „ „ 1 '
j. : ~~**9\^^ |
. .4. J «
! ;
1
"•" •""-• j -••
i
j
! 1
„ .J _ i..
..
^
! 1
!
i j
].. s ' ... .L
,..,.. ......
j
i
i
i
m _i... „ ,.w.
~ i ••••••••••••""••
|
. VJ&.
.^,pr
' r • •
I
4 !
! 1
V, I
"•••^ j * 7^
__
' 1 1 ] :'"
! • i
• ««.« *. *....•;«•»
T "! 1
1 JEQUlVAt
f^^'
^
"^-S
] I
Cw
£**"*
FT""-""
~ j
.ENdE'R
J
|
1
" ~1
M •
i
-....*. - -*• —
"T *"
... i I _ -
i
: _ .
j" """ !
i i
1 1
1 i
- — j- i
: 1
j i
i . - j
• i
| i
"""^" r i n
.III!
i 1
...t ,
' "\"\
i i •
-------
RK21RDC
VW t
COMP
MIXT
x %
<
30 •
25 •
20 •
15 •
10 •
5 •
28 •
26 •
24 •
22 •
20 •
18 •
•»_-. — _ — _ -W!
.c
1 HCtNOx
J._ L
o -
LU
O
1—4
U
U.
LU
z:
DC ""'
LU
X
j
LU
S£
CD
o
D
1RCC METHANOL 1 -457L (79.5mm x
ARISON BETWEEN A.C. DELCO AND BOSCH/
URE LOOPS AT 40 REV/SEC 2.5 BAR BMEF
< A.C. DELCO IGNITION SYSTEM
> BOSCH/MEC IGNITION SYSTEM
\
_ j _ __
!
*
LEAN
N.
^
" '
V™
•\
...........
^
1 1 i
i i " r
1 I
r r ' '
1 ! < 1
--1 1 •*-- !
! 1 !
" 1 1 I ^
1 _ j . j i
i 1 i
.... .._ .j !.... .j
! I |
i i i
kT"1 1 -r^-fe—
i^r^tr^I
! ! !
i 1 '•
'ill
! ... i i ' . .
.,,,.,.m.,j......,,i.n,,n,.
"T" "
|
^ 1
_ . ... j . ^
\ j
..i i... i ,
| ] ' " [~~^~
! 1 i
1 1 ;
^ -^T^=5
. _ I ] ..4 .
" 1 1 i '
i i
i i : |
F ! 1 i
... !...H 1
1 1 i
i i !
1 i : •
....„..».«.....
1 !
....!. i . ^ ... ..
^.
cTx
j 1 1 "
EQUtVAiENdE R
F 1 g . No . g
Drg . No .
73.4mm) Dat«« 30 Apr 1986
'MEC IGNITION SYSTEMS
t
I
-4—
i
j.
—
v^
"' '"'
—•••*•••"—•
1
K-4--«
.. .^
i
.............
K
[
1 •
1 1
1
i i
i .. j
I !
i t
: 1
_...j _ _.j
! i
j J
; i
1 i
" | [ ]
'• ^ 1
1 f 1 1
! < „....!..._ )
' \ i
i 1
i ,._. i |
T r T 1
1
i j
j
•< i
^^^^N
iNi
i
i
x
""""I
ATlb !
.5 oie 017 oi8 0:9 i
| '
1
.......... 1.....J _
1
1
i
i 1
i
1 "1
\ ! 1
1 j
i !
" T"""" 1
IRICH
,0 111 1.2 113
-------
RK2RDO
Flg.No. 9
Or g•No t
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) D8te, 30 Apr 1986
COMPARISON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 60 REV/SEC 5.5 BAR BMEP
A.C. DELCO IGNITION SYSTEM
BOSCH/MEC IGNITION SYSTEM
-------
RK2RDO
x-
Flg.No. 10
Or 9.No .
VW HRCC.METHANOL 1.457L (79.5mm x 73.4mm) Dat«, 30 Apr 1986
COMPARISON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 60 REV/SEC 5.5 BAR BMEP
-X A.C. DELCO IGNITION SYSTEM
•-0 BOSCH/MEC IGNITION SYSTEM
650,
600
EQUIVALENCE RATIO
10
0.5 0.6
0.7
0.8 0.9 1.0 1.1
1.2
-------
RK3RDO
Flg.No. 11
Drfl.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN A.C. DELCO AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 60 REV/SEC 5.5 BAR BMEP
A.C. DELCO IGNITION SYSTEM
BOSCH/MEC IGNITION SYSTEM
3000
2000
1000-x-
EDUIVAIENCE RATIO
30001
2000— -
1000 ~-
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
-------
RltfRDO
x-
Flfl.No. 12
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Dit., 30 Apr 1986
COMPARISON BETWEEN A.C. DELCQ AND BOSCH/MEC IGNITION SYSTEMS
MIXTURE LOOPS AT 60 REV/SEC 5.5 BAR BMEP
A.C. DELCO IGNITION SYSTEM
BOSCH/MEC IGNITION SYSTEM
EQUIVALENCE RATIO
26
0.5 0.6
0.7
0.8 0.9
1 .0
1.1
1.2
-------
RK21RDO
6L/BF
13
II
10
6
VW MgCC METMANOL I 4751 (73-£>m.>x 73-4
ENGINE KEY-POINT OPERATING CONDITIONS
Date
•I- 7l»ar
» 5
20
CO
JOO
SPEED
-------
RK2RDO
Flg.No. 1*»
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
FULL LOAD POWER CURVE MBT IGNITION TIMING
x-
INCORRECT INJECTORS
•-0 CORRECT INJECTORS
12
1 1
10
38
36
34
32
30
28
ENGINE SPEED ( rev/s
20
-------
RI^RDO
X
Fig.No.15
Dr g.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
FULL LOAD POWER CURVE MBT IGNITION TIMING
-O
INCORRECT INJECTORS
CORRECT INJECTORS
100i
3.5
3.01
20
30
40
50
60
70
80
90
00
-------
RK2RDO
Flg.No. 16
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
FULL LOAD POWER CURVE MBT IGNITION TIMING
x-
INCORRECT INJECTORS
CORRECT INJECTORS
800i
700
1.2
ENGINE SPEED ( rev/s )
1.0
70
90
100
-------
Flg.No. 17
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
FULL LOAD POWER CURVE MBT IGNITION TIMING
-X INCORRECT INJECTORS
•-«> CORRECT INJECTORS
400
300
200
100
400
300
200
00 C/3
20
30
40
50
60
70
80
90
100
-------
RK2RDO
VW
EfFECT OF FO&U. IMU5CTIOKJ TlMlKJC^ QM
EXHAOST eMisstows ANJC> P-OB.L. COMS»OMF»TIOKJ
FIG. No. 18
Drg.
Date
AT g-»OO rav/ymi
m«o
* STOIC Ml OM
•x coee-ECT SIZE
iM-iec-Tioto p>ee.iot>
IkJjeCTlOM
-------
RK2RDO
x-
Flg.No . 19
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Daie! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 1.5 BAR BMEP
INCORRECT INJECTORS
CORRECT INJECTORS
300i
200
100
20
0.5
0.6 0.7 0.8 0.9 1.0
.1 1.2
-------
RK2BDO
Fig.No.20
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date« 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 1.5 BAR BMEP
x-
-X INCORRECT INJECTORS
--«> CORRECT INJECTORS
500i
EQUIVALENCE RATIO
40 •
30
20
10
—r600
500
400
300
iLEAN
6.4 0.5
RICH
0.6 0.7 0-8 0-9
1.0 1.1
1 -2
-------
RK2RDO
Fl g.No.21
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 1.5 BAR BMEP
-X INCORRECT INJECTORS
--«> CORRECT INJECTORS
3000|
2000
1000
6000]
4000 —
2000-
LEAN
EQUIVALENCE RATIO
;RICH
0.4 0.5 0.6 0.7
0.8 0.9
1 .0
1 . 1
1 .2
-------
RKMX
VW h
COUP
MIXT
<
50 -
40 •
30 •
20 •
10 •
0 •
24 •
22 •
20 •
18 •
16 -
14 -
_c
^
-
o
0
~
^_
o
LU
0
LU
LU
< !
z: i
^ Fl g.No. 22
J Drg.No.
1RCC METHANOL 1 . 457L (79.5mm x 73.4mm) Datc, 30 Apr is
PRISON BETWEEN CORRECT AND INCORRECT INJECTORS
JRE LOOP AT 40 REV/SEC 1.5 BAR BMEP
C INCORRECT INJECTORS
> CORRECT INJECTORS
cc ' r
LU ' i
X i
I :
LU i
< i
o: i
op ;
ILEAN
V
j\
\\
i \ >
: \
; \
i \
'S\
'"S,
•s
-*-
vx
] IEOU
^^-
IVA
•«^N/^
'^>
^
— — _
** •— .
~~~^
K — '
' — -^
,ENCE RiATlb
— ^_^
-— <
~^^y
^
s
s ^
— ' O
'
Ov .i
|^S
i i
RICh
0:4 0:5 o:e 0:7 o:s 0:9 1:0 1:1 i
186
12
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Da{e, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
—X INCORRECT INJECTORS
•-«> CORRECT INJECTORS
150]
100
20
ILEAN
EDUIVAHENCE RATIO
iRICH
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-------
RI0RDO :;:::::"
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
INCORRECT INJECTORS
CORRECT INJECTORS
550,
500
EQUIVALENCE RATIO
50
40
30
20
10
—- r700
600
500
400
RICH
0.4 0.5 0.6 0.7 0.8 0-9
1 .0
1 .1
1 .2
-------
BCRDO FD::":25
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
$••
INCORRECT INJECTORS
CORRECT INJECTORS
3000
2000
1000
lEAh
0.4
VAILENCE RATIO
"oTe 6T7oTs oTg"
RICH
1 iO K 1
1 .2
-------
RK21RDO
x-
Flg.No. 26
Drg.No.
