EPA-R4-73-030H
July 1973 ENVIRONMENTAL MONITORING SERIES
\
^^
-------
EPA-R4-73-030H
URBAN AIR SHED PHOTOCHEMICAL
SIMULATION MODEL STUDY
VOLUME III - AUTOMATION OF METEOROLOGICAL
AND AIR QUALITY DATA FOR MODEL
by
Mei-KaoLui, D.C. Whitney,
S.D. Reynolds, and P.M. Roth
Systems Applications, Inc.
9418 Wilshire Boulevard
Beverly Hills, California 90212
Contract No. 68-02-0339
Program Element No. 1A1009
EPA Project Officer: Herbert Viebrock
Meteorology Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
July 1973
-------
This report has been reviewer", by the Environmental Protection Agency and
approved for publication. Approval does not signify that the contents
necessarily reflect the views and policies of the Agency, nor does
mention of trade names or commercial products constitute endorsement
or recommendation for use.
11
-------
TABLE OF CONTENTS
I. INTRODUCTION
II. REVIEW OF LITERATURE
A. OBJECTIVE ANALYSIS OF OBSERVATIONAL DATA
B. OBJECTIVE ANALYSIS OF INVERSION HEIGHTS
III. OBJECTIVE ANALYSIS OF WIND FIELD
A. STRATEGIES
B. DATA ANALYSIS
C. RESULTS AND DISCUSSIONS
IV. OBJECTIVE ANALYSIS OF AIR QUALITY DATA
A. STRATEGIES
B. DATA ANALYSIS
C. RESULTS AND DISCUSSIONS
V. AUTOMATIC PREPARATION OF MIXING DEPTHS
A. THE ALGORITHM
B. RESULTS AND DISCUSSIONS
VI. AUTOMATIC PREPARATION OF BOUNDARY CONDITIONS
A. THE ALGORITHM
B. RESULTS AND DISCUSSIONS
VII. CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
APPENDIX 1.
MEASURED AND CALCULATED WIND SPEEDS
AND WIND DIRECTIONS
APPENDIX 2. CORRELATION COEFFICIENTS AND AVERAGE
DIFFERENCES BETWEEN MEASURED WIND SPEEDS
AND WIND DIRECTIONS
4
4
10
21
21
28
37
45
45
46
51
58
59
62
68
69
74
82
88
110
APPENDIX 3. MEASURED AND CALCULATED AIR QUALITY
APPENDIX 4. CORRELATION COEFFICIENTS AND AVERAGE
DIFFERENCES BETWEEN MEASURED AIR
QUALITY
114
127
-------
I.
INTRODUCTION
In a comprehensive effort undertaken by Systems
Applications, Inc. and sponsored by The Environmental
Protection Agency under contract CAP 70-148, a computer-
based airshed model capable of predicting concentrations
of photochemically generated pollutants in an urban
area was developed. This model, based essentially upon
the finite difference solution of the equations of
conservation of mass, requires the following data
as inputs:
1. Meteorological Data
a. Wind speeds and wind directions
b. Mixing depths
2. Air Quality Data
a. Initial concentrations
b. Concentrations at boundaries (ground level)
3. Emissions Data
4. Miscellaneous Data
a. Reaction rates
b. Radiation intensities
c. Concentrations aloft
d. Others
The third and the fourth categories, in general, do not
present data handling problems in the routine operation
of the airshed model. For example, the emissions data
are assumed to be invariant on a day-to-day basis and
therefore can be considered as a "built-in" feature of
the model.* In contrast, the first two categories,
+ With the exception that a one-hour shift is needed
to account for changes between Pacific Standard Time
and Pacific Daylight Time.
which involve a vast amount of data, require manual
preparation and handling of data on a daily, or case-
by-case basis. The present project is intended to
address the problems of preparing and handling the
meteorological and air quality input data.
The manual procedures that have been used to date
consist of the following steps: entering the measure-
ments on a map, performing manual interpolation,
transferring the information to coding forms, and fin-
ally punching a set of data cards. This is an extremely
time-consuming task. The preparation of a map may take
anywhere from 3 to 6 man-hours. In addition to the
tedious procedures, the following disadvantages will
unavoidably be associated with the manual preparation
of the input data:
(1) Human subjectiveness
(2) Accidental errors
Based upon these arguments, an alternative approach,
the automatic derivation of the meteorological and air
quality input data, has been adopted.
In the next section, we present a brief review
on the general subject of objective analysis of obser-
vational data and inversion heights. From among the
many alternatives, the influence-factor-fit method has
been chosen to automatically generate the wind field and
initial concentration distribution. The results and
discussion can be found in Sections III and IV, respectively.
-------
In Section V, the development of a computer-based method
for creating maps of mixing depths is discussed. In
Section VI, we describe a method capable of automatically
specifying pollutant concentrations at the boundaries
of the modeling region. Finally, we conclude this report
by drawing general conclusions and making .recommendations
for future work.
II. REVIEW OF LITERATURE
The ability to obtain a complete description of the
variation of a field quantity as a function of space or
time or any other parameter from a finite number of obser-
vations has long been a subject of scientific inquiry. In
particular, meteorologists have for years been interested
in the extrapolation of measurements of temperature, pres-
sure, humidity and wind collected at a small number of un-
equally-spaced monitoring stations. There have thus been
a large number of publications in this area of study. We
have not attempted in this section, however, to present a
comprehensive review of all aspects of this subject.
Rather, we discuss only those topics which are pertinent
to the goal of the present project the automatic deriva-
tion of wind fields, mixing depths, and initial and bound-
ary conditions.
As a matter of convenience, we have divided this short
review into two parts. The first part deals with the
methods of interpolation in general; the second part is
directed exclusively toward the determination of inversion
heights.
A. OBJECTIVE ANALYSIS OF OBSERVATIONAL DATA
Many methods have been proposed in the past to interpo-
late data objectively. They may be grouped into the follow-
ing five categories:
1. Influence Factor Fit
The simplest interpolation scheme that can be con-
ceived is to weight the measurements by an influence
-------
factor. For example, in the spatial interpolation
of wind velocity, the interpolated value at loca-
tion j can be written as
fi vi
£ f,
(i)
where v. = interpolated wind velocity at
location j
v^ = observed wind velocity at location i
fj weighting function
Several different weighting functions have been
used in the past. For instance, in analyzing the
meso-scale wind pattern over the upper Snake River
Plain of southeastern Idaho, Wendell (1970) has
proposed
where r. is the distance between location i and j.
Strand (1971) and Weisburd et al. (1972) have adopted
the same interpolation scheme to obtain the Lagrangian
wind trajectories in Los Angeles.
On the other hand, Eschenroeder and Martinez
(1971) have used
to interpolate the wind trajectories over Los Angeles.
2. Application of the Sampling Theorem
Lamb and Seinfeld (1973) have extended the
classic sampling theorem (Papoulis, 1965) to the
analysis of wind station data for the purpose of
constructing a ground-level wind field. The per-
tinent form of the theorem can be stated as fol-
lows. If the wind velocities do not contain fluc-
tuations with wave numbers greater than n/d^,
i = 1, 2, 3, where d. denotes the separation
between two wind monitoring stations in the i
direction, then the true wind field, uo(x,t),
can be uniquely determined from the measured winds,
um(n.d, ,n£d2 ,n,d,,t) , which is assumed to be free
of experimental error,
£ £ £ Ur(nldl'n2d2'n3d3't)
~
sin
(4)
In other words, only those fluctuating components
of the wind having wavelengths greater than the
separation of wind stations can be reconstructed.
exactly from measurements. For the Los Angeles
area, there are about 25 wind monitoring stations
covering an area of approximately 1600 square miles.
-------
This theorem implies that the detectable wind
variations are those with wavelengths greater
than
8 miles
This resolution is probably sufficient for meso-
scale urban airshed models.
3. Laplace's Equation Fit
A more sophisticated approach to data inter-
polation can be achieved via the use of the Lap-
lace equation. The interpolated quantity * , in
this case, is generated by solving the Laplace's
equation
= 0
where
* = 'observed
at monitoring stations and boundary points. The
advantages of this method are the following:
(1) It is more general than the first method be-
cause sinks, sources, and flow past an obsta-
cle are all particular solutions to the Lap-
lace's equation.
(2) The solution of Laplace's equation at any
point is the arithmetic mean of its value
about a circle having that point as its
center. This property assures that the
interpolated values are as smooth as is
possible to achieve.
(3) Objective smoothing can be accomplished
by generalizing the method. For example,
Anderson (1972) has used the Poisson's equa-
tion to interpolate a temperature field in
his analysis of the Los Angeles mesoscale
wind field. The forcing function in this
approach is defined to minimize the sur-
face curvature in the neighborhood of each
data point.
4. Optimal Interpolation
Since the ultimate goal of interpolation.is
to obtain a "best" fit of the observational data,
a straightforward approach, based purely on sta-
tistical theory, is to minimize the deviations
between the interpolated value and the real value
at a grid point.
Assume that observational data of a scalar
quantity u are available at N locations. The
best fit, u(x") , can be .constructed from a linear
combination of the observed data, u(x.), j = l,2 N
by
(6)
-------
The weighting functions, w(x",x.), are determined by
minimizing the mean square error,
c2 = [u(x) - u(x)J2
The mathematical basis for this approach has been
developed by Gandin in the USSR (Gandin 1965,
Belousov, Gandin and Mashkovich 1971). This method
has found wide use in large scale dynamic modeling
in meteorology. A recent example is the applica-
tion of this method by Dartt (1972) to analyze
wind patterns in the tropical Pacific.
The method can be extended to include past
data, as has been demonstrated by Huss (1971").
S. Data Assimilation
The four methods we discussed above have,
implicitly or explicitly, assumed that the density
of the measuring stations is appropriate to derive
the degree of detail one desires. In other words,
all necessary information to describe the variation
of the interpolated quantity is contained in the
observational data. This is a condition which is not
met in the study of air pollution or meteorology.
Its existence suggests the need for another type
of analytic scheme.
This scheme involves the incorporation of some
dynamical constraints- into the regular statistical
treatment of the measured data. In the most
sophisticated case, the use of a dynamical model
is invoiced. This statistical-dynamical analysis
scheme, which we here call "data assimilation",
has recently received considerable attention
both in the studies of meteorology (Sasaki 1970,
1971) and air pollution (Wilkins 1971, 1972).
As an example, Thompson (1961) applied this
scheme to analyze observational data. To minimize
the intrinsic error associated with the measure-
ments, observations made prior to the analysis
time were used by extrapolating them to the
present time by means of a predictive model and
then blending the extrapolated results with the
current observations to provide a more accurate
description of the variable. Another novel appli-
cation of this scheme is to "advect" accurate data
from "data-rich" areas to "data-lean" areas
(Richardson 1961, Smith 1962).
B. OBJECTIVE ANALYSIS OF INVERSION HEIGHTS
Approaches for estimating the height of an inversion
base that have been adopted in previous studies differ from
those employed in the analysis of wind fields in that the
former rely primarily on modeling, whereas the latter are
more commonly based on interpolation of observed data. The
paucity of measurements of inversion height is the main rea-
son for this difference. For example, in Los Angeles.and
St. Louis, areas having the richest data bases in the U.S.,
radiosonde soundings have been regularly made only twice a
day and at a maximum of three locations (routine measurements
10
-------
are made at only one site; during occasional special programs,
observations have been made at up to three locations). It is
impossible to describe the complex behavior of inversions
using straightforward interpolation or extrapolation based
on such meager data. The observations must be supplemented
by further information regarding the behavior of the inver-
sion layer in one form or another. Although, ideally, a
dynamical model based on the Navier- Stokes equations is the
most desirable one, such an approach requires an amount of
numerical computation far in excess of acceptable levels.
In the following sections, we will discuss two types of
approaches which have been reported in the literature. The
first one enlists the use of some form of phenomenological
modeling (quasi-physical models), while the second one in-
corporates statistical correlations based on past data (sta-
tistical models).
1. Quasi-Physical Models
a. "Eulerian" Models c
This simple model is based on the assumption
that, under the strong influence of overlying
anticyclones, a "subsidence inversion" will
persist in the lowest several thousand feet
of the atmosphere. The stability of this
region will be further reinforced by an in-
tense surface-based nocturnal temperature in-
version in the lowest several hundred feet of
the atmosphere. During daytime hours, however,
solar heating will destroy the lower part of
this inversion. As illustrated in Figure 1,
11
Height
subsidence
inversion
nocturnal
inversion
- early morning \adiabatic
sounding \ lapse
\ rate
* surface temp- \
erature measured N
at a later time
estimated
"mixing depth
-Temperature
Figure 1. Sketch Illustrating an "Eulerian" Model
assuming that the layer is well-mixed up to
the base of the inversion, the mixing depth
at that time may be estimated from the inter-
section of an early morning sounding (solid
line) with an adiabatic lapse profile extended
from the measured surface temperature, Tg , at
that time (dotted line).
First proposed by Pack and Hosier (1958),
this method has been applied using data collec-
ted in the Los Angeles area and the Eastern
United States. The same model was later used
to forecast the maximum mixing depth in the
afternoon by combining the morning sounding
and the forecast maximum afternoon surface
temperature (Holzworth 1964, 1967).
12
-------
The deficiency of this simple model is
illustrated in an interesting recent study.
Wuerch (1970) has utilized data collected in
St. Louis by the ESSA Weather Bureau's EMSU
(Environmental Meteorological Support Unit)
program to evaluate the validity of this type
of model. The results of his investigation
can be summarized in the following table:
Correlation
Coefficient
for All Cases
Correlation
Coefficient
for Cases Where
Average Wind Speed
is Less Than 4.5 m/s
of the adiabatic mixing layer and successive
stages in the modification of the vertical
temperature profile as the air moves in over
the city from left to right.
Smooth
Laminar
Flow
City
Convective
Overturning
in the
Adiabatic
Layer
b.
Summer
1969
Fall
1969
0.36
0.52
0.52
0.74
It is obvious from these results that,
under light wind conditions, the model improves
considerably. 'This is expected because the con-
cept of a stationary subsidence inversion is
valid only under such conditions.
"Lagrangian" Models
The basic idea of the "Lagrangian" model is
similar to the "Eulerian" model, which we have
just described. It can be best explained by
the following sketch, which shows the build-up
Temperature*.
Figure. 2. Sketch Illustrating a "Lagrangian" Model
We have termed this formulation a
"Lagrangian" model because it is best visua-
lized by considering a column of air having
a subsidence inversion temperature profile
being advected downwind. Summers (1965),
based on this idea, has derived the following
formula to account for the heat island effect:
13
14
-------
h =
/_2HL_\
\apC U/
(7)
where
h mixing depth
H heat input
L distance from the upwind edge
o difference between the country air
lapse rate and the dry adiabatic
lapse rate
p air density
C constant pressure specific heat
U wind speed (assumed to be constant
with height)
Leahy and Friend (1971) later used this
model to estimate the mixing depths over the
New York urban area. They found that correla-
tion coefficients between observed and predic-
ted mixing depths for the five non-summer
mornings were about 0.86.
Anderson (1972) , based upon essentially
the same idea, has recently used the morning
radiosonde soundings offshore and surface tem-
perature measurements to estimate the mixing
depths over the Los Angeles area. He reported
Hanna (1969) has also used a similar expression to predict
the strength of an urban heat island.
15
that predicted inversion heights compared
favorably with inversion heights identified
directly from temperature profiles.
C. "Hybrid" Models
As part of a study carried out by Stanford
Research Institute, Johnson et al. (1971)
have used both models that we have discussed
above to predict the inversion behavior in the
San Francisco Bay area. The maximum mixing
depths in the afternoon were calculated from
the maximum surface temperatures and the
morning soundings (the "Eulerian" model). On
the other hand, the nighttime mixing depths
over the city were estimated using the
"Lagrangian" model. For daylight hours other
than the time of maximum temperature, the
mixing depths were calculated by interpolation.
2. Statistical Models
Although it is sometimes difficult to make a
clear distinction between a physical and a statisti-
cal model, we have taken the latter to be a model
which is based primarily on past data or past
experience.
a. Temperature Correlations
In an interesting study, Mashkova (1963) re-
ported that, when the atmosphere is stably
16
-------
stratified, the strength and the depth of a
temperature inversion are strongly correlated
with the daily air temperature range at the
2-meter level. For the particular settings
where the data were collected, she found that
" °'25
(8)
where
h depth of inversion layer (m)
T maximum daily temperature (°C)
T . minimum daily temperature (°C)
This model would be most useful in predicting
the nocturnal temperature inversion.
MacCracken et al. (1971), on the other
hand, based on extensive aircraft observations
made by Miller and Ahrens (1970) , noted that
the difference in the heights of the tempera-
ture inversions can be correlated with the
difference in surface temperatures at the
corresponding locales. Expressed mathematically
Ah= oAT
(9)
17
where
Ah inversion height difference between
the two locales
AT surface temperature difference be-
tween the two locales
o constant of proportionality
This model has been used by MacCracken et al.
in their multibox air pollution model for the
San Francisco Bay area (1971).
In a less well known study, Olsen (1971)
proposed a technique to predict the depth of
the inversion layer by using a remote tempera-
ture sounding and the local minimum temperature.
The following relationship
Z = 2[25 + 4.5 (TL -
- 10
(10)
where
Z equivalent height above the surface in
°C units on an adiabatic chart
T^ temperature obtained by extending the
sounding above the inversion down to
the surface
T,, observed minimum surface temperature
was derived from some of the aircraft soundings
made during the period from Summer 1970 to
March 1971 at Helena, Montana.
18
-------
b. Spatial Correlations
Based on comprehensive studies made by Edinger
(1959), who found that the contours of cons-
tant mixing depth in Los Angeles Basin were
generally parallel to the coastline, Roth
et al. (1971) devised an objective method to
prepare the inversion maps for a grid model
for Los Angeles. This method can be summarized
as follows:
(1) Contours of constant mixing depth roughly
parallel to the coastline were first
drawn.
(2) The magnitudes of the mixing depths at
three approximately co-linear, equally-
spaced locations , LA International Air-
port, Commerce and El Monte, were deter-
mined from radiosonde soundings and
aircraft flights and assigned to the
three corresponding contours.
(3) Mixing depths at locations not on the
three contours were obtained by interpo-
lation.
(4) Temporal interpolations were made for
the hours when there were no radiosonde
soundings.
At present, this method appears to be fairly
successful for the Los Angeles Basin. Although
the operations described above were all
19
carried out manually, automation of most of
these is obviously possible. For example,
the spatial interpolation can be achieved by
regression analysis.
Temporal Correlations
The temporal variations of mixing depths over
the Los Angeles Basin were approximated by
sinusoidal functions in a study made by Lamb
(1971). The form of these sinusoidal functions
was determined by comparison with observed data.
20
-------
III. OBJECTIVE ANALYSIS OF WIND FIELD
The purpose of this section is to describe an approach
we have adopted to generate hourly maps of ground-level wind
speed and wind direction. These maps serve as part of the
meteorological input to our urban airshed model. Techniques
we reviewed in Section II.A concerning objective analysis of
observational data are applicable here. Among the many al-
ternatives, we have decided to choose the Influence Factor Fit
method, a method that is based simply on field measurements
and on an interpolation procedure. This selection has been made
primarily because:
(1) The need for timely development of an accurate and
reliable procedure.
(2) The availability of dense, sophisticated monitoring
stations in the Los Angeles area.
(3) Ease of computational effort.
In Section III.A, we delineate the basic strategy and
present details of the interpolation procedure. In Section
III.B, we assess the applicability of the method (1) through
prediction of measured wind parameters and subsequent com-
parison with measured values, and (2) by comparisons of the
full, predicted wind field with manually prepared wind maps.
