PB87-180592
Surrogate Species Chemical Reaction
Mechanism for Urban-Scale Air Quality
Simulation Models. Volume 1
Adaptation of the Mechanism
Environmental Research and Technology, Inc,
Newbury Park, CA
Prepared for

Environmental Protection Agency
Research Triangle Park, NC
Apr  87

-------
                                      EPA/600/3-87/014a
                                      April 1987
A SURROGATE SPECIES CHEMICAL REACTION MECHANISM

 FOR URBAN-SCALE AIR QUALITY SIMULATION MODELS


    VOLUME I - ADAPTATION OF THE MECHANISM
                      by

             Frederick W. Lunnann
             William P. L. Carter
                Lori A. Coyner

   ERT, A Resource Engineering Company,  Inc.
          975 Business Center Circle
            Newbury Park, CA 91320

                      and

    Statewide Air Pollution Research  Center
           University of California
              Riverside, CA 92521
          EPA Contract No.  68-02-4104



                Project  Officer

                Marcia C. Dodge.

  Atmospheric Chemistry  and Physics Division
   Atmospheric Sciences  Research Laboratory
       Research Triangle Park,  NC  27711
   ATMOSPHERIC SCIENCES  RESEARCH LABORATORY
      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S. ENVIRONMENTAL  PROTECTION AGENCY
       RESEARCH TRIANGLE PARK,  NC  27711

           REPRODUCEDBY
           U.S. DEPARTMENTOF COMMERCE
                NATONAL1ECHMCAL
                WFORMATON SERVICE
                SPRMGFELD.VA 22161

-------
                                  TECHNICAL REPORT DATA
                           (Pleait read Inunctions on the reverse be fort completing)
1. REPORT NO.

  EPA/fiOO/3-
                                                          3. RECIPIENT'S ACCESSION*NO.
                                                              F687   1805927AS
4. TITLE AND SUBTITLE
       A SURROGATE SPECIES CHEMICAL REACTION MECHANISM
       FOR URBAN-SCALE AIR QUALITY SIMULATION MODELS
       Volume I - Adaptation of the Mechanism	
                                                          5. REPORT DATE
                                                               April 1987
                                                          6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
       F. W. Luzmann, W. P.  L.  Carter, and L. A. Coyner
                                                           8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
       Environmental Research 6  Technology
       975 Business Center Circle
       Newbury Park, California   91320
                                                           10. PROGRAM ELEMENT NO.
                                                             A101/B/63/20/4003 - (FY-87)
                                                           11. CONTRACT/GRANT NO.
                                                                    68-02-4104
12. SPONSORING AGENCY NAME AND ADDRESS
       Atmospheric Sciences Research Laboratory-RTF, NC
       Office of Research and Development
       U.S. Environmental Protection Agency
       Research Triangle  Park, North Carolina  27711
                                                           13. TYPE Of REPORT AND PERIOD COVERED

                                                            	Final (3/86 - 2/87\
                                                           14. SPONSORING AGENCY CODE
                                                                    EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
            A surrogate  species chemical mechanism has been refined, evaluated, and
       adapted for use in air quality simulation  (AQS) models.   The refined mechanism
       was evaluated against data from 491 environmental  chamber experiments conducted
       in indoor and outdoor facilities.  The results  of  the evaluation indicate that
       the mechanism's predictions are qualitatively and  quantitatively consistent
       with data from a  large number of single organic-NOx and  multi-organic-NOx
       experiments.  Subsequent to the testing of the  mechanism, versions of the
       mechanism were adapted for use in single-cell models such as OZIPM/EKMA and
       multi-cell AOS models.  Guidelines for using  these mechanisms were also
       developed.  The guidelines include specifying procedures for assignments of
       individual organic species to the chemical classes in the mechanisms and for
       selecting organic speciation profiles when ambient data  are not available.
       Volume I describes the adaptation of the mechanism for AQS use; Volume II
       serves as the user's guide for implementing the mechanism in OZIPM/EKMA or
       multi-cell AOS.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.lDENTIFIERS/OPEN ENDED TERMS
                                                                        c.  COSATI Field/Croup
IB. DISTRIBUTION STATEMENT
                                              10. SECURITY CLASS (This Report)

                                              	UMTTJiCCTPTPn
                                                                        21. NO. OF PAGES
                                                                             211
         RELEASE TO PUBLIC
                                              20. SECURITY CLASS (Thitpagtl

                                                      UNCLASSIFIED
                                                                        22. PRICE
EPA Perm 1120-1 (».73)

-------
                           NOTICE
The  information in  this document  has been  funded by  the
United States Environmental Protection Agency under Contract
Number 68-02-4104 to  ERT,  Inc.   It has been  subject to  the
Agency's  peer and  administrative review,  and it has been
approved  for publication  as an  EPA document.  Mention  of
trade  names  or  commercial products  does  not  constitute
endorsement or recommendation for use.
                            -ii-

-------
                                ABSTRACT

     A  surrogate  species  chemical  reaction  mechanism  for  the  photo-
oxidation  of nonmethane  organic compounds  (NMOC)  and nitrogen  oxides
(NO ) has been developed for use in urban-scale photochemical  air quality
   A
simulation  (AQS)  models.   The  chemical  mechanism  has  been  evaluated
against  data from 491 environmental  chamber  experiments  conducted  in
indoor  and outdoor facilities.   The results of the  mechanism evaluation
indicate good model  performance  for a large number of single  organic-NO
                                                                        A
and multi-organic NO  experiments.
                    A
     Two versions  of the  chemical mechanism have been adapted for use in
photochemical AQS models.   One  version  of  the  mechanism  incorporates
detailed representation of  the  reactions  of NMOC and is suitable for use
in single-cell AQS models  such as the OZIPH/EKHA model.  Another version
of  the mechanism  incorporates  a more condensed representation  of  the
reactions  of NMOC and  is  suitable  for use in  multi-cell Lagrangian and
Eulerian AQS models.  Under typical urban conditions, the two versions of
the mechanism give very similar predictions for the concentrations of the
key species involved in photochemical smog.
     The approach  used to  model the complex  mixture of NMOC  with this
mechanism  is to use  the  chemical reactions  of 12 common organic pre-
cursors  as  surrogates  for  the  reactions  of  hundreds  of  different
compounds.   A system  of  assigning individual  organic compounds  to  the
most  appropriate surrogate species has been  developed.   Also,  speciated
ambient  NMOC data  from  surface  stations  in 25 urban  areas  and from
aircraft samples collected  upwind of four urban areas have been analyzed
to develop default NMOC speciation profiles for use with this mechanism.
     Sensitivity  analysis  using  surrogate  species  mechanism  in  the
OZIPM/EKHA model  is reported.   The  relationships  between model input
parameters and the NMOC control requirement predictions are investigated.
The  input  parameters  included in  the analysis  are NMOC  composition,
NMOC/NO    ratio, NMOC and  ozone concentrations  aloft,  dilution  rates,
post-8 a.m.  emission rates,  future  NO  emission rates, present-day ozone
                                      A
concentrations,  photolysis  rates, and  initial  concentrations of peroxy-
acetylnitrate and  nitrous acid.
                                   -iii-

-------
                            TABLE OF CONTENTS
1.   INTRODUCTION                                                 1-1
2.   EVALUATION OF THE MECHANISM                                  2-1
     2.1  The Detailed Chemical Mechanism                         2-1
     2.2  Evaluation Results                                      2-18
3.   CONDENSATION OF THE MECHANISM                                3-1
     3.1  The OZIPM Mechanism                                     3-11
     3.2  The Condensed Mechanism                                 3-32
     3.3  Mechanism Comparison                                    3-35
4.   SPECIATION OF ORGANIC COMPOUNDS                              4-1
     4.1  Assignment of Individual Species to Classes             4-1
     4.2  Speciation of NMOC Emissions and Ambient Data           4-12
5.   SENSITIVITY ANALYSIS                                         5-1
     5.1  Baseline Conditions and Parameter Variations            5-1
     5.2  Sensitivity Analysis Results                            5-8
6.   CONCLUSIONS                                                  6-1
7.   REFERENCES                                                   7-1
APPENDIX A - MECHANISM PERFORMANCE EVALUATION DATA
                                   -V-

-------
                            LIST OF FIGURES
Figure
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
Title
Predicted versus observed change in NO and NO
for NO -air and NO -CO-air characterization runs
X X
Predicted versus observed maximum ozone and
d([0,]-[NO])/dt for carbonyl-NOv runs
<3 X
Predicted versus observed maximum ozone and
d([0,]-lNO])/dt for alkene-NO runs
«3 X
Predicted versus observed maximum ozone and
d([0,]-[NO])/dt for alkane-NOv runs
J X
Predicted versus observed maximum ozone and
d([Oj-[NO])/dt for aromatic-NO,, runs
•3 X
Distributions of absolute error in maximum ozone
predictions for propene, n-butane, and toluene runs
Distributions of relative errors in d([03]-[NO])/dt
for propene, n-butane, and toluene runs
Predicted versus observed maximum ozone and
d([0.]-[NO])/dt for simple organic mixture runs
Predicted versus observed maximum ozone and
d([03]-[NO])/dt for surrogate mixture runs
Predicted versus observed maximum ozone and
d([03]-[NO])/dt for UNC automobile exhaust runs
Distributions of absolute errors in maximum ozone
Page
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31

        predictions for simple mixtures, surrogate mixtures,
        and auto exhaust runs                                    2-33

2-12    Distribution of relative errors in d([0.]-[NO])/dt
        for simple mixtures, surrogate mixtures,  and auto
        exhaust runs                                             2-34

2-13    Absolute error in maximum ozone versus log..
        (NMOC/NOx)                                               2-37

2-14    Predicted versus observed maximum PAN concentrations
        for surrogate mixture runs                               2-38

2-15    Distribution of relative errors in maximum PAN
        concentrations for propene, n-butane, and toluene
        runs                                                     2-39
                                  -vi-

-------
                       LIST OF FIGURES (continued)
Figure   	Title
         Comparison of NO, NO., and 0. predictions for
         1 ppmC toluene +0.10 ppm NO  with detailed ar
 2-16    Distribution of relative errors in maximum PAN
         concentrations for simple mixture,  surrogate
         mixture, and auto exhaust runs                          2-40

 2-17    Distribution of relative errors in maximum
         formaldehyde concentrations for propene,  simple
         mixture, and surrogate mixture runs                     2-41

 3-1     Comparison of NO, N02, and 0. predictions for
         mixtures with 1.5 ppfiC propane +0.10 ppm NO
         and 0.75 ppmC C4-C5 alkanes + 0.10 ppm NOV              3-15
                                                  X
 3-2     Comparison of NO, NO., and 0, predictions for
         mixtures with 1.5 ppfflC propafie +0.05 ppm NO
         and 0.75 ppmC C4-C5 alkanes + 0.05 ppm NO               3-16
                                                  A

 3-3     Comparison of NO, NO., and 0, predictions for
         mixtures with 1.5 ppmC benzene +0.10 ppm NO
         and 0.45 ppmC C4-C5 alkanes +0.10 ppm NO               3-18
                                                  A

 3-4     Comparison of NO, NO., and 0, predictions for
         mixtures with 1.5 ppmC benzene +0.05 ppm NO
         and 0.45 ppmC C4-C5 alkanes + 0.05 ppm NO               3-19
                                                  A

 3-5     Comparison of NO, NO-, and 0, predictions for
         1 ppmC ethene + 0.33 ppm NO  with the detailed
         and OZIPM mechanisms                                    3-21

 3-6     Comparison of NO, NO., and 0, predictions for
         1 ppmC ethene +0.20 ppm NO  with the detailed
         and OZIPH mechanisms                                    3-22

 3-7     Comparison of NO, NO., and 0, predictions for
         1 ppmC toluene +0.20 ppm NO  with detailed and
         OZIPM mechanism                                         3-23
3-8
                                                    and
        OZIPM mechanism             *                            3-24
 3-9     Comparison of NO, NO., and 0. predictions for
         1 ppmC m-xylene +0.20 ppm NO  with detailed and
         OZIPM mechanism                                          3-25

 3-10    Comparison of NO, NO., and 0. predictions for
         1 ppmC m-xylene +0.10 ppm No  with detailed and
         OZIPM mechanism              *                           3-26
                                   -vii-

-------
                       LIST OF FIGURES (continued)
Figure   	Title
 3-11    Comparison of NO, NO., and 0> predictions with
         1 ppmC propene and 1 ppmC 1-Butene at NHOC/NO  = 3       3-28
                                                      X

 3-12    Comparison of NO, N02/ and 0, predictions with
         1 ppmC propene and 1 ppmC 1-Butene at NHOC/NO  = 5       3-29
                                                      2C

 3-13    Comparison of NO, N02, and 0., predictions with
         1 ppmC trans-2-butene and 1 ppraC iso-butene at
         NMOC/NOV * 3                                             3-30
                &
 3-14    Comparison of NO, NO., and 0. predictions with
         1 ppmC trans-2-butene and 1 ppmC iso-butene at
         NMOC/NOV * 5                                             3-31
                A

 3-15    Comparison of ozone predictions from the three
         mechanisms for mixed alkenes and NO  at NHOC/NO  = 3
         and 6                              x           x         3_3Q

 3-16    Comparison of ozone predictions from the three
         mechanisms for mixed alkanes and NO  at NHOC/NO  = 10
         and 20                             x           x         3_39

 3-17    Comparison of ozone predictions from the three
         mechanisms for mixed aromatics and NO  at
         NHOC/NO,,, = 3 and 6                                       3-40
                A

 3-18    Comparison of ozone predictions from the three
         mechanisms for an urban NHOC mixture at NHOC/NO  = 10
         and 20                                         x         3-41

 3-19    Comparison of ozone predictions from the three
         mechanisms for an urban NHOC mixture at NHOC/NO  = 3
         and 6                                          *         3-42

 3-20    Comparison of ozone predictions from the three
         mechanisms for an urban NKOC mixture at NHOC/NO  = 3
         at 283°K and 313°K                                       3-44

 3-21    Comparison of NO and NO  predictions from the
         three mechanisms for an urban NHOC mixture at
         NHOC/NOV = 6                                             3-45
                A

 3-22    Comparison of PAN + PAN analogs and HNO- predictions
         from the three mechanisms for an urban RHOC mixture
         at NHOC/NO,, = 6                                          3-46
                   A
                                  -viii-

-------
                      LIST OF FIGURES (continued)
                              Title
        Comparison of higher alkenes and ethene predictions
        from the three mechanisms for an urban mixture at
        NMOC/NO  = 6                                             3-47
               A

3-24    Comparison of higher aromatics and toluene predictions
        from the three mechanisms for an urban NMOC mixture at
        NMOC/NOx = 6                                             3-48

3-25    Comparison of alkanes and MEK predictions from the
        three mechanisms for an urban NMOC mixture at
        NMOC/NOx = 6                                  ,           3-49

3-26    Comparison of formaldehyde and higher aldehyde
        predictions from the three mechanisms for an
        urban NMOC mixture at NMOC/NOV =6                       3-50
                                     X

3-27    Comparison of H-O, radical predictions from the
        three mechanisms for an urban NMOC mixture at
        NMOC/NO  = 6                                             3-51
               A

3-28    Comparison of R0_ and OH radical predictions from
        the three mechanisms for an urban NMOC mixture at
        NMOC/NO  = 6                                             3-52
               A

4-1     Frequency distribution of carbonyl concentrations
        observed in Claremont, California                        4-15

4-2     Initial aldehyde concentration versus initial NMHC
        for captive air experiments                              4-17

5-1     Ozone isopleth diagram for baseline conditions
        with SAPRC/ERT mechanism                                 5-5
                                 -ix-

-------
                            LIST OF TABLES
Table
2-1
2-2
2-3
2-4
2-5
Title
SAPRC/ERT Detailed Chemical Mechanism Species List
SAPRC/ERT Detailed Chemical Mechanism
Absorption Cross-Section and Quantum Yield Data
for N02
Ratio of Other Photolytic Reaction Rates to the
NO. Photolysis Rate at Zero Elevation
Peroxy Radical Pseudo-Species Used in the Mechanism
Pag
2-2
2-3
2-8
2-li

        to Represent Overall Processes Common to Peroxy
        Radical Reactions                                        2-13

2-6     Summary of Environmental Chamber Runs Used for
        Mechanism Evaluation                                     2-20

2-7     Average Model Performance for Maximum Ozone              2-35

3-1     SAPRC/ERT OZIPM Chemical Mechanism Species List          3-2

3-2     SAPRC/ERT OZIPM Chemical Mechanism                       3-3

3-3     SAPRC/ERT Condensed Chemical Mechanism Species List      3-7

3-4     SAPRC/ERT Condensed Chemical Mechanism                   3-8

3-5     Surrogate Species in the Mechanisms                      3-12

3-6     Conditions for Mechanism Comparison Simulations          3-17

3-7     Conditions for Mechanism Comparison Simulations          3-37

4-1     NMOC Classes for the OZIPM Mechanism                     4-2

4-2     NMOC Classes for the Condensed Mechanism                 4-2

4-3     Organic Species Classification for the OZIPM
        Chemical Mechanism                                       4-3

4-4     Examples of Uncertainty Classification                   4-11

4-5     Urban NMHC Composition Determined from Data
        Collected by Lonneman in 1984 and 1985                   4-14

4-6     NMOC Composition and Concentrations Aloft                4-18

4-7     Recommended Default NMOC Composition Profiles            4-20
                                  -x-

-------
                       LIST OF TABLES (continued)



Table    	Title	Page

 4-8     Range of NMOC Composition Fractions                      4-20

 5-1     OZIPM Sensitivity Analysis - Baseline Case Inputs        5-3

 5-2     Parameter Variations in the OZIPM Sensitivity
         Analysis                                                 5-6

 5-3     NMOC Composition Profiles Used in the OZIPM
         Sensitivity Analysis                                     5-7

 5-4     Predicted NMOC Control Requirements                      5-9

 5-5     Relative Change in Predicted NMOC Control
         Requirements                                             5-10

 6-1     Average Model Performance for Maximum Ozone              6-2
                                   -xi-

-------
                            1.   INTRODUCTION

     Ozone concentrations  downwind of most  major metropolitan areas  in
the United  States continue  to  exceed the one-hour national ambient  air
quality standard  (0.12 ppm)  under  adverse meteorological conditions.   In
order to  develop  appropriate control strategies to reduce ambient  ozone
levels downwind of metropolitan areas,  air quality control agencies need
scientifically sound  methods to relate  maximum ozone concentrations  to
the emissions  of  ozone precursors,  i.e.,  nonmethane organic  compounds
(NMOC) and nitrogen oxides (NO  ).  The principal tools used in  developing
                              &
control strategies are photochemical air quality simulation  (AQS)  models.
A  critical  component  of the simulation model  is the chemical  reaction
mechanism, which  simulates  the formation  of ozone  from NMOC and NO .
                                                                       A
     Numerous  relatively  up-to-date  chemical  mechanisms are  currently
used in urban-scale AQS models  (Atkinson et al. 1982; Killus and Whitten
1982;  Penner  and Walton 1982;  McRae et al.  1982;  Whitten  et al.  1985;
Whitten and  Gery 1986).   While the mechanisms are largely based on  the
same  body of  laboratory kinetic  and mechanistic data,   different  tech-
niques and assumptions are used to represent the organic  chemistry in  the
different mechanisms.   Lumping  of the organic compounds  is  necessary in
all atmospheric  photochemical  mechanisms  because it  is  computationally
impossible  to  separately  treat the  large  number  of organic  compounds
found in  ambient air.   With the exception of the  Carbon Bond mechanism
(Whitten  et al.   1983), which  has  been extensively  tested in  studies
sponsored by the  Environmental  Protection Agency (EPA),  these  mechanisms
have  only  been   subjected  to  limited  testing  (15  to   35  experiments)
against environmental chamber data.  The precision and accuracy of these
mechanisms are a major concern because  they predict significantly dif-
ferent  emission   control   requirements  for  identical  meteorological,
emissions,  and background air  quality conditions (Carter  et  al.  1981;
Jeffries et al. 1981; Shafer and Seinfeld 1985).
     Differences   in   the   organic  chemistry   incorporated   into  the
mechanisms  are primarily  responsible  for  the  differences  in  emission
control requirement predictions (Leone  and  Seinfeld  1984).   Differences
in the  assumptions used to test the  mechanisms  against  chamber data may
also  contribute  to differences in control  strategy  predictions.  Since
                                   l-l

-------
progress toward  reducing the uncertainties  of atmospheric chemistry  of
organics  is  proceeding slowly,  numerous  researchers  have  recommended
using  two  or more  chemical  mechanisms in  control  strategy modeling  to
allow uncertainties in the chemistry to be taken into account  (Shafer and
Seinfeld 1985; EPA 1987).   Furthermore, the chemical mechanisms used  in
control  strategy  modeling should  be  tested  extensively,  rather  than
selectively, against the available environmental chamber data  base.   This
data base  of experiments has grown substantially in the last  five years.
     In recognition of  the need for a well-tested and  chemically up-to-
date alternative  to the  Carbon Bond mechanism, the EPA  contracted ERT,
Inc.,  and the  Statewide  Air  Pollution Research Center  (SAPRC) at the
University of California,  Riverside,  to carry out a research program  to
update  and evaluate the  Atkinson et al.  (1982) mechanism  (Phase I) and
adapt  the  updated mechanism  to AQS models (Phase II).   The  EPA chose the
Atkinson  et al.   1982  mechanism  because  they  considered the  surrogate
species lumping approach employed in that mechanism to be the  most viable
alternative  to the carbon bond lumping approach.  This report  describes
the technical work performed in Phase II of the research program.
     An  updated   surrogate  species chemical  mechanism was developed  in
Phase  I of the program  based on the Atkinson and Lloyd (1984) review and
the mechanism of  Lurmann et al.  (1984, 1986) that,  in turn, is an update
of the Atkinson  et al.  (1982) mechanism.   This mechanism was  extensively
tested against environmental chamber  data from  four facilities.   The
development  of the mechanism and the details  of  the testing  program are
documented in a  report  on Phase  I of  this  program  entitled "Development
and Testing  of a  Surrogate Species Chemical Reaction Mechanism,  Volumes I
and  II"  (Carter  et  al.   1986).   Some  minor  changes  in  the  detailed
mechanism  were  implemented after the Phase I reports  went to  press,  so
the final  mechanism and final results of the evaluation are presented in
this report  on Phase II of the research program.
                                    1-2

-------
     The overall objective of Phase II was to adapt the mechanism for use

in atmospheric  AQS models.  The  specific tasks carried out in  Phase  II

include:
     1)   Development of condensed versions  of the mechanism for use  in
          EPA's  OZIPN model  (used  in  conjunction with  the  Empirical
          Kinetic  Modeling  Approach  (EKMA))  and  for  use  in  more
          sophisticated AQS models such as the Urban Airshed Model  (UAM);

     2)   Development of guidelines  for the  speciation of NMOC into  the
          organic classes  employed in the mechanism,  including analysis
          of  ambient NMOC  data collected in urban  areas to  determine
          speciation  profiles   for  applications  without   site-specific
          data;

     3)   Sensitivity  analysis  of  the  OZIPM  model  (with the updated
          mechanism)   to   plausible   input   parameter  variations   for
          identification of the parameters  that strongly  influence  the
          control requirement predictions; and

     4)   Development of standard test problems so that users can confirm
          that they  have  properly implemented the  chemical mechanism in
          the chemical module of AQS models.


The results of tasks 1-3  are described in Volume  I of this report.   The

results of task  4 are presented in Volume II along with a  summary  of  the

guidelines for using the mechanism in AQS models.
                                    1-3

-------
                     2.  EVALUATION OF THE MECHANISM

     Several modifications of the detailed chemical mechanism reported in
Carter et al. (1986) were made in Phase II of the program.   These  modifi-
cations  were  significant  enough  to necessitate  reevaluation  of  the
detailed mechanism's performance  against  the environmental chamber data.
The  modifications  of  the  detailed  mechanism  and the results  of  the
evaluation  are  summarized  in  this  section.   Except  where noted,  the
mechanism, data,  and methods used in the  evaluation were  identical  to
those  described  in  Carter  et al.  (1986).   The  Phase  II  evaluation
included  seventy additional chamber experiments that were  not available
during  the  Phase I  testing program.   This brings  the total number  of
experiments  to  490, which  means  this is  by far  the most comprehensive
atmospheric chemical mechanism  testing program performed in any research
program.

2.1 The Detailed Chemical Mechanism

     The detailed chemical  mechanism  used in Phase II of  the  program is
shown  in Tables 2-1   and  2-2.    The  species,  reactions,   rate  constant
expressions,  and temperature   dependent  coefficients  are  listed.   The
quantum  yield  and  absorption  cross-section  data for  the  photolytic
reactions are identical  to  those reported in  Carter  et al.  (1986),  with
the exception of those for N02-  The N02  quantum yield data recommended
by NASA  (1985)  and  shown in Table 2-3 are  used in the Phase II detailed
mechanism.   These data result  in atmospheric N02  photolysis  rates  that
are  about  8% higher  than those used in the  Phase I mechanism.   The
updated atmospheric N02 photolysis rates and the ratios of the photolytic
rates of other species to the NO. photolytic rate are shown in Table 2-4.
These ratios  have been computed using the solar actinic radiation inten-
sities  and  spectral distributions  reported by  Peterson  (1976)  for zero
elevation and best estimate albedo.
     The  Phase II  detailed mechanism comprises  169  reactions  and  65
species.   Forty-eight  of  the  species  must  be  treated   as  integrated
species in the kinetic solver.  Three of the species (M, 0., and H-O) may
be treated as constants and fourteen of the species can safely be treated
                                 2-1

-------
TABLE 2-1. SAPRC/ERT DETAILED CHEMICAL MECHANISM SPECIES LIST
       SPECIES                 ABREVIATION
    1. NITRIC OXIDE                NO
    2. NITROGEN DIOXIDE            N02
    3. OZONE                       03
    4. NITROUS ACID                HONO
    5. NITRIC ACID                 HN03
    6. PERNITRIG ACID              HN04
    7. NITROGEN PENTOXIDE          N205
    8. NITROGEN TRIOXIDE           N03
    9. HYDROPEROXY RADICAL         H02
   10. HYDROGEN PEROXIDE           H202
   11. CARBON MONOXIDE             CO
   12. FORMALDEHYDE                HCHO
   13. ACETALDEHYDE                ALD2
   U. PROPIONALDEHYDE             RCHO
   15. PEROXYACETYLHITRATE         PAN
   16. PEROXYPROPIONYL NITRATE     PPN
   17. TOTAL R02 RADICALS          R02
   18. TOTAL RC03 RADICALS         RC03
   19. ORGANIC PEROXIDE            ROOH
   20. ACETONE                     ACET
   21. METHYL ETHYL KETONE         MEK
   22. GLYOXAL                     GLYX
   23. GLYOXAL PAH                 GPAN
   24. METHYL GLYOXAL              MGLY
   25. GLYCOL ALDEHYDE             GCHO
   26. GLYCOL ALDEHYDE PAN         PANG
   27. PROPANE                     ALK3
   28. C4-C5 ALKANES               ALK4
   29. C6+ ALKANES                 ALK7
   30. ALKYL NITRATES              ALKN
   31. ETHENE                      ETHE
   32. PROPENE                     PRPE
   33. 1-BUTENE                    OBUT
   34. TRANS-2-BUTENE              TBUT
   35. ISO-BUTENE                  IBUT
   36. BENZENE                     BENZ
   37. TOLUENE                     TOLU
   38. M-XYLENE                    XYLE
   39. 1,3,5 TRI-N-BENZENE         TMBZ
   40. DlCARBONYLS                 DIAL
   41. 0-CRESOL                    CRES
   42. PHENOLS                     PHEN
   43. NITROPHENOLS                NPHE
   44. DICARBONYLS                 BGLY
   45. BENZALDEHYDE                BCHO
   46. BENZALDEHYDE PAN            PBZN
   47. DI-NITROPHENOLS             DNPH

         STEADY STATE SPECIES

   48. OXYGEN • SINGLET D          0*SD
   49. OXYGEN • ATONIC             0
   50. HYDROXYL RADICAL            OH
   51. ACETALOEHYDE RC03           NC03
   52. PROPIONALDEHYDE RC03        PC03
   53. GLYOXAL RC03                GC03
   54. GLYCOL ALDEHYDE RC03        GA03
   55. GENERAL R02 fl              R02R
   56. GENERAL R02 «2              R202
   57. MEK R02                     MK02
   58. ALKYL NITRATE R02           R02M
   59. PHENOL R02                  R02P
   60. BENZALDEHYDE N-R02          BZN2
   61. BENZALDEHYDE RC03           BA03
   62. PHEHOXY RADICAL             BZO

         CONSTANT SPECIES

   63. MOLECULAR OXYGEN            02
   64. AIR                         N
   65. H20 VAPOR                   H20
                             2-2

-------
                                              TABLE 2-2. SAPRC/ERT DETAILED CHEMICAL MECHANISM
                                               REACTION
to
 I
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
N02 *
0 *
0 *
0 *
NO *
N02 «•
NO *
NO *
N02 «•
N205
N205 *
N02 «•
N03 «•
N03 «•
03 *
03 *
0*SO «•
0*SO *
NO *
HONO «•
N02 *
N02 *
HH03 *
CO *
03 *
NO *
N02 +
HH04
HN04 *
03 »
H02 *
H02 *
H02 «•
H02 *
N03 *
N03 *
N03 *
N03 +
H202+
H202*
R02 *
RC03 *
RC03 *
R02 *
RC03 »
ROOH *
HV •••>
02 * N ••->
H02 •••>
N02 * H ••->
03 •••>
03 ••->
N03 •••>
NO * 02 •••>
U03 •••>
• •->
H20 •••>
N03 ••->
HV •••>
HV •••>
HV •••>
HV •••>
H20 •••>
N •••>
OH •••>
HV •••>
H20 •••>
OH •••>
OH •••>
OH •-->
OH ••->
H02 •-->
H02 •••>
• '->
OH •••>
K02 •••>
H02 •••>
H02 * N •••>
K02 * H20 •••>
H02 * H20 •••>
H02 --->
H02 * H •••>
H02 * H20 •••>
H02 * H20 •••>
HV •••>
OH •••>
NO •••>
NO •••>
N02 •••>
H02 •••>
H02 — >
HV •••>
HO *
03 «•
NO +
N03 *
N02 *
N03 *
2.N02
2.N02
N205
N02 *
2.HN03
HO *
NO *
N02 *
0 *
0*SD *
2. OH
0 *
HONO
NO *
HONO •
HN03
N03
H02
H02 +
N02 *
HN04
N02 *
N02 *
OH *
H202 +
H202 *
H202 *
H202 *
HH03 *
HN03 *
HN03 *
HN03 *
2.0H
H02 *
NO
NO
N02
H02
H02
H02 *
0
N
02
N
02
02



N03

H02 *
02
0
02
02

N

OH
N02 +



02
OH

H02
H20 *
2.02
02
02
02 *
02 *
02
02
02 *
02 +

H20





OH











02








HH03







02



H20
H20


H20
H20








MOLEOJLE-CC-SEC PPM-HIN
(298 K) (298 K)
RADIATION DEPENDENT
6.12E-3A 2.23E-05
9.30E-12 1.37E*04
9.12E-32 3.32E-03
1.81E-14 2.68E+01
3.23E-17 4.77E-02
1.86E-11 2.75E+04
1.95E-38 7.09E-10
1.17E-12 1.73E+03
3.47E-02 2.08E+00
1.00E-21 1.48E-06
4. WE- 16 5.98E-01
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
2.20E-10 3.25E*05
2.90E-11 4.29E*04
6.73E-12 9.94E+03
RADIATION DEPENDENT
4.00E-24 5.91E-09
1.16E-11 1.71E*04
1.28E-13 1.89E+02
2.18E-13 3.22E+02
6.78E-14 1.00E+02
8.28E-12 1.22E*04
1.39E-12 2.05E+03
8.41E-02 5.05E 00
4.00E-12 5.91E*03
2.01E-15 2.96E+00
1.76E-12 2.59E+03
5.13E-32 1.87E-03
3.96E-30 1.44E-01
2.84E-30 1.04E-01
1.76E-12 2.59E+03
5.13E-32 1.87E-03
3.96E-30 1.44E-01
2.84E-30 1.04E-01
RADIATION DEPENDENT
1.66E-12 2.45E+03
7.68E-12 1.14E+04
7.68E-12 1.14E+04
5.12E-12 7.57E+03
3.00E-12 4.43E+03
3.00E-12 4.43E+03
RADIATION DEPENDENT

EXPRESSION

3.00E-28/(T**2.3)

8.10E-27/(T**2.0)
1.80E-12*EXP{ -1370/T)
1.20E-13*EXP( -2450/T)
8.00E-12*EXP( 252/T)
3.30E-39*EXP( 529/T)
SEE NOTE 1
1.06E 27*EXP(-11354/T)«(300/T)*R9

2.50E-14*EXP< -1229/T)






SEE NOTE 1


SEE NOTE 1
9.40E-15*EXP( 778/T)

1.60E-12«EXP( -942/T)
3.70E-12«EXP( 240/T)
SEE NOTE 1
4.29E 26*EXP(-10876/T)«R27

1.40E-14*EXP( -579/T)
2.20E-13*EXP( 619/T)
1.90E-33*EXP( 982/T)
3.10E-34*EXP( 2818/T)
6.60E-35*EXP( 3180/T)
2.20E-13*EXP( 619/T)
1.90E-33*EXP( 982/T)
3.10E-34*EXP( 2818/T)
6.60E-35*EXP( 3180/T)

3.10E-12*EXP( -187/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)




-------
                                             TABLE 2-2.  SAPRC/ERT DETAILED CHEMICAL MECHANISM (CONTINUED)
to
47.
48.
49.
SO.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
R02
R02
RC03
HCHO
HCHO
HCHO
HCHO
HCHO
ALD2
ALD2
ALD2
MC03
MC03
MC03
NC03
MC03
PAN
RCHO
RCHO
RCHO
PC03
PC03
PC03
PC03
PC03
PPN
ACET
ACET
NEK
NEK
KK02
KK02
MK02
MK02
GLYX
GLYX
GLYX
GC03
GC03
GPAN
GC03
GC03
GC03
MCLY
MGLY
MGLY
4
*
4
•
4
*
•
*
4
4
*
+
4
4
4
4

4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
R02
RC03
RC03
HV
HV
OH
H02
N03
OH
HV
N03
HO
N02
H02
R02
RC03

OH
HV
N03
NO
N02
H02
R02
RC03

HV
OH
HV
OH
NO
K02
R02
RC03
HV
OH
N03
N02
NO

H02
R02
RC03
HV
OH
N03
REACTION
•••> 2.H02
•••> CO
•••> H02
-••> R02R
•••> HN03
•••> MC03
•••> CO
•••> HN03
•••> N02
•-•> PAN
•••> ROOH
•-•> .5H02
•••> H02
•••> MC03
•••> RC03
•-•> R02R
•••> HN03
•••> R02R
•••> PPN
•••> ROOH
— > .5H02
•••> H02
•••> PC03
•••> MC03
•••> R02R
•••> MC03
•••> MK02
•-•> N02
•••> ROOH
•••> .5H02
-••> .5H02
•••> .13HCHO
•••> .63H02
•••> HN03
•••> GPAN
•••> N02
•••> GC03
•••> ROOH
•••> .5H02
•••> H02
•••> MC03
•••> MC03
•••> HN03
MOLECULE-CC-SEC PPM-MIN
(298 K) (298 K)
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
41
41
4

4
4
4
4
4
4
4
4
CO
H2
CO
R02
H02
H20
R02R
MC03
R02R

HCKO
HCHO
HCHO
N02
PC03
H02
PC03
N02

ALD2
ALD2
ALD2
N02
R02R
R02
R02R
.5R202
.5MC03
.5HCHO
.5HCHO
.5HCHO
.87CO
.26CO
.63H02

H02
N02
CO
CO
CO
H02
CO
MC03
4

4
4
4
4
4


4
4
4

4
4
4


4
4
4
4
4
4
4
4
4
4
4

4
41

4
4

4
4
4
4
4
H20

CO
RC03
H02 *
RC03
R02 «•


R02
RC03
RC03

CO *
RC03
R02 +


R02
RC03
RC03
RC03 *
MGLY
RC03 *
1.5R02 *
.5PC03 *
.5ALD2
.5ALD2 *
.5ALD2 *

.37GC03 *
.26CO *

CO
RC03

R02
RC03
CO *
RC03
CO *




R02 + HCHO

HCKO






802 4 AL02

ALD2





R02 * HCHO

R02 * ALD2
.5HCHO + .5ALD2
RC03

R02
RC03

.37RC03
.37GC03 + .37RC03






RC03

RC03
1.00E-15
3.00E-12
2.50E-12
RADIATION
RADIATION
9.00E-12
1.00E-14
5.97E-16
1.60E-11
RADIATION
2.50E-15
7.68E-12
5.12E-12
3.00E-12
3.00E-12
2.50E-12
3.68E-04
1.98E-11
RADIATION
2.46E-15
7.68E-12
5.12E-12
3.00E-12
3.00E-12
2.50E-12
3.68E-04
RADIATION
2.29E-13
RADIATION
9.85E-13
7.68E-12
3.00E-12
1.00E-15
3.00E-12
RADIATION
1.15E-11
6.01E-16
5.12E-12
7.68E-12
3.68E-04
3.00E-12
3.00E-12
2.50E-12
RADIATION
1.70E-11
2.50E-15
1.48E+00
4.43E*03
3.69E+03
DEPENDENT
DEPENDENT
1.33E+04
1.48E+01
8.82E-01
2.36E+04
DEPENDENT
3.69E+00
1.14E+04
7.57E*03
4.43E+03
4.43E+03
3.69E403
2.21E-02
2.93E+04
DEPENDENT
3.63E+00
1.14E+04
7.57E+03
4.43E+03
4.43E+03
3.69E+03
2.21E-02
DEPENDENT
3.39E+02
DEPENDENT
1.46E*03
1.14E+04
4.43E+03
1.48E+00
4.43E+03
DEPENDENT
1.70E*04
8.88E-01
7.57E+03
1.UE+04
2.21E-02
4.43E+03
4.43E-»03
3.69E+03
DEi'ENDENT
2.51E+04
3.69E+00


6
6

3
4
2



EXPRESSION


.OOE-13*EXP(
.90E-12*EXP(

.OOE-13*EXP<
.20E-12*EXP(
.80E-12*EXP(



2.00E*16*EXP(
8

3
4
2



2

1

1
4





6
2
4
2





3
.50E-12*EXP(

.OOE-13*EXP(
.20E-12*EXP(
.80E-12«EXP(



.OOE*16*EXP(

.OOE-11*EXP(

.20E-11*EXP(
.20E-12*EXP(





.OOE-13*EXP(
.80E-12«EXP(
.20E-12*EXP(
.OOE»16*EXP(





.OOE-13*EXP(


•2060/T)
250/T)

•1427/T)
180/T)
180/T)



•13542/T)
252/T)

•1432/T)
180/T)
180/T)



•13542/T)

•1125/T)

•745/T)
180/T)





•2058/T)
180/T)
180/T)
•13542/T)





•1427/T)

-------
                                               TABLE 2-2.   SAPRC/ERT  DETAILED CHEMICAL MECHANISM (CONTINUED)
to

U1
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
GCKO *
GCHO «•
CCHO *
GA03 *
GA03 *
PANG
GA03 *
GA03 «
GA03 *
ALK3 *
ALK4 »
ALK7 *
ALKN *
R02N *
R02N *
R02N *
R02N *
R202 *
R202 *
R202*
R202 *
R02R *
R02R *
R02R *
R02R *
ETHE *
ETHE +
ETHE *
ETHE +
PRPE +
PRPE +
PRPE +
PRPE *
OBUT *
OBUT *
OBUT •
OBUT *
TBUT *
TBUT *
HV
OH
N03
N02
NO

H02
R02
RC03
OH
OH
OH
OH
NO
H02
R02
RC03
NO
H02
R02
RC03
NO
H02
R02
RC03
OH
03
0
N03
OH
03
0
N03
OH
03
0
N03
OH
03
KOLECULE-CC-SEC PPH-HIN
REACTION
•••> HCHO *
•••> GA03 «•
•••> HN03 +
•••> PANG
•••> N02 *
•••> GA03 *
•••> ROOH *
•••> .5H02 *
•••> H02 *
•••> R02R *

2.H02 +
RC03
GA03 *

H02 *
N02 *
HCHO
HCHO *
HCHO »
R02 *

CO

RC03

HCHO
RC03

R02
RC03
.31RCHO
•••>B01*HCHO +B02MID2 «B03*RCHO
*B06*R02N
*B07*R02R










* .69ACET
+B04*ACET











+B05*MEK
*B08*R202 «B09*R02
...>B10*HCKO +B11*ALD2 *B12*RCHO
+B15*R02N
•••> N02 *
+1.39R202
ALKN
ROOH *
R02 *
RC03 *
N02
ROOH
R02
RC03
N02 *
ROOH
R02 *
RC03 *
R02R *
HCHO *
•••> R02R *
•••> R202 *
•••> HCHO *
•••> .65HCHO *
+.135R02R
•••> .6ACET *
* .4CO
•••> R202 *
•••> R02R *
•••> .5HCHO *
O35R02R
•••> .44HEK *
* .17AL02
•••> R02R «•
•••> R02R *
•••> ALD2 *
* .15CO
«B16*R02R
.155NEK *1
*1.39R02

MEK
.5H02 *
.5H02 +




H02

.5H02
.5H02
R02 +1
.12H02 *
H02 *
R02 *
R02 *
.5ALD2 *.
+.135R02
.6R02R *
* .4HCHO
R02 +
R02 «•
.5RCHO *.
+.135R02
.39RCHO +

R02 *
R02 *
.27R02R *
* .27R02
+B13*ACET
+B14*NEK
*B17*R202 +B18*R02
.05RCHO



NEK
NEK








.56HCHO
.42CO
CO
N02
R02R
165H02

.2ALD2

HCHO
HCHO
165H02

.34H02

HCHO
2.ALD2
.120H

«• .48ALD2













* .22GCHO

* R02
» 2. HCHO
+ ALD2
+.285CO

«• .2H02

+ ALD2
* RCHO
+ .15ALD2

* .17HCHO

* RCHO

* .21H02

* .16HCHO















+ HCHO


* .060H

+ .6R02

+ N02

4 .060H

* .17CO

«• N02

* .3HCHO

(298 K)
RADIATION
2.30E-11
2.50E-15
5.12E-12
7.68E-12
3.68E-04
3.00E-12
3.00E-12
2.50E-12
1.18E-12
3.22E-12
SEE NOTE
6.16E-12
SEE NOTE
2.03E-12

7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
8.54E-12
1.74E-18
7.29E-13
1.10E-16
2.63E-11
1.13E-17

3.98E-12

7.57E-15
3.14E-11
1.10E-17

4.19E-12

9.67E-15
6.37E-11
2.00E-16

(298 K)
DEPENDENT
3.40E+04
3.69E+00
7.57E+03
1.UE+04
2.21E-02
4.43E+03
4.43E«03
3.696*03
1.75E+03
4.76E+03
2
9.11E+03
2
3.00E+03

1.UE+04
4.43E+03
1.48E*00
4.43E+03
1.KE+04
4.43E+03
1.48E+00
4.43E+03
1.UE+04
4.43E+03
1.48E+00
4.43E+03
1.26E+04
2.57E-03
1.08E+03
1.62E-01
3.89E+04
1.67E-OZ

5.88E+03

1.12E*01
4.64E+04
1.63E-02

6.19E+03

1.43E+01
9.42E+04
2.96E-01

                                                                                                                                  EXPRESSION
                                                                                                                            3.00E-13*EXP( -1427/T)
                                                                                                                            2.80E-12*EXP(   180/T)
                                                                                                                            4.20E-12*EXP(   180/T)
                                                                                                                           2.00E+16*EXP(-13542/T>
                                                                                                                             1.27E-17*EXP(14/T)«T*«2.
                                                                                                                             1.05E-11*EXP<  -353/T)

                                                                                                                             1.62E-11«EXP(  -288/T)

                                                                                                                             2.19E-11*EXP(  -709/T)

                                                                                                                             4.20E-12*EXP(   180/T)



                                                                                                                             4.20E-12*EXP(   180/T)



                                                                                                                             4.20E-12«EXP<   180/T)
                                                                                                                            2.15E-12*EXP(   411/T)
                                                                                                                            1.20E-14*EXP( -2634/T)
                                                                                                                            1.04E-11*EXP(  -792/T)
                                                                                                                            2.00E-12*EXP( -2923/T)
                                                                                                                            4.85E-12*EXP<   504/T)
                                                                                                                            1.32E-14*EXP< -2105/T)

                                                                                                                            1.18E-11*EXP(  -324/T)
                                                                                                                            5.00E-12*EXP( -1935/T)
                                                                                                                            6.53E-12*EXP(   468/T)
                                                                                                                            3.46E-15*EXP< -1713/T)

                                                                                                                            1.25E-11«EXP(  -326/T)

                                                                                                                            5.00E-12*EXP( -1862/T)
                                                                                                                            1.01E-11*EXP(   549/T)
                                                                                                                            9.08E-15*EXP( -1137/T)

-------
                                             TABLE 2-2.  SAPRC/ERT DETAILED CHEMICAL MECHANISM (CONTINUED)
ro
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
TBUT
TBUT
I BUT
I BUT
I BUT
I BUT
BENZ
BGLV
BOLT
TOLU
DIAL
DIAL
XYLE
TM8Z
CRES
CRES
R02P
R02P
R02P
R02P
PKEN
PHEN
BZO
BZO
BZO
NPHE
BZH2
8ZN2
BZN2
BCHO
BCHO
BCHO
BA03
BA03
PBZN
BA03
BA03
BA03
*
*
*
»
+
*
*
»
•
*
*
*
«
+
+
•
•
*
+
•
•
*
*
*

*
•
*

*
•f
*
»
«

*
*
*
0
N03
OH
03
0
N03
OH
OH
HV
OH
OH
HV
OH
OH
OH
N03
NO
H02
R02
RC03
OH
N03
N02
H02

N03
N02
H02

OH
HV
N03
NO
N02

H02
R02
RC03
MOLECULE -CC- SEC PPN-MIN
REACTION
•••> KEK *
•-•> R202 *
•••> R02R *
•-> .5ACET *
* .100H
•••> .5MEK *
•••> R202 *
•••> .27PHEN +
* .65BGLY
•••> GC03 *
•••> GC03 *
•••> .16CRES *
* .400 I AL
•••> PC03 *
•••> H02 «•
•••> .17CRES *
* .83R02R
•••> .17CRES *
* .83R02R
•••> .2MGLY *
•••> HN03 *
•••> NPHE
•••> ROOH
•••> R02 *
•••> RC03 *
•••> .2GLYX *
-••> HN03 *
•••> NPHE
•••> PHEN
•••> PHEN
•••> HN03 *
•••> DNPH
•••> NPHE
•••> NPHE
— > BA03 *
• «•>
•••> BA03 *
•••> BZO *
•••> PBZN
•••> BA03 *
•••> ROOH *
•••> .5H02 *
•••> H02 *
(298 K) (298 K)
.4K02
R02 +
R02 +
.5HCHO *
* .10R02R
.5RCHO «•
R02 *
.27H02 *

RC03
RC03 «
.16H02 +
* .84R02R
RC03
CO *
.17H02 *
+.316MGIV
.17H02 *
* .490 I AL
.15R02P *
BZO


.5K02
.5H02
.15R02P +
BZO



8ZN2



RC03

HN03 »
N02 *

N02 +
PHEN
PHEN *
PHEN *

N02 «• 2.ALD2
HCHO * ACET
.4MEK * .06H02
+ .10R02 * .10MGLY
.4H02
ACET * HCHO + N02
.73R02R «• .73R02 +.212GLYX


H02
.08BCHO O14GLYX O44MGLY
* .84R02

MC03 * RC03
.04BCHO *.095GLYX * .83R02
* .6SDIAL
.02BCHO * .86MGLY + .83R02

.85R02R * R02





.85R02R










RC03
R02R * R02

RC03

R02
RC03
2.34E-11
3.79E-13
5.14E-11
1.21E-17

1.52E-11
2.69E-13
1.28E-12

3.00E-11
RADIATION
6.19E-12

3.00E-11
RADIATION
2.45E-11

6.20E-11

4.00E-11
2.20E-11
7.68E-12
3.00E-12
1. OOE- 15
3.00E-12
2.80E-11
3.80E-12
1.50E-11
3.00E-12
1.00E-03
3.80E-12
1.50E-11
3.00E-12
1.00E-03
1.20E-11
RADIATION
1.95E-15
7.68E-12
5.12E-12
1.62E-04
3. OOE- 12
3.00E-12
2.50E-12
3.45E+04
5.61E+02
7.60E+04
1.78E-02

2.25E+04
3.98E+02
1.90E*03

4.43E+04
DEPENDENT
9.14E+03

4.43E*04
DEPENDENT
3.62E+04

9.16E+04

5.91E+04
3.25E+04
1.HE+04
4.43E*03
1.48E+00
4.43E+03
4.14E+04
5.62E+03
2.22E+04
4.43E+03
6.00E-02
5.62E+03
2.22E+04
4.43E*03
6.00E-02
1.77E»04
DEPENDENT
2.89E+OQ
1.14E*04
7.57E*03
9.74E-03
4.43E+03
4.43E»03
3.69E»03
                                                                                                                                 EXPRESSION
                                                                                                                           2.26E-11*EXP(    10/T)
                                                                                                                           1.00E-11*EXP(  -975/T)
                                                                                                                           9.51E-12*EXP(   503/T)
                                                                                                                           3.55E-15*EXP( -1694/T)

