PB87-180592
Surrogate Species Chemical Reaction
Mechanism for Urban-Scale Air Quality
Simulation Models. Volume 1
Adaptation of the Mechanism
Environmental Research and Technology, Inc,
Newbury Park, CA
Prepared for
Environmental Protection Agency
Research Triangle Park, NC
Apr 87
-------
EPA/600/3-87/014a
April 1987
A SURROGATE SPECIES CHEMICAL REACTION MECHANISM
FOR URBAN-SCALE AIR QUALITY SIMULATION MODELS
VOLUME I - ADAPTATION OF THE MECHANISM
by
Frederick W. Lunnann
William P. L. Carter
Lori A. Coyner
ERT, A Resource Engineering Company, Inc.
975 Business Center Circle
Newbury Park, CA 91320
and
Statewide Air Pollution Research Center
University of California
Riverside, CA 92521
EPA Contract No. 68-02-4104
Project Officer
Marcia C. Dodge.
Atmospheric Chemistry and Physics Division
Atmospheric Sciences Research Laboratory
Research Triangle Park, NC 27711
ATMOSPHERIC SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC 27711
REPRODUCEDBY
U.S. DEPARTMENTOF COMMERCE
NATONAL1ECHMCAL
WFORMATON SERVICE
SPRMGFELD.VA 22161
-------
TECHNICAL REPORT DATA
(Pleait read Inunctions on the reverse be fort completing)
1. REPORT NO.
EPA/fiOO/3-
3. RECIPIENT'S ACCESSION*NO.
F687 1805927AS
4. TITLE AND SUBTITLE
A SURROGATE SPECIES CHEMICAL REACTION MECHANISM
FOR URBAN-SCALE AIR QUALITY SIMULATION MODELS
Volume I - Adaptation of the Mechanism
5. REPORT DATE
April 1987
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
F. W. Luzmann, W. P. L. Carter, and L. A. Coyner
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Environmental Research 6 Technology
975 Business Center Circle
Newbury Park, California 91320
10. PROGRAM ELEMENT NO.
A101/B/63/20/4003 - (FY-87)
11. CONTRACT/GRANT NO.
68-02-4104
12. SPONSORING AGENCY NAME AND ADDRESS
Atmospheric Sciences Research Laboratory-RTF, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. TYPE Of REPORT AND PERIOD COVERED
Final (3/86 - 2/87\
14. SPONSORING AGENCY CODE
EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
A surrogate species chemical mechanism has been refined, evaluated, and
adapted for use in air quality simulation (AQS) models. The refined mechanism
was evaluated against data from 491 environmental chamber experiments conducted
in indoor and outdoor facilities. The results of the evaluation indicate that
the mechanism's predictions are qualitatively and quantitatively consistent
with data from a large number of single organic-NOx and multi-organic-NOx
experiments. Subsequent to the testing of the mechanism, versions of the
mechanism were adapted for use in single-cell models such as OZIPM/EKMA and
multi-cell AOS models. Guidelines for using these mechanisms were also
developed. The guidelines include specifying procedures for assignments of
individual organic species to the chemical classes in the mechanisms and for
selecting organic speciation profiles when ambient data are not available.
Volume I describes the adaptation of the mechanism for AQS use; Volume II
serves as the user's guide for implementing the mechanism in OZIPM/EKMA or
multi-cell AOS.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Croup
IB. DISTRIBUTION STATEMENT
10. SECURITY CLASS (This Report)
UMTTJiCCTPTPn
21. NO. OF PAGES
211
RELEASE TO PUBLIC
20. SECURITY CLASS (Thitpagtl
UNCLASSIFIED
22. PRICE
EPA Perm 1120-1 (».73)
-------
NOTICE
The information in this document has been funded by the
United States Environmental Protection Agency under Contract
Number 68-02-4104 to ERT, Inc. It has been subject to the
Agency's peer and administrative review, and it has been
approved for publication as an EPA document. Mention of
trade names or commercial products does not constitute
endorsement or recommendation for use.
-ii-
-------
ABSTRACT
A surrogate species chemical reaction mechanism for the photo-
oxidation of nonmethane organic compounds (NMOC) and nitrogen oxides
(NO ) has been developed for use in urban-scale photochemical air quality
A
simulation (AQS) models. The chemical mechanism has been evaluated
against data from 491 environmental chamber experiments conducted in
indoor and outdoor facilities. The results of the mechanism evaluation
indicate good model performance for a large number of single organic-NO
A
and multi-organic NO experiments.
A
Two versions of the chemical mechanism have been adapted for use in
photochemical AQS models. One version of the mechanism incorporates
detailed representation of the reactions of NMOC and is suitable for use
in single-cell AQS models such as the OZIPH/EKHA model. Another version
of the mechanism incorporates a more condensed representation of the
reactions of NMOC and is suitable for use in multi-cell Lagrangian and
Eulerian AQS models. Under typical urban conditions, the two versions of
the mechanism give very similar predictions for the concentrations of the
key species involved in photochemical smog.
The approach used to model the complex mixture of NMOC with this
mechanism is to use the chemical reactions of 12 common organic pre-
cursors as surrogates for the reactions of hundreds of different
compounds. A system of assigning individual organic compounds to the
most appropriate surrogate species has been developed. Also, speciated
ambient NMOC data from surface stations in 25 urban areas and from
aircraft samples collected upwind of four urban areas have been analyzed
to develop default NMOC speciation profiles for use with this mechanism.
Sensitivity analysis using surrogate species mechanism in the
OZIPM/EKHA model is reported. The relationships between model input
parameters and the NMOC control requirement predictions are investigated.
The input parameters included in the analysis are NMOC composition,
NMOC/NO ratio, NMOC and ozone concentrations aloft, dilution rates,
post-8 a.m. emission rates, future NO emission rates, present-day ozone
A
concentrations, photolysis rates, and initial concentrations of peroxy-
acetylnitrate and nitrous acid.
-iii-
-------
TABLE OF CONTENTS
1. INTRODUCTION 1-1
2. EVALUATION OF THE MECHANISM 2-1
2.1 The Detailed Chemical Mechanism 2-1
2.2 Evaluation Results 2-18
3. CONDENSATION OF THE MECHANISM 3-1
3.1 The OZIPM Mechanism 3-11
3.2 The Condensed Mechanism 3-32
3.3 Mechanism Comparison 3-35
4. SPECIATION OF ORGANIC COMPOUNDS 4-1
4.1 Assignment of Individual Species to Classes 4-1
4.2 Speciation of NMOC Emissions and Ambient Data 4-12
5. SENSITIVITY ANALYSIS 5-1
5.1 Baseline Conditions and Parameter Variations 5-1
5.2 Sensitivity Analysis Results 5-8
6. CONCLUSIONS 6-1
7. REFERENCES 7-1
APPENDIX A - MECHANISM PERFORMANCE EVALUATION DATA
-V-
-------
LIST OF FIGURES
Figure
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
Title
Predicted versus observed change in NO and NO
for NO -air and NO -CO-air characterization runs
X X
Predicted versus observed maximum ozone and
d([0,]-[NO])/dt for carbonyl-NOv runs
<3 X
Predicted versus observed maximum ozone and
d([0,]-lNO])/dt for alkene-NO runs
«3 X
Predicted versus observed maximum ozone and
d([0,]-[NO])/dt for alkane-NOv runs
J X
Predicted versus observed maximum ozone and
d([Oj-[NO])/dt for aromatic-NO,, runs
3 X
Distributions of absolute error in maximum ozone
predictions for propene, n-butane, and toluene runs
Distributions of relative errors in d([03]-[NO])/dt
for propene, n-butane, and toluene runs
Predicted versus observed maximum ozone and
d([0.]-[NO])/dt for simple organic mixture runs
Predicted versus observed maximum ozone and
d([03]-[NO])/dt for surrogate mixture runs
Predicted versus observed maximum ozone and
d([03]-[NO])/dt for UNC automobile exhaust runs
Distributions of absolute errors in maximum ozone
Page
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
predictions for simple mixtures, surrogate mixtures,
and auto exhaust runs 2-33
2-12 Distribution of relative errors in d([0.]-[NO])/dt
for simple mixtures, surrogate mixtures, and auto
exhaust runs 2-34
2-13 Absolute error in maximum ozone versus log..
(NMOC/NOx) 2-37
2-14 Predicted versus observed maximum PAN concentrations
for surrogate mixture runs 2-38
2-15 Distribution of relative errors in maximum PAN
concentrations for propene, n-butane, and toluene
runs 2-39
-vi-
-------
LIST OF FIGURES (continued)
Figure Title
Comparison of NO, NO., and 0. predictions for
1 ppmC toluene +0.10 ppm NO with detailed ar
2-16 Distribution of relative errors in maximum PAN
concentrations for simple mixture, surrogate
mixture, and auto exhaust runs 2-40
2-17 Distribution of relative errors in maximum
formaldehyde concentrations for propene, simple
mixture, and surrogate mixture runs 2-41
3-1 Comparison of NO, N02, and 0. predictions for
mixtures with 1.5 ppfiC propane +0.10 ppm NO
and 0.75 ppmC C4-C5 alkanes + 0.10 ppm NOV 3-15
X
3-2 Comparison of NO, NO., and 0, predictions for
mixtures with 1.5 ppfflC propafie +0.05 ppm NO
and 0.75 ppmC C4-C5 alkanes + 0.05 ppm NO 3-16
A
3-3 Comparison of NO, NO., and 0, predictions for
mixtures with 1.5 ppmC benzene +0.10 ppm NO
and 0.45 ppmC C4-C5 alkanes +0.10 ppm NO 3-18
A
3-4 Comparison of NO, NO., and 0, predictions for
mixtures with 1.5 ppmC benzene +0.05 ppm NO
and 0.45 ppmC C4-C5 alkanes + 0.05 ppm NO 3-19
A
3-5 Comparison of NO, NO-, and 0, predictions for
1 ppmC ethene + 0.33 ppm NO with the detailed
and OZIPM mechanisms 3-21
3-6 Comparison of NO, NO., and 0, predictions for
1 ppmC ethene +0.20 ppm NO with the detailed
and OZIPH mechanisms 3-22
3-7 Comparison of NO, NO., and 0, predictions for
1 ppmC toluene +0.20 ppm NO with detailed and
OZIPM mechanism 3-23
3-8
and
OZIPM mechanism * 3-24
3-9 Comparison of NO, NO., and 0. predictions for
1 ppmC m-xylene +0.20 ppm NO with detailed and
OZIPM mechanism 3-25
3-10 Comparison of NO, NO., and 0. predictions for
1 ppmC m-xylene +0.10 ppm No with detailed and
OZIPM mechanism * 3-26
-vii-
-------
LIST OF FIGURES (continued)
Figure Title
3-11 Comparison of NO, NO., and 0> predictions with
1 ppmC propene and 1 ppmC 1-Butene at NHOC/NO = 3 3-28
X
3-12 Comparison of NO, N02/ and 0, predictions with
1 ppmC propene and 1 ppmC 1-Butene at NHOC/NO = 5 3-29
2C
3-13 Comparison of NO, N02, and 0., predictions with
1 ppmC trans-2-butene and 1 ppraC iso-butene at
NMOC/NOV * 3 3-30
&
3-14 Comparison of NO, NO., and 0. predictions with
1 ppmC trans-2-butene and 1 ppmC iso-butene at
NMOC/NOV * 5 3-31
A
3-15 Comparison of ozone predictions from the three
mechanisms for mixed alkenes and NO at NHOC/NO = 3
and 6 x x 3_3Q
3-16 Comparison of ozone predictions from the three
mechanisms for mixed alkanes and NO at NHOC/NO = 10
and 20 x x 3_39
3-17 Comparison of ozone predictions from the three
mechanisms for mixed aromatics and NO at
NHOC/NO,,, = 3 and 6 3-40
A
3-18 Comparison of ozone predictions from the three
mechanisms for an urban NHOC mixture at NHOC/NO = 10
and 20 x 3-41
3-19 Comparison of ozone predictions from the three
mechanisms for an urban NHOC mixture at NHOC/NO = 3
and 6 * 3-42
3-20 Comparison of ozone predictions from the three
mechanisms for an urban NKOC mixture at NHOC/NO = 3
at 283°K and 313°K 3-44
3-21 Comparison of NO and NO predictions from the
three mechanisms for an urban NHOC mixture at
NHOC/NOV = 6 3-45
A
3-22 Comparison of PAN + PAN analogs and HNO- predictions
from the three mechanisms for an urban RHOC mixture
at NHOC/NO,, = 6 3-46
A
-viii-
-------
LIST OF FIGURES (continued)
Title
Comparison of higher alkenes and ethene predictions
from the three mechanisms for an urban mixture at
NMOC/NO = 6 3-47
A
3-24 Comparison of higher aromatics and toluene predictions
from the three mechanisms for an urban NMOC mixture at
NMOC/NOx = 6 3-48
3-25 Comparison of alkanes and MEK predictions from the
three mechanisms for an urban NMOC mixture at
NMOC/NOx = 6 , 3-49
3-26 Comparison of formaldehyde and higher aldehyde
predictions from the three mechanisms for an
urban NMOC mixture at NMOC/NOV =6 3-50
X
3-27 Comparison of H-O, radical predictions from the
three mechanisms for an urban NMOC mixture at
NMOC/NO = 6 3-51
A
3-28 Comparison of R0_ and OH radical predictions from
the three mechanisms for an urban NMOC mixture at
NMOC/NO = 6 3-52
A
4-1 Frequency distribution of carbonyl concentrations
observed in Claremont, California 4-15
4-2 Initial aldehyde concentration versus initial NMHC
for captive air experiments 4-17
5-1 Ozone isopleth diagram for baseline conditions
with SAPRC/ERT mechanism 5-5
-ix-
-------
LIST OF TABLES
Table
2-1
2-2
2-3
2-4
2-5
Title
SAPRC/ERT Detailed Chemical Mechanism Species List
SAPRC/ERT Detailed Chemical Mechanism
Absorption Cross-Section and Quantum Yield Data
for N02
Ratio of Other Photolytic Reaction Rates to the
NO. Photolysis Rate at Zero Elevation
Peroxy Radical Pseudo-Species Used in the Mechanism
Pag
2-2
2-3
2-8
2-li
to Represent Overall Processes Common to Peroxy
Radical Reactions 2-13
2-6 Summary of Environmental Chamber Runs Used for
Mechanism Evaluation 2-20
2-7 Average Model Performance for Maximum Ozone 2-35
3-1 SAPRC/ERT OZIPM Chemical Mechanism Species List 3-2
3-2 SAPRC/ERT OZIPM Chemical Mechanism 3-3
3-3 SAPRC/ERT Condensed Chemical Mechanism Species List 3-7
3-4 SAPRC/ERT Condensed Chemical Mechanism 3-8
3-5 Surrogate Species in the Mechanisms 3-12
3-6 Conditions for Mechanism Comparison Simulations 3-17
3-7 Conditions for Mechanism Comparison Simulations 3-37
4-1 NMOC Classes for the OZIPM Mechanism 4-2
4-2 NMOC Classes for the Condensed Mechanism 4-2
4-3 Organic Species Classification for the OZIPM
Chemical Mechanism 4-3
4-4 Examples of Uncertainty Classification 4-11
4-5 Urban NMHC Composition Determined from Data
Collected by Lonneman in 1984 and 1985 4-14
4-6 NMOC Composition and Concentrations Aloft 4-18
4-7 Recommended Default NMOC Composition Profiles 4-20
-x-
-------
LIST OF TABLES (continued)
Table Title Page
4-8 Range of NMOC Composition Fractions 4-20
5-1 OZIPM Sensitivity Analysis - Baseline Case Inputs 5-3
5-2 Parameter Variations in the OZIPM Sensitivity
Analysis 5-6
5-3 NMOC Composition Profiles Used in the OZIPM
Sensitivity Analysis 5-7
5-4 Predicted NMOC Control Requirements 5-9
5-5 Relative Change in Predicted NMOC Control
Requirements 5-10
6-1 Average Model Performance for Maximum Ozone 6-2
-xi-
-------
1. INTRODUCTION
Ozone concentrations downwind of most major metropolitan areas in
the United States continue to exceed the one-hour national ambient air
quality standard (0.12 ppm) under adverse meteorological conditions. In
order to develop appropriate control strategies to reduce ambient ozone
levels downwind of metropolitan areas, air quality control agencies need
scientifically sound methods to relate maximum ozone concentrations to
the emissions of ozone precursors, i.e., nonmethane organic compounds
(NMOC) and nitrogen oxides (NO ). The principal tools used in developing
&
control strategies are photochemical air quality simulation (AQS) models.
A critical component of the simulation model is the chemical reaction
mechanism, which simulates the formation of ozone from NMOC and NO .
A
Numerous relatively up-to-date chemical mechanisms are currently
used in urban-scale AQS models (Atkinson et al. 1982; Killus and Whitten
1982; Penner and Walton 1982; McRae et al. 1982; Whitten et al. 1985;
Whitten and Gery 1986). While the mechanisms are largely based on the
same body of laboratory kinetic and mechanistic data, different tech-
niques and assumptions are used to represent the organic chemistry in the
different mechanisms. Lumping of the organic compounds is necessary in
all atmospheric photochemical mechanisms because it is computationally
impossible to separately treat the large number of organic compounds
found in ambient air. With the exception of the Carbon Bond mechanism
(Whitten et al. 1983), which has been extensively tested in studies
sponsored by the Environmental Protection Agency (EPA), these mechanisms
have only been subjected to limited testing (15 to 35 experiments)
against environmental chamber data. The precision and accuracy of these
mechanisms are a major concern because they predict significantly dif-
ferent emission control requirements for identical meteorological,
emissions, and background air quality conditions (Carter et al. 1981;
Jeffries et al. 1981; Shafer and Seinfeld 1985).
Differences in the organic chemistry incorporated into the
mechanisms are primarily responsible for the differences in emission
control requirement predictions (Leone and Seinfeld 1984). Differences
in the assumptions used to test the mechanisms against chamber data may
also contribute to differences in control strategy predictions. Since
l-l
-------
progress toward reducing the uncertainties of atmospheric chemistry of
organics is proceeding slowly, numerous researchers have recommended
using two or more chemical mechanisms in control strategy modeling to
allow uncertainties in the chemistry to be taken into account (Shafer and
Seinfeld 1985; EPA 1987). Furthermore, the chemical mechanisms used in
control strategy modeling should be tested extensively, rather than
selectively, against the available environmental chamber data base. This
data base of experiments has grown substantially in the last five years.
In recognition of the need for a well-tested and chemically up-to-
date alternative to the Carbon Bond mechanism, the EPA contracted ERT,
Inc., and the Statewide Air Pollution Research Center (SAPRC) at the
University of California, Riverside, to carry out a research program to
update and evaluate the Atkinson et al. (1982) mechanism (Phase I) and
adapt the updated mechanism to AQS models (Phase II). The EPA chose the
Atkinson et al. 1982 mechanism because they considered the surrogate
species lumping approach employed in that mechanism to be the most viable
alternative to the carbon bond lumping approach. This report describes
the technical work performed in Phase II of the research program.
An updated surrogate species chemical mechanism was developed in
Phase I of the program based on the Atkinson and Lloyd (1984) review and
the mechanism of Lurmann et al. (1984, 1986) that, in turn, is an update
of the Atkinson et al. (1982) mechanism. This mechanism was extensively
tested against environmental chamber data from four facilities. The
development of the mechanism and the details of the testing program are
documented in a report on Phase I of this program entitled "Development
and Testing of a Surrogate Species Chemical Reaction Mechanism, Volumes I
and II" (Carter et al. 1986). Some minor changes in the detailed
mechanism were implemented after the Phase I reports went to press, so
the final mechanism and final results of the evaluation are presented in
this report on Phase II of the research program.
1-2
-------
The overall objective of Phase II was to adapt the mechanism for use
in atmospheric AQS models. The specific tasks carried out in Phase II
include:
1) Development of condensed versions of the mechanism for use in
EPA's OZIPN model (used in conjunction with the Empirical
Kinetic Modeling Approach (EKMA)) and for use in more
sophisticated AQS models such as the Urban Airshed Model (UAM);
2) Development of guidelines for the speciation of NMOC into the
organic classes employed in the mechanism, including analysis
of ambient NMOC data collected in urban areas to determine
speciation profiles for applications without site-specific
data;
3) Sensitivity analysis of the OZIPM model (with the updated
mechanism) to plausible input parameter variations for
identification of the parameters that strongly influence the
control requirement predictions; and
4) Development of standard test problems so that users can confirm
that they have properly implemented the chemical mechanism in
the chemical module of AQS models.
The results of tasks 1-3 are described in Volume I of this report. The
results of task 4 are presented in Volume II along with a summary of the
guidelines for using the mechanism in AQS models.
1-3
-------
2. EVALUATION OF THE MECHANISM
Several modifications of the detailed chemical mechanism reported in
Carter et al. (1986) were made in Phase II of the program. These modifi-
cations were significant enough to necessitate reevaluation of the
detailed mechanism's performance against the environmental chamber data.
The modifications of the detailed mechanism and the results of the
evaluation are summarized in this section. Except where noted, the
mechanism, data, and methods used in the evaluation were identical to
those described in Carter et al. (1986). The Phase II evaluation
included seventy additional chamber experiments that were not available
during the Phase I testing program. This brings the total number of
experiments to 490, which means this is by far the most comprehensive
atmospheric chemical mechanism testing program performed in any research
program.
2.1 The Detailed Chemical Mechanism
The detailed chemical mechanism used in Phase II of the program is
shown in Tables 2-1 and 2-2. The species, reactions, rate constant
expressions, and temperature dependent coefficients are listed. The
quantum yield and absorption cross-section data for the photolytic
reactions are identical to those reported in Carter et al. (1986), with
the exception of those for N02- The N02 quantum yield data recommended
by NASA (1985) and shown in Table 2-3 are used in the Phase II detailed
mechanism. These data result in atmospheric N02 photolysis rates that
are about 8% higher than those used in the Phase I mechanism. The
updated atmospheric N02 photolysis rates and the ratios of the photolytic
rates of other species to the NO. photolytic rate are shown in Table 2-4.
These ratios have been computed using the solar actinic radiation inten-
sities and spectral distributions reported by Peterson (1976) for zero
elevation and best estimate albedo.
The Phase II detailed mechanism comprises 169 reactions and 65
species. Forty-eight of the species must be treated as integrated
species in the kinetic solver. Three of the species (M, 0., and H-O) may
be treated as constants and fourteen of the species can safely be treated
2-1
-------
TABLE 2-1. SAPRC/ERT DETAILED CHEMICAL MECHANISM SPECIES LIST
SPECIES ABREVIATION
1. NITRIC OXIDE NO
2. NITROGEN DIOXIDE N02
3. OZONE 03
4. NITROUS ACID HONO
5. NITRIC ACID HN03
6. PERNITRIG ACID HN04
7. NITROGEN PENTOXIDE N205
8. NITROGEN TRIOXIDE N03
9. HYDROPEROXY RADICAL H02
10. HYDROGEN PEROXIDE H202
11. CARBON MONOXIDE CO
12. FORMALDEHYDE HCHO
13. ACETALDEHYDE ALD2
U. PROPIONALDEHYDE RCHO
15. PEROXYACETYLHITRATE PAN
16. PEROXYPROPIONYL NITRATE PPN
17. TOTAL R02 RADICALS R02
18. TOTAL RC03 RADICALS RC03
19. ORGANIC PEROXIDE ROOH
20. ACETONE ACET
21. METHYL ETHYL KETONE MEK
22. GLYOXAL GLYX
23. GLYOXAL PAH GPAN
24. METHYL GLYOXAL MGLY
25. GLYCOL ALDEHYDE GCHO
26. GLYCOL ALDEHYDE PAN PANG
27. PROPANE ALK3
28. C4-C5 ALKANES ALK4
29. C6+ ALKANES ALK7
30. ALKYL NITRATES ALKN
31. ETHENE ETHE
32. PROPENE PRPE
33. 1-BUTENE OBUT
34. TRANS-2-BUTENE TBUT
35. ISO-BUTENE IBUT
36. BENZENE BENZ
37. TOLUENE TOLU
38. M-XYLENE XYLE
39. 1,3,5 TRI-N-BENZENE TMBZ
40. DlCARBONYLS DIAL
41. 0-CRESOL CRES
42. PHENOLS PHEN
43. NITROPHENOLS NPHE
44. DICARBONYLS BGLY
45. BENZALDEHYDE BCHO
46. BENZALDEHYDE PAN PBZN
47. DI-NITROPHENOLS DNPH
STEADY STATE SPECIES
48. OXYGEN SINGLET D 0*SD
49. OXYGEN ATONIC 0
50. HYDROXYL RADICAL OH
51. ACETALOEHYDE RC03 NC03
52. PROPIONALDEHYDE RC03 PC03
53. GLYOXAL RC03 GC03
54. GLYCOL ALDEHYDE RC03 GA03
55. GENERAL R02 fl R02R
56. GENERAL R02 «2 R202
57. MEK R02 MK02
58. ALKYL NITRATE R02 R02M
59. PHENOL R02 R02P
60. BENZALDEHYDE N-R02 BZN2
61. BENZALDEHYDE RC03 BA03
62. PHEHOXY RADICAL BZO
CONSTANT SPECIES
63. MOLECULAR OXYGEN 02
64. AIR N
65. H20 VAPOR H20
2-2
-------
TABLE 2-2. SAPRC/ERT DETAILED CHEMICAL MECHANISM
REACTION
to
I
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
N02 *
0 *
0 *
0 *
NO *
N02 «
NO *
NO *
N02 «
N205
N205 *
N02 «
N03 «
N03 «
03 *
03 *
0*SO «
0*SO *
NO *
HONO «
N02 *
N02 *
HH03 *
CO *
03 *
NO *
N02 +
HH04
HN04 *
03 »
H02 *
H02 *
H02 «
H02 *
N03 *
N03 *
N03 *
N03 +
H202+
H202*
R02 *
RC03 *
RC03 *
R02 *
RC03 »
ROOH *
HV >
02 * N ->
H02 >
N02 * H ->
03 >
03 ->
N03 >
NO * 02 >
U03 >
->
H20 >
N03 ->
HV >
HV >
HV >
HV >
H20 >
N >
OH >
HV >
H20 >
OH >
OH >
OH -->
OH ->
H02 -->
H02 >
'->
OH >
K02 >
H02 >
H02 * N >
K02 * H20 >
H02 * H20 >
H02 --->
H02 * H >
H02 * H20 >
H02 * H20 >
HV >
OH >
NO >
NO >
N02 >
H02 >
H02 >
HV >
HO *
03 «
NO +
N03 *
N02 *
N03 *
2.N02
2.N02
N205
N02 *
2.HN03
HO *
NO *
N02 *
0 *
0*SD *
2. OH
0 *
HONO
NO *
HONO
HN03
N03
H02
H02 +
N02 *
HN04
N02 *
N02 *
OH *
H202 +
H202 *
H202 *
H202 *
HH03 *
HN03 *
HN03 *
HN03 *
2.0H
H02 *
NO
NO
N02
H02
H02
H02 *
0
N
02
N
02
02
N03
H02 *
02
0
02
02
N
OH
N02 +
02
OH
H02
H20 *
2.02
02
02
02 *
02 *
02
02
02 *
02 +
H20
OH
02
HH03
02
H20
H20
H20
H20
MOLEOJLE-CC-SEC PPM-HIN
(298 K) (298 K)
RADIATION DEPENDENT
6.12E-3A 2.23E-05
9.30E-12 1.37E*04
9.12E-32 3.32E-03
1.81E-14 2.68E+01
3.23E-17 4.77E-02
1.86E-11 2.75E+04
1.95E-38 7.09E-10
1.17E-12 1.73E+03
3.47E-02 2.08E+00
1.00E-21 1.48E-06
4. WE- 16 5.98E-01
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
2.20E-10 3.25E*05
2.90E-11 4.29E*04
6.73E-12 9.94E+03
RADIATION DEPENDENT
4.00E-24 5.91E-09
1.16E-11 1.71E*04
1.28E-13 1.89E+02
2.18E-13 3.22E+02
6.78E-14 1.00E+02
8.28E-12 1.22E*04
1.39E-12 2.05E+03
8.41E-02 5.05E 00
4.00E-12 5.91E*03
2.01E-15 2.96E+00
1.76E-12 2.59E+03
5.13E-32 1.87E-03
3.96E-30 1.44E-01
2.84E-30 1.04E-01
1.76E-12 2.59E+03
5.13E-32 1.87E-03
3.96E-30 1.44E-01
2.84E-30 1.04E-01
RADIATION DEPENDENT
1.66E-12 2.45E+03
7.68E-12 1.14E+04
7.68E-12 1.14E+04
5.12E-12 7.57E+03
3.00E-12 4.43E+03
3.00E-12 4.43E+03
RADIATION DEPENDENT
EXPRESSION
3.00E-28/(T**2.3)
8.10E-27/(T**2.0)
1.80E-12*EXP{ -1370/T)
1.20E-13*EXP( -2450/T)
8.00E-12*EXP( 252/T)
3.30E-39*EXP( 529/T)
SEE NOTE 1
1.06E 27*EXP(-11354/T)«(300/T)*R9
2.50E-14*EXP< -1229/T)
SEE NOTE 1
SEE NOTE 1
9.40E-15*EXP( 778/T)
1.60E-12«EXP( -942/T)
3.70E-12«EXP( 240/T)
SEE NOTE 1
4.29E 26*EXP(-10876/T)«R27
1.40E-14*EXP( -579/T)
2.20E-13*EXP( 619/T)
1.90E-33*EXP( 982/T)
3.10E-34*EXP( 2818/T)
6.60E-35*EXP( 3180/T)
2.20E-13*EXP( 619/T)
1.90E-33*EXP( 982/T)
3.10E-34*EXP( 2818/T)
6.60E-35*EXP( 3180/T)
3.10E-12*EXP( -187/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)
-------
TABLE 2-2. SAPRC/ERT DETAILED CHEMICAL MECHANISM (CONTINUED)
to
47.
48.
49.
SO.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
R02
R02
RC03
HCHO
HCHO
HCHO
HCHO
HCHO
ALD2
ALD2
ALD2
MC03
MC03
MC03
NC03
MC03
PAN
RCHO
RCHO
RCHO
PC03
PC03
PC03
PC03
PC03
PPN
ACET
ACET
NEK
NEK
KK02
KK02
MK02
MK02
GLYX
GLYX
GLYX
GC03
GC03
GPAN
GC03
GC03
GC03
MCLY
MGLY
MGLY
4
*
4
4
*
*
4
4
*
+
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
R02
RC03
RC03
HV
HV
OH
H02
N03
OH
HV
N03
HO
N02
H02
R02
RC03
OH
HV
N03
NO
N02
H02
R02
RC03
HV
OH
HV
OH
NO
K02
R02
RC03
HV
OH
N03
N02
NO
H02
R02
RC03
HV
OH
N03
REACTION
> 2.H02
> CO
> H02
-> R02R
> HN03
> MC03
> CO
> HN03
> N02
-> PAN
> ROOH
-> .5H02
> H02
> MC03
> RC03
-> R02R
> HN03
> R02R
> PPN
> ROOH
> .5H02
> H02
> PC03
> MC03
> R02R
> MC03
> MK02
-> N02
> ROOH
> .5H02
-> .5H02
> .13HCHO
> .63H02
> HN03
> GPAN
> N02
> GC03
> ROOH
> .5H02
> H02
> MC03
> MC03
> HN03
MOLECULE-CC-SEC PPM-MIN
(298 K) (298 K)
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
41
41
4
4
4
4
4
4
4
4
4
CO
H2
CO
R02
H02
H20
R02R
MC03
R02R
HCKO
HCHO
HCHO
N02
PC03
H02
PC03
N02
ALD2
ALD2
ALD2
N02
R02R
R02
R02R
.5R202
.5MC03
.5HCHO
.5HCHO
.5HCHO
.87CO
.26CO
.63H02
H02
N02
CO
CO
CO
H02
CO
MC03
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
41
4
4
4
4
4
4
4
H20
CO
RC03
H02 *
RC03
R02 «
R02
RC03
RC03
CO *
RC03
R02 +
R02
RC03
RC03
RC03 *
MGLY
RC03 *
1.5R02 *
.5PC03 *
.5ALD2
.5ALD2 *
.5ALD2 *
.37GC03 *
.26CO *
CO
RC03
R02
RC03
CO *
RC03
CO *
R02 + HCHO
HCKO
802 4 AL02
ALD2
R02 * HCHO
R02 * ALD2
.5HCHO + .5ALD2
RC03
R02
RC03
.37RC03
.37GC03 + .37RC03
RC03
RC03
1.00E-15
3.00E-12
2.50E-12
RADIATION
RADIATION
9.00E-12
1.00E-14
5.97E-16
1.60E-11
RADIATION
2.50E-15
7.68E-12
5.12E-12
3.00E-12
3.00E-12
2.50E-12
3.68E-04
1.98E-11
RADIATION
2.46E-15
7.68E-12
5.12E-12
3.00E-12
3.00E-12
2.50E-12
3.68E-04
RADIATION
2.29E-13
RADIATION
9.85E-13
7.68E-12
3.00E-12
1.00E-15
3.00E-12
RADIATION
1.15E-11
6.01E-16
5.12E-12
7.68E-12
3.68E-04
3.00E-12
3.00E-12
2.50E-12
RADIATION
1.70E-11
2.50E-15
1.48E+00
4.43E*03
3.69E+03
DEPENDENT
DEPENDENT
1.33E+04
1.48E+01
8.82E-01
2.36E+04
DEPENDENT
3.69E+00
1.14E+04
7.57E*03
4.43E+03
4.43E+03
3.69E403
2.21E-02
2.93E+04
DEPENDENT
3.63E+00
1.14E+04
7.57E+03
4.43E+03
4.43E+03
3.69E+03
2.21E-02
DEPENDENT
3.39E+02
DEPENDENT
1.46E*03
1.14E+04
4.43E+03
1.48E+00
4.43E+03
DEPENDENT
1.70E*04
8.88E-01
7.57E+03
1.UE+04
2.21E-02
4.43E+03
4.43E-»03
3.69E+03
DEi'ENDENT
2.51E+04
3.69E+00
6
6
3
4
2
EXPRESSION
.OOE-13*EXP(
.90E-12*EXP(
.OOE-13*EXP<
.20E-12*EXP(
.80E-12*EXP(
2.00E*16*EXP(
8
3
4
2
2
1
1
4
6
2
4
2
3
.50E-12*EXP(
.OOE-13*EXP(
.20E-12*EXP(
.80E-12«EXP(
.OOE*16*EXP(
.OOE-11*EXP(
.20E-11*EXP(
.20E-12*EXP(
.OOE-13*EXP(
.80E-12«EXP(
.20E-12*EXP(
.OOE»16*EXP(
.OOE-13*EXP(
2060/T)
250/T)
1427/T)
180/T)
180/T)
13542/T)
252/T)
1432/T)
180/T)
180/T)
13542/T)
1125/T)
745/T)
180/T)
2058/T)
180/T)
180/T)
13542/T)
1427/T)
-------
TABLE 2-2. SAPRC/ERT DETAILED CHEMICAL MECHANISM (CONTINUED)
to
U1
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
GCKO *
GCHO «
CCHO *
GA03 *
GA03 *
PANG
GA03 *
GA03 «
GA03 *
ALK3 *
ALK4 »
ALK7 *
ALKN *
R02N *
R02N *
R02N *
R02N *
R202 *
R202 *
R202*
R202 *
R02R *
R02R *
R02R *
R02R *
ETHE *
ETHE +
ETHE *
ETHE +
PRPE +
PRPE +
PRPE +
PRPE *
OBUT *
OBUT *
OBUT
OBUT *
TBUT *
TBUT *
HV
OH
N03
N02
NO
H02
R02
RC03
OH
OH
OH
OH
NO
H02
R02
RC03
NO
H02
R02
RC03
NO
H02
R02
RC03
OH
03
0
N03
OH
03
0
N03
OH
03
0
N03
OH
03
KOLECULE-CC-SEC PPH-HIN
REACTION
> HCHO *
> GA03 «
> HN03 +
> PANG
> N02 *
> GA03 *
> ROOH *
> .5H02 *
> H02 *
> R02R *
2.H02 +
RC03
GA03 *
H02 *
N02 *
HCHO
HCHO *
HCHO »
R02 *
CO
RC03
HCHO
RC03
R02
RC03
.31RCHO
>B01*HCHO +B02MID2 «B03*RCHO
*B06*R02N
*B07*R02R
* .69ACET
+B04*ACET
+B05*MEK
*B08*R202 «B09*R02
...>B10*HCKO +B11*ALD2 *B12*RCHO
+B15*R02N
> N02 *
+1.39R202
ALKN
ROOH *
R02 *
RC03 *
N02
ROOH
R02
RC03
N02 *
ROOH
R02 *
RC03 *
R02R *
HCHO *
> R02R *
> R202 *
> HCHO *
> .65HCHO *
+.135R02R
> .6ACET *
* .4CO
> R202 *
> R02R *
> .5HCHO *
O35R02R
> .44HEK *
* .17AL02
> R02R «
> R02R *
> ALD2 *
* .15CO
«B16*R02R
.155NEK *1
*1.39R02
MEK
.5H02 *
.5H02 +
H02
.5H02
.5H02
R02 +1
.12H02 *
H02 *
R02 *
R02 *
.5ALD2 *.
+.135R02
.6R02R *
* .4HCHO
R02 +
R02 «
.5RCHO *.
+.135R02
.39RCHO +
R02 *
R02 *
.27R02R *
* .27R02
+B13*ACET
+B14*NEK
*B17*R202 +B18*R02
.05RCHO
NEK
NEK
.56HCHO
.42CO
CO
N02
R02R
165H02
.2ALD2
HCHO
HCHO
165H02
.34H02
HCHO
2.ALD2
.120H
« .48ALD2
* .22GCHO
* R02
» 2. HCHO
+ ALD2
+.285CO
« .2H02
+ ALD2
* RCHO
+ .15ALD2
* .17HCHO
* RCHO
* .21H02
* .16HCHO
+ HCHO
* .060H
+ .6R02
+ N02
4 .060H
* .17CO
« N02
* .3HCHO
(298 K)
RADIATION
2.30E-11
2.50E-15
5.12E-12
7.68E-12
3.68E-04
3.00E-12
3.00E-12
2.50E-12
1.18E-12
3.22E-12
SEE NOTE
6.16E-12
SEE NOTE
2.03E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
8.54E-12
1.74E-18
7.29E-13
1.10E-16
2.63E-11
1.13E-17
3.98E-12
7.57E-15
3.14E-11
1.10E-17
4.19E-12
9.67E-15
6.37E-11
2.00E-16
(298 K)
DEPENDENT
3.40E+04
3.69E+00
7.57E+03
1.UE+04
2.21E-02
4.43E+03
4.43E«03
3.696*03
1.75E+03
4.76E+03
2
9.11E+03
2
3.00E+03
1.UE+04
4.43E+03
1.48E*00
4.43E+03
1.KE+04
4.43E+03
1.48E+00
4.43E+03
1.UE+04
4.43E+03
1.48E+00
4.43E+03
1.26E+04
2.57E-03
1.08E+03
1.62E-01
3.89E+04
1.67E-OZ
5.88E+03
1.12E*01
4.64E+04
1.63E-02
6.19E+03
1.43E+01
9.42E+04
2.96E-01
EXPRESSION
3.00E-13*EXP( -1427/T)
2.80E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.00E+16*EXP(-13542/T>
1.27E-17*EXP(14/T)«T*«2.
1.05E-11*EXP< -353/T)
1.62E-11«EXP( -288/T)
2.19E-11*EXP( -709/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
4.20E-12«EXP< 180/T)
2.15E-12*EXP( 411/T)
1.20E-14*EXP( -2634/T)
1.04E-11*EXP( -792/T)
2.00E-12*EXP( -2923/T)
4.85E-12*EXP< 504/T)
1.32E-14*EXP< -2105/T)
1.18E-11*EXP( -324/T)
5.00E-12*EXP( -1935/T)
6.53E-12*EXP( 468/T)
3.46E-15*EXP< -1713/T)
1.25E-11«EXP( -326/T)
5.00E-12*EXP( -1862/T)
1.01E-11*EXP( 549/T)
9.08E-15*EXP( -1137/T)
-------
TABLE 2-2. SAPRC/ERT DETAILED CHEMICAL MECHANISM (CONTINUED)
ro
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
TBUT
TBUT
I BUT
I BUT
I BUT
I BUT
BENZ
BGLV
BOLT
TOLU
DIAL
DIAL
XYLE
TM8Z
CRES
CRES
R02P
R02P
R02P
R02P
PKEN
PHEN
BZO
BZO
BZO
NPHE
BZH2
8ZN2
BZN2
BCHO
BCHO
BCHO
BA03
BA03
PBZN
BA03
BA03
BA03
*
*
*
»
+
*
*
»
*
*
*
«
+
+
*
+
*
*
*
*
*
*
f
*
»
«
*
*
*
0
N03
OH
03
0
N03
OH
OH
HV
OH
OH
HV
OH
OH
OH
N03
NO
H02
R02
RC03
OH
N03
N02
H02
N03
N02
H02
OH
HV
N03
NO
N02
H02
R02
RC03
MOLECULE -CC- SEC PPN-MIN
REACTION
> KEK *
-> R202 *
> R02R *
-> .5ACET *
* .100H
> .5MEK *
> R202 *
> .27PHEN +
* .65BGLY
> GC03 *
> GC03 *
> .16CRES *
* .400 I AL
> PC03 *
> H02 «
> .17CRES *
* .83R02R
> .17CRES *
* .83R02R
> .2MGLY *
> HN03 *
> NPHE
> ROOH
> R02 *
> RC03 *
> .2GLYX *
-> HN03 *
> NPHE
> PHEN
> PHEN
> HN03 *
> DNPH
> NPHE
> NPHE
> BA03 *
«>
> BA03 *
> BZO *
> PBZN
> BA03 *
> ROOH *
> .5H02 *
> H02 *
(298 K) (298 K)
.4K02
R02 +
R02 +
.5HCHO *
* .10R02R
.5RCHO «
R02 *
.27H02 *
RC03
RC03 «
.16H02 +
* .84R02R
RC03
CO *
.17H02 *
+.316MGIV
.17H02 *
* .490 I AL
.15R02P *
BZO
.5K02
.5H02
.15R02P +
BZO
8ZN2
RC03
HN03 »
N02 *
N02 +
PHEN
PHEN *
PHEN *
N02 « 2.ALD2
HCHO * ACET
.4MEK * .06H02
+ .10R02 * .10MGLY
.4H02
ACET * HCHO + N02
.73R02R « .73R02 +.212GLYX
H02
.08BCHO O14GLYX O44MGLY
* .84R02
MC03 * RC03
.04BCHO *.095GLYX * .83R02
* .6SDIAL
.02BCHO * .86MGLY + .83R02
.85R02R * R02
.85R02R
RC03
R02R * R02
RC03
R02
RC03
2.34E-11
3.79E-13
5.14E-11
1.21E-17
1.52E-11
2.69E-13
1.28E-12
3.00E-11
RADIATION
6.19E-12
3.00E-11
RADIATION
2.45E-11
6.20E-11
4.00E-11
2.20E-11
7.68E-12
3.00E-12
1. OOE- 15
3.00E-12
2.80E-11
3.80E-12
1.50E-11
3.00E-12
1.00E-03
3.80E-12
1.50E-11
3.00E-12
1.00E-03
1.20E-11
RADIATION
1.95E-15
7.68E-12
5.12E-12
1.62E-04
3. OOE- 12
3.00E-12
2.50E-12
3.45E+04
5.61E+02
7.60E+04
1.78E-02
2.25E+04
3.98E+02
1.90E*03
4.43E+04
DEPENDENT
9.14E+03
4.43E*04
DEPENDENT
3.62E+04
9.16E+04
5.91E+04
3.25E+04
1.HE+04
4.43E*03
1.48E+00
4.43E+03
4.14E+04
5.62E+03
2.22E+04
4.43E+03
6.00E-02
5.62E+03
2.22E+04
4.43E*03
6.00E-02
1.77E»04
DEPENDENT
2.89E+OQ
1.14E*04
7.57E*03
9.74E-03
4.43E+03
4.43E»03
3.69E»03
EXPRESSION
2.26E-11*EXP( 10/T)
1.00E-11*EXP( -975/T)
9.51E-12*EXP( 503/T)
3.55E-15*EXP( -1694/T)
1.76E-11«EXP< -43/T)
1.00E-11*EXP( -1077/T)
7.57E-12*EXP( -529/T)
2.10E-12*EXP< 322/T)
1.66E-11*EXP( 116/T)
4.20E-12*EXP( 180/T)
3.00E-13*EXP( -1500/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)
1.60E+15*EXP(-13033/T)
-------
TABLE I 2. SAPRC/ERT DETAUED CHEMICAL MECHANISM (CONTINUED)
NOTES:
1. Pressure and temperature dependent rate constants are
determined from the expression
1 *
B(T«*C)M
B(T**C)M
A**EE, EE
Where:
Reaction
9
19
22
27
D"2
D(T"E)
4.3
3.3
3.2
4.6
2.4E-11
9.0E-09
4.0E-08
1.34E-12
0.5
1.0
1.3
0.2
2. Alkane product coeff(cents are temperature dependent.
They are determined by interpolation from the values
at the following three temperatures.
