United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-79-031
December 1979
Air
Industrial Source Complex
(ISC) Dispersion
Model User's  Guide

Volume II. —
Appendices A Through  I

-------
                                       EPA-450/4-79-031
        Industrial Source Complex
               (ISC)  Dispersion
            Model  User's Guide

Volume  II.  — Appendices A Through  I
                         by

                  J.F. Bowers, J.R. Bjorklund,
                     and C.S. Cheney

                  H.E. Cramer Company, Inc.
                 University of Utah Research Park
                    Post Office Box 8049
                  Salt Lake City, Utah 84108
                   Contract No. 68-02-3323

                   Work Assignment No. 3

               EPA Project Officer: George J. Schewe
                      Prepared for

             U.S. ENVIRONMENTAL PROTECTION AGENCY
                Source Receptor Analysis Branch
             Research Triangle Park, North Carolina 27711

                     December 1979

-------
This document is issued by the Environmental Protection Agency to
report technical data of interest to a limited number of readers.
Copies are available free of charge to Federal employees,  current
contractors and grantees, and nonprofit organizations - in limited
quantities - from the Library Services Office (MD 35), U.S.
Environmental Protection Agency, Research Triangle Park, NC 27711;
or, for a fee, from the National Technical Information Service,
5285 Port Royal Road, Springfield, VA 22161.
This report was furnished to the Environmental Protection Agency
by H.E. Cramer Company, Inc. , University of Utah Research Park,
P.O. Box 8049, Salt Lake City,  Utah 84108, in fulfillment of Contract
No. 68-02-3323.  The contents of this report are reproduced herein
as received from H.E. Cramer Company, Inc.   The opinions, findings,
and conclusions expressed are those of the author and not necessarily
those of the Environmental Protection Agency.
                  Publication No.  EPA-450/4-79-031
                                 11

-------
                             TABLE OF CONTENTS

                                 VOLUME II

Appendix                           Title                              Page
               LIST OF TABLES                                          iii

               LIST OF FIGURES                                         iv
   A           COMPLETE FORTRAN LISTING OF THE INDUSTRIAL SOURCE
               COMPLEX SHORT-TERM MODEL (ISCST) COMPUTER PROGRAM       A-l

   B           COMPLETE FORTRAN LISTING OF THE INDUSTRIAL SOURCE
               COMPLEX LONG-TERM MODEL (ISCLT) COMPUTER PROGRAM        B-l

   C           EXAMPLE EXECUTIONS OF THE ISC SHORT-TERM MODEL
               (ISCST) COMPUTER PROGRAM                                C-l

               C.I  Introduction                                       C-l
               C.2  Example Concentration Run                          C-l

                    C.2.1  Input Data Set-Up Procedure                 C-l
                    C.2.2  Run Time, Required Data Storage
                           and Program Output Estimates                C-18
                    C.2.3  Output Format                               C-22
               C.3  Example Dry Deposition Run                         C-48

   D           EXAMPLE EXECUTIONS OF THE ISC LONG-TERM MODEL
               (ISCLT) COMPUTER PROGRAM                                D-l
                                               i
               D.I  Introduction               '                        D-l
               D.2  Example Concentration Run                          D-l
                    D.2.1  Input Data Set-Up Procedure                 D-2
                    D.2.2  Run Time, Required Data Storage, Page
                           Output and Tape Output Estimates            D-23
                    D.2.3  Example Print Output                        D-27

               D.3  EXAMPLE DRY DEPOSITION RUN                         D-60

                    D.3.1  Input Data Set-Up Procedure                 D-60
                    D.3.2  Run Time, Required Data Storage and
                           Page Output Estimates                       D-63
                    D.3.3  Example Print Output                        D-65

   E           CODING FORMS FOR CARD INPUT TO THE ISC SHORT-
               TERM MODEL (ISCST) COMPUTER PROGRAM                     E-l

   F           CODING FORMS FOR CARD INPUT TO THE ISC LONG-
               TERM MODEL (ISCLT) COMPUTER PROGRAM                     F-l

-------
                       TABLE OF CONTENTS (Continued)

Appendix                           Title                              Page


   G           THE METEOROLOGICAL PREPROCESSOR PROGRAM FOR ISCST       G-l

               G.I  Introduction                                       G-l
               G.2  Description of the Preprocessor Program            G-l
               G.3  Control Language and Data Deck Setup               G-2
                    G.3.1  Control Language Requirements               G-2
                    G.3.2  Data Deck Setup                             G-8

               G.4  Input Data Description                             G-9
                    G.4.1  Card Input                                  G-9
                    G.4.2  Tape Input Requirements                     G-10

               G.5  Output Data Description                            G-14
               G.6  Diagnostic Messages                                G-16
               G.7  FORTRAN Listing of the CRSTER/ISCST Pre-
                    processor Program                                  G-21

   H           LOGIC FLOW DESCRIPTION OF THE ISC SHORT-TERM
               MODEL (ISCST) COMPUTER PROGRAM                          H-l

   I           LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM
               MODEL (ISCLT) COMPUTER PROGRAM                          1-1


                                 VOLUME I


               ACKNOWLEDGEMENTS                                        i

               LIST OF TABLES                                          v

               LIST OF FIGURES                                         vii

   1           MODEL OVERVIEW                                          1-1

   2           TECHNICAL DESCRIPTION                                   2-1

   3           USER'S INSTRUCTIONS FOR THE ISC SHORT-TERM
               (ISCST) MODEL PROGRAM                                   3-1

   4           USER'S INSTRUCTIONS FOR THE ISC LONG-TERM
               (ISCLT) MODEL PROGRAM                                   4-1

               REFERENCES                                              5-1
                                     ii

-------
                                LIST OF TABLES


Number                               Title                               Page

 G-l            Preprocessor Initialization Card Format                  G-ll

 G-2            Preprocessor Mixing Height Data Card Format              G-l2

 G-3            Data Record Format for NCC Magnetic Tapes of
                Morning and Afternoon Mixing Heights                     G-13

 G-4            Data Record Format for NCC Magnetic Tapes of CD 144
                Surface Data - Preprocessor Required Data Only           G-l5

 G-5            Preprocessor Output File Record Description              G-17

 G-6            Preprocessor Fatal Error Messages                        G-18

 G-7            Preprocessor Informative Messages                        G-20
                                      iii

-------
                              LIST OF FIGURES


Number                             Title                               Page

 C-l        Card input data values for the hypothetical potash
            processing plant concentration run                         C-2

 C-2        Listing of the input data for the hypothetical
            potash processing plant concentration run                  C-23

 C-3        Listing of one day of hourly meteorological data
            used for the hypothetical potash processing plant
            concentration run                                          C-32

 C-4        Listing of the diagnostic message table produced by
            the hypothetical potash processing plant concentra-
            tion run                                                   C-33

 C-5        Listing of the table of 24-hour average concentration
            values computed on day 51 from Sources 12 to 15 by the
            hypothetical potash processing plant concentration run     C-34

 C-6        Listing of the table of the 10-day average concentra-
            tion values computed from Sources 2 to 11 by the hypo-
            thetical potash processing plant concentration run         C-38

 C-7        Listing of the table of the highest average concentra-
            tion values computed at each receptor from Source 1 by
            the hypothetical potash processing plant concentration
            run                                                        C-42

 C-8        Listing of the table of the maximum 50 average concen-
            tration values computed from Sources 12 to 15 by the
            hypothetical potash processing plant concentration run     C-47

 C-9        Card input data for the hypothetical potash processing
            plant deposition run                                       C-50

 C-10       Listing of the input data for the hypothetical potash
            processing plant deposition run                            C-62

 D-l        Coding form for the example particulate concentration
            run                                                        D-3

 D-2        Annual average ground-level particulate concentration
            output listing                                             D-28

 D-3        Coding form for the example deposition run                 D-61

 D-4        Total annual particulate deposition output listing         D-66
                                    iv

-------
                         LIST OF FIGURES (Continued)

Number                               Title

  G-l         Preprocessor Program Flow Diagram                          G-3

  H-l         ISCST Routine Flow Diagram                                 H-2

  H-2         INCHK Subroutine Flow Diagram                              H-4

  H-3         MODEL Subroutine Flow Diagram                              H-7

  H-4         DYOUT Subroutine Flow Diagram                              H-l7

  H-5         MAXOT Subroutine Flow Diagram                              H-l9

  H-6         MAX50 Subroutine Flow Diagram                              H-20

  H-7         VERT Subroutine Flow Diagram                               H-20

  H-8         SIGMAZ Subroutine Flow Diagram                             H-21

  H-9         UPWIND Subroutine Flow Diagram                             H-22

  H-10        ERFX Subroutine Flow Diagram                               H-22

  1-1         ISCLT Logic Flow Diagram                                   1-2

  1-2         Model Logic Flow Diagram — Subroutine MODEL.  This
              subroutine is the main calculation and control program.
              This program controls the source and meteorology input,
              output and calculations and contains most of the concen-
              tration and deposition equations.                          1-5

  1-3         OUTPT Logic Flow Diagram ~ SUBROUTINE OUTPT.  Subroutine
              OUTPT performs and controls the printed output of source
              data, the concentration or deposition of individual sources
              and combined sources and calculates the 10 receptors where
              the maximums occur.                                        1-30

  1-4         HEADNG Logic Flow Diagram — SUBROUTINE HEADNG. Subroutine
              HEADNG prints the headings for each type of output.        1-32

  1-5         TITLR Logic Flow Diagram — SUBROUTINE TITLR.  Subroutine
              TITLR increments the line counter for proper positioning
              of the page heading, counts the pages and writes select
              headings to the input data table, input source table, etc. 1-33

-------
                        LIST OF FIGURES (Continued)




Number                             Title                                Page




 1-6         SUMMER Logic Flow Diagram — SUBROUTINE SUMMER             1-35




 1-7         CHECKR Logic Flow Diagram ~ SUBROUTINE CHECKR             1-36




 1-8         MXIMUM Logic Flow Diagram ~ SUBROUTINE MXIMUM             1-36




 1-9         VIRTZ Logic Flow Diagram ~ FUNCTION VIRTZ                 1-37




 1-10        VIRTY Logic Flow Diagram — FUNCTION VIRTY                 1-37




 1-11        SIGMAZ Logic Flow Diagram — FUNCTION SIGMAZ               1-38




 1-12        VERTC1 Logic Flow Diagram ~ SUBROUTINE VERTCl             1-38




 1-13        VERTC2 Logic Flow Diagram ~ SUBROUTINE VERTC2             1-40




 1-14        VERTC3 Logic Flow Diagram ~ SUBROUTINE VERTC3             1-40




 1-15        FUNCT Logic Flow Diagram ~ FUNCTION FUNCT                 1-41




 1-16        DISTR Logic Flow Diagram — SUBROUTINE DISTR               1-41
                                     vi

-------
          APPENDIX A
COMPLETE FORTRAN LISTING OF THE
  INDUSTRIAL SOURCE COMPLEX
   SHORT TERM MODEL (ISCST)
      COMPUTER PROGRAM
               A-l

-------
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
11*
12*
13*
14*
15*
16*
17*
18*
1 9*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
C**
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
**• IN
WRITTE

THIS P
CONCENTRAT
THE RECEPT
CALCULATED
COORDINATE
POLAR COOR
Y-AXIS), 9
SOUTH AND
IN THIS MA
DEFINED US
MUST BE RE

AVERAG
IN 1-. 2- .
PERIODS .
OR AN AVER
NUMBER OF
CONCENTRAT
FOR ANY CO
OTHER OPT I
TABLES OF
DEPOSITION
CALCULATED
MANUAL FOR

THIS P
LENGTH OF
EXPECTED T
ABOUT 2130
DATA STORA

THE MAIN R
TO THE CAL
LIMITED IN
NUMBER OF
INDUSTRIAL  SOURCE COMPLEX SHORT  TERM MODEL
     BY  CRAIG S.  CHENEY, H.  E.  CRAMER CO.,
IHC.
  ROGRAH  IS  DESIGNED TO CALCULATE GROUND-LEVEL
  ION  OR  DEPOSITION FROM STACK.  VOLUME OR AREA  SOURCES.
  ORS  AT  WHICH THE CONCENTRATION OR DEPOSITION  ARE
   HAY  BE  DEFINED ON A X.Y RIGHT-HANDED CARTESIAH
   SYSTEM  GRID OR A POLAR COORDINATE SYSTEM GRID.   THE
  DINATE  SYSTEM DEFINES 360 DEGREES AS HORTH (POSITIVE
  0 DEGREES  AS EAST (POSITIVE  X-AXIS). 180 DEGREES  AS
  270  DEGREES AS WEST.  WIND DIRECTIONS ARE ALSO  DEFINED
  NNER.   DISCRETE OR ARBITRARILY PLACED RECEPTORS MAY BE
  ING  EITHER COORDINATE SYSTEM.   FINALLY. SOURCE  LOCATION
  FERENCED UITH THE CARTESIAH  COORDINATE SYSTEM.

 GE CONCENTRATION OR TOTAL DEPOSITION MAY BE CALCULATED
   3-.  4-.  6-. 8-. 12-  AND/OR  24-HOUR TIME
  AN  'H'-DAY AVERAGE CONCEHTRAT I ON  (OR TOTAL DEPOSITION)
 RAGE  CONCENTRATIOH (OR TOTAL  DEPOSITION) OVER  THE  TOTAL
  HOURS NAY  ALSO BE COMPUTED.
 TIONS  (DEPOSITIONS) HAY BE COMPUTED FOR ALL SOURCES  OR
 OHBINATION  OF SOURCES THE USER  DESIRES.
 IONS  INCLUDE INPUT OF TERRAIN  HEIGHTS FOR RECEPTORS.
  HIGHEST  AHD SECOHD HIGHEST CONCENTRAT IONS OR
  S AT  EACH  RECEPTOR.  TABLES OF  THE FIFTY MAXIMUM VALUES
   AHD  TAPE  OUTPUT.  REFER TO  SECTIOH 3 OF THE  USER'S
   A  MORE  DETAILED EXPLANATION  OF THE ABOVE OPTIOHS.

 PROGRAM  IS  WRITTEN IN FORTRAN  IV AND ASSUMES A WORD
  32  BITS  OR MORE SINCE 4 ALPHAHUHERIC CHARACTERS ARE
  0 BE  STORED INTO OHE WORD.   THE BASIC PROGRAM REQUIRES
  0 WORDS  OF STORAGE.   THIS PROGRAM HAS CURREHTLY LIMITED
  GE  TO 43SOO WORDS FOR A TOTAL  OF  69000 WORDS.

 ROUTINE  OF  THIS PROGRAM DYNAMICALLY ALLOCATES  STORAGE
    LATING SUBROUTINE, MODEL.   MAXIMUM LIMITS ARE NOT
 NDIVIDUALLY TO THE NUMBER OF  SOURCES(HSOURC ) OR  THE
  RECEPTORS(HXPNTS*NYPNTS * NXWYPT  = NPNTS) OR  THE
*S01
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
SS01
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
001 10
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380

-------
   39*     C      NUMBER OF  TINE  PERIODS TO  BE  CALCULATED  (NftVG) OP THE NUMBER  OF    S0100390
   40*     C      SOURCE GROUPS  DESIRED (NGROUP).   INSTEAD  THE  MAXIMUM LIMIT  IS A    S0100400
   41*     C      FUNCTION OF  ALL  FOUR VARIABLES.   THIS MAXIMUM LIMIT CAN BE         S0100410
   42*     C      COMPUTED yiTH  THE FOLLOWING EQUATION.                               S0100420
   43*     C                                                                            S0100430
   44*     C      LIMIT = HPNTS*(2 +NAVG*NGROUP )  +  NXPNTS  +  NYPNTS * 2*NXWYPT         S0100440
   45*     C              +  215*NSOURC + A  +  B  +  C                                    S0100450
   46*     C                                                                            S0100460
   47*     C      WHERE A =  NPNTS*NGROUP IF  ISWM5) =  1;  OTHERWISE A = 0 AND         S0100470
   48*     C            B =  4*NAVG*NPNTS*NGROUP  IF ISW(17>  =  1; OTHERWISE 8=0 AND SOJ00480
   49*     C            C =  201*NAVG*NGROUP  IF  ISUC18) =  1;  OTHERWISE C = 0.         S0100490
   30*  .   C      ALSO IF NGROUP  = 0, ASSUME  NGROUP =  1 FOR  THE ABOVE EQUATION.      S0100500
   31*     C                                                                            S0100S10
   32*     C      THIS LIMIT MUST  NOT EXCEED  THE  VALUE BY  WHICH THE 'QF'  ARRAY       S0100S20
   53*     C      IS DIMENSIONED  AND BY WHICH THE  VARIABLE/  'LIMIT'/ IS SET IN       S0100330
   54*     C      THE MAIN ROUTINE.                                                    SOI00540
   55*     C                                                                            S0100550
   56*     C      THE AMOUNT OF  TIME A PROBLEM  RUN TAKES  TO  EXECUTE CAN BE DESCRIBEDS0100360
>  57*     C      BY THE FOLLOWING E6UATIOH.                                           S0100570
w  58*     C                                                                            S0100580
   59*     C      t OF MINUTES  =  CONSTAHT*(NDAYS * 1 >*( 1 + NHOURS*C 1 * 0.8*NSOURC          S0100590
   60*     C                      *<1 + 0 . 6*NPNTS + 0.1 *NGROUP*NAVG>3>                    SOI00600
   61*     C                                                                            S0100610
   62*     C      WHERE CONSTANT  = 2.1*10**-5.   THIS VALUE  IS  DERIVED FROM RUNS     S0100620
   63*     C                        HADE- ON  A  UNIVAC 1108  AND  WILL VARY FOR OTHER     S0100630
   64*     C                        COMPUTERS.                                          S0100640
   65*     C            NftVG =  SUM OF PARAMETERS  ISkK?) TO  ISU(14) SET TO 1.         S0100650
   66*     C            NPNTS  =  TOTAL NUMBER  OF  RECEPTOR  POINTS.                      S0100660
   67*     C      ALL OTHER  PARAMETERS ARE  DEFINED IN  INPUT  DATA BELOW.              S0100670
   68*     C                                                                            S0100680
   69*     C                                                                            SOI 00690
   70*     c**************************** INPUT  DATA *******************************SO 1 00700
   71*     C                                                                            SOI 00710
   72*     C      THE INPUT  DATA  IS PARTITIONED  INTO SEVEN  MAJOR CARD GROUPS  WHERE   S0100720
   73*     C      EACH CARD  GROUP  CONTAINS  COMMON  INPUT PARAMETERS.  FOR EXAMPLE/    S0100730
   74*     C      CARD GROUP 6  CONTAINS ALL  SOURCE DATA PARAMETERS.  A CARD GROUP    S0100740
   75*     C      HAY BE DIVIDED  INTO 'CARDS'.   A  'CARD'  MfiY  ACTUALLY CONSIST  OF     S0100750
   76*     C      HORE THAN  OHE  CARD IMAGE.   A  'CARD'  OR  COMPLETE CARD GROUPS  MAY    S0100760

-------















7
7
7
8
8
8
8
8
8
8
8
8
8
9
9
7*
8*
9*
0*
1*
2*
3*
4*
5*
6*
7*
8*
9*
0*
1*
92*



9
9
9
3*
4*
5*
96*



1
1
1
1
i
1
1
1
1
1
i
1
1
1
1
9
9
9
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
7*
8*
9*
0*
1*
2*
3*
4*
5*
6*
7*
8*
9*
0*
1*
2*
3*
4*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
NOT BE RE A
CHOSEN BY


*****CARD GROUP

• CARD 1 FORMAT

TITLE - ft
TH

*****CARD GROUP

•CARD 1 FORMAT

ISU< 1 > - =
=
I
isy< 2 > - =

3
*
S
ft
T
U
s
G
G
G
H
I
ISW< 3 > - =

=

I
ISW< 4 > - =
D BY THE PROGRAM DEPENDING ON THE PROGRAM
THE USER.


1

< i 5A4 )

60 CHARACTER INFORMATION HEADING WHICH UIL
E TOP OF EACH PAGE OF OUTPUT.

2

(4012 >

I/ CALCULATE CONCENTRATION,
2, CALCULATE DEPOSITION.
F 0 OR BLANK, 1 IS ASSUMED
1, RECTANGULAR CARTESIAN COORDINATE RECEPT
SYSTEM IS ASSUMED.
2, POLAR COORDINATE RECEPTOR GRID SYSTEM I
3, GENERATE RECTANGULAR CARTESIAN COORDINA
YSTEM. GRlDX(l) IS THE STARTING POINT OF
ND GR1DXC2) IS THE INCREMENTAL VALUE USED
HE X-AXIS. THE Y-AXIS IS GENERATED IN A L
SING GRlDY(l) AND GRIDYC2).
4, GENERATE POLAR COORDINATE SYSTEM RADIAL
RIDY<1) IS THE STARTING RADIAL (IN INTEGER
RIDY<2) IS THE IHCREMENTAL INTEGER VALUE U
ENERATE THE REMAINING RADIALS. THE VALUES
UST BE WITHIH THE RANGE OF 1 TO 360 DEGREE
F 0 OR BLANK, 1 IS ASSUMED.
1, DISCRETE RECEPTOR POINTS ARE REFERENCED
CARTESIAN COORDINATE SYSTEM.
2, DISCRETE RECEPTOR POINTS ARE REFERENCED
POLAR COORDINATE SYSTEM.
F 0 OR BLANK, 1 IS ASSUMED.
0, NO RECEPTOR TERRAIN ELEVATIONS ARE READ
OPT IONS







L APPEAR AT


S
S
S
S
S
S
S
S
S
S
S
0
0
0
0
0
0
0
0
0
0
0
SO






OR GRID

S ASSUMED.
TE GRID
THE X-AXIS
IN GENERATING
IKE MANNER

S.
DEGREES) AND
SED TO
GENERATED
S.

«I TH THE

«I TH THE



S
S
S
S
S
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
i
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0770
0780
0790
0800
0810
00820
0
0830
00840
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1 1 00
1 1 10
1 1 20
1 1 30
1140

-------
115*
116*
117*
118*
1 19*
120*
121*
122*
123*
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ISUC7 > •
ISUC 8 ) •
ISU< 9 >
ISIf( 10)
ISUC 1 1 >
ISU< 12)
ISUC 13)
ISUC14)
ISUCIS)
ISUC16) -
ISUC17) -
ISUC18) -
ISUC19) -
"2,
•1,
'I,
         'I,  RECEPTOR TERRAIN  EL
1SUC5) - =0,  NO  CONCENTRATIONS  0
         *1,  CONCENTRATIONS 
         UITH  LOGICAL UNIT NUMBE
         CDEPOSIT10NS) ARE MRITT
         INDICATED BY ISUC7)-ISU
         CONCENTRATION OR TOTAL
         ISUC1S) IS SET.   TUO  EN
         THE  END OF THE TAPE.   C
         MANUAL  FOR A DETAILED  D
ISUC6) - "0,  NO  INPUT DATA ARE  L
         "1.  LIST  ALL INPUT DATA
              LIST  ALL INPUT DATA
              CALCULATE 1-HOUR  TI
              CALCULATE 2-HOUR  TI
              CALCULATE 3-HOUR  TI
               CALCULATE 4-HOUR  T
               CALCULATE 6-HOUR  T
               CALCULATE 8-HOUR  T
               CALCULATE 12-HOUR
               CALCULATE 24-HOUR
               PRINT AN 'N'-DAY  A
          DEPOSITION TABLE FOR  A
          GROUP.
          =1,  PRINT DAILY TABLES
          INDICATED BY ISUC7)-IS
          DAY  OF METEOROLOGICAL
          =1,  PRINT TABLES OF  HI
          CONCENT RAT IONSC DEPOSIT
          SET  OF THESE TABLES  IS
          INDICATED BY ISUC7)-IS
          PRINT  THE MAXIMUM 50  C
          FOR  EACH TIME PERIOD  S
          FOR  EACH SOURCE GROUP.
          "1,  PRE-PROCESSED METE
          LOGICAL  UNIT IHET .
          = 2,  METEOROLOGICAL DAT
          IF  0  OR  BLANK/  1 IS  AS
                                  EVATIONS ARE  READ.
                                  R DEPOSITON3  ARE  WRITTEN TO TAPE
                                  OSITIONS) ARE  URITTEN TO TAPE
                                  R ITAP.  CONCENTRATIONS
                                  EN TO TAPE  IN  THE  TIME  PERIODS
                                  <14).  ALSO.  AN ANNUAL  AVERAGE
                                  DEPOSITION  IS  URITTEN TO TAPE IF
                                  D OF FILE HARKS ARE  URITTEN AT
                                  ONSULT SECTION 3.2.4  OF THE USER
                                  ISCUSSION OF  THIS  OPTION.
                                  ISTED .
 PLUS METEOROLOGICAL
ME PERIODS.
ME PERIODS.
HE PERIODS.
IME PERIODS.
I ME PERIODS.
I HE PERIODS.
TIME PERIODS.
TIME PERIODS.
VERAGE CONCENTRATION
LL RECEPTORS  AND  FOR
                                                        DATA
                                              OR  TOTAL
                                              EACH  SOURCE
                          UHOSE  TIME PERIODS ARE
                        UC14)  FOR EACH RECEPTOR  FOR  EACH
                        DATA  AND FOR EACH SOURCE  GROUP.
                        CHEST  AHD SECOND HIGHEST
                        IONS)  FOR EACH RECEPTOR .   A
                          PRINTED FOR EACH TINE  PERIOD
                        UM4)  AND FOR EACH SOURCE  GROUP.
                        ONCENTRATIONS CDEPOSITIONS )
                        PECIFIED BY ISUC7)-ISU(14) AHD

                        OROLOGICAL DATA IS READ  ON

                        A  ARE  EXPECTED ON CARDS .
                        SUMED .
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
SS01
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 501
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
                                                               01
                                                               01
                                                               01
                                                               01
                                                               01
                                          50
                                          60
                                          70
                                          80
                                          90
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520

-------
133*     C      ISWC20) - =0,  USE  RURAL MODE OPTION.                                S0101530
154*     C                =\ >  USE  URBAN MODE 1 OPTION.                              S0101540
153*     C                = 2,  USE  URBAN MODE 2 OPTION.                              S0101550
156*     C                MOTE:   IF  ISWC19) = 2, THE  RURAL  NODE OPTION  IS  USED.    S0101560
157*     C      ISy(21) - =1,  THE  PROGRAM PROVIDES  DEFAULT  VALUES FOR THE  HIND     S0101570
158*     C                     PROFILE EXPONENTS.  THESE  VALUES ARE .1,.15,.2,.25,  S0101580
159*     C                     .3,.3  FOR EACH OF THE SIX  STABILITY CATEGORIES  AHD   S0101390
160*     C                     FOR  ALL WIND SPEED CATEGORIES.                        S0101600
161*     C                = 2,  ENTER  WIND PROFILE EXPONENTS  IN CARD GROUP  3,  CARDS  S0101610
162*     C                     1-6.   THESE VALUES ARE  USED  THROUGHOUT  THE  DATA      S0101620
163*     C                     CASE.   SEE CARD GROUP 3.                              S0101630
164*     C                -3>  THE  PROGRAM READS ALL WIND PROFILE EXPONENTS  OH  AN   S0101640
163*     C                     HOUR-TO-HOUR BASIS IN CARD GROUP 7.  SEE  CARD  GROUP  S0101630
166*     C                     7.   NOTE THAT THIS OPTION  IS  APPLICABLE ONLY  IF      S0101660
167*     C                     HOURLY METEOROLOGICAL DATA IS CARD INPUT      S0101670
168*     C                     EQUALS 2).                                            SOI01680
169*     C                DEFAULT  VALUE EQUALS 1.                                   SOI01690
170*     C      ISU<22) - =1,  THE  PROGRAM PROVIDES  DEFAULT  VALUES FOR THE  VERTICALS0101700
171*     C                     POTENTIAL TEMPERATURE GRADIENTS.  THESE VALUES  ARE   S010I710
172*     C                     0.0,0.0,0.0,0.0,0.02/0.035 FOR  EACH OF  THE  SIX       S0101720
173*     C                     STABILITY CATEGORIES  AHD FOR  ALL UIND SPEED          S0101730
174*     C                     CATEGORIES.                                           S0101740
175*     C                = 2,  ENTER  VERTICAL POTENTIAL TEMPERATURE GRADIENTS  IN    S0101750
176*     C                     CARD  GROUP 5, CARDS 7-12.  THE  VALUES ARE USED       S0101760
177*     C                     THROUGHOUT THE DATA CASE.  SEE  CARD GROUP 5.         S0101770
178*     C                =3,  THE  PROGRAM READS ALL VERTICAL  POTENTIAL  TEMPERATURES0101780
179*     C                     GRADIENTS ON AN HOUR-TO-HOUR  BASIS IN CARD  GROUP  7.  S0101790
180*     C                     SEE  CARD GROUP 7.  NOTE THAT  THIS OPTION  IS          S0101800
181*     C                     APPLICABLE ONLY IF HOURLY  METEOROLOGICAL  DATA  IS     S0101810
182*     C                     CARD  INPUT (ISU(19) EQUALS 2).                        S0101820
183*     C                DEFAULT  VALUE EQUALS 1.                                   SOI01830
184*     C      1SW<23> - THIS  PARAMETER ALLOWS THE SCALIHG OF SOURCE EMISSION     S0101840
185*     C                RATES  AS  A FUNCTION OF SEASON, MONTH, HOUR  OF THE  DAY    S0101850
186*     C                WIND  SPEED AND STABILITY, OR A COMBINATION  OF BOTH       S0101860
187*     C                SEASONAL  AND HOUR OF THE  DAY VARIANCE.  IF  THIS  PARA-    S0101870
188*     C                METER  IS  GREATER THAN ZERO  THEN  THE SOURCE  EMISSION      S0101880
189*     C                RATES    FOR ALL SOURCES ARE  ADJUSTED DEPENDING  ON      S0101890
190*     C                WHICH  OPTION IS CHOSEN.   ALSO, THE  USE OF THIS  PARAMETERS0101900

-------
>
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
203*
206*
207*
208*
209*
210*
21 1*
212*
213*
214*
213*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                              OVERRIDES THE INPUT  PA
                              OTHERWISE IF ISU< 23 >  E
                              EMISSION RATES FOR  A  G
                              THE  CORRESPONDING QFLG
                              ISU<23)  TO THE VALUE  A
                              BELOW    THESE SANE  OPT
                              METER  FOR EACH SOURCE.
                              ENTERED  IN CARD GROUP
                              DEPENDING ON WHICH  OPT
                              QFLG ) .
                       RAHETER QFLG (SEE CARD  GROUP 6).
                       QUALS ZERO THEN THE  SOURCE
                       IVEN SOURCE HAY BE SCALED  USING
                         PARAMETER FOR THAT  SOURCE.   SET
                       CCORDING TO THE LIST  OF  OPTIONS
                       IONS ARE USED BY THE  QFLG  PARA-
                          THE SCALING FACTOR  VALUES  ARE
                       6/  CARD 3 AND IN A FORMAT
                       ION IS SELECTED FROM  ISW(23> (OR
«0, NO SCALING OF THE
    SOURCES  IS PERFORM
    SOURCE STRENGTH/ Q
    SOURCE EMISSION RA
    EXERCISED  BY THE I
    GROUP  6).
=1, SCALE  SOURCE EMISS
    INPUT  FOUR SCALARS
    WINTER,  SPRING/ SU
    IS DETERMINED FROM
    WINTER INCLUDES JU
    SUMMER 133-244 AND
    DAYS/  FOR  EACH SEA
    OF EACH  METEOROLOG
= 2/ SCALE  SOURCE EMISS
    INPUT  TWELVE SCALA
    EACH MONTH OF THE
    PROCEEDING THROUGH
    DETERMINED FROM TH
= 3/ SCALE  SOURCE EMISS
    INPUT  24 SCALARS I
    WITH HOUR  1  FOR Eft
»4/ SCALE  SOURCE EMISS
    WIND SPEED AND STA
    HOUR OF  METEOROLOG
    SCALARS  FOR  EACH 0
    (A-F>  BEGINNING UI
    EACH OF  THE  SIX SE
SOURCE  EMISSION RATES FOR  ALL
ED  (EQUIVALENT TO MULTIPLYING
,  BY  1.0).   SCALING OF  INDIVIDUAL
TES OF  SOURCES HAY STILL BE
NPUT  PARAMETER QFLG (SEE CARD

ION RATES  ACCORDING TO  SEASON.
 IN CARD GROUP 6,  CARD  3 FOR THE
HMER  AND AUTUMN SEASONS.   A  SEASO
 THE  JULIAN  DAY OF A 366-DAY YEAR
LIAN  DAYS  336-60/  SPRING 61-132,
 AUTUMN  243-333.   THESE JULIAN
SON/  CORRESPOND WITH THE 3 MONTHS
ICAL  SEASON.
ION RATES  ACCORDING TO  MONTH.
RS  IN CARD  GROUP  6/ CARD 3 FOR
YEAR  BEGINNING WITH JANUARY  AND
 THE  YEAR  TO  DECEMBER.  A  MONTH  I
E JULIAN DAY  OF A 366-DAY  YEAR.
ION RATES  BY  HOUR OF THE DAY.
H CARD  GROUP  6/ CARD 3  BEGINNING
CH  HOUR  OF  THE DAY,
ION RATES  DEPENDING ON  BOTH  THE
BILITY  CATEGORY VALUES  FOR A GIVE
ICAL  DATA.   IHPUT SIX SETS OF  SIX
F THE SIX  STABILITY CATEGORIES
TH  STABILITY  CATEGORY A(=l>.   FOR
TS, SIX  SCALARS ARE ENTERED  FOR
 S0101910
 S0101920
 S0101930
 $0101940
 S0101950
 S0101960
 S0101970
 S0101980
 S0101990
 S0102000
 S0102010
 S0102020
 S0102030
 S0102040
 S0102030
 S0102060
 S0102070
 S0102080
NS0102090
.S0102100
 S0102110
 S0102120
 S0102130
 S0102140
 S0102130
 S0102160
 S0102170
SS0102180
 S0102190
 S0102200
 S0102210
 S0102220
 S0102230
NS0102240
 S0102230
 S0102260
 S0102270
 S0102280

-------
00
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
250*
251*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C*C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
E
w
A
-5/ S
A
F
A
0
ISW( 24) - =1 , P
T
P
= 2, P
D
DEFAU
ISW(25) - »1 / D
F
= 2, M
A
B
DEFAU

ARD 2 FORNAT(8I6)

NSOURC - NUMBER
NXPNTS - NUMBER
COORDI
FOR A
NYPNTS - NUMBER
COORDI
( RADIA
HXWYPT - NUMBER
NGROUP - NUMBER
SELECT
DATA C
PROCES
DEPOSI
IN EAC
ON THE
   I WIND SPEED CATEGORY BEGINNING  WITH  THE  LOWEST  SOI
   > SPEED CATEGORY.  HENCE. A  TOTAL  OF  36  SCALARS  SOI
    ENTERED IN CARD GROUP 6, CARD 5.                 SOI
SCALE SOURCE EMISSION RATES  DEPENDING ON BOTH SEASONS01
    HOUR OF THE DAY.  INPUT  FOUR SETS OF 24  SCALARS SOI
    EACH OF THE FOUR SEASONS BEGINNING WITH  WINTER
    FOLLOWED BY SPRING, SUMMER  AND  AUTUMN.   A TOTAL
   96 SCALARS ARE ENTERED IN CARD GROUP  6*  CARD 5.
PROGRAH USES FINAL PLUHE RISE AT ALL  RECEPTOR LOCA-
TIONS.  RECEPTOR LOCATION IS NOT A  FUNCTION  OF THE
PLUHE RISE WITH THIS OPTIOH.
PROGRAH COMPUTES PLUME RISE  AS  A FUNCTION OF THE
DOWNWIND DISTANCE (RECEPTOR  LOCATION).
    VALUE EQUALS 1.
   NOT HODIFY THE PHYSICAL STACK HEIGHT  TO  ACCOUNT
    DOWNWASH.
MODIFY THE PHYSICAL STACK HEIGHT FOR  ALL STACKS TO
ACCOUNT FOR STACK DOWNWASH ACCORDING  TO
BRIGGS/ 1973.
    VALUE EQUALS 1.
                                                                    CARTESIAN
                                                                    OF RANGES
                                             (RINGS)
                                                                    CARTESIAN
                                                                    OF DIRECTIONS
  OF SOURCES
  OF X POINTS IN THE X-AXIS FOR  A
 NATE RECEPTOR GRID OR THE NUMBER
 POLAR COORDINATE RECEPTOR GRID.
  OF Y POINTS IN THE Y-AXIS FOR  A
 NATE RECEPTOR GRID OR THE NUNBER
 LS) FOR A POLAR COORDINATE GRID.
  OF DISCRETE OR ARBITRARILY PLACED  RECEPTORS.
  OF SOURCE GROUPS.  EACH SOURCE GROUP  IS  A
 ED NUMBER OF SOURCES SPECIFIED  BY  THE  USER  (SEE
CARD GROUP 4) FROH THE NUMBER  OF SOURCES
  ED IN THE PROBLEN RUN.  THE  CONCENTRATION  OR
  ION CONTRIBUTED COLLECTIVELY BY THE  SOURCES
   SOURCE GROUP IS COMPUTED AND  PRINTED DEPENDING
  OPTIONS SELECTED IN DATA CARD  GROUP  2,  CARD  1.
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
SOI
02290
02300
02310
02320
02330
02340
02330
02360
02370
02380
02390
02400
02410
02420
02430
02440
02430
02460
02470
02480
02490
02300
02310
02320
02330
02340
02350
02360
02570
02380
02390
02600
02610
02620
02630
02640
02630
02660

-------
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
285*
286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c** ** *
c
C*CARD
C
C
C
C
c
c
c
C*CARD
C
C
C
C
C
C
C
c
          IF  LEFT BLANK OR  ZERO/
          SOURCES.  MAXIMUM EQUAL
IPERD -  THIS PARAMETER ALLOWS TH
         PERIOD FOR UHICH  CONCENT
         PRINTED .   THIS PARAMETER
         ISW<7> - ISWC14)  OPTIONS
         SEE  THE FIFTH 3-HOUR PER
         TOTAL DEPOSITION)  THEN I
         TO  1.   ALSO, ANY  INVALID
         TIME PERIOD  ISU OPTIONS
         ARE  A FIFTH  24-HOUR TIME
         PERIOD.
THE PROGRAM  WILL SUM OVER ALL
S 130 SOURCE  GROUPS.
E USER  TO  SPECIFY AN N-TH TIME
RATIONS  OR  DEPOSITIONS ARE
 IS USED  IN  CONJUNCTION UITH THE
   FOR  EXAMPLE*  IF ONE DESIRES  TO
IOD OF  AVERAGE CONCENTRATION (OR
PERD  IS  SET  TO S AND ISW<8>  IS  SE
 COMBINATIONS OF IPERD AND THE
ARE IGNORED.   EXAMPLES OF THESE
 PERIOD  OR  A  FOURTH 8-HOUR TIME
NOTE:   THE  FOLLOWING 2  INPUT  PARAMETERS  ARE  USED ONLY IF
        METEOROLOGICAL DATA  ARE CARD  INPUT  =2>.
NHOURS  -  NUMBER OF HOURS  PER  DAY OF  METEOROLOGICAL DATA.
NDAYS - NUMBER OF DAYS  OF  METEOROLOGICAL  DATA.
        IF  0  OR BLANK/  NDAYS  IS SET  TO  1.

CARD GROUP  3

 1  FORHAT(8F10 .0> THIS CARD  IS NOT  READ  IF  NXPNTS OR NYPNTS  =  0

GRIDX - IF  ISW<2>=1/ X-AXIS RECEPTOR  ARRAY  IN METERS.
        IF  ISW(2> = 2 OR  4, RECEPTOR  RANGE(RIHG) ARRAY  IN METERS
        IF  ISWC2)=3, GRIDX(l)  IS THE  STARTING LOCATION  FOR  THE
        X-AXIS IN METERS  AND  GRIDX(2) IS  THE  INCREMENT  AT WHICH
        THE X-AXIS IS GENERATED IN METERS.

 2  FORMATC8F10 .0) THIS CARD  IS NOT  READ  IF  NXPNTS OR NYPNTS  =  0

GRIDY - IF  ISW<2)«1/ Y-AXIS RECEPTOR  ARRAY  IN METERS.
        IS  ISW<2)=2, RECEPTOR  DIRECTION(RADIAL)  ARRAY IN  INTEGER
        DEGREE VALUES WITHIN  THE RANGE  OF  1  TO  360 DEGREES.
        DEFAULT VALUE • 360 DEGREES.
        IF  ISy(2>=3, GRIDY(l)  IS THE  STARTING LOCATION  FOR  THE
        Y-AXIS IN METERS  AND  GRIDYC2) IS  THE  INCREMENT  AT WHICH
        THE Y-AXIS IS GENERATED IN METERS.
 S0102670
 S0102680
 S0102690
 S0102700
 S0102710
 S0102720
 S0102730
TS0102740
 S0102750
 S0102760
 S0102770
 S0102780
 S0102790
 S0102800
 S0102810
 S0102820
 S0102830
 S0102840
 S0102850
 S0102860
 S0102870
 S0102880
 S0102890
 S0102900
 S0102910
 S0102920
 S0102930
 S0102940
 S0102950
 S0102960
 S0102970
 S0102980
 S0102990
 S0103000
 S0103010
 S0103020
 S0103030
 S0103040

-------
305*
306*
307*
308*
309*
310*
311*
312*
313*
314*
313*
316*
317*
318*
319*
320*
321*
322*
323*
324*
32S*
326*
327*
328*
329*
330*
331*
332*
333*
334*
335*
336*
337*
338*
339*
340*
341*
342*
C
C
C
C
C
C
C
C*CARD
C
C
C
C
C
C
C*CARD
C
C
C
C
C
C
C
C
C*CftRD
C
C
C
C
C
C
C
IF ISW<2>«4, GRIDY(l) IS THE STARTING D IRECT ION( RAD I AL >
IH INTEGER DEGREES AND GRIDY(2) IS THE INTEGER INCREHENT
AT UHICH THE RADIALS ARE GEHERATED IN DEGREES. THE
VALUES GENERATED MUST BE UITHIN THE RAHGE OF 1 TO 360
DEGREES.
DEFAULT VALUE » 360 DEGREES.

3 FORHATC8F10.0) THIS CARD IS NOT READ IF HXWYPT « 0.
•
XDIS - IF ISW(3>«1, ARRAY OF X VALUES IN HETERS FOR DISCRETE
RECEPTORS.
IF ISy(3>=2, ARRAY OF RANGES IN HETERS FOR DISCRETE
RECEPTORS.

4 FORHAT(8F10.0> THIS CARD IS NOT READ IF NXWYPT = 0.

YDIS - IF ISW<3>»1< ARRAY OF Y VALUES IN HETERS FOR DISCRETE
RECEPTORS.
IF ISW(3) = 2, ARRAY OF D I REC T IONS ( RADI ALS ) IN INTEGER
DEGREE VALUES FOR DISCRETE RECEPTORS. VALUES HUST BE
UITHIN 1 TO 360 DEGREES.
DEFAULT VALUE = 360 DEGREES.

5 FORHAT(8F10.0> THIS CARD IS READ ONLY IF ISU<4> = 1.

GRIDZ - ARRAY OF TERRAIN ELEVATIONS FOR RECEPTORS IN FEET
FOR EACH Y-AXIS (OR RADIALS) AN X-AXIS (OR RANGE) ARRAY
IS READ. FOR EACH X-AXIS ARRAY READ, A NEW CARD IHAGE I
STARTED. THE ELEVATIONS FOR ANY DISCRETE RECEPTORS ARE
THEN READ STARTING WITH A NEW CARD IHAGE.

C***«*CARD GROUP 4 THIS CARD GROUP IS NOT READ IF NGROUP « 0.
C
OCARD
C
C
C
C

1 FORHAT(20I4)

NSOGRP - AN ARRAY OF INTEGERS INDICATING HOW HANY SOURCE NUMBERS
ARE TO BE READ FOR EACH SOURCE GROUP. THE SOURCE NUflBE
ARE READ IN THE ARRAY IDSOR. SEE CARD 2 BELOW FOR AH
S0103050
S0103060
S0103070
S0103080
S0103090
S0103100
S01031 10
S0103120
S0103130
S0103140
S0103130
S0103160
S0103170
80103180
S0103190
S0103200
S0103210
S0103220
S0103230
S0103240
S0103230
S0103260
S0103270
S0103280
S0103290
S0103300
S0103310
S S0103320
S0103330
S0103340
S0103330
S0103360
S0103370
S0103380
S0103390
S0103400
RSS0103410
S0103420

-------
343*
344*
345*
346*
347*
348*
349*
330*
331*
332*
333*
354*
333*
336*
337*
338*
339*
360*
361*
362*
363*
364*
365*
366*
367*
368*
369*
370*
371*
372*
373*
374*
375*
376*
377*
378*
379*
380*
C
C
C
C
C*CARD
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
         EXAMPLE  OF  THIS PARAMETER'S  USE AND FOR THE EXPLAHATIOH
         OF THE PARAMETER IDSOR WHICH IS USED IH COHJUHCTIOH  UITH
         HSOGRP.   A  MAXIMUM OF ISO  VALUES HAY BE IHPUT.

 2  FORHATU3I6)

IDSOR - AH IHTEGER ARRAY CONTAINING THE SOURCE NUMBERS OR,  THE
        LOVER  AND  UPPER BOUND OF  SOURCE NUMBERS TO BE SUMMED
        TOGETHER.   THIS PARAMETER  IS  USED IH CONJUNCTION  UITH
        THE ARRAY  HSOGRP IH CARD  1  ABOVE.  THE FOLLOUIHG  EXAMPLE
        SHOULD  ILLUSTRATE THE USE  OF  THE PARAMETERS NGROUP  (SEE
        DATA CARD  GROUP 2), NSOGRP  AND IDSOR.  LET US ASSUME  THAT
        WE HAVE 30 SOURCES WHOSE  NUMBERS ARE 10,20,30- . . . , v¥0 , 300
        FIRST,  IF  THE  USER DESIRES  TO SEE THE CONCENTRATION (OR
        DEPOSITION)  FROM ALL SOURCES  IN THE PROBLEM RUN,  NAMELY,
        THE SO  HEHTIOHED ABOVE THEN SET NGROUP TO 0.  THE
        PARAMETERS NSOGRP AND IDSOR WOULD NOT BE INPUT.   INSTEAD
        LET US  SUPPOSE THAT WE DESIRE TO SEE THE CONCENTRATION
        (OR DEPOSITION) INDIVIDUALLY  FROM SOURCES 10, 100,  200,
        300, 400  AND 300.  WE ALSO  WISH TO SEE THE COMBINED
        CONTRIBUTION FROM SOURCES  10  THROUGH 100; 30 THROUGH  260;
        100 THROUGH  200 PLUS 400  THROUGH 300) AHD FIHALLY ALL
        SOURCES 10 THROUGH 300.   HENCE, THE CONCENTRATION (OR
        (DEPOSITION) CONTRIBUTIONS  FROM SIX INDIVIDUAL SOURCES
        ARE DESIRED  PLUS THE CONTRIBUTION FROM FOUR SETS  OF
        COMBINED  SOURCES ARE DESIRED  FOR A TOTAL OF TEN SOURCE
        GROUPS.   THUS, ENTER THE  VALUE 10 FOR HGROUP.  FOR  NSOGRP
        ONE WOULD  ENTER 1,1,1,1,1,1,2,2,4,2.  FOR THE IDSOR ARRAY
        ONE WOULD  ENTER 10,100,200,300,400,500,10,-100,50,-260,
        100,-200,400,-300,10,-300.   THE FIRST SIX EHTRIES OF  BOTH
        HSOGRP  AHD IDSOR ARE IH A ONE-TO-ONE CORRESPONDENCE;  THE
        1 ENTERED  IH NSOGRP IMPLIES THAT ONLY ONE SOURCE  HUMBER
        HEED BE READ IH THE IDSOR ARRAY FOR A COMPLETE SOURCE
        GROUP  CONTRIBUTION.  THE  SEVENTH ENTRY IN NSOGRP, A 2,
        INDICATES  THAT THE SOURCE HUHBERS 10 AHD -100 ARE TO  BE
        CONSIDERED FOR A SOURCE GROUP WHILE THE MINUS SIGN
        INDICATES  INCLUSIVE SUMMING FROM SOURCES 10 TO 100.   ONE
        NEED NOT  BE  CONCERHED BY  THE  FACT THAT HO SOURCE  NUMBER
S0103430
S0103440
S0103430
S0103460
S0103470
S0103480
S0103490
S0103300
S0103310
S0103320
S0103330
S0103340
S0103330
S0103360
S0103370
S0103S80
S0103590
S0103600
S0103610
S0103620
S0103630
S0103640
S0103630
S0103660
S0103670
S0103680
S0103690
S0103700
S0103710
S0103720
S0103730
S0103740
S0103730
S0103760
S0103770
S0103780
S0103790
S0103800

-------
I
h-1
K>
381*     C              0
382*     C              S
383*     C              L
384*     C              G
385*     C              S
386*     C              8
387*     C              T
388*     C              N
389*     C              C
390*     C              I
391*     C              T
392*     C              N
393*     C              T
394*     C              T
395*     C              I
396*     C              N
397*     C              I
398*     C              A
399*     C              C
400*     C              I
401*     C              T
402*     C              T
403*     C              A
404*     C
405*     C»**»*CARD  GROU
406*     C
407*     OCftRDS  1-6   FO
408*     C
409*     C
410*     C     PDEF  -  EH
411*     C             (A
412*     C             CA
413*     C             VI
414*     C             FO
415*     C             CA
416*     C
417*     C*CARDS  7-12   F
418*     C
F, SAY/  '43'  EXISTS.
OURCES DEFINED/  NAME
IKEWISE/ ENTRY  EIGHT
ROUP INCLUDING  SOURC
OURCE CONTRIBUTIONS
ETWEEN/  THE NINTH  EN
HIS PROCEDURE.   THE
EED BE READ IN  ORDER
ASE THE  FOUR  SOURCE
HPLYING  THAT  THE  INC
0 200 AND 400 TO  500
UMBERS 210 THROUGH 3
0 OBTAIN THE  COMBINE
HE PROBLEM RUN  AS  SH
H SUMMARY; i) NGROUP
UMBER OF SOURCE  GROU
HDICATE  THE NUMBER 0
ND 3) IDSOR CONTAINS
ONSTITUTE A SOURCE G
HCLUSIVE SUMMING  FRO
0 THE SOURCE  NUMBER
HE NUMBER OF  VALUES
RRAY.
        THE PROGRAM  ONLY  SUMS  OVER
      LY IN THIS  CASE  10.20/30....
       IN NSOGRP. A  2,  CALLS FOR  A
      ES 50 THROUGH  260.   IF ONE  D
      FROM SOURCES BUT  NOT  FROM  SO
      TRY IN NSOGRP/  A  4/  ILLUSTRA
      FOUR IMPLIES THAT FOUR SOURC
       TO DEFINE  A SOURCE  GROUP.
      NUMBERS READ ARE  100/-200/40
      LUSIVE SUMMATION  OVER SOURCE
       ARE DESIRED EXCLUDING SOURC
      90.  FINALLY/  IT  IS  STILL  PO
      D CONTRIBUTION  FROM  ALL  SOUR
      OWN IN THE  LAST  SOURCE GROUP
       IS A VALUE USED  TO  REPRESEN
      PS DESIRED; 2)  THE  VALUES  IN
      F SOURCE NUMBERS  TO  BE READ
       THE SOURCE NUMBERS  USED TO
      ROUP WHERE  A MINUS  SIGN  IHPL
      H THE PREVIOUS  SOURCE NUMBER
      WITH THE MINUS  SIGH.
      CAN NOT EXCEED  200  IN THE  ID
P 3
RHAT(6F10.0)
THESE CARDS ARE READ  ONLY  IF  ISW<2
CARD GROUP 2 EQUALS 1.
TER UIND PROFILE EXPONENTS  FOR  SIX STABILITY CAT
-F) AND SIX UIND SPEED  CATEGORIES (ENTERED IN UC
RD 13 BELOU).   FOR EACH  STABILITY CATEGORY/ BEGI
TH STABILITY  CATEGORY A/  ENTER  SIX WIND PROFILE
R EACH WIND SPEED CATEGORY  ON ONE CARD.  A TOTAL
RDS ARE READ  FOR A TOTAL  OF 36  VALUES.
ORHAT(6F10.0>
 THESE CARDS ARE  READ  ONLY  IF  ISW<
 CARD GROUP 2 EQUALS  1.
 THOSE   S0103810
,90/100. S0103820
 SOURCE  S0103830
ESIRES   S0103840
URCES    S01038SO
TES      S0103860
E NUMBERSS0103870
IN THIS  S0103880
0/-500   S0103890
S 100    S0103900
E        S0103910
SSIBLE   S0103920
CES IN   S0103930
         S0103940
T THE    S01039SO
 NSOGRP  S0103960
IN IDSOR/S0103970
         S0103980
IES      S0103990
 ENTERED S0104000
         S0104010
SOR      S0104020
         S0104030
         S0104040
         S0104050
         S0104060
1) IN    S0104070
         S0104080
         S0104090
EGORIES  S0104100
ATS IN   S0104110
NNING    S0104120
EXPONENTSS0104130
 OF SIX  S0104140
         S0104150
         S0104160
22) IN   S0104170
         S0104180

-------
I
h-1
U)
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
437*
438*
439*
440*
441*
442*
443*
444*
443*
446*
447*
448*
449*
450*
431*
432*
453*
434*
455*
456*
C
C
C
C
C
C
C
C
C
C*CARD
C
C
C
C
C
C
C
C*CARD
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DTHDEF - ENTER  VERTICAL POTENTIA
         KELVIN/METER) FOR  SIX  S
         SIX  WIHO SPEED CATEGORI
         13 BELOW).   FOR EACH ST
         STABILITY CATEGORY A,  E
         CARD.   A TOTAL OF  SIX  C
         VALUES.

 13  FORHAK 6F1 0. 0)

ZR - HEIGHT AT  WHICH THE WIND SP
     DEFAULT  ASSUMES 10.0 METERS
UCATS - INPUT THE UPPER BOUND OF
        SPEED CATEGORIES IN HETE
        EQUAL 1 .54,  3.09, 5.14,

 14  FORHAT(E8.0,3F8.0,3A4, 7A4, 2

TK - SOURCE EMISSION RATE UNITS
     TK IS SET  TO 10**6 FOR CONC
BETA1 - AOIABATIC ENTRAINHENT CO
        OR BLANK  BETA1 IS SET TO
BETA2 - STABLE  ENTRAINHENT  COEFF
        BLANK BETA2  IS SET  TO 0.
DECAY - WASHOUT COEFFICIENT FOR
        OR BLANK, NO SCAVENGING
        FOR THIS  PARAMETER  IS IG
        METEOROLOGICAL DATA ARE
IQUN - 12 CHARACTERS IDENTIFYING
       BLANK,  EMISSION RATE IS  A
       CONCENTRATION AND (GRAHS)
ICHIUN - 28 CHARACTERS IDENTIFYI
         FOR  CONCENTRATION  IS (H
         DEPOSITION  IS (GRAHS/SQ
IMET - LOGICAL  UNIT  NUMBER  OF HE
       EQUALS 9 FOR  PREPROCESSED
       (CURRENT VALUE OF INTERNA

L TEMPERATURE GRADIENTS (DECREES
TABILITY CATEGORIES (A-F) AND
ES (ENTERED IN UCATS IN DATA CARD
ABILITY CATEGORY, BEGINNING WITH
NTER SIX GRADIENT VALUES OH ONE
ARDS ARE READ FOR A TOTAL OF 36




EED WAS MEASURED (METERS).

THE FIRST THROUGH FIFTH WIND
RS PER SECOND. DEFAULT VALUES
8.23, 10.80 RESPECTIVELY.

12)

CONVERSION FACTOR. IF 0 OR BLANK
ENTRATION AND 1.0 FOR DEPOSITION.
EFFICIENT FOR PLUME RISE. IF 0
0.6.
ICIENT FOR PLUME RISE. IF 0 OR
6.
PRECIPITATION SCAVENGING. IF 0
IS ASSUMED. THE VALUE ENTERED
NORED BY THE PROGRAM IF CARD
INPUT ( ISV(19)«2> .
EMISSION RATE (Q> UNITS. IF
SSUHED IN (GRAM/SEC) FOR
FOR DEPOSITION.
S0104190
S0104200
S0104210
S0104220
S0104230
S0104240
S01042SO
S0104260
S0104270
S0104280
S0104290
S0104300
S0104310
S0104320
S0104330
S0104340
S0104330
S0104360
S0104370
,80104380
S0104390
S0104400
S0104410
S0104420
S0104430
S0104440
S0104430
S0104460
S0104470
S0104480
S0104490
S0104SOO
NG OUTPUT UNITS. IF BLANK, OUTPUTS 0 1 043 10
ICROGRAHS/CUBIC METER) AND FOR
UARE METER).
TEOROLOGICAL DATA. DEFAULT VALUE
DATA (ISW(19)=1), AND EQUALS 5
L VARIABLE 'IN') FOR CARD DATA
S0104320
S0104330
S0104340
S0104550
S0104S60

-------
457*
498*
459*
460*
461*
462*
463*
464*
463*
466*
467*
468*
469*
470*
471*
472*
473*
474*
475*
476*
477*
478*
479*
480*
481*
482*
483*
484*
483*
486*
487*
488*
489*
490*
491*
492*
493*
494*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                 THESE  CARDS ARE READ  ONLY IF PRE-PROCESSED
                               METEOROLOGICAL DATA ARE  USED .

      IDAY  -  ARRAY OF 366  INDICATING WHICH DAYS OF  METEOROLOGY ARE  TO
              BE  USED BY  THE  PROGRAM.  FOR EXAMPLE,  IF  DAY<140)=1 THEN
              DAY 140 VILL  BE  USED  ALONG WITH ANY OTHER VALUES SET  TO  1.

C*CARD 20   FORNAT<4I6>   THIS  CARD  IS READ ONLY IF  PRE-PROCESSED
                          METEOROLOGICAL DATA ARE USED   = 1>.

      ISS - SURFACE STATION  NUMBER  TO BE HATCHED UITH  NUMBER READ  FROM
              METEOROLOGICAL  DATA.
      ISY - YEAR OF SURFACE  DATA,  A TWO DIGIT  INTEGER.
      IUS - UPPER AIR STATION NUMBER TO BE HATCHED  WITH NUMBER READ
            FROH METEOROLOGICAL  DATA.
      IUY - YEAR OF UPPER  AIR DATA/ A TWO DIGIT NUMBER.

C*****CARD  GROUP 6

C*CARD 1  FORMATC 15,2 I 1,12,I 1,F8.0,2F7 0,8F6 0>  THIS  CARD IS REPEATED


      NSO - SOURCE IDENTIFICATION  NUMBER.
      ITYPE -  =0, STACK  TYPE  SOURCE.
               =1, VOLUME TYPE SOURCE.
               =2, AREA  TYPE  SOURCE.
      WAKE  -  STACK WAKE  EFFECTS  OPTION FOR CHOOSING VHICH SIGMA Y
              EQUATION TO USE.
              =0, 'UPPER  BOUND' CONCENTRATION IS CALCULATED.
              = 1 , 'LOWER  BOUND' CONCENTRATION IS CALCULATED.
              DEFAULT ASSUMES  0.
              REFER TO SECTION  2.4.1.D OF THE USER'S GUIDE FOR A MORE
              COMPLETE DISCUSSION  OF THIS OPTION.
      NVS - NUMBER OF GRAVITATIONAL SETTLING CATEGORIES.   MAXIMUM  OF
      'NSOURC'  TIMES.

MUST BE A  POSITIVE NUMBER
S0104570
S0104380
S0104590
S0104600
S0104610
S0104620
S0104630
S0104640
S01046SO
S0104660
S0104670
S0104680
S0104690
S0104700
S0104710
S0104720
S0104730
S0104740
S0104750
S0104760
S0104770
S0104780
S0104790
S0104800
S0104810
S0104820
S0104830
S0104840
S0104830
S0104860
S0104870
S0104880
S0104890
S0104900
S0104910
S0104920
S0104930
S0104940

-------
495*
496*
497*
498*
499*
300*
SOI*
302*
303*
304*
305*
306*
307*
308*
309*
310*
31 1*
312*
313*
314*
315*
316*
317*
318*
319*
320*
321*
322*
523*
524*
525*
326*
527*
528*
529*
530*
531*
532*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C*CARDS
C
C
C
      20.   IF  >  0.  CARDS 2-4 BEL
      THIS  SOURCE INPUT CARD.
QFLC - THIS PARAHETER ALLOUS THE
       RATE FOR  THIS SOURCE AS A
       OF  THE  DAY,  WIND SPEED AH
       BOTH SEASONAL AND HOUR OF
       METER  ISU(23> IN CARD GRO
       PARAHETER IS IGNORED.  IF
       AN  ANALOGOUS MANNER TO IS
       WHICH  QFLG > 0 IS AFFECTE
       APPLY  FOR THIS PARAHETER
       RATE SCALARS ARE ENTERED
8 - SOURCE  EMISSION RATE.
    FOR CONCENTRATION AND  TYPE 0
    UNITS  ARE  IN MASS PER  UNIT T
    HASS PER  UNIT TINE PER UNIT
    0 & 1  SOURCES/  UNITS ARE IN
    IN HASS PER  UNIT AREA.
XS - X LOCATION  OF  SOURCE  IN HET
YS - Y LOCATION  OF  SOURCE  IN HET
ZS - ELEVATION  OF SOURCE AT SOUR
HS - HEIGHT OF  SOURCE ABOVE GROU
TS - FOR TYPE  0  SOURCES, STACK E
     FOR TYPE  1  SOURCES/ INITIAL
VS - FOR TYPE  0  SOURCES/ STACK E
     FOR TYPE  1  SOURCES/ INITIAL
     FOR TYPE  2  SOURCES, WIDTH 0
NOTE:  THE  FOLLOWIHG FOUR  IHPUT
       SOURCES  ONLY.
0 - STACK  INNER  DIAMETER IN HETE
HB - HEIGHT OF  BUILDING ADJACENT
HL - LENGTH OF  BUILDING ADJACENT
HW - WIDTH  OF  BUILDING ADJACENT
  2-4  FORHAT(8F10.0>
THESE CAR
NVS IN CA
SOURCE.
IMMEDIATE
OW ARE READ  IMMEDIATELY FOLLOWING

 SCALING OF  THE  SOURCE  EMISSION
 FUNCTION  OF  SEASON/  MONTH/  HOUR
D STABILITY/  OR  A  COMBINATION OF
 THE DAY VARIANCE.   IF  THE PARA-
UP 2 IS GREATER  THAN  0  THEN  THIS
 ISW(23> = O/  QFLG  HAY  BE USED IH
y<23> EXCEPT  ONLY  THE SOURCE FOR
D.  ALL VALID  VALUES  FOR ISWC23)
.  THE  SOURCE EMISSION
IN CARD 3  BELOW.

 & 1 SOURCES/
IME/ TYPE  2  SOURCE  UNITS ARE IN
AREA.  FOR DEPOSITION AND TYPE
HASS/ TYPE 2  SOURCE UNITS ARE

ERS .
ERS.
CE BASE IN METERS.
NO IN METERS.
XIT TEMPERATURE  IN  DEGREES KELVIN
 VERTICAL  DIMENSION IN  METERS.
XIT VELOCITY  IN  METERS  PER SECOND
 HORIZONTAL  DIMENSION IN METERS.
F SOURCE IN  METERS.
PARAMETERS ARE FOR  STACK-TYPE

RS.
 TO STACK  IN  METERS.
 TO STACK  IN  METERS.
TO STACK IN  METERS.

DS ARE READ  ONLY  IF THE PARAHETER
RD 1 ABOVE IS  >  0  FOR A GIVEN
IF SO/ THESE  CARDS  ARE  READ
LY FOLLOWING  THE  SOURCE CARD
S01049SO
S0104960
S0104970
S0104980
S0104990
S0103000
S0105010
S0105020
S010S030
S0103040
S01030SO
S0103060
S0103070
S0103080
S0105090
S0103100
S0103110
S0103120
S0103130
S0103140
S0103130
S0103160
S0103170
S0103180
S0103190
S0103200
S0103210
S0103220
S0103230
S010S240
S0105230
S010S260
S0105270
S0105280
S0103290
S0105300
S0105310
S0103320

-------
533*
534*
533*
536*
537*
538*
539*
540*
541*
542*
543*
544*
545*
546*
547*
548*
549*
550*
551*
> 552*
£ 553*
554*
533*
556*
557*
558*
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


PHI - ARR
SET
VSN - ARR
PAR
VAL
GAMMA - A
P
2

*CARD 5 FORMA






QTK - ENT
ON
DIS
GRO
FOR
ON
REA
» 4
FOR
REA
HOU
A T

***«*CARD GROU





JDAY - JU
              (CARD  1)  ON  WHICH THE PARAMETER NVS  >  0.

AY CONJOINING THE MASS  FRACTIOH OF PARTICIPATES FOR  ALL
TLIHG CATEGORIES.  MAXIMUM OF 20 VALUES.
AY CONTAINING THE GRAVITATIONAL SETTLING VELOCITY  FOR
TICULATES FOR ALL SETTLING CATEGORIES.  MAXIMUM OF 20
UES.
RRAY CONTAINING  THE  SURFACE REFLECTION COEFFICIENT FOR
ARTICULATES FOR  ALL  SETTLING CATEGORIES.  MAXIMUM  OF
0 VALUES.

K8F10.0)  THIS  CARD  IS  READ ONCE ONLY IF IS«(23>  IN DAT
           CARD  GROUP 2  >  0.   IF ISV(23) = 0, THIS CARD
           IS REPEATED  FOR EACH SOURCE UHERE QFLG  >  0 AS
           INDICATED  IN  CARD 1  ABOVE.   IF ISU(23)  =  0 AN
           QFLG  = 0  FOR  ALL SOURCES/  THIS CARD IS  NOT
           READ .
ER SOURCE EHI
THE VALUE OF
CUSSED IN THE
UP 2.  THE FO
HAT.   IF ISV(
ONE CARD; = 2
D; »3, ENTER
,  ENTER 6 SCA
 EACH  OF THE
D FOR  A TOTAL
RLY 5CALARS.
OTAL OF 12 CA
SSION RATE SCALARS  IN A  FORMAT  D
ISU(23) (OR QFLG).   THE  FORMAT  I
 DESCRIPTION OF PARAMETER  ISV(23
LLOWING IS A SUMMARY OF  THE  AFOR
23) (OR QFLG) = I.  ENTER 4  SEASO
,  ENTER 12 MONTHLY  SCALARS.   TWO
24 HOURLY SCALARS.   THREE  CARDS
LARS FOR EACH VIND  SPEED CATEGOR
SIX STABILITY CATEGORIES.   SIX  C
 OF 36 SCALARS; - 5, ENTER  FOUR
 EACH SET REPRESENTS ONE SEASON
RDS ARE READ FOR A  TOTAL OF  96  V
EPENDING
S THOROUGHL
) IN CARD
EMENTIONED
HAL SCALARS
 CARDS ARE
ARE READ;
Y PER CARD
ARDS ARE
SETS OF 24
OF SCALARS.
ALUES.
P 7  FORHAT(I8,5F8.0, I8,2F8.0>
     THIS CARD GROUP  IS  READ  ONLY IF CARD METEOROLOGICAL
     DATA ARE ENTERED  (ISW<19>=2>.   THIS CARD GROUP
     CONSISTS OF  'NHOURS'  CARDS.   THIS CARD GROUP  IS
     REPEATED 'NDAYS'  TIMES.

LIAN DAY OF  METEOROLOGICAL DATA.   THIS IS USED TO
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
AS01
 SOI
 SOI
DS01
 SOI
 SOI
 SOI
 SOI
YS01
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
05330
03340
05330
03360
05370
05380
05390
05400
03410
05420
03430
05440
05430
03460
05470
03480
03490
05500
05310
03320
03330
05340
05330
05560
03370
05380
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700

-------
571*
572*
573*
574*
575*
576*
577*
578*
579*
580*
581*
582*
583*
584*
585*
586*
587*
588*
589*
590*
591*
592*
593* -
594*
595*
596*
597*
598*
599*
600*
601*
602*
603*
604*
605*
606*
607*
608*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C







C
C
              COMPUTE SEASON  OR  MONTH F
              VARIATIOHAL  EMISSION RATE
              VALUE READ FOR  THE FIRST
              AND SUCCESSIVE  HOURS FOR
              VALUE = 1.
      ArV  -  VINO FLOW VECTOR.  DIRECTIO
             IS FLOWING.
      AUS  -  WIND SPEED IN  METERS PER S
      HLH  -  HEIGHT OF SURFACE  MIXING L
      TEMP  - AMBIENT AIR  TEMPERATURE I
      DTHDZ  - VERTICAL POTENTIAL TEHPE
               PER METER.
               THIS VALUE  IS  READ ONLY
      1ST  -  PASQUILL STABILITY  CATEGOR
      P  -  WIND PROFILE EXPONENT.
           THIS VALUE IS READ ONLY IF I
      DECAY  - DECAY COEFFICIENT.  THE
               THE PARAMETER  DECAY IN C

£******«****»***********»********»****
      THIS  IS  THE MAIN PROGRAM  OF THE
      SHORT  TERN MODEL.  THIS  ROUTINE'
      AMOUNT OF  STORAGE REQUIRED FOR T
      INFORMATION.   IN ORDER FOR THESE
      ARRAY,  THE VARIABLES  WHICH DETER
      THE NUMBER OF SOURCES ARE  READ.

      INTEGER  TITLE
      COMMON QF<43500>
      DIMENSION  IZEROU61 > , I9F< 1 )
      COMMON /LOGIX/ ISV<40 ) ,NSOURC,NX
     ! HSGGRPC130),IDSORC 200>, IFERD,NF
     2 IO,IN,TITLE<13),I9UN(3),ICHIUN<
      EQUIVALENCE ,
      SET MAXIMUM LIMIT FOR 'QF' ARRAY
      DIMENSION  'QF' .
OR ANY SOURCES Uf.ICH HAVE
S. THE PROGRAM USES THE JOAY
HOUR OF EACH DAY. THE SECOND
EACH DAY ARE IGNORED. DEFAULT

N IN DEGREES TO WHICH THE KIND

ECOND AT REFERENCE HEIGHT 'ZR'.
AYER IN METERS.
N DEGREES KELVIN.
RATURE GRADIENT IN DEGREES KELVI

IF ISWC22) EQUALS 3.
Y. A = l, B=2, C=3, ETC.

SW( 21 > EQUALS 3 .
VALUE OF THIS PARAMETER OVERRIDE
ARD GROUP 5.

********************************


EPA INDUSTRIAL SOURCE COMPLEX
S PURPOSE IS TO CALCULATE THE
ABLES, RECEPTOR GRID AND SOURCE
CALCULATIONS TO BE HADE THE 'IS
MINE THE NUMBER OF RECEPTORS AND





PNTS, HYP NTS, NXWYPT , NGROUP ,
KTS,NAVG,NHOUR3,NDAYS, NTDAY, LINE
7) , CONDEPC 6), LIMIT,! 13

MUST AGREE WITH VALUE USED TO

S0105710
S0105720
S0105730
S0105740
S0105750
S0105760
S0105770
S0105780
S0105790
S0105800
N SO 10 58 10
S0105820
S0105830
S0105840
S0105850
S0105860
S S0105870
S0105880
S0105890
**S0105900
S0105910
S0105920
S0105930
S0105940
S0105950
WS0105960
S0105970
S0105980
S0105990
S0106000
S0106010
S0106020
S0106030
, S0106040
S01060SO
S0106060
S0106070
S0106080

-------
I
h'
oo
609*
610*
611*
612*
613*
614*
615*
616*
617*
618*
619*
620*
621*
622*
623*
624*
625*
626*
627*
628*
629*
630*
631*
632*
633*
634*
635*
636*
637*
638*
639*
640*
641*
642*
643*
644*
645*
646*
   LIMIT  = 4
   CLEAR  'QF
   DO 10   I
10 QF .LE. 0 )  GOTO  30
VG  +  1

 TOTAL NUMBER  OF RECEPTORS.
XPNTS*NYPNTS +  NXyYPT
NGROUP
 .LE.  0) NGROPS  ° 1
*NPHTS*HGROPS
 INDICES FOR STORAGE  ALLOCATION.
S + NPNTS  +  1
 NN

> .EQ. 1)  13 »  12 + NPNTS*NGROPS
                               .EQ. 0  .OR.  NYPNTS
                               NXPNTS
                               NYPNTS
                      EQ  0)  GOTO 40
S0106090
S0106100
S0106110
S0106120
S0106130
S0106140
S0106150
S0106160
S0106170
S0106180
S0106190
S0106200
S0106210
S0106220
S0106230
S0106240
S0106250
S0106260
S0106270
S0106280
S0106290
S0106300
S0106310
S0106320
S0106330
S0106340
S0106350
S0106360
S0106370
S0106380
S0106390
S0106400
S0106410
S0106420
S0106430
S0106440
S0106450
S0106460

-------
647*
648*
649*
650*
651*
652*
653*
654*
655*
656*
657*
658*
659*
660*
661*
662*
663*
664*
665*
666*
667*
668*
669*
670*
671*
672*
673*
674*
675*
676*
677*
678*
679*
680*
50
60
   17
   IF
   16
   17
   18
           15
           15
           IS
           17
               EQ.  0)
              NXUYPT
              NXWYPT
                         GOTO SO
      ir
      19 « 18
      IF< ISU< 17)
       10  = 19
       11= 110
       12  = 110
       F( ISU( 18)
       10  « 19 +
       11  • 110
       12  • 111
       13  " 112
      DETERMINE
               HE  0) 18 = 17  +  NPNTS
                HE.  0) 19 «  18  +  4*NN
               . LE   0) GOTO 60
               1SO*NAVG*NGROPS
              +  50*HAVG*NGROPS
              +  HAVG»NGROPS
              +  215*NSOURC - 1
              IF  CALCULATED STORAGE
                                     ALLOCATION EXCEEDS  LIMIT
      IF, QF< 12 ),QF< I3),QF( 14), QF( 13 >, QF( 16 ),
     1  QF,I9F(I10),IQF(I11>,QF(I12)>
:      CALL  MODEL ROUTINE.
      CALL  HODEL(QF<1>,QF,QF,QF,QF,QF(I6>,
     1  QF
      STOP
9001  FORHAT(15A4)
9002  FORflAT<40I2)
9003  FORHAT(1316)
9004  FORHAT(59H1    ***ERROR***  CALCULATED  STORAGE ALLOCATION  LI
     1ALS/I6./S2H AND  EXCEEDS THE HAXIHUH  STORAGE ALLOCATION  LIHI
     2//16H RUN  TERMINATED.)
      END





















QF< 17


QF< 17





S0106470
S0106480
S0106490
S0106500
S0106510
S0106520
S0106530
S0106340
S0106550
S0106560
S0106570
S0106580
S0106S90
S0106600
S0106610
S0106620
S0106630
S0106640
S0106650
S0106660
S0106670
>,S0106680
S0106690
S0106700
>,S0106710
S0106720
S0106730
S0106740
S0106750
S0106760
HIT EQUS0106770
T OF,


I6S0106780
S0106790
S0106800

-------
ho
o
1*
2*
3*
4*
5*
6*
7*
8*
9*
11*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*


C
C
C
C
















C
C



C

C


C
C


C
                 10
 SUBROUTINE  IHCHK, IPERD , NPNTS , NAV6, HHOUR8 , NDAYS, NTDAY , LI HE,
2 10, IN, TITLE( 13 >, IQUN<3>,ICHIUH<7),CONDEP<6>,LIHIT,HIHIT
 CONHON /NET/  I D AY( 36 6 ) , I STABC 24 ) , A WS< 24 > , TEHPC 24 > , AF V< 24 ) ,
1 AFVR<24>, HLH<24,2),P< 24 ),DTH&Z< 24 >,DECAY< 24>,PDEF<6,6 >,
2 DTHDEFC6, 6 > , G AMI I , G AH 2 1 , ZR , 0 DEC AY , IHET, I T AP , TK , UC AT S< 3 )
 DIMENSION  GRIOX(1),GRIDY(1),XOIS(1),YDIS(1),GRIDZ(1), SOURCE (215,1
 DIHEHSION  HETER<2>,SEASON(2,4 >,ATHRUF<6 >,UCTDEF(3>
 EQUIVALENCE  < ISU< 23 ) ,fiFLGS)
 DATA ATHRUF  /  1 HA , 1 HB, 1HC , 1 HD , 1HE, 1 HF  /
 DATA UCTDEF  /  1.34,3.09,5.14,8.23,10.8 /
 DATA HETER /4H< HET , 4HERS )/
 DATA SEASON  /4HUINT,4HER   ,4HSPRI,4HNG  ,4HSUMH,4HER  ,4HAUTU,
t 4HNN   /
 DATA IBLAHK  /4H     /
 CHECK 'IStf'  AND  SET  DEFAULT  VALUES.
 DEFAULT TO CONCENTRATION  OH  RECTANGULAR
            LE.  0) ISW(l)  »  1
                                                             GRID I DISCRETE POINTS
IFUStK 1)
IF( ISU(2)
IF(ISU(3>
             LE.  0)  ISU(2>  »  1
             LE.  0)  ISU(3>  «  1
 DEFAULT CARD  HET PARAHETERS.
 IFCHDAYS .LE.  0) NDAYS  •  1
 DEFAULT TO  PRE-PROCESSED  NET  DATA
 IF(ISU<19>  .LE. 0) IS«(19)  «  1
 IF(I8W(19)  .EQ. 2) ISVC20)  «  0
 DEFAULT TO  PROGRAH'S  WIND PROFILE
 TEMPERATURE GRADIENT  VALUES.
 IF(ISU(21>  - LT. 1) ISU(21>  =  1
 IF(ISU(22>  .LT. 1) ISU(22>  «  I
 DEFAULT TO  FINAL PLUHE  RISE FOR  ALL
                                                            RURAL OPTION
                                                       EXPONENT AND VERTICAL POTENTIAL
                                                         RECEPTORS
 S0200010
 S0200020
 S0200030
 S0200040
 S0200090
 S0200060
 S0200070
 S0200080
 S0200090
 S0200100
 S0200110
 S0200120
 S0200130
 S0200140
)S0200150
 S0200160
 S0200170
 S0200180
 S0200190
 S0200200
 S0200210
 S0200220
 S0200230
 S0200240
 S0200230
 S0200260
 S0200270
 S0200280
 S0200290
 S0200300
 S0200310
 S0200320
 S0200330
 S0200340
 S0200330
 S0200360
 S0200370
 S0200380

-------
39*
40*
41*
42*
43*
44*
43*
46*
47*
48*
49*
50*
51*
32*
33*
54*
35*
56*
57*
58*
59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
IF(I8U(24 >
DEFAULT  TO
IF  .LT
READ GRID  THEN
!F - 1
NO STACK  DOUNUASH ADJUSTMENT.
   .   1 )  ISW<25 ) =» I
    DISCRETE  POINTS
    0  .OR.  NYPNTS .EQ.  0) GOTO 70
    3) READ  +
50 IFCISVC2)   HE.  2  .AND.
   SET DEFAULT DIRECTION
   DO 60  I  «  1,NYPNTS
60 IFCGRIDYC I ) .LE .   0.0  .OR.
70 IFCHXUYPT  .EQ.  0) GOTO  90
   READC IN,9020 ) CXDISCI),!-!
   READC IN,9020 ) 
-------
77*
78*
79*


















1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
0
0
0
0
0
0
0
0
0
0*
1*
2*
3*
4*
5*
6*
7*
8*
9*
0*
1*
2*
3*
4*
5*
6*
7*
8*
9*
0*
1*
2*
3*
4*
5*
6*
7*
8*
100
1 10


120
121
125



130

C
C
140

150
160

170
C
180



190
C
200


11
RE
11
RE
= 11 *
AD( IN, 9
= NXPH
ADC IN, 9
DO 121 1=1,
GRIDZ(I) =
IF(NGROUP .
RE
11
DO
11
RE
DE
TE
IF
DO
RE
IF
DO
RE
EN
RE
DO
IF
UC
ADC IN, 9
= 0
130 I
= 11 +
AD( IN, 9
FAULT 0
NPERATU
( ISU<21
150 J
ADC IN, 9
< ISyC 22
170 J
ADC IN, 9
TER QFL
ADC IN, 9
190
CUCATS<
ATSC I )
0
T
0
1
20)
.EQ.
S*NY
20 )
NPNTS
GRIDZ(
EQ. 0)
0

23)

(GRIDZC I
0) GOTO
PNTS +
CGRIDZ
1
C I
), 1 = 1
120

), 1 = 1
1/12)

1/NPNTS)
I) * .3048006
GOTO 140
< NSOGRPC


I), 1 =

1/NGROUP)

= 1/NGROUP
NSOGRPC I)
0
R
R
)

0
)

0
G
0
I
I
S
24 )
C IDSOR
READ WIND
E GRADIENT
.HE
= 1,
20)
. NE
= 1,
20 )
CI
P
S.
. 2) GOT
6
CPDEF
. 2 ) G
6
(DTHD
S AND WIND
20 )
= 1
) .G
UCT
ZR, (UC
, 5
T . 0.0
DEFC1 )

< I
OT

EF
S
AT

)

), 1 = 1
,11)
ROFILE EXPONENTS, VERTICAL POTENTIAL

0 160

,J ), I
0 180

C I , J )
PEED
SC I ),

GOTO




= 1/6)


,1=1,6)
CATEGORIES.
1=1,5)

190

CONTINUE
RE
RE
1 (
IF
AD GENE
ADC IN, 9
ICHIUN<
 I =
0 .0
0.0
LE.
LE .
E. 0
E. 0
E. 0
0 .0
NPUT V
TK, BET
1 ,7), I
.AND .
.AND.
0 .0) B
0 .0 ) B
.AND .
.AND .
) ITAP
) ZR =
AR
Al
HE
I
I
ET
ET
I
I
=
1
IABLE
,BETA
T, ITA
syc i )
syc i )
Al =
A2 =
syc 19
SUC 19
3
0. 0
S & SET DEFAULT VALUES.
2/DDECAY/C I8UNC I), 1 = 1,3),
P
.EQ. 1 ) TK = 1 .E6
.EQ. 2 ) TK = 1.0
.6
.6
) .EQ . 1 ) IHET = 9
) .EQ . 2 ) IHET = IN


S0200770
S0200780
S0200790
S0200800
S0200810
S0200820
S0200830
S0200840
S0200830
S0200860
S0200870
S0200880
S0200890
S0200900
S0200910
80200920
S0200930
S0200940
S0200950
S0200960
S0200970
S0200980
S0200990
S0201000
S0201010
S0201020
S0201030
S0201040
S0201030
S0201060
S0201070
S020 1080
S0201090
S0201100
S0201110
S0201120
S0201130
S0201140

-------
115*
116*
117*
118*
119
12'
12
12
li-.
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*


210





220


230

240









250







260
DO 210 I «
IFUQUNU)
CONTINUE
IFUSU< 1)
IQUN(l) »
ieUN<2> =
IjUN<3) «
GOTO 230
IQUH(l) *
IQUN(2) *
IQUH(3) «
DO 240 I «
IFUCHIUNt
CONTINUE
IF(ISU< 1 >
ICHIUNC 1 )
ICHIUH( 2)
ICHIUNC 3)
ICHIUNC 4)
ICHIUHC 5>
ICHIUNC6)
ICHIUN( 7)
GOTO 260
ICHIUNC 1)
ICHIUHC2)
ICHIUN( 3)
ICHIUHC 4)
ICHIUHC5)
ICHIUHC 6)
ICHIUHC 7)
READ 'DAY'
IFCISWC 19)
1/3

.HE. IBLANK

.EQ. 2)
4HCGRA
4HHS/S
4HEC )

4H 
-------
153*
154*
155*
156*
157*
158*
159*
160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
179*
180*
181*
182*
183*
184*
185*
186*
187*
188*
189*
190*



C




C*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C




C




C
C






270
280



















290
300






310




          IET
          0
           .6T.
          '026)
   DATA SET RURAL-URBAN SWITCH  TO  RURAL
1  GOTO 280
 URITE, 1 = 3,13)
.  0) GOTO 310
ABLES RELATED TO PARTICULATE SOURCES.
20) ( SOURCE< 13+1, II >, IM ,NVS>
20) ,!-!,NVS)
20) 
-------
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
21 1*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
              EMISSION RATE  SCALARS
               1  .OR. QFLGS  .GT.  5)  GOTO  330
                          430
                                         420
    II =  II  +  1
    GOTO  300
    ENTER  SOURCE
320 II *  1
    IFC8FLGS .LT
    DONE  -  .TRUE.
    »I 2-IFR«I TO>
    IF(OONE) GOTO 430
420 II =  II  +  1
    GOTO  340
    LIST  ALL INPUT
430 IF(ISU(6>   LE
    WRITE(10,9029)
    URITE(10,9030)
                              DESIRED
VARIABLES  IF
0) GOTO 820
,I-1, 14)
URITE(10,9031)
URITE(10,9032)
                    
-------
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
230*
231*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*




440








430





460


470








480


490
300


IF
UR
IF
UR
CO
IF
UR
UR
LI
IF
PR
LI
UR
IF
PR
LI
UR
13
DO
13
UR
PR
LI
UR
IF
IF
PR
LI
IF
LI
UR
UR
UR
DO
UR
IF
PR
LI
( I
IT
< I
SU(
Ed
SU(
ITEd
NT
( I
IT
IT
HE
( I
IN
NE
IT
19
0,
19
0,
INUE
SU(
E( I
E( I
=
SU(
T '
=
E( I
(NGRO
IN
NE
IT
=
4
r
IT
IN
NE
IT
< I
( I
IN
NE
  .EQ .  2) URITEC 10,9033 )  NHOURS,NDAYS
 9034)  TK,8ETA1,8ETA2,2R,IHET
 >  .NE .  1 ) GOTO 440
 9035)  DDECAY, ISS,ISY, IUS, IUY

   GT   0)  URITE( 10,9036)  ITAP
 9056)  LIMIT,HINIT
 9029)    .EQ.  3) GOTO 500
 D  PROFILE EXPONENTS.
 NE  *  12
 LT. 57)  GOTO 480

 9029)  TITLE
 9059)
 9016)  (11,11=1,6)

 9017)  ATHRUFC I),(PDEF(J,I ),J = 1,6)
 >  .EQ.  3 ) GOTO 530
 TICAL  POTENTIAL TEMPERATURE  GRADIENTS.
NE  +  12
S0202290
S0202300
S0202310
S0202320
S0202330
S0202340
S0202350
S0202360
S0202370
S0202380
S0202390
S0202400
S0202410
S0202420
S0202430
S0202440
S0202450
S0202460
S0202470
S0202480
S0202490
S0202500
S0202510
S0202520
S0202530
S0202540
S0202550
S0202560
S0202570
S0202580
S0202590
S0202600
S0202610
S0202620
S0202630
S0202640
S0202650
S0202660

-------
>
K3
267*
268*
269*
270*
271*
272*
273*
274*
273*
276*
277*
278*
279*
280*
281*
282*
283*
284*
285*
286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*
                  37 > GOTO  310
S10
320
330
340
330
560
570
580
                                    TITLE

                                    (11,1 1 = 1,6 >

                                    AT HRUF< I ) , < DTHDEF < J
                                    INFO.
    IFCLINE  .LT.
    LINE  =  13
    «RITECIO,9029)
    yRITE< 10, 9060)
    yRITEC 10,9016)
    00 52^   I  = 1.
    W ITE< 10, 9017)
    PRINT  RECEPTOR
    IF(HXPHTS  .EQ.
    LINE  =  LINE +
    IFCLINE  .LT.  3
    LINE  =  6
    WRITEC 10, 9029)
    IFCISyC2>  .EQ.
    IF,J=1,15>
S0202670
S0202680
S0202690
S0202700
S0202710
S0202720
S0202730
S0202740
S0202730
S0202760
S0202770
S0202780
S0202790
S0202800
S0202810
S0202820
S0202830
S0202840
S0202830
S0202860
S0202870
S0202880
S0202890
S0202900
S0202910
S0202920
S0202930
S0202940
S0202950
S0202960
S0202970
S0202980
S0202990
S0203000
S0203010
S0203020
S0203030
S0203040

-------
00
303*            VRITEUO*
306*            LINE  =  18
307*        590 CONTINUE
308*            ITYPE - S
309*      C      GET WAKE
310*            NSO = SOU
311*            MAKE  =  IT
312*            QFLG  =  IT
313*            NVS = ITY
314*            ITYPE = I
315*            IFCHVS  G
316*            WRITEdO,
317*            LINE  -  LI
318*        600 CONTINUE
319*            IF*NETER(2)jJ»
                             OURCE( I/ I >
                             OPTION,  SOURCE N0.>  NVS  t  TYPE FROM  FIRST WORD
                             RCE<2, I)
                             YPE/8192
                             YPE/512  - < ITYPE/8192)*16
                             PE/16  -  (ITYPE/512 )*32
                             TYPE -  ( ITYPE/16)*16
                             T .  0)  13  = 1
                             9047)  NSO, ITYPE, «flKE, NVS, (SO URCE(J,I>,J = 3,13>
                             HE  * 1

                             .  1 ) GOTO 630
                               PARTICLE CATEGORY  INFORMATION.
= 1,HSOURC
LT. 43)  GOTO 610
9029)  ,J=36,12)
                               NVS
                             9053)  (SOURCE
                             NE  +  14

                             RCE EMISSION RATE  SCALARS .
1.10 )S0203050
     S0203060
     S0203070
     S0203080
     S0203090
     S0203100
     S0203110
     S0203120
     S0203130
     S0203140
     S0203150
     S0203160
     S0203170
     S0203180
     S0203190
     S0203200
     S0203210
     S0203220
     S0203230
     S0203240
     S0203250
     S0203260
     S0203270
     S0203280
     S0203290
     S0203300
     S0203310
     S0203320
     S0203330
     S0203340
     S0203350
     S0203360
     S0203370
     S0203380
     S0203390
     S0203400
     S0203410
     S0203420

-------
>
ro
343*
344*
345*
346*
347*
348*
349*
350*
351*
352*
353*
354*
355*
356*
357*
358*
359*
360*
361*
362*
363*
364*
365*
366*
367*
368*
369*
370*
371*
372*
373*
374*
375*
376*
377*
378*
379*
380*
     IFCQFLGS .LT. 1  .OR.  QFLGS .GT.  5)  GOTO 640
640
650
DO
QF
LI
GO
DO
LI
NE
LG
NE
TO
NE
a ]
< J
NE
67
I
.G
a
.TRUE .
QFLGS
100
0
.FALSE
T. 5)
100
660
670
680
690
700
710
                  GOTO  820
I = 1
IFd  .GT.  NSOURC) GOTO 310
ITYPE = SOURCE<1,1)
QFLG  =  ITYPE/512 - < ITYPE/8 192)*16
IF(QFLG  .NE.  J )  GOTO 800
HSO - SOURCE<2, I )
GOTO  (680,700,720,740,770),  QFLG
IF, 12=1, 4 )
                                           123 )
IF
-------
U)
o
381*
382*
383*
384*
385*
386*
387*
388*
389*
390*
391*
392*
393*
394*
395*
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
411*
412*
413*
414*
415*
416*
417*
418*
                 720
                 730
                 740
                 750
                 760
                 770
                 780
GOTO 800
IF*6  +  120
 + 5
9017)  ATHRUF*24 +  119
S0203810
S0203820
S0203830
S0203840
S0203850
S0203860
S0203870
S0203880
S0203890
S0203900
S0203910
S0203920
S0203930
S0203940
S0203950
S0203960
S0203970
S0203980
80203990
S0204000
S0204010
S0204020
S0204030
S0204040
S02040SO
S0204060
S0204070
S0204080
S0204090
S0204100
S0204110
S0204120
S0204130
S0204140
S0204150
S0204160
S0204170
S0204180

-------
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
437*
438*
439*
440*
441*
442*
443*
444*
445*
446*
447*
448*
449*
450*
451*
452*
453*
454*
455*
456*








C
C




C
C
C
C

C







C










7'90
800
810
820
830
                      SQUARED  OF BETA1,  BETA2 AS GAN1I, GAN2I  AND
                                                    i STORE IN
                                                     WIDTH UILL
UR I TEC 10,9019) SEASONC 1, I 1),SEASON<2,11 )
URITE(IO,9014) <12,SOURCE,I2=1,24)
IF(DOHE)  GOTO 820
LINE =  LINE + 22
1 =  1  +  1
GOTO i>60
v -  J  +  1
GOTO 650
STORE  RECIPROCAL
RECIPROCAL  OF ZR.
CONTINUE
GAH11=1./  = 1 . 1283792*SQRT( SOURCE( 12, I )*SOURCE< 13, I ) )
ITYPE  =  SOURCE<1,1)
IF GOTO 840
             4H  TO
             4HTAL
             4HDEPO
             4HSIT I
             4HON
             4H
                                                                     NO
                                      E  AREA  SOURCE COORDINATES  FROM
                                      ER  OF THE AREA SOURCE.
                              NE.  2) GOTO  830
840
CONOEPC1)
CONDEPC 2)
COHDEPC3)
CONDEP< 4)
CONDEP(5)
CONDEP<6)
GOTO 850
CONDEPC1)
CONDEP(2)
             4HAVER
             4HAGE
     S0204190
     S0204200
     S0204210
     S0204220
     S0204230
     S0204240
     S0204250
     S0204260
STORES02 0 4270
     S0204280
     S0204290
     S0204300
     S0204310
     S0204320
     S0204330
     S0204340
     S0204330
     S0204360
     S0204370
     S0204380
     S0204390
     S0204400
     S0204410
     S0204420
     S0204430
     S0204440
     S0204450
     S0204460
     S0204470
     S0204480
     S0204490
     S0204500
     S0204510
     S0204520
     S0204530
     S0204540
     S0204550
     S0204560

-------
U)
457*
458*
459*
460*
461*
462*
463*
464*
465*
466*
467*
468*
469*
470*
471*
472*
473*
474*
475*
476*
477*
478*
479*
480*
481*
482*
483*
484*
485*
486*
487*
488*
489*
490*
491*
492*
493*
494*
     CONDEP(3>
     CONDEP<4>
     COHDEP( 5)
     CONDEP<6>
 850 CONTINUE
     RETURN
900! FORNATC/3
    1 ATEGORIES
9002 FOR.1AT(39
    1 *// )
9003 FORHAT<56
9004 FORHAT(40
9005 FOR«AT(/2
9006 FORHAT<38
9007 FOR«AT<41
    1 //)
9008 FORHAK7X
    1 58HJUNE
    2  8HDECEH
9009 FORMAT//46
X.54H*  SOURCE  EMISSION RATE

X,19H*  FOR ALL SOURCES *//)
X ,4<2A4,7X )/20X,40<2H- )/)
OX/12HSOURCE NO.  =,16)
X,4>
X,51H*  SOURCE  EMISSION
,51HJANUARY
      JULY
BER/>
3H SOURCE  NO.
, 12E10.4)
X ,68H*  SOURCE
E DAY  *//)
.6<14HHOUR
. 65<2H- )/ )
5X, 6< 13< 3X, El
X.73H*  SOURCE
WIND  SPEED  */
  XOU^TAfJIl 1 TV
 >7ildfHDiki II
1 4X )>
X ,A1»5X< 6< 5X,E10.5))
X,68H*  SOURCE  EMISSION
MALLY  *//)
X.9HSEASON  =  ,2A4>
10. 0)
. 0,3F8 .0,3A4,7A4.2I2)
I 1 )
I 4)
ST THROU
X,5>
AP
ER OC

ALARS

                                                                    RIL       M
                                                                    TOBER   NOV
           AY
           EMBER  >
                                                                    UHICH  VARY FOR EACH
0.5,4X>/»
 EMISSION RATE

,29X,19HWIND  SP
                                                           SCALflRS

                                                           EED GATE
WHICH VARY

GORY/16X,8
                    WITH  STA

                   HCATEGORY
                                                      RATE  SCALARS  WHICH  VARY SEASONAL
  S0204570
  S0204S80
  S0204590
  S0204600
  S0204610
  S0204620
 CS0204630
  S0204640
LYS0204650
  S0204660
  S0204670
  S0204680
  S0204690
  S0204700
  S0204710
  S0204720
i  S0204730
  S0204740
  S0204750
  S0204760
  S0204770
 HS0204780
  S0204790
  S0204800
  S0204810
  S0204820
BIS0204830
  S0204840
,  S0204850
  S0204860
  S0204870
LYS0204880
  S0204890
  S0204900
  S0204910
  S0204920
  S0204930
  S0204940

-------
UJ
UJ
495*
496*
497*
498*
499*
500*
501*
502*
503*
504*
505*
506*
507*
508*
509*
510*
51 1*
512*
513*
514*
515*
5-16*
517*
518*
519*
520*
521*
522*
523*
524*
525*
526*
527*
528*
529*
530*
531*
532*
9024 FORHATC1316)
9025 FORNAT< 1H1 , 10X,63H**» ERROR ***
    1 HET DATA  RE AD  /1 OX,28H'REQUESTE
    2 21HSURFACE  STATION NO  =,I6,1H/
    3 IN/,I6/10X.23HUPPER  AIR  STATION
    4 ?5H YEAR  OF  UPPER AIR DATA =,16
9026 I-JRHAT( 1H1 ,10X, 73H**» ERROR ***
    1LS ZERO.   RUN TERMINATED.)
9027 FORHAT(15,211,12,II,E8.0,2F7.0,8
9028 FORHAT(9X, II,5F10.0>
9029 FORHAT(1HI//32X,4H*** ,15A4,4H *
9030 FORHAT(18X,40HCALCULATE (CONCENT
    1 8HISU(1>  =,I4/18X,55HRECEPTOR G
    2LAR = 2 OR 4 ),14X,8HISW(2)  »,I4/
    3 18X,48HDISCRETE RECEPTOR SYSTEM
      8HISU(3)  =,I4/,18X,40HTERRAIH E
      29X,8HISW(4 ) = ,H/ , 18X,
      45HCALCULATIOHS ARE  WRITTEN TO
      I4/18X,
      48HLIST ALL  INPUT DATA (NO=0,YE
      8HISU(6)  «,I4//18X,39HCOHPUTE ft
      12H DEPOSI7IOH )/18X,32HUITH THE
      19HHOURLY  ,48X,SHIS
                 (YES = 1,NO=0),48X,8HIS
                 , 47X,9HIS
                 (YES«1,HO*0),47X,9HIS
                  ,46X,9HI
                                                     HET  DATA  REQUESTED DOES NOT
                                                    D/READ'  VALUES  ARE:/10X,
                                                    ,I6.23H  YEAR  OF  SURFACE DATA
                                                     HO.  =,I6,1H/,I6,
                                                    /IN/, I6/10X,15HRUH
                                                     NUH8ER  OF  SOURCES

                                                    F6 .0)
                                                      TERMINATED
                                                      TO BE READ
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
                    I9H2-HOUR
                    19H3-HOUR
                    19H4-HOUR
                    19H6-HOUR
                    19H8-HOUR
                    20H12-HOUR
                    20H24-HOUR  =,14//18X,38HPR1NT  TH
                  2TIHE PERIODS ARE/18X,36HSPECIFIE
                  3 25HDAILY TABLES  ,41
                  4 44HHIGHEST t. SECOND  HIGHEST TAB
                  3 I4/20X,30HHAXIMUH  50  TABLES (YE
                  t 57HHETEOROLOGICAL  DATA  INPUT  HE
                  7 9HISV(19) «,14/18X,38HRURAL-URB
**//)
RATION*!,DEPOSITION"2),29X,
RID SYSTEH (RECTANGULAR*!  OR  3,

  = , I4/20X,
U(8) *,I4/20X,
U(9 ) *,I4/20X,
y(10) =,I4/20X,
U( 11 ) -, I4/20X,
U( 12) -, I4/20X.
SW( 13) «,I4/20X,
SW( 14 ) =,14)
E(S) (YES=1,M0=0),33X,
E FOLLOWING TYPES OF  TABLES
                                               THROUGH IS W( 1 4 ) I /20X ,
                                       D  BY  ISW(7)
                                       X,9HISW( 16) B,!4/20X,
                                       LES ( YES-l ,HO=0 >, 22X,9HISy< 17) =,
                                       S=l ,HO=0 ), 36X,9H1SW< 18) =,I4/18X,
                                       THOD  (PRE-P80CESSED=1, CARD" 2 ), 11X,S0205310
                                       AN  OPTION (RURAL=0, URBAN HODE 1=1,50205320
     S0204950
HATCHS0204960
     S0204970
= , 16,50204980
     S0204990
. )   S0205000
 E8UAS0205010
     S0205020
     S0205030
     S0205040
     S02050SO
     S0205060
3,  POS0203070
     S0203080
     S0203090
     S0203100
     S0205110
     S0205120
     50205130
     50205140
     S0205150
     S0203160
     S0205170
     S0205180
     S0205190
     S0205200
     S0205210
     S0205220
     S0205230
     S0205240
     S0205250
     S0203260
     S020S270
     S0205280
     S0205290
     S0205300
                                                                   WHOSE

-------
>
u>
333*
534*
533*
536*
537*
538*
539*
540*
541*
542*
543*
544*
5"4S*
546*
547*
548*
349*
550*
551*
532*
533*
554*
555*
536*
557*
538*
539*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
    8URBAN  HOD
    9LUES  (OEF
    0 64HVERTI
    13><4X.9HI
    2HO=0,YES>
    3HE  RISE  0
    4 59HPROGR
    3  9X.9HIS
9032 FORHATC/1
    1 40HNUMBE
    2,33HTIHE
    3 7HIPERD
    4*,I4/18X,
    3 28HHUHBE
9033 FORHAT< 18
    1 8HNHOURS
    2 8H NDAYS
9034 FORHATC18
    1 6H   TIC  =
    2HERE,22*,
    3 ATHOSPHE
    4 32HHEIGH
    3 7H    ZR
    6 42HLOGIC
9033 FORHAT<18
    1 / 18X,7HO
    3 53X/5H1S
    4 21HUPPER
    3 22HYEAR
9036 FORMATC18
    1 8H ITAP
9037 FORMAT<44
    1 63X,6H(1
9038 FORMATC/V
    1 62X,8H = , I 4 / 1 8 X, 3 7H WI N D PROFILE  EXPONENT V
AULTS=1,USER ENTERS = 2,3>, 11X.9HISHC21 ) =,I4/18X,
CAL POT.  TEMP.  GRADIENT VALUES  , 19X,9HISW<23>  *,I 4/I8X,53HPROGRAH CALCULATES
HLY   =,I4/18X,
AM ADJUSTS  ALL  STACK HEIGHTS  FOR DOWNWASH ,
U<25>  », 14 )
8X,23HNUHBER OF INPUT SOURCES, 46X,8HNSOURC =,14/18X,
R OF  SOURCE  GROUPS <=0,ALL SOURCES>,29X,8HNGROUP  =,14/18
PERIOD  INTERVAL TO BE PRINTED  <-0,ALL INTERVALS ) ,17X,
= , 14/1 8X,31HNU(1BER OF X (RANGE)  GRID VALUES , 38X, 8HNXPNT S
31HNUHBER  OF Y  (THETA) GRID VALUES,38X,8HNYPNTS  -,I4/18X
R OF  DISCRETE  RECEPTORS/41X,8HNXWYPT -,I4>
X,46HNUMBER  OF  HOURS PER DAY  IN  METEOROLOGICAL DATA,23X,
  = , I4/18X,37HNUHBER OF DAYS OF  METEOROLOGICAL  DATA/32X,
  = , 14 )
X,44NSOURCE  EMISSION RATE  UNITS  CONVERSION FACTOR,27X,
,E10.5/18X,47HENTRAINMENT  COEFFICIENT FOR UNSTABLE  ATHOS
8H BETA1  =,F5 . 3/18X,45HENTRAINHENT COEFFICIENT FOR  STABL
RE,24X,8H  BETA2 =,F3.3/,18X,
T ABOVE  GROUND  AT  WHICH WIND  SPEED WAS HEASURED,18X,
=*,F7.2,8H   HETERS/18X,
AL UNIT  NUMBER  OF  METEOROLOGICAL  DAT A,29X,6HIMET  -,I4)
X,S2HDECAY  COEFFICIENT FOR PHYSICAL  OR CHEMICAL  DEPLETIO
ECAY  =,E12.6/18X,19HSURFACE STATION  NO.,
S =,16/18X,20HYEAR OF SURFACE  DAT A,52X,3H I SY
  AIR  STATION NO.,5IX,5HI US =,Ife/18X,
OF UPPER  AIR DATA,SOX,5HIUY =,13)
X,39HLOGICAL UNIT  OF CALCULATION  'SAVE' TAPE,30X,
  = , 14 )
X,43H***  METEOROLOGICAL DAYS  TO  BE PROCESSED
F=l )//8< MX,3(1012,2X)/»
42X,48H***  X-COORDINATES OF RECTANGULAR GRID
ETERS )/>
47X,35H**«  RANGES  OF POLAR GRID  SYSTEM ***/62X,
S )/)
0/))
                                                                            =,I3/18X
                                                                            ***/
                                                                            SYSTEM  ***/
AS0205330
 S0205340
,50205330
(S0205360
US0205370
 S0205380
 S0205390
 S0205400
 S0205410
XS0205420
 S0205430
 S0205440
,50205430
 S0203460
 S0205470
 S0205480
 S0205490
 S0203300
PS0203510
ES0203520
 S0203S30
 S0205540
 S020SS30
 S0205360
NS0203570
 S0205380
 S0203390
 S0205600
 S0205610
 S0205620
 S0205630
 S0203640
 S0205650
 S0205660
 S0203670
 S020S680
 S0205690
 S0205700

-------
371*
572*
373*
374*
573*
576*
577*
378*
579*
580*
581*
582*
583*
584*
585*
586*
587*
588*
589*
590*
591*
5-92*
593*
594*
595*
596*
597*
598*
599*
600*
601*
602*
603*
604*
605*
606*
607*
608*
                          Y-COORDINATES  OF  RECTANGULAR GRID SYSTEM ***
                          RADIAL ANGLES  OF  POLAR GRID SYSTEM ***/

                          X,Y COORDINATES OF  DISCRETE RECEPTORS ***/

                          RANGE,THETA COORDINATES OF DISCRETE RECEPTORS
9041 FORMAT( //42X,48H*»*
    1 /62X,8H( METERS )/>
9042 FORNATC//45X,42H*»*
    1 /62X ,9H< DECREES)/)
9043 FORHAT< //47X,43H**»
    i '2X, 8H(HETERS )/)
9044 FURHATC //39X,53H**»
    1»**/S8X, 16H< METERS, DEGREES >/>
9043 FORHAT< 100<6X, 3(1H< , F9 . 1 , IN, *F9. 1,4H>,   >/))
9046 FORHAT<35X,19H*»*  SOURCE DATA ** */ / 2 1 X , 1 3HEM I SS 1 0 N RATE.38X,
    1 3HTEHP . , 4X/9HEXIT VEL . /24X , 8HT YPE =0, 1 , 40X , 2( 6HTYPE=0, 4X >/l OX
    2 3HT  y,8X,3A4, 38X,18H;  < H/SEC )J , I 2X, 3< 5H8LDG . , 4X )/ 1 OX
    3 20HY A  NUMBER     T YPE =2 , 25 X, 4HB ftSE • 1 2X , 53HVE RT . D I H  HORZ.OIH
    4ETER  HEIGHT    LENGTH    UI DTH/3 X/ 1 9HSOURCE  P  K  PART.   ,3fi4,3X,
    3 1HX,8X,43HY       ELEV.    HEIGHT    TYPE-1    TYPE=1,2  ,4(6HTYPE=0
    6 3X)/3X»31HHUHBER  E  E  CATS. *PER  RETER**2 , 2( 3( IX , 2A4 ) , IX )/
    7 63(2H -)/)
9047 FORnAT(I8,I3/I2.I5<3X/E11.5/2F10.1fF8.1<2F9.2/lX.SF9.2)
9048
9049 FORflAT(50X,31H***  SOURCE PARTICULATE  DATA  ***//>
9050 FORHAT< /10X> 19H**» SOURCE NUMBER  «,I6'4H  ***)
9031 FORHAT< /10X, 13HMASS  FR ACT ION =/2 < 1 OX* 10< F7 . 5 , 1H , )/ ) )
9052 FOR«AT( /10X, 31HSETTLING VELOC I T Y ( HETERS/SEC )  =/2< 1 OX , 1 0< F7 . 4 , 1
    1 /))
9053 FORHAT< /I OX, 32HSURF ACE REFLECTION COEFFICIENT = /2 < 1 OX , 1 0( F7 . 3 ,
    1 )/) )
9034 FORMAT( 34X-27H*  SEASONAL SOURCE STRENGTHS, 3A4 ,
    S0205710
    S0205720
    S0205730
    S0205740
    S0205750
    S0205760
    S0205770
    S0205780
    S0205790
    S0205800
    S0203810
    S0205820
DIAHS0203830
    S0203840
    S0203830
    S0203860
    S0203870
    S0203880
    S0203890
    S0203900
    S0205910
    S0205920
H, ) S020S930
    S0205940
1H, S0203930
    S0205960
    S0205970
    1 26HFOR EACH  HOUR  OF THE DAY *//20H  ***  SOURCE NUMBER =,15,4H ***)S0205980
9035 FORHAT(/4X'A4, A2/2< /4XMHHOUR, 18,11 11 0/2X, 8HSTRENG TH , 12E 10.4 ))    S 02 039 90
9.056 FORHATC 18X , 22HALLOCATED DATA STORAGE, 48X , 7HL I HI T »,I6,6H WORDS/   S0206000
    1 18X,42HREQU1RED  DATA STORAGE FOR  THIS  PROBLEM RUH.28X/           S0206010
    2  7HMIMIT  -,I6,6H  WORDS)                                           S0206020
9057 FORlfAT( iHO, 33X, 6SH*** NUN6ER OF  SOURCE  NUMBERS REQUIRED TO DEFINE S0206030
    1SOURCE GROUPS ***/62X,8H//3(15X,20)             S0206040
9058 FORHAT(1HO<43X,45H*** SOURCE NUMBERS  DEFINING  SOURCE GROUPS  ***/  S0206050
    1 62X,7H(lDSOR)//8(15X,14(I6/1H,>/»                                S0206060
9059 FORHAT(//5IX,30H»*»  WIND PROFILE EXPONENTS  ***//)                  S0206070
9060 FORMATC//42X,48H*»*  VERTICAL POTENTIAL  TEMPERATURE GRADIENTS ***/ S0206080

-------
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
C
C
C
C
C
 SUBROUTINE HODEL(CALC,CHIAV,CHIAN,GRIDX,GRIDY,XD1S,YDIS,GRIDZ,
1 CHI MAX, CHI 50, I PNT, I COUNT,.SOURCE >
 THIS  ROUTINE CONTAINS  THE  MODEL EQUATIONS FOR CALCULATING  GROUND-
 LEVEL  CONCENTRATION  OR  DEPOSITION  INCLUDING THE PLUME  RISE
 EQUATIONS.   THIS ROUTINE  ALSO CONTROLS  THE CALCULATION  AND OUTPUT
 P'  ALL  TABLES THE PROGRAM  PRODUCES.
 INTEGER  TI
 LOGICAL  F2
 COMMON  /LO
1 NSOGRPC15
2 10, IN.TIT
 COMMON  /ME
1 AFVR<24>/
2 DTHDEF<6,
 DIHEHSION
1 YDIS< 1 >, G
2 SOURCE(21
 DIMENSION
1 SP<6>,SQ<
 EQUIVALENC
1 < TS,SIGZO
 DATA  SASIG
1 90.673,98
2 44.093,23
3 15.209,14
4 34.219  /
 DATA  SBSIG
1 .93198,.9
2 .51179,.8
3 .81558, . 7
4 .21716  /
 DATA  SC,SD
1 1 .0857, . 7
2 .00968429
3 1 .0905125
 DATA  KAVG
 DATA  IHOS
                 TLE,CFLG,8FL
                 ERO,UAKE,POL
                 GIX/  ISU(40>
                 0),IDSOR(200
                 LE( 15 ), IQUNC
                 T/ IDAY<366>
                 HLH( 24,2>,P<
                 6),GAN1I,GAM
                 CALC( 1 >,CHIA
                 RIDZ( 1 ),CHIH
                 5, 1 )
                 COSKUMC 360 ),
                 6>,SC<6 >,SD<
                 E (COSNUIK1)
                 >, (POLAR, DON
                 Z / 158.08,1
                 .483, 109.3,6
                 .331,21.628,
                 .457, 13.953,

                 Z / 1 .0542.1
                 8332, 1 .0971 >
                 1956, .75660,
                 8407, .68465,

                  / 24 . 1667, 1
                 2382, .54287,
                 2, 014649868
                 , 1 .0881393,1
                 / 1,2,3,4,6,
                 / 32,61,92,1
GS
AR,DOHE,SGZDON, I FLAG(8 ),ISM24
,NSOURC,NXPNTS,NYPNTS,NXUYPT,NGROUP,
>,IPERD,NPNTS,NAVG,NHOURS,NDAYS,NTDAY,LINE
3),ICHIUN(7),CONDEP(6),LIMIT,MIMIT
,ISTAB<24>,AWS<24>,TEHP(24),AFV<24>,
24),DTHDZ(24),DECAY(24),PDEF<6,6),
2I,ZR,DDECftY,IHET,ITAP,TK,UCATS(5>
VC 1 >, CHIANC 1 ),GRIDX( 1>,GRIDY(1 >,XDIS( 1 ),
AX( 1),CHI50< 150,1),IPNT<50,1 ), ICOUNT< 1 ),

SINNUH<451),RLH(48>,SASIGZ<36>,SBSIGZ<36>,
6)>KAVG(8),MSTAB(24),IMOS(11),ISEAS(12)
,SIHNUH<91»,,
E),(ISy<23 >,QFLGS )
70.22,179. 32,217.41,258.89,346.75,2*453.85.
1141,34.459,32.093,32.093,33.504,36.65,
21 .628,22. 334, 24.703,26.97,35.42,47.618,
13.953, 14.823,16.187,17.836,22.651,27.074,
.0932, 1 .1262, 1 .2644, 1
.91465, .86974, .81066,
.63077, .57154, . 50527,
.63227, .54503, . 46490,
4094,1 7283,2*2.1166
64403, .60486, .56589,
46713, .37615, .29592,
41507, 32681, .27436,
8.333, 12.5-8. 333, 6. 25,4. 1667,2.5334, 1. 8096
.36191 /,  SP,S8 /  .004781486,.006474168,
,.019584802, . 029481132, 1. 1235955, 1  1086475
.0857763,1 .0881393 /
8,12,24  /
22,153,183,214,245,275,306,336  /
S0300010
S0300020
S0300030
S0300040
S0300050
S0300060
S0300070
S0300080
S0300090
S0300100
S0300110
S0300120
S0300130
S0300140
S0300150
S0300160
S0300170
S0300180
S0300190
S0300200
S0300210
S0300220
S0300230
S0300240
S0300250
S0300260
S0300270
S0300280
S0300290
S0300300
S0300310
S0300320
S0300330
50300340
S0300350
S0300360
S0300370
S0300380

-------
•a ?*•
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
50*
51*
52*
53*
54*
55*
56*
57*
'f 58*
g 59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
vn
C
C*** IN
C
IS
C IN
C IN
DO
Al
10 SI
C IF
IF
C IN
11
IF
DO
1C
DO
20 IP
C CA
C CA
30 LI
DO
IT
i n
IT

U2
IT
TE
1
S
1 3 tfl
IALIZ

4 = I
IALIZ
GER y
0 I
I
0
E

S
E
I
r *


U< 24
COS
ND D



)




HUH
I
= 1,45

NHUHC I >
N
( I
IT
8
(N
2
AX 50
SU< 18
IALIZ
NAVG
GROUP
0 I

)
E


S
OUHT( I >
2
NT
LC
TE
HE
3
0 J
< J, I )
ULATE
GORIE
= 10
10 I
YPE » S
IUAK
IT
IF
40 HB
HU
IF
H
IF
DO
50 SO
IF
DO
60 SO
GO
YP
(I
S
S
= IT
E - I
TYPE-
SOUR
SOUR

= SI
TABL
.LE
POI

.GT.
1 , I
= 0

H
E

N


1

RE
1

(A
S
0
TE

0)





EQ
&
CT


1*



. 1
SI
ION


. 01
ARE N
)
R

I


GOT








NNUH ARRAYS UITH COSINE & SINE VALUES OF
S.


74
OT
0
ARRAY

1 «



I





53293 )
COMPUTED, ICOUNT 6 IPNT DO NOT EXIST.
30
8, COUNTER FOR MAXIHUfl FIFTY TABLES.

1*NGROUP


* 1 ,30


S
0
a
0
Y
T
1
C
C
(HB .LE .
a
(H
5
HB
U .LT
0 J

,
= J
VIRT
A

1 ,N
URCE
PE/8
YPE
) 40
E( 11
E< 12
0.0

HB)


UAL
L

SO


D
C


1ST
HEC



ANCES FOR ALL SOURCES AND STABILITY
K

SOURCE-RECEPTOR DISTANCES.

SOURC
<
1
-

,
,
I,
92
<
,1
I)
I)
I)

IT
10


.AND



H

a


YPE


/I


6)*16
, 140




. HU

HU




.LE . 0.0) GOTO 190


» 1 ,36
URCEC81 +
(H
6
UR
TO
U . GE
0 J
CE(75
160
.
a
+

J, I )
HB)
1 , 6
J, I )






r
GO

a

(1
TO

( .

. 2*
70

85*

H/SASIGZC J ) >**< 1 . /SBSIGZ< J » - .01*H


HU



*SP( J »**SQ( J ) - . 01*HU

S0300390
S0300400
S0300410
S0300420
S0300430
S0300440
S0300450
S0300460
S0300470
S0300480
S0300490
S0300SOO
S03003IO
S0300520
S0300530
S0300540
S0300550
S0300360
S0300370
S0300580
S0300390
S0300600
S0300610
S0300620
S0300630
S0300640
S0300650
S0300660
S0300670
S0300680
S0300690
S0300700
S0300710
S0300720
S0300730
S0300740
S03007SO
S0300760

-------
u>
VO
 77*
 78*
 79*
 80*
 81*
 82*
 83*
 84*
 85*
 86*
 87*
 88*
 89*
 90*
 91*
 92*
 93*
 94*
 95*
 96*
 97*
 98*
 99*
100*
101*
102*
103*
104*
105*
106*
107*
108*
109*
110*
111*
112*
113*
114*
 70 IF(HU .GT. S.*HB) GOTO  90
    DO 80  J * 1.6
 80 SOURCE( 730, I >  » < < . 35*HU+ . 5*HB ) *SP< J »**SQ< J ) - .01*HB
    GOTO 160
 90 H = .S5*HB
    T (IUAK .EQ.  1 ) H -  2.25*HB
    DO 100 J « 1/6
100 80URCE(75 + J,I)  «  * **SQ
    DO 150 J « 1/36
ISO SOURCE<81 + J, I)  = .001*XO
    NO VIRTUAL DISTANCES  CAN  BE  LESS THAN ZERO.
ISO DO 170 J > 1/6
170 IF
-------
119*
116*
117*
118*
119*
120*
121*
122*
123*
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
240
230

260
270
280
Y8 * SOURCE<5, I >
IF(HXPNTS  .EQ.  0
POLAR • .FALSE.
IF(ISU<2)  .EQ.  2  .OR
00 260   J  «  l.HYPNTS
YR » GRIDY(J)
II « YR
DO 260   K  •  1,NXPNTS
XR * GRIDX
A3 « YR -  Y8
XR « XR -  XS
A2 - SQRT  -
IFCA2 .GE.  Al)  GOTO 260
IFCLINE .LT.  57)  GOTO  250
WRITEUO, 901 1)
tfRITEUO/9005)
VRITEUO* 9002)
LINE » 16
VRITE 9003)
LINE • LINE +  1
CONTINUE
IF  .EQ.  2) POLAR •
DO 300   J  *  l.NXMYPT
YR * YDIS(J)
XR * XDISCJ)
IF(.HOT.POLAR)  GOTO 280
II « YR
YR * XR*C08NUN(I1)
XR » XR*8INHUN(II )
YR » YR -  Y8
XR » XR -  X8
A2 - SQRT GOTO 270
                           IS«(2) .EQ.  4) POLAR » .TRUE
                                XOP
TITLE
CONDEP

NSO,GRIDXCK),GRIDY
-------
I
4^
153*
154*
155*
156*
157*
158*
159*
160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
179*
180*
181*
182*
183*
184*
185*
186*
187*
188*
189*
190*




290

300
310
C
C



320

C
C***
C


C







C
C




330

340

 IF(LIHE .LT. 57)  GOTO  290
 yRITE(10,9003)  TITLE
 yRITE(10,9002)  CONDEP
 LINE = 16
 yRITE( 10, 9003)  NSO, XDIS< J ), YDIS( J )/ A2
 LTNE » LINE *  1
 CONTINUE
 CONTINUE
 INITIALIZE NUMBER  DAYS,  HOURS  t  HOURS PER DAY. SET NIXING  HEIGHT
 INDEX.
 NTDAY = 0
 IF  GOTO  320
 NHOURS = 24
 IHM  « 1
 IF(ISy(20) .GT. 0)  IHM *  2

 BEGIN LOOP OVER DAYS OF  METEOROLOGICAL DATA.

 DO 1690 IDY =  1/NDAYS
 IF(ISy< 19) .EQ. 1 )  GOTO  380
 INPUT A DAY OF  CARD MET  DATA.
 DO 370 I e I,NHOURS
 READ< IHET,9004) JDAY,AFV
1 ISTAB( I ),P .NE. 3)
 IF(ISW(22> .NE. 3)
                                                  AMS< I ) , HL H< I , 1 ) , T EHP< I > , DT H DZ < I )
                                                           3>
                                                           TO
                      GOTO
                      LOAD
330
DEFAULT
VALUE FOR
                                      AUSCI )>  GOTO  340
P(I) = PDEF
-------
*-
NJ
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
209*
206*
207*
208*
209*
210*
211*
212*
213*
214*
219*
216*
217*
218*
219*
220*
221*
222*
223*
224*
229*
226*
227*
228*
390 IF
    IF I
    IFCLSTAB
    00 400  I
    IFdSTABC
    KSTT  a  IS
    IFCKSTT .
    IF I
    GOTO  1690
410 READCIHET
    REARRANGE
    DO 420  I
    DO 420  J
    K =  <24*<
420 RLH,HLH< I, 1>,TEHPC I>,DTHDZ< I >
-PROCESSED  HET DATA.
DY)  .GT.  0)  GOTO 410
* 1
1 )  .GT.  0)  GOTO 390
> ISTAB

) JYR. IHO/DAY,ISTAB
STAB< 1 )
.GT.  6)  LSTAB  « 6
= 2.24
I >  .GT.  6)  ISTABd ) = 6
TABd ) -  LSTAB
GT.  1 ) ISTAB JYRi I HO,DAY,ISTAB,AyS,TEHP,ftFV,AFVR/HLH
  MIXING  HEIGHTS.
* 1.2
- 1 .24
I -1))  +  J
HLHCJ, I)
» 1/48/2
+ 1
• RLH< I)
* 2/49/2
S0301910
S0301920
S0301930
S0301940
S0301950
S0301960
S0301970
S0301980
S0301990
S0302000
S0302010
S0302020
S0302030
S0302040
S0302090
S0302060
S0302070
S0302080
S0302090
S0302100
S0302110
S0302120
S0302130
S0302140
S0302190
S0302160
S0302170
S0302180
S0302190
S0302200
S0302210
S0302220
S0302230
S0302240
S0302290
S0302260
S0302270
S0302280

-------
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
243*
244*
249*
246*
247*
248*
249*
290*
291*
292*
293*
294*
299*
296*
297*
298*
299*
260*
261*
262*
263*
264*
269*
266*
440
J « .9*1
HLH * RLH(I)
IFCIDY  .EQ. 1)  LSTAB  -
IF » ISTAB(I)
KSTT = ISTAB(I> - LSTAB
IF .EQ.
            EQ.
            .EQ
                            ISTAB(1>
                            «  6
                            TO VARY  RAPIDLY
                                            & ADJUST FOR URBAN  MODES
490
460
    IFdSV(20)
    IF(ISTAB( I )
    GOTO 460
    IFUSTftBC I >
                  1>  ISTflBCI)  a LSTAB * 1
                  -1 >  ISTABd > = LSTAB - 1
                     0)  GOTO  460
                     1 )  GOTO  490
                      6)  ISTABd)
• ISTAB(I) -  1
             GT. 4)  ISTABd >  »  4
LSTAB
            ISTflBC I >
                    2)  GOTO
                    IDY
                    TITLE
                    IDY
                       480
    IF(ISW(6>  .HE.
    yRITEC10,9001 >
    URITE(10,9003)
    «RITE<10,9007)
    «RITE(10,9009)
    DO 470 I • 1,24
    BRIT Ed 0,9010)  I, AFV,AFVR< I), AtlSd ),HLH(I ,
   1 HSTABd), ISTABd >
    LINE • 0
480 CONTINUE
    SET JULIAN DAY.
    IF(ISUC19> .EQ
    FETCH SEASON  fc
470
                                              IHH>,TEHP(I)
                     1 >  JDY
                    MONTH .
                          IDY
    IFdStK19>  .EQ.
    DO 490  I •  1,11
    INO « I
    IFUHOSU )
490 CONTINUE
    IHO • 12
900 CONTINUE
    ISEA =  ISEAS(IHO)
                1> GOTO  900
            GT. JDY) GOTO  SOO
S0302290
S0302300
S0302310
S0302320
S0302330
S0302340
S0302390
S0302360
S0302370
S0302380
S0302390
S0302400
S0302410
S0302420
S0302430
S0302440
S0302490
S0302460
S0302470
S0302480
S0302490
S0302900
S0302910
S0302920
S0302930
S0302940
S0302990
S0302960
S0302970
S0302980
S0302590
S0302600
S0302610
S0302620
S0302630
S0302640
S0302690
S0302660

-------
>
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
285*
286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*
C
C
C


C







C
C



C













C



C

C***  BEGIN  LOOP  OVER NET  DATA  FOR EACH HOUR
  510
  520
  530
  540
  590
DO 1670  IH
1ST »  ISTA
IF URBAN  N
ISTUH2 »  I
IF( ISU(20 >
IF(ISTUH2
UBAR = AVS
FV = AFV< I
FVR =  AFVR
HH * HLH( I
SET MIXING
EQUATION  I
IF( ISWC 20 )
TA = TEHPC
IFIHH)
                   HEIGHT  TO  10000.0  SO THAT ONLY  FIRST TERH OF VERTICAL
                 S COMPUTED  (RURAL  HODE, E & F  STABILITIES ONLY).
                   .E8  0  .AND.  1ST  .GT  4) HH = 10000.0
                 IHR)
                   0.0 ) HHI  = 1./HH
                 ND SPEED  CATEGORY  FOR THIS HOUR.
                   1,3

                 )  GE   UBAR)  GOTO  520
                                EQ  2) GOTO 530
                              ISP, 1ST )
                              EFCISP, 1ST)
                               = DDECAY
                              Z( IHR)

                              ULATION ARRAY FOR SOURCE  SUHHATIONS.
                              PNTS + NPNTS
                               1,NPNTS2
                              0. 0
                              FOR DAILY TABLES  IF  HOUR/TIME PERIOD  =  INTEGER MULTIPLE
                              - 1/8
 S0302670
 S0302680
 S0302690
 S0302700
 S0302710
 S0302720
 S0302730
 S0302740
 S0302750
 S0302760
 S0302770
 S0302780
 S0302790
 S0302800
 S0302810
 S0302820
 S0302830
 S0302840
 S0302850
 S0302860
 S0302870
 S0302880
 S0302890
 S0302900
 S0302910
 S0302920
 S0302930
 S0302940
 S03029SO
 S0302960
 S0302970
 S0302980
 S0302990
 S0303000
 S0303010
 S0303020
.S0303030
 S0303040

-------
i
*-
Ol
305*
306*
307*
308*
309*
310*
311*
312*
313*
314*
315*
316*
317*
318*
319*
320*
321*
322*
323*
324*
325*
326*
327*
328*
329*
330*
331*
332*
333*
334*
335*
336*
337*
338*
339*
340*
341*
342*
                560
              C
              C***
              C
                570
IF(ISU(I+6)  .HE.  1)  GOTO  560
IFLAGd ) «  .FALSE.
IF (1PUTE X I  Y  SCALARS OF  RANDOM FLOW  VECTOR.
FVRCOS  = (FVR+180.)*.017453293
FVRSIN  • SIH(FVRCOS)
FVRCOS  • COS(FVRCOS)

BEGIN LOOP  OVER  SOURCES.