                                                                                                                           1.76E-11«EXP<   -43/T)
                                                                                                                           1.00E-11*EXP( -1077/T)
                                                                                                                           7.57E-12*EXP(  -529/T)
                                                                                                                           2.10E-12*EXP<   322/T)
                                                                                                                           1.66E-11*EXP(   116/T)
                                                                                                                           4.20E-12*EXP(   180/T)
                                                                                                                           3.00E-13*EXP( -1500/T)
                                                                                                                           4.20E-12*EXP(   180/T)
                                                                                                                           2.80E-12*EXP(   180/T)
                                                                                                                           1.60E+15*EXP(-13033/T)

-------
                                                 TABLE  I  2.   SAPRC/ERT DETAUED CHEMICAL MECHANISM (CONTINUED)
                                                     NOTES:

                                                  1.  Pressure and  temperature dependent rate constants are
                                                     determined  from the expression
                                                             1 *
                                                               B(T«*C)M

                                                                B(T**C)M
     A**EE,  EE
                                                     Where:

                                                     Reaction

                                                         9
                                                         19
                                                         22
                                                         27
                                                                D"2
                               D(T"E)
•4.3
•3.3
•3.2
•4.6
 2.4E-11
 9.0E-09
 4.0E-08
1.34E-12
•0.5
•1.0
•1.3
 0.2
                                                 2. Alkane product coeff(cents are temperature dependent.
                                                    They are determined by interpolation from the values
                                                    at  the following three temperatures.
10
                                                          Coeff.    270 K
         300 K
             330 K
B01
B02
603
BOA
BOS
B06
607
608
609
810
B11
612
613
BK
BIS
816
B17
618
0.197
0.168
0.115
0.351
0.489
O.IK
0.886
0.446
1.332
0.005
0.021
0.215
0.297
0.765
0.288
0.701
0.651
1.352
0.189
0.315
0.166
0.339
0.442
0.073
0.927
0.599
1.526
0.023
0.032
0.249
0.355
0.882
0.190
0.810
0.837
1.647
0.188
0.582
0.244
0.350
0.267
0.050
0.950
0.807
1.757
0.054
0.081
0.20A
0.419
0.891
0.126
0.873
1.004
1.877

-------
                        TABLE 2-3



ABSORPTION CROSS-SECTION AND QUANTUM YIELD DATA FOR
Wavelength
(urn)
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.376
0.377
0.378
0.379
0.380
0.381
0.382
0.383
0.384
0.385
0.386
0.387
0.388
0.389
0.390
0.391
0.392
0.393
0.394
0.395
0.396
0.397
0.398
Absorption
Cross-Section
9.670E-20
1.170E-19
1.660E-19
1.760E-19
2.250E-19
2.540E-19
2.790E-19
2.990E-19
3.450E-19
3.880E-19
4.070E-19
4.100E-19
5.130E-19
4.510E-19
5.780E-19
5.420E-19
5.350E-19
5.478E-19
5.606E-19
5.734E-19
5.862E-19
5.990E-19
5.980E-19
5.970E-19
5.960E-19
5.950E-19
5.940E-19
5.952E-19
5.964E-19
5.976E-19
5.988E-19
6.000E-19
5.978E-19
5.956E-19
5.934E-19
5.912E-19
5.890E-19
6.064E-19
6.238E-19
6.412E-19
Quantum
Yield
0.984
0.980
0.976
0.972
0.968
0.964
0.960
0.956
0.952
0.948
0.944
0.940
0.936
0.932
0.928
0.85
0.77
0.78
0.92
0.82
0.87
0.90
0.81
0.70
0.68
0.70
0.77
0.84
0.75
0.81
0.78
0.80
0.88
0.84
0.90
0.90
0.84
0.83
0.82
0.77
                           2-8

-------
       TABLE 2-3 (continued)
Wavelength   Absorption      Quantum
   (urn)     Cross-Section     Yield
  0.399       6.586E-19       0.78
  0.400       6.760E-19       0.68
  0.401       6.672E-19       0.65
  0.402       6.584E-19       0.62
  0.403       6.496E-19       0.57

  0.404       6.408E-19       0.42
  0.405       6.320E-19       0.32
  0.406       6.210E-19       0.33
  0.407       6.100E-19       0.25
  0.408       5.990E-19       0.20

  0.409       5.880E-19       0.19
  0.410       5.770E-19       0.15
  0.411       5.876E-19       0.10
  0.415       6.300E-19       0.067
  0.420       6.230E-19       0.023
  0.425       6.000E-19       0.000
                 2-9

-------
                 TABLE 2-4.   RATIO OF OTHER PHOIOLYTIC REACTION RATES TO THE  N02  PHOTOLYSIS RATE AT ZERO ELEVATION*
   REACTION
                                           0.
10.
20.
30.
SOLAR ZENITH ANGLE
    40.       50.
60.
70.
78.
86.
N03 * hv
N03 » hv
03 * hv
03 » hv
HONO * hv
H202* hv
ROOH * hv
HCHO + hv
HCHO * hv
y AL02 * hv
0 RCHO » hv
ACET * hv
NEK » hv
GLYX * hv
NGtr * hv
GCHO » hv
BGLY * hv
DIAL * hv
BCHO » hv
• •>
• •>
• •>
• •>
• •>
• •>
• •>
• •>
• •>
• ->
• •>
• •>
• •>
••>.
• •>
• •>
• •>
• •>
• •>
NO »
N02 *
0 «•
0*SO »
NO *
2. OH
H02 *
2.H02 *
CO «•
CO +
CO *
NC03 «•
HC03 *
13HCHO *1
NC03 +
H02 *
GC03 »
MC03 +

02
0
02
02
OH

OH
CO
H2
CH302
C2H502
HCHO
AL02
.87CO
H02 * CO
CH302* CO
H02
H02 » CO

2.266+00
2.046+01
5.52E-02
4.56E-03
1.96E-01
9.086-04
9.086-04
3.65E-03
5.59E-03
5.876-04
1.196-03
1.34E-04
1.91E-04
7.79E-03
1.72E-02
5.87E-04
4.78E-03
6.38E-02
5.19E-03
2.26E+00
2.056+01
5.53E-02
4.456-03
1.966-01
9.036-04
9.036-04
3.62E-03
5.57E-03
5.796-04
1.186-03
1.326-04
1.89E-04
7.81E-03
1.72E-02
5.79E-04
4.77E-03
6.36E-02
5.186-03
2.286+00
2.07E+01
5.566-02
4.126-03
1.96E-01
8.826-04
8.826-04
3.536-03
5.506-03
5.51E-04
1. 146 -03
1.276-04
1.826-04
7.87E-03
1.74E-02
5.51E-04
4.726-03
6.296-02
5.146-03
2.32E+00
2.116+01
5.616-02
3.56E-03
1.966-01
8.456-04
8.456-04
3.36E-03
5.38E-03
5.01E-04
1.08E-03
1.186-04
1.696-04
7.97E-03
1.76E-02
5.016-04
4.626-03
6.15E-02
5.09E-03
2.396+00
2.186+01
5.71E-02
2.666-03
1.946-01
7.91E-04
7.91E-04
3.11E-03
5.19E-03
4.366-04
9.946-04
1.066-04
1.516-04
8.17E-03
1.806-02
4.36E-04
4.476-03
5.95E-02
4.996-03
2.566+00
2.31E+01
5.99E-02
2.06E-03
1.936-01
7.186-04
7.186-04
2.77E-03
4.916-03
3.536-04
8.756-04
8.97E-05
1.28E-04
8.46E-03
1.87E-02
3.53E-04
4.226-03
5.66E-02
4.85E-03
2.83E+00
2.54E+01
6.45E-02
1.26E-03
1.906-01
6.256-04
6.256-04
2.336-03
4.51E-03
2.586-04
7.266-04
7.056-05
1.016-04
8.97E-03
1.98E-02
2.586-04
3.946-03
5.25E-02
4.64E-03
3.346+00
2.97E+01
7.43E-02
5.986-04
1.85E-01
5.12E-04
5.12E-04
1.816-03
3.97E-03
1.636-04
5.53E-04
4.986-05
7.11E-05
9.88E-03
2.17E-02
1.63E-04
3.526-03
4.706-02
4.366-03
4.06E+00
3.55E+01
8.90E-02
2.80E-04
1.81E-01
4.31E-04
4.31E-04
1.41E-03
3.57E-03
1.016-04
4.276-04
3.556-05
5.07E-05
1.09E-02
2.37E-02
1.016-04
3.226-03
4. 296-02
4.146-03
2.796+00
2.58E+01
6.60E-02
1.54E-04
1.88E-01
3.83E-04
3.83E-04
1.10E-03
3.43E-03
5.986-05
3.31E-04
2.49E-05
3.56E-05
9.73E-03
2.14E-02
5.986-05
3.206-03
4.27E-02
4.236-03
• The N02 photolysis rate (per second) at zero elevation is

  N02  * hv -•>   NO   *  0             8.29E-03  8.22E-03  8.02E-03  7.66E-03  7.10E-03  6.26E-03  5.05E-03  3.32E-03   1.64E-03   3.51E-04

-------
as  steady-state  species  if  the  kinetic solver  package  in  which  the
mechanism is  used can  accommodate  these types of species.  The  organic
precursor species included  in the mechanism are propane,  C4-C5  alkanes,
>C5  alkanes,   ethene,  propene,   1-butene,   trans-2-butene,   isobutene.
benzene,  toluene, m-xylene,  and  mesitylene.   The   rate constants  and
product  coefficients  for the lumped alkane mechanisms are based  on  the
explicit  mechanisms  for  compounds  in these  classes.   The C4-C5  alkane
reactions are based on equal weighting of the kinetic and product data
for  the reactions of  n-butane,  n-pentane, iso-butane, and iso-pentane.
The  >C5 alkane reactions  are based on equal weighting of the kinetic and
product   data  for  the  reactions  of  n-hexane,   n-heptane,   n-octane,
2,3-dimethylbutane, 2-methylpentane, 2,3-dimethylpentane,  and iso-octane.
The  selection of  these surrogates was based on the analysis of automobile
exhaust  speciation performed in Phase I.  The oxygenated products in the
mechanism   include    formaldehyde,    acetaldehyde,    glycol   aldehyde,
propionaldehyde,   benzaldehyde,   acetone,  methylethylketone,   glyoxal,
methyl  glyoxal, and two  surrogate species for  the  unknown ring-opening
products of aromatic oxidation.
     In assembling  the  Phase II  detailed  mechanism,  a  condensation
technique was employed to reduce the number of individual peroxy radicals
included in the Phase I detailed mechanism.  The  technique is primarily
intended to  represent  the  peroxy radical reactions  in  the presence of
NO.  In order to minimize the number of species that must be integrated
  A
in   the  mechanism,   most  individual  peroxy  radicals  formed  in  the
photooxidations  of the various  organics are not  explicitly included in
the  mechanism.    Instead,  in  any  reaction  forming  them,  the  peroxy
radicals  are  replaced by  the  set  of  stable  products  expected  to be
ultimately  formed when they react in the presence of NO,  and one or more
generalized peroxy radical pseudo species.  The pseudo species  are used
to   represent  the effects  of  the  reactions of  the  individual  peroxy
radicals.   The effects are  common to  large  groups  of peroxy radicals,
such as the conversion of NO to N02 when they react with NO,  etc.  This
is applied  not only to individual peroxy radicals, but also to groups of
peroxy  radicals formed from the same species, whose overall reactions are
lumped  together  in  the mechanism.   The specific peroxy pseudo species
used in this  mechanism and the overall common  processes they represent
                                   2-11

-------
are shown in Table 2-5 (see also reactions 77-80,  106-117,  and 148-151 in
Table 2-2).
     As  an example  of this  technique,  consider  the photooxidation of
n-butane.  In  the presence of NO at 300°K, the n-butane  photooxidation
process is as follows:
                         °2
          OH + n-butane  — > 0.15 CHgCH^CHgOO .  + .85 CH3CH(00.)CH2CH3


          HCH00. + NO  — > 0.03 RON0  +0.97
  CH3CH(00.)CH2CH3 + NO  — > 0.08 RON02 + 0.92


                         °2
         CH3CH2CH2CH20.  —> 0.78 HOCH2CH2CH2CH200 . +0.22 (RCHO + H02-)


                         °2
        CH3CH(0.)CH2CH3  — > 0.63 (MEK + HOg) + 0.37 (CH3CHO + CjHSOO.)


                         °2
 HOCH-CH-GI^CH-OO. + NO  — > NO, + H0?. + (bifunctional product,
                                          represented by RCHO +0.25 MEK)


                         °2
           CH00. + NO  — > N0  + H0. + C
If  the  peroxy  and alkoxy  radical intermediates  are  approximately  in
steady-state   (which  test   calculations   have  shown   to   be  a  good
approximation  in the presence  of NO  and  sunlight),  then the following
                                     X
reaction has the same net effect as the reactions above:
   OH + n-butane  — > 0.07  (RON02 - NO) + 0.93 (N02 + H02 - NO) +

                      0.40  (N02 - NO) + 0.57 CH3CHO + 0.52 MEK +

                      0.15  RCHO
                                    2-12

-------
                               TABLE 2-5

        PEROXY RADICAL PSEUDO-SPECIES USED IN THE MECHANISM TO
    REPRESENT OVERALL PROCESSES COMMON TO PEROXY RADICAL REACTIONS
Pseudo-                       Products Formed
Species
Name
R02R
R202
R02N
R02P
MK02
Reaction with NO
N02 + H02
N02
RON02
Nitrophenol
N02 + CH3C03.
Reaction with H02 Reaction with R02/RC03
-OOH

0
none
-OOH
-OOH
-OOH
+ MEK
+ (inert)
+ HCHO + C02
0
0
0
.5
H02


none
.5
.5
.5
H02
H02
H02
+ MEK
+ (inert)
+ HCHO +


C02
                                  2-13

-------
From Table 2-5,  it can be  seen that these processes can be  represented
without any negative product species by the following reaction:

   OH + n-butane  —> 0.07 R02N   +0.93 R02R +0.40 R202 +
                      0.57 CH3CHO + 0.52 MEK  + 0.15 RCHO

This  reaction  shows how  the  photooxidation  of  n-butane at  300°K  is
represented  in  the Phase II  detailed  mechanism.   This  technique  was
applied  in  an  entirely  analogous  manner  to the  reactions  of  other
radicals  or  groups  of radicals  to minimize  the  number  of  individual
peroxy radicals in the mechanism.
     Significant  changes  were made  to the aromatic  oxidation  mechanism
employed  in  Phase II.   In  order to appreciate  the rationale  for  these
changes,  background information on  the aromatic  oxidation mechanism is
provided  in addition to a description of the changes.
     As previously noted, the  aromatic hydrocarbons are  represented by
benzene,  toluene, m-xylene, and mesitylene  (or 1,3,5-trimethyl benzene)
in the mechanism.  The aromatic reactions are  based on those formulated
by Atkinson  et al.  (1980,  1982),  Atkinson and Lloyd  (1984),  Leone  and
Seinfeld  (1984),  Leone  et al. (1985), and Lurmann et al. (1986), but the
reactions were  modified  to be  consistent with  the  recently observed
a-dicarbonyl  yields, to  include  a  parameterized representation of  the
uncharacterized   aromatic  ring  opening  products,  and  to  delete  the
aromatic  nitrate formation reaction, which was assumed to occur from the
reactions of NO with the aromatic peroxy radical intermediates.
     Despite  continuing studies  of aromatic  photooxidation  mechanisms,
the  current understanding  of the ring opening reactions  following  the
initial attack by  OH  radicals  on the aromatic rings and the nature  and
reactions of  most  of  the  products  formed  continues to  be  grossly
inadequate.   Indeed, the  most recent  experimental  data have  tended to
raise  more questions  in  this  regard  than they  have  answered,  giving
results   that   are  inconsistent  with  previously  published  aromatic
photooxidation  mechanisms.   In particular, the recent  experimental data
concerning   the   yields   of  cr-dicarbonyls   from   benzene  and  the
methyl-substituted  benzenes  obtained by Tuazon et al.  (1986) and Bandow
and co-workers  (Bandow  et al.  1985;  Bandow and Washida 1985a,b) indicate
                                   2-14

-------
yields of  a-dicarbonyls that are  significantly lower than predicted  by
any of the  previous  mechanisms  (Atkinson et al. 1982;  Killus  and Whitten
1982; Atkinson and  Lloyd 1984;  Leone and  Seinfeld 1984; Leone  et al.
1985; Whitten et al.  1985;  Lurmann  et al.  1986).   These experimental
data, coupled  with the  observations of several unsaturated oxygenates  as
products from  toluene (Dumdei and O'Brien 1984; Shepson et al.  1984) and
o-xylene (Shepson et al.  1984),  are not consistent with the ring-opening
mechanisms  proposed  previously  (Atkinson and  Lloyd 1984; Leone  et al.
1985; Whitten et al.  1985).
     Using  toluene  as  an example, these  mechanisms predict  either the
formation  of  three  molecules  of  a-dicarbonyls  for  each  molecule  of
toluene that undergoes  ring  opening [as predicted by the "recyclization"
mechanism assumed by Killus and Whitten (1982), and incorporated into the
latest  Carbon Bond mechanism  (Whitten  et al.  1985)]  or  that one
a-dicarbonyl molecule  and one  horaologue  to 2-butene-2,4-dial  is formed
[as predicted  by  the "cyclization" mechanism assumed in the mechanism  of
Atkinson  et al.   (1980,  1982),  Atkinson  and  Lloyd  (1984),  Leone and
Seinfeld (1984), and Leone et al. (1985)].  Both of these predictions are
inconsistent  with  the   recent  a-dicarbonyl  product  yield data,  which
indicate  that glyoxal  and  methylglyoxal account  for only  35%  of the
ring-opening reaction route  from toluene if the cyclization mechanism  is
assumed,  and only 12%  of the reaction if  recyclization  is assumed.  In
addition,  the  qualitative product  studies of  Shepson et al.  (1984) and
Dumdei and  O'Brien (1984) indicate that 2-butene-l,4-dial, or  its methyl-
substituted analogues,  2-pentene-l,4-dial and 2-methyl-2-butene-l,4-dial
(predicted  to  be formed from toluene by  the  cyclization mechanism) are
not  the  only  unsaturated ring-opening products.   Indeed,  these studies
show that the  actual toluene ring-opening reaction mechanism is much more
complex than previously assumed.
     The formation and  reactions of these uncharacterized products cannot
be  ignored in  the  aromatic  mechanism  because  doing  so  results  in
mechanisms   that   significantly   and  consistently  underpredict   the
reactivity  observed in aromatic hydrocarbon  - NO  -  air environmental
                                                   X
chamber  experiments.   This  is  particularly true for  those  experiments
carried  out in the  SAPRC Indoor Teflon  Chamber (ITC),  whose blacklight
light source  is such  that  the  a-dicarbonyls  photolyze at significantly
                                   2-15

-------
lover rates  than is the case  in  the SAPRC Evacuable Chamber  (EC)  or  in
outdoor  chambers.   Indeed,  the previous  mechanisms  that  assumed  high
a-dicarbonyl yields, which could simulate toluene runs carried out in the
SAPRC EC  and outdoor  chambers (e.g., Leone et  al.  1985),  significantly
underpredict reactivity  in toluene  runs carried out in the ITC,  due  to
the lower calculated methylglyoxal  photolysis  rate.   However,  because  of
the present  lack of knowledge  of the ring-opening reactions of  aromatic
hydrocarbons, and  of  the  nature and reactions  of  the  non-a-dicarbonyl
products  formed, no  attempt  was  made   in this  mechanism  to  represent
non-a-dicarbonyl products explicitly.  Instead, non-a-dicarbonyl products
were represented in a parameterized manner, as  indicated below.
     In  the Phase  I   version  of  this   mechanism,   the  uncharacterized,
non-a-dicarbonyl ring-opened products  were lumped  together  and repre-
sented as "aromatic unknowns"  (one for each aromatic hydrocarbon), whose
subsequent reactions were  represented as being analogous to the reaction
mechanisms previously  proposed (Atkinson et al.  1980; Atkinson and Lloyd
1984) for the 1,4-unsaturated dicarbonyls that had been assumed to be the
co-products  to  the  a-dicarbonyls  but modified to conserve carbon and the
number  of methyl  groups.   In order for  the  mechanism to  simulate the
observed  reactivity   of  the  aromatic   hydrocarbons,   each   of  these
"unknowns"   was  assumed  to  photolyze  to  yield  radicals,   with  the
photolysis  rate for  "unknown" for each  aromatic   adjusted  to  fit the
results of the single  component aromatic - NO  - air irradiations carried
                                             A
out in  the  SAPRC EC and the SAPRC  ITC.  In order for the same mechanism
to  successfully simulate  experiments in both the EC  and the  ITC, which
have significantly  different spectral distributions, it was necessary to
assume  that  the "unknowns" photolyze primarily by absorption of light in
the wavelength  region  below 350 nm  (significantly lower wavelengths than
that are responsible  for  the  photolysis  of the a-dicarbonyls).  It was
also necessary  to  assume  that the  reactions  of the  "unknowns" with OH
radicals  result in the  formation of PAN  analogues, since  not assuming
this results in a  consistent  tendency for  the  mechanism to overpredict
final ozone  yields  in aromatic - NO  - air irradiations.  These aromatic
mechanisms,  optimized  based on fits to SAPRC EC and ITC runs, were found
to  give  satisfactory  simulations  of toluene-NO  and  o-xylene-NO  runs
                                                 &                 A
                                   2-16

-------
carried out  in the University  of North  Carolina  (UNC) outdoor  chamber
(Carter et al. 1986).
     The  Phase II  aromatic  photooxidation mechanism  uses  a  somewhat
different parameterization of the  reactions of the aromatic ring-opening
products.  This alternative  representation  was selected because it could
fit the environmental  chamber data as well as and,  in  some cases better
than,  the  Phase I mechanism  and because it involved fever species  and
reactions.   In this representation,  two separate  species  were used  to
represent  the  unknown  non-a-dicarbonyl products instead of one  for each
aromatic.  The PAN analogues formed from the unknown products were lumped
with PAN analogues  formed in other areas of the mechanism,  specifically
those  formed  from the  reactions of glyoxal and "RCHO",  the  lumped higher
aldehyde.  The  specific  set  of  reactions assigned for each  was chosen to
be  analogous   for  those   for  the  a-dicarbonyls,   rather   than  the
1,4-unsaturated dicarbonyls as used in the previous representation of the
unknown  products.  The   photolysis  rates  and yields  of  these  "lumped
aromatic unknown  products"  in  the photooxidations  of  benzene,  toluene,
m-xylene, and 1,3,5-trimethylbenzene were adjusted to obtain best fits to
the results  of selected aromatic - NO  - air irradiations carried out in
the  SAPRC EC  and  ITC,  using  a non-linear  least  squares  optimization
program.   As  was  the  case with  the previous representation,  in order to
fit  reactivity in  EC  and ITC  experiments  with the  same mechanism, the
products were assumed  to photolyze in the 290 - 350 nm wavelength region.
The  data were  adequately fit by  assigning one of  the unknown products
(BGLY)  to represent  the  unknowns formed  from benzene, and  the  other
unknown product (DIAL) to represent the unknowns from the methylbenzenes,
with  DIAL photolyzing 13.3  times faster than BGLY.  This  parameterized
mechanism  simulated the  aromatic - NO  - air experiments as well as, and
                                      A
in  some  cases  better   than,   the  alkene  and alkane mechanisms  that
simulated  comparable  single component  experiments  (see  Section  2.2).
Overall, the  Phase II  aromatic  mechanism is slightly slower in oxidizing
NO    than   the  Phase  I   aromatic  mechanism.    In  light  of  its  good
  A
performance,  it is difficult to justify using a more  complex aromatic
mechanism until better data become available.
     Lastly, the Phase II mechanism only uses propionaldehyde and methy1-
ethyIketone  (MEK)  to  represent  the  bi-  and poly-functional  products
                                   2-17

-------
formed in the photooxidation of alkanes (depending on whether the product
has aldehyde  or ketone  groups).   In the  Phase  I  mechanism, a  propion-
aldehyde, HER,  and pentanol were  used to represent these bi- and  poly-
functional products.   Thus,  the pentanol reactions have been eliminated
from  the  mechanism.   This  change  has  virtually  no  effect   on  the
mechanism's predictions for key species such as NO, NO^, Og,  and  alkanes.

2.2  Evaluation Results

     The results of  evaluation using the Phase II detailed mechanism are
summarized  in this  section.   The performance measures employed in  the
evaluation  are the  relative  and  absolute errors  in the maximum  ozone
concentrations  and the NO   oxidation rate.  The  NO  oxidation  rate  is
                          A                          X
assessed  using  the   average   rate  of  change of  ozone minus  NO  [ie.,
d([03]-[NO])/dt  in  ppb/minute]  during  the  first  half  of the period
required to  reach  ozone maximum.   This measure  of  NO  oxidation rate is
                                                      A
preferred over time  to reach  50% of the  [03]-[NO] maximum,  used in the
Phase I evaluation, because there is much less disparity in the values of
the rates for different chambers with this approach.   Other measures of
model performance  include the  relative and absolute errors in the maximum
PAN  and aldehyde  concentration and in  the  half-lives  of   the  organic
precursors.   The performance  measures  for each experiment  simulated in
the evaluation are listed in Appendix A of this report.
     The  protocol used to   test  the  chemical mechanism  incorporates
several  unique elements.  First,  where practical,  all reactants in the
experiments   were  represented by  explicit  chemical  reactions  in  the
mechanism.   For example,  simulations  of n-octane/NO   experiments were
performed with the n-octane mechanism rather than  the  lumped C6+ alkane
mechanism.  The major exception to this was the auto exhaust simulations,
which have  too many  species for this approach to be feasible.  Second, a
consistent  set of assumptions was used in modeling all runs.  Run-to-run
adjustments of uncertain parameters  to optimize  fits to the data were not
allowed.  Adjustments of mechanistic and chamber effects parameters were
developed  using   only  the  most  appropriate runs  for  the  particular
parameter and were then incorporated on  a global  basis into the testing
program.  Third,  poorly understood  chamber effects  were  represented as
                                    2-18

-------
simply  as possible  in order to  avoid introducing additional  uncertain
parameters.  The minimum number of parameters needed to describe the data
were   incorporated  into  the   parameterizations.    Fourth,   and   very
important, a large  number of runs were used  to  evaluate  the performance
of the  mechanism.   Only runs that had major  gaps in  critical input data
were eliminated from the testing data base.  The  use of a  large number of
runs is important because,  now that the  mechanism has been  applied to
many  experiments,  it  is  clear  that there is  considerable  inherent
variability  in   the   environmental   chamber  data.   Thus,   performance
information that  is based on simulating  a small number of  runs or only
runs from  one  chamber  may be misleading.   Fortunately, there  is a  large
number  of  experiments for  propene,  toluene,  n-butane,  and  surrogate
mixtures that can be used to reliably evaluate the mechanism.
     The  evaluation was performed using environmental  chamber  data from
four facilities:
     •    SAPRC 5800-liter Indoor Evacuable Chamber (EC)
     •    SAPRC 6400-liter Indoor Teflon Chamber    (ITC)
     •    SAPRC 50,000-liter Outdoor Teflon Chamber (OTC)
     •    UNC 30.000-liter Outdoor Teflon Chamber   (UNC)

The number and type of chamber runs used in the evaluation are summarized
in  Table 2-6.   The  table  shows  that 491 experiments  were used  in  the
testing.   About 175  of the  experiments  employed complex  mixtures  that
were surrogates for the organics found in urban atmospheres.
     The  evaluation was  carried out  in  three steps.   The first  step
involved  modeling chamber  characterization  experiments to  estimate  the
chamber effect  parameters.   Pure  air,  NO -air, NO -CO-air, formaldehyde-
                                         X        A
air, and acetaldehyde-air experiments were used in this step.  The second
step  involved modeling  single organic  - NO  experiments  to test  and
refine the mechanisms  for the organic precursors  in  the mechanism.   The
third step involved modeling organic mixtures in the presence of NO .   No
adjustments  of the  mechanism were  made  at this  step.  The  synthetic
mixtures  were subdivided  into simple  and  complex mixtures, where  the
simple mixtures have  species from one or  two of the three major classes
of  organics  and the  complex mixtures  have species from all three major
classes of organics.  Simulations of auto exhaust experiments and dynamic
                                   2-19

-------
                                TABLE 2-6



   SUMMARY OF ENVIRONMENTAL CHAMBER RUNS USED FOR MECHANISM EVALUATION
                                                   Number  of Runs
Type of Environmental Chamber Run
Characterization
Single Organic-NO
A






Known Mixtures

Various
Oxygenates
Ethene
Propene
Butenes
n-Butane
>C4 Alkanes
Toluene
Other Aromatics
Simple Mixtures
Complex Mixtures
EC
10
7
6
15
6
14
6
13
7
22
11
ITC
14
1
2
7
5
5
8
2
13

45
OTC
10
2

5

1




62
UNC
37
15
6
22
5
7
6
5
4
18
33
Total
71
25
14
49
16
27
20
20
24
40
151
Auto Exhaust



Dynamic Injection



Total Number of Runs
Two Vehicles



Propene and Mixtures
                   25
25
                    9     9



117   102    80   192   491
                                   2-20

-------
injection experiments were also  included in the testing,  as described in
Carter et al. (1986).
     Although higher  quantum yields  for N02 are used with  the  Phase II
detailed mechanism,  the Phase I  and  II evaluations were performed  with
identical NO. photolysis  rates.  The  reason  for this is  that the  NO^
photolysis  rates  are considered part  of  the  experimental data base.
However, because the theoretical NO, photolysis  rates  are higher,  the
ratios  of  the photolysis  rates  of other species to the N02  photolysis
rate  were  lower  in  the Phase II  evaluation.   Overall,  this  change
slightly  improved  fits  of  the  predictions  to  the  experimental data.
     The model performance in the NO -air and NO -CO-air simulations is
                                     X            A
shown in Figure 2-1.  The predicted and observed change  in [NO] and [N02]
concentrations over the course of the runs is shown in the figure.  These
are the best  measures of performance because very little  ozone is  formed
in these high NO  characterization runs.  The figure shows that agreement
for the change in NO and NO- concentrations is within about ±20% for all
of the cases.
     The  predicted  and  observed  maximum   ozone   concentrations   and
d([03]-[NO])/dt  are  shown  in  Figures 2-2  through  2-5  for  the  single
oxygenate,  alkene,   alkane,  and  aromatic  simulations,  respectively.
Examples of the   distribution of errors in maximum ozone and  the  timing
parameter for propene, n-butane, and toluene are shown in Figures 2-6 and
2-7.  The results for the oxygenates, alkenes and aromatics show that the
maximum ozone and  timing  parameter predictions  are  within ±30%  of the
observed in almost all cases.  The distribution of errors for propene and
toluene  shows that the errors  are somewhat normally distributed about
zero  error.  This  level  of agreement  is  considered  quite  good.   The
results for the   alkane  simulations show a  large amount of scatter and
indicate  unsatisfactory model  performance.   The alkanes are  the least
reactive  compounds   in  the  mechanism  and  the  simulations  of  their
oxidation are very sensitive to the chamber characterization procedures,
particularly  the  rate of radical off-gassing from the chamber walls.   The
uncertainty in the chamber effects makes it almost impossible to evaluate
the alkane mechanism without ambiguity at this time.
     The  predicted  and  observed  maximum  ozone   concentrations   and
d([03]-[NO])/dt  are  shown in Figures  2-8  through  2-10  for  the  simple
                                    2-21

-------
                 NOx-Air Mixtures
0,
a
0

0.15-
0.1-
0.05-

0-

-0.05 -


-0.1 -


-0.15-
-0.2-
0 SAPRC CC

-------
                       Carbonyls
I
\s
•

s
o

|

E
"x

I
•o
c
D.
          D  FormalMnyM

          +

             K«toiws
i
 a
3
 O
 n
 O
 •o


 I
 0


 o.
                  ObMrved Umdmum Ozona (ppm)
                      d( [03] - [NO] )/dt (ppb/min)


 Figure 2-2.  Predicted versus observed maximum ozone and

              d([O3]-[NO])/ot for carbonyl-NOx runs.
                                2-23

-------
                        Alkenes
    1.3
 9
 I
 o
 I
 E
 •x
 o
 •O
 s
 0
 V
 B.
a
a
I
•o
    1.2-
    1.1-
      1-
18-
17-
16-
15-
14-
13-
12-
11-
10-
 9-
 8
 7
 6
 5
 4
 3
 2
 1
 0
        CTHENE
        PROPENE
        1-BJTENE
        TRANS-2-BUTENE
        ISOBUTENE
              0.2     0.4     0.6     0.8      1      1.2
                  OfaMrvtd Uaxtmum Ozorw (ppm)
             ETHENE
             PROPENE
             1-BUTENE
             TRANS-2-BUTENE
             ISOBUTENE
       0    2    4     6     8    10    12    14   16   IB
               ObMfvwi d( [03] - [NO] )/dt  (ppb/mln)
 Figure 2-3.   Predicted versus observed maximum ozone and
              d([O3]-lHO])/dt for alkene-NOx runs.
                              2-24

-------
                           Alkanes
  a.
  a
  NX


  0
  x
  o


  T>
  f
  u


  I
0.8




0.7




0.6




0.5




0.4




0.3




0.2




0.1




 0
           O   BUTANE

           *   2.3 DIMETMYLBUTANE


           •   N-ALKANES

           A   ISOALKANES	
              i     i     i     i    i    i    i     i

         0        0.2        0.4       0.6       0.8
                    ObMrvtd Uaxlmum OZOM (ppm)
 a
 a
 O

 i_i


 I

 n


 O
                            O   BUTANE

                            *   2.3 DIMETHYLBUTANE


                            •   N-ALKANES

                            A   ISOALKANES
 a.
                     246


               ObMrvtd d( [03] - [NO] )/dl (ppb/mln)


Figure 2-4.  Predicted versus observed maximum ozone and

             d(l03]-[NO])/dtfor  alkane-NOx runs.
                         2-25

-------
                      Aromatics
a
a
2
o
E
x
I
T»
I
0.8,


0.7-


0.6-
0
n
O
•g
i
0.5-

0.4-


0.3-

0.2-

0.1-
         O   BENZENE
         +   TOLUENE
         «   XYLENE
         A   MESITYLENE
                  0.2
 I      I
0.4
                                      0.6
                  Observed ttadmum Ozone (ppm)
0.8
         O   BENZENE
             TOLUENE
         «   XYLENE
         A   MESITYLENE
Figure
   0    2    4    6    8    10   12   14   16
           Ob«erv«d d( [03] - [NO] )/dt (ppb/min)

   2-5.  Predicted  versus observed maximum ozone  and
         d([O3]-[NO])/dt for aromatic-NOx runs
                               2-26

-------
-5
I
    A


    1

    •

    1
Propene
                   I
                                 i
       -O.3 -0.24 -0.18 -0.12 -O.08  0   0.08  0.12  0.18  0.24  0.3
                 Absolute Error In Maximum Ozone (ppm)
           ZZJ EC    ES rcc     E22  ore    ES3 UNC
I
*
I
I
    10 -
         Butane
       ^
       -O.3 -0.24-0.18-0.12-0.08  0   0.08  0.12  0.18  0.24  0.3
                 Absolut* Error In Maximum Ozon* (ppm)
                 EC    rerq  rrc     E22 ore    SS3 UNC
         Toluene

        -O.3 -0.24 -O.I 8 -0.1 2 -O.06  0   0.08  0.12  0.18  0.24  O.3
                 Abcolut* Error In Maximum Ozone (ppm)
                EC    rej rrc     g^Ti  ore      ^ UNC
 Figure 2-6.  Distributions of absolute error in maximum ozone
             predictions for propene, n-butane, and toluene runs.
                             2-27

-------
   t*
   t
   1
   •
   1
 Propene
                                     i
                                  1

      -0.5  -0.4  -0.3  -0.2  -O.I   0   0.1   0.2   0.3   0.4   0.3
                 Relative Error In d( [O3] - [NO] )/dt

            1771  EC    IV^  (TC     EE53 OTC    IS^ UNC
   i*
   » 9 -
   ia -
   11-
   i  -
\
Butane
      " '-^SQ C
-------
                    Simple Mixtures
a

3
o
N
0


I


i

"x
0
s
n.
 a
 a
i_i

 I



I
 a.
1.1



  1 -



0.9-



0.8-



0.7-



0.6-



0.5-



0.4-



0.3-



0.2-



0.1 -
          D  Ubc«d from 1 group


          •»  Ubced from 2 group*
                 i

                0.2
                              0.6
      0.4       0.6       0.8



Ob*0rved Maximum Ozona (ppm)
     10
  9-




  8-




  7-
s    'H
  5-




  4-




  3-




  2




  H
          0  IDx«d from 1 group

          4  Ubud from 2 group*
                       d( [03] - [NO] )/
-------
                Surrogate  Mixtures
        O EC 7-Component
                   Component
                Component
a
a.
5
1 	
0
1 1 1
0.2
0.4
i i
0.6
i i
0.8
1
                 Observed Maximum Ozone (ppm)
6


7


6


5


4


3


2


1


0
O EC 7-Component
• ITC « OTC a-Componont
• UNO  Multi-Component
A ITC 4-Componont
* UNC  3-Component
                  2468
                    d( [03] - [NO] )/dt  (ppb/mfn)

Figure 2-9.   Predicted versus observed maximum ozone and
             d([C>3]-[NO])/dt for surrogate mixture runs.
                            2-30

-------
                 UNC  Auto Exhaust
a
a
I
I
     1

    0.9-

    0.8-

    0.7

    0.6-

    0.5-
    0.4-

    0.3-

t   0.2-

    O.H

     0
>  2.5
n
O
     2-
I
I   0.5
      1-
                0.2       0.4        0.0       0.8
                  Observed Uoxlmum Ozont (ppm)
       01234

               Observed d( [03] - [NO] )/
-------
synthetic  mixtures,  complex  surrogate mixtures,  and  the  auto  exhaust
irradiations.  The distribution  of  errors in the ozone maxima and timing
parameter is shown in  Figures 2-11  and 2-12.  The results for the simple
mixtures show that most of the maximum ozone predictions agree  with the
observed values  within  ±30%.   However,  there  are several mixed alkene
runs from  the EC that  show greater than 30% underproduction of the ozone
yield.   The results for  the  complex  surrogate  mixtures show  the  vast
majority of runs have  better than ±30%  agreement on  the  maximum ozone
concentrations and the timing parameter.   The distribution of errors in
the  ozone  is centered  on  zero and shows roughly equal numbers  of over-
and  under-predictions.   Similarly good performance is shown for the auto
exhaust experiment simulations.
     The average bias  and error in the mechanism's ozone predictions for
these  experiments  are  shown  in Table 2-7.  These  data  show  that  the
average  bias and  error in  the oxygenate  simulations  is -5%  and ±25%,
respectively.   The  performance for  formaldehyde  runs  is  considerably
better than for higher aldehydes and ketones.  The average bias and error
for  ozone  in the alkene simulations is +3% and ±21%, respectively.  The
performance  for  ethene  and  propene is quite  good;  the  performance  for
butenes  is  adequate.   The average bias and error for the alkane runs are
+46% and ±69%,  respectively.  The performance on n-butane experiments is
better than this, but the performance on  long-chain alkane experiments is
much worse.   These  poor  statistics  reflect  the previously discussed
difficulties in testing  the alkane mechanism.  The average bias and error
for  the  single  aromatic  runs  are  surprisingly small,  +1% and ±19%,
respectively.  This good performance reflects the fact that the mechanism
was  optimized  to fit most of the data.  The statistics indicate that the
toluene  mechanism has  a  tendency  to  overpredict  ozone,  whereas  the
m-xylene and mesitylene mechanisms  have  tendencies to underpredict ozone
yields  on  the average.   Overall,  for  all  single organic-NO   runs,  the
mechanism overpredicts by 12% and the average error is ±33%.
     The average bias  and error for the  simulations of mixtures indicate
reasonably  good  model  performance.   The  results  for  the  simple mixtures
show +10%  bias  and  ±35%.   The  results for the  mini- and full-surrogate
complex  mixtures are better, since the average  error is  only ±23%.  For
the  auto exhaust runs,  the average bias  is -11% and the average error is
                                    2-32

-------
•s  •-
      Simple  Mixtures
                                   1
                                        II

      -O.3 -0.24-O.18-O.12-O.06   0  0.00 0.12  0.18  0.24  0.3
               Absolute Error In Maximum Ozone (ppm)
           1771 EC    re^l rrc     E^3 ore    ES3 UNO
I
*
1
       Surrogate
        Mixtures
      -0.3 -0.24-0.18-0.12-0.06  0  0.00 0.12 0.18  0.24  0.3
               Abcolut* Error tn Maximum Ozon* (ppm)
           IZZl cc    KS no     E23 ore    ESS  UNO
        Auto  Exhaust
               «
                     m
                               ^^.•OC^
      -O.3 -0.24 -O.I 8 -0.1 2 -0.06  0  0.06 0.12  0.18  0.24  0.3
               Absolute Error In Maximum Ozone (ppm)
            ZZJ EC    KS rrc     EZ3 ore    ES UNC
Figure 2-11.  Distribution of absolute errors in maximum ozone
             predictions for simple mixtures, surrogate mixtures,
             and auto exhaust runs.
                            2-33

-------
        Simple
        Mixtures


      -0.5  -O.4  -O.3  -0.2  -O.1   O   0.1   O.2   0.3   0.4   O.5
                Relative Error In d( [O3] - [NO] )/dl
1771 EC
                          rrc
                          ore
                                                UNO
g  -O
!  -
°  mo
i  ..
I  ••
                                  Surrogate
                                   Mixtures
                                                   I
                                             i
        15 -0.4  -0.3  -0.2  -0.1   O   0.1   0.2   0.3   0.4   0.5
                Relative Error In d( [O3] - [NO] )/dt
1771 EC
                         rrc
                          arc
                                                 UNC
       Auto  Exhaust
      -0.5 -0.4 -0.3 -0.2 -0.1   0   0.1   0.2  0.3  0.4  0.5
                Relative Error In d( [O3] - [NO] )/dt
 1771 EC
                           rrc
                           ore
                                                 UNC
Figure  2-12.  Distribution of relative errors in d(IO3]-[NO])/dt for
             simple mixtures, surrogate mixtures, and auto exhaust
             runs.
                             2-34

-------
                    TABLE 2-7



   AVERAGE MODEL PERFORMANCE FOR MAXIMUM OZONE








Run Type              Bias (%)       Error (%)
Formaldehyde
Acetaldehyde
Other Carbonyls
All Carbonyls
Ethene
Propene
Butenes
All Alkenes
Butane
Branched Alkanes
Long-chain Alkanes
All Alkanes
Benzene
Toluene
Xylenes
Mesitylene
All Aromatics
All Single HC Runs
Simple Mixtures
Mini Surrogates
Full Surrogates
Auto Exhaust
All HC Mixtures
-1
-26
+4
-5
+2
+3
+4
+3
+31
+34
+83
+46
+3
+11
-9
-11
+1
+12
+10
+10
+3
-11
+4
19
26
44
25
18
18
34
21
67
49
84
69
5
24
16
21
19
33
35
22
23
15
24
All Run Average            +7              28
^Positive bias indicates model overprediction.
                        2-35

-------
±15%.  This  is the  smallest  average error  of all the groups,  which is
rather ironic  since  speciation of the organics in  the  auto exhaust runs
was  the  least  certain of  any  group of experiments  in  the data  base.
Overall,  for  all organic mixture simulations  the performance  statistics
indicate that the  mechanism  overpredicts  ozone maxima  by 4% and  the
average  error  in  the  predictions  is  ±24%.  Given  the  kinetic  and
mechanistic   uncertainties,   as   well  as   chamber  characterization
uncertainties, this level of performance is quite satisfactory.
     Another  important aspect of the evaluation consisted  of  searching
for  systematic biases in  the mechanism.   The  error  in the  ozone  was
plotted  against the  NO ,  NMOC,  and NMOC/NO   to  investigate  potential
                        A                    X
systematic errors.    An example  that shows the  error in  the  surrogate
mixture  runs versus  the log of the NHOC/NO   ratio is  illustrated in
                                              X
Figure 2-13.  The distribution of errors appears to be fairly random for
most  of  the  range of NMOC/NO  ratio  for  which there are experimental
                               A
data.  The errors are totally random for NMOC/NO  ratios  between  3 and
                                                  A
30.   This  indicates  that  there is no  apparent  relationship between the
error in the prediction and this important ratio for the range of initial
NMOC/NO   ratios commonly occurring  in ambient  air.   However,  above a
       a
NMOC/NO  ratio of 30,  the mechanism tends to overpredict maximum ozone by
       A
a  small  amount in most cases.  This  small bias is not considered signif-
icant  since  all of  the high  NMOC/NO  ratio  runs  are  from one chamber.
                                      X
     The mechanism's predictive abilities for PAN and aldehydes .were also
examined in the evaluation.  Figure 2-14 shows the predicted and observed
PAN concentrations in  the surrogate mixture runs.  Only about half of the
predicted  PAN  maxima are within   ±30%  of  the  observed PAN maxima.
Figures 2-15  and 2-16 show the relative error in the PAN maxima for the
propene,  n-butane,  toluene,  simple mixture,  complex  surrogate mixture,
and  auto exhaust runs.   The  figures show fairly  broad  distribution of
errors for all  of  the runs.  Thus,  the mechanism's  predictions for PAN
are  clearly less accurate  than its  predictions  for  ozone.  Figure 2-17
shows the  distribution of the  relative errors in the maximum formaldehyde
concentrations  for  the  propene, simple mixture,  and  complex surrogate
mixture  runs.   These distributions  indicate fairly poor fits between the
mechanism  and the data.  In this case, the discrepancies probably reflect
                                    2-36

-------
                Surrogate  Mixtures



^N
a
a
0
H
O
I
j
"5
0
c
L
I




0.3-

0.2-

0.1-


0-


-0.1 -


-0.2-
-0.3-
-n A .
D EC 7-Componont
* ITC « OTC •-Componont
• UHC Multl-CoMponont. *+
A ITC 4-CoMponont *
« UNC 3-Conponont *
* ° ^
* + +D * +* A 1 AA °
X * , ^ _^ »A A ifr
** *»fl V -F. A /
+ a» * *«. . ^t X'fl+ 4
^.^ ™ . f^^^JT + X .4
****.!-* *
4. * . %• * X
+* t »
+v */** *
x « + ₯• x
* x» j?
*
* •
       0   0.2  0.4   0.6   0.8   1    1.2  1.4   1.6  1.8

                  LOG (HC/NOx)  (ppmC/ppm)


Figure 2-13.  Absolute error  in  maximum ozone versus
              (NMOC/NOX)
                               2-37

-------
                  Surrogate Mixtures
a
a.
\s
I
E
I
"x
0
T>
T)
a.
0.15
0.14
0.13
0.12
0.11
 0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
   0
a q
                   DO
          ~iiiiiiiiii   ir   i   i  r
        0     0.02   0.04   0.06   0.08    0.1    0.12   0.14   0.16
                    Observed Maximum PAN (ppm)

 Figure  2-14.  Predicted versus observed maximum  PAN
                concentrations for  surrogate mixture
                runs.
                                 2-38

-------
I
O
        Propene
     -m
      -0.5 -O.4 -0.3 -O.2 -O.1   O   0.1   0.2   O.3   0.4   0.5
                Relative Error In Maximum PAN
                EC   KT^l rrc     ggzi  ore   Eggg UNO
•
i
•8
  1O -
        Butane
      -0.5  -O.4  -0.3  -0.2  -O.I   0   0.1  0.2   0.3   0.4   0.5
                 Relative Error In Maximum PAN
ED  EC
                         rrc     E23 ore
                                                  UNC
 i
   10 -
       Toluene
      -0.5 -0.4  -O.3  -O.2  -O.I   0   0.1   0.2  O.3  0.4   0.5
                 Relative Error In Maximum PAN

           P7l EC    re^q  rrc     E7Z1 ore     resi  UNC

 Figure  2-15.  Distribution of relative errors  in maximum PAN
              concentrations for propene, n-butane, and  toluene
              runs.
                              2-39

-------
         Simple  Mixtures
        I
        i
                                      1
       -0.3 -0.4 -0.3  -O.2  -O.I   0   0.1   0.2   0.3   0.4   0.5
                 Relative Error In Maximum PAN
        EC
                           rrc
OTC
UNO
i
•5
I
Surrogate
 Mixtures
                       1
        -0.5 -0.4 -0.3 -0.2 -0.1   0    0.1  0.2  0.3  0.4  0.5
                  Relative Error In Maximum PAN
                             ore
                                                 UNO
        i
             5§§S
             H
                                      Auto  Exhaust
       -0.5 -0.4 -0.3 -O.2  -0.1   0   0.1   0.2   0.3   0.4   0.5
                 Relative Error In Maximum PAN

            p"7i EC   ivq  rrc     GZ3 OTC    ES3 UNC


Figure 2-16.  Distribution of  relative errors in maximum PAN
             concentrations for simple mixture, surrogate
             mixture, and auto exhaust runs.
                              2-40

-------
   »O
 1
       Propene
      J

                          1
1
      -0.5  -0.4  -O.3 -O.2 -O.I   0   0.1   0.2   0.3   0.4   0.5
               Relative Error In Maximum HCHO
         crn EC    rrq  rrc     VZA ore
                                              UNC
I
                                  Simple  Mixtures
                     W.
                                    I
      -0.5 -0.4 -O.3 -O.2  -0.1   0   0.1   0.2  0.3   0.4   0.5
                Relative Error In Maximum HCHO
           1771 EC    ren rrc     E23 ore    ES3  UNC
•s  -:E
J   ?
                                      Surrogate
                                       Mixtures
                                                       1
      -0.5 -0.4 -0.3 -O.2  -0.1   0   0.1   0.2  0.3   O.4   0.5
                Relative Error In Maximum HCHO
          1ZZ1 cc   ess rrc     &n arc
Figure 2-17.  Distribution of relative errors in maximum formaldehyde
             concentrations for propene, simple mixture, and
             surrogate mixture runs.
                              2-41