10
Coeff. 270 K
300 K
330 K
B01
B02
603
BOA
BOS
B06
607
608
609
810
B11
612
613
BK
BIS
816
B17
618
0.197
0.168
0.115
0.351
0.489
O.IK
0.886
0.446
1.332
0.005
0.021
0.215
0.297
0.765
0.288
0.701
0.651
1.352
0.189
0.315
0.166
0.339
0.442
0.073
0.927
0.599
1.526
0.023
0.032
0.249
0.355
0.882
0.190
0.810
0.837
1.647
0.188
0.582
0.244
0.350
0.267
0.050
0.950
0.807
1.757
0.054
0.081
0.20A
0.419
0.891
0.126
0.873
1.004
1.877
-------
TABLE 2-3
ABSORPTION CROSS-SECTION AND QUANTUM YIELD DATA FOR
Wavelength
(urn)
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.376
0.377
0.378
0.379
0.380
0.381
0.382
0.383
0.384
0.385
0.386
0.387
0.388
0.389
0.390
0.391
0.392
0.393
0.394
0.395
0.396
0.397
0.398
Absorption
Cross-Section
9.670E-20
1.170E-19
1.660E-19
1.760E-19
2.250E-19
2.540E-19
2.790E-19
2.990E-19
3.450E-19
3.880E-19
4.070E-19
4.100E-19
5.130E-19
4.510E-19
5.780E-19
5.420E-19
5.350E-19
5.478E-19
5.606E-19
5.734E-19
5.862E-19
5.990E-19
5.980E-19
5.970E-19
5.960E-19
5.950E-19
5.940E-19
5.952E-19
5.964E-19
5.976E-19
5.988E-19
6.000E-19
5.978E-19
5.956E-19
5.934E-19
5.912E-19
5.890E-19
6.064E-19
6.238E-19
6.412E-19
Quantum
Yield
0.984
0.980
0.976
0.972
0.968
0.964
0.960
0.956
0.952
0.948
0.944
0.940
0.936
0.932
0.928
0.85
0.77
0.78
0.92
0.82
0.87
0.90
0.81
0.70
0.68
0.70
0.77
0.84
0.75
0.81
0.78
0.80
0.88
0.84
0.90
0.90
0.84
0.83
0.82
0.77
2-8
-------
TABLE 2-3 (continued)
Wavelength Absorption Quantum
(urn) Cross-Section Yield
0.399 6.586E-19 0.78
0.400 6.760E-19 0.68
0.401 6.672E-19 0.65
0.402 6.584E-19 0.62
0.403 6.496E-19 0.57
0.404 6.408E-19 0.42
0.405 6.320E-19 0.32
0.406 6.210E-19 0.33
0.407 6.100E-19 0.25
0.408 5.990E-19 0.20
0.409 5.880E-19 0.19
0.410 5.770E-19 0.15
0.411 5.876E-19 0.10
0.415 6.300E-19 0.067
0.420 6.230E-19 0.023
0.425 6.000E-19 0.000
2-9
-------
TABLE 2-4. RATIO OF OTHER PHOIOLYTIC REACTION RATES TO THE N02 PHOTOLYSIS RATE AT ZERO ELEVATION*
REACTION
0.
10.
20.
30.
SOLAR ZENITH ANGLE
40. 50.
60.
70.
78.
86.
N03 * hv
N03 » hv
03 * hv
03 » hv
HONO * hv
H202* hv
ROOH * hv
HCHO + hv
HCHO * hv
y AL02 * hv
0 RCHO » hv
ACET * hv
NEK » hv
GLYX * hv
NGtr * hv
GCHO » hv
BGLY * hv
DIAL * hv
BCHO » hv
>
>
>
>
>
>
>
>
>
->
>
>
>
>.
>
>
>
>
>
NO »
N02 *
0 «
0*SO »
NO *
2. OH
H02 *
2.H02 *
CO «
CO +
CO *
NC03 «
HC03 *
13HCHO *1
NC03 +
H02 *
GC03 »
MC03 +
02
0
02
02
OH
OH
CO
H2
CH302
C2H502
HCHO
AL02
.87CO
H02 * CO
CH302* CO
H02
H02 » CO
2.266+00
2.046+01
5.52E-02
4.56E-03
1.96E-01
9.086-04
9.086-04
3.65E-03
5.59E-03
5.876-04
1.196-03
1.34E-04
1.91E-04
7.79E-03
1.72E-02
5.87E-04
4.78E-03
6.38E-02
5.19E-03
2.26E+00
2.056+01
5.53E-02
4.456-03
1.966-01
9.036-04
9.036-04
3.62E-03
5.57E-03
5.796-04
1.186-03
1.326-04
1.89E-04
7.81E-03
1.72E-02
5.79E-04
4.77E-03
6.36E-02
5.186-03
2.286+00
2.07E+01
5.566-02
4.126-03
1.96E-01
8.826-04
8.826-04
3.536-03
5.506-03
5.51E-04
1. 146 -03
1.276-04
1.826-04
7.87E-03
1.74E-02
5.51E-04
4.726-03
6.296-02
5.146-03
2.32E+00
2.116+01
5.616-02
3.56E-03
1.966-01
8.456-04
8.456-04
3.36E-03
5.38E-03
5.01E-04
1.08E-03
1.186-04
1.696-04
7.97E-03
1.76E-02
5.016-04
4.626-03
6.15E-02
5.09E-03
2.396+00
2.186+01
5.71E-02
2.666-03
1.946-01
7.91E-04
7.91E-04
3.11E-03
5.19E-03
4.366-04
9.946-04
1.066-04
1.516-04
8.17E-03
1.806-02
4.36E-04
4.476-03
5.95E-02
4.996-03
2.566+00
2.31E+01
5.99E-02
2.06E-03
1.936-01
7.186-04
7.186-04
2.77E-03
4.916-03
3.536-04
8.756-04
8.97E-05
1.28E-04
8.46E-03
1.87E-02
3.53E-04
4.226-03
5.66E-02
4.85E-03
2.83E+00
2.54E+01
6.45E-02
1.26E-03
1.906-01
6.256-04
6.256-04
2.336-03
4.51E-03
2.586-04
7.266-04
7.056-05
1.016-04
8.97E-03
1.98E-02
2.586-04
3.946-03
5.25E-02
4.64E-03
3.346+00
2.97E+01
7.43E-02
5.986-04
1.85E-01
5.12E-04
5.12E-04
1.816-03
3.97E-03
1.636-04
5.53E-04
4.986-05
7.11E-05
9.88E-03
2.17E-02
1.63E-04
3.526-03
4.706-02
4.366-03
4.06E+00
3.55E+01
8.90E-02
2.80E-04
1.81E-01
4.31E-04
4.31E-04
1.41E-03
3.57E-03
1.016-04
4.276-04
3.556-05
5.07E-05
1.09E-02
2.37E-02
1.016-04
3.226-03
4. 296-02
4.146-03
2.796+00
2.58E+01
6.60E-02
1.54E-04
1.88E-01
3.83E-04
3.83E-04
1.10E-03
3.43E-03
5.986-05
3.31E-04
2.49E-05
3.56E-05
9.73E-03
2.14E-02
5.986-05
3.206-03
4.27E-02
4.236-03
The N02 photolysis rate (per second) at zero elevation is
N02 * hv -> NO * 0 8.29E-03 8.22E-03 8.02E-03 7.66E-03 7.10E-03 6.26E-03 5.05E-03 3.32E-03 1.64E-03 3.51E-04
-------
as steady-state species if the kinetic solver package in which the
mechanism is used can accommodate these types of species. The organic
precursor species included in the mechanism are propane, C4-C5 alkanes,
>C5 alkanes, ethene, propene, 1-butene, trans-2-butene, isobutene.
benzene, toluene, m-xylene, and mesitylene. The rate constants and
product coefficients for the lumped alkane mechanisms are based on the
explicit mechanisms for compounds in these classes. The C4-C5 alkane
reactions are based on equal weighting of the kinetic and product data
for the reactions of n-butane, n-pentane, iso-butane, and iso-pentane.
The >C5 alkane reactions are based on equal weighting of the kinetic and
product data for the reactions of n-hexane, n-heptane, n-octane,
2,3-dimethylbutane, 2-methylpentane, 2,3-dimethylpentane, and iso-octane.
The selection of these surrogates was based on the analysis of automobile
exhaust speciation performed in Phase I. The oxygenated products in the
mechanism include formaldehyde, acetaldehyde, glycol aldehyde,
propionaldehyde, benzaldehyde, acetone, methylethylketone, glyoxal,
methyl glyoxal, and two surrogate species for the unknown ring-opening
products of aromatic oxidation.
In assembling the Phase II detailed mechanism, a condensation
technique was employed to reduce the number of individual peroxy radicals
included in the Phase I detailed mechanism. The technique is primarily
intended to represent the peroxy radical reactions in the presence of
NO. In order to minimize the number of species that must be integrated
A
in the mechanism, most individual peroxy radicals formed in the
photooxidations of the various organics are not explicitly included in
the mechanism. Instead, in any reaction forming them, the peroxy
radicals are replaced by the set of stable products expected to be
ultimately formed when they react in the presence of NO, and one or more
generalized peroxy radical pseudo species. The pseudo species are used
to represent the effects of the reactions of the individual peroxy
radicals. The effects are common to large groups of peroxy radicals,
such as the conversion of NO to N02 when they react with NO, etc. This
is applied not only to individual peroxy radicals, but also to groups of
peroxy radicals formed from the same species, whose overall reactions are
lumped together in the mechanism. The specific peroxy pseudo species
used in this mechanism and the overall common processes they represent
2-11
-------
are shown in Table 2-5 (see also reactions 77-80, 106-117, and 148-151 in
Table 2-2).
As an example of this technique, consider the photooxidation of
n-butane. In the presence of NO at 300°K, the n-butane photooxidation
process is as follows:
°2
OH + n-butane > 0.15 CHgCH^CHgOO . + .85 CH3CH(00.)CH2CH3
HCH00. + NO > 0.03 RON0 +0.97
CH3CH(00.)CH2CH3 + NO > 0.08 RON02 + 0.92
°2
CH3CH2CH2CH20. > 0.78 HOCH2CH2CH2CH200 . +0.22 (RCHO + H02-)
°2
CH3CH(0.)CH2CH3 > 0.63 (MEK + HOg) + 0.37 (CH3CHO + CjHSOO.)
°2
HOCH-CH-GI^CH-OO. + NO > NO, + H0?. + (bifunctional product,
represented by RCHO +0.25 MEK)
°2
CH00. + NO > N0 + H0. + C
If the peroxy and alkoxy radical intermediates are approximately in
steady-state (which test calculations have shown to be a good
approximation in the presence of NO and sunlight), then the following
X
reaction has the same net effect as the reactions above:
OH + n-butane > 0.07 (RON02 - NO) + 0.93 (N02 + H02 - NO) +
0.40 (N02 - NO) + 0.57 CH3CHO + 0.52 MEK +
0.15 RCHO
2-12
-------
TABLE 2-5
PEROXY RADICAL PSEUDO-SPECIES USED IN THE MECHANISM TO
REPRESENT OVERALL PROCESSES COMMON TO PEROXY RADICAL REACTIONS
Pseudo- Products Formed
Species
Name
R02R
R202
R02N
R02P
MK02
Reaction with NO
N02 + H02
N02
RON02
Nitrophenol
N02 + CH3C03.
Reaction with H02 Reaction with R02/RC03
-OOH
0
none
-OOH
-OOH
-OOH
+ MEK
+ (inert)
+ HCHO + C02
0
0
0
.5
H02
none
.5
.5
.5
H02
H02
H02
+ MEK
+ (inert)
+ HCHO +
C02
2-13
-------
From Table 2-5, it can be seen that these processes can be represented
without any negative product species by the following reaction:
OH + n-butane > 0.07 R02N +0.93 R02R +0.40 R202 +
0.57 CH3CHO + 0.52 MEK + 0.15 RCHO
This reaction shows how the photooxidation of n-butane at 300°K is
represented in the Phase II detailed mechanism. This technique was
applied in an entirely analogous manner to the reactions of other
radicals or groups of radicals to minimize the number of individual
peroxy radicals in the mechanism.
Significant changes were made to the aromatic oxidation mechanism
employed in Phase II. In order to appreciate the rationale for these
changes, background information on the aromatic oxidation mechanism is
provided in addition to a description of the changes.
As previously noted, the aromatic hydrocarbons are represented by
benzene, toluene, m-xylene, and mesitylene (or 1,3,5-trimethyl benzene)
in the mechanism. The aromatic reactions are based on those formulated
by Atkinson et al. (1980, 1982), Atkinson and Lloyd (1984), Leone and
Seinfeld (1984), Leone et al. (1985), and Lurmann et al. (1986), but the
reactions were modified to be consistent with the recently observed
a-dicarbonyl yields, to include a parameterized representation of the
uncharacterized aromatic ring opening products, and to delete the
aromatic nitrate formation reaction, which was assumed to occur from the
reactions of NO with the aromatic peroxy radical intermediates.
Despite continuing studies of aromatic photooxidation mechanisms,
the current understanding of the ring opening reactions following the
initial attack by OH radicals on the aromatic rings and the nature and
reactions of most of the products formed continues to be grossly
inadequate. Indeed, the most recent experimental data have tended to
raise more questions in this regard than they have answered, giving
results that are inconsistent with previously published aromatic
photooxidation mechanisms. In particular, the recent experimental data
concerning the yields of cr-dicarbonyls from benzene and the
methyl-substituted benzenes obtained by Tuazon et al. (1986) and Bandow
and co-workers (Bandow et al. 1985; Bandow and Washida 1985a,b) indicate
2-14
-------
yields of a-dicarbonyls that are significantly lower than predicted by
any of the previous mechanisms (Atkinson et al. 1982; Killus and Whitten
1982; Atkinson and Lloyd 1984; Leone and Seinfeld 1984; Leone et al.
1985; Whitten et al. 1985; Lurmann et al. 1986). These experimental
data, coupled with the observations of several unsaturated oxygenates as
products from toluene (Dumdei and O'Brien 1984; Shepson et al. 1984) and
o-xylene (Shepson et al. 1984), are not consistent with the ring-opening
mechanisms proposed previously (Atkinson and Lloyd 1984; Leone et al.
1985; Whitten et al. 1985).
Using toluene as an example, these mechanisms predict either the
formation of three molecules of a-dicarbonyls for each molecule of
toluene that undergoes ring opening [as predicted by the "recyclization"
mechanism assumed by Killus and Whitten (1982), and incorporated into the
latest Carbon Bond mechanism (Whitten et al. 1985)] or that one
a-dicarbonyl molecule and one horaologue to 2-butene-2,4-dial is formed
[as predicted by the "cyclization" mechanism assumed in the mechanism of
Atkinson et al. (1980, 1982), Atkinson and Lloyd (1984), Leone and
Seinfeld (1984), and Leone et al. (1985)]. Both of these predictions are
inconsistent with the recent a-dicarbonyl product yield data, which
indicate that glyoxal and methylglyoxal account for only 35% of the
ring-opening reaction route from toluene if the cyclization mechanism is
assumed, and only 12% of the reaction if recyclization is assumed. In
addition, the qualitative product studies of Shepson et al. (1984) and
Dumdei and O'Brien (1984) indicate that 2-butene-l,4-dial, or its methyl-
substituted analogues, 2-pentene-l,4-dial and 2-methyl-2-butene-l,4-dial
(predicted to be formed from toluene by the cyclization mechanism) are
not the only unsaturated ring-opening products. Indeed, these studies
show that the actual toluene ring-opening reaction mechanism is much more
complex than previously assumed.
The formation and reactions of these uncharacterized products cannot
be ignored in the aromatic mechanism because doing so results in
mechanisms that significantly and consistently underpredict the
reactivity observed in aromatic hydrocarbon - NO - air environmental
X
chamber experiments. This is particularly true for those experiments
carried out in the SAPRC Indoor Teflon Chamber (ITC), whose blacklight
light source is such that the a-dicarbonyls photolyze at significantly
2-15
-------
lover rates than is the case in the SAPRC Evacuable Chamber (EC) or in
outdoor chambers. Indeed, the previous mechanisms that assumed high
a-dicarbonyl yields, which could simulate toluene runs carried out in the
SAPRC EC and outdoor chambers (e.g., Leone et al. 1985), significantly
underpredict reactivity in toluene runs carried out in the ITC, due to
the lower calculated methylglyoxal photolysis rate. However, because of
the present lack of knowledge of the ring-opening reactions of aromatic
hydrocarbons, and of the nature and reactions of the non-a-dicarbonyl
products formed, no attempt was made in this mechanism to represent
non-a-dicarbonyl products explicitly. Instead, non-a-dicarbonyl products
were represented in a parameterized manner, as indicated below.
In the Phase I version of this mechanism, the uncharacterized,
non-a-dicarbonyl ring-opened products were lumped together and repre-
sented as "aromatic unknowns" (one for each aromatic hydrocarbon), whose
subsequent reactions were represented as being analogous to the reaction
mechanisms previously proposed (Atkinson et al. 1980; Atkinson and Lloyd
1984) for the 1,4-unsaturated dicarbonyls that had been assumed to be the
co-products to the a-dicarbonyls but modified to conserve carbon and the
number of methyl groups. In order for the mechanism to simulate the
observed reactivity of the aromatic hydrocarbons, each of these
"unknowns" was assumed to photolyze to yield radicals, with the
photolysis rate for "unknown" for each aromatic adjusted to fit the
results of the single component aromatic - NO - air irradiations carried
A
out in the SAPRC EC and the SAPRC ITC. In order for the same mechanism
to successfully simulate experiments in both the EC and the ITC, which
have significantly different spectral distributions, it was necessary to
assume that the "unknowns" photolyze primarily by absorption of light in
the wavelength region below 350 nm (significantly lower wavelengths than
that are responsible for the photolysis of the a-dicarbonyls). It was
also necessary to assume that the reactions of the "unknowns" with OH
radicals result in the formation of PAN analogues, since not assuming
this results in a consistent tendency for the mechanism to overpredict
final ozone yields in aromatic - NO - air irradiations. These aromatic
mechanisms, optimized based on fits to SAPRC EC and ITC runs, were found
to give satisfactory simulations of toluene-NO and o-xylene-NO runs
& A
2-16
-------
carried out in the University of North Carolina (UNC) outdoor chamber
(Carter et al. 1986).
The Phase II aromatic photooxidation mechanism uses a somewhat
different parameterization of the reactions of the aromatic ring-opening
products. This alternative representation was selected because it could
fit the environmental chamber data as well as and, in some cases better
than, the Phase I mechanism and because it involved fever species and
reactions. In this representation, two separate species were used to
represent the unknown non-a-dicarbonyl products instead of one for each
aromatic. The PAN analogues formed from the unknown products were lumped
with PAN analogues formed in other areas of the mechanism, specifically
those formed from the reactions of glyoxal and "RCHO", the lumped higher
aldehyde. The specific set of reactions assigned for each was chosen to
be analogous for those for the a-dicarbonyls, rather than the
1,4-unsaturated dicarbonyls as used in the previous representation of the
unknown products. The photolysis rates and yields of these "lumped
aromatic unknown products" in the photooxidations of benzene, toluene,
m-xylene, and 1,3,5-trimethylbenzene were adjusted to obtain best fits to
the results of selected aromatic - NO - air irradiations carried out in
the SAPRC EC and ITC, using a non-linear least squares optimization
program. As was the case with the previous representation, in order to
fit reactivity in EC and ITC experiments with the same mechanism, the
products were assumed to photolyze in the 290 - 350 nm wavelength region.
The data were adequately fit by assigning one of the unknown products
(BGLY) to represent the unknowns formed from benzene, and the other
unknown product (DIAL) to represent the unknowns from the methylbenzenes,
with DIAL photolyzing 13.3 times faster than BGLY. This parameterized
mechanism simulated the aromatic - NO - air experiments as well as, and
A
in some cases better than, the alkene and alkane mechanisms that
simulated comparable single component experiments (see Section 2.2).
Overall, the Phase II aromatic mechanism is slightly slower in oxidizing
NO than the Phase I aromatic mechanism. In light of its good
A
performance, it is difficult to justify using a more complex aromatic
mechanism until better data become available.
Lastly, the Phase II mechanism only uses propionaldehyde and methy1-
ethyIketone (MEK) to represent the bi- and poly-functional products
2-17
-------
formed in the photooxidation of alkanes (depending on whether the product
has aldehyde or ketone groups). In the Phase I mechanism, a propion-
aldehyde, HER, and pentanol were used to represent these bi- and poly-
functional products. Thus, the pentanol reactions have been eliminated
from the mechanism. This change has virtually no effect on the
mechanism's predictions for key species such as NO, NO^, Og, and alkanes.
2.2 Evaluation Results
The results of evaluation using the Phase II detailed mechanism are
summarized in this section. The performance measures employed in the
evaluation are the relative and absolute errors in the maximum ozone
concentrations and the NO oxidation rate. The NO oxidation rate is
A X
assessed using the average rate of change of ozone minus NO [ie.,
d([03]-[NO])/dt in ppb/minute] during the first half of the period
required to reach ozone maximum. This measure of NO oxidation rate is
A
preferred over time to reach 50% of the [03]-[NO] maximum, used in the
Phase I evaluation, because there is much less disparity in the values of
the rates for different chambers with this approach. Other measures of
model performance include the relative and absolute errors in the maximum
PAN and aldehyde concentration and in the half-lives of the organic
precursors. The performance measures for each experiment simulated in
the evaluation are listed in Appendix A of this report.
The protocol used to test the chemical mechanism incorporates
several unique elements. First, where practical, all reactants in the
experiments were represented by explicit chemical reactions in the
mechanism. For example, simulations of n-octane/NO experiments were
performed with the n-octane mechanism rather than the lumped C6+ alkane
mechanism. The major exception to this was the auto exhaust simulations,
which have too many species for this approach to be feasible. Second, a
consistent set of assumptions was used in modeling all runs. Run-to-run
adjustments of uncertain parameters to optimize fits to the data were not
allowed. Adjustments of mechanistic and chamber effects parameters were
developed using only the most appropriate runs for the particular
parameter and were then incorporated on a global basis into the testing
program. Third, poorly understood chamber effects were represented as
2-18
-------
simply as possible in order to avoid introducing additional uncertain
parameters. The minimum number of parameters needed to describe the data
were incorporated into the parameterizations. Fourth, and very
important, a large number of runs were used to evaluate the performance
of the mechanism. Only runs that had major gaps in critical input data
were eliminated from the testing data base. The use of a large number of
runs is important because, now that the mechanism has been applied to
many experiments, it is clear that there is considerable inherent
variability in the environmental chamber data. Thus, performance
information that is based on simulating a small number of runs or only
runs from one chamber may be misleading. Fortunately, there is a large
number of experiments for propene, toluene, n-butane, and surrogate
mixtures that can be used to reliably evaluate the mechanism.
The evaluation was performed using environmental chamber data from
four facilities:
SAPRC 5800-liter Indoor Evacuable Chamber (EC)
SAPRC 6400-liter Indoor Teflon Chamber (ITC)
SAPRC 50,000-liter Outdoor Teflon Chamber (OTC)
UNC 30.000-liter Outdoor Teflon Chamber (UNC)
The number and type of chamber runs used in the evaluation are summarized
in Table 2-6. The table shows that 491 experiments were used in the
testing. About 175 of the experiments employed complex mixtures that
were surrogates for the organics found in urban atmospheres.
The evaluation was carried out in three steps. The first step
involved modeling chamber characterization experiments to estimate the
chamber effect parameters. Pure air, NO -air, NO -CO-air, formaldehyde-
X A
air, and acetaldehyde-air experiments were used in this step. The second
step involved modeling single organic - NO experiments to test and
refine the mechanisms for the organic precursors in the mechanism. The
third step involved modeling organic mixtures in the presence of NO . No
adjustments of the mechanism were made at this step. The synthetic
mixtures were subdivided into simple and complex mixtures, where the
simple mixtures have species from one or two of the three major classes
of organics and the complex mixtures have species from all three major
classes of organics. Simulations of auto exhaust experiments and dynamic
2-19
-------
TABLE 2-6
SUMMARY OF ENVIRONMENTAL CHAMBER RUNS USED FOR MECHANISM EVALUATION
Number of Runs
Type of Environmental Chamber Run
Characterization
Single Organic-NO
A
Known Mixtures
Various
Oxygenates
Ethene
Propene
Butenes
n-Butane
>C4 Alkanes
Toluene
Other Aromatics
Simple Mixtures
Complex Mixtures
EC
10
7
6
15
6
14
6
13
7
22
11
ITC
14
1
2
7
5
5
8
2
13
45
OTC
10
2
5
1
62
UNC
37
15
6
22
5
7
6
5
4
18
33
Total
71
25
14
49
16
27
20
20
24
40
151
Auto Exhaust
Dynamic Injection
Total Number of Runs
Two Vehicles
Propene and Mixtures
25
25
9 9
117 102 80 192 491
2-20
-------
injection experiments were also included in the testing, as described in
Carter et al. (1986).
Although higher quantum yields for N02 are used with the Phase II
detailed mechanism, the Phase I and II evaluations were performed with
identical NO. photolysis rates. The reason for this is that the NO^
photolysis rates are considered part of the experimental data base.
However, because the theoretical NO, photolysis rates are higher, the
ratios of the photolysis rates of other species to the N02 photolysis
rate were lower in the Phase II evaluation. Overall, this change
slightly improved fits of the predictions to the experimental data.
The model performance in the NO -air and NO -CO-air simulations is
X A
shown in Figure 2-1. The predicted and observed change in [NO] and [N02]
concentrations over the course of the runs is shown in the figure. These
are the best measures of performance because very little ozone is formed
in these high NO characterization runs. The figure shows that agreement
for the change in NO and NO- concentrations is within about ±20% for all
of the cases.
The predicted and observed maximum ozone concentrations and
d([03]-[NO])/dt are shown in Figures 2-2 through 2-5 for the single
oxygenate, alkene, alkane, and aromatic simulations, respectively.
Examples of the distribution of errors in maximum ozone and the timing
parameter for propene, n-butane, and toluene are shown in Figures 2-6 and
2-7. The results for the oxygenates, alkenes and aromatics show that the
maximum ozone and timing parameter predictions are within ±30% of the
observed in almost all cases. The distribution of errors for propene and
toluene shows that the errors are somewhat normally distributed about
zero error. This level of agreement is considered quite good. The
results for the alkane simulations show a large amount of scatter and
indicate unsatisfactory model performance. The alkanes are the least
reactive compounds in the mechanism and the simulations of their
oxidation are very sensitive to the chamber characterization procedures,
particularly the rate of radical off-gassing from the chamber walls. The
uncertainty in the chamber effects makes it almost impossible to evaluate
the alkane mechanism without ambiguity at this time.
The predicted and observed maximum ozone concentrations and
d([03]-[NO])/dt are shown in Figures 2-8 through 2-10 for the simple
2-21
-------
NOx-Air Mixtures
0,
a
0
0.15-
0.1-
0.05-
0-
-0.05 -
-0.1 -
-0.15-
-0.2-
0 SAPRC CC
-------
Carbonyls
I
\s
s
o
|
E
"x
I
o
c
D.
D FormalMnyM
+
K«toiws
i
a
3
O
n
O
o
I
0
o.
ObMrved Umdmum Ozona (ppm)
d( [03] - [NO] )/dt (ppb/min)
Figure 2-2. Predicted versus observed maximum ozone and
d([O3]-[NO])/ot for carbonyl-NOx runs.
2-23
-------
Alkenes
1.3
9
I
o
I
E
x
o
O
s
0
V
B.
a
a
I
o
1.2-
1.1-
1-
18-
17-
16-
15-
14-
13-
12-
11-
10-
9-
8
7
6
5
4
3
2
1
0
CTHENE
PROPENE
1-BJTENE
TRANS-2-BUTENE
ISOBUTENE
0.2 0.4 0.6 0.8 1 1.2
OfaMrvtd Uaxtmum Ozorw (ppm)
ETHENE
PROPENE
1-BUTENE
TRANS-2-BUTENE
ISOBUTENE
0 2 4 6 8 10 12 14 16 IB
ObMfvwi d( [03] - [NO] )/dt (ppb/mln)
Figure 2-3. Predicted versus observed maximum ozone and
d([O3]-lHO])/dt for alkene-NOx runs.
2-24
-------
Alkanes
a.
a
NX
0
x
o
T>
f
u
I
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
O BUTANE
* 2.3 DIMETMYLBUTANE
N-ALKANES
A ISOALKANES
i i i i i i i i
0 0.2 0.4 0.6 0.8
ObMrvtd Uaxlmum OZOM (ppm)
a
a
O
i_i
I
n
O
O BUTANE
* 2.3 DIMETHYLBUTANE
N-ALKANES
A ISOALKANES
a.
246
ObMrvtd d( [03] - [NO] )/dl (ppb/mln)
Figure 2-4. Predicted versus observed maximum ozone and
d(l03]-[NO])/dtfor alkane-NOx runs.
2-25
-------
Aromatics
a
a
2
o
E
x
I
T»
I
0.8,
0.7-
0.6-
0
n
O
g
i
0.5-
0.4-
0.3-
0.2-
0.1-
O BENZENE
+ TOLUENE
« XYLENE
A MESITYLENE
0.2
I I
0.4
0.6
Observed ttadmum Ozone (ppm)
0.8
O BENZENE
TOLUENE
« XYLENE
A MESITYLENE
Figure
0 2 4 6 8 10 12 14 16
Ob«erv«d d( [03] - [NO] )/dt (ppb/min)
2-5. Predicted versus observed maximum ozone and
d([O3]-[NO])/dt for aromatic-NOx runs
2-26
-------
-5
I
A
1
1
Propene
I
i
-O.3 -0.24 -0.18 -0.12 -O.08 0 0.08 0.12 0.18 0.24 0.3
Absolute Error In Maximum Ozone (ppm)
ZZJ EC ES rcc E22 ore ES3 UNC
I
*
I
I
10 -
Butane
^
-O.3 -0.24-0.18-0.12-0.08 0 0.08 0.12 0.18 0.24 0.3
Absolut* Error In Maximum Ozon* (ppm)
EC rerq rrc E22 ore SS3 UNC
Toluene
-O.3 -0.24 -O.I 8 -0.1 2 -O.06 0 0.08 0.12 0.18 0.24 O.3
Abcolut* Error In Maximum Ozone (ppm)
EC rej rrc g^Ti ore ^ UNC
Figure 2-6. Distributions of absolute error in maximum ozone
predictions for propene, n-butane, and toluene runs.
2-27
-------
t*
t
1
1
Propene
i
1
-0.5 -0.4 -0.3 -0.2 -O.I 0 0.1 0.2 0.3 0.4 0.3
Relative Error In d( [O3] - [NO] )/dt
1771 EC IV^ (TC EE53 OTC IS^ UNC
i*
» 9 -
ia -
11-
i -
\
Butane
" '-^SQ C
-------
Simple Mixtures
a
3
o
N
0
I
i
"x
0
s
n.
a
a
i_i
I
I
a.
1.1
1 -
0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1 -
D Ubc«d from 1 group
» Ubced from 2 group*
i
0.2
0.6
0.4 0.6 0.8
Ob*0rved Maximum Ozona (ppm)
10
9-
8-
7-
s 'H
5-
4-
3-
2
H
0 IDx«d from 1 group
4 Ubud from 2 group*
d( [03] - [NO] )/
-------
Surrogate Mixtures
O EC 7-Component
Component
Component
a
a.
5
1
0
1 1 1
0.2
0.4
i i
0.6
i i
0.8
1
Observed Maximum Ozone (ppm)
6
7
6
5
4
3
2
1
0
O EC 7-Component
ITC « OTC a-Componont
UNO Multi-Component
A ITC 4-Componont
* UNC 3-Component
2468
d( [03] - [NO] )/dt (ppb/mfn)
Figure 2-9. Predicted versus observed maximum ozone and
d([C>3]-[NO])/dt for surrogate mixture runs.
2-30
-------
UNC Auto Exhaust
a
a
I
I
1
0.9-
0.8-
0.7
0.6-
0.5-
0.4-
0.3-
t 0.2-
O.H
0
> 2.5
n
O
2-
I
I 0.5
1-
0.2 0.4 0.0 0.8
Observed Uoxlmum Ozont (ppm)
01234
Observed d( [03] - [NO] )/
-------
synthetic mixtures, complex surrogate mixtures, and the auto exhaust
irradiations. The distribution of errors in the ozone maxima and timing
parameter is shown in Figures 2-11 and 2-12. The results for the simple
mixtures show that most of the maximum ozone predictions agree with the
observed values within ±30%. However, there are several mixed alkene
runs from the EC that show greater than 30% underproduction of the ozone
yield. The results for the complex surrogate mixtures show the vast
majority of runs have better than ±30% agreement on the maximum ozone
concentrations and the timing parameter. The distribution of errors in
the ozone is centered on zero and shows roughly equal numbers of over-
and under-predictions. Similarly good performance is shown for the auto
exhaust experiment simulations.
The average bias and error in the mechanism's ozone predictions for
these experiments are shown in Table 2-7. These data show that the
average bias and error in the oxygenate simulations is -5% and ±25%,
respectively. The performance for formaldehyde runs is considerably
better than for higher aldehydes and ketones. The average bias and error
for ozone in the alkene simulations is +3% and ±21%, respectively. The
performance for ethene and propene is quite good; the performance for
butenes is adequate. The average bias and error for the alkane runs are
+46% and ±69%, respectively. The performance on n-butane experiments is
better than this, but the performance on long-chain alkane experiments is
much worse. These poor statistics reflect the previously discussed
difficulties in testing the alkane mechanism. The average bias and error
for the single aromatic runs are surprisingly small, +1% and ±19%,
respectively. This good performance reflects the fact that the mechanism
was optimized to fit most of the data. The statistics indicate that the
toluene mechanism has a tendency to overpredict ozone, whereas the
m-xylene and mesitylene mechanisms have tendencies to underpredict ozone
yields on the average. Overall, for all single organic-NO runs, the
mechanism overpredicts by 12% and the average error is ±33%.
The average bias and error for the simulations of mixtures indicate
reasonably good model performance. The results for the simple mixtures
show +10% bias and ±35%. The results for the mini- and full-surrogate
complex mixtures are better, since the average error is only ±23%. For
the auto exhaust runs, the average bias is -11% and the average error is
2-32
-------
s -
Simple Mixtures
1
II
-O.3 -0.24-O.18-O.12-O.06 0 0.00 0.12 0.18 0.24 0.3
Absolute Error In Maximum Ozone (ppm)
1771 EC re^l rrc E^3 ore ES3 UNO
I
*
1
Surrogate
Mixtures
-0.3 -0.24-0.18-0.12-0.06 0 0.00 0.12 0.18 0.24 0.3
Abcolut* Error tn Maximum Ozon* (ppm)
IZZl cc KS no E23 ore ESS UNO
Auto Exhaust
«
m
^^.OC^
-O.3 -0.24 -O.I 8 -0.1 2 -0.06 0 0.06 0.12 0.18 0.24 0.3
Absolute Error In Maximum Ozone (ppm)
ZZJ EC KS rrc EZ3 ore ES UNC
Figure 2-11. Distribution of absolute errors in maximum ozone
predictions for simple mixtures, surrogate mixtures,
and auto exhaust runs.
2-33
-------
Simple
Mixtures
-0.5 -O.4 -O.3 -0.2 -O.1 O 0.1 O.2 0.3 0.4 O.5
Relative Error In d( [O3] - [NO] )/dl
1771 EC
rrc
ore
UNO
g -O
! -
° mo
i ..
I
Surrogate
Mixtures
I
i
15 -0.4 -0.3 -0.2 -0.1 O 0.1 0.2 0.3 0.4 0.5
Relative Error In d( [O3] - [NO] )/dt
1771 EC
rrc
arc
UNC
Auto Exhaust
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Relative Error In d( [O3] - [NO] )/dt
1771 EC
rrc
ore
UNC
Figure 2-12. Distribution of relative errors in d(IO3]-[NO])/dt for
simple mixtures, surrogate mixtures, and auto exhaust
runs.
2-34
-------
TABLE 2-7
AVERAGE MODEL PERFORMANCE FOR MAXIMUM OZONE
Run Type Bias (%) Error (%)
Formaldehyde
Acetaldehyde
Other Carbonyls
All Carbonyls
Ethene
Propene
Butenes
All Alkenes
Butane
Branched Alkanes
Long-chain Alkanes
All Alkanes
Benzene
Toluene
Xylenes
Mesitylene
All Aromatics
All Single HC Runs
Simple Mixtures
Mini Surrogates
Full Surrogates
Auto Exhaust
All HC Mixtures
-1
-26
+4
-5
+2
+3
+4
+3
+31
+34
+83
+46
+3
+11
-9
-11
+1
+12
+10
+10
+3
-11
+4
19
26
44
25
18
18
34
21
67
49
84
69
5
24
16
21
19
33
35
22
23
15
24
All Run Average +7 28
^Positive bias indicates model overprediction.
2-35
-------
±15%. This is the smallest average error of all the groups, which is
rather ironic since speciation of the organics in the auto exhaust runs
was the least certain of any group of experiments in the data base.
Overall, for all organic mixture simulations the performance statistics
indicate that the mechanism overpredicts ozone maxima by 4% and the
average error in the predictions is ±24%. Given the kinetic and
mechanistic uncertainties, as well as chamber characterization
uncertainties, this level of performance is quite satisfactory.
Another important aspect of the evaluation consisted of searching
for systematic biases in the mechanism. The error in the ozone was
plotted against the NO , NMOC, and NMOC/NO to investigate potential
A X
systematic errors. An example that shows the error in the surrogate
mixture runs versus the log of the NHOC/NO ratio is illustrated in
X
Figure 2-13. The distribution of errors appears to be fairly random for
most of the range of NMOC/NO ratio for which there are experimental
A
data. The errors are totally random for NMOC/NO ratios between 3 and
A
30. This indicates that there is no apparent relationship between the
error in the prediction and this important ratio for the range of initial
NMOC/NO ratios commonly occurring in ambient air. However, above a
a
NMOC/NO ratio of 30, the mechanism tends to overpredict maximum ozone by
A
a small amount in most cases. This small bias is not considered signif-
icant since all of the high NMOC/NO ratio runs are from one chamber.
X
The mechanism's predictive abilities for PAN and aldehydes .were also
examined in the evaluation. Figure 2-14 shows the predicted and observed
PAN concentrations in the surrogate mixture runs. Only about half of the
predicted PAN maxima are within ±30% of the observed PAN maxima.
Figures 2-15 and 2-16 show the relative error in the PAN maxima for the
propene, n-butane, toluene, simple mixture, complex surrogate mixture,
and auto exhaust runs. The figures show fairly broad distribution of
errors for all of the runs. Thus, the mechanism's predictions for PAN
are clearly less accurate than its predictions for ozone. Figure 2-17
shows the distribution of the relative errors in the maximum formaldehyde
concentrations for the propene, simple mixture, and complex surrogate
mixture runs. These distributions indicate fairly poor fits between the
mechanism and the data. In this case, the discrepancies probably reflect
2-36
-------
Surrogate Mixtures
^N
a
a
0
H
O
I
j
"5
0
c
L
I
0.3-
0.2-
0.1-
0-
-0.1 -
-0.2-
-0.3-
-n A .
D EC 7-Componont
* ITC « OTC -Componont
UHC Multl-CoMponont. *+
A ITC 4-CoMponont *
« UNC 3-Conponont *
* ° ^
* + +D * +* A 1 AA °
X * , ^ _^ »A A ifr
** *»fl V -F. A /
+ a» * *«. . ^t X'fl+ 4
^.^ . f^^^JT + X .4
****.!-* *
4. * . % * X
+* t »
+v */** *
x « + ₯ x
* x» j?
*
*
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
LOG (HC/NOx) (ppmC/ppm)
Figure 2-13. Absolute error in maximum ozone versus
(NMOC/NOX)
2-37
-------
Surrogate Mixtures
a
a.
\s
I
E
I
"x
0
T>
T)
a.
0.15
0.14
0.13
0.12
0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
a q
DO
~iiiiiiiiii ir i i r
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Observed Maximum PAN (ppm)
Figure 2-14. Predicted versus observed maximum PAN
concentrations for surrogate mixture
runs.
2-38
-------
I
O
Propene
-m
-0.5 -O.4 -0.3 -O.2 -O.1 O 0.1 0.2 O.3 0.4 0.5
Relative Error In Maximum PAN
EC KT^l rrc ggzi ore Eggg UNO
i
8
1O -
Butane
-0.5 -O.4 -0.3 -0.2 -O.I 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum PAN
ED EC
rrc E23 ore
UNC
i
10 -
Toluene
-0.5 -0.4 -O.3 -O.2 -O.I 0 0.1 0.2 O.3 0.4 0.5
Relative Error In Maximum PAN
P7l EC re^q rrc E7Z1 ore resi UNC
Figure 2-15. Distribution of relative errors in maximum PAN
concentrations for propene, n-butane, and toluene
runs.
2-39
-------
Simple Mixtures
I
i
1
-0.3 -0.4 -0.3 -O.2 -O.I 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum PAN
EC
rrc
OTC
UNO
i
5
I
Surrogate
Mixtures
1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum PAN
ore
UNO
i
5§§S
H
Auto Exhaust
-0.5 -0.4 -0.3 -O.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum PAN
p"7i EC ivq rrc GZ3 OTC ES3 UNC
Figure 2-16. Distribution of relative errors in maximum PAN
concentrations for simple mixture, surrogate
mixture, and auto exhaust runs.
2-40
-------
»O
1
Propene
J
1
1
-0.5 -0.4 -O.3 -O.2 -O.I 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum HCHO
crn EC rrq rrc VZA ore
UNC
I
Simple Mixtures
W.
I
-0.5 -0.4 -O.3 -O.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Relative Error In Maximum HCHO
1771 EC ren rrc E23 ore ES3 UNC
s -:E
J ?
Surrogate
Mixtures
1
-0.5 -0.4 -0.3 -O.2 -0.1 0 0.1 0.2 0.3 O.4 0.5
Relative Error In Maximum HCHO
1ZZ1 cc ess rrc &n arc
Figure 2-17. Distribution of relative errors in maximum formaldehyde
concentrations for propene, simple mixture, and
surrogate mixture runs.
2-41
-------
uncertainty in the mechanism and the data as discussed in Carter et al.
(1986).
2-42
-------
3. CONDENSATION OF THE MECHANISM
Numerical integration of the chemistry is the most computationally
demanding task in photochemical AQS models. The computer memory and time
requirements of these models are a strong function of the number of
chemical species in the mechanism and a weak function of the number of
reactions in the mechanism. When the most accurate numerical integration
routines [i.e., refinements of those developed by Gear (1971)] are used
to solve the chemistry, the computer resource requirements depend on the
square of the number of integrated species. Thus, it is clearly
important to eliminate any unimportant species and reactions from the
chemical mechanism and lump similar species wherever possible prior to
using the mechanism in AQS models.
Single-cell photochemical AQS models like OZIPM (Hogo and Whitten
1986) can accommodate fairly large chemical mechanisms because the task
of integrating the chemistry in one cell for one diurnal cycle is fairly
small. However, typical applications of Eulerian models such as the
Urban Airshed Model (Reynolds et al. 1973) employ 1,000 to 5,000
computational cells and use large amounts of computer resources for
integrating the chemistry. Thus, it is quite important to condense the
chemistry to the maximum justifiable extent for these multi-cell models.
Because of the differences in the allowable size of mechanisms in the two
types of models, two versions of the surrogate species mechanism were
developed. The first mechanism, shown in Tables 3-1 and 3-2, is intended
for use in OZIPM and other single-cell models. This mechanism is
referred to as the OZIPM mechanism in this report. It was developed from
the detailed mechanism, shown in Table 2-2, using minimal condensation
approximations. The OZIPM mechanism has 131 reactions and 50 species.
Twelve of these species can safely be computed using the steady-state
approximation and one of the species, HJJ, can be treated as a constant.