VW HRCC METHANOL 1 .457L(79.5mm x 73.4mm) Date" 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
-x
INCORRECT INJECTORS
CORRECT INJECTORS
30
25 •
20
15
10
"x
O
z
+ -
o
26
30 i
28 •
O
LU
o
I—I
U_
UJ
ILEAN
EDUIVALLENGE RATIO
RICH
0.4
o:e
0:7
o:s
0^9
1:0
.2
-------
x-
:;::;::"
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
-X INCORRECT INJECTORS
•-0 CORRECT INJECTORS
26 J
ILEAN
EQUIVALENCE RATIO
10
;RICH
0.4 0.5 0-6 0.7 0.8 0.9 1.0 1.
1 .2
-------
RK2RDO
Fig.No. 28
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Daie! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
*•-
-X INCORRECT INJECTORS
--«> CORRECT INJECTORS
600,
550
EQUIVALENCE RATIO
H20C
100C
800
600
10
-------
R
^
<
3000
2000
1000
0
3-
2-
1-
0J
6000
4000
/
2000
0
K2RDC
VW h
COMP
MIXT
/— ^
T.
Q_
OL
X
a
z
—
j^
\— ^
a
o
o
z;
a.
Q_
o
j^
^ Fig. No. 29
J Dr g .No .
mCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date! 30 Apr i<
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
JRE LOOP AT 40 REV/SEC 5.5 BAR BMEP
< INCORRECT INJECTORS
> CORRECT INJECTORS
>^> =
^-^
LEAf^ ! \ I
ZZ^r
s
/
s
Xx
,
/
-^
EOU
(--••
s
^^
IVAI
~^4-
^^^
TV.
~^^
,ENC
.
/
/
jf
'' /
/•
/
^
/
r
,v
-X-
-^
TV
:E R:ATI
^-^
•3F-'
V%v
A
^
^-••«-
—<
D i
>
•* v^ I
v ;
S
^^iv
rx^>
/
/
/
F^
^ — •**'
^N
H^.r..
,-- 0
RICH
O'.A CK5 Ol6 0^7 0^8 0^9 llo 1^1 1
386
1
12
-------
. Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Daie, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
X INCORRECT INJECTORS
-$ CORRECT INJECTORS
30
25
20
15
10
36
34
32
30
28
26
] _ j lEQUlVAtENCE RATIO j j
6.4 0.5 0.6 0.7 0.8 0.9 1.0
iRICH
1.1
1 .2
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 2.5 BAR BMEP
X INCORRECT INJECTORS
-» CORRECT INJECTORS
150r
EQUIVALENCE RATIO
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-------
RK2RDO
Fig.No. 31
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 2-5 BAR BMEP
INCORRECT INJECTORS
CORRECT INJECTORS
600,
550
EQUIVALENCE RATIO
30
20
10
•—• t-700
600
500
400
RICH
0.4
0.5
0.6
0.7
0.8
0.9
1 .0
1 .1
1 .2
-------
RK2RDO
Flg.No. 33
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Datel 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 2.5 BAR BMEP
-X INCORRECT INJECTORS
--«> CORRECT INJECTORS
30001
2000
1000
2000
ILEAN |
6.4 0.5 0.6 0.7 0.8 0-9 1.0
RICH
77J T.2
-------
RK2RDO
x-
Fig. No. 3*1
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 2.5 BAR BMEP
•-«>
INCORRECT INJECTORS
CORRECT INJECTORS
EQUIVALENCE RAT I 0
RICH
0.4
0.5
0.6
0.7
0.8
0.9
1 .0
1 . 1
1 .2
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 5.5 BAR BMEP
—X INCORRECT INJECTORS
--«> CORRECT INJECTORS
150r
28
26
LEAN
EQUIVALENCE RATIO
10
IR1CH
0.4 0.5 0.6 0.7 0.8 0-9 1.0 1.1
1 .2
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Oate, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 5.5 BAR BMEP
INCORRECT INJECTORS
CORRECT INJECTORS
650i
600
50
40
30
20
10
iLEAN
EDUilVAIlENCE R:AT I Q
IRICH
0.4
0.5 0.6
0-7
0.8
0.9
1 .0
1 . 1
1 .2
-------
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 5.5 BAR BMEP
-X INCORRECT INJECTORS
•-«> CORRECT INJECTORS
3000
2000
1000
VALENCE RATIO
3000i
2.000 ~
1000
0-4 0.5 0.6 0.7 0.8 0-9 1.0 1.1 1.2
-------
R
^
<
30 •
25 •
20 •
15 •
10 •
i
5 •
36 •
34 •
32 •
30 •
28 -
i
i
'6 •
K2RDC
VW h
COUP
MIXT
f ^
_
_c
•
•^
.*
\
P>..
*~s
"x
0
z
o
X
s
\— '
>-
o
z
LU
O
i.i...
u_
LU
<
r
or
LU
T
[
LU
^.
01
m
0
LEAK
^ Fig. No. '38
J Drg .No .
1RCC METHANOL 1 .4571 (79.5mm x 73.4mm) Date! 30 Apr 1C
PRISON BETWEEN CORRECT AND INCORRECT INJECTORS
URE LOOP AT 60 REV/SEC 5.5 BAR BMEP
< INCORRECT INJECTORS
> CORRECT INJECTORS
^
<
<
\
\
*^\
o-"
VN""
--<^-
j>/'
.r
x
.. jt
s
^^
! lEOuilVAl
f
,#'
*x
— V—-K;
v
•?
f
/
/
/
jr
/
s
^.
"~^— ^
-~-a
'
^
/^
^^
O1----
< —
I ^^^<
,ENdE R!ATlb
^""<
"-"^
Ss
y
>.x
\
•
/
^^
^
\
\
S^
K
•
'
k
)86
RICH
.4 CL5 0^6 0^7 OlB 0^9 1 10 U 1 1
.2
-------
RK2RDC
VW h
COMP
MIXT
y v
<
150
100
50
0
34 •
32 •
30 •
28 •
-C
•
3
_*
-X
o>
o
o .
:sr
•
LL;
U_
LU
_1
<
CORRECT INJECTORS
^-
1 i
jfr- ^•-•"
^r^
^•v "^
rr
^
" w<
^*-
'/
' -
"^•gfe ^»»u-
,--
^^
IEOU
*"*X
" *»^*^^
IVAI
'-T-f-^
-^
---.«
xv
^X^
*>
^ r- — ^
jf^^
^>
t-^
!/"•'••<• ;
^\K
>s>*
i >
!^vv
V
*-^\
/
r
>— -
K
x
iXV
%
^\v
,ENdE RATIO
N?
X
XtW
//
//
r
^*
,-4>
\
V
J2
m
I ^
i ~s:
| a
X
O
z
-C
•
3
_y
^
a
O
X
85
r30
20
10
0
•15
10
5
0
iRIChi
Ol5 Ol6 017 018 Oi9 1 10 ill 1 12 1
.3
-------
x-
FD;::::: *
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 7.0 BAR BMEP
-X INCORRECT INJECTORS
--O CORRECT INJECTORS
700i
650
600
550
20
10
:LEAN
EQUil VALENCE RATIO
120(
100C
800
600
IRICH
0-5
0-6
0.7
0.8
0.9
1 .0
.2
.3
-------
RK2RDO
Flg.No -tot
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 60 REV/SEC 7.0 BAR BMEP
—X INCORRECT INJECTORS
•-0 CORRECT INJECTORS
3000
2000
1000
o
o
0
3000
2000
1000 —
0.5 0.6 0-7 0.8
0-9
1.0 1.1
1-2 1.3
-------
RKMX
VW h
COMP
MIXT
y v
4
30 •
25 -
20 •
15 •
10 •
5 •
38 •
36 •
34 •
32 •
30 •
28 •
^
-C
•
-X
\
Q>
~
2
o
H
^ .
N.H^
>-
o
2
LU
O
L^
U_
LU
_J
<
z:
o:
LU
X
LU
i£
<
o:
CD
6
^ Fig.Nc. 42
J Drg.No.
^RCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date! 30 Apr is
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
URE LOOP AT 60 REV/SEC 7.0 BAR BMEP
< INCORRECT INJECTORS
> CORRECT INJECTORS
LEAtJ
^^L^-
,.„•*
^
^r
f"\
*
/
\f
^-*
.— <$
\s
s ~\.
! : IEQU
y
r
/
/
/
i
/
^T.-N... ...
: vv
^\
IVA
,**
s
/
S*
.y..
^
^s
^••-•-••^
^
N
^v^ '
Is.
^v
^\
I ^
,ENGE RATIO
\
\
^
X
^<
86
RIC^
i5 0^6 CL7 0^8 0^9 KO ill 1 12 1 13
-------
RKMD
Fl g.No. 1»3
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Daie, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 15 REV/SEC IDLE
INCORRECT INJECTORS
•-0 CORRECT INJECTORS
15
10
300r
200
100
200r
100
0)
000
900*
X
.O
40
30
20
10
LEAN
EQUIVA11ENQE RAT I 0
RICH
0.70 0.75 0.80 0.85 0-90 0.95 1.00 1.05 1.10
-------
R
^
4
300|
250
200
150
100
60 •
50 •
40 •
30 •
20 -
KMX
VW h
COUP
MIXT
/ \
\^J
%— '
UJ
CC
^3
1—
<
cc
UJ
Q_
21
ii i
I—
1—
CO
•=>
<
x
X
LU
Q
h—
CD
O
z
*-~4
\—
•z.