-------
uncertainty in the  mechanism and the data as  discussed in Carter et al.
(1986).
                                   2-42

-------
                    3.  CONDENSATION OF THE MECHANISM

     Numerical integration  of the chemistry is the  most  computationally
demanding task in photochemical AQS models.  The computer  memory and time
requirements  of  these  models are  a  strong function  of the number  of
chemical species  in the mechanism  and a weak function of the number  of
reactions in  the mechanism.  When the most accurate numerical integration
routines [i.e., refinements  of those developed by Gear (1971)]  are used
to solve the  chemistry,  the computer resource requirements depend on the
square  of  the  number  of  integrated  species.   Thus,  it  is  clearly
important  to  eliminate  any unimportant species  and reactions  from  the
chemical mechanism  and lump  similar species wherever possible  prior  to
using the mechanism in AQS models.
     Single-cell photochemical  AQS models  like  OZIPM (Hogo  and Whitten
1986) can  accommodate fairly large chemical mechanisms because  the task
of integrating the  chemistry in one cell for one diurnal  cycle is fairly
small.   However,  typical  applications  of Eulerian models  such  as  the
Urban  Airshed  Model  (Reynolds  et al.  1973)  employ  1,000  to  5,000
computational  cells  and use  large  amounts of  computer resources  for
integrating the chemistry.   Thus, it is quite important  to  condense the
chemistry to  the maximum justifiable extent for these multi-cell models.
Because of the differences in the allowable size of mechanisms in the two
types of models,  two  versions of  the surrogate species  mechanism were
developed.  The first mechanism, shown in Tables 3-1 and 3-2, is intended
for  use  in  OZIPM  and  other  single-cell  models.   This  mechanism  is
referred to as  the  OZIPM mechanism in this report. It was developed from
the  detailed  mechanism, shown  in Table 2-2, using  minimal condensation
approximations.  The  OZIPM mechanism  has 131 reactions  and 50 species.
Twelve  of  these species  can safely  be computed using the  steady-state
approximation and one of the species, HJJ, can be treated as a constant.
The second mechanism, shown in Tables 3-3 and 3-4, is intended for use in
multi-cell AQS models.   It is referred  to as  the condensed mechanism in
this  report.  It has  95 reactions  and 36  species.  Nine  of the species
concentrations can safely be computed from the steady-state approximation
and  one of the species, H.O,  is a constant.  It was  developed from the
OZIPM mechanism by incorporating significant condensation assumptions and
                                    3-1

-------
TABLE 3-1.  SAPRC/ERT OZIPN CHEMICAL MECHANISM SPECIES LIST


      SPECIES                 ABREVIATION
   1. NITRIC OXIDE                NO
   2. NITROGEN DIOXIDE            N02
   3. OZONE                       03
   4. NITROUS ACID                MONO
   5. NITRIC ACID                 HN03
   6. PERNITRIC ACID              HN04
   7. NITROGEN PENTOXIDE          N205
   $. NITROGEN TRIOXIDE           N03
   9. HYDROPEROXY RADICAL         H02
  10. HYDROGEN PEROXIDE           H202
  11. CARBON MONOXIDE             CO
  12. FORMALDEHYDE                HCHO
  13. ACETALDEHYDE                ALD2
  14. PROPIONALDEHYDE             RCHO
  15. PEROXYACETYLNITRATE         PAN
  16. PEROXYPROPIONYL NITRATE     PPN
  17. TOTAL R02 RADICALS          R02
  18. TOTAL RCO3 RADICALS         RC03
  19. ORGANIC PEROXIDE            ROOH
  20. ACETONE                     ACET
  21. METHYL ETHYL KETONE         NEK
  22. GLYOXAL                     GLYX
  23. GLYOXAL PAN                 GPAN
  24. METHYL GLYOXAL              MGLY
  25. C4-C5 ALKANES               ALK4
  26. >CS ALKANES                 ALK7
  27. ALKYL NITRATE               ALKN
  28. ETHENE                      ETHE
  29. PROPENE                     PRPE
  30. TRANS-2-BUTENE              TBUT
  31. TOLUENE                     TOLU
  32. N-XYLENE                    XYLE
  33. 1.3.5 TRI-M-BENZENE         TMBZ
  34. DICARBONYLS                 DIAL
  35. 0-CRESOL                    CRES
  36. PHENOLS                     PHEN
  37. NITROPHENOL                 NPHE

      STEADY STATE SPECIES

  38. OXYGEN • SINGLET D          0*SO
  39. OXYGEN • ATONIC             0
  40. HYDROXYL RADICAL            OH
  41. ACETALDEHYDE RC03           MC03
  42. PROPIONALDEHYDE RC03        PC03
  43. GLYOXAL RC03                GC03
  44. GENERAL R02 01              R02R
  45. GENERAL R02 02              R202
  46. ALKYL NITRATE R02           R02N
  47. PHENOL R02                  R02P
  48. BENZALDEHYDE N-R02          BZN2
  49. PHENOXY RADICAL             BZO
  SO. WATER VAPOR                 H20
                               3-2

-------
                                          TABLE 3-2.   SAPRC/ERT  OZIPM CHEMICAL  MECHANISM
                                        REACTION
to
 I
Ul
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
N02
0
0
0
NO
N02
NO
NO
N02
N205
N205
N02
N03
N03
03
03
0*SO
0*SO
NO
HONO
N02
N02
HN03
CO
03
NO
N02
HN04
HN04
03
H02
H02
N03
N03
H202
H202
R02
RC03
RC03
R02
RC03
ROOH
R02
R02
RC03
HCHO
HCHO
*

+
»
4
*
*
*
*

4
*
*
*
*
*
*

*
+
*
*
+
«
+
*
+

•
+
*
*
*
+
*
*
+
*
*
»
*
+
*
*
*
«•
*
HV

N02
N02
03
03
N03
HO
N03

H20
N03
HV
HV
HV
HV
H20

OH
HV
H20
OH
OH
OH
OH
H02
H02

OH
H02
H02
H02 *
H02
H02 *
HV
OH
NO
NO
N02
H02
H02
HV
R02
RC03
RC03
HV
HV
•••> NO * 0
..-> 03
•••> NO
•••> N03
•••> N02
•••> N03
•••> 2.N02
••-> 2.N02
---> N205
•••> N02 * N03
•••> 2.HN03
• •» NO * N02
•••> NO
•••> N02 * 0
.-•> 0
...> o*SO
•••> 2.0H
-••> 0
•••> HONO
•••> NO * OH
•••> HONO • N02 +
-•-> HN03
•••> N03
•••> H02
•••> H02
•••> N02 * OH
•••> HN04
•••> N02 * H02
•••> N02
•••> OH
•••> H202
H20 •••> H202
•••> HN03
H20 •--> HN03
•••> 2.0H
•••> H02
•••> NO
•••> NO
••-> N02
•••> H02
••-> H02
•••> H02 * OH
•••>
• ••>
• •->
•--> 2.H02 * CO
--•> CO
                                                                       HNC3
MOLECULE-CC-SEC PPM-MIM
(298 K) (298 K)
RADIATION DEPENDENT
8.12E+05 4.87E«07
9.30E-12 1.37E+04
2.23E-12 3.29E*03
1.81E-U 2.68E+01
3.23E-17 4.77E-02
1.86E-11 2.75E+04
1.02E-19 1.50E-04
1.15E-12 1.71E+03
3.47E-02 2.08E+00
1.00E-21 1.48E-06
4.04E-16 5.9SE-01
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
2.20E-10 3.25E+05
7.20E+08 4.32E+10
6.60E-12 9.75E+03
RADIATION DEPENDENT
4.00E-24 5.91E-09
1.13E-11 1.68E+04
1.28E-13 1.89E+02
2.18E-13 3.22E+02
6.78E-14 1.00E+02
8.28E-12 1.22E+04
1.37E-12 2.02E+03
8.22E-02 4.93E+00
4.00E-12 5.91E+03
2.01E-15 2.96E*00
3.02E-12 4.46E+03
6.97E-30 2.54E-01
3.02E-12 4.46E403
6.97E-30 2.54E-01
RADIATION DEPENDENT
1.66E-12 2.45E+03
7.68E-12 1.14E+04
7.68E-12 1.UE+04
5.12E-12 7.57E+03
3.00E-12 4.43E+03
3.00E-12 4.43E+03
RADIATION DEPENDENT
1.00E-15 1.48E+00
3.00E-12 4.43E+03
2.50E-12 3.69E+03
RADIATION DEPENDENT
RADIATION DEPENDENT

EXPRESSION

1.10£+04*EKP( 1282/T)

1.11E-13*EXP< 894/T)
1.80E-12*EXP< -1370/T)
1.20E-13*EXP< -2450/T)
8.00E-12«EXP{ 252/T)
1.72E-20»EXP( 529/T)
4.62E-13*EXP( 273/T)
1.33E«15*EXPM1379/T)

2.50E-14*EXP( -1229/T)






4.03E-13«EXP( 833/T)


9.57E-13«EXP< 737/T)
9.40E-15*EXP< 778/T)

1.60E-12*EXP( -942/T)
S.70E-12*EXP< 240/T)
1.02E-13*EXP< 773/T)
4.35E*13*EXP<-10103/T)

1.40E-14*EXP( -579/T)
2.27E-13*EXP( 771/T)
3.26E-34*EXP( 2971 /T)
2.27E-13*EXP( 771/T)
3.26E-34*EXP( 2971/T)

3.10E-12*EXP( -187/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)









-------
                                           TABLE  3-2.   SAPRC/ERT OZIPH  CHEMICAL MECHANISM (CONTINUED)
CJ
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
HCHO*
HCHO*
HCHO*
AL02 *
AL02 *
AL02 *
NC03 *
NC03 *
NCOS *
NCOS *
NCOS *
PAN
RCHO *
RCHO*
RCHO*
PC03 *
PC03 *
PCOS *
PC03 *
PCOS *
PPN
ACET *
ACET *
NEK *
NEK *
GLYX *
GLYX *
GLYX *
CC03 *
GC03 *
GPAN
GC03 *
GCOS *
GC03 *
NGLY *
NGLY *
NGLY *
ALK4 *
ALK7*
ALKN *
R02N *
R02N *
R02N *
OH
N03
H02
OH
HV
NOS
NO
N02
K02
R02
RC03

OH
HV
NOS
NO
N02
H02
R02
RCOS

HV
OH
HV
OH
HV
OH
NOS
N02
NO

H02
R02
RCOS
HV
OH
NOS
OH
OH
OH
NO
H02
R02
REACTION
•••> H02 * CO
•••> HN03 * H02 * CO
•••> R02R * R02
•••> MC03 * RC03
•••> CO * HCHO * H02
•••> HN03 * MC03 * RC03
•••> N02 * HCHO * R02R
•••> PAN
•••> ROOH * HCHO
•••> .5H02 * HCHO * R02
•-•> H02 * HCHO * RC03
••-> MC03 * N02 * RC03
•••> RC03 * PC03
•••> ALD2 * H02 * CO
•••> HN03 * PC03 * RC03
•••> N02 * ALD2 * R02R
•••> PPN
•••> ROOH* ALD2
•••> .5H02 * ALD2 * R02
•••> H02 * ALD2 * RC03
•••> PC03 * N02 * RC03
•••> MC03 * HCHO * RC03
•••> NGLV * R02R * R02
•••> MC03 * ALD2 * RC03
-••> 1.5R202 * 1.5R02 * .5MC03
* .5PC03 * RC03
••-> .13HCHO *1.87CO
--•> .63H02 *1.26CO * .37GC03
•••> HN03 * .63H02 *1.26CO
•••> GPAN
•••> N02 * H02 * CO
•••> N02 * GC03 * RC03
•••> ROOH * CO
-•-> .5H02 * CO * R02
•••> H02 * CO * RC03
••-> NC03 * H02 * CO
---> MC03 * CO * RC03
-••> HN03 * MC03 * CO
••->B01*HCHO *B02*AL02 +B03*RCHO
*B06*R02N *B07*R02R *B08*R202
•••>B10*HCHO *B11*ALD2 +B12*RCHO
*B15*R02N *B16*R02R *B17*R202
•••> N02 * .15MEK *1.05RCHO
*1.S9R202 *1.39R02
•••> ALKN
•-•> ROOH * MEK
•••> R02 * .5H02 * MEK
MOLECULE -CC- SEC PPM-MIN
<298 K) (298 K)




* R02R * R02

* R02






* R02R * R02

* R02





* R02R * R02

* R02R * R02
* .5AL02 * .5HCHO


* .37RC03
* .37GC03 * .37RC03






* RC03

» RC03
*B04*ACET +B05*MEK
*B09*R02
*B13*ACET *B14*MEK
4B18*R02
* .48ALD2 * .16HCHO




9.00E-12 1.33E+04
5.97E-16 8.82E-01
1.00E-14 1.48E*01
1.60E-11 2.36E+04
RADIATION DEPENDENT
2.50E-15 3.69E*00
7.68E-12 1.UE+04
5.12E-12 7.57E*03
3.00E-12 4.43E+03
3.00E-12 4.43E*03
2.50E-12 3.69E+03
3.68E-04 2.21E-02
1.98E-11 2.93E*04
RADIATION DEPENDENT
2.46E-15 3.63E+00
7.68E-12 1.HE*04
5.12E-12 7.57E*03
3.00E-12 4.43E*03
3.00E-12 4.43E+03
2.50E-12 3.69E*03
3.68E-04 2.21E-02
RADIATION DEPENDENT
2.29E-13 3.39E+02
RADIATION DEPENDENT
9.85E-13 1.46E*03

RADIATION DEPENDENT
1.15E-11 1.70E+04
6.01E-16 8.88E-01
5.12E-12 7.57E*03
7.68E-12 1.HE*04
3.68E-04 2.21E-02
3.00E-12 4.43E*03
3.00E-12 4.43E«03
2.50E-12 3.69E+03
RADIATION DEPENDENT
1.70E-11 2.51E*04
2.50E-15 3.69E»00
3.22E-12 4.76E+03
SEE NOTE 1
6.16E-12 9.11E»03
SEE NOTE 1
2.03E-12 3.00E*03

7.68E-12 1.KE+04
3.00E-12 4.43E+03
1.00E-15 1.48E400
                                                                                                                                EXPRESSION



                                                                                                                       6.00E-13*EXP(  -2060/T)

                                                                                                                       6.90E-12*EXP(   2SO/T)

                                                                                                                       3.00E-13*EXP(  -1427/T)
                                                                                                                       4.20E-12*EXP{   180/T)
                                                                                                                       2.60E-12*EXP(   180/T)
                                                                                                                       2.00E*16*EXP(-13542/T)
                                                                                                                       8.50E-12*EXP(   252/T)

                                                                                                                       3.00E-13*EXP{  -1432/T)
                                                                                                                       4.20E-12*EXP(   180/T)
                                                                                                                       2.80E-12*EXP(   180/T)
2.00E416*EXP(-13542/T)

1.00E-11*EXP< -1125/T)

1.20E-11*EXP(  -745/T)
                                                                                                                      6.00E-13*EXP(  -2058/T)
                                                                                                                      2.80£-12*EXP(   180/T)
                                                                                                                      4.20E-12*EXP(   180/T)
                                                                                                                      2.00E*16*EXP(-13542/T)
                                                                                                                      3.00E-13«EXP(  -1427/T)
                                                                                                                      1.05E-11*EXP(   -353/T)

                                                                                                                      1.62E-11*EXP(   -288/T)

                                                                                                                      2.19E-11*EXP<   -709/T)

                                                                                                                      4.20E-12*EXP(    180/T)

-------
                                          TABLE 3-2.   SAPRC/ERT  OZIPN CHEMICAL  MECHANISM  (CONTINUED)
ui
 I
in
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
R02N
R202
R202
R202
R202
R02R
R02R
R02R
R02R
ETHE
ETHE
ETKE
ETHE
PRPE
PRPE
PRPE
PRPE
TBUT
TBUT
TBUT
TBUT
TOLU
XYLE
TM8Z
DIAL
DIAL
ORES
CRES
R02P
R02P
R02P
R02P
BZO
BZO
BZO
PHEN
PHEN
NPHE
BZN2
BZN2
BZN2
*
»
+
•
*
»
*
«.
*
*
•
*
»
*
»
*
*
+
*
*
»
*
*•
»
»
»
*
4>
*
•»•
•
•
•
•

*
*
*
*
*

RC03
NO
H02
R02
RC03
NO
H02
R02
RC03
OH
03
0
N03
OH
03
0
N03
OH
03
0
H03
OH
OH
OH
OH
HV
OH
N03
NO
H02
R02
RC03
N02
H02

OH
N03
N03
N02
H02

MOLECULE -CC- SEC
REACTION
•-•> RC03 * .5H02 *
•••> N02
•••> ROOH
•••> R02
•-•> RC03
•••> N02 *• H02
•••> ROOH
•••> .5H02 * R02
•••> .5H02 * RC03
•••> R02R * R02 «1
•••> HCMO * .12H02 *
•••> HCHO * H02 *
•••> N02 «• 2. HCHO *
•••> R02R * HCHO *
•••> .65HCHO * .5AL02 *.
•.135R02R +.135R02
•••> .6ACET * .4HCHO +
* .4CO * .6R02
-••> N02 * HCHO *
-••> R02R •*• 2.ALD2 *
•••> ALD2 * .15CO *
* .27R02 * .30HCHO
•••> KEK * .4H02
•••> N02 * 2.AL02 *
•••> .16CRES * .16H02 *
+.144MGLT *.114GLYX
•••> .17CRES * .17H02 *
+.316MGLY *.095GLYX
-••> .17CRES * .17H02 *
• .S6MGLY
••-> PC03 * RC03
-•-> H02 * CO *
•••> .2HGLT * .15R02P *
— > HN03 * B20
•-•> NPHE
•••> ROOH
•••> .5H02 * R02
•••> .SH02 * RC03
••-> NPHE
•••> PHEN
•••> PHEN
•••> .2GLYX * .15R02P *
•••> HN03 * 8ZO
•••> HN03 * BZN2
-••>
•••> NPHE
-••> NPHE

MEK








.56HCKO *
.4200
CO *
R202 +
ALD2 *
285CO *

.2AL02 *

ALD2 *
R02
.27R02R *


R202 *
.84R02R *

.83R02R *

.83R02R *


NC03 *
.8SR02R +








.85R02R *















.22AL02

R02R * R02
R02
R02
.060H 4.165H02

.2H02 + .6R02R

R202 * R02

.120H * .21H02


R02
.4DIAL + .84R02

.83R02 * .65DIAL

.85R02 + .4901 AL


RC03
R02








R02





(298 K)
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
8.54E-12
1.74E-18
7.29E-13
1. IDE- 16
2.63E-11
1.13E-17

3.98E-12

7.57E-15
6.37E-11
2.00E-16

2.34E-11
3.79E-13
6.19E-12

2.45E-11

6.20E-11

3.00E-11
RADIATION
4.00E-11
2.20E-11
7.68E-12
3.00E-12
1.00E-15
3.00E-12
1.50E-11
3.00E-12
1.00E-03
2.80E-11
3.80E-12
3.80E-12
1.50E-11
3.00E-12
1.00E-03
PPM-MIH
(298 K)
4.43E+03
1.HE+04
4.43E+03
1.48E+00
4.43E+03
1.UE+04
4.43E+03
1.4BE400
4.43E+03
1.26E+04
2.57E-03
1.0SE+03
1.62E-01
3.89E+04
1.67E-02

5.C8£*03

1.12E*01
9.42E+04
2.96E-01

3.45E*04
5.61E«02
9.14E+03

3.62E404

9.16E»04

4.43E+04
DEPENDENT
5.91E+04
3.25E*04
1.14E+04
4.43E+03
1.48E*00
4.43E*03
2.22E+04
4.43E+03
6.00E-02
4.14E«04
5.62E«03
5.62E+03
2.22E+04
4.43E«03
6.00E-02
                                                                                                                               EXPRESSION
                                                                                                                      4.20E-12*EXP(   180/T)
                                                                                                                      4.20E-12*EXP(   180/T)
                                                                                                                      2.15E-12*EXP<
                                                                                                                      1.20E-14*EXP(
                                                                                                                      1.04E-11*EXP(
                                                                                                                      2.00E-12*EXP(
                                                                                                                      4.85E-12*EXP(
                                                                                                                      1.32E-14*EXP(
                411/T)
              •2634/T)
               -792/T)
              •2923/T)
                504/T)
              •2105/T)
                                                                                                                      1.18E-11*EXP(  -324/T)

                                                                                                                      5.00E-12*EXP( -1935/T)
                                                                                                                      1.01E-11*EXP<   549/T)
                                                                                                                      9.08E-15*EXP( -1137/T)
2.26E-11*EXP(
1.00E-11*EXP(
2.10E-12«EXP(
  10/T)
•975/T)
 322/T)
                                                                                                                      1.66E-11*EXP(   116/T)
                                                                                                                                      180/T)

-------
                                  TABLE  3-2.    SAPRC/ERT OZIPN CHEMICAL MECHANISM (CONTINUED)
                                    Notes:
                                    1.  Alkane product coeff(cents are temperature dependent.
                                       They are determined by  Interpolation from the values
                                       at  the following  three  tenperatures.

                                         Coeff.    270 K    300 K     330 K
CJ
801
B02
B03
B04
BOS
B06
B07
BOS
B09
B10
B11
B12
B13
814
BIS
B16
B17
BIS
0.197
0.168
0.115
0.3S1
0.489
0.114
0.886
0.446
1.332
o.oos
0.021
0.215
0.297
0.765
0.288
0.701
0.651
1.352
0.189
0.315
0.166
0.339
0.442
0.073
0.927
0.599
1.526
0.023
0.«32
0.249
0.355
0.882
0.190
0.810
0.837
1.647
0.188
0.582
0.244
0.350
0.267
0.050
0.950
0.807
1.757
0.054
0.081
0.296
0.419
0.891
0.126
0.873
1.004
1.877

-------
TABLE 3-3. SAPRC/ERT CONDENSED CHEMICAL MECHANISM SPECIES LIST
      SPECIES                 ABREVIATION
   1. NITRIC OXIDE                NO
   2. NITROGEN DIOXIDE            N02
   3. OZONE                       03
   4. NITROUS ACID                MONO
   5. NITRIC ACID                 HN03
   6. PERNITRIC ACID              HN04
   7. NITROGEN PENTOXIDE          N205
   8. NITROGEN TRIOXIDE           N03
   9. HYDROPEROXV RADICAL         H02
  10. CARBON MONOXIDE             CO
  11. FORMALDEHYDE                HCHO
  12. ACETALDEHYDE                ALD2
  13. METHYL ETHYL KETONE         MEK
  U. METHYL GLYOXAL              MGLV
  15. PEROXYACYLNITRATE           PAN
  16. TOTAL R02 RADICALS          R02
  17. CH3C03 RADICAL              MC03
  18. ALKYL NITRATE               ALKN
  19. >C3 ALKANES                 ALKA
  20. ETHENE                      ETHE
  21. >C2 ALKENES                 ALKE
  22. TOLUENE                     TOLU
  23. HIGHER AROMATICS            AROM
  2*. UNKNOWN DICARBONYLS         DIAL
  25. 0-CRESOL                    CRES
  26. NITROPHENOLS                NPHE

     STEADY STATE SPECIES

  27. OXYGEN • SINGLET D          0*SD
  28. ATOMIC OXYGEN               0
  29. NYOROXYL RADICAL            OH
  30. GENERAL R02 *1              R02R
  31. GENERAL R02 *2              R202
  32. ALKYL NITRATE 802           R02N
  33. PHENOL R02                  R02P
  34. BENZALDEHYDE N-R02          BZN2
  35. PHENOXY RADICAL             BZO
  36. WATER VAPOR                 H20
                             3-7

-------
                                                TABLE 3-4.   SAPRC/ERT CONDENSED CHEMICAL MECHANISM
                                              REACTION
ui
CO
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
H02 +
0
0 *
0 *
NO *
N02 *
NO *
NO *
N02 *
N205
N205 »
H02 *
N03 +
N03 *
03 *
03 »
o«so «•
0*SO
NO »
MONO «•
N02 «•
N02 *
HN03 «•
CO *
03 *
NO *
N02 *
HN04
HN04 *
03 *
H02 «•
H02 *
N03 *
H03 *
R02 *
R02 «•
R02 *
R02 *
HCHO *
HCHO *
HCHO *
HCHO »
HCHO *
ALD2 *
ALD2 *
ALD2 +
MC03 *
MC03 *
MC03 *
MC03 *
PAN
HV •••>
...»
N02 -••>
N02 •••>
03 •••>
03 •••»
N03 -•>
HO •••>
N03 •">
• -•>
H20 •••>
N03 •••>
HV •••>
HV •••>
HV "•>
HV •••>
H20 •••>
• ••>
OH •••>
HV •••>
H20 •••>
OH — >
OH •••>
OH •••>
OH •••>
H02 •••>
K02 •••>
• ••>
OH •••>
H02 •-•>
H02 •••>
H02 * H20 •••>
H02 •••>
H02 * H20 •••>
NO •••>
H02 •••>
R02 •••>
MC03 •••>
HV •••>
HV •••>
OH •••>
N03 •••>
H02 •••>
OH •••>
HV •••>
N03 ••->
HO •••>
N02 •••>
H02 •••>
MC03 --•>
— >
NO *
03
NO
N03
N02
N03
2.N02
2.N02
H205
H02 *
2.HM03
NO *
HO
H02 *
0
0*SD
2. OH
0
HOMO
NO *
HOMO •
HN03
N03
H02
H02
H02 *
HN04
N02 *
N02
OH


HH03
HN03
HO
H02

MC03
2.H02 *
CO
H02 *
HN03 *
R02R *
MC03
CO *
HN03 *
N02 *
PAN
HCHO
2.H02 *•
MC03 *
0








N03

N02

0





OH
H02 * HN03




OH

H02










CO

CO
H02 * CO
R02

HCHO * K02 * R02R *
MC03
HCHO * R02R * R02


2. HCHO
N02
MOLECULE -CC- SEC
(298 K)
RADIATION
7.75E*05
9.30E-12
2.23E-12
1.81E-U
3.23E-17
1.86E-11
9.68E-20
1.15E-12
3.47E-02
1.00E-21
4.04E-16
RADIATION
RADIATION
RADIATION
RADIATION
2.20E-10
7.20E+08
6.60E-12
RADIATION
4.00E-24
1.14E-11
1.28E-13
2.18E-13
6.786-14
8.28E-12
1.37E-12
8.22E-02
4.00E-12
2.01E-15
3.02E-12
6.97E-30
3.02E-12
6.97E-30
7.68E-12
3.00E-12
1.00E-15
3.00E-12
RADIATION
RADIATION
9.00E-12
5.97E-16
1.00E-H
1.60E-11
R02 RADIATION
2.50E-15
7.68E-12
5.12E-12
3.00E-12
2.50E-12
3.686-04
PPM-MIH
(298 K)
DEPENDENT
4.656*07
1.376*04
3.29E+03
2.68E+01
4.77E-02
2.75E+04
1.43E-04
1.71E+03
2.08E+00
1.48E-06
5.98E-01
DEPENDENT
DEPENDENT
DEPENDENT
DEPENDENT
3.25E«05
4.32E*10
9.75E+03
DEPENDENT
5.91E-09
1 .686*04
1.896*02
3.226*02
1.006*02
1.226*04
2.026*03
4.93E*00
5.91E*03
2.96E*00
4.466*03
2.54E-01
4.46E*03
2.54E-01
1.146*04
4.436*03
1.486*00
4.436*03
DEPENDENT
DEPEHDEHT
1.33E*04
8.82E-01
1.486*01
2.36E*04
DEPENDENT
3.696*00
1.146*04
7.576*03
4.436*03
3.696*03
2.216-02
EXPRESSION
1.056*04*6XP(

1.11E-13*EXP(
1.80£-12*EXP(
1.20E'13*EXP(
8.00E-12*EXP(
1.64E-20*EXP(
4.62E-13*EXP(
1282/T)

894/T)
•1370/T)
-2450/T)
252/T)
529/T)
273/T)
1.33E*15*EXP(-11379/T)

2.50E-14*EXP<






4.036- 13*6XP(


9.58E-13*EXP(
».40E-15*EXP(

1.60E-12*EXP(
3.70E-12*EXP(
1.02E-13*EXP(
4.35E*13*EXP(

1.40E-14*EXP(
2.27E-13*EXP(
3.26E-34*6XP(
2.27E-13*EXP(
3.26E-34*EXP(
4.20E-12*6XP(






6.00E-13*EXP(

6.90E-12*EXP(

3.00E-13*EXP(
4.20E-12*EXP(
2.80E-12*EXP(


2.00E*16*6XP(

•1229/T)






833/T)


737/T)
778/T)

•942/T)
240/T)
773/T)
•10103/T)

•579/T)
771/T)
2971/T)
771/T)
2971/T)
180/T)






•2060/T)

250/T)

-1427/T)
180/T)
180/T)


-13542/T)

-------
                                               TABLE 3-4.   SAPRC/ERT CONDENSED CHEMICAL MECHANISM (CONTINUED)
Ul
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
NEK *
NEK *
HOLY 4
NGLY *
NGLV 4
ALKA »
ALKN *
R02N 4
R02N 4
R02N >
R02N *
R202 *
R202 *
R202 «
R202
R02R «•
R02R *
R02R 4
R02R *
ETHE *
ETHE *
ETHE *
ETHE *
ALKE *
ALKE •
ALKE *
ALKE 4
TOLO *
AROH *
DIAL +
DIAL *
CRES 4
CRES +
R02P *
R02P 4
R02P 4
R02P *
BZO *
BZO «
BZO
NPHE *
BZN2 *
BZN2 *
BZN2
HV
OH
HV
OH
N03
OH
OH
NO
H02
R02
NC03
NO
H02
R02
NC03
NO
H02
R02
NC03
OH
03
0
N03
OH
03
0
N03
OH
OH
OH
HV
OH
N03
NO
H02
R02
NC03
N02
H02

N03
N02
H02

HOLECULE-CC-SEC PPM-NIN
REACTION
•••> ALD2 * MC03 * R02R
•••> 1.5R02R * 1.5R02 + MC03
•••> MC03 •» H02 + CO
•••> NC03 * CO
•••> HN03 * NC03 * CO
-••>B01*HCHO +B02*ALD2 «B03*NEK
*B06«R202 *B07«R02
-••> N02 * .15MEK *1.53ALD2
+1.39R02
•••> ALKN
•••> NEK
•••> R02 * .5H02 * NEK
•••> HCHO * H02 «• NEK
•••> H02
• ••>
•••> R02
•••> HCHO * H02
•••> N02 » H02
• ••>
•••> .5H02 * R02
•••> HCHO * H02
•••> R02R * R02 +1.56HCHO
•-•> HCHO * .12H02 * .42CO
•••> HCHO* H02 * CO
•••> N02 * 2.HCHO * R202
•••>B08*HCHO +B09*ALD2 * R02R
•-•>B10*HCHO *B11*ALD2 +B12*R02R
*B14*OH +B15*CO
•-•>B16«CO *B17*MEK *B18*HCHO
+B21*R02R «B21*R02
•••> N02 +B08*HCHO «B09*ALD2
•••> .16CRES * .16H02 * .84R02R
O44NGLY O14HCHO O14CO
•••> .17CRES + .17H02 •» .83R02R
*B23«NGLY +B24*HCHO *B24*CO
•••> MC03
•••> H02 * CO * NC03
•••> .2MGLY * .15R02P * .85R02R
•••> HN03 * BZO
•••> NPHE
• ••>
•••> .5H02 * R02
•••> HCHO * H02
•••> NPHE
* * * ^
• • • ^
•••> HN03 * BZN2
• ••>
••-> NPHE
•-•> NPHE

* R02
* .5AL02 * .5HCHO



«B04*R02N +B05*R02R

* .16HCHO *1.39R202













+ .22ALD2

+ R02R + R02
* R02
+ R02
+B12*R02 +B13*H02

«B19*ALD2 *B20*H02

* R202 * R02
* .4DIAL * .84R02

* .83R02 +B22*DIAL



* R02












(298 K) (298 K)
RADIATION DEPENDENT
9.85E-13 1.46E+03
RADIATION DEPENDENT
1.70E-11 2.51E+04
2.50E-15 3.69E+00
SEE NOTE 1

2.03E-12 3.00E+03

7.68E-12 1.14E+04
3.00E-12 4.43E»03
1.00E-15 1.48E+00
3.00E-12 4.43E+03
7.68E-12 1.HE+04
3.00E-12 4.43E«03
1.00E-15 1.48E*00
3.00E-12 4.43E+03
7.68E-12 1.14E404
3.00E-12 4.43E«03
1.00E-15 1.48E+00
3.00E-12 4.43E«03
8.54E-12 1.26E+04
1.74E-18 2.57E-03
7.29E-13 1.08E*03
1.09E-16 1.61E-01
SEE NOTE 1
SEE NOTE 1

SEE NOTE 1

SEE NOTE 1
6.19E-12 9.14E+03

SEE NOTE 1

3.00E-11 4.43E+04
RADIATION DEPENDENT
4.00E-11 5.91E+04
2.20E-11 3.25E+04
7.68E-12 1.14E+04
3.00E-12 4.43E+03
1.00E-15 1.48E+00
3.00E-12 4.43E+03
1.50E-11 2.22E+04
3.00E-12 4.43E+03
1.00E-03 6.00E-02
3.80E-12 5.62E+03
1.50E-11 2.22E+04
3.00E-12 4.43E+03
1.00E-03 6.00E-02
                                                                                                                              EXPRESSION


                                                                                                                           1.20E-11*£XP<   -745/T)


                                                                                                                           3.00E-13*EXP( -1427/T)
                                                                                                                                                *


                                                                                                                           2.19E-11*EXP(   -709/T)

                                                                                                                           4.20E-12*EXP(   180/T)




                                                                                                                           4.20E-12*EXP<   180/T)




                                                                                                                           4.20E-12*EXP(   180/T)
                                                                                                                          2.15E-12*EXP(   411/T)
                                                                                                                          1.20E-14*EXP(  -2634/T)
                                                                                                                          1.04E-11*EXP(   -792/T)
                                                                                                                          2.00E-12*EXP(  -2925/T)
                                                                                                                          2.10E-12*EXP(   322/T)
                                                                                                                          4.20E-12*EXP(   180/T)

-------
                                             TABLE 3-4.  SAPRC/ERT CONDENSED CHEMICAL MECHANISM (CONTINUED)
ui
 I
                                             NOTES:
                                             The variable product coeff(cents (Bi) and limped rate constants
                                             (Rj) are defined below.  The alkane product coefficients are
                                             given at three  temperatures.  Values of the coefficients at
                                             intermediate temperatures can be obtained by linear interpolation.
                                             Rate constants  are given in molecule-cc-sec units. The following
                                             fractions Must  be specified to determine the varaible coefficients.

                                                 C4-CS fraction of >C3 alkanes on a carbon basis
                                                 Terminal alkene fraction of >C2 alkenes on a carbon basis
                                                 Dl-atkylbenzene fraction of di- t trl-alky(benzenes on a carbon basis.
                                                 CVCS fraction of >C3 alkanes on a mole basis
                                                 Terminal alkene fraction of >C2 alkenes on a mole basis
                                                 Di-atkylbenzene fraction of di- t trI-alky(benzenes on a mole basis.
                                                 (A/4.5) / (A/4.5 * (1.-A>/7.)
                                                 (B/3.0) / (B/3.0 » (1.-B)/4.)
                                             Z • (C/8.0) / (C/6.0 » (1.-O/9.)

                                            Coeff.         at 270 K
at 300 K
at 330 K
§01
802
803
B04
805
B06
807
808
809
BIO
•11
B12
B13
B14
BIS
B16
B17
B18
B19
820
821
822
823
824
R57
R75
R76
R77
R78
R80
0.197*X * 0.005*(1-X)
0.282*X * 0.236*(1-X)
0.489*X * 0.765*(1-X)
0.114*X * 0.288*(1-X)
0.886*X * 0.701*(1-X)
0.446*X * 0.651*(1-X)
1.332*X * 1.352*(1-X)
y
y * 2.00*<1-Y)
0.64*y
0.50*y * (1-Y)
0.13*y * 0.27*(1-Y)
o.i7*y * o.2i*d-y)
0.06*y * 0.12*(1-Y)
0.28*Y
o.40*y
d-Y)
o.40*y
o.20*y
0.20*y * 0.«0*(1-Y)
o.60*y
0.650*2 » 0.49*(1-Z)
0.316*2 * 0.86M-Z)
0.095*2
1.053£-11*EXP( -354/T)*X
4.850E-12«EXP( 50«/T)*Y
1.320E-U*EXP(-2105/T)*Y
1.180E-11*EXP( -32«/T)*Y
5.000E-12*EXP(-1935/T)*Y
1.660E-11*EXP( 116/T)*Z
0.189*X «• 0.023*(1-X)
0.481*X * 0.281*(1-X)
0.442*X * 0.882*(1-X)
0.073*X *• 0.190*(1-X)
0.927*X * 0.810*(1-X)
0.599*X * 0.837*(1-X)
1.526*X * 1.647*(1-X)

















* 1.62E-11*EXP( -289/T)*(1
* 1.01E-11*EXP( 549/T)*(1
* 9.08E-15*EXP(-1137/T)*(1
+ 2.26E-11*EXP( 10/T)*(1
» 1.00E-11*EXP( -975/T)*(1
+ 6.20E-11*(1-Z)
0.188*X *
0.826*X *
0.267*X *
0.050*X »
0.950*X *
0.807*X *
1.757*X *

















•X)
•Y)
•Y)
•Y)
•Y)

0.054*(1-X)
0.377*(1-X)
0.891*(1-X)
0.126*(1>X)
0.873*(1-X)
1.004*(1-X)
1.877*(1-X)
























-------
approximations.  The major  distinction  between  the mechanisms  is  the
number  of  organic  precursor  species  and oxygenated  species  in  the
mechanisms.   Table 3-5 summaries  the organic  precursor and  oxygenated
species in each of the mechanisms.
     The philosophy used in this research program was to develop and test
detailed explicit  chemical mechanisms against  the smog chamber data base
and.  subsequently,  condense  the  mechanism for use  in  AQS models.   The
validity of condensed mechanisms  was determined by  testing against the
detailed  mechanism  for a  range  of  conditions characteristic  of  the
ambient atmosphere.  In urban-scale  atmospheric modeling,  the  mechanisms
are  always  applied to complex  mixtures of  organics.   Minor  pathways
included  in  the  explicit reaction  mechanisms can  often  be  ignored or
lumped  without  significantly  affecting  the  mechanism  performance  on
complex mixture  simulations.  Thus,  while some testing  of  the condensed
against the detailed mechanism was performed for single organics,  most of
the  testing was  performed for simple and complex mixtures  of organics in
typical  urban air.   Generally,  only condensation assumptions that had
little or  no effect on the predictions  were incorporated  into the OZIPH
mechanism.    Larger  discrepancies  between   the  condensed   and  OZIPM
mechanisms  were  tolerated because of the need  to minimize  the number of
species  in  multi-cell models.   Nevertheless,  these discrepancies were
small, which reflects  the generally conservative philosophy used in this
condensation  effort.
     Mechanism condensation  is not  a mysterious process.   It generally
proceeds  in  a  stepwise  fashion  from the condensation steps  that have
trivial  effects  to those that have  substantial  effects.   Each  of the
condensation  assumptions  or  steps  incorporated  into  the  AQS  model
mechanisms  is described in  this section.  Almost every approximation was
investigated  independently  as well as  in conjunction with   the  other
approximations.   Thus,  these  mechanisms  have been  synthesized  from  a
large amount  of testing.

3.1  The OZIPM Mechanism

     The inorganic  chemistry was not materially changed for either of the
AQS  model mechanisms.  The important inorganic species and reactions w»re
                                    3-11

-------
                             TABLE 3-5

                SURROGATE SPECIES IN THE MECHANISMS
DETAILED MECHANISM

 PROPANE
 C4-C5 ALKANES
 >C5 ALKANES

 ETHENE
 PROPENE
 1-BUTENE
 TRANS-2-BUTENE
 ISO-BUTENE

 BENZENE
 TOLUENE
 M-XYLENE
 MESITYLENE

 FORMALDEHYDE
 ACETALDEHYDE
 GLYCOL ALDEHYDE
 PROPIONALDEHYDE
 BENZALDEHYDE
 ACETONE
 METHYL ETHYL KETONE
 GLYOXAL
 METHYL GLYOXAL
 UNKNOWN AROMATIC
 RING-OPENING PROD 1
 UNKNOWN AROMATIC
 RING-OPENING PROD. 2
OZIPM MECHANISM
 C4-C5 ALKANES
 >C5 ALKANES

 ETHENE
 PROPENE

 TRANS-2-BUTENE
 TOLUENE
 M-XYLENE
 HESITYLENE

 FORMALDEHYDE
 ACETALDEKYDE

 PROPIONALDEHYDE

 ACETONE
 METHYL ETHYL KETONE
 GLYOXAL
 METHYL GLYOXAL
 UNKNOWN AROMATIC
 RING-OPENING PROD.
CONDENSED MECHANISM


>C3 ALKANES


ETHENE

HIGHER ALKENES
TOLUENE
HIGHER AROMATICS
FORMALDEHYDE
ACETALDEHYDE
METHYL ETHYL KETONE

METHYL GLYOXAL
UNKNOWN AROMATIC
RING-OPENING PROD.
                                    3-12

-------
carefully  selected at  the  time the  detailed mechanism was  formulated.
None of  the reactions  can  safely be eliminated  for  urban applications.
However,   the   concentrations  of   species  with  relatively   constant
concentrations,  such as  M,  0., and H^O,  can  be incorporated  into  the
reaction  rate  constants.   These species  are important  reactants  in  the
mechanism;  however,  they are  so  abundant  in  the lower atmosphere  that
these  reactions  do not significantly influence their concentrations.   H
and 02 were included as species in the detailed mechanism mostly for the
sake of  chemical  fidelity and clarity.  They  were eliminated  from  the
OZIPM  mechanism  by  incorporating  values  appropriate  for  the  lower
atmosphere  (i.e.,  [H]  = 2.49E19 and [<>2]  = 5.22E18 molecules/cc at 1 atm
and 298°K)  into  the appropriate rate constants (reactions 2,  4, 18,  32,
and 36  in Table  2-2).   Similarly,  the user may chose to incorporate the
water vapor concentration into the rate constants (for reactions 11,  17,
21, 33,  34, 37 and 38 in Table 2-2).  The  recommended default concentra-
tion of H20 is 5.E17 molecule/cc or 2.E4 ppm.
     The  form of  the rate  constant expressions  for  numerous  inorganic
reactions  is too complex to be input to standard kinetic solver packages
such as  OZIPM.   These rate expressions can be well approximated over the
typical photochemical oxidant season temperature range using the standard
rate  expression   instead  of  the  complex  expression  reported in  the
literature  and used in the detailed mechanism.  As part of the adaptation
and  condensation,   these  expressions were  fitted  to the  standard rate
expression,  k = A exp(-E/RT), over the 270  to 330°K temperature range.
The rate  constant  expressions affected were those for reactions 2, 4, 9,
10, 19. 22.  27. and 28 in Table 2-2.
     The  inorganic  reactions  involving H02  + H02 and HO. +  NO,  were
represented using  fewer reactions  in the OZIPM mechanism.  When M and 0»
are treated as  constants,  reactions 31-32,  33-34,  35-36, and  37-38 in
Table 2-2   can  be  represented  as  reactions  31,  32,  33,  and  34  in
Table 3-2,  respectively, without any loss of accuracy.
     Dinitrophenols  (DNPH) were eliminated from  the  species list  in the
OZIPM  mechanism.   This species  is only a  product  in the mechanism (see
reaction  158  in Table 2-2),  so  its  elimination has  no effect  on the
predictions for  other  species.   Its concentration is  integrated in the
                                    3-13

-------
detailed mechanism  because  it is  a significant  nitrogen  sink  in  the
aromatic mechanism.
     As discussed in Section 2, the detailed mechanism includes reactions
for the oxidation of propane and benzene.  These two compounds are among
the most  abundant of the less  reactive  NHOC found in urban air.   It is
not uncommon for each of these compounds to account for 2-3% of the NMOC.
This  is  in fact why propane  and  benzene  were  selected as  surrogate
species for less  reactive  compounds.  The contributions of these  species
to  ozone  formation   in urban areas  is  believed to be  quite small under
most   circumstances.   The  reactions  for  propane   and   benzene  were
eliminated  from the  OZIPM mechanism because  they contribute  so  little
reactivity  in   most  simulations  and   because   their reactivity  can
adequately  be  represented by  partial assignment  of  their emissions (or
initial concentrations)  to  the C4-C5 alkanes class.  Figures 3-1  and 3-2
compare predictions  of NO,  N0_,  and ozone  in simulations  with  propane
represented explicitly and as 50% C4-C5 alkanes and 50% nonreactive (on a
carbon  basis).   These figures  show results for  simulations of 1.5 ppmC
propane with 0.1  and 0.05 ppm NO  (NMOC/NO  ratios of 15 and 30).  Other
                                 A         A
inputs  for  the  simulation are  summarized in  Table 3-6.  The  results
clearly  indicate that  this approximate treatment of  propane emissions
provides excellent simulation  of the NO  oxidation rate and ozone forma-
                                        &
tion  at  two different NMOC/NO^ ratios.  Figures 3-3 and 3-4 show the NO,
N0_,  and  03  predictions  for  comparable  simulations  of  benzene/NO
  »                                                                     A
systems.  The figures show comparisons of the  results  using the  benzene
mechanism  to  the results  with benzene  represented as  30% C4-C5  alkanes
and  70%  nonreactive.   The figures  show  good  agreement  for the  NO
                                                                        A
oxidation rate  and  for the ozone formation rates on the first day of the
simulations.  On the second day of the simulation with the lower NMOC/NO
                                                                        A
ratio,  the  approximation of benzene as  30%  C4-C5  alkanes  results in 15%
overproduction  of the ozone yield.  Since this discrepancy is small and
only   occurs  on the  second  day,  this  approximation  is  considered
acceptable.  Thus, we recommend treating propane  and benzene  as  50% and
30% C4-C5 alkanes, respectively, in urban ozone modeling.  Elimination of
the reactions for propane and benzene eliminates  three species from the
mechanism (ALK3, BENZ, BGLY).
                                    3-14

-------
    Comparison  of  Propane  <5c  C4—5  Alkanes
                           NOx - 0.1O ppm
i
        8 1O 12 14 16 IS 20 22 24 26 28 30 32 34 36 38 40 42
                            Tim* (Hours)
         1: 1.5 ppmC Propane
        2: 0.75ppmC C4-C5 Alkanes
    ISO
                           NO* - 0.10 ppm
I
14O-
130-
120-
11O-
100-
 9O-
 ao-
 70-
 60-
 5O-
 4O-
 30-
 2O-
 10-
  O
                                         03
        B 10 12 14 16 IB 20 22 24 26 28 30 32 34 36 38 40 42
                             Time (Hour*)
 Figure 3-1.  Comparison of NO,  N02, and 03 predictions for mixtures
            with 1.5 ppmC propane +0.10 ppm NOX and 0.75 ppmC
            C4-C5 alkanes + 0.10 ppm NOX.
                              3-15

-------
   Comparison  of Propane  Sc  C4—5  Alkanes
                          NO» - 0.09 ppm
1
               10
                  12
  14      16
Tlm« (Hour*)
18
         1: 1.5 ppmC Propane
         2: 0.75ppmC C4-C5 Alkanes
ISO
140-
130-
120-
110-
100-
 90-
 60
 70-
 60-
 80-
 40-
 30-
 20-
 10-
  O
                           NOx • 0.09 ppm
                                O3
               10      12      14      16
                            Tlm« (Hours)
                                         18
                         2O
Figure 3-2.
       Comparison of NO, NO2, and O3 predictions for mixtures
       with 1.5 ppmC propane + 0.05 ppm NOX and 0.75 ppmC
       C4-C5  alkanes + 0.05 ppm NO,,.
                              X
                            3-16

-------
                  Table 3-6

Conditions for Mechanism Comparison Simulations
   Solar Radiation Inputs:
   Place:
   Lattitude:
   Longitude:
   Time Zone:
   Date:
   Photolysis Rates:
   Mixing Heights:
   Temperature:

   Ozone aloft:

   Initial Values:
   NO/NOx Ratio:

   NMOC/NOx:

   Post 6 AM Emissions:
Los Angeles, CA
34.
118.
8.
June 21, 1986
Table 2-4
250 m at 0600
250 m at 0800
390 m at 0900
565 m at 1000
729 m at 1100
850 m at 1200
937 m at 1300
1000 m at 1400
1000 m at 2000
30 C
0.08 ppm
Hours
n
n
n
n
n
n
n
n


 [CO]   «= 1 ppm
 [03]   =0.01 ppb
 [H20]  = 20,000 ppm
 [HCHO] = 10 ppb in alkane and
         benzene runs only