The second mechanism, shown in Tables 3-3 and 3-4, is intended for use in
multi-cell AQS models. It is referred to as the condensed mechanism in
this report. It has 95 reactions and 36 species. Nine of the species
concentrations can safely be computed from the steady-state approximation
and one of the species, H.O, is a constant. It was developed from the
OZIPM mechanism by incorporating significant condensation assumptions and
3-1
-------
TABLE 3-1. SAPRC/ERT OZIPN CHEMICAL MECHANISM SPECIES LIST
SPECIES ABREVIATION
1. NITRIC OXIDE NO
2. NITROGEN DIOXIDE N02
3. OZONE 03
4. NITROUS ACID MONO
5. NITRIC ACID HN03
6. PERNITRIC ACID HN04
7. NITROGEN PENTOXIDE N205
$. NITROGEN TRIOXIDE N03
9. HYDROPEROXY RADICAL H02
10. HYDROGEN PEROXIDE H202
11. CARBON MONOXIDE CO
12. FORMALDEHYDE HCHO
13. ACETALDEHYDE ALD2
14. PROPIONALDEHYDE RCHO
15. PEROXYACETYLNITRATE PAN
16. PEROXYPROPIONYL NITRATE PPN
17. TOTAL R02 RADICALS R02
18. TOTAL RCO3 RADICALS RC03
19. ORGANIC PEROXIDE ROOH
20. ACETONE ACET
21. METHYL ETHYL KETONE NEK
22. GLYOXAL GLYX
23. GLYOXAL PAN GPAN
24. METHYL GLYOXAL MGLY
25. C4-C5 ALKANES ALK4
26. >CS ALKANES ALK7
27. ALKYL NITRATE ALKN
28. ETHENE ETHE
29. PROPENE PRPE
30. TRANS-2-BUTENE TBUT
31. TOLUENE TOLU
32. N-XYLENE XYLE
33. 1.3.5 TRI-M-BENZENE TMBZ
34. DICARBONYLS DIAL
35. 0-CRESOL CRES
36. PHENOLS PHEN
37. NITROPHENOL NPHE
STEADY STATE SPECIES
38. OXYGEN SINGLET D 0*SO
39. OXYGEN ATONIC 0
40. HYDROXYL RADICAL OH
41. ACETALDEHYDE RC03 MC03
42. PROPIONALDEHYDE RC03 PC03
43. GLYOXAL RC03 GC03
44. GENERAL R02 01 R02R
45. GENERAL R02 02 R202
46. ALKYL NITRATE R02 R02N
47. PHENOL R02 R02P
48. BENZALDEHYDE N-R02 BZN2
49. PHENOXY RADICAL BZO
SO. WATER VAPOR H20
3-2
-------
TABLE 3-2. SAPRC/ERT OZIPM CHEMICAL MECHANISM
REACTION
to
I
Ul
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
N02
0
0
0
NO
N02
NO
NO
N02
N205
N205
N02
N03
N03
03
03
0*SO
0*SO
NO
HONO
N02
N02
HN03
CO
03
NO
N02
HN04
HN04
03
H02
H02
N03
N03
H202
H202
R02
RC03
RC03
R02
RC03
ROOH
R02
R02
RC03
HCHO
HCHO
*
+
»
4
*
*
*
*
4
*
*
*
*
*
*
*
+
*
*
+
«
+
*
+
+
*
*
*
+
*
*
+
*
*
»
*
+
*
*
*
«
*
HV
N02
N02
03
03
N03
HO
N03
H20
N03
HV
HV
HV
HV
H20
OH
HV
H20
OH
OH
OH
OH
H02
H02
OH
H02
H02
H02 *
H02
H02 *
HV
OH
NO
NO
N02
H02
H02
HV
R02
RC03
RC03
HV
HV
> NO * 0
..-> 03
> NO
> N03
> N02
> N03
> 2.N02
-> 2.N02
---> N205
> N02 * N03
> 2.HN03
» NO * N02
> NO
> N02 * 0
.-> 0
...> o*SO
> 2.0H
-> 0
> HONO
> NO * OH
> HONO N02 +
--> HN03
> N03
> H02
> H02
> N02 * OH
> HN04
> N02 * H02
> N02
> OH
> H202
H20 > H202
> HN03
H20 --> HN03
> 2.0H
> H02
> NO
> NO
-> N02
> H02
-> H02
> H02 * OH
>
>
->
--> 2.H02 * CO
--> CO
HNC3
MOLECULE-CC-SEC PPM-MIM
(298 K) (298 K)
RADIATION DEPENDENT
8.12E+05 4.87E«07
9.30E-12 1.37E+04
2.23E-12 3.29E*03
1.81E-U 2.68E+01
3.23E-17 4.77E-02
1.86E-11 2.75E+04
1.02E-19 1.50E-04
1.15E-12 1.71E+03
3.47E-02 2.08E+00
1.00E-21 1.48E-06
4.04E-16 5.9SE-01
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
RADIATION DEPENDENT
2.20E-10 3.25E+05
7.20E+08 4.32E+10
6.60E-12 9.75E+03
RADIATION DEPENDENT
4.00E-24 5.91E-09
1.13E-11 1.68E+04
1.28E-13 1.89E+02
2.18E-13 3.22E+02
6.78E-14 1.00E+02
8.28E-12 1.22E+04
1.37E-12 2.02E+03
8.22E-02 4.93E+00
4.00E-12 5.91E+03
2.01E-15 2.96E*00
3.02E-12 4.46E+03
6.97E-30 2.54E-01
3.02E-12 4.46E403
6.97E-30 2.54E-01
RADIATION DEPENDENT
1.66E-12 2.45E+03
7.68E-12 1.14E+04
7.68E-12 1.UE+04
5.12E-12 7.57E+03
3.00E-12 4.43E+03
3.00E-12 4.43E+03
RADIATION DEPENDENT
1.00E-15 1.48E+00
3.00E-12 4.43E+03
2.50E-12 3.69E+03
RADIATION DEPENDENT
RADIATION DEPENDENT
EXPRESSION
1.10£+04*EKP( 1282/T)
1.11E-13*EXP< 894/T)
1.80E-12*EXP< -1370/T)
1.20E-13*EXP< -2450/T)
8.00E-12«EXP{ 252/T)
1.72E-20»EXP( 529/T)
4.62E-13*EXP( 273/T)
1.33E«15*EXPM1379/T)
2.50E-14*EXP( -1229/T)
4.03E-13«EXP( 833/T)
9.57E-13«EXP< 737/T)
9.40E-15*EXP< 778/T)
1.60E-12*EXP( -942/T)
S.70E-12*EXP< 240/T)
1.02E-13*EXP< 773/T)
4.35E*13*EXP<-10103/T)
1.40E-14*EXP( -579/T)
2.27E-13*EXP( 771/T)
3.26E-34*EXP( 2971 /T)
2.27E-13*EXP( 771/T)
3.26E-34*EXP( 2971/T)
3.10E-12*EXP( -187/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)
-------
TABLE 3-2. SAPRC/ERT OZIPH CHEMICAL MECHANISM (CONTINUED)
CJ
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
HCHO*
HCHO*
HCHO*
AL02 *
AL02 *
AL02 *
NC03 *
NC03 *
NCOS *
NCOS *
NCOS *
PAN
RCHO *
RCHO*
RCHO*
PC03 *
PC03 *
PCOS *
PC03 *
PCOS *
PPN
ACET *
ACET *
NEK *
NEK *
GLYX *
GLYX *
GLYX *
CC03 *
GC03 *
GPAN
GC03 *
GCOS *
GC03 *
NGLY *
NGLY *
NGLY *
ALK4 *
ALK7*
ALKN *
R02N *
R02N *
R02N *
OH
N03
H02
OH
HV
NOS
NO
N02
K02
R02
RC03
OH
HV
NOS
NO
N02
H02
R02
RCOS
HV
OH
HV
OH
HV
OH
NOS
N02
NO
H02
R02
RCOS
HV
OH
NOS
OH
OH
OH
NO
H02
R02
REACTION
> H02 * CO
> HN03 * H02 * CO
> R02R * R02
> MC03 * RC03
> CO * HCHO * H02
> HN03 * MC03 * RC03
> N02 * HCHO * R02R
> PAN
> ROOH * HCHO
> .5H02 * HCHO * R02
-> H02 * HCHO * RC03
-> MC03 * N02 * RC03
> RC03 * PC03
> ALD2 * H02 * CO
> HN03 * PC03 * RC03
> N02 * ALD2 * R02R
> PPN
> ROOH* ALD2
> .5H02 * ALD2 * R02
> H02 * ALD2 * RC03
> PC03 * N02 * RC03
> MC03 * HCHO * RC03
> NGLV * R02R * R02
> MC03 * ALD2 * RC03
-> 1.5R202 * 1.5R02 * .5MC03
* .5PC03 * RC03
-> .13HCHO *1.87CO
--> .63H02 *1.26CO * .37GC03
> HN03 * .63H02 *1.26CO
> GPAN
> N02 * H02 * CO
> N02 * GC03 * RC03
> ROOH * CO
--> .5H02 * CO * R02
> H02 * CO * RC03
-> NC03 * H02 * CO
---> MC03 * CO * RC03
-> HN03 * MC03 * CO
->B01*HCHO *B02*AL02 +B03*RCHO
*B06*R02N *B07*R02R *B08*R202
>B10*HCHO *B11*ALD2 +B12*RCHO
*B15*R02N *B16*R02R *B17*R202
> N02 * .15MEK *1.05RCHO
*1.S9R202 *1.39R02
> ALKN
-> ROOH * MEK
> R02 * .5H02 * MEK
MOLECULE -CC- SEC PPM-MIN
<298 K) (298 K)
* R02R * R02
* R02
* R02R * R02
* R02
* R02R * R02
* R02R * R02
* .5AL02 * .5HCHO
* .37RC03
* .37GC03 * .37RC03
* RC03
» RC03
*B04*ACET +B05*MEK
*B09*R02
*B13*ACET *B14*MEK
4B18*R02
* .48ALD2 * .16HCHO
9.00E-12 1.33E+04
5.97E-16 8.82E-01
1.00E-14 1.48E*01
1.60E-11 2.36E+04
RADIATION DEPENDENT
2.50E-15 3.69E*00
7.68E-12 1.UE+04
5.12E-12 7.57E*03
3.00E-12 4.43E+03
3.00E-12 4.43E*03
2.50E-12 3.69E+03
3.68E-04 2.21E-02
1.98E-11 2.93E*04
RADIATION DEPENDENT
2.46E-15 3.63E+00
7.68E-12 1.HE*04
5.12E-12 7.57E*03
3.00E-12 4.43E*03
3.00E-12 4.43E+03
2.50E-12 3.69E*03
3.68E-04 2.21E-02
RADIATION DEPENDENT
2.29E-13 3.39E+02
RADIATION DEPENDENT
9.85E-13 1.46E*03
RADIATION DEPENDENT
1.15E-11 1.70E+04
6.01E-16 8.88E-01
5.12E-12 7.57E*03
7.68E-12 1.HE*04
3.68E-04 2.21E-02
3.00E-12 4.43E*03
3.00E-12 4.43E«03
2.50E-12 3.69E+03
RADIATION DEPENDENT
1.70E-11 2.51E*04
2.50E-15 3.69E»00
3.22E-12 4.76E+03
SEE NOTE 1
6.16E-12 9.11E»03
SEE NOTE 1
2.03E-12 3.00E*03
7.68E-12 1.KE+04
3.00E-12 4.43E+03
1.00E-15 1.48E400
EXPRESSION
6.00E-13*EXP( -2060/T)
6.90E-12*EXP( 2SO/T)
3.00E-13*EXP( -1427/T)
4.20E-12*EXP{ 180/T)
2.60E-12*EXP( 180/T)
2.00E*16*EXP(-13542/T)
8.50E-12*EXP( 252/T)
3.00E-13*EXP{ -1432/T)
4.20E-12*EXP( 180/T)
2.80E-12*EXP( 180/T)
2.00E416*EXP(-13542/T)
1.00E-11*EXP< -1125/T)
1.20E-11*EXP( -745/T)
6.00E-13*EXP( -2058/T)
2.80£-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.00E*16*EXP(-13542/T)
3.00E-13«EXP( -1427/T)
1.05E-11*EXP( -353/T)
1.62E-11*EXP( -288/T)
2.19E-11*EXP< -709/T)
4.20E-12*EXP( 180/T)
-------
TABLE 3-2. SAPRC/ERT OZIPN CHEMICAL MECHANISM (CONTINUED)
ui
I
in
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
R02N
R202
R202
R202
R202
R02R
R02R
R02R
R02R
ETHE
ETHE
ETKE
ETHE
PRPE
PRPE
PRPE
PRPE
TBUT
TBUT
TBUT
TBUT
TOLU
XYLE
TM8Z
DIAL
DIAL
ORES
CRES
R02P
R02P
R02P
R02P
BZO
BZO
BZO
PHEN
PHEN
NPHE
BZN2
BZN2
BZN2
*
»
+
*
»
*
«.
*
*
*
»
*
»
*
*
+
*
*
»
*
*
»
»
»
*
4>
*
»
*
*
*
*
*
RC03
NO
H02
R02
RC03
NO
H02
R02
RC03
OH
03
0
N03
OH
03
0
N03
OH
03
0
H03
OH
OH
OH
OH
HV
OH
N03
NO
H02
R02
RC03
N02
H02
OH
N03
N03
N02
H02
MOLECULE -CC- SEC
REACTION
-> RC03 * .5H02 *
> N02
> ROOH
> R02
-> RC03
> N02 * H02
> ROOH
> .5H02 * R02
> .5H02 * RC03
> R02R * R02 «1
> HCMO * .12H02 *
> HCHO * H02 *
> N02 « 2. HCHO *
> R02R * HCHO *
> .65HCHO * .5AL02 *.
.135R02R +.135R02
> .6ACET * .4HCHO +
* .4CO * .6R02
-> N02 * HCHO *
-> R02R * 2.ALD2 *
> ALD2 * .15CO *
* .27R02 * .30HCHO
> KEK * .4H02
> N02 * 2.AL02 *
> .16CRES * .16H02 *
+.144MGLT *.114GLYX
> .17CRES * .17H02 *
+.316MGLY *.095GLYX
-> .17CRES * .17H02 *
.S6MGLY
-> PC03 * RC03
--> H02 * CO *
> .2HGLT * .15R02P *
> HN03 * B20
-> NPHE
> ROOH
> .5H02 * R02
> .SH02 * RC03
-> NPHE
> PHEN
> PHEN
> .2GLYX * .15R02P *
> HN03 * 8ZO
> HN03 * BZN2
->
> NPHE
-> NPHE
MEK
.56HCKO *
.4200
CO *
R202 +
ALD2 *
285CO *
.2AL02 *
ALD2 *
R02
.27R02R *
R202 *
.84R02R *
.83R02R *
.83R02R *
NC03 *
.8SR02R +
.85R02R *
.22AL02
R02R * R02
R02
R02
.060H 4.165H02
.2H02 + .6R02R
R202 * R02
.120H * .21H02
R02
.4DIAL + .84R02
.83R02 * .65DIAL
.85R02 + .4901 AL
RC03
R02
R02
(298 K)
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
7.68E-12
3.00E-12
1.00E-15
3.00E-12
8.54E-12
1.74E-18
7.29E-13
1. IDE- 16
2.63E-11
1.13E-17
3.98E-12
7.57E-15
6.37E-11
2.00E-16
2.34E-11
3.79E-13
6.19E-12
2.45E-11
6.20E-11
3.00E-11
RADIATION
4.00E-11
2.20E-11
7.68E-12
3.00E-12
1.00E-15
3.00E-12
1.50E-11
3.00E-12
1.00E-03
2.80E-11
3.80E-12
3.80E-12
1.50E-11
3.00E-12
1.00E-03
PPM-MIH
(298 K)
4.43E+03
1.HE+04
4.43E+03
1.48E+00
4.43E+03
1.UE+04
4.43E+03
1.4BE400
4.43E+03
1.26E+04
2.57E-03
1.0SE+03
1.62E-01
3.89E+04
1.67E-02
5.C8£*03
1.12E*01
9.42E+04
2.96E-01
3.45E*04
5.61E«02
9.14E+03
3.62E404
9.16E»04
4.43E+04
DEPENDENT
5.91E+04
3.25E*04
1.14E+04
4.43E+03
1.48E*00
4.43E*03
2.22E+04
4.43E+03
6.00E-02
4.14E«04
5.62E«03
5.62E+03
2.22E+04
4.43E«03
6.00E-02
EXPRESSION
4.20E-12*EXP( 180/T)
4.20E-12*EXP( 180/T)
2.15E-12*EXP<
1.20E-14*EXP(
1.04E-11*EXP(
2.00E-12*EXP(
4.85E-12*EXP(
1.32E-14*EXP(
411/T)
2634/T)
-792/T)
2923/T)
504/T)
2105/T)
1.18E-11*EXP( -324/T)
5.00E-12*EXP( -1935/T)
1.01E-11*EXP< 549/T)
9.08E-15*EXP( -1137/T)
2.26E-11*EXP(
1.00E-11*EXP(
2.10E-12«EXP(
10/T)
975/T)
322/T)
1.66E-11*EXP( 116/T)
180/T)
-------
TABLE 3-2. SAPRC/ERT OZIPN CHEMICAL MECHANISM (CONTINUED)
Notes:
1. Alkane product coeff(cents are temperature dependent.
They are determined by Interpolation from the values
at the following three tenperatures.
Coeff. 270 K 300 K 330 K
CJ
801
B02
B03
B04
BOS
B06
B07
BOS
B09
B10
B11
B12
B13
814
BIS
B16
B17
BIS
0.197
0.168
0.115
0.3S1
0.489
0.114
0.886
0.446
1.332
o.oos
0.021
0.215
0.297
0.765
0.288
0.701
0.651
1.352
0.189
0.315
0.166
0.339
0.442
0.073
0.927
0.599
1.526
0.023
0.«32
0.249
0.355
0.882
0.190
0.810
0.837
1.647
0.188
0.582
0.244
0.350
0.267
0.050
0.950
0.807
1.757
0.054
0.081
0.296
0.419
0.891
0.126
0.873
1.004
1.877
-------
TABLE 3-3. SAPRC/ERT CONDENSED CHEMICAL MECHANISM SPECIES LIST
SPECIES ABREVIATION
1. NITRIC OXIDE NO
2. NITROGEN DIOXIDE N02
3. OZONE 03
4. NITROUS ACID MONO
5. NITRIC ACID HN03
6. PERNITRIC ACID HN04
7. NITROGEN PENTOXIDE N205
8. NITROGEN TRIOXIDE N03
9. HYDROPEROXV RADICAL H02
10. CARBON MONOXIDE CO
11. FORMALDEHYDE HCHO
12. ACETALDEHYDE ALD2
13. METHYL ETHYL KETONE MEK
U. METHYL GLYOXAL MGLV
15. PEROXYACYLNITRATE PAN
16. TOTAL R02 RADICALS R02
17. CH3C03 RADICAL MC03
18. ALKYL NITRATE ALKN
19. >C3 ALKANES ALKA
20. ETHENE ETHE
21. >C2 ALKENES ALKE
22. TOLUENE TOLU
23. HIGHER AROMATICS AROM
2*. UNKNOWN DICARBONYLS DIAL
25. 0-CRESOL CRES
26. NITROPHENOLS NPHE
STEADY STATE SPECIES
27. OXYGEN SINGLET D 0*SD
28. ATOMIC OXYGEN 0
29. NYOROXYL RADICAL OH
30. GENERAL R02 *1 R02R
31. GENERAL R02 *2 R202
32. ALKYL NITRATE 802 R02N
33. PHENOL R02 R02P
34. BENZALDEHYDE N-R02 BZN2
35. PHENOXY RADICAL BZO
36. WATER VAPOR H20
3-7
-------
TABLE 3-4. SAPRC/ERT CONDENSED CHEMICAL MECHANISM
REACTION
ui
CO
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
H02 +
0
0 *
0 *
NO *
N02 *
NO *
NO *
N02 *
N205
N205 »
H02 *
N03 +
N03 *
03 *
03 »
o«so «
0*SO
NO »
MONO «
N02 «
N02 *
HN03 «
CO *
03 *
NO *
N02 *
HN04
HN04 *
03 *
H02 «
H02 *
N03 *
H03 *
R02 *
R02 «
R02 *
R02 *
HCHO *
HCHO *
HCHO *
HCHO »
HCHO *
ALD2 *
ALD2 *
ALD2 +
MC03 *
MC03 *
MC03 *
MC03 *
PAN
HV >
...»
N02 ->
N02 >
03 >
03 »
N03 ->
HO >
N03 ">
->
H20 >
N03 >
HV >
HV >
HV ">
HV >
H20 >
>
OH >
HV >
H20 >
OH >
OH >
OH >
OH >
H02 >
K02 >
>
OH >
H02 ->
H02 >
H02 * H20 >
H02 >
H02 * H20 >
NO >
H02 >
R02 >
MC03 >
HV >
HV >
OH >
N03 >
H02 >
OH >
HV >
N03 ->
HO >
N02 >
H02 >
MC03 -->
>
NO *
03
NO
N03
N02
N03
2.N02
2.N02
H205
H02 *
2.HM03
NO *
HO
H02 *
0
0*SD
2. OH
0
HOMO
NO *
HOMO
HN03
N03
H02
H02
H02 *
HN04
N02 *
N02
OH
HH03
HN03
HO
H02
MC03
2.H02 *
CO
H02 *
HN03 *
R02R *
MC03
CO *
HN03 *
N02 *
PAN
HCHO
2.H02 *
MC03 *
0
N03
N02
0
OH
H02 * HN03
OH
H02
CO
CO
H02 * CO
R02
HCHO * K02 * R02R *
MC03
HCHO * R02R * R02
2. HCHO
N02
MOLECULE -CC- SEC
(298 K)
RADIATION
7.75E*05
9.30E-12
2.23E-12
1.81E-U
3.23E-17
1.86E-11
9.68E-20
1.15E-12
3.47E-02
1.00E-21
4.04E-16
RADIATION
RADIATION
RADIATION
RADIATION
2.20E-10
7.20E+08
6.60E-12
RADIATION
4.00E-24
1.14E-11
1.28E-13
2.18E-13
6.786-14
8.28E-12
1.37E-12
8.22E-02
4.00E-12
2.01E-15
3.02E-12
6.97E-30
3.02E-12
6.97E-30
7.68E-12
3.00E-12
1.00E-15
3.00E-12
RADIATION
RADIATION
9.00E-12
5.97E-16
1.00E-H
1.60E-11
R02 RADIATION
2.50E-15
7.68E-12
5.12E-12
3.00E-12
2.50E-12
3.686-04
PPM-MIH
(298 K)
DEPENDENT
4.656*07
1.376*04
3.29E+03
2.68E+01
4.77E-02
2.75E+04
1.43E-04
1.71E+03
2.08E+00
1.48E-06
5.98E-01
DEPENDENT
DEPENDENT
DEPENDENT
DEPENDENT
3.25E«05
4.32E*10
9.75E+03
DEPENDENT
5.91E-09
1 .686*04
1.896*02
3.226*02
1.006*02
1.226*04
2.026*03
4.93E*00
5.91E*03
2.96E*00
4.466*03
2.54E-01
4.46E*03
2.54E-01
1.146*04
4.436*03
1.486*00
4.436*03
DEPENDENT
DEPEHDEHT
1.33E*04
8.82E-01
1.486*01
2.36E*04
DEPENDENT
3.696*00
1.146*04
7.576*03
4.436*03
3.696*03
2.216-02
EXPRESSION
1.056*04*6XP(
1.11E-13*EXP(
1.80£-12*EXP(
1.20E'13*EXP(
8.00E-12*EXP(
1.64E-20*EXP(
4.62E-13*EXP(
1282/T)
894/T)
1370/T)
-2450/T)
252/T)
529/T)
273/T)
1.33E*15*EXP(-11379/T)
2.50E-14*EXP<
4.036- 13*6XP(
9.58E-13*EXP(
».40E-15*EXP(
1.60E-12*EXP(
3.70E-12*EXP(
1.02E-13*EXP(
4.35E*13*EXP(
1.40E-14*EXP(
2.27E-13*EXP(
3.26E-34*6XP(
2.27E-13*EXP(
3.26E-34*EXP(
4.20E-12*6XP(
6.00E-13*EXP(
6.90E-12*EXP(
3.00E-13*EXP(
4.20E-12*EXP(
2.80E-12*EXP(
2.00E*16*6XP(
1229/T)
833/T)
737/T)
778/T)
942/T)
240/T)
773/T)
10103/T)
579/T)
771/T)
2971/T)
771/T)
2971/T)
180/T)
2060/T)
250/T)
-1427/T)
180/T)
180/T)
-13542/T)
-------
TABLE 3-4. SAPRC/ERT CONDENSED CHEMICAL MECHANISM (CONTINUED)
Ul
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
NEK *
NEK *
HOLY 4
NGLY *
NGLV 4
ALKA »
ALKN *
R02N 4
R02N 4
R02N >
R02N *
R202 *
R202 *
R202 «
R202
R02R «
R02R *
R02R 4
R02R *
ETHE *
ETHE *
ETHE *
ETHE *
ALKE *
ALKE
ALKE *
ALKE 4
TOLO *
AROH *
DIAL +
DIAL *
CRES 4
CRES +
R02P *
R02P 4
R02P 4
R02P *
BZO *
BZO «
BZO
NPHE *
BZN2 *
BZN2 *
BZN2
HV
OH
HV
OH
N03
OH
OH
NO
H02
R02
NC03
NO
H02
R02
NC03
NO
H02
R02
NC03
OH
03
0
N03
OH
03
0
N03
OH
OH
OH
HV
OH
N03
NO
H02
R02
NC03
N02
H02
N03
N02
H02
HOLECULE-CC-SEC PPM-NIN
REACTION
> ALD2 * MC03 * R02R
> 1.5R02R * 1.5R02 + MC03
> MC03 » H02 + CO
> NC03 * CO
> HN03 * NC03 * CO
->B01*HCHO +B02*ALD2 «B03*NEK
*B06«R202 *B07«R02
-> N02 * .15MEK *1.53ALD2
+1.39R02
> ALKN
> NEK
> R02 * .5H02 * NEK
> HCHO * H02 « NEK
> H02
>
> R02
> HCHO * H02
> N02 » H02
>
> .5H02 * R02
> HCHO * H02
> R02R * R02 +1.56HCHO
-> HCHO * .12H02 * .42CO
> HCHO* H02 * CO
> N02 * 2.HCHO * R202
>B08*HCHO +B09*ALD2 * R02R
->B10*HCHO *B11*ALD2 +B12*R02R
*B14*OH +B15*CO
->B16«CO *B17*MEK *B18*HCHO
+B21*R02R «B21*R02
> N02 +B08*HCHO «B09*ALD2
> .16CRES * .16H02 * .84R02R
O44NGLY O14HCHO O14CO
> .17CRES + .17H02 » .83R02R
*B23«NGLY +B24*HCHO *B24*CO
> MC03
> H02 * CO * NC03
> .2MGLY * .15R02P * .85R02R
> HN03 * BZO
> NPHE
>
> .5H02 * R02
> HCHO * H02
> NPHE
* * * ^
^
> HN03 * BZN2
>
-> NPHE
-> NPHE
* R02
* .5AL02 * .5HCHO
«B04*R02N +B05*R02R
* .16HCHO *1.39R202
+ .22ALD2
+ R02R + R02
* R02
+ R02
+B12*R02 +B13*H02
«B19*ALD2 *B20*H02
* R202 * R02
* .4DIAL * .84R02
* .83R02 +B22*DIAL
* R02
(298 K) (298 K)
RADIATION DEPENDENT
9.85E-13 1.46E+03
RADIATION DEPENDENT
1.70E-11 2.51E+04
2.50E-15 3.69E+00
SEE NOTE 1
2.03E-12 3.00E+03
7.68E-12 1.14E+04
3.00E-12 4.43E»03
1.00E-15 1.48E+00
3.00E-12 4.43E+03
7.68E-12 1.HE+04
3.00E-12 4.43E«03
1.00E-15 1.48E*00
3.00E-12 4.43E+03
7.68E-12 1.14E404
3.00E-12 4.43E«03
1.00E-15 1.48E+00
3.00E-12 4.43E«03
8.54E-12 1.26E+04
1.74E-18 2.57E-03
7.29E-13 1.08E*03
1.09E-16 1.61E-01
SEE NOTE 1
SEE NOTE 1
SEE NOTE 1
SEE NOTE 1
6.19E-12 9.14E+03
SEE NOTE 1
3.00E-11 4.43E+04
RADIATION DEPENDENT
4.00E-11 5.91E+04
2.20E-11 3.25E+04
7.68E-12 1.14E+04
3.00E-12 4.43E+03
1.00E-15 1.48E+00
3.00E-12 4.43E+03
1.50E-11 2.22E+04
3.00E-12 4.43E+03
1.00E-03 6.00E-02
3.80E-12 5.62E+03
1.50E-11 2.22E+04
3.00E-12 4.43E+03
1.00E-03 6.00E-02
EXPRESSION
1.20E-11*£XP< -745/T)
3.00E-13*EXP( -1427/T)
*
2.19E-11*EXP( -709/T)
4.20E-12*EXP( 180/T)
4.20E-12*EXP< 180/T)
4.20E-12*EXP( 180/T)
2.15E-12*EXP( 411/T)
1.20E-14*EXP( -2634/T)
1.04E-11*EXP( -792/T)
2.00E-12*EXP( -2925/T)
2.10E-12*EXP( 322/T)
4.20E-12*EXP( 180/T)
-------
TABLE 3-4. SAPRC/ERT CONDENSED CHEMICAL MECHANISM (CONTINUED)
ui
I
NOTES:
The variable product coeff(cents (Bi) and limped rate constants
(Rj) are defined below. The alkane product coefficients are
given at three temperatures. Values of the coefficients at
intermediate temperatures can be obtained by linear interpolation.
Rate constants are given in molecule-cc-sec units. The following
fractions Must be specified to determine the varaible coefficients.
C4-CS fraction of >C3 alkanes on a carbon basis
Terminal alkene fraction of >C2 alkenes on a carbon basis
Dl-atkylbenzene fraction of di- t trl-alky(benzenes on a carbon basis.
CVCS fraction of >C3 alkanes on a mole basis
Terminal alkene fraction of >C2 alkenes on a mole basis
Di-atkylbenzene fraction of di- t trI-alky(benzenes on a mole basis.
(A/4.5) / (A/4.5 * (1.-A>/7.)
(B/3.0) / (B/3.0 » (1.-B)/4.)
Z (C/8.0) / (C/6.0 » (1.-O/9.)
Coeff. at 270 K
at 300 K
at 330 K
§01
802
803
B04
805
B06
807
808
809
BIO
11
B12
B13
B14
BIS
B16
B17
B18
B19
820
821
822
823
824
R57
R75
R76
R77
R78
R80
0.197*X * 0.005*(1-X)
0.282*X * 0.236*(1-X)
0.489*X * 0.765*(1-X)
0.114*X * 0.288*(1-X)
0.886*X * 0.701*(1-X)
0.446*X * 0.651*(1-X)
1.332*X * 1.352*(1-X)
y
y * 2.00*<1-Y)
0.64*y
0.50*y * (1-Y)
0.13*y * 0.27*(1-Y)
o.i7*y * o.2i*d-y)
0.06*y * 0.12*(1-Y)
0.28*Y
o.40*y
d-Y)
o.40*y
o.20*y
0.20*y * 0.«0*(1-Y)
o.60*y
0.650*2 » 0.49*(1-Z)
0.316*2 * 0.86M-Z)
0.095*2
1.053£-11*EXP( -354/T)*X
4.850E-12«EXP( 50«/T)*Y
1.320E-U*EXP(-2105/T)*Y
1.180E-11*EXP( -32«/T)*Y
5.000E-12*EXP(-1935/T)*Y
1.660E-11*EXP( 116/T)*Z
0.189*X « 0.023*(1-X)
0.481*X * 0.281*(1-X)
0.442*X * 0.882*(1-X)
0.073*X * 0.190*(1-X)
0.927*X * 0.810*(1-X)
0.599*X * 0.837*(1-X)
1.526*X * 1.647*(1-X)
* 1.62E-11*EXP( -289/T)*(1
* 1.01E-11*EXP( 549/T)*(1
* 9.08E-15*EXP(-1137/T)*(1
+ 2.26E-11*EXP( 10/T)*(1
» 1.00E-11*EXP( -975/T)*(1
+ 6.20E-11*(1-Z)
0.188*X *
0.826*X *
0.267*X *
0.050*X »
0.950*X *
0.807*X *
1.757*X *
X)
Y)
Y)
Y)
Y)
0.054*(1-X)
0.377*(1-X)
0.891*(1-X)
0.126*(1>X)
0.873*(1-X)
1.004*(1-X)
1.877*(1-X)
-------
approximations. The major distinction between the mechanisms is the
number of organic precursor species and oxygenated species in the
mechanisms. Table 3-5 summaries the organic precursor and oxygenated
species in each of the mechanisms.
The philosophy used in this research program was to develop and test
detailed explicit chemical mechanisms against the smog chamber data base
and. subsequently, condense the mechanism for use in AQS models. The
validity of condensed mechanisms was determined by testing against the
detailed mechanism for a range of conditions characteristic of the
ambient atmosphere. In urban-scale atmospheric modeling, the mechanisms
are always applied to complex mixtures of organics. Minor pathways
included in the explicit reaction mechanisms can often be ignored or
lumped without significantly affecting the mechanism performance on
complex mixture simulations. Thus, while some testing of the condensed
against the detailed mechanism was performed for single organics, most of
the testing was performed for simple and complex mixtures of organics in
typical urban air. Generally, only condensation assumptions that had
little or no effect on the predictions were incorporated into the OZIPH
mechanism. Larger discrepancies between the condensed and OZIPM
mechanisms were tolerated because of the need to minimize the number of
species in multi-cell models. Nevertheless, these discrepancies were
small, which reflects the generally conservative philosophy used in this
condensation effort.
Mechanism condensation is not a mysterious process. It generally
proceeds in a stepwise fashion from the condensation steps that have
trivial effects to those that have substantial effects. Each of the
condensation assumptions or steps incorporated into the AQS model
mechanisms is described in this section. Almost every approximation was
investigated independently as well as in conjunction with the other
approximations. Thus, these mechanisms have been synthesized from a
large amount of testing.
3.1 The OZIPM Mechanism
The inorganic chemistry was not materially changed for either of the
AQS model mechanisms. The important inorganic species and reactions w»re
3-11
-------
TABLE 3-5
SURROGATE SPECIES IN THE MECHANISMS
DETAILED MECHANISM
PROPANE
C4-C5 ALKANES
>C5 ALKANES
ETHENE
PROPENE
1-BUTENE
TRANS-2-BUTENE
ISO-BUTENE
BENZENE
TOLUENE
M-XYLENE
MESITYLENE
FORMALDEHYDE
ACETALDEHYDE
GLYCOL ALDEHYDE
PROPIONALDEHYDE
BENZALDEHYDE
ACETONE
METHYL ETHYL KETONE
GLYOXAL
METHYL GLYOXAL
UNKNOWN AROMATIC
RING-OPENING PROD 1
UNKNOWN AROMATIC
RING-OPENING PROD. 2
OZIPM MECHANISM
C4-C5 ALKANES
>C5 ALKANES
ETHENE
PROPENE
TRANS-2-BUTENE
TOLUENE
M-XYLENE
HESITYLENE
FORMALDEHYDE
ACETALDEKYDE
PROPIONALDEHYDE
ACETONE
METHYL ETHYL KETONE
GLYOXAL
METHYL GLYOXAL
UNKNOWN AROMATIC
RING-OPENING PROD.
CONDENSED MECHANISM
>C3 ALKANES
ETHENE
HIGHER ALKENES
TOLUENE
HIGHER AROMATICS
FORMALDEHYDE
ACETALDEHYDE
METHYL ETHYL KETONE
METHYL GLYOXAL
UNKNOWN AROMATIC
RING-OPENING PROD.
3-12
-------
carefully selected at the time the detailed mechanism was formulated.
None of the reactions can safely be eliminated for urban applications.
However, the concentrations of species with relatively constant
concentrations, such as M, 0., and H^O, can be incorporated into the
reaction rate constants. These species are important reactants in the
mechanism; however, they are so abundant in the lower atmosphere that
these reactions do not significantly influence their concentrations. H
and 02 were included as species in the detailed mechanism mostly for the
sake of chemical fidelity and clarity. They were eliminated from the
OZIPM mechanism by incorporating values appropriate for the lower
atmosphere (i.e., [H] = 2.49E19 and [<>2] = 5.22E18 molecules/cc at 1 atm
and 298°K) into the appropriate rate constants (reactions 2, 4, 18, 32,
and 36 in Table 2-2). Similarly, the user may chose to incorporate the
water vapor concentration into the rate constants (for reactions 11, 17,
21, 33, 34, 37 and 38 in Table 2-2). The recommended default concentra-
tion of H20 is 5.E17 molecule/cc or 2.E4 ppm.
The form of the rate constant expressions for numerous inorganic
reactions is too complex to be input to standard kinetic solver packages
such as OZIPM. These rate expressions can be well approximated over the
typical photochemical oxidant season temperature range using the standard
rate expression instead of the complex expression reported in the
literature and used in the detailed mechanism. As part of the adaptation
and condensation, these expressions were fitted to the standard rate
expression, k = A exp(-E/RT), over the 270 to 330°K temperature range.
The rate constant expressions affected were those for reactions 2, 4, 9,
10, 19. 22. 27. and 28 in Table 2-2.
The inorganic reactions involving H02 + H02 and HO. + NO, were
represented using fewer reactions in the OZIPM mechanism. When M and 0»
are treated as constants, reactions 31-32, 33-34, 35-36, and 37-38 in
Table 2-2 can be represented as reactions 31, 32, 33, and 34 in
Table 3-2, respectively, without any loss of accuracy.
Dinitrophenols (DNPH) were eliminated from the species list in the
OZIPM mechanism. This species is only a product in the mechanism (see
reaction 158 in Table 2-2), so its elimination has no effect on the
predictions for other species. Its concentration is integrated in the
3-13
-------
detailed mechanism because it is a significant nitrogen sink in the
aromatic mechanism.
As discussed in Section 2, the detailed mechanism includes reactions
for the oxidation of propane and benzene. These two compounds are among
the most abundant of the less reactive NHOC found in urban air. It is
not uncommon for each of these compounds to account for 2-3% of the NMOC.
This is in fact why propane and benzene were selected as surrogate
species for less reactive compounds. The contributions of these species
to ozone formation in urban areas is believed to be quite small under
most circumstances. The reactions for propane and benzene were
eliminated from the OZIPM mechanism because they contribute so little
reactivity in most simulations and because their reactivity can
adequately be represented by partial assignment of their emissions (or
initial concentrations) to the C4-C5 alkanes class. Figures 3-1 and 3-2
compare predictions of NO, N0_, and ozone in simulations with propane
represented explicitly and as 50% C4-C5 alkanes and 50% nonreactive (on a
carbon basis). These figures show results for simulations of 1.5 ppmC
propane with 0.1 and 0.05 ppm NO (NMOC/NO ratios of 15 and 30). Other
A A
inputs for the simulation are summarized in Table 3-6. The results
clearly indicate that this approximate treatment of propane emissions
provides excellent simulation of the NO oxidation rate and ozone forma-
&
tion at two different NMOC/NO^ ratios. Figures 3-3 and 3-4 show the NO,
N0_, and 03 predictions for comparable simulations of benzene/NO
» A
systems. The figures show comparisons of the results using the benzene
mechanism to the results with benzene represented as 30% C4-C5 alkanes
and 70% nonreactive. The figures show good agreement for the NO
A
oxidation rate and for the ozone formation rates on the first day of the
simulations. On the second day of the simulation with the lower NMOC/NO
A
ratio, the approximation of benzene as 30% C4-C5 alkanes results in 15%
overproduction of the ozone yield. Since this discrepancy is small and
only occurs on the second day, this approximation is considered
acceptable. Thus, we recommend treating propane and benzene as 50% and
30% C4-C5 alkanes, respectively, in urban ozone modeling. Elimination of
the reactions for propane and benzene eliminates three species from the
mechanism (ALK3, BENZ, BGLY).
3-14
-------
Comparison of Propane <5c C45 Alkanes
NOx - 0.1O ppm
i
8 1O 12 14 16 IS 20 22 24 26 28 30 32 34 36 38 40 42
Tim* (Hours)
1: 1.5 ppmC Propane
2: 0.75ppmC C4-C5 Alkanes
ISO
NO* - 0.10 ppm
I
14O-
130-
120-
11O-
100-
9O-
ao-
70-
60-
5O-
4O-
30-
2O-
10-
O
03
B 10 12 14 16 IB 20 22 24 26 28 30 32 34 36 38 40 42
Time (Hour*)
Figure 3-1. Comparison of NO, N02, and 03 predictions for mixtures
with 1.5 ppmC propane +0.10 ppm NOX and 0.75 ppmC
C4-C5 alkanes + 0.10 ppm NOX.
3-15
-------
Comparison of Propane Sc C45 Alkanes
NO» - 0.09 ppm
1
10
12
14 16
Tlm« (Hour*)
18
1: 1.5 ppmC Propane
2: 0.75ppmC C4-C5 Alkanes
ISO
140-
130-
120-
110-
100-
90-
60
70-
60-
80-
40-
30-
20-
10-
O
NOx 0.09 ppm
O3
10 12 14 16
Tlm« (Hours)
18
2O
Figure 3-2.
Comparison of NO, NO2, and O3 predictions for mixtures
with 1.5 ppmC propane + 0.05 ppm NOX and 0.75 ppmC
C4-C5 alkanes + 0.05 ppm NO,,.
X
3-16
-------
Table 3-6
Conditions for Mechanism Comparison Simulations
Solar Radiation Inputs:
Place:
Lattitude:
Longitude:
Time Zone:
Date:
Photolysis Rates:
Mixing Heights:
Temperature:
Ozone aloft:
Initial Values:
NO/NOx Ratio:
NMOC/NOx:
Post 6 AM Emissions:
Los Angeles, CA
34.
118.
8.
June 21, 1986
Table 2-4
250 m at 0600
250 m at 0800
390 m at 0900
565 m at 1000
729 m at 1100
850 m at 1200
937 m at 1300
1000 m at 1400
1000 m at 2000
30 C
0.08 ppm
Hours
n
n
n
n
n
n
n
n
[CO] «= 1 ppm
[03] =0.01 ppb
[H20] = 20,000 ppm
[HCHO] = 10 ppb in alkane and
benzene runs only
0.75
3, 5, 10, 15, 20, 30 ppmC/ppm
None
3-17
-------
Comparison of Benzene
-------
Comparison of Benzene Sc C45 Alkanes
NO* - 0.05 ppm
40
1
10
12 14 16
TIm« (Hours)
20
1: 1.5ppmC Benzene
2: 0.45ppmC C4-C5 Alkanes
110
100
oo
80
70
60
so
40
so
20
10
0
NOx 0.05 ppm
O3
10
~~
12
14 16
71m« (Hour*)
16
20
Figure 3-4. Comparison of NO, NO2, and O3 predictions for mixtures
with 1.5 ppmC benzene + 0.05 ppm NOX and 0.45 ppmC
C4-C5 alkanes +0.05 ppm NOX.
3-19
-------
The ethene chemistry incorporated into the detailed mechanism has
glycolaldehyde (GCHO) as a minor product of ethene's reaction with OH.
This is the only source of glycolaldehyde in the mechanism. The
chemistry of glycolaldehyde is very similar to the chemistry of
acetaldehyde. Tests were made to determine if the glycolaldehyde
chemistry could be represented by the acetaldehyde chemistry.
Figures 3-5 and 3-6 show the results of simulations with 1 ppmC ethene
and 0.33 and 0.20 ppm NO , respectively, with acetaldehyde substituted
for glycolaldehyde in the OZIPM mechanism. Other conditions for this
simulation are described in Table 3-6. The results show that NO and NO.
are essentially unaffected by the substitution. The results for ozone
also show excellent agreement. The ozone predicted with the OZIPM
mechanism is within 2% of the concentrations predicted with the mech-
anism. The good agreement obtained in these tests on pure ethene-NO
A
systems provides ample justification for treating glycolaldehyde as
acetaldehyde and. thereby, eliminating three more species from the
mechanism (GCHO, GA03, PANG).
Another minor product in the detailed aromatic mechanism is benz-
aldehyde (ECHO). The benzaldehyde yields from toluene, m-xylene, and
mesitylene are 0.08, 0.04. and 0.02, respectively. Benzaldehyde is not
very reactive under ideal circumstances and is generally recognized as
contributing negative reactivity to NMOC mixtures (Atkinson et al. 1983).
Tests were made to examine the effects of ignoring the benzaldehyde
reactions in the mechanism for OZIPH. Figures 3-7 and 3-8 compare the
predictions of toluene-NO simulations at NMOC/NO ratios of 5 and 10,
X A
respectively, with and without the benzaldehyde reactions. Figures 3-9
and 3-10 show similar results for m-xylene-NO systems with and without
benzaldehyde reactions at the same two NMOC/NO ratios. The results
X
indicate benzaldehyde has negligible effects on the NO and NO-
concentration profiles. For ozone, the level of agreement is also quite
good (within 2%). Ignoring the benzaldehyde reactions results in
slightly more ozone in the simulations (see the lower NMOC/NO ratio
A
cases), which confirms its negative reactivity contribution. Given that
its contribution is so small in pure aromatic-NO systems, the benzalde-
hyde chemistry can safely be ignored in urban ozone modeling. This step
eliminates three species from the mechanism (ECHO, BA03, and PBZN).
