-------
1* FUNCTION SIGHftZCXP,1ST) S1400010
2* C CALCULATES THE STANDARD DEVIATION OF THE VERTICAL CONCENTRATION S1400020
3* C DISTRIBUTION S1400030
4* COHHON /FUHCS/ AS( 36 > , B 8< 36 ) , PS( 6 ), QS( 6 ) , CS < 6 ) , DSX 6 ), AS I< 36 ) , BS K 3S 1 40004 0
5* 1 6 ), IA< 7>, J A<6 ), DST< 31 ), IDP S1400050
6* C S1400060
7* XD = XP*.001 S1400070
8* K - 12 S1400080
9* IF (1ST .EQ. 3) GO TO 30 S1400090
10* H = I A( 1ST ) S1400100
11* L = I A< IST + 1 )-l S1400110
12* IF (1ST .EQ. l.AND.IDP .HE. 0) L = L-l S1400120
13* DO 10 K=H,L S1400130
14* IF (XD . LE DST(K)) 60 TO 20 S1400140
IS* 10 CONTINUE S1400150
16* K = L* 1 S1400UO
17* 20 K = K-H+JA(IST) S1400170
18* 30 SIGHAZ = AS(K)*XD**BS(K> S1400180
f 19* IF (1ST .GT. 3.0R.IDP .NE.O) GO TO 40 S1400190
g 20* IF (SICMAZ .GT. 5000.0) SIGHAZ = 5000.0 S1400200
21* 40 CONTINUE S1400210
22* RETURN SI 400220
23* END S1400230
-------
1* FUNCTION VIRTY(SIGYO<1ST) S1500010
2* C CALCULATES LATERAL VIRTUAL DISTANCE S1500020
3* COMMON /FUHCS/ AS< 36 ) > BS< 36 ) , PS( 6 ) , QS( 6 ) / CSC 6 ) , DS< 6 ), AS I ( 36 ) , BS I ( 381 50 0 030
4» 16 ), IA( ?>, JA<6 )* DSK31 ). IDP S1300040
5* VIRTY.» (SIGYO*PS< 1ST ))»*QS< 1ST)*1.OE3 S1300050
6* RETURN S1500060
?* END S1500070
VO
-------
1* FUNCTION VIRTZ(SIGZO,IST,X,HB10> S1600010
2* C CALCULATES VERTICAL VIRTUAL DISTANCE S1600020
3* COMMON /FUNCS/ AS<36 ) /BS<36),PS<6),QS<6),CSC 6)/DS<6),ASK36>,BSI<3S1600030
4* 15>, IA(7 >,JA<6),DST<31 ), IDP S1600040
5* C , S1600050
&* XD = X*.001 S1600060
7* XE » HBI 0*.001 S1600061
8* K = 12 S1600070
9* IF (1ST .EQ. 3) GO TO 30 S1600080
10* M = lft< 1ST) S1600090
11* L = Ift( IST+1 )-l S1600100
12* IF (1ST .EQ. 1) L = L-l S1600110
13* DO 10 K=«,L S1600120
14* IF (XD .LE. DST(K>) GO TO 20 S1600130
15* 10 CONTINUE S1600140
16* K = L+l S1600150
17* 20 KK = K S1600160
18* K = K-tt + JA( 1ST ) S1600170
w 19* 30 VIRTZ = < SIG20*ASI< K) )**BSKK )-XE S1600180
.g 20* IF (VIRTZ .LT. 0.0) VIRTZ = 0.0 S1600190
o 21* IF ( 1ST .E8.3 .OR.KK.GT.L.OR.VIRTZ + XD.LE.DST
-------
• APPENDIX C
EXAMPLE EXECUTIONS OF THE ISC SHORT-TERM
MODEL (ISCST) COMPUTER PROGRAM
C.I INTRODUCTION
«
The following examples are problem runs using the ISC short-term
(ISCST) program to model the hypothetical potash processing plant described
in Section 2.6. The examples consist of two executions of the ISCST program
over ten "worst-case" days of meteorological data. The first run calculates
average concentration and the second run calculates total deposition. The
topics covered in this appendix are: (1) the procedure for setting up the
required input data; (2) the procedures for estimating program run time,
required data storage and page output; and (3) examples of the program out-
put.
In this section, it is assumed that the reader is familiar with
Section 2.6, which discusses the hypothetical potash processing plant and
provides the reader with figures and tables of specific input data informa-
tion. Also, the reader should be familiar with Table 3-4 presented in Sec-
tion 3.2.3.a, which provides the user with the format and description of all
card input data parameters, and with Equations (3-1) through (3-5) described
throughout Section 3.2.
C.2 EXAMPLE CONCENTRATION RUN
C.2.1 Input Data Set-Up Procedure
Figure C-l shows the 87 lines of card input data values required to
compute the desired average concentrations for the hypothetical potash
processing plant. The blank coding fo^nis ar^ used from Appendix E in order
to show the column field positions of all card input data values. To the
left of each coding form line is the Card Group and card number in which the
C-l
-------
ISCST INPUT DATA CODING FORM
PROJECT Example Concentration
NAME
DATE
SHEET 1 OF 11
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
I424JJ444!
10 II 12 13 14 IS 16 I7IIB 1920 21 22 23 24 25 26 27 28 29 K> SI 32 53 34 39 36 37 58 39 40 4lf«2 43M4 45 4« 47 48 49 30 91 92 53 94 U 96 97 90 39 BO 61 62 63 (4 69 66 67 68 69 TO 71 72 73 7«T9 76 77 7» 79 BO
CONTROL DATA PARAMETER AND VALUE (X means do not punch)
- TITLE -
1 - l~i~i , iHiYiPiOiTHiR.TiTiCiALi iPfliTiAfiiHi iPiRiO.CiEiSiSiTiN^i PLiAiNiTi 1-1 iGONiGEN iTiRAiT.I iDiNi
- ISW -
2,1 -
rHCNJCNCS CM
coco
D( K D(
u
PS
o
CO
to
H
CO
H
H
P-
O,
1
CO
OS
g
2.2 - |,.. .i.el,., ,1.9!,,. .Ld,.. ,6,A[X'.,
FIGURE C-l. Card input data values for the hypothetical potash processing plant concentration run.
-------
o
ISCST
PROJECT .Example
INPUT
DATA
Concentration
CARD GROUP,
CARD NUMBER
3,1 -
1
2
9 10
M
CODING FORM (Continued)
NAME
DATE
DATA
12
13
14
13
16
17
ia
19
20
21
22
23
24
25
M«T
28
29
9O
31
32
33
343
556
37
SHEET 2 OF 11
CARD COLUMN
M
RECEPTOR DATA
,-i3,0
i— j
0.0
2.0ir
i il iSiOtO
1
1
1
1
1
1
, , , , ,-,3
3,2 -
1
f
1
QQ ol
i ,12,0,0
1
1
Ji5iO,C
1
1
1 I 1 1 1 1 1 f 1
I 1 1 1 1 1 1 1 1
- GR
-.2,0,0,0
i
2
2
2
0
0
0,0
0,0
Q
0
.IDX
i i
GRIDY
0 , ,
0
0
I 1 1 I 1 1 1 1 1
(axis
i f~ i *
1
i3
i
i
i
i
i
I
of
5>q
grid
^ f 1
?,n,n
OiQO
(axis
, ,2
,1,0
1
1
1
1
of
0,0
0
|
0
39
40
41 42 43 44 43 46 47 48 49
90
5,
92
53
54
19
96
37
98
99
so
61
«2
63
M
65
66
67
«U
70
PARAMETER AND VALUE
system,
i
i
i
,
I
1
I
1
1 _J
1
I
A
omit if NXPNTS
o -1,0,0,0
00
grid system,
_j , , , ,-, 1,2,5,0
i
|
j
I
4|0,0
1 1 1 I 1 1 III
L , 1 , , J , 1 1_L
(
i i i i i i f» iHiO
I 1 1 1 1 1 1 1 1
It I 1 1 1 1
f 1 1 I t 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 [ t t 1
11111:111
1111111(1
OR
1 1
omit if NXPNTS
ill. r-iliOiOiO
,, 6,0,0
1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
ill 1 1 1 1 1
1 1 1 1 1 1 1 1 1
t 1 I 1 1 1 1 1 1
,,,,,!_,,,
I
t
or
i
i
i
i
NYPNTS
, , r,8
"'
=
o
o
Oifl
0)
1
'
NYPNTS =
j , ,-i8,0,0
i
8,0,0
1
I
1
1
1 1 t 1 1 t 1 1 1
1 1 1 1 t 1 1 1 1
i i i i i , , r , 1 i i , t i i i i ,
|
1
0) -
1 1 1 1
1
)
-600
liOOiO
_L
1
I
1
1
1
1
I
,-,600
, , , 1,0,0,0
i i
1 1 1 1 1 i 1 1
|
1
1
i i
L. I 1 , 1 I_L, _!_
1 1 1 1 1 1 1 1 1
, ,
,1,1,11,1
, , , , , -ADO
i i i i i il 2 fi Q
i i i i i i i i i
; i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 I 1 1 t ! 1 1
1 1 1 1 1 ( 1 1 I
1 1 I L 1 1 1 1 1
r 40,0
i i i i i 1 i25iO
, , i i i , , i i
i i i i , > i , ,
, i i , i , , i i
1 1 1 1 1 I 1 1 1
1 1 1 1 t 1 1 1 I
1 1 1 1 1 1 1 1 1
FIGURE C-l.
(Continued)
-------
o
1
.p-
ISCST
INPUT DATA CODING
PROJECT Example Concentration
CARD GROUP,
CARD NUMBER
3,3 -
3,4 -
FORM (Continued)
NAME
DATE
SHEET
3 OF 11
DATA CARD COLUMN
10
I, ,2 13 14 13 16,17 16 19
20
21 22 23 24 25 26 IT 26
29
30
31 32 33 34 35 36 37 56 39 40 41 42
43 44 45J46 47 46
49
50
51 52 53 54 55 56 37 56
S9J60
61 62 63 M 65 66 87 66
69
RECEPTOR DATA PARAMETER AND VALUE
5,5
, , , , , , 9,4
107
i i 46
ii , i i i3 2
, , , , M
, , 7,3
, , , 61
1 I' 1 t 11 1 'I
3,1
i i i i i i 3 14
! 1 1 1 I I 1 l2
sl , , , , , , ,6,2
0 iiiii, ,9,4
5i , ,1,0,4
- XDIS (dis
Ol 6,8,5
OJ 935
5
Q , , i i 3i5i5
51 , , iii ,3i8iO
£
1 IIIII |6|6|5
o| , , , , , ,7,0,5
5
7
6
6
iiiii i Si 1
i i i i i i 1 |2
^^ i i i i J. 1 7
9 1
i i i i i i r- i A
6
1
1
i i i i t i 2 1 5f 1
i i i i i i i i i
i ii i i i5 7i 5
i i i i i i i
i i i i i i i3,1
i iiiii i-^i-'
, i i i i , P
i i i i P
i , iii ,1,3
, i * i i i i Ii '
R
1
1
6
6
6
ill, i i2i 1' ^
? 5
i i , i i , i^-i Ji
6
i i i , i i i i ,
1 I 1 |9
9
crete receptors,
i i i i i i |7 13 5 ii
i i i i i i ,9,1 ,0i i i
51 i i i i i ,9il lOi i i
1 ;
i 111 i3i5i5l i i 3,5,5i
iii i i&i?ifl
i i i i 7
iii 1116
0
9
5
omit if
,,,,9
i i i i 18
NXWYPT = 0) -
I
0,0 ,,,,,, ,8,00
spl 1,0
5
i i i 3 5
5| i i i i i i ,7
5i ; i i i i i |3
ii iii i/iisnj i i i i i A8iO
i i i i 1 7 , 3 ,0 i ,
01 , i i i i i6i9iO i i
i i i i5i3ifl i i i i i i4,7i5 i
i i i i i i i t i
1 1 1 ! 1 1 II II
- YDIS (discrete receptors,
i , i i , i i3i2iO i i i i i i i3i2i2i i t
i i i t i i i3
5
i , i , i , i 3
6j 1 1 1 1 1 1 1 1 M- 11
6
ii ii ifi 16
i , i , i i il
i , i , , ,1
i , , i , ,2
i , i i , , ,2
4
8
2
6
i i i i , i i r* ,1 j i
i i i i i i i i7 16 i i
ii i , , , i i il A 6 ii
11 , i i i , , ii 186 ii
1
1
, i , , i i i. , ,
,,,,,, ,2,6i6J i ,
, , , , , ,
i i i i i7 A 5
11,0
, , , , A
1,111
omit if
, . , i rt
t i t i ,
9,0
1
0
15
5_j5
70
,,,i,i .900
, , i i , ,1,0,55
i i i i i i i6i20
50| 3A5
i i i i i i i505| ii ,i ,535
t i i i i i 1 7iStS
1,1111 16180
i i i i i , 1 3,6i3
1 l l i , i r P
5
t i i i - 1 i 1616 15
i i i i t i 3 6 (5
i i i i i i i
NXWYPT = 0) -
2,6 ,11,1, ,3i3,l i i , i , i ,3
6
A3
i , i i i 8 ,6
, i i i J. 5
, i , , il 19
, , , , 2,
3
7,
1
1
1
I
i i , , i r ,
! 1 1 1 1 1 1
111
,' , , , , , , ,45
IIIII J
9,6
i i i i , i 1 1 1 5 ,6
i i i i , i 1 1 19[6
,,,,,,,?,
7i6
, , , i i , , , i
i i i , , i ,
*
, , , , i , ,920
i,,,i ,1,075
, , 525
III , P P P
1 1 1 1 1 1 P 1' P
,,,,,, 7A5
i . i i i i ,6 A 5
/, i n
i i i i i i r+ I1 M
i i i i i i i >i <
36i , , , , , , 3A1
1 16
, , A
7
i i i i i i fl 0(6
11 1 1 < till
3
1
l l i i i i i^r-*!*
1
,28,6
I t 1 1 1 1 1 1 1
1 1 1 1 1 1 ! 2 |1
49
i , i i i i , i i
i , i , 1 1 ,1 6
, , ,, , , ,1^0
,,,,,, ,206
, , , i i i ,2A0
2,9,6
i i , i i i i i i-
FIGURE C-l. (Continued)
-------
n
Ul
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration
NAME
DATE SHEET
4
OF n
CARD GROUP,
CARD NAME
4,1 -
4,2 -
DATA CARD COLUMN —
'
to
II
,2
13 14 IS 16 17 18 19 2021 222324
29 !6 27 2'
/ \ , i AJ , i AJ , A, , i Ai , i A , i
K , , X , , X , ,
V Y Y
Ai i i Aj i i AJ i i
V Y Y
AJ i i AJ i i A^i i i
V Y Y
/^t i i >\ i i AJ i i
Xj i i A i i X i i
/ \J 1 1 Aj 1 1 Aj 1 1
X ^CI^C
y x V
Ai ii '\i i i Ai i i
V Y y
A| i i Ay i AJ i
f\t 1 1
/\ i i
X , ,
XV V ^
1 1 A 1 1 AJ 1 1 \ 1 1
Aj ! 1 /y 1 1 Aj I
Aj | /\ | 1 Aj 1 |
Al | | /\J l | Aj | |
>-<";>O<^
- IDSOR (array, omit if NGROUP = 0) -
, i-,15 ,l,6i i 1 , i - 1,61 i i ,1
, , i , ,
i , i i ,
, i
, , , , ,
i i i
1,1,1
I,,,,
i , , , ,
, , i
,111
, , , ,
1,11
1 1 1
Aj | |
X ,
x!,,
!>rC
A 1 1
X , ,
X i 1
K
|
X,
p)
x1
|
|
:,<
i i
i i i i i 1 i i t i t i i i i t i i i i i i i i i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 t
!
II II
1 1,111 , t 1 1 1
,
1 1 1 1 1
1 ,
111(1 i i i i i
i i i i i i i i | i
i i i i i iiiii
i i i i i iiiii
iiiii iiiii
11111 i
1 1
i
1
(III! IIIII IIIII
1 1 t i 1 III
| ,
i i t t i
IIIII 1 1 1 | 1 | 1 1 1 1 1
L_L1 1 J J_i_I_. J_
IIIII IIIII
IIIII IIIII
' 1 II 11
i i i i i
i i i i i
iiit]
1111,
1
Al 1 I
x , ,
x , ,
X , ,
X , ,
x_
A~, ,
Jr^Cj
t |
1
1 1
1
,
1
V IY
X X
AJ i i AJ i i
X , , X , ,
v , X ,
Y Y
Al 1 1 Ay 1 1
AJ 1 1 AJ 1
^ !' ~>^ s^ 3^
1 1 1 1 1
l 1 l 1 1
, 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 I
1 1 1 1 1
1
1 1
_L
I
1 1 1 1 1
X
V
X
X
X
x^
x
X
X
FIGURE C-l,
(Continued)
-------
I
en
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration NAME
DATE SHEET 5 OF 11
CARD GROUP,
CARD NUMBER
5,1-6 -
5,7-12 -
5,13 -
DATA CARD COLUMN
I j ' | 1 I | 1 '
METEOROLOGICAL CONSTANTS DATA PARAMETER AND VALUE (X means do not punch)
- PDEF (array, omit if ISW(21) ,42)-
i 1 1 1 ! 1 ! ! 1 i ! ! 1 f ! t 1 1 I 1 f 1 1 I I 1 ! I f t 1 1 1 1 | 1 1 I 1 i i I 1 ! 1 t I 1 1 1 J J | ^^ S^
I 1 I 1 ! 1 I 1 ! I 1 1 1 1 1 1 r 1 i t 1 1 1 1 1 1 I 1 1 I 1 1 1 I 1 I 1 I 1 1 t 1 1 1 i 1 1 1 1 I 1 I 1 1 1 *X ^
I 1 1 1 1 ! 1 1 1 t 1 1 1 1 1 1 1 { j 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 t t t 1 1 1 1 ' ! ' 1 1 1 1 1 ( 1 1 1 j *" ^\ s^
11(111 t 1 1 1 1 1 1 1 1 ! I 1 1 1 1 1 1 1 1 1 1 1 ( t ! f I ! 1 1 1 I i 1 1 ' 1 1 1 1 1 1 1 I j ^ ^^
1 1 I 1 1 1 1 1 1 1 till) j 1 ! 1 1 It 1 1 1 1 1 ! 1 1 1 1 1 I 1 | ! I ' 1 I 1 _L L I ^^ "^
[ 1 1 1 I t it I 1 till 1 II 1 ! 1 1 1 ( 1 1 ! I I 1 ! ! lit! Ill 1 ! 1 I \s^ ^\
- DTHDEF (array, omit if ISW(22) ^ 2) -
. ... ! ! ' !\
1 t 1 1 1 III 1 1 I ! 1 1 1 1 | 1 1 1 1 1 1 1 1 t 1 1 1 ! 1 t 1 1 1 1 1 ! 1 1 i 1 I 1 1 1 1 ! 1 1 j \ ---'
1 ! 1 1 I 1 1 1 1 j 1 t 1 I 1 1 1 I 1 1 1 1 t 1 1 1 1 1 ! I ] 1 1 t ! t ! 1 1 1 1 1 1 1 1 • I 1 j 1 1 1 1 t ! 1 _1 1 | ^x ,•""'
1 I 1 | ! t 1 1 I 1 1 1 1 I 1 1 1 1 1 i 1 1 1 1 | 1 t 1 1 1 t 1 1 1 1 1 1 1 f 1 ! 1 ! 1 ! 1 • 1 1 1 1 I I 1 | 1 j ^*\ .-'''
1 1 ! 1 i 1 1 1 1 1 I ! 1 1 1 1 1 1 I | 1 1 1 1 1 1 1 1 1 1 1 t 1 * 1 1 1 t f i 1 1 1 I 1 1 i I I 1 1 1 j -'"' ^^
II I 1 1 1 t t t t 1 II ! 1 1 1 J ! 1 1 | 1 | ) .-'"' \
i - i ' /-"" \
1 1 t 1 1 1 1 1 1 i 1 1 ! t I 1 1 1 1 1 1 1 1 t 1 1 1 ! 1 1 1 1 [ 1 1 ! 1 i t 1 1 ' 1 I 1 ! ! 1 1 1 1 i i \^ ^^
ZR - UCATS (array) - . .
- due blank card!, default units - | ~~m^===~-^:==^^II^
-------
n
ISCST
PROJECT Example
INPUT
DATA
Concentration
DATA
CARD GROUP,
CARD NUMBER
5,14 -
5,15-19 -
5,20 -
i
METEOROLOGICAL
TK
1
ISS
4,91
3
.0
tz
23
24
-
CONSTANTS AND
BETA1
ane blank
t i r i i i
0
n
j ibjliin
I
ISY
c
ki
J
26
27
2«
29
X
SI
32
»
343
936
IDENTIFICATION
BETA2
arc!,, defayil(t|
1
IUS
14 9,1
8
r
d
_
1
IUY
DECAY
- IDAY
1
1
1
1
(array,
i
i
37
CODING
CARD
M
3»
•0
LABEL
IQUN
i ( 1
omit
- (omit
64
. „
„
—
1
if
FORM (Continued)
COLUMN
41
12
4XJ44
DATA
if
NAME
DATE SHEET 6 OF 11
454
f. ~\~
PARAMETER AND VALUE (X means do not punch)
H Pj
ICHIUN a £•
pi .1
i i i t i i i t i i i i i i i i i i i i i i i *t - t I i i i 1 "i"" j ix.
ISW(19) = 2) -
! ill
i
1
i
1
1
ISW(19)
I
\ i i
i i J- i 1 i
i ilu 1 i ifliiUl1 JTai i
kxxxxxkxNMiK^Mxixxxlxkkxlxhxh
= 2) -
-f-
FIGURE C-l. (Continued)
-------
n
i
oo
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration ' N)
DJ
\ME
VIE
, • SHEET
7 OF 11
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
,0 II 12 I3JI4 ,9 ,6 ,7 IB 1920 21 22 25 24 25 it 27 26 29 SO 91 32533435363738 394041 4243444546474
6 49 50 51 52 53 54 5
SM
57
96
99
SO
61
62
63
M
65
66
67
SOURCE DATA PARAMETER AND VALUE
w
0- W
NSO MSZ
1111 1
6,1 -
%
, , , 1
2
, , , ,2)1
: i iilll
i i A
1
. i ,Sll
, , , ,6
, , , ' 1
j , : ,8
, , , ,9
1
1
1
1
. , iLOl
_L , ,L1
1
_. , , ^h
, ; 13J1
, , , 14
, , 15
, , ,1,6
i ' <
I,,,
i,,,
1
1
0
3
^ Q . XS ^ YS ZS HS TS
1 1 1 i 1 1 1 1 1 ! 1 1 t 1 t . 1 1 1 1 1 1 1 1 1 J i t 1 1 1 1 1 I 1
63i 1 i-,l-i3|. ,3 -13,.,'j | ,OJ i ilini.iO i i i
J6if)
ihf)
6
i , , i i ,.,13l , i i , ,2,0 , , , , , ,0| , , , , ,OJ , , , ,. ,9 , , ,
i < i i -i!3| , , , ,3,0| , , ,0 , , , ,OJ , ," ,2,. 6J i i ,
1 ' ! '
01 , i i i i. ,l,3i i i i i 4,01 , i , i i |0| , , i i ,0| , , |4,.|3 , , ,
fiiO
fiiO
6iO
' 1 1 t 1 . 1 1 13 11 II IT-' 1 I t 1 1 *-^ 1 ! f 1 1 ( 1 1 |6 [ . (1 III
! 1 Ill'll-^i tll!-)|-' 1 1 1 1 1 1 M I 1 ! 1 1 ^ I 1 J 1 * P 111
i i i i •(•'•Plii ii i6i9|iii ii iQ i ii |C i f i9 1 . 16 i i i
6,0 ,,, ,.,13J , , i 7,9J i , , , , ,o| , , , , ,C , ,1,1 1.3 , , ,
J6d 1,1,, ,-,13 , , , , .agi i i i i i |0i i i , , ,0 , ,1,3, .0 , , ,
16
0 , , , , ,.,13 , , , , ,9,9, , , , , , ,OJ , , , , ,0 , ,1,4,. 3 , , ,
6,d , , 1,3 J , i . ,1,Q9 , , , , , ,0 i , , , ,o i ,1,6|-|5 , , ,
0
lo
lo
1°
0
0 i , , , ,2, .,63 , , ,1,2,1! 0 , , , , ,0 , ,2,2,. 5l , ,1,1
0
0
0
i j
, , |2,.|6,3 , , , ,1,44 , i , , , ,0j , i , , ,0 i ,2i2i. ,5 , ,1,]
i , , ,2, .,6,3 , , . ,1,67 , , , , , ,0j , , , , ,C^ , ,2,2,^5 ^1,1
i i t2,.,6!3 i , ,1,90 i i i i i iO| , i , , ,OJ , .2? .,s , ill
0,0| 5,.,0i , , , ,201 oi , , , , ,0i , ,5,0,.,0j , ,.,3
t
i
,
! ! ;
i i i i i i i i i i i i i i i i i i i i i i i i i i i i t iii
i
1 1 1 1 1 1 1 1 1 1 t I 1 1 1 1 1 1 1 1 1 1 I f 1 1 1 I. ! lit
i i i i i i i i i i i i i i | i i i t i i t t i i i l i i i i t i i i
1 t 1 | | i 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 ! 1 t 1 I I III
vs
II 1 1 t 1
i i 26 1.
i ,1 i i ,4,.
, ,lj , , A,.
, ,1 , A,.
, ,1 , , A,-
, ,1 , , 4,.
, ,1 , , A,.
, ,1 ,4,.
It A
i i s i r* f
,1 , A,.
, Ii , , 4,.
i.ifSJ . 10,.
i-i&l , i 0f
t-f> , ,10.
, .16 i 1 0i.
A,C , , , ,
II lilt
il 1 l 1 1
, , , , , ,
11 l 1 1 l
|
16
,7
,7
,7
,7
,7
,7
,7
,7
,7
7
Pi
<8
-l
g
i3!
i i
1
i j
.
i
,
l
i
|
i
D
|
(
,
1
1
,
,
t
1
|
!
c
1
1
,
L
t
6fl
HB
1 1 1 1 1
j
[
,
[
|
|
I
|
|
|
i
, , , 2,
-
1
t
t
1
HL HW
1 1 1 1 1 1 1 1 1 1
1 -4- I lilt
1 1 1 1 1 1 1 1 1 1
1 ! 1 1 1 1 1 1 I | 1
11111 ' 1 1 ! I
, , , ; ; :
i i i i i i i i i i i
i i i i i i i i i i i
I , , , , i
i i i i i i i i i i i
5
! 1 1 1 1
;
I__L i 1 1 1 I 1 1 1 L
,-,,,,,,,,,,
I 1 J l l 1 1 1 1 l 1 {
;
1 1 1 1 1 1 1 ( t 1 1
, , , ,9,0, , , , ,5P
( 1 1 I 1 1 I 1 1 1 I
,1111 1 1 t 1 1
1 1 1 1 1 1 1 1 t I 1
1 I 1 1 1 1 1 1 1 1
FIGURE C-l. (Continued)
-------
o.
I
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
Example
Concentration
NAME
DATE
CARD GROUP,
CARD NUMBER
6,2 -
SHEET
8
OF H
DATA CARD COLUMN
I
2
3
10
"
12
13
14
IS
16
17
16
19
20
21 22 23 24 25 2«|2T 28 29
50
31 32 33 34 35 3« 57 58 39
»0
41 424] 44 45 46 47 48 49
5O
51 5255545556575859
BO
61
62
M
87
68
89
70
SOURCE DATA PARAMETER AND VALUE
-
1
1
1
I
I
1
I
1
I
1
(
1
I
1
I
I
1
1
1
1
.
•
.
•
•,
,
•
•
•
1
1
1
1
1
1
1
1
1
1
1
•
•"
"
,
*
•
•
*
.
4
4
4
4
4
4
4
4
4
4
|
|
- PHI (array
, . ... .28
i i i i i i i- 2 $
i t i i i • i2 18
i i i i i i i. 2 8
i i i i i i . i28
11 t • |2 p
II 1 1 1 !• 2£
i i t i i i i- 2 P
t i t i i t i . i2 8
i i i i i i i " i P
i i i i i i i * r" P
1 t 1 ! 1 1 1 1 t
IIIIIIIII
I 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I I 1 1
1 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 1 1
IIIIIIIII
1 1 1 1 1 1 1 1
11(111111
III 1 1 1 1 1
, omit if NVS
i i i i t i . 1 ,2
i ,12
1 1 1 1 1 1 1 ' 1*
2
t i i i i i i . il |2
i i l t i i i •]•*• p
1 1 1 1 1 1 1 *ll
2
t I i i i | l • r- P
l i l i l i i .|1
2
1 ?
1 ! 1 1 I 1 1 '\i !*•
i 7
i i i i i i i "i1 \*-
1 1 1 1 1 1 1 ' I"*1
2
1 1 1 1 I 1 III
1 1 1 t 1 I III
1 1 1 1 1 1 lit
1 1 1 1 1 I III
1 1 1 1 1 1 It)
1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 1 1 1 1 1 1 1 I
1 1 1 1 1 1 III
1 1 1 1 1 1 II
= 0 for all s
i i i i i , ,06
, , 0,6
1 1 1 1 1 1 I- P P
it i i. iOi6
i i i i i i r P f>
i i i i i i i. 0 16
, , , ,. P,6
i i i i i i <• Pf>
i i i i i i i- iO|6
• 0
6
i i i i i i i* r^r*
iiiiiitii
i i i i t i l i i
iiiiiiiii
i i i i i t i i i
i i i i i l i I i
i i i i i i i i i
t l i i i l l i i
i > i t i 1 l l i
i i i i i i i i i
i i i l i i i l i
i t i i i i i i i
i i i i i i i i .1
sources) -
III 1 !• P
4
i i i i i i i-Ofr
i i i i \ i i. C 4
i i i i t i r M h
iii 11 i i * p-* i
t ! t i l i i" M r
I , -p
1 1 1 t 1 t 1* p
1 ] III * 1
4
4
4
-PA
PA
i i i i l i i i i
i i i i i i i i i
i i i i i i i i i
i i , , i i i i t
i i i i i i i i i
i i i , i i i i i
i i i i i i i i i
i l i i i i l i i
iiiiiiiii
i , i i i i i i i
i i , i i i i i i
, i , i i i i i i
_,
,,,,,,,,,
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 1 l 1 1 1 1 1 1
1 1 1 1 1 1 1 f I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1
IIIIIIIII
1 1 1 1 1 1 11
1 1 1 1 1 1 1 1
II ,11,11
( i 1 1 1 1 \ 1 1
1 1 1 1 1 1 \ \ 1
i I 1 1 1 1 1 1 I
IIIIIIIII
illliiiil
IIIIIIIII
jlllillll
1 1 1 1 1 1 | 1 \
1 1 1 1 1 1 | 1 |
IIIIIIIII
1 1 1 l l I | 1 |
IIIIIIIII
IIIIIIIII
IIIIIIIII
FIGURE C-l.
(Continued)
-------
o
o .
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Concentration
NAME
DATE SHEET 9 OF 1 1
CARD GROUP,
CARD NUMBER
6,3 -
, j i
i I 1
DATA CARD COLUMN
24 Z5&6 27 26 29 3O
31 32 33 34 35 36 37 38 3l ii , i -iQP,7i i i
iii,, ,.P,P,1| 00,7] , ,
i i i i i i . tOi 01 i i i i i i .1 Q(V7 1 i i
,,iii i-P,0,l , , , , i ,.,QOi7l , i
i i i i , i-iP Ql| i i i i , -, OQ7| i
, , -P 0,1 ,. na7l
i i i i i i. f) i Ql i i i i i i i .1 Q0,7l i
P,qi , -qo,7 ,
i i l i i i i i i i i i i i i i i l i 11
i i i i i i i i iiitiii 11 ii
, i
i i i I I i i I i I i i I i i i i i j i t
i
t i t 1 i l i l l l 1 l l l l l l l ii
i l l i l l i i l i t i i i i i l i i
i i l i i l I i i i i i I l ' i i i i ii
i i 1 i i i. i i | : i i i i i t it
1 1 I 1 ! t 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1
i i i i i i i i i i i i i i i i i i i i
4 i i i i i i i i i l i i i i i i i ii
i i i i i i i ill i i i i i i
i ii iii i i i i i i
, omit if NVS = 0 for all sources) -
, i , , , i.0,3,7 , , , , , ,., 0,6,1 i .,,,, .0,9,9 ,,,,
019i , , , ,.f)3,7\ ,.0
i , i. ,(lil til i i i i. 03 ,7 1 i i i i i i-P
, , , ,. 019 , , , , .,03,7i -P
I,,,. ,0,1 i9i i , , , ,. P3 ,7 i i , i i , -P
i i. iOil i9
0,li9
0,1,9
i i i i i !• (Op |7 j i i i_i_i_L-P
1 , l i-PJi7 .YLL-LI-P
6,1 1 I I I . . -D0.9 ,11,
"i 1111 r P |9" i i t i
6 ]1 i i i i i • P P ,9 i ,t
6jl j i i i i s . D19.9J i i i i
f i n Q Q
"H- 1 1 1 1 1 1 1" H K I-7 1 1 1 1
1 1 1 1 l i 1 !• M |9 [9 | ||
fl3,7 ()(6,i .0,9,9 , , , ,
, ,. 019| .03,7 , .n,fi,i , , , -099
: , , ,. ,0,1,9J ii ii i..()rt i7i , , 'P
0,1,9 ,,,,, ,-P? ,7j , i , -:()
, l i i i l l iiii , , i l ill iii
iiiiiii
J_ 1 1 1 1 L _L
i 1 I I i i I
11 ! ! i 1 1 1 1 1 III 1
1 ! 1 i 1 1 1 I | 1 ! 1 11
1 1 ! 1 1 1 1 t 1 1 1 1 1 1 1 1 1
( !
IIIIIII 1 111! 11 1 1 1 1 1 1 1
f 1 I 1 1 1 1
1 1 1 1 1 1 I
1111(11
I I 1 1 1 1 1
t 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
I 1 1 1 1 t 1 _1_ Ll_l _1 1 i i 1 1 1
1 1 1 t 1 1 1 1 1 • IIIIIII
1 1 1 1 1 1 1 1 t 1 i t 1 1 1 1 1
1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 J J 1 1 If 1 1 1 1 1
1 1 1
. 1_ 1 111 111 _L_I
M -P9.9 , , ,
Mi , : , -P.9,9 •, , , ,
1 1 ! ( 1 ! I 11 IIII
1 | 1 1 ! 1 1 1 1 | III
' i ' i ; i ! i i i i i i :
1 1 : 1 1 < ! l 1 1 1 1 1
l i i i t i i i i i l it ,
i t l f i i l i i ' iiii
i | : l i i i l l i i j i t I i
1 1 1 t 1 T 1 1 • 1 1 Iff)
i | i , , i , , i ,
I,,,
, ,", , , , , I,,,
( i i i t i t i i i i i i < i
i i i i i i t i i i i t i |
i i t i i ; i i i i i i i i
i i t i i i i i i
iiii i t i i i i i i i
11(11 f 1 t l 1 1 1 ! 1
i i i i t i i i i i i i ii
111 1 1 1 1 1 1 1 ! 1 1 1
11 11 1
1 1 ! 1 1 1 1 1 t 1 1 1 t 1
1 1 1 1 ! J i I ! 1 i 1 1
- . i
111 llil!_tll 11
i i j_ i i 111111111
!
1 1 1 1 i | 1 1 i 1 1 1 1 1 !
i
111 1 j 1 1 ! 1 1 1 II
i ; i i i i i i i i i i i
1 1 1 1 1 1 1 t 1 1 i 1 1 1
1 1 1 1 1 1 1 1 t 1 1 1 1 f
t 1 1 1 1 1 I 1 i t 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
trill i i i i i i l i i
l 1 1 1 1 1 1 1 1 1 1 1 1 1
F1CURE C-l
(Cont inui'd)
-------
o
I
PROJECT Example
ISCST
INPUT DATA CODING FORM (Continued)
Concentration
NAME *^
DATE
CARD GROUP,
CARD NUMBER
6,4 -
SHEET
10
OF n
DATA CARD COLUMN
'
I
|
9llO
l(
"I"
14
15
16
IT
18
19
20J 2, 22 23 24 23 26 27 20 29
JO
31 32 33 34 35 36 37 38 39
«0
41 42 43 44 45 46 47 48
49 SO
SI
52
53
54
IS
56
57
56
59
BO
61
62
87
64
69
70
SOURCE DATA PARAMETER AND VALUE
t
1
t
t
1
1
1
I
I
1
t
1
I
I
]
1
I
I
1.
•"
^
1,
1,
\
J
.,0
•1°
.,0
•|0
•l°
.,0
if)
Jj.,0
\
\
•i°
• P
1
1
1
1
I
1 1 1 1 1 1 1 1 1
t 1 1 1 I 1 1 1 1
(
1
1
1
1
1
1
!
I
|
I
1
I
1
1
I
I
|
I
I
f
t
.
.
*
.
*
•
8
[^
o
8
8
8
8
8
8
8
3
2
?
2
2
2
2
2
2
2
2
2
] 1 1 1 1 1 1 1 1
- GAMMA (arr
, .,72
11111*1'
t 1 1 1 1 * 1
2
2
! 1 1 1 1 1 1* t ' !^
i i i i i i r i
2
! i i i . i? |2
ii i i i* i /
1 t | 1 1 1 !• i'
. 7
| 1 1 1 1 1 1 1
1111111*1
2
2
2
2
ii i i i i i. i7 \)
i i i i i i i i i
i i i
i i i i i i i i
i i i i i i i i i
i i t i i i i i i
i i i i i i i i i
t i i i i i i i i
i i i i i i i i i
i i i i i t i i i
i i i i i i i i i
i i i i i i t i i
ay, omit if W
, .65
c
ii iii* |6|5
i tii i*i6|5
ii i i i i- 16|5
ii tt i *i r
1 i i i i 1*1 ^P
1 1 1 l 1 1 l • iOp
i i i i i i 1*11
i i i i i t 1*11
i , , , , , i6,5
1 1 1 1 t 1 III
1
1 I ! t 1 i 11
1 1 1 1 1 1 III
1 1 1 1 1 1 111
1 t 1 1 1 1 III
1 1 t 1 I 1 1 1
1 1 1 1 1 1 II
1 1 1 1 1 1 III
1 I I 1 1 1 III
1 1 I 1 1 1 1 II
1 1 1 1 1 1 III
JS = 0 for al]
t ,.5i9
i i i i i i i.5i9
i t i i i i i *
ii i i i i •
i i i i i i i *
i i i i i i i •
i iiit*
5 19
5|9
5,9
5,9
5i9
! 1 1 1 l 1 1 * P r
.59
1 1 1 1 1 1 1 t 1
t 1 1 1 1 1 1 *
t 1 1 1 1 1 t *
1 1 1 t t 1 1
1 1 1
1 t 1 1 t 1 1 1
1 1 1 1 1 1 t 1
! 1 1 1 1 II
i 1 1 1 1 1 1 t
1 1 1 1 1 1 1 i
i i i i i i |
5,9
5|9
I
1
|
1
I
1
1
1 1 1 1 1 1 1 1 1
1 t 1 1 1 1 t 1 1
1 1 1 1 1 1 I 1 I
1 1 1 1 1 1 1 1 • 1
|
|
|
|
sources) -
LI i ' '• i*>
\
\
1
1
|
1
•
*
*
•
*
5
5
5
5
C
-,5
•
"
5
5
5
^
1 1 ' I 1 1 1 1 1
1
t
|
|
I
|
j
|
!
|
1 1 i 1 i t 1 1 I
1 1 1 1 1 1 t 1 1
J
I
|
l
|
I
(
,..,,,,,,
1 1 1 1 1 t 1 1 1
1 1
1 1 1 1 1 1 1 l 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
III 1 1 1 1 1
1 1 1 1 1 t 1 1 i
1 1 1 1 1 1 f 1 1
1 1 1 1 t 1 I 1 1
| 1 t 1 1 1 t 1 1
1 1 1 1 1 I 1 1 t
1 1 1 1 1 1 l 1 (
1 1 1 1 1 1 1 i |
I 1 ! 1 1 1 1 1 1
1 t 1 1 1 1 1 1 1
1 1 1 1 f 1 1 1 1
1 I 1 1 1 t 1 1 1
1 1 1 1 i 1 1 1 |
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
J 1 1 1 1 1 1 1 1
1 1 | 1 1 1 1 1 1
FIGURE C-l (Continued)
-------
o
ISCST
PROJECT Example
INPUT
DATA
Concentration
CARD GROUP,
CARD NUMBER
6,5 -
' DATA
1
to
It
12
13
14
13
16
17
IB 1920
21
22
23
24
29
26
27
20
29
x>
31
32
33
SOURCE
i
1
1
1
1
!
1
!
1
1
1
1
1
,5
•*-
1
!
I
1
(
1
i
t
|
'
QTK
i il
i |5
i i1
I t
I |
I 1
t 1
i !_,
t I
1 i
I !
. :
1 i
. (
I l
1 1
1 1
1 1
1 1
, ,
(array,
1 t 1
omit
i t
1
,5
I
1 1 1 1 1 1 i 1 1
1
|
1
|
|
i
i
1
.
i
j
if
343
336
CODING FORM (Continued)
NAME
DATE
SHEET
11
OF 11
CARD COLUMN
37
DATA
58
39
4O
41 42 43 44 49 4fi 47 48 49 90
91
32193
94
39
56
97
98
99
SO
61
62
63
64
4.
67
«8
69
TO
PARAMETER AND VALUE
ISW(23) =
| 1 1 1 1 1
|
j
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
C
1
,5
1
,,,,,,,,,
1
|
)
|
J
(
1
t
,
|
|
1
1
_l 1 1 L J i 1 I 1
I i
and QFLG = 0
i i i i i i i i il
1 1 1 1 1 1 1 1 K
i i 1 i i i i r
! 1 1 1 1 1 1
t i t i i i i i t
I 1 ! t 1 1 1 I 1
t ! t 1 1 1 I 1 1
t 1 1 1 i 1
I 1 1 1 1 1 1 1 1
1 1 1 1 t t 1 I 1 *
i i i i i i i i ;
1 1 1 1 t 1 1 1 1
i t i i i i I i i
1 1 1 1 t 1 I 1 1
i i i : i i i i i
i ! 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 i 1 t ) 1 t
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 1 1 i
1 ,
for
1
|
I
I
1
1
1
i
all
L ' '
sour
1 1 H-
•
?
1
; i i i i i i i i
1
1
!
(
t I
|
i i
1
|
1
1
1
l
,,,,,,,,,
1 1 1 1 I 1 1 t 1
ces)
i i
|
1
1
I
1
1
I
1
t
1
1
1
I
1 1
1
?
1
1 1 1 1 1 ' 1 1 !
) 1 1 1 1 < 1 1 1
1 1 1 1 1 1 1 1 1
|
|
|
,
I
1 1
,
(
1
(
1 I 1 1 1 1 I 1 1
1 1 I 1 1 1 1 1 K
i i i i i i i i r-
i i i i i i i t r
i i i i i i i i
1 1 i i t i i i i
i i i i i i i i t
1 1 1 1 1 1 1 '!
i t i ; i i t i i
_ , ,-
1 i | i i i ( i i
i i i i i i i t i
i i i i i i i i i
i i i l i i i i i
1 1 1 1 1 1 1 ! 1
1 1 1 1 1 I 1 ( t
1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1 I I
! 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I I 1
FIGURE C-l.
(Continued)
-------
input data values on that line are defined in Table 3-4. Also, note that
,some coding form lines are marked "blank card" and are to be included in
the input data deck as blank cards. This is because a zero value, which is
equivalent to blank spaces, is the proper value of an input data parameter
or because it is convenient to exercise the program's default capabilities
for certain input parameters.
«
The best procedure for setting up the card input data for a prob-
lem run is to consider all of the ISCST program's card input data parameters
covered in Table 3-4. As each card input data parameter in Table 3-4 is
examined, Section 2.6 is consulted, when necessary, in order to obtain the
applicable information for that parameter.
a. Card Group 1. The first input data parameter discussed
in Table 3-4 is TITLE whose alphanumeric heading data occupies the first 60
characters of the first line as shown in Figure C-l.
b. Card Group 2. The second line consists of the ISW array
where each entry is entered in 2-column integer fields. Because it is
desired to calculate concentration values, a "1" is entered in column 2
according to ISW(l) in Table 3-4. Figure 2-3 is an illustration of the Car-
tesian receptor grid at which average concentration values are calculated.
A "1" is entered in column 4 for ISW(2) to indicate that the receptor grid
locations are referenced by the Cartesian coordinate system. Note that a
"3" could not be entered in column 4 to indicate that a receptor grid will
be generated by the program because the receptor grid used does not have
equally spaced grid points. Although no mention of discrete receptor points
is made in Section 2.6, this problem run includes 64 discrete receptor points
which are oriented with respect to the receptor grid origin* by distance and
direction. Hence, a "2" is entered in column 6 for ISW(3) to indicate to
*The origin for this example problem run has been (arbitrarily) defined at
the center of the ore storage pile (Source 1).
C-13
-------
the program that the discrete receptor points are referenced as polar coor-
dinates. ISW(4) indicates whether or not receptor terrain elevations are
input. Acco.rding to Section 2.6, the terrain is relatively flat; hence, a
"0" is entered in column 8 for ISW(4). Column 10 for ISW(5) is set to "0"
since no output tape is desired. Column 12 for ISW(6) is set to "2" in
order to obtain a listing of all input data. ISW(7) through ISW(14) indi-
cate which time periods are considered by the program for the average con-
centration calculations. According to Section 2.6, only 24-hour average con-
centration values are desired. The descriptions of ISW(7) through ISW(14)
in Table 3-4 state that only ISW(14) should be set to "1". Hence, columns
13 to 26 for ISW(7) to ISW(13) are blank (equivalent to "0") and column 28
for ISW(14) is set to "1". ISW(15) through ISW(18) indicate to the program
which types of output tables are produced. For the purpose of illustration,
all types of output tables are produced. A "1" is entered in columns 30,
32, 34 and 36 for ISW(15) through ISW(18) for "N"-day, daily, highest and
second highest and maximum 50 tables, respectively. The hourly meteorolog-
ical data reside on a file in a format generated by the preprocessor program;
hence a "1" is entered in column 38 for ISW(19) to indicate to the program
the format of the hourly meteorological data. According to Section 2.6, a
rural mode is desired; hence, a "0" is entered in column 40 for ISW(20).
The descriptions of ISW(21) and ISW(22) indicate whether or not the user
should provide wind-profile exponents and vertical potential temperature
gradients. Because no site-specific wind-profile exponents and vertical
potential temperature gradients are given in Section 2.6, column 41 for
ISW(21) and column 42 for ISW(22) are set to "1" in order to use the pro-
gram default values. ISW(23) indicates whether or not scalars are input
to vary the average emission rates for all sources. According to Section
2.6, only one source (the ore pile) has a variational emission rate. A
"0" is then entered in column 46 of ISW(23) to indicate that this option
is not desired for all sources. Because wake effects are to be considered,
the distance-dependent plume rise should be used. This is indicated by set-
ting ISW(24) to "2". The physical stack heights of all sources (in this
example, only Source 16 is considered) are not modified due to stack-tip
downwash, which is indicated by setting ISW(25) to "1".
C-14
-------
The second line of Card Group 2 (the third card image) completes
this Card Group as shown in Figure C-l. A "16" is entered for the number
of sources (NSOURC) in columns 1-6. This value is obtained.from Table 2-13
which lists all sources required to model the hypothetical potash processing
plant. The next three parameters discussed in this Card Group pertain to the
size of the receptor grid .and number of discrete receptor points. By count-
ing the number of X- and Y-axis grid points in Figure 2-3, a "19" value is
entered in both columns 7-12 and 13-18 for parameters NXPNTS and NYPNTS.
For the purpose of illustration, 64 discrete receptor points are used in
this example run. NGROUP specifies the number of source group combinations
desired. According to Section 2.6, it is of interest to see the contribu-
tions from the ore pile (Source 1), the conveyor belt (Sources 2-11), the
roof monitor (Sources 12-15), the stack (Source 16) and the plant as a whole
(Sources 1-16). Hence, a "5" is entered in column 30 for the number of source
groups. Columns 31-36 for IPERD are left blank because all 24-hour time
periods per day are to be printed. IPERD is intended for use only for time
periods less than 24 hours. The following two parameters, NHOURS and NDAYS,
are not applicable for this example run because these parameters apply only
when hourly meteorological data are in a card image format (ISW(19) ="2");
the program then ignores any data contained in columns 37 through 48.
c. Card Group 3. This Card Group contains the locations of
the receptor grid points and discrete receptor points. For this example
problem run, this Card Group consists of lines (card images) 4 through 25 as
shown in Figure C-l. According to Table 3-4, the X-axis grid locations are
entered first in GRIDX with 8 values per line in ten-column fields continuing
onto other lines (card images) as needed. Similarly, the Y-axis locations
are then entered in GRIDY beginning a new line (card image) in the same
fashion as the X-axis locations. It is assumed that the receptor grid values
represented in Figure 2-3 are in meters which are the units required by the
program. Beginning with the seventh line (card image) of this Card Group,
64 discrete range values are entered for XDIS followed by 64 discrete direc-
tion values, beginning with the fifteenth line of this Card Group, for YDIS.
The discrete receptor values are also entered In 8 ten-column fields contin-
C-15
-------
uing onto other lines as needed. Because the receptor terrain is rela-
tively flat, no receptor terrain elevations are entered for GR1DZ.
t
d. Card Group 4. Because source group combinations are
desired in this .example problem run (NGROUP>"0"), it is necessary to spec-
ify which sources constitute each source group. The first line of this Card
Group consists of the values entered for parameter NSOGRP. According to
Section 2.6, the source numbers which define each source group are 1, 2-11,
12-15, 16 and 1-16. Values of "1", "2", "2", "1" and "2" are entered in
columns 4, 8, 12, 16 and 20, respectively, for NSOGRP because each value is
the number of source numbers which must be read from the IDSOR array in order
to define a source group. The next line (parameter IDSOR) consists of the
source numbers which define each source group. Note that the minus sign pre-
ceding a source number implies inclusive summing from the previous source
number entered to the source number with the minus sign.
e. Card Group 5. Because no special wind profile exponents
and vertical potential temperature gradients are considered, parameters
ISW(21) and ISW(22) described in Card Group 2 are set to "1", directing the
program not to read the first two parameters, PDEF and DTHDEF, of. this Card
Group. Hence, the first line of this Card Group consists of parameters ZR
and UCATS. This line is completely blank because it is assumed that the wind
speed reference height is the default value (10 meters) and because no special
consideration is mentioned in Section 2.6 regarding wind speed categories.
Similarly, the next line is blank because all parameters contained on the
line may default to program-provided values. That is, the default values for
TK, IQUN and ICHIUN may be used since the emission rate units of all sources
given in Table 2-13 are the same as the program's default units and it is
assumed that the desired units of the average concentration values are the
same as the program's default units. Also, no mention is made in Section
2.6 regarding special adjustment of the adiabatic or stable entrainment
coefficients (BETA1 and BETA2) or chemical depletion (DECAY). Furthermore,
it is assumed that the hourly meteorological data file is associated with
FORTRAN logical unit number 9 (the program's default value for IMET) as dis-
cussed in Section 3.2.2.a. The next 5 lines of this Card Group (the third
through seventh line of this Card Group), consist of the IDAY array and are
C-16
-------
read by the program since ISW(19) equals "1". In this array, the Julian
Days of the ten "worst-case" days of meteorological data (not discussed in
Section 2.6) are specified. For this case, the Julian Days are 51, 187, 205,
229, 262, 289, 299, 305, 312 and 337 which respectively correspond to column
51 of line 1, columns) 27, 45 and 69 of line 3, columns 22, 49, 59, 65
and 72 of line 4 and column 17 of line 5. Hence, a "1" is entered in those
10 columns as shown in Figure C-l. The last line of this Card Group contains
input data parameters which also pertain to the hourly meteorological data
file and must be entered since ISW(19) equals "1". The surface and upper
air station numbers and the years of the data are entered according to the
formats of parameters ISS, ISY, IUS and IUY described in Table 3-4.
f. Card Group 6. This Card Group consists of all source data
whose values are provided by Tables 2-12, 2-13 and 2-14 in Section 2.6. For
each of the 16 sources, one main card of values contains most, if not all, of
the data required for a source. This card consists of parameters NSO through
HW described in Table 3-4. According to Section 2.6, the ore pile (Source 1)
and the conveyor belt (Sources 2-11) have significant particulate emissions
which requires 6 gravitational particulate categories of data as shown in
Table 2-12. Hence, a "6" is entered in column 9 for NVS for Sources 1-11
which directs the program to read the gravitational particulate data for PHI,
VSN and GAMMA immediately following the main source card for which the parti-
culate data are applicable. Note that Figure C-l does not show each set of
gravitational particulate data immediately following the main source card.
The coding forms are designed more for an efficient manner of preparing the
input data. Because particulate emissions from sources 12-16 do not have
significant settling velocities, column 9 for NVS is "0" and no particulate
data are read by the program for these sources. Because the emission rate
for the ore pile (Source 1) varies depending on the hour of the day (see
Table 2-14), a "3" is entered in column 10 for QFLG for Source 1. The "3"
value, which is the value required by the program in order to vary emission
rates for each hour of the day, directs the program to read one set of 24
source emission rate scalars in QTK. Note that QTK is read after all other
C-17
-------
source input data are entered and consists of the last 3 lines (card images)
of this Card Group. According to Table 2-14, the emission rate for Source
1 equals 0.1 grams per second per square meter for hours 01-07 and 16-24,
and equals 0.5 for hours 08-15. A value of 0.1 is entered in columns 11-18
for the emission rate Q for Source 1. Then, scalar values of 1.0 are
entered for the first seven values (hours 01-07) and for the last nine values
(hours 16-24) in QTK since no scaling is needed for the emission rate of
Source 1 for those hours. The eighth through fifteenth scalar values (hours
08-15) equal 5.0 since it is desired to scale the source emission rate from
0.1 to 0.5 for those hours. The values in QTK are entered in 8 ten-column
fields and continue onto other lines (card images) as needed. In this case,
QTK consists of three lines.
The card deck described above completes the required card input
data for computing the desired average concentration values for the hypo-
thetical potash processing plant. Because the hourly meteorological data
are read from an external file (because ISW(19) = "1"), Card Group 7 is not
read by the program. The external hourly meteorological data file must be
assigned and associated to FORTRAN logical unit 9 before execution of the
program (see Section 3.2.2.a).
C.2.2 Run Time. Required Data Storage and Program Output Esti-
mates
The number of minutes the program takes to execute this-example
run may be estimated by Equation (3-2) described in Section 3.2.5.a. The
six variables which determine the amount of time are: (1) NHOURS, which
equals "24" since there are 24 hours in a day of meteorological data; (2)
NDAYS, which equals "10" since ten "worst-case" days are being processed;
(3) NSOURC, which equals "16"; (4) NGROUP, which equals "5"; (5) NPNTS,
which equals 19 times 19 plus 64 for a total of 425 receptor points; and
(6) NAVG, which equals "1" for one time period. With these values and the
value of C equal to 2.1 x 10 we have
C-18
-------
Number of Minutes = C •' (NDAYS +1) • (1 + NHOURS • (1 + 0.8
' • NSOURC • (1 + 0.6 • NPNTS + 0.1 • NGROUP
•NAVG))) (c_u
- 2.1 • 10~5 (10 + 1) ' (1 + 24 • (1 + 0.8
• 16 • (1 + 0.6 • 425 + 0.1 • 5 • 1)))
= 18.2 minutes
The number of data storage locations required by the program nay
be computed by Equation (3-1) described in Section 3.2.3.a. According to
the definitions of the parameters used in Equation (3-1), NSOURC equals "16",
NXPNTS equals "19", NYPNTS equals "19, NXWYPT equals "64", NPNTS equals "425",
NAVG equals "1" and NGROUP equals "5" for this example run. Also, because
ISW(15), ISW(17) and ISW(8) equal "1", variables A, B and C respectively
equal 425 times 5 (or 2125), 4 times 1 times 425 times 5 (or 8500), arid 201
times 1 times 5 (or 1005) according to their definitions given in Equation
(3-1). Substituting these values into Equation (3-1) gives
Required Data Storage = NPNTS • (NAVG • NGROUP + 2) + NXPNTS
+ NYPNTS + 2 • NXWYPT + 215 • NSOURC
+ A + B + C
(C-2)
425 • (1 • 5 + 2) + 19 + 19 + 2 • 64
+ 215 • 16 + 2125 + 8500 + 1005
18211 words
C-19
-------
This value is well within the current limit of 43500 words allocated by the
program. If this value exceeded 43500 words, it would be necessary to seg-
ment the example problem run- into more than one run or to modify the current
allocated data limit set in the program (see Section 3.2.7).
Equations (3-3), (3-4) and (3-5) in Section 3.2.5.b assist in com-
puting the number of pages of output data produced for a problem run. Be-
cause the program has different categories of print output, it is best to
examine the number of pages produced by each category. In this case, all
categories have been set to generate print output.
Because ISW(6) equals "2", 5 pages of input data are listed plus
10 pages for the 10 days of hourly meteorological data. Also, because
either QFLG or NVS is greater than "0" for 11 sources, about another 4 pages
are added for a total of about 19 pages for this category.
The number of "N"-day average concentration tables produced
(since ISW(15) = "1") equals the number of source groups specified in param-
eter NGROUP and equals "5" for this example problem run. However, we must
consider the number of pages produced by each table according to Equation
(3-3) . As shown by the definitions of the parameters contained in Equation
(3-3) , the number of pages produced per table depends on the receptor grid
size and the number of discrete receptors. In this case, NXPNTS equals
"19", NYPNTS equals "19" and NXWYPT equals "64" which, when substituted into
Equation (3-3) , gives
Pages Per Table - («™2L)
(C-3)
= (3) • (1) + (1)
= 4 pages
C-20
-------
Note that any fractional number is rounded up to the nearest whole number.
Hence, the total number of pages produced by this category for this example
problem run equals 5 tables times 4 pages per table for a total of 20 pages.
Equation (3-4) gives the number of daily tables produced (ISW(16) =
"1") for each day of meteorological data. As shown, the number of tables
produced each day is a function of the number of source groups, whether the
"N"th time interval or all time intervals for each time period are desired,
and the number of time periods. For this example problem, Equation (3-4)
yields
Number of Tables = NGROUP • ((24/IPERD) • ISW(7)
+ (12/IPERD) • ISW(8) + (8/IPEKD) • ISW(9)
+ (6/IPERD) • ISW(IO) 4- (4/IPERD) • ISW(ll)
+ (3/IPERD) • ISW(12) + (2/IPEBD) • ISW(13)
+ (1/IPERD) • ISW(14)) (C"4)
= 5• ((24) • 0 + (12) • 0 + (8) • 0 + (6) • 0
+ (4) • 0 + (3) • 0 + (2) • 0 + (1) • l)
= 5 tables
Note that because input parameter IPEKD has been set to "0", all terms of
the form (j/IPERD) reduce to (j). Hence, for all 10 days, 50 tables are
produced by this category. Again, Equation (3-3) yields 4 pages per table
for a total of 50 tables times 4 pages per table, or a total of 200 pages
for this output category.
Because ISW(17) equals "1", tables of the highest and second high-
est calculated 24-hour concentrations are produced for this example run.
According to Section 3.2.5.b the number of tables produced equals twice the
number of time periods (equals "1" for the one 24-hour averaging period) times
the number of source groups (equals "5" for this example run) for a total of
10 tables. The number of pages produced by each table is given by Equation
(3-5). Again, the number of pages produced per table depends on the recep-
C-21
-------
tor grid and number of discrete points. Substituting the same values used
in Equation (3-5) yields
, , , _ /NXPNTSX . /NYPNTS\ . /NXWYPT
Number of Pages - (,— T~) ("IT" ) + V~^
(C-5)
T) ' (is) + ("re
(4) • (1) + (1)
5 pages
Hence, the total number of pages produced by this category equals 10 tables
times 5 pages per table or 50 pages.
The final category of print output is the maximum 50 tables pro-
duced when ISW(18) equals "1", as it is in this case. The number of tables
produced equals the number of time periods desired (equals "1" for the one 24-
hour averaging period) times the number of source groups (equals "5" for
this case) for a total of 5 tables. Because each table produced by this
category is a maximum of one page, a total of 5 pages is produced by this
category.
By summing the number of pages generated for each applicable out-
put category, an estimate of the total number of pages printed for this
example run may be obtained. For ISW(6), ISW(15), ISW(16), ISW(17) and
ISW(18), the number of pages equals 19 plus 20 plus 200 plus 50 plus 5,
respectively, for a total of 294 pages printed for this problem run.
Because no output tape is generated (ISW(5) - "0"), the 294 page output
estimate represents the total program output for this problem run.
C.2.3 Output Format
Figures C-2 through C-8 illustrate the content and format of the
print output produced by this example run. Figures C-2 and C-3 are gener-
ated since ISW(6) equals "2" in this problem run. Figure C-3 is a listing
of one day of the ten days of hourly meteorological data. Because the pro-
C-22
-------
HYFOTHE T .'CUL POTASH PROCESSING PLRHT - C OH C f N TR H T I OM
n
I
NJ
U)
CALCULATE
RECEPTOR GRID SYSTEM ( RE C T A NC U L A R • 1 OR 3. POLAR=2 OR
DISCRETE RECEPTOR SYSTEM
TERRAIN ELEVATIONS ARE READ
CALCULATIONS ARE WRITTEN TO TAPE (YES=1.NO=0>
LIST ALL INPUT DATA ( NO* <• . VES = ! . ME T OwTA ALSO*2i
COMPUTE AVERAGE CONCENTRATION (OR TOTAL DEPOSITION)
yiTH THE FOLLOyiNC TIME PERIODS:
,NO=0 )
, N0=0 )
, N0=0 )
HOURLY (YES =
2-HouR •• Y E s =
3-HOUR (YES=
4-HOUR (YES*
6-HOUR (YES =
8-HOUR (YES=
,NO=0 )
,NO=0 )
12-HOUR ( YESM , N0«0 )
24-HOUR ( YES* 1 < MO'O)
PRINT 'M'-OAY TABLE(S) (YES<1.NO'0>
PRINT THE FOLLOyiHG TYPES OF TABLES UHOSE TIME PERIODS ARE
SPECIFIED BY ISy(7> THROUGH ISM
HIGHEST I SECOND HIGHEST TABLES ( YE S = 1 , N 0= 0 )
MAXIMUM 50 TABLES (YES=1,HO=0>
METEOROLOGICAL DATA INPUT METHOD < P RE -PR OC ES S ED » i , C A RD • 2 >
RU'RAL-URBAN OPTION ( RURAL=O, URBAN MODE i»i. URBAN MODE 2 = 2)
UIND PROFILE EXPONENT VA L UE S ( DE F A ULT S= I - USE R ENTERS-2,3)
VERTICAL POT TEMP. GRADIENT VALUES ( DEF AU LT S =• I . U S ER ENTERS°2.3)
SCALE EMISSION RATES FOR ALL SOURCES (NO=0,YES>0)
PROGRAM CALCULATES FINAL PLUME RISE ONLY < Y E S = 1 , H 0 = Z >
PROGRAM ADJUSTS ALL STOCK HEIGHTS FOR DOVNUASH ( Y E S« Z , N0= 1 )
NUMBER OF INPUT SOURCES
NUMBER OF SOURCE GROUPS (*0,ALL SOURCES)
TIME PERIOD INTERVAL TO BE PRINTED («0,ALL INTERVALS)
NUMBER OF X (RANGE) GRID VALUES
NUMBER OF Y (THETA) GRID VALUES
NUMBER OF DISCRETE RECEPTORS
SOURCE EMISSION RATE UNITS CONVERSION FACTOR
ENTRAPMENT COEFFICIENT FOR UNSTABLE ATMOSPHERE
ENTRAIHMENT COEFFICIENT FOR STABLE ATMOSPHERE
HEIGHT ABOVE GROUND AT WHICH UIND SPEED HAS MEASURED
LOGICAL UNIT NUMBER OF METEOROLOGICAL DATA
DECAY COEFFICIENT FOR PHYSICAL OR CHEMICAL DEPLETION
SURFACE STATION NO.
YEAR OF SURFACE DATA
UPPER A IR STAT I OH NO .
YEAR OF UPPER AIR DATA
ALLOCATED DATA STORAGE
REQUIRED DATA STORAGE FOR THIS PROBLEM RUN
i syi i )
I & U ( 2 >
I SX(3)
I Stf(4 )
I Stl(5 )
I SMii )
I SW( 7 )
I SW< 8 )
I SW( t )
I S W( 10 )
I SU( 11 )
I S W( 12 )
I S«< 13 )
I S W( 14 >
I S W( 15)
I SW< 16 >
SW< 1? >
SW( 18 )
S W< 19 )
S«< 20 )
S W( 21 )
SV( 22 )
SU< 23 )
SU( 24 )
S«( 23 )
HSOURC
NGROUP
IPERD
HXPNTS
HYPHTS
Nxy YPT
TK
BETA1
BETA2
ZR
IHET
DECAY
ISS
1SY
IUS
IUY
LIMIT
MIMIT
=
=
E
a
=
E
S
S
S
E
S
E
E
S
S
_
E
-
E
E
B
=
=
=
S
E
E
E
E
E
fi
=
E
*
E
E
}
1
2
0
0
2
0
0
0
0
0
0
0
1
1
r
!
1
1
0
1
1
0
2
1
16
3
0
1 9
19
«4
. 1 0000
. 600
. 600
1 0 00
9
• or
METERS
E 000000
E
E
E.
E
S
S
14913
64
14918
64
43500
18211
yORDS
VORDS
FIGURE C-2. Listing of the input data for the hypothetical potash processing plant concentration
run.