O
1—4
\—
1—4
Z
0
1— 1
0.
^ Fig. No. kk
J Drg.No.
1RCC METHANOL 1 .457L (79.5mm x 73.4mm) Date, 30 Apr 19
^RISON BETWEEN CORRECT AND INCORRECT INJECTORS
JRE LOOP AT 15 REV/SEC IDLE
< INCORRECT INJECTORS
> CORRECT INJECTORS
<^~L
^>^^z-
1^--.
yttXX
i N/X\
LEAN
**" •*. ^
*«
I::^F^
^x&.
< — .
s.^ *.
~^^_
— _.
A V |
iEOU
— X-
„,._
—^-
\^s
/N
IVA
~ - _L. ,
"" — *
r-v^
"•— H-O..
yK S
S
\
~ •* ^ _
^-^^___
•" » ^ ^
^f !
.-A'-
v
--0--
— X—
XM'
; v /\i i ; M\
,ENCE RiATIJJ I i
*
^
•>"*^
- - —
S
s
^
: N^
: /"
c.
CO
-O
•
E
N^/
CO
CO
III
*£
•
Z
<
'
1
z
fr~— 1
JSK
86
400
350
300
250
S/ :
RICH
70 0.75 O.'SO O.'BS 0-90 0.95 1 .00 1 .'05 1.
10
-------
RK21RDO
Fl g .No .45
Drg.No.
VW HRCC METHANOL 1 .4571(79.5mm x 73.4mm) Date! 30 Apn 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 15 REV/SEC IDLE
—X INCORRECT INJECTORS
--«> CORRECT INJECTORS
3000t
2000.
1000
"x
o
SOOOr
6000
4000
20001
ILEAN
EQUIVALENCE RJATID
0.70 0.75 0.80 0.85 0.90 0-95 1.00 1.05 1.10
-------
RKBDO :::::::"
VW HRCC METHANOL 1 .457L(79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
MIXTURE LOOP AT 15 REV/SEC IDLE
INCORRECT INJECTORS
•-«> CORRECT INJECTORS
EQUIVALENCE RATIO
050
000
950
900-
0.70 0.75 0.80 0.85 0.90 0.95-/1.00 1.05 1.10
-------
rM/r/irM-v^
RK2RDO
Fig. No.
x-
VW HRCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date: 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
IGNITION TIMING SWING AT 15 REV/SEC IDLE E.R - 1.0
1NCORRECT INJECTORS
CORRECT INJECTORS
TIMING! (BTDC)
10
15
20
25
30
35
40
45
-------
R
<
300
250
200
150
100
1 .3 •
1 .2 •
1.1-
| .0 -
KMX
VW h
COUP
IGNI
f ^
•o
UJ
cc
ID
cc
Ld
z:
1 i.l
ITT.
CO
i *
UJ
<
^
O
1 —
cc
UJ
O
UJ
~
a
UJ
*
>
4~-^
^ Fl g.No . 1»8
J Drg.No.
^RCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Daie! 30 Apr is
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
TION TIMING SWING AT 15 REV/SEC IDLE E.R - 1.0
< INCORRECT INJECTORS
> CORRECT INJECTORS
*
^
^~"^
fr- —
>
*? -
7^
£
\
s
s •-
^
<
i>__^_
y
"4
— -»
<
>
,. { ^
r r "
< |
>
>
ING^ (BTDC)
-
'• — .
c
(0
_o
E
CO
CO
Itl
cc
Q_
•z.
z:
"Z.
•
*
86
400
350
300
250
5 10 15 20 25 30 35 40 45
-------
RK2RDO
F I g . No . l»g
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
IGNITION TIMING SWING AT 15 REV/SEC IDLE E.R • 1.0
INCORRECT INJECTORS
CORRECT INJECTORS
3000r
2000;
Q_
OL...
1000
"x-
&
?^
#-
-*-
*-
*-
*
x-
SOOOr
4000
3000 —
20001
10
15
-------
rMX-JirM-^-N.
RK2RDO
F I g . N o . 50
HRCC METHANOL 1 .457L (79.5mm x 73.4mm) Date-. 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
IGNITION TIMING SWING AT 15 REV/SEC IDLE E.R -1.0
x-
-X INCORRECT INJECTORS
--O CORRECT INJECTORS
30 i
25
20
15
10
x.
100i
080
060
040
020
000*
IGNITION TIMING (BtDC)
10
15
20
25
30
35
40
45
-------
R
^
4
20
15
10
5
26 •
24 •
22 •
20 •
K21RDC
VW h
COMP
IGNI
f ^
k. _ _ _/
*
->
*
0>
W.
o
o ,
<
s
<
~
li
LU
<
1 <
UJ >
JC.
a:
CD
y--"'
s— — — •
^-
.
^""
.s
^
^
-^ Fig. No. 51
J Drg.No.
mCC METHANOL 1 .457L (79. 5mm x 73.4mm) Date! 30 Apr IS
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
TION TIMING SWING AT 40 REV/SEC 2.5 BAR BMEP
< INCORRECT INJECTORS E.R.=0.8
> CORRECT INJECTORS E.R.-0.8
•*• •* ** '
^
-%
. — ^"^
r <
r -""."..
S
^~" ~~
t
^_ —
>
t,
>-""
^
. «• •• ^^
^
>
, — i — — <
•^
V- ~** "
<
<
^ ' "* ^ —
^
X
IG
\
^z**)
•^
'
<
'
, ^
•- ^
/.«-! '
^_**^....
(^
c
........
^
<
NITJON
— •>
\
'
---"^
'
TIM
_
^_- — '
^
s_
N
ING
f
, — -^
>
;
— 5
(Bl
<
^
/
K_
!>-
V ~~*
'DO
—— -^
— --
^.
>
"
.
v
.
. . .
.
. .ȣ
0
X
z
»-»
D
o
86
r15
10
5
0
15
10
• 5
0
5 10 15 20 2'5 30 35 40 45
-------
R
<
550
500
450
400
350
1 .0 •
K2RDC
VW h
COMP
IGNI
^.______^l
~
~
LU
o:
— >
2
ijj ;,
^
LL 1
1— y
br.
CO
X
LU
O
t—
cc
LU
O
LU
_J
.< N
> <
^ Fig. No. 52
J Drg.No.
iRCC METHANOL 1 .457L (79. 5mm x 73.4mm) Date, 30 Apr 1C
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
TION TIMING SWING AT 40 REV/SEC 2.5 BAR BMEP
< INCORRECT INJECTORS E.R.=0.8
> CORRECT INJECTORS E.R.=0.8
x-^
£
•w
X^
«.
^--^a
7*s^.
^
\
<\
— — ,
^^
! T"
a i :
LU 1 !
"^-'i
^7
s
*i~z^
!>
\
I
****— *•'
T '
\ IG
- — >
, — ^
— <
/
\
> —
^- —
\
'
— <
— <
x
y
^
— ^
V
— ^-— [' f I <
NITION ITIMING! (Bi
<
^
y~ -
s
— <
^r. ;
'DO
>
>
>
t_
(0
_Q
E
r
CO
CO
III
a:
Q_
z
2
""
)86
650
600
550
500
5 10 15 20 25 30 35 40 45
-------
R
4
3000
2000
1000
0
3-
2
1-
0-
2500
2000
1500
1000
K2HX
VW h
COMP
IGNI
f N
^
21
Q_
a.
"x
a
*
~
2x1
n
o
«
o
a.
o
i — -j
i—*-""
,
-
^ Fi g.No. 53
J Drg.No.
iRCC METHANOL 1 .457L (79. 5mm x 73.4mm) Date! 30 Apr IS
MR I SON BETWEEN CORRECT AND INCORRECT INJECTORS
TION TIMING SWING AT 40 REV/SEC 2.5 BAR BMEP
C INCORRECT INJECTORS E.R.=0.8
> CORRECT INJECTORS E.R.=0.8
..---j
s
1^ »— ^ '
l_- —
r — "
4
^
r
•J--H
rvar^
S
--<
JT-^-
l^-w.
<
b
IG
•_--;j
r=»— jj
X
<
NIT
,
^:
^
/
b
[ON
y
— -~.
L___\
\
<
•/
,/
>
TlHlNG
---^
-=^
j_ N
S
<
<•
e
*~
j
) —
(eioo
— <
. — .^
>
>
>
,
'
86
> 10 15 20 25 30 35 40 4'5
-------
R
^
4
30 -I
25 •
20 •
15 •
10 •
5 •
30 -
28 -
26 •
24 •
22 •
20 •
KMD
VW HRCC
COMPARIS
IGNITION
f V
___
_c
^
~
a
z
o
•^
<
—m
o
LU
O
LL.
U_
LU
<
a:
LU
X
LU <
\£
m >
c
y v
> — """"^
fffff
^"/^
<
Fig. No. 5k
Drg .No .
METHANOL 1 . 457L (79. 5mm x 73.4mm) Date: 30 Apr 1986
ON BETWEEN CORRECT AND INCORRECT INJECTORS
TIMING SWING AT 40 REV/SEC 2.5 BAR BMEP
INCORRECT INJECTORS E.R.=0.8
CORRECT INJECTORS E.R.=0.8
— ^
>-""""
^
x
' ^~
*r*^~~ •
1 i IG
.~~~'
r <
)
^"^
5>
'
NITiON
__^
^
'
TIM
! -<
<*~**£~^
> — -.
^
ING
— > «. 4
•~7
(Bl
> — it.
rool
>
!>
> 10 15 20 25 30 35 40 45
-------
RK2RDC
VW h
COMP
IGNI
x K
4
15
10
5
0
34 •
32 •
30 •
28 •
<
>
—
2
CT >
*•* <
0
o
1 -
*
.