3-20
-------
1
260
Simulation of Ethene + NOx
1 ppmC HC * 0.93 ppm NOx
10 11
12 13 14 15
71m« (Hour*)
ie
17
18
1: Detailed Mechanism
2: OZIPM Mechanism
200
190-
16O-
170-
160-
150-
140-
130-
120-
110-
100-
90-
60-
70-
60-
50-
4O-
30-
20-
10-
0
1 ppmC HC + 0.33 ppm NOx
10 11 12 13 14 13
T!m« (Hours)
16
17
Figure 3-5. Comparison of NO, NO2, and O3 predictions for 1 ppmC
ethene + 0.33 ppm NOX with the detailed and OZIPM
mechanisms.
3-21
-------
150
Simulation of Ethene + NOx
1 ppmC HC + 0.20 ppm NOx
I
10 11
12 13 14 13
71m« (Hour*)
16
17
IS
1: Detailed Mechanism
2: OZIPM Mechanism
300
1 ppmC HC * 0.20 ppm NOx
2BO-
260-
240-
220-
200-
16O-
160-
140-
120
100
8O-
60-
40-
20-
0
O3
10 11 12 13 14 IS
Tim* (Hour*)
IS
17
18
Figure 3-6. Comparison of NO, NO2, and O3 predictions for 1 ppmC
ethene + 0.20 ppm NOX with the detailed and OZIPM
mechanisms.
3-22
-------
I
ISO
Simulation of Toluene 4- NOx
1 ppmC HC + 0.20 ppm NOx
9 1O 11 12 19 14 15 16 17
Tim* (Hour*)
1: Detailed Mechanism
2: OZ1PM Mechanism
ia
1 ppmC HC + 0.20 ppm NOx
1
50-
40-
30-
20-
10-
10 11
12 13 14
TVn« (Hour*)
15 16 17 18
Figure 3-7. Comparison of NO, NO2, and O-j predictions for 1 ppmC
toluene + 0.20 ppm NOX with detailed and OZIPM mechanism.
3-23
-------
Simulation of Toluene 4- NOx
1 ppmC HC + 0.10 ppm NOx
10 11 12 13 14 13 16 17 IB
1: Detailed Mechanism
2: OZIPM Mechanism
130
1 ppmC HC + 0.10 ppm NOx
120-
110-
100-
00-
60-
70-
60-
50-
40-
30-
20-
10
B 0 1O 11 12 13 14 15 16 17 16
Tim* (Hour*)
Figure 3-8. Comparison of NO, NO2» and 03 predictions for 1 ppmC
toluene + 0.10 ppm NOX with detailed and OZIPM mechanism.
3-24
-------
180
Simulation of mXylene + NOx
1 ppmC HC * 0.20 ppm NOx
I
10 11 12 13 14 15
Hm« (Hour*)
:e 17
IB
1: Detailed Mechanism
2: OZIPM Mechanism
1
ISO
170-
160-
150-
140-
130-
120-
110-
100-
80-
60-
70-
60-
50-
4O-
30-
2O-
10-
0
1 ppmC HC + 0.20 ppm NOx
8 8 10 11 12 13 14 15 16 17 18
Tbn« (Hour*)
Figure 3-9. Comparison of NO, NO2, and O3 predictions for .1 ppmC
m-xylene + 0.20 ppm NOX with detailed and OZIPM mechanism.
3-25
-------
i
80
70
80
80
40
30
20
10-
Simulation of mXylene + NOx
1 pp/nC HC + 0.10 ppm NOx
NO2
1&2
8 9 10 11 12 13 14 15 18 17 18
Tlm« (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
ISO
1 ppmC HC + 0.10 ppm NOx
i
140-
130-
120-
110-
100-
90-
80-
70-
80-
50-
4O-
3O
20-
10-
C
03
1O 11 12 13 14 19
Tim* (Hour*)
18
17
18
Figure 3-10. Comparison of NO, NO2, and Oj predictions for 1 ppmC
m-xylene + 0.10 ppm NOV with detailed and OZIPM mechanism.
3-26
-------
The actual methyl ethyl ketone oxidation mechanism involves numerous
peroxy radicals. The detailed mechanism, shown in Table 2-2, has some
lumping of these R0_ radicals. Further lumping was performed for the
OZIPH mechanism by combining MK02 with the other RO, type radicals, as
shown below.
Detailed:
MEK
MK02
MK02
HK02
MK02
+ OH
+ NO
» H02
+ R02
+ RC03
>
+
>
>
>
>
R202 +
.5MC03 +
N02 +
ROOM +
.5H02 +
.5H02 +
.5MK02 +
.5RC03
HCHO +
HCHO +
HCHO +
HCHO +
1.5R02 +
PC03 +
ALD2
ALD2 +
ALD2 +
.5ALD2
RC03
R02
RC03
Condensed:
MEK
+ OH
>
1.5R202 +
1 . 5R02
+ .5ALD2
+ .5MC
RC03
The influence of this change was investigated in pure MEK-NO
A
simulations. The modification has essentially no effect on the
predictions.
The last area of condensation for the OZIPM mechanism was in the
higher alkene chemistry. The detailed mechanism includes four higher
alkenes: propene, 1-butene, trans-2-butene, and iso-butene. Since the
>C2 alkenes rarely comprise more than 10% or 15% of NHOC emissions in
urban areas, it was appropriate to investigate reducing the number of
alkene precursor species. Comparisons of the propene and 1-butene
mechanism predictions were made for cases with 1 ppmC NMOC and 0.33 and
0.20 ppm NO . Other conditions for the simulations are shown on
Table 3-6. The results, shown in Figures 3-11 and 3-12, indicate that
the propene mechanism oxidizes NO faster and produces more ozone than
the 1-butene mechanism. The ozone yields are 9 and 21% higher for
propene than 1-butene in the 0.20 and 0.33 ppm NO cases, respectively.
Similar simulations were carried out to compare the trans-2-butene
and isobutene mechanism. The results, shown in Figures 3-13 and 3-14,
indicate that trans-2-butene oxidizes NO almost twice as fast as
A
isobutene. This results in significantly different NO, NO., and ozone
concentration profiles. For example, the maximum NO. concentration
3-27
-------
Comparison of Propene
-------
S
I
15O
Comparison of Propene <8c 1 Butene
1 ppmC HC -I- 0.20 ppm NOx
10
1: Propene
2: 1-Butene
11
12 13 14
T1m« (Hour*)
16
17
18
260
1 ppmC HC + 0.20 ppm NOx
240-
220-
200-
180-
160-
140-
120-
100-
80-
60-
40-
2O-
0
10 11 12 19 14
Tim* (Hour*)
19
16
17
18
Figure 3-12.
Comparison of NO, N02, and O3 predictions with 1 ppmC
propene and 1 ppmC 1-butene at NMOC/NOX = 5
3-29
-------
Comparison of T2Butene & Iso-Butene
1 ppmC HC + 0.33 ppm NOx
260
10 11 12 13 14 15
71m« (Hours)
16 17 IS
1: Tr»r»s-2-Btiten«
2: too But*
240
1 ppmC HC * 0.33 ppm NOx
220-
200-
180-
160-
140-
120-
100-
80-
60-
40-
20-
O3
10 11 12 13 14 15
Tim* (Hours)
16 17 18
Figure 3-13. Comparison of NO, NO2, and O3 predictions with 1 ppmC
trans-2-butene and 1 ppmC iso-butene at NMOC/NOV = 3.
3-30
-------
Comparison of T2Butene & Iso-Butene
1 ppmC HC + 0.20 ppm NOx
150
I
10 11
1: Trmrts-2-But«nt
2: Iso ButefW
12 13 14 15
Tlm« (Hour*)
16 17
240
1 ppmC HC + 0.20 ppm NOx
220-
200-
160-
160-
140-
120-
100-
6O-
60-
40-
20-
03
8 10 11 12 13 14 15 16 17 16
Tim* (Hour*)
Figure 3-14. Comparison of NO, NO2, and O3 predictions with 1 ppmC
trans-2-butene and 1 ppmC iso-butene at NMOC/NOX = 5.
3-31
-------
occurs one hour earlier with the trans-2-butene mechanism than with the
isobutene mechanism. The differences in the concentrations early in the
runs are somewhat exaggerated by the high dilution rates during this
period; nevertheless, the differences are significant. The figures show
that ozone is produced much more rapidly with the trans-2-butene
mechanism. While the ozone yields in the cases with 0.20 ppm NO are
X
comparable with both mechanisms, the ozone yield in the runs with higher
NO (0.33 ppm) are 32% higher with the trans-2-butene mechanism than the
A
isobutene mechanism. These differences are consistent with the
differences in the reactivity of the products of the two alkenes. A
significant portion of the isobutene is oxidized to ketones which are
significantly less reactive than the aldehydes produced from
trans-2-butene oxidation.
Although there are significant differences in the chemistry of the
higher alkenes, it is difficult to justify using more than two higher
alkene species in the OZIPM mechanism because they are usually a small
fraction of NHOCs. It was decided to use the same surrogate alkene
species in the OZIPM mechanism as employed in the Atkinson et al. (1982)
mechanism. With this approach, all terminal alkenes are represented by
propene and all internal alkenes are represented by trans-2-butene. The
rationale for choosing these species was that they are good
representatives of moderately fast-reacting and very fast-reacting
species. In addition, the propene mechanism has been tested more
extensively than any other portion of the mechanism.
3.2 The Condensed Mechanism
As previously discussed, it is necessary to represent the chemistry
with fewer species in mechanisms intended for use in multi-cell models.
The condensed mechanism developed here incorporates all the
approximations made in the OZIPM mechanism plus additional lumping of
organics and elimination of less important species. The justification
for most of the condensation steps is that they do not appear to
significantly affect the predictions when the mechanism is applied to
problems involving urban mixtures of organics.
3-32
-------
Several species that contribute little to the overall reactivity of
mixtures were eliminated from the condensed mechanism. The reactions of
acetone (ACET) were eliminated because its chemical half-life is more
than four days under typical urban conditions and, although significant
amounts of acetone are formed from alkanes, they do not contribute much
reactivity. The reactions of phenols (PHEN) were also eliminated. The
phenols react fairly fast during the day and night; however, the amount
of phenols formed is very small relative to other reactive products of
the aromatics.
Glyoxal (GLYX) also contributes little to the overall reactivity of
urban mixtures; however, it is probably inappropriate to entirely ignore
its reactions. Formaldehyde and carbon monoxide were substituted for
glyoxal in the condensed mechanism. This approximation probably slightly
overestimates glyoxal's contribution to reactivity. This substitution
has the advantage that it also eliminates the acyl peroxy radical (GC03)
and PAN analog (GPAN) formed from glyoxal. Simulations of urban
conditions with the detailed mechanism indicated that the maximum GPAN
concentrations accounted for less than 0.2 percent of the nitrogen in the
system, so elimination of the PAN analog is insignificant.
There are several other products in the mechanism, such as nitric
acid, alkyl nitrates, hydrogen peroxide, and organic peroxides, which are
fairly stable. The chemical half-lives for alkyl nitrates. H^O., and
organic peroxides range from 15 to 30 hours. The chemical half-life of
nitric acid is considerably longer. Simulations were made to investigate
the importance of the reactions of these species in hope that some or all
could be ignored. The results indicated that, although the nitrogen-
containing species react very slowly, their reactions produce small
amounts of NO. and NO. that affect the ozone predictions late in the
simulations after most of the NO and NO. are oxidized. Thus, the
reactions of nitric acid and alkyl nitrates were kept in the condensed
mechanism. Urban simulations made without the H^O. and ROOM destruction
reactions showed that these reactions had virtually no effect on the
predictions of key species (NO, NO., 03, and organic decay rates).
Although these reactions produce a significant amount of radicals, the
radical production occurs mostly after the NO is totally consumed so
3-33
-------
that the radicals have little effect on the key species. Thus, H202 and
ROOM were eliminated from the species list.
Further condensation of the higher aldehydes was incorporated into
the condensed mechanism. Acetaldehyde (ALD2) was substituted for
propionaldehye (RCHO) on a mole (not carbon) basis. The acyl peroxy
radical associated with acetaldehyde (MC03) was substituted for the
higher acyl peroxide radical (PC03). This also eliminated the
corresponding PAN analog. PPN, from the mechanism. The rationale for
this approximation is that the RCHO, PC03, and PPN reactions are almost
identical to the ALD2, HC03, PAN reactions, and that it makes little
difference in predictions for key species in urban simulations. However,
it is important to recognize that this approximation and others in the
condensed mechanism make it more difficult to compare the condensed
mechanism's predictions to ambient observations of aldehydes and PAN,
since the species in the model are truly lumped species.
The last and most significant condensation of the mechanism involved
separately combining the classes of alkanes, higher alkenes, and higher
aromatics. The C4-C5 and >C5 alkanes are combined into a single >C3
alkanes classes (ALKA). The internal and terminal alkenes are
represented as a single class of higher alkenes (ALKE). The
di-alkylbenzenes and tri-alkylbenzenes are represented by a single higher
aromatics class (AROM). The reaction rates and products for the combined
classes are mole-weighted functions of the detailed reactions. Since the
VOC splits for these classes may vary significantly in different
applications, the mechanism shown in Table 3-4 has the rate constants and
product coefficient expressed as functions of the splits between the two
alkane. two higher alkene, and two higher aromatic classes. The
recommended default splits for urban areas are
C4-C5 Alkanes Fraction of >C3 Alkanes 0.43
Terminal Alkenes Fraction of Higher Alkenes 0.60
Di-alkylbenznes Fraction of Higher Aromatics 0.60
on a carbon basis. The default average number of carbons per molecule
are 5.92, 3.4, and 8.4 for the lumped alkanes, higher alkene, and higher
aromatic classes, respectively. The default rate constants and product
coefficients at 298°K for the six lumped reactions are shown as follows:
3-34
-------
ALKA + OH > .112 HCHO +.380 ALD2 +.643 MEK +.131 R02N
+.868 R02R +.698 R202 +.157 R02
k = 6740 per ppm-min (or 4.56E-12 molecules/cc-sec)
ALKE + OH > .667 HCHO +1.33 ALD2 + R02R + R02
k = 57300 per ppm-min (or 3.88E-11 molecules/cc-sec)
t
ALKE + 03 > .427 HCHO +.667 ALD2 +.177 R02R +.177 R02
+.183 H02 + .08 OH +.187 CO
k = 0.110 per ppm-min (or 7.42E-17 molecules/cc-sec)
ALKE +0 > .333 CO +.333 MEK +.267 HCHO +.133 ALD2
+.267 H02 + .40 R02R + .40 R02
k = 15400 per ppm-min (or 1.04E-11 molecules/cc-sec)
ALKE + N03
k =
> N02 +.667 HCHO +1.33 ALD2 + R202 + R02
194 per ppm-min (or 1.31E-13 molecules/cc-sec)
AROM + OH > .17 CRES + .17 H02 + .83 R02R + .83 R02
+.59 DIAL +.518 MGLY +.597 HCHO +.597 CO
k = 56800 per ppm - min (or 3.84E-11 molecules/cc-sec)
These default values should be used only if better data are not
available. The recommended approach for using the mechanism is to
calculate the rate constants and product coefficients from the formulae
given in Table 3-4 based on the speciation of the NHOC emissions
inventory being used in the model application.
3.3 Mechanism Comparison
The effects of the condensation approximations were examined in
numerous simulations. The detailed, OZIPM, and condensed mechanisms were
applied to identical problems for the purpose of comparison. The first
set of simulations involved examining the alkene. alkane, and aromatic
3-35
-------
chemistry separately. The simulations were initialized with 1 ppmC
hydrocarbons and varying amounts of NO . The hydrocarbons in the alkene
A
runs consisted of 23%. 46%, and 31% ethene, propene, and trans-2-butene,
respectively, on a carbon basis. For the alkane runs, the hydrocarbons
consisted of 43% and 57% C4-C5 and >C5 alkanes, respectively, on a carbon
basis. For the aromatic runs, the hydrocarbons were represented as 62%,
23% and 15% toluene, m-xylene. and mesitylene, respectively, on a carbon
basis. Other parameters input for the calculations are summarized in
Table 3-7. Figure 3-15 shows the ozone predictions for the alkene/NO
A
runs carried out at NMOC/NO ratios of 3 and 6. The predictions show
excellent agreement for all three mechanisms. The rates of ozone
formation are in good agreement, and the ozone yields a. within 3%.
Figure 3-16 shows the ozone results for alkane simulations carried out at
NMOC/NOx ratios of 10 and 20. The results show that the OZIPH and
condensed mechanisms can predict the ozone concentrations within 1 and 4%
of that predicted by the detailed mechanism, respectively, under these
conditions. The condensed mechanism predicts slightly more ozone than
the other mechanisms for this alkane mixture. Figure 3-17 shows the
ozone profiles from aromatic runs at NMOC/NO ratios of 3 and 6. The
X
timing is good in both cases. The ozone yields from the OZIPM mechanism
are 1% and 4% higher than those from the detailed mechanism in the high
and low NMOC/NO ratio cases, respectively. The ozone yields from the
A
condensed mechanism are 4% and 12% higher than those from the detailed
mechanism in the high and low NMOC/NO ratio cases, respectively. Hence,
X
condensation has slightly increased the ozone yields from the aromatic
mechanism.
The most important test of the mechanisms is to examine predictions
obtained with surrogate organic mixtures. Simulations were carried out
with 1 ppmC of a typical urban organic mixture and varying amounts of
NO . The NOV levels were set to achieve NMOC/NOW ratios of 3. 6. 10, and
XX X
20. The low NMOC/NO ratio case is simulated for two diurnal cycles to
A
test the nightime chemistry. The ozone predictions for these runs are
shown in Figures 3-18 and 3-19. The level of agreement is excellent in
all cases. The OZIPM mechanism's ozone predictions are within 2% of
those from the detailed mechanism. The condensed mechanism's ozone
3-36
-------
Table 3-7
Conditions for Mechanism Comparison Simulations
Solar Radiation Inputs:
Place:
Lattitude:
Longitude:
Time Zone:
Date:
Photolysis Rates:
Mixing Heights:
Los Angeles, CA
34.
118.
8.
June 21, 1986
Table 2-4
Temperature:
Ozone aloft:
NMOC aloft:
Initial Values:
NO/NOx Ratio:
NMOC/NOx:
NMOC Composition:
Post 6 AM Emissions:
250
250
390
565
729
850
937
1000
1000
30 C
0.08
0.05
m at
m at
m at
m at
m at
m at
m at
m at
m at
ppm
ppmC
0600
0800
0900
1000
1100
1200
1300
1400
2000
Hours
II
II
11
II
n
II
11
[CO] = 1 ppm
[03] - 0.01 ppb
[H20] - 20,000 ppm
0.75
3, 6, 10, 20
Table 4-7
None
3-37
-v- , =/- - .
-------
1
1
260
Simulation of Alkenes + NOx
1 ppmC HC + 0.167 ppm NOx
240-
220 -
200-
180-
160-
140-
120-
100-
80-
6O-
40-
20-
Ozone
260
8 10 11 12 13 14 18 16 17 18 10 20
Hm* (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC + 0.333 ppm NOx
240-
220-
200-
180-
160-
14O-
120-
100-
80-
60-
40-
20-
O
Ozone
10 11 12 13 14 18 16
71m* (Hour*)
17 18 10 20
Figure 3-15. Comparison of ozone predictions from the three
mechanisms for mixed alkenes and NO at NMOC/NtX
x " *
= 3
and 6.
3-38
-------
i
ISO
14O
13O
12O
110
100
90
ao
70
60
ao
40
30
20
10
0
Simulation of Alkanes + NOx
1 ppmC HC *» O.O5 ppm NOx
Ozone
1&2
150
14O
13O
120
110
100
90
BO
70
60
50
4O
3O
2O
10
0
6 10 12 14 16 IB 20 22 24 26 2B 3O 32 34 36 3B 40 42
71m« (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC + 0.10 ppm NOx
Ozone
1&2
B 10 12 14 16 1B 20 22 24 26 28 3O 32 34 36 38 4O 42 44
Tim* (Hours)
Figure 3-16. Comparison of o^one predictions from the three mechanisms
for mixed alkanes and NO at NMOC/NOX = 10 and 20.
3-39
-------
1
160
130-
140-
130
120-
110-
100-
90-
eo-
70-
60-
5O-
40-
30-
20-
10-
0
Simulation of Aromatics -f NOx
1 ppmC HC * 0.167 ppm NOx
Ozone
160
1SO-
I 10 11 12 13 14 13 16 17 16 10 20
71m« (Hours)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC * 0.333 ppm NOx
13 14 13 16 17 18 10 20
Figure 3-17.
Comparison of ozone predictions from the three mechanisms
for mixed aromatics and NOX at NMOC/NOX = 3 and 6.
3-40
-------
i
ISO
170-
160-
160-
140-
130-
120-
110-
100-
90-
80-
70-
60-
50-
40
30-
20-
10-
O
Simulation of Urban Mixture 4- NOx
1 ppmC HC 4. 0.05 ppm NOx
Ozone
10 11
15
160
170-
160-
150-
140-
130-
120-
110-
100-
90-
60-
70-
60-
50-
4O-
30-
20-
10
0
12 13 14
T1m« (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC » O.10 ppm NOx
16 17
18
Ozone
8 10 11 12 13 14 15 16 17 18
Tbn« (Hour*)
Figure 3-18. Comparison of ozone predictions from the three mechanisms
for an urban NMOC mixture at NMOC/NOV = 10 and 20.
3-41
-------
Simulation of Urban Mixture
NOx
I
1
180
170-
160-
180-
140-
190-
120-
110-
100-
90-I
80-
70-
80-
80-
40-
90-
20-
1O-
0
1 ppmC HC * 0.167 ppm NOx
Ozone
1O 11
18
160
140
19O-
120
12 19 14
Hm« (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC * 0.339 ppm NOx
16 17
18
100
«0
80
70
80
80
4O
90
20
10
Ozone
8 10 12 14 16 18 20 22 24 26 28 9O 92 34 96 98 4O 42 44
T1m« (Hour»)
Figure 3-19. Comparison of ozone predictions from the three mechanisms
for an urban NMOC mixture at NMOC/NO = 3 and 6.
3-42
-------
predictions are 1% to 5% higher than those from the detailed mechanism
for these conditions.
Similar runs were carried out to investigate the performance of the
mechanisms at alternate temperatures. Figure 3-20 shows the ozone
prediction in a case with an NMOC/NOx ratio of 3 at 10°C and 40°C instead
of 25°C. The level of agreement between the three mechanisms is not
quite as good at these alternate temperatures; however, the largest
discrepancy is still less than 5% and 13% for the OZIPM and condensed
mechanisms, respectively, in these two-day runs.
This level of agreement between the mechanisms can only be achieved
if the rates of NO and NHOC oxidation and radical concentrations are
X
similar among the mechanisms. Figures 3-21 through 3-28 compare the
predictions for NO, NO,, nitric acid, PANs, ethene, higher alkenes,
toluene, higher aromatics, alkanes, MEK, hydrogen peroxide, H0_, RO^, and
OH for the urban mixture case with an initial NHOC/NO ratio of six. The
A
agreement between the OZIPM and detailed mechanisms is excellent (i.e.,
within ±2%) for all. species. The agreement between the condensed and
detailed mechanisms is within about 10% for all species except the
radicals. The condensed mechanism predicts maximum H02, OH, and R02
concentrations that are 15% to 20% higher than those predicted by the
detailed mechanism for these conditions. Considering that the condensed
mechanism has only about half the number of integrated species as the
detailed mechanism, this level of agreement is considered acceptable.
3-43
-------
I
1
Simulation of Urban Mixture -4- NOx
1 ppmC HC + 0.333 ppm NOx. 2B3K
80-
70-
eo-
50-
40-
30-
20
10
Ozone
150
140
130
120
110
100
00
80
70
80
50
40
30
20
10
0
8 10 12 14 18 18 20 22 24 28 28 30 32 34 36 38 40 42 44
Tlm« (Hour*)
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1 ppmC HC + 0.333 ppm NOx. 313X
Ozone
8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44
Tim* (Hour*)
Figure 3-20. Comparison of ozone predictions from the three mechanisms
for urban NMOC mixture at NMOC/NOX = 3 at 283°K and 313°K.
3-44
-------
ISO
Simulation of Urban Mixture -f- NOx
Mtrlo OxM«
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 19 14 18 16 17 18 10 20
«M _
UMJJUUU
i
8O-
40-
30-
20-
10
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 13 14 18 16
Tim* (Houra)
17 18 19 20
Figure 3-21. Comparison of NO and N02 predictions from the three
mechanisms for an urban NMOC mixture at NMOC/NOV = 6.
3-45
-------
1
Simulation of Urban Mixture + NOx
PAN + PAN Analog.
Detailed Mechanism
O2IPM Mechanism
Condensed Mechanism
12 13 14 15 10 17 18 10 20
90
NHrlo AcJd
1
28-
20-
24-
22-
20-
18-
18-
14-
12-
10-
8-
8-
4-
2-
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism 3
10 11 12
13 14 18 10
Hm« (Hour*)
17 18 18 2O
Figure 3-22. Comparison of PAN + PAN analogs and HN03 predictions
from the three mechanisms for an urban NMOC mixture
at NMOC/NO,. = 6.
3-46
-------
Simulation of Urban Mixture 4- NOx
s
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 13 14 1S 16 17 18 10 20
Urn* (Hour*)
1
15
14-
13-
12-
11 -
10-
9-
0-
7-
0-
0-
4-
3-
2-
1 -
0
EttMTM
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12
13 14 15 10
71m« (Hour*)
17 10 10 2O
Figure 3-23.
Comparison of higher alkenes and ethene predictions
from the three mechanisms for an urban mixture at
NMOC/NO,. = 6.
3-47
-------
Simulation of Urban Mixture 4- NOx
1
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
13 14 15 16 17 IB 10 20
Urn* (Hour*)
23
22-
21 -
20-
10-
18-
17-
16-
15-
14-
13-
12-
11 J
10-
0-
8-
7-
6-
5-
4-
3
2-
1
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
8 0 10 11 12 13 14 15 16 17 IS 10 20
Tim* (Hours)
Figure 3-24. Comparison of higher aromatics and toluene predictions
from the three mechanisms for an urban NMOC mixture at
NMOC/NO
6.
3-48
-------
Simulation of Urban Mixture + NOx
00
1
eo-
7O-
eo-
80-
40-
30-
20
to
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
1*2
10 11 12 13 14 18 1S 17 18 108 20
Urn* (Hour*)
Methyl Ethyl Kctono
8-
7-
e-
8-
4-
3-
2-
1 -
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
8 0 1O 11 12 13 14 IB 18 17 18 10 2O
Tim. (Hour.)
Figure 3-25. Comparison of alkanes and MEK predictions from the
three mechanisms for an urban NMOC mixture at
NMOC/NOX = 6.
3-49
-------
Simulation of Urban Mixture + NOx
s
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 13 14 18 ia 17 18 19 20
Tbn« (Hour*)
1
IB
14
13
12
11
10
0'
B-
7-
8-
8-
4-
3
2-
1 -
O
Higher
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12
13 14 18
Thn« (Hour*)
18 17 IB 19 20
Figure 3-26.
Comparison of formaldehyde and higher aldehyde
predictions from the three mechanisms for an urban
NMOC mixture at NMOC/NOV = 6.
3-50
-------
Simulation of Urban Mixture
NOx
1
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 13 14 18 16 17 18 19 20
Tim* (Hour*)
0.034
O.O32-
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12
13 14 18 16
Tim* (Hour*)
17 18 19 2O
Figure 3-27. Comparison of H2O2 and HO- radical predictions from
the three mechanisms for an urban NMOC mixture at
NMOC/NO,, « 6.
3-51
-------
Simulation of Urban Mixture 4- NOx
0.035
Total R02 Rodtoato
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11 12 13 14 15 16 17 18 19 2O
Y!m« (Hour*)
0.00045
0.0004-
fydroxol Rodleol
1: Detailed Mechanism
2: OZIPM Mechanism
3: Condensed Mechanism
10 11
12 13 14 15 16
Tim* (Heura)
17 18 18 2O
Figure 3-28. Comparison of R02 and OH radical predictions from the
three mechanisms for an urban NMOC mixture at
NMOC/NOX = 6.
3-52
-------
4. SPECIATION OF ORGANIC COMPOUNDS
Knowledge of NMOC speciation is essential for modeling urban ozone
air quality with up-to-date chemical mechanisms. Most photochemical air
quality simulation models require NMOC speciation information for
emissions, initial concentrations, and boundary concentrations. The
speciation data needs to be compiled using the NMOC classification scheme
that is used by the specific mechanism incorporated into the simulation
model. The NMOC classes in the the SAPRC/ERT OZIPM mechanism are shown
in Table 4-1. Also shown in the table are the molecular weights and
number of carbons per molecule of the surrogate species used to represent
each class of compounds. Photochemical models require this information
to convert concentrations and emissions from mass and molar carbon units
to molar units.
The classification scheme shown in Table 4-1 is also recommended for
the initial compilation of data for use with the condensed mechanism
since proper use of that mechanism requires knowledge of the splits
between the two alkane classes, the two higher alkene classes, and the
two higher aromatic classes. Final inputs for the condensed mechanism
should be classified into the classes shown in Table 4-2.
4.1 Assignment of Individual Species to Classes
The assignment of individual organic species to the organic classes
in the OZIPM mechanism is shown in Table 4-3. Given detailed chemical
speciation for either emissions or ambient concentrations, the individual
species should be classified according to the assignments shown in the
table. Unlike the Carbon Bond approach, where almost all species are
divided into two or more classes, all of the carbon in individual species
is assigned to one compound class in this classification scheme. The
only exceptions to this are propane, methanol, and benzene, which are
split between the C4-C5 alkanes and nonreactive classes. Also included
in the table are estimates of the uncertainty in the assignments. The
uncertainty is expressed on a scale of 0 to 4, where 0 indicates that the
species is treated explicitly in the mechanism, and 4 indicates that
4-1
-------
TABLE 4-1
NMOC CLASSES FOR THE OZIPM MECHANISM
Molecular No. of Carbons
Compound Class Symbol Weight Per Molecule
Ethene ETHE 28. 2
Terminal Alkenes PRPE 42. 3
Internal Alkenes TOUT 56. 4
C4-C5 Alkanes ALK4 65. 4.5
C6+ Alkanes ALK7 100. 7
Hono-Alkylbenzenes TOLU 92. 7
Di-Alkylbenzenes XYLE 106. 8
Tri-AlkyIbenzenes TMBZ 120. 9
Formaldehyde HCHO 30. 1
Acetaldehyde ALD2 46. 2
Higher Aldehydes RCHO 58. 3
Ke tones MEK 72. 4
Nonreactive NROG 15. 1
TABLE 4-2
NMOC CLASSES FOR THE CONDENSED MECHANISM
Molecular No. of Carbons
Compound Class Symbol Weight Per Molecule
Ethene ETHE 28. 2
Higher Alkenes ALKE 47.6* 3.4*
C4+ Alkanes ALKA 84.9* 5.92*
Mono-AlkyIbenzenes TOLU 92. 7
Higher Aroaatics AROM 111.6* 8.4*
Formaldehyde HCHO 30. 1
Higher Aldehydes ALD2 46. 2
Ketones MEK 72. 4
Nonreactive NROG 15. 1
*Default values. Speciated emission inventory data should be
used, if available, to determine more accurate values.
4-2
-------
TABLE 4-3
ORGANIC SPECIES CLASSIFICATION FOR THE OZIPM CHEMICAL MECHANISM
ID NO.
Compound Name
Uncertainty
Classification Classification
43814 1,1,1-TRICHLOROETHANE
43820 1,1,2-TRICHLOROETHANE
43813 1,1-DICHLOROETHANE
45225 1,2,3-TRIMETHYLBENZENE
45208 1.2,4-TRIMETHYLBENZENE
99016 1,2-DICHLOROPROPANE
45207 1,3.5-TRIMETHYLBENZENE
43218 1,3-BUTADIENE
46201 1,4-DIOXANE
43213 1-BUTENE
98104 1-CHLOROBUTANE
43268 1-DECENE
98111 l-ETHOXy-2-PROPANOL
98113 1-HEPTANOL
98005 1-HEPTENE
43245 1-HEXENE
98037 1-METHYLCYCLOHEXANE
43267 1-NONENE
99901 1-OCTENE
43224 1-PENTENE
43312 1-T-2-0-4-TM-CYCLOPENTANE
43269 1-UNDECENE
43296 2,2,3-TRIMETHYLPENTANE
43276 2.2,4-TRIMETHYLPENTANE
43299 2,2,5-TRIMETHYLPENTANE
98033 2.2,5-TRIMETHYLHEXANE
43291 2,2-DIMETHYBUTANE
43280 2,3,3-TRIMETHYLPENTANE
43279 2,3,4-TRIMETHYLPENTANE
43234 2,3-DIMETHYL-1-BUTENE
98001 2,3-DIHETHYLBUTANE
43274 2,3-DIMETHYLPENTANE
98054 2,4,4-TRIMETHYL-l-PENTENE
98055 2,4,4-TRIMETHYL-2-PENTENE
43277 2,4-DIMETHYLHEXANE
43271 2,4-DIMETHYLPENTANE
43278 2,5-DIMETHYLHEXANE
98110 2-(-BUTOXYETHOXY)-ETHANOL
43308 2-BUTYLETHANOL
98108 2-BUTYLTETRAHYDROFURAN
98051 2-CHLOROTOLUENE
43452 2-ETHOXYETHYL ACETATE
43311 2-ETHOXYETHANOL
98002 2-ETHYL-l-BUTENE
98112 2-ETHYL-l-HEXANOI.
43310 2-METHOXYETHANOL
NONREACTIVE 1
NONREACTIVE 1
NONREACTIVE 1
TRI-ALKYL BENZENE 1
TRI-ALKYL BENZENE 1
NONREACTIVE 1
TRI-ALKYL BENZENE 0
INTERNAL ALKENES 2
C6+ ALKANES 2
TERMINAL ALKENES 1
C4-C5 ALKANES 2
TERMINAL ALKENES 3
C6+ ALKANES 2
C6+ ALKANES 1
TERMINAL ALKENES 3
TERMINAL ALKENES 3
C6+ ALKANES 1
TERMINAL ALKENES 3
TERMINAL ALKENES 3
TERMINAL ALKENES 2
C6+ ALKANES 1
TERMINAL ALKENES 3
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
TERMINAL ALKENES 2
C6+ ALKANES 1
C6+ ALKANES 1
TERMINAL ALKENES 3
INTERNAL ALKENES 3
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 2
C6+ ALKANES 1
C6+ ALKANES 2
KONO-ALKYL BENZENE 2
C6+ ALKANES 3
C6+ ALKANES 2
TERMINAL ALKENES 2
C6+ ALKANES 1
C6+ ALKANES 2
4-3
-------
TABLE 4-3 (continued)
ID No.
Compound Name
Uncertainty
Classification Classification
43229 2-METHYL PENTANE
98076 2-METHYL-3-HEXANONE
98004 2-METHYL-2-PENTENE
43228 2-METHYL-2-BUTENE
98040 2-METHYL-l-PENTENE
43225 2-METHYL-l-BUTENE
43275 2-METHYLHEXANE
98032 3,5,5-TRIMETHYLHEXANE
98105 3-(CHLOROHETHYL)-HEPTANE
99021 3-CARENE*
98041 3-HEPTENE
43230 3-HETHYL PENTANE
43223 3-METHYL-l-BUTENE
43270 3-METHYL-T-2-PENTENE
43211 3-METHYL-l-PENTENE
43298 3-METHYLHEPTANE
43295 3-METHYLHEXANE
43293 4-METHYL-T-2-PENTENE
43297 4-METHYLHEPTANE
98042 4-NONENE
45221 A-METHYLSTYRENE
98025 A-PINENE*
98097 A-TERPINEOL*
43503 ACETALEHYDE
43404 ACETIC ACID
43551 ACETONE**
43702 ACETONITRILE
43206 ACETYLENE
43505 ACROLEIN (ACRYLIC ALDHYDE)
43704 ACRYLONITRILE
98085 ALKYL SUBSTITUTED CYCLOHEXANE
99001 ALLYL CHLORIDE
98015 ANTHRACENE
98020 B-METHYLSTYRENE
98026 B-PINENE*
45201 BENZENE
45402 BENZOIC ACID
98024 BENZYL CHLORIDE
99017 BROMODICHLOROHETHANE
99019 BROMOFORH
98080 BUTANDIOL
98074 BUTYL CELLOSOLVE
43510 BUTYRALDEHYDE
98086 C2 ALKYL DECALIN
98084 C2 ALKYL INDAN
43512 C5 ALDEHYDE
98075 C5 ESTER
98095 C6 ALDEHYDE
C6+ ALKANES 1
KETONES 1
INTERNAL ALKENES 2
INTERNAL ALKENES 1
TERMINAL ALKENES 3
TERMINAL ALKENES 2
C6+ ALKANES 1
C6+ ALKANES 1
C6+ ALKANES 2
INTERNAL ALKENES 3
INTERNAL ALKENES 3
C6+ ALKANES 1
TERMINAL ALKENES 1
INTERNAL ALKENES 2
TERMINAL ALKENES 2
C6+ ALKANES 1
C6+ ALKANES 1
INTERNAL ALKENES 2
C6+ ALKANES 1
INTERNAL ALKENES 3
TERMINAL ALKENES 3
INTERNAL ALKENES 3
INTERNAL ALKENES 3
ACETALDEHYDE 0
NONREACTIVE 2
KETONES 1
NONREACTIVE 1
NONREACTIVE 2
ACETALDEHYDE 3
ETHENE 3
C6+ ALKANES 2
ETHENE 3
TRI-ALKYL BENZENE 3
INTERNAL ALKENES 3
TERMINAL ALKENES 3
NONREACTIVE 70%
C6+ ALKANES 30% 3
NONREACTIVE 3
HONO-ALKYL BENZENE 3
NONREACTIVE 1
NONREACTIVE 1
C6+ ALKANES 2
C6+ ALKANES 2
HIGHER ALDEHYDES 1
C6+ ALKANES 2
DI-ALKYL BENZENE 3
HIGHER ALDEHYDES 2
C4-C5 ALKANES 3
HIGHER ALDEHYDES 2
4-4
-------
TABLE 4-3 (continued)
ID No.
Compound Name
Uncertainty
Classification Classification
98093 C6 ESTER
98096 CARBITOL
98030 CARBON SULFIDE
43807 CARBON TETRABROHIDE
43804 CARBON TETRACHLORIDE
98031 CARBONYL SULFIDE
98037 CARVOMENTHENE*
98088 CARVONE*
43443 CELLOSOLVE ACETATE
99020 CHLORODIBROMOMETHANE
43825 CHLORODIFLUOROMETHANE (F-22)
43830 CHLOROFLUOROHYDROCARBONS
43803 CHLOROFORM
43827 CHLOROPENTAFLUOROETHANE (F-115)
43826 CHLOROTRIFLUOROHETHANE (F-13)
43217 CIS-2-BUTENE
43227 CIS-2-PENTENE
43227 CIS-3-PENTENE
98019 CR70FLOURANE (F 114)
43264 CYCLOHEXANONE
43248 CYCLOHEXANE
43273 CYCLOHEXENE
43292 CYCLOPENTENE
43242 CYCLOPENTANE
43207 CYCLOPROPANE
98027 D-LIMONENE*
43320 DIACETONE ALCOHOL
99015 DIBENZOFURAN
98107 DIBUTYL ETHER
43823 DICHLORODIFLUOROMETHANE (F-12)
43802 DICHLOROHETHANE
43828 DICHLOROTETRAFLUOROETHANE
98062 DIETHYLCYCLOHEXANE
43450 DIMETHYL FORMAMIDE
98018 DIMETHYL ETHER
98059 DIMETHYLCYCLOHEXANE
45103 DIMETHYLETHYLBENZENE
98091 DIMETHYLHEPTANE
98012 DIMETHYLNAPHTHALENE
98017 DM-2,3,DH-1H-INDENE
99006 EPICHLOROHYDRIN
43202 ETHANE
43433 ETHYL ACETATE
43438 ETHYL ACRYLATE
43302 ETHYL ALCOHOL
43812 ETHYL CHLORIDE
43351 ETHYL ETHER
98106 ETHYL ISOPROPYL ETHER
43219 ETHYLACETYLENE
C6+ ALKANES 3
C6+ ALKANES 2
NONREACTIVE 4
NONREACTIVE 0
NONREACTIVE 0
NONREACTIVE 1
INTERNAL ALKENE 3
INTERNAL ALKENE 3
C6+ ALKANES 3
NONREACTIVE 1
NONREACTIVE 1
NONREACTIVE 3
NONREACTIVE 1
NONREACTIVE 0
NONREACTIVE 0
INTERNAL ALKENES 1
INTERNAL ALKENES 1
INTERNAL ALKENES 1
NONREACTIVE 1
KETONES 2
C6+ ALKANES 1
INTERNAL ALKENES 2
INTERNAL ALKENES 2
C4-C5 ALKANES 1
NONREACTIVE 1
INTERNAL ALKENES 3
HIGHER KETONE 3
DI-ALKYL BENZENE 3
C6+ ALKANES 1
NONREACTIVE 0
NONREACTIVE 1
NONREACTIVE 0
C6+ ALKANES 1
DI-ALKYL BENZENE 4
C4-C5 ALKANES 1
C6+ ALKANES 1
TRI-ALKYL BENZENE 1
C6+ ALKANES 1
TRI-ALKYL BENZENE 3
TRI-ALKYL BENZENE 3
NONREACTIVE 2
NONREACTIVE 2
C4-C5 ALKANES 3
TERMINAL ALKENE 3
C4-C5 ALKANES 1
NONREACTIVE 1
C4-C5 ALKANES 1
C6+ ALKANES 1
ETHENE 3
4-5
-------
TABLE 4-3 (continued)
ID No.
Compound Name
Uncertainty
Classification Classification
43721 ETHYLAMINB
45203 ETHYLBENZENE
43288 ETHYLCYCLOHEXANE
98057 ETHYLCYCLOPENTANE
99014 ETHYLENE DIBROMIDE
43601 ETHYLENE OXIDE
43815 ETHYLENE DICHLORIDE
43370 ETHYLENE GLYCOL
43203 ETHYLENE
98011 ETHYLKAPHTHALENE
43502 FORMALDEHYDE
99902 FURAN
43368 GLYCOL
43367 GLYCOL ETHER
99903 GLYOXAL**
43232 HEPTANE
98077 HEPTANONE
99007 HEXACHLOROCYCLOPENTADIENE
43231 HEXANE
43371 HEXYLENE GLYCOL
98044 INDAN
98048 INDENE
98115 ISOAMYL ISOBUTYRATE
43214 ISOBUTANE
43451 ISOBUTYL ISOBUTYRATE
43446 ISOBUTYL ACETATE
43306 ISOBUTYL ALCOHOL
98047 ISOBUTYLBENZENE
43215 ISOBUTYLENE
98036 ISOBUTYRALDEHYDE
99904 ISOMERS OF HEPTENE
43105 ISOMERS OF HEXANE
43106 ISOMERS OF HEPTANE
99905 ISOMERS OF HEXENE
45102 ISOMERS OF XYLENE
45105 ISOMERS OF BUTYLBENZENE
43108 ISOMERS OF NONANE
45106 ISOMERS OF DIETHYLBENZENE
43110 ISOMERS OF UNDECANE
43122 ISOMERS OF PENTkNE
45104 ISOMERS OF ETHYLTOLUENE
43112 ISOMERS OF DODECANE
43107 ISOMERS OF OCTANE
43109 ISOMERS OF DECANE
99906 ISOMERS OF OCTENE
43243 ISOPRENE*
98043 ISOPROPYLBENZENE (CUMENE)
43444 ISOPROPYL ACETATE
43304 ISOPROPYL ALCOHOL
DI-ALKYL BENZENE 4
MONO-ALKYL BENZENE 1
C6+ ALKANES 1
C6+ ALKANES 1
NONREACTIVE 2
NONREACTIVE 2
NONREACTIVE 2
C4-C5 ALKANES 3
ETHENE 0
TRI-ALKYL BENZENE 3
FORMALDEHYDE 0
DI-ALKYL BENZENE 3
C4-C5 ALKANES 3
C6+ ALKANES 2
FORMALDEHYDE 2
C6+ ALKANES 1
KETONES 1
NONREACTIVE 2
C6+ ALKANES 1
C6+ ALKANES 2
DI-ALKYL BENZENE 3
TRI-ALKYL BENZENE 3
C6+ ALKANES 3
C4-C5 ALKANES 1
C6+ ALKANES 3
C4-C5 ALKANES 3
C4-C5 ALKANES 1
MONO-ALKYL BENZENE 1
TERMINAL ALKENES 2
HIGHER ALDEHYDES 1
INTERNAL ALKENES 3
C6+ ALKANES 1
C6+ ALKANES 1
INTERNAL ALKENES 3
DI-ALKYL BENZENE 3
MONO-ALKYL BENZENE 3
C6+ ALKANES 1
DI-ALKYL BENZENE 3
C6+ ALKANES 2
C4-C5 ALKANES 1
DI-ALKYL BENZENE 3
C6+ ALKANES 2
C6+ ALKANES 1
C6+ ALKANES 2
INTERNAL ALKENES 3
INTERNAL ALKENES 2
MONO-ALKYL BENZENE 1
C4-C5 ALKANES 3
C4-C5 ALKANES 1
4-6
-------
TABLE 4-3 (continued)
ID No.