 0.75

 3, 5, 10, 15, 20, 30  ppmC/ppm

 None
                            3-17

-------
   Comparison of  Benzene  
-------
   Comparison  of Benzene Sc  C4—5 Alkanes
                          NO* - 0.05 ppm
     40
1
               10
                  12      14      16
                        TIm« (Hours)
                         20
        1: 1.5ppmC Benzene
        2: 0.45ppmC C4-C5 Alkanes
110
100
 oo
 80
 70
 60
 so
 40
 so
 20
 10
  0
                           NOx • 0.05 ppm
                             O3
               10
                  ~~ •
                  12
  14      16
71m« (Hour*)
16
20
Figure 3-4.  Comparison of NO, NO2, and O3 predictions for mixtures
           with 1.5 ppmC benzene + 0.05 ppm NOX and 0.45 ppmC
           C4-C5 alkanes +0.05 ppm NOX.
                              3-19

-------
     The ethene  chemistry incorporated into  the detailed mechanism  has
glycolaldehyde (GCHO)  as a minor  product of ethene's reaction with  OH.
This  is  the  only  source  of  glycolaldehyde   in  the  mechanism.   The
chemistry  of  glycolaldehyde   is   very  similar  to   the  chemistry   of
acetaldehyde.   Tests  were  made  to  determine  if  the  glycolaldehyde
chemistry   could  be    represented   by   the  acetaldehyde   chemistry.
Figures 3-5  and  3-6  show  the  results of simulations with 1 ppmC  ethene
and 0.33  and 0.20 ppm NO ,  respectively, with  acetaldehyde  substituted
for glycolaldehyde  in  the OZIPM  mechanism.  Other  conditions for this
simulation are described in  Table  3-6.   The results show that NO  and  NO.
are essentially  unaffected by  the substitution.  The results for ozone
also  show  excellent  agreement.   The  ozone predicted   with  the  OZIPM
mechanism  is within  2%  of the  concentrations  predicted with the mech-
anism.  The  good agreement  obtained in  these  tests  on  pure  ethene-NO
                                                                        A
systems  provides  ample  justification  for  treating  glycolaldehyde  as
acetaldehyde  and.  thereby,  eliminating  three  more  species  from  the
mechanism  (GCHO, GA03, PANG).
     Another  minor product in  the detailed  aromatic mechanism is benz-
aldehyde  (ECHO).  The  benzaldehyde  yields from toluene, m-xylene,  and
mesitylene  are  0.08,  0.04. and  0.02,  respectively.  Benzaldehyde  is  not
very  reactive under ideal  circumstances  and is generally recognized as
contributing negative reactivity to NMOC mixtures (Atkinson et al. 1983).
Tests  were  made to  examine  the  effects  of ignoring  the  benzaldehyde
reactions  in the mechanism  for OZIPH.   Figures  3-7 and 3-8  compare  the
predictions  of  toluene-NO  simulations  at NMOC/NO  ratios of 5  and 10,
                          X                        A
respectively, with  and  without the benzaldehyde reactions.   Figures 3-9
and 3-10  show similar results  for m-xylene-NO   systems  with  and  without
benzaldehyde reactions  at  the  same two  NMOC/NO  ratios.   The  results
                                                  X
indicate   benzaldehyde   has  negligible  effects  on  the  NO and  NO-
concentration profiles.   For ozone, the level of agreement is also quite
good   (within  2%).   Ignoring  the  benzaldehyde  reactions  results  in
slightly  more ozone  in  the  simulations  (see  the lower NMOC/NO  ratio
                                                                  A
cases), which confirms  its negative reactivity contribution.   Given that
its contribution is  so small in pure aromatic-NO  systems, the benzalde-
hyde  chemistry can safely be ignored in urban ozone modeling.  This step
eliminates  three  species  from the  mechanism  (ECHO,  BA03,   and  PBZN).
                                   3-20

-------
1
    260
             Simulation  of  Ethene  +  NOx
                       1 ppmC HC •*• 0.93 ppm NOx
                 10   11
                       12   13   14   15
                         71m« (Hour*)
ie
17
18
        1: Detailed Mechanism
        2: OZIPM Mechanism
200
190-
16O-
170-
160-
150-
140-
130-
120-
110-
100-
 90-
 60-
 70-
 60-
 50-
 4O-
 30-
 20-
 10-
  0
                       1 ppmC HC + 0.33 ppm NOx
                 10   11   12   13   14   13
                              T!m« (Hours)
                                           16
     17
 Figure 3-5.  Comparison of NO, NO2, and O3 predictions for 1 ppmC
             ethene + 0.33 ppm NOX with the detailed and OZIPM
             mechanisms.
                             3-21

-------
    150
             Simulation  of  Ethene  +  NOx
                       1 ppmC HC + 0.20 ppm NOx
I
                 10   11
12   13   14    13
  71m« (Hour*)
16
17
IS
         1: Detailed Mechanism
         2: OZIPM Mechanism
    300
                        1 ppmC HC •*• 0.20 ppm NOx
    2BO-
    260-
    240-
    220-
    200-
    16O-
    160-
    140-
    120
    100
     8O-
     60-
     40-
     20-
      0
      O3
                  10   11   12   13   14   IS
                              Tim* (Hour*)
                    IS
     17
     18
 Figure 3-6.  Comparison of NO, NO2, and O3 predictions for 1 ppmC
             ethene + 0.20 ppm NOX with the detailed and OZIPM
             mechanisms.
                            3-22

-------
I
    ISO
             Simulation of  Toluene  4-  NOx
                       1 ppmC HC +• 0.20 ppm NOx
             9   1O   11   12   19    14   15   16   17
                             Tim* (Hour*)
        1: Detailed Mechanism
        2: OZ1PM Mechanism
                                                   ia
                       1 ppmC HC + 0.20 ppm NOx
1
     50-
40-
     30-
     20-
     10-
                 10   11
                      12   13   14
                        TVn« (Hour*)
15   16   17    18
 Figure 3-7.  Comparison of NO, NO2, and O-j predictions for  1 ppmC
            toluene + 0.20 ppm NOX with detailed and OZIPM mechanism.
                             3-23

-------
           Simulation  of  Toluene  4-  NOx
                     1 ppmC HC + 0.10 ppm NOx
               10   11   12   13   14   13   16   17   IB
      1: Detailed Mechanism
      2: OZIPM Mechanism
   130
                      1 ppmC HC + 0.10 ppm NOx
   120-
   110-
   100-
    00-
    60-
    70-
    60-
    50-
    40-
    30-
    20-
    10
       B    0    1O   11    12   13   14   15   16    17   16
                            Tim* (Hour*)
Figure  3-8.  Comparison of NO,  NO2» and 03 predictions for 1 ppmC
           toluene + 0.10 ppm NOX with detailed  and OZIPM mechanism.
                            3-24

-------
    180
           Simulation  of m—Xylene  + NOx
                       1 ppmC HC * 0.20 ppm NOx
I
                 10   11   12   13   14   15
                              Hm« (Hour*)
                                           :e   17
IB
        1: Detailed Mechanism
        2: OZIPM Mechanism
1
ISO
170-
160-
150-
140-
130-
120-
110-
100-
 80-
 60-
 70-
 60-
 50-
 4O-
 30-
 2O-
 10-
  0
                        1 ppmC HC + 0.20 ppm NOx
        8    8   10   11   12   13   14   15   16   17   18
                              Tbn« (Hour*)
 Figure 3-9.   Comparison of NO, NO2, and O3 predictions for .1 ppmC
             m-xylene + 0.20 ppm NOX with detailed and OZIPM mechanism.
                              3-25

-------
i
 80

 70

 80

 80

 40

 30

 20

 10-
           Simulation  of m—Xylene  +  NOx
                        1 pp/nC HC + 0.10 ppm NOx
                NO2
                      1&2
        8    9   10   11   12   13   14   15   18   17   18
                              Tlm« (Hour*)
        1: Detailed Mechanism
        2: OZIPM Mechanism
    ISO
                        1 ppmC HC + 0.10 ppm NOx
i
140-
130-
120-
110-
100-
 90-
 80-
 70-
 80-
 50-
 4O-
 3O
 20-
 10-
  C
          03
                  1O    11    12   13   14   19
                              Tim* (Hour*)
                                           18
17
18
 Figure 3-10.  Comparison of NO, NO2, and Oj predictions for 1 ppmC
             m-xylene + 0.10 ppm NOV with detailed and OZIPM mechanism.
                               3-26

-------
     The actual methyl ethyl ketone oxidation mechanism involves numerous
peroxy  radicals.   The detailed mechanism,  shown in Table 2-2,  has  some
lumping of  these R0_  radicals.   Further lumping was  performed for  the
OZIPH mechanism  by combining MK02  with the other RO, type  radicals,  as
shown below.
Detailed:
MEK

MK02
MK02
HK02
MK02
+ OH

+ NO
•»• H02
+ R02
+ RC03
	 >
+
	 >
	 >
	 >
	 >
R202 +
.5MC03 +
N02 +
ROOM +
.5H02 +
.5H02 +
.5MK02 +
.5RC03
HCHO +
HCHO +
HCHO +
HCHO +
1.5R02 +

PC03 +
ALD2
ALD2 +
ALD2 +
.5ALD2

RC03

R02
RC03
Condensed:
MEK
+ OH
	 >
1.5R202 +
1 . 5R02
+ .5ALD2
+ .5MC
                                           RC03
The   influence   of  this   change   was  investigated   in   pure   MEK-NO
                                                                        A
simulations.   The   modification  has  essentially  no  effect   on  the
predictions.
     The  last  area of  condensation for the  OZIPM mechanism was  in the
higher  alkene  chemistry.   The  detailed mechanism includes  four  higher
alkenes:  propene,  1-butene,  trans-2-butene,  and iso-butene.  Since the
>C2  alkenes rarely comprise  more  than 10%  or 15% of  NHOC emissions in
urban  areas,  it was  appropriate to  investigate  reducing the number of
alkene  precursor  species.   Comparisons  of  the propene  and  1-butene
mechanism predictions were  made for cases with 1  ppmC  NMOC and 0.33 and
0.20  ppm  NO .  Other  conditions  for  the  simulations  are  shown  on
Table 3-6.  The  results, shown in Figures 3-11  and 3-12,  indicate that
the  propene mechanism  oxidizes NO  faster and produces more ozone than
the  1-butene  mechanism.  The  ozone  yields  are  9  and  21% higher for
propene than 1-butene  in the 0.20  and 0.33  ppm NO  cases, respectively.
     Similar simulations were  carried  out to compare  the trans-2-butene
and  isobutene  mechanism.  The  results, shown  in Figures  3-13  and 3-14,
indicate  that  trans-2-butene  oxidizes  NO   almost  twice  as  fast  as
                                            A
isobutene.  This  results in  significantly different NO,  NO.,  and ozone
concentration  profiles.   For  example,  the  maximum  NO.  concentration
                                   3-27

-------
      Comparison  of  Propene  
-------
S
I
    15O
       Comparison  of  Propene  <8c  1 —Butene
                      1 ppmC HC -I- 0.20 ppm NOx
                 10
         1: Propene
         2: 1-Butene
                 11
12   13   14
  T1m« (Hour*)
16
17
18
    260
                       1 ppmC HC + 0.20 ppm NOx
240-
220-
200-
180-
160-
140-
120-
100-
 80-
 60-
 40-
 2O-
  0
                 10   11   12   19   14
                            Tim* (Hour*)
                                    19
                   16
     17
     18
Figure 3-12.
        Comparison of NO, N02, and O3 predictions with 1 ppmC
        propene and 1 ppmC 1-butene at NMOC/NOX = 5
                            3-29

-------
   Comparison of T—2—Butene &  Iso-Butene
                      1 ppmC HC + 0.33 ppm NOx
   260
                10   11   12   13   14   15
                            71m« (Hours)
      16   17   IS
        1: Tr»r»s-2-Btiten«
        2: too But*
    240
                      1 ppmC HC * 0.33 ppm NOx
    220-
    200-
    180-
    160-
    140-
    120-
    100-
    80-
    60-
    40-
    20-
O3
                10   11   12   13   14   15
                            Tim* (Hours)
      16   17   18
Figure 3-13.  Comparison of NO, NO2, and O3 predictions with 1 ppmC
            trans-2-butene and 1 ppmC iso-butene at NMOC/NOV = 3.
                           3-30

-------
   Comparison  of  T—2—Butene & Iso-Butene
                      1 ppmC HC + 0.20 ppm NOx
    150
I
                10   11
       1: Trmrts-2-But«nt
       2: Iso ButefW
                      12   13   14   15
                        Tlm« (Hour*)
16   17
    240
                      1 ppmC HC + 0.20 ppm NOx
220-
200-
160-
160-
140-
120-
100-
 6O-
 60-
 40-
 20-
                   03
       8    •   10   11    12   13   14   15   16   17   16
                            Tim* (Hour*)
Figure 3-14.  Comparison of NO, NO2, and O3 predictions with 1 ppmC
            trans-2-butene and 1 ppmC iso-butene at NMOC/NOX = 5.
                           3-31

-------
occurs one hour  earlier with the trans-2-butene mechanism than  with the
isobutene mechanism.  The  differences  in the concentrations  early in the
runs  are somewhat  exaggerated by  the high  dilution rates during  this
period; nevertheless, the  differences  are significant.   The  figures  show
that  ozone  is  produced  much  more  rapidly  with  the  trans-2-butene
mechanism.  While  the ozone  yields  in the  cases  with 0.20 ppm NO   are
                                                                   X
comparable with both  mechanisms,  the ozone yield in the runs with higher
NO  (0.33 ppm) are 32% higher with the trans-2-butene mechanism than the
  A
isobutene  mechanism.   These  differences   are  consistent  with   the
differences in the  reactivity of the products of  the two alkenes.   A
significant portion  of the  isobutene  is oxidized  to ketones which are
significantly   less   reactive   than   the   aldehydes   produced   from
trans-2-butene oxidation.
     Although  there  are significant  differences in  the  chemistry of the
higher alkenes,  it is  difficult  to justify  using more  than  two higher
alkene species  in the  OZIPM mechanism because  they  are  usually a small
fraction  of  NHOCs.   It was decided  to use  the  same  surrogate alkene
species  in the OZIPM mechanism as employed in the Atkinson et al. (1982)
mechanism.  With this approach, all terminal alkenes are represented by
propene  and all  internal alkenes are represented by trans-2-butene.   The
rationale   for  choosing   these  species   was   that    they   are  good
representatives  of   moderately  fast-reacting  and  very  fast-reacting
species.   In  addition,   the  propene  mechanism  has  been  tested  more
extensively than any  other portion of the mechanism.

3.2  The Condensed Mechanism

     As  previously discussed,  it is necessary to represent the chemistry
with  fewer species in mechanisms intended for  use  in multi-cell models.
The   condensed   mechanism   developed   here   incorporates   all   the
approximations made  in the OZIPM mechanism plus additional  lumping of
organics  and  elimination  of less important  species.   The justification
for  most  of  the  condensation steps  is  that they  do not  appear  to
significantly  affect the  predictions when  the mechanism is  applied to
problems involving urban mixtures of organics.
                                    3-32

-------
     Several species that  contribute  little  to the overall reactivity of
mixtures were eliminated from  the condensed mechanism.   The reactions of
acetone  (ACET)  were eliminated because its  chemical  half-life is  more
than four  days  under typical urban conditions  and,  although significant
amounts of acetone  are  formed  from alkanes, they  do not contribute  much
reactivity.  The  reactions of  phenols (PHEN) were also  eliminated.   The
phenols react fairly fast  during the day and night; however,  the  amount
of phenols  formed is very small relative to other  reactive products of
the aromatics.
     Glyoxal (GLYX)  also contributes  little  to the overall reactivity of
urban mixtures; however, it is probably inappropriate  to entirely  ignore
its  reactions.   Formaldehyde  and carbon monoxide were  substituted for
glyoxal in the condensed mechanism.  This approximation probably slightly
overestimates glyoxal's contribution  to reactivity.  This  substitution
has the advantage  that  it  also eliminates the acyl peroxy radical  (GC03)
and  PAN  analog  (GPAN)  formed  from  glyoxal.   Simulations  of  urban
conditions with the detailed  mechanism indicated that  the  maximum  GPAN
concentrations accounted for less than 0.2 percent of the nitrogen  in the
system, so elimination of the PAN analog is insignificant.
     There are  several other  products in the  mechanism,  such as  nitric
acid, alkyl nitrates, hydrogen peroxide, and organic peroxides, which are
fairly  stable.   The chemical  half-lives for  alkyl nitrates.  H^O.,  and
organic peroxides  range from 15 to 30 hours.   The chemical half-life of
nitric acid is considerably longer.  Simulations were made to investigate
the importance of the reactions of these species in hope that some  or all
could  be  ignored.   The results  indicated  that,  although  the nitrogen-
containing  species  react   very  slowly,  their  reactions produce  small
amounts  of NO.  and NO. that  affect the ozone predictions late  in the
simulations  after  most of the  NO  and NO.  are oxidized.   Thus,  the
reactions  of nitric acid  and  alkyl nitrates were kept  in the condensed
mechanism.  Urban  simulations  made without the H^O. and ROOM destruction
reactions  showed  that  these  reactions  had virtually  no effect  on the
predictions  of  key species  (NO,  NO.,  03,  and  organic decay rates).
Although  these  reactions  produce  a significant amount  of radicals, the
radical production occurs  mostly after the NO  is totally  consumed so
                                    3-33

-------
that the radicals have  little effect on the key species.   Thus,  H202 and
ROOM were eliminated from the species list.
     Further condensation  of the higher aldehydes was  incorporated into
the  condensed  mechanism.    Acetaldehyde   (ALD2)   was  substituted  for
propionaldehye  (RCHO)  on  a  mole  (not carbon)  basis.   The acyl  peroxy
radical  associated with acetaldehyde  (MC03)  was  substituted  for  the
higher   acyl   peroxide   radical   (PC03).    This  also   eliminated  the
corresponding PAN  analog.  PPN,  from the  mechanism.  The  rationale for
this approximation is that the RCHO, PC03, and  PPN  reactions  are almost
identical  to  the  ALD2, HC03,  PAN reactions, and  that it makes  little
difference in predictions  for key  species in urban simulations.  However,
it  is  important to recognize that this approximation and  others  in the
condensed  mechanism make   it more  difficult to  compare  the  condensed
mechanism's predictions to  ambient observations  of aldehydes  and PAN,
since the species in the model are truly lumped species.
     The last and most significant condensation of the mechanism involved
separately combining  the classes of alkanes, higher  alkenes,  and higher
aromatics.  The C4-C5  and  >C5  alkanes are  combined into a  single >C3
alkanes  classes   (ALKA).     The   internal   and  terminal   alkenes  are
represented   as  a   single  class  of  higher  alkenes   (ALKE).    The
di-alkylbenzenes and tri-alkylbenzenes are represented by a single higher
aromatics class (AROM).  The  reaction rates and products for the combined
classes  are mole-weighted functions of the detailed reactions.   Since the
VOC splits  for  these  classes  may  vary  significantly  in  different
applications, the mechanism  shown in Table 3-4 has the rate constants and
product  coefficient expressed as functions of the splits between the two
alkane.  two  higher  alkene,  and  two  higher  aromatic  classes.   The
recommended default splits for urban areas are

    C4-C5 Alkanes Fraction of >C3 Alkanes            0.43
    Terminal Alkenes Fraction of Higher Alkenes      0.60
    Di-alkylbenznes Fraction of Higher Aromatics     0.60

on  a carbon basis.   The default average number of carbons per molecule
are 5.92,  3.4,  and 8.4  for  the lumped alkanes, higher alkene,  and higher
aromatic classes,  respectively.  The default rate  constants and product
coefficients at 298°K for the six lumped reactions are shown as follows:
                                    3-34

-------
ALKA +  OH   —> .112 HCHO +.380 ALD2 +.643 MEK  +.131 R02N
                 +.868 R02R +.698 R202 +.157 R02

        k =  6740 per ppm-min   (or 4.56E-12 molecules/cc-sec)
ALKE +  OH   —> .667 HCHO +1.33 ALD2 +  R02R +  R02
        k = 57300 per ppm-min   (or 3.88E-11 molecules/cc-sec)
                                           t
ALKE +  03   —> .427 HCHO +.667 ALD2 +.177 R02R +.177 R02
                 +.183 H02  + .08 OH   +.187 CO
        k = 0.110 per ppm-min   (or 7.42E-17 molecules/cc-sec)

ALKE +0    —> .333 CO   +.333 MEK  +.267 HCHO +.133 ALD2
                 +.267 H02  + .40 R02R + .40 R02
        k = 15400 per ppm-min   (or 1.04E-11 molecules/cc-sec)
ALKE +  N03
        k =
—>       N02   +.667 HCHO +1.33 ALD2 +  R202 +  R02
 194  per  ppm-min   (or  1.31E-13 molecules/cc-sec)
AROM +  OH   —>  .17 CRES + .17 H02  + .83 R02R + .83 R02
                  +.59 DIAL +.518 MGLY +.597 HCHO +.597 CO
        k = 56800 per ppm - min  (or 3.84E-11 molecules/cc-sec)

These  default  values  should  be  used  only  if better data  are  not
available.   The  recommended approach  for  using  the mechanism  is  to
calculate  the  rate  constants and product coefficients  from  the  formulae
given  in  Table 3-4  based  on  the  speciation  of   the  NHOC  emissions
inventory being used in the model application.

3.3  Mechanism Comparison

     The  effects of  the  condensation  approximations  were  examined  in
numerous simulations.  The detailed, OZIPM, and condensed mechanisms were
applied to  identical  problems  for the purpose  of comparison.  The first
set  of simulations involved examining  the  alkene.  alkane,  and  aromatic
                                   3-35

-------
chemistry  separately.   The  simulations  were  initialized  with  1  ppmC
hydrocarbons and varying  amounts  of NO .   The hydrocarbons in the alkene
                                       A
runs consisted of  23%.  46%, and 31% ethene, propene,  and trans-2-butene,
respectively, on a carbon basis.   For the  alkane runs,  the  hydrocarbons
consisted of 43% and 57% C4-C5 and >C5 alkanes,  respectively, on a carbon
basis.  For  the  aromatic  runs,  the hydrocarbons were  represented as  62%,
23% and 15%  toluene,  m-xylene.  and mesitylene,  respectively, on a carbon
basis.  Other parameters  input for the  calculations are summarized  in
Table 3-7. Figure  3-15  shows  the  ozone  predictions  for  the  alkene/NO
                                                                        A
runs carried out  at  NMOC/NO   ratios  of  3 and 6.  The  predictions  show
excellent  agreement  for  all  three  mechanisms.   The  rates  of ozone
formation  are in  good agreement,  and the ozone yields a.
-------
                     Table 3-7

   Conditions for Mechanism Comparison Simulations
      Solar Radiation Inputs:
      Place:
      Lattitude:
      Longitude:
      Time Zone:
      Date:
      Photolysis Rates:
      Mixing Heights:
Los Angeles, CA
34.
118.
8.
June 21, 1986
Table 2-4
      Temperature:

      Ozone aloft:

      NMOC aloft:

      Initial Values:



      NO/NOx Ratio:

      NMOC/NOx:

      NMOC Composition:

      Post 6 AM Emissions:
250
250
390
565
729
850
937
1000
1000
30 C
0.08
0.05
m at
m at
m at
m at
m at
m at
m at
m at
m at

ppm
ppmC
0600
0800
0900
1000
1100
1200
1300
1400
2000



Hours
II
II
11
II
n
II
••
11



[CO]   = 1 ppm
[03]   - 0.01 ppb
[H20]  - 20,000 ppm

0.75

3, 6, 10, 20

Table 4-7

None
                               3-37
-v- , =/- -• • •.

-------
1
1
    260
             Simulation of  Alkenes  +  NOx
                       1 ppmC HC + 0.167 ppm NOx
240-
220 -
200-
180-
160-
140-
120-
100-
 80-
 6O-
 40-
 20-
           Ozone
    260
        8   •   10   11   12   13  14  18  16  17  18  10  20
                             Hm* (Hour*)
       1: Detailed Mechanism
       2: OZIPM Mechanism
       3: Condensed Mechanism
                       1 ppmC HC + 0.333 ppm NOx
240-
220-
200-
180-
160-
14O-
120-
100-
 80-
 60-
 40-
 20-
  O
          Ozone
                10  11   12  13  14  18  16
                              71m* (Hour*)
                                        17   18   10   20
Figure 3-15.   Comparison of ozone predictions from the three
             mechanisms for mixed alkenes and NO  at NMOC/NtX
                                            x       "   *
                                                    = 3
             and 6.
                              3-38

-------
i
ISO
14O
13O
12O
110
100
 90
 ao
 70
 60
 ao
 40
 30
 20
 10
  0
             Simulation  of  Alkanes +  NOx
                       1 ppmC HC •*» O.O5 ppm NOx
          Ozone
                                                    1&2
    150
    14O
    13O
    120
    110
    100
     90
     BO
     70
     60
     50
     4O
     3O
     2O
     10
      0
        6 10 12 14 16 IB 20 22 24 26 2B 3O 32 34 36 3B 40 42
                             71m« (Hour*)
          1: Detailed Mechanism
          2: OZIPM Mechanism
          3: Condensed Mechanism
                        1 ppmC HC + 0.10 ppm NOx
      Ozone
                                                1&2
        B 10 12 14 16 1B 20 22 24 26 28 3O 32 34 36 38 4O 42 44
                              Tim* (Hours)
Figure  3-16.   Comparison  of o^one predictions from the three mechanisms
             for mixed alkanes and NO  at NMOC/NOX = 10 and 20.
                              3-39

-------
 1
160
130-
140-
130
120-
110-
100-
 90-
 eo-
 70-
 60-
 5O-
 40-
 30-
 20-
 10-
  0
            Simulation  of Aromatics  -f  NOx
                        1 ppmC HC * 0.167 ppm NOx
          Ozone
     160
     1SO-
         I   •  10   11   12   13   14   13  16  17  16  10  20
                              71m« (Hours)
          1: Detailed Mechanism
          2: OZIPM Mechanism
         3: Condensed Mechanism
                        1 ppmC HC * 0.333 ppm NOx
                             13  14  13  16  17  18  10  20
Figure 3-17.
        Comparison of ozone predictions from the three mechanisms
        for mixed aromatics and NOX at NMOC/NOX = 3 and 6.
                               3-40

-------
 i
ISO
170-
160-
160-
140-
130-
120-
110-
100-
 90-
 80-
 70-
 60-
 50-
 40
 30-
 20-
 10-
  O
        Simulation  of Urban  Mixture  4-  NOx
                       1 ppmC HC 4. 0.05 ppm NOx
           Ozone
10   11
15
     160
     170-
     160-
     150-
     140-
     130-
     120-
     110-
     100-
      90-
      60-
      70-
      60-
      50-
      4O-
      30-
      20-
      10
       0
                       12    13   14
                         T1m« (Hour*)
    1: Detailed Mechanism
    2: OZIPM Mechanism
    3: Condensed Mechanism
                   1 ppmC HC •»• O.10 ppm NOx
                                               16   17
18
       Ozone
        8    •    10   11   12   13   14   15   16    17   18
                              Tbn« (Hour*)
Figure 3-18.  Comparison of ozone predictions from the three mechanisms
            for an urban NMOC mixture at NMOC/NOV = 10 and 20.
                              3-41

-------
        Simulation of  Urban  Mixture
                                                  NOx
I
1
180
170-
160-
180-
140-
190-
120-
110-
100-
 90-I
 80-
 70-
 80-
 80-
 40-
 90-
 20-
 1O-
  0
                       1 ppmC HC •*• 0.167 ppm NOx
           Ozone
1O   11
                                         18
    160
    140
    19O-
    120
                       12   19   14
                         Hm« (Hour*)
    1: Detailed Mechanism
    2: OZIPM Mechanism
    3: Condensed Mechanism
                   1 ppmC HC * 0.339 ppm NOx
16   17
18
100
 «0
 80
 70
 80
 80
 4O
 90
 20
 10
       Ozone
        8 10 12 14 16 18 20 22 24 26 28 9O 92 34 96 98 4O 42 44
                             T1m« (Hour»)
Figure 3-19.  Comparison of ozone predictions from the three mechanisms
            for an urban NMOC mixture at NMOC/NO = 3 and 6.
                               3-42

-------
predictions are  1% to  5% higher than those from the  detailed  mechanism
for these conditions.
     Similar runs were  carried out to investigate the performance of the
mechanisms  at  alternate  temperatures.    Figure 3-20  shows the  ozone
prediction in a case with an NMOC/NOx ratio of 3 at 10°C and 40°C instead
of  25°C.   The  level of  agreement between the  three mechanisms is  not
quite  as  good  at  these  alternate temperatures;  however,  the  largest
discrepancy is  still less  than 5% and  13% for the OZIPM  and  condensed
mechanisms, respectively, in these two-day runs.
     This level  of  agreement between the mechanisms can only be achieved
if  the rates of NO  and NHOC oxidation and  radical  concentrations are
                    X
similar  among the  mechanisms.   Figures 3-21  through  3-28 compare  the
predictions  for  NO,  NO,,  nitric  acid, PANs,  ethene, higher  alkenes,
toluene, higher aromatics, alkanes, MEK,  hydrogen peroxide,  H0_, RO^, and
OH for the urban mixture case with an initial NHOC/NO  ratio of  six.  The
                                                     A
agreement between the OZIPM and detailed mechanisms  is excellent (i.e.,
within ±2%)  for  all. species.   The agreement  between  the  condensed and
detailed  mechanisms  is  within about  10%  for all  species except  the
radicals.   The  condensed mechanism predicts  maximum  H02,  OH,  and R02
concentrations that are  15% to 20% higher  than those  predicted by the
detailed mechanism  for  these conditions.  Considering that the  condensed
mechanism has  only about half the number  of integrated species as the
detailed  mechanism,  this level of agreement is considered acceptable.
                                   3-43

-------
I
1
        Simulation of  Urban  Mixture -4-  NOx
                    1 ppmC HC + 0.333 ppm NOx. 2B3K
 80-
 70-

 eo-

 50-

 40-

 30-
 20

 10
         Ozone
150
140
130
120
110
100
 00
 80
 70
 80
 50
 40
 30
 20
 10
  0
        8 10 12 14 18 18 20 22 24 28 28 30 32 34 36 38 40 42 44
                             Tlm« (Hour*)
         1: Detailed Mechanism
         2: OZIPM Mechanism
         3: Condensed Mechanism
                     1 ppmC HC + 0.333 ppm NOx. 313X
          Ozone
        8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44
                             Tim* (Hour*)
Figure 3-20.  Comparison of ozone predictions from the three mechanisms
            for urban NMOC mixture at NMOC/NOX = 3 at  283°K and 313°K.
                             3-44

-------
   ISO
       Simulation of  Urban  Mixture  -f- NOx
                            Mtrlo OxM«
                                   1: Detailed Mechanism
                                   2: OZIPM Mechanism
                                   3: Condensed Mechanism
               10  11   12   19   14   18   16   17   18  10  20
                                  «M	• _• —
                                  UMJJUUU
i
     8O-
40-
     30-
     20-
     10
                             1: Detailed Mechanism
                             2: OZIPM Mechanism
                             3: Condensed Mechanism
          10  11  12  13  14  18  16

                        Tim* (Houra)
                                           17   18   19  20
Figure 3-21.  Comparison of NO and N02 predictions from the three
             mechanisms for an urban NMOC mixture at NMOC/NOV = 6.
                             3-45

-------
1
      Simulation  of Urban  Mixture  +  NOx
                        PAN + PAN Analog.
           Detailed Mechanism
           O2IPM Mechanism
           Condensed Mechanism
                       12  13  14  15  10  17   18   10  20
     90
                              NHrlo AcJd
1
28-
20-
24-
22-
20-
18-
18-
14-
12-
10-
 8-
 8-
 4-
 2-
         1: Detailed Mechanism
         2: OZIPM Mechanism
         3: Condensed Mechanism 3
                10   11   12
                       13   14   18   10
                        Hm« (Hour*)
17  18  18  2O
Figure 3-22.  Comparison of PAN + PAN analogs and HN03 predictions
             from the three mechanisms for an urban NMOC mixture
             at NMOC/NO,. = 6.
                              3-46

-------
      Simulation  of  Urban Mixture  4-  NOx
s
                                   1: Detailed Mechanism
                                   2: OZIPM Mechanism
                                   3: Condensed Mechanism
                10   11   12   13   14  1S   16  17   18  10  20
                           Urn* (Hour*)
 1
15
14-
13-
12-
11 -
10-
 9-
 0-
 7-
 0-
 0-
 4-
 3-
 2-
 1 -
 0
                               EttMTM
                                    1: Detailed Mechanism
                                    2: OZIPM Mechanism
                                    3: Condensed Mechanism
                10   11   12
                      13  14  15  10
                        71m« (Hour*)
17  10  10  2O
Figure 3-23.
       Comparison of higher alkenes and ethene predictions
       from the three mechanisms for an urban mixture at
       NMOC/NO,. = 6.
                             3-47

-------
      Simulation  of Urban  Mixture  4-  NOx
1
                                   1: Detailed Mechanism
                                   2: OZIPM Mechanism
                                   3: Condensed Mechanism
                           13  14  15  16  17  IB  10  20
                           Urn* (Hour*)
     23
     22-
     21 -
     20-
     10-
     18-
     17-
     16-
     15-
     14-
     13-
     12-
     11 J
     10-
      0-
      8-
      7-
      6-
      5-
      4-
      3
      2-
      1
                        1: Detailed Mechanism
                        2: OZIPM Mechanism
                        3: Condensed Mechanism
        8   0   10   11   12   13   14   15   16   17   IS   10   20
                             Tim* (Hours)

Figure 3-24.  Comparison of higher aromatics and toluene predictions
            from the three mechanisms for  an urban NMOC mixture at
NMOC/NO
                      6.
                               3-48

-------
        Simulation  of Urban Mixture  +  NOx
     00
1
eo-

7O-

eo-

80-

40-

30-

20

to
                                  1: Detailed Mechanism
                                  2: OZIPM Mechanism
                                  3: Condensed Mechanism
                                                       1*2
               10  11   12  13  14   18   1S   17   18  108 20

                             Urn* (Hour*)
                           Methyl Ethyl Kctono
      8-


      7-


      e-


      8-


      4-


      3-


      2-


      1 -
     1: Detailed Mechanism
     2: OZIPM Mechanism
     3: Condensed Mechanism
        8   0   1O   11   12   13   14   IB   18   17   18   10   2O

                             Tim. (Hour.)

Figure 3-25.  Comparison of alkanes and MEK predictions from the
             three mechanisms for an urban NMOC mixture at
             NMOC/NOX = 6.
                               3-49

-------
        Simulation  of Urban  Mixture  +  NOx
s
                                    1: Detailed Mechanism
                                    2: OZIPM Mechanism
                                    3: Condensed Mechanism
               10  11  12  13  14  18  ia  17   18  19  20
                             Tbn« (Hour*)
1
IB
14
13
12
11
10
 0'
 B-
 7-
 8-
 8-
 4-
 3
 2-
 1 -
 O
                          Higher
                                   1: Detailed Mechanism
                                   2: OZIPM Mechanism
                                   3: Condensed Mechanism
                10   11   12
                      13  14  18
                      Thn« (Hour*)
18  17  IB  19  20
Figure 3-26.
       Comparison of formaldehyde and higher aldehyde
       predictions from the three mechanisms for an urban
       NMOC mixture at NMOC/NOV = 6.
                             3-50

-------
Simulation  of  Urban Mixture
                                                    NOx
1
          1: Detailed Mechanism
          2: OZIPM Mechanism
          3: Condensed Mechanism
               10   11   12   13   14   18   16   17   18   19  20
                           Tim* (Hour*)
   0.034

   O.O32-
    1: Detailed Mechanism
          2: OZIPM Mechanism
          3: Condensed Mechanism
                10   11   12
                      13   14  18   16

                       Tim* (Hour*)
17  18  19  2O
Figure 3-27.  Comparison of H2O2 and HO- radical predictions from
            the three mechanisms for an urban NMOC mixture at
            NMOC/NO,, « 6.
                             3-51

-------
      Simulation  of Urban  Mixture  4-  NOx
  0.035
                        Total R02 Rodtoato
         1: Detailed Mechanism
         2: OZIPM Mechanism
         3: Condensed Mechanism
               10  11  12  13  14  15  16  17  18  19  2O
                           Y!m« (Hour*)
 0.00045
  0.0004-
                            fydroxol Rodleol
             1: Detailed Mechanism
             2: OZIPM Mechanism
             3: Condensed Mechanism
               10  11
12  13  14  15  16

     Tim* (Heura)
17  18  18  2O
Figure 3-28.  Comparison of R02 and OH radical predictions from the
            three mechanisms for an urban NMOC mixture at
            NMOC/NOX = 6.
                            3-52

-------
                   4.  SPECIATION OF ORGANIC COMPOUNDS

     Knowledge of NMOC speciation is essential for modeling urban  ozone
air quality with up-to-date  chemical mechanisms.   Most photochemical air
quality  simulation  models   require NMOC  speciation  information  for
emissions,  initial  concentrations,   and  boundary  concentrations.    The
speciation data needs to be compiled using the NMOC classification scheme
that is used  by  the specific mechanism incorporated  into  the  simulation
model.  The NMOC classes in the the  SAPRC/ERT OZIPM  mechanism are  shown
in  Table  4-1.  Also  shown in  the  table are  the  molecular weights  and
number of carbons per molecule of the surrogate species used to represent
each class  of compounds.  Photochemical models require  this  information
to convert concentrations  and emissions from mass  and molar carbon  units
to molar units.
     The classification scheme shown in Table 4-1  is also recommended for
the  initial   compilation  of  data  for  use  with the  condensed mechanism
since  proper  use  of  that mechanism requires knowledge  of  the splits
between the  two alkane  classes,  the two higher alkene  classes,  and the
two higher  aromatic classes.   Final inputs  for the  condensed mechanism
should be classified into the classes shown in Table 4-2.

4.1  Assignment of Individual Species to Classes

     The  assignment  of individual organic species to the organic classes
in  the OZIPM mechanism  is shown in Table  4-3.  Given detailed chemical
speciation for either emissions or ambient concentrations, the individual
species should be classified according to the assignments  shown in the
table.  Unlike the Carbon Bond approach,  where  almost all species are
divided into  two or more classes, all of the carbon in individual species
is  assigned  to one  compound class  in  this classification  scheme.   The
only  exceptions  to this  are propane,  methanol,  and benzene,  which are
split  between the  C4-C5 alkanes and nonreactive classes.   Also included
in  the table  are  estimates of the  uncertainty in  the assignments.  The
uncertainty is expressed on a scale of 0 to 4, where 0 indicates that the
species  is treated  explicitly in  the mechanism,  and 4  indicates that
                                   4-1

-------
                            TABLE 4-1

              NMOC CLASSES FOR THE OZIPM MECHANISM
                                    Molecular    No. of Carbons
Compound Class           Symbol      Weight       Per Molecule

Ethene                    ETHE         28.             2
Terminal Alkenes          PRPE         42.             3
Internal Alkenes          TOUT         56.             4
C4-C5 Alkanes             ALK4         65.             4.5
C6+ Alkanes               ALK7        100.             7
Hono-Alkylbenzenes        TOLU         92.             7
Di-Alkylbenzenes          XYLE        106.             8
Tri-AlkyIbenzenes         TMBZ        120.             9
Formaldehyde              HCHO         30.             1
Acetaldehyde              ALD2         46.             2
Higher Aldehydes          RCHO         58.             3
Ke tones                   MEK          72.             4
Nonreactive               NROG         15.             1
                            TABLE 4-2

            NMOC CLASSES FOR THE CONDENSED MECHANISM
                                    Molecular    No. of Carbons
Compound Class           Symbol      Weight       Per Molecule

Ethene                    ETHE         28.             2
Higher Alkenes            ALKE         47.6*           3.4*
C4+ Alkanes               ALKA         84.9*           5.92*
Mono-AlkyIbenzenes        TOLU         92.             7
Higher Aroaatics          AROM        111.6*           8.4*
Formaldehyde              HCHO         30.             1
Higher Aldehydes          ALD2         46.             2
Ketones                   MEK          72.             4
Nonreactive               NROG         15.             1
*Default values.  Speciated emission inventory data should be
 used, if available, to determine more accurate values.
                              4-2

-------
                                TABLE 4-3

     ORGANIC SPECIES CLASSIFICATION FOR THE OZIPM CHEMICAL MECHANISM
ID NO.
Compound Name
                   Uncertainty
Classification   Classification
43814  1,1,1-TRICHLOROETHANE
43820  1,1,2-TRICHLOROETHANE
43813  1,1-DICHLOROETHANE
45225  1,2,3-TRIMETHYLBENZENE
45208  1.2,4-TRIMETHYLBENZENE
99016  1,2-DICHLOROPROPANE
45207  1,3.5-TRIMETHYLBENZENE
43218  1,3-BUTADIENE
46201  1,4-DIOXANE
43213  1-BUTENE
98104  1-CHLOROBUTANE
43268  1-DECENE
98111  l-ETHOXy-2-PROPANOL
98113  1-HEPTANOL
98005  1-HEPTENE
43245  1-HEXENE
98037  1-METHYLCYCLOHEXANE
43267  1-NONENE
99901  1-OCTENE
43224  1-PENTENE
43312  1-T-2-0-4-TM-CYCLOPENTANE
43269  1-UNDECENE
43296  2,2,3-TRIMETHYLPENTANE
43276  2.2,4-TRIMETHYLPENTANE
43299  2,2,5-TRIMETHYLPENTANE
98033  2.2,5-TRIMETHYLHEXANE
43291  2,2-DIMETHYBUTANE
43280  2,3,3-TRIMETHYLPENTANE
43279  2,3,4-TRIMETHYLPENTANE
43234  2,3-DIMETHYL-1-BUTENE
98001  2,3-DIHETHYLBUTANE
43274  2,3-DIMETHYLPENTANE
98054  2,4,4-TRIMETHYL-l-PENTENE
98055  2,4,4-TRIMETHYL-2-PENTENE
43277  2,4-DIMETHYLHEXANE
43271  2,4-DIMETHYLPENTANE
43278  2,5-DIMETHYLHEXANE
98110  2-(-BUTOXYETHOXY)-ETHANOL
43308  2-BUTYLETHANOL
98108  2-BUTYLTETRAHYDROFURAN
98051  2-CHLOROTOLUENE
43452  2-ETHOXYETHYL ACETATE
43311  2-ETHOXYETHANOL
98002  2-ETHYL-l-BUTENE
98112  2-ETHYL-l-HEXANOI.
43310  2-METHOXYETHANOL
                            NONREACTIVE             1
                            NONREACTIVE             1
                            NONREACTIVE             1
                            TRI-ALKYL BENZENE       1
                            TRI-ALKYL BENZENE       1
                            NONREACTIVE             1
                            TRI-ALKYL BENZENE       0
                            INTERNAL ALKENES        2
                            C6+ ALKANES             2
                            TERMINAL ALKENES        1
                            C4-C5 ALKANES           2
                            TERMINAL ALKENES        3
                            C6+ ALKANES             2
                            C6+ ALKANES             1
                            TERMINAL ALKENES        3
                            TERMINAL ALKENES        3
                            C6+ ALKANES             1
                            TERMINAL ALKENES        3
                            TERMINAL ALKENES        3
                            TERMINAL ALKENES        2
                            C6+ ALKANES             1
                            TERMINAL ALKENES        3
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            TERMINAL ALKENES        2
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            TERMINAL ALKENES        3
                            INTERNAL ALKENES        3
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            KONO-ALKYL BENZENE      2
                            C6+ ALKANES             3
                            C6+ ALKANES             2
                            TERMINAL ALKENES        2
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                                   4-3

-------
                          TABLE 4-3 (continued)
ID No.
Compound Name
                   Uncertainty
Classification   Classification
43229  2-METHYL PENTANE
98076  2-METHYL-3-HEXANONE
98004  2-METHYL-2-PENTENE
43228  2-METHYL-2-BUTENE
98040  2-METHYL-l-PENTENE
43225  2-METHYL-l-BUTENE
43275  2-METHYLHEXANE
98032  3,5,5-TRIMETHYLHEXANE
98105  3-(CHLOROHETHYL)-HEPTANE
99021  3-CARENE*
98041  3-HEPTENE
43230  3-HETHYL PENTANE
43223  3-METHYL-l-BUTENE
43270  3-METHYL-T-2-PENTENE
43211  3-METHYL-l-PENTENE
43298  3-METHYLHEPTANE
43295  3-METHYLHEXANE
43293  4-METHYL-T-2-PENTENE
43297  4-METHYLHEPTANE
98042  4-NONENE
45221  A-METHYLSTYRENE
98025  A-PINENE*
98097  A-TERPINEOL*
43503  ACETALEHYDE
43404  ACETIC ACID
43551  ACETONE**
43702  ACETONITRILE
43206  ACETYLENE
43505  ACROLEIN (ACRYLIC ALDHYDE)
43704  ACRYLONITRILE
98085  ALKYL SUBSTITUTED CYCLOHEXANE
99001  ALLYL CHLORIDE
98015  ANTHRACENE
98020  B-METHYLSTYRENE
98026  B-PINENE*
45201  BENZENE

45402  BENZOIC ACID
98024  BENZYL CHLORIDE
99017  BROMODICHLOROHETHANE
99019  BROMOFORH
98080  BUTANDIOL
98074  BUTYL CELLOSOLVE
43510  BUTYRALDEHYDE
98086  C2 ALKYL DECALIN
98084  C2 ALKYL INDAN
43512  C5 ALDEHYDE
98075  C5 ESTER
98095  C6 ALDEHYDE
                            C6+ ALKANES             1
                            KETONES                 1
                            INTERNAL ALKENES        2
                            INTERNAL ALKENES        1
                            TERMINAL ALKENES        3
                            TERMINAL ALKENES        2
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            INTERNAL ALKENES        3
                            INTERNAL ALKENES        3
                            C6+ ALKANES             1
                            TERMINAL ALKENES        1
                            INTERNAL ALKENES        2
                            TERMINAL ALKENES        2
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            INTERNAL ALKENES        2
                            C6+ ALKANES             1
                            INTERNAL ALKENES        3
                            TERMINAL ALKENES        3
                            INTERNAL ALKENES        3
                            INTERNAL ALKENES        3
                            ACETALDEHYDE            0
                            NONREACTIVE             2
                            KETONES                 1
                            NONREACTIVE             1
                            NONREACTIVE             2
                            ACETALDEHYDE            3
                            ETHENE                  3
                            C6+ ALKANES             2
                            ETHENE                  3
                            TRI-ALKYL BENZENE       3
                            INTERNAL ALKENES        3
                            TERMINAL ALKENES        3
                            NONREACTIVE  70%
                            C6+ ALKANES 30%         3
                            NONREACTIVE             3
                            HONO-ALKYL BENZENE      3
                            NONREACTIVE             1
                            NONREACTIVE             1
                            C6+ ALKANES             2
                            C6+ ALKANES             2
                            HIGHER ALDEHYDES        1
                            C6+ ALKANES             2
                            DI-ALKYL BENZENE        3
                            HIGHER ALDEHYDES        2
                            C4-C5 ALKANES           3
                            HIGHER ALDEHYDES        2
                                   4-4

-------
                          TABLE 4-3 (continued)
ID No.
Compound Name
                   Uncertainty
Classification   Classification
98093  C6 ESTER
98096  CARBITOL
98030  CARBON SULFIDE
43807  CARBON TETRABROHIDE
43804  CARBON TETRACHLORIDE
98031  CARBONYL SULFIDE
98037  CARVOMENTHENE*
98088  CARVONE*
43443  CELLOSOLVE ACETATE
99020  CHLORODIBROMOMETHANE
43825  CHLORODIFLUOROMETHANE (F-22)
43830  CHLOROFLUOROHYDROCARBONS
43803  CHLOROFORM
43827  CHLOROPENTAFLUOROETHANE (F-115)
43826  CHLOROTRIFLUOROHETHANE (F-13)
43217  CIS-2-BUTENE
43227  CIS-2-PENTENE
43227  CIS-3-PENTENE
98019  CR70FLOURANE (F 114)
43264  CYCLOHEXANONE
43248  CYCLOHEXANE
43273  CYCLOHEXENE
43292  CYCLOPENTENE
43242  CYCLOPENTANE
43207  CYCLOPROPANE
98027  D-LIMONENE*
43320  DIACETONE ALCOHOL
99015  DIBENZOFURAN
98107  DIBUTYL ETHER
43823  DICHLORODIFLUOROMETHANE (F-12)
43802  DICHLOROHETHANE
43828  DICHLOROTETRAFLUOROETHANE
98062  DIETHYLCYCLOHEXANE
43450  DIMETHYL FORMAMIDE
98018  DIMETHYL ETHER
98059  DIMETHYLCYCLOHEXANE
45103  DIMETHYLETHYLBENZENE
98091  DIMETHYLHEPTANE
98012  DIMETHYLNAPHTHALENE
98017  DM-2,3,DH-1H-INDENE
99006  EPICHLOROHYDRIN
43202  ETHANE
43433  ETHYL ACETATE
43438  ETHYL ACRYLATE
43302  ETHYL ALCOHOL
43812  ETHYL CHLORIDE
43351  ETHYL ETHER
98106  ETHYL ISOPROPYL ETHER
43219  ETHYLACETYLENE
                            C6+ ALKANES             3
                            C6+ ALKANES             2
                            NONREACTIVE             4
                            NONREACTIVE             0
                            NONREACTIVE             0
                            NONREACTIVE             1
                            INTERNAL ALKENE         3
                            INTERNAL ALKENE         3
                            C6+ ALKANES             3
                            NONREACTIVE             1
                            NONREACTIVE             1
                            NONREACTIVE             3
                            NONREACTIVE             1
                            NONREACTIVE             0
                            NONREACTIVE             0
                            INTERNAL ALKENES        1
                            INTERNAL ALKENES        1
                            INTERNAL ALKENES        1
                            NONREACTIVE             1
                            KETONES                 2
                            C6+ ALKANES             1
                            INTERNAL ALKENES        2
                            INTERNAL ALKENES        2
                            C4-C5 ALKANES           1
                            NONREACTIVE             1
                            INTERNAL ALKENES        3
                            HIGHER KETONE           3
                            DI-ALKYL BENZENE        3
                            C6+ ALKANES             1
                            NONREACTIVE             0
                            NONREACTIVE             1
                            NONREACTIVE             0
                            C6+ ALKANES             1
                            DI-ALKYL BENZENE        4
                            C4-C5 ALKANES           1
                            C6+ ALKANES             1
                            TRI-ALKYL BENZENE       1
                            C6+ ALKANES             1
                            TRI-ALKYL BENZENE       3
                            TRI-ALKYL BENZENE       3
                            NONREACTIVE             2
                            NONREACTIVE             2
                            C4-C5 ALKANES           3
                            TERMINAL ALKENE         3
                            C4-C5 ALKANES           1
                            NONREACTIVE             1
                            C4-C5 ALKANES           1
                            C6+ ALKANES             1
                            ETHENE                  3
                                   4-5