-------
i
to
•«• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION -- •••
••• METEOROLOGICAL DAYS TO BE PROCESSED •••
(I F = I ') '
1000000
0000100
000
0
0 1 0
**• NUMBER OF SOURCE NUMBERS REQUIRED TO DEFINE SOURCE CROUPS •••
(NSOCRP)
1, 2. 2, 1. * 2,
••• SOURCE NUMBERS DEFINING SOURCE CROUPS •••
( IDSOR )
1, 2, -11, 12, -15. It, 1, -16,
«•• UPPER BOUND OF FIRST THROUGH FIFTH MIND SPEED CATEGORIES •»»
(METERS/SEC)
1.54, 3.09, 5.14, 8.23, 10.80,
O
••» WIND PROFILE EXPONENTS •••
STABILITY WIND SPEED CATEGORY
CATEGORY 12 3 4 5 6
A .10000+00 .10000*00 .10000*00 .10000+00 .10000*00 .10000+00
B .15000+00 .15000+00 .15000+00 .15000+00 .15000*00 .15000*00
C .20000+00 .20000+00 .20000+00 .20000+00 .20000+00 20000+00
D .25000*00 .25000*00 .25000+00 .25000+00 .25000+00 .25000+00
E .30000+00 .30000+00 .30000+00 .30000+00 .30000+00 .30000+00
F .30000+00 .30000+00 .30000+00 .30000+00 .30000+00 .30000+00
FIGURE C-2. (Continued)
-------
• ** -- HYPOTHETICAL POTASH PROCESSING PLANT - COHCEHTRATI ON
*»• VERTICAL POTENTIAL TEMPERATURE GRADIENTS »••
(DECREES KELVIN PER METER)
O
KJ
Ln
STABILITY
CATEGORY
A
8
C
D
E
F
-3000 .0,
200 .0,
-3000 .0 ,
200 .0 .
( 555.0,
( 860.0,
( 935.0,
( 1075.0,
( 855.0,
( 355. 0,
< 345. 0,
( 450. 0,
( 620.0.
( 755.0,
( 690.0,
( 645.0,
( 410.0,
-2000
400
-2000
400
317
331
356
21
43
56
106
146
171
196
221
246
271
0,
0,
0,
0,
0),
0),
0 >,
0),
0) .
0),
0) .
0),
0),
0),
0) ,
0),
0) ,
WIND SPEED CATEGORY
1234
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.20000-01 .20000-01 .20000-01 .20000-01
.35000-01 .35000-01 .35000-01 .35000-01
••* X-COORO IHATES OF RECTANGULAR GRID SYSTEM ••*
-1500 .0,
600 .0,
-1 500 .0,
600 .0,
( 620
( 900
( 910
( 1075
( 755
( 355
( 335
( 480
( 665
< 755
( 690
( 615
( 365
-1250. 0
800. 0
«•• Y-
-1250.0
800. 0
•»» RANGE
0, 318
0, 336
1
26
45
66
116
151
176
201
0, 226
0, 251
0, 276
t
•
(METERS)
-1000 . 0, -800.0, -600
1000.0, 1250.0, 1500
COORDINATES OF RECTANGULAR GRID
t
'
(METERS)
-1000 .0, -800 .0 , -600
1000 . 0, 1250 .0, 1500
,THETA COORDINATES OF DISCRETE
. 0 >
.0 >
.0 )
. 0 )
0 )
. 0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
(METERS, DEGREES )
( 685 . 0, 320 .0), (
( 920 .0, 3410), (
( 950 .0, 6.0), (
( 1045 . 0, 31.0), (
( 620 . 0, 47.0), C
( 355 .0, 76 . 0 ). (
, < 325.0, 126.0), <
< 505 . 0, 156 . 0) , <
( 705 .0, 181.0), (
, ( 745.0, 206.0), (
, < 690 0, 231.0), (
, ( 575.0, 256.0), <
, ( 365.0, 286.0), (
. 0, -400 .0
.0, 2000.0
SYSTEM •••
0, -400 .0
. 0, 2000 .0
RECEPTORS •»•
735.0,
940 . 0,
1015.0,
995.0,
525. 0,
355. 0,
380. 0,
535. 0,
730. 0,
730. 0,
680. 0,
530. 0,
410.0.
5
00000
00000
00000
ooooo
20000-il
35000-01
t
•
,
'
322
346
1 1
36
49
86
136
161
186
21 1
236
261
296
-200 . 0,
3i>00. 0,
-200.0,
3000. 0,
0 ), (
0 ). (
0 ). <
0 ), (
0 ), <
0 ), (
0 ), (
0 ). (
0 ), (
0 ). (
0 ), (
0 ), (
0 ), (
6
. OOOOO
.00000
.00000
. ooooo
.20000-01
. 35000-01
. 0,
*
. 0,
800 .0,
940 .0,
1055 . 0 ,
910.0,
460 . 0.,»
350 .0,
420 .0,
575 .0,
745.0,
705 .0 ,
665 .0 .
475 .0 .
326 .0 )
351.0)
160)
41 .0 )
51.0)
96 .0 )
141 .0 >
166 0 >
191.0)
2160)
241.0)
266 .0 )
FIGURE O2: (Continued1
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATIOH -- •••
••* SOURCE DATA ••*
O
EMISSION RATE TEHP. EXIT VEL.
TYPE«0,1 TYPE»0 TYPE-0
T V (CRAMS/SEC) (OEG.K) (N/SEC) BLOC. SLOG. ILDG.
Y A HUHIER TYPE-2 BASE VERT.OIH HORZ.DIM DIAMETER HEIGHT LENGTH WIDTH
SOURCE P K PART. (GRAMS/SEC) X Y ELEV. HEIGHT TYPE*! TYPE-1.2 TYPE-0 TYPE-0 TYPE-0 TYPE-0
HUHBEK E E CATS. »PER HITER*»2 (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS)
1 2 «
2
3
4
S
f
7
B
t
10
II
12
13
14
19
0
If 0
.10000*00 -13.3 -13.3 .0 10.00 .00 24 40 . «« .00 .00 .00
.13000*00 2*.
.13000*00 30.
.11000*00 40.
.13000*00 4*.
.13000+00 St.
.13000*00 «f.
.13000*00 7*.
.13000*00 |».
.1)000*00 99.
.13000*00 10*.
.2*300*01 121.
.24300*01 144.
.2*300+01 147.
.2(300*01 1*0.
.0 .0 .*0
« .50000*01 201 .0
2. tO
4.30
(.10
7. SO
f .(0
11 .30
13.00
14.80
14. JO
.00 4.70 .00 .00 .00 .00
.00 4.70 00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
.00 4.70 .00 .00 .00 .00
22.90 11. CO 10. BO .00' .00 .00 .00
22.90 11.40 10. BO .00 .00 .00 .00
22.90 11 40 10. BO .00 .00 .00 .00
22. SO 11. «0 10.80 .00 .00 .00 .00
90.00 340.00 B.OO 1.00 29.09 90.00 90.00
FIGURE C-2. (Continued)
-------
••• -- HYPOTHETIC«L POTASH PROCESSING PLCN1
CONCENTRftT!ON
«•« SOURCE PART ICULflTE DATfc *••
• •• SOURCE NUI1BER =
1 «•»
n
-j
HASS FRACTION =
.10000, 40000, 28000. .12000,
SETTLING VELOC1TYCHETERS/SEC> =
.0010, .00?0 . 0190 , .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, 65000,
••• SOURCE NUMBER =
2 •«•
HASS FRACTION =
.10000, 40000, .28000, .12000,
SETTLING VELOCI TY< HETERS/SEC ) =
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, 82000, 72000, .65000,
»«• SOURCE NUMBER =
3 «»»
HASS FRACTION ;
.10000, 40000, 28000, .12000,
SETTLING VELOCI TY( HETERS/SEC ) =
.0010. 0070, 0190. .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, 82000, .72000, .65000,
.06000,
.0610,
59000,
.06000,
.0610,
59000,
.06000,
0610.
59000,
.04000,
.0990,
.50000,
.04000,
. 0990,
.50000,
.04000,
.0990 ,
.50000 ,
FIGURE C-2. (.Continued)
-------
• •• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION
**• SOURCE PARTICULATE DATA •••
••* SOURCE NUMBER -
4 •••
MASS FRACTIOH -
.10000, .40000, .28000. .12000, 06000. .04000,
SETTLING VELOCITYmTERS/SEC > »
.0010, .0070, .0190, .0370. .0610, .0990,
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, 63000,
.59000,
.50000,
*•* SOURCE NUMBER
5 *••
O
ro
oo
MASS FRACTION =
.10000, .40000, .28000, .12000,
SETTLING VELOCimMETERS/SEC > =
. 00 10, . 0070 , .0190 , . 0370,
SURFACE REFLECTION COEFFICIENT =
1 00000, .82000, .72000, .65000,
*•* SOURCE NUMBER =
MASS FRACTION =
6 *>•
SETTLING VELOCI TY( METE R S/'SEC ) •
00 10, .0070, .0190 . . 0370,
.06000, .04000,
.0610,
.59000,
.10000, 40000, 28000, .12000, .06000,
.0610,
.0990,
.50000,
.04000,
0990,
SURFACE REFLECTION COEFFICIENT =
1.00000. 82000. .7200O, .65000,
.59000,
50000,
FIGURE C-2. (Continued)
-------
*»* -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION
- - * • *
«•• SOURCE PBRTICULATE DATA «•«
O
I
NJ
• *• SOURCE NUH8ER =
7 »••
MASS FRACTION =
.10000, 40000, .28090. .12000,
SETTLING VELOCITY =
.0010- .0070, .0190. .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, .63000,
««• SOURCE NUMBER
8 •••
MASS FRACTION =
.10000, .40000, .28000, .12000,
SETTLING VELOCITY "
0010. .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT *
1.00000, .82000, .72000, .65000,
••« SOURCE NUHBER -
9 »••
.06000,
.0610,
.59000,
.06000,
.0610,
.59000,
.04000,
.0990,
. 50000 ,
.04000,
.0990,
.50000,
HASS FRACTION =
.10000, .40000, .28000, .12000, .06000, .04060.
SETTLING VELOCITYCHETERS/SEC) =
.0010, .0070, .0190, .0370, .0610. .0990.
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, .65000, .59000, .50000,
FIGURE C-2. (.Continued)
-------
U>
o
• •• -- HYPOTHETICAL POTftSH PROCESSING PLANT - CONCEHTRftTI ON
«•« SOURCE PARTICULATE DATA «•*
*•• SOURCE NUMBER =
10 •»«
MASS FRACTION *
.10000. . 40000/
.26000 ,
.12000. .06000, .04000,
SETTLING VELOCITY(NETERS/SEC) *
.0010, .0070, 0190. .0370,
SURFACE REFLECTION COEFFICIENT *
1.00000, .82000, .72000, .65000.
*•* SOURCE NUMBER
11 •«•
MASS FRACTION •=
.10000, .40000, .28000, .12000,
SETTLING VELOC1TY(HETERS/SEC> •
.0010, .0070, .0190. .0370,
SURFACE REFLECTION COEFFICIENT <
.0610,
.39000,
.06000,
.0610,
.0990,
.50000,
.04000,
.0990,
1.00000, .82000,
72000, .65000, .39000, .50000,
FIGURE C-2. (Continued)
-------
«•• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION -- »••
• SOURCE EMISSION RATE SCALARS UH1CH VARY FOR EACH HOUR OF THE DAY «
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
SOURCE NO. • t
1 .10000*01 2 .10000*01 3 .10000*01 4 .10000*01 3 .10000*01 6 .10000*01
7 .10000*01 8 .30000*01 » .30000*01 10 .30000*01 II .30000*01 12 .30000*01
13 .30000*01 14 .30000*01 13 .30000*01 16 .10000*01 17 .10000*01 18 .10000*01
If .10000*01 20 .10000*01 21 .10000*01 22 .10000*01 23 .10000*01 24 .10000*01
FIGURE C-2. (Continued)
-------
NET. DATA
DRY 31
HYPOTHETICAL POTASH PROCESSING PLAHT - COMCEHTRATIOH -- •••
• METEOROLOGICAL DATA FOR DAY 91 •
n
u>
NS
RANDOM
FLOH FLO* HIHD NIXING INPUT ADJUSTED
VECTOR VECTOR SPEED HEIGHT TEHP . STANILITY STABILITY
HOUR (DEGREES) (DEGREES) (HPS) (METERS) (DEG. K> CATEGORY CATEGORY
t 1*0
2 1*0
3 ISO.
4 ISO.
9 130.
( 140.
7 190.
8 130.
> 1*0.
10 1*0.
11 170.
12 1«0.
13 130.
14 1*0.
19 130.
1C 130.
17 ICO.
18 1*0
19 1*0.
20 1*0.
21 1«0.
22 1*0
23 130.
24 1*0
198.0
1*3.
194.
191.
148.
143.
192.
199.
1*2.
197.
173.
1(2.
148.
1*0.
194.
14*.
198.
197.
1(9.
1*1.
1(9.
19*.
14(.
1(0.
.14 7(1.2 2(1.9 4
.(0 7(4.2 2(0.
.(0 7(7.2 239.
.(3 770.2 298.
.(* 773.
.17 77*.
.17 77>.
.(( 782.
.(3 789.
.14 788.
.14 7»1.
.17 794.
.(3 797.
.(9 800.
.17 800.
.(9 800.
.17 8*0.
.12 802.
298.
297.
237.
297.
29*.
298.
2*0.
2*2.
2(3.
2(4.
2(4.
2(9.
2(4.
2(3.
.(0 8*9.9 2(2.
.(3 81* 1 2(0.
.14 822.7 299.
.*0 829.3 299.
9
9
9
4
4
4
4
3
4
4
4
3
4
4
4
4
9
9
9
9
9
.12 839.9 298.7 9
S it 842.9 298.1 4
FIGURE C-3.
Listing of one day of hourly meteorological data used for the hypothetical
potash processing plant concentration run.
-------
»,* — HYPOTHETICAL POTASH PROCESSING PLAN! - CONCENTRATION — *»*
* SOURCE-REC£PTOR CO'lINATlONS LESS THAN 100 VETERS O1* THREE BUILDING
HEIGHTS IN DISTANCE. NO AVERAGE CONCENTRATION IS CALCULATED »
RECEPTOR LOCATION
O
U>
OJ
SOURCE
NUMBER
1
2
3
4
5
6
7
6
9
10
10
11
11
12
12
13
1»
15
16
X Y (METERS)
OR RANGE OP DIRECTION
(METERS) (OEGPEES)
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
200.0
.0
aoo.n
.0
200.0
200.0
200.0
200.0
200.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
DISTANCE
BETAKEN
(XETFRS)
-15.01
9.90
19.90
2-3.90
38.SO
<*a.go
53.90
60.90
7a.90
e
-------
DAILY: 31
24-HR/PD 1
SCROUPI 3
••• -- HYPOTHETICAL POTASH PROCESSING PLAHT - COHCEHTRATIOH
0 •*
o
I
* DAILY 24-HOUR AVERAGE CONCENTRATION
• ENDING KITH HOUR 24 FOR DAY 9! •
• FROH SOURCES: 12, -IS,
• FOR THE RECEPTOR GRID •
• HAXIHUN VALUE EQUALS
2«3. JH74 AND OCCURRED AT (
200.0.
-200.0) •
Y-AXIS /
(METERS) /
3000.0 t
2000. 0 /
1500.0 /
1230.
1000.
800.
too.
400
200.
-200.
-400.
t
t
/
f
/
t
/
/
t
-too.o /
-800.0 /
-1000. 0 /
-1230.0 /
-1300.0 f
-2000.0 /
-3000.0 /
-3000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-2000.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-1500.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
X-AXIS
-1230.0
.00000
. 00000
.00000
.00000
. 00000
. 00000
.00000
.00000
.00000
. 00000
. 00000
. 00000
. 00000
.00000
.00000
. 00000
. 00000
.00000
. 00000
(HETERS)
1000.0
.00000
. 00000
. 00000
.00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
.00000
.00000
.00000
. 00000
. 00000
. 00000
-800.0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
-too .0
.00000
.00000
00000
.00000
00000
.00000
.00000
00000
.00000
.00000
.00000
00000
.00000
.00000
.00000
~ .00000
.00000
.00000
.00000
-400 .0
.00000
.00000
. 00000
.00000
.00000
. 00000
.00000.
.00000
. 00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
00000
. 00000
. 00001
-200.0
. 00000
. 00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
.00000
. 00000
. 00001
.ooou
.00133
FIGURE C-5.
Listing of the table of 24-hour average concentration values computed on day 51 from
Sources 12 to 15 by the hypothetical potash processing plant concentration run.
-------
•*• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION
DAILY: 31
24-HR/PD 1
SCROUPt 3
O
I
Ln
* DAILY 24-HOUR AVERAGE CONCENTRATIOH
-------
DAILY: 31
24-HR/PD 1
SSROUPI 3
• •• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCEHTRATI OH -- •••
Y-AXIS
(METERS)
• DAILY 24-HOUR AVEtACE COHCEKTRATIOH ( RICROCRAHS/CUB1C HETER>
• ENDING WITH HOUR 24 FOR DAY 31 •
• FROR SOURCES: 12. -IS.
• FOR THE RECEPTOR GRID •
• RAXINUfl VALUE EQUALS
3000. 0
203.91*74 AND OCCURRED AT (
X-AXIS (NETERS)
200 0,
-200 0 > •
O
I
o\
3000.0 /
2000.0 /
1300 0 /
1230 0 /
1000.0 /
800.0 /
609
400.
200.
-200.
-400.
-(00.0 /
-800.0 /
-1000.0 /
-1230 0 /
-1300.0 /
-2000.0 /
-3000.0 /
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00002
21303
FIGURE C-5. (Continued)
-------
• •* -- HYPOTHETICAL POTASH PROCESSING PLAMT - CONCENTRATION
DAILY 24-HOUR AVERAGE COHC EHTRATI OM < It I CROGRANS/CUB 1C DETER)
• ENDING WITH HOUR 24 FOR DAY 51 *
• FROM SOURCES! 12. -13.
• FOR THE DISCRETE RECEPTOR POINTS *
DAILY: 31
24-HR/PD t
SGROUPI 3
- RHG -
O
I
Co
- OIR -
CON .
- RHG -
- DIR -
CON.
- RNC -
- DIR -
CON.
555
733
900
940
950
1075
995
755
460
355
345
380
480
573
705
755
730
£90
£65
375
4 10
410
0
0
0
0
0
o
o
0
o
o
0
o
0
o
0
0
0
0
0
0
0
0
317
322
334
351
t
21
3t
43
31
7i
tot
m
131
lit
181
196
211
226
241
25*
271
296
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.74947
2(1 41783
77 .02(38
3 52424
.00185
.00000
.00000
.00000
.00000
.00000
.00000
.00000
(20.
800
»20.<
935.
1015. <
1073.
910.
(20.
333.
333.
333.
420.
303.
(20.
730.
733.
703.
690.
(43.
530. <
3(5. (
> 318.
> 324
> 341
> 334
> 11 .
26
41 .
47.
54
84.
1 14.
141 .
134
171 .
186
201 .
216
231 .
24*
) 2(1 .
> 274.
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
61 . 4662*
213.7(877
29. 7*18*
.71228
.00001
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
(85
8(0
940
*10 .
1033.
1045
855.
325
355
350.
323
450
335.
(63
745.
745.
(90.
(80 .
(13.
473.
365
9 320
) 331
> 344
) 1
» 14
) 31
> 43
» 49
) 6(
» 9(
> 12*
> 144
) 1(1
> 174
) 191
> 206
> 221
> 234
) 251
> . 266
) 286
0
0
0
0
0
. 00000
. . 00000
.00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
. 00006
270. 49908
144.44760
10.37386
. 0(247
.00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
FIGURE C-5. (Continued)
-------
HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION
•H'-DAY
10 DAYS
SCROUPI 2
n
GJ
oo
10-DAY AVERAGE CONCENTRATION (HICROGRANS/CU8IC HETER )
« FRON SOURCES' 2. -11.
• FOR THE RECEPTOR GRID •
Y-AXIS /
(METERS) /
3000
2000
1500
1250
1000
800
400
400
200
-200
-400
-400
-800
-1000
-1250
-1500
-2000
-3000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/
t
t
1
/
/
t
/
f
/
t
t
t
t
t
t
/
/
-3000.0
.0037*
.30353
.42209
.50142
.43380
.43771
.72732
.41007
.28043
.20279
.12277
.04033
.00404
.00039
.00001
.00000
.00000
.00000
.00000
HAXINUN VALUE
-2000 .0
.13394
.01042
.31490
t .18313
.81370
1 .04125
t .25934
t .39884
.77120
.39000
.13413
.01304
.00028
.00000
.00000
.00000
.00000
.00000
.00000
EBUALS
-1300.0
.08312
.08744
.02203
.27417
.40*11
.34827
.4**07
.*8243
.80548
.41442
. 14332
.002*4
.00001
.00000
.00000
.00000
.00000
.00000
.00000
If. 33844 AND OCCURRED AT (
X-AXIS (METERS)
-1230.0 -1000.0
.01310
.30038
.024*0
.03400
.48328
2.44303
1.72134
2.43202
2.88134
.82080
. 11440
.00038
.00000
. 00000
. 00000
.00000
.00000
.00000
.00000
. 00049
. 184*8
.33072
.04412
.04704
1 . 118*1
3.47227
3.24372
4.138*7
1 . 13*74
.07122
.00004
.00000
. 00000
. 00000
. 00000
.00000
.00000
.00023
200.0.
-800.0
.00004
.025*3
.42844
.53477
.08307
.12821
2.13072
3.34341
3.34441
1 .43148
.030*2
.00000
.00000
.00000
.00000
.00000
.00000
.00001
.00355
200.0 ) •
-400 .0
.00000
.00087
.04253
3*810
.89514
.24350
30923
7.24782
8.13958
2 42001
.00544
00000
.00000
.00000
.00000
.00000
.00002
.00154
.02272
-400 .0
. 00000
.00001
.00088
.01314
.22028
1 . 11938
.90824
1 14243
11 . 19211
4 83777
. 00012
.00000
. 00000
.04000
.00005
.00113
.00448
.03177
.08482
-200 .0
. 00000
. 00000
. 00000
. 00003
.00045
. 01404
.40827
3: 12428
8.17102
12.4*825
.00000
. 00000
.00174
.01884
.05445
. 11424
. 17534
.257*1
27111
FIGURE C-6.
Listing of the table of the 10-day average concentration values computed from Sources
2 to 11 by the hypothetical potash processing plant concentration run.
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - COHCEHTRATtON
•N'-DAY
10 DAYS
S6ROUPI 2
O
OJ
VO
10-DAY AVERACE CONCENTRATION ( HI CROGRANS/CUB'l C NETER)
• FROM SOURCES! 2. -11.
• FOR THE RECEPTOR CRID *
* NAXIHUH VALUE EQUALS
19.336(4 AND OCCURRED AT <
200.0.
200 .0 ) •
Y-AXIS /
(DETERS) /
3000
2000
1500.
1230
1000.
800.
600.
400.
200.
-200.
-400.
-600.
-800.
-1000.
-1250.
-1500.
-2000.
-3000.
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 /
0 t
0 /
0 /
4
4
3
2
1
1
1
. 0
.00021
.00040
.00060
00076
.00099
.00126
.00176
.00402
.71724
.00000
.88986
.07129
.17418
.47149
.95317
.50975
. 19636
.80311
.44829
1
2
3
4
19
2
6
9
6
4
3
2
I
200.0
.00917
.04783
.1728*
.40380
.028*4
.0*478
.37712
.96265
.33864
.23411
.00037
.94799
.50573
.48760
.36499
.22100
.43846
.71417
.33716
1
1
2
)
9
(
1
2
3
2
2
1
1
400 .0
.08463
.50843
.95553
.03341
.98524
.84034
.81676
15645
47573
.89796
.53752
.29573
32979
16556
45173
.02463
39329
09354
.37389
X-AXIS (METERS)
600.0 800.0
1 .
1 .
5.
3.
1 .
2.
2.
1 .
t .
1 .
. 29060
50412
50400
95639
25437
80974
20137
65779
96576
50499
32495
17407
33008
82303
14723
(1413
18727
974*3
52389
1
3
4 .
2
1
2
1
.31158
.33497
.71484
.82036
.(0237
.30140
28234
.73391
81070
3227*
44024
35888
((9(5
31914
42571
3*47*
84438
72393
4(29*
1000.0
1
2
3
2
1
1
1
1
1
.14985
.47071
.(0200
.17887
.2901*
.54549
.52672
.30902
.21092
.22445
.16242
27223
.0(957
0*12*
.21(29
.27515
.355(8
.64182
.45793
1250.0
.216(5
37844
1 .07729
1 57224
2 .31409
1 (9871
1 03737
39109
.7(032
.15854
04340
48513
1 .35741
52405
78602
14752
.15793
.24998
39972
1500.0
. 244(3
.45311
1 . 15517
1.93075
1 .22928
1 . 05281
.42806
.57876
.67270
. 11860
.01265
.21711
.57672
.82813
.30004
.47657
10812
. 15264
30418
2000 .0
. 19389
.71405
.68717
.76791
.4553*
.37186
. 15742
.304*8
.2*480
.07492
.00350
.04122
. 17569
.334*2
.42977
. 31534
.32429
06628
10*50
FIGURE C-6. (Continued)
-------
10 DAYS
SCROUPI 2
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION -- •«»
Y-AXIS
( METERS)
10-OAY AVERAGE CONCENTRATION ( HICROCRANS/CUBIC METER)
* FROM SOURCES: 2. -11.
• FOR THE RECEPTOR CRID •
• HAXIIIUH VALUE EQUALS
It.338*4 AND OCCURRED AT (
X-AXIS (METERS)
200.0.
200.0) •
3000.0
O
I
3000.0
2000.0
1500.0
1250.0
1000.0
800. 0
(00. 0
400. 0
200. 0
. 0
-200.0
-400.0
-coo.o
-800.0
- 1000.0
-1250.0
-1500
-2000
0 /
0 /
-3000. 0
.3*482
.3*tl2
.21302
.1*483
.08013
.1*304
.13382
.218*2
.03774
.03*(2
.00487
.00221
.017*0
.03***
.10807
.181*0
.333(2
.0*037
.0331*
FIGURE C-6. (Continued)
-------
•»* -- HYPOTHETICAL POTASH PROCESSING PLANT - COHCENTRATIOH -- •••
•H'-DAY
10 DAYS
SGROUPt 2
- RHG -
- D1R -
10-DAY AVERAGE CONCENTRATION < HICROGRANS/CUB1C METER)
• FRO* SOURCES' 2, -11,
• FOR THE DISCRETE RECEPTOR POINTS *
CON.
- RNG -
- DIR -
CON.
- RNG -
- DIR -
n
i
CON.
555. 0
735. 0
900. 0
940. 0
950.0
1075 0
995 . 0
755.0
460. 0
355. 0
341. 0
380. 0
480 0
575.0
705 0
755.0
730. 0
(90. 0
tts o
575 0
410.0
410.0
317.0
322.0
334.0
351 .0
(.0
21 .0
36 .0
43.0
51 .0
7«.0
10* .0
134.0
151.0
1(4 .0
181 .0
196.0
211.0
226.0
241 .0
256 .0
271 .0
296.0
1
1
6
17
4
5
3
8
7
2
5
12
64430
22230
70*25
00022
.10125
014S9
71214
196(3
120K
82890
86115
38442
18763
71SS2
33030
00487
00000
00000
00000
08683
16094
96254
620.
800.
920.
935.
1015.
1075.
910.
620.
355.
355.
335.
420.
505.
620.
730.
755.
705.
690.
645.
330.
365. <
318.
324.
341 .
336
11 .
24.
41 .
47.
36.
84.
1 14.
141 .
136.
171 .
196.
201 .
214.
231 .
246.
261 .
> 276. <
1
3
9
20
2
9
4
8
3
> 11
32131
76835
11470
00001
94628
38512
5284*
21869
77974
93978
52768
46995
31923
87146
59311
00018
00000
00000
00009
67749
20536
685.
860.
940 .
910.
1055.
1045.
833.
323.
333.
350.
325.
430.
333.
665
745.
745.
690.
680
613.
473. <
365 (
320.
331.
346.
I .
16.
31.
43.
49.
(6.
96.
126.
146.
161 .
176.
191 .
206.
221.
236.
231 .
> 266.
) 286.
1
I
1
4
13
10
6
6
8
4
2
18
17095
36164
00646
00291
71317
50867
66738
27804
67538
43671
37453
35272
48276
33245
08491
00000
00000
00000
00423
3(500
16617
FIGURE C-6. (Continued)
-------
••» -- HYPOTHETICAL POTASH PROCESSIHC PLAMT - COHCENTRATIOH -- ••*
HIGH
24-HR
SCROUPt
n
I
r-o
• HIGHEST 24-HOUR AVERAGE COHCENTRAT I OH (M ICROCRAHS/CUBIC METER)
* FROM SOURCES: I,
• FOR THE RECEPTOR GRID •
• MAXIMUM VALUE E8UALS 2*237.33*84 AMD OCCURRED AT (
. 0.
-200.0 ) •
Y-AXIS / X-AXIS (METERS)
(METERS) / -3000.0 -2000.0 -1SOO.O -1250.0 -tOOO.O
3000 0 / 7 .01088 ( 187.
2000 0 f 2(2.92*81 (187.
1500 0 / 281 »*170 (303.
1250. 0 / 324 .£4(82 (305.
1000 0 / 373 . 3it42 (305.
800 0 / 3*3.370*8 (2(2.
600 0 / 385 3(480 (2(2.
400. 0 / 26* . 97473 (2(2.
200 0 / 223,80037 (2*2,
0 / 247.35113 (2(2,
-200 0 / 1*4 . 0*2*3 (2(2,
-400 0 / (1 .45128 (2(2,
-600 0 / ( .32830 (2(2.
-800 0 / .2(8*1 (2(2,
-1000. 0 / . 003*( (2(2,
-1230 0 / .00002 ( 187.
-1500.0 t .00000 ( 187.
-2000. 0 / .00000 ( 187.
-3000. 0 / .00000 (337.
) 78.74439 (305. 1) 18.804*2 (303.
) 14.3*849 (187, 1) 73.82428 (303.
) 240. ((t(8 (187, 1) 2*.7*0i( (187.
) 43S.S(**9 (187. 1) 134.8*873 (187.
) 3(4.733*4 (303. 1) 802.14337 (187.
1 (73.95557 (305. 1) 1070.54025 (205.
) (18.38744 (303. 1) 1082.337*8 (303.
t 744. (0333 (2(2, 1) 11*0.02313 (2(2,
4(8.32584 (2(2, 1) 8(1.277(8
477.7859* (2(2. 1) 739.00874
244.31430 (2(2. 1) 209. (0483
14.28438 2(2, 1) 1 . (((52
.123(4 2(2, 1) .00073
0002* 187, 1) .00000
.00000 187, 1) .00000
.00000 187, 1) .00000
.00000 (187, 1) .00000
.00000 (337, 1) .00000
2(2.
2(2.
2(2,
2(2.
187,
187,
187,
187,
337.
337,
.00000 (337, 1) .00005 (337,
) 2. ((758 (205.
) 153. (3390 (305,
) 31.7(500 (187,
) 43.37530 (187,
1 283. (0898 (187,
) 1044 7373* (187,
1 1233. 12*47 (305,
) 1434 414*2 (305,
1 1330. ((57* (2(2,
1015.25744 (2(2,
14t.*52(2 (2(2,
.150*3 (2(2,
.00003 (187,
.00000 (187,
.00000 (187,
.00000 (337.
.00000 (337,
.00000 (337,
.01387 (337,
22306 (187.
38 32444 (303,
236 79732 (305,
70 . 12573 (303,
(8.4*780 ( 187,
425 15841 (187,
) 18(1 97388 (205,
) 2083.11252 (305.
) 22(4. 69487 (262.
> 1444 .61826 (262.
> 67.56431 (262/
) .002*3 (187.
y .00000 (187.
) . 00000 ( 187.
) .00000 (337.
) .00000 (337.
) .00000 (337,
^' .00021 (337,
) 1 .32173 (337,
)
)
)
)
)
)
)
)
)
)
y
)
)
)
)
)
)
)
)
FIGURE C-7. Listing of the table of the highest average concentration values computed at each recep-
tor from Source 1 by the hypothetical potash processing plant concentration run.
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - COHCEHTRATIOH -- ••*
HIGHEST 24-HOUR AVERACE COHCEHTRATIOM (KICROCRAHS/CUBlC HETER)
* FROM SOURCES: 1.
• FOR THE RECEPTOR GRID *
-200.0 ) •
HIGH
24-HR
SGROUPI
O
->
UJ
Y-flXIS t
(HETERS) /
3000 0 /
2000 0 /
1500 0 t
12500 t
1000.0 /
800 0 /
600 0 /
400 0 /
2000 /
. 0 /
-200.0 /
-400 0 /
-6000 t
-800 . 0 /
- 1000 0 /
-1250.0 /
- 1500 0 /
-2000. 0 t
-3000 0 f
3
1 18
32)
103
107
1 164
2584
3417
2113
It
20
-800.0
02187 (187, 1)
(4313 (205, 1)
39290 (305. 1) t
S8170 (305, 1) S3
8(832 (305, 1> 427
9008* ( 187, 1) 331
9597( (187,
00337 (303,
10674 (2(2.
19328 (2(2,
72914 (2(2,
»000( (187,
00000 ( 187,
00000 (337,
00000 (337,
00000 (337,
0000( (337,
1 192
•> 3429
) 3034
) 3410
)
>
)
)
)
)
)
12187 (337, 1) 12
03(40 (337, 1) 98
-(00 . 0
00103 ( 187, 1 )
239(9 (187, 1)
3(493 (209,
75400 (203,
40199 (305,
477(3 (305,
(1037 ( 187,
((122 ( 187,
82111 (303,
(84(9 (2(2,
(5443 (2(2,
00000 (187,
00000 (337,
00000 (337,
00000 (337,
00420 (337,
24976 (337,
00114 ( 337,
79222 (337,
)
1 1
•> is
) 188
) 999
) 431
> 82(1
) (411
)
13
34
1(0
227
X-AXI
00002
00440
17455
30348
05959
706(8
93413
43(83
22119
0(494
oooeo
00000
00000
00(20
718B2
4(043
82798
56031
32941
S (HETERS)
-400. 0
(187,
(187,
< 187,
(187,
( 187 ,
( 303,
( 303,
(187.
(303.
(2(2.
(167,
(337,
<337,
(337,
(337.
(337,
( 337,
( 337 .
(337,
)
)
>
)
)
>
) 12
> 396
> 1(18
> 14(24
>
)
) 41
) 230
> 442
) 337
> 589
> 549
) 396
-200. 0
00140 (289,
00018 (289,
00037 (187,
00314 (187.
04380 (187,
37(78 (187,
40346 (187,
S7S19 (305,
(11(8 (187,
32703 (2(2,
00000 (337,
08076 (337,
9(4(7 (337,
8(494 (337,
)
> 1
> 2
) 3
) 3
) 8
> 16
) 40
) 159
)
> 29237
> 12556
) (7(1
> 4217
102(7 (337, 1 > 2898
08878 (337, 1 > 2017
01745 (337, 1 ) 1501
(2419 (337, 1 > 949
21886 (337, 1 > 513
.0 *?
39458 (289, 1 )
03276 (289, 1 >
02372 (289, 1 )
070S5 (289. ! >
071(4 (289, 1 )
509(2 (289. 1 >
3771 1 (289. 1 )
20404 (289. 1 )
(2988 (289, 1 )
00000 ( 0. 0)
33984 (337, 1 )
48901 ( 337, 1 )
(38(7 (337, 1 )
972(0 (337, 1 )
(3292 (337, 1 )
04434 (337, 1 )
84814 (337, 1 )
(4354 (337, I )
20028 (337, 1 )
FIGURE C-7. (Continued)
-------
»»• .- HYPOTHETICAL POTASH PROCESSING PLAMT - COHCEHTRATIOH -- •••
« HICHEST 24-HOUR AVERACE COHCEHTRATI OH (40
> 535
) 1213
) 2495
) 2(78
> 5(31
) S105
> 491
> 7997
> 1015
> 1210
> 2395
) 2078
) 119(
> (54
> 524
> (11
400.0
99378 (299,
23549 (289,
51051 (289,
10152 (289,
19184 (289,
05020 <289,
74228 (312,
48242 (312,
1(809 (299,
208
279
(31
1212
133*
2(30
2905
3(01
> 534
45845 (229, 1) 293
71472 (229, 1) 2S84
8(870 (229, 1) 17(1
95793 ( St. 1) 491
10950 ( 51. 1) 3*9
45715 ( 51. 1) 773
73(47 ( 51. 1) 1293
31*44 (337. 1) 1084
(5175 (337. 1) 507
11151 (337. 1) 2(5
X-AXIS (METERS)
(00. 0
1(702 (28*.
99178 (289,
27454 (289,
21214 (289,
18518 (289,
(3773 (312,
20343 (312,
52902 (299,
33291 (299,
93(80 (229,
90(71 (229,
94778 (229.
51054 (229,
74553 ( 51,
98990 ( 51,
01970 ( 51.
91153 ( 51.
92515 ( 51,
07733 (337.
> 210. 701 17
> 395.55(15
) 900.32335
) 7(0.05359
> 2180.2(080
) 1791.383*4
) 1902.53*19
) 1782.01*17
> 13*3.01915
> 192.29752
) 833. (5382
) 2744.4(030
> 925.433(2
) 292. (5735
> 1(2.50557
) 404.83203
) (75.81919
> (80.2(542
> 212.32002
800.0
(289,
(289.
(289.
(289,
(312.
(312.
(299.
(299.
(312.
(229,
(229,
(229.
(229,
(229,
( 51,
( 51 .
> 123
> 584
> 579
) 1535
) 1233
) 1324
> 1912
) 754
> 392
) 135
> 250
) 133*
> 123*
>• 883
) 19(
) 109
(51,1) 25*
(51,1) 539
(337, 1 ) 300
1000 .0
79413 (289,
4170* (289.
07925 (312.
92735 (312,
37479 (312,
0(49* (299,
80093 (299.
60027 (299,
2044* (312,
66249 (229.
0489* (229.
52791 (229,
53349 (229,
61901 (229.
84149 (229.
674*9 ( 51,
729(9 ( 51.
92422 ( 51.
43372 ( 51,
)
)
)
)
)
>
)
)
>
)
)
)
)
)
)
)
)
)
)
FIGURE C-7. (Continued)
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION -- ••«
HIGH
24-HR
SCROUPI 1
Y-AXIS /
(METERS) /
• HIGHEST 24-HOUR AVERAGE CONCENTRATION (NICROCRAHS/CUBIC METER)
* FROM SOURCES: 1,
* FOR THE RECEPTOR GRID *
H»XIHUH VALUE EQUALS 29237.33*84 AND OCCURRED AT <
1250.0
1500 .0
X-AXIS (METERS)
2000.0
. 0.
-200 .0 > *
3000.0
O
I
-P-
Ln
3000 . o /
2000 . 0 /
1500.0 f
12500 /
1000 . 0 /
8000 /
600 . 0 /
400.0 f
200.0 /
. 0 /
-200. 0 /
-400.0 t
-600.0 /
-800.0 /
1000.0 /
12500 /
15000 /
2000 0 /
3000.0 /
232 93274 (289,
388 30664 (289,
1 15? 59996 (312,
843.64931 (312,
918 .70238 (299,
1 198.73233 (299,
842.S7331 (299,
98 41490 (312,
476.74028 (299,
96 34216 (229,
62.48043 (229,
694.99847 (229,
1293.33807 (229,
639.73797 (229,
611 78399 (229,
131 .95607 ( 229,
32.19541 ( 31,
199 56817 ( 31,
339.34361 ( 51,
) 308 .86749 (289,
) (13 .38(34 (312.
> (17 .(8366 (312,
> 749.72033 (299.
) 816 41238 (2*9,
) 732.87447 (2*9,
) 389.74961 (299,
44* .(4333 (312.
414 .32333 (299,
73.09407 (229,
18 . 66026 ( 229.
346.0(254 (229,
(73.32(44 (229,
901 . 26663 ( 229,
333.98938 (229,
439 .33637 ( 229,
93.09326 (229,
> 84.66453 ( 31,
) 279 . 02787 ( 31 ,
> 183 119(9 (312.
) 380.83041 (299,
> 418.99287 (299.
> 3*4.73001 (299,
> 390.222*8 (299.
> 240.38709 (299,
> 103.29487 (312.
> 108.72939 (312.
) 122.60080 (299.
> 46 51416 (229,
> 3.62307 <229,
> 72.333(8 (229.
> 284.09301 (229.
> 412.39843 (229.
> (24.02987 (229.
> 336.33190 (229.
> 176 88272 (229,
> 36.71303 (229.
> 80.32938 ( 31,
> 198 61736 (299,
) 2(0.78302 (299,
) 197.32846 (299,
> 131.88338 (299.
) 34.40*98 (299,
) 138.32283 (312.
) 30.33080 (312,
) 133.59004 (299,
) 26.02313 (229,
> 24.81403 (229.
) 3.00*88 (229.
) 4.20383 (229,
> 34.60614 (229,
> 108.52377 (229,
) 170.60393 (229,
) 218.67(08 (229,
> 323.26402 (229,
) 103.10881 (229,
) 27.30434 (229,
FIGURE C-7. (Continued)
-------
HICH
24-HR
SGROUPI
••• -- HYPOTHETICAL POTASH PIOCESSING PLAHT - CONCENTRATION -- •••
HICHEST 24-HOUR AVERAGE CONCEHTRAT I ON (H ICROGRARS/CURI C HETER)
» FIOH SOURCES) 1.
• FOR THE DISCRETE RECEPTOR POINTS •
- RMG -
- DIR -
COM.
(DAY,PER.>
- RHG -
- DIR -
COH.
(DAY.PER.>
533. 0
(83. 0
BOA. 0
900. 0
MO. 0
933 0
930 0
IOSS. 0
1075. 0
993. 0
ess. o
(20. 0
4(0 . 0
355. 0
335. 0
345.0
325.0
420.0
480. 0
535.0
(20. 0
705.0
743.0
755. 0
730. 0
(90.0
(90.0
((5.0
(15.0
530.0
4100
3(5.0
317
320
32(
334
34(
356
6
16
26
36
43
47
51
(6
86
106
126
141
151
1(1
171
181
191
201
211
221
231
241
251
261
271
286
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
363.35759
242.87(09
833.51421
(1.94(16
.39082
.04938
310. 125(8
984.789(6
1828.96118
2312 04036
3334.30417
5498.56348
7187. 11414
4968.47260
668.70051
5091 .62152
5328.33734
1031. 16229
4777.69012
5(99.72949
6371 .78607
5090.61237
846.50612
3.92454
.00004
.00000
.00000
.00001
.39407
797. 13342
6243.87268
10781 .29871
( 187,
( 187,
(303,
(205,
( 187,
(289,
(289,
(289,
(289,
(312,
(312,
(299,
(299,
(299,
(299,
(229,
(229,
( 51,
( 51,
( 31 ,
(337,
(337,
(337,
(337,
(337,
(337,
( 187,
(187,
(262,
(262,
(262,
(2(2,
I)
1)
1)
1)
1)
1)
1)
>
>
)
)
)
)
)
)
)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1
1
1
1
1
1
620. 318.0 281
73S. 322.0 367
860. 331.
920. 341.
940. 351.
910. 1 .
1015. 11.
1075.0 21.
1045.0 31.
910.0 41 .
739.0 45.
52S.O 49.
35S.
359.
350.
335.
380.
450.
509.
575.
669.
730.
733.
743.
709.
(90.
(80.
649.
575.
475.
56.
76.
96.
116.
136
146.
156.
166.
176.
186.
196.
206.
216.
226.
236.
246 .
25(.
266
478
(
15
1232
10(4
1(05
371(
3532
(816
9529
3324
208
11717
1627
2513
7180
3225
5821
2722
1 19
40
3713
365.0 276 0 8224
410.0 296.0 9458
455(6
98349
9(017
(8790
00820
258(2
37(16
22385
33326
300(1
88397
950(2
39441
30042
95413
47192
(1234
70938
53339
32541
85095
19998
(0140
02435
00000
00000
00000
00244
88502
44977
08228
34009
(187, 1)
(303,
(305.
(187,
(187.
(289,
(289.
(289.
(289.
(312.
(312,
(299.
(.299.
(312.
(229,
(229,
(229,
( 51,
( 51,
(337,
(337,
(337,
(337,
(337,
(337,
(187,
(187,
(187,
(2(2.
(2(2,
(262,
(303,
)
)
)
>
)
)
)
)
)
>
)
>
)
)
)
>
>
>
>
>
)
)
>
>
>
)
FIGURE C-7. (Continued)
-------
•** -- HYPOTHETICAL POTASH PROCESSING PLANT - CONCENTRATION -- •••
c 50 MAX1HUH 24-HOUR AVERAGE COHCEHTRAT 1 ON (HICROtRAHS/CUBlC HE1ER) •
MAX 30
24-HR
SGROUPI 3
• FROM SOURCES:
12.
-15,
n
RANK
,
2
3
4
5
I
7
8
9
0
1
2
3
4
5
6
7
18
19
20
2 1
22
23
24
25
C3M
3(3
357 .
306 .
281 .
274 .
270 .
2(1 .
243.
238
231
230.
227 .
223
221 .
213
214 .
213 .
203 .
193
192 .
189
184 .
182 .
174
17. .
PER. DAY
60716
13231
6(803
32770
(4339
49*08
(1783
33223
94873
92327
37380
5121 7
18893
24822
7S877
17474
9041 (
91974
78723
98119
49826
31424
02(73
59334
1385 1
229
337
312
299
337
51
51
337
299
203
337
312
299
337
31
2(2
312
31
2(2
337
337
289
229
289
337
X Y DECREES) BANK
345.
200 .
335
333.
200 .
325
380.
303.
400 .
-200 .
480.
400 .
355.
535.
420 .
355 .
200 .
3(5.
450 .
200 .
106 .
-200 .
(6 .
66 .
-400 .
126 .
136 .
136 .
200 .
200.
131 .
200 .
76.
1(1 .
141 .
36 .
-200 .
286 .
146 .
-600 .
26
27
28
29
30
31
32
33
34
33
36
37
38
39
40
41
42
43
44
43
46
200 . 0 200 .0 47
(00.0 -200.0 48
355 0 5(.0 49
373 .0 1(( .0 30
CON
174 .
170 .
1(0.
131 .
149.
146.
143.
143 .
138 .
134 .
133 .
133 .
130 .
129 .
129 .
128 .
128 .
126 .
123 .
124 .
123 .
122 .
120
118
117
PER. DAY
78(66
18014
01897
167(5
43143
447(0
(1457.
40306
19619
27904
93348
60077
02702
24978
13974
37034
26113
49464
83667
67772
24991
13317
43043
(89(3
97248
312
303
312
229
262
31
337
31
312
229
2*9
337
312
187
289
299
187
2(2
31
262
2(2
289
303
203
187
X
OR
RANGE
(METERS )
600 . 0
-200 . 0
4(0 . 0
400 . 0
-200 . 0
450 . 0
420 .0
400 . 0
323 . 0
333 .0
600 . 0
200 . 0
800 . 0
3(5 . 0
460 .0
800 . 0
410.0
-600 . 0
400 . 0
410.0
365 . 0
400 . 0
410.0
-600 . 0
-200 . 0
Y(NETERS)
OR
DIRECTION
(DECREES)
400 . 0
200 .0
31.0
-200 .0
.0
146.0
141.0
-600 0
49.0
1160
400 .0
-800 .0
(00 .0
286 .0
51.0
400 .0
29( .0
200 .0
-400 .0
296 0
27( .0
400 .0
296 . 0
400 .0
200 .0
FIGURE C-8.
Listing of the table of the maximum 50 average concentration values computed from
Sources 12 to 15 by the hypothetical potash processing plant concentration run.
-------
gram found distances between sources and receptors less than 100 meters, a
diagnostic table is printed, as shown in Figure C-4, which lists all source-
receptor combinations found and the distance computed between each combina-
tion. Note that a negative distance implies that the receptor lie's within the
boundaries of.the source. Figure C-5 shows one table out of the fifty produced
by this example run for the ISW(16) option. Note that the heading of the table
identifies the day, averaging period and source group that represents the aver-
age concentration values printed for all receptors. Also, note that the aver-
age concentration values printed for the receptor grid provide ease of inter-
pretation of the impact of the pollutant over the receptor grid domain. That
is, the table format allows one to obtain a "visual" picture of the pollutant's
pattern or trend. This feature occurs only with Cartesian receptor grids
because the receptor grid locations are entered in ascending order as shown
in Figure C-l. An illustration of an "N"-day table generated by the ISW(15)
option is shown in Figure C-6. The format of this table is similar to the
tables produced by the ISW(16) option mentioned above. Figure C-7 shows
the content and format of a highest concentration table produced by the
ISW(17) option. The content includes the highest average concentration
values calculated for all receptors as well as the day and time period
when each value occurred. In this case, only one averaging period is pos-
sible per day and a "1" is printed for the averaging period. The second-
highest table (not shown) is identical in format to the highest concentra-
tion table. Option ISW(18) generates the maximum 50 tables, an example of
which is shown in Figure C-8.
C.3 EXAMPLE DRY DEPOSITION RUN
Because the preparation of a total deposition run is very similar
to the preparation of the average concentration run discussed in the preced-
ing section, only the differences between the two runs are discussed in
this section. The primary difference between the two runs is that the deposi-
tion model requires all sources to have gravitational settling categories
(parameter NVS > 0). If the program detects any sources which do not have
any gravitational settling categories, the program prints the error message
C-48
-------
shown in Figure 3-9(e) and terminates the'run. As mentioned in Section 2.6,
it is desired to obtain an estimate of the dry deposition of fugitive emis-
sions from the ore pile,(Source 1) and the conveyor belt (Sources 2-11).
Hence, this example run excludes the roof monitor (Sources 12-15) and the
stack (Source 16) which were modeled for concentration in the preceding
section.
Figure C-9 shows the 82 lines of card input data values required
to compute the desired total deposition values for the hypothetical potash
processing plant. The heading label, the first line (card image) in Figure
C-9, indicates to the user that this is a deposition run. Three differences
between this deposition run and the concentration run are noted in Card
Group 2, which consists of the second and the third lines of Figure C-9
according to Table 3-4. One difference is that ISW(l) equals "2" to indi-
cate to the program to compute deposition. The second difference is that
NSOURC equals "11" since the roof monitor (Sources 12-15) and the stack
(Source 16) are not modeled for deposition. Third, because of the fewer
number of sources, there are fewer source groups; hence, NGROUP equals "3".
Furthermore, Card Group 4 is different because of fewer source groups. As
indicated by the values contained in Card Group 4 shown in Figure C-9, it is
desired to see the total deposition contributions from the ore pile (Source
1), the conveyor belt (Sources 2-11) and both the ore pile and conveyor belt.
A preliminary estimate of the magnitude of the total deposition values indi-
cate that the desired output units be in grams per square meter, the pro-
gram's default units for deposition calculations. Because there are only
11 sources in this example, Card Group 6 contains source data values for 11
sources instead of the 16 sources used in ithe example concentration run.
Note that the total hourly emissions in grams for the eleven sources are a
factor of 3600 times larger than the average emission rates in grams per
second used to compute average concentration (refer to Section 2.4.3.1 for
an explanation of emission rates for deposition calculations).
C-49
-------
ISCST INPUT DATA CODING FORM
PROJECT
Example Deposition
NAME
DATE
SHEET 1 OF 11
CARD GROUP, I DATA CARD COLUMN
CARD NUMBER > * 3|«|' « 7 8 9 I0 ll IZ 13 l«llS I6 17 16 19 20 31 Z2 23 24 25 !6|27 28 29 50 J! 32 33 34 33J36 37 U 39 40 4IJ4Z 43J44 «9 •« «7 48 «9 90 91 32 53 94 55 5*37 38 99 BO «l 62 «3 B4 69 66 B7 6a|6»70m 72 73 74 73 76 T7 78 7« BO
CONTROL DATA PARAMETER AND VALUE (X means do not punch)
- TITLE -
1 - k- i py,P.OiT,H|E,T|L.qA|L, ,P,0,T,A3Pi |Pft|0,C,Eff ,S,I,NC, ,P,L|A,NT, -,
- ISW -
n ^
Ui I—II—IMl—II—IMl—4MMMMI—IHMHHMMMWMMMMM
O
2,1 -
2.2 -
I
o
CO
z
H
a,
12
g
IX
1
w
Pu
§
, ,1,1 , , , ,1,9
! , L , ,1,9! , , ,
FIGURE C-9. Card input data for the hypothetical potash processing plant deposition run.
-------
o
1
Ul
t— •
ISCST INPUT
PROJECT
Example
DATA
Deposition
CARD GROUP,
CARD NUMBER
3,1 -
3,2 -
CODING
FORM (Continued)
DATA
'
2
3
4
5
6
7
6
9
10
11
20
21 Z2 23 24 25 2«|e7 26
2930
31
32
33
343
5 36J37
CARD
38
r RECEPTOR DATA
—
jiOion
i
0
5,0
Lj-i3,0,0
*~
p
o
0
2,0,0
1,5,0,0
—
-1
- GF
^.onn
o
2,0pp
2
JDX (axis of grid
i i i i t-il 600 ii
t i i i i i i200
,3PPP
iii i
i i i i i i i
1 1 1
1
t
i i i i i i
t i i i t t i
i i i i i i i
1
1
- GRIDY (axis of
0,00 -,1,500
0
2,0,0,0
1
1
2,0p
3,0,0,0
1 1 1 1 1 1
1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 t 1 |
1
I
1
I
1 1 1 1 1 1 1 1 1
39
40
41
NAME
DATE
SHEET 2 OF 11
COLUMN
42
43
44
454
PARAMETER
system, c
i i- il 2 6 0
i
i
i
l
i
i
! 1
1 1
1
1 1
1 I
1 1
1 1
rait
I |
if
1 1-
LOO , , ,
1 1 1 1 1 1 III
grid system,
, , , ,-,1250
i
, , , , APP
i
t
i
1
1
I |
I |
1 |
t 1
omit
< i i
|
|
|
|
|
|
1
I
647
48
AND
49
50
51
52
53
54
55
S«
57
56
59
60
61
62
M
87
6fl
89
VALUE
NXPNTS OR
iliOiOid i i
i 16
|
|
|
|
|
1
0
f
if NXPNTS
,-,10,0,0'i
|
|
|
|
i
|
|
|
|
1
|
6
J
o|
NYPNTS =
, , .-80
.
30
or NYPNTS
, , , , ,-3,0
1
5
o
0
0
0
0
l r i l l i l t 1
0)
I
'
0) -
till
|
|
r6iO
Ljl0
70
T,
0
0,0
rf>P
I
op
,
1
1
1
1
0
0
rADO
, , , , , 1250
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1)1 II II
II III 1
1 1 1 i 1 t 1 1 1
1 1 1 1 1 1 1 1 1
l 1 I 1 1 1 1 1 1
-AP.O
^25p
1 1 , 1 1 1 1 I 1 •
1 1 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 l l I I t l
11,111111
1 1 1 1 1 1 1 I 1
FIGURE C-9. (Continued)
-------
o
Ul
S3
ISCST
INPUT DATA CODING FORM (Continued)
PROJECT Example Deposition
I
CARD GROUP,
CARD NUMBER
3,3 -
NAME
DATE SHEET
3 OF 11
DATA CARD COLUMN
J
3
Q
,12
13
14
19
I6,!7
18
19
20
21 22 23 24125 26 2 r 26
29
30
31 32 33 34 39 96 37 36 39 10 4IJ4Z 43
444946 47464
RECEPTOR DATA PARAMETER AND
i i i i i i 1 5i5
•ji i
t 1 |6
9,4,d
0,7
i
5i i
i i i4i6iOi i
, ,3
7.
i i i i i i6i2
i i i ( i i /
5
0
3iQ
i i i i i i 61 1
i i i i i i i
5
1
t
I
1
1
, , i i i i 1 3i 1J i i
3,4 -
Q
0
^
4
0
n
, , ,1,0,415
, i , i i , |3|46| i , ,
i i i , i i i
i i i i i i i
, , , , , , ,1
,,,,,, ,1
, i i i i i i?
i i i i i i i2i
2,6
•ill
2,6
LJJ
1
I
1
1
,
I
1
I
1
3
•^
in
5
5
fid
ft
7 in
5
S
i iSi7iS
i
i
3
1 tJ
.
i
i
\
8
- XDIS (dis
i iii 168 15
i i i i i i iQi^iS
ii i i , i9 9,!
i i i i i i i3i5
i i i i i i r&
i i i , i7
i i i i i i ifS
i 11 ,5
i i i i i i i
^
Q
9
3
950
51 92 53 54 35 5« 37 98 b9J60
1
6, 62 6J M 63 66 67 68
VALUE
crete receptors, omit if N]
1
, , , i , , iTi^isi i i i i i i iftinn
i i i i i i 9 il 0 i i i
i ii 0 il 0 i
5 i i i i i 3 15 5 i
tOJ i i i i i i Ai^ni i i
c
(•
q
i i i i i i i7 130 ii
i i i i i i f\ iQifll i i
iii i i i i i i i 7
5
0
5
5
i ii i i i 7 4- i^
, , , , , 1075
i i i i i i 5 2 5
,335
,,,i,i 575
si i i7 4 5
6,8,0) ,,,,,, 6 5,5J 645
i i i i i i i-^t"P j i i i i i i 3 16 1
iiiiittii
I 1 1 1 ! 1 t
NXWYPT = 0) -
16
-
i i i i |8|6
i i i iii1
>i1
, , i ,1,91
, , , ,?rt,i
, , i 2,71
i i i , ,
i i i i i i i il il i i i i i i i i
3
1
1111,1,45 , , , , , , i A,
, i i i i i 96
iiiii, i!56
,106
,,,!,, ,2,36
,,,,,, ,2,76
iiiii,,,.
, , , , , , ,1,
o.
5
6
6
7
6
, 161
201
, , , , , , 2 ,
, , i , , , 2,
4,
8,
1
6
1 1 1 1 1 '1 1 1 1
, i , , , , A10
, - ,
, 341
,2,1
,,,,,,, 49
1,1,6
, ,1,6,6
,,,,,, ,2,0,6
246
1 1 1 1 1 1 1 1 1
2 9 ,6
1 1 1 I 1 1 1 II
FIGURE C-9. (Continued)
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
Example Deposition
NAME
DATE
SHEET 4 OF 11
CARD GROUP,
CARD NAME
DATA CARD COLUMN
X
23 26|Z7 26 29 50 51
36 37 58 39 «O
»Z 43 44 45 46 47
90 51 92 55 M 55 56 37
38 59 BO 61 62
SOURCE GROUP DATA PARAMETER AND VALUE (X means do not punch)
4,1 -
O
Ul
LO
4,2 -
- NSOGRP (array, omit if NGROUP = 0) -
DC,
X
X i i
X:. X.
"V
Aj 1 1
y
AJ
X i i
K.
M f/ iy iv
i i A i i Aj i i A, i i AJ i i
Y
/^j t
'
i i
i i
X i
£
A
i ,
X 1 1
AJ
X i
XT:
s;
A, , i
Y
/ \|
v
A i
K. ,,
y
/\
X
, ,
V IY
i j Aj i i AJ __L
X, i i
/\ i
v
Aj
>u
A)
Ai i i
i i i
X i i X i i X i i
/\ i i
v
A,
X
Aj | !
X
X,,
X,,
X i i
rt
,,K
X.
X i ,
X.
- IDSOR (array, omit if NGROUP = 0) -
I I I I I
I 1 I 1 I
I I I I I
1 1 1 1 1
1 1 l~"l 1
I I I I 1 I I
I I I I I
I , I I I
I I I I I
I I I I I
X
I I I
I 1 I I I I I I I I I
I I I I I I I I I I I
X
I I I I I
X
X
X
X
FIGURE C-9. (Continued)
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Deposition
NAME
DATE
SHEET 5 OF
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
• TIT
I 2 34 S I 6 7 I 8 9 10 II 12 13 14 15 16117 16 19 20 21 22 23 24 25 26 27 26 29 SC 51 32155 34 33 96 37 38 39 >0 41 «2 43 44 43 46 47 48 49 SO 31 32 53 S4 » M 37 98 59 BO «l 62 63 M «8 66 S7 68 69 TO 71 72 73 74 7S|T6 T7 78 79 BO
METEOROLOGICAL CONSTANTS DATA PARAMETER AND VALUE (X means do not punch)
5,1-6 -
o
5,7-12 -
5,13 -
- PDEF (array, omit if ISW(21)
-------
o
ISCST
PROJECT Example
INPUT
DATA
Deposition
CODING
DATA CARD
CARD GROUP,
CARD NUMBER
1
i
10
II
12
13
14
METEOROLOGICAL
TK
5,14 -
i
16
17
16
I9J20
21
22
23
24
23
Z6
27
26
29
50
31
32
33
34
1336
CONSTANTS AND IDENTIFICATION
BETA1
i r.qne
BETA2
DECAY
b)10t>K e^fidL i^ef^ult
- IDAY
5,15-19 -
-
4e
I
1
"1
a
lj
n
c
c
«
1
-
i
1
3T
38
39
«o
LABEL
FORM (Continued)
NAME
DATE SHEET 6 OF u
COLUMN c^a-
41
42
43
44
DATA
IQUN
ulnjUsi r . i i
(array,
|
j
I
!
1
I
- (omit
ISS
5,20 -
!
k
^
ISW(19) = 2) -
! i
j
|1
i
ISW(19)
H1 i
i
i • \
I >ll
i ' ; • i j " !
1 i i
li i i i i i i i ' '<
[ml I i iMiiii1 iiiiii
XlXw^X^X^XXxXIXlXXywkM
= 2) -
IUY
6fi
^=5
— «=^_^ |
FIGURE C-9. (Continued)
-------
ISCST INPUT
DATA
PROJECT Example Deposition
CARD GROUP,
CARD NUMBER
CODING
FORM
DATA
'
2
9
10
U
12
13JI4
15
16
17
in
19
NSO
i
6,1 -
J
1
P*
s
M
12
i2
16
il
31
4
5
6
7
i
i
i
i
81
9
1
n1
, ,Ui
1 1 1 1
IIII
, , , I
1111
1 1 1
|
|
|
fi
16
|6
I
6
6
6
6
,6
6
.6
|
,
i
,
!
,
i
3
5-
3
rj
i
0
i
0
o|
nl
0
o|
o|
01
0
!
[
I
1
Q
1
1
1
1
1
I
1
t
1
l
l
1
I
1
l
l
t
l
l
L
3i6iQ
4
4
6
6
8
a
4.6,8
4
4
4
4
4
4
4
\
6,8
618
6,8 j
8
6,8
6,8
6,8
i
,
i
1
20
I
21
22
23
24
29
26 27 28 29 X 31 32
33
SOURCE
XS
-,1,3,.
1
1
1
O
2,C
T
4,
4
5,
C
0
<
c
6,9
7
8
9j
c
c
9
YS
nia .,3'
. i i . i i nl
. . in
. tn
... i i C
i , i i i i C
1 1 1 1 1 1 {•
i i i C
c(
, , , ,o|
343
9)6
CARD
37
36
39
40
(Continued)
NAME
DATE
SHEET
7 OF I*
COLUMN
41
«2
43
44
494
647
DATA PARAMETER AND
|
|
|
|
f
|
|
1
zs
1
1
1
1
1
1
1
1
1
1
Q9J i i i . . id i i i
U '
|
|
t
|
(
,
,
,
1
1 1 1 1 1 1
t 1 1 1 1 1 j
1 1 1 1 ] i |
|
I
I
1
1
0i
LjOl
Q
0
n
0
o
0
0
if)
i i i i i i i i i i i
i i * * i
i i i i i
I
i i i i i i
1 1 1 1 1 1
1 1 1 1 1 1
|
|
|
|
|
|
|
|
i
t
1
1 1
1
1
1
|
|
|
HS
il.Q.iO
2
4
,
M •
7
Q
6
3
|
|
I
ll i
8 ,
9.,6| ,
, ,1,1 ,.,i
1
3
1,4,.
1
6,
0
Q
|
1
51 i
1 1 1 1 1
1
l
1
1
I
,
|
|
t
f
t
,
1
|
!
46
49
50
91
52
53
94
W
56
97
56
59
60
61
62
63
64
69
66
87
VALUE
TS
1
J
|
|
|
|
|
|
t
|
|
|
|
|
|
|
1
1
(1
1
1
vs
•
6
_i . .4.., 7
1|
1
1
1
1
1
1
,
|
1 1 1 1 1
|
.
\
\
|
i*
•
it *
j
t
1
4
^
4
4
4
4
4
|
|
|
"
•
•
.
,
7
7
7
7
7
7
7
7i i
7
i
]
D
i
i
i
i
i
i
i
|
|
HB
i i i
68
1
III
!
1
i
i
i
i i
i
i
1
J 1 1 1 1
i
i
|
|
l
|
|
,
|
|
J
1
I
1 I 1 1 1
|
|
HL HW
1 1 1 1 1 1 1 1 1 1
I 1 1 1 1 I 1 1 1 1 t
IIII t 1 1 1 1
' 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 f 1 1 1 1
,
1 1 1 1 1 1 1 1 1 1
i i i i i i i i i i i
i i i i t i t i i i i
iiii i iiti
i i i t i t t i i i i
i i i i i i i i i i
i i i i • t i i i j i
1 1 1 1 1 ! 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
III 1 1 1 1 1 1
1 1 1 1 1 1 i 1 1 1 1
1 1 1 1 1 1 r 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1
1 1 1 1 1 1 l l 1 1 1
1 1 1 1 1 1 1 1 1 1
FIGURE C-9.
(Continued)
-------
o
Ln
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example Deposition NAME
DATE SHEET 8 OF 11
o-
CARD GROUP,
CARD NUMBER
6,2 -
DATA CARD COLUMN
31 32 33 34 39 36 3TB8 39 tO
41 4Z 43 44 43 46 47 48 49 90
51 SZ 53 54 W 96 37 56 59 50
SOURCE DATA PARAMETER AND VALUE
1 1 1 1 1 1 1 I *<1
1 1 I 1 1 1 1 1 1 1
1 t 1 1 i 1 *|1
i .il
1 ! 1 1 t 1 t t >1 1
II! 1 -1 1
II .ll
1 1 1 1 1 1 •! 1
1 I ; t i i t i -t 1
1 1 1 1 1 ! t 1 -1 1
1 1 1 I 1 1 1 I "1 •*•
t 1 1 1 1 t 1 1 1
i i i i I i i 1 i
i i i i i i t i i
i \ i i l i i i t
i i i i i i i i i
i i I I 111
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
.4
i i i i i i t . 4
, • , i , .,4
i i i i ii . i4
i i i i i i i i . i4
i i i i i i i i . i4
i i i i . i4
i i i i i i i i -|4
i i i i i i i i .i U
A
i i i i i i i i • IH
, 4
111,1111
1111,1111
i i i i i i i i t
i i i i i i ' i i
i
1 1 1 1 1 1 1 1 1
1 1 1 1 t 1 1 | 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
- PHI (array
ii i i i i i . 2 o
i i i i i i i • 2 c
i i i . i2i8
i i i i . i2 8
i i i i i i t . 1 2i8
ii i . i2 c
ii .28
i f i i i i . 1 2] c
,2,£
? R
i i i i i l i ' i *-\ °
, ,.,2,8
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 1
1 ' 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
,,,,!,,,,
111111)11
, omit if NVS
111111 i. il t2
1 1 1 l i l- i i2
i ii i. il 2
1 9
l ll l* i1 £
tiiiii '. il i2
11 i i i r r f-
i ii r ^ r-
! i , i i r i* r-
1 ?