Compound Name
Uncertainty
Classification Classification
98089 ISOPULEGONE*
98056 ISOVALERALDEHYDE
43119 LACTOL SPIRITS
98022 H-CRESOL (3-H-BENZENOL)**
98045 M-DIETHYLBENZENE
45212 M-ETHYLTOLUENE
45205 M-XYLENE
99008 MALEIC ANHYDRIDE
43201 METHANE
43432 METHYL ACETATE
43301 METHYL ALCOHOL
43445 METHYL AMYL ACETATE
43561 METHYL AMYL KETONE
43819 METHYL BROMIDE
43801 METHYL CHLORIDE
43552 METHYL ETHYL KETONE
98114 METHYL ISOBUTYRATE
43560 METHYL ISOBUTYL KETONE
43559 METHYL N-BUTYL KETONE
43209 METHYLACETYLENE
98016 METHYLANTHRACENE
43262 METHYLCYCLOPENTANE
43261 METHYLCYCLOHEXANE
43272 METHYLCYCLOPENTENE
43805 METHYLENE BROMIDE
98010 METHYLNAPHTHALENE
45234 METHYLPROPYLBENZENE
43118 MINERAL SPIRITS
45801 MONOCHLOROBENZENE
43212 N-BUTANE
43305 N-BUTYL ALCOHOL
43435 N-BUTYL ACETATE
43238 N-DECANE
43255 N-DODECANE
43220 N-PENTANE
98063 N-PENTYLCYCLOHEXANE
43303 N-PROPYL ALCOHOL
45209 N-PROPYLBENZENE
45101 NAPHTHA
98046 NAPHTHALENE
99009 NITROBENZENE
43235 NONANE
98021 0-CRESOL (2-M-BENZENOL)**
45211 0-ETHYLTOLUENE
45204 0-XYLENE
43233 OCTANE
98023 P-CRESOL (4-M-BENZENOL)**
TERMINAL ALKENES 3
HIGHER ALDEHYDES 2
C6+ ALKANES 4
MONO-ALKYL BENZENE 2
DI-ALKYL BENZENE 1
DI-ALKYL BENZENE 1
DI-ALKYL BENZENE 0
NONREACTIVE 2
NONREACTIVE 1
NONREACTIVE 2
NONREACTIVE 50%
C4-C5 ALKANES 50% 3
C6+ ALKANES 3
KETONES 1
NONREACTIVE 1
NONREACTIVE 1
KETONES 0
C4-C5 ALKANES 3
KETONES 1
KETONES 1
ETHENE 3
TRI-ALKYL BENZENE 3
C6+ ALKANES 1
C6+ ALKANES 1
INTERNAL ALKENES 3
NONREACTIVE 0
TRI-ALKYL BENZENE 3
DI-ALKYL BENZENE 1
MONO-ALKYL BENZENE 4
NONREACTIVE 3
C4-C5 ALKANES 1
C4-C5 ALKANES 1
C4-C5 ALKANES 3
C6+ ALKANES 2
C6+ ALKANES 2
C6+ ALKANES 1
C6+ ALKANES 2
C4-C5 ALKANES 1
MONO-ALKYL BENZENE 1
MONO-ALKYL BENZENE 4
TRI-ALKYL BENZENE 3
NONREACTIVE 3
C6+ ALKANES 1
MONO-ALKYL BENZENE 2
DI-ALKYL BENZENE 1
DI-ALKYL BENZENE 1
C6+ ALKANES 1
MONO-ALKYL BENZENE 2
4-7
-------
TABLE 4-3 (continued)
ID No.
Compound Name
Uncertainty
Classification Classification
45807 P-DICHLOROBENZENE
45206 P-XYLENE
98094 PENTYL ALCOHOL
43817 PERCHLOROETHYLENE
453CO PHENOLS**
98028 PHTHALIC ANHYDRIDE
43208 PROPADIENE
43204 PROPANE
43504 PROPIONALDEHYDE
43434 PROPYL ACETATE
45108 PROPYLBENZENE
98109 PROPYLC7CLOHEXANONE
43602 PROPYLENE OXIDE
43369 PROPYLENE GLYCOL
43205 PROPYLENE
98013 PROPYLNAPHTHALENE
45216 SEC-BUTYLBENZENE
45220 STYRENE
98116 SUBSTITUTED C7 ESTER (C12)
98117 SUBSTITUTED C9 ESTER (C12)
43123 TERPENES*
98079 TERPINENE*
45215 TERT-BUTYLBENZENE
43309 TERT-BUTYL-ALCOHOL
43390 TETRAHYDROFURAN
45232 TETRAHETHYLBENZENE
45202 TOLUENE
99018 TRANS-1,2-DICHLOROETHENE
43216 TRANS-2-BUTENE
43227 TRANS-2-PENTENE
43226 TRANS-2-PENTENE
43227 TRANS-3-PENTENE
45233 TRI/TETRAALKYL BENZENE
43821 TRICHLOROTRIFLUOROETHANE
43811 TRICHLOROFLUOROMETHANE
43824 TRICHLOROETHYLENE
45107 TRIMETHYLBENZENE
43740 TRIMETHYL AMINE
98060 TRIMETHYLCYCLOHEXANE
98058 TRIMETHYLCYCLOPENTANE
98014 TRIMETHYLNAPHTHALENE
43822 TRIMETHYLFLUOROSILANE
43241 UNDECANE
43860 VINYL CHLORIDE
45401 XYLENE BASE ACIDS
NONREACTIVE 3
DI-ALKYL BENZENE 1
C4-C5 ALKANES 1
NONREACTIVE 1
MONO-ALKYL BENZENE 3
DI-ALKYL BENZENE 3
TERMINAL ALRENES 3
NONREACTIVE 50%
C4-C5 ALKANES 50% 3
HIGHER ALDEHYDES 1
C4-C5 ALKANES 3
MONO-ALKYL BENZENE 1
KETONES 2
C4-C5 ALKANES 3
C4-C5 ALKANES 2
TERMINAL ALKENES 0
TRI-ALKYL BENZENE 3
MONO-ALKYL BENZENE 1
TERMINAL ALKENES 3
C6+ ALKANES 3
C6+ ALKANES 3
INTERNAL ALKENES 3
INTERNAL ALKENES 3
MONO-ALKYL BENZENE 1
C4-C5 ALKANES 1
C6+ ALKANES 1
TRI-ALKYL BENZENE 1
MONO-ALKYL BENZENE 0
ETHENE 3
INTERNAL ALKENES 0
INTERNAL ALKENES 1
INTERNAL ALKENES 1
INTERNAL ALKENES 1
TRI-ALKYL BENZENE 1
NONREACTIVE 0
NONREACTIVE 0
ETHENE 3
TRI-ALKYL BENZENE 1
TRI-ALKYL BENZENE 4
C6+ ALKANES 1
C6+ ALKANES 1
TRI-ALKYL BENZENE 3
NONREACTIVE 1
C6+ ALKANES 2
ETHENE 3
DI-ALKYL BENZENE 4
*Biogenic compound.
**These species can either be represented by the assigned class or
explicitly.
4-8
-------
TABLE 4-3 (continued)
Uncertainty Classifications:
0 - Explicitly represented in mechanism (for reactive compounds),
or known not to react in the troposphere (for nonreactive compounds)
1 = Representation shown is probably a good approximation
2 = Representation shown may not be a good approximation, but the
mechanism does not contain more appropriate species.
3 = Representation shown is probably a poor approximation, but the
mechanism does not contain more appropriate species.
4 = Appropriate representation is unknown.
4-9
-------
reactivity is totally unknown. Examples of the uncertainty
classification are described in Table 4-4.
Chemical structure is largely the basis for -the assignment of the
individual species to classes. Alkanes are assigned to one of the alkane
classes on the basis of carbon number. Alkenes are assigned based on the
position of the double bond within the molecule (i.e., on whether the
double bond is located in the terminal position or in an internal
position). The aromatics are assigned based on the number of alkyl
groups attached to the benzene ring. Aldehydes are assigned on the basis
of carbon number. However, about 20% of the compounds on the list are
not kinetically or structurally similar to any of the surrogate species.
These are the species that have been assigned a high uncertainty rating
(3 or 4) in Table 4-3. The assignments for these species are primarily
based on similarity between their OH rate constants (when available) and
the OH rate constants of the surrogate species in the mechanism and,
secondarily, on similarity of structure and reactivity of products (when
known). The OH rate constants were obtained from Atkinson (1986).
Although these compounds represent 20% of the species on the list, it is
unlikely that they represent a significant (i.e., more than 5%) fraction
of NMOC in urban areas.
Another difficulty is in the classification of the less reactive
compounds. It is difficult to objectively separate the nonreactive and
reactive compounds. This problem has been recognized for many years and
still does not have an adequate solution because reactivity is a very
complex issue. It is well established that the reactivity of organic
compounds depends markedly on the NMOC/NO ratio of the mixture (Atkinson
et al. 1983). This dependence makes it difficult to assess reactivity in
absolute terms. With full recognition of their shortcomings, OH rate
constants have been used as the basis for separating the nonreactive and
reactive compounds in this assessment. Nonphotolyzing species with OH
rate constants less than l.E-12 molecules per cc-sec have been largely
classified as nonreactive. Although the OH rate constant can be a
misleading surrogate for reactivity [because the products of the reaction
may or nay not be reactive (Atkinson et al. 1983)], it is the only
available Measure of reactivity for most of the less reactive species.
The cut-off of l.E-12 molecules per cc-sec for the OH rate constant is
4-10
-------
TABLE 4-4
EXAMPLES OF UNCERTAINTY CLASSIFICATIONS
CLASS 1: -All alkanes, including simple alcohols or ethers, lumped
with the 2 alkane classes
-C3-C4 1-alkenes as terminal alkenes (propene)
-C4-C5 internal alkenes as internal alkenes (2-butene)
-alkylbenzenes
CLASS 2: -Bifunctional alcohols or ethers as alkanes
-Unsymmetrical disubstituted alkenes as terminal alkenes,
which are represented by propene
-C5 1-alkenes as terminal alkenes (propene)
-C6 internal alkenes as internal alkene (2-butene)
-Aromatics containing Cl's on side groups
-External dialkenes as terminal alkenes
-C10+ alkanes as C6+ alkanes
CLASS 3: -Esters and other carbonyl compounds as alkanes
-C6-C9 1-alkenes as terminal alkenes
-C7+ internal alkenes as internal alkenes
-Groups of compounds with varying classification,
depending on which, where most are expected to be as
classified, with uncertainty of 2 or better
-C10+ 1 alkenes as terminal alkenes
-Styrenes as alkenes
-Naphthalenes, tetralins, or indans as di- or tri-
alkyl benzenes
-Furans as aromatics
CLASS 4: -Amines as aromatics (too reactive to be classified as
alkanes, but chemistry not aromatic.)
-CS2 (unknown whether it promotes ozone formation)
4-11
-------
arbitrary, but probably adequate for most urban situations where there is
an abundance of more reactive compounds.
4.2 Speciation of NMOC Emissions and Ambient Data
Historically, even though the role of organics in ozone formation
has been recognized for over 20 years, speciated NMOC data have not been
collected on a routine basis in urban areas. Mostly because of the
expense and complexity of the gas chromatographic (GC) measurement
technique, speciated NMOC has only been collected for short periods,
usually during special air quality studies. Similarly, direct measure-
ments of the speciation of NMOC emissions have not been performed on a
routine basis. The routine measurements have primarily quantified total
VOC and NMOC.
Because there are over 300 gaseous organic species in ambient air
(Hampton et al. 1982; Stump and Dropkin 1985), and the concentrations of
many species are very low, researchers have had a difficult time trying
to provide complete speciation of the organics. In typical applications
of the GC technique, 75% to 90% of the organic carbon can be speciated;
10% to 25% cannot be identified. Some improvement on these percentages
can be achieved with the scrubbing technique of Lonneman (1986), which
provides a means to classify most of the otherwise unidentified compounds
by carbon number and class (alkene, alkane, and aromatics). Also, the
normal combination of GC and flame ionization detection (FID) methods
does not detect oxygenated species such as aldehydes and ketones.
Although the sum of the oxygenated species concentrations rarely exceeds
10% of the NMOC, the concentrations play a very important role as photo-
initiators in the atmospheric chemistry, and knowledge of their emissions
and ambient concentrations is important. Reliable techniques for measur-
ing the oxygenated species concentrations at ambient levels have only
recently become available. These techniques have not been applied widely
o there is a shortage of good data for oxygenated species and an even
greater shortage of side-by-side oxygenated and nonoxygenated species
data.
Notwithstanding the shortcomings of the available data bases, there
are data bases for speciation of NMOC emissions and ambient
4-12
-------
concentrations. Emission speciation profiles are available for a
moderate number of stationary and mobile sources in the "Volatile Organic
Compound Species Data Manual11 (EPA 1980) and "Improvements of the
Emission Inventory for ROG and NO in the SoCAB" (Oliver and Peoples
1985). Profiles for stationary sources are generally assigned on the
basis of Source Classification Code (SCC). The detailed profiles can be
transformed to NMOC class profiles using the assignments shown in
Table 4-3. However, in order to speciate an entire emissions inventory,
the available profiles must be extrapolated to source types that may not
be very similar to the source for which the data were obtained. High-
quality speciation data for mobile sources are available from EPA's
"Forty-Six Car Study" (Sigsby et al. 1987).
Speciated ambient NMOC data are needed for photochemical modeling.
It is recommended that area-specific data be employed in the modeling
whenever possible. Recognizing that speciated NMOC ambient data are
often not available, an analysis of recent 6:00 to 9:00 a.m. NMHC data
from urban areas was performed. The data selected for analysis were
500 samples collected by EPA in 29 urban areas during 1984 and 1985
(Lonneman 1986). These data were collected and analyzed with a consis-
tent methodology and have an unusually small percentage of unidentified
carbon. However, many of the higher molecular weight compounds were only
identified by carbon number and by class (alkane, alkene, or aromatic),
so the actual splits between the two types of the higher alkenes and two
types of higher aromatics are uncertain. The average normalized NMHC
composition of the data from each city was computed. A grand average
profile was determined from the average profile in each city. Data from
four cities along the Gulf Coast were not included in the grand average
because their average composition profiles showed anomalously high altcene
fractions and low aromatic fractions. The results of the analysis are
shown in Table 4-5. The data indicate that the NMHC detected by GC are
49% C4+ alkanes, 13% alkenes, 26% aromatics, and 12% nonreactive.
Ambient data for oxygenated species were reviewed in order to
establish default composition fraction. Most of the available data has
been collected in the Los Angeles Basin. Data reported by Grosjean
(1982), Grosjean and Lloyd (1982), and Grosjean and Fung (1984) were
examined. Figure 4-1 shows frequency distributions of the concentrations
4-13
-------
TABLE 4-5
URBAN NMHC COMPOSITION DETERMINED FROM DATA COLLECTED BY LONNEMAN IN 1984 AND 1985 (Carbon Fractions)
Location
b.
I
Akron, OH
Atlanta, GA
Baton Rouge, LA
Birmingham, AL*
Boston, MA
Charlotte, NC
Chattanooga, TN*
Cincinnati,OH
Cleveland, OH
Dallas, TX
El Paso, TX
Fort Worth, TX
Houston, TX
Indianapolis, IN
Kansas City, MO
Lake Charles, LA
Memphis, TN
Miami, FL
Philadelphia, PA
Portland, ME
Richmond, VA
St. Louis, MO
Washington, DC
West Palm Beach, FL*
Wilkes-Barre, PA
Average
Standard Deviation**
C4-C5 C6+ Terminal Internal Hono-alkyl Di-alkyl Tri-alkyl No. of
Alkanes Alkanes Ethene Alkenes Alkenes Benzenes Benzenes Benzenes Unreactive Samples
.203
.166
.243
.113
.262
.188
.114
.258
.243
.204
.245
.213
.251
.219
.207
.256
.164
.216
.222
.281
.173
.198
.213
.138
.203
.208
.044
.261
.337
.254
.459
.228
.296
.322
.270
.220
.288
.265
.283
.205
.281
.328
.192
.330
.294
.233
.209
.291
.256
.275
.*62
.286
.285
.064
.031
.038
.033
.030
.029
.045
.020
.015
.036
.031
.036
.038
.030
.042
.032
.023
.027
.033
.046
.022
.032
.028
.041
.026
.058
.033
.009
.030
.050
.071
.033
.067
.054
.081
.046
.041
.047
.047
.046
.088
.041
.040
.045
.035
.035
.155
.071
.047
.050
.055
.031
.045
.054
.025
.055
.046
.033
.034
.047
.044
.080
.047
.039
.041
.050
.047
.053
.034
.039
.026
.042
.034
.040
.049
.049
.038
.050
.039
.039
.044
.010
.147
.185
.117
.132
.198
.179
.189
.123
.167
.177
.150
.155
.114
.168
.161
.099
.221
.188
.199
.127
.197
.187
.181
.137
.146
.162
.031
.039
.038
.038
.044
.027
.045
.065
.080
.052
.040
.031
.035
.055
.040
.030
.053
.057
.041
.049
.105
.041
.051
.039
.040
.039
.047
.016
.050
.052
.031
.058
.045
.052
.067
.114
.045
.051
.040
.041
.028
.055
.043
.034
.063
.063
.040
.100
.078
.049
.060
.059
.048
.052
.017
.184
.087
.180
.098
.096
.097
.061
.047
.155
.122
.137
.143
.176
.121
.120
.274
.060
.095
.122
.100
.094
.142
.087
.067
.136
.120
.048
10
7
14
6
8
16
12
7
17
34
27
32
21
10
29
15
8
3
31
14
24
17
21
8
10
401
*There are possible problems with these data, as indicated by the low C4-C5 alkane fraction.
**Standard deviation of the average profiles for each city.
-------
(*-»
t*-tt
no* Mticttoa
M-l*
!-*
t»-t§
I
e
O *!
O MIOW MTtCTIOH
I
- JL
no* DITICIIOB
JU, »'
=\
B
O
U
.J
O
K
O
1-t
tie* IIICTIOII
11-14
It-It
4-4
1-4
-4-t
-4.4
-4.4
.4
tie* MtieiWB
4 4 It 44
Number of Measurements
-,JC
4 It 14 14
NUMBER OF MEASUREMENTS
Figure 4-1. Frequency distribution of carbonyl concentrations
observed in Claremont, California (from Grosjean
1982).
4-15
-------
of individual carbonyls observed in Claremont, California (east of Los
Angeles), by Grosjean (1982). Formaldehyde, acetaldehyde, propanol,
butanol, MEK, and benzaldehyde concentrations are shown. These data
indicate that formaldehyde and acetaldehyde account for more than 70% of
the carbonyls on a carbon basis. They also indicate that formaldehyde
concentrations generally exceed acetaldehyde concentrations (on a carbon
basis). Figure 4-2 shows a plot of the morning total aldehyde
concentrations versus NMOC concentrations measured by GC in Los Angeles
(Grosjean and Lloyd 1982). The data show a lot of scatter. The line
labeled "STANDARD EKMA" on the figure is the 5% aldehydes line. While
most of the aldehyde concentrations are less than 5% of the NMOC, some
points are slightly above the line. Although the data do not indicate a
clear relationship between aldehydes and NMOC detected by GC/FID, the
data are also not inconsistent with the 5% aldehyde assumption
historically employed in OZIPP/EKMA. The 5% aldehyde assumption appears
to be a faiiiy realistic upper limit assumption and is recommended for
use in the absence of better data.
Additional ambient NMOC data collected by aircraft were analyzed to
provide default upper boundary condition information for modeling. The
most comprehensive data set for speciated NMOC above the morning mixing
height (aloft) is that collected and analyzed by Washington State
University in the summer of 1985 (WSU 1986). The flight plans were
designed to capture the NMOC aloft at locations slightly upwind of four
cities: Atlanta, Birmingham, Dallas, and Tulsa. Although these samples
do not have nearly as many species identified as those analyzed by
Lonneman (1986), they do include formaldehyde and acetaldehyde. The
average normalized NMOC composition aloft and upwind of each city is
shown in Table 4-6. Also shown are the average NMOC concentrations
calculated from all samples and from the samples used to determine the
average speciation profiles. Only those profiles with total NMOC
concentrations exceeding 15 ppbC were used for determining the specia-
tion. Profiles with less than 15 ppbC of NMOC were considered unreliable
for speciation because of potential detection problems at low
concentrations. The data show the NMOC consist of 25% C4+ alkanes, 4%
alkenes, 8% aromatics, 7% aldehydes, 33% unreactive, and 23%
unidentified. The unidentified species are probably long-chain alkanes
4-16
-------
" 0.20-
O.
0.
S 0.15-
o
o
o
< 0.10-
"o
J2
_ 0.05-
75
"e
"" 0-
« /
$?
$y
//
/ x
©/
0 / © X ©
/ ©
© / X
* v w O
^r * A
) 1.0 2.0 3.0 4.0 5.0 6.0 7.
Initial NMHC, ppmC
Figure 4-2. Initial aldehyde concentration versus initial NMHC for captive
air experiments. 0 = valid data points, x = potentially low
aldehyde concentration due to high blank correction. Standard
EKMA assumes aldehydes are 5% of NMHC levels.
4-17
-------
TABLE 4-6
NHOC COMPOSITION AND CONCENTRATIONS ALOFT*
Carbon Fraction of NMOC**
Compound Class
C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alkyIbenzenes
Di-alylbenzenes
Tri-alkyIbenzenes
Unreactive
Formaldehyde
Acetaldehyde
Unidentified
NMOC - all samples
NMOC - composition samples
Atlanta Birmingham Dallas Tulsa Average
.211 .211 .153 .247 .212
.027 .023 .033 .044 .035
.007 ..014 .004 .019 .012
.036 .012 .013 .022 .023
.126
.020
.308
.024
.019
.222
Total
.032
.019
.306
.018
.011
.353
NMOC
.037
.022
.272
.053
.012
.402
.016
.015
.405
.084
.023
.124
.056
.018
.337
.054
.018
.235
Concentrations (ppbC)
35.0 20.6 41.3 52.7 37.4
46.4 40.1 48.2 56.4 47.8
^Determined from Washington State University Aircraft observations
made in 1985.
**NHOC is expressed in ppbC and includes carbonyls.
4-18
-------
and aromatics (Grosjean and Lloyd 1982). The average NHOC concentration
was 37 ppbC based on all samples and 48 ppbC based on the samples used
for developing the speciation profiles.
The final recommended speciation profiles for NHOC in the surface
layer and above the mixed layer in urban areas are shown in Table 4-7.
The profile fractions were rounded off and slightly altered based on our
judgement. Note that fractions for the higher aldehyde and ketone
classes have been omitted. Since the data for these species are so
sparse, their fractions have been assumed to be zero. Actually, part of
the carbon assigned to acetaldehyde could be assigned to these classes
(perhaps 0.5% NHOC each); however, this is not likely to have much effect
on predictions. Lastly, plausible ranges of the speciation fractions are
shown in Table 4-8. The ranges generally reflected ±50% variations about
the mean fractions. If ambient samples show variations beyond these
ranges (particularly the upper values), then the sample may reflect
strong influence by local point sources and may not be representative of
the entire urban area.
4-19
-------
TABLE 4-7
RECOMMENDED DEFAULT NMOC COMPOSITION PROFILES
Carbon Fractions of NMOC
Compound Class
C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alkyIbenzenes
Di-alyIbenzenes
Tri-alkylbenzenes
Formaldehyde
Acetaldehyde
Unreactive
Surface Layer
.21
.28
.03
.06
.04
.16
.06
.04
.03
.02
.07
Aloft
.21
.18
.015
.03
.005
.07
.04
.02
.05
.03
.35
TABLE 4-8
RANGE OF NMOC COMPOSITION FRACTIONS
Carbon Fractions of NMOC
Compound Class
C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alky Ibenzenes
Di-alyIbenzenes
Tri-alkylbenzenes
Formaldehyde
Acetaldehyde
Unreactive
Surface Layer
.11 - .31
.14 - .42
.015 - .045
.03 - .09
.02 - .06
.08 - .24
.03 - .09
.02 - .06
.015 - .06
.01 - .04
.04 - .11
Aloft
.11 -
.09 -
.0 -
.0 -
.0 -
.04 -
.0 -
.0 -
.01 -
.01 -
.15 -
.31
.27
.03
.045
.01
.11
.06
.04
.08
.08
.75
4-20
-------
5. SENSITIVITY ANALYSIS
Sensitivity analysis was performed with the updated mechanism to
identify the important input parameters in typical urban applications of
photochemical AQS models. The sensitivity analysis was carried out using
Version 3 of the* OZIPH model (Hogo and Whitten 1986) with the mechanism
shown in Table 3-4. The OZIPN model is a fairly versatile photochemical
box model that is designed for use with the Empirical Kinetic Modeling
Approach (EKHA) (Gibson et al. 1981; EPA 1984). It was selected for this
analysis because EPA expects the OZIPH model (with this or other
mechanisms) to be used extensively for control strategy evaluations in
the next set of State Implementation Plans.
Unlike other photochemical model sensitivity studies that examine
relationships between input parameters and maximum ozone concentrations
(e.g., see Seigneur et al. 1981), this analysis examines the relation-
ships between the input parameters and the NMOC control requirement
needed to achieve compliance with the National Ambient Air Quality
Standard (NAAQS) for ozone. The NMOC control requirement determined from
an EKMA analysis was selected as the output parameter because it is, in
fact, the parameter that is most important to air quality planners.
Fortunately, the version of the OZIPH model used in the analysis calcu-
lates the NMOC control requirement directly so the uncertainty associated
with the graphical approach required with earlier versions is avoided.
5.1 Baseline Conditions and Parameter Variations
The matrix of runs for the sensitivity analysis was designed to span
the plausible range of conditions in urban areas. Plausible baseline
conditions and parameter variations were selected based on our experience
and that of others (Jeffries et al. 1981; Shafer and Seinfeld 1985).
Recognizing that the sensitivity of the model to certain parameter
variations depends on the air quality and meteorology, conditions
representing a range of initial NHOC/NO ratios and dilution rates were
selected for the baseline runs. Nine baseline runs were established that
represent the combinations of three initial KHOC/NO ratios (6, 10, and
20 ppmC/ppm) and three overall dilution factors (2, 4, and 6 times the
5-1
-------
initial volume). Model sensitivity to other parameter variations was
then examined under all of these conditions.
The OZIPM model inputs for the baseline runs are summarized in
Table 5-1. The solar radiation levels were calculated for the
Los Angeles summer solstice at 34° latitude. The simulations were
carried out from 8 a.m. to 6 p.m. Pacific daylight time, and an ambient
temperature of 30°C was assumed. An initial mixing height of 250 meters
was used for all of the calculations. Final mixing heights of 500,
1,000, and 1,500 meters were selected to represent low, moderate, and
high dilution rate conditions. As the mixing height rises, pollutants
initially above the mixed layer are entrained into the mixed layer. The
baseline calculations were made using ozone and NMOC concentrations of
80 ppb and 50 ppbC, respectively, above the mixed layer. Initial
concentrations of carbon monoxide, water vapor, and nitrous acid in the
surface layer were set at 1, 20,000, and 0.0005 ppm, respectively. A
present-day maximum ozone concentration of 0.24 ppm was assumed. Thus,
the calculated NMOC control requirements are those required to reduce the
maximum ozone concentration by 50% (to 0.12 ppm) assuming no change in
the NO emissions. The initial NMOC and NO concentrations and emissions
A A
needed to produce the present-day maximum ozone value are determined
iteratively by the model. The initial NMOC/NOX ratio and relationship
between the hourly post-8 a.m. emissions and the initial NMOC and NO
concentrations are input to the model.
Initial NMOC/NO^ ratios of 6, 10, and 20 were used in the simula-
tions. Emissions equivalent to 15% and 25% of the initial NMOC and NO ,
&
respectively, were employed for the first two hours. Emissions equiv-
alent to 10% and 17% of the initial NMOC and NO^, respectively, were
employed for the third through fifth hours. Zero emissions were assumed
after the fifth hour. It is important to note that the NMOC/NO^ ratio of
the emissions was assumed to be 40% lower than the ratio in the initial
concentrations. The difference in ratios reflects the common discrepancy
between the observed ambient NMOC/NO ratios and NMOC/NO ratios based on
*» A
estimated emission inventories (Haney and Seigneur 1985). Lastly, the
recommended default NMOC composition profiles shown in Table 4-7 were
employed in the baseline calculations.
5-2
-------
TABLE 5-1
OZIPM SENSITIVITY ANALYSIS - BASELINE CASE INPUTS
Place:
Lattitude:
Longitude:
Time Zone:
Date:
Initial
Mixing Height:
Final Mixing
Height(s):
Temperature:
Ozone aloft:
NMOC aloft:
Initial Values:
(Surface layer)
Present Day Ozone:
Future NOx:
NHOC/NOx Ratio(s):
Emission Fractions
of Initial Values:
Los Angeles, CA
34. degrees
118. degrees
8.
June 21, 1986
250 m at 0800
500 m at 1400 hours
1000m at 1400 hours
1500m at 1400 hours
30°C
0.08 ppm
0.05 ppmC
[CO] = 1 ppm
[MONO] « 0.5 ppb
[H20] = 20,000 ppm
0.24 ppm
Same as present day
6 ppmC/ppm
10 ppmC/ppm
20 ppmC/ppm
Hour
NMOC
N0_
8
9
10
11
12
.15
.15
.10
.10
.10
.25
.25
.17
.17
.17
NMOC Composition: Default Profiles
5-3
-------
The ozone isopleth diagram for baseline conditions with a
1,000-meter final mixing height is shown in Figure 5-1. This figure
shows that the shape of the isopleth diagram generated with the updated
chemical mechanism is very similar to the shape of previously-reported
diagrams (Gibson et al. 1981).
The input parameter variations for the sensitivity analysis are
summarized in Tables 5-2 and 5-3. A significant number of the runs
involved variations in the NMOC composition and NMOC concentration aloft
because previous studies indicated that these are important input
parameters (Seigneur et al. 1981; Shafer and Seinfeld 1985). Four
variations in the NMOC composition .in the surface layer were
investigated. The profiles, shown in Table 5-3, represent high and low
reactivity mixtures of the nonoxygenated species and high and low
aldehyde content mixtures for the oxygenated species. The high and low
reactivity profiles were constructed by increasing and decreasing the
fractions of the more reactive nonoxygenated compounds, i.e., alkenes,
di-alkylbenzenes, and tri-alkylbenzenes, by 50%. The fractions of the
less reactive compounds, i.e., the alkanes and mono-alkyIbenzenes, were
adjusted by ~18% to account for 50% changes in the more reactive
compounds fractions. The nonreactive fraction was not changed in these
profiles. However, in the high and low aldehyde profiles where the total
aldehyde content was changed to represent 10% and 1% of the total carbon,
respectively, the nonreactive fractions were adjusted to account for the
changes in aldehyde content.
Seven combinations of NMOC concentrations and composition aloft were
investigated. Concentrations of 10 and 150 ppbC were used to span the
plausible range of NMOC concentrations aloft. An additional run with
40 ppbC, instead of 50 ppbC, aloft was made to more closely reflect the
average level observed in the 1985 Washington State University aircraft
study. High-reactivity, low-reactivity, and high-aldehyde composition
profiles were constructed for NMOC aloft using the same approach as used
for the variations in surface layer reactivity (i.e., ±50% variation in
the fractions of the more reactive species).
Additional sensitivity runs were designed to investigate the
importance of reductions in ozone aloft, future NO emissions, and
post-8 a.m. emissions. Separate runs were carried out assuming zero
5-4
-------
N
0
X
P
P
M
I
1
.350*
I
1
*
I
I
.300*
I
I
*
I
I
.250*
I
I
*
I
I
.200*
I
I
*
I
I
.150*
I
I
*
I
I
.100*
I
I
*
I
I
.050*
I
I
*
1
I
.000
* * * * * * * * * +
11234 1
28420 1
***** »
******** I
******** 1
***** *
******** 1
******** I
***** +
****** * I
******* * 1
***** * *
****** * I
****** * I
****** ** +
***** ** i
* * * * ** 1
***** ** *
***** * *** I
** * * * ****** i
***** * ****** * *
****** * ****** »*i
***** I
***** »
****** j
***** 1
** ***** *
** * * *** 1
* * * * ***** 1
* * * »* ****** ****** ****** ****** ****** »*»
* * * I
* ** » I
* * ** *
* * * I
** * *** I
* * **** * *
** * ***** ****** ****** ****** ***** ****** ****** ****** ****** **]
* ** 1
* * *
* ***** * *** **]
* ***** ****** ****** ***** ****** ****** ****** ****** ****** ****** *** i
* *
****** ****** ****** ****** ***** ****** ****** ****** ****** ****** ****** ****** ****** *»|
I
.40 .80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00
NMOC (PPMC)
THE 03 LINES ARE .12 .18 .24 .32 AND .40 PPM
FIGURE 5-1. OZONE ISOPLETH DIAGRAM FOR BASELINE CONOITONS WITH SAPRC/ERT HECHANISM
5-5
-------
TABLE 5-2
PARAMETER VARIATIONS IN THE OZIPH SENSITIVITY ANALYSIS
NMOC/NOx Ratios:
Max. Mixing Heights:
Surface Layer
NHOC Composition:
NMOC Aloft:
Ozone Aloft:
Future NOx:
Post 8 AM Emissions:
Present Day Ozone:
Initial Values:
(Surface Layer)
Photolysis Rates:
6, 10, and 20
500, 1000, and 1500 m
Low reactivity
High reactivity
Low aldehydes
High aldehydes
10 ppbC - baseline reactivity
40 ppbC - baseline reactivity
150 ppbC - baseline reactivity
50 ppbC - high aldehydes
50 ppbC - low reactivity
50 ppbC - high reactivity
150 ppbC - high reactivity
Zero
30% reduction
Zero
0.18 & 0.40 ppm
[PAN] = 5 ppb
[MONO] « 4 ppb
[MONO] - 0 ppb
20% reduction in all rates
20% reduction in N02 rate
20% reduction in HCHO rates
5-6
-------
TABLE 5-3
NMOC COMPOSITION PROFILES USED IN THE OZIPM SENSITIVITY ANALYSIS
SURFACE LAYER NMOC COMPOSITION PROFILES
Compound Class
C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alkyIbenzenes
Di-alylbenzenes
Tri-alkyIbenzenes
Formaldehyde
Acetaldehyde
Unreactive
Carbon Fractions of NMOC
Lov High Low
Reactivity Reactivity Aldehydes
.247
.33
.015
.03
.02
.188
.03
.02
.03
.02
.07
.173
.23
.045
.09
.06
.132
.09
.06
.03
.02
.07
.21
.28
.03
.06
.04
.16
.06
.04
.006
.004
.11
High
Aldehydes
.21
.28
.03
.06
.04
.16
.06
.04
.06
.04
.02
Con pound Class
C4-C5 Alkanes
C6+ Alkanes
Ethene
Terminal Alkenes
Internal Alkenes
Mono-alky Ibenzenes
Di-alylbenzenes
Tri-alky Ibenzenes
Formaldehyde
Acetaldehyde
Unreactive
NMOC ALOFT COMPOSITION PROFILES
Carbon Fractions of NMOC
Low High High
Reactivity Reactivity Aldehydes
.235
.202
.0075
.015
.0025
.078
.02
.01
.05
.03
.35
.185
.158
.0225
.045
.0075
.062
.06
.03
.05
.03
.35
.21
.18
.015
.03
.005
.07
.04
.02
.10
.06
.27
5-7
-------
concentration of ozone aloft, 30% reduction in future NO emissions, and
A
without post-8 a.m. emissions. Simulations were also carried out to
examine the sensitivity of the NMOC control requirement to the
present-day maximum ozone concentrations. Ozone concentrations of 0.18
and 0.40 ppm were employed for this purpose. All of these parameter
variations were investigated at three NMOC/NO ratios and three dilution
factors.
Additional investigations of the sensitivity to initial values of
PAN and nitrous acid and photolysis rates were performed at three
NMOC/NO ratios and just one dilution factor. Separate simulations were
A
carried out with initial PAN concentrations of 5 ppb and initial HONO
concentrations of 0 and 4 ppb. The photolysis rate sensitivity runs
included ones with 20% reduction in all photolytic rates, 20% reduction
in only the N0_ photolysis rate, and 20% reduction in only the
formaldehyde photolysis rates from their clear sky values.
5.2 Sensitivity Analysis Results
The predicted NMOC control requirements calculated in the baseline
runs and in the parameter variation runs are shown in Table 5-4. The
relative change in the control requirements from the corresponding
baseline results are shown in Table 5-5. The baseline runs predict
control requirements of 29%, 58%, and 80% for the 1,000-meter final
mixing height cases with initial NMOC/NO ratios of 6, 10, and 20,
respectively. The baseline results with lower and higher final mixing
heights have predicted control requirements that are up to 4% lower and
2% higher than the ones with the median final mixing height. These
results clearly indicate the importance of the initial NMOC/NO ratio in
EKMA analyses. For the baseline conditions, they indicate that the
mixing height is moderately important.
The results for the runs with variations in the surface layer NKOC
composition show large variations from the corresponding baseline
results. For example, for the case with NMOC/NO^ = 10 and 1,000-meter
final mixing height, the predicted control requirements were 45%, 66%,
50%, and 64% (versus 58% in the baseline run) for the low reactivity,
high-reactivity, low-aldehyde, and high-aldehyde runs, respectively. The
5-8
-------
TABLE 5-4
PREDICTED NMOC CONTROL REQUIREMENTS {%)
Case
Baseline Case
Surface Layer NMOC:
Low Reactivity
High Reactivity
Low Aldehydes
High Aldehydes
NMOC Aloft:
10 ppbC
40 ppbC
150 ppbC
50 ppbC- High Aldehydes
50 ppbC- Low Reactivity
50 ppbC-High Reactivity
150 ppbC-High Aldehydes
Ozone Aloft = 0
30% Future NO Reduction
Without Emissions
Present Day Ozone:
Ozone
Ozone
.18 ppm
.40 ppm
Initial Concentrations:
HONO
HONO
PAN
0
4 ppb
5 ppb
Photolysis Rates:
All Rates Decreased 20%
N02 Rate Decreased 20%
HCHO Rate Decreased 20%
NMOC/NO^ » 6
Mixing Height
500m 1000m 1500m
26.8
4
37.3
*
34.4
25.8
26.6
30.7
27.5
26.7
27.1
35.4
23.5
47.4
41.1
22.8
28.7
29.1
*
41.6
*
38.9
27.2
28.6
40.4
30.6
28.6
29.6
49.6
23.2
50.0
45.8
29.9
28.9
29.0
30.0
32.0
23.1
27.2
27.2
30.1
*
43.2
*
40.4
27.7
29.4
44.1
31.9
29.6
30.7
54.9
23.3
50.9
47.4
33.1
28.9
NMOC/N08 = 10
Mixing Height
500m
53
39
62
45
60
50
53
61
55
53
54
65
45
68
64
55
55
.7
.5
.0
.8
.1
.9
.0
.1
.0
.2
.1
.6
.3
.3
.5
.0
.5
1000m
57.7
44.6
65.8
50.0
64.0
53.5
56.6
69.9
60.1
56.9
58.5
77.2
44.7
72.1
68.2
60.8
57.4
57.4
59.3
61.8
49.3
55.1
56.2
1500m
59.
46.
67.
51-.
65.
54.
58.
73.
61.
58.
60.
81.
44.
73.
69.
62.
58.
2
3
0
6
5
5
0
5
7
4
3
26
5
4
6
9
0
NMOC/NOX = 20
Mixing Height
500m 1000m
77
70
81
73
80
75
76
82
78
77
77
85
71
83
82
72
77
.4
.8
.3
.8
.4
.3
.9
.6
.3
.0
.7
.4
.5
.5
.5
.5
.2
80.1
74.2
83.5
76.7
82.8
76.9
79.3
88.3
81.4
79.5
80.6
92.5
70.8
85.7
84.7
75.4
78.6
79.9
81.0
82.8
75.0
79.3
79.3
1500m
81.0
75.6
84.3
77.9
83.7
77.5
80.2
90.3
82.5
80.5
81.6
94.9
70.7
86.5
85.5
76.7
79.0
*The solar radiation and NMOC were insufficient to generate the ozone design value
5-9
-------
TABLE 5-5
RELATIVE CHANGE IN PREDICTED NHOC CONTROL REQUIREMENTS
Case
Surface Layer NMOC:
Low Reactivity
High Reactivity
Low Aldehydes
High Aldehydes
NMOC Aloft:
10 ppbC
40 ppbC
150 ppbC
50 ppbC- High Aldehydes
50 ppbC- Low Reactivity
SO ppbC-High Reactivity
150 ppbC-High Aldehydes
Ozone Aloft = 0
30% Future NO^ Reduction
Without Emissions
Present Day Ozone:
Ozone = .18 ppn
Ozone s .40 ppm
Initial Concentrations:
HONO
HONO
PAN
0
4 ppb
5 ppb
Photolysis Rates:
All Rates Decreased 20%
N02 Rate Decreased 20%
HCHO Rate Decreased 20%
NMOC/NO^ » 6
Mixing Height
500m 1000m 1500m
*
.39
*
.28
.04
.01
.15
.03
.00
.01
.32
-.12
.77
.53
-.15
.07
*
.43
*
.34
-.07
-.02
.39
.05
-.02
.02
.70
-.20
.72
.57
.03
-.01
*
.44
*
.34
-.08
-.02
.47
.06
-.02
.02
.82
-.23
.69
.57
.10
-.04
NMOC/NOK = 10
Mixing Height
500m 1000m 1500m
NMOC/NOK » 20
Mixing Height
500m 1000m 1500m
.00
.03
.10
-.21
-.07
-.07
.26
.15
.15
.12
.05
.01
.14
.02
.01
.01
.22
.16
.27
.20
.02
.03
-.23
.14
-.13
.11
-.07
-.02
.21
.04
-.01
.01
.34
-.23
.25
.18
.05
-.01
-.01
.03
.07
-.15
-.05
-.03
-.22
.13
-.13
.11
-.08
-.02
.24
.04
-.01
.02
.37
-.25
.24
.18
.06
-.02
.09
.05
.05
.04
.03
.01
.07
.01
.01
.00
.10
.08
.08
.07
-.07
.04
-.04
.03
-.04
-.01
.10
.02
-.01
.01
.15
-.12
.07
.06
-.07
.04
-.04
.03
-.04
-.01
.11
.02
-.01
.01
.17
-.13
.07
.06
-.06 -.06 -.05
.00 -.02 -.02
.00
.01
.03
-.06
-.01
-.01
*The solar radiation and NMOC were insufficient to generate the ozone design value.
5-10
-------
cases with lower and higher initial NMOC/NO ratios showed more and less
X
sensitivity to the reactivity of the surface layer NMOC, respectively.
Solutions could not be obtained for the low-reactivity and low-aldehyde
cases with an initial NMOC/NO ratio of six because the lack of
reactivity prevented reaching the present-day maximum ozone in the
calculations. These results clearly indicate that NMOC reactivity of
emissions and initial concentrations are very important inputs to the
EKHA analysis. The results strongly support the recommendation made in
Section 5 for using region-specific speciation data rather than default
profiles whenever possible.
The results from the runs with variations in the NMOC aloft show
several interesting features. First, as one would expect in any air
quality model that incorporates entrainraent of reactive pollutants, the
importance of the concentrations of the entrained pollutants increases as
the entrainment rate increases. This is shown by contrasting the
relative changes in the control requirements for the runs with different
final mixing heights (at any NMOC/NO ratio). The higher the mixing
A
height, the more important the NMOC aloft. Second, for these particular
sets of runs, the magnitude of the NMOC concentration aloft is more
important than variations in its composition. That is, the runs with
alternate NMOC composition at 50 ppbC showed significantly smaller
relative changes than the runs in which the NMOC concentration aloft ware
varied. While not all of these variations may be equally probable, they
still suggest that the concentration of NMOC aloft is probably more
important than its composition. Its concentration aloft clearly is an
important input to OZIPM and in the EKMA analysis.
The results from the runs with zero concentration for ozone aloft
show the expected characteristics: 1) significantly lower control
requirements since the ozone background is lower; 2) the importance of
the ozone aloft value increases as the entrainment rate increases; and
3) with zero ozone aloft assumed, the NMOC control requirement is
essentially independent of the mixing height.
The results for simulations with 30% reduction in future NO
emissions show higher NMOC control requirements under all conditions.