-------
                          TABLE 4-3 (continued)
ID No.
Compound Name
                   Uncertainty
Classification   Classification
43721  ETHYLAMINB
45203  ETHYLBENZENE
43288  ETHYLCYCLOHEXANE
98057  ETHYLCYCLOPENTANE
99014  ETHYLENE DIBROMIDE
43601  ETHYLENE OXIDE
43815  ETHYLENE DICHLORIDE
43370  ETHYLENE GLYCOL
43203  ETHYLENE
98011  ETHYLKAPHTHALENE
43502  FORMALDEHYDE
99902  FURAN
43368  GLYCOL
43367  GLYCOL ETHER
99903  GLYOXAL**
43232  HEPTANE
98077  HEPTANONE
99007  HEXACHLOROCYCLOPENTADIENE
43231  HEXANE
43371  HEXYLENE GLYCOL
98044  INDAN
98048  INDENE
98115  ISOAMYL ISOBUTYRATE
43214  ISOBUTANE
43451  ISOBUTYL ISOBUTYRATE
43446  ISOBUTYL ACETATE
43306  ISOBUTYL ALCOHOL
98047  ISOBUTYLBENZENE
43215  ISOBUTYLENE
98036  ISOBUTYRALDEHYDE
99904  ISOMERS OF HEPTENE
43105  ISOMERS OF HEXANE
43106  ISOMERS OF HEPTANE
99905  ISOMERS OF HEXENE
45102  ISOMERS OF XYLENE
45105  ISOMERS OF BUTYLBENZENE
43108  ISOMERS OF NONANE
45106  ISOMERS OF DIETHYLBENZENE
43110  ISOMERS OF UNDECANE
43122  ISOMERS OF PENTkNE
45104  ISOMERS OF ETHYLTOLUENE
43112  ISOMERS OF DODECANE
43107  ISOMERS OF OCTANE
43109  ISOMERS OF DECANE
99906  ISOMERS OF OCTENE
43243  ISOPRENE*
98043  ISOPROPYLBENZENE (CUMENE)
43444  ISOPROPYL ACETATE
43304  ISOPROPYL ALCOHOL
                            DI-ALKYL BENZENE        4
                            MONO-ALKYL BENZENE      1
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            NONREACTIVE             2
                            NONREACTIVE             2
                            NONREACTIVE             2
                            C4-C5 ALKANES           3
                            ETHENE                  0
                            TRI-ALKYL BENZENE       3
                            FORMALDEHYDE            0
                            DI-ALKYL BENZENE        3
                            C4-C5 ALKANES           3
                            C6+ ALKANES             2
                            FORMALDEHYDE            2
                            C6+ ALKANES             1
                            KETONES                 1
                            NONREACTIVE             2
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            DI-ALKYL BENZENE        3
                            TRI-ALKYL BENZENE       3
                            C6+ ALKANES             3
                            C4-C5 ALKANES           1
                            C6+ ALKANES             3
                            C4-C5 ALKANES           3
                            C4-C5 ALKANES           1
                            MONO-ALKYL BENZENE      1
                            TERMINAL ALKENES        2
                            HIGHER ALDEHYDES        1
                            INTERNAL ALKENES        3
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            INTERNAL ALKENES        3
                            DI-ALKYL BENZENE        3
                            MONO-ALKYL BENZENE      3
                            C6+ ALKANES             1
                            DI-ALKYL BENZENE        3
                            C6+ ALKANES             2
                            C4-C5 ALKANES           1
                            DI-ALKYL BENZENE        3
                            C6+ ALKANES             2
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            INTERNAL ALKENES        3
                            INTERNAL ALKENES        2
                            MONO-ALKYL BENZENE      1
                            C4-C5 ALKANES           3
                            C4-C5 ALKANES           1
                                    4-6

-------
                          TABLE 4-3 (continued)
ID No.
Compound Name
                   Uncertainty
Classification   Classification
98089  ISOPULEGONE*
98056  ISOVALERALDEHYDE
43119  LACTOL SPIRITS
98022  H-CRESOL (3-H-BENZENOL)**
98045  M-DIETHYLBENZENE
45212  M-ETHYLTOLUENE
45205  M-XYLENE
99008  MALEIC ANHYDRIDE
43201  METHANE
43432  METHYL ACETATE
43301  METHYL ALCOHOL

43445  METHYL AMYL ACETATE
43561  METHYL AMYL KETONE
43819  METHYL BROMIDE
43801  METHYL CHLORIDE
43552  METHYL ETHYL KETONE
98114  METHYL ISOBUTYRATE
43560  METHYL ISOBUTYL KETONE
43559  METHYL N-BUTYL KETONE
43209  METHYLACETYLENE
98016  METHYLANTHRACENE
43262  METHYLCYCLOPENTANE
43261  METHYLCYCLOHEXANE
43272  METHYLCYCLOPENTENE
43805  METHYLENE BROMIDE
98010  METHYLNAPHTHALENE
45234  METHYLPROPYLBENZENE
43118  MINERAL SPIRITS
45801  MONOCHLOROBENZENE
43212  N-BUTANE
43305  N-BUTYL ALCOHOL
43435  N-BUTYL ACETATE
43238  N-DECANE
43255  N-DODECANE
43220  N-PENTANE
98063  N-PENTYLCYCLOHEXANE
43303  N-PROPYL ALCOHOL
45209  N-PROPYLBENZENE
45101  NAPHTHA
98046  NAPHTHALENE
99009  NITROBENZENE
43235  NONANE
98021  0-CRESOL (2-M-BENZENOL)**
45211  0-ETHYLTOLUENE
45204  0-XYLENE
43233  OCTANE
98023  P-CRESOL (4-M-BENZENOL)**
                            TERMINAL ALKENES        3
                            HIGHER ALDEHYDES        2
                            C6+ ALKANES             4
                            MONO-ALKYL BENZENE      2
                            DI-ALKYL BENZENE        1
                            DI-ALKYL BENZENE        1
                            DI-ALKYL BENZENE        0
                            NONREACTIVE             2
                            NONREACTIVE             1
                            NONREACTIVE             2
                            NONREACTIVE  50%
                            C4-C5 ALKANES 50%       3
                            C6+ ALKANES             3
                            KETONES                 1
                            NONREACTIVE             1
                            NONREACTIVE             1
                            KETONES                 0
                            C4-C5 ALKANES           3
                            KETONES                 1
                            KETONES                 1
                            ETHENE                  3
                            TRI-ALKYL BENZENE       3
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            INTERNAL ALKENES        3
                            NONREACTIVE             0
                            TRI-ALKYL BENZENE       3
                            DI-ALKYL BENZENE        1
                            MONO-ALKYL BENZENE      4
                            NONREACTIVE             3
                            C4-C5 ALKANES           1
                            C4-C5 ALKANES           1
                            C4-C5 ALKANES           3
                            C6+ ALKANES             2
                            C6+ ALKANES             2
                            C6+ ALKANES             1
                            C6+ ALKANES             2
                            C4-C5 ALKANES           1
                            MONO-ALKYL BENZENE      1
                            MONO-ALKYL BENZENE      4
                            TRI-ALKYL BENZENE       3
                            NONREACTIVE             3
                            C6+ ALKANES             1
                            MONO-ALKYL BENZENE      2
                            DI-ALKYL BENZENE        1
                            DI-ALKYL BENZENE        1
                            C6+ ALKANES             1
                            MONO-ALKYL BENZENE      2
                                    4-7

-------
                          TABLE 4-3 (continued)
ID No.
Compound Name
                   Uncertainty
Classification   Classification
45807  P-DICHLOROBENZENE
45206  P-XYLENE
98094  PENTYL ALCOHOL
43817  PERCHLOROETHYLENE
453CO  PHENOLS**
98028  PHTHALIC ANHYDRIDE
43208  PROPADIENE
43204  PROPANE

43504  PROPIONALDEHYDE
43434  PROPYL ACETATE
45108  PROPYLBENZENE
98109  PROPYLC7CLOHEXANONE
43602  PROPYLENE OXIDE
43369  PROPYLENE GLYCOL
43205  PROPYLENE
98013  PROPYLNAPHTHALENE
45216  SEC-BUTYLBENZENE
45220  STYRENE
98116  SUBSTITUTED C7 ESTER (C12)
98117  SUBSTITUTED C9 ESTER (C12)
43123  TERPENES*
98079  TERPINENE*
45215  TERT-BUTYLBENZENE
43309  TERT-BUTYL-ALCOHOL
43390  TETRAHYDROFURAN
45232  TETRAHETHYLBENZENE
45202  TOLUENE
99018  TRANS-1,2-DICHLOROETHENE
43216  TRANS-2-BUTENE
43227  TRANS-2-PENTENE
43226  TRANS-2-PENTENE
43227  TRANS-3-PENTENE
45233  TRI/TETRAALKYL BENZENE
43821  TRICHLOROTRIFLUOROETHANE
43811  TRICHLOROFLUOROMETHANE
43824  TRICHLOROETHYLENE
45107  TRIMETHYLBENZENE
43740  TRIMETHYL AMINE
98060  TRIMETHYLCYCLOHEXANE
98058  TRIMETHYLCYCLOPENTANE
98014  TRIMETHYLNAPHTHALENE
43822  TRIMETHYLFLUOROSILANE
43241  UNDECANE
43860  VINYL CHLORIDE
45401  XYLENE BASE ACIDS
                            NONREACTIVE             3
                            DI-ALKYL BENZENE        1
                            C4-C5 ALKANES           1
                            NONREACTIVE             1
                            MONO-ALKYL BENZENE      3
                            DI-ALKYL BENZENE        3
                            TERMINAL ALRENES        3
                            NONREACTIVE  50%
                            C4-C5 ALKANES 50%       3
                            HIGHER ALDEHYDES        1
                            C4-C5 ALKANES           3
                            MONO-ALKYL BENZENE      1
                            KETONES                 2
                            C4-C5 ALKANES           3
                            C4-C5 ALKANES           2
                            TERMINAL ALKENES        0
                            TRI-ALKYL BENZENE       3
                            MONO-ALKYL BENZENE      1
                            TERMINAL ALKENES        3
                            C6+ ALKANES             3
                            C6+ ALKANES             3
                            INTERNAL ALKENES        3
                            INTERNAL ALKENES        3
                            MONO-ALKYL BENZENE      1
                            C4-C5 ALKANES           1
                            C6+ ALKANES             1
                            TRI-ALKYL BENZENE       1
                            MONO-ALKYL BENZENE      0
                            ETHENE                  3
                            INTERNAL ALKENES        0
                            INTERNAL ALKENES        1
                            INTERNAL ALKENES        1
                            INTERNAL ALKENES        1
                            TRI-ALKYL BENZENE       1
                            NONREACTIVE             0
                            NONREACTIVE             0
                            ETHENE                  3
                            TRI-ALKYL BENZENE       1
                            TRI-ALKYL BENZENE       4
                            C6+ ALKANES             1
                            C6+ ALKANES             1
                            TRI-ALKYL BENZENE       3
                            NONREACTIVE             1
                            C6+ ALKANES             2
                            ETHENE                  3
                            DI-ALKYL BENZENE        4
 *Biogenic compound.
**These species can either be represented by the assigned class or
  explicitly.
                                  4-8

-------
                          TABLE 4-3 (continued)
Uncertainty Classifications:

0 - Explicitly represented in mechanism (for reactive compounds),
    or known not to react in the troposphere (for nonreactive compounds)

1 = Representation shown is probably a good approximation

2 = Representation shown may not be a good approximation, but the
    mechanism does not contain more appropriate species.

3 = Representation shown is probably a poor approximation, but the
    mechanism does not contain more appropriate species.

4 = Appropriate representation is unknown.
                                   4-9

-------
reactivity   is   totally   unknown.     Examples   of   the    uncertainty
classification are described in Table 4-4.
     Chemical structure  is largely  the  basis for -the assignment of  the
individual species to classes.  Alkanes are assigned to one  of the alkane
classes on the basis of carbon number.  Alkenes are assigned based on  the
position of  the double  bond within  the molecule (i.e., on whether  the
double  bond  is located in  the  terminal position  or  in an  internal
position).   The aromatics  are assigned based on the  number of  alkyl
groups attached to the benzene ring.   Aldehydes are assigned on the  basis
of carbon  number.   However,  about 20% of  the compounds on  the  list  are
not kinetically or  structurally similar to any of the surrogate species.
These are  the species that have been  assigned  a  high uncertainty rating
(3 or 4) in  Table 4-3.   The assignments for these  species  are primarily
based on similarity between their OH rate  constants (when available)  and
the  OH rate  constants  of  the surrogate  species  in the mechanism and,
secondarily,  on similarity of structure and reactivity of products  (when
known).   The  OH  rate   constants  were  obtained  from Atkinson  (1986).
Although these  compounds represent 20% of the species on the list,  it is
unlikely that they  represent a significant (i.e., more than 5%) fraction
of NMOC in urban areas.
     Another  difficulty is  in the  classification  of the  less  reactive
compounds.   It is  difficult to objectively separate  the nonreactive  and
reactive compounds.   This  problem has been recognized for many years  and
still  does not have  an adequate  solution because reactivity  is a very
complex issue.   It is  well established that  the reactivity  of organic
compounds depends markedly on the NMOC/NO  ratio of the mixture (Atkinson
et al. 1983).  This dependence makes it difficult to assess reactivity in
absolute  terms.  With  full recognition of their shortcomings,  OH rate
constants  have  been used as the basis for separating the nonreactive  and
reactive compounds  in  this  assessment.   Nonphotolyzing  species  with OH
rate  constants less  than  l.E-12 molecules per cc-sec have been largely
classified as  nonreactive.   Although the  OH  rate constant  can  be  a
misleading surrogate  for reactivity  [because the products of the reaction
may  or nay  not be  reactive  (Atkinson et al.  1983)],  it is  the only
available  Measure  of reactivity  for most of  the less reactive species.
The  cut-off of l.E-12  molecules  per cc-sec for  the  OH rate constant is
                                    4-10

-------
                                TABLE 4-4

                 EXAMPLES OF UNCERTAINTY CLASSIFICATIONS
CLASS 1:      -All alkanes, including simple alcohols or ethers,  lumped
               with the 2 alkane classes
              -C3-C4 1-alkenes as terminal alkenes (propene)
              -C4-C5 internal alkenes as internal alkenes (2-butene)
              -alkylbenzenes

CLASS 2:      -Bifunctional alcohols or ethers as alkanes
              -Unsymmetrical disubstituted alkenes as terminal alkenes,
               which are represented by propene
              -C5 1-alkenes as terminal alkenes (propene)
              -C6 internal alkenes as internal alkene (2-butene)
              -Aromatics containing Cl's on side groups
              -External dialkenes as terminal alkenes
              -C10+ alkanes as C6+ alkanes

CLASS 3:      -Esters and other carbonyl compounds as alkanes
              -C6-C9 1-alkenes as terminal alkenes
              -C7+ internal alkenes as internal alkenes
              -Groups of compounds with varying classification,
               depending on which, where most are expected to be  as
               classified, with uncertainty of 2 or better
              -C10+ 1 alkenes as terminal alkenes
              -Styrenes as alkenes
              -Naphthalenes, tetralins, or indans as di- or tri-
               alkyl benzenes
              -Furans as aromatics

CLASS 4:      -Amines as aromatics (too reactive to be classified as
               alkanes, but chemistry not aromatic.)
              -CS2 (unknown whether it promotes ozone formation)
                                   4-11

-------
arbitrary, but probably adequate for most urban situations where  there  is
an abundance of more reactive compounds.

4.2  Speciation of NMOC Emissions and Ambient Data

     Historically, even  though the  role of organics in  ozone formation
has been  recognized  for  over 20 years, speciated NMOC data  have  not been
collected  on a  routine basis  in  urban areas.  Mostly  because of  the
expense  and  complexity  of  the  gas  chromatographic  (GC)  measurement
technique,  speciated NMOC  has  only been  collected  for short  periods,
usually during special air quality  studies.   Similarly,  direct  measure-
ments  of  the speciation of NMOC emissions have not been performed on a
routine basis.   The  routine measurements have primarily quantified total
VOC and NMOC.
     Because  there are over  300 gaseous organic species in  ambient air
(Hampton  et al.  1982;  Stump and Dropkin 1985), and the concentrations of
many species  are very low, researchers  have had  a  difficult  time trying
to provide complete  speciation of the organics.  In typical applications
of the GC technique, 75% to 90% of the  organic carbon can be speciated;
10% to 25% cannot be identified.   Some  improvement on  these  percentages
can be achieved with  the  scrubbing technique  of Lonneman  (1986),  which
provides a means to classify most of the otherwise unidentified compounds
by  carbon number  and  class (alkene,  alkane,  and aromatics).  Also,  the
normal combination  of  GC  and  flame ionization detection  (FID)  methods
does   not  detect  oxygenated  species  such  as  aldehydes  and  ketones.
Although  the  sum of the oxygenated species concentrations rarely exceeds
10% of the NMOC, the concentrations play a very important role as photo-
initiators in the  atmospheric chemistry, and knowledge of their emissions
and ambient concentrations is important.  Reliable techniques for measur-
ing  the  oxygenated  species concentrations  at ambient levels have only
recently become available.  These techniques have not been applied widely
•o  there   is a  shortage  of good data  for oxygenated  species  and an even
greater  shortage  of side-by-side  oxygenated and  nonoxygenated species
data.
     Notwithstanding the shortcomings  of the available data bases, there
are   data  bases   for  speciation   of  NMOC   emissions  and   ambient
                                    4-12

-------
concentrations.   Emission  speciation  profiles   are   available  for  a
moderate number of stationary and mobile sources in the "Volatile Organic
Compound  Species  Data  Manual11  (EPA  1980)  and  "Improvements  of  the
Emission  Inventory for  ROG and  NO   in the  SoCAB"  (Oliver and  Peoples
1985).   Profiles for  stationary  sources are generally assigned on  the
basis of  Source  Classification Code  (SCC).   The detailed profiles can be
transformed  to  NMOC  class  profiles  using the  assignments  shown  in
Table 4-3.  However, in  order to speciate an entire emissions inventory,
the available  profiles must be extrapolated to source types that may not
be very similar to the  source for which the data were obtained.  High-
quality  speciation data for mobile  sources are  available from  EPA's
"Forty-Six Car Study"  (Sigsby et al.  1987).
     Speciated ambient NMOC data are needed  for photochemical modeling.
It is recommended that  area-specific data be  employed in  the  modeling
whenever  possible.  Recognizing  that  speciated  NMOC  ambient data  are
often not available,   an analysis of recent 6:00  to 9:00  a.m.  NMHC data
from  urban areas  was performed.   The data  selected  for  analysis were
500 samples  collected by EPA  in 29 urban  areas  during  1984 and 1985
(Lonneman  1986).   These  data were collected and analyzed  with a consis-
tent  methodology and have an  unusually small percentage of unidentified
carbon.  However, many of the higher molecular weight compounds were only
identified by  carbon  number and by class (alkane,  alkene,  or aromatic),
so the  actual  splits  between the two types of the higher alkenes and two
types  of  higher aromatics  are uncertain.   The average normalized NMHC
composition  of the data from each city  was computed.  A grand average
profile was  determined from the average profile in each city.  Data from
four  cities  along the Gulf Coast were  not  included in the grand average
because their average  composition profiles showed anomalously high altcene
fractions  and  low aromatic  fractions.   The results of the analysis are
shown in Table 4-5.   The data indicate that  the NMHC  detected by GC are
49% C4+ alkanes, 13% alkenes, 26% aromatics, and 12% nonreactive.
     Ambient  data  for  oxygenated species  were  reviewed  in order to
establish  default composition fraction.  Most of  the  available data has
been  collected  in the  Los Angeles  Basin.   Data  reported by Grosjean
(1982),  Grosjean  and  Lloyd  (1982),  and Grosjean and Fung (1984) were
examined.  Figure 4-1  shows frequency distributions of  the concentrations
                                    4-13

-------
                                                         TABLE  4-5

           URBAN NMHC COMPOSITION DETERMINED  FROM DATA COLLECTED BY LONNEMAN  IN 1984 AND 1985 (Carbon Fractions)
         Location
•b.
I
Akron, OH
Atlanta, GA
Baton Rouge, LA
Birmingham, AL*
Boston, MA
Charlotte, NC
Chattanooga, TN*
Cincinnati,OH
Cleveland, OH
Dallas, TX
El Paso, TX
Fort Worth, TX
Houston, TX
Indianapolis, IN
Kansas City, MO
Lake Charles, LA
Memphis, TN
Miami, FL
Philadelphia, PA
Portland, ME
Richmond, VA
St. Louis, MO
Washington, DC
West Palm Beach, FL*
Wilkes-Barre, PA

Average
Standard Deviation**
                       C4-C5     C6+            Terminal Internal Hono-alkyl Di-alkyl Tri-alkyl           No.  of
                      Alkanes  Alkanes  Ethene  Alkenes  Alkenes   Benzenes  Benzenes Benzenes Unreactive Samples
.203
.166
.243
.113
.262
.188
.114
.258
.243
.204
.245
.213
.251
.219
.207
.256
.164
.216
.222
.281
.173
.198
.213
.138
.203
.208
.044
.261
.337
.254
.459
.228
.296
.322
.270
.220
.288
.265
.283
.205
.281
.328
.192
.330
.294
.233
.209
.291
.256
.275
.*62
.286
.285
.064
.031
.038
.033
.030
.029
.045
.020
.015
.036
.031
.036
.038
.030
.042
.032
.023
.027
.033
.046
.022
.032
.028
.041
.026
.058
.033
.009
.030
.050
.071
.033
.067
.054
.081
.046
.041
.047
.047
.046
.088
.041
.040
.045
.035
.035
.155
.071
.047
.050
.055
.031
.045
.054
.025
.055
.046
.033
.034
.047
.044
.080
.047
.039
.041
.050
.047
.053
.034
.039
.026
.042
.034
.040
.049
.049
.038
.050
.039
.039
.044
.010
.147
.185
.117
.132
.198
.179
.189
.123
.167
.177
.150
.155
.114
.168
.161
.099
.221
.188
.199
.127
.197
.187
.181
.137
.146
.162
.031
.039
.038
.038
.044
.027
.045
.065
.080
.052
.040
.031
.035
.055
.040
.030
.053
.057
.041
.049
.105
.041
.051
.039
.040
.039
.047
.016
.050
.052
.031
.058
.045
.052
.067
.114
.045
.051
.040
.041
.028
.055
.043
.034
.063
.063
.040
.100
.078
.049
.060
.059
.048
.052
.017
.184
.087
.180
.098
.096
.097
.061
.047
.155
.122
.137
.143
.176
.121
.120
.274
.060
.095
.122
.100
.094
.142
.087
.067
.136
.120
.048
10
7
14
6
8
16
12
7
17
34
27
32
21
10
29
15
8
3
31
14
24
17
21
8
10
401

     *There are possible problems with these data, as indicated by the low C4-C5 alkane fraction.
    **Standard deviation of the average profiles for each city.

-------
                     (*-»•
                     t*-tt
              •no* Mticttoa
                     M-l*

                     !•-*•

                     t»-t§
I
e
            O         •*!•



            O MIOW MTtCTIOH



            I
                     •-•   JL
              •no* DITICIIOB
                                     JU,     »'
=\
          B
          O
          U
          .J


          O
          •
          K

          O
                     1-t

              •tie* •IIICTIOII
                    11-14

                    It-It
                     4-4

                     1-4
                    -4-t

                    -4.4

                    -4.4

                    ••.4
             •tie* MtieiWB
                              4    4     It    44

                                 Number of Measurements
    -,JC
                             4     •    It     14    14


                           NUMBER OF MEASUREMENTS
Figure 4-1.   Frequency distribution of carbonyl concentrations

               observed  in Claremont, California  (from  Grosjean

               1982).
                               4-15

-------
of individual  carbonyls observed  in  Claremont,  California (east  of  Los
Angeles),  by  Grosjean  (1982).   Formaldehyde,  acetaldehyde,   propanol,
butanol,  MEK,  and  benzaldehyde concentrations  are  shown.   These data
indicate that  formaldehyde  and acetaldehyde  account for more than 70% of
the carbonyls  on a  carbon  basis.   They also indicate  that  formaldehyde
concentrations generally exceed acetaldehyde concentrations  (on a carbon
basis).    Figure 4-2  shows  a  plot  of  the  morning  total   aldehyde
concentrations versus  NMOC  concentrations  measured by GC in Los Angeles
(Grosjean  and  Lloyd 1982).   The  data show  a  lot of scatter.   The line
labeled  "STANDARD  EKMA" on  the  figure is  the 5% aldehydes line.  While
most  of the aldehyde  concentrations  are less  than 5% of the NMOC, some
points are  slightly  above  the line.  Although the data  do not  indicate a
clear  relationship between  aldehydes and NMOC detected by GC/FID,  the
data   are   also   not  inconsistent  with  the  5%   aldehyde   assumption
historically employed  in OZIPP/EKMA.   The  5% aldehyde assumption appears
to be a faiiiy  realistic  upper limit assumption and is recommended  for
use in the absence of better data.
     Additional ambient NMOC data  collected by aircraft were analyzed to
provide  default  upper boundary condition  information for modeling.   The
most  comprehensive data set for speciated NMOC above the morning mixing
height   (aloft)  is  that  collected  and  analyzed  by  Washington  State
University  in the  summer  of 1985  (WSU  1986).   The flight plans were
designed to capture  the NMOC aloft at locations  slightly upwind of four
cities:  Atlanta,  Birmingham,  Dallas, and Tulsa.   Although these samples
do  not  have  nearly as many species identified as those  analyzed by
Lonneman (1986),  they do  include formaldehyde  and acetaldehyde.   The
average  normalized  NMOC  composition  aloft  and upwind of each  city is
shown in  Table 4-6.   Also shown  are the  average NMOC concentrations
calculated  from  all samples and from the samples used to determine  the
average  speciation  profiles.   Only  those  profiles  with  total NMOC
concentrations exceeding 15 ppbC were used for determining the specia-
tion.  Profiles with less than 15 ppbC of NMOC were considered unreliable
for   speciation  because   of  potential   detection  problems   at   low
concentrations.   The data  show  the NMOC consist of 25% C4+ alkanes, 4%
alkenes,   8%  aromatics,    7%   aldehydes,  33%   unreactive,    and   23%
unidentified.  The unidentified species are probably long-chain alkanes
                                   4-16

-------

" 0.20-
O.
0.
S 0.15-
•o
o
•o
< 0.10-
"o
J2
_ 0.05-
75
"e
"" 0-
« /
$?
$y
//
/ x
©/
0 / © X ©
/ ©
© / X
* v w O
^r *• A
) 1.0 2.0 3.0 4.0 5.0 6.0 7.
                   Initial    NMHC,  ppmC
Figure 4-2.  Initial aldehyde concentration versus  initial NMHC for captive
            air experiments.  0 = valid data points, x = potentially low
            aldehyde concentration due to high blank correction.   Standard
            EKMA assumes aldehydes are 5% of NMHC  levels.
                                  4-17

-------
                                TABLE 4-6
               NHOC COMPOSITION AND CONCENTRATIONS ALOFT*
                                       Carbon Fraction of NMOC**
 Compound Class
 C4-C5 Alkanes
 C6+ Alkanes
 Ethene
 Terminal Alkenes
 Internal Alkenes
 Mono-alkyIbenzenes
 Di-alylbenzenes
 Tri-alkyIbenzenes
 Unreactive
 Formaldehyde
 Acetaldehyde
 Unidentified

 NMOC - all samples
 NMOC - composition samples
Atlanta  Birmingham  Dallas  Tulsa  Average
  .211       .211     .153    .247    .212
  .027       .023     .033    .044    .035
  .007       ..014     .004    .019    .012
  .036       .012     .013    .022    .023
.126
.020
.308
.024
.019
.222
Total
.032
.019
.306
.018
.011
.353
NMOC
.037
.022
.272
.053
.012
.402
.016
.015
.405
.084
.023
.124
.056
.018
.337
.054
.018
.235
Concentrations (ppbC)
  35.0       20.6     41.3    52.7    37.4
  46.4       40.1     48.2    56.4    47.8
 ^Determined from Washington State University Aircraft observations
  made in 1985.
**NHOC is expressed in ppbC and includes carbonyls.
                                   4-18

-------
and aromatics  (Grosjean and Lloyd 1982).   The average NHOC concentration
was 37 ppbC  based on all  samples and 48 ppbC based on the  samples  used
for developing the speciation profiles.
     The  final recommended speciation profiles  for NHOC  in the  surface
layer and above the mixed layer in urban areas are  shown in Table  4-7.
The profile  fractions were rounded off and slightly altered based on our
judgement.   Note  that  fractions for  the  higher aldehyde and  ketone
classes  have been  omitted.  Since  the  data for  these  species are  so
sparse, their  fractions have been assumed to be zero.  Actually,  part of
the carbon assigned to acetaldehyde  could be assigned to these  classes
(perhaps 0.5% NHOC each);  however, this is not likely to have much effect
on predictions.  Lastly, plausible ranges of the speciation fractions are
shown in Table 4-8.  The ranges generally reflected ±50% variations about
the mean  fractions.   If   ambient samples  show  variations  beyond these
ranges  (particularly the   upper values),  then  the  sample may  reflect
strong influence by  local  point sources and may not be representative of
the entire urban area.
                                   4-19

-------
                  TABLE 4-7

RECOMMENDED DEFAULT NMOC COMPOSITION PROFILES
                      Carbon Fractions of NMOC
 Compound Class

 C4-C5 Alkanes
 C6+ Alkanes
 Ethene
 Terminal Alkenes
 Internal Alkenes
 Mono-alkyIbenzenes
 Di-alyIbenzenes
 Tri-alkylbenzenes
 Formaldehyde
 Acetaldehyde
 Unreactive
Surface Layer

     .21
     .28
     .03
     .06
     .04
     .16
     .06
     .04
     .03
     .02
     .07
 Aloft

  .21
  .18
  .015
  .03
  .005
  .07
  .04
  .02
  .05
  .03
  .35
                  TABLE 4-8

     RANGE OF NMOC COMPOSITION FRACTIONS
                      Carbon Fractions of NMOC
 Compound Class

 C4-C5 Alkanes
 C6+ Alkanes
 Ethene
 Terminal Alkenes
 Internal Alkenes
 Mono-alky Ibenzenes
 Di-alyIbenzenes
 Tri-alkylbenzenes
 Formaldehyde
 Acetaldehyde
 Unreactive
Surface Layer

  .11 - .31
  .14 - .42
 .015 - .045
  .03 - .09
  .02 - .06
  .08 - .24
  .03 - .09
  .02 - .06
 .015 - .06
  .01 - .04
  .04 - .11
  Aloft
.11 -
.09 -
 .0 -
 .0 -
 .0 -
.04 -
 .0 -
 .0 -
.01 -
.01 -
.15 -
.31
.27
.03
.045
.01
.11
.06
.04
.08
.08
.75
                     4-20

-------
                        5.   SENSITIVITY ANALYSIS

     Sensitivity analysis  was performed with the  updated mechanism  to
identify the important  input  parameters in typical  urban applications  of
photochemical AQS models.  The sensitivity analysis  was  carried out  using
Version 3 of the* OZIPH  model  (Hogo and Whitten 1986) with the mechanism
shown in Table 3-4.  The OZIPN model is a fairly  versatile photochemical
box model  that  is  designed for use with the Empirical  Kinetic Modeling
Approach (EKHA)  (Gibson et al. 1981; EPA 1984).  It  was  selected for this
analysis  because  EPA  expects  the  OZIPH model  (with this  or  other
mechanisms) to  be used  extensively for control  strategy  evaluations  in
the next set of State Implementation Plans.
     Unlike other  photochemical model  sensitivity  studies that  examine
relationships between  input parameters  and maximum ozone  concentrations
(e.g.,  see  Seigneur et  al. 1981),  this analysis examines  the relation-
ships  between  the  input  parameters  and the NMOC control  requirement
needed  to  achieve  compliance  with  the  National   Ambient Air  Quality
Standard (NAAQS) for ozone.  The NMOC control requirement determined from
an EKMA analysis was selected as the output parameter  because it is,  in
fact,  the  parameter  that  is most  important  to air  quality  planners.
Fortunately, the version of the OZIPH model used in the analysis calcu-
lates the NMOC control requirement directly so the uncertainty associated
with  the graphical approach  required with earlier versions  is avoided.

5.1  Baseline Conditions and Parameter Variations

     The matrix  of runs  for the sensitivity analysis was designed to span
the  plausible range  of conditions  in  urban areas.  Plausible baseline
conditions and parameter variations were selected based on our experience
and  that of  others  (Jeffries  et al.  1981;  Shafer and Seinfeld 1985).
Recognizing  that  the  sensitivity of  the  model  to  certain parameter
variations  depends  on  the  air  quality  and meteorology,   conditions
representing a  range of initial NHOC/NO  ratios  and dilution rates were
selected for the baseline runs.  Nine baseline runs were established that
represent the  combinations of three initial KHOC/NO ratios  (6,  10, and
20 ppmC/ppm)  and three  overall  dilution factors (2, 4, and  6 times the
                                   5-1

-------
initial volume).   Model  sensitivity to other  parameter variations was
then examined under all of these conditions.
     The  OZIPM model  inputs for  the baseline  runs are  summarized  in
Table 5-1.   The   solar  radiation   levels   were  calculated  for  the
Los Angeles  summer  solstice  at  34° latitude.   The  simulations were
carried out from  8 a.m.  to 6 p.m.  Pacific daylight time, and  an  ambient
temperature of 30°C was  assumed.   An initial mixing height  of  250 meters
was  used for  all  of  the  calculations.   Final  mixing heights of 500,
1,000,  and 1,500 meters  were selected to represent  low,  moderate, and
high  dilution  rate conditions.  As  the  mixing height  rises,  pollutants
initially above the mixed layer are entrained into the  mixed layer.  The
baseline  calculations  were made using ozone and NMOC  concentrations  of
80 ppb  and  50 ppbC,  respectively,  above  the  mixed   layer.   Initial
concentrations of  carbon  monoxide,  water  vapor, and nitrous acid  in the
surface layer  were set  at 1,  20,000, and 0.0005 ppm,   respectively.   A
present-day maximum ozone concentration  of 0.24 ppm was assumed.   Thus,
the calculated NMOC control requirements  are  those required to  reduce the
maximum ozone  concentration by  50% (to  0.12 ppm) assuming no change  in
the NO  emissions.  The initial NMOC and  NO  concentrations  and emissions
      A                                    A
needed  to produce  the present-day  maximum   ozone  value are  determined
iteratively by the model.   The initial  NMOC/NOX ratio and relationship
between the  hourly post-8 a.m.  emissions  and the  initial  NMOC and NO
concentrations are input to the model.
      Initial NMOC/NO^  ratios of 6,  10,  and  20 were used in the  simula-
tions.  Emissions  equivalent to 15% and  25% of the initial  NMOC and NO ,
                                                                       &
respectively,  were employed  for the first two hours.   Emissions equiv-
alent to 10%  and 17% of the initial NMOC  and NO^, respectively, were
employed  for the  third through fifth hours.   Zero emissions were  assumed
after the fifth hour.  It is important to note that the  NMOC/NO^ ratio  of
the  emissions  was assumed to be 40% lower than the ratio in the  initial
concentrations.  The difference in ratios reflects the common discrepancy
between the observed ambient NMOC/NO  ratios  and NMOC/NO  ratios based on
                                    *»                   A
estimated emission inventories (Haney and Seigneur 1985).  Lastly,  the
recommended  default NMOC composition profiles  shown in Table 4-7 were
employed  in the baseline calculations.
                                   5-2

-------
                    TABLE 5-1

OZIPM SENSITIVITY ANALYSIS - BASELINE CASE INPUTS
   Place:
   Lattitude:
   Longitude:
   Time Zone:
   Date:

   Initial
   Mixing Height:

   Final Mixing
   Height(s):
   Temperature:

   Ozone aloft:

   NMOC aloft:

   Initial Values:
   (Surface layer)


   Present Day Ozone:

   Future NOx:

   NHOC/NOx Ratio(s):
   Emission Fractions
   of Initial Values:
Los Angeles, CA
34. degrees
118. degrees
8.
June 21, 1986
250 m at 0800

500 m at 1400 hours
1000m at 1400 hours
1500m at 1400 hours

30°C

0.08 ppm

0.05 ppmC

[CO]   = 1 ppm
[MONO] « 0.5 ppb
[H20]  = 20,000 ppm

0.24 ppm

Same as present day

6  ppmC/ppm
10 ppmC/ppm
20 ppmC/ppm
   Hour
NMOC
N0_
8
9
10
11
12
.15
.15
.10
.10
.10
.25
.25
.17
.17
.17
   NMOC Composition:    Default Profiles
                       5-3

-------
     The  ozone   isopleth  diagram  for   baseline  conditions  with   a
1,000-meter  final mixing  height is  shown in  Figure 5-1.   This  figure
shows that the shape  of the isopleth diagram generated with  the updated
chemical mechanism  is very similar  to the shape  of  previously-reported
diagrams (Gibson et al. 1981).
     The  input parameter  variations  for  the  sensitivity  analysis are
summarized in Tables  5-2 and  5-3.    A  significant  number  of the  runs
involved variations in the NMOC composition and NMOC  concentration aloft
because  previous  studies  indicated  that  these  are  important   input
parameters   (Seigneur  et al.   1981;   Shafer and Seinfeld  1985).    Four
variations   in   the   NMOC  composition  .in   the  surface   layer  were
investigated.  The  profiles,  shown in Table 5-3, represent high and low
reactivity  mixtures  of  the  nonoxygenated  species   and  high  and  low
aldehyde content  mixtures  for the oxygenated species.  The high and low
reactivity profiles were  constructed by  increasing  and decreasing the
fractions of the more  reactive nonoxygenated  compounds,  i.e.,  alkenes,
di-alkylbenzenes, and tri-alkylbenzenes,  by  50%.   The fractions  of the
less  reactive compounds, i.e.,  the  alkanes and mono-alkyIbenzenes,  were
adjusted  by ~18%  to  account   for  50%  changes  in   the  more  reactive
compounds fractions.   The nonreactive fraction was not changed  in these
profiles.  However, in the high and low aldehyde profiles where the total
aldehyde content was changed to represent 10% and 1% of the total carbon,
respectively,  the nonreactive fractions were adjusted to account for the
changes in aldehyde content.
     Seven combinations of NMOC concentrations and composition aloft were
investigated.  Concentrations of 10  and  150 ppbC were used  to  span the
plausible  range   of NMOC concentrations aloft.   An additional run with
40 ppbC, instead  of 50 ppbC,  aloft was made to more  closely reflect the
average  level observed in the  1985  Washington  State  University  aircraft
study.   High-reactivity,  low-reactivity,  and  high-aldehyde  composition
profiles were constructed for NMOC aloft using the same approach as used
for  the  variations  in surface layer reactivity (i.e., ±50%  variation in
the  fractions of  the more reactive species).
     Additional   sensitivity   runs   were   designed  to  investigate  the
importance  of  reductions  in  ozone aloft,  future  NO   emissions,  and
post-8 a.m.   emissions.   Separate runs were  carried out  assuming zero
                                    5-4

-------


















N
0
X

P
P
M





















I
1
.350*
I
1
*
I
I
.300*
I
I
*
I
I
.250*
I
I
*
I
I
.200*
I
I
*
I
I
.150*
I
I
*
I
I
.100*
I
I
*
I
I
.050*
I
I
*
1
I
.000

	 * 	 * 	 * 	 * 	 * 	 * 	 * 	 * 	 * 	 +
11234 1
28420 1
***** »
******** I
******** 1
***** *
******** 1
******** I
***** +
****** * I
******* * 1
***** * *
****** * I
****** * I
****** ** +
***** ** i
* * * * ** 1
***** ** *
***** * *** I
** * * * ****** i
***** * ****** * *
****** * ****** »*i
***** I
***** »
****** j
***** 1
** ***** *
** * * *** 1
* * * * ***** 1
* * * »* ****** ****** ****** ****** ****** »*»
* * * I
* ** » I
* * ** *
* * * I
** * *** I
* * **** * *
** * ***** ****** ****** ****** ***** ****** ****** ****** ****** **]
* ** 1
* * *
* ***** * *** **]
* ***** ****** ****** ***** ****** ****** ****** ****** ****** ****** *** i
* *
****** ****** ****** ****** ***** ****** ****** ****** ****** ****** ****** ****** ****** *»|
I
.40 .80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00
NMOC (PPMC)
                 THE 03 LINES ARE  .12   .18   .24   .32  AND  .40 PPM
FIGURE 5-1.  OZONE ISOPLETH DIAGRAM FOR BASELINE CONOITONS WITH SAPRC/ERT HECHANISM
                                     5-5

-------
                       TABLE 5-2

PARAMETER VARIATIONS IN THE OZIPH SENSITIVITY ANALYSIS
 NMOC/NOx Ratios:

 Max. Mixing Heights:

 Surface Layer
 NHOC Composition:
 NMOC Aloft:
 Ozone Aloft:

 Future NOx:

 Post 8 AM Emissions:

 Present Day Ozone:

 Initial Values:
 (Surface Layer)


 Photolysis Rates:
6, 10, and 20

500, 1000, and 1500 m
Low reactivity
High reactivity
Low aldehydes
High aldehydes

10  ppbC - baseline reactivity
40  ppbC - baseline reactivity
150 ppbC - baseline reactivity
50  ppbC - high aldehydes
50  ppbC - low reactivity
50  ppbC - high reactivity
150 ppbC - high reactivity

Zero

30% reduction

Zero

0.18 & 0.40 ppm

[PAN]  = 5 ppb
[MONO] « 4 ppb
[MONO] - 0 ppb

20% reduction in all rates
20% reduction in N02 rate
20% reduction in HCHO rates
                          5-6

-------
                                TABLE 5-3

    NMOC COMPOSITION PROFILES USED IN THE OZIPM SENSITIVITY ANALYSIS
                         SURFACE LAYER NMOC COMPOSITION PROFILES
Compound Class

C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alkyIbenzenes
Di-alylbenzenes
Tri-alkyIbenzenes
Formaldehyde
Acetaldehyde
Unreactive
            Carbon Fractions of NMOC
   Lov           High          Low
Reactivity    Reactivity    Aldehydes
.247
.33
.015
.03
.02
.188
.03
.02
.03
.02
.07
.173
.23
.045
.09
.06
.132
.09
.06
.03
.02
.07
                               .21
                               .28
                               .03
                               .06
                               .04
                               .16
                               .06
                               .04
                               .006
                               .004
                               .11
                                        High
                                     Aldehydes

                                         .21
                                         .28
                                         .03
                                         .06
                                         .04
                                         .16
                                         .06
                                         .04
                                         .06
                                         .04
                                         .02
Con pound Class

C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alky Ibenzenes
Di-alylbenzenes
Tri-alky Ibenzenes
Formaldehyde
Acetaldehyde
Unreactive
   NMOC ALOFT COMPOSITION PROFILES

       Carbon Fractions of NMOC
   Low           High          High
Reactivity    Reactivity    Aldehydes
.235
.202
.0075
.015
.0025
.078
.02
.01
.05
.03
.35
              .185
              .158
              .0225
              .045
              .0075
              .062
              .06
              .03
              .05
              .03
              .35
                                .21
                                .18
                                .015
                                .03
                                .005
                                .07
                                .04
                                .02
                                .10
                                .06
                                .27
                                   5-7

-------
concentration of ozone  aloft,  30% reduction in future NO  emissions,  and
                                                         A
without  post-8 a.m.  emissions.   Simulations were  also  carried  out  to
examine  the   sensitivity   of  the  NMOC  control  requirement   to   the
present-day maximum  ozone  concentrations.  Ozone concentrations  of  0.18
and  0.40 ppm  were  employed for  this purpose.  All  of  these parameter
variations were investigated  at three NMOC/NO  ratios and three dilution
factors.
     Additional investigations  of the sensitivity  to initial values of
PAN  and nitrous  acid  and  photolysis  rates were  performed  at  three
NMOC/NO  ratios and  just one dilution factor.  Separate simulations were
       A
carried  out  with initial  PAN concentrations of 5 ppb and initial  HONO
concentrations  of 0  and  4 ppb.   The photolysis  rate  sensitivity  runs
included ones  with  20% reduction in all photolytic rates,  20% reduction
in  only  the  N0_  photolysis  rate,  and  20%  reduction  in  only  the
formaldehyde photolysis rates from their clear sky values.

5.2  Sensitivity Analysis Results

     The predicted  NMOC control  requirements calculated in the  baseline
runs  and in the  parameter variation  runs  are shown  in Table 5-4.   The
relative  change  in  the  control  requirements  from  the  corresponding
baseline  results are  shown  in Table  5-5.   The  baseline runs  predict
control  requirements of  29%,  58%,  and  80% for  the 1,000-meter  final
mixing  height  cases with initial  NMOC/NO   ratios  of   6,  10,   and  20,
respectively.   The  baseline  results with lower and  higher final mixing
heights  have predicted control requirements that are  up to 4% lower and
2%  higher than the  ones  with  the median  final  mixing height.  These
results  clearly indicate the importance of the initial NMOC/NO  ratio in
EKMA  analyses.   For  the  baseline  conditions,  they  indicate that  the
mixing height  is moderately important.
     The results  for the runs with  variations in  the surface layer NKOC
composition  show   large  variations  from  the  corresponding  baseline
results.   For  example,  for  the case with NMOC/NO^ =  10 and 1,000-meter
final mixing  height, the  predicted control  requirements were 45%,  66%,
50%,  and 64%  (versus  58% in  the baseline run) for  the low reactivity,
high-reactivity, low-aldehyde, and high-aldehyde runs, respectively.  The
                                   5-8

-------
                                      TABLE  5-4

                        PREDICTED NMOC CONTROL REQUIREMENTS  {%)
     Case
Baseline Case

Surface Layer NMOC:

  Low Reactivity
  High Reactivity
  Low Aldehydes
  High Aldehydes

NMOC Aloft:

  10 ppbC
  40 ppbC
  150 ppbC
  50 ppbC- High Aldehydes
  50 ppbC- Low Reactivity
  50 ppbC-High Reactivity
  150 ppbC-High Aldehydes

Ozone Aloft = 0

30% Future NO  Reduction

Without Emissions

Present Day Ozone:
  Ozone
  Ozone
 .18 ppm
 .40 ppm
Initial Concentrations:
  HONO
  HONO
  PAN
0
4 ppb
5 ppb
Photolysis Rates:

  All Rates Decreased 20%
  N02 Rate Decreased 20%
  HCHO Rate Decreased 20%
NMOC/NO^ » 6
Mixing Height
500m 1000m 1500m
26.8
4
37.3
*
34.4
25.8
26.6
30.7
27.5
26.7
27.1
35.4
23.5
47.4
41.1
22.8
28.7






29.1
*
41.6
*
38.9
27.2
28.6
40.4
30.6
28.6
29.6
49.6
23.2
50.0
45.8
29.9
28.9
29.0
30.0
32.0
23.1
27.2
27.2
30.1
*
43.2
*
40.4
27.7
29.4
44.1
31.9
29.6
30.7
54.9
23.3
50.9
47.4
33.1
28.9






NMOC/N08 = 10
Mixing Height
500m
53
39
62
45
60
50
53
61
55
53
54
65
45
68
64
55
55






.7
.5
.0
.8
.1
.9
.0
.1
.0
.2
.1
.6
.3
.3
.5
.0
.5






1000m
57.7
44.6
65.8
50.0
64.0
53.5
56.6
69.9
60.1
56.9
58.5
77.2
44.7
72.1
68.2
60.8
57.4
57.4
59.3
61.8
49.3
55.1
56.2
1500m
59.
46.
67.
51-.
65.
54.
58.
73.
61.
58.
60.
81.
44.
73.
69.
62.
58.