A. STRATEGIES
In interpolating the wind measurements for each grid
point in our Los Angeles airshed model, we have adopted the
following formula:
21
< R
where
v. the interpolated wind vector at grid point j
v^ the measured wind vector at wind monitoring
station i
TJ. the distance between grid point j and
monitoring station i
n the distance influence factor.
The summation applies to all wind monitoring stations located
within a maximum distance R from any grid point of interest.
This maximum distance, as well as the distance influence fac-
tor, n , is chosen arbitrarily. The choice of these two
parameters is, however, interrelated insofar as the net effect
on the result of interpolation is concerned. For example, the
effect of varying the distance R will diminish as the dist-
ance influence factor, n, increases.
The selection of the distance influence factor has caused
some controversy among urban airshed modelers. In calculating
the Lagrangian trajectories of air parcels, Keisburd et al.
(1972) have elected to use n = 2. Eschenroeder et al. C1972) ,
on the other hand, proposed the use of n = 1. He has argued
that the - rule may be preferable, in that it provides a closer
description of planar flow since, in two-dimensional incom-
pressible flow, velocities from singularities such as sink or
22
-------
source vary as . This argument is less than compelling,
however, because it is difficult to imagine the wind monitor-
ing stations physically serving as delivering or receiving
points of air currents. In the present study, we have taken
a more general approach by allowing the distance influence
factor to vary, with the eventual determination of this fac-
tor resting upon the results of statistical analysis of the
predictions. We will postpone the discussion of this topic
until Section III.B.
The maximum distance, R , that a wind station measure-
ment can be extrapolated should depend on the physical charac-
teristics in the wind measuring procedure, as well as on the
topography of the region of interest. The nature and the im-
portance of these characteristics, however, are often diffi-
cult to determine. In the present study, the selection of
the maximum distance that defines the summation signs in
Equation (11) was based on the following arguments. It is
desirable, on one hand, that the interpolated wind field will
include, i-n as detailed a manner as possible, the spatial
variation of the wind. This would imply that the range of
influence be minimized. On the other hand, the lower limit
of the range of influence is set by the density of the avail-
able wind monitoring stations. In Los Angeles, as we have
stated before, a minimum distance of 8 miles is required; thus,
there is, on the average, one station in an 8 x 8 mile square
area. Use of a distance greater than this minimum has the
advantage that the interpolated wind field will become smoother
as measurements from more stations are used. In the end, of
course, the final choice of the range must be based on a com-
promise, in effect minimizing the disadvantages of selecting
too large or too small a range of influence.
23
For the ocean squares, as defined in Figure 3, the dis-
tance to the nearest wind measuring station is typically much
larger than the eight-mile range that typifies the spacing be-
tween land-based stations. Therefore, a provision is made
that, for these ocean squares, the measurements from all of
the following coastal stations will be used in the calcula-
tion:
West Los Angeles
Venice
Redondo Beach
Compton
Long Beach
Anaheim
Santa Ana
The locations of these stations have been plotted in Figure 3.
The presence of the Santa Monica Mountains has created a
special problem in the interpolation scheme. The sheer height
of the Mountains would, at least intuitively, prohibit in many
instances the direct communication of the ground-level winds
between the two sides of the Mountain Range. We have, there-
fore, made the following arbitrary rule that squares north of
the Mountains will not use measurements from wind monitoring
stations located south of the Mountains, and vice versa. To
insure a smooth transition, values for the squares marked x
in Figure 3 are calculated using linear interpolation.
In applying Equation (11) , we wish to note that it is
appropriate to employ a vector interpolation; i.e., to inter-
polate the wind vector as a whole. By contrast, using
Equation (11) in scalar form, both wind speed and wind direc-
tion can be calculated separately and then combined to yield
24
-------
li 13 H IS 't "V '6
Figure 3. Map of Los Angeles for Wind Analysis
25
the interpolated wind vector. The results of these two
approaches, as can be easily demonstrated, are not neces-
sarily unique. The vector form is chosen in the present
study for the following reasons:
(1) Vector interpolation provides a smoother wind
field.
(2) Vector interpolation creates a smaller local
divergence or convergence.
As a final topic of interest, we now discuss what
we have called the "shadowing" effect, which has been imple-
mented in a similar study made by 'Strand (1971). The prob-
lem can be posed as follows. Given that the angular separa-
tion, 6 , between two monitoring stations (see Figure 4a) is
small, should the measurement made at the second station,
which is farther away from the point of calculation than the
first, be used at all? An argument in favor of "shadowing"
(i.e., excluding the farther station) is that, if the first
station measurement is lower than that of the second, the
interpolated value will be even higher than that of the first,
as illustrated in Figure 4b, and vice versa. This appears to
be contrary to what one would expect. An argument against
"shadowing" is that, whether the measurement of the second
station is used in the interpolation, or not, the utility of
the data should not be influenced by the presence of the
first station. We have implemented both versions and found
that the "shadowing" will produce high-frequency fluctuations
in the interpolated wind field. This is, of course, an un-
desirable feature. Despite the fact that we have made the
transition between "shadowing" and "non-shadowing" smoother
-------
Station 1
Grid Point
Station 2
by applying to the "shadowed" stations an additional weighting
factor:
fsin 2e 0°
-------
Table 1. WIND STATIONS AND THEIR LOCATIONS
STATION
NAMF
HESO
BUKK
PASA
A^U
Wtr'ST
ELM
COMM
CAP
LOri-'
WHTR
LAN
ANA
POMt
SNA
Kb
VEN
CPK
KVA
ENC
BKT
(NTT
LACA
COMA
HISM
KFI
X-AXIS
COOHOINATE
3.1
9.2
14.7
20.5
I-,. U
17.4
13.3
1 1.3
12.9
17. 7
19.7
20. R
?S.7
?3.0
7.1
4.7
1.2
lb.2
3.9
24.6
22.4
12.?
11.3
5.0
ib.a
Y-AXIS
COOHDINATE
21.8
21.0
19.5
19.6
liS.3
17.8
15.1
16.5
H.ri
1^.3
12.3
8.9
17.2
3. 7
9.9
14.3
22.1
13. fa
21.5
1H. 1
14.8
2?. 2
11.1
24.3
10.5
the wind speed and wind direction using Equation (11),
based on measurements made at nearby stations (within a
radius R ) but pretending that the measurement at the
station in question does not exist. The calculated wind
speed and wind direction is then compared with the measured
wind speod and '..ind direction at that station. This pro-
cedure is then repeated for all hours of interest. (See
APPENDIX 1). Two different statistical criteria are used
for the purpose of comparison. The first one involves the
use of the correlation coefficient, defined as:
where
VZ c^ - ^)2 E
(12)
- ^2
x. . the calculated wind speed or wind direction
at station i and at hour j
y. . the measured wind speed or wind direction at
station i and at hour j
(13)
'ij
(14)
29
30
-------
K the total number of hours in a validation
run.
The calculation is performed for each of the 25 stations. An
average correlation coefficient for all of the stations in
Los Angeles Air Basin is then calculated,
N
(15)
where N is the total number of wind measuring stations.
Although the correlation coefficient has often been used
as a test to assess the validity of a hypothesis or a pro-
cedure (for example, Wyzga (1973) has used it to evaluate an
iterative technique for estimating missing air pollution
measurements when the data are available at two or more sam-
pling stations in the same vicinity), a test based on the
correlation coefficient alone is rather weak, in that the cal-
culated statistic is a measure of trend rather than of
"goodness of fit" (Bulmer 1967) . In a more severe test of the
present interpolation scheme, we have employed the following
estimate to measure the average deviation between the predic-
ted and calculated values,
K
si
(16)
31
As before, an average value for the whole air basin is computed:
1*
ff £ si
(17)
Data for one of the validation days used in our earlier
work, 29 September 1969, was chosen for this study. Wind
measurements for the period, 5 a.m. to 4 p.m. PST, were used
in the computation; the results of the calculation are shown
in Tables 2 and 3. The first entry in each of these tables
is the distance influence factor utilized in the interpol-
ation formula (Equation 11). The small differences in both
the correlation coefficients and the average deviations due
to changes of n are expected because differences in the
distances between pairs of stations are relatively small*
( The interstation distances, in grid units, are shown in
Figure 5). Nevertheless, the present study
+ To assess the interrelationship between station measurements,
the two criteria have also been calculated for each pair
of station measurements. The result are tabulated in
APPENDIX 2.
* Consider the Commerce station as an example. Distances
between Commerce and the closest two stations are 4.60
miles (RVA) and 4.88 miles (CAP). The ratios between the
weighting factors of the two stations, for each influence
factor, are then
r
0.945
r
0.894
r
0.844
Therefore, the change in the weighting factors is only 51 be-
tween 1/r and 1/r2 , lit between 1/r and 1/r3. Assume
that the measurement of RVA differs from that of CAP by
504, the ultimate difference in the Commerce predictions
only amounts to about 2$ between 1/r and 1/r- and 5%
between 1/r and 1/r-3.
32
-------
TABLE 2. The Correlation Coefficients
EXPONENT 1.00 2.00 3.00
SPEED DIRECTION SPEED DIRECTION SPEED DIRECTION
t-
10
RESD
PASA
AZU
WEST
HIM
COMM
CAP
LONB
WHTR
LAI!
ANA
POMA
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COMA
KFI
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
75
79
96
81
92
96
90
93
85
89
81
96
73
92
91
90
94
66
76
76
95
95
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
-0
0
0
0
0
0
0
. 38
.86
.66
.35
.71
. 57
.37
.69
.70
.16
.00
.74
.44
.83
.19
.42
.41
.69
.78
.59
.79
.47
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0,
0,
0
0
0
0
0
0
0
0,
, 75
,80
,95
,80
,93
.96
.90
,93
.86
,89
.84
.92
.73
.91
.87
. 87
.95
.49
.86
.77
.95
.93
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
-0
0
0
0
0
0
0
.42
.85
.67
.22
.67
.51
.30
.73
.91
.20
.04
.75
.44
.81
.16
.37
.42
.54
.77
.59
.80
.37
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
73
81
94
79
94
96
90
93
86
89
86
91
73
90
83
87
95
55
89
77
95
90
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
-0.
0.
0.
0.
0.
0.
0.
43
68
71
12
60
48
24
75
76
23
05
75
44
80
13
36
43
47
76
58
81
38
AVERAGE 0.864 0.452 0.857 0.451
0.857 0.425
33 a
TABLE 3. The Average Deviations
EXPONENT
1.00
SPEED DIRECTION
(mph) (degree)
2.00
SPEED DIRECTION
(mph) (degree)
3.00
SPEED DIRECTION
(mph) (degree)
z
o
<
'S)
RESD
PASA
AZU
WEST
ELM
COMM
CAP
LONB
WIITR
LAM
ANA
POMA
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COMA
KFI
1.
2.
1.
2.
3.
3.
2.
1.
1.
1.
1.
2.
1.
1.
3.
0.
1.
2.
4.
1.
4.
2.
55
47
58
14
36
21
21
63
62
20
93
52
85
68
68
94
29
51
58
27
75
38
103.
50.
83.
52.
62.
39.
57.
21.
29.
67.
75.
59.
87.
45.
24.
96.
69.
73.
46.
70.
35.
55.
38
85
84
30
00
34
82
96
73
60
37
84
62
76
87
52
90
40
11
91
36
46
1.
2.
1.
2.
3.
3.
1.
1.
1.
1.
2.
3.
1.
2.
4.
1.
1.
2.
4.
1.
4.
2.
54
57
32
86
42
14
74
32
52
09
12
27
85
00
07
17
25
88
13
22
54
61
103.
53.
82.
39.
56.
43.
60.
24.
16.
66.
77.
57.
87.
48.
27.
92.
69.
102.
52.
68.
34.
57.
93
97
36
10
81
97
80
40
44
19
31
65
62
51
73
38
64
29
51
56
87
19
1.
2.
1.
3.
3.
3.
1.
1.
1.
1.
2.
3.
1.
2.
4.
1.
1.
2.
3.
1.
4.
2.
60
68
17
55
47
10
32
69
53
16
41
54
85
32
33
19
32
61
84
29
33
70
104.65
60.62
80.36
38.20
52.48
46.97
62.66
27.91
12.91
67.00
80.59
57.16
87.62
51.11
31.70
87.86
69. 34
104.25
55.44
68.12
34.43
58.06
AVnRAGE
2.29 59.54
2.35 60.20
2.41 60.88
33h
-------
c
o
c
01
-------
to permit adequate description of the changes in
wind direction. This is a plausible argument
because the wind direction measurements are
much more sensitive to the topographical settings
of the monitoring stations than the wind speed
measurements.
(2) The quality of the wind direction measurements is
poor. This could be the result of either the poor
resolution of the measuring apparatus or the inade-
quacy in the determination of hourly average
values. This is particularly important at low
wind speeds.
Close inspection of the data shows that wind directions
differing by almost 180° have often been reported by two sta-
tions only a few miles apart. This fact has forced us, in
the manual preparation of wind fields, to perform a somewhat
subjective "smoothing" of the measured wind directions. In
the same context, we feel that it may be necessary that the
wind direction data should also be smoothed somewhat before
interpolation is carried out. We have not, however, explored
such a possibility in the present investigation. The original
data, as provided by D. Bruce Turner of F.PA and supplemented
with raw data collected by the Orange County APCD and Scott
Research Laboratories, has been used throughout this study.
Before closing, a final remark is in order. Calculations
have shown that the magnitudes of the interpolated variables
are relatively insensitive to moderate changes in the maximum
36
distance R . We have, therefore, chosen a value of 14 miles
for _R in the wind interpolation procedure.
C. RESULTS AND DISCUSSIONS
The interpolation scheme we have just discussed was used
to calculate the wind speeds and wind directions for each
grid point in the SAI airshed model. Samples of the results
of these calculations are shown in Figures 6 through 11 for
7 a.m., 10 a.m., and 1 p.m. PST on 29 September 1969
respectively.
An important characteristic of these automated wind
fields lies in the fact that variations in both the wind
speed and the wind direction are relatively smooth. This
quality insures that unduly large convergences or divergences
will not be created.
Furthermore, we have compared the automated versions
of the wind field with the corresponding version that was
prepared manually in a previous study. The following statis-
tical measure was used to assess the difference between the
two :
m=l
(18)
where
the automated wind speed or wind
direction at grid point m
the manually prepared wind speed or wind
direction at grid point m
The total number of grid points.
37
-------
I
I
1
1
1
!
;
!
1
!
1
!
'
(.1
r*"\
£
o
c
1^
f
!">
i
0
rj
r\
0
/-\
C
-.
---I*) S««-C«IO-F« "TOO" *U» **«
1 1 " J "*""- 6 "" 7 «
"""?* O."7'"0.8~0'."« 0.9 0".9 O.S" O.~7~"0.6 0
22 0.> 0-." f.0- UV-1-.-2 f .-9 oTfl 0;6 0
21 ol'nT'0.9 Ul 1.5~ 'i.5'" l.0~" 0.8~"O.T 0
f9 67? f~0~Y.O f.~2 OY9~T.~f~C~.~A C."6~"0
"17 1.0 1.0 1.0 1.0 0.6 0.9 0.9 O.S 0
16 1.1 l.l 1.0 1.2 0.9 C.« 0.8 0.8 I
H l.f~!.l l.l"~1.0 1.1 C. 6 0.9" C.9 1
ll' "1.2 1*2 1.21. 31.* 1.62.1 2.1 I
I 1.2 1.7 l.J 1
f) l.'2"~l.'2 "1.3 " 1.3 "!'.* 1.*"' l.S " 1.9" 1
6 1.2 1.2 1.2 1.2 1.9 1.) 1.) 1.3 1
i 1.1 1.1 i.i 1.1 1.1 i.i i.i 1.1 i
Pi cure. 6..._ Computed Wind Spec
« " "
."8" 0.«~ 1.3~'l.'7~~2.0 1.3 "1.2 l.l 1.0 1.0 C.« 0.7 1.7 I.* 1.6 I.
'.7' 3.8 1.0" 1.2 1.3 I.* 1.* 1.3 1.2 1 .0 1.0 C.9 C.8 1.0 1.7 Z.
."8~"i.o""'i.i~~i72"~r."2 i;*"~~u"s iTs f.'i i.\ i"."2~i"*"o c7i» i7o us s7
.9 Ul 1.2' 1.6 "1.5 l.B 1.6 1.* 1.2 1.2 1.2 I.I 1.1 t.3 1.6 2.
.0 "I.T 1.2 1."* l".7 2".l" llB 1.6 "iVr'l'.J 1.3 1.0 1.0 l.l 1.2 I.
.1" 1.2 ~ l.*~'l.5"l.8 " 2. 0~" 2.0" "2.0 "l.7"~l,* "1^3 1.0" "C.e""0."»"*" T.'C l".
.5" 1.5 l.B" 2.1 t.9"~1.9 I.6""1.7~*l'.7 l.5~"l.l" 0.9 C.7"""0.5 0.6 0.
.8 * 1.7 -i;7 1.7 "l.7~"1.9 -|.6-"i:V"l. .--. I1" 0.8 0.6""C.3~C." "C.5~ C;
.8~i:r~t;7~l.T~l'.r*1.5"""1.5~r.'*"171~1.0~0.7~C.8~C.5~C'.5~C;*r" *.
.3 "1.2 I.T 'U7 I'.T l.f l."3 0.9" "1.2 ~l.l" C.o 0.2 C12 C.3 C;*""C.
.1 .1
ds_foi: 7..a.int..C25_September. 1969) _...'
5 1.9
7 1.9
7 2.0
8 2.1
2 2.4
5 2.0
I "l.l
6 C.2
2" 0.2
O
» EC TICN CBtO
'»"*" "* y
7 ft " » 10 11 " 12 " 13 "*" 1* 15 ' 16 " '17 If) 19 2C " 21 "" 2?" ' 2J " 2* '25
O 23
?2
: o _
I 21
' O 10
I 19
O
19 73lTl6.l65.167V~lft2~160.~lB*."^5.~199."2lV.~205. 2CO.~197;* l>5.~19 C~2 3f.~260.~2* f.~221.~i I j;""253T~26"C~2"> 1 ~270
. _
16 11!. 101. 101. 100. 1^3. «9. 100. 1*2." 185. Z09.""217. 223. " 2 13. ~m. ~ 192." 2CJ.~2M.~2ai . 2*7. 228. 2 32." 25*." 272. 273V 272".
1>~~~~102.~102." 102. "101." 102." 9». 107. 1 * 7."l6fl." 20J." 220. 25S."2?3. 19*.' 192. 20C . ' i l&.~*22e.~225. ' 222 . 23 1." 2**."26lV~275." 2757
T* 127~l26"."l2*.~107r'lOfl." 1C*~1 28.""l*'»."~l 77.~1 a7.~l 96.~20*." 186." *1 7*."" 189~196.~"2CO.~"i99T 2C5~2 ^*~23&"^~2*3~259~2MT~^7*7
_
1» 12^." 126." 12*.
I* US. 127. 125.
13 129" 12 8.' 12I.~ 126."l25.~17l..~"na." I*ft.~lft6."l 73." 1 e8.~"l flB/^1 86. 1 R9.~l 12~ 19C ."l flO." 16i.""t 62"."l 1 7." 1 ei."~230r"23"2.~2*"6".~"2SV.
j- i?<>^ (?))^ *l ?(!."* 127. 127." l"26." 132." 1*0."" 15*. "l7ti. 197. "207. 190. 19C.~190." 18fc." 1 76." 169 .~l 66." 160 . 'l*fl." 15*. '227.~ 2*2. "250"
1*1 130." l3C."l29." 12? .* 127.' 125."l21.' 122." I*. 5. "lT3
. .. . . .. . . . . . . . . . . . . . . . . . .