The increases in the control requirements under these conditions are
generally greater than those for any other parameter variation
5-11
-------
investigated. The increase is especially large in the cases with the low
initial NMOC/NO^ ratio. These results suggest significant attention
should be given to the future NO emissions assumptions in EKHA analyses.
A
Th« predicted NMOC control requirements for the simulations without
post-8 a.m. emissions (along the trajectory) are also higher than the
corresponding baseline results. These results reflect the fact that
control requirements generally increase as the NMOC/NO^ ratio increases.
Without the emissions, which were assumed to have a lower NMOC/NOV ratio
A
than the initial concentrations, the effective NMOC/NC) of the
A
simulations is considerably higher. The influence of the emissions on
the control requirement is especially large at the lower initial NHOC/NO
A
ratio.
The control requirements predicted for the conditions with different
present-day maximum ozone concentrations are somewhat counter-intuitive.
The expected results for the cases with lower and higher present-day
maximum ozone levels were lower and higher control requirements than
those calculated for the baseline runs, respectively. However, the
results show a mixture of moderately lower and higher control requirement
predictions. Similar responses to this type of parameter variation have
been reported in other modeling studies (e.g., see Carter 1981). One
possible explanation of why higher present-day ozone maxima do not
necessarily increase the control requirement is that ozone scavenging by
NO becomes increasingly more important and effective as the absolute NO
A A
levels increase. However, this is quite speculative. For the purposes
of this sensitivity analysis, these results indicate that the predicted
control requirements are only moderately sensitivity to this input
parameter.
The results of the simulations with 0 and 4 ppb of nitrous acid show
this input has only minor effect on the predictions. Larger effects were
expected since nitrous acid rapidly photolyzes to form the OH radical.
However, even at 4 ppb, which is higher than is expected in all but the
most polluted urban areas in the United States (Atkinson 1986), the
initial nitrous acid had only a small effect on control requirements and,
therefore, is not an important input to the model.
The results of the simulations with 5 ppb of initial PAN instead of
zero in the baseline simulations show increased control requirements at
5-12
-------
all three NMOC/NO ratios. This occurs because PAN produces important
radicals when it thermally decomposes, and the timing of its decomposi-
tion (under these conditions) effectively increases the reactivity of the
mixture. PAN is considered a moderately important input to OZIPM;
however, there is so little reliable ambient data that it is very
difficult to objectively specify the initial concentration.
Lastly, the results with reduced photolysis indicate lover control
requirements in all cases. Reductions in all of the photolytic rates
have a much larger effect on the control requirements than comparable
reductions in N02 or HCHO photolysis alone. Reduction in N02 photolysis
rates alone was investigated because clouds are expected to attenuate the
NO. photolysis rate more than the rate for other species. Overall, these
results show the radiation inputs to OZIPM are moderately important for
accurate estimates of the control requirements, particularly in cases
with low initial NMOC/NO^ ratios.
In summary, this sensitivity analysis has identified the following
parameters as most important in OZIPM applications with the updated
mechanism:
Initial NMOC/NO ratio
NMOC reactivity
Post-8 a.m. emissions along the trajectory
Future NO emissions
NMOC and ozone concentrations aloft
Meteorological information concerning the mixing heights and radiation
levels are important inputs. Initial PAN concentrations are moderately
important; however, initial nitrous acid concentration is unimportant.
The composition of NMOC aloft also appears to be unimportant when the
concentration is less than ~50 ppbC.
5-13
-------
6. CONCLUSIONS
A surrogate species chemical mechanism for the photooxidation of
NMOC and NOX has been updated, thoroughly tested, and adapted for use in
AQS models in this research program. The mechanism incorporates
significant improvements in the understanding of photochemical smog
formation in urban areas. Guidelines have been developed for using the
mechanism in atmospheric modeling.
The mechanism evaluation is the most comprehensive study of its type
on atmospheric chemical mechanisms. The evaluation is unique in that one
mechanism was tested over a vide range of conditions using data from a
large number of experiments. Consistent chamber characterization
procedures were employed, and run-to-run adjustments of uncertain
parameters were not permitted. Statistics on model performance were
tabulated and displayed graphically. The performance data was examined
closely for evidence of systematic biases. "^""*
The results of the mechanism evaluation indicate the mechanism is
able to predict the rate of NO oxidation and maximum ozone
A
concentrations with little bias and within ±30% error for a large number
of single organic-NO experiments and organic mixture-NO experiments.
X A
The biases and average error in the maximum ozone predictions for the
different types of experiments used in the testing program are summarized
in Table 6-1. The results are statistically significant for propene,
toluene, n-butane, and a large number of mixtures, including auto
exhaust, for which there are many experiments. However, there is
probably an insufficient number of experiments for the results for
aldehydes, ketones, butenes, C5+ alkanes, and aromatics other than
toluene to be statistically significant. The ozone predictions for
single organic-NO irradiations with carbonyls, alkenes, and aromatics
show good agreement with the data on the average. The results for
alkanes are not satisfactory. They show a large amount of error. The
uncertainty in chamber characterization procedures strongly affect the
predictions for alkanes-NO mixtures. Because of these uncertainties,
the alkane mechanism cannot be evaluated without ambiguity at this time.
With the exception of the single alkane runs, the results show that the
mechanism's bias is generally less than 10%. On the surrogate mixture
6-1
-------
TABLE 6-1
AVERAGE MODEL PERFORMANCE FOR MAXIMUM OZONE
Run Type Bias (%) Error (%)
Formaldehyde
Acetaldehyde
Other Carbonyls
All Carbonyls
Ethene
Propene
Butenes
All Alkenes
Butane
Branched Alkanes
Long-chain Alkanes
All Alkanes
Benzene
Toluene
Xylenes
Mesitylene
All Aromatics
-1
-26
+4
-5
+2
+3
+4
+3
+31
+34
+83
+46
+3
+11
-9
-11
+1
19
26
44
25
18
18
34
21
67
49
84
69
5
24
16
21
19
All Single HC Runs +12 33
Simple Mixtures +10 35
Mini Surrogates +10 22
Full Surrogates +3 23
Auto Exhaust -11 15
All HC Mixtures +4 24
All Run Average +7 28
^Positive bias indicates model overprediction.
6-2
-------
and auto exhaust runs, which are most representative of the types of
mixtures for which the mechanism will be applied in atmospheric modeling,
the average errors in the maximum ozone are ±23% and ±15%, respectively.
This level of performance is good considering the uncertainties in both
the chemistry and chamber characterization.
«
Model performance for other intermediate species, such as
formaldehyde and peroxyacetylnitrate (PAN), is considerably worse than
the performance for ozone; however, the data may not be reliable for
these species.
In Phase II of the program, condensed versions of the mechanism
employed in the testing program were developed for use in AQS models.
Mechanisms were developed for use in single-cell models that can
accommodate large chemical mechanisms and for use in multi-cell models
that require fairly small chemical mechanisms. Very little mechanism
condensation was required for the mechanism designed for use in
single-cell models. Significant mechanism condensation assumptions were
implemented in the mechanism designed for use in multi-cell models.
Predictions from the condensed versions of the mechanism were
compared to predictions of the detailed mechanism for a range of mixtures
and NMOC/NO ratios. The results showed that the single-cell model
mechanism's predictions are almost identical (i.e., within ±2%) to the
detailed mechanism15 predictions for all of the key species. Predictions
from the multi-cell model mechanism agree with those from the detailed
mechanism within ±10% for all key species.
Information on speciation of organics for the classes in the
mechanism was developed. First, a master list showing the assignment of
individual organic compounds to organic classes in the mechanism was
compiled. The uncertainty of each assignment was ranked, based on
whether or not the surrogate species employed for the assigned class
represents the reactivity of the individual species well. Second,
ambient speciated NHOC data collected at the ground and above the mixed
layer in the mornings in urban areas were analyzed. A default NMOC
composition profile for emissions and ambient concentrations near the
surface were developed from ambient data collected in 25 cities using a
consistent measurement and speciation protocol. A default composition
profile for NMOC aloft was compiled from aircraft data collected upwind
6-3
-------
of four cities. These default profiles can be used in atmospheric
modeling applications where site-specific data are not available.
Sensitivity analysis was carried out using the updated chemical
mechanism in the OZIPM &QS model. The sensitivity analysis was designed
to identify the input parameter that most strongly influences the NHOC
control requirements in EKMa analyses. Almost all of the sensitivity
runs were performed at several NMOC/NO ratios and dilution rates since
the sensitivity of model-to-parameter variations is known to depend on
these parameters. The results of the analysis confirmed the importance
of the following input parameters:
NHOC/NOx ratio
NHOC composition
Post-8 a.m. emissions rates along the trajectory
Future changes in NO emission rates
&
Ozone and NHOC concentrations aloft
Other relatively important parameters include the mixing height,
radiation, and initial PAN concentrations. The results of the
sensitivity analysis are intended to help air quality planners prioritize
efforts for obtaining input data for the photochemical models used to
develop control strategies.
6-4
-------
7. REFERENCES
Atkinson, R.. W.P.L. Carter, K.R. Darnall, A.M. Winer and J.N. Pitts, Jr.
1980. Int. J. Chem. Kinet.. 12: 779.
Atkinson, R., A.C. Lloyd and L. Winges 1982. Atmos. Environ.. 16: 1341.
Atkinson, R., W.P.L. Carter and A.M. Winer 1983. Evaluation of
Hydrocarbon Reactivities for Use in Control Strategies. Final
Report to the California Air Resources Board Contract No. AO-105-32.
Atkinson, R. and A.C. Lloyd 1984. J. Phys. Chem. Ref Data, 13: 315.
Atkinson, R. 1986. Kinetics and Mechanisms of the Gas Phase Reactions of
the Hydroxyl Radical with Organic Compounds Under Atmospheric
Conditions. Chem. Rev., 85; 69-201.
Bandow, H., N. Washida 1985a. Bull. Chem. Soc. Jpn., 58: 2541,
Bandow, H., N. Washida 1985b. Bull. Chem. Soc. Jpn., 58. 2549.
Bandow, H., N. Washida. H. Akimoto 1985. Bull. Chem. Soc. Jpn.. 58:
2531.
Carter, W.P.L., A.M. Winer and J.N. Pitts, Jr. 1981. Environ. Sci.
Technol.. 15: 829.
Carter. W.P.L.. R. Atkinson. A.M. Winer and J.N. Pitts, Jr. 1981. Int.
J. Chem. Kinet.. 13: 735.
Carter, W.P.L.. R. Atkinson. A.M. Winer and J.N. Pitts. Jr. 1982. Int.
J. Chem. Kinet.. 14: 1071.
Carter. W.P.L.. M.C. Dodd. W.E. Long and R. Atkinson 1984. Outdoor
Chamber Study to Test Multi-day Effects. Final Report to the U.S.
Environmental Protection Agency, EPA/600/3-85/115. U.S. EPA,
Research Triangle Park, NC.
Carter. W.P.L. and R. Atkinson 1985. Atmospheric Chemistry of Alkanes.
J. Atmos. Chem.. 3: 377-405.
Carter, W.P.L., F.W. Lurmann, R. Atkinson, and A.C. Lloyd 1986.
Development and Testing of a Surrogate Species Chemical Reaction
Mechanism, Volumes I and II. EPA-600/3-86-031. U.S. Environmental
Protection Agency, Research Triangle Park, NC.
Dodge, M.C. 1977. Combined Use of Modeling Techniques and Smog Chamber
Data to Derive Ozone-Precursor Relationships. EPA-600/3-77-001,
U.S. EPA, Research Triangle Park, NC.
Dundei, B.E., R.J. O'Brien 1984. Nature, 311; 248.
7-1
-------
EPA 1980. Volatile Organic Compound (VOC) Species Data Manual.
EPA-450/80-015. U.S. Environmental Protection Agency, Research
Triangle Park, NC.
EPA 1984. Guidelines for Using Carbon-Bond Mechanism in City-Specific
EKMA. EPA-450/4-84-005. U.S. Environmental Protection Agency,
Research Triangle Park, NC.
EPA 1987. Proceeding of the Workshop on Evaluation and Documentation of
Chemical Mechanisms Used in Air Quality Models, Raleigh, NC.,
December 1-3, 1986. U.S. Environmental Protection Agency, Draft.
Gear, C.W. 1971. Algorith 407 - DIFSUB for Solution of Ordinary
Differential Equations. Commun. ACM. 14;3: 185-190.
Gibson, G.L., W.P. Freas, R.K. Kelly, and E.L. Meyer 1981. Guideline For
Use of City-Specific EKMA in Preparing Ozone SIPs.
EFA-450/4-80-027. U.S. Environmental Protection Agency, Research
Triangle Park, NC.
Grosjean, D. 1982. Environ. Sci. Technol., 16: 254.
Grosjean, D. and A.C. Lloyd 1982. Captive Air Experiments in Support of
Photochemical Kinetic Model Evaluation, Phase I, ERT Document
No. P-A764-500. ERT. Westlake Village, CA.
Grosjean, D. and K. Fung 1984. Hydrocarbons and Carbonyls in Los Angeles
Air. J. Air Poll. Cont. Assoc.. 34: 537-543.
Hampton, C.V., W.R. Pierson, T.M. Harvey, W.S. Updegrove, and R.S. Harano
1982. Environ. Sci. Techno.. 16: 287-298.
Haney, J.L. and C. Seigneur 1985. Investigation of Reactive Hydrocarbon
to NO Ratio in the South Coast Air Basin. Systems Applications,
Inc., San Rafael, CA. Technical Memorandum dated December 31.
Hogo. H. and G.Z. Uhitten 1986. Guidelines for Using OZIPM-3 with CBH-X
or Optional Mechanisms, Vol. 1 - Description of the Ozone Isopleth
Plotting Package/Version 3. EPA/600/3-86/004. U.S. Environmental
Protection Agency, Research Triangle Park, NC.
Jeffries, H.E., K.G. Sexton and C.N. Salmi 1981. The Effects of
Chemistry and Meteorology on Ozone Control Calculations Using Simple
Trajectory Models and the EKMA Procedure. EPA 450/4-81-034. U.S.
Environmental Protection Agency, Research Triangle Park, NC.
Killus, J.P. and G.Z. Whitten 1982. A New Carbon-Bond Mechanism for Air
Quality Simulation Modeling. EPA-600/3-82-041. U.S. Environmental
Protection Agency, Research Triangle Park, NC.
Leone, J.A. and J.H. Seinfeld 1984. Evaluation of Chemical Reaction
Mechanisms for Photochemical Smog. Part II. Quantitative
Evaluation of the Mechanisms. EPA/600/3-84/063. U.S. Environmental
Protection Agency, Research Triangle Park, NC.
7-2
-------
Leone. J.A., R.C. Flagan, D. Grosjean and J.H. Seinfeld 1985. Int. J.
Chem. Kinet.. 17: 177.
Lonneman, W. 1986. Comparison of 0600-0900 AM Hydrocarbon Composition
Obtained from 29 Cities. Proceeding of the 1986 EPA/APCA Symposium
on Measurements of Toxic Air Pollutants. APCA Publication VIP-7 and
EPA 600/9-86-013, pp. 419-430.
Lurmann. F.W., A.C. Lloyd and R. Atkinson 1984. ADOM/TADAP Model
Development Program, Volume 6, Gas Phase Chemistry. ERT Document
No. P-B980-530, July.
Lurmann, F.W., A.C. Lloyd and R. Atkinson 1986. A Chemical Mechanism for
Use in Long Range Transport/Acid Deposition Computer Modeling.
J. Geophys. Res.. 91:010:10,905
McRae, G.J., W.R. Goddin and J.H. Seinfeld 1982. Mathematical Modeling
of Photochemical Air Pollution EQL-18. Environmental Quality
Laboratory, California Institute of Technology, Pasadena, CA.
NASA 1985. Chemical Kinetics and Photochemical Data for Use in
Stratospheric Modeling, Evaluation No. 7, Jet Propulsion Laboratory
Publication 85-37, National Aeronautics and Space Administration.
Oliver, W.R. and S.H. Peoples 1985. Improvement of the Emission
Invensotyr for Reactive Organic Gases and Oxides of Nitrogen in the
South Coast Air Basin. Systems Applications, Inc., San Rafael, CA,
and Radian Corp., Sacramento, CA.
Penner, J.E. and J.J. Walton 1982. Air Quality Model Update. Lawrence
Livermore Laboratory Report UCID-19300, University of California,
Livermore, CA, 55 pp.
Peterson, J.T. 1976. Calculated Actinic Fluxes (290-700 nm) for Air
Pollution Photochemistry Applications. EPA-600/4-76-025. U.S.
Environmental Protection Agency, Research Triangle Park, NC.
Reynolds, S.D., J.H. Seinfeld, and P.M. Roth 1973. Mathematical Modeling
of Photochemical Air Pollution - I: Formulation of the Model.
Atmos. Environ.. 7: 1033-1061.
Seigneur, C., T.W. Tesche, P.M. Roth, and L.E. Reid 1981. Sensitivity of
a Complex Urban Air Quality Model ti Input Data. J. Appl. Met..
20.9; 1020-1040.
Shafer, T.B. and J.H. Seinfeld 1985. Evaluation of Chemical Reaction
Mechanisms for Photochemical Smog Part III. Sensitivity of EKMA to
Chemical Mechanism and Input Parameter. EPA/600/3-85-042. U.S.
Environmental Protection Agency, Research Triangle Park. NC.
Shepson. P.B., E.O. Edney, T.E. Kleindienst, J.H. Pittman, G.R. Mamie,
and L.T. Cupitt 1985. Environ. Sci. Technol.. 19: 849.
7-3
-------
Sigsby, J.E., S.B. Tejada. W.D. Ray, and J.W. Duncan 1987. Volatile
Organic Compound Emissions From 46 In-Use Passenger Cars. Environ.
Sci. Technol. (in press)
Stump, F.D. and D.L. Dropkin 1985. Gas Chromatographic Method for
Quantitative Determination of C2 to C13 Hydrocarbons in Roadway
Vehicle Emissions. Anal. Chem.. 57: 2629-2634.
Tuazon, E.G., R. Atkinson, C.N. Plum, A.M. Winer, J.N. Pitts, Jr., 1983.
Geophys. Res. Lett.. 10: 953.
Tuazon, E.G., H. Mac Leod, R. Atkinson, W.P.L. Carter 1986. Environ.
Sci. Technol.. 20: 383.
Whitten, G.Z., J.P. Killus and R.G. Johnson 1983. Modeling of Simulated
Photochemical Smog with Kinetic Mechanisms. EPA/600/3-83/043. U.S.
Environmental Protection Agency, Research Triangle Park, NC.
Whit ten, G.Z., J.P. Killus. and R.G. Johnson 1985. Modeling of Auto
Exhaust Smog Chamber Data for EKMA Development. EPA/600/3-83/032.
U.S. Environmental Protection Agency, Research Triangle Park, NC.
Whitten, G.Z. and M.W. Gery 1986. Development of CBM-X Mechanisms for
Urban and Regional AQSMs. EPA/600/3-86-012. U.S. Environmental
Protection Agency, Research Triangle Park, NC.
WSU 1986. Nonmethane Organic Carbon Concentrations in Air Masses
Advected Into Urban Areas in the United States. Data Report for EPA
Grant No. CR812208. Washington State University, Pullman. WA.
7-4
-------
APPENDIX A
MECHANISM PERFORMANCE EVALUATION DATA
A - \
-------
Table A-l
BACKGROUND AIR RUNS
Experiment Maximum Concentration
OZONE
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
1. UNC CHAMBER - PURE AIR
JN0682R
OC0684R
OC0684B
Group Average
S. Dev.
Avg. Abs. Value
S . Dev .
0.203
0.097
0.119
0.139
0.056
0.218
0.101
0.113
0.144
0.065
0.016
0.004
-0.006
0.005
0.011
0.009
0.006
0.08
0.04
-0.05
0.02
0.07
0.06
0.02
2. SAPRC ITC - PURE AIR
ITC940 0.072 0.077 0.005 0.07
ITC955 0.064 0.077 0.013 0.20
ITC1008 0.088 0.078 -0.009 -0.11
Group Average 0.075 0.077 0.003 0.05
S. Dev. 0.012 0.001 0.011 0.15
Avg. Abs. Value 0.009 0.12
S. Dev. 0.004 0.07
A-l
-------
Table A-2
NOX-AIR and NOx-CO-AIR IRRADIATIONS
Experiment
Initial
Concentrations
MOx HC HC/NOx
(ppm) (ppmC)
Final Init
NO
Expt
(Ppm)
Calc
(ppn)
Cale
Expt
(ppm)
Final Init
N02-UNC
Expt
Calc
(PP»)
Calc
Expt
(PP"»
Final - Init
PROPEHE
Expt
(Ppm>
Calc
(ppm)
Calc
Expt
(PP"»
1. SAPRC EC NOX-AIR
EC436
EC440
EC442
EC457
EC464
EC597
EC599
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC
ITC69S
ITC826
ITC882
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
3. SAPRC crc
OTC185
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
1.79
0.76
0.58
0.50
0.19
0.56
3.40
1.11
1.13
NOx-AIR
0.50
0.90
0.70
0.70
0.20
NOX-AIR
0.28
0.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8
0.0
0.3
0.5
0.0
0.0
0.0
0.0
0.1
0.1
0.2
0.1
0.0
0.1
0.1
0.1
0.9
0.0
0.3
0.5
0.1
0.1
0.098
0.063
0.069
0.066
0.019
0.061
2.276
0.291
0.877
0.379
0.837
0.021
0.349
0.001
-0.124
0.195
0.124
0.195
0.002
0.002
0.002
-0.049
0.048
0.092
0.043
0.003
0.032
1.890
0.258
0.721
0.308
0.698
0.016
0.341
0.027
-0.128
0.185
0.128
0.185
-0.004
0.004
0.004
0.049
0.015
0.023
0.023
0.015
0.029
0.386
0.033
0.156
0.077
0.137
0.005
0.008
0.026
0.004
0.019
0.013
0.012
0.002
0.002
0.002
0.071
0.024
0.172
0.008
0.002
0.041
2.685
0.408
1.007
0.429
0.996
0.011
0.263
0.010
0.088
0.152
0.095
0.146
0.003
0.003
0.003
0.060
0.013
0.160
0.008
0.011
0.005
2.546
0.395
0.950
0.400
0.948
0.002
0.233
0.014
0.072
0.139
0.083
0.130
0.000
0.000
0.000
0.011
0.011
0.012
0.016
0.009
0.036
0.139
0.013
0.058
0.034
0.047
-0.013
0.030
0.004
0.016
0.013
0.016
0.013
0.002
0.002
0.002
0.004
0.005
0.006
0.007
0.006
0.007
0.007
0.006
0.001
0.006
0.001
0.003
0.005
0.001
0.003
0.002
0.003
0.002
0.001
0.001
0.001
0.005
0.005
0.005
0.008
0.007
0.006
0.008
0.006
0.001
0.006
0.001
0.004
0.005
0.002
0.003
0.001
0.003
0.001
-0.002
0.002
0.002
0.001
0.000
0.001
0.001
-0.001
0.000
0.000
0.000
0.001
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.001
-------
TABLE A-2 (Continued)
>
Experiment
4. UNC CHAMBER
JN1782R
JN1782B
JN2782B
AU0282R
AU2082R
AU2282R
AU2382R
OC0882R
OC0882B
STOS82R
JL2483R
JL2483B
JL2783B
AU0683B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
5. SAPRC ITC
ITC62S
ITC634
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
6. SAPRC OTC
OTC188
OTC201A
OTC201B
Group Average
S. Uev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations
NOx HC
(ppm) (ppmC)
MOx-AIR
0.42 0.0
0.42 0.0
0.44 0.0
0.39 0.0
0.41 0.0
0.46 0.0
0.43 0.0
0.30 0.0
0.30 0.0
0.50 0.0
0.31 0.0
0.48 0.0
0.43 0.0
0.37 0.0
0.40 0.0
0.06 0.0
MOx-CO-AIR
0.28 0.0
0.60 0.0
0.44 0.0
0.22 0.0
NOx-CO-AIR
0.34 0.0
0.37 0.0
0.76 0.0
0.49 0.0
0.23 0.0
HC/HOX
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.1
0.0
Final Init
NO
Expt
(ppm)
0.061
0.044
0.113
0.035
0.011
0.000
0.056
0.024
0.017
0.070
0.047
0.071
0.090
0.001
0.023
0.053
0.046
0.034
0.069
0.040
0.055
0.021
0.055
0.021
0.090
0.160
0.123
0.124
0.035
0.124
0.035
Calc
(Ppn)
0.046
0.042
0.085
0.044
0.001
0.028
0.059
0.035
0.035
0.073
0.032
0.047
0.056
0.013
-0.012
0.048
0.043
0.022
0.084
0.059
-0.071
0.018
0.071
0.018
-0.126
0.146
0.104
0.125
0.021
0.125
0.021
Calc
Expt
(PP«)
0.014
0.002
0.028
0.009
0.010
0.028
0.003
0.011
0.017
0.003
0.015
0.024
0.034
0.012
0.011
0.015
0.015
0.010
0.015
0.019
0.017
0.003
0.017
0.003
0.036
0.014
0.019
0.001
0.030
0.023
0.011
Final Init
N02-UNC
Expt
(Pf»n>
0.004
0.003
0.050
0.129
0.049
0.147
0.144
0.005
0.009
0.171
0.011
0.014
0.036
0.090
-0.043
0.077
0.062
0.062
0.068
0.034
0.051
0.024
0.051
0.024
0.072
0.162
0.096
0.110
0.046
0.110
0.046
Calc
(ppn)
0.015
0.011
0.046
0.090
0.035
0.089
0.098
0.029
0.030
0.127
0.006
0.007
0.021
0.047
-0.023
0.057
0.047
0.039
0.077
0.050
0.063
0.019
0.063
0.019
0.115
0.133
0.090
0.113
0.021
0.113
0.021
Calc
Expt
(ppn)
0.011
0.008
0.004
0.039
0.014
0.058
0.046
0.024
0.021
0.044
0.005
0.007
0.015
0.043
0.020
0.023
0.024
0.018
0.009
0.015
0.012
0.005
0.012
0.005
0.043
0.029
0.006
0.003
0.037
0.026
0.019
Final Init
PROPENE
Expt
(ppn)
0.004
0.004
0.004
0.000
0.004
0.000
0.003
0.004
0.004
0.004
0.001
0.004
0.001
Calc
(ppn)
0.004
0.002
0.003
0.001
0.003
0.001
0.002
0.003
0.002
-0.003
0.001
0.003
0.001
Calc
Expt
(ppn>
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
-------
TABLE A-2 (Continued)
Experiment
Initial
Concentrations
NOx HC HC/NQx
(ppra) (ppnC)
7. IMC CHAMBER
JN2782R
AU02828
AU2082B
AU2282B
AU2382B
STOS82B
JL2783R
AU0683R
Group Average
S. Oev.
Avg. Ab*. Value
S. Oev.
Final Init
NO
Expt
(PP»>
Calc
(PP")
Calc
Expt
(PP»>
Final Init Final Init
N02-UNC PROPENE
Expt
(PPM)
Calc
(PP"»
Calc Calc
Expt Expt Calc -Expt
(ppm) (ppra) (ppm) (ppm)
MOX-CO-AIR
0.45
0.40
0.41
0.46
0.43
O.SO
0.47
0.39
0.44
0.04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.320
0.054
0.111
0.086
0.004
0.019
0.289
0.133
0.122
0.124
0.127
0.118
0.272
0.040
0.097
0.076
0.024
0.010
0.087
0.097
0.087
0.097
0.047
0.015
0.013
0.010
0.020
0.030
0.006
0.028
0.023
0.014
0.202
0.002
0.072
0.003
0.042
-0.086
0.214
0.032
0.049
0.109
0.082
0.083
0.229
0.012
0.059
0.011
0.018
0.046
0.037
0.100
0.063
0.084
0.027
0.010
0.013
0.008
0.023
0.040
0.013
0.021
0.020
0.012
-------
Table A-3
FORMALDEHYDE AIR RUMS
01
Experiment
1. SAPRC EC
EC250
EC255
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
2. UNC CHAMBER
JL1782R
JL17828
OC0784R
OC0784B
OC1684R
OC1684B
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
NOx
Calc
Expt
-------
TABLE A-4
ACETALOEHYOE AIR RUNS
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppn) (ppnC)
Maxima Concentration
OZONE
Expt
(ppm)
Calc
(PP«)
Calc
Expt
(PP«)
Calc
Expt
/Expt
Maximum Concentration
PAN
Expt
(ppm)
Calc
(ppn)
Calc
Expt
(ppn)
Calc
Expt
/Expt
1. SAPRC EC ACETALOEHTDE-AIR
EC253
Group Averag*
S. Oev.
Avg. Ate. Value
S. Oev.
2. SAPRC ITC
ITC627
1TC636
ITC82S
ITC957
1TC974
ITC1009
Croup Average
S. Oev.
Avg. Ate. Value
S. Oev.
0.02
0.02
1.1
1.1
53.8
53.8
0.137
0.137
0.130
0.130
0.007
0.007
0.007
0.05
0.05
0.05
0.040
0.040
0.044
0.044
0.004
0.004
0.004
0.10
0.10
0.10
ACETAIDEHYDE-AIR
0.03
0.03
0.00
0.04
0.03
0.04
0.03
0.01
0.8
0.7
0.0
1.1
0.9
0.9
0.7
0.4
26.1
26.6
27.6
29.8
27.0
27.4
1.4
0.060
0.047
0.076
0.085
0.078
0.069
0.015
0.066
0.067
0.021
0.069
0.064
0.069
0.059
0.019
0.006
0.020
0.007
0.021
0.009
0.002
0.016
0.013
0.007
0.10
0.10
0.24
0.12
0.09
0.14
0.14
0.07
' 0.013
0.011
0.013
6.300
0.008
1.269
2.812
0.014
0.014
0.008
0.015
0.015
0.014
0.013
0.003
0.001
0.003
0.003
6.285
0.006
1.255
2.812
1.260
2.810
0.05
0.24
0.23
1.00
0.74
0.05
0.64
0.45
0.40
-------
TABLE A-4 (Continued)
Expert nent
3. SAPRC OTC
OTC200A
OTC2008
OTC206A
OTC2068
OTC234A
OTC234B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
4. UMC CHAMBER
JL26B3R
JL2683B
AU0483R
AU0483B
OC1584R
OC1584B
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations
MOx
HC
(ppmC)
HC/NOx
Maximum Concentration
OZONE
Expt
Calc
Calc
Expt
(PPn)
Calc
Expt
/Expt
Maximum Concentration
PAN
Expt
(ppm)
Calc
Calc
Expt
(PP«)
Calc
Expt
/Expt
ACETALOEHYDE-AIR
0.01
0.01
0.01
0.01
0.04
0.04
0.02
0.01
1.1
0.8
1.3
1.0
1.0
1.5
1.1
0.2
96.9
68.8
136.8
94.0
26.2
39.3
77.0
40.8
0.088
0.076
0.030
O.OZ3
0.083
0.084
0.064
0.029
0.071
0.070
0.053
0.076
0.122
0.123
0.086
0.029
0.017
0.006
0.024
0.053
0.039
0.039
0.022
0.028
0.030
0.017
0.19
0.08
0.47
0.47
0.17
0.35
0.30
0.20
0.008
0.006
0.020
0.013
0.004
0.007
0.010
0.006
0.007
0.007
0.010
0.009
0.011
0.011
0.009
0.002
0.001
0.001
0.010
0.004
0.007
0.004
0.000
0.006
0.005
0.003
0.12
0.21
0.48
0.30
1.75
0.63
0.28
0.82
0.58
0.60
ACETALOEHYDE-AIR
0.02
0.01
0.03
0.02
0.02
0.02
0.02
0.01
1.1
1.1
1.0
1.1
0.0
0.0
0.7
0.5
48.3
87.6
34.3
47.1
1.1
1.1
36.6
32.8
0.422
0.331
0.548
0.431
0.140
0.193
0.344
0.155
0.413
0.290
0.459
0.382
0.222
0.266
0.339
0.093
0.008
0.041
0.089
0.049
0.082
0.073
0.005
0.069
0.057
0.030
0.02
0.12
0.16
0.11
0.58
0.38
0.09
0.31
0.23
0.21
0.026
0.027
0.040
0.040
0.023
0.035
0.032
0.007
0.054
0.061
0.054
0.066
0.066
0.065
0.061
0.006
0.028
0.034
0.014
0.026
0.043
0.030
0.029
0.010
0.029
0.010
1.09
1.23
0.34
0.66
1.83
0.85
1.00
0.52
1.00
0.52
-------
Table A-5
FORMALDEHYDE - NOx RUNS
>
00
Experiment
Initial
Concentrations
NOX HC HC/NOX
(ppi) (ppnC)
Maxima Concentration
OZONE
Expt
-------
TABLE A-5 (Continued)
VO
Experiment
4. IMC CHAMBER
AU01790
AU0279B
AU0479B
AUOS79B
JL2381B
OC0984R
OC0984B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentration*
HOx HC
(PP») (pf»C)
FORMALDEHYDE
0.35 1.0
0.21 1.0
0.23 0.5
0.54 1.2
0.43 1.5
0.56 1.0
0.50 1.0
0.40 1.0
0.14 0.3
HC/MOx
2.8
4.7
2.1
2.2
3.5
1.7
1.9
2.7
1.1
Maxima Concentration
OZONE
Expt
0.618
0.606
0.378
0.508
0.637
0.666
0.301
0.531
0.141
Calc
/dt
Expt
2.06
2.12
1.17
1.95
2.70
2.11
1.51
1.94
0.49
Calc
(ppb/mfn)
2.40
2.91
1.23
2.56
3.43
2.82
1.83
2.45
0.73
Calc
Expt
0.34
0.79
0.06
0.61
0.73
0.71
0.32
0.51
0.27
0.51
0.27
Calc
Expt
/Expt
0.17
0.37
0.05
0.31
0.27
0.34
0.21
0.25
0.11
0.25
0.11
Half-Life
FORMALDEHYDE
Expt Calc
(Bin) (win)
245 181
233 150
280 189
283 198
205 182
328 226
330 213
272 191
47 24
Calc
Expt
(in)
64
83
91
85
23
102
117
80
30
80
30
Calc
Expt
/Expt
0.26
0.36
0.32
0.30
0.11
0.31
0.35
0.29
0.08
0.29
0.08
-------
Table A-6
ALDEHYDE OR KETONE NOX Air RUNS
M
O
Exptri«ent
Initial
Concent rat font
NOx HC MC/NOx
(ppM) (ppmC)
Maxlnji Concentration
OZONE
Expt
Calc
Cale
Expt
Calc
Expt
/Expt
Average
d( [03]
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/nin)
Calc
Expt
/Expt
1. SAPRC EC ACETALDEHYOE
EC164
EC2S4
Croup Average
S. Dtv.
Avg. Abt. Value
S. Dev.
2. IMC CHAMBER
AU0179R
JN1482R
AU2482B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
JN14828
AU2482R
Group Average
8. Dev.
Avg. Abs. Value
S. Dev.
0.51
0.11
0.31
0.28
tf.7
1.0
0.8
0.2
1.4
8.5
5.0
5.0
0.086
0.264
0.175
0.126
0.063
0.243
0.153
0.128
0.023
0.020
0.022
0.002
0.022
0.002
0.27
0.08
0.17
0.13
0.17
0.13
2.03
1.33
1.68
0.49
1.71
1.28
1.49
0.31
0.32
0.05
0.19
0.19
0.19
0.19
0.16
0.04
0.10
0.08
0.10
0.08
ACETALOEHYDE
0.36
0.31
0.32
0.33
0.02
2.0
3.1
1.9
2.3
0.7
5.7
9.9
6.0
7.2
2.3
0.930
0.731
0.972
0.878
0.129
0.729
0.461
0.634
0.608
0.136
0.201
0.270
0.338
0.270
0.069
0.270
0.069
0.22
0.37
0.35
0.31
0.08
0.31
0.08
1.98
1.62
1.68
1.76
0.19
1.67
1.40
1.39
1.49
0.16
0.30
0.22
0.29
0.27
0.04
0.27
0.04
0.15
0.14
0.17
0.15
0.02
0.15
0.02
PROPANAIOEHTDE
0.30
0.33
0.32
0.02
3.1
1.9
2.5
0.9
10.5
5.6
8.0
3.4
0.733
0.941
0.837
0.147
0.459
0.609
0.534
0.106
0.274
0.331
0.303
0.040
0.303
0.040
0.37
0.35
0.36
0.02
0.36
0.02
1.75
1.82
1.79
0.05
1.49
1.41
1.45
0.05
0.26
0.41
0.33
0.11
0.33
0.11
0.15
0.22
0.19
0.05
0.19
0.05
-------
TABLE A-6 (Continued)
Experiment
4. UNC CHAMBER
JH0480R
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
5. UNC CHAMBER
OC2079R
JN0480B
Group Average
S. Oev.
Avg. Abt. Value
S. Oev.
Initial
Concentration*
NOx
(PPM)
HC HC/NOx
-------
Table A-7
N-BUTANE NOx AIR RUNS
Experiment
Initial
Concentrations
MOx
NC
NC/NOX
Maximum Concentration
OZONE
Expt
Catc
Calc
Expt
/Expt
Average Initial
d( [03] [NO] )/dt
Expt
Calc
(ppb/niin)
Calc
Expt
Calc
Expt
/Expt
1. SAPK EC WANE
EC150
EC133
EC134
EC137
EC162
EC163
EC168
EC178
EC304
ECS05
EC306
EC507
EC308
EC309
Croup Average
S. Dev.
Avg. Ate. Value
S. Dev.
2. SAPRC ITC
ITC507
ITC533
ITC770
ITC939
ITC948
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.10
o.so
0.51
O.SO
O.S1
0.49
0.49
0.10
0.47
0.10
0.19
0.10
0.48
0.47
0.56
0.19
BUTANE
0.09
0.12
0.52
0.51
0.26
0.30
0.21
17.6
.6
.3
.7
.2
.0
.0
7.8
17.1
15.7
25.8
25.8
16.2
17.2
13.9
6.4
15.2
11.9
37.9
14.8
10.0
18.0
11.4
179.3
17.1
16.3
17.3
16.3
18.3
16.2
79.6
36.7
159.7
138.2
252.9
33.6
36.3
72.7
77.7
165.0
99.8
72.8
28.9
38.2
81.0
54.8
0.459
0.249
0.034
0.042
0.112
0.454
0.655
0.384
0.362
0.398
0.535
0.420
0.047
0.545
0.335
0.205
0.149
0.165
0.042
0.017
0.054
0.085
0.067
0.498
0.075
0.058
0.070
0.082
0.227
0.446
0.443
0.617
0.597
0.746
0.651
0.210
0.751
0.391
0.263
0.399
0.466
0.149
0.039
0.142
0.239
0.163
0.039
0.174
0.024
0.028
0.031
0.227
0.209
0.059
0.255
0.199
0.211
0.231
0.164
0.206
0.055
0.167
0.147
0.089
0.251
0.301
0.107
0.022
0.088
0.154
0.117
0.154
0.117
0.08
0.70
0.27
0.50
0.32
0.15
0.71
0.50
0.39
0.55
0.38
0.09
0.47
0.41
0.20
1.68
1.83
1.64
1.72
0.10
1.72
0.10
4.41
2.42
0.94
1.02
1.73
3.31
2.03
1.61
2.09
2.39
2.38
2.61
1.04
2.00
2.14
0.94
0.69
0.61
1.56
0.36
0.53
0.75
0.47
2.86
1.30
1.52
1.54
1.50
2.17
1.54
1.77
2.78
3.66
4.16
6.10
2.58
3.16
2.62
1.34
1.42
1.82
3.83
0.86
1.05
1.80
1.20
1.56
1.12
0.58
0.52
0.23
1.14
0.49
0.16
0.70
1.27
1.78
3.49
1.54
1.16
0.48
1.36
1.12
0.85
0.74
1.21
2.27
0.49
0.52
1.05
0.74
1.05
0.74
0.35
0.46
0.62
0.51
0.13
0.34
0.24
0.10
0.33
0.53
0.75
1.34
1.49
0.58
0.34
0.61
0.56
0.41
1.07
1.99
1.45
1.37
0.97
1.37
0.40
1.37
0.40
-------
TABLE A-7 (Continued)
Experiment
3. SAPRC OTC
OTC211
Group Average
S. Oev.
Avg. Abe. Value
8. Dev.
4. UNC CHAMBER
JI2178R
JL2178B
JL2278R
JL22788
ST1879B
OC0979R
OC18798
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
NOx
BUTANE
0.5S
0.55
BUTANE
0.24
0.24
0.55
0.55
0.21
0.21
0.20
0.31
0.16
HC
0.008
0.763
0.986
0.166
0.788
0.185
0.191
0.208
0.470
0.359
Catc
(PP«)
0.098
0.447
0.812
0.051
0.218
0.267
0.359
0.419
0.367
0.238
Calc
Expt
0.090
0.316
0.175
0.115
0.570
0.081
0.168
0.211
0.102
0.281
0.234
0.166
Calc
Expt
/Expt
0.41
0.18
0.69
0.72
0.44
0.88
1.01
0.05
0.73
0.62
0.29
d(
Expt
0.56
0.56
1.17
1.64
0.90
1.55
0.51
0.60
0.60
1.00
0.47
Average Initial
[03] [NO] )/dt
Calc
(ppb/min)
1.11
1.11
0.96
1.41
0.69
1.05
0.64
0.81
0.82
0.91
0.26
Calc
Expt
0.55
0.55
0.55
0.21
0.23
0.21
0.50
0.13
0.21
0.22
0.08
0.27
0.25
0.12
Calc
Expt
/Expt
0.97
0.97
0.97
0.18
0.14
0.24
0.32
0.26
0.36
0.37
0.01
0.30
0.27
0.09
-------
TABLE A-7 (Continued)