2
3
0
6
5
5
0
5
7
4
3
26
5
4
6
9
0






NMOC/NOX = 20
Mixing Height
500m 1000m
77
70
81
73
80
75
76
82
78
77
77
85
71
83
82
72
77






.4
.8
.3
.8
.4
.3
.9
.6
.3
.0
.7
.4
.5
.5
.5
.5
.2






80.1
74.2
83.5
76.7
82.8
76.9
79.3
88.3
81.4
79.5
80.6
92.5
70.8
85.7
84.7
75.4
78.6
79.9
81.0
82.8
75.0
79.3
79.3
1500m
81.0
75.6
84.3
77.9
83.7
77.5
80.2
90.3
82.5
80.5
81.6
94.9
70.7
86.5
85.5
76.7
79.0






*The solar radiation and NMOC were insufficient to generate  the ozone design value
                                         5-9

-------
                                       TABLE 5-5

                RELATIVE CHANGE IN PREDICTED NHOC CONTROL REQUIREMENTS
       Case
Surface Layer NMOC:

  Low Reactivity
  High Reactivity
  Low Aldehydes
  High Aldehydes

NMOC Aloft:

  10 ppbC
  40 ppbC
  150 ppbC
  50 ppbC- High Aldehydes
  50 ppbC- Low Reactivity
  SO ppbC-High Reactivity
  150 ppbC-High Aldehydes

Ozone Aloft = 0

30% Future NO^ Reduction

Without Emissions

Present Day Ozone:

  Ozone =  .18 ppn
  Ozone s  .40 ppm

Initial Concentrations:
  HONO
  HONO
  PAN
0
4 ppb
5 ppb
Photolysis Rates:

  All Rates Decreased 20%
  N02 Rate Decreased 20%
  HCHO Rate Decreased 20%
NMOC/NO^ » 6
Mixing Height
500m 1000m 1500m
*
.39
*
.28
.04
•.01
.15
.03
.00
.01
.32
-.12
.77
.53
-.15
.07
*
.43
*
.34
-.07
-.02
.39
.05
-.02
.02
.70
-.20
.72
.57
.03
-.01
*
.44
*
.34
-.08
-.02
.47
.06
-.02
.02
.82
-.23
.69
.57
.10
-.04
                                        NMOC/NOK = 10

                                        Mixing Height
                                        500m  1000m 1500m
                                  NMOC/NOK » 20

                                  Mixing Height
                                 500m 1000m 1500m
.00
.03
.10
                         -.21
                         -.07
                         -.07
.26
.15
.15
.12
.05
.01
.14
.02
.01
.01
.22
.16
.27
.20
.02
.03






-.23
.14
-.13
.11
-.07
-.02
.21
.04
-.01
.01
.34
-.23
.25
.18
.05
-.01
-.01
.03
.07
-.15
-.05
-.03
-.22
.13
-.13
.11
-.08
-.02
.24
.04
-.01
.02
.37
-.25
.24
.18
.06
-.02






.09
.05
.05
.04
.03
.01
.07
.01
.01
.00
.10
.08
.08
.07
-.07
.04
-.04
.03
-.04
-.01
.10
.02
-.01
.01
.15
-.12
.07
.06
-.07
.04
-.04
.03
-.04
-.01
.11
.02
-.01
.01
.17
-.13
.07
.06
                                                           -.06  -.06  -.05
                                                            .00  -.02  -.02
.00
.01
.03
                                       -.06
                                       -.01
                                       -.01
*The solar radiation and NMOC were insufficient to generate the ozone design value.
                                         5-10

-------
cases with lower  and higher initial NMOC/NO  ratios showed more and less
                                            X
sensitivity to  the reactivity of  the surface layer NMOC,  respectively.
Solutions could not  be obtained for the  low-reactivity  and low-aldehyde
cases  with  an  initial  NMOC/NO   ratio  of  six because  the  lack  of
reactivity  prevented  reaching  the  present-day maximum  ozone  in  the
calculations.   These results  clearly indicate  that  NMOC  reactivity  of
emissions and initial  concentrations  are very  important  inputs to  the
EKHA analysis.  The  results strongly support the recommendation made  in
Section 5 for using region-specific speciation data rather than default
profiles whenever possible.
     The  results  from  the  runs  with variations  in the NMOC  aloft show
several  interesting features.   First,  as  one would  expect in any  air
quality model that incorporates entrainraent of  reactive pollutants,  the
importance of the concentrations of the entrained pollutants increases as
the  entrainment  rate  increases.   This  is  shown by  contrasting  the
relative  changes  in  the control requirements for the runs with different
final  mixing  heights   (at  any NMOC/NO   ratio).  The  higher  the  mixing
                                       A
height, the more  important the NMOC aloft.  Second, for these particular
sets  of  runs,  the  magnitude  of  the NMOC  concentration aloft  is more
important than variations  in  its composition.   That  is,   the  runs with
alternate  NMOC  composition  at  50 ppbC  showed  significantly  smaller
relative  changes than the runs in which the NMOC concentration aloft ware
varied.   While not all of  these variations may be equally probable, they
still  suggest that  the  concentration  of  NMOC   aloft  is  probably more
important than its  composition.   Its concentration aloft  clearly is an
important input to OZIPM and in the EKMA analysis.
     The  results  from  the  runs with zero  concentration for ozone aloft
show   the  expected  characteristics:    1) significantly  lower  control
requirements  since the ozone  background is lower;  2)  the  importance of
the  ozone aloft value  increases as the  entrainment  rate  increases; and
3) with   zero ozone  aloft assumed,  the  NMOC   control requirement  is
essentially independent of  the mixing height.
     The  results  for  simulations  with  30% reduction in future  NO
emissions  show higher  NMOC control requirements under all conditions.
The  increases in  the  control requirements under  these  conditions are
generally  greater  than   those   for  any  other   parameter  variation
                                   5-11

-------
investigated.  The increase is especially large in the cases with the low
initial  NMOC/NO^  ratio.   These  results  suggest significant  attention
should be given to the future NO  emissions assumptions in EKHA analyses.
                                A
     Th« predicted NMOC control requirements  for the simulations without
post-8 a.m.  emissions (along  the  trajectory) are also higher  than  the
corresponding  baseline results.   These  results  reflect  the  fact  that
control requirements  generally increase  as the NMOC/NO^ ratio  increases.
Without the  emissions, which were  assumed to have a  lower NMOC/NOV ratio
                                                                  A
than   the   initial   concentrations,   the  effective  NMOC/NC)    of  the
                                                              A
simulations  is considerably higher.   The influence  of  the  emissions on
the control requirement is especially large at the lower initial NHOC/NO
                                                                        A
ratio.
     The control requirements predicted for the conditions with different
present-day maximum ozone  concentrations are  somewhat counter-intuitive.
The  expected  results for  the cases  with lower and  higher present-day
maximum  ozone  levels were  lower  and higher control  requirements than
those  calculated  for the baseline  runs,  respectively.  However,  the
results show a mixture of moderately lower and higher control requirement
predictions.   Similar responses to this type of parameter variation have
been  reported in  other modeling studies  (e.g.,  see Carter 1981).  One
possible  explanation  of   why  higher  present-day ozone  maxima  do  not
necessarily  increase  the  control requirement is that ozone scavenging by
NO  becomes increasingly more  important and effective as the absolute NO
  A                                                                     A
levels  increase.   However, this is quite speculative.   For the purposes
of  this sensitivity analysis,  these results  indicate  that the predicted
control  requirements are  only  moderately  sensitivity  to this  input
parameter.
     The results of the simulations with 0 and 4 ppb of nitrous acid show
this input has  only minor effect on the predictions.   Larger effects were
expected  since nitrous acid rapidly photolyzes  to  form the OH radical.
However, even at 4 ppb,  which  is higher than is expected in all but the
most  polluted  urban  areas  in the  United States  (Atkinson 1986),  the
initial nitrous acid  had only  a small effect on control requirements and,
therefore, is not an  important input to the model.
     The results  of the simulations with 5 ppb of initial PAN instead of
zero  in the baseline simulations show increased control requirements at
                                   5-12

-------
all  three  NMOC/NO  ratios.  This  occurs because PAN  produces important
radicals when it  thermally decomposes,  and the timing of  its  decomposi-
tion (under these conditions) effectively increases the reactivity of the
mixture.   PAN  is considered  a  moderately  important  input  to  OZIPM;
however,  there  is so  little  reliable  ambient  data  that it  is  very
difficult to objectively specify the initial concentration.
     Lastly, the  results with reduced photolysis indicate lover control
requirements in all cases.  Reductions  in all of the  photolytic  rates
have a  much larger effect on the  control requirements than  comparable
reductions in N02 or  HCHO photolysis alone.  Reduction in N02  photolysis
rates alone was investigated because clouds are expected to attenuate the
NO. photolysis rate more than the rate for other species.  Overall,  these
results show the  radiation inputs to OZIPM are moderately important for
accurate  estimates of  the  control  requirements,  particularly  in  cases
with low initial NMOC/NO^ ratios.
     In summary,  this sensitivity analysis has identified the following
parameters  as  most  important  in  OZIPM applications  with the  updated
mechanism:
          Initial NMOC/NO  ratio
          NMOC reactivity
          Post-8 a.m. emissions along the trajectory
          Future NO  emissions
          NMOC and ozone concentrations aloft
Meteorological  information concerning  the mixing heights  and radiation
levels  are important inputs.   Initial  PAN concentrations are moderately
important;  however, initial  nitrous acid  concentration  is unimportant.
The  composition of NMOC  aloft also  appears to be  unimportant when the
concentration is less than ~50 ppbC.
                                    5-13

-------
                             6.  CONCLUSIONS

     A  surrogate species  chemical mechanism  for the photooxidation  of
NMOC and NOX  has been updated, thoroughly tested, and adapted for use  in
AQS  models   in   this  research  program.   The  mechanism  incorporates
significant  improvements  in  the understanding  of  photochemical  smog
formation in  urban  areas.   Guidelines have been developed for using the
mechanism in atmospheric modeling.
     The mechanism evaluation is the most comprehensive study of  its type
on atmospheric chemical mechanisms.  The evaluation is unique in  that one
mechanism was tested over a vide range of conditions using data  from a
large   number  of  experiments.   Consistent   chamber  characterization
procedures  were  employed,  and  run-to-run  adjustments  of uncertain
parameters  were  not  permitted.   Statistics on  model performance  were
tabulated and displayed graphically.  The performance data  was  examined
closely for evidence of systematic biases.  "^—""*
     The results of  the mechanism evaluation  indicate  the  mechanism  is
able   to   predict  the  rate   of  NO    oxidation  and  maximum   ozone
                                      A
concentrations with little bias and within ±30% error for a large number
of  single  organic-NO   experiments and organic mixture-NO   experiments.
                     X                                    A
The  biases  and  average  error  in  the maximum ozone  predictions for the
different types of experiments used in the testing program are summarized
in  Table 6-1.   The results are statistically significant  for  propene,
toluene,  n-butane,   and  a  large  number  of  mixtures,  including  auto
exhaust,  for  which  there  are  many  experiments.    However,  there  is
probably  an  insufficient   number of experiments  for  the  results for
aldehydes,  ketones,  butenes,  C5+  alkanes,  and aromatics other  than
toluene to  be  statistically   significant.   The  ozone  predictions for
single  organic-NO  irradiations  with carbonyls,  alkenes,  and aromatics
show good  agreement with the  data on  the average.   The results for
alkanes are not  satisfactory.   They show a large amount of error.  The
uncertainty  in chamber  characterization procedures  strongly  affect the
predictions  for  alkanes-NO  mixtures.   Because of  these uncertainties,
the  alkane  mechanism  cannot be evaluated without ambiguity at this time.
With the exception of the single  alkane  runs,  the results show that the
mechanism's bias is  generally less  than 10%.  On the surrogate mixture
                                     6-1

-------
                    TABLE 6-1



   AVERAGE MODEL PERFORMANCE FOR MAXIMUM OZONE








Run Type              Bias (%)       Error (%)
Formaldehyde
Acetaldehyde
Other Carbonyls
All Carbonyls
Ethene
Propene
Butenes
All Alkenes
Butane
Branched Alkanes
Long-chain Alkanes
All Alkanes
Benzene
Toluene
Xylenes
Mesitylene
All Aromatics
-1
-26
+4
-5
+2
+3
+4
+3
+31
+34
+83
+46
+3
+11
-9
-11
+1
19
26
44
25
18
18
34
21
67
49
84
69
5
24
16
21
19
All Single HC Runs        +12              33





Simple Mixtures        +10              35



Mini Surrogates        +10              22



Full Surrogates         +3              23



Auto Exhaust           -11              15



All HC Mixtures            +4              24





All Run Average            +7              28









^Positive bias indicates model overprediction.
                         6-2

-------
and  auto exhaust  runs,  which  are  most representative  of the types  of
mixtures for which the mechanism will be applied in atmospheric modeling,
the average errors  in the maximum ozone are ±23% and ±15%, respectively.
This level of performance is good considering the uncertainties  in both
the chemistry and chamber characterization.
                  «
     Model  performance   for   other   intermediate   species,  such  as
formaldehyde  and peroxyacetylnitrate  (PAN),  is  considerably worse  than
the  performance for  ozone; however,  the  data may  not be reliable for
these species.
     In  Phase II of  the program,  condensed versions  of  the  mechanism
employed  in  the testing  program were  developed  for use  in  AQS  models.
Mechanisms  were  developed  for  use  in  single-cell  models  that  can
accommodate large  chemical mechanisms  and for use  in  multi-cell models
that  require   fairly  small  chemical mechanisms.   Very  little  mechanism
condensation  was   required  for  the  mechanism  designed  for  use  in
single-cell models.   Significant mechanism condensation assumptions were
implemented  in  the  mechanism  designed for use  in multi-cell  models.
     Predictions  from  the  condensed  versions   of   the  mechanism  were
compared to predictions of the detailed mechanism for a range of mixtures
and  NMOC/NO   ratios.  The results  showed that  the  single-cell  model
mechanism's predictions  are almost  identical (i.e., within  ±2%) to the
detailed mechanism15 predictions for all of the key species.  Predictions
from  the multi-cell  model  mechanism agree with  those  from the detailed
mechanism within ±10% for all key species.
     Information  on  speciation  of  organics  for  the classes  in the
mechanism was developed.   First, a master list showing the assignment of
individual  organic compounds  to  organic  classes  in  the  mechanism was
compiled.   The  uncertainty  of  each  assignment  was  ranked,  based  on
whether  or not the  surrogate  species  employed  for the  assigned class
represents  the  reactivity of the  individual   species well.   Second,
ambient  speciated NHOC data collected  at  the  ground and above the mixed
layer  in the mornings  in urban  areas were  analyzed.  A default NMOC
composition  profile  for  emissions  and ambient  concentrations  near the
surface were  developed    from ambient data collected  in 25 cities using a
consistent  measurement and speciation protocol.  A default composition
profile  for NMOC aloft was compiled from  aircraft data collected upwind
                                      6-3

-------
of  four  cities.   These  default  profiles can  be  used in  atmospheric
modeling applications where site-specific data are not available.
     Sensitivity  analysis was  carried  out  using  the updated  chemical
mechanism in the  OZIPM &QS model.  The sensitivity analysis was designed
to  identify  the  input  parameter that most strongly  influences the  NHOC
control  requirements in  EKMa analyses.  Almost  all of the  sensitivity
runs were performed  at several NMOC/NO  ratios and  dilution  rates  since
the  sensitivity of model-to-parameter  variations is known to  depend on
these parameters. The results of the  analysis confirmed the importance
of the following input parameters:

     •    NHOC/NOx ratio
     •    NHOC composition
     •    Post-8 a.m. emissions rates along the trajectory
     •    Future changes in NO  emission rates
                              &
     •    Ozone and NHOC concentrations aloft

Other   relatively  important  parameters  include   the  mixing  height,
radiation,   and  initial  PAN   concentrations.    The  results   of  the
sensitivity analysis are intended to help air quality planners prioritize
efforts  for  obtaining  input  data for  the  photochemical models  used to
develop control strategies.
                                   6-4

-------
                             7.   REFERENCES
Atkinson, R.. W.P.L. Carter, K.R.  Darnall,  A.M.  Winer and J.N. Pitts,  Jr.
     1980.  Int. J. Chem. Kinet..  12:  779.

Atkinson, R., A.C.  Lloyd and L. Winges 1982.  Atmos. Environ..  16:  1341.

Atkinson,  R.,  W.P.L.   Carter  and  A.M.   Winer  1983.    Evaluation   of
     Hydrocarbon  Reactivities  for Use in Control  Strategies.    Final
     Report to the California Air  Resources Board Contract No. AO-105-32.

Atkinson,  R. and A.C.  Lloyd 1984.   J. Phys.  Chem.  Ref Data,  13: 315.

Atkinson, R. 1986.  Kinetics and Mechanisms of the Gas Phase Reactions of
     the  Hydroxyl  Radical  with   Organic   Compounds  Under Atmospheric
     Conditions.  Chem. Rev., 85;  69-201.

Bandow, H., N. Washida 1985a.  Bull. Chem.  Soc.  Jpn., 58: 2541,

Bandow, H., N. Washida 1985b.  Bull. Chem.  Soc.  Jpn., 58. 2549.

Bandow,  H., N.  Washida.  H.  Akimoto  1985.  Bull. Chem. Soc.  Jpn..  58:
     2531.

Carter,  W.P.L.,  A.M.  Winer  and   J.N.  Pitts,  Jr.  1981.   Environ. Sci.
     Technol.. 15: 829.

Carter. W.P.L.. R.  Atkinson.  A.M. Winer and J.N. Pitts,  Jr. 1981.  Int.
     J. Chem. Kinet.. 13: 735.

Carter, W.P.L.. R.  Atkinson.  A.M. Winer and J.N. Pitts.  Jr. 1982.  Int.
     J. Chem. Kinet.. 14: 1071.

Carter.  W.P.L.. M.C.  Dodd.  W.E.  Long and R.   Atkinson 1984.   Outdoor
     Chamber Study  to  Test Multi-day Effects.  Final Report to the U.S.
     Environmental   Protection  Agency,  EPA/600/3-85/115.   U.S.  EPA,
     Research Triangle Park, NC.

Carter.  W.P.L.  and R.  Atkinson 1985.   Atmospheric Chemistry of Alkanes.
     J. Atmos. Chem.. 3: 377-405.

Carter,  W.P.L.,   F.W.   Lurmann,   R.   Atkinson,  and  A.C.  Lloyd  1986.
     Development  and Testing of   a Surrogate Species Chemical Reaction
     Mechanism, Volumes  I  and II.   EPA-600/3-86-031.   U.S. Environmental
     Protection Agency, Research Triangle Park,  NC.

Dodge, M.C.  1977.   Combined Use of Modeling Techniques  and Smog  Chamber
     Data  to  Derive  Ozone-Precursor  Relationships.   EPA-600/3-77-001,
     U.S. EPA, Research Triangle Park, NC.

Dundei, B.E., R.J. O'Brien 1984.  Nature, 311; 248.
                                   7-1

-------
EPA  1980.    Volatile  Organic  Compound  (VOC)  Species  Data  Manual.
     EPA-450/80-015.   U.S.  Environmental  Protection  Agency,   Research
     Triangle Park, NC.

EPA  1984.   Guidelines for Using Carbon-Bond Mechanism  in City-Specific
     EKMA.   EPA-450/4-84-005.   U.S.  Environmental  Protection  Agency,
     Research Triangle Park,  NC.

EPA  1987.   Proceeding of the Workshop on Evaluation and Documentation of
     Chemical  Mechanisms  Used  in  Air  Quality  Models,  Raleigh,  NC.,
     December 1-3,  1986.  U.S.  Environmental Protection Agency,  Draft.

Gear,  C.W.  1971.   Algorith  407  -  DIFSUB for  Solution  of  Ordinary
     Differential Equations.   Commun. ACM. 14;3: 185-190.

Gibson, G.L., W.P. Freas, R.K. Kelly, and E.L. Meyer 1981.  Guideline For
     Use    of   City-Specific    EKMA    in    Preparing   Ozone    SIPs.
     EFA-450/4-80-027.   U.S. Environmental  Protection Agency,  Research
     Triangle Park, NC.

Grosjean, D. 1982.  Environ.  Sci. Technol., 16:  254.

Grosjean, D.  and A.C. Lloyd 1982.  Captive Air Experiments in Support of
     Photochemical  Kinetic   Model   Evaluation,   Phase I,  ERT  Document
     No. P-A764-500.  ERT. Westlake Village, CA.

Grosjean, D. and K. Fung 1984.  Hydrocarbons and Carbonyls  in Los Angeles
     Air.   J. Air Poll.  Cont. Assoc.. 34: 537-543.

Hampton, C.V., W.R. Pierson,  T.M. Harvey, W.S. Updegrove, and R.S.  Harano
     1982.  Environ.  Sci. Techno.. 16: 287-298.

Haney, J.L. and C. Seigneur 1985.  Investigation of Reactive Hydrocarbon
     to  NO  Ratio  in the South  Coast  Air Basin.   Systems Applications,
     Inc.,  San  Rafael,  CA.   Technical  Memorandum dated  December 31.

Hogo. H.  and G.Z. Uhitten 1986.  Guidelines for Using OZIPM-3 with CBH-X
     or  Optional Mechanisms, Vol. 1 -  Description  of the  Ozone  Isopleth
     Plotting  Package/Version 3.  EPA/600/3-86/004.   U.S.  Environmental
     Protection Agency,  Research Triangle Park, NC.

Jeffries,   H.E.,  K.G.   Sexton  and  C.N.  Salmi  1981.   The  Effects  of
     Chemistry and Meteorology on Ozone Control Calculations Using Simple
     Trajectory  Models  and  the EKMA Procedure.   EPA 450/4-81-034.  U.S.
     Environmental Protection Agency, Research Triangle Park, NC.

Killus,  J.P.  and G.Z. Whitten 1982.  A New Carbon-Bond Mechanism for Air
     Quality  Simulation Modeling.  EPA-600/3-82-041.  U.S. Environmental
     Protection Agency,  Research Triangle Park, NC.

Leone,  J.A.  and J.H.  Seinfeld  1984.   Evaluation  of  Chemical  Reaction
     Mechanisms   for  Photochemical   Smog.    Part   II.    Quantitative
     Evaluation of  the Mechanisms.  EPA/600/3-84/063.  U.S. Environmental
     Protection Agency,  Research Triangle Park, NC.
                                   7-2

-------
Leone. J.A.,  R.C.  Flagan, D.  Grosjean and J.H. Seinfeld  1985.   Int.  J.
     Chem. Kinet..  17: 177.

Lonneman, W.  1986.   Comparison of 0600-0900 AM Hydrocarbon  Composition
     Obtained from 29  Cities.   Proceeding of the 1986 EPA/APCA Symposium
     on Measurements of Toxic Air Pollutants.  APCA Publication VIP-7  and
     EPA 600/9-86-013, pp. 419-430.

Lurmann.  F.W.,  A.C.  Lloyd  and  R.  Atkinson 1984.   ADOM/TADAP  Model
     Development Program,  Volume 6, Gas  Phase Chemistry.   ERT  Document
     No. P-B980-530, July.

Lurmann, F.W., A.C. Lloyd and R. Atkinson 1986.  A Chemical Mechanism  for
     Use  in  Long  Range  Transport/Acid  Deposition  Computer  Modeling.
     J. Geophys. Res.. 91:010:10,905

McRae, G.J.,  W.R.  Goddin and J.H.  Seinfeld  1982.   Mathematical Modeling
     of  Photochemical   Air   Pollution  EQL-18.    Environmental  Quality
     Laboratory, California Institute of Technology, Pasadena, CA.

NASA   1985.    Chemical  Kinetics   and  Photochemical  Data  for  Use   in
     Stratospheric Modeling,  Evaluation No.  7,  Jet Propulsion Laboratory
     Publication 85-37,  National  Aeronautics and  Space Administration.

Oliver,  W.R.  and  S.H.  Peoples  1985.   Improvement  of   the  Emission
     Invensotyr for  Reactive  Organic  Gases and Oxides of Nitrogen in  the
     South Coast Air Basin.   Systems Applications, Inc., San Rafael,  CA,
     and Radian Corp., Sacramento, CA.

Penner, J.E.  and J.J.  Walton 1982.  Air  Quality Model Update.  Lawrence
     Livermore  Laboratory Report  UCID-19300, University  of  California,
     Livermore, CA, 55 pp.

Peterson,  J.T. 1976.   Calculated  Actinic Fluxes  (290-700 nm)  for  Air
     Pollution  Photochemistry  Applications.   EPA-600/4-76-025.  U.S.
     Environmental Protection Agency, Research Triangle Park,  NC.

Reynolds, S.D., J.H. Seinfeld, and P.M. Roth 1973.  Mathematical Modeling
     of  Photochemical  Air Pollution  -  I:   Formulation  of   the Model.
     Atmos. Environ.. 7: 1033-1061.

Seigneur, C., T.W. Tesche, P.M. Roth, and L.E. Reid 1981.   Sensitivity of
     a Complex Urban  Air Quality  Model  ti  Input  Data.   J.  Appl. Met..
     20.9; 1020-1040.

Shafer,  T.B.  and  J.H. Seinfeld  1985.   Evaluation of  Chemical Reaction
     Mechanisms for  Photochemical Smog Part III.  Sensitivity of EKMA to
     Chemical  Mechanism  and Input Parameter.  EPA/600/3-85-042.  U.S.
     Environmental Protection Agency, Research Triangle Park.  NC.

Shepson.  P.B., E.O. Edney,  T.E.  Kleindienst, J.H.  Pittman,  G.R. Mamie,
     and L.T. Cupitt 1985.  Environ. Sci. Technol.. 19: 849.
                                   7-3

-------
Sigsby,  J.E.,  S.B.  Tejada.  W.D.  Ray,  and J.W.  Duncan 1987.  Volatile
     Organic Compound Emissions From  46  In-Use Passenger Cars.  Environ.
     Sci. Technol. (in press)

Stump,  F.D.  and D.L.  Dropkin  1985.   Gas  Chromatographic  Method  for
     Quantitative  Determination of  C2   to  C13 Hydrocarbons  in  Roadway
     Vehicle Emissions.  Anal. Chem..  57: 2629-2634.

Tuazon, E.G., R.  Atkinson,  C.N.  Plum, A.M. Winer,  J.N.  Pitts, Jr.,  1983.
     Geophys. Res. Lett.. 10: 953.

Tuazon,  E.G.,  H. Mac Leod,  R.  Atkinson, W.P.L. Carter  1986.   Environ.
     Sci. Technol.. 20: 383.

Whitten, G.Z., J.P.  Killus  and R.G.  Johnson  1983.  Modeling of  Simulated
     Photochemical Smog with Kinetic Mechanisms.  EPA/600/3-83/043.   U.S.
     Environmental Protection Agency,  Research Triangle  Park, NC.

Whit ten,  G.Z.,  J.P.  Killus. and  R.G.  Johnson 1985.   Modeling  of  Auto
     Exhaust  Smog Chamber Data for EKMA Development.   EPA/600/3-83/032.
     U.S.  Environmental Protection Agency, Research Triangle Park,  NC.

Whitten,  G.Z.  and M.W.  Gery 1986.  Development of  CBM-X Mechanisms for
     Urban  and  Regional AQSMs.   EPA/600/3-86-012.   U.S.  Environmental
     Protection Agency, Research Triangle Park, NC.

WSU  1986.   Nonmethane  Organic  Carbon  Concentrations  in Air  Masses
     Advected Into Urban Areas in the United States.   Data Report  for EPA
     Grant  No. CR812208.   Washington  State  University,   Pullman.   WA.
                                  7-4

-------
             APPENDIX A




MECHANISM PERFORMANCE EVALUATION DATA
                 A  -  \

-------
                 Table A-l

             BACKGROUND AIR RUNS
   Experiment          Maximum Concentration
                               OZONE

                                    Calc   Calc
                   Expt    Calc    -Expt  -Expt
                   (ppm)   (ppm)   (ppm)  /Expt
 1. UNC CHAMBER - PURE AIR
JN0682R
OC0684R
OC0684B
Group Average
S. Dev.
Avg. Abs. Value
S . Dev .
0.203
0.097
0.119
0.139
0.056


0.218
0.101
0.113
0.144
0.065


0.016
0.004
-0.006
0.005
0.011
0.009
0.006
0.08
0.04
-0.05
0.02
0.07
0.06
0.02
 2. SAPRC ITC - PURE AIR

   ITC940          0.072   0.077   0.005   0.07
   ITC955          0.064   0.077   0.013   0.20
   ITC1008         0.088   0.078  -0.009  -0.11

Group Average      0.075   0.077   0.003   0.05
      S. Dev.      0.012   0.001   0.011   0.15
Avg. Abs. Value                    0.009   0.12
      S. Dev.                      0.004   0.07
                       A-l

-------
              Table A-2



NOX-AIR and NOx-CO-AIR IRRADIATIONS

Experiment
Initial
Concentrations
MOx HC HC/NOx
(ppm) (ppmC)
Final • Init
NO
Expt
(Ppm)
Calc
(ppn)
Cale
•Expt
(ppm)
Final • Init
N02-UNC
Expt

Calc
(PP»)
Calc
•Expt
(PP"»
Final - Init
PROPEHE
Expt
(Ppm>
Calc
(ppm)
Calc
•Expt
(PP"»
1. SAPRC EC • NOX-AIR
EC436
EC440
EC442
EC457
EC464
EC597
EC599
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC •
ITC69S
ITC826
ITC882
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
3. SAPRC crc •
OTC185
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
1.79
0.76
0.58
0.50
0.19
0.56
3.40
1.11
1.13
NOx-AIR
0.50
0.90
0.70
0.70
0.20
NOX-AIR
0.28
0.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.8
0.0
0.3
0.5

0.0
0.0
0.0
0.0
0.1
0.1
0.2
0.1
0.0
0.1
0.1

0.1
0.9
0.0
0.3
0.5

0.1
0.1
•0.098
•0.063
0.069
•0.066
•0.019
•0.061
2.276
0.291
0.877
0.379
0.837

•0.021
•0.349
•0.001
-0.124
0.195
0.124
0.195

•0.002
•0.002
0.002
-0.049
•0.048
0.092
•0.043
•0.003
•0.032
1.890
0.258
0.721
0.308
0.698

•0.016
•0.341
•0.027
-0.128
0.185
0.128
0.185

-0.004
•0.004
0.004
0.049
0.015
0.023
0.023
0.015
0.029
•0.386
•0.033
0.156
0.077
0.137

0.005
0.008
•0.026
•0.004
0.019
0.013
0.012

•0.002
•0.002
0.002
•0.071
0.024
•0.172
0.008
•0.002
0.041
•2.685
•0.408
1.007
0.429
0.996

0.011
0.263
•0.010
0.088
0.152
0.095
0.146

•0.003
•0.003
0.003
•0.060
0.013
•0.160
•0.008
•0.011
0.005
•2.546
•0.395
0.950
0.400
0.948

•0.002
0.233
•0.014
0.072
0.139
0.083
0.130

0.000
0.000
0.000
0.011
•0.011
0.012
•0.016
•0.009
•0.036
0.139
0.013
0.058
0.034
0.047

-0.013
•0.030
•0.004
•0.016
0.013
0.016
0.013

0.002
0.002
0.002
•0.004
•0.005
•0.006
•0.007
•0.006
•0.007
•0.007
•0.006
0.001
0.006
0.001

•0.003
•0.005
•0.001
•0.003
0.002
0.003
0.002

•0.001
•0.001
0.001
•0.005
•0.005
•0.005
•0.008
•0.007
•0.006
•0.008
•0.006
0.001
0.006
0.001

•0.004
•0.005
•0.002
•0.003
0.001
0.003
0.001

-0.002
•0.002
0.002
•0.001
0.000
0.001
•0.001
-0.001
0.000
0.000
0.000
0.001
0.001
0.000

•0.001
0.000
0.000
0.000
0.000
0.000
0.000

•0.001
•0.001
0.001

-------
                                                               TABLE A-2 (Continued)
>
Experiment



4. UNC CHAMBER
JN1782R
JN1782B
JN2782B
AU0282R
AU2082R
AU2282R
AU2382R
OC0882R
OC0882B
STOS82R
JL2483R
JL2483B
JL2783B
AU0683B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
5. SAPRC ITC •
ITC62S
ITC634
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
6. SAPRC OTC •
OTC188
OTC201A
OTC201B
Group Average
S. Uev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations

NOx HC
(ppm) (ppmC)
• MOx-AIR
0.42 0.0
0.42 0.0
0.44 0.0
0.39 0.0
0.41 0.0
0.46 0.0
0.43 0.0
0.30 0.0
0.30 0.0
0.50 0.0
0.31 0.0
0.48 0.0
0.43 0.0
0.37 0.0
0.40 0.0
0.06 0.0


MOx-CO-AIR
0.28 0.0
0.60 0.0
0.44 0.0
0.22 0.0


NOx-CO-AIR
0.34 0.0
0.37 0.0
0.76 0.0
0.49 0.0
0.23 0.0



HC/HOX


0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



0.1
0.1
0.1
0.0



0.1
0.1
0.1
0.1
0.0


Final • Init
NO

Expt
(ppm)

•0.061
•0.044
•0.113
0.035
•0.011
0.000
0.056
•0.024
•0.017
0.070
•0.047
•0.071
•0.090
0.001
•0.023
0.053
0.046
0.034

•0.069
•0.040
•0.055
0.021
0.055
0.021

•0.090
•0.160
•0.123
•0.124
0.035
0.124
0.035

Calc
(Ppn)

•0.046
•0.042
•0.085
0.044
•0.001
0.028
0.059
•0.035
•0.035
0.073
•0.032
•0.047
•0.056
0.013
-0.012
0.048
0.043
0.022

•0.084
•0.059
-0.071
0.018
0.071
0.018

-0.126
•0.146
•0.104
•0.125
0.021
0.125
0.021
Calc
•Expt
(PP«)

0.014
0.002
0.028
0.009
0.010
0.028
0.003
•0.011
•0.017
0.003
0.015
0.024
0.034
0.012
0.011
0.015
0.015
0.010

•0.015
•0.019
•0.017
0.003
0.017
0.003

•0.036
0.014
0.019
•0.001
0.030
0.023
0.011
Final • Init
N02-UNC

Expt
(Pf»n>

0.004
0.003
0.050
•0.129
•0.049
•0.147
•0.144
0.005
0.009
•0.171
0.011
0.014
0.036
•0.090
-0.043
0.077
0.062
0.062

0.068
0.034
0.051
0.024
0.051
0.024

0.072
0.162
0.096
0.110
0.046
0.110
0.046

Calc
(ppn)

0.015
0.011
0.046
•0.090
•0.035
•0.089
•0.098
0.029
0.030
•0.127
0.006
0.007
0.021
•0.047
-0.023
0.057
0.047
0.039

0.077
0.050
0.063
0.019
0.063
0.019

0.115
0.133
0.090
0.113
0.021
0.113
0.021
Calc
•Expt
(ppn)

0.011
0.008
•0.004
0.039
0.014
0.058
0.046
0.024
0.021
0.044
•0.005
•0.007
•0.015
0.043
0.020
0.023
0.024
0.018

0.009
0.015
0.012
0.005
0.012
0.005

0.043
•0.029
•0.006
0.003
0.037
0.026
0.019
Final • Init
PROPENE

Expt
(ppn)




















•0.004
•0.004
•0.004
0.000
0.004
0.000

•0.003
•0.004
•0.004
•0.004
0.001
0.004
0.001

Calc
(ppn)




















•0.004
•0.002
•0.003
0.001
0.003
0.001

•0.002
•0.003
•0.002
-0.003
0.001
0.003
0.001
Calc
•Expt
(ppn>




















0.000
0.001
0.001
0.001
0.001
0.001

0.001
0.001
0.002
0.001
0.001
0.001
0.001

-------
TABLE A-2 (Continued)
Experiment
Initial
Concentrations
NOx HC HC/NQx
(ppra) (ppnC)
7. IMC CHAMBER •
JN2782R
AU02828
AU2082B
AU2282B
AU2382B
STOS82B
JL2783R
AU0683R
Group Average
S. Oev.
Avg. Ab*. Value
S. Oev.
Final • Init
NO
Expt
(PP»>
Calc
(PP")
Calc
•Expt
(PP»>
Final • Init Final • Init
N02-UNC PROPENE
Expt
(PPM)
Calc
(PP"»
Calc Calc
•Expt Expt Calc -Expt
(ppm) (ppra) (ppm) (ppm)
MOX-CO-AIR
0.45
0.40
0.41
0.46
0.43
O.SO
0.47
0.39
0.44
0.04


0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


•0.320
•0.054
•0.111
•0.086
•0.004
0.019
•0.289
•0.133
•0.122
0.124
0.127
0.118
•0.272
•0.040
•0.097
•0.076
•0.024
•0.010


•0.087
0.097
0.087
0.097
0.047
0.015
0.013
0.010
•0.020
•0.030


0.006
0.028
0.023
0.014
0.202
•0.002
0.072
0.003
•0.042
-0.086
0.214
0.032
0.049
0.109
0.082
0.083
0.229
•0.012
0.059
0.011
•0.018
•0.046


0.037
0.100
0.063
0.084
0.027
•0.010
•0.013
0.008
0.023
0.040


0.013
0.021
0.020
0.012

-------
                                                                            Table A-3



                                                                     FORMALDEHYDE • AIR RUMS
01
Experiment



1. SAPRC EC •
EC250
EC255
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
2. UNC CHAMBER
JL1782R
JL17828
OC0784R
OC0784B
OC1684R
OC1684B
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

NOx

Calc
•Expt

-------
      TABLE A-4



ACETALOEHYOE • AIR RUNS
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppn) (ppnC)
Maxima Concentration
OZONE
Expt
(ppm)
Calc
(PP«)
Calc
•Expt
(PP«)
Calc
•Expt
/Expt
Maximum Concentration
PAN
Expt
(ppm)
Calc
(ppn)
Calc
•Expt
(ppn)
Calc
•Expt
/Expt
1. SAPRC EC • ACETALOEHTDE-AIR
EC253
Group Averag*
S. Oev.
Avg. Ate. Value
S. Oev.
2. SAPRC ITC •
ITC627
1TC636
ITC82S
ITC957
1TC974
ITC1009
Croup Average
S. Oev.
Avg. Ate. Value
S. Oev.
0.02
0.02
1.1
1.1
53.8
53.8
0.137
0.137
0.130
0.130
•0.007
•0.007
0.007
•0.05
•0.05
0.05
0.040
0.040
0.044
0.044
0.004
0.004
0.004
0.10
0.10
0.10
ACETAIDEHYDE-AIR
0.03
0.03
0.00
0.04
0.03
0.04
0.03
0.01
0.8
0.7
0.0
1.1
0.9
0.9
0.7
0.4
26.1
26.6
27.6
29.8
27.0
27.4
1.4
0.060
0.047
0.076
0.085
0.078
0.069
0.015
0.066
0.067
0.021
0.069
0.064
0.069
0.059
0.019
0.006
0.020
•0.007
•0.021
•0.009
•0.002
0.016
0.013
0.007
0.10
•0.10
•0.24
•0.12
•0.09
0.14
0.14
0.07
' 0.013
0.011
0.013
6.300
0.008
1.269
2.812
0.014
0.014
0.008
0.015
0.015
0.014
0.013
0.003
0.001
0.003
0.003
•6.285
0.006
•1.255
2.812
1.260
2.810
0.05
0.24
0.23
•1.00
0.74
0.05
0.64
0.45
0.40

-------
TABLE A-4 (Continued)
Expert nent



3. SAPRC OTC •
OTC200A
OTC2008
OTC206A
OTC2068
OTC234A
OTC234B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
4. UMC CHAMBER
JL26B3R
JL2683B
AU0483R
AU0483B
OC1584R
OC1584B
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations

MOx


HC
(ppmC)

HC/NOx

Maximum Concentration
OZONE

Expt


Calc

Calc
•Expt
(PPn)
Calc
•Expt
/Expt
Maximum Concentration
PAN

Expt
(ppm)

Calc

Calc
•Expt
(PP«)
Calc
•Expt
/Expt
ACETALOEHYDE-AIR
0.01
0.01
0.01
0.01
0.04
0.04
0.02
0.01


1.1
0.8
1.3
1.0
1.0
1.5
1.1
0.2


96.9
68.8
136.8
94.0
26.2
39.3
77.0
40.8


0.088
0.076
0.030
O.OZ3
0.083
0.084
0.064
0.029


0.071
0.070
0.053
0.076
0.122
0.123
0.086
0.029


•0.017
•0.006
0.024
0.053
0.039
0.039
0.022
0.028
0.030
0.017
•0.19
•0.08


0.47
0.47
0.17
0.35
0.30
0.20
0.008
0.006
0.020
0.013
0.004
0.007
0.010
0.006


0.007
0.007
0.010
0.009
0.011
0.011
0.009
0.002


•0.001
0.001
•0.010
•0.004
0.007
0.004
0.000
0.006
0.005
0.003
•0.12
0.21
•0.48
•0.30
1.75
0.63
0.28
0.82
0.58
0.60
• ACETALOEHYDE-AIR
0.02
0.01
0.03
0.02
0.02
0.02
0.02
0.01


1.1
1.1
1.0
1.1
0.0
0.0
0.7
0.5


48.3
87.6
34.3
47.1
1.1
1.1
36.6
32.8


0.422
0.331
0.548
0.431
0.140
0.193
0.344
0.155


0.413
0.290
0.459
0.382
0.222
0.266
0.339
0.093


•0.008
•0.041
•0.089
•0.049
0.082
0.073
•0.005
0.069
0.057
0.030
•0.02
•0.12
•0.16
•0.11
0.58
0.38
0.09
0.31
0.23
0.21
0.026
0.027
0.040
0.040
0.023
0.035
0.032
0.007


0.054
0.061
0.054
0.066
0.066
0.065
0.061
0.006


0.028
0.034
0.014
0.026
0.043
0.030
0.029
0.010
0.029
0.010
1.09
1.23
0.34
0.66
1.83
0.85
1.00
0.52
1.00
0.52

-------
                                                                        Table A-5
                                                                 FORMALDEHYDE -  NOx RUNS
>
00
Experiment
Initial
Concentrations
NOX HC HC/NOX
(ppi) (ppnC)
Maxima Concentration
OZONE
Expt

-------
                                                                TABLE A-5  (Continued)
VO
Experiment



4. IMC CHAMBER •
AU01790
AU0279B
AU0479B
AUOS79B
JL2381B
OC0984R
OC0984B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentration*

HOx HC
(PP») (pf»C)
FORMALDEHYDE
0.35 1.0
0.21 1.0
0.23 0.5
0.54 1.2
0.43 1.5
0.56 1.0
0.50 1.0
0.40 1.0
0.14 0.3



HC/MOx


2.8
4.7
2.1
2.2
3.5
1.7
1.9
2.7
1.1


Maxima Concentration
OZONE

Expt


0.618
0.606
0.378
0.508
0.637
0.666
0.301
0.531
0.141



Calc
/dt

Expt
• •

2.06
2.12
1.17
1.95
2.70
2.11
1.51
1.94
0.49



Calc
(ppb/mfn)

2.40
2.91
1.23
2.56
3.43
2.82
1.83
2.45
0.73


Calc
•Expt
• •

0.34
0.79
0.06
0.61
0.73
0.71
0.32
0.51
0.27
0.51
0.27
Calc
•Expt
/Expt

0.17
0.37
0.05
0.31
0.27
0.34
0.21
0.25
0.11
0.25
0.11
Half-Life
FORMALDEHYDE

Expt Calc
(Bin) (win)

245 181
233 150
280 189
283 198
205 182
328 226
330 213
272 191
47 24


Calc
•Expt
(•in)

•64
•83
•91
•85
•23
•102
•117
•80
30
80
30
Calc
•Expt
/Expt

•0.26
•0.36
•0.32
•0.30
•0.11
•0.31
•0.35
•0.29
0.08
0.29
0.08

-------
                                                                    Table A-6

                                                       ALDEHYDE OR KETONE • NOX • Air RUNS
M
O
Exptri«ent
Initial
Concent rat font
NOx HC MC/NOx
(ppM) (ppmC)
Maxlnji Concentration
OZONE
Expt

Calc

Cale
•Expt

Calc
•Expt
/Expt
Average
d( [03] •
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/nin) ••
Calc
•Expt
/Expt
1. SAPRC EC • ACETALDEHYOE
EC164
EC2S4
Croup Average
S. Dtv.
Avg. Abt. Value
S. Dev.
2. IMC CHAMBER
AU0179R
JN1482R
AU2482B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
JN14828
AU2482R
Group Average
8. Dev.
Avg. Abs. Value
S. Dev.
0.51
0.11
0.31
0.28
tf.7
1.0
0.8
0.2
1.4
8.5
5.0
5.0
0.086
0.264
0.175
0.126
0.063
0.243
0.153
0.128
•0.023
•0.020
•0.022
0.002
0.022
0.002
•0.27
•0.08
•0.17
0.13
0.17
0.13
2.03
1.33
1.68
0.49
1.71
1.28
1.49
0.31
•0.32
•0.05
•0.19
0.19
0.19
0.19
•0.16
•0.04
•0.10
0.08
0.10
0.08
• ACETALOEHYDE
0.36
0.31
0.32
0.33
0.02
2.0
3.1
1.9
2.3
0.7
5.7
9.9
6.0
7.2
2.3
0.930
0.731
0.972
0.878
0.129
0.729
0.461
0.634
0.608
0.136
•0.201
•0.270
•0.338
•0.270
0.069
0.270
0.069
•0.22
•0.37
•0.35
•0.31
0.08
0.31
0.08
1.98
1.62
1.68
1.76
0.19
1.67
1.40
1.39
1.49
0.16
•0.30
•0.22
•0.29
•0.27
0.04
0.27
0.04
•0.15
•0.14
•0.17
•0.15
0.02
0.15
0.02
• PROPANAIOEHTDE
0.30
0.33
0.32
0.02
3.1
1.9
2.5
0.9
10.5
5.6
8.0
3.4
0.733
0.941
0.837
0.147
0.459
0.609
0.534
0.106
•0.274
•0.331
•0.303
0.040
0.303
0.040
•0.37
•0.35
•0.36
0.02
0.36
0.02
1.75
1.82
1.79
0.05
1.49
1.41
1.45
0.05
•0.26
•0.41
•0.33
0.11
0.33
0.11
•0.15
•0.22
•0.19
0.05
0.19
0.05

-------
TABLE A-6 (Continued)
Experiment

4. UNC CHAMBER
JH0480R
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
5. UNC CHAMBER
OC2079R
JN0480B
Group Average
S. Oev.
Avg. Abt. Value
S. Oev.
Initial
Concentration*
NOx
(PPM)
HC HC/NOx

-------
        Table A-7



N-BUTANE • NOx •  AIR RUNS
Experiment



Initial
Concentrations

MOx


NC


NC/NOX

Maximum Concentration
OZONE

Expt


Catc

Calc
•Expt
/Expt
Average Initial
d( [03] • [NO] )/dt

Expt
• •

Calc
(ppb/niin)
Calc
•Expt
• •
Calc
•Expt
/Expt
1. SAPK EC • WANE
EC150
EC133
EC134
EC137
EC162
EC163
EC168
EC178
EC304
ECS05
EC306
EC507
EC308
EC309
Croup Average
S. Dev.
Avg. Ate. Value
S. Dev.
2. SAPRC ITC •
ITC507
ITC533
ITC770
ITC939
ITC948
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.10
o.so
0.51
O.SO
O.S1
0.49
0.49
0.10
0.47
0.10
0.19
0.10
0.48
0.47
0.56
0.19


BUTANE
0.09
0.12
0.52
0.51
0.26
0.30
0.21


17.6
.6
.3
.7
.2
.0
.0
7.8
17.1
15.7
25.8
25.8
16.2
17.2
13.9
6.4



15.2
11.9
37.9
14.8
10.0
18.0
11.4


179.3
17.1
16.3
17.3
16.3
18.3
16.2
79.6
36.7
159.7
138.2
252.9
33.6
36.3
72.7
77.7



165.0
99.8
72.8
28.9
38.2
81.0
54.8


0.459
0.249
0.034
0.042
0.112
0.454
0.655
0.384
0.362
0.398
0.535
0.420
0.047
0.545
0.335
0.205



0.149
0.165
0.042
0.017
0.054
0.085
0.067


0.498
0.075
0.058
0.070
0.082
0.227
0.446
0.443
0.617
0.597
0.746
0.651
0.210
0.751
0.391
0.263



0.399
0.466
0.149
0.039
0.142
0.239
0.163


0.039
•0.174
0.024
0.028
•0.031
•0.227
•0.209
0.059
0.255
0.199
0.211
0.231
0.164
0.206
0.055
0.167
0.147
0.089

0.251
0.301
0.107
0.022
0.088
0.154
0.117
0.154
0.117
0.08
•0.70


•0.27
•0.50
•0.32
0.15
0.71
0.50
0.39
0.55

0.38
0.09
0.47
0.41
0.20

1.68
1.83


1.64
1.72
0.10
1.72
0.10
4.41
2.42
0.94
1.02
1.73
3.31
2.03
1.61
2.09
2.39
2.38
2.61
1.04
2.00
2.14
0.94



0.69
0.61
1.56
0.36
0.53
0.75
0.47


2.86
1.30
1.52
1.54
1.50
2.17
1.54
1.77
2.78
3.66
4.16
6.10
2.58
3.16
2.62
1.34



1.42
1.82
3.83
0.86
1.05
1.80
1.20


•1.56
•1.12
0.58
0.52
•0.23
•1.14
•0.49
0.16
0.70
1.27
1.78
3.49
1.54
1.16
0.48
1.36
1.12
0.85

0.74
1.21
2.27
0.49
0.52
1.05
0.74
1.05
0.74
•0.35
•0.46
0.62
0.51
•0.13
•0.34
•0.24
0.10
0.33
0.53
0.75
1.34
1.49
0.58
0.34
0.61
0.56
0.41

1.07
1.99
1.45
1.37
0.97
1.37
0.40
1.37
0.40

-------
TABLE A-7 (Continued)
Experiment



3. SAPRC OTC •
OTC211
Group Average
S. Oev.
Avg. Abe. Value
8. Dev.
4. UNC CHAMBER
JI2178R
JL2178B
JL2278R
JL22788
ST1879B
OC0979R
OC18798
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

NOx

BUTANE
0.5S
0.55



• BUTANE
0.24
0.24
0.55
0.55
0.21
0.21
0.20
0.31
0.16



HC


0.008





0.763
0.986
0.166
0.788
0.185
0.191
0.208
0.470
0.359



Catc
(PP«)