DO 1480 IS  « 1-HSOURC
CLEAR CALCULATION ARRAY FOR EACH SOURCE.
DO 570  I »  1,HPNTS
CALC( I ) » 0.0
HS • SOURCEC 7, IS)
IF(HS  .GT.  HH) GOTO  1480
ITYPE * SOURCE
XS = SOURCE(4,IS)
YS = SOURCEC3, IS)
ZS = SOURCE<6, IS)
VS * SOURCE(9,IS)
HB » SOURCE( 11 , IS)
HU * SOURCE(12, IS)
D » SOURCE(10,IS)
TS = SOURCEC8*IS)
HSO » SOURCE<2, IS)
IVAK «  ITYPE/8192
QFLG «  ITYPE/512 -  (ITYPE/8192)*16
HVS a ITYPE/16 - UTYPE/512 )*32
ITYPE « ITYPE  -   1 .0
IF(8FLG .LE. 0  .AND.  QFLGS .LE. 0) GOTO  640
S0303050
S0303060
S0303070
S0303080
S0303090
S0303100
S0303110
S0303120
S0303130
S0303140
S0303150
S0303160
S0303170
S0303180
S0303190
S0303200
S0303210
S0303220
S0303230
S0303240
S0303250
S0303260
S0303270
S0303280
S0303290
S0303300
S0303310
S0303320
S0303330
S0303340
S0303350
S0303360
S0303370
S0303380
S0303390
S0303400
S0303410
S0303420

-------
343*
344*
345*
346*
347*
348*
349*
350*
351*
352*
353*
354*
355*
356*
357*
358*
359*
360*
361*
362*
363*
364*
365*
366*
367*
368*
369*
370*
371*
372*
373*
374*
375*
376*
377*
378*
379*
380*




580

590

600

610

620
630
640
C


6SO
C
660


670
C

680

C
690
C



700
C

1
11 = IS
IF(9FLGS
11 » 1
QFLG = QF
12 = ISEA
GOTO (630
12 = IHO
GOTO 630
12 - IHR
GOTO 630
12 = (1ST
GOTO 630
12 » (ISE
QTK = SOU
QTK = SOU
CALCULATE
UBARS = U
IF(PP ) 67
IF(HS ) 67
NOTE : Z
Al - HS
IF(HS .LT
UBARS « U
UBARI = 1
BEGIN PLU
IF( ITYPE-
UAKE = .F
IF(VS) 69
CHECK FOR
IF< ISW(25
IF EXIT V
DHAWAK »
IF(HS .LT
GOTO 840
VSD « VS*
CHECK FOR
IF(ISV(25
-1 .5)*(0
 LE .  0)  GOTO  580

LGS

.590  ,600  ,610 ,620 > ,QFLG
-1>*6  +  ISP

A -  1>*24  *  IHR
RCEC 12*1 19,11)
RCE<3. IS)»TK*QTK
 EFFECTIVE  VINO SPEED.
BAR
0,670,650
0,670,660
R IS  IN  RECIPROCAL  FORM.

. 10.0)  Al  = ANINK 10 0, 1 ./ZR>
BAR*(A1*ZR)**PP
./UBARS
HE RISE  CALCULATIONS FOR STACK-TYPE  SOURCES.
1> 680,840,840
ALSE.
0,690,700
 DOUNVASH  STACK HEIGHT ADJUSTMENT, VS  =  0.
> . EQ. 2)  HS = HS -3.*D
ELOCITY, VS,  EQUALS  0 THEN DHA « 0.
HS
. 2.5*HB  .AND. HS .LT.  HB+1.3*HW) UAKE =  .TRUE
 DOUNUASH  STACK  HEIGHT ADJUSTMENT,  VS  >  0.
>  .EQ.  2  .AND.  VS  .LT. 1.5*UBARS> HS * HS  *  (VS*UBARI
S0303430
S0303440
S0303450
S0303460
S0303470
S0303480
S0303490
S0303500
S0303510
S0303S20
S0303530
S0303540
S0303S50
S0303560
S0303S70
S0303580
S0303590
S0303600
S0303610
S0303620
S0303630
S0303640
S03036SO
S0303660
S0303670
S0303680
S0303690
S0303700
S0303710
S0303720
S0303730
S0303740
S0303750
S0303760
S0303770
S0303780
S0303790
S0303800

-------
381*
382*
383*
384*
385*
386*
387*
388*
389*
390*
391*
392*
393*
394*
395*
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
41 1*
412*
413*
414*
415*
416*
417*
418*
780
790
800
                                            TO  AHBIENT  AIR TEMP
    GAHJI  =  1./(.33333333+U8ARS/VS>
    GAMJI  =  GAMJI*GAHJI
    IF(OTH  .LE .  0.0 ) GOTO  710
    S =  9.8*DTH/TA
    SI *  l./S
    £S =  SQRT(S)
    SSI  =  1 ./SS
710 IF(TS-TA)  730,730,720
    IF SOURCE  TEMPERATURE  =  0,  SET  EQUAL
720 IF
           GT.  55.0 ) GOTO 750
           0727*VSD**1.3333333
           60
           0141*VSD**1.6666667
           GT.  FC )  GOTO 770
             .TRUE.
           0
            LE. 0.0) GOTO 800
            .GT .  0.0) GOTO  780
    TEST  FOR yAKE  EFFECTS.
    DHA  »  3.*FH**UBARI>
    OHAUAK  = DHA**.33333333
    DHA1  =  3.*VSD*UBARI
    IF
-------
*-
00
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
437*
438*
439*
440*
44 1*
442*
443*
444*
445*
446*
447*
448*
449*
450*
451*
452*
453*
454*
455*
456*
               810

               820

               830

               840
               850
               860
               870
               880
             C
             C***
             C

               890

               900
               910
           GOTO 820
           55 .0 ) GOTO  810
          49.*F*».625

          119.*F*».4
        =  4.*D*UBARI*  .EQ.
NE. 0  .AND.  NYPNTS  .HE  0) GOTO  900
EQ. 0) GOTO  1400
                                       OR.  ISW(2) .EQ.  4)  POLAR =  .TRUE.
                                    2)  POLAR = .TRUE.
S0304190
S0304200
S0304210
S0304220
S0304230
S0304240
S0304250
S0304260
S0304270
S0304280
S0304290
S0304300
S0304310
S0304320
S0304330
S0304340
S0304350
S0304360
S0304370
S0304380
S0304390
S0304400
S0304410
S0304420
S0304430
S0304440
S0304450
S0304460
S0304470
S0304480
S0304490
S0304SOO
S0304510
S0304520
S0304530
S0304540
S0304550
S0304560

-------
437*
458*
459*
460*
461*
462*
463*
464*
46S*
466*
467*
466*
469*
470*
471*
472*
473*
474*
475*
476*
477*
478*
479*
480*
481*
482*
483*
484*
489*
486*
487*
488*
489*
490*
491*
492*
493*
494*
 920

 930
 940


 950



 960


 970
 980

 990
1000
1010
CONTINUE
IF(NEXTR-2> 930,950,970
J » J + 1
1FCJ. GT. NYPNTS) GOTO 890
YR = GRIDYCJ )
IP<.NOT .POLAR) GOTO  940
CHECK IF RECEPTOR IS  UPUIND  OF  SOURCE (POLAR COORD.).
CALL UP WIN DC YR,FVR,SINHUH,COSNUN,YRS,YRC,JFLAG)
IFCJFLAG .GT. 0) GOTO 920
IJ * (J-1)*HXPNTS
I » 0
NEXTR = 2

IF(I .LE. NXPNTS) GOTO 960
HEXTR a l
GOTO 920
IJ = IJ + 1
XR = GRIDXCI )
GOTO 990
1*1 + 1
IF(I .GT. NXUYPT) GOTO 1400
YR * YDISC I)
IF(.NOT.POLAR) GOTO  980
CHECK IF DISCRETE RECEPTOR  POINT IS UPUIND OF SOURCE (POLAR
CALL UPWINDCYR,FVR, SINNUn,COSNUH,YRS,YRC,JFLAG)
IFUFLAG .GT. 0) GOTO 920
IJ « NXPNTS*NYPNTS +  I
XR » XDIS(I)
CONTINUE
IF(POLAR) GOTO 1000
XR1 • XR -XS
YR1 « YR - YS
GOTO
XR1 <
YR1 <
1010
 XR*YRS -
 XR*YRC -
XS
Y8
CHECK IF TERRAIN ELEVATION  IS  LOVER THAN STACK HEIGHT.
IF(ISW(4).NE.l.OR.HS + ZS-GRIDZ
-------
I
Ln
O
493*
496*
497*
498*
499*
500*
501*
302*
503*
304*
303*
306*
507*
308*
509*
310*
511*
512*
513*
514*
515*
516*
517*
518*
519*
520*
521*
322*
323*
324*
323*
326*
527*
528*
329*
530*
531*
332*
      URITE<10*9012) NSO.XR,YR                                             S03049SO
      STOP                                                                 S0304960
:      CALCULATE  DOUHUIHD DISTANCE,  XBAR.                                  S0304970
 1020  XBAR »  -                                   S0304980
      IF(XBAR .LE. 0.0) GOTO  920                                           S0304990
      IF(XHAX .LE. 0.0) GOTO  1030                                          S0305000
      IF(XBAR .GT. XHAX .AND.  IS«<4) .EQ.  0) GOTO  920                     S030S010
:      CALCULATE  CROSSUIND  DISTANCE.                                        S0303020
 1030  YBAR •  XR1*FVRCOS -  YR1*FVRSIN                                      S0303030
      XOP * 0.0                                                             S0305040
I      1  /SQRTC3. 14159265)  *  .3641896  (CALCULATE EFFECTIVE RADIUS.)      S0305050
      IFUTYPE .EQ. 2) XOP *  .3641896*XO                                  S0305060
      IFdTYPE .EQ. 1) XOP *  2.15*SIGYO                                   S0305070
      Al  * 3.*HB                                                            S0305080
      IF XBAR                                      S0305250
      DHA • 3.*FH*XP*UBARI*UBARI*GAHJI                                     S0305260
      IF( .NOT.FZERO) DHA * DHA + 1 .5*F*XP*XP*GAN 11*UBAR I **3              S0303270
      GOTO 1060                                                             S0305280
1040  IF(FZERO)  GOTO 1070                                                  S0305290
      IF(XBAR .LT. XPLUHE) GOTO 1050                                      S0303300
      DHA * 6 .•F*CAN2I*UBARI*SI                                            S0305310
      GOTO 1060                                                             S0305320

-------
>
533*
534*
535*
536*
537*
538*
539*
540*
541*
542*
543*
544*
545*
546*
547*
548*
549*
550*
551*
552*
553*
554*
555*
556*
557*
558*
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
               1050


               1060

               1070



               1080



               1090
XP1
DHA
3.*F«GAH2I*UBARI*SI*
                                                          OR. NVS  .NE. 0) GOTO  1100
            SS*XBAR*U8ARI
            3 .*FH*GAHJI*UBARI*SSI*SIN< XP1
     1       ( 1.-COS(XP1 ))
      DHA  »  DMA**.33333333
      GOTO  1090
      IHA  =  3 .*FH*GAHJI*UBARI*SSI
      IFCXBAR  .GE.  XPLUHE) GOTO  1080
      XP1  =  SS*XBAR*UBARI
      DHA  =  OHA*SIH(XP1 )
      DHA  =  DHA**.33333333
      DHA1  a 3.*VSD*UBARI
      IF  .HE.  1 .OR. ISV(l)  .HE.  1
      ftl =  ZS  -  GRIDZ(IJ)
      IF(Al  .GT.  0.0) GOTO 1100
      H  »  H  +  Al
 1100  CONTINUE
      IFCH  .LE.  HH) GOTO
      XHAX  - XBAR
      IF POLAR  I  MEXTR»2
      IF(.NOT.POLAR .OR.
      NEXTR  »  1
      GOTO  920
 1110  XBARK  -  .OOKXBAR
      XBARY  «  XBARK
      XBARZ  •  XBARK
      CALL  SIGfIAZ TO  COMPUTE
      II =  3
      IFdTYPE   EO   0 .AND.  .HOT.WAKE)  II  * 4
      CALL  S!G«RZ< XBfcE!C,SIGZ,8BAR, IST'JR2, IXDIST, II , SfiSIGZ, SBSIGZ,
     1 SOURCEC82, IS»
:      CALCULATE  LATERAL AND VERTICAL SIGHAS.
      8GZDON °  .FALSE.
      IFdTYPE  .GT. 0) GOTO 1130
 1120  IF< .HOT .MAKE) GOTO 1190
                                       1110

                                       t NO TERRAIN/
                                       NEXTR  .NE.  2
                                  SKIP RINGS
                                  OR. ISU(4>
     FOR
     .NE
THIS RADIAL.
 0) GOTO 920
                                           EFFECTIVE  DOUNUIND DISTANCE INDEX,  IXDIST
S0305330
S0305340
S0305350
S0305360
S0305370
S0305380
S0305390
S030S400
S0305410
S0305420
S0303430
S0305440
S0305450
S0303460
S0305470
S0303480
S0303490
S0305SOO
S0305310
S0305320
S0305S30
S0305540
S03055SO
S0303560
S0303570
S0303580
S0305590
S0305600
S0305610
S0305620
S0305630
S0305640
S0305650
S0305660
S0305670
S0305680
S0305690
S0305700

-------
>
Ul
971*
972*
973*
974*
375*
576*
577*
578*
579*
580*
581*
582*
583*
584*
585*
586*
587*
588*
589*
590*
591*
592*
593*
594*
595*
996*
597*
598*
599*
600*
601*
602*
603*
604*
605*
606*
607*
608*
               1130
               1140
Al = HB
IFCHy .LT.
IF
SI
GZ
s
GH
.
1
A
G
.
ARK + SOURCE(IXDIST + 81,IS )
GT . 0) GOTO  1180
.GT. 1.2*HB)  GOTO  1190
E. 10.*A1 ) GOTO  1180
 5 *HB) GOTO  1160
Q. 1 > GOTO 1 ISO
*HB +  . 067*

*HW +  .067**ALOG)
.1 1628*XBARY*TAN(TH>
/SIGY
EQ. 2) GOTO  1210
BAR*SIGYI)**2
 SO.O) GOTO  920
 GOTO 1220
Z
-------
609*
610*
61 1*
612*
613*
614*
615*
616*
617*
618*
619*
620*
621*
622*
623*
624*
625*
626*
627*
> 628*
Ln 629*
630*
631*
632*
633*
634*
635*
636*
637*
638*
639*
640*
641*
642*
643*
644*
645*
646*
C



C

C
C


C








C
C
















1230
1240
1250
CALCULATE  DECAY TERH.
XBARU = XBAR*UBARI
DECAYT =  1 .0
IF(DECAY< IHR )  .GT. 0.0) DECAYT
CHECK CONCENTRATION-DEPOSITION
IF(ISU( 1)   EQ   2) GOTO 1320
CONCENTRATION  EQUATION.
CHECK FOR  PARTICULATES UITH  SETTLING
IF(NVS .GT.  0) GOTO 1260
IF(SIGZ*HHI  .LT.  1.6) GOTO  1240
CALCULATE  'BOX-MODEL' CONCENTRATION
IF
A4 «
A3 = -
A4 « -
AS * 0
IF(A3
A6 = 0
IF(A4
V = V
IF(ABS
-------
647*
648*
649*
650*
651*
652*
653*
654*
655*
656*
657*
658*
659*
660*
661*
662*
663*
> 664*
Jn 665*
*• 666*
667*
668*
669*
670*
671*
672*
673*
674*
675*
676*
677*
678*
679*
680*
681*
682*
683*
684*
V = EXPC-.
GOTO 1300
C CALCULATE
C VELOCITIES
1260 V = 0.0
SUH « 0.0
sum * o.o
DO 1290 K
JP70 = K +
XBARUV » 8
JP70 * K »
GAHHA > SO
JP70 « K *
PHI = SOUR
A2 = 0.0
A3 = (-H+X
AS = -.3«A
IF(AS .GT.
IF(GAHHA .
A4 * (H -
AS - -.5*A
IFCA5 .GT.
CALL VERTC
1270 A2 = 2.0
A3 - (HH+H
AS = -.3*A
IFCA5 .GT.
IFCGAHHA .
A4 = (HH+H
AS = -.5*A
IFCAS .GT.
CALL VERTC
1280 V = V + .5
1290 CONTINUE
C CALCULATE
1300 IFUTYPE .
CHI » QTK*
GOTO 1390
9«A2*A2) + V

VERTICAL TERN  FOR  ALL SOURCE TYPES WITH  SETTLING
= I,NVS
 35
OURCE(JP70,IS)*XBARU
 93
URCECJP70,IS)
 IS
CE(JP70,IS)

BflRUV)*SIG2I
3*A3
 -90. ) SUM  = EXP(AS >
LE. 0.0)  GOTO  1270
XBARUV)*SIGZI
4*A4
 -SO.) SUH  = SUM  +  EXP*SIGZI
4*A4
 -50.) SUH1 =  SUH1  +  EXP(AS)*GAHHA
H,HH,XBARUViSIGZI,GAHHA/A2,SUH1)
*PHI*
-------
685*
686*
687*
688*
689*
690*
691*
692*
693*
694*
695*
696*
697*
698*
699*
700*
701*
702*
703*
704*
705*
706*
707*
708*
709*
710*
711*
712*
713*
714*
715*
716*
717*
718*
719*
720*
721*
722*
 1310  A3  =  .70710678*SIGYI                                               S0306850
      A4  =  (XOP+YBAR )*A3                                                 S0306860
      AS  *  -                                     S0306930
      tlRITE  N80                                                 S0306940
      STOP                                                                S0306950
      CALL  SIGHAZ  TO  COMPUTE  AVERAGE EFFECTIVE DOWNWIND DISTANCE,  BBAR.  S03069fO
 1330  CALL  SIGHAZ(XBARZ/SIGZ/BBAR/ISTUH2* IXDIST,2,SASIGZ,SBSIGZ , DUHHY>   S0306970
      V «  0.0                                                             S0306980
      DO  1370  K  =  1,NVS                                                   S0306990
      JP70  » K + 55                                                      S0307000
      GAHHA  «  SOURCECJP70, IS )                                            S0307010
      JP70  - K + 15                                                      S0307020
      PHI  =  SOURCE                                              S0307030
      JP70  - K + 35                                                      S0307040
      XBARUV « XBflRU*SOURCE(JP70,IS)                                     S0307050
      AS  «  <1 .-BBAR)*XBARUV                                              S0307060
      GAH1  « 1.0                                                          S0307070
      GAH2  = GANHA                                                       S0307080
      A2  «  0.0                                                           S0307090
      SUH  »  0.0                                                           S0307100
 1340  SUHL  « SUH                                                          S0307110
      A2  «  A2  +  2.                                                        S0307120
      HHA2  = A2*HH                                                       S0307130
      A3  *  (HHA2-H+XBARUV)*SIGZI                                         S0307140
      A6  *  0.0                                                           S0307150
      A3  «  -.5*A3*A3                                                      S0307160
      IF*GAH1*<8BAR*
-------
723*
724*
725*
726*
727*
728*
729*
730*
731*
732*
733*
734*
735*
736*
737*
738*
*
739*
740*
741*
742*
743*
744*
745*
746*
747*
748*
749*
750*
751*
752*
733*
754*
755*
756*
757*
758*
759*
760*













C





C
C

















C
1360
A4 » -.5*A4*A4
IF*A5>
                            l.E-8) GOTO 1360
                            (BBAR*H
                                      A3>*EXP(A7>
     V « V * ( 1 .-GAHHA)*PHI*(A3 + SUN)
1370 CONTINUE
     FINISH DEPOSITION  CALCULATIONS.
     IFUTYPE -E8.  2) GOTO 1380
     eill • QTK*SIGY!*3ICZI/X8M*CXPC-A1 )»DECAYT*V*. 19913494
     60 TO 3110
1380 CHI • tTK»XO*SIGZI/Xifl**DECAYT*V*EtrX<(XOP+YiAR>*8
    1 ,-*SICYI« 70710671)*.39894228
     STORE COHCEHTRATION OR DEPOSITION INTO  CALC  ARRAY.
     NEXT RECEPTOR.
1390 CALC(IJ) »  CHI
     UP * IJ *  NPNTS
     CALC(IJP)  » CALC(IJP) t CHI
     GOTO 920
1400 CONTINUE
     IFCNGROUP   EQ.  0)  GOTO 1480
     NSUH * 0
     DO 1470 IG  • 1,NGROUP
     HS * HSOGRP(IG)
     DO 1460 N  * 1,NS
     HNSO » IDSOR
-------
761*
762*
763*
764*
769*
766*
767*
768*
769*
770*
771*
772*
773*
774*
779*
776*
777*
778*
779*
780*
781*
782*
783*
784*
789*
786*
787*
788*
789*
790*
791*
792*
793*
794*
799*
796*
797*
798*
1


420


IAVG = 0
DO 1440 I - 1,8
IF .ME 1)


GOTO 1440
11 « NPNTS*«IG-l )*NAVG + IAVG)



1
1

C



1
1
1
C
X

•








1



430
440





490
460
470

480
490









900
1910
C
C
C



1920


IAVG - IAVG + 1
DO 1430 J * 1,MPMTS
in = 11 * J
CHIAVUP7) « CHIAV<
CONTINUE
IF . NE . 1)
LOAD SOURCE CHI FOR
12 = (IG-1 >*NPNTS
DO 1490 J * 1/NPNTS
IP7 « 12 + J
CHIANdP?) « CHIAN<
NSUH • NSUH * 1
CONTINUE
GET NEXT SOURCE
CONTINUE



IP7) + CALC(J >

GOTO 1460
ANNUAL TABLE FOR THIS SOURCE GROUP



IP7 ) + CALCC J >



•
IFCNGROUP .GT. 0) GOTO 1920
LOAD ALL SOURCE CHI
IAVG « 0
DO 1910 I = 1,8
IF(ISU(If6> .HE. 1)
IP6 * IAVG*NPNTS
IAVG = IAVG * 1
DO 1900 J = l.HPHTS
12 » IP6 * J
IP7 * NPNTS + J
CHIAVU2) = CHIAVd
CONTINUE

BEGIN LOOP OVER ALL

NSUH = 1
IG = 1
'S INTO APPROPRIATE CHIAV ARRAYS.


GOTO 1910





2> + CALCC IP7)


SOURCE GROUPS.



IF(NGROUP .IE. 0) GOTO 1940
1930
NS » NSOGRPC IG )

S0307610
S0307620
S0307630
S0307640
S0307690
S0307660
S0307670
S0307680
S0307690
S0307700
S0307710
S03077?.0
S03077-0
S0307740
S0307790
S0307760
S0307770
S0307780
S0307790
S0307800
S0307810
S0307820
S0307830
S0307840
S0307890
S0307860
S0307870
S0307880
S0307890
S0307900
S0307910
S0307920
S0307930
S0307940
S0307990
S0307960
S0307970
S0307980

-------
799*
800*
801*
802*
803*
804*
805*
806*
807*
808*
809*
810*
81 1*
812*
813*
814*
815*
816*
> 817*
iji 8! 8*
819*
820*
821*
822*
823*
824*
825*
826*
827*
828*
829*
830*
831*
832*
833*
834*
835*
836*

C
C
C


C















C




C










     ITO =  NSUH

     BEGIN  LOOP

1540 IAVG =  0
     DO 1640   I
     FOR DAILY

     IAVG -  IAV
     IF< . NOT.IF
     II = NPNTS
     IF(KAVG
     Al = l./KA
     DO 1550  J
     IP7 »  II  *
1550 CHIAVUP7 )
1560 IF
     IP7 =  II  *
     CALL DYOUT
    1 NSUH,ITO,
     CALCULATE
1570 IF< ISy< 17 >
     NPNTS2  -  H
     HPNTS3  =  H
     IP4 =  4*1 1
     512 =  2**9
     IHRT5  =  Si
     DO 1590  J
     JP4 «  IP4
     JP5 =  II  +
     JP2 =  JP4
     JP3 =  JP4
     IF(CHIHAX<
     JP1 =  JP4
     CHI(1AX< JP2
     CHIHAX< JP4
 + NS -  1

 OVER ALL  TIME  PERIODS FOR THIS  HOUR.
 = 1,8
TABLES COMPUTE  AVERAGES, WRITE  TO  TAPE & PRINT.
> .HE. 1)  GOTO  1640
G + 1
LAG< I )> GOTO  1640
*<(IG-i >*NAVG  *  IAVG - 1 )
 .EQ. l.OR.  I3bl(l)  .EQ. 2) GOTO 1560
VG( I >
= 1,HPNTS
 J
 = CHIAV< IP7 )*A1
.EQ.   1) MRITE(ITAP) IHR,JDY,IG,.KAVG/JDY,IHR,lj
IG )
HIGHEST t.  SECOND  HIGHEST TABLES IF DESIRED.
 .HE. 1 )  GOTO  1600
PNTS   * NPNTS
PNTS2 * NPNTS

  SHIFT HOUR VALUE  t STORE WITH DAY.
2*IHR
= l.HPNTS
+ J
 J
+ NPNTS2
+ NPNTS3
JP4)   .GE.  CHI«V
-------
837*
838*
839*
840*
841*
842*
843*
844*
845*
846*
847*
848*
849*
850*
851*
852*
853*
854*
855*
856*
857*
858*
859*
860*
861*
862*
863*
864*
865*
866*
867*
868*
869*
870*
871*
872*
873*
874*



1580


1590
C
1600





C
C
1610
'620
'630
1640




C
1650


1660
C
1670
C



1680

1690
       CHIHAXCJP1)
       JDY  +  IHRT5
                           GOTO 1590
 CHIHAXCJP3 )
 CHIHAX>
 CHIHAX< JP2 )  » CHIAV
 CHinAX(JP3>  * JDY * IHRT3
 CONTINUE
 CALCULATE  30  HIGHEST CONCENTRAT IONS(DEPOSITIONS).
 IF(ISW(18)  .HE.  1) GOTO  1610
 IP? = < IG-l >*NAVG
 IP6 « I 1 +  1
 IP7 « IP7  +  IAVG
 CALL  HAX50, CHI50< 1 , IP7 >, IPNT( 1, IP7 >, ICOUNT< IP7 >,
1   IHR.JDY)
                ARRAY FOR  THIS SOURCE  GROUP  6 APPROPRIATf  TIHE
CHI AV
     1
                NPNTS
                0 .0
             GOTO 1650
CLEAR
PERIOD.
DO 1620  J  =
CHIAV(I 1 + J )
CONTINUE
CONTINUE
IG <=  IG  +  1
IF *
END HOURLY  LOOP.
CONTINUE
CLEAR  DAILY AVERAGES
NPNTS2  =' NAVG*NPHTS
IF(HGRQUP  .GT. 0) NPNTS2  =
DO 1680  I  = 1/NPNTS2
CHIAV(I>  «  0.0
NTDAY  =  NTDAY +  1
CONTINUE
                 NGROUP  .GT.  0) GOTO 1670
                CALC( IP6)
               ARRAY BEFORE  GOING TO NEXT  DAY
                     NPNTS2*NGRQUP
S0308370
S0308380
S0308390
S0308400
S0308410
S0308420
S0308430
S0308440
S0308450
S0308460
S0308470
S0308480
S03084 JO
S0308500
S0308510
S0308520
S0308530
S0308540
S0308550
S0308560
S0308570
S0308580
S0308590
S0308600
S0308610
S0308620
S0308630
S0308640
S0308650
S0308660
S0308670
S03°0~8680
S0308690
S0308700
S0308710
S0308720
S0308730
S0308740

-------
ON
O
675*      C      END OF NET  DATA.                                                     S0308750
876*            NDAYS = NTDAY                                                        S0308760
877*            NSUH = 1                                                              S0308770
878*            1C = 1                                                                S0308780
879*            IFCNGROUP  .LE.  0) GOTO  1710                                          S0308790
880*       1700 NS = HSOGRP(IG)                                                      S0308800
881*            ITO = NSUH  + HS - 1                                                  S0308810
882*      C      PRINT 'N'-DAY TABLE                                                  S0308820
883*       1710 IF(ISU(15>  . NE .  1) GOTO  1730                                        S0308830
88.4*            NHTOT = NTDAY*24                                                     S0308840
88S*            !F  . NE .  1) NHTOT  =  NDAYS*NHOURS                             S0308850
886*            HTOT = 1 . /FLOAT(NHTOT)                                               S0308860
887*            IF  .EQ.  2) HTOT  =  1.0                                        S0308870
888*            II = *NPNTS +  1  '                                             S0308880
889*            12 = II *  NPNTS - 1                                                  S0308890
890*            DO 1720 I  = 11,12                                                    S0308900
891*       1720 CHIAN(I)  =  CHIAN(I )*HTOT                                             S0308910
892*            CALL DYOUKGRIDX, GRIDY,XDIS, YDIS,CHIAN< I 1 ),73, IDY, IHR, 1 ,NSUW, ITO,  S0308920
893*           1  1C)                                                                  S0308930
894*            IFCISWC5)  .EQ.  1> URITE(ITAP)  NHOURS,NTDAY,NGROUP, .NE. 1)  GOTO  1750                                        S0309000
901*            IAVG * IftVG + 1                                                       S0309010
902*      C      PRINT HIGHEST i SECOND  HIGHEST CONCENTRATION,IDY, IHR,3,    S0309080
909*           1  NSUH,ITO, IG>                                                        S0309090
910*      C      PRINT NAXIHUH 50                                                     S0309100
911*       1740 IF(ISU(18>  .NE.  1) GOTO  1750                                        S0309110
912*            1P6 = 
-------
913*
914*
915*
916*
917*
918*
919*
920*
921*
922*
923*
924*
923*
926*
927*
928*
929*
930*
931*
932*
933*
934*
935*
936*
937*
938*
939*
940*
941*
942*
943*
944*
945*
946*
947*
948*
949*
950*
     CALL  MAXOT(CHI50( 1, IP6), GRIDX
    1 ICOUNT(IP6),KAVG(I),NSUH,ITO
1750 CONTINUE
     IG =  1C  +  1
     IF(IG   GT .  NGROUP)  GOTO  1760
     NSUii  =  NSUH + NS
     GOTO  1700
1760 IF(ISW(5)  .HE. 1) GOTO  1770
     ENDFILE  ITAP
     ENDFILE  ITAP
1770 RETURN
9001 FORHATC 1H1 , 121X,9HHET.  DATA/122X
9002 FORMATt 31X-69H* SOU R CE -RE CEPTOR
    10R THREE  BUILOIHG/34X, 23HHEIGHTS
    2 16H  IS  CALCULATED  * //V46 X, 23H-
    3  1HX,8X,10HY ( METERS), 10X, 8HDIS
    4 23HOR  RANGE   OR D I RECT I ON , 9X , 7
    3 21H(HETERS)    ( DE GREES > , 1 IX , 8H
     FORMAT(31X,I5,8X,2F13.1,7X,F10.2
     FORHAT(I8,3F8.0,I8,2F8.0>
     FORHAT( 32X,4H*»*  ,15A4,4H ***//)
     FORHAT( //68X, 10HPOT .  TEHP./29X,4
    1 8HGRADIENT, 17X, 16HWIND        DE
    264HHEIGHT      TENP.     (DEC.  K
    3T/20X , 92HHOUR   (DEGREES)   C HPS
    4)   CATEGORY   EXPONENT    (PER S
     FORHAT( 49X,29H* METEOROLOGICAL D
     FORHAT(21X,I2,F11.1,F10.2,F11.1,
     FORHAT( ,V47X , 6HRANDOH/38X , 2< 4HFL
    1 19HINPUT       ADJUSTED/37X,2<6H
    2  TEMP. ,2< 3X,9HSTA8ILITY >/29X,6H
    3 30HCHPS)     (METERS)   (DEC.  K)
     FORHAT(30X,I2/ Fll 1 , F 1 0 . 1 , F 10 2,
     FORMAT(lHl)
     FORNAT( 10X.46H*** ERROR  ***  PHY
    1 10X/52HIS  LOVER  THAN  THE TERRAI
    1 12HLOCATED AT (,F  9.1,IH,,F 9.1
     FORHAT( 1 OX , 23H***ERROR*** SOURCE
                                     GRIDY>XDIS,YDIS,IPNT(1,IP6).
                                     1C )
»003
^004
9003
9006
9007
9008
9009
9010
9011
9012
9013
                                        ,3HDAY,14)
                                        COflBIHftTIONS LESS  THHN
                                         IH  DISTANCE.  NO  ;6A<
                                        -  RECEPTOR LOCATION  -
                                        TANCE/31X,6HSOURCE, 1 IX
                                        HBETUEEN/31X<6HNUnBER.
                                        CHETERS )/30X,30C2H-  )/
HFLO«/7X,15HWIND      N
CAY/28X/ 16HVECTOR
  STABILITY    PROFILE
)    (METERS)   (DEC.  K
EO/19X, 47(2H  - )/)
ATA FOR  DAY,I4/2H  *)
F9 . 1,F12.4,I9,F13.4, El
OH, 6X), 16H yiHD     MI
VECTOR,4X>,27H SPEED
HOUR   ,?UOH  (DEGREES)
  ,2(8HCATEGORY,4X)/27
Fll  1 ,F9. 1,19/112)
                        100  METER
                       t
                       -/31X,
                       t
                       1 1 X.
                       IXING,\3X,
                       SPEED, :3X,
                         COEFFICI
                       )  PER  HET
                       5.6)
                       XING,15X,
                          HEIGHT
                       ),3X,
                       X,40(2H  -
                       SOURCE,IS/
                       :CEPTOR/IOX
SICAL STACK  HEIGHT OF
N ELEVATION  FOR THE RE
,19H) .   RUN  TERMINATED.  )
 NUMBER,16,41H HAS NO GRAVITATIO
  S0309130
  S0309140
  S0309150
  S0309160
  S0309170
  S0309180
  S0309190
  S0309200
  S0309210
  S0309220
  S0309230
  S0309240
S S0309230
  S0309260
  S0309270
  S0309280
  S0309290
  S0309300
  S0309310
  S0309320
  S0309330
  S0309340
  S0309350
ENS0309360
ERS0309370
  S0309380
  S0309390
  S0309400
  S0309410
  S0309420
  S0309430
/ )S0309440
  S0309450
  S0309460
  S0309470
, S0309480
  S0309490
NAS0309300

-------
931*           1L SETTLING  CATEGORI ES, /I OX,32HyITH  WHICH TO CALCULATE DEPOSITION.  S0309310
952*           2 RUN  TERMINATED  >                                                     SQ309S20
933*            END                                                                    S0309530

-------
u>
1*
2*
3*
4*
S*
6*
7*
8*
9*
10*
11*
12*
13*
14*
15*
16*
17*
1 8*
1 9*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*


C
C
C
C
C
C
C
C
C
C
C
C






t



C
C
C
C






C



SUBROUTINE DYOUT.IHOUR(5>
COMMON /LOGIX/ IS«( 40 ) , NSOURC , NXPHTS. NYPNTS. NXMYPT . NGROUP .
1 NSOGRP<150).IDSOR( 200 >, IPERD.NPNTS.NAVG.NHOURS.NDAYS, NTDA\ , LINE/
2 IO.IN.TITLE(15)/I8UN(3>.ICHIUN(7>.CONDEP(6).LIHIT,HIMIT
SET HOUR AVERAGE LABEL.
HOUR » 4HHOUR
IFUAVG .GT. 1) HOUR « 4HPER.
10 IF(NXPNTS .EG. 0 .OR. NYPNTS . E8 . 0) GOTO 190
INITIALIZE SUBSCRIPTS & SUBSCRIPT INCREMENTS.
MAXIMUM OF 38 LINES OF Y-AXIS DUE TO HEADING.
MAXIMUM OF 9 VALUES ACROSS FOR X-AXIS FOR DAILY & ANNUAL TABLES;
5 VALUES ACROSS FOR HIGHEST I SECOND HIGHEST TABLES.
IXINC * 9
IFUFLAG .GT . 1 > IXINC « S
IX * 1
JX * IXINC
IY » NYPNTS - 38
JY - HYPNTS
FIND MAXIMUM VALUE FOR RECEPTOR GRID ONLY.
IFUAVG .EQ. 99) GOTO 30
NN = NXPNTS*NYPNTS
COHHAX = 0.0
S0400010
S0400020
S0400030
4S0400040
)S0400050
S0400060
S0400070
S0400080
S0400090
S0400100
S04001 10
S0400120
S04001JO
80400140
S0400150
S0400160
80400170
S0400180
S0400190
S0400200
S0400210
S0400220
S0400230
S0400240
SM002SO
S0400260
S0400270
S0400280
S0400290
S0400300
S0400310
S0400320
S0400330
S0400340
S0400350
S0400360
S0400370
S 0.4 003 80

-------
39*
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
50*
51*
52*
53*
54*
55*
56*
57*
58*
59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
HE. 99)  GOTO 40
9001)
9010)  TITLE
9011)
   DO 20   J =  1,NYPNTS
   L = 9010) TITLE
   WRITEC10,9015)  IAVG
NE.  75)  GOTO
9002)  NTDAY
       IG
       TITLE
       NTDAY,
 50
CONDEP,ICHIUN
       ,70 ,80

       IDY,IAVG,II
       IG
       TITLE
        IAVG,CONDEP,ICHIUN,IHR,IDY

       IAVG
       IG
       TITLE
        IAVG,CONDEP,ICHIUN
             CONDEP,ICHIUN
S0400390
S0400400
S0400410
S0400420
S0400430
S0400440
S0400450
S0400460
S0400470
S0400480
S0400490
S0400500
S0400510
S0400S20
S0400S30
S0400540
S0400SSO
S040Q560
S0400570
S0400580
S0400S90
S0400600
S0400610
S0400620
S0400630
S0400640
S04006SO
S0400660
S0400670
S0400680
80400690
S0400700
S0400710
S0400720
S0400730
S0400740
S0400750
S0400760

-------
Ln
 77*
 78*
 79*
 80*
 81*
 82*
 83*
 84*
 85*
 86*
 87*
 88*
 89*
 90*
 91*
 92*
 93*
 94*
 95*
 96*
 97*
 98*
 99*
100*
101*
102*
103*
104*
105*
106*
107*
108*
109*
110*
11 1*
112*
113*
114*
                                                       < I OS OR ( I > , I = I F R , I TO >
 90 IFCNGROUP  .EQ.  0)  UR I TEC I 0 > 9007 >
    IF(NGROUP  .GT.  0)  V R ITE< I 0 , 9008 >
    «RITE< 10, 9009)
    MR I TE< I 0,901 6)  CONHA X, GR I DX< I XP ) / GR ID Y( I YP )
    LABtL AXES  DEPENDING ON GRID SYSTEM.
100 :  . EQ .  4>  GOTO 110
    VRITE< 10/9017)
    GOTO  120
110 VRITE< IO/ 9018)
    CHECK NUMBER  ACROSS  (, DOWN THE
120 IF(NXPNTS  .LE.  JX) JX = NXPNTS
    IFUY .LT .  0)  IY = 0
    PRINT CONCEHTRATIONSC DEPOSITIONS
                                                    PAGE
                                                      >  DEPENDING ON TYPE
                                                   EQ.  3>  URITE(IO/9019)
                               .EQ.  2 .OR.  ISUC2) .EQ.  4)  URITE
 IF(ISW(2)
I I=IX,JX)
 VRITE(10/9021)
 LINE = JY
 L = *NXPHTS
 MRITEdO/9022)  GRIDY(LINE)/
 LINE = LINE    1
 IFtLINE  .LE.  IY)  GOTO  170
 GOTO 130
            EQ.  1
Oi' TABLI

(Gk
                                                 (CON< L*I ), I = IX,JX)
            EQ.  2  .OR.  ISy<2> .EQ. 4)  WRI TEd 0 «9024 )
140 IF(ISU(2)
   1 I=IX,JX)
    IFUSW<2)
   1 I-IX/JX)
    HRITE(IO/9021)
    II « JX-IX+1
    LINE " JY
150 L = ( LINE- 1 XHXPHTS
    DO 160 J »  1,11
    12 = L + NPNTS  +  IX  + J - 1
    ICON « CONCI2)
    IDAY(J) =  ICON  -  ( ICOH/512)*512
    37000 OCTAL »  15872  DECIMAL AND
OR. ISW(2)  .EQ.  3) WRITEdO/9023)
(GRIDX(

(GRIDX(
                                                                                 I),

                                                                                 I),
                                                     HASKS  IN HOUR
S0400770
S0400780
S0400790
S0400800
S0400810
S0400820
S0400830
S0400840
S04008SO
S0400860
S0400870
S04001 oO
S0400890
S0400900
S0400910
S0400920
S0400930
S0400940
S0400950
S0400960
S0400970
S0400980
S0400990
f M01000
S0401010
S0401020
S0401030
S0401040
S0401050
S0401060
S0401070
S0401080
S0401090
S0401100
S0401110
S0401120
S0401130
S0401140

-------
115*
116*
117*
118*
119*
120*
121*
122*
123*
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
160
170
180
190
200
210
220
IHOUR(J)
WRITEC 10,
 1 = 1 * II )
LINE  -  LI
IF(LINE  .
CHECK  FOR
IF(IY  .LE
IY =  IY  -
JY =  JY  -
GOTO  30
IF(NXPNTS
IX =  IX  *
JX «  JX  +
IY =  HYPH
JY =  NYPH
GOTO  30
IF(NXUYPT
PRINT  TAB
NN -  NXPN
SET  SUBSC
IXIHC  -  1
IFdFLAG
IX =  1
JX =  IXIN
ONE  =  .FA
IF
IFdAVG  .
VRITEUO,
URITEdO,
URITEdO,
GOTO  280
IFdAVG  .
«RITE(IO,
VRITEdO,
WRITEdO,
HRlTEdO,
«  ICON/ ,

HE  -  1
GT.  IY )  GOTO 150
 MULTIPLE PAGE TABLES.
.  0)  GOTO 180
 38
 38

  .LE.  JX) GOTO 190
 IXINC
 IXIHC
TS  -  38
TS

  .EQ.  0)  GOTO 330
LES  FOR  DISCRETE POINTS.
TS*NYPNTS
RIPT  VALUES  & SUBSCRIPT INCREMENTS.
14
.GT.  1>  IXINC = 76

C
LSE .
  .GT.  JX ) GOTO 210
PT
*2  .NE.  JX)  ONE = .TRUE .
HE.  99)  GOTO 220
9001)
9010)  TITLE
901 1 )

NE.  75)  GOTO 230
9002)  NTDAY
9003)  1C
9010)  TITLE
9012)  NTDAY,CONDEP, ICHIUH
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
SO 40
S040
S040
S040
S040
S040
S040
S040
S040
S040
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

-------
153*
134*
133*
136*
157*
138*
139*
160*
161*
162*
163*
164*
163*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
179*
180*
181*
182*
183*
184*
185*
186*
187*
188*
189*
190*
    GOTO 270
230 IFCIFLAG-2)  240,230,?60
240 II * IHR/IAVG
    yRITEC10,9004)  IDY,IftVG,Il
    yRITEC10,9003)  IG
    yRITEC10,9010)  TITLE
    yriTECIO,9013)  IftVG,CONOEP,ICHIUN,IHR,IOY
    GO TO 270
230 yRITEC10,9003)  IAVG
    yRITEC10,9003)  IG
    yRITEC10,9010)  TITLE
    yRITECIO,9014)  IftVG,COHOEP, ICHIUN
    GOTO 270
260 yRITEC10,9006)  IAVG
    yRITEC10,9003)  IG
    yRITEC10,9010)  TITLE
    yRITECIO,9013)  IflVG,CONOEP, ICHIUM
270 IFCHGROUP  .EQ.  0)  UR ITECI 0,9007)
    IFCNGROUP  .GT.  0)  URITECI 0,9008> CIDSORCI ) ,I = IFR,I TO )
280 yRITEC10,9026)
    IFCIFLAG  .GT. 1 )  GOTO 290
    IFCISyC3)  .EQ.  i  .OR. I8W(3) . EQ .  3)  MR I TE( I 0 , 9027 )  CCOHDEPO),
   1 1=1,3)
    IF(ISU(3)  .EQ.  2  .OR. ISH(3) .EQ.  4)  WRITE(I 0,9028)  CCOHDEPC3),
    yRITEC 10, 9029)  CXDISCI),YDISCI),CONCI+NN),IMX,JX)
    GOTO  320
290 IFCISyC3)  .EQ.  1  .OR
   i HOUR,1=1,2)
    IFCISyC3)  .EQ.  2  .OR
   i HOUR,1*1,2)
    HN1
                       I8WC3) .EQ. 3) VRITEUO,9030)  CCONOEPC3),

                       ISU(3) .EQ. 4) yRITECIO,9031)  CCOHOEPC3),
      HN + NPNTS
DO 310 J « IX,JX,2
ICON • COHCHH1+J)
IDftYCl) > ICON  - (ICON/S12)*512
IHOURCi) n !cON/(512*IAVG)
IFCJ .EQ. JX  .AND.  ONE)  GOTO 300
ICON • CON(NN1+J+1)
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
S040
8040
S040
S040
S040
S040
S040
S040
8040
8040
8040
8040
8040
Sv>40
S040
S040
S040
8040
8040
S040
8040
8040
8040
8040
8040
8040
1530
1340
1350
1560
1570
1580
1590
1600
1610
1620
1630
1640
1630
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900

-------
ON
OO
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*
214*
213*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*






300
310
C
320



330

9001
9002
9003
9004
9003
9006
9007
9008
9009
9010
9011
9012
9013

9014
9013
9016

9017
9018
9019
9020
9021
 IDAY(2) =
 IHOUR(2)
 II » J +
 MRITEUO,
1 XDIS
                             i
                             9032) XDIS(J),YDIS(J >,CON(NN + J >,IDAY(1 ).IHOUR( 1 )
                             , YDIS( II >,CON(NN + I 1 >, IDAY( 2), IHOUR(2 )

                             9032) XDIS,CON< HN + J>, IDAY< 1 ), IHOUR( 1)

                               MULTIPLE PAGE OUTPUT.
                               .LE. JX) GOTO 330
                               1
                               IXIHC
   121X,7H'N'-DAY/l22X,13,3H  DAYS)
2X,7HSGROUPI,13)
  ,121X,7HDAILY:  ,I3/122X, I 2,6H-HR/PD,I 2 )
  ,121X,4HHIGH/122X,I2,3H-HR>
  ,121X,8H2ND HIGH/122X, 12,3H-HR )
X/20H*  FRON ALL  SOURCES  *)
X.18H*  FROH SOURCES:   ,3( 16,1H,>,1H*/3<3OX,10(I 6,1H,
X,23H*  FOR  THE RECEPTOR  GRID  */)
X,4H*»* /15A4.4H ***//)
OX,31H* ELEVATION  HEIGHTS  IN  HETERS *)
X,2H*  ,I3,5H-DAY ,5A4,A2,7A4,2H  */)
X/7H*  DAILY,13,6H-HOUR ,3A4,A2,7A4,2H */49X,
ING WITH  HOUR,13,  8H FOR  DAY,I4,2H  *)
X,9H»  HIGHEST,13,6H-HOUR  ,3A 4,A 2,7A4,2H *)
X/16H*  SECOND  HIGHEST,I 3,6H-HOUR ,3A4,A2>7A4,2H  *)
X,22H*  HAXIHUH VALUE EQUALS,Fl3.3,18H AND OCCURRED  AT
, ,F10 . 1,3H) */)
H   Y-AXIS    /,32X,13HX-AXIS  (HETERS))
H   DIRECTION /,32X,14HRANGE  (METERS))
H   (HETERS)  /,9F13.1)
H   (DEGREES) /
(2H - )/)
 S0401910
 S0401920
 S0401930
 S0401940
 S0401930
 S0401960
 S0401970
 S0401980
 S0401990
 S0402000
 S0402010
 S0402020
 S0402030
 S0402040
 S0402050
 S0402060
 S0402070
 S0402080
 S0402090
 S0402100
 S0402110
 S0402120
)S0402130
 S0402140
 S0402130
 S0402160
 S0402170
 S0402180
 S0402190
 S0402200
 S0402210
 S0402220
 S0402230
 S0402240
 S0402230
 S0402260
 S0402270
 S0402280

-------
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
9022
9023
9024
9029
9026
9027
9028
9029
9030

9031

9032

1,2H /,9Fi3.3>
 (METERS)  /, 6X, 5

/,3(F13.3,2H (,I 3,1H, , 12, 1H) FOR THE DISCRETE RECEPTOR POINTS - X - -Y-.9XfA3fiH.fi - RNG - - DIR -,5X,A3,1H. FORHAKF11 FORHAK 13H FORHAK13H FORHATCF11.1,2H FOR1AT(48X,36H* FORHAK 2X, 3< 18H i-ORHAT(2X,3(20H FORflAK 3< 2F1 1 . 1 ,FM . 5, 6X > > FORNAK 13X,2(19H - X - i 11X)/64<2H -)/) FORHAK13X,2(3X,19H- RNG - 1 1H),10X)/64(2H -)/) FORnAT(12X,2<2Fll.l,F13.3,3H END - Y - ,7X,A3,7H - OIR -,5X,A3,7H (. 13, 1H, , 12,2H) S */) )/64(2H ->/', 3X)/64(2H ->/> ( , 4HDAY, , A4, (,4HDAY,, 10X )) S0402290 S0402300 S0402310 S0402320 S0402330 S0402340 S0402330 S0402360 1H).S0402370 S0402380 A4, S0402390 S0402<00 S0402410 S0402420 & vo


-------
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
11*
12*
13*
14*
15*
16*
17*
^ 19*
o 20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
33*
36*
37*
38*

C
C
C





C

















C




C



 SUBROUTINE  HAXOT/YDISiIPNTCI >,N<1 )
 DIMENSION  IHR(2>,1DY(2),X(2),Y(2>,IR(2),CHI<2>
 COMMON /LOGIX/   ISW(40 ) ,HSOURC,HXPHTS,HYPHTS,HX«YPT.HGROUP,
1 MSOGRP< 1 50), ID SO R( 200 >, IPERD,NPNTS,HAYG,NHOURS,NDAYS, NTDAY, LINE,
2 10, IN, TI TLEC 13 >, IQUNC 3), ICHIUNC 7), CONDEP< 6)
 URIT
 WRIT
 VRIT
 IF HOUR = 4HHOUR
EUO, 9006)  (CONDEP(3 ),HOUR, I =1
 1
 N(N1 >
            IAVG, 1C
            TITLE
            IAVG,CONDEP  ,  ICHIUN
            0) URITE<10,9002)
            0> »RITE(10,9003)  
                                 2)
 IP »
 IR< J
 CHK
 OBTA
 IDY(
 IHR(
 IDY<
 K =
 GET
 IF(K
 IY «
 IX =
 HXPNTS*NYPHTS
01=  1,12
0 J =  1,2
 I +  I2*(J-1>
1 .GT .  Nl )  GOTO 40
 IPMT< II >
> » I 1
J > «  COH( IP)
IN HOUR & DAY.
J ) »  CON GOTO 10
 INT< S0500010
 S0300020
 S0300030
 SOS00040
 S0300090
 S0300060
 80300070
 S0300080
 S0300090
 S0300100
 SOS00110
 S0500120
 SOS00130
 SOS00140
 S0300130
 S0300160
 S0300170
 S0300180
 S0500190
 S0300200
 S0500210
 S0500220
 S0300230
 SOS00240
 SOS002SO
 S0500260
 S0500270
 S0500280
 S0500290
 S0500300
 SOS00310
 S0500320
 S0300330
 SOS00340
 S0300350
 SOS00360
 S0300370
 SOS00380

-------
39*
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
90*
31*
32*
33*
54*
35*
56*
57*
38*
39*
60*
     X(J) « GRIDX(JX)                                                    S0500390
     Y(J) e GRIDY(IY)                                                    S0500400
     GOTO 20                                                             S0500410
  10 K » K - NN                                                          S0500420
     X(J) * XDIS(K)                                                      S0500430
     YvJ) « YDIS(K)                                                      S0500440
  20 CONTINUE                                                            S05004SO
  30 URITEUO/9007)  ,CHI,IHRCJ>,IDY,X,J=1,2>        SOS00460
     RETURN                                                              S0500470
  40 «RITE<10,9007)  IR( 1 >, CHI ( 1 >, IHR < 1 ) , IDY( 1 ) ,X( 1 ), Y( 1':               S0500480
     RETURN                                                              S0500490
9001 FORHAT(1H1,121X*6HHAX  50/122X,12. 3H-HR/122X,7HSGROUPt,I 3)          S0500SOO
9002 FORMAT(S6X,20H* FRON  ALL  SOURCES *)                                SOSOQ310
9003 FORHAT(30X.18H* FROH  SOURCES:    , 3 ( 16 , 1 H , > , 1 H */3< 3 OX , H < I 6, 1 H, >/»S 03 0 03 20
9004 FORHAT(32X»4H***  .15A4.4H  ***//>                                   SOS00330
9005 FORHAT(28X,12H* 30  HAXIHUH,13,6H-HOUR ,5A4,A2,7A4,2H *//)          S0300540
9006 FORHAT(//2(44X, 1HX/6X. 9HY( METERS »/2< 44X«2HOR«8X/ 2HORMX)/         SOS00530
    3 2(43X.17NRANGE   DIRECTION)/                                       S0300S60
    1 2(10X/4HRANK'6X*A3,1H./6X,A4.26H DAY   (METERS)  (DEGREES))/      SOS00570
    2 5X/6CK2H- )/)                                                      S0300S80
9007 FORHAT(2(1 OX,I 3/F1S.5,215/2F11.1 »                                 SOS00590
     END                                                                 SOS00600

-------
1*
2*
C
C
C
   SUBROUTINE MAX30, COH50C 1 ), IPNTC 1 >, ICOUNTC 1 )
   COMMON  /LOGIX/  ISW<40 ) /NSOURC,HXPNTS,NYPNTS, NXWYPT,NCROUP/
  1 NSOGRPC1 SO),IDSORC200 >,IPERD,NPNTS,NAVG,NHOURS,NDAYS, NTDAY,LINE,
  2 10, IN, TI TLEC 15 ), IQUNC 3), ICHIUNC 7), CONDEPC 6), LIMIT ,HIHIT
   SET  MAXIMUM NUMBER  OF  ENTRIES IN  TABLE.
   MAX  = SO
   LL »  1
   DO 90   K  - l.NPNTS
   IF(ICOUNT  « IPNTCII-1>
                 I)
                  GE
                              CONSO(IP)) GOTO 40
S0600010
S0600020
S0600030
S0600040
S06000SO
S0600060
S0600070
S0600080
S0600090
S0600100
S0600110
S0600120
S0600130
S0600140
S06001SO
S0600160
S0600170
S0600180
S0600190
S0600200
S0600210
S0600220
S0600230
S0600240
S06002SO
S0600260
S0600270
S0600280
S0600290
S0600300
S0600310
S0600320
S0600330
S0600340
S06003SO
S0600360
S0600370
S0600380

-------
39*            II  * II -  1                                                          S0600390
40*            IFUI  . GE .  ISTOP)  GOTO 60                                           S0600400
41*         70  IFCICOUNTCLL )  .EQ.  MAX) IICNT «  IP                                 S0600410
42*            IPNT(I) »  IICNT                                                      S0600420
43*     C      STORE NEW  VALUES  INTO HAXIWUH SO  TABLE.                             S0600430
44*         80  CON50CIICHT) =  CON(K)                                               S0600440
43*            CdN50  .LT.  HAX ) ICOUNTCLL) « ICOUNTCLL) *  1                S0600490
50*         90  CONTINUE                                                             S0600SOO
51*            RETURN                                                               S0600510
52*            END                                                                   S0600520

-------
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
SUBROUTINE VERT(H
C THIS ROUTINE COUP
C GRAVITATIONAL SET
C
SUM = 0.0
GAH1 = CAN
GAH2 = GAN*GAH
10 A5 = 0.0
A6 * 0.0
A2 » A2 + 2.
SUHL = SUH
HHA2 = Hn*A2
A3 = (HHA2 - H +
A3 = -.S*A3*A3
IF GOTO 20



SUH


VERTICAL  TERH FOR
S0700010
S0700020
S0700030
S0700040
S0700050
S0700060
S0700070
S0700080
S0700090
S0700100
S0700110
S0700120
S0700130
S0700140
S0700150
S0700160
S0700170
S0700180
S0700190
S0700200
S0700210
S0700220
S0700230
S0700240
S0700250
S0700260

-------
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
11*
12*
13*
14*
13*
16*
17*
18*
19*
C
C
C
C
C
C
   10
SUBROUTINE  UPyiND GOTO 10
IYR - INT(YR)
YRS • SINNUH(IYR)
YRC = COSHUH(IYR)
RETURN
JFLAG =  1
RETURN
END
                                = 360. -  AABS
YRS,YRC,JFLAG >
THE CURRENT RECEPTOR IS
'JFLAG' IS  SET  GREATER
THE X I Y SCALARS ARE
IN A POLAR  COORDINATE
S0800010
S0800020
S0800030
S0800040
S08000SO
S0800060
S0800070
S0800080
S0800090
S0800100
S0800110
S0800120
S 08 00130
S0800140
S08001SO
S0800160
S0800170
S0800180
S0800190

-------
>
I
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*

C
C
C
C
C
C
C

C




C

C
C

















C


SUBROUTIN
THIS ROUT
DOUNUIND
IF IFLAG
IF IFLAG
IF IFLAG


DIMENSION

DATA INDS
DATA XI /
1 1 .E20,9*
2 40. , 1.E2

GOTO (80,

NOTE THAT
10 IFCIST .H
IXDIST =
RETURN
20 X = XB
I = 1
II = 0
30 IFCX-X1CI
1 = 1 + 1
GOTO 30
40 IF(I-II)
30 IXDIST =
60 RETURN
70 II = I
IXDIST =
IF( IFLAG
X = XB +
GOTO 30
CALCULATE
80 SZ = A( IX
RETURN
E  SIG«AZ, XZ< 1 ),X1( 10, 6 >, INDSGZC 6 >

GZ /0,8, 11. 12.19.26/
. 13, . 2, . 25, .3,.4,.5,3.11,1.E20,2*0.,   .2, .4,1.E20,?*0.,
0.,   .3, 1 . , 3. , 10. ,30. ,1 .E20,4*0 . /   . 3, 1 . ,2. .4. ,10. ,20.,
0.2*0.,  .2,.7,1.,2.,3.,7.,15.,30.,60.,1.E20/'

90.10, 10 ) , IFLAG

 STABILITY  CATEGORY  C HAS  ONLY  1 DISTANCE  CATEGORY.
E .  3)  GOTO  20
1 2
  1ST)  .LE.  0.0) GOTO  40
50,60, 70
IXDIST  -  1
INDSGZ(IST) + I
.GT.  3) RETURN
XZ( IXDIST)

 VERTICAL SIGHA.
DIST)*XB«»B(IXDIST)
S0900010
S0900020
S0900030
S0900040
S0900030
S0900060
S0900070
S0900080
S0900090
S0900100
S0900110
S0900120
S0900130
S0900140
S0900150
S0900160
S0900170
S0900180
S0900190
S0900200
S0900210
S0900220
S0900230
S0900240
S0900250
S0900260
S0900270
S0900280
S0900290
S0900300
S0900310
S0900320
S0900330
S0900340
S09003SO
S0900360
S0900370
S0900380

-------
39*     C     CALCULATE  AVERAGE  'B'.                                              S0900390
40*        90 BB =  0.0                                                            S0900400
41*           I =  IXDIST  -  INOSGZ(IST)                                           S0900410
42*           00 100  J »  I.I                                                      S0900420
43*           II =  IHDSGZ(IST)  +  J                                                S0900430
44*       100 BB *  BB +  B(11 )                                                     S0900440
45*           BP =  BB/FLOAT(I>                                                    S09004SO
46*           RETURN                                                              S0900460
47*           END                                                                 S0900470

-------
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
> 19*
•!j 20*
OO
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*

C
C
C




C






























FUNCTION ERFX
CALCULATE  ERF(A) - ERF(B).
HPL * LOVER LIMIT    -    HPU
                                    UPPER LIMIT
LOGICAL DOHE
DATA HPL,HPU /l.E-10,10./
ERF**16
40 IF(DONE)  GOTO
   C - B
   G = F
   DONE  - .TRUE.
   GOTO  10
50 CONTINUE
   IF(A  .GE.
   IF
-------
1*
2*
3*
4*
3*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
> l8*
T
VO

C
C




C



C
C
C


C



 BLOCK DATA
 SET DEFAULT  VALUES.

 INTEGER  TITLE
 COHHON  /LOGIX/ ISy<40),HSOURC,NXPUTS,NYPHTS,HXUYPT,NGROUP,
1 .)SOGRP( 150), IDSOR( 200 >, IPERD,NPNTS , NAVG,NHOURS,NO AYS, MTDAY , LINE,
2 10,IN,TITLE<15),iaUN(3>,ICHIUN<7>,CONDEPC6>,LI«IT,HIHIT

 COHNOH  /NET/ I DAY<366)/ I STAB( 24>/A«S<24 ) * TEMP<24), AFV( 24),
1 AFVR<24>,HLH(24,2),P(24>,DTHDZ(24),DECAY(24>,PDEF(6/6>,
2 DTHDEF<6,6),GAMlI,GAH2I,ZR,DDECAY,I«ET,ITftP,TK,UCATSC5>

 INITIALIZE UIND PROFILE  EXPONENTS AND  VERTICAL POTENTIAL
 TENPERATURE  GRADIENTS.
 DATA PDEF  /6*. 1 , 6*. 15>6*.2,6*.25,\2*.3/
 DATA DTHDEF  /24»0 . 0,6* . 02,6 *.035 /

 END
S1100010
S1100020
S1100030
S1100040
S1100050
S1100060
S1100070
S1100080
S1100090
S1100100
S11001 10
S1100120
S1100130
S1100140
S1100150
S1100160
81100170
S1100180

-------
          APPENDIX B
COMPLETE FORTRAN LISTING OF THE
  INDUSTRIAL SOURCE COMPLEX
   LONG TERM MODEL (ISCLT)
      COMPUTER PROGRAM
               B-l

-------
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
C

C













C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

COMMON CORE(40000)

COMMON /DIM/ NSOURC/NXPHTS, NYPNTS, NXWYPT, N SE AS N , NSPE ED , NS TBLE ,
1HSCTOR,ISW<20),UNITS<20),TITLE(20),NOFILE
COHHON /NET/ FREQ(6,16,24),TA(6,4>,HM(6,6,4),DPDZ(6,6),UBAR(6),
1P<6,6>,PHI(16),ROTATE,G,ZR,BETA1,8ETA2,D£CAY,TK
COMMON /REST/ IUNT,JUNT,NXXYY,NXXYYP,ISTBLE(6),IFLG3,LINE,NLINES
1ICARD,NXPSS,NYPSS,HUNT,NUNT,ICONT(3,2),ITSAVE<572>,NT1,NT2,NT3,N
2;HSG7<4,3),HSG8(2),HSC9(2,2),MSG10(4,3),NGROUP,NOCOMB(20>,IDSORC
300), IEND, XSEA, ISAVSO(300),NG,NGT,NXWY
DIMENSION JSW(20),HSOR(68),NSOR(68), I TEMP (200)
EQUIVALENCE (ITEHP<1),FREQ(1,1,1»,,
10R( 1 )), ( NSOURC,NSOR( 1 ))
INTEGER TITLE, UNITS
DATA NOCOHB/20*0/, J5/4H /




THIS COMPUTER PROGRAH IS DESIGNED TO CALCULATE THE AVERAGE
SEASONAL AND/OR ANNUAL GROUND LEVEL CONCENTRATION OR TOTAL
DEPOSITION FROM MULTIPLE CONTINUOUS POINT, VOLUME AND/OR AREA
SOURCES. THE CALCULATION GRID SYSTEH CAH BE A CARTESIAH COORDINA
SYSTEM WITH 0 DEGREES NORTH AS THE POSITIVE Y AXIS AND 90 DEGREE
EAST AS THE POSITIVE X AXIS OR A POLAR COORDINATE SYSTEM WITH X
AS THE AXIS OF RADIAL ARCS AND Y AS THE AXIS OF AZIMUTH BEARIHGS
WITH 0 DEGREES AS NORTH INCREASING POSITIVELY IN A CLOCKWISE
DIRECTION. ALSO, PROVISION IS HADE FOR SPECIAL DISCRETE
X,Y RECEPTOR POINTS THAT HAY CORRESPOND TO SAMPLER SITES, POINTS
OF MAXIMA OR SPECIAL POINTS OF INTEREST. SOURCES CAN BE
POSITIONED ANYWHERE RELATIVE TO THE GRID SYSTEH.


THIS COMPUTER PROGRAH IS WRITTEN IN STANDARD FORTRAN IV AND IS
DESIGNED FOR USE ON HOST MEDIUM SIZED COMPUTERS (IBM 360,370 -
CDC 6000 SERIES, UNIVAC 1100 SERIES, ETC). ALL ALPHANUMERIC
(HOLLERITH) INFORMATION IS STORED 4 CHARACTERS (BYTES) TO AN
S0100010
S0100020
S0100030
S0100040
S0100050
S0100060
S0100070
, S0100080
T4S0100090
(2S0100100
S01001 10
S0100120
HSS0100130
S0100140
S0100150
S0100160
S0100170
S0100180
S0100190
S0100200
S0100210
S0100220
S0100230
TES0100240
S S0100250
S0100260
S0100270
S0100280
S0100290
S0100300
S0100310
S0100320
S0100330
S0100340
S0100350
S0100360
S0100370
S0100380

-------
to
39*
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
50*
51*
52*
53*
54*
55*
56*
57*
58*
59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r
C
C
C
C
C
C
C
C
C
C
C*
C
C
C
C
C
C
C
INTEGER WORD. ALSO, THE VALUES OF SOME VARIABLES IN THE PROGRAM
ASSUME AT LEAST A 32 BIT UORD. THE FUNCTION ACOS IS REFERENCED
IN THIS PROGRAM IN SUBROUTIN? DISTR AND MUST BE CHANGED TO ARCOS
FOR IBM FORTRAN COMPILERS.
BLANK COMMON IS USED TO STORE THE GRID SYSTEM AND ALL CALCULATION
RECEPTOR POINTS AND THE CONCENTRATION (DEPOSITION) ARRAYS.
TH2 AMOUNT OF CORE IN BLANK COMMON USED BY
HACK VARIABLE IS DETERMINED AT EXECUTION TIME AND THE EQUATION
OF CORE USED IN BLANK COHHOH IS

CORE = lNXPNTS+NYPHTS+2*NXWYPT]+[( 2*NSEASN+I )*< NXPNT S*NYPNTS<
NXMYPT)]

WHERE I = 0 IF TERRAIN ELEVATIONS ARE NOT USED
( I SU( 4> = 0>
I = 1 IF TERRAIN ELEVATIONS AtR USED
( I SU<4) = 1)

SLIGHT EXCEPTIONS TO THIS EQUATION OCCUR UNDER TUO PROGRAM
OPTIONS. THEY ARE NGROUP AND ISW(ll) AND MAY SUPERCEDE THE ABOVE
EQUATION IF REQUIREMENT C OF EITHER OPTION IS USED.
THE VALUE OF CORE MUST BE LESS THAH OR EQUAL TO THE TOTAL T ZE
OF THE ARRAY CORE IN BLANK COHHON AT THE BEGINNING OF THIS
PROGRAM. ALSO, THE VARIABLE IEHD FOLLOWING THE INPUT DATA COMMENT
CARDS MUST BE SET EQUAL TO THE TOTAL SIZE OF THE ARRAY CORE IN
BLANK COMMON.




S0100390
S0100400
S0100410
S0100420
S0100430
S0100440
S0100450
S0100460
S0100470
SOI 00480
KS0100490
S0100500
S0100510
SOI Of 520
S0100530
S0100540
SOI 00 550
S0100560
S0100570
S0100580
S0100590
S0100600
S0100610
S0100620
S0100630
S0100640
S0100650
S0100660
S0100670
S0100680
*********«*****LOHG TERM ISC MODEL PROGRAM INPUTS *************** *****S01 00690

THE 8ELOU EXPLANATION OF THE PROGRAM INPUTS IS MEANT FOR THE
EXPERIENCED USER. PLEASE READ THE HAIH PROGRAM DOCUMENTATION
CAREFULLY BEFORE USING THIS PROGRAM AS A SINGLE ERROR CAN HAKE
THE ENTIRE RESULTS ERRONEOUS.


S0100700
S0100710
S0100720
SO I 00 7 30
S0100740
S0100750
S0100760

-------
w
77*
78*
79*
80*
81*
82*
83*
84*
85*
86*
87*
88*
89*
90*
91*
92*
93*
94*
95*
96*
97*
98*
99*
1 00*
101*
102*
1 03*
104*
105*
106*
1 07*
108*
109*
1 1 0*
1 1 1*
1 12*
1 13*
1 14*
C-CARD
C T
C
C
C-CARD
C I
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
GROUP 1 (20A4 FORMAT)
ITLE - UP TO 80 CHARACTERS OF CASE TITLING INFORMATION
< CARD COL . 1-80)

GROUP 2 (2012 FORMAT)
SU - ARRAY CONTAINING PROGRAM OPTIONS
NOTE - IF USING AN INPUT TAPE OPTIONS ISUC1), (2), (3), AND
(4) ARE SET BY THE IHPUT TAPE AND THE PROGRAM IGNORES
ANY CARD VALUE.
ISUC 1 ) - (CARD COL. 2 )
IF - 0 OR 1 CONCENTRATION IS CALCULATED.
IF = 2 TOTAL DEPOSITION IS CALCULATED.
THIS OPTION IS IGNORED IF USING AN INPUT TAPE.
IStK 2 ) - (CARD COL. 4 )
IF = 0 OR 1 THE GRID SYSTEM X AND Y AXES ARE ASSUMED
TO DEFINE A CARTESIAN COORDINATE SYSTEM WITH
NEGATIVE X AS WEST (270 DEC)/ POSITIVE X
AS EAST (90 DEC), NEG. Y AS SOUTH (180 DEC)
AND POS . Y AS NORTH ( 0 DEG ) .
IF - 2 THE GRID SYSTEM X AND Y AXES ARE ASSUMED TO
DEFINE A POLAR COORDINATE SYSTEM WHERE THE X
AXIS DEFINES THE POLAR RADIALS AND THE Y AXIS
DEFINES THE ANGULAR COORDINATES (AZIMUTH
BEARIHG). Y IS MEASURE IN A CLOCKWISE
DIRECTION STARTING AT 0 DEGREES NORTH.
THIS OPTION IS IGNORED IF USING AN INPUT TAPE.
ISWC 3 ) - (CARD COL. 6 )
IF - 0 OR 1 THE PROGRAM ASSUMES THE SPECIAL DISCRETE
X,Y CALCULATION RECEPTOR POINTS ARE
IN CARTESIAN COORDINATES.
IF - 2 THE PROGRAM ASSUMES THE X,Y SPECIAL DISCRETE
CALCULATION RECEPTOR POINTS ARE IN
POLAR COORDINATES.
THIS OPTION IS IGNORED IF USING AN INPUT TAPE,
ISWC4 ) - (CARD COL. 8>
IF = 0 NO TERRAIN ELEVATION DATA IS READ BY THE
PROGRAM
IF = 1 TERRAIN ELEVATION DATA IS READ
S0100770
S0100780
S0100790
S0100800
S0100810
S0100820
S0100830
S0100840
S0100850
S0100860
S0100870
S0100880
S0100890
S0100900
S0100910
S0100920
S0100930
S0100940
S01009SO
S0100960
S0100970
SOI 00 980
S0100990
S0101000
S0101010
S0101020
S0101030
S0101040
S01010SO
S0101060
S0101070
S0101080
S0101090
S0101 100
S0101 1 10
S0101120
S0101130
S0101 140

-------
115*     C                    THIS OPTION  IS  IGNORED BY THE PROGRAM  IF  USIHG  AN   S0101150
116*     C          ISU(5>  - (CARD COL.  10)                                        S0101160
117*     C                    IF = 0 NO HASTFR  SAVE TAPE (SCRAUH TAPE)  IKPUT  OR  S0101170
118*     C                           OUTPUT  IS  ASSUMED.                            S0101180
119*     C                   IF - 1 ALL PROGRAM  INPUT DATA, SOURCE DATA  AND        S0101190
120*     C                          CALCULATIONS ARE URITTEN TO HASTER  SAVE  TAPE  S0101200
121*     C                           ON FORTRAN  LOGICAL UNIT ISW(15>. TWO  FILE     S0101210
122*     C                          HARKS  ARE URITTEN AFTER THE LAST RECORD  OH     S0101220
123*     C                          TAPE.  THE TAPE IS BINARY AND THE LAST  RECORD  S0101230
124*     C                          WRITTEH  OH  TAPE HAS AN INTEGER 999999  IN  WORD S0101240
125*     C                          1 TO  INDICATE END OF DATA.                      S0101250
126*     C                                                                          S0101260
127*     C                           - TAPE  RECORD -            - CONTENTS -       S0101270
128*     C                                   1      -   COMMON BLOCK ,'DIM/,  68  WORDSS0101280
129*     C                                   2      -   X AXIS AND X SPECIAL POI NTS,SOI 01290
130*     C                                             HXPHTS+HXWYPT  fclRDS          S0101300
131*     C                                   3      -   Y AXIS AHD Y SPl.MAL PO I NTS, SOI 01310
132*     C                                             HYPNTS+NXWYPT  UOI.D3          S0101320
133*     C                                   4          TERRAIN ELEVATIONS I,  ONLY  S010133C
134*     C                                             IF ISU(4) IS GREATER THAN 0 S0101340
135*     J                                   5          COHHOH BLOCK /Htl/,  2f73     S0101350
136*     C                                             WORDS                        S0101360
137*     C                                   6          COMMON BLOCK /SORO,  < 1 9     S0101370
138*     C                                             WORDS,  SOURCE  RECORD        S0101380
139*     C                                   7          CONCENTRATION  (DEPOSITION)  S0101390
140*     C                                             FOR SEASON I/  NXPHTS*NYPNTS S0101400
141*     C                                             +NXVYPT UORDS.               S0101410
142*     C                                   8          CONCEHTRATION  (DEPOSITION)  S0101420
143*     C                                             FOR SEASON 2 (IF PRESENT)   S0101430
144*     C                                   9      -   CONCENTRATIOH  (DEPOSITION)  S0101440
145*     C                                             FOR SEASON 3 (IF PRESENT)   S0101450
146*     C                                  10      -   TONCENTRATIOH  (DEPOSITION)  S0101460
147*     C                                             FOR SEASON 4 (IF PRESEHT)   S0101470
148*     C                             RECORDS 6 THROUGH 10 ARE REPEATED FOR  EACH S0101480
149*     C                             SOURCE INPUT.                                S0101490
150*     C                   IF - 2 PROGRAM  INPUT DATA/ SOURCE DATA/ AND PREVIOUS S0101500
151*     C                          CALCULATIONS ARE READ FROM HASTER SAVE TAPE   S0101S10
152*     C                          ON FORTRAN LOGICAL UHIT ISWC14)  FOR  UPDATE  ANDS0101520

-------
133*     C                           /OR DISPLAY.                                     S0101330
154*     C                    IF = 3 MASTER SAVE  TAPES ARE BOTH  READ  AND WRITTEN    S0101540
155*     C          ISU(6>   - (CARD COL. 12)                                         80101550
156*     C                     IF = 0 DO NOT PRINT  INPUT DATA. THIS  INCLUDES S0URCES0101560
157*     C                            DATA.                                           S0101570
158*     C                     IF = 1 PRINT ALL  INPUT  DATA EXCEPT  SOURCE DATA.      S0101580
159*     C                     IF = 2 PRINT SOURCE  INPUT DATA ONLY.                  S0101590
160*     C                     IF = 3 PRINT ALL  INPUT  DATA.                          S0101600
161*     C          ISy<7>-(CARDCOL. 14)                                         SOI 01610
162*     C                     IF = 1 PRINT SEASONAL  CONCENTRAT I ON(DEPOSIT 10N ) ONLYS0101620
163*     C                    IF • 2 PRINT ANNUAL  CONCENTRATION  (DEPOSITION) ONLY,  S0101630
164*     C                           (USED PRIMARILY  WHEN INPUT  DATA  IS ANNUAL      S0101640
165*     C                            ONLY)                                           S0101650
166*     C                    IF = 0 OR 3 BOTH SEASONAL AND ANNUAL CONCENTRATION    S0101660
167*     C                           (DEPOSITION)  ARE  PRINTED.                       S0101670
168*     C          ISU(8)   - (CARD COL. 16)                                         S0101680
169*     C                     IF = 1 PRINT ONLY  THE  CONCENTRATION (DEPOSITION)     S0101690
170*     C                            FROM SELECTED  INDIVIDUAL SOURCES. (SEE N0COMBSO101700
171*     C                            AND IDSORC  BELOW).                             S0101710
172*     C                     IF = 2 PRINT ONLY  THE  COMBINED CONCENTRATION         S0101720
173*     C                            (DEPOSITION)  SUMMED OVER THE SPECIFIED        S0101730
174*     C                            SOURCES.                                        S0101740
175*     C                     IF = 0 OR 3 PRINT  BOTH  SELECTED INDIVIDUAL SOURCES   S0101750
176*     C                            AND THE COMBINED SUM OVER  THE  SPECIFIED       S0101760
177*     C                            SOURCES                                         S0101770
178*     C          ISW<9)   - (CARD COL. 18)                                         S0101780
179*     C                     USED TO DEFINE THE  STABILITY MODE USED  IN THE        S0101790
180*     C                    CALCULATIONS OF THE  STANDARD DEVIATIONS  OF THE        S0101800
181*     C                    LATERAL AND VERTICAL  CONCENTRATION (DEPOSITION)       S0101810
182*     C                    DISTRIBUTIONS AND  THE  VIRTUAL DISTANCES.               S0101820
183*     C                    THIS PARAMETER MUST  BE  SET CORRECTLY IF  INPUT DATA    S0101830
184*     C                    CARD SOURCES ARE BEING  PROCESSED.                      S0101840
185*     C                    IF * 1 THE PROGRAM  ASSUMES URBAH MODE  1  AHD D, E AND  S0101850
186*     C                           F CATEGORIES  ARE  REDEFINED  AS D.                S0101860
187*     C                    IF = 2 THE PROGRAM  ASSUMES URBAN MODE  2  AND STABILITYS0101870
188*     C                           CATEGORIES  1  AND  2 ARE A, 3 IS  B,  4 IS C AND   S0101880
189*     C                           5 AND 6 ARE  D.                                   S0101890
190*     C                    IF = 0, 3 OR BLANK  THEPROGRAM ASSUMES  RURAL MODE      S0101900

-------
191*
1 92*
1 93*
1 94*
195*
1 96*
197*
198*
I 99*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
2 10*
21 1*
212*
213*
2 1 4*
215*
216*
2 17*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                 1  AND DEFIH
                 BE A THROUG
ISW(iO) -  (CARt  COL. 20)
           ISW( 10),  ISU( 11 )
      THE  PROGRAM  IS TO CAL
      IF ISW< 10 > IS LEFT BL
      10 VALUES  OF CONCENTR
      CALCULATED AND THE CO
      INPUT GRID SYSTEM AND
      IS PRINTED.
      IF ISW< 10 ) EQUALS 1 T
      ACCORDING  TO ISU(11)
      VALUES  ARE PRINTED.
      IF ISy< 10 ) EQUALS 2 T
      ACCORDING  TO ISU(11)
      AS,  THE  CONCENTRATION
      RECEPTOR  POINTS.
ISUC1 1 ) -  (CARD  COL. 22)
           IF  SET NON-ZERO T
      VALUES  OF  CONCENTRATI
      INPUT GRID SYSTEM AND
      POINTS.  (IF  NON-ZERO
      IF SET  EQUAL TO 1 THE
      INDIVIDUAL SOURCE AND
      AND  PRINTED  INDEPENDE
      IF SET  EQUAL TO 2 THE
      SOURCES  DETERMINES UH
      SOURCE  TO  PRINT.
*** UARNING -  THIS OPTION R
               FOLLOWING -
                THE PROGRAM
                 ES STABILITY
                 H F .
              CATEGORIES 1  TO 6 TO
                                    SOI
                                    SOI
                                    SOI
AND ISW(12) ARE  USED  TO SPECIFY HOUS01
CULATE AND DISPLAY  MAXIMUM VALUES. SOI
ANK OR ZERO IS PUNCHED THE MAXIMUM
ATION OR DEPOSITION ARE NOT
NCENTRATION OR DEPOSITION AT ALL
 SPECIAL DISCRETE  RECEPTOR POINTS
                 HE MAXIMUM  10 VALUES
                 AND ISU( 12) AND  ONI Y

                 HE HAXIMUM  10 VALUES
                 AND ISy<12> AND  PRINTED,  AS WELL
                  OR DEPOSITION AT  ALL  OTHER INPUT
                                                 10
                                                OF
HE PROGRAM DETERMINES  THE MAX
ON OR DEPOSITION  FROM  THE SET
 ARBITRARILY  SPACED  RECEPTOR
THEN ISUC12)  MUST  BE  ZERO)
 MAXIMUM 10 VALUES OF  EACH
 COMBINED SOURCES  ARE  CALCULATED
NTLY OF EACH  OTHER.
 MAXIMUM 10 VALUES OF  THE COMBINED
ICH 10 POINTS  OF  EACH  CONTRIBUTING

EQUIRES AT LEAST  ONE  OF THE
A -
B -

C -
                THE  PROGRAM
                CARD SOURCES
                THE  TOTAL NU
                COMBINATION
                IS  LESS THAN
                J  BELOW  COU
                IF  A SOURCE
USES AN
USES *"
        OUTPUT  TAPE.
        INPUT TAPE  AND
               SOI
               SOI
               SOI
               SOI
             '  SOI
ARE CALCULATCDS01
THESE HAXIMUM  SOI
               SOI
ARE CALCULATEDS01
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
               SOI
NO INPUT
                                    SOI
HBER OF SOURCES  USED  TO FORM EACH  SOI
OF SOURCES FOR MAXIMUM CALCULATIONSS01
 OR EQUAL TO  THE  MINIMUM OF I AND  SOI
NT EACH SOURCE ONLY  ONCE.  I.E.      SOI
IS IN MORE THAN  ONE  COMBINATION    SOI
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
0' 040
02050
02060
02070
02080
0209>
02100
021 10
02120
02130
02140
02130
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280

-------
 I
oo
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
250*
251*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ONLY COUNT IT ONCE FOR THIS CHECK.
I AND J ARE -
I = ( IEND-( NXPNTS+NYPNTS+2*NXWYPT >-K-L )/
(NSEASN*(NXPNTS*NYPNTS+NXWYPT>)

IEND 3 SIZE OF BLANK COMMON (DESIGN SIZE
IS 40000)
K = NSEASN*( NXPNTS*NYPNTS+NXWYPT >
L = NXPNTS*NYPNTS+NXWYPT
IF ISW<4)=0
» 0
IF ISW(4> IS NON-ZERO
J = 300

ISUC 12) - (CARD COL. 24 )
IF SET NON-ZERO THE PROGRAM ASSUMES THE USER IS
SPECIFYING THE SET(S) OF 10 RECEPTOR POINTS USED TO
CALCULATE MAXIMUHS. THE PROGRAM ASSUMES THE USER HAS
INPUT THESE RECEPTOR POINTS INTO THE ARRAYS FOR
SPECIAL DISCRETE POINTS. IF THIS OPTION IS USED
AND TAPE INPUT IS ALSO USED/ CARD GROUPS 6A AND 7A
BELOW ARE READ BY THE PROGRAM AND REPLACE ALL
RECEPTOR POINTS ON THE INPUT TAPE. ALSO, IF
THE INPUT TAPE CONTAINS TERRAIN ELEVATIONS CARD GROUP
8A IS READ AFTER 7A. MAKE SURE NXWYPT SPECIFIES THE
TOTAL NUMBER OF POINTS. IF THE USER INPUTS ONLY 10
POINTS SEASONAL AND ANNUAL CALCULATIONS ARE PERFORMED
ON THESE 10 POINTS. IF THE USER INPUTS MORE THAN 10
POINTS THE PROGRAM ASSUMES THE FIRST 10 ARE FOR SEASON 1
, THE SECOND 10 ARE FOR SEASON 2, AND THE LAST 10 ARE
FOR ANNUAL CALCULATIONS. FOR EXAMPLE IF UE HAVE FOUR
SEASONS OF MET DATA TO INPUT AND SEASONAL AND ANNUAL
CALCULATIONS ARE PERFORMED ON SEPARATE SETS OF POINTS
THEN SO POINTS MUST BE INPUT. IF ONLY SEASONAL CALCS
UERE PERFORMED ONLY 40 POINTS WOULD BE REQUIRED.
IF THE LAST OF THE 10 POINTS IN ANY SET HAVE BOTH X
AND Y ZERO THEY ARE IGNORED AND LESS THAN 10 ARE
ACTUALLY PROCESSED. THE VARIABLE NXWYPT SPECIFIES THE
S0102290
S0102300
S0102310
S0102320
S0102330
S0102340
S0102350
S0102360
S0102370
S0102380
S0102390
S0102400
S0102410
S0102420
S0102430
S0102440
S0102430
S0102460
S0102470
S0102480
S0102490
S0102500
S0102510
S0102520
S0102S30
S0102540
S0102550
S0102S60
S0102S70
S0102580
S0102590
S0102600
S0102610
S0102620
S0102630
S0102640
S0102650
S0102660

-------
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
w 285*
vo 286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
f»
C
C
C
      TOTAL NUMBER OF POINTS  THE  USER  HAS  PROVIDED.            SOI
ISUU3) - (CARD COL.  25-26)                                    SOI
          OPTIONAL PRINT OUTPUT UNIT.  IF LETT  BLANK  OR ZERO ISS01
      PUNCHED ALL PRINT OUTPUT GOES  TO UNIT  6.  IF  PUNCHED     SOI
      NON-ZERO ALL PRINT OUTPUT GOES TO THE  SPECIFIED UNIT.   SOI
      TUO END OF FILE HARKS  ARE WRITTEN AT THE END OF THE     SOI
      ALTERNATE PRINT FILE  IF A POSITIVE VALUE IS  PUNCHED.     SOI
      IF A NEGATIVE VALUE IS  PUNCHED THE END OF  FILE MARKS     SOI
      ARE NOT WRITTEN. CAUTION -  SOME  FORTRAN  COMPILERS       801
      SPECIFY AN AUTOMATIC  WRITE  END OF FILE AND REWIND       SOI
      (CLOSE FILES) ON OUTPUT FILES  AT THE END OF  A  PROGRAM   SOI
      RUN.                                                     SOI
ISWC14) - (CARD COL.  27-28>                                    SOI
          OPTIONAL TAPE INPUT UNIT NUMBER.  IF  BLANK  OR 0 THE  SOI
          PROGRAM USES LOGICAL UNIT  2.  IF  YOU  ARE  USING A HASSS01
          STORAGE FILE FOR  INPUT. YOU  MUST PUNCH A NEGATIVE   SOI
          VALUE FOR ISUU4).  A POSITIVE VALUE  SPECIFIES TAPE.  SOI
ISWU5) - (CARD COL.  29-30)                                    SOI
          OPTIONAL TAPE OUTPUT UNIT  NUMBER.  IF BLANK OR 0 THE  SOI
          PROGRAM USES LOGICAL UNIT  3.  IF  YOU  ARE  USING A HASSS01
          STORAGE FILE FOR  OUTPUT YOU  MUST PUNCH A NEGATIVE   SOI
          VALUE FOR ISV(15).  A POSITIVE VALUE  SPECIFIED TAPE  SOI
ISy(16> - (CARD COL.  32)                                       SOI
          IF LEFT BLANK OR  ZERO IS PUNCHED THE PROGRAM STARTS  SOI
          EACH HEW TABLE OF  CONCEHTRATION  OR DEPOSITION ON     SOI
          A HEW PAGE. ALSO,  SOME  CONTINUATIONS OF  THE SAME     SOI
          TABLE ARE STARTED  ON A  NEW PAGE.                     SOI
          IF PUNCHED NON-ZERO THE PROGRAM  ATTEMPTS TO SAVE     SOI
          OUTPUT PAPER BY COMPRESSING  THE  OUTPUT AHD          SOI
          MINIMIZING PAGE EJECTION.                            SOI
ISWC17) - (CARD COL.  33-34)                                    SOI
          OPTIONAL NUMBER OF  PRINT LINES PER PAGE.  THIS VALUE  SOI
          IS INITIALIZED TO  57 LINES PER PAGE.  IF  YOUR        SOI
          INSTALLATION PRINTER IS SET  DIFFERENTLY  PUNCH THE   SOI
          CORRECT NUMBER OF  LINES PER  PAGE.                    SOI
ISWC18) - (CARD COL 35-36)                                     SOi
          IF LEFT BLANK OR  ZERO THE  PROGRAM  DOES NOT READ     SOI
          CARD GROUP 9. (SEE  CARD GROUP 9  -  FHT)              SOI
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040

-------
305*
306*
307*
308*
309*
310*
31 1*
312*
313*
314*
31 5*
3 16*
317*
318*
319*
320*
321*
322*
f 323*
5 324*
325*
326*
327*
328*
329*
330*
331*
332*
333*
334*
335*
336*
337*
338*
339*
340*
341*
342*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-CARD
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
               IF  PUNCHED  NON-ZERO CARD GROUP 9  IS READ  BY  THE
               PROGRAM  ONLY  IF  THERE IS NO TAPE  INPUT.
    ISW<19)  -  OPTION  TO CALCULATE PLUME RISE AS A FUNCTION OF
               DOWNWIND DISTANCE FOR STACK SOURCES
               IF  =  0  THE  PROGRAM CALCULATES FINAL PLUHE RISE
                      INDEPENDENTLY OF DOWNWIND  DISTANCE.
               IF  =  1  THE  PLUME RISE CALCULATION IS  A  FUNCTION
                      OF DOWNWIND DISTANCE.
    ISWC20)  -  OPTION  TO ADD THE BRIGGS (1973) DOWNWASH  CORRECTION
               FOR STACK SOURCES
               IF  =  0  NO DOWNWASH CORRECTION IS  MADE
               IF  =  1  THE  BRIGGS (1973) DOWNWASH CORRECTION IS
                      APPLIED TO ALL STACK SOURCES
 GROUP 3
NSOURC -
(1014 )
(CARD COL
NUMBER OF
NGROUP -
           1-4)
          CARD INPUT SOURCES  (UNLIMITED)
IF SET EQUAL TO A NEGATIVE NUMBER  THE  PROGRAM WILL
CONTINUE TO READ SOURCES UNTIL  A NEGATIVE SOURCE
IDENTIFICATION NUMBER IS READ.
(CARD COL.  5-8)
NUMBER OF DIFFERENT SOURCE COMBINATIONS  (SUM OF SOURCES)
TO OUTPUT.  IF NGROUP IS LEFT  BLANK  OR  PUNCHED ZERO THEN
ALL INPUT SOURCES ARE USED TO  FORM  ANY COMBINED (SUMMED)
SOURCE OUTPUT AND ANY OUTPUT  OF  INDIVIDUAL SOURCES. IF
NGROUP IS PUNCHED NON-ZERO IT  GIVES  THE  NUMBER OF
DIFFERENT SOURCE COMBINATIONS  AND  THE  DETAILS OF THE
SOURCE COMBINATIONS ARE READ  IN  CARD GROUP 4 BELOW.
          (MAXIMUM  * 20)
    ** WARNING  -  NGROUP CANNOT BE SET
          ONE  OR MORE OF THE FOLLOWING
              A  -  THE PROGRAM IS USING
              B  -  THE PROGRAM IS USING
                  CARD SOURCES/  NSOURC
              C  -  THE TOTAL  NUMBER OF
                              TO  A  NON-ZERO VALUE UNLESS
                              CONDITIONS  IS MET -
                              AN  OUTPUT  TAPE.
                              AN  INPUT  TAPE WITH HO
                              = 0 .
                             INDIVIDUAL  SOURCES USED TO
                  FORM  ALL  COMBINATIONS DESIRED (COUNT  EACH  SOURCE
                  ONLY  ONCE)  IS LESS THAN OR EQUAL TO THE  MINIMUM
                  OF  I  AND  J  -
S0103030
S0103060
S0103070
S0103080
S0103090
S0103100
S0103110
S0103120
S0103130
S0103140
S0103150
S0103160
S0103170
S0103180
S0103190
S0103200
S0103210
S0103220
S0103230
S0103240
S0103230
S0103260
S0103270
S0103280
S0103290
S0103300
S0103310
S0103320
S0103330
S0103340
S01033SO
S0103360
S0103370
S0103380
S0103390
S0103400
S0103410
S0103420

-------
343*
344*
345*
346*
347*
348*
349*
350*
351*
352*
353*
354*
355*
356*
357*
358*
359*
360*
361*
362*
363*
364*
365*
366*
367*
368*
369*
370*
371*
372*
373*
374*
375*
376*
377*
378*
379*
380*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                     yHERE  -
                 **  I  *  -K-L)/
( NXPNTS*NYPNTS+N.*yYPT ))

E OF BLANK COHHON (DESIGN  SIZE
0000)
*(NXPNTS*NYPNTS+NXyYPT>
< 8) IS NOT 1 OR  ISU<11)  =  2
                                < 8) = 1 AND ISW(11>
                                *NYPNTS+NXyYPT
                                < 7) = 1 AND HSEASN>1
                   IS  NOT  2
NXPNTS - (CARD COL.  9-12)
         NUMBER OF  RECEPTOR POI
         CALCULATION GRID SYSTE
         TAPE  INPUT  IS  BEING US
          IF NXPNTS  IS  GREATER
          INPUT IN  CARD GROUP 6
          FIRST POINT  AND USES
          POINTS X(2)  THROUGH X
NYPNTS - (CARD COL.  13-16)
         NUMBER OF  RECEPTOR POI
         CIRCULATION GRID SYSTE
         TAPE  INPUT  IS  BEING US
          IF NYPNTS  IS  GREATER
          INPUT IN  CARD GROUP 7
          FIRST POINT  AND USES
          POINTS Y(2)  THROUGH Y
NXyYPT - (CARD COL.  17-20) (HUS
         NUNBER OF  SPECIAL DISC
         POINTS. THESE  ARE ADDI
         LIEU  OF THE REGULAR GR
         SPECIFIES  THE  NUMBER 0
         ISU(12). SEE  ISy<12).
NSEASN - (CARD COL.  21-24)
         NUMBER OF  SEASONS IN I
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
                                    SOI
NTS IN THE X AXIS OF  'HE            SOI
H. THIS PARAMETER IS  l.MORED  IF     SOI
ED.                                 SOI
THAN 2 AND ONLY TUO VALUES OF  X  ARES01
,  THE PROGRAM ASSUMES X ( 1 ,• IS  THE   SOI
X(2) AS AN INCREMENT  TO GENERATE   SOI
(NXPNTS).                           SOI
                                    SOI
NTS IN THE Y AXIS OF  THE            SOI
H. THIS PARAMETER IS  IGNORED  IF     SOI
ED.                                 SOI
THAN 2 AND ONLY TVO VALUES OF  Y  ARES01
,  THE PROGRAM ASSUMES Yd) IS  THE   SOI
Y(2> AS AN INCREMENT  TO GENERATE   SOI
(NYPNTS)                            SOI
T  BE PUNCHED IF ISV(12) > 0)        SOI
RETE RECEPTOR CALCULATION           SOI
TIONAL CALCULATION POINTS OR  IN     SOI
ID SYSTEM POINTS. ALSO, THIS  VALUE  SOI
F  POINTS DESIRED FOR  MAXIHUHS  UNDERS01
                                    SOI
                                    SOI
NPUT METEOROLOGICAL DATA  (FREQ,  TA/S01
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
0 560
03570
03580
03590
03600
0361 •>
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800

-------
w
h-»
SJ
381*
382*
383*
384*
385*
386*
387*
388*
389*
390*
391*
392*
393*
394*
395*
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
      1*
      2*
      3*
      4*
      5*
      6*
   417*
   4 18*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C-CAR
C
C
C
C
C
          HM,  ETC.  ) (MAX  =  4).
          NSEASN EQUAL  TO ONE.
          IGNORED  IF YOU  ARE  U
HSPEEO  -  (CARD COL. 25-28)
          NUMBER OF UIND  SPEED
          METEOROLOGICAL  DATA.
          PARANETER IS  IGNORED
NSTBLE  -  (CARD COL. 29-32)
          NUMBER OF PASQUILL  S
          METEOROLOGICAL  DATA
          (MAX  =  6). STABILIT
          METEOROLOGICAL  DATA
          A THROUGH F.  ON INPU
          CATEGORIES THE  PROGR
          HAVE BEEN COMBINED  I
NSCTOR  -  (CARD COL. 33-36)
          NUMBER OF WIND  DIREC
          FREQUENCY DISTRIBUTI
          OR ZERO  IS PUNCHED  T
NOFILE  -  (CARD COL. 37-40)
          FILE NUMBER OF  DATA
          ( ISVIC 5> = 1 OR  3) OR  I
          THE  GILE NUMBER OF  T
          (IS«(5)=2). THIS  PAR
          A OR CONDITION  B  IS
          NGROUP.  THE USER  MUS
          FILE NUMBER PRIOR  TO
          POSITION THE  TAPE  IT
          EXECUTION. NOFILE  DO
          AS THESE FILES  ARE  A
          DEFAULT  FOR NOFILE  I
 IF YOU  HAVE  ANNUAL DAT
 (DEFAULT  =  1 ).  THIS VA
SING TAPE  INPUT.

 CATEGORIES  IN  THE INPU
 (MAX. c 6 AND  DEFAULT
 IF YOU  ARE  USING TAPE

TABILITY CATEGORIES IN
(FREQ, TA, HH>  DPDZ, P)
Y CATEGORIES  1  THROUGH
CORRESPONDING  TO  PASQUI
T IF THERE ARE  LESS THA
AH  ASSUMES THE  HISSING
NTO THE  LAST  CATEGORY I

TION SECTOR  CATEGORIES
ON  (FREQ). (MAX.  = 16)
HE  PROGRAM ASSUMES 16.
                                                                          A ONLY
                                                                          LUE  IS
SET
                                                                          = 6) .  THIS
                                                                          INPUT.

                                                                          THE  INPUT
                                                                          .( DEFAULT*
                                                                          6 FOR  THE
                                                                          LL CATEGOR
                                                                          N 6  STABIL
                                                                          CATEGORIES
                                                                          NPUT .

                                                                          IN THE  INP
                                                                          IF LEFT  BL
   6)

   IES
   ITY
   UT
   ANK
SET TO BE  WRITTEN TO OU
F NO OUTPUT  FILE IS BEI
HE DATA  SET  TO  BE READ
AHETER MUST  BE  SPECIFIE
SELECTED UNDER  EITHER I
T POSITION  TAPES TO THE
 EXECUTION  AND  ISCLT US
 ASSEMBLES  REPORTS FROM
ES NOT APPLY  TO HASS-ST
SSUMED TO  BE  ONLY ONE F
S 1 .
               D GROUP 4  (2014) AND (1316)  (THIS  CARD GROUP  IS  NOT R
                ABOVE IS  ZERO OR BLANK. CARD  GROUP 4 IS ACTUALLY  2 C
                THE FIRST  IS THE ARRAY NOCOMB  AND THE SECOND  IS  THE
                NOCOMB -  (CARD COL. 1-4,5-8,	,77-80) (1 OR  MORE CA
                          ARRAY USED TO SPECIFY THE NUMBER OF  SOURCE
                          USED TO DEFINE A SOURCE  COMBINATION.  THE F.I
                                                                          TPUT  TAPE
                                                                          NG WRITTEN
                                                                          FROM  TAPE
                                                                          D  IF  CONDI
                                                                          SV( 1 1 )  OR
                                                                          IR CORRECT
                                                                          ES NOFILE
                                                                           DURING
                                                                          ORAGE FILE
                                                                          ILE.  THE
                                                       EAD  IF  NCR
                                                       ARD  GROUPS
                                                       ARRAY  IDSO
                                                       RDS)
                                                       ID NUMBERS
                                                       RST  VALUE
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
TIONS01
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
    SOI
   TO
                                   OUP
                                   RC
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
0.4090
04100
041 10
04120
04130
04140
04150
04160
04170
04180

-------
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
437*
438*
439*
440*
441*
442*
443*
444*
445*
446*
447*
448*
449*
450*
451*
452*
453*
454*
455*
456*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
f*
u
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
         PUNCHED ON THIS  CARD  GIVES THE NUMBER OF VALUES (SOURCE  SOI
         ID NUMBERS) PUNCHED  IN  THE FIRST PART IF THE ARRAY IDSORCSOi
         BELOW FOR THE FIRST  SOURCE COMBINATION.  (MAX = 20 VALUES)S01
IDSORC - (CftRD COL.  1-6,7-12,	,73-78) <1 OR HORE CARDS)
         ARRAY USED  TO SPECIFY  THE SOURCE ID NUMBERS TO USE IN
         FORMING THE COMBINED SOURCE OUTPUT AND INDIVIDUAL SOURCE
         OUTPUT. IF  A POSITIVE  VALUE IS PUNCHED THAT SOURTE IS
         INCLUDED.  IF A NEGATIVE VALUE IS PUNCHED THAT SOURCE IS
         INCLUDED,  AS WELL  AS,  ALL SOURCES LESS IN ABSOLUTE VALUE
         UP TO AND  INCLUDING  THE PREVIOUS POSITIVE SOURCE PUNCHED
         IF THERE  IS ONE  AND  IF  IT IS PART OF THE SAME GROUP.
         FOR EXAHPLE ASSUNE NGROUP EQUALS 3. ALSO, ASSUME THE
         VALUES PUNCHED INTO  NOCOHB ARE 1, 4, 3 ANl< THE VALUES
         PUNCHED INTO IDSORC  ARE -32, 7, 10,-22,25, -13, 17, 18.
         THE PROGRAM MILL PRODUCE 3 COMPLETE SETS OF OUTPUT. THE
         FIRST WILL  INCLUDE ALL  SOURCES 1 THROUGH 32. THE SECOND
         MILL INCLUDE SOURCE  7,  10 THROUGH 22 AND 25   HE THIRD
         OR LAST SET OF OUTPUT  UILL INCLUDE SOURCES 1  THROUGH IS
         AND SOURCES 17 AND 18.  NOTE THAT THE SOURCE ID NUMBERS
         IN EACH GROUP MUST BE  IN ASCENDING ABSOLUTE VALUE IN
         THEIR RESPECTIVE GROUP. ALSO, THESE VALUES ARE THE
         SOURCE ID  NUMBERS  YOU  HAVE ASSIGNED AND NOT NECES:, RILY
         THE RELATIVE INDEX NUMBER UNLESS ALL SOURCE ID NUf3ERS
         ARE BEING  OR HAVE  BEEH  DEFAULTED. (MAX. NO. OF VALUES
         IS 200)

       IF YOU ARE  USING TAPE  INPUT ONLY CARD GROUPS 6A,?A,8A AND
       17 THROUGH  17D CAN BE  INPUT AND 6A, 7A ARE READ ONLY IF
       ISWM2) = 1  AND HXWYPT IS NON-ZERO AND 8A IS READ ONLY IF
       ISW<12) = 1,  NXWYPT  IS NON-ZERO AND ISW(4) - 1 OR THE
       TAPE CONTAINS TERRAIN  ELEVATIONS.

                                       IF TAPE INPUT)
  *** NOTE -
C-CARD GROUP 5 (10A4/10A4  FORMAT)  (NOT READ
      UNITS - (CARD  COL.  1-40  AND  41-80)
              THE FIRST  40  CHARACTERS OF UNITS GIVES THE CONCENTRATION
              (DEPOSITION)  OUTPUT  UNITS LEFT JUSTIFIED. THE SECOND 40
              CHARACTERS  STARTING  IN  COL. 41 GIVES THE SOURCE  INPUT
              UNITS.  IF  THE  SOURCE IS AN AREA SOURCE THE PROGRAM
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
INPUTS01
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
                                                                   SOI
04190
04200
04210
04220
04230
04240
04250
£4260
04270
04280
04290
04300
0*310
0'320
04330
04340
04350
04360
0437<>
04380
04390
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510
04520.
04530
04540
04550
04560

-------
437*
458*
459*
460*
461*
462*
463*
464*
465*
466*
467*
468*
469*
470*
471*
472*
473*
474*
475*
476*
477*
478*
479*
480*
481*
482*
483*
484*
485*
486*
487*
488*
489*
490*
491*
492*
493*
494*
c
c
c
c
c
c-
c
c
c
c
c
c
c
c
c
c-
c
c
c
c
c
c-
c
c
c
c
c
c
c
c
c
c-
c
c
c
c
c-
c
AUTOMATICALLY APPENDS '/SQUARE METER" ON THE END OF THE
SOURCE INPUT UNITS. THIS CARD IS AUTOMATICALLY FILLED IF
THE PARAMETER TK (CARD GROUP 13) BELOU IS DEFAULTED AND
CAN BE LEFT BLANK.

CARD CROUP 6 (8F10.0 FORMAT) (NOT READ IF TAPE INPUT OR NXPNTS - 0>
X - ARRAY OF NXPNTS POINTS IN ASCENDING ORDER (MINUS TO POS.)
DEFINING THE X AXIS OF THE CALCULATION RECEPTOR GRID SYSTEM
(METERS). IF ONLY THE FIRST 2 X VALUES ARE NON-ZERO AND NXPNTS
IS GREATER THAN 2 THEN THE PROGRAM ASSUMES THE FIRST POINT
IS THE START OF THE AXIS, THE SECOND POINT IS ACTUALLY AN
INCREMENT TO GENERATE THE REMAINING POINTS AND THE PROGRAM
THEN GENERATES THE X AXIS INTERNALLY. (CARD COL. 1-10,11-20,
21-30, 	 ,71-80 ON EACH CARD)

CARD GROUP 6A (8F10.0 FORMAT) (NOT READ IF NXUYPT =0)
X - ARRAY OF NXUYPT SPECIAL ARBITRARILY SPACED RECEPTOR POINTS
(METERS). EACH POINT INPUT INTO THIS ARRAY MUST HAVE A
CORRESPONDING Y COORDINATE INPUT INTO CARD GROUP 7A.
(CARD COL. 1-10,11-20, 	 ,71-80 ON EACH CARD)

CARD GROUP 7 (8F10.0 FORMAT) (NOT READ IF TAPE INPUT OR NYPNTS - 0)
Y - ARRAY OF NYPNTS POINTS IN ASCENDING ORDER (MINUS TO POS.)
DEFINING THE Y AXIS OF THE CALCULATION RECEPTOR GRID SYSTEM
(METERS OR DEGREES IF POLAR SYSTEM). IF ONLY THE FIRST 2 Y
VALUES ARE PUNCHED (NON-ZERO) AND NYPNTS IS GREATER THAN 2
THEN THE PROGRAM ASSUMES THE FIRST POINT IS THE START OF THE
AXIS AND THE SECOND IS ACTUALLY AN INCREMENT USED TO GENERATE
THE REMAINING POINTS FOR THE AXIS INTERNALLY. (CARD COL. 1-10,
11-20, 	 ,71-80 ON EACH CARD).

CARD GROUP 7A (8F10.0 FORMAT) (NOT READ IF NXUYPT = 0)
Y - ARRAY OF NXUYPT SPECIAL ARBITRARILY SPACED RECEPTOR POINTS
(METERS OR DEGREES IF POLAR) THAT CORRESPOND TO EACH POINT
INPUT TO CARD GROUP 6A .

CARD GROUP 8 (8F10.0 FORMAT) (READ ONLY IF ISWC4) = 1)
Z - ARRAY OF TERRAIN ELEVATIONS FOR THE CALCULATION GRID SYSTEM
S0104570
S0104580
S0104S90
S0104600
S0104610
S0104620
S0104630
S0104640
S0104650
S0104660
S0104670
S0104680
S0104690
S0104700
S0104710
S0104720
S0104730
S0104740
S01047SO
S0104760
S0104770
S0104780
.S0104790
S0104800
S0104810
S0104820
S0104830
S0104840
S0104850
S0104860
S0104870
S0104880
S0104890
S0104900
S0104910
S0104920
S0104930
S0104940

-------
w.
H-"
Ln
495*
496*
497*
498*
499*
500*
501*
502*
503*
504*
505*
506*
507*
508*
509*
510*
51 1*
512*
513*
514*
515*
516*
517*
518*
519*
520*
521*
522*
523*
524*
525*
526*
527*
528*
529*
530*
531*
532*
C
C
C
C
C
C-
C
C
C
C
C
C
C
C-
C
C
C
C
C
A
c-
c
r
4
C
C
C
C
C
C
C
C





CARD







CARD






CARD










C-CARD
C
C
C
C
C
C






                    GROUP  8A
                   L - ARRAY
(8F10.0 FORMAT (READ
GREATER THAN ZERO.)
OF TERRAIN ELEVATIONS
ONLY IF ISW(4) = 1 AND NXWYPT IS
 FOR EACH ARBITRARILY
                                                      SPACED
    RECEPTOR POINT  INPUT  INTO  CARD GROUPS 6A AND 7A.  (  FEET)
    THE ELEVATIONS  Z  MUST  BE LESS THAN OR EQUAL TO THE ELEVATION
    OF THE EMISSIONS  OF STACK  OR VOLUME SOURCES.
    (CARD COL. 1-10,11-20,---, 71-80 ON EACH CARD)

 GROUP 9 (20A4 FORMAT  ) (NOT READ IF TAPE INPUT OR ISV<18>»0>
FMT - FORTRAN FORMAT  OF THE FREQUENCY OF OCCURRENCE OF SPEED AND
      DIRECTION •FREQ". IF  ISy<18)=0 THE PROGRAM DEFf'LTS THE
      FORMAT TO (6F10.0)  AND CARD GROUP 9 IS NOT READ.  IF
      ISU(18) IS NOH-ZERO  THE  PROGRAM READS THE FORMAT OH THIS
      DATA CARD INCLUDING  LEADING AND ENDING PARENTHESIS AND USES
      THE INPUT FORMAT READ TO  READ CARD GROUP 9A .
 GROUP 9A (FORMAT FMT  USED) (THIS CARD GROUP IS NOT READ IF AN
           INPUT TAPE  IS  BEING  USED)
FREQ - ARRAY OF FREQUENCY  OF OCCURRENCES OF UIND SPEED, «IK>
       DIRECTION, STABILITY AND  SEASON EXPRESSED AS A PERCENTAGE
       OR A FRACTION.  THE  SUM  OF ALL VALUES OF FREQ OVER A SINGLE
       SEASON MUST  BE  APPROXIMATELY EQUAL TO 100.0 OR 1.0. THESE
       VALUES ARE READ WITH NSPEED VALUES PER CARD, NSCTOR CARDS
       PER STABILITY  AND  NSTBLE  GROUPS OF THESE CARDS PER SEASON
       1 TO NSEASH.
       NSPEED*NSCTOR*NSTBLE*NSEASN VALUES ARE READ.

 GROUP 10 (6F10.0 FORMAT)  (NOT  READ I.  INPUT TAPE)
TA - ARRAY OF AMBIENT  AIR  TEMPERATURES (DEC K). THERE ARE NSTBLE
     VALUES READ PER  CARD  AND  HSEASN CARDS READ. IF ANY OF THE
     SECOND THROUGH NSTBLE  VALUES ON A CARD ARE ZERO THE PROGRAM
     SETS IT EQUAL  TO  THE  LAST  NON-ZERO VALUE ENCOUNTERED AS IT
     SCANS THE DATA CARD  FROM  LEFT TO RIGHT.
     (CARD COL. 1-10,11-20,---, 51-60 OH EACH CARD)
04950
04960
04970
04980
04990
05000
05010
05020
05030
05040
05050
05060
Of070
Of,080
05090
05100
051 10
05120
0513<
05140
OS150
05160
05170
05180
05190
OS200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05300
05310
05320

-------
533*
534*
535*
536*
537*
538*
539*
540*
541*
542*
543*
544*
545*
546*
547*
548*
549*
550*
551*
552*
553*
554*
555*
556*
557*
558*
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
C
C-
c
C
C
C
C
C
C
C
c-
c
C
C
C
C
C
C
C
C
C
C
C
c-
c
C
C
C
C
C
C
C
C
C
C
C
C
C

CARD GROUP
HH - A
V
N
A
V
R
<

CARD GROUP
DPDZ -











CARD GROUP
ROTATE













  11 (6F10.0  FORMAT)  (NOT READ IF INPUT TAPE)
ARRAY  OF  MIXING  LAYER  HEIGHTS (METERS). THERE ARE  HSPEED
VALUES  READ  PER  CARD.  AMD HSTBLE CARDS READ PER  SEASON  1
NSEASN.  IF  ANY OF  THE  SECOND THROUGH NSPEED VALUES  ON  A
    ZERO, THE PROGRAM  SETS IT EQUAL TO THE LAST  NON-ZERO
VALUE  ENCOUNTERED  AS  IT  SCANS THE DATA CARD FROM  LEFT  TO
RIGHT.
(CARD  COL.  1-10,11-20,	,51-60 ON EACH CARD)
                                TO
                               CARD
  12  < 6F10.0  FORMAT)  < NOT
  ARRAY  OF  VERTICAL  GRADIE
  THERE  ARE  NSPEED  VALUES
  READ .  IF  THE  FIRST  VALUE
  1  TO  4 (A  TO  D)  OF  THIS
  UNSTABLE  CONDITIONS.  IF
  CE  OR  F)  OF THIS  CARD GR
  TO  0.02 AND 0.035  RESPEC
  IF  THE SECOND THROUGH NS
  IT  IS  SET  EQUAL  TO  THE L
  THE  DATA  CARD IS  SCANNED
  < CARD  COL.  1-10,11-20,--
READ IF IN
NTS OF POT
READ PER C
 ON A DATA
CARD GROUP
THE FIRST
OUP ARE ZE
TIVELY FOR
PEED VALUE
AST NON-ZE
 FROM LEFT
-,51-60 ON
PUT TAPE)
ENTIAL TEMP  (DEG/ME
ARD AND NSTBLE CARDS
 CARD IS ZERO FOR  CA
 THEY ARE LEFT ZERO
VALUE ON CARDS 5 OR
RO THE PROGRAM DEFAU
 STABLE CONDITIONS.
S ON ANY CARD ARE  ZE
RO VALUE ENCOUNTERED
 TO RIGHT.
 EACH CARD)
TER).

RDS
FOR
6
LTS
ALSO,
RO
 AS
  13 (7F10.0  FORMAT)  (NOT READ IF INPUT TAPE)
  - (CARD  COL.  1-10)
    THIS  PARAMETER  IS  USED TO CORRECT FOR AHY DIFFERENCE  IN
    NORTH  AS  DEFINED  BY  THE X,Y GRID SYSTEM AND  NORTH  AS
    DEFINED  BY  THE  UEATHER STATION AT WHICH THE  WIND
    DIRECTION DATA  WAS  RECORDED.  THE VALUE OF ROTATE  IS
    SUBTRACTED  FROM EACH WIND DIRECTION CATEGORY.  ROTATE  IS
    POSITIVE  IF THE POSITIVE Y AXIS POINTS TO THE  RIGHT  OF
    NORTH  AS  DEFINED  BY  THE WEATHER STATION AND  NEGATIVE  WHEN
    THE POSITIVE  Y  AXIS  POINTS TO THE LEFT.
        THE  PROGRAM ASSUMES THAT  THE METEOROLOGICAL  DATA
    (WIND  DIRECTION)  RECORDED AT  THE WEATHER STATION  IS
    APPLICABLE  AT THE  SOURCE LOCATION. MOST WEATHER  STATIONS
    RECORD DIRECTION  RELATIVE TO  TRUE NORTH AND  HOST  GRID
    SYSTEMS  ARE RELATIVE TO TRUE  NORTH. HOWEVER, SOME  WEATHER
S0105330
S0105340
S0105350
S0105360
S0105370
S0105380
S0105390
S0105400
S0105410
S0105420
S010S430
S0105440
S0105450
S0105460
S010S470
S0105480
S010S490
S0105500
S010S510
S0105520
S0105530
S0105540
S0105550
S0105560
S0105570
S0105580
S0105590
S0105600
S0105610
S0105620
80-105630
S010S640
S0105650
S0105660
,50105670
S0105680
S0105690
S0105700

-------
1
I—
«>J
571*
572*
573*
574*
575*
576*
577*
578*
579*
580*
581*
582*
583*
584*
585*
586*
587*
588*
589*
590*
591*
592*
593*
594*
595*
596*
597*
598*
599*
600*
601*
602*
603*
604*
605*
606*
607*
608*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
         STATIONS  RECORD  DIRECT
         ALSO. UTH (UNIVERSAL  T
         ARE  ORIENTED  RELATIVE
         UT'.i  ZONE'  BUT  HAS  AN  I
         K3 YOU APPROACH  THE  EH
         ERROR AT  20  KILOMETERS
         349  METERS  IN  THE  LATE
TK - (CARD COL. 11-20)
     MODEL UNITS CONVERSION FAC
     OUTPUT CONCENTRATION (DEPO
     CONCENTRATION IS  10**6 MIC
     HICROGRAHS PER  CUBIC METER
     DEFAULT  FOR DEPOSITION IS
     SQUARE METER  AND  SOURCES  U
     ANY VARIATIONS  FROM  THE  AB
     TK IS DEFAULTED  THEN THE  P
     AUTOMATICALLY FILLED AND  C
ZR - (CARD COL. 21-30)
     HEIGHT ABOVE  GROUND  AT AIR
     THE WIND SPEED  UAS MEASURE
                                     ION RELATIVE TO MAGNETIC  NORTH.
                                     RANSVERSE RERCATOR) COORDINATES
                                     TO TRUE NORTH AT THE  CEHTC8  OF  THE
                                     HCREASING POS. OR NEC.  DECLINATION
                                     DS OF THE UTH ZONE. A ONE  DEGREE
                                      DOVNUIHD RESULTS IN  AN ERROR  OF
                                     RAL LOCATION OF THE MAXIMUM.

                                     TOR USED TO PRODUCE THE DESIRED
                                     SITION) UNITS. THE DEFAULT FOR
                                     ROGRAMS/GRAH ASSUMING OUTPUT  IN
                                      AND SOURCE UNITS t*  GRAMS/SEC.  THE
                                     i.O ASSUMING OUTPUT IN  GRAMS  PER
                                     NITS OF TOTAL GRAMS.  IF THERE  ARE
                                     OVE THEN TK MUST BE INPUT. ALSO,  IF
                                     ARAHETER UNITS ABOVE  iS
                                     AN BE LEFT BLANK.

                                     PORT OR WEATHER STATION AT WHICH
                                     D (METERS) (DEFAULT * 7.0)
BETA1 -
                                IENT FOR AN ADIABATIC UNSTAl,  E
                                . 6)
             (CARD COL.  31-40)
             AIR ENTRAINHENT  COEFFIC
             ATMOSPHERE  (DEFAULT  =  0
     BETA2 - (CARD COL.  41-50)
             AIR ENTRAINMENT  COEFFICIENT FOR A STABLE ATMOSPHERE
             (DEFAULT  *  0.6)
     G - (CARD COL. 51-60)
         ACCELERATION  OF  GRAVITY  ( M/
     DECAY - (CARD COL.  61-70)
             = THE WASHOUT  COEFFICIE
             SCAVENGING.
                 OR
             = 0.0693/T  WHERE T  IS  THE POLLUTANT HALF LIFE FOR  PHYSICAL
             OR CHEMICAL  REMOVAL.
                 OR
             = 0 FOR NO  DEPLETIOH.