111111 r i1 \e-
1 2
111,11 i" i i
. 1 2
IIIIII III
1 I 1 t 1 1 111
1 1 1 1 1 t lit
1 1 1 1 1 1 1 1 I
t 1 1 1 1 1 f ! |
IIIIII III
IIIIII \ 1 i
IIIIII II
1 1 1 1 1 1 i 1
IIIIII 1 II
IIIIII 1 II
1 1 1 1 1 t III
IIIIII 1 II
= 0 for all s
i i > i i i i .i06
1 1 1 1 ll |Q£
i i i i i i i .iOfi
i i , -,06
i i i i i i i -|06
i i i i i -,0p
, ,06
i i i i i i -i06
I, -|0£
1 1 1 ! 1 1 1 "1 UlO
,0,6
fill t 1 \ 1
1 | 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 1 1 1 I 1
I 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11)1111 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 I 1 1
1 I 1 1 1 1 1 1 1
sources) -
: , , , . . ,-PA
1 1 1 1 1 1 1 • I*-*!*
1 1 1 1 II* l*-*!^
, , , -04
. 04
> | 1 1 1 1 I 1 1
0,4
,,, -04
04
. 04
1 1 ! 1 1 ! 1 1 1
1 1 t 1 1 1 "
-,0,4
till III
1 1 1 i 1 1 1 1 1
i i i ; ! i i i i
iiiiii it
i i i i i i i i i
i i i i i i i i i
i i i i l i i i
1 1 1 ! 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 t 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 I
1 IIIIII
111 II
t 1 1 1 1 1 1 1 1
1 1 1 1 1 II
till 1
IIIIII II
1 1 1 t 1 t 1 1 1
t 1 ! 1 1 1 II
t ! 1 1 I 1 1 > 1
1 ! 1 < 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t i 1 1
i i i i i i i i i
1 1 1 1 1 ! 1 1 1
1 1 1 1 1 f 1 1 1
| 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 | |
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
l 1 l i i l | | i
f 1 1 1 1 t 1 1 1
1 1 1 1 1 III
111)11111
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
t\~ t 1 1 1 1 1 1 1
1 1 1 1 1 1 I \ 1
1 t 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
FIGURE C-9.
(Continued)
-------
o
Ul
00
ISCST INPUT DATA CODING FORM (Continued)
PROJECT Example
Deposition
CARD GROUP,
CARD NUMBER
6,3 -
NAME
DATE
SHEET
9
OF 11
DATA CARD COLUMN
,|2
|
9
10
II
12
1
1
T
21 22 23 24 25 26 27 28 29 JO
31 32 33 34 33 36 37 36 S^O 41 42
I
13 44 49 46 47 48
49
so
SI
32
S3
94
36
56
57
56
59
60
61
62
66
67
68
69
70
SOURCE DATA PARAMETER AND VALUE
!
!
,
I
1
(
1
i
!
(
t
,
1
t
:
,
1
(
1
1
I
t
1
1
I
1
I
1
:
1
J
|
1
,.,00.1!
•
•
OtO
1
0,0,1
-iQOil!
"
•
•
*
.
•
•
o
^
1 I
0,1
"
U
1
1
0,0,1 ,
0
0
*J
1
0,1
0,0,1
1 1 1 1 1 1 1 1 1
' 1
1
i
1
I
t
I
I
I
I
1
1
I
1
1
!
,
i
(
!
t
,
1
L I
,.00,7
1*
- VSN (array
, , , , ,-,0,1,9
00,7! , , , , , ,.0,1,9
, omit if NVS = 0 for all
i i i i i .-0,3,7 , , , , , ,.06
, , , . , r ,0,3,7 , ,
.. O0.7 i*i i i-i01,9| , , , , L ,0,3.7 i i
i»
0,0,7
i r\ *5 7
iiiiii .iOil,9l , , , i r ,ui-V 1 i ,
QQ7| ,,,,,. Q1.9
i OP7
I •
1*
!•
[.
1 .
I
1
I
1
i
i
i
i
i
i i
1 i
0
07
O.Q7
, , , ,.iQl,9
ii ii i. ,0,1,9
, . . . . Q 19
00 ,7 1 , , , , , ,..01,9
i iii- if)i3 i7 i i i
iii i t . iO 1 3 17 , i
i i i i t i. (Oi3i7 i i
iii i- |0|3|7 j i i
111111. (0.3.7 i i
00.7 , , , , , i.,Ql,9l .1111 1-10,3,7 , ,
0
07
Q 1.9
1 III 1 1 1 1 1
1
1 11,111111
1 till
,,,,,,,,,
1 1 1 1 1 1 1 1 1 1
p
1
1
I
t
i
1 1 1 1 t 1 1 1 1
III II 1 !
1 1 1 1 1 1 1 1 1
1 l 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1
(
i l i I i !• ^*|J r i i
t I I I I i i I I II
1 1 1 1 ! 1 1 1 t 1 1 (
t . i 1 i
1 1 t 1 1 1 . 1 ! 1 1
1 1 1 1 1 1 1 1 1 t !
1 1 1 1 1 1 1 1 ! II
1 1 1 1 1 1 1 1 1 II
, t i i , i , , , , ,
1,111,1,1 , ,
, , , , i ' , i i ii
, 06
i i i i*06
ii i* pJ
6
sources)
1 , i i , ,
1
l|
1
, , , ,.P6J.
, , i ,-,0
, , , ,-P
6
6
, 06
0
,0
I 1 1 1 .lO
,1111
1 I 1 1 t
1 1 1 1 1
lilt,
1
1
1
6,1
O
ij
1
1 1 f 1 1 1 1
I 1 1 1 1
1 1 1 1 1 1 1
,,,,,,,
, , 1 1 1 1
•i
•P,9
o
9
.,0,9
•P
*
•
9
9
9
9,9
0,9
0
9
9,9
.,0,9
• P
• iO
•
.
q
9
9i9l
9
9
9,9
Q9
9
I
j
_j
t
f
'
|
1 I I III
11(111111
i 1 1 1 1 1 1 1 1
| | f 1 I 1 1 1 1
| | | 1 III
| 1 1 1 1 1 1 II
1 1 f 1 1 1 1 1 1
1 1 1 1 1 1 1 f 1
| | ; 1 1 1 1 1 1
,,,,,,,,,
i 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11,111111
1 1
1 1 t 1 1 1 1 1 1
( I I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
f J 1 1 1 1 1 | I
1 I 1 1 1 1 1 1 1
11111(111
1 1 1 1 1 1 1 1 1
FIGURE C-9. (Continued)
-------
n
i
Ui
ISCST
PROJECT |
'.xainp 1
L'
INPUT
DATA
l)u KJS i L ion
CARD GROUP,
CARD NUMBER
6,4 -
'
1
1
5
4
3
6
I
7
8
1
1
0
,
.
li-
I,
1
I
1
1.
1
,
1
•
•
.
.
IO
,».
f
(
0
(
f
q
(
(
c
f
0
1 1
1 1
1 1
1 I
t 1
1 1
1 1 1
j 1
1 I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
DATA
14
UJ
IS
_J
1
16
_J
1
\r
_1
l
I
m
19
1"
Hi?
1
»
.18
•
•
•
8
H
H
H
K
K
?
7
2
2
2
2
2
2
K •>
i
i
i
i
i
i
i
i
i
|
I
?2
?.l
24
"
?6
2T
28
?9
VI
51
32
5i
SOURCE
GAMMA
1 1 1
J 1
|
I
1
t
i
i
i
1
1
I
(arr
.,72
• |72
.if P
.72
•
•
•
7,2
7
7
/
7
2
2
2
2
i a
7i?
1
1
1
1
1
1
1
1
ay.
-i-J
1
1
I
1
r
1
543
3 36
57
DATA
omit
i i
_j
_i
I
I
CODING FORM (Continued)
NAME
DATE
SHEET
10
OF 11
CARD COLUMN
08
J9J40
.,.;.>..««j
_iuA£
(
1
|
I
1
|
|
i
i
i
t
i
i
i
i
i
rii-i
i
i
i
i
i
i
i
i
i
7S = 0 for all
, ,,,,,.?«
t 1 1 1 1 1 1 • i-1 F
1 1 1 1 1 I • 1* 17
,.BS
, ,. ? ,9
i i i i. 5 f)
i i i i i i i ' r1 i
l ! I- P ft
1 1 1 1 I 1 !• P K
, ,. ? ,9
-.5,9
i ii i i i i
, i i i
, i , i i i i
, , 1,11,1
i i i i i
i i i i i i i i
1 1 1 1 1 1 I 1 !
1 1 1 1 1 ! 1 1 1
1 1 1 1 1 1 1 1
1 1 ! 1 1 1 1 1 1
1 I 1 1 1 1
1 Illl
sources)
i i i i
_i
i
—1
I
_i
1
1
1
|
|
t
i
i
_J
1
1
1
-J
1
|
1
1
1
_1
1
|
I
1
1
I
1
1
!
1
|
1
1
!•
1-
1-
1'
— LU
-!•
r i
r
r
1 • 1
,
1 1
-1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
r)
5
5
5
5
5
5
5
rr
5
C
|
|
1
1
1
1
|
1
1
1
1
I
I
1
-
1
I
1
I
t
i
i
i
1
1
1
1
|
1
1
|
|
1
1
1
1
1
|
1
|
"t
|
I
1
|
I
|
|
I
|
I
I
|
|
|
1
|
i
1
l
l
l
i
i
1
|
1
1
I
•I
I
|
|
|
1
1 1 1 1 t 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 III 1
• 111
111 1
1 1 1 ! t 1 1 1 I
! I i 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 I t 1 1 1
1 I 1 1 1 1 1 1 1
1 1 1 1 1 III
1 1 'I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 t 1 1
f 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
KICUKK C-9. (Cont Inuctl)
-------
n
ISCST
PROJECT Example
INPUT
DATA
Deposition
CARD GROUP,
CARD NUMBER
6,5 -
CODING
FORM (Continued)
DATA
1
1920
21
22
23
24
25
26
27
26
29
50
31
32
33
SOURCE
1
&
1
! 1 !
1
t
.
i
!
|
|
|
|
|
|
|
|
|
|
|
|
QTK
, , i1
i
j
i
i
i
i
t
i
i
i
i
(
i
i
i
i
i
i
i
i
i
5
j
1
1
I
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
(array,
i i i
i
i
i
i
|
|
|
|
|
(
|
|
|
omit
i i
i
t
i
i
i
|
|
1
,5
|
|
1
If
1
34 3
5 36
NAME
DATE
SHEET
11
OF 11
CARD COLUMN
37
DATA
58
39
*0
41
42
43
44
PARAMETER
ISW(23)
i i i i i
1
1
1
|
|
)
.)
C
1
j
1
1 I
(
t
|
|
|
I
1
|
|
|
t
|
I
|
|
!
;
i
l
|
|
|
)
and
i t
454
f
AND
46
49
50
51
32153
54
55
56
57
56
59
BO
«i
62
63
64
65166
67
66
89
TO
VALUE
QFLG =
i i i
i
l
I
i
,
J
(
|
!
|
,
(
,
I
I
|
1
|
I
1
t
1
I
1
1
1 i
1
,
I !
0
^
£
,,,,,,,,,
j
1 i
for
i i
1
|
(
1
1
i
i
i
i
i
i
i
all
I |
-
sour
LJ t -1
•
5
,1
i i : i : : i i
!
|
1
| (
t |
I l
1
|
f
j
|
f
!
1 1 1 ! I 1 1 I 1
|
1 1
|
|
ces) -
^
(
|
|
|
1
1
I
1
1
I
.]
1
?
1
I ! 1 1 I 1 1 1 1
l
|
1
1
|
|
|
I
I
1
I
1 '
1
1 1 1
|
1 1
5
a
1 1 1 t 1 1 1 1 1 1
I 1 1 1 1 ! I 1 1
1 1 1 t 1 t 1 1 1
! I I 1 III
1 1 t ! 1 ! 1 ; !
I "l i ' ! 1 1 i
1 1 1 t 1 1 1 1 t
I ! 1 1 t I 1 1 t
1 1 1 1 1 1 1 1 1
* ) 1 1 t I 1 I 1 t
i I I 1 l I f i l
I 1 1 1 1 1 1 1 1
! ! 1 1 t 1 I 1 1
II 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
t I 1 1 1 1 1 1 1
l i 1 i r 1 1 l l
| l 1 1 l 1 1 1 |
i l l i i l l l t
1 1 1 1 1 1 1 1 1
FIGURE C-9.
(Continued)
-------
The estimated run time, required data storage and pages of print
output for this example run are different than the estimates computed for
the example run discussed in the preceding section due to a fewer number of
sources (and consequently a fewer number of source groups). The parameters
used to compute these estimates, which differ from the previous example run,
are NSOURC, which equals "11" instead of "16", and NGROUP which equals "3"
instead of "5". From these parameter values and the values of the parameters
used in the preceding section, the estimated run time equals about 12.5 min-
utes, the amount of data storage required equals 11634 words and the number
of pages of print output equals 189.
Figure C-10 is a listing of the card input data values used to com-
pute 24-hour total deposition values for the hypothetical potash processing
plant. The differences between the input data values for the concentration
and deposition example runs, as mentioned in the first two paragraphs of
this section, are reflected in Figure C-10. Examples of the print output
produced by this example run are not shown because the format of the output
tables are the same as those of the example run discussed in the preceding
section. The only exceptions are in the heading where the words "AVERAGE
CONCENTRATION" are replaced by "TOTAL DEPOSITION" and the output units are
(GRAMS/SQUARE METER) instead of (MICROGRAMS/CUBIC METER).
C-61
-------
HYPOTHETIC ML POTASH PROCESSING PlflNT - DEPOSITION
O
N)
CALCULATE (COHCENTRATION = 1.D£POSITION = £>
RECEPTOR GRID SYSTER < RE CI ANGUL rtR =1 OR 3, POLAR=2 OR 4)
DISCRETE RECEPTOR SYSTEM l REC T S NGULAR* 1 POL«R = 2>
TERRAIN ELEVATIONS ARE READ (YES=I.NO=O>
CALCULATIONS ARE WRITTEN TO THFf ( YE S° 1 . NO* 0 i
LIST ALL INPUT DATA < NO = 0 , YE S « 1 . R E T DATA ALSO=2)
COMPUTE OVERAGE CONCENTRATION (OR TOTAL DEPOSITION)
THE FOLLOWING TINE PERIODS:
.NO«0)
.NO=0>
. NO'O)
.NO'O)
.NO=0>
. N0*0 >
HOURLY (YES=|
2-HOUR (YES=!
3-HOUR (YES-I
4-HOUR (VES'I
6-HOUR THROUGH ISM(14):
DAILY TABLES (YES=1.NO=0>
HIGHEST 1 SECOND HIGHEST TABLES (YES-l.NO-0)
MAXIMUM so TABLES
METEOROLOGICAL DATA INPUT METHOD ( PR E- P RO CE S SE D = I , C AR D =2 )
RURAL-URBAN OPTION < R UR A L= 0 , URB AN RODE 1-1, URBAN RODE 2-2)
VINO PROFILE EXPONENT VALUES ( 0 EF AUL TS = 1 , US E R ENTERS=2,3)
VERTICAL POT. TEMP. GRADIENT VALUES ( DE F AUL T S- 1 , U SE R ENTERS-2,3)
SCALE EMISSION RATES FOR ALL SOURCES ( N 0 = 0 , Y E S > 0 >
PROGRAM CALCULATES FINAL PLURE RISE ONLY CYES°1.NO=2)
PROGRAN ADJUSTS ALL STACK HEIGHTS FOR DOVNUASN
NURBER OF INPUT SOURCES
NURBER OF SOURCE GROUPS (°0,ALL SOURCES)
TIRE PERIOD INTERVAL TO BE PRINTED (-0,ALL INTERVALS)
NURBER OF X (RANGE) GRID VALUES
NUMBER OF Y (THETA) GRID VALUES
NURBER OF DISCRETE RECEPTORS
SOURCE ERISSION RATE UNITS CONVERSION FACTOR
ENTRAINRENT COEFFICIENT FOR UNSTABLE ATMOSPHERE
ENTRAINRENT COEFFICIENT FOR STABLE ATMOSPHERE
HEIGHT ABOVE GROUND AT WHICH WIND SPEED WAS REASURED
LOGICAL UNIT NURBER OF METEOROLOGICAL DATA
DECAY COEFFICIENT FOR PHYSICAL OR CHEMICAL DEPLETION
SURFACE STATION NO.
YEAR OF SURFACE DATA
UPPER AIR STAT ION NO
YEAR OF UPPER AIR DATA
ALLOCATED DATA STORAGE
REQUIRED DATA STORAGE FOR THIS PROBLEK RUN
isw< i ) =
ISW( 2 ) *
ISW( 3 ) -
ISW( 4 ) =
ISWf 5 ) -
ISW< 6 / -
ISW( 7 ) =
ISW(8 ) =
ISW( 9 ) •
ISW( 10) =
ISWU 1 ) =
ISU112) -
ISW( 13 ) -
I SV< 14) -
ISW( 15 ) =
I SW( 16)=
ISW( 17) =
I SW( 18 ) =
I SW( 19) =
ISWC20 ) -
ISW121 ) -
ISW(22 > -
ISW(23 ) =
I SW( 24 ) -
I SVC23 ) =
NSOURC =
NGROUP =
IPERD =
NXPNTS =
NYPNTS =
NXMYPT =
TK =
BETA1 =
BETA2 =
2R =
IRET =
DECAY =
ISS =
ISY =
IUS =
IUY =
LIMIT «
RIRI T =
2
1
2
0
0
2
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
0
2
1
< 1
3
0
19
19
64
. 10000*0 1
600
600
10.00
9
RETERS
000000
14913
64
14918
64
43300
M634
WORDS
WORDS
FIGURE C-10. Listing of the input data for the hypothetical potash processing plant deposition run.
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLANT - DEPOSITION
•»• METEOROLOGICAL DAYS TO BE PROCESSED »••
(IF= 1 >
0
0
0 1
1. 2. 2,
•*• NUMBER OF SOURCE NUMBERS REQUIRED TO DEFINE SOURCE CROUPS •••
( HSOGRP )
•»• SOURCE NUMBERS DEFINING SOURCE CROUPS *•*
< IDSOR >
I.
2,
-11 ,
1. -11,
•»• UPPER BOUND OF FIRST THROUCH FIFTH WIND SPEED CATEGORIES ••«
(METERS/SEC)
1.34, 3.09, 5.14, 8.23. 10 80,
n
ON
U>
*•» HIND PROFILE EXPONENTS ••«
STABILITY
CATEGORY
A
B
C
D
E
F
1
.10000*00
.15000*00
.20000*00
.29000*00
30000*00
.30000*00
MIND SPEED CATEGORY
. 10000*00
.13000*00
. 20000*00
. 23000*00
. 30000*00
.30000*00
. I 0000*00
. 13000*00
. 20000*00
.25000+00
. 30000+00
.30000+00
. 1 0000 + 00
. 1 5000 + 00
.20000 + 00
.25000+00
.30000*00
.30000+00
. 10000 + 00
. 15000 + 00
. 20000*00
. 25000 + 00
.30000+00
. 30000 + 00
. 10000 + 00
.15000+00
.20000+00
.23000+00
.30000+00
.30000*00
FIGURE C-10. (Continued)
-------
*•• -- HYPOTHETICAL POTASH PROCESSING PLANT - DEPOSITION
*•* VERTICAL POTENTIAL TEMPERATURE GRADIENTS ••»
(DEGREES KELVIN PER HETER)
STABILITY
CATEGORY
A
8
C
0
E
F
..t!
VIND SPEED CATEGORY
1234
.00000 .00000 .00000 .00000
.OOOOO .00000 .00000 .00000
.00000 .00000 .00000 .00000
.00000 .00000 .00000 .00000
.20000-01 .20000-01 .20000-01 .20000-01
.33000-01 .33000-01 .33000-01 .33000-01
*** X-COORDINATES OF RECTANGULAR GRID SYSTEH
3
. OOOOO
. OOOOO
. OOOOO
. OOOOO
. 20000-01
. 33000-01
**•
(HETERS)
-3000 .0,
200 .0,
-2000
400
0,
0,
-1500 .0,
600 .0,
-1230. 0
800.0
-1000
1000
$,
0,
*** Y-COOROIHATES OF
-3000.0,
200 .0,
-2000
400
0,
0,
-1500 .0,
600 .0,
-1230.0
800.0
•*« RANGE
-1000
1000
(
0,
0,
-800.0, -600
1250.0, 1500
RECTANGULAR GRID
HETERS)
-800.0, -600
1230.0, 1300
.THETA COORDINATES OF DISCRETE
. 0,
.0,
SYSTEH
. 0,
.0,
-400 .0,
2000 .0,
***
-400 .0,
2000 .0,
-200. 0,
3000. 0,
-200. 0,
3000. 0,
RECEPTORS »•*
(HETERS, DEGREES)
( 555. .
( 860. ,
( 935. -
( 1075. ,
( 855. ,
( 355. ,
< 345. ,
( 450. ,
( 620 ,
< 755. ,
( 690 0,
( 645. 0,
( 410.0,
317
331
336
21
43
36
106
146
171
196
221
246
271
0),
0),
0).
0),
0),
0),
0),
0),
0),
0),
0),
0),
0),
( 620
( 900
( 910
( 1073
( 755
( 353
( 335
( 480
( 665
( 733
( 690
( 615
( 363
318
, 336
1
26
45
, 66
116
, 151
176
201
226
0. 251
0, 276
.0 , (
.0 , (
.0 , (
.0 , (
.0 , (
. 0 , (
.0 ), (
.0), (
.0 ), (
.0), (
.0), (
.0 ), (
.0 ), (
685.
920.
950 .
1045 .
620.
355.
325.
SOS.
705
745 .
690 .
575 .
365.
0, 320 .0), (
0, 341.0), (
0, 6.0), (
0, 31 . 0), (
0 , 47.0), (
0, 76 . 0), (
0, 126 . 0), (
0. 156 . 0), (
0, 181.0), (
0, 206 .0), (
0, 231 .0), (
0, 236.0), (
0, 286.0), (
735
940
1015
995
525
355
380
335
730
730
680
530
410
. 0,
.0,
.0,
.0,
. 0,
.0,
. 0,
. 0,
. 0,
. 0,
. 0.
. 0,
. 0,
322
346.
1 1.
36
49
86.
136.
161 .
186
21 1 .
236.
261
296.
), (
), (
>, (
), (
), (
), (
), (
), (
), (
), (
), (
), (
), (
6
. OOOOO
. OOOOO
. OOOOO
. OOOOO
. 20000-01
. 33000-01
. 0,
. 0,
800
940
1053
910
460
330
420
575
745
705
665
475
.0,
.0,
.0,
.0,
.0,
.0,
.0,
.0.
.0,
.0,
.0,
.0,
326
351
16
41
51
96
141
166
191
216
241
266
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 )
.0 >
.0 >
. 0 )
FIGURE C-10. (Continued)
-------
o
I
Ul
••• -- HYPOTHETICAL POTASH PROCESSING PLAHT - DEPOSITIOH
••• SOURCE DATA •••
T y
V A
SOURCE P K
HUK8ER E E
1 2 «
2 1 0
3 1 0
4 1 »
5 0
6 0
7 0
e o
9 0
10 0
1 1 0
HUSBER
PART.
CUTS.
t
t
^
t
t
6
t
t
t
t
6
EMISSION RATE
TYPE-0, 1
(GRANS)
TYPE-2
( CRAHS )
•PER HtTER»«2
. 36000*03
.44900*03
.44800*03
.44800*03
.4*800+03
. 46800*03
46800*03
. 46800*03
.44800*03
. 4(800*03
.44800*03
(A8E
X Y ELEV.
(NITERS) (METERS) (METERS)
-13.3 -13 .3 .0
20 . 0 .0 .0
30 .0 .0 .0
40 .0 .0 .0
4J .0
3».0
6> 0
7».0
8» 0
>».o
10» 0
.0
.0
. 0
.0
.0
.0
. 0
HEICHT
(METERS >
1000
.»0
2 60
4. 30
«. 10
7.80
».»0
1 1. 30
13.00
14.80
16 50
TEMP.
TYPE-0
( DEC .K)
VERT .DIM
TYPE-l
( METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
EXIT VEL
TYPE-0
( H/8EC >
MORZ .DIM
TYPE-I , 2
( DETERS )
24 40
4 .70
4 .70
4 .70
4 .70
4 .70
4 .70
4 .70
4.70
4 .70
4 .70
DIAMETER
TYPE'O
(METERS >
. 00
. 00
.00
.00
.00
.00
. 00
. 00
. 00
. 00
. 00
BLOC .
HEIGHT
TYPE=0
(METERS)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
BLOC
LENGTH
T*PE«0
(METERS )
. CO
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
BLOC .
WIDTH
TYPE'O
( METERS)
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
. 00
FIGURE C-10. (Continued)
-------
»•• -- HYPOTHETICAL POTASH PROCESSING PLAHT - DEPOSITION
... SOURCE PARTICIPATE DATA *••
•»• SOURCE HURBER
1 *•*
n
ON
MASS FRACTION •
10000, .40000. .28000. .12000,
SETTLING VELOCITY^ METERS/SEC) •
.0010, .0070. .0190. .0370.
SURFACE REFLECTION COEFFICIENT -
1.00000, .82000, .72000. .(3000,
**• SOURCE NUH8ER »
2 »••
HftSS FRACTION •
.10000, .40000, .28000. .12000,
SETTLING VELOCITVdlETERS/SEC> •
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, .82000, .72000, .63000,
••• SOURCE NUH8ER •
3 •»•
RASS FRACTION •
10000, .40000. .28000. .12000,
SETTLING VELOCITY(HETERS/SEC> '
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT <
1.00000, .82000, .72000. 63000,
.0(000,
.0(10,
.39000,
.0(000,
.0(10,
.0(000,
.0(10,
.39000,
. 04000.
.0990,
.30000,
.04000,
.0990,
.39000, .30000.
.04000,
.0990,
.30000,
FIGURE C-10. (Continued)
-------
• •• -- HYPOTHETIC!)!. POTASH PROCESSING PLANT - DEPOSITION
— * •*
••« SOURCE PftRTICULftTE DATA »••
••• SOURCE NUMBER •
4 •••
O
MASS FRACTION '
.10000, .40000, .28000, .12000,
SETTLING VELOCI TV( RETERS/SEC ) =•
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT =
1.00000, 62000, .72000, .63000,
••• SOURCE NUMBER *
3 •*»
MASS FRACTION «
.10000, .40000, .28000, .12000,
SETTLING VELOCITVtHETERS/SEC) «
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT *
1.00000, .82000. .72000, .(3000,
•** SOURCE NUH8ER *
( »•*
MASS FRACTION •
.10000, .40000, .28000, .12000,
SETTLING V£LOCITV =
.0010, .0070, .0190. .0370.
SURFACE REFLECTION COEFFICIENT «
1.00000, .82000, .72000, .(3000,
.06000, .04000,
.0610, .0990,
39000, .SOOOO,
. 06000, .04000,
.0(10, .09*0,
.99000, .30000,
.0(000, .04000,
.0(10, .0990,
39000. .30000,
FIGURE C-10. (Continued)
-------
•«• -- HYPOTHETICAL POTASH PROCESSING PLANT - DEPOSITION
• •• SOURCE PARTICIPATE DATA **•
••• SOURCE HUN8ER
7 •••
O
I
00
MASS FRACTION *
.10000. .40000, .28000, .12000,
SETTLING VELOCITY*HETERS/SEC> =
.0010, .0070, .0190, .0370,
SURFACE REFLECTIOH COEFFICIENT =•
1.00000, .82000, .72000, .(5000,
••• SOURCE NUMBER
e ••*
HASS FRACTION «
.10000, .40000, .28000, .12000,
SETTLING VELOC1TYC HETERS/SEC> •
.0010, .0070, .0190, .0370,
SURFACE REFLECTION COEFFICIENT •=
1.00000, .82000, .72000, 63000,
•*• SOURCE NUMBER
9 »•*
HASS FRACTION *
.'10000. .40000, .28000, .12000,
SETTLING VELOCITY* HETERS/SEC ) «
.0010, 0070. .0190, .0370,
SURFACE REFLECTIOH COEFFICIENT =
1.00000, .82000, .72000, .69000,
.0(000,
0610,
59000,
06600,
.0(10,
.39000,
.0(000,
.0(10,
99000,
.04000,
.0990,
. 50000,
. 04000,
0990,
. 30000,
.04000,
.0990,
. 50000,
FIGURE C-10. (Continued),
-------
VO
*•• -- HYPOTHETICAL POTASH PROCESSING PLANT - DEPOSITION
•*• SOURCE PARTICIPATE DATA •••
»»• SOURCE NUMBER » 10 *••
MASS FRACTION •
.14000. .40000, .28000. .12000. .06000, .04000,
SETTLING VELOCITT(HETERS/SEC> >
.0010, .0070, .0190. .0370. .0(10, .0990,
SURFACE REFLECTION COEFFICIENT •
1.00000. .82000, .72000, .65000, .39000. .50000,
•*• SOURCE NUMBER • 11 •••
MASS FRACTION •
.10000. .40000. .28000, .12000. .06000. .04000.
SETTLING VELOCITY -
.0010, .0070, .0190, .0370. .0610, .0990.
SURFACE REFLECTION COEFFICIENT *
1.00000, .62000, .72000, .65000, .99000, .90000,
FIGURE C-10. (Continued)
-------
••• -- HYPOTHETICAL POTASH PROCESSING PLAHT - DEPOSITION -- •••
* SOURCE ENISSIOH RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY •
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
SOURCE HO . « '• 1
1 .10000*01 2 .10000*01 3 .10000*01 4 .10000*01 3 .10000*01 6 .10000*01
7 .10000*01 8 .30000*01 9 .30000*01 10 .30000*01 11 .30000*01 12 .30000*01.
13 .30000*01 14 .30000*01 13 .30000*01 It .10000*01 17 .10000*01 18 .10000*01
19 .10000*01 20 .10000*01 21 .10000*01 22 .10000*01 23 .10000*01 24 .10000*01
n
I
FIGURE C-10. (Continued)
-------
APPENDIX D
EXAMPLE EXECUTIONS OF THE ISC LONG-TEBM
MODEL (ISCLT) COMPUTER PROGRAM
D.I INTRODUCTION
The following examples are problem runs using the ISC long-term
(ISCLT) program to model the hypothetical potash processing plant described
in Section 2.6. The examples consist of two executions of the ISCLT pro-
gram. The first problem is to calculate annual average ground-level par-
ticulate concentrations and the second problem Is to calculate total annual
ground-level deposition. This appendix assumes the user is familiar with
the example hypothetical processing plant discussed in Section 2.6 of the
main body of the text.
D.2- EXAMPLE CONCENTRATION RUN
This program example run calculates the annual average ground-level
particulate concentrations produced by emissions from the hypothetical potash
processing plant described in Section 2.6 and shown in Figure 2-11. The
hypothetical plant is modeled as 16 sources: one stack source, fourteen volume
sources (roof monitor and conveyor belt) and one area source (ore pile).
These sources are placed at the approximate center of the receptor grid system.
Because we are only interested in the annual average ground-level particulate
concentrations produced by these sources, annual meteorological data are used.
The annual meteorological inputs as well as required program control data,
run time estimate, and page output estimate are explained in Sections D.2.1.
through D.2.3. below.
D-l
-------
D.2.1 Input Data Set-Up Procedure
This example run requires the input data shown in the example
coding forms in Figure D-l. An explanation of each card group in Figure
D-l is given in Sections D.2.1.a. through D.2.1.m. below.
a. • Card Group 1 - Card Group 1 gives the user selected
title for the program run. This title is printed at the top of each output
page as shown in Figure D-2.
b. Card Group 2 - Card Group 2 selects the program control
options desired. This card group shows: ISW(l) equal to "1" for concentra-
tion, ISW(3) equal to "2" for discrete receptors in polar coordinates,
ISW(5) equal to "1" for an output magnetic tape, ISW(6) equal to "3" for a
full printout of the input data, ISW(7) equal to "2" for annual output only,
ISW(8) equal to "3" for printing individual as well as combined sources
results, ISW(9) equal to "3" for the Rural Mode, ISW(IO) equal to "2" for a
printout of concentration at all receptors as well as the maximum 10 values,
and ISW(ll) equal to "2" directing.the program to determine the maximum 10
from the combined sources. The receptor grid system used is in Cartesian
coordinates; hence, ISW(2) is left blank. Also, ISW(4) is left blank because
flat terrain is assumed for the area in the vicinity of the hypothetical
potash plant. The parameter ISW(12) is left blank because we are using
ISW(ll) for the maximum 10 values and the parameters ISW(13) through ISW(18)
are left blank because we are using the program default values for these
parameters. ISW(13) directs the print output to logical unit 6, ISW(14) is
blank because we are not using an input tape and ISW(15) directs the tape
output,to the magnetic tape on logical unit 3. The default value for ISW(16)
directs the program to use the standard print output format rather than com-
press pages, ISW(17) directs the program to use 57 lines per page, and ISW(18)
tells the program that Card Group 9 is not read in this run. ISW(19) directs
the program to calculate plume rise as a function of downwind distance because
the building wake effects option is to be used for the stack.
D-2
-------
ISCLT INPUT DATA CODING FORM
PROJECT . Example Particulate Concentration
NAME
DATE
SHEET 1 OF 16
CARD GROUP
NUMBER
DATA CARD COLUMN
11 12 a 14115 16 17
9MO
48 49 50 51 5Z 53 54 58 M 57 58 59 BO 61
62 63 64 65 66 67
TO 71 72 7374 75 76 TT
CONTROL DATA PARAMETER AND VALUE (X means do not punch)
o
LO
1-
2 -
- TITLE -
.11. ftYPp,TflE,T,I,CAL, PP.T.AS'H, ,P, BO CESS, ING, PLANT, . . , , ,
- ISW -
O
i-H i-H (M
I I I
I I I
3 - 1,6,5 ,1,9 ,,9| , ,
4 - IX , ,i
- N0C0MB (array, omit if NGR<#UP=0) -
ilXiiilXiiilXiiilXiiilXiilXiiilXiilXiiilXiilAiiiiAiiilXiilXiil/\ii
- IDS0RC (array, omit if NGROUP=0) -
1O 11 1O IK 1 £ 1R )C
, . , . , i I 1 1 I™ 11 l""rLl*' 1 L I IAIA 1 I l"!1!0 1 1 i_ I1!0 I _i t""!-1-!0 1 I I I I | | | | | 1| | | | | | | | | | | l | | t i I I I S\\
4a -
5 _
i i i i i
1 | 1 1 1
1 1 1 1 1
/l\
I I I I I I I I 1. I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I/|N
- UNITS (omit if ISW(5) = 2 or 3)
- one blank card, default units - ,
FIGURE D-l. Coding form for the example particulate concentration run.
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJE CT Example Particulate Concentration NAME
DATE SHEET 2 OF 16
CARD GROUP
NUMBER
6 -
6a -
DATA CARD COLUMN
f||| j 1 | 1 I L.
1111 1 r 1 1 1 i
3, SZSS^pS^ST^SSMCMaiUzUsU^SMeUTMSMasaSl 52 53 54B5 36 37 98 506061 62 63W4W5 66B7 6eMffl7a7l TzWTJrJTelrT 7BJT9J80
RECEPTOR DATA PARAMETER AND VALUE (X means do not punch)
-,3,0,0,0
, . , , , ,-,2,0,0
1,5,0,0
1 1 1 III
1 1 1 t 1 1 1 1 1
III 1
II 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1 1 1 1
1 1 1 1 1 1 1 1 1
, , , ,2,1,0,8
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1
III II
t 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
Ill
1 1 1 1 1 1 1 1 1
- j
-,2,0,0,0
111 1 1 1 1 1 1^
2,0,0,0
II 1 1 1 1 i 1
III I 1 1 1 1 1
1 ill
it ! i ; t
III 1 ! 1 1 1 t
111 1 t 1 1 1 1
1 1 1
111 1 1 1 1 1 1
1 1 1 1 I 1 1
111 1 1 1 1 1 1
X (arbitrarilj
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
lil 1 1 1 1 1 1
1 1
til 1 1 1 1 1 t
111 1 1 1 1 1 1
II II
III 1 1 1 1 1 1
C (axis of grid
-,1,5,0,0
2,0,0
3,0,0,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t t
1 1 1 I 1 1 1 1 1
1 t 1 1 1 1 1 1 1
1 t 1 1 1 1 1
1 1 1 1 I 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
r placed recept
i i i i i i i t
i i i i i i i t i
i i i i i i : i i
i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i l i l i i
i i l i l i i i i
system, omit iJ
i i . . r.1,2,5,0
...,,. ^,0,0
i i i i i i i i i
i i i i i i i i
i l l i i i i l i
l l i i l i i
i i i i i i i
i i i i t i i i
i i i i i i i i i
i i i i i i i i
i l i i i i i l t
l i l 1 l i l 1
i i i i i i i i i
ors, omit if N>
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
* NXPNTS =r 0 c
I.., ,-,1,0,0,0
1 1 1 I 1 1 11 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 !
i i i i i i i i i
1 1 1 1 t t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 ! 1 t 1 1
1 1 1 i 1 1 1 1 1
,,,,,,,,,
fWYPT - 0 or 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 i 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 | 1 | 1 1
1 1 1 1 1 1 1 1 1
r ISW(5) = 2 or
i -,8,0,0
, 8,0,0
1 1 1 1 1 I 1 1 1
11(111111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t i
1 1 1 1 1 1 1 1 1
'Ill
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 l
,,,,,,,
[SW(5) = 2 or 3
1 1 1 1 1 1 1 1 1
1 ! 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1
. 3)*" —
, , , , , ,-,6,0,0
1,0,0,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 t 1 t 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 i 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 t
1 1 t 1 1 1 1 i
& ISW(12) » 0)
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
-,4,0,0
,-,,,, ,1,2,5,0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 II
1 I 1 1 1 1 1 1- 1
1 1 1 1 1 1 1 1 1
1 1 1 | 1 1 1 1 1
1 1 1 | 1 1 i II
1 1 1 1 1 I 1 1 1
1 I 1 1 1 1 1 1 1
1 1 1 ! 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 > t 1 1 1 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
FIGURE D-l. (Continued)
-------
o
Ln
ISCLT
PROJECT Example
INPUT
DATA
Participate Concentration
CARD GROUP
NUMBER
7 -
7a -
CODING FORM (Continued)
NAME
DATA
'
Z
t
5
6
7
8
9
10
tl
12
13
14
15
16
17
,8
19
£0
21
22
23
24
25
RECEPTOR
I
1
1
I
1
I
I
I
I
I
1
1
I
I
I
1
1
I
-,3
1
o
2
5
o
0
0,0
0,0
J-l
1
Y
2,0
2
o
Y
0,0
|_
o
0,0
(arbi
(axis
i i i
26
27
28
29
DATA
of grid
-.1,5,0,0
3
2
50
31
32
33
343
596
DATE
SHEET 3 OF 16
CARD COLUMN
37
36
39
PARAMETER
s
00
00,0
trarily placed
i
ystem,
i i i i
1
1
I
I
I
1
|
»Q
41 42 45 44 45 46 47 48 4MSO
51
52
53
54
55
AND VALUE (X means
omit if
-,1,2,5,0
|
|
|
|
|
|
I
,4
0,0
^eceptors
i i > i i
I
|
I
|
|
I
omi
.
f
NYPNTS =0o:
-,1,0,0,0
5,0,0
1 II 1 II
1111
1 1 1 1 1 1 t
1 III II
1 1 1 1 1
I 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1
II 1 1 1 1 1
t if NXWYPT =
i i i i i i i i i
i i i i i i i i *
i i i i i i
i i i i i iii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 i l 1 1 1 1 1 l .
r ISW(5)
i i i i
56
57
do
=
56
59
80
61
62
63
64
65
66
87
68
B9
not punch)
= 2 or
-,8,0,0
8
0 or ISW(l)
_J 1 i 1 1 1 l
0,0
1
3)
t
"~
1
6
o
TO
1 I
0,0
o
0
1 1
_J
1
L or 2) -
_j i i i i i
, , , , , ,-4,0,0
, , , , , 1;2,5,0
1 1 1 1 1 1 1 1 1
III 1
1 1 1 1 1 1 1 1 1
1 111 II
1 t 1 1 1 1 l 1
1 1 1 1 1 1 1 t 1
| 1 1 1 1 1 l I I
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 l 1
1 1 l
1 1 1 1 1 1 1 1 1
l 1 1 1 1 1 1 1 1
1 1 1 1 1 1 II
1 1 1 l 1 1 1 1 1
1 1 1 i i 1 1 l l
1 1 1 1 1 1 | 1 1
l 1 1 i l 1 f l l
1 1 1 1 1 1 1 1 1
FIGURE D-l. (Continued)
-------
a
i
KCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Particulate Concentration NAME
DATE SHEET 4 OF 16
CARD GROUP
NUMBER
9 -
DATA CARD COLUMN
1
1, ,2 13 14 19 16 17 ,8 19 20
21 22 23 24 23 26 27 28 29 50
31 32 33 34 3536 37 18 39 40
41 42 43 44 45 46 47 48 49 5O
51 52 S3 54 55 56 57 58 59 80
61 62 63 64
METEORLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
.,0,0,01,69,5, ,
. 000,1,2,8,3,
.00,0,0918, ,
. 0,0 0 1 0 7 6 ,
. 000,3,119, ,
. 0,00361,1 ,
.,0,00,3,8,6,5, ,
.,000,6,9,53,
-,0,0,0,6,7,4,7, ,
.,0,0,0551,2, ,
.,0,001,4,4,1, ,
.,0,0,01,1,5,5, ,
.,0,0,0,2,8,9,9, ,
-,0,0,0,0,8,39, ,
.,0,000,6,0,2, ,
. 000,2,8,2,0 ,
.,0,0,0,7,3,5,3, ,
.,0,0,1,0,4,8,8, ,
.,0,00,4,4,4,4, ,
.,0,0,0,9,6,2,9, ,
.,0,0,1,8,7,7,5, ,
.,00,1,68,9,2,
.,0,0,1,9,7,7,0, ,
(
.,0,0,0,0,8,5,6, ,
. 00,019,98
.,000199,8,
.,00,0,25,69, ,
.,00059,9,5, ,
.jOiO 0 5 1,3,9, j_
.,0,00,3,4,2,6, ,
.,000,79,93 ,
-,0,0,0,8,5,6,4, ,
.,0,0,0,5,4,2,4, ,
.,00,0,2,5,6,9, ,
.,0,0,0,2,8,5,5, ,
.,0,0,0,2,5,6,9, ,
.,0,0,0,1,7,1,3, ,
.,00,008,5,6, ,
.,0002,2,8,4, ,
.,0,0,0,7,7,0,8, ;
.,0,0,1,0,8,4,8, ,
.,0,0,0,6,8,5,1, ,
-,0,0,1,4,8,4,5 ,
.,0,0,2,7,9,7,7, ,
.,0,0,2,7,9,7,7
.,0,0,3,1,6,8,8, ,
tote that the
i i i i i i i i i
i
ii ill
i i i i i
i i i i ii
II I I i I
il I i i i i i
i ' i I i i i
i i I i i i i i i
i i t I i i i i i
i i i i i i i i i
i i i l i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i t i i i
i i i i i i i i
.,0,0,0,5,7,1,0, ,
.,0,0,0,4,8,5,3, ,
. 0001998
1 1 1 1 1 1 1 1 1
.,0,0,0,8,5,6,4, ,
.,0,0,1,6,8,4,3, ,
.0,02,76,9,;
.,0,0,3,4,2,5,7, ,
- FREQ (omil
format used h
i i i i i i i i
i i i
i i i i i
11 ii
i i i i i i
i i i i i i i i
i i i i i i i i
i i i i i i
i i i i i i i i i
i i i i i > i
i i i i i i i i
i i i i i i i i i
> i i i i i i i i
i i i i i i i i i
; i i i i i
i i i i i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
1 1 1 1 1 1 1 1 i
1 1 1 I 1 1 1 1 1
II 1 I 1 1 1
t if ISW(5) = 2 c
ere is the de
t i i i i i i i
i i
i i i i > i
i i i i
t i i i i i t i i
1 1 1 • 1 I ! 1 1
1 1 f 1 1 1 1 1 1
1 II 1 'l 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 I f 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1 1 1 1 t
1 1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 1 1 1 1 !
)r 3 -
fault format :
i r i i i i i i
i i i
i i i i i i
i i t i i i
i i i i
i i i i i i i i i
i i i i i i i i i
i i ii
l i i i i i i i i
i t i i i i i
1 ! 1 1 1 t 1 1
1 1 1 1 1 1 1 1 !
1 1 1 1 1 1 1 l 1
1 I 1 1 ! 1 1 1 1
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1
i I i i i i i 1 i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1
1 1 1 1 1 1 1 1 1
ror FE
K
NNE
NE\
ENE\
E ^
ESE
SE
SSE
s
ssw
sw
wsw
W
WNW
NW
NNW
/
£Q)
. Stability 'A/
\ /
• Stability B \
FIGURE D-l. (Continued)
-------
o
E3CLT
PROJECT Example Particulate
INPUT
DATA
Concentration
CARD GROUP
NUMBER
9 -
(Cent.)
CODING
FORM (Continued)
DATA
1 2
'I'
5 r
7
0
9
k)
11 12
13
,4
15
16
(f
IT
21 <:2J23
24
25
26
2,
METEOROLOGICAL
.,0.0,2
.004
.,00,2
623
LJ J
59
i
(52
.,00,1,4,5
.,00,1
* 1
6,5
0249
i i i
. ,0,0,1
.00,0
34
L-J .
t
i
8
8
7,4
6,7
2
9
2
*
7
9
5
1
1
. ,0,0,0,7,3,2,5,
. ,0,0,0,4,6,4,5,
.,00,00,9
.,0,0,0
2,6
.,0,0,05,3
. 00068
i , ,
. ,0 0,0
.,0
.,0
00
1
0,0
.,00,1
,,o
• o
* 1
0,0
6,9
9,0
6
1
8
7
82
,
6
5,8,4
6,0
•*•
2
8,3
1,7,7
1
0,0,6,05
8,24
0,1,4,1,3
j_.
i8i_5
L
1
6
0
5
5
6
_.
.,0,0
3
9
.0,042
.,003
. 0,0
. 0,0
.00
.0,0
1
2
2
1
.0,00
.,0,00
.,0,0,0
.0,00
.,0,0,0
.0,0
1
.0,02
o
o
1
1
1
6
7
9,6
2
5
83
84
1
1
9
7, ,
1
1 1
2, ,
8, ,
25, ,
2
9
85
|
4
9,4
7
7
4
7
. 0037
. ,0,0,3,0
.,0,0,4,2
.,0,0,4
o
.,0,0,3,5
. 00
1
. 003
.MPjO
-,0,0
*
2
6
2
2
5, ,
0, ,
1, ,
2, ,
1,
993, ,
4
2
55
9
6
5
7
2, ,
9, ,
7
> i
83, ,
4
5,3
8
3
2
6, ,
6, ,
2,3, ,
9
7
8,5,3
3
9
9, ,
2, ,
9, ,
6,4, ,
5, ,
•,0,0,4
.0,0
. 0,0
2
1
. 0,00
. 0,00
.,0,0
1
. 0,00
2
5
8,5
o
6
7
1
7
. ,0,0 04
.0,0
.,0,0
. 0,0
03
1
1
. 0,0,0
.0,0
2
5
5
2
1
1
7
5
7
5
1
94
15
. 0,0,5
. 0,0
.,0,0
.0,0
.0,0
7
85
3
4
28
29
30
31 32
DATA
6
8
63
8
3
1
7
3,4
0,8,
6
1
3
2
0
8
1
1
0
1
1
23
6,9 G,5
7,5
5
1
6,5
7
2
0,7,6
1
.,0,0,2,4,5
.,0,0,2,0
.0,02
.,0,0
.0,0
8
Si?
o
5
1,
2^6,9, ,
8,3
I
._j
3
?
_J
1
I
1
1
* |
33
343
536
NAME
DATE
SHEET 5 OF 16
CARD COLUMN
37
S8
39
40J4I 42
43
44
494
647
484950
51 52
53
PARAMETER AND VALUE (X
FREQ (C
i
i
,
i
i
,
,
I
|
1
I
|
I
|
,
0,0,1,4
2
. 0,00,4,8,5
.,0,00,4,2
. 0,0
.0
0,4,2
8
8
00713
i , ,
. 0,0
2,1,1,2
.,0,0,3,1,6
.,0,0,2,5,9
.,0,0,0,6,2
8
7
8
.,0,0,0,2,5,6
7
3
2
2
7
5,
8
8
1,
9
.,0,0,0,4,5,6,8, ,
.,0,00,5,1
.,0,0
3
9
1,1,1,34,
.,0,0,0,5,1,3,9,
lontinued)
i , i i i ,
,
i
,
i
i
.,0,0
0
. 0,0 0
.,0,0
.,0,0
. 00
1
.,0,0
,
|
1
1 1
1
1
1
,
1
| |
1
0,2,8,5, ,
142,7, ,
00,2,8,5, ,
005,7
0085
1 ,
6
01,4,2,7, ,
• ,0,0,0,1;
.00,0
.,°
0,0
.00,0
.,0,0
.,0,0
ri
199
1 1
3, ,
8, ,
1,1,4,2, ,
1,14
2
1 1
0,0,8,5,6, ,
0
1,7,1,3, ,
.,0,00,2,8,5
5 ,
. 0,0,0,2,5,0,9, ,
1
i
54
95
5S
57
56
59
BO
61
62
means do not
i
i
i
i
i
0,000,02,8,
,
i
,
,
.,000,0,2
. 0,0,0
0
5
8,5
85
6
.,0,0,0,1,4,2.7
.,000,3,4,2,6,
•0,00,3,4,26,
. 0,0,0,2,2
,8,4, ,
punch)
[\ '
\
- Stability B /
\ (Cont.) /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
• ^ability C\
\
FIGURE D-l. (Continued)
-------
o
do
ISCLT
PROJECT Example Particulate
INPUT
DATA
Concentrations
CARD GROUP
NUMBER
9 -
(Cont.)
CODING
FORM (Continued)
"...
DATA
1 2
' 1
T
•
T
1
l
T
23
24
25
26
27
METEOROLOGICAL
.,0.0,0,3,5
. ,0,0,0
..,00,0
. 0,0,0
. 00,0
.,00,0
. 0,0,1
. o
* 1
0,1
0,0
.0,0,0
. ,0,0,1
.00,0
.,0,0,0
.,0
• 0
0,0
0.1
• ,0,°|0
. o
6,5
9,5
6,8
3,9
8,4
0,3
6
5
1
0
9,7
84
8
9,8,2
3,3
I
8
8
85
7
9,84
0,0,9
5,7
4,9
5,5
2,2
9
4
7
7
7
8,0
9
3
8
1
.,0
.,0
. ,0
•l°
.,0
.,0
. ,-o
.,0
.,0-
- ,°
. ,0
.,0
•1°
..0
.,0
6,9,9,0 ,
0,0,5,3,5,5,
. 00,0
1
,
1
i
1
(
,
1 J
f
1 1
7,4
1
t
i
1
I '
00
i
1
I
o
o
o
o
0
1
1
2
2
1
04
o
6
05
05
5
7
63
63
97
4
o
8
6,843
0
1
8
2
9,4
0,5,33
0,3,53
'
0,3
0
o
2
1
04
.,0,0
2
4
7
&
2
6
1
3
9
84
9
5
9
7
8,3
1
9
, .,0,0
|
i
i
i
i
,
,
,
,
3 7,0 ,3 ; ,
7
5
9
9
8,5
6
0,2,6
2
9
.,0,0,1,8,84,2
.,0,02
. ,0
* t
. 0
•l°J
1
6
9
6
0,5,252,8
03
0
0
1
.,004,
2
7
9
5
7
6
6
4,4
0
0
8,6
73
13
4
1
. ,0,0,0942
* 1
o
.,0,0
7
8
9
8
07
7
28
29
3O
31 32 33
343
556
NAME -.- . .
DATE
SHEET 6 OF 16
CARD .COLUMN :
37
39
39
4OJ41 42
4^
44
45 «
r
40
49
5C
31 52
53
DATA PARAMETER AND VALUE (X
7
1
7
84-
'
•
.0,0,65,945
.,0
. ,0
.,0
0^2
1
1
.,0,0
.,0,0
-,°
4
9
6,0
9,0
6
0,4
.,00,2
5,
6
1
-.0,0,22
, .,0,0,5
1
I
I
i
I
1
1
1
.,00,9
• ,0,0,7
o
M
1
9
- FREQ (C
.,0,0,0,1,7,1,3, ,
.,0,0,0,1,1
* t 1
.,0,1
36,7
3,4,7
.,00,553
•;0|0
•l°;l
14,8
7,82
9,4,5
8
4
5
1
1
8
1
.,01
.,0,1
4
4
4
2
4
5
83;- ..
6166,3,
2,4,7,5,4
841
3
3
1,9,0,4,4
.,00,7,0,2
.,00
4,5,1
2
8
0,5
.,6-0,342,5
5,3
0,5,3
0
.,•0,0
34,5
7
Continued)
. ,0,6,0,0,5,7
.,0,0,0
.0
1
.0,0
. 0,0
.0
0
. ,0,0
Mo
1
8
2
1
1
03
.,0,0
* 1
.,0
.0
4,3, ,
, •. 0,05,8,8,0
13,5,3
•A1.4A4,
4,2,2,4, ,
. 005,1,10,1
.,0,1,4,1,5
4
8
8,
o
0
0
.,0,0
1
1
1
1
1
, -.0,0,2
9,7, ,
.,0,0,7593
.00,653,74,
. ,0,0,95
.,0,0,7,0
0
5
5
7
94
09
1
6
7
. ,00,97062
,,00,5,5,9
I 1 1
| i
7
.,0,
.,0
o
i
. 0,0
5,4,
1 1 1 1 1 1 1 1 1
1 1 1
1 1
|
|
1
,
,
. 0,
1 1
1 1
1 1
1 1
i
0
7
0
2
2
0,5,7
i
i
2704
0 7,9 0
0554
1,41
9,4,1
22,5
Ijj
1.2
9
2
9
9
1,9,90,
2,5,0
3^
1,3
1
2
9,9,8,3, ,
-,o
•1°
54
55
56
37
56
59
BO
61
62
means do not
0,0
1
0
0,2
.,0,0,5
. 0
. o
. 0
•i°
•l°l
.,0,
. 0
00
o
o
00
2
7
05
5
1
2
0,0,4
0,0,
0,
o,
1
4
9
2
8
9,
2,5,
0,0,0,
0.0,4,
.,0,0,
8,5,4,8, , .,0,
9,0,7,
7,
1
.,0,
0,1,9,8, ,
94,0
4
62,64
|
I
,
|
t I
| |
| |
| )
1
,
|
1,
0,2,
0,5,
.,0,0,0,
. o,
..0
o.
o.
1,
1,
2,
0,
2i
8,
8,5
7
3
2
o
24
98,
8,4
5
9
6
3
8
9,
8,1,
5
6
8,4
7,6,6
5,
9,4
3
1,
0
7,
5
94,1,2
59,
t
8,7
1
1 1 1 ! 1 1 1 1 1
i i i i i I I i i
' I [ 1 1 1 1 1 1
1
,
|\
\
\
63
64
I
punch)
\
1
,
i
/
Stability C /
(Cont.) /
7
/
\
>• Stability D
A
/ \
'
/ \
/ \
/ \
• Stability E \
FIGURE D-l. (Continued)
-------
o
i
PROJECT Example Participate Concentration
GAUD GROUP
NUMBER
T~rrTi ~rr~[~r
iTnTlTlT
9 -
(Cont.)
,J._
1 i 1 I 1 I I i
i i i i i i i i
l t I l I I l _L
, J. ,0,0.1.7,7,0,0.
: |..0.0.2,-lrr>rr>.l.
|. ,0,0,1,8,2,7,1,
i i i i i i i i I- i^i^i'^rli^i^Ji i
........ 1.,'VWvW. ,
i i I l i t i
I I 1 i l 1 _i..
!. ,o,o.:t.s.. , ._
i i l i i t l
0058 112
,",'>,2,-','?,7.i>. , ,.
,,0,0, 1,7,5,.-{,2. . L.O.O.-
•|0.",:}|°,'V',7
,(),(), 1,7,0,7 :»,
»» INI
l (i.H
ISCLT INPUT DATA CODING FORM (Continued)
ion NAME
DATE
SHEET 7 OF 16
DATA CARD COLUMN
?\ y* 2 1 p4 2ft B6 ? T ?H 29 3U
31 .1? uKJjrihe Af 3B 5<»4oUl 42 4^44^46|4r4H49 Vipl S2 55 54 55 S657 W 59
«0 «l 82 65 M
JLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
. iQiO^/i^;^!), ,
.,0,0,I,S^,7,1,
.,0,0,lr5,70l, ,
ool ,'{ l :> 2
. 0070228
. ,0 0,.S,!),!),2,5,
1 1 1 1 1 ! 1 1 1
__i..-.L-J_l_J_l. _i_i-J ..
| 1 1 | 1 1 1 1 1
1 1 1 1 1 111
lit) 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
-1 .J.1_L-J .111 i _
l 1 1 1 l I l l i
- FREQ (C
i i i i i i i i i
i i i i iii
i i i i i ii
_J-.L 1-1 1 1 1 L J_
_L L_l_i_l_i._l_l_J_.
1 1 III 111 L_
l l 1 l 1 III
1 1 1 1 1 111
III III
l l 1 l i 1111
.i ..i_!_i_i i_.i_L..i_
...i_i_i._i_i_.j i -i_i._
i i i i i i i i i
i i i i i i
i , i i i i i i i
i i i i i i i i i
i i i i i i ii>
i , i i i iiii
-i i i i i. i i i i
i .1. i i i i . i i
ontinued) -
i i i i i i i i i
1 ! 1
1 1 1
1 1
1 1 1 1 1 l-i. .L_l—
111 II
1 1 1 1 1 1 1
, 1 i I 1 I I 1 I L-
| | l 1 i l l l t
1 1 1 1 1 1 1 1
111 1
I 1 1 1 1 1 1
III II
IIII III
1 1 1 1 1 1 1 1
III 1
l i 1 l l 1 1 1 1 1 1 l l
1 l i 1 l i II
! 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
-J_.1_J l-l 1 1 1 -.
1 i 1 ! 1 I i :
IIII 111
1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 L.I
II 1 1 1 1 | 1
1 1 1 I 1
1 1 1
11 i 1 i | ,
1 1 L.I .1. 1 1 1
1 1 1 1 1 1 1 1 1
1 I i , 1 1 1 I 1
IIII II I
lllllllll
v
_j\
_J \
_J
_j
1
_J
-j
J
_]
_l
J
J
J
/'
j /
i /
: 1 I l 1 l 1 l J.-.J /
i i i i i i i i V
\ Stability E /
"\' (Cont.) /
\
\ /
\ /
/
\ /
X
/' \
,
\
- /Stability F \
\
\
I'lCUUK l)-l . (Cont inii«.;cl)
-------
I
o
BCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Particulate
Concentration
NAME
DATE
CARD GROUP
NUMBER
9 -
(Cont.)
SHEETS OF 16
;
DATA CARD COLUMN
1
2
T
\'
10
"
12
13
• 4
15
16
17
4*
20
21 22J23 24 23 26 Z7 28 29 30
31 32 33 34 33 36 37 38 39
4OJ4I 42 43 44 43 46 47J4B 49
5O
31
52
53
METEOROLOGICAL DATA PARAMETER AND VALUE (X
^
•
.
o
o
1
k _j
7,0
0,74,2
00,6
o
(
|
0,7
7
8
2,9,4
6,1
1
1
1
I
1
1
I
i
i
l
i
i
i
I
I
i
i
i
3
8
8
2
7
|
*
[_;. ^_,
*
*
0
0
o
2
1
1
1
2
9
2
5
W,
047
8
8
2
1
•
2;
¥, ,
8
o,
1
1
1
1
1
1
1
1
1
t
1
1
1
1 1
1 1
1 1
1 1
,,,,,,,,
lit 1
III II
1 t 1 1 ( 1
1 1 1 t 1 ) II
III 1
III 1
1 1 1 1 1 It
1(1111111
1 1 1 1 1 1 1 f 1
• 1 I I 1 1 t 1 1
1 1 1 1 1 1 1 1 1
i i t i i i i i i
ii i i i i i i
i i i i i ii
- FREQ (C
1 1 1 1 III
1 t 1 1 1 I
II 1 III
f 1 1 1 1 1 1 1 1
III III i
II II
1 1 I 1 I II
1 1 1 1 1 1 1 1 1
III! Ill
1 1 1 1 1 t 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I t ! ! 1 l 1 i
I 1 1 1 1 1 1 1 1 1 i 1 ! I 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 II
1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 ' J_ 1 1 1 1 1
Continued) -
1 11 III
t 1 1 ill
II III
1 1 1 1 1 1 1 1 1
1 III
II 1 til
II 1 1 1 1 t
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 I 1
1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 t 1 1 1
1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 i 1
III t 1 1 1 1
1 1 1 1 1 1 1 1 1
111 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 i 1
l l l 1 I 1 l 1 1
1 1 1 1 1 ' 1 1 1
1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
1
j
I
1 1 1 1 1 1 1 1 1
1 1 1 1 ' 1 1 1 1
I 1 1 I 1 1 1 I I
1 1 1 1 1 1 1 [ 1
,
|
|
|
54
95
36
57
56
39
BO
,623M M 0 1 72 73 < 73 76 7« 79 90)
means do not punch)
|
|
,
|
i
i
(
I
I
1
|
|
|
|
I
|
|
|
|
|
|
1 1 1 1 1 1 1 1 1
!
1 1 I i 1 1 ' -1 1
1 1 1 1 1 1 1 t 1
\ - Stability F /
\ .(Cont.) ' I
\ /
X
/ \
/ \
/
/ \
\
FIGURE D-l. (Continued)
-------
ISCLT INPUT DATA CODING FORM (Continued)
PRO JE CT
Example Particulate Concentration
NAME
DATE
SHEET 9 OF 16
CARD GROUP
NUMBER
DATA CARD COLUMN
T
I 23496789 10 II 112 13 I4| 15 16 17 18 19 20 21 22 23 24125 26 27 28 29 50 SI 32 33 54 35 !6 37 58 39 40 41 32 43 44 45 «6 47 48 49 SO 51 52 53|S4 35 56 57 58 59 60 61 62
72 n T« 75 re r
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
10 -
11 -
- TA (omit if ISW(5) = 2 or 3)
i i i > |2,8,7,. |2
i i i i i i i i i
11111:111
i i i i i i i i i
, , , , W, ,2
i i i i i i i i i
! 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
i i i i ,2,8,3,. ,2
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
, , , , 2,8,0,. ,8
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
, , , , 2,7 ,9, ,1
i i i i i i i i i
1 1 1 1 1 1 1 ! 1
1 1 1 1 ! 1 1 1 1
2,7,9,. ,1
i i i i i i i i i
i i i i i i i i i
i i > i i i i i i
- HM (omit if ISW(5) = 2 or 3) -
,1,7,3,0
, , ,9,6,0
, , ,3,2,0
1 I II I
I 1 I I I I I 1 I
1 I I I I I I I I
I I I I I I I I I
I I I I I I I I j
I I I I I |J.|I |O|
.1.7,3,0
,1,0,2,5
, , ,5,0,0
i 1 I 1 I 1 I I I
1 I I I I I I
I !._!_ I I 1
I 1 I I I I 1 I
1 I I I 1 1 1 I I
I I I I I I I I
1 J I I 1 1 L
I I I I I 1
I,,,,
, , , ,1,2,3,5
840
I 1 I I I I
1 1 I I I 1 I I I
I 1 I 1 1 I I 1 1
I I 1 I I 1 I 1 1
I I I I I I I I I
1 I I I 1 I 1 I I
1 I J_ I 1 1 I I I
, , ,1,2,9,5
840
I I I I I I I
I I 1 I 1 I 1 1
1 I I 1 I I I I
I 1 I I I 1 I I
1 I J_ I I I I I
I I I I I 1 1
1 I I I I I I
I I I I 1 I I I 1
I I I I 1 I I I I
, , , , , ,1,2,9,5
840
I I 1
I I I I l.__i_ I I 1
I I I I I I I 1
1 1 I I 1 I I I I
1 I I I I I I I 1
1 I I I I I I I I
I I 1 I I I
1,2,9,5
840
I,,,,,,,,
, , , , i , , , i
i , , , , , , ,
, , , i , , i ,
Stability A
ilityB
bility C
ityD
Stability E
StabiliW F
FIGURE D-l. (Continued)
-------
o
ISCLT
INPUT DATA
CODING FORM (Continued)
PROJECT Example Particulate Concentration
NAME
DATE
CARD GROUP
NUMBER
11 -
(Cont. )
12 -
13 -
14 -
1 23456
7
e
9
10
II 12 13 14 115 16 17 16 19 20
21
22
23
24
25
26
27
28
METEOROLOGICAL
i i i i i
i i i i i
i i i i i
ii ii
i i i i
i i i
- blank
- blank
- blank
; i i i i i
- blank
- blank
- blank
care
i i
care
i i
care
i i
cart
i i
care
i i
care
i i
1 III III
III 1 1 1 1 1 1
1 1 1 1 | 1 1 1
1 III
1 1 1 1 1
1 II
II II 1 1
, use defaults
i i i -i i i i i
, use defaults
ji
, use defaults
iii i i i i i i
, use defaults
iii i i i i i i
, use defaults
ii i i i i i i
, use defaults
29
DATA
50
31 32 33 34 33 56
SHEET 10 OF 16
CARD COLUMN
3708
39
40
41 42 43 44 4S 46 47J4B
49
50
51
52
53
54
55
56
57
56
DATA PARAMETER AND VALUE (X means
1
ROTATE TK
- blank card, use defaults -
i i i i i i ill i i i i 1
- blank
card, use defaults i -
iii ii i i i i 1
ZR
1
- HM (Co
i i i i i i i i i
i i i i i t i i i
i i i i i
i
i iii
i i i
1
1
1
I
DPDZ (omit i
1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
I
I
1
- (omit if ISW
BETA1
1 1 1 1 1 1 J | |
titinued) -
i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i
i i i i
i i i i i
i i ii
if ISW (5) = 2
1 1 1 1 1 1
or
i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
f 1 1 1 1 1 1
1 1 1 ( 1 1 1 1 1
, , i i , i i , i
(5) = 2 or 3)
BETA2
1 1 1 1 1 1 !