0.098





0.447
0.812
0.051
0.218
0.267
0.359
0.419
0.367
0.238


Calc
•Expt


0.090





•0.316
•0.175
•0.115
•0.570
0.081
0.168
0.211
•0.102
0.281
0.234
0.166
Calc
•Expt
/Expt







•0.41
•0.18
•0.69
•0.72
0.44
0.88
1.01
0.05
0.73
0.62
0.29
d(

Expt
• •

0.56
0.56




1.17
1.64
0.90
1.55
0.51
0.60
0.60
1.00
0.47


Average Initial
[03] • [NO] )/dt

Calc
(ppb/min)

1.11
1.11




0.96
1.41
0.69
1.05
0.64
0.81
0.82
0.91
0.26


Calc
•Expt
• •

0.55
0.55

0.55


•0.21
•0.23
•0.21
•0.50
0.13
0.21
0.22
•0.08
0.27
0.25
0.12
Calc
•Expt
/Expt

0.97
0.97

0.97


•0.18
•0.14
•0.24
•0.32
0.26
0.36
0.37
0.01
0.30
0.27
0.09

-------
                                        TABLE A-7 (Continued)
Experiment
Maxinun Concentration
        PAN
Maximum Concentration
        ACETALD
Maximum Concentration
        NEK
                                 Calc   Calc
                Expt    Calc    -Expt  -Expt
                (ppm)   (ppm)   (ppm)  /Expt
                                            Calc   Calc
                            Expt    Calc     -Expt   -Expt
                            (ppm)   (ppm)    (ppm)   /Expt
                                            Calc   Calc
                            Expt    Calc    -Expt  -Expt
                            (ppm)   (ppm)   (ppm)  /Expt
1. SAPRC EC • 1
EC130
EC133
EC134
EC137
IC162
EC163
EC168
EC178
EC304
EC305
EC306
EC307
EC308
EC309
Group Average
S. Oev.
Avy. Ab». value
S. Oev.
2. SAPRC ITC •
ITC507
ITC533
ITC770
ITC939
ITC94B
Group Average
S. Dev.
Avg. Abt. Value
S. Oev.
BUTANE
0.044
0.031
0.004
0.005
0.015
0.106
0.092
0.045
0.027
0.031
0.035
0.026
0.005
0.034
0.036
0.030


BUTANE
0.004
0.004
0.000


0.003
0.002



0.053
0.006
0.005
0.005
0.006
0.050
0.055
0.056
0.064
0.056
0.072
0.055
0.018
0.065
0.041
0.026



0.012
0.024
0.005
0.001
0.005
0.009
0.009



0.009
•0.025
0.001
0.000
-0.009
•0.055
•0.037
0.011
0.037
0.025
0.037
0.029
0.013
0.031
0.005
0.028
0.023
0.016

0.008
0.020
0.005


0.011
0.008
0.011
0.008

0.21
•0.80
0.17
0.08
•0.58
•0.52
•0.41
0.24
1.34
0.80
1.03
1.09
2.79
0.91
0.45
0.96
0.78
0.69

2.06
4.62



3.34
1.81
3.34
1.81

0.130
0.096
0.049
0.062
0.098
0.526
0.114
0.092
0.149
0.131
0.166
0.161
0.037
0.226
0.145
0.121



0.029
0.033
0.056
0.014
0.015
0.029
0.017



0.190
0.085
0.080
0.083
0.085
0.410
0.115
0.114
0.203
0.189
0.248
0.242
0.082
0.263
0.171
0.097



0.108
0.118
0.137
0.076
0.072
0.102
0.028



0.060
•0.011
0.031
0.021
•0.013
•0.116
0.001
0.023
0.054
0.058
0.082
0.081
0.045
0.037
0.025
0.051
0.045
0.032

0.078
0.085
0.081
0.062
0.058
0.073
0.012
0.073
0.012

0.46
•0.11
0.64
0.33
•0.13
•0.22
0.01
0.25
0.37
0.44
0.49
0.51
1.23
0.16
0.32
0.38
0.38
0.30

2.69
2.57
1.45
4.41
3.89
3.00
1.17
3.00
1.17

0.165
0.122
0.064
0.072
0.067
0.077
0.193
0.091
0.092
0.085
0.098
0.139
0.076
0.115
0.104
0.039



0.075
0.036
0.047
0.019
0.021
0.040
0.023



0.199
0.078
0.073
0.075
0.078
0.065
0.142
0.136
0.210
0.191
0.254
0.235
0.159
0.167
0.147
0.065



0.092
0.110
0.106
0.061
0.061
0.086
0.024



0.034
•0.044
0.009
0.003
0.011
•0.013
•0.051
0.045
0.118
0.107
0.156
0.096
0.083
0.052
0.043
0.062
0.059
0.047

0.017
0.073
0.059
0.042
0.040
0.047
0.021
0.047
0.021

0.21
•0.36
0.14
0.04
0.16
•0.16
•0.27
0.50
1.28
1.26
1.59
0.69
1.08
0.45
0.47
0.62
0.58
0.51

0.23
2.01
1.27
2.25
1.94
1.54
0.82
1.54
0.82

-------
                                                                      TABLE A-7 (Continued)
un
Experinent

Maximum Concentration
PAN
Expt

-------
            TABLE A-8




BRANCHED ALKANE - NOx • AIR RUNS
Experiment
Initial
Concentrations
NOx HC
(ppm) (pptnC)
HC/NOx
Max i nun Concentration
OZONE
Expt

Calc

Calc
-Expt
/Expt
Average
d( 103] •
Initial
[NO] }/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
1. SAPRC EC • 2,3 DIMETHYL BUTANE
EC16S
EC169
EC171
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. UNC CHAMBER •
OC1879R
OC2079S
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER •
AU1983R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
4. UNC CHAMBER •
AU1983B
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
0.10
0.19
0.10
0.13
0.05
11.3
4.5
3.5
6.4
4.2
114.3
23.5
35.7
57.8
49.3
0.488
0.493
0.403
0.462
0.051
0.671
0.528
0.472
0.557
0.102
0.182
0.035
0.069
0.095
0.077
0.095
0.077
0.37
0.07
0.17
0.20
0.15
0.20
0.15
1.77
1.00
1.30
1.36
0.39
999.00
1.21
1.33
333.65
576.04
0.22
0.03
0.12
0.13
0.12
0.13
0.22
0.02
0.12
0.14
0.12
0.14
2.3 DIMETHYL BUTANE
0.20
0.22
0.21
0.02
16.4
12.6
14.5
2.7
81.9
56.5
69.2
18.0
0.236
0.217
0.226
0.014
0.556
0.416
0.486
0.099
0.320
0.199
0.259
0.086
0.259
0.086
1.36
0.92
1.14
0.31
1.14
0.31
0.64
0.66
0.65
0.02
0.93
0.90
0.92
0.02
0.30
0.25
0.27
0.04
0.27
0.04
0.47
0.37
0.42
0.07
0.42
0.07
ISO PENTAME
0.38
0.38
4.7
4.7
12.6
12.6
0.088
0.088
0.074
0.074
-0.014
-0.014
0.014
•0.16
-0.16
0.16
0.61
0.61
0.63
0.63
0.02
0.02
0.02
0.03
0.03
0.03
ISO OCTANE
0.37
0.37
4.1
4.1
10.9
10.9
0.057
0.057
0.035
0.035
•0.022
•0.022
0.022
-0.38
•0.38
0.38
0.53
0.53
0.51
0.51
•0.02
•0.02
0.02
•0.04
•0.04
0.04

-------
                     Table A-9



PENTANE AND HIGHER N-ALKANES • NOx -  AIR RUNS
Experiment

Initial
Concentrations
NOX HC HC/NOx
(ppm) (ppmC)
Maximum Concentration
OZONE
Calc
Expt Calc -Expt
(ppm) (ppm) (ppra)
Calc
•Expt
/Expt
Average Initial
d( [03] • (NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
1. SAPRC EC • PENTANE
EC135
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
2. UNC CHAMBER
OC0979B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.10 20.4 212.7
0.10 20.4 212.7
• PENTANE
0.21 15.1 73.3
0.21 15.1 73.3
0.435 0.576 0.141
0.435 0.576 0.141
0.141

0.184 0.309 0.126
0.184 0.309 0.126
0.126
0.32
0.32
0.32

0.68
0.68
0.68
2.92 2.96 0.05
2.92 2.96 0.05
0.05

0.59 0.75 0.16
0.59 0.75 0.16
0.16
0.02
0.02
0.02

0.27
0.27
0.27
3. SAPRC EC • HEXANE
EC131
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
4. SAPRC ITC •
ITC559
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.10 24.6 251.1
0.10 24.6 251.1
HEXANE
0.19 279.4 1441.1
0.19 279.4 1441.i
0.393 0.561 0.168
0.393 0.561 0.168
0.168

0.377 0.571 0.194
0.377 0.571 0.194
0.194
0.43
0.43
0.43

0.51
0.51
0.51
1.92 2.17 0.25
1.92 2.17 0.25
0.25

1.79 1.77 -0.02
1.79 1.77 -0.02
0.02
0.13
0.13
0.13

•0.01
•0.01
0.01

-------
TABLE A-9 (Continued)
Experiment

5. SAPKC ITC •
ITCS38
ITC540
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
6. SAPftC ITC •
ITCSS2
ITC761
ITC762
ITC763
ITC797
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
7. OKC CHAMBER
ST1879R
Group Average
S. Dev.
Avg. Ate. Value
S. Dev.
Initial
Concentrations
NOX
(ppn»
HEPTANE
0.11
0.11
0.11
0.00
OCTANE
0.13
0.52
0.27
0.28
0.52
0.34
0.17
• OCTANE
0.21
0.21
HC
(ppmC)

60.3
274.8
167.6
151.7

428.8
75.2
74.7
7.7
7.3
118.7
176.6

6.3
6.3
HC/NOx

529.0
2421.3
1475.2
1338.1

3278.4
145.9
280.4
27.7
14.0
749.3
1417.9

30.4
30.4
Haxinun Concentration
OZONE
Expt


0.364
0.436
0.400
O.OS1

0.314
0.049
0.240
0.118
0.009
0.146
0.128

0.467
0.467
Calc
•Expt
(PP»>

0.213
0.076
0.145
0.097
0.145
0.097

•0.002
0.020
0.134
0.077
0.005
0.047
0.058
0.047
0.057

0.346
0.346
0.346
Calc
•Expt
/Expt

1.42
0.21
0.82
0.85
0.82
0.85

•0.01
1.27
0.63
0.90
0.64
0.90

2.83
2.83
2.83
Average
d( [031 -
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/nin) ••

0.74
1.85
1.30
0.79

1.19
1.08
0.83
0.68
0.64
0.88
0.24

0.40
0.40

1.21
1.28
1.25
0.05

1.02
1.63
2.06
2.39
0.92
1.60
0.64

0.63
0.63

0.47
•0.57
•0.05
0.74
0.52
0.07

•0.17
0.55
1.23
1.71
0.28
0.72
0.75
0.79
0.66

0.23
0.23
0.23
Calc
•Expt
/Expt

0.64
•0.31
0.17
0.67
0.48
0.24

•0.14
0.51
1.48
2.51
0.44
0.96
1.04
1.02
0.97

0.58
0.58
0.58
8. SAPRC EC • NONANE
EC15S
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.10
0.10
37.3
37.3
385.1
385.1
0.264
0.264
0.438
0.438
0.174
0.174
0.174
0.66
0.66
0.66
1.33
1.33
1.07
1.07
•0.26
•0.26
0.26
•0.20
•0.20
0.20

-------
      Table A-10



ETHENE • NOx • AIR RUNS

Experiment
Initial
Concentrations
NOx HC HC/NOx
(PPM) (ppMC)
Maxioui Concentration
OZONE
Expt

Calc
•Expt
/Expt
Average
d< [03) •
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
Half-Life
ETHENE
Calc
Expt Calc -Expt
(mln) («in) (•in)
Calc
•Expt
/Expt
1. SAPRC EC • ETHENE
EC142
ECUS
EC156
EC285
EC286
EC287
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC •
ITC926
ITC936
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
AU0479R
AUOS79R
OC0584R
OC1184R
OC1284R
OC0584B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
o.48
0.50
0.50
1.01
0.94
0.53
0.66
0.25


ETHENE
0.51
0.50
0.50
0.01


• ETHENE
0.23
0.64
0.36
0.35
0.72
0.37
0.45
0.19


1.9
4.1
4.0
3.9
7.5
8.0
4.9
2.4



7.9
3.9
5.9
2.8



0.9
4.1
3.2
2.9
2.7
1.8
2.6
1.1


4.1
8.1
8.0
3.9
8.0
15.1
7.9
4.1



15.6
7.8
11.7
5.5



3.9
6.4
8.8
8.2
3.7
5.0
6.0
2.2


0.782
1.087
1.105
0.840
1.081
0.965
0.977
0.139



0.982
0.940
0.961
0.030



0.729
1.294
0.856
0.858
0.495
0.675
0.818
0.269


0.563
0.850
0.808
1.063
1.271
1.098
0.942
0.252



0.993
0.950
0.971
0.031



0.555
1.108
1.007
1.102
0.576
0.778
0.854
0.254


•0.218
•0.237
•0.297
0.223
0.190
0.133
•0.034
0.240
0.216
0.054

0.011
0.010
0.010
0.001
0.010
0.001

•0.174
•0.186
0.151
0.244
0.082
0.103
0.037
0.177
0.157
O.OS9
•0.28
•0.22
•0.27
0.27
0.18
0.14
•0.03
0.25
0.22
0.06

0.01
0.01
0.01
0.00
0.01
0.00

•0.24
•0.14
0.18
0.28
0.16
0.15
0.07
0.21
0.19
0.06
3.20
8.50
8.89
5.05
11.76
13.89
8.55
3.99



6.96
2.72
4.84
3.00



1.60
3.17
2.16
2.22
1.58
1.48
2.04
0.64


2.50
5.48
5.46
6.07
14.13
17.07
8.45
5.75



8.50
3.39
5.95
3.62



1.15
3.08
2.44
2.48
1.65
1.61
2.07
0.72


•0.70
•3.02
•3.43
1.03
2.37
3.19
•0.09
2.76
2.29
1.16

1.54
0.67
1.11
0.61
1.11
0.61

•0.45
•0.09
0.28
0.26
0.07
0.13
0.03
0.27
0.21
0.14
•0.22
•0.36
•0.39
0.20
0.20
0.23
•0.05
0.30
0.27
0.08

0.22
0.25
0.23
0.02
0.23
0.02

•0.28
•0.03
0.13
0.12
0.04
0.09
0.01
0.15
0.11
0.09
222
155
153
265
174
171
190
44



227
337
282
77



307
333
394
366

465
373
61


290
228
228
248
162
155
218
51



225
310
267
60



389
367
321
305
485
387
375
63


68
73
75
•17
•12
•16
28
47
43
31

•2
-27
•14
17
14
17

82
34
-73
•61

•78
-19
72
65
19
0.31
0.47
0.49
•0.06
•0.07
•0.09
0.17
0.28
0.25
0.20

-0.01
•0.08
•0.04
0.05
0.04
0.05

0.27
0.10
•0.19
•0.17

•0.17
•0.03
0.20
0.18
0.06

-------
                               Table A-10 (Continued)
to
o
                       Expertwent          Maxioun Concentration
                                                   HCHO

                                                        Calc   Calc
                                       Expt    Calc    -Expt  -Expt
                                               (ppai)    (ppn)  /Expt
1. 8APRC EC • 1
ECU2
ECU3
EC156
EC285
EC286
EC287
Croup Average
8. Dev.
Avg. Ate. Value
8. Dtv.
2. SAPRC ITC •
ITC926
ITC936
Croup Average
S. Dev.
Avg. Ate. Value
8. Oev.
3. UNC CHAMBER
AU0479R
AUOS79R
OCOS84R
OC1184R
OC1284R
OC0584B
Croup Average
8. Dev.
Avg. Ate. Value
S. Dev.
•THERE
0.207
0.967
0.735
0.709
1.425
1.426
0.912
0.469


ETHENE
1.308
0.697
1.002
0.432


• ETHENE
0.306
1.488
0.869
0.707
0.655
0.558
0.764
0.401



9.385
0.758
0.753
0.740
1.342
1.275
0.876
0.365



1.223
0.682
0.953
0.383



0.152
0.663
0.525
0.484
0.447
0.308
0.430
0.178



0.177
•0.209
0.018
0.031
•0.083
•0.151
•0.036
0.140
0.111
0.079

•0.085
•0.015
•0.050
0.049
0.050
0.049

•0.153
•0.825
•0.344
•0.223
•0.207
•0.249
•0.334
0.249
0.334
0.249

0.85
•0.22
0.02
0.04
•0.06
•0.11
0.09
0.39
0.22
0.32

•0.06
•0.02
•0.04
0.03
0.04
0.03

-0.50
•0.55
•0.40
•0.32
•0.32
•0.45
•0.42
0.10
0.42
0.10

-------
                                                                              Table A-11



                                                                       PROPENE • NOX • AIR RUNS
NJ
Experiment
Initial
Concentrations
VOX HC HC/NOx
(pp») (pp«C)
Maximal Concentration
OZONE
Expt

Calc
(ppn)
Calc
•Expt
(PP">
Calc
•Expt
/Expt
Average
d{ [03J •
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
Half-Life
PROPENE
Calc
Expt Calc -Expt
(nin) (nin) (*in)
Calc
•Expt
/Expt
1. SAPRC EC • PROPENE
EC121
EC177
EC216
EC217
EC230
EC256
EC257
EC276
EC277
EC278
EC279
EC3U
EC315
EC316
EC317
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC -
ITC693
ITC810
ITC860
ITC925
ITC938
ITC947
ITC960
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.51
0.46
0.52
0.68
0.52
0.56
0.56
0.52
0.11
0.49
0.97
0.93
0.94
0.98
0.54
0.61
0.24


PROPENE
0.49
0.52
0.52
0.54
0.52
0.53
0.50
0.52
0.02


1.5
1.5
1.5
0.6
1.9
0.4
0.7
1.6
1.7
3.1
3.5
3.2
2.9
3.2
1.5
1.9
1.0



3.5
2.8
3.0
2.8
2.1
1.9
2.6
2.7
0.5


2.9
3.2
3.0
1.2
3.7
0.7
1.3
3.2
15.7
6.2
3.5
3.5
3.1
3.3
2.8
3.8
3.5



7.2
5.4
5.8
5.2
4.0
3.6
5.2
5.2
1.2


0.506
0.540
0.564
0.149
0.344
0.002
0.068
0.388
0.313
0.625
0.679
0.728
0.344
0.955
0.615
0.455
0.260



0.779
0.782
0.585
0.779
0.729
0.710
0.721
0.726
0.070


0.491
0.498
0.595
0.273
0.310
0.010
0.104
0.459
0.397
0.683
0.703
0.813
0.567
1.000
0.615
0.501
0.260



0.713
0.703
0.662
0.715
0.517
0.533
0.641
0.641
0.084


•0.014
•0.042
0.031
0.124
•0.035
0.007
0.035
0.071
0.085
0.057
0.024
0.085
0.223
0.045
•0.001
0.046
0.067
0.059
0.056

•0.066
•0.080
0.078
•0.064
•0.212
•0.177
•0.080
•0.086
0.093
0.108
0.060
•0.03
•0.08
0.05
0.83
•0.10

0.52
0.18
0.27
0.09
0.04
0.12
0.65
0.05
0.00
0.18
0.28
0.21
0.26

•0.09
•0.10
0.13
•0.08
•0.29
-0.25
•0.11
•0.11
0.14
0.15
0.08
7.46
3.89
4.18
0.80
3.06
0.98
3.35
3.24
8.27
7.72
6.64
7.21
4.33
10.64
4.06
5.06
2.81



5.07
4.25
3.57
3.72
3.61
3.34
4.23
3.97
0.59


4.11
3.91
5.63
1.47
4.76
1.01
4.16
4.39
7.48
9.42
8.69
10.98
6.68
12.08
4.48
5.95
3.24



6.82
4.75
5.08
4.13
2.70
2.67
3.91
4.29
1.45


•3.36
0.02
1.45
0.68
1.70
0.03
0.81
1.15
•0.80
1.69
2.04
3.77
2.35
1.44
0.42
0.89
1.61
1.45
1.10

1.76
0.50
1.51
0.41
•0.91
•0.67
•0.32
0.33
1.03
0.87
0.56
•0.45
0.01
0.35
0.85
0.56
0.03
0.24
0.35
•0.10
0.22
0.31
0.52
0.54
0.14
0.10
0.24
0.31
0.32
0.23

0.35
0.12
0.42
0.11
•0.25
•0.20
•0.07
0.07
0.26
0.22
0.13
56
95
105
116
123
181
60
128
74
87
123
98
159
70
85
105
33



126
135
142
150
137
157
133
140
10


114
119
91
124
125
175
77
123
67
82
114
85
126
75
78
105
28



110
141
131
147
185
188
148
150
28


58
24
-14
8
2
-6
•3
•5
-7
•5
-9
•13
•33
5
•7
0
20
13
14

•16
6
•11
•3
48
31
15
10
23
18
15
1.04
0.25
•0.13
0.07
0.02
•0.03
•0.04
•0.04
•0.09
-0.06
•0.07
•0.13
-0.21
0.07
-0.08
0.04
0.30
0.16
0.25

•0.13
0.04
•0.08
•0.02
0.35
0.20
0.11
0.07
0.17
0.13
0.11

-------
                                                               Table A-11 (Continued)
Experiment Initial
Concentrations
NOx HC HC/NOx
(pp.) (ppC)
Maximum Concentration
OZONE
Expt

Calc
•Expt
/Expt
Average Initial
d( [03] • [NO] )/dt
Expt Calc
•• (ppb/mln)
Calc
•Expt
• *
Calc
•Expt
/Expt
Expt
(•in)
Half-Life
PROPENE
Calc
(•in)
Calc
•Expt
(•in)
Calc
•Expt
/Expt
                     3. SAPRC OTC • PROPENE
OTC186
OTC191
OTC210
OTC233
OTC236
Group Average
S. Oev.
Avg. Abt. Value
S. Dev.
0.55
0.54
0.57
0.46
O.SS
0.53
0.04


3.6
3.7
2.7
0.1
3.3
2.7
1.5


6.6
6.9
4.8
0.2
6.3
5.0
2.8


0.822
0.903
0.972
0.633
0.848
0.836
0.127


0.845
1.057
0.969
0.913
0.968
0.950
0.078


0.023
0.154
•0.003
0.280
0.120
0.115
0.113
0.116
0.111
0.03
0.17
0.00
0.44
0.14
0.16
0.18
0.16
0.17
5.16
12.18
6.70
3.69
6.91
6.93
3.21


6.47
11.19
5.57
4.80
7.43
7.09
2.49


1.30
•0.99
•1.13
1.11
0.52
0.16
1.15
1.01
0.29
0.25
•0.08
•0.17
0.30
0.08
0.08
0.20
0.18
0.10
104
56
121
132
109
104
29


108
70
127
129
102
107
23


4
14
6
•3
•7
2
8
6
4
0.04
0.25
0.05
•0.02
•0.06
0.05
0.12
0.08
0.09
to
to
                     4. IMC CHAMBER • PROPENE
JA1078R
OC12788
OC2078R
OC20788
OC2178R
OC2578B
JN1279R
JN12798
JN1379R
AU0279R
AU27808
ST0482B
ST13B2B
JL1783R
J12183R
JL2983B
J13183R
ST2383B
OC0484R
OC0484B
OC1184B
OC1284B
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.46
0.48
0.46
0.46
0.50
0.44
0.50
0.49
0.45
0.22
0.48
0.23
0.33
0.27
0.22
0.21
0.21
0.38
0.36
0.36
0.36
0.68
0.39
0.12


3.1
1.4
1.3
3.5
3.9
1.3
1.0
1.5
2.9
1.5
1.9
1.1
1.1
1.1
1.1
1.1
1.1
1.6
2.1
1.0
2.2
2.0
1.8
0.9


6.9
2.9
2.9
7.7
7.9
2.9
2.1
3.0
6.5
7.0
4.0
4.9
3.3
3.9
5.0
5.3
5.1
4.3
5.9
2.9
6.3
2.9
4.7
1.8


0.363
0.461
0.340
0.727
0.670
0.230
0.382
0.673
0.974
0.788
1.044
0.658
0.731
0.848
0.804
0.697
0.719
0.405
0.645
0.446
0.674
0.432
0.623
0.214


0.445
0.390
0.307
0.852
0.801
0.251
0.245
0.413
0.776
0.548
0.996
0.587
0.598
0.670
0.676
0.651
0.617
0.616
0.732
0.446
0.735
0.402
0.577
0.199


0.082
•0.072
•0.033
0.124
0.131
0.021
•0.137
•0.260
•0.197
•0.240
•0.048
•0.071
•0.133
•0.228
•0.128
•0.045
•0.102
0.211
0.087
0.000
0.061
•0.030
•0.046
0.128
0.111
0.076
0.22
•0.16
-0.10
0.17
0.20
0.09
•0.36
•0.39
•0.20
•0.30
•0.05
•0.11
•0.18
•0.27
•0.16
•0.06
•0.14
0.52
0.14
0.00
0.09
•0.07
•0.05
0.22
0.18
0.12
0.46
1.40
1.23
2.83
2.53
1.03
0.85
1.24
2.69
2.41
3.26
1.46
1.69
2.10
1.76
1.66
1.81
1.23
2.07
1.25
2.38
1.67
1.77
0.70


0.50
1.74
1.48
3.59
3.55
1.40
0.79
1.03
2.91
2.07
3.22
.63
.55
.63
.70
.77
.44
2.03
2.33
1.34
2.66
1.86
1.92
0.83


0.03
0.34
0.25
0.76
1.02
0.37
•0.06
•0.20
0.22
•0.34
•0.04
0.17
•0.14
•0.47
•0.06
0.11
•0.37
0.81
0.26
0.09
0.28
0.19
0.15
0.37
0.30
0.26
0.07
0.25
0.21
0.27
0.40
0.36
•0.07
•0.17
0.08
•0.14
•0.01
0.12
•0.08
•0.22
•0.04
0.07
•0.20
0.66
0.13
0.07
0.12
0.12
0.09
0.21
0.17
0.15
867
303
341
233
251
347
327
320
254
166
212
266
236
194
225
235
150
347
293
319
235
352
294
141



241
263
180
187
265
316
331
226
188
219
216
237
234
212
209
169
221
208
250
187
285
230
42



-62
•78
•53
•64
•82
•11
11
•28
22
7
•50
1
40
•13
•26
19
•126
•85
•69
•48
•67
•36
43
45
32

•0.20
-0.23
-0.23
•0.25
•0.24
•0.03
0.03
•0.11
0.13
0.03
•0.19
0.00
0.21
•0.06
•0.11
0.13
•0.36
•0.29
•0.22
•0.20
•0.19
•0.11
0.16
0.16
0.10

-------
                                                                 Table A-11 (Continued)
to
U)
Experiment



1. SAPftC EC •
EC121
EC177
EC216
EC217
EC230
EC256
EC257
EC276
EC277
EC278
EC279
EC314
EC51S
EC316
EC317
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPttC ITC •
ITC693
ITC810
ITC860
ITC925
ITC938
ITC947
ITC960
Group Averag«
S. Oev.
Avg. Abs. Value
S. Oev.
Maximum Concentration
PAN

Expt

PROPENE
0.167
0.165
0.154
0.019
0.110
0.001
0.007
0.100
0.077
0.260
0.340
0.226
0.116
0.270
0.130
0.143
0.100


PROPENE
0.311
0.140

0.205
0.296
0.270
0.056
0.213
0.100



Catc


0.155
0.180
0.197
0.037
0.041
0.001
0.010
0.141
0.109
0.261
0.326
0.373
0.280
0.319
0.194
0.175
0.120



0.256
0.238
0.216
0.233
0.143
0.138
0.201
0.204
0.046


Calc
•Expt

-------

Experiment



3. SAPRC OTC •
OTC186
OTC191
OTC210
OTC235
OTC236
Group Average
S. Oev.
Avg. Ate. Value
S. Dev.
4. UNC CHAMBER
JA1078R
OC1278B
OC2078R
OC20788
OC2178R
OC2578B
JN1279R
JN1279B
JN1379R
AU0279R
AU27BOB
ST0482B
ST13828
JL1783R
JL2183R
J12983B
J13183R
ST2363B
OC0484R
OC0484B
OC1184B
OC1284B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.



Table
Max f MM Concentration
PAN

Expt

PCOPENE
0.260
0.190
0.126
0.037
0.095
O.U2
0.086


• PROPENE

0.069
0.082
0.241
0.162
0.050
0.032
0.134
0.223

0.130
0.122
0.117
0.086
0.093
0.092
0.088
0.100
0.167
0.086
0.130
0.144
0.120
O.OS4



Calc
(PP»>

0.293
0.261
0.18S
0.127
0.2S8
0.22S
0.068




0.094
0.078
0.286
0.273
0.063
0.037
0.133
0.270
0.103
0.1S1
0.129
0.106
0.099
0.092
0.119
0.109
0.202
0.208
0.087
0.224
0.119
0.142
0.073


Calc
•Expt


0.508
0.433
0.481
0.380
0.599
0.480
0.082




0.214
0.190
0.460
0.455
0.166
0.122
0.385
0.419
0.201



0.134
0.124
0.129
0.134
0.215
0.293
0.145
0.287
0.236
0.239
0.117



Calc
(PP»)

0.597
0.571
0.481
0.472
0.569
0.538
0.057



0.003
0.185
0.188
0.526
0.510
0.170
0.107
0.389
0.396
0.209
0.279
0.162
0.153
0.154
0.156
0.156
0.149
0.232
0.300
0.143
0.326
0.272
0.235
0.130


Calc
•Expt


0.462
0.811


0.459
0.577
0.202





0.440
0.800
0.840

0.142
0.208
0.410
0.440
0.030


0.174
0.214
0.185
0.211

0.424
0.223
0.484
0.427
0.353
0.226



Calc

-------
                                                                           Table A-12


                                                                      BUTENE • NOx  • AIR RUNS
K)
in
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppn) (ppmC)
1. SAPRC EC • 1
EC122
EC123
EC124
Croup Average
S. Oev.
Avg. Abe. Value
S. Ocv.
2. SAPRC ITC •
ITC927
ITC928
ITC930
ITC935
Creep Average
S. Oev.
Avg. Ate. Value
S. Oev.
I-BUTEME
0.50
O.S1
0.99
0.67
0.28
1- BUTENE
O.S1
0.67
0.32
0.66
0.49
0.20

0.9
1.6
1.7
1.4
0.5

3.8
3.9
7.3
7.5
5.6
2.0

1.7
3.2
1.7
2.2
0.9

12.3
5.8
22.6
11.4
13.0
7.0
Maxima Concentration
OZONE
Expt
(ppn)

0.227
0.506
0.247
0.326
0.155

0.646
0.022
0.717
0.872
0.564
0.374
Calc


0.115
0.315
0.189
0.206
0.101

0.713
0.088
0.795
0.918
0.629
0.370
Calc
•Expt

-------
Table A-12 (Continued)

Experiment Initial Maxima Concentration
Concentrations OZONE
Calc Calc
NOx HC NC/NOx Expt Calc -Expt -Expt
(ppn) (ppmC) (ppa) (ppm) (ppn) /Expt
4. IMC CHAMBER • TRANS-2-BUTENE
ST2783B 0.43 2.0 4.7 0.523 0.457 -0.067 -0.13
Group Average 0.43 2.0 4.7 0.523 0.457 -0.067 -0.13
S. Oev.
Avg. Abs. Value 0.067 0.13
S. Oev.
5. SAPftC ITC • ISO BUTEHE
ITW94 0.51 4.6 9.1 0.900 0.984 0.085 0.09
Group Average 0.51 4.6 9.1 0.900 0.984 0.085 0.09
S. Oev.
Avg. Abt. Value 0.085 0.09
S. Oev.
Average Initial
dC (03) - [NO] )/dt
Calc Calc
Expt Calc -Expt -Expt
•• (ppb/nln) •• /Expt

3.00 3.03 0.02 0.01
3.00 3.03 0.02 0.01
0.02 0.01

8.84 15.06 6.22 0.70
8.84 15.06 6.22 0.70
6.22 0.70

-------
       Table A-13



BENZENE • NOx • AIR RUNS
Experiment



1. SAPRC ITC •
ITC560
ITC561
ITC562
ITC698
ITC710
ITC831
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations

NOx

BENZENE
0.12
0.11
0.56
0.50
0.55
1.01
0.47
0.33



HC


332.3
79.1
83.8
83.5
83.6
12.2
112.4
111.3



HC/NOx


2874.4
694.2
149.7
167.4
151.0
12.1
674.8
1103.2


Maxinum Concentration
OZONE

Expt


0.323
0.273
0.412
0.374
0.367
0.021
0.295
0.142



Calc

-------
                                                                                 Table A-U


                                                                          TOLUENE •  NOx -  AIR RUNS
KJ
00
Experiment



1. SAPRC tC •
EC264
EC265
EC266
EC269
EC270
EC271
EC272
EC273
EC327
EC336
EC337
EC339
EC340
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC •
ITC699
ITC828
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
3. UNC CHAMBER
JL3080R
AU2780R
AU2782B
OC2782R
AU0183R
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

NOx

TOLUENE
0.48
0.48
0.49
0.47
0.46
0.21
0.48
0.11
0.45
0.44
0.45
0.44
0.43
0.42
0.12


TOLUENE
0.51
1.02
0.76
0.36


• TOLUENE
0.18
0.48
0.43
0.39
0.39
0.37
0.11



HC
CppmC)

8.1
7.5
8.4
4.0
4.2
8.0
4.1
4.1
4.0
7.2
7.9
5.0
4.1
5.9
1.9



10.5
3.0
6.8
5.3



3.9
2.3
3.0
4.5
4.6
3.7
1.0



HC/NOx


17.0
15.6
17.0
8.4
9.0
37.4
8.5
37.2
8.9
16.3
17.7
11.3
9.5
16.5
9.9



20.8
3.0
11.V
12.6



21.3
4.8
7.0
11.7
11.8
11.3
6.4


Maximum Concentration
OZONE

Expt


0.419
0.393
0.405
0.318
0.369
0.296
0.410
0.215
0.376
0.396
0.325
0.225
0.344
0.345
0.068



0.485
0.021
0.253




0.273
0.736
0.116
0.123
0.458
0.341
0.261



Calc


0.425
0.419
0.429
0.267
0.392
0.339
0.264
0.259
0.355
0.478
0.350
0.145
0.326
0.342
0.091



0.506
0.006
0.256




0.374
0.548
0.134
0.341
0.492
0.378
0.161


Calc
•Expt
(PP»)

0.006
0.026
0.024
•0.051
0.023
0.043
•0.147
0.044
•0.021
0.082
0.025
•0.080
•0.018
. -0.003
0.061
0.045
0.038

0.022
•0.015
0.004

0.018


0.100
•0.187
0.018
0.218
0.034
0.037
O.U8
0.111
0.090
Calc
•Expt
/Expt

0.01
0.07
0.06
•0.16
0.06
0.15
•0.36
0.21
•0.06
0.21
0.08
•0.35
•0.05
•0.01
0.18
0.14
0.11

0.05

0.05

0.05


0.37
•0.25
0.15
1.78
0.07
0.42
0.79
0.53
0.71
d<

Expt
Average
[031 •

Catc
Initial
[NO] >/dt
Calc
•Expt
•• (ppb/min) ••

4.46
3.56
4.62
2.55
3.72
6.56
3.69
5.90
2.49
6.06
2.55
1.53
2.50
3.86
1.58



4.72
0.49
2.61
2.99



1.20
1.76
0.63
0.66
1.75
1.20
0.55



5.05
4.83
5.21
2.43
3.V3
5.80
2.44
3.69
2.58
6.98
2.66
1.50
2.43
3.81
1.64



5.42
1.18
3.30
3.00



1.22
1.40
0.71
0.93
1.65
1.18
0.37



0.59
1.28
0.58
•0.12
0.20
•0.77
•1.25
•2.21
0.09
0.92
0.11
•0.04
•0.07
•0.05
0.92
0.63
0.65

0.70
0.69
0.69
0.01
0.69
0.01

0.03
•0.36
0.08
0.27
•0.10
•0.02
0.23
0.17
0.14
Calc
•Expt
/Expt

0.13
0.36
0.13
•0.05
0.05
•0.12
•0.34
•0.37
0.04
0.15
0.04
•0.02
•0.03
0.00
0.20
0.14
0.13

0.15
1.39
0.77
0.88
0.77
0.88

0.02
•0.21
0.12
0.41
•0.06
0.06
0.?3
0.16
0.15

-------
                                         Table A-14  (Continued)
10
vo
                                Experiment          Maximum Concentration
                                                           PAN

                                                                Calc   Calc
                                               Expt    Calc     -Expt   -Expt
                                               (ppffl)   (ppra)    (ppm)   /Expt
1. SAPRC EC •
EC264
EC265
EC266
EC269
EC270
EC271
EC272
EC27J
EC327
EC336
EC337
EC339
EC340
Group Average
S. Oev.
Avfl. Abs. Value
S. Oev.
2. SAPRC ITC •
ITC699
ITC828
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
JL3080R
AU2780R
AU2782B
OC2782R
AU0183R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
TOLUENE
0.071
0.072
0.075
0.050
0.057
0.053
0.132
0.032
0.041
0.059
0.047
0.024
0.042
0.058
0.027


TOLUENE
0.145
0.000
0.072



• TOLUENE
0.037
0.020
0.012
0.013
0.043
0.025
0.014



0.087
0.084
0.090
0.037
0.059
0.062
0.037
0.042
0.048
0.081
0.059
0.016
0.040
0.057
0.023



0.107
0.001
0.054




0.038
0.012
0.009
0.062
0.049
0.034
0.023



0.017
0.012
0.015
•0.013
0.002
0.009
•0.095
0.010
0.007
0.022
0.012
•0.008
•0.002
•0.001
0.030
0.017
0.024

•0.038
0.001
•0.018

0.019


0.002
•0.008
•0.002
0.049
0.005
0.009
0.023
0.013
0.020

0.23
0.17
0.20
•0.25
0.03
0.18
•0.72
0.31
0.18
0.37
0.26
•0.32
•0.04
0.05
0.31
0.25
0.17

•0.26

•0.26

0.26


0.05
•0.41
•0.21
3.65
0.12
0.64
1.70
0.89
1.55

-------
                                                                               Table A-15


                                                                        XYLENE •  NOx • AIR RUNS
LJ
O
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppm) (ppnC)
Maximum Concentration
OZONE
Expt

Calc
(PP«»
Calc
•Expt

-------
                                      Table A-15 (Continued)
                             Experiment          Maximum Concentration
                                                         PAN

                                                              Catc   Calc
                                             Expt    Calc    -Expt  -Expt
                                             (ppm)   (ppm)   (ppra)  /Expt
U)
1. SAPRC EC • )
EC343
EC544
EC34S
EC346
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC •
ITC702
1TC827
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
3. UNC CHAMBER
JL3080B
AU2782R
OC2782B
AU0183B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
(TLENE
0.081
0.175
0.107
0.102
0.116
0.041
XYLENE
0.390
0.002
0.196
0.274
• XYLENE
0.091
0.093
0.112
0.102
0.099
0.009

0.107
0.171
0.106
0.101
0.121
0.033

0.15S
0.003
0.079
0.108

0.060
0.066
0.115
0.069
0.078
0.025

0.027
•0.004
•0.001
•0.001
0.005
0.014
0.008
0.012

•0.235
0.001
•0.117
0.166
0.118
0.166

•0.031
•0.027
0.004
•0.033
•0.022
0.017
0.024
0.013

0.33
•0.02
•0.01
•0.01
0.07
0.17
0.09
0.16

•0.60
0.26
•0.17
0.61
0.43
0.24

•0.34
•0.29
0.03
•0.32
•0.23
0.18
0.24
0.14

-------
                                                                              Table A-16



                                                               1,3,5-TRIMETHYL BENZENE • NOx • AIR  RUNS
N>
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppm) (ppmC)
Maximum Concentration
OZONE
Expt
(PP«)
Calc
(ppn»
Calc
•Expt
(ppni)
Cale
•Expt
/Expt
Average
d( [03] •
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
1. SAPRC EC • MESITYLENE
EC900
EC?01
EC903
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC •
ITC703
ITC706
ITC709
ITC742
ITC826
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
O.S3
0.51
1.00
0.68
0.28
MESITTLENE
0.50
0.49
0.99
0.48
0.90
0.67
0.25
5.4
2.7
4.7
4.3
1.4

5.3
2.7
4.7
4.6
0.8
3.6
1.9
10.2
5.2
4.7
6.7
3.1

10.6
5.4
4.7
9.7
0.9
6.3
3.9
0.381
0.384
0.502
0.422
0.069

0.707
0.641
0.779
0.773
0.022
0.584
0.320
0.443
0.413
0.565
0.474
0.080

0.489
0.476
0.621
0.489
0.012
0.418
0.234
0.062
0.029
0.063
0.051
0.019
0.051
0.019

•0.218
-0.165
-0.158
-0.284
•0.009
-0.167
0.101
0.167
0.101
0.16
0.08
0.12
0.12
0.04
0.12
0.04

-0.31
-0.26
•0.20
•0.37
•0.28
0.07
0.28
0.07
3.85
8.88
14.96
9.23
5.56

14.59
7.20
11.74
13.14
1.68
9.67
5.26
999.00
8.54
14.04
340.53
570.26

18.09
8.57
13.90
14.56
2.33
11.49
6.15
•0.34
•0.92
•0.63
0.41
0.63
0.41

3.50
1.36
2.16
1.42
0.65
1.82
1.08
1.82
1.08
•0.04
•0.06
•0.05
0.02
0.05
0.02

0.24
0.19
0.18
0.11
0.39
0.22
0.10
0.22
0.10

-------
                                                                        Table A-16 (Continued)
ui
ui
Experiment
Half-Life
135 -TUB
Catc
Expt Catc -Expt
(•in) (win) (Bin)
Calc
-Expt
/Expt
Naxioun Concentration
PAN
Expt
CPP*>
Calc

Calc
•Expt

Calc
•Expt
/Expt
1. SAPftC EC • MESITTLENE
EC900
K901
EC903
Group Average
S. Dev.
Avg, Abs. Value
S. Oev.
2. SAPftC ITC •
ITC703
ITC706
ITC709
ITC742
ITC826
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.