-CARD GROUP 14 (6F10.0 FORMAT)  (NOT READ IF TAPE INPUT)
                                SEC**2) (DEFAULT = 9.8)

                                NT (PER SEC) FOR PRECIPITATION
S0105710
S0105720
80105730
S0105740
S0105750
S0105760
S0105770
S0105780
S0105790o
S0105800
S0105810
S0105820
S0105830
S010r.840
S0105850
S0105860
S0105870
S010S880
S0105894
S0105900
S0105910
S0105920
S0105930
S0105940
S0105950
S0105960
S0105970
S0105980
S0105990
S0106000
S0106010
S0106020
S0106030
S0106040
S0106050
S0106060
S0106070
S0106080

-------
     609*      C     UBAR  -  ARRAY CONTAINING  THE  MEDIAN VALUE  OF  EACH WIND SPEED        S0106090
     610*      C             CATEGORY (M/SEC).  IF  ANY VALUE  ON  THIS CARD IS ZERO  THE     S0106100
     611*      C             PROGRAM UILL  DEFAULT  THE VALUE  0.75,  2.5, 4.3, 6.8,  9.5,    S0106110
     612*      C             12.5 M/SEC  DEPENDING  ON THE RELATIVE  POSITION ON  THE  CARD.  S0106120
     613*      C             (CARD COL.  1-10 , 11-20,---,51-60 )                             S0106130
     614*      C                                                                           S0106140
     615*      C-CARD GROUP  15 (8F10.0  FORMAT) (NOT READ  IF  TAPE  INPUT)                 S0106150
     616*      C     THETAP  -  ARRAY OF  MIND  DIRECTION SECTOR CATEGORY ANGLES  (DEGREES ) .S0106160
     617*      C            IF  THE FIRST  TWO  VALUES  OF THIS  ARRAY  ARE ZERO THE  PROGRAM  S0106170
     618*      C            DEFAULTS TO  THE  SET OF VALUES  0 . 0,22 . 5 , 45 . 0 , . .  . ,337 . 5  DEC.  S0106180
     619*      C            (CARD COL.  1-10,11-20,	,71-80  ON  EACH CARD)                S0106190
     620*      C            (THIS VALUE  IS THE  DIRECTION FROM WHICH THE WIND  IS  COMING.  S0106200
     621*      C            ALSO, THIS  ARRAY  IS REFERED TO  AS PHI  IN THE REMAINDER OF    S0106210
     622*      C            THE PROGRAM)                                                   S0106220
     623*      C                                                                           S0106230
     624*      C-CARD GROUP  16 (6F10.0  FORMAT) (NOT READ  IF  TAPE  INPUT)                 S0106240
     625*      C     P  -  ARRAY OF UIND  SPEED  POWER  LAW EXPONENTS. THERE ARE  NSPEED      S0106250
     626*      C          VALUES READ PER  CARD  AND NSTBLE  CARDS  READ. IF THE  FIRST VALUES0106260
w.    627*      C          ON  ANY CARD IS  ZERO  IT IS  DEFAULTED TO  A 0.1, B  0.15,  C  0.2,  S0106270
^    628*      C          D 0.25, E 0.3,  F 0.3  DEPENDING ON  THE  STABILITY  CATEGORY (DATAS0106280
00    629*      C          CARD). ALSO,  IF  ANY  OF THE SECOND  THROUGH NSPEED VALUES  ON  ANYS0106290
     630*      C          CARD  ARE ZERO  THE  PROGRAM  SETS IT  EQUAL  TO THE LAST  NON-ZERO  S0106300
     631*      C          VALUE ENCOUNTERED  AS  IT  SCANS THE  CARD  FROM LEFT TO  RIGHT.     S0106310
     632*      C          (CARD COL. 1-10,11-20,	,51-60  ON  EACH  CARD)                  S0106320
     633*      C                                                                           S0106330
     634*      C     NOTE  THAT IF CARD  GROUPS  17  THROUGH  17D ARE  TO BE INPUT  THEN      S0106340
     635*      C     INCLUDE CARD GROUPS  17  THROUGH 17D FOR  SOURCE 1, FOLLOWED  BY      S0106350
     636*      C     GROUPS  17 THROUGH  17D  FOR SOURCE 2,  ETC.                            S0106360
     637*      C-CARD GROUP  17 ( I 5,311,2F10.0,7F7.0 , I 1, I 2)  INITIAL CARD FOR  EACH        S0106370
     638*      C          SOURCE INPUT  VIA DATA CARDS. CARD  GROUPS 17 THROUGH  17D  ARE    S0106380
     639*      C          ALL INPUT SOURCE RELATED.                                        S0106390
     640*      C     HUMS  -  (CARD COL.  1-5)                                               S0106400
     641*      C             SOURCE IDENTIFICATION NUMBER.  INPUT  ALL SOURCES  IN          S0106410
     642*      C             ASCENDING  ORDER  OF THE  IDENTIFICATION NUMBER.                S0106420
     643*      C             (DEFAULT =  ORDER  OF INPUT STARTING  AT 1. DO NOT  USE  DEFAULTS0106430
     644*      C             IF TAPE INPUT)  (NUMERIC ONLY).                               S0106440
     645*      C             IF A NEGATIVE VALUE IS  INPUT  IT  INDICATES THE END  OF  THE    S0106450
     646*      C             SOURCE INPUT  DATA.                                           S0106460

-------
to
647*
648*
649*
650*
65 1*
652*
653*
654*
655*
656*
657*
658*
659*
660*
661*
662*
663*
664*
665*
666*
667*
668*
669*
670*
671*
672*
673*
674*
675*
676*
677*
678*
679*
680*
681*
682*
683*
684*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
S\
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                   OISP - (CAR
                         IF =
                         IF
                   TYPE -
                   QFLG -
     D COL. 6) - SOURCE  0
     0 THE PROGRAM  ASSUME
       MERGED INTO  THE  OL
       SOURCE IS TO REPLA
       SAME SOURCE  IDENTI
     1 THE PROGRAM  ASSUME
       SAME SOURCE  IDEHTI
       THE REMAINING  PARA
       NOR ARE CARDS  19A
IF = 2 THE PROGRAM  ASSUME
       SOURCE ARE USED  TO
       (DEPOSITION) CALCU
       HAVING THE SAME  SO
       REMAINING PARAMETE
       THE PROGRAM  READS
       CAN ONLY BE  USED  I
       IS ZERO FOR  THIS  S
       TO CONVERT THE COM
       FROM ONE POLLUTANT
       TO TOTALLY RECALCU
 (CARD COL. 7)
 SOURCE TYPE WHERE  IF 0  A
 SOURCE IS ASSUMED  OR IF
 (CARD COL. 8)
 SPECTAL FLAG TO INDICATE
 IF  =  0 THEN SOURCE STREH
        NSEASN VALUES ARE
        CARD GROUP  19D  BE
 IF  =  1 THEN SOURCE STREH
        STABILITY.  THERE
        AND NSEASH  CARDS
 IF  =  2 THEN SOURCE STREN
        SEASON.  THERE ARE
        AND HSEASN  CARDS
 IF  =  3 THEN SOURCE STREH
        AND SPEED.  THERE
        AND NSTBLE  CARDS
        UNDER CARD  GROUP
ISPOSITIOH.                          S0106470
S THIS  IS  A  HEU  SOURCE TO BE        S0106480
D TAPE  SOURCES  It  PRESENT OR THIS   S0106490
CE THE  OLD  TAPE  SOURCE HAVING THE   S0106500
FICATION NUMBER.                     S0106510
S THE OLD  TAPE  SOURCE HAVING THE    S0106520
FICATIOH NUMBER  IS TO BE DELETED.   S0106530
METERS  ON  THIS  CARD ARE HC% USED    S0106540
THROUGH  19D  READ.                    S0106550
S THE SOURCE STRENGTHS FOR THIS     S0106560
 RESCALE THE CONCENTRATION          S0106570
LATIONS  OF  THE  OLD TAPE SOURCE      S0106580
URCE  IDENTIFICATION NUMBER. THE     SOL06590
RS ON THIS  CARD  ARE NOT USED AND    S0106600
ONLY  CARD  GROUP  19D.  THIS OPTION    S0106610
F QFLG  IN  THE OLD  SOlhCE DATA       S0106620
OURCE.  THIS  OPTION CAN rE USED      S0106630
CEHTRATION  (DEP) CALCUL TIONS       S0106640
 TYPE TO ANOTHER yiTHOUT HAVING     8010665^
LATE.                                S0106660
                                     S0106670
 STACK  IS  ASSUMED,  IF = 1 A  OLUHE  SOi06680
= 2 AN  AREA  SOURCE IS ASSUMC).       S0106690
                                     S0106700
 HOV  THE SOURCE  STRENGTH VARIES.    S0106710
GTH VARIES  WITH  SEASON ONLY AND     S0106720
 INPUT  ON  ONE DATA CARD UNDER       S0106730
LOU.                                 S0106740
            WITH  SEASON AND          S0106750
            VALUES  READ PER CARD     S0106760
            CARD  GROUP 19D BELOU.    S0106770
            WITH  SPEED AND           S0106780
 NSPEED  VALUES  READ PER CARD        S0106790
READ  UNDER  CARD  GROUP 19D BELOW.    S0106800
GTH VARIES  WITH  SEASON, STABILITY   S0106810
ARE NSPEED  VALUES  READ PER CARD     S0106820
READ  FOR EACH SEASON  1 TO N5EASN    S0106830
19D BELOW.                           S0106840
                                                   GTH  VARIES
                                                   ARE  NSTBLE
                                                   READ UHDER
                                                   GTH  VA°IES

-------
NJ
O
635*
686*
687*
638*
689*
690*
691*
692*
693*
694*
695*
696*
€97*
693*
699*
700*
70 1*
702*
703*
704*
705*
706*
707*
708*
709*
7 1 0*
711*
7 12*
71 3*
7 1 4*
715*
716*
7 1 7*
71 8*
7 1 9*
720*
721*
722*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
 DX  - X COOR
      ONLY )
      ENTER
 DY  - Y COOR
      ONLY )
      ENTER
 H  - HEIGHT
     S01
 SOI
 SOI
)S01
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 soi
 SOI
 SOi
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOI
 SOi
06850
06860
06870
06880
06890
06900
06910
06920
06930
06940
06950
06960
06970
06980
06990
07000
07010
07020
07030
07040
07050
07060
07070
07080
07090
071 00
071 10
07120
07130
07140
07150
07160
07170
07180
07190
07200
07210
07220

-------
723*
724*
725*
726*
727*
728*
729*
730*
731*
732*
733*
734*
735*
736*
737*
738*
739*
740*
W 741*
to ?42*
""" 743*
744*
745*
746*
747*
748*
749*
750*
751*
752*
753*
754*
755*
756*
757*
758*
759*
760*
C
C
C
C
C
C
c-c
C
C
C
C
C-C
C
C
C
C
C
C-C
C
C
C
C
C
C
C-C
C
C
C
C
C
C
C
C
C
C
C
C
C
-
N




ARD
Z
V


ARD
Z
F



ARD
Z
G




ARD
Q












ALL SOURCE  TYPES  -
VS - NUMBER  OF  PARTICLE SIZE CATEGORIES FOR GRAVITATIONAL
     DEPOSITION  0?  CONCENTRATION  WITH DEPLETION DUE TO
     GRAVITATIONAL  DEPOSITION  (MAX  = 20).
     (CARD  COL.  79-80 )

CROUP 17A (8F10.0 FORMAT) (NOT  READ  IF NVS ON CARD GROUP  17
ERO .
S - ARRAY OF  SETTLING VELOCITIES  FOR THE PARTICLE SIZE  CATOR
    (H/SEC)  (CARD COL.  1-10,11-20,	,71-80 ON EACH CARD)

GROUP 17B (8F10.0 FORMAT) (NOT  READ  IF NVS ON CARD GROUP  17
ERO
RQ - ARRAY  OF MASS  FRACTION OF  PARTICULATES FOR TKE PARTICLE
     CATEGORIES  (FRACTION).
     (CARD  COL.  1-10,11-20,	,71-80 ON EACH CARD)

GROUP 17C (8F10.0 FORMAT) (NOT  READ  IF NVS ON CARD Gfc)UP  17
ERO
AMHA - ARRAY  OF  SURFACE REFLECTION  COEFFICIENTS FOR THE  PART
       SIZE  CATEGORIES. A VALUE  OF  0 IS NO REFLECTION UP  TO
       COMPLETE  REFLECTION. (FRACTION 0 TO 1)
       (CARD  COL.  1-10,11-20,	,71-80 ON  EACH CARD)

GROUP 17D (6F10.0 FORMAT)
 - (CARD COL. 1-10,11-20,---,51-60  OR AS MANY AS ARE READ  PE
   DATA CARD)
   ARRAY OF  SOURCE  EMISSION STRENGTHS  SEE QFLG ABOVE FOR  TH
   INPUT ORDER.  NO  DEFAULT VALUES  OR LOGIC IS PROVIDED  FOR
   SOURCE STRENGTHS  BECAUSE ZERO  IS  A VALID SOURCE STRENGTH.
          THE UNITS  OF Q ARE ...
     SOURCE  TYPE              -   CALCULATING -
                       CONCENTRATION              DEPOSITION
  STACK OR  VOLUME     MASS PER  UNIT  TIME         TOTAL  MASS
      AREA             MASS PER  UNIT  TIME PER     TOTAL  MASS
                            UNIT  AREA                UNIT  ARE
   IF TK ABOVE  IS DEFAULTED THEN  THE PROGRAMS Q IS IN GRA1S/
   FOR CONCENTRATION  AND GRAMS  FOR  TOTAL DEPOSITION.
IS
IES
IS
IS
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
 SIZE SOI
     SOI
     SOI
     SOI
     SOI
     SOI
ICLE SOI
1 AS SOI
     SOI
     SOI
     SOI
     SOI
R    SOI
     SOI
E    SOI
     SOI
     SOI
     SOI
     SOI
     SOI
     SOI
PER  SOI
A    SOI
SEC  SOI
     SOI
07230
07240
07250
07260
07270
07280
07290
07300
07310
07320
07330
07340
07350
0'360
07370
07380
07390
07400
07410
07420
07430
07440
07450
07460
07470
07480
07490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600

-------
761*
762*
763*
7f A 4f
6 4 *
765*
766*
767*
768*
769*
770*
771*
772*
773*
774*
775*
776*
777*
778*
779*
780*
78 1*
782*
783*
784*
785*
786*
787*
788*
789*
790*
791*
792*
793*
794*
795*
796*
797*
798*
C
C *** REPEAT CARD GROUPS 19 TO 19D
C
r***********fc*** curt o c TUOIIT r\ A T A
C*************** tNU UP J N r U I UfllH
C CARD READER IS IUNT, PRINTER
IUNT = 5
JUNT = 6
C INPUT TAPE IS UNIT HUNT, OUTP
HUNT = 2
NUNT = 3
C IEND IS TOTAL AHOUNT OF STORA
IEND = 40000
C READ RUN TITLE
C*** CARD GROUP 1
READ ( IUNT, 9001 ) TITLE
C READ PROGRAM OPTIONS
C*** CARD GROUP 2
READ < IUNT, 9006) JSV
IF ( JStf< 14) .NE. 0) HUNT = IA
IF < JSMC 15) .NE. 0) NUNT = IA
10 IF < JSy< 5 ) . LE . 1 ) GO TO 70
READ (HUNT, ENDM 0 ) 
60 CONTINUE
C READ NO . OF CARD INPUT SOURCE
C*** CARD GROUP 3 (WITH TAPE INPUT

FOR EACH SOURCE INPUT

IS JUNT


UT IS NUNT


GE IN ARRAY CORE







BS( JSU< 14))
BS< JSy< 15) )

= 1 , 68 )





1
> . EQ . 0 ) ISW( 1 0) = 1
) .EQ . 0 ) ISW( 10) = 1

0




S yiTH TAPE INPUT
)
S0107610
S0107620
S0107630
S0107650
S0107660
S0107670
S0107680
S0107690
S0107700
S0107710
S0107720
S0107730
S0107740
SO 107 7 50
S0107760
S0107770
S0107780
S 0.1 07 790
. S0107800
S01078 10
S0107820
S0107830
S0107840
S01D7850
SOI 07 8 60
S0107870
S0107880
S0107890
S0107900
.S0107910
S0107920
S0107930
.S0107940
S0107950
S0107960
S0107970
SOI 07980

-------
w
N>
CO
735*
800*
801*
802*
803*
804*
805*
806*
807*
808*
809*
810*
81 1*
812*
813*
814*
815*
816*
817*
818*
819*
820*
821*
822*
823*
824*
825*
626*
827*
828*
829*
830*
831*
832*
833*
834*
835*
836*
      READ (IUNT/9004) NSOURC,NCROUP , NXWY. NOFILE
      GO TO  90
   70 CONTINUE
      DO 80   1=1,20
   80 ISW( I )  -  JSU< I )
C     READ DATA  SIZE
C*»*  CA^D GROUP 3 <
      TEAD   =  IABS
C     DEFAULT  SIZE P
                                   PARAMETERS  -  HO
                                  NO TAPE INPUT)
                                  2) HSOURC-NGROUP,
                                  NOFILE

                                    0) NOFILE  =  1
                                     TAPE INPUT
                                     NXPNTS.NYPNTS,NXWYPT,NSEASH,NSPEED
    IF
    IF
    IF
    DO
         (NSEASN
         (NSPEED
         (NSCTOR
         100   1=1
100
LE
LE
LE
6
I
EQ
EQ
EQ
                                  T.  0) LINE =
                                  ( ISW( 13 ) )
                                  ARAHETERS
                                  .  0) NSEASN
                                  .  0) NSPEED
                                  .  0) NSCTOR
1
6
16
               1 10
               120
               130
      ISTBLECI)  =
      IF < IS«<9 )
      IF < ISW<9 )
      IF < IS»(9 )
      URBAN  MODE 1
      ISTBLE<5)  *  4
      ISTBLE<6)  =  4
      GO TO  130
      CONTINUE
      URBAN  NODE 2
      ISTBLE(2)  =  1
      ISTBLE<3)  =  2
      1STBLE<4)  =  3
      ISTBLE(5)  =  4
      ISTBLE<6)  =  4
      GO TO  130
      RURAL  MODE 1
      CONTINUE
      IF (NSTBLE .LE
                                    0 ) ISy(9 )  =  3
                                    3) GO TO  120
                                    2) GO TO  110
                     0) NSTBLE  =  6
S0107990
S0108000
S0108010
S0108020
S0108030
S0108040
S0108050
S0108060
S0108070
S0108080
S0108090
S0108100
S01081 10
S0108120
S0108130
S0108140
S0108150
S0108160
S0108170
S0108180
S0108190
S0108200
S0108210
S0108220
S0108230
S0108240
30108250
S0108260
S0108270
S0108280
S0108290
S0108300
S0108310
S0108320
S0108330
S0108340
S0108350
S0108360

-------
837*
838*
839*
840*
841*
842*
843*
844*
845*
846*
847*
848*
849*
850*
851*
852*
853*
854*
855*
856*
857*
858*
659*
860*
861*
862*
863*
864*
865*
866*
867*
868*
869*
870*
871*
872*
873*
874*
C








C
C
C


C









C
C
C
C

C
C

C
C

C


C***  CARD  GROUP 4                                                         S0108370
      IF  (NGROUP .LE.  0)  GO  TO 150                                        S0108380
      READ  (IUNT,9002>  (HOCOHB , I=1 ,J>                                  S0108430
  150 CONTINUE                                                             S0108440
      IF  (ISy<5> .GE.  2)  GO  TO 160                                        S0108450
      READ  CONCENTRATION  (DEPOSITION) OUTPUT  UNITS AND  SOURCE  STRENGTH  S0108460
      INPUT UNITS                                                          S0108470
C***  CARD  GROUP 5  (NOT READ IF  TAPE INPUT)                               S0108480
      READ  (IUHT.9001)  UNITS                                              S0108490
  160 CONTINUE                                                             S0108500
      DEFAULT  OPTION SWITCHES                                             S0108510
      IF    .GT.  0)  NLINES  = ISW(17)                                S0108590
      LINE  =  100                                                           S0108600
      CALCULATE STARTING  LOCATION OF EACH  ARRAY  IN BLANK  COHHON          S0108610
                                                                            S0108620
      STARTING LOCATION OF  X AXIS INCLUDING  ANY  SPECIAL CALCULATION     S0108630
      RECEPTOR POINTS                                                      S0108640
      Jl  =  1                                                                S0108650
      STARTING LOCATION OF  Y AXIS INCLUDING  ANY  SPECIAL CALCULATION     S0108660
      RECEPTOR POINTS                                                      S0108670
      J2  =  Jl +HXPNTS+NXyVPT                                                S0108680
      STARTING LOCATION OF  Z ELEVATION  POINTS  FOR GRID  AND  SPECIAL      S0108690
      POINTS                                                                S0108700
      J3  =  J2*HYPNTS+NXyYPT                                                S0108710
      STARTING LOCATION OF  THE CONCENTRATION  (DEPOSITION)  ARRAYS        S0108720
      HXXYY  »  MXPNTS*NYPNTS                                                S0108730
      NXXYYP  = NXXYY+NXyYPT                                                S0108740

-------
tv>
Ln
875*
676*
877*
878*
679*
880*
881*
682*
883*
884*
885*
886*
887*
888*
889*
890*
891*
892*
893*
894*
895*
                    J4 = J3
                    IF  IEND-J5
                    JO TO 190
                180  CONTINUE
                    IF ( ISW(5 )  .EQ.  1 OR. ISM(5 )
              I      EXECUTE LONG  TERM MODEL
                    CALL MODEK CORE( J 1 ) . CORE( J2 )
                190  STOP
              9001  FORMAT (20A4)
              9002  FORMAT (2014)
              9003  FORMAT (////22H  ERROR - HAX
    18H,  REDUCE NO.
9004 FORMAT  (214,8X
9005 FORMAT  (1316)
9006 FORMAT  (2012)
     END
                                    OF CALC. POINTS///)
                                    14,16X, 14 )
                                   S0108750
                                   S0108760
                                   S0108770
                                   S0108780
                                   SO 108790
                                   S0108800
                                   S0108810
                                   S0108820
                                   S0108830
3) URITE (HUNT)  
-------
     1*            SUBROUTINE  HOD EL,UNITS<20),TITLE<20>,NOFILE                           S0200030
     4*            COMMON /NET/ F REQ< 6 , 1 6 , 24 > , TA< 6 , 4 > , HM< 6 , 6 , 4 > , DPDZ < 6 , 6 >, UB AR < 6 > ,    S0200040
     5*           1P< 6,6>,PHI< 16),ROTATE,G,ZR, BETA1 ,BETA2,DECAY,TK                     S0200050
     6*      C      NORMALLY  THE ARRAY FREQ  IN  COMMON /MET/ UOULD  BE  DIMENSIONED  6,6,  S0200060
     7*      C      6,4. HOWEVER/  SOME FORTRAN  COMPILERS LIMIT  THE  MAXIMUM NUMBER  OF   S0200070
     8*      C      DIMENSIONS  TO  3, SO THERE  ARE  ACTUALLY 2 DIMENSIONS IN THE THIRD   S0200080
     9*      C      SET TO 24 .                                                            S0200090
    10*            COMMON /REST/  IUNT,JUNT,NXXYY , NXXYYP , I 8TBLE<6) , IFLG3»11 HE , NLINES,  S0200100
    11*           1ICARD,NXPSS,NYPSS,HUNT,NUNT,ICONT<3,2>,ITSAVE<572>,NT1,NT2,NT3,NT4S0200110
    12*           2, MSG7<4, 3 >, NSG8<2>, MS G 9(2, 2 >, MSG10<4, 3>,NGROUP, NOCOMB< 20 >, I DSORC< 28 0200 1 20
    13*           300 >, IEND, XSEA, ISAVSO(300), NG, NGT,NXWY                               S0200130
    14*            COMMON /DIST/  XB/YB,XYP,TNN/TR , TRI , ARC, RP , RPI                       S0200140
    IS*            COMMON /VERT/  SIGZI>SIGZ,HMP , HP , V , VSROU , BBAR                        S02001SO
    16*      C      DATA CARD  SOURCE INPUT DATA                                          S0200160
    17*            COMMON /SORC1/ HUMS 1, TYPE1, DX1,DY1,H1,ZS1 /TS 1 *VEL1,D 1 ,HB1,BU1,BL1,S0200170
    18*           lHVSl,VSlC20>,FRQl(20>,GflNHAt(20>,Ql(6,6J4>.. 9FLGl,yAKEl,DISP        S 02 00180
w   19*      C      TAPE SOURCE  INPUT DATA                                               S0200190
KJ   20*            COMMON /SORC2/ NUMS2 / T YPE2 , DX 2 , D Y2 , H2 , ZS2 , TS 2 , VEL 2, D2 , HB 2 , BW2 , BL2 , S0200200
°"   21*           1HVS2 , VS2< 20 ),FRQ2(20 ) , GAMMA2< 20 ),Q2( fe ,6 ,4 ) ,QFLG2, WAKE2             S0200210
    22*      C      SOURCE FOR  WHICH CONCENTRATION  (DEPOSITION)  IS  CURRENTLY BEING     S0200220
    23*      C      CALCULATED.                                                           S0200230
    24*            COMMON /SORC/  NUMS,TYPE,DX,DY,H,ZS,TS,VEL,D,HB,BW,BL,NVS. VS<20),FRS0200240
    25*           1Q< 20 ). GA«MA< 20 ), Q<6,6, 4)/QFLG,WAKE                                   S0200250
    26*      C      ARRAYS FOR  STORAGE OF  CONSTANTS  USED TO CALCULATE  SIGY,   SIGZ,  XY,  S0200260
    27*      C      XZ                                                                     S0200270
    28*            COMMON /FUHCS/ AS < 36 > , BS< 36 ), PS < 6 ), QS( 6 ), CSC 6 ), DS< 6 ) , AS H 36 ) , B SI ( 3S0200280
    29*           16 >, IA<7>, JA<6),DST<31 ),IDP                                           S0200290
    30*            DIMENSION  X< 1),Y( 1) / Z< 1 ),CON< 1 ) /NSOR1<1 ) /NSOR2C 1 ) ,NSOR<1 ),         S0200300
    31*           1NSG1<3,3>,UBRS<6>,UNIT(20)/UNIS<20),STBLE<2>'PP<6>,DELH<6,6,16>,   S0200310
    32*           2XY<6 ), FFQ< 1 >,UBHI<6,6 >,PHS< 16 >, PHC< 16), DLHSMX( 6>6 >, MSG2(6,2)       S 02 00 3 20
    33*           3,FHT(20>>HBRIG(6,6)                                                  S0200330
    34*      C      THE FIRST  DIMENSION OF THE  ARRAY  CON ABOVE  CONTAINS NXPNTS* NYPNTS +S0200340
    35*      C      NXWYPT POINTS. THE VARIABLE  IS  SET  UP THIS  WAY  TO  ACCOMMODATE  ANY  S0200350
    36*      C      COMBINATION  OF GRID SYSTEM  POINTS AND SPECIAL  DISCRETE POINTS.     S0200360
    37*            EQUIVALENCE  < HSOR 1< 1 >, NUMS 1 )/< NSOR2C 1 )> NUMS2 >,< NSOR( 1 >, NUHS )       S0200370
    38*           1,,FREQ<1,1,1»,,,             S0200380

-------
39*
40*
41*
42*
43*
44*
45*
46*
47*
48*
49*
50*
51*
52*
53*
54*
55*
56*
w 57*
jo 58*
59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*





C

C




C

C





















2,,,GAHHA<1>>
 INTEGER TYPE1,TYPE2,TYPE,TITLE,
1,QFLG1,9FLG2,QFLGS,«AKE,FHT
 DATA HSG1/4HURBA,4HN  HO,4HDE 1,
14H5E  /
 DEFAULT WIND SPEEDS
                                 UNITS,DISP,QFLG,UNIT,

                                 4HURBA.4HN HO,4HDE 2,
               UNIS

               4HRURA,4HL
                           8, 9:5, 12.5/
 DATA UBRS/0.75,2.5,4.3,6
 DEFAULT UNITS
 DATA UNIT/4H H 1C,4NROGR,4HAHS ,
14H GRA,4HHS  P,4HER S,4HEC  ,6*1
 DATA UNIS/4H GRA,4HHS P,4HER S,
14H GRA,4HHS  ,8*1H /
 DEFAULT VERTICAL  POTENTIAL TEMP
 DATA STBLE/0 02,0  035/
 DEFAULT WIND PROFILE POWER LAW
 DATA PP/0 . 1,0. 15,0.2,0 .25,2*0.3
 DATA HSG7/1H ,4H    D,4HISTA,3HH
1,4HBEAR,3HING/
 DATA HSG8/1HX,1HY/
 DATA HSG9/4HNETE,2HRS,4HDEGR,3H
 DATA HSG2/4H AXI,4HS GR,4HID S,
14H DIS,4HCRET,4HE  PO,4HINTS/
 DATA RADIAN/.01745329/
 DATA AS/158.08,170.22,179.52,21
190 .673,98.483, 109 .3,61 .141,34.4
23,23.331,21.628,21.628,22.534,2
3457,13.953,13.953,14.823,16.187
 DATA BS/l .0542,1 .0932, 1. 1262,1.
18, .98332,1.0971, .91465,.86974..
2.81956, .7566, .63077, .57154. .505
3. 78407, .68465, .63227, .54503, .46
 DATA PS/209.14,154.46,103.26,68
 DATA QS/.89, .902, .917, .919, .921
 DATA CS/24.167,18.333,12.5,8.33
 DATA OS/2.5334,1.8096,1.0857, .7
 DATA IA/1,8,10,11,16,23, 32/
 DATA JA/1,9,12,13,19,27/
 DATA DST/0.15,0.2,0.25,0.3,0.4,
                                 4HPER  ,4HCUBI,4HC  HE,
                                 H  /
                                 4HQUAR,4HE  HE,4HTER ,
               4HTER  ,3*1

               4*1H  ,
                                 ERATURE  GRADIENTS

                                 EXPONENTS

                                 CE,2*1H  ,4H   RA,3HNGE,4HAZIH,4HUTH
                                 EES/
                                 4HYSTE,4HH  PO,4HINTS,4H SPE, >HCIAL
                                 7.41,2
                                 59,32 .
                                 4 .703,
                                 , 17 .83
                                 2644, 1
                                 81066,
                                 27, .46
                                 49, .41
                                 .26,51
                                 ,.919/
                                 3,6 .25
                                 2382, .
58.89,346
093,32.09
26.97,35.
6,22.651,
.4094,1 .7
.64403, .6
'13,.3761
507,.3268
.06,33.92
 75,45
3,33.5
42,47.
27. 074
283,2.
0486,.
5,.295
1,.274
3.85,5000.
04,36 .65,4
618,15.209
,34.219/
1166,0.0» .
56589,  . 51 1
92,.81558,
36,.21716/
,4 .1667/
54287,.36191/
                                 0.5,3.11,0.2,0.4,0.1,0.3,1.0,3.
    S0200390
    S0200400
    S0200410
 HO,S0200420
    S0200430
    S0200440
    S0200450
    60200460
I ,  S0200470
    S0200480
    S0200490
    S020C500
    S0200510
    S0200520
    S0200530
    S0200540
    5020055^
    S0200560
    S0200570
    S0200S80
    S0200590
    S0200600
    S0200610
0,   S0200620
4. 09S0200630
,14  S0200640
    S0200650
9319S0200660
79,  S0200670
    S0200680
    S0200690
    S0200700
    S0200710
    S0200720
    S0200730
    S0200740
    80200750
0, 10S0200760

-------
w
to
oo
 77*
 78*
 79*
 80*
 81*
 82*
 83*
 84*
 85*
 86*
 87*
 88*
 89*
 90*
 91*
 92*
 93*
 94*
 95*
 96*
 97*
 98*
 99*
100*
101*
102*
103*
104*
105*
106*
107*
108*
109*
1.0,30.0,0
20,30 .0,60
 DATA ICOH
 DATA FHT/3H<6F,4H10.0
                             .3,1.0,2.0,4.0,10.0,20.0,40.0,0.2
                             .O/
                             T/1H-,2*1H ,4H
OHTINUE
OTAL X P
XPS = HX
OTAL Y P
YPS * NY
HMET 13 T
N
H
N
C
I

N
I
*****
I
I
I
** C
X
X
J
I
R
I
30 I
HET * 25
SO IS TH
SO - 219
OUHTERS
PR1 = 0

T4 = 1
HPUT CAL
********
F < IStK 5
NPUT X A
F (HXPHT
ARD CROU
(3) = 0 .
< 4) = 0 .
= 8
F < J . GT
EAD ( IUH
F < ABSCX
F (HXPMT
           IHE
           .6
           .0/PS
           ,36
           1. 0/AS< I >
            .CT.  0.0) BSK I ) *  1 . 0/BSC I )

           OINTS
           PHTS+HXyYPT
           OINTS
           PNTS+NXyYPT
           HE  LENGTH OF COMMON  /HET/
           73
           E LENGTH OF CONHON /SORC/

           FOR WARNING HESSAGES
           CULATION POINTS AND HET  DATA
           *********************************
           )   GE  2) GO TO 210
           NO  Y AXES AND SPECIAL  POINTS
           S   LE.  0) GO TO 60
           P  6 (NOT READ IF TAPE  INPUT)
           0
           0

             NXPNTS) J = NXPNTS
           T,9002) ,I*1, J )
           (3 > )+ABS(X<4 ») 50,30/50
           S   LT.  3) GO TO 60
,0.7, 1.0,2.0,3.0,7.0,15.80200770
                         S0200780
/l/,NT2/l/,NT3/l/        S0200790
                         S0200800
                         S0200810
                         S0200820
                         S0200830
                         S0200840
                         S0200850
                         S0200860
                         S0200870
                         S0200880
                         S0200890
                         S0200900
                         S0200910
                         S0200920
                         S0200930
                         S0200940
                         S0200950
                         S0200960
                         S0200970
                         S0200980
                         S0200990
                         S0201000
                         S0201010
                         S0201020
************************S0201030
                         S0201040
                         S0201050
                         S0201060
                         S0201070
                         S0201080
                         S0201090
                         S0201100
                         S0201110
                         S0201120
                         S0201130
                         S0201140

-------
w
K>
VO
115*           Al = X(2)
116*           DO 40  1=2,
117*        40 X(I) « X( I-
118*           GO TO 60
119*        50 IF (HXPHTS
120*     C**«  CARD GROUP
121*           REriD 
139*           DO 90  1=2,
140*        90 Y+Al

                              . LE .  8 >  GO  TO
                              6  (COHTIHUED)
                              9002)  ,I
              60

              >9, HXPHTS)
                              .LE.  0) GO  TO  70
                              ISCRETE POIHTS
                              6A  (IF  TAPE IHPUT AND HXWYPT > 0 THIS CARD GROUP  IS
                              IH  THE  TAPE IHPUT SECTIOH)
                              9002) (X(I+HXPHTS),I-I,HXWYPT)
                              .LE.  0) GO TO 110
                              7  (HOT  READ IF TAPE
                     IHPUT)
HYPHTS) J » HYPHTS
9002) (Yd >«I«1 i J)
»+ABS(Y(4)>) 100,80 , 100
.LT .  3) GO TO 110

HYPHTS
1 )+Al

.LE.  8) GO TO 110
7  (COHTIHUED)
9002) (Yd ), 1*9, HYPHTS)

.LE.  0) GO TO 120
ISCRETE POIHTS
7A (IF TAPE IHPUT AND  HXWYPT  >  0  THIS  CARD GROUP  IS
IH THE TAPE INPUT SECTIOH)
9002) (Yd+HYPNTS), I «1, HXWYPT)

TIOHS (IF USED) FOR GRID SYSTEM AND SPECIAL  POINTS
S0201150
S0201160
S0201170
S0201180
S0201190
S0201200
S0201210
S0201220
S0201230
S0201240
S0201250
S0201260
S0201270
S0201280
S0201290
S0201300
S02.01310
S0201320
S020133C
S0201340
S0201350
S0201360
S0201370
S0201380
S0201390
S0201400
S0201410
S0201420
S0201430
S0201440
S0201450
S0201460
S0201470
S0201480
S0201490
S0201500
S0201510
S0201520

-------
i
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
u 1
i, I
0 1
1
i
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
53*
54*
55*
56*
57*
58*
59*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
77*
78*
79*
80*
81*
82*
83*
84*
85*
86*
87*
88*
89*
90*




C** *
130
140
C* * *
C

190
IF (
IF (
DO 1
K =
CARD
READ
IF (
CARD
CARD
READ
COMT
ISW<4
NXXYY
30 J*
(J-l >
GROU
< IUM
NXUYP
GROU
GROU
( IUN
IHUE
DO 151 1=1 ,
151
C
C
c***





c***
160
C
C

c***
170
C
C


c* * *
180
C
C

c***
z(i)=z(D*.

READ
CARD
IF (
DO 1
DO 1
H *
DO 1
CARD
READ

READ
DO 1
CARD
READ

READ
DO 1
DO 1
CARD
READ

READ
DO 1
CARD

FREQ
GROU
ISVC 1
60 L =
60 K =
4*(K-
60 J =
GROU
( IUH

ANSI
70 J =
GROU
( IUH

HIXI
80 K =
80 J-
GROU
( IUN

VERT
90 J =
GROU
)
.
I/
.EQ. 0)
LE. 0)
NYPNTS
GO TO
GO TO 1

1
5
5

40




•HXPNTS
P
T,
T
P
P
T,

8 (NOT
9002) (
.LE. 0)
8A (IF
IS READ
9002) <

READ IF
Z< I+K),
GO TO
TAPE I
I
1
NPUT )
=1. HXPNTS)
50
TAPE INPU
BELOW
I
Z( I+NXXY


N
Y

T AND
THE
), 1 = 1

NXWYPT > 0 AND ISW(4)=1 THIS
TAPE INPUT SECTION)


NXXYYP
3048006

UE
P
8)
1,
I/
1 )
1,
P
T,

EN
1,
P
T,

NG
1,
1,
P
T,

1C
1,
P

NCY OF
9 (NOT
.HE. 0
HSEASN
NSTBLE
+ L
NSCTOR
9A (NOT




OCCURRENCE OF
READ IF
) READ




READ I
FHT ) (FREQ( I, J


T AIR TEHP IN
NSEASN
10 (NOT
9002) (

LAYER
HSEASN
NSTBLE
11 (HOT
9002) (


READ I
TA( I ,J )

HEIGHTS


READ I
HH( I -J,


(




F
i

T
I





H

APE I
UNT,9




TAPE
), 1 = 1

DEGREES

F
,




F
K

AL GRADIENT OF
NSTBLE
12 (NOT

READ I

F


I

I



)

P



TAPE
= 1 ,NS

N HET


TAPE
, 1 = 1 ,

OTEHT

TAPE

WIND SPEED VERSUS DIRECTION
HPUT OR ISU( 18 ) = 0 )
001 ) (FHT( I >,I = l,20 )




INPUT)
,HSPEED>

KELVIN

INPUT)
TBLE)

ERS


INPUT)
NSPEED)

IAL TEHP. IN DEGREES K/HETER

INPUT)
S0201530
S0201540
S0201550
S0201560
S0201570
S0201580
S0201590
S0201600
S0201610
S0201620
S0201630
S0201640
S0201650
S0201660
S0201670
S0201680
S0201690
S0201700
S0201710
S0201720
S0201730
S0201740
S0201750
S0201760
S0201770
S0201780
S0201790
S0201800
S0201810
S0201820
S0201830
S0201840
S0201850
S0201860
S0201870
S0201880
S0201890
S0201900

-------
w
1
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
190
C
C
c***

C
c
c***

c
c
c***

c
c

c*» *
200

c
c *
c
210




c***

c***

c***






READ (IUNT.9002) ( DPDZ( I , J ) , I = 1 , NSPEED )

READ HISC. PARAHETTRS
CARD GROUP '.3 (NOT READ IF TAPE INPUT)
READ (IUNT,9002> ROTATE, TK , ZR , BETA 1 , BET A2 , G, DECAY

READ WIND SPEED IN HPS
CARD GROUP 14 (NOT READ IF TAPE INPUT)
READ (IUNT,9002> < UBAR < I > , I - 1 , N S PE ED >

READ WIND DIRECTION SECTOR ANGLES (DEGREES)
CARD GROUP IS (NOT READ IF TAPE INPUT)
READ (IUNT.9002) ( PHI ( I ) , I» 1 , H8CTOR >

READ WIND SPEED POWER LAW EXPONENTS
DO 200 J«1,NSTBLE
CARD GROUP 16 (HOT READ IF TAPE INPUT)
READ 
READ (HUNT) ( Y( I ) , I =1 , NYPS )
IF (ISW(4) .NE 0) READ (HUNT) C Z( I ) , 1 = 1 / NXX YYP )
IF (ISWU2) .LE. O.OR.NXWY .LE. 0) GO TO 220
NXWYPT = NXWY
CARD GROUP 6A FOR HAXIHUHS WITH TAPE INPUT
READ (IUNT.9002) ( X( I ) , I =1 , NXWYPT )
CARD GROUP 7A FOR HAXIHUHS WITH TAPE INPUT
READ  NXWYPT
NYPS = HXWYPT
NXXYY = 0
NXXYYP » NXWYPT
NXPNTS « 0
S0201910
S0201920
S0201930
S0201940
S0201950
S0201960
S0201970
S0201980
S0201990
S0202000
S0202010
S0202020
S0202030
S020/040
S0202050
S0202060
S0202070
S0202080
$0202090
S0202100
S0202110
S0202120
S0202130
S0202140
S0202150
S0202160
S0202170
S0202180
S0202190
S0202200
S0202210
S0202220
S0202230
S0202240
S0202250
S0202260
S0202270
S0202280

-------
229*
230*
231*
232*
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
250*
251*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*
  220

  230
NYPNTS »  0
CONTINUE
READ (HUNT)
IF ( ISIK5 )
(FFQ( I ),
EQ .  O.OR
= 1,HMET)
ISW(5> .EQ
2) GO TO 240
C
C
WRITE OUTPUT  TAPE
WRITE (HUNT)  ( X( I ), I = 1 , NXP S >
WRITE (HUNT)  
IF (ISWC4)  .HE   0)  WRITE (HUNT)
WRITE (HUNT)  /!=!,NXXYYP>

c
c
c*
c

2


*


40


**


250
C











260









270

C









2





2

3

3
80





90

00

10
320
CONT

DE
***
WI
DO
IF
WI
DO
IF
P<
C7
DO
IF
IF

IHUE


FAULT
**
ND

I
*****
SPEE
250
I
c
(UBAR<
ND
2
(
1 ,
s
PROF
80
P< 1
J)
P<
270
(
<
CONT
CONT
TK
IF
TK
IF
DO
UN
GO
TK
DO
UN
A
<
s
P< I
P< I
J
>
8
1
I
f
f
s=
J

,
B
J
J

NP
**
D
1,
I)
IL
1,
)
PP
J )
2,
)
)

UT
***



DATA
**

****************

NSPEED
.LE.
0.0) UBAR( I ) =
E POWER LAU EXPONENT
NST
.GT
< J)

BL



E
0.0) GO TO 260


NSPEED
.GT
.LE


0.0) C7 « P
TO 320
r
3
IT
CONT
1 .
10
S< I
0
I
)

a


1,
8

20
UNI


S<


I )
INUE
                                   80202290
                                   S0202300
                                   S0202310
                                   S0202320
                                   S0202330
                                   S0202340
                                   80202350
                                   80202360
                                   S0202370
                                   S0202380
                                   802023.90
                                   80202400
                                   S0202410
**********************************S0202420
                                   S0202430
                                   80202440
UBRS(I)                            S0202450
                                   S0202460
                                   S0202470
                                   80202480
                                   S0202490
                                   S0202500
                                   S0202510
                                   S0202520
                                   S0202S30
                                   S0202540
                                   80202550
                                   S0202560
                                   80202570
                                   S0202S80
                                   80202590
                                   S0202600
                                   80202610
                                   80202620
                                   80202630
                                   80202640
                                   80202650
                                   80202660

-------
w
u>
U)
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
285*
286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*
               330
               340
               350
360
370
               380
0.0
)
0.0)
UT.
LE.
LE.
1
0
0
G
s
ZR
0.
.0
. 0
0
)
>
9.8
a 10.0
) ZRNIN
BETA1 =
BETA2 =


e
0
0


10
.6
.6
    IF   .GT.  0.0)
    IF (J .LT. 5) GO TO 350
    DPDZ(1,J> = STBLE(J-4)
    C7 « OPDZU * J)
    DO 360 I«2,NSPEED
                                     O.OR.PHK2) .GT. 0.0) GO TO 340
                                                  TENP
                                           GO TO 350
IF (DPDZ(I.J > .GT. 0
IF  .LE
C7 = HH<1,J,K>
C8 = C7
DO 390 I«2,NSPEED
IF (HH( I,J,K> .GT
                         0) C7 « DPDZ< I
                         0) OPDZ( I , J )  =
          J >
          C7
                                         C7 »
                                         TA(I
 TA(I
, J)  -
                                     J)
                                     C7
                                     AND.ISTBLECJ>  GE
                                      0.0) HH
-------
    305*
    306*
    307*
    308*
    309*
    310*
    31 1*
    312*
    313*
    314*
    315*
    316*
    317*
    318*
    319*
    320*
    321*
    322*
7*   323*
£   324*
    325*
    326*
    327*
    328*
    329*
    330*
    331*
    332*
    333*
    334*
    335*
    336*
    337*
    338*
    339*
    340*
    341*
    342*
IF 
IF (0.99 .LE. A1.AND.A1 .LE. 1.01) GO TO 410
CALL TITLR< 1,3,1 )
WRITE (JUNT,9006> L*A1
410 Al - 1 . 0/A1
DO 420 K=1,NSTBLE
N » 4* . EQ . 2) GO TO 63
CALL TITLR( 8,2,2)
WRITE (JUHT,9004) NSOURC , NXPNTS , NYPNTS, NXWYP
1HSTBLE,NSCTOR,NOFILE
IF ( IS«<9 ) .EQ. 0) GO TO 440
J = ISWC9)
CALL TITLR( 1,2,0)
WRITE  < NSGH I , J >, I» 1 , 3 )
440 CALL TITLR<8,2,0)
WRITE (JUNT.9007) TK, G , ZR, BET Al , BETA2 , ROTATE
WRITE ( JUNT,9008) ISW
IF (NGROUP .LE. 0) GO TO 480
LINE * 23
KK = 0
DO 470 J=l, NGROUP
80203050
,J,K) * 1.0E4 80203060
80203070
80203080
80203090
80203100
80203110
80203120
80203130
80203140
80203150
80203160
80203170
S0203180
80203190
80203200
80203210
80203220
80203230
S0203240
80203250
80203260
**********************S0203270
0 80203280
80203290
T, NSEASN ,NSPEED , S0203300
80203310
80203320
80203330
S0203340
S0203350
S0203360
, DECAY 80203370
80203380
80203390
80203400
80203410
S0203420

-------
w
C*>
Cn
343*
344*
345*
346*
347*
348*
349*
350*
351*
352*
353*
354*
355*
356*
357*
358*
359*
360*
361*
362*
363*
364*
365*
366*
367*
368*
369*
370*
371*
372*
373*
374*
375*
376*
377*
378*
379*
380*
                      NOCOHB< J
              450
              460
470
              480
              490
              900
                     ( J
                     
           0>
KK
GO
           .GT. 10) J2
K
IF
IF
Jl
J2
IF
CALL TITLR<1,2,0>
YRITE 
Jl « J2
Jl « Jl+1
IF 
WRITE (JUHT.9033) J
CONTINUE
GO TO 490
J = 1
IF ( ISW(8 ) .EQ. 1> GO
WRITE  J
CONTINUE
IF ( 13W<4 ) .EO. 0) GO
KK « 3
CALL OUTPT(KK,K,X,Y,Z,1)
LINE • NLIHE8
GO TO 540
CONTINUE
IF (HXPNTS
L - 1
IF < I8W(2)
                                     ( IDSORC (MSG?(I,L ),I- 1,4 ),HSG8( 1), ( HSG2 ( I ,
   K HSG9< I , 1 ), 1=1 ,2 ),< X< I >. 1 = 1 ,NXPNTS )
510 IF (NXWYPT .LE. 0) GO  TO 520
                                                                       1 )
                                                            6),
80203430
S0203440
80203450
S0203460
S0203470
80203480
80203490
S0203500
80203510
80203520
80203530
S0203540
80203550
S020:'560
80203570
80203580
S0203590
80203600
80203610
80203620
80203630
S0203640
80203650
80203660
80203670
80203680
80203690
80203700
80203710
80203720
S0203730
80203740
80203750
80203760
80203770
S0203780
80203790
S0203800

-------
w
U)
381*
382*
383*
384*
385*
386*
387*
388*
389*
390*
391*
392*
393*
394*
395*
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
411*
412*
413*
414*
415*
416*
417*
418*
                    L  « 1
                    IF (I$y<3 )  .E8. 2) L = 2
                    I  « , 1 = 1 , 4 >, HSC8( 1 >, CMSG2C I
                   1
                520
    IF
    L
    IF
    J
       (NYPMTS
       » t
       ( ISWC2 )
       • 1
LE.  0) CO TO 530
                                EQ. 2) L
    IF ( ISWC2 >  .EQ.  2) J  > 2
    I -»  < HSG7< I , L >, I • 1 , 4 ), HSG8< 2 ), ( HSG2C I
   1(HSG9( I, J >, I«l,2),(Y< I ), I*1,NYPNTS)
                                                                         1 )
                                LE. 0) GO  TO 540
                                EQ. 2) L
530 IF (HXWYPT
    L *> 1
    IF ( I8W<3 )
    J * 1
    IF (IS«< 3 )  .EQ.  2) J  = 2
    I e  ( HSG7( I, L ), 1 = 1 , 4 ), HSG8C 2 >, 
540 CONTINUE
    CALL TITLR<5+HSEASH,2,0)
    WRITE 
-------
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
w 437*
i, 438*
^ 439*
440*
441*
442*
443*
444*
445*
446*
447*
448*
449*
450*
451*
452*
453*
454*
455*
456*




580

590



600




610


620
630
C
C
C** **



640









 .EQ. 1) H = H+2
       580
      > GO TO
      IF (K .EQ. 1 .AND. I
      CALL TITLR GO TO
      IF (K .HE  1.OR.I  -HE. 1
      CONTINUE
      WRITE 
      WRITE (JUHT,9016) K
      JRITE 
      WRITE (JUNT,9019)
      WRITE (JUNTi9020) 
      WRITE (JUHT,9022)
      WRITE (JUHT,9020)  TAN(TR)
      TNNI = l.O/TAN<0.5*TR)
      ZRI « 1 .0/ZR
      Al = 1.S/(BETA1*BETA1)
      A2 * 3.0/(BETA2*BETA2>
      NXPS8 » NXPNTS-NXXYY
      «1 ,6),( UBAR( J ), J = l,6 >


PHI(H),(FREQ( J,N/L),J«1,NSPEED)


      .NSPEED >

      Z( J ,1 ), J«l /NSPEED)
                                   80204190
                                   80204200
                                   80204210
 590                               80204220
                                   80204230
                                   80204240
                                   80204250
                                   80204260
                                   80204270
                                   80204280
                                   80204290
                                   80204300
                                   80204310
                                   80204320
                                   80204330
                                   80204340
                                   80204350
                                   80204360
 i                                  S020437C
                                   80204380
 NSPEED)                           80204390
                                   80204400
                                   80204410
NTS                                80204420
****«****»************************»S0204430
                                   80204440
                                   80204450
                                   80204460
                                   80204470
                                   80204480
                                   80204490
                                   80204500
                                   80204510
                                   80204520
                                   80204530
                                   80204540
                                   80204550
                                   80204560

-------
w
u>
oo
457*           NYPSS  »  H
458*           PPl  «  TIC*
459*           IF (IStKl
460*           XYPU = 2.
461*           XSEA « .1 .
462*     C
463*     C*«* START SECT
464*     c**************
465*     C
466*     C     SAVE SPEC
467*           IF ( ISVC 1
468*           ISW(ll)  *
469*           ISy<12)  =
470*       650 ISV11  *  I
471*           ISU12  =  I
472*           ISU10  =  I
473*           ISU8 = IS
474*           NOTAP  »  0
475*     C     HOTAP  «  0
476*     C     HOTAP  >  0
477*           L91  =  -1
478*           IF ( ISWC8
479*     C     L91  HAKES.
480*     C     L92  IF = l
481*           NXYSEA «'
482*   .        L92  »  2
483*           IF ( ISWC4
484*           L92  •  0
485*           IF (ISVC7
486*           IF (NCROU
487*           L92  «  1
488*       660 CONTINUE
489*           IF (NGROU
490*     C     SEE  IF Cft
491*           I =  NXPS +
492*           IF ( ISU(4
493*           IF (L92  .
494*           IF (L91  .
YPNTS-NXXYY
.398942281*TRI
) .LE. 1> PPl = PP1*2.0
15*TNNI
0/FLOAT(NSEASN)

ION THAT LOOPS OVER SOURCE COMBINATIONS.
tit******************************************

IAL OPTIONS FOR MAXIMA
0) .HE. 0) GO TO 650
 0
 0
SW<11)
SU< 12)
SU(10)
W(8>

 MEANS ALL TAPE DATA, NOT ENOUGH  CORE  TO  HOLD
 MEANS ALL SOURCES IN COMBINED REPORTS SAVED

) .HE. 1 OR.ISy(ll) .ED. 2) L91 =  NSEASN-1
 ROOM FOR SUM OF COMBINED SOURCES  IN  ARRAY  CO
HAKES RO.OH FOR ANNUAL SUN
NXXYYP*NSEASN

) .GT  0 AND. ISW< 11>  .EQ. 2) GO TO  660

> .EQ. l.OR.HSEASH .EQ.   1) GO TO  660
P .EQ. 0) GO TO 660
                            P  .EQ.  0 .AND. ISW<1 1 >  .NE.  2)  GO TO 690
                            N  DO  ALL  COMBINATIONS  IN  CORE (NOTAP > 0>
                            NYPS
                            )  .NE.  0)  I  «  I+NXXYYP
                            EQ . 1)  I  *  I+NXXYYP
                            NE . -1)  I  =  I+NXYSEA
            S0204570
            S0204580
            S0204590
            S0204600
            S0204610
            S0204620
            S0204630
*«**********S0204640
            $0204650
            S0204660
            S0204670
          ~, S0204680
            S0204690
            S0204700
            S0204710
            S0204720
            S0204730
            S0204740
 ALL SOURCESS0204750
IN CORE.    S0204760
            S0204770
            S0204780
N           S0204790
            S0204800
            S0204810
            S0204820
            S0204830
            S0204840
            S0204850
            S0204860
            S0204870
            S0204880
            S0204890
            S0204900
            S0204910
            S0204920
            S0204930
            S0204940

-------
w
u>
VO
495*
496*
497*
496*
499*
500*
501*
502*
503*
504*
505*
506*
507*
508*
509*
510*
511*
512*
513*
514*
515*
516*
517*
518*
519*
520*
521*
522*
523*
524*
525*
526*
527*
528*
529*
530*
531*
532*
               670
               680
               690
               700
             C
             C
             C
             C
                   NOTAP = I
                   IF ( IStf(S)
                   J « IEHD-I
                   IF (NSOURC
                   IF (NSOURC
             EQ.  1.0R.ISV(5) .EQ. 3.OR.HSOURC  .EO. 0) GO TO 690

             LE.  J/NXYSEA.AND.NSOURC  .LE. 300) GO TO 690
             GT .  300) GO TO 680
 I  * I+HSOURC*NSEASN*NXXYYP
 CRKOX WILL EXCEED CORE
       
       2490
                                l.AHD.NOTAP  .EQ.
                                1 ) L91 * L91+1
                               EQ. 0) NGROUP =  1
                                CONBIHATIOHS LOOP
JRITE
GO TO
WRITE
GO TO
CONTINUE
IF (L92 .EQ
IF (L92 .EQ
IF (MGROUP
START ACTUAL
NGT « 0
NG = 0
NG « NG+1
IF (KG .GT.
IF ( ISWU6)
IF (NG .GT. 1) HGT = NGT+NOCOHB
EACH COMBINATION HAY BE 1 OR 2
EACH COMBINATION TAKES TWO PASS
HAXIHA AND THE SECOND FOR DISPL
                               0 > L92
             NGROUP) GO TO
             .EQ.  O.OR.NG
2500
EQ.  1
               710
 START FIRST PASS FOR COMBINATION NG
 ISW<10) « ISU10
 ISW(11> » ISW11
 ISW<12) « ISU12
 IF ( ISW(ll) .EQ. 2) ISW(10) = 1
 ISW<8) * ISW8
 IF . GT . CO I SW( 8 )S0205270
                                   S0205280
                                   S0205290
                                   S0205300
                                   S020S310
                                   S0205320
) LINE
< NG-1 )
PASSES.
ES,  ONE
AY.
= NLINES

-------
to
i
533*
534*
535*
536*
537*
538*
539*
540*
541*
542*
543*
544*
545*
546*
547*
548*
549*
550*
551*
552*
553*
554*
555*
556*
557*
558*
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
720
730

740

750
760
               770
               780
             C
             C****
             c** **
             C

             c

             c

             c
ISW< 12) »
ISW(IO) =
IF 
CONTINUE
                             -1
                             ISW10
                            Q.  1 . AMD . ISy<12)  .HE.  -1)  GO  TO  760
                             .HE  0)  GO  TO  760
                            D POSITION  INPUT  TAPE  FOR  ADDITIONAL PASSES
                            NT
                            4>  .LT.  0)  GO TO  750
                             . HOFILE)  GO  TO  750
                             T,EHD=730)  (CONd>,I»1,5)
                            T)  (COH( I>,IMi68>
                            T)  (CON( I),I = 1,NXPS)
                            T)  (CON( I),I»1,NYPS>
                            )  .GT.  0)  READ  (HUNT)
                            T)  (CON( I)fI«l.NHET>
                                    < CON< I >, 1 = 1 , NXXYYP )
              .EQ.  1.AND.ISU11  .HE  2)
              CE  COHBINATION ARRAYS
              1,NSEASN
              )*NXXYYP
              EQ.  1>  LI  »  Ll+NXXYYP
              1,NXXYYP
               =  0.0
                                                      GO  TO 780
    START LOOP   OVER  CARD  AND/OR TAPE INPUT SOURCE DATA
   **************************************************************
IF (NG .GT.  1 . OR
HI - COUNTER  FOR
HI = 0
HI - COUNTER  FOR
HI = 0
Ki - COUNTER  FOR
ISW(12) .EQ
CARD SOURCES

TAPE SOURCES

TOTAL SOURCES
                                   -1) GO TO 790
     S0205330
     S 02 03 3 40
     S0205350
     S0203360
     S0205370
     S0205380
     S0205390
     S0205400
     S0205410
     S0205420
     S0205430
     80205440
     S0205450
     S0205460
     S0205470
     S0205480
     S0203490
     S0205500
     S0205510
     S0205520
     S0205530
     80205540
     S0205550
     S0205560
     S0205570
     S0205580
     S0205590
     S0205600
     S0205610
     S0205620
*****S0205630
     S0205640
     S0205650
     S0205660
     S0205670
     S0205680
     S0205690
     S0205700

-------
txf
571*
572*
573*
574*
575*
576*
577*
578*
579*
580*
581*
582*
583*
584*
585*
586*
587*
588*
589*
590*
591*
592*
593*
594*
595*
596*
597*
598*
599*
600*
601*
602*
603*
604*
605*
606*
607*
608*
               790
               800
               810
               820
               830
Kl = 0
HT - COUNTER FOR SOURCE TO OUTP
NT = 0
HIT - HAX. KO. SOURCES IH OUTPU
HTT » 572
IFL61 - FLAG FOR END OF CARDS
IF'.Gl « 0
IFLG2 - FLAG FOR END OF TAPE
IFLG2 = 0
IFLG3 - FLAG FOR READ CARD ONLY
IFLG3 =1
IF < IS«(5) .LE. 1 > IFLG2 » 1
IF 
GO TO 2260
HOT SAVED IN CORE REREAD TAPE
READ  *NXXYYP+L9
READ (HUHT,EHD=2410> /
COHTINUE
GO TO 2260
COHTINUE
INITIAL CALCULATION PASS
IPR4 * 0
IF < IFLG3 .EQ. 3) GO TO 1130
HAS END OF CARD DATA OCCURRED
IF < IFLG1 .EQ. 1) GO TO 1130
HI = Nl+1
                                                   I»1,NXXYYP>
S020S710
S0203720
S0205730
S020S740
S0205750
S020S760
S0205770
S0205780
S020S790
S020S800
S020S810
S0205820
S020S830
S020V840
S0205850
S020S860
S020S870
S0205880
8020589ft
S020S900
S0205910
S020S920
S0205930
S0205940
S020S950
S0205960
S0205970
S0205980
S020S990
S0206000
S0206010
S0206020
S0206030
S0206040
S0206050
S0206060
S0206070
S0206080

-------
.>
KJ
609*
610*
61 1*
612*
613*
614*
615*
616*
617*
618*
619*
620*
621*
622*
623*
624*
625*
626*
627*
628*
629*
630*
631*
632*
633*
634*
635*
636*
637*
638*
639*
640*
641*
642*
643*
644*
645*
646*
            C
            C
    IF (HI .GT.  NSOURO GO  TO  1120

    READ DATA CARD SOURCE DATA
    READ (IUNT.9023,END-1 120)  HUHS1
   11,VEL1.D1,HB1,BU1.UAKE1.NVS1
    IF (HUHSi  .LT. 0)  GO  TO 1120
    IF (NUHSi  .EQ. 0)  NUHS1 -  HI
    IF (HUMS!  .GT. NUHSL) GO TO 840
    URITE (JUHT.9041)  HUHSI,NUHSL
    GO TO 2490
840 NUHSL « HUHSI
    IF (DISP  .LT.  3) GO TO  850
    WRITE (JUNT,9042)  HUHSI
    GO TO 2490
850 IF (TYPE1  .LT. 3)  GO  TO 860
    URITE (JUNT,9043)  HUHSI
    GO TO 2490
860 IF (QFLGi  .LT. 4)  GO  TO 870
    URITE (JUNT.9044)  HUHSI
    GO TO 2490
870 CONTINUE
    IF (DISP  .HE.  0) GO TO  990
    IF (TYPE1  .GT. 0)  GO  TO 910
    IF (VEL1 ) 880.880,890
880 URITE (JUNT.9036)  NUHSI
    VEL1 - l.OE-5
    LINE « LINE+1
890 IF (Dl>  900/900.970
900 URITE (JUNT,9037)  NUHSI
    GO TO 2490
910 IF (TYPE1  .GT. 1)  GO  TO 950
    IF (SIGY01)  920.920.930
920 URITE (JUNT.9038)  NUHSI
    GO TO 2490
930 IF (VEL1) 940.940.970
940 URITE   960.960.970
                                  S0206090
                                  S0206100
                                  S0206110
DISP, TYPE 1 , QFLGI, DX1 ,DY1 , HI ,Z SI, TSS02061 20
                                  S0206130
                                  S0206140
                                  S0206150
                                  S0206160
                                  S0206170
                                  S0206180
                                  S0206190
                                  S0206200
                                  S0206210
                                  S0206220
                                  S0206230
                                  S0206240
                                  S0206250
                                  S0206260
                                  S0206270
                                  S0206280
                                  S0206290
                                  S0206300
                                  S0206310
                                  S0206320
                                  S0206330
                                  S0206340
                                  S0206350
                                  S0206360
                                  S0206370
                                  S0206380
                                  S0206390
                                  S0206400
                                  S0206410
                                  S0206420
                                  S0206430
                                  S0206440
                                  S0206450
                                  S0206460

-------
to
Co
647*
648*
649*
650*
651*
652*
653*
654*
655*
656*
657*
658*
659*
660*
661*
662*
663*
664*
665*
666*
667*
668*
669*
670*
671*
672*
673*
674*
675*
676*
677*
678*
679*
680*
681*
682*
683*
684*
               960

               970
               980

               990
              1000
              1010
              1020
              1030
              1040
              1030
URITE (JUNT/9040) HUflSl
CO TO 2490
CONTINUE
IF  .I«1 , MVS1 )
READ (IUHT,9002> (GANHA1(I ),I»1 ,NVS1 )
QFLGS • QFLG1+1
IF (OISP  .HE. 2.OR.QFLGS .LE. 1 >  GO  TO  1020
WRITE (JUNT.9027) HUHS1
GO TO 2490
CONTINUE
GO TO < 1030,1040,1060*1080),QFLGS
SOURCE STRENGTH VARIES WITH SEASON ONLY
READ  .K-l ,NSEASN)
LI « 1
L2 • 1
GO TO 1100
DO 1030 IC-1,  NSEASN
SOURCE STRENGTH VARIES WITH
READ 
S020666C
S0206670
S0206680
S0206690
S0206700
S0206710
S0206720
S0206730
S0206740
S0206750
S0206760
S0206770
S0206780
S0206790
S0206800
S0206810
S0206820
80206830
S0206840

-------
685*
686*
687*
688*
689*
690*
691*
692*
693*
694*
695*
696*
697*
698*
699*
700*
701*
702*
703*
704*
705*
706*
707*
708*
709*
710*
711*
712*
713*
714*
715*
716*
717*
718*
719*
720*
721*
722*
     L2  «  0
     GO  TO 1100
 1060 DO  1070  K»l,NSEASN
:     SOURCE STRENGTH VARIES
 1070 READ   = QKL3,L4,K )
GO TO 1130
IFLG1 = 1
DISP - 0
IF ( IFLG3 .EQ. 2) GO TO 1160
HAS END OF 1APE DATA OCCURRED
IF < 1FLG2 .EQ. 1 ) GO TO 1160

READ TAPE SOURCE DATA
READ 
F (NSOR2M) .HE. 999999) GO TO 1160
F < ISUC 14) .GE. 0) GO TO 1140
FLG2 = 1
F (IFLG1 .EQ. 1.AND.IFLG2 .EQ. 1) GO TO
F < IFLG1 .EQ. 1 > GO TO 1300
F ( 1FLG2 .EQ. 1 > GO TO 1270
CARD AND TAPE INPUT, COMPARE SOURCE NUHB
F (NUH81 .LT. NUH82) GO TO 1330
F (NUKS2 .LT. NUHS1) GO TO 1300
                                                1350
S02 OS 830
80206860
S0206870
80206880
S0206890
80206900
80206910
80206920
80206930
80206940
80206950
80206960
80206970
80206980
80206990
80207000
80207010
80207020
80207030
80207040
80207050
80207060
80207070
80207080
80207090
80207100
80207110
80207120
80207130
80207140
80207150
80207160
S0207170
80207180
80207190
80207200
80207210
80207220

-------
to
723*
724*
725*
726*
727*
728*
729*
730*
731*
732*
733*
734*
735*
736*
737*
738*
739*
740*
741*
742*
743*
744*
745*
746*
747*
748*
749*
750*
751*
752*
753*
754*
755*
756*
757*
758*
759*
760*
C SA
C IF
IF
L3
1 170 CO
IF
IF
IF
IF
1 180 CO
I
GO
1 190 NO
L9
1200 CO
DO
LI
RE
1210 CO
GO
1220 CO
IF
IF
C RE
DO
LI
C8
DO
DO
1230 Q2
DO
CO
1240 CO
GO
1250 CO
C RE
1260 IF
tfR
                                IF D1SP =  1  THEM
                               RESCALE CON  (DEP)
                   DELETION  ONLY
   E SOURCE/
   DISP = 2
   G3 * 1
   = 1
   T I N U E
   (HOTAP .qp* 0) GO TO  1200
   (L9+NOTAP+NXYSEA  .LE.  IEND)  GO TO 1200
   (ISW(5>  .EQ. l.OR.ISU(S)  .EQ.  3) GO TO 1190
   (ISU<5>  .EO. 2.AND.NSOURC  .EQ. 0) GO TO 1190
   TIHUE
    L9+NOTAP+NXYSEA
   TO 670
   AP » 0
   = 0
   TINUE
   1210 KM,NSEASN
   = < K+L91 >*NXXYYP+L9
   D (HUNT,ENO = 1150 ) (CON(L1 + I > , 1 = 1,NXXYYP>
   TINUE
   TO ( 1220,
CONTINUE
   (DISP  .EQ
   (DISP  .HE
   CALE
   1240 K<
                                1370  >,L3
                                  1 >
                                  2)
      GO
      GO
       TO
       TO
790
1250
                      = (K+L9
                      = 01(1,
,NSEASN
>*NXXYYP+L9
                      1230 J =
                      1230 1=
                      I , J,K> =
                      1240 1=1,
                   CON(Ll+1) -
                      TINUE
                      TO 1310
                      TINUE
                      LACE TAPE
                      (DISP .LE
            K)/Q2< 1
            NSTBLE
            NSPEED
            Ql< 1 , 1,
            NXXYYP
            COH(L1 +
         1 ,K>
        K>
         )*C8
SOURCE
 0) GO
         WITH CARD
         TO 1280
                              SOURCE
                         (JUNT,9028> KUHS1
S0207230
S0207240
S0207250
S0207260
A0207270
S0207280
S0207290
S0207300
S0207310
S0207320
S0207330
S0207340
S0207350
S0207360
S0207370
S0207380
S0207390
S0207400
S020?y<)
S0207420
S0207430
S0207440
S0207450
S0207460
S0207470
S 02^0? 4 80
S0207490
S0207500
S0207510
S0207520
S0207530
S0207540
S0207550
S0207560
S0207570
S0207580
S0207590
S0207600

-------
?
761*
762*
763*
764*
765*
766*
767*
768*
769*
770*
771*
772*
773*
774*
775*
776*
777*
778*
779*
780*
781*
782*
783*
784*
785*
786*
787*
788*
789*
790*
791*
792*
793*
794*
795*
796*
797*
798*

1270


1280


1290

C
1300
1310



1320



C
1330


1340

C
1350

C






C
C
1360
GO TO 2490
IF (DISP  .LE.  0)  GO  TO  1340
WRITE (JUNT/9028)  NUHS1
GO TO 2490
Kl = Ki+1
ICARD « 1
DO 1290 1=1,NSO
NSORd ) = NSORK I >
GO TO 1370
STORE TAPE  SOURCE,  HOLD CARD  SOURCE
IFLC3 » 3
CONTINUE
ICARD • 0
Kl = Kl+1
DO 1320   1=1 ,MSO
NSOR( I ) = NSOR2( I )
IF (IFLG3 .HE. 3)  GO  TO 1370
L3 = 2
GO TO 1170
STORE CARD  SOURCE/  HOLD TAPE  SOURCE
IF (DISP  .LE.  0)  GO  TO  1340
WRITE (JUHT/9029)  NUHS1
GO TO 2490
IFLG3 "2
GO TO 1280
SAVE NO.  OF  SOURCES  USED, FOR
NSOURC =  KSO
IF (ISW<5 )   EQ   O.OR.ISW(5)
WRITE END OF  TAPE  RECORD
NSORd > = 999999
WRITE (HUNT)  ( H80R< I ) , I« 1,
IF (ISW<15)  .LT.  0)  GO  TO
ENDFILE HUNT
ENDFILE HUNT
BACKSPACE HUNT
THIS BACKSPACE.ASSUMES  THE
  iLE HARK.
  NTIHUE
                                                                                     S0207610
                                                                                     S0207620
                                                                                     S0207630
                                                 CORE  SAVED RUN
                                                EQ.  2) CO TO 2410
                                             HSO)
                                             1360
                                              TAPE  BACKSPACES OVER THE SECOND END OF
S0207650
S0207660
S0207670
S0207680
S0207690
S0207700
S0207710
S0207720
S0207730
S0207740
S0207750
S0207760
S0207770
S0207780
80207790
S0207800
S0207810
S0207820
S 02 07 8.30
S0207840
S0207850
S0207860
S0207870
S0207880
S0207890
S0207900
S0207910
S0207920
S0207930
S0207940
S0207950
S0207960
S0207970
S0207980

-------
799*
800*
801*
802*
803*
804*
80S*
806*
807*
808*
809*
                    UNIT TO INPUT UNIT  FOR  ADDITIONAL PASSES
  0*
  1*
  2*
  3*
  4*
  3*
  6*
  7*
  8*
  9*
820*
821*
822*
823*
824*
825*
826*
827*
828*
829*
830*
831*
832*
833*
834*
835*
836*
 1370
 1380

 1390
 1400
 1410
 1420
 1430

 1440
C
C
c**«*
 SUITCH OUTPUT
 HUNT = NUNT
 isw< 14 > = isy<
 ISU(5> • 2
 GC TO 2410
 CONTINUE
 IF (NOTAP .EQ.
 IF (KSO+1 -LE.
 IF < ISU(5) .EQ
 IF ( ISW<5) .EQ
 GO TO 680
 NOTAP « 0
 GO TO 1400
 ISAVSO <
 CONTINUE
 PRINT SOURCE  DATA
 IF < ISU(6> .LE.  1 > GO TO 1410
 CALL OUTPT<4,K,X,Y,CON, 1 >
 CONTINUE
 IF  .GE  2.AND.IS¥<12)
 IF (IFLG3 .EQ. l.AHD.DISP . EQ
 IF ( IFLG3 .EQ. 3) GO TO 2230
 CONTINUE
 IF (NOTAP .EQ. 0) GO
    (L9+NOTAP+NXYSEA
                     0) GO TO 1400
                     300) GO TO 1390
                      1 .OR. ISIK5) .EQ .
                      2.AND.NSOURC .EQ
                HUMS
                                  3)  GO  TO  1380
                                   0)  GO  TO  1380
                                     EQ.  1>  GO TO  1420
                                     2)  GO TO 2230
IF
IF
IF
GO
NOTAP •
L9 « 0
CONTINUE
    ( ISW(5>
    ( ISW(5>
    TO 1180
         0
                  EQ
                  EQ
1
2
   TO 1440
   LE. IENO) GO TO  1440
OR.IStf(S) .EQ. 3) GO TO 1430
AND.NSOURC .EQ. 0)  GO TO 1430
 START PLUIfE RISE SECTION FOR STACKS.  BRANCH FOR VOLUME
*•**•***••***•***•*************************************
 IF (ISW(4) .EQ. 0) ZS o 0.0
 HSU1  « 0
 HSU2  " 0
 DXP • DX
            S0207990
            S0208000
            S0208010
            S0208020
            S0208030
            S0208040
            S0208050
            S0208060
            S0208070
            S0208080
            S0208090
            S0201UOO
            S0208110
            S0208120
            S0208130
            S0208140
            $0208150
            S0208160
            S0208170
            S0208180
            S0208190
            S0208200
            S0208210
            S0208220
            S0208230
            S0208240
            S0208250
            S0208260
            S0208270
            S0208280
            S0208290
            S 02 08 3 00
 AND AREAS.  S0208310
***********«>S0208320
            S0208330
            S0208340
            S0208350
            S0208360

-------
to
oo
837*
838*
839*
840*
841*
842*
843*
844*
845*
846*
847*
848*
849*
850*
851*
852*
853*
854*
855*
856*
857*
858*
859*
860*
861*
862*
863*
864*
865*
866*
867*
868*
869*
870*
871*
872*
873*
874*


C






C
C













C












C
                                         TO  1720
                                         AND PARAMETERS
                               •1/HSTBLE
                              0
                              IF HAKE  EFFECTS
                              SQUAT BUILDING,
USED,
JTYPE
     DYP • DY
     IF (TYPE .CT.  0)  GO
     CALCULATE CONSTANTS
     R = 0.5*0
     RO « 0
     XO - 0
     SIGZOP -0.0
     00 1450  I
1450 XY » 0
     DETERMINE
     JTYPE = 1
     JTYPE » 0
     IF (HB .LE . 0.0)  GO  TO  1480
     HH * 2.0*SQRT(BH*BH*.31830988)
     Cl « 2.5*HB
     C2 = HV*1 .3 + HB
     HHIH = AHIN1(C1,C2)
     IF (HH .GE. HB) GO  TO  1460
     JTYPE « 2
     GO TO 1470
1460 JTYPE « 1
1470 CONTINUE
     HB2 • 2.0*HB
     HB12 » 1.2*HB
     PLUME RISE EQUATION  PARTS
1480 Cl * VEL*R*R
     C2 = C1*VEL
     Cl = C1*G
     FC1 - VEL*(R+R>
     FC2 * .0727»FC1**1.3333333
     FC1 - .0141*FC1**1.6666667
     HP « H
     IF (HP  LT. ZRHIN)  HP  = ZRHIN
     C3 = HP*ZRI
     C13 * 6.0*>VEL*R
     VELI " 1.0/VEL
     C4 = 8.0*R*VELI
     CALC PARAMETERS FOR  PLUME RISE
         FOR STACKS
JTYPE = 0 NO HAKE
» 2 TALL BUILDING
EFFECTS
S0208370
S0208380
S0208390
S0208400
S0208410
S0208420
S0208430
S0208440
S0208450
S0208460
S0208470
S0208480
S0208490
S0208SOO
S0208510
S0208520
S0208530
S0208540
S0208S50
S0208560
S0208570
S0208580
S0208590
S0208600
S0208610
S0208620
S0208630
S0208640
S0208641
S0208642
S0208643
S0208650
S0208660
S0208670
S0208680
S0208690
S0208700
S0208710

-------
to
VO
875*
876*
877*
878*
879*
880*
881*
882*
883*
884*
889*
886*
887*
888*
889*
890*
891*
892*
893*
894*
895*
896*
897*
898*
899*
900*
901*
902*
903*
904*
905*
906*
907*
908*
909*
910*
911*
912*
      MSU1 » 0
      HSU2 * 0
      VEL2D = 2.0*D*VEL
      03 * 3.0*D
      DO 1610 I M/HSTBLE
      DC 1610 J-l.NSPEED
      UbAR AT H
      UBH » UBAR
      BETA J I «  I .0/( .33333333+UBH*VELI >»*2
      C3 » 3. 0*BETAJ I*UBHI< J ,1 >
      C6 * C5*UBHI(J*I)
      C7 = A1»UBHI(J< I)**3
      C8 = C4*( VEL+3 . 0*UBH )**2*UBHI( J, I )
      C9 = G*DPDZ( J, I )
      CIO = 3 . 1415926*UBH
      C12 * A2*UBHI( J*I >
                                               .LT. 1.3*UBH)  HBRIG(JiI)  =
      DO 1610 K»1,NSEASN
      T » TS
      IF (T  . LE. 0.0)  T
      Cll >  TA( I .K)/T
C     BUOYANCY  TERM
      F = C1*<1 .0-C11 )
C     HOHENTUH  TERH
      FH = C2*C11
C     CRITICAL  BUOYANCY FLUX
      FC = FC1
      IF TA( I, K )
            S0208720
            S0208730
            S0208740
            S0208750
            S0208760
            S0208770
            S0208780
            S0208790
            S0208800
            S0208810
H+VEL2D*UBHIS0208820
            S0208830
            S0208840
          " S0208850
            S0208860
            S0208870
            S0208880
            S0208890
            S0208900
            S0208910
            S0208920
            S0208930
            S0208940
            S0208950
            8*208960
            S0208970
            S0208980
            S0208990
            S0209000
            S0209010
            S0209011
            S0209012
            S0209013
            S0209014
            S0209020
            S0209030
            S0209040
            S0209050

-------
w
I
913*
914*
915*
916*
917*
918*
919*
920*
921*
922*
923*
924*
925*
926*
927*
928*
929*
930*
931*
932*
933*
934*
935*
936*
937*
938*
939*
940*
941*
942*
943*
944*
945*
946*
947*
948*
949*
950*





1490
1500

1510

1520


1530







1540

1550
1560







1570
1580




IF (F .LE. 0.0) GO TO 1510
DELH< J, 1,11 + 2) = F*C7
IF (F .LE. 55.0) GO TO 1490
DELH( J, I, H+3 ) « 34.0*F**0.4
GO TO 1500
DELH - 0.0
DELH C9/TA< I/K)
SSQ » SQRT(S)
SSQI = .0/880
DELH(J, ,H + 1) « C5*FH*SSQI
IF (F . E . 0.0) GO TO 1540
DELHCJ, ,H+2) * C12*F/S
DELH(J, ,H+3) > C10*SSQI
GO TO 1 50
DELH< J, , H+2) 80.0
DELHCJ/ ,M+3) » 0.3*C10*SSQI
DELH(J; /H+4) « SS9*UBHI( J/ I)
COHTIHUE
IF (JTYPE .EQ. 0) GO TO 1600
CALC. PLUHE RISE DUE TO HOHEHTUH FOR WAKE EFFECTS CALCULATIOHS
XB = HB2
IF (XB GE DELH( J, I ,11+3 )) XB *> DELH( J , I , H*3 )
IF (C9 .GT . 0.0) GO TO 1570
HP " XB*DELH< J , !,«+! )
GO TO 1580
HP = DELH< J, I, H + l >»SIN >
HP » HP** . 3333333
IF  .GT. O.O.AHD.HP .GT. DLHSHX(J.D) HP « DLHSHX(J.I)
HP « HP*HBRIG( J,I )
IF (HP .GT . HHIH) GO TO 1590
HSV1 ° 1
S0209060
80209070
80209080
80209090
80209100
S0209110
80209120
80209130
80209140
80209150
80209160
80209170
80209180
80209190
80209200
80209210
80209220
80209230
S0209240
80209250
S0209260
80209270
80209280
80209290
80209300
S0209310
S0209320
80209330
80209340
80209350
80209360
80209370
80209380
80209390
80209400
80209410
S0209420
80209430

-------
w
i
951*
952*
953*
954*
955*
956*
957*
958*
959*
960*
961*
962*
963*
964*
965*
966*
967*
968*
969*
970*
971*
972*
973*
974*
975*
976*
977*
978*
979*
980*
981*
982*
983*
984*
985*
986*
987*
988*
C


C









C
C




C


C
C






C







              1590
              1600
              1610
              1620


              1630


              1640

              1650
                  SET FLAG  TO  MODIFY  SIGZ
                  DELH
                  IF (HP  .GT.  HB12) GO  TO  1600
                  SET FLAG  TO  MODIFY  XY
DELH< J, 1,11 + 4 )
GO TO 1600
NSU2 =» 1
CONTINUE
CONTINUE
IF (NSV1 .EQ.
IF (NSW1 . EQ.
XHX = 0.0
IF (JTYPE
                                 *  -DELHC J, I ,11
                                 0)  JTYPE  «
                                 1 .AND.HSV2
  EQ.  0) NSU2 » -1
                             EQ.  0>
1770
                  GO TO
WAKE EFFECTS COEFFICIENTS TO
FOR DISTANCES CESS THAN 10HB
HWOHB = HW/HB
C6 « HW
IF (JTYPE .EQ. 1) C6 « HB
XHX = 3 0*C6
COEFFICIENTS FOR SIGZ ( SIGZ
Bl » 0.499*C6
82 * 0.067
COEFFICIENTS FOR XY ( XY • 2
     (WHERE  SIGYO « B3+B4*X
   * 0.067
   (JTYPE .EQ. 2) GO TO 1650
   (HWOHB .GT. 5) GO TO 1620
   * 0.3S*HW-0.201*HB
   TO 1660
   (WAKE . EQ. 1) GO TO 1640
SET FLAG TO PRINT MESSAGE THAT
IPR4 « 1
CONTINUE
B3 » 0.49*HB
GO TO 1660
B3 » 1.549*HB
GO TO 1660
B3 » 0.149*HW
B4
IF
IF
B3
GO
IF
                                                CALC  SIGZ AND XY
                                                (SQUAT) OR 10HH (TALL)
                                                  B1+B2*X )
                                                15*SIGYO/COT(
                                                )
                                            5*DELTA  THETA)  )
                               UPPER BOUND  EQUATIONS  USED
S0209440
S0209450
S0209460
S0209470
S0209480
S0209490
S0209500
S0209510
S0209S20
S0209530
S0209540
S0209S50
S0209560
S0209570
S0209580
S0209590
S0209600
S0209610
S0209620
S0209630
S0209640
S0209630
S0209660
S0209670
S0209680
S0209690
S0209700
S0209710
S0209720
S0209730
S 020 9740;
S0209730
8020,9760
S0209770
S0209780
S0209790
S0209800
S0209810

-------
w
I
Ui
N)
 989*
 990*
 991*
 992*
 993*
 994*
 995*
 996*
 997*
 998*
 999*
1000*
1001*
1002*
1003*
1004*
1005*
1006*
1007*
1008*
1009*
1010*
1011*
1012*
1013*
1014*
1015*
1016*
1017*
1018*
1019*
1020*
1021*
1022*
1023*
1024*
1025*
1026*
 1660 CONTINUE
C     FOR DISTANCES GREATER
      8IGZOP *  1 .2*C6
      C7 *  10.0*C6
      DO 1710 I-1'HSTBLE
C     XZ IS DEPENDENT ON DISTANCE
C     CALCULATIONS
C     CALC  XY
      IF (JTYPE  .EQ.  2) GO TO 1690
         (HUOHB  .GT.  5.0) GO TO 1670
         =  0.35*HV+0.5*H8
         TO 1700
                     1 )
                                          THAN OR EQUAL TO 10H8 (SQUAT)  OR  10HV
                                                AND IS CALCULATED BELOU  IN  MAIN  MODEL
1670
 1680

 1690
 1700
              1710
             C
             C***ftt
             C
             C
              1720
IF
CS
GO
IF
C5
GO
C5
GO
CS
                                     GO  TO 1680
   (MAKE  .EQ
   = 0.85*HB
   TO 1700
   * 2.23*HB
   TO 1700
   = 0.85*HV
CONTINUE
XY(I )=VIRTY(C5*2
IF (XY( I)  .LT.  0
CONTINUE
HB10 » C7
GO TO 1770
VOLUME OR  AREA  EMISSIONS
A******************************************************
CALCULATE  CONSTANTS  AND PARAMETERS FOR VOLUME AND  AREA
CALCULATE  INVERSE  UBAR  AT  H
CONTINUE
                                     0)
                           ISTBLEC I))-C7
                           XYU ) «  0.0
                   HP = H
                   IF (HP .LT.  ZRHIH)  HP
                   C3 * HP*ZRI
                   DO 1730 1*1,
                   DO 1730 J»l,
                               ZRNIN
              1730 UBHKJ-I)  =
                   NSTBLE
                   NSPEED
                   1.0/(UBAR( J)*C3**P(J
                                       I ))
             C      CALC EFFECTIVE  AREA
                   XO = BU*BU
             C      CALC EFFECTIVE  RADIUS
           S0209820
     (TALL )S0209830
           S0209840
           S0209850
           S0209860
           S0209870
           S0209880
           S0209890
           S0209900
           S0209910
           S0209920
           S0209930
           S0209940
           S0209950
           S0209960
           S0209970
           S0209980
           S0209990
           S0210000
           S0210010
           S0210020
           S0210030
           S0210040
           S0210050
           S0210060
***********S0210070
SOURCES.   S0210080
           S0210090
           S0210100
           S0210110
           S0210120
           S0210130
           S0210140
           S0210150
           S0210160
           S0210170
           S0210180
           S0210190

-------
w
Ul
1027*
1028*
1029*
1030*
1031*
1032*
1033*
1034*
1035*
1036*
1037*
1038*
1039*
1040*
1041*
1042*
1043*
1044*
1045*
1046*
1047*
1048*
1049*
1050*
1051*
1052*
1053*
1054*
1055*
1056*
1057*
1058*
1059*
1060*
1061*
1062*
1063*
1064*
                                                          -  DISTANCE
      RO *  SQRT(XO*.31830988 )
      IF (TYPE  .EQ.  2) GO TO 1750
C     VOLUME  SOURCES  (VIRTUAL DISTANCES)
      XHX =  100.0*2.15*SIGYO
      SIGZOP  =  SIGZO
C     XZ -  VIRTZCSIGZOP,ISTBLECI>,XB )  ,  XB
      DO 1740  Isl.NSTBLE
      XY(I)  -  V1RTYCSIGYO,ISTBLE(I>>
 1740 CONTINUE
      GO TO  1770
C     AREA  SOURCES  (VIRTUAL  DISTANCES)
 1750 C9 =  RO*TNNI
      DXP -  DXP+0.5*BU
      DYP =  DYP+0.5*By
      XHX =  100.0+0.9*BV
C     XZ =  BU,  UIDTH  OF AREA SOURCE
      DO 1760  I=1,HSTBLE
      XY(I )  =  C9
 17 0 CONTINUE
C
C     ALL SOURCE  TYPES MERGE HERE
C*? ****************************************************
 1770 Cl =  100.0
C     MINIMUM  CALCULATION DISTANCE
      XNX =  AHAXKXHX'Cl)
      IDP =  0
                    O.OR. ISy< 1 )  .EQ. 2)  IDP = 1
                                 2)  Cl  =  C1*XO
                                O.AHD.ISU(l) .LE
                                 0)  GO  TO  1780
     IF (NVS  .GT.
     Cl « PP1
     IF (TYPE  .EQ
     IF (NVS  .GT.
     IF (IPR4  .EQ
     JJ = 3
     IF ( IS»(6>  .GE.  2) JJ =
     CALL TITLRC3,JJ,0>
     WRITE (JUNT.9030) HUMS
1780 CONTINUE
     IF (ISU(4)  .EQ.  0) ZS -
                                       1 )  C1 = 0.5*C1
                                            0.0
                 S0210200
                 S0210210
                 S0210220
                 S0210230
                 S0210240
                 S0210250
                 S0210260
                 S0210270
                 S0210280
                 S0210290
                 S0210300
                 S0210310
                 S0210320
                 S0210330
                 S0210340
                 S0210350
                 S0210360
                 S0210370
                 S0210380
                 S0210390
                 S0210400
*****************S0210410
                 S0210420
                 S0210430
                 S0210440
                 S0210450
                 S0210460
                 S0210470
                 S0210480
                 S0210490
                 S0210500
                 S0210510
                 S0210520
                 S0210530
                 S0210540
                 S0210S50
                 S0210560
                 S0210570

-------
Cd
1065*
1066*
1067*
1068*
1069*
1070*
1071*
1072*
1073*
1074*
1075*
1076*
1077*
1078*
1079*
1080*
1081*
1082*
1083*
1084*
1085*
1086*
1087*
1088*
1089*
1090*
1091*
1092*
1093*
1094*
1095*
1096*
1097*
1098*
1099*
1 100*
1 101*
1 102*
C
- C****



1790





1800


1810
C
C
C****

1820




1830

1840

C
C
LOOP OVER Y G
**************
IF < NYPNTS .L
IKSV = 1
JJ * 0
JJ = JJ+1
IF ( JJ .GT . N
JJJ * < JJ- i >*
IF ( ISV(2> .G
YP = Y*RA
YS = SIN .G
XP » X( II >-DX
GO TO 1840
YP = X( II )*YC
XP = X( II >*YS
IJ = JJJ+II
GO TO 1900

LOOP OVER SPE
C* *****************
1850


1860



IKSV * 2
IF   GO  TO  1800
        GRID  COORDINATES
*********************************************


        NXPHTS)  GO  TO  1790
            1> GO TO  1830
      SPECIAL  CALCULATION  POINTS (RECEPTORS)
*********************************************

        LE. 0)  GO  TO  2230
        NXXYYP)  GO  TO 2230
                 S0210580
*****************S0210590
                 S0210600
                 S0210610
                 S0210620
                 S0210630
                 S0210640
                 S0210650
                 S0210660
                 S0210670
                 S0210680
                 S0210690
                 S0210700
                 S0210710
                 S0210720
                 S0210730
                 S0210740
*****************S0210750
                 S0210760
                 S0210770
                 S0210780
                 S0210790
                 S0210800
                 S0210810
                 S0210820
                 S0210830
                 S0210840
                 S0210850
                , S0210860
                 S0210870
*****************S0210880
                 S0210890
                 S0210900
                 S0210910
                 S0210920
                 S0210930
                 S0210940
                 S0210950

-------
Ln
I 103*
1 104*
1105*
1 106*
1 107*
i 108*
1109*
1110*
1111*
1 112*
1113*
1114*
1 115*
1116*
1117*
1118*
1 119*
1 120*
1121*
1122*
1123*
1 124*
1 125*
1126*
1127*
1128*
1129*
1 130*
1 131*
1132*
1 133*
1 134*
1 135*
1136*
1137*
1138*
1139*
1 140*
              1870
              1880
              1890
              1900
              1910
              1920
              1930
             C
             c
             c****
                                              1880
                                    1>  GO  TO  1890
IF ( ISUC12 >  .HE.  1>  GO  TO
IF (X .GT
   =  Y(JJ>-DYP
   -  X*YS-DXP
                                               H+ZS) GO TO 1920
 YP
 XP
 GO
 YC
 Y8
 YC
 YP
 XP
 CONTINUE
 DO 1910 K=1,HSEASH
 LI = (K+L91 )*NXXYYP*L9
 CON( Ll + IJ >  » 0 .0
 ZP * 0.0
 IF ( ISU(4>  .HE. 0>
    (ZP .LT  ZS) ZP
    (TYPE .EQ.  2. OR
    TE ( JUNT, 9026)
    TO 2490
 CONTINUE
 ZSHZP * ZS-ZP
 SEE IF SOURCE  AND POINT
 RD = SBRTCXP*XP+YP*YP>
 IF (RD .GT. XNX) GO  TO
 H = 3
 IF ( ISU(6>  .GE. 2> N  «  1
 CALL TITLR(1,N,0>
 VRITE (JUNT,9025> HUNS , X< II >, Y( J J )
 GO TO 2220
 CONTINUE

 LOOP OVER WIND DIRECTION  SECTORS  (CATEGORIES)
*************** ****** ***************************
 DO 2210 NMiNSCTOR
IF
IF
yR
GO
 ZP = Z(IJ)
 = ZS
 ZP .LE
XP,NUHS
                                            ARE  TOO CLOSE
                                           1930
                   S0210960
                   S0210970
                   S0210980
                   S0210990
                   S0211000
                   S0211010
                   S021 1020
                   S0211030
                   S0211040
                   S0211050
                   S0211060
                   S0211070
                   S0211080
                   S0211090
                   S0211100
                   S0211110
                   S0211120
                   S0211130
                   S0211140
                   S0211150
                   S0211160
                   S0211170
                   S0211180
                   S0211190
                   S02M200
                   S0211210
                   S0211220
                   S0211230
                   S0211240
                   S02112SO
                   S0211260
                   S0211270
                   S0211280
                   S0211290
                   S0211300
                   S0211310
*******************S021 1320
                   S0211330

-------

.








1
1
1
1
1

1
]
W 1
J, ]
.
















1
1141*
1 142*
1143*
I 144*
1 145*
L 146*
I 147*
I 148*
L 149*
I 150*
1 151*
I 152*
I 153*
I 154*
I 155*
L 156*
I 157*
I 158*
1159*
L 160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
t


C



C

C






C


C
C





C
C
C




C




 1940
 1950
CftlC DOWNWIND  AND CROSSWIND
XB » -XP*PHS(N)-YP*PHC(N)
YB » XP*PHC GO TO 1950
IF (TYPE .EQ.  2) GO TO 1940
STACK EMISSIONS
IF < JTYPE  .EQ   0) GO TO 1940
PRECALC WAKE EFFECTS IF XB <
IF < XB  .GE.  HB10) GO TO 1950
SIGZi « Bl +XB*B2
XYP1 =  XYPU«
SIGIP1  = 1 .0/SIGZ1
SIGZI1  = -O.S*SIGIP1*SIGIP1
GO TO 1950
AREA SOURCES AND STACKS
C2 = Cl
XYP « XY< 1 >
CALC DIST  AND  SMOOTHING
NO WAKE EFFECTS
CALL DISTR
IF ( ARG .LT. 0.0) GO TO 2210
C3 = C2*ARG
IF (ISW(l)  .EQ.  2) C3 = C3*RPI
CONTINUE
                                   DISTANCES  FRON SOURCE TO RECEPTOR
                                    CALC
                                    HB10
                               WITHOUT  WAKE  EFFECTS
                               TERM FOR AREA  SOURCES AND STACKS WITH
      BEGIN LOOP  OVER STABILITY FOR MAIN  HODEL  CALCULATI
C*******************************************************
      DO 2200  I"1*NSTBLE
      KK = 4*
      IF (TYPE  . HE.  1 > GO TO 1960
      XYP = XY< I )
      CALC DIST  AND  SMOOTHING TERN
      CALL DISTR
      IF   .EQ. 2) C3 « C3*RPI
                              FOR VOLUME  SOURCES
                 S0211340
                 S0211350
                 S0211360
                 S0211370
                 S0211380
                 S0211390
                 S021 1400
                 S021 1410
                 S021 1420
                 802 11430
                 S0211440
                 S0211450
                 S0211460
                 S021 1470
                 S0211480
                 S0211490
                 S0211500
                 S021 1510
                 S0211520
                 S021 1530
                 S021 1540
                 S0211550
                 S021 1560
                 S0211570
                 S0211580
                 S0211590
                 S0211600
ONS              S0211610
****************S0211620
                 S0211630
                 S0211640
                 S0211650
                 S0211660
                 S0211670
                 S0211680
                 S0211690
                 S02U700
                 S0211710

-------
1 179*
1 180*
1 181*
1 182*
1 183*
1184*
1 185*
1 186*
1187*
1188*
1 189*
1 190*
1191*
1192*
1 193*
1 194*
1195*
1 196*
1197*
1 198*
1199*
1200*
1201*
1202*
1203*
1204*
1205*
1206*
1207*
1208*
1209*
1210*
1211*
1212*
1213*
1214*
1215*
1216*
 1960
 1970
 1980
 1990
 2< 00
 2010

C
C
C****
 CONTINUE
 CALC SIGZ FOR
 IF (TYPE  .HE.
 XZ » 0.0
 GO TO 1990
 CONTINUE
 IF 'NSW2
 XZ = 0.0
    (TYPE  .EQ
    (TYPE  .EB
                     VOLUME/  RREA AND STACKS  WITHOUT  UAKE
                     O.OR.JFLG .EQ.  O.OR.XB  .GE.  HB10>  GO
                 LT.  0)  GO  TO 2000
                                                     CFFECTS
                                                     TO  1970
IF
IF
XZ
GO
XZ
                     0 >
                     2)
GO
GO
TO
TO
1990
1980
    = VIRTZCSIGZOP,ISTBLE< I),XB,0 0)
    TO 1990
    = BV
 CONTINUE
 SIGZ = SIGHflZ(XB+XZ,ISTBLECI)>
 SIGZIP = 1 .0/SIGZ
 SIGZI = -0.5*SIGZIP*SIGZIP
 IF (TYPE .GT. O.OR.JTYPE  .EQ. 0) GO
 SIGZ2 " SIGZ
 SIGIP2 = SIGZIP
 SIGZI2 = SIGZI
 IF (XB .LT. HB10)  GO  TO  2010
 WAKE EFFECTS MODIFICATIONS FOR DIST
 XZ - VIRTZ(SIGZOP,ISTBLE(I)-XB-HB10
 SIGZI = SIGHAZ(XB + XZ,ISTBLE(I ))
 XYP1 = XY(I)
 SIGIP1 » 1 .0/SIGZ1
 SIGZI1 = -0.5*SIGIP1*SIGIP1
 CONTINUE
 IF (ISU(1>  .EQ.  2)  BBAR  =  FUNCTCXB,
                                            TO  2010
                                             GREATER  THAN OR EQUAL TO
                                     ISTBLECI))
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
10HBS021
    S021
    S021
    S021
    S021
    S021
    S021
    S021
                                                                     S021
 BEGIN LOOP OVER SEASONS  FOR HAIN MODEL CALCULATIONS                S021
*******************************************************************S021
 DO 2190 K»1,NSEASN                                                  S021
 H = 4*(K-l )                                                         S021
 KM = KK+K                                                           S021
 LI « 
-------
Ul
00
1217*     C      BEGIN  LOOP
1218*     c***************
1219*            DO  2180  J»
1220*            C4  «  0.0
1221*            IF  (FREQ(J
1222*            HP  -  H
1223*            IF  (TYPE .
1224*            IF  (JTYPE
1225*     C      STACK  ENIS
1226*            IF  (DELH(J
1227*     C      USE HODIFI
1228*            IF  (XB .GE
1229*            IF  (SIG21
1230*            SIGZ  • SIC
1231*            SIGZIP «= S
1232*            SIGZI  »  SI
1233*            GO  TO  2030
1234*      2020  CONTINUE
1235*            SIGZ  = SIC
1236*            SIGZIP » S
1237*            SIGZI  «  SI
1238*      2030  XYP =  0.0
1239*            IF  (DELHCJ
1240*     C      USE HOOIFI
1241*            XYP «  XYP1
1242*            GO  TO  2050
1243*     C      UNMODIFIED
1244*      2040  SIGZ  - SIG
1245*            XYP »  0.0
1246*            SIGZIP » S
1247*            SIGZI  •  SI
1248*      2030  CONTINUE
1249*     C      CALC  DIST
1250*            CALL  DISTR
1251*            IF  
1254*     C      CALCULATE
                                                                      TIONS
                                                                      ****************
 OVER KIND SPEED FOR NAIN  HOOEL  CALCULA
***************************************
l.NSPEED

,N,KN>  -LE. 0.0) GO TO 2180

GT. 0)  GO  TO 2090
.EC. 0) GO TO 2060
SIONS WITH WAKE EFFECTS
, I.H+3) .GE. 0.0) GO TO 2040
ED SIGZ
.  HB10) GO TO 2020
.GE. SIGZ2) GO TO 2020
22
IGIP2
GZI2
Zl
IGIP1
GZI1

,I,H+4) .GE. 0.0) GO TO 2050
ED XY
                               SIGZ AND XY
                              Z2

                              IGIP2
                              GZI2

                              AND SMOOTHING TERM FOR STACKS  WITH  WAKE  EFFECTS

                              E.  0.0) GO TO 2180
                              G
                               .EQ. 2) C3 • C3*RPI
                              PLUHE RISE
 S02
*S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
 S02
12100
12110
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210
12220,
12230
12240
12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390
12400
12410
12420
12430
12440
12450
12460
12470

-------
w
1255*
1256*
1257*
1258*
1259*
1260*
1261*
1262*
1263*
1264*
1265*
1266*
1267*
1268*
1269*
1270*
1271*
1272*
1273*
1274*
1275*
1276*
1277*
1278*
1279*
1280*
1281*
1282*
1283*
1284*
1285*
1286*
1287*
1288*
1289*
1290*
1291*
1292*
                                          C?  GE.  ABS .EQ. O.OR
     H,H+3»
      IF  (DPDZ(J>I> .GT. 0
      UNSTABLE CONDITIONS
      HP  «  C/*(DELH(J,I,H+1>+C7*DELH(J,I
      GO  '0 2080
;      STABLE CONDITIONS
      HP
      HP
      HP
      IF
      HP
              2070
              2080
         =  C7*ABS< DELH( J , I
         -  DELH< J, I*H + 1 >*SIH+DELH( J,
         «  HP** . 33333333
         (DPDZ(J,I> .GT. 0.0. AND. HP  .GT.
         =  HP+HBRIG< J,I >
2090  COHTINUE
      ADJUST PLUME  FOR ELEVATION
      KP  =  HP+ZSHZP
I      IF  PLUME OUT  OF HIKING LAYER NO  CALC.
      IF  (HP .GT.  HH
      C4  *  C3*Q< J, I, K )*FREQ( J< N,KN)*SIGZ I P
      IF  (ISW(l)  . LE . 1) C4 = C4*UBHKJ,I)
I      DEPLETIOH DUE TO TINE DEPENDENT  DECAY
      IF  (DECAY .LE.  0.0) GO TO 2100
      C7  =  RP
      IF  (TYPE .EQ. 2) C7 = RP-RO
      C4  =  C4*EXP( -DECAY*C7*UBHI( J. I »
2100  CONTINUE
I      CALC  VERTICAL TERH
      IF  (ISU(1>  .EQ. 2) GO TO 2140
      IF  (NVS .GT.  0) GO TO 2110
I      COHCEHTRATIOH ONLY
      CALL  VERTC1
      GO  TO 2160
2110  CONTINUE
      C7  =  RP*UBHI( J, I)
      VV  «  0.0
      DO  2120 IL=1,NVS
      VSROU * C7*VS( ID
                                S0212480
       ,H + 3»> CV = ABS(DELH< J.S0212490
                                S0212500
                                S0212510
                                S0212520
H+2»                           S0212S30
                                S0212540
                                S0212550
                                S0212560
,H+2>*(l.O-COS(HP))             S0212570
                                S0212580
DLHSMX( J, I )) HP « Dl.HSHX(J.I)   S0212590
                                S0212600
                                S0212610
                                S0212620
                                S0212630
                                S0212640
                                S0212650
                                S0212660
                                S0212670
                                S0212680
                                S0212690
                                S0212700
                                S0212710
                                S0212720
                                S0212730
                                S0212740
                                S0212750
                                S0212760
                                S0212770
                                S0212780
                                S0212790
                                S0212800
                                S0212810
                                S0212820
                                S0212830
                                S0212840
                                S0212850

-------
1293*
1294*
1295*
1296*
1297*
1298*
1299*
1300*
1301*
1302*
1303*
1304*
1303*
1306*
1307*
1308*
1309*
1310*
w 1311*
i
ON 1312*
1313*
1314*
1313*
1316*
1317*
1318*
1319*
1320*
1321*
1322*
1323*
1324*
1325*
1326*
1327*
1328*
1329*
1330*
C


2120
2130

2140




C


2150

2160

C

C

C
C
2170
2180
C****
C
C
2190
C****
C
C
2200
C****
C
C
2210
C****
CONCENTRATION  VITH  DEPLETION  DUE  TO  GRAVITATI
CALL VERTC2C GAHNAUD)
W * VV+V*FRQ< ID
CONTINUE
V a VV
CO TO 2160
CONTINUE
VV « 0.0
C7 > RP*UBHKJ, I)
DO 2190 IL-1 ,NVS
VSROU • C7*VS( ID
GRAVITATIONAL  DEPOSITION
CALL VERTC3< GAHHA(ID)
VV = VV + <1
CONTINUE
GO TO 2130
CONTINUE
C4 « C4*V

ACCUMULATE
CON( Ll + IJ )
           0-GANHA< IL»*FRQ( IL)*V
           CONCENTRATION  OR
           • CON(L1 + IJ )+C4
                                   DEPOSITION
         OVER  VIND  SPEED
      END LOOP
      CONTINUE
      CONTINUE
C**************************************************

      END LOOP OVER  SEASONS
      CONTINUE
C**************************************************

      END LOOP OVER  STABILITY
      CONTINUE
     **********************************************

      END LOOP OVER  VIND  DIRECTION  SECTORS
      CONTINUE
C**************************************************
ONAL DEPOSITION      S0212860
                     S0212870
                     S0212880
                     S0212890
                     S0212900
                     S0212910
                     S0212920
                     S0212930
                     S0212940
                     S02129SO
                     S0212960
                     S0212970
                     S0212980
                     S0212990
                     S0213000
                     S0213010
                     S0213020
                     S0213030
                     S0213040
                     S02130SO
                     S0213060
                     S0213070
                     S0213080
                     S0213090
                     S0213100
*****************»***S0213110
                     S0213120
                     S0213130
                     S0213140
*********************S0213150
                     S0213160
                     S0213170
                     S0213180
*********************S0213190
                     S0213200
                     S0213210
                     S0213220
*********************S0213230

-------
w
1331*
1332*
1333*
1334*
1335*
1336*
1337*
1338*
1339*
1340*
1341*
1342*
1343*
1344*
1345*
1346*
1347*
1348*
1349*
1350*
1351*
1352*
1353*
1354*
1355*
1356*
1357*
1358*
1359*
1360*
1361*
1362*
1363*
1364*
1365*
1366*
1367*
1368*
C
C


C

C
C
C
C
C

C




C





C



C


C
C
C






END LOOP OVER X,Y AXIS POINTS AND S
2220 CONTINUE
GO TO ( 1820, 1860), IKSy
****************************************
2230 CONTIKJE

START SECTION TO OUTPUT INDIVIDUAL
TOTAL SUM OF SOURCES.

IS TAPE OUTPUT DESIRED
2240 IF (ISW(5> .EQ. O.OR.ISH(3) .EQ. 2>
OUTPUT SOURCE RECORD
WRITE (HUNT) ( NSOR( I >, I * 1 , NSO )
HT = NT+1
ITSAVE(NT) « NUHS*10+TYPE
IF (NT .GE. NTT) CALL OUTPT( - 4 , NT, X
OUTPUT CONCENTRATION (DEPOSITION) R
DO 2230 K=1,HSEASH
LI = (K+L91)*NXXYYP+L9
URITE (NUNT) ( CON< L 1 +1 ), I =1 . NXXY YP )
2L39 CONTINUE
2' 60 CONTINUE
IF SOURCE PART OF THIS COMBINED SOU
IF (NOCOHB(HG) .EQ. 0) GO TO 2270
CALL CHECKR(O.J)
IF (J .NE. 0) GO TO 2270
J = 0 IS NOT PART OF COMBINED, = 1
GO TO 2380
2270 CONTINUE

ACCUMULATE TOTAL CONCENTRATION (DEP
AND PRINT IF DESIRED
HT4 * I
KK = 1
DO 2320 K=1,NSEASN
LI = (K+L91)*NXXYYP+L9
IF (ISW(ll) .EQ. 2) GO TO 2290
S0213240
PECIAL RECEPTOR JOINTS S0213230
S0213260
S0213270
**************»****************S0213280
S0213290
S0213300
SOURCES AND ACCUMULATE FOR THE S0213310
S0213320
S0213330
S0213340
GO TO 2260 S0213330
S0213360
S0213370
S0213380
S0213390
,Y,2,NTT) S0213400
ECORD(S) S0213410
S0213420
S0213430
S0213440
S0213430
S0213460
RCE GROUP USE IT S0213470
S0213480
S0213490
S0213300
YES PART OF COMBINED S0213310
S0213320
S0213530
S0213340
OSITION) OVER SELECTED SOURCES S0213330
S0213360
S0213370
S0213380
S0213390
S0213600
S0213610

-------
1369*
1370*
1371*
1372*
1373*
1374*
1375*
1376*
1377*
1378*
1379*
1380*
1381*
1382*
1383*
1384*
1389*
1386*
1387*
1388*
1389*
1390*
1391*
1392*
1393*
1394*
1395*
1396*
1397*
1398*
1399*
1400*
1401*
1402*
1403*
1404*
1405*
1406*
2280
2290
2300
2310
2320
2330
2340
2350
2360
IF (ISW(8>  .EQ.  2.0R.ISy<7> .EQ. 2)
PRINT INDIVIDUAL SOURCES - SEASONAL
CALL OUTPK KK, K,X,Y, COH< Ll + 1 >, 1 >
IF 
ACCUHULATE  FOR  SUN OF SOURCES
L2 - *HXXYYP
IF (L92 .EQ.  1 )  L2 «=  L2+NXXYYP
CALL SUMMER< COH( L2* 1 >, CON, K + 1
                                          GO  TO  2280
                                     GO TO 2300
IF < ISUdl >
CONTINUE
IF (ISW(8)
IF (L92 .EQ
L2 -  0
IF  GO TO 2320
                  EQ. 2.0R.ISU(7)
                   2> GO TO 2310
                              EQ.  1> GO TO 2320
              0)  L2 * < 1 + L91>*NXXYYP + L9
             0.AND.K .EQ. 1)  GO TO 2320
CALL SUHHER< CON,CON(L1 + 1 >,K>
GO TO 2320
CALL SUHHERC Z/COHCL1+1 >,K>
CONTINUE
                  2) GO  TO 2360
                 2.0R.ISVC7)  .EQ.  1> GO
                 2) GO TO 2340
                 GO TO 2330
     IF
     IF
     IF
     IF
     L2
     IF
             .EQ
             EQ.
             EQ .
              2)
                      < 1 + L91)*NXXYYP + L9
                     >/CON*-l >
   ( ISVdl >
   
   < ISUd )
   (L92  .EQ
   * 0
   (L92  .EQ.  0) L2 =
CALL SUHHERC COHCL2M
GO TO 2340
CALL SUHHER
CONTINUE
KK = 2
PRINT INDIVIDUAL SOURCES - ANNUAL
IF (L92  .EQ.  2) GO TO 2350
CALL OUTPT(KK/K*X/Y/CON, 1 )
GO TO 2360
CALL OUTPTCKK,K,X,Y,Z,1>
CONTINUE
INCREMENT  SOURCE SAVE NUMBERS  FOR
IF 
-------
Cd
I
Co
1407*
1408*
1409*
1410*
141 1*
1412*
1413*
1414*
1415*
1416*
1417*
1418*
1419*
1420*
1421*
1422*
1423*
1424*
1425*
1426*
1427*
1428*
1429*
1430*
1431*
1432*
1433*
1434*
1435*
1436*
1437'
1438*
1439*
1440*
1441*
1442*
1443*
1444*
2370 KSO  -  KSO+1
     L9 « KSOoHXYSEH
     GO TO  2400
2380 IF *NXXYYr
           92  .EQ. 1 > LI =  Ll+NXXYYP
           S«<7>  .EQ. 2) GO  TO  2420
            SUM  OF SOURCES  -  SEASONAL
           OUTPT(KKiK,X,Y,CON(LH-l>,2)
           SU(7>  .LE. 1> GO  TO  2440
           92  .EQ. 2> GO TO  2430
           SUHHER'K>
            2440
           SUHMER,K)
           HUE
           Sy<7>  .LE. 1> GO  TO  2480
           Sy(1 )  .EQ. 2) GO  TO  2460
           92  .EQ. 2) GO TO  2450
           SUMKER
                                                         2) GO  TO  2480
                  S0214000
                  S0214010
                  S0214020
                  S0214030
                  S0214040
                  S0214050
                  S0214060
                  S0214070
                  S0214080
                  S0214090
                  S0214100
                  S02141 10
                  S0214120
                  S0214130
*********«£« .;****S0214140
                  S0214150
                  S0214160
                  S0214170
                  S0214180
                  S0214190
                  S0214200
                  S0214210
                  S021<,220
                  80214230
                  S0214240
                  S0214230
                  S0214260
                  S0214270
                  S0214280
                  S0214290
                  S0214300
                  S0214310
                  S0214320
                  S0214330
                  S0214340
                  S0214350
                  S0214360
                  S0214370

-------
w
1443*
1446*
1447*
1448*
1449*
1450*
1451*
1452*
1453*
1454*
1435*
1456*
1457*
1458*
1459*
1460*
1461*
1462*
1463*
1464*
1465*
1466*
1467*
1468*
1469*
1470*
1471*
1472*
1473*
1474*
1475*
1476*
1477*
1478*
1479*
1480*
1481*
1482*
2460

C



2470
2480
C
C
C



C
C
C
C
C
2490


C





C
C
C
2500




2510

CONTINUE
KK " 2
PRINT SUM OF SOURCES - ANNUAL
IF (L92 .EQ. 2) GO TO 2470
CALL OUTPTCKK, K,X, Y, CON, 2 >
GO TO 2480
CALL OUTPTdCK, K,X,Y, Z, 2>
CONTINUE

END OF COMBINED SOURCES, IF ISW(ll) » 2 GO DO SECOND P
DISPLAY OF MAXIMA. OTHERWISE GO TO NEXT GROUP OF COHBI
ISU(6) = 0
IF ( ISW( 11 > .EQ. 2) GO TO 710
GO TO 700

END OF COMBINED SOURCES LOOP
******************************************************

ERRORS COME TO HERE
IF (ISW(5> LE O.OR.ISW(S) .EQ. 2) GO TO 2500
IF (IFLG2 .HE. 0) GO TO 2500
IF (NG .GT. 1.0R.ISU(12) .EQ. -1) GO TO 2500
URITE END OF TAPE RECORD
MSOR( 1) « 999999
URITE (HUNT) < HSOR< I > , I • 1 , NSO )
IF (ISU(15) -LT. 0) GO TO 2500
ENDFILE HUNT
ENDFILE HUNT

END OF PROG. CLOSE ACTIVE FILES
******************************************************
IF (NT .GT. 0) CALL OUTPT( -4, NT, X, Y , Z / NTT )
URITE (JUNT, 9024) Kl
IF (JUNT .EQ. 6.0R.INDFL .EQ. 1> GO TO 2510
ENDFILE JUHT
ENDFILE JUNT
CONTINUE
STOP
S0214380
S0214390
S0214400
S0214410
S0214420
S0214430
S0214440
S0214450
S0214460
ASS FOR S0214470
NED SOURCES S0214480
S0214490
S0214500
S0214510
S0214520
S0214530
************S0214540
S0214550
S0214560
S0214S70
S0214580
S0214590
S0214600
S0214610
S0214620
S0214630
S0214640
S0214650
S0214660
S0214670
********** **S0214680
S0214690
S0214700
S0214710
S0214720
S0214730
S0214740
S0214750

-------
i
ty\
Ul
1483*
1484*
1485*
1486*
1487*
1488*
1489*
1490*
1491*
1492*
1493*
1494*
1493*
1496*
1497*
1498*
1499*
1500*
1501*
1502*
1503*
1504*
1505*
1506*
1507*
1508*
1509*
1510*
151 1*
1512*
1513*
1514*
1515*
1516*
1517*
1518*
1519*
1520*
                   310X,37HHUHBER
                   410X,26HNUHBER
                   310X,19HNUHBER
                   610X,30HNUHBER
                   710X,29HHUHBER
                   810X,34HNUHBER
                       Y AXIS  GRID SYSTEM
                       SPECIAL  POINTS = ,I
                       SEASONS  »,I4/
                       UIND  SPEED  CLASSES
                       STABILITY  CLASSES
                       HIND  DIRECTION CLA
9001 FORMAT  (20A4)
9002 FORMAT  (8F10.0)
9003 FORMAT  
-------
w
1321*
1522*
1523*
1524*
1523*
1526*
1527*
1528*
1529*
1530*
1531*
1532*
1533*
1534*
1535*
1536*
1537*
1538*
1539*
1540*
1541*
1542*
1543*
1544*
1545*
1546*
1547*
1548*
1549*
1550*
1551*
1552*
1553*
1554*
1555*
1556*
1557*
1558*
               9021
               9022
               9023
               9024
9017 FORMAT  <1
    10X,6< ION
    29H(OECREE
9018 FORMAT  (
9019 FORMAT  (
    1EES  KELV
9020 FORMAT  (
     FORMAT
     FORMAT
     FORMAT
     FORMAT
    IS PROCESS
9025 FORMAT  (3
    lY»f F11.2*
9026 FORMAT  (/
    1SSION ELE
9027 FORMAT  (/
    1 THAN 0.
9028 FORMAT  (/
    1NO MORE T
9029 FORMAT  (/
    1CANHOT  FI
9030 FORMAT  (3
    1RAL  VIRTU
    2F LOVER/6
    3RERUN)
9031 FORMAT  (1
    1 - , 1 0 ( 1 6 , 1
9032 FORMAT  (1
9033 FORMAT  (1
    1 >
9034 FORMAT  (3
    1 ,16, 18H
9035 FORMAT  (7
    1ISU< 11)«2
9036 FORMAT
    1 PROG.
9037 FORMAT
                              HO,41X,I8HSTABILITY  CAT EG DRY,I2//20X,6(12H
                               CATEGORY,12>/8X,13HDIRECTION     , 6(1H(, F7
                              S »
                              OX,F7.3, 3X,6(F12.8»
                                                WIND  SPEED)/2S02
                                               4, 4HHPS ))/7X,OS02
                                                              S02
                                                              S02
  HO,24X,66H- VERTICAL POTENTIAL  TEMPERATURE GRADIENT  (DEGRS02
  N/HETER) -/)                                               S02
  1X,6(12H  WIND SPEED)/21X,6( ION   CATEGORY, I2»            S02
  X , 18HSTABILITY CAT EG0RY,I 2,6E12.6>                        S02
  HO,39X,36H- WIND PROFILE POWER  LAW EXPONENTS -/)          S02
  5,3I1,2F10.0,7F7.0,I1,I2>                                  S02
  H1/////1X, 41( IN*), 22H END  OF  ISCLT PROGR A H ,, I 6 , 1 9H  SOURCES02
  ED  ,40(1H*))                                               S02
                              3H WARNING - DISTANCE  BETWEEN SOURCE  , I6,15H  AND POINT X
                              1H, ,F1 1.2,23H IS LESS  THAN PERMITTED)
                              2SH  **** ERROR - ELEVATION (,F8.2,47H) EXCEEDS
                              VATION FOR SOURCE  ,I3,18H, PROG. TERMINATED)
                                                              S02
                                                              S02
                                                    SOURCE  EHIS02
                                                              S02
  81H  ****  ERROR - DISP CANNOT  EQUAL 2 WHEN 8FLG
  OFFENDING SOURCE «,I5,18H,  PROG.  TERMINATED)
  45H  ****  ERROR - DISP GREATER THAN 0 FOR SOURCE
  APE  SOURCES,  PROG.  TERMINATED)
  43H  ****  ERROR - DISP GREATER THAN
  ND  CORRESPONDING TAPE SOURCE,  PROG
  2HOWARNING -  HW/HB  > 5 FOR  SOURCE
  AL  DIST.
  OH  BOUND
                                                                  0 FOR  SOURCE
                                                                  TERMINATED)
                                                                  I5,89H  PROG.
IS GREATERS02
          S02
 ,I3,40H, S02
          S02
          S02
          S02
                                                   I3,S6H,
                                                  USES  LATES02
          FOR  UPPER BOUND OF CONCENTRATION (DEPOSITION).  IS02
          IS DESIRED SET WAKE EFFECTS  FLAG (WAKE) =  1  AND  S02
                                                            S02
OX, 40HSOURCES  USED TO FORM SOURCE  COMBINATION ,I2,6H  ARE  S02
H;»                                                        S02
OX, 17( I6,1H, ))                                             S02
OX,48HALL  SOURCES  ARE USED TO FORM SOURCE COMBINATION  ,12502
                                                            S02
                                   I6,19H,  PROBLEM REQUIRESS02
                                                            S02
                                    EXCEEDED FOR NGROUP  OR  S02
                                                            S02
                                    <=  0  FOR SOURCE  ,I5,35HS02
                                                            S02
                              OHO*** ERROR - AVAILABLE  CORE = ,
                              OR MORE LOCATIONS/)
                              1HO*** ERROR - MAX NO.  OF  SOURCES
                               OPTION/)
                              8H *** WARNING - EXIT  VELOCITY IS
                              TS TO l.OE-5 AND CONTINUES)
(4
SE
(44H  ***  ERROR - STACK DIAMETER  <=  0  FOR SOURCE  ,15)
                                                                                         S02
13130
15140
15150
15160
13170
15180
13190
15200
15210
15220
15230
15240
13250
15260
15270
15280
15290
15300
15310
13320
13330
15340
15330
13360
15370
15380
15390
15400
15410
15420
15430
15440
15450
15460
15470
15480
15490
13500

-------
1
1
1
1
1
1
1
1
1
1
1
1
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
570*
9038
9039
9040
9041

9042

9043

9044






1

1

I

1

FORMA
FORMA
FORMA
FORMA
RCE -
FOP' A
GE. )
FORHA
GE. )
FORMA
GE. )
END
T (
T (
T <
T (
13,
T C

T <

T (


35
35
32
20
6H
34

34

34


H
H
H
H

H

H

H


**
*«
*«
**
REA
**

**

**


*
*
*
*
D
*

*

*


E
E
E
E
. )
E

E

RROR
RROR
RROR
RROR

RROR

RROR

ERROR




                                             SIGYO  
-------
2*
3*
4*
5*
6*
7*
8*
9*
1 0*
1 1*
12*
1 3*
14*
15*
16*
17*
18*
w 19*
ck 20*
00 21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
34 ^
1 *
32*
33*
34*
35*
36*
37*
38*
SUBROUTINE OUTPT ( KK / K / X/ Y/ Z / J SS )
C THIS SUBROUTINE PRINTS THE INPUT SOURCE DATA AN
C (DEPOSITION) CALCULATIONS
COMMON /DIM/ NSOURC/NXPNTS/ NYPNTS/ NXWYPT, NSEASN
lHSCTOR,ISy(20),UMITS(20),TITLE(20)/NOFILE
COMMON /REST/ IUNT/ JUNT, NXX YY , NXXY YP / I STBLE( 6 ) /
HCARD,NXPSS/NYPSS/MUHT/NUNT/ICONT(3/2)/ITSAVE(5
2, MSG7(4>3 )/ MSG8< 2)/ MSG9(2/ 2 )/ MSG10(4/ 3)/NGROUP/
300 ), IEHD, XSEA/ ISAVSO( 300)/ NG/ HGT/NXWY

1FRQ(20 >, GAMMA( 20 >/Q(6/ 6/4)/ QFLG/ WAKE
COMMON /HEAD/ HSG3< 4 ) / MSG4 ( 8 ) / I S / N 3 / I 3 / M3 / I L N
DIMENSION X(1)/Y(1)/Z(1),MSG1(6>/MSG2(6)/IXS(11
1/MSG5(4)/MSG6(10)/IX10(50)/IY10(50)
EQUIVALENCE (SIGYO/TS>/(SIGZO/VEL)/(BW/XO)
INTEGER TITLE /UN ITS /TYPE /QFLG /WAKE
DATA IX10/ I Y10/100*0/
DATA MSG1/4H STA / 2HCK , 4H VOL U/ 2HME/ 4H ARE/1HA/
DATA IBLNK/ IX/1H ,1HX/
DATA IAST/1H*/
DATA MSG2/4HSTAB/ 4HILIT/ 1HY/ 1H /4HSPEE/1HD/
DATA MSG3/4HSEAS, 4HONAL/ 4H AN/4HNUAL/
DATA MSG4/4HCONC/ 4HENTR, 4HATIO, 1HN/4H DEP/4HOSI
DATA NSG5/4HPER /4HSQUA/4HRE M/4HETER/
DATA HSG1 0/4HDIST,4HANCE/2*1H /4HRANG/4HE /2*
14HBEAR/ 3H ING/
IF ( KK .EQ. -4) GO TO 880
IS = JSS
IF ( KK .HE. 4) GO TO 240
C PRINT SOURCE DATA
ILN = 0
NUM = 1
IF ( TYPE .EQ . 2) GO TO 20
IF ( TYPE .EQ . 1) GO TO 10
HUH = 3
GO TO 20
10 HUM = 2
D ALL CONCENTRATI
/NSPEED/NSTBLE/

IFLC3/LINE/NLINES
72 )/ NT1 ,NT2, NT3/N
NOCOMB( 20 )/ IDSORC

By BL W V S VS(20)


)/ IYS( 1 1 )/ ZMX( 1 0)









f / 3HION/ 1H /

1H , 4HAZIM/4HUTH












  S0300010
ONS0300020
  S0300030
  S0300040
  S0300050
,  S0300060
T4S0300070
(2S0300080
  S0300090
  S0300100
  S0300110
  S0300120
  S0300130
  S0300140
  S0300150
  S0300160
  S0300170
  S0300180
  S0300190
  S0300200
  S0300210
  S0300220
  S0300230
  S0300240
/  S0300250
  S0300260
  S0300270
  S0300280
  S0300290
  S0300300
*tS0300310
  S0300320
  S0300330
  S0300340
  S0300350
  S0300360
  S0300370
  S0300380

-------
20
30
40
50
60
70


80
90





!00
1 10
C
H
I
I
I
Z
N
I
H
I
M
G
I
J
I
H
G
M
C
D
N
I
J
0
I
J
I
N
C
C
I
I
I
I
G
I
N
0
1
F
F
F
r
i
F
1
F
1
0
F
F
1
0
1
0
0
S
F
0
F
F
S
0
0
1
2
F
2
0
1
L
NT
X(
S
X
T
T
NT
7
G6
8
=
<
G6
NT
NT
=
=
<
S
T
=
N
INUE
0
ISUC 16) .HE. 0) GO TO 60
ISW(ll) .NE. 2.AND.ISU<8) .NE. 2) GO TO 60
!
-------
     77*
     78*
     79*
     80*
     81*
     82*
     83*
     34*
     85*
     86*
     87*
     88*
     89*
     90*
     91*
     92*
     93*
     94*
w    95*
^    96*
     97*
     98*
     99*
    100*
    101*
    102*
    103*
    104*
    105*
    106*
    107*
    108*
    109*
    110*
    111*
    112*
    113*
    114*






C








C















C


C



IF ( LST ILN . EQ . ILN > NLN = 0
CALL T I TLR( NUH+M1 , 1 /NLN)
LINE = LINE-MI
120 13 = 2*TYPE+1
IF ( TYPE .E6. 1 ) GO TO 130
IF ( TYPE .EG. 2) GO TO 140
OUTPUT STACK INFORMATION
WRITE (JUNT/9002) I 1 , I 2, NUMS , MSG 1 ( I 3 ) , MSG 1 ( I 3* 1 >/ DX / DY / H ,
1 , D/HB/ By , WAKE
GO TO 1 50
!30 WRITE (JUNT.9003) I 1 . I 2 , NUMS , MSG 1 ( 1 3 ) , MSG 1 ( I 3+ 1 ) , OX , 0 Y , H ,
1SIGZO
GO TO 150
140 WRITE (JUNT/9004) I 1 , I 2, NUM S/ MS G 1 ( I 3 ) / M SG 1 ( I 3+ 1 ) / DX , DY , H ,
150 CONTINUE
OUTPUT PARTICULATE INFORMATION IF PRESENT
IF (NVS . LE . 0 ) GO TO 170
CALL TITLR( 1.1*0)
WRITE (J LI NT/ 90 18)
I I = -6
160 II = I I +7
IF ( II . GT. NVS) GO TO 170
J J = I I +6
IF (JJ .GT. NVS) JJ = NVS
CALL TITLR( 4/1,0)
WRITE (JUNT/9019) (I/I=II,JJ)
WRITE (JUNT/9020) ( VS ( I ) , I = I I / J J )
WRITE (JUNT/9021) ( FR Q ( I ) / I = I I , J J )
WRITE (JUNT/9022) C GAMMA( I ) / I = I I / J J )
GO TO 160
1 70 CONTINUE
OUTPUT SOURCE STRENGTHS
IF ( QFLG .EQ. 3) GO TO 210
IF ( QFLG .NE . 0) GO TO 180
VARIES BY SEASON ONLY
CALL TITLR( 3/1 /O )
WRITE ( JUNT. 9008 ) MSG6
WRITE (JUNT/9005) ( L / L = 1 / 4 ) , ( Q( 1 / 1 / L ) / L = 1 , NSEASN )
S0300770
S0300780
S0300790
S0300800
S0300810
S0300820
S0300830
ZS/TS/VELS0300840
S0300850
S0300860
ZS/S IGYO, S6300870
S0300880
S0300890
ZS/XO S0300900
S0300910
S0300920
S0300930
S0300940
S0300950
S0300960
S0300970
S0300980
S0300990
S0301000
S0301010
S0301020
S0301030
S0301040
S0301050
S0301 060
S0301070
S0301080
S0301090
S0301 100
S0301 1 10
S0301 120
S0301 130
S0301 1 40

-------
1 1 5*
1 16*
1 17*
1 18*
1 19*
120*
121*
122*
123*
124*
125*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
1 42*
! 43*
1 44*
145*
146*
147*
148*
149*
150*
151*
152*
  180
    GO  TO
    J  = NS
  190
  200
  210
  220
  230
C
C
F
1
2
3
I
2
3
< 8F
= 3
= 1
= L
< QF
= L
= 1
   230
   PEED
   LG  .EQ.  1 )  J
   *QFLG-2
                          = HSTBLE
    CALL  T
    VRITE
    yRITE
    DO  200
    CALL  T
    yRITE
    CONTIN
    GO  TO
    CALL  T
    VRITE
    DO  220
    CALL  T
    VRITE
    DO  220
    CALL  T
    yRITE
    CONTIN
    CONTIN
    GO  TO
    PRINT
i *********
  240
    N3
    IF
    IF
    M3
    IF
    HI
    IF
= 1
< KK
< KK
= 0
< IS
= 1
( IS
             LG  .EQ .  1 ) GO TO  190
ITLR< 2/1,0)

UE
230
ITLR< 1,1,0)

 J=l,NSPEED
ITLR< 1,1,0)
 M3  =  4

«(2) .EQ.  2 > Ml  =2
                       S0301150
                       S0301160
                       S0301170
                       S0301180
                       S0301190
                       S0301200
                       S0301210
                       S0301220
                       S0301230
                       S0301240
                       S0301250
1 + 2 ), < I , 1-1 • NSEASN )    S030126''
                       S0301270
                       S0301280
                       S0301290
                       S0301300
                       S0301310
                       S0301320
                       S0301330
                       S0301340
                       S0301350
                       S0301360
                       S0301370
                       S0301380
                       SOo'01390
                       S0301400
                       S0301410
                       S0301420
                       S0301430
                       S0301440
**********************S0301450
                       S0301460
                       S0301470
                       S0301480
                       S0301490
                       S0301500
                       S0301510
                       S0301520

-------
w
~j
NJ
153*
154*
155*
156*
157*
158*
159*
160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
1-77*
178*
179*
180*
181*
1 8 2 *
183*
184*
185*
186*
187*
188*
189*
190*
              250
              260
              270
             .280
H2
IF
N4
IF
IF
IF
IF
CA
IF
CO
IF
IF
IF
GO
CO
IF
IL
NN
IF
= 1
( ISU
= 1
< ISU
< IS
< NG.
(NOC
LL CH
< 11
NTI
< N
< I
< I
TO
NTI

-------
w
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
21 1*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
      URITE  (JUNT,9011)  (HSG 10( I ,M 1 ),I = 1 , 2 ) ,,(MSG4(I-H13
     13)*1 = 1,4)                                                             S
      GO  TO  320                                                             S
  310 UPITE  (JUNT,9013)  (MSG 1 0< I,M2 ) ,I = 1 , 4),(HSG9< I,H4), I = 1, 2 )           S
  320 L.NE  = LINE+6                                                         S
  330 J4  =  (J3-1 )*NXPNTS                                                    S
      URITE  (JUNT,9014)  Y(J3 ), ( Z( J4+1), I = I 1, I 2 )                           S
      J4  =  0                                                                S
      LX  =  0                                                                S
      GO  TO  280                                                             S
  340 IF  < LX .EQ.  0)  GO  TO  350                                             S
      CALL  TITLR<1,3*NN )                                                    S
      GO  TO  290                                                             S
  350 CALL  TITLR<8,3*0>                                                     S
      LINE  = LINE-7                                                         S
      IF  < LINE   .LE.  3 )  GO  TO 290                                           S
      URITE  < JUNT,9001 )                                                     S
      URITE  < JUNT,9001 )                                                     S
      LINE  = LINE+2                                                         S
      GO  TO  300                                                             S
                                                                             S
C     PRINT  CALCULATIONS  AT  SPECIAL  DISCRETE  POINTS                       S
C*********************** » * * ********* ».**t****t*** * t * » *t1<«***V******:t:.>i. * t * * $
  360 CONTINUE
                   3.AND . ISW( 12) .EQ.  I* GO  TO  440
                   LE.  0 )  GO  TO 440
                  IF (KK  .NE
                  IF (NXWYPT
                  ILN  = 2
                  J3 =  NXXYY
                  LX =  1
                  NN =  2
                  IF CLSTILN
                  IF ( ISU<16
              370 CONTINUE
                  12 =  0
              380 II =  12+1
                  IF < I 1  .GT.  NXWYPT)  GO  TO 430
                   EQ .  1 )  GO TO 370
                   .EQ .  0.OR. KK .EQ.  3)  NN =  1
0301900
0301910
0301920
0301930
030 1940
030 1950
0301960
0301970
0301980
030 1990
0302000
0302050
0302020
0302030
0302040
0302050
0302060
0302070
0302080
0302090
0302100
0302110
0302120
0302130
••-> 302140
0302150
0302160
0302170
0302180
0302190
0302200
0302210
0302220
0302230
0302240
0302250
0302260
0302270

-------
229*            12=11+2                                                             S0302280
230*        -    IF (12 .GT.  NXWYPT) 12 = NXWYPT                                      S0302290
231*            -IF (LX .EQ.  0) GO TO 410                                             S0302300
232*            CALL TITLR(9,3,NN>                                                   S0302310
233*            LINE = LINE-8                                                        S0302320
234*        390  CONTINUE                                                              S0302330
235*            LINE = LINE-1                                                        80302340
236*        400  CONTINUE                                                              S0302350
237*            WRITE (JUNT,9001)                                                    S0302360
238*            LINE = LINE+2                                                        S0302370
239*            CALL HEADNG(KK,K)                                                    S0302380
240*            LSTILN =  1                                                            S0302390
241*            GO TO 420                                                             S0302400
242*        410  CONTINUE                                                              S0302410
243*            CALL TITLR(1,3,0)                                                    S0302420
244*            IF (LINE  . LE . 3) GO TO 390                                           S0302430
245*        420  WRITE (JUNT,9015) (X(NXPNTS + J ) ,Y(NYPNTS + J ) /Z(J3 + J ) , J = I 1,I 2 )        S0302440
246*            LX = 0                                                                S0302450
247*            GO TO 380                                                             S0302460
248*        430  LSTILN =2                                                            S0302470
249*        440  CONTINUE                                                              S0302490
250*            IF (ISW(IO)  .EQ. O.OR.KK.EQ.  3)  GO  TO 370                           S0302500
251*      C                                                                            S0302510
252*      C      FIND MAX  TEN  VALUES OF CONCENTRATION (DEPOSITION)                   S0302520
253*      C******************»****************»*******t****t**************t****'t'**S0302530
254*            IF (ISW<11)  .NE. 2) GO TO 470                                        S0302540
255*      C      DETERMINE  AND SAVE INDICES OF  THE  MAX 10 POINTS FOR  THE  CGRB1NED   S0302550
256*      C      SOURCES FOR  SEASON 1,  2, 	  >  ANNUAL                               S0302560
257*            IF (IS .EQ.  1) GO TO 870                                             S0302570
258*            L = (K-l)*10                                                          S0302580
259*            IF (KK .EQ.  2) L = NSEASN*10                                         S0302590
260*        450  CALL MX IHUH( IXS, IYS, ZHX,Z)                                           S0302600
261*            DO 460 1*1, 10                                                        S03026 10
262*            IX10(L+I)  =  IXS(I)                                                   S0302620
263*        460  IY10(L+I>  =  IYS(I)                                                   S0302630
264*            GO TO 870                                                             S0302640
265*        470  CONTINUE                                                              S0302650
266*            L6 = 0                                                                S0302660

-------
w
Ui
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
285*
286*
287*
288*
289*
290*
291*
292*
293*
294*
295*
296*
297*
298*
299*
300*
301*
302*
303*
304*












480


490


500

510















L = 0
L4 = 0
IF CNXHYPT
IF (NXPNTS
HftVi. BOTH
T - ( ISIK2 )
IF (NXXYY
USE ISVK3)
L = ISy(3 >
L4 « 2
GO TO 510
USE ISUC2)
L = ISWC2 >
L4 = 1
GO TO 510
L = ISHC2 >
L4 = 0
GO TO 510
L = ISW<3 >
L4 = 0
CONTINUE
HI = 1
H2 = 3
H4 = 4
H5 = 2
H6 = 3
H7 = 4
M8 = 2
IF ( L . LT .
HI = 2
H2 = 1
H4 = 2
H5 = 3
H6 = 1
H7 = 2
M8 = 3


. EQ . 0 ) GO
EQ . 0 ) GO
TYPES OF RE
. EQ . ISU( 3
.GT. NXWYPT
ftS PRIHflRY



ftS PRIHARY
















2 ) GO TO 5







                                           TO  490
                                           TO  500
                                       RECEPTORS
                                           )  GO TO 490
                                            GO  TO 460
                                           UNITS DISPLAY
                                           UNITS DISPLAY
                                          20
               520  CONTINUE
                   IF < ISVC11 >
HE.  1)  GO  TO  540
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S*3
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S03
S 0 3
S03
S03
02670
02680
0 2 6 '? 0
02700
02710
02720
02730
02740
02750
02760
02770
0 2 7 . j 0
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
0 2 S 9 0
02900
029 10
0292 0
02930
0294 0
02950
02960
02970
02980
02990
03000
03010
03020
0303 0
03040

-------
7
VJ
0\
305*
306*
307*
308*
309*
310*
311*
312*
313*
314*
315*
316*
317*
318*
319*
320*
321*
322*
323*
324*
325*
326*
327*
328*
329*
330*
331*
332*
333*
334*
335*
336*
337*
338*
339*
340*
341*
342*










530
CALL
L2 =
DO 5
IF (
IF <
CONT
HX
0
30
IXS
ZHX
INU
GO TO 6
540












550
IF <
IF <
HAXI
L =
IF <
L =
IF <
L2 =
ISU
ISW
HUH
0
HSE
(K-
IHUH(

1 =
(I
(I
E
20
(1
(1

1 ,
)
)


2)
2)
POI



1






N

ASH .
1)
*1
0
KK .EQ.
0
DO 560










560
IXS<
IYS(
ZHX(
IF (
IF <
CONT
I )
I )
I )
IXS
ZHX
INU
GO TO 6
5


5





70


80





CONT
L =
IF (
L2 =
DO 6
IXS(
IYS(
IF <
JJ r
INU
( K-
KK
0
10
I >
I )
IXS
( I
GO TO 6
5
6


6
90
00


10
JJ =
ZKX(
IF (
IF <
CONT
NX
I )
IXS
ZHX
INU

1 =

1,

1
IXS

0
EQ.
GT.


.EQ
.HE
TS

EQ .