^ ••
~ f— -
^
>M/
•
u.
LU
_J
<
fy \
LU
~p
1 1 1
^ \
<
o:
CD
/
fT
.. Fig. No. 55
-/ Drg .No .
mCC METHANOL 1 .457L (79. 5mm x 73.4mm) Date! 30 Apr IS
ARISON BETWEEN CORRECT AND INCORRECT INJECTORS
TION TIMING SWING AT 40 REV/SEC 5.5 BAR BMEP
< INCORRECT INJECTORS E-R.=0.8
> CORRECT INJECTORS E.R.=0.8
^
^
<
."-"^
<
>
S
^ ^ ^^
^
_j&±
\, ^ ^^v'
* —
.
<
.- — — \
>— 0-
^""""5^
IG
"^ !
. — ——A
___^ —
— .<
fc*-^-.^
NIT
^^ — '
r^
lt-T-
r
:ON
i_ -r
— <
4
^
TIM
<— •**•* "
( — *^"
*>
>_ —
ING
-••-*
^~~*
.
— <
— <
"~^=^
y"'
(
PI--..-.
s
K
£.—,
(BTDC)
f'
\
<
^
>
>
>
>
V
r*
2
o
X
. o
"
*~
2
a
O
5 10 15 20 25 30 35 40 4
86
r30
20
10
• 0
15
10
5
0
5
-------
R
^
<
650
600
550
500
450
1 .0 -
).9 1
).8 -
).7 •
KMX
VW h
COMP
IGNI
f \
LU
cc
i—
o:
tu
o.
2:
1 J 1
fc
X
LU
O
I—H
DC
ALEIjJCE
<\
*****
•
•'•
5 I
a
LU
^ Flg.NQ.-56
J Drg.No.
CORRECT INJECTORS E-R.=0.8
N^.
^
^
^
^- .
^^^
^^~~^-,
"^-A,
^i"""
-^
>••
— 4x--
•— \
— _ '
>
^
f 1 T ! '
^ ~"
k.
FJ
_— -^
_• ^ — 4
- -^
-j
\
f
>
£—!-—$.—
\ IGNITION (TIMING! CBTDO
— <
— <
^
b
(D
-D
E
C/D
CO
- . J i J
oe
Q_
z
2:
z
86
900
850
800
750
5 10 15 20 25 30 35 40 45
-------
R
^
4
3000
2000
1000
0
3-
2-
1-
o-
2000
1800
1600
1400
ICMX
VW h
COMP/
IGNT
( "h
k. —————— ^t
_^
z:
Q_
QL
'"k
O
•z.
<
>
~
^
o
o
^
^
o
z;
Q_
Q_
0 <
C
........
t — •
%---""
/
^ —
) Fig. No. 57
Drg .No .
IRCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Daie! 30 Apr is
PRISON BETWEEN CORRECT AND INCORRECT INJECTORS
riON TIMING SWING AT 40 REV/SEC 5.5 BAR BMEP
C INCORRECT INJECTORS E.R.=0.8
> CORRECT INJECTORS E.R.=0.8
I
-*-"
N
r— -i
\
• — — "•'
! ! ! IGNIT
<-^
£mr-
^
\ • ** ^
ION
---•^
— — +
m_^
x
'
,---'•<
y-^.--"-
SP- -«j
<^^'
^ —
TIMING
-^->
V
^
<
(Bl
.X
<
£
J
^_ —
'DC)
f
>
>
>
)86
J 10 15 20 25 30 35 40 45
-------
RKMD
x-
*•-
Flg.No. 58
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Daie, 30 Apr 1986
COMPARISON BETWEEN CORRECT AND INCORRECT INJECTORS
IGNITION TIMING SWING AT 40 REV/SEC 5.5 BAR BMEP
INCORRECT INJECTORS E.R.=0.8
CORRECT INJECTORS E.R.=0.8
TIMING! (BTDC)
30
28
-------
RIGRDO
Fig.No. 59
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date. 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
FULL LOAD POWER CURVE MBT IGNITION TIMING
x-
CARBURETTOR
•-0 INJECTED
ENGINE SPEED (
70 80 90 MOO
-------
R
^
4
100,
90
80
70
60
5.0
4.5
4.0
3.5
3.0
K2RDC
vw \-
COMP
FULL
/ )
„
>t
^
•
u_
LU
•
CJ >
>
<
-C
3t
_*
\
CD "
-*
W. .
>
•
O
•
« <
en
•
CD
2
/
<
>-"
>^
^'v
^ Fig. No 60
J Drg.No.
iRCC METHANOL 1 . 457L (79. 5mm x 73.4mm) DaU, 30 Apr ^
PRISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
LOAD POWER CURVE MBT IGNITION TIMING
< CARBURETTOR
> INJECTED
S^*
~A
s^
N
V
-^
Y'~'
f
V.
\v
^S
x~-_
—'""-4
-"<
\
*^s
s
, /
\#
i '
r — — ^
EN
•s^Z^.
^
/
~ — »
— -<
GIN
**-**
s
\ —
+-—
E SI
-=-d
!*• ** "^
aEE[
^-~,
*—^.
^~
) (
'~-— -<
^
«L- j
rev
._^^
fe--'
s '
fr-"""
.-•<
— ji
. ..
-<
^s~^)
/• i
7
4.
^^^
if-^-"
,1
S
^^
^
>
<
v
\
>
186
0 30 40 50 60 70 80 90 100
-------
RK2RDO
Fig.No . 61
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Da{e, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
FULL LOAD POWER CURVE MBT IGNITION TIMING
X-
-X CARBURETTOR
•-«> INJECTED
800,
700
80
90
100
-------
RK2RDC
VW h
COUP
FULL
y v
4
80
60
40
20
0
400
300
200
100
0-
L.
—
./
^ Fig. No. 62
J Drg.No.
INJECTED
__--/
«
\
s
*- —
\
* — '
s
^~~~
— -«
^
s
''
s
GIN
^
>—
~
,/
— <3
^
^
"\
'"*
\
4
^—
/
^
^
'is
<
Jl
— ^
s
,,-x—-- •"'
f
/
,x
1 ^
N
xx
>
:
^
r
./
?
-^<
•s
^
••*'""
>
K . .
«^
>
O
Q_
LU
h-
1—
LU
_J
1— 1
186
•40
•20
•0
20 30 40 50 60 70 80 90 1 60
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
CARBURETTOR
INJECTED
150i
VALENCE RATIO
0.9 1.0
1 .1
1 .2
-------
RK2RDO
Fig.No. 6V
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
CARBURETTOR
INJECTED
550i
500
EQUIVALENCE RATIO
30
20
10
700
600
500
400
0.4 0
0.6 0.7 0.8 0.9
1 .0
1 .1
1 .2
-------
HOED i::.:::6'
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 2.5 BAR BMEP
x-
CARBURETTOR
INJECTED
3000
2000
1000
21
Q.
CL...
0
o
O1
eooo
4000
2000
LEAN
EQUIVALENCE RATIO
Oi4
0^5
Ol6
RICH
0^7
0^8
0^9
K2
-------
RK2KX
VW K
COMP
MIXT
y v
4
30 -I
25 •
20 •
15 -
10 •
5 •
28 •
26 •
24 •
22 •
20
18 -
_
*
^
\-s
X
o
o
~
b
z
LU
O
U_
LU
<
or
LU
X
LU
01
CD
0
^ Fig. No. 66
J Org.No.
iRCC METHANOL 1 .457L (79. 5mm x 73.4mm) Date. 30 Apr 1 =
ARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
JRE LOOP AT 40 REV/SEC 2.5 BAR BMEP
< CARBURETTOR
> INJECTED
LEAN
^.
^
<*»'
x-
•
.
\
k%\
"\\
\
>
. -^
*.
vt
—^—4
1 lEQU
I-
(— ^
IVA
--*-
"-X-
,ENC
f"'
%
•^-T-^.,
•±s
s>\
''"
1
7V^*»
JE R:ATI
•v
N^x
Tv-^,
**N
"*^^
"^X
D
"v^x
"""N
N
X
^^
Sv
V
V
\
N
/
<
X'>**-Jir
.
X
\
<
.. . .
RICH
'.A CU5 Ol6 Q'.7 CK8 0^9 KO 111 1
)86
1
'.2
-------
kKnKLi-/ Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) D8te: 30 Apr 1986
• COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
x-
-X CARBURETTOR
•-<> INJECTED
150
100
0.4
0:5 cue 0^7 o:s 0^9 1:0
-------
RK21RDO
Fig.No.68
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Da{ft! 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
X X CARBURETTOR
> 0 INJECTED
600i
550;
500
450
40CH
50 i
40 •cn
30
20
10
120C
100C
800
J-600
0.4
0.6 0.7 0.8
0.9 1.0 1.1
1 .2
-------
RK2RDO
Fig.No. 69
Drg-No .
VW HRCC METHANOL 1 .457L(79.5mm x 73.4mm) Date: 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
CARBURETTOR
•-<> INJECTED
3000t-
2000
1 000 •••:
O
o
oj
3000
2000
1000
O
LEAN
EQUIVALENCE RlATlb
f
0.4 0.5 0.6 0.7 0.8 0.9 1.0
RICH
~~
1 .2
-------
RI0RDO
Fig.No. 7fl
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date* 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 40 REV/SEC 5.5 BAR BMEP
X X CARBURETTOR
$. _e> INJECTED
26
EQUIVALENCE RATIO
0.4 0.5
0^6
0^7
0^8
CL 9
\'.Q
1 12
-------
RKMD
Fl g.No. 71
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 15 REV/SEC IDLE
CARBURETTOR
*. e> INJECTED
600
400
200
400
1200
1000
800
RICH
CK7
(K9
10
12
.4
-------
RK2WX
VW h
COMP
MIXTI
y v
<
300
250
200
150
100
50 •
40 •
30 •
20 i
10 •
i
-
~
LU
CC
13
CC
Id
Q_
1 1 1
1—
1—
C/3
— »
x
X
LU
—
a
t—
CD
e>
*— H
mm ...