UBAR (omit if ISW (5) = 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
'
or
i
3)
I
59
so
61 62 63 M 85 66 87 68 69 70 71 72 rs 74 75 T6 77 7SJ79 BO
do not punch)
1 1 1 1 1 1 1 1 1
| 1 1 1 1 1- 1 1 1
3)
I
G
I
• -
DECAY
==-^=n
FIGURE D-l. (Continued)
-------
PROJECT
CARD GROUP
NUMBER
15 -
16 -
ISCLT INPUT DATA CODING FORM (Continued)
Example Particulate Concentration NAME
DATE SHEET 11 OF 16
DATA CARD COLUMN
1 99»*>7RQB/J9 a a 9 *L 1" -JL-
| i ^ T^ ^_
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- PHI (omit if ISW(5) = 2 or 3) -
- blank card, use defaults -
iiiiiiiiiliiiiiiiii iiiiiiiii iiiiiiiii tiiiiiiii itiiitiii iiiiiiiii iiiiiiiii
- blank card, use defaults -
i i i i i i i i i I i i t i i i i i i 111111111 i i i i i i i i i i i i i i i t i i i i i i i i i 111111111 i i i i i i i i i
- P (omit if ISW(5) = 2 or 3) -
- blank card, use defaults - p\ ^
IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII Illll 1 1 1 ^v /^
- blank can , use defaults - ^\ s'
Illll 1 1 1 1 1 1 1 1 Illll 1 Illll 1 1 1 1 1 1 1 II 1 | | | 1 ^V /
- blank care , use defaults - \. ./*
11111 i ' ' ' J L 1 ' ' ' ' ' ' ' ' iiiiii: iiiiii ^~^>^
- blank can , use defaults - .^^\^
iiiiiiiii iiiijtiii 111111111 111111111 111111111 iiiiiii i i ^ ^\
- blank can , use defaults - /- \.
IIIIIIIII 1 1 1 1 J 1 1 1 1 IIIIIIIII IIIIIIIII 1 1 1 1 • 1 1 1 1 1 Illll l_| J /^ ^^v
- blank can , use defaults - ^ \.
11111 iii iiiiiiiii 111111111 1111111 i iii 11111 ii ii i i / \.
FIGURE D-l. (Continued)
-------
1
-p-
ISCLT INPUT DATA
PROJECT Example Particulate Concentration
CODING FORM
(Continued)
NAME -
DATE
CARD GROUP
NUMBER
17 -
DATA
12349
6
7
8
9 ,0 II 12 13 14 15 16 17
IB
19 20 21 22 23J24 25 26 27 28
29pO 31 32 33
3435
36
CARD
37
98
39
40
SHEET 12
COLUMN
41
42
43444546474
B49
SO SI 52 53 M 9
556
57
56
59
SO
61
62
66
67
eajesrrom 72
OF
H"
re
16
re
r7
78
rojc
lyu
SOURCE DATA PARAMETER AND VALUE
NUMS
III *-
2
i i i i3
4
5
6
iii,7
, i i i8
' , , , ,9
10
11
1 1 1 1
12
13
i i i i
14
1 1 1 1
, , 1,5
, , I1!6
, ,
lilt
I 1 1 1
1 1 1 1
1 1 1 1
wo
qno' DX
23 , , , -,1,3,.
i
i
i
i
i
i
i
i
i
i
i
i
i
i
0
3
3
3
3
3
3
3
3
3
3
0
0
0
0
0
III
3
o
,3,0
' , , ,40
, , , , ,4 9
59
i i i i i. i i i"i"
79
1 1 1 f 1 1 III
89
III 1 1 1 1 1
99
109
1 1 1 1 1 1 III
1,2
1
144
167
1 1 1 1 1 1 1
1,9,0
2,0
1
t 111
1 1 1 1 1 1 III
1 1 1 1 1 1 III
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 III
DY
1 1 1 1 1 1 I \ *1
0
1 1 1 1 1 1 II
o
o
,,,,o
1 1 1 1 1 1 1 1
1 1 1 t 1 1 1 1 1
1 1 1 1 t 1 1 1 1
1 1 1 1 ( 1 1 1 1
1 III II
0
1 1 1 1 1 1 1 1
0
1 1 1 1 1 1 1 1 1
0
1 1 1 1 1 1 1 1 1
II III 1
1 1 1 1 1 1 1 II
1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 i 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
H
1 1 1 1
f 1 1* 1*
1 I 1 1 (• 1
i , 4
i i i i6
. 3
•1
7 ft
I i I i i* i
, , , ,9,. ,6
It 1 1 1* 1
, , ,i,3-,o
14
1 1 1
16
1 1 1 1
, , ,22
22
1 1 1 1
22
1 1 1
, , 22
, ,50
•i8
..5
. 5
. 5
1
. 5
1
. 5
•,°
II II
1 1 1 1
1 1 1 1
I
I
1 1 1 1 1 1
1 1 1 1 1 1
_j
1
zs
1
1 1
'
1 1 1 1 1 1
_|
,,<<;<
TS or
SIGYO
or XO
i , ,2,6,.
,6
, , ,4,. ,7
4
i i i ii*
, , 4.
, ,4,
1 1 1 1 I*
, , , ,4,
i i i i i*
iiii,"
i i i i i"
i , i i4,'
, ,1Qr
10.
i i i i i
10.
Ill 1
, ,1,0,
,7
7
,7
,7
,7
,7
,7
7
7
,8
8
8
,8
, , , ,3,4,0
1 1
1 1 1 1 1 1
1 1 1 1 _l_
i
1 1 1 1 1 1
1 1 1 1 1 1
VEL
or
SIGZO
i i i i i i
i i i i' i1
i i i |1|'
, , ,1-
1 1 1 1 1*
,o
,o
,o
,o
, , , ,1,-,°
, , , ,1,.
i i i |1|
, , , ,!,•
, ,1,
,0
,o
0
,o
1. 0
1 1 1 1 1 1
, , ,H,
11
1 1 1 1 1
11
1 1 1 1 1
, , ,1,1,
1 I 1 l"l
1 t 1 t 1
,6
6
6
,6
,o
I
1 i i 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1
|
.
D
i
"
1 1 1 1 1 1
1
*
0
HB
Jill 1
1 1
1 1
1 1
1 1 •
1 1
1 1 1 1 1 1
[
.
1 t
r i i i i i
1 1
25
1 1
',i.i.i
i i i i i i
.
, ,
1
1
1
1
1
BW
I |
I
I
1
1
1
r i i i i i
1
1
1
1
1
1
I
1
(
1
,
1
1
1
1
1
1
1
1
1
1
1
,
1
1
1
I
1
6
7
W
P
,6
,6
,6
,6
,6
:6
,6
,6
16
,6
i
i
i
i
,
1
1
1
FIGURE D-l. (Continued)
-------
o
Oi
PROJECT E
ISCLT IN
xample Purlieu late Concentration
PUT DATANGO
DING FORM (Continued)
NAME
DATE SHEET 13 OF 16
CARD GROUP
NUMBER
17a -
DATA CARD COLUMN
I 1 i Il|I[I!JIII[iIII
±L.m±iu±m..ii'iLLii
.001 .007
i i , i i , • i , i 1 i i i i i i • i i i
1 1 1 1 1 1 1 I I | 1 1 1 1 1 1 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
| | 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 < 1 1 1 1 1 I 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11111)111
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
(Hettlin
i i i i i i , , i
, i i i i i i i i
_L J_ J_l 1 1. J..J .._L .
1 1 1 1 1 1 l 1 1
1 l 1 1 l 1 1 1 1
-.JL-1 1 ..j_J_l_L _L_L_
l l 1 i l 1 l 1 l
l l l l l l l 1 l
1 l 1 1 1 1 1 1 1
1 1 1 1 1 l 1 1 1
l l 1 1 1 l 1 1 l
1 1 1 l l 1 1 1 1
1 1 1 l 1 1 l 1 l
1 1 1 1 1 l l 1 1
l 1 1 1 1 1 1 1 1
i l l i l l 1 1 1
1 1 1 1 1 1 1 1 1
l l 1 l 1 l 1 1 1
l 1 1 l 1 l 1 1 1
1 1 1 1 L t 1 1 L
I I i 1 i i I II
II j '
^l^.,^!^ ,rrrrrrrTTTTT,,, ,TTr ., ^
L '
•,l -.2 V? '.4B5 M IT M M BO
1 1 1
81 [6? 6l|«4 6ft «|67 M »3 7CJ
SOURCE PARAMETER AND VALUE
- VS (omit
0 1 '1 f ) 't 1
1 1 i 1 1 1*111 1 1 1 1 1 1* 1 1 'l '
1 1 ! 1 1 1 I 1 1 | 1 1 1 1 1 1 1 11
1 velocities for sources I thro
i i i i i i i i , 1 i i i i i i i i i
i i i i i i i i i i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
1 1 1 1 I 1 1 II
if NVS = 0) -
i i i , , i • i i i 1 i i i t i i * i r i
.-L 1 1 ,1 J_l_l. .!._!_
ugh 11, make 11
r i i , i ! , i ,
1 1 1 1 1 1 1 1
III 1 i 111 1
copies of this icard)
i r i i l ' i l i 1 1 l f i l l ; l l
1 1 1 i 1 1 1 1
1 I
1 1 1 1 1 1 1 II
ii i i i i i i i i i iii i i i i i i i i i i i i i i iii
iii j
i i l i i i i i ! I i i i ; i i i i i
l l 1 l 1 1 1 l l | 1 l l l : l l 11
l i 1 l l i i l i
i i i i i l i i l
i i i i i i i ii
i i i i i i i ii
i i i i i i i it
i i i i i i i l i 1 i i i i i i i l l
i i i i i i i i i
i i i i i i i i i
i i l i l i i l i
i i i i i i i i i
i l i i i i i l i
i i i i l i f i 1
l 1 1 1 l i 1 l l
i i i i l i i l i
tiiiifiii
-------
1
t— '
o-.
ISCLT INPUT DATA
PROJE CT Example
Participate Concentration
CARD GROUP
NUMBER
17b -
DATA
I
2
9
10
tl
12
13
14 15
16117
16
19
20
21
22
23
24
25
26
27
26
29
30
31
32
33
SOURCE
'
i iii
1 1 1 1 1 1 1 1 1
_|
1
1
I
•
I |
(M
|
4
0
ass
i
ii i i ,
|
1
i i iii
1
I
ii i i i i i
_!
1
1
,
1 1 1 1 1 1 1 1
II 1 1 1 I 1 1
III 1 1 1 1 1 1
III 1 1 1 1 1 1
III 1 1 1 1 1 1
_J
1
1 1 1 1 1 1 1
I 1
III 1 1 1 1 1 1
III 1 1 1 1 1 1
i
[
ractions
f i i i i
2
8
Tor
i i
1 1 1 1 1 1 1 1 1
_|
343
536
CODING FORM (Continued)
NAME
DATE
SHEET 14 OF 16
-
CARD COLUMN
37
DATA
- FRQ
I
i
18
39
40
41 42 45 44 45 46 47 «8 49 50J 51
52
5334
55
M
57
56
59
BO
61
62
63
J.
66
67
66
89
PARAMETER AND VALUE
(omi
I
sources 1 th
i i i i i i i
i
1
ro\]
i
i iii i
_i
|
I
I
1
|
|
|
1
1 1 1 1 1 i
I
1
1 1 1 1 1 1 1 1 i
_j
I
1 1 1 1 1 1 1 1 1
I
I
!
|
I
. i , . , 1 1 . .
1 1 1 1 1 1 1 1 1
t if NVS = 0) -
i i i » i . ,. ,0,6
ii i i i i i i i
gh 11, make 1
i i i i i i i i i
i i i i i i i i
i i i i i
i i i i i t ii
1 1 1 1 1 i 1 1 1
t t 1 I I 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 '1 1 1 f 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
1 1 1 1 I 1 1 1 1
1 1 i 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 I 1 I
1 1 1 I 1 1 1 1 1
!•
. copies of
i i i i i i
j
1
I
I
1
0,4
this
| |
i i i i i i i i i
1
1
I
_| 1 1 1 1 1 1 1 1
i i i i i i i i i
I
I
u
1
1 1 1 1 1 1 1 1 1
I
card)
_i i i i
TO
1
iii i
1
I
I
i i i , i i i i i
1
,
I
1
I
i i i i i i i i i
i i i i i i i i i
I
1
i i i i , i , i
i i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 III
1 1 1 II 1 1 1 1
• 1111,111
1 1 1 1 i 1 i 1 1
1 1 1 1 1 1 1 l_
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 i i 1
1 1 1 1 1 1 1 1 l_
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 11
1 1 1 1 1 1 1 1
,,.,,,,,,
i i i i i i i , i
i i i i_
FIGURE D-l. (Continued)
-------
I
-J
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Participate Concentration NAME
DATE SHEET 15 OF 16
CARD GROUP
NUMBER
17c -
DATA CARD COLUMN
1 23456781s 10
II \Z 13 14115 16 17 18 19 20
21 Z2J23 24 25 26 27 28 29 50
31 32 33J34 35 36 37J56 39 40
41 42 43 44 45 46 47 48 49 5 1
lllllllll
lllllllll
1 1 1 t 1 1 1 1 1
1 1 1 1 1 1 1 1
rhis card)
i i i i i i
i i i i i i
t i i i i i i i i
i i i i i i i i
i i i i i i i i t
i i i i i i i i i
iiiiiiiii
111111111
111111111
i i i i i i i. i i
I,!,.....
iiiiiiiii
111111111
111111111
111111111
i i i i i i i i
i i i i t i i i
111111111
iiiiiiiii
iiiiiiiii
111111111
i i i i i i i 41
ii . i i i i i
i i i i i i i i
iii i ii
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiiiiii
iiiiii.il
iiii iiii
iiiiiiiii
iiiiiiiii
i i i i i i i t .
111111111
iiiiii.il
i i i i i i ii
111111111
i i i i i i 11
111111111
iiiiiiiii
i i i i t i i i j_
iiiiiiiii
FIGURE D-l. (Continued)
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT Example Particulate Concentration
NAME
DATE
SHEET 16 OF 16
CARD GROUP
NUMBER
DATA CARD COLUMN
2 3 !« t 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 S4J2S 26 27 28 29 50 31 32 33 MJ35 36 37 3S 39 4C 41 42 43 44 45 4« 47 40 49 50 31 52 53 54 58 56 37 96 59 BO 61 62 63W4 65 66 87 68 69 TO Tl 72 fJ
SOURCE DATA PARAMETER AND VALUE (X means do not punch)
17d -
00
- Q -
,. ,4,0
. 30
i i i i i i i
i i i i i* i i
i i i i i i i
. 13
i i i i
. 10
1 I i I I I i 1 I
. 08
i i i
. 04
I 1 I t I II
i ! 1 1 t._i I I I
. 02
i i i i i i i i i
2|» I6!3
I I I i 1 1 1
I I I 1 I I I I I
I I I I I I I 1 I
I I I I t I I I I
I I I 1 t I I I I
.5.0
i i i i iii
40
11
I I I I III
I I I I III*
20
III I III
16
II! I III'
13
J I
III I III'
10
II
08
111 I III
.A5
III I I I I I I
I I I I I
III I I i I I I
II I 1 I I I I I
I I I I I
i i i
. 50
i i i i i
,. ,5,0
. 25
i i i i i i
I I I I I I I I I
, i i , i i i i i
. 16
i i i i* i ,
14
i i i • l* I l
. 13
i i i i i i
i i i i i i i i i
i i i i i i i
, , , i i i , ,
i i i i i i i i
i i i i i i i i i
j i i i i i i i i
i i i i i i
t i i i i i i i
i i i i i i i i
iiiiiir
i i i i i , i'
,5,0
i i i i i i i i i
i i i i i i i i i
iii,,,,
, , , , i , ,
I1!6
, i , , , i i
,11111111
, i , i , i i
, i- , i , i i ,
; i i , , •, , , i
i i i i i i i
i i i i i i
i i i i i i i i i
i I I i I i i i
i i i i i i i
'
, , , i i i
I I I I I I I ! I
i i i i i i i i i
i i i i i i i i i
i i i i i i i i
I I I I I I I* I
19
, , i , , i i i
1 I I 1 I I I I
1 I I t I I I 1 I
I I I I I I I I
I I I 1 1 I I I I
I I t I I I I I I
I I 1 I I I I I I
j i , i , ,
I _t_ I I 1 i
ii 11-
I 1 I I I I 1 I 1
i i i i i i
1...0
i i , , , i , i
i i i i i i i
,.,2,2
, i i i i i i
.,2,2
source strengths for
ource 1
source strengths for
sources 2 through 11
make IGl copies of each
data ca
source1 strengths for
sources 12 throkgh 15
mate 4 copies of\this
ca *
rce strength for
ource 16
FIGURE D-l. (Continued)
-------
c. Card Group 3 - Card Group 3 specifies the number of
categories of meteorological data and the number of sources and receptors
in the grid system. The parameter NSOURC is set equal to "16" for the 16
sources used to model the hypothetical potash plant. The parameter NGROUP
equals "5" because we wish to print the output for five different source
groupings. The parameters NXPNTS and NYPNTS are both set equal to "19" for
the 19-X by 19-Y receptor grid system shown in Figure 2-3. The parameter
NXWYPT is set to "1" and specifies one discrete point that is used in this
example to represent an air quality monitor location. The parameters NSEASN
through NSCTOR are all left blank so that they assume their respective
default values of 1 season, 6 wind-speed categories, 6 stability categories
and 16 wind-direction categories. The parameter NOFILE is set equal to "1",
because the tape output file will be the first file on tape.
d. Card Groups 4 and 4a - Card Groups 4 and 4a:define the
source combinations for which concentration output is to be produced. The
parameter NGROUP on Card Group 3 specified 5 source combinations. Card
Group 4 (NOCOMB) gives the number of source ID-numbers the program is to use
to define each source combination. The first output combination baa one
defining source, the second and third use two defining sources and the
fourth and fifth use only one. Card Group 4a shows the actual source ID-
numbers the program is to use in each source combination. The program is
to output annual concentrations for Source 1, Sources 2 through 11 combined,
Sources 12 through 15 combined, Source 16 and all sources (1-16) combined.
e. Card Group 5 - Card Group 5 specifies the output concen-
tration units and input source emission units. Because we wish to use the
program default units, this card is left blank. However, this card is still
included in the input data deck. The output units are defaulted to "micro-
grams per cubic meter" and input source emission units are defaulted to
"grams per sec" for the stack and volume sources and to "grams per sec per
square meter" for the area source as shown in Figure D-2.
D-19
-------
f . Card Groups 6, 6a, 7 and 7 a - Card Groups 6, 6a, 7 and
7a define the locations of the receptors of the regular (non-discrete) grid
system and the discrete point. The regular grid system (Card Groups 6 and 7)
is in Cartesian coordinates and the discrete receptor (Card Groups 6a and 7a)
is in polar coordinates.
g. Card Groups 8 and 8a - Card Groups 8 and 8a are not
shown in Figure D-l because we are assuming flat terrain (ISW(4) equal to
"0"). Thus, the terrain elevation cards are omitted from the input deck.
h. Card Group 9 - Card Group 9 is used to specify an optional
format the program uses to read Card Group 9a. Because ISW(18) is left blank
(zero) , this card group is not used by the program and is omitted from the
input deck. The program will use the default FORTRAN format of (6F10.0) to
read the data shown in Card Group 9a. This default format requires the user
to punch the frequency of occurrence data in Card Group 9a using 10 columns
per value including the decimal point (period). Only NSPEED values are read
per data card in Card Group 9a.
i. Card Group 9a - Card Group 9a gives the joint frequency
of occurrence of wind speed and direction by stability category and season.
As the example run is using annual data, only one season (annual) is punched.
Within this one season, there are six stability categories (A through F) and
within each stability category there are sixteen cards, one for each wind
direction categqry clockwise from north to north-northwest. Each data card
contains the frequency of occurrence for the six wind-speed categories. Values
that are zero have been left blank because the ISCLT program interprets
blanks as zeroes. If we were using seasonal data in the example problem, the
program would require NSEASN decks punched as in Figure D-l .
j. Card Group 10 - Card Group 10 gives the annual ambient
air temperatures in degrees Kelvin for stability categories A through F.
D-20
-------
k. Card Group 11 - Card Group 11 gives the annual mixing
heights in meters by stability and wind speed. The mixing heights are
punched, six values per card, for wind-speed categories 1 through 6, and
there are six cards for stability categories A through F. If we were using
seasonal data in this example run, the program would require NSEASN groups
of these data cards. For the purpose of this example, it is assumed that
the median mixing heights shown in Figure D-l have been developed as a func-
tion of wind speed and stability using onsite acoustic radar data. Some
values have been left blank in this card group in Figure D-l for stability
categories A through D because the joint frequency of occurrence of these
wind-speed and stability categories is zero (and no calculations will take
place). The values for stability categories E and F have been left blank
because the case is being run in the Rural Mode and the program automatically
uses 10,000 meters. Note also that the decimal point is not punched. The
decimal point can be eliminated in real variables only when the value is
a whole number and right justified in the respective punch columns.
1. Card Groups 12 through 16 - Card Groups 12 through 16
provide the remaining meteorological and model data. These card groups are
all blank, but must be included in the input data deck. The program
provides default values for all of these data items and their respective
values are shown in Figure D-2 under the "ISCLT INPUT DATA" heading.
m. Card Groups 17 through 17d - Card Groups 17 through 17d
provide all of the source information. Figure D-l shows each of these card
groups on a separate page. The coding forms are set-up in the manner shown
to facilitate key-punching. However, this is not the correct order for input
to the program. These data cards must be reordered so that there are Card
Groups 17, 17a, 17b, 17c and 17d for Source 1, 17 through 17d for Source 2, etc.
prior to input to the program. Card Group 17 in Figure D-l shows Sources 1
through 16. The parameter DISP is blank (zero) for each source as this run
is the initial entry of these sources and there is no input tape. The
parameter TYPE identifies the type of source ("0" =• stack, "1" » volume,
"2" = area) and QFLG specifies how the source emissions vary. The emissions
D-21
-------
from Sources 1 through 11 vary with wind-speed category and stability cate-
gory, while the emissions from Sources 12 through 16 are assumed constant.
Card Group 17 also gives the location, height, exit temperature, and exit
velocity or dimensions (depending on the source type), inner diameter of
the stack, and the height and width of the building for the consideration
of wake effects for stack emissions. As we are calculating particulate con-
centrations, the parameter NVS has been set to the number (6) of particulate
size categories used to define the particulate distributions of Sources
1 through 11. However, the particulate emissions from Sources 12 through
16 are assumed to have negligible gravitational settling velocities and are
treated as gaseous emissions. Card Groups 17a, 17b and 17c specify the
particulate settling velocity (VS), mass fraction of the distribution (FRQ),
and the surface reflection coefficient for each of the six particulate size
categories for Sources 1 through 11. Note that Card Groups 17a through
17c are omitted for Sources 12 through 16 because NVS on Card Group 17 for
these sources is blank (zero). Card Group 17d in Figure D-l shows the
emissions of each of the input sources. The first six cards of this group
specify the emissions of Source 1. There is one card for each stability
category with six values across the card for the wind-speed categories. If
we were using seasonal data in this example, the program would require NSEASN
groups of these cards for Source 1 because QFLG for this source is set to
"3". Data cards 7 through 12 of this card group specify the source emissions
for Sources 2 through 11 in the same manner as for Source 1. Sources 2
through 11 have the same emissions and hence only one copy of this set of
cards is coded with instructions to make ten copies of these six cards. The
last two cards punched specify the emissions for Sources 12 through 16 on an
annual (non-varying) basis. In some cases, the source emissions are blank
on these data cards because the frequency of occurrence of wind speed and
wind direction is zero. The input deck for these sources will Include one
card from Card Groups 17 through 17c and six cards of Card Group 17d for
Sources 1 through 11. Following these cards, the deck will include one card
from Card Group 17 and one from Card Group 17d for Sources 12 through 16 for
a total of 120 cards in the input source data deck.
D-22
-------
D.2.2 Run Time, Required Data Storage, Page Output and
Tape Output Estimates.
The run time, data storage, page output and tape output estimate
calculated for the example concentration run are given in the following
paragraphs.
a. Run Time - The run time estimate is calculated using
Equation (4-6) in Section 4.2.5 and is approximated by
Time (seconds) = NSOURC • (NXPNTS • NYPNTS + NXWYPT) •
_4 t0-1)
NSEASN • NSTBLE • NSPEED • (NVS+1) • 7 x 10
Substituting values from Figure D-l,
Time (seconds) - 16 • (19-19+1) • 1 • 6 • 6 • 7 • 7xlO~4
(D-2)
= 1022
or approximately 17 minutes estimated run time for the example problem. The
actual run time was 8 minutes. The value of f (7xlO~^) used in this
approximation is calculated to over predict the actual run time to insure
that the ISCLT program does not max-time.
b. Required Data Storage - The required data storage must
be calculated to determine whether or not the desired run will fit in the
ISCLT program. First, the amount of data storage required by a particular
run is determined by Equation (4-3) in Section 4.1.2. Second, if the user
desires maximum 10 calculations under ISW(ll) (ISW(.ll) = "2") or if the
parameter NGROUP is set to a value greater than "0", the user must comply
with Condition a, b or c under ISW(ll) or under NGROUP in Section 4.1.2.
Taking values from Figure D-l and substituting in
Equation (4-3) we calculate
D-23
-------
40000 > [l9+19+2-l] + (2-16+0) • (19-19+1)
(D-3)
> 11947
Where the variables K and I in Equation (4-3) are set to "2" and "0", respec-
tively. The value of K is set to "2" because ISW(8) has a value of "3" and I is
set to "0" because ISW(4) has a value of "0". We see from the calculated ine-
quality that we are well within the program storage limitations and have com-
plied with the first part of the data storage check. The second part of the
required data storage check must be done only if ISW(ll) is set to a value of "2"
or the parameter NGROUP is set to a value greater than "0". If either of these
parameters are set as indicated, the program is required to save the individual
source concentration (deposition) calculations for multiple passes through
these data. The program must save these calculations on either magnetic
tape (mass storage) or in the program storage area. Conditions a and b
under ISW(ll) and NGROUP in Section 4.1.2 require either an input tape or out-
put tape. Condition c under ISW(ll) or NGROUP in Section 4.1.2 requires
the user to evaluate Equation (4-1) or Equation (4-2) if Conditions a or b
are not complied with. The example run shown in Figure D-l shows we are
using an output tape (ISW(5) = "1") and hence we have complied with Condition
b and satisfied the second part of the data storage check. However, the param-
eter NOFILE must be input on Card Group 3 when applying Condition b.
c. Page Output - The page output estimate is calculated using
Equation (4-8) in Section 4.2.5 giving the output pages as
Pages = A + B + C (D-4)
The value of A from Equation (4-9) is 16+N or 16+16=32, because we are using
16 input sources arid ISW(4) equals "0". The value of B, obtained from Equa-
tion (4-10), is given by
D-24
-------
B a 1 - (16+3)
" -^ . (19+11)"
57
+
1
3 •
(57-11)
+ 1
* 19 ' (2 + 1 + 1)
(D-5)
a 76
The variable I in Equation (4-10) is set to "1", because we are printing only
annual tables. The variables N. and N are set to "16" and "3", respectively.
1C
N is "16" because ISW(8) is set to "3", specifying individual source output,
and there are 16 source ID-numbers implicitly or explicitly defined in IDSORC
in Card Group 4a of Figure D-l. The variables N , N and N have been set
f B x' y xy
to "19", "19" and "1", respectively, defining the total number of receptor
points. Also, the variable N. is 57 lines per page. The symbols [ J
As
in Equation (4-10) indicate to round up to the next larger integer if there
is any fractional part. We should also add an additional 16 pages to B
because maximum 10 calculations are being made and the program will print
tables of the maximum 10 contributions of each individual source to the
combined sources maximum 10. The total estimated output pages is then given
by
pages a 32+92+5
* 129
(D-6)
The actual number of pages output was 93, with 6 pages of system generated
paper and 87 pages produced by the example concentration run.
d. Tape Output - The amount of space required on a magnetic
tape or data file is calculated using Equations (4-11) and (4-12) in Section
4.2.5. The number of computer words written by the program is exact and is
calculated by substituting values from Figure D-l into Equation (4-11),
giving
D-25
-------
Words = (o+2645+19+19+(2 • l)+(l6 • (220+1 • (19 • 19+2))))
V (D-7)
= 12013
where the variable Ns in Equation (4-11) is set to the total number of sources
("16") output to tape and the variable I is "0" because ISW(4) equals "0".
If the output data are being written to a mass storage file, the user
assigns the number of mass storage tracks that will contain 12013 or more
words of information. However, if the data are to be output to magnetic
tape, Equation (4-12) in Section 4.2.5 is evaluated to make certain the out-
put data will fit ontne magnetic tape. Equation (4-12) requires the number
of words to be output (12013), the tape recording density (D), the number of
bits per computer word (B), the number of words per physical FORTRAN unfor-
matted tape block (Bn) and whether the output tape is seven or nine track
(B ). This information if not known can be obtained from the programming
and/or systems consultant for your computer installation. Because this
example problem was run on a UNIVAC 1108,computer using a nine-track output
tape recorded at 800 bpi, the following values were used in Equation (4-12):
B = 36 (bits per word)
D = 800 (recording density)
Bp = 224 (block length in words for unformatted
Fortran tape records)
B = 8 (9-track tape)
giving
length (feet) . [(^4of) + 0.75 ( ^) + 6~] / 12.0
(D-8)
= 9.5
or approximately 9.5 feet of tape used. The length of tape required for most
runs will be well short of a standard 2400-foot reel and the user need approx-
imate this quantity only when processing very large runs or when writing mul-
D-26
-------
tiple cases (multiple files) to the tape. For example, we would have
required approximately 5772 sources in this example run to fill a full 2400-
foot tape reel.
D.2.3 Example Print Output.
Figure D-2 illustrates the printed concentration output for the
example hypothetical potash plant. The listing begins by printing the input
data under the heading "ISCLT INPUT DATA". This part of the output listing
includes all punched data and default values, except source data. Next, the
source data are listed under the heading "SOURCE INPUT DATA". Note that the
source input data listing also contains warning messages indicating a source
is too close to a receptor. Concentrations are not calculated for the indica-
ted source-receptor combinations. The remainder of the output listing in
Figure D-2 shows the annual ground-level particulate concentrations due to
selected sources, but does not show the complete output listing. The page
number of each table in the output listing is shown in the upper right hand
corner. For example, pages 13, 14 and 15 (upper right hand corner) show
the complete output for Source 1. The heading given is "ANNUAL GROUND LEVEL
CONCENTRATION (MICROGRAMS PER CUBIC METER) DUE TO SOURCE 1". The particulate
concentrations calculated for the receptor grid system follow the page
heading on page 13 and end at the middle of page 14. The concentrations at
the discrete receptors are then printed, followed by the maximum 10 values.
The maximum 10 values listed here were derived from Source 1 alone as there
were no other sources in this particular source combination. The next concen-
tration tables illustrated are from pages 16 through 18 of the output listing.
These pages give the individual concentrations produced by Source 2 that
contribute to the combined Sources 2 through 11. The individual source out-
put is printed because ISW(8) was input as "3". Note that the maximum 10
values for Source 2 on page 17 are actually those 10 receptors from Source
2 that contribute to the maximum 10 values of the combined Sources 2 through
11. Although not shown in Figure D-29 the output listing continues printing
tables for Sources 3 through 11 with the same form and content as shown for
Source 2 on pages 16 through 18. The next concentration tables illustrated
D-27
-------
•••« ISCIT
HYPOTHETICAL POTASH PROCESSING PLANT
PAKE
I •• ••
Ni
00
- ISCLT INPUT DATA -
HUNBER OF SOURCES • 14
NUN8ER OF X AXIS CRID SYSTEM POINTS • 1*
NUMBER OF Y AXIS CRID SYSTEM POINTS » 1*
NUMBER OF SPECIAL POINTS • 1
HUNBER OF SEASONS • 1
NUMBER OF HIND SPEED CLASSES • 6
HUNBER OF STABILITY CLASSES * 6
NUMBER OF HIND DIRECTIOH CLASSES • 16
FILE NUMBER OF DATA FILE USED FOR REPORTS » 1
THE PROGRAM IS RUN IN RURAL NODE
CONCENTRATION (DEPOSITION) UNITS CONVERSION FACTOR • .10000000+07
ACCELERATION OF GRAVITY (METERS/SEC*»2> • 1.800
HEIGHT OF MEASUREMENT OF HIND SPEED (METERS) • 10.000
ENTRAINNENT PARAMETER FOR UNSTABLE CONDITIONS • .600
EHTRAINNEHT PARAMETER FOR STABLE CONDITIONS • .(00
CORRECTION ANCLE FOR GRID SYSTEN VERSUS DIRECTIOH DATA NORTH (DEGREES)
DECAY COEFFICIENT • .OOOOOOOO
PROGRAM OPTION SHITCHES - 1. 1. 2, 0, 1, 3, 2, 3, 3, 2. 2. 0, 0, 0, 0.
1 ARE - 1.
2 ARE - • 2. -11.
3 ARE - 12, -13,
4 ARE - 16.
3 ARE
.000
SOURCES USED TO FORN SOURCE COMBINATION
SOURCES USED TO FORN SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
SOURCES USED TO FORM SOURCE COMBINATION
DISTANCE X AXIS CRID SYSTEM POINTS (METERS
-600.00. -400.00. -200.00.
1SOO.OO. 2000.00. 3000.00.
RANGE X SPECIAL DISCRETE POINTS (METERS )-
DISTANCE Y AXIS CRID SYSTEN POINTS (METERS >'
-600.00, -400.00. -200.00.
1300.00. 2000.00. 3000.00.
AZIMUTH BEARING Y SPECIAL DISCRETE POINTS (DEGREES)-
-16.
>» -3000.00. -2000.00, -1500 00, -1230.00, -1000.00, -tOO.00,
.00, 200.00, 400.00, 600.00, 800.00, 1000.00, 1230.00,
2108.00.
-3000.00,
00,
-2000.00, -1300.00, -1230.00, -1000.00. -800.00,
200.00, 400.00, 600.00, 800.00. 1000.00, 1230.00,
14.00,
SEASON
- AMBIENT AIR TEMPERATURE (DEGREES KELVIN) -
STABILITY STABILITY STABILITY STABILITY STABILITY STABILITY
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY 6
1 287.2000 287.2000 283.2000 280.8000 27» 1000 279.1000
- MIXING LAYER HEIGHT (NETERS) -
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
1
2
3
4
3
6
HIND SPEED
CATEGORY 1
. 173000 + 04
.173000 + 04
.160000 + 03
.320000 + 03
.100000 + 03
.100000 + 03
HIND SPEED
CATEGORY 2
.173000+04
.173000+04
. 102300+04
.300000+03
.100000+03
. 100000 + 03
SEASON 1
HIND SPEED
CATEGORY 3
. 173000*04
. 173000+04
. 123300+04
.840000+03
. 100000 + 03
' . 100000+03
HIND SPEED
CATEGORY 4
. 173000+04
. 173000 + 04
. 121300+04
.840000+03
. 100000+03
. 100000+03
H'IHD SPEED
CATEGORY 3
. 173000+04
. 173000+04
. 12*300+04
.840000+03
. 100000+03
. 100000+03
HIND SPEED
CATEGORY 6
. 173000 + 04
. 173000 + 04
.12*300+04
.840000+03
.100000+03
.100000+03
FIGURE D-2. Annual Average Ground-Level Particulate Concentration Output Listing.
-------
•«•• 1SCLT
O
KJ
.•••• HYPOTHETICAL POTASH PROCESSING PLAHT
- ISCLT INPUT DATA (
2.3000NPSH
4 .3000NPSK
( .SOOOHPS x
9 . SOOOHPS X
12.3000NPS
(DEGREES )
22
45
67
90
112
135
157
180
202
225
247
270
292
315
337
. 000
500
000
500
.000
500
000
500
. 000
.500
000
. 500
000
500
000
.500
00014950
.00012830
00001180
.000107(0
.00031190
.0003(1 10
.00036650
000*9530
.000(7470
.00033120
.00014410
.0001 1550
.00028990
.00008390
.0000(020
.00028200
.000085(0
.00019980
.00019980
.00025(90
.00059930
.00031390
.000342(0
.00079930
.00085(40
.00034240
.00023(90
.00028330
.00025(90
.00017130
.000083(0
.00022840
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
.00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
SEASON I
. 00000000
. 00000000
. 00000000
. 00000000
00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
oooooooo
.00000000
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
STABILITY CATEGORY 2
MIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
DIRECTION
( . 7SOOBPSH
2.3000HPSK
4 .3000NPSX
( .8000HPS X
9 . SOOONPS X
12.3000DPS
(DEGREES)
22
45
(7
90
112
135
157
180
202
225
247
270
292
315
337
000
500
.000
.500
.000
.500
.000
.500
000
500
000
.500
000
500
ooo
500
.00073330
.00104880
.00044440
.0009(290
.00187730
.001(8920
.001*7700
.002(2380
.00439181
.002(2740
.00143(70
.001(3270
.00249990
.00134250
.00091310
.00073250
.00077080
.00108480
.000(8510
.0,0148450
.00279770
.00279770
.0031(880
.00399(70
.0042251 1
.00308320
.00108480
.0021 1230
.0021 1250
.00119900
.000(8510
.00074220
.00037100
.00048530
.00019980
.00085(40
.001(8430
.0027(910
.00342370
.004253(1
.00283480
.00103630
.000(2810
.00071370
.0011 1340
.00077080
.00043680
.00037110
. OOOOOOOO
. OOOOOOOO
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
.oooooooo
oooooooo
.oooooooo
OOOOOOOO
.oooooooo
.oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
FIGURE D-2. (Continued)
-------
•••• 1SCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
3 •• ••
- ISCLT INPUT DATA (CONT.) -
- FRE8UENCY OF OCCURRENCE OF HIND SPEED. DIRECTION AND STABILITY -
SEASON I
STABILITY CATEGORY 3
HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED
CATEGORY I CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY 6
DIRECTION
< 73oonps ><
2 3000KPSH
4 .3000NPSX
( .8000NPS )(
9. SOOOHPS X
12.3000NPS
(DECREES >
22
45
67
90
11 2
135
157
1BO
202
225
247
270
292
315
337
000
500
. 000
500
000
.500
000
500
000
500
000
.500
.000
.500
000
.500
..0004t4SO
.000*9900
.00024680
000531 70
.000(8820
000*9610
. .00058420
.00040830
.00117710
.00077160
.000(0100
.00082430
.00141350
.00083360
.00033030
.000(3(10
.000)4210
.00079930
.00074220
.00143390
.00279770
.0037(830
.003054(0
.004233(1
.00408231
.00333990
.001(2720
.90383390
.00439(41
.0021 1230
.00103(30
.00103(30
.00123(10
.00131300
.00094210
. 00137010
.00585231
.00(9(571
.0073(521
. 008107(1
.0051 101 1
.00245510
.00202(90
.00288330
.0059(651
. 00339720
.00134170
.00094210
SEASON 1
. 00014270
. 00048330
. 00042820
.00042820
. 00071370
. 00211250
. 0031(880
.00259780
. 000(2810
.00025(90
.00045(80
.00031390
.001 11340
. 00051390
. 00017130
. 00011420
. 00002830
.00014270
.00002850
. 00005710
. 000083(0
. 00014270
. 00017130
. 00019980
. 00011420
.00011420
. 000083(0
.00017130
.00028530
. 00023(90
.00003710
. 00003710
.00000000
.00002850
oooooooo
.00000000
oooooooo
oooooooo
oooooooo
oooooooo
.00002850
.000085(0
.00014270
.000342(0
.000342(0
.00022840
.00002830
oooooooo
u>
o
STABILITY CATEGORY 4
HIND SPEED HIND SPEED HIND SPEED MIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY (
DIRECTION
( .7SOOHPSX
2. 3000NPSX
4 .3000HPSX
6 SOOOHPS X
9 . SOOOHPS X
12. 3000NPS
(DECREES)
22
45
(7
90
' 112
135
157
180
202
225
247
270
292
315
337
000
500
000
500
000
500
000
500
000
500
000
500
000
500
000
500
.00093300
.000(8970
.00039840
.00084880
.00198280
.00133830
.00071740
.00098470
.00100970
.00037970
.00049800
00033980
.00122110
.000(9900
.00033930
.00074000
.00239780
.002740(0
.001(6430
.00408231
.00(19491
.00333841
.00333990
.00342370
.0037(830
.00291190
.00137030
.00179850
.00439(21
.00202(90
.00188420
.0021(9(0
.00790771
.00887841
.00(39431
.008(2141
.01490192
. 01((1482
. 00907B21
.00(59451
.004(8181
.00214110
.00225330
. 00505301
.00913331
.00742241
.0051 101 1
.00(53741
.01367442
.01347432
.00393831
00*16631
. 01247342
.01841332
. 01 190441
. 00702281
. 00431051
.00342570
. 00345430
. 00588081
.01484482
.01413972
.00739371
. 00539541
.01127(41
.00807901
. 00205540
. 001 14190
.00194120
.00322390
. 00171290
. 001 19900
. 00125(10
. 00131320
.00199830
. 00285480
. 00790771
. 010(1981
. 00294040
.002(2(40
.01027721
.00303301
.00034240
.00019980
.00022840
.00048530
.00019980
00023(90
.000(2810
.00048330
.00123(10
.00208400
0037*671
00(59451
.00194120
.00159870
FIGURE D-2. (Continued)
-------
•••• ISCLT
• •••• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA -
- FREQUENCY OF OCCURRENCE OF HIND SPEED. DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 3
UIHD SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY 6
PAGE
DIRECTION
< . 7300HPSX
2.3000NPSX
4 .3000HPSX
( .BOOOIIPS ><
9 . 3000NPS X
12.SOOOHPS
( DEGREES >
22
45
67
90
112
135
157
180
202
22S
247
270
292
315
337
000
.500
.000
500
000
500
000
500
. 000
300
000
.500
000
500
000
.300
.00000000
.00000000
. 00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00525281
.00325440
.00177000
.0033(8(0
.0041(731
.002740(0
.00177000
.0023(950
00243310
.00182710
.001(5380
.00342370
004(8021
.00499391
.0035(830
.00522421
.00950(41
. 007(7941
.005709(1
.00759371
.00970(21
. 005(2391
. 002740(0
. 00182710
.00157010
.00131320
.00199830
.00553831
.0111(221
.00702281
.00(30911
.00899231
SEASON 1
. 00000000
.00000000
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
. oooooooo
oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
oooooooo
STABILITY CATEGORY (
HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY (
DIRECTION
( .7300HPSX
2.SOOOHPSX
4 .3000NPSX
6.8000RPSX
9 . 5000NPS X
12.5000HPS
(DEGREES )
22
45
(7
90
112
13S
137
180
202
225
247
270
292
315
337
000
500
000
300
ooo
300
.000
300
000
500
.000
300
000
300
.000
.300
.00(84121
.00373070
.00247790
.00283840
.00475321
.0030(470
.00120440
.0035(230
.00470731
.0048(151
.0029(740
.00590741
.01170781
.00742881
.00(29421
.007(1371
.00973481
.00359541
.00431071
.00493881
.00773(41
.00491021
.00282(20
.0023(950
.0031(880
.0041(801
.00342570
.00944931
.02055443
.01204721
.00982041
.01281802
OOOOOOOO
.OOOOOOOO
. OOOOOOOO
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
. oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
FIGURE D-2. (Continued)
-------
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABIL ITY
STABILITY
STABILITY
STAB IL I TV
STABILITY
STABILITY
STABILITY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
1
2
3
4
5
6
1
2
3
4
3
6
••• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.) -
- VERTICAL POTENTIAL TEMPERATURE GRADIENT (DEGREES KELV IN/HETER ) -
MIND SPEED KIND SPEED HIND SPEED MIND SPEED HIND SPEED WIND SPEED
CATEGORY 1
000000
. 000000
.000000
.000000
200000-0 I
.330000-9 t
WIND SPEED
CATEGORY 1
. 100000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
CATEGORY 2
.000000
.000000
.000000
.000000
.200000-01
.330000-01
- HIND
(HMD SPEED
CATEGORY 2
. 1 00000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
CATEGORY 3
. 000000
. 000000
. 000000
. 000000
.200000-01
. 350000-01
CATEGORY 4
. 000000
. 000000
.000000
. 000000
. 200000-01
. 350000-01
CATEGORY 5
. 000000
. 000000
. 000000
. 000000
. 200000-0 1
. 350000-01
CATEGORY 6
.000000
.000000
.000000
.000000
.200000-01
.350000-01
PROFILE POHER LAV EXPONENTS -
MIND SPEED
CATEGORY 3
. 100000*00
. 130000*00
. 200000*00
.230000*00
.300000*00
.300000*00
HIND SPEED
CATEGORY 4
. 100000*00
. 130000*00
. 200000*00
. 250000*00
. 300000*00
.300000*00
HIND SPEED
CATEGORY 3
. 100000*00
. 1 30000*00
. 200000*00
.250000*00
. 300000*00
. 300000*00
HIND SPEED
CATEGORY 6
. 100000*00
. 130000*00
.200000*00
.230000*00
.300000*00
.300000*00
PACE
O
I
GJ
ho
FIGURE D-2. (Continued)
-------
• ••• ISCL T
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
6 ••
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P < H>
0 E
Y EIU8S10N BASE /
COORDINATE HEIGHT ELEV- /
(H) AT10N /
- SOURCE DETAILS DEPENDING ON TYPE -
1 AREA
-13.30
-13.30 10.00
. 00 MIDTH OF AREA ( H>"
FALL VELOCITY (UPS)
It ASS FRACTION
REFLECTION COEFFICIENT 1
- SOURCE STRENGTHS
SPEED CATEGORY
26. 60
- PART1CULATE CATEGORIES -
12345
.0010 .0070 .0190 .0370 .0610
.1000 .4000 .2800 .1200 .0600
0000 .8200 .7200 .6500 5900
( GRANS PER SEC PER SQUARE METER
- SEASON 1 -
- STABILITY CATEGORIES -
6
. 0990
. 0400
. SOOO
WARNING - DISTANCE BETVEEH SOURCE
X 2 VOLUME 20.00
U)
MORNING - DISTANCE BETWEEN SOURCE
1 AND
.00
1
2
3
4
S
6
POINT X.
.90
4
3
0
0
0
0
Y-
.00
< 1 )
.00000
.00000
. ooooo
. ooooo
. ooooo
.ooooo
-01
-01
.00,
(2)
3 . 00000-01
4 . 00000-01
5 . 00000-01
0 . OOOOO
0 . OOOOO
0 . OOOOO
.00
STANDARD DEVIATION OF
STANDARD DEVIATION OF
FALL
MASS
VELOCITY (NFS)
FRACTION
REFLECTION
COEFFICIENT
(3) 14 >
2.00000-01 1.00000-01
3.00000-01 2.30000-01
4.00000-01 5.00000-01
3.00000-01 3.00000-01
7.00000-01 7.00000-01
1 .00000*00 1.00000*00
IS LESS THAN PERMITTED
0 .
2
2
0 .
0 .
0.
THE CROSSMIHD SOURCE DISTRIBUT
<5>
ooooo
00000-01
50000-0 1
ooooo
ooooo
ooooo
ION ( H>«
THE VERTICAL SOURCE DISTRIBUTION CN>-
- PARTICULATE CATEGORIES -
1234
.0010 .0070 .0190 .0370
.1000 .4000 .2800 .1200
1.0000 .(200 .7200 .6300
3
.0610
.0600
.5900
3
I
0
0
0
0
4
1 .
6
0990
0400
5000
(6)
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
. 70
00
-02
-01
- SOURCE STRENGTHS ( BRANS PER SEC > -
SPEED
2 AND
CATEGORY
1
2
3
4
3
6
POINT X.
1
1
0
0
0
0
Y«
< 1)
. 30000
. (0000
.00000
. ooooo
.00000
.00000
-01
-01
.00.
( 2 >
1 . 00000-01
1 .30000-01
1 .40000-01
o . ooooo
0 .00000
0 . OOOOO
. 00
- SEASON 1 -
- STABILITY CATEGORIES -
(3) (4)
(.00000-02 4.00000-02
1.20000-01 1.00000-01
1.40000-01 1.30000-01
1 .60000-01 1.60000-01
1 .90000-01 1 .90000-01
2.20000-01 2.20000-01
IS LESS THAN PERMITTED
0
8.
I .
0.
0
0 .
< 5 )
ooooo
00000-02
00000-01
ooooo
ooooo
ooooo
2
S
0
0
0
0
(6)
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
-02
-02
FIGURE D-2. (Continued)
-------
•«•• ISCLT
HYPOTHETICAL POTASH PROCESSIHC PLANT
PACE
- SOURCE IHPUT DATA -
C T SOURCE SOURCE X
0 A NUI1BER TYPE COORDIHATE
R P < H)
D E
Y EMISSION BASE /
COORDIHATE HEIGHT ELEV- /
< «) ATIOH t
< H ) /
- SOURCE DETAILS DEPENDING ON TYPE -
tv
X 3 VOLUME 30.00
BURNING - DISTANCE BETVEEN SOURCE
X < VOLUME 40.00
00 2.60
SPEED CATEGORY
1
2
3
4
5
6
3 AND POINT X.
00 4.30
. 00
1
1
0
0
0
0
Y«
00
STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION (MI-
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (M> =
- PARTICULATE CATEGORIES -
12345
FALL VELOCITY .0010 .0070 .0190 .0370 .0610
MASS FRACTION .1000 .4000 .2800 .1200 .0600
REFLECTION COEFFICIENT 1.0000 .8200 .7200 6500 .5900
- SOURCE STRENGTHS ( GRANS PER SEC
• ' - SEASON 1 -
- STABILITY CATEGORIES -
( f >
.30000-01
.60000-01
.00000 '•
.00000 "•
. 00000
. 00000
. 00
STANDARD
'STANDARD
( 2)
1 .00000-
1 .30000-
1 60000-
0 .00000
o .00000
0 .00000
,
D'EVJAT ION
DEVIATION'
01
01
01
00
OF
OF
FALL VELOCITY (NPS>
MASS FRACTION
REFLECTION COEFFICIENT
- <3 ) (4 >
8 00000-02 .00000-02
1 .-20000-01 00000-01
I .40000-01 . 30000-01
1 .60000-0! ' . 60000-01
1 .90000-01 . 90000-01
2.20000-01 2.20000-01
IS LESS THAN PERMITTED
0.
8.
I .
0 .
0.
0.
THE CftOSSUIHD SOURCE DISTRIBUT
THE VERTICAL SOURCE DISTRIBUTI
- PARTICULATE CATEGORIES -
1 2 3 4
.0010 .0070 .0190 .0370
. 1000 . 4000 .2800 . 1 200
' 1 . 0000 . 6200 . 7200. .6500
( 5 )
00000
00000-02
00000-0 I
00000
00000
00000
ION ( M)=
ON (H) =
• 5
0610
0600
.5900
4
1 .
6
0990
0400
5000
2
5
0
0
0
0
4
• 1 .
6
0990
0400
5000
. 70
00
.( 6 >
. 00000
. 00.000
.00000
. 00000
.00000
. 00000
. 70
00
-02
-02
SOURCE STRENGTHS (GRANS PER SEC ) -
V0RH1HG - DISTANCE BETWEEN SOURCE
SPEED CATEGORY
"1
2
'3
4
5
6
4 AND POINT X.
I
1
-o
0
0
0
Y*
( 1 >
. 30000-01
.60000-01
.00000
. 00000
. 00000
. 00000
. 00
< 2)
i .00000-
•1 .30000-
1 .60000-
0 .'00000
0 . 00000
0 .00000
,
01
01
01
00
- SEASON 1
STABILITY CATEGORIES -
( 3 ) < 4 >
8 00000-02 .00000-02
1 . 20000-01 . 00000-01
1 . 40000-01 .-30000-01 •
•1 .60000-01 . 60000-01
1 .90000-01 . 90000-01
2 .20000-01 2 ^20000-01
IS LESS THAN PERMITTED
0 .
8.
1
0 .
0
0 .
( 5 )
00000
00000-02
00000-0 1
00000
00000
00000
2
5
0
0
0
0
( 6 )
.00000
.00000
00000
00000
.00000
. 00000
-02
-02
FIGURE D-2. (Continued)
-------
U)
Ln
- SOURCE INPUT DATA -
C T SOURCf. SOURCE X V EMISSION BASE f
A A NUMBER TYPE COORDINATE COORDINATE HEIGHT ELEV- / - SOURCE DETAILS DEPENDING OH TYPE -
RP (N) AT ION /
D I
X 5 VOLUME 49.00
PACE
8
• * •
(«) t
.44 (. 10
.00
STANDARD OEVIAT ION OF
STANDARD DEVIATION OF
FALL VELOCITV (MPS)
MASS FRACTION
REFLECTION COEFFICIENT
THE
THE
-
1 .
- SOURCE STRENGTHS
HARMING - DISTANCE BETWEEN SOURCE
X b VOLUME 39.44
SPEED CATEGORY
I
2
3
4
3
6
3 AND POINT X
.04 7.80
1
1
0
0
0
0
,Y =
.00
( t > (2)
30004-01 1.00000-01
(4400-01 1.30040-01
44404 I .60000-01
40444 4.00444
44444 4.00444
44444 4.00440
.44, .40
STANDARD DEVIATION OF
STANDARD DEVIATION OF
FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT
e
i
i
i
i
2
IS
THE
THE
-
1 .
- SOUtCE STRENGTHS
HARMING -.DISTANCE BETHEEN SOURCE
SPEED CATEGORY
1
2
3
4
3
(
( AND POINT X
1
1
0
0
0
0
,r«
< 1) < 2)
34440-41 1.0O444-41
(0004-41 1 . 30440-41
00444 1.40400-01
00444 4.00440
00044 4.00400
00044 0.00404
.04, .04
8
1
1
1
1
2
IS
CROSSHIND SOURCE D1STRIBUT
ION (
VERTICAL SOURCE DISTRIBUTION (M
PARTICULATE CATEGORIES -
1234
4414 .4470 .4190 .0370
1040 . 4000 . 2800 . 1 200
0000 .6200 .7200 6500
( GRANS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
<3 > (4 >
.44444-42 .40400-02
.20400-01 .00440-01
.40004-41 .30404-01
.(0444-41 .(4400-01
.(0444-41 .14444-41
.24444-41 2.24440-01
LESS TNAM PERMITTED
0 .
8.
1 .
0.
4 .
4.
CROSSHIND SOURCE DISTRIBUT
5
0(14
0(04
.3900
00000
00000
00044
44404
44404
44400
ION (
VERTICAL SOURCE DISTRIBUTION (H
PARTICULATE CATEGORIES -
1234
0010 .4474 .0194 .0370
1000 .4444 .2844 .1244
4444 .8244 .7244 .(340
( CftAKS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.44444-42 4.00000-42
.24444-41 1 . 44440-41
.44044-41 1.34444-41
.(4040-01 1 .(0044-01
90044-41 1 . 50000-01
.24444-01 2.20000-41
LESS THAN PERMITTED
4.
8.
1
0 .
0
4.
3
0(10
.0(00
.3904
40000
00000
00000
00000
00444
49440
M)= 4
)= I .
(
. 4990
4400
. 5000
2
-02 5
-4 1 0
0
0
0
M )• 4
>* 1 .
(
. 0990
. 4444
. 3000
2
-02 5
-01 0
0
0
0
70
00
) -
( (>
. 00400
00004
.40004
44440
. 44444
. 44444
. 74
40
) -
( (>
. 00444
. 44444
44444
. 44444
40004
00000
-02
-02
-02
-02
FIGURE D-2. (Continued)
-------
• ••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PBGE
- SOURCE INPUT DATA -
U>
C T SOURCE SOURCE X
A A Nil II RE k TYPE COORDINATE
R f (.Hi
t> E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
< H > (H > ATION /
< N) ,'
- SOURCE DETAILS DEPENDING ON TYPE -
X 7 VOLUME 69.00
WARNING - DISTANCE BETWEEN SOURCE
X 6 VOLUME 79.00
.00 9.60
SPEED CATEGORY
1
2
3
• 4 ,
5
6
7 AND POINT X,
.00 11.30
. 00
1
1
0
0
0
0
Y =
. 00
STANDARD DEVIATION OF THE
STAHDARD DEVIATION OF THE
FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT 1
- SOURCE STRENGTHS
( 1 > < 2 )
. 30000-01 1 . 00000-01
. 60000-01 1 .30000-01
.00000 t. 60000-01
.ooooo o.ooooo
.00000 0.00000
.00000 . 0.00000
.00, 00
STANDARD DEVIATION OF
STANDARD. DEVIATION OF
FALL .-VELOCITY •( MPS)
MASS FRACTION
REFLECTION COEFFICIENT
8
1
1
1
1
. 2
IS
THE
THE
-
1 .
- SOURCE STRENGTHS
CROSSWIND SOURCE DISTR1BUT
VERTICAL SOURCE DISTRIBUTI
PARTICULAR CATEGORIES -
1234
0010 . 0070 0190 . 0370
1000 .4000 .2800 .1200
0000 . 8200 . 7200 . 6SOO
( GRANS PER SEC
- SEASON 1 •-
- STABILITY CATEGORIES -
( 3 -> . '
.00000-02
20000-01
. 40000-01
.60000-01
. 90000-01
. 20000-01.
( 4 )
4. 00000-02
1 . 00000-01
1 . 30000-01
1 . 60000-01
1 .90000-01
2 .20000-01
0.
8
1 .
0.
0.
0
ION <
ON ( H
5
.0610
.0600
. 5900
( 5 )
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
ooooo
M>* 4
>= 1 .
6
. 0990
. 0400
. 5000
2
-02 5
-01 0
0
0
0
. 70
00
(*•)'•
. OOOOO
. OOOOO
. OOOOO
. OOOOO
ooooo
. ooooo
-02
-02
LESS THAN 'PERNI TTED ,
•CROSSKIND SOURCE DISTRIBUT
ION (
.VERTICAL SOURCE DISTRIBUTION (H
PftRTICULATE
1 •* 2 ...
0010 • 0070.
1000 .:4000
0000 -•••8200
< GRANS PER
CATEGORIES -
3 4
0190 .0370
. 2800 . 1 200
. 7200 . 6500
SEC
5
0610
0600
5900
H ) = . 4
)= , 1 .
6
. 0990
. 0400
. 5000
. 70
00
) -
SPEED CATEGORY
•- SEASON -1 -
- STABILITY CATEGORIES
1
2
3
4
5
6
( 1 )
1 . 30000-01
1 . 60000-01
0 .00000
0 .00000
0 . OOOOO
0.00000
( 2 >
1 .00000-01
I . 30000-0 1
1 .60000-0 1
0 . OOOOO
0 OOOOO
0 . OOOOO
(3)
8 . 00000-02
1 .20000-01
1 .40000-01
1 .60000-01
1 .90000-01
2 .20000-01
.' 4 )
4 . 00000-02
1 . 00000-01
1 . 30000-01
1 . 60000-01
1 90000-01
2 20000-01
( 5 )
0 . OOOOO
8 0.0000-02
1 00000-0 1
0. OOOOO
0. OOOOO
0 OOOOO
( 6)
2 . 00000-02
5 . 00000-02
0 OOOOO
0 OOOOO
0 OOOOO
0 OOOOO
VARNINC - DISTANCE BETWEEN SOURCE
8 AND POINT X.
.00 IS LESS THAN PERMITTED
FIGURE D-2. (Continued)
-------
• • •• I SCL i
C T SOURCE
A A NUMBER
R P
D F
X 9
SOURCE X Y EMISSION
TYPE COORDINATE COORDINATE HEIGHT
< H> < N) (N )
VOLUME 8» . 00 .00 1300
1CAL PO
SOURCE
BASE /
ELEV- /
ATION /
< H> /
. 00
TASK PROCESSING PLANT
INPUT DATA -
PAGE
10
* * •
- SOURCE DETAILS DEPENDING ON TYPE -
STANDARD DEVI AT ION OF
STANDARD DEVIftT ION OF
FALL VELOCITY (2)
30000-01 1 . 00000-01
(0000-01 1 . 30000-01
00000 1 . 60000-01
00000 0 . 00000
ooooo o.ooooo
00000 0.00000
.00. .00
STANDARD DEVI AT ION OF
STANDARD DEVIBT ION OF
FALL VELOCITY < 2)
30000-01 1. 00000-01
(0000-01 I . 30000-01
OOOOO 1 40000-01
ooooo o.ooooo
ooooo o.ooooo
OOOOO 0.00000
.00. .00
200.00. .00
IS
IS
B
1
I
1
1
2
CROSSH1ND SOURCE DISTRIBUTION <
VERTICAL SOURCE DISTRIBUTION <4 )
.00000-02 .00000-02
.20000-01 .00000-01
.40000-01 .30000-01
(0000-01 .(0000-01
.foooo-oi .10000-01
.20000-01 2.20000-01
LESS THAN PERMITTED
0.
8.
1 .
0.
0 .
0 .
CROSSHIND SOURCE DISTR1BUT
5
0610
0640
5900
( 5 >
OOOOO
OOOOO
OOOOO
ooooo
ooooo
ooooo
ION <
VERTICAL SOURCE DISTRIBUTION (M
PARTICULATE CATEGORIES -
1214
0010 0070 .0190 .0370
1000 .4000 .2800 .1200
0000 .1200 .7200 6500
( CRAMS PER SEC
- SEASON 1 -
- STABILITY CATEGORIES -
(3) (4 >
.00000-02 4.00000-02
.20000-01 1.09000-01
.40000-01 1.30000-01
60000-01 1.60000-01
90000-01 1.90000-01
.20000-01 2.20000-01
LESS THAN PERMITTED
LESS THAN PERMITTED
0.
8.
1 .
0.
0 .
0 .
5
.0610
.0600
.5900
<5 )
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
M>- 4
)« 1 .
6
. 0990
. 0400
. SOOO
2
-02 5
-01 0
0
0
0
M >• 4
)» I
6
. 0990
. 0400
.5000
2
-02 5
-01 0
0
0
0
70
00
> -
( 6)
. OOOOO
. OOOOO
. ooooo
ooooo
. ooooo
ooooo
. 70
00
) -
(6)
-02
-02
00000-02
. ooooo
. ooooo
. ooooo
. ooooo
. ooooo
-02
FIGURE D-2. (Continued)
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUKBER TYPE COORDINATE
R P < II)
0 E
Y EMISSIOH BASE /
COORDINATE HE1CHI ELEV- /
< N) (M ) AT10N /
< M) /
- SOURCE DETAILS DEPENDING ON TYPE -
o
I
,CJ
;co
X 11 VOLUME 109.00 .00 16.50 .00 STAHDARD DEVIATION OF THE CROSSHIHD SOURCE DISTRIBUTION < It > • 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION < M )« 1.00
- PARTICULATE CATEGORIES -
FALL VELOCITY (MPS)
• i r ' ' . • . MASS FRACTION
.-• • . REFLECTION COEFFICIENT 1
1
. 0010
.1000
. 0000
2
. 0070
. 4000
. 8200
3
.0190
. 2800
. 7200
4
.0370
.1200
.6500
5
.0610
.0600
.5900
6
. 0990
. 0400
. 5000
- SOURCE STRENCTHS'
WARHING - DISTANCE BETWEEN SOURCE
WARNING - DISTANCE BETWEEN SOURCE
X 1 2 VOLUME 1 21 . 00
yPRHlHC - DISTANCE BETWEEN SOURCE
WARNING - DISTANCE BETWEEN SOURCE
X 13 VOLUME 144.00
WARNING - DISTANCE BETWEEN SOURCE
X 14 VOLUME 167.00
WARNING -' DISTANCE BETWEEN SOURCE
X 15 VOLUME 190.00
WARNING - DISTANCE BETWEEN SOURCE
SPEED CATEGORY
I 1
2 1
3 0
4 0
5 0
6 0
11 AND POINT X.Y-
I1 AND POINT X,Y«
.00 22.50 .00
12 AND POINT X,Y-
12 AND .POINT X, Y-
.00 22.50 .00
13 AND POINT X,Y«
. 00 -22. 50 .00
14 AND POINT X,
.00 22.50
IS AND POINT X,Y»
( GRAMS PER SEC
- SEASON 1 -
.- STABILITY CATEGORIES '
1
1
1
0
0
0
< 2)
.00000
.30000
60000
.00000
.00000
.00000
-01
-01
-01
. 00
. oo
8
1
1
1
1
2
IS
IS
<3 )
.00000-02
.20000-01
40000-01
60000-01
.90000-01
.20000-01
LESS THAN
LESS THAN
< 4 >
4 . 00000-
1 00000-
1 30000-
1 . 60000-
1.90000-
2. 20000-
PERMITTED
PERMITTED
02
01
01
01
01
01
•. 0
8.
1 .
0
0 .