2)

0
- NXPNTS
* NYPNTS
=
(I
(I
E
20
E
1)
Z(
)
)



*1
NXXY
.
f



0
.EQ .

1 =

1 ,

1
= 1X1
c
(I
YS
00
XY
a
( I
(I
E
IY
)
( I

Y +
Z<
)
)

1

EQ.
GT .




2)

0
0( I
0( I
GT .
,1


0
0




YS,


.OR
.0 )


-1 )
1)
HAVE

1

L


+ 1
+ 1
Y +
0
0




L


+ L
+ L

.OR

ZHX,


.IYS
L2


GO
Z )


( I ) .EG. 0 ) GO TO 530
* I


TO 570
GO TO 870
BEEN
-
INPUT BY THE USER

.NXUYPT .LE. 10) GO TO 550


= NSEASN*10


+ L
+ L
I + L
.OR
.0 )








)
.IYS
L2









(I) . EQ. 0 ) GO TO 560
- I




= NSEASN*10


)
)




NXPNTS)
)-l >*NXPNTS+I

I
J
.
.


XS(
J)
EQ.
GT .


I)

0
0







GO TO 590
XS( I)

-NXPNTS

.OR
.0)


.IYS
L2


(I) .EQ. 0) GO TO 610
= I

S0303050
S0303060
S0303070
S0303080
S0303090
S0303100
S0303110
S0303120
S0303130
SQ303140
S0303150
S0303160
S0303170
S0303180
S0303190
S0303200
S0303210
S0303220
S0303230
S0303240
S0303250
S0303260
S0303270
S0303280
S0303290
S0303300
S0303310
S0303320
S0303330
S0303340
S0303350
S030336G
S0303370
S0303380
S0303390
S0303400
S0303410
S0303420

-------
   343*        620  CONTINUE                                                              S0303430
   344*            I  = 1                                                                 S0303440
   345*            IF ( ISW<12 ).EQ.0.OR. IS.EQ.2.OR.MOCOKBCNG ).EQ.0) GO TO  640         ' 30303450
   346*            J  = 2                                                                 S0303460
   347*        630  I  = I+1                                                               S0303470
   348*            J  = J+l                                                               S0303480
   349*            IF  NN =  1                                           S0303540
   356*        660  CONTINUE                                                              S0303590
   357*            ILN =  3                                                               S0303600
   358*            L2 =  L2+1                                                             S0303610
   359*            IF (L2  .LE.  1)  GO  TO 860                                             S0303620
   360*            L5 =  IBLNK                                                            S0303630
w  361*            L3 =  0                                                                S0303640
•ij  362*            00 850  J=1,L2                                                         S0303650
^  363*            IF (J  .EQ.  12)  GO  TO 680                                             S0303660
   364*            II =  IXS(J )                                                           S0303670
   365*            12 =  IYS< J )                                                           S0303680
   366*            IF (II  .EQ.  O.OR.I2 .EQ.  0)  GO TO 850                               S0303690
   367*            IF                                                      S0303810
   379*            GO TO  690                                                             S0303820
   380*        680  CALL  TITLR(1<3/0)                                                     S0303830

-------
be*
>j
00
381*
382*
383*
384*
385*
386*
387*
388*
389*
390*
391*
392*
393*
394*
393*
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
41 1*
412*
413*
414*
415*
416*
417*
418*
             690
             700
             710
             720
             730
             740
             750
             760
IF (LIN
GO TO 8
IF (ISU
WRITE (
LINE =
GO TO 7
IF (ISU
IF (IS
INDIVID
IF (NOC
Jl = 1
J2 = 2
IF (J2
WRITE <
LINE =
Jl = J2
Jl = Jl
   ( Jl
   - Jl
   ( J2
LINE =
WRITE (
LINE =
GO TO 7
WRITE (
LINE =
GO TO 7
IF (NG
WRITE <
LINE -
GO TO 7
   ( ISU
   (NOC
   = 1
   = 2
   ( J2
IF
J2
IF
IF
IF
Jl
J2
IF
                  WRITE  <
                  LINE  =
       E  .LE.  3)  GO  TO 670
       00
       C12)  .HE.  0)  GO TO 710
       JUNT,9023)
       LINE+3
       90
       <12)  .GT.  0)  GO TO 740
        .EQ.  2) GO  TO 700
       UAL SOURCE  CONTRIBUTION TO COMBINED  MAXIMUM 10
       OHB(NG) .EQ.  0) GO TO 730
.GT. NOCOHB(NG))  J2  =  NOCOHB(NG)
JUHT,9024) (IDSORCCNGT+I),l*Jl,J2>
LINE+2

+ 1
.GT. NOCOHB(NG))  GO  TO  780
+ 11
.GT. HOCOHB(NG))  J2  =  NOCOHB(NG)
LINE+1
JUNT,9025) ( IDSORC
LINE+2
 S0303840
 S0303850
 S0303860
 S0303870
 S0303880
 S0303890
 S0303900
 S0303910
 S0303920
 S0303930
 S0303940
 S0303950
 S0303960
 S0303970
 S0303980
 S0303990
 S0304000
 S0304010
 S0304020
 S0304030
 S0304040
 S0304Q50
 S0304060
 S0304070
 S0304080
 S0304090
 S0304100
 S0304110
 S0304120
 S0304130
 S0304140
 S0304150
 S 03041 60^
 S0304170*
 S0304180
-S0304190
 S0304200
 S0304210

-------
i
419*
420*
421*
422*
423*
424*
425*
426*
427*
428*
429*
430*
431*
432*
433*
434*
435*
436*
437*
438*
439*
440*
441*
442*
443*
444*
445*
446*
447*
448*
449*
450*
451*
452*
453*
454*
455*
456*
GO
770 WR
LI
GO
780 VI
Li
TO 7
ITE <
NE =
TO 7
ITE (
NE =
790 CONTINU
LI
WR
1 , M
21,
800 IF
L5
IF
IF
C LA
C AR
IF
GO
LA
r. RE
810 IF
820 CO
WR
IF
GO
830 IF
IF
IF
L6
IF
WR
GO
840 L6
IF
WR
850 CO
860 CO
NE =
ITE (
5 ) , I =
2)
( J .
= IB
< L4
( L4
BEL F
BITRA
( I 1
TO 8
BEL F
CEPTO
< I 1
NTINU
ITE <
< L5
TO 8
< L4
< L6
( L4
= 1
( ISW
ITE (
20
JUNT,
LINE*
90
JUNT,
LINE*
E
LINE*
JUNT,
M6 , M7

EQ . L
LNK
.EQ .
.EQ .
ROM G
RILY
.GT .
20
ROM A
R IS
.LE .
E
JUNT,
.NE .
50
.EQ .
.EQ .
.EQ .

(3 ) .
JUNT,

90
3

90
1

6
90
) ,

2)

0)
2>
RI
SP
NX

RB
FR
NX

90
IB

0)
0)
2)

GE
90

2


3



1
(





D
A
P

I
0
P

1
L






3

9)


0)



6)
MS

GO

GO
GO
S
CE








(
G 1

T

T








M
0

0

0
TO
YS
D
T
R
NTS)

TR
M
NT

7)
NK

GO
GO
GO

2
1 )

AR
GR
S)


I
I


L5
)

T
T
T

)
(
L

0
0
0

L
M








SG
( I

8

8
8
EM
EC
L5

LY
D
L5









4(M3+I),I=1,4),(«SG10(I,2),I=.12,M4),(HSG10(
,M8), 1 = 3,4 ),(MSG9( I, 1), I = 1,2)*(HSG9(I,M1 ), I

30

20
10
USED, DETERMINE IF THIS RECEPTOR IS AN
EPTOR WITH DIFFERENT UNITS
= IAST

SPACED POINTS USED, DETERMINE IF THIS
SYSTEM WITH DIFFERENT UNITS
= IAST

,X( I 1 >, Y< 12) , 2HX< J )
6

8
8
8

6
SG
- i

50
50
40

= 2
9( L4, L6 ),L4=1 , 2 )
TO 850
= 1
< ISW
ITE <
NTINU

(2 ) .
JUNT,
E

GE
90



3


2
1 )


)
(


L
M


6
SG


= 2
9( L4, L6 ),L4=1 ,2 )

NTINUE
S 0304220
S0304230
S0304240
S0304250
S0304260
S0304270
S0304280
S0304290
IS0304300
= S 03 0 43 fo
S0304320
S0304330
S0304340
S0304350
S0304360
S0304370
S0304380
S0304390
S0304400
S 03 0.44 10
S0304420
S0304430
S " 3 0 4 4 4 0
S 0 3 0 4 4 5 0
S 03 044 60
S0304470
S 0 3 0 4 4 8 C'
S0304490
303 045 00
S 03 045 10
S 0 3 0 4 5 2 0
S0304530
S0304540
S 0 3 0 4 5 5 0
S0304560
S 0 3 0 4 5 7 0
S 0 3 0 4 5 8 0
S 0 3 0 4 5 9 0

-------
457*            IF (ISy<16> .EQ. 0) LINE  =  NLINES                                   S0304600
458*        870  CONTINUE               .    .                                           S0304610
459*            GO TO 920   .                                                          S0304620
460*        880  CONTINUE                                               -               S0304630
461*            LINE = HLINES                                                        S0304640
462*            ILN =4                                                               S0304650
463*            II =-10             .                                                 S0304660
464*        890  II = 11+11                                                            S030467C
465*            IF (II  .GT. K> GO TO 910                                             S0304680
466*            12 = 11+10                                                            S0304690
467*            IF (12  .GT. K> 12 = K                                                S0304700
468*            1*0                                                                 30304710
469*            DO 900 J=I1,I2                                                       S03.04720
470*            I  = 1+1                                                               S0304730
471*            IXS(I) =  ITSAVECJV10                                                S0304740
472*        900  IYS(I) =  ITSftVE-IXS*10                                         S0304750
473*            CALL TITLR<1,4,0>                                                    S0304760
474*            WRITE (JUNT,9001) < I XS ( J ) , I YS ( J ) , J = 1 , I)                             S030477C-
475*            GO TO 890                                                             S0304780
476*        910  K  = 0                                                                 S0304790
477*            LINE = NLINES                                                        S0304800
478*        920  CONTINUE                                                              S0304810
479*            LSTILN =  ILN                                                         S0304820
480*            RETURN                                                                S0304830
481*       9001  FORMAT < 1 1 < 1 X, I 6,3X, I 1 , 1X ))                                          S0304840
482*       9002  FORMAT < 1X,A 1 , 1 X, Al, I 7,1X,A4,ft 2,2F 1 2 . 2 , F7 . 2 , F8.2,23H G ft S EXIT  TEHPS0304850
483*      !     1  (DEC K>=,F?.2,24H/ GftS  EXIT  VEL. = , F6 . 2 , 1 0 H ,   WIDTH  S0304'8"70
485*           30F/58X,16HASSO.  BLDG.  (H ) =,F7.2,21H,  WAKE EFFECTS  FLAG =,I2>       S0304880
486*       9003  FORMAT < 1 X , A 1 , 1X,A 1, I 7 , 1X,A 4,A2, 2F12.2,F7.2,F8.2/61H STANDARD  DEVIS0304890
487*           1ATION OF  THE C ROS SW I ND, S 0 UR CE  DISTRIBUTION < N >= , F7 . 2/38X, S9HSTAND AS03049 00
488*           2RD DEVIATION OF  THE VERTICAL  SOURCE DISTRIBUTION  («)=,F7.2)        S0304910
489*       9004  FORMAT < 1X,A 1 , 1 X, A 1, I 7 / 1X,A 4,A 2,2F12.2,F7.2,F8.2, 19H WIDTH OF  AREAS0304920
490*           1  (M)=,F8.2)                                                          S0304930
491*      -9005  FORMAT <65X,4<5X/6HSEASON,I 2)/67X,4(1PE13.5))                       S0304940
492*       9006  FORMAT <58X,2A4,A 1,9H CATEG ORY,4(3X,6HSEAS ON, I 2,2X ) )               S0304950
493*       9007  FORMAT <67X, 12,7X,4( 1PE13.5 ))                                        S0304960
494*       9008  FORMAT <64X,20H- SOURCE  STRENGTHS (,10A4,3H>  -)                     S0304970

-------
   495*       9009 FORMAT  <92X,8H- SEASON,12,2H -/39X , 1 4HSPEED  CAT EGURY,31X, 24H-  STA6S03C4980
   496*           1ILITY  CATEGORIES  -/49X,6( 10X, 1H< , I 1 , 1H ) ) )                           S0304990
   497*       9010 FORMAT  <46X, 12, 5X,6< 1PEl 3 . 5 ) )                                        S03C5000
   498*       9011 FORHftT  <53X,23H-  GRID  SYSTEM RECEPTORS -/SIX,ION-  X AXIS ( , 2 =>4 , 1 1 HS.03 0 50 1 0
   499*           1, METERS) -/14X,9F13.3 )                                              ~S0305020
   500*       9012 FGRMAT  (1X.8HY AXIS  C,3A4,A3,2H,  , 2A4,1H ),25X,3H-   ,3A4,ftl,3H   -/1S0305030
   501*           14X,29<4H	>/>                           -                            S0305040
   502*       9013 FORMAT  <1X,8HY AXIS  (,3A4,A3,2H,  , 2 A4 , 1 H ) / 24 X , 1 4H -  ELEVATIONS  -/4-^S 03 0 50 50
   503*           1X,29<4H	)/>                                                        S0305060
   504*       9014 FORMAT  (1X,F13.3, IX,9F 13 . 6 )                                          S0305070
   505*       9015 FORMAT  < 3 ( 1 X , F 9 . 1 , F 1 1 . 1, F 1 4 . 6 , 5X ) )                                  S030.5080
   506*       9016 FORMAT  ( 5 1 X, 1H X , 1 2X , 1 H Y , 8X / 4A 4 /4 7X . 23HC 0 OR D I N AT E    COORD I HA T £/49X , S 03 0 50 " •>
   507*           1A4,A1,8X,A4,A3/62X,A4,A3/48X,1K(,«4,A2,1H>,5X,1H<,A4,A3,1H)/47X,3S'S0305100
   508*           2(1H- ) )                                                                 S03051 10
   509*       9017 FORMAT  < 4 4 X, Al , 1 X , F 1 1 . 2 , 2X., F 1 1 . 2 , 2 X , F 1 4 . 6 )                          S0305120
   510*       9018 FORMAT  (92X,26H-  PARTICIPATE CATEGORIES -)                          S0305130
   511*       9019 FORMAT  < 7 8 X., 7( 5 X, 12 ) )                              .                   S0305140
   512*       9020 FORMAT  < 5 8X., 22 HFALL  VELOCITY    ,7F7.4>                        S0305150
w  513*       '021 FORMAT  (58X,13HHASS  FRACTI 0H,9X , 7F7 . 4 )                 .             S0305160
»  514*       ^022 FORMAT  <58X,22HREFLECT10M  COEFF I CIENT, 7F7.4)           '             S0305170
   515*       9023 FORMAT  <1 HO,45X,4 OH -  PROGRAM DETERMINED MAXIMUM  10  VALUES  -/)      S0305180
   516*       9024 FORMAT                            S030S200
   518*       9025 FORMAT  (20X/2H- ,12(16,1H,»                                         S0305210
   519*       9026 FORMAT  <1 HO,23X,83H-  10  CONTRIBUTING VALUES  TO  PROGRAM DETERMINED  S0305220
   520*           1MAXIMUM  10 OF ALL  SOURCES  COMBINED -/)                          -    S0305230
   521*       9027 FORMAT  ( 1 H 0, 45X , 3 9H -  USER  SPECIFIED  10 SPECIAL  RECEPTORS -.-')       S0305240
   522*       9028 FORMAT  <1 HO, 16X>84H-  10  CONTRIBUTING VALUES  TO  USER SPECIFIED  10  SS0305250
   523*           1PECIAL  RECEPTORS  OF  COMBINED SOURCES ,2(16,IH,»                    S0305260
   524*       9029 FORMAT  (1 HO,20X,89H-  10 , CONTRIBUTING VALUES  TO  USER SPECIFIED  10  SS0305270
   525*           1PECIAL  RECEPTORS  OF  ALL  SOURCES COMBINED  -/)                        S0305280
   526*       9030 FORMAT  <1H >                                                          S0305290
   527*       9031 FORMAT  <23X,47H*  -  MEANS RECEPTORS ARE IN UNITS  OF  METERS  AND  ,A4,S03053CO
   528*           1A3/32H,  NOT UNITS  GIVEN  IN  THE HEADING)                             S0305310
   529*            END                                                                    S0305320

-------
w
I
00
KJ
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
10
                 20
                30
 SUBROUTIHE  HEADNG(KK , K)
 PRINT HEADINGS ON CONCENTRATION  (DEPOSITI
 COMMON /DIM/ NSOURC,NXPNTS,NYPNTS,NXyYPT,
!NSCTOR,ISy(20),UNITS(20),TITLE(20),NOFILE
 COMMON /REST/ IUNT,JUNT,NXXYY,NXXYYP,ISTB
1ICARD,NXPSS,NYPSS,MUNT,NUNT,ICONT( 3,2 >, IT
2, MSG7(4> 3 >, MSG8(2),MSG9(2, 2>,MSG10(4, 3),N
300 ), IEHD/ XSEA, ISAVSO(300),NG,NGT,NXUY
 COMMON /SORC/ HUMS,TYPE,DX,DY,H , ZS,TS,VOL
1FRQ(20>, GAMMA( 20 >,Q(6, 6,4), QFLG
 COMMON /HEAD/ HSG3( 4 ), MSG4 ( 8 ), I S
 DATA IBLHK/iH /
 1C « ICONT( 1 ,MT4 )
 IF (NT4  .EQ. 1 ) 1C = IBLNK
 IF (KK  .HE.  3) GO TO 30
 IF (ILN  .NE. 1 ) GO TO 10
 WRITE (JUNT,9001) (ICONT(I,NT4), 1 = 1,3 )
 LINE = LINE+2
 GO TO 200
 IF ( ILN  . NE . 2) GO TO 200
 IF (ILN  . NE . 2) GO TO 200
 Ml = 1
 M2 = 1
 IF ( ISy< 3 )  .LE.  1 ) GO TO  20
 Ml = 2
 M2 = 3
 yRITE (JUNT,9007) ( I CONT(I,NT 4), 1 = 1,3 )
 LINE » LINE+3
 yRITE (JUNT,9008) ((HSG10(I
1((MSG10
 LINE = LINE+5
 GO TO 200
    (ILN  . NE. 2) GO TO 40
    (LINE  .GT. 4.AND.LSTILN
                                                              ON)  TABLES
                                                              NSEASN,NSPEED,NST8LE
                                                              LE(6), IFLG3
                                                              SAVE( 572), N
                                                              GROUP,NOCOM
                                                               ,D,H6,By,BL,NVS,VS(20)

                                                      N3, 13,M3, ILN
40
                                                 M1 ), 1 = 1, 2 ), (M
                                                 ( (HSG9( I , HI ),
                              SG10( I ,M2),
                              1*1 ,2 ), J=l ,
   IF
   IF
   IF
   IF
   J2
                                                 EQ.  1) GO TO  180
                       ( ISW( 1 )
                       ( IS  .EQ.
                       =  NUHS
EQ
2)
 2) GO TO
GO TO 60
                           100
                50 WRITE  (JUNT,9002)  HSG3( N3 ) , HSG3( N3-H ) , ( UN I TS( I ) / I = 1 , 1 0 ), J 2
               S0400010
               S0400020
               S0400030
               S0400040
,LINE,NLINES,  S0400050
Tl ,NT2,NT3,HT4S0400060
B(20 ),IDSORC(2S0400070
               S0400080
               S0400090
               S0400100
               S0400110
               S0400120
               S0400130
               S0400140
               S0400150
               S0400160
               S0400170
               S0400180
               S0400190
               S0400200
               S0400210
               S0400220
            .   S0400230
               S0400240
               S0400250
               S0400260
               S0400270
               S0400280
            3 ), S0400290
               S0400300
               S0400310
               S0400320
               S0400330
               S0400340
               S0400350
               S0400360
               S0400370
               S0400380
                                                          1 = 1
                                                          3)
                                                              2 ).- J = 1

-------
     39*           1,1C,ICONT(2,HT4)                                                     S0400390
     40*            LINE  = LINE+1                                                        S0400400
     41*            GO  TO 160                                                            S0400410
     42*         60  IF  (NOCOHB(NG)  .GT.  0) GO TO 70                                     S0400420
     43*            yRITE (JUNT.9003)  HSG3(H3>,HSG3( N3 + 1 > , (UN ITS(I >, I«1,10>, IC ,        S0400430
     44*           lIr~ONT<2*NT4>                                                         S0400440
     45*            LINE  * LIHE-H                                                        S0400450
     46*            GO  TO 160                                                            S0400460
     47*         70  Jl  a  2                                                               S0400470
     48*            IF  (Jl .GT. HOCOHB(HG))  Jl « NOCOMB(NG)                             S0400480
     49*            IF  (Jl .GT. 1)  GO  TO 80                                              S04004(,'0
     50*            IF  ( IDSORC( J 1 + NGT > .LT.  0) GO TO 80                                 S04005C-0
     51*            J2  =  I080RC(Jl+NGT)                                                  80400510
     52*            GO  TO 50                                                             S0400520
     53*         80  yRITE (JUNT,9010>  MSG3, ( IDSORC< I + NGT), 1=1 , J 1 )                                        S0400540
     55*            LINE  = LINE+1                                                        80400550
     56*         90  Jl  =  Jl+1                                                            S0400560
W    57*            IF  (Jl .GT. NOCOHB(HG))  GO TO 160                                   S0400570
oo    58*            J2  =  Jl + 16                                                           S0400580
     59*            IF  (J2 .GT. NOCOHB(HG))  J2 = NOCOHB(NG)                             S0400590
     60*            yRITE (JUHT,9011)  ( IOSORC( I+HGT>, I»J1,J2 )                           S0400600
     61*            LINE  * LIHE+1                                                        S0400610
     62*            Jl  -  J2                                                               S0400620
     63*            GO  TO 90                                                             S0400630
     64*        100  IF  (IS .EQ. 2)  GO  TO 120                                             S0400640
     65*            J2  =  HUMS                                                            S0400650
     66*        110  VRITE (JUNT.9004)  «SG3(N3),MSG3 , ,I = 1, 10>, J2         S0400660
     67*           1,1C,ICONT(2,NT4)                                                     S0400670
     68*            LINE  = LIHE+1                                                        S0400680
     69*            GO  TO 160                                                            S0400690
     70*        120  IF  (NOCOHB(HG)  .GT.  0) GO TO 130                                    S0400700
     71*            yRITE (JUHT/9005)  HSG3(H3),MSG3( N3 + 1 ) /(UN ITS(I ) , I = 1, 10), IC/        S0400710
     72*           1ICOHT(2.HT4 )                                                         80400720
     73*            LINE  = LINE+1                                                        S0400730
     74*            GO  TO 160                                                            S0400740
     75*        130  Jl  =  2                                                               S0400750
     76*            IF  (Jl .GT. NOCOHB(NG))  Jl = NOCOMB(HG)                             S0400760

-------
w
oo
 77*
 78*
 79*
 80*
 81*
 82*
 83*
 84*
 85*
 86*
 87*
 88*
 89*
 90*
 91*
 92*
 93*
 94*
 95*
 96*
 97*
 98*
 99*
100*
101*
102*
103*
104*
105*
106*
107*
108*
109*
1 1 0*
1 1 1*
1 12*
1 13*
1 14*
                140
                150
    IF < Jl  .GT.  1 ) GO TO 140
    IF 
   1,NT4>, ( IDSORC< I + NGT), 1=1,J
    LINE *  LIHE+1
       = Jl+1
       (Jl  .GT
       = Jl+16
                 NOCOHB(NG)) J2
                 9011 ) ( IDSORC(
                                                 GO  TO 140
                    ,MSG3(N3 + 1 ),(UHITS(I
                    1 )
                                                  >,!=! , 10 ).
160


170

180
                190



                200


               9001

               9002

               9003
                                 NOCOHB(NG ))  GO  TO  160
.GT.
JUNT
                         »  LIHE+1
                                       TO
                                       K
               170
 J 1
 IF
 J2
 IF < J2
 WRITE <
 LINE
 J 1 = J2
 GO TO ISO
 IF (KK  .HE.  1) GO
 WRITE ( JUNT, 9006)
 LINE *  LINE+1
 CONTINUE
 IF < ILH  .HE
 CONTINUE
 HI = 1
 H2 = 1
 IF < I S y < 3 >
    * 2
    = 3
 WRITE C JUNT, 9009)
 WRITE ( JUNT/ 9008 )
1( ( HSG10< I ,H2 )/ 1 = 3
 LINE =  LINE+8
 CONTINUE
 NT4 = 2
 RETURN
 FORHAT  <34X,51H-
1, 3A4/)
 FORHAT  (9X/3H**  .2A4/29H G
IE TO SOURCE  ,16. IX, 2A4.3H
 FORHAT  <6X,3H»*  ,2A4,29H G
                                                 =  NOCOHB(NG)
                                                I+NGT ),I=J1,J2)
      2)  GO  TO  200
                                 LE. 1 ) GO  TO  190
                    HI
                    H2
            <(HSG4(J
            ( (HSG10<
            4 >, J=l ,3
                               + H3 ), J=l /4 ), 1 = 1 , 3)
                               I ,H1 ), 1= 1 , 2 >, (HSG1 0<
                               ),< (HSG9( I ,H1 ), 1=1 ,2
           GRID  SYSTEH RECEPTOR  TERRAIN ELEVATIONS  (HETERS)
                    ROUND LEVEL  CONCENTR
                    **)
                    ROUND LEVEL  CONCENTRATION (
                     S0400770
                     S0400780
                     S0400790
                     S0400800
           1C, ICOHT(2S0400810
                     S0400820
                     S0400830
                     S0400840
                     S0400850
                     S0400860
                     S0400870
                     S0400880
                     S0400890
                     S0400900
                     S0400910
                     S0400920
                     S0400930
                     S0400940
                     S0400950
                     S0400960
                     S0400970
                     S0400980
                     S0400990
                     S0401000
                     S0401010
                     S0401020
                     S0401030
                     S0401040
                     S0401050
                     S0401060
                     S0401070
                     S0401080
                     S0401090
                     S0401100
                     S0401110
ATION (,10A4,16H> DUS0401120
                     S0401130
         10A4,28H) FRS0401140
M2)
1=1
3)
J-l ,3 >,

-------
w
oo
Ul
    115*           10H  ALL SOURCES COMBINED ,2A4,3H **>                                 S0401150
    116*      9004  FORMAT <9X,3H**  ,2A4,26H GROUND LEVEL  DEPOSITION (,10A4,16H>  DUE  TS0401160
    117*           10  SOURCE ,16,IX,2A4,3H  **>                                          S0401170
    118*      9005  FORHAT <8X,3H»*  ,2A4,26H GROUND LEVEL  DEPOSITION (,10A4,28H>  FROM S0401180
    119*           1ALL SOURCES COMBINED  ,2A4,3H **)                                    S0401190
    120*      9006  FORMAT /1X,3< 10X,2A4,22X)/1 X , 3 ( 1 1 H  (RETERSS0401230
    124*           1)  < , A4 , A3, 1H >, 21 X V 14X ,58< 2H--)/>                                   S0401240
    125*      9009  FORMAT <1 HO,54X,22H-  DISCRETE RECEPTORS -/ IX,3<4X,1 NX,9X, INY,6X,3AS040125«
    126*           14,A1,6X>>                                                             S040126'
    127*      9010  FORHAT <3X,3H**  ,2A4,29H GROUND LEVEL  CONCENTRATION  (,10«t4,2H)  .2AS0401270
    128*           14,22HFROH  COMBINED  SOURCES ,2(16,1H,))                              S0401280
    129*      9011  FORMAT <3X/3H**  ,17(16,1H,))                                        S0401290
    130*      9M2  FORMAT (3X,3H*«  , 2ft4,26H GROUND LEVEL  DEPOSITION (,10A4,2H) , 2 A4 , 2 S 04 01 3 00
    131*           12HFROH COMBINED  SOURCES ,2(16,1H,))                                 S0401310
    132*            END                                                                  S0401320

-------
      1*           SUBROUTINE  TI TL R( H, L, LL )                                            SO 500010
      2*           COMMON /DIM/  HSOURC, HXPHTS,HYPNTS,NXUYPT,NSEASN,HSPEED/NSTBLE,     S0500020
      3*          1NSCTOR, ISy(20 ),UNITS<20>,TITLE<20>                                  80500030
      4*           COMMON /REST/  IUNT,JUNT,MX XYY,NXXYYP,ISTBLE<6 ),IFLG3,LINE,NLI HES,  S0500040
      3*          1ICARD,NXPSS,NYPSS,MUNT,NUNT,ICOMT(3,2),ITSAVE(572),NT1,HT2,NT3,NT4S0500050
      6*          2,HSG7(4, 3>,NSG8(2>,MSG9(2,2>,NSG10(4,3 >,NGROUP,NOCO«B(20 >,IDSORC(2S0500060
      7*          300>,IEND,XSEA,ISAVSO(300>,NG,NGT,NXUY                               S0900070
      8*           DATA IPAGE/0/                                                       S0500080
      9*           IF (LL . EQ.  1)  GO  TO  10                                             S0300090
     10*           LIKE » LINE+N                                                       S0500100
     11*           IF (LINE  .LT.  NLINES)  GO  TO  70                                      S0500110
     12*        10 IPAGE •  IPAGE+1                                                     S0900120
     13*           URITE (JUNT/9001)  TITLE,IPAGE                                      S0500130
     14*           LIKE « 2                                                            S0500140
     15*        20 GO TO ( 30, 40, 50, 60 ), L                                               S0500150
     16*        30 URITE (JUNT,9002>  (ICONT< I,NT2 ),I = 1,3)                              S0500160
     17*           IF (ISU<8)  .EQ.  2)  NT2 =  2                                          S0500170
w    18*           LINE » LINE+8+N                                                     S0500180
oo    19*           GO TO 80                                                            S0500190
     20*        40 URITE (JUHT,9003)  (ICONT(I,NT1),I=1,3)                              S0500200
     21*           NT1 = 2                                                             S0500210
     22*           LINE - LINE+2+N                                                     S0500220
     23*           GO TO 80                                                            S0500230
     24*        50 LINE « LINE+N                                                       S0500240
     25*           GO TO 80                                                            S0500250
     26*        60 URITE (JUNT,9004)  (ICONT
-------
w
00
     39*           2NATE  COORDINATE   HEIGHT  ELEV-  /,18X,36H-  SOURCE  DETAILS DEPEHDINS0500390
     40*           3G OH TYPE -/4H  R  P / 18X, 3H,8X,3H )                                   -       S0500410
     42*      9003 FORMAT (40X,19H-  ISCLT INPUT  DATA ,3A4/)                            S0900420
     43*      9004 FORMAT (40X.36H-  SUMMARY OF  SOURCES  OUTPUT  TO  TAPE  , 3A4//11< 1 2H  NUSOS00430
     44*           IM8ER/TYPE))                                                           S0500440
     45*            LND                                                                   S05004SO

-------
     1*           SUBROUTINE  MX IHUfK IX S, IYS, ZH X, Z >                                   80600010
     2*           COMMON  /DIM/  NSOURC,HXPHTS,HYPHTS/HXyYPT,MSEASH,NSPEED,HSTBLE,     S0600020
     3*          1MSCTOR, ISy<20 ),UMITS<20>,TITLE<20)                                  80600030
     4*           COMMON  /REST/  IUNT,JUNT,NXXYY,NXXYYP,ISTBLE<6>,IFLG3,LI HE,HLI HES,  S0600040
     5*          1ICftRD, NXPSS,NYPSS,MUNT,NUNT,ICONT(3,2>,ITSAVE(572>,NT1,NT2,NT3,NT4S0600050
     6*          2,MSG7< 4,3),MSG8(2>,MSG9<2,2>,MSG10<4,3 ),NGROUP,NOCOMB<20 ), IDSORC<280600060
     7*          300), IEND.XSEA,ISAVSO(300),NG.HGT,HXyY                              80600070
     8*           DIMENSION  I XS ( 1 ), I YS < 1 ), ZM X< 1 ), Z< 1  )                                80600080
     9*           DO  10 1 = 1, 10                                                        S0600090
    10*           IXSCI)  = 0                                                          S0600100
    11*           IYS(I)  = 0                                                          S0600110
    12*        10 ZMX(I)  - 0.0                                                        S0600120
    13*           N = 10                                                              S0600130
    14*           J4  -  1                                                              S0600140
    IS*           JJ  =  0                                                              S06001SO
    16*        20 JJ  =  JJ+1                                                           S0600160
    17*           IF  (JJ  . GT . HYPHTS)  GO  TO  40                                        S0600170
w   18*           JJJ « >  GO  TO  70                                    S0600360
    37*           H = N+l                                                             S0600370
    38*        80 H = M-l                                                             S0600380

-------
w
00
vo
   39*
   40*
   41*
   42*
   43*
   44*
   45*
   46*
   47*
   48*
   49*
   50*
IF 
                        90
    ZHX *
    GO TO 80
 90 ZHX(L) =
    IXS
         I I
         J J
          50), J4
S0600390
80600400
S0600410
S0600420
S0600430
S0600440
80600450
80600460
80600470
80600480
80600490
80600500

-------
VO
Q
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
11*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
                    SUBROUTINE CHECKR( NN , NO )
                    COMMON  /REST/ IUNT,JUNT,NXXYY, NXXYYP,IST
                    1ICARD,NXPSS,NYPSS,HUNT,NUNT,ICONT(3,2),I
                    2,MSG7(4, 3>,MSG8(2>,MSC9(2, 2>,MSG10(4,3 >,
                    300>,IEND,XSEft,ISAVSO<300),NG,NGT,NXyY
                    COMMON  /SORC/ NU'HS* TYPE* DXi DY* H* ZS* TS, VE
                    1FRQ<20 >, GAHHAC20 >,Q<6,6,4),QFLG,yftKE
10
20

30






40
SO


60

70

80

IF
J J
I I
GO
II
I =
I =
IF
JJ
IF
DO
IF
IF
IF
IF
GO
IF
(NN .
= HOC
= NGT
TO 30
= 0
0
1 + 1
(I .G
s
(J
so
(I
NOC
J

D
(NU
(J
(I
TO
GT . 0 )
OMB(NG)
T. NN)
GO TO
GO TO
10
60
OHBd )
. EQ
J =
SO
HS
1
/
RC


.EQ.
D

(NU
CONTI
II
IF
NO
GO
CON
NO
s
N
I
SORC
70
HS
UE
1 +
(NN .
8
TO
TI
a
0

N
1

80
UE




J

.

J
GT








. 0
JJ
( J +
GT.
1 >
( J +

EQ.


. 0




)

II
I
G

)
A
GO
II

I


)




-

D


0 TO

.GE
BS( I
TO
1) .

70

. 0) GO TO 40
DSORC( J+II ) )) GO TO
70
GE. 0. AND. HUMS . LT .

SORC( J+II » GO TO 70


GO TO










20




RETURN
END










                           S0700010
BLEC6),IFLG3,LINE,NLINES,  SO700020
TSAVE(372>,NT1,NT2,NT3,NT4S0700030
MGROUP,NOCOMB(20>,IDSORC(2S0700040
                           S07000SO
L,D,HB,BW,BL,NVS,VS<20),   SO 700060
                           S0700070
                           S0700080
                           S0700090
                           S0700100
                           S0700110
                           S0700120
                           S0700130
                         - S0700140
                           S0700150
                           S0700160
                           S0700170
                           S0700180
                           S0700190
                           S0700200
                           S0700210
                           S0700220
                           S0700230
                           S0700240
                           S0700250
                           S0700260
                           S0700270
                           S0700280
                           S0700290
                           S0700300
                           S0700310
                           S0700320
                           S0700330
50
                                                              IDSORCCJ+I1-1)) GO TO  50

-------
w
NO
      1*           SUBROUTINE  SUHHER,ITSAVE<572>,NT 1, NT2 , NT3, NT4S0800030
      4*          2,HSG7(4,3),HSG8<2>,HSG9<2,2>,HSG10<4,3 ),NGROUP.NOCOHB<20 >,IDSORC< 2S0800040
      5*          300),IEHD.XSEA,ISAVSO<300),HG,HGT,HXWY                              S0800050
      6*           DIMENSION AR1<1 ), AR2< 1 )                                            S0800060
      7*           IF   + AR2< I )                                             S0800100
     11*           GO  TO 60                                                           S0800110
     12*        20 00  30 I=1,NXXYYP                                                   S0800120
     13*        30 ARKI) = AR2(I>                                                    S0800130
     14*           GO  TO 60                                                           S0800140
     IS*        40 DO  90 I-l.NXXYYP                                                   S0800150
     16*        50 ARKI) = AR1(I>*XSEA                                               S0800160
     17*        60 RETURN                                                             S0800170
     18*           END                                                                S0800180

-------
w

to
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
11*
12*
13*
14*
15*
16*
17*
18*
19*
20*

C
C
C




C

C


C






   SUBROUTINE  DISTR
   CALC DISTANCE  BETWEEN  SOURCE  AND RECEPTOR, DETERMINES IF RECEPTOR
   IS IN THE CALCULATION  SECTOR  OR  NOT AND CALCULATES THE SMOOTHING
   TERM
   COMMON /DIST/  XB.YB,XYP,TNH,TR,TRI,ARC,RP,RPI
   ARG « -1 .0
   XF » XB+XYP
   F = XF*TNN
   DETERMINE IF  INSIDE
   IF (ABS< YB >  .GE.  F)
                                        CALC SECTOR
                                        GO TO 10
                                                 SOURCE
                                  IF NOT THEN NO CALC
10
CALC RADIAL  DISTANCE  BETWEEN
RP = SQRT
RPI = 1.0/RP
CALC SMOOTHING  TERM
F s XF»RPI
IF (F .GT.  1.0)  F  *  1.0
F = ABS< TR-ACOS
-------
      1«           FUNCTION  FUNCT(XflST)                                              S1000010
      2*     C     CALCULATES  AVERAGE B FOR VERTICAL TERN  OF  DEPOSITION  EQUATION     S1000020
      3*           COHNON  /FUNCS/  AS( 36 ) , BS< 36 ) , PS( 6 ) , QS< 6 ) , CS( 6 ) , DS< 6 >, AS H 36 ) . BS I< 38 1 00 0 03 0
      4*           16 ), IA(7>, JA<6 ),OST(31 )/ IDP                                         S1000040
      5*           XD  B  X*.001                                                         S10000SO
      6*           H »  IA(IST>+1                                                       S1000060
      7*           L »  IACIST+1)                                                       S1000070
      8»           IF  (1ST .E8.  1) L = L-l                                            SlOdOOSO
      9*           I =  JA(IST)                                                         S1000090
     10*           AV  =  BS
-------
 1*           SUBROUTINE  VERTC1                                                  81100010
 2*     C     CALCULATES  THE  VERTICAL TERM FOR  THE  COHCEHTRATI OH  EQUATION        S1100020
 3*           COHHON /VERT/SIGZI,SIGZ,HH,H,V,VSROU,BA                            S1100030
 4*           DATA SQ2P02/1 .253314137/                                           S1100040
 S*           V » 0.0                                                            SI 100050
 6*           IF (SIGZI  .GE.  0.0)  GO TO  30                                       81100060
 7*           A = SIG2/HH                                                       ,51100070
 8*           IF (A .GE.  1.6)  GO TO 20                                           SflOOOBO
 9*           B = H*H*SIGZI                                                      S1100090
10*           IF (B .LT.  -30.0)  GO  TO 30                                         S1100100
11*           V = EXP< B)                                                         81100110
12*           B » 0.0                                                            81100120
13*        10 B - B+2.0                                                          81100130
14*           IF (B -GT   6.0)  GO TO 20                                           81100140
15*           TR = B*HH                                                          S1100150
16*           TS = ( TR-H )**2*SIGZI                                               S1100160
17*           IF 
-------
CO
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
11*
12*
13*
14*
15*
16*
*7*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
                                  0.0) GO  TO  60
      SUBROUTINE VERTC2
-------
VO
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
11*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26*
27*
28*
29*
30*
31*
32*
   SUBROUTINE VERTC3< GAMHA )
   COMMON /VERT/ S I GZ I , S I G Z , H H , H , V , V SR 0 U , BA
   V  = 0.0
   IF (SIGZI . GE . 0.0) CO  TO  40
   HI = H-VSROU
   A  = H1*H1*SIGZI
   Ir 
-------
    1*           FUNCTION SIGHftZCXP,1ST)                                             S1400010
    2*     C     CALCULATES THE STANDARD DEVIATION  OF  THE  VERTICAL CONCENTRATION    S1400020
    3*     C     DISTRIBUTION                                                        S1400030
    4*           COHHON  /FUHCS/ AS( 36 > , B 8< 36 ) , PS( 6 ), QS( 6 ) , CS < 6 ) , DSX 6 ), AS I< 36 ) , BS K 3S 1 40004 0
    5*          1 6 ), IA< 7>, J A<6 ), DST< 31 ), IDP                                          S1400050
    6*     C                                                                          S1400060
    7*           XD  = XP*.001                                                        S1400070
    8*           K - 12                                                               S1400080
    9*           IF  (1ST .EQ. 3)  GO TO 30                                            S1400090
   10*           H = I A( 1ST )                                                         S1400100
   11*           L = I A< IST + 1 )-l                                                      S1400110
   12*           IF  (1ST .EQ. l.AND.IDP .HE.  0)  L  =  L-l                              S1400120
   13*           DO  10  K=H,L                                                         S1400130
   14*           IF  (XD  . LE  DST(K)) 60 TO 20                                        S1400140
   IS*        10 CONTINUE                                                            S1400150
   16*           K = L* 1                                                             S1400UO
   17*        20 K = K-H+JA(IST)                                                      S1400170
   18*        30 SIGHAZ  = AS(K)*XD**BS(K>                                            S1400180
f  19*           IF  (1ST .GT. 3.0R.IDP  .NE.O) GO TO  40                              S1400190
g  20*           IF  (SICMAZ  .GT.  5000.0) SIGHAZ  =  5000.0                             S1400200
   21*        40 CONTINUE                                                            S1400210
   22*           RETURN                                                               SI 400220
   23*           END                                                                  S1400230

-------
    1*            FUNCTION VIRTY(SIGYO<1ST)                                           S1500010
    2*     C      CALCULATES LATERAL  VIRTUAL DISTANCE                                S1500020
    3*            COMMON /FUHCS/  AS< 36 ) > BS< 36 ) , PS( 6 ) , QS( 6 ) / CSC 6 ) , DS< 6 ), AS I ( 36 ) , BS I ( 381 50 0 030
    4»           16 ), IA( ?>, JA<6 )* DSK31 ). IDP                                          S1300040
    5*            VIRTY.» (SIGYO*PS< 1ST ))»*QS<  1ST)*1.OE3                             S1300050
    6*            RETURN                                                               S1500060
    ?*            END                                                                   S1500070
VO

-------
       1*            FUNCTION  VIRTZ(SIGZO,IST,X,HB10>                                    S1600010
       2*      C      CALCULATES  VERTICAL  VIRTUAL  DISTANCE                                S1600020
       3*            COMMON /FUNCS/  AS<36 ) /BS<36),PS<6),QS<6),CSC 6)/DS<6),ASK36>,BSI<3S1600030
       4*           15>, IA(7 >,JA<6),DST<31 ), IDP                                          S1600040
       5*      C                   ,                                                        S1600050
       &*            XD = X*.001                                                          S1600060
       7*            XE » HBI 0*.001                                                       S1600061
       8*            K  = 12                                                               S1600070
       9*            IF (1ST  .EQ. 3) GO  TO  30                                            S1600080
     10*            M  = lft< 1ST)                                                          S1600090
     11*            L  = Ift( IST+1 )-l                                                     S1600100
     12*            IF (1ST  .EQ. 1) L  =  L-l                                              S1600110
     13*            DO 10 K=«,L                                                          S1600120
     14*            IF (XD .LE.  DST(K>)  GO  TO  20                                        S1600130
     15*         10  CONTINUE                                                             S1600140
     16*            K  = L+l                                                              S1600150
     17*         20  KK = K                                                               S1600160
     18*            K  = K-tt + JA( 1ST )                                                     S1600170
w    19*         30  VIRTZ = < SIG20*ASI< K) )**BSKK )-XE                                   S1600180
.g    20*            IF (VIRTZ  .LT.  0.0)  VIRTZ  =  0.0                                     S1600190
o    21*            IF ( 1ST .E8.3 .OR.KK.GT.L.OR.VIRTZ + XD.LE.DST
-------
                                • APPENDIX C
                   EXAMPLE EXECUTIONS OF THE ISC SHORT-TERM
                       MODEL (ISCST) COMPUTER PROGRAM
C.I       INTRODUCTION
                      «
          The following examples are problem runs using the ISC short-term
(ISCST) program to model the hypothetical potash processing plant described
in Section 2.6.  The examples consist of two executions of the ISCST program
over ten "worst-case" days of meteorological data.  The first run calculates
average concentration and the second run calculates total deposition.  The
topics covered in this appendix are:  (1) the procedure for setting up the
required input data;  (2) the procedures for estimating program run time,
required data storage and page output; and  (3) examples of the program out-
put.

          In this section, it is assumed that the reader is familiar with
Section 2.6, which discusses the hypothetical potash processing plant and
provides the reader with figures and tables of specific input data informa-
tion.  Also, the reader should be familiar with Table 3-4 presented in Sec-
tion 3.2.3.a, which provides the user with the format and description of all
card input data parameters, and with Equations (3-1) through (3-5) described
throughout Section 3.2.

C.2       EXAMPLE CONCENTRATION RUN

          C.2.1   Input Data Set-Up Procedure

          Figure C-l shows the 87 lines of card input data values required to
compute the desired average concentrations for the hypothetical potash
processing plant.  The blank coding fo^nis ar^ used from Appendix E in order
to show the column field positions of all card input data values.  To the
left of each coding form line is the Card Group and card number in which the
                                     C-l

-------
                                                           ISCST INPUT DATA CODING FORM
PROJECT	Example  Concentration
                                                                                       NAME
                                                                                       DATE
                                                                                                             SHEET   1   OF    11
CARD  GROUP,

CARD  NUMBER
                                                            DATA CARD COLUMN
                                                                         I424JJ444!
10 II 12 13 14 IS 16 I7IIB 1920 21 22 23 24 25 26 27 28 29 K> SI 32 53 34 39 36 37 58 39 40 4lf«2 43M4 45 4« 47 48 49 30 91 92 53 94 U 96 97 90 39 BO 61 62 63 (4 69 66 67 68 69 TO 71 72 73 7«T9 76 77 7» 79 BO
                                             CONTROL DATA PARAMETER AND  VALUE  (X means  do not  punch)
                                                                       -  TITLE  -



   1  -       l~i~i , iHiYiPiOiTHiR.TiTiCiALi iPfliTiAfiiHi iPiRiO.CiEiSiSiTiN^i PLiAiNiTi 1-1 iGONiGEN iTiRAiT.I iDiNi





                                                                       -  ISW -
2,1 -
                                                                     rHCNJCNCS   CM
                                                                                      coco
                                    D( K D(
                  u
                  PS

                  o
                  CO
                        to
                        H
        CO
        H
H
P-
O,


1
CO
OS

g
    2.2 -     |,.. .i.el,., ,1.9!,,.  .Ld,..  ,6,A[X'.,
   FIGURE C-l.    Card input  data  values  for the hypothetical potash  processing plant concentration  run.

-------
o
ISCST
PROJECT .Example
INPUT
DATA
Concentration


CARD GROUP,
CARD NUMBER
3,1 -

1

2















9 10
M
CODING FORM (Continued)
NAME
DATE


DATA
12
13
14
13
16
17
ia
19
20
21
22
23
24
25
M«T
28
29
9O
31
32
33
343
556
37



















SHEET 2 OF 11



CARD COLUMN
M
RECEPTOR DATA




































,-i3,0
i— j

0.0
2.0ir
i il iSiOtO
1
1
1
1
1
1






, , , , ,-,3
3,2 -






























1
f
1












QQ ol
i ,12,0,0

1
1


Ji5iO,C








1


1
1 I 1 1 1 1 1 f 1
I 1 1 1 1 1 1 1 1






































































- GR
-.2,0,0,0













i


2






2

2





0







0





0,0


0,0








Q
0
.IDX
i i




























GRIDY
0 , ,
0
0




I 1 1 I 1 1 1 1 1










(axis
i f~ i *
















1
i3
i
i
i
i
i
I
of
5>q
grid
^ f 1
?,n,n
OiQO






(axis
, ,2



































,1,0
1
1


1
1
























of
0,0
0





|
0




















39
40
41 42 43 44 43 46 47 48 49
90
5,
92
53
54
19
96
37
98
99
so
61
«2
63
M
65
66
67
«U
70


PARAMETER AND VALUE
system,
i
i

i


,
I
1
I
1
1 _J
1
I
A












omit if NXPNTS
o 	 -1,0,0,0
00













grid system,
_j , , , ,-, 1,2,5,0


















i



|
j
I





4|0,0












1 1 1 I 1 1 III
L , 1 , , J , 1 1_L




(




i i i i i i f» iHiO
I 1 1 1 1 1 1 1 1
It I 1 1 1 1
f 1 1 I t 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 [ t t 1
11111:111
1111111(1
OR
1 1








omit if NXPNTS
ill. r-iliOiOiO
,, 6,0,0
1 1 1 1 1 1 1 1

I 1 1 1 1 1 1 1 1
ill 1 1 1 1 1
1 1 1 1 1 1 1 1 1
t 1 I 1 1 1 1 1 1
,,,,,!_,,,
I


t
















or
i
i
i
i




NYPNTS
, , r,8
































"'







=
o
o
Oifl








0)
1


'









NYPNTS =
j , ,-i8,0,0
i











8,0,0


1


I

1
1



1 1 t 1 1 t 1 1 1

1 1 1 1 t 1 1 1 1
i i i i i , , r , 1 i i , t i i i i ,







|








1









0) -
1 1 1 1


1










)

-600
liOOiO






_L







1
I
1
1
1
1
I







,-,600
, , , 1,0,0,0





i i

1 1 1 1 1 i 1 1

|
1



1
i i

L. I 1 , 1 I_L, _!_
1 1 1 1 1 1 1 1 1
, ,
,1,1,11,1
, , , , , -ADO
i i i i i il 2 fi Q
i i i i i i i i i
; i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 I 1 1 t ! 1 1
1 1 1 1 1 ( 1 1 I
1 1 I L 1 1 1 1 1
	 r 40,0
i i i i i 1 i25iO
, , i i i , , i i
i i i i , > i , ,
, i i , i , , i i

1 1 1 1 1 I 1 1 1
1 1 1 1 t 1 1 1 I
1 1 1 1 1 1 1 1 1
     FIGURE  C-l.
(Continued)

-------
o
1
.p-
ISCST
INPUT DATA CODING
PROJECT Example Concentration


CARD GROUP,
CARD NUMBER
3,3 -
3,4 -
FORM (Continued)
NAME
DATE
SHEET

3 OF 11

DATA CARD COLUMN


10
I, ,2 13 14 13 16,17 16 19
20
21 22 23 24 25 26 IT 26
29
30
31 32 33 34 35 36 37 56 39 40 41 42
43 44 45J46 47 46
49
50
51 52 53 54 55 56 37 56
S9J60
61 62 63 M 65 66 87 66
69
RECEPTOR DATA PARAMETER AND VALUE
	 5,5
, , , , , , 9,4
107
i i 46
ii , i i i3 2
, , , , M
, , 	 7,3
, , , 61
1 I' 1 t 11 1 'I
	 3,1
i i i i i i 3 14
! 1 1 1 I I 1 l2
sl , , , , , , ,6,2
0 iiiii, ,9,4
5i , ,1,0,4
- XDIS (dis
Ol 	 6,8,5
OJ 	 935
5
Q , , i i 3i5i5
51 , , iii ,3i8iO
£
1 IIIII |6|6|5
o| , , , , , ,7,0,5
5

7
6
6
iiiii i Si 1
i i i i i i 1 |2
^^ i i i i J. 1 7
9 1
i i i i i i r- i A
6
1
1
i i i i t i 2 1 5f 1
i i i i i i i i i
i ii i i i5 7i 5
i i i i i i i
i i i i i i i3,1
i iiiii i-^i-'
, i i i i , P
i i i i P
i , iii ,1,3
, i * i i i i Ii '
R
1
1
6
6
6
ill, i i2i 1' ^
? 5
i i , i i , i^-i Ji
6
i i i , i i i i ,
1 I 1 |9
9
crete receptors,
i i i i i i |7 13 5 ii
i i i i i i ,9,1 ,0i i i
51 i i i i i ,9il lOi i i
1 ;
i 111 i3i5i5l i i 3,5,5i
iii i i&i?ifl
i i i i 7
iii 1116
0
9
5
omit if
,,,,9
i i i i 18
NXWYPT = 0) -
I
0,0 ,,,,,, ,8,00
spl 	 1,0
5
i i i 3 5
5| i i i i i i ,7
5i ; i i i i i |3
ii iii i/iisnj i i i i i A8iO
i i i i 1 7 , 3 ,0 i ,
01 , i i i i i6i9iO i i
i i i i5i3ifl i i i i i i4,7i5 i
i i i i i i i t i
1 1 1 ! 1 1 II II
- YDIS (discrete receptors,
i , i i , i i3i2iO i i i i i i i3i2i2i i t
i i i t i i i3
5
i , i , i , i 3
6j 1 1 1 1 1 1 1 1 M- 11
6
ii ii ifi 16
i , i , i i il
i , i , , ,1
i , , i , ,2
i , i i , , ,2
4
8
2
6
i i i i , i i r* ,1 j i
i i i i i i i i7 16 i i
ii i , , , i i il A 6 ii
11 , i i i , , ii 186 ii
1
1
, i , , i i i. , ,

,,,,,, ,2,6i6J i ,
, , , , , 	 ,
i i i i i7 A 5
11,0
, , , , A
1,111
omit if
, . , i rt
t i t i ,
9,0
1

0

15
5_j5
70



,,,i,i .900
, , i i , ,1,0,55
i i i i i i i6i20
50| 	 3A5
i i i i i i i505| ii ,i ,535
t i i i i i 1 7iStS
1,1111 16180
i i i i i , 1 3,6i3
	
1 l l i , i r P
5
t i i i - 1 i 1616 15
i i i i t i 3 6 (5
i i i i i i i
NXWYPT = 0) -
2,6 ,11,1, ,3i3,l i i , i , i ,3

6
	 A3
i , i i i 8 ,6
, i i i J. 5
, i , , il 19

, , , , 2,
3
7,
1
1
1
I
i i , , i r ,
! 1 1 1 1 1 1
111
,' , , , , , , ,45
IIIII J
9,6
i i i i , i 1 1 1 5 ,6
i i i i , i 1 1 19[6

,,,,,,,?,
7i6
, , , i i , , , i
i i i , , i ,


*
, , , , i , ,920
i,,,i ,1,075
, , 	 525
III , P P P
1 1 1 1 1 1 P 1' P
,,,,,, 7A5
i . i i i i ,6 A 5
/, i n
i i i i i i r+ I1 M
i i i i i i i >i <
36i , , , , , , 3A1
1 16
	 	 , , A
7
i i i i i i fl 0(6
11 1 1 < till
3
1
l l i i i i i^r-*!*

1
	 ,28,6
I t 1 1 1 1 1 1 1
1 1 1 1 1 1 ! 2 |1
49
i , i i i i , i i
i , i , 1 1 ,1 6
, , ,, , , ,1^0
,,,,,, ,206
, , , i i i ,2A0
	 2,9,6
i i , i i i i i i-
FIGURE C-l.   (Continued)

-------
n
Ul
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration

NAME
DATE SHEET
4
OF n

CARD GROUP,
CARD NAME
4,1 -
4,2 -
DATA CARD COLUMN —
'














to
II
,2
13 14 IS 16 17 18 19 2021 222324
29 !6 27 2'
/ \ , i AJ , i AJ , A, , i Ai , i A , i
K , , X , , X , ,
V Y Y
Ai i i Aj i i AJ i i
V Y Y
AJ i i AJ i i A^i i i
V Y Y
/^t i i >\ i i AJ i i
Xj i i A i i X i i
/ \J 1 1 Aj 1 1 Aj 1 1
X ^CI^C
y x V
Ai ii '\i i i Ai i i
V Y y
A| i i Ay i AJ i
f\t 1 1
/\ i i
X , ,
XV V ^
1 1 A 1 1 AJ 1 1 \ 1 1
Aj ! 1 /y 1 1 Aj I
Aj | /\ | 1 Aj 1 |
Al | | /\J l | Aj | |
>-<";>O<^
- IDSOR (array, omit if NGROUP = 0) -
, i-,15 ,l,6i i 1 , i - 1,61 i i ,1
, , i , ,
i , i i ,
, i
, , , , ,
i i i
1,1,1

I,,,,
i , , , ,
, , i
,111
, , , ,

1,11
1 1 1

Aj | |
X ,
x!,,
!>rC
A 1 1
X , ,
X i 1
K
|

X,
p)
x1
|
|


:,<
i i
i i i i i 1 i i t i t i i i i t i i i i i i i i i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 t
!
II II
1 1,111 , t 1 1 1
,


	
1 1 1 1 1
1 ,
111(1 i i i i i
i i i i i i i i | i
i i i i i iiiii
i i i i i iiiii
iiiii iiiii
11111 i
1 1
i
1
(III! IIIII IIIII
1 1 t i 1 III


| ,



i i t t i
IIIII 1 1 1 | 1 | 1 1 1 1 1
L_L1 1 J J_i_I_. J_
IIIII IIIII
IIIII IIIII
' 1 II 11
i i i i i
i i i i i
iiit]
1111,



1
Al 1 I
x , ,
x , ,
X , ,
X , ,
x_



A~, ,
Jr^Cj


t |
1

1 1






1


,

1


V IY
X X
AJ i i AJ i i
X , , X , ,
v , X ,
Y Y
Al 1 1 Ay 1 1
AJ 1 1 AJ 1
^ !' ~>^ s^ 3^

1 1 1 1 1
l 1 l 1 1


, 1 1 1
1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 I
1 1 1 1 1

1
1 1
_L
I





1 1 1 1 1

X
V
X

X
X
x^
x
X
X
FIGURE C-l,
(Continued)

-------
I
en
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration NAME
DATE SHEET 5 OF 11

CARD GROUP,
CARD NUMBER
5,1-6 -
5,7-12 -
5,13 -
DATA CARD COLUMN
I j ' | 1 I | 1 '

METEOROLOGICAL CONSTANTS DATA PARAMETER AND VALUE (X means do not punch)
- PDEF (array, omit if ISW(21) ,42)-
i 1 1 1 ! 1 ! ! 1 i ! ! 1 f ! t 1 1 I 1 f 1 1 I I 1 ! I f t 1 1 1 1 | 1 1 I 1 i i I 1 ! 1 t I 1 1 1 J J | ^^ S^
I 1 I 1 ! 1 I 1 ! I 1 1 1 1 1 1 r 1 i t 1 1 1 1 1 1 I 1 1 I 1 1 1 I 1 I 1 I 1 1 t 1 1 1 i 1 1 1 1 I 1 I 1 1 1 *X ^
I 1 1 1 1 ! 1 1 1 t 1 1 1 1 1 1 1 { j 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 t t t 1 1 1 1 ' ! ' 1 1 1 1 1 ( 1 1 1 j *" ^\ s^
11(111 t 1 1 1 1 1 1 1 1 ! I 1 1 1 1 1 1 1 1 1 1 1 ( t ! f I ! 1 1 1 I i 1 1 ' 1 1 1 1 1 1 1 I j ^ ^^
1 1 I 1 1 1 1 1 1 1 till) j 1 ! 1 1 It 1 1 1 1 1 ! 1 1 1 1 1 I 1 | ! I ' 1 I 1 _L L I ^^ "^
[ 1 1 1 I t it I 1 till 1 II 1 ! 1 1 1 ( 1 1 ! I I 1 ! ! lit! Ill 1 ! 1 I \s^ ^\
- DTHDEF (array, omit if ISW(22) ^ 2) -
. ... ! ! ' !\
1 t 1 1 1 III 1 1 I ! 1 1 1 1 | 1 1 1 1 1 1 1 1 t 1 1 1 ! 1 t 1 1 1 1 1 ! 1 1 i 1 I 1 1 1 1 ! 1 1 j \ ---'
1 ! 1 1 I 1 1 1 1 j 1 t 1 I 1 1 1 I 1 1 1 1 t 1 1 1 1 1 ! I ] 1 1 t ! t ! 1 1 1 1 1 1 1 1 • I 1 j 1 1 1 1 t ! 1 _1 1 | ^x ,•""'
1 I 1 | ! t 1 1 I 1 1 1 1 I 1 1 1 1 1 i 1 1 1 1 | 1 t 1 1 1 t 1 1 1 1 1 1 1 f 1 ! 1 ! 1 ! 1 • 1 1 1 1 I I 1 | 1 j ^*\ .-'''
1 1 ! 1 i 1 1 1 1 1 I ! 1 1 1 1 1 1 I | 1 1 1 1 1 1 1 1 1 1 1 t 1 * 1 1 1 t f i 1 1 1 I 1 1 i I I 1 1 1 j -'"' ^^
II I 1 1 1 t t t t 1 II ! 1 1 1 J ! 1 1 | 1 | ) .-'"' \
i - i ' /-"" \
1 1 t 1 1 1 1 1 1 i 1 1 ! t I 1 1 1 1 1 1 1 1 t 1 1 1 ! 1 1 1 1 [ 1 1 ! 1 i t 1 1 ' 1 I 1 ! ! 1 1 1 1 i i \^ ^^
ZR - UCATS (array) - . .
- due blank card!, default units - | ~~m^===~-^:==^^II^

-------
n
ISCST
PROJECT Example
INPUT
DATA
Concentration



DATA
CARD GROUP,
CARD NUMBER
5,14 -
5,15-19 -
5,20 -














i
















METEOROLOGICAL
TK











1















ISS
4,91





3

























.0



tz

23

24
-
CONSTANTS AND
BETA1
ane blank
t i r i i i






0




n





j ibjliin
I




ISY


c

ki
J





26

27

2«

29

X

SI

32

»

343

936
IDENTIFICATION
BETA2
arc!,, defayil(t|




1
IUS
14 9,1





8

r





d





_






1






IUY





DECAY
- IDAY
1








1



















1
1
(array,












i
i

37
CODING
CARD

M

3»

•0
LABEL
IQUN
i ( 1
omit




- (omit
64





. „


„
	
—
1



if






FORM (Continued)
COLUMN

41

12

4XJ44
DATA



if




NAME
DATE SHEET 6 OF 11


454
f. ~\~

PARAMETER AND VALUE (X means do not punch)
H Pj
ICHIUN a £•
pi .1
i i i t i i i t i i i i i i i i i i i i i i i *t - t I i i i 1 "i"" j ix.
ISW(19) = 2) -
! ill
i
1
i
1
1








ISW(19)






I


\ i i
i i J- i 1 i
i ilu 1 i ifliiUl1 JTai i
kxxxxxkxNMiK^Mxixxxlxkkxlxhxh
= 2) -
	 -f- 	 	 	 	
      FIGURE C-l.    (Continued)

-------
n
i
oo
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration ' N)

DJ
\ME
VIE












, • SHEET

7 OF 11

CARD GROUP,
CARD NUMBER









DATA CARD COLUMN


,0 II 12 I3JI4 ,9 ,6 ,7 IB 1920 21 22 25 24 25 it 27 26 29 SO 91 32533435363738 394041 4243444546474

6 49 50 51 52 53 54 5

SM

57

96

99

SO

61

62

63

M

65

66

67
SOURCE DATA PARAMETER AND VALUE
w
0- W
NSO MSZ
1111 1
6,1 -
%
, , , 1
2
, , , ,2)1
: i iilll
i i A
1
. i ,Sll
, , , ,6
, , , ' 1
j , : ,8
, , , ,9
1
1
1
1
. , iLOl
_L , ,L1
1
_. , , ^h
, ; 13J1
, , , 14
, , 15
, , ,1,6
i ' <
I,,,

i,,,
1
1
0





3
^ Q . XS ^ YS ZS HS TS
1 1 1 i 1 1 1 1 1 ! 1 1 t 1 t . 1 1 1 1 1 1 1 1 1 J i t 1 1 1 1 1 I 1
63i 	 1 i-,l-i3|. ,3 -13,.,'j | ,OJ i ilini.iO i i i
J6if)
ihf)




6
i , , i i ,.,13l , i i , ,2,0 , , , , , ,0| , , , , ,OJ , , , ,. ,9 , , ,
i < i i -i!3| , , , ,3,0| , , ,0 , , , ,OJ , ," ,2,. 6J i i ,
1 ' ! '
01 , i i i i. ,l,3i i i i i 4,01 , i , i i |0| , , i i ,0| , , |4,.|3 , , ,
fiiO
fiiO
6iO
' 1 1 t 1 . 1 1 13 11 II IT-' 1 I t 1 1 *-^ 1 ! f 1 1 ( 1 1 |6 [ . (1 III
! 1 Ill'll-^i tll!-)|-' 1 1 1 1 1 1 M I 1 ! 1 1 ^ I 1 J 1 * P 111
i i i i •(•'•Plii ii i6i9|iii ii iQ i ii |C i f i9 1 . 16 i i i
6,0 ,,, ,.,13J , , i 7,9J i , , , , ,o| , , , , ,C , ,1,1 1.3 , , ,
J6d 1,1,, ,-,13 , , , , .agi i i i i i |0i i i , , ,0 , ,1,3, .0 , , ,
16
0 , , , , ,.,13 , , , , ,9,9, , , , , , ,OJ , , , , ,0 , ,1,4,. 3 , , ,
6,d , , 	 1,3 J , i . ,1,Q9 , , , , , ,0 i , , , ,o i ,1,6|-|5 , , ,
0
lo
lo
1°
0




0 i , , , ,2, .,63 , , ,1,2,1! 	 0 , , , , ,0 , ,2,2,. 5l , ,1,1
0
0
0
i j
, , |2,.|6,3 , , , ,1,44 , i , , , ,0j , i , , ,0 i ,2i2i. ,5 , ,1,]
i , , ,2, .,6,3 , , . ,1,67 , , , , , ,0j , , , , ,C^ , ,2,2,^5 ^1,1
i i t2,.,6!3 i , ,1,90 i i i i i iO| , i , , ,OJ , .2? .,s , ill
0,0| 	 5,.,0i , , , ,201 	 oi , , , , ,0i , ,5,0,.,0j , ,.,3
t
i

,
! ! ;
i i i i i i i i i i i i i i i i i i i i i i i i i i i i t iii
i
1 1 1 1 1 1 1 1 1 1 t I 1 1 1 1 1 1 1 1 1 1 I f 1 1 1 I. ! lit
i i i i i i i i i i i i i i | i i i t i i t t i i i l i i i i t i i i
1 t 1 | | i 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 ! 1 t 1 I I III
vs
II 1 1 t 1
i i 26 1.
i ,1 i i ,4,.
, ,lj , , A,.
, ,1 , A,.
, ,1 , , A,-
, ,1 , , 4,.
, ,1 , , A,.
, ,1 ,4,.
It A
i i s i r* f
,1 , A,.
, Ii , , 4,.
i.ifSJ . 10,.
i-i&l , i 0f
t-f> , ,10.
, .16 i 1 0i.
A,C , , , ,
II lilt
il 1 l 1 1
, , , , , ,
11 l 1 1 l
|
16
,7
,7
,7
,7
,7
,7
,7
,7
,7
7
Pi
<8
-l
g
i3!
i i
1
i j
.













i
,

l
i














|



i





D














|

(
,












1

1

,
,
t
1















|

!
c
1
1
,

















L




t
6fl



HB
1 1 1 1 1








j
[




,










[

|
|
I









|


|
|
i






























, , , 2,


-
1
t
t



1






HL HW
1 1 1 1 1 1 1 1 1 1
1 -4- I lilt
1 1 1 1 1 1 1 1 1 1
1 ! 1 1 1 1 1 1 I | 1
11111 ' 1 1 ! I
, , , ; ; : 	
i i i i i i i i i i i
i i i i i i i i i i i
I , , , , i 	
i i i i i i i i i i i






5



! 1 1 1 1
	 ; 	 	
I__L i 1 1 1 I 1 1 1 L
,-,,,,,,,,,,
I 1 J l l 1 1 1 1 l 1 {
	 ; 	
1 1 1 1 1 1 1 ( t 1 1
, , , ,9,0, , , , ,5P
( 1 1 I 1 1 I 1 1 1 I
,1111 1 1 t 1 1
1 1 1 1 1 1 1 1 t I 1
1 I 1 1 1 1 1 1 1 1
    FIGURE C-l.    (Continued)

-------
o.
I
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
Example
Concentration
NAME
DATE

CARD GROUP,
CARD NUMBER
6,2 -






















SHEET






8



OF H

DATA CARD COLUMN
I
2










3
10
"
12
13
14
IS
16
17
16
19
20
21 22 23 24 25 2«|2T 28 29
50
31 32 33 34 35 3« 57 58 39
»0
41 424] 44 45 46 47 48 49
5O
51 5255545556575859
BO
61
62






M
87
68
89
70


SOURCE DATA PARAMETER AND VALUE
















-











































































1
1
1

I
I
1
I
1
I
1

(
1
I
1

I
I
1
1
1
1














































.
•
.
•

•,

,
•
•
•












1
1
1
1
1
1
1
1
1
1
1












































































































































•

•"
"
,
*
•
•
*
.







4
4
4
4
4
4
4
4
4
4

























































|
|







- PHI (array
, . ... .28
i i i i i i i- 2 $
i t i i i • i2 18
i i i i i i i. 2 8
i i i i i i . i28
11 t • |2 p
II 1 1 1 !• 2£
i i t i i i i- 2 P
t i t i i t i . i2 8
i i i i i i i " i P
i i i i i i i * r" P
1 t 1 ! 1 1 1 1 t
IIIIIIIII
I 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I I 1 1
1 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 1 1
IIIIIIIII
1 1 1 1 1 1 1 1
11(111111
III 1 1 1 1 1
, omit if NVS
i i i i t i . 1 ,2
i 	 ,12
1 1 1 1 1 1 1 ' 1*
2
t i i i i i i . il |2
i i l t i i i •]•*• p
1 1 1 1 1 1 1 *ll
2
t I i i i | l • r- P
l i l i l i i .|1
2
1 ?
1 ! 1 1 I 1 1 '\i !*•
i 7
i i i i i i i "i1 \*-
1 1 1 1 1 1 1 ' I"*1
2
1 1 1 1 I 1 III
1 1 1 t 1 I III
1 1 1 1 1 1 lit
1 1 1 1 1 I III
1 1 1 1 1 1 It)
1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 1 1 1 1 1 1 1 I
1 1 1 1 1 1 III
1 1 1 1 1 1 II
= 0 for all s
i i i i i , ,06
, , 	 0,6
1 1 1 1 1 1 I- P P
it i i. iOi6
i i i i i i r P f>
i i i i i i i. 0 16
, , , ,. P,6
i i i i i i <• Pf>
i i i i i i i- iO|6
	 • 0
6
i i i i i i i* r^r*
iiiiiitii
i i i i t i l i i
iiiiiiiii
i i i i i t i i i
i i i i i l i I i
i i i i i i i i i
t l i i i l l i i
i > i t i 1 l l i
i i i i i i i i i
i i i l i i i l i
i t i i i i i i i
i i i i i i i i .1
sources) -
III 1 !• P
4
i i i i i i i-Ofr
i i i i \ i i. C 4
i i i i t i r M h
iii 11 i i * p-* i
t ! t i l i i" M r
I , 	 -p
1 1 1 t 1 t 1* p
1 ] III * 1
4
4
4
	 -PA
	 PA
i i i i l i i i i
i i i i i i i i i
i i i i i i i i i
i i , , i i i i t
i i i i i i i i i
i i i , i i i i i
i i i i i i i i i
i l i i i i l i i
iiiiiiiii
i , i i i i i i i
i i , i i i i i i
, i , i i i i i i











_,












































































































,,,,,,,,,







|
|





|
|
|
|

|





|
|
|

t



























|

|






|
|

|
|
|

|
|


|
|
|




|
|



|










1 1 l 1 1 1 1 1 1
1 1 1 1 1 1 1 f I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1
IIIIIIIII
1 1 1 1 1 1 11
1 1 1 1 1 1 1 1
II ,11,11
( i 1 1 1 1 \ 1 1
1 1 1 1 1 1 \ \ 1
i I 1 1 1 1 1 1 I
IIIIIIIII
illliiiil
IIIIIIIII
jlllillll
1 1 1 1 1 1 | 1 \

1 1 1 1 1 1 | 1 |
IIIIIIIII
1 1 1 l l I | 1 |
IIIIIIIII
IIIIIIIII
IIIIIIIII
    FIGURE C-l.
(Continued)

-------
o
o .
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration
NAME
DATE SHEET 9 OF 1 1

CARD GROUP,
CARD NUMBER
6,3 -

, j i
i I 1
DATA CARD COLUMN
24 Z5&6 27 26 29 3O
31 32 33 34 35 36 37 38 3l ii , i -iQP,7i i i
iii,, ,.P,P,1| 	 00,7] , ,
i i i i i i . tOi 01 i i i i i i .1 Q(V7 1 i i
,,iii i-P,0,l , , , , i ,.,QOi7l , i
i i i i , i-iP Ql| i i i i , -, OQ7| i
, , -P 0,1 ,. na7l
i i i i i i. f) i Ql i i i i i i i .1 Q0,7l i
	 P,qi , 	 -qo,7 ,
i i l i i i i i i i i i i i i i i l i 11
i i i i i i i i iiitiii 11 ii
, i
i i i I I i i I i I i i I i i i i i j i t
i
t i t 1 i l i l l l 1 l l l l l l l ii
i l l i l l i i l i t i i i i i l i i
i i l i i l I i i i i i I l ' i i i i ii
i i 1 i i i. i i | : i i i i i t it
1 1 I 1 ! t 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1
i i i i i i i i i i i i i i i i i i i i
4 i i i i i i i i i l i i i i i i i ii
i i i i i i i ill i i i i i i
i ii iii i i i i i i
, omit if NVS = 0 for all sources) -
, i , , , i.0,3,7 , , , , , ,., 0,6,1 i .,,,, .0,9,9 ,,,,
	 019i , , , ,.f)3,7\ 	 ,.0
i , i. ,(lil til i i i i. 03 ,7 1 i i i i i i-P
, , , ,. 019 , , , , .,03,7i 	 -P
I,,,. ,0,1 i9i i , , , ,. P3 ,7 i i , i i , -P
i i. iOil i9
	 0,li9
	 0,1,9
i i i i i !• (Op |7 j i i i_i_i_L-P
1 , l i-PJi7 .YLL-LI-P
6,1 1 I I I . . -D0.9 ,11,
"i 1111 r P |9" i i t i
6 ]1 i i i i i • P P ,9 i ,t
6jl j i i i i s . D19.9J i i i i
f i n Q Q
"H- 1 1 1 1 1 1 1" H K I-7 1 1 1 1
1 1 1 1 l i 1 !• M |9 [9 | ||
	 fl3,7 	 ()(6,i 	 .0,9,9 , , , ,
, ,. 019| .03,7 , .n,fi,i , , , -099
: , , ,. ,0,1,9J ii ii i..()rt i7i , , 'P
	 0,1,9 ,,,,, ,-P? ,7j , i , -:()
, l i i i l l iiii , , i l ill iii
iiiiiii
J_ 1 1 1 1 L _L
i 1 I I i i I
11 ! ! i 1 1 1 1 1 III 1
1 ! 1 i 1 1 1 I | 1 ! 1 11
1 1 ! 1 1 1 1 t 1 1 1 1 1 1 1 1 1
( !
IIIIIII 1 111! 11 1 1 1 1 1 1 1
f 1 I 1 1 1 1
1 1 1 1 1 1 I
1111(11
I I 1 1 1 1 1
t 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
I 1 1 1 1 t 1 _1_ Ll_l _1 1 i i 1 1 1
1 1 1 t 1 1 1 1 1 • IIIIIII
1 1 1 1 1 1 1 1 t 1 i t 1 1 1 1 1
1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 J J 1 1 If 1 1 1 1 1
1 1 1
. 1_ 1 111 111 _L_I
M 	 -P9.9 , , ,
Mi , : , -P.9,9 •, , , ,
1 1 ! ( 1 ! I 11 IIII
1 | 1 1 ! 1 1 1 1 | III
' i ' i ; i ! i i i i i i :
1 1 : 1 1 < ! l 1 1 1 1 1
l i i i t i i i i i l it ,
i t l f i i l i i ' iiii
i | : l i i i l l i i j i t I i
1 1 1 t 1 T 1 1 • 1 1 Iff)
	
i | 	 i , , i , , i ,
I,,,
, ,", , , , , I,,,
( i i i t i t i i i i i i < i
i i i i i i t i i i i t i |
i i t i i ; i i i i i i i i
i i t i i i i i i
iiii i t i i i i i i i
11(11 f 1 t l 1 1 1 ! 1
i i i i t i i i i i i i ii
111 1 1 1 1 1 1 1 ! 1 1 1
11 11 1
1 1 ! 1 1 1 1 1 t 1 1 1 t 1
1 1 1 1 ! J i I ! 1 i 1 1
- . i
111 llil!_tll 11
i i j_ i i 111111111
!
1 1 1 1 i | 1 1 i 1 1 1 1 1 !
i
111 1 j 1 1 ! 1 1 1 II
i ; i i i i i i i i i i i

1 1 1 1 1 1 1 t 1 1 i 1 1 1
1 1 1 1 1 1 1 1 t 1 1 1 1 f
t 1 1 1 1 1 I 1 i t 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
trill i i i i i i l i i
l 1 1 1 1 1 1 1 1 1 1 1 1 1
     F1CURE C-l
(Cont inui'd)

-------
o
I




PROJECT Example











ISCST
INPUT DATA CODING FORM (Continued)
Concentration
NAME *^
DATE

CARD GROUP,
CARD NUMBER
6,4 -




























SHEET





10



OF n

DATA CARD COLUMN
'
I
|










9llO
l(
"I"
14
15
16
IT
18
19
20J 2, 22 23 24 23 26 27 20 29
JO
31 32 33 34 35 36 37 38 39
«0
41 42 43 44 45 46 47 48
49 SO
SI
52
53
54
IS
56
57
56
59
BO
61
62








87
64
69
70


SOURCE DATA PARAMETER AND VALUE




















t
1
t
t
1
1
1
I

I

1
t
1
I
I
]
1
I
I
















































































1.

•"
^
1,
1,
\
J
.,0

•1°
.,0
•|0
•l°
.,0
if)
Jj.,0
\
\









•i°
• P
1

1
1

1
I


1 1 1 1 1 1 1 1 1
t 1 1 1 I 1 1 1 1

(



























1
1
1
1
1
1
!
I
|
I
1
I
1
1
I
I
|
I
I
f























































































t
.
.

*

.
*
•










8
[^
o
8
8
8
8
8
8
8
3










2
?
2
2
2
2
2
2
2
2
2










] 1 1 1 1 1 1 1 1









- GAMMA (arr
, .,72
11111*1'
t 1 1 1 1 * 1
2
2
! 1 1 1 1 1 1* t ' !^
i i i i i i r i
2
! i i i . i? |2
ii i i i* i /
1 t | 1 1 1 !• i'
. 7
| 1 1 1 1 1 1 1
1111111*1
2
2
2
2
ii i i i i i. i7 \)
i i i i i i i i i
i i i
i i i i i i i i


i i i i i i i i i
i i t i i i i i i

i i i i i i i i i
t i i i i i i i i
i i i i i i i i i
i i i i i t i i i
i i i i i i i i i
i i i i i i t i i
ay, omit if W
, .65

c
ii iii* |6|5
i tii i*i6|5
ii i i i i- 16|5
ii tt i *i r
1 i i i i 1*1 ^P
1 1 1 l 1 1 l • iOp
i i i i i i 1*11
i i i i i t 1*11
i , , , , , i6,5
1 1 1 1 t 1 III
1
1 I ! t 1 i 11


1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 t 1 1 1 1 III
1 1 t 1 I 1 1 1
1 1 1 1 1 1 II
1 1 1 1 1 1 III
1 I I 1 1 1 III
1 1 I 1 1 1 1 II
1 1 1 1 1 1 III
JS = 0 for al]
t ,.5i9
i i i i i i i.5i9
i t i i i i i *
ii i i i i •
i i i i i i i *
i i i i i i i •
i iiit*
5 19
5|9
5,9
5,9
5i9
! 1 1 1 l 1 1 * P r
.59
1 1 1 1 1 1 1 t 1
t 1 1 1 1 1 1 *
t 1 1 1 1 1 t *
1 1 1 t t 1 1
1 1 1
1 t 1 1 t 1 1 1
1 1 1 1 1 1 t 1
! 1 1 1 1 II
i 1 1 1 1 1 1 t
1 1 1 1 1 1 1 i
i i i i i i |
5,9
5|9
I
1

|
1
I
1
1
1 1 1 1 1 1 1 1 1
1 t 1 1 1 1 t 1 1
1 1 1 1 1 1 I 1 I
1 1 1 1 1 1 1 1 • 1














|
|
|
|



sources) -
LI i ' '• i*>












\
\
1
1

|
1

























































































































•
*
*
•
*
5
5
5
5
C
-,5
•

"











5
5
5
^











1 1 ' I 1 1 1 1 1





























1




























t













|













|
I













|

j


























|
!
|

















1 1 i 1 i t 1 1 I
1 1 1 1 1 1 t 1 1


J


I
|

l




|



I






(






,..,,,,,,
1 1 1 1 1 t 1 1 1
1 1
1 1 1 1 1 1 1 l 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
III 1 1 1 1 1
1 1 1 1 1 t 1 1 i
1 1 1 1 1 1 f 1 1
1 1 1 1 t 1 I 1 1
| 1 t 1 1 1 t 1 1
1 1 1 1 1 I 1 1 t
1 1 1 1 1 1 l 1 (
1 1 1 1 1 1 1 i |
I 1 ! 1 1 1 1 1 1
1 t 1 1 1 1 1 1 1
1 1 1 1 f 1 1 1 1
1 I 1 1 1 t 1 1 1
1 1 1 1 i 1 1 1 |
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
J 1 1 1 1 1 1 1 1

1 1 | 1 1 1 1 1 1
    FIGURE C-l    (Continued)

-------
o
ISCST
PROJECT Example
INPUT
DATA
Concentration


CARD GROUP,
CARD NUMBER
6,5 -

' DATA
1














to
It
12
13
14
13
16
17
IB 1920
21
22
23
24
29
26
27
20
29
x>
31
32
33
SOURCE








































































i
1
1
1
1
!
1
!
1
1
1
1

1
,5










•*-









	




























































1
!
I
1
(
1
i
t

|









'











































































































































































QTK
i il
i |5
i i1
I t
I |
I 1

t 1
i !_,
t I
1 i
I !

. :
1 i
. (
I l
1 1
1 1
1 1
1 1

, ,
(array,
1 t 1















































































omit
i t


























1
,5












I











1 1 1 1 1 1 i 1 1





1














|


1


|

|










i

i





1













.





i

j

if


























343
336

CODING FORM (Continued)



NAME
DATE














SHEET















11



OF 11

CARD COLUMN
37
DATA
58
39
4O
41 42 43 44 49 4fi 47 48 49 90
91
32193
94
39
56
97
98
99
SO
61
62
63
64
4.
67
«8
69
TO


PARAMETER AND VALUE
ISW(23) =
| 1 1 1 1 1













|
j
|
|
|
|
|

|
|
|

I
|
|
|
|
|
|
|
|
|
|





























C
1
,5












1











,,,,,,,,,





1












|
)
|
J
(
1
t
,
|
|
1
1
























_l 1 1 L J i 1 I 1




I i




and QFLG = 0
i i i i i i i i il
1 1 1 1 1 1 1 1 K
i i 1 i i i i r
! 1 1 1 1 1 1
t i t i i i i i t
I 1 ! t 1 1 1 I 1
t ! t 1 1 1 I 1 1
t 1 1 1 i 1
I 1 1 1 1 1 1 1 1
1 1 1 1 t t 1 I 1 *
i i i i i i i i ;
1 1 1 1 t 1 1 1 1
i t i i i i I i i
1 1 1 1 t 1 I 1 1
i i i : i i i i i
i ! 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 i 1 t ) 1 t
1 1 1 1 1 1 1 1 1

1 1 I 1 1 1 1 1 i
1 ,

for











1

|
I
I

1
1
1
i

all
L ' '

































sour
1 1 H-










•






















?
1









; i i i i i i i i







1
1
!
(

t I
|

i i















1






|
1







1







1







l








,,,,,,,,,
1 1 1 1 I 1 1 t 1
ces)
i i




























|

































1
1
I
1
1

I
1
t
1
1
1
I

1 1
















































1
?
1













1 1 1 1 1 ' 1 1 !
) 1 1 1 1 < 1 1 1
1 1 1 1 1 1 1 1 1
|
|
|

,
I


1 1
,
(
1


(




1 I 1 1 1 1 I 1 1
1 1 I 1 1 1 1 1 K
i i i i i i i i r-
i i i i i i i t r
i i i i i i i i
1 1 i i t i i i i
i i i i i i i i t
1 1 1 1 1 1 1 '!
i t i ; i i t i i
	 _ , ,-
1 i | i i i ( i i
i i i i i i i t i
i i i i i i i i i

i i i l i i i i i
1 1 1 1 1 1 1 ! 1
1 1 1 1 1 I 1 ( t
1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 I I
! 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I I 1
     FIGURE C-l.
(Continued)

-------
 input data values on that line are defined in Table 3-4.   Also,  note that
,some coding form lines are marked "blank card" and are to be included in
 the input data deck as blank cards.   This is because a zero value, which is
 equivalent to blank spaces, is the proper value of an input data parameter
 or because it is convenient to exercise the program's default capabilities
 for certain input parameters.
            «

           The best procedure for setting up the card input data  for a prob-
 lem run is to consider all of the ISCST program's  card input data parameters
 covered in Table 3-4.   As each card  input data parameter  in Table 3-4 is
 examined, Section 2.6 is consulted,  when necessary,  in order to  obtain the
 applicable information for that parameter.

           a.       Card Group 1.  The first input data parameter  discussed
 in Table 3-4 is TITLE whose alphanumeric heading data occupies the first  60
 characters of the first line as shown in Figure C-l.

           b.       Card Group 2.  The second line consists of the ISW array
 where each entry is entered in 2-column integer fields.   Because it is
 desired to calculate concentration values, a "1" is entered in column 2
 according to ISW(l) in Table  3-4. Figure 2-3 is an illustration of the Car-
 tesian receptor grid at which average concentration values are calculated.
 A "1" is entered in column 4 for ISW(2) to indicate that  the receptor grid
 locations are referenced by the Cartesian coordinate system. Note that a
 "3" could not be entered in column 4 to indicate that a receptor grid will
 be generated by the program because  the receptor grid used does  not have
 equally spaced grid points.  Although no mention of discrete receptor points
 is made in Section 2.6, this problem run includes  64 discrete receptor points
 which are oriented  with respect to the  receptor  grid  origin* by  distance  and
 direction.  Hence,  a "2" is entered  in column 6 for ISW(3)  to indicate to
*The origin for this example problem run has been  (arbitrarily) defined at
 the center of the ore storage pile (Source 1).
                                      C-13

-------
the program that the discrete receptor points are referenced as polar coor-
dinates.  ISW(4) indicates whether or not receptor terrain elevations are
input.  Acco.rding to Section 2.6, the terrain is relatively flat; hence, a
"0" is entered in column 8 for ISW(4).  Column 10 for ISW(5) is set to "0"
since no output tape is desired.  Column 12 for ISW(6) is set to "2" in
order to obtain a listing of all input data.  ISW(7) through ISW(14) indi-
cate which time periods are considered by the program for the average con-
centration calculations.  According to Section 2.6, only 24-hour average con-
centration values are desired.  The descriptions of ISW(7) through ISW(14)
in Table 3-4 state that only ISW(14) should be set to "1".  Hence, columns
13 to 26 for ISW(7) to ISW(13) are blank (equivalent to "0") and column 28
for ISW(14) is set to "1".  ISW(15) through ISW(18) indicate to the program
which types of output tables are produced.  For the purpose of illustration,
all types of output tables are produced.  A "1" is entered in columns 30,
32, 34 and 36 for ISW(15) through ISW(18) for "N"-day, daily, highest and
second highest and maximum 50 tables, respectively.  The hourly meteorolog-
ical data reside on a file in a format generated by the preprocessor program;
hence a "1" is entered in column 38 for ISW(19) to indicate to the program
the format of the hourly meteorological data.  According to Section 2.6, a
rural mode is desired; hence, a "0" is entered in column 40 for ISW(20).
The descriptions of ISW(21) and ISW(22) indicate whether or not the user
should provide wind-profile exponents and vertical potential temperature
gradients.  Because no site-specific wind-profile exponents and vertical
potential temperature gradients are given in Section 2.6, column 41 for
ISW(21) and column 42 for ISW(22) are set to "1" in order to use the pro-
gram default values.  ISW(23) indicates whether or not scalars are input
to vary the average emission rates for all sources.  According to Section
2.6, only one source (the ore pile) has a variational emission rate.  A
"0" is then entered in column 46 of ISW(23) to indicate that this option
is not desired for all sources.   Because wake effects are to be considered,
the distance-dependent plume rise should be used.   This is indicated by set-
ting ISW(24) to "2".  The physical stack heights of all sources (in this
example, only Source 16 is considered) are not modified due to stack-tip
downwash,  which is indicated by setting ISW(25) to "1".
                                   C-14

-------
          The second line of Card Group 2 (the third card image) completes
this Card Group as shown in Figure C-l.  A "16" is entered for the number
of sources (NSOURC) in columns 1-6.  This value is obtained.from Table 2-13
which lists all sources required to model the hypothetical potash processing
plant.  The next three parameters discussed in this Card Group pertain to the
size of the receptor grid .and number of discrete receptor points.  By count-
ing the number of X- and Y-axis grid points in Figure 2-3, a "19" value is
entered in both columns 7-12 and 13-18 for parameters NXPNTS and  NYPNTS.
For the purpose of illustration, 64 discrete receptor points are used in
this example run.  NGROUP specifies the number of source group combinations
desired.  According to Section 2.6, it is of interest to see the contribu-
tions from the ore pile (Source 1), the conveyor belt (Sources 2-11), the
roof monitor (Sources 12-15), the stack (Source 16) and the plant as a whole
(Sources 1-16).  Hence, a "5" is entered in column 30 for the number of source
groups.  Columns 31-36 for IPERD are left blank because all 24-hour time
periods per day are to be printed.  IPERD is intended for use only for time
periods less than 24 hours.  The following two parameters, NHOURS and NDAYS,
are not applicable for this example run because these parameters apply only
when hourly meteorological data are in a card image format (ISW(19) ="2");
the program then ignores any data contained in columns 37 through 48.

          c.      Card Group 3.  This Card Group contains the locations of
the receptor grid points and discrete receptor points.  For this example
problem run, this Card Group consists of lines (card images) 4 through 25 as
shown in Figure C-l.  According to Table 3-4, the X-axis grid locations are
entered first in GRIDX with 8 values per line in ten-column fields continuing
onto  other  lines  (card images) as needed.  Similarly, the Y-axis locations
are then entered in GRIDY beginning a new line (card image) in the same
fashion as the X-axis locations.  It is assumed that the receptor grid values
represented in Figure 2-3 are in meters which are the units required by the
program.  Beginning with the seventh line  (card image) of this Card Group,
64 discrete range values are entered for XDIS followed by 64 discrete direc-
tion values, beginning with the fifteenth line of this Card Group, for YDIS.
The discrete receptor values are also entered In 8 ten-column fields contin-
                                   C-15

-------
uing onto other lines as needed.   Because the receptor terrain is rela-
tively flat, no receptor terrain elevations are entered for GR1DZ.
                                                       t
          d.      Card Group 4.  Because source group combinations are
desired in this .example problem run (NGROUP>"0"),  it is necessary to spec-
ify which sources constitute each source group.  The first line of this Card
Group consists of the values entered for parameter NSOGRP.  According to
Section 2.6, the source numbers which define each source group are 1, 2-11,
12-15, 16 and 1-16.  Values of "1", "2", "2", "1" and "2" are entered in
columns 4, 8, 12, 16 and 20, respectively, for NSOGRP because each value is
the number of source numbers which must be read from the IDSOR array in order
to define a source group.  The next line (parameter IDSOR) consists of the
source numbers which define each source group.  Note that the minus sign pre-
ceding a source number implies inclusive summing from the previous source
number entered to the source number with the minus sign.

          e.      Card Group 5.  Because no special wind profile exponents
and vertical potential temperature gradients are considered, parameters
ISW(21) and ISW(22) described in Card Group 2 are set to "1", directing the
program not to read the first two parameters, PDEF and DTHDEF, of. this Card
Group.  Hence, the first line of this Card Group consists of parameters ZR
and UCATS.  This line is completely blank because it is assumed that the wind
speed reference height is the default value (10 meters) and because no special
consideration is mentioned in Section 2.6 regarding wind speed categories.
Similarly, the next line is blank because all parameters contained on the
line may default to program-provided values.  That is, the default values for
TK, IQUN and ICHIUN may be used since the emission rate units of all sources
given in Table 2-13 are the same as the program's default units and it is
assumed that the desired units of the average concentration values are the
same as the program's default units.  Also, no mention is made in Section
2.6 regarding special adjustment of the adiabatic or stable entrainment
coefficients (BETA1 and BETA2) or chemical depletion (DECAY).  Furthermore,
it is assumed that the hourly meteorological data file is associated with
FORTRAN logical unit number 9 (the program's default value for IMET) as dis-
cussed in Section 3.2.2.a.  The next 5 lines of this Card Group (the third
through seventh line of this Card Group), consist of the IDAY array and are
                                    C-16

-------
read by the program since ISW(19) equals "1".   In this array, the Julian
Days of the ten "worst-case" days of meteorological data (not discussed in
Section 2.6) are specified.  For this case, the Julian Days are 51, 187, 205,
229, 262, 289, 299, 305, 312 and 337 which respectively correspond to column
51 of line 1, columns) 27,  45 and 69 of  line 3,  columns  22,  49,  59,  65
and 72 of line 4 and column 17 of line 5.  Hence, a "1" is entered in those
10 columns as shown in Figure C-l.  The last line of this Card Group contains
input data parameters which also pertain to the hourly meteorological data
file and must be entered since ISW(19) equals "1".  The surface and upper
air station numbers and the years of the data are entered according to the
formats of parameters ISS, ISY, IUS and IUY described in Table 3-4.

          f.       Card Group 6.  This Card Group consists of all source data
whose values are provided by Tables 2-12, 2-13 and 2-14  in Section 2.6.  For
each of the 16 sources, one main card of values contains most, if not all, of
the data required for a source.  This card consists of parameters NSO through
HW described in Table 3-4.  According to Section 2.6, the ore pile (Source 1)
and the conveyor belt (Sources 2-11) have significant particulate emissions
which requires 6 gravitational particulate categories of data as shown in
Table 2-12.   Hence, a "6" is entered in column 9 for NVS for Sources 1-11
which directs the program to read the gravitational particulate data for PHI,
VSN and GAMMA immediately following the main source card for which the parti-
culate data are applicable.  Note that Figure C-l does not show each set of
gravitational particulate data immediately following the main source card.
The coding forms are designed more for an efficient manner of preparing the
input data.   Because particulate emissions from sources 12-16 do not have
significant settling velocities, column 9 for NVS is "0" and no particulate
data are read by the program for these sources.  Because the emission rate
for the ore pile (Source 1) varies depending on the hour of the day (see
Table 2-14),  a "3" is entered in column 10 for QFLG for Source 1.  The "3"
value, which is the value required by the program in order to vary emission
rates for each hour of the day, directs the program to read one set of 24
source emission rate scalars in QTK.  Note that QTK is read after all other
                                      C-17

-------
source input data are entered and consists of the last 3 lines (card images)
of this Card Group.  According to Table 2-14, the emission rate for Source
1 equals 0.1 grams per second per square meter for hours 01-07 and 16-24,
and equals 0.5 for hours 08-15.  A value of 0.1 is entered in columns 11-18
for the emission rate  Q  for Source 1.  Then, scalar values of 1.0 are
entered for the first seven values (hours 01-07) and for the last nine values
(hours 16-24) in QTK since no scaling is needed for the emission rate of
Source 1 for those hours.  The eighth through fifteenth scalar values (hours
08-15) equal 5.0 since it is desired to scale the source emission rate from
0.1 to 0.5 for those hours.  The values in QTK are entered in 8 ten-column
fields and continue onto other lines (card images) as needed.  In this case,
QTK consists of three lines.

          The card deck described above completes the required card input
data for computing the desired average concentration values for the hypo-
thetical potash processing plant.  Because the hourly meteorological data
are read from an external file (because ISW(19) = "1"), Card Group 7 is not
read by the program.  The external hourly meteorological data file must be
assigned and associated to FORTRAN logical unit 9 before execution of the
program (see Section 3.2.2.a).
          C.2.2   Run Time. Required Data Storage and Program Output Esti-
                  mates
          The number of minutes the program takes to execute this-example
run may be estimated by Equation (3-2) described in Section 3.2.5.a.  The
six variables which determine the amount of time are:  (1) NHOURS, which
equals "24" since there are 24 hours in a day of meteorological data; (2)
NDAYS, which equals "10" since ten "worst-case" days are being processed;
(3) NSOURC, which equals "16";  (4) NGROUP, which equals "5";  (5) NPNTS,
which equals 19 times 19 plus 64 for a total of 425 receptor points; and
(6) NAVG, which equals "1" for one time period.   With these values and the
value of C equal to 2.1 x 10   we have
                                      C-18

-------
  Number of Minutes   =   C •' (NDAYS +1) •  (1 + NHOURS •  (1 + 0.8
              '           • NSOURC • (1 + 0.6 •  NPNTS + 0.1 •  NGROUP
                          •NAVG)))                                        (c_u

                       -   2.1 •  10~5 (10 + 1) ' (1 + 24 •  (1 + 0.8

                           • 16 •  (1 + 0.6 •  425 + 0.1 •  5  • 1)))

                       =   18.2 minutes

          The number of data storage locations required by the program nay
be computed by Equation (3-1) described in Section 3.2.3.a.  According to
the definitions of the parameters used in Equation (3-1),  NSOURC equals "16",
NXPNTS equals "19", NYPNTS equals "19, NXWYPT equals "64",  NPNTS equals "425",
NAVG equals "1" and NGROUP equals "5" for this example run.  Also, because
ISW(15), ISW(17) and ISW(8) equal "1", variables A, B and C respectively
equal 425 times 5  (or 2125), 4 times 1 times 425 times 5 (or 8500), arid 201
times 1 times 5 (or 1005) according to their definitions given in Equation
(3-1).  Substituting these values into Equation  (3-1) gives


      Required  Data Storage   =    NPNTS  •  (NAVG  • NGROUP +  2) + NXPNTS

                                  +  NYPNTS +  2 •  NXWYPT + 215  • NSOURC

                                  +  A + B + C
                                                                       (C-2)
                                  425 •  (1 •  5 + 2) + 19 +  19 + 2 •  64

                                  +  215 •  16  + 2125 + 8500  + 1005

                                  18211 words
                                      C-19

-------
This value is well within the current limit of 43500 words allocated by the
program.  If this value exceeded 43500 words, it would be necessary to seg-
ment the example problem run- into more than one run or to modify the current
allocated data limit set in the program (see Section 3.2.7).

          Equations (3-3), (3-4) and (3-5) in Section 3.2.5.b assist in com-
puting the number of pages of output data produced for a problem run.  Be-
cause the program has different categories of print output, it is best to
examine the number of pages produced by each category.  In this case, all
categories have been set to generate print output.

          Because ISW(6) equals "2", 5 pages of input data are listed plus
10 pages for the 10 days of hourly meteorological data.  Also, because
either QFLG or NVS is greater than "0" for 11 sources, about another 4 pages
are added for a total of about 19 pages for this category.

          The number of "N"-day average concentration tables produced
(since ISW(15) = "1") equals the number of source groups specified in param-
eter NGROUP and equals "5" for this example problem run.  However, we must
consider the number of pages produced by each table according to Equation
(3-3) .  As shown by the definitions of the parameters contained in Equation
(3-3) , the number of pages produced per table depends on the receptor grid
size and the number of discrete receptors.  In this case, NXPNTS equals
"19", NYPNTS equals "19" and NXWYPT equals "64" which, when substituted into
Equation (3-3) , gives
          Pages Per Table  -  («™2L)
                                                                        (C-3)
                           =  (3)  •  (1)  +  (1)
                           =  4 pages
                                   C-20

-------
Note that any fractional number is rounded up to the nearest whole number.
Hence, the total number of pages produced by this category for this example
problem run equals 5 tables times 4 pages per table for a total of 20 pages.

          Equation (3-4) gives the number of daily tables produced (ISW(16) =
"1") for each day of meteorological data.  As shown, the number of tables
produced each day  is a function of the number of source groups, whether the
"N"th time interval or all time intervals for each time period are desired,
and the number of time periods.  For this example problem, Equation (3-4)
yields

      Number of Tables = NGROUP  • ((24/IPERD) • ISW(7)
                         + (12/IPERD) • ISW(8) + (8/IPEKD) • ISW(9)
                         + (6/IPERD) • ISW(IO) 4- (4/IPERD) • ISW(ll)
                         + (3/IPERD) • ISW(12) + (2/IPEBD) • ISW(13)
                         + (1/IPERD) • ISW(14))                          (C"4)

                       = 5•  ((24) • 0 +  (12) • 0 +  (8) • 0 + (6) • 0
                         + (4) • 0  + (3) • 0 + (2) • 0 + (1) • l)

                       = 5 tables
Note that because input parameter IPEKD has been set to "0", all terms  of
the form (j/IPERD) reduce to  (j).  Hence, for all 10 days, 50 tables are
produced by this category.  Again, Equation (3-3) yields 4 pages per table
for a total of 50 tables times 4 pages per table, or a total of 200 pages
for this output category.

          Because ISW(17) equals "1", tables of the highest and second  high-
est calculated 24-hour concentrations are produced for this example run.
According to Section 3.2.5.b  the number of tables produced equals twice the
number of time periods (equals "1" for the one 24-hour averaging period) times
the number of source groups  (equals "5" for this example run) for a total of
10 tables.   The number of pages produced by each table is given by Equation
(3-5).  Again, the number of pages produced per table depends on the recep-
                                    C-21

-------
tor grid and number of discrete points.   Substituting the same values used
in Equation (3-5) yields

           ,  ,     , _           /NXPNTSX  . /NYPNTS\  . /NXWYPT
          Number of Pages   -   (,— T~)   ("IT" ) + V~^

                                                                     (C-5)
                                  T)  '  (is) + ("re

                                 (4) •  (1)  + (1)
                                 5 pages
Hence, the total number of pages produced by this category equals 10 tables
times 5 pages per table or 50 pages.

          The final category of print output is the maximum 50 tables pro-
duced when ISW(18) equals "1", as it is in this case.  The number of tables
produced equals the number of time periods desired (equals "1"  for the one 24-
hour averaging period) times the number of source groups (equals "5" for
this case) for a total of 5 tables.  Because each table produced by this
category is a maximum of one page, a total of 5 pages is produced by this
category.

          By summing the number of pages generated for each applicable out-
put category, an estimate of the total number of pages printed for this
example run may be obtained.  For ISW(6), ISW(15), ISW(16), ISW(17) and
ISW(18), the number of  pages equals 19 plus 20 plus 200 plus 50 plus 5,
respectively, for a total of 294 pages printed for this problem run.
Because no output tape is generated (ISW(5) - "0"), the 294 page output
estimate represents the total program output for this problem run.

          C.2.3   Output Format

          Figures C-2 through C-8 illustrate the content and format of the
print output produced by this example run.  Figures C-2 and C-3 are gener-
ated since ISW(6) equals "2" in this problem run.  Figure C-3 is a listing
of one day of the ten days of hourly meteorological data.  Because the pro-
                                    C-22

-------
                               HYFOTHE T .'CUL POTASH PROCESSING PLRHT - C OH C f N TR H T I OM
n
I
NJ
U)
          CALCULATE 
          RECEPTOR GRID SYSTEM ( RE C T A NC U L A R • 1  OR 3. POLAR=2 OR
          DISCRETE RECEPTOR SYSTEM 
          TERRAIN ELEVATIONS ARE READ 
          CALCULATIONS ARE WRITTEN TO TAPE (YES=1.NO=0>
          LIST  ALL INPUT  DATA ( NO* <• . VES = ! . ME T  OwTA ALSO*2i
          COMPUTE AVERAGE CONCENTRATION (OR TOTAL DEPOSITION)
          yiTH  THE FOLLOyiNC TIME PERIODS:
                         ,NO=0 )
                         , N0=0 )
                         , N0=0 )
HOURLY  (YES =
2-HouR  •• Y E s =
3-HOUR  (YES=
4-HOUR  (YES*
6-HOUR  (YES =
8-HOUR  (YES=
               ,NO=0 )
               ,NO=0 )
  12-HOUR  ( YESM , N0«0 )
  24-HOUR  ( YES* 1 < MO'O)
PRINT 'M'-OAY  TABLE(S)  (YES<1.NO'0>

PRINT THE  FOLLOyiHG  TYPES  OF  TABLES  UHOSE  TIME  PERIODS  ARE
SPECIFIED  BY  ISy(7>  THROUGH  ISM
  HIGHEST  I  SECOND  HIGHEST TABLES  ( YE S = 1 , N 0= 0 )
  MAXIMUM  50  TABLES  (YES=1,HO=0>
METEOROLOGICAL  DATA  INPUT  METHOD < P RE -PR OC ES S ED » i , C A RD • 2 >
RU'RAL-URBAN  OPTION  ( RURAL=O, URBAN  MODE  i»i. URBAN  MODE 2 = 2)
UIND PROFILE  EXPONENT  VA L UE S  ( DE F A ULT S= I - USE R ENTERS-2,3)
VERTICAL POT   TEMP.  GRADIENT  VALUES  ( DEF AU LT S =• I . U S ER ENTERS°2.3)
SCALE EMISSION  RATES FOR  ALL  SOURCES  (NO=0,YES>0)
PROGRAM CALCULATES  FINAL  PLUME  RISE  ONLY  < Y E S = 1 , H 0 = Z >
PROGRAM ADJUSTS  ALL  STOCK  HEIGHTS  FOR  DOVNUASH  ( Y E S« Z , N0= 1 )

NUMBER OF  INPUT  SOURCES
NUMBER OF  SOURCE  GROUPS (*0,ALL SOURCES)
TIME PERIOD  INTERVAL TO BE PRINTED  («0,ALL  INTERVALS)
NUMBER OF  X  (RANGE)  GRID  VALUES
NUMBER OF  Y  (THETA)  GRID  VALUES
NUMBER OF  DISCRETE  RECEPTORS
SOURCE EMISSION  RATE UNITS CONVERSION  FACTOR
ENTRAPMENT  COEFFICIENT FOR  UNSTABLE  ATMOSPHERE
ENTRAIHMENT  COEFFICIENT FOR  STABLE  ATMOSPHERE
HEIGHT ABOVE  GROUND  AT  WHICH  UIND  SPEED  HAS  MEASURED
LOGICAL UNIT  NUMBER  OF  METEOROLOGICAL  DATA
DECAY COEFFICIENT  FOR  PHYSICAL  OR  CHEMICAL  DEPLETION
SURFACE STATION  NO.
YEAR OF SURFACE  DATA
UPPER A IR  STAT I OH  NO .
YEAR OF UPPER  AIR  DATA
ALLOCATED  DATA  STORAGE
REQUIRED DATA  STORAGE  FOR  THIS  PROBLEM  RUN
i syi i )
I & U ( 2 >
I SX(3)
I Stf(4 )
I Stl(5 )
I SMii )
I SW( 7 )
I SW< 8 )
I SW( t )
I S W( 10 )
I SU( 11 )
I S W( 12 )
I S«< 13 )
I S W( 14 >
I S W( 15)
I SW< 16 >
SW< 1? >
SW( 18 )
S W< 19 )
S«< 20 )
S W( 21 )
SV( 22 )
SU< 23 )
SU( 24 )
S«( 23 )
HSOURC
NGROUP
IPERD
HXPNTS
HYPHTS
Nxy YPT
TK
BETA1
BETA2
ZR
IHET
DECAY
ISS
1SY
IUS
IUY
LIMIT
MIMIT
=
=
E
a
=
E
S
S
S
E
S
E
E
S
S
_
E
-
E
E
B
=
=
=
S
E
E
E
E
E
fi
=
E
*
E
E
}
1
2
0
0
2
0
0
0
0
0
0
0
1
1
r
!
1
1
0
1
1
0
2
1
16
3
0
1 9
19
«4
. 1 0000
. 600
. 600
1 0 00
9































• or


METERS

E 000000
E
E
E.
E
S
S
14913
64
14918
64
43500
18211




yORDS
VORDS
          FIGURE  C-2.    Listing of  the input data  for  the hypothetical potash processing plant concentration
                           run.

-------
 i
to
                                        •«•  --   HYPOTHETICAL  POTASH PROCESSING PLANT  -  CONCENTRATION  -- •••
                                                    •••  METEOROLOGICAL DAYS  TO BE  PROCESSED  •••
                                                                       (I F = I ') '

1000000


0000100






000




0
























0 1 0
                                          **•  NUMBER OF  SOURCE NUMBERS REQUIRED  TO  DEFINE SOURCE CROUPS •••
                                                                      (NSOCRP)

                         1,    2.    2,    1. *   2,
                                                    •••  SOURCE NUMBERS DEFINING  SOURCE  CROUPS •••
                                                                      ( IDSOR )

                           1,      2,     -11,     12,    -15.     It,     1,    -16,

                                          «••  UPPER  BOUND OF FIRST THROUGH  FIFTH MIND  SPEED CATEGORIES  •»»
                                                                    (METERS/SEC)

                                                         1.54,   3.09,   5.14,    8.23,   10.80,


O
                                    ••»  WIND  PROFILE  EXPONENTS •••


STABILITY                              WIND SPEED  CATEGORY
CATEGORY          12               3               4               5               6
   A            .10000+00       .10000*00       .10000*00      .10000+00       .10000*00      .10000+00
   B            .15000+00       .15000+00       .15000+00      .15000+00       .15000*00      .15000*00
   C            .20000+00       .20000+00       .20000+00      .20000+00       .20000+00       20000+00
   D            .25000*00       .25000*00       .25000+00      .25000+00       .25000+00      .25000+00
   E            .30000+00       .30000+00       .30000+00      .30000+00       .30000+00      .30000+00
   F            .30000+00       .30000+00       .30000+00      .30000+00       .30000+00      .30000+00
         FIGURE C-2.    (Continued)

-------
                                     • ** --  HYPOTHETICAL  POTASH  PROCESSING  PLANT  - COHCEHTRATI ON
                                               *»• VERTICAL POTENTIAL  TEMPERATURE  GRADIENTS »••
                                                          (DECREES  KELVIN PER  METER)
O

KJ
Ln
STABILITY
CATEGORY
A
8
C
D
E
F

-3000 .0,
200 .0,


-3000 .0 ,
200 .0 .


( 555.0,
( 860.0,
( 935.0,
( 1075.0,
( 855.0,
( 355. 0,
< 345. 0,
( 450. 0,
( 620.0.
( 755.0,
( 690.0,
( 645.0,
( 410.0,

-2000
400


-2000
400


317
331
356
21
43
56
106
146
171
196
221
246
271

0,
0,


0,
0,


0),
0),
0 >,
0),
0) .
0),
0) .
0),
0),
0),
0) ,
0),
0) ,
WIND SPEED CATEGORY
1234
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.20000-01 .20000-01 .20000-01 .20000-01
.35000-01 .35000-01 .35000-01 .35000-01
••* X-COORO IHATES OF RECTANGULAR GRID SYSTEM ••*

-1500 .0,
600 .0,


-1 500 .0,
600 .0,


( 620
( 900
( 910
( 1075
( 755
( 355
( 335
( 480
( 665
< 755
( 690
( 615
( 365

-1250. 0
800. 0
«•• Y-

-1250.0
800. 0
•»» RANGE

0, 318
0, 336
1
26
45
66
116
151
176
201
0, 226
0, 251
0, 276

t
•
(METERS)
-1000 . 0, -800.0, -600
1000.0, 1250.0, 1500
COORDINATES OF RECTANGULAR GRID

t
'
(METERS)
-1000 .0, -800 .0 , -600
1000 . 0, 1250 .0, 1500
,THETA COORDINATES OF DISCRETE

. 0 >
.0 >
.0 )
. 0 )
0 )
. 0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
(METERS, DEGREES )
( 685 . 0, 320 .0), (
( 920 .0, 3410), (
( 950 .0, 6.0), (
( 1045 . 0, 31.0), (
( 620 . 0, 47.0), C
( 355 .0, 76 . 0 ). (
, < 325.0, 126.0), <
< 505 . 0, 156 . 0) , <
( 705 .0, 181.0), (
, ( 745.0, 206.0), (
, < 690 0, 231.0), (
, ( 575.0, 256.0), <
, ( 365.0, 286.0), (

. 0, -400 .0
.0, 2000.0
SYSTEM •••

0, -400 .0
. 0, 2000 .0
RECEPTORS •»•

735.0,
940 . 0,
1015.0,
995.0,
525. 0,
355. 0,
380. 0,
535. 0,
730. 0,
730. 0,
680. 0,
530. 0,
410.0.
5
00000
00000
00000
ooooo
20000-il
35000-01

t
•


,
'


322
346
1 1
36
49
86
136
161
186
21 1
236
261
296

-200 . 0,
3i>00. 0,


-200.0,
3000. 0,


0 ), (
0 ). (
0 ). <
0 ), (
0 ), <
0 ), (
0 ), (
0 ). (
0 ), (
0 ). (
0 ), (
0 ), (
0 ), (
6
. OOOOO
.00000
.00000
. ooooo
.20000-01
. 35000-01

. 0,


*
. 0,



800 .0,
940 .0,
1055 . 0 ,
910.0,
460 . 0.,»
350 .0,
420 .0,
575 .0,
745.0,
705 .0 ,
665 .0 .
475 .0 .