*— 4
O
»— 1
1
o
0
LEAK
^ Fig. No. 72
J Drg.No.
1RCC METHANOL 1 .457L (79. 5mm x 73.4mm) DaU, 30 Apr 1<=
PRISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
JRE LOOP AT 15 REV/SEC IDLE
( CARBURETTOR
> INJECTED
0
/
^^
^x
/*
/\ ; / \X ^
.ENdE R
/ sx
' /^-
J^.
XV
*^*^s
ATI
D
v
v
\_s
yv
^^
. S^
i
(0
-0
E
to
en
. J i 1
ct:
Q_
1— »
RICh
is o;7 o:s oig 1:0 KI 112 1:3 i
86
450
400
350
300
1
14
-------
RK2RDC
VW 1-
COMP
MIXT
4
3000
2000
1000
0
is-
le-
s'
o-
8000
6000
4000
2000
,—
z:
Q_
CL
-
x
O
~
^_,
O
CJ
o
Q_
Q_
O
0
LEAN
^ Fi g.No . 73
-/ Drg . No .
INJECTED
*-
*s
X
•'"V
X
s
>
•••••••
j^N
V
EOU
._ yjx_
IVA
~^f-
•K
\
,ENC
**
:E R
*X
^x?*.
ATI
^
^
/
D
v
A
V •*<»
^K
/
/
^
¥
/
/
RICh
^6 o i 7 o re o • 9 i '. o \'.\ \'.2 \^z \
86
1
'.A
-------
BOKO
VW HRCC METHANOL 1 . 4571 (79- 5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
MIXTURE LOOP AT 15 REV/SEC IDLE
X X CARBURETTOR
$. _«> INJECTED
35
30
25
20
15
10
400i
300
200-
100
000
900*
iLEAN !
6.6 0.7
EDUIIVAIIENCE RiATIO
0.8 0.9
1.0
1 .1
1 .2
1.3
1.4
-------
RK2RDO
Fig.No. 75
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
IGNITION SWING AT 15 REV/SEC IDLE E.R.-1.0
-X CARBURETTOR
•-0 INJECTED
900
10
15
20
30
35
40
45
-------
R
^
<
300
250
200
150
100
.3 -
.2 •
.1 •
.0 •
K2KX
VW F
COMP
IGNI
k. ___ — __.>
~
~
LU
a:
OL
Irl
Q_
T.
\ I J
\
CO
LU
<
0
1 —
cr
LU
o
LU
_J
~
a
LU
C
"• — -
>
?~-~~"
^ • Fig. No. 76
J Drg.No.
1RCC METHANOL 1 -457L (79.5mm x 73.4mm) Date, 30 Apr l«
ARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
TION SWING AT 15 REV/SEC IDLE E.R.-1.0
< CARBURETTOR
> INJECTED
X-
•— <
X-
-^y^
_
>— .
> —
A '
•^^.
«.— _<
^,
"S£"
*«„.—
!
' -w.
^•~
IG
— *r
— <
•y.
<
-^4-
<
NIT
^ —
)
k^~2
f
—
1)
ION
^
•^__<
*
— ^
TIM
£i^r
t>
*—~
<
K
ING
•^-^
I"-"4
•i^-l
(Bl
4
r>
r-
j—
[DO
»
"—>
>
<
<
(0
j
CO
iii
Q-
Z
*— 4
)86
450
400
350
300
) 10 15 20 25 30 35 40 4'5
-------
R
<
3000
2000
1000
0
4-
3-
2-
1-
5000
4000
3000
2000
KMX
VW h
COMP
IGNI
,_
Q_
Q_
~
X
a
z
—.
v^
o
o
<
0
Q_
O
c
>- —
k«* •* •" "
^
^ Fig. No. 77
-x Drg .No .
iRCC METHANOL 1 .4571 (79. 5mm x 73.4mm) Date! ;30 Apr 1C
PRISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
TION SWING AT 15 REV/SEC IDLE E.R.-1.0
C CARBURETTOR
> INJECTED
>T
X^
•>,_
^*~~~~
>
X
^
\.^^.
V
, 1
\f
^^
"^•^
^ —
k — ^i*^
^^..
IG
^
^e?
NIT
^_
k>— ,
^ — '
ION
-4
<
— -<
TIM
bt.
>- —
ING
— - <
(Bl
be
>
> /
e^
DC)
\
\
y
.. /. .
/
/
> 10 15 20 25 3d 3'5 40 4
86
b
-------
x-
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
COMPARISON BETWEEN CARBURETTOR AND INJECTOR FUELLING
IGNITION SWING AT 15 REV/SEC IDLE E.R.-1.0
-X CARBURETTOR
•-«> INJECTED
30
25
20
15 •
10
200t
150
100
050 .
000
950
IGNITjDN iTIMING (BTDOI
10
15
-------
Fig.No. 79
Drg .No .
VW HRCC METHANOL 1.4571 (79.5mm x 73.4mm) Date, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 1.5 BAR BMEP
x-
> 9>
E n
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
E.G.R RATE ('/.)
16
35
40
-------
RK2RDO
Fig.No. 80
Or g.No .
VW HRCC METHANOL 1 .457L (79.5mm x 73-4mm) Daie, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 1.5 BAR BMEP
B D
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
600
500
400
300
E.G.R; RATE ;(%)
20 -r
10
0
10
15
20
40
-------
R
^
<
H
C
3000
2000
1000
o
3'
2
1-
o-
6000
4000
2000
0
K2RDO
VW HRCC
BOSCH/ME
E.G.R. L
< V
9 C
_
z:
Q_
CL
*~s
X
a
•z.
i
P-1-
~
S>!
\~*
a
o >
£
0
z:
CL
Q_
^ c
O J
•*—
f
I^JH.
g
^ ^^
>
i-
3
mmm^.
^^.^•HM^^
Fi g.No. 81
Drg.No .
METHANOL 1 . 457L (79.5mm x 73.4mm) Dato, 30 Apr 1986
C IGNITION
OOPS AT 40 REV/SEC 1.5 BAR BMEP
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
:-%4feu
H§T
vx
-C.
^-EB-
—4-
••• /\ *
**"—*.
-.
-------
RK2KX
VW H
BOSC
E.G.
4
H
C
30 •
25 •
20
15 •
10 •
5 •
26 •
24 •
22 •
20 •
18 •
16 •
3 C
_c
v
CO
~
*'
0
2
O
X
c
<
CVir-rr
~
^
o
2
LU
O
LL,.
u.
LU
_J
z:
on
LU
X
LU
5 <
DO v
Q_.__.
>^-.
- Fig- No. 82
-/ Drg.No.
1RCC NETHANOL 1 . 457L (79. 5mm x 73.4mm) Date! 30 Apr ic
H/MEC IGNITION
R. LOOPS AT 40 REV/SEC 1.5 BAR BI1EP
< 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
• 0.8 EQUIVALENCE RATIO
3 0.7 EQUIVALENCE RATIO
___^-
^--,
=--=
• I! 1 • ' "
^e-
-. yn
— X~
jzf
_ . . y^v
/
? .
^.U-
!
^__ _^_ vx
rrafii| |:i^
/
f
^"
^ .
• UTT^
ja
^y
***'
>^
"^^tpt^o
E.b.R
7l-
/x
^'
, — —
^gjJ-J
» IA r
!
'
^#-
" **<^N
*>''
^^
^-
a)[
— X
^•x
)86
0 5 10 15 20 25 30 35 40
-------
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 2.5 BAR BMEP
X X 1.0 EQUIVALENCE RATIO
$. q> o.9 EQUIVALENCE RATIO
H 1- 0.8 EQUIVALENCE RATIO
Q D 0.7 EQUIVALENCE RATIO
© O Carburetted engine 0.8 equivalence ratio
E.G.R. RATE c/j
22
20 J
10
0
10
15
20
25
30
35
40
-------
RK2BDO
Fig.No. 84
Drg.No.
VW HRCC METHANOL 1 .4571 (79.5mm x 73.4mm) Dati, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 2.5 BAR BMEP
Q D
O ©
1 .0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
Carburetted engine 0.8 equivalence ratio
40
30
20
10
E-G.Ri RATE i(%)
ooc
800
600
0
10
15
20
25
30
35
40
-------
HORDE} °::t:85
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Datt, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 2.5 BAR BMEP
-x
Q
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
3000
2000
1000
Q_
CL.,
6000
4000
2000
ffl-
^/Sf
«=a=^
....
0
0
E.J3.R RATE i(X) I
~T5 20 2?
30
IF"
40
-------
RI0RDC
VW h
BOSC
E.G.
y v
4
-i
G
25 •
20 -
15 •
10 •
5
0 •
30 •
28 •
26
24 •
22 •
20 -
1
3 c
V
^
"'x' v
? 1
t*'""
o
X
~
0
LU
O
UL
LU
<
o: p
LU k
X
V >
cc
CD
\
N
^ >.
s
1 ""
„. Fig. No. 86
J Drg.No.