47
49
48
1


NESITYLENE
45
45
52
42
112
59
29


45
42
45
44
1



39
38
47
40
77
48
16



•5
•4
•4
0
4
0

•6
•7
•5
•2
•35
-11
13
11
13

•0.11
-0.08
•0.09
0.02
0.09
0.02

•0.13
•0.16
•0.10
•0.05
•0.31
•0.15
0.10
0.15
0.10
0.400
0.293
0.470
0.388
0.089



0.586
0.440
0.590
0.470
0.003
0.418
0.241


0.193
0.174
0.331
0.232
0.085



0.186
0.180
0.347
0.181
0.003
0.179
0.122


•0.207
•0.119
•0.139
•0.155
0.046
0.155
0.046

•0.400
•0.260
•0.243
•0.289
0.000
•0.238
0.147
0.238
0.147
•0.52
•0.41
•0.30
•0.41
0.11
0.41
0.11

•0.68
•0.59
•0.41
•0.62
0.00
•0.46
0.27
0.46
0.27

-------
                                                                       Table A-17

                                                              MIXTURES OF LIKE COMPOUNDS
>
CJ
Experiment



Initial
Concentrations

NOx


HC


HC/NOX

Maximum Concentration
OZONE

Expt


Catc

Calc
•Expt
/Expt
d(

Expt
• •
Average Initial
[03] • [NO] )/dt

Calc
(ppb/Min)
Calc
•Expt
• •
Calc
•Expt
/Expt
1. SAPRC EC • Nixed Alkenes
EC144
ECUS
EC160
EC149
EC1SO
EC1S1
EC152
EC153
EC161
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
2. OKC CHAMBER
OC1278R
OC2578R
AU0180R
AU1480R
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
3. SAPRC EC •
EC166
EC172
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.51
0.99
0.99
0.99
1.00
3.06
0.50
0.97
0.51
0.95
0.48


4.7
3.4
3.2
2.0
3.5
5.2
3.7
6.6
3.2
4.0
1.4


9.3
3.4
3.3
2.0
3.5
2.5
7.3
6.8
6.4
5.0
2.5


1.065
0.777
0.874
0.286
0.799
0.147
0.791
1.050
0.857
0.738
0.316


0.830
0.488
0.435
0.159
0.421
0.168
0.687
0.857
0.630
0.519
0.255


•0.235
•0.289
•0.440
•0.127
•0.378
0.022
•0.105
•0.193
•0.227
•0.219
0.141
0.224
0.132
•0.22
•0.37
•0.50
•0.44
•0.47
0.15
•0.13
•0.18
•0.27
•0.27
0.21
0.30
0.15
10.53
5.11
5.86
10.83
6.30
8.43
10.41
19.23
9.94
9.63
4.22


7.24
4.69
4.22
5.42
4.97
9.44
7.99
13.75
5.49
7.02
3.05


•3.29
•0.42
•1.64
•5.41
•1.33
1.01
•2.43
•5.47
•4.45
•2.60
2.25
2.83
1.92
•0.31
•0.08
•0.28
•0.50
•0.21
0.12
•0.23
•0.28
•0.45
•0.25
0.19
0.27
0.14
• Nixed Alkenes
0.48
0.44
0.56
0.47
0.49
0.05


1.4
1.4
0.5
1.4
1.2
0.5


3.0
3.1
0.8
3.0
2.5
1.1


0.260
0.147
0.256
0.863
0.382
0.325


0.263
0.137
0.056
0.394
0.213
0.148


0.003
•0.011
•0.200
•0.469
•0.169
0.220
0.170
0.219
0.01
•0.07
•0.78
•0.54
•0.35
0.38
0.35
0.37
1.14
0.94
0.98
2.13
1.30
0.56


1.28
1.04
0.53
1.32
1.04
0.36


0.14
0.10
•0.45
•0.81
•0.25
0.46
0.38
0.33
0.13
0.11
•0.46
•0.38
•0.15
0.31
0.27
0.18
Nixed Alkanes
0.10
0.10
0.10
0.00


9.2
2.8
6.0
4.5


92.0
28.9
60.5
44.6


0.462
0.369
0.415
0.066


0.473
0.400
0.437
0.052


0.012
0.032
0.022
0.014
0.022
0.014
0.03
0.09
0.06
0.04
0.06
0.04
2.11
1.00
1.55
0.79


1.83
1.01
1.42
0.58


•0.28
0.02
•0.13
0.21
0.15
0.19
•0.13
0.02
•0.06
0.10
0.07
0.08

-------
                                                                 Table A-17 (Continued)
Expert «ent

*. IMC CHAMBER
ST06B2R
ST0682B
Group Average
S. Oev.
Avfl. Abs. Value
S. Oev.
Initial
Concentrations
NOx
(PP«)
HC HC/NOx

Maxfnun Concentration
OZONE
Expt

Calc
-Expt
/Expt
d(
Expt
* *
Average Initial
[03J • WOJ )/dt
Calc
(ppb/rain)
Calc
•Expt
• •
Calc
•Expt
/Expt
• Nixed Aromatlcs
0.46
0.45
0.46
0.01
2.8
2.9
2.9
0.1
6.2
6.5
6.3
0.2
0.378
0.478
0.428
0.070
0.306
0.450
0.378
0.102
•0.073
•0.027
•0.050
0.032
0.050
0.032
•0.19
•0.06
•0.12
0.09
0.12
0.09
1.11
1.35
1.23
0.17
1.09
1.34
1.22
0.17
•0.02
•0.02
•0.02
0.00
0.02
0.00
•0.01
•0.01
•0.01
0.00
0.01
0.00
OJ

-------
                                                                      Table A-17 (Continued)
                              Experiment
U)
Haxioun Concentration
        PAH
Haxinun Concentration
        HCHO
                                                               Calc   Calc
                                              Expt     Calc     -Expt   -Expt
                                              (ppm)    (ppm)    (ppm)   /Expt
                                            Calc   Calc
                            Expt     Calc     -Expt   -Expt
                            (ppm)    (ppm)    (ppm)   /Expt
1. SAPRC EC • Nixed Alkenet
EC144
ECUS
EC160
ECU9
EC150
EC1S1
EC152
EC153
EC161
Group Average
S. Oev.
Avg. Abs. Value
8. Oev.
2. UMC CHAMBER •
OC1278R
OC2578R
AU0180R
AU1480R
Group Average
S. Dev.
Avg. Aba. Value
S. Dev.
0.075
0.112
0.1S8
0.112
O.US
0.077
0.115
0.175
0.12S
0.121
0.034


0.062
0.080
0.068
0.063
0.073
0.069
0.101
0.1S1
0.086
0.084
0.028


•0.013
•0.032
•0.089
•0.048
•0.072
•0.009
•0.014
•0.023
•0.039
•0.038
0.028
0.038
0.028
•0.17
•0.28
•0.57
•0.43
•0.50
•0.11
•0.12
•0.13
•0.31
•0.29
0.17
0.29
0.17
0.846
O.S16
0.500
0.105
0.433
0.512
0.262
0.645
0.423
0.471
0.211


0.824
0.577
0.5SO
0.246
0.524
0.655
0.527
0.945
0.475
0.591
0.202


•0.022
0.062
0.050
0.141
0.091
0.144
0.265
0.301
0.052
0.120
0.105
0.125
0.098
•0.03
0.12
0.10
1.35
0.21
0.28
1.01
0.47
0.12
0.40
0.47
0.41
0.46
Nixed Alkenes
0.053
0.041
0.013
O.OS8
0.041
0.020


0.091
0.070
0.002
0.019
0.046
0.042


0.038
0.030
•0.011
•0.038
0.005
0.036
0.029
0.013
0.73
0.73
•0.87
•0.67
•0.02
0.87
0.75
0.09


0.230
0.402
0.316
0.122




0.065
0.169
0.117
0.073




•0.165
•0.233
•0.199
0.048
0.199
0.048


•0.72
•0.58
•0.65
0.10
0.65
0.10
3. SAPRC EC • Nixed Alkanes
EC166
EC172
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.040
0.029
0.034
0.008


0.037
0.032
0.035
0.004


•0.003
0.003
0.000
0.004
0.003
0.000
•0.07
0.10
0.02
0.12
0.08
0.02
0.010
0.010
0.010
0.000


0.013
0.011
0.012
0.002


0.003
0.001
0.002
0.002
0.002
0.002
0.30
0.05
0.18
0.17
0.18
0.17

-------
                                                                       Table A-17 (Continued)
                               Experiment          Max I out Concentration          Max I mm Concentration
                                                           PAN                             HCHO

                                                                Calc   Calc                     Calc   Calc
                                               Expt   Calc    -Expt   -Expt    Expt    Calc    -Expt  -Expt
                                               (ppm)  (ppm)    (pen)   /Expt    (ppm)   (ppn)   (ppm)  /Expt
4. IMC CHAMBER •
ST0682R
ST0682B
Croup Average
S. Oev.
Avg. Abt. Value
S. Oev.
Nixed Aroma tict
0.043
0.061
O.OS2
0.013


0.031
0.060
0.045
0.020


•0.011
•0.001
•0.006
0.007
0.006
0.007
•0.27
•0.02
•0.15
0.18
0.15
0.18
0.088
0.100
0.094
0.008


0.024
0.029
0.027
0.004


•0.064
•0.071
•0.067
0.005
0.067
0.005
•0.73
•0.71
•0.72
0.01
0.72
0.01
tJ

-------
                                                          MISCELLANEOUS SIMPLE (NON•SURROGATE) MIXTURES
>
00
Experiment



1. SAPRC EC •
EC106
EC113
EC114
EC115
EC116
Group Average
S. Oev.
Initial
Concentrations

NOx


HC
(PP«C)

HC/NOx

Maximum Concentration
OZONE

Expt
(ppm)

Calc

-------
                                                                         Table A-18 (Continued)
 I
U)
vo
Experiment
Initial
Concentrations
NOx NC HC/NOx
(pp») (ppmC)
Haxinun Concentration
OZONE
Expt

Calc

Calc
•Expt
(PP«)
Calc
•Expt
/Expt
Average
d< 103] •
Initial
[NO] )/dt
Calc
Expt Calc -Expt
•• (ppb/min) ••
Calc
•Expt
/Expt
4. SAPRC EC • OLEUM/AROMATIC
EC33S
EC329
EC330
EC334
EC338
Group Average
S. Oev.
Avg. Abt. Value
S. Oev.
5. IMC CHAMBER •
JN1379B
Croup Average
S. Oev.
Avg. Abe. Value
S. Dev.
0.44
0.4S
0.29
0.4S
0.4S
0.42
0.07
7.7
4.2
4.3
8.1
15.0
7.*
4.4
17.4
9.2
14.6
18.2
33.7
18.6
9.1
0.398
0.403
0.344
0.408
0.484
0.407
0.050
0.462
0.433
0.390
0.465
0.612
0.472
0.084
0.063
0.029
0.046
0.057
0.128
0.065
0.038
0.065
0.038
0.16
0.07
0.13
0.14
0.27
0.15
0.07
0.15
0.07
4.64
3.27
3.91
5.59
5.19
4.52
0.94
4.56
3.18
3.53
5.08
4.87
4.24
0.84
•0.09
•0.09
•0.38
•0.51
•0.32
•0.28
0.18
0.28
0.18
•0.02
•0.03
•0.10
•0.09
•0.06
•0.06
0.04
0.06
0.04
CtEFIM/ARONATIC
0.44
0.44
6.1
6.1
13.7
13.7
0.756
0.756
0.757
0.757
0.002
0.002
0.002
0.00
0.00
0.00
2.44
2.44
2.98
2.98
0.54
0.54
0.54
0.22
0.22
0.22
6. SAPftC EC • AUANE/AROMATIC
EC328
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.45
0.45
12.1
12.1
27.1
27.1
0.523
0.523
0.584
0.584
0.061
0.061
0.061
0.12
0.12
0.12
3.50
3.50
3.43
3.43
•0.07
•0.07
0.07
•0.02
•0.02
0.02

-------
                                                                             Table A-18
>

J*
o
Experiment



Max i mm Concentration
PAN

Expt Calc
(pom) (ppm)
Calc
•Expt
(PP«)
Calc
•Expt
/Expt
Max i nun Concentration
HCKO

Expt


Calc

-------
                                                                              Table A-18
>
Experiment

Max inn Concentration
PAN
Expt

Calc
•Expt

-------
                                                                    Table A-19
                                                          MINIMUM SURROGATE MIXTURES
r
&
to
Experiment
Initial
Concentrations
NOx HC NC/NOx
(ppn) (ppnC)
Maximum Concentration
OZONE
Expt

Calc
(PP«»
Calc
•Expt

-------
                                                                Table A-19 (Continued)
•b
Ul
Experiment



2. ONC CHAMBER
JI1581B
ST2481B
JN0982B
JN1483R
JM27838
AU1883B
AU2683R
JL1881B
JK0982R
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

NOx


HC
(ppnC)

HC/NOx

Maximum Concentration
OZONE

Expt
(ppn«)

Calc
(Ppm)
Calc
•Expt

Calc
•Expt
/Expt
d<

Expt
• •
Average Initial
[03] • [NO] )/dt

Calc
(ppb/ain)
Calc
•Expt
• *
Calc
•Expt
/Expt
• PBA SURROGATE
0.28
0.23
0.28
0.22
0.26
0.28
0.32
0.27
0.29
0.27
0.03


2.3
1.9
3.1
2.6
2.9
0.6
2.6
2.3
3.1
2.4
0.8


8.0
8.1
11.0
11.6
11.1
2.0
8.1
8.5
10.7
8.8
2.9


0.474
0.246
0.667
O.S8S
0.511
0.556
0.646
0.693
0.714
0.566
0.145


0.389
0.302
0.455
0.526
0.520
0.383
0.437
0.525
0.542
0.453
0.083


-0.085
0.056
•0.212
•0.059
0.009
•0.173
-0.209
•0.168
•0.173
•0.112
0.098
0.127
0.075
•0.18
0.23
•0.32
•0.10
0.02
•0.31
-0.32
-0.24
•0.24
•0.16
0.18
0.22
0.10
1.10
0.71
1.37
1.10
1.01
0.70
1.24
1.91
1.77
1.21
0.42


0.89
0.84
.15
.13
.05
.57
.02
.55
.50
1.08
0.31


•0.21
0,14
•0.22
0.03
0.04
•0.13
•0.23
•0.36
•0.27
•0.13
0.17
0.18
0.11
•0.19
0.19
•0.16
0.02
0.04
•0.18
•0.18
•0.19
-0.15
•0.09
0.14
0.15
0.07

-------
Table A-19 (Continued)
Experiment

Maximum Concentration
PAN
Expt

Calc
(PP«>
Calc
•Expt
(ppni)
Maxim* Concentration
HCHO
Half-Life
PROPENE
Calc Calc Calc Calc
•Expt Expt Calc *Expt -Expt Expt Calc -Expt
/Expt (ppra) (ppni) (ppn) /Expt (rain) (mln) (roin)
Calc
•Expt
/Expt
1. SAPRC ITC • MINI SURROGATE
ITC479
ITC584
ITC579
ITC472
ITC474
ITC581
ITC585
ITC478
ITC482
ITC488
ITC492
ITC494
ITC498
ITCSOO
ITC502
ITC462
ITC466
ITC468
ITC451
ITC455
ITC977
ITC985
ITC997
ITC979
ITC992
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
0.050
0.080
0.058
0.044
0.051
0.090
0.066
0.056
0.052
0.051
0.054
0.053
0.048
0.060
0.066
0.004
0.007
0.021
0.048
0.050
0.035
0.036
0.038
0.027
0.041
0.047
0.019


0.047
0.049
0.040
0.042
0.051
0.049
0.054
0.055
0.051
0.044
0.045
0.045
0.046
0.054
0.060
0.016
0.021
0.030
0.044
0.043
0.053
0.045
0.045
0.056
0.049
0.045
0.010


•0.003
•0.031
•0.018
•0.002
0.000
•0.041
•0.012
•0.001
•0.001
•0.007
•0.009
•0.008
•0.002
•0.006
•0.006
0.012
0.014
0.009
•0.004
•0.007
0.018
0.009
0.007
0.023
0.008
•0.002
0.015
0.011
0.010
•0.07
•0.39
•0.31
•0.04
0.00
•0.45
•0.18
•0.01
•0.02
•0.13
•0.18
•0.15
•0.04
•0.10
•0.10
3.01
1.93
0.44
•0.09
•0.14
0.52
0.25
0.17
1.04
0.18
0.21
0.76
0.40
0.68
0.057
0.051
0.007
0.008
0.092
0.088
0.137
0.155
0.063
0.055
0.054
0.053
0.047
0.069
0.082
0.008
0.010
0.028
0.062
0.058
0.046
0.042
0.041
0.037
0.031




84
98


90
94
91
80
80
90
89
92
101
62
64
329
280
160
70
79
80
75
68
89
75
105
66


84
96


81
89
87
79
75
88
92
94
96
73
74
258
219
136
77
80
97
92
93
106
106
103
45


0
•2


•9
•5
•4
•1
•5
•2
3
2
•5
11
10
•71
•61
•24
7
1
17
17
25
17
31
•2
23
14
18
0.00
•0.02


•0.10
•0.05
•0.04
•0.01
•0.06
•0.02
0.03
0.02
•0.05
0.18
0.16
•0.22
•0.22
•0.15
0.10
0.01
0.21
0.23
0.37
0.19
0.41
0.04
0.17
0.12
0.11

-------
                                                                    Table A-19 (Continued)
A
01
Expertnent



2. UNC CHAMBER
JL1581B
ST2481B
JN09828
JM1483R
JN2783B
AU18838
AU2683R
JL1881B
JN0982R
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
Haximum Concentration
PAN

Expt

Calc
•Expt
(Ppn»
Calc
•Expt
/Expt
Maximum Concentration
HCHO

Expt

Calc
•Expt
(PP«)
Calc
•Expt
/Expt
Half-Life
PROPENE

Expt Calc
(rain) (rain)
Calc
•Expt
(min)
Calc
•Expt
/Expt
• PBA SURROGATE
0.079


0.065
0.065
0.05S

0.061

0.064
0.009


0.045
0.043
0.080
0.073
0.066
0.033
0.051
0.098
0.129
0.069
0.031


•0.034


0.010
0.001
-0.022

0.037

•0.002
0.028
0.021
0.015
•0.43


0.16
0.01
•0.40

0.61

•0.01
0.43
0.32
0.24
0.166
0.190

0.054
0.105
0.120
0.141
0.150

0.132
0.045


0.069
0.049
0.080
0.070
0.074
0.056
0.067
0.076
0.092
0.070
0.013


•0.098
•0.141

0.017
•0.031
•0.065
•0.074
•0.075

•0.067
0.050
0.071
0.041
•0.59
•0.74

0.31
•0.29
•0.54
•0.53
•0.50

•0.41
0.34
0.50
0.16
243 295
278 236
295 270
281 253
295 273
285 309
209 278
196 208
245 235
258 261
37 31


52
•42
•25
•28
•22
24
69
12
•10
3
38
31
19
0.21
•0.15
•0.08
•0.10
•0.07
0.08
0.33
0.06
•0.04
0.03
0.16
0.13
0.09

-------
Experiment



Initial
Concentrations

NOx


HC
(ppmC)

HC/NOx

Max i mum Concentration
OZONE

Expt
(Ppn)

Calc

-------
                                                                   Table A-20 (Continued)
                            ExperiMent
                       Initial
                    Concentrations
Maxima Concentration
        OZONE
  Average Initial
d< [03]  • [NO]  )/dt
                                             NOx    HC   HC/NOx
                                            (ppn) (ppnC)
                                                        Calc   Calc
                                        Expt     Calc     -Expt   -Expt
                                        (ppn)    (ppn)    (ppra)   /Expt
                                            Calc   Calc
                             Expt   Calc   -Expt   -Expt
                              ••  (ppb/nin) ••     /Expt
•u
                          3. SAPRC OTC • 8AI SURROGATE
 OTC189A
 OTC189B
 OTC190A
 OTC190B
 OTC192A
 OTC192B
 OTC194A
 OTC194B
 OTC195A
 OTC195B
 OTC1968
 OTC197A
 OTC197B
 OTC198A
 OTC1988
 OTC199A
 OTC199B
 OTC202A
 OTC202B
 OTC203A
 OTC203B
 OTC204A
 OTC204B
 OTCZ05A
 OTC205B
 OTC215A
 OTC2158
 OTC217A
 OTC217B
 OTC221A
 OTC221B
 OTC222A
 OTC2228
 OTC223A
 OTC223B
 OTC224A
 OTC224B
OTC226A
OTC228A
OTC228B
OTC229A
OTC229B
0.45
0.45
0.41
0.42
0.47
0.47
0.38
0.38
0.41
0.41
0.41
0.38
0.77
0.84
0.40
0.36
0.37
0.73
0.40
0.39
0.19
0.35
0.17
0.84
0.14
0.45
0.44
0.50
0.51
0.41
0.42
0.44
0.43
0.36
0.40
0.34
0.34
0.45
0.41.
0.41"
0.46
0.46
3.3
4.0
3.8
3.8
4.2
4.2
7.4
3.7
1.8
4.1
3.7
3.6
3.1
5.4
3.7
3.5
3.5
6.0
2.6
3.5
3.5
3.6
3.5
3.8
3.6
3.5
4.1
4.9
4.6
2.4
2.0
3.4
2.6
4.8
3.5
4.4
4.3
2.5
2.4
2.3
3.0
1.7
7.4
8.9
9.2
9.0
8.9
8.9
19.3
9.7
4.5
9.9
9.1
9.5
4.1
6.4
9.4
9.6
9.6
8.2
6.7
9.0
18.5
10.2
20.3
4.5
26.5
7.8
9.3
9.6
9.0
5.8
4.7
7.8
6.0
13.4
8.8
12.7
12.6
5.5
6.0
5.6
6.6
3.8
0.576
0.712
0.702
0.669
0.735
0.754
0.737
0.603
0.164
0.681
0.597
0.621
0.152
0.704
0.674
0.591
0.606
0.714
0.522
0.231
0.394
0.302
0.381
0.039
0.392
0.830
0.868
0.483
0.831
0.235
0.333
0.909
0.940
0.953
0.771
0.776
0.813
0.751
0.246
0.296
0.253
0.168
0.645
0.719
0.724
0.675
0.735
0.617
1.014
0.616
0.086
0.667
0.666
0.484
0.070
0.509
0.544
0.562
0.549
0.402
0.341
0.241
0.496
0.331
0.511
0.045
0.579
0.831
0.965
0.501
0.883
0.221
0.282
0.813
1.023
0.832
0.604
0.737
0.855
0.405
0.321
0.361
0.359
0.297
0.070
0.007
0.022
0.006
0.000
•0.137
0.276
0.013
•0.078
•0.014
0.068
•0.137
•0.082
•0.195
-0.130
•0.029
•0.057
-0.313
•0.181
0.010
0.102
0.029
0.130
0.006
0.187
0.001
0.097
0.018
0.051
•0.014
•0.051
•0.096
0.083
•0.121
•0.168
•0.039
0.042
•0.346
0.075
0.065
0.106
0.129
0.12
0.01
0.03
0.01
0.00
•0.18
0.37
0.02
•0.47
•0.02
0.11
•0.22
•0.54
•0.28
•0.19
•0.05
•0.09
•0.44
•0.35
0.04
0.26
0.10
0.34

0.48
0.00
0.11
0.04
0.06
•0.06
•0.15
•0.11
0.09
•0.13
•0.22
•0.05
0.05
•0.46
0.31
0.22
0.42
0.77
3.79
3.70
4.24
3.73
4.25
3.84
7.85
2.95
2.05
4.14
3.86
4.12
2.86
6.09
3.86
3.86
3.40
6.95
3.82
2.34
2.20
3.27
2.62
4.85
4.49
4.33
5.33
2.55
4.64
1.63
1.63
3.83
5.55
4.55
3.15
3.67
4.94
3.12
1.49
1.79
1.56
1.38
3.55
3.58
3.19
2.81
3.29
2.67
8.62
3.01
1.12
3.68
3.22
2.60
2.06
4.20
2.42
2.97
2.85
16.10
3.00
2.37
2.73
3.58
2.99
2.11
3.76
3.66
5.72
2.53
4.21
1.45
1.58
3.41
5.79
3.88
2.60
2.83
4.45
2.11
1.86
2.49
1.94
1.80
•0.24
•0.11
•1.05
•0.92
•0.96
•1.17
0.77
0.06
•0.93
•0.46
•0.64
•1.51
•0.80
•1.89
•1.44
•0.89
•0.55
9.15
•0.81
0.03
0.53
0.31
0.37
-2.74
•0.73
•0.68
0.39
•0.02
•0.43
•0.17
•0.05
•0.42
0.23
•0.67
•0.55
•0.84
•0.49
•1.01
0.37
0.71
0.38
0.42
•0.06
•0.03
•0.25
•0.25
•0.23
•0.30
0.10
0.02
•0.45
•0.11
•0.17
•0.37
•0.28
•0.31
•0.37
•0.23
•0.16
1.32
•0.21
0.01
0.24
0.10
0.14
•0.57
•0.16
•0.16
0.07
•0.01
•0.09
•0.11
•0.03
•0.11
0.04
•0.15
•0.17
•0.23
•0.10
•0.32
0.25
0.39
0.25
0.31

-------
                                                                         Table A-20 (Continued)
&
00
                                Experiment
      Initial
   Concentrations
                   Maximum Concentration
                           OZONE
                                              Average Initial
                                            d<  [03) • [NO] )/dt
                                                 NOx    HC   HC/NOx
                                                (ppm) (ppnC)
                                        Calc   Calc
                       Expt    Calc    -Expt  -Expt
                       (ppm)   (ppm)   (ppm)  /Expt
                                                              Calc   Calc
                                                Expt   Calc   -Expt  -Expt
                                                 ••   (ppb/min) ••    /Expt
OTC230A
OTC230B
OTC237A
OTC2378
OTC238A
OTC238B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC2438
OTC248A
OTC2488
OTC249A
OTC249B
Group Average
S. Oev.
Avg. Abf. Value
S. Oev.
0.41
0.41
0.52
0.52
0.50
0.50
0.49
0.50
0.50
0.50
0.32
0.31
0.45
0.46
0.47
0.38
0.48
0.46
0.48
0.46
0.44
0.12


3.1
1.7
4.3
4.4
2.9
3.9
2.7
2.5
1.8
2.0
4.7
4.0
2.6
2.1
4.7
3.7
3.7
2.9
5.6
4.9
3.6
1.1


7.6
4.2
8.2
8.5
5.8
7.8
5.4
5.0
3.6
4.1
14.8
12.9
5.8
4.7
10.0
9.7
7.7
6.3
11.8
10.7
8.8
4.2


0.489
0.271
0.807
0.757
0.406
0.702
0.343
0.234
0.034
0.217
0.671
0.674
0.182
0.639
0.142
0.152
0.056
0.081
0.348
0.325
0.504
0.263


0.738
0.431
0.718
0.585
0.319
0.618
0.304
0.120
0.027
0.081
0.684
0.654
0.111
0.499
0.186
0.151
0.051
0.073
0.279
0.321
0.485
0.265


0.249
0.160
•0.089
-0.172
•0.087
•0.084
•0.039
•0.114
•0.007
•0.136
0.013
•0.020
•0.071
•0.140
0.044
•0.001
•0.005
•0.008
•0.069
•0.004
•0.019
0.115
0.085
0.079
0.51
0.59
•0.11
•0.23
•0.21
•0.12
•0.11
•0.49

•0.63
0.02
•0.03
•0.39
•0.22
0.31
0.00
•0.08
•0.10
•0.20
•0.01
•0.03
0.28
0.21
0.19
2.43
1.66
4.10
3.48
2.58
4.06
2.66
1.85
1.08
1.79
3.26
3.30
1.47
3.04
1.41
1.40
1.40
1.61
2.55
2.83
3.26
1.42


2.98
2.10
3.39
2.89
2.20
3.55
2.42
1.43
0.89
1.31
2.98
3.25
4.28
2.54
1.96
2.20
1.25
1.70
2.36
3.01
3.07
2.08


0.55
0.45
•0.71
•0.58
•0.38
•0.51
•0.24
•0.41
•0.20
•0.48
•0.28
•0.05
•0.19
•0.50
0.55
0.80
•0.15
0.08
•0.19
0.18
•0.19
1.37
0.72
1.18
0.23
0.27
•0.17
•0.17
•0.15
•0.13
•0.09
•0.22
•0.18
•0.27
•0.09
•0.02
•0.13
•0.16
0.39
0.57
•0.11
0.05
•0.07
0.06
•0.05
0.28
0.21
0.19
                             4. UMC CHAMBER • UNC MIXTURES
                               ST2081R
                               DE0782R
                               AU2681R
                               AU2681B
                               AU2781B
                               ST0381R
                               ST1081R
                               ST2081B
                               JL2081B
                               ST16B2R
                               JL2081R
                               JL2281B
                               OC1481R
                               ST1682B
                               ST2981R
0.23
0.19
0.24
0.24
0.23
0.24
0.25
0.23
0.42
0.43
0.41
0.26
0.28
0.43
0.24
2.3
3.4
2.0
2.0
2.0
1.8
2.8
2.1
1.8
3.2
2.7
2.9
3.3
3.1
2.5
10.0
18.3
 8.4
 8.5
 8.8
 7.6
11.3
 9.2
 4.3
 7.5
 6.6
11.2
11.9
 7.2
10.3
0.403
0.076
0.506
0.544
0.623
0.541
0.610
0.414
0.165
0.410
0.635
0.722
0.462
0.840
0.294
0.451
0.377
0.497
0.441
0.495
0.405
0.603
0.407
0.057
0.356
0.269
0.527
0.512
0.717
0.433
0.048
0.301
•0.009
•0.103
•0.128
•0.137
•0.008
•0.007
•0.108
•0.053
•0.367
•0.195
0.051
•0.123
0.139
0.12
3.94
•0.02
•0.19
•0.21
•0.25
•0.01
•0.02
•0.66
•0.13
•0.58
•0.27
0.11
•0.15
0.47
0.95
0.52
.18
.22
.27
.48
.59
.06
.82
.28
.55
.80
.53
2.39 <
0.76 1
.15
.14
.17
.10
.17
.15
.72
.08
.65
.14
.01
.56
.42
>.oo
.04
0.19
0.62
•0.01
•0.12
•0.10
•0.33
0.13
0.03
•0.17
•0.14
•0.54
•0.24
•0.11
•0.39
0.28
0.20
1.19
•0.01
•0.10
•0.08
•0.22
0.08
0.02
•0.21
•0.11
•0.35
•0.14
•0.07
•0.16
0.37

-------
                                                                        Table A-20 (Continued)
Experiment



ST2981B
OC14818
ST0381B
ST1081B
JL0882X
JL0882B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

HOx

0.24
0.29
0.23
0.24
0.29
0.28
0.28
0.08



HC
(ppnC)
2.5
2.9
2.0
1.0
2.1
2.1
2.4
0.6



HC/NOx

10.4
9.9
8.6
4.1
7.3
7.4
9.0
3.0


Maximum Concentration
OZONE

Expt

0.485
0.458
0.611
0.626
0.598
0.541
0.503
0.175



Calc

-------
                                                    Table A-20 (Continued)
Ol
o
Experiment
Half-Life
PROPENE
Calc
Expt Calc -Expt
(win) (min) (min)
Calc
•Expt
/Expt
Half-Life
H-XYL
Calc
Expt Calc -Expt
(min) (min) (min)
Calc
•Expt
/Expt
1. SAPRC EC • 7 HYDROCARBON SURROGATE
EC231
EC232
EC233
EC237
EC238
EC241
EC242
EC243
EC245
EC246
EC247
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC • SAI
1TC626
ITC630
ITC631
ITC633
ITC635
ITC637
ITC865
ITC867
ITC868
ITC871
ITC872
JTC87J
ITC874
ITC877
ITC880
ITC881
ITC885
ITC886
ITC888
ITC891
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
99
163
97
85
141
142
57
61
84
167
82
107
39


99
180
90
106
145
142
61
70
87
175
96
113
40


0
17
•7
21
4
0
4
9
3
8
14
6
8
7
6
0.00
0.10
•0.07
0.25
0.03
0.00
0.07
0.15
0.04
0.05
0.17
0.07
0.09
0.08
0.08
136
204
198
136
186
180
118
108
108
218
112
154
42


151
228
175
159
191
177
155
124
131
234
132
168
37


15
24
•23
23
5
•3
37
16
23
16
20
13
16
18
9
0.11
0.12
•0.12
0.17
0.03
•0.02
0.31
0.15
0.21
0.07
0.18
0.11
0.12
0.13
0.08
SURROGATE
165
230
267
272
353
151
155
133
146
224
180
243
255
210
347
288

332
193
158
226
70


152
233
312
276
403
155
109
90
179
197
157
225
217
156
281
235
282
311
150
126
212
80


•13
3
45
4
50
4
•46
•43
33
•27
•23
•18
•38
•54
•66
•53

•21
•43
•32
•17
33
32
18
•0.08
0.01
0.17
0.01
0.14
0.03
•0.30
•0.32
0.23
•0.12
•0.13
•0.07
•0.15
•0.26
•0.19
•0.18

•0.06
•0.22
•0.20
•0.09
0.16
0.15
0.09
220
312
346
363
490
202
189
181
186

233
240
349
258




262
220
270
86


212
303
381
387
541
215
148
119
229
240
186
262
254
184
334
274
324
362
192
168
265
100


•8
•9
35
24
51
13
•41
•62
43

•47
22
•95
•74




•70
•52
•18
47
43
25
•0.04
•0.03
0.10
0.07
0.10
0.06
•0.22
•0.34
0.23

•0.20
0.09
•0.27
•0.29




•0.27
•0.24
•0.08
0.19
0.17
0.10

-------
                                                Table A-20 (Continued)
>
01
Expert Kent
Half-Life
PROPENE
Calc
Expt Gate -Expt
(•in) (nin) (win)
3. SAPRC OTC •
OTC189A
OTC189B
OTC190A
OTC190B
OTC192A
OTC192B
OTC194A
OTC194B
OTC195A
OTC195B
OTC196S
OTC197A
OTC197B
OTC198A
OTC1988
OTC199A
OTC199B
OTC202A
OTC202B
OTC203A
OTC203B
OTC204A
OTC204B
OTC20SA
OTC205B
OTC215A
OTC215B
OTC217A
OTC217B
OTC221A
OTC221B
OTC222A
OTC2228
OTC223A
OTC223B
OTC224A
OTC224B
OTC226A
OTC228A
OTC228B
Calc
•Expt
/Expt
Half-Life
H-XYL
Calc
Expt Calc -Expt
(min) (nin) (nin)
Calc
•Expt
/Expt
SAI SURROGATE
120
128
95
108
101
115
75
134
135
93
107
106
109
99
95
108
120
66
182
169
153
86
116
170
81
128
89
154
112
188
264
138
236
129
151
137
99
152
198
151
139
138
135
148
137
158
77
136
200
120
141
142
227
148
131
144
148
109
146
203
134
128
115
239
93
145
94
177
137
217
238
127
76
133
161
145
113
183
178
131
19
10
40
40
36
43
2
2
65
27
34
38
118
49
36
36
28
43
•36
34
•19
42
•1
69
12
17
5
23
25
29
•26
•11
•160
4
10
8
14
31
-20
-20
0.16
0.08
0.42
0.37
0.36
0.37
0.03
0.01
0.48
0.29
0.32
0.37
1.08
0.49
0.38
0.33
0.23
0.65
•0.20
0.20
•0.12
0.49
•0.01
0.41
0.15
0.13
0.06
0.15
0.22
0.15
•0.10
•0.08
•0.68
0.03
0.07
0.06
0.14
0.20
•0.10
•0.13
151
150
132
130
139
151
137
164
171
111
146
133
205
140
120
128
145
88
154
235
181
159
154

124
152
133
188
149
226
288


168
255
120
141

280
283
173
170
170
186
175
204
109
174
267
155
170
189
287
207
186
182
187
177
182
283
180
204
149

123
186
123
214
172
250
280
147
89
167
195
176
144

209
153
22
20
38
56
36
53
•28
10
96
44
24
56
82
67
66
54
42
89
28
48
•1
45
•5

•1
34
•10
26
23
24
•8


•1
•60
56
3

-71
-130
0.15
0.13
0.29
0.43
0.26
0.35
•0.20
0.06
0.56
0.40
0.16
0.42
0.40
0.48
0.55
0.42
0.29
1.01
0.18
0.20
•0.01
0.28
•0.03

•0.01
0.22
•0.08
0.14
0.15
0.11
•0.03


•0.01
-0.24
0.47
0.02

-0.25
-0.46

-------
Table A-20 (Continued)
Experiment
Half-Life
PROPENE
Catc
Expt Calc -Expt
(nin) (mln) (nin)
OTC229A
OTC229B
OTC230A
OTC230B
OTC237A
OTC237B
OTC238A
OTC238B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC243B
OTC248A
OTC2488
OTC249A
OTC249B
Group Average
S. Oev.
Avg. Ate. Value
S. Oev.
142

162

135
148
160
117
136
189
232
197
107
113
183

230
220
313
222
162
155
144
49


183
187
143
166
159
171
193
129
161
241
275
240
146
115
228
171
275
233
330
225
203
155
164
50


41

•19

24
23
33
12
25
52
43
43
39
2
45

45
13
17
3
41
0
19
35
30
26
Calc
•Expt
/Expt
0.29

•0.12

0.18
0.16
0.21
0.10
0.18
0.28
0.19
0.22
0.36
0.02
0.25

0.20
0.06
0.05
0.01
0.25
0.00
0.18
0.24
0.23
0.19
Half-Life
M-XYL
Calc
Expt Calc -Expt
(min) (rain) (mln)

276
187
243
156
168
206
172
138
273

242
187
154
218
177




186
209
175
49


218
223
171
195
199
209
240
164
194
291
333
291
188
147
272
207

358


312
211
200
54



•53
•16
•48
43
41
34
•8
56
18

49
1
•7
54
30




126
2
22
44
39
29
Calc
•Expt
/Expt

•0.19
•0.09
•0.20
0.28
0.24
0.17
•0.05
0.41
0.07

0.20
0.01
•0.05
0.25
0.17




0.68
0.01
0.17
0.26
0.24
0.20

-------
Ul
Ul
Experiment



1. SAPRC EC •
EC231
EC2J2
EC233
EC237
EC238
EC?41
EC242
EC243
EC245
EC246
EC247
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC •
ITC626
ITC630
ITC631
HC633
ITC635
ITC637
ITC86S
ITC867
ITC868
ITC871
ITC872
ITC873
ITC874
ITC877
ITC880
ITCS81
ITC88S
ITC886
ITC888
ITC891
Group Average
8. Dev.
Avg. Abe. Value
S. Oev.
Maxiflun Concentration
PAN

Expt
CPP")

Calc

Calc
•Expt

Calc
•Expt
/Expt
Maximum Concentration
HCHO

Expt

Calc
•Expt
CPP")
Calc
•Expt
/Expt
7 HYDROCARBON SURROGATE
0.095
0.040
0.037
0.100
0.113
0.047
0.140
0.100
0.194
0.070
0.106
0.095
0.047


0.116
O.OS2
0.043
0.110
0.131
0.046
0.145
0.131
0.215
0.070
0.113
0.107
O.OS2


0.021
0.012
0.007
0.010
0.017
•0.001
0.005
0.031
0.021
0.000
0.007
0.012
0.010
0.012
0.010
0.22
0.30
0.18
0.10
0.15
•0.02
0.03
0.31
0.11
0.00
0.07
0.13
0.11
0.14
0.11
0.453
0.157
0.145
0.387
0.404
0.137
0.673
0.571
0.778
0.121
0.377
0.382
0.228


0.410
0.126
0.104
0.362
0.432
0.218
0.658
0.680
0.784
0.124
0.406
0.391
0.238


•0.043
•0.031
•0.041
•0.024
0.028
0.081
•0.015
0.109
0.006
0.003
0.030
0.009
0.050
0.037
0.032
•0.10
•0.20
•0.28
•0.06
0.07
O.S9
•0.02
0.19
0.01
0.03
0.08
0.03
0.23
0.15
0.17
SAI SURROGATE
0.116
0.027
0.002
0.034
0.001
0.117














0.049
0.054


0.071
0.024
0.002
0.041
0.002
0.072
0.065
0.049
0.042
0.018
0.010
0.004
0.007
0.011
0.002
0.001
0.001
0.001
0.045
0.065
0.027
0.027


•0.045
•0.003
0.000
0.007
0.001
•0.045














•0.014
0.024
0.017
0.022
•0.38
•0.12
•0.24
0.21
0.75
•0.38














•0.03
0.44
0.35
0.22
0.045
0.025
0.069
0.031
0.092
0.127
0.208
0.224
0.107
0.052
0.111
0.028
0.079
0.113
0.014
0.089
0.014
0.067
0.154
0.069
0.086
0.059


0.130
0.058
0.029
0.108
0.093
0.132
0.166
0.218
0.087
0.064
0.105
0.041
0.052
0.102
0.056
0.084
0.035
0.039
0.125
0.147
0.093
0.049


0.085
0.033
•0.040
0.076
0.001
0.005
•0.042
•0.006
•0.020
0.012
•0.006
0.014
•0.028
•0.011
0.042
•0.006
0.021
•0.028
•0.030
0.077
0.008
0.038
0.029
0.025
1.89
1.32
•0.58
2.44
0.02
0.04
•0.20
•0.03
•0.19
0.23
•0.05
0.49
•0.35
•0.10
3.00
•0.06
1.53
•0.42
•0.19
1.11
0.49
1.03
0.71
0.88

-------
                                                       ame A-20 (continued)
                            Experiment
01
Maximum Concentration
        PAN
Maximum Concentration
        KCKO
                                                             Calc   Catc
                                            Expt    Calc    -Expt  -Expt
                                            v'ppm)   (ppn)    (pen)  /Expt
                                             Calc   Calc
                            Expt    Calc    -Expt  -Expt
                            (ppn)   (ppn)   (ppm)  /Expt
3. SAPRC OTC
OTC189A
OTC189S
OTC190A
OTC190B
OTC192A
OTC192B
OTC194A
OTC194B
OTC19SA
OTC195B
OTC196S
OTC197A
OTC197B
OTC198A
OTC1988
OTC199A
OTC199B
OTC202A
OTC202B
OTC203A
OTC20J8
OTC204A
OTC204B
OTC205A
OTC20SB
OTC215A
OTC21SB
OTC217A
OTC217B
OTC22U
OTC221B
OTC222A
OTC2228
OTC223A
OTC2238
OTC224A
OTC224B
OTC226A
OTC228A
OTC2288
OTC229A
OTC229B
OTC230A
• SAI SURROGATE
0.021
0.02S
0.026
0.018
O.OS6
0.058
0.100
0.055
0.007
0.055
0.011
0.062
0.010
0.087
0.059
0.057
0.055
0.086
0.046
0.016
0.026
0.049
0.061
0.010
0.046
0.125
0.123
0.068
0.121
0.036
0.050
0.030
0.031
0.054
0.051
0.046
0.062
0.040
0.034
0.025
0.027
0.023
0.038
0.075
0.072
0.060
0.059
0.072
0.072
0.105
0.061
0.004
0.066
0.009
0.057
0.005
0.084
0.039
0.052
0.040
0.072
0.047
0.025
0.055
0.037
0.048
0.004
0.044
0.096
0.082
0.056
0.100
0.032
0.049
0.047
0.044
0.057
0.047
0.051
0.068
0.017
0.036
0.030
0.040
0.038
0.054
0.054
0.047
0.034
0.041
0.016
0.014
0.005
0.006
•0.003
0.011
•0.002
•0.005
•0.005
•0.003
•0.020
•0.005
•0.015
•0.014
0.001
0.009
0.029
•0.012
•0.013
•0.006
•0.002
•0.029
•0.041
•0.012
•0.021
•0.004
•0.001
0.017
0.013
0.003
•0.004
0.005
0.006
•0.023
0.002
0.005
0.013
0.015
0.016
2.56
1.88
1.30
2.27
0.29
0.24
0.05
0.11
•0.36
0.20
•0.18
•0.09
•0.52
•0.03
•0.33
•0.09
•0.27
•0.17
0.01
0.55
1.11
•0.24
•0.21
•0.57
•0.04
•0.23
•0.33
•0.18
•0.18
•0.11
•0.03
0.56
0.41
0.06
•0.07
0.11
0.10
•0.57
0.06
0.22
0.46
0.65
0.42
0.199
0.157
0.276
0.228
0.255
0.284
0.251
0.190
0.069
0.171
0.207
0.186
0.213
0.426
0.253
0.205
0.215
0.219
0.123
0.178
0.221
0.251
0.203
0.184
0.224
0.554
0.831
0.237
0.291
0.154
0.160
0.261
0.253
0.421
0.198
0.267
0.234
0.012
0.063
0.117
0.113
0.059
0.133
0.159
0.165
0.151
0.147
0.165
0.157
0.321
0.139
0.072
0.163
0.167
0.132
0.122
0.275
0.144
0.146
0.145
0.261
0.138
0.130
0.137
0.142
0.137
0.124
0.151
0.205
0.296
0.176
0.2C3
0.107
0.121
0.158
0.220
0.205
0.155
0.171
0.217
0.125
0.107
0.131
0.136
0.115
0.161
•0.039
0.008
•0.125
•0.081
•0.090
•0.128
0.070
•0.051
0.003
•0.008
•0.040
•0.054
•0.091
•0.151
•0.109
•0.059
•0.070
0.041
0.014
•0.048
•0.084
•0.109
•0.066
•0.060
•0.073
•0.350
•0.535
•0.062
•0.088
•0.047
•0.040
•0.104
•0.033
•0.216
•0.043
•0.096
•0.016
0.113
0.044
0.014
0.023
0.055
0.028
•0.20
0.05
•0.45
•0.36
•0.35
•0.45
0.28
•0.27
0.05
•0.05
•0.19
•0.29
•0.43
•0.35
•0.43
•0.29
•0.33
0.19
0.12
•0.27
•0.38
•0.43
•0.32
•0.33
•0.33
•0.63
•0.64
•0.26
•0.30
•0.30
•0.25
•0.40
•0.13
•0.51
•0.22
•0.36
•0.07
9.48
0.70
0.12
0.21
0.93
0.21

-------
                                                        Table A-20 (Continued)
Ul
Experiment


OTC230B
OTC237A
OTC237B
OTC238A
OTC236B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC243B
OTC248A
OTC248B
OTC249A
OTC249B
Group Average
S. Dev.
Avfl. Abs. Value
S. Dev.
4. UNC CHAMBER •
ST2081R
OE0782R
AU2681R
AU2681B
AU2781B
ST0381R
ST1081R
ST2081B
JL2081B
ST1682R
JL2081R
JL22S1B
OC1481R
ST1682B
ST2981R
ST2981B
Naxioui Concentration
PAN
Expt

0
0
0
0
0
0
•0
0
•0
0
0
•0
0
0
0
-0
•0
•0
•0
0
0
0
0


0
•0
0




•0
0
-0
•0
-0
0


.014
.016
.020
.003
.012
.008
.009
.000
.005
.005
.007
.008
.018
.011
.000
.005
.004
.011
.001
.003
.017
.012
.012


.056
.002
.010




.002
.008
.019
.026
.061
.036


Calc
•Expt
/Expt
0.57
0.25
0.43
0.07
0.22
0.45
•0.55
•0.32
•0.61
0.08
0.14
•0.38
0.46
0.53
0.02
•0.39
•0.34
•0.18
•0.03
0.15
0.61
0.39
0.49


5.35
•0.11
0.72




•0.48
0.56
•0.53
-0.27
•0.45
0.76


Maxima Concentration
HCHO
Expt

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.073
.216
.226
.139
.230
.166
.129
.075
.077
.218
.226
.123
.129
.152
.178
.133
.166
.240
.265
.208
0.120






































Calc

0.123
0.213
0.201
0.141
0.203
0.152
0.109
0.063
0.085
0.176
0.188
0.089
0.156
0.170
0.163
0.098
0.127
0.195
0.227
0.159
0.050



















Calc
•Expt

0
•0
•0
0
•0
•0
•0
•0
0
•0
•0
•0
0
0
.050
.002
.025
.002
.026
.014
.020
.012
.008
.042
.038
.034
.027
.017
•0.015
•0
•0
•0
•0
•0
0
0
0

















.035
.040
.044
.038
.049
.093
.066
.082

















Calc
•Expt
/Expt
0.69
•0.01
•0.11
0.02
•0.11
•0.08
•0.16
•0.16
0.11
•0.19
•0.17
•0.28
0.21
0.11
•0.08
•0.26
•0.24
•0.18
•0.14
0.01
1.26
0.42
1.18


















-------
                                                     Table A-20  (Continued)
                            Experiment          Maximum Concentration           Maximum Concentration
                                                       PAN                             HCHO

                                                            Calc   Calc                     Calc   Calc
                                           Expt    Calc     -Expt   -Expt    Expt    Calc    -Expt  -Expt
                                           (ppm)   (ppm)    (ppm)   /Expt    (ppn)   (ppra)   Cppra)  /Expt
OC1481B
ST0381B
ST10818
JL0882R
JL0882B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.117


0.085
0.072
0.055
0.046


0.103
0.100
0.047
0.073
0.067
0.055
0.033


•0.014


•0.011
•0.005
•0.003
0.030
0.021
0.020
•0.12


•0.14
•0.07
0.44
1.61
0.79
1.45
Ul

-------
                                                                           Table A-21



                                                                     UNC AUTO EXHAUST RUNS
ui
Experiment



1. UNC CHAMBER
JN2582R
JN2582S
JH2982R
JN2982B
JN3082R
JH3082S
JL0283B
JL0883B
ST2982B
OC0682R
AU1183R
AU11838
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. UNC CHAMBER
JL0182R
JL0182B
AU0382R
AU03828
ST1782R
ST1782S
CT2982R
OC06828
J10283R
JL0883R
JL1583R
JL1583B
OC0483R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations

NOx


0.008
0.008
•0.015
•0.071
•0.049
•0.063
0.010
•0.173
•0.108
•0.116
•0.107
-0.084
•0.063
0.058
0.068
0.053

0.126
0.065
•0.010
•0.131
0.000
•0.052
0.009
•0.173
0.001
-0.213
•0.211
•0.163
0.049
-0.054
0.112
0.092
0.080
Calc
•Expt
/Expt



•0.02
•0.09
•0.06
•0.08
0.01
•0.20
•0.53
•0.33
•0.13
•0.14
•0.16
0.16
0.16
0.16

0.17
0.09
•0.03
•0.23
0.00
•0.08
0.12
•0.39
0.00
•0.28
-0.24
-0.18
0.08
-0.07
0.17
0.15
0.12
Average Initial
d( [03] • [NO] )/dt

Expt

Calc
Calc
•Expt
•• (ppb/nin) ••

0.64
0.68
2.32
2.67
2.55
2.68
1.65
1.76
1.12
1.37
2.55
1.26
1.77
0.77



2.31
2.41
1.26
1.06
.63
.72
0.86
.49
.37
.52
2.10
2.20
1.76
1.67
0.48



0.64
0.65
2.51
2.55
3.38
3.29
1.87
1.44
0.90
1.27
2.34
1.13
1.83
0.97



3.07
3.28
1.33
0.87
.29
.38
0.84
.34
.44
.30
1.74
2.07
1.91
1.68
0.75



0.00
•0.03
0.19
•0.12
0.83
0.61
0.22
•0.32
•0.23
•0.10
•0.21
•0.13
0.06
0.35
0.25
0.24

0.75
0.88
0.07
•0.19
•0.34
•0.33
•0.02
•0.15
0.06
•0.23
•0.35
•0.13
0.15
0.01
0.39
0.28
0.26
Calc
•Expt
/Expt

•0.01
•0.05
0.08
•0.05
0.33
0.23
0.13
•0.18
•0.20
•0.07
•0.08
•0.10
0.00
0.16
0.13
0.09

0.33
0.36
0.06
•0.18
•0.21
•0.19
•0.02
•0.10
0.05
•0.15
•0.17
•0.06
0.08
-0.02
0.19
0.15
0.11

-------
                                                                     Table A-21 (Continued)
^
00
Experiment

3. UNC CHAMBER •
OC0483B
OC0783R
OC0783B
Group Average
S. Dev.
Avg. Ate. Value
S. Oev.
Initial
Concentrations
NOx
(ppni)
SYNEXH
0.25
0.33
0.34
0.31
0.05
HC
(ppnC)

0.4
2.7
2.7
1.9
1.3
HC/NOx

1.7
8.1
7.9
5.9
3.6
Max <

0.642
0.178
0.451
0.424
0.233
Calc
(PP«)

0.695
0.430
0.656
0.594
0.143
Calc
•Expt


0.053
0.252
0.206
0.170
0.104
0.170
0.104
Catc
•Expt
/Expt

0.08
1.41
0.46
0.65
0.68
0.65
0.68
d<
Expt
• •

1.86
0.94
1.41
1.40
0.46
Average Initial
C03] • [NO! )/dt
Calc
(ppb/nin)

2.11
1.39
2.18
1.89
0.44
Calc
•Expt
• •

0.26
0.46
0.76
0.49
0.26
0.49
0.26
Calc
•Expt
/Expt

0.14
0.49
0.54
0.39
0.22
0.39
0.22

-------
                                                           Table A-21 (Continued)
01
\o
Experiment

1. UNC CHAMBER
JN2S82R
JN2582B
JN2982R
JN2982B
JN3082R
JM30828
JL0283B
JL08838
ST2982B
OC06S2R
AU1183R
AU1183B
Croup Average
S. Oev.
Avg. Ate. Value
S. Oev.
2. UNC CHAMBER
JL0182R
JL0182B
AU0382R
AU0382B
ST1782R
ST1782B
ST2982R
OC06S2B
J10283R
JL0883R
JL1583R
JL1583B
OC0483R
Group Average
8. Oev.
Avg. Abs. Value
S. Oev.
Max i nun Concentration
PAN
Expt

• VOURE
0.004
0.004
0.065
0.070
0.068
0.068
0.043
0.081
0.014
0.024
0.032
0.010
0.040
0.029


• CHARGR
0.076
0.079
0.007
0.012
0.042
0.04S
0.006
0.026
0.041
0.092
0.068
0.063
0.061
0.048
0.029


Calc
(PP»)
0.001
0.001
0.056
0.060
0.098
0.095
0.036
0.028
0.005
0.013
0.042
0.008
0.037
0.034



0.081
0.089
0.014
0.015
0.042
0.043
0.005
0.015
0.033
0.031
0.041
0.051
0.054
0.039
0.025


Calc
•Expt

•0.003
•0.003
•0.008
•0.010
0.030
0.026
•0.007
•0.053
•0.009
•0.011
0.011
•0.002
•0.003
0.021
0.014
0.015

0.005
0.010
0.006
0.003
0.000
•0.002
•0.001
•0.012
•0.009
•0.061
•0.027
•0.011
•0.007
•0.008
0.019
0.012
0.016
Calc
•Expt
/Expt
•0.76
•0.74
•0.13
•0.14
0.44
0.38
•0.17
•0.66
•0.64
•0.45
0.35
•0.17
•0.22
0.44
0.42
0.24

0.07
0.12
0.81
0.24
0.00
•0.04
•0.19
•0.44
•0.21
•0.66
•0.40
•0.18
•0.12
•0.08
0.36
0.27
0.24
Half-Life
ETHENE
Calc
Expt Calc -Expt
(min) (mln) (rain)
692

325
339
345
433


326
346
400
133



359
361
513
389
336
354
479
479
337
515
363
376
373
402
67


334
331
309
311
328
448

557
326
388
370
82



321
315
533
405
396
395

534
323
441
355
339
312
389
79




•16
•28
•17
15


0
42
0
25
19
14

•38
•46
20
16
60
41

55
•14
•74
•8
•37
•61
•7
45
39
21
Calc
•Expt
/Expt


•0.05
•0.08
•0.05
0.03


0.00
0.12
0.00
0.07
0.06
0.04

•0.11
•0.13
0.04
0.04
0.18
0.12

0.11
•0.04
•0.14
•0.02
•0.10
•0.16
-0.02
0.11
0.10
0.05

-------
                                                             Table A-21 (Continued)
Experiment

3. UNC CHAMBER •
OC04B3B
OC0783R
OC0783B
Group Average
S. Dev.
Avg. At». Value
S. Otv.
Maximum Concentration
PAN
Expt

SYNEXH
0.060
0.056
0.101
0.072
0.02S
Calc
(PPO

0.056
0.062
0.092
0.070
0.019
Catc
•Expt


•0.005
0.006
•0.009
•0.002
0.008
0.007
0.002
Calc
•Expt
/Expt

•0.08
0.12
•0.09
•0.02
0.12
0.09
0.02
Expt
(mfn)

335
408
371
51
Half-Life
ETHENE
Calc
(nin)

304
429
314
349
69
Calc
•Expt
(nin)

•31
•94
•62
44
62
44
Calc
•Expt
/Expt

•0.09
•0.23
•0.16
0.10
0.16
0.10
I
o

-------