326 .0 )
351.0)
160)
41 .0 )
51.0)
96 .0 )
141 .0 >
166 0 >
191.0)
2160)
241.0)
266 .0 )

         FIGURE O2:    (Continued1

-------
                                      ••• --   HYPOTHETICAL  POTASH PROCESSING PLANT -  CONCENTRATIOH   -- •••
                                                            ••* SOURCE  DATA ••*
O
EMISSION RATE TEHP. EXIT VEL.
TYPE«0,1 TYPE»0 TYPE-0
T V (CRAMS/SEC) (OEG.K) (N/SEC) BLOC. SLOG. ILDG.
Y A HUHIER TYPE-2 BASE VERT.OIH HORZ.DIM DIAMETER HEIGHT LENGTH WIDTH
SOURCE P K PART. (GRAMS/SEC) X Y ELEV. HEIGHT TYPE*! TYPE-1.2 TYPE-0 TYPE-0 TYPE-0 TYPE-0
HUHBEK E E CATS. »PER HITER*»2 (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS)
1 2 «
2
3
4
S
f
7
B
t
10
II
12
13
14
19
0













If 0













.10000*00 -13.3 -13.3 .0 10.00 .00 24 40 . «« .00 .00 .00
.13000*00 2*.
.13000*00 30.
.11000*00 40.
.13000*00 4*.
.13000+00 St.
.13000*00 «f.
.13000*00 7*.
.13000*00 |».
.1)000*00 99.
.13000*00 10*.
.2*300*01 121.
.24300*01 144.
.2*300+01 147.
.2(300*01 1*0.
.0 .0 .*0













« .50000*01 201 .0














2. tO
4.30
(.10
7. SO
f .(0
11 .30
13.00
14.80
14. JO
.00 4.70 .00 .00 .00 .00
.00 4.70 00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
22.90 11. CO 10. BO .00' .00 .00 .00
22.90 11.40 10. BO .00 .00 .00 .00
22.90 11 40 10. BO .00 .00 .00 .00
22. SO 11. «0 10.80 .00 .00 .00 .00
90.00 340.00 B.OO 1.00 29.09 90.00 90.00
            FIGURE C-2.    (Continued)

-------
                              •••  --   HYPOTHETIC«L POTASH  PROCESSING PLCN1
                                                                              CONCENTRftT!ON
                                                «•« SOURCE  PART ICULflTE DATfc  *••
       • •• SOURCE NUI1BER  =
                                1  «•»
n
-j
HASS FRACTION  =
 .10000,   40000,   28000.  .12000,

SETTLING VELOC1TYCHETERS/SEC> =
  .0010,   .00?0 .    0190 ,   .0370,

SURFACE REFLECTION  COEFFICIENT =
1.00000, .82000,  .72000,   65000,
       ••• SOURCE NUMBER  =
                                2  •«•
HASS FRACTION  =
 .10000,  40000,  .28000,  .12000,

SETTLING VELOCI TY< HETERS/SEC ) =
  .0010,  .0070,   .0190,   .0370,

SURFACE REFLECTION  COEFFICIENT =
1.00000,  82000,   72000,  .65000,
       »«•  SOURCE NUMBER =
                                3  «»»
HASS FRACTION ;
 .10000,  40000,   28000,  .12000,

SETTLING VELOCI TY( HETERS/SEC )  =
  .0010.   0070,    0190.   .0370,

SURFACE REFLECTION  COEFFICIENT =
1.00000,  82000,  .72000,  .65000,
                                         .06000,
                                          .0610,
                                          59000,
                                         .06000,
                                          .0610,
                                          59000,
                                         .06000,
                                           0610.
                                          59000,
.04000,


 .0990,


.50000,




.04000,


 . 0990,


.50000,




.04000,


 .0990 ,


.50000 ,
FIGURE  C-2.    (.Continued)

-------
                                    • •• --  HYPOTHETICAL  POTASH  PROCESSING PLANT - CONCENTRATION
                                                        **•  SOURCE  PARTICULATE DATA  •••
              ••*  SOURCE NUMBER -
                                       4 •••
              MASS  FRACTIOH -
               .10000,  .40000,  .28000.  .12000,  06000.  .04000,

              SETTLING  VELOCITYmTERS/SEC > »
                .0010,   .0070,   .0190,   .0370.  .0610,   .0990,
              SURFACE REFLECTION COEFFICIENT =
              1.00000,  .82000,  .72000,   63000,
                                                 .59000,
                                                         .50000,
              *•*  SOURCE NUMBER
                                       5 *••
O
ro
oo
              MASS FRACTION =
               .10000,  .40000,  .28000,  .12000,

              SETTLING  VELOCimMETERS/SEC > =
                . 00 10,   . 0070 ,   .0190 ,   . 0370,

              SURFACE REFLECTION COEFFICIENT =
              1  00000,  .82000,  .72000,  .65000,
*•* SOURCE NUMBER  =

MASS FRACTION  =
                         6 *>•
              SETTLING VELOCI TY( METE R S/'SEC ) •
                 00 10,  .0070,  .0190 .   . 0370,
                                   .06000,  .04000,
                                    .0610,
                                                 .59000,
               .10000,   40000,  28000,  .12000,  .06000,
                                                  .0610,
                                            .0990,


                                           .50000,
                                                         .04000,
                                                           0990,
              SURFACE REFLECTION COEFFICIENT =
              1.00000.   82000.  .7200O,  .65000,
                                                 .59000,
                                                          50000,
         FIGURE  C-2.     (Continued)

-------
                                      *»*  --   HYPOTHETICAL POTASH  PROCESSING PLANT  -  CONCENTRATION
                                                                                                      - -  * • *
                                                        «•• SOURCE  PBRTICULATE  DATA  «•«
O
I
NJ
               • *•  SOURCE NUH8ER =
                                        7  »••
               MASS FRACTION =
                .10000,   40000,  .28090.  .12000,

               SETTLING  VELOCITY  =
                 .0010-   .0070,   .0190.   .0370,

               SURFACE  REFLECTION COEFFICIENT =
               1.00000,  .82000,  .72000,  .63000,
               ««•  SOURCE NUMBER
                                        8  •••
               MASS  FRACTION =
                .10000,  .40000,  .28000,  .12000,

               SETTLING  VELOCITY  "
                  0010.   .0070,   .0190,   .0370,

               SURFACE  REFLECTION COEFFICIENT  *
               1.00000,  .82000,  .72000,  .65000,
               ••«  SOURCE NUHBER -
                                        9  »••
.06000,


 .0610,


.59000,




.06000,


 .0610,


.59000,
        .04000,
 .0990,
                                                          . 50000 ,
.04000,
 .0990,
                                                         .50000,
               HASS  FRACTION =
                .10000,  .40000, .28000,  .12000,  .06000,  .04060.

               SETTLING  VELOCITYCHETERS/SEC)  =
                 .0010,   .0070,   .0190,   .0370,   .0610.    .0990.

               SURFACE  REFLECTION COEFFICIENT  =
               1.00000,  .82000, .72000,  .65000,  .59000,  .50000,
         FIGURE  C-2.     (.Continued)

-------
U>
o
                                      • ••  --   HYPOTHETICAL  POTftSH  PROCESSING PLANT - CONCEHTRftTI ON
                                                         «•«  SOURCE  PARTICULATE DATA «•*
                *•• SOURCE NUMBER =
                                        10  •»«
                MASS FRACTION *
                 .10000.  . 40000/
                                  .26000 ,
                                          .12000.  .06000,  .04000,
                SETTLING VELOCITY(NETERS/SEC) *
                  .0010,   .0070,   0190.   .0370,

                SURFACE REFLECTION COEFFICIENT *
                1.00000, .82000,  .72000,  .65000.
                *•* SOURCE NUMBER
                                        11  •«•
                MASS FRACTION •=
                 .10000, .40000,  .28000,  .12000,

                SETTLING VELOC1TY(HETERS/SEC> •
                  .0010,  .0070,   .0190.   .0370,

                SURFACE REFLECTION COEFFICIENT <
 .0610,


.39000,




.06000,


 .0610,
         .0990,
                                                          .50000,
.04000,
         .0990,
                1.00000, .82000,
                                  72000,  .65000,  .39000,  .50000,
          FIGURE  C-2.    (Continued)

-------
                                    «•• --  HYPOTHETICAL POTASH PROCESSING  PLANT  -  CONCENTRATION  -- »••


                                    • SOURCE EMISSION RATE SCALARS UH1CH  VARY  FOR  EACH  HOUR  OF THE DAY «


         HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR



     SOURCE NO.  •      t
           1     .10000*01      2    .10000*01      3     .10000*01      4     .10000*01      3     .10000*01      6     .10000*01
           7     .10000*01      8    .30000*01      »     .30000*01     10     .30000*01      II     .30000*01     12     .30000*01
           13     .30000*01     14    .30000*01     13     .30000*01     16     .10000*01      17     .10000*01     18     .10000*01
           If     .10000*01     20    .10000*01     21     .10000*01     22     .10000*01      23     .10000*01     24     .10000*01
FIGURE C-2.     (Continued)

-------
                                                                                                            NET.  DATA

                                                                                                            DRY  31
                                      HYPOTHETICAL POTASH PROCESSING PLAHT -  COMCEHTRATIOH  -- •••
                                              • METEOROLOGICAL DATA FOR DAY  91 •
n

u>
NS
RANDOM
FLOH FLO* HIHD NIXING INPUT ADJUSTED
VECTOR VECTOR SPEED HEIGHT TEHP . STANILITY STABILITY
HOUR (DEGREES) (DEGREES) (HPS) (METERS) (DEG. K> CATEGORY CATEGORY
t 1*0
2 1*0
3 ISO.
4 ISO.
9 130.
( 140.
7 190.
8 130.
> 1*0.
10 1*0.
11 170.
12 1«0.
13 130.
14 1*0.
19 130.
1C 130.
17 ICO.
18 1*0
19 1*0.
20 1*0.
21 1«0.
22 1*0
23 130.
24 1*0
198.0
1*3.
194.
191.
148.
143.
192.
199.
1*2.
197.
173.
1(2.
148.
1*0.
194.
14*.
198.
197.
1(9.
1*1.
1(9.
19*.
14(.
1(0.






















.14 7(1.2 2(1.9 4
.(0 7(4.2 2(0.
.(0 7(7.2 239.
.(3 770.2 298.
.(* 773.
.17 77*.
.17 77>.
.(( 782.
.(3 789.
.14 788.
.14 7»1.
.17 794.
.(3 797.
.(9 800.
.17 800.
.(9 800.
.17 8*0.
.12 802.
298.
297.
237.
297.
29*.
298.
2*0.
2*2.
2(3.
2(4.
2(4.
2(9.
2(4.
2(3.
.(0 8*9.9 2(2.
.(3 81* 1 2(0.
.14 822.7 299.
.*0 829.3 299.
9
9
9
4
4
4
4
3
4
4
4
3
4
4
4
4
9
9
9
9
9
.12 839.9 298.7 9
S it 842.9 298.1 4
























           FIGURE C-3.
Listing of one day  of  hourly meteorological data used  for the hypothetical

potash processing plant concentration  run.

-------
                                     »,* —  HYPOTHETICAL POTASH PROCESSING PLAN!  - CONCENTRATION  — *»*
                                    * SOURCE-REC£PTOR CO'lINATlONS LESS THAN 100 VETERS O1* THREE BUILDING

                                       HEIGHTS IN DISTANCE.  NO AVERAGE CONCENTRATION    IS CALCULATED »




                                                  	 RECEPTOR LOCATION 	
O

U>
OJ
SOURCE
NUMBER
1
2
3
4
5
6
7
6
9
10
10
11
11
12
12
13
1»
15
16
X Y (METERS)
OR RANGE OP DIRECTION
(METERS) (OEGPEES)
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
200.0
.0
aoo.n
.0
200.0
200.0
200.0
200.0
200.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
DISTANCE
BETAKEN
(XETFRS)
-15.01
9.90
19.90
2-3.90
38.SO
<*a.go
53.90
60.90
7a.90
e
-------
                                                                                                                       DAILY:   31
                                                                                                                       24-HR/PD  1
                                                                                                                       SCROUPI   3
                                        ••• --  HYPOTHETICAL POTASH PROCESSING  PLAHT -  COHCEHTRATIOH
                                                                                              	0 •*
o
I
                                        * DAILY 24-HOUR AVERAGE CONCENTRATION 
                                                      • ENDING KITH  HOUR 24 FOR DAY   9! •
                                                       • FROH SOURCES:      12,   -IS,
                                                          • FOR THE  RECEPTOR GRID •
                                    • HAXIHUN VALUE EQUALS
                                                           2«3. JH74 AND OCCURRED AT  (
                                                                                       200.0.
                                                                                                -200.0) •
Y-AXIS /
(METERS) /
3000.0 t
2000. 0 /
1500.0 /
1230.
1000.
800.
too.
400
200.

-200.
-400.
t
t
/
f
/
t
/
/
t
-too.o /
-800.0 /
-1000. 0 /
-1230.0 /
-1300.0 f
-2000.0 /
-3000.0 /
-3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
X-AXIS
-1230.0
.00000
. 00000
.00000
.00000
. 00000
. 00000
.00000
.00000
.00000
. 00000
. 00000
. 00000
. 00000
.00000
.00000
. 00000
. 00000
.00000
. 00000
(HETERS)
1000.0
.00000
. 00000
. 00000
.00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
.00000
.00000
.00000
. 00000
. 00000
. 00000
-800.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-too .0
.00000
.00000
00000
.00000
00000
.00000
.00000
00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
~ .00000
.00000
.00000
.00000
-400 .0
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000.
.00000
. 00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
00000
. 00000
. 00001
-200.0
. 00000
. 00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
. 00001
.ooou
.00133
         FIGURE C-5.
Listing of the table of 24-hour average concentration values computed on  day 51  from
Sources 12 to 15  by the hypothetical potash processing plant concentration run.

-------
                                          •*• --  HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION
                                                                                                                                  DAILY:  31
                                                                                                                                  24-HR/PD 1
                                                                                                                                  SCROUPt  3
O
 I
Ln
                                          * DAILY 24-HOUR AVERAGE CONCENTRATIOH 
-------
                                                                                                                                     DAILY:   31
                                                                                                                                     24-HR/PD 1
                                                                                                                                     SSROUPI   3
                                           • •• --  HYPOTHETICAL  POTASH  PROCESSING  PLANT  -  CONCEHTRATI OH   --  •••
              Y-AXIS
             (METERS)
                                           • DAILY 24-HOUR AVEtACE  COHCEKTRATIOH  ( RICROCRAHS/CUB1C  HETER>
                                                            • ENDING  WITH  HOUR  24 FOR  DAY   31  •
                                                             • FROR SOURCES:        12.    -IS.
                                                                • FOR THE  RECEPTOR GRID  •
                                       •  RAXINUfl VALUE EQUALS
                               3000. 0
                                                                 203.91*74  AND  OCCURRED  AT  (

                                                                            X-AXIS  (NETERS)
                                                                                                 200 0,
                                                                                                           -200  0 >  •
O
 I
o\
 3000.0 /
 2000.0 /
 1300 0 /
 1230 0 /
 1000.0 /
  800.0 /
  609
  400.
  200.

 -200.
 -400.
 -(00.0 /
 -800.0 /
-1000.0 /
-1230 0 /
-1300.0 /
-2000.0 /
-3000.0 /
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00002
 21303
          FIGURE C-5.   (Continued)

-------
                                          • •*  --   HYPOTHETICAL POTASH PROCESSING PLAMT - CONCENTRATION
                                            DAILY 24-HOUR AVERAGE COHC EHTRATI OM < It I CROGRANS/CUB 1C DETER)
                                                          • ENDING WITH HOUR  24 FOR DAY  51 *
                                                           • FROM SOURCES!       12.   -13.
                                                         • FOR THE DISCRETE RECEPTOR POINTS *
                                                                                                                                  DAILY:   31
                                                                                                                                  24-HR/PD t
                                                                                                                                  SGROUPI  3
             - RHG -
O
I
Co
                         -  OIR  -
                                     CON .
                                                      - RHG -
                                                                  - DIR -
                                                                              CON.
                                                                                                -  RNC  -
                                                                                                           - DIR -
                                                                                                                       CON.
555
733
900
940
950
1075
995
755
460
355
345
380
480
573
705
755
730
£90
£65
375
4 10
410
0
0
0
0
0
o
o
0
o
o
0
o
0
o
0
0
0
0
0
0
0
0
317
322
334
351
t
21
3t
43
31
7i
tot
m
131
lit
181
196
211
226
241
25*
271
296
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.74947
2(1 41783
77 .02(38
3 52424
.00185
.00000
.00000
.00000
.00000
.00000
.00000
.00000
(20.
800
»20.<
935.
1015. <
1073.
910.
(20.
333.
333.
333.
420.
303.
(20.
730.
733.
703.
690.
(43.
530. <
3(5. (

> 318.
> 324
> 341
> 334
> 11 .
26
41 .
47.
54
84.
1 14.
141 .
134
171 .
186
201 .
216
231 .
24*
) 2(1 .
> 274.

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
61 . 4662*
213.7(877
29. 7*18*
.71228
.00001
. 00000
. 00000
. 00000
. 00000
.00000
. 00000

(85
8(0
940
*10 .
1033.
1045
855.
325
355
350.
323
450
335.
(63
745.
745.
(90.
(80 .
(13.
473.
365

9 320
) 331
> 344
) 1
» 14
) 31
> 43
» 49
) 6(
» 9(
> 12*
> 144
) 1(1
> 174
) 191
> 206
> 221
> 234
) 251
> . 266
) 286

















0
0
0
0
0

. 00000
. . 00000
.00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
. 00006
270. 49908
144.44760
10.37386
. 0(247
.00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

          FIGURE C-5.   (Continued)

-------
                                            HYPOTHETICAL POTASH PROCESSING PLANT  - CONCENTRATION
                                                                                                                  •H'-DAY
                                                                                                                   10 DAYS
                                                                                                                  SCROUPI  2
n
GJ
oo
                                          10-DAY AVERAGE CONCENTRATION (HICROGRANS/CU8IC HETER )

                                                    « FRON SOURCES'       2.   -11.
                                                       • FOR THE RECEPTOR GRID  •
Y-AXIS /
(METERS) /
3000
2000
1500
1250
1000
800
400
400
200

-200
-400
-400
-800
-1000
-1250
-1500
-2000
-3000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

/
t
t
1
/
/
t
/
f
/
t
t
t
t
t
t
/
/
-3000.0
.0037*
.30353
.42209
.50142
.43380
.43771
.72732
.41007
.28043
.20279
.12277
.04033
.00404
.00039
.00001
.00000
.00000
.00000
.00000
HAXINUN VALUE
-2000 .0
.13394
.01042
.31490
t .18313
.81370
1 .04125
t .25934
t .39884
.77120
.39000
.13413
.01304
.00028
.00000
.00000
.00000
.00000
.00000
.00000
EBUALS
-1300.0
.08312
.08744
.02203
.27417
.40*11
.34827
.4**07
.*8243
.80548
.41442
. 14332
.002*4
.00001
.00000
.00000
.00000
.00000
.00000
.00000
If. 33844 AND OCCURRED AT (
X-AXIS (METERS)
-1230.0 -1000.0
.01310
.30038
.024*0
.03400
.48328
2.44303
1.72134
2.43202
2.88134
.82080
. 11440
.00038
.00000
. 00000
. 00000
.00000
.00000
.00000
.00000
. 00049
. 184*8
.33072
.04412
.04704
1 . 118*1
3.47227
3.24372
4.138*7
1 . 13*74
.07122
.00004
.00000
. 00000
. 00000
. 00000
.00000
.00000
.00023
200.0.
-800.0
.00004
.025*3
.42844
.53477
.08307
.12821
2.13072
3.34341
3.34441
1 .43148
.030*2
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00355
200.0 ) •
-400 .0
.00000
.00087
.04253
3*810
.89514
.24350
30923
7.24782
8.13958
2 42001
.00544
00000
.00000
.00000
.00000
.00000
.00002
.00154
.02272
-400 .0
. 00000
.00001
.00088
.01314
.22028
1 . 11938
.90824
1 14243
11 . 19211
4 83777
. 00012
.00000
. 00000
.04000
.00005
.00113
.00448
.03177
.08482
-200 .0
. 00000
. 00000
. 00000
. 00003
.00045
. 01404
.40827
3: 12428
8.17102
12.4*825
.00000
. 00000
.00174
.01884
.05445
. 11424
. 17534
.257*1
27111
        FIGURE C-6.
Listing of the table  of the 10-day average  concentration values computed from Sources
2 to  11 by the hypothetical potash processing plant  concentration run.

-------
                                         ••• --  HYPOTHETICAL  POTASH  PROCESSING  PLANT -  COHCEHTRATtON
                                                                                                                                  •N'-DAY
                                                                                                                                   10  DAYS
                                                                                                                                  S6ROUPI   2
O

OJ
VO
                                               10-DAY AVERACE  CONCENTRATION ( HI CROGRANS/CUB'l C  NETER)

                                                           • FROM SOURCES!         2.    -11.
                                                              •  FOR  THE  RECEPTOR CRID *
                                     * NAXIHUH VALUE  EQUALS
                                                                19.336(4  AND OCCURRED AT  <
                                                                                               200.0.
                                                                                                         200 .0 ) •
Y-AXIS /
(DETERS) /
3000
2000
1500.
1230
1000.
800.
600.
400.
200.

-200.
-400.
-600.
-800.
-1000.
-1250.
-1500.
-2000.
-3000.
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 t
0 /
0 /








4
4
3
2
1
1
1


. 0
.00021
.00040
.00060
00076
.00099
.00126
.00176
.00402
.71724
.00000
.88986
.07129
.17418
.47149
.95317
.50975
. 19636
.80311
.44829



1
2
3
4
19
2
6
9
6
4
3
2
I


200.0
.00917
.04783
.1728*
.40380
.028*4
.0*478
.37712
.96265
.33864
.23411
.00037
.94799
.50573
.48760
.36499
.22100
.43846
.71417
.33716


1

1
2
)
9

(
1
2
3
2
2
1
1

400 .0
.08463
.50843
.95553
.03341
.98524
.84034
.81676
15645
47573
.89796
.53752
.29573
32979
16556
45173
.02463
39329
09354
.37389
X-AXIS (METERS)
600.0 800.0


1 .
1 .
5.
3.
1 .

2.
2.


1 .
t .
1 .


. 29060
50412
50400
95639
25437
80974
20137
65779
96576
50499
32495
17407
33008
82303
14723
(1413
18727
974*3
52389


1
3
4 .
2
1


2
1






.31158
.33497
.71484
.82036
.(0237
.30140
28234
.73391
81070
3227*
44024
35888
((9(5
31914
42571
3*47*
84438
72393
4(29*
1000.0

1
2
3
2
1
1


1
1
1





.14985
.47071
.(0200
.17887
.2901*
.54549
.52672
.30902
.21092
.22445
.16242
27223
.0(957
0*12*
.21(29
.27515
.355(8
.64182
.45793
1250.0
.216(5
37844
1 .07729
1 57224
2 .31409
1 (9871
1 03737
39109
.7(032
.15854
04340
48513
1 .35741
52405
78602
14752
.15793
.24998
39972
1500.0
. 244(3
.45311
1 . 15517
1.93075
1 .22928
1 . 05281
.42806
.57876
.67270
. 11860
.01265
.21711
.57672
.82813
.30004
.47657
10812
. 15264
30418
2000 .0
. 19389
.71405
.68717
.76791
.4553*
.37186
. 15742
.304*8
.2*480
.07492
.00350
.04122
. 17569
.334*2
.42977
. 31534
.32429
06628
10*50
         FIGURE C-6.   (Continued)

-------
                                                                                                                                   10  DAYS
                                                                                                                                  SCROUPI  2
                                        ••• --  HYPOTHETICAL POTASH PROCESSING PLANT -  CONCENTRATION   --  •«»
           Y-AXIS
          ( METERS)
                                              10-OAY AVERAGE CONCENTRATION ( HICROCRANS/CUBIC METER)

                                                          * FROM SOURCES:         2.    -11.
                                                             • FOR THE RECEPTOR CRID •
                                    •  HAXIIIUH VALUE EQUALS
                                                               It.338*4 AND OCCURRED AT (

                                                                         X-AXIS (METERS)
                                                                                              200.0.
                                                                                                         200.0)  •
                            3000.0
O
I
 3000.0
 2000.0
 1500.0
 1250.0
 1000.0
  800. 0
  (00. 0
  400. 0
  200. 0
     . 0
 -200.0
 -400.0
 -coo.o
 -800.0
- 1000.0
-1250.0
-1500
-2000
                  0  /
                  0  /
            -3000. 0
.3*482
.3*tl2
.21302
.1*483
.08013
.1*304
.13382
.218*2
.03774
.03*(2
.00487
.00221
.017*0
.03***
.10807
.181*0
.333(2
.0*037
.0331*
         FIGURE  C-6.    (Continued)

-------
                                        •»* --  HYPOTHETICAL POTASH PROCESSING PLANT -  COHCENTRATIOH  -- •••
                                                                                                                               •H'-DAY

                                                                                                                                10 DAYS

                                                                                                                               SGROUPt  2
           - RHG -
                       - D1R -
                                              10-DAY AVERAGE CONCENTRATION < HICROGRANS/CUB1C  METER)



                                                         • FRO* SOURCES'         2,    -11,

                                                       • FOR THE DISCRETE RECEPTOR  POINTS  *
                                   CON.
                                                    - RNG -
                                                                - DIR -
                                                                            CON.
                                                                                              - RNG -
                                                                                                         - DIR -
n
 i
                                                                                                                     CON.
555. 0
735. 0
900. 0
940. 0
950.0
1075 0
995 . 0
755.0
460. 0
355. 0
341. 0
380. 0
480 0
575.0
705 0
755.0
730. 0
(90. 0
tts o
575 0
410.0
410.0
317.0
322.0
334.0
351 .0
(.0
21 .0
36 .0
43.0
51 .0
7«.0
10* .0
134.0
151.0
1(4 .0
181 .0
196.0
211.0
226.0
241 .0
256 .0
271 .0
296.0





1
1
6
17
4
5
3
8
7
2





5
12
64430
22230
70*25
00022
.10125
014S9
71214
196(3
120K
82890
86115
38442
18763
71SS2
33030
00487
00000
00000
00000
08683
16094
96254
620.
800.
920.
935.
1015.
1075.
910.
620.
355.
355.
335.
420.
505.
620.
730.
755.
705.
690.
645.
330.
365. <

318.
324.
341 .
336
11 .
24.
41 .
47.
36.
84.
1 14.
141 .
136.
171 .
196.
201 .
214.
231 .
246.
261 .
> 276. <






1
3
9
20
2
9
4
8
3






> 11

32131
76835
11470
00001
94628
38512
5284*
21869
77974
93978
52768
46995
31923
87146
59311
00018
00000
00000
00009
67749
20536

685.
860.
940 .
910.
1055.
1045.
833.
323.
333.
350.
325.
430.
333.
665
745.
745.
690.
680
613.
473. <
365 (

320.
331.
346.
I .
16.
31.
43.
49.
(6.
96.
126.
146.
161 .
176.
191 .
206.
221.
236.
231 .
> 266.
) 286.


1


I
1
4
13
10

6
6
8
4





2
18

17095
36164
00646
00291
71317
50867
66738
27804
67538
43671
37453
35272
48276
33245
08491
00000
00000
00000
00423
3(500
16617

        FIGURE  C-6.    (Continued)

-------
                                      ••»  --  HYPOTHETICAL POTASH PROCESSIHC PLAMT - COHCENTRATIOH  --  ••*
                                                                                                                    HIGH
                                                                                                                    24-HR
                                                                                                                    SCROUPt
n
I
r-o
                                     •  HIGHEST 24-HOUR AVERAGE  COHCENTRAT I OH (M ICROCRAHS/CUBIC  METER)
                                                      * FROM  SOURCES:        I,
                                                        • FOR THE RECEPTOR GRID •
                                  • MAXIMUM VALUE E8UALS  2*237.33*84  AMD OCCURRED AT  (
                                                                                        . 0.
                                                                                              -200.0 )  •
Y-AXIS / X-AXIS (METERS)
(METERS) / -3000.0 -2000.0 -1SOO.O -1250.0 -tOOO.O
3000 0 / 7 .01088 ( 187.
2000 0 f 2(2.92*81 (187.
1500 0 / 281 »*170 (303.
1250. 0 / 324 .£4(82 (305.
1000 0 / 373 . 3it42 (305.
800 0 / 3*3.370*8 (2(2.
600 0 / 385 3(480 (2(2.
400. 0 / 26* . 97473 (2(2.
200 0 / 223,80037 (2*2,
0 / 247.35113 (2(2,
-200 0 / 1*4 . 0*2*3 (2(2,
-400 0 / (1 .45128 (2(2,
-600 0 / ( .32830 (2(2.
-800 0 / .2(8*1 (2(2,
-1000. 0 / . 003*( (2(2,
-1230 0 / .00002 ( 187.
-1500.0 t .00000 ( 187.
-2000. 0 / .00000 ( 187.
-3000. 0 / .00000 (337.
) 78.74439 (305. 1) 18.804*2 (303.
) 14.3*849 (187, 1) 73.82428 (303.
) 240. ((t(8 (187, 1) 2*.7*0i( (187.
) 43S.S(**9 (187. 1) 134.8*873 (187.
) 3(4.733*4 (303. 1) 802.14337 (187.
1 (73.95557 (305. 1) 1070.54025 (205.
) (18.38744 (303. 1) 1082.337*8 (303.
t 744. (0333 (2(2, 1) 11*0.02313 (2(2,
4(8.32584 (2(2, 1) 8(1.277(8
477.7859* (2(2. 1) 739.00874
244.31430 (2(2. 1) 209. (0483
14.28438 2(2, 1) 1 . (((52
.123(4 2(2, 1) .00073
0002* 187, 1) .00000
.00000 187, 1) .00000
.00000 187, 1) .00000
.00000 (187, 1) .00000
.00000 (337, 1) .00000
2(2.
2(2.
2(2,
2(2.
187,
187,
187,
187,
337.
337,
.00000 (337, 1) .00005 (337,
) 2. ((758 (205.
) 153. (3390 (305,
) 31.7(500 (187,
) 43.37530 (187,
1 283. (0898 (187,
) 1044 7373* (187,
1 1233. 12*47 (305,
) 1434 414*2 (305,
1 1330. ((57* (2(2,










1015.25744 (2(2,
14t.*52(2 (2(2,
.150*3 (2(2,
.00003 (187,
.00000 (187,
.00000 (187,
.00000 (337.
.00000 (337,
.00000 (337,
.01387 (337,
22306 (187.
38 32444 (303,
236 79732 (305,
70 . 12573 (303,
(8.4*780 ( 187,
425 15841 (187,
) 18(1 97388 (205,
) 2083.11252 (305.
) 22(4. 69487 (262.
> 1444 .61826 (262.
> 67.56431 (262/
) .002*3 (187.
y .00000 (187.
) . 00000 ( 187.
) .00000 (337.
) .00000 (337.
) .00000 (337,
^' .00021 (337,
) 1 .32173 (337,
)
)
)
)
)
)
)
)
)
)
y
)
)
)
)
)
)
)
)
         FIGURE C-7.   Listing  of the table of  the highest average concentration  values  computed  at each  recep-
                        tor from Source 1 by the hypothetical potash processing plant concentration run.

-------
                                         •••  --  HYPOTHETICAL POTASH PROCESSING  PLANT -  COHCEHTRATIOH  -- ••*
                                          HIGHEST 24-HOUR AVERACE COHCEHTRATIOM  (KICROCRAHS/CUBlC HETER)
                                                          * FROM SOURCES:         1.
                                                             • FOR THE RECEPTOR GRID *
                                                                                                       -200.0 )  •
                                                                                                                                HIGH
                                                                                                                                24-HR
                                                                                                                                SGROUPI
O

->
UJ
Y-flXIS t
(HETERS) /
3000 0 /
2000 0 /
1500 0 t
12500 t
1000.0 /
800 0 /
600 0 /
400 0 /
2000 /
. 0 /
-200.0 /
-400 0 /
-6000 t
-800 . 0 /
- 1000 0 /
-1250.0 /
- 1500 0 /
-2000. 0 t
-3000 0 f


3
1 18
32)
103
107
1 164
2584
3417
2113
It







20
-800.0
02187 (187, 1)
(4313 (205, 1)
39290 (305. 1) t
S8170 (305, 1) S3
8(832 (305, 1> 427
9008* ( 187, 1) 331
9597( (187,
00337 (303,
10674 (2(2.
19328 (2(2,
72914 (2(2,
»000( (187,
00000 ( 187,
00000 (337,
00000 (337,
00000 (337,
0000( (337,
1 192
•> 3429
) 3034
) 3410
)
>
)
)
)
)
)
12187 (337, 1) 12
03(40 (337, 1) 98
-(00 . 0
00103 ( 187, 1 )
239(9 (187, 1)
3(493 (209,
75400 (203,
40199 (305,
477(3 (305,
(1037 ( 187,
((122 ( 187,
82111 (303,
(84(9 (2(2,
(5443 (2(2,
00000 (187,
00000 (337,
00000 (337,
00000 (337,
00420 (337,
24976 (337,
00114 ( 337,
79222 (337,
)
1 1
•> is
) 188
) 999
) 431
> 82(1
) (411
)




13
34
1(0
227
X-AXI
00002
00440
17455
30348
05959
706(8
93413
43(83
22119
0(494
oooeo
00000
00000
00(20
718B2
4(043
82798
56031
32941
S (HETERS)
-400. 0
(187,
(187,
< 187,
(187,
( 187 ,
( 303,
( 303,
(187.
(303.
(2(2.
(167,
(337,
<337,
(337,
(337.
(337,
( 337,
( 337 .
(337,
)
)
>
)
)
>
) 12
> 396
> 1(18
> 14(24
>
)
) 41
) 230
> 442
) 337
> 589
> 549
) 396
-200. 0
00140 (289,
00018 (289,
00037 (187,
00314 (187.
04380 (187,
37(78 (187,
40346 (187,
S7S19 (305,
(11(8 (187,
32703 (2(2,
00000 (337,
08076 (337,
9(4(7 (337,
8(494 (337,
)
> 1
> 2
) 3
) 3
) 8
> 16
) 40
) 159
)
> 29237
> 12556
) (7(1
> 4217
102(7 (337, 1 > 2898
08878 (337, 1 > 2017
01745 (337, 1 ) 1501
(2419 (337, 1 > 949
21886 (337, 1 > 513
.0 *?
39458 (289, 1 )
03276 (289, 1 >
02372 (289, 1 )
070S5 (289. ! >
071(4 (289, 1 )
509(2 (289. 1 >
3771 1 (289. 1 )
20404 (289. 1 )
(2988 (289, 1 )
00000 ( 0. 0)
33984 (337, 1 )
48901 ( 337, 1 )
(38(7 (337, 1 )
972(0 (337, 1 )
(3292 (337, 1 )
04434 (337, 1 )
84814 (337, 1 )
(4354 (337, I )
20028 (337, 1 )
         FIGURE C-7.   (Continued)

-------
                                        »»•  .-   HYPOTHETICAL POTASH  PROCESSING PLAMT - COHCEHTRATIOH   --  •••
                                       «  HICHEST  24-HOUR AVERACE COHCEHTRATI OH  (40
> 535
) 1213
) 2495
) 2(78
> 5(31
) S105
> 491
> 7997
> 1015
> 1210
> 2395
) 2078
) 119(
> (54
> 524
> (11
400.0
99378 (299,
23549 (289,
51051 (289,
10152 (289,
19184 (289,
05020 <289,
74228 (312,
48242 (312,
1(809 (299,
208
279
(31
1212
133*
2(30
2905
3(01
> 534
45845 (229, 1) 293
71472 (229, 1) 2S84
8(870 (229, 1) 17(1
95793 ( St. 1) 491
10950 ( 51. 1) 3*9
45715 ( 51. 1) 773
73(47 ( 51. 1) 1293
31*44 (337. 1) 1084
(5175 (337. 1) 507
11151 (337. 1) 2(5
X-AXIS (METERS)
(00. 0
1(702 (28*.
99178 (289,
27454 (289,
21214 (289,
18518 (289,
(3773 (312,
20343 (312,
52902 (299,
33291 (299,
93(80 (229,
90(71 (229,
94778 (229.
51054 (229,
74553 ( 51,
98990 ( 51,
01970 ( 51.
91153 ( 51.
92515 ( 51,
07733 (337.
> 210. 701 17
> 395.55(15
) 900.32335
) 7(0.05359
> 2180.2(080
) 1791.383*4
) 1902.53*19
) 1782.01*17
> 13*3.01915
> 192.29752
) 833. (5382
) 2744.4(030
> 925.433(2
) 292. (5735
> 1(2.50557
) 404.83203
) (75.81919
> (80.2(542
> 212.32002
800.0
(289,
(289.
(289.
(289,
(312.
(312.
(299.
(299.
(312.
(229,
(229,
(229.
(229,
(229,
( 51,
( 51 .
> 123
> 584
> 579
) 1535
) 1233
) 1324
> 1912
) 754
> 392
) 135
> 250
) 133*
> 123*
>• 883
) 19(
) 109
(51,1) 25*
(51,1) 539
(337, 1 ) 300
1000 .0
79413 (289,
4170* (289.
07925 (312.
92735 (312,
37479 (312,
0(49* (299,
80093 (299.
60027 (299,
2044* (312,
66249 (229.
0489* (229.
52791 (229,
53349 (229,
61901 (229.
84149 (229.
674*9 ( 51,
729(9 ( 51.
92422 ( 51.
43372 ( 51,
)
)
)
)
)
>
)
)
>
)
)
)
)
)
)
)
)
)
)
          FIGURE C-7.   (Continued)

-------
                                         ••• --  HYPOTHETICAL POTASH PROCESSING PLANT  -  CONCENTRATION  -- ••«
                                                                                                                                 HIGH
                                                                                                                                 24-HR
                                                                                                                                 SCROUPI  1
             Y-AXIS   /
            (METERS)   /
                                        • HIGHEST 24-HOUR AVERAGE CONCENTRATION  (NICROCRAHS/CUBIC METER)
                                                           * FROM SOURCES:         1,
                                                              * FOR  THE RECEPTOR GRID *
                                       H»XIHUH VALUE EQUALS  29237.33*84  AND  OCCURRED  AT  <
                                    1250.0
                                                         1500 .0
X-AXIS (METERS)
     2000.0
                                                                                                  . 0.
                                                                                                        -200 .0 >  *
                                                                                                    3000.0
O
I
-P-
Ln
3000 . o /
2000 . 0 /
1500.0 f
12500 /
1000 . 0 /
8000 /
600 . 0 /
400.0 f
200.0 /
. 0 /
-200. 0 /
-400.0 t
-600.0 /
-800.0 /
1000.0 /
12500 /
15000 /
2000 0 /
3000.0 /
232 93274 (289,
388 30664 (289,
1 15? 59996 (312,
843.64931 (312,
918 .70238 (299,
1 198.73233 (299,
842.S7331 (299,
98 41490 (312,
476.74028 (299,
96 34216 (229,
62.48043 (229,
694.99847 (229,
1293.33807 (229,
639.73797 (229,
611 78399 (229,
131 .95607 ( 229,
32.19541 ( 31,
199 56817 ( 31,
339.34361 ( 51,
) 308 .86749 (289,
) (13 .38(34 (312.
> (17 .(8366 (312,
> 749.72033 (299.
) 816 41238 (2*9,
) 732.87447 (2*9,
) 389.74961 (299,
44* .(4333 (312.
414 .32333 (299,
73.09407 (229,
18 . 66026 ( 229.
346.0(254 (229,
(73.32(44 (229,
901 . 26663 ( 229,
333.98938 (229,
439 .33637 ( 229,
93.09326 (229,
> 84.66453 ( 31,
) 279 . 02787 ( 31 ,
> 183 119(9 (312.
) 380.83041 (299,
> 418.99287 (299.
> 3*4.73001 (299,
> 390.222*8 (299.
> 240.38709 (299,
> 103.29487 (312.
> 108.72939 (312.
) 122.60080 (299.
> 46 51416 (229,
> 3.62307 <229,
> 72.333(8 (229.
> 284.09301 (229.
> 412.39843 (229.
> (24.02987 (229.
> 336.33190 (229.
> 176 88272 (229,
> 36.71303 (229.
> 80.32938 ( 31,
> 198 61736 (299,
) 2(0.78302 (299,
) 197.32846 (299,
> 131.88338 (299.
) 34.40*98 (299,
) 138.32283 (312.
) 30.33080 (312,
) 133.59004 (299,
) 26.02313 (229,
> 24.81403 (229.
) 3.00*88 (229.
) 4.20383 (229,
> 34.60614 (229,
> 108.52377 (229,
) 170.60393 (229,
) 218.67(08 (229,
> 323.26402 (229,
) 103.10881 (229,
) 27.30434 (229,
         FIGURE C-7.   (Continued)

-------
                                                                                                                         HICH
                                                                                                                         24-HR
                                                                                                                         SGROUPI
                                 ••• --  HYPOTHETICAL  POTASH PIOCESSING PLAHT -  CONCENTRATION  -- •••
                                  HICHEST 24-HOUR  AVERAGE CONCEHTRAT I ON (H ICROGRARS/CURI C  HETER)
                                                   »  FIOH SOURCES)        1.
                                                 • FOR  THE DISCRETE RECEPTOR  POINTS  •
                 - RMG -
                             - DIR -
                                         COM.
                                                  (DAY,PER.>
                                                                        - RHG -
                                                                                    -  DIR  -
                                                                                               COH.
                                                                                                        (DAY.PER.>
533. 0
(83. 0
BOA. 0
900. 0
MO. 0
933 0
930 0
IOSS. 0
1075. 0
993. 0
ess. o
(20. 0
4(0 . 0
355. 0
335. 0
345.0
325.0
420.0
480. 0
535.0
(20. 0
705.0
743.0
755. 0
730. 0
(90.0
(90.0
((5.0
(15.0
530.0
4100
3(5.0
317
320
32(
334
34(
356
6
16
26
36
43
47
51
(6
86
106
126
141
151
1(1
171
181
191
201
211
221
231
241
251
261
271
286
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
363.35759
242.87(09
833.51421
(1.94(16
.39082
.04938
310. 125(8
984.789(6
1828.96118
2312 04036
3334.30417
5498.56348
7187. 11414
4968.47260
668.70051
5091 .62152
5328.33734
1031. 16229
4777.69012
5(99.72949
6371 .78607
5090.61237
846.50612
3.92454
.00004
.00000
.00000
.00001
.39407
797. 13342
6243.87268
10781 .29871
( 187,
( 187,
(303,
(205,
( 187,
(289,
(289,
(289,
(289,
(312,
(312,
(299,
(299,
(299,
(299,
(229,
(229,
( 51,
( 51,
( 31 ,
(337,
(337,
(337,
(337,
(337,
(337,
( 187,
(187,
(262,
(262,
(262,
(2(2,
I)
1)
1)
1)
1)
1)
1)
>
>
)
)
)
)
)
)
)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1
1
1
1
1
1
620. 318.0 281
73S. 322.0 367
860. 331.
920. 341.
940. 351.
910. 1 .
1015. 11.
1075.0 21.
1045.0 31.
910.0 41 .
739.0 45.
52S.O 49.
35S.
359.
350.
335.
380.
450.
509.
575.
669.
730.
733.
743.
709.
(90.
(80.
649.
575.
475.
56.
76.
96.
116.
136
146.
156.
166.
176.
186.
196.
206.
216.
226.
236.
246 .
25(.
266
478
(

15
1232
10(4
1(05
371(
3532
(816
9529
3324
208
11717
1627
2513
7180
3225
5821
2722
1 19





40
3713
365.0 276 0 8224
410.0 296.0 9458
455(6
98349
9(017
(8790
00820
258(2
37(16
22385
33326
300(1
88397
950(2
39441
30042
95413
47192
(1234
70938
53339
32541
85095
19998
(0140
02435
00000
00000
00000
00244
88502
44977
08228
34009
(187, 1)
(303,
(305.
(187,
(187.
(289,
(289.
(289.
(289.
(312.
(312,
(299.
(.299.
(312.
(229,
(229,
(229,
( 51,
( 51,
(337,
(337,
(337,
(337,
(337,
(337,
(187,
(187,
(187,
(2(2.
(2(2,
(262,
(303,
)
)
)
>
)
)
)
)
)
>
)





>
)
)
)
>
>
>
>
>
)
)
>
>
>
)
FIGURE  C-7.    (Continued)

-------
                                    •** --  HYPOTHETICAL  POTASH PROCESSING PLANT - CONCENTRATION  -- •••


                                c 50 MAX1HUH 24-HOUR AVERAGE COHCEHTRAT 1 ON (HICROtRAHS/CUBlC HE1ER)     •
                                                                                                                MAX 30
                                                                                                                24-HR
                                                                                                                SGROUPI  3
                                                   • FROM SOURCES:
                                                                      12.
                                                                           -15,
n
RANK
,
2
3
4
5
I
7
8
9
0
1
2
3
4
5
6
7
18
19
20
2 1
22
23
24
25
C3M
3(3
357 .
306 .
281 .
274 .
270 .
2(1 .
243.
238
231
230.
227 .
223
221 .
213
214 .
213 .
203 .
193
192 .
189
184 .
182 .
174
17. .
PER. DAY
60716
13231
6(803
32770
(4339
49*08
(1783
33223
94873
92327
37380
5121 7
18893
24822
7S877
17474
9041 (
91974
78723
98119
49826
31424
02(73
59334
1385 1
229
337
312
299
337
51
51
337
299
203
337
312
299
337
31
2(2
312
31
2(2
337
337
289
229
289
337
X Y DECREES) BANK
345.
200 .
335
333.
200 .
325
380.
303.
400 .
-200 .
480.
400 .
355.
535.
420 .

355 .
200 .
3(5.
450 .
200 .
106 .
-200 .
(6 .
66 .
-400 .
126 .
136 .
136 .
200 .
200.
131 .
200 .
76.
1(1 .
141 .

36 .
-200 .
286 .
146 .
-600 .
26
27
28
29
30
31
32
33
34
33
36
37
38
39
40
41
42
43
44
43
46
200 . 0 200 .0 47
(00.0 -200.0 48
355 0 5(.0 49
373 .0 1(( .0 30
CON
174 .
170 .
1(0.
131 .
149.
146.
143.
143 .
138 .
134 .
133 .
133 .
130 .
129 .
129 .
128 .
128 .
126 .
123 .
124 .
123 .
122 .
120
118
117
PER. DAY
78(66
18014
01897
167(5
43143
447(0
(1457.
40306
19619
27904
93348
60077
02702
24978
13974
37034
26113
49464
83667
67772
24991
13317
43043
(89(3
97248
312
303
312
229
262
31
337
31
312
229
2*9
337
312
187
289
299
187
2(2
31
262
2(2
289
303
203
187
X
OR
RANGE
(METERS )
600 . 0
-200 . 0
4(0 . 0
400 . 0
-200 . 0
450 . 0
420 .0
400 . 0
323 . 0
333 .0
600 . 0
200 . 0
800 . 0
3(5 . 0
460 .0
800 . 0
410.0
-600 . 0
400 . 0
410.0
365 . 0
400 . 0
410.0
-600 . 0
-200 . 0
Y(NETERS)
OR
DIRECTION
(DECREES)
400 . 0
200 .0
31.0
-200 .0
.0
146.0
141.0
-600 0
49.0
1160
400 .0
-800 .0
(00 .0
286 .0
51.0
400 .0
29( .0
200 .0
-400 .0
296 0
27( .0
400 .0
296 . 0
400 .0
200 .0
        FIGURE  C-8.
Listing of the  table of the  maximum  50 average concentration values  computed from
Sources 12 to 15  by the hypothetical potash  processing plant concentration run.

-------
gram found distances between sources and receptors less than 100 meters,  a
diagnostic table is printed, as shown in Figure C-4,  which lists all source-
receptor combinations found and the distance computed between each combina-
tion.  Note that a negative distance implies that the receptor lie's within the
boundaries of.the source.  Figure C-5 shows one table out of the fifty produced
by this example run for the ISW(16) option.  Note that the heading of the table
identifies the day, averaging period and source group that represents the aver-
age concentration values printed for all receptors.  Also, note that the aver-
age concentration values printed for the receptor grid provide ease of inter-
pretation of the impact of the pollutant over the receptor grid domain.   That
is, the table format allows one to obtain a "visual"  picture of the pollutant's
pattern or trend.  This feature occurs only with Cartesian receptor grids
because the receptor grid locations are entered in ascending order as shown
in Figure C-l.  An illustration of an "N"-day table generated by the ISW(15)
option is shown in Figure C-6.  The format of this table is similar to the
tables produced by the ISW(16) option mentioned above.  Figure C-7 shows
the content and format of a highest concentration table produced by the
ISW(17) option.  The content includes the highest average concentration
values calculated for all receptors as well as the day and time period
when each value occurred.  In this case, only one averaging period is pos-
sible per day and a "1" is printed for the averaging period.  The second-
highest table (not shown) is identical in format to the highest concentra-
tion table.  Option ISW(18) generates the maximum 50 tables, an example of
which is shown in Figure C-8.

C.3       EXAMPLE DRY DEPOSITION RUN

          Because the preparation of a total deposition run is very similar
to the preparation of the average concentration run discussed in the preced-
ing section, only the differences between  the two runs are discussed in
this section.  The primary difference between the two  runs is that the deposi-
tion model requires all sources  to have gravitational  settling categories
(parameter NVS > 0).  If the program detects any sources which do not have
any gravitational settling categories, the program prints the error message
                                       C-48

-------
shown in Figure 3-9(e) and terminates the'run.  As mentioned in Section 2.6,
it is desired to obtain an estimate of the dry deposition of fugitive emis-
sions from the ore pile,(Source 1) and the conveyor belt (Sources 2-11).
Hence, this example run excludes the roof monitor (Sources 12-15) and the
stack (Source 16) which were modeled for concentration in the preceding
section.

           Figure C-9 shows the 82 lines of card input data values required
to compute the desired total deposition values for the hypothetical potash
processing plant.  The heading label, the first line (card image) in Figure
C-9, indicates to the user that this is a deposition run.  Three differences
between this deposition run and the concentration run are noted in Card
Group 2, which consists of the second and the third lines of Figure C-9
according to Table 3-4.  One difference is that ISW(l) equals "2" to indi-
cate to the program to compute deposition.  The second difference is that
NSOURC equals "11" since the roof monitor (Sources 12-15) and the stack
(Source 16) are not modeled for deposition.  Third, because of the fewer
number of sources, there are fewer source groups; hence, NGROUP equals "3".
Furthermore, Card Group 4 is different because of fewer source groups.  As
indicated by the values contained in Card Group 4 shown in Figure C-9, it is
desired to see the total deposition contributions from the ore pile (Source
1), the conveyor belt (Sources 2-11) and both the ore pile and conveyor belt.
A preliminary estimate of the magnitude of the total deposition values indi-
cate that the desired output units be in grams per square meter, the pro-
gram's default units for deposition calculations.  Because there are only
11 sources in this example, Card Group 6 contains source data values for 11
sources instead of the 16 sources used in ithe example concentration run.
Note that the total hourly emissions in grams for the eleven sources are a
factor of 3600 times larger than the average emission rates in grams per
second used to compute average concentration (refer to Section 2.4.3.1 for
an explanation of emission rates for deposition calculations).
                                    C-49

-------
                                                               ISCST INPUT  DATA  CODING FORM
    PROJECT
                    Example  Deposition
                                                                                            NAME
                                                                                            DATE
                                                                                      SHEET  1   OF  11
    CARD GROUP,  I      	                                 DATA CARD COLUMN

    CARD NUMBER   > * 3|«|' « 7 8 9 I0 ll IZ 13 l«llS I6 17 16 19 20 31 Z2 23 24 25 !6|27 28 29 50 J! 32 33 34 33J36 37 U 39 40 4IJ4Z 43J44 «9 •« «7 48 «9 90 91 32 53 94 55 5*37 38 99 BO «l 62 «3 B4 69 66 B7 6a|6»70m 72 73 74 73 76 T7 78 7« BO


                                	CONTROL DATA PARAMETER  AND VALUE  (X  means do not  punch)




                                                                            - TITLE -




       1 -        k-  i py,P.OiT,H|E,T|L.qA|L, ,P,0,T,A3Pi |Pft|0,C,Eff ,S,I,NC,  ,P,L|A,NT, -,







                                                                            - ISW -















n                 ^

Ui                 I—II—IMl—II—IMl—4MMMMI—IHMHHMMMWMMMMM
O


       2,1  -
       2.2  -
                      I
                      o
                      CO
                      z
H

a,
                  12

                  g
IX

1
                                      w
                                      Pu
§
, ,1,1  ,  , ,  ,1,9
     !  , L ,  ,1,9! ,  , ,
      FIGURE C-9.    Card  input data  for the  hypothetical potash processing plant  deposition run.

-------
o
1
Ul
t— •
ISCST INPUT
PROJECT
Example
DATA
Deposition


CARD GROUP,
CARD NUMBER
3,1 -
3,2 -
CODING
FORM (Continued)

DATA
'
2
3
4
5
6
7
6
9
10
11
















20
21 Z2 23 24 25 2«|e7 26
2930
31
32
33
343
5 36J37
CARD
38
r RECEPTOR DATA

















































































—








jiOion

i







0
5,0












Lj-i3,0,0
















*~
p
o






0
2,0,0
1,5,0,0


















































































































—








-1








- GF
^.onn


o
2,0pp






2















JDX (axis of grid
i i i i t-il 600 ii
t i i i i i i200
,3PPP
iii i
i i i i i i i
1 1 1



1
t
i i i i i i
t i i i t t i
i i i i i i i
1
1
- GRIDY (axis of
0,00 	 -,1,500


0
2,0,0,0














1


1






	 2,0p
	 3,0,0,0
1 1 1 1 1 1
1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 t 1 |
1
I
1
I
1 1 1 1 1 1 1 1 1





















39
40
41
NAME
DATE
SHEET 2 OF 11

COLUMN
42
43
44
454
PARAMETER
system, c
i i- il 2 6 0

i
i
i
l
i
i
! 1
1 1
1
1 1
1 I
1 1
1 1
rait
I |
if
1 1-
LOO , , ,


















1 1 1 1 1 1 III
grid system,
, , , ,-,1250







i








, , , , APP







i
t
i





1
1
I |
I |
1 |
t 1
















































omit
< i i
































|
|
|
|
|
|
1
I
647
48
AND
49
50
51
52
53
54
55
S«
57
56
59
60
61
62






M
87
6fl
89
VALUE
NXPNTS OR
iliOiOid i i
i 16
|
|
|
|

|
1







0







f















if NXPNTS
,-,10,0,0'i

|
|
|
|

i

|
|


|
|
1
|
6







J







o|


























NYPNTS =
, , .-80
.























30





















or NYPNTS
, , , , ,-3,0




















1



5



o



0
0







0
0



l r i l l i l t 1





















0)
I












'






























0) -
till












|


|

























r6iO
Ljl0





















70
T,


0
0,0







rf>P








I







op

,





1
1
1
1










0
0







	 rADO
, , , , , 1250
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1)1 II II
II III 1
1 1 1 i 1 t 1 1 1
1 1 1 1 1 1 1 1 1
l 1 I 1 1 1 1 1 1
	 -AP.O
	 ^25p
1 1 , 1 1 1 1 I 1 •
1 1 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 l l I I t l
11,111111

1 1 1 1 1 1 1 I 1
FIGURE C-9.   (Continued)

-------
o
Ul
S3
ISCST
INPUT DATA CODING FORM (Continued)
PROJECT Example Deposition
I

CARD GROUP,
CARD NUMBER
3,3 -
NAME
DATE SHEET
3 OF 11

DATA CARD COLUMN
J

3
Q
,12
13
14
19
I6,!7
18
19
20
21 22 23 24125 26 2 r 26
29
30
31 32 33 34 39 96 37 36 39 10 4IJ4Z 43
444946 47464
RECEPTOR DATA PARAMETER AND
i i i i i i 1 5i5
•ji i

t 1 |6
	 9,4,d 	
	 0,7
i
5i i
i i i4i6iOi i
	 , ,3
7.
i i i i i i6i2
i i i ( i i /
5
0
3iQ
i i i i i i 61 1
i i i i i i i

5

1
t
I
1
1
, , i i i i 1 3i 1J i i
3,4 -
Q
0
^
4
0
n
, , ,1,0,415





















, i , i i , |3|46| i , ,
i i i , i i i
i i i i i i i
, , , , , , ,1
,,,,,, ,1
, i i i i i i?
i i i i i i i2i
2,6
•ill
2,6
LJJ
1
I
1
1
,










I
1
I
1
3
•^
in
5
5
fid
ft
7 in
5
S
i iSi7iS
i
i

3
1 tJ
.
i
i


\

8
- XDIS (dis
i iii 168 15
i i i i i i iQi^iS
ii i i , i9 9,!
i i i i i i i3i5
i i i i i i r&
i i i , i7
i i i i i i ifS
i 11 ,5
i i i i i i i
^
Q
9
3

950
51 92 53 54 35 5« 37 98 b9J60
1
6, 62 6J M 63 66 67 68
VALUE
crete receptors, omit if N]
1
, , , i , , iTi^isi i i i i i i iftinn
i i i i i i 9 il 0 i i i
i ii 0 il 0 i
5 i i i i i 3 15 5 i
tOJ i i i i i i Ai^ni i i
c
(•
q

i i i i i i i7 130 ii
i i i i i i f\ iQifll i i
iii  i i i i i i i 7
5
0
5
5
i ii i i i 7 4- i^
, , , , , 1075
i i i i i i 5 2 5
,335
,,,i,i 575
si 	 i i7 4 5
	 6,8,0) ,,,,,, 6 5,5J 	 645
i i i i i i i-^t"P j i i i i i i 3 16 1
iiiiittii
I 1 1 1 ! 1 t
NXWYPT = 0) -
16
-
i i i i |8|6
i i i iii1
>i1
, , i ,1,91
, , , ,?rt,i
, , i 2,71
i i i , ,

i i i i i i i il il i i i i i i i i

3
1
1111,1,45 , , , , , , i A,
, i i i i i 96
iiiii, i!56
,106
,,,!,, ,2,36
,,,,,, ,2,76
iiiii,,,.
, , , , , , ,1,
o.
5

6
6
7
6
, 	 161
	 201
, , , , , , 2 ,
, , i , , , 2,
4,
8,
1
6
1 1 1 1 1 '1 1 1 1
, i , , , , A10
	 , - ,
, 	 341
	 ,2,1
,,,,,,, 49
	 1,1,6
	 , ,1,6,6
,,,,,, ,2,0,6
246
1 1 1 1 1 1 1 1 1
	 2 9 ,6
1 1 1 I 1 1 1 II
FIGURE C-9.   (Continued)

-------
                                              ISCST INPUT DATA CODING FORM  (Continued)
 PROJECT
                 Example Deposition
                                                                          NAME
                                                                          DATE
                                                                                               SHEET 4   OF 11
CARD GROUP,

CARD NAME
                                                         DATA CARD COLUMN
                                                  X
                                            23 26|Z7 26 29 50 51
                                                           36 37 58 39 «O
                                                                   »Z 43 44 45 46 47
                                                                             90 51 92 55 M 55 56 37
                                                                                        38 59 BO 61 62
                                    SOURCE GROUP DATA PARAMETER AND VALUE (X means do not punch)
  4,1 -
O



Ul

LO
  4,2 -
                                                - NSOGRP (array, omit if NGROUP = 0) -
                  DC,
             X
                X i i
X:. X.
                       "V
                       Aj 1 1
                       y
                       AJ
X  i i
K.
                                       M    f/   iy    iv
                                    i  i A  i i Aj i i A, i  i AJ i  i
                                           Y
                                           /^j t
                                          '
                               i i
                                    i  i
                                                X  i
£
                                            A
                                               i ,
                                X 1 1
                                                  AJ
                                                     X i
XT:
s;
           A, ,  i
                                     Y
                                     / \|
                                                                v
                                                                A  i
K. ,,
                                                                y

                                                                /\
                                                            X
                                                               , ,
                                                                           V    IY
                                                                        i j  Aj i i  AJ __L
                X,  i i
                                                /\  i
                                          v
                                          Aj
                     >u
                                                A)
                                                                       Ai i  i
                                                                             i  i i
                                                               X i i  X i i  X i i
/\ i  i
                                                                                 v
                                                                                 A,
                                                                                     X
                                                                                     Aj |  !
                                          X
                                                X,,
                                          X,,
X i  i
                rt
                                                            ,,K
X.
     X i  ,
                                                          X.
                                               - IDSOR (array, omit if NGROUP = 0) -
                      I I I  I I
                              I 1 I  1 I
                                      I I I I  I
                                      1 1 1 1  1
                                             1  1 l~"l 1
                                             I  I I I  1  I  I
                                             I  I I I  I
                                             I  , I I  I
                                                     I  I I I I
                                                     I  I I I  I
                                                                                                                   X
                                                             I  I I
                                                                     I  1 I I I  I I I  I I I
                                                                                        I  I I I  I I I  I I I  I
                                                                                                                       X
                                                                       I I I I   I
                                                                                                                   X
                                                                                            X
                                                                                                                   X

                                                                                                                   X

     FIGURE C-9.   (Continued)

-------
                                                    ISCST INPUT DATA CODING FORM (Continued)
     PROJECT    Example Deposition
                                                               NAME
                                                                                     DATE
                                                                                     SHEET   5   OF
   CARD  GROUP,
   CARD  NUMBER
                                           DATA CARD COLUMN
• TIT
                  I 2 34 S I 6 7 I 8 9 10 II 12 13 14 15 16117 16 19 20 21 22 23 24 25 26 27 26 29 SC 51 32155 34 33 96 37 38 39 >0 41 «2 43 44 43 46 47 48 49 SO 31 32 53 S4 » M 37 98 59 BO «l 62 63 M «8 66 S7 68 69 TO 71 72 73 74 7S|T6 T7 78 79 BO
                                  METEOROLOGICAL CONSTANTS DATA PARAMETER AND  VALUE (X means do not punch)
     5,1-6 -
o
     5,7-12 -
     5,13 -
                                         -  PDEF (array,  omit if ISW(21)  
-------
o
ISCST
PROJECT Example
INPUT
DATA
Deposition





CODING






DATA CARD
CARD GROUP,
CARD NUMBER


1














i


10

II

12

13

14
METEOROLOGICAL










TK
5,14 -












i
16

17

16

I9J20

21

22

23

24
23

Z6

27

26

29

50

31

32

33

34

1336
CONSTANTS AND IDENTIFICATION




BETA1
i r.qne








BETA2









DECAY
b)10t>K e^fidL i^ef^ult
- IDAY

5,15-19 -



















































































-










4e
I







1






"1


a


lj


n






c






c









«



1










-










i





1























3T

38

39

«o
LABEL








FORM (Continued)






NAME
DATE SHEET 6 OF u
COLUMN c^a-

41

42

43

44
DATA




IQUN
ulnjUsi r . i i
(array,



















|

j
I







!
1
I
- (omit
ISS
5,20 -

!
k
^
ISW(19) = 2) -






! i





j









|1

i
ISW(19)


H1 i
i
i • \
I >ll
i ' ; • i j " !
1 i i
li i i i i i i i ' '<
[ml I i iMiiii1 iiiiii
XlXw^X^X^XXxXIXlXXywkM
= 2) -
IUY


6fi



^=5















	 — 	 «=^_^ |
          FIGURE C-9.    (Continued)

-------

















ISCST INPUT
DATA
PROJECT Example Deposition


CARD GROUP,
CARD NUMBER
CODING
FORM

DATA
'
2












9
10
U
12
13JI4
15
16
17
in
19

NSO
i
6,1 -








J


























1
P*
s
M
12
i2
16
il
31
4
5
6
7
i
i
i
i
81
9
1
n1
, ,Ui
1 1 1 1
IIII
, , , I
1111
1 1 1















|

|

|
















fi
16
|6
I










6
6
6
6
,6

6
.6

|









,
i
,

!
,
i
3
5-
3
rj
i
0
i
0
o|
nl
0

o|
o|
01
0
!
[
















I
1





















Q
1
1
1
1
1

I
1

t
1
l
l
1
I
1
l
l
t
l
l

L
3i6iQ
4
4
6
6
8
a
4.6,8

















4
4
4
4
4
4
4







\


6,8
618






6,8 j

8
6,8
6,8
6,8







i
,
i

















1
20

















I
21

22

23

24
29
26 27 28 29 X 31 32
33
SOURCE
XS
-,1,3,.















1

























1





1
O
2,C
T
4,
4
5,
C
0
<
c
6,9
7
8
9j
c
c
9
YS
nia .,3'
. i i . i i nl
. . in
. tn
... i i C
i , i i i i C
1 1 1 1 1 1 {•
i i i C






	 c(
, , , ,o|
343
9)6
CARD
37
36
39
40
(Continued)
NAME
DATE
SHEET
7 OF I*

COLUMN
41
«2
43
44
494
647
DATA PARAMETER AND

|
|
|
|
f
|
|

1
zs
1
1
1
1
1
1
1
1
1
1
Q9J i i i . . id i i i












U '




|
|
t





|
(

,
,
,
1
1 1 1 1 1 1
t 1 1 1 1 1 j
1 1 1 1 ] i |
|
I
I
1

1
0i
LjOl








Q
0

n
0
o
0
0
if)






i i i i i i i i i i i
i i * * i
i i i i i

I
i i i i i i


1 1 1 1 1 1
1 1 1 1 1 1
|
|
|
|
|
|
|

|

i
t
1
1 1
1
1
1

|

|

|



HS
il.Q.iO













2
4
,


M •
7

Q
6
3
|
|
I
ll i
8 ,
9.,6| ,
, ,1,1 ,.,i






1
3

1,4,.
1
6,

0
Q
|

1
51 i
1 1 1 1 1



1
l
1
1


I

,







|
|




























t
f
t
,
1
|



!
46
49
50
91
52
53
94
W
56
97
56
59
60
61
62
63
64
69
66
87
VALUE
TS
1
J
|
|
|

|
|
|
t
|
|
|
|
|
|
|

1





















1
(1
















1
1
vs
•
6
_i . .4.., 7



1|
1
1
1
1
1






1
,

|




1 1 1 1 1

|

.

\
\



|



















i*
•
it *







j

t




1


4
^
4
4
4
4
4

|

|



|


"
•
•
.

,













7
7
7
7
7
7
7














7i i
7

















i
]





D
i








i
i
i
i
i


i









|
|
























HB
i i i

68
1































III
!
1

i
i
i
i i
i
i
1


J 1 1 1 1






i

i




















|



|




l
|

|
,

|


|






















J

1

I

1 I 1 1 1
|


|


HL HW
1 1 1 1 1 1 1 1 1 1
I 1 1 1 1 I 1 1 1 1 t
IIII t 1 1 1 1
' 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 f 1 1 1 1
	 , 	
1 1 1 1 1 1 1 1 1 1
i i i i i i i i i i i
i i i i t i t i i i i
iiii i iiti
i i i t i t t i i i i
i i i i i i i i i i
i i i i • t i i i j i
1 1 1 1 1 ! 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
III 1 1 1 1 1 1
1 1 1 1 1 1 i 1 1 1 1
1 1 1 1 1 1 r 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1
1 1 1 1 1 1 l l 1 1 1
1 1 1 1 1 1 1 1 1 1
FIGURE C-9.
(Continued)

-------
o
Ln
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Deposition NAME
DATE SHEET 8 OF 11
o-
CARD GROUP,
CARD NUMBER
6,2 -
DATA CARD COLUMN






31 32 33 34 39 36 3TB8 39 tO
41 4Z 43 44 43 46 47 48 49 90
51 SZ 53 54 W 96 37 56 59 50




SOURCE DATA PARAMETER AND VALUE
1 1 1 1 1 1 1 I *<1
1 1 I 1 1 1 1 1 1 1
1 t 1 1 i 1 *|1
i .il
1 ! 1 1 t 1 t t >1 1
II! 1 -1 1
II .ll
1 1 1 1 1 1 •! 1
1 I ; t i i t i -t 1
1 1 1 1 1 ! t 1 -1 1
1 1 1 I 1 1 1 I "1 •*•
t 1 1 1 1 t 1 1 1

i i i i I i i 1 i
i i i i i i t i i
i \ i i l i i i t
i i i i i i i i i
i i I I 111
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
	 .4
i i i i i i t . 4
, • , i , .,4
i i i i ii . i4
i i i i i i i i . i4
i i i i i i i i . i4
i i i i . i4
i i i i i i i i -|4
i i i i i i i i .i U
A
i i i i i i i i • IH
, 	 4
111,1111
1111,1111
i i i i i i i i t
i i i i i i ' i i
i
1 1 1 1 1 1 1 1 1
1 1 1 1 t 1 1 | 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
- PHI (array
ii i i i i i . 2 o
i i i i i i i • 2 c
i i i . i2i8
i i i i . i2 8
i i i i i i t . 1 2i8
ii i . i2 c
ii .28
i f i i i i . 1 2] c
	 ,2,£
? R
i i i i i l i ' i *-\ °
	 , ,.,2,8
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 1
1 ' 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
,,,,!,,,,
111111)11
, omit if NVS
111111 i. il t2
1 1 1 l i l- i i2
i ii i. il 2
1 9
l ll l* i1 £
tiiiii '. il i2
11 i i i r r f-
i ii r ^ r-
! i , i i r i* r-
1 ?
111111 r i1 \e-
1 2
111,11 i" i i
. 1 2
IIIIII III
1 I 1 t 1 1 111
1 1 1 1 1 t lit
1 1 1 1 1 1 1 1 I
t 1 1 1 1 1 f ! |
IIIIII III
IIIIII \ 1 i
IIIIII II
1 1 1 1 1 1 i 1
IIIIII 1 II
IIIIII 1 II
1 1 1 1 1 t III
IIIIII 1 II
= 0 for all s
i i > i i i i .i06
1 1 1 1 ll |Q£
i i i i i i i .iOfi
i i , -,06
i i i i i i i -|06
i i i i i -,0p
, ,06
i i i i i i -i06
I, 	 -|0£
1 1 1 ! 1 1 1 "1 UlO
	 ,0,6
fill t 1 \ 1
1 | 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 1 1 1 I 1
I 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11)1111 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 I 1 1
1 I 1 1 1 1 1 1 1
sources) -
: , , , . . ,-PA
1 1 1 1 1 1 1 • I*-*!*
1 1 1 1 II* l*-*!^
, , , -04
. 04
> | 1 1 1 1 I 1 1
	 	 0,4
,,, -04
	 04
. 04
1 1 ! 1 1 ! 1 1 1
1 1 t 1 1 1 "
	 -,0,4
till III
1 1 1 i 1 1 1 1 1
i i i ; ! i i i i
iiiiii it
i i i i i i i i i
i i i i i i i i i
i i i i l i i i
1 1 1 ! 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 t 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 I
1 IIIIII
111 II
t 1 1 1 1 1 1 1 1
1 1 1 1 1 II
till 1
IIIIII II
1 1 1 t 1 t 1 1 1
t 1 ! 1 1 1 II
t ! 1 1 I 1 1 > 1
1 ! 1 < 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t i 1 1
i i i i i i i i i
1 1 1 1 1 ! 1 1 1
1 1 1 1 1 f 1 1 1
| 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 | |
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
l 1 l i i l | | i
f 1 1 1 1 t 1 1 1
1 1 1 1 1 III
111)11111
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
t\~ t 1 1 1 1 1 1 1
1 1 1 1 1 1 I \ 1
1 t 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
     FIGURE C-9.
(Continued)

-------
o

Ul
00
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example
Deposition


CARD GROUP,
CARD NUMBER
6,3 -
NAME
DATE
SHEET
9
OF 11

DATA CARD COLUMN
,|2



|






9
10
II
12




1
1



T
21 22 23 24 25 26 27 28 29 JO
31 32 33 34 33 36 37 36 S^O 41 42
I
13 44 49 46 47 48
49
so
SI
32
S3
94
36
56
57
56
59
60
61
62






66
67
68
69
70


SOURCE DATA PARAMETER AND VALUE


!
!
,
I

1
(
1
i
!
(
t
,
1

t
:

,





















1

(
1
1
I

t

1
1
I
1

I
1
:
1
J
|
1
,.,00.1!




















•
•
OtO
1
0,0,1


-iQOil!
"
•
•
*
.
•
•










o
^
1 I
0,1
"
U
1
1









0,0,1 ,
0
0
*J
1
0,1
0,0,1






























1 1 1 1 1 1 1 1 1
' 1

1



i































1
I
t

I
I
I

I
1
1

I
1
1
!
,

i
(
!
t
,














1







L I
,.00,7
1*
- VSN (array
, , , , ,-,0,1,9
00,7! , , , , , ,.0,1,9
, omit if NVS = 0 for all
i i i i i .-0,3,7 , , , , , ,.06
, , , . , r ,0,3,7 , ,
.. O0.7 i*i i i-i01,9| , , , , L ,0,3.7 i i

i»
0,0,7
i r\ *5 7
iiiiii .iOil,9l , , , i r ,ui-V 1 i ,
QQ7| ,,,,,. Q1.9
i OP7
I •
1*
!•
[.
1 .
I
1
I

1
i
i
i
i
i
i i
1 i
0
07
O.Q7
, , , ,.iQl,9
ii ii i. ,0,1,9
, . . . . Q 19
00 ,7 1 , , , , , ,..01,9
i iii- if)i3 i7 i i i
iii i t . iO 1 3 17 , i
i i i i t i. (Oi3i7 i i
iii i- |0|3|7 j i i
111111. (0.3.7 i i
00.7 , , , , , i.,Ql,9l .1111 1-10,3,7 , ,
0












07
	 Q 1.9
1 III 1 1 1 1 1
1
1 11,111111
1 till

,,,,,,,,,
1 1 1 1 1 1 1 1 1 1

p
1
1
I
t
i
1 1 1 1 t 1 1 1 1
III II 1 !
1 1 1 1 1 1 1 1 1
1 l 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1
(
i l i I i !• ^*|J r i i
t I I I I i i I I II
1 1 1 1 ! 1 1 1 t 1 1 (
t . i 1 i

1 1 t 1 1 1 . 1 ! 1 1
1 1 1 1 1 1 1 1 1 t !
1 1 1 1 1 1 1 1 ! II
1 1 1 1 1 1 1 1 1 II
	
, t i i , i , , , , ,
1,111,1,1 , ,
, , , , i ' , i i ii
, 	 06
i i i i*06
ii i* pJ
6
sources)
1 , i i , ,
1
l|
1
, , , ,.P6J.
, , i ,-,0
, , , ,-P
6
6
, 	 06
	 0
	 ,0
I 1 1 1 .lO
,1111
1 I 1 1 t

1 1 1 1 1
lilt,
1
1
1
6,1
O











ij
1






1 1 f 1 1 1 1
I 1 1 1 1
	













1 1 1 1 1 1 1
,,,,,,,
, , 1 1 1 1
•i





































































































•P,9

o
9
.,0,9
•P
*
•
9
9
9
9,9
0,9
0
9
9,9
.,0,9
• P
• iO
•
.










q
9







9i9l
9
9
9,9
Q9




















9












I
j





_j




	 t





















































































f

























'

























































|
























1 I I III
11(111111
i 1 1 1 1 1 1 1 1
| | f 1 I 1 1 1 1
| | | 1 III
| 1 1 1 1 1 1 II
1 1 f 1 1 1 1 1 1
1 1 1 1 1 1 1 f 1
| | ; 1 1 1 1 1 1
,,,,,,,,,
i 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11,111111

1 1

1 1 t 1 1 1 1 1 1
( I I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
f J 1 1 1 1 1 | I
1 I 1 1 1 1 1 1 1
11111(111
1 1 1 1 1 1 1 1 1
     FIGURE C-9.    (Continued)

-------
n
i
Ui
ISCST
PROJECT |
'.xainp 1
L'
INPUT
DATA
l)u KJS i L ion


CARD GROUP,
CARD NUMBER
6,4 -

'

	 1




















1


























5
























4

























3

6














































I

7

























8


1
1

0


,
.
li-
I,
1
I
1
1.
1
,
1












•
•
.
.
















IO
,».

f
(
0
(
f
q
(
(
c
f
0












1 1
1 1
1 1
1 I
t 1
1 1
1 1 1
j 1
1 I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1


DATA
14







UJ















IS







_J














1
16







_J














1
\r







_1













l
I
m




19

1"

Hi?
1
»
.18

•
•
•


8
H
H
H
K
K
?
7
2
2
2
2
2
2

K •>

i
i

i
i
i
i
i

i
i









|
I






















?2
?.l
24
"
?6
2T
28
?9
VI
51
32
5i
SOURCE









GAMMA
1 1 1
























J 1























|
I
1

































t

i

i
i




















1
1

	 I
(arr
.,72
• |72
.if P
.72





















•
•
•













7,2
7
7
/
7
2
2
2
2
i a
7i?


1

1
1
1
1
1

1
1












ay.
















-i-J
1







1
I
1
r
1












543
3 36
57
DATA
omit
i i





_j

_i












I
I
CODING FORM (Continued)


NAME
DATE














SHEET
















10




OF 11

CARD COLUMN
08
J9J40
.,.;.>..««j
_iuA£

(
1
|

I
1
|
|


i
i






i
t
i
i
i
i
i
rii-i


i
i
i
i
i
i
i
i
i
7S = 0 for all
, ,,,,,.?«
t 1 1 1 1 1 1 • i-1 F
1 1 1 1 1 I • 1* 17
,.BS
, ,. ? ,9
i i i i. 5 f)
i i i i i i i ' r1 i
l ! I- P ft
1 1 1 1 I 1 !• P K
, ,. ? ,9
	 -.5,9
i ii i i i i
, i i i
, i , i i i i
, , 1,11,1
i i i i i
i i i i i i i i
1 1 1 1 1 1 I 1 !
1 1 1 1 1 ! 1 1 1
1 1 1 1 1 1 1 1
1 1 ! 1 1 1 1 1 1
1 I 1 1 1 1
1 Illl























sources)
i i i i







_i












i







—1











I








_i


1


1
1
|
|

t
i
i







_J









1

1
1







-J






1

|
1

1
1







_1
1
|
I
1
1
I
1
1

!
1
|
1
1
!•
1-
1-
1'
— LU
-!•
r i
r

r
1 • 1
,
1 1
-1 1

1 1
1 1
1 1
1 1
1 1

1 1
1 1
r)
5
5
5
5
5
5
5
rr
5
C





























|
|
1

1
1









1
|

1
1

1
1


I

I
1









-

1

I
1
I
t


i

i
i







1

1


1
1
|
1
1
|
|
1

1
1















1
1




|
1











|

"t
|
I
1
|

I
|
|
I











|



I
I
|

|

|
1











|
i
1
l
l
l


i

i
1










|
1
1
I

•I
I
|
|


|
1























1 1 1 1 t 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 III 1
• 111
111 1
1 1 1 ! t 1 1 1 I
! I i 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 I t 1 1 1
1 I 1 1 1 1 1 1 1
1 1 1 1 1 III
1 1 'I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 t 1 1
f 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
     KICUKK C-9.    (Cont Inuctl)

-------
n
ISCST
PROJECT Example
INPUT
DATA
Deposition


CARD GROUP,
CARD NUMBER
6,5 -
CODING
FORM (Continued)

DATA
1
































1920
21
22
23
24
25
26
27
26
29
50
31
32
33
SOURCE













































1
&
1


! 1 !


















































1













































































































































































t




.


i



!





|
|
|


















|
|
|
|


|
|

|
|

|























QTK
, , i1
i
j
i
i
i

i
t
i
i
i
i
(
i
i
i
i
i
i
i
i
i
5
j
1
1
I
1
1
1
1
1
1

1
t
1
1
1
1
1
1
1
1
(array,
i i i


















i
i
i
i











































|













|
|

|
|


(
|














|


|



























omit
i i

















i
t
i
i
i














|


|




1
,5













|


|




1




















If
1








34 3
5 36
NAME
DATE
SHEET
11
OF 11

CARD COLUMN
37
DATA
58
39
*0
41
42
43
44
PARAMETER
ISW(23)
i i i i i




1

1
1
|
|
)










.)



C
1
j
1


1 I










































(

t

|


|
|
I
1
|
|
|
t
|
I
|
|

!
;
i




















































	














l




|


|
|



)


















and
i t






















































454
f
AND
46
49
50
51
32153
54
55
56
57
56
59
BO
«i
62
63
64
65166
67
66
89
TO


VALUE
QFLG =
i i i
i
l
I
i


,
J
(
|
!
|

,
(

,

I
I
|
1

|
I
1
t
1

I
1
1
1 i
1
,
I !





































0
^
£

















,,,,,,,,,








j







1 i










for
i i













1
|
(
1
1
i
i
i
i

i
i
i
all
I |






























-








sour
LJ t -1

















•









5
,1






















i i : i : : i i






!
|
1
| (
t |
I l











1




|
f











j
|


f
!







1 1 1 ! I 1 1 I 1
|
1 1

|
|




ces) -




































^







(
|
|
|
1
1
I
1
1
I


























.]










1
?
1









I ! 1 1 I 1 1 1 1





l
|
1















1
|
|


|



I
I

1
I


1 '























1








1 1 1



|
1 1




	 5
	 a
1 1 1 t 1 1 1 1 1 1
I 1 1 1 1 ! I 1 1
1 1 1 t 1 t 1 1 1
! I I 1 III
1 1 t ! 1 ! 1 ; !
I "l i ' ! 1 1 i
1 1 1 t 1 1 1 1 t
I ! 1 1 t I 1 1 t
1 1 1 1 1 1 1 1 1
* ) 1 1 t I 1 I 1 t
i I I 1 l I f i l
I 1 1 1 1 1 1 1 1
! ! 1 1 t 1 I 1 1
II 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
t I 1 1 1 1 1 1 1
l i 1 i r 1 1 l l
| l 1 1 l 1 1 1 |
i l l i i l l l t
1 1 1 1 1 1 1 1 1
   FIGURE  C-9.
(Continued)

-------
       The estimated run time, required data storage and pages of print
output for this example run are different than the estimates computed for
the example run discussed in the preceding section due to a fewer number of
sources (and consequently a fewer number of source groups).  The parameters
used to compute these estimates, which differ from the previous example run,
are NSOURC, which  equals  "11"  instead  of  "16", and NGROUP  which  equals  "3"
instead of "5". From these parameter values and the values of the parameters
used in the preceding section, the estimated run time equals about 12.5 min-
utes, the amount of data storage required equals 11634 words and the number
of pages of print output equals 189.

       Figure C-10 is a listing of the card input data values used to com-
pute 24-hour total deposition values for the hypothetical potash processing
plant.  The differences between the input  data  values  for the concentration
and deposition example runs, as mentioned in the first two paragraphs of
this section, are reflected in Figure C-10.  Examples of the print output
produced by this example run are not shown because the format of the output
tables are the same as those of the example run discussed in the preceding
section.  The only exceptions are in the heading where the words "AVERAGE
CONCENTRATION" are replaced by "TOTAL DEPOSITION" and the output units are
(GRAMS/SQUARE METER) instead of (MICROGRAMS/CUBIC METER).
                                       C-61

-------
                               HYPOTHETIC ML  POTASH  PROCESSING PlflNT - DEPOSITION
O
N)
         CALCULATE  (COHCENTRATION = 1.D£POSITION = £>
         RECEPTOR  GRID  SYSTER  < RE CI ANGUL rtR =1  OR  3,  POLAR=2 OR 4)
         DISCRETE  RECEPTOR  SYSTEM  l REC T S NGULAR* 1 POL«R = 2>
         TERRAIN  ELEVATIONS  ARE  READ (YES=I.NO=O>
         CALCULATIONS  ARE WRITTEN  TO THFf  ( YE S° 1 . NO* 0 i
         LIST  ALL  INPUT  DATA < NO = 0 , YE S « 1 . R E T  DATA  ALSO=2)

         COMPUTE  OVERAGE  CONCENTRATION (OR  TOTAL DEPOSITION)
              THE  FOLLOWING  TINE  PERIODS:
                        .NO«0)
                        .NO=0>
                        . NO'O)
                        .NO'O)
                        .NO=0>
                        . N0*0 >
  HOURLY (YES=|
  2-HOUR (YES=!
  3-HOUR (YES-I
  4-HOUR (VES'I
  6-HOUR   THROUGH  ISM(14):
  DAILY TABLES  (YES=1.NO=0>
  HIGHEST 1  SECOND  HIGHEST  TABLES (YES-l.NO-0)
  MAXIMUM so TABLES  
METEOROLOGICAL  DATA  INPUT  METHOD  ( PR E- P RO CE S SE D = I , C AR D =2 )
RURAL-URBAN  OPTION  < R UR A L= 0 , URB AN RODE  1-1, URBAN  RODE 2-2)
VINO PROFILE EXPONENT VALUES  ( 0 EF AUL TS = 1 , US E R  ENTERS=2,3)
VERTICAL POT.  TEMP.  GRADIENT  VALUES ( DE F AUL T S- 1 , U SE R ENTERS-2,3)
SCALE EMISSION  RATES  FOR ALL  SOURCES  ( N 0 = 0 , Y E S > 0 >
PROGRAM CALCULATES  FINAL PLURE  RISE ONLY  CYES°1.NO=2)
PROGRAN ADJUSTS  ALL  STACK  HEIGHTS FOR  DOVNUASN  

NURBER OF INPUT  SOURCES
NURBER OF SOURCE  GROUPS  (°0,ALL  SOURCES)
TIRE PERIOD  INTERVAL  TO  BE  PRINTED  (-0,ALL  INTERVALS)
NURBER OF X  (RANGE)  GRID VALUES
NUMBER OF Y  (THETA)  GRID VALUES
NURBER OF DISCRETE  RECEPTORS
SOURCE ERISSION  RATE  UNITS  CONVERSION  FACTOR
ENTRAINRENT  COEFFICIENT  FOR  UNSTABLE  ATMOSPHERE
ENTRAINRENT  COEFFICIENT  FOR  STABLE  ATMOSPHERE
HEIGHT ABOVE GROUND  AT  WHICH  WIND SPEED  WAS  REASURED
LOGICAL UNIT NURBER  OF  METEOROLOGICAL  DATA
DECAY COEFFICIENT  FOR PHYSICAL  OR CHEMICAL  DEPLETION
SURFACE STATION  NO.
YEAR OF SURFACE  DATA
UPPER AIR STAT ION  NO
YEAR OF UPPER  AIR  DATA
ALLOCATED DATA  STORAGE
REQUIRED DATA  STORAGE FOR  THIS  PROBLEK  RUN
isw< i ) =
ISW( 2 ) *
ISW( 3 ) -
ISW( 4 ) =
ISWf 5 ) -
ISW< 6 / -
ISW( 7 ) =
ISW(8 ) =
ISW( 9 ) •
ISW( 10) =
ISWU 1 ) =
ISU112) -
ISW( 13 ) -
I SV< 14) -
ISW( 15 ) =
I SW( 16)=
ISW( 17) =
I SW( 18 ) =
I SW( 19) =
ISWC20 ) -
ISW121 ) -
ISW(22 > -
ISW(23 ) =
I SW( 24 ) -
I SVC23 ) =
NSOURC =
NGROUP =
IPERD =
NXPNTS =
NYPNTS =
NXMYPT =
TK =
BETA1 =
BETA2 =
2R =
IRET =
DECAY =
ISS =
ISY =
IUS =
IUY =
LIMIT «
RIRI T =
2
1
2
0
0
2
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
0
2
1
< 1
3
0
19
19
64































. 10000*0 1
600
600
10.00
9


RETERS

000000
14913
64
14918
64
43300
M634




WORDS
WORDS
        FIGURE  C-10.   Listing of  the  input data  for  the  hypothetical  potash  processing plant  deposition run.

-------
                                     •••  --   HYPOTHETICAL  POTASH  PROCESSING PLANT  -  DEPOSITION
                                                 •»• METEOROLOGICAL  DAYS  TO BE  PROCESSED  »••
                                                                     (IF= 1 >



0









0






0 1







                      1.   2.    2,
                                       •*•  NUMBER OF SOURCE NUMBERS  REQUIRED  TO  DEFINE  SOURCE CROUPS •••
                                                                    ( HSOGRP )
                                                 •»• SOURCE NUMBERS  DEFINING  SOURCE  CROUPS  *•*
                                                                    < IDSOR >
                        I.
                                2,
                                     -11 ,
                                              1.   -11,
                                       •»•  UPPER BOUND OF  FIRST  THROUCH  FIFTH  WIND  SPEED CATEGORIES ••«
                                                                  (METERS/SEC)
                                                      1.34,    3.09,    5.14,    8.23.   10  80,
n
ON
U>
                     *•»  HIND PROFILE EXPONENTS  ••«
                    STABILITY
                    CATEGORY
                       A
                       B
                       C
                       D
                       E
                       F
  1
.10000*00
.15000*00
.20000*00
.29000*00
 30000*00
.30000*00
                                                           MIND  SPEED CATEGORY
. 10000*00
.13000*00
. 20000*00
. 23000*00
. 30000*00
.30000*00
. I 0000*00
. 13000*00
. 20000*00
.25000+00
. 30000+00
.30000+00
. 1 0000 + 00
. 1 5000 + 00
.20000 + 00
.25000+00
.30000*00
.30000+00
. 10000 + 00
. 15000 + 00
. 20000*00
. 25000 + 00
.30000+00
. 30000 + 00
. 10000 + 00
.15000+00
.20000+00
.23000+00
.30000+00
.30000*00
         FIGURE  C-10.    (Continued)

-------
                          *•• --  HYPOTHETICAL  POTASH PROCESSING PLANT -  DEPOSITION
                                    *•* VERTICAL  POTENTIAL TEMPERATURE GRADIENTS  ••»
                                               (DEGREES KELVIN PER HETER)
STABILITY
CATEGORY
A
8
C
0
E
F
..t!
VIND SPEED CATEGORY
1234
.00000 .00000 .00000 .00000
.OOOOO .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.20000-01 .20000-01 .20000-01 .20000-01
.33000-01 .33000-01 .33000-01 .33000-01
*** X-COORDINATES OF RECTANGULAR GRID SYSTEH
3
. OOOOO
. OOOOO
. OOOOO
. OOOOO
. 20000-01
. 33000-01
**•
(HETERS)
-3000 .0,
200 .0,
-2000
400
0,
0,
-1500 .0,
600 .0,
-1230. 0
800.0
-1000
1000
$,
0,
*** Y-COOROIHATES OF

-3000.0,
200 .0,


-2000
400


0,
0,


-1500 .0,
600 .0,


-1230.0
800.0
•*« RANGE

-1000
1000
(
0,
0,
-800.0, -600
1250.0, 1500
RECTANGULAR GRID
HETERS)
-800.0, -600
1230.0, 1300
.THETA COORDINATES OF DISCRETE
. 0,
.0,
SYSTEH

. 0,
.0,
-400 .0,
2000 .0,
***

-400 .0,
2000 .0,
-200. 0,
3000. 0,


-200. 0,
3000. 0,
RECEPTORS »•*
(HETERS, DEGREES)
( 555. .
( 860. ,
( 935. -
( 1075. ,
( 855. ,
( 355. ,
< 345. ,
( 450. ,
( 620 ,
< 755. ,
( 690 0,
( 645. 0,
( 410.0,
317
331
336
21
43
36
106
146
171
196
221
246
271
0),
0),
0).
0),
0),
0),
0),
0),
0),
0),
0),
0),
0),
( 620
( 900
( 910
( 1073
( 755
( 353
( 335
( 480
( 665
( 733
( 690
( 615
( 363
318
, 336
1
26
45
, 66
116
, 151
176
201
226
0. 251
0, 276
.0 , (
.0 , (
.0 , (
.0 , (
.0 , (
. 0 , (
.0 ), (
.0), (
.0 ), (
.0), (
.0), (
.0 ), (
.0 ), (
685.
920.
950 .
1045 .
620.
355.
325.
SOS.
705
745 .
690 .
575 .
365.
0, 320 .0), (
0, 341.0), (
0, 6.0), (
0, 31 . 0), (
0 , 47.0), (
0, 76 . 0), (
0, 126 . 0), (
0. 156 . 0), (
0, 181.0), (
0, 206 .0), (
0, 231 .0), (
0, 236.0), (
0, 286.0), (
735
940
1015
995
525
355
380
335
730
730
680
530
410
. 0,
.0,
.0,
.0,
. 0,
.0,
. 0,
. 0,
. 0,
. 0,
. 0.
. 0,
. 0,
322
346.
1 1.
36
49
86.
136.
161 .
186
21 1 .
236.
261
296.
), (
), (
>, (
), (
), (
), (
), (
), (
), (
), (
), (
), (
), (
                                                                                                    6
                                                                                                  . OOOOO
                                                                                                  . OOOOO
                                                                                                  . OOOOO
                                                                                                  . OOOOO
                                                                                                  . 20000-01
                                                                                                  . 33000-01
                                                                                                        . 0,
                                                                                                        . 0,
800
940
1053
910
460
330
420
575
745
705
665
475
.0,
.0,
.0,
.0,
.0,
.0,
.0,
.0.
.0,
.0,
.0,
.0,
326
351
16
41
51
96
141
166
191
216
241
266
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 >
.0 >
. 0 )
FIGURE  C-10.   (Continued)

-------
o
 I
Ul
                                     ••• --  HYPOTHETICAL POTASH PROCESSING  PLAHT - DEPOSITIOH
                                                          •••  SOURCE DATA  •••


T y
V A
SOURCE P K
HUK8ER E E
1 2 «
2 1 0
3 1 0
4 1 »
5 0
6 0
7 0
e o
9 0
10 0
1 1 0



HUSBER
PART.
CUTS.
t
t
^
t
t
6
t
t
t
t
6
EMISSION RATE
TYPE-0, 1
(GRANS)
TYPE-2
( CRAHS )
•PER HtTER»«2
. 36000*03
.44900*03
.44800*03
.44800*03
.4*800+03
. 46800*03
46800*03
. 46800*03
.44800*03
. 4(800*03
.44800*03



(A8E
X Y ELEV.
(NITERS) (METERS) (METERS)
-13.3 -13 .3 .0
20 . 0 .0 .0
30 .0 .0 .0
40 .0 .0 .0
4J .0
3».0
6> 0
7».0
8» 0
>».o
10» 0
.0
.0
. 0
.0
.0
.0
. 0




HEICHT
(METERS >
1000
.»0
2 60
4. 30
«. 10
7.80
».»0
1 1. 30
13.00
14.80
16 50
TEMP.
TYPE-0
( DEC .K)
VERT .DIM
TYPE-l
( METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
EXIT VEL
TYPE-0
( H/8EC >
MORZ .DIM
TYPE-I , 2
( DETERS )
24 40
4 .70
4 .70
4 .70
4 .70
4 .70
4 .70
4 .70
4.70
4 .70
4 .70



DIAMETER
TYPE'O
(METERS >
. 00
. 00
.00
.00
.00
.00
. 00
. 00
. 00
. 00
. 00


BLOC .
HEIGHT
TYPE=0
(METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00


BLOC
LENGTH
T*PE«0
(METERS )
. CO
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00


BLOC .
WIDTH
TYPE'O
( METERS)
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
          FIGURE  C-10.    (Continued)

-------
                                          »••  --   HYPOTHETICAL POTASH PROCESSING  PLAHT  -  DEPOSITION
                                                            ... SOURCE PARTICIPATE  DATA  *••
                   •»•  SOURCE HURBER
                                            1  *•*
n
ON
                   MASS  FRACTION •
                     10000,  .40000. .28000.  .12000,

                   SETTLING  VELOCITY^ METERS/SEC) •
                     .0010,   .0070.  .0190.   .0370.

                   SURFACE  REFLECTION  COEFFICIENT -
                   1.00000,  .82000, .72000.  .(3000,
                   **•  SOURCE NUH8ER »
                                            2 »••
                   HftSS  FRACTION •
                    .10000,  .40000, .28000.  .12000,

                   SETTLING  VELOCITVdlETERS/SEC> •
                     .0010,   .0070,  .0190,   .0370,

                   SURFACE  REFLECTION COEFFICIENT =
                   1.00000,  .82000, .72000,  .63000,
••• SOURCE NUH8ER •
                         3 •»•
                   RASS  FRACTION •
                     10000,  .40000. .28000.  .12000,

                   SETTLING  VELOCITY(HETERS/SEC> '
                     .0010,   .0070,  .0190,   .0370,

                   SURFACE  REFLECTION COEFFICIENT <
                   1.00000,  .82000, .72000.   63000,
                                   .0(000,


                                    .0(10,


                                   .39000,




                                   .0(000,


                                    .0(10,
                                   .0(000,
                                    .0(10,
                                                     .39000,
. 04000.


 .0990,


.30000,




.04000,


 .0990,
                                                     .39000, .30000.
.04000,


 .0990,


.30000,
          FIGURE C-10.    (Continued)

-------
                                          • ••  --   HYPOTHETIC!)!. POTASH PROCESSING  PLANT  -  DEPOSITION
                                                                                                         — * •*
                                                            ••« SOURCE PftRTICULftTE  DATA  »••
                   ••• SOURCE NUMBER  •
                                            4  •••
O
                   MASS FRACTION '
                    .10000, .40000,  .28000,  .12000,

                   SETTLING VELOCI TV( RETERS/SEC )  =•
                     .0010,   .0070,   .0190,   .0370,

                   SURFACE REFLECTION COEFFICIENT  =
                   1.00000,   62000,  .72000,  .63000,
                   ••• SOURCE NUMBER  *
                                            3  •*»
                   MASS FRACTION «
                    .10000,  .40000,  .28000,  .12000,

                   SETTLING VELOCITVtHETERS/SEC)  «
                     .0010,   .0070,   .0190,   .0370,

                   SURFACE REFLECTION COEFFICIENT  *
                   1.00000,  .82000.  .72000,  .(3000,
                   •** SOURCE NUH8ER *
                                            (  »•*
                   MASS FRACTION •
                    .10000,  .40000,  .28000,  .12000,

                   SETTLING V£LOCITV  =
                     .0010,   .0070,  .0190.   .0370.

                   SURFACE REFLECTION COEFFICIENT  «
                   1.00000,  .82000,  .72000,  .(3000,
.06000,  .04000,


 .0610,   .0990,


 39000,  .SOOOO,




. 06000,  .04000,


 .0(10,   .09*0,


.99000,  .30000,




.0(000,  .04000,


 .0(10,   .0990,


 39000.  .30000,
           FIGURE C-10.    (Continued)

-------
                                           •«• --   HYPOTHETICAL  POTASH PROCESSING PLANT  -  DEPOSITION
                                                              • ••  SOURCE PARTICIPATE  DATA  **•
                    ••• SOURCE  HUN8ER
                                             7  •••
O
 I
00
                    MASS FRACTION  *
                      .10000.  .40000,  .28000,  .12000,

                    SETTLING  VELOCITY*HETERS/SEC>  =
                       .0010,   .0070,   .0190,   .0370,

                    SURFACE REFLECTIOH  COEFFICIENT  =•
                    1.00000,  .82000,  .72000,  .(5000,
                    ••• SOURCE  NUMBER
                                             e  ••*
                    HASS FRACTION  «
                      .10000,  .40000,  .28000,  .12000,

                    SETTLING  VELOC1TYC HETERS/SEC>  •
                       .0010,   .0070,   .0190,   .0370,

                    SURFACE REFLECTION  COEFFICIENT  •=
                    1.00000,  .82000,  .72000,   63000,
•*• SOURCE NUMBER
                         9 »•*
                    HASS FRACTION  *
                      .'10000.  .40000,  .28000,  .12000,

                    SETTLING  VELOCITY* HETERS/SEC )  «
                       .0010,    0070.   .0190,   .0370,

                    SURFACE REFLECTIOH  COEFFICIENT =
                    1.00000,  .82000,  .72000,  .69000,
.0(000,


  0610,


 59000,




 06600,


 .0(10,


.39000,




.0(000,


 .0(10,


 99000,
                                           .04000,
                                            .0990,
                                                               . 50000,
                                           . 04000,
                                             0990,
                                                               . 30000,
                                           .04000,
                                            .0990,
                                                               . 50000,
          FIGURE C-10.   (Continued),

-------
VO
                                         *•• --  HYPOTHETICAL POTASH PROCESSING  PLANT  -  DEPOSITION


                                                           •*• SOURCE PARTICIPATE  DATA •••
                   »»• SOURCE NUMBER »    10 *••

                   MASS FRACTION •
                    .14000.  .40000,  .28000.  .12000. .06000, .04000,

                   SETTLING  VELOCITT(HETERS/SEC> >
                     .0010,   .0070,   .0190.   .0370.  .0(10,   .0990,

                   SURFACE REFLECTION COEFFICIENT •
                   1.00000.  .82000,  .72000,  .65000, .39000. .50000,

                   •*• SOURCE NUMBER •    11 •••

                   MASS FRACTION •
                    .10000.  .40000.  .28000,  .12000. .06000. .04000.

                   SETTLING  VELOCITY -
                     .0010,   .0070,   .0190,   .0370.  .0610,   .0990.

                   SURFACE REFLECTION COEFFICIENT *
                   1.00000,  .62000,  .72000,  .65000, .99000, .90000,
         FIGURE C-10.   (Continued)

-------
                                             ••• --  HYPOTHETICAL POTASH PROCESSING  PLAHT - DEPOSITION     --  •••


                                             * SOURCE ENISSIOH RATE SCALARS  WHICH  VARY  FOR EACH HOUR OF THE DAY  •


                   HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR      HOUR    SCALAR



               SOURCE  HO . «    '•  1
                     1    .10000*01      2    .10000*01      3    .10000*01       4     .10000*01      3    .10000*01       6     .10000*01
                     7    .10000*01      8    .30000*01      9    .30000*01      10     .30000*01     11    .30000*01      12     .30000*01.
                    13    .30000*01     14    .30000*01     13    .30000*01      It     .10000*01     17    .10000*01      18     .10000*01
                    19    .10000*01     20    .10000*01     21    .10000*01      22     .10000*01     23    .10000*01      24     .10000*01
n
 I
         FIGURE C-10.   (Continued)

-------
                                   APPENDIX D
                    EXAMPLE EXECUTIONS OF THE ISC LONG-TEBM
                         MODEL (ISCLT) COMPUTER PROGRAM
D.I       INTRODUCTION

          The following examples are problem runs using the ISC long-term
(ISCLT) program to model the hypothetical potash processing plant described
in Section 2.6.  The examples consist of two executions of the ISCLT pro-
gram.  The first problem is to calculate annual average ground-level par-
ticulate concentrations and the second problem Is to calculate total annual
ground-level deposition.  This appendix assumes the user is familiar with
the example hypothetical processing plant discussed in Section 2.6 of the
main body of the text.
D.2-      EXAMPLE CONCENTRATION RUN

          This program example run calculates the annual average ground-level
particulate concentrations produced by emissions from the hypothetical potash
processing plant described in Section 2.6 and shown in Figure 2-11.  The
hypothetical plant is modeled as 16 sources: one stack source, fourteen volume
sources  (roof monitor and conveyor belt) and one area source (ore pile).
These sources are placed at the approximate center of the receptor grid system.
Because we are only interested in the annual average ground-level particulate
concentrations produced by these sources, annual meteorological data are used.
The  annual meteorological  inputs as well as required program control data,
run  time estimate, and page output estimate are explained in Sections D.2.1.
through  D.2.3. below.
                                     D-l

-------
          D.2.1    Input Data Set-Up Procedure

          This example run requires the input data shown in the example
coding forms in Figure D-l.  An explanation of each card group in Figure
D-l is given in Sections D.2.1.a. through D.2.1.m. below.

          a.      • Card Group 1 -  Card Group 1 gives the user selected
title for the program run.  This title is printed at the top of each output
page as shown in Figure D-2.

          b.       Card Group 2 -  Card Group 2 selects the program control
options desired.  This card group shows: ISW(l) equal to "1" for concentra-
tion, ISW(3) equal to "2" for discrete receptors in polar coordinates,
ISW(5) equal to "1" for an output magnetic tape, ISW(6) equal to "3" for a
full printout of the input data, ISW(7) equal to "2" for annual output only,
ISW(8) equal to "3" for printing individual as well as combined sources
results, ISW(9) equal to "3" for the Rural Mode, ISW(IO) equal to "2" for a
printout of concentration at all receptors as well as the maximum 10 values,
and ISW(ll) equal to "2" directing.the program to determine the maximum 10
from the combined sources.  The receptor grid system used is in Cartesian
coordinates; hence, ISW(2) is left blank.  Also, ISW(4) is left blank because
flat terrain is assumed for the area in the vicinity of the hypothetical
potash plant.  The parameter ISW(12) is left blank because we are using
ISW(ll) for the maximum 10 values and the parameters ISW(13) through ISW(18)
are left blank because we are using the program default values for these
parameters.  ISW(13) directs the print output to logical unit 6, ISW(14) is
blank because we are not using an input tape and ISW(15) directs the tape
output,to the magnetic tape on logical unit 3.  The default value for ISW(16)
directs the program to use the standard print output format rather than com-
press pages, ISW(17) directs the program to use 57 lines per page, and ISW(18)
tells the program that Card Group 9  is not read in this run.  ISW(19) directs
the program to calculate plume rise  as a function of downwind distance because
the building wake effects option is  to be used for the stack.
                                      D-2

-------
                                                   ISCLT INPUT DATA CODING FORM
   PROJECT  .  Example Particulate Concentration
                                                                         NAME
                                                                            DATE
                                                                                                 SHEET  1   OF  16
CARD GROUP
NUMBER
                                                         DATA CARD COLUMN
                            11 12 a 14115 16 17
                                                                 9MO
                                                                            48 49 50 51 5Z 53 54 58 M 57 58 59 BO 61
                                                                                              62 63 64 65 66 67
                                                                                                         TO 71 72 7374 75 76 TT
                                     CONTROL DATA PARAMETER AND VALUE (X means do not punch)
o
LO
        1-
        2 -
                                                            - TITLE -

              .11.	ftYPp,TflE,T,I,CAL,  PP.T.AS'H, ,P, BO CESS, ING, PLANT,  . .	, ,  ,
                                                              - ISW -
                                                O
                                                            i-H i-H (M
                                               I  I I
                                                          I I I
        3 -        1,6,5  ,1,9  ,,9| ,   ,
        4 -     IX , ,i
                                              - N0C0MB (array, omit if NGR<#UP=0) -
                                          ilXiiilXiiilXiiilXiiilXiilXiiilXiilXiiilXiilAiiiiAiiilXiilXiil/\ii
                                                  - IDS0RC (array, omit if NGROUP=0) -

                              1O      11      1O     IK     1 £       1R                                               )C
                ,  . , . ,	i I  1 1 I™  11 l""rLl*'  1 L I  IAIA 1  I l"!1!0 1  1 i_ I1!0  I _i t""!-1-!0 1 I  I I I   | | |  | |  1| | | |   | |  | | |   | | l  | |   t i I I  I S\\
        4a -
        5 _
                                                                       i i  i i i
                                                                                      1  | 1 1 1
                                                                                                             1  1 1 1  1
                                                                                                                    /l\
                	I I I  I I I  I I 1. I 1 I I  I I I  I I I I  I I I  I I I  I I I I  I	I I I  I I I I  I I I  I I I	I I I  I I I  I	I  I I I I  I I/|N

                                                    - UNITS (omit if ISW(5) = 2 or 3)
                - one blank card, default units -                       ,
        FIGURE D-l.   Coding  form  for the example particulate concentration run.

-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJE CT Example Particulate Concentration NAME
DATE SHEET 2 OF 16

CARD GROUP
NUMBER
6 -
6a -
DATA CARD COLUMN


f||| j 1 | 1 I L.
1111 1 r 1 1 1 i
3, SZSS^pS^ST^SSMCMaiUzUsU^SMeUTMSMasaSl 52 53 54B5 36 37 98 506061 62 63W4W5 66B7 6eMffl7a7l TzWTJrJTelrT 7BJT9J80
RECEPTOR DATA PARAMETER AND VALUE (X means do not punch)
	 -,3,0,0,0
, . , , , ,-,2,0,0
	 1,5,0,0
1 1 1 III
1 1 1 t 1 1 1 1 1
III 1
II 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1 1 1 1
1 1 1 1 1 1 1 1 1
, , , ,2,1,0,8
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1
III II
t 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
	 Ill
1 1 1 1 1 1 1 1 1
- j
	 -,2,0,0,0
111 1 1 1 1 1 1^
	 2,0,0,0
II 1 1 1 1 i 1
III I 1 1 1 1 1
1 ill
it ! i ; t
III 1 ! 1 1 1 t
111 1 t 1 1 1 1
1 1 1
111 1 1 1 1 1 1
1 1 1 1 I 1 1
111 1 1 1 1 1 1
X (arbitrarilj
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
lil 1 1 1 1 1 1
1 1
til 1 1 1 1 1 t
111 1 1 1 1 1 1
II II
III 1 1 1 1 1 1
C (axis of grid
	 -,1,5,0,0
	 2,0,0
	 3,0,0,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t t
1 1 1 I 1 1 1 1 1
1 t 1 1 1 1 1 1 1
1 t 1 1 1 1 1
1 1 1 1 I 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
r placed recept
i i i i i i i t
i i i i i i i t i
i i i i i i : i i
i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i l i l i i
i i l i l i i i i
system, omit iJ
i i . . r.1,2,5,0
...,,. ^,0,0
i i i i i i i i i
i i i i i i i i
i l l i i i i l i
l l i i l i i
i i i i i i i
i i i i t i i i
i i i i i i i i i
i i i i i i i i
i l i i i i i l t
l i l 1 l i l 1
i i i i i i i i i
ors, omit if N>
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

* NXPNTS =r 0 c
I.., ,-,1,0,0,0
1 1 1 I 1 1 11 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 !
i i i i i i i i i
1 1 1 1 t t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 ! 1 t 1 1
1 1 1 i 1 1 1 1 1
,,,,,,,,,
fWYPT - 0 or 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 i 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 | 1 | 1 1
1 1 1 1 1 1 1 1 1

r ISW(5) = 2 or
i 	 -,8,0,0
, 	 8,0,0
1 1 1 1 1 I 1 1 1
11(111111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t i
1 1 1 1 1 1 1 1 1
	 'Ill
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 l
,,,,,,,
[SW(5) = 2 or 3
1 1 1 1 1 1 1 1 1
1 ! 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1

. 3)*" —
, , , , , ,-,6,0,0
	 1,0,0,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 t 1 t 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 i 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 t
1 1 t 1 1 1 1 i
& ISW(12) » 0)
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
	 -,4,0,0
,-,,,, ,1,2,5,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 II
1 I 1 1 1 1 1 1- 1
1 1 1 1 1 1 1 1 1
1 1 1 | 1 1 1 1 1
1 1 1 | 1 1 i II
1 1 1 1 1 I 1 1 1
1 I 1 1 1 1 1 1 1
1 1 1 ! 1 1 1 1 1
	
1 1 1 1 1 1 1 1 1
1 1 1 > t 1 1 1 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
FIGURE D-l.  (Continued)

-------
o
Ln
ISCLT
PROJECT Example
INPUT
DATA
Participate Concentration


CARD GROUP
NUMBER
7 -
7a -
CODING FORM (Continued)
NAME

DATA
'
Z
t
5
6
7
8
9
10
tl
12
13
14
15
16
17
,8
19
£0
21
22
23
24
25
RECEPTOR










































I
1
1
I
1
I
I
I
I
I

1
1
I
I
I
1

1

I





















-,3





















1


















o
2
5


















o
0
0,0
0,0










J-l

















1





























































































































Y







2,0

2











o










Y
0,0
|_
o
0,0




















(arbi




























(axis
i i i
















































26
27
28
29
DATA
of grid
-.1,5,0,0

























3










2
50
31
32
33
343
596




DATE

SHEET 3 OF 16


















CARD COLUMN
37
36
39
PARAMETER
s
00
00,0




















trarily placed









































































i







ystem,
i i i i



























1

1
I

I
I
1
|
»Q
41 42 45 44 45 46 47 48 4MSO
51
52
53
54
55
AND VALUE (X means
omit if
-,1,2,5,0
|
|

|

|
|
|
I
,4
















0,0
















	










^eceptors
i i > i i












I
|
I


|
|







I






omi












	





.

f


NYPNTS =0o:
	 -,1,0,0,0
	 5,0,0
1 II 1 II
1111
1 1 1 1 1 1 t
1 III II
1 1 1 1 1
I 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1
II 1 1 1 1 1
t if NXWYPT =
i i i i i i i i i
i i i i i i i i *
i i i i i i
i i i i i iii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 i l 1 1 1 1 1 l .
r ISW(5)
i i i i




























































56
57
do
=












56
59
80
61
62
63
64
65
66
87
68
B9
not punch)
= 2 or
-,8,0,0












8











0 or ISW(l)
_J 1 i 1 1 1 l
























































0,0






























1







3)
t






















"~
1


6
o


TO
1 I


0,0
o


0


1 1






_J































































1
L or 2) -
_j i i i i i









































































, , , , , ,-4,0,0
, , , , , 1;2,5,0
1 1 1 1 1 1 1 1 1
III 1
1 1 1 1 1 1 1 1 1
1 111 II
1 t 1 1 1 1 l 1
1 1 1 1 1 1 1 t 1
| 1 1 1 1 1 l I I
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 l 1
1 1 l
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1 1 1 1 II
1 1 1 l 1 1 1 1 1
1 1 1 i i 1 1 l l
1 1 1 1 1 1 | 1 1
l 1 1 i l 1 f l l
1 1 1 1 1 1 1 1 1
   FIGURE D-l.   (Continued)

-------
a
i
KCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Particulate Concentration NAME
DATE SHEET 4 OF 16

CARD GROUP
NUMBER
9 -
DATA CARD COLUMN
1

1, ,2 13 14 19 16 17 ,8 19 20
21 22 23 24 23 26 27 28 29 50
31 32 33 34 3536 37 18 39 40
41 42 43 44 45 46 47 48 49 5O
51 52 S3 54 55 56 57 58 59 80
61 62 63 64


METEORLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
.,0,0,01,69,5, ,
. 000,1,2,8,3,
.00,0,0918, ,
. 0,0 0 1 0 7 6 ,
. 000,3,119, ,
. 0,00361,1 ,
.,0,00,3,8,6,5, ,
.,000,6,9,53,
-,0,0,0,6,7,4,7, ,
.,0,0,0551,2, ,
.,0,001,4,4,1, ,
.,0,0,01,1,5,5, ,
.,0,0,0,2,8,9,9, ,
-,0,0,0,0,8,39, ,
.,0,000,6,0,2, ,
. 000,2,8,2,0 ,
.,0,0,0,7,3,5,3, ,
.,0,0,1,0,4,8,8, ,
.,0,00,4,4,4,4, ,
.,0,0,0,9,6,2,9, ,
.,0,0,1,8,7,7,5, ,
.,00,1,68,9,2,
.,0,0,1,9,7,7,0, ,
(
.,0,0,0,0,8,5,6, ,
. 00,019,98
.,000199,8,
.,00,0,25,69, ,
.,00059,9,5, ,
.jOiO 0 5 1,3,9, j_
.,0,00,3,4,2,6, ,
.,000,79,93 ,
-,0,0,0,8,5,6,4, ,
.,0,0,0,5,4,2,4, ,
.,00,0,2,5,6,9, ,
.,0,0,0,2,8,5,5, ,
.,0,0,0,2,5,6,9, ,
.,0,0,0,1,7,1,3, ,
.,00,008,5,6, ,
.,0002,2,8,4, ,
.,0,0,0,7,7,0,8, ;
.,0,0,1,0,8,4,8, ,
.,0,0,0,6,8,5,1, ,
-,0,0,1,4,8,4,5 ,
.,0,0,2,7,9,7,7, ,
.,0,0,2,7,9,7,7
.,0,0,3,1,6,8,8, ,
tote that the
i i i i i i i i i
i
ii ill
i i i i i
i i i i ii
II I I i I
il I i i i i i
i ' i I i i i
i i I i i i i i i
i i t I i i i i i
i i i i i i i i i
i i i l i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i t i i i
i i i i i i i i
.,0,0,0,5,7,1,0, ,
.,0,0,0,4,8,5,3, ,
. 0001998
1 1 1 1 1 1 1 1 1
.,0,0,0,8,5,6,4, ,
.,0,0,1,6,8,4,3, ,
.0,02,76,9,;
.,0,0,3,4,2,5,7, ,
- FREQ (omil
format used h
i i i i i i i i
i i i
i i i i i
11 ii
i i i i i i
i i i i i i i i
i i i i i i i i
i i i i i i
i i i i i i i i i
i i i i i > i
i i i i i i i i
i i i i i i i i i
> i i i i i i i i
i i i i i i i i i
; i i i i i
i i i i i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
1 1 1 1 1 1 1 1 i
1 1 1 I 1 1 1 1 1
II 1 I 1 1 1

t if ISW(5) = 2 c
ere is the de
t i i i i i i i
i i
i i i i > i
i i i i
t i i i i i t i i
1 1 1 • 1 I ! 1 1
1 1 f 1 1 1 1 1 1
1 II 1 'l 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 I f 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1 1 1 1 t
1 1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 1 1 1 1 !
)r 3 -
fault format :
i r i i i i i i
i i i
i i i i i i
i i t i i i
i i i i
i i i i i i i i i
i i i i i i i i i
i i ii
l i i i i i i i i
i t i i i i i
1 ! 1 1 1 t 1 1
1 1 1 1 1 1 1 1 !
1 1 1 1 1 1 1 l 1
1 I 1 1 ! 1 1 1 1
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1
i I i i i i i 1 i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1
1 1 1 1 1 1 1 1 1
ror FE
K
NNE
NE\
ENE\
E ^
ESE
SE
SSE
s
ssw
sw
wsw
W
WNW
NW
NNW
/
£Q)
. Stability 'A/
\ /
• Stability B \
   FIGURE D-l.   (Continued)

-------
o
E3CLT
PROJECT Example Particulate
INPUT
DATA
Concentration


CARD GROUP
NUMBER
9 -
(Cent.)
CODING
FORM (Continued)

DATA
1 2
'I'
5 r
7
0
9
k)
11 12
13
,4
15
16
(f
IT
21 <:2J23
24
25
26
2,
METEOROLOGICAL
.,0.0,2
.004
.,00,2
623
LJ J
59
i
(52
.,00,1,4,5
.,00,1
* 1
6,5
0249
i i i
. ,0,0,1
.00,0
34
L-J 	 .
t
i
8
8
7,4
6,7
2
9
2
*
7
9
5
1






1




. ,0,0,0,7,3,2,5,
. ,0,0,0,4,6,4,5,
.,00,00,9
.,0,0,0
2,6
.,0,0,05,3
. 00068
i , ,
. ,0 0,0
.,0
.,0
00
1
0,0
.,00,1

,,o
• o
* 1
0,0
6,9






9,0
6
1
8
7
82
,
6
5,8,4
6,0
•*•
2
8,3
1,7,7

1
0,0,6,05

8,24
0,1,4,1,3
j_.
i8i_5
L
1
6
0
5
5
6






















_.
.,0,0
3
9
.0,042
.,003
. 0,0
. 0,0
.00
.0,0
1
2
2
1
.0,00
.,0,00
.,0,0,0
.0,00
.,0,0,0
.0,0
1
.0,02
o
o
1
1
1
6
7
9,6
2
5
83
84
1
1
9
7, ,
1
1 1
2, ,
8, ,
25, ,
2
9
85
|
4
9,4
7
7
4
7
. 0037
. ,0,0,3,0
.,0,0,4,2
.,0,0,4
o
.,0,0,3,5
. 00
1
. 003
.MPjO
-,0,0
*
2
6
2
2
5, ,
0, ,
1, ,
2, ,
1,
993, ,
4
2
55
9
6
5
7
2, ,
9, ,
7
> i
83, ,
4
5,3
8
3
2
6, ,
6, ,
2,3, ,
9
7
8,5,3
3

9

9, ,
2, ,
9, ,
6,4, ,

5, ,
•,0,0,4
.0,0
. 0,0
2
1
. 0,00
. 0,00
.,0,0
1
. 0,00
2
5
8,5
o
6
7
1
7
. ,0,0 04
.0,0
.,0,0
. 0,0
03
1
1
. 0,0,0
.0,0
2
5
5
2
1
1
7
5
7
5
1
94
15
. 0,0,5
. 0,0
.,0,0
.0,0
.0,0
7
85
3
4
28
29
30
31 32
DATA
6
8
63
8
3
1
7
3,4












0,8,
6
1

3
2
0
8
1
1
0
1
1
23
6,9 G,5
7,5

5

1
6,5
7
2
0,7,6
1
.,0,0,2,4,5
.,0,0,2,0
.0,02
.,0,0
.0,0
8
Si?
o
5










1,














2^6,9, ,
8,3
I
._j
3
?

_J


1

I


1

1

* |
33
343
536
NAME

DATE










SHEET 5 OF 16

CARD COLUMN
37
S8
39
40J4I 42
43
44
494
647
484950
51 52
53
PARAMETER AND VALUE (X









FREQ (C
i
i
,
i
i
,

,
I
|
1
I
|
I
|
,
0,0,1,4








2
. 0,00,4,8,5
.,0,00,4,2
. 0,0
.0
0,4,2
8
8
00713
i , ,
. 0,0
2,1,1,2
.,0,0,3,1,6
.,0,0,2,5,9
.,0,0,0,6,2
8
7
8
.,0,0,0,2,5,6








7
3
2
2
7













5,
8
8


1,
9



















.,0,0,0,4,5,6,8, ,
.,0,00,5,1
.,0,0
3
9
1,1,1,34,




.,0,0,0,5,1,3,9,
lontinued)
i , i i i ,
,
i
,


i

i








.,0,0








0
. 0,0 0
.,0,0
.,0,0
. 00
1
.,0,0




,







|


1
1 1
1
1
1
,
1

| |
1
0,2,8,5, ,
142,7, ,
00,2,8,5, ,
005,7
0085
1 ,
6
01,4,2,7, ,
• ,0,0,0,1;
.00,0
.,°
0,0
.00,0
.,0,0
.,0,0
ri
199
1 1
3, ,
8, ,
1,1,4,2, ,
1,14
2
1 1
0,0,8,5,6, ,
0
1,7,1,3, ,
.,0,00,2,8,5
5 ,
. 0,0,0,2,5,0,9, ,
1
i




54
95
5S
57
56
59
BO
61
62
means do not





















i

i
i
i

i






























0,000,02,8,
,
i
,

,

























.,000,0,2
. 0,0,0
0












5
































8,5
85
6
.,0,0,0,1,4,2.7




.,000,3,4,2,6,
•0,00,3,4,26,
. 0,0,0,2,2
,8,4, ,






punch)
[\ '
\
- Stability B /
\ (Cont.) /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
• ^ability C\
\
    FIGURE D-l.  (Continued)

-------
o
do
ISCLT
PROJECT Example Particulate
INPUT
DATA
Concentrations


CARD GROUP
NUMBER
9 -
(Cont.)
CODING
FORM (Continued)
"...
DATA
1 2


' 1
T







•

T

1










l

T
23
24
25
26
27
METEOROLOGICAL
.,0.0,0,3,5
. ,0,0,0
..,00,0
. 0,0,0
. 00,0
.,00,0
. 0,0,1
. o
* 1
0,1
0,0
.0,0,0
. ,0,0,1
.00,0
.,0,0,0
.,0
• 0
0,0
0.1
• ,0,°|0
. o
6,5
9,5
6,8
3,9
8,4
0,3
6
5
1
0
9,7








84
8
9,8,2
3,3
I
8
8
85
7
9,84
0,0,9
5,7
4,9
5,5
2,2
9
4
7
7
7
8,0
9
3
8
1

















.,0
.,0
. ,0
•l°
.,0
.,0
. ,-o
.,0
.,0-
- ,°
. ,0
.,0
•1°
..0
.,0
6,9,9,0 ,
0,0,5,3,5,5,
. 00,0
1
,
1
i
1
(
,
1 J
f
1 1
7,4
1
t
i
1
I '
00




i




1




I





o
o
o
o
0
1
1
2
2
1
04
o
6
05
05
5
7
63
63
97
4
o
8

6,843
0
1
8
2
9,4
0,5,33
0,3,53

'
0,3
0

o
2

1
04
.,0,0
2
4
7
&
2
6
1
3
9
84
9
5
9
7
8,3
1
9
, .,0,0

|

i
i
i
i
,
,
,
,
3 7,0 ,3 ; ,
7
5
9
9
8,5
6
0,2,6
2
9
.,0,0,1,8,84,2
.,0,02
. ,0
* t
. 0
•l°J
1
6
9
6
0,5,252,8
03
0
0
1

.,004,
2
7

9
5
7
6
6
4,4
0
0
8,6
73
13
4
1
. ,0,0,0942
* 1
o
.,0,0
7
8
9
8
07
7
28
29
3O
31 32 33
343
556
NAME -.- . .
DATE














SHEET 6 OF 16

CARD .COLUMN :
37
39
39
4OJ41 42
4^
44
45 «
r
40
49
5C
31 52
53
DATA PARAMETER AND VALUE (X
7
1
7
84-


'




•
.0,0,65,945
.,0
. ,0
.,0
0^2
1
1
.,0,0
.,0,0
-,°
4
9
6,0
9,0
6
0,4
.,00,2
5,
6
1
-.0,0,22
, .,0,0,5
1

I
I
i
I
1
1
1
.,00,9
• ,0,0,7
o
M
1
9

- FREQ (C
.,0,0,0,1,7,1,3, ,
.,0,0,0,1,1
* t 1
.,0,1
36,7
3,4,7
.,00,553
•;0|0
•l°;l
14,8
7,82
9,4,5
8
4
5
1
1
8
1



.,01
.,0,1


4
4
4
2
4
5






83;- ..
6166,3,
2,4,7,5,4
841
3
3
1,9,0,4,4
.,00,7,0,2
.,00
4,5,1
2
8
0,5
.,6-0,342,5
5,3
0,5,3
0
.,•0,0
34,5
7







Continued)
. ,0,6,0,0,5,7
.,0,0,0
.0
1
.0,0
. 0,0
.0
0
. ,0,0
Mo



1
8
2
1
1
03
.,0,0
* 1
.,0
.0
4,3, ,
, •. 0,05,8,8,0
13,5,3
•A1.4A4,
4,2,2,4, ,
. 005,1,10,1
.,0,1,4,1,5
4
8
8,
o
0
0
.,0,0
1
1
1
1
1
, -.0,0,2


9,7, ,
.,0,0,7593
.00,653,74,
. ,0,0,95
.,0,0,7,0


0

5


5

7


94
09
1


6
7








. ,00,97062
,,00,5,5,9

I 1 1



| i
7
.,0,
.,0
o
i
. 0,0
5,4,








1 1 1 1 1 1 1 1 1
1 1 1
1 1
|

|


1
,
,




. 0,
1 1
1 1
1 1
1 1
i
0





7
0
2
2





0,5,7
i
i
2704
0 7,9 0








0554
1,41
9,4,1
22,5
Ijj
1.2
9
2
9
9
1,9,90,
2,5,0
3^
1,3
1
2







9,9,8,3, ,
-,o

•1°
54
55
56
37
56
59
BO
61
62
means do not
0,0

1

0

0,2
.,0,0,5
. 0
. o




. 0
•i°
•l°l


.,0,
. 0
00
o
o
00
2

7
05
5
1
2
0,0,4
0,0,
0,
o,
1
4
9
2
8
9,
2,5,
0,0,0,
0.0,4,
.,0,0,
8,5,4,8, , .,0,
9,0,7,
7,
1
.,0,
0,1,9,8, ,
94,0
4


62,64
|
I
,
|

t I
| |
| |
| )
1

,
|












1,
0,2,
0,5,
.,0,0,0,
. o,
..0

o.
o.