Experiment
Maxinun Concentration
PAN
Maximum Concentration
ACETALD
Maximum Concentration
NEK
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
1. SAPRC EC 1
EC130
EC133
EC134
EC137
IC162
EC163
EC168
EC178
EC304
EC305
EC306
EC307
EC308
EC309
Group Average
S. Oev.
Avy. Ab». value
S. Oev.
2. SAPRC ITC
ITC507
ITC533
ITC770
ITC939
ITC94B
Group Average
S. Dev.
Avg. Abt. Value
S. Oev.
BUTANE
0.044
0.031
0.004
0.005
0.015
0.106
0.092
0.045
0.027
0.031
0.035
0.026
0.005
0.034
0.036
0.030
BUTANE
0.004
0.004
0.000
0.003
0.002
0.053
0.006
0.005
0.005
0.006
0.050
0.055
0.056
0.064
0.056
0.072
0.055
0.018
0.065
0.041
0.026
0.012
0.024
0.005
0.001
0.005
0.009
0.009
0.009
0.025
0.001
0.000
-0.009
0.055
0.037
0.011
0.037
0.025
0.037
0.029
0.013
0.031
0.005
0.028
0.023
0.016
0.008
0.020
0.005
0.011
0.008
0.011
0.008
0.21
0.80
0.17
0.08
0.58
0.52
0.41
0.24
1.34
0.80
1.03
1.09
2.79
0.91
0.45
0.96
0.78
0.69
2.06
4.62
3.34
1.81
3.34
1.81
0.130
0.096
0.049
0.062
0.098
0.526
0.114
0.092
0.149
0.131
0.166
0.161
0.037
0.226
0.145
0.121
0.029
0.033
0.056
0.014
0.015
0.029
0.017
0.190
0.085
0.080
0.083
0.085
0.410
0.115
0.114
0.203
0.189
0.248
0.242
0.082
0.263
0.171
0.097
0.108
0.118
0.137
0.076
0.072
0.102
0.028
0.060
0.011
0.031
0.021
0.013
0.116
0.001
0.023
0.054
0.058
0.082
0.081
0.045
0.037
0.025
0.051
0.045
0.032
0.078
0.085
0.081
0.062
0.058
0.073
0.012
0.073
0.012
0.46
0.11
0.64
0.33
0.13
0.22
0.01
0.25
0.37
0.44
0.49
0.51
1.23
0.16
0.32
0.38
0.38
0.30
2.69
2.57
1.45
4.41
3.89
3.00
1.17
3.00
1.17
0.165
0.122
0.064
0.072
0.067
0.077
0.193
0.091
0.092
0.085
0.098
0.139
0.076
0.115
0.104
0.039
0.075
0.036
0.047
0.019
0.021
0.040
0.023
0.199
0.078
0.073
0.075
0.078
0.065
0.142
0.136
0.210
0.191
0.254
0.235
0.159
0.167
0.147
0.065
0.092
0.110
0.106
0.061
0.061
0.086
0.024
0.034
0.044
0.009
0.003
0.011
0.013
0.051
0.045
0.118
0.107
0.156
0.096
0.083
0.052
0.043
0.062
0.059
0.047
0.017
0.073
0.059
0.042
0.040
0.047
0.021
0.047
0.021
0.21
0.36
0.14
0.04
0.16
0.16
0.27
0.50
1.28
1.26
1.59
0.69
1.08
0.45
0.47
0.62
0.58
0.51
0.23
2.01
1.27
2.25
1.94
1.54
0.82
1.54
0.82
-------
TABLE A-7 (Continued)
un
Experinent
Maximum Concentration
PAN
Expt
-------
TABLE A-8
BRANCHED ALKANE - NOx AIR RUNS
Experiment
Initial
Concentrations
NOx HC
(ppm) (pptnC)
HC/NOx
Max i nun Concentration
OZONE
Expt
Calc
Calc
-Expt
/Expt
Average
d( 103]
Initial
[NO] }/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
1. SAPRC EC 2,3 DIMETHYL BUTANE
EC16S
EC169
EC171
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. UNC CHAMBER
OC1879R
OC2079S
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
AU1983R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
4. UNC CHAMBER
AU1983B
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
0.10
0.19
0.10
0.13
0.05
11.3
4.5
3.5
6.4
4.2
114.3
23.5
35.7
57.8
49.3
0.488
0.493
0.403
0.462
0.051
0.671
0.528
0.472
0.557
0.102
0.182
0.035
0.069
0.095
0.077
0.095
0.077
0.37
0.07
0.17
0.20
0.15
0.20
0.15
1.77
1.00
1.30
1.36
0.39
999.00
1.21
1.33
333.65
576.04
0.22
0.03
0.12
0.13
0.12
0.13
0.22
0.02
0.12
0.14
0.12
0.14
2.3 DIMETHYL BUTANE
0.20
0.22
0.21
0.02
16.4
12.6
14.5
2.7
81.9
56.5
69.2
18.0
0.236
0.217
0.226
0.014
0.556
0.416
0.486
0.099
0.320
0.199
0.259
0.086
0.259
0.086
1.36
0.92
1.14
0.31
1.14
0.31
0.64
0.66
0.65
0.02
0.93
0.90
0.92
0.02
0.30
0.25
0.27
0.04
0.27
0.04
0.47
0.37
0.42
0.07
0.42
0.07
ISO PENTAME
0.38
0.38
4.7
4.7
12.6
12.6
0.088
0.088
0.074
0.074
-0.014
-0.014
0.014
0.16
-0.16
0.16
0.61
0.61
0.63
0.63
0.02
0.02
0.02
0.03
0.03
0.03
ISO OCTANE
0.37
0.37
4.1
4.1
10.9
10.9
0.057
0.057
0.035
0.035
0.022
0.022
0.022
-0.38
0.38
0.38
0.53
0.53
0.51
0.51
0.02
0.02
0.02
0.04
0.04
0.04
-------
Table A-9
PENTANE AND HIGHER N-ALKANES NOx - AIR RUNS
Experiment
Initial
Concentrations
NOX HC HC/NOx
(ppm) (ppmC)
Maximum Concentration
OZONE
Calc
Expt Calc -Expt
(ppm) (ppm) (ppra)
Calc
Expt
/Expt
Average Initial
d( [03] (NO] )/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
1. SAPRC EC PENTANE
EC135
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
2. UNC CHAMBER
OC0979B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.10 20.4 212.7
0.10 20.4 212.7
PENTANE
0.21 15.1 73.3
0.21 15.1 73.3
0.435 0.576 0.141
0.435 0.576 0.141
0.141
0.184 0.309 0.126
0.184 0.309 0.126
0.126
0.32
0.32
0.32
0.68
0.68
0.68
2.92 2.96 0.05
2.92 2.96 0.05
0.05
0.59 0.75 0.16
0.59 0.75 0.16
0.16
0.02
0.02
0.02
0.27
0.27
0.27
3. SAPRC EC HEXANE
EC131
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
4. SAPRC ITC
ITC559
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.10 24.6 251.1
0.10 24.6 251.1
HEXANE
0.19 279.4 1441.1
0.19 279.4 1441.i
0.393 0.561 0.168
0.393 0.561 0.168
0.168
0.377 0.571 0.194
0.377 0.571 0.194
0.194
0.43
0.43
0.43
0.51
0.51
0.51
1.92 2.17 0.25
1.92 2.17 0.25
0.25
1.79 1.77 -0.02
1.79 1.77 -0.02
0.02
0.13
0.13
0.13
0.01
0.01
0.01
-------
TABLE A-9 (Continued)
Experiment
5. SAPKC ITC
ITCS38
ITC540
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
6. SAPftC ITC
ITCSS2
ITC761
ITC762
ITC763
ITC797
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
7. OKC CHAMBER
ST1879R
Group Average
S. Dev.
Avg. Ate. Value
S. Dev.
Initial
Concentrations
NOX
(ppn»
HEPTANE
0.11
0.11
0.11
0.00
OCTANE
0.13
0.52
0.27
0.28
0.52
0.34
0.17
OCTANE
0.21
0.21
HC
(ppmC)
60.3
274.8
167.6
151.7
428.8
75.2
74.7
7.7
7.3
118.7
176.6
6.3
6.3
HC/NOx
529.0
2421.3
1475.2
1338.1
3278.4
145.9
280.4
27.7
14.0
749.3
1417.9
30.4
30.4
Haxinun Concentration
OZONE
Expt
0.364
0.436
0.400
O.OS1
0.314
0.049
0.240
0.118
0.009
0.146
0.128
0.467
0.467
Calc
Expt
(PP»>
0.213
0.076
0.145
0.097
0.145
0.097
0.002
0.020
0.134
0.077
0.005
0.047
0.058
0.047
0.057
0.346
0.346
0.346
Calc
Expt
/Expt
1.42
0.21
0.82
0.85
0.82
0.85
0.01
1.27
0.63
0.90
0.64
0.90
2.83
2.83
2.83
Average
d( [031 -
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/nin)
0.74
1.85
1.30
0.79
1.19
1.08
0.83
0.68
0.64
0.88
0.24
0.40
0.40
1.21
1.28
1.25
0.05
1.02
1.63
2.06
2.39
0.92
1.60
0.64
0.63
0.63
0.47
0.57
0.05
0.74
0.52
0.07
0.17
0.55
1.23
1.71
0.28
0.72
0.75
0.79
0.66
0.23
0.23
0.23
Calc
Expt
/Expt
0.64
0.31
0.17
0.67
0.48
0.24
0.14
0.51
1.48
2.51
0.44
0.96
1.04
1.02
0.97
0.58
0.58
0.58
8. SAPRC EC NONANE
EC15S
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.10
0.10
37.3
37.3
385.1
385.1
0.264
0.264
0.438
0.438
0.174
0.174
0.174
0.66
0.66
0.66
1.33
1.33
1.07
1.07
0.26
0.26
0.26
0.20
0.20
0.20
-------
Table A-10
ETHENE NOx AIR RUNS
Experiment
Initial
Concentrations
NOx HC HC/NOx
(PPM) (ppMC)
Maxioui Concentration
OZONE
Expt
Calc
Expt
/Expt
Average
d< [03)
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
Half-Life
ETHENE
Calc
Expt Calc -Expt
(mln) («in) (in)
Calc
Expt
/Expt
1. SAPRC EC ETHENE
EC142
ECUS
EC156
EC285
EC286
EC287
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC
ITC926
ITC936
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
AU0479R
AUOS79R
OC0584R
OC1184R
OC1284R
OC0584B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
o.48
0.50
0.50
1.01
0.94
0.53
0.66
0.25
ETHENE
0.51
0.50
0.50
0.01
ETHENE
0.23
0.64
0.36
0.35
0.72
0.37
0.45
0.19
1.9
4.1
4.0
3.9
7.5
8.0
4.9
2.4
7.9
3.9
5.9
2.8
0.9
4.1
3.2
2.9
2.7
1.8
2.6
1.1
4.1
8.1
8.0
3.9
8.0
15.1
7.9
4.1
15.6
7.8
11.7
5.5
3.9
6.4
8.8
8.2
3.7
5.0
6.0
2.2
0.782
1.087
1.105
0.840
1.081
0.965
0.977
0.139
0.982
0.940
0.961
0.030
0.729
1.294
0.856
0.858
0.495
0.675
0.818
0.269
0.563
0.850
0.808
1.063
1.271
1.098
0.942
0.252
0.993
0.950
0.971
0.031
0.555
1.108
1.007
1.102
0.576
0.778
0.854
0.254
0.218
0.237
0.297
0.223
0.190
0.133
0.034
0.240
0.216
0.054
0.011
0.010
0.010
0.001
0.010
0.001
0.174
0.186
0.151
0.244
0.082
0.103
0.037
0.177
0.157
O.OS9
0.28
0.22
0.27
0.27
0.18
0.14
0.03
0.25
0.22
0.06
0.01
0.01
0.01
0.00
0.01
0.00
0.24
0.14
0.18
0.28
0.16
0.15
0.07
0.21
0.19
0.06
3.20
8.50
8.89
5.05
11.76
13.89
8.55
3.99
6.96
2.72
4.84
3.00
1.60
3.17
2.16
2.22
1.58
1.48
2.04
0.64
2.50
5.48
5.46
6.07
14.13
17.07
8.45
5.75
8.50
3.39
5.95
3.62
1.15
3.08
2.44
2.48
1.65
1.61
2.07
0.72
0.70
3.02
3.43
1.03
2.37
3.19
0.09
2.76
2.29
1.16
1.54
0.67
1.11
0.61
1.11
0.61
0.45
0.09
0.28
0.26
0.07
0.13
0.03
0.27
0.21
0.14
0.22
0.36
0.39
0.20
0.20
0.23
0.05
0.30
0.27
0.08
0.22
0.25
0.23
0.02
0.23
0.02
0.28
0.03
0.13
0.12
0.04
0.09
0.01
0.15
0.11
0.09
222
155
153
265
174
171
190
44
227
337
282
77
307
333
394
366
465
373
61
290
228
228
248
162
155
218
51
225
310
267
60
389
367
321
305
485
387
375
63
68
73
75
17
12
16
28
47
43
31
2
-27
14
17
14
17
82
34
-73
61
78
-19
72
65
19
0.31
0.47
0.49
0.06
0.07
0.09
0.17
0.28
0.25
0.20
-0.01
0.08
0.04
0.05
0.04
0.05
0.27
0.10
0.19
0.17
0.17
0.03
0.20
0.18
0.06
-------
Table A-10 (Continued)
to
o
Expertwent Maxioun Concentration
HCHO
Calc Calc
Expt Calc -Expt -Expt
(ppai) (ppn) /Expt
1. 8APRC EC 1
ECU2
ECU3
EC156
EC285
EC286
EC287
Croup Average
8. Dev.
Avg. Ate. Value
8. Dtv.
2. SAPRC ITC
ITC926
ITC936
Croup Average
S. Dev.
Avg. Ate. Value
8. Oev.
3. UNC CHAMBER
AU0479R
AUOS79R
OCOS84R
OC1184R
OC1284R
OC0584B
Croup Average
8. Dev.
Avg. Ate. Value
S. Dev.
THERE
0.207
0.967
0.735
0.709
1.425
1.426
0.912
0.469
ETHENE
1.308
0.697
1.002
0.432
ETHENE
0.306
1.488
0.869
0.707
0.655
0.558
0.764
0.401
9.385
0.758
0.753
0.740
1.342
1.275
0.876
0.365
1.223
0.682
0.953
0.383
0.152
0.663
0.525
0.484
0.447
0.308
0.430
0.178
0.177
0.209
0.018
0.031
0.083
0.151
0.036
0.140
0.111
0.079
0.085
0.015
0.050
0.049
0.050
0.049
0.153
0.825
0.344
0.223
0.207
0.249
0.334
0.249
0.334
0.249
0.85
0.22
0.02
0.04
0.06
0.11
0.09
0.39
0.22
0.32
0.06
0.02
0.04
0.03
0.04
0.03
-0.50
0.55
0.40
0.32
0.32
0.45
0.42
0.10
0.42
0.10
-------
Table A-11
PROPENE NOX AIR RUNS
NJ
Experiment
Initial
Concentrations
VOX HC HC/NOx
(pp») (pp«C)
Maximal Concentration
OZONE
Expt
Calc
(ppn)
Calc
Expt
(PP">
Calc
Expt
/Expt
Average
d{ [03J
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
Half-Life
PROPENE
Calc
Expt Calc -Expt
(nin) (nin) (*in)
Calc
Expt
/Expt
1. SAPRC EC PROPENE
EC121
EC177
EC216
EC217
EC230
EC256
EC257
EC276
EC277
EC278
EC279
EC3U
EC315
EC316
EC317
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC -
ITC693
ITC810
ITC860
ITC925
ITC938
ITC947
ITC960
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.51
0.46
0.52
0.68
0.52
0.56
0.56
0.52
0.11
0.49
0.97
0.93
0.94
0.98
0.54
0.61
0.24
PROPENE
0.49
0.52
0.52
0.54
0.52
0.53
0.50
0.52
0.02
1.5
1.5
1.5
0.6
1.9
0.4
0.7
1.6
1.7
3.1
3.5
3.2
2.9
3.2
1.5
1.9
1.0
3.5
2.8
3.0
2.8
2.1
1.9
2.6
2.7
0.5
2.9
3.2
3.0
1.2
3.7
0.7
1.3
3.2
15.7
6.2
3.5
3.5
3.1
3.3
2.8
3.8
3.5
7.2
5.4
5.8
5.2
4.0
3.6
5.2
5.2
1.2
0.506
0.540
0.564
0.149
0.344
0.002
0.068
0.388
0.313
0.625
0.679
0.728
0.344
0.955
0.615
0.455
0.260
0.779
0.782
0.585
0.779
0.729
0.710
0.721
0.726
0.070
0.491
0.498
0.595
0.273
0.310
0.010
0.104
0.459
0.397
0.683
0.703
0.813
0.567
1.000
0.615
0.501
0.260
0.713
0.703
0.662
0.715
0.517
0.533
0.641
0.641
0.084
0.014
0.042
0.031
0.124
0.035
0.007
0.035
0.071
0.085
0.057
0.024
0.085
0.223
0.045
0.001
0.046
0.067
0.059
0.056
0.066
0.080
0.078
0.064
0.212
0.177
0.080
0.086
0.093
0.108
0.060
0.03
0.08
0.05
0.83
0.10
0.52
0.18
0.27
0.09
0.04
0.12
0.65
0.05
0.00
0.18
0.28
0.21
0.26
0.09
0.10
0.13
0.08
0.29
-0.25
0.11
0.11
0.14
0.15
0.08
7.46
3.89
4.18
0.80
3.06
0.98
3.35
3.24
8.27
7.72
6.64
7.21
4.33
10.64
4.06
5.06
2.81
5.07
4.25
3.57
3.72
3.61
3.34
4.23
3.97
0.59
4.11
3.91
5.63
1.47
4.76
1.01
4.16
4.39
7.48
9.42
8.69
10.98
6.68
12.08
4.48
5.95
3.24
6.82
4.75
5.08
4.13
2.70
2.67
3.91
4.29
1.45
3.36
0.02
1.45
0.68
1.70
0.03
0.81
1.15
0.80
1.69
2.04
3.77
2.35
1.44
0.42
0.89
1.61
1.45
1.10
1.76
0.50
1.51
0.41
0.91
0.67
0.32
0.33
1.03
0.87
0.56
0.45
0.01
0.35
0.85
0.56
0.03
0.24
0.35
0.10
0.22
0.31
0.52
0.54
0.14
0.10
0.24
0.31
0.32
0.23
0.35
0.12
0.42
0.11
0.25
0.20
0.07
0.07
0.26
0.22
0.13
56
95
105
116
123
181
60
128
74
87
123
98
159
70
85
105
33
126
135
142
150
137
157
133
140
10
114
119
91
124
125
175
77
123
67
82
114
85
126
75
78
105
28
110
141
131
147
185
188
148
150
28
58
24
-14
8
2
-6
3
5
-7
5
-9
13
33
5
7
0
20
13
14
16
6
11
3
48
31
15
10
23
18
15
1.04
0.25
0.13
0.07
0.02
0.03
0.04
0.04
0.09
-0.06
0.07
0.13
-0.21
0.07
-0.08
0.04
0.30
0.16
0.25
0.13
0.04
0.08
0.02
0.35
0.20
0.11
0.07
0.17
0.13
0.11
-------
Table A-11 (Continued)
Experiment Initial
Concentrations
NOx HC HC/NOx
(pp.) (ppC)
Maximum Concentration
OZONE
Expt
Calc
Expt
/Expt
Average Initial
d( [03] [NO] )/dt
Expt Calc
(ppb/mln)
Calc
Expt
*
Calc
Expt
/Expt
Expt
(in)
Half-Life
PROPENE
Calc
(in)
Calc
Expt
(in)
Calc
Expt
/Expt
3. SAPRC OTC PROPENE
OTC186
OTC191
OTC210
OTC233
OTC236
Group Average
S. Oev.
Avg. Abt. Value
S. Dev.
0.55
0.54
0.57
0.46
O.SS
0.53
0.04
3.6
3.7
2.7
0.1
3.3
2.7
1.5
6.6
6.9
4.8
0.2
6.3
5.0
2.8
0.822
0.903
0.972
0.633
0.848
0.836
0.127
0.845
1.057
0.969
0.913
0.968
0.950
0.078
0.023
0.154
0.003
0.280
0.120
0.115
0.113
0.116
0.111
0.03
0.17
0.00
0.44
0.14
0.16
0.18
0.16
0.17
5.16
12.18
6.70
3.69
6.91
6.93
3.21
6.47
11.19
5.57
4.80
7.43
7.09
2.49
1.30
0.99
1.13
1.11
0.52
0.16
1.15
1.01
0.29
0.25
0.08
0.17
0.30
0.08
0.08
0.20
0.18
0.10
104
56
121
132
109
104
29
108
70
127
129
102
107
23
4
14
6
3
7
2
8
6
4
0.04
0.25
0.05
0.02
0.06
0.05
0.12
0.08
0.09
to
to
4. IMC CHAMBER PROPENE
JA1078R
OC12788
OC2078R
OC20788
OC2178R
OC2578B
JN1279R
JN12798
JN1379R
AU0279R
AU27808
ST0482B
ST13B2B
JL1783R
J12183R
JL2983B
J13183R
ST2383B
OC0484R
OC0484B
OC1184B
OC1284B
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.46
0.48
0.46
0.46
0.50
0.44
0.50
0.49
0.45
0.22
0.48
0.23
0.33
0.27
0.22
0.21
0.21
0.38
0.36
0.36
0.36
0.68
0.39
0.12
3.1
1.4
1.3
3.5
3.9
1.3
1.0
1.5
2.9
1.5
1.9
1.1
1.1
1.1
1.1
1.1
1.1
1.6
2.1
1.0
2.2
2.0
1.8
0.9
6.9
2.9
2.9
7.7
7.9
2.9
2.1
3.0
6.5
7.0
4.0
4.9
3.3
3.9
5.0
5.3
5.1
4.3
5.9
2.9
6.3
2.9
4.7
1.8
0.363
0.461
0.340
0.727
0.670
0.230
0.382
0.673
0.974
0.788
1.044
0.658
0.731
0.848
0.804
0.697
0.719
0.405
0.645
0.446
0.674
0.432
0.623
0.214
0.445
0.390
0.307
0.852
0.801
0.251
0.245
0.413
0.776
0.548
0.996
0.587
0.598
0.670
0.676
0.651
0.617
0.616
0.732
0.446
0.735
0.402
0.577
0.199
0.082
0.072
0.033
0.124
0.131
0.021
0.137
0.260
0.197
0.240
0.048
0.071
0.133
0.228
0.128
0.045
0.102
0.211
0.087
0.000
0.061
0.030
0.046
0.128
0.111
0.076
0.22
0.16
-0.10
0.17
0.20
0.09
0.36
0.39
0.20
0.30
0.05
0.11
0.18
0.27
0.16
0.06
0.14
0.52
0.14
0.00
0.09
0.07
0.05
0.22
0.18
0.12
0.46
1.40
1.23
2.83
2.53
1.03
0.85
1.24
2.69
2.41
3.26
1.46
1.69
2.10
1.76
1.66
1.81
1.23
2.07
1.25
2.38
1.67
1.77
0.70
0.50
1.74
1.48
3.59
3.55
1.40
0.79
1.03
2.91
2.07
3.22
.63
.55
.63
.70
.77
.44
2.03
2.33
1.34
2.66
1.86
1.92
0.83
0.03
0.34
0.25
0.76
1.02
0.37
0.06
0.20
0.22
0.34
0.04
0.17
0.14
0.47
0.06
0.11
0.37
0.81
0.26
0.09
0.28
0.19
0.15
0.37
0.30
0.26
0.07
0.25
0.21
0.27
0.40
0.36
0.07
0.17
0.08
0.14
0.01
0.12
0.08
0.22
0.04
0.07
0.20
0.66
0.13
0.07
0.12
0.12
0.09
0.21
0.17
0.15
867
303
341
233
251
347
327
320
254
166
212
266
236
194
225
235
150
347
293
319
235
352
294
141
241
263
180
187
265
316
331
226
188
219
216
237
234
212
209
169
221
208
250
187
285
230
42
-62
78
53
64
82
11
11
28
22
7
50
1
40
13
26
19
126
85
69
48
67
36
43
45
32
0.20
-0.23
-0.23
0.25
0.24
0.03
0.03
0.11
0.13
0.03
0.19
0.00
0.21
0.06
0.11
0.13
0.36
0.29
0.22
0.20
0.19
0.11
0.16
0.16
0.10
-------
Table A-11 (Continued)
to
U)
Experiment
1. SAPftC EC
EC121
EC177
EC216
EC217
EC230
EC256
EC257
EC276
EC277
EC278
EC279
EC314
EC51S
EC316
EC317
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPttC ITC
ITC693
ITC810
ITC860
ITC925
ITC938
ITC947
ITC960
Group Averag«
S. Oev.
Avg. Abs. Value
S. Oev.
Maximum Concentration
PAN
Expt
PROPENE
0.167
0.165
0.154
0.019
0.110
0.001
0.007
0.100
0.077
0.260
0.340
0.226
0.116
0.270
0.130
0.143
0.100
PROPENE
0.311
0.140
0.205
0.296
0.270
0.056
0.213
0.100
Catc
0.155
0.180
0.197
0.037
0.041
0.001
0.010
0.141
0.109
0.261
0.326
0.373
0.280
0.319
0.194
0.175
0.120
0.256
0.238
0.216
0.233
0.143
0.138
0.201
0.204
0.046
Calc
Expt
-------
Experiment
3. SAPRC OTC
OTC186
OTC191
OTC210
OTC235
OTC236
Group Average
S. Oev.
Avg. Ate. Value
S. Dev.
4. UNC CHAMBER
JA1078R
OC1278B
OC2078R
OC20788
OC2178R
OC2578B
JN1279R
JN1279B
JN1379R
AU0279R
AU27BOB
ST0482B
ST13828
JL1783R
JL2183R
J12983B
J13183R
ST2363B
OC0484R
OC0484B
OC1184B
OC1284B
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
Table
Max f MM Concentration
PAN
Expt
PCOPENE
0.260
0.190
0.126
0.037
0.095
O.U2
0.086
PROPENE
0.069
0.082
0.241
0.162
0.050
0.032
0.134
0.223
0.130
0.122
0.117
0.086
0.093
0.092
0.088
0.100
0.167
0.086
0.130
0.144
0.120
O.OS4
Calc
(PP»>
0.293
0.261
0.18S
0.127
0.2S8
0.22S
0.068
0.094
0.078
0.286
0.273
0.063
0.037
0.133
0.270
0.103
0.1S1
0.129
0.106
0.099
0.092
0.119
0.109
0.202
0.208
0.087
0.224
0.119
0.142
0.073
Calc
Expt
0.508
0.433
0.481
0.380
0.599
0.480
0.082
0.214
0.190
0.460
0.455
0.166
0.122
0.385
0.419
0.201
0.134
0.124
0.129
0.134
0.215
0.293
0.145
0.287
0.236
0.239
0.117
Calc
(PP»)
0.597
0.571
0.481
0.472
0.569
0.538
0.057
0.003
0.185
0.188
0.526
0.510
0.170
0.107
0.389
0.396
0.209
0.279
0.162
0.153
0.154
0.156
0.156
0.149
0.232
0.300
0.143
0.326
0.272
0.235
0.130
Calc
Expt
0.462
0.811
0.459
0.577
0.202
0.440
0.800
0.840
0.142
0.208
0.410
0.440
0.030
0.174
0.214
0.185
0.211
0.424
0.223
0.484
0.427
0.353
0.226
Calc
-------
Table A-12
BUTENE NOx AIR RUNS
K)
in
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppn) (ppmC)
1. SAPRC EC 1
EC122
EC123
EC124
Croup Average
S. Oev.
Avg. Abe. Value
S. Ocv.
2. SAPRC ITC
ITC927
ITC928
ITC930
ITC935
Creep Average
S. Oev.
Avg. Ate. Value
S. Oev.
I-BUTEME
0.50
O.S1
0.99
0.67
0.28
1- BUTENE
O.S1
0.67
0.32
0.66
0.49
0.20
0.9
1.6
1.7
1.4
0.5
3.8
3.9
7.3
7.5
5.6
2.0
1.7
3.2
1.7
2.2
0.9
12.3
5.8
22.6
11.4
13.0
7.0
Maxima Concentration
OZONE
Expt
(ppn)
0.227
0.506
0.247
0.326
0.155
0.646
0.022
0.717
0.872
0.564
0.374
Calc
0.115
0.315
0.189
0.206
0.101
0.713
0.088
0.795
0.918
0.629
0.370
Calc
Expt
-------
Table A-12 (Continued)
Experiment Initial Maxima Concentration
Concentrations OZONE
Calc Calc
NOx HC NC/NOx Expt Calc -Expt -Expt
(ppn) (ppmC) (ppa) (ppm) (ppn) /Expt
4. IMC CHAMBER TRANS-2-BUTENE
ST2783B 0.43 2.0 4.7 0.523 0.457 -0.067 -0.13
Group Average 0.43 2.0 4.7 0.523 0.457 -0.067 -0.13
S. Oev.
Avg. Abs. Value 0.067 0.13
S. Oev.
5. SAPftC ITC ISO BUTEHE
ITW94 0.51 4.6 9.1 0.900 0.984 0.085 0.09
Group Average 0.51 4.6 9.1 0.900 0.984 0.085 0.09
S. Oev.
Avg. Abt. Value 0.085 0.09
S. Oev.
Average Initial
dC (03) - [NO] )/dt
Calc Calc
Expt Calc -Expt -Expt
(ppb/nln) /Expt
3.00 3.03 0.02 0.01
3.00 3.03 0.02 0.01
0.02 0.01
8.84 15.06 6.22 0.70
8.84 15.06 6.22 0.70
6.22 0.70
-------
Table A-13
BENZENE NOx AIR RUNS
Experiment
1. SAPRC ITC
ITC560
ITC561
ITC562
ITC698
ITC710
ITC831
Croup Average
S. Oev.
Avg. Abs. Value
S. Oev.
Initial
Concentrations
NOx
BENZENE
0.12
0.11
0.56
0.50
0.55
1.01
0.47
0.33
HC
332.3
79.1
83.8
83.5
83.6
12.2
112.4
111.3
HC/NOx
2874.4
694.2
149.7
167.4
151.0
12.1
674.8
1103.2
Maxinum Concentration
OZONE
Expt
0.323
0.273
0.412
0.374
0.367
0.021
0.295
0.142
Calc
-------
Table A-U
TOLUENE NOx - AIR RUNS
KJ
00
Experiment
1. SAPRC tC
EC264
EC265
EC266
EC269
EC270
EC271
EC272
EC273
EC327
EC336
EC337
EC339
EC340
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC
ITC699
ITC828
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
3. UNC CHAMBER
JL3080R
AU2780R
AU2782B
OC2782R
AU0183R
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
NOx
TOLUENE
0.48
0.48
0.49
0.47
0.46
0.21
0.48
0.11
0.45
0.44
0.45
0.44
0.43
0.42
0.12
TOLUENE
0.51
1.02
0.76
0.36
TOLUENE
0.18
0.48
0.43
0.39
0.39
0.37
0.11
HC
CppmC)
8.1
7.5
8.4
4.0
4.2
8.0
4.1
4.1
4.0
7.2
7.9
5.0
4.1
5.9
1.9
10.5
3.0
6.8
5.3
3.9
2.3
3.0
4.5
4.6
3.7
1.0
HC/NOx
17.0
15.6
17.0
8.4
9.0
37.4
8.5
37.2
8.9
16.3
17.7
11.3
9.5
16.5
9.9
20.8
3.0
11.V
12.6
21.3
4.8
7.0
11.7
11.8
11.3
6.4
Maximum Concentration
OZONE
Expt
0.419
0.393
0.405
0.318
0.369
0.296
0.410
0.215
0.376
0.396
0.325
0.225
0.344
0.345
0.068
0.485
0.021
0.253
0.273
0.736
0.116
0.123
0.458
0.341
0.261
Calc
0.425
0.419
0.429
0.267
0.392
0.339
0.264
0.259
0.355
0.478
0.350
0.145
0.326
0.342
0.091
0.506
0.006
0.256
0.374
0.548
0.134
0.341
0.492
0.378
0.161
Calc
Expt
(PP»)
0.006
0.026
0.024
0.051
0.023
0.043
0.147
0.044
0.021
0.082
0.025
0.080
0.018
. -0.003
0.061
0.045
0.038
0.022
0.015
0.004
0.018
0.100
0.187
0.018
0.218
0.034
0.037
O.U8
0.111
0.090
Calc
Expt
/Expt
0.01
0.07
0.06
0.16
0.06
0.15
0.36
0.21
0.06
0.21
0.08
0.35
0.05
0.01
0.18
0.14
0.11
0.05
0.05
0.05
0.37
0.25
0.15
1.78
0.07
0.42
0.79
0.53
0.71
d<
Expt
Average
[031
Catc
Initial
[NO] >/dt
Calc
Expt
(ppb/min)
4.46
3.56
4.62
2.55
3.72
6.56
3.69
5.90
2.49
6.06
2.55
1.53
2.50
3.86
1.58
4.72
0.49
2.61
2.99
1.20
1.76
0.63
0.66
1.75
1.20
0.55
5.05
4.83
5.21
2.43
3.V3
5.80
2.44
3.69
2.58
6.98
2.66
1.50
2.43
3.81
1.64
5.42
1.18
3.30
3.00
1.22
1.40
0.71
0.93
1.65
1.18
0.37
0.59
1.28
0.58
0.12
0.20
0.77
1.25
2.21
0.09
0.92
0.11
0.04
0.07
0.05
0.92
0.63
0.65
0.70
0.69
0.69
0.01
0.69
0.01
0.03
0.36
0.08
0.27
0.10
0.02
0.23
0.17
0.14
Calc
Expt
/Expt
0.13
0.36
0.13
0.05
0.05
0.12
0.34
0.37
0.04
0.15
0.04
0.02
0.03
0.00
0.20
0.14
0.13
0.15
1.39
0.77
0.88
0.77
0.88
0.02
0.21
0.12
0.41
0.06
0.06
0.?3
0.16
0.15
-------
Table A-14 (Continued)
10
vo
Experiment Maximum Concentration
PAN
Calc Calc
Expt Calc -Expt -Expt
(ppffl) (ppra) (ppm) /Expt
1. SAPRC EC
EC264
EC265
EC266
EC269
EC270
EC271
EC272
EC27J
EC327
EC336
EC337
EC339
EC340
Group Average
S. Oev.
Avfl. Abs. Value
S. Oev.
2. SAPRC ITC
ITC699
ITC828
Group Average
S. Oev.
Avg. Abs. Value
S. Dev.
3. UNC CHAMBER
JL3080R
AU2780R
AU2782B
OC2782R
AU0183R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
TOLUENE
0.071
0.072
0.075
0.050
0.057
0.053
0.132
0.032
0.041
0.059
0.047
0.024
0.042
0.058
0.027
TOLUENE
0.145
0.000
0.072
TOLUENE
0.037
0.020
0.012
0.013
0.043
0.025
0.014
0.087
0.084
0.090
0.037
0.059
0.062
0.037
0.042
0.048
0.081
0.059
0.016
0.040
0.057
0.023
0.107
0.001
0.054
0.038
0.012
0.009
0.062
0.049
0.034
0.023
0.017
0.012
0.015
0.013
0.002
0.009
0.095
0.010
0.007
0.022
0.012
0.008
0.002
0.001
0.030
0.017
0.024
0.038
0.001
0.018
0.019
0.002
0.008
0.002
0.049
0.005
0.009
0.023
0.013
0.020
0.23
0.17
0.20
0.25
0.03
0.18
0.72
0.31
0.18
0.37
0.26
0.32
0.04
0.05
0.31
0.25
0.17
0.26
0.26
0.26
0.05
0.41
0.21
3.65
0.12
0.64
1.70
0.89
1.55
-------
Table A-15
XYLENE NOx AIR RUNS
LJ
O
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppm) (ppnC)
Maximum Concentration
OZONE
Expt
Calc
(PP«»
Calc
Expt
-------
Table A-15 (Continued)
Experiment Maximum Concentration
PAN
Catc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppra) /Expt
U)
1. SAPRC EC )
EC343
EC544
EC34S
EC346
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC
ITC702
1TC827
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
3. UNC CHAMBER
JL3080B
AU2782R
OC2782B
AU0183B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
(TLENE
0.081
0.175
0.107
0.102
0.116
0.041
XYLENE
0.390
0.002
0.196
0.274
XYLENE
0.091
0.093
0.112
0.102
0.099
0.009
0.107
0.171
0.106
0.101
0.121
0.033
0.15S
0.003
0.079
0.108
0.060
0.066
0.115
0.069
0.078
0.025
0.027
0.004
0.001
0.001
0.005
0.014
0.008
0.012
0.235
0.001
0.117
0.166
0.118
0.166
0.031
0.027
0.004
0.033
0.022
0.017
0.024
0.013
0.33
0.02
0.01
0.01
0.07
0.17
0.09
0.16
0.60
0.26
0.17
0.61
0.43
0.24
0.34
0.29
0.03
0.32
0.23
0.18
0.24
0.14
-------
Table A-16
1,3,5-TRIMETHYL BENZENE NOx AIR RUNS
N>
Experiment
Initial
Concentrations
NOx HC HC/NOx
(ppm) (ppmC)
Maximum Concentration
OZONE
Expt
(PP«)
Calc
(ppn»
Calc
Expt
(ppni)
Cale
Expt
/Expt
Average
d( [03]
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
1. SAPRC EC MESITYLENE
EC900
EC?01
EC903
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. SAPRC ITC
ITC703
ITC706
ITC709
ITC742
ITC826
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
O.S3
0.51
1.00
0.68
0.28
MESITTLENE
0.50
0.49
0.99
0.48
0.90
0.67
0.25
5.4
2.7
4.7
4.3
1.4
5.3
2.7
4.7
4.6
0.8
3.6
1.9
10.2
5.2
4.7
6.7
3.1
10.6
5.4
4.7
9.7
0.9
6.3
3.9
0.381
0.384
0.502
0.422
0.069
0.707
0.641
0.779
0.773
0.022
0.584
0.320
0.443
0.413
0.565
0.474
0.080
0.489
0.476
0.621
0.489
0.012
0.418
0.234
0.062
0.029
0.063
0.051
0.019
0.051
0.019
0.218
-0.165
-0.158
-0.284
0.009
-0.167
0.101
0.167
0.101
0.16
0.08
0.12
0.12
0.04
0.12
0.04
-0.31
-0.26
0.20
0.37
0.28
0.07
0.28
0.07
3.85
8.88
14.96
9.23
5.56
14.59
7.20
11.74
13.14
1.68
9.67
5.26
999.00
8.54
14.04
340.53
570.26
18.09
8.57
13.90
14.56
2.33
11.49
6.15
0.34
0.92
0.63
0.41
0.63
0.41
3.50
1.36
2.16
1.42
0.65
1.82
1.08
1.82
1.08
0.04
0.06
0.05
0.02
0.05
0.02
0.24
0.19
0.18
0.11
0.39
0.22
0.10
0.22
0.10
-------
Table A-16 (Continued)
ui
ui
Experiment
Half-Life
135 -TUB
Catc
Expt Catc -Expt
(in) (win) (Bin)
Calc
-Expt
/Expt
Naxioun Concentration
PAN
Expt
CPP*>
Calc
Calc
Expt
Calc
Expt
/Expt
1. SAPftC EC MESITTLENE
EC900
K901
EC903
Group Average
S. Dev.
Avg, Abs. Value
S. Oev.
2. SAPftC ITC
ITC703
ITC706
ITC709
ITC742
ITC826
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
47
49
48
1
NESITYLENE
45
45
52
42
112
59
29
45
42
45
44
1
39
38
47
40
77
48
16
5
4
4
0
4
0
6
7
5
2
35
-11
13
11
13
0.11
-0.08
0.09
0.02
0.09
0.02
0.13
0.16
0.10
0.05
0.31
0.15
0.10
0.15
0.10
0.400
0.293
0.470
0.388
0.089
0.586
0.440
0.590
0.470
0.003
0.418
0.241
0.193
0.174
0.331
0.232
0.085
0.186
0.180
0.347
0.181
0.003
0.179
0.122
0.207
0.119
0.139
0.155
0.046
0.155
0.046
0.400
0.260
0.243
0.289
0.000
0.238
0.147
0.238
0.147
0.52
0.41
0.30
0.41
0.11
0.41
0.11
0.68
0.59
0.41
0.62
0.00
0.46
0.27
0.46
0.27
-------
Table A-17
MIXTURES OF LIKE COMPOUNDS
>
CJ
Experiment
Initial
Concentrations
NOx
HC
HC/NOX
Maximum Concentration
OZONE
Expt
Catc
Calc
Expt
/Expt
d(
Expt
Average Initial
[03] [NO] )/dt
Calc
(ppb/Min)
Calc
Expt
Calc
Expt
/Expt
1. SAPRC EC Nixed Alkenes
EC144
ECUS
EC160
EC149
EC1SO
EC1S1
EC152
EC153
EC161
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
2. OKC CHAMBER
OC1278R
OC2578R
AU0180R
AU1480R
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
3. SAPRC EC
EC166
EC172
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
0.51
0.99
0.99
0.99
1.00
3.06
0.50
0.97
0.51
0.95
0.48
4.7
3.4
3.2
2.0
3.5
5.2
3.7
6.6
3.2
4.0
1.4
9.3
3.4
3.3
2.0
3.5
2.5
7.3
6.8
6.4
5.0
2.5
1.065
0.777
0.874
0.286
0.799
0.147
0.791
1.050
0.857
0.738
0.316
0.830
0.488
0.435
0.159
0.421
0.168
0.687
0.857
0.630
0.519
0.255
0.235
0.289
0.440
0.127
0.378
0.022
0.105
0.193
0.227
0.219
0.141
0.224
0.132
0.22
0.37
0.50
0.44
0.47
0.15
0.13
0.18
0.27
0.27
0.21
0.30
0.15
10.53
5.11
5.86
10.83
6.30
8.43
10.41
19.23
9.94
9.63
4.22
7.24
4.69
4.22
5.42
4.97
9.44
7.99
13.75
5.49
7.02
3.05
3.29
0.42
1.64
5.41
1.33
1.01
2.43
5.47
4.45
2.60
2.25
2.83
1.92
0.31
0.08
0.28
0.50
0.21
0.12
0.23
0.28
0.45
0.25
0.19
0.27
0.14
Nixed Alkenes
0.48
0.44
0.56
0.47
0.49
0.05
1.4
1.4
0.5
1.4
1.2
0.5
3.0
3.1
0.8
3.0
2.5
1.1
0.260
0.147
0.256
0.863
0.382
0.325
0.263
0.137
0.056
0.394
0.213
0.148
0.003
0.011
0.200
0.469
0.169
0.220
0.170
0.219
0.01
0.07
0.78
0.54
0.35
0.38
0.35
0.37
1.14
0.94
0.98
2.13
1.30
0.56
1.28
1.04
0.53
1.32
1.04
0.36
0.14
0.10
0.45
0.81
0.25
0.46
0.38
0.33
0.13
0.11
0.46
0.38
0.15
0.31
0.27
0.18
Nixed Alkanes
0.10
0.10
0.10
0.00
9.2
2.8
6.0
4.5
92.0
28.9
60.5
44.6
0.462
0.369
0.415
0.066
0.473
0.400
0.437
0.052
0.012
0.032
0.022
0.014
0.022
0.014
0.03
0.09
0.06
0.04
0.06
0.04
2.11
1.00
1.55
0.79
1.83
1.01
1.42
0.58
0.28
0.02
0.13
0.21
0.15
0.19
0.13
0.02
0.06
0.10
0.07
0.08
-------
Table A-17 (Continued)
Expert «ent
*. IMC CHAMBER
ST06B2R
ST0682B
Group Average
S. Oev.
Avfl. Abs. Value
S. Oev.
Initial
Concentrations
NOx
(PP«)
HC HC/NOx
Maxfnun Concentration
OZONE
Expt
Calc
-Expt
/Expt
d(
Expt
* *
Average Initial
[03J WOJ )/dt
Calc
(ppb/rain)
Calc
Expt
Calc
Expt
/Expt
Nixed Aromatlcs
0.46
0.45
0.46
0.01
2.8
2.9
2.9
0.1
6.2
6.5
6.3
0.2
0.378
0.478
0.428
0.070
0.306
0.450
0.378
0.102
0.073
0.027
0.050
0.032
0.050
0.032
0.19
0.06
0.12
0.09
0.12
0.09
1.11
1.35
1.23
0.17
1.09
1.34
1.22
0.17
0.02
0.02
0.02
0.00
0.02
0.00
0.01
0.01
0.01
0.00
0.01
0.00
OJ
-------
Table A-17 (Continued)
Experiment
U)
Haxioun Concentration
PAH
Haxinun Concentration
HCHO
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
1. SAPRC EC Nixed Alkenet
EC144
ECUS
EC160
ECU9
EC150
EC1S1
EC152
EC153
EC161
Group Average
S. Oev.
Avg. Abs. Value
8. Oev.
2. UMC CHAMBER
OC1278R
OC2578R
AU0180R
AU1480R
Group Average
S. Dev.
Avg. Aba. Value
S. Dev.
0.075
0.112
0.1S8
0.112
O.US
0.077
0.115
0.175
0.12S
0.121
0.034
0.062
0.080
0.068
0.063
0.073
0.069
0.101
0.1S1
0.086
0.084
0.028
0.013
0.032
0.089
0.048
0.072
0.009
0.014
0.023
0.039
0.038
0.028
0.038
0.028
0.17
0.28
0.57
0.43
0.50
0.11
0.12
0.13
0.31
0.29
0.17
0.29
0.17
0.846
O.S16
0.500
0.105
0.433
0.512
0.262
0.645
0.423
0.471
0.211
0.824
0.577
0.5SO
0.246
0.524
0.655
0.527
0.945
0.475
0.591
0.202
0.022
0.062
0.050
0.141
0.091
0.144
0.265
0.301
0.052
0.120
0.105
0.125
0.098
0.03
0.12
0.10
1.35
0.21
0.28
1.01
0.47
0.12
0.40
0.47
0.41
0.46
Nixed Alkenes
0.053
0.041
0.013
O.OS8
0.041
0.020
0.091
0.070
0.002
0.019
0.046
0.042
0.038
0.030
0.011
0.038
0.005
0.036
0.029
0.013
0.73
0.73
0.87
0.67
0.02
0.87
0.75
0.09
0.230
0.402
0.316
0.122
0.065
0.169
0.117
0.073
0.165
0.233
0.199
0.048
0.199
0.048
0.72
0.58
0.65
0.10
0.65
0.10
3. SAPRC EC Nixed Alkanes
EC166
EC172
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
0.040
0.029
0.034
0.008
0.037
0.032
0.035
0.004
0.003
0.003
0.000
0.004
0.003
0.000
0.07
0.10
0.02
0.12
0.08
0.02
0.010
0.010
0.010
0.000
0.013
0.011
0.012
0.002
0.003
0.001
0.002
0.002
0.002
0.002
0.30
0.05
0.18
0.17
0.18
0.17
-------
Table A-17 (Continued)