" TO 13'l~13r".~r3o7~l29"r'l'2"77T2"5'." "l20".~ T20~.~l 37.~1 56.~"l 76".~l>*r 1 **".~l 61 T 1 70~ 1 71.~l 7 l".~ t 71 .""l t nr"l63~l\2'."~l'?*.~1327~l )9.""83T~
' O _ _
9 132. 131. 131. 130. 12'. 127. 126. 13C. 139/15*. 162. 165. 153. 156. 167. 170. 173. 173. 162". 157. 23. 61. 12«.~ t *1. " 92.""
"""132. 132. 132.' 131. 131." 1 3C. 13 1 .' 139. 1*5. 152." 156. 15ft. 163. It2. 173. 172. 1 T3.""l6G/ 1*6. " l*C."l 25." 126. J47. 93."l09."
i33T"r33r"r31~lV3.~"li:.~l"33.~l3*.~l*3." l*T.~"l 51 ." 15*".~ 1 ?5."~"l 5*.~l 7*1" 161." 170. 1 6*'.~ 1*6." l*5.""l*3".~Y*3.""l*2." l"lzr'l2*"."6lT~
I3*.*ll*."l3*. 13*. 13*. 135. 136. 13«. 1*0. 1*2. 153. 15*. 155. 175. 18f,. 183. 152. 153. U5.~ 11 7. 1 22/ 16C. *149.' 159. "l*C.~
l3S".~l"35. 135. 135. '115.' 1 2A/ 1 37." 139. " 1*C. 1*2.' 1 **."i*5. " 1*5.~ 1*5." 1*5. 1*5. 1 *6. 1 *7. "l 72. 167."l63." 169. "l52"." 153."l*a. ~"
' O
I
* Q
I
1 O
.
o
,
! O
1
j O
136. 136. 136. 137. 137. 13B. 13fl. 139. 1*0. 1M. 1*2. M3." 1**. 1**. 1**. " 1**.~1*4. " 1**. 121. 132. 1 A2." l*8.~152.~ 1 52.~1 }ll~
~l*0.~"l*l."~l*27""l*2."l*3~l"*"3.~'l*3'."iV3l**7"l**.""
.JJ_EtgALrfI.-. ?.2IPpulcd__WiTi,d_Directions for . 7^a.%.__(29 September 1969)
-------
o ___ _ _ _i_ _ _
WIMP SPEE3 Caib rot" "ICOO WTU" " ~ 69 ^29 " .........
p-., ^ ?_, ^ ... ^ ^ ^ ^ __. ^ ^. _^ ...^ ^,_13__.^ n~i6 "'IT "~18 ""19" 2C 21 22 23~ "24 Z*"~
2~5 dVo 67 1 6"J> '67y~b.4 o7s or6~~c7>~i7i i7z i75~"~T."7 I'.'T i77~~i77~~~ tYs o7V o.'a C.'T i.~o i".">» iTo f."3"~'iV* i7s~
O _ __ ___ _ __ _ _ __ __
2* 0.1 0.1 0.1 0. 3~"3 .4 C.6" 0. 7"""C.7"~1.2 " 1.0 1.4 " 1.8'""l.8~'l.6""l.5 1 ,0~" 0.9 " O.d C.7~"C.4"~1.J * 1.0 1.2 1*6 1. 1
' O 23 0.'4~~0.50.2"0.3~"C.6"~C.7" 0. 7""C.>~- 0.<»"~ 1 . l""~ 1. 6" >. l" 2 .0 ~1.«~" 1.5 " 1 .'O 0-9 ~"o.ll"~0.6""0.7 C . 7 1.3~1.S U6 l7"s"~
22 '73 673 c.Y"~c7s f.c G.9~o7a"*"c7«~rQ.V"~i".i iTa z7s 2.3 zY>~~276 i",9 o7* o7f~"o7a~~b75 cl7 i7i i7*""*T77 iTV
' O ___ __ _ _ ___ __ _ _ _ _ _ _ _ __
21 0.1 (1.2 O.T 1.9 I. 8 1.1 0.9~0.<> '0.9 "l.O 1.8 2.T" 2.5 '2.3 1.9 l.i"l.9 1.4 C.8 C^3 ~C.3" C.7 U4 l". * 2.1
'< O 20 0.9~ 1 .0' 1.? ~2.0""~2.1 ~\.t> ~ 1.5 1.6 "U9 2.0" 3.1 ' 2.9~"2.7 " ?.*" l.8""l.«" 1.9 ""l .( "~"l .4"" 0.4" C.8 ' 0.5 1. 5" "2. I 2^5"
I 19 i7'7T.~7 r.a~"">7z i7> z. i 27r~2'.6~"z."9~" 2". 9 3'. i~~j72 376 2.7 z~i "27o~~27o" i'.~9 i'.YT.'o c7« I7c f."j~2."s 37jT~
: o _____ ._ _. _ _
' I* 2.5 2.5 2.4 2.4 2.8 ">.6 ~ 2.7""3.5 "3.8 "3.9 ~3. ft" " 4.0 "" 3. 7 ""3.3 2. 6""?. 4 "~ 2.1 1.9' 1.8~"l.7 1. 3" 1 .6 ~2.0"" 2. 4 ~~ 3,0
' C ~~i'T "2.5~"2.5" 2.5"?.5""2.7~?.4 'z.6 "'3.6 3.8'~4.0 4.*" 5.2~"4.0~" 3.9~ 3."2~2".7 "~2.J 2.1 '"2.0 l".9~ 1 .~5""l .7 2.6 2.'3"2.4"~
T* l.~J 37"2 3~. l ?.*6 2^8 2W~"37l 3.'" 3.9 3.9 4. T~4. 2 "~4.4 ~"*.9 3." 7*' 2.9~ 2.V~'2'. 3"2Yl 2.~0 l". 8 U8 2".0"~ 2". 1 27Z~
15 3. l"" 3. 2 ' 3.2 3.1" 2. » 3.1 3.5" 3.8 4.0 " *.* 4.2 4.1 4.5 4.S "3.5 3.0 2.7 2. 4 " 2. 1 " 2. 1 " "1.9 '" 1 .9*"2 .0 ~2.0 2.1~
Ti l"* '3.3~~3.3 ' 3.2 ' 3.2" 3.1 "3.3 3.7 4 .0 " 4. 2 ~ 4. 4" ~4.6~~ 4". 2 '~4 . 1 ~ 3.8 3.2 ~3.0 2."8 " 2.5 2.2 ~2.1~2.0"2.0" '2.o""2"."o ZiV"
3.'* 3 ."3 3'.3~V."3"~ 3.3""3".2~3'.6""*T2"~*'.2"~ 4.6 S.'o 5".0~ 4.7*~3.1 3.5~~3.l~ "2. <»'">. 3 "2.4 2.7~z74 27z"~273 2 .'3 z73*~
3. 4 ""3. 4 "3.4" 3.4 " 3.4'~3.4 '3. 7" 4.1 4.5 "4. 8 ""5. 7 6. « " 5. I "" 4.3 " 3.6~3. 3 2 . B" 2.5 ' 2 . 3 ~ 2. 1 '2.2 ~~2,l 2. 2 "~Z. 3"~2ij~
.;.? II "3.'5""3.» ~3. 4" 3. 4~ 3. 4." 3.*" 3.3 3.3~4.3 4. 75.9~"6.5"~5.3"4.s" 4."c""3.4 3,0 " 2. /"" 2.C'~ 2.0 ~2.0~ ~2. 1 ~"2.l""2.1 2.1~
. * 10 Tr5~"37»~3i5'"?7s ~3'.5 3.4~~3.2""3."2 4." 3 S/2 575 5.6 5 75 4.O 4~."l ""3.6 372 2.8 2.'l 7.1 ?."f. ?7"0*~>7l 27"l 27l~"
£| __
j 9 3.6~3.*"3.6"3.5'3.5~3.5"3.» 1.9' 4.5 5.6~ 6.2 5.6 5.fl"5.4'"4.2 3.7 3.1 2.K ' ~Z.'3 " Z .Z ""Z.O " 2 .0 "2. 1 ~ 2. l" 2.1~
O " 3.6"~3.6"3.6~3.fc"l.6 3.6" "3. 7 4.« S.l"5.66.l~6.4 5.4' 4.1 "4.* 3.ft"~3.2 '2.5*' 2. 5 '2.4~"2.0~ Z.l"2.l~"z.2 ~2.2~~
7 j7i j7ft 3 77 3.7 3'.7 377~"37a~~570~"573 5/6 6.0 67z~ ~6.* fl".'5 4.9 4 ".5 377" 2.0 2"."fc"~ 2 . 5*~2 . 1 2."l 272 2 ,"2 2."3~
: o __ _____ _ _ _
1 6 3. 7 3. 7 3.l~ 3. 7 3.8 3".S 3.9 4.0 '"4 . l~ \. 3~ 5. 9 6.1 6,2 " 7.?'~ 6.2 5. 6" 3.2 ~ 3. 0" 2. 7" '2. 2 2.2 Z7V~ 2.4""2 Jj" Z.V
' O 9 3."7~"j.7"~3.7~ 3.8"~3.8 3.->" ~t.t ~4.o" 4. 1 ~ 4. i' ~4. 3~ 4.4 4.5~"4.^ ~4. 3~ 4 .2" "l_> ~J. 3 2.Z~ "2.3~2.4 2.5~ 2.7~2. B ~~Z.l'~
4 377 J.'T s7a s7a 37a 3", 9 j".~«) iTo 47i 47z 4Tz 4~."3 4.3 *73 4Z2"~47i i'.'o z74~z"."4 2 ."4 2 ".5 z7"T zTVzT* z"."?""
J 377~"3.'a 3.B""3.C~"3'.8 3.9" '3. 9""4.'o""4, l""4.r 4.2"4.z""4.2~ 4.2~'4.1~4.o~ 3.9 3.8~2.~4"~ 2." 5 ~ 2.6'~"2.7 2.7 2.8 370~
C Z 37a"~"3."A~3;s"3.8~ 3-9 " 3.»~"3i9 4,'o~470"4"."l 4. \~ »". I 4.1"" 47 1 ~4.0 ~V.O~~3.9 3.8"~ 3". ?" ">70 3LO""3".0 3.037o"~3.0~
O
O
.Cprap.u£eid_.Wi.rid-jSEeeds fpT_10 a.jp.. (^29_ September 1969)
. o _ _
"17 18
21 "22
2* 25
9«7 977
i
: o
i o
i CMO FO" IOC" PGUP " 69 929 "~
1 "~ 2 ~~ 3~" 4" -". f, , a - 9 ' 10'~U ~ 12 "13 ~~l"4"~ 15
~T8"2TTT*7~TsVr"i"4~77"T3«7T3j7 a'7leol 83. 757"" "M.""27.267 237 11."
"-9"»."V«0. "194." I 60 .""14 t."lCl." 92". 83." 83." 52- 42." 32." 31 .~ " 36.~"33."27;~" 26."" 25 ^ " 25."354. SB." 1P3." ICO. 95^ 94"."
"31U""308."227.""l87.~ 13 (."if 7." "9 7. ""86." "62^" 5l'. ~50'. 50. 4?.~ 52. 51."~"Z3*. 24."""24". 24"." 70". 7ft. S7. 95^""" 95."~94."
*"t64"."lZ4.*"Kl»7~lCo7 l»9'.~"63. 5l~. 52. 52^ 50."~ 49. 46. 467 21". ~25. 57. 72"~"{37 997 96".~""95". 937
~"l25." 13C."~127." MA. llt."lO?.* 101. *.«l." 64." 51. 53. ~ 55. " 52. ""40."" 10. 33."" 40. ~ 33." 60. " 78.*"lC3.~" 91.""9fc.'""93. 93."
103.~106."t04." 96." 9S." 94.' *9." 82. "67. 58.""63. 53. "49. 39.'357. "27. 43. "48." 44. 9C." 245. " «6. ' S5.' "93. 92."
57Y
»7."
"T2.
59. S9. 59. 59. 6«.
~94^ 82 1 80 .**"*'*' &V.
fl4."~ fl2."""Ba.""77. 65.
73.
* 55.""72.~ T3. " 72. "76. ~ 14. 66. ""5"."" 56." 57." "51.~ 55. 53. 56. "tl~.~ 72.' 82'. 95." " 8«."
"681 737~ Tl. 71, 72.~" 74. "63. 54", 5ft.~ 53. 56.~5C^ 507~ 55"."~C67 6"»7 8l7~B4~. 8*.""
* 72."" 74. ~ 72. 78,"~ 76.""'72.~ft4.~"57."" "53. "47."~58. 49." 46. 55."~ C3."""66. 7e.""e3. 827
; O
' O
"~H4."H3. "(11. 79.""7(.~"75. "71,~"T6." 79. fll. ^61. 77. 73." 66." 51. 36."' 59."" 65. 52." 55. 6U *4. 76. 77;" 78."
*57 847 83. a"l7~"fl"l. 75', 79. 82". 81."" 85. C3."~ 89. (J5."~ 76. 69. 65. "68. 68."~6"2r~49."~~57'. 63Z ?3;~75'; t1~
86lT~"85. 84. 83'. B2." " B2. " 82." "80. B6.~ 68. ~ 97.'~1C4."~ 2." 85. 93. 102. "lC6."" 9<>." 105." 103." 94." 88." 91. 88." 81*." " 79.~" 73.~~75. "78."'80'. 83r
31.'" 1. ' fl8." "7B."~79. 82'.~~85." 86".""
tin" 997 R9i «97 a'S. (*». )0^~"<»8'."~100."~103r"l05T"rC7r'l03."'ll2i~"lCe.~lC67 99; 94'i" 9?; 9f. 63". 84". 89'. SC.~10U~
"907 10. 9'0".""90C 91.~*9i; 92."* 94."~95.~"9?'. ~1C'..~10',."" 10".'~112.~112T 109 .~103.~"102.~ 94; 87;"M;~1CIT~ 103~1C4.' "102"."
91*. "'11'."" 91."91. 02." "97. 93. ' '«4. "96. ' 97. ~*98." 100. " 100. '1C I . ' 101. " ICO.""! 0 7." 1C6. ICO." 101." 1C2." 10S."1C7." K8.""l 05.~
-------
c S»fFO C»IO T« 1)00 *CUt ft1* -9/9
r*» i " " 2 ' J 4 ' 5 "~ 6 " 7 « 1 10 ~ IT " 12 13 14 15 10 17 13 H ' "2C 21 ?.' "23 24 " 25"
;, 1~oo.'if>lTl~T.Zl.Vzn2.3!.' 3.1~~3.'84.44".5 4'."44."3 ~5.'7 ' 6.0~6.l~ ».'j~»:c~7.c~7.0~t.< 6.«"»".»
O . _. , , , . i 6 , ,, ., i ,. 6 » "(. 9 5 5 5 8
"~24 1.0 0." 0.1 1.1 1.2 l.!> 2.1 2.3 2.! 3.1 3.1 4.7 4.8 5.2 5.1 5.4 6.1, 6.1 6.3 6.5 7.* 6.» C.I 1.5 ».f
O ~23~~ l.l I.J'I.O C.I 1.3 'l.S 2.0' 2.3 2.7 3.0 4.0 4.9 5.5 5.1 5.2 5.J 5.1 6.2 6.1 6.5 f.5 6.6 o.5 5.B 5.8
22U r~l".l~ 0.1C.l""2.12.o"~2.l"2.3 2.7~2.14.0~'5.0'5.2 5.1 ~5.2"* 5."j~" 5.9 '6.2 6.1 6.6 6.1 6.6 6.5 5.9 5.9
" ?1 1.0' l.l"l.6 4.1 3.1 2.3 J.l" 2.3 2.7 2.9' 3.9 4.5 5.0 5.0 4.a 5.2' 6.2 6.4' 6.5 6.11 6.4 6.2 6.5 6.3 6.0
O 20 3.0"3.1 "SO- 4.1 ..7 3.5 3.4 3.0 '4.2' 4.5 '4.4 5.2 5.) '.1 3.4"4.1 6.4 7.0 7.0 6.5 6.1 6.3"6.4' »-»J*-^
pi Co~~5.0~57l "5.8 ~S.» V.7~C6~"5.3 5. 7" 6.0~"5.5'~5.7- 5 . 7' " 5. 5"' 5.2~ 5.'7~(,.'> '" I. 1~ 7. 1 -6.5"~6V)~"6. I"""'6.3" 4 . 5~ 7iO~
O _ . ,,.'T<»7-», A,-«l'-» >"6 4"
13 ~7.0 6.1' 6.8 ft.6 ft.* <.9 5.3 6.0 7.2 7.6 6.7 6.8 6.6 6.5 6.2 6.6 7.3 9.6 7.5 6.7 6.2 6. .1 6.J 6.^ 6.-.