0
< 5 >
00000
00000-02
00000-01
ooooo
00000
ooooo
2
5
0
0
0
0
< 6)
: OOOOO
.00000
. ooooo
. ooooo
ooooo
•ooooo
-02
-02
(1 >
30000-01
60000-01
.ooooo
ooooo
ooooo
ooooo
. 00
. 200.00
STAHDARD DEVIATION OF THE
STANDARD DEVIATIOH OF THE
- SOURCE STREHGTHS
SEASOH 1
2.63000*00
.00, . 00 IS
•200.00, .00 IS
STANDARD DEVIATIOH OF THE
STAHDARD DEVIATION OF THE
- SOURCE STRENGTHS
SEASOH 1
2.63000*00
200.00, .00 IS
STAHDARD DEVIATION OF THE
STAHDARD DEVIATION OF THE
- SOURCE STREHGTHS
SEASON 1
2.63000*00
200.00, . 00 IS
STANDARD DEVIATION OF THE
STAHDARD DEVIATIOH OF THE
- SOURCE STRENGTHS
SEASON 1
2.63000*00
200.00, . 00 IS
CROSSWIND SOURCE DISTRIBUTION - .10.80
VERTICAL SOURCE DISTRIBUTION = 11.60
( GRANS PER SEC ) -
SEASOH 2 SEASOH 3 SEASON 4
LESS THAN PERMITTED
LESS THAN PERMITTED
CROSSVIHD SOURCE DISTRIBUTION * 11.60
< CRAMS PER SEC ' ) -
SEASOH 2 SEASON 3 SEASON 4
LESS THAN PERMITTED
CROSSWIHD SOURCE •DISTRIBUTION = 10.80
VERTICAL SOURCE DISTRIBUTION (N>- 11 60
( GRAMS PER SEC ) -
SEASOH 2 SEASON 3 SEASON 4
LESS THAN PERMITTED
CROSSWIHD SOURCE DISTRIBUTION = 10.80
VERTICAL SOURCE DISTRIBUTION <*>• 11.60
< GRAHS PER SEC ) -
SEASOH 2 SEASOH 3 SEASOH 4
LESS TNAN PERhITTEO
FIGURE D-2. (Continued)
-------
•••• ISCLT ••• ••••• HYPOTHETICAL POTASH PROCESSJHC PLANT «••••».« PAGE 12 ••••
- SOURCE INPUT DATA -
C T SOURCE SOURCE X Y EMISSION BASE /
A A NUMBER TYPE COORDINATE COORDINATE HEIGHT ELEV- / - SOURCE DETAILS DEPENDING ON TYPE -
R P < H> < M> ATION /
0 E («> /
X !(• STACK 201 00 10.00 10.00 .00 CAS EXIT TEMP (DEC K >° 340.00, CAS EXIT VEL = 8.00,
STACK DIAMETER t.OOO. HEIGHT OF ASSO. 8LDC . (H> = 23 00. VIDTH OF
ASSO. BLOC * 47.00. HAKE EFFECTS FLAC * 0
- SOURCE STRENGTHS ( CRAMS PER SEC > -
SCASOM 1 SEASON 2 SEASON 3 SEASON 4
9.00000»00
MARN'NG - DISTANCE BETWEEN SOURCE It AND POINT X,Y> 200 00. .00 IS LESS THAN PERMITTED
FIGURE D-2. (Continued)
-------
«••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE 13 • •••
.O
• • ANNUAL GROUND LEVEL CONCENTRATION ( DICROGRARS PER CUBIC DETER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. DETERS' -
-30*0.000 -2OOO.OOO -1300.000 -1250.000 -1000.000
V AXIS 'D1STHNCE . DETERS > - CONCENTRATION -
> DUE TO SOURCE
-800 000
-oOO 000
-400.000 -200.000
3000
2000
1500
1250
1 000
800
600
400
200
-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
.000
.000
000
000
ooo
000
000
000
000
.000
000
000
000
.000
000
. 000
000
OOC
15.
25.
31 .
35
37 .
39
40
41 .
41
42
38.
35
32
29
26
22
19
16
10
2331 1 7
096383
709255
930118
7(6652
249267
4(5551
363467
881215
571451
903567
948085
805121
562064
292830
306(02
944419
304027
877412
I 8 .
30
44 .
S3
63 .
7 1 .
76 .
80
82
83
74
63
33
46
3V
33
28
21
1 9
595704
928904
398622
213629
051426
9(8681
7589(5
610969
98(5(0
317893
349024
247273
652445
. 130130
. 442503
. 980226
. 997093
. 790416
. 723071
20
35
51
(4
82
98
1 18
127
134
140
I 16.
96
76
(1
32
42.
33
33
26
120573
742262
.4(5082
383079
0(257(
379997
218757
497962
. 333405
007008
. 213557
100362
136149
385382
371612
217519
912429
576216
039579
20
38
55
71
92
IK
143
168
181
191
152
119
88
73
60
49
46
41
30
.937885
.612876
.597269
. 174443
.703184
.292750
.250614
.318390
.318153
.298014
.569792
.641985
818096
588823
046659
.410876
.892537
.707737
.257155
21
41
62
78
103
136
179
237
239
279
209
133
111
87
73
67
(2
31
33
.417454
.011 132
314393
.267578
991836
.074072
. 014204
. 422142
.351788
.56(078
.333871
.930771
.977(70
303426
. 130736
765156
.890011
. 1 1(381
.2391(5
22.
42.
(7.
87.
113.
137.
213.
29(
373
414.
286
182.
134.
108.
98.
89.
78.
(0.
35.
001(33
403178
071202
173549
319864
7897(2
363441
775832
980713
370820
744933
322518
330871
098702
494929
187100
279366
794123
(380(7
22.
44
71
94.
131
175.
2(6.
396
584
682.
410
244
181 .
153.
137
114
99
(7 .
37
40(949
506822
372622
(77279
812984
7(1223
701855
050018
012718
700706
712780
185183
198156
070227
512161
890892
195431
998775
927289
22 .
46
75
101
149 .
206
311
560
944
1322
361
375
290
232
196
146
113
74
39
(06291
009526
197296
485730
205359
. 473080
931931
. 887863
041451
484818
. (39748
71 3684
. 793839
. 001640
. 9122(4
. 178448
.911121
. 745510
983489
22
46 :
77
107
157
232
373
693
1783
3285
1 1 31
705
493
330
235
168
127
80
41
570146
:550323
704108
.132532
583286
.192675
.359833
.7 12097
.365067
431641
. 1 1 2656
.076614
.842030
. 179633
.632189
.773528
.271148
.495930
.730175
AXIS (DISTANCE
.000 200.000
, METERS >
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. DETERS) -
400.000 (00.000 800.000
- CONCENTRATION -
1000.000
1250.000
1500. 000
2000 . 000
3000
2000
1500
1250
1000
800
600
. 400
200
-200
-400
-600
-800
1 000
1250
1 500
2000
3000
000
000
000
.000
000
000
000
.000-
.000
.000
.000
000
000
000
.000
000
000
.OOC.
000
22.
47.
79
111
166
253
430
., 883
2509.
2865
1257
666
410
278
192
141
87
43
(77743
175719
(79336
. 1 15554
803(40
041491
639(37
975342
9(3'7I3
000000
911 804
482344
((8735
0(2202
792706
338332
. (08788
. 012285
. 907272
21
42
69
94
134
191
292
451
973
3772
1490
706
469
318
229
164
1 24.
79
4 1
234118
(31813
482379
.029237
63(381
8(3989
326946
.037827
794449
.401001
093734
1(8335
. 147308
. 460144
037271
713227
. 334027
033843
185440
20
39
60
79
109
137
189
306 .
595
1(47
898.
318.
323 .
.234
187
139
109.
72.
38.
180390
090896
991139
.371454
220163
076151
365341
298756
160080
355499
792297
893097
017230
0529(9
636651
2803(1
166794
138997
965236
18
35
51
63
82
102
144
240
489
873
(31
382
233
182
146
113
93
(4
36
980791
017848
.987680
.73(940
987273
840727
.207319
.30357(
.547377
7385(4
.830784
.899570
.917171
217319
848982
.313137
. 134131
.4331(7
493938
17
30
43
33
(3
84
126
192
353
339
427
296
208
132
119
97
79
36
33
.(75214
.737320
.67(129
.(098(0
.703932
.535987
.049892
.(48809
. 187038
.581223
4729(1
.374131
.03(390
.317839
347918
.128(14
.307329
486966
.848027
16.
27.
37.
44.
56.
78.
112.
174.
263.
3(7.
306.
248.
178.
1 33 .
103.
81 .
(9.
50.
31
298837
1810(7
(82801
416317
300934
478118
1 13387
610664
I-J9-OT2'
039872
749363
761038
399720
224499
095337
902442
343916
276(83
091039
1 4
23
30
37
53
7!
93
141
•193
252
219
I85
•145
116
91
(9
57
44
• 27.
720780
796320
940405
490723
253517
487429
622082
942419
901257
143021
599201
7(8887
392815
277280
3(3341
596685
827950
472208
953678
13
20 .
26
36
49
62
85
1 16
148
184
165
145 .
124
99
82
63
50 .
38
25
292376
(33406
. 947521
281175
731992
823(32
190733
. 328004
. 790(34
839499
272737
. 250357
021405
(48745
141430
508497
. 529677
938442
337409
11
16
25
32
40
51
65
81
95
1 12
104
95
85
:75
64
53
44
30
21
. 146984
.082098
.870794
.648046
5(2992
. 1341 12
.830317
.035526
.964260
.749397
.003670
. 394717
.636791
.4(9131
.307(33
. 7441 60
.423832
.6093(9
.431062
FIGURE D-2. (Continued)
-------
•••« ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
14 ••«•
ANNUAL GROUND LEVEL CONCENTRATION (
Y AXIS (DISTANCE
3000.000
, METERS
NICROCRAHS PER CUBIC HETER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE' METERS) -
- CONCENTRATION -
) DUE TO SOURCE
1 (CONT.) ••
3000
£000
1500
1230
1000
800
600
400
200
-200
-400
-600
-800
-1000
-1230
-1300
-2000
-3000
000
000
.000
ooo
.OOb
ooo
000
.000
.000
000
.OOu
.000
000
000
.000
.000
.000
.000
000
7.846320
13 047363
20.266*92
24.082613
30.139071
33.293283
40.496793
43.658641
30.646130
36.332646
31.309070
30.881071
47.904321
44.684403
41.106*3*
37.267112
32.32320*
25.43714*
13.21334*
•• ANNUAL GROUND LEVEL CONCENTRATION ( NICROGRANS PER CUBIC HETER
- DISCRETE RECEPTORS -
X Y CONCENTRATION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
> DUE TO SOURCE
(CONT. > ••
X Y
RANGE AZIMUTH
BEARING
(METERS) (DECREES)
CONCENTRATION
X
RANGE
CONCENTRATION
AZIMUTH
•EARING
(METERS) (DEGREES)
2108 .0
14 0 33 678412
- 10 CONTRItUTINC VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COHtlNEO SOURCES
COORDINATE
COORDINATE
CONCENTRATION
(METERS)
(METERS >
200 00
-200.00
.00
.00
-200.00
400.00
200.00
-400. 00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
3772.401001
32S3. 411641
2863. 911*04
2309.961713
1711.163067
1447.133499
14*0.093734
1322 484818
FIGURE D-2. (Continued)
-------
ISCLT ......«....•« HYPOTHETICAL POTASH PROCESSING PLANT ........ pdGE 15 ....
.. ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRANS PER CUBIC METE.R ) DUE TO SOURCE 1
-------
I SCLT
HYPOTHETICAL POTASH PROCESSING PLAHT
PACE
Y AXIS (DISTANCE
AHNUAL GROUND LEVEL CONCENTRATION ( MICROCRANS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. HETERS) -
-3000 000 -2000 000 -1500 000 -1250.000 -1000 000
, HETERS ) - CONCENTRATION -
) DUE TO SOURCE
-800.000
-600 000
-400 000
V
OJ
Y AXIS (DISTANCE
.000 200.000
, DETERS >
- GRID SVSTEN RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 (00.000 800.000
- CONCENTRATION -
1000.000
1250 000
1500.000
-200.000
3000
2000
1500
1250
1000
BOO
600
400
200
-200
-400
-600
-eoo
1000
1250
1500
2000
3000
000
000
000
000
000
000
000
000
ooo
.000
000
000
000
000
000
000
000
ooo
000
.006965
.011515
. 014513
.016475
. 017381
.018161
. 018828
. 01)354
.01)713
.020141
.018523
.017138
.015(66
. 014146
.012(13
. 010888
.009587
. 007797
. 005056
.008(68
.014112
.020459
. 0244(8
.028933
032995
.035478
037530
.038928
. 040275
. 035441
.031 178
. 02(677
.022212
.018985
.01(298
.0138(1
.0100(8
.009041
. 009457
. 016(42
.023424
.029795
.037868
. 045305
.054043
. 059212
.0(2940
.066056
. 0555S6
.04(102
.03(511
.029(84
.025150
.020183
. 01(500
.015437
.01 18(9
.009761
.018078
.025849
.032337
.042992
.053804
.06(131
.078152
.085020
.0903(2
.073214
.057673
.043017
.035479
.028820
.022614
.021602
.019099
.013531
.010159
.019329
029185
036506
.048070
.0(3414
.083236
.108406
1220(9
.132433
101294
.073871
.054393
.042149
.033350
031196
.028850
.023342
.015147
.010476
.020396
.031(39
.040981
.053978
.071498
. 100129
. 138255
. 175870
. 19(519
. 139285
08931 1
065674
.049192
.045428
.040974
.035847
.028046
016276
. 01071 1
. 021 206
.034546
. 044942
. 062401
.082892
. 120385
187572
278131
.328299
. 203643
. 121 138
.081989
.071738
0(34(9
052774
. 04(095
. 031 120
.017341
. 010850
. 022056
. 036007
.048577
.071700
. 098869
. 149439
. 255829
.478446
.672045
307297
. 172356
136328
. 107757
.091244
.067500
. 052445
. 034312
.018313
.010881
.022457
.037534
051848
.076554
. 1 13060
. 184907
.353476
.904135
2 . 154006
.600412
.354220
.239562
. 155911
. 1 10504
.078479
.058886
.037064
.019156
2000.000
3000
2000
1500
1250
1000 .
800
600
400
200
-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
ooo
ooo
ooo
000
ooo
000
000
000
000
000
ooo
000
000
000
000
.010848
. 022493
.037903
.052833
.079373
. 120597
.207455
.446022
1.573416
. 000000
2. 098428
.64718)
.316597
. 190098
. 128307
. 087984
.0(4584
. 039615
.019992
.010392
.021035
.034548
.047111
.0(8329
098866
. 155380
.277381
.(0(844
3.850015
1 .020814
.466688
.255(00
. 1(4571
. 115250
.081019
. 0(0393
.037712
. 019359
. 009*13
.019385
.030533
. 040069
.054712
.071447
. 100980
. 155132
359376
1 .05(81 1
.535093
.275795
. 177023
. 124354
.095741
.070451
054204
.035056
. 018535
.0093(1
.017466
.025980
.032426
.042491
.052989
.0703(8
.127025
.270137
.494085
.343357
200776
.128390
.095957
.07(522
.058439
.047065
.031926
.017580
.008754
.013402
.022042
.027106
.033334
.040854
.0(4027
.100(25
. 1881 13
.289897
.223884
.151209
.105058
.0758(4
.0(1779
.049890
.040541
028522
.01(526
.008109
.013650
.018914
.022300
027078
.039210
.057075
.090279
137146
. 191973
. 157454
. 12(034
.089115
.066355
.050939
.041873
.035328
025531
. 015402
. 007344
. 01 1886
.015416
017995
.02(386
.035871
. 047524
.072450
. 099690
. 129765
.111431
.092458
.071508
.057230
. 045054
.034240
.029328
.022509
.014108
.006638
.010248
.012930
.017851
.024759
.031549
. 043083
. 059067
.075734
. 094095
.083148
.072006
.060938
.048576
. 040141
.031178
. 024820
. 019642
. 012784
.005521
.007718
.012740
.016195
020257
025(54
.032994
.040699
048287
036687
.051835
.047058
.041770
036592
.031008
.02(020
.021614
.015021
010758
FIGURE D-2. (Continued)
-------
«••• ISCLT
HYPOTHETICAL POTASH PROCESSIHG PLAHT
• • AHNUAL GROUND LEVEL COMCEHTRATI OH ( HICROGRAHS PER CUBIC METER
- GRID SVSTEH RECEPTORS -
- X AXIS (DISTAHCE. DETERS) -
3000.000
Y AXIS (DISTAHCE . HETERS ) . - COHCENTRATIOK -
> DUE TO SOURCE
...... PACE
2 (COHT . )
O
3000
2000
1500
1250
1 000
800
600
400
200
-200
-400
-(00
-800
-1000
-1250
-1500
-2000
-3000
X
RAHGE
( METERS)
2108.0
000
000
000
000
000
000
006
.000
000
.000
000
000
000
000
000
000
.000
000
000
Y
AZIMUTH
BEARIHC
(DECREES)
14.0
-
003765
00740?
010053
01 1851
014468
017552
020156
. 022742
02S241
028059
026482
025017
023387
021652
. 01)854
017615
015531
012252
. 007459
COHCENTRATION
.017735
10 CONTRIBUTING
- DISCRETE RECEPTORS -
X Y COHCENTRATIOH X Y COHCEHTR AT I OH
RAHGE AZIMUTH RAHGE AZIMUTH
BEARIHG BEARING
C HETERS) (DEGREES) (METERS) (DEGREES)
VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBIHED SOURCES 2, -11.
X Y COHCEHTRATION
COORDIHATE COORDINATE
(HETERS) (METERS >
200.00 .00 3 930015
-200.00 .00 2.154006
.00 -200.00 2 096428
.00 200.00 1 373416
400.00 .00 1.05(811
200.00 -200.00 1.020814
-200 00 200.00 .904135
200.00 200.00 .60(644
FIGURE D-2. (Continued)
-------
•••• ISCIT •••«•••«••«•• HYPOTHETICAL POTASH PROCESSING PLANT ........ PAGE 18 ••••
• • ANNUAL GROUND LEVEL CONCENTRATION ( MICROCRAHS PER CUBIC METER > DUE TO SOURCE 2
-40».00 .00 472045
tOO 00 .00 .4*40*3
7
*»
FIGURE D-2. (Continued)
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLAHT
PAGE
ANNUAL GROUND LEV.EL. CONCENTRATION
-3009 . 000
-2000.000
Y AXIS (DISTANCE
METERS
MICROGRANS PER CUBIC METER
- GRID. SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-1300.000 -1250.000 -1000.000
- CONCENTRATION -
FROM COMBINED SOURCES 2, -11.
-800.000 -bOO.OOO -400 000 -200.000
3000
2000
1500
1250
1 000
800
600
400
200
-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
.000
000
000
000
000
000
000
000
.000
000
000
. 000
000
.000
. 069304
. 1 13857
. 142735
. 160232
. 170188
. 177838
. 184442
. 189671
. 193323
. 197745
. 182106
. 1(8766
. 154584
. 139907
. 125081
. 107328
.093127
. 077746
. 050333
. 08(142
. 139337
. 201219
. 239272
. 281320
. 318479
. 3423(6
. 361978
. 373318
. 386932
. 343296
. 303183
. 260745
.218181
. 18(092
. 160396
. 137286
.099186
.086727
. 094322
. 1(3830
.230082
.291938
. 3(7370
. 43(039
.513902
. 562360
.596982
.626915
.330070
. 443178
. 353657
.287631
.243489
. 198804
. 1(0810
. 149136
.11(430
.0973(3
. 178439
.252009
.315(99
.4175(0
.51(717
.(28419
.733812
.795(38
.845442
.(90285
.530122
.41 1486
342576
281155
.218323
.203334
. 184434
. 132180
. 1013(3
. 191507
.285347
.353433
464783
.609051
.785794
.998(82
1 .119701
1 .212016
.938373
.(93395
.515(42
.405981
.317405
2924(7
.274032
223481
. 149433
. 104822
. 200914
.310634
398038
516398
.6820(1
. 941902
1 . 2682(3
1 . 567403
1 . 740726
1 . 237816
.823493
.(18541
.439324
. 417079
.363993
. 340640
.2(3285
. 1(1049
107303
.210418
333440
. 439216
. 599(23
. 78131 1
1 . 11 7271
1 . 687760
2. 384049
2. 767684
1 . 779768
1 . 0877(1
. 737824
. 641 625
.582381
.495048
422359
303513
. 172083
. 109256
.220121
. 355209
.476062
. 677265
.937151
1 . 364402
2 . 24 1689
4 . 056708
5 . 143662
2 661422
1 .440039
1 . 155965
. 9(0547
. 800418
.642579
. 505382
. 336456
. 182243
1
1
3
6
13
4
2
2
1
1
. 109943
.223575
.373983
.512328
.745408
.077942
.738784
.028498
.661888
.022506
.074889
.708335
.022530
.420212
.037472
.752934
.572445
.3(5480
. 1 91207
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
Y AXIS (DISTANCE
3000
2000
1500
1250
1000
800
600
400
200
-200
-400
-600
-800
-1000
-1250
-1 500
-2000
-3000
000
000
000
000
.000
000
000
. 000
.000
000
. 000
.000
. 000
000
000
000
000
000
.000
1 .
1 .
3
1 1
12
3
2
1 .
1
.000 200.000
. METERS )
1 09330
.226130
379032
323420
781384
170039
954(20
923381
471383
. 000000
344737
043224
. 747707
733743
204173
842362
(26087
.389287
. 198870
1 .
1 .
2.
3.
23
7.
4.
2.
1 .
1
10(237
215839
355736
48(192
70(732
025948
(18620
920527
483708
993482
773(22
389494
321651
(50743
1(4315
822B54
(14(71
384241
197230
400. 000
1 .
1 .
3
10.
4 .
2
1 .
1 .
101744
2003(1
318236
420413
577554
779998
066844
543233
335(35
171(92
910321
(21337
796403
328333
986233
728293
359027
360114
189719
600 . 000 800 . 000
- CONCENTRATION -
1
2
3
3
1
1
1
.096439
.181873
.273604
.347338
.448524
.564292
.717416
.253873
.716410
. 1 14832
.330263
.986406
.291082
.0021 80
.79(041
:(222(8
.490786
.330799
180766
1
1
3
2
1
1
.090332
161361
.231 1 16
283721
.333885
418369
.642060
.030907
.941765
.062559
.324929
549731
.0(4409' '.
.775074' '
.(49274
.322149
.423022
.298044
. 170729
1000 . 000
. 084182
. 142420
. 198802
235667
.277776
394483
.583774
897066
1 433333
2.039336
1.633134
1 .272277
.914706
.676022
. 324130
. 440561
.370225
.266134
159859
1250 . 000
076024
.124210
162242
. 184594
. 267202
367660
492226
. 750609
1 046927
1 375513
1 17 1796
962635
. 740086
.389321
. 461627
353451
. 308395
.235324
. 145883
1500 . 000
.068920
. 107175
. 132515
. 180881
.233840
. 326109
439963
.615844
. 796398
.995872
. 874905
.752439
. 629156
. 502345
.413644
. 31 9859
. 256346
.205748
. 133096
2000 . 000
057371
.079031
130178
166584
.209609
.264368
.342652
425358
.506765
.597055
.544025
.491973
.434382
. 380056
.320431
.268332
.222434
. 155218
. 1 12234
FIGURE D-2. (Continued)
-------
•••• ISCLT •••••••••••••
HYPOTHETICAL POTASH PROCESSING PLANT
PACE
ANNUAL GROUND LEVEL CONCENTRATION <
N1CROCRAHS PER CUBIC METER
- CRIO SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
> (CONT.) FROM COMBINED SOURCES
S 'DISTANCE
3000
2000
1500
1250
1000
800
too
400
200
-200
-400
-too
-•00
1000
1250
1500
2000
3000
000
000
.000
000
ooo
ooo
.000
000
ooo
.000
.000
.000
.000
ooo
000
000
ooo
000
000
3000.000
. DETERS > - CONCENTRATION -
.018924
.07(09*
10385*
. 120*11
. 194*8?
. 182127
.20*715
.237103
.2(394?
.2*33*1
27(41*
2(0(*0
.24317*
.214319
2*5259
.1 7*738
. 1(0045
.12(144
0770(5
X
RANGE
ANNUAL CtOUNO LEVEL CONCCNTMT ION ( HICIOCMIIS PER CU8IC HE tit
- •itcitTt •ictrroit
r COMCCNTIATION X V CONCENTRATION
• MCE •ZIHUTII
• CM INC
(DCCKIS)
) (CONT.) MOM COMBINED SOURCES
-It.
AZIMUTN
BEARING
(METERS) (DECICCt)
X Y
MNGE AZIMUTH
• (MING
(•CTEtS) (DECREES'
CONCENTRATION
2108.0
14.0
.183*57
- ftOC«AN OETC MINED NAXIftU* 1* VALUES -
COORDINATE COORDINATE
CONCCNTIATIOH
(NITttS)
(MtTtRS >
200.00
-200.00
.00
.00
400.00
200.00
-aoo.oo
200.00
00
.00
-200.00
200.0*
00
-200.00
200.00
200.00
2S.**5482
13 02250(
12.34479?
11.471983
10. l?l(*2
7.775(22
(.((1*88
5.483708
FIGURE D-2. (Continued)
-------
•••• ISCLT ••••• ••• HYPOTHETICAL POTASH PROCESSING PLANT ........ poCE 48 ••••
• • BHNliftL GROUND LEVEt CONCENTRATION ( NICROGRAMS PER CUBIC DETER ) (COHT.) FROM COMBINED SOURCES 2. -11,
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS)
-------
• ••• ISCL T
HYPOTHETICAL POTASH PROCESSING PLANT
PACE
ANNUAL GROUND LEVEL CONCENTRATION <
o
**
vo
-3000 000
- 2000. 000
Y AXIS ' 0 iSTHNCE
METERS >
HICROGRABS PER CUBITXETER
- GRID SYSTEIt RECEPTORS -
- X AXIS (DISTANCE. HETERS> -
-1300.000 -1250.000 -1000 000
CONCENTRATION -
FROR COHB1NED SOURCES 12,
-800 000 -iOO.OOO -400 000
Y AX !S < D ISThNCE
.000 200.000
, METERS >
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, DETERS) -
400.000 (04.000 800 000
CONCENTRATION -
1000.000
1250 000
1500.000
-200 000
3000
2000
1 500
1 250
1 000
600
600
400
200
- 200
-400
- 600
-800
1 000
1 250
1 500
2000
3000
000
000
OOC.
ooo
000
000
000
000
000
000
ooo
00*
000
000
000
000
000
000
ooo
1
1
1
1
2
2
2
2
2
2
2
2
2
026136
46(923
731106
9(1593
099291
22(346
345510
453982
549123
723536
4(0799
298247
127076
950(89
772396
578029
353474
153758
821929
1
1
2
2
2
3
3
3
4
4
3
3
3
2
2
2
1
1
1
256639
800774
324 103
630876
970332
383329
(54743
922350
1499(3
536736
924102
5301(8
11(801
721 101
271 145
01 3745
78(021
400879
233152
1
2
2
3
3
4
4
5
5
(
3
4
3
3
2
2
2
1
1
394891
041300
652226
123444
(((295
M9426
898023
3421 1 8
754478
413326
327103
(13119
918(25
107347
747335
351178
OI3SS9
820123
330709
1
2
2
3
4
4
3
(
(
7
(
5
4
3
3
2
2
2
1
457(31
223513
B3S598
382038
081321
717387
924089
397145
994015
898811
3(3733
3397(3
307072
479133
0205(1
3Z509(
341790
143(14
(93313
1
2
3
3
4
3
6
7
8
t 0
7
6
4
3
3
3
2
2
2
5(3327
393042
1359U
(88808
3120(4
384980
394051
9(87 19
784849
100913
800076
342207
(30759
900884
292710
004131
828426
301049
004370
1
2
3
4
5
3
7
10
10
12
9
7
3
4
3
3
3
2
2
(27987
537323
41(398
012042
0(4338
971 147
333305
105235
84(931
7IS501
343(90
378835
200032
237973
983939
364726
341222
838203
17(083
1
2
3
4
•5
6
8
10
1 1
16
1 1
7
5
5
4
4
3
3
2
701 759
765(27
691384
433402
408(35
871447
414105
947987
927800
7070(5
452104
(39159
81 5339
322970
71 1037
328892
932989
471504
3(0704
1
2
4
5
6
7
10
12
19
23
15
8
7
6
5
5
5
3
2
7(7006
903706
125984
14271 3
1 1 4076
47(237
0(281 0
959803
(89732
3(5372
01 9095
584537
(05318
527227
9(9(58
7(2002
0(8898
848852
539866
1
3
4
5
7
9
1 1
16
25
36
16
12
10
9
8
6
5
4
2
821(74
0(31(7
358539
395(22
1(9499
354106
3(6325
802806
817279
872723
782434
158228
043595
933138
443030
770402
703456
23(399
709668
2000 000
3000
2000
1 500
1 250
1 000
800
600
400
200
-200
- 400
-600
-800
-1000
-1 250
-1 500
-2000
-3000
000
000
ooo
000
000
000
000
ooo
000
.000
000
000
000
000
000
.000
000
000
.OOC-
1 .
3
4
5
7
9
13
22
39
S3
27
21
15
1 1
9
7.
6
4
2
8(3959
1 80661
606066
800(42
(29095
929136
824750
679297
465606
515590
318790
760216
240382
8753(8
. (5(154
726638
366639
625996
86627?
1 .
3.
4.
6
8.
10
1 4 .
23
47 .
. 47.
26
18
1 4 .
1 1 .
9.
7 .
3.
3.
94(137
33353(
894876
193524
1933(8
737393
944343
3(9781
2738(5
000000
((1743
873203
927883
3114(9
334809
037(35
341380
207078
131571
3
4
5
(
g
11
13
23
((
32
20
17
13
10
8
(
5
3
. 8(4315
. 1327(9
444413
489854
. 99(7 13
. 871583
. 830539
. 944838
. 402405
. 329726
3391 29
314912
.715207
. 2000(7
333226
.443438
. 947709
. 0142(5
. 0(3723
1
2
4
3
(
(
7
II
22
40
27
17
12
10
10
8
(
4
3
.818903
977((3
.091908
.01(295
. 181206
664326
698926
.238172
. 100778
045153
. 707(00
.591312
. 722244
.997480
.2(80(2
.202712
.(38505
.898(79
.039350
1
2
3
4
4
3
7
9
1 8
28
2 1
1 3
I 1
9
8
7
6
4
2
7(2482
791661
.818324
.08(707
.((9840
21(991
.130131
.4(0494
.10(442
322048
1 037 18
.(90922
.8433(5
. 193337
. 1 492(1
.085935
613816
726667
995852
1 .
2
3
3.
3
3.
6
9
14
21
16
13
9
8
7
(.
3
4
2
.(97084
(73073
1 13531
.438843
838446
0233(0
338229
831520
. 9(30(4
742420
725171
148636
(75957
678366
. 032344
242832
568466
. 731584
. 935314
1
2
2
2
3
4
5
1
12
16
13
1 1
8
7
b
5
4
4
2
606376
209(53
61 1359
824745
(38(94
568589
. 861778
427739
224927
524483
385482
531110
441(39
1(21(5
321995
344371
8(3932
. 031 366
840997
1
1
2
2
3
4 .
6
8
10
13
10
9
8
6
5
4
4
3
2
478013
934(54
192930
732542
31 1530
3481 15
036804
144196
178134
114771
986314
444956
0515(3
429449
610717
886875
24 1057
(36089
. 700475
1 .2232(1
1 .47027(
2.121044
2 .(29033
3 218704
4 2154(1
5 .303346
6 . 402(51
7 .488700
9 .079860
7 .933(29
7 134890
6 285479
5 .395544
4 .(55951
4100524
3 .597720
2 .92(842
2 .323(98
FIGURE D-2. (Continued)
-------
•••• ISCL7
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
62 •••*
GROUND LEVEL CONCENTRATION ( HICROGRANS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. NETERS) -
3000.000
) (COHT.) FROM COMBINED SOURCES
12,
-15,
V AX 15 (DISTANCE
o
I
(Jl
o
DETERS
CONCENTRATION
3000
2000
1500
1250
l ooo
800
600
4 00
200
-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
.000
000
000
OOf,
000
000
000
000
000
000
000
000
000
000
000
1
1
2
2
3
3
4
4
5.
4 .
4 .
4
3
3.
3.
2.
2 .
1 .
. 830907
438025
929534
. 299519
.907767
351531
. 601683
.248733
£84326
339422
. 870247
557828
226481
8BI844
532636
102986
77)832
339335
793834
X
RANGE
ANNUAL GROUND LEVEL CONCENTRATION ( M1CROCRAMS PER CUBIC METER
- DISCRETE RECEPTORS
Y CONCENTRATION X Y CONCENTRATION
) (CONT ) FROM COHBINED SOURCES
12,
-13,
AZ IMUTH
BEAR INC
METERS) (DECREES)
RANGE AZIMUTH
BEARING
(NETERS) (DEGREES)
X Y
RANGE AZIMUTH
SEARING
(METERS) (DEGREES)
COHCEHTRATION
2108 0
2.96*893
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y CONCENTRATION
COORDINATE . COORDINATE
(METERS )
(METERS )
400. 00
. 00
200. 00
200. 00
600. 00
. 00
-200. 00
400. 00
. 00
: 00
-200 . 00
200. 00
. 00
200 . 00
. 00
-200 . 00
66 329726
33. 515390
47. 661743
47. 273863
40. 043133
39. 463606
36. 872723
32. 339129
FIGURE D-2. (Continued)
-------
•••• 1SCLT ••••••»•»«••• HYPOTHETICAL POTASH PROCESSING PLANT ........ pflCE 63 «...
« ANNUAL GROUND LEVEL CONCENTRATION '. H1CROCRAKS PER CUBIC NETER ) (CONT > FROH COMBINED SOURCES 12, -15,
- PROCRAH DETERHINED NAXIHUH 10 VALUES -
X Y CONCENTRATION
COORDINATE COORDINATE
(METERS) (METERS )
800 00 .90 26.322046
400.00 -200.00 27.707400
FIGURE D-2. (Continued)
-------
HYPOTHETICAL POTASN PROCESSING PLANT
PACE (4 ••••
I
tn
to
•• ANNUAL GROUND LEVEL CONCENTRATION ( HICROCRANS PER CUBIC METER
' ' - GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-3000.000 -2OOO 000 -1500 000 -1250.000 -1000 000
Y AXIS (DISTANCE . METERS > - CONCENTRATION -
) DUE TO SOURCE
-800.000
-600.000
I 6
-400000 -200.000
3000
2000
t 500
1250
1 000
800
600
400
200
-200
-400
-600
-800
1 000
1250
1500
2000
3000
000
000
000
000
000
oon
000
000
000
000
000
OOu
000
000
000
000
000
000
ooc
. 1 94004
. 281036
335371
. 3601*9
377567
. 3*0335
. 402395
. 412803
. 421518
. 423332
. 39518*
3(6032
. 336429
. 306922
. 278000
. 243286
. 221409
. 187246
. 134163
. 221637
. 310734
. 403118
. 460372
. 320193
. 332199
. 376033
. 396223
. 61 1690
. 61 1 709
. 351024
. 488265
. 42S877
. 366235
. 323930
. 286388
.232344
. 197313
. 193603
. 239433
. 336798
. 43351 3
. 512590
. 602639
. 680728
. 732679
. 763492
. 789244
. 78381 1
. 682661
.377210
. 473794
. 406702
337381
. 303272
.257741
.244983
242297
247235
. 360002
.444328
.333127
.646679
.747237
.844893
.889606
.921203
914316
.771395
.627439
.301191
.431442
.369925
.303440
.274781
.290844
.269890
.234435
.382670
.4891 70
.334654
.687935
.818264
.962786
1 .036087
1 . 100662 .
1 .087988
.878317
.673775
.341682
.450636
.374364
329684
.345733
.343994
.297660
. 262341
.399868
.326191
.609338
. 713933
.873123
1 . 038602
1 . 232746
1 . 293867
1 .273403
. 974330
. 703664
.367717
. 436006
. 384470
. 410836
.413062
.392388
.313132
.269747
. 415452
.362198
. 665930
. 791336
.917873
1 . 152606
1 . 427463
1 . 548208
1 513868
1 . 064028
753437
. 577487
. 469397
.304026
. 310831
. 496171
. 441473
.332617
. 275774
.435677
. 594928
. 720418
. 882721
. 037033
. 225331
586036
879582
. 815784
. 103452
. 772306
. 595761
.651580
.637576
. 630068
.581122
. 474940
.349789
.280398
.451749
.633081
.774594
.969637
1 . 174189
1 . 4021 00
1 659714
2 .270847
2 . 1431 95
1 . 123793
.796301
.898089
.894143
831954
722378
.634170
.507454
.366258
Y AXIS (DISTANCE
.000 200.000
, METERS >
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 £00.000 800.000
- CONCENTRATION -
1000.000
12SO.000
1500 000
2000.000
3000
2000
1500
1250
1 000
800
600
400
200
-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
. 283491
. 462313
. 639417
. 818392
. 041270
. 278540
. 573095
. 808802
. 996482
755319
. 193126
. 384831
. 243651
. 072384
.930313
.790686
683910
.337513
.381712
. 284907
. 466332
. 669938
. 836790
1 . 072030
1 . 313341
1 . 362778
1 . 626612
. 863316
.000000 ;
2.232423
1 . 830429
1 . 461610
1 . 204016
t .018421
. 849445
. 726404
.563633
. 395810
.271733
. 429879
. 393406
. 720934
. 880379
. 01 8746
.116103
. 058815
. 020363
! . 328528
. 583050
. 410742
.209373 '
. 045214
. 91 1833
. 779938
. 678221
.337420
. 385304
.237521
389362
.512386
394414
.681819
.757306
783714
. 786152
I .497748
2 791865
1 .667326
1 .074860
.989275
.889018
.797718
.702978
624302
.508243
373903
.242637
.347176
.428690
.486725
.544358
.571348
.600277
.952363
1 .587248
2 325415
1 .622603
I . 123357
.817340
.759827 "
.699348
629152
.569258
.477717
.361932
. 227376
. 305361
.370863
. 406751
. 432877
. 439607
. 668601
. 949090
1 .479771
1 . 944634
1 492234
11 13601
.83391 1
.648773
.611148
.363295
. 318973
.447202
349331
208265
.268491
308809
. 324505
371 240
. 50 1359
. 665932
. 908945
! . 288151
1 576370
1 . 298919
1 . 027370
.824230
.657124
. 525433
. 488770
. 460522
.409731
.333880
. 190677
. 233949
.257612
.288574
394078
. 4998 18
. 6241 19
850985
1 113102
1 . 306923
1 . 124264
937561
. 776081
. 647550
. 539176
. 431337
. 408699
374486
. 31 7808
. 162882
. 1 82986
.249967
.312398
.386547
453586
.576280
715501
.857957
.961991
.867565
.768489
670454
.584810
.515255
.439065
.375589
.313068
.280590
FIGURE D-2. (Continued)
-------
7
in
•• I SCLT
• •
ANNUAL GROUND LEVEL CONCENTRATION ( HICROGRAHS PER CUBIC DETER > DUE TO SOURCE 16 (CONT > ••
AXIS (DISTANCE
3000
2000
1500
1250
1000
800
600
400
200
-200
-400
-600
-800
-1000 .
-1250
-1500 .
-ZOOO .
-3000
000
000
000
000
000
000
00-1
000
000
000
000
000.
COO
000
000
000
000
000
000
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE/ METERS; -
3000 .000
, DETERS > - CONCENTRATION -
. I 18448
I94403
256078
.291362
.352144
41013*
. 470(34
532378
5*3*07
63*122
599341
557864
5157*8
.474083
433413
3*0244
. 355025
.293978
.220719
x
RANGE
AZIMUTH
BEAR INC
(DETERS) ( DECREES)
ANNUAL GROUND LEVEL CONCENTRATION ( NICROCRADS PER CUBIC HETER
- DISCRETE RECEPTORS -
X Y CONCENTRATION
RAMCE AZIDUTH
BEARING
(DETERS) (DECREES)
> DUE TO SOURCE
16 (CONT.) ••
CONCENTRATION
X
RANCE
CONCENTRATION
AZIDUTH
BEARING
(METERS) (DECREES)
2 10 6 0
14 0 .1*8237
- 10 CONTRIBUTING VALUES TO PROCRAD OETERDINED HAXIHUH 10 OF CODBINED SOURCES
It.
(DETERS)
CONCENTRATION
COORDINATE COORDINATE:
(METERS )
too. oo
400.00
•00.00
-200 00
200.00
-200.00
. 00
1000. 00
.00
.00
.00
200.00
-200.00
.00
200.00
.00
2 7*18(5
2 528528
2 325415
2. 270847
2.252425
2. 1431*5
I 996482
1 944634
FIGURE D-2. (Continued)
-------
• ••• ISCL1 ••«•«••••»•»• HYPOTHETICAL POTASH PROCESSING PLANT • PUCE
• • ANNUAL GROUND LEVEL CONCENTRATION ( HI CROCKAHS PER CUBIC DETER ) DUE TO SOURCE 16 (CONT.) ••
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES 16.
X V CONCENTRATION
COORDINATE COORDINATE
(NETERS) (METERS )
-400 00 200.00 1.679582
200 00 -400.00 1 850429
I
Or
FIGURE D-2. (Continued)
-------
»••• ISCLT
HYPOTHETICAL POTASH PROCESSIHC PLAMT
PAGE
ANNUAL GROUND LEVEL CONCENTRATION ( HICROGRAHS PER CUBIC HETER > DUE TO SOURCE
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED KAXIHUN 10 OF COMBINED SOURCES -16.
COORDINATE
CONCENTRATION
COORDINATE
(METERS >
(METERS )
too oo
-200.00
.00
.00
-200.00
400.00
200.00
-400.00
.00
-200.00
.00
.00
-204.00
200.00
200.00
.00
-200.00
.00
-400.90
-200 00
3 850013
2. 1S4004
2.0*8428
I 37341*
.»041JS
1.0)t811
t.020814
.472049
.447180
.400412
I/I
In
FIGURE D-2. (Continued).
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLAHT
PACE
83 ••••
•'• ANNUAL GROUND LEVEL CONCENTRATION ( MICROGRANS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-3000 000 -2000.000 -1300.000 -1250.000 -1000.000
Y AXIS (DISTANCE , METERS > - CONCENTRATION -
) FROM COMBINED SOURCES -16,
-800.000 -600.000 -400.000 -200.000
3000
2000
1500
1250
1 000
eoo
600
400
200
-200
-400
-600
-BOO
1000
1 250
1500
2000
3000
000
000
000
.000
000
000
.000
000
000
.000
. 000
000
000
000
.000
000
000
000
.000
It
26.
33.
38.
40.
42.
43.
44.
45.
45
41
38.
35.
31.
28.
24.
21 .
17.
1 1 .
3223(0
938198
918464
412107
413(93
044022
397894
41991)
045173
91(0(0
941(37
781 127
423207
939581
4(8303
435443
(14428
722773
683859
20 .
33 .
47 .
36 .
(6 .
76 .
81 .
83 .
88.
90 .
79 .
69.
59.
49
42 .
36 .
3 t .
23 .
21
1(0139
1799(8
329038
344346
823286
222681
332103
491316
123725
833263
167438
568684
4358(4
455644
2236(6
440931
172742
487793
238330
21 .
38.
34
(8.
86
103 .
124
134 .
141
147
122.
101 .
80.
(3.
33.
43.
38
33.
27.
849217
284207
780899
. 31 1043
.698893
64(181
363353
167921
474094
833048
753387
733862
684219
387279
721813
070771
344336
790456
929014
22
41
59
75
97
122
ISO
176
190
200
160
12(
94
77
63
52
49
44 .
32
.7401 14
.374827
. 149200
.407299
.848737
.274283
.648001
.338940
.028994
.93(366
397211
159304
237838
.8419(9
718297
459734
714458
326645
354336
23
43
66
82
111
142
187
247
270
291
219
1(1
117
92
77
71
66
54
33
336577
960347
224823
.8(4464
.656610
.886354
. 13(818
443(14
.35(9(1
966961
170632
(40333
665745
.060918
. 1 15408
392230
338199
.186901
690(44
23.
43.
71 .
92
121 .
1(5
222
309
387
430.
298
191.
140
113
103
93
82.
64
38
996981
341280
324417
192979
(14747
31(082
(97435
3820(9
(68900
300426
322762
(28498
937147
272001
280412
546669
37(281
290197
310328
24.
47
75.
too
138
184
277
410
601
703
425
253
188
16:
143
120
104.
72
40 .
485956
898315
959636
.215822
. 61 27(4
331835
385811
113197
872719
. (892(2
008(44
665927
328789
504404
309587
225656
046945
215261
792690
24
49 .
80 .
107
156
215
324
577
969
1352
580
386
300 .
240
204
153 .
120 .
79 .
43
758325
569026
273409
. 824919
. 879406
923487
584450
675323
667404
. 809340
4236(0
510540
150852
140980
339903
213083
06(515
405753
055383
24
50
83
1 13
166
243
387
715
1818
3337
1 153
• 720
506
342
245
177
134
85
45
. 782160
.290810
.069705
.81 50(8
.467819
.798899
867008
.203056
. 1 15005
.469910
.095627
.739624
.806213
.427147
.944628
.021231
. 161208
625255
.017305
V AXIS (DISTANCE
.000 200.000
. METERS >
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE, METERS) -
400.000 600.000 800.000
- CONCENTRATION -
1000.000
1250.000
1500.000
2000.000
3000
2000
1 500
1250
1 000
800
600
400
200
-200
-400
-600
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
24
51
85
118
176
265
448
912
25(2
35
2906
1265
665
424
290
201
149
92
47
934721
044839
323863
2(0000
233377
419224
012074
388736
897093
270909
768219
670700
900(33
743869
383519
698225
283406
563078
334122
23
4C
73
101
144
204
31 0
478
1029
3796
1347
739
492
333
242
173
133
83
44
371416
689335
402963
345734
608702
942(34
452636
934720
417297
39(332
783400
281393
038418
826340
774803
443130
21(473
188610
910047
22
42
((
86
117
147
203
322
(22
1726
937
343
343
249
200
149
117
78
42
418(00
853902
349194
002(48
674806'
746462
379015
845(31
918434
383315
824738°
440018
736201
(2(393
087930
232218
331745
070786
603978
21
38
56
69
90
1 10
133
253
515
923
((4
403
268
195
158
122
100
70
40
133632
36(743
8(5574
695181'
298818
62(843
407338
381753
8(4479
(903(9
753903
534119
919738
103984
710787
841108
907719
190881
087975
19
34
- ••• 4 8
' 58
" 71
90
134
204
374
373
432
312
221
1(3
128
105
: 8(
(1
37
770863
057716
154256 *
469010 '
272028
742887 '
422354
092562
822460
291 183
524174
9381 14
761490
048063
845993
3(5843
913419
989390
37(537
18.
30.
41 .
' 48"
(0.
•"84.
119.
184
281 .
392
326
2(4.
190.
143.
111.
89.
73.
35.
34.
307478
301922
3(5995
517578
650049
3553(1
704184
288324
017220
78(240
(1991 1
315340
024277
227(44
2(2972
149122
801771
721(00
333759
16
26
34
40
57
76
too
133
208
271
235
199
155
124
98
75
(3
49
31
61 1444
398673
022812
824563
530(50
925032
642008
029696
461252
619366
455381
290188
398756
685884
672390
783270
460796
148626
274437
15 . 029985
22 . 91 1182
29 . 530576
39 . 483169
53 . 891436
67 . 999671
92 . 291634
26 . 139023
60 . 878254
!00 . 277052
78 . 258224
56 . 385298
33 . 4781 95
07 . 228083
88 . 7049(2
69 . 148563
55 . 435775
43 . 154763
28 . 488787
12
17
28
35
44
56
72
88
104
123
1 13
103
93
82
(9
58
48
34
24
590498
814389
371980
756058
377848
067525
052589
579032
817677
388295
350881
790063
027099
029533
799262
552079
621592
004495
147583
FIGURE D-2. (Continued)
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
84 ••••
V
In
«« ANNUAL GROUND LEVEL CONCENTRATION ( N1CROCRAMS PER CUBIC METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. HETERS) -
3040.000
V AXIS (DISTANCE > METERS ) - CONCENTRATION -
> (CONT.) FROM COMBINED SOURCES
-It,
3000
2000
1500
1250
1000
BOO
too
400
200
-200
-400
-too
-800
1000
1250
1500
2000
3000
.000
000
ooo
000
.000
.000
000
000
000
000
000
000
000
000
.000
.000
.000
.000
.000
9
It
22
2t
33
3*
44
so
St
(2
s»
Si
32
4V
49
40
35
28
17
8343)8
775850
55t4(2
7*4475
.5739(7
237078
.978824
(7t«71
I87«0«
(043(8
.2550*1
. 257470
.Bfl**7(
2(4845
47B4St
*40J17
.112128
217005
.21*220
•• ANNUAL GROUND LEVEL CONCENTRATION ( N1CROGRANS PER CUBIC METER
- DISCRETE RECEPTORS
X Y CONCENTRATION
RANGE AZIRUTH
• EARING
(DEGREES)
> (COHT.) FROM COMBINED SOURCES
-It.
X
RANGE
CONCENTRATION
AZIMUTH
BEARING
(METERS) (DEGREES)
X Y
RANGE AZIMUTH
•EARING
(METERS) (DECREES)
CONCENTRATION
2108 .0
14.0
1*.2)04*5
-.PROGRAM DETERMINED MAXINUN 10 VALUES -
COORDINATE
COORDINATE
CONCENTRATION
(METERS)
(HETERS >
200.00
-200.00 '
.00
.00
-200.00
400.00
200.00
-400.00
.00
.00
-200.00
200.00
200.00
.00
-200.00
.00
37*8.31(332
ll)7.4(t*10
2t«i.7t821*
25(2 8*70*5
1818. 115005
172* 385315
1547. 785400
1352.80*540
FIGURE D-2. (Continued)
-------
•••• ISCLT *••••••••»••• HYPOTHETICAL POTASH PROCESSINC PLANT ........ p«tE 83 •••«
• • ANNUAL GROUND LEVEL COHCEMTRATI OH < NICROCRANS PER CUBIC NETER ) (CONT.) FROH CONIINED SOURCES -It.
- PROCRAH DETERNINEO NAXINVN l« VALUES -
X Y CONCENTRATION
COORDINATE COORHNATE
(DETERS) (DETERS >
.00 -4*0 «» 12IS.C70700
-200 00 -200 »» 1133 «»J*27
a
Ul
00
FIGURE D-2. (Continued)
-------
• ••• I5CL7 •....t«..«««» HYPOTHETICAL POTASH PROCESSING PLANT ........ PACE 86 ••••
- SUHHARY OF SOURCES OUTPUT TO TAPE -
NUH8ER/TYPE HUHBER/TYPE NUMBER/TYPE MUHBER/TYPE NUHBER/TYPE NUMBER/TYPE HUHBER/TVPE NUMBER/TYPE NUHBER/TYPE NUKBER/TYPE NUMBER/TYPE
12 21 31 « I , 51 II 71 81 »1 101 111
!21 131 141 131 160
O
I
in
FIGURE D-2. (Continued)
-------
are from pages 46 through 48 of the output listing. These pages show the
combined particulate concentrations for Sources 2 through 11 with the max-
imum 10 values and receptors for the combined Sources 2 through 11. Figure
D-2 continues with output pages 61 through 63 showing the combined source
output for Sources 12 through 15. The output for Source 16 is shown on
pages 64 through 66. The ISCLT program then continues to print the 10
values from each of Sources 1 through 16 that contribute to the maximum
10 of all 16 sources combined (only Source 2 is shown). The program only
displays the 10 values that contribute to the maximum 10 because the cal-
culations for all receptor points for each source have been displayed
earlier in the output listing. The output listing for this example is
terminated on output page 86 with a summary of the source ID-number and
source type of each source output to tape with the respective calculated
concentrations.
D.3 EXAMPLE DRY DEPOSITION RUN
This ISCLT program example run calculates the total annual ground-
level dry deposition from the same hypothetical potash processing plant de-
scribed in Section D.2. This particular example is modeled using 11 out
of the original 16 sources. Only the first 11 sources are used here because
Sources 12 through 16 are assumed to be emitting only submicron particulates
that are assumed to be completely reflected at the ground surface and thus
do not contribute to the ground level deposition.
D.3.1 Input Data Set-Up Procedure
'', The input card data set-up procedure for this example is the same
as that used in Section D.2 for the example concentration run. The data param-
eters that are different from those used in the concentration example are
shown in Figure D-3. Card Groups 1 and 5 in Figure D-3 are the same as those
D-60
-------
LSCLT INPUT DATA CODING
PROJECT Example Deposition
FORM
NAME
DATE SHEET 1 OF 2
CARD GROUP
NUMBER , I* 3 4 5 6 T S 9 1C II 12 13 14
DATA CARD COLUMN
5 16 17 IB 19 20 21 22 23 24*25 26 27 28 29 50 31 32 33 34 33 56 37 36 39 40 41 4
1
Z 49 44 45 «6 47 46
CONTROL DATA PARAMETER AND VALUE
1-
9 f/af/ IY?IY IY IVWpf1
IM IA> lAi^lA IAi l/Y*lAi^l'
« D H H
§ 0 g g
8 o x i
3- ,*!,![>|/v»l/-/!A/hj i i IAi 1 , , v\lv\ 1 i
pj 2: Q w tf w
^ < w ffl E-1 ^
!> U Pi E^ ^ k*
X w CQ to w O
t 1 1 1 1 1
(till,
49 SO 91 92 S3JS4 99 M 57 98 39JSO «l B2J63 M 63 66 87 M 89 70 71 72 73J74 75 r8J77 7g 79 go
(X means do not punch)
ING PLANT
1 1 1 1 I 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 t 1 1 1 1 1 1 I 1 1 !
1 1 1 1 t I I i 1 1 1 1 1 1 I I I 1 I i 1 i i 1 i I 1 i i I i
- N0C0MB (array, omit if NGRCfUP=0) -
N/ N./ h./ N/ N/ K/ N/ K/ NV K/ ^ N/ N/ ^/ NV NX
- IDS0RC (array, om
( ( ( ] | ! | , | , , | ! I | I I I
III 1 | 1 1 1 t 1 1 1 1 1 1 1 1 1 I 1 1 1 1
it if NGRC
1 | I 1 1
1 1 1 1 1
1 1 t 1 1
1 I 1 1 1
>UP=0) -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t II111 [ f ]
1 1 1 1 t I 1 1 1 1 1 t 1 1 1 1 1 1 | 1 1 1 1 1 1
-------
o
to
ISCLT INPUT DATA
PROJECT Example Deposition
CARD GROUP
NUMBER
17d -
CODING
FORM
DATA
i
(0
II 12 13 14 IS 16 17 IB 19
20
Zl Z2 2J|24J25p6 27 28 29
SOURCE DATA
,1:. 2637 , , , 1,. 58,E,7
, , K -9,. ,4,6,361 , -, , ,1,., 2,6,E,7
, , , ^..S.IE
6 , ,9,. 4,6 36
, , , ,3,. ,1,5 E,7 , , ,7,. 8,836
1 1 1 1 1 1 j 1
R O 1 TT"
, , , ,D|. |O,1 £,
6
, .i^sE.ej , .3,. 15,36
, , , ,4,. 1,0,36
3. 15E6
1 1 1 1 1 1 1 1 1
, , , ,2,., 5,2,36
, , , ,1,. ,2,6,36
i- : • i i I i it
,,, ,6,. ,3,1,35
1 1 1 1 1 1 1 t 1
I i I i 1 i I I f
I 1 ' ! 1 1 1 1
i i i i i i i i i
1 1 1 1 ! 1 1 I 1
1 1 1 1 f 1 1 1 t
i I I i I r i i i
i i i i i i i i i
i i i i l i f t >
,,,,,,,,,
t i i i t i i i i
1 1 1 1
3O
31
32
33
343
536
37
CARD
M
13
PARAMETER
, , , ,1,,5,8E7
i |l,,26£,7i
, I , I1!' ,26E
, , ,9,. ,46,E
i i i i
7i '
1
5, ,0,536 , , , ,,
4. 10E6i 5. 05E6
1 1 l 1 1 1 . 1 t 1 1 1 ! 1 1 1 1
, ,3, 78E6
, , , ,3,.,1,5E
, ,- , ^..^E.e1
6| , , i ,4,,1,OE,6
, , , ,2,. ,5,2,E,6
, , ,.,!,. ,5,8,E,6
1 1 1 1 1 1 1 | 1
i I 1 f I 1 1 f
1 1 1 1 1 1 1 1
, , , ,3,,1,5,E,6
1 1 ! 1 1 | 1 1 1
1 1 1 1 1 1 I 1 1
i ; : 1 1 i 1 1
1 1 1 t 1 1 1 1
1 1 1 1 1 1 1 1 1
| 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1
1 I 1 I 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
t 1 1 1 1 1 1 1 1
1 1 1 1 1 I 1
-
1
1 1 1 1 1 1 1 ! i
t 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I I t 1 t 1 t 1
'
'
|
I
tl|»
j
(
|
I
- <*
|
|
1
,5'
|5 •
r
I
,
t
. |
|
|
|
|
t
|
(
|
1
|
|
|
|
|
|
|
5
5
o
o
-
4O
41
(Continued)
NAME
DATE
SHEET 2 OF 2
COLUMN - . .
42
43
44
454
647
46
AND VALUE
8,37
-
*
5
5
3
7
E,6
36
49
H,.
52
S3
54
35
56
37
(X means do
Q -
I
2.
2r
I
)
5r
5,.
I
1
1
1
1
1
1
I
1
|2
9
I"1
i '
1
t
1
1
,9,9
E7| ,
V
•
1
E6
,9,9,36
!
I
|
'
1
|
|
|
|
|
|
I
|
|
|
|3
3
• fl
m
1
58
59
not
60
6
j _L-
punch)
5,E,7
5
3
7
, , ,6,-, 9, 4,36
i
|
|
|
|
|
I
6
j
•
1
[
1
9,4
)
1
35
iiiiitiii
|
\
/
\ source strengths for /
\source 1 /
\ /
sourfee strengths for
sources 2 through 11,
make W copies of each
card \ /
/ \
/ \
FIGURE D-3. (Continued)
-------
in Figure D-l and are shown here for completeness. The parameters ISW(l)
and ISW(5) on Card Group 2 are changed to the values "2" and "1", respec-
tively, indicating deposition is to be calculated and no output tape is
used. Card Groups 3 through 4a show the number of input sources (NSOURC),
which is reduced to 11, and the number of output source combinations (NGROUP),
which is reduced to 3. Also, Card Group 17d shows the new emission rates
for Sources 1 through 11 for deposition calculations. The only other change
in the input deck is the removal of Card Groups 17 through 17d for Sources
12 through 16.
D.3.2 Run Time, Required Data Storage and Page Output Estimates
The run time, data storage and page output estimates calculated for
the example deposition run are given in the following paragraphs.
a. Run Time - The run time calculated using Equation (4-6)
is approximately
Time (seconds) - 11 • (19 • 19+1) • 1 • 6 • 6 • 7 • 7xlO~4
(D-9)
- 702
or approximately 12 minutes. The actual run time for this problem was 9
minutes.
b. Required Data Storage - This example run uses the same
receptor grid system as used in the concentration example and from Section
D.2.2.b. we know that the receptor points will fit in the ISCLT program.
We therefore need examine only Conditions a, b and c under ISW(ll) and NGROUP
in Section 4.1.2. Because tape input/output is not being used in this example,
we must comply with Equation (4-1) or (4-2) under Condition c of ISW(ll) or
NGROUP. Condition c states that the total number of sources for which concen-
tration or deposition is to be calculated must be less than or equal to the
minimum of I and J, where J = 300, and
D-63
-------
! . (40000-(19+19+2 . 1) - [l • (19 • 19+1)] - Q) (D_1Q)
(1 • (19 • 19+1))
109
Thus, the number of sources being used (11) is well within the program limita-
tions.
c. Page Output - The page output estimate is calculated
using Equation (4-8) in Section 4.2.5. The main difference between the page
output of this example and the concentration example in Section D.2 is the
reduction in the number of sources from 16 to 11. This difference would
require a new estimate of Equation (4-10) giving
B * 1 • (11+2)
= 52
~i| • (19+11)1
57 ' " '" " ' (D-ll)
As in the concentration example, we should add 11 more pages to B because we
are producing maximum 10 tables of deposition for individual sources that
contribute to combined sources maximum 10 deposition tables. This gives the
total estimated output pages as
pages a 32+53+5
= 90
The actual number of pages output was 68, with 6 pages of system generated
paper and 62 pages produced 5y the depos-ition run.
D-64
-------
D.3.3 Example Print Output
Figure D-4 illustrates the printed deposition output for the
example hypothetical potash plant. As in Figure D-2, only selected pages
of output are presented here. The example output shows the annual ground-
level deposition in grams per square meter due to Source 1 and due to
Sources 2 through 11 combined. The listing is the same in form as that
shown for the concentration calculations in Figure D-2.
D-65
-------
• ••• ISCL r
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
o
I
O\
- 1SCLT INPUT DATA -
NUMBER OF SOURCES ' 11
NUMBER OF X AXIS GRID SYSTEM POINTS * 19
NUMBER OF Y AXIS GRID SYSTEM POINTS • 11
NUMBER OF SPECIAL POINTS » 1
NUMBER OF SEASONS • I
NUMBER OF HIND SPEED CLASSES • 6
NUMBER OF STABILITY CLASSES * 6
NUMBER OF KINO DIRECTION CLASSES • 16
FILE NUMBER OF DATA FILE USED FOR REPORTS • 1
THE PROGRAM IS RUN IN RURAL NODE
CONCENTRATION (DEPOSITION) UNITS CONVERSION FACTOR
ACCELERATION OF GRAVITY .04000000
PROGRAM OPTION SVITCHES = 2, 1. 2, 0. 0. 3, 2, 3, 3, 2.
SOURCES USED TO FORM SOURCE COMBINATION 1 ARE - 1,
SOURCES USED TO FORM SOURCE COMBINATION 2 ARE - 2.
SOURCES USED TO FORM SOURCE COMBINATION 3 ARE - -II,
. 10000000*01
0. 0, 0. 0.
. 000
0, 0, 1, 0,
-II.
DISTANCE X AXIS GRID SYSTEM POINTS (METERS )'
-600.00, -400.00, -200.00,
1500 00, 2000.00, 3000.00,
RANGE X SPECIAL DISCRETE POINTS (METERS )*
DISTANCE Y AXIS GRID SYSTEM POINTS (METERS )•
-600.00, -400.00, -200.00,
1500.00, 2000.00, 3000.00,
f-ZIHUTH BEARING Y SPECIAL DISCRETE POINTS (DEGREES)*
-3000.00,
-2000.00,
-1500.00,
-1250 00,
-1000.00,
-800.00,
00,
200.00,
400.00,
600.00,
800.00,
1000.00,
1250.00,
2108.00,
-3000.00, -2000.00, -1500.00, -1250 00, -1000.00, -800.00,
00, 200.00, 400.00, 600.00, 800.00, 1000.00, 1250.00,
14.00,
- AMBIENT AIR TEMPERATURE (DECREES KELVIN) -
SEASON
STABILITY STABILITY STABILITY STABILITY STABILITY STABILITY
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
1 2B7.2000 287.2000 283.2000 280.8000 279.1000 279 1000
- MIXING LAYER HEIGHT (METERS) -
S7 AB iL 1 TY
STDB IL 1 TY
SI ABiLI TY
STABiLI TY
STABIL I TY
ST ABILI TY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
1
2
3
4
5
6
HIND SPEED
CATEGORY 1
. 173000*04
. 1 73000*04
.360000*03
. 320000*03
. 100000*05
. 1 00000*05
MIND SPEED
CATEGORY 2
. 173000*04
. 173000*04
. 102500*04
.500000*03
. 100000*05
. 100000*05
SEASON 1
HIND SPEED
CATEGORY 3
. 173000*04
. 173000*04
. 123500*04
. 840000*03
. 100000*05
. 100000*05
HIND SPEED
CATEGORY 4
. 173000*04
. 173000*04
. 129500*04
. 840000*03
. 100000*05
. 100000*05
HIHD SPEED
CATEGORY 5
. 1 73000*04
. 1 73000*04
. 129500*04
840000*03
. 1 00000*05
. 1 00000*05
HIND SPEED
CATEGORY 6
. 173000*04
. 1 73000*04
. 129500*04
.840000*03
. 100000*05
. 100000*05
FIGURE D-4. Total Annual Particulate Deposition Output Listing.
-------
•••• ISCLT
•*•• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.) -
- FREBUENCY OF OCCURRENCE OF WIND SPEED. DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 1
WIND SPEED WIND SPEED WIND SPEED WIND SPEED WIND SPEED WIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY 6
PACE
2 • • **
DI RECTI ON
< 7300HPS )(
2. 3000MPSH
4 .3000HPSX
« 8000HPS X
9 . 3000NPS >(
12. 3000NPS
< DECREES )
22
45
67
90
1 1 2
135
157
180
202
225
247
270
292
31 5
337
000
500
000
500.