Experiment Max I out Concentration Max I mm Concentration
PAN HCHO
Calc Calc Calc Calc
Expt Calc -Expt -Expt Expt Calc -Expt -Expt
(ppm) (ppm) (pen) /Expt (ppm) (ppn) (ppm) /Expt
4. IMC CHAMBER
ST0682R
ST0682B
Croup Average
S. Oev.
Avg. Abt. Value
S. Oev.
Nixed Aroma tict
0.043
0.061
O.OS2
0.013
0.031
0.060
0.045
0.020
0.011
0.001
0.006
0.007
0.006
0.007
0.27
0.02
0.15
0.18
0.15
0.18
0.088
0.100
0.094
0.008
0.024
0.029
0.027
0.004
0.064
0.071
0.067
0.005
0.067
0.005
0.73
0.71
0.72
0.01
0.72
0.01
tJ
-------
MISCELLANEOUS SIMPLE (NONSURROGATE) MIXTURES
>
00
Experiment
1. SAPRC EC
EC106
EC113
EC114
EC115
EC116
Group Average
S. Oev.
Initial
Concentrations
NOx
HC
(PP«C)
HC/NOx
Maximum Concentration
OZONE
Expt
(ppm)
Calc
-------
Table A-18 (Continued)
I
U)
vo
Experiment
Initial
Concentrations
NOx NC HC/NOx
(pp») (ppmC)
Haxinun Concentration
OZONE
Expt
Calc
Calc
Expt
(PP«)
Calc
Expt
/Expt
Average
d< 103]
Initial
[NO] )/dt
Calc
Expt Calc -Expt
(ppb/min)
Calc
Expt
/Expt
4. SAPRC EC OLEUM/AROMATIC
EC33S
EC329
EC330
EC334
EC338
Group Average
S. Oev.
Avg. Abt. Value
S. Oev.
5. IMC CHAMBER
JN1379B
Croup Average
S. Oev.
Avg. Abe. Value
S. Dev.
0.44
0.4S
0.29
0.4S
0.4S
0.42
0.07
7.7
4.2
4.3
8.1
15.0
7.*
4.4
17.4
9.2
14.6
18.2
33.7
18.6
9.1
0.398
0.403
0.344
0.408
0.484
0.407
0.050
0.462
0.433
0.390
0.465
0.612
0.472
0.084
0.063
0.029
0.046
0.057
0.128
0.065
0.038
0.065
0.038
0.16
0.07
0.13
0.14
0.27
0.15
0.07
0.15
0.07
4.64
3.27
3.91
5.59
5.19
4.52
0.94
4.56
3.18
3.53
5.08
4.87
4.24
0.84
0.09
0.09
0.38
0.51
0.32
0.28
0.18
0.28
0.18
0.02
0.03
0.10
0.09
0.06
0.06
0.04
0.06
0.04
CtEFIM/ARONATIC
0.44
0.44
6.1
6.1
13.7
13.7
0.756
0.756
0.757
0.757
0.002
0.002
0.002
0.00
0.00
0.00
2.44
2.44
2.98
2.98
0.54
0.54
0.54
0.22
0.22
0.22
6. SAPftC EC AUANE/AROMATIC
EC328
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.45
0.45
12.1
12.1
27.1
27.1
0.523
0.523
0.584
0.584
0.061
0.061
0.061
0.12
0.12
0.12
3.50
3.50
3.43
3.43
0.07
0.07
0.07
0.02
0.02
0.02
-------
Table A-18
>
J*
o
Experiment
Max i mm Concentration
PAN
Expt Calc
(pom) (ppm)
Calc
Expt
(PP«)
Calc
Expt
/Expt
Max i nun Concentration
HCKO
Expt
Calc
-------
Table A-18
>
Experiment
Max inn Concentration
PAN
Expt
Calc
Expt
-------
Table A-19
MINIMUM SURROGATE MIXTURES
r
&
to
Experiment
Initial
Concentrations
NOx HC NC/NOx
(ppn) (ppnC)
Maximum Concentration
OZONE
Expt
Calc
(PP«»
Calc
Expt
-------
Table A-19 (Continued)
b
Ul
Experiment
2. ONC CHAMBER
JI1581B
ST2481B
JN0982B
JN1483R
JM27838
AU1883B
AU2683R
JL1881B
JK0982R
Croup Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
NOx
HC
(ppnC)
HC/NOx
Maximum Concentration
OZONE
Expt
(ppn«)
Calc
(Ppm)
Calc
Expt
Calc
Expt
/Expt
d<
Expt
Average Initial
[03] [NO] )/dt
Calc
(ppb/ain)
Calc
Expt
*
Calc
Expt
/Expt
PBA SURROGATE
0.28
0.23
0.28
0.22
0.26
0.28
0.32
0.27
0.29
0.27
0.03
2.3
1.9
3.1
2.6
2.9
0.6
2.6
2.3
3.1
2.4
0.8
8.0
8.1
11.0
11.6
11.1
2.0
8.1
8.5
10.7
8.8
2.9
0.474
0.246
0.667
O.S8S
0.511
0.556
0.646
0.693
0.714
0.566
0.145
0.389
0.302
0.455
0.526
0.520
0.383
0.437
0.525
0.542
0.453
0.083
-0.085
0.056
0.212
0.059
0.009
0.173
-0.209
0.168
0.173
0.112
0.098
0.127
0.075
0.18
0.23
0.32
0.10
0.02
0.31
-0.32
-0.24
0.24
0.16
0.18
0.22
0.10
1.10
0.71
1.37
1.10
1.01
0.70
1.24
1.91
1.77
1.21
0.42
0.89
0.84
.15
.13
.05
.57
.02
.55
.50
1.08
0.31
0.21
0,14
0.22
0.03
0.04
0.13
0.23
0.36
0.27
0.13
0.17
0.18
0.11
0.19
0.19
0.16
0.02
0.04
0.18
0.18
0.19
-0.15
0.09
0.14
0.15
0.07
-------
Table A-19 (Continued)
Experiment
Maximum Concentration
PAN
Expt
Calc
(PP«>
Calc
Expt
(ppni)
Maxim* Concentration
HCHO
Half-Life
PROPENE
Calc Calc Calc Calc
Expt Expt Calc *Expt -Expt Expt Calc -Expt
/Expt (ppra) (ppni) (ppn) /Expt (rain) (mln) (roin)
Calc
Expt
/Expt
1. SAPRC ITC MINI SURROGATE
ITC479
ITC584
ITC579
ITC472
ITC474
ITC581
ITC585
ITC478
ITC482
ITC488
ITC492
ITC494
ITC498
ITCSOO
ITC502
ITC462
ITC466
ITC468
ITC451
ITC455
ITC977
ITC985
ITC997
ITC979
ITC992
Croup Average
S. Oev.
Avg. Abs. Value
S. Dev.
0.050
0.080
0.058
0.044
0.051
0.090
0.066
0.056
0.052
0.051
0.054
0.053
0.048
0.060
0.066
0.004
0.007
0.021
0.048
0.050
0.035
0.036
0.038
0.027
0.041
0.047
0.019
0.047
0.049
0.040
0.042
0.051
0.049
0.054
0.055
0.051
0.044
0.045
0.045
0.046
0.054
0.060
0.016
0.021
0.030
0.044
0.043
0.053
0.045
0.045
0.056
0.049
0.045
0.010
0.003
0.031
0.018
0.002
0.000
0.041
0.012
0.001
0.001
0.007
0.009
0.008
0.002
0.006
0.006
0.012
0.014
0.009
0.004
0.007
0.018
0.009
0.007
0.023
0.008
0.002
0.015
0.011
0.010
0.07
0.39
0.31
0.04
0.00
0.45
0.18
0.01
0.02
0.13
0.18
0.15
0.04
0.10
0.10
3.01
1.93
0.44
0.09
0.14
0.52
0.25
0.17
1.04
0.18
0.21
0.76
0.40
0.68
0.057
0.051
0.007
0.008
0.092
0.088
0.137
0.155
0.063
0.055
0.054
0.053
0.047
0.069
0.082
0.008
0.010
0.028
0.062
0.058
0.046
0.042
0.041
0.037
0.031
84
98
90
94
91
80
80
90
89
92
101
62
64
329
280
160
70
79
80
75
68
89
75
105
66
84
96
81
89
87
79
75
88
92
94
96
73
74
258
219
136
77
80
97
92
93
106
106
103
45
0
2
9
5
4
1
5
2
3
2
5
11
10
71
61
24
7
1
17
17
25
17
31
2
23
14
18
0.00
0.02
0.10
0.05
0.04
0.01
0.06
0.02
0.03
0.02
0.05
0.18
0.16
0.22
0.22
0.15
0.10
0.01
0.21
0.23
0.37
0.19
0.41
0.04
0.17
0.12
0.11
-------
Table A-19 (Continued)
A
01
Expertnent
2. UNC CHAMBER
JL1581B
ST2481B
JN09828
JM1483R
JN2783B
AU18838
AU2683R
JL1881B
JN0982R
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
Haximum Concentration
PAN
Expt
Calc
Expt
(Ppn»
Calc
Expt
/Expt
Maximum Concentration
HCHO
Expt
Calc
Expt
(PP«)
Calc
Expt
/Expt
Half-Life
PROPENE
Expt Calc
(rain) (rain)
Calc
Expt
(min)
Calc
Expt
/Expt
PBA SURROGATE
0.079
0.065
0.065
0.05S
0.061
0.064
0.009
0.045
0.043
0.080
0.073
0.066
0.033
0.051
0.098
0.129
0.069
0.031
0.034
0.010
0.001
-0.022
0.037
0.002
0.028
0.021
0.015
0.43
0.16
0.01
0.40
0.61
0.01
0.43
0.32
0.24
0.166
0.190
0.054
0.105
0.120
0.141
0.150
0.132
0.045
0.069
0.049
0.080
0.070
0.074
0.056
0.067
0.076
0.092
0.070
0.013
0.098
0.141
0.017
0.031
0.065
0.074
0.075
0.067
0.050
0.071
0.041
0.59
0.74
0.31
0.29
0.54
0.53
0.50
0.41
0.34
0.50
0.16
243 295
278 236
295 270
281 253
295 273
285 309
209 278
196 208
245 235
258 261
37 31
52
42
25
28
22
24
69
12
10
3
38
31
19
0.21
0.15
0.08
0.10
0.07
0.08
0.33
0.06
0.04
0.03
0.16
0.13
0.09
-------
Experiment
Initial
Concentrations
NOx
HC
(ppmC)
HC/NOx
Max i mum Concentration
OZONE
Expt
(Ppn)
Calc
-------
Table A-20 (Continued)
ExperiMent
Initial
Concentrations
Maxima Concentration
OZONE
Average Initial
d< [03] [NO] )/dt
NOx HC HC/NOx
(ppn) (ppnC)
Calc Calc
Expt Calc -Expt -Expt
(ppn) (ppn) (ppra) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppb/nin) /Expt
u
3. SAPRC OTC 8AI SURROGATE
OTC189A
OTC189B
OTC190A
OTC190B
OTC192A
OTC192B
OTC194A
OTC194B
OTC195A
OTC195B
OTC1968
OTC197A
OTC197B
OTC198A
OTC1988
OTC199A
OTC199B
OTC202A
OTC202B
OTC203A
OTC203B
OTC204A
OTC204B
OTCZ05A
OTC205B
OTC215A
OTC2158
OTC217A
OTC217B
OTC221A
OTC221B
OTC222A
OTC2228
OTC223A
OTC223B
OTC224A
OTC224B
OTC226A
OTC228A
OTC228B
OTC229A
OTC229B
0.45
0.45
0.41
0.42
0.47
0.47
0.38
0.38
0.41
0.41
0.41
0.38
0.77
0.84
0.40
0.36
0.37
0.73
0.40
0.39
0.19
0.35
0.17
0.84
0.14
0.45
0.44
0.50
0.51
0.41
0.42
0.44
0.43
0.36
0.40
0.34
0.34
0.45
0.41.
0.41"
0.46
0.46
3.3
4.0
3.8
3.8
4.2
4.2
7.4
3.7
1.8
4.1
3.7
3.6
3.1
5.4
3.7
3.5
3.5
6.0
2.6
3.5
3.5
3.6
3.5
3.8
3.6
3.5
4.1
4.9
4.6
2.4
2.0
3.4
2.6
4.8
3.5
4.4
4.3
2.5
2.4
2.3
3.0
1.7
7.4
8.9
9.2
9.0
8.9
8.9
19.3
9.7
4.5
9.9
9.1
9.5
4.1
6.4
9.4
9.6
9.6
8.2
6.7
9.0
18.5
10.2
20.3
4.5
26.5
7.8
9.3
9.6
9.0
5.8
4.7
7.8
6.0
13.4
8.8
12.7
12.6
5.5
6.0
5.6
6.6
3.8
0.576
0.712
0.702
0.669
0.735
0.754
0.737
0.603
0.164
0.681
0.597
0.621
0.152
0.704
0.674
0.591
0.606
0.714
0.522
0.231
0.394
0.302
0.381
0.039
0.392
0.830
0.868
0.483
0.831
0.235
0.333
0.909
0.940
0.953
0.771
0.776
0.813
0.751
0.246
0.296
0.253
0.168
0.645
0.719
0.724
0.675
0.735
0.617
1.014
0.616
0.086
0.667
0.666
0.484
0.070
0.509
0.544
0.562
0.549
0.402
0.341
0.241
0.496
0.331
0.511
0.045
0.579
0.831
0.965
0.501
0.883
0.221
0.282
0.813
1.023
0.832
0.604
0.737
0.855
0.405
0.321
0.361
0.359
0.297
0.070
0.007
0.022
0.006
0.000
0.137
0.276
0.013
0.078
0.014
0.068
0.137
0.082
0.195
-0.130
0.029
0.057
-0.313
0.181
0.010
0.102
0.029
0.130
0.006
0.187
0.001
0.097
0.018
0.051
0.014
0.051
0.096
0.083
0.121
0.168
0.039
0.042
0.346
0.075
0.065
0.106
0.129
0.12
0.01
0.03
0.01
0.00
0.18
0.37
0.02
0.47
0.02
0.11
0.22
0.54
0.28
0.19
0.05
0.09
0.44
0.35
0.04
0.26
0.10
0.34
0.48
0.00
0.11
0.04
0.06
0.06
0.15
0.11
0.09
0.13
0.22
0.05
0.05
0.46
0.31
0.22
0.42
0.77
3.79
3.70
4.24
3.73
4.25
3.84
7.85
2.95
2.05
4.14
3.86
4.12
2.86
6.09
3.86
3.86
3.40
6.95
3.82
2.34
2.20
3.27
2.62
4.85
4.49
4.33
5.33
2.55
4.64
1.63
1.63
3.83
5.55
4.55
3.15
3.67
4.94
3.12
1.49
1.79
1.56
1.38
3.55
3.58
3.19
2.81
3.29
2.67
8.62
3.01
1.12
3.68
3.22
2.60
2.06
4.20
2.42
2.97
2.85
16.10
3.00
2.37
2.73
3.58
2.99
2.11
3.76
3.66
5.72
2.53
4.21
1.45
1.58
3.41
5.79
3.88
2.60
2.83
4.45
2.11
1.86
2.49
1.94
1.80
0.24
0.11
1.05
0.92
0.96
1.17
0.77
0.06
0.93
0.46
0.64
1.51
0.80
1.89
1.44
0.89
0.55
9.15
0.81
0.03
0.53
0.31
0.37
-2.74
0.73
0.68
0.39
0.02
0.43
0.17
0.05
0.42
0.23
0.67
0.55
0.84
0.49
1.01
0.37
0.71
0.38
0.42
0.06
0.03
0.25
0.25
0.23
0.30
0.10
0.02
0.45
0.11
0.17
0.37
0.28
0.31
0.37
0.23
0.16
1.32
0.21
0.01
0.24
0.10
0.14
0.57
0.16
0.16
0.07
0.01
0.09
0.11
0.03
0.11
0.04
0.15
0.17
0.23
0.10
0.32
0.25
0.39
0.25
0.31
-------
Table A-20 (Continued)
&
00
Experiment
Initial
Concentrations
Maximum Concentration
OZONE
Average Initial
d< [03) [NO] )/dt
NOx HC HC/NOx
(ppm) (ppnC)
Calc Calc
Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppb/min) /Expt
OTC230A
OTC230B
OTC237A
OTC2378
OTC238A
OTC238B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC2438
OTC248A
OTC2488
OTC249A
OTC249B
Group Average
S. Oev.
Avg. Abf. Value
S. Oev.
0.41
0.41
0.52
0.52
0.50
0.50
0.49
0.50
0.50
0.50
0.32
0.31
0.45
0.46
0.47
0.38
0.48
0.46
0.48
0.46
0.44
0.12
3.1
1.7
4.3
4.4
2.9
3.9
2.7
2.5
1.8
2.0
4.7
4.0
2.6
2.1
4.7
3.7
3.7
2.9
5.6
4.9
3.6
1.1
7.6
4.2
8.2
8.5
5.8
7.8
5.4
5.0
3.6
4.1
14.8
12.9
5.8
4.7
10.0
9.7
7.7
6.3
11.8
10.7
8.8
4.2
0.489
0.271
0.807
0.757
0.406
0.702
0.343
0.234
0.034
0.217
0.671
0.674
0.182
0.639
0.142
0.152
0.056
0.081
0.348
0.325
0.504
0.263
0.738
0.431
0.718
0.585
0.319
0.618
0.304
0.120
0.027
0.081
0.684
0.654
0.111
0.499
0.186
0.151
0.051
0.073
0.279
0.321
0.485
0.265
0.249
0.160
0.089
-0.172
0.087
0.084
0.039
0.114
0.007
0.136
0.013
0.020
0.071
0.140
0.044
0.001
0.005
0.008
0.069
0.004
0.019
0.115
0.085
0.079
0.51
0.59
0.11
0.23
0.21
0.12
0.11
0.49
0.63
0.02
0.03
0.39
0.22
0.31
0.00
0.08
0.10
0.20
0.01
0.03
0.28
0.21
0.19
2.43
1.66
4.10
3.48
2.58
4.06
2.66
1.85
1.08
1.79
3.26
3.30
1.47
3.04
1.41
1.40
1.40
1.61
2.55
2.83
3.26
1.42
2.98
2.10
3.39
2.89
2.20
3.55
2.42
1.43
0.89
1.31
2.98
3.25
4.28
2.54
1.96
2.20
1.25
1.70
2.36
3.01
3.07
2.08
0.55
0.45
0.71
0.58
0.38
0.51
0.24
0.41
0.20
0.48
0.28
0.05
0.19
0.50
0.55
0.80
0.15
0.08
0.19
0.18
0.19
1.37
0.72
1.18
0.23
0.27
0.17
0.17
0.15
0.13
0.09
0.22
0.18
0.27
0.09
0.02
0.13
0.16
0.39
0.57
0.11
0.05
0.07
0.06
0.05
0.28
0.21
0.19
4. UMC CHAMBER UNC MIXTURES
ST2081R
DE0782R
AU2681R
AU2681B
AU2781B
ST0381R
ST1081R
ST2081B
JL2081B
ST16B2R
JL2081R
JL2281B
OC1481R
ST1682B
ST2981R
0.23
0.19
0.24
0.24
0.23
0.24
0.25
0.23
0.42
0.43
0.41
0.26
0.28
0.43
0.24
2.3
3.4
2.0
2.0
2.0
1.8
2.8
2.1
1.8
3.2
2.7
2.9
3.3
3.1
2.5
10.0
18.3
8.4
8.5
8.8
7.6
11.3
9.2
4.3
7.5
6.6
11.2
11.9
7.2
10.3
0.403
0.076
0.506
0.544
0.623
0.541
0.610
0.414
0.165
0.410
0.635
0.722
0.462
0.840
0.294
0.451
0.377
0.497
0.441
0.495
0.405
0.603
0.407
0.057
0.356
0.269
0.527
0.512
0.717
0.433
0.048
0.301
0.009
0.103
0.128
0.137
0.008
0.007
0.108
0.053
0.367
0.195
0.051
0.123
0.139
0.12
3.94
0.02
0.19
0.21
0.25
0.01
0.02
0.66
0.13
0.58
0.27
0.11
0.15
0.47
0.95
0.52
.18
.22
.27
.48
.59
.06
.82
.28
.55
.80
.53
2.39 <
0.76 1
.15
.14
.17
.10
.17
.15
.72
.08
.65
.14
.01
.56
.42
>.oo
.04
0.19
0.62
0.01
0.12
0.10
0.33
0.13
0.03
0.17
0.14
0.54
0.24
0.11
0.39
0.28
0.20
1.19
0.01
0.10
0.08
0.22
0.08
0.02
0.21
0.11
0.35
0.14
0.07
0.16
0.37
-------
Table A-20 (Continued)
Experiment
ST2981B
OC14818
ST0381B
ST1081B
JL0882X
JL0882B
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
HOx
0.24
0.29
0.23
0.24
0.29
0.28
0.28
0.08
HC
(ppnC)
2.5
2.9
2.0
1.0
2.1
2.1
2.4
0.6
HC/NOx
10.4
9.9
8.6
4.1
7.3
7.4
9.0
3.0
Maximum Concentration
OZONE
Expt
0.485
0.458
0.611
0.626
0.598
0.541
0.503
0.175
Calc
-------
Table A-20 (Continued)
Ol
o
Experiment
Half-Life
PROPENE
Calc
Expt Calc -Expt
(win) (min) (min)
Calc
Expt
/Expt
Half-Life
H-XYL
Calc
Expt Calc -Expt
(min) (min) (min)
Calc
Expt
/Expt
1. SAPRC EC 7 HYDROCARBON SURROGATE
EC231
EC232
EC233
EC237
EC238
EC241
EC242
EC243
EC245
EC246
EC247
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC SAI
1TC626
ITC630
ITC631
ITC633
ITC635
ITC637
ITC865
ITC867
ITC868
ITC871
ITC872
JTC87J
ITC874
ITC877
ITC880
ITC881
ITC885
ITC886
ITC888
ITC891
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
99
163
97
85
141
142
57
61
84
167
82
107
39
99
180
90
106
145
142
61
70
87
175
96
113
40
0
17
7
21
4
0
4
9
3
8
14
6
8
7
6
0.00
0.10
0.07
0.25
0.03
0.00
0.07
0.15
0.04
0.05
0.17
0.07
0.09
0.08
0.08
136
204
198
136
186
180
118
108
108
218
112
154
42
151
228
175
159
191
177
155
124
131
234
132
168
37
15
24
23
23
5
3
37
16
23
16
20
13
16
18
9
0.11
0.12
0.12
0.17
0.03
0.02
0.31
0.15
0.21
0.07
0.18
0.11
0.12
0.13
0.08
SURROGATE
165
230
267
272
353
151
155
133
146
224
180
243
255
210
347
288
332
193
158
226
70
152
233
312
276
403
155
109
90
179
197
157
225
217
156
281
235
282
311
150
126
212
80
13
3
45
4
50
4
46
43
33
27
23
18
38
54
66
53
21
43
32
17
33
32
18
0.08
0.01
0.17
0.01
0.14
0.03
0.30
0.32
0.23
0.12
0.13
0.07
0.15
0.26
0.19
0.18
0.06
0.22
0.20
0.09
0.16
0.15
0.09
220
312
346
363
490
202
189
181
186
233
240
349
258
262
220
270
86
212
303
381
387
541
215
148
119
229
240
186
262
254
184
334
274
324
362
192
168
265
100
8
9
35
24
51
13
41
62
43
47
22
95
74
70
52
18
47
43
25
0.04
0.03
0.10
0.07
0.10
0.06
0.22
0.34
0.23
0.20
0.09
0.27
0.29
0.27
0.24
0.08
0.19
0.17
0.10
-------
Table A-20 (Continued)
>
01
Expert Kent
Half-Life
PROPENE
Calc
Expt Gate -Expt
(in) (nin) (win)
3. SAPRC OTC
OTC189A
OTC189B
OTC190A
OTC190B
OTC192A
OTC192B
OTC194A
OTC194B
OTC195A
OTC195B
OTC196S
OTC197A
OTC197B
OTC198A
OTC1988
OTC199A
OTC199B
OTC202A
OTC202B
OTC203A
OTC203B
OTC204A
OTC204B
OTC20SA
OTC205B
OTC215A
OTC215B
OTC217A
OTC217B
OTC221A
OTC221B
OTC222A
OTC2228
OTC223A
OTC223B
OTC224A
OTC224B
OTC226A
OTC228A
OTC228B
Calc
Expt
/Expt
Half-Life
H-XYL
Calc
Expt Calc -Expt
(min) (nin) (nin)
Calc
Expt
/Expt
SAI SURROGATE
120
128
95
108
101
115
75
134
135
93
107
106
109
99
95
108
120
66
182
169
153
86
116
170
81
128
89
154
112
188
264
138
236
129
151
137
99
152
198
151
139
138
135
148
137
158
77
136
200
120
141
142
227
148
131
144
148
109
146
203
134
128
115
239
93
145
94
177
137
217
238
127
76
133
161
145
113
183
178
131
19
10
40
40
36
43
2
2
65
27
34
38
118
49
36
36
28
43
36
34
19
42
1
69
12
17
5
23
25
29
26
11
160
4
10
8
14
31
-20
-20
0.16
0.08
0.42
0.37
0.36
0.37
0.03
0.01
0.48
0.29
0.32
0.37
1.08
0.49
0.38
0.33
0.23
0.65
0.20
0.20
0.12
0.49
0.01
0.41
0.15
0.13
0.06
0.15
0.22
0.15
0.10
0.08
0.68
0.03
0.07
0.06
0.14
0.20
0.10
0.13
151
150
132
130
139
151
137
164
171
111
146
133
205
140
120
128
145
88
154
235
181
159
154
124
152
133
188
149
226
288
168
255
120
141
280
283
173
170
170
186
175
204
109
174
267
155
170
189
287
207
186
182
187
177
182
283
180
204
149
123
186
123
214
172
250
280
147
89
167
195
176
144
209
153
22
20
38
56
36
53
28
10
96
44
24
56
82
67
66
54
42
89
28
48
1
45
5
1
34
10
26
23
24
8
1
60
56
3
-71
-130
0.15
0.13
0.29
0.43
0.26
0.35
0.20
0.06
0.56
0.40
0.16
0.42
0.40
0.48
0.55
0.42
0.29
1.01
0.18
0.20
0.01
0.28
0.03
0.01
0.22
0.08
0.14
0.15
0.11
0.03
0.01
-0.24
0.47
0.02
-0.25
-0.46
-------
Table A-20 (Continued)
Experiment
Half-Life
PROPENE
Catc
Expt Calc -Expt
(nin) (mln) (nin)
OTC229A
OTC229B
OTC230A
OTC230B
OTC237A
OTC237B
OTC238A
OTC238B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC243B
OTC248A
OTC2488
OTC249A
OTC249B
Group Average
S. Oev.
Avg. Ate. Value
S. Oev.
142
162
135
148
160
117
136
189
232
197
107
113
183
230
220
313
222
162
155
144
49
183
187
143
166
159
171
193
129
161
241
275
240
146
115
228
171
275
233
330
225
203
155
164
50
41
19
24
23
33
12
25
52
43
43
39
2
45
45
13
17
3
41
0
19
35
30
26
Calc
Expt
/Expt
0.29
0.12
0.18
0.16
0.21
0.10
0.18
0.28
0.19
0.22
0.36
0.02
0.25
0.20
0.06
0.05
0.01
0.25
0.00
0.18
0.24
0.23
0.19
Half-Life
M-XYL
Calc
Expt Calc -Expt
(min) (rain) (mln)
276
187
243
156
168
206
172
138
273
242
187
154
218
177
186
209
175
49
218
223
171
195
199
209
240
164
194
291
333
291
188
147
272
207
358
312
211
200
54
53
16
48
43
41
34
8
56
18
49
1
7
54
30
126
2
22
44
39
29
Calc
Expt
/Expt
0.19
0.09
0.20
0.28
0.24
0.17
0.05
0.41
0.07
0.20
0.01
0.05
0.25
0.17
0.68
0.01
0.17
0.26
0.24
0.20
-------
Ul
Ul
Experiment
1. SAPRC EC
EC231
EC2J2
EC233
EC237
EC238
EC?41
EC242
EC243
EC245
EC246
EC247
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
2. SAPRC ITC
ITC626
ITC630
ITC631
HC633
ITC635
ITC637
ITC86S
ITC867
ITC868
ITC871
ITC872
ITC873
ITC874
ITC877
ITC880
ITCS81
ITC88S
ITC886
ITC888
ITC891
Group Average
8. Dev.
Avg. Abe. Value
S. Oev.
Maxiflun Concentration
PAN
Expt
CPP")
Calc
Calc
Expt
Calc
Expt
/Expt
Maximum Concentration
HCHO
Expt
Calc
Expt
CPP")
Calc
Expt
/Expt
7 HYDROCARBON SURROGATE
0.095
0.040
0.037
0.100
0.113
0.047
0.140
0.100
0.194
0.070
0.106
0.095
0.047
0.116
O.OS2
0.043
0.110
0.131
0.046
0.145
0.131
0.215
0.070
0.113
0.107
O.OS2
0.021
0.012
0.007
0.010
0.017
0.001
0.005
0.031
0.021
0.000
0.007
0.012
0.010
0.012
0.010
0.22
0.30
0.18
0.10
0.15
0.02
0.03
0.31
0.11
0.00
0.07
0.13
0.11
0.14
0.11
0.453
0.157
0.145
0.387
0.404
0.137
0.673
0.571
0.778
0.121
0.377
0.382
0.228
0.410
0.126
0.104
0.362
0.432
0.218
0.658
0.680
0.784
0.124
0.406
0.391
0.238
0.043
0.031
0.041
0.024
0.028
0.081
0.015
0.109
0.006
0.003
0.030
0.009
0.050
0.037
0.032
0.10
0.20
0.28
0.06
0.07
O.S9
0.02
0.19
0.01
0.03
0.08
0.03
0.23
0.15
0.17
SAI SURROGATE
0.116
0.027
0.002
0.034
0.001
0.117
0.049
0.054
0.071
0.024
0.002
0.041
0.002
0.072
0.065
0.049
0.042
0.018
0.010
0.004
0.007
0.011
0.002
0.001
0.001
0.001
0.045
0.065
0.027
0.027
0.045
0.003
0.000
0.007
0.001
0.045
0.014
0.024
0.017
0.022
0.38
0.12
0.24
0.21
0.75
0.38
0.03
0.44
0.35
0.22
0.045
0.025
0.069
0.031
0.092
0.127
0.208
0.224
0.107
0.052
0.111
0.028
0.079
0.113
0.014
0.089
0.014
0.067
0.154
0.069
0.086
0.059
0.130
0.058
0.029
0.108
0.093
0.132
0.166
0.218
0.087
0.064
0.105
0.041
0.052
0.102
0.056
0.084
0.035
0.039
0.125
0.147
0.093
0.049
0.085
0.033
0.040
0.076
0.001
0.005
0.042
0.006
0.020
0.012
0.006
0.014
0.028
0.011
0.042
0.006
0.021
0.028
0.030
0.077
0.008
0.038
0.029
0.025
1.89
1.32
0.58
2.44
0.02
0.04
0.20
0.03
0.19
0.23
0.05
0.49
0.35
0.10
3.00
0.06
1.53
0.42
0.19
1.11
0.49
1.03
0.71
0.88
-------
ame A-20 (continued)
Experiment
01
Maximum Concentration
PAN
Maximum Concentration
KCKO
Calc Catc
Expt Calc -Expt -Expt
v'ppm) (ppn) (pen) /Expt
Calc Calc
Expt Calc -Expt -Expt
(ppn) (ppn) (ppm) /Expt
3. SAPRC OTC
OTC189A
OTC189S
OTC190A
OTC190B
OTC192A
OTC192B
OTC194A
OTC194B
OTC19SA
OTC195B
OTC196S
OTC197A
OTC197B
OTC198A
OTC1988
OTC199A
OTC199B
OTC202A
OTC202B
OTC203A
OTC20J8
OTC204A
OTC204B
OTC205A
OTC20SB
OTC215A
OTC21SB
OTC217A
OTC217B
OTC22U
OTC221B
OTC222A
OTC2228
OTC223A
OTC2238
OTC224A
OTC224B
OTC226A
OTC228A
OTC2288
OTC229A
OTC229B
OTC230A
SAI SURROGATE
0.021
0.02S
0.026
0.018
O.OS6
0.058
0.100
0.055
0.007
0.055
0.011
0.062
0.010
0.087
0.059
0.057
0.055
0.086
0.046
0.016
0.026
0.049
0.061
0.010
0.046
0.125
0.123
0.068
0.121
0.036
0.050
0.030
0.031
0.054
0.051
0.046
0.062
0.040
0.034
0.025
0.027
0.023
0.038
0.075
0.072
0.060
0.059
0.072
0.072
0.105
0.061
0.004
0.066
0.009
0.057
0.005
0.084
0.039
0.052
0.040
0.072
0.047
0.025
0.055
0.037
0.048
0.004
0.044
0.096
0.082
0.056
0.100
0.032
0.049
0.047
0.044
0.057
0.047
0.051
0.068
0.017
0.036
0.030
0.040
0.038
0.054
0.054
0.047
0.034
0.041
0.016
0.014
0.005
0.006
0.003
0.011
0.002
0.005
0.005
0.003
0.020
0.005
0.015
0.014
0.001
0.009
0.029
0.012
0.013
0.006
0.002
0.029
0.041
0.012
0.021
0.004
0.001
0.017
0.013
0.003
0.004
0.005
0.006
0.023
0.002
0.005
0.013
0.015
0.016
2.56
1.88
1.30
2.27
0.29
0.24
0.05
0.11
0.36
0.20
0.18
0.09
0.52
0.03
0.33
0.09
0.27
0.17
0.01
0.55
1.11
0.24
0.21
0.57
0.04
0.23
0.33
0.18
0.18
0.11
0.03
0.56
0.41
0.06
0.07
0.11
0.10
0.57
0.06
0.22
0.46
0.65
0.42
0.199
0.157
0.276
0.228
0.255
0.284
0.251
0.190
0.069
0.171
0.207
0.186
0.213
0.426
0.253
0.205
0.215
0.219
0.123
0.178
0.221
0.251
0.203
0.184
0.224
0.554
0.831
0.237
0.291
0.154
0.160
0.261
0.253
0.421
0.198
0.267
0.234
0.012
0.063
0.117
0.113
0.059
0.133
0.159
0.165
0.151
0.147
0.165
0.157
0.321
0.139
0.072
0.163
0.167
0.132
0.122
0.275
0.144
0.146
0.145
0.261
0.138
0.130
0.137
0.142
0.137
0.124
0.151
0.205
0.296
0.176
0.2C3
0.107
0.121
0.158
0.220
0.205
0.155
0.171
0.217
0.125
0.107
0.131
0.136
0.115
0.161
0.039
0.008
0.125
0.081
0.090
0.128
0.070
0.051
0.003
0.008
0.040
0.054
0.091
0.151
0.109
0.059
0.070
0.041
0.014
0.048
0.084
0.109
0.066
0.060
0.073
0.350
0.535
0.062
0.088
0.047
0.040
0.104
0.033
0.216
0.043
0.096
0.016
0.113
0.044
0.014
0.023
0.055
0.028
0.20
0.05
0.45
0.36
0.35
0.45
0.28
0.27
0.05
0.05
0.19
0.29
0.43
0.35
0.43
0.29
0.33
0.19
0.12
0.27
0.38
0.43
0.32
0.33
0.33
0.63
0.64
0.26
0.30
0.30
0.25
0.40
0.13
0.51
0.22
0.36
0.07
9.48
0.70
0.12
0.21
0.93
0.21
-------
Table A-20 (Continued)
Ul
Experiment
OTC230B
OTC237A
OTC237B
OTC238A
OTC236B
OTC239A
OTC239B
OTC240A
OTC240B
OTC241A
OTC241B
OTC242A
OTC242B
OTC243A
OTC243B
OTC248A
OTC248B
OTC249A
OTC249B
Group Average
S. Dev.
Avfl. Abs. Value
S. Dev.
4. UNC CHAMBER
ST2081R
OE0782R
AU2681R
AU2681B
AU2781B
ST0381R
ST1081R
ST2081B
JL2081B
ST1682R
JL2081R
JL22S1B
OC1481R
ST1682B
ST2981R
ST2981B
Naxioui Concentration
PAN
Expt
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
-0
0
.014
.016
.020
.003
.012
.008
.009
.000
.005
.005
.007
.008
.018
.011
.000
.005
.004
.011
.001
.003
.017
.012
.012
.056
.002
.010
.002
.008
.019
.026
.061
.036
Calc
Expt
/Expt
0.57
0.25
0.43
0.07
0.22
0.45
0.55
0.32
0.61
0.08
0.14
0.38
0.46
0.53
0.02
0.39
0.34
0.18
0.03
0.15
0.61
0.39
0.49
5.35
0.11
0.72
0.48
0.56
0.53
-0.27
0.45
0.76
Maxima Concentration
HCHO
Expt
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.073
.216
.226
.139
.230
.166
.129
.075
.077
.218
.226
.123
.129
.152
.178
.133
.166
.240
.265
.208
0.120
Calc
0.123
0.213
0.201
0.141
0.203
0.152
0.109
0.063
0.085
0.176
0.188
0.089
0.156
0.170
0.163
0.098
0.127
0.195
0.227
0.159
0.050
Calc
Expt
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.050
.002
.025
.002
.026
.014
.020
.012
.008
.042
.038
.034
.027
.017
0.015
0
0
0
0
0
0
0
0
.035
.040
.044
.038
.049
.093
.066
.082
Calc
Expt
/Expt
0.69
0.01
0.11
0.02
0.11
0.08
0.16
0.16
0.11
0.19
0.17
0.28
0.21
0.11
0.08
0.26
0.24
0.18
0.14
0.01
1.26
0.42
1.18
-------
Table A-20 (Continued)
Experiment Maximum Concentration Maximum Concentration
PAN HCHO
Calc Calc Calc Calc
Expt Calc -Expt -Expt Expt Calc -Expt -Expt
(ppm) (ppm) (ppm) /Expt (ppn) (ppra) Cppra) /Expt
OC1481B
ST0381B
ST10818
JL0882R
JL0882B
Group Average
S. Dev.
Avg. Abs. Value
S. Oev.
0.117
0.085
0.072
0.055
0.046
0.103
0.100
0.047
0.073
0.067
0.055
0.033
0.014
0.011
0.005
0.003
0.030
0.021
0.020
0.12
0.14
0.07
0.44
1.61
0.79
1.45
Ul
-------
Table A-21
UNC AUTO EXHAUST RUNS
ui
Experiment
1. UNC CHAMBER
JN2582R
JN2582S
JH2982R
JN2982B
JN3082R
JH3082S
JL0283B
JL0883B
ST2982B
OC0682R
AU1183R
AU11838
Group Average
S. Oev.
Avg. Abs. Value
S. Oev.
2. UNC CHAMBER
JL0182R
JL0182B
AU0382R
AU03828
ST1782R
ST1782S
CT2982R
OC06828
J10283R
JL0883R
JL1583R
JL1583B
OC0483R
Group Average
S. Dev.
Avg. Abs. Value
S. Dev.
Initial
Concentrations
NOx
0.008
0.008
0.015
0.071
0.049
0.063
0.010
0.173
0.108
0.116
0.107
-0.084
0.063
0.058
0.068
0.053
0.126
0.065
0.010
0.131
0.000
0.052
0.009
0.173
0.001
-0.213
0.211
0.163
0.049
-0.054
0.112
0.092
0.080
Calc
Expt
/Expt
0.02
0.09
0.06
0.08
0.01
0.20
0.53
0.33
0.13
0.14
0.16
0.16
0.16
0.16
0.17
0.09
0.03
0.23
0.00
0.08
0.12
0.39
0.00
0.28
-0.24
-0.18
0.08
-0.07
0.17
0.15
0.12
Average Initial
d( [03] [NO] )/dt
Expt
Calc
Calc
Expt
(ppb/nin)
0.64
0.68
2.32
2.67
2.55
2.68
1.65
1.76
1.12
1.37
2.55
1.26
1.77
0.77
2.31
2.41
1.26
1.06
.63
.72
0.86
.49
.37
.52
2.10
2.20
1.76
1.67
0.48
0.64
0.65
2.51
2.55
3.38
3.29
1.87
1.44
0.90
1.27
2.34
1.13
1.83
0.97
3.07
3.28
1.33
0.87
.29
.38
0.84
.34
.44
.30
1.74
2.07
1.91
1.68
0.75
0.00
0.03
0.19
0.12
0.83
0.61
0.22
0.32
0.23
0.10
0.21
0.13
0.06
0.35
0.25
0.24
0.75
0.88
0.07
0.19
0.34
0.33
0.02
0.15
0.06
0.23
0.35
0.13
0.15
0.01
0.39
0.28
0.26
Calc
Expt
/Expt
0.01
0.05
0.08
0.05
0.33
0.23
0.13
0.18
0.20
0.07
0.08
0.10
0.00
0.16
0.13
0.09
0.33
0.36
0.06
0.18
0.21
0.19
0.02
0.10
0.05
0.15
0.17
0.06
0.08
-0.02
0.19
0.15
0.11
-------
Table A-21 (Continued)
^
00
Experiment
3. UNC CHAMBER
OC0483B
OC0783R
OC0783B
Group Average
S. Dev.
Avg. Ate. Value
S. Oev.
Initial
Concentrations
NOx
(ppni)
SYNEXH
0.25
0.33
0.34
0.31
0.05
HC
(ppnC)
0.4
2.7
2.7
1.9
1.3
HC/NOx
1.7
8.1
7.9
5.9
3.6
Max <
0.642
0.178
0.451
0.424
0.233
Calc
(PP«)
0.695
0.430
0.656
0.594
0.143
Calc
Expt
0.053
0.252
0.206
0.170
0.104
0.170
0.104
Catc
Expt
/Expt
0.08
1.41
0.46
0.65
0.68
0.65
0.68
d<
Expt
1.86
0.94
1.41
1.40
0.46
Average Initial
C03] [NO! )/dt
Calc
(ppb/nin)
2.11
1.39
2.18
1.89
0.44
Calc
Expt
0.26
0.46
0.76
0.49
0.26
0.49
0.26
Calc
Expt
/Expt
0.14
0.49
0.54
0.39
0.22
0.39
0.22
-------
Table A-21 (Continued)
01
\o
Experiment
1. UNC CHAMBER
JN2S82R
JN2582B
JN2982R
JN2982B
JN3082R
JM30828
JL0283B
JL08838
ST2982B
OC06S2R
AU1183R
AU1183B
Croup Average
S. Oev.
Avg. Ate. Value
S. Oev.
2. UNC CHAMBER
JL0182R
JL0182B
AU0382R
AU0382B
ST1782R
ST1782B
ST2982R
OC06S2B
J10283R
JL0883R
JL1583R
JL1583B
OC0483R
Group Average
8. Oev.
Avg. Abs. Value
S. Oev.
Max i nun Concentration
PAN
Expt
VOURE
0.004
0.004
0.065
0.070
0.068
0.068
0.043
0.081
0.014
0.024
0.032
0.010
0.040
0.029
CHARGR
0.076
0.079
0.007
0.012
0.042
0.04S
0.006
0.026
0.041
0.092
0.068
0.063
0.061
0.048
0.029
Calc
(PP»)
0.001
0.001
0.056
0.060
0.098
0.095
0.036
0.028
0.005
0.013
0.042
0.008
0.037
0.034
0.081
0.089
0.014
0.015
0.042
0.043
0.005
0.015
0.033
0.031
0.041
0.051
0.054
0.039
0.025
Calc
Expt
0.003
0.003
0.008
0.010
0.030
0.026
0.007
0.053
0.009
0.011
0.011
0.002
0.003
0.021
0.014
0.015
0.005
0.010
0.006
0.003
0.000
0.002
0.001
0.012
0.009
0.061
0.027
0.011
0.007
0.008
0.019
0.012
0.016
Calc
Expt
/Expt
0.76
0.74
0.13
0.14
0.44
0.38
0.17
0.66
0.64
0.45
0.35
0.17
0.22
0.44
0.42
0.24
0.07
0.12
0.81
0.24
0.00
0.04
0.19
0.44
0.21
0.66
0.40
0.18
0.12
0.08
0.36
0.27
0.24
Half-Life
ETHENE
Calc
Expt Calc -Expt
(min) (mln) (rain)
692
325
339
345
433
326
346
400
133
359
361
513
389
336
354
479
479
337
515
363
376
373
402
67
334
331
309
311
328
448
557
326
388
370
82
321
315
533
405
396
395
534
323
441
355
339
312
389
79
16
28
17
15
0
42
0
25
19
14
38
46
20
16
60
41
55
14
74
8
37
61
7
45
39
21
Calc
Expt
/Expt
0.05
0.08
0.05
0.03
0.00
0.12
0.00
0.07
0.06
0.04
0.11
0.13
0.04
0.04
0.18
0.12
0.11
0.04
0.14
0.02
0.10
0.16
-0.02
0.11
0.10
0.05
-------
Table A-21 (Continued)
Experiment
3. UNC CHAMBER
OC04B3B
OC0783R
OC0783B
Group Average
S. Dev.
Avg. At». Value
S. Otv.
Maximum Concentration
PAN
Expt
SYNEXH
0.060
0.056
0.101
0.072
0.02S
Calc
(PPO
0.056
0.062
0.092
0.070
0.019
Catc
Expt
0.005
0.006
0.009
0.002
0.008
0.007
0.002
Calc
Expt
/Expt
0.08
0.12
0.09
0.02
0.12
0.09
0.02
Expt
(mfn)
335
408
371
51
Half-Life
ETHENE
Calc
(nin)
304
429
314
349
69
Calc
Expt
(nin)
31
94
62
44
62
44
Calc
Expt
/Expt
0.09
0.23
0.16
0.10
0.16
0.10
I
o
------- |