J5 !7 7.1' "7.1 7.1' 6.9 6.5 5.3 5.4 7.0 7.1 7.0 '7.3 «.3 7.1 7.4 7.C 7 . I " 7 . 1 " 7 . 2 ' 7. 0 6. 5 " 6. l" 6 .4 ~6. 1 6.0 5.5"
,"6 77i~7.37".Y"7.4 7.4-'6.4~6'.5-~7.3""7.97.7"-/:3-'7.S'-».l- 8 . « "" . 1~ '7 .'5 ~ 7 . J~ 7 .0" 6 . «~6 . 1 ~ 6 .0'~5 .1'" 5 . 7 ~5 .'l" 5 .'*-
" "I,- 7.3-7.»-7.6' 7.9- 9.2"8.1 7.6 7.7 '».! S.6'7.» 7.9 '» .a ' 8 .1 ' B. 2 " 7.8 ' 7. * 6.»"6.2 6.0 5.9-'5.8'5.6 i.»-5.l~
n 14 7.3"7.»"7.6' 7.1 I.]' ».l "1.0 '.0 8.4 8.7 9.0 " 8.5 " 8.7 " (.4 P.O 7.8' 7.1 .6.7 6.1 6.2~ 5.7" ' 5.7 " S.4 5.l"5.1'
' |, 7. J7.4'~7.5" 7.7 ' 7.7 7,rt~7.7 8.2 8.5"8.-> <).4'9.5 ' t. 5 " H. 7 ~ H. 5 ~ 7. 7 7.3 6. 6.2 5.8 5.7 5.5 «.0 5.0 5.0
. --12 7.1 7.t 7.4 7.5 7.5 7.4 7.7 B.O 0.4 1.0 10.2 11.5 1.1 fl.1 8.1 7.7 7.1 6./ 6.3 5.ft '5.2 5.0 4.a 4.» 4.9
JQ U 7. 3'" 7.3 '7.4'" 7. 4"" 7 .3 7.2' 7.2 7.» B.2 1.0"lC.5'Il.O'9.9'1.0'8.l"7.7-7.2'6.8 '6.1* 5.9"~4.1~ 4. 5 "4. 5 "4.0 4.3
< fo 1~f~l"')~1.f~l.'i?;j~~7.1 7. 2" 7.1" a.2~9.Vlo:o~'!.9' '9.7' >'. l~"8.3 7 . t ~K 3~6.9" 5.' 9' ' 5. 3""4 ;i~ 3; 3 4'.2~4'.5~4.4
° -,--,., ,.,',., ,., 7.2',.2 7., 8.0 ,.5 ,.,',., 1.1 9.6 ,.,-.., ,..",.. 6.5 5.6 .., '..C 3.4 "4. , "4.5 "4.5 '
O "' a" '7.1 7.3 7.) 7.) 7.3 7.) 7.3 8.2 8.6 9.1 9.5' 9.1 1.4 5.0 8.3 7.4 7.0 5.9 5.5 4.1 4.0' '4.3 " 4.3 ' 4.4 4.6'
7 T."2 7'.'3~7.'l 7TJ 7.T7;)"7/3 8 . 5" 8 . 8~'l.'l 9.'4~9.7~ 1 . 1' 11 .'4 « . 3~7. 9~ 6 . 9 ~ 5 . 7 ~ 5 .'4 5 . 1~ 4 . 5 ~4 . 5~ 475 4.54.6
° » 7.2""7.2 -7.3"7.)"7.3-- 7.)"7.4"7.4 ' 7.5 " 7.6 " 9. 4~ i; 5~'9.7 11.2' 1C .3 ~". 2 " 6.2 '5.1 " 5.5"*. 4~ 4.6 4.6~ 4".8~4-.9- '4.7~
fj 5 7.2"J.- 7.2 7.J" 7.J" 7.)"7.) 7.4"7.5 7.5 7.4"' 7.4 "7.6 ' 7.5 ''7. J" 7.1" 6.2 S.1) 4.7 "4.7 " 4. «~ S.O "5.>~ ».«" 5.0"
J, 7;'?""7.'2""7.'27.37'.37.'37.'3 '-4 7.4" 7.47"5~7.47.47.37.2 "'7.C~ 6. 3*'4.1 4;2~4-;t 4V7 5'.I V.6 r;7 5.'2-
" 3 7 2 " 7.2 7.2 '7.2''7.3~7.3"7.3 7.3 7.3~7.4 7.4"~7.3""7.3~'7.2"-7.1"6.9"6.8~6.6 4".3~'4.5~"4.7~ 5".0"5.? 5.3''6.C~
rj 2 7.2" 7.2 '7.2 '7.2 7.2 '7.2'7.37.3 7.3 7.) 7.3~ 7.2 "7.2 " 7 .1' 7.0 6.9 ~6.8 6.6 ' 6.5''i.C~I.C ' 6.: " 4.: ' 6.0' 6.C '
1 1~f-~1~f~r.f~';i7;2~7.2 ~7.'2 -7.2-7.2- 7.2 7.2 1.2 7. IT.I 7;c'~6.9 6.a~6.'6"-675 6.4 6.C'~ 4'.0-~470~4V3 ~4VC-
Figurp 10. Computed Wind _Speeds for 1 p.m. (29 ^September 1969)
69 «29
"910"
~lV" 15 ""16 IT 18 19 2C" 2~1 22 23 2*" 2>
25 42. 4*. 53. 45. 51. HZ. 37. 3*. 3
O _____
2* 2*. ?«. 39. 44. 5*. 45. 43. 3*. 3
I 22 1*. 10. 26.
j O . ._
J 71 -----
I O 23 4. 35*. "l*.~"3?". Af.""<*. *4. 33. "25." 22. 2*^ 26. 27." 32. 3/-. "29^ 33."3)
~92~. b'fT. *»". 3"l. 197 !»; ib". )fl.' "36.~""«1. *"*". *67~"33. 36~
7.~ 65. 8.1."~107.~105.~"77.~"S*.". " 35. " 19. "lJ.~ 30. " *6." "t^. "*?." *t." " 46. * 51. 45
* I SC." ? I .' 6?'. 65.
5. *fl"I 55^ 6U t'S'J
5 .""*«."" 52.' "it . A5/
I O zo "
~55. 6*:~75."
I. "~ 7 2. " " 5T.* "*7.
5 5. ""55. 50 .
: O _ .
60.
"61."
"56. 60." 76. "79. 6-1.~ 82.
74. "7?. "71." 65.""&«T. 63.""66.
7?.
"72.
'72'."
70. **.
~70". 7C."
75. 7?. "62.
" 87. " 85." 80." 76." 80.""79.' " 73. 70".
~7|.'7J. tl". 88.~
62".
76.
75.
-75."
"767
~7&7
"7*7">3. 71.
"75. 7«. ~74.
" 75. 75.*~7A."
~76. 7(. 77.
~77. 77. 7«.
70."" 7.3. ""BO. "89."~"93.'
7*.~"8t.~'85. ~89."" " «
*7fc.">*'. a7."~~89. 91. "
"92. ~" 92 ^ " 92. 91 ,~ 91 .'
"«.»."" "l)2."~95. " 91. 91 .
*> J .~~l 0 1 . 99."" 99'. <»*'."
" 85". «2.~ 69. 72. 75."~'76. 73. ~
B*. ~ «2'.~"7A.""75. ~75."~73." 73. ~
83'.~~8l"; 77. 7&'.' 73. "ff. 797~
80.'
91 7
77.
7«7
6"37
64.
44.
66.
-677
67.
66.
78. 7t. 78. 71. 80. 80. 11. 81. "B2.' 82. "82." 82'.' 81.'~alV
~ll', 78. 79." ""79. PO.'"eO. '"80'.""*8l. 8l'.""81. " M ', 81 . Bl.' ' 80."
. O
°
at. ao. 80. At. ni. at. at.
63. 64. 65. 65. 66. 66. 67.
71.""67. 67.~67. 47.""67. »T.~
~Vf,
79. 79. 78. (7. 67. 67. 67. 67.
:.:.-.-F±p,\ir.e.ll. .Computed Wind.Directions .for ,l..p.m,..X29 September 1969)
O
-------
To provide a more meaningful comparison, squares over the
ocean and the San Gabriel Mountains are not included in this
calculation because extrapolated values over these areas are
relatively unreliable. The results are tabluated in Table 4.
In surveying these results, we have concluded that, for all
hours during the period of validation, the interpolated wind
speed is completely satisfactory. Also, the interpolated
wind direction is acceptably accurate between 11 a.m. and
4 p.m. PST. However, during the morning hours, from 5 a.m. to
10 a.m., the deviations appear to be large. This is not
surprising in view of the fact that the prevailing wind speed
those hours is low.
Table 4.
Average Deviation between Computed and
Manually Prepared Wind
me (PST)
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
Wind Speed (mph)
1
1
1
0
0
0
0
1
1
1
1
1
.5
.1
.1
.9
.9
.9
.8
.1
.3
.4
.4
.3
Wind Direction
(degrees)
39.
32.
55.
69.
60.
47.
14.
17.
22.
18.
21.
15.
0
8
0
5
6
0
8
3
2
6
0
6
44
IV. OBJECTIVE ANALYSIS OF AIR QUALITY DATA
An effort very similar to that undertaken in the auto-
matic preparation of wind maps, as discussed in Section III,
has been carried out for measured air quality data. The ob-
jective is to provide a set of automated initial concentration
maps for each species of air pollutants included in our air-
shed model. In order to avoid repetition, we point out only
the differences in the treatment of wind data and air quality-
datn.
A.
STRATEGIES
As with the wind analysis, we have adopted the Influence
Factor Fit approach in analysis of the air quality. A formu-
la, identical in form to Equation (11), is used to interpolate
air quality data,
< R
rij
< R
(19)
where k. is the measured concentration of species k at
C
i , and k. is the corresponding interpolated
Definitions of the rest of the parameters are the
grid point
value.
same as those defined in Equation (11).
are listed below:
Reactive Hydrocarbons
NO
Total Oxidant
The species considered
CO
Unreactive Hydrocarbons
45
-------
A notable difference between Equation (11) and Equation
(19) lies in the fact that the latter is a scalar interpola-
tion while the former involves vector interpolation, as we
have discussed in Section III.
In the air quality interpolation, data from the follow-
ing stations will be used to estimate concentrations for the
ocean squares :
West Los Angeles
Lennox
Long Beach
Anaheim
Santa Ana
(see Figure 12.)
B.
DATA ANALYSIS
During fall 1969, the period chosen for the validation of
the airshed model, fifteen air-quality monitoring stations were
operative in the Los Angeles area. The names and locations of
these stations are listed in Table 5. Measurements made at
these sites constitute the data base for the present analysis.
Among the six species of air contaminants, only total
oxidant concentrations were reported by all fifteen stations
listed in Table 5. N02 and NO (or its equivalent NO + N'07)
were measured at all stations except Santa Ana, and carbon
monoxide at all stations except Santa Ana and La Habra. How-
ever, data required to derive concentrations of both reactive
and unreactive hydrocarbons were reported only at the following
3 t f 6 1 S 1 le li il 13 i<> if 16
Figure 12. Map of Los Angeles for Air Quality Analysis
47
-------
three stations: Downtown Los Angeles, Pasadena and Azusa.
The paucity of measurements of these two species has rendered
impractical the use of the maximum range of influence R, for
monitoring stations. We have, therefore, relaxed the rule
.by allowing measurements made at all three stations to be
used in the calculations for every grid point.
Table 5. Air Quality Stations and their Locations
STATION
NAME
NESD
BURK
PAS*
AZU
hEST
L E i-i X
ELM
CO MM
CAP
LON«
WHIP,
LAH
ANA
POMA
SNA
X-AXIS
COORDINATE
3.1
9.2
14.7
?0.5
6.0
7.7
17.*
13.3
11.3
12.9
7
7
17
19
?0.8
25.7
?3.0
Y-AXIS
COORDINATE
21.8
21.0
19.5
19.6
16.3
12.5
17.8
15.1
16.5
B.8
12.3
12.3
fl.8
17.2
3.7
Measured air quality data has been analyzed using the
same statistical techniques that were applied in the analysis
of the wind data.(the measured and calculated air quality
data for NO, 0_, N02 and CO are tabulated in APPENDIX 3).
The correlation coefficients and the average deviations have
been calculated for every species of air pollutants except
48
the hydrocarbons.* This exception has been made, again,
because of the lack of data. In addition, because
the number of air quality stations is smaller, the maximum
range of influence R has been increased in the calculation to
20 miles, as compared to 14 miles in the wind analysis. This
length will be sufficient to cover all grid points in the model-
ing region with every monitoring station operating normally. If
no station can be found within this maximum distance R because
some stations failed to report data, this distance is automati-
cally increased. The results of these statistical analyses
are tabulated in Tables 6 and 7.
Although the calculated correlation coefficients are con-
sistently high, falling within the range, 0.7 to 0.9, they
differ quite markedly from each other. However, differences
in the magnitude of the coefficient arising from the use of
different distance influence factors are quite small. .Judg-
ing from the magnitude of the calculated average deviations
for each species, we may tentatively conclude that the inter-
polation is probably satisfactory for carbon monoxide in view
of its having a background value of about 2 to 3 ppm. For
the remaining three species, NO, 0,, and NO,, the average
deviations appear to be so high that the interpolations are
only marginally satisfactory. It is interesting to note that
these three species are the principal participants in the
photochemical reactions, with a half life of the order of an
hour. Therefore, thj large calculated average deviations may
well be a reflection of the fact that, due to the chemical
transformations that are occuring, concentrations of these
species must be viewed as local, rather than global, quanti-
ties. When considered in this light, straightforward inter-
polation techniques may not be appropriate for use.
Again, correlation coefficients and average differences
between each pair of station measurements have been
computed. They are listed in APPF.N'DIX 4.
49
-------
TABLE 6. The Correlation Coefficients
EXPONENT 1.00 2.00 3.00
NO
S5
o
H
H
KESD
BURK
Pt\SA
AZU
WEST
LENX
ELM
COMM
CAP
LO.NB
hllTR
LAH
ANA
POMA
SNA
MEAN
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-
0.
85
90
75
83
86
84
97
70
55
89
85
97
92
84
°3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
84
89
96
85
97
82
97
81
87
69
98
94
97
73
90
88
N0_2
0.57
0.96
0.10
0.44
0.92
0.81
0.94
0.80
0.75
0.95
0.85
0.86
0.45
-
0.72
CO
0.
0.
.
0.
0.
0.
0.
0.
0.
0.
0.
-
.
0.
-
0.
84
86
70
91
40
66
92
81
91
88
73
79
NO
0.
0.
0.
0.
0.
0.
_
0.
0.
0.
0.
0.
0.
0.
-
0.
87
89
72
84
86
82
92
72
56
83
82
98
92
83
°3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
83
88
96
85
97
82
97
84
92
70
97
94
98
76
90
89
N02
0.59
0.96
0.06
0.51
0.92
0.81
-
0.91
0.80
0.75
0.94
0.85
0.86
0.55
-
0.73
CO NO
0.85
0.84
-
0.67
0.89
0. 39
0.64
0.89
0.83
0.90
0.89
-
-
0.73
-
0.78
0.
0.
0.
0.
0.
0.
-
0.
0.
0.
0.
0.
0.
0.
-
0.
89
88
69
84
86
80
86
73
58
75
81
98
93
81
°3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.83
.88
.97
.84
.98
.82
.97
.86
.94
.71
.95
.94
.98
.79
.91
.89
N0_2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.60
.97
.03
.59
.92
.81
-
.87
.80
.74
.90
.85
.86
.66
-
.74
CO
0.86
0.83
-
0.62
0.86
0.38
0.61
0.86
0.84
0.90
0.90
-
-
0.73
"
0.76
TABLE 7. The Average Deviations
EXPONENT 1.00 2.00 3.00
NO
RESD
BURK
PASA
AZU
WEST
LENX
ELM
COMM
CAP
LONB
KHTR
LAH
ANA
POMA
SNA
13.
9.
8.
7.
7.
8.
-
5.
9.
10.
8.
6.
3.
4.
-
60
34
90
47
97
63
74
76
29
18
49
31
58
°3
3.
2.
9.
8.
1.
2.
4.
11.
4.
8.
4.
5.
5.
6.
7.
08
84
37
40
86
88
83
54
20
71
55
33
91
80
78
N02
6.44
8.70
7.40
5.12
1.97
5.30
-
S.64
5.56
S.23
11.37
6.95
3.26
4.94
-
CO
2.77
4.09
-
2.68
2.11
4.64
3.35
2.46
3.23
1.96
2.92
-
-
2.19
-
NO
13.
9.
9.
6.
7.
9.
-
5.
8.
10.
8.
8.
2.
3.
-
S3
23
76
40
94
15
29
92
23
91
27
37
64
°3
3.13
2.89
9.53
8.43
1.30
2.41
5.85
9.60
3.04
8.61
3.82
4.19
4.49
6.56
7.81
N(
6.
8.
7.
4.
2.
5'.
-
6.
6.
5.
12.
9.
3.
4.
-
12
68
85
60
53
03
23
20
14
16
05
50
19
45
CO
2.77
4.12
-
2.70
2.29
4.67
3.33
2.59
3.10
2.00
2.81
_
-
2.02
-
NO
13.
9.
10.
5.
8.
9.
-
5.
8.
10.
9.
9.
1.
2.
-
49
12
54
46
02
53
73
40
19
78
64
89
77
°3
3.17
2.92
9.61
8.70
1.02
2.19
6.88
7.38
2.05
8.54
3.61
4.02
3.41
6.38
7.83
NJ
6.
9,
7.
3.
2.
S.
.
6.
6.
5.
12.
11.
3.
4.
-
lz
91
01
72
98
16
07
88
90
12
82
38
21
11
CO
2.78
4.18
.
2.81
2.54
4.71
3.33
2.85
3.00
2.04
2.71
-
-
1.94
-
MEAN 8.02 5.87 5.99 2.95 7.97 5.44 6.28 2.94 8.04 5.18 6.56 2.99
-------
C. RESULTS AND DISCUSSIONS
The interpolation scheme we have discussed above has been
used to calculate the initial concentrations of the six species
for each grid point at 5 a.m. PST on 29 September 1969. The
computed results have been compared with the manually prepared
concentrations by calculating the square root of the average
squared differences according to Equation (18). The results
of these statistical calculations are shown in Table 8. They
confirm qualitatively our previous observations that the inter-
polation is probably more satisfactory for inert species than
for reactive ones.
The computed initial concentration maps for each of the
six pollutant species are reproduced in Figures 13 through
18.
Table 8.
Average Deviation between Computed and
Manually Prepared Initial Conditions.
Species
Average Deviation
Reactive Hydrocarbons
NO
Total Oxidant
N02
CO
Unreactive Hydrocarbons
0.5 ppm
6.6 pphm
*
2. 7 pphm
2.2 ppm
1.1 ppm
* In the SAI airshed model, the initial conditions for the
oxidant are calculated from the chemical equilibrium relationship,
therefore, no initial concentration map has been prepared
manually.
51
o * -
H
C
o * «
* * * ;~ !- o ,» I ; i
i? S ° " S ;S ,'S ' ' | i i
2 2 j : ; : o: . ' !
o ' -
C « WN
I I I I
i i
r
"**[*' i
5 2 3 3 3 5 S : ' |
S 5 2 S -5 2 E ' ! i
' "."."".> r ' i i
U
O
t.
TJ
X
i ra:
^
i«
! *
I O
! a
.*
o
o
D
O.
tu
i
52
-------
8 ' V ' 10 " II 12 13 ' 14 " 18 "16 17 " 18 " 19 "20 21 22 23 24 25
6.7" 17."3~17.3~Y».6 l"».9 14.7"t4.6""il.9"l3.2~l2^7~ 9.3"~a.~9~~3 .~637Y~~3'.'7~ Y. 84".V *..)
22
"2l"
r)".Vi~2'.5~io.Vid.Vis.(."i4.9"i7.3"2o.z 23.8 z*.Y~zo.o"i*.«
~'O~10.0""9.B '9.9 11,6 11.2'l?.l" 13.5~15.4' l(,.a' 15.5 "14.V 12.9 II.6 "9.8 9.7"l0.5 1C.4 O.B 7.7 7.1
"6.0 "8.4" 8.V 8.4 "ic.l " 9.2 "9.4 1C. l' 11.3 12.7 15.1 14.2 13.9 13.1 12.2 11.7 11.5 11.2 10.3 8.5 "8.1
"6.0 8.3"'8.3 10. l" 9.7" p.6 8.8 in.2 11.2 12.8 15.1 15.4 14.9 14.7 13.6 12.6 11.8 11.7 10.0~" 9.1 'a. 7"
""7.9 779 7~.S~l'o7e""9'.'6"~"9.6" "V. 3 ' I 0 . 0~1 I .V 1 2.V14 .2" 14 . 8 1O.2 17.'9"l4.8 13.4 12/3 I 2 . 1 "1C . 5 "9.'3 8.9
7.7 "7.5" 7.2 '9.7' 9.6 '7.9 9.5 It.4 13.3'l4.3 14.8 14.6 14.I 13.6 12.5' 12.4 11.2"'9.0'8.4 ft.'. 8.1 7 . J '.;
~7.7~7.4~~7.1 ~9";5""8.'2""~4.'5""B.'t"lC.«~12.9"ll.B 14.o"l3.7 12.8 ll."o~l3.V~U.""lI.»"~S.O~"v~"~ ~>"3"»'.6 "l. 3' ''.}'
"7.7"~"7.5 "7.2 ~ 6. a" 8.8' 7.O 9.B 11.1 12.8'l3.3 12.8 13.0 "13.0 12.8 13.1 13.4 11.5" '8.2 7.*""9.o" 9.3 7.5 7.5
"aj0~"7^9 f.fl "7.7 10. 8' 10.9 12.3 U.O 12.'9 li.4 I*.2 14.5" 13.9 '13.'5 I ). I 1J.2 12.0 10.6 S.9
1.1 "8.1 "P.I 1.1' 8." 11.6 12.1 IJ.J U.O 13.5 14.1 14.7 U." 13.4'U.? ll.t 12.0 11.1 1.1
8.5 8.5 8.5 8.5 8.