1,
1,

2,
0,
2i
8,

8,5

7
3

2
o








24
98,
8,4
5
9
6
3
8
9,
8,1,
5
6
8,4
7,6,6
5,
9,4
3
1,
0
7,
5




















94,1,2
59,
t

8,7

1


1 1 1 ! 1 1 1 1 1
i i i i i I I i i
' I [ 1 1 1 1 1 1
1

,






|\
\
\
63
64
I

punch)
\
1
,
i
/
Stability C /
(Cont.) /
7
/
\
>• Stability D
A
/ \
'
/ \
/ \
/ \
• Stability E \
FIGURE D-l.   (Continued)

-------
o
 i
     PROJECT   Example Participate Concentration
     GAUD GROUP
     NUMBER
T~rrTi ~rr~[~r
iTnTlTlT
           9  -
         (Cont.)
                     ,J._
                      1  i 1  I  1 I  I  i

                      i  i i  i  i i  i  i

                      l  t I  l  I I  l _L
                                   ,  J. ,0,0.1.7,7,0,0.
           : |..0.0.2,-lrr>rr>.l.
            |. ,0,0,1,8,2,7,1,
                        i i  i  i i  i  i  i I- i^i^i'^rli^i^Ji i
                        ........ 1.,'VWvW. ,
                        i i  I  l i  t  i
I I  1 i l  1 _i..
            !. ,o,o.:t.s.. ,  ._
                        i i  l  i i  t  l
                       0058 112
                      ,",'>,2,-','?,7.i>. ,  ,.
                      ,,0,0, 1,7,5,.-{,2. .  L.O.O.-
                      •|0.",:}|°,'V',7
                      ,(),(), 1,7,0,7 :»,
                       »» INI
                                            l (i.H
ISCLT INPUT DATA CODING FORM (Continued)
ion NAME
DATE
SHEET 7 OF 16

DATA CARD COLUMN
?\ y* 2 1 p4 2ft B6 ? T ?H 29 3U
31 .1? uKJjrihe Af 3B 5<»4oUl 42 4^44^46|4r4H49 Vipl S2 55 54 55 S657 W 59

«0 «l 82 65 M


JLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
. iQiO^/i^;^!), ,
.,0,0,I,S^,7,1,
.,0,0,lr5,70l, ,
ool ,'{ l :> 2
. 0070228
. ,0 0,.S,!),!),2,5,
1 1 1 1 1 ! 1 1 1
__i..-.L-J_l_J_l. _i_i-J ..
| 1 1 | 1 1 1 1 1
1 1 1 1 1 111
lit) 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

-1 .J.1_L-J .111 i _
l 1 1 1 l I l l i
- FREQ (C
i i i i i i i i i
i i i i iii
i i i i i ii
_J-.L 1-1 1 1 1 L J_
_L L_l_i_l_i._l_l_J_.
1 1 III 111 	 L_
l l 1 l 1 III
1 1 1 1 1 111
III III
l l 1 l i 1111
.i ..i_!_i_i 	 i_.i_L..i_
...i_i_i._i_i_.j 	 i -i_i._
i i i i i i i i i
i i i i i i
i , i i i i i i i
i i i i i i i i i
i i i i i i ii>
i , i i i iiii
-i i i i i. i i i i
i .1. i i i i . i i
ontinued) -
i i i i i i i i i
1 ! 1
1 1 1
1 1
1 1 1 1 1 l-i. .L_l—
111 II
1 1 1 1 1 1 1
, 	 1 i I 1 I I 1 I 	 L-
| | l 1 i l l l t

1 1 1 1 1 1 1 1
111 1
I 1 1 1 1 1 1
III II
IIII III
1 1 1 1 1 1 1 1
III 1
l i 1 l l 1 1 1 1 1 1 l l
1 l i 1 l i II
! 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
-J_.1_J 	 l-l 1 1 1 -.
1 i 1 ! 1 I i :
IIII 111
1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 L.I
II 1 1 1 1 | 1
1 1 1 I 1
1 1 1
11 i 1 i | ,
1 1 L.I .1. 1 1 1
1 1 1 1 1 1 1 1 1
1 I i , 1 1 1 I 1
IIII II I
lllllllll
v
_j\
_J \
_J
_j
1
_J
-j
J
_]
_l
J
J
J
/'
j /
i /
: 1 I l 1 l 1 l J.-.J /
i i i i i i i i V
\ Stability E /
"\' (Cont.) /
\
\ /
\ /
/
\ /
X
/' \
,
\
- /Stability F \
\
\
    I'lCUUK l)-l .    (Cont inii«.;cl)

-------
I
o
BCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Particulate
Concentration
NAME
DATE

CARD GROUP
NUMBER
9 -
(Cont.)



























SHEETS OF 16
;
DATA CARD COLUMN
1
2




T
\'






10
"
12
13
• 4
15
16
17
4*
20
21 22J23 24 23 26 Z7 28 29 30
31 32 33 34 33 36 37 38 39
4OJ4I 42 43 44 43 46 47J4B 49
5O
31
52
53
METEOROLOGICAL DATA PARAMETER AND VALUE (X
^
•
.



















o
o
1
k _j

7,0
0,74,2
00,6
o














(
|



0,7






































7
8
2,9,4
6,1
1
1
1
I
1
1
I
i
i
l
i
i
i
I
I
i
i
i

3



















8
8
2
7










































| 	
*
[_;. ^_,


*
*


































0
0

o

















2
1

1







1










2
9
2

















5
W,
047
8
8

















2
1
•
















2;

¥, ,
8

















o,
1
1
1
1
1
1
1
1
1
t
1
1
1
1 1
1 1
1 1
1 1


















,,,,,,,,









lit 1
III II
1 t 1 1 ( 1
1 1 1 t 1 ) II
III 1
III 1
1 1 1 1 1 It
1(1111111
1 1 1 1 1 1 1 f 1
• 1 I I 1 1 t 1 1
1 1 1 1 1 1 1 1 1
i i t i i i i i i
ii i i i i i i
i i i i i ii
- FREQ (C
1 1 1 1 III
1 t 1 1 1 I
II 1 III
f 1 1 1 1 1 1 1 1
III III i
II II
1 1 I 1 I II
1 1 1 1 1 1 1 1 1
III! Ill
1 1 1 1 1 t 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I t ! ! 1 l 1 i
I 1 1 1 1 1 1 1 1 1 i 1 ! I 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 II
1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 ' J_ 1 1 1 1 1
Continued) -
1 11 III

t 1 1 ill
II III

1 1 1 1 1 1 1 1 1
1 III
II 1 til
II 1 1 1 1 t
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 I 1
1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 t 1 1 1
1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 i 1
III t 1 1 1 1
1 1 1 1 1 1 1 1 1
111 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 i 1
l l l 1 I 1 l 1 1
1 1 1 1 1 ' 1 1 1
1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1














1
j
I
1 1 1 1 1 1 1 1 1
1 1 1 1 ' 1 1 1 1
I 1 1 I 1 1 1 I I
1 1 1 1 1 1 1 [ 1


,




|























|
|










54
95
36
57
56
39
BO

,623M M 0 1 72 73 < 73 76 7« 79 90)
means do not punch)




|

|
,
|
i



i

(

I
I




















1






|

|
|








|




















I

























|
|
|
|
|







|






















1 1 1 1 1 1 1 1 1
!
1 1 I i 1 1 ' -1 1
1 1 1 1 1 1 1 t 1
\ - Stability F /
\ .(Cont.) ' I
\ /
X
/ \
/ \
/
/ \
\
  FIGURE D-l.   (Continued)

-------
                                                 ISCLT INPUT DATA  CODING FORM (Continued)
PRO JE CT
Example Particulate Concentration
                                                                   NAME
                                                                                  DATE
                                                                                             SHEET   9   OF 16
CARD GROUP

NUMBER
                                             DATA CARD COLUMN
                                                T
               I 23496789 10 II 112 13 I4| 15 16 17 18 19 20 21 22 23 24125 26 27 28 29 50 SI 32 33 54 35 !6 37 58 39 40 41 32 43 44 45 «6 47 48 49 SO 51 52 53|S4 35 56 57 58 59 60 61 62
                                                                                                                     72 n T« 75 re r
                                 METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
     10  -
     11  -
                                                        -  TA (omit if ISW(5) = 2 or 3)
i i i > |2,8,7,. |2
i i i i i i i i i
11111:111
i i i i i i i i i
, , , , W, ,2
i i i i i i i i i
! 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
i i i i ,2,8,3,. ,2
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
, , , , 2,8,0,. ,8
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
, , , , 2,7 ,9, ,1
i i i i i i i i i
1 1 1 1 1 1 1 ! 1
1 1 1 1 ! 1 1 1 1
	 2,7,9,. ,1
i i i i i i i i i
i i i i i i i i i
i i > i i i i i i
                                                        -  HM (omit if ISW(5) = 2 or 3)  -
       ,1,7,3,0
                     ,  , ,9,6,0
                     ,  , ,3,2,0
                     1  I II I
               I  1 I  I I  I I 1  I
               1  I I  I I  I I I  I
               I  I I  I I  I I I  I
               I  I I  I I  I I I  j
                              I I  I I  I |J.|I |O|
                                     .1.7,3,0
,1,0,2,5
                    , ,  ,5,0,0
                              i 1  I 1  I 1  I I I
                                 1 I  I I  I I I
                                  I  !._!_ I I 1
                              I 1  I I  I I  1 I
                              1 I  I I  1 1  1 I I
                               I  I I  I I  I I I
                                 1 J  I I  1 1 L
                                            I  I I  I I  1
                                            I,,,,
                               ,  , ,  ,1,2,3,5
     840
I 1  I  I I I
                                            1  1 I  I I  1 I  I I
                                            I  1 I  1 1  I I 1 1
                                            I  I 1  I I  1 I 1 1
                                            I  I I  I I  I I  I I
                                                           1 I  I I  1 I 1  I  I
                                                           1 I  J_ I  1 1 I  I  I
               , , ,1,2,9,5
      840
I I  I I  I I  I
                                                           I I  1 I  1 I 1  1
                                                            1  I I  1 I I  I  I
                                                            I  1 I  I I 1  I  I
                                                           1 I  J_ I  I I I  I
                                                           I I  I I  I 1 1
                                                           1 I  I I  I I I
                                                                          I I  I I 1  I I  I 1
                                                                          I I  I I  1 I I  I I
            , ,  , ,  , ,1,2,9,5
840
I I  1
                                                                          I I  I I l.__i_ I  I 1
                                                                           I  I I I  I I  I 1
                                                                          1 1  I I 1 I I  I I
                                                                                        1 I  I I  I I I  I 1
                                                                                        1 I  I I  I I I  I I
                                                                                        I I  1 I  I I
             1,2,9,5
                                                            840
                                                   I,,,,,,,,
                                                                                        , ,  , ,  i , ,  , i
                                                                                         i  , ,  , , ,  , ,
                                                                                         ,  , ,  i , ,  i ,
Stability A

    ilityB

   bility C


      ityD

Stability E

StabiliW F
FIGURE  D-l.   (Continued)

-------
o
ISCLT
INPUT DATA
CODING FORM (Continued)
PROJECT Example Particulate Concentration
NAME
DATE

CARD GROUP
NUMBER
11 -
(Cont. )
12 -
13 -
14 -

1 23456


7


e


9


10
II 12 13 14 115 16 17 16 19 20
21


22


23


24


25


26


27


28
METEOROLOGICAL
i i i i i
i i i i i
i i i i i

ii ii
i i i i
i i i







- blank
- blank
- blank
; i i i i i
- blank
- blank
- blank





















care
i i
care
i i
care
i i
cart
i i
care
i i
care
i i
1 III III
III 1 1 1 1 1 1
1 1 1 1 | 1 1 1
1 III
1 1 1 1 1
1 II
II II 1 1
, use defaults
i i i -i i i i i
, use defaults
	 ji
, use defaults
iii i i i i i i
, use defaults
iii i i i i i i
, use defaults
ii i i i i i i
, use defaults










































29

DATA
50
31 32 33 34 33 56














SHEET 10 OF 16

CARD COLUMN
3708
39
40
41 42 43 44 4S 46 47J4B
49
50
51
52
53
54
55
56
57
56
DATA PARAMETER AND VALUE (X means










1







ROTATE TK
- blank card, use defaults -
i i i i i i ill i i i i 1
- blank


card, use defaults i -
iii ii i i i i 1





































ZR
1





















































- HM (Co
i i i i i i i i i
i i i i i t i i i
i i i i i
i
i iii

i i i
1
1
1

I










DPDZ (omit i
1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
I

I
1








- (omit if ISW
BETA1
1 1 1 1 1 1 J | |
titinued) -
i i i i i i


i i i i i i i i i
i i i i i i i i i
i i i
i i i i
i i i i i
i i ii
if ISW (5) = 2
1 1 1 1 1 1








or
i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1


1 1 1 ( 1 1 1 1 1
, , i i , i i , i
(5) = 2 or 3)
BETA2
1 1 1 1 1 1 !
UBAR (omit if ISW (5) = 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'





or
i















3)
I
















































59
so
61 62 63 M 85 66 87 68 69 70 71 72 rs 74 75 T6 77 7SJ79 BO
do not punch)
















1 1 1 1 1 1 1 1 1






























| 1 1 1 1 1- 1 1 1


3)
I





G
I







• -











DECAY
==-^=n
   FIGURE D-l.   (Continued)

-------

PROJECT


CARD GROUP
NUMBER


15 -




16 -



ISCLT INPUT DATA CODING FORM (Continued)
Example Particulate Concentration NAME
DATE SHEET 11 OF 16

DATA CARD COLUMN
1 99»*>7RQB/J9 a a 9 *L 1" -JL-
| i ^ T^ ^_
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- PHI (omit if ISW(5) = 2 or 3) -
- blank card, use defaults -
iiiiiiiiiliiiiiiiii iiiiiiiii iiiiiiiii tiiiiiiii itiiitiii iiiiiiiii iiiiiiiii
- blank card, use defaults -
i i i i i i i i i I i i t i i i i i i 111111111 i i i i i i i i i i i i i i i t i i i i i i i i i 111111111 i i i i i i i i i
- P (omit if ISW(5) = 2 or 3) -
- blank card, use defaults - p\ ^
IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII Illll 1 1 1 ^v /^
- blank can , use defaults - ^\ s'
Illll 1 1 1 1 1 1 1 1 Illll 1 Illll 1 1 1 1 1 1 1 II 1 | | | 1 ^V /
- blank care , use defaults - \. ./*
11111 i ' ' ' J L 1 ' ' ' ' ' ' ' ' iiiiii: iiiiii ^~^>^
- blank can , use defaults - .^^\^
iiiiiiiii iiiijtiii 111111111 111111111 111111111 iiiiiii i i ^ ^\
- blank can , use defaults - /- \.
IIIIIIIII 1 1 1 1 J 1 1 1 1 IIIIIIIII IIIIIIIII 1 1 1 1 • 1 1 1 1 1 Illll l_| 	 J 	 /^ ^^v
- blank can , use defaults - ^ \.
11111 iii iiiiiiiii 111111111 1111111 i iii 11111 ii ii i i / \.

FIGURE D-l.  (Continued)

-------
1
-p-
ISCLT INPUT DATA
PROJECT Example Particulate Concentration
CODING FORM
(Continued)
NAME 	 -
DATE

CARD GROUP
NUMBER
17 -



DATA
12349
6
7
8
9 ,0 II 12 13 14 15 16 17
IB
19 20 21 22 23J24 25 26 27 28
29pO 31 32 33
3435
36




CARD
37
98
39
40











SHEET 12



COLUMN
41
42
43444546474
B49
SO SI 52 53 M 9
556
57
56
59
SO
61
62






66
67


eajesrrom 72
OF


H"


re
16


re


r7
78

rojc
lyu
SOURCE DATA PARAMETER AND VALUE
NUMS
III *-
2
i i i i3
4
5
6
iii,7
, i i i8
' , , , ,9
10
11
1 1 1 1
12
13
i i i i
14
1 1 1 1
, , 1,5
, , I1!6
, ,
lilt
I 1 1 1
1 1 1 1
1 1 1 1
wo
qno' DX
23 , , , -,1,3,.




















i
i
i
i
i
i
i
i
i
i
i
i
i
i
0





3
3
3
3
3
3
3
3
3
3
0
0
0
0
0





III
3
o
	 ,3,0
' , , ,40
, , , , ,4 9
	 59
i i i i i. i i i"i"
79
1 1 1 f 1 1 III
89
III 1 1 1 1 1
	 99
109
1 1 1 1 1 1 III
	 1,2
1
144
167
1 1 1 1 1 1 1
	 1,9,0
	 2,0
1
t 111
1 1 1 1 1 1 III
1 1 1 1 1 1 III
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 III
DY
1 1 1 1 1 1 I \ *1
0
1 1 1 1 1 1 II
	 o
o
,,,,o
1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 t 1 1 1 1
1 1 1 1 ( 1 1 1 1
1 III II
0
1 1 1 1 1 1 1 1
0
1 1 1 1 1 1 1 1 1
0
1 1 1 1 1 1 1 1 1
II III 1
1 1 1 1 1 1 1 II
1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
H
1 1 1 1

f 1 1* 1*
1 I 1 1 (• 1
i , 4
i i i i6
. 3
•1
7 ft
I i I i i* i
, , , ,9,. ,6
It 1 1 1* 1
, , ,i,3-,o
14
1 1 1
16
1 1 1 1
, , ,22
22
1 1 1 1
22
1 1 1
, , 22
, ,50
•i8
..5
. 5
. 5
1
. 5
1
. 5
•,°
II II
1 1 1 1
1 1 1 1
I
I
1 1 1 1 1 1
1 1 1 1 1 1

_j



1
zs
1












1 1
















'

























1 1 1 1 1 1







_|
















































,,<<;<







TS or
SIGYO
or XO
i , ,2,6,.
,6
, , ,4,. ,7
4
i i i ii*
, , 4.
, ,4,
1 1 1 1 I*
, , , ,4,
i i i i i*
iiii,"
i i i i i"
i , i i4,'
, ,1Qr
10.
i i i i i
10.
Ill 1
, ,1,0,
,7
7
,7
,7
,7
,7
,7
7
7
,8
8
8
,8
, , , ,3,4,0
1 1
1 1 1 1 1 1
1 1 1 1 _l_
i
1 1 1 1 1 1
1 1 1 1 1 1
VEL
or
SIGZO
i i i i i i
i i i i' i1
i i i |1|'
, , ,1-
1 1 1 1 1*
,o
,o
,o
,o
, , , ,1,-,°
, , , ,1,.
i i i |1|
, , , ,!,•
, ,1,
,0
,o
0
,o
1. 0
1 1 1 1 1 1
, , ,H,
11
1 1 1 1 1
11
1 1 1 1 1
, , ,1,1,
1 I 1 l"l
1 t 1 t 1
,6
6
6
,6
,o
I
1 i i 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1
|








.





















D
i







"






























1 1 1 1 1 1












































1









*









0





















HB
Jill 1














1 1

1 1
1 1

1 1 •
1 1
1 1 1 1 1 1







	 [


.



1 t

r i i i i i












1 1
25
1 1
',i.i.i
i i i i i i
.




, ,
1
1
1
1
1
BW
I |
I
I
1
1
1

















r i i i i i
1
1
1
1
1
1

I
1

(
1
,
1
1
1
1

1
1
1

1
1
1
1
,
1


1












1

I

1


6













7





W
P




















,6
,6
,6
,6
,6
:6
,6
,6
16
,6
i
i


i
i
,
1
1
1
FIGURE D-l.  (Continued)

-------
o




Oi
PROJECT E
ISCLT IN
xample Purlieu late Concentration
PUT DATANGO
DING FORM (Continued)
NAME
DATE SHEET 13 OF 16

CARD GROUP
NUMBER
17a -
DATA CARD COLUMN
I 1 i Il|I[I!JIII[iIII
±L.m±iu±m..ii'iLLii
.001 .007
i i , i i , • i , i 1 i i i i i i • i i i
1 1 1 1 1 1 1 I I | 1 1 1 1 1 1 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
| | 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 < 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11111)111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
(Hettlin
i i i i i i , , i
, i i i i i i i i
_L J_ J_l 1 1. J..J .._L .
1 1 1 1 1 1 l 1 1

1 l 1 1 l 1 1 1 1
-.JL-1 1 ..j_J_l_L _L_L_
l l 1 i l 1 l 1 l
l l l l l l l 1 l
1 l 1 1 1 1 1 1 1
1 1 1 1 1 l 1 1 1
l l 1 1 1 l 1 1 l
1 1 1 l l 1 1 1 1
1 1 1 l 1 1 l 1 l
1 1 1 1 1 l l 1 1
l 1 1 1 1 1 1 1 1
i l l i l l 1 1 1
1 1 1 1 1 1 1 1 1
l l 1 l 1 l 1 1 1
l 1 1 l 1 l 1 1 1
1 1 1 1 L t 1 1 L
I I i 1 i i I II
II j '
^l^.,^!^ ,rrrrrrrTTTTT,,, ,TTr ., ^
L '
•,l -.2 V? '.4B5 M IT M M BO
1 1 1
81 [6? 6l|«4 6ft «|67 M »3 7CJ


SOURCE PARAMETER AND VALUE
- VS (omit
0 1 '1 f ) 't 1
1 1 i 1 1 1*111 1 1 1 1 1 1* 1 1 'l '
1 1 ! 1 1 1 I 1 1 | 1 1 1 1 1 1 1 11
1 velocities for sources I thro
i i i i i i i i , 1 i i i i i i i i i
i i i i i i i i i i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 1 1 I 1 1 II
if NVS = 0) -
i i i , , i • i i i 1 i i i t i i * i r i
.-L 1 1 ,1 J_l_l. .!._!_
ugh 11, make 11
r i i , i ! , i ,
1 1 1 1 1 1 1 1
III 1 i 111 1
copies of this icard)
i r i i l ' i l i 1 1 l f i l l ; l l
1 1 1 i 1 1 1 1
1 I
1 1 1 1 1 1 1 II
ii i i i i i i i i i iii i i i i i i i i i i i i i i iii
iii j
i i l i i i i i ! I i i i ; i i i i i
l l 1 l 1 1 1 l l | 1 l l l : l l 11
l i 1 l l i i l i
i i i i i l i i l
i i i i i i i ii
i i i i i i i ii
i i i i i i i it
i i i i i i i l i 1 i i i i i i i l l
i i i i i i i i i
i i i i i i i i i
i i l i l i i l i
i i i i i i i i i
i l i i i i i l i
i i i i l i f i 1
l 1 1 1 l i 1 l l
i i i i l i i l i
tiiiifiii

-------
1
t— '
o-.
ISCLT INPUT DATA
PROJE CT Example
Participate Concentration


CARD GROUP
NUMBER
17b -

DATA
I
2












9
10
tl
12
13
14 15
16117
16
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
SOURCE










































































'































































































i iii








































1 1 1 1 1 1 1 1 1

_|




1
1
I
•
I |
(M




|

4

0

ass
i


ii i i ,



|
1



i i iii



1
I



ii i i i i i
_!


1
1



, 	
1 1 1 1 1 1 1 1
II 1 1 1 I 1 1
III 1 1 1 1 1 1
III 1 1 1 1 1 1








III 1 1 1 1 1 1
_J



1



1 1 1 1 1 1 1
I 1
III 1 1 1 1 1 1

III 1 1 1 1 1 1


i




















[










ractions
f i i i i




















































































































2

8

Tor
i i

























































1 1 1 1 1 1 1 1 1

_|


343
536


CODING FORM (Continued)


NAME
DATE

















SHEET 14 OF 16









-






CARD COLUMN
37
DATA
- FRQ

I
i
18
39
40
41 42 45 44 45 46 47 «8 49 50J 51
52
5334
55
M
57
56
59
BO
61
62
63
J.
66
67
66
89
PARAMETER AND VALUE
(omi
I
sources 1 th
	 i i i i i i i



i
1




ro\]
i


i iii i




_i










|
I

I
1
|
|

|
1




















1 1 1 1 1 i



I
1




1 1 1 1 1 1 1 1 i
_j


I





1 1 1 1 1 1 1 1 1













I
I

!

|
I
















. i , . , 1 1 . .


1 1 1 1 1 1 1 1 1
t if NVS = 0) -
i i i » i . ,. ,0,6
ii i i i i i i i
gh 11, make 1
i i i i i i i i i
i i i i i i i i
i i i i i
i i i i i t ii
1 1 1 1 1 i 1 1 1
t t 1 I I 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 '1 1 1 f 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 I 1 1 1 1
1 1 i 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 I 1 I
1 1 1 I 1 1 1 1 1










!•

. copies of
	 i i i i i i












j
1
I

I
1



















0,4


this
| |


















i i i i i i i i i







1
1
I


















_| 1 1 1 1 1 1 1 1









i i i i i i i i i




I
I












u 	


1







1 1 1 1 1 1 1 1 1







I
card)
_i i i i




















TO
1






iii i









1
I
I















i i i , i i i i i



1





, 	









I
1
I















i i i i i i i i i
	 i i i i i i i i i






I
1










i i i i , i , i
i i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1


1 1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 III
1 1 1 II 1 1 1 1
• 1111,111
1 1 1 1 i 1 i 1 1
1 1 1 1 1 1 1 l_
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 i i 1
1 1 1 1 1 1 1 1 l_

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 11
1 1 1 1 1 1 1 1
,,.,,,,,,

i i i i i i i , i
	 i i i i_
FIGURE D-l.  (Continued)

-------
I
-J
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Participate Concentration NAME
DATE SHEET 15 OF 16

CARD GROUP
NUMBER
17c -
DATA CARD COLUMN
1 23456781s 10
II \Z 13 14115 16 17 18 19 20
21 Z2J23 24 25 26 27 28 29 50
31 32 33J34 35 36 37J56 39 40
41 42 43 44 45 46 47 48 49 5 1
lllllllll
lllllllll
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1
rhis card)
i i i i i i
i i i i i i
t i i i i i i i i
i i i i i i i i
i i i i i i i i t
i i i i i i i i i
iiiiiiiii
111111111
111111111
i i i i i i i. i i
I,!,.....
iiiiiiiii
111111111
111111111
111111111
i i i i i i i i
i i i i t i i i
111111111
iiiiiiiii
iiiiiiiii
111111111
i i i i i i i 41
ii . i i i i i
i i i i i i i i
iii i ii
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiii.il
iiii iiii
iiiiiiiii
iiiiiiiii
i i i i i i i t .
111111111
iiiiii.il
i i i i i i ii
111111111
i i i i i i 11
111111111
iiiiiiiii
i i i i t i i i j_

iiiiiiiii
   FIGURE D-l.   (Continued)

-------
                                                   ISCLT INPUT DATA CODING FORM (Continued)
   PROJECT    Example Particulate Concentration
                                                               NAME
                                                                                  DATE
                                                                                          SHEET  16 OF  16
   CARD GROUP
   NUMBER
                                            DATA CARD COLUMN
2 3 !« t 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 S4J2S 26 27 28 29 50 31 32 33 MJ35 36 37 3S 39 4C 41 42 43 44 45 4« 47 40 49 50 31 52 53 54 58 56 37 96 59 BO 61 62 63W4 65 66 87 68 69 TO Tl 72 fJ
                                           SOURCE DATA PARAMETER AND VALUE (X means do not punch)
       17d -
00
                                                    -  Q  -
                          ,. ,4,0
                          . 30
                     i i i  i i  i i
                     i i i  i i* i i
                  i i  i i i  i i
                          . 13
                         i i  i i
                          . 10
                  1 I i I I  I i  1 I
                          . 08
                          i  i i
        . 04
  I  1 I t  I  II
                  i !  1 1 t._i I  I I
                          . 02
                  i i  i i i  i i  i i
                  	2|» I6!3
                  I I  I i 1  1 1
                  I I  I 1 I  I I  I I
                  I I  I I I  I I  1 I
                  I I  I I t  I I  I I
                  I I  I 1 t  I I  I I
                        .5.0
                                i i i  i  iii
                        40
                        11
                                I I I  I  III
                                I I I  I  III*
                                          20
                                III I  III
                        16
                                II! I  III'
                        13
                       J	I
                                III I  III'
10
II
                                          08
                                111 I  III
                       .A5
                                III I  I I  I I I
                                      I I  I I I
                                III I  I i  I I I
                                II  I 1  I I  I I I
                                      I I  I I I
                                      i i  i
             . 50
          i i  i i i
                                                      ,. ,5,0
                                     . 25
                                i  i i i  i i
                                              I I  I I  I I I  I I
                                              ,  i i ,  i i i  i i
             . 16
        i  i i  i* i ,
                                      14
                                i  i i • l* I l
    . 13
i i  i i  i i
                                              i  i i i  i i  i i i
                                                 i i  i i i  i i
                                              , ,  , i  i i ,  ,
                                                i i i  i i i  i i
                                              i  i i i  i i i  i i
                                              j	i  i i  i i i  i i
                                                  i  i i i  i i
                                               t  i i  i i i  i i
                                                            i i  i i  i i i  i
                                                            iiiiiir
                                                            i i  i i  i , i'
                                                   ,5,0
                                                            i i  i i  i i i  i i
                                                            i i  i i  i i i  i i
                                                            iii,,,,
                                                            , ,  , ,  i , ,
I1!6
                                                            , i  , ,  , i i
                                                            ,11111111
                                                            , i  , i  , i i
                                                            , i- , i  , i i  ,
                                                            ; i  i ,  , •, ,  , i
                                                            i i  i i  i i i
                                                                i  i i i  i i
                                                            i i  i i  i i i  i i
                                                                          i I  I i I  i i  i
                                                                          i i  i i i  i i
                                                                                    '
                                                                          , ,  , i  i i
                                                                          I I  I I I  I I  ! I
                                                                          i i  i i i  i i  i i
                                                                          i i  i i i  i i  i i
                                                                           i  i i  i i i  i i
                                                                          I I  I I I  I I* I
                                  19
                                                                          , ,  i , ,  i i  i
                                                                           1  I I 1  I I  I I
                                                                          1 I  I t  I I I  1 I
                                                                           I  I I I  I I  I I
                                                                          I I  I 1 1 I I  I I
                                                                          I I  t I I  I I  I I
                                                                          I I  1 I I  I I  I I
                                                                         j	i  , i ,  ,
                                                                              I _t_ I I  1 i
                                                                          ii	11-
                                                                                        I 1  I I I  I 1  I 1
                                                                                        i i  i i i  i
                                                       1...0
                                                                                        i i  , , ,  i ,  i
                                                                                        i i  i i i  i i
                                                      ,.,2,2
                                                                                        , i  i i i  i i
.,2,2
                                                                                      source strengths for
                                                                                       ource 1
source strengths for
sources 2 through 11
make IGl copies of each
data ca
                                                                                      source1 strengths for
                                                                                      sources 12 throkgh 15
                                                                                      mate 4 copies of\this
                                                                                      ca  *
                                                                                                            rce strength for
                                                                                                         ource 16
  FIGURE D-l.   (Continued)

-------
          c.       Card Group 3 -  Card Group 3 specifies the number of
categories of meteorological data and the number of sources and receptors
in the grid system.  The parameter NSOURC is set equal to "16" for the 16
sources used to model the hypothetical potash plant.   The parameter NGROUP
equals "5" because we wish to print the output for five different source
groupings.  The parameters NXPNTS and NYPNTS are both set equal to "19" for
the 19-X by 19-Y receptor grid system shown in Figure 2-3.   The parameter
NXWYPT is set to "1" and specifies one discrete point that is used in this
example to represent an air quality monitor location.  The parameters NSEASN
through NSCTOR are all left blank so that they assume their respective
default values of 1 season, 6 wind-speed categories,  6 stability categories
and 16 wind-direction categories.  The parameter NOFILE is set equal to "1",
because the tape output file will be the first file on tape.
          d.       Card Groups 4 and 4a - Card Groups 4 and 4a:define the
source combinations for which concentration output is to be produced.  The
parameter NGROUP on Card Group 3 specified 5 source combinations.  Card
Group 4  (NOCOMB) gives the number of source ID-numbers the program is to use
to define each source combination.  The first output combination baa one
defining source, the second and  third use two defining sources and the
fourth and  fifth use only one.   Card Group 4a shows the actual source ID-
numbers the program is to use in each source combination.  The program is
to output annual concentrations  for Source 1, Sources 2 through 11 combined,
Sources  12  through 15 combined,  Source 16 and all  sources  (1-16) combined.

          e.       Card Group 5  -  Card Group 5 specifies  the output concen-
tration units and  input source emission units.  Because we wish to use the
program default units, this card is left blank.  However,  this card  is still
included  in the input data deck.  The output units are defaulted to  "micro-
grams per cubic meter" and input source emission units are defaulted to
"grams per  sec" for the stack and volume sources and to "grams per sec per
square meter" for  the area source as shown in Figure D-2.
                                      D-19

-------
          f .       Card Groups 6, 6a, 7 and 7 a -  Card Groups 6, 6a, 7 and
 7a define the locations of the receptors of the regular  (non-discrete) grid
 system and the discrete point.  The regular grid system  (Card Groups 6 and 7)
 is in Cartesian coordinates and the discrete receptor  (Card Groups 6a and 7a)
 is in polar coordinates.

          g.       Card Groups 8 and 8a -  Card Groups 8 and 8a are not
 shown in Figure D-l because we are assuming flat terrain (ISW(4) equal to
 "0").  Thus, the terrain elevation cards are omitted from the input deck.
          h.       Card Group 9 -  Card Group 9 is used to specify an optional
format the program uses to read Card Group 9a.  Because ISW(18) is left blank
(zero) , this card group is not used by the program and is omitted from the
input deck.  The program will use the default FORTRAN format of (6F10.0) to
read the data shown in Card Group 9a.  This default format requires the user
to punch the frequency of occurrence data in Card Group 9a using 10 columns
per value including the decimal point (period).  Only NSPEED values are read
per data card in Card Group 9a.

          i.       Card Group 9a -  Card Group 9a gives the joint frequency
of occurrence of wind speed and direction by stability category and season.
As the example run is using annual data, only one season (annual) is punched.
Within this one season, there are six stability categories (A through F) and
within each stability category there are sixteen cards, one for each wind
direction categqry clockwise from north to north-northwest.  Each data card
contains the frequency of occurrence for the six wind-speed categories.  Values
that are zero have been left blank because the ISCLT program interprets
blanks as zeroes.  If we were using seasonal data in the example problem, the
program would require NSEASN decks punched as in Figure D-l .

          j.       Card Group 10 -  Card Group 10 gives the annual ambient
air temperatures in degrees Kelvin for stability categories A through F.
                                      D-20

-------
          k.      Card Group 11 - Card Group 11 gives the annual mixing
heights in meters by stability and wind speed.  The mixing heights are
punched, six values per card, for wind-speed categories 1 through 6, and
there are six cards for stability categories A through F.  If we were using
seasonal data in this example run, the program would require NSEASN groups
of these data cards.  For the purpose of this example, it is assumed that
the median mixing heights shown in Figure D-l have been developed as a func-
tion of wind speed and stability using onsite acoustic radar data.  Some
values have been left blank in this card group in Figure D-l for stability
categories A through D because the joint frequency of occurrence of these
wind-speed and stability categories is zero (and no calculations will take
place).  The values for stability categories E and F have been left blank
because the case is being run in the Rural Mode and the program automatically
uses 10,000 meters.  Note also that the decimal point is not punched.  The
decimal point can be eliminated in real variables only when the value is
a whole number and right justified in the respective punch columns.

          1.        Card Groups 12 through 16 -  Card Groups 12  through 16
provide the remaining meteorological and model data.   These card groups are
all blank,  but must be included in the input data deck.   The program
provides default values for all of these data items and their respective
values are shown in Figure D-2 under the "ISCLT INPUT DATA" heading.

          m.        Card Groups 17 through 17d -  Card Groups 17 through 17d
provide all of the source information.   Figure D-l shows each of these card
groups on a separate page.   The coding forms are set-up in the manner shown
to facilitate key-punching.   However,  this is not the correct order for input
to the program.   These data cards must be reordered so that there are Card
Groups 17,  17a,  17b,  17c and 17d for Source 1, 17 through 17d for Source 2, etc.
prior to input to the program.  Card Group 17 in Figure D-l shows Sources 1
through 16.  The parameter DISP is blank (zero) for each source as this run
is the initial entry of these sources and there is no input tape.  The
parameter TYPE identifies the type of source ("0" =• stack, "1" » volume,
"2" = area) and QFLG specifies how the source emissions vary.  The emissions
                                   D-21

-------
from Sources 1 through 11 vary with wind-speed category and stability cate-
gory, while the emissions from Sources 12 through 16 are assumed constant.
Card Group 17 also gives the location, height, exit temperature, and exit
velocity or dimensions (depending on the source type), inner diameter of
the stack, and the height and width of the building for the consideration
of wake effects for stack emissions.  As we are calculating particulate con-
centrations, the parameter NVS has been set to the number  (6) of particulate
size categories used to define the particulate distributions of Sources
1 through 11.  However, the particulate emissions from Sources  12 through
16 are assumed to have negligible gravitational settling velocities and are
treated as gaseous emissions.  Card Groups 17a, 17b and 17c specify the
particulate settling velocity  (VS), mass fraction of the distribution (FRQ),
and the surface reflection coefficient for each of the six particulate size
categories for Sources 1 through 11.  Note that Card Groups 17a through
17c are omitted for Sources 12 through 16 because NVS on Card Group 17 for
these sources is blank (zero).  Card Group 17d in Figure D-l shows the
emissions of each of the input sources.  The first six cards of this group
specify the emissions of Source 1.  There is one card for each  stability
category with six values across the card for the wind-speed categories.  If
we were using seasonal data in this example, the program would  require NSEASN
groups of these cards for Source 1 because QFLG for this source is set to
"3".  Data cards 7 through 12 of this card group specify the source emissions
for Sources 2 through 11 in the same manner as for Source 1.  Sources 2
through 11 have the same emissions and hence only one copy of this set of
cards is coded with instructions to make ten copies of these six cards.  The
last two cards punched specify the emissions for Sources 12 through 16 on an
annual (non-varying) basis.  In some cases, the source emissions are blank
on these data cards because the frequency of occurrence of wind speed and
wind direction is zero.  The input deck for these sources will  Include one
card from Card Groups 17 through 17c and six cards of Card Group 17d for
Sources 1 through 11.  Following these cards, the deck will include one card
from Card Group 17 and one from Card Group 17d for Sources 12 through 16 for
a total of 120 cards in the input source data deck.

                                   D-22

-------
          D.2.2    Run Time, Required Data Storage, Page Output  and
                   Tape  Output Estimates.
          The run  time, data  storage, page output and  tape output  estimate
calculated  for  the example concentration run are given in the  following
paragraphs.

          a.       Run Time - The run  time estimate is calculated using
Equation  (4-6)  in  Section 4.2.5 and  is  approximated by

             Time  (seconds) = NSOURC •  (NXPNTS  • NYPNTS + NXWYPT)  •
                                                           _4            t0-1)
                NSEASN  • NSTBLE • NSPEED • (NVS+1)  • 7 x 10

Substituting values  from Figure D-l,

         Time (seconds) - 16  • (19-19+1) • 1 •  6 • 6 •  7 • 7xlO~4
                                                                         (D-2)
                        = 1022

or approximately 17  minutes estimated run time  for the example problem.  The
actual run  time was  8 minutes.  The  value of  f (7xlO~^) used in  this
approximation is calculated to over  predict the actual run time  to insure
that the ISCLT  program does not max-time.

          b.       Required Data Storage -  The required data  storage must
be calculated to determine whether or not the desired  run will fit in the
ISCLT program.  First, the amount of data storage required by  a  particular
run is determined  by Equation (4-3)  in  Section  4.1.2.   Second, if  the user
desires maximum 10 calculations under ISW(ll) (ISW(.ll)  = "2")  or if  the
parameter NGROUP is  set to a value greater than "0", the user must comply
with Condition a, b  or c under ISW(ll) or under NGROUP  in Section  4.1.2.

                   Taking values from Figure D-l and substituting  in
Equation  (4-3)  we  calculate
                                      D-23

-------
                40000 >   [l9+19+2-l]  +  (2-16+0)  •  (19-19+1)
                                                                        (D-3)
                      >   11947

Where the variables K and I in Equation (4-3) are set to "2" and "0", respec-
tively.  The value of K is set to "2" because ISW(8) has a value of "3" and I is
set to "0" because ISW(4) has a value of "0".  We see from the calculated ine-
quality that we are well within the program storage limitations and have com-
plied with the first part of the data storage check.  The second part of the
required data storage check must be done only if ISW(ll) is set to a value of "2"
or the parameter NGROUP is set to a value greater than "0".  If either of these
parameters are set as indicated, the program is required to save the individual
source concentration (deposition) calculations for multiple passes through
these data.  The program must save these calculations on either magnetic
tape (mass storage) or in the program storage area.  Conditions a and b
under ISW(ll) and NGROUP in Section 4.1.2 require either an input tape or out-
put tape.  Condition c under ISW(ll) or NGROUP in Section 4.1.2 requires
the user to evaluate Equation (4-1) or Equation  (4-2) if Conditions a or b
are not complied with.  The example run shown in Figure D-l shows we are
using an output tape (ISW(5) = "1") and hence we have complied with Condition
b and satisfied the second part of the data  storage check.  However, the param-
eter NOFILE must be input on Card Group 3 when applying Condition b.
          c.       Page Output - The page output estimate is calculated using
Equation (4-8) in Section 4.2.5 giving the output pages as

                          Pages  =  A + B +  C                           (D-4)

The value of A from Equation (4-9) is 16+N  or 16+16=32, because we are using
16 input sources arid ISW(4) equals "0".  The value of B, obtained from Equa-
tion (4-10), is given by
                                      D-24

-------
B  a  1 -  (16+3)
" -^ . (19+11)"
57
+
1
3 •
(57-11)
                                                                 +  1
             *  19 '  (2 + 1 + 1)
                                                              (D-5)
             a  76
The variable I in Equation (4-10) is set to "1", because we are printing only
annual tables.  The variables N. and N  are set to "16" and "3", respectively.
                               1C
N  is "16" because ISW(8) is set to "3", specifying individual source output,
and there are 16 source ID-numbers implicitly or explicitly defined in IDSORC
in Card Group 4a of Figure D-l.  The variables N , N  and N   have been set
            f         B                         x'  y      xy
to "19", "19" and "1", respectively, defining the total number of receptor
points.  Also, the variable N. is 57 lines per page.  The symbols  [  J
                             As
in Equation (4-10) indicate to round up to the next larger integer if there
is any fractional part.  We should also add an additional 16 pages to B
because maximum 10 calculations are being made and the program will print
tables of the maximum 10 contributions of each individual source to the
combined sources maximum 10.  The total estimated output pages is then given
by
                      pages  a  32+92+5
                             *  129
                                                              (D-6)
The actual number of pages output was 93, with 6 pages of system generated
paper and 87 pages produced by the example concentration run.

          d.       Tape Output -  The amount of space required on a magnetic
tape or data  file  is calculated using Equations (4-11) and  (4-12) in Section
4.2.5.  The number of  computer words written by the program is exact and  is
calculated by substituting values from Figure D-l into Equation  (4-11),
giving
                                      D-25

-------
       Words  =  (o+2645+19+19+(2 • l)+(l6 • (220+1 • (19 • 19+2))))
                 V                                                       (D-7)
              =  12013
where the variable Ns in Equation  (4-11) is set to the total number of sources
("16") output to tape and the variable I is "0" because ISW(4) equals "0".
If the output data are being written to a mass storage file, the user
assigns the number of mass storage tracks that will contain 12013 or more
words of information.  However, if the data are to be output to magnetic
tape, Equation  (4-12) in Section 4.2.5 is evaluated to make certain the out-
put data will fit ontne magnetic tape.  Equation  (4-12) requires the number
of words to be  output (12013), the tape recording density  (D), the number of
bits per computer word (B), the number of words per physical FORTRAN unfor-
matted tape block (Bn) and whether the output tape is seven or nine track
(B ).  This information if not known can be obtained from  the programming
and/or systems  consultant for your computer installation.  Because this
example problem was run on a UNIVAC 1108,computer using a nine-track output
tape recorded at 800 bpi, the following values were used in Equation (4-12):

          B = 36 (bits per word)
          D = 800 (recording density)
          Bp = 224  (block length in words for unformatted
                    Fortran tape records)
          B  =  8 (9-track tape)

giving

          length (feet) . [(^4of)   + 0.75  ( ^) + 6~] / 12.0
                                                                          (D-8)
                        =  9.5

or approximately 9.5 feet of tape  used.  The length of tape required for most
runs will be well short of a standard 2400-foot reel and the user need approx-
imate this quantity only when processing very large runs or when writing mul-
                                      D-26

-------
tiple cases (multiple files)  to the tape.   For example, we would  have
required approximately 5772 sources in this example run to fill a full 2400-
foot tape reel.

          D.2.3    Example Print Output.

          Figure D-2 illustrates the printed concentration output for the
example hypothetical potash plant.  The listing begins by  printing the input
data under the heading "ISCLT INPUT DATA".  This part of  the output listing
includes all punched data and default values, except source  data.  Next,  the
source data are listed under the heading "SOURCE INPUT DATA".   Note that the
source input data listing also contains warning messages  indicating a source
is too close to a receptor.  Concentrations are not calculated for the indica-
ted source-receptor combinations.  The remainder of the  output listing in
Figure D-2 shows the annual ground-level particulate concentrations due to
selected sources, but does not show the complete output  listing.   The page
number of each table in the output listing is shown in the upper  right hand
corner.  For example, pages 13, 14 and 15  (upper right hand  corner) show
the complete output for Source 1.  The heading given is  "ANNUAL GROUND LEVEL
CONCENTRATION  (MICROGRAMS PER CUBIC METER) DUE TO SOURCE 1".  The particulate
concentrations calculated for the receptor grid system follow the page
heading on page 13 and end at the middle of page 14.  The concentrations at
the discrete receptors are then printed, followed by the maximum 10 values.
The maximum 10 values listed here were derived from Source 1 alone as there
were no other  sources in this particular source combination.  The next concen-
tration tables illustrated are from pages 16 through 18  of the output listing.
These pages give the individual concentrations produced  by Source 2 that
contribute to the combined Sources 2 through 11.  The individual  source out-
put is printed because ISW(8) was input as "3".  Note that the maximum 10
values for Source 2 on page 17 are actually those 10 receptors from Source
2 that contribute to the maximum 10 values of the combined Sources 2 through
11.  Although not shown in Figure D-29 the output listing continues printing
tables for Sources  3 through 11 with the same form and  content as shown for
Source 2 on pages 16 through 18.  The next concentration tables illustrated
                                   D-27

-------
             •••« ISCIT
                                                       HYPOTHETICAL POTASH  PROCESSING  PLANT
                                                                                                                               PAKE
                                                                                                                                         I •• ••
Ni
00
                              - ISCLT INPUT  DATA  -

HUNBER OF SOURCES •  14
NUN8ER OF X AXIS CRID SYSTEM POINTS •   1*
NUMBER OF Y AXIS CRID SYSTEM POINTS »   1*
NUMBER OF SPECIAL POINTS •    1
HUNBER OF SEASONS •   1
NUMBER OF HIND SPEED  CLASSES •   6
HUNBER OF STABILITY CLASSES *   6
NUMBER OF HIND DIRECTIOH CLASSES •  16
FILE NUMBER OF DATA FILE USED FOR REPORTS »    1
THE PROGRAM IS RUN IN RURAL NODE
CONCENTRATION (DEPOSITION) UNITS CONVERSION  FACTOR  •   .10000000+07
ACCELERATION OF GRAVITY  (METERS/SEC*»2> •  1.800
HEIGHT OF MEASUREMENT OF HIND SPEED (METERS) •  10.000
ENTRAINNENT PARAMETER FOR UNSTABLE CONDITIONS •   .600
EHTRAINNEHT PARAMETER FOR STABLE CONDITIONS  •  .(00
CORRECTION ANCLE FOR  GRID SYSTEN VERSUS DIRECTIOH DATA  NORTH  (DEGREES)
DECAY COEFFICIENT •  .OOOOOOOO
PROGRAM OPTION SHITCHES  - 1. 1. 2, 0, 1,  3,  2, 3,  3,  2.  2.  0,  0,  0,  0.
                                         1 ARE -      1.
                                         2 ARE -  •    2.    -11.
                                         3 ARE -     12,    -13,
                                         4 ARE -     16.
                                         3 ARE
                                                                                                  .000
        SOURCES  USED  TO  FORN SOURCE COMBINATION
        SOURCES  USED  TO  FORN SOURCE COMBINATION
        SOURCES  USED  TO  FORM SOURCE COMBINATION
        SOURCES  USED  TO  FORM SOURCE COMBINATION
        SOURCES  USED  TO  FORM SOURCE COMBINATION
       DISTANCE  X AXIS CRID SYSTEM POINTS (METERS
            -600.00.     -400.00.    -200.00.
            1SOO.OO.     2000.00.    3000.00.
          RANGE  X SPECIAL  DISCRETE POINTS (METERS  )-
       DISTANCE  Y AXIS CRID SYSTEN POINTS (METERS  >'
            -600.00,     -400.00.    -200.00.
            1300.00.     2000.00.    3000.00.
AZIMUTH BEARING  Y SPECIAL  DISCRETE POINTS (DEGREES)-
                                                                         -16.
                                                                >»   -3000.00.    -2000.00,    -1500  00,    -1230.00,    -1000.00,     -tOO.00,
                                                                  .00,      200.00,      400.00,      600.00,      800.00,     1000.00,     1230.00,
                                                2108.00.
                                               -3000.00,
                                             00,
      -2000.00,    -1300.00,    -1230.00,    -1000.00.     -800.00,
200.00,      400.00,      600.00,      800.00.     1000.00,     1230.00,
                                                                        14.00,
                      SEASON
                            -  AMBIENT AIR TEMPERATURE  (DEGREES KELVIN)  -

                  STABILITY   STABILITY  STABILITY   STABILITY  STABILITY   STABILITY
                  CATEGORY  1  CATEGORY 2 CATEGORY  3  CATEGORY 4 CATEGORY  3  CATEGORY 6
                1    287.2000    287.2000   283.2000    280.8000   27»  1000   279.1000
                                   - MIXING LAYER  HEIGHT (NETERS)  -


STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY


CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY


1
2
3
4
3
6
HIND SPEED
CATEGORY 1
. 173000 + 04
.173000 + 04
.160000 + 03
.320000 + 03
.100000 + 03
.100000 + 03
HIND SPEED
CATEGORY 2
.173000+04
.173000+04
. 102300+04
.300000+03
.100000+03
. 100000 + 03
SEASON 1
HIND SPEED
CATEGORY 3
. 173000*04
. 173000+04
. 123300+04
.840000+03
. 100000 + 03
' . 100000+03
HIND SPEED
CATEGORY 4
. 173000+04
. 173000 + 04
. 121300+04
.840000+03
. 100000+03
. 100000+03
H'IHD SPEED
CATEGORY 3
. 173000+04
. 173000+04
. 12*300+04
.840000+03
. 100000+03
. 100000+03
HIND SPEED
CATEGORY 6
. 173000 + 04
. 173000 + 04
.12*300+04
.840000+03
.100000+03
.100000+03
            FIGURE D-2.   Annual Average  Ground-Level  Particulate Concentration  Output  Listing.

-------
             •«•• 1SCLT
O
KJ
                                .••••                   HYPOTHETICAL POTASH PROCESSING  PLAHT

                                                    -  ISCLT  INPUT  DATA  (
2.3000NPSH
4 .3000NPSK
( .SOOOHPS x
9 . SOOOHPS X
12.3000NPS
(DEGREES )

22
45
67
90
112
135
157
180
202
225
247
270
292
315
337

. 000
500
000
500
.000
500
000
500
. 000
.500
000
. 500
000
500
000
.500

00014950
.00012830
00001180
.000107(0
.00031190
.0003(1 10
.00036650
000*9530
.000(7470
.00033120
.00014410
.0001 1550
.00028990
.00008390
.0000(020
.00028200

.000085(0
.00019980
.00019980
.00025(90
.00059930
.00031390
.000342(0
.00079930
.00085(40
.00034240
.00023(90
.00028330
.00025(90
.00017130
.000083(0
.00022840

. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
.00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
SEASON I
. 00000000
. 00000000
. 00000000
. 00000000
00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000

. 00000000
. 00000000
. 00000000
00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
oooooooo
.00000000
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo

                    STABILITY  CATEGORY  2

MIND SPEED  HIND SPEED  HIND SPEED   HIND  SPEED   HIND SPEED   HIND SPEED
CATEGORY 1  CATEGORY 2  CATEGORY  3   CATEGORY 4   CATEGORY  5   CATEGORY 6
DIRECTION
( . 7SOOBPSH
2.3000HPSK
4 .3000NPSX
( .8000HPS X
9 . SOOONPS X
12.3000DPS
(DEGREES)

22
45
(7
90
112
135
157
180
202
225
247
270
292
315
337
000
500
.000
.500
.000
.500
.000
.500
000
500
000
.500
000
500
ooo
500
.00073330
.00104880
.00044440
.0009(290
.00187730
.001(8920
.001*7700
.002(2380
.00439181
.002(2740
.00143(70
.001(3270
.00249990
.00134250
.00091310
.00073250
.00077080
.00108480
.000(8510
.0,0148450
.00279770
.00279770
.0031(880
.00399(70
.0042251 1
.00308320
.00108480
.0021 1230
.0021 1250
.00119900
.000(8510
.00074220
.00037100
.00048530
.00019980
.00085(40
.001(8430
.0027(910
.00342370
.004253(1
.00283480
.00103630
.000(2810
.00071370
.0011 1340
.00077080
.00043680
.00037110
. OOOOOOOO
. OOOOOOOO
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
.oooooooo
oooooooo
.oooooooo
OOOOOOOO
.oooooooo
.oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
           FIGURE D-2.   (Continued)

-------
              ••••  1SCLT
                                                        HYPOTHETICAL  POTASH PROCESSING PLANT
                                                                                                                                PAGE
                                                                                                                                          3 •• ••
                                                     - ISCLT INPUT  DATA  (CONT.)  -

                                  -  FRE8UENCY  OF OCCURRENCE OF HIND SPEED.  DIRECTION AND STABILITY -
                                                             SEASON I
                                                       STABILITY  CATEGORY  3
                                   HIND SPEED  HIND SPEED  HIND  SPEED   HIND  SPEED   HIND  SPEED  HIND SPEED
                                   CATEGORY  I  CATEGORY 2  CATEGORY 3   CATEGORY  4   CATEGORY 3  CATEGORY 6
DIRECTION
< 73oonps ><
2 3000KPSH
4 .3000NPSX
( .8000NPS )(
9. SOOOHPS X
12.3000NPS
(DECREES >

22
45
67
90
11 2
135
157
1BO
202
225
247
270
292
315
337

000
500
. 000
500
000
.500
000
500
000
500
000
.500
.000
.500
000
.500

..0004t4SO
.000*9900
.00024680
000531 70
.000(8820
000*9610
. .00058420
.00040830
.00117710
.00077160
.000(0100
.00082430
.00141350
.00083360
.00033030
.000(3(10

.000)4210
.00079930
.00074220
.00143390
.00279770
.0037(830
.003054(0
.004233(1
.00408231
.00333990
.001(2720
.90383390
.00439(41
.0021 1230
.00103(30
.00103(30

.00123(10
.00131300
.00094210
. 00137010
.00585231
.00(9(571
.0073(521
. 008107(1
.0051 101 1
.00245510
.00202(90
.00288330
.0059(651
. 00339720
.00134170
.00094210
SEASON 1
. 00014270
. 00048330
. 00042820
.00042820
. 00071370
. 00211250
. 0031(880
.00259780
. 000(2810
.00025(90
.00045(80
.00031390
.001 11340
. 00051390
. 00017130
. 00011420

. 00002830
.00014270
.00002850
. 00005710
. 000083(0
. 00014270
. 00017130
. 00019980
. 00011420
.00011420
. 000083(0
.00017130
.00028530
. 00023(90
.00003710
. 00003710

.00000000
.00002850
oooooooo
.00000000
oooooooo
oooooooo
oooooooo
oooooooo
.00002850
.000085(0
.00014270
.000342(0
.000342(0
.00022840
.00002830
oooooooo

u>
o
                    STABILITY CATEGORY  4

HIND SPEED  HIND SPEED  HIND SPEED  MIND  SPEED   HIND  SPEED   HIND  SPEED
CATEGORY  1  CATEGORY 2  CATEGORY 3  CATEGORY  4   CATEGORY  3   CATEGORY  (
DIRECTION
( .7SOOHPSX
2. 3000NPSX
4 .3000HPSX
6 SOOOHPS X
9 . SOOOHPS X
12. 3000NPS
(DECREES)

22
45
(7
90
' 112
135
157
180
202
225
247
270
292
315
337
000
500
000
500
000
500
000
500
000
500
000
500
000
500
000
500
.00093300
.000(8970
.00039840
.00084880
.00198280
.00133830
.00071740
.00098470
.00100970
.00037970
.00049800
00033980
.00122110
.000(9900
.00033930
.00074000
.00239780
.002740(0
.001(6430
.00408231
.00(19491
.00333841
.00333990
.00342370
.0037(830
.00291190
.00137030
.00179850
.00439(21
.00202(90
.00188420
.0021(9(0
.00790771
.00887841
.00(39431
.008(2141
.01490192
. 01((1482
. 00907B21
.00(59451
.004(8181
.00214110
.00225330
. 00505301
.00913331
.00742241
.0051 101 1
.00(53741
.01367442
.01347432
.00393831
00*16631
. 01247342
.01841332
. 01 190441
. 00702281
. 00431051
.00342570
. 00345430
. 00588081
.01484482
.01413972
.00739371
. 00539541
.01127(41
.00807901
. 00205540
. 001 14190
.00194120
.00322390
. 00171290
. 001 19900
. 00125(10
. 00131320
.00199830
. 00285480
. 00790771
. 010(1981
. 00294040
.002(2(40
.01027721
.00303301
.00034240
.00019980
.00022840
.00048530
.00019980
00023(90
.000(2810
.00048330
.00123(10
.00208400
0037*671
00(59451
.00194120
.00159870
            FIGURE D-2.   (Continued)

-------
 ••••  ISCLT
                    • ••••                  HYPOTHETICAL POTASH PROCESSING PLANT

                                       -  ISCLT INPUT DATA  -

                     -  FREQUENCY  OF OCCURRENCE OF HIND SPEED. DIRECTION AND STABILITY -
                                               SEASON 1
                                          STABILITY CATEGORY 3

                     UIHD  SPEED  HIND SPEED  HIND SPEED  HIND SPEED   HIND SPEED  HIND SPEED
                     CATEGORY  1  CATEGORY 2  CATEGORY 3  CATEGORY 4   CATEGORY 3  CATEGORY 6
                                                                                                                  PAGE
DIRECTION
< . 7300HPSX
2.3000NPSX
4 .3000HPSX
( .BOOOIIPS ><
9 . 3000NPS X
12.SOOOHPS
( DEGREES >

22
45
67
90
112
135
157
180
202
22S
247
270
292
315
337

000
.500
.000
500
000
500
000
500
. 000
300
000
.500
000
500
000
.300

.00000000
.00000000
. 00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

.00525281
.00325440
.00177000
.0033(8(0
.0041(731
.002740(0
.00177000
.0023(950
00243310
.00182710
.001(5380
.00342370
004(8021
.00499391
.0035(830
.00522421

.00950(41
. 007(7941
.005709(1
.00759371
.00970(21
. 005(2391
. 002740(0
. 00182710
.00157010
.00131320
.00199830
.00553831
.0111(221
.00702281
.00(30911
.00899231
SEASON 1
. 00000000
.00000000
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo

. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo

oooooooo
oooooooo
oooooooo
.oooooooo
. oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
oooooooo

                                         STABILITY CATEGORY (

                      HIND  SPEED  HIND SPEED  HIND SPEED  HIND SPEED   HIND SPEED  HIND SPEED
                      CATEGORY  1  CATEGORY 2  CATEGORY 3  CATEGORY 4   CATEGORY 3  CATEGORY (
DIRECTION
( .7300HPSX
2.SOOOHPSX
4 .3000NPSX
6.8000RPSX
9 . 5000NPS X
12.5000HPS
(DEGREES )

22
45
(7
90
112
13S
137
180
202
225
247
270
292
315
337
000
500
000
300
ooo
300
.000
300
000
500
.000
300
000
300
.000
.300
.00(84121
.00373070
.00247790
.00283840
.00475321
.0030(470
.00120440
.0035(230
.00470731
.0048(151
.0029(740
.00590741
.01170781
.00742881
.00(29421
.007(1371
.00973481
.00359541
.00431071
.00493881
.00773(41
.00491021
.00282(20
.0023(950
.0031(880
.0041(801
.00342570
.00944931
.02055443
.01204721
.00982041
.01281802
OOOOOOOO
.OOOOOOOO
. OOOOOOOO
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
. oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
FIGURE D-2.   (Continued)

-------


STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABIL ITY



STABILITY
STABILITY
STAB IL I TV
STABILITY
STABILITY
STABILITY

CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY



CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY

1
2
3
4
5
6



1
2
3
4
3
6
••• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.) -
- VERTICAL POTENTIAL TEMPERATURE GRADIENT (DEGREES KELV IN/HETER ) -
MIND SPEED KIND SPEED HIND SPEED MIND SPEED HIND SPEED WIND SPEED
CATEGORY 1
000000
. 000000
.000000
.000000
200000-0 I
.330000-9 t

WIND SPEED
CATEGORY 1
. 100000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
CATEGORY 2
.000000
.000000
.000000
.000000
.200000-01
.330000-01
- HIND
(HMD SPEED
CATEGORY 2
. 1 00000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
CATEGORY 3
. 000000
. 000000
. 000000
. 000000
.200000-01
. 350000-01
CATEGORY 4
. 000000
. 000000
.000000
. 000000
. 200000-01
. 350000-01
CATEGORY 5
. 000000
. 000000
. 000000
. 000000
. 200000-0 1
. 350000-01
CATEGORY 6
.000000
.000000
.000000
.000000
.200000-01
.350000-01
PROFILE POHER LAV EXPONENTS -
MIND SPEED
CATEGORY 3
. 100000*00
. 130000*00
. 200000*00
.230000*00
.300000*00
.300000*00
HIND SPEED
CATEGORY 4
. 100000*00
. 130000*00
. 200000*00
. 250000*00
. 300000*00
.300000*00
HIND SPEED
CATEGORY 3
. 100000*00
. 1 30000*00
. 200000*00
.250000*00
. 300000*00
. 300000*00
HIND SPEED
CATEGORY 6
. 100000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
                                                                                                      PACE
O
I
GJ
ho
          FIGURE D-2.   (Continued)

-------
            • ••• ISCL T
                                                      HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                               PAGE
                                                                                                                                         6 ••
                                                             - SOURCE INPUT DATA -
            C T SOURCE SOURCE     X
            A A NUMBER  TYPE  COORDINATE
            R P                  < H>
            0 E
    Y      EIU8S10N  BASE /
COORDINATE  HEIGHT  ELEV- /
   (H)           AT10N /
- SOURCE DETAILS  DEPENDING  ON  TYPE  -
                     1   AREA
                                   -13.30
                                               -13.30  10.00
                                                                 . 00 MIDTH OF AREA  ( H>"
                                                                     FALL VELOCITY  (UPS)
                                                                     It ASS FRACTION
                                                                     REFLECTION COEFFICIENT 1
                                                                           - SOURCE  STRENGTHS
                                                  SPEED CATEGORY
                                                26. 60
                                                   - PART1CULATE CATEGORIES  -
                                                     12345
                                                   .0010  .0070  .0190  .0370   .0610
                                                   .1000  .4000  .2800  .1200   .0600
                                                    0000  .8200  .7200  .6500    5900
                                                    ( GRANS PER SEC  PER SQUARE  METER
                                                             - SEASON 1  -
                                                     - STABILITY CATEGORIES  -
                                           6
                                         . 0990
                                         . 0400
                                         . SOOO
            WARNING - DISTANCE BETVEEH SOURCE
            X        2 VOLUME       20.00
U)
            MORNING - DISTANCE BETWEEN SOURCE







1 AND
.00

1
2
3
4
S
6
POINT X.
.90

4
3
0
0
0
0
Y-
.00
< 1 )
.00000
.00000
. ooooo
. ooooo
. ooooo
.ooooo


-01
-01




.00,
(2)
3 . 00000-01
4 . 00000-01
5 . 00000-01
0 . OOOOO
0 . OOOOO
0 . OOOOO
.00
STANDARD DEVIATION OF
STANDARD DEVIATION OF














FALL
MASS




VELOCITY (NFS)
FRACTION
REFLECTION
COEFFICIENT
(3) 14 >
2.00000-01 1.00000-01
3.00000-01 2.30000-01
4.00000-01 5.00000-01
3.00000-01 3.00000-01
7.00000-01 7.00000-01
1 .00000*00 1.00000*00
IS LESS THAN PERMITTED

0 .
2
2
0 .
0 .
0.

THE CROSSMIHD SOURCE DISTRIBUT
<5>
ooooo
00000-01
50000-0 1
ooooo
ooooo
ooooo

ION ( H>«
THE VERTICAL SOURCE DISTRIBUTION CN>-
- PARTICULATE CATEGORIES -
1234
.0010 .0070 .0190 .0370
.1000 .4000 .2800 .1200
1.0000 .(200 .7200 .6300






3
.0610
.0600
.5900

3
I
0
0
0
0

4
1 .

6
0990
0400
5000
(6)
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo

. 70
00






-02
-01












- SOURCE STRENGTHS ( BRANS PER SEC > -

SPEED







2 AND

CATEGORY

1
2
3
4
3
6
POINT X.



1
1
0
0
0
0
Y«


< 1)
. 30000
. (0000
.00000
. ooooo
.00000
.00000




-01
-01




.00.


( 2 >
1 . 00000-01
1 .30000-01
1 .40000-01
o . ooooo
0 .00000
0 . OOOOO
. 00
- SEASON 1 -
- STABILITY CATEGORIES -
(3) (4)
(.00000-02 4.00000-02
1.20000-01 1.00000-01
1.40000-01 1.30000-01
1 .60000-01 1.60000-01
1 .90000-01 1 .90000-01
2.20000-01 2.20000-01
IS LESS THAN PERMITTED



0
8.
I .
0.
0
0 .



< 5 )
ooooo
00000-02
00000-01
ooooo
ooooo
ooooo




2
S
0
0
0
0



(6)
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo




-02
-02





           FIGURE D-2.    (Continued)

-------
           •«••  ISCLT
                                                   HYPOTHETICAL  POTASH PROCESSIHC  PLANT
                                                                                                                         PACE
                                                          -  SOURCE IHPUT DATA -
           C  T  SOURCE SOURCE     X
           0  A  NUI1BER  TYPE  COORDIHATE
           R  P                  < H)
           D  E
    Y      EMISSION  BASE /
COORDIHATE  HEIGHT  ELEV- /
   < «)           ATIOH t
                    < H )  /
-  SOURCE  DETAILS DEPENDING ON  TYPE  -
tv
X 3 VOLUME 30.00







BURNING - DISTANCE BETVEEN SOURCE
X < VOLUME 40.00



00 2.60
SPEED CATEGORY

1
2
3
4
5
6
3 AND POINT X.
00 4.30



. 00

1
1
0
0
0
0
Y«
00



STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION (MI-
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M> =
- PARTICULATE CATEGORIES -
12345
FALL VELOCITY  .0010 .0070 .0190 .0370 .0610
MASS FRACTION .1000 .4000 .2800 .1200 .0600
REFLECTION COEFFICIENT 1.0000 .8200 .7200 6500 .5900
- SOURCE STRENGTHS ( GRANS PER SEC
• ' - SEASON 1 -
- STABILITY CATEGORIES -
( f >
.30000-01
.60000-01
.00000 '•
.00000 "•
. 00000
. 00000
. 00
STANDARD
'STANDARD


( 2)
1 .00000-
1 .30000-
1 60000-
0 .00000
o .00000
0 .00000
,
D'EVJAT ION
DEVIATION'



01
01
01



00
OF
OF


FALL VELOCITY (NPS>
MASS FRACTION
REFLECTION COEFFICIENT
- <3 ) (4 >
8 00000-02 .00000-02
1 .-20000-01 00000-01
I .40000-01 . 30000-01
1 .60000-0! ' . 60000-01
1 .90000-01 . 90000-01
2.20000-01 2.20000-01
IS LESS THAN PERMITTED

0.
8.
I .
0 .
0.
0.

THE CftOSSUIHD SOURCE DISTRIBUT
THE VERTICAL SOURCE DISTRIBUTI
- PARTICULATE CATEGORIES -
1 2 3 4
.0010 .0070 .0190 .0370
. 1000 . 4000 .2800 . 1 200
' 1 . 0000 . 6200 . 7200. .6500





( 5 )
00000
00000-02
00000-0 I
00000
00000
00000

ION ( M)=
ON (H) =

• 5
0610
0600
.5900
4
1 .
6
0990
0400
5000

2
5
0
0
0
0

4
• 1 .

6
0990
0400
5000
. 70
00
.( 6 >
. 00000
. 00.000
.00000
. 00000
.00000
. 00000

. 70
00







-02
-02












SOURCE STRENGTHS (GRANS PER SEC ) -









V0RH1HG - DISTANCE BETWEEN SOURCE

SPEED CATEGORY

"1
2
'3
4
5
6
4 AND POINT X.



I
1
-o
0
0
0
Y*


( 1 >
. 30000-01
.60000-01
.00000
. 00000
. 00000
. 00000
. 00


< 2)
i .00000-
•1 .30000-
1 .60000-
0 .'00000
0 . 00000
0 .00000
,



01
01
01



00
- SEASON 1
STABILITY CATEGORIES -
( 3 ) < 4 >
8 00000-02 .00000-02
1 . 20000-01 . 00000-01
1 . 40000-01 .-30000-01 •
•1 .60000-01 . 60000-01
1 .90000-01 . 90000-01
2 .20000-01 2 ^20000-01
IS LESS THAN PERMITTED



0 .
8.
1
0 .
0
0 .



( 5 )
00000
00000-02
00000-0 1
00000
00000
00000




2
5
0
0
0
0



( 6 )
.00000
.00000
00000
00000
.00000
. 00000




-02
-02





          FIGURE  D-2.    (Continued)

-------
U)
Ln
- SOURCE INPUT DATA -
C T SOURCf. SOURCE X V EMISSION BASE f
A A NUMBER TYPE COORDINATE COORDINATE HEIGHT ELEV- / - SOURCE DETAILS DEPENDING OH TYPE -
RP  (N)  AT ION /
D I
X 5 VOLUME 49.00






PACE
8
• * •
(«) t
.44 (. 10






.00






STANDARD OEVIAT ION OF
STANDARD DEVIATION OF


FALL VELOCITV (MPS)
MASS FRACTION
REFLECTION COEFFICIENT
THE
THE
-



1 .
- SOURCE STRENGTHS









HARMING - DISTANCE BETWEEN SOURCE
X b VOLUME 39.44







SPEED CATEGORY

I
2
3
4
3
6
3 AND POINT X
.04 7.80









1
1
0
0
0
0
,Y =
.00








( t > (2)
30004-01 1.00000-01
(4400-01 1.30040-01
44404 I .60000-01
40444 4.00444
44444 4.00444
44444 4.00440
.44, .40
STANDARD DEVIATION OF
STANDARD DEVIATION OF


FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT



e
i
i
i
i
2
IS
THE
THE
-



1 .
- SOUtCE STRENGTHS









HARMING -.DISTANCE BETHEEN SOURCE

SPEED CATEGORY

1
2
3
4
3
(
( AND POINT X



1
1
0
0
0
0
,r«


< 1) < 2)
34440-41 1.0O444-41
(0004-41 1 . 30440-41
00444 1.40400-01
00444 4.00440
00044 4.00400
00044 0.00404
.04, .04



8
1
1
1
1
2
IS
CROSSHIND SOURCE D1STRIBUT
ION (
VERTICAL SOURCE DISTRIBUTION (M
PARTICULATE CATEGORIES -
1234
4414 .4470 .4190 .0370
1040 . 4000 . 2800 . 1 200
0000 .6200 .7200 6500
( GRANS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
<3 > (4 >
.44444-42 .40400-02
.20400-01 .00440-01
.40004-41 .30404-01
.(0444-41 .(4400-01
.(0444-41 .14444-41
.24444-41 2.24440-01
LESS TNAM PERMITTED









0 .
8.
1 .
0.
4 .
4.

CROSSHIND SOURCE DISTRIBUT

5
0(14
0(04
.3900




00000
00000
00044
44404
44404
44400

ION (
VERTICAL SOURCE DISTRIBUTION (H
PARTICULATE CATEGORIES -
1234
0010 .4474 .0194 .0370
1000 .4444 .2844 .1244
4444 .8244 .7244 .(340
( CftAKS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.44444-42 4.00000-42
.24444-41 1 . 44440-41
.44044-41 1.34444-41
.(4040-01 1 .(0044-01
90044-41 1 . 50000-01
.24444-01 2.20000-41
LESS THAN PERMITTED









4.
8.
1
0 .
0
4.


3
0(10
.0(00
.3904




40000
00000
00000
00000
00444
49440

M)= 4
)= I .

(
. 4990
4400
. 5000




2
-02 5
-4 1 0
0
0
0

M )• 4
>* 1 .

(
. 0990
. 4444
. 3000




2
-02 5
-01 0
0
0
0

70
00





) -


( (>
. 00400
00004
.40004
44440
. 44444
. 44444

. 74
40





) -


( (>
. 00444
. 44444
44444
. 44444
40004
00000












-02
-02
















-02
-02





       FIGURE D-2.  (Continued)

-------
           • •••  ISCLT
                                                     HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                             PBGE
                                                            - SOURCE INPUT DATA -
U>
          C  T  SOURCE SOURCE     X
          A  A  Nil II RE k   TYPE  COORDINATE
          R  f                  (.Hi
          t>  E
    Y      EMISSION  BASE /
COORDINATE  HEIGHT  ELEV- /
   < H >        (H >   ATION /
                     < N)  ,'
- SOURCE DETAILS  DEPENDING  ON  TYPE  -
X 7 VOLUME 69.00







WARNING - DISTANCE BETWEEN SOURCE
X 6 VOLUME 79.00






.00 9.60
SPEED CATEGORY

1
2
3
• 4 ,
5
6
7 AND POINT X,
.00 11.30






. 00

1
1
0
0
0
0
Y =
. 00






STANDARD DEVIATION OF THE
STAHDARD DEVIATION OF THE
FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT 1
- SOURCE STRENGTHS
( 1 > < 2 )
. 30000-01 1 . 00000-01
. 60000-01 1 .30000-01
.00000 t. 60000-01
.ooooo o.ooooo
.00000 0.00000
.00000 . 0.00000
.00, 00
STANDARD DEVIATION OF
STANDARD. DEVIATION OF


FALL .-VELOCITY •( MPS)
MASS FRACTION
REFLECTION COEFFICIENT

8
1
1
1
1
. 2
IS
THE
THE
-



1 .
- SOURCE STRENGTHS
CROSSWIND SOURCE DISTR1BUT
VERTICAL SOURCE DISTRIBUTI
PARTICULAR CATEGORIES -
1234
0010 . 0070 0190 . 0370
1000 .4000 .2800 .1200
0000 . 8200 . 7200 . 6SOO
( GRANS PER SEC
- SEASON 1 •-
- STABILITY CATEGORIES -
( 3 -> . '
.00000-02
20000-01
. 40000-01
.60000-01
. 90000-01
. 20000-01.
( 4 )
4. 00000-02
1 . 00000-01
1 . 30000-01
1 . 60000-01
1 .90000-01
2 .20000-01

0.
8
1 .
0.
0.
0
ION <
ON ( H
5
.0610
.0600
. 5900
( 5 )
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
ooooo
M>* 4
>= 1 .
6
. 0990
. 0400
. 5000

2
-02 5
-01 0
0
0
0
. 70
00
(*•)'•
. OOOOO
. OOOOO
. OOOOO
. OOOOO
ooooo
. ooooo


-02
-02




LESS THAN 'PERNI TTED ,
•CROSSKIND SOURCE DISTRIBUT
ION (
.VERTICAL SOURCE DISTRIBUTION (H
PftRTICULATE
1 •* 2 ...
0010 • 0070.
1000 .:4000
0000 -•••8200
< GRANS PER
CATEGORIES -
3 4
0190 .0370
. 2800 . 1 200
. 7200 . 6500
SEC







5
0610
0600
5900

H ) = . 4
)= , 1 .

6
. 0990
. 0400
. 5000

. 70
00





) -








                                                 SPEED  CATEGORY
                                                                                                    •-  SEASON -1  -
                                                                                             -  STABILITY  CATEGORIES

1
2
3
4
5
6
( 1 )
1 . 30000-01
1 . 60000-01
0 .00000
0 .00000
0 . OOOOO
0.00000
( 2 >
1 .00000-01
I . 30000-0 1
1 .60000-0 1
0 . OOOOO
0 OOOOO
0 . OOOOO
(3)
8 . 00000-02
1 .20000-01
1 .40000-01
1 .60000-01
1 .90000-01
2 .20000-01
.' 4 )
4 . 00000-02
1 . 00000-01
1 . 30000-01
1 . 60000-01
1 90000-01
2 20000-01
( 5 )
0 . OOOOO
8 0.0000-02
1 00000-0 1
0. OOOOO
0. OOOOO
0 OOOOO
( 6)
2 . 00000-02
5 . 00000-02
0 OOOOO
0 OOOOO
0 OOOOO
0 OOOOO
          VARNINC - DISTANCE BETWEEN SOURCE
                                                  8  AND  POINT X.
                                                                                     .00 IS LESS THAN  PERMITTED
          FIGURE  D-2.    (Continued)

-------
• • •• I SCL i
C T SOURCE
A A NUMBER
R P
D F
X 9







SOURCE X Y EMISSION
TYPE COORDINATE COORDINATE HEIGHT
< H> < N) (N )

VOLUME 8» . 00 .00 1300






1CAL PO
SOURCE
BASE /
ELEV- /
ATION /
< H> /
. 00






TASK PROCESSING PLANT
INPUT DATA -











PAGE

10

* * •

- SOURCE DETAILS DEPENDING ON TYPE -


STANDARD DEVI AT ION OF
STANDARD DEVIftT ION OF


FALL VELOCITY  (2)
30000-01 1 . 00000-01
(0000-01 1 . 30000-01
00000 1 . 60000-01
00000 0 . 00000
ooooo o.ooooo
00000 0.00000
.00. .00
STANDARD DEVI AT ION OF
STANDARD DEVIBT ION OF


FALL VELOCITY  < 2)
30000-01 1. 00000-01
(0000-01 I . 30000-01
OOOOO 1 40000-01
ooooo o.ooooo
ooooo o.ooooo
OOOOO 0.00000
.00. .00
200.00. .00







IS
IS

B
1
I
1
1
2








CROSSH1ND SOURCE DISTRIBUTION <
VERTICAL SOURCE DISTRIBUTION  <4 )
.00000-02 .00000-02
.20000-01 .00000-01
.40000-01 .30000-01
(0000-01 .(0000-01
.foooo-oi .10000-01
.20000-01 2.20000-01
LESS THAN PERMITTED









0.
8.
1 .
0.
0 .
0 .

CROSSHIND SOURCE DISTR1BUT

5
0610
0640
5900



( 5 >
OOOOO
OOOOO
OOOOO
ooooo
ooooo
ooooo

ION <
VERTICAL SOURCE DISTRIBUTION (M
PARTICULATE CATEGORIES -
1214
0010 0070 .0190 .0370
1000 .4000 .2800 .1200
0000 .1200 .7200 6500
( CRAMS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
(3) (4 >
.00000-02 4.00000-02
.20000-01 1.09000-01
.40000-01 1.30000-01
60000-01 1.60000-01
90000-01 1.90000-01
.20000-01 2.20000-01
LESS THAN PERMITTED
LESS THAN PERMITTED









0.
8.
1 .
0.
0 .
0 .



5
.0610
.0600
.5900



<5 )
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo




M>- 4
)« 1 .

6
. 0990
. 0400
. SOOO




2
-02 5
-01 0
0
0
0

M >• 4
)» I

6
. 0990
. 0400
.5000




2
-02 5
-01 0
0
0
0




70
00





> -


( 6)
. OOOOO
. OOOOO
. ooooo
ooooo
. ooooo
ooooo

. 70
00





) -


(6)













-02
-02
















00000-02
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo


-02






FIGURE D-2.  (Continued)

-------
             •••• ISCLT
                                                        HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                                  PAGE
                                                               - SOURCE INPUT DATA -
C T SOURCE SOURCE     X
A A NUKBER  TYPE  COORDINATE
R P                  < II)
0 E
     Y       EMISSIOH   BASE /
COORDINATE   HE1CHI   ELEV- /
    < N)         (M )    AT10N /
                      < M)  /
                                                                                         - SOURCE DETAILS DEPENDING  ON  TYPE  -
 o
 I
,CJ
;co
X 11 VOLUME 109.00 .00 16.50 .00 STAHDARD DEVIATION OF THE CROSSHIHD SOURCE DISTRIBUTION < It > • 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION < M )« 1.00
- PARTICULATE CATEGORIES -

FALL VELOCITY (MPS)
• i r ' ' . • . MASS FRACTION
.-• • . REFLECTION COEFFICIENT 1
1
. 0010
.1000
. 0000
2
. 0070
. 4000
. 8200
3
.0190
. 2800
. 7200
4
.0370
.1200
.6500
5
.0610
.0600
.5900
6
. 0990
. 0400
. 5000
                                                                             - SOURCE STRENCTHS'
             WARHING - DISTANCE BETWEEN  SOURCE
             WARNING - DISTANCE BETWEEN  SOURCE
             X       1 2 VOLUME       1 21 . 00
             yPRHlHC - DISTANCE BETWEEN SOURCE
             WARNING - DISTANCE BETWEEN SOURCE
             X       13 VOLUME       144.00
             WARNING - DISTANCE BETWEEN SOURCE
             X       14 VOLUME       167.00
             WARNING -' DISTANCE BETWEEN SOURCE
             X       15 VOLUME       190.00
             WARNING - DISTANCE BETWEEN SOURCE
                                       SPEED CATEGORY

                                               I         1
                                               2         1
                                               3         0
                                               4         0
                                               5         0
                                               6         0
                                       11 AND POINT X.Y-
                                       I1 AND POINT X,Y«
                                       .00  22.50     .00
                                       12 AND POINT X,Y-
                                       12 AND .POINT X, Y-
                                       .00  22.50     .00
                                       13 AND POINT X,Y«
                                       . 00 -22. 50     .00
                                       14 AND POINT X,
                                       .00  22.50
                                                    IS AND POINT X,Y»
                                                                                                 (  GRAMS PER  SEC
                                                                                                          - SEASON  1  -
                                                                                                 .- STABILITY  CATEGORIES '

1
1
1
0
0
0


< 2)
.00000
.30000
60000
.00000
.00000
.00000



-01
-01
-01



. 00
. oo

8
1
1
1
1
2
IS
IS
<3 )
.00000-02
.20000-01
40000-01
60000-01
.90000-01
.20000-01
LESS THAN
LESS THAN
< 4 >
4 . 00000-
1 00000-
1 30000-
1 . 60000-
1.90000-
2. 20000-
PERMITTED
PERMITTED

02
01
01
01
01
01



•. 0
8.
1 .
0
0 .
0


< 5 >
00000
00000-02
00000-01
ooooo
00000
ooooo



2
5
0
0
0
0


< 6)
: OOOOO
.00000
. ooooo
. ooooo
ooooo
•ooooo



-02
-02






                             (1 >
                            30000-01
                            60000-01
                           .ooooo
                            ooooo
                            ooooo
                            ooooo
                                  . 00
                            .   200.00
                            STAHDARD  DEVIATION OF THE
                            STANDARD  DEVIATIOH OF THE
                                  -  SOURCE STREHGTHS
                                        SEASOH 1
                                        2.63000*00
                                  .00,         . 00 IS
                              •200.00,         .00 IS
                            STANDARD  DEVIATIOH OF THE
                            STAHDARD  DEVIATION OF THE
                                  -  SOURCE STRENGTHS
                                        SEASOH 1
                                        2.63000*00
                               200.00,         .00 IS
                            STAHDARD  DEVIATION OF THE
                            STAHDARD  DEVIATION OF THE
                                  -  SOURCE STREHGTHS
                                        SEASON 1
                                        2.63000*00
                               200.00,         . 00 IS
                            STANDARD  DEVIATION OF THE
                            STAHDARD  DEVIATIOH OF THE
                                  -  SOURCE STRENGTHS
                                        SEASON 1
                                        2.63000*00
                               200.00,         . 00 IS
 CROSSWIND SOURCE DISTRIBUTION -  .10.80
 VERTICAL SOURCE DISTRIBUTION =   11.60
(  GRANS PER SEC                           )  -
SEASOH 2     SEASOH 3     SEASON 4

LESS THAN PERMITTED
LESS THAN PERMITTED
 CROSSVIHD SOURCE DISTRIBUTION *   11.60
<  CRAMS PER SEC       '                    )  -
SEASOH 2     SEASON 3     SEASON 4

LESS THAN PERMITTED
 CROSSWIHD SOURCE •DISTRIBUTION  =   10.80
 VERTICAL SOURCE DISTRIBUTION (N>-   11 60
(  GRAMS PER SEC                           )  -
SEASOH 2     SEASON 3     SEASON 4

LESS THAN PERMITTED
 CROSSWIHD SOURCE DISTRIBUTION  =   10.80
 VERTICAL SOURCE DISTRIBUTION <*>•   11.60
<  GRAHS PER SEC                           )  -
SEASOH 2     SEASOH 3     SEASOH 4

LESS TNAN PERhITTEO
            FIGURE D-2.   (Continued)

-------
  ••••  ISCLT  •••	•••••                   HYPOTHETICAL  POTASH  PROCESSJHC PLANT                            «••••».«  PAGE      12  ••••


                                                   -  SOURCE  INPUT  DATA  -

  C  T  SOURCE  SOURCE      X           Y      EMISSION   BASE /
  A  A  NUMBER   TYPE   COORDINATE  COORDINATE   HEIGHT   ELEV- /                   - SOURCE DETAILS  DEPENDING  ON  TYPE  -
  R  P                   < H>          < M>             ATION /
  0  E                                                 («>   /

  X        !(•   STACK       201  00        10.00  10.00      .00  CAS  EXIT  TEMP (DEC K >° 340.00,  CAS  EXIT  VEL   =   8.00,
                                                           STACK DIAMETER  t.OOO. HEIGHT OF  ASSO. 8LDC .  (H> =  23  00.  VIDTH  OF
                                                           ASSO. BLOC   *  47.00.  HAKE EFFECTS FLAC *  0
                                                                - SOURCE STRENGTHS  ( CRAMS PER  SEC                           >  -
                                                                       SCASOM 1     SEASON 2     SEASON  3      SEASON  4
                                                                       9.00000»00
  MARN'NG -  DISTANCE BETWEEN  SOURCE     It  AND POINT  X,Y>     200  00.         .00 IS  LESS THAN  PERMITTED
FIGURE D-2.    (Continued)

-------
             «••• ISCLT
                                                       HYPOTHETICAL  POTASH PROCESSING PLANT
                                                                                                                               PAGE     13 • •••
.O
                     • •    ANNUAL  GROUND  LEVEL  CONCENTRATION (  DICROGRARS PER CUBIC DETER
                                                                 -  GRID SYSTEM RECEPTORS -
                                                               -  X  AXIS (DISTANCE. DETERS' -
                              -30*0.000     -2OOO.OOO    -1300.000    -1250.000    -1000.000
             V AXIS 'D1STHNCE        .  DETERS   >                        -   CONCENTRATION  -
                                                                                                     > DUE TO SOURCE
                                     -800 000
                                                  -oOO 000
                                                               -400.000     -200.000
3000
2000
1500
1250
1 000
800
600
400
200

-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
.000
.000
000
000
ooo
000
000
000
000
.000
000
000
000
.000
000
. 000
000
OOC
15.
25.
31 .
35
37 .
39
40
41 .
41
42
38.
35
32
29
26
22
19
16
10
2331 1 7
096383
709255
930118
7(6652
249267
4(5551
363467
881215
571451
903567
948085
805121
562064
292830
306(02
944419
304027
877412
I 8 .
30
44 .
S3
63 .
7 1 .
76 .
80
82
83
74
63
33
46
3V
33
28
21
1 9
595704
928904
398622
213629
051426
9(8681
7589(5
610969
98(5(0
317893
349024
247273
652445
. 130130
. 442503
. 980226
. 997093
. 790416
. 723071
20
35
51
(4
82
98
1 18
127
134
140
I 16.
96
76
(1
32
42.
33
33
26
120573
742262
.4(5082
383079
0(257(
379997
218757
497962
. 333405
007008
. 213557
100362
136149
385382
371612
217519
912429
576216
039579
20
38
55
71
92
IK
143
168
181
191
152
119
88
73
60
49
46
41
30
.937885
.612876
.597269
. 174443
.703184
.292750
.250614
.318390
.318153
.298014
.569792
.641985
818096
588823
046659
.410876
.892537
.707737
.257155
21
41
62
78
103
136
179
237
239
279
209
133
111
87
73
67
(2
31
33
.417454
.011 132
314393
.267578
991836
.074072
. 014204
. 422142
.351788
.56(078
.333871
.930771
.977(70
303426
. 130736
765156
.890011
. 1 1(381
.2391(5
22.
42.
(7.
87.
113.
137.
213.
29(
373
414.
286
182.
134.
108.
98.
89.
78.
(0.
35.
001(33
403178
071202
173549
319864
7897(2
363441
775832
980713
370820
744933
322518
330871
098702
494929
187100
279366
794123
(380(7
22.
44
71
94.
131
175.
2(6.
396
584
682.
410
244
181 .
153.
137
114
99
(7 .
37
40(949
506822
372622
(77279
812984
7(1223
701855
050018
012718
700706
712780
185183
198156
070227
512161
890892
195431
998775
927289
22 .
46
75
101
149 .
206
311
560
944
1322
361
375
290
232
196
146
113
74
39
(06291
009526
197296
485730
205359
. 473080
931931
. 887863
041451
484818
. (39748
71 3684
. 793839
. 001640
. 9122(4
. 178448
.911121
. 745510
983489
22
46 :
77
107
157
232
373
693
1783
3285
1 1 31
705
493
330
235
168
127
80
41
570146
:550323
704108
.132532
583286
.192675
.359833
.7 12097
.365067
431641
. 1 1 2656
.076614
.842030
. 179633
.632189
.773528
.271148
.495930
.730175
               AXIS (DISTANCE
                                   .000      200.000
                                    ,  METERS   >
       - GRID  SYSTEM  RECEPTORS  -
     -  X AXIS  (DISTANCE.  DETERS)  -
400.000     (00.000       800.000
              -   CONCENTRATION   -
                                                                                                1000.000
                                                                                                             1250.000
                                                                                                                          1500. 000
                                                                                                                                      2000 . 000
3000
2000
1500
1250
1000
800
600
. 400
200

-200
-400
-600
-800
1 000
1250
1 500
2000
3000
000
000
000
.000
000
000
000
.000-
.000
.000
.000
000
000
000
.000
000
000
.OOC.
000
22.
47.
79
111
166
253
430
., 883
2509.

2865
1257
666
410
278
192
141
87
43
(77743
175719
(79336
. 1 15554
803(40
041491
639(37
975342
9(3'7I3
000000
911 804
482344
((8735
0(2202
792706
338332
. (08788
. 012285
. 907272
21
42
69
94
134
191
292
451
973
3772
1490
706
469
318
229
164
1 24.
79
4 1
234118
(31813
482379
.029237
63(381
8(3989
326946
.037827
794449
.401001
093734
1(8335
. 147308
. 460144
037271
713227
. 334027
033843
185440
20
39
60
79
109
137
189
306 .
595
1(47
898.
318.
323 .
.234
187
139
109.
72.
38.
180390
090896
991139
.371454
220163
076151
365341
298756
160080
355499
792297
893097
017230
0529(9
636651
2803(1
166794
138997
965236
18
35
51
63
82
102
144
240
489
873
(31
382
233
182
146
113
93
(4
36
980791
017848
.987680
.73(940
987273
840727
.207319
.30357(
.547377
7385(4
.830784
.899570
.917171
217319
848982
.313137
. 134131
.4331(7
493938
17
30
43
33
(3
84
126
192
353
339
427
296
208
132
119
97
79
36
33
.(75214
.737320
.67(129
.(098(0
.703932
.535987
.049892
.(48809
. 187038
.581223
4729(1
.374131
.03(390
.317839
347918
.128(14
.307329
486966
.848027
16.
27.
37.
44.
56.
78.
112.
174.
263.
3(7.
306.
248.
178.
1 33 .
103.
81 .
(9.
50.
31
298837
1810(7
(82801
416317
300934
478118
1 13387
610664
I-J9-OT2'
039872
749363
761038
399720
224499
095337
902442
343916
276(83
091039
1 4
23
30
37
53
7!
93
141
•193
252
219
I85
•145
116
91
(9
57
44
• 27.
720780
796320
940405
490723
253517
487429
622082
942419
901257
143021
599201
7(8887
392815
277280
3(3341
596685
827950
472208
953678
13
20 .
26
36
49
62
85
1 16
148
184
165
145 .
124
99
82
63
50 .
38
25
292376
(33406
. 947521
281175
731992
823(32
190733
. 328004
. 790(34
839499
272737
. 250357
021405
(48745
141430
508497
. 529677
938442
337409
11
16
25
32
40
51
65
81
95
1 12
104
95
85
:75
64
53
44
30
21
. 146984
.082098
.870794
.648046
5(2992
. 1341 12
.830317
.035526
.964260
.749397
.003670
. 394717
.636791
.4(9131
.307(33
. 7441 60
.423832
.6093(9
.431062
            FIGURE D-2.   (Continued)

-------
 •••« ISCLT
                                           HYPOTHETICAL POTASH  PROCESSING PLANT
                                                                                                                   PAGE
                                                                                                                            14 ••«•
              ANNUAL GROUND LEVEL CONCENTRATION (
 Y AXIS (DISTANCE
                   3000.000
                        ,  METERS
                                                NICROCRAHS  PER  CUBIC  HETER
                                                   - GRID  SYSTEM  RECEPTORS -
                                                 -  X AXIS  (DISTANCE'  METERS)  -

                                                          -  CONCENTRATION  -
                                                                                         )  DUE  TO  SOURCE
                                                                                                              1 (CONT.)  ••
      3000
      £000
      1500
      1230
      1000
       800
       600
       400
       200

      -200
      -400
      -600
      -800
     -1000
     -1230
     -1300
     -2000
     -3000
         000
         000
        .000
         ooo
        .OOb
         ooo
         000
        .000
        .000
         000
        .OOu
        .000
         000
         000
        .000
        .000
        .000
        .000
         000
 7.846320
13 047363
20.266*92
24.082613
30.139071
33.293283
40.496793
43.658641
30.646130
36.332646
31.309070
30.881071
47.904321
44.684403
41.106*3*
37.267112
32.32320*
25.43714*
13.21334*
         ••   ANNUAL GROUND LEVEL CONCENTRATION (  NICROGRANS  PER CUBIC  HETER
                                                       - DISCRETE RECEPTORS -
                                             X         Y      CONCENTRATION
                                          RANGE    AZIMUTH
                                                   BEARING
                                          (METERS) (DEGREES)
                                                                                         >  DUE  TO  SOURCE
                                                                                                               (CONT. >  ••
   X         Y
RANGE    AZIMUTH
         BEARING
(METERS) (DECREES)
                    CONCENTRATION
                                                                  X
                                                               RANGE
                                                                                                   CONCENTRATION
                                                                        AZIMUTH
                                                                        •EARING
                                                               (METERS)  (DEGREES)
    2108 .0
                 14 0     33 678412
                    - 10 CONTRItUTINC VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COHtlNEO SOURCES
                                               COORDINATE
                                                            COORDINATE
                                                                         CONCENTRATION
                                                (METERS)
                                                             (METERS  >
200 00
-200.00
.00
.00
-200.00
400.00
200.00
-400. 00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
3772.401001
32S3. 411641
2863. 911*04
2309.961713
1711.163067
1447.133499
14*0.093734
1322 484818
FIGURE D-2.   (Continued)

-------
                ISCLT  ......«....•«                  HYPOTHETICAL POTASH PROCESSING  PLANT                            ........ pdGE     15  ....



                   ..    ANNUAL  GROUND LEVEL  CONCENTRATION (  MICROGRANS PER CUBIC METE.R             ) DUE TO  SOURCE       1 
-------
                I SCLT
                                                    HYPOTHETICAL POTASH PROCESSING PLAHT
                                                                                                                             PACE
           Y  AXIS  (DISTANCE
                        AHNUAL  GROUND  LEVEL CONCENTRATION ( MICROCRANS PER CUBIC METER
                                                              - GRID SYSTEM RECEPTORS -
                                                            - X AXIS (DISTANCE. HETERS) -
                            -3000  000    -2000 000    -1500 000    -1250.000    -1000 000
                                  , HETERS  )                         -  CONCENTRATION  -
                                                                                                  ) DUE TO SOURCE
                                      -800.000
                                                   -600 000
                                                               -400 000
V
OJ
           Y  AXIS  (DISTANCE
                                 .000       200.000
                                  , DETERS   >
       - GRID SVSTEN RECEPTORS -
     - X AXIS (DISTANCE.  METERS) -
400.000      (00.000      800.000
              -  CONCENTRATION  -
                                                                                             1000.000
                                                                                                          1250  000
                                                                                                                       1500.000
                                                                            -200.000
3000
2000
1500
1250
1000
BOO
600
400
200

-200
-400
-600
-eoo
1000
1250
1500
2000
3000
000
000
000
000
000
000
000
000
ooo
.000
000
000
000
000
000
000
000
ooo
000
.006965
.011515
. 014513
.016475
. 017381
.018161
. 018828
. 01)354
.01)713
.020141
.018523
.017138
.015(66
. 014146
.012(13
. 010888
.009587
. 007797
. 005056
.008(68
.014112
.020459
. 0244(8
.028933
032995
.035478
037530
.038928
. 040275
. 035441
.031 178
. 02(677
.022212
.018985
.01(298
.0138(1
.0100(8
.009041
. 009457
. 016(42
.023424
.029795
.037868
. 045305
.054043
. 059212
.0(2940
.066056
. 0555S6
.04(102
.03(511
.029(84
.025150
.020183
. 01(500
.015437
.01 18(9
.009761
.018078
.025849
.032337
.042992
.053804
.06(131
.078152
.085020
.0903(2
.073214
.057673
.043017
.035479
.028820
.022614
.021602
.019099
.013531
.010159
.019329
029185
036506
.048070
.0(3414
.083236
.108406
1220(9
.132433
101294
.073871
.054393
.042149
.033350
031196
.028850
.023342
.015147
.010476
.020396
.031(39
.040981
.053978
.071498
. 100129
. 138255
. 175870
. 19(519
. 139285
08931 1
065674
.049192
.045428
.040974
.035847
.028046
016276
. 01071 1
. 021 206
.034546
. 044942
. 062401
.082892
. 120385
187572
278131
.328299
. 203643
. 121 138
.081989
.071738
0(34(9
052774
. 04(095
. 031 120
.017341
. 010850
. 022056
. 036007
.048577
.071700
. 098869
. 149439
. 255829
.478446
.672045
307297
. 172356
136328
. 107757
.091244
.067500
. 052445
. 034312
.018313
.010881
.022457
.037534
051848
.076554
. 1 13060
. 184907
.353476
.904135
2 . 154006
.600412
.354220
.239562
. 155911
. 1 10504
.078479
.058886
.037064
.019156
                                                                                                                                    2000.000
3000
2000
1500
1250
1000 .
800
600
400
200

-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
ooo
ooo
ooo
000
ooo
000
000
000
000
000
ooo
000
000
000
000
.010848
. 022493
.037903
.052833
.079373
. 120597
.207455
.446022
1.573416
. 000000
2. 098428
.64718)
.316597
. 190098
. 128307
. 087984
.0(4584
. 039615
.019992
.010392
.021035
.034548
.047111
.0(8329
098866
. 155380
.277381
.(0(844
3.850015
1 .020814
.466688
.255(00
. 1(4571
. 115250
.081019
. 0(0393
.037712
. 019359
. 009*13
.019385
.030533
. 040069
.054712
.071447
. 100980
. 155132
359376
1 .05(81 1
.535093
.275795
. 177023
. 124354
.095741
.070451
054204
.035056
. 018535
.0093(1
.017466
.025980
.032426
.042491
.052989
.0703(8
.127025
.270137
.494085
.343357
200776
.128390
.095957
.07(522
.058439
.047065
.031926
.017580
.008754
.013402
.022042
.027106
.033334
.040854
.0(4027
.100(25
. 1881 13
.289897
.223884
.151209
.105058
.0758(4
.0(1779
.049890
.040541
028522
.01(526
.008109
.013650
.018914
.022300
027078
.039210
.057075
.090279
137146
. 191973
. 157454
. 12(034
.089115
.066355
.050939
.041873
.035328
025531
. 015402
. 007344
. 01 1886
.015416
017995
.02(386
.035871
. 047524
.072450
. 099690
. 129765
.111431
.092458
.071508
.057230
. 045054
.034240
.029328
.022509
.014108
.006638
.010248
.012930
.017851
.024759
.031549
. 043083
. 059067
.075734
. 094095
.083148
.072006
.060938
.048576
. 040141
.031178
. 024820
. 019642
. 012784
.005521
.007718
.012740
.016195
020257
025(54
.032994
.040699
048287
036687
.051835
.047058
.041770
036592
.031008
.02(020
.021614
.015021
010758
        FIGURE D-2.    (Continued)

-------
         «••• ISCLT
                                                  HYPOTHETICAL  POTASH PROCESSIHG PLAHT
                 • •    AHNUAL GROUND LEVEL COMCEHTRATI OH ( HICROGRAHS PER CUBIC METER
                                                            - GRID  SVSTEH RECEPTORS -
                                                          - X AXIS  (DISTAHCE. DETERS) -
                           3000.000
         Y AXIS (DISTAHCE        .  HETERS  )                   .      -   COHCENTRATIOK  -
                                                                                               >  DUE  TO SOURCE
                                                                                                                  ......  PACE


                                                                                                                   2 (COHT . )
O
3000
2000
1500
1250
1 000
800
600
400
200

-200
-400
-(00
-800
-1000
-1250
-1500
-2000
-3000

X
RAHGE

( METERS)
2108.0












000
000
000
000
000
000
006
.000
000
.000
000
000
000
000
000
000
.000
000
000

Y
AZIMUTH
BEARIHC
(DECREES)
14.0
-











003765
00740?
010053
01 1851
014468
017552
020156
. 022742
02S241
028059
026482
025017
023387
021652
. 01)854
017615
015531
012252
. 007459

COHCENTRATION



.017735
10 CONTRIBUTING






























- DISCRETE RECEPTORS -
X Y COHCENTRATIOH X Y COHCEHTR AT I OH
RAHGE AZIMUTH RAHGE AZIMUTH
BEARIHG BEARING
C HETERS) (DEGREES) (METERS) (DEGREES)

VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBIHED SOURCES 2, -11.
X Y COHCEHTRATION
COORDIHATE COORDINATE
(HETERS) (METERS >
200.00 .00 3 930015
-200.00 .00 2.154006
.00 -200.00 2 096428
.00 200.00 1 373416
400.00 .00 1.05(811
200.00 -200.00 1.020814
-200 00 200.00 .904135
200.00 200.00 .60(644
      FIGURE D-2.     (Continued)

-------
          •••• ISCIT  •••«•••«••«••                  HYPOTHETICAL POTASH  PROCESSING PLANT                            ........  PAGE      18  ••••

                  • •    ANNUAL  GROUND  LEVEL CONCENTRATION (  MICROCRAHS  PER CUBIC  METER             > DUE TO SOURCE      2 
                                                          -40».00          .00           472045
                                                           tOO 00          .00          .4*40*3
7
*»
         FIGURE  D-2.     (Continued)

-------
  ••••  ISCLT
                                            HYPOTHETICAL POTASH PROCESSING PLAHT
                                                                                                                   PAGE
         ANNUAL  GROUND  LEV.EL. CONCENTRATION
                   -3009 . 000
                               -2000.000
  Y AXIS  (DISTANCE
                           METERS
MICROGRANS  PER CUBIC METER
         -  GRID. SYSTEM RECEPTORS -
       -  X  AXIS (DISTANCE. METERS) -
-1300.000    -1250.000    -1000.000
               -  CONCENTRATION  -
                                                                                             FROM  COMBINED  SOURCES      2,   -11.
                                                                                    -800.000      -bOO.OOO      -400 000      -200.000
3000
2000
1500
1250
1 000
800
600
400
200

-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
.000
000
000
000
000
000
000
000
.000
000
000
. 000
000
.000
. 069304
. 1 13857
. 142735
. 160232
. 170188
. 177838
. 184442
. 189671
. 193323
. 197745
. 182106
. 1(8766
. 154584
. 139907
. 125081
. 107328
.093127
. 077746
. 050333
. 08(142
. 139337
. 201219
. 239272
. 281320
. 318479
. 3423(6
. 361978
. 373318
. 386932
. 343296
. 303183
. 260745
.218181
. 18(092
. 160396
. 137286
.099186
.086727
. 094322
. 1(3830
.230082
.291938
. 3(7370
. 43(039
.513902
. 562360
.596982
.626915
.330070
. 443178
. 353657
.287631
.243489
. 198804
. 1(0810
. 149136
.11(430
.0973(3
. 178439
.252009
.315(99
.4175(0
.51(717
.(28419
.733812
.795(38
.845442
.(90285
.530122
.41 1486
342576
281155
.218323
.203334
. 184434
. 132180
. 1013(3
. 191507
.285347
.353433
464783
.609051
.785794
.998(82
1 .119701
1 .212016
.938373
.(93395
.515(42
.405981
.317405
2924(7
.274032
223481
. 149433
. 104822
. 200914
.310634
398038
516398
.6820(1
. 941902
1 . 2682(3
1 . 567403
1 . 740726
1 . 237816
.823493
.(18541
.439324
. 417079
.363993
. 340640
.2(3285
. 1(1049
107303
.210418
333440
. 439216
. 599(23
. 78131 1
1 . 11 7271
1 . 687760
2. 384049
2. 767684
1 . 779768
1 . 0877(1
. 737824
. 641 625
.582381
.495048
422359
303513
. 172083
. 109256
.220121
. 355209
.476062
. 677265
.937151
1 . 364402
2 . 24 1689
4 . 056708
5 . 143662
2 661422
1 .440039
1 . 155965
. 9(0547
. 800418
.642579
. 505382
. 336456
. 182243





1
1
3
6
13
4
2
2
1
1




. 109943
.223575
.373983
.512328
.745408
.077942
.738784
.028498
.661888
.022506
.074889
.708335
.022530
.420212
.037472
.752934
.572445
.3(5480
. 1 91207
                                                      -  GRID SYSTEM RECEPTORS -
                                                    -  X  AXIS (DISTANCE. METERS) -
Y AXIS (DISTANCE
3000
2000
1500
1250
1000
800
600
400
200

-200
-400
-600
-800
-1000
-1250
-1 500
-2000
-3000
000
000
000
000
.000
000
000
. 000
.000
000
. 000
.000
. 000
000
000
000
000
000
.000

1 .
1 .
3
1 1

12
3
2
1 .
1




.000 200.000
. METERS )
1 09330
.226130
379032
323420
781384
170039
954(20
923381
471383
. 000000
344737
043224
. 747707
733743
204173
842362
(26087
.389287
. 198870

1 .
1 .
2.
3.
23
7.
4.
2.
1 .
1




10(237
215839
355736
48(192
70(732
025948
(18620
920527
483708
993482
773(22
389494
321651
(50743
1(4315
822B54
(14(71
384241
197230
400. 000


1 .
1 .
3
10.
4 .
2
1 .
1 .





101744
2003(1
318236
420413
577554
779998
066844
543233
335(35
171(92
910321
(21337
796403
328333
986233
728293
359027
360114
189719
600 . 000 800 . 000
- CONCENTRATION -



1
2
3
3
1
1
1





.096439
.181873
.273604
.347338
.448524
.564292
.717416
.253873
.716410
. 1 14832
.330263
.986406
.291082
.0021 80
.79(041
:(222(8
.490786
.330799
180766



1
1
3
2
1
1






.090332
161361
.231 1 16
283721
.333885
418369
.642060
.030907
.941765
.062559
.324929
549731
.0(4409' '.
.775074' '
.(49274
.322149
.423022
.298044
. 170729
1000 . 000
. 084182
. 142420
. 198802
235667
.277776
394483
.583774
897066
1 433333
2.039336
1.633134
1 .272277
.914706
.676022
. 324130
. 440561
.370225
.266134
159859
1250 . 000
076024
.124210
162242
. 184594
. 267202
367660
492226
. 750609
1 046927
1 375513
1 17 1796
962635
. 740086
.389321
. 461627
353451
. 308395
.235324
. 145883
1500 . 000
.068920
. 107175
. 132515
. 180881
.233840
. 326109
439963
.615844
. 796398
.995872
. 874905
.752439
. 629156
. 502345
.413644
. 31 9859
. 256346
.205748
. 133096
2000 . 000
057371
.079031
130178
166584
.209609
.264368
.342652
425358
.506765
.597055
.544025
.491973
.434382
. 380056
.320431
.268332
.222434
. 155218
. 1 12234
FIGURE D-2.   (Continued)

-------
•••• ISCLT •••••••••••••
                                          HYPOTHETICAL POTASH PROCESSING  PLANT
                                                                                                                   PACE
       ANNUAL GROUND LEVEL CONCENTRATION <
                                           N1CROCRAHS PER CUBIC METER
                                                    - CRIO SYSTEM RECEPTORS  -
                                                  - X AXIS (DISTANCE. METERS)  -
                                                                                   >  (CONT.) FROM COMBINED SOURCES
S 'DISTANCE
3000
2000
1500
1250
1000
800
too
400
200

-200
-400
-too
-•00
1000
1250
1500
2000
3000
000
000
.000
000
ooo
ooo
.000
000
ooo
.000
.000
.000
.000
ooo
000
000
ooo
000
000
3000.000
. DETERS > - CONCENTRATION -
.018924
.07(09*
10385*
. 120*11
. 194*8?
. 182127
.20*715
.237103
.2(394?
.2*33*1
27(41*
2(0(*0
.24317*
.214319
2*5259
.1 7*738
. 1(0045
.12(144
0770(5
    X
 RANGE
ANNUAL CtOUNO LEVEL CONCCNTMT ION (  HICIOCMIIS PER CU8IC HE tit
                                               - •itcitTt •ictrroit
       r      COMCCNTIATION          X         V      CONCENTRATION
                                  • MCE    •ZIHUTII
                                           • CM INC
                                   (DCCKIS)
                                                                                   )  (CONT.) MOM COMBINED SOURCES
                                                                                                                            -It.
          AZIMUTN
          BEARING
 (METERS) (DECICCt)
   X         Y
MNGE    AZIMUTH
         • (MING
(•CTEtS) (DECREES'
                                                                                                     CONCENTRATION
   2108.0
                14.0
                            .183*57
                                             - ftOC«AN OETC MINED NAXIftU*  1*  VALUES  -
                                              COORDINATE   COORDINATE
                                                                         CONCCNTIATIOH
                                               (NITttS)
                                                            (MtTtRS >
200.00
-200.00
.00
.00
400.00
200.00
-aoo.oo
200.00
00
.00
-200.00
200.0*
00
-200.00
200.00
200.00
2S.**5482
13 02250(
12.34479?
11.471983
10. l?l(*2
7.775(22
(.((1*88
5.483708
FIGURE D-2.   (Continued)

-------
          •••• ISCLT •••••	•••                   HYPOTHETICAL  POTASH PROCESSING PLANT                            ........  poCE      48  ••••


            • •   BHNliftL GROUND  LEVEt  CONCENTRATION (  NICROGRAMS  PER  CUBIC DETER             ) (COHT.) FROM COMBINED SOURCES       2.    -11,
                                                       - PROGRAM  DETERMINED MAXIMUM 10 VALUES -

                                                            X            Y        CONCENTRATION
                                                        COORDINATE    COORDINATE


                                                         (METERS)    
-------
        • ••• ISCL T
                                                  HYPOTHETICAL  POTASH  PROCESSING  PLANT
                                                                                                                          PACE
               ANNUAL GROUND LEVEL  CONCENTRATION  <
o
**
vo
                         -3000 000
                                      - 2000. 000
        Y AXIS ' 0 iSTHNCE
                                 METERS  >
HICROGRABS PER  CUBITXETER
         - GRID SYSTEIt RECEPTORS -
       -  X AXIS (DISTANCE.  HETERS> -
-1300.000    -1250.000    -1000 000
                   CONCENTRATION  -
                                                                                                    FROR COHB1NED SOURCES     12,
                                                                                           -800  000     -iOO.OOO     -400 000
        Y AX !S < D ISThNCE
                              .000      200.000
                               ,  METERS  >
         - GRID SYSTEM RECEPTORS -
       - X AXIS (DISTANCE,  DETERS) -
  400.000      (04.000      800 000
                   CONCENTRATION  -
                                                                                           1000.000
                                                                                                        1250  000
                                                                                                                    1500.000
                                                                                                                                 -200 000
3000
2000
1 500
1 250
1 000
600
600
400
200

- 200
-400
- 600
-800
1 000
1 250
1 500
2000
3000
000
000
OOC.
ooo
000
000
000
000
000
000
ooo
00*
000
000
000
000
000
000
ooo
1
1
1
1
2
2
2
2
2
2
2
2
2






026136
46(923
731106
9(1593
099291
22(346
345510
453982
549123
723536
4(0799
298247
127076
950(89
772396
578029
353474
153758
821929
1
1
2
2
2
3
3
3
4
4
3
3
3
2
2
2
1
1
1
256639
800774
324 103
630876
970332
383329
(54743
922350
1499(3
536736
924102
5301(8
11(801
721 101
271 145
01 3745
78(021
400879
233152
1
2
2
3
3
4
4
5
5
(
3
4
3
3
2
2
2
1
1
394891
041300
652226
123444
(((295
M9426
898023
3421 1 8
754478
413326
327103
(13119
918(25
107347
747335
351178
OI3SS9
820123
330709
1
2
2
3
4
4
3
(
(
7
(
5
4
3
3
2
2
2
1
457(31
223513
B3S598
382038
081321
717387
924089
397145
994015
898811
3(3733
3397(3
307072
479133
0205(1
3Z509(
341790
143(14
(93313
1
2
3
3
4
3
6
7
8
t 0
7
6
4
3
3
3
2
2
2
5(3327
393042
1359U
(88808
3120(4
384980
394051
9(87 19
784849
100913
800076
342207
(30759
900884
292710
004131
828426
301049
004370
1
2
3
4
5
3
7
10
10
12
9
7
3
4
3
3
3
2
2
(27987
537323
41(398
012042
0(4338
971 147
333305
105235
84(931
7IS501
343(90
378835
200032
237973
983939
364726
341222
838203
17(083
1
2
3
4
•5
6
8
10
1 1
16
1 1
7
5
5
4
4
3
3
2
701 759
765(27
691384
433402
408(35
871447
414105
947987
927800
7070(5
452104
(39159
81 5339
322970
71 1037
328892
932989
471504
3(0704
1
2
4
5
6
7
10
12
19
23
15
8
7
6
5
5
5
3
2
7(7006
903706
125984
14271 3
1 1 4076
47(237
0(281 0
959803
(89732
3(5372
01 9095
584537
(05318
527227
9(9(58
7(2002
0(8898
848852
539866
1
3
4
5
7
9
1 1
16
25
36
16
12
10
9
8
6
5
4
2
821(74
0(31(7
358539
395(22
1(9499
354106
3(6325
802806
817279
872723
782434
158228
043595
933138
443030
770402
703456
23(399
709668
                                                                                                                                 2000 000
3000
2000
1 500
1 250
1 000
800
600
400
200

-200
- 400
-600
-800
-1000
-1 250
-1 500
-2000
-3000
000
000
ooo
000
000
000
000
ooo
000
.000
000
000
000
000
000
.000
000
000
.OOC-
1 .
3
4
5
7
9
13
22
39
S3
27
21
15
1 1
9
7.
6
4
2
8(3959
1 80661
606066
800(42
(29095
929136
824750
679297
465606
515590
318790
760216
240382
8753(8
. (5(154
726638
366639
625996
86627?
1 .
3.
4.
6
8.
10
1 4 .
23
47 .

. 47.
26
18
1 4 .
1 1 .
9.
7 .
3.
3.
94(137
33353(
894876
193524
1933(8
737393
944343
3(9781
2738(5
000000
((1743
873203
927883
3114(9
334809
037(35
341380
207078
131571

3
4
5
(
g
11
13
23
((
32
20
17
13
10
8
(
5
3
. 8(4315
. 1327(9
444413
489854
. 99(7 13
. 871583
. 830539
. 944838
. 402405
. 329726
3391 29
314912
.715207
. 2000(7
333226
.443438
. 947709
. 0142(5
. 0(3723
1
2
4
3
(
(
7
II
22
40
27
17
12
10
10
8
(
4
3
.818903
977((3
.091908
.01(295
. 181206
664326
698926
.238172
. 100778
045153
. 707(00
.591312
. 722244
.997480
.2(80(2
.202712
.(38505
.898(79
.039350
1
2
3
4
4
3
7
9
1 8
28
2 1
1 3
I 1
9
8
7
6
4
2
7(2482
791661
.818324
.08(707
.((9840
21(991
.130131
.4(0494
.10(442
322048
1 037 18
.(90922
.8433(5
. 193337
. 1 492(1
.085935
613816
726667
995852
1 .
2
3
3.
3
3.
6
9
14
21
16
13
9
8
7
(.
3
4
2
.(97084
(73073
1 13531
.438843
838446
0233(0
338229
831520
. 9(30(4
742420
725171
148636
(75957
678366
. 032344
242832
568466
. 731584
. 935314
1
2
2
2
3
4
5
1
12
16
13
1 1
8
7
b
5
4
4
2
606376
209(53
61 1359
824745
(38(94
568589
. 861778
427739
224927
524483
385482
531110
441(39
1(21(5
321995
344371
8(3932
. 031 366
840997
1
1
2
2
3
4 .
6
8
10
13
10
9
8
6
5
4
4
3
2
478013
934(54
192930
732542
31 1530
3481 15
036804
144196
178134
114771
986314
444956
0515(3
429449
610717
886875
24 1057
(36089
. 700475
1 .2232(1
1 .47027(
2.121044
2 .(29033
3 218704
4 2154(1
5 .303346
6 . 402(51
7 .488700
9 .079860
7 .933(29
7 134890
6 285479
5 .395544
4 .(55951
4100524
3 .597720
2 .92(842
2 .323(98
         FIGURE  D-2.    (Continued)

-------
            •••• ISCL7
                                                      HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                               PAGE
                                                                                                                                        62 •••*
                          GROUND  LEVEL CONCENTRATION ( HICROGRANS PER CUBIC METER
                                                                - GRID SYSTEM RECEPTORS -
                                                              - X AXIS (DISTANCE. NETERS) -
                              3000.000
                                                                                               ) (COHT.) FROM COMBINED SOURCES
                                                                                                                                  12,
                                                                                                                                        -15,
            V  AX 15 (DISTANCE
o
 I
(Jl
o
                                     DETERS
                                                                          CONCENTRATION
3000
2000
1500
1250
l ooo
800
600
4 00
200

-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
.000
000
000
OOf,
000
000
000
000
000
000
000
000
000
000
000

1
1
2
2
3
3
4
4
5.
4 .
4 .
4
3
3.
3.
2.
2 .
1 .
. 830907
438025
929534
. 299519
.907767
351531
. 601683
.248733
£84326
339422
. 870247
557828
226481
8BI844
532636
102986
77)832
339335
793834
                X
             RANGE
ANNUAL GROUND LEVEL CONCENTRATION  ( M1CROCRAMS PER CUBIC METER
                                               - DISCRETE RECEPTORS
       Y      CONCENTRATION           X         Y      CONCENTRATION
                                                                            ) (CONT ) FROM COHBINED SOURCES
                                                                                                               12,
                                                                                                                     -13,
                      AZ IMUTH
                      BEAR INC
              METERS)  (DECREES)
                                  RANGE    AZIMUTH
                                           BEARING
                                  (NETERS) (DEGREES)
   X         Y
RANGE    AZIMUTH
         SEARING
(METERS) (DEGREES)
                                                                                                                 COHCEHTRATION
               2108  0
                                      2.96*893
                                                         - PROGRAM DETERMINED MAXIMUM 10 VALUES -

                                                              X            Y        CONCENTRATION
                                                          COORDINATE .  COORDINATE
                                                           (METERS )
                                                                        (METERS )
400. 00
. 00
200. 00
200. 00
600. 00
. 00
-200. 00
400. 00
. 00
: 00
-200 . 00
200. 00
. 00
200 . 00
. 00
-200 . 00
66 329726
33. 515390
47. 661743
47. 273863
40. 043133
39. 463606
36. 872723
32. 339129
           FIGURE D-2.   (Continued)

-------
••••  1SCLT  ••••••»•»«•••                  HYPOTHETICAL POTASH PROCESSING PLANT                           ........ pflCE      63  «...