1RCC METHANOL 1 .457L (79.5mm x 73.4mm) Date! 30 Apr 19
•I/MEC IGNITION
R. LOOPS AT 40 REV/SEC 2.5 BAR BMEP
C 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
) 0.7 EQUIVALENCE RATIO
, —
""^i- ^
^*^w -"""
^— •
^r^
*^_j"~
"^4^
b.R
f
•
— '-»*— i
f
^^^ ••
R/
-^
K
(TE
^
— x^"
f
— K-
(%)
^-^
,
86
0 5 10 15 20 2'5 30 35 40
-------
R
4
•*
0
30
20
10
0
34 •
32 -
30 -
28 •
K2RDC
vw ^
BOSC
E.G.
3 C
-
C
— •
"^ 'v
""^ /
x,1
O>
8 [
[
s '
U.
UJ [
CE THERMAL
cc
DO
(
>%%».^>
~~
3
.
n
3
fr.-. 0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
] 0.7 EQUIVALENCE RATIO
-a*-»
""
•
=-=n--i
— ^m^J
'
—a-
— E>
•.U • •
— a-
, — — —
•^-~~ii
~~ ^n a
•UMJ1
^?
'
•k:
-^-- -
_ . — -^— —
"• —
— 1
— — -
' —
H
^ —
-0-—
br-
-H
^
-CD
-a
%
E.
frr-
" — — •
, -—
• 1 >• •-••
G.R
H
^— — •
H — -
1 1. — •
j
•^ I- •
, R/
^r=r^
.
h
_»^A
ITE
•*w»^
^^
'^
('/.)
~=^
— ^ ^ *^
"— •<
.
>
!>
!>
— X
— X
v
.. ..f
a
X
o
z
— •
;
a
O
) 2 4 6 8 10 12 14 1
86
r30
20
10
0
15
10
5
0
6
-------
RIG1RDO
Fig.No. 88
Drg.No.
VW HRCC METHANOL 1.4571 (79.5mm x 73.4mm) Da{e! 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 5.5 BAR BMEP
H m
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
550i
20
10
tooc
900
800
roo
0
8
10
12
14
16
-------
RK2RDO
Fl g.No. 89
Drg .No.
VW HRCC METHANOL 1-457L (79.5mm x 73.4mm) Date, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 5.5 BAR BMEP
X X 1.0 EQUIVALENCE RATIO
$. «> o.9 EQUIVALENCE RATIO
H 1- 0.8 EQUIVALENCE RATIO
B D 0.7 EQUIVALENCE RATIO
3000]
2000
1000
1000
8
10
12
14
16
-------
RK2HD »::::: 9°
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 40 REV/SEC 5.5 BAR BMEP
x-
X 1.0 EQUIVALENCE RATIO
$. ^ o.9 EQUIVALENCE RATIO
-I h 0.8 EQUIVALENCE RATIO
H n 0.7 EQUIVALENCE RATIO
30
25
20
15
10
"T
O)
38
36
34
32
30
28
O
LU
O
40....
U_
LU
C3
E.G.R> RATE \(7.)
0
8
1ID
12
14
16
-------
RK2RDC
VW h
BOSC
E.G.
y ' ^
4
H
C
30
20
10
0
26 i
24 -
22 •
20 •
q -{i
$
;•
C
-c .
o>
o B
o
C
~ $
u_ —
U.
LU
£
GC. r
UJ "•
X
UJ )
a:
CD
^x
^**s
3
'
3— «••
3
^^^^ *~
±z__
^ Fig. No. 91
J Drg .No .
iRCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Data, 30 Apr i<
H/MEC IGNITION
R. LOOPS AT 60 REV/SEC 2.5 BAR BMEP
( 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
3 0.7 EQUIVALENCE RATIO
\.
^.^
B»-
—- -
— -
,
— —
—-
^^
— —
— —
^
-X •
«^rsr.
•"* •" **
""""-'
^- \
"'; "
\X
-E3-
-J3-"
— .. ••"
-•rn • •
LJ
^* ^ *M
~ -— —
'"
..
(
E.b.R
*-m
i^~— i
'"r~:?!C^^~~
1-
-B-
• A*
^.-i'""*^"
... i ~ *
— B-
r ^T"
L^l.
L--A-
. RATE ;(%)
— _ —
____
U ii
** *
:
_— -
^irr
•VHB ^_W 1
_.
_
• • -
-a
-Q
_ — — •
— '-•*
=£j-
t--*ta-^-«:^
s-rx
T..
?
|
•^ i
K
^
x
H-
e>
— x
-e.
o
X
.a
-S.
a
0
0 2 4 6 8 10 12 14
)86
•15
10
5
0
15
10
5
0
6
-------
RK2RDO
Fig.No. 92
Drg.No.
VW HRCC METHANOL 1.A57L (79.5mm x 73.4mm) Date! 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 60 REV/SEC 2.5 BAR BMEP
a n
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
550i
500
450
4001
40
30
20
10
70(5
600
500
400
E.G.R RATE !(%)
0
-------
HCRDO »:::!!::93
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 60 REV/SEC 2.5 BAR BMEP
-x
B
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
3000
2000
1000
Q.
OL..
2
0
0
3000
2000
1000
«•
.-e^
E.G.R. RATE !(%)
0
8
10
12
16
-------
RIGIRDO
Fig.No. 94
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 30 Apr 1986
BOSCH/MEC IGNITION
E.G.R. LOOPS AT 60 REV/SEC 2.5 BAR BMEP
x-
D
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
25 -
20
0
-------
RIGIRDC
VW h
BOSCI
E.G.I
NX . V,
4
4
G
30
20
10
0
34 •
32 •
30 •
28 •
!
j ; c
*
-
C
_c
2 >
o>
s «
_ c
iS!
~ 3
Lt_
U.
LU
i
^^l
^-~.
9 —
^ — •
i • ~
7
3
j.. __
ji '__'_•
3i ^
LU
X
LU
CC
DQ
^ Fl g.No . 95
S Drg .No .
IRCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Dat., 30 Apr 1S
H/MEC IGNITION
?. LOOPS AT 60 REV/SEC 5.5 BAR BMEP
C 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
] 0.7 EQUIVALENCE RATIO
— — — -
.
.^—w- ^«
"*^^
1 "1
"--fr
1 :
^
">^^,
^H-^
3
*"^i.
-^,
j — —
"^ i
VJ . :
i 1
/v
<^^- • — *
^fe:
"^-K,
X' '
>~ .'""I -
' U
,
v
*_""'•" -
^^**^
E-b.R
-^
"^^>
"-+
— ^
^4"^"
^4.
-^tN
-f
V
«~ — -.
\
^ _-,
j>
— »
^
^ ^
RATE im
f"
'
... .-c
~ II
\/
0
X
a
z
... -C
a
O
0 2 4 6 8 10 12 14
86
15
•10
5
0
15
10
• 5
0
6
-------
R
<
^
c
650
600
550
500
40 •
30 •
20 •
10 •
K2RDC
VW h
BOSC
E.G.
t }
9 C
T
i
i
r"
i >P-
^
Q_
1-- )
1—
CO <
"-N
X""
UJ
r
^
<
-\
D
o
O
1—
CO
0
V1111 "*_
^ —
/• .
N
k
B
.^ Fig. No. 96
J Drg.No.
1RCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date! 30 Apr 1<
H/MEC IGNITION
R. LOOPS AT 60 REV/SEC 5.5 BAR BMEP
< 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
1- 0.8 EQUIVALENCE RATIO
3 0.7 EQUIVALENCE RATIO
----"
-—
-
1 f H
z >
____________
^ :
~ ;
1
,-
^~x-
— X-
,
•tf
— — \
1
1 — — \
_____
v
n i
^K-
.*-
. '
—
1 <•
7]
_J
-_
|
3
ji
;J
•• xjh"
—
^s*
.^..^
^^^"
— ' •
>- — .
X^
^-
\^---
*-TX
-X—
" 1.1^
"7^~r
X.
l"
5£
i E-
''"'
>^
— '
-
G.R
^
>
^
_- 1
Vi
f
— 1-
'. — >
^
^^^^
i^^^
r
r
*••_.
1 - —
, RATE
5>
^x^
' ^
^
J>
. - .
dv
C>— _v
7>
(X)
,
^
C.
(D
-0
J
CO
CO
a_
•Z.
z
o
on
1— 1
a
LU
J36
lOOt
900
800
700
• 1 .1
1 .(
•O.I
.,
0 2 4 6 8 10 12 14 16
-------
RK2RDC
VW 1-
BOSC
E.G.
y v
4
H
D
3000
2000
1000
0
3-
2-
1-
0-
3000
2000
1000
0
i 1
3 -0
s
E *
a.
. _i
X i
o
z
[
—
**
o
u
H
o.
Q__ r
u
C«5 ^
c
/•
^
3
^ Fig. No. 97
J Drg .No .
iRCC METHANOL 1 . A57L (79. 5mm x 73.4mm) Date! 30 Apr 1<
H/MEC IGNITION
R. LOOPS AT 60 REV/SEC 5.5 BAR BMEP
< 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
H 0.8 EQUIVALENCE RATIO
D 0.7 EQUIVALENCE RATIO
^K-
— i — i
"a^s*l^^
/ j vx
0-
3
g —
— "~-
— -^-
TVfjl
JJVt
.
'*>^1
•n*-.
"-H--
vx
"rfv
K
fc*^-*-..
^___._^^
i i 1 E.G.R
^
H-
V
— K>-
^?
~- — ^<
f
— ~ —*~
RATE
N
*/ .
-X
e>
. — >
e>
(X)
'
s.
k
'
v
) 2 4 6 8 10 12 14 1
386
6
-------
R
^
<
H
C
25
20
15
10
5 •
0.
1
38 •
36
34 •
32
30 •
28 •
K2RDO
VW HRCC
BOSCH/ME
E.G.R. L
/ , .„ V*
L_ ---r.