"l4.9"l4.5 13.3 13.3"(3.P
" ll.l 10.7 1C".4
B.'8 e."8~879~9.C
. 3 10"-4 1C.5""10.'5
.1 11.2 1C. 3 1C. 3
'. 3"Yl . (.' 1 1 . 4 ll.'2'U.O 9'.V" 6.0 "'579 9."C
. 1 IC.O 11.4 U.3"8.7~ 5.9 "9.0 '9.0"'"9.0'
"".'«""!.» "9.0 "9.0 9.1"9.2~ 9.
~»79 - 9~.'o"'~970~9Vf~V.'2~'9'. 3 -- 9."
9.6'~9.7 9.9 10.0 U.I 10.1 10. 1 10.1 10. S 10. i 9.9 IZ.0'9.0 9.5 9.5"9.C 9.C
9.'6 9'."7 9.8" ~9. 9 '"'9 .9 "l P7fl~10 10 " 107c"~9. V " V. 9 " 9'. a "978 ~V. 0" '9.0' 9'.'C 9'7b~"*7C~
_Fi^ur.e 14Jt....Cpmpute.d .Initial. Conditions for Nitric Oxide
L'T«Nr 02 cn*
, - ,-
l77""'j77"
O
O
1.8 1.8
"l'.'7 1.8
~l.5"l,5
"T.v "r.i"
"l.O 'i.o'
"i.o" i.o
~f.i~i.T
1.1 1.1
1.9 1.9
i.a ' ue"
'1.8 1.5"
~f.3~f.3~
't.o""uo~
'l.O "l.O"
C"IO fo» 800 H0u« 19 929 ' ~ -
»" " '7 B ~9~10 II 17 I3"l« "15 16" 17 If 19 20 21 22"""23" 24 ' 25"
~f.7 i'.«~~i~» ~i.'»~~iV»~~i7» r.4'" 1.4" i.»i.'>~~ir» iVi"' 1.6 "1.8 i.i ~'z".'o"~"zri~~z752"."o2".;"' i.o"
1.7 1.6 1.6 1.5 1.4"*l.4"l.4 1.4 1.5 1 .5 ""l. 6 1.6 1.6 1.6 1.8 2.0 2.0 ~" ?. j" 2.0 " 2.3' ""2.3 '
1.8 "1.7" 1.6 1.4" 1.4 1.3 ' 1.4 1.4 1.4 1.5 " 1.6 ' 1.6 1. 7 1. 7 " 1. 7 " 2.0 ' 2.0 2 .o""'2.0 ""2.0 2 .0
1.8 1.7 1.5 l.4"l.2 I'.'z l'.3""l.4 " 1.5 l.5~Y.5 1.6 i.6'~'l.7 l".7 l.s" "l'.9 l"."9 2~."o"'>'.'3" ~2.'u"
1.7 "1.6 1.8 "1.4 "l.2~ 1.2" 1.3 1.4 1.4 1.5' 1.7' 1.7' '1.7 1.7"l.7 1.8 1.9 " I.9 ""l.9' 2.o'"2.fi"
l.l
l.l
I.O
1.5
T.2~
1.3
1.1
I.O
1.0
1.0
1.2 1.1 1.2 1.3 "l.4~"l.4 I'.'h 1.6 1.6 'l.6"~1.7' I'.B" 1.8" 1.9 1.9~"l."9 .l."»"
l.l'~l.l "1.2 1.2 1.2 1.3"l.4 " 1.4 ' 1.6" 1.6" 1.7" l.T~l.»"~l.1~~f.V 1.9 1.9
l.l"l.l"l.l l.l 1.2 1.3'""l.4 1.4"l.5 "1.5 1.6 " 1.7 " I.7~ l.8~"'l.8"" 1.9 l.<
I.T~~I.I i.r~i.i 1.2 1/3 i.3~ 1.3'" 1.4""1.5 i.5~i.~'.~i.7~"i;'8~r.'8 "»r«"v.»"
1.1 1.1 1.1
. 1
.1 1.0 1.0 1.1 1.1 I.I "1.1 'l.l
.t '' 1-0 1.0 1-0 1-1 l.l"~l.l""l.l 1.2 1.2"l.3"l.J 1.3' l.l"""l.3 l".4" 1.6" l76~i.7 i."8 I'.f"
.l~I.l"l.l~1.0 1.0 1.0 1.1 'f.t~"l.2 1.2 1.2"l.2""l.3 "1.3 1.3" 1.3 " 1.5 ' 1.6 ~l .6" r.7'"l.V" lil "
.l" l.l'"l."l l.O 'l.O" 1.0 1.0 "l.l" 1.2' 1.2 1.2" 1.2" 1.2""l.J 1.4 ' 1.5" 1.6~' 1.7~l.7 ""l". l'""l. i~ j'.j"
l !! '"'» l~« I-" l'.0"~i.0~"l.0~l."l~ l.l" 1.1~1.1~1.2 1.2 l."j~"i.'«' "1.6 l."9 1.8 f.7 l7llV'~
.l" l.l" 1.1~ l.l' l.O 'l.o' 1.0" 1.0 ' 1.1 1.0 l.l" l.l " 1.2" 1.2 1.4 1.5' 1.7 1.9 l.a "1.7 !.«" 1.7
.I 1.1 l.l I.I l.O l.O 1.0
.1 1.1
.1 l.l
I.
O
O
v.s"'i.6~r."»t."6~~i:»""t.>~'iVf""
1.5 1.5' 1.5 "l.6" 1.7 Y.T" U7~
2 l.l I.I l.l l.l l.'f l.l" 1.0~"|.'0 i.o"" I.O r.l"l.l |"2~I."Z"~I.Z'~|".J 1'.'
2' 1.2 l.Z 1.2 l.2~l.2 1.2'1.2 1.2 1.2 1.0" 1.2 1.2 1.2" 1.2 'l.s"l.l 1.
7"l.Z 1.2"l.2 l.2"t.?~1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.4 1.4 1.4 1.5 1.3' 1.5 " 1.7" 1.7""z.O "
2 1.2 1.2 T72 lT2 iVz i".V~i72~"i72 1.2 T.'2 lVz~~"l."z" f.Z r.3'"~f;3""t.i""l.'*~~l.'*"~"l.* l".5"~l76l7o2"."o~Z."o
2""l.2'"l.Z""i.2"~I.Z" l.2~" V.'Z' 1.2 1.2" 1.2 ' 1.2' 1.2 1.2 1.3 1.3 " 1.3 "~1.3 " 1.4 ' 1.4 1.4 1.6 2.0~"2":o""2."6~Z.o"
2~"l.2 l.2'~l'.2~"r.2"i:?~ "l.2'"l'.'2"l'.2' 1.2 ""1.2 "1.2 1,2 l.l~"l.3" 1.3 " l".3 " i.3""l .4 1.6 2.0 "2.0"~2.0"~2.<, 2.C
2 l.Z l.Z f.~2 1.2 i".'2 irj"~i;2 lT2 T72""l.2~ 1.2' I'.Z l7r"l.3 1.3 f.'3~"l.3~"l7*~ T.V "z."o~~»7o zTo~~"*76 Z.'c'"
figure IS. . .Cfimputed Initial Conditions for Oxidant
-------
»Ol.l.UM\r N2 CO.NCPNTIATICN
- . ( } 3 ' 4 "'
F01~ *00 MCU1 " '" " '."6* 929
8 " 7 " » ' 9 ' 10 ii " u i) 14
3.» I2.7'|2.7 12.'7"l'273"ll.4"l";>.'2 10.5 " «.'
u" 22 :i 24 25
H f37V~l3~.3~l~>.2~l"3V2~~U.5 "l'2.9"u.o 'l3.4 ~
_
21 ~ 13.5 13.4~13.4~ 13.4 13 .6 12-fl 13.0 13 .3
20 Il.l"ll..»~ll.2 11.2 ll.e'll.l 11.2 11.3
19 «1.6~~9.0 9.3~~9.l 9.'6 " 9.3" 9.3~ 9.3 "
Id" "7.6" 6.8 6.9 7.0 7.6 7.6 7.5 7,3
l0.2 "~9"."8" 9.2" 9.1 9.'2 ""9.2 9.* 9.8 1C. 2 10. 4 11.3 11.2 11.2 11.5 11. 9
9.4 9.1 '.4 7.5 8.3 9.3 9. a 10.2 10.6 II. « 11.3 11.3 11.5 11.9
" fl . 6 8.5 8.2~8.1 B.5 9.1 9.7 10.1 1C. 3 IC.'7 11. 1 11.2 11.7 12. J
7.J
6.9' 7.5 7.6 " 7.7" 7.7 7.1 6.9 6.8 ' 7.0 '"5.* 7.8 -.5 B.A 1.6~ 9.1 9.3 9-2 " 9.7 *.* 1C. ft U.3 11.5 12.7
>73 7V* T.ft"~"77* 7.V""7.'l 7."l~6.9 7.~S 7.'*. 8.~5~9.~5 fl>~*T."7 9^1 9~./"V."f" 9.~2 S.7 1C.* 1C. 7 U.I 12.0
|i ---- T.2 7.Z"7.3~"7.3 "7.5"7.7""7.l"7.0 7. l" " 7.o""7. 7 " 7.« 3.7 9.3~P.fl~9.7"9.0 B.9 fl.9^9.0~9.1 in.llC.* 11.1 11.5
14 ""7.2" 7.2~ 7.2" 7.Z" "7.2~'7.0" 7.0 ""7.0 ~7.l 7.1~~7. 7" 7.9 " fl .2~ 8 .i'~ S.6" 9.6 ~ 8/8 '8.9 "8.9 8.7" 6.9 ».V 10. 1 IS. 7 1 1.0
~~|"j -- 1,2 i,f ~1.2~~7.2~~ 7~.l 7.0 '~7.0~ 7.0~~7 '. I 7.l"~7."7 7. 7 ~ 8 ,o"" ». "* ~ «.T~ 8.2~" 8-t ').* 8.9~7^q~"fl.6 9.2~lC.i isV*~loV7
"ll""* " 7.1 7.1 7.1 7.1 7.1 7.0 fc.9" 6.9 7.0" ~7.0~ 7.5~'7. 7 * 7 .3 ' 7.* " 7.6 0.1"' 6.* 9.0 " B.8~ ft.* " fl.^8 ~9.j' 9.6 10. 3 io.S
"ll 7. l" 7.1 " 7.1 " 7".o"~7.0 ' 7.0" "fc.8 *.S "7.0" "fc.9"" 6. 8 (..-* o.n 6.« "7.? 7."b" "8.~2 8.*" fl.3**^9.l ~ S.3 9.4 9.5 13.2 10.*
To 7. I 7.6 7.1 7.0~~(<".* 6.9 ~~6*. 7~ 6.7 &.'»"""6.a^6.6" *.S S.i 4.0 6. 9 "7.4*" 7, a e. I ti.tt «.2 9.5 «.5 9.3 IO.C 10. 1
^ ----- 7.0 "7.0 "7.1 "6.9 6.9~ A.9 C..1 6.6" 6. 9 6./"6.5 ft.*. 5.3 5- 6~ 6. 7 7.3 "7.7 B.*. " 8. 6" 9.0~ ?.59.5 ~9.*"lO.O IC.'l"
« ----- 7.0 "7.0' 7.0" 6. 9 6 .<»' f.. 8~ 6."7* 6. S"6.*"t.F "&.*"*.< 6.2 A.3"6.8"7.2"t>.C 8.i'B.69.8'8.9~8.9~fl.71C.C 10.1
T - 7."d"~7.0~"Y.9 6".«~"ftV»~>.'lT"fc."T~V."r"6.6 6 .V" 6." 8" 7. 3"" i.9~7.'C~7;3 ~7".V~»*0 8. 2"" B". ?' ~8*.* e/fc^B .~6"B75~ 9.2' 9 .2
7.3 7.» IC.O IC.O lO.C'IC
773""7 ."«" 1 C7C~'lO'.'5 IC7tf "IS'
Figure TeT ^Computed" initial Conditions for Nitrogen Dioxide.
frouiur*'*' co
c
o
f; f.BID f 5«"" 500 HOU* " ...... "'69 929 "'"
., ^ ... ^ . _ »"'lo'~ll' "12 "13 I*
~i"r.C""ll.'2~'ir."5"ll."7'llV9'|27o""lO."»~ 8/9 9.5 "9.J
1C. 9 II.? 11.5 11.3 I2.T 12.2~IC.6 9.1 "e.9 9.2
23~ 21 ~22
9.0 - J.9 - 879
C.8 8.9 ..9 f.t, 872 0.6 B.~6 6.5 B. 6 .8~I) 9.0 6.9" 97c"~~377 8.»
10. 6 '15. S "10.6 1C. 9" 1 I. J' 11.7 12. I 12. 6 12. 8 10."7'"
6.8 6.7 6.f 7.2 7.3 7 . >" 7.6~7.8" 7. «~ 7. 3 " 7. 3 7 ."l " 7". ) 7. J~7. »~ "i . 2"" B . 3 8/5 «. V t. 7 9 .0 »~.6~«7l 7.8
*.l""*.1 ~"*'.S " 5.3 " ?.3 " 1.3""5.3 ' 5.*"" 5.**" 6.*" 6.3 6.7 T.2 7.*"'7.6"8.6 8. l' "« . 3 " 8. 1 " t. 2 B .6 8.4 ")i.'0~/.6
7.2 8.0 7.6 7.5 " >.T 7.V"7."4 T.~S "7.6 ~ *.Z~
5.9
7.T
5.9 5.9 S.9
o
o
6.0 A.I 6.7 6.8 7.C 7.3 ~6."4
5.* 5." 5.« 5.9 6.0 6.1 6.1 6.7~ 6.8 6.5 6.6 6.6 7.Q 7*1~ ~7. l" " 7.1~~'~7,"2 7.7 ~ 7.s'~ 7.8 ~7. 8V/B
*' ' s-°~"5.9 A.O f.O" 6.1" 6.2 '~6. 3 6.4 "6.6 6.6 ""6.7" 6.8 ~ 7.0" 7.2 7.2 7.7 "7.7 7.8~ "7.6 ~ 7. S~ 7.»"
**5«l) 5.9 5".9 f'.O 6.0~6'.0"~6"."2 6". 3 6".* " 6".5 6". 7 6".8 A."8~6.7 ~6.7 ^6.6 7."* 7^* 7^4 ~~7."*7.0~"77o"~~77c~
"5.9 "5.9 "A.O" A.r" 6.0" 6.1 ""6.1" 6. 2 6.3^ 6.*"~6.6 " 6.« 6.8" 6.fl "6.7 "ft. 7" 7."* " 7.* ">.4 " 7.5~ 7.0 "7.0 " "7.V 7.0
A.n A.O 'A.O 6.9 "6.0'~~6.1 "ft.l 6.2 6.3 6.* "6.7 6.7 6.fl 6.7"" 6'. 7 "'7.*~ 7.* " 7.*"" 7.5 " 7.C 7^0 7.0 ~T.<. 7.C
6~.0 t>.~ri 6.0 6.0 6.1 A.I 6". 2 7. l"" 7. 1~ 7.'l~"7 . f " 7.l"~ 7. I~"7r2~ 7.2 7.'* ""7. 4"" 7.'C 7,"0~77fl 7"."o~~7.'6~~7."0 '~7.c"
"X.C~"fc.O~6.0 "6.l" 6.1~6.r "6.2 "6.2 "6.1 7.1 7.r~7.l 7.2^ 7.2 7.4" 7.0" 7.C " 7..0~" 7.0 "7.'o"~7.i " 7.C
6.0 6.? 6".0'* 6.1 fr.l 6.1 ~6.2' 6.2 " 6.3" 6.5~6.4 6.4 6.* 6.4 " 6.* 7.0'~7.. "7.0" "t.o""" 7.~0 7.0~ ">."C V.O~~7.C"'"
6.0 A.O 6.1~"ft.l 67l"~ 6."l 6."2 6.2 6".2 ft."j *Vl ' 6.3"*6.3 6.3 6.3 ^67"-* 7.0~7.~0 7"."0 7.C"~7lc 77* >7o 770~
6.0~~A.O "6.1 A.I A. t~ A. 1 " 6.2 "6.2 ' 6.2 "6. S 6.3 6.3 6.3 6.3 6.3 6.3 6.3 " 7.0 "7.0 7."0~7.0" 7".0" "770T.r,
6.0 "A.I 6.1~A.l 6. l" "6.1*" A. 2 6.2 t>.2 ~b'.Z~ 6.3 ft. 3 6. 3~~6. 3 " 6.3~ 6. 3*~6.3 6.3 7.0 7.C ~7.0"~7Vo " "7.0 7.0
6.0 A.I 6~. 1 6".l 6 . I ft."l 672 672 6~.2 67 2 6~.2~ 6~.2" V.2 A7V""67 J~ V.V "6.2 " 67> T."2 " "7.0" "7.0 776"" >7c 776
^Figure 17. Computed Initial Conditions for Carbon Monoxide
-------
. .
f i i i i i i i i i i i i i r i i i i i i i i i M
( L; c (;'.< oil i i i ( (. t. i o c c; c>
c
, o
i!
1 o
, o
. V-
"O
O'
a
4-i ,
, 3'
!|
i h
! I
V. AUTOMATIC PREPARATION OF MIXING DEPTHS
As described in Section II, an objective analysis of
the inversion height (or mixing depth) can be very complicated.
After much deliberation we decided that a model based on
spatial correlations., as developed by Roth et al. (1971),
is the preferred approach for the present project because
(1) It is relatively simple. It does not involve
excessive computation; thus the burden of
developing an automatic program is considerably
eased. Furthermore, it does not require an
extensive data base, such as the basin-wide
temperature distributions, which are needed for
some of the more sophisticated models we discussed
in Section II.
(2) It is relatively reliable. Since the model is
primarily based on measurements of the vertical
profile of temperature, it should, within some
degree of uncertainty, approximate reality.
Therefore no extensive effort is required to
validate the model.
(3) It closely resembles the model we used in the
manual preparation of the mixing depths (see
Roth et al. (1971J, so that comparison between the
two can be made.
However, it should be noted that this approach, due to many
special built-in features, is only applicable to the Los Angeles
Air Basin.
In the first subsection, we describe the algorithm upon
which the model is based. The results of computations based
on its use are discussed in the second subsection.
57
58
-------
A. THE ALGORITHM
Measured vertical temperature profiles, in conjunction
with the guide-lines derived from numerous observations made
by Edinger, which we discussed earlier in Section II B,
form the strategic basis of the method we selected for the
automatic preparation of mixing depth maps. This approach
is feasible because, on one hand, vertical temperature
measurements are available during the validation period
for two to four times a day at three locations which fall
on a line that is approximately perpendicular to the coast-
line. On the other hand, based on one of the findings of
Edinger, contours of the constant inversion height over the
Los Angeles basin have been found to be roughly parallel
to the coastline. The procedure can be described, step
by step, as follows
(1) Based on soundings made two to four times a day,
temporal interpolation or extrapolation is carried
out to provide estimates of average hourly mixing
depths for each hour of interest at each of the
three measurement sites. A simple linear inter-
polation or extrapolation rule is used for this
purpose.
(2) The calculated hourly mixing depths are then
assigned to squares lying on the corresponding
contours plotted in Figure 19 as heavy dotted
lines, with all grid points on the same contour
having the same value of mixing depth.
«
2«
23
31
'li
.J<
11
IS
17
U
li
i*
13
12
II
it.
1
S
7
(,
$
^
z
i
i
i
^
'
1
bA
-
£A
\
7
**.
II.
w
--
^_-
2.A
Of
(.
I:K
+-K.