000
500
000
500
000
500
000
500
000
500
000
500
.00016950
.00012830
. 00009180
.00010760
00031190
.000361 10
.00038650
00069530
. 00067470
00055120
. 000144 10
.0001 1350
00028990
00008390
. 00006020
00028200
.00008560
.00019980
.00019980
.00023690
.00039930
.00031390
.00034260
.00079930
.00083640
.00034240
.00023690
.00028330
.00023690
.00017130
.00008360
.00022840
00000000
. 00000000
. 00000000
. 00000000
. 00000000
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
SEASON 1
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
STABILITY CATEGORY 2
WIND SPEED WIND SPEED WIND SPEED WIND SPEED WIHD SPEED WIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6
OIREC
T10N
; 7500HPS )<
2.5000HPSX
4 .3000HPSX
6 8000KPS X
9 . 3000HPS )(
12. SOOONPS
( DECREES >
22
45
67
90
1 1 2
135
!57
!80
202
225
247
i 70
292
31 5
337
OOC
500
000
500
000
500
000
500
UOO
500
000
500
000
500
000
500
00073330
001 04880
00044440
. 00096290
00187730
. 001 68920
001 97700
.00262380
00439181
. 00262740
.00143670
.00163270
.00249990
00134250
.00091310
00073250
.00077080
.00108480
.00068510
. 00148450
.00279770
.00279770
.00316880
.00399670
.0042231 1
.00308320
.00108480
.0021 1230
.0021 1230
.0011 9900
.00068510
00074220
. 00037 100
. 00048530
00019980
. 00083640
. 00168430
. 00276910
. 00342370
.00423361
. 00285480
.00103630
.00062810
00071 370
. 0011 1340
. 00077080
. 00043680
. 00037 1 1 0
. OOOOOOOO
. OOOOOOOO
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
. oooooooo
oooooooo
oooooooo
. oooooooo
FIGURE D-4. (Continued)
-------
•••« ISCL'
HYPOTHETICAL POTASH PROCESSING PLANT
PACE
- ISCLT INPUT DATA (CONT.) -
- FREQUENCY OF OCCURRENCE OF VIHD SPEED, DIRECTION AND STABILITY -
SEASON 1
STABILITY CATEGORY 3
HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 3 CATEGORY «
U
O\
oo
DIRECTION
( 7300KPSX
2.3000NPSX
4 .3000HPSH
( .8000HPS X
) .3000NPS ><
12 3000HPS
(DECREES)
22
45
(7
)0
112
135
1S7
184
202
225
247
270
292
315
337
000
500
000
500
000
500
000
500
000
500
000
500
000
500
000
500
00041430
.00»O)0»
0002(680
00033170
000(8820
0000(10
00038420
. 000(0830
.001 17710
000771(0
.000(0300
.00082450
.00141350
.000833(0
00035030
.000(3(10
000*4210
00079130
.00074220
.001453)0
.0027)770
.0037(830
.003034(0
.004233(1
.00408231
.003S3))0
.001(2720
.003833)0
.0043)(41
0021 1230
.00105(30
.00105(30
.00123(10
00131300
. 000)4210
.00137010
.00585231
.000(371
. 0073(321
.008107(1
.0091 101 1
. 00245510
.00202OO
.00288330
005)((31
. 0033)720
00134170
. 000)4210
SEASON 1
. 00014270
. 00048530
. 00042820
. 00042820
. 00071370
. 0021 1230
0031(880
0023)780
. 000(2810
. 0002SOO
.00043(80
. 000313)0
00111340
. 000313)0
. 00017130
. 00011420
. 00002850
.00014270
. 00002850
. 00005710
. 000085(0
. 00014270
. 00017130
. 000t))80
. 0001 1420
. 00011420
. 000085(0
. 00017130
. 00028350
. 00025OO
. 00005710
. 00005710
.00000000
.00002830
00000000
00000000
.00000000
00000000
.00000000
.00000000
.00002830
.000083(0
.00014270
.000342(0
000342(0
.00022840
.00002830
.00004000
STABILITY CATEGORY 4
HIND SPEED HIND SPEED HIND SPEED KIND SPEED HIND SPEED HIND SPEED
CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY (
D1RECTI ON
( .7300NPSX
2. 5000HPSH
4 .3000NPSH
6.8000NPS X
) . 5000KPS )(
12 5000NPS
(DECREES )
22
45
67
90
112
135
157
ISO
202
225
247
270
2)2
315
337
000
500
000
500
COO
500
000
500
000
500
000
500
000
500
.000
soo
.000)3500
.000(8)70
.0003)840
.00084880
.001)8280
00133830
.00071740
000)8470
.00100)70
.00037)70
0004)800
.00033)80
. 00122310
.0000)00
.00033350
. 00074000
.0023)780
002740(0
.00168430
.00408231
00(1 9491
.00533841
00333990
.00342570
.0037(830
. 002)11 90
.00137030
. 0017)850
00439621
.0020200
.00188420
.00210(0
. 007)0771
. 00887841
. 0063)431
.00862141
. 014)01)2
01661482
. 00907821
. 0063)451
. 0046818 1
. 0021 4110
.00225530
. 0050530 1
. 00)13531
.00742241
. 0051 101 1
. 00(5374 1
.013(7442
. 01347452
. 00553831
00616631
OI247S42
01841332
. 01 1)0441
. 00702281
. 0043105 1
. 00342570
. 00345430
. 00388081
01484482
.01413)72
. 0073)371
.00339341
. 01127(41
. 00807)01
. 00205540
001 14190
001)4120
. 00322590
. 001712)0
. 001 19)00
00123(10
.00131320
. 00199830
. 00283480
. 00790771
01061)81
. 002)4040
. 00262(40
.01027721
00305301
00034240
00019980
.00022840
00048530
.00019)80
. 000256)0
.000(2810
.00048330
.00125(10
.00208400
.0037(671
.0065)451
.001)4120
.0013)870
FIGURE D-4. (Continued)
-------
••«• ISCLT
O
o\
vo
><**• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (
12.3000NPS
( DEGREES >
22
45
(7
90
1 1 2
135
137
180
202
225
247
270
29?
315
337
000
500
000
500
000
500
000
300
000
500
000
500
000
500
. 000
.500
.00(84121
.00373070
.00247790
.00283840
.00479321
.0030(470
.00320440
.0033(230
.00470731
.0048(131
.0029(740
.00390741
.01170781
00742881
.00(29421
.007(1371
.00973481
.00339541
.00431071
.00493881
.00773(41
.00491021
.00282(20
.0023(930
.0031(880
.0041(801
.00342370
.00944931
.02033443
.01204721
.00982041
.01281802
.00000000
.00000000
.00000000
. 00000000
.00000000
. 00000000
. 00000000
.00000000
. 00000000
.00000000
. 00000000
. 00000000
.00000000
.00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
.00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. 00000000
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
. oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
oooooooo
oooooooo
oooooooo
FIGURE D-4. (Continued)
-------
• • •• 1 StL
STABILITY
STA8IL ITY
STA8IL ITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
STABILITY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
CATEGORY
>••••• HYPOTHETICAL POTASH PROCESSING PLANT
- ISCLT INPUT DATA (CONT.) -
- VERTICAL POTENTIAL TEMPERATURE GRADIENT (DECREES KELVIN/METER) -
WIND SPEED MIND SPEED MIND SPEED HIND SPEED HIND SPEED VINO SPEED
t
2
3
4
5
6
I
2
3
4
5
6
CATEGORY 1
000000
000000
.000040
.000000
.200000-0 1
.330000-01
WIND SPEED
CATEGORY 1
. 100000*00
. 130000*00
200000*00
.250000*00
.300000*00
300000*00
CATEGORY 2
000000
.000004
.000000
.000000
.200000-01
.330000-01
- HIND
WIND SPEED
CATEGORY 2
. 100000*00
. 150000*00
200000*00
250000*00
.300000*00
.300000*00
CATEGORY 3
.000000
. 000000
. 000000
. 000000
.200000-01
. 330000-01
CATEGORY 4
. 000000
.000000
.000000
. 000000
.200000-01
. 330000-01
CATEGORY 5
.000000
. 000000
. 000000
. 000000
.200000-01
. 350000-01
CATEGORY 6
.000000
.000000
.000000
.000000
.200000-01
.350000-01
PROFILE POWER LAW EXPONENTS -
WIND SPEED
CATEGORY 3
. 100000*00
. 130000*00
.200000*00
. 230000*00
. 300000*00
. 300000*00
WIND SPEED
CATEGORY 4
. 100000*00
. 130000*00
. 200000*00
. 250000*00
. 300000*00
. 300000*00
WIND SPEED
CATEGORY 5
. 100000*00
. 130000*00
. 200000*00
.250000*00
. 300000*00
.300000*00
WIND SPEED
CATEGORY (,
. 1 00000*00
. 150000*00
.200000*00
.250000*00
.300000*00
.300000*00
PACE
o
o
FIGURE D-4. (Continued)
-------
•«•• 1SCL1
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
6 ** •*
- SOURCE IHPUT DATA -
O
I
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P < N)
D £
1 EMISSION BASE /
COORDINATE HEIGHT ELEV- /
( N) ATION /
(11) /
- SOURCE DETAILS DEPENDING ON TYPE -
X 1 AREA -13.30
WARNING - DISTANCE BETWEEN SOURCE
X 2 VOLUME 20 . 00
•1 3. 30 10. 00
SPEED CATEGORY
1
2
3
4
3
6
1 AND POINT X.'
.00 .90
.00
1
1
0
0
0
0
1-
.00
WIDTH OF AREA < M)> 26.60
- PARTICIPATE CATEGORIES -
1234
FALL VELOCITY (2) (3) <4)
.26000*07 9.46000*06 6.31000*06 3.15000*07
.38000*07
.00000
.00000
. OOOOO
.00000
. 00.
1 .
1 .
0 .
0 .
0 .
26000*07
38000*07
OOOOO
OOOOO
ooooo
. 00
STANDARD DEVIATION OF
STANDARD DEVIATION OF
FALL VELOCITY
9
1
1
2
3
IS
THE
THE
-
MASS FRACTION
REFLECTION
COEFFICIENT
1 .
- SOURCE STRENGTHS
WARNING - DISTANCE BETWEEN SOURCE
SPEED CATEGORY
1
2
3
4
3
6
2 AND POINT X,'
4 .
3
0
0
0
0
t ~
( 1 )
10000*06
03000*06
OOOOO
OOOOO
ooooo
ooooo
. 00,
3 .
4 .
5 .
0 .
0 .
0 .
( 2>
13000*06
10000*06
05000*06
ooooo
ooooo
ooooo
00
2
3
4
3
5
6
IS
.46000*06 7.88000*06
.26000*07 1.26000*07
.38000*07 1.38000*07
.21000*07 2.21000*07
. 19000*07 3. 13000*07
LESS THAN PERMITTED
0
6
9
0
0
0
5
.0610
.0600
.5900
(3 )
.00000
. 31000*06
.46000*06
. OOOOO
OOOOO
OOOOO
CROSSWIND SOURCE DISTRIBUTION »
VERTICAL SOURCE DISTRIBUTION ( H >'
PARTICULATE CATEGORIES -
1234
0010 .0070 .0190 .0370
1000 . 4000 .2800 . 1200
0000 .1200 .7200 6300
( CRAMS
- SEASON 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.32000*06 1.26000*06
.78000*06 3.15000*06
.42000*06 4. 1 0000*06
.03000*06 5.03000*06
.99000*06. 5.99000*06
.94400*06 6.94000*06
LESS THAN PERMITTED
0
2.
3
0
0
0
5
0610
0600
5900
i 5 )
ooooo
52000*06
15000*06
ooooo
ooooo
ooooo
6
0990
0400
5000
1
3
0
0
0
0
4
1
6
0990
0400
5000
6
1
0
0
0
0
. 38000*06
. 15000*06
. OOOOO
. OOOOO
. ooooo
. ooooo
. 70
00
) -
(6)
. 31000*05
58000*06
. ooooo
. ooooo
. ooooo
. ooooo
FIGURE D-4. (Continued)
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A NUMBER TYPE COORDINATE
R P < N>
D E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
(N) ATION t
- SOURCE DETAILS DEPENDING ON TYPE -
O
I
^1
K>
X 3 VOLUME 30.00
WARNING - DISTANCE BETWEEN SOURCE
X 4 VOLUME 40.00
.00 2.60 .00
SPEED CATEGORY
1
2
3
4
. 3
6 0
3 AND POINT X.Y-
.00 4.30 .00
STANDARD DEVIATION OF THE
STANDARD DEVIATION OF THE
FALL VELOCITY < NPS)
MASS FRACTION
REFLECTION COEFFICIENT 1 .
- SOURCE STRENGTHS
10000*06
03000*06
00000
00000
00000
00000
. 00
STANDARD
STANDARD*
''
3 . 13000*06
4.10000*06
5.05000*06
0 00000
0 .00000
0 .00000
. 00
DEVIATION OF
DEVIATION OF
2
•3
4
3
5
6
IS
THE
THE
-
FALL VELOCITY (NPS)
MASS FRACTION
REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS
WARNING - DISTANCE BETWEEN SOURCE
SPEED CATEGORY
1 4
2
3
4
3
6
4 AND POIHT X.Y =
'( 1 )
10000*06
03000*06
00000-
ooooo
00000
00000
. 00
< 2)
3.13000*06
4 . fOOOO*06
3.03000*06
0 .00000
0 .00000
0 .00000
. 00
2
3
-4
3
5
6
IS
CROSSVIND SOURCE DISTRIBUTION =
VERTICAL SOURCE DISTRIBUTION «
PARTICULATE CATEGORIES -
12343
0010 .0070 .0190 .0370 .0610
1000 .4000 .2800 .1200 .0600
0000 .8200 .7200 .6500 .5900
( GRANS
- SEASON 1 -
- STABILITY CATEGORIES -
«3> (4) C5 >
.32000*06 1.26000*06
. 79000*06 3 . 15000*06
42000*06 4.10000*06
05000*06 5 05000*06
.9*000*06 3.99000*06
. 9400"0*06 6 94000*06
LESS THAN PERMITTED
0.
2.
3.
0 .
0 .
0.
CROSSVIND SOURCE DISTRIBUT
00000
52000*06
13000*06
00000
00000
00000
ION ( H>*
4
1 .
6
0990
0400
5000
6
1
'o
0
0
0
4
VERTICAL SOURCE DISTRIBUTION <«> = 1.
PARTICULATE CATEGORIES -
1 2 3 4
0010 . 0070 . 0190 .0370
1000 .4000 .'2800 .1200
0000 .8200 '.7200' .6500
( GRANS
' - SEASOH 1 -
- STABILITY CATEGORIES -
(3 ) (4 )
.32000*06 1.26000*06
. 78000*06 3 . 13000*06
42000*06 4 10000*06
03000*06 5.05000*06
.99000*06 5.99000*06
.94000*06 6. '94000*06
LESS THAN PERMITTED
0 .
2.
3.
0.
0.
0 .
"s
.0610 .
.0600
. 5 9 O'O
( 5 )
00000
52000«0'6
13000*06
00000
00000
00000
6
0990
0400
5000'
6
1
0
0
0
-------
•••» ISCL1
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
8 • • • *
- SOURCE INPUT DATA -
C T SOURCE SOURCE X Y EMISSION BASE f
A A NUMBER TYPE COORDINATE COORDINATE HEIGHT ELEV- t
- SOURCE DETAILS DEPENDING ON TYPE -
o
u>
R f ( N) < M> ATIOH /
0 E < H> /
X 5 VOLUME 41 00
WARHING - DISTANCE BETWEEN SOURCE
X 6 VOLUME 39.00
.00 C . 10 .00
SPEED CATEGORY
1 4
2 3
3 0
4 0
S 0
6 0
3 AND POINT X,Y»
.00 7. BO .00
STANDARD DEVIATION OF THE
STANDARD DEVIATION OF TNE
FALL VELOCITY =
PARTICULATE CATEGORIES -
12343
0010 .0070 .0190 .0370 .0610
1000 .4000 .2800 .1200 0600
0000 .8200 .7200 .6300 3900
( GRAMS
- SEASON 1 -
- STABILITY CATEGORIES -
(3)
.32000*06
.78000*06
.42000*06
03000*06
.99000*06
94000*06
LESS THAN
CROSSBIHD
VERTICAL
(4 >
1 . 26000*06
3. 13000*06
4 . 10000*06
5.03000*06
3. 99000*06
6.94000*06
PERMITTED
0
2
3
0
0
0
( 5 )
00000
52000*06
15000*06
00000
00000
00000
SOURCE DISTRIBUTION *
SOURCE DISTRIBUTION ( N >-
4
1 .
6
0990
0400
5000
6
I
0
0
0
0
4
1 .
. 70
00
) -
( 6>
. 31 000
*05
. 58000*06
. 00000
. 00000
. 00000
. 00000
. 70
00
- PARTICULATE CATEGORIES -
FALL VELOCITY (MPS>
MASS FRACTION
REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS
UARNIKC - DISTANCE BETWEEN SOURCE
SPEED CATEGORY
1 4
2
3
4
5
«
6 AND POINT X.Y*
1 2
3 4
0010 .0070 .0190 .0370
1000 .4000 .2800 .1200
0000 .8200 .7200 .6500
( GRAMS
-
SEASON 1 -
3
.0610
.0600
.5900
6
0990
0400
5000
) -
- STABILITY CATEGORIES -
( 1 >
10000*06
05000*06
00000
00000
00000
00000
. 00
<2>
3 . 13000*06
4 . 10000*06
S . 05000*06
0 . 00000
0 . 00000
9 . 00000
. 00
2
3
4
3
3
6
IS
(3)
.32000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
LESS THAN
f 4 )
1 . 26000*06
3. 1SOOO*06
4. 10000*06
3. 03000*06
3. 99000*06
6. 94000*06
PERMITTED
0
2
3
0
0
0
<5>
00000
52000*06
15000*06
00000
00000
00000
6
1
0
0
0
3
'. 6)
.31000
. 58000
00000
oooco
.00000
00000
+ 05
»06
FIGURE D-4. (Continued)
-------
•••• 1SCLT
HYPOTHETICAL POTASH PROCESSIHC PLANT
PAGE
9 •*«»
- SOURCE INPUT DATA -
C T SOURCE SOURCE X
A A HUHBER TYPE COORDINATE
Y EMISSION BASE /
COORDINATE HEICHT ELEV- /
- SOURCE DETAILS DEPENDING ON TYPE -
0
R P < M) < H) (N > ATION /
D E (N) /
X 7 VOLUME 69.00 .00 9.60
SPEED CATEGORY
1
2
3
4
3
6
UPRHING - DISTANCE BETMEEH SOURCE 7 AND POINT X,
X 8 VOLUME 79.00 .00 11.30
. 00
4
5
0 .
0
0
0.
Y*
. 00
STANDARD DEVIATION OF THE
STANDARD DEVIATION OF THE
FALL VELOCITY (MPS)
NASS FRACTION
REFLECTION COEFFICIENT 1.
- SOURCE STRENGTHS
( 1 >
10000+06
05000*06
OOOOO
OOOOO
OOOOO
. ooooo
. 00
STANDARD-
STANDARD
3 .
4 .
5.
0 .
0 .
0 .
,
( 2)
13000*06
10000*06
03000*06
OOOOO
OOOOO
OOOOO
. 00
DEVIATION OF
DEVIATION OF
FALL .VELOCITY
2
3
4
5
5
6
IS
THE
THE
-
NASS .FRACTION
• . REFLECTION COEFFICIENT
1 .
- SOURCE STRENGTHS
CROSSVIHD SOURCE DISTRIBUTION *
VERTICAL SOURCE DISTRIBUTION CM)*
PARTICULATE CATEGORIES -
12345
0010 .0070 .0190 .0370 .0610
1000 .4000 ..2800 .1200 .0600
0000 .8200 .7200 .6300 .5900
( GRANS
- SEASOH 1 -
- STABILITY CATEGORIES -
<3 )
.52000*06
. 78000*06
.42000*06
.05000*06
.99000*06
.94000*06
< 4 )
1 .26000*06
3. 1 5000*06
4. 10000*06
3.05000*06
5.99000+06
6.94000+06
0.
2.
3.
0.
0.
0 .
( 5 )
OOOOO
52000+06
15000+06
OOOOO
OOOOO
OOOOO
4
1 .
6
0990
0400
5000
6
1
0
0
0
0
. 70
00
( 6)
. 31000 + 05
. 56000+06
. OOOOO
. OOOOO
. OOOOO
. OOOOO
LESS THAN PERMITTED
CROSSVI-MD SOURCE DISTRIBUT
ION ( N)-
VERTICAL SOURCE DISTRIBUTION (H>«
PARTICULATE
1 2
0010 0070
1000 .4000
0000 ..8200
( CRAMS
CATEGORIES -
3 4
.0190 0370
.2800 .1200
.7200 .6500
5
.0610
.0600
.5900
4
• 1*.
6
0990
0400
5000
. 70
00
) -
- SEASOH 1 -
SPEED CATEGORY
1
2
3
4
5
6
4 .
5
0
0 .
0
0.
( 1 >
10000+06
05000+06
OOOOO
OOOOO
OOOOO
OOOOO
3.
4 .
5 .
0 .
0 .
o ..
< 2)
13000*06
10000*06
05000*06
OOOOO
OOOOO
OOOOO
2
3
4
5
5
6
- STA8IL-ITY
<3 ) -
.52000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
CATEGORIES -
( 4 >
1 . 26000 + 06
3. 15000 + 06
4 . 1 0000*06
5. 05000 + 06
3. 99000+06
6. 94000 + 06
0.
2.
3.
0 .
0.
0 .
< 5 )
OOOOO
52000+06
15000+06
OOOOO
OOOOO
OOOOO
6
1
0
0
0
0
( 6 >
.31000*05
. 56000+06
. OOOOO
. OOOOO
. OOOOO
. OOOOO
VBRNING - DISTANCE BETMEEH SOURCE
B AND POINT X,Y-
. 00,
.00 IS LESS THAN PERMITTED
FIGURE D-4. (Continued)
-------
•*•• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PACE
10 ••**
- SOURCE INPUT DATA -
^J
Ln
C T SOURCE SOURCE X
A A HUIIBER TYPE COORDINATE
R P (K)
D E
Y EMISSION BASE /
COORDINATE HEIGHT ELEV- /
(H) ATION /
- SOURCE DETAILS DEPENDING ON TYPE -
X t VOLUME 89.00 .00 13.00 .00 STANDARD DEVIATION OF THE CROSSWIND SOURCE DISTRIBUTION CN>- 4.70
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION (H>« I. 00
- PARTICULATE
FALL VELOCITY (DPS)
NASS FRACTION
REFLECTION COEFFICIENT
1
.0010
. 1000
1 .0000
2
.0070
.4000
.8200
CATEGORIES -
3
.0190
2800
.7200
4
.0370
.1200
6500
5
.0*10
0*00
5900
«
0990
. 0400
. 5000
SPEED CATEGORY
1
2
3
4
5
(
WARNING - DISTANCE BETWEEN SOURCE
X 10 VOLUME 99.00
9 AND POINT
.00 14.80
X.Y«
- SOURCE STRENGTHS ( GRANS
- SEASON 1 -
- STABILITY CATEGORIES
<3>
2.52000*0*
3.78000*06
4 .42000*0*
3.05000*0*
3.99000*0*
(.94000*0*
00 IS LESS THAN PERMITTED
00 STANDARD DEVIATION OF THE CROSSW1HO SOURCE DISTRIBUTION *
STANDARD DEVIATION OF THE VERTICAL SOURCE DISTRIBUTION *
- PARTICULATE CATEGORIES -
1234
0010 .0070 .0190 .0370
1000 .4000 .2800
( 1 >
4. 10000*0*
5.05000*0*
0 . OOOOO
0.00000
0.00000
0.00000
•• .00,
C 2>
3.19000*0*
4 . 10000*0*
5.09000*0*
0 .00000
0.00000
0 .OOOOO
. 00
<4 >
1 .2*000*0*
3. 15000*0*
4. 10000*0*
5.05000*0*
5.99000*0*
(.94000*0*
( S)
0.00000
2. 52000*06
3. 13000*06
0. OOOOO
0. OOOOO
0. OOOOO
< ( >
6 . 31000*03
1 . 38000*06
0 . OOOOO '
0 .00000
0 .00000
0 . OOOOO
FALL VELOCITY CUPS)
NASS FRACTION
REFLECTION COEFFICIENT 1.0000
.1200 .7200
. 1200
.6300
3
0*10
0(00
5900
4 . 70
1 . 00
«
0990
0400
5000
- SOURCE STRENGTHS
SPEED CATEGORY
( CRAMS
- SEASON 1 -
- STABILITY CATEGORIES
WARNING - DISTANCE BETWEEN SOURCE
WARNING - DISTANCE BETWEEN SOURCE
10
10
1 '
2
3
4
3
(
AND POINT X.Y*
AND POINT X.Y«
( 1 )
1. 10000*0*
.05000*0*
.00000
.00000
.00000
. ooooo
. 00.
200.00.
3
4
S
0
0
0
< 2)
19000*0*
10000*0*
09000*0*
ooooo
ooooo
ooooo
. 00
. 00
(3 >
2 .52000*0*
3.78000*0*
4 .42000*0*
3 .03000*0*
S .99000*0*
( .94000*06
.00 IS LESS THAN PERMITTED
00 IS LESS THAN PERMITTED
(4 >
1 .26000*0*
3. 13000*06
4 . 10000*06
3.03000*06
5.99000*06
6.94000*06
(5 )
0. OOOOO
2. 52000*06
3. 15000*06
0 OOOOO
0 OOOOO
0 OOOOO
< 6 >
6 31000*05
1 .38000*06
0 . OOOOO
0 .00000
0 . OOOOO
0 .00000
FIGURE D-4. (Continued)
-------
«••• ISCLT «
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
- SOURCE INPUT DATA -
C
A
R P
D E
T SOURCE SOURCE X
A NUMBER TYPE COORDINATE
V EMISSION BASE /
COORDINATE HEICNT ELEV- /
(M> (H) ATION /
- SOURCE DETAILS DEPENDING ON TYPE -
II VOLUME
.00 16.50
.00 STANDARD DEVIATION OF THE
STANDARD DEVIATION OF THE
FALL VELOCITY (MPS)
MASS FRACTION
REFLECTION COEFFICIENT 1.
- SOURCE STRENGTHS
5
.0(10
.0(00
3900
SPEED CATEGORY
WARNING - DISTANCE BETWEEN SOURCE
WARNING - DISTANCE BETWEEN SOURCE
11
11
1
2
3
4
5
6
AND POINT
AND POINT
4 .
. 5
0
0 .
0
0
X.Y»
X,Y«
( 1 )
10000*06
05000*06
00000
.00000
.00000
.00000
200
00,
oo.
3
4
5
0
4
0
<2>
. 13000*06
.10000*06
.03000*06
.00000
.00000
.00000
. 00
. 00
2
3
4
5
3
6
IS
IS
< 3 >
.52000*06
.78000*06
.42000*06
.03000*06
.99000*06
.94000*06
LESS THAN 1
LESS THAN 1
1
3
4
5
5
6
>ER
>ER
CROSSMIHD SOURCE DISTRIBUTION -
VERTICAL SOURCE DISTRIBUTION (H>-
PARTICULATE CATEGORIES -
1234
0010 .0070 .0190 .0370
1000 .4000 .2800 .1200
0000 .8200 .7200 .6300
( GRANS
- SEASON 1 -
- 'STABILITY CATEGORIES -
14 >
26000*06
13000*06
1000.0*06
03000*06
99000*06
94000*06
4.70
I 00
6
0»90
0400
3000
( 3 )
0. 00000
2. 52000*06
3. 13000*06
0.00000
0. 00000
0 . 00000
' t )
6 . 31000*05
1 58000*06
0 .00000
0 . 0,0 000
0 . 00000
0 . 00000
FIGURE D-4. (Continued)
-------
• ••• ISCLT.
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
12 ••••
•• AHNUAL GROUND LEVEL DEPOSITION ( CRAMS PER SQUARE DETER
- GRID SYSTEM RECEPTORS -
- X AXIS - DEPOSITION
) DUE TO SOURCE
-800 .000
-600.000
-400.000
-200.000
3000
2000
1500
1250
1000
BOO
600
400
200
-200
-400
-«00
-800
1000
1250
1500
2000
3000
000
. 000
.000
.000
.000
.000
. 000
.000
.000
.000
000
.000
000
.000
000
000
000
000
.000
,
1
2
2
2
3
3
3
3
3
2
2
2.
2
1 .
1 .
1 .
1 .
. 17731 1
.941742
.507(14
.674048
.99*3(9
.0)8513
. 175004
. 2059(1
.232573
. 2ttS37
. **3128
. 723544
. 434137
. 170357
8*0979
576221
38*232
120585
. 730(70
1 .
2
3
4
3
(.
7.
7.
7,
7.
(.
3.
4.
3.
3.
2.
2.
1.
1.
(49(70
571310
823M4
701(49
7337*3
45312?
052515
3510(8
4»I(J4
(0717(
3*07*6
((5175
730303
831705
23*042
753(18
317428
70*373
4(3011
1
3
4
(
8
10
12
13
14
14
tl
*
7
3
4
3
3
2
2
. *42781
. 1*7137
.705O4
.081422
.086847
. 088452
53373*
.347723
. 1*0300
.50*007
. (3*41 1
.571313
.33»*01
.8270*0
8*013*
83241*
242(14
.972174
0*8812
2
3
S
(
*
12
1*
20
22
22
17
13
»
7
(
4
4
3
2
. 1 13508
.5714*5
.19(141
.992991
.((1434
.*27*25
.*3S7(4
.45*242
.041343
.75783*
. 7*3730
.473**3
.(2*S(*
.723574
0(8771
.(**4(3
.(57*03
.*1212(
.4(8(88
2
3
5
7
11
1*
24
34
37
40
28
20
14
10
8.
7
( .
3
2
. 14(337
.*088*0
.*22025
872(2*
.8(364(
732305
.044747
.177021
.414(15
.1*2128
.*2t(87
. 1*(028
.0*42*3
.452(32
.44*480
701*74
843745
.0(7**5
.745475
2
4.
(
*
13.
21
32
50.
((.
72.
47.
28.
1*.
14.
13.
11.
».
(.
2.
184*27
.0*0*5*
43303*
03204*
(03548
014127
(2808*
(71238
541 1*2
004727
(1*97*
37743*
7*7313
(03921
274841
1*371*
132*31
28*2**
f(8474
2
4
b
10
1*
25
45
80
131
151
(3
4*
32
2*
21
IS
12
7.
3.
. 210429
l(8*(l
7*1*24
054425
3151(9
40*37*
. (*0753
24851*
834218
5843(4
302133
. *I422(
484347
514443
048143
7*133*
377120
205714
178738
2
4
(
10
18
31
38
134
288
413
138
»3
(7
4(
33
21
14
8 .
3
. 212444
. 20347*
.**2*42
.703855
.7*7211
.37*581
. (4374(
.X7737
. 038895
»(0235
. 3*3343
.88(438
. 283883
.407284
80*933
.384245
82(538
078493
359375
2
4
7
11
19
35
71
189
7(5
1840
SIS
253
138
74
43
23 .
17
( .
3
.2131 10
.172732
.0(1731
.1 1853*
.553910
.135495
.84(844
.1*6*7*
.(37(04
271*0*
.*2(((S
.5(3221
,5((OIO
276432
809544
,**007(
0(7340
822123
5247(5
Y AXIS (DISTANCE
.000 200.000
- METERS )
- GRIO SYSTEN RECEPTORS -
- X AXIS (DISTANCE/ METERS) -
400.000 (00.000 800.000
DEPOSITION
1000.000
1250.000
1300.000
2000.000
3000
2000
1500
1250
1000
800
(00
400
200
-200
-400
-(00
-800
1000
1250
1500
•2000
3000
.000
.000
.000
.000
.000
000
.000
.000
. 000
. 000
.000
. 000
.000
.000
000
.000
000
.000
.000
2.
4.
(.
11.
1*.
3*
78.
223.
10*(.
2147.
522
1*(
*4.
S3
2*
1*
f ,
3
20*485
1(84**
**1328
0506(3
88531 1
2(95((
343783
80871*
933(44
000000
008942
029289
7*833*
839135
388054
912083
. 1139(9
3(0449
. 703(23
2.
3
3.
9.
13
2*
49.
10*
392.
2321.
683
193
10*
(1
J7
23
13
8.
3
044(13
702104
9(5113
102(30
40(80*
1(7227
3784*6
.29718*
371552
44((2S
. *5S*71
(((313
(828(1
301114
8*3*35
08744*
.4(2472
217»(2
J82072
1 .
3
3
7
II .
18
31
(*
1(3
553
308
12*
5*
33
24
1*
12
7
3
922703
. 3(4983
121821
.399743
83607*
13(390
610532
523837
85309*
. 181252
.7142(0
571017
.71(197
.193239
.742311
.6013(0
. 104713
.031328
. 103260
1
3
4
5
9
13
23
44
104
207
159
83
43
25
17
II
8
5
2
802229
.013514
.301331
.870071
0****1
535(37
4787*1
.J72335
.1*1(8*
.7(2184
.084352
.*50354
.353418
.70(248
.(837*4
.747(12
.505417
.8039*4
.822104
1
2
3
4
7
10
17
2*
(1
»*
83
S(
33
1*
13
*
7'
4
2
.(73252
.(81500
.728*11
.9918(2
. 1*8332
.74(755
.9700(5
.(0*S4(
. 15*012
72588*
.430305
.2(140*
.(2((99
.5752(9
.((4594
.757218
.177783
.(32301
.524687
1.
2.
3.
4.
(.
*.
13.
22
37
3*
48
3*
25
1*
1 1
7
(
3
2
S44(*4
3*202(
2*32(2
1(411*
05((42
073583
7*05*0
»72790
522183
012347
481188
(*03*0
872122
. *81000
334(92
924482
. 128132
932337
.22*552
1 .
2.
2.
3.
5.
7.
10.
16
23
31.
28
24
18
13
9
6.
4
3
1
401376
0)0023
7(3*71
33(837
240338
327381
015278
2*7778
432873
48*032
33(061
69*3*3
*24((*
807741
80332*
4*300*
. *30340
403(14
89(510
1
1
2
3
4
5
8
11
13
20
18
16
14
10
8
3
4
2
1
236737
7*4*36
42604*
.237*88
533(63
8576(4
22434*
.875471
, 733077
. 052*53
.353(2*
6733*3
. 458414
. **3(48
.404787
. 870(54
. 1*8*03
. 883832
. (74710
1
2
2
3
4
3
7
8
10
*
8
8
7
3
4
' 3
2
1
.984170
341931
.093123
.(43330
.313753
232478
.604049
.0(3783
.510150
.109834
.5487(4
.929880
.137415
.2(33(3
.96*101
.((9034
.395(41
.123993
.349737
FIGURE D-4. (Continued)
-------
I
-J
00
•• ISCLT ••••••••••••• HYPOTHETICAL POTASH PROCESSING PLANT ........ PACE 13 ••
•» ANNUAL GROUND LEVEL DEPOSITION < GRAMS PER SQUARE METER ) DUE TO SOURCE 1 (COHT.) «•
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
3000 .000
AXIS (DISTANCE
3000
2000
1500
1250
1000
eoo
600
400
200
-200
-400
-600
-800
-1000
-12SO
-1300
-2000
-3000
.000
.000
.000
.000
.000
.000
.000
000
000
.000
000
ooo
.000
.000
.000
.000
000
.000
.000
1
1
1
2.
2.
2.
3
3.
4
3
3.
3.
3.
3.
2
2
1
. METERS > - DEPOSITION
425744
062))S
409238
461082
103734
401)48
870(2*
2317)3
6306)7
Ol))42
8*2)03
7072*3
. 330421
318)00
0)0276
806033
367382
714024
888084
*• ANNUAL GROUND LEVEL DEPOSITION ( GRAMS PER SIUARE METER
- DISCRETE RECEPTORS
X Y DEPOSITION X Y DEPOSITION
RANGE AZIMUTH RANGE AZIMUTH
BEARING IEAR1NC
(METERS) (DEGREES) (METERS) (DEGREES)
> DUE TO SOURCE
X Y
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
1 (CONT. ) ••
DEPOSITION
2108 0
14.0 3.091886
- 10 CONTRIBUTING VALUES TO PROGRAM DETERMINED MAXIMUM 10 OF COMBINED SOURCES
COORDINATE COORDINATE
(METERS )
(METERS >
DEPOSITION
200. 00
.00
-200.00
.00
-200. 00
200.00
400. 00
-200.00
.00
-200 .00
.00
200 .00
200 .00
-200 .00
.00
-200 .00
2323.446623
2147.008)42
1840.271606
10)6.)33644
763.637604
6B3.)33)71
333. 181232
333.628685
FIGURE D-4. (Continued)
-------
••«* ISCLT ............. HYPOTHETICAL POTASH PROCESSING PLANT ........ P»CE 14 ....
«« ANNUAL GROUND LEVEL DEPOSITION < GRANS PER SBUARE METER > DUE TO SOURCE 1 ••
- 10 CONTRIBUTING VALUES TO PROCRAN DETERMINED MAXIMUM 10 OF COMBINED SOURCES 1.
X Y DEPOSITION
COORDINATE COORDINATE
(METERS) (METERS >
.90 -400.00 S22.0292B*
-400.00 .00 411.9(0255
O
**l
vo
FIGURE D-4. (Continued)
-------
•••• ISCLT
HYPOTHETICAL POTASH PROCESSINC PLANT
PAGE
ANNUAL GROUND LEVEL DEPOSITION (
U
00
o
-3000.000
-2000.000
Y AXIS (DISTANCE
AXIS (DISTANCE
METERS
CRAMS PER SQUARE DETER >
- CRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-1500.000 -I2SO.OOO -1000.000
DEPOSITION
FROM CORB1NED SOURCES
-800.000
-600.000 -400.000
.000 200.000
. METERS >
- CRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 (00.000 800.000
DEPOSITION
1000.000
1250.ooo
1300.000
-11.
-200.000
3000
2000
1SOO
1230
1000
800
600
400
200
-200
-400
-600
-800
1000
1250
1500
2000
3000
.000
.000
.000
.004
.000
. 000
.000
.000
.000
000
. 000
000
. 000
000
.000
.000
.000
.000
.000
.0047**
. 008103
. 010380
.011(87
. 012284
. 01270*
. 01304)
. 01320*
.0133(9
.013938
012328
.011243
01016*
. 009031
.007912
00(599
003829
. 004716
.003018
. 00(990
. 010370
. 013(93
. 019044
. 022908
. 02(021
. 027532
. 028(43
. 029193
. 029(51
. 025853
. 022501
. 018996
. 015559
. 013155
. 011236
. 009338
. 00(783
. 005797
008348
.013244
.018904
.024332
.031877
.038977
.04(491
.050031
.0320(7
. 033034
.044334
.03(426
.028399
.022814
.019258
.013404
.012373
.011191
.00799(
.009014
.014892
.021018
.027370
.037909
.049194
.0(2847
073396
.078232
.080157
.0(4(12
.030200
.03(377
029636
.021809
.0180(3
.01(873
.014353
.009298
.0093(7
.01(4(0
.024057
031076
044*86
.0(3(51
.088266
. I 1(572
.129100
. 133904
. 101877
.072357
.032172
.039(30
.029(73
02(736
.024395
.018704
.010571
.009331
017346
02(284
033636
.0520(3
.077339
. 117332
. 174(95
214*42
.227153
. 15**48
0*9306
.070929
.050001
.043951
.038515
.032334
022(97
.011394
009(85
.01 78(0
.028003
. 040091
. 0(317*
. 093804
. 15884*
.272063
. 401904
. 4412(4
272918
. 157582
. 0*9353
. 081403
06*638
.034207
. 042270
026(30
.012173
. 00*7 1 *
. 018070
.028776
.043177
. 073121
. 120536
.211183
. 42*731
. 902029
1 . 0(01**
. 523503
. 257536
. 1*2893
. 1453(8
. 105725
. 073731
. 0530(4
.029873
.012826
.00*756
.018031
02*3(5
.045577
.07*183
.138761
.284385
657756
1 *66(46
3 .848278
1 .081186
.6519*1
.402387
.244002
14»»87
092291
.0(1(75
.032(96
.013457
2000.000
3000
2000
1500
1 250
1000
800
60C
400
200
-200
-400
-600-
-800
1000
1250
1500
2000
3000
.000
.000
.000
000
. 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. 009(62
.017753
028708
. 044910
.079378
. 144978
. 307816
. 851850
4 0(9319
. 000000
5.2(7834
1.323(28
.(25(91
.315834
. 183133
. 103423
. 0(8359
. 034972
. 0139(3
. 009249
. 01(594
. 02(1(7
. 040150
. 069661
. 120*88
. 240218
. 382227
1 . 7(3424
1 1 . 241133
2. (28258
1 . 104223
. 514311
. 2757*2
. 4(317*
. 0*7456
. 0(40*9
. 033443
. 013(25
.008728
.015183
.023003
.033779
.054405
.087119
. 150566
.293641
.841389
3 . 224391
1 .468519
.528881
.2810(9
.173240
. 117037
.07(3(3
033038
.029384
. 0127(7
.008174
.013766
.019326
.02(938
.041130
062386
097395
.203(85
.518535
1 . 119008
.814824
.370931
184597'
.120(04
.0812(0
.053(29
.041330
.0235(7
.01 1821
.007(50
.012338
.01(705
.022244
.032275
.044236
.0784(0
.141545
.298(28
.5100(2
.407879
.254712
.144236
.085441
.0(3541
.0445(7
.032311
021419
.010908
.007090
. 010963
. 014(92
. 018444
.024771
.038(45
. 0(2275
. 101368
. 184018
.275324
.234109
. 17(805
.11279(
.0.72023
.048459
.036379
.027895
.017979
.009903
. 006410
. 00*4*7
. 012233
. 014564
022204
032308
. 045833
. 07418*
1 10339
. 14*801
. 132817
. 1 1 12*4
. 082316
. 05*138
. 041434
. 027770
022486
0154*9
. 008665
. 005709
.008078
. 010089
.013755
. 019737
.026172
. 035894
. 053*89
.072873
. 0*3316
0848*0
. 074528
. 062316
. 047003
.035(61
. 024752
. 01 8042
. 013132
. 007641
.004462
.005(82
.00*057
.01 1632
.014813
.018658
.024931
.031618
038417
.045834
.0427*3
03*356
.035367
.031151
.025291
.01*764
.013222
00*185
.0061 15
FIGURE D-4. (Continued)
-------
•*«• ISCIT
HYPOTHETICAL POTASH PROCESSING PLANT
PACE
4t *•••
O
I
00
•• ANNUAL GROUND LEVEL DEPOSITION ( GRANS PER SQUARE NETER
- GRID SYSTEN RECEPTORS -
- X AXIS (DISTANCE. METERS)
3000.000
AXIS (DISTANCE . NETERS ) - DEPOSITION
> (CONT.) FROH COMBINED SOURCES
- It ,
3000
2000
1500
1250
1000
BOO
600
400
200
-200
-400
-600
-800
1000
1250
1500
2000
3000
000
000
ooo
. 000
000
000
.000
.000
. 000
000
.000
. 000
.000
000
000
000
000
000
000
. 002580
. 004*56
. 006288
. 007271
.00)2*5
.010)74
. 012651
. 014401
. 01(0)3
017)52
.017133
.0162)5
.01)307
.014340
.0131)5
.0115))
.00))83
.007242
. 003753
*< ANNUAL GROUND LEVEL DEPOSITION ( GRAMS PER SQUARE METER
- DISCRETE RECEPTORS
X
RANGE
2108.0
) (CONT.) FROM COMBINED SOURCES
Y DEPOSITION X Y
HUTH RANGE AZIMUTH
RING BEARING
GREES) (METERS) (DEGREES)
14.0 .014063
DEPOSITION
- PROGRAM DETERMINED MAXIMUM
X
COORDINATE
(METERS )
200.00
.00
.00
-200.00
400.00
200.00
-200. 00
200. 00
Y
COORDINATE
< METERS >
.00
-200 .00
200.00
.00
.00
-200.00
200.00
200. 00
X Y DEPOSITION
RANGE AZIMUTH
BEARING
(METERS) (DEGREES)
10 VALUES -
DEPOSITION
1 1 .241)53
5.267834
4.06)31)
3.848278
3.2243)1
2.628258
1 .)66646
1 .765424
FIGURE D-4. (Continued)
-------
•••• ISCLT .........»»«. HYPOTHETICAL POTASH PROCESSING PLANT ........ PACE 47 ••••
• • ANNUAL GROUND LEVEL DEPOSITION < GRANS PER SQUARE NETER ) (COHT > FROM COMBINED SOURCES 2. - l'l ,
- PROGRAM DETERMINED MAXIMUM 10 VALUES -
X Y DEPOSITION
COORDINATE COORDINATE
(METERS) (METERS >
.00 -400.00 1.523(28
400.00 -200.00 1.4(831*
tf
CD
K>
FIGURE D-4. (Continued)
-------
••«• ISCL1
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE 59 ••••
tf
oo
» ANNUAL GROUND LEVEL DEPOSITION ( GRANS PER SQUARE METER
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
-3000.000 -2000.000 -1500.000 -1250.000 -1000.000
Y AXIS (DISTANCE . METERS ) - DEPOSITION
FROM COMBINED SOURCES -11.
-800.000 -600 000 -400.000 -200.000
3000
iooo
1500
1250
1 000
800
600
400
200
-200
-400
-COO
-800
-1 000
-1250
-1500
-2000
-3000
000
000
000
000
. 000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
1 . 18211 1
1 . 949846
2.517993
2.885734
3. 011652
3.11 1222
3 I880S5
3.219190
3. 245941
3. 280075
3. 007456
2 . 734786
2. 464303
2. 179388
1 . 898891
1 . 582820
1 . 392081
1 . 125300
. 753888
1
2
3
4.
5
6
7
7
7.
7
6
5.
4.
3.
3
2
2
1 .
1
656660
581879
841687
724693
756701
679149
080047
379710
520827
636826
586651
687677
749489
847264
252196
764873
326966
716158
488808
j
3
4
6
8
10
12
13
14
14
1 1
9
7
5
4
3
3
2
2
.951129
. 210381
. 724598
. 105974
. 120724
. 127428
. 582226
.597773
. 242366
. 56204 1
. 903765
. 607738
368300
. 849904
. 879394
. 847820
254989
.983364
. 076309
2
3
5
6
9
12
16
20
22
22
17
13
9
7
6
4
4
3
2
122522
.586387
.217158
. 980361
.719363
.9771 19
.998610
532627
. 1 19575
.837995
860362
524162
.665945
.735229
. 1 12579
.91 7526
674776
926681
.477986
2
3
5
7
I 1
1 6
24
34
38
40
29
20
1 4
1 0
8
7
6
5
2
. 155904
. 925349
946081
903705
.910831
.815955
133012
293590
043714
.326029
031562
268384
. 1 46465
492262
479154
.728730
.868140
086699
.756046
2.
4.
6
9.
13.
21 .
32.
SO
66
72.
47
28.
19.
14.
13.
1 1 .
9.
6.
2
194478
108505
459320
067704
655610
091464
743419
843930
756130
231876
979524
676962
868243
953922
318792
232230
165283
311996
979868
2
4 .
6
10
16
25
45
80
132
132
85
47
32.
26
21
15
12
7
3
220114
186821
819926
094515
378347
503182
849599
520576
256113
025620
775066
071805
583899
395843
117779
813563
419389
232344
19091 1
2
4
7
10
18
31
58
1 35
288
415
159
96
67
46
33
21
14
8
3
. 222163
221549
021718
.747032
870331
. 7001 35
854927
.397457
940907
020435
. 1 19036
. 143990
476772
532649
915658
659975
879602
108367
372200
2
4
7
11
19
35
72
189
767
1844
336
234
138
74
43
26
17
8
3
.222863
. 190783
.091116
.1641 13
.633093
.274234
.131224
.826420
.604210
. 1 19827
.709831
.213202
.968388
.522429
.939528
082366
129014
.854819
.538222
Y AXIS 'DISTANCE
.000 200.000
. DETERS >
- GRID SYSTEM RECEPTORS -
- X AXIS (DISTANCE. METERS) -
400.000 600.000 800.000
DEPOSITION
1000.000
1250.000
1500.000
2000.000
3000
2000
1 500
1250
1000
800
600
400
200
-200
-400
-600
-800
1 000
1250
1 500
2000
3000
000
000
000
000
000
000
000.
000
000
000
ooo
000
000
000
000
.000 •
000
000
000
2
4
7
; i .
19.
36 .
78.
224 .
1101
2152.
523.
197.
95.
53.
30
1 9
9
3
219147
186253
020033
095774
964889
4 14542
651593
660555
022903
000000
27661 1
552879
42421 7
134986
571187
017305
184346
593421
717786
2
3
5
9.
15.
26
49.
1 06.
394.
2334.
688.
194.
107.
61
38.
23.
13
8
3
053861
718698
991279
142780
476466
288214
618883
879412
136959
688446
384190
770331
197368
376904
061 112
184900
326571
251405
395696
(
3
5
7
11
18 .
31
69
166
558
310
127
39
33
24
16
12
7
3
931431
380167
144823
433524
910480
223508
9611 16
817473
694477
405602
. 182758
. 099894
997264
368497
. 859347
. 877742
. 137730
. 06091 1
. 116046
1
3
4
5
9
13
23
45
105
208
159
84
43
25
17
11
8
5
2
81 0403
029280
320857
897008
137790
618022
.576385
178218
510219
.881186
.899166
321281
.540012
.826831
.763034
.803240
.946766
.829562
.833925
1
2
3
5
7
1 0
18
29
6 1
100
83
36
33
20
1 3
9
7
4
2
.680902
693837
. 745696
.014106
.200807
790991
.048523
.951091
.437637
.233945
.838179
.516116
.770932
.060709
.728135
.801783
.210294
.653719
.535794
1
2
3
4
6.
9
13
23.
37
36
48
39
25
17
1 1
7
6
3
2
531784
402991
307935
182563
081413
1 12228
852863
074137
706198
287668
713295
867393
984917
033022
. 383150
. 960861
136027
. 970516
. 239437
1
2
2
3 .
5.
7
10
16
23
31
28
24
11
13
9
6
4
3
1
407785
099520
776204
37140 1
262541
359689
061 1 1 1
341966
54321 1
638852
668876
807686
006984
866879
844763
520779
953025
.419113
905175
1
1
2
3
4 .
5
8
1 1
15
20
18
16
14
1 1
8
5
4
2
1
. 242446
8030 1 4
438135
271743
553400
883836
260243
929439
805950
.146270
. 638518
749922
520728
040650
. 440447
. 895406
216945
. 898983
. 682351
1
2
2
3
4
5
7
8
10
9
8
8
7
5
4
3
2
1
.988632
.347634
102179
.657162
.328566
.25 1136
.628980
.095400
.548567
.153667
.591339
969233
. 172802
.296336
.991391
.688817
.610863
. 1331 78
.355852
FIGURE D-4. (Continued)
-------
•«•• ISCLT
HYPOTHETICAL POTASH PROCESSING PLANT
PAGE
60 •* *•
I
00
•< ANNUAL GROUND LEVEL DEPOSITION ( GRABS PER SQUARE HETER
- GRID SYSTEH RECEPTORS -
- X AXIS (DISTANCE. METERS) -
3000.000
Y AXIS (DISTANCE . NETERS ) - DEPOSITION
) (CONT.) FROM COMBINED SOURCES
-II,
3000
2000
1SOO
1250
I 000
800
600
400
200
-200
-400
-600
-800
I 000
1250
1500
2000
3000
000
000
ooo
.000
.000
.000
000
000
000
000
000
000
000
.000
000
000
000
.000
000
1
1
1
2
2
2
3
3
4.
3.
3.
3.
3
3.
2
2
1 .
628324
.067651
415544
676352
. 1 1304?
.492)22
88327)
. 2661*1
646790
037893
880038
723358
545728
333240
1 03471
817(34
377365
721267
891837
*• ANNUAL GROUND LEVEL DEPOSITION ( GRANS PER SBUARE DETER
) (CONT.) FRON COMBINED SOURCES
- DISCRETE RECEPTORS -
X
RANGE
2108 .0
Y DEPOSITION X Y
NUTH RANGE AZINUTH
RING BEARING
CREES) (METERS) (DEGREES)
14.0 3.105949
DEPOSITION
- PROGRAH DETERMINED MAXIMUM
X
COORDINATE
(METERS )
200. 00
. 00
-200. 00
.00
-200. 00
200.00
400.00
-200. 00
Y
COORDINATE
(METERS >
. 00
-200 . 00
. 00
200 . 00
200 . 00
-200 . 00
. 00
-200 . 00
X Y DEPOSITION
RANGE AZINUTH
BEARING
(METERS) (DEGREES)
10 VALUES -
DEPOSITION
2334. 688446
2152. 27661 1
1844. 119827
1101.022903
767.604210
688. 584190
558. 405602
536. 709831
FIGURE D-4. (Continued)
-------
•••» ISCLT »•••«•••••••• HYPOTHETICAL POTASH PROCESSING PLKHT ........ PACE 61 •••*
.. ANNUAL GROUND LEVEL DEPOSITION ( GRAMS PER SQUARE HETER ) (CONT > FROM COH8INED SOURCES -11,
- PR OS RAH DETERMINED MAXIMUM 10 VALUES -
X Y DEPOSITION
COORDINATE COORDINATE
(METERS) (DETERS >
00 -400 00 523.552879
-400 00 .00 415 020435
O
00
FIGURE D-4. (Continued)
-------
APPENDIX E
CODING FORMS FOR CARD INPUT TO THE ISC SHORT-TERM
MODEL (ISCST) COMPUTER PROGRAM
This appendix contains blank coding forms used for entering
input card data for the ISC short-term (ISCST) program. The card group
numbers and input data parameter names correspond to those used in Section
3.2.3.a. The solid vertical lines on the coding forms define the column
fields for a particular input parameter and the "x"ed areas indicate where
data are ignored by the program. The coding forms are presented in the
same order as the program expects the input data except for the source data
coding forms. The program expects card numbers 2 through 4 to immediately
follow card number 1 of Card Group 6 when applicable (NVS is greater than
zero). However, it is much easier to enter the source data as presented
here. An example use of these blank coding forms is shown in Appendix C
with the example problem runs.
E-l
-------
ISCST INPUT DATA CODING FOBM
PROJECT
NAME
DATE
SHEET OF
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
12 3419 67 8 9 10 II 12 13 14 15 16 17 16 19 2021 22232425 !6 27 28 29 50 31 32 S3 343556 37 98 S940 4IJ42 43 M 45 «« «7 48 »9 50 51 52 S3 54 JS 56 57 8«59 BO 61 62 6S64 65 M «7 68 89 70 71 7! 73 74 75 76 r7JT« f9J80
CONTROL DATA PARAMETER AND VALUE (X means do not punch)
- TITLE -
1 -
- ISW -
m
ho
2,1-
CO
H
CO
EH
2.2 -
8
CO
i i i i i I i i i i i I ^ i i i i
H
Oi
§
w
CO
a:
to
-------
M
10
ISCST
INPUT
DATA
PROJECT
CARD GROUP,
CARD NUMBER
3,1 -
3,2 -
t
CODING
FORM
DATA
9
10
ii
12
13
14
13
16
17
ie
19
20
21
22
23
24
2?
26
27
28
29
50
31
32
33
343
536
37
CARD
58
RECEPTOR DATA
LJ
LJ
LJ
LJ
LJ
LJ
L_J
L.
GR
i
IDX
i i
- GRIDY
1 1 1
_l
LJ
LJ
LJ
(axis
i i i
of
1
(axis
i i i i
LJ
LJ
.
L J
i_i
of
grid
I |
39
40
41
(Continued)
NAME
DATE
SHEET OF
COLUMN
42
43
44
454
PARAMETER
system,
i i i i i
i
i
i
i
i
i
i
i
|
)
|
|
|
|
|
I
c
grid system,
i i i i i i iii
1
|
. j i i i
unit
_i i
if
| I
omit
LJ
|
|
|
|
1
1
|
I
if
i
LO_
647
46
AND
49
SO
SI
52
53
54
55
56
57
58
59
SO
61
02
63
M
H-
B7
68
B9
VALUE
NXPNTS
| | I I
|
|
|
|
|
|
!
|
OR
J 1
NXPNTS
] | I I
|
|
I
1
NYPNTS. =
i i i i i
or NYPNTS =
1 1 1 1 1 1 1 1
!
J
0)
1
_l
0)
1
1
|
I
I
|
I
I
,
I
I
I
I
1
1
1
1
1
1
TO
L
i i i I I i I i i
i | 1 I I 1 i i t
1 I I 1 I 1 1 I 1
1 1 1 1 1 1 1 I
1 I 1 1 i I 1 I 1
1 t 1 1 1 1 t I I
1 | I I i i I i 1
i i i I i i i i i
i i I i i I i i i
III I
I i i i i I I I
i i 1 i I i
i ill
1 111
t «
I 111
I i I i i i i i I
1 1111
-------
PROJECT
CARD GROUP,
PARfl NIFMRFR
3,3 -
3,4 -
, , . 4 ,1. 7I,.I.,L
i f. ; 4 Mf, 7|»; .ji.
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1111
t 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 II III
1 II III
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 t 1 1
1 1 1 1 1 1 1 II
1 1 ' 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 t 1 III
1 1 1 1 1 1 1 1 1
,L ., .. .. .,' ... ,,L,
i i i
iii i i i i i t
iii i i i i j i
iii i i i t i i
11 11
ii ii
ii ii
iii i i i i
iti i i i i i i
iii iii i
i ii i ii
i ii i ii
ii i i i i i i i
i i i i i i i i
ii i i i i i i i
i i i i i i i i i
ii i i i i i i i
> i i i ii i
i i i i ii i
ISCST INPUT DATA CODING FORM (Continued)
1 NAME
I DATE SHEE1
DATA CARD COLUMN
'I 1 i || \ j f ' i 1 I I 1 ' ! {
1 ! tflilllf ii; t ! i! 1 T 1
RECEPTOR DATA PARAMETER AND VALUE
- XDIS (discrete receptors, omit if NXWYPT = 0) -
i • *
i i i i i i i i i I i i i i i i i i i i i i t i i i i i i i i i i i i i t i i i i i i i
111 1 1 1 1 I | 1 1 1 1 I I 1 1 1 1 1 1 1 1 ! | ! 1 1 1 1 1 1 1 1 t 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 I J ! I 1 1 1 1 1 1 1 I t 1 1 ! 1 1 J J 1 ! 1 J 1 ! 1
II III 1 II 1 111 1 1 ! 1 1 1 ! ! i j , ! t 1 i 1 1 1 II ill
1 1 1 1 1 I 1111111)1 ! 1 t ! i 1 1 1 1 I 1 ! i t 1 I 1 ! 11 til
I i I 1 I I i f i i lit l 1 t i i ! i i I i i i I ill ii ii
ii i i i ) i t i i i i i i i i i | i i I i i ' f i ! ; ! ii i it i i i i i
11 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 f f : 1 1 1 i i i 1 1 1 | 1 1 1 1 1 t 1
1 1 1 1 1 1 1 1 t 1 1 1 1 1 III 1 1 1 1 1 1 1 1 ] 1 1 ! 1 ! ! 1 1 1 ] 1 J 1 I 1 ! 1
- YDIS (discrete receptors, omit if NXWYPT = 0) -
i
i ' *
i i i i i i i 111 i 111 i ii i i i J i i i i i ; i 11 i
1 1 1 1 1 1 1 II I III 1 11 1111)111111111 II !
X J. J 1 J _1_ i J_ 1 1 J 1 1 1 i 1 1 1 1 i j 1 1 1 1 1 i 1 1 j J 1 1 I 1 1 1 1 J J J 1 1 I J
j.iii_iijij j i _i i i i j j iliiiiii) i iiii i ii 11 j i i i i j j i i j_
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 j ] 1 1 1 1 1 1 1 1 1 1 1 I I 1 1
i \ 1
i i i i t i i i i i i i i i i i i i i i i i t i i i i i i i i i i i i t i \ i i i i i i
i i i i i i i t i i i i i i t i i i i i i i i i i i i i i ' j i i t i i i i i i i i i i
II 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 t 1 1 ! II
1 1 1 1 1 1 ' 1 < 1 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OF
\ T [ 7
I 1 1 1 1 1 1 1 1 ' J 1
1 1 1 1 1 1 1 1 1 t 1 1
1 1 1 1 I 1 1
t 1 1 1 1 1 1 1
1(1111 1
1 1 1 1 1 1 1 1 1 1 1
! 1 i 1 1 1 I I 1 t 1
II i I 1 1 I I 1 1 1
i 1 I I 1
1 1 1 I 1 1
1 1 1 I 1 1 1 t 1 1 1 1
1 1 1 1 1 1 1 1 l II
1 1 t 1 1 I 1 l l 1 1 1
i i i i i i i i i i i
i i i i i
i i -
-------
M
Ol
ISCST
INPUT DATA
PROJECT
CARD GROUP,
CARD NUMBER
3,5 -
CODING FORM (Continued)
DATA
1
2
8
9
10
II
12
13
14
IS
16
17
18
19
20
21
tSaZS
24
25
J6
27
28
29
SOU.
32
33
343
536
37
RECEPTOR DATA
GRIDZ
i i i i
(gi
l
1 1 1
1 t 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
rid system and
i i i i i i i i i
1
1
I
I
I
1
1
1
|
I
1
1
1
1
|
1
1
i i
LJ. I l J_l I 1 J_i
1
discrete
i i i i i i
|
|
I
I
1
I
1
|
1
1
|
I
I
I
]
|
I
I
!
|
|
CARD
56
39
40
41
NAME
DATE
SHEET
OF
COLUMN
42
43
44
43*
647
48
PARAMETER AND
reci
i t
j i i i i i i
I
|
|
|
i
i
sptor
i i
49
50
51
52
53
54
55
56
87
58
59
BO
61
62
66
87
68
B9
VALUE
elevatic
i i i < i
i
i
l
i
i
i
i
i
i
i
i
i
i
|
|
|
|
|
I
1
1
1
I
:
I
|
|
i i i i i i i i i
i
!
ms
i
omit
i i i
if
I
I
SW(4)
1 1 1
J
s
= 0)
| |
1
1
TO
IT
1
l
1
I
|
1 1 1 1 1 1 1 1 1
( (
I I 1 1 1 1 I
l 1 i 1 1 1 i t l
l 1 1 l l 1 | i l
1 1 1 I 1 1 l 1 1
t 1 1 1 1 1 I I
1 1 1 1 1 1 l 1 1
1 1 1 1 1 III
1 1 1 l 1 l l l 1
1 1 l 1 i l i l l
, , , ,
1 1 1 1 1 1 | l 1
i l l l l i l 1
1 1 1 1 ill
i l l l l i i i i
1 1 1 1 1 1 l l 1
l 1 l i i l i i l
1 l i i l 1 i i 1
i l l
i l l l l l 1
1 1 1 i l l l l 1
i i i i i l i i i
i i i i i l i i l
i i < i i i i i i
l 1 l l i l i t l
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET OF
CARD GROUP,
CARD NAME
DATA CARD COLUMN
14115 16 IT
18 19 20 21 22 23 24 25 26 Z7 28 29 JO 31 32 33 34 35 56 37 38 39 «0 41 »2 43 44 45 W 47 48 49 SO 51 52 53 84 58 96 57 98
SOURCE GROUP DATA PARAMETER AND VALUE (X means do not punch)
63 MWS 66H7 68 89 70 71 72 73 74J79
4,1 -
M
I
4,2 -
X
X
X
X,,
A i i X
X,,
X,,
- NSOGRP (array, omit if NGROUP = 0) -
is/ |\/ (V is/ IN/
AJII AJII AII AIII AIII
A/
X,
A
X
X
X
X
Aj
X
X
X
X
X
X
X^.
- IDSOR (array, omit if NGROUP = 0) -
i i i.
_i i ill
i''i'
'''i
i i i i i
'i''
i i i i i
i i i i i
1 1 1 1 1
i i i i i
i i i i i
i i i i i_
I I I I L
' ' '
X
1 I i 1 I
-------
ISCST INPUT DATA CODING
PROJECT
CARD GROUP,
CARD NUMBER
5,1-6 -
FORM (Continued)
NAME
DATE
SHEET OF
DATA CARD COLUMN
I
el,
10
II
12
13
1
T
20
I
90
31 32 33 M 39 96 37 58 39 10
41
«
METEOROLOGICAL CONSTANTS DATA PARAMETER
I
t
1
1
1
i
i
i
i
i
!
PDEI
I |
" (array, omit
i i i t i i i i i
i i i i i i i i
i i i i i iii
ii ii
i i i i i i i i
ii i i
if ISW(21) *
i i i i i i i ii
i i i i i i i ii
11 i i i i i
i i i
i i i i i i
1 1 !
2)
_J
43
44
494
647
4B
49
AND VALUE
I |
| 1
90
SI
52
53
54
55
56
(X means
1
1
_1
57
58
do
59
BO
not punch)
1 1
\/
w
5,7-12 -
5,13 -
- DTHDEF (array, omit if ISW(22) + 2) -
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 1 1 ] 1 1 1 1 i
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 t 1
1 1 1 1 1 1 1 11
1 t 1 1 1 1 1 II
1 1 1 t 1 1 f II
1 1 1 1 1 1 1 II
1 1 I 1 1 1 1 II
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 ! 1 1
1 1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
lllllljll
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 [ 1 1 1 1 1 1 1
ZR
- UCATS (array) -
1 1 1 I 1 I I I
-------
w
oo
ISCST
INPUT
DATA CODING
PROJECT
DATA CARD
CARD GROUP,
CARD NUMBER
5,14 -
5,15-19 -
5,20 -
1 2
3
4
5
e
7
e 9
10
II
12
13
14
METEOROLOGICAL
TK
1 1 \ I l_l '
IS
16
17
IB
19
20
21
CONSTANTS
BETA1
1 1 1 1 1 1 1
BETA2
1 1 1
22
23
"
25
2627
28
29
»
31
32
33
343
336
AND IDENTIFICATION
DECAY
1 1 t 1 1 1 1
- IDAY
ISS
iii i
ISY
i i
IUS
IUY
i i
I |
(array,
- (omit
1 " "
— • —
37
38
39
40
LABEL
IQUN
i i i
omit
if
FORM (Continued)
COLUMN
41
42
43J44
DATA
if
NAME
DATE SHEET OF
4S4
1 1 1 1 1 1 I L 1
PARAMETER AND VALUE (X means do not punch)
ICHIUN | ^
ISW(19) = 2) -
ISW(19)
. —
xEx^xxEXwX^xxx^x^x^Ex^xj?x>SExx
= 2) -
-------
M
VO
ISCST
INPUT
DATA CODING
PROJECT
CARD GROUP,
CARD NUMBER
6,1 -
FORM
DATA
1
2
3
4
5
6
7
..