.c
—
^
HCfNOxl (
! ! •
n ; i 1
j_
o
z
LU
O
U_
LU
H
OC fl
^ <
LU
\s
oz
CD
C
[
^^
•s,
^.^.
3
«•'••»•—.
<
>
i-
3
^_.
^^B — ^
"
1 METHA
C IGNITI
OOPS AT
t.O EQUIVA
0.9 EQUIVA
0.8 EQUIVA
0.7 EQUIVA
_
7^-
"*"""
-
— — — '
— x~
B+-
.. ...
*
»•"—••«——
" i
NOL
ON
60 R
LENCE
LENCE
LENCE
LENCE
'
— •-_
1.457L
EV/SEC 5
RATIO
RATIO
RATIO
RATIO
j
i
................. ..j. „, .
••••T^w^
—^4-~
. .
: :
1
..... L
t
i
.._! i
T—|
(79
.5 E
...
"^
^
.„„._..
H-
_• : »•« ^- j- - •* -w » ^j,.
• X )
.. .-T _j _.
I i -
i . . .
T
j
E.G.R. R/5
• 5mm x
IAR BMEP
l
I
*.*.
.
~~ '
P"
JE
...........
$
i X
.
73.-
_
!>
- — v;
v^<
4mm)
.»
•••"• "••••
Fig
Drg
Dat
«.««••••
.No.
.No.
e> 3
(~
. .
^
..........
- J
j
:
98
0 Ap
r H
»
!
|
I j
386
|
""* t
j
j
_.........
2 4 6 8 10 12 14 16
-------
.RK2RDC
VW h
BOSC
E.G.
x v
«
3D
20
10
0
36 •
34 -
32 -
30 •
.jc *;.x
* J*
3
_*
'v
O)
Vw<.
0
O
<
is!
>— * V
. «
Lf
Lu
IJJ
I <
QC
UJ
X
pi1 s
/
UJ
> —
£»--"
N _. _
? r
<
< !
CC !
CD !
^ Fig. No. 99
J Drg.No.
\RCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date, 30 Apr is
H/MEC IGNITION
R. LOOPS AT 60 REV/SEC 7.0 BAR BMEP
< 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
^^~.
-~_.
"*"~
"** ^"^ «*
^K
~-o
-~-_^
°™«
—
UA.-^
—
^!fe=:
X —
..
' ^
»x-
E.G.R
— • —
—nir--^
~ ^_
'
"*"""-•-*•*.
. RATE !(%)
' )
" •?
J
\
<
<
<
Kv
JC
1
3
^
"x.
O
X
. . O
z
.. JC
•
DC
j*
x.-
O
0
. . X
186
r20
15
•10
5
15
10
5
0
6 (2345678
-------
R
^
<
700
650
600
550
40 •
30'-
20 •
10 •
i
K2RDO
VW HRCC
BOSCH/ME
E.G.R. L
' i i V
i
<
~ >
..0
\— <•
•
Q_
LU
l_
CO... .
^ >
a <
....V
<
0
0
1—
CD
o
z:
i—
•
z %
o -
C
>..•:.."„"..
*
>—
x ^ *
\
^
>
-'-'"
,„„„
. '
•
— «..—.«.
METHANOL 1 . 457L (79. 5mm x
C IGNITION
OOPS AT 60 REV/SEC 7.0 BAR BMEP
1.0 EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
..«.«._«__.>
^p-
, ^"*
' '
' • •
• — — —— •-
.........
^*»
"•"""
_.
""
—
!
— i —
i
_ ^
--
-
*— " .
.
-^
j—
~**~^
—•^•«.«^
--"^'
_
E.
i
i
._
-*•""
-T\
-X-
XV
""TV*
3.R
...^^ir
^••MKM^M
~ """•
R/
^
••••' .
^TE
Fig. No. 100
Dr g . No .
73.4mm) Date' 30 Apr IS
i
j
*•" "•—
_
>^_M_
S
"""
5
. N
r ~
- —
.
— ^
"•
ex.)
<
._.
,y
,-. _
-
<
»«.«..•..•...
_
....
C
-------
RK2RDC
VW h
BOSC
E.G.
4
4000
3000
2000
1000
3-
2-
1-
0
3000
2000
1000
0
-—^
r
Q_
Q_
•^s
£ <
z
~
>*
\~s
o
u >
<
o
z:
Q_
QL
I i
"c
4
<^
>~^
<
7
$ --
•*•
^ Fig. No. 101
} Drg.No.
mCC METHANOL 1 . 457L (79. 5mm x 73.4mm) Date, 30 Apr H
H/MEC IGNITION
R. LOOPS AT 60 REV/SEC 7.0 BAR BMEP
< 1.0 EQUIVALENCE RATIO
> 0.9 EQUIVALENCE RATIO
=*::^r*
^^
- -A
-X—
-X —
-•
- — •'•'—.-
-O
E.b.R. R/
^TE
• — —
*
•""- — 5
5
C/.} \
<
j 1' 2 3 4 5 6 7 £
386
-------
R
\
<
30
25
20
1.5 •
10 •
5 •
40
38
36
34 •
32
30 •
K2RDD
VW HRCC
BOSCH/ME
E.G.R. L
-* ii. i,, iV
-
_
f
_ ^
QJ
*-__-*
0 <
0
s...
t^f
>-
o
z
LLI
O
1—4
u
a.
LLJ
_J
<
r
a: *
UJ
= —
<
>
*"""
_ - .
...
Fig. No. 102
Drg .No .
METHANOL 1 . A57L C79. 5mm x 73.4mm) Date, 30 Ap
C IGNITION
OOPS AT 60 REV/SEC 7.0 BAR BMEP
t.O EQUIVALENCE RATIO
0.9 EQUIVALENCE RATIO
.^-.•as-;
:
,
.
^ ^ ,
•N^^^
|
*^^_
-~o
^i""" ~*
^--o
-x—
.
.. .
— .
,X-- >•
E.G.R R/
*•• —
JE
-*• i •
('/.)
'•*••*•
;
rr=5
<
*
|
I
i -
|
|
" ""
""*•
r 1986
"™ ""]
]
!
.
1
i
i
01 234567*6
-------
RK2RDD
VW HRCC METHANOL
1.457L (79.5mm x
BSFC AND EMISSIONS » TRADE-OFF GRAPHS
40 REV/SEC 1.5 BAR BMEP
X X MIXTURE LOOP
^. 5, EGR LOOP AT 1.0 EQUIVALENCE RATIO
H h EGR LOOP AT 0.9 EQUIVALENCE RATIO
H Q EGR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
73-4mm)
Fig.No
Drg.No
Date :
103
8 Oct 1986
.SJ.F.C. E g/kW.jh ]|
975
1000
1025
1050
1075
1100
1125
1 150
1175
-------
RKMD
F I g . N o . 104
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date, 8 Oct 1986
BSFC AND EMISSIONS • TRADE-OFF GRAPHS
40 REV/SEC 1.5 BAR BMEP
Q n
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
EGR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
975
1000
1025 1050 1075
1100
125 1150
175
-------
RK2RDO
VW HRCC METHANOL 1 . 4571 (7*9. 5mm x
BSFC AND EMISSIONS » TRADE-OFF GRAPHS
40 REV/SEC 2.5 BAR BMEP
73« 4mm)
FIg.No . 105
Drg.No.
Date: 8 Oct 198B
MIXTURE LOOP
EGR LOOP AT 1
0 EQUIVALENCE RATIO
Q —Q
EGR LOOP AT
EGR LOOP AT
0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
EGR LOOP AT 0-7 EQUIVALENCE RATIO
B.Si.F.C. E q/kW.h ]
740
760
780
800 820
840
860
880
900
-------
RK2RDO
Fig.No. 106
Drg .No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Da{e! 8 Oct ,986
BSFC AND EMISSIONS » TRADE-OFF GRAPHS
40 REV/SEC 2.5 BAR BMEP
x
> _$
Q Q
MIXTURE LOOP
ECR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
ECR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
20-
T
18
6-
14-
o-
O)
O
2-
'B.S.F.fc. [
740
760 780
800
820 840
860 880
900
-------
RK2RDO
VW HRCC METHANOL
1.4571(79.5mm x
BSFC AND EMISSIONS * TRADE-OFF GRAPHS
40 REV/SEC 5.5 BAR BMEP
73-4mm)
Flg.No . 107
Dr g.No .
Date! 8 Oci
1986
X-
B--
D
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
0.8 EQUIVALENCE RATIO
0.7 EQUIVALENCE RATIO
EGR LOOP AT
EGR LOOP AT
520
540
560
B.S.F.C. C g/kW.h 3
580
600
620
640
660
680
-------
HCRDO o!::::: 108
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 8 Oct , 986
BSFC AND EMISSIONS » TRADE-OFF GRAPHS
40 REV/SEC 5.5 BAR BMEP
x-
B
-«>
-f
—a
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
EGR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
B.S.F.C. C g/kW.
640
660
680
-------
RKMD
VW HRCC METHANOL
1.457L (79.5mm x
BSFC AND EMISSIONS » TRADE-OFF GRAPHS
60 REV/SEC 2.5 BAR BMEP
73.4mm)
Fig. No. 109
Dr g . No .
Date: 8 Oci
1986
*- -«>
Q D
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
EGR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
760
780
800
820
840
860
-------
RK3RDO
Fig. No. no
Drg.No .