~4
_M
TA
N
1L
"A!
1C
,'A>
1
15
5XJ
[\'f
_-^
N
N
DO
U
CA.
^
\
S
'
^~
.
/
N
\
\
\
/
\
\
1
1^-
-{*
1 Ix,
^
?
x
11
-N
\
\
V'T
X
r x
v
101
»
&?
n
x.
X
ir
XJ
^
^x
^^
) c
S
i^v,
X
)MN
X
S
|
4N
MOU
1
1
s,
I:.R(
X
ft
^"^
S.
X
S
^
11:
X
>,
\l
N
-AF
v'T.-
1 '
X
X,
X
RT
IN
T.
^
X
X
\ I J * 5 fc 1 81 10 II li '3 H U' " 'V '6 11 10
Figure 19. Map of Los Angeles for Mixing Depth /
I.
ION
TP
'x
\
x^
^T
S
^^
il 12
inalys
1
1
fr.
I'
i
(v~~
1
~
"N1
fr
x
\
>.^
^
S
i3 2»
is
^
;y
i?
w
2J
21
11
10
11
IS
n
t
if
f
5
1
1
fo
1
3
7
&
S
t,
3
Z
1
59
60
-------
(3)
(4)
(5)
For areas over the ocean (Region B in Figure 19)
a constant mixing depth has been used for all
grid points and for all hours. The value to be
used has been determined from the morning (first)
soundings made at Commerce and Hawthorne using
linear interpolation,
ZB =
Hawthorne
7
Hawthorne "z Commerce)
where z°Hawthorne=the mornin8 sounding at Hawthorne
Z°- = the morning sounding at Commerce
Commerce °
For areas in the San Gabriel Mountains (Region C
in Figure 19), a constant value has been used
for all grid points, but this constant mixing
depth may vary from hour to hour. The value used
has, again, been computed through linear inter-
polation.
ZC = ZE1 Monte * ? ^ZE1 Monte " Commerce)
where Z£. ,. =hourly average mixing depths at El Monte
ZH th =hourly average mixing depths at
Hawthorne
For areas in San Fernando Valley (Region D in
Figure 19) , mixing depths have been assumed to
be the same for all grid points, and the assigned
value is equal to that over El Monte at the same
time.
(21)
61
(6) For areas in the Santa Monica Mountains (Region
E in Figure 19) , the mixing depths have been
obtained through linear interpolations between
values at Region D and Region E.
(7) For the rest of the squares in Region A of
Figure 19, the mixing depths are calculated
based upon known values at the nearest two
contours, according to the following formula,
A
A
dlZ2
2 Zl
B.
where Z^ and 1^ are tne hourly average mixing
depths at the nearest two contours and d. and
d, the distance from the grid point to the
corresponding contours.
In addition to the above specific rules, we have
. imposed a minimum, as well as a maximum, for the
calculated mixing depths.
100 (ft) < Z < 2500 (ft)
That is, whenever the calculated values fall
below or above this limit, they will be replaced
by the corresponding extremal values.
RESULTS AND DISCUSSION
Vertical temperature measurements regularly taken over
the Los Angeles Basin prior to May 1971 were restricted to
the radiosonde soundings made twice daily at Los Angeles
International Airport at 6 a.m. and 10 a.m. PST. (Routine
measurements have since been made at El Monte) . During
62
-------
the summer of 1969, however, the Scott Research Laboratories,
as part of a comprehensive air-quality and meteorological
data gathering program, made 26 aircraft flights over the
Los Angeles Basin. Two flights were made on 29 September,
commencing at about 7:30 a.m. and 12:00 noon PST, with a
duration of about one and a half hours each. Vertical
temperature profiles were among those acrometric parameters
that were measured. These temperature measurements con-
stitute the input data for the present program (Table 9,
without asterisks). We have found, however, that these
real measurements must be supplemented by additional esti-
mates. This is necessary because straightforward temporal
extrapolation (Step 1) on occasion produces results which
appear to contradict the findings of Edinger, such as the
unreasonable times at which peak heights occur and excessively
large rate of change in mixing depths with time. For 29
September 1969 estimated data for thchours at 5 a.m. and
4 p.m. (based upon best judgment) were added at each of the
three measurement sites (Table 9, with asterisks).
Table 9. INPUT DATA FOR INVERSION HEIGHTS
HEIGHT
435*
650
700
630*
385*
600
850
1300
1000
960*
500*
500
825
1700
2800
2800*
STATION
HAW
HAW
HAW
HAW
COM
COM
COM
COM
COM
COM
ELM
ELM
ELM
ELM
ELM
ELM
TIME
500
826
1228
1600
500
815
910
1206
1257
1600
500
756
924
1156
1312
1600
63
Based on the data discussed above and the strategies
outlined in Section A, mixing depths have been calculated.
Comparisons between the computed mixing depths and the
manually prepared mixing depths have been made by evaluating
the average deviations. The results are summarized in
Table 10. Prior to 11 a.m., the average deviations range
from 60 feet to 100 feet. This is probably acceptable con-
sidering the uncertainties of the input data. In the
afternoon, during which the mixing depths were generally
higher, the magnitude of the average deviations increase
to about 200 feet, but in terms of percentages based on
average mixing depths for the respective hour, the differ-
ences amount to about 5 to 10%. This should also be satis-
factory for the present application. Samples of maps for
the computed mixing depths are shown for 7 a.m., 10 a.m.,
and 1 p.m. PST for 29 September 1969 in Figures 20, 21 and
22 respectively.
Table 10. Average Deviation between Computed and
Manually Prepared Mixing Depths
TIME, PST
5
6
7
8
9
10
11
12
13
14
IS
16
AVERAGE DEVIATION, FEET
61.5
64.9
76.0
107.6
75.7
80.9
98.3
197.0
240.4
208.7
224.5
192.4
64
-------
0961
'me oi iol si[jd3 _ ill _ Sif_Sit _ Sit _ Sit _ Si£ _ Si! _ Sii _ Sit __ SiC_Sit __ Sit _ Sit _ Sit _ Slt_liI_SU_iil _ S.4i __ J _
_ts«_st»_»tiS __ ies_its_ie» _ in Sit Sit_Sit sit Sit_sit__si' sit_sit_Sit _ sit Sit._su_sit sit __ s/t._sit_>ii -- t _
H9 789 a* ?ai 6«t u« wi.» 6r* t/c c/c c/t mt ./ c tit tir i» »
ti_liS_ii.! _ Jt.< _ 6&S_i«_01S _ ».» Sit __ iit Sit Sii _ S
Ii _ boy _ 2B.9 _ I.Y.V _ I.rSL__ldS _ B«S _ S2S _ SSI _ tCTil.i
S91 frl IZL Ht'l t.o1 Iff fKV Iff, ff"? !'/<. b-js SUV
SiC_Sit Sii _ Sii Sit _ Sit _ S'.t_Sii _ Sit _ Sit _ lit
Jt _ b6t _ Si£ _ SiE __ Sit __ Sii _ Sii __ Si.£ _ Sii __ Sti __ sit _ Hi
';r-^ tit* j?DE mg Slf sit 'itC «.It Sit Sit sit
t6i _ Sii _ 2SI
ooa i?«
it _ bfc.9 _ t,L? _ DS2 _ fctVJPtfi __ J.bl __ MS _ t£S _ »3S _ Ijti _ IS1! __ tl> _ SiC __ Sit__Sil _ SiE __ SiL _ Sit _ Sit _ Sit
2P2 __ p9.« _ *ry _ Ui^ _ V-vv_j.is _ t^s ___ tts _ ft«*_.^s* _ so?_iit _ sit_..si t _ stj; _ Sit __ its_>t(
/rz an Hto «iv /<;/ jf) H4 111. t»< s?< im L",» 1*1 *LC sil sir t/I m sit
O $91 *s>i_EW LU Lie M4 i?i_A2i ??i_90i__tdV ii.% ii_S b«i ,*C? j«» «__*
ILL Z9L \5L 1?*? lib /It ?qf 891 Mfrf K^J iJi f't;9 'jg'j »*** *it __ 41 1 _ Sit ___ I.I _
VI*. >!> 01^ WE Sf t Sit
Ji_> \^> ftit ff ;*v ft* , ^c ^^t sit ^ii sn s/c «.it ^i t nc ^:i sic **c -iif sn kit ut
OSf 99 r B/T Itf *-»* *'» 1C* <>* «1* 2'41 *-!>&» Ib^-.K"1* «S* Vf* SI* lot S/f Sit itt iit Stl Sit kit
. i 411 411 I
1 t « «n 1 ^ > , IV. I/ '-t SI, 4 1 41. 4-1
li|_f.J._.|i£_^, ,-,7 f^ ^7f ,cf i«, 7.1 ^t, H, SJ< M, »« M» 61» if, Si, ,1.' Sit >ll 4l> .11
r.71 «r, » Jl. 411 41t tit 411
1 tl s< 1 It It
00l_331 "JI_t'l_f-| I«l__9»' "-1 1" »- <» ?H -f( PM 41C ttl ,M 114 il> i.» I.- ., jt 1?( Uvt ,il
r>ni Pill O'j' aoi '"''' ^»i "ai i^' Qi'lt <*'jl 2llt lii :-a^ tc,? t1'? ?/? *>bi. ,. *J2 .Mi iic *;? c-£2 &i-2 it? vt2
POI out L,M (,fj|_;?i '"Ci c^i **t!t P-JI 33i itji «Ji ti^i 9SI -*HI / u tii cbi iti ui iii boi IL? ej^ uz
«? »,? C^ ?/ 12 Ji* c»I PI Jl -M SI »! *1 ^1 It 01 * tr i ' » v I i \
\
Z
C
s
C-l
11
?1
t.1
>t
st
Jl
J I
*1
61
C?
t^
?2
CJ
^^
qe
" O
_ O
o
o
o
. 0
o
o
' O
°!
O!
1
0
' O
o
o
o
o
0
E3
u
-------
OO'JOOOOOOUOOOOOOOOOOOO
>
c
a
£
a
C
0
T
c
X.
"
r
**
3
1
J
.,'
*
:
^
--
~j
o
-
-
'.
"
*"
.
I
*
:~
-
^
L
£
F
n
-
:
'
.<
M
'
-»
-
C
J"
-,
~
"
~
*"
.
4
C
-'
7
~
^
C
h-
>f-
'
~
-
-
-
n.
-
,
C
:
:
P
n
»j
>
"
-
-
-
-
~
C
~
ft*
~
~
<
-
j
^
^
0
,_,
~
~
~
*J
-
«
5-
;
^
-
-
.
«
P
~
LI
-
M
F
C
,
r-
,
~
-
-
*~
F
-
-
-
V
"
_,
r
r
"
-
-
^
-
-
-
-
-
L
c c
C L
L C
^ c
~ ,~
i
" r
^ r-
" r
-, >,
- r
~ r
-
' \
~ r
" f
= *
- 1
1
y
"
1
~
r
I
-
-
-
"*
~
"
k
r.
-
^
-
c
-
r
r
*
-
o
"
16
t
r
-
j:
*
i
.
"
"
:
-
£
1
-
«
'
*
.
-
-
-
^
-
r-
^
'
'
*
r
r
Z
n
r
-
L
,
.
"
1
r
,.
^
^
..
-
I
L
I
.
1
~
I
L
-
,
'
i^
"
C
.
.
r
r
,
_,
L
c
.
"
"
.1
.L
" C
; L
r
, L
^ u,
L i'
' r
jr
1"
- Is.
.
^
r
p
r
C
"
,
r
7
'
'
.
'
-
*"
.
.1
. L
r
s tr-
I
r
I [
L
L C
i
n i*
h p
1 f
|
|
f -
* ^
t
L
"
:
"
"
V
r
,
r
L
"
:
i-.
"
ooooooooo
o o o o o o
VI. AUTOMATIC PREPARATION OF BOUNDARY CONDITIONS
The objective of the present section is to formulate a
method which is capable of prescribing boundary conditions
automatically. These boundary conditions,which consist of
an array of 4 x 25 values of concentration per hour for each
species, will be used as input to our airshed model. There
are two major difficulties that must be faced in constructing
an appropriate algorithm:
(1) The lack of any real measurements which can be
truly described as boundary conditions. The only
exception to this is the measurements made at the
Pomona station, which is located at the eastern
boundary of the modeling region.
(2) The inadequacy of simple extrapolation techniques
for developing a predicted concentration field using
measurements made by stations close to the boundary.
In many cases the distance between the boundary and
the nearest station is large, so that a time lag
of hours may exist. The difficulty is compounded
in many cases by the fact that large emissions sour-
ces may be present between the boundary and the sta-
tion. An accurate determination from the station mea-
surements of the value at the boundary would, thus,
necessitate the use of a predictive model!
In the following, we will describe the details of a
method which closely resembles the procedure followed in pre-
paring the boundary conditions manually. We also present
results generated using the method.
67
68
-------
A. THE ALGORITHM
As we have noted earlier, the prescription of the boun-
dary conditions is by no means trivial. The process is
plagued on one hand by the absence of real measurements at
the boundary and, on the other hand, by the need to incorpo-
rate information concerning the dynamics of the transport and
dispersion of pollutants when extrapolation of interior mea-
surements is contemplated. This algorithm has ns its basis
the experience we gained in preparing manually the boundary
conditions for the six validation days. These difficulties
notwithstanding, we have formulated an algorithm which we
believe embraces the essential features of the manual proce-
dure, yet is simple enough to be of general use.
In accordance with a qualitative criterion based on the
overall meteorological or air pollution characteristics per-
taining to the region, we have divided the boundary of the
airshed into the following three categories as illustrated
in Fig. 23.
(1) CATEGORY A
Boundaries falling into this category are generally
characterized by a influx of air earlier in the
morning, followed by an outward flow at a later
time as the sea breeze is established over the
basin. Fortunately, the boundary conditions speci-
fied during the later period of outflow are imma-
terial; they will not be used by the airshed model.
Specification of-the boundary conditions during
the period of inflow can be simplified if we view
the situation as the return flow of polluatcd
air fr^m the basin. In this case, assuming that
69
15
l><
23
11
V
.2'
11
IS
17
u
IS
l<>
IJ
12
II
10
1
E
7
t
S
4
J
2
1
1
A
A
A
A
A
A
A
A
A
1
1
A
B
I
j
A
B
J
«.
A
V
^
s
A
'fc.
5
6
A
sB
\
B
t
7
A
v
H
\
B
x^
\B
B^
1
S
A
~r
8
1
A
^
1
10
A
B
~^
10
If
A
A
r£
II
ii
A
B
a
<3
A
B
'3
/<
A
^^
B
'^
if
A
^
B
iy
it.
A
X
"
17
A
^
''
iS
A
X
Ib
/?
A
X
IH
J«
A
gS
2«
i;
A
B
il
J
A
>
22
J J
A
vB
a
it
A
B
u
e.f
A
C
C
C
C
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
is
Figure 23. Map of Los Angeles
for Boundary Conditions Analysis
70
-------
CATEGORY A
there are no major sources beyond the boundary points,
the concentrations of the influx should decay from the
initial values at S am because of the dilution along
the way. Thus we may write for boundary points of cate-
gory A,
- TQ)
iB
'B < t <
B
FE
(23)
where
c. the pollutant concentration of species i
at the boundary at time t
Ci the initial pollutant concentration of species i
at the boundary
o. the rate of decay for species i
Bi the discount factor from initial concentration
of species i
c^ the background concentration of species i
Tg the time at which the concentration of the
return flow approaches background value
TQ the starting time
Tg the ending time
The concentration history is illustrated in Figure 24(a).
(a)
t-B
(b)
T
o
5 am
From Initial Conditions
'E
4 pm
CATEGORY B
From Nearby Station Measurements
To
5 am
K TA TB
4 pm
Figure 24 Concentration Histories for
Boundary Conditions Preparations
71
72
-------
(2) CATEGORY B
.The boundary region falling into this category is
characterized by an outflow in the morning, followed
by an inflow at a later time, conditions just the
opposite of those of CATEGORY A. Before the rever-
sal of the wind, the values chosen for the boundary
conditions are of no consequence. Immediately after
the wind reversal, information concerning the pollu-
tant concentrations of the return flow should be
contained in the measurements made by the nearby
stations. These measured data will be used with
modifications to allow for 1) the lag between the
time of departure of air from the vicinity of the
monitoring station and the time to re-entry at the
boundary,and 2) the dispersion that will have taken
place over the time interval. After a period of
time, one would expect that the nearby station mea-
surements will no longer be related to the concen-
trations of inflow. To deal with this situation,
a cut-off time has been specified, a constant decay
is allowed from this onset of the cut-off until the
background values are reached. To summarize,
CjCt)
l (t - Tc)
- TA)
< t
< t < T
-------
square root of the average squares of the differences between
the two.
The results of the comparison calculations for tho cri-
tical period between 5 a.m. and 10 a.m. arc listed in Table
11. Again, it can be demonstrated that the differences for
carbon monoxide and unreactive hydrocarbons are sufficiently
small. For nitric oxide, nitrogen dioxide and reactive hy-
drocarbons, the magnitudes of the differences are larger,
but seem acceptable.
Samples of the computed boundary conditions at 7 am, 10 am,
and 1 pm are shown in Figures 25 through 27.
Table 11. Differences Between Computed and Manually Pre-
pared Boundary Conditions
Time
(PST)
5
6
7
8
9
10
am
am
am
am
am
am
RHC
(Pjpra)
0
0
0
0
0
0
.67
.63
.53
.58
.57
.63
NO Ox*
(pphm) (pphm)
3
1
2
1
2
1
.5
.7
.3
.6
.1
.0
N02
(pphm)
1
1
2
2
2
2
.8
.6
.1
.0
.4
.4
CO
(PPM)
1
1
1
1
1
0
.1
.0
.3
.3
.3
.9
URIIC
(p_p_m)
1.
1.
1.
1.
1.
0.
2
2
2
3
3
87
* The boundary conditions for the oxidant, again, are calcu-
lated from the chemical equilibrium relationship in the SAI
airshed model, therefore, no boundary condition map has been
prepared manually.
75
O O
o o
o o o o o o o
| i
1 :
i . ? ' : "
' t * '
: "1 -. i
O' *! °
O M
1 "
0 - i
- ~\ * f.
-, -
» ri ;
* ~ *: ' ^
: *' -
£, « 1 "
? 3 "\ ? 3
< ' ^ ^ 5 ^-
i - n
; ^ «
0-' * ". ?
1 ""' "
«, f-
»; cJ *
i - 32 S
i "I n
J *- "
t ^ J
.rt ^; ".
"*i W
f*' h-
J
^j « ' o ^
& a 1 a
o o o o o o o
o o o o o o o
"1 1" I : i
if :
~; "\". J : 1 II J
i ! ! ; ' i
-*.*»*,' -.0
~l - - *i . ~ -. -
J -' oj =j - _ ~ o
_ J j ,1 J , ,
1
i :
-" M « 0 O 0
' - 1 -J ' - - -
o -* «j hj on
i
« O oj ^ O O
- o *f-; in o o
o M r- . o o
: ?3'
IA o :<>: ! o 0
«
o
c
o
X
^1
ed
O
C
3
0
O
O
3
C.
E
O
l/>
V
3
CO
u.
O 0 O O
76
-------
o " SOMSE
BC11J.CS,.I 2. _> . * .._ 5 . 6 7 ft. ° 10 ..11 12 13 ._14 15 _ 16 I? I8._l° ._ 20 ..71 _22 23 74 75
c
o r
5.0 5.3 3.T
_3.6_5.5 6.7_
4.3 4.3 4.)