  «    ANNUAL  GROUND  LEVEL  CONCENTRATION '. H1CROCRAKS PER CUBIC  NETER              )  (CONT  >  FROH COMBINED SOURCES     12,    -15,
                                            - PROCRAH DETERHINED  NAXIHUH 10 VALUES  -

                                                 X            Y        CONCENTRATION
                                             COORDINATE   COORDINATE


                                              (METERS)     (METERS  )
                                                 800 00          .90        26.322046
                                                 400.00      -200.00        27.707400
FIGURE D-2.   (Continued)

-------

                                                      HYPOTHETICAL  POTASN  PROCESSING PLANT
                                                                                                                              PACE      (4  ••••
 I
tn
to
                    ••   ANNUAL  GROUND  LEVEL  CONCENTRATION (  HICROCRANS  PER  CUBIC METER
                              '  '                                -  GRID  SYSTEM  RECEPTORS -
                                                              -  X  AXIS  (DISTANCE. METERS) -
                             -3000.000     -2OOO 000    -1500  000    -1250.000     -1000 000
            Y AXIS (DISTANCE       .  METERS   >                         -   CONCENTRATION  -
                                                                                                   ) DUE TO SOURCE
                                     -800.000
                                                  -600.000
                                                                                                                       I 6
                                                               -400000      -200.000
3000
2000
t 500
1250
1 000
800
600
400
200

-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
000
oon
000
000
000
000
000
OOu
000
000
000
000
000
000
ooc
. 1 94004
. 281036
335371
. 3601*9
377567
. 3*0335
. 402395
. 412803
. 421518
. 423332
. 39518*
3(6032
. 336429
. 306922
. 278000
. 243286
. 221409
. 187246
. 134163
. 221637
. 310734
. 403118
. 460372
. 320193
. 332199
. 376033
. 396223
. 61 1690
. 61 1 709
. 351024
. 488265
. 42S877
. 366235
. 323930
. 286388
.232344
. 197313
. 193603
. 239433
. 336798
. 43351 3
. 512590
. 602639
. 680728
. 732679
. 763492
. 789244
. 78381 1
. 682661
.377210
. 473794
. 406702
337381
. 303272
.257741
.244983
242297
247235
. 360002
.444328
.333127
.646679
.747237
.844893
.889606
.921203
914316
.771395
.627439
.301191
.431442
.369925
.303440
.274781
.290844
.269890
.234435
.382670
.4891 70
.334654
.687935
.818264
.962786
1 .036087
1 . 100662 .
1 .087988
.878317
.673775
.341682
.450636
.374364
329684
.345733
.343994
.297660
. 262341
.399868
.326191
.609338
. 713933
.873123
1 . 038602
1 . 232746
1 . 293867
1 .273403
. 974330
. 703664
.367717
. 436006
. 384470
. 410836
.413062
.392388
.313132
.269747
. 415452
.362198
. 665930
. 791336
.917873
1 . 152606
1 . 427463
1 . 548208
1 513868
1 . 064028
753437
. 577487
. 469397
.304026
. 310831
. 496171
. 441473
.332617
. 275774
.435677
. 594928
. 720418
. 882721
. 037033
. 225331
586036
879582
. 815784
. 103452
. 772306
. 595761
.651580
.637576
. 630068
.581122
. 474940
.349789
.280398
.451749
.633081
.774594
.969637
1 . 174189
1 . 4021 00
1 659714
2 .270847
2 . 1431 95
1 . 123793
.796301
.898089
.894143
831954
722378
.634170
.507454
.366258
            Y AXIS (DISTANCE
                                  .000      200.000
                                   ,  METERS    >
       - GRID  SYSTEM  RECEPTORS -
     -  X AXIS  (DISTANCE. METERS) -
400.000     £00.000       800.000
              -   CONCENTRATION  -
                                                                                               1000.000
                                                                                                           12SO.000
                                                                                                                        1500 000
                                                                                                                                     2000.000
3000
2000
1500
1250
1 000
800
600
400
200

-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
. 283491
. 462313
. 639417
. 818392
. 041270
. 278540
. 573095
. 808802
. 996482
755319
. 193126
. 384831
. 243651
. 072384
.930313
.790686
683910
.337513
.381712
. 284907
. 466332
. 669938
. 836790
1 . 072030
1 . 313341
1 . 362778
1 . 626612
. 863316
.000000 ;
2.232423
1 . 830429
1 . 461610
1 . 204016
t .018421
. 849445
. 726404
.563633
. 395810
.271733
. 429879
. 393406
. 720934
. 880379
. 01 8746
.116103
. 058815
. 020363
! . 328528
. 583050
. 410742
.209373 '
. 045214
. 91 1833
. 779938
. 678221
.337420
. 385304
.237521
389362
.512386
394414
.681819
.757306
783714
. 786152
I .497748
2 791865
1 .667326
1 .074860
.989275
.889018
.797718
.702978
624302
.508243
373903
.242637
.347176
.428690
.486725
.544358
.571348
.600277
.952363
1 .587248
2 325415
1 .622603
I . 123357
.817340
.759827 "
.699348
629152
.569258
.477717
.361932
. 227376
. 305361
.370863
. 406751
. 432877
. 439607
. 668601
. 949090
1 .479771
1 . 944634
1 492234
11 13601
.83391 1
.648773
.611148
.363295
. 318973
.447202
349331
208265
.268491
308809
. 324505
371 240
. 50 1359
. 665932
. 908945
! . 288151
1 576370
1 . 298919
1 . 027370
.824230
.657124
. 525433
. 488770
. 460522
.409731
.333880
. 190677
. 233949
.257612
.288574
394078
. 4998 18
. 6241 19
850985
1 113102
1 . 306923
1 . 124264
937561
. 776081
. 647550
. 539176
. 431337
. 408699
374486
. 31 7808
. 162882
. 1 82986
.249967
.312398
.386547
453586
.576280
715501
.857957
.961991
.867565
.768489
670454
.584810
.515255
.439065
.375589
.313068
.280590
          FIGURE D-2.   (Continued)

-------
7
in
•• I SCLT
• •



ANNUAL GROUND LEVEL CONCENTRATION ( HICROGRAHS PER CUBIC DETER > DUE TO SOURCE 16 (CONT > ••



AXIS (DISTANCE
3000
2000
1500
1250
1000
800
600
400
200

-200
-400
-600
-800
-1000 .
-1250
-1500 .
-ZOOO .
-3000
000
000
000
000
000
000
00-1
000
000
000
000
000.
COO
000
000
000
000
000
000
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE/ METERS; -
3000 .000
, DETERS > - CONCENTRATION -
. I 18448
I94403
256078
.291362
.352144
41013*
. 470(34
532378
5*3*07
63*122
599341
557864
5157*8
.474083
433413
3*0244
. 355025
.293978
.220719
     x
  RANGE
           AZIMUTH
           BEAR INC
  (DETERS) ( DECREES)
ANNUAL GROUND  LEVEL  CONCENTRATION  ( NICROCRADS PER CUBIC HETER
                                         - DISCRETE RECEPTORS -
                               X          Y      CONCENTRATION
                            RAMCE    AZIDUTH
                                    BEARING
                            (DETERS) (DECREES)
                                                                                        > DUE TO  SOURCE
                                                                                                            16  (CONT.)  ••
                      CONCENTRATION
                                                                                               X
                                                                                            RANCE
                                                                                                     CONCENTRATION
                                                                                                    AZIDUTH
                                                                                                    BEARING
                                                                                            (METERS) (DECREES)
    2 10 6 0
                 14 0       .1*8237
                    - 10 CONTRIBUTING  VALUES  TO  PROCRAD OETERDINED HAXIHUH  10  OF CODBINED SOURCES
                                                                                                     It.
                                                (DETERS)
                                                                         CONCENTRATION
                                               COORDINATE   COORDINATE:
                                                            (METERS )
too. oo
400.00
•00.00
-200 00
200.00
-200.00
. 00
1000. 00
.00
.00
.00
200.00
-200.00
.00
200.00
.00
2 7*18(5
2 528528
2 325415
2. 270847
2.252425
2. 1431*5
I 996482
1 944634
FIGURE D-2.   (Continued)

-------
          • ••• ISCL1 ••«•«••••»•»•                  HYPOTHETICAL  POTASH PROCESSING PLANT                            •	 PUCE


                 • •   ANNUAL GROUND LEVEL CONCENTRATION (  HI CROCKAHS  PER CUBIC DETER             )  DUE TO  SOURCE      16  (CONT.)   ••
                            - 10 CONTRIBUTING VALUES TO PROGRAM  DETERMINED MAXIMUM 10 OF COMBINED SOURCES      16.

                                                           X            V        CONCENTRATION
                                                       COORDINATE    COORDINATE


                                                        (NETERS)     (METERS  )
                                                          -400 00        200.00        1.679582
                                                           200 00       -400.00        1 850429
I
Or
          FIGURE D-2.    (Continued)

-------
          »•••  ISCLT
                                                    HYPOTHETICAL POTASH PROCESSIHC  PLAMT
                                                                                                                            PAGE
                       ANNUAL  GROUND  LEVEL  CONCENTRATION  (  HICROGRAHS PER  CUBIC  HETER              > DUE TO SOURCE
                             -  10  CONTRIBUTING  VALUES  TO  PROGRAM DETERMINED KAXIHUN 10  OF  COMBINED SOURCES    -16.
                                                        COORDINATE
                                                                                  CONCENTRATION
                                                                     COORDINATE
                                                         (METERS >
                                                                     (METERS  )
                                                           too  oo
                                                           -200.00
                                                               .00
                                                               .00
                                                           -200.00
                                                           400.00
                                                           200.00
                                                           -400.00
                                                               .00
                                                           -200.00
    .00
    .00
-204.00
 200.00
 200.00
    .00
-200.00
    .00
-400.90
-200 00
3 850013
2. 1S4004
2.0*8428
I 37341*
 .»041JS
1.0)t811
t.020814
 .472049
 .447180
 .400412
I/I
In
        FIGURE D-2.     (Continued).

-------
 •••• ISCLT
                                           HYPOTHETICAL  POTASH PROCESSING PLAHT
                                                                                                                   PACE
                                                                                                                            83  ••••
   •'•   ANNUAL GROUND LEVEL  CONCENTRATION (  MICROGRANS  PER  CUBIC METER
                                                     -  GRID SYSTEM RECEPTORS -
                                                   -  X  AXIS (DISTANCE. METERS) -
                  -3000  000     -2000.000    -1300.000    -1250.000    -1000.000
 Y AXIS (DISTANCE        ,  METERS   >                         -  CONCENTRATION  -
                                     )         FROM COMBINED SOURCES    -16,


                                     -800.000     -600.000     -400.000     -200.000
3000
2000
1500
1250
1 000
eoo
600
400
200

-200
-400
-600
-BOO
1000
1 250
1500
2000
3000
000
000
000
.000
000
000
.000
000
000
.000
. 000
000
000
000
.000
000
000
000
.000
It
26.
33.
38.
40.
42.
43.
44.
45.
45
41
38.
35.
31.
28.
24.
21 .
17.
1 1 .
3223(0
938198
918464
412107
413(93
044022
397894
41991)
045173
91(0(0
941(37
781 127
423207
939581
4(8303
435443
(14428
722773
683859
20 .
33 .
47 .
36 .
(6 .
76 .
81 .
83 .
88.
90 .
79 .
69.
59.
49
42 .
36 .
3 t .
23 .
21
1(0139
1799(8
329038
344346
823286
222681
332103
491316
123725
833263
167438
568684
4358(4
455644
2236(6
440931
172742
487793
238330
21 .
38.
34
(8.
86
103 .
124
134 .
141
147
122.
101 .
80.
(3.
33.
43.
38
33.
27.
849217
284207
780899
. 31 1043
.698893
64(181
363353
167921
474094
833048
753387
733862
684219
387279
721813
070771
344336
790456
929014
22
41
59
75
97
122
ISO
176
190
200
160
12(
94
77
63
52
49
44 .
32
.7401 14
.374827
. 149200
.407299
.848737
.274283
.648001
.338940
.028994
.93(366
397211
159304
237838
.8419(9
718297
459734
714458
326645
354336
23
43
66
82
111
142
187
247
270
291
219
1(1
117
92
77
71
66
54
33
336577
960347
224823
.8(4464
.656610
.886354
. 13(818
443(14
.35(9(1
966961
170632
(40333
665745
.060918
. 1 15408
392230
338199
.186901
690(44
23.
43.
71 .
92
121 .
1(5
222
309
387
430.
298
191.
140
113
103
93
82.
64
38
996981
341280
324417
192979
(14747
31(082
(97435
3820(9
(68900
300426
322762
(28498
937147
272001
280412
546669
37(281
290197
310328
24.
47
75.
too
138
184
277
410
601
703
425
253
188
16:
143
120
104.
72
40 .
485956
898315
959636
.215822
. 61 27(4
331835
385811
113197
872719
. (892(2
008(44
665927
328789
504404
309587
225656
046945
215261
792690
24
49 .
80 .
107
156
215
324
577
969
1352
580
386
300 .
240
204
153 .
120 .
79 .
43
758325
569026
273409
. 824919
. 879406
923487
584450
675323
667404
. 809340
4236(0
510540
150852
140980
339903
213083
06(515
405753
055383
24
50
83
1 13
166
243
387
715
1818
3337
1 153
• 720
506
342
245
177
134
85
45
. 782160
.290810
.069705
.81 50(8
.467819
.798899
867008
.203056
. 1 15005
.469910
.095627
.739624
.806213
.427147
.944628
.021231
. 161208
625255
.017305
 V AXIS (DISTANCE
                       .000       200.000
                        .  METERS   >
       -  GRID  SYSTEM RECEPTORS -
     -  X  AXIS  (DISTANCE, METERS) -
400.000     600.000      800.000
              -   CONCENTRATION  -
                                                                                   1000.000
                                                                                                1250.000
                                                                                                             1500.000
                                                                                                                          2000.000
3000
2000
1 500
1250
1 000
800
600
400
200

-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
24
51
85
118
176
265
448
912
25(2
35
2906
1265
665
424
290
201
149
92
47
934721
044839
323863
2(0000
233377
419224
012074
388736
897093
270909
768219
670700
900(33
743869
383519
698225
283406
563078
334122
23
4C
73
101
144
204
31 0
478
1029
3796
1347
739
492
333
242
173
133
83
44
371416
689335
402963
345734
608702
942(34
452636
934720
417297
39(332
783400
281393
038418
826340
774803
443130
21(473
188610
910047
22
42
((
86
117
147
203
322
(22
1726
937
343
343
249
200
149
117
78
42
418(00
853902
349194
002(48
674806'
746462
379015
845(31
918434
383315
824738°
440018
736201
(2(393
087930
232218
331745
070786
603978
21
38
56
69
90
1 10
133
253
515
923
((4
403
268
195
158
122
100
70
40
133632
36(743
8(5574
695181'
298818
62(843
407338
381753
8(4479
(903(9
753903
534119
919738
103984
710787
841108
907719
190881
087975
19
34
- ••• 4 8
' 58
" 71
90
134
204
374
373
432
312
221
1(3
128
105
: 8(
(1
37
770863
057716
154256 *
469010 '
272028
742887 '
422354
092562
822460
291 183
524174
9381 14
761490
048063
845993
3(5843
913419
989390
37(537
18.
30.
41 .
' 48"
(0.
•"84.
119.
184
281 .
392
326
2(4.
190.
143.
111.
89.
73.
35.
34.
307478
301922
3(5995
517578
650049
3553(1
704184
288324
017220
78(240
(1991 1
315340
024277
227(44
2(2972
149122
801771
721(00
333759
16
26
34
40
57
76
too
133
208
271
235
199
155
124
98
75
(3
49
31
61 1444
398673
022812
824563
530(50
925032
642008
029696
461252
619366
455381
290188
398756
685884
672390
783270
460796
148626
274437
15 . 029985
22 . 91 1182
29 . 530576
39 . 483169
53 . 891436
67 . 999671
92 . 291634
26 . 139023
60 . 878254
!00 . 277052
78 . 258224
56 . 385298
33 . 4781 95
07 . 228083
88 . 7049(2
69 . 148563
55 . 435775
43 . 154763
28 . 488787
12
17
28
35
44
56
72
88
104
123
1 13
103
93
82
(9
58
48
34
24
590498
814389
371980
756058
377848
067525
052589
579032
817677
388295
350881
790063
027099
029533
799262
552079
621592
004495
147583
FIGURE D-2.   (Continued)

-------
 •••• ISCLT
                                           HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                    PAGE
                                                                                                                             84  ••••
V
In
    ««   ANNUAL GROUND LEVEL CONCENTRATION ( N1CROCRAMS PER CUBIC METER
                                                     - GRID SYSTEM RECEPTORS  -
                                                   - X AXIS (DISTANCE. HETERS) -
                   3040.000
 V  AXIS (DISTANCE       > METERS   )                         -  CONCENTRATION  -
                                                                                    > (CONT.) FROM COMBINED SOURCES
                                                                                                                      -It,
3000
2000
1500
1250
1000
BOO
too
400
200

-200
-400
-too
-800
1000
1250
1500
2000
3000
.000
000
ooo
000
.000
.000
000
000
000
000
000
000
000
000
.000
.000
.000
.000
.000
9
It
22
2t
33
3*
44
so
St
(2
s»
Si
32
4V
49
40
35
28
17
8343)8
775850
55t4(2
7*4475
.5739(7
237078
.978824
(7t«71
I87«0«
(043(8
.2550*1
. 257470
.Bfl**7(
2(4845
47B4St
*40J17
.112128
217005
.21*220
   ••   ANNUAL GROUND LEVEL CONCENTRATION ( N1CROGRANS PER CUBIC METER
                                                       - DISCRETE RECEPTORS
                                             X         Y      CONCENTRATION
                                          RANGE    AZIRUTH
                                                   • EARING
                                           (DEGREES)
                                                                                    > (COHT.) FROM COMBINED SOURCES
                                                                                                                      -It.
                 X
              RANGE
                                  CONCENTRATION
                       AZIMUTH
                       BEARING
              (METERS) (DEGREES)
   X         Y
RANGE    AZIMUTH
         •EARING
(METERS) (DECREES)
                                                                                                                  CONCENTRATION
    2108 .0
                 14.0
                          1*.2)04*5
                                              -.PROGRAM DETERMINED MAXINUN  10  VALUES -
                                               COORDINATE
                                                            COORDINATE
                                                                          CONCENTRATION
                                                (METERS)
                                                             (HETERS >
200.00
-200.00 '
.00
.00
-200.00
400.00
200.00
-400.00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
37*8.31(332
ll)7.4(t*10
2t«i.7t821*
25(2 8*70*5
1818. 115005
172* 385315
1547. 785400
1352.80*540
FIGURE D-2.   (Continued)

-------
            •••• ISCLT  *••••••••»•••                   HYPOTHETICAL POTASH  PROCESSINC  PLANT                            ........  p«tE      83  •••«


              • •   ANNUAL  GROUND  LEVEL  COHCEMTRATI OH  < NICROCRANS PER CUBIC  NETER              ) (CONT.) FROH CONIINED SOURCES     -It.
                                                        - PROCRAH DETERNINEO NAXINVN l«  VALUES -

                                                             X            Y        CONCENTRATION
                                                         COORDINATE   COORHNATE


                                                          (DETERS)     (DETERS >
                                                                .00      -4*0  «»      12IS.C70700
                                                            -200 00      -200  »»      1133  «»J*27
a
Ul
00
            FIGURE  D-2.    (Continued)

-------
           • ••• I5CL7 •....t«..«««»                  HYPOTHETICAL POTASH  PROCESSING PLANT                           ........  PACE     86  ••••


                                                 - SUHHARY OF SOURCES OUTPUT  TO  TAPE -


           NUH8ER/TYPE HUHBER/TYPE  NUMBER/TYPE  MUHBER/TYPE NUHBER/TYPE NUMBER/TYPE HUHBER/TVPE  NUMBER/TYPE NUHBER/TYPE  NUKBER/TYPE  NUMBER/TYPE
                12       21        31       «   I ,     51        II        71        81       »1       101      111
               !21      131       141      131      160
O
 I
in
          FIGURE D-2.   (Continued)

-------
are from pages 46 through 48 of the output listing.   These pages show the
combined particulate concentrations for Sources 2 through 11 with the max-
imum 10 values and receptors for the combined Sources 2 through 11.   Figure
D-2 continues with output pages 61 through 63 showing the combined source
output for Sources 12 through 15.  The output for Source 16 is shown on
pages 64 through 66.  The ISCLT program then continues to print the 10
values from each of Sources 1 through 16 that contribute to the maximum
10 of all 16 sources combined (only Source 2 is shown).  The program only
displays the 10 values that contribute to the maximum 10 because the cal-
culations for all receptor points for each source have been displayed
earlier in the output listing.  The output listing for this example is
terminated on output page 86 with a summary of the source ID-number and
source type of each source output to tape with the respective calculated
concentrations.
D.3       EXAMPLE DRY DEPOSITION RUN

          This ISCLT program example run calculates the total annual ground-
level dry deposition from the same hypothetical potash processing plant de-
scribed in Section D.2.  This particular example is modeled using 11 out
of the original 16 sources.  Only the first 11 sources are used here because
Sources 12 through 16 are assumed to be emitting only submicron particulates
that are assumed to be completely reflected at the ground surface and thus
do not contribute to the ground level deposition.

          D.3.1    Input Data Set-Up Procedure

   '',      The input card data set-up procedure for this example is the same
as that used in Section D.2 for the example concentration run.  The data param-
eters that are different from those used in the concentration example are
shown in Figure D-3.  Card Groups 1 and 5 in Figure D-3 are the same as those
                                   D-60

-------
LSCLT INPUT DATA CODING
PROJECT Example Deposition
FORM
NAME
DATE SHEET 1 OF 2

CARD GROUP
NUMBER , I* 3 4 5 6 T S 9 1C II 12 13 14
DATA CARD COLUMN
5 16 17 IB 19 20 21 22 23 24*25 26 27 28 29 50 31 32 33 34 33 56 37 36 39 40 41 4
1
Z 49 44 45 «6 47 46
CONTROL DATA PARAMETER AND VALUE
1-


9 f/af/ IY?IY IY IVWpf1
IM IA> lAi^lA IAi l/Y*lAi^l'
« D H H
§ 0 g g
8 o x i
3- ,*!,![>|/v»l/-/!A/hj i i IAi 1 , , v\lv\ 1 i
pj 2: Q w tf w
^ < w ffl E-1 ^
!> U Pi E^ ^ k*
X w CQ to w O
t 1 1 1 1 1
(till,

49 SO 91 92 S3JS4 99 M 57 98 39JSO «l B2J63 M 63 66 87 M 89 70 71 72 73J74 75 r8J77 7g 79 go
(X means do not punch)
ING PLANT 	
1 1 1 1 I 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 t 1 1 1 1 1 1 I 1 1 !
1 1 1 1 t I I i 1 1 1 1 1 1 I I I 1 I i 1 i i 1 i I 1 i i I i
- N0C0MB (array, omit if NGRCfUP=0) -
N/ N./ h./ N/ N/ K/ N/ K/ NV K/ ^ N/ N/ ^/ NV NX
- IDS0RC (array, om
( ( ( ] | ! | , | , , 	 | ! I | I I I
III 1 | 1 1 1 t 1 1 1 1 1 1 1 1 1 I 1 1 1 1

it if NGRC
1 | I 1 1
1 1 1 1 1
1 1 t 1 1
1 I 1 1 1
>UP=0) -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t II111 [ f ]
1 1 1 1 t I 1 1 1 1 1 t 1 1 1 1 1 1 | 1 1 1 1 1 1 
-------
o
to
ISCLT INPUT DATA
PROJECT Example Deposition


CARD GROUP
NUMBER
17d -
CODING
FORM

DATA

i
(0
II 12 13 14 IS 16 17 IB 19
20
Zl Z2 2J|24J25p6 27 28 29
SOURCE DATA
,1:. 2637 , , , 1,. 58,E,7
, , K -9,. ,4,6,361 , -, , ,1,., 2,6,E,7
, , , ^..S.IE
6 , ,9,. 4,6 36
, , , ,3,. ,1,5 E,7 , , ,7,. 8,836
1 1 1 1 1 1 j 1
R O 1 TT"
, , , ,D|. |O,1 £,
6
, .i^sE.ej , .3,. 15,36
, , , ,4,. 1,0,36
3. 15E6
1 1 1 1 1 1 1 1 1
, , , ,2,., 5,2,36
, , , ,1,. ,2,6,36
i- : • i i I i it
,,, ,6,. ,3,1,35
1 1 1 1 1 1 1 t 1
I i I i 1 i I I f
I 1 ' ! 1 1 1 1

i i i i i i i i i
1 1 1 1 ! 1 1 I 1
1 1 1 1 f 1 1 1 t
i I I i I r i i i
i i i i i i i i i
i i i i l i f t >
,,,,,,,,,
t i i i t i i i i
1 1 1 1
3O
31
32
33
343
536
37
CARD
M
13
PARAMETER

, , , ,1,,5,8E7


i |l,,26£,7i
, I , I1!' ,26E
, , ,9,. ,46,E
i i i i
7i '

1
5, ,0,536 , , , ,,
4. 10E6i 5. 05E6
1 1 l 1 1 1 . 1 t 1 1 1 ! 1 1 1 1
, ,3, 78E6
, , , ,3,.,1,5E
, ,- , ^..^E.e1
6| , , i ,4,,1,OE,6
, , , ,2,. ,5,2,E,6
, , ,.,!,. ,5,8,E,6
1 1 1 1 1 1 1 | 1
i I 1 f I 1 1 f
1 1 1 1 1 1 1 1
, , , ,3,,1,5,E,6
1 1 ! 1 1 | 1 1 1
1 1 1 1 1 1 I 1 1
i ; : 1 1 i 1 1
1 1 1 t 1 1 1 1
1 1 1 1 1 1 1 1 1
| 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1
1 I 1 I 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1





-




	 1
1 1 1 1 1 1 1 ! i
t 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I I t 1 t 1 t 1








'
























'



















|
I


tl|»

j
(
|
I
- <*
|

|
1
,5'
|5 •

r
I

,
t
. |
|
|
|
|


t
|
(
|
1
|
|

|
|
|
|
|


5
5




o
o









-







4O
41
(Continued)
NAME
DATE
SHEET 2 OF 2

COLUMN - . .
42
43
44
454
647
46
AND VALUE


8,37


-
*

5
5













3




7




E,6
36


























49
H,.
52
S3
54
35
56
37
(X means do
Q -
























































































I
2.
2r
I


)
5r
5,.

I

1
1
1
1
1
1
I
1



|2
9
I"1
i '

1
t

1
1




,9,9






E7| ,
V
•








1

E6
,9,9,36
!
I
|
'
1
|
|
|
|
|
|
I






|


|









|



























|3





3








• fl
m




1




58
59
not




60
6
j _L-

punch)


5,E,7
5




3




7




, , ,6,-, 9, 4,36















i









|





|
|
|
|
I










6





j



•




1


[
1
9,4
















)
1
35


















iiiiitiii














|






\
/
\ source strengths for /
\source 1 /
\ /
sourfee strengths for
sources 2 through 11,
make W copies of each
card \ /
/ \
/ \
FIGURE D-3.   (Continued)

-------
 in Figure D-l and are shown here for completeness.  The parameters ISW(l)
 and ISW(5) on Card Group 2 are changed to the values "2" and "1", respec-
 tively,  indicating deposition is to be calculated and no output tape is
 used.  Card Groups 3 through 4a show the number of input sources  (NSOURC),
 which is reduced to 11, and the number of output source combinations (NGROUP),
 which is reduced to 3.  Also, Card Group 17d shows the new emission rates
 for Sources 1 through 11 for deposition calculations.  The only other change
 in the input deck is the removal of Card Groups 17 through 17d for Sources
 12 through 16.

          D.3.2    Run Time, Required Data Storage and Page Output Estimates

          The run time, data storage and page output estimates calculated for
 the example deposition run are given in the following paragraphs.

          a.       Run Time -  The run time calculated using Equation (4-6)
 is approximately

         Time (seconds) - 11 • (19 • 19+1) • 1 • 6 • 6 • 7 • 7xlO~4
                                                                         (D-9)
                        - 702

or approximately 12 minutes.  The actual run time for this problem was 9
minutes.

          b.       Required Data Storage -  This example run uses the same
 receptor grid system as used in the concentration example and from Section
D.2.2.b.  we know that the receptor points will fit in the ISCLT program.
We therefore need examine only Conditions a, b and c under ISW(ll) and NGROUP
 in Section 4.1.2.  Because tape input/output is not being used in this example,
we must comply with Equation (4-1) or (4-2) under Condition c of ISW(ll) or
NGROUP.   Condition c states that the total number of sources for which concen-
 tration or deposition is to be calculated must be less than or equal to  the
minimum of I and J, where J = 300, and
                                      D-63

-------
        !  .   (40000-(19+19+2 .  1) - [l •  (19 • 19+1)]  - Q)           (D_1Q)
                                (1 • (19 •  19+1))

               109

Thus, the number of sources being used  (11) is well within the program limita-
tions.

          c.       Page Output -   The  page output estimate  is calculated
using Equation (4-8) in Section 4.2.5.  The main difference  between the page
output of this example and the concentration example in Section D.2 is the
reduction in  the number of sources from 16 to 11.  This difference would
require a new estimate of Equation  (4-10) giving
         B  *   1  •   (11+2)
            =  52
~i| •  (19+11)1

     57       '     "   '"    "     '      (D-ll)
As in the concentration example, we should add 11 more pages to B because we
are producing maximum 10 tables of deposition for individual sources that
contribute to combined sources maximum 10 deposition tables.  This gives the
total estimated output pages as

                           pages  a  32+53+5
                                  =  90

The actual number of pages output was 68, with 6 pages of system generated
paper and 62 pages produced 5y the depos-ition run.
                                      D-64

-------
          D.3.3    Example Print Output

          Figure D-4 illustrates the printed deposition output for the
example hypothetical potash plant.   As in Figure D-2, only selected pages
of output are presented here.  The example output shows the annual ground-
level deposition in grams per square meter due to Source 1 and due to
Sources 2 through 11 combined.  The listing is the same in form as that
shown for the concentration calculations in Figure D-2.
                                     D-65

-------
             • •••  ISCL r
                                                       HYPOTHETICAL  POTASH PROCESSING PLANT
                                                                                                                               PAGE
o
 I
O\
                                                    - 1SCLT  INPUT  DATA  -

                      NUMBER  OF  SOURCES  '   11
                      NUMBER  OF  X  AXIS  GRID  SYSTEM POINTS *    19
                      NUMBER  OF  Y  AXIS  GRID  SYSTEM POINTS •    11
                      NUMBER  OF  SPECIAL  POINTS »    1
                      NUMBER  OF  SEASONS  •    I
                      NUMBER  OF  HIND  SPEED  CLASSES •   6
                      NUMBER  OF  STABILITY CLASSES *   6
                      NUMBER  OF  KINO  DIRECTION CLASSES •  16
                      FILE  NUMBER  OF  DATA FILE USED FOR REPORTS  •    1
                      THE  PROGRAM  IS  RUN IN  RURAL NODE
                      CONCENTRATION  (DEPOSITION) UNITS CONVERSION  FACTOR
                      ACCELERATION OF GRAVITY     .04000000
                      PROGRAM OPTION  SVITCHES  =  2, 1. 2, 0.  0.  3,  2,  3, 3, 2.
                      SOURCES USED TO FORM  SOURCE COMBINATION  1  ARE  -     1,
                      SOURCES USED TO FORM  SOURCE COMBINATION  2  ARE  -     2.
                      SOURCES USED TO FORM  SOURCE COMBINATION  3  ARE  -   -II,
                                                              . 10000000*01
                                                                   0.  0,  0.  0.
                                                                                    . 000
                                                                                  0,  0,  1,  0,
                                                                  -II.
       DISTANCE X AXIS GRID SYSTEM POINTS (METERS )'
            -600.00,     -400.00,    -200.00,
            1500 00,     2000.00,    3000.00,
          RANGE X SPECIAL DISCRETE POINTS (METERS )*
       DISTANCE Y AXIS GRID SYSTEM POINTS (METERS )•
            -600.00,     -400.00,    -200.00,
            1500.00,     2000.00,    3000.00,
f-ZIHUTH BEARING Y SPECIAL DISCRETE POINTS (DEGREES)*
                                                                     -3000.00,
                                                                                 -2000.00,
                                                                                            -1500.00,
                                                                                                        -1250 00,
                                                                                                                    -1000.00,
                                                                                                                                 -800.00,
                                                                   00,
                                                                           200.00,
                                                                                      400.00,
                                                                                                  600.00,
                                                                                                              800.00,
                                                                                                                         1000.00,
                                                                                                                                     1250.00,
   2108.00,
  -3000.00,    -2000.00,    -1500.00,    -1250 00,    -1000.00,     -800.00,
00,      200.00,      400.00,      600.00,     800.00,     1000.00,     1250.00,

     14.00,
                                          -  AMBIENT AIR TEMPERATURE  (DECREES KELVIN)  -
                      SEASON
                  STABILITY   STABILITY  STABILITY  STABILITY   STABILITY   STABILITY
                  CATEGORY  1  CATEGORY 2 CATEGORY 3 CATEGORY  4  CATEGORY  5  CATEGORY 6
                1    2B7.2000    287.2000   283.2000   280.8000    279.1000    279  1000
                                   - MIXING LAYER HEIGHT  (METERS)  -


S7 AB iL 1 TY
STDB IL 1 TY
SI ABiLI TY
STABiLI TY
STABIL I TY
ST ABILI TY


CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY


1
2
3
4
5
6
HIND SPEED
CATEGORY 1
. 173000*04
. 1 73000*04
.360000*03
. 320000*03
. 100000*05
. 1 00000*05
MIND SPEED
CATEGORY 2
. 173000*04
. 173000*04
. 102500*04
.500000*03
. 100000*05
. 100000*05
SEASON 1
HIND SPEED
CATEGORY 3
. 173000*04
. 173000*04
. 123500*04
. 840000*03
. 100000*05
. 100000*05
HIND SPEED
CATEGORY 4
. 173000*04
. 173000*04
. 129500*04
. 840000*03
. 100000*05
. 100000*05
HIHD SPEED
CATEGORY 5
. 1 73000*04
. 1 73000*04
. 129500*04
840000*03
. 1 00000*05
. 1 00000*05
HIND SPEED
CATEGORY 6
. 173000*04
. 1 73000*04
. 129500*04
.840000*03
. 100000*05
. 100000*05
          FIGURE D-4.   Total Annual Particulate Deposition  Output  Listing.

-------
  ••••  ISCLT
                      •*••                   HYPOTHETICAL POTASH  PROCESSING  PLANT

                                         -  ISCLT  INPUT  DATA  (CONT.) -

                      -  FREBUENCY  OF OCCURRENCE OF  WIND  SPEED. DIRECTION  AND  STABILITY  -
                                                 SEASON  1
                                           STABILITY  CATEGORY  1

                      WIND  SPEED   WIND SPEED  WIND SPEED  WIND  SPEED   WIND  SPEED   WIND  SPEED
                      CATEGORY  1   CATEGORY  2  CATEGORY  3  CATEGORY 4   CATEGORY  3   CATEGORY  6
                                                                                                                    PACE
                                                                                                                              2 • • **
DI RECTI ON
< 7300HPS )(
2. 3000MPSH
4 .3000HPSX
« 8000HPS X
9 . 3000NPS >(
12. 3000NPS
< DECREES )

22
45
67
90
1 1 2
135
157
180
202
225
247
270
292
31 5
337

000
500
000
500.
000
500
000
500
000
500
000
500
000
500
000
500

.00016950
.00012830
. 00009180
.00010760
00031190
.000361 10
.00038650
00069530
. 00067470
00055120
. 000144 10
.0001 1350
00028990
00008390
. 00006020
00028200

.00008560
.00019980
.00019980
.00023690
.00039930
.00031390
.00034260
.00079930
.00083640
.00034240
.00023690
.00028330
.00023690
.00017130
.00008360
.00022840

00000000
. 00000000
. 00000000
. 00000000
. 00000000
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
SEASON 1
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo

. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo

oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo

                                          STABILITY CATEGORY 2

                      WIND SPEED  WIND SPEED  WIND SPEED  WIND SPEED  WIHD  SPEED   WIND SPEED
                      CATEGORY  1  CATEGORY  2  CATEGORY  3  CATEGORY 4  CATEGORY  5   CATEGORY 6
OIREC
T10N
; 7500HPS )<
2.5000HPSX
4 .3000HPSX
6 8000KPS X
9 . 3000HPS )(
12. SOOONPS
( DECREES >

22
45
67
90
1 1 2
135
!57
!80
202
225
247
i 70
292
31 5
337
OOC
500
000
500
000
500
000
500
UOO
500
000
500
000
500
000
500
00073330
001 04880
00044440
. 00096290
00187730
. 001 68920
001 97700
.00262380
00439181
. 00262740
.00143670
.00163270
.00249990
00134250
.00091310
00073250
.00077080
.00108480
.00068510
. 00148450
.00279770
.00279770
.00316880
.00399670
.0042231 1
.00308320
.00108480
.0021 1230
.0021 1230
.0011 9900
.00068510
00074220
. 00037 100
. 00048530
00019980
. 00083640
. 00168430
. 00276910
. 00342370
.00423361
. 00285480
.00103630
.00062810
00071 370
. 0011 1340
. 00077080
. 00043680
. 00037 1 1 0
. OOOOOOOO
. OOOOOOOO
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
FIGURE D-4.   (Continued)

-------
           •••« ISCL'
                                                     HYPOTHETICAL POTASH  PROCESSING  PLANT
                                                                                                                             PACE
                                                  - ISCLT INPUT DATA  (CONT.)  -

                               -  FREQUENCY  OF OCCURRENCE OF VIHD SPEED,  DIRECTION  AND  STABILITY -
                                                          SEASON 1
                                                    STABILITY CATEGORY  3
                                HIND SPEED   HIND SPEED  HIND SPEED  HIND  SPEED   HIND  SPEED   HIND SPEED
                                CATEGORY  1   CATEGORY 2  CATEGORY 3  CATEGORY  4   CATEGORY  3   CATEGORY «
U
O\
oo
DIRECTION
( 7300KPSX
2.3000NPSX
4 .3000HPSH
( .8000HPS X
) .3000NPS ><
12 3000HPS
(DECREES)

22
45
(7
)0
112
135
1S7
184
202
225
247
270
292
315
337

000
500
000
500
000
500
000
500
000
500
000
500
000
500
000
500

00041430
.00»O)0»
0002(680
00033170
000(8820
0000(10
00038420
. 000(0830
.001 17710
000771(0
.000(0300
.00082450
.00141350
.000833(0
00035030
.000(3(10

000*4210
00079130
.00074220
.001453)0
.0027)770
.0037(830
.003034(0
.004233(1
.00408231
.003S3))0
.001(2720
.003833)0
.0043)(41
0021 1230
.00105(30
.00105(30

.00123(10
00131300
. 000)4210
.00137010
.00585231
.000(371
. 0073(321
.008107(1
.0091 101 1
. 00245510
.00202OO
.00288330
005)((31
. 0033)720
00134170
. 000)4210
SEASON 1
. 00014270
. 00048530
. 00042820
. 00042820
. 00071370
. 0021 1230
0031(880
0023)780
. 000(2810
. 0002SOO
.00043(80
. 000313)0
00111340
. 000313)0
. 00017130
. 00011420

. 00002850
.00014270
. 00002850
. 00005710
. 000085(0
. 00014270
. 00017130
. 000t))80
. 0001 1420
. 00011420
. 000085(0
. 00017130
. 00028350
. 00025OO
. 00005710
. 00005710

.00000000
.00002830
00000000
00000000
.00000000
00000000
.00000000
.00000000
.00002830
.000083(0
.00014270
.000342(0
000342(0
.00022840
.00002830
.00004000

                    STABILITY CATEGORY  4

HIND SPEED   HIND SPEED  HIND SPEED  KIND  SPEED   HIND  SPEED   HIND  SPEED
CATEGORY 1   CATEGORY 2  CATEGORY 3  CATEGORY  4   CATEGORY  5   CATEGORY (
D1RECTI ON
( .7300NPSX
2. 5000HPSH
4 .3000NPSH
6.8000NPS X
) . 5000KPS )(
12 5000NPS
(DECREES )

22
45
67
90
112
135
157
ISO
202
225
247
270
2)2
315
337
000
500
000
500
COO
500
000
500
000
500
000
500
000
500
.000
soo
.000)3500
.000(8)70
.0003)840
.00084880
.001)8280
00133830
.00071740
000)8470
.00100)70
.00037)70
0004)800
.00033)80
. 00122310
.0000)00
.00033350
. 00074000
.0023)780
002740(0
.00168430
.00408231
00(1 9491
.00533841
00333990
.00342570
.0037(830
. 002)11 90
.00137030
. 0017)850
00439621
.0020200
.00188420
.00210(0
. 007)0771
. 00887841
. 0063)431
.00862141
. 014)01)2
01661482
. 00907821
. 0063)451
. 0046818 1
. 0021 4110
.00225530
. 0050530 1
. 00)13531
.00742241
. 0051 101 1
. 00(5374 1
.013(7442
. 01347452
. 00553831
00616631
OI247S42
01841332
. 01 1)0441
. 00702281
. 0043105 1
. 00342570
. 00345430
. 00388081
01484482
.01413)72
. 0073)371
.00339341
. 01127(41
. 00807)01
. 00205540
001 14190
001)4120
. 00322590
. 001712)0
. 001 19)00
00123(10
.00131320
. 00199830
. 00283480
. 00790771
01061)81
. 002)4040
. 00262(40
.01027721
00305301
00034240
00019980
.00022840
00048530
.00019)80
. 000256)0
.000(2810
.00048330
.00125(10
.00208400
.0037(671
.0065)451
.001)4120
.0013)870
          FIGURE D-4.    (Continued)

-------
          ••«• ISCLT
O
o\
vo
                             ><**•                  HYPOTHETICAL POTASH PROCESSING PLANT

                                                 - ISCLT INPUT DATA (
12.3000NPS
( DEGREES >

22
45
(7
90
1 1 2
135
137
180
202
225
247
270
29?
315
337
000
500
000
500
000
500
000
300
000
500
000
500
000
500
. 000
.500
.00(84121
.00373070
.00247790
.00283840
.00479321
.0030(470
.00320440
.0033(230
.00470731
.0048(131
.0029(740
.00390741
.01170781
00742881
.00(29421
.007(1371
.00973481
.00339541
.00431071
.00493881
.00773(41
.00491021
.00282(20
.0023(930
.0031(880
.0041(801
.00342370
.00944931
.02033443
.01204721
.00982041
.01281802
.00000000
.00000000
.00000000
. 00000000
.00000000
. 00000000
. 00000000
.00000000
. 00000000
.00000000
. 00000000
. 00000000
.00000000
.00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
         FIGURE D-4.    (Continued)

-------
• • •• 1 StL

STABILITY
STA8IL ITY
STA8IL ITY
STABILITY
STABILITY
STABILITY



STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY


CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY



CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
>••••• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.) -
- VERTICAL POTENTIAL TEMPERATURE GRADIENT (DECREES KELVIN/METER) -
WIND SPEED MIND SPEED MIND SPEED HIND SPEED HIND SPEED VINO SPEED

t
2
3
4
5
6



I
2
3
4
5
6
CATEGORY 1
000000
000000
.000040
.000000
.200000-0 1
.330000-01

WIND SPEED
CATEGORY 1
. 100000*00
. 130000*00
200000*00
.250000*00
.300000*00
300000*00
CATEGORY 2
000000
.000004
.000000
.000000
.200000-01
.330000-01
- HIND
WIND SPEED
CATEGORY 2
. 100000*00
. 150000*00
200000*00
250000*00
.300000*00
.300000*00
CATEGORY 3
.000000
. 000000
. 000000
. 000000
.200000-01
. 330000-01
CATEGORY 4
. 000000
.000000
.000000
. 000000
.200000-01
. 330000-01
CATEGORY 5
.000000
. 000000
. 000000
. 000000
.200000-01
. 350000-01
CATEGORY 6
.000000
.000000
.000000
.000000
.200000-01
.350000-01
PROFILE POWER LAW EXPONENTS -
WIND SPEED
CATEGORY 3
. 100000*00
. 130000*00
.200000*00
. 230000*00
. 300000*00
. 300000*00
WIND SPEED
CATEGORY 4
. 100000*00
. 130000*00
. 200000*00
. 250000*00
. 300000*00
. 300000*00
WIND SPEED
CATEGORY 5
. 100000*00
. 130000*00
. 200000*00
.250000*00
. 300000*00
.300000*00
WIND SPEED
CATEGORY (,
. 1 00000*00
. 150000*00
.200000*00
.250000*00
.300000*00
.300000*00
                                                                                                  PACE
o
o
        FIGURE D-4.   (Continued)

-------
         •«•• 1SCL1
                                                  HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                        PAGE
                                                                                                                                 6 ** •*
                                                         - SOURCE IHPUT DATA  -
O
I
         C T SOURCE SOURCE      X
         A A NUMBER  TYPE   COORDINATE
         R P                 < N)
         D £
    1       EMISSION  BASE /
COORDINATE   HEIGHT  ELEV- /
   ( N)           ATION /
                    (11)  /
-  SOURCE  DETAILS DEPENDING  ON TYPE -
X 1 AREA -13.30





WARNING - DISTANCE BETWEEN SOURCE
X 2 VOLUME 20 . 00
•1 3. 30 10. 00
SPEED CATEGORY
1
2
3
4
3
6
1 AND POINT X.'
.00 .90
.00
1
1
0
0
0
0
1-
.00
WIDTH OF AREA < M)> 26.60
- PARTICIPATE CATEGORIES -
1234
FALL VELOCITY  (2) (3) <4)
.26000*07 9.46000*06 6.31000*06 3.15000*07
.38000*07
.00000
.00000
. OOOOO
.00000
. 00.
1 .
1 .
0 .
0 .
0 .

26000*07
38000*07
OOOOO
OOOOO
ooooo
. 00
STANDARD DEVIATION OF
STANDARD DEVIATION OF










FALL VELOCITY



9
1
1
2
3
IS
THE
THE
-


MASS FRACTION



REFLECTION
COEFFICIENT
1 .
- SOURCE STRENGTHS









WARNING - DISTANCE BETWEEN SOURCE

SPEED CATEGORY

1
2
3
4
3
6
2 AND POINT X,'



4 .
3
0
0
0
0
t ~


( 1 )
10000*06
03000*06
OOOOO
OOOOO
ooooo
ooooo
. 00,



3 .
4 .
5 .
0 .
0 .
0 .



( 2>
13000*06
10000*06
05000*06
ooooo
ooooo
ooooo
00



2
3
4
3
5
6
IS
.46000*06 7.88000*06
.26000*07 1.26000*07
.38000*07 1.38000*07
.21000*07 2.21000*07
. 19000*07 3. 13000*07
LESS THAN PERMITTED
0
6
9
0
0
0

5
.0610
.0600
.5900
(3 )
.00000
. 31000*06
.46000*06
. OOOOO
OOOOO
OOOOO

CROSSWIND SOURCE DISTRIBUTION »
VERTICAL SOURCE DISTRIBUTION ( H >'
PARTICULATE CATEGORIES -
1234
0010 .0070 .0190 .0370
1000 . 4000 .2800 . 1200
0000 .1200 .7200 6300
( CRAMS
- SEASON 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.32000*06 1.26000*06
.78000*06 3.15000*06
.42000*06 4. 1 0000*06
.03000*06 5.03000*06
.99000*06. 5.99000*06
.94400*06 6.94000*06
LESS THAN PERMITTED









0
2.
3
0
0
0


5
0610
0600
5900



i 5 )
ooooo
52000*06
15000*06
ooooo
ooooo
ooooo

6
0990
0400
5000
1
3
0
0
0
0

4
1

6
0990
0400
5000




6
1
0
0
0
0

. 38000*06
. 15000*06
. OOOOO
. OOOOO
. ooooo
. ooooo

. 70
00





) -


(6)
. 31000*05
58000*06
. ooooo
. ooooo
. ooooo
. ooooo

        FIGURE D-4.   (Continued)

-------
             ••••  ISCLT
                                                      HYPOTHETICAL POTASH  PROCESSING PLANT
                                                                                                                            PAGE
                                                             - SOURCE INPUT  DATA  -
             C  T  SOURCE SOURCE     X
             A  A  NUMBER   TYPE  COORDINATE
             R  P                  < N>
             D  E
    Y      EMISSION   BASE /
COORDINATE  HEIGHT   ELEV- /
   (N)            ATION t
- SOURCE  DETAILS DEPENDING ON TYPE  -
O
I
^1
K>
X 3 VOLUME 30.00






WARNING - DISTANCE BETWEEN SOURCE
X 4 VOLUME 40.00



.00 2.60 .00
SPEED CATEGORY
1
2
3
4
. 3
6 0
3 AND POINT X.Y-
.00 4.30 .00



STANDARD DEVIATION OF THE
STANDARD DEVIATION OF THE
FALL VELOCITY < NPS)
MASS FRACTION
REFLECTION COEFFICIENT 1 .
- SOURCE STRENGTHS
10000*06
03000*06
00000
00000
00000
00000
. 00
STANDARD
STANDARD*

''
3 . 13000*06
4.10000*06
5.05000*06
0 00000
0 .00000
0 .00000
. 00
DEVIATION OF
DEVIATION OF


2
•3
4
3
5
6
IS
THE
THE
-

FALL VELOCITY (NPS)
MASS FRACTION
REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS









WARNING - DISTANCE BETWEEN SOURCE

SPEED CATEGORY

1 4
2
3
4
3
6
4 AND POIHT X.Y =


'( 1 )
10000*06
03000*06
00000-
ooooo
00000
00000
. 00


< 2)
3.13000*06
4 . fOOOO*06
3.03000*06
0 .00000
0 .00000
0 .00000
. 00



2
3
-4
3
5
6
IS
CROSSVIND SOURCE DISTRIBUTION  =
VERTICAL SOURCE DISTRIBUTION «
PARTICULATE CATEGORIES -
12343
0010 .0070 .0190 .0370 .0610
1000 .4000 .2800 .1200 .0600
0000 .8200 .7200 .6500 .5900
( GRANS
- SEASON 1 -
- STABILITY CATEGORIES -
«3> (4) C5 >
.32000*06 1.26000*06
. 79000*06 3 . 15000*06
42000*06 4.10000*06
05000*06 5 05000*06
.9*000*06 3.99000*06
. 9400"0*06 6 94000*06
LESS THAN PERMITTED
0.
2.
3.
0 .
0 .
0.

CROSSVIND SOURCE DISTRIBUT
00000
52000*06
13000*06
00000
00000
00000

ION ( H>*
4
1 .
6
0990
0400
5000
6
1
'o
0
0
0

4
VERTICAL SOURCE DISTRIBUTION <«> = 1.
PARTICULATE CATEGORIES -
1 2 3 4
0010 . 0070 . 0190 .0370
1000 .4000 .'2800 .1200
0000 .8200 '.7200' .6500
( GRANS
' - SEASOH 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.32000*06 1.26000*06
. 78000*06 3 . 13000*06
42000*06 4 10000*06
03000*06 5.05000*06
.99000*06 5.99000*06
.94000*06 6. '94000*06
LESS THAN PERMITTED









0 .
2.
3.
0.
0.
0 .


"s
.0610 .
.0600
. 5 9 O'O



( 5 )
00000
52000«0'6
13000*06
00000
00000
00000


6
0990
0400
5000'




6
1
0
0
0

-------
             •••» ISCL1
                                                     HYPOTHETICAL POTASH  PROCESSING PLANT
                                                                                                                          PAGE
                                                                                                                                    8  • • • *
                                                           - SOURCE INPUT  DATA  -
             C  T SOURCE SOURCE      X           Y      EMISSION  BASE f
             A  A NUMBER  TYPE   COORDINATE  COORDINATE   HEIGHT  ELEV- t
                                                                                    - SOURCE DETAILS  DEPENDING ON  TYPE  -
o
u>
R f ( N) < M>  ATIOH /
0 E < H> /
X 5 VOLUME 41 00







WARHING - DISTANCE BETWEEN SOURCE
X 6 VOLUME 39.00

.00 C . 10 .00
SPEED CATEGORY

1 4
2 3
3 0
4 0
S 0
6 0
3 AND POINT X,Y»
.00 7. BO .00

STANDARD DEVIATION OF THE
STANDARD DEVIATION OF TNE
FALL VELOCITY  =
PARTICULATE CATEGORIES -
12343
0010 .0070 .0190 .0370 .0610
1000 .4000 .2800 .1200 0600
0000 .8200 .7200 .6300 3900
( GRAMS
- SEASON 1 -
- STABILITY CATEGORIES -
(3)
.32000*06
.78000*06
.42000*06
03000*06
.99000*06
94000*06
LESS THAN
CROSSBIHD
VERTICAL
(4 >
1 . 26000*06
3. 13000*06
4 . 10000*06
5.03000*06
3. 99000*06
6.94000*06
PERMITTED

0
2
3
0
0
0

( 5 )
00000
52000*06
15000*06
00000
00000
00000

SOURCE DISTRIBUTION *
SOURCE DISTRIBUTION ( N >-
4
1 .
6
0990
0400
5000

6
I
0
0
0
0

4
1 .
. 70
00
) -
( 6>
. 31 000


*05
. 58000*06
. 00000
. 00000
. 00000
. 00000

. 70
00







- PARTICULATE CATEGORIES -





FALL VELOCITY (MPS>
MASS FRACTION
REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS









UARNIKC - DISTANCE BETWEEN SOURCE

SPEED CATEGORY

1 4
2
3
4
5
«
6 AND POINT X.Y*



1 2
3 4

0010 .0070 .0190 .0370
1000 .4000 .2800 .1200
0000 .8200 .7200 .6500
( GRAMS
-

SEASON 1 -


3
.0610
.0600
.5900


6
0990
0400
5000






) -







- STABILITY CATEGORIES -
( 1 >
10000*06
05000*06
00000
00000
00000
00000
. 00
<2>
3 . 13000*06
4 . 10000*06
S . 05000*06
0 . 00000
0 . 00000
9 . 00000
. 00

2
3
4
3
3
6
IS
(3)
.32000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
LESS THAN
f 4 )
1 . 26000*06
3. 1SOOO*06
4. 10000*06
3. 03000*06
3. 99000*06
6. 94000*06
PERMITTED

0
2
3
0
0
0

<5>
00000
52000*06
15000*06
00000
00000
00000


6
1
0
0
0
3

'. 6)
.31000
. 58000
00000
oooco
.00000
00000


+ 05
»06





           FIGURE D-4.   (Continued)

-------
           ••••  1SCLT
                                                    HYPOTHETICAL POTASH PROCESSIHC PLANT
                                                                                                                          PAGE
                                                                                                                                    9  •*«»
                                                          - SOURCE INPUT DATA  -
           C  T  SOURCE SOURCE     X
           A  A  HUHBER  TYPE  COORDINATE
    Y      EMISSION  BASE  /
COORDINATE  HEICHT  ELEV-  /
                                                                                   - SOURCE DETAILS DEPENDING  ON TYPE -
0
R P < M) < H) (N > ATION /
D E (N) /
X 7 VOLUME 69.00 .00 9.60
SPEED CATEGORY

1
2
3
4
3
6
UPRHING - DISTANCE BETMEEH SOURCE 7 AND POINT X,
X 8 VOLUME 79.00 .00 11.30



. 00

4
5
0 .
0
0
0.
Y*
. 00



STANDARD DEVIATION OF THE
STANDARD DEVIATION OF THE
FALL VELOCITY (MPS)
NASS FRACTION
REFLECTION COEFFICIENT 1.
- SOURCE STRENGTHS
( 1 >
10000+06
05000*06
OOOOO
OOOOO
OOOOO
. ooooo
. 00
STANDARD-
STANDARD



3 .
4 .
5.
0 .
0 .
0 .
,
( 2)
13000*06
10000*06
03000*06
OOOOO
OOOOO
OOOOO
. 00
DEVIATION OF
DEVIATION OF


FALL .VELOCITY




2
3
4
5
5
6
IS
THE
THE
-


NASS .FRACTION
• . REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS
CROSSVIHD SOURCE DISTRIBUTION *
VERTICAL SOURCE DISTRIBUTION CM)*
PARTICULATE CATEGORIES -
12345
0010 .0070 .0190 .0370 .0610
1000 .4000 ..2800 .1200 .0600
0000 .8200 .7200 .6300 .5900
( GRANS
- SEASOH 1 -
- STABILITY CATEGORIES -
<3 )
.52000*06
. 78000*06
.42000*06
.05000*06
.99000*06
.94000*06
< 4 )
1 .26000*06
3. 1 5000*06
4. 10000*06
3.05000*06
5.99000+06
6.94000+06

0.
2.
3.
0.
0.
0 .
( 5 )
OOOOO
52000+06
15000+06
OOOOO
OOOOO
OOOOO
4
1 .
6
0990
0400
5000

6
1
0
0
0
0
. 70
00
( 6)
. 31000 + 05
. 56000+06
. OOOOO
. OOOOO
. OOOOO
. OOOOO
LESS THAN PERMITTED
CROSSVI-MD SOURCE DISTRIBUT
ION ( N)-
VERTICAL SOURCE DISTRIBUTION (H>«
PARTICULATE
1 2
0010 0070
1000 .4000
0000 ..8200
( CRAMS
CATEGORIES -
3 4
.0190 0370
.2800 .1200
.7200 .6500








5
.0610
.0600
.5900

4
• 1*.

6
0990
0400
5000

. 70
00





) -
- SEASOH 1 -
SPEED CATEGORY

1
2
3
4
5
6


4 .
5
0
0 .
0
0.

( 1 >
10000+06
05000+06
OOOOO
OOOOO
OOOOO
OOOOO


3.
4 .
5 .
0 .
0 .
o ..

< 2)
13000*06
10000*06
05000*06
OOOOO
OOOOO
OOOOO


2
3
4
5
5
6
- STA8IL-ITY
<3 ) -
.52000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
CATEGORIES -
( 4 >
1 . 26000 + 06
3. 15000 + 06
4 . 1 0000*06
5. 05000 + 06
3. 99000+06
6. 94000 + 06


0.
2.
3.
0 .
0.
0 .

< 5 )
OOOOO
52000+06
15000+06
OOOOO
OOOOO
OOOOO


6
1
0
0
0
0

( 6 >
.31000*05
. 56000+06
. OOOOO
. OOOOO
. OOOOO
. OOOOO
           VBRNING - DISTANCE BETMEEH  SOURCE
                                                 B  AND  POINT X,Y-
                                                                        . 00,
                                                                                    .00 IS LESS THAN PERMITTED
          FIGURE  D-4.    (Continued)

-------
            •*•• ISCLT
                                                      HYPOTHETICAL POTASH PROCESSING  PLANT
                                                                                                                                PACE
                                                                                                                                         10 ••**
                                                             - SOURCE  INPUT  DATA -
^J
Ln
            C T SOURCE SOURCE     X
            A A HUIIBER  TYPE  COORDINATE
            R P                  (K)
            D E
    Y      EMISSION  BASE /
COORDINATE  HEIGHT  ELEV- /
   (H)           ATION /
                     -  SOURCE DETAILS DEPENDING ON TYPE -
X t VOLUME 89.00 .00 13.00 .00 STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION CN>- 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (H>« I. 00
- PARTICULATE

FALL VELOCITY (DPS)
NASS FRACTION
REFLECTION COEFFICIENT
1
.0010
. 1000
1 .0000
2
.0070
.4000
.8200
CATEGORIES -
3
.0190
2800
.7200
4
.0370
.1200
6500
5
.0*10
0*00
5900
«
0990
. 0400
. 5000
                                                  SPEED CATEGORY

                                                          1
                                                          2
                                                          3
                                                          4
                                                          5
                                                          (
            WARNING - DISTANCE BETWEEN SOURCE
            X       10 VOLUME       99.00
         9 AND POINT
        .00  14.80
                                                               X.Y«
         - SOURCE STRENGTHS ( GRANS
                                     - SEASON 1 -
                             - STABILITY CATEGORIES
                              <3>
                           2.52000*0*
                           3.78000*06
                           4 .42000*0*
                           3.05000*0*
                           3.99000*0*
                           (.94000*0*
                      00  IS LESS THAN PERMITTED
00 STANDARD DEVIATION OF  THE CROSSW1HO SOURCE DISTRIBUTION *
   STANDARD DEVIATION OF  THE VERTICAL SOURCE DISTRIBUTION *
                           - PARTICULATE CATEGORIES -
                             1234
                            0010   .0070  .0190  .0370
                            1000   .4000  .2800
( 1 >
4. 10000*0*
5.05000*0*
0 . OOOOO
0.00000
0.00000
0.00000
•• .00,
C 2>
3.19000*0*
4 . 10000*0*
5.09000*0*
0 .00000
0.00000
0 .OOOOO
. 00
<4 >
1 .2*000*0*
3. 15000*0*
4. 10000*0*
5.05000*0*
5.99000*0*
(.94000*0*
( S)
0.00000
2. 52000*06
3. 13000*06
0. OOOOO
0. OOOOO
0. OOOOO
< ( >
6 . 31000*03
1 . 38000*06
0 . OOOOO '
0 .00000
0 .00000
0 . OOOOO
                           FALL VELOCITY CUPS)
                           NASS FRACTION
                                                                     REFLECTION COEFFICIENT 1.0000
                                                                                                     .1200  .7200
                                                                                                                   . 1200
                                                                                                                   .6300
 3
0*10
0(00
5900
   4 . 70
  1 . 00

 «
0990
0400
5000
                                                                            - SOURCE  STRENGTHS
                                                  SPEED CATEGORY
                                                                                               (  CRAMS
                                                                                                        - SEASON  1  -
                                                                                                - STABILITY CATEGORIES
            WARNING - DISTANCE BETWEEN SOURCE
            WARNING - DISTANCE BETWEEN SOURCE







10
10

1 '
2
3
4
3
(
AND POINT X.Y*
AND POINT X.Y«
( 1 )
1. 10000*0*
.05000*0*
.00000
.00000
.00000
. ooooo
. 00.
200.00.

3
4
S
0
0
0


< 2)
19000*0*
10000*0*
09000*0*
ooooo
ooooo
ooooo
. 00
. 00
                                                       (3 >
                                                    2 .52000*0*
                                                    3.78000*0*
                                                    4 .42000*0*
                                                    3 .03000*0*
                                                    S .99000*0*
                                                    ( .94000*06
                                              .00 IS LESS  THAN  PERMITTED
                                               00 IS LESS  THAN  PERMITTED
(4 >
1 .26000*0*
3. 13000*06
4 . 10000*06
3.03000*06
5.99000*06
6.94000*06
(5 )
0. OOOOO
2. 52000*06
3. 15000*06
0 OOOOO
0 OOOOO
0 OOOOO
< 6 >
6 31000*05
1 .38000*06
0 . OOOOO
0 .00000
0 . OOOOO
0 .00000
           FIGURE D-4.    (Continued)

-------
  «•••  ISCLT  «
                                            HYPOTHETICAL POTASH  PROCESSING  PLANT
                                                                                                                     PAGE
                                                   - SOURCE INPUT  DATA -
  C
  A
  R  P
  D  E
T SOURCE SOURCE     X
A NUMBER  TYPE  COORDINATE
     V       EMISSION  BASE /
COORDINATE   HEICNT  ELEV- /
   (M>         (H)   ATION /
                                                                         - SOURCE DETAILS DEPENDING ON TYPE -
          II  VOLUME
                                        .00  16.50
                                                       .00 STANDARD DEVIATION  OF THE
                                                           STANDARD DEVIATION  OF THE
                                                           FALL  VELOCITY (MPS)
                                                           MASS  FRACTION
                                                           REFLECTION COEFFICIENT 1.
                                                                 -  SOURCE STRENGTHS
                                                                                 5
                                                                                .0(10
                                                                                .0(00
                                                                                3900
                                        SPEED CATEGORY
  WARNING  -  DISTANCE  BETWEEN SOURCE
  WARNING  -  DISTANCE  BETWEEN SOURCE







11
11

1
2
3
4
5
6
AND POINT
AND POINT

4 .
. 5
0
0 .
0
0
X.Y»
X,Y«
( 1 )

10000*06
05000*06
00000
.00000
.00000
.00000

200




00,
oo.

3
4
5
0
4
0


<2>
. 13000*06
.10000*06
.03000*06
.00000
.00000
.00000
. 00
. 00

2
3
4
5
3
6
IS
IS
< 3 >
.52000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
LESS THAN 1
LESS THAN 1

1
3
4
5
5
6
>ER
>ER
 CROSSMIHD SOURCE DISTRIBUTION -
 VERTICAL SOURCE DISTRIBUTION (H>-
 PARTICULATE CATEGORIES -
 1234
0010  .0070  .0190  .0370
1000  .4000  .2800  .1200
0000  .8200  .7200  .6300
(  GRANS
         - SEASON 1  -
 - 'STABILITY CATEGORIES -
               14 >
              26000*06
              13000*06
              1000.0*06
              03000*06
              99000*06
              94000*06
                                                                                                                      4.70
                                                                                                                     I  00
                                                                                                                    6
                                                                                                                   0»90
                                                                                                                   0400
                                                                                                                   3000
( 3 )
0. 00000
2. 52000*06
3. 13000*06
0.00000
0. 00000
0 . 00000
' t )
6 . 31000*05
1 58000*06
0 .00000
0 . 0,0 000
0 . 00000
0 . 00000
FIGURE D-4.    (Continued)

-------
• ••• ISCLT.
                                          HYPOTHETICAL  POTASH  PROCESSING  PLANT
                                                                                                                  PAGE
                                                                                                                           12  ••••
        ••   AHNUAL GROUND LEVEL DEPOSITION (  CRAMS PER  SQUARE  DETER
                                                    - GRID SYSTEM RECEPTORS  -
                                                  - X AXIS                          -    DEPOSITION
                                                                                     ) DUE TO SOURCE
                                      -800 .000
                                                  -600.000
                                                               -400.000
                                                                            -200.000
3000
2000
1500
1250
1000
BOO
600
400
200

-200
-400
-«00
-800
1000
1250
1500
2000
3000
000
. 000
.000
.000
.000
.000
. 000
.000
.000
.000
000
.000
000
.000
000
000
000
000
.000
,
1
2
2
2
3
3
3
3
3
2
2
2.
2
1 .
1 .
1 .
1 .

. 17731 1
.941742
.507(14
.674048
.99*3(9
.0)8513
. 175004
. 2059(1
.232573
. 2ttS37
. **3128
. 723544
. 434137
. 170357
8*0979
576221
38*232
120585
. 730(70
1 .
2
3
4
3
(.
7.
7.
7,
7.
(.
3.
4.
3.
3.
2.
2.
1.
1.
(49(70
571310
823M4
701(49
7337*3
45312?
052515
3510(8
4»I(J4
(0717(
3*07*6
((5175
730303
831705
23*042
753(18
317428
70*373
4(3011
1
3
4
(
8
10
12
13
14
14
tl
*
7
3
4
3
3
2
2
. *42781
. 1*7137
.705O4
.081422
.086847
. 088452
53373*
.347723
. 1*0300
.50*007
. (3*41 1
.571313
.33»*01
.8270*0
8*013*
83241*
242(14
.972174
0*8812
2
3
S
(
*
12
1*
20
22
22
17
13
»
7
(
4
4
3
2
. 1 13508
.5714*5
.19(141
.992991
.((1434
.*27*25
.*3S7(4
.45*242
.041343
.75783*
. 7*3730
.473**3
.(2*S(*
.723574
0(8771
.(**4(3
.(57*03
.*1212(
.4(8(88
2
3
5
7
11
1*
24
34
37
40
28
20
14
10
8.
7
( .
3
2
. 14(337
.*088*0
.*22025
872(2*
.8(364(
732305
.044747
.177021
.414(15
.1*2128
.*2t(87
. 1*(028
.0*42*3
.452(32
.44*480
701*74
843745
.0(7**5
.745475
2
4.
(
*
13.
21
32
50.
((.
72.
47.
28.
1*.
14.
13.
11.
».
(.
2.
184*27
.0*0*5*
43303*
03204*
(03548
014127
(2808*
(71238
541 1*2
004727
(1*97*
37743*
7*7313
(03921
274841
1*371*
132*31
28*2**
f(8474
2
4
b
10
1*
25
45
80
131
151
(3
4*
32
2*
21
IS
12
7.
3.
. 210429
l(8*(l
7*1*24
054425
3151(9
40*37*
. (*0753
24851*
834218
5843(4
302133
. *I422(
484347
514443
048143
7*133*
377120
205714
178738
2
4
(
10
18
31
38
134
288
413
138
»3
(7
4(
33
21
14
8 .
3
. 212444
. 20347*
.**2*42
.703855
.7*7211
.37*581
. (4374(
.X7737
. 038895
»(0235
. 3*3343
.88(438
. 283883
.407284
80*933
.384245
82(538
078493
359375
2
4
7
11
19
35
71
189
7(5
1840
SIS
253
138
74
43
23 .
17
( .
3
.2131 10
.172732
.0(1731
.1 1853*
.553910
.135495
.84(844
.1*6*7*
.(37(04
271*0*
.*2(((S
.5(3221
,5((OIO
276432
809544
,**007(
0(7340
822123
5247(5
Y AXIS (DISTANCE
                      .000      200.000
                       -  METERS  )
       - GRIO SYSTEN  RECEPTORS -
     - X AXIS (DISTANCE/  METERS)  -
400.000      (00.000       800.000
                  DEPOSITION
                                                                                  1000.000
                                                                                               1250.000
                                                                                                            1300.000
                                                                                                                        2000.000
3000
2000
1500
1250
1000
800
(00
400
200

-200
-400
-(00
-800
1000
1250
1500
•2000
3000
.000
.000
.000
.000
.000
000
.000
.000
. 000
. 000
.000
. 000
.000
.000
000
.000
000
.000
.000
2.
4.
(.
11.
1*.
3*
78.
223.
10*(.

2147.
522
1*(
*4.
S3
2*
1*
f ,
3
20*485
1(84**
**1328
0506(3
88531 1
2(95((
343783
80871*
933(44
000000
008942
029289
7*833*
839135
388054
912083
. 1139(9
3(0449
. 703(23
2.
3
3.
9.
13
2*
49.
10*
392.
2321.
683
193
10*
(1
J7
23
13
8.
3
044(13
702104
9(5113
102(30
40(80*
1(7227
3784*6
.29718*
371552
44((2S
. *5S*71
(((313
(828(1
301114
8*3*35
08744*
.4(2472
217»(2
J82072
1 .
3
3
7
II .
18
31
(*
1(3
553
308
12*
5*
33
24
1*
12
7
3
922703
. 3(4983
121821
.399743
83607*
13(390
610532
523837
85309*
. 181252
.7142(0
571017
.71(197
.193239
.742311
.6013(0
. 104713
.031328
. 103260
1
3
4
5
9
13
23
44
104
207
159
83
43
25
17
II
8
5
2
802229
.013514
.301331
.870071
0****1
535(37
4787*1
.J72335
.1*1(8*
.7(2184
.084352
.*50354
.353418
.70(248
.(837*4
.747(12
.505417
.8039*4
.822104
1
2
3
4
7
10
17
2*
(1
»*
83
S(
33
1*
13
*
7'
4
2
.(73252
.(81500
.728*11
.9918(2
. 1*8332
.74(755
.9700(5
.(0*S4(
. 15*012
72588*
.430305
.2(140*
.(2((99
.5752(9
.((4594
.757218
.177783
.(32301
.524687
1.
2.
3.
4.
(.
*.
13.
22
37
3*
48
3*
25
1*
1 1
7
(
3
2
S44(*4
3*202(
2*32(2
1(411*
05((42
073583
7*05*0
»72790
522183
012347
481188
(*03*0
872122
. *81000
334(92
924482
. 128132
932337
.22*552
1 .
2.
2.
3.
5.
7.
10.
16
23
31.
28
24
18
13
9
6.
4
3
1
401376
0)0023
7(3*71
33(837
240338
327381
015278
2*7778
432873
48*032
33(061
69*3*3
*24((*
807741
80332*
4*300*
. *30340
403(14
89(510
1
1
2
3
4
5
8
11
13
20
18
16
14
10
8
3
4
2
1
236737
7*4*36
42604*
.237*88
533(63
8576(4
22434*
.875471
, 733077
. 052*53
.353(2*
6733*3
. 458414
. **3(48
.404787
. 870(54
. 1*8*03
. 883832
. (74710

1
2
2
3
4
3
7
8
10
*
8
8
7
3
4
' 3
2
1
.984170
341931
.093123
.(43330
.313753
232478
.604049
.0(3783
.510150
.109834
.5487(4
.929880
.137415
.2(33(3
.96*101
.((9034
.395(41
.123993
.349737
FIGURE D-4.   (Continued)

-------
I
-J
00
•• ISCLT ••••••••••••• HYPOTHETICAL POTASH PROCESSING PLANT ........ PACE 13 ••
•» ANNUAL GROUND LEVEL DEPOSITION < GRAMS PER SQUARE METER ) DUE TO SOURCE 1 (COHT.) «•
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
3000 .000
AXIS (DISTANCE
3000
2000
1500
1250
1000
eoo
600
400
200

-200
-400
-600
-800
-1000
-12SO
-1300
-2000
-3000
.000
.000
.000
.000
.000
.000
.000
000
000
.000
000
ooo
.000
.000
.000
.000
000
.000
.000

1
1
1
2.
2.
2.
3
3.
4
3
3.
3.
3.
3.
2
2
1

. METERS > - DEPOSITION
425744
062))S
409238
461082
103734
401)48
870(2*
2317)3
6306)7
Ol))42
8*2)03
7072*3
. 330421
318)00
0)0276
806033
367382
714024
888084
       *•    ANNUAL  GROUND  LEVEL  DEPOSITION (  GRAMS  PER SIUARE METER
                                                     - DISCRETE RECEPTORS
   X         Y       DEPOSITION             X          Y       DEPOSITION
RANGE     AZIMUTH                         RANGE     AZIMUTH
         BEARING                                  IEAR1NC
(METERS) (DEGREES)                       (METERS)  (DEGREES)
    >  DUE TO SOURCE

   X         Y
RANGE     AZIMUTH
         BEARING
(METERS) (DEGREES)
    1  (CONT. )   ••

DEPOSITION
              2108 0
                           14.0      3.091886
                              - 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED  MAXIMUM  10 OF COMBINED SOURCES
                                                         COORDINATE    COORDINATE
                                                          (METERS )
                                                                       (METERS  >
                                                                                   DEPOSITION
200. 00
.00
-200.00
.00
-200. 00
200.00
400. 00
-200.00
.00
-200 .00
.00
200 .00
200 .00
-200 .00
.00
-200 .00
2323.446623
2147.008)42
1840.271606
10)6.)33644
763.637604
6B3.)33)71
333. 181232
333.628685
          FIGURE  D-4.   (Continued)

-------
          ••«* ISCLT .............                  HYPOTHETICAL POTASH PROCESSING PLANT                            ........ P»CE     14 ....


                  ««   ANNUAL GROUND LEVEL DEPOSITION  <  GRANS  PER SBUARE METER                 > DUE TO SOURCE       1    ••
                             - 10 CONTRIBUTING VALUES  TO PROCRAN DETERMINED MAXIMUM  10 OF COMBINED SOURCES       1.

                                                            X            Y         DEPOSITION
                                                        COORDINATE   COORDINATE


                                                         (METERS)     (METERS  >
                                                               .90       -400.00      S22.0292B*
                                                           -400.00           .00      411.9(0255
O
**l
vo
           FIGURE  D-4.    (Continued)

-------
            •••• ISCLT
                                                      HYPOTHETICAL  POTASH PROCESSINC PLANT
                                                                                                                              PAGE
                   ANNUAL GROUND LEVEL DEPOSITION (
U
00
o
                             -3000.000
                                          -2000.000
            Y AXIS (DISTANCE
              AXIS (DISTANCE
                                     METERS
CRAMS PER  SQUARE  DETER                 >
            -  CRID SYSTEM RECEPTORS -
          -  X  AXIS (DISTANCE. METERS) -
   -1500.000    -I2SO.OOO    -1000.000
                      DEPOSITION
                                                                                                    FROM CORB1NED SOURCES
                                                                                              -800.000
                                                                                                           -600.000      -400.000
                                  .000      200.000
                                   .  METERS   >
            -  CRID SYSTEM RECEPTORS -
          -  X  AXIS (DISTANCE. METERS) -
     400.000      (00.000      800.000
                      DEPOSITION
                                                                                              1000.000
                                                                                                           1250.ooo
                                                                                                                        1300.000
                                                                                                                                    -11.
                                                                                                                                     -200.000
3000
2000
1SOO
1230
1000
800
600
400
200

-200
-400
-600
-800
1000
1250
1500
2000
3000
.000
.000
.000
.004
.000
. 000
.000
.000
.000
000
. 000
000
. 000
000
.000
.000
.000
.000
.000
.0047**
. 008103
. 010380
.011(87
. 012284
. 01270*
. 01304)
. 01320*
.0133(9
.013938
012328
.011243
01016*
. 009031
.007912
00(599
003829
. 004716
.003018
. 00(990
. 010370
. 013(93
. 019044
. 022908
. 02(021
. 027532
. 028(43
. 029193
. 029(51
. 025853
. 022501
. 018996
. 015559
. 013155
. 011236
. 009338
. 00(783
. 005797
008348
.013244
.018904
.024332
.031877
.038977
.04(491
.050031
.0320(7
. 033034
.044334
.03(426
.028399
.022814
.019258
.013404
.012373
.011191
.00799(
.009014
.014892
.021018
.027370
.037909
.049194
.0(2847
073396
.078232
.080157
.0(4(12
.030200
.03(377
029636
.021809
.0180(3
.01(873
.014353
.009298
.0093(7
.01(4(0
.024057
031076
044*86
.0(3(51
.088266
. I 1(572
.129100
. 133904
. 101877
.072357
.032172
.039(30
.029(73
02(736
.024395
.018704
.010571
.009331
017346
02(284
033636
.0520(3
.077339
. 117332
. 174(95
214*42
.227153
. 15**48
0*9306
.070929
.050001
.043951
.038515
.032334
022(97
.011394
009(85
.01 78(0
.028003
. 040091
. 0(317*
. 093804
. 15884*
.272063
. 401904
. 4412(4
272918
. 157582
. 0*9353
. 081403
06*638
.034207
. 042270
026(30
.012173
. 00*7 1 *
. 018070
.028776
.043177
. 073121
. 120536
.211183
. 42*731
. 902029
1 . 0(01**
. 523503
. 257536
. 1*2893
. 1453(8
. 105725
. 073731
. 0530(4
.029873
.012826
.00*756
.018031
02*3(5
.045577
.07*183
.138761
.284385
657756
1 *66(46
3 .848278
1 .081186
.6519*1
.402387
.244002
14»»87
092291
.0(1(75
.032(96
.013457
                                                                                                                                     2000.000
3000
2000
1500
1 250
1000
800
60C
400
200

-200
-400
-600-
-800
1000
1250
1500
2000
3000
.000
.000
.000
000
. 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. 009(62
.017753
028708
. 044910
.079378
. 144978
. 307816
. 851850
4 0(9319
. 000000
5.2(7834
1.323(28
.(25(91
.315834
. 183133
. 103423
. 0(8359
. 034972
. 0139(3
. 009249
. 01(594
. 02(1(7
. 040150
. 069661
. 120*88
. 240218
. 382227
1 . 7(3424
1 1 . 241133
2. (28258
1 . 104223
. 514311
. 2757*2
. 4(317*
. 0*7456
. 0(40*9
. 033443
. 013(25
.008728
.015183
.023003
.033779
.054405
.087119
. 150566
.293641
.841389
3 . 224391
1 .468519
.528881
.2810(9
.173240
. 117037
.07(3(3
033038
.029384
. 0127(7
.008174
.013766
.019326
.02(938
.041130
062386
097395
.203(85
.518535
1 . 119008
.814824
.370931
184597'
.120(04
.0812(0
.053(29
.041330
.0235(7
.01 1821
.007(50
.012338
.01(705
.022244
.032275
.044236
.0784(0
.141545
.298(28
.5100(2
.407879
.254712
.144236
.085441
.0(3541
.0445(7
.032311
021419
.010908
.007090
. 010963
. 014(92
. 018444
.024771
.038(45
. 0(2275
. 101368
. 184018
.275324
.234109
. 17(805
.11279(
.0.72023
.048459
.036379
.027895
.017979
.009903
. 006410
. 00*4*7
. 012233
. 014564
022204
032308
. 045833
. 07418*
1 10339
. 14*801
. 132817
. 1 1 12*4
. 082316
. 05*138
. 041434
. 027770
022486
0154*9
. 008665
. 005709
.008078
. 010089
.013755
. 019737
.026172
. 035894
. 053*89
.072873
. 0*3316
0848*0
. 074528
. 062316
. 047003
.035(61
. 024752
. 01 8042
. 013132
. 007641
.004462
.005(82
.00*057
.01 1632
.014813
.018658
.024931
.031618
038417
.045834
.0427*3
03*356
.035367
.031151
.025291
.01*764
.013222
00*185
.0061 15
           FIGURE D-4.    (Continued)

-------
          •*«• ISCIT
                                                   HYPOTHETICAL POTASH PROCESSING PLANT
                                                                                                                           PACE
                                                                                                                                   4t *•••
O
I
00
            ••   ANNUAL GROUND LEVEL  DEPOSITION  ( GRANS PER SQUARE NETER
                                                             - GRID SYSTEN RECEPTORS -
                                                           - X AXIS (DISTANCE.  METERS)
                            3000.000
            AXIS (DISTANCE       .  NETERS   )                         -   DEPOSITION
                                                                                        >  (CONT.) FROH COMBINED SOURCES
                                                                                                                                - It ,
3000
2000
1500
1250
1000
BOO
600
400
200

-200
-400
-600
-800
1000
1250
1500
2000
3000
000
000
ooo
. 000
000
000
.000
.000
. 000
000
.000
. 000
.000
000
000
000
000
000
000
. 002580
. 004*56
. 006288
. 007271
.00)2*5
.010)74
. 012651
. 014401
. 01(0)3
017)52
.017133
.0162)5
.01)307
.014340
.0131)5
.0115))
.00))83
.007242
. 003753
 *<   ANNUAL  GROUND  LEVEL DEPOSITION (  GRAMS PER  SQUARE  METER
                                                    - DISCRETE RECEPTORS
   X
RANGE
             2108.0
                                                                             ) (CONT.) FROM COMBINED SOURCES
Y DEPOSITION X Y
HUTH RANGE AZIMUTH
RING BEARING
GREES) (METERS) (DEGREES)
14.0 .014063
DEPOSITION

- PROGRAM DETERMINED MAXIMUM
X
COORDINATE
(METERS )
200.00
.00
.00
-200.00
400.00
200.00
-200. 00
200. 00
Y
COORDINATE
< METERS >
.00
-200 .00
200.00
.00
.00
-200.00
200.00
200. 00
X Y DEPOSITION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)

10 VALUES -
DEPOSITION


1 1 .241)53
5.267834
4.06)31)
3.848278
3.2243)1
2.628258
1 .)66646
1 .765424
          FIGURE  D-4.   (Continued)

-------
            ••••  ISCLT  .........»»«.                   HYPOTHETICAL POTASH PROCESSING PLANT                            ........  PACE     47 ••••


              • •    ANNUAL  GROUND  LEVEL  DEPOSITION <  GRANS  PER  SQUARE NETER                 )  (COHT  >  FROM  COMBINED  SOURCES       2.    - l'l ,
                                                        -  PROGRAM DETERMINED MAXIMUM 10 VALUES -

                                                              X            Y         DEPOSITION
                                                          COORDINATE   COORDINATE


                                                           (METERS)     (METERS >
                                                                 .00      -400.00        1.523(28
                                                              400.00      -200.00        1.4(831*
tf

CD
K>
           FIGURE D-4.   (Continued)

-------
           ••«• ISCL1
                                                     HYPOTHETICAL  POTASH  PROCESSING  PLANT
                                                                                                                             PAGE      59  ••••
tf
oo
             »   ANNUAL GROUND LEVEL  DEPOSITION  (  GRANS  PER  SQUARE  METER
                                                               -  GRID  SYSTEM RECEPTORS  -
                                                             -  X  AXIS  (DISTANCE. METERS)  -
                            -3000.000     -2000.000     -1500.000     -1250.000    -1000.000
           Y AXIS (DISTANCE       .  METERS   )                          -    DEPOSITION
                                                                                                   FROM COMBINED SOURCES    -11.
                                      -800.000      -600 000     -400.000     -200.000
3000
iooo
1500
1250
1 000
800
600
400
200

-200
-400
-COO
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
. 000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
1 . 18211 1
1 . 949846
2.517993
2.885734
3. 011652
3.11 1222
3 I880S5
3.219190
3. 245941
3. 280075
3. 007456
2 . 734786
2. 464303
2. 179388
1 . 898891
1 . 582820
1 . 392081
1 . 125300
. 753888
1
2
3
4.
5
6
7
7
7.
7
6
5.
4.
3.
3
2
2
1 .
1
656660
581879
841687
724693
756701
679149
080047
379710
520827
636826
586651
687677
749489
847264
252196
764873
326966
716158
488808
j
3
4
6
8
10
12
13
14
14
1 1
9
7
5
4
3
3
2
2
.951129
. 210381
. 724598
. 105974
. 120724
. 127428
. 582226
.597773
. 242366
. 56204 1
. 903765
. 607738
368300
. 849904
. 879394
. 847820
254989
.983364
. 076309
2
3
5
6
9
12
16
20
22
22
17
13
9
7
6
4
4
3
2
122522
.586387
.217158
. 980361
.719363
.9771 19
.998610
532627
. 1 19575
.837995
860362
524162
.665945
.735229
. 1 12579
.91 7526
674776
926681
.477986
2
3
5
7
I 1
1 6
24
34
38
40
29
20
1 4
1 0
8
7
6
5
2
. 155904
. 925349
946081
903705
.910831
.815955
133012
293590
043714
.326029
031562
268384
. 1 46465
492262
479154
.728730
.868140
086699
.756046
2.
4.
6
9.
13.
21 .
32.
SO
66
72.
47
28.
19.
14.
13.
1 1 .
9.
6.
2
194478
108505
459320
067704
655610
091464
743419
843930
756130
231876
979524
676962
868243
953922
318792
232230
165283
311996
979868
2
4 .
6
10
16
25
45
80
132
132
85
47
32.
26
21
15
12
7
3
220114
186821
819926
094515
378347
503182
849599
520576
256113
025620
775066
071805
583899
395843
117779
813563
419389
232344
19091 1
2
4
7
10
18
31
58
1 35
288
415
159
96
67
46
33
21
14
8
3
. 222163
221549
021718
.747032
870331
. 7001 35
854927
.397457
940907
020435
. 1 19036
. 143990
476772
532649
915658
659975
879602
108367
372200
2
4
7
11
19
35
72
189
767
1844
336
234
138
74
43
26
17
8
3
.222863
. 190783
.091116
.1641 13
.633093
.274234
.131224
.826420
.604210
. 1 19827
.709831
.213202
.968388
.522429
.939528
082366
129014
.854819
.538222
           Y AXIS 'DISTANCE
                                 .000       200.000
                                  .  DETERS   >
       - GRID SYSTEM RECEPTORS -
     - X AXIS (DISTANCE.  METERS) -
400.000      600.000      800.000
                  DEPOSITION
                                                                                              1000.000
                                                                                                          1250.000
                                                                                                                       1500.000
                                                                                                                                    2000.000
3000
2000
1 500
1250
1000
800
600
400
200

-200
-400
-600
-800
1 000
1250
1 500
2000
3000
000
000
000
000
000
000
000.
000
000
000
ooo
000
000
000
000
.000 •
000
000
000
2
4
7
; i .
19.
36 .
78.
224 .
1101

2152.
523.
197.
95.
53.
30
1 9
9
3
219147
186253
020033
095774
964889
4 14542
651593
660555
022903
000000
27661 1
552879
42421 7
134986
571187
017305
184346
593421
717786
2
3
5
9.
15.
26
49.
1 06.
394.
2334.
688.
194.
107.
61
38.
23.
13
8
3
053861
718698
991279
142780
476466
288214
618883
879412
136959
688446
384190
770331
197368
376904
061 112
184900
326571
251405
395696
(
3
5
7
11
18 .
31
69
166
558
310
127
39
33
24
16
12
7
3
931431
380167
144823
433524
910480
223508
9611 16
817473
694477
405602
. 182758
. 099894
997264
368497
. 859347
. 877742
. 137730
. 06091 1
. 116046
1
3
4
5
9
13
23
45
105
208
159
84
43
25
17
11
8
5
2
81 0403
029280
320857
897008
137790
618022
.576385
178218
510219
.881186
.899166
321281
.540012
.826831
.763034
.803240
.946766
.829562
.833925
1
2
3
5
7
1 0
18
29
6 1
100
83
36
33
20
1 3
9
7
4
2
.680902
693837
. 745696
.014106
.200807
790991
.048523
.951091
.437637
.233945
.838179
.516116
.770932
.060709
.728135
.801783
.210294
.653719
.535794
1
2
3
4
6.
9
13
23.
37
36
48
39
25
17
1 1
7
6
3
2
531784
402991
307935
182563
081413
1 12228
852863
074137
706198
287668
713295
867393
984917
033022
. 383150
. 960861
136027
. 970516
. 239437
1
2
2
3 .
5.
7
10
16
23
31
28
24
11
13
9
6
4
3
1
407785
099520
776204
37140 1
262541
359689
061 1 1 1
341966
54321 1
638852
668876
807686
006984
866879
844763
520779
953025
.419113
905175
1
1
2
3
4 .
5
8
1 1
15
20
18
16
14
1 1
8
5
4
2
1
. 242446
8030 1 4
438135
271743
553400
883836
260243
929439
805950
.146270
. 638518
749922
520728
040650
. 440447
. 895406
216945
. 898983
. 682351

1
2
2
3
4
5
7
8
10
9
8
8
7
5
4
3
2
1
.988632
.347634
102179
.657162
.328566
.25 1136
.628980
.095400
.548567
.153667
.591339
969233
. 172802
.296336
.991391
.688817
.610863
. 1331 78
.355852
           FIGURE D-4.   (Continued)

-------
            •«••  ISCLT
                                                      HYPOTHETICAL  POTASH PROCESSING PLANT
                                                                                                                              PAGE
                                                                                                                                       60  •* *•
 I
00
              •<    ANNUAL  GROUND  LEVEL  DEPOSITION (  GRABS  PER  SQUARE  HETER
                                                                -  GRID  SYSTEH RECEPTORS -
                                                              -  X  AXIS  (DISTANCE. METERS) -
                              3000.000
            Y  AXIS  (DISTANCE        .  NETERS   )                          -   DEPOSITION
                                                                                           ) (CONT.) FROM COMBINED SOURCES
                                                                                                                             -II,
3000
2000
1SOO
1250
I 000
800
600
400
200

-200
-400
-600
-800
I 000
1250
1500
2000
3000
000
000
ooo
.000
.000
.000
000
000
000
000
000
000
000
.000
000
000
000
.000
000

1
1
1
2
2
2
3
3
4.
3.
3.
3.
3
3.
2
2
1 .

628324
.067651
415544
676352
. 1 1304?
.492)22
88327)
. 2661*1
646790
037893
880038
723358
545728
333240
1 03471
817(34
377365
721267
891837
              *•    ANNUAL  GROUND  LEVEL  DEPOSITION  (  GRANS  PER  SBUARE  DETER
                                                                                          ) (CONT.) FRON COMBINED SOURCES
                                                                  - DISCRETE RECEPTORS -
                X
             RANGE
               2108 .0
Y DEPOSITION X Y
NUTH RANGE AZINUTH
RING BEARING
CREES) (METERS) (DEGREES)
14.0 3.105949
DEPOSITION

- PROGRAH DETERMINED MAXIMUM
X
COORDINATE
(METERS )
200. 00
. 00
-200. 00
.00
-200. 00
200.00
400.00
-200. 00
Y
COORDINATE
(METERS >
. 00
-200 . 00
. 00
200 . 00
200 . 00
-200 . 00
. 00
-200 . 00
X Y DEPOSITION
RANGE AZINUTH
BEARING
(METERS) (DEGREES)

10 VALUES -
DEPOSITION


2334. 688446
2152. 27661 1
1844. 119827
1101.022903
767.604210
688. 584190
558. 405602
536. 709831
           FIGURE D-4.   (Continued)

-------
             •••»  ISCLT  »•••«••••••••                  HYPOTHETICAL  POTASH  PROCESSING  PLKHT                            ........  PACE      61  •••*


               ..    ANNUAL  GROUND LEVEL DEPOSITION (  GRAMS PER  SQUARE  HETER                  )  (CONT  > FROM COH8INED SOURCES     -11,
                                                         - PR OS RAH  DETERMINED  MAXIMUM 10  VALUES -

                                                              X             Y          DEPOSITION
                                                          COORDINATE    COORDINATE


                                                           (METERS)     (DETERS  >
                                                                  00       -400  00       523.552879
                                                             -400 00           .00       415  020435
O
00
            FIGURE  D-4.    (Continued)

-------
                                 APPENDIX E
               CODING FORMS FOR CARD INPUT TO THE ISC SHORT-TERM
                        MODEL (ISCST) COMPUTER PROGRAM
            This appendix contains blank coding forms used for entering
input card data for the ISC short-term (ISCST) program.  The card group
numbers and input data parameter names correspond to those used in Section
3.2.3.a.  The solid vertical lines on the coding forms define the column
fields for a particular input parameter and the "x"ed areas indicate where
data are ignored by the program.  The coding forms are presented in the
same order as the program expects the input data except for the source data
coding forms.  The program expects card numbers 2 through 4 to immediately
follow card number 1 of Card Group 6 when applicable (NVS is greater than
zero).  However, it is much easier to enter the source data as presented
here.  An example use of these blank coding forms is shown in Appendix C
with the example problem runs.
                                      E-l

-------
                                                               ISCST  INPUT DATA CODING FOBM
    PROJECT
                                                                        NAME
                                                                                            DATE
                                                                                                 SHEET      OF
    CARD GROUP,

    CARD NUMBER
                                                DATA CARD COLUMN
12 3419 67 8 9 10 II 12 13 14 15 16 17 16 19 2021 22232425 !6 27 28 29 50 31 32 S3 343556 37 98 S940 4IJ42 43 M 45 «« «7 48 »9 50 51 52 S3 54 JS 56 57 8«59 BO 61 62 6S64 65 M «7 68 89 70 71 7! 73 74 75 76 r7JT« f9J80
                                                 CONTROL DATA PARAMETER AND VALUE (X means do not punch)
                                                                            - TITLE -
       1 -
                                                                            - ISW  -
m

ho
       2,1-
                               CO
                               H
                     CO
                     EH
        2.2 -
                      8
                      CO
                    i i  i i  i I  i i i  i i I ^  i i  i  i
H
Oi
                                                 §
                                                 w
CO
a:
                                                                                      to

-------
M
10
ISCST
INPUT
DATA
PROJECT


CARD GROUP,
CARD NUMBER
3,1 -
3,2 -

t






























CODING
FORM

DATA














9
10
ii
12
13
14
13
16
17
ie
19
20
21
22
23
24
2?
26
27
28
29
50
31
32
33
343
536
37
CARD
58
RECEPTOR DATA









































































































LJ






LJ






LJ






LJ






LJ













LJ






L_J






L.
















































































GR
i
















IDX
i i
























- GRIDY
1 1 1





















_l






LJ




















LJ












































LJ
(axis
i i i
































of
1








(axis
i i i i







LJ







LJ
.






L J







i_i

























of
















grid
I |
























39
40
41
(Continued)
NAME
DATE
SHEET OF

COLUMN
42
43
44
454
PARAMETER
system,
i i i i i
i
i
i
i
i
i
i
i
|
)
|
|
|
|
|
I
























c








grid system,
	 i i i i i i iii




























1



|






























. j 	 i i i
unit
_i i
























if
| I








omit























LJ








|
|
|
|
1
1
|
I
if
i






LO_
647
46
AND
49
SO
SI
52
53
54
55
56
57
58
59
SO
61
02
63
M
H-
B7
68
B9
VALUE
NXPNTS
| | I I
|
|
|
|
|
|
!
|
























OR
J 1








NXPNTS
] | I I
|
|




I
1
















































NYPNTS. =
i i i i i

























































or NYPNTS =
1 1 1 1 1 1 1 1




































!

















J

















0)
	 1







_l








0)
1




1















































|
I
I
|
I
I
,
I
I

I
I
1
1
1
1
1
1






















































TO
L




















i i i I I i I i i
i | 1 I I 1 i i t
1 I I 1 I 1 1 I 1
1 1 1 1 1 1 1 I
1 I 1 1 i I 1 I 1
1 t 1 1 1 1 t I I
1 | I I i i I i 1
i i i I i i i i i
i i I i i I i i i
III 	 I
I i i i i I I I
i i 1 i I i
i ill
1 111
t «
I 111
I i I i i i i i I
1 1111

-------

PROJECT


CARD GROUP,
PARfl NIFMRFR






3,3 -








3,4 -









, , . 4 ,1. 7I,.I.,L
i f. ; 4 Mf, 7|»; .ji.

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1111
t 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 II III
1 II III
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 t 1 1
1 1 1 1 1 1 1 II
1 1 ' 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 t 1 III
1 1 1 1 1 1 1 1 1





,L ., .. .. .,' ... ,,L,
i i i

iii i i i i i t
iii i i i i j i
iii i i i t i i
11 11
ii ii
ii ii
iii i i i i
iti i i i i i i
iii iii i
i ii i ii
i ii i ii
ii i i i i i i i
i i i i i i i i
ii i i i i i i i
i i i i i i i i i
ii i i i i i i i
> i i i ii i
i i i i ii i
ISCST INPUT DATA CODING FORM (Continued)
1 NAME
I DATE SHEE1

DATA CARD COLUMN
'I 1 i || \ j f ' i 1 I I 1 ' ! {
1 ! tflilllf ii; t ! i! 1 T 1
RECEPTOR DATA PARAMETER AND VALUE
- XDIS (discrete receptors, omit if NXWYPT = 0) -
i • *
i i i i i i i i i I i i i i i i i i i i i i t i i i i i i i i i i i i i t i i i i i i i
111 1 1 1 1 I | 1 1 1 1 I I 1 1 1 1 1 1 1 1 ! | ! 1 1 1 1 1 1 1 1 t 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 I J ! I 1 1 1 1 1 1 1 I t 1 1 ! 1 1 J J 1 ! 1 J 1 ! 1
II III 1 II 1 111 1 1 ! 1 1 1 ! ! i j , ! t 1 i 1 1 1 II ill
1 1 1 1 1 I 1111111)1 ! 1 t ! i 1 1 1 1 I 1 ! i t 1 I 1 ! 11 til
I i I 1 I I i f i i lit l 1 t i i ! i i I i i i I ill ii ii
ii i i i ) i t i i i i i i i i i | i i I i i ' f i ! ; ! ii i it i i i i i
11 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 f f : 1 1 1 i i i 1 1 1 | 1 1 1 1 1 t 1
1 1 1 1 1 1 1 1 t 1 1 1 1 1 III 1 1 1 1 1 1 1 1 ] 1 1 ! 1 ! ! 1 1 1 ] 1 J 1 I 1 ! 1
- YDIS (discrete receptors, omit if NXWYPT = 0) -
i
i ' *
i i i i i i i 111 i 111 i ii i i i J i i i i i ; i 11 i
1 1 1 1 1 1 1 II I III 1 11 1111)111111111 II !
X J. J 1 J _1_ i J_ 1 1 J 	 1 1 1 i 1 1 1 1 i j 1 1 1 1 1 i 1 1 j J 1 1 I 1 1 1 1 J J J 1 1 I J
j.iii_iijij j i _i i i i j j iliiiiii) i iiii i ii 11 j i i i i j j i i j_
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 j ] 1 1 1 1 1 1 1 1 1 1 1 I I 1 1
i \ 1
i i i i t i i i i i i i i i i i i i i i i i t i i i i i i i i i i i i t i \ i i i i i i
i i i i i i i t i i i i i i t i i i i i i i i i i i i i i ' j i i t i i i i i i i i i i
II 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 t 1 1 ! II
1 1 1 1 1 1 ' 1 < 1 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1


OF


\ T [ 7



I 1 1 1 1 1 1 1 1 ' J 1
1 1 1 1 1 1 1 1 1 t 1 1
1 1 1 1 I 1 1
t 1 1 1 1 1 1 1
1(1111 1
1 1 1 1 1 1 1 1 1 1 1
! 1 i 1 1 1 I I 1 t 1
II i I 1 1 I I 1 1 1
i 1 I I 1
1 1 1 I 1 1
1 1 1 I 1 1 1 t 1 1 1 1
1 1 1 1 1 1 1 1 l II
1 1 t 1 1 I 1 l l 1 1 1

i i i i i i i i i i i
i i i i i
	 i i -

-------
M
Ol
ISCST
INPUT DATA
PROJECT


CARD GROUP,
CARD NUMBER
3,5 -
CODING FORM (Continued)

DATA
1
2










8
9
10
II
12
13
14
IS
16
17
18
19
20
21
tSaZS
24
25
J6
27
28
29
SOU.
32
33
343
536
37
RECEPTOR DATA



































































































































































































































GRIDZ
i i i i





(gi
l


1 1 1










































































































































































1 t 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
rid system and
i i i i i i i i i



















1
1
I
I
I
1
1
1
|
I
1
1
1
1
|
1

1
i i





































































































































LJ. I l J_l I 1 J_i



1














discrete
i i i i i i













































|
|

I


I
1

I

1
|
1
1
|


I

I
I
]
|
I
I

!
|
|















CARD
56
39
40
41
NAME
DATE
SHEET
OF

COLUMN
42
43
44
43*
647
48
PARAMETER AND
reci
i t













































j i i i i i i























I


|
|

|








i

i













sptor
i i
















































































49
50
51
52
53
54
55
56
87
58
59
BO
61
62






66
87
68
B9
VALUE
elevatic
i i i < i
i
i
l
i
i
i
i
i

i


i
i
i



i

|


|
|
|
|
I

1
1
1
I
:


I
|

|




























































i i i i i i i i i




i
!



ms
i



































































omit
i i i
























































































if
I












































I






















SW(4)
1 1 1









J






























s










= 0)
| |





























1










1
TO
IT













1



































l




	





















1


I
|




1 1 1 1 1 1 1 1 1
	 ( (
I I 1 1 1 1 I
l 1 i 1 1 1 i t l
l 1 1 l l 1 | i l
1 1 1 I 1 1 l 1 1
t 1 1 1 1 1 I I
1 1 1 1 1 1 l 1 1
1 1 1 1 1 III
1 1 1 l 1 l l l 1
1 1 l 1 i l i l l
, , , 	 ,
1 1 1 1 1 1 | l 1
i l l l l i l 1
1 1 1 1 ill
i l l l l i i i i
1 1 1 1 1 1 l l 1
l 1 l i i l i i l
1 l i i l 1 i i 1
i l l
i l l l l l 1
1 1 1 i l l l l 1
i i i i i l i i i
i i i i i l i i l
i i < i i i i i i
l 1 l l i l i t l

-------
                                                    ISCST INPUT DATA CODING FORM (Continued)
    PROJECT
                                                                                  NAME
                                                                                  DATE
                                                                                                        SHEET     OF
   CARD GROUP,

   CARD NAME
                                                                DATA CARD  COLUMN
                                   14115 16 IT
                                         18 19 20 21 22 23 24 25 26 Z7 28 29 JO 31 32 33 34 35 56 37 38 39 «0 41 »2 43 44 45 W 47 48 49 SO 51 52 53 84 58 96 57 98
                                         SOURCE GROUP DATA PARAMETER AND  VALUE (X means do not punch)
                                                                                 63 MWS 66H7 68 89 70 71 72 73 74J79
     4,1 -
M

I
     4,2 -
                 X
                      X
X
                 X,,
           A  i i  X
      X,,
X,,
- NSOGRP  (array,  omit if NGROUP =  0)  -



            is/    |\/    (V    is/   IN/
            AJII AJII AII AIII  AIII
 A/
                                                   X,
A
                                                        X
                                       X
                                                              X
                                                        X
                                                        Aj
                                         X
X
                                              X
                                       X
X
                                                                   X
                                                             X^.
                                                      - IDSOR (array, omit  if NGROUP = 0) -
                            i i i.
                                  _i	i  ill
                                   i''i'
                                             '''i
                                                    i i  i i i
                                                     'i''
                                                            i i  i i  i
                                                                    i  i i  i i
                                                                             1 1  1 1 1
                                                                                             i  i i  i i
                                                                                             i  i i  i i
                                                                                                      i i  i i	i_
                                                                                                              I  I I I  L
                                                                                                                 ' '  '
                                                                                                                              X

                                                                                                                      1  I i  1 I


-------
ISCST INPUT DATA CODING
PROJECT


CARD GROUP,
CARD NUMBER
5,1-6 -





















































FORM (Continued)



NAME
DATE
SHEET OF

DATA CARD COLUMN
I












el,
10
II
12
13




1
T




20
I

90
31 32 33 M 39 96 37 58 39 10
41
«
METEOROLOGICAL CONSTANTS DATA PARAMETER










































I

t
1
1
1




































i
i
i
i
i
!
PDEI
I |















" (array, omit
i i i t i i i i i
i i i i i i i i
i i i i i iii
ii ii
i i i i i i i i
ii i i
if ISW(21) *
i i i i i i i ii
i i i i i i i ii
11 i i i i i
i i i
i i i i i i
1 1 !
2)
_J




43
44
494
647
4B
49
AND VALUE







I |
| 1






90
SI
52
53
54
55
56
(X means



1








1











_1

























57
58
do










59
BO


not punch)










1 1
\/
w
     5,7-12  -
     5,13 -
                                     - DTHDEF (array, omit if ISW(22) + 2) -
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 1 1 ] 1 1 1 1 i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 11
1 t 1 1 1 1 1 II
1 1 1 t 1 1 f II
1 1 1 1 1 1 1 II
1 1 I 1 1 1 1 II
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 ! 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
lllllljll
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 [ 1 1 1 1 1 1 1
                     ZR
- UCATS (array) -
                                                                                    1 1 1 I 1 I  I I

-------
w
oo
ISCST
INPUT
DATA CODING
PROJECT






DATA CARD
CARD GROUP,
CARD NUMBER
5,14 -
5,15-19 -
5,20 -

1 2

3
4

5
e

7

e 9

10

II

12

13

14
METEOROLOGICAL
TK
1 1 \ I l_l '

IS

16

17

IB

19

20

21
CONSTANTS
BETA1
1 1 1 1 1 1 1

BETA2
1 1 1

22

23

"
25

2627

28

29

»

31

32

33

343
336
AND IDENTIFICATION



DECAY
1 1 t 1 1 1 1
- IDAY


































ISS
iii i












ISY
i i





























IUS






















IUY
i i






























I |
(array,




















- (omit
1 	 " 	 "
	 — • —

37

38

39

40
LABEL
IQUN
i i i
omit








if








FORM (Continued)
COLUMN

41

42

43J44
DATA


if










NAME
DATE SHEET OF


4S4
1 1 1 1 1 1 I L 1

PARAMETER AND VALUE (X means do not punch)
ICHIUN | ^
ISW(19) = 2) -








ISW(19)
	 . —







xEx^xxEXwX^xxx^x^x^Ex^xj?x>SExx
= 2) -

-------
M
VO
ISCST
INPUT
DATA CODING
PROJECT


CARD GROUP,
CARD NUMBER
6,1 -
FORM

DATA
1
2
3
4
5
6
7
..
10
II
12
13
14
»
16
17
16
19
20
21
22
23
24
25
26
27
28
29
50
31
32133
SOURCE

NSO
i i
w
I





_J \




















1 1 1 1












_J I 1 1






1 t 1 1
_f 1 1 1























































i
l
i
i
i

L I
I

!


|
t
1 _,
(
|




1




















_J


Q
I












J 1 1



_J




























	 f 1 1 1 1 1 1









i I 1 1 1 1 1

| 1 1 1 1 1 1









U i i i-i i i-








, , , , , , ,
•








	 |

xs
1 1


1







































































_J 1 1 1 1 1




























1 1 1 1 1 1










YS
1 1


1





_|




































1 1 1 1 1 1


J


















1 1 1 1 1 1








1 1 I 1 1 1
f 1 1 1 1 1







1 1 1 1 1 1
1_J 1 1 1 I t







J
M5
556
(Continued)
NAME
DATE
SHEET
OF

CARD COLUMN
37
50J39
toUi
42
43
441454
647
DATA PARAMETER AND
1
zs
1


1 1 1


|

1
1




_J 1 1 1 1


_1
|
I
1
1
I
1






U ' i ' i

1
1


, , ,

1
1


1 1 l l 1





|
I

!
i
1
1
1
1
1 J










l 1 l l 1
l l l l l
t 1 1 1 1
HS
1 1 1 1 1
1 1



|
1
|









1 1









I
1

1
|
I
|
|
I
































1

|
1












1 1 1 1 1
|
48
49
50
51
32
S3
54
55
VALUE
TS
| |


1
(



|
j
|
|
(
|
|
1


















1 1 1 1 1


|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
1































i i i i i


56
5758

vs
1 1







1 1





•



























































































1
1
|
1
59

so

D
i






61





62







| 1 1 1 1
1
I
I
1






















1
I
1
1
I
| 1
1
1




l
l
l
i




1
1
1
1
















1 1 l l 1
1
i
1












HB
I |
87
"H-



1 III




































i i i i i




I































I 1 1 I L
1 1 I I 1
I i i i i
lilt
1 i i i i
I .11
Hrr



HL
1 1 1 1 1
1
I
1
I
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1 1
1
I
i
1 1 1
1 1 1
1 1 1

i
i
i
i
1 1 1
1 1 1
1 1 1
1 1 1
i i i l i
i i
i
1 1 1
1 1 1

i
i i
1 1 1
1 1 1
HW
1 1 1 1 1
1 1 1
1 1 1 I 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1 1 1
1111
1 1 1 1 1
| 1 1 1
1 I 1 1 1
1 1
1 1 1 1 1
1 1 1
1 1 1 1 I
1 1 1 1 1
1 1 1 1 1
I 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1

-------
ISCST INPUT
DATA CODING
PROJECT


CARD GROUP,
CARD NUMBER
6,2 -
FORM

DATA
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
ie
19
20
21
22
23
24
25
26
27
J»
50
31
32
33
543
556
37
SOURCE DATA


















































































































































































































1 1 1 1 1 1 1 1 1




















	 1










































































































_J































































111








































































PHI
i i




























































(array
i i i i








































1
I
I
I
1
1
I
|
|
I
|

1
1
1
1
1
1
|
|




















J 1 1 1 1 1 1 1 1







t

9



















J
omit
i i i










































|

|
|
|
|

|
|
1
|
|
|

|
|
|
l
if
i i
i

i
i

i
i
i
i
i
i
i
i
i
i
i
i

(





















(Continued)
NAME
DATE
SHEET
OF

CARD COLUMN
98
39
40
41 M2
43
44
454
647
48M9
50
51
52
53
54
55
56
57
58
69
BO
61
62






66
B7
68
B9
PARAMETER AND VALUE
NVS
I |




























































J 1 1 1 1 1 1 1 1



(
|




|
I
|
|
|
0




for all
j i i i i




|
|

1
t
\
\

I
|
|
|
£




1 III
1 III
I


1

I

1 1 1 1 1 1 1 1 1
|
|





1
\
\
|
I


1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I

I


|












|
|
|
|

|
\



|

I

I
I
|







1 1 1 1 1 1 1 1 1


i i i i i i i i i
sources)
_j i i i i















































































































































































































































































































































































































































'1



























1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 t 1 I
1 1 1 1 1 1 1 1 1
	 , , , ,
1 1 1 1 1 1 1 1 I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 I 1 1

-------
M
1
I-1
t-'
ISCST
INPUT
DATA CODING
PROJECT


CARD GROUP,
CARD NUMBER
6,3 -
FORM

(Continued)
NAME
DATE
SHEET
OF

DATA CARD COLUMN
1
Z
3
4
5
6
7
e
9
IO
11
12
13
14
15
"'
18
I9J20
21
22
23
24
25
26
27
28
29
50
31
32
33
SOURCE
































































































































































| I 1 1 1 1 1 1 1















































































































































































i
i
i
1
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
I
i
i
























1
(
|
1
1
1
(
1
|

1
I

1

I
1
|
|
1
|

















	 |
















VSN
i i













































(array
i i i











































































| t 1 1 1 1 1 1 1




























































>






















343
536
37
38
39J40
41 »2
«
44
DATA PARAMETER
omit
i i i












































|
|

|
|
|
I

|

|
(
|
|
|
|

|
|
|
|

if
I |
1
1

|
|

|
1
|

|
|
|
|
|


|

I
























NVS
1 |
























I
I
1
I
I
|
I
I
1

|

I


1
1

(
I
I
1
!
I
1
I
I
I
i
i
i
i
i
i
:
i
i
i
i
i
i
i

0






















4! »
647
AND
46
49
50
51
52
53
54
ri+
58
59
BO
61
62






66
87
68
69
VALUE
for all
1 1 1 1 1






















|
|

|
|
!
I
1
,

|
(
I
I
I
[
,
|




1
I

|
|
(
I
I
1
!
I
I
1
I
]
|
|

















































£






















sources) -
t, i i i i i i
























































































| |
| |
I |
1 1
I 1
| |
1 1
I |
I l
1 i
I |
1 I
I |
I |
I |
| |
I |
I |
1 1
1 1
1 1
I i









































































.












J
























































































































































i
i





















1 I






























i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i
ii iii i
ii iii i
iiiiiiiii
i i i i i i i i i
i i i i i i i i i
ii i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiiiii
i i t i i i i i
111111111
i i i i i it
iiiiiiiii
i i i i i
ii iii
	
i«i 	
i» 	
111^11111

-------
ISCST
PROJECT


CARD GROUP,
CARD NUMBER
6,4 -

i
























2


















































































































































































9
























10
11









































LJ





1



















12




13
































14













15








|
|
|
(
I




16

















17

















IB

















19

















20J2I























-J




















|
|
|

|

|
|


|



|



|
1









l_









L-









LJ






































22




23




24




25




26K7




28J29
INPUT DATA



DATA
30
31 32 33 34 35I3«B7
SOURCE DATA














GAMMA
i i i i







































I
I
1
1
I
1
I
I
1

I
1
I
(arr
i i
i
i
i
t
i
i
i
i
i
i
i
i
i













1 1 1 1 1 1 1 1 1








_J 1 1 1 1 I 1 1 1




















|
I
1
i
i
i
i
i




,,,,,,
1 1 1 1 1 ! 1
CODING



CARD
58
39
40
41

FORM (Continued)



NAME
DATE
SHEET
OF

COLUMN
42
43
44
454
647
48
IT
52
S3
54
PARAMETER AND VALUE
ay, omit if N\
i i i i i t i i i
i i i i i i
i i i i i i






i iii
1 ill
1 ! 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 i 1 1 1
1 1 1 1 1 1

























1 1 1 1 1 1
1 1 1 1 1 1






1 1 1 1 1 1 1 1 1
1 1 1 1 J 1
''II'!
i i i I I I
i i i i i i












1 1 1 1 1 1 1 1 i
1 1 1
1 1 1 1 1 1






7$








0 for all
i i i i i i


|
1
|
1


|

i i
i i
i 11 i





















































|
|
|
|
I
1
I


L
I
1
|
|
|

|
1

|

|
1
|
1













I
|
I
1

|
1
1

|

|








u







LJ
|




• 	 |
SS36

t

59

Tr

sources) -
i i i i i i i i









I
|
I
I
|







1 111






_]





















1
I
I
1
|
I
I
I
I
I
I
1
1
I















_1



I
|


_J 1 1 1 1 1 1 1 I
















|
I
I
|
1
1
|
1





















|
1
1
|
t
\





L.
i
i
i
i
i
i
i
i
i
i
i
i
















nil
T

i
i
i
i
i
i
i
i
i
i

i
"H-H

i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
ro
i















i
i
i
i
i
i








i
i

i
i
i
i 	 i
i i i


i i i
i i i
i i i
i i i







1 1 1 1 1 1 1 1 1
i



i

i i i



i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i 11 ii
i i i i i t i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i ii ii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiii))
i i i i i i i i i
i i i i i i i i i
iiiiiii i
i i i i i i i i i
ii|iiiiii
iii ii
III 1 J-

-------
w

H"
CO
ISCST
INPUT
DATA
PROJECT


CARD GROUP,
CARD NUMBER
6,5 -
CODING
FORM

DATA
'
2












9
:o
ii
12
13
14
IS
16
17
IB
I9J20
21
22
23
24
25
26
27
26
29
so
31
32
33
SOURCE






























t








































1 1 1 1 1 1 1 1 1

























































































































1 1 1 1 1 1 1 1 1








































































QTK
1 1 1






















I
1
1
|
1
I
I
|
1

1















_j




























I

I
I
	 1 i i i i i i i i
















I
1
(array,
i i























































omit
i i











































































































































Lf






















M3
556
(Continued)
NAME
DATE
SHEET
OF

CARD COLUMN
37
DATA
98
39
40
41
42
43
44
PARAMETER
ISW(23)
1 1 1 1 1











|


|

I
|
|
|
I
I
|


!

1
|
1
I
|
1


































0

































|
1
I



1
|
|
|
1

]
I













1






1








1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
45 »
£47
AND
48
49
50
51
52
S3
54
58
56
37
56
59
BO
61
62
63
M
H-
H«
89
VALUE
and QFLG =
i i i i i i i i
















































































I

I
!
1
|
1
(
1
i
1



1
i
!

|


|
'
|
|
1
|

|
|

1



|


|









































0




















i i i i i i i i i
i i i i i i i i i
for
i i










_i






















all
i i

































sour
i i i

















































































































































ces)
i i

























































































i
(
i
i

i
i
i
i
i

i

i


i .
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

i
i
i
i
i

i
i























70
I

























1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 I | 1
II 1 1 1 1 1
11 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1
1 t 1 1 1 1 I | 1
II 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1
1 1 1 I I i 1 I 1
1 1 1 1 1 1
1 1 1 1 1 1 1 | 1
III 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 I l 1 11
1 1 1 1 1 1 1 1 1
I 1 I I I I 1 1 1
1 1 1 1 1 1 1 1 1

-------
                                                 ISCST INPUT DATA CODING  FORM (Continued)
PROJECT
                                                                                NAME
                                                                                DATE
                                                              SHEET
                                                                OF
CARD GROUP,
CARD NUMBER
                      DATA CARD COLUMN
              I 2343676
                         9 10 II 12 13 I
                                  15116 17 18 19 2021
                                             23 24 25 » 27 28 29 50 31 32 33 34 35 56 37 M 39 »0 41
                                                                        42 43 44 45 46 47 48 41
                                                                                     51 32 53 54 55 56 S
                                                                                                     82 63 B4 85 M »7
                                                                                                                 70 TI 72 rs 74 re
                                  HOURLY METEOROLOGICAL DATA PARAMETER AND VALUE  (X means do not punch)
                                                        -  (omit if ISW(19)  = 1) -
7,1  -
                     JDAY   AFV
AWS
HLH
TEMP
DTHDZ
                i  i i ll  i i
              .1 l  l
                          i  i i i  i i  i
                          i  t i i  i i  i
                          i  i i i  i i  i
                          i  i i i  i i  i
                          i  i i i  i
                          i  i i i  i t
                          '  i i i  '
                                      i i  i i  i i  i
                                      i i  i i  i i  i
                                      i i  i i  i i  i
                                      i i  i i  i i  i
                                      i i  i i  i i  i
                                      i i  i i  i i  i
                                                 i  i i  i i i  i
                                                   i i  i i i  i
                                                 i  i i  i i i  i
                                                 i  i i  i i i  i
                                                   i i  i i i  i
                                                    i  i i i  i
                                                             i i  i i i  i i
                                                             i i  i i i  i i
                                                             i i  i i i  i i
                                                                i i i  i i
                                                              i  i i i  i i
                                                             i i  i i i  i i
                                                             i i  i i i  i i
                                                             	ii
                                                                        i  i i  i i i  i
                                                                        i  i i i  i i
                                                                        i  i i i  i i  i
                                                                          i i  i i i  i
                                                                        i  i i i  i i  i
                                                                        i  t i i  i i
                                                                        i  i t  i i i
                                                                        i  i i i  i i  i
                                                                        i  i i i  i i  i
DECAY
                                                                                               LI I I  I I
                                                                                                  I I  I 1  I
                                                                                               t I  I I  I I  1
                                                                                               1 _ I  I I  I II
                                                                                               I I  I I  I I  i
                                                                                               I I  I I  I I  I
                                                                                               I  I I I  I I  I
                                                                                                           I I  I I I  I I
                                                                                                           I \  I I I  1 I
                                                                                                           I I  I I I  I I
                                                                                                           I 1  I 1 I  I 1
                                                                                                           I I I  I I  I I
                                                                                                           I I I I I  I I
                                                                                                           I I 1  1 I  I I
                                                                                                               'I''

-------
                               APPENDIX F
             CODING FORMS FOR CARD INPUT TO THE ISC LONG-TERM
                     MODEL (ISCLT) COMPUTER PROGRAM
         The coding forms shown In this appendix are used to prepare
the input data for the ISCLT program for card punching.  If any input
card has all zero values, it may be left Blank because the program inter-
prets blanks as zero.  The coding forms are presented in the same order as
the program expects the input data except for the source input coding forms.
The source input coding forms show a form for Card Groups 17, 17a, 17b, 17c
and 17d individually.  This is done to make the key punching of the source
data easier and to minimize the number of coding forms that must be filled
out.  When the source card data have been punched, ~the user must reorder
the source input cards in sets from Card Groups 17 through 17 d, one set for
each successive source.   An example use of these card input forms is shown
in Appendix D with the example problems.
                                    F-l

-------
ro
ISCLT INPUT DATA CODING FORM
PROJECT

NAME

DATE SHEET OF

CARD GROUP
NUMBER 1 2 3 4 5 6 7 9 9 10 II 12 13 14
—

DATA CARD
15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 50 31 32 33 34 35
36 37 36 39 40 4

COLUMN

5 50 82 3 »4 S3 M5 (




CONTROL DATA PARAMETER AND VALUE (X means do not punch)
1. L-J. 1 1 1 1 1 1 I 1 t 1
1 I 1 1 1 i 1 III 1 1 1 1 11
- TITLE -
III 1 1 t 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i i i i i i i i i i i i
- ISW -

En tn 55 eg GO gg 03
O Pk OT 0
PS & E-i F
•3 O £ 2
02 O X >
21 iv 2* J2J X
3 - , , IX

i 1 J L_i i i i i i i
I I 1 I I i I 1 i I I
4a -
',1111 i t 1 1 1 1
1 i 1 1 1 1 1 1 1 1 I
5 -
,— < *-^. O ^H OJ CO ^ lO CD C1™ oO *J3 O

KtV \y l\/ ^v ^v
Ky ^^J l/\i l/\l I ill ^\i i i
2 £ J2 Q W «
H S w w J o
' C <; w n E-1
4 p H OH H ^>
-I g CO M M OT
> ^ 1
'KK '
: NOFILE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 I 	 1 1 1 1 1 1
- N0C0MB (array, omit if NGR<^UP=0) -
-IDS0RC (a
III 1 1 1 1 1 1 1 1 1 1 III 1
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
III 1 | | III 1 II II
III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rray, on
i i i i
i i i i
i i 1

- UNITS (omit If IS
i -i 	 i i i i i
lit if NGROUP=0) -
1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 11111 1 1 1 1 1 11111 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W(5) = 2 or 3)
i i i i i i i i i i i i i i i i i i i » i i i ' i » '
i i i i i i i i t i i i
i i i i i i i i i
^n^iiKi,
i i i i i i i i i X!\
V
1 1 1 1 1 1 1 1 1 /IN
1 1 1 1 1 1 1 1 1 /l\
_ , , 	 , x
1 1 1 II 1 1 1 1 1 1 1

-------
 I
1-0
ISCLT
INPUT
DATA
PROJECT


CARD GROUP
NUMBER
6 -
6a -
CODING
FORM (Continued)

DATA CARD
Ju
.1.
5
6
7
8
9
to
M
12
13
14
IS
16
17
16
19
2O
21
22
23
24
25
!6
27
28
29
RECEPTOR DATA
1
1
1
1
1
I '
I
I
I
1

1


1
1


,
t
i
i
1
I
t
i
i
i
i
i
i
I
i
L. 1
1

1













































































































-






,
I ' t
































X









































































































3












(arbitrarily













_J










































C




(axis of
iiii




















30
31
32
33
343
536
37
36
39
40
41
NAME
DATE
SHEET OF

COLUMN
42
PARAMETER AND
grid
1 f 1
















i iii








































,,,,,,, ,










r placed
IIII




i














1















recept



i





















i i i i i i i i i








— 1

system, omit
iiii iii










	 i


























1
t
I



1
I
1

1
1
1
I

|
|
1

































ij











i iii
ors,
i i


















omit
1 ' '


|
|
|

1

t


1






if






N>
I












,
43
44
45 «
647
46
VALUE
" NXPNTS
1 IIII



















































1


1





[WYPT.
	 (III)















|


|

|
|


|
|

«



'








49
90
SI
92
S3
94
35
56
97
96
99
(X means do not
0












c












, 0 or 1
1 | 1 1












	








|

|
1






1 1
>r












ISW(5)
IIII




































SW(5)






t

















1
















































60
61
62
63
64
65
66
B7




70


punch)
2 01










i

























2 or 3
IIII










(

|



i
i
i
i
i














-3)
1






















|
1


















































|






















\


\

& ISW(12) .
1 1 1 1 1 1 1 1


|
1

I
1

1




1








|
(
f



1



|
1

\
\
\
1








'


i

i













0)
I
\
1

1






! ", ! 	