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 8 Oet 1986
BSFC AND EMISSIONS • TRADE-OFF GRAPHS
60 REV/SEC 2.5 BAR BMEP
X X MIXTURE LOOP
$. «> EGR LOOP AT 1.0 EQUIVALENCE RATIO
-I ^ EGR LOOP AT 0.9 EQUIVALENCE RATIO
Q D EGR LOOP AT 0.8 EQUIVALENCE RATIO
* •* EGR LOOP AT 0.7 EQUIVALENCE RATIO
B.SI.F.C. C Q/kW.h
760
780
800
820
840
860
880
960
920
-------
RK2RDO
VW HRCC METHANOL
1.457L (79.5mm x
BSFC AND EMISSIONS * TRADE-OFF GRAPHS
60 REV/SEC 5.5 BAR BMEP
73. 4mm)
Fig.No. Ill
Drg .No .
Daie : 8 Oct 1986
19 D
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
EGR LOOP AT 0.8 EOUIVALENCE RATIO
EGR LOOP AT 0.7 EQUIVALENCE RATIO
520
540
~56"058~0
600
620
640
660
680
-------
ni/-/inrY^ Fig. No. 112
RIGRDO Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 8 Oct ,986
BSFC AND EMISSIONS • TRADE-OFF GRAPHS
60 REV/SEC 5.5 BAR BMEP
x-
-X
GJ— — —
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
EGR LOOP AT 0.8 EQUIVALENCE RATIO
EGR LOOP AT 0-7 EQUIVALENCE RATIO
B.S.F.C. 0 q/kW.h II
_
5 55 540 5$0 5§0 660
_ _
&AQ 6^0 6% 0
-------
RK2RDO
x-
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm)
BSFC AND EMISSIONS * TRADE-OFF GRAPHS
60 REV/SEC 7.0 BAR BMEP
Fl g.No . 113
Drg .No .
Date: 8 Oct 1986
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
B.&.F.C. 0 g/kW.h ]
480 500 520 540 560 580600 620 640
-------
Fl g.No . 114
Drg.No.
VW HRCC METHANOL 1.457L (79.5mm x 73.4mm) Date! 8 Oct , 986
BSFC AND EMISSIONS • TRADE-OFF GRAPHS
60 REV/SEC 7.0 BAR BMEP
MIXTURE LOOP
EGR LOOP AT 1.0 EQUIVALENCE RATIO
EGR LOOP AT 0.9 EQUIVALENCE RATIO
B.S.F.C. [ g/kW.h
480500520540 560 5806006^0640
-------
RK2RDO
VW HECC
EMG1KJE MAPPING -BSFC CONfOOgS fg/kW.h)
M.E.C. ADTO FUELLING /AUTO IGKllTIOKj - HO EGR
BEST ECONOMY- MBT ISNITIOKJ TIV11NG STRATEGY
GL/BF
FIG. No. 115"
Drg. No. D.
Date FE1B.'@G
5O GO
ENS1KIE SPEED r r
-------
RK2RDD
VW MeCC METHANOL I-457* / 7S>-5 m* x 73-4-«»)
ENGINE MAPPING- EQUIVALENCE RATIO CONTOURS
1
'. '^
IV
i
V
a
t
Ld
jr
A
t
r+i
1
n
M.E.C. AUTO FUELLING/AUTO IGNITION- NO EGR
BEST ECONOMY- MBT IGNITION TIMING STRATEGr
~2
^^
' 1.1
_^*
^^^^f •
^^
I-2O7*
\
U^ '
i
— —
1 — ».
1
1
i
n
/ ^^ ^-^ — i
i/^^\^^ w —-
^is^
^ ^^
o.^r""^
! -
-
"~ ' i '
FIG. No. 116
Drg. No. D'S&»24-~7
Date FEB.'SC
I
, I
i
i
^^ ^^* o-e~~
^^
• \ ^-
» -----
*^*^
^^-°
^
i
•7
j
O-J-
^^i^"^*
i '
i
.
i
i ii i
20 3C? 4O 50 £O. 7C? SO *>O
ENGINE SPEED f r«v/s)
-------
Oh
RI0RDO
VW.
-4571
ENGINE MAPPING, BRAKE TMEEMAL EFFICIENCY
M.E.C AUTO FOELL1NS AUTO IGNITION -
FIG-N°-"T
Drg' Na D 5 & 227
Date FEB. '
BEST ECONOMY - WBT IGNITION TIMING STRATEGY
20
30
4.O 5O GO 70
CMS I HE SPEED ( rev/s)
2>0
-------
RK2RDO
VW MgCC METMANOL 1-4571 ( 79-5^ * 73-4,,)
EHG1NE MAPPING- IGHITIOM TIMING COKlTOQgS
Drg. NO.
Date FEB.'BG
M.E.C. AUTO FUELLING /AUTO IGKllTIOKl -No
BEST ECONOMY- MBJ IGNITION TIMING STRATEGY
30
4O 5O 6O
EMGIKIE SPEED f
7O
-------
RI0RDO
VW. HgCC METNAHOL I-457/ ( 79-S.... x 73-4»»)
ENGINE MAPPING - B.S.MOx. COKlTOUgS (
Vt.E.C. AUTO FQELLlNG/AUTO IGNITION -Mo
. -
BEST
- MBT
T1MINJ6
Drg'
D"*
20
30
4O 5O 60
ENGINE SPEED (
70
-------
RI0RDO
VW HgCC METMANOL I-4S7/ ( 79-5.... y
ENGINE MAPPING - RS.HC. COHfODgS
M.E.C. At;TO FUELLIMG/AUTO IGNlTIOKi -KlO ECg
BEST ECONOMY- MBT ICHlTIOKi TtVIINS STRATEGY
FIG. No. ISO
Drg. No. D. 56229
Date FEB.'06
30
£>0 60
EMONE SPEED (
70
-------
FIG. No. 121
Drg. No
Data MA*CH
VW HRCC METTHAMOi. I
HC - MO*
rueu
-^ TOWAKD MlWIN^tOM NlOX
-------
RK2RDO
VW MgCC
FIG-N°-122
1- 4-57 / f 79-5 m»x 73-4 -») Dr9' Na D' 5<;23('
JUNE 0
M.E.C. AUTO rpELLIHG /AUTO IGMITIOKJ /AOTQ
gEDUCED NQy: STRATEGY
4-0
i>o 60
SPEED
lo
-------
GL/BF
FIG' No>
METMANOL 1-45? L (ys-S—x 73-4-^ Drg. No.
ENGINE MAPPING - BSFC CONOQgSW.K D»l« J ONE '06
M.E.C. AUTO FUELLING /AUTO IGNITION/ AUTO EGg
50 6O
ENGINE SPEED
-------
RK2RDO
VW W£CC METHANOL 1 457 / ( 7e>-5««x 73 -4-^
FIG. No. 124-
Drg. No. OS<*24-S
Date JUNE '0C
ENGINE MAPPING -EQUIVALENCE RATIO CONTOUes
•
i
1
"v"
9
JU
±
u
-T
/•
V
-&
/
«*
9.
o
c
1
M.E.C. AUTO FUELLING /AUTO IGNITION/ AUJO ECS
-
^
-
X]
• ••
x
^
4^
^^
eEDOCED NOx STEATEGr
_s
s
i^B^^1^^
^
.-— -1
l
x^
.1 —
**~~
^— —
--^^
^ •
• '•
/
f
\
h^^
I-OC
- 0-
oe
/*
*^^
^-^
I-IO
r—
h
0-9
•* ..
_^f
^^
ZO—
• —
•••••
III ^
^-^^
••iMi^
^•MBSa
"X
jt
^
.
^MiHIiH
'
\
)
V
, — -
ViMM
— =!=
•^— .
» - •
•• -
•*• •
^
»
70 30 4O 50 &O 70 0O SO
ENGINE SPEECH fr*v/*)
-------
RK2HDO
VW MgCC METMANlOL 1- 457 / ( 795*.. x 73
ENGINE MAPPING -BeAk^E TMEgMAL EFFICIENCY
FIG. No. 125"
Drg. No.
JUNE '60
V1.E.C. AUTO FDELUNS/AUTO IGNITIOM/ AOTO
N
ENGINE SPEED ( rcv/5)
-------
RK2RDO
VW UgCC METHAHOL I-4&7/ ( 79-S.« x 73-4.....)
ENGINE MAPPING -IGNITION TIMING CONTOQgS (°E)
H.E.C. AUTO FOELL1N6AL)TO IGMITION / AUTO
ta L / OP
FIG. No. 125
Drg. No.
Date JUNE. '
eEDUCED
STeATEGY
40 50 &0
ENGINE SPEED
70
80
-------
RI0RDO
VW MgCC METMANOL \-4b7l
x 73-A-
ENGINE: MAPPING - BS HQX
^—•«i , i ,i— i • ^
M.E-C. AUTO FUELLING/AOTO I GNllTlON/AOTO
STt?ATEGT
GL /
FIG. No. 127
Drg. No.
Data JOME'0G
40 50 &Q
ENGINE SPEED
70
80
-------
RK2RDO
VW MgCC METUAN"OL 1-4571 ^73-5.* x
ENGINE MAPPING - B.S.MC CONTOURS f
Vt.E.f.AUTO FOELLINg/AUTO IGNITIOM/AUTO
FIG. No. 128
Drg. No.
Date
REDUCED
5
$
-40 5O 6O, 70
ENGINE SPEED (
-------
Q.I. A.M.
RIGRDO
FIG. No.
Drg. Na
Date Anctu >
MKTHANOL.
EXAMPLE Or THAM&IKMT Tg&T
C . Q . R .
> SAO mbor
0
i
u
N
h-
\o
-------
Q.t./L.M .
RI0RDO
VW HKCC
OF COUP &TAKT TgftT
FIG. Na I3O
Di»N&
Date
« IO*C.
10
TOl C HIO M CTRIC
u RATIO
&CCOMO»
START OW CRAKIKIMCj
-------
|