O ;
o
o
~ i
fr« 929 " ""
- ..... _______ ......
SOUtCf
_ 80H^£H _ I.. __ 3 ___ 3 _____ * __ ,5 _ *> ____ 7 _____ 8 _____ 9 _____ 10. __ 11. ... l?_ ..1-1,. I* 15 __16.._17 _._18 __ 19 ____ 20 _ 2,1 __ 2.2 _ 23 _ 2* _ Z5
POLLUTANT CO CO.'JCff.TRATlON Mlf) FQ* 700
O ' '
-----
O - . i_ J
o E~ J
O :
l.» 1.6 3.5 3.) 1.1 2.9 7..T 2.1 2.7 2.9 J.I J.T 3.4 4.0 4.5 5.1 2.7 2.5 J.I 3.5 3.8 1.4 ).» }.* l.J ._.
NT UHC CONCENTRATION Can Fu:«' 700 MOUK 69 929 ' ' ' "' " "
SOl'Aof
BOPILR L 2 3_._4 5. .6 _7 e .9. _10..... 11 12 _.13. 14_ 15... 16 17 1.6 19 70 21 22 23 24 25
$ 30 6 33 6 >0 6 30.6 30 6 30 6 3d 6 ,0 6 ,0 . 30. ^ ,0 6 -0.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6,0.6,, , 26.0 25.1 23.321
Q £ !>...>1J«.*_U.3.J1..1.-I.U.I_U.I. 11.1 IL.lll.l 13.1 15.1 17.1 lo.l 21.0 23.1 27.* 31.7 36.0 29.9 23,8 17.a 13.** 13.6 13.* 16
O Figure 25 b. Computed Boundary Conditions for 7 am, 29 September 1969
O
o
o
o
o
o
o
o
o
o
i o
I
o
o
o
o
o
o '
o
o
o
o:
o'
o
o
o
o
o '
o
o
o
PUllUTA.'iT RHC f.nnCCNTBAT nn Cdftt FOR 1000 hOi;A
69 929
..... ---- ---- =
*_.3. _> 5 6 7 8 t IQ_. 11 12.._1>_ 1* _ 15 16 __ l.T 1 * 19 ?0 21 22 23 2* 2j
N... 2.0 2.0 2.0.7.0 2.* 2.9 3.> J.H *.T *.* 5.1 «.5 5.8 6.3 ft." ft.3 10.0 11.8 13.6. 15.* 17.1 15. 7 14.3 1 2.7_11. 2
.5 21.3 2».3 2*1.1 2*.3 25.3 »B.3 2*.> 2P.3 29.3 2ft.3 ?*.3 2f.! ?f.3 2?.3 28.3 2«.3 2!>.3 26.3 2C.3 2fl.3 27.0 25.6 2*.3 22.9 zi.A
f i-J. *.? !_! I-.O >..3__3.3, ?--L._T*3._._5.* 7.0_ 10.8_1*.7 L I*, g__23.0_27.AL >^ .2 j.Q.9_*7. 7^_3_7. 1 26.6^16. Ij .3 7.> 6.5 jjj.2
«,,,2d,3 2«.3 21.3 29.3 2*. 3 28.3 2d.3 2fl.3 28.3 ?fl.3 2«.3 28.3 25.3 2«.1 2*>.3 2B.3 !*.3 11.8 _9. * 6.9 *. < I .?^.. l-9_ Z.O _2.0.
POLLUT»NT HQ CONC EN7i) A T 1 ON CP.IO ^OR 1000 HOUR
69 929
_B_CKQ£J< 1 2 3 * 5 6. 7 g _ _ « 10 U._. 12 . 13 1* .15 _1617 ___1B 19 20 21 22 J 23 2* ?S
. N... l.J 1.0 1.0 1.0 1.0 1.3 1.1 1.6 1.9 2.1 2.1 2.1 2.0 2.1 2.1 2.* 2.6 2.2 ?..* 1.0 1.2_l.l .1.0 t.l._1.0,
S J.I 2.9 2.7 2.5 2.4 ?.l 2.3 2.6 2. ft 3.1 3.3 3.6 3. t. 3.7 3.6 3.* 3.3 3.1 3.0 2.9 2.7 2.6 2.5_2.3 _2.2
« E 1..0 l.0_. l.0_ I .0. , l.O.._I.O ,. ,l.0_ .1..0._.1.0___l.2_1.7 2.3 , ?.P 3.2._3. 6, .2. 8 _ l.^_I.Q_1.0 l-.O I.I 1.0 1.0 l.Q 1.0
_H ...J.I 3.2 3.3. 3.4 3.5 3.6 3.7 3.8 !.>,..3.1 2.8 2.* 2.1 2.2.2.3 2.4 2.3 1,9 ?.2_Z.I 1.6 1.0 ...1.0. l.0__l.fl
POLLUTAfJT Ui CONCFNTB4T10N OTO FOR 1000 HOUR L9 ^29
SQUARE " - .
_BnnDi.R ..1. ._.2 3 _ '.. .... * _ .. 6 ... T ..«.. 9_IO.H .12 13 14 15 _16 17 IP. t"» _ 2I>. 21 22 23 24 25;
. .N l.J 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . 1.0 1.0 1.0 1.0 UO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .1.0 _1.0
_.S __ ».* ^.1 4.7 "..<. 4.0 1.6 1.5 1.4 1.3 1.1 1.0 1.0 1.0 1.6 2.5 3.3 «-.l 5.0 5.fl 6.6 6.6 6.6 6.5 6.» 6.9
E 1.0...t.O ..I.O.. .1.0 1.0_1.0 l.0._1.0. 1.0 .1.0 1.0 1.0 1.0 1.0 1.0 _7.0 13.0.19.0 17.9 A.7 l,o l.O^J.O l.JJ 1,0.
. J.... 5.4 6.0 6.6.3.5. 4.3 1.1 2.0 1.0 1.0 1.1 1.3 1.4 1.6 2.4 3.2 4.0 1.0 1.0 1.0 I .0 1.0 1.0 1.0 1.0 1.0
°l
O i
o
; °l
- o
o
- o
J °
o
~ o
O
~ o
o
i o
O
o
. °
o
Figure 26 a. Computed Boundary Conditions for 10am, 29. September 1969
-' O !
j
o
o
o
-------
PiUUIl ANI N2 CflNCENTRAT ION G*ll> "-"fls 1000 HOUR
; Q
._l._ .!._ 3_4 !* .. .7 ____ a.
L.O 1.0 1.0 1.0 1.0 1.0 1.1 1.2
2.0 1. 1 i.o i.
! O.
7.8 5.6 3.4 2.0 l.« 1.6.. 2.8
2.4 2.1 1.6 1.0 1.0 1.0 1.0
. .
rnn toOi) KWR
<. _ 7 __ 8 __ 9 __ 10
o-
~J I
o o
^ _ 1 ,, i.o 1.0 _ 1.0_ 1.0 _ l.O_l.(J __ 1..0 __ 1.0 ___ 1.0_._1. 7_2.3 . 2 . *._ 3 .S._*..l .. 4 ,7_ 4.4 ___ 6.0_ 4.^ _ J.6 __ 2.4 ___ 1.3 _ 1..2___1_;_0_ J..J
POLLUTASf UHf,
01
!
_BO«4tJ 1 -.2 .. 3.... 4 5 _ n. '...»_.. 1 _ 1" I' ..12 ." .'4 .15 .'6 .I'_H H._.2° 21 22 23 _24 _ 25
i U! N i.I |.7 1.7 1.7 2.0 2.4 2.n 1.1 3.5 l.fl 4.0 4.1 4.2 4.4 4.5 5.4 6.3 7.3 >.l °.3 10.1 1.5. «.6 7.7 6.1.
I O S_.li.2 I".2 11.2 11.? 11.2 H.2 11.? H.2 H.2 H.2 1".2 11.2 H.2 11.2 K.2 11.2 H.2 11.2 11.2 H.2 1".0 16.S 15.5 |4.3_13.l
I ^ ft,5 1..7 i.Q t'.0_.?,4._ 2.4 _ 2.4__2..4_._2.*_ 4.1 .7.4__1.o_l?.5 .15.C .1 7. « 2 0. 7 .23. B_27 . 0_2.l ..2...lAr> 2.r5 5.0 4.4 3.1 6.1
i k. 11 1 11 I 11.2 IV 2 n 2 11.2 11.2 11.2 11.2 11.2 IV.? 11.2 11.2 11.2 11.2 11.2 13.1 10.ft S.5 6.2 3.1._ 1.'_..!. 7 . 1.7 1.7
' O Figure 26 b. Computed Boundary Conditions for 10 am, 29 September 1969
r\
i ~
o
! o '.-.
O SOUAriE
BOa'ji? 1 2. _..*_ * _ * h _ 7_. 8 9 10._ U 12 I)
.. , S,.. H'* It. 9 11.9 11. t 11.9 U.9 1 1.0 U.9 U.? U.9 U.9 U.*> 11.9
O
^-'_*-.?_.UI_l.Q_1.3_.].J_.3.1_3.J_3.A., T.O_l'>._Vl*.T_l''.8.
O t
PDLLur*Nr NO coNreNiaiTios r.^io FCI* noo nnu^ 59 92?
O
BOBOEH... 1 ..2.3 * > . (, 7 . ct 9 10 U 12 13
o
o
O PlRLJTANT 01 CONCENT**! ION MIO FOB l?00 M30R 69 -329
O B.CW5iS...l 2.__i._.4 5.6. 7 ..8 1 10 11 12 .13
. N 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 I.O
O ----
Q . ». .6.6 ».« 7.2 5.0 4.6 3.2 1.1 1.0 1.4 2.3 1.1 4.0 4.,
O
O
O
O Figure 27 a. Computed Boundary Conditions for
^
c
(~
1* !* _ 16 17 _U l<» 20 21 22 ?3___2*_ 25 i
U.9 U.9 U.9 U.9 U.9 11.9 U.9 l|.9 U.9 U.9 U.9_U.9 __
21, C 27.* 2^.9 22.3 1«.B 15.5 11.2 A, 8 1.0 2.1 1.3 6.0
1
.' 0
~~ .
. ..... : o
1* IS 16 , 17 ..IB . I'._ZO._ 21 ._22 _23._24 25
1 0 .!» ._
- - ,o
' o
1* 15 16 17 IB . 19 _20 .21. 22 _23 2*. 25 Q
1.0 1.0 1.0 1.0 t.O 1.0 1.0 1.0 1.0 1.0 1.0. 1.0
iO
o
o
o
1 pm, 29 September 1969 . O
-------
o
ooooooo. ooooooo ooooo
I i I I I
e o o
oo
: :i:
o
i:: :i
: o ~ o'
_ o- -
' t
000
'
f £'
g I
i
J ;' ° °! "j1
s- ' - - «.
' 1 ; !
O (' O O ' O O -O OOOOOOOO OOOOO
c
o
CJ
t-c
ra
a
c
O
(J
o o
VII. CONCLUSIONS AND RECOMMENDATIONS
In the preceding four sections, we have discussed
the development of methods for the automatic generation
of the wind field, the initial conditions, the mixing
depths, and the boundary conditions. As we have stated
before, the methods adopted for each of these' four cases
arc considered, in general, to be "acceptably good".
By this we mean that, given the level of accuracy of the
available meteorological and air quality data (which
generally ranges from fair to adequate, although in
some cases it is good) , the predicted results compare
favorably with the measured. We note, however, that
critical testing of the methods must await the avail-
ability of more re^able test data, such as those to
be collected during the LARl'P program.
Improvements, of course, can be made through minor
modifications of the basic schemes we have described in
the present report. In the case of wind direction inter-
polation, an a priori "smoothing" of the wind direction
measurements would be highly desirable, especially during
the hours of the chaotic transition between the land and sea
breeze. This procedure can be justified by the fact
that during this period, typically characterized by low
winds, uncertainties in the wind direction measurements
can be quite large. With regard to air quality inter-
polation, the distance that measurements of a concentration
of a photochemical pollutant can be extrapolated is quite
limited. This implies that a larger number of monitor-
ing stations may well be needed to yield a complete des-
cription of the distributions of photochemical species.
81
82
-------
On the other hand, we feel that improvement in the
prediction of mixing depths can be brought about only
through more field measurements. This is particularly
true during the afternoon hours and in the San Fernando
Valley.
The automatic boundary condition program appears to
be the most complicated as far as the structure of the
strategy is concerned. Therefore, many modifications
can conceivably be made to give a closer description of
reality. We will not enumerate all the possibilities
here. Instead we will only point out an apparent one
that the present program is unable to cope with, the fact
that nitrogen dioxide concentrations increase in the
return flow during the period of late morning or early
afternoon.
83
REFERENCES
Anderson, G. E., "A Mesoscale Windfield Analysis of
the Los Angeles Basin", The Center for the Environment
and Man, Inc., December 1972.
Belousov, S. L., L. S. Gandin and S. A. Mashkovich,
I'oaputer Processing of Meteorological Data Gidrometeor-
ologicheskoc Izdatel 'stvo, Leningrad (1968). Trans-
lated from Russian by Israel Program for Scientific
Translations, Jerusalem, 210 p (1971).
Bulmer, M. G., Principles of Statistics The M.I.T.
Press, Cambridge, Mass. (1967).
Dartt, D. G., " Automated Streamline Analysis Utilizing
Optimum Interpolation", J. Appl. Meteorol. 11, pp. 901-
908 (1972).
Edinger, J. G., " Changes in the Depth of the Marine
Layer Over the Los Angeles Basin", J. of Meteorol.
\b_, pp. 219-226 (1959).
Eschcnroeder, A. and J. R. Martinez, "Evaluation of
a Photochemical Pollution Simulation Model", General
Research Corporation, Santa Barbara, Calif. (1972).
Gandin, L. S., Objective Analysis of Meteorological
Fields Gidrometeorologicheskoe Izdatel'stvo, Lenin-
grad (1963). Translated from Russian by Israel Program
for Scientific Translations, Jerusalem, 242 p (1965)
Hanna, S. R.."Urban Meteorology" ATDL Contribution
No. 35, Air Resources Laboratory, Oakridge, Tennessee
(1969)
Holzworth, G. C., "Estimates of Mean Maximum Mixing
Depths in the Contiguous United States", Mon.
Wea. Rev. 92,pp. 235-242 (1964).
Holzworth, G. C. , "Mixing Depths, Wind Speed and Air
Pollution Potential for Selected Locations in the
United States", J. Appl. Meteorol. 6, pp. 1039-1044
(1967).
84
-------
REFERENCES, (Contd.)
Huss, A., "On the Introduction of Space-Time Correlation
Functions in Optimum Objective Analysis Methods",
J. Appl. Meteorol. 1£, pp. 152-155 (1971).
Johnson, W. B., F. L. Ludwig and A. E. Mood, "Develop-
ment of a Practical, Multi-purpose Urban Diffusion
Model for Carbon Monoxide", Proc. Symp. on Multiple-
Source Urban Diffusion Model, Research Triangle Park,
N. C. (1971).
Lamb, R. G., "Numerical Modeling of Urban Air Pollution",
Ph. D. Dissertation, Department of Meteorology, University
of California, Los Angeles (1971).
Lamb, R. G. and J. H. Seinfeld, "Mathematical Modeling of
Urban Air Pollution - General Theory", Environ. Sci. Technol.
I, pp. 253-261 (1973).
Leahey, D.M. and J.P. Friend, "A Model for Predicting
the Depth of the Mixing Layer Over an Urban Heat Island
with Applications to New York City", J. Appl. Meteorol.
10_, pp. 1162-1173 (1971).
MacCracken, M.C., T. V. Crawford, K. R. Peterson and
J. B. Knox, "Development of Multi-Box Air Pollution
Model and Initial Verification for the San Francisco
Bay Area", Lawrence Radiation Laboratory Report,
UCRL-73348 (1971).
Mashkova, G.B., "Atmospheric Stratification Character-
istics in Inversions", Investigation of tke Bottom
ZOO-I'leter Layer of the Atmosphere, pp. 43-47, Izv.
Akad.Nauk. S.S.S.R., Moskva (1963).
Miller, A. and C.D. Ahrens, "Ozone Within and Below
the West Coast Temperature Inversion", Tellus 22,
pp. 328-340 (1970).
Olsen, D.E., "Predicting Inversion Depths and Tempera-
ture Influences in the Helena Valley", NOAA Technical
Memorandum, NWS-KR 70 (1971).
Pack, D.H. and C.R. Hosier, " Meteorological Study of
Potential Atmospheric Contamination from Multiple
Nuclear Sites", Second U.N. Conf. on Peaceful Uses
of Atomic Energy, p. 265, Geneva (1958).
85
REFERENCES, (Contd.)
Papoulis, A., Probability, Random Variables and Stochastic
Processes, McGraw-Hill, New York, N.Y. (1965).
Richardson, N.N., "Numerical Tests of a Method for
Dynamic Analysis in Regions of Poor Data Coverage",
Tellus 1_3_, pp. 353-362 (1961).
Roth, P.M., S.D. Reynolds and P.J.W. Roberts, "The
Treatment of Meteorological Variables", Systems
Applications, Inc., Report 71-SAI-17 (1971).
Sasaki, Y., "A Theoretical Interpretation of Anisot-
ropically Weighted Smoothing on the Basis of Numer-
ical Variational Analysis", Mon. Wea. Rev. 99, pp.
698-707 (1971).
Sasaki, Y. , "Numerical Variational Analysis Formulated
under the Constraints as determined by Long-wave
Equations and a Low-pass Filter", Mon. Kea. Rev. 98,
pp. 884-898 (1970).
Smith, F.B., "Objective Analysis of the Vorticity Field
with a Region of No Data", Tellus 14, pp. 281-289
(1962).
Strand, J.N., "Airpol-Wind Trajectory.Tracing for Air
Pollution Studies", Jet Propulsion Lab, California Inst. of
Tech., Pasadena, Calif., June 1971.
Thompson, P.D., "A Dynamical Method of Analyzing Meteoro-
logical Data", Tellus 1_3_, pp. 334-349 (1961).
Summers, P.W., "An Urban Heat Island Model, Its Role
in Air Pollution Problems with Application to Montreal",
Peter Presented at the First Canadian Conference on
Micrometeorology, Toronto, pp. 12-14 (1965).
Wcisburd, M.I., L.G. Wayne and A. Kokin, "Evaluation
of the Reactive Environmental Simulation Model",
Pacific Environmental Services, Inc., Santa Monica, Cal. (1972).
Wendell, L. L., "A Preliminary Examination of Mesoscale
Wind Fields and Transport Determined from a Network of
Kind Towers", NOAA Tech. Memo. ERLTM-ARL 25 (1970).
86
-------
APPENDIX 1. MEASURED AND CALCULATED
WIND SPEEDS AND WIND DIRECTIONS
REFERENCES, (Contd.)
Wilkins, E.M., "Variations! Principle Applied to
Numerical Objective Analysis of Urban Air Pollution
Distributions", J. Appl.Meteorol. 1£, pp. 974-981 (1971).
Kilkins, E.M., "Variationally Optimized Numerical
Analysis Equations for Urban Air Pollution Monitoring
Networks", J. Appl.Meteorol. 1^, pp. 1334-1341 (1972).
Wuerch, D.E., "A Comparison of Observed and Calculated
Urban Mixing Depths", ESSA Tech. Memo. WBTM CR-36
(1970).
Wyzga, R.E., "Method to Estimate Missing Air Pollution
Data", J. Air Poll. Cont. Asso. 23, pp. 207-208 (1973).