10
II
12
13
14
»
16
17
16
19
20
21
22
23
24
25
26
27
28
29
50
31
32133
SOURCE
NSO
i i
w
I
_J \
1 1 1 1
_J I 1 1
1 t 1 1
_f 1 1 1
i
l
i
i
i
L I
I
!
|
t
1 _,
(
|
1
_J
Q
I
J 1 1
_J
f 1 1 1 1 1 1
i I 1 1 1 1 1
| 1 1 1 1 1 1
U i i i-i i i-
, , , , , , ,
•
|
xs
1 1
1
_J 1 1 1 1 1
1 1 1 1 1 1
YS
1 1
1
_|
1 1 1 1 1 1
J
1 1 1 1 1 1
1 1 I 1 1 1
f 1 1 1 1 1
1 1 1 1 1 1
1_J 1 1 1 I t
J
M5
556
(Continued)
NAME
DATE
SHEET
OF
CARD COLUMN
37
50J39
toUi
42
43
441454
647
DATA PARAMETER AND
1
zs
1
1 1 1
|
1
1
_J 1 1 1 1
_1
|
I
1
1
I
1
U ' i ' i
1
1
, , ,
1
1
1 1 l l 1
|
I
!
i
1
1
1
1
1 J
l 1 l l 1
l l l l l
t 1 1 1 1
HS
1 1 1 1 1
1 1
|
1
|
1 1
I
1
1
|
I
|
|
I
1
|
1
1 1 1 1 1
|
48
49
50
51
32
S3
54
55
VALUE
TS
| |
1
(
|
j
|
|
(
|
|
1
1 1 1 1 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
i i i i i
56
5758
vs
1 1
1 1
•
1
1
|
1
59
so
D
i
61
62
| 1 1 1 1
1
I
I
1
1
I
1
1
I
| 1
1
1
l
l
l
i
1
1
1
1
1 1 l l 1
1
i
1
HB
I |
87
"H-
1 III
i i i i i
I
I 1 1 I L
1 1 I I 1
I i i i i
lilt
1 i i i i
I .11
Hrr
HL
1 1 1 1 1
1
I
1
I
1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1 1
1
I
i
1 1 1
1 1 1
1 1 1
i
i
i
i
1 1 1
1 1 1
1 1 1
1 1 1
i i i l i
i i
i
1 1 1
1 1 1
i
i i
1 1 1
1 1 1
HW
1 1 1 1 1
1 1 1
1 1 1 I 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1 1 1
1111
1 1 1 1 1
| 1 1 1
1 I 1 1 1
1 1
1 1 1 1 1
1 1 1
1 1 1 1 I
1 1 1 1 1
1 1 1 1 1
I 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
-------
ISCST INPUT
DATA CODING
PROJECT
CARD GROUP,
CARD NUMBER
6,2 -
FORM
DATA
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
ie
19
20
21
22
23
24
25
26
27
J»
50
31
32
33
543
556
37
SOURCE DATA
1 1 1 1 1 1 1 1 1
1
_J
111
PHI
i i
(array
i i i i
1
I
I
I
1
1
I
|
|
I
|
1
1
1
1
1
1
|
|
J 1 1 1 1 1 1 1 1
t
9
J
omit
i i i
|
|
|
|
|
|
|
1
|
|
|
|
|
|
l
if
i i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
(
(Continued)
NAME
DATE
SHEET
OF
CARD COLUMN
98
39
40
41 M2
43
44
454
647
48M9
50
51
52
53
54
55
56
57
58
69
BO
61
62
66
B7
68
B9
PARAMETER AND VALUE
NVS
I |
J 1 1 1 1 1 1 1 1
(
|
|
I
|
|
|
0
for all
j i i i i
|
|
1
t
\
\
I
|
|
|
£
1 III
1 III
I
1
I
1 1 1 1 1 1 1 1 1
|
|
1
\
\
|
I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I
I
|
|
|
|
|
|
\
|
I
I
I
|
1 1 1 1 1 1 1 1 1
i i i i i i i i i
sources)
_j i i i i
'1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 t 1 I
1 1 1 1 1 1 1 1 1
, , , ,
1 1 1 1 1 1 1 1 I
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 II
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 I 1 1
-------
M
1
I-1
t-'
ISCST
INPUT
DATA CODING
PROJECT
CARD GROUP,
CARD NUMBER
6,3 -
FORM
(Continued)
NAME
DATE
SHEET
OF
DATA CARD COLUMN
1
Z
3
4
5
6
7
e
9
IO
11
12
13
14
15
"'
18
I9J20
21
22
23
24
25
26
27
28
29
50
31
32
33
SOURCE
| I 1 1 1 1 1 1 1
i
i
i
1
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
I
i
i
1
(
|
1
1
1
(
1
|
1
I
1
I
1
|
|
1
|
|
VSN
i i
(array
i i i
| t 1 1 1 1 1 1 1
>
343
536
37
38
39J40
41 »2
«
44
DATA PARAMETER
omit
i i i
|
|
|
|
|
I
|
|
(
|
|
|
|
|
|
|
|
if
I |
1
1
|
|
|
1
|
|
|
|
|
|
|
I
NVS
1 |
I
I
1
I
I
|
I
I
1
|
I
1
1
(
I
I
1
!
I
1
I
I
I
i
i
i
i
i
i
:
i
i
i
i
i
i
i
0
4! »
647
AND
46
49
50
51
52
53
54
ri+
58
59
BO
61
62
66
87
68
69
VALUE
for all
1 1 1 1 1
|
|
|
|
!
I
1
,
|
(
I
I
I
[
,
|
1
I
|
|
(
I
I
1
!
I
I
1
I
]
|
|
£
sources) -
t, i i i i i i
| |
| |
I |
1 1
I 1
| |
1 1
I |
I l
1 i
I |
1 I
I |
I |
I |
| |
I |
I |
1 1
1 1
1 1
I i
.
J
i
i
1 I
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i
ii iii i
ii iii i
iiiiiiiii
i i i i i i i i i
i i i i i i i i i
ii i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiiiii
i i t i i i i i
111111111
i i i i i it
iiiiiiiii
i i i i i
ii iii
i«i
i»
111^11111
-------
ISCST
PROJECT
CARD GROUP,
CARD NUMBER
6,4 -
i
2
9
10
11
LJ
1
12
13
14
15
|
|
|
(
I
16
17
IB
19
20J2I
-J
|
|
|
|
|
|
|
|
|
1
l_
L-
LJ
22
23
24
25
26K7
28J29
INPUT DATA
DATA
30
31 32 33 34 35I3«B7
SOURCE DATA
GAMMA
i i i i
I
I
1
1
I
1
I
I
1
I
1
I
(arr
i i
i
i
i
t
i
i
i
i
i
i
i
i
i
1 1 1 1 1 1 1 1 1
_J 1 1 1 1 I 1 1 1
|
I
1
i
i
i
i
i
,,,,,,
1 1 1 1 1 ! 1
CODING
CARD
58
39
40
41
FORM (Continued)
NAME
DATE
SHEET
OF
COLUMN
42
43
44
454
647
48
IT
52
S3
54
PARAMETER AND VALUE
ay, omit if N\
i i i i i t i i i
i i i i i i
i i i i i i
i iii
1 ill
1 ! 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 i 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 J 1
''II'!
i i i I I I
i i i i i i
1 1 1 1 1 1 1 1 i
1 1 1
1 1 1 1 1 1
7$
0 for all
i i i i i i
|
1
|
1
|
i i
i i
i 11 i
|
|
|
|
I
1
I
L
I
1
|
|
|
|
1
|
|
1
|
1
I
|
I
1
|
1
1
|
|
u
LJ
|
• |
SS36
t
59
Tr
sources) -
i i i i i i i i
I
|
I
I
|
1 111
_]
1
I
I
1
|
I
I
I
I
I
I
1
1
I
_1
I
|
_J 1 1 1 1 1 1 1 I
|
I
I
|
1
1
|
1
|
1
1
|
t
\
L.
i
i
i
i
i
i
i
i
i
i
i
i
nil
T
i
i
i
i
i
i
i
i
i
i
i
"H-H
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
i i i
ro
i
i
i
i
i
i
i
i
i
i
i
i
i i
i i i
i i i
i i i
i i i
i i i
1 1 1 1 1 1 1 1 1
i
i
i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i 11 ii
i i i i i t i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i ii ii
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
iiiiiii))
i i i i i i i i i
i i i i i i i i i
iiiiiii i
i i i i i i i i i
ii|iiiiii
iii ii
III 1 J-
-------
w
H"
CO
ISCST
INPUT
DATA
PROJECT
CARD GROUP,
CARD NUMBER
6,5 -
CODING
FORM
DATA
'
2
9
:o
ii
12
13
14
IS
16
17
IB
I9J20
21
22
23
24
25
26
27
26
29
so
31
32
33
SOURCE
t
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
QTK
1 1 1
I
1
1
|
1
I
I
|
1
1
_j
I
I
I
1 i i i i i i i i
I
1
(array,
i i
omit
i i
Lf
M3
556
(Continued)
NAME
DATE
SHEET
OF
CARD COLUMN
37
DATA
98
39
40
41
42
43
44
PARAMETER
ISW(23)
1 1 1 1 1
|
|
I
|
|
|
I
I
|
!
1
|
1
I
|
1
0
|
1
I
1
|
|
|
1
]
I
1
1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
45 »
£47
AND
48
49
50
51
52
S3
54
58
56
37
56
59
BO
61
62
63
M
H-
H«
89
VALUE
and QFLG =
i i i i i i i i
I
I
!
1
|
1
(
1
i
1
1
i
!
|
|
'
|
|
1
|
|
|
1
|
|
0
i i i i i i i i i
i i i i i i i i i
for
i i
_i
all
i i
sour
i i i
ces)
i i
i
(
i
i
i
i
i
i
i
i
i
i .
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
70
I
1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 I | 1
II 1 1 1 1 1
11 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1
1 t 1 1 1 1 I | 1
II 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1
1 1 1 I I i 1 I 1
1 1 1 1 1 1
1 1 1 1 1 1 1 | 1
III 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 I l 1 11
1 1 1 1 1 1 1 1 1
I 1 I I I I 1 1 1
1 1 1 1 1 1 1 1 1
-------
ISCST INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP,
CARD NUMBER
DATA CARD COLUMN
I 2343676
9 10 II 12 13 I
15116 17 18 19 2021
23 24 25 » 27 28 29 50 31 32 33 34 35 56 37 M 39 »0 41
42 43 44 45 46 47 48 41
51 32 53 54 55 56 S
82 63 B4 85 M »7
70 TI 72 rs 74 re
HOURLY METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- (omit if ISW(19) = 1) -
7,1 -
JDAY AFV
AWS
HLH
TEMP
DTHDZ
i i i ll i i
.1 l l
i i i i i i i
i t i i i i i
i i i i i i i
i i i i i i i
i i i i i
i i i i i t
' i i i '
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i i
i i i i i i i
i i i i i i i
i i i i i i
i i i i i
i i i i i i i
i i i i i i i
i i i i i i i
i i i i i
i i i i i i
i i i i i i i
i i i i i i i
ii
i i i i i i i
i i i i i i
i i i i i i i
i i i i i i
i i i i i i i
i t i i i i
i i t i i i
i i i i i i i
i i i i i i i
DECAY
LI I I I I
I I I 1 I
t I I I I I 1
1 _ I I I I II
I I I I I I i
I I I I I I I
I I I I I I I
I I I I I I I
I \ I I I 1 I
I I I I I I I
I 1 I 1 I I 1
I I I I I I I
I I I I I I I
I I 1 1 I I I
'I''
-------
APPENDIX F
CODING FORMS FOR CARD INPUT TO THE ISC LONG-TERM
MODEL (ISCLT) COMPUTER PROGRAM
The coding forms shown In this appendix are used to prepare
the input data for the ISCLT program for card punching. If any input
card has all zero values, it may be left Blank because the program inter-
prets blanks as zero. The coding forms are presented in the same order as
the program expects the input data except for the source input coding forms.
The source input coding forms show a form for Card Groups 17, 17a, 17b, 17c
and 17d individually. This is done to make the key punching of the source
data easier and to minimize the number of coding forms that must be filled
out. When the source card data have been punched, ~the user must reorder
the source input cards in sets from Card Groups 17 through 17 d, one set for
each successive source. An example use of these card input forms is shown
in Appendix D with the example problems.
F-l
-------
ro
ISCLT INPUT DATA CODING FORM
PROJECT
NAME
DATE SHEET OF
CARD GROUP
NUMBER 1 2 3 4 5 6 7 9 9 10 II 12 13 14
—
DATA CARD
15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 50 31 32 33 34 35
36 37 36 39 40 4
COLUMN
5 50 82 3 »4 S3 M5 (
CONTROL DATA PARAMETER AND VALUE (X means do not punch)
1. L-J. 1 1 1 1 1 1 I 1 t 1
1 I 1 1 1 i 1 III 1 1 1 1 11
- TITLE -
III 1 1 t 1 1 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i i i i i i i i i i i i
- ISW -
En tn 55 eg GO gg 03
O Pk OT 0
PS & E-i F
•3 O £ 2
02 O X >
21 iv 2* J2J X
3 - , , IX
i 1 J L_i i i i i i i
I I 1 I I i I 1 i I I
4a -
',1111 i t 1 1 1 1
1 i 1 1 1 1 1 1 1 1 I
5 -
,— < *-^. O ^H OJ CO ^ lO CD C1™ oO *J3 O
KtV \y l\/ ^v ^v
Ky ^^J l/\i l/\l I ill ^\i i i
2 £ J2 Q W «
H S w w J o
' C <; w n E-1
4 p H OH H ^>
-I g CO M M OT
> ^ 1
'KK '
: NOFILE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 I 1 1 1 1 1 1
- N0C0MB (array, omit if NGR<^UP=0) -
-IDS0RC (a
III 1 1 1 1 1 1 1 1 1 1 III 1
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
III 1 | | III 1 II II
III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rray, on
i i i i
i i i i
i i 1
- UNITS (omit If IS
i -i i i i i i
lit if NGROUP=0) -
1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 11111 1 1 1 1 1 11111 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
W(5) = 2 or 3)
i i i i i i i i i i i i i i i i i i i » i i i ' i » '
i i i i i i i i t i i i
i i i i i i i i i
^n^iiKi,
i i i i i i i i i X!\
V
1 1 1 1 1 1 1 1 1 /IN
1 1 1 1 1 1 1 1 1 /l\
_ , , , x
1 1 1 II 1 1 1 1 1 1 1
-------
I
1-0
ISCLT
INPUT
DATA
PROJECT
CARD GROUP
NUMBER
6 -
6a -
CODING
FORM (Continued)
DATA CARD
Ju
.1.
5
6
7
8
9
to
M
12
13
14
IS
16
17
16
19
2O
21
22
23
24
25
!6
27
28
29
RECEPTOR DATA
1
1
1
1
1
I '
I
I
I
1
1
1
1
,
t
i
i
1
I
t
i
i
i
i
i
i
I
i
L. 1
1
1
-
,
I ' t
X
3
(arbitrarily
_J
C
(axis of
iiii
30
31
32
33
343
536
37
36
39
40
41
NAME
DATE
SHEET OF
COLUMN
42
PARAMETER AND
grid
1 f 1
i iii
,,,,,,, ,
r placed
IIII
i
1
recept
i
i i i i i i i i i
— 1
system, omit
iiii iii
i
1
t
I
1
I
1
1
1
1
I
|
|
1
ij
i iii
ors,
i i
omit
1 ' '
|
|
|
1
t
1
if
N>
I
,
43
44
45 «
647
46
VALUE
" NXPNTS
1 IIII
1
1
[WYPT.
(III)
|
|
|
|
|
|
«
'
49
90
SI
92
S3
94
35
56
97
96
99
(X means do not
0
c
, 0 or 1
1 | 1 1
|
|
1
1 1
>r
ISW(5)
IIII
SW(5)
t
1
60
61
62
63
64
65
66
B7
70
punch)
2 01
i
2 or 3
IIII
(
|
i
i
i
i
i
-3)
1
|
1
|
\
\
& ISW(12) .
1 1 1 1 1 1 1 1
|
1
I
1
1
1
|
(
f
1
|
1
\
\
\
1
'
i
i
0)
I
\
1
1
! ", !
1
1
,
\
i
,
1 1 I 1 1 1 1 1 1
I 1 1 1 1 1 1 II
1 1 1 1 1 1 ' 1 1 1
IIII IIII
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1 1
1 1 1 1 1 I | | 1
i i i i i i i i i
i. i t i i i i i i
i i i i t i i i I
i i i > i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i I I i i i i i i
i- I 1 i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i I i I i i i i I
-------
"J
-O
ISCLT INPUT
DATA
PROJECT
CARD GROUP
NUMBER
7 -
7a -
CODING FORM (Continued)
NAME
DATA
1
2
3|4
3
6
7
8
9
10
U 12 13 14 15 16 17 18 19 £0
21
22123
24
25
RECEPTOR
1
1
I
1
|
I
I
1
I
I
1
|
LJ
I
|
1
1
l ' I
LJ
LJ
LJ
LJ
- Y
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1
II III
III II I
1 1 1 1 11 1
1 III
1 1 1 1 1 1 1 1
1 1 1 1 1 I 1 1
1 1 1 I I 1 1 1 1
1 1 1 1 1
1 1 1 1 1 f 1 1 1
- Y (arbi
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 f f 1 1 1 1
III 1
1 III
(axis
i i i
I
1
26
27
20
29
DATA
of grid
i i i i
30
31
32
33
343
936
DATE
SHEET OF
CARD COLUMN
37
38
39
PARAMETER
s
i
i i
i i
1
1
1
1
1
1
trarily
i i i i
1
1
I
1
I
1
\
placed
ystem,
1 1 1 1
40
41 42 43 44 45 46 47 4S 49 90
31
32
S3
54
55
AND VALUE (X means
omit if
1 1 1 1 1
I
, ,
|
|
|
|
|
|
|
|
receptors,
i i i i i i
1
1
|
|
omi
i i
_J 1 1 1 I I I i I
NYPNTS = 0 01
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I
1 1
1 1 III
1 1 1 1 1 1 1 1
1 1 1 1 1
1 i 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1111111(1
1 1 i 1
1 1 1 1 1 1 I 1 1
t if NXWYPT =
1 1 1 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
11 1 1
p ISW(5)
1 1 1 1
j
56
37
do
58
39
BO
61
62
_
66
B7
68
69
not punch)
= 2
I
or
1
1 1
_,
0 or ISW(l)
t 1 1 1 t 1 1
|
i
i
i
3)
J
70
71 72 73 74 75 76 T7 78 T9 BO
L or 2) -
| 1 1 1 1 1 1 1 1
'
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I
1
I
1
I
1
I
1
I
1
I
,1
1 1 I 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 I 1 1 1 1 1 1 1
I 1 1 1 1
III 1 1 1 1 1
1 1 1 1 1 1 1 II
1 1 1 1 1 1 | 1 |
f 1 1 1 1 1 1 t
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 1 1 - 1
l 1 1 1 1 1 1 1 1
1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 l 1 1 1 1
1 1 1 1 1 1 1 1 1
f l 1 l l l 1 1 1
II
-------
I
Ul
ISCLT
INPUT
DATA
PROJECT
CARD GROUP
NUMBER
8 -
CODING FORM (Continued)
NAME
DATE
SHEET OF
DATA CARD COLUMN
I
2
9
10
MJI2
13
14
IS
'.6
17
IB
19
20
21
22
23
24
23
26
27
26
29
RECEPTOR DAT A
| 1 I t 1 1 1 1 1
-J
^J
L_l
I
1
1
I
I
I
1
r
I
(
.,
i,.ii,,ii
1 1 1 1 1 1 1 t 1
1
(
,
z
1
(grid
1 1 1
3O
31
32
33
343
536
37
58
39
to
41 42 43 44 45 »
647
48
PARAMETER AND VALUE
system
It III t
III 11
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 i
f 1 1 1 1 1 1 1 1
J I I I , , , I I
1
. 1
_l 1' I
_l
elevations
iitii i
9
on-
t i i i i i i i i
iii 11111
1
I
i
i
i
i
i
!
|
|
1
I
1
I
|
|
|
1
1
i i t t i i i i i
|
,
1
tit if ISW(4)
ii i i i i
i i
1 l l
l l 1
l i i
i l l
ii ii
tiiii
I i i i
|
|
|
|
|
|
1
49
50
SI
32
53
54
55
56
37
58
59
(X means do not
i
0
i i i i i i i i i
itiii
ii ii
iitii
11111
>iiii
1 i i i i
i i
i l
i i
i i i i
i i i
i i i
|
|
|
|
|
|
I
|
1
1
i
i
i
i
i
i
i
i
i
i
i
or ISW(5)
! 1 1 1 1 1
|
|
1
|
1 t
1
|
1
1
1
I
I
1
1
1
|
|
|
|
t
|
1
1
f
t
1
I
I
|
I
I
I
'
so
61
62
63
64
65
66
67
68
69
TO
punch)
2
I
i
i
i
or 3
I |
|
|
|
1
I
I
1
1
I
I
1
or
i
|
|
|
|
|
|
|
|
|
1
|
(
|
1
1
1
1
1
1
NXPNT
fill
|
|
|
|
|
|
|
|
|
|
|
|
|
t
1
1
1
1
1
|
|
|
|
|
|
|
|
|
|
1
I
1
I
I
1
1
|
|
|
I
|
|
|
|
,
|
|
-(
i
i
i
i
i
i
|
|
|
|
|
|
(
|
|
I
|
|
1
i
1
1
1
,1
,1
S= 0) -
1 1 1 1 1 1 1 1 1
I I 1 1_ L
1 1 1 1 1 1 1 II
1 1 1 1 1 1 1 1
1 1 1 1 1 1 l 1 1
1 1 1 1 1 1 1 I 1
1 1 1 1 1 1 | l t
1 1 l 1 1 l l ll
1 l 1 1 1 1 r i l
1 1 1 1 1 1 | | |
l 1 1 1 1 1 i | l
1 t 1 1 1 1 l i (
1 1 t 1 1 i t i >
1 1 1 1 1 1 1 1 I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 l l 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 1 1 1 1 1 1 1 1
1 i l i i 1 l t l
1 i 1 1 1 1 1 1 l
l l t l l I i l l
1 t 1 1 1 1 1 1 1
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET OF
CARD GROUP
NUMBER
8 -
(Cont. )
1
2
3
4
5
6
7
8
9
13
II
12
20
21
22
23
24
25JZ6I27
28
DATA CARD COLUMN
29J30
31 32 33 34 33 56 37 58 39 4O
41 42 43 44 43 46 47 48 49
50J51
52
53
54
»
56
57
50
59
RECEPTOR DATA PARAMETER AND VALUE (X means do not
^
( I 1 1 1 1 1 1 1
f 1 1 I 1 1 1 I 1
_1
1 1
1 1
1 1
1 1
1 1
I I
] |
1 1
I |
I |
I I
1 1
1 ]
1 1
1 1
1 1
1 |
1 I
1 I
I |
1 1
Z(g
1 1
|
,
1
1
I
1
I
I
1
I
I
1
I
1
(
1
!
I
I
t
I
1 1 1 1 1 1 1 1 1
rid system ele
i i i i i i i i
ii i i i i i i
i t i iii
1 1 1 1 ! 1 1
11 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 t I 1
1 1 1 1 1 III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I III
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 i
1 1 1 1 1 1 1 1 1
1 t 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 |
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 I
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 f 1 1
vations, contin
i i i i i i i
i i i i i i i
it i i i i i i
1 ! ! 1 1 ) 1
1 1 1 1 1 !
1 1 1 1 1 1 1 1
It 1 1 1 i 1 I
t 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 t 1 1 1 1 i t
1 1 1 1 i 1 1 1
1 1 1 1 1 i 1 1 1
1 1 1 1 1 1 1 1
11)11111!
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 I 1 1 1 I | i
1 1 1 1 1 1 1 I 1
ued)
t i
M>
61
62
66
B7
68
69
7Q
punch)
_j . i , i i i , ,
•
i
1 I 1 ! 1 1 1 1 1
,,,,,,,,,
I
1 1 1 1 1 1 1 1 1
I I 1 1 1 1 1 1 1
1 1 l i i 1 l | f
1 1 I 1 I 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 i 1
1 1 1 1 1 1 1 1 1
1 II 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
( | 1 I 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
i 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
-
1 ( 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 i i 1 1 1 1
1 1 1 1 1 1 1 1 1
I 1 1 t i 1 1 i 1
1 1 1 1 1 1 1 1 1
-------
ISCLT
INPUT
DATA
PRO JE CT
CARD GROUP
NUMBER
8a -
RECEPTOR
1
2
e
9
J
z
10
II
12
13
(ai
t
,-J
14
IS
16
17
IB
I9J20
21
rbitrarily space
1 ! 1 1 1 1 1 1 1
_J
—I
|
-i
|
(
|
1
l
1
I
l
i
f
i
i
t
I
,
I
1
I
i
22
23
24
CODING
FORM (Continued)
NAME
DATE
SHEET OF
DATA PARAMETER AND VALUE (X means do
25
£6
27
26
29
30
31
32
33
343
3d receptors,
I 1 i 1 t 1 I I
c
j
1 1
|
|
1
,
|
|
|
556
37
38
39
unit if ISW(4)
1 t I 1 1 1 1 1
1
1 ! 1 1 1 1 1 1 1
|
|
|
1
|
1
1
t
I
|
|
|
|
1
t
I
|
1 I
1 t
4O
41 42 43
1 1 I 1 1 1 lit
—1
|
|
(
t
_J
44
454
647
48
49
0, NXWYPT
1 1 I 1 1 1 1 1
1 1
1 1
t
I
] I
1 I
1 1
1 1 t
1
I
I
I
I
1
1
1
I
|
|
j
|
1
50
31 52 53 54 55
1
i 1
1 I 1
1 1
1 1 1
1 1 1
1 1 1
t
|
!
I
|
1
!
t
1 1 1 E 1 1 1 1 1
t 1
i
1 i
1 1 '
1
56
not punch)
37
0, ISW(5)
1 1 1 1 1 t
1 1 1 1
1 t t 1
1 1 1 1
1 1 1 1
1)11
1 1 t 1
1 1 1
1 1 1 1 f
till
1 1 t 1 1
1 1 1
II II
1 1 i 1 1
1 1 I 1 1
1 1 1 t t
1 1 1 1 1
1 1 1 1 1
t 1 1 t 1
III 1
1 1 1
ill 1
t 1 t
"H-
61
= 2
| 1
I |
| |
! j
I I
, ,
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
, ,
i i
i i
62
63
64
65
66
67
60
69
70
71 72 73 74 73 76 77 78 79 BO
or 3 and ISW(1S
J 1 1 1 1 1 1 1 1
1
|
|
|
|
|
|
1
!
1
1
1
1
I
|
|
1
I
|
,
i
i
i
i
i
i
i
\
|
i
|
|
I
|
i
i
i
i
1
|
!
1
1
1
1
1
1
!)=0 -
1 | 1 1 1 1 1 1 1
,
1 1 I t 1 t 1 I 1
1 1 1 1 1 1 f 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 t 1 1
1 t 1 t 1 1 1 I 1
,
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i t i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
' i''
i > i i i i i i i
i i i i i i i i i
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
I 23 4 5 6 7 0 9 10
II IZ 13 14 15 16 IT 18 19 20 21 22 23 24 25 26 2T 28 29 SO 31 32 33 34 3!
1938 3'
7 96 39 «0 41 »2 43 «4 45 »6 47 48 49 50 51
52 S3 54 58 56 57 58 39 80 61 62J6J M 69 MJ67 SSJS9 70 71 72 73^74 75 76 r7J78J79 BO
METEORLOGICAL DATA PARAMETER AND VALUE (Xmeans do not punch)
9 -
- FMT (.omit if ISW(5) = 2 or 3 or ISW(18) = 0) -
- FREQ (omit if ISW(5) = 2 or 3 -
00
9a -
1 I 1 11 t 1
I 1 I 1 1 1 1 1 I
I !__!_ 1 1 ._j 111
1 I I I I I I 1 I
I I 1 I I I I I
1 I I I I I I I t
I 1 I I 1 I I I I
lit! |] t II
I 1 1 1 I I I 1 I
i i L t I I I I I
I I j I I
LI 1 J 1 II 1 __L
I I I I 1 I I
1 I I I I I I I I
I I I I I I I I I
I t 1 I I I I I I
I I I I I I I I I
L I I I I I I I
I 1 I t I
I I I I I I 1 I I
I I 1 1 I I I I I
I I I I 1 I 1 I 1
I I I I I I 1 j I
I I I I I I I I I
I I I t t I I I I
I I I I I I I I I
I I I I I 1 I I I
I I 1 L I I L I I
t I ._L I i _L i.
II I 1 I I 1 I I
I | 11 ill
I I I i I 1 1 I
' ' ' I 1 I l
I I I I I 1 I I 1
1 II 1. ]__. I i I 1
I I I I I I I I I
I I I I 1 I I I I
I I I I I I 1 I 1
I I t I I 1 I I
I I I I I t I I I
I 1 I I I
l I I I 1. _J_ I I J
I I I I I I I I 1
1 I I I I I 1 I I
I I I I I. 1 I 1 J
I I 1 t 1 I I I I
I 1 I I 1 I 1 I I
1 I I I I I I I 1
1 I 1 I I I I I I
t I I l I I I I I I 1 t t I I 1 l I I
I I I I I I I I I I i I .J_ I L 1 I I
I 1 I I 1 I t
1 I 1 I 1 1 1 I I
I I 1 I I 1 1 I I
I I t I I 1 I 1 1
I 1 1 I 1 I I 1 I
I I I I I I I 1 I
I t I I l 1 I t I
I I I I I 1 1 I I
' ' I ' 1 ' I I '
I 1 I I I I I I 1
I I 1 I I I 1 1 I
t I I I 1 I I
I ' l ' ' I I '
I I I I I I I 1 I
I I I 1 I I I 1 I
i i i i i i
i i l i i
i i i i i i i i i
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJE CT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
234 9 B 7 8 9 10 II 12 13 |4 IS 16 17 18 19 20 21 22J23 24 29 26 27 28 29 30 31 32333435363758 39 loUl 42 43 44 45 46 47 48 «9 50 51 32 53 94 59 9« 57 58 59 60J61 62 83 64 69 66 67 68 69 70 71 72 73 74 73 76 77 76 79 90
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
9a -
(Cont.)
- FREQ (Continued) -
I j | I 1 l
I I I I 1 1 I
I I I I I I I I I
1 I I 1 i J
i 1 I 1 I I I I 1
I I I 1 I I I
Jill 1 I I I I
I 1 I I 1 t j I
LI I I I I I I I
I I I I I I I I I
I I I I t 1 I I 1
__1 III I I
1 t 1 1 I 1 1 I 1
1 i I I I I 1
1 I I I till
111111(11
L _ I 1 ) I I t 1 I
t I I I I I I I I
I I I I I I I I
I 1 I III I 1
l i t l l I i l i
l l i I I 1 l l l
I i i l l l l l l
I I I I I l l l l
L I I I 1 1 I 1 I
I i J I I I I 1
_1 . I I I 1 I I I I
1 I I I 1 1 I I
I I I I t 1 1
I I I I 1 I I 1 I
II 1111
I I I I I I I I I
1 I I I 1 I I II
I I 1 I I I 1 II
J I I I I I I I I
1 I I I I I ( II
I I I 1 I I 11
_.__!.. L ( i 1
I t 1 1 I II
I I I I I I I It
1 I 1 I I
I I 1 I I
1 I I 1 1
J_ 1 ] I 1
I 1 I I I I
I I I I I I I 1
I I I I 1 1
I I I 1 1 I I t I
I I I I I I I I I
I I I I I I I I I
1 I I I I I 1 I t
J 1 L ) 1 I 1 I I
I l I I I I l I I
I I I I I I l I I
J I I I 1 J I I I
J I _.J_ J I 1 1 I I
I I I I I J I I )
i 1 I I I I I I 1
l._L__| 1 I I I I
I I I I I I I I I
' 'I'
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
2 ill 9678 9 10 II 12 13 14 15 16 17 19 19 2O 21 Z2 23 24|29 » 27 28 29 30 31 32 33 34 39 38 37 38 39 «0 41 12 43 4449 •« 47 4649 30 51 529394599897 58596081 82 63 84 89 8« B7 88 99 70 Tl 72 73 74 79 76 ?7 78 TWO
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- TA (omit if ISW(5) = 2 or 3) -
10 -
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 I 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 I i 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 t 1 t 1
1 1 1 t 1 1 1 1 t
t 1 1 1 1 t 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 I 1 1 I 1 I
I i I 1 1 1 1 I i
I I i I 1 I 1 1 I
I i i I I f i i i
i i I i i i i i i
1 1 1 I I ! 1 1 1
I I 1 1 1 1 I I 1
1 i I i I i i i i
i i I t I t i i i
i I I I 1 i 1 i I
1 I 1 1 1 1 1 1 I
I i i i i i i i i
i i i I I t i i i
i i i i I i i i i
i t I i I i i i I
- HM (omit if ISW(5) = 2 or 3) -
I
I—>
o
11 -
I I 1 I I I I I I
1 I I I I I I I I
1 1 1 I 1 I I 1 I
1 1 I I 1 I I I I
I I I 1 I I I I i
1 1 I I I 1 1
J I I I I I I I I
I 1 I I I I 111
I _J___i_. i__L.
I I I I I 1
I I I I I I I I 1
I I 1 I I I 1 1
l i L i i l i i i
I I I I I I I I I
I 1 I 1 I I 1 1 1
i i l i i i
l i i i l l i i l
l l l i i i i i
i i i i i i i i i
1 l l l i i i
i i i i. i. i i i l
i l i i i
i i ]_ 1..1 i i i i
i l i i i i i
1 t i l i
l i i l l i
.!_ I. 1 ill 1 1 1
I I t I t I I t t
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
I 2 3 4 9 6 7 8 9 10 II 12 i:
19 20 21 22 23 24 29 26 27 26 29 50 91 32 33 34 39 W 37M 39 40 41 «2 43 44 43 46 47 48 49 50 31 52 S3 94 55 9« 97 58 99 80 61 «2 63 64 69 66 67 68 69 70 Tl 72 79 74 75 76 '7 78 7
±
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
11 -
(Cont.)
12 -
13 -
14 -
- HM (Continued) -
1 1 1 I 1 1 t 1 1
1 ( 1 1 1 1 1 1 1
1 1 1 t 1 ! 1 I 1
1 1 I 1 1 1 1 1 !
1 1 ! 1 ! 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
\ i i i i i i i i
i i i i i i i i i
i i i i i I i I t
i i I t I 1 i i i
i i i i i i t t i
i I I t I I i i i
i i i i I i i i i
i t i i i i i i i
i i i i i i i i I
t i i i i i i I i
i i i t I I i I I
i i i i i i i i i
I I I t I I i i I
i i | i i i i i i
I i i i I i i i i
i i i i i I i i i
i I I I I I i 1 i
I I I I I 1 I I I
t 1 I i I i i 1 I
1 1 1 I I i I I i
i 1 i i t i i l i
1 i I i i i i i i
i i i I I i i i i
l i I I I I I i i
1 I 1 1 1 1 1 t I
1 1 1 I 1 t ! 1 1
1 1 1 1 1 I 1 I 1
1 1 1 1 1 1 1 1 1
1 | 1 1 1 1 1 | 1
i i t I I i I i i
l t i l l i l l l
1 1 I 1 1 1 1 f I
l l l l i l i l i
l i i 1 l l i i i
l l i i i i i 1 i
- DPDZ (omit if ISW(5) = 2 or 3) -
1 1 1 1 1 1 1 1 1
1 1 1 1 t 1 1 1 1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 I 1 1
i i i t i i i i i
i t i i i t i i i
i i t i i i i 1 i
i i l t i l i i i
i i i i i i i l i
i i i i i i i t i
! 1 1 I 1 I | 1 t
i i i i i l i i i
i i | i i l i i I
i i i t i i i i i
i i i l l 1 i i l
i i i i i i i i i
; I l i I l l l l
i l i t i i i i l
1 1 l l 1 l l I 1
i 1 i l l i ( 1 l
l 1 i ) 1 i i l l
i l l l l t i i i
1 1 1 t 1 1 1 1 !
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 f 1 I 1 1 t 1 1
1 1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 1 1
1 ! 1 1 ! 1 1 1 I
1 { t 1 1 1 ! 1 1
1 1 I 1 1 1 1 1 1
1 1 t 1 1 1 1 1 1
1 1 1 1 t 1 1 1 1
t 1 1 f 1 f 1 1 1
! 1 1 1 1 1 I I !
1 1 t I 1 t ! I i
ROTATE
TK
ZR
(omit if ISW(5) = 2 or 3) -
BETA1 BETA2 G
DECAY
I I I t I I I I 1 i
I I I I I I I I 1 I 1 I 1 I I I I I I II I I I I 1
- UBAR (omit if ISW(5) = 2 or 3) -
-------
PROJECT
CARD GROUP
NTIMRFR
15 -
0
16 -
ISCLT INPUT DATA CODING FORM (Continued)
NAME
DATE SHEET OF
DATA CARD COLUMN
1 ~ 1 {
METEOROLOGICAL DATA PARAMETER AND VALUE (X means do not punch)
- PHI (omit if ISW(5) = 2 or 3) -
1 1 1 1 1 1 1 1 1 1 1 t ! t 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 t 1 1 'l 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 III 1 1 1 1 1 1 III II II II III
- P (omit if ISW(5) = 2 or 3) -
1 1 I I 1 1 1 t 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 III II 1 t 1 1 1 1 III 1 1 1 1 1 III III 1 I ^\ s^
II 1 1 1 1 t 1 1 1 III II | ^^ s^
t 1 1 1 1 1 1 1 1 1 1 1 1 II III 1 1 1 1 I 1 1 I I I ^^ *r
1 1 t 1 II 1 1 1 1 1 1 1 1 I 1 1 t 1 III 1 1 i I 1 1 1 1 t 1 1 1 1 I I It 111 1 1 j sS' ^^^.
1 1 1 I 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 I I i L | ^^ ^\
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I i 1 //^ ^***^
-------
ISCLT
PROJECT
INPUT DATA CODING FORM
(Continued)
NAME
DATE
CARD GROUP
NUMBER
17 -
DATA CARD
'
-JJ '
10
II 112
13
14
13
16
17
16
19
20
21
22
23
24
23
26
27
2«
29 30 31 32 33
34 3S
363738
39
40
SHEET
OF
COLUMN
41
42
434445 46 47
48
49
SO 31 52
S3
54
»
56
57
56
59
60
61
62
1
I
66
67
68
69
70
71
SOURCE DATA PARAMETER AND VALUE
NUMS
lilt
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
till
1 | 1 1
till
1 i 1 1
1 1 1 1
1 1 t 1
1 1 1 1
till
1 t 1 I
1 1 1 1
1 ' ' '
i i
WO
3HO1
DX
i i '
i
i
i
i
i
(
I
I
I
I
1
1 1
!
! 1
1 t
, , , ,
| 1 1 1 1 1 1 1 1
, ,
.
|
|
|
|
I
DY
1
|
|
1 1 1 1 1 I 1 1 1
|
,
,
,
.
H
1 1 1
1 1 1 1
I
zs
1
I
1
1 1
1 1
1
1 t 1 1
t
1
1
1
i i i r i i
i i i
i | i
1
i
i i i i i
i i i i
i i i i i
i i i i
i i i i i
i i i i i
1
1
I
I
I
t i i i i i
i i i i i i
i i i i i i
I |
t 1
TS or
SIGYO
or XO
III!
1 1 1
1 1
1 1 1
1 1 1
1 1 1
T 1 1
1 1 t
t 1 1
1 1 1
1 ' '
1 1 1
1 I 1
1 ' '
1 ' '
1 ' '
1 ' 1
|
I
1 i i lit
II! Ill
VEL
or
SIGZO
1 1 1 1 1 1
t 1 1 1 1
1 1 1
1
I 1
1 1
1 1 1 1
1 1 1
1 1 1 1 1 1
1 1
(III
1 1
1 1 1 1
1 1 1
I 1 1 1 I 1
1 1
1 1 1
1 1 1 1 I
1 1 1 1 1
1
1 1 1 1 1 1
1 1 1 1 1 1
1 |
1
f
1
1
1
1 1
1 !
1 1
1 t 1 1 I
t 1
] !
1 i
1 1 1
1 1 1
t 1
1 1 1
|
|
I
|
|
1
1
,,,,,.
1 i I.
1
1
1 1 1
|
,
,
_J
|
D
HB
t
|
(
1
1
1 1 1 1 1 1
1 1 I 1 1 1
I I i i 1 I
,
,
|
•
,
|
1
|
|
|
|
I
|
|
1
|
]
1
1
|
|
1
,
,
1
i i i t , i
iitiii-
i
(
1
1
|
1
i
i
1,11,1
1 1 1 1 1 1
,1,11,
1 1 1 1 1 1
t
|
72
+
73
76
77
BW
|
i i
! j
1 1
|
|
1 1 t 1 1 1
|
|
|
|
1
1 1
1 1
1 1
1 1
1 1
|
:
I
|
t
(
f
FJ'tJ
W
j
]
I
,
I
1
I
1 t 1 1 1 1
j
1 1
1
i
1 1 1 1 1 1 II
(
|
!
1
|
|
I
1 1
1 1
1 i
1 1
|
|
|
l
i
i
I
1 1 1 1 1 1 1
-------
ISCLT INPUT DATA
PRO JE CT
CARD GROUP
NUMBER
17a -
J32DJNG.
DATA CARD
1
.1,
T
23
2«
25
M
27
?8
29
50
31 32 33 34 55 36J37
38
39
»O
41
FORM
( Continue ch
NAME
DATE
SHEET OF
COLUMN
42
43
SOURCE PARAMETER
i
^
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
t
i I 1 i i > i I 1
LJ
L_l
i
i
i i
i i i
, ,
j
i
i
1
1 1 1
- VS (omit
1 1 i 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II III
1
1 1 1 1 1
1 1 1
I 1 1 1
1 1 1 1 1 1
I 11 1
1 1 1 1 1 1
1
1 1 1 1 ! 1
1 1 1 1 1 l
III 1
1 l 1 1 1 t 1
1 1 1 1 1 1
1 1 1 1 1 1 1 i
1 1 1 1
1 1
II II
1 1 1 1 1 1
1 1 1 1 1 l l l l
1 1 1 1
if
j
44
45 *
E47
48
19
so
11
52
55
54
55
56
57
58
59
SO
61
62
63
M
65
66
S7
68
69
70
AND VALUE
NVS =
1 1 1 1
|
1
0)-
1 t i 1
|
1
i
i
i
i
i
i
i
,
|
|
1
1
1
I
1
1
1
l
1
1
I
1
(
|
|
|
|
1
|
|
|
|
|
|
I
|
|
1
|
_L
1
_I
_1
_J
'l
1
_L
,
,
_L
(
1
t 1
]
-
I
t
1
|
|
1
|
1
j
(
1
i i i i i r i i i
i i i i i i i i i
tit it
iii iii i
i i i i iii
i i i i i i i
i i i i i i i i i
i i i i t i i i i
i i i i i i i i i
i
i i i t i i i i i
i i i i i i * i i
i i i i i i i i i
i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i
i tiii
i i i i i i t t i
i ' i i i i i i '
11 i i i i i i
-------
I
M
Ul
ISCLT INPUT DATA
PROJECT
CARD GROUP
NUMBER
17b -
CODING
FORM
DATA
'
10
It
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
26
29
3O
31
32
33
SOURCE
A
I
1 1 1 1 1 1 1 1 1
|
|
|
|
1 1 1 1 1 1 1 1 1
1
1
1
|
|
|
,
(
(
(
I
|
|
,
!
I
1
1 1 1 1 1 l 1 1 1
1
I
1
343
336
(Continued)
NAME
DATE
SHEET OF
CARD COLUMN
37
DATA
FRQ
i i
1
t
|
|
I
|
(
t
|
:
j
1 1
|
38
39
40
41 42 43
44
454
647
PARAMETER
(om:
i
(
_i , i i , i i i .
:
1
1
t
1
i
i
1 1 1 1 1 l 1 1 t
1
1
1 [
j 1 1 1 1 1 1 1 !
I
1 1
1
I
I
i
i
t
(
1 1 1 l 1 1 1 1 1
t If NVS
1 lit
I |
I |
1 1
I |
1 1
1 1 1
1 t 1
1 1 1
1 1 1
1 1 I
! 1
1 1 1
1 1
1 1 1
( 1 -I
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
|
|
!
f
i
i
|
|
|
|
1
1
|
|
|
|
|
|
| |
| |
|
| |
| ]
|
I
46
49
90
91
32
93
34
59
M
37
58
59
60
61
62
63
64
69
66
67
68
69
AND VALUE
0) -
1 1
,
|
|
|
|
|
I
!
(
|
,
,
(
1
|
|
|
t
L
|
|
|
|
|
1
!
(
1
i
|
|
1
!
|
I
1
|
.
)
1
|
|
|
|
J
1
|
|
1
70
1
1
1
1
,,,,
! 1 1 1 1 1 1 1 1
1
1
1 1 l 1 1 1 1 1 1
(
1
1
1
1
1
1
1
1
1
1
|
|
I
I
I
I
1 1 1 1 1 1 1 1 I
l
|
(
|
|
|
|
i
|
i
|
|
)
t
I
|
|
i
|
t
|
|
|
|
|
|
(
1 1 1 f 1 1 t 1 1
I
t
I
1
'
i
i
1
1
1
j
1
1
i
i
1
1
(
1
1
1
1
1
1
1 1 1 1 I 1 1 1 1
1 1 1 1 1 1 l l l
1 1 I 1 1 1 l l 1
1 1 1 1 1 1 1 l 1
1 III
1 1 1 1 1 1 1 1 1
II III
1 1 1 1 1 i 1 t 1
1 1 fill
l l 1 1 l 1 i l l
1 1 1 1 1 1 1 1 1
l 1 1 1 1 t < i l
1 1 1 1 1 1 1 1 1
, • i ,
1 t 1 1 1 1 I l 1
t 1 1 1 l 1 l l 1
1 1 l 1 1 1 1 1 I
l 1 l 1 1 1 1 1 1
1 1 1 1 1 t 1 1 |
1 1 1 1 1 1 1 1 1
l l 1 l i 1 l i i
i t 1 I
l l i i l l l l 1
1 1 1 1 1 1 1 1 1
-------
Tl
I
ISCLT INPUT DATA
PROJECT
CARD GROUP
NUMBER
17c -
DATA
•
J
20
21
22
23
24
29
26
Z7
26
29
SO
31 52 33 34 33t36
SOURCE DATA
I
1 1 1 1 1 1 1 l t
|
I
,
,
|
|
I
I
I
1 1 1 1 1 1 1 1 1
11
i i i i I i i i i
37
CODING
CARD
56
39
40
41
FORM
(Continued)
NAME
DATE
SHEET OF
COLUMN
«2
43
• 4
494
PARAMETER
- GAMMA
1 1 1 1 1 t 1
1 1 1 1 1
| 1 f 1 1
11 II
I
1 1
1 1 1
1 1 1 1
1 I 1
1 f
1 i 1 t 1
1 1
1 1 1
1 III
1 1 1 1 1
(on
1 1 1 1 t 1 1 1 1
111 1
1 1 1
1 1 1 1 1
1 1 1 I 1 |
|
1
|
|
|
l
1 1 1 1 1 1 1 1 1
,,.,,,,,,
, , , ,
lit if
| |
|
647
46
49
9O
91
52
53
54
15
56
37
98
99
BOJ61
62J63
64
65
66
87
68
«9
TO
!
AND VALUE
NVS =
1 I I
I
I
|
|
(
1
|
I
1
1
1
(
1
|
|
|
|
|
|
f
|
|
| |
t |
1 I
= 0)
1 1 I 1 1 1 1 1 1
,,,,,.,,,
.,,111,.,
1 1 1 1 I 1 1 t 1
!
|
,
|
|
|
|
|
h
(
|
|
|
j
1
1
1 , 1 I 1 I 1 1 1
i
1
1
,
1 1 1 1 I i , 1 1
1 1 1 1 t 1 1 t !
)
|
I
I
t
1
1
1
1
I
t
!
{ t 1 1 t 1 1 I 1
I
, ,
1
l |
|
|
1
1 1 I I 1 1 1 I 1
1 I 1 I 1 I 1 1 >
1 1 1 1 1 1 1 1 1
i i i t 1 i i i i
l 1 1 l l l i i l
1 1 l 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
II 1 1
1 1 1 l 1 I 1 1 1
1 l l 1 i i l i 1
,.,,,,,,,
i t l i i i i i l
1 I 1 i 1 l I l l
i l l l l I i t l
1 1 1 1 I l t i 1
i l l i i i l i l
l 1 ) f 1 l 1 t 1
l 1 l i i i l l l
1 l l i l l 1 l I
l l l i i l l i l
1 l l i 1 I 1
1 1 1 l l i l 1 1
iiliiflii
i i 1 l ' ' 1 1 \
i i i 1 I t i i i
l 1 1 1 i i l l I
-------
ISCLT INPUT DATA CODING FORM (Continued)
PROJECT
NAME
DATE
SHEET
OF
CARD GROUP
NUMBER
DATA CARD COLUMN
I 2 34 5 6T 8 3 10
II 12 13 14 IS 16
19 20 21 22 23 24 25 J6 27 28 29 30 31 32 33 34 5! 56 57 38 39 «0 41 12 4:
I «2 43 4414!
5 46 47 48 49 30 51 52 53 54 59 5« 57 98 59 BO «l 62 83 64 69 «« 87 M S9 70 71 7Z 73 74 TS 76 f7 7» r
SOURCE DATA PARAMETER AND VALUE (X means do not punch)
17d -
- Q -
i i i i i i i i i
i i i i i i i i i
i i i i i i i i i
i i i i i i. i i i
1 1 I I I t I I I .i._l l l_i I l t I 1 I I 1 I 1 1 I I 1 I I i l l i t I
l l l i I l i l l
l I l l I l i I l
I I I l I I I I 1
i I l l I l i ' l l
I I I I I I I I I
l I I I I I I I I
i l I l i i i I l
I l l I l i i l i
l i i l l
I I I 1 I l
I I I I I I I I I
l i l I I l I I I
l i I I I I I I l
I l I I I I I I I
I l I I I I I I I
I I I I I I I I I
I I ! I I I I I 1
1 I 1 I I I I I I
1 I I I I
I I 1 I I I 1 I I
1 I I I I
I I I I 1 I 1 I I
II
II
I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I I t I I I 1
I I I I I I
I I I I I I I I I
I I 1 I t I
I I I t I I I I I
I I I I I I
I I I I I I 1 I
I I I I I I I II
I I I I I I I I I
I I I I I I I I I
I t t I I I I I I
I I I I I I 1 I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I 1
I I I I I I I I I
III
t I I I I
I I I I I t I 1 1
I I I I 1 I I
I ! I I I I I I I
I t I I I
I I i I I 1 I 1 I
1 1 I I I I 1 t I
I 1 I I I I I
I 1 I I I I
I
I I I t I I I
I I I I I I I I I
1 I I I I I I I
I I I I I I I I
I I I I I I I I I
1 I I I I I I I I
I I I I I 1
I I t 1 1 I I I I
I I t I I I I I t
I I I I I I I I I
I I I 1 I I I I I
t I I I I I I I
I I I I 1 I I I I
-------
APPENDIX G
THE METEOROLOGICAL PREPROCESSOR PROGRAM FOR ISCST
G.1 INTRODUCTION
Hourly meteorological inputs to the Industrial Source Complex
(ISC) Dispersion Model short-term computer program ISCST may be input by
card deck or by the meteorological data tape or file generated by the
Single Source (CRSTER) Model preprocessor program. The following dis-
cussion of the preprocessor program is principally based on Section 4.2
and Appendix A of the User's Manual for the Single Source (CRSTER) Model
(EPA, 1977).
G.2 DESCRIPTION OF THE PREPROCESSOR PROGRAM
The preprocessor program generates a magnetic tape of hourly
values of the meteorological input parameters required by the ISC Model
short-term computer program ISCST. These parameters include wind speed,
wind direction,, mixing height, stability category and ambient air tem-
perature. The inputs required by the preprocessor program are: (1)
hourly National Weather (NWS) observations of surface wind speed, wind
direction, temperature, cloud cover and ceiling height in magnetic tape
format; and (2) daily minimum and maximum mixing heights in punched card
format, as determined from NWS 1200 GMT upper air temperature soundings,
using the methods of Holzworth (1972). The preprocessor program, in
addition to generating the meteorological data for the ISCST program,
performs checks for missing data on the tape of hourly surface observa-
tions and prints diagnostic messages for any discrepancies that are
detected. Quality checks are not performed on mixing height data input
to the preprocessor program. Consequently, it is recommended that the
user review the mixing height data.
G-l
-------
Data for each day are read by the preprocessor program and
processed one hour at a time. The cloud ceiling height, wind speed and
sky cover data are used to classify the atmospheric stability for each
hour. The wind speed is converted from the input units of knots to
meters per second, as required by the ISC Model. A flow vector (in-
dicating plume direction) is calculated from the hourly mean wind
direction. In addition, a randomized flow vector is computed to account
for the natural turbulent fluctuations of the wind that are not re-
flected in hourly wind-direction observations reported to the nearest
10-degree sector. Hourly mixing heights for both rural and urban condi-
tions are derived from the morning (daily minimum) and afternoon (daily
maximum) mixing height data (see Section 2.4.1.2).
The preprocessor program is written in FORTRAN V language for
execution on a UNIVAC 1100 series computer and is compatible with most
FORTRAN IV compilers on other types of computers. A program listing for
the preprocessor program is contained in Section G.7. Figure G-l is a
flow diagram of the functions performed by the preprocessor program.
G.3 CONTROL LANGUAGE AND DATA DECK SETUP
G. 3.1 Control Language Requirements
The following runstream illustrates the Executive Control
Language (ECL) required to execute the preprocessor program on a UNIVAC
1100 Series Operating System:
@RUN . . .
@ASG,A prog-file
@ASG,A cd!44-file
@USE 8,cdl44-file
<§ASG,CP met-file
@USE 9, met-file
@XQT prog-file.PREP
card input data deck
@FIN
G-2
-------
Read
Initial-
ization
Card
Skip First
Record on
Input
Tape
Initialization
Card
CD 144
Tape
(Unit 8)
Read
Record for
Hour 1 on
Input Tape
Read First
Three Mixing
Height Cards
Mixing
(Height Cards
Calculate Time
of Sunrise
and Sunset for
day IDAY
Calculate 24
Random Numbers
for Random
Flow Vector
FIGURE G-l. Preprocessor Program Flow Diagram
G-3
-------
Check data
for Continuity
^
V
TTT'D 1
InK L
Print
Diagnostics
Messages
No
Convert
Wind Speed
from Knots
to m/sec
Read Mixing
Height Data
for
Next Day
ing Height
C.ards
Convert Ambient
Temperature
from
OF to °K
Calculate
Flow
Vector
FIGURE G-l. (Continued)
G-4
-------
^^^
1
Calculate
Randomized
Flow Vector
Determine
Stability
Class
Calculate
Urban
and Rural
Mixing Height
IHR=IHR+1
Read
Input Tape
for Next
Hour
GDI 44
Tape
(Unit 8)
FIGURE G-l. (Continued)
Yes
Use Data
from Previous
Hour for
Final Hour
G-5
-------
Output
Record for
Day
IDAY
Output
Tape
(Unit 9)
Write "All
Records
Have Been
Processed"
CStopj
FIGURE G-l. (Continued)
G-6
-------
prog-file = name of program file containing the
preprocessor absolute element
cd!44-file = the file name assigned to the input
data file of hourly meteorology in
card deck 144 format
met-file = name to be assigned to the output
file of combined hourly surface and
upper air meteorological data
card input data deck = the initialization card followed by
the set of mixing height cards
The following IBM Job Control Language (JCL) is required to compile,
line-edit and execute the preprocessor program on an IBM System/360
Operating System:
//jobno JOB (account),'name',TIME=time
//EXEC FORTGCLG,COND=(4,LT)
//FORT.SYSIN DD *
source deck
//GO.FT08F001 DD DSN=CD144,UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,
//LABEL=(,NL),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//GO.FT09F001 DD DSN=met-file,UNIT-2400,DISP=(NEW,KEEP),
//VOL=SER=yyyyyy,DCB=(RECFM=VBS, LRECL=779,BLKSIZE=7794)
card input data deck
/*
where:
jobno = job number
account = accounting information (system de-
pendent)
name = programmer's name
time = estimated CPU time requirement
G-7
-------
source deck = the preprocessor program source deck
on cards
xxxxxx = volume serial number of the tape con-
taining the hourly meteorological data
file in card deck 144 format
met-file = name to be assigned to the output met-
eorological data file
volume serial number of the tape to
receive the output data file
card input data deck = card input file consisting of the
initialization card followed by the
set of mixing height cards
This example assumes that the input will be on a nonlabeled tape
with a block size of 800. This is representative of the form in which the
data are issued by the National Climatic Center. The output file in this
example is also on tape with a blocking factor of 10 records per block.
G.3.2 Data Deck Setup
The data card deck required for input to the preprocessor program
must be set up as follows:
• Preprocessor initialization card
• Mixing height card for December 31 of the year preceding
the year of record
• Mixing height card for January 1 of the year of record
• Mixing height card for January 2 of the year of record
G-8
-------
• Mixing height card for December 30 of the year of record
• Mixing height card for December 31 of the year of record
• Mixing height card for January 1 of the year following
the year of record
The preprocessor program initialization card contains values for data items
that must be initialized for each run. The mixing height cards contain
the morning and afternoon mixing heights for the corresponding day. The
methodology for calculating hourly mixing heights from the twice daily
mixing heights involves interpolations using the afternoon mixing height
from the preceding day and both mixing heights from the following day (see
Section 2.4.1.2). For this reason, the mixing heights for the last day of
the year preceding the year of record must be included as the first mixing
height card and the mixing heights for the first day of the year following
the year of record must be included as the last mixing height card. If
these data are not available, the data for the first and last days of the
year of record can be substituted, respectively. The contents and formats
of the preprocessor initialization card and mixing height cards are described
below.
G.4 INPUT DATA DESCRIPTION
G.4.1 Card Input
Card input requirements for the preprocessor program consists of
an initialization card followed by a set of mixing height cards. The pre-
G-9
-------
processor program initialization card contains information to initialize
the following items:
• NWS meteorological surface station number
• Year of record
• Latitude of the surface station
• Longitude of the surface station
• Time zone of the surface station
• Number of days in the year
• Initial value for generating random numbers
Table G-l is a description of the format of the initialization card.
The set of mixing height cards is composed of one card for the
last day of the year preceding the year of record, one card for each day
of the year of record, and one card for the first day of the next year.
Each card contains the NWS upper air station number, the date, and the
values for the morning and afternoon mixing heights. Table G-2 is a
description of the format for the mixing height cards. The twice daily
mixing height cards must be punched from either magnetic tape or printed
tabular data for an appropriate NWS upper air station for the year of
record. Mixing height data on tape are available from the National
Climatic Center (NCC), Asheville, North Carolina. These tapes store
one day of data per 34-character record using the format shown in Table
G-3, with 10 records to a block. Note that the afternoon mixing height
column numbers on the NCC tapes are not the same as those required on
the preprocessor program mixing height data cards.
G.4.2 Tape Input Requirements
Magnetic tapes containing card images of the hourly mete-
orological data in "Card Deck 144 format" required by the prepro-
cessor program are available from the NCC. These data can also be
G-10
-------
TABLE G-l
PREPROCESSOR INITIALIZATION CARD FORMAT
Card Columns
Format
Description
1-5
6-7
8
9-18
19-28
29-30
31-3A
35-44
15
12
F10.1
F10.1
F2.0
14
F10.0
NWS Surface Station WBAN Number
Year of Surface Data
Blank
Latitude of the Surface Station
(degrees to hundredths)
Longitude of the Surface Station
(degrees to hundredths)
Time zone in which the Surface
Station is located:
05 = Eastern
06 = Central
07 = Mountain
08 = Pacific
Number of days in the year of
record (365 for non-leap years;
366 for leap years)
Random Number Seed*
*NOTE: The user is cautioned with regard to the random number generator
used in the preprocessor program. The subroutine called in this program
is entitled RANDU and is provided by Sperry Rand Corporation for use on
the Environmental Protection Agency's Univac 1110. The user must contact
his system personnel to obtain a suitable alternative to the RANDU sub-
routine. Because the same random number generator will not be used by all
users, the randomized flow vectors may differ when comparing preprocessor
file results from two different computers.
G-ll
-------
TABLE G-2
PREPROCESSOR MIXING HEIGHT DATA CARD FORMAT
Card Columns
1-5
6-7
8-9
10-11
12
13-17
18-30
31-35
Format
15
12
12
12
IX
F5.0
13X
F5.0
Description
NWS Upper Air Station WBAN Number
Year of record (last two digits)
Month
Day
Blank
Morning Mixing Height (m)
Blank
Afternoon Mixing Height (m)
G-12
-------
TABLE G-3
DATA RECORD FORMAT FOR NCC MAGNETIC TAPES OF
MORNING AND AFTERNOON MIXING HEIGHTS
Record
Positions
Format
Description
1-5
6-7
8-9
10
11-12
13
14-17
18-20
21-23
24
25-28
29-31
32-34
15
12
12
II
12
Al
14
13
13
Al
14
13
13
NWS Upper Air Station WBAN Number
Year of record (last two digits)
Month
Season (1 = Dec. -Feb., 2=
Mar. -May, 3 = June -Aug., 4 =
Sept. -Nov.)
Day
Type Code (P = precipitation,
C = morning average temperature
plus 5°C is less than 1200 GMT
surface temperature, M = missing)
Morning Mixing Height (m)
Morning* Surface Wind Speed (m s )
Morning Wind Speed Averaged from
Surface through Mixing Layer (m
s-1)
Type Code (P = precipitation,
C = afternoon average temperature
is less than 1200 GMT surface
temperature, M = missing)
Afternoon Mixing Height (m)
Afternoon** Surface Wind Speed
(m s-1)
Afternoon Wind Speed Averaged from
Surface through Mixing Layer (m s~^
* 0200-0600 LST
** 1200-1600 LST
G-13
-------
obtained as 8,784 punched cards. Each tape file contains one card
image record for each hour. The format of these records is described
in the Card Deck 144 WBAN Hourly Surface Observations Reference Manual
(NCC, 1970). Data on this file used by the preprocessor program include
the station number, year, month, day, hour, cloud ceiling height, wind
direction, wind speed, dry bulb temperature and total opaque sky cover.
Table G-4 is a description of the format for these data items required
by the preprocessor program.
If data for an NWS surface observation station have not been
processed into tape format by the NCC, the data can be coded from printed
copies of the WBAN Form A observations, also available from NCC. In-
structions for coding the data in Card Deck 144 format are given in the
Card Deck 144 Reference Manual (NCC, 1970). Only the items required by
the preprocessor program need to be coded.
G.5 OUTPUT DATA DESCRIPTION
The output tape from the preprocessor program consists of a se-
quential file containing a file identification record followed by one
record for each day in the year.
The file identification record contains the year of record for
the surface meteorological data, the surface station identification number,
the year of record for the mixing height data, and the upper air station
identification number.
Each of the daily records contain the year, month, and the Julian
Day followed by 24 values of stability category, wind speed, temperature,
flow vector, randomized flow vector, and rural and urban mixing heights.
Because the last record on the input tape corresponds to the 23rd hour
of the last day, the data for that hour are also used for the 24th hour
on the last record on the output tape.
G-14
-------
TABLE G-4
DATA RECORD FORMAT FOR NCC MAGNETIC TAPES OF CD 144
SURFACE DATA - PREPROCESSOR REQUIRED DATA ONLY
Record
Positions
1-5
6-7
8-9
10-11
12-13
14-16
17-38
39-40
41-42
43-46
47-49
50-78
79
80
Format
15
12
12
12
12
3A1
22X
12
12
4X
13
29X
Al
IX
Description
NWS Surface Station WBAN
Year of Record (last two
Month
Day
Hour
Ceiling Height
Blank
Wind direction (Tens of
Wind speed (Knots)
Blank
Temperature
Blank
Opaque
Blank
Number
digits)
degrees)
G-15
-------
All records on the output file are written with an unformatted
FORTRAN write statement. The output files, therefore, are machine and com-
piler dependent and cannot be directly accessed by the ISCST program on sys-
tems and compilers different from the computer or compiled program creating
the file.
The four parameters on the file identification record and the
year, month and stability category on each of the daily records are
stored as FORTRAN integer variables. All other values on the daily
records are FORTRAN real number variables. Table G-5 is a description
of the arrangement of the variables on each of the daily records.
Assuming no fatal error messages, the entire preprocessor file
is printed and successful run completion is indicated by the message:
ALL RECORDS HAVE BEEN PROCESSED
G.6 DIAGNOSTIC MESSAGES
The two types of diagnostic messages that may be generated by
the preprocessor program are fatal error messages and informative mes-
sages. Fatal error messages are printed when an inconsistency is detected
in the input data, causing the program to terminate execution. Table G-6
is a list of all possible fatal error messages and the corrective action
that should be taken. Informative messages are printed when anomalous
data items are detected. No user action is necessary in response to an
informative message unless the assumptions made by the program adversely
affect the results. Table G-7 is a list of the informative messages in
the preprocessor program.
G-16
-------
TABLE G-5
PREPROCESSOR OUTPUT FILE RECORD DESCRIPTION
Position of Variable
Within the Record
1
2
3
4-27
28-51
52-75
76-99
100-123
124-171
Variable
Name
IYEAR
IMONTH
DAY1
KST
SPEED
TEMP
AFV
FVR
HLH
Fortran
Variable Type
INTEGER
INTEGER
REAL
INTEGER
REAL
REAL
REAL
REAL
REAL
Year of record (last two digits)
Month
Julian Day
Array of 24 Stability Category Values
Array of 24 Wind Speed Values (m s~ )
Array of 24 Ambient Temperature Values ( K)
Array of 24 Flow Vector Values (degrees)
Array of 24 Randomized Flow Vectors (degrees)
Array dimensioned 2 by 24 containing 24 rural
mixing height values and 24 urban mixing
height values (m) . The values are stored on
the record in groups of two for each hour
with the rural mixing height first followed
by the urban mixing height for that hour
I
1-1
^J
-------
TABLE G-6
PREPROCESSOR FATAL ERROR MESSAGES
ID DOES NOT MATCH IN RECORD # i ID ON TAPE IS n ID REQUESTED IS k
*****DATA IS MISSING. PLEASE CORRECT INPUT FILE*****t
Description:
Action:
This message is printed if the surface station identifica-
tion entered on the preprocessor initialization card does
not match the station number on a record in the hourly
meteorological data file. The value i is the number of
the record within the file, n is the station number on the
record, and k is the station number requested.
If i = 1, check the surface station number input on the
preprocessor initialization card and the input meteorologi-
cal data file to be sure that the correct file was input.
If i > 1, the input file is bad. A listing of the file
should be inspected to determine what corrective action
is necessary.
YEAR IS i INSTEAD OF j IREC = n
Description:
Action:
The year i on record number n of the meteorological data
file did not match the year j input on the preprocessor
initialization card.