1
1


,
\
i
,

1 1 I 1 1 1 1 1 1
I 1 1 1 1 1 1 II
1 1 1 1 1 1 ' 1 1 1
IIII IIII
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I | | 1
i i i i i i i i i
i. i t i i i i i i
i i i i t i i i I
i i i > i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i I I i i i i i i
i- I 1 i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i I i I i i i i I

-------
"J
-O
ISCLT INPUT
DATA
PROJECT


CARD GROUP
NUMBER
7 -
7a -
CODING FORM (Continued)
NAME

DATA
1
2
3|4
3
6
7
8
9
10
U 12 13 14 15 16 17 18 19 £0
21
22123
24
25
RECEPTOR




























1
1
I
1
|
I
I
1
I
I
1
|


































































































LJ
I
|
1
1

l ' I





LJ





LJ





LJ





LJ












- Y
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1
II III
III II I
1 1 1 1 11 1
1 III
1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1
1 1 1 I I 1 1 1 1
1 1 1 1 1
1 1 1 1 1 f 1 1 1
- Y (arbi
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 f f 1 1 1 1
III 1
1 III
(axis
i i i


I
1


26
27
20
29
DATA
of grid
i i i i










30
31
32
33
343
936




DATE

SHEET OF


















CARD COLUMN
37
38
39
PARAMETER
s


i
i i
i i







1
1
1
1
1
1















trarily
i i i i







1
1
I
1
I

1




\












































placed



































ystem,
1 1 1 1








40
41 42 43 44 45 46 47 4S 49 90
31
32
S3
54
55
AND VALUE (X means
omit if
1 1 1 1 1

I








, ,



























|


|

|
|
|

|
|
|


































receptors,
	 i i i i i i















1
1
|
|





omi
i i












_J 1 1 1 I I I i I


















NYPNTS = 0 01
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I
1 1
1 1 III
1 1 1 1 1 1 1 1
1 1 1 1 1
1 i 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1111111(1
1 1 i 1
1 1 1 1 1 1 I 1 1
t if NXWYPT =
1 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11 1 1

p ISW(5)
1 1 1 1

j








56
37
do



58
39
BO
61
62
_





66
B7
68
69
not punch)
= 2
I




or




1
1 1







_,
























































0 or ISW(l)
t 1 1 1 t 1 1
































|



















i
i

















i
















3)
J



















































































































70
71 72 73 74 75 76 T7 78 T9 BO














L or 2) -
| 1 1 1 1 1 1 1 1














'





1 1 1 1 1 1 1 1 1










1 1 1 1 1 1 1 1 1




I
1
I
1
I
1
I
1
I


1
I
,1


1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 1 1 1
I 1 1 1 1
III 1 1 1 1 1
1 1 1 1 1 1 1 II
1 1 1 1 1 1 | 1 |
f 1 1 1 1 1 1 t
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 - 1
l 1 1 1 1 1 1 1 1
1 III

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 l 1 1 1 1
1 1 1 1 1 1 1 1 1
f l 1 l l l 1 1 1
II 	

-------
 I
Ul
ISCLT
INPUT
DATA
PROJECT


CARD GROUP
NUMBER
8 -
CODING FORM (Continued)

NAME
DATE
SHEET OF

DATA CARD COLUMN
I
2












9
10
MJI2
13
14
IS
'.6
17
IB
19
20
21
22
23
24
23
26
27
26
29
RECEPTOR DAT A






















































































































































| 1 I t 1 1 1 1 1













-J



























^J






L_l





















I
1
1
I
I
I
1
r
I

















































































	
(
.,
















i,.ii,,ii
1 1 1 1 1 1 1 t 1
1
(





,
































































z
	 1
(grid
1 1 1
3O
31
32
33
343
536
37
58
39
to
41 42 43 44 45 »
647
48
PARAMETER AND VALUE
system
It III t
III 11




























































1 1 1 1 1 1 1 1 t

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 i
f 1 1 1 1 1 1 1 1
J I I I , , , I I





1

. 1




















_l 1' I































_l
















elevations
iitii i
9
on-
t i i i i i i i i
iii 11111


































1
I
i
i
i

i
i
!
|
|
1
I
1
I
|
|
|
1
1













































i i t t i i i i i




























|



,



1



































tit if ISW(4)
ii i i i i
i i
1 l l
l l 1
l i i
i l l
ii ii
tiiii
I i i i
|
|

|
|
|
|
1








49
50
SI
32
53
54
55
56
37
58
59
(X means do not







i

0








i i i i i i i i i
itiii
ii ii
iitii
11111
>iiii
1 i i i i

i i
i l
i i
i i i i
i i i
i i i
|
|
|
|
|
|

I


|
1
1














i
i
i
i
i

i
i
i
i
i
i

or ISW(5)
! 1 1 1 1 1






|

|
1
|


1 t









1
|
1
1
1
I
I
1
1































































1










|

|
|
|
t
|
1
1
f
t
1

I



















I













|






I
I

I
'






















so
61
62
63
64
65
66
67
68
69
TO


punch)
2
I


















i
i

i






















or 3
I |

































|

|
|


1
I
I
1
1


















I
I

1
or
i
























|
|
|
|
|
|
|
|
|
1
|
(
|

1
1
1
1
1
1
NXPNT
fill
|
|
|
|
|
|
|


|
|
|
|
|
|
t
1
1
1

1
1


|
|
|


|
|

|
|
|
|
|
1
I
1
I
I
1
1
|
|
|
I

|
|
|


|
,
|
|
-(
i
i

i
i
i
i

|
|
|
|
|

|
(
|
|
I
|

|
1
i
1
1
1
,1
,1






















S= 0) -
1 1 1 1 1 1 1 1 1
I I 1 1_ L
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1
1 1 1 1 1 1 l 1 1
1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 | l t
1 1 l 1 1 l l ll
1 l 1 1 1 1 r i l
1 1 1 1 1 1 | | |
l 1 1 1 1 1 i | l
1 t 1 1 1 1 l i (
1 1 t 1 1 i t i >
1 1 1 1 1 1 1 1 I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 l l 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 i l i i 1 l t l
1 i 1 1 1 1 1 1 l
l l t l l I i l l
1 t 1 1 1 1 1 1 1

-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT























NAME












DATE






SHEET OF

CARD GROUP
NUMBER
8 -
(Cont. )

1

2

3
4

5
6

7

8

9

13
II

12






















20
21

22

23

24

25JZ6I27

28
DATA CARD COLUMN
29J30
31 32 33 34 33 56 37 58 39 4O
41 42 43 44 43 46 47 48 49

50J51

52

53

54

»

56

57

50

59
RECEPTOR DATA PARAMETER AND VALUE (X means do not















^
















































































































































( I 1 1 1 1 1 1 1




















f 1 1 I 1 1 1 I 1

























































































































































































































































































_1


































































1 1
1 1
1 1
1 1
1 1
I I
] |
1 1
I |
I |
I I
1 1
1 ]
1 1
1 1
1 1
1 |
1 I
1 I

I |
1 1
Z(g
1 1















|



,

1
1
I
1
I
I
1

I
I
1
I
1
(
1
!
I
I
t

I
1 1 1 1 1 1 1 1 1
rid system ele
i i i i i i i i
ii i i i i i i
i t i iii
1 1 1 1 ! 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 t I 1
1 1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 i
1 1 1 1 1 1 1 1 1

1 t 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 |
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 f 1 1
vations, contin
i i i i i i i
i i i i i i i
it i i i i i i
1 ! ! 1 1 ) 1
1 1 1 1 1 !
1 1 1 1 1 1 1 1
It 1 1 1 i 1 I
t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 t 1 1 1 1 i t
1 1 1 1 i 1 1 1
1 1 1 1 1 i 1 1 1
1 1 1 1 1 1 1 1
11)11111!
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 I | i
1 1 1 1 1 1 1 I 1
ued)
t i










































































































M>
61

62










66

B7

68

69

7Q


punch)












_j . i , i i i , ,






























































•
i








1 I 1 ! 1 1 1 1 1




























































,,,,,,,,,





















































I





































1 1 1 1 1 1 1 1 1
I I 1 1 1 1 1 1 1
1 1 l i i 1 l | f


1 1 I 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1 1
1 II 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1

( | 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
-
1 ( 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 i i 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 t i 1 1 i 1
1 1 1 1 1 1 1 1 1

-------
ISCLT
INPUT
DATA
PRO JE CT


CARD GROUP
NUMBER
8a -




















RECEPTOR
1
2





e
9










J




























































z









10
II
12
13

(ai


















	































t



























,-J










































14
IS
16

17

IB
I9J20
21

rbitrarily space
1 ! 1 1 1 1 1 1 1





















_J

































































—I









































|

-i












































|
(
|
1
l
1
I
l
i
f
i

i
t
I
,
I
1
I

i

22
23

24










CODING
FORM (Continued)

NAME
DATE
SHEET OF

DATA PARAMETER AND VALUE (X means do
25
£6
27

26

29
30
31
32
33
343

3d receptors,
I 1 i 1 t 1 I I




































c




j










1 1















|





|








1


,

|











|





|




556

37

38

39

unit if ISW(4)
1 t I 1 1 1 1 1














1
1 ! 1 1 1 1 1 1 1

|













|






















|































1






























|


1

1

t

I


|


|
|
|
1
t
I
|
1 I
1 t



















































4O
41 42 43

















1 1 I 1 1 1 lit

















—1


|

|


(


t






_J


















44

454

647

48

49

0, NXWYPT
1 1 I 1 1 1 1 1
1 1
1 1

t
I
] I

1 I
1 1
1 1 t










1
I

I
I
I
1
1
1
I



|
|
j


|
1




















50
31 52 53 54 55












1
i 1
1 I 1
1 1
1 1 1
1 1 1
1 1 1






t
|
!


I
|

1
!
t



















1 1 1 E 1 1 1 1 1
t 1
i
1 i
1 1 '




1



















56

not punch)
37

0, ISW(5)
1 1 1 1 1 t
1 1 1 1
1 t t 1
1 1 1 1
1 1 1 1
1)11
1 1 t 1
1 1 1
1 1 1 1 f
till
1 1 t 1 1
1 1 1
II II
1 1 i 1 1
1 1 I 1 1
1 1 1 t t
1 1 1 1 1
1 1 1 1 1
t 1 1 t 1
III 1
1 1 1
ill 1
t 1 t












































"H-
61

= 2
| 1
I |

| |
! j
I I
, ,
i i
i i
i i
i i
i i
i i
i i
i i
i i

i i
i i
, ,
i i

i i
62

63

64

65

66

67

60

69

70
71 72 73 74 73 76 77 78 79 BO

or 3 and ISW(1S
J 1 1 1 1 1 1 1 1








	 1





|
|
|
























|
|




































|























1



!



1
1
1
1
I
|
|






1














I
|
,


i
i
i
i
i
i
i

\
|






i




|

|







I
|






i
i
i
i
1
|
!

1


1
1
1
1
1












!)=0 -
1 | 1 1 1 1 1 1 1
	 ,
1 1 I t 1 t 1 I 1
1 1 1 1 1 1 f 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 t 1 t 1 1 1 I 1
	 ,
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i t i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
' 	 i''
i > i i i i i i i

i i i i i i i i i

-------
                                                    ISCLT INPUT DATA CODING FORM (Continued)
    PROJECT
                                       NAME
                                                                                     DATE
                                                                 SHEET
OF
     CARD GROUP
     NUMBER
                  DATA CARD COLUMN
                  I  23 4 5 6 7 0 9 10
                                II IZ 13 14 15 16 IT 18 19 20 21 22 23 24 25 26 2T 28 29 SO 31 32 33 34 3!
                                                                   1938 3'
                                                                      7 96 39 «0 41 »2 43 «4 45 »6 47 48 49 50 51
                                             52 S3 54 58 56 57 58 39 80 61 62J6J M 69 MJ67 SSJS9 70 71 72 73^74 75 76 r7J78J79 BO
                                      METEORLOGICAL DATA PARAMETER AND VALUE (Xmeans do not punch)
           9   -
- FMT  (.omit  if ISW(5) = 2  or  3 or ISW(18) =  0)  -
                                              - FREQ  (omit  if ISW(5) = 2  or  3 -
00
           9a -
                     1 I 1  11 t 1
                   I  1 I 1  1 1  1 1  I
                   I  !__!_ 1  1 ._j 111
                   1  I I  I I I  I 1  I
                   I  I 1 I  I I  I I
                   1  I I I  I I  I I  t
                   I  1 I I  1 I  I I  I
                   lit! |] t II
                   I  1 1 1  I I  I 1  I
                   i  i	L t  I I  I I  I
                   I  I j I  I
                                 LI  1 J  1 II 1 __L
                                     I I  I I 1  I I
                                 1  I  I I  I I I  I I
                                 I  I  I I  I I I  I I
                                 I  t  1 I  I I I  I I
                                 I  I  I I  I I I  I I
                                 L I  I I  I I I  I
                                       I  1 I  t I
                                                I I  I I  I I 1  I I
                                                I I  1 1  I I I  I I
                                                I I  I I  1 I 1  I 1
                                                I I  I I  I I 1  j I
                                                I I  I I  I I I  I I
                                                I I  I t  t I I  I I
                                                I I  I I  I I I  I I
                                                I I  I I  I 1 I  I I
                                                I I  1 L I I L I I
                                                 t  I ._L I i _L i.
                                                II I 1  I I 1 I I
                                                 I  | 11 ill
                                                I I  I i  I 1 1  I
                                                 '  ' '  I 1 I  l
                                                              I I  I I  I 1  I I  1
                                                              1 II 1. ]__. I  i I  1
                                                              I I  I I  I I  I I  I
                                                              I I  I I  1 I  I I  I
                                                              I I  I I  I I  1 I  1
                                                              I I  t I  I 1  I I
                                                              I I  I I  I t  I I  I
                                                              I 1  I I  I
                                                                            l  I I  I 1. _J_ I I J
                                                                            I  I I  I I I  I I  1
                                                                            1  I I  I I I  1 I  I
                                                                            I  I I  I I. 1 I 1 J
                                                                            I  I 1  t 1 I  I I  I
                                                                                          I  1 I  I 1  I 1 I  I
                                                                                          1  I I  I I  I I I  1
                                                                                          1  I 1  I I  I I I  I
                                                                            t  I I  l I I  I I  I I 1  t t  I I  1 l I  I
                                                                            I  I I  I I I  I I  I  I  i I .J_ I  L 1 I  I
                                                                               I  1 I I  1 I  t
                                                                            1  I 1  I 1 1  1 I  I
                                                                            I  I 1  I I 1 1 I  I
                                                                                          I  I t  I I  1 I 1  1
                                                                                          I  1 1  I 1  I I 1  I
                                                                                          I  I I  I I  I I 1  I
                                                                                          I  t I  I l  1 I t  I
                                                              I I  I I  I 1  1 I  I
                                                              ' '  I '  1 '  I I '
                                                                            I  1 I  I I I  I I  1
                                                                            I  I 1 I  I I  1 1  I
                                                                               t I  I I  1 I  I
                                                                              I ' l  ' '  I I  '
                                                                                          I  I I  I I  I I 1  I
                                                                                          I  I I  1 I I  I 1  I
                                                                                               i i i i i  i
                                                                                            i i  l i i
                                                                                          i  i i  i i i  i i  i

-------
                                                ISCLT INPUT DATA CODING FORM (Continued)
PROJE CT
                                                                  NAME
                                                                                  DATE
                                                                                            SHEET
OF
CARD GROUP
NUMBER
                                            DATA CARD COLUMN
234 9 B 7 8 9 10 II 12 13 |4 IS 16 17 18 19 20 21 22J23 24 29 26 27 28 29 30 31 32333435363758 39 loUl 42 43 44 45 46 47 48 «9 50 51 32 53 94 59 9« 57 58 59 60J61 62 83 64 69 66 67 68 69 70 71 72 73 74 73 76 77 76 79 90
                                 METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
      9a -
    (Cont.)
                                                             -  FREQ (Continued)  -
               I j  | I  1 l
               I I  I I  1 1  I
               I I  I I  I I  I I  I
               1 I  I 1  i J
               i 1  I 1  I I  I I  1
                  I I  I 1  I I  I
                             Jill 1  I I I  I
                               I 1  I I  1 t j  I
                             LI I  I I  I I I  I
                             I  I I  I I  I I I  I
              I I  I I  t 1 I  I 1
__1 III  I I
              1 t  1 1  I 1 1  I 1
                                1  i I I I I  1
                             1  I I  I till
               111111(11
                             L _ I 1  ) I I  t 1  I
                             t  I I  I I  I I I  I
                               I I  I I I  I I  I
                               I 1  I III I  1
                                            l i  t l l  I i  l i
                                            l l  i I I  1 l  l l
                                            I i  i l l  l l  l l
                                            I I  I I I  l l  l l
                            L I  I I  1 1  I 1  I
                             I  i J I I  I I  1
                                           _1 . I  I I 1  I I  I I
                                            1 I  I I 1  1 I  I
                                             I  I I I  t 1  1
                                            I I  I I 1  I I  1 I
                                            II  1111
                                                          I  I I  I I I  I I  I
                                                          1  I I I  1 I  I II
                                                          I  I 1  I I I  1 II
                                                          J	I I I  I I  I I  I
                                                          1  I I I  I I  ( II
                                                            I I I  1 I  I 11
                                                               _.__!.. L ( i  1
                                             I  t 1  1 I  II
                                          I  I I  I I  I I  It
                                                          1  I 1 I  I
                                                          I  I 1 I  I
                                                          1  I I 1  1
                                                          J_ 1 ] I  1
                                                              I  1 I  I I  I
                                                          I I  I I  I I  I 1
                                                                         I I  I I  1 1
                                                                         I I  I 1  1 I I  t I
                                                                         I I  I I  I I I  I I
                                                                         I I  I I  I I I  I I
                                                                         1 I  I I  I I 1  I t
                                                                        J 1  L ) 1  I 1  I I
                                                         I  l I I  I I  l I  I
                                                         I  I I I  I I  l I  I
                                                                        J I I I 1 J I  I I
                                                                        J I _.J_ J I  1 1  I I
                                                                         I I I I I J I  I )
                                                                         i 1  I I I  I I  I 1
                                                                          l._L__| 1  I I  I I
                                                                         I I  I I I  I I  I I
                                                                                       '	'I'

-------
                                                         ISCLT INPUT DATA CODING FORM (Continued)
      PROJECT
                                                                     NAME
                                                                                            DATE
                                                                                                 SHEET
OF
      CARD GROUP

      NUMBER
                                               DATA CARD COLUMN
2 ill 9678 9 10 II 12 13 14 15 16 17 19 19 2O 21 Z2 23 24|29 » 27 28 29 30 31 32 33 34 39 38 37 38 39 «0 41 12 43 4449 •« 47 4649 30 51 529394599897 58596081 82 63 84 89 8« B7 88 99 70 Tl 72 73 74 79 76 ?7 78 TWO
                                         METEOROLOGICAL DATA PARAMETER AND VALUE  (X means do not punch)
                                                                -  TA (omit if ISW(5) = 2 or 3)  -
           10  -
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 I i 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 t 1
1 1 1 t 1 1 1 1 t
t 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 I 1 I
I i I 1 1 1 1 I i
I I i I 1 I 1 1 I
I i i I I f i i i
i i I i i i i i i
1 1 1 I I ! 1 1 1
I I 1 1 1 1 I I 1
1 i I i I i i i i
i i I t I t i i i
i I I I 1 i 1 i I
1 I 1 1 1 1 1 1 I
I i i i i i i i i
i i i I I t i i i
i i i i I i i i i
i t I i I i i i I
                                                                -  HM (omit if ISW(5) = 2 or 3)  -
 I
I—>
o
           11  -
                      I I  1 I  I I  I I  I
                      1 I  I I  I I  I I  I
                      1 1  1 I  1 I  I 1  I
                      1 1  I I  1 I  I I  I
                      I I  I 1  I I  I I  i
                       1  1 I  I I  1 1
                                    J	I  I  I I  I I  I I
                                     I 1 I  I I  I 111
                                     I _J___i_. i__L.
                                          I I  I I  I 1
                                                    I  I I  I I  I I  I 1
                                                    I  I 1  I I  I 1  1
                                                    l  i L i i  l i  i i
                                                    I  I I  I I  I I  I I
                                                                   I  1 I  1 I  I 1  1 1
                                                                        i i  l i  i i
                                                                   l  i i  i l  l i  i l
                                                                     l l  l i  i i  i i
                                                                                  i  i i  i i  i i  i i
                                                                                  1  l l  l i  i i
                                                                                  i  i i  i. i. i i  i l
                                                                                  i  l i  i i
                                                                   i  i ]_ 1..1 i i  i i
                                                                      i  l i  i i  i i
                                                                     1 t  i l  i
                                                                   l  i i  l l  i
                                                                                  .!_ I. 1 ill 1  1 1
                                                                                                 I  I  t I  t I  I t  t

-------
                                             ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
                                             NAME
                                                                            DATE
                                                                      SHEET
                                                                    OF
CARD GROUP
NUMBER
                         DATA CARD COLUMN
              I 2 3 4 9 6 7 8 9 10 II 12 i:
                                      19 20 21 22 23 24 29 26 27 26 29 50 91 32 33 34 39 W 37M 39 40 41 «2 43 44 43 46 47 48 49 50 31 52 S3 94 55 9« 97 58 99 80 61 «2 63 64 69 66 67 68 69 70 Tl 72 79 74 75 76 '7 78 7
                                                                                        ±
                                 METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
    11 -
   (Cont.)
    12 -
    13 -
    14 -
                                                          - HM  (Continued) -
1 1 1 I 1 1 t 1 1
1 ( 1 1 1 1 1 1 1
1 1 1 t 1 ! 1 I 1
1 1 I 1 1 1 1 1 !
1 1 ! 1 ! 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
\ i i i i i i i i
i i i i i i i i i
i i i i i I i I t
i i I t I 1 i i i
i i i i i i t t i
i I I t I I i i i
i i i i I i i i i
i t i i i i i i i
i i i i i i i i I
t i i i i i i I i
i i i t I I i I I
i i i i i i i i i
I I I t I I i i I
i i | i i i i i i
I i i i I i i i i
i i i i i I i i i
i I I I I I i 1 i
I I I I I 1 I I I
t 1 I i I i i 1 I
1 1 1 I I i I I i
i 1 i i t i i l i
1 i I i i i i i i
i i i I I i i i i
l i I I I I I i i
1 I 1 1 1 1 1 t I
1 1 1 I 1 t ! 1 1
1 1 1 1 1 I 1 I 1
1 1 1 1 1 1 1 1 1
1 | 1 1 1 1 1 | 1
i i t I I i I i i
l t i l l i l l l
1 1 I 1 1 1 1 f I
l l l l i l i l i
l i i 1 l l i i i
l l i i i i i 1 i
                                                     -  DPDZ (omit if ISW(5) = 2 or 3)  -
1 1 1 1 1 1 1 1 1
1 1 1 1 t 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 I 1 1
i i i t i i i i i
i t i i i t i i i
i i t i i i i 1 i
i i l t i l i i i
i i i i i i i l i
i i i i i i i t i
! 1 1 I 1 I | 1 t
i i i i i l i i i
i i | i i l i i I
i i i t i i i i i
i i i l l 1 i i l
i i i i i i i i i
; I l i I l l l l
i l i t i i i i l
1 1 l l 1 l l I 1
i 1 i l l i ( 1 l
l 1 i ) 1 i i l l
i l l l l t i i i
1 1 1 t 1 1 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 f 1 I 1 1 t 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 ! 1 1 ! 1 1 1 I
1 { t 1 1 1 ! 1 1
1 1 I 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 t 1 1 1 1
t 1 1 f 1 f 1 1 1
! 1 1 1 1 1 I I !
1 1 t I 1 t ! I i
                ROTATE
TK
ZR
(omit if ISW(5) = 2 or 3)  -
 BETA1       BETA2        G
DECAY
                               I I I  t I  I I I  1 i
                                                                         I I  I I I  I I I  1 I 1  I 1 I  I I I  I I II I I  I I 1
                                                    -  UBAR (omit if ISW(5)  = 2 or 3) -

-------

PROJECT


CARD GROUP
NTIMRFR


15 -
0




16 -



ISCLT INPUT DATA CODING FORM (Continued)
NAME
DATE SHEET OF

DATA CARD COLUMN
1 ~ 1 {

METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- PHI (omit if ISW(5) = 2 or 3) -
1 1 1 1 1 1 1 1 1 1 1 t ! t 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 t 1 1 'l 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 III 1 1 1 1 1 1 III II II II III
- P (omit if ISW(5) = 2 or 3) -
1 1 I I 1 1 1 t 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 III II 1 t 1 1 1 1 III 1 1 1 1 1 III III 1 I ^\ s^
II 1 1 1 1 t 1 1 1 III II | ^^ s^
t 1 1 1 1 1 1 1 1 1 1 1 1 II III 1 1 1 1 I 1 1 I I I ^^ *r
1 1 t 1 II 1 1 1 1 1 1 1 1 I 1 1 t 1 III 1 1 i I 1 1 1 1 t 1 1 1 1 I I It 111 1 1 j sS' ^^^.
1 1 1 I 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 I I i L | ^^ ^\
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I i 1 //^ ^***^


-------
ISCLT
PROJECT
INPUT DATA CODING FORM
(Continued)
NAME
DATE

CARD GROUP
NUMBER
17 -























DATA CARD
'

-JJ '










10
II 112
13
14
13
16
17
16
19
20
21
22
23
24
23
26
27
2«
29 30 31 32 33
34 3S
363738
39
40















SHEET







OF





COLUMN
41
42
434445 46 47
48
49
SO 31 52
S3
54
»
56
57
56
59
60
61
62
1
I


66
67
68
69
70
71
SOURCE DATA PARAMETER AND VALUE
NUMS
lilt
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
till
1 | 1 1
till
1 i 1 1
1 1 1 1
1 1 t 1
1 1 1 1
till
1 t 1 I

1 1 1 1
1 ' ' '

i i

WO
3HO1































































































DX
i i '
i
i
i
i
i
(
I

I
I
I
1
1 1
!
! 1
1 t











































































































, 	 , , ,
| 1 1 1 1 1 1 1 1


, ,




.














|

|
|
|
I






































DY
1















|









































































|








































1 1 1 1 1 I 1 1 1
|
,
,


,
.



H
1 1 1
1 1 1 1
I
zs
1
I
1
1 1
1 1
1
1 t 1 1
t
1
1
1
i i i r i i
i i i
i | i
1
i
i i i i i
i i i i
i i i i i
i i i i
i i i i i
i i i i i
1
1
I
I
I
t i i i i i

i i i i i i
i i i i i i
I |
t 1






TS or
SIGYO
or XO


III!
1 1 1
1 1
1 1 1
1 1 1
1 1 1
T 1 1
1 1 t
t 1 1
1 1 1
1 ' '
1 1 1
1 I 1
1 ' '
1 ' '
1 ' '
1 ' 1















|































I
















1 i i lit
II! Ill
VEL
or
SIGZO
1 1 1 1 1 1
t 1 1 1 1
1 1 1
1


I 1
1 1
1 1 1 1
1 1 1






1 1 1 1 1 1
1 1
(III
1 1
1 1 1 1








1 1 1
I 1 1 1 I 1
1 1
1 1 1
1 1 1 1 I
1 1 1 1 1



1




1 1 1 1 1 1
1 1 1 1 1 1
1 |
1
f
1
1
1
1 1
1 !
1 1




































1 t 1 1 I
t 1
] !
1 i
1 1 1
1 1 1
t 1
1 1 1



|

|
I



|

|
1






1







,,,,,.
1 i I.

1
1

	
1 1 1
|
,
,
















_J





























|


D
















HB









t



|
(
1















1
















1 1 1 1 1 1

1 1 I 1 1 1
I I i i 1 I
,
,
|
•
,
|








1






















|


|


|
|


I
|
|
1






	




|

]

1


1
|

|
1

,



,
1





i i i t , i
iitiii-
i
(



1

1
|
1
i
i


1,11,1
1 1 1 1 1 1
,1,11,
1 1 1 1 1 1


t
|

72

+

73

76

77

BW



|


i i

! j
1 1


|




|







1 1 t 1 1 1

|



|
|


|

1
1 1
1 1
1 1
1 1
1 1



|

:
I
|
t


(









f
FJ'tJ

W










j
]
I
,
I

1



I
1 t 1 1 1 1
j

1 1

1



i
1 1 1 1 1 1 II
(
|
!
1

|
|
I
1 1
1 1
1 i
1 1


|

|

|
l







i
i


I
1 1 1 1 1 1 1

-------
ISCLT INPUT DATA
PRO JE CT


CARD GROUP
NUMBER
17a -















































































J32DJNG.


DATA CARD
1










.1,
T




























23
2«
25
M
27
?8
29
50
31 32 33 34 55 36J37
38
39
»O
41



FORM

( Continue ch
NAME













DATE






















SHEET OF





COLUMN
42
43
SOURCE PARAMETER






i


	


















^































































































i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

t






































i I 1 i i > i I 1

LJ


L_l

i




	 i



























i i
i i i










































































































































































, ,






























































































































j



i
i











































1












































1 1 1
- VS (omit
1 1 i 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II III
1
1 1 1 1 1
1 1 1
I 1 1 1
1 1 1 1 1 1
I 11 1
1 1 1 1 1 1
1
1 1 1 1 ! 1
1 1 1 1 1 l
III 1
1 l 1 1 1 t 1
1 1 1 1 1 1










































1 1 1 1 1 1 1 i
1 1 1 1
1 1
II II
1 1 1 1 1 1












1 1 1 1 1 l l l l
1 1 1 1
if

j
44
45 *
E47
48
19
so
11
52
55
54
55
56
57
58
59
SO
61
62
63
M
65
66
S7
68
69
70


AND VALUE
NVS =
1 1 1 1






|
1
0)-
1 t i 1
|
1






i











i
i

i
i
i
i
,
















|
|







































1


1
1
I
1

1

1
l
1
1

I
1
(


|
|
|
|

1
|
|

|
|
|
|

I
|


















|

1
















|

_L























































































































1
































_I


















_1


















_J


























'l

1
_L
,
,
_L
(
1






























t 1





	 ]

























































-




































	





I






t
1





|












|








1




|

1




j
(
1















i i i i i r i i i
i i i i i i i i i
tit it
iii iii i
i i i i iii
i i i i i i i
i i i i i i i i i
i i i i t i i i i
i i i i i i i i i
i
i i i t i i i i i
i i i i i i * i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i
i tiii
i i i i i i t t i
i ' i i i i i i '
11 i i i i i i

-------
 I
M
Ul
ISCLT INPUT DATA
PROJECT


CARD GROUP
NUMBER
17b -






























CODING
FORM

DATA
'
















10
It
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
3O
31
32
33
SOURCE



























































































































A




















I






1 1 1 1 1 1 1 1 1












|
|



|

















|














1 1 1 1 1 1 1 1 1





























































































































1

1
1
































































|


|







































|
,
(
(
(
I
















|

|

,
!
I

































































1














































































































1 1 1 1 1 l 1 1 1











1










I
1












343
336
(Continued)
NAME
DATE

















SHEET OF





CARD COLUMN
37
DATA
FRQ
i i

1
t


|

|

I

|
(
t

|
:

j


1 1








|


38
39
40
41 42 43
44
454
647
PARAMETER
(om:
i









(























_i , i i , i i i .

:






1

1




t

1
i

i






1 1 1 1 1 l 1 1 t

1
1

1 [




j 1 1 1 1 1 1 1 !


I









1 1
1

I
I
i
i
t

(





1 1 1 l 1 1 1 1 1
t If NVS
1 lit
I |
I |
1 1
I |
1 1
1 1 1
1 t 1
1 1 1
1 1 1
1 1 I
! 1
1 1 1
1 1
1 1 1
( 1 -I
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1







|
|



!


f


i
i


|



|






|
|

1


1


|
|
|
|
|

|


| |
| |
|
| |

| ]



|
I


46
49
90
91
32
93
34
59
M
37
58
59
60
61
62
63
64
69
66
67
68
69
AND VALUE
0) -
1 1









,
|




|
|
|








|
I

!
(




|
,

,
(
1




























|


|

|
t

L








|
|
|

|

|










1


!

(
1

i





|
|
1

!





|
I









1
|
.


)











1


|
|












|
|



J
1
















|












|

1


























































70
1







1






1
1




,,,, 	
! 1 1 1 1 1 1 1 1
1
1

1 1 l 1 1 1 1 1 1
(
1

1
1

1
1
1
1
1

1
1

|
|

I
I

I
I




1 1 1 1 1 1 1 1 I
l
|
(





|
|
|
|



i
|





i



|




|





)

t


I


|


|

i




|


t









|

|
|





|
|

|

(











1 1 1 f 1 1 t 1 1

I
t
I

1

'

i
i

1
1
1

j
1
1


i
i


1
1

(
1
1
1

1
1
1




1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 l l l
1 1 I 1 1 1 l l 1
1 1 1 1 1 1 1 l 1
1 III
1 1 1 1 1 1 1 1 1
II III
1 1 1 1 1 i 1 t 1
1 1 fill
l l 1 1 l 1 i l l
1 1 1 1 1 1 1 1 1
l 1 1 1 1 t < i l
1 1 1 1 1 1 1 1 1
, • i , 	
1 t 1 1 1 1 I l 1
t 1 1 1 l 1 l l 1
1 1 l 1 1 1 1 1 I
l 1 l 1 1 1 1 1 1
1 1 1 1 1 t 1 1 |
1 1 1 1 1 1 1 1 1
l l 1 l i 1 l i i
i t 1 I 	
l l i i l l l l 1
1 1 1 1 1 1 1 1 1

-------
Tl
 I
ISCLT INPUT DATA
PROJECT


CARD GROUP
NUMBER
17c -


















































































DATA
•



J
































20
21
22
23
24
29
26
Z7
26
29
SO
31 52 33 34 33t36
SOURCE DATA

































































































































































I



















1 1 1 1 1 1 1 l t


























|



























































































I


,






















,













































|













































|










































I

























































I



















I






































































































1 1 1 1 1 1 1 1 1
11
i i i i I i i i i
37

CODING


CARD
56
39
40
41



FORM

(Continued)
NAME
DATE
SHEET OF

COLUMN
«2
43
• 4
494
PARAMETER
- GAMMA
1 1 1 1 1 t 1
1 1 1 1 1
| 1 f 1 1
11 II
I
1 1
1 1 1
1 1 1 1
1 I 1
1 f
1 i 1 t 1
1 1
1 1 1
1 III
1 1 1 1 1




























(on




























1 1 1 1 t 1 1 1 1
111 1
1 1 1
1 1 1 1 1
1 1 1 I 1 |
|


1
|



|
|

l




1 1 1 1 1 1 1 1 1
,,.,,,,,,
, , , , 	
lit if
	 | |

































|




















647
46
49
9O
91
52
53
54
15
56
37
98
99
BOJ61
62J63
64
65
66
87
68
«9
TO
!

AND VALUE
NVS =
1 I I


















I
I
|
|


(
1
|
I

1
1
1
(
1



|
|


|
|


|
|
f

|
|
| |
t |
1 I
= 0)




































































1 1 I 1 1 1 1 1 1
,,,,,.,,,
.,,111,.,
1 1 1 1 I 1 1 t 1
!
|

,



































|


















|













|

|
|

h
(

















|
































|


|
j

1



















1

































1 , 1 I 1 I 1 1 1

i


1

1
,


1 1 1 1 I i , 1 1
1 1 1 1 t 1 1 t !
)


|
I
I
t
1
1
1
1
I

t
!









































































































{ t 1 1 t 1 1 I 1
I


, ,
1
l |






|








|

1



1 1 I I 1 1 1 I 1

1 I 1 I 1 I 1 1 >
1 1 1 1 1 1 1 1 1
i i i t 1 i i i i
l 1 1 l l l i i l
1 1 l 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1
1 1 1 l 1 I 1 1 1
1 l l 1 i i l i 1
,.,,,,,,,
i t l i i i i i l
1 I 1 i 1 l I l l
i l l l l I i t l
1 1 1 1 I l t i 1
i l l i i i l i l
l 1 ) f 1 l 1 t 1
l 1 l i i i l l l
1 l l i l l 1 l I
l l l i i l l i l
1 l l i 1 I 1
1 1 1 l l i l 1 1
iiliiflii
i i 1 l ' ' 1 1 \
i i i 1 I t i i i
l 1 1 1 i i l l I

-------
                                               ISCLT INPUT DATA  CODING FORM (Continued)
PROJECT
                    NAME
                                                                              DATE
                                              SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
              I 2 34 5 6T 8 3 10
                            II 12 13 14 IS 16
                                       19 20 21 22 23 24 25 J6 27 28 29 30 31 32 33 34 5! 56 57 38 39 «0 41 12 4:
                                                                      I «2 43 4414!
                                                                            5 46 47 48 49 30 51 52 53 54 59 5« 57 98 59 BO «l 62 83 64 69 «« 87 M S9 70 71 7Z 73 74 TS 76 f7 7» r
                                       SOURCE DATA PARAMETER AND VALUE (X means do not punch)
    17d -
         - Q  -
               i i i  i i i  i i  i
               i i i  i i i  i i  i
               i i i  i i i  i i  i
               i i i  i i i. i i  i
                            1  1 I  I I  t I I  I  .i._l l  l_i I  l t  I  1  I I  1 I 1  1 I  I   1 I I  i l  l i t  I
                             l l l  i I  l i l  l
                             l I l  l I  l i I  l
                            I  I I  l I  I I I  1
                            i  I l  l I  l i ' l  l
                            I  I I  I I  I I I  I
                            l  I I  I I I  I I  I
                            i  l I  l i i  i I  l
                            I  l l  I l i  i l  i
                            l  i i  l l
                            I  I I  1 I l
                            I  I I  I I I  I I  I
                                           l i l  I I  l I I  I
                                           l i I  I I I  I I  l
                                          I  l I  I I I  I I  I
                                           I l I  I I I  I I  I
                                          I  I I  I I I  I I  I
                                          I  I !  I I I  I I  1
                                          1  I 1  I I I  I I  I
                                          	
                                          1  I I  I I
                                          I  I 1  I I I  1 I  I
                                          1  I I  I I
                                          I  I I  I 1 I  1 I  I
                                          II
                                                    II
                                                        I  I I  I I I
                                                        I  I I  I I I  I I  I
                                                        I  I I  I I I  I I  I
                                                        I  I I  I t I  I I  1
                                                        I  I I  I I I
                                                        I  I I  I I I  I I  I
                                                          I I  1 I t  I
                                                        I  I I  t I I  I I  I
                                                             I I I  I I  I
                                                        I  I I  I I I  1 I
                                                        I  I I  I I I  I II
                                                        I  I I  I I I  I I  I
                                                                       I I  I I I  I I I  I
                                                                       I t t  I I  I I I  I
                                                                       I I I  I I  I 1 I  I
                                                                       I I I  I I  I I I  I
                                                                       I I I  I I  I I I  I
                                                                       I I I  I I  I I I  1
                                                                       I I I  I I  I I I  I
                                                                       III	
                                                                            t  I I I  I
                                                                       I I I  I I  t I 1  1
                                                                         I  I I  I 1 I  I
                                                                       I ! I  I I  I I I  I
                                                                            I  t I I  I
                                                                       I I i  I I  1 I 1  I
                                                                       1 1 I  I I  I 1 t  I
                                                                         I  1 I  I I I  I
                                                                        I 1  I I I  I
                                                                       	I
                                                                                    I  I I  t I I  I
                                                                                    I  I I  I I I  I I  I
                                                                                    1  I I  I I I  I I
                                                                                    I  I I  I I I  I I
                                                                                    I  I I  I I I  I I I
                                                                                    1  I I  I I I  I I I
                                                                                    I  I I I  I 1
                                                                                    I  I t 1  1 I  I I I
                                                                                    I  I t  I I I  I I t
                                                                                    I  I I I  I I  I I I
                                                                                    I  I I 1  I I I  I I
                                                                                      t I I  I I I  I I
                                                                                    I  I I I  1 I I  I I

-------
                               APPENDIX G
            THE METEOROLOGICAL PREPROCESSOR PROGRAM FOR ISCST
G.1       INTRODUCTION

          Hourly meteorological inputs to the Industrial Source Complex
(ISC) Dispersion Model short-term computer program ISCST may be input by
card deck or by the meteorological data tape or file generated by the
Single Source (CRSTER) Model preprocessor program.  The following dis-
cussion of the preprocessor program is principally based on Section 4.2
and Appendix A of the User's Manual for the Single Source (CRSTER) Model
(EPA, 1977).
G.2       DESCRIPTION OF THE PREPROCESSOR PROGRAM

          The preprocessor program generates a magnetic tape of hourly
values of the meteorological input parameters required by the ISC Model
short-term computer program ISCST.  These parameters include wind speed,
wind direction,, mixing height, stability category and ambient air tem-
perature.  The inputs required by the preprocessor program are:  (1)
hourly National Weather (NWS) observations of surface wind speed, wind
direction, temperature, cloud cover and ceiling height in magnetic tape
format; and (2) daily minimum and maximum mixing heights in punched card
format, as determined from NWS 1200 GMT upper air temperature soundings,
using the methods of Holzworth (1972).  The preprocessor program, in
addition to generating the meteorological data for the ISCST program,
performs checks for missing data on the tape of hourly surface observa-
tions and prints diagnostic messages for any discrepancies that are
detected.  Quality checks are not performed on mixing height data input
to the preprocessor program.  Consequently, it is recommended that the
user review the mixing height data.
                                    G-l

-------
          Data for each day are read by the preprocessor program and
processed one hour at a time.  The cloud ceiling height, wind speed and
sky cover data are used to classify the atmospheric stability for each
hour.  The wind speed is converted from the input units of knots to
meters per second, as required by the ISC Model.  A flow vector (in-
dicating plume direction) is calculated from  the hourly mean wind
direction.  In addition, a randomized flow vector is computed to account
for the natural turbulent fluctuations of the wind that are not re-
flected in hourly wind-direction observations reported to the nearest
10-degree sector.  Hourly mixing heights for both rural and urban condi-
tions are derived from the morning (daily minimum) and afternoon (daily
maximum) mixing height data (see Section 2.4.1.2).

          The preprocessor program is written in FORTRAN V language for
execution on a UNIVAC 1100 series computer and is compatible with most
FORTRAN IV compilers on other types of computers.  A program listing for
the preprocessor program is contained in Section G.7.  Figure G-l is a
flow diagram of the functions performed by the preprocessor program.
G.3       CONTROL LANGUAGE AND DATA DECK SETUP

          G. 3.1     Control Language Requirements

          The following runstream illustrates the Executive Control
Language (ECL) required to execute the preprocessor program on a UNIVAC
1100 Series Operating System:
          @RUN . . .
          @ASG,A  prog-file
          @ASG,A  cd!44-file
          @USE    8,cdl44-file
          <§ASG,CP met-file
          @USE 9, met-file
          @XQT    prog-file.PREP
          card input data deck
          @FIN
                                    G-2

-------
                               Read
                              Initial-
                              ization
                               Card
                            Skip  First
                            Record  on
                              Input
                              Tape
Initialization
     Card
    CD 144
    Tape
  (Unit 8)
                                Read
                              Record  for
                              Hour  1  on
                              Input Tape
                               Read  First
                              Three  Mixing
                              Height Cards
    Mixing
 (Height Cards
                            Calculate  Time
                              of  Sunrise
                            and Sunset for
                              day IDAY
                              Calculate  24
                             Random Numbers
                               for  Random
                               Flow Vector
FIGURE G-l.  Preprocessor Program Flow Diagram

                                  G-3

-------
Check data
for Continuity
^

V
TTT'D 1
InK L
                             Print
                           Diagnostics
                            Messages
                 No
                              Convert
                            Wind Speed
                            from Knots
                             to m/sec
Read Mixing
Height Data
   for
Next Day
ing Height
 C.ards
                           Convert Ambient
                             Temperature
                                from
                               OF to °K
                               Calculate
                                 Flow
                                Vector
FIGURE G-l.  (Continued)
                                   G-4

-------
                                ^^^
                                1
                             Calculate
                            Randomized
                            Flow Vector
                             Determine
                             Stability
                               Class
                             Calculate
                               Urban
                             and Rural
                            Mixing Height
                            IHR=IHR+1
   Read
Input Tape
 for Next
   Hour
                                                         GDI 44
                                                          Tape
                                                        (Unit 8)
FIGURE G-l.  (Continued)
                                       Yes
                             Use Data
                           from Previous
                             Hour for
                            Final Hour
                                  G-5

-------
                                Output
                              Record for
                                  Day
                                 IDAY
 Output
  Tape
(Unit  9)
                             Write "All
                              Records
                             Have Been
                             Processed"
                             CStopj
FIGURE G-l.  (Continued)
                                   G-6

-------
          prog-file             =  name of program file containing the
                                   preprocessor absolute element
          cd!44-file            =  the file name assigned to the input
                                   data file of hourly meteorology in
                                   card deck 144 format
          met-file              =  name to be assigned to the output
                                   file of combined hourly surface and
                                   upper air meteorological data
          card input data deck  =  the initialization card followed by
                                   the set of mixing height cards
The following IBM Job Control Language (JCL) is required to compile,
line-edit and execute the preprocessor program on an IBM System/360

Operating System:
          //jobno JOB (account),'name',TIME=time
          //EXEC FORTGCLG,COND=(4,LT)
          //FORT.SYSIN DD *
          source deck
          //GO.FT08F001 DD DSN=CD144,UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,
          //LABEL=(,NL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
          //GO.FT09F001 DD DSN=met-file,UNIT-2400,DISP=(NEW,KEEP),
          //VOL=SER=yyyyyy,DCB=(RECFM=VBS, LRECL=779,BLKSIZE=7794)
          card input data deck
          /*
where:

          jobno                 =  job number
          account               =  accounting information (system de-
                                   pendent)
          name                  =  programmer's name


          time                  =  estimated CPU time requirement



                                    G-7

-------
          source deck           =  the preprocessor program source deck
                                   on cards
          xxxxxx                =  volume serial number of the tape con-
                                   taining the hourly meteorological data
                                   file in card deck 144 format
          met-file              =  name to be assigned to the output met-
                                   eorological data file
                                   volume serial number of the tape to
                                   receive the output data file
          card input data deck  =  card input file consisting of the
                                   initialization card followed by the
                                   set of mixing height cards
          This example assumes that the input will be on a nonlabeled tape

with a block size of 800.  This is representative of the form in which the
data are issued by the National Climatic Center.  The output file in this
example is also on tape with a blocking factor of 10 records per block.


          G.3.2   Data Deck Setup


          The data card deck required for input to the preprocessor program

must be set up as follows:


          •       Preprocessor initialization card


          •       Mixing height card for December 31 of the year preceding
                  the year of record


          •       Mixing height card for January 1 of the year of record


          •       Mixing height card for January 2 of the year of record
                                    G-8

-------
          •       Mixing height card for December 30 of the year of record

          •       Mixing height card for December 31 of the year of record

          •       Mixing height card for January 1 of the year following
                  the year of record

The preprocessor program initialization card contains values for data items
that must be initialized for each run.  The mixing height cards contain
the morning and afternoon mixing heights for the corresponding day.  The
methodology for calculating hourly mixing heights from the twice daily
mixing heights involves interpolations using the afternoon mixing height
from the preceding day and both mixing heights from the following day (see
Section 2.4.1.2).  For this reason, the mixing heights for the last day of
the year preceding the year of record must be included as the first mixing
height card and the mixing heights for the first day of the year following
the year of record must be included as the last mixing height card.  If
these data are not available, the data for the first and last days of the
year of record can be substituted, respectively.  The contents and formats
of the preprocessor initialization card and mixing height cards are described
below.
G.4       INPUT DATA DESCRIPTION

          G.4.1   Card Input

          Card input requirements for the preprocessor program consists of
an initialization card followed by a set of mixing height cards.   The pre-
                                    G-9

-------
processor program initialization card contains information to initialize
the following items:

          •    NWS meteorological surface station number
          •    Year of record
          •    Latitude of the surface station
          •    Longitude of the surface station
          •    Time zone of the surface station
          •    Number of days in the year
          •    Initial value for generating random numbers

Table G-l is a description of the format of the initialization card.

          The set of mixing height cards is composed of one card for the
last day of the year preceding the year of record, one card for each day
of the year of record, and one card for the first day of the next year.
Each card contains the NWS upper air station number, the date, and the
values for the morning and afternoon mixing heights.  Table G-2 is a
description of the format for the mixing height cards.  The twice daily
mixing height cards must be punched from either magnetic tape or printed
tabular data for an appropriate NWS upper air station for the year of
record.  Mixing height data on tape are available from the National
Climatic Center (NCC), Asheville, North Carolina.  These tapes store
one day of data per 34-character record using the format shown in Table
G-3,  with 10 records to a block.   Note that the afternoon mixing height
column numbers on the NCC tapes are not the same as those required on
the preprocessor program mixing height data cards.

          G.4.2     Tape Input Requirements

          Magnetic tapes containing card images of the hourly mete-
orological data in "Card Deck 144 format" required by the prepro-
cessor program are available from the NCC.  These data can also be
                                    G-10

-------
                                 TABLE G-l

                 PREPROCESSOR INITIALIZATION CARD FORMAT
  Card Columns
Format
          Description
     1-5

     6-7

      8

     9-18


    19-28


    29-30
    31-3A
    35-44
  15

  12



F10.1


F10.1


 F2.0
  14
F10.0
NWS Surface Station WBAN Number

Year of Surface Data

Blank

Latitude of the Surface Station
(degrees to hundredths)

Longitude of the Surface Station
(degrees to hundredths)

Time zone in which the Surface
Station is located:

     05 = Eastern

     06 = Central

     07 = Mountain

     08 = Pacific

Number of days in the year of
record (365 for non-leap years;
366 for leap years)

Random Number Seed*
*NOTE:  The user is cautioned with regard to the random number generator
 used in the preprocessor program.  The subroutine called in this program
 is entitled RANDU and is provided by Sperry Rand Corporation for use on
 the Environmental Protection Agency's Univac 1110.  The user must contact
 his system personnel to obtain a suitable alternative to the RANDU sub-
 routine.   Because the same random number generator will not be used by all
 users,  the randomized flow vectors may differ when comparing preprocessor
 file results from two different computers.
                                     G-ll

-------
                 TABLE G-2
PREPROCESSOR MIXING HEIGHT DATA CARD FORMAT
Card Columns
1-5
6-7
8-9
10-11
12
13-17
18-30
31-35
Format
15
12
12
12
IX
F5.0
13X
F5.0
Description
NWS Upper Air Station WBAN Number
Year of record (last two digits)
Month
Day
Blank
Morning Mixing Height (m)
Blank
Afternoon Mixing Height (m)
                     G-12

-------
                                TABLE G-3
             DATA RECORD FORMAT FOR NCC MAGNETIC TAPES OF
                 MORNING AND AFTERNOON MIXING HEIGHTS
      Record
     Positions
  Format
         Description
        1-5

        6-7

        8-9

        10



       11-12

        13
       14-17

       18-20

       21-23



        24
       25-28

       29-31


       32-34
    15

    12

    12

    II



    12

    Al
    14

    13

    13



    Al
    14

    13


    13
NWS Upper Air Station WBAN Number

Year of record  (last two digits)

Month

Season  (1 = Dec. -Feb., 2=
Mar. -May, 3 =  June -Aug., 4 =
Sept. -Nov.)

Day

Type Code (P =  precipitation,
C = morning average temperature
plus 5°C is less than 1200 GMT
surface temperature, M = missing)

Morning Mixing  Height (m)

Morning* Surface Wind Speed  (m s   )

Morning Wind Speed Averaged from
Surface through Mixing Layer (m
s-1)

Type Code (P =  precipitation,
C = afternoon average temperature
is less than 1200 GMT surface
temperature, M  = missing)

Afternoon Mixing Height (m)

Afternoon** Surface Wind Speed
(m s-1)

Afternoon Wind  Speed Averaged from
Surface through Mixing Layer (m s~^
* 0200-0600 LST
** 1200-1600 LST
                                    G-13

-------
obtained as 8,784 punched cards.  Each tape file contains one card
image record for each hour.  The format of these records is described
in the Card Deck 144 WBAN Hourly Surface Observations Reference Manual
(NCC, 1970).  Data on this file used by the preprocessor program include
the station number, year, month, day, hour, cloud ceiling height, wind
direction, wind speed, dry bulb temperature and total opaque sky cover.
Table G-4 is a description of the format for these data items required
by the preprocessor program.

          If data for an NWS surface observation station have not been
processed into tape format by the NCC, the data can be coded from printed
copies of the WBAN Form A observations, also available from NCC.  In-
structions for coding the data in Card Deck 144 format are given in the
Card Deck 144 Reference Manual (NCC, 1970).  Only the items required by
the preprocessor program need to be coded.
G.5       OUTPUT DATA DESCRIPTION

          The output tape from the preprocessor program consists of a se-
quential file containing a file identification record followed by one
record for each day in the year.

          The file identification record contains the year of record for
the surface meteorological data, the surface station identification number,
the year of record for the mixing height data, and the upper air station
identification number.

          Each of the daily records contain the year, month, and the Julian
Day followed by 24 values of stability category, wind speed, temperature,
flow vector, randomized flow vector, and rural and urban mixing heights.
Because the last record on the input tape corresponds to the 23rd hour
of the last day, the data for that hour are also used for the 24th hour
on the last record on the output tape.
                                     G-14

-------
                     TABLE G-4
DATA RECORD FORMAT FOR NCC MAGNETIC TAPES OF CD 144
  SURFACE DATA - PREPROCESSOR REQUIRED DATA ONLY
Record
Positions
1-5
6-7
8-9
10-11
12-13
14-16
17-38
39-40
41-42
43-46
47-49
50-78
79
80
Format
15
12
12
12
12
3A1
22X
12
12
4X
13
29X
Al
IX
Description
NWS Surface Station WBAN
Year of Record (last two
Month
Day
Hour
Ceiling Height
Blank
Wind direction (Tens of
Wind speed (Knots)
Blank
Temperature
Blank
Opaque
Blank
Number
digits)





degrees)






                          G-15

-------
          All records on the output file are written with an unformatted
FORTRAN write statement.  The output files,  therefore,  are machine and com-
piler dependent and cannot be directly accessed by the  ISCST program on sys-
tems and compilers different from the computer or compiled program creating
the file.

          The four parameters on the file identification record and the
year, month and stability category on each of the daily records are
stored as FORTRAN integer variables.  All other values  on the daily
records are FORTRAN real number variables.  Table G-5 is a description
of the arrangement of the variables on each of the daily records.

          Assuming no fatal error messages,  the entire preprocessor file
is printed and successful run completion is indicated by the message:

                     ALL RECORDS HAVE BEEN PROCESSED
G.6       DIAGNOSTIC MESSAGES

          The two types of diagnostic messages that may be generated by
the preprocessor program are fatal error messages and informative mes-
sages.  Fatal error messages are printed when an inconsistency is detected
in the input data, causing the program to terminate execution.  Table G-6
is a list of all possible fatal error messages and the corrective action
that should be taken.  Informative messages are printed when anomalous
data items are detected.  No user action is necessary in response to an
informative message unless the assumptions made by the program adversely
affect the results.  Table G-7 is a list of the informative messages in
the preprocessor program.
                                     G-16

-------
                                                      TABLE G-5


                                     PREPROCESSOR OUTPUT FILE RECORD DESCRIPTION
Position of Variable
Within the Record
1
2
3
4-27
28-51
52-75
76-99
100-123
124-171
Variable
Name
IYEAR
IMONTH
DAY1
KST
SPEED
TEMP
AFV
FVR
HLH
Fortran
Variable Type
INTEGER
INTEGER
REAL
INTEGER
REAL
REAL
REAL
REAL
REAL

Year of record (last two digits)
Month
Julian Day
Array of 24 Stability Category Values
Array of 24 Wind Speed Values (m s~ )
Array of 24 Ambient Temperature Values ( K)
Array of 24 Flow Vector Values (degrees)
Array of 24 Randomized Flow Vectors (degrees)
Array dimensioned 2 by 24 containing 24 rural
mixing height values and 24 urban mixing
height values (m) . The values are stored on
the record in groups of two for each hour
with the rural mixing height first followed
by the urban mixing height for that hour
I
1-1
^J

-------
                                 TABLE G-6

                   PREPROCESSOR FATAL ERROR MESSAGES
ID DOES NOT MATCH IN RECORD # i   ID ON TAPE IS n   ID REQUESTED IS k
*****DATA IS MISSING.   PLEASE CORRECT INPUT FILE*****t
 Description:
 Action:
This message is printed if the surface station identifica-
tion entered on the preprocessor initialization card does
not match the station number on a record in the hourly
meteorological data file.  The value i is the number of
the record within the file, n is the station number on the
record, and k is the station number requested.

If i = 1, check the surface station number input on the
preprocessor initialization card and the input meteorologi-
cal data file to be sure that the correct file was input.

If i > 1, the input file is bad.  A listing of the file
should be inspected to determine what corrective action
is necessary.
 YEAR IS i INSTEAD OF j IREC = n
 Description:
 Action:
The year i on record number n of the meteorological data
file did not match the year j input on the preprocessor
initialization card.

If n = 1, check to be sure that the correct year was
entered on the preprocessor initialization card and that
the correct input file was used.

If n > 1, the data file is in error.  A listing of the file
should be inspected to determine what corrective action
is necessary.

If n > 8,760, check to be sure the number of days entered
on the preprocessor initialization card is correct.
tThis line appears on fatal error messages for ID, YEAR, MONTH, DAY, HOUR
                                     G-18

-------
                         TABLE G-6  (Continued)
MONTH i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
               The month ± on input record n of the meteorological data
               file is out of sequence.  The month should have been
               number j.

               If i = 2 and j = 3, check to be sure the number of days
               entered on the preprocessor initialization card was 365
               for a non-leap year.  If i = 3 and j = 2, check to be
               sure that the number of days entered on the preprocessor
               initialization card was 366 for a leap year.  If the number
               of days input was incorrect, enter the appropriate value
               and rerun preprocessor.   Otherwise,  inspect a listing of
               the input file for missing or extraneous records.  If the
               file is out of order, sort the file in ascending order
               keying on columns 1-13.
DAY i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
               The day i on input record n of the meteorological data
               file is out of sequence.  The day should have been number
               Inspect a listing of the input file for missing or extrane-
               ous records.  If the file is out of order, sort the file
               in ascending order keying on columns 1-13.
HOUR i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
               The hour i on record n of the input meteorological data
               file was out of sequence.  The hour expected was hour j.
               This message is printed for hours 1 through 23, for which
               the value on the input record should equal the value of
               the index of the hourly 'DO' loop.

               Inspect a listing of the input file for missing or extrane-
               ous records.  If the file is out of order, sort the file
               in ascending order keying on columns 1-13.
                                    G-19

-------
                         TABLE G-6  (Continued)
 ERROR: MISSING HOUR LOOP VALUE = j WHILE VALUE ON RECORD n IS i
Description:   This message is printed if the last hour of the day
               being processed (j = 24) is not the data for the first
               record of the next day  (i = 0).

Action:        Inspect a listing of the meteorological data file for
               missing or extraneous records.  If the file is out of
               order, sort the file, keying on columns 1-13.
                              TABLE G-7

                  PREPROCESSOR INFORMATIVE MESSAGES
THE CHARACTER x IS NOT ALLOWABLE.  CLOUD COVER DEFAULTS TO 10.
Description:   The cloud cover on a record in the input meteorological
               data file was value x.  The only valid values for cloud
               cover are 0,1,2,3,4,5,6,7,8,9 or —.   The program assumes
               a value of "-" which is interpreted as a 10 tenths cloud
               cover.
STABILITY = i j r n
Description:   A stability class was assigned an invalid value (i).  The
               value j is the wind speed index, r is the net radiation
               index number, and n is the number of the input meteorolog-
               ical data file record being processed.
                                    G-20

-------
G.7       FORTRAN LISTING OF THE CRSTER/ISCST PREPROCESSOR PROGRAM

          The following is a complete FORTRAN source listing of the
CRSTER/ISCST preprocessor program.
                                  G-21

-------
N>
to
 1*
 2*
 3*
 4*
 5*
 6*
 7*
 8*
 9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
23*
26*
27*
28*
29*
30*
31*
32*
33*
34*
39*
36*
37*
38*
           C***CRSTER-PREPROCESSOR-  WRITTEN  BY  JOAN  HRENKO  NOVAK
           C*** BASED OH METHODS  SUGGESTED BY  TURNER ,  ZIHHERHAN,  AND IRUIN.
           C*** VERSION 77166
           C***tHE PROGRAM ASSUMES THERE  IS  NO  HISSING  DATA ON THE NET.  TAPE.
           C*«*iF HISSING DATA  IS  DETECTED/  THE LOCATION  OF THE HISSING  DATA  IS
           C***PRINTED. HISSING DATA  HUST BE FILLED  IH  BEFORE  PROCEED1HG .
                 DIMENSION LSTAB< 12,?>/  IDFAC<12/2>, ANGLO),  ICEIK3),  IDG<3>,
                16(11 )
                 DIMENSION KST<24>/  SPEED<24>,  TEHP<24>/  AFV<24>,  FVR(24>,  HLH(
                1). RAND<24>
                 DATA ID1G /•0'/"l*,'2"»'3"»'4«»"5',"«'f•7','8'*"»B/'-V
                 DATA IREC /!/  ,IHO  /I/  ,ANGL  X60.,35.,15./ -CONST X57.29378/
                 DATA IDFAC /O,31,39,90,120,151,181,2 I 2,243/273/304, 334,0 , 31 , 60
                1121,152,182,213,244.274,305,335/
                 DATA L8TAB /?,7.7,6,6.6,5,5.5,5,4,4,6,6 , 6 , 5
                14/4/4/4/4.4 ,4/4,4, 3/3/3/4/4.4,4,4,4,4/4/4,2
                21,2/2/2/2/2.2,3,3/3/3/4/1/1,1,1,1/2/2,2,2/3
                           SURFACE DATA
                           OUTPUT  FILE
                           UPPER  AIR  DATA IN CARD  FORHAT
                                                   5,5,4,4,4,4,4,4,4,
                                                   2,2,3,3,3,3,3/3/4,
                                                   3/3/
C**»
C***
C***
8
9
5
       UNIT
       UNIT
       UNIT
      IN = 5
      10 = 6
      IFLAG'O
C***READ CARD TO INITIALIZE  HET  TAPE  I D/YEAR,LATITUDE,LONGITUDE /
C*** TIHE ZONE /NO. OF  DAYS  IN YEAR/  INITIAL  RANDOH  NUHBER.
C***RAND(24) IS THE INITIAL  RAHDOH  NO.  USED TO  GENERATE  THE  SEQUENCE
C***NUHBERS FOR THE RAHDOHIZED FLOW VECTOR. IF  THE SAKE  NO.  IS  USED
C***DIFFERENT EXECUTIONS  OF  THE  PREPROCESSOR, THE  SANE  SET OF  RANDOH
C***tfILL BE GENERATED.  ANY ODD NUHBER  GREATER THAH 3 DIGITS  CAN  BE  U
C***AS THE SEED. THIS SEED IS HULTIPLIED  BY 10000  IHTERNALLY.
C*»*ZOHE IS GHT-LST.
      READ (Ifi,400> IDC/IYRC/ALAT*ALOHG/ZOHE/NDAYS/RAND<24 )
      VRITE <{0/410> IDC,IYRC/ALAT/ALONG,ZONE,NDAYS, RAND<24)
      DUH-ALAt/CONST
      SINLAT»dIN< DUN)
      COSLAT-COS
-------
    39*      C***RESET  SUBSRITT  IF  LEAP YEAR                                         HET00390
    40*            LYS=1                                                              HET00400
    41*            IF  (NDAYS .EQ .366> LYS=2                                           MET00410
    42*      C***READ  HET  DATA                                                        NET00420
    43*      C***THIS  READ ASSUMES  AN INPUT TAPE WITH HOURLY DATA FROH THE           HET00430
    44*      C***HATIONAL  CLIMATIC  CENTER, ASHVILLE, HC . IN THEIR STANDARD           HET00440
    45*      C***foURLY CARD FORMAT.                                                  MET00450
    46*      C***SKIP  00  HOUR OF  MET DATA.                                           HET00460
    47*            READ (8,420)  I D,I YEAR, IHONTH,I DAY,I HOUR,ICEIL,IDIR,I SPEED/ITEHP , ICHET00470
    48*           10VER                                                              MET00480
    49*            LUD-IDll                                                          HET00490
    50*      C***BEGIN  PROCESSING  WITH HOUR 01                                       HET00500
    31*            READ (8,420)  ID,1 YEAR, IMONTH, IDAY,I HOUR,ICEIL,IDIR,I SPEED,ITEHP, 1CMET005 1 0
    52*           10VER                                                              HET00520
    S3*      C***«1XING HEIGHT  VALUES ARE  DETERMINED TWICE A DAY FROM RADIOSONDE DATAMET00530
    54*      C***US1MG  THE PROCEDURES OF HOLZWORTH.                                  HET00540
    55*      C***READ  PRIOR DAYS  MIXING HEIGHT VALUES                                HET00550
    56*            READ (IN,430)  XMNHl/XAFMi                                         HET00560
0   5?*      C***PRESENT  DdY                                                         MET00570
f'o   58*            READ (IH/440)  IDH, IYH, XHH, XAF                                     HET00580
w   59*      C***SRITE  IDENTIFYING  INFORMATION ON OUTPUT FILE                        HETOOSSO
    60*            WRITE  ($) ID,I YEAR,IDH,IYM                                        HET00600
    61*            WRITE  (10,430)  I YEAR,ID,IYM,I DM                                   HET00610
    62*      C*** READ  NEXT DAY'S  MIXING HEIGHT VALUES                               HET00620
    63*            READ (IN,430)  XMNP1/XAFP1                                         MET00630
    64*      C***8TART  DAY LOOP.                                                      HET00640
    65*            DO  380 IDY«1,NDAYS                                                MET00650
    66*      C***CALCULATE THE  DAY  NO AND  THE TIME OF SUNRISE AND SUNSET             HET00660
    67*            DAY1»IDAY + IDFAC(IHONTH,LYS )                                       HET00670
    68*      C***COHSTANT 0.0172028=360/365.242*57.29578                            HET00680
    69*      C***DETERMINE THE  AHGULAR(RADIAHS ) FRACTIOH OF A YEAR  FOR THIS  DATE.    HET00690
    70*            DAYNO=(DAY1-1.0)*0.0172028                                        MET00700
    71*            TOAYNO»2.*DAYHO                                                    MET00710
    72*            SIHD-SIN(DAYNO)                                                    HET00720
    73*            COSD«COS(DAYNO)                                                    MET00730
    74*            SINTD=8iN(TDAYNO)                                                 MET00740
    75*            COSTD'COS(TDAYNO)                                                 MET00750
    76*      C***ACCOUHT  FOR ELL1PTIC1TY OF EARTH'S ORBIT.                           HET00760

-------
?
ho
77*           8I6HA»279.9348-KDAYNO*CONST>+1.914827*SIND-0.079323*COSD+O.OI9938*HET00770
78*          ISINTD-0 .001 62*COSTl>                                                HET00780
79*     C*«*COHSTAHT 0. 39785 = 8 1 H< . 4091 720 193-23 . 44383/57 . 29378 )                  HET00790
80*     C*«*F1ND THE SINE OF THE  SOLAR DECLINATION.                              HET00800
81*           DSIN=0.39785*S1N                                      HET00810
82*           DCOS-SaftTU .0-D81H*DS1H>                                           HET00820
83*     C**»5ETERHINE TIHE(HRS) OF MERIDIAN PASSAGE                              HET00830
84*           AHN-12.0+0. 1 2357* SI ND-0 . 004 28 9* COSD+0  1 53809 *S 1 HT D+ 0  060 7 83 *C OST D  NET00840
85*           HCOS"<-SIMLAT*DSIN>/(C08LAT*DCOS>                                  HET00850
86*     C***BETERHIHE SOLAR HOUR  ANGLE OF SUHR ISE-SUHSET .                        HET00860
87*           H2 = ( ATAN2( S8RT( 1 . -HCOS*HCOS ), HCOS)/15 .0 )*COHST                     HET00870
88*     C***T1HE OF SUHRISE(TSR)  AND  TIME OF SUNSET(TSS) ARE  EXPRESSED  IN        MET00880
89*     C***LOCAL STANDARD TINE SINCE THE ZONE  CORRECTION HAS  ALREADY  BEEN  HADE . HET00890
90*     C**«OTHERy 1SE THEY MOULD  BE IN GREENWICH NEAH T I HE .                      HET00900
91*           TSR=AMH-H2*DUM                                                     MET00910
92*           TSS»AHN+H2+DUH                                                     MET00920
93*           RAND< 1 )=RAHD<24>*10000                                             HET00930
94*     C***JH1S CALL TO THE UNIVAC RANDOM NO.  GEHERATOR PROVIDES  24 UNIFORMLY   MET00940
95*     C***DI8TRIBUTED NUMBERS BETWEEN 0 AND  1.                                 HET009SO
        C***IF THIS ROUTINE IS HOT RUN ON A UNIVAC  MACHINE,  THE RANDOM  NO.       MET00960
        C**«6ENERATOR FOR THE USER'S  SYSTEM HAY BE  SUBSTITUTED.                  HET00970
              CALL RANDU (RAND, 24)                                               HET00980
        C***8TART HOUR LOOP                                                      MET00990
              DO 370 KHR*1*24                                                    MET01000
              KHRC-KHft                                                           HET01010
        C***INIT1ALIZE STABILITY  BEFORE IT IS  CALCULATED                         HET01020
              KST(KHR>«0                                                         MET01030
              IF (KHR.EQ.24) GO TO 70                                            HET01040
        C*«»CHECK DAT* FOR CORRECTHESS t CONTINUITY                              HET01050
        C***CHECK STATION NUMBER.                                                HET01060
              IF (ID.tfi.IDC) GO TO 10                                            HET01070
              WRITE (|0/460> IREC,ID,IDC                                         MET01080
              WRITE 
-------

Ln
115*
116*
117*
118*
119*
120*
121*
122*
123*
124*
12S*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
                   CALL  EXIT
             C***CHECK MONTH
             20
             C***
IF (IMOHTH.EQ.IHO> 60 TO 40
IF > GO TO 30
WRITE (10,480) IHOHTH,1HO,IREC
                   WRITE (10,510)
                   CALL  EXIT
             30    IHO-IHOHTH
             C»*»CHECK DAY
             40    IF  
-------
o
to
01
133*           IDG<2>=9
154*           IDG<3>°8
159*           GO TO 150
156*     110   DO 140 JI=1
157*           DO 120 JK*1
158*           IF «JK-
161*     140   CONTINUE
162*     ISO   IROOF-IOGC1
163*     C***IROOF IS CEIL
164*     C***CONVERT TEHP
165*           TEMP(KHR)=0
166*     C***COHVERT UIHD
167*           S=ISP£ED*0.
168*     C***9IHD SPEED  IS
169*           IF (S.LT  1 .
170*           SPEED(KHR)=
171*     C***CHECK FOR CAL
172*           IF ( IDIR.EQ
173*     C*»*ilIND DIRECTIO
174*     C«**1F THE yiND D
175*           L«D=IDIR
176*           GO TO 170
177*     160   IDIR*LUD
178*     170   XDIR-IDIR*!
1794.     C***CALCULATE FLO
180*           IF (XOIR.GT
181*           FV°XDIR+180
182*           GO TO 190
183*     180   FV-XDIR-180
184*     190   AFV
-------
 91*
                GT .TSR.AND.INOUR.LT.TSS) GO TO 210
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
                  4) IRADX-1
      IF ( IHOUR
      IRADX*2
      IF ( ISKY.LE
      60 TO 280
200   IRADX«3
      GO TO 280
C***DETERHINE THE ANGLE OF ELEVATION
C***DETERHINE SOLAR HOUR ANGLE
210   HI=< 15. * +TEHP2)/CONST
      ALFSN«SINLAT*DSIM+DCOS*COSLAT*COS< HI >
C***DETERHINE SOLAR ELEVATION AHGLE.
      ALF=ATAN2 = LSTAB(IHD,IRADX)
C***DO NOT  ALLOW STABILITY TO VARY RAPIDLY
      IF  LST=KST(KHR)
                      IRftDX«IRADX-l
                      IRADX=1
HET01910
HET01920
HET01930
HET01940
HET01950
HET01960
HET01970
HET01980
HET01990
HET02000
HET02010
MET02020
HET02030
HET02040
HET02041
HET02050
HET02060
HET02070
HET02080
HET02090
HET02100
HET02110
HET02120
HET02130
HET02140
HET02150
HET02160
HET02170
HET02180
HET02190
HET02200
HET02210
HET02220
HET02230
HET02240
HET02250
HET02260
HET02270

-------
o
N>
00
229*
230*
231*
232*
233*
234*
233*
234*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
250*
251*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*
                                         1)
                                         1 >
      IF «K8T(KHR)-LST).GT
      IF «LST-KST(KHR>).GT
      LST»K8T(KHR )
      IF (K8T(KHR ) LT. 1 )  WRITE
C***tALCULATE MIXING  HEIGHT
      IHR«KHRC
      XHR-IHR
      IF ( IHR.GT. 14.AND.XHR
      IHD«2
      IF 
TO
GO
                            LE.TS8) GO TO  300

                            310
                            TO 290
                                   XHHP1 -XAF>*« XHR-TSS )/< 24 . -TSS > >
                 2)
                 XAF
                 XAF
      IF ( INO EQ
      GO TO 360
      HLH( liKRR >
      HLH<2,KHR )
      GO TO 360
      IF (XHR.GT.TSR)  GO  TO  330
      K8T8P«K8T(KHR>
      IF (KSKKHR ) .EQ
      HLH<2/KHR>=XHH
      INO'l
      HLH(INO,KHR )«XAFH1
                                 AF + *«XHR-TSS)/(38.-TSS»
                                 HLH( 1 ,KHR)=HLH< 2, KHR )
                                   4) GO TO 320
                                       X AF-XAF Ml )*< ( 24 . -TSS+XHR )/( 24 . -TSS + 1 4
                   IF  (IMD.EQ.2) HLH( 1 ,KHR)"HLH( 2, KHR )
                   GO  TO 360
             330    IF  (K8T8P.EQ.4) GO TO 350
                   HLH< 2, KHR >»XHH + < XAF-XHN>*« XHR-TSR >/( 14 .-TSR >)
                   HLH(1,KHR)=XAF*(XHR-TSR)/(14-TSR)
                   GO  TO 360
             340    IFLAGM
                   IHOUR-0
                   GO  TO 370
             350    HLH( 1,KHR > = X AF H 1 + ( X AF -XAFH 1 )*< < 24 .  -TSS + XHR )/< 24 . -T88 + 1 4
                   HLH( 2/KHR ) = HLH(1 ,KHR)
             C**«READ  HEXT  HOUR'S MET DATA
             360    IF  (IFLAG.EQ.l) GO TO 390
                                                               ) >
HET02280
NET02290
HET02300
NET02310
HET02320
HET02330
NET02340
HET02350
HET02360
HET02370
HET02380
HET02390
HET02400
HET02410
HET02420
NET02430
HET02440
HET02450
HET02460
HET02470
HET02480
HET02490
NET02500
HET02510
HET02520
HET02530
HET02540
MET02550
HET02560
HET02570
HET02580
NET02590
HET02600
HET02610
HET02620
HET02630
RET02640
HET02650

-------
VO
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
283*
286*
287*
288*
289*
290*
291*
292*
293*
294*
293*
296*
297*
298*
299*
300*
301*
302*
303*
304*
             C***STORE  CORRECT  HONTH  AKD  DAY FOR  DAILY PRINTOUT,  SINCE 24TH HOUR
                   IF(KHR .ME.23)  GO  TO  363
                   LHOH-IHONTH
                   LDAY'IDAY
             365    READ  <8 . 420,END = 340 )
                  1ITEMP,ICOVER
                   IREC-IREC+1
             C***END  OF  HOUR  LOOP.
             370    CONTINUE
             C***8RITE  DAYS  CALCULATION
               ID,I YEAR,IHOHTH, I DAY, I HOUR,I CEIL,
                     FILE
                           OH TO
C***EACH ARRAY CONTAINS THE CONPLETE INFORMATION FOR ONE DAY ORDERED
C***SEQUENTIALLY FROH HOUR 01 THRU 24
                   URITE
                   URITE
                   URITE  (10,560
                 ,  URITE  (10,570
             C***EHD  OF DAY  LOOP
(9) IYEAR,LHOH
(10,550) IYEAR
         KST
                           DAY1,KST,SPEED,
                           LHON,LDAY,DAY!,
TEHP,AFV
TSR,TSS
FVR,HLH
380
390
CONT
URIT
URIT
URIT
URIT
URIT
CALL
IHUE
E (9>
E ( 10,
E ( 10,
E ( 10,
E (10,
EXIT
IYEAR
550)
560)
570)
580)
,LHOH,
IYEAR,
KST
SPEED,
DAY1,
LHOH,
TEHP,
KST
LDA
AFV
,SPEED,
Y,DAY1,
,FVR,((
TEHP
TSR,
HLHC
,AFV
TSS
I, J)
         SPEED,TEHP,AFV,FVR,((HLH(I,J> , J* 1,24 ), I =1 ,2)
                                                                FVR,HLH
                                                                J«1,24),I»1 ,2)
             C
             400    FORHAT  (I 5,I 2,IX,2F10.1/F2.0,14,Fl0.0 )
             410    FORNATC  STATION  HUHBER= • , I 5, 5X , 'YEAR OF DAT A= • , I 2/ 1 X,
                  • "LATITUDE"",F10.1,'   LONGITUDE=•,F10 . 1, "  ZONE=',F4.0/
                  • •HUHBER OF  DAYS  IN  YEAR"•,I 3, "   RANDOM SEED"•,F10.0)
             420    FORHAT  /'
2HLH2«', 12
FORHAT <•
END

 DAY  VF4.0,'  DOES  NOT  AGREE  UITH  LOOP
 HOUR  ',12,*  DOES  NOT  AGREE  UITH  LOOP
 *****DATA  IS  HISSING.  PLEASE CORRECT
 ERROR:  HISSING  HOUR  LOOP  VALUE*  ",13,
 17, •  IS »  ",13)
 THE  CHARACTER "/Al,"  IS NOT  ALLOUABLE
 10.' )
 STABILITY"',414)
 IYEAR»',I2,"  IHONTH-',12,"  DAY«',I2,'
IRISE«",F7.3,'  SUHSET-',F7.3)
 KST-  ', 24(11, 4X»
 SPEED"   ',24(F4.1,1X>/' TEHP= • ,24
-------
then print all input data parameters if desired by the user.  The INCHK sub-
routine then returns to the calling routine (T.SCST) provided no errors were
detected.  Figure H-2 is a flow diagram of the INCHK subroutine.

          Subroutine MODEL is the principal section of the ISCST program.
Its main functions are reading the hourly meteorological data, performing
all concentration or deposition calculations and controlling the output
related to calculated concentration or deposition values.  Figure H-3 is a
flow diagram of the MODEL subroutine.  First, the subroutine computes ver-
tical (x ) and lateral (x ) virtual distances for all source, stability
category and downwind distance combinations.  Next, the subroutine searches
for all source-receptor distances less than 100 meters or the greater of
three building heights or three building widths.  A diagnostic table
identifying the aforementioned source-receptor combinations is printed if
any combinations are found.  The subroutine then begins a loop over all
days of meteorological data and reads a day of data from either tape or
card.  A second loop is begun over the hours of meteorological data followed
by a third loop over all sources.  For stack-type sources, all plume rise
calculations are made that are independent of source-receptor orientation.
Next, a loop over all receptors is begun.  In this portion of the subrou-
tine, all information has been collected in order to calculate the terms
used to make a concentration or deposition computation at a given receptor
from a given source for an hour of meteorological data.  The program first
computes the downwind (x) and crosswind (y) distances.  Subroutine UPWIND
is called to check if receptors, referenced by the polar coordinate system,
are upwind of the given source location.  For stack-type sources, the sub-
routine then completes the remaining plume rise calculations if they are
dependent on source-receptor orientation.  Next, the subroutine calculates
the vertical (oz) and horizontal (Qy) dispersion coefficients as a function
of downwind distance and stability category.  Subroutine SIGMAZ may be
called to compute az; this depends on the given meteorology, source and
receptor data.  Finally, concentration or deposition is calculated for this
source-receptor combination for a given hour of meteorological data.  Sub-
routine ERFX is called to compute the error function values for area-type
                                    H-3

-------
                           START
                           INCHK
                      /   READ
                       RECEPT0R DATA
                 f         READ
                  METE0R0L0GICAL-RELATED
                    AND M0DEL C0NSTANTS
                            IS
                         MET.  DATA
                      IN PREPR0CESSED
                          F0RMAT
                    /    READ
                      IDAY(I),I=1,366
                           READ
                         MET.  TAPE
                      IDENTIFICATI0N
N0
                            IS
                           THIS
                       CORRECT MET
                           TAPE
                PRINT
            ERR0R MESSAGE
FIGURE H-2.  INCHK Subroutine Flow Diagram.
                                    H-4

-------
                            NUMBER
                             SOURCES
                           (NS0URC)
                               =0
                               9
    PRINT
ERR0R MESSAGE
                         /  READ
                          SOURCE DATA
                          INPUT DATA
                             PRINT
                        PROGRAM
                          PARAMETERS
                             PRINT
                    METE0R0L0GICAL-RELATED
                      AND M0DEL CONSTANTS
FIGURE H-2.  (Continued)
                                      H-5

-------
                          ©
©
                          PRINT

                      RECEPT0R DATA
                          PRINT
                       S0URCE DATA
                            i'
                            ( •*-
                        ^RETURN)
FIGURE H-2.  (Continued)
                                     H-6

-------
                           START
                           M0DEL
                          C0MPUTE
                         x &x   F$R
                          z  y
                       ALL  S0URCES
                           ANY
                          S0URCE-
                  RECEPT0R C0MBINATI0NS
                      <100 METERS  0R
                       MAX 3
-------
        ©
©    0
READ
H0URLY MET. DATA
F0R DAY IDY
i
t


                                              TAPE UNIT
                                                IMET
                                             YES
                              L00P
                            0N H0URS
                         (IHR=1,NH0URS)
                              (L00P
                           0N S0URCES
                          (IS=1,NS0URC)
                                                         READ
                                                  'HOURLY MET.  DATA
                                                      F0R DAY IDY
nt,i.
^v.
i
i
DATA ^ 	
>^
"" mm
MET. DATA F0R
DAY IDY

INITIALIZE
NH0URS
i
1
 FIGURE H-3.   (Continued)
                                     H-8

-------
                                 IS
                            "IS" A STACK
                            TYPE S0URCE
N0
                                     YES
                              C0MPUTE
                PRELIMINARY PLUME RISE CALCULATI0NS
                  INDEPENDENT 0F S0URCE-RECEPT0R
                            0RIENTATI0N
                               L00P
                           0N RECEPT0RS
                           (IJ=1,NPNTS)
                                IS
                     YES ^   "IJ" A
                          P0LAR RECEPT0R
          IS
       RECEPT0R
       UPWIND 0F
        S0URCE
           9
FIGURE H-3.  (Continued)
                                      H-9

-------
0
                              C0MPUTE
                         DOWNWIND (x) AND
                           CR0SSWIND (y)
                            DISTANCES
                     YES
                  YES
      IS
    S0URCE-
RECEPT0R C0MB.
 < 100 METERS
0R MAX 3(Hb,Hw)
                               IS
                          "IS" A STACK-
                           TYPE S0URCE
                            CfDMPUTE
                          FINAL PLUME
                             RISE IF
                           NECESSARY
                              CALL
                        SIGMAZ T0 C0MPUTE
                     D0WNWIND DISTANCE INDEX
FIGURE H-3.   (Continued)
                                   H-10

-------
                              IS
                          SUBR0UTINE
                        SIGMA2 REQUIRED
                          TO C0MPUTE
COMPUTE
a
z


\^x-
* 1 NO

r~.


C0MPUTE
0
y
                           CALCULATE
                C0NCENTRATION 0R DEP0SITI0N AT
               RECEPTOR"IJ"F0RS0URCE "IS"
               WITH H0UR "IHK»r AND DAY "IDY".
                  ST0RE VALUES IN CALC ARRAY
                   SUBR0UTINES ERFX AND VERT
                     CALLED WHEN REQUIRED
                                        YES
                                N0
                     ST0RE CALC ARRAY INT0
                     CHIAV ARRAY DEPENDING
                    0N S0URCE GR0UP,"IS" AND
                         TIME PERI0DS
FIGURE H-3.  (Continued)
                                   H-ll

-------
    G>
     D0ES
     "IS"=
    NS0URC
       9
                     ST0RE CALC ARRAY INT0
                      CHIAV ARRAY F0R ALL
                     S0URCES DEPENDING 0N
                        TIME PERI0DS
                            WRITE
                       T0 OUTPUT TAPE
                            ISW(5)
                             =1
                                               0UTPUT
                                                TAPE
                                                UNIT
                                                ITAP
     WRITE
CHIAV ARRAY T0
  OUTPUT TAPE
                                               CALL DY0UT T0 PRINT
                                             TABLES F0R APPR0PRIATE
                                               TIME INTERVALS AND
                                               S0URCE GR0UPS F0R
                                                   EACH DAY
FIGURE H-3.   (Continued)
                                  H-12

-------
                                        YES
                                                  STORE  CALC ARRAY
                                                  INTO CHIAN ARRAY
                                                F0R "N"-DAY T0TALS
                                                  F0R APPR0PRIATE
                                                   50URCE GR0UPS
                                        YES
                                                SEARCH CHIAV ARRAY
                                              F0R HIGHEST AND SEC0ND
                                                HIGHEST VALUES F0R
                                             APPR0PRIATE TIME PERI0DS
                                               AND  SOURCE GROUPS
                                               CALL SUBROUTINE MAX50
                                                T0 SEARCH AND SAVE
                                                 MAXIMUM 50 VALUES
                                               F0R ALL  TIME PERI0DS
                                                AND S0URCE GR0UPS
FIGURE H-3.  (Continued)
                                    H-13

-------
   G>
                                                         1
                                                CALL SUBR0UTINE DY0UT
                                                  T0 PRINT "N"-DAY
                                                TABLES F0R ALL SOURCE
                                                       GR0UPS
                                                CALL SUBR0UTINE DY0UT
                                                T0 PRINT HIGHEST AND
                                                SEC0ND HIGHEST TABLES
                                                F0R ALL TIME PERI0DS
                                                  AND S0URCE GR0UPS
                                          YES
                                                CALL SUBR0UTINE MAX0T
                                                 T0 PRINT MAXIMUM 50
                                                 TABLES F0R ALL TIME
                                                 PERI0DS AND S0URCE
                                                       GR0UPS
FIGURE H-3.    (Continued)
                                     H-14

-------
                              D0
                            ISW(5)&
                            ISW(15)
                              = T
                             WRITE
                          CHIAN ARRAY
                           T0 0UTPUT
                             TAPE
 0UTPUT
TAPE UNIT
  ITAP
FIGURE H-3.  (Continued)
                                    H-15

-------
sources (see Equations (2-43) and (2-45)).  Subroutine VERT aids in calcu-
lating the Vertical Term for calculations of concentration or deposition
requiring a Vertical Term value.  As the subroutine loops over all recep-
tors, the calculated concentration or deposition values are stored into an
array (CALC).  After all receptors are processed for this source and hour,
the array of values (CALC) are stored or summed into portions of another
array (CHIAV) depending on source group combinations desired by the user.
After all sources are processed for a given hour, portions of the CHIAV
array are stored or summed into other arrays depending on the source group
combination.  For each hour and appropriate combination of user-defined
time intervals, the subroutine calculates averages (for concentration) or
sum totals (for deposition) of values in portions of the CHIAV array.  Por-
tions of array CHIAV  are then used by the subroutine DYOUT to print tables,
write to the output tape, store for "N"-day summations, search for highest
and second-highest values at each receptor and search for the maximum 50
calculated values.  After looping over all hours and days of meteorological
data, MODEL calls subroutine DYOUT to optionally print tables or write to
tape "N"-day average concentration or total deposition values and tables of
the highest and second highest average concentration or total deposition.
Subroutine MAXOT is called to optionally print tables of the maximum 50
average concentration or total deposition values.  Upon normal processing
of MODEL, a return is made to the ISCST routine.

          Subroutine DYOUT prints out different types of tables related to
all receptor points.  Depending on a flag variable, subroutine DYOUT prints
the terrain elevations for all receptors, the average concentration or
total deposition values for all receptors for a given time interval and
source group combination for a given day, and the highest or second-highest
average concentration or total deposition values for all receptors for a
given time interval and source group combination.  Figure H-4 is a flow
diagram of subroutine DYOUT.

          The remaining subroutines which make up the ISCST program have the
following functions.  Subroutine MAXOT lists the maximum 50 average concentra-
                                    H-16

-------
                                                          PRINT
                                                    TERRAIN ELEVATI0N
                                                         HEADING
                                                          PRINT
                                                    "N"-DAY HEADING
                                                      FOR A GIVEN
                                                     SOURCE GROUP
                                                          PRINT
                                                   DAILY TABLE HEADING
                                                FOR A GIVEN TIME INTERVAL
                                                    AND S0URCE GR0UP
                                                          PRINT
                                                  HIGHEST TABLE HEADING
                                                FOR A GIVEN TIME INTERVAL
                                                    AND S0URCE GR0UP
                                                          PRINT
                                              SEC0ND HIGHEST TABLE HEADING
                                                F0R A GIVEN TIME INTERVAL
                                                    AND S0URCE GR0UP
                               PRINT
                            VALUES F0R
                           ALL RECEPTORS
FIGURE H-4.  DYOUT Subroutine Flow Diagram.
                                       H-17

-------
tion or total deposition values calculated for the problem run.  Subroutine
MAX50 searches for and stores the maximum 50 average concentration or total
deposition values for a given time interval and source group combination.
Subroutine VERT aids in computing the Vertical Term when required in calcu-
lating concentration or deposition.  Subroutine SIGMAZ has three functions.
Depending on a flag variable, this subroutine computes a downwind distance
index used for accessing arrays containing virtual distances or arrays of
constants related to calculating the vertical  (0 )  and horizontal  (0 )
                                                 z                     y
dispersion coefficients.  The second function is to calculate  0  based on
                                                                z       _
Equation (2-17).  The last function is to compute the average exponent (b)
(shown in Table 2-8), for the interval between the source and the downwind
distance (x), which is used for deposition calculations.  Subroutine UPWIND
checks to see if the given receptor is upwind of the given source for a
particular hour of meteorological data.  This subroutine is called only
when the given receptor is referenced with the polar coordinate system.
Subroutine ERFX computes the value of the error function terms shown in
Equations (2-43) and (2-45) for area-type sources,  Figures H-5 through
H-10 are flow diagrams of the respective subroutines mentioned above.
                                      H-18

-------
                            START
                            MAX0T
                            PRINT
                     MAXIMUM 50 HEADING
                      F|6R A GIVEN TIME
                  TIME INTERVAL AND SOURCE
                                     GR0UP
                            PRINT
                         MAXIMUM 50
                           VALUES
                         ( RETURN
9
FIGURE H-5.  MAXOT Subroutine Flow Diagram.
                                    H-19

-------
                              STAR'T
                             J1AX5CL
                      SEARCH F0R AND ST0RE
                        MAXIMUM 50 VALUES
                        F0R A GIVEN TIME
                        PERI0D AND S0URCE
                              GR0UP
                           (RETURN)
FIGURE H-6.  MAX50 Subroutine Flow Diagram.
                             START
                             VERT
                            C0MPUTE
                        SUMMATI0N TERM
                    USED IN EQUATI0N (2-37)
                          MlETURNj
FIGURE H-7.   VERT  Subroutine Flow Diagram.
                                     H-20

-------
                     r
START  \
                       SIGMA T>
                      COMPUTE
                 DOWNWIND DISTANCE
                       INDEX
                     (RETURN)
             YES
C0MPUTE CTZ
\
i
                     (RETURN)
                     C0MPUTE b
                 FOR EQUATION (2-44)
                     (RETURN J
FIGURE H-8.  SIGMAZ Subroutine Flow Diagram.
                              H-21

-------
                    DETERMINE IF RECEPTOR
                     IS UPWIND 0F SOURCE
                     F0R A GIVEN SOURCE-
                    RECEPT0R COMBINATION
FIGURE H-9.  UPWIND Subroutine Flow Diagram.
                             START
                             ERFX
                            COMPUTE
                        VALUE F0R ERR0R
                      FUNCTION TERMS IN
                  EQUATIONS (2-43) AND (2-45)
                          niETURNj
 FIGURE H-10.   ERFX Subroutine Flow Diagram.
                                      H-22

-------
                                APPENDIX I
               LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM
                      MODEL (ISCLT)  COMPUTER PROGRAM
          The ISCLT computer program consists of a main program (ISCLT)  and
15 subroutines (MODEL, OUTPT, HEADNG, MXIMUM, CHECKR,  SUMMER,  TITLR,  DISTR,
FUNCT, VERTC1, VERTC2, VERTC3, SIGMAZ, VIRTZ and VIRTY).   The  FORTRAN
source code of these routines is given in Appendix B.

          The main routine (ISCLT)  of the program is responsible for  initial-
izing the program and starting the  input data read sequence.   This routine
reads the problem run title, the program options data and those variables
that specify the size (number of values) of required data parameter arrays.
The primary function of this routine is to calculate the amount of storage
required by the input receptor arrays, elevation array and the concentration
or deposition calculation arrays.  The program has been designed to store
these data in 40,000 words in BLANK COMMON.  The program calculates the
starting location of each array and passes this information to the main
calculation routine (MODEL).  The program may use all or part  of BLANK
COMMON depending on the program options selected.  The amount  of BLANK
COMMON required for a given problem run is calculated by Equation Q-3) in
Section 3.2.2.   Figure 1-1 is a logic flow diagram of the main program.

          Subroutine MODEL is the principal processing routine of the ISCLT
program.  This routine reads the receptor, elevation and meteorological data
from input card images or from magnetic tape.  The program provides default
data values for most variables set by input card and begins a loop over all
input sources.  If a source is a new source from data card, concentration or
deposition is calculated using the long-term model equations.   If a source
is a previous source from an input tape, its concentration or deposition
arrays are read from tape.  New and/or previous sources and their respective
                                     1-1

-------
                            MAIN PROQRAM ISCLT
          READ RUN TITLE AND
           PROGRAM OPTIONS
<1
DATA CARDS
                  IF
              TAPE INPUT
            ISW(5)=2 OR 3
      READ PREVIOUS OPTIONS AND
      DATA CATEGORY SIZE PARAM-
          ETERS FROM INPUT
            TAPE (FILE)
     INPUT
    TAPE OR
  ONLINE FILE
     READ NUMBER OF CARD SOURCES
     TO EXPECT,  NUMBER OF SOURCE
      COMBINATIONS DESIRED AND
      REMAINING  SIZE PARAMETERS
     NOT SET FROM MAGNETIC TAPE
  DATA CARDS
FIGURE 1-1.   ISCLT  Logic  Flow Diagram.
                                     1-2

-------
                IF
            SPECIAL
            SOURCE
         COMBINATIONS
           NGROUP>0
          READ  SOURCE
        COMBINATION DATA
-| DATA CARDS
     PROVIDE  DEFAULT VALUES  FOR
       PROGRAM CATEGORY  SIZE
       PARAMETERS AND  OPTION
             SWITCHES
    CALCULATE  STARTING ADDRESSES
    IN  BLANK COMMON  FOR X AND Y
    AXES AND DISCRETE ARBITRAR-
     ILY SPACED POINTS, ELEVA-
    TIONS AND  CONCENTRATION  OR
        DEPOSITION  ARRAYS
    BRANCH  TO  SUBROUTINE MODEL  TO
   PERFORM  THE ISCLT  CALCULATIONS
            AND  OUTPUT
               I
SUBROUTINE MODEL
1
r
FIGURE 1-1.   (Continued)
                                     1-3

-------
concentration or deposition arrays are merged into a source/concentration
(deposition) inventory of one or more sources for which seasonal and/or
annual concentration or deposition values for the individual as well as the
combined sources can be output.  This routine will also, on option, output
all of the program input data including options, receptor arrays, meteoro-
logical data, source data and the calculated seasonal concentration or deposi-
tion values to tape to be held as a historical file which may be used at a
later date to update or to retrive information not printed when the tape was
generated.  A logic flow diagram of this routine is shown in Figure 1-2.
          Subroutine OUTPT controls the printing of the input source data if
this option is choosen.  This subroutine also controls the printing of the
results of all concentration or deposition calculations and controls the
calculations of the maximum 10 concentration or deposition values.  A flow
diagram of this routine is shown in Figure 1-3.

          Subroutine HEADNG prints the table headings for the concentration
or deposition tables.  The headings identify whether seasonal or annual cal-
culations are being printed, whether they are for individual or combined
sources and, if combined, which sources are used in the combination.  All
program output tables are labeled either seasonal or annual.  If the user
is using monthly data, he/she must remember that season 1 is actually month
1, etc., and an annual label would actually be average monthly or seasonal.
A flow diagram of this routine is shown in Figure 1-4.

          Subroutine TITLR controls the starting of a new output page and
writes the problem run title information and page number as the first line
of each output page.  Also, this subroutine writes the main heading of the
input data tables.  A logic flow diagram of this subroutine is shown in
Figure 1-5.
                                     1-4

-------
                                    IF
                                TAPE INPUT
                              ISW(5)=>2 or 3
                                  YES
                             -RECEPTOR INPUTS-

                      •  READ X-AXIS IF USED

                      •  READ DISCRETE ARBITRARILY
                         SPACED X-RECEPTORS IF USED

                      •  READ Y-AXIS IF USED

                      •  READ DISCRETE ARBITRARILY
                         SPACED Y-RECEPTORS IF USED

                      •  READ ELEVATION DATA FOR AXIS
                         GRID SYSTEM IF USED

                      •  READ ELEVATIONS FOR DISCRETE
                         ARBITRARILY SPACED RECEPTORS
                         IF USED
                                              DATA CARDS
FIGURE 1-2.
Model Logic Flow Diagram —Subroutine MODEL.  This subroutine
is the main calculation and control program.  This program con-
trols the source and meteorology input, output and calculations
and contains most of the concentration and deposition equations.
                                      1-5

-------
                           -METEOROLOGICAL INPUTS-

                         READ FREQUENCY OF OCCURRENCE
                         OF WIND SPEED AND DIRECTION
                         DATA
                         READ AMBIENT AIR TEMPERATURES

                         READ MIXING LAYER DEPTHS
                         READ VERTICAL GRADIENT OF
                         POTENTIAL TEMPERATURE
                         READ UNITS CONVERSION FACTOR
                         AND OTHER NON-ARRAYED MODEL
                         PARAMETERS
                         READ WIND SPEED CATEGORIES
                         READ WIND DIRECTION CATE-
                         GORIES
                         READ WIND PROFILE POWER LAW
                         EXPONENT
  DATA CARDS
                                     I
                                -TAPE INPUT-

                       READ ALL RECEPTOR AND METEORO-
                           LOGICAL DATA FROM TAPE
   INPUT
  TAPE OR
ONLINE FILE
                                     IF
                        NO X^USER SPECIFIED
                           J1AXIMUMS ARE DESIRED
                                 ISW(12)=1
                                       YES .
FIGURE 1-2.   (Continued)
                                      1-6

-------
                      READ USER SPECIFIED RECEPTORS
                     FOR MAXIMUM 10 CALCULATIONS INTO
                       DISCRETE ARBITRARILY SPACED
                      X AND Y ARRAYS AND DISCARD ANY
                           RECEPTOR DATA ON TAPE
                                                DATA CARDS
                                    IF
                               OUTPUT TAPE
                                 IS USED
                              ISW(5)=1 OR 3
                                YES
                              -TAPE OUTPUT-

                         WRITE ALL OPTIONS, SIZE
                        PARAMETERS, RECEPTOR DATA
                        AND METEOROLOGICAL DATA TO
                             THE OUTPUT TAPE
                                                 OUTPUT
                                                TAPE OR
                                              ONLINE FILE
                      PROVIDE DEFAULT VALUES FOR ALL
                       METEOROLOGICAL DATA NOT SET
                          BY TAPE OR CARD INPUT
FIGURE 1-2.
(Continued)
                                      1-7

-------
                                     IF
                                   PRINT
                                 INPUT DATA
                                  ISW(6)>0
NO
                             -PRINT  INPUT  DATA-

                     PRINT PROGRAM OPTIONS,  SIZE  PARAM-
                          ETERS,  RECEPTOR  DATA AND
                            METEOROLOGICAL DATA
               PRINTED
               OUTPUT
                        CALCULATE SPECIAL MODEL  CON-
                         STANTS  THAT  DO NOT  VARY IN
                         SUBSEQUENT CALCULATIONS TO
                         OPTIMIZE PROGRAM RUN TIME
           BEGIN LOOP  OVER NUMBER OF SELECTED SOURCE  COMBINATIONS.
            IF THE NUMBER OF SOURCE COMBINATIONS  IS INPUT AS  ZERO
            ALL SOURCES  ARE SUMMED FOR THE SOURCE COMBINATION AND
                           THE NUMBER IS  SET TO  1.
                                     I
                                   NG
FIGURE 1-2.    (Continued)
                                      1-8

-------
                                NG = NG +  1
                                                YES  -  end of processing -
                                                YES  -  first  pass -
                                                 -  all  other passes-
             SECONDARY PASS THROUGH  SOURCES  IN SOURCE COMBINATION
              FOR DISPLAY OF CALCULATIONS AND DISPLAY OF MAXI-
             MUM 10 OF EACH SOURCE THAT CONTRIBUTES TO MAXIMUM  10
              OF COMBINATION.  THIS  IS NECESSARY ONLY WHEN THE
                FIRST PASS IS USED TO DETERMINE THE MAXIMUM
              10 VALUES AND LOCATIONS OF THE COMBINED SOURCES
                              BY THE PROGRAM.
                                                                            V  1 '
FIGURE 1-2.    (Continued)
                                     1-9

-------
                      YES
            IF
        SOURCES AND
        CALCULATIONS
       SAVED IN CORE
                      REWIND AND POSITION OUTPUT TAPE OR
                       INPUT TAPE FOR INPUT OF SOURCES
                      AND CONCENTRATION OR DEPOSITION FOR
                             ADDITIONAL PASSES
                                        INPUT OR
                                         OUTPUT
                                          TAPE
                         RESET POINTERS TO RETRIEVE
                        SOURCES AND CONCENTRATION OR
                         DEPOSITION SAVED IN BLANK
                              COMMON (CORE) FOR
                             ADDITIONAL PASSES

                                   L9  - 0
                             LOOP OVER SOURCES
      -  calculation  or
        tape  input pass -
YES
    IF
FIRST PASS
 THROUGH
 SOURCES
FIGURE Ir2.    (Continued)
                                     1-10

-------
                         YES
                     IF
                  SOURCES,
                 ETC., SAVED
                  IN CORE
                          READ  SOURCE RECORD FROM
                         TAPE,  SOURCE ID NO.=NUMS
                                     IF
                               END OF TAPE
                                 SOURCES
                                                  INPUT OR
                                                   OUTPUT
                                                    TAPE
                                 YES
                       READ CONCENTRATION OR DEPOSI-
                       TION RECORD FOR EACH SEASON
                                                  INPUT OR
                                                   OUTPUT
                                                    TAPE
                       INCREMENT COUNTERS TO RETRIEVE
                       SOURCE AND CONCENTRATION OR
                       DEPOSITION FROM CORE. SOURCE  ID
                                 NO.=NUMS
FIGURE 1-2.
(Continued)
                                      1-11

-------
                                    IF
                                 END OF
                               SOURCES IN
                                  CORE
YES
          CONTINUE FIRST PASS THROUGH  SOURCES WITH CARD AND/OR
             TAPE INPUT SOURCES AND PERFORM CONCENTRATION OR
                DEPOSITION CALCULATIONS ON CARD  SOURCES.
                                    IF
                                SWITCH  SET
                              TO READ  TAPE
                                 SOURCE
                                  ONLY
                                    IF
                                ANY CARD
                               SOURCE INPUT
                                NSOURC>0
                                    IF
                                  END OF
                               CARD  SOURCES
  TURN CARD SOURCE
     INPUT OFF
                                 NO
FIGURE 1-2.   (Continued)
                                    1-12

-------
                                                                             L
                          READ CARD SOURCE INPUT DATA

                          NUMS1 IS THE SOURCE IDENTI-
                          FICATION NUMBER FROM CARD
                                              _[iCARD SOURCE
                                              "I    DATA
                                     IF
                                 SWITCH SET
                                TO READ CARD
                                   SOURCE
                                    ONLY
                                     IF
                                 TAPE SOURCE
                                 INPUT DATA
                                     IF
                                   END  OF
                                 TAPE SOURCE
                                   INPUT
                                     TURN TAPE SOURCE
                                        INPUT OFF
                          READ  TAPE SOURCE DATA
                          NUMS2  IS  THE SOURCE IDENTI-
                          FICATION  NUMBER FROM TAPE
FIGURE T-2.
(Continued)
                                      1-13

-------
                                     IF
                                   END OF
                                 TAPE SOURCE
                                    DATA
                        READ CONCENTRATION OR DEPOSI-
                        TION RECORDS FOR EACH SEASON
                              FROM INPUT TAPE
         INPUT
         TAPE
                                     IF
                                    TAPE
                                   SOURCE
                                   TURNED
                                    OFF
   IF
  CARD
 SOURCE
URNED OFF
                                     IF
                                    CARD
                                   SOURCE
                                   TURNED
                                    OFF
                                  NO
                     HAVE BOTH CARD AND TAPE SOURCE,
                      CHECK IDENTIFICATION NUMBERS
FIGURE-1-2.    (Continued)
                                      1-14

-------
   t
                                                    USE CARD SOURCE
                                                    AND SET SWITCH
                                                     TO READ ONLY
                                                    CARD SOURCE ON
                                                   NEXT SOURCE READ
                                                    USE TAPE SOURCE
                                                    AND SET SWITCH
                                                     TO READ ONLY
                                                    TAPE SOURCE ON
                                                   NEXT SOURCE READ
                                 NO
                     SAME SOURCE IDENTIFICATION NUMBER
        SET SWITCH TO
        READ BOTH CARD
       AND TAPE SOURCE
         AND GO GET
         NEXT SOURCE
     IF
DELETE TAPE
   SOURCE
     IF
 CARD SOURCE
REPLACES TAPE
   SOURCE
                                                    SET SWITCH TO
                                                   READ BOTH CARD
                                                     AND TAPE
                                                   SOURCES AND GO
                                                    PROCESS CARD
                                                      SOURCE
FIGURE 1-2.    (Continued)
                                      1-15

-------
                   •  USE CARD INPUT SOURCE STRENGTHS TO
                      RESCALE THE TAPE SOURCE CONCENTRA-
                      TIONS OR DEPOSITIONS

                   •  REPLACE TAPE SOURCE STRENGTHS WITH
                      CARD INPUT SOURCE STRENGTHS

                   •  SET SWITCH TO READ BOTH CARD AND
                      TAPE SOURCES ON NEXT SOURCE READ
                    •  LOAD TAPE SOURCE DATA INTO SOURCE
                       OUTPUT AND CALCULATION BUFFER
                    •  NUMS=NUMS2
                    •  PRINT SOURCE DATA IF DESIRED
                    •  LOAD CARD SOURCE DATA INTO SOURCE
                       OUTPUT AND CALCULATION BUFFER

                    •  NUMS=-NUMS1
                    •  PRINT SOURCE DATA IF DESIRED
SUBROUTINE
  OUTPT
SUBROUTINE
  OUTPT
           BEGIN SECTION TO CALCULATE SEASONAL CONCENTRATION OR
                  DEPOSITION FOR CURRENT CARD INPUT SOURCE
FIGURE 1-2.   (Continued)
                                     1-16

-------
                       YES
      IF
  SOURCE IS
VOLUME OR AREA
    SOURCE
       9
                 CALCULATE PLUME RISE CONSTANTS FOR STACKS.
                     THESE ARE PARTS OF THE PLUME RISE
                   EQUATIONS THAT ARE INDEPENDENT OF THE
                    SOURCE/RECEPTOR GEOMETRY AND PARTS
                OF THE MODEL EQUATIONS THAT ARE INDEPENDENT
                      OF THE SOURCE/RECEPTOR GEOMETRY.
                       (EQUATIONS (2-10) AND (2-11)
                                  SUBROUTINE
                                    VIRTY
                  CALCULATE PARTS OF THE MODEL EQUATIONS
                   FOR VOLUME AND AREA SOURCES.  THESE
                  ARE PARTS OF THE MODEL EQUATIONS THAT
                  ARE INDEPENDENT OF THE SOURCE/RECEPTOR
                 GEOMETRY (EQUATIONS (2-52) AND (2-54))
                                  SUBROUTINE
                                    VIRTY
                   CALCULATE. PARTS OF THE MODEL EQUATIONS
                   COMMON TO ALL SOURCE TYPES
                   CALCULATE THE MINIMUM CALCULATION DIS-
                   TANCE
                                                                      V  i '
FIGURE' 1-2.   (Continued)
                                     1-17

-------
                    LOOP OVER Y AXIS OF THE GRID SYSTEM
                                             YES
                            GET Y COORDINATE OF
                             CARTESIAN OR POLAR
                                SYSTEM Y(JJ)
                   LOOP OVER X AXIS OF THE GRID SYSTEM
                                     i
                                II = II + 1
                             YES
                            GET X COORDINATE OF
                             CARTESIAN OR POLAR
                                SYSTEM X(II)
                                      I
                CALCULATE STORAGE ADDRESS FOR CONCENTRATION
                    OR DEPOSITION IJ»(JJ-1)*NXPNTS+II
               LOOP OVER SPECIAL ARBITRARILY SPACED RECEPTORS
FIGURE 1-2.    (Continued)
                                      1-18

-------
                                I  JJJ • 0~1
JJJ = JJJ + 1


                                             YES
                         GET X AND Y COORDINATES,
                             CARTESIAN OR POLAR
                               X(NXPNTS+JJJ)
                               Y(NYPNTS+JJJ)
                       CALCULATE STORAGE ADDRESS FOR
                        CONCENTRATION OR DEPOSITION
                         I  IJ - NXPNTS*NYPNTS+JJJ
                                     i
                    ZERO CONCENTRATION CR DEPOSITION FOR
                          THIS POINT FOR EACH SEASON
                             DO 26 K = l.NSEASN
                           LI = (K+L91)*NXXYYP+L9
                            26 CON (Ll+JJ)  =0.0
FIGURE 1-2.    (Continued)
                                      1-19

-------
               L91 AND L9 ARE ADJUSTMENTS TO STORAGE.  L91
                 RESERVES STORAGE FOR SUMS OF SOURCES AND
                FOR ANNUAL CALCULATIONS WHEN NECESSARY AND
               L9 POINTS TO A NEW SET OF STORAGE ARRAYS FOR
               EACH SOURCE WHEN THE PROGRAM HOLDS ALL SOURCES
                           CALCULATIONS IN CORE
                      (NXXYYP = NXPNTS*NYPNTS+NXWYPT )
                LOOP OVER WIND DIRECTION SECTORS BEGINNING
                  WITH NORTH TO DETERMINE THOSE SECTORS
                  THAT THE CURRENT SOURCE CONTRIBUTES TO
                                    1
DO //
N -
1,NSCTOR
                CALCULATE DOWNWIND AND CROSSWIND DISTANCES
                          FROM SOURCE TO RECEPTOR
                         YB =-XP*PHS(N)-YP*PHC(N)
                         YB = XP*PHC(N)-YP*PHS(N)
                  WHERE XP AND YP ARE X AND Y CARTESIAN
                 DISTANCES TO THE RECEPTOR RELATIVE TO THE
               SOURCE LOCATION.  PHS(N) AND PHC(N) ARE THE
               SIN AND COS RESPECTIVELY OF THE SECTOR ANGLE.
             ^. - point upwind
                of  source  -
FIGURE 1-2.    (Continued)
                                     1-20

-------
                        PRECALCULATE  az  FOR STACKS
                          WITH WAKE EFFECTS WHERE
                                 XB<10*HB
                         PRECALCULATE DISTANCE AND
                        SMOOTHING TERM OF CONCENTRA-
                        TION EQUATION FOR AREA SOURCES
                       AND STACKS WITHOUT WAKE EFFECTS
                                                  SUBROUTINE
                                                    DISTR
                                                            YES.
                   LOOP OVER STABILITY CATEGORIES FOR MAIN
                    CONCENTRATION OR DEPOSITION EQUATION
                                CALCULATIONS
                                                      IF
                                                  OUTSIDE OF
                                                    SECTOR
                                                        NO
                              DO // I = 1,  NSTBLE
                      CALCULATE DISTANCE AND SMOOTHING
                          TERM FOR VOLUME SOURCES
                                                  SUBROUTINE
                                                    DISTR
                                                           YES
                                                      IF
                                                  OUTSIDE OF
                                                    SECTOR
                                                                             n
FIGURE 1-2.
(Continued)
                                      1-21

-------
       1
ft
             L
                   •  CALCULATE
                      SOURCES AND
                      EFFECTS
                        az  FOR VOLUME AND AREA
                        STACKS WITHOUT WAKE
                      WAKE EFFECTS MODIFICATIONS FOR
                      DISTANCES >_ 10HB

                      CALCULATE AVERAGE
                      TICAL TERM az
                      TION (EQUATION 2-43)
SUBROUTINE
  SIGMAZ
E b FOR THE
E DEPOSITION
-43)
VER-
EQUA-
t.
-»
b = FUNCT
(XB, STABILITY)


                  LOOP OVER SEASONS FOR MAIN CONCENTRATION
                    OR DEPOSITION EQUATION CALCULATIONS
                             DO # K - l.NSEASN
                       CALCULATE STORAGE ADDRESS FOR
                        CONCENTRATION OR DEPOSITION
                           Ll = (K+L91)*NXXYYP+L9
                LOOP OVER WIND SPEED CATEGORIES FOR MAIN CONCEN-
                 TRATION OR DEPOSITION EQUATION CALCULATIONS
                              DO // J - l.NSPEED
               r
                	1
                     CHECK JOINT FREQUENCY OF OCCURRENCE
FIGURE T-2.   (Continued)
                                      1-22

-------
   I
                CHECK ELEVATION AGAINST MIXING LAYER HEIGHT
                           YES
                 •  CALCULATE FINAL PLUME RISE FOR ELEVATED
                    EMISSIONS,  Oz  FOR WAKE EFFECTS AND
                    FINAL PARTS OF THE CONCENTRATION OR
                    DEPOSITION EQUATIONS

                 •  CALCULATE CONCENTRATION OR DEPOSITION
                    WITHOUT VERTICAL TERM = C4
FIGURE 1-2.    (Continued)
                                      1-23

-------
ii  <.  i •
         i-l
t
             .J
            •  CALCULATE THE VERTICAL  TEEM FOR THE  CONCENTRATION
               OR DEPOSITION EQUATION
            •  V -  CONCENTRATION ONLY
            •  V - CONCENTRATION WITH DEPLETION
                   DUE TO DEPOSITION
            •  V - DEPOSITION ONLY
                                      SUBROUTINE
                                        VERTC1
                                      SUBROUTINE
                                        VERTC2
                                      SUBROUTINE
                                        VERTC3
                                 C4 = C4*V
                                     I
              ACCUMULATE CONCENTRATION OR DEPOSITION FOR CURRENT
              SOURCE AND SEASON OVER WIND SPEED AND STABILITY
                    CATEGORIES  CON(1J+L1)=CON(IJ+L1)+C4
                     END LOOP OVER WIND SPEED CATEGORIES,
                          BRANCH BACK IF J
-------
      m
        •
                         BRANCH BACK IF I < NSTBLE
                        END LOOP OVER WIND DIRECTION
                        YES.
        IF
     X, Y ARE
ARBITRARILY SPACED
      POINTS


           NO

ATEGORIES ,
TBLE

ACTION
I < NSCTOR
'OR POINTS
iN>
:HIS SOURCE
WNO




1
FIGURE. 1-2.    (Continued)
                                      1-25

-------
                      •  WRITE  SOURCE  RECORD TO  OUTPUT
                        TAPE
                      •  WRITE  CONCENTRATION OR  DEPOSI-
                        TION RECORDS  FOR EACH SEASON
                        TO  OUTPUT  TAPE
                                 SUBROUTINE
                                   CHECKR
                                     IF
                                   SOURCE
                               PAST OF CURRENT
                               COMBINED SOURCE
                                    GROUP
                       PRINT  CONCENTRATION  OR DEPOSITION
                       FROM INDIVIDUAL  SOURCE FOR EACH
                       SEASON IF DESIRED

                       SUM CONCENTRATION  OR DEPOSITION
                       FOR COMBINED  SOURCE  OUTPUT IF
                       DESIRED

                       CALCULATE AND PRINT  ANNUAL CONCEN-
                       TRATION OR DEPOSITION  FROM INDIVID-
                       UAL SOURCES IF DESIRED
SUBROUTINE
  OUTPT
SUBROUTINE
  SUMMER
SUBROUTINE
  OUTPT
FIGURE 1-2.    (Continued)
                                     1-26

-------
                                     IF
                                   SOURCE
                                CALCULATIONS
                                  SAVED IN
                                    CORE
               INCREMENT POINT FOR SOURCE CALCULATION ARRAYS
                               L9 - KSO*NXYSEA
                WHERE KSO IS THE RELATIVE SOURCE NUMBER AND
                   NXYSEA =  (NXPNTS*NYPNTS+NXWYPT)*NSEASN
                    SOURCE NOT PRINTED OR SUMMED,  CHECK
                    IF PART OF ANY COMBINED SOURCE GROUP
                        YES
                                  SUBROUTINE
                                    CHECKR
      IF
 SOURCE PART
OF ANY COMBINED
 SOURCE GROUP
FIGURE 1-2.   (Continued)
                                     1-27

-------
                            RETURN FOR NEXT SOURCE
                         END OF SOURCES ON THIS PASS
                                     IF
                                  COMBINED
                               SOURCE OUTPUT
                                OR MAXIMUMS
                                  DESIRED
                                     IF
                                  MAXIMUM
                               10 OF COMBINED
                              SOURCES IS TO BE
                                 CALCULATED
                                     YES
                         PRINT SEASONAL CONCENTRATION OR
                         DEPOSITION FROM COMBINED SOURCES
                         IF DESIRED
                         ACCUMULATE FOR ANNUAL COMBINED
                         CONCENTRATION OR DEPOSITION IF
                         DESIRED
                         PRINT ANNUAL CONCENTRATION OR
                         DEPOSITION FROM COMBINED SOURCES
                         IF DESIRED
                                                  SUBROUTINE
                                                    OUTPT
                                                  SUBROUTINE
                                                    SUMMER
                                                  SUBROUTINE
                                                    OUTPT
                                                                            1'  < '
FIGURE 1-2.
(Continued)
                                     1-28

-------
                     CALCULATE RECEPTORS  AND VALUES  OF
                        MAXIMUM 10 CONCENTRATIONS  OR
                      DEPOSITIONS OF COMBINED SOURCES.
                      THEN MAKE SECOND PASS  TO DISPLAY
                     THE 10 POINTS OF EACH CONTRIBUTING
                         SOURCE, AS WELL  AS, THESE
                             10 FOR THE COMBINED
                                               SUBROUTINE
                                                 OUTPT
                         PRINT TERMINATION MESSAGE
                          AND SOURCE SUMMARY TABLE
                                 THEN RETURN
                              TO MAIN PROGRAM
                                   RETURN
FIGURE 1-2.
(Continued)
                                      1-29

-------
                                    IF
                                  PRINT
                               SOURCE INPUT
                                   DATA
                                    7
                          PRINT THE SOURCE INPUT
                          DATA FOR STACKS, AREA
                            OR VOLUME SOURCES
                                                 PRINT
                                                 OUTPUT
      PRINT
      OUTPUT
                                    1
            PRINT SEASONAL OR ANNUAL
            CONCENTRATION OR DEPOSI-
            TION FROM INDIVIDUAL
            SOURCES OR COMBINED
            SOURCES AT EACH RECEPTOR
                                                           SUBROUTINE
                                                             HEADNG
                                                N0
                           DETERMINE MAXIMUM
                             10 OF COMBINED
                                SOURCES
                                          YES
FIGURE 1-3.
OUTPT Logic Flow Diagram — SUBROUTINE OUTPT.  Subroutine
OUTPT performs and controls the printed output of source
data, the concentration or deposition of individual sources
and combined sources and calculates the 10 receptors where
the maximums occur.
                                    1-30

-------
    PRINT
    OUTPUT
PRINT MAXIMUM 10 OF INDI-
VIDUAL SOURCE OR COMBINED
OR INDIVIDUAL SOURCES CON-
TRIBUTION TO COMBINED, ETC.
SUBROUTINE
  MXIMUM
                                   M-
                                RETURN
FIGURE 1-3.   (Continued)
                                     1-31

-------
          SELECT AND PRINT TABLE HEADINGS

                   SEASONAL
                   ANNUAL
                   CONCENTRATION
                   DEPOSITION
                   INDIVIDUAL SOURCE
                   COMBINED SOURCE
PRINT
OUTPUT
                   (RETURN)
FIGURE 1-4.    HEADNG'Logic Flow Diagram —  SUBROUTINE HEADNG.   Subroutine
               HEADNG prints the headings for each type  of  output.
                                     1-32

-------
                         YES
                                        N0
LINE = LINE+1


                                               YES
                        •  NEW PAGE

                        •  PRINT MAIN TITLE

                        •  PRINT ADDITIONAL HEADING
                          IF  DESIRED
                                                     PRINT
                                                     OUTPUT
                                  RETURN}
FIGURE 1-5.
TITLR Logic Flow Diagram — SUBROUTINE TITLR.   Subroutine TITLR
increments the line counter for proper positioning of the page
heading, counts the pages and writes select headings to the
input data table, input source table, etc.
                                      1-33

-------
          Subroutine SUMMER is called by MODEL to sum arrays of concentration
or deposition to provide annual (averaged or total) output and to provide
combined source output.  A logic flow diagram of this subroutine is shown
in Figure 1-6.

          Subroutine CHECKR is called by MODEL to determine if a source is
part of the current combined sources being summed or if the source is part
of any source combination so the program can decide whether to save it or
not when all sources calculations are being saved in storage.  A flow diagram
of this subroutine is shown in Figure 1-7

          Subroutine MXIMUM is called by OUTPT and determines the maximum
10 concentration or deposition values and their respective receptor coordi-
nates for a source or source combination and returns them to subroutine
OUTPT.  A logic flow diagram of this subroutine is shown in Figure 1-8.
          Subroutine VIRTZ is called by MODEL and calculates and returns
         :al virtual distance  x   in E
                                z
this subroutine is shown in Figure 1-9.
the vertical virtual distance  x   in Equation (2-23).   A logic diagram of
                                Z
          Subroutine VIRTY is called by MODEL and calculates and returns
the lateral virtual distance  x :  in Equation (2-22).   A logic diagram of
this subroutine is shown in Figure 1-10.

          Subroutine SIGMAZ is called by MODEL and calculates and returns
the standard deviation of the vertical concentration distribution  o
                                                                    z
(Table 2-8 )  at a respective downwind distance and for a respective stability
category.   A logic flow diagram of this subroutine is  shown in Figure 1-11.
          Subroutine VERTCl is called by MODEL and calculates and returns
the Vertical Term (Equations (2-49) and (2-50)) of the concentration equa-
tion.  A logic flow diagram of the subroutine is shown in Figure 1-12.
                                     1-34

-------
                        ACCUMULATE CONCENTRATION OR
                         DEPOSITION ARRAYS  FOR COM-
                              BINED SOURCES OR
                          FOR ANNUAL CALCULATIONS
                                 (RETURN)
FIGURE 1-6.    SUMMER Logic Flow Diagram —  SUBROUTINE  SUMMER.
                                      1-35

-------
                          DETERMINE  IF A  SOURCE IS
                            PART OF  A PARTICULAR
                          SOURCE COMBINATION OR IF
                         IT  IS PART  OF ANY SOURCE
                              COMBINATION.
                          SET FLAG  TO 1  IF YES
                                (RETURN)
FIGURE 1-7.     CHECKR Logic Flow Diagram — SUBROUTINE CHECKR.
                        DETERMINE MAXIMUM 10 VALUES
                       AND LOCATIONS OF CONCENTRATION
                          OR DEPOSITION OVER ALL
                             RECEPTOR POINTS
                                 (RETURN)
 FIGURE 1-8.   MXIMUM Logic Flow Diagram — SUBROUTINE MXIMUM.
                                    1-36

-------
                        CALCULATE AND RETURN THE
                        VERTICAL VIRTUAL DISTANCE

                                  xz
                           (EQUATION (2-23))
                               (RETURN)
FIGURE 1-9.    VIRTZ Logic Flow Diagram — FUNCTION VIRTZ.
                        CALCULATE AND RETURN THE
                        LATERAL VIRTUAL DISTANCE
                                   x
                                    y
                             (EQUATION (2-22))
                                (RETURN)
FIGURE 1-10.   VIRTY Logic Flow Diagram — FUNCTION VIRTY.
                                    1-37

-------
                        CALCULATE AND RETURN THE
                         STANDARD DEVIATION OF
                       THE VERTICAL CONCENTRATION
                            DISTRIBUTION  O
                                           z
                               (TABLE 2-8)
                                 (RETURN)
FIGURE 1-11.   SIGMAZ Logic Flow Diagram -- FUNCTION SIGMAZ,
                        CALCULATE AND RETURN THE
                        VERTICAL TERM (EQUATIONS
                       (2-49) AND (2-50)) OF THE
                         CONCENTRATION EQUATION
                         WHEN DEPOSITION IS NOT
                                OCCURRING
FIGURE 1-12.   VERTC1 Logic Flow Diagram — SUBROUTINE VERTC1,
                                    1-38

-------
          Subroutine VERTC2 is called by MODEL and calculates and returns
the Vertical Term of Equation (2-51)  for each particulate size category in
the calculation of concentration with deposition occurring.  A logic flow
diagram of this routine is shown in Figure 1-13.

          Subroutine VERTC3 is called by MODEL and calculates and returns
the vertical term of Equation (2-54)  for each particulate size category
used in the deposition equation.  A logic flow diagram of this subroutine
is shown in Figure 1-14.

          Function FUNCT is called by MODEL and calculates and returns the
average value  b  of the coefficient  b  which is the exponent used in the
a   equation.  This value is used in the deposition calculations see Equa-
tion (2-54)) and is shown in Table 2-8.  A logic flow diagram of this rou-
tine is shown in Figure 1-15.

          Subroutine DISTR is called by MODEL and calculates and returns the
distance between the source and receptor if the receptor is within the
required calculation sector and calculates the smoothing term of the con-
centration or deposition equation  s(9}  (Equation (2-52)).  Subroutine
DISTR returns   .Q>  from Equation (2-45) or returns a "-1" if the receptor
point is outside of the calculation sector downwind of the source.  A logic
flow diagram of this subroutine is shown in Figure 1-16.
                                     1-39

-------
                         CALCULATE AND RETURN THE
                          VERTICAL TERM (EQUATION
                       (2-51)) OF THE CONCENTRATION
                        EQUATION FOR EACH PARTICLE
                            SIZE CATEGORY WHEN
                          DEPOSITION IS OCCURRING
                                 (RETURN)
FIGURE 1-13.  VERTC2 Logic Flow Diagram — SUBROUTINE VERTC2.
                         CALCULATE AND RETURN THE
                     (VERTICAL TERM (EQUATION (2-54))
                        OF THE DEPOSITION EQUATION
                          FOR EACH PARTICLE SIZE
                                 CATEGORY
                                (RETURN)
FIGURE 1-14.  VERTC3 Logic Flow Diagram — SUBROUTINE VERTC3.
                                     1-40

-------
                         CALCULATE AND RETURN THE
                         COEFFICIENT  b  WHICH IS
                         THE AVERAGE EXPONENT USED
                            IN THE Qz EQUATION.
                       (EQUATION (2-54)  TABLE (2-8)
                                (RETURN^
FIGURE 1-15.  FUNCT Logic Flow Diagram — FUNCTION FUNCT.
                      THIS SUBROUTINE CALCULATES THE
                      DISTANCE BETWEEN THE SOURCE AND
                        RECEPTOR,  DETERMINES IF THE
                      RECEPTOR IS  IN THE CALCULATION
                         SECTOR AND CALCULATES THE
                       SMOOTHING TERM OF THE CONCEN-
                      TRATION OR DEPOSITION EQUATION
                          S{9}  (EQUATION (2-52))
                       SUBROUTINE RETURNS
                       EQUATION (2-45) OR -1 IF THE
                            POINT is OUTSIDE OF
                          THE CALCULATION SECTOR
                                (RETURN)
FIGURE 1-16.  DISTR Logic Flow Diagram — SUBROUTINE DISTR.
                                    1-41

-------
TECHNICAL REPORT DATA
(Please rccii Instructions on the reverse before completing)'
1. ^i.-OST \-O. 2.
EPA-450/4-79-31
.:. 71 TLE AND SUBTITLE
Industrial Source Complex (ISC) Dispersion Model
User's Guide
Volume II--Appendices A through I
7. AUTHCRiS)
J. F. Bowers, J. R. Bjorkland, and C. S. Cheney
•
9. PERFORMING ORGANIZATION NAME AND ADDRESS
H. E. Cramer Company, Inc.
P. 0. Box 8049
Salt Lake City, Utah 84108
12. SPONSORING AGENCY NAME AND ADDRESS
Source Receptor Analysis Branch
Office of Air Quality Planning and Standards
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
15. SUPPLEMENTARY NOTES
3. RECIPIENT'S ACCESSIOt^NO.
5. REPORT DATE
December 1979
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
'»
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA-450

16. ABSTRACT
Volume II--Appendices A through I of the- Industrial Source Complex (ISC)
Dispersion Model User's Guide provides for both of the two ISC computer program
listings, example input and output executions, and coding forms. In addition' a
listing of the meteorological preprocessor program is included.
'•»
j
17. KEY WORDS AND DOCUMENT ANALYSIS
... DESCRIPTORS b.lDENTIFI
Air Pollution Industr
Meteorology Dispers
Computer models
Mathematical models
12. ^;3TP.I3UTiO.\ STATEMENT 19. SECURI
,, , . ... Unclas
nil mi 1*0/1
unnmiica 20. SECURI
Unclas
ERS/OPEN ENDED TERMS C. COSATI Field/Group
ial sources
ion
TY CLASS (This Report/ 21. NO. OF PAGES
sified 452
TY CLASS (This page) 22. PRICE
sified
EPA  ~orm 2220-1 (9-73)

-------