If n = 1, check to be sure that the correct year was
entered on the preprocessor initialization card and that
the correct input file was used.
If n > 1, the data file is in error. A listing of the file
should be inspected to determine what corrective action
is necessary.
If n > 8,760, check to be sure the number of days entered
on the preprocessor initialization card is correct.
tThis line appears on fatal error messages for ID, YEAR, MONTH, DAY, HOUR
G-18
-------
TABLE G-6 (Continued)
MONTH i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
The month ± on input record n of the meteorological data
file is out of sequence. The month should have been
number j.
If i = 2 and j = 3, check to be sure the number of days
entered on the preprocessor initialization card was 365
for a non-leap year. If i = 3 and j = 2, check to be
sure that the number of days entered on the preprocessor
initialization card was 366 for a leap year. If the number
of days input was incorrect, enter the appropriate value
and rerun preprocessor. Otherwise, inspect a listing of
the input file for missing or extraneous records. If the
file is out of order, sort the file in ascending order
keying on columns 1-13.
DAY i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
The day i on input record n of the meteorological data
file is out of sequence. The day should have been number
Inspect a listing of the input file for missing or extrane-
ous records. If the file is out of order, sort the file
in ascending order keying on columns 1-13.
HOUR i DOES NOT AGREE WITH LOOP j IREC = n
Description:
Action:
The hour i on record n of the input meteorological data
file was out of sequence. The hour expected was hour j.
This message is printed for hours 1 through 23, for which
the value on the input record should equal the value of
the index of the hourly 'DO' loop.
Inspect a listing of the input file for missing or extrane-
ous records. If the file is out of order, sort the file
in ascending order keying on columns 1-13.
G-19
-------
TABLE G-6 (Continued)
ERROR: MISSING HOUR LOOP VALUE = j WHILE VALUE ON RECORD n IS i
Description: This message is printed if the last hour of the day
being processed (j = 24) is not the data for the first
record of the next day (i = 0).
Action: Inspect a listing of the meteorological data file for
missing or extraneous records. If the file is out of
order, sort the file, keying on columns 1-13.
TABLE G-7
PREPROCESSOR INFORMATIVE MESSAGES
THE CHARACTER x IS NOT ALLOWABLE. CLOUD COVER DEFAULTS TO 10.
Description: The cloud cover on a record in the input meteorological
data file was value x. The only valid values for cloud
cover are 0,1,2,3,4,5,6,7,8,9 or —. The program assumes
a value of "-" which is interpreted as a 10 tenths cloud
cover.
STABILITY = i j r n
Description: A stability class was assigned an invalid value (i). The
value j is the wind speed index, r is the net radiation
index number, and n is the number of the input meteorolog-
ical data file record being processed.
G-20
-------
G.7 FORTRAN LISTING OF THE CRSTER/ISCST PREPROCESSOR PROGRAM
The following is a complete FORTRAN source listing of the
CRSTER/ISCST preprocessor program.
G-21
-------
N>
to
1*
2*
3*
4*
5*
6*
7*
8*
9*
10*
1 1*
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
23*
26*
27*
28*
29*
30*
31*
32*
33*
34*
39*
36*
37*
38*
C***CRSTER-PREPROCESSOR- WRITTEN BY JOAN HRENKO NOVAK
C*** BASED OH METHODS SUGGESTED BY TURNER , ZIHHERHAN, AND IRUIN.
C*** VERSION 77166
C***tHE PROGRAM ASSUMES THERE IS NO HISSING DATA ON THE NET. TAPE.
C*«*iF HISSING DATA IS DETECTED/ THE LOCATION OF THE HISSING DATA IS
C***PRINTED. HISSING DATA HUST BE FILLED IH BEFORE PROCEED1HG .
DIMENSION LSTAB< 12,?>/ IDFAC<12/2>, ANGLO), ICEIK3), IDG<3>,
16(11 )
DIMENSION KST<24>/ SPEED<24>, TEHP<24>/ AFV<24>, FVR(24>, HLH(
1). RAND<24>
DATA ID1G /•0'/"l*,'2"»'3"»'4«»"5',"«'f•7','8'*"»B/'-V
DATA IREC /!/ ,IHO /I/ ,ANGL X60.,35.,15./ -CONST X57.29378/
DATA IDFAC /O,31,39,90,120,151,181,2 I 2,243/273/304, 334,0 , 31 , 60
1121,152,182,213,244.274,305,335/
DATA L8TAB /?,7.7,6,6.6,5,5.5,5,4,4,6,6 , 6 , 5
14/4/4/4/4.4 ,4/4,4, 3/3/3/4/4.4,4,4,4,4/4/4,2
21,2/2/2/2/2.2,3,3/3/3/4/1/1,1,1,1/2/2,2,2/3
SURFACE DATA
OUTPUT FILE
UPPER AIR DATA IN CARD FORHAT
5,5,4,4,4,4,4,4,4,
2,2,3,3,3,3,3/3/4,
3/3/
C**»
C***
C***
8
9
5
UNIT
UNIT
UNIT
IN = 5
10 = 6
IFLAG'O
C***READ CARD TO INITIALIZE HET TAPE I D/YEAR,LATITUDE,LONGITUDE /
C*** TIHE ZONE /NO. OF DAYS IN YEAR/ INITIAL RANDOH NUHBER.
C***RAND(24) IS THE INITIAL RAHDOH NO. USED TO GENERATE THE SEQUENCE
C***NUHBERS FOR THE RAHDOHIZED FLOW VECTOR. IF THE SAKE NO. IS USED
C***DIFFERENT EXECUTIONS OF THE PREPROCESSOR, THE SANE SET OF RANDOH
C***tfILL BE GENERATED. ANY ODD NUHBER GREATER THAH 3 DIGITS CAN BE U
C***AS THE SEED. THIS SEED IS HULTIPLIED BY 10000 IHTERNALLY.
C*»*ZOHE IS GHT-LST.
READ (Ifi,400> IDC/IYRC/ALAT*ALOHG/ZOHE/NDAYS/RAND<24 )
VRITE <{0/410> IDC,IYRC/ALAT/ALONG,ZONE,NDAYS, RAND<24)
DUH-ALAt/CONST
SINLAT»dIN< DUN)
COSLAT-COS
-------
39* C***RESET SUBSRITT IF LEAP YEAR HET00390
40* LYS=1 HET00400
41* IF (NDAYS .EQ .366> LYS=2 MET00410
42* C***READ HET DATA NET00420
43* C***THIS READ ASSUMES AN INPUT TAPE WITH HOURLY DATA FROH THE HET00430
44* C***HATIONAL CLIMATIC CENTER, ASHVILLE, HC . IN THEIR STANDARD HET00440
45* C***foURLY CARD FORMAT. MET00450
46* C***SKIP 00 HOUR OF MET DATA. HET00460
47* READ (8,420) I D,I YEAR, IHONTH,I DAY,I HOUR,ICEIL,IDIR,I SPEED/ITEHP , ICHET00470
48* 10VER MET00480
49* LUD-IDll HET00490
50* C***BEGIN PROCESSING WITH HOUR 01 HET00500
31* READ (8,420) ID,1 YEAR, IMONTH, IDAY,I HOUR,ICEIL,IDIR,I SPEED,ITEHP, 1CMET005 1 0
52* 10VER HET00520
S3* C***«1XING HEIGHT VALUES ARE DETERMINED TWICE A DAY FROM RADIOSONDE DATAMET00530
54* C***US1MG THE PROCEDURES OF HOLZWORTH. HET00540
55* C***READ PRIOR DAYS MIXING HEIGHT VALUES HET00550
56* READ (IN,430) XMNHl/XAFMi HET00560
0 5?* C***PRESENT DdY MET00570
f'o 58* READ (IH/440) IDH, IYH, XHH, XAF HET00580
w 59* C***SRITE IDENTIFYING INFORMATION ON OUTPUT FILE HETOOSSO
60* WRITE ($) ID,I YEAR,IDH,IYM HET00600
61* WRITE (10,430) I YEAR,ID,IYM,I DM HET00610
62* C*** READ NEXT DAY'S MIXING HEIGHT VALUES HET00620
63* READ (IN,430) XMNP1/XAFP1 MET00630
64* C***8TART DAY LOOP. HET00640
65* DO 380 IDY«1,NDAYS MET00650
66* C***CALCULATE THE DAY NO AND THE TIME OF SUNRISE AND SUNSET HET00660
67* DAY1»IDAY + IDFAC(IHONTH,LYS ) HET00670
68* C***COHSTANT 0.0172028=360/365.242*57.29578 HET00680
69* C***DETERMINE THE AHGULAR(RADIAHS ) FRACTIOH OF A YEAR FOR THIS DATE. HET00690
70* DAYNO=(DAY1-1.0)*0.0172028 MET00700
71* TOAYNO»2.*DAYHO MET00710
72* SIHD-SIN(DAYNO) HET00720
73* COSD«COS(DAYNO) MET00730
74* SINTD=8iN(TDAYNO) MET00740
75* COSTD'COS(TDAYNO) MET00750
76* C***ACCOUHT FOR ELL1PTIC1TY OF EARTH'S ORBIT. HET00760
-------
?
ho
77* 8I6HA»279.9348-KDAYNO*CONST>+1.914827*SIND-0.079323*COSD+O.OI9938*HET00770
78* ISINTD-0 .001 62*COSTl> HET00780
79* C*«*COHSTAHT 0. 39785 = 8 1 H< . 4091 720 193-23 . 44383/57 . 29378 ) HET00790
80* C*«*F1ND THE SINE OF THE SOLAR DECLINATION. HET00800
81* DSIN=0.39785*S1N HET00810
82* DCOS-SaftTU .0-D81H*DS1H> HET00820
83* C**»5ETERHINE TIHE(HRS) OF MERIDIAN PASSAGE HET00830
84* AHN-12.0+0. 1 2357* SI ND-0 . 004 28 9* COSD+0 1 53809 *S 1 HT D+ 0 060 7 83 *C OST D NET00840
85* HCOS"<-SIMLAT*DSIN>/(C08LAT*DCOS> HET00850
86* C***BETERHIHE SOLAR HOUR ANGLE OF SUHR ISE-SUHSET . HET00860
87* H2 = ( ATAN2( S8RT( 1 . -HCOS*HCOS ), HCOS)/15 .0 )*COHST HET00870
88* C***T1HE OF SUHRISE(TSR) AND TIME OF SUNSET(TSS) ARE EXPRESSED IN MET00880
89* C***LOCAL STANDARD TINE SINCE THE ZONE CORRECTION HAS ALREADY BEEN HADE . HET00890
90* C**«OTHERy 1SE THEY MOULD BE IN GREENWICH NEAH T I HE . HET00900
91* TSR=AMH-H2*DUM MET00910
92* TSS»AHN+H2+DUH MET00920
93* RAND< 1 )=RAHD<24>*10000 HET00930
94* C***JH1S CALL TO THE UNIVAC RANDOM NO. GEHERATOR PROVIDES 24 UNIFORMLY MET00940
95* C***DI8TRIBUTED NUMBERS BETWEEN 0 AND 1. HET009SO
C***IF THIS ROUTINE IS HOT RUN ON A UNIVAC MACHINE, THE RANDOM NO. MET00960
C**«6ENERATOR FOR THE USER'S SYSTEM HAY BE SUBSTITUTED. HET00970
CALL RANDU (RAND, 24) HET00980
C***8TART HOUR LOOP MET00990
DO 370 KHR*1*24 MET01000
KHRC-KHft HET01010
C***INIT1ALIZE STABILITY BEFORE IT IS CALCULATED HET01020
KST(KHR>«0 MET01030
IF (KHR.EQ.24) GO TO 70 HET01040
C*«»CHECK DAT* FOR CORRECTHESS t CONTINUITY HET01050
C***CHECK STATION NUMBER. HET01060
IF (ID.tfi.IDC) GO TO 10 HET01070
WRITE (|0/460> IREC,ID,IDC MET01080
WRITE
-------
Ln
115*
116*
117*
118*
119*
120*
121*
122*
123*
124*
12S*
126*
127*
128*
129*
130*
131*
132*
133*
134*
135*
136*
137*
138*
139*
140*
141*
142*
143*
144*
145*
146*
147*
148*
149*
150*
151*
152*
CALL EXIT
C***CHECK MONTH
20
C***
IF (IMOHTH.EQ.IHO> 60 TO 40
IF > GO TO 30
WRITE (10,480) IHOHTH,1HO,IREC
WRITE (10,510)
CALL EXIT
30 IHO-IHOHTH
C»*»CHECK DAY
40 IF
-------
o
to
01
133* IDG<2>=9
154* IDG<3>°8
159* GO TO 150
156* 110 DO 140 JI=1
157* DO 120 JK*1
158* IF «JK-
161* 140 CONTINUE
162* ISO IROOF-IOGC1
163* C***IROOF IS CEIL
164* C***CONVERT TEHP
165* TEMP(KHR)=0
166* C***COHVERT UIHD
167* S=ISP£ED*0.
168* C***9IHD SPEED IS
169* IF (S.LT 1 .
170* SPEED(KHR)=
171* C***CHECK FOR CAL
172* IF ( IDIR.EQ
173* C*»*ilIND DIRECTIO
174* C«**1F THE yiND D
175* L«D=IDIR
176* GO TO 170
177* 160 IDIR*LUD
178* 170 XDIR-IDIR*!
1794. C***CALCULATE FLO
180* IF (XOIR.GT
181* FV°XDIR+180
182* GO TO 190
183* 180 FV-XDIR-180
184* 190 AFV
-------
91*
GT .TSR.AND.INOUR.LT.TSS) GO TO 210
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*
214*
215*
216*
217*
218*
219*
220*
221*
222*
223*
224*
225*
226*
227*
228*
4) IRADX-1
IF ( IHOUR
IRADX*2
IF ( ISKY.LE
60 TO 280
200 IRADX«3
GO TO 280
C***DETERHINE THE ANGLE OF ELEVATION
C***DETERHINE SOLAR HOUR ANGLE
210 HI=< 15. * +TEHP2)/CONST
ALFSN«SINLAT*DSIM+DCOS*COSLAT*COS< HI >
C***DETERHINE SOLAR ELEVATION AHGLE.
ALF=ATAN2 = LSTAB(IHD,IRADX)
C***DO NOT ALLOW STABILITY TO VARY RAPIDLY
IF LST=KST(KHR)
IRftDX«IRADX-l
IRADX=1
HET01910
HET01920
HET01930
HET01940
HET01950
HET01960
HET01970
HET01980
HET01990
HET02000
HET02010
MET02020
HET02030
HET02040
HET02041
HET02050
HET02060
HET02070
HET02080
HET02090
HET02100
HET02110
HET02120
HET02130
HET02140
HET02150
HET02160
HET02170
HET02180
HET02190
HET02200
HET02210
HET02220
HET02230
HET02240
HET02250
HET02260
HET02270
-------
o
N>
00
229*
230*
231*
232*
233*
234*
233*
234*
237*
238*
239*
240*
241*
242*
243*
244*
245*
246*
247*
248*
249*
250*
251*
252*
253*
254*
255*
256*
257*
258*
259*
260*
261*
262*
263*
264*
265*
266*
1)
1 >
IF «K8T(KHR)-LST).GT
IF «LST-KST(KHR>).GT
LST»K8T(KHR )
IF (K8T(KHR ) LT. 1 ) WRITE
C***tALCULATE MIXING HEIGHT
IHR«KHRC
XHR-IHR
IF ( IHR.GT. 14.AND.XHR
IHD«2
IF
TO
GO
LE.TS8) GO TO 300
310
TO 290
XHHP1 -XAF>*« XHR-TSS )/< 24 . -TSS > >
2)
XAF
XAF
IF ( INO EQ
GO TO 360
HLH( liKRR >
HLH<2,KHR )
GO TO 360
IF (XHR.GT.TSR) GO TO 330
K8T8P«K8T(KHR>
IF (KSKKHR ) .EQ
HLH<2/KHR>=XHH
INO'l
HLH(INO,KHR )«XAFH1
AF + *«XHR-TSS)/(38.-TSS»
HLH( 1 ,KHR)=HLH< 2, KHR )
4) GO TO 320
X AF-XAF Ml )*< ( 24 . -TSS+XHR )/( 24 . -TSS + 1 4
IF (IMD.EQ.2) HLH( 1 ,KHR)"HLH( 2, KHR )
GO TO 360
330 IF (K8T8P.EQ.4) GO TO 350
HLH< 2, KHR >»XHH + < XAF-XHN>*« XHR-TSR >/( 14 .-TSR >)
HLH(1,KHR)=XAF*(XHR-TSR)/(14-TSR)
GO TO 360
340 IFLAGM
IHOUR-0
GO TO 370
350 HLH( 1,KHR > = X AF H 1 + ( X AF -XAFH 1 )*< < 24 . -TSS + XHR )/< 24 . -T88 + 1 4
HLH( 2/KHR ) = HLH(1 ,KHR)
C**«READ HEXT HOUR'S MET DATA
360 IF (IFLAG.EQ.l) GO TO 390
) >
HET02280
NET02290
HET02300
NET02310
HET02320
HET02330
NET02340
HET02350
HET02360
HET02370
HET02380
HET02390
HET02400
HET02410
HET02420
NET02430
HET02440
HET02450
HET02460
HET02470
HET02480
HET02490
NET02500
HET02510
HET02520
HET02530
HET02540
MET02550
HET02560
HET02570
HET02580
NET02590
HET02600
HET02610
HET02620
HET02630
RET02640
HET02650
-------
VO
267*
268*
269*
270*
271*
272*
273*
274*
275*
276*
277*
278*
279*
280*
281*
282*
283*
284*
283*
286*
287*
288*
289*
290*
291*
292*
293*
294*
293*
296*
297*
298*
299*
300*
301*
302*
303*
304*
C***STORE CORRECT HONTH AKD DAY FOR DAILY PRINTOUT, SINCE 24TH HOUR
IF(KHR .ME.23) GO TO 363
LHOH-IHONTH
LDAY'IDAY
365 READ <8 . 420,END = 340 )
1ITEMP,ICOVER
IREC-IREC+1
C***END OF HOUR LOOP.
370 CONTINUE
C***8RITE DAYS CALCULATION
ID,I YEAR,IHOHTH, I DAY, I HOUR,I CEIL,
FILE
OH TO
C***EACH ARRAY CONTAINS THE CONPLETE INFORMATION FOR ONE DAY ORDERED
C***SEQUENTIALLY FROH HOUR 01 THRU 24
URITE
URITE
URITE (10,560
, URITE (10,570
C***EHD OF DAY LOOP
(9) IYEAR,LHOH
(10,550) IYEAR
KST
DAY1,KST,SPEED,
LHON,LDAY,DAY!,
TEHP,AFV
TSR,TSS
FVR,HLH
380
390
CONT
URIT
URIT
URIT
URIT
URIT
CALL
IHUE
E (9>
E ( 10,
E ( 10,
E ( 10,
E (10,
EXIT
IYEAR
550)
560)
570)
580)
,LHOH,
IYEAR,
KST
SPEED,
DAY1,
LHOH,
TEHP,
KST
LDA
AFV
,SPEED,
Y,DAY1,
,FVR,((
TEHP
TSR,
HLHC
,AFV
TSS
I, J)
SPEED,TEHP,AFV,FVR,((HLH(I,J> , J* 1,24 ), I =1 ,2)
FVR,HLH
J«1,24),I»1 ,2)
C
400 FORHAT (I 5,I 2,IX,2F10.1/F2.0,14,Fl0.0 )
410 FORNATC STATION HUHBER= • , I 5, 5X , 'YEAR OF DAT A= • , I 2/ 1 X,
• "LATITUDE"",F10.1,' LONGITUDE=•,F10 . 1, " ZONE=',F4.0/
• •HUHBER OF DAYS IN YEAR"•,I 3, " RANDOM SEED"•,F10.0)
420 FORHAT /'
2HLH2«', 12
FORHAT <•
END
DAY VF4.0,' DOES NOT AGREE UITH LOOP
HOUR ',12,* DOES NOT AGREE UITH LOOP
*****DATA IS HISSING. PLEASE CORRECT
ERROR: HISSING HOUR LOOP VALUE* ",13,
17, • IS » ",13)
THE CHARACTER "/Al," IS NOT ALLOUABLE
10.' )
STABILITY"',414)
IYEAR»',I2," IHONTH-',12," DAY«',I2,'
IRISE«",F7.3,' SUHSET-',F7.3)
KST- ', 24(11, 4X»
SPEED" ',24(F4.1,1X>/' TEHP= • ,24
-------
then print all input data parameters if desired by the user. The INCHK sub-
routine then returns to the calling routine (T.SCST) provided no errors were
detected. Figure H-2 is a flow diagram of the INCHK subroutine.
Subroutine MODEL is the principal section of the ISCST program.
Its main functions are reading the hourly meteorological data, performing
all concentration or deposition calculations and controlling the output
related to calculated concentration or deposition values. Figure H-3 is a
flow diagram of the MODEL subroutine. First, the subroutine computes ver-
tical (x ) and lateral (x ) virtual distances for all source, stability
category and downwind distance combinations. Next, the subroutine searches
for all source-receptor distances less than 100 meters or the greater of
three building heights or three building widths. A diagnostic table
identifying the aforementioned source-receptor combinations is printed if
any combinations are found. The subroutine then begins a loop over all
days of meteorological data and reads a day of data from either tape or
card. A second loop is begun over the hours of meteorological data followed
by a third loop over all sources. For stack-type sources, all plume rise
calculations are made that are independent of source-receptor orientation.
Next, a loop over all receptors is begun. In this portion of the subrou-
tine, all information has been collected in order to calculate the terms
used to make a concentration or deposition computation at a given receptor
from a given source for an hour of meteorological data. The program first
computes the downwind (x) and crosswind (y) distances. Subroutine UPWIND
is called to check if receptors, referenced by the polar coordinate system,
are upwind of the given source location. For stack-type sources, the sub-
routine then completes the remaining plume rise calculations if they are
dependent on source-receptor orientation. Next, the subroutine calculates
the vertical (oz) and horizontal (Qy) dispersion coefficients as a function
of downwind distance and stability category. Subroutine SIGMAZ may be
called to compute az; this depends on the given meteorology, source and
receptor data. Finally, concentration or deposition is calculated for this
source-receptor combination for a given hour of meteorological data. Sub-
routine ERFX is called to compute the error function values for area-type
H-3
-------
START
INCHK
/ READ
RECEPT0R DATA
f READ
METE0R0L0GICAL-RELATED
AND M0DEL C0NSTANTS
IS
MET. DATA
IN PREPR0CESSED
F0RMAT
/ READ
IDAY(I),I=1,366
READ
MET. TAPE
IDENTIFICATI0N
N0
IS
THIS
CORRECT MET
TAPE
PRINT
ERR0R MESSAGE
FIGURE H-2. INCHK Subroutine Flow Diagram.
H-4
-------
NUMBER
SOURCES
(NS0URC)
=0
9
PRINT
ERR0R MESSAGE
/ READ
SOURCE DATA
INPUT DATA
PRINT
PROGRAM
PARAMETERS
PRINT
METE0R0L0GICAL-RELATED
AND M0DEL CONSTANTS
FIGURE H-2. (Continued)
H-5
-------
©
©
PRINT
RECEPT0R DATA
PRINT
S0URCE DATA
i'
( •*-
^RETURN)
FIGURE H-2. (Continued)
H-6
-------
START
M0DEL
C0MPUTE
x &x F$R
z y
ALL S0URCES
ANY
S0URCE-
RECEPT0R C0MBINATI0NS
<100 METERS 0R
MAX 3
-------
©
© 0
READ
H0URLY MET. DATA
F0R DAY IDY
i
t
TAPE UNIT
IMET
YES
L00P
0N H0URS
(IHR=1,NH0URS)
(L00P
0N S0URCES
(IS=1,NS0URC)
READ
'HOURLY MET. DATA
F0R DAY IDY
nt,i.
^v.
i
i
DATA ^
>^
"" mm
MET. DATA F0R
DAY IDY
INITIALIZE
NH0URS
i
1
FIGURE H-3. (Continued)
H-8
-------
IS
"IS" A STACK
TYPE S0URCE
N0
YES
C0MPUTE
PRELIMINARY PLUME RISE CALCULATI0NS
INDEPENDENT 0F S0URCE-RECEPT0R
0RIENTATI0N
L00P
0N RECEPT0RS
(IJ=1,NPNTS)
IS
YES ^ "IJ" A
P0LAR RECEPT0R
IS
RECEPT0R
UPWIND 0F
S0URCE
9
FIGURE H-3. (Continued)
H-9
-------
0
C0MPUTE
DOWNWIND (x) AND
CR0SSWIND (y)
DISTANCES
YES
YES
IS
S0URCE-
RECEPT0R C0MB.
< 100 METERS
0R MAX 3(Hb,Hw)
IS
"IS" A STACK-
TYPE S0URCE
CfDMPUTE
FINAL PLUME
RISE IF
NECESSARY
CALL
SIGMAZ T0 C0MPUTE
D0WNWIND DISTANCE INDEX
FIGURE H-3. (Continued)
H-10
-------
IS
SUBR0UTINE
SIGMA2 REQUIRED
TO C0MPUTE
COMPUTE
a
z
\^x-
* 1 NO
r~.
C0MPUTE
0
y
CALCULATE
C0NCENTRATION 0R DEP0SITI0N AT
RECEPTOR"IJ"F0RS0URCE "IS"
WITH H0UR "IHK»r AND DAY "IDY".
ST0RE VALUES IN CALC ARRAY
SUBR0UTINES ERFX AND VERT
CALLED WHEN REQUIRED
YES
N0
ST0RE CALC ARRAY INT0
CHIAV ARRAY DEPENDING
0N S0URCE GR0UP,"IS" AND
TIME PERI0DS
FIGURE H-3. (Continued)
H-ll
-------
G>
D0ES
"IS"=
NS0URC
9
ST0RE CALC ARRAY INT0
CHIAV ARRAY F0R ALL
S0URCES DEPENDING 0N
TIME PERI0DS
WRITE
T0 OUTPUT TAPE
ISW(5)
=1
0UTPUT
TAPE
UNIT
ITAP
WRITE
CHIAV ARRAY T0
OUTPUT TAPE
CALL DY0UT T0 PRINT
TABLES F0R APPR0PRIATE
TIME INTERVALS AND
S0URCE GR0UPS F0R
EACH DAY
FIGURE H-3. (Continued)
H-12
-------
YES
STORE CALC ARRAY
INTO CHIAN ARRAY
F0R "N"-DAY T0TALS
F0R APPR0PRIATE
50URCE GR0UPS
YES
SEARCH CHIAV ARRAY
F0R HIGHEST AND SEC0ND
HIGHEST VALUES F0R
APPR0PRIATE TIME PERI0DS
AND SOURCE GROUPS
CALL SUBROUTINE MAX50
T0 SEARCH AND SAVE
MAXIMUM 50 VALUES
F0R ALL TIME PERI0DS
AND S0URCE GR0UPS
FIGURE H-3. (Continued)
H-13
-------
G>
1
CALL SUBR0UTINE DY0UT
T0 PRINT "N"-DAY
TABLES F0R ALL SOURCE
GR0UPS
CALL SUBR0UTINE DY0UT
T0 PRINT HIGHEST AND
SEC0ND HIGHEST TABLES
F0R ALL TIME PERI0DS
AND S0URCE GR0UPS
YES
CALL SUBR0UTINE MAX0T
T0 PRINT MAXIMUM 50
TABLES F0R ALL TIME
PERI0DS AND S0URCE
GR0UPS
FIGURE H-3. (Continued)
H-14
-------
D0
ISW(5)&
ISW(15)
= T
WRITE
CHIAN ARRAY
T0 0UTPUT
TAPE
0UTPUT
TAPE UNIT
ITAP
FIGURE H-3. (Continued)
H-15
-------
sources (see Equations (2-43) and (2-45)). Subroutine VERT aids in calcu-
lating the Vertical Term for calculations of concentration or deposition
requiring a Vertical Term value. As the subroutine loops over all recep-
tors, the calculated concentration or deposition values are stored into an
array (CALC). After all receptors are processed for this source and hour,
the array of values (CALC) are stored or summed into portions of another
array (CHIAV) depending on source group combinations desired by the user.
After all sources are processed for a given hour, portions of the CHIAV
array are stored or summed into other arrays depending on the source group
combination. For each hour and appropriate combination of user-defined
time intervals, the subroutine calculates averages (for concentration) or
sum totals (for deposition) of values in portions of the CHIAV array. Por-
tions of array CHIAV are then used by the subroutine DYOUT to print tables,
write to the output tape, store for "N"-day summations, search for highest
and second-highest values at each receptor and search for the maximum 50
calculated values. After looping over all hours and days of meteorological
data, MODEL calls subroutine DYOUT to optionally print tables or write to
tape "N"-day average concentration or total deposition values and tables of
the highest and second highest average concentration or total deposition.
Subroutine MAXOT is called to optionally print tables of the maximum 50
average concentration or total deposition values. Upon normal processing
of MODEL, a return is made to the ISCST routine.
Subroutine DYOUT prints out different types of tables related to
all receptor points. Depending on a flag variable, subroutine DYOUT prints
the terrain elevations for all receptors, the average concentration or
total deposition values for all receptors for a given time interval and
source group combination for a given day, and the highest or second-highest
average concentration or total deposition values for all receptors for a
given time interval and source group combination. Figure H-4 is a flow
diagram of subroutine DYOUT.
The remaining subroutines which make up the ISCST program have the
following functions. Subroutine MAXOT lists the maximum 50 average concentra-
H-16
-------
PRINT
TERRAIN ELEVATI0N
HEADING
PRINT
"N"-DAY HEADING
FOR A GIVEN
SOURCE GROUP
PRINT
DAILY TABLE HEADING
FOR A GIVEN TIME INTERVAL
AND S0URCE GR0UP
PRINT
HIGHEST TABLE HEADING
FOR A GIVEN TIME INTERVAL
AND S0URCE GR0UP
PRINT
SEC0ND HIGHEST TABLE HEADING
F0R A GIVEN TIME INTERVAL
AND S0URCE GR0UP
PRINT
VALUES F0R
ALL RECEPTORS
FIGURE H-4. DYOUT Subroutine Flow Diagram.
H-17
-------
tion or total deposition values calculated for the problem run. Subroutine
MAX50 searches for and stores the maximum 50 average concentration or total
deposition values for a given time interval and source group combination.
Subroutine VERT aids in computing the Vertical Term when required in calcu-
lating concentration or deposition. Subroutine SIGMAZ has three functions.
Depending on a flag variable, this subroutine computes a downwind distance
index used for accessing arrays containing virtual distances or arrays of
constants related to calculating the vertical (0 ) and horizontal (0 )
z y
dispersion coefficients. The second function is to calculate 0 based on
z _
Equation (2-17). The last function is to compute the average exponent (b)
(shown in Table 2-8), for the interval between the source and the downwind
distance (x), which is used for deposition calculations. Subroutine UPWIND
checks to see if the given receptor is upwind of the given source for a
particular hour of meteorological data. This subroutine is called only
when the given receptor is referenced with the polar coordinate system.
Subroutine ERFX computes the value of the error function terms shown in
Equations (2-43) and (2-45) for area-type sources, Figures H-5 through
H-10 are flow diagrams of the respective subroutines mentioned above.
H-18
-------
START
MAX0T
PRINT
MAXIMUM 50 HEADING
F|6R A GIVEN TIME
TIME INTERVAL AND SOURCE
GR0UP
PRINT
MAXIMUM 50
VALUES
( RETURN
9
FIGURE H-5. MAXOT Subroutine Flow Diagram.
H-19
-------
STAR'T
J1AX5CL
SEARCH F0R AND ST0RE
MAXIMUM 50 VALUES
F0R A GIVEN TIME
PERI0D AND S0URCE
GR0UP
(RETURN)
FIGURE H-6. MAX50 Subroutine Flow Diagram.
START
VERT
C0MPUTE
SUMMATI0N TERM
USED IN EQUATI0N (2-37)
MlETURNj
FIGURE H-7. VERT Subroutine Flow Diagram.
H-20
-------
r
START \
SIGMA T>
COMPUTE
DOWNWIND DISTANCE
INDEX
(RETURN)
YES
C0MPUTE CTZ
\
i
(RETURN)
C0MPUTE b
FOR EQUATION (2-44)
(RETURN J
FIGURE H-8. SIGMAZ Subroutine Flow Diagram.
H-21
-------
DETERMINE IF RECEPTOR
IS UPWIND 0F SOURCE
F0R A GIVEN SOURCE-
RECEPT0R COMBINATION
FIGURE H-9. UPWIND Subroutine Flow Diagram.
START
ERFX
COMPUTE
VALUE F0R ERR0R
FUNCTION TERMS IN
EQUATIONS (2-43) AND (2-45)
niETURNj
FIGURE H-10. ERFX Subroutine Flow Diagram.
H-22
-------
APPENDIX I
LOGIC FLOW DESCRIPTION OF THE ISC LONG-TERM
MODEL (ISCLT) COMPUTER PROGRAM
The ISCLT computer program consists of a main program (ISCLT) and
15 subroutines (MODEL, OUTPT, HEADNG, MXIMUM, CHECKR, SUMMER, TITLR, DISTR,
FUNCT, VERTC1, VERTC2, VERTC3, SIGMAZ, VIRTZ and VIRTY). The FORTRAN
source code of these routines is given in Appendix B.
The main routine (ISCLT) of the program is responsible for initial-
izing the program and starting the input data read sequence. This routine
reads the problem run title, the program options data and those variables
that specify the size (number of values) of required data parameter arrays.
The primary function of this routine is to calculate the amount of storage
required by the input receptor arrays, elevation array and the concentration
or deposition calculation arrays. The program has been designed to store
these data in 40,000 words in BLANK COMMON. The program calculates the
starting location of each array and passes this information to the main
calculation routine (MODEL). The program may use all or part of BLANK
COMMON depending on the program options selected. The amount of BLANK
COMMON required for a given problem run is calculated by Equation Q-3) in
Section 3.2.2. Figure 1-1 is a logic flow diagram of the main program.
Subroutine MODEL is the principal processing routine of the ISCLT
program. This routine reads the receptor, elevation and meteorological data
from input card images or from magnetic tape. The program provides default
data values for most variables set by input card and begins a loop over all
input sources. If a source is a new source from data card, concentration or
deposition is calculated using the long-term model equations. If a source
is a previous source from an input tape, its concentration or deposition
arrays are read from tape. New and/or previous sources and their respective
1-1
-------
MAIN PROQRAM ISCLT
READ RUN TITLE AND
PROGRAM OPTIONS
<1
DATA CARDS
IF
TAPE INPUT
ISW(5)=2 OR 3
READ PREVIOUS OPTIONS AND
DATA CATEGORY SIZE PARAM-
ETERS FROM INPUT
TAPE (FILE)
INPUT
TAPE OR
ONLINE FILE
READ NUMBER OF CARD SOURCES
TO EXPECT, NUMBER OF SOURCE
COMBINATIONS DESIRED AND
REMAINING SIZE PARAMETERS
NOT SET FROM MAGNETIC TAPE
DATA CARDS
FIGURE 1-1. ISCLT Logic Flow Diagram.
1-2
-------
IF
SPECIAL
SOURCE
COMBINATIONS
NGROUP>0
READ SOURCE
COMBINATION DATA
-| DATA CARDS
PROVIDE DEFAULT VALUES FOR
PROGRAM CATEGORY SIZE
PARAMETERS AND OPTION
SWITCHES
CALCULATE STARTING ADDRESSES
IN BLANK COMMON FOR X AND Y
AXES AND DISCRETE ARBITRAR-
ILY SPACED POINTS, ELEVA-
TIONS AND CONCENTRATION OR
DEPOSITION ARRAYS
BRANCH TO SUBROUTINE MODEL TO
PERFORM THE ISCLT CALCULATIONS
AND OUTPUT
I
SUBROUTINE MODEL
1
r
FIGURE 1-1. (Continued)
1-3
-------
concentration or deposition arrays are merged into a source/concentration
(deposition) inventory of one or more sources for which seasonal and/or
annual concentration or deposition values for the individual as well as the
combined sources can be output. This routine will also, on option, output
all of the program input data including options, receptor arrays, meteoro-
logical data, source data and the calculated seasonal concentration or deposi-
tion values to tape to be held as a historical file which may be used at a
later date to update or to retrive information not printed when the tape was
generated. A logic flow diagram of this routine is shown in Figure 1-2.
Subroutine OUTPT controls the printing of the input source data if
this option is choosen. This subroutine also controls the printing of the
results of all concentration or deposition calculations and controls the
calculations of the maximum 10 concentration or deposition values. A flow
diagram of this routine is shown in Figure 1-3.
Subroutine HEADNG prints the table headings for the concentration
or deposition tables. The headings identify whether seasonal or annual cal-
culations are being printed, whether they are for individual or combined
sources and, if combined, which sources are used in the combination. All
program output tables are labeled either seasonal or annual. If the user
is using monthly data, he/she must remember that season 1 is actually month
1, etc., and an annual label would actually be average monthly or seasonal.
A flow diagram of this routine is shown in Figure 1-4.
Subroutine TITLR controls the starting of a new output page and
writes the problem run title information and page number as the first line
of each output page. Also, this subroutine writes the main heading of the
input data tables. A logic flow diagram of this subroutine is shown in
Figure 1-5.
1-4
-------
IF
TAPE INPUT
ISW(5)=>2 or 3
YES
-RECEPTOR INPUTS-
• READ X-AXIS IF USED
• READ DISCRETE ARBITRARILY
SPACED X-RECEPTORS IF USED
• READ Y-AXIS IF USED
• READ DISCRETE ARBITRARILY
SPACED Y-RECEPTORS IF USED
• READ ELEVATION DATA FOR AXIS
GRID SYSTEM IF USED
• READ ELEVATIONS FOR DISCRETE
ARBITRARILY SPACED RECEPTORS
IF USED
DATA CARDS
FIGURE 1-2.
Model Logic Flow Diagram —Subroutine MODEL. This subroutine
is the main calculation and control program. This program con-
trols the source and meteorology input, output and calculations
and contains most of the concentration and deposition equations.
1-5
-------
-METEOROLOGICAL INPUTS-
READ FREQUENCY OF OCCURRENCE
OF WIND SPEED AND DIRECTION
DATA
READ AMBIENT AIR TEMPERATURES
READ MIXING LAYER DEPTHS
READ VERTICAL GRADIENT OF
POTENTIAL TEMPERATURE
READ UNITS CONVERSION FACTOR
AND OTHER NON-ARRAYED MODEL
PARAMETERS
READ WIND SPEED CATEGORIES
READ WIND DIRECTION CATE-
GORIES
READ WIND PROFILE POWER LAW
EXPONENT
DATA CARDS
I
-TAPE INPUT-
READ ALL RECEPTOR AND METEORO-
LOGICAL DATA FROM TAPE
INPUT
TAPE OR
ONLINE FILE
IF
NO X^USER SPECIFIED
J1AXIMUMS ARE DESIRED
ISW(12)=1
YES .
FIGURE 1-2. (Continued)
1-6
-------
READ USER SPECIFIED RECEPTORS
FOR MAXIMUM 10 CALCULATIONS INTO
DISCRETE ARBITRARILY SPACED
X AND Y ARRAYS AND DISCARD ANY
RECEPTOR DATA ON TAPE
DATA CARDS
IF
OUTPUT TAPE
IS USED
ISW(5)=1 OR 3
YES
-TAPE OUTPUT-
WRITE ALL OPTIONS, SIZE
PARAMETERS, RECEPTOR DATA
AND METEOROLOGICAL DATA TO
THE OUTPUT TAPE
OUTPUT
TAPE OR
ONLINE FILE
PROVIDE DEFAULT VALUES FOR ALL
METEOROLOGICAL DATA NOT SET
BY TAPE OR CARD INPUT
FIGURE 1-2.
(Continued)
1-7
-------
IF
PRINT
INPUT DATA
ISW(6)>0
NO
-PRINT INPUT DATA-
PRINT PROGRAM OPTIONS, SIZE PARAM-
ETERS, RECEPTOR DATA AND
METEOROLOGICAL DATA
PRINTED
OUTPUT
CALCULATE SPECIAL MODEL CON-
STANTS THAT DO NOT VARY IN
SUBSEQUENT CALCULATIONS TO
OPTIMIZE PROGRAM RUN TIME
BEGIN LOOP OVER NUMBER OF SELECTED SOURCE COMBINATIONS.
IF THE NUMBER OF SOURCE COMBINATIONS IS INPUT AS ZERO
ALL SOURCES ARE SUMMED FOR THE SOURCE COMBINATION AND
THE NUMBER IS SET TO 1.
I
NG
FIGURE 1-2. (Continued)
1-8
-------
NG = NG + 1
YES - end of processing -
YES - first pass -
- all other passes-
SECONDARY PASS THROUGH SOURCES IN SOURCE COMBINATION
FOR DISPLAY OF CALCULATIONS AND DISPLAY OF MAXI-
MUM 10 OF EACH SOURCE THAT CONTRIBUTES TO MAXIMUM 10
OF COMBINATION. THIS IS NECESSARY ONLY WHEN THE
FIRST PASS IS USED TO DETERMINE THE MAXIMUM
10 VALUES AND LOCATIONS OF THE COMBINED SOURCES
BY THE PROGRAM.
V 1 '
FIGURE 1-2. (Continued)
1-9
-------
YES
IF
SOURCES AND
CALCULATIONS
SAVED IN CORE
REWIND AND POSITION OUTPUT TAPE OR
INPUT TAPE FOR INPUT OF SOURCES
AND CONCENTRATION OR DEPOSITION FOR
ADDITIONAL PASSES
INPUT OR
OUTPUT
TAPE
RESET POINTERS TO RETRIEVE
SOURCES AND CONCENTRATION OR
DEPOSITION SAVED IN BLANK
COMMON (CORE) FOR
ADDITIONAL PASSES
L9 - 0
LOOP OVER SOURCES
- calculation or
tape input pass -
YES
IF
FIRST PASS
THROUGH
SOURCES
FIGURE Ir2. (Continued)
1-10
-------
YES
IF
SOURCES,
ETC., SAVED
IN CORE
READ SOURCE RECORD FROM
TAPE, SOURCE ID NO.=NUMS
IF
END OF TAPE
SOURCES
INPUT OR
OUTPUT
TAPE
YES
READ CONCENTRATION OR DEPOSI-
TION RECORD FOR EACH SEASON
INPUT OR
OUTPUT
TAPE
INCREMENT COUNTERS TO RETRIEVE
SOURCE AND CONCENTRATION OR
DEPOSITION FROM CORE. SOURCE ID
NO.=NUMS
FIGURE 1-2.
(Continued)
1-11
-------
IF
END OF
SOURCES IN
CORE
YES
CONTINUE FIRST PASS THROUGH SOURCES WITH CARD AND/OR
TAPE INPUT SOURCES AND PERFORM CONCENTRATION OR
DEPOSITION CALCULATIONS ON CARD SOURCES.
IF
SWITCH SET
TO READ TAPE
SOURCE
ONLY
IF
ANY CARD
SOURCE INPUT
NSOURC>0
IF
END OF
CARD SOURCES
TURN CARD SOURCE
INPUT OFF
NO
FIGURE 1-2. (Continued)
1-12
-------
L
READ CARD SOURCE INPUT DATA
NUMS1 IS THE SOURCE IDENTI-
FICATION NUMBER FROM CARD
_[iCARD SOURCE
"I DATA
IF
SWITCH SET
TO READ CARD
SOURCE
ONLY
IF
TAPE SOURCE
INPUT DATA
IF
END OF
TAPE SOURCE
INPUT
TURN TAPE SOURCE
INPUT OFF
READ TAPE SOURCE DATA
NUMS2 IS THE SOURCE IDENTI-
FICATION NUMBER FROM TAPE
FIGURE T-2.
(Continued)
1-13
-------
IF
END OF
TAPE SOURCE
DATA
READ CONCENTRATION OR DEPOSI-
TION RECORDS FOR EACH SEASON
FROM INPUT TAPE
INPUT
TAPE
IF
TAPE
SOURCE
TURNED
OFF
IF
CARD
SOURCE
URNED OFF
IF
CARD
SOURCE
TURNED
OFF
NO
HAVE BOTH CARD AND TAPE SOURCE,
CHECK IDENTIFICATION NUMBERS
FIGURE-1-2. (Continued)
1-14
-------
t
USE CARD SOURCE
AND SET SWITCH
TO READ ONLY
CARD SOURCE ON
NEXT SOURCE READ
USE TAPE SOURCE
AND SET SWITCH
TO READ ONLY
TAPE SOURCE ON
NEXT SOURCE READ
NO
SAME SOURCE IDENTIFICATION NUMBER
SET SWITCH TO
READ BOTH CARD
AND TAPE SOURCE
AND GO GET
NEXT SOURCE
IF
DELETE TAPE
SOURCE
IF
CARD SOURCE
REPLACES TAPE
SOURCE
SET SWITCH TO
READ BOTH CARD
AND TAPE
SOURCES AND GO
PROCESS CARD
SOURCE
FIGURE 1-2. (Continued)
1-15
-------
• USE CARD INPUT SOURCE STRENGTHS TO
RESCALE THE TAPE SOURCE CONCENTRA-
TIONS OR DEPOSITIONS
• REPLACE TAPE SOURCE STRENGTHS WITH
CARD INPUT SOURCE STRENGTHS
• SET SWITCH TO READ BOTH CARD AND
TAPE SOURCES ON NEXT SOURCE READ
• LOAD TAPE SOURCE DATA INTO SOURCE
OUTPUT AND CALCULATION BUFFER
• NUMS=NUMS2
• PRINT SOURCE DATA IF DESIRED
• LOAD CARD SOURCE DATA INTO SOURCE
OUTPUT AND CALCULATION BUFFER
• NUMS=-NUMS1
• PRINT SOURCE DATA IF DESIRED
SUBROUTINE
OUTPT
SUBROUTINE
OUTPT
BEGIN SECTION TO CALCULATE SEASONAL CONCENTRATION OR
DEPOSITION FOR CURRENT CARD INPUT SOURCE
FIGURE 1-2. (Continued)
1-16
-------
YES
IF
SOURCE IS
VOLUME OR AREA
SOURCE
9
CALCULATE PLUME RISE CONSTANTS FOR STACKS.
THESE ARE PARTS OF THE PLUME RISE
EQUATIONS THAT ARE INDEPENDENT OF THE
SOURCE/RECEPTOR GEOMETRY AND PARTS
OF THE MODEL EQUATIONS THAT ARE INDEPENDENT
OF THE SOURCE/RECEPTOR GEOMETRY.
(EQUATIONS (2-10) AND (2-11)
SUBROUTINE
VIRTY
CALCULATE PARTS OF THE MODEL EQUATIONS
FOR VOLUME AND AREA SOURCES. THESE
ARE PARTS OF THE MODEL EQUATIONS THAT
ARE INDEPENDENT OF THE SOURCE/RECEPTOR
GEOMETRY (EQUATIONS (2-52) AND (2-54))
SUBROUTINE
VIRTY
CALCULATE. PARTS OF THE MODEL EQUATIONS
COMMON TO ALL SOURCE TYPES
CALCULATE THE MINIMUM CALCULATION DIS-
TANCE
V i '
FIGURE' 1-2. (Continued)
1-17
-------
LOOP OVER Y AXIS OF THE GRID SYSTEM
YES
GET Y COORDINATE OF
CARTESIAN OR POLAR
SYSTEM Y(JJ)
LOOP OVER X AXIS OF THE GRID SYSTEM
i
II = II + 1
YES
GET X COORDINATE OF
CARTESIAN OR POLAR
SYSTEM X(II)
I
CALCULATE STORAGE ADDRESS FOR CONCENTRATION
OR DEPOSITION IJ»(JJ-1)*NXPNTS+II
LOOP OVER SPECIAL ARBITRARILY SPACED RECEPTORS
FIGURE 1-2. (Continued)
1-18
-------
I JJJ • 0~1
JJJ = JJJ + 1
YES
GET X AND Y COORDINATES,
CARTESIAN OR POLAR
X(NXPNTS+JJJ)
Y(NYPNTS+JJJ)
CALCULATE STORAGE ADDRESS FOR
CONCENTRATION OR DEPOSITION
I IJ - NXPNTS*NYPNTS+JJJ
i
ZERO CONCENTRATION CR DEPOSITION FOR
THIS POINT FOR EACH SEASON
DO 26 K = l.NSEASN
LI = (K+L91)*NXXYYP+L9
26 CON (Ll+JJ) =0.0
FIGURE 1-2. (Continued)
1-19
-------
L91 AND L9 ARE ADJUSTMENTS TO STORAGE. L91
RESERVES STORAGE FOR SUMS OF SOURCES AND
FOR ANNUAL CALCULATIONS WHEN NECESSARY AND
L9 POINTS TO A NEW SET OF STORAGE ARRAYS FOR
EACH SOURCE WHEN THE PROGRAM HOLDS ALL SOURCES
CALCULATIONS IN CORE
(NXXYYP = NXPNTS*NYPNTS+NXWYPT )
LOOP OVER WIND DIRECTION SECTORS BEGINNING
WITH NORTH TO DETERMINE THOSE SECTORS
THAT THE CURRENT SOURCE CONTRIBUTES TO
1
DO //
N -
1,NSCTOR
CALCULATE DOWNWIND AND CROSSWIND DISTANCES
FROM SOURCE TO RECEPTOR
YB =-XP*PHS(N)-YP*PHC(N)
YB = XP*PHC(N)-YP*PHS(N)
WHERE XP AND YP ARE X AND Y CARTESIAN
DISTANCES TO THE RECEPTOR RELATIVE TO THE
SOURCE LOCATION. PHS(N) AND PHC(N) ARE THE
SIN AND COS RESPECTIVELY OF THE SECTOR ANGLE.
^. - point upwind
of source -
FIGURE 1-2. (Continued)
1-20
-------
PRECALCULATE az FOR STACKS
WITH WAKE EFFECTS WHERE
XB<10*HB
PRECALCULATE DISTANCE AND
SMOOTHING TERM OF CONCENTRA-
TION EQUATION FOR AREA SOURCES
AND STACKS WITHOUT WAKE EFFECTS
SUBROUTINE
DISTR
YES.
LOOP OVER STABILITY CATEGORIES FOR MAIN
CONCENTRATION OR DEPOSITION EQUATION
CALCULATIONS
IF
OUTSIDE OF
SECTOR
NO
DO // I = 1, NSTBLE
CALCULATE DISTANCE AND SMOOTHING
TERM FOR VOLUME SOURCES
SUBROUTINE
DISTR
YES
IF
OUTSIDE OF
SECTOR
n
FIGURE 1-2.
(Continued)
1-21
-------
1
ft
L
• CALCULATE
SOURCES AND
EFFECTS
az FOR VOLUME AND AREA
STACKS WITHOUT WAKE
WAKE EFFECTS MODIFICATIONS FOR
DISTANCES >_ 10HB
CALCULATE AVERAGE
TICAL TERM az
TION (EQUATION 2-43)
SUBROUTINE
SIGMAZ
E b FOR THE
E DEPOSITION
-43)
VER-
EQUA-
t.
-»
b = FUNCT
(XB, STABILITY)
LOOP OVER SEASONS FOR MAIN CONCENTRATION
OR DEPOSITION EQUATION CALCULATIONS
DO # K - l.NSEASN
CALCULATE STORAGE ADDRESS FOR
CONCENTRATION OR DEPOSITION
Ll = (K+L91)*NXXYYP+L9
LOOP OVER WIND SPEED CATEGORIES FOR MAIN CONCEN-
TRATION OR DEPOSITION EQUATION CALCULATIONS
DO // J - l.NSPEED
r
1
CHECK JOINT FREQUENCY OF OCCURRENCE
FIGURE T-2. (Continued)
1-22
-------
I
CHECK ELEVATION AGAINST MIXING LAYER HEIGHT
YES
• CALCULATE FINAL PLUME RISE FOR ELEVATED
EMISSIONS, Oz FOR WAKE EFFECTS AND
FINAL PARTS OF THE CONCENTRATION OR
DEPOSITION EQUATIONS
• CALCULATE CONCENTRATION OR DEPOSITION
WITHOUT VERTICAL TERM = C4
FIGURE 1-2. (Continued)
1-23
-------
ii <. i •
i-l
t
.J
• CALCULATE THE VERTICAL TEEM FOR THE CONCENTRATION
OR DEPOSITION EQUATION
• V - CONCENTRATION ONLY
• V - CONCENTRATION WITH DEPLETION
DUE TO DEPOSITION
• V - DEPOSITION ONLY
SUBROUTINE
VERTC1
SUBROUTINE
VERTC2
SUBROUTINE
VERTC3
C4 = C4*V
I
ACCUMULATE CONCENTRATION OR DEPOSITION FOR CURRENT
SOURCE AND SEASON OVER WIND SPEED AND STABILITY
CATEGORIES CON(1J+L1)=CON(IJ+L1)+C4
END LOOP OVER WIND SPEED CATEGORIES,
BRANCH BACK IF J
-------
m
•
BRANCH BACK IF I < NSTBLE
END LOOP OVER WIND DIRECTION
YES.
IF
X, Y ARE
ARBITRARILY SPACED
POINTS
NO
ATEGORIES ,
TBLE
ACTION
I < NSCTOR
'OR POINTS
iN>
:HIS SOURCE
WNO
1
FIGURE. 1-2. (Continued)
1-25
-------
• WRITE SOURCE RECORD TO OUTPUT
TAPE
• WRITE CONCENTRATION OR DEPOSI-
TION RECORDS FOR EACH SEASON
TO OUTPUT TAPE
SUBROUTINE
CHECKR
IF
SOURCE
PAST OF CURRENT
COMBINED SOURCE
GROUP
PRINT CONCENTRATION OR DEPOSITION
FROM INDIVIDUAL SOURCE FOR EACH
SEASON IF DESIRED
SUM CONCENTRATION OR DEPOSITION
FOR COMBINED SOURCE OUTPUT IF
DESIRED
CALCULATE AND PRINT ANNUAL CONCEN-
TRATION OR DEPOSITION FROM INDIVID-
UAL SOURCES IF DESIRED
SUBROUTINE
OUTPT
SUBROUTINE
SUMMER
SUBROUTINE
OUTPT
FIGURE 1-2. (Continued)
1-26
-------
IF
SOURCE
CALCULATIONS
SAVED IN
CORE
INCREMENT POINT FOR SOURCE CALCULATION ARRAYS
L9 - KSO*NXYSEA
WHERE KSO IS THE RELATIVE SOURCE NUMBER AND
NXYSEA = (NXPNTS*NYPNTS+NXWYPT)*NSEASN
SOURCE NOT PRINTED OR SUMMED, CHECK
IF PART OF ANY COMBINED SOURCE GROUP
YES
SUBROUTINE
CHECKR
IF
SOURCE PART
OF ANY COMBINED
SOURCE GROUP
FIGURE 1-2. (Continued)
1-27
-------
RETURN FOR NEXT SOURCE
END OF SOURCES ON THIS PASS
IF
COMBINED
SOURCE OUTPUT
OR MAXIMUMS
DESIRED
IF
MAXIMUM
10 OF COMBINED
SOURCES IS TO BE
CALCULATED
YES
PRINT SEASONAL CONCENTRATION OR
DEPOSITION FROM COMBINED SOURCES
IF DESIRED
ACCUMULATE FOR ANNUAL COMBINED
CONCENTRATION OR DEPOSITION IF
DESIRED
PRINT ANNUAL CONCENTRATION OR
DEPOSITION FROM COMBINED SOURCES
IF DESIRED
SUBROUTINE
OUTPT
SUBROUTINE
SUMMER
SUBROUTINE
OUTPT
1' < '
FIGURE 1-2.
(Continued)
1-28
-------
CALCULATE RECEPTORS AND VALUES OF
MAXIMUM 10 CONCENTRATIONS OR
DEPOSITIONS OF COMBINED SOURCES.
THEN MAKE SECOND PASS TO DISPLAY
THE 10 POINTS OF EACH CONTRIBUTING
SOURCE, AS WELL AS, THESE
10 FOR THE COMBINED
SUBROUTINE
OUTPT
PRINT TERMINATION MESSAGE
AND SOURCE SUMMARY TABLE
THEN RETURN
TO MAIN PROGRAM
RETURN
FIGURE 1-2.
(Continued)
1-29
-------
IF
PRINT
SOURCE INPUT
DATA
7
PRINT THE SOURCE INPUT
DATA FOR STACKS, AREA
OR VOLUME SOURCES
PRINT
OUTPUT
PRINT
OUTPUT
1
PRINT SEASONAL OR ANNUAL
CONCENTRATION OR DEPOSI-
TION FROM INDIVIDUAL
SOURCES OR COMBINED
SOURCES AT EACH RECEPTOR
SUBROUTINE
HEADNG
N0
DETERMINE MAXIMUM
10 OF COMBINED
SOURCES
YES
FIGURE 1-3.
OUTPT Logic Flow Diagram — SUBROUTINE OUTPT. Subroutine
OUTPT performs and controls the printed output of source
data, the concentration or deposition of individual sources
and combined sources and calculates the 10 receptors where
the maximums occur.
1-30
-------
PRINT
OUTPUT
PRINT MAXIMUM 10 OF INDI-
VIDUAL SOURCE OR COMBINED
OR INDIVIDUAL SOURCES CON-
TRIBUTION TO COMBINED, ETC.
SUBROUTINE
MXIMUM
M-
RETURN
FIGURE 1-3. (Continued)
1-31
-------
SELECT AND PRINT TABLE HEADINGS
SEASONAL
ANNUAL
CONCENTRATION
DEPOSITION
INDIVIDUAL SOURCE
COMBINED SOURCE
PRINT
OUTPUT
(RETURN)
FIGURE 1-4. HEADNG'Logic Flow Diagram — SUBROUTINE HEADNG. Subroutine
HEADNG prints the headings for each type of output.
1-32
-------
YES
N0
LINE = LINE+1
YES
• NEW PAGE
• PRINT MAIN TITLE
• PRINT ADDITIONAL HEADING
IF DESIRED
PRINT
OUTPUT
RETURN}
FIGURE 1-5.
TITLR Logic Flow Diagram — SUBROUTINE TITLR. Subroutine TITLR
increments the line counter for proper positioning of the page
heading, counts the pages and writes select headings to the
input data table, input source table, etc.
1-33
-------
Subroutine SUMMER is called by MODEL to sum arrays of concentration
or deposition to provide annual (averaged or total) output and to provide
combined source output. A logic flow diagram of this subroutine is shown
in Figure 1-6.
Subroutine CHECKR is called by MODEL to determine if a source is
part of the current combined sources being summed or if the source is part
of any source combination so the program can decide whether to save it or
not when all sources calculations are being saved in storage. A flow diagram
of this subroutine is shown in Figure 1-7
Subroutine MXIMUM is called by OUTPT and determines the maximum
10 concentration or deposition values and their respective receptor coordi-
nates for a source or source combination and returns them to subroutine
OUTPT. A logic flow diagram of this subroutine is shown in Figure 1-8.
Subroutine VIRTZ is called by MODEL and calculates and returns
:al virtual distance x in E
z
this subroutine is shown in Figure 1-9.
the vertical virtual distance x in Equation (2-23). A logic diagram of
Z
Subroutine VIRTY is called by MODEL and calculates and returns
the lateral virtual distance x : in Equation (2-22). A logic diagram of
this subroutine is shown in Figure 1-10.
Subroutine SIGMAZ is called by MODEL and calculates and returns
the standard deviation of the vertical concentration distribution o
z
(Table 2-8 ) at a respective downwind distance and for a respective stability
category. A logic flow diagram of this subroutine is shown in Figure 1-11.
Subroutine VERTCl is called by MODEL and calculates and returns
the Vertical Term (Equations (2-49) and (2-50)) of the concentration equa-
tion. A logic flow diagram of the subroutine is shown in Figure 1-12.
1-34
-------
ACCUMULATE CONCENTRATION OR
DEPOSITION ARRAYS FOR COM-
BINED SOURCES OR
FOR ANNUAL CALCULATIONS
(RETURN)
FIGURE 1-6. SUMMER Logic Flow Diagram — SUBROUTINE SUMMER.
1-35
-------
DETERMINE IF A SOURCE IS
PART OF A PARTICULAR
SOURCE COMBINATION OR IF
IT IS PART OF ANY SOURCE
COMBINATION.
SET FLAG TO 1 IF YES
(RETURN)
FIGURE 1-7. CHECKR Logic Flow Diagram — SUBROUTINE CHECKR.
DETERMINE MAXIMUM 10 VALUES
AND LOCATIONS OF CONCENTRATION
OR DEPOSITION OVER ALL
RECEPTOR POINTS
(RETURN)
FIGURE 1-8. MXIMUM Logic Flow Diagram — SUBROUTINE MXIMUM.
1-36
-------
CALCULATE AND RETURN THE
VERTICAL VIRTUAL DISTANCE
xz
(EQUATION (2-23))
(RETURN)
FIGURE 1-9. VIRTZ Logic Flow Diagram — FUNCTION VIRTZ.
CALCULATE AND RETURN THE
LATERAL VIRTUAL DISTANCE
x
y
(EQUATION (2-22))
(RETURN)
FIGURE 1-10. VIRTY Logic Flow Diagram — FUNCTION VIRTY.
1-37
-------
CALCULATE AND RETURN THE
STANDARD DEVIATION OF
THE VERTICAL CONCENTRATION
DISTRIBUTION O
z
(TABLE 2-8)
(RETURN)
FIGURE 1-11. SIGMAZ Logic Flow Diagram -- FUNCTION SIGMAZ,
CALCULATE AND RETURN THE
VERTICAL TERM (EQUATIONS
(2-49) AND (2-50)) OF THE
CONCENTRATION EQUATION
WHEN DEPOSITION IS NOT
OCCURRING
FIGURE 1-12. VERTC1 Logic Flow Diagram — SUBROUTINE VERTC1,
1-38
-------
Subroutine VERTC2 is called by MODEL and calculates and returns
the Vertical Term of Equation (2-51) for each particulate size category in
the calculation of concentration with deposition occurring. A logic flow
diagram of this routine is shown in Figure 1-13.
Subroutine VERTC3 is called by MODEL and calculates and returns
the vertical term of Equation (2-54) for each particulate size category
used in the deposition equation. A logic flow diagram of this subroutine
is shown in Figure 1-14.
Function FUNCT is called by MODEL and calculates and returns the
average value b of the coefficient b which is the exponent used in the
a equation. This value is used in the deposition calculations see Equa-
tion (2-54)) and is shown in Table 2-8. A logic flow diagram of this rou-
tine is shown in Figure 1-15.
Subroutine DISTR is called by MODEL and calculates and returns the
distance between the source and receptor if the receptor is within the
required calculation sector and calculates the smoothing term of the con-
centration or deposition equation s(9} (Equation (2-52)). Subroutine
DISTR returns .Q> from Equation (2-45) or returns a "-1" if the receptor
point is outside of the calculation sector downwind of the source. A logic
flow diagram of this subroutine is shown in Figure 1-16.
1-39
-------
CALCULATE AND RETURN THE
VERTICAL TERM (EQUATION
(2-51)) OF THE CONCENTRATION
EQUATION FOR EACH PARTICLE
SIZE CATEGORY WHEN
DEPOSITION IS OCCURRING
(RETURN)
FIGURE 1-13. VERTC2 Logic Flow Diagram — SUBROUTINE VERTC2.
CALCULATE AND RETURN THE
(VERTICAL TERM (EQUATION (2-54))
OF THE DEPOSITION EQUATION
FOR EACH PARTICLE SIZE
CATEGORY
(RETURN)
FIGURE 1-14. VERTC3 Logic Flow Diagram — SUBROUTINE VERTC3.
1-40
-------
CALCULATE AND RETURN THE
COEFFICIENT b WHICH IS
THE AVERAGE EXPONENT USED
IN THE Qz EQUATION.
(EQUATION (2-54) TABLE (2-8)
(RETURN^
FIGURE 1-15. FUNCT Logic Flow Diagram — FUNCTION FUNCT.
THIS SUBROUTINE CALCULATES THE
DISTANCE BETWEEN THE SOURCE AND
RECEPTOR, DETERMINES IF THE
RECEPTOR IS IN THE CALCULATION
SECTOR AND CALCULATES THE
SMOOTHING TERM OF THE CONCEN-
TRATION OR DEPOSITION EQUATION
S{9} (EQUATION (2-52))
SUBROUTINE RETURNS
EQUATION (2-45) OR -1 IF THE
POINT is OUTSIDE OF
THE CALCULATION SECTOR
(RETURN)
FIGURE 1-16. DISTR Logic Flow Diagram — SUBROUTINE DISTR.
1-41
-------
TECHNICAL REPORT DATA
(Please rccii Instructions on the reverse before completing)'
1. ^i.-OST \-O. 2.
EPA-450/4-79-31
.:. 71 TLE AND SUBTITLE
Industrial Source Complex (ISC) Dispersion Model
User's Guide
Volume II--Appendices A through I
7. AUTHCRiS)
J. F. Bowers, J. R. Bjorkland, and C. S. Cheney
•
9. PERFORMING ORGANIZATION NAME AND ADDRESS
H. E. Cramer Company, Inc.
P. 0. Box 8049
Salt Lake City, Utah 84108
12. SPONSORING AGENCY NAME AND ADDRESS
Source Receptor Analysis Branch
Office of Air Quality Planning and Standards
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
15. SUPPLEMENTARY NOTES
3. RECIPIENT'S ACCESSIOt^NO.
5. REPORT DATE
December 1979
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
'»
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA-450
16. ABSTRACT
Volume II--Appendices A through I of the- Industrial Source Complex (ISC)
Dispersion Model User's Guide provides for both of the two ISC computer program
listings, example input and output executions, and coding forms. In addition' a
listing of the meteorological preprocessor program is included.
'•»
j
17. KEY WORDS AND DOCUMENT ANALYSIS
... DESCRIPTORS b.lDENTIFI
Air Pollution Industr
Meteorology Dispers
Computer models
Mathematical models
12. ^;3TP.I3UTiO.\ STATEMENT 19. SECURI
,, , . ... Unclas
nil mi 1*0/1
unnmiica 20. SECURI
Unclas
ERS/OPEN ENDED TERMS C. COSATI Field/Group
ial sources
ion
TY CLASS (This Report/ 21. NO. OF PAGES
sified 452
TY CLASS (This page) 22. PRICE
sified
EPA ~orm 2220-1 (9-73)
-------