Date: September 29, 1969
Station: RESD
Exponent Used: 1.00
Wind Direction
Wind Speed
HOUR
0
100
200
300
40J
503
600
700
800
900
1000,
1103
1200
1300
I43j
1503
1£>00
170J
1803
(point)
MEAS CALC
a
8
13
3
I
9
__15
5
11
8
9
3
6
4
12
13
11
12
1900 12
2 000 ._ 1 1
210J 15
220U 15
2300
8
10
Q
11
3
3
12
11
6
7
12
1'
12
12
12
13
14
13
13
13
12
._!!.._.
6
5
10
(dir<
-SEAS
S
s
WNH
ENE
NNF
ssw
NNW
RSE
WSW
S
CNE_
SSW
ENf
SE
E
W
WNW
WSW
W
W
MSW
NNW
NNW
S
jction)
, CAI.C
SW
ssw
WSW
ENE
ENE
W
WSW
SE
SSE
W
W
w
W
WNW
NW
WNW
WNW
WNW
(degree) (mph)
MEAS CALC MEAS CALC
0.0
0.0
112.5
247.5
202.5
22.5
157.5
292.5
67.5
o". 6~
'47,5
22.5
?47.5
315.0
270.0
90.0
112.5
67.5
90.0
W 90.0
WSW 67.5
SE~157.5
£.$g_117.5_
SW 0.0
35.
29.
59.
253.
240.
86.
68.
306.
327.
93.
Q5.
37.
86.
aa.
113.
127.
115.
ll-V.
101.
90.
67.
314.
301.
40.
2
3
8
2
6
8
3
9
0
5
4
9
0
0
4
4
2
0
3
0
5
3
3
I
1.
1.
1.
1.
2.
3.
2.
I.
I.
1.
1 .
1.
2.
2.
2.
7.
8.
6.
3.
2.
2.
1.
1.
1.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
0
0
0
0
I
1
1
2
1
1
0
1
"l
1
1
3
2
4
4
4
3
2
1
2
0
0
1
.5
.0
.7
.3"
.1
.7
.2
.9
.0
.4
.3
.4
.0
.9
.4
.9
.3
.2
.0
.7
.0
.6"
.6
.1
87
88
-------
Date: September 29, 1969
Station: PASA
Exponent Used: 1.00
Wind Direction
HDUR
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
(poi
_MEAS_
14
15
16
15
14
2
11
15
2
10
7
8
9
8
10
10
10
10
2
2
16
2
15
14
nt)
..CALC
16
16
12
13
1
1
13
2
1
14
11
10
10
11
11
11
IL_
11
11
10
9
10
n
12
(direction)
NW
NNW
N
NNW
NW
NE
WSW
NNW
NE
SW
S
SSW
S
SW
SW
SW
Sw
NE
NF
N
NE
NNW
NW
N
N
W
WNW
NNE
NNE
WNW
NE
NNE
NW
WSW
SW
SW
wsw
WSW
wsw
_wsw.
WSW
WSW
SW
ssw
Wind Speed
(degree)
MEAS CALC ME
135.
157.
1 BO.
157.
135.
225.
67,
157.
225.
45.
.337.
0.
22.
0.
45.
45.
45.
45.
225.
225.
180.
SW 225.
WNW 157.
W
135.
0
5
0
5
0
0
5
5
0
0
5
0
5.
0
0
0
0
0
0
0
0
0
5
0
190.
176.
96.
113.
202.
201.
121.
219.
211.
137.
57.
51.
51.
58.
60.
76.
67.
56.
53.
33.
55.
120.
91 .
3
1
5
1
0
1
3
I
1
3
2
5
5
9
9
7
fl
5
8
4
7
8
9
7
2
3
2
2
3
2
2
2
I
1
2
2
3
3
4
6
3
2
1
1
1
I
1
2
(mph)
AJ CALC
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
2.5
2.2
1.5
2.6
3.6
1.6
-3.1
1.3
0.9
0.4
2.8.
5.4
6.9
7.1
7.6
7.2
6.5
4,7
3.9
2.7
i.a
1.2
0.5
1.0
89
Date: September 29, 1969
Station: AZU
Exponent Used: 1.00
Wind Direction Wind Speed
HOUR
0
100
200
300
4oa
500
600
700
800
900
1000
ILOJ
1200
1300
1400
1500
1600.
1700
1800
1900
2000
2100
2200
2300
(point)
MEAS CMC
8
16
6
11
12
4
14
14
4
5
9
10
9
9
9
9
8
9
9
-------
Date: September 29, 1969
Station: WEST
Exponent Used: 1.00
Wind Direction
(point) (direction) (degree)
HOUR MEAS CALC ME A S_. _C_A_t.C MEj*S_£AUL_
01 4 NNE E 202.5 265.2
100
200
300
400
500
600
700
BOO
900
100O
11
12
12
?
12
14
12
9
10
10
1100 10
1200 10
1300 10
1400 10
1500
1 600
1700
1800
1900
2000
2100
2200
2300
10
9
9
9
8
H
7
1
I
9
12
10
2
11
It
2
10
12
12
11
11
11
11
12
12
11
10
9
a
7
6
fl
WSW
w
w
NE
W
NW
W
SSW
SW
sw
SW
sw
sw
sw
sw
ssw
ssw
SSW
s
s
SSE
NNE
NNE
SSW
w
sw
NE
HSW
WSW
NE
SW
K
W_
wsw
wsw
WSW
wsw
w
w
WSW
sw
ssw
s
SSE
SF
S
67.
90.
90.
.225.
90.
135.
90.
22.
45.
45.
45.
45.
45.
45.
45.
22.
22.
22.
' " 0.
0.
337.
202.
202.
5
0
0
0
6
0
0
5
0
.o_
b
0
0
0
0
5
5
5
0
0
5
5
5
15.
79.
43.
226.
73.
74.
223.
49.
87.
80.
60.
74.
"71.
75.
80.
BO.
63.
47.
r 33.
349.
343.
316.
358.
9
4
3"
I
6
7
0
6
9
7
5
7
2
6
1
fl
6
6
1
H
0
S
7"
Wind Speed
(mph)
HE A S CALC
1.0 0.2
1
2
4
5
4
3
4
4
2
1
1
I
1
1
1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.9
2.0
1.6
5.4
4.3
1.4
0.1
1.8
3.7
2.7
4.3
6.5
6.0
6.6
7.3
>-2_
4.3
4.0
2.5 "
2.6
2.5
1.4
1.4
91
Date: September 29, 1969
Station: ELM
Exponent Used: 1.00
Wind Direction
Wind Speed
(point;
HOUR MEAS CALC
0 1
100 4
200 9
300 12
400 16
500 3
603 13
700 S
800 I
900 5
1100 U
1200 10
_1J>
15
13
13
15
15
13_
15
1
11
LQ
10
10
1300 10 11
1400 10 11
1500 12
1600 11
1700 U
Id 00 9
1900 10
2000 1J
2100 10
P70i) 14
2300 11
11
.11
11
.1P_
9
8
9
1
14
1 (direction) (degree) (mph)
HEAS CALC MgAS CALC ME_AS_CALC_
NNE NNW 202.5 165.7 S.n 1.5
E
SSW
W
ENE
_.WNH
ESE
NE
ESE
W
SW
... SW
SW
SW
w
wsw
sw
ssw
sw
sw
SW
NW
wsw
NNW 270.0 161.4 4.0 2.7
WNW 22.5 106.0 3.0 0.8
MNW ->0.0 111.6 3.0 2.0
N 1 10.0 190. 7 5.0 1.9
NNW 247.5 162.5 6.0 1.1
.WNW 112.5 110.6 4.0 2.6
NNW 292.5 164.4 4.0 1.9
NNE 225.0 196.0 2.0 0.6
WSW 292.5 63.9 2.0 0.4
SW 45.0 49.1 6.0 4.3
SW 45.0 51.6 8.0 5.5
WSW 45.0 62.9 10.0 5.9
WSW 45.0 61.2 11.0 6.5
WSW 90.0 59.2 12.0 6.6
_H S W 6 1. .5 5 8 .i__Ll ..0 6.. J2_
WSW 45.0 66.3 B. 0 4.7
SSW 45.0 19.0 6.0 1.7
S 45.0 3.3 4.0 1.1
SSW 45.0 31.5 2.0 0.3
NW 67.5 127.6 1.0 0.9
92
-------
Date: September 29, 1969
Station: COMM
Exponent Used: 1.00
Wind Direction
Wind Speed
HOUR
0
100
200
300
400
500
600
700
800
900
1000
i too
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200.
2300
(point)
MEAS CALC
16
15
12
14
2
15
13
15
1
13
10_
11
_.ll
12
12
12
12
12
. 11
10
9
10
9
11
16
15
12
13
1
11
13
1
13
13
11
11
1.1
12
12
12
11
12
11
10
11
10
12
(direction) (degree)
MEA5 CftLC MEAS CALC
-N
NNW"
w
NW
NS
NNW
WNW
NNW
NNF
WNW
S W
WSW
wsw
w
w
w
w
w
wsw
SW
ssw
SW
SSW
wsw
N
NNW
W
WNW
NNE
WSW
WNW
NNE
WNW
WNW
wsw
WSrf
.wsw.
w
w
w
wsw
w
wsw
sw
wsw
SW
N
w
130
157
90
"135
.225
157
1 12
157
202
1 12
45
67
67
QO
<50
90
on
90
67
45
22
45
??
67
.0
.5
.0
.0
.0
.5
.5
.5
.5
.5
,0
.5
.5
.0
.0
.0
.0
.0
.5
.0
.5
.0
.5
.5
1«7.
148.
37.
108.
198.
74.
105.
213.
120.
102.
77.
71.
75.
79.
79.
85.
76.
84.
76.
53.
57.
51.
176.
88.
6
8
4
2
9
0
3
2
2
4
A
0
4
0
6
4
1
7
2
7
2
2
3
6
(mph)
MEAS CALC
4
5
4
4
6
6
6
3
3
"" 3
7
8
9
11
12
12
_H
9
7
5
4
2
1
2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
2.1
1.4
1.5
2.2
3,8
1.2
2.8
1.6
1.3
1.4
3.2
4.8
_6.3
7.5
8. 1
3.2"
7.9
5.9
4.2
3.2
1.6
1.0
0.8
0.8
93
Date: September 29, 1969
Station: CAP
Exponent Used: 1.00
Wind Direction
Wind Speed
(point) (direction) (degree) (mph)
HmiR MEAS CALC MEAS CALC MEAS CALC MEAS CALC
0 2
100 10
200 14
300 14
400 2
500 12
600 16
70J 4
800 10
900 12
1000 1?
uoo 12
1200 12__
1300 12
1 4 0 J 12
1503 12
16OO 12
1700 12
1800 12
1900 10
2000 8
2100 8
??OU 16
2300 10
16
15
12
13
14
12
16
16
13
_ 10
11
11
11
11
12
1 1
12
11
10
10
10
12
13
NE
SW
NW
. N 225.0 178.7
NNH 45.0 165.3
W 135.0 96.3
NW WNW 135.0 111.6
.NE .....NNE 225.0 206.7 ..
W
N
E
SW
W
w
w
w
w
w
w
w
w
w
SW
s
s
N
SW
NW 90.0 144.0
W IflO.O 99.0
N 270.0 132.9
N 45.0 1B1.4
WNW 90.0 113.6
SW 90.0 54. 4_
WSW 90.0 57.5
.WSW 50.0.. .61..8.
WSW 90.0 70.9
WSW 90.0 76.7
W 90.0 83.5
WSW 90.0 76.3
W 90.0 85.2
WSW 90.0 69.2
SW 45.0 55.3
SH 0.0 45. 8_
SW 0.0 55.7
W 1SO.O 86.9
WNW 45.0 114.2
J>..0_2..4_
4.0 2.6
3.0 2.2
4.0 2.5
5.0 4.5
5.0 1.7
4.0 3.5
2.0 1.6
3.0 1.3
"5.0" 1.4
_6..Q 3..4_
8.0 4.9
_9...0_.6.5._
9.0 6.6
_9.0 ...7.JL
8.0 7.7
_B..O._A,..8_
5.0 5.2
6.0 3.7
4.0 2.5
3.0 1.4
2.0 0.9
_2,J3 O..L.
2.0 0.8
94
-------
Date: September 29, 1969
Station: LONB
Exponent Used: 1.00
Wind Direction
Wind Speed
HOUR
0
100
200
300
400
500
600
703
800
900
1000
1100
1200
1300
1403
1500
1600
1700
ieoo
1400
2000
2100
2200
2300
(point)
MEAS CALC
1
13
12
1
1
12
13
14
12
12
13
12
12
12
12
12
12.
12
12
13
13
14
1
15
15
15
12
12
1
11
... M
16
14
13
12
12
12
12
12
12
12
12
12
11
11
11
12
13
(direction) (degree)
MEAS CALC MEAS CALC
NNC
WNW
W
NNE
NNE
W
WNW
NW
W
W
WNW
w
w
w
w
w
w
w
w
WNW
WNW
NW
NNF
NNW
NNW
NNW
W
W
M'JE
WSW
WNW
N
NW
WNW
W
W
w
w
w
w
w
w
w
wsw
_wsw
wsw
w
WNW
202
112
90
202
70?
90
11?
135
90
90
11?
90
90
90
90
90
90
90
90
"112
1 12
135
?n?
157
.5
.5
i.O
. 5
.5
.0
.5
.0
.0
.0
.5
.0
.1
.0
.0
.0
.0
.0
.0
.5
.5
.3
.5
. 5
162.7
147.6
90.6
96.9
209.2
73.2
110. 3
1«2.6
133.4
102.8
82.2
31.
89.
95.
98.
99.
85.
9B.
88.
58.
60.
?0.
97.
106.
3
4
4
0
o"
I
3
0
3
2
8
0
5
(mph)
MEAS CALC
_ 2
2
2
2
6
2
3
2
3
"" 4
7
5
8
"10
10
~13
10
7
3
6
5
2
1
1
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
...Q.
.0
. o.
.0
.0
.0
.0
.0
. o
.0
.0
.0
.0
.0
1 .8
~2.4
2.5
2.7
4.5
2.7
4.3
2.2
2.0
2.0
4.0
5.2
7. 0
~~9.0
9. 7
9.4
9.4
8.2
6.0
3.9
2.5
1.5
.0.1.
0.9
95
Date: September 29, 1969
Station: WHTR
Exponent Used: 1.00
Wind Direction
HOUR
0
100
200
300
500
600
700
800
900
i onn
1100
1?(M
1303
1400
1503
1 6 DO
1700
1800
1900
2000
(1
MEA'
14
13
IS
13
J.2_
13
It
15
M
3
1 1
11
| ->
12
1 ?
12
1 ?
12
| 1
9
8
2100 12
2200 15
2300
15
joint)
>_CAL.C_
16
I
11
13
2
12
13
I
15
11
1 1
11
_11
12
12
12
12
12
1 1
10
10
12
15
13
(direction) (degree)
MEAS CALC MEAS CALC
NW
WNW
N
WNW
W
WNW
NW
NNW
WNW
S
wsw
wsw
w
w
w
w
w
w
wsw
ssw
S
N
1.3.5.. .0..
NNE 112.5
WSW 180.0
WNW 112.5
_tJE -90, P
W 112.5
WNW 135.0
NME 157.5
NNW 112.5
wsw o.o
WSW 67.5
WSW 67
-HSH 90
W
w
w
w
w
wsw
SW
SW
90
90
90
90
90
ft?
.5
.0
.3
.0
.3
.0
.0
.5
22.5
0.0
H W 90.0
_-NNW.._. NNH...157.5.
NNW
WNW
157.5
174.
193.
59.
108.
.2.2.1...
99.
10S.
199.
151.
78.
69.
74.
77.
30.
87.
94.
..86.
89.
74.
43.
49.
6
/
2
8
S_
6
8
o
3
3
3.
7
9.
9
9
1
8
6
4
0
3
101. I
..158.4
116.5
Wind Speed
(mph)
MEAS CALC
27
1.
2.
i_».
4.
3.
4.
2.
2.
fc.«.
5.
6.
6.
6.
6.
6.
4.
3.
o_
.1....SL
0 1.7
0 1.3
0 1.4
0 3.2
0
0 .
0
0
0
0_.
1 1
o p o o'
1.0
3.2
0.9
o.a
0.5
.2...2_
4.2
_5._1_
7.1
7.2_
0 7.6
.0 7,.2_
0 6. 1
0 3.7
3.0
__.UQ..
1.0
I.. 0_
1.0
2.0
1.2.
0.5
_0.
-------
Date: September 29, 1969
Station: LAH
Exponent Used: 1.00
Wind Direction
Wind Speed
(point) (direction) (degree) (roph)
HOUR M EA5_C AlikE A S _CAiC_JlEAsJb.lC ttEA.S_CAL
-------
Date: September 29, 1969
Station: POMA
Exponent Used: 1.00
Wind Direction
Wind Speed
HOUR
0
100
200
300
400
500
600
700
800
900
1000
1 100
1200
1300
1400
1500
1600
1700
1800
1900
20JO
2100
2200
2300
(point)
MEAS CALC
15
14
5
10
1
4
7
5
S
11
12
14
14
13
14
13
14
13
13
14
1
3
2
13
12
2
4
6
12
5
f>
4
4
4
12
12
11
12
12
12
11
11
11
11
8
4
4
3
(direction") (
MEAS CALC P.EA
NNW
NW"
ESE
SW
MN =
E
SSE
ESE
SE
WSW
W
NW
NW
WNW
NW
WNW
NW
WNW
WNW
NW
NNE
ENE
ME
WNW
W
. NE
E
SE
W
KSE
SE
E
E
f.
W
W
...WSW
w
w
w
wsw
wsw
wsw
wsw
S
E
f__
6NE
157.
135.
2"2.
45.
202.
270.
337.
292.
315.
67.
_90.
135.
135.
112.
135.
112.
135.
112.
112.
135.
202.
247.
_?25.
112.
d(
i
5
0
5
0
5_
3~
5
5
T
5
0
0
T
5
0
5
0
5
5
0
5
5
0
S
;gree)
CALC
85.
216.
273.
325.
90.
300.
315.
265.
270.
272.
31
ao.
78.
82.
79.
79.
77.
""76.
71.
65.
350.
259.
262.
256.
3
5
8
5
0
4
0
7
0
4
4
0
2
4
2
I
1
1
2
4
3
1
0
5
(mph)
MEAS CALC
3.
2.
2.
2.
2.
2.
3.
2.
2.
2.
2.
4.
4.
4.
6.
6.
6.
4.
5.
3.
2.
1.
2.
1.
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
2.4
3.8
4.3
3.0"
Z.6
2.2
6.4
3. 7
2.8
3.6
_3.0
5.3
6.3
7.5
8.9
9.7
10. 0
7.8
4.9
2.6
2.0
1.7"
1.2
2.2
99
Date: September 29, 1969
Station: SNA
Exponent Used: 1.00
Wind Direction
HOUR
0
100
200
300
400
500
600
700
800
900
i.ooa_
1 100
1200_
1300
1400
1500
1600_
170J
IbOO
1900
2000
2103
220J.
2300
(point)
_ttEAS_C-AL£.
_7._
8
_12
15
3
7
11
15
16
_^3_
12
._!!_
11
.-U
11
_.ll_
11
1 1
10
10
11
_11_
10
15
16
15
15
3
15
12
8
5
8
12
._U
10
10
11
12
12
16
12
12
12
(direction) (degree)
ym r.Ai r. MFAS CALC
SSE
S
w
NNW
ENE
SSE
WSW
NNW
N
.NNW
N
NNW
NNW
FNE
NNW
W
S
ESE
337.
0.
90.
157.
247.
337.
67.
157.
180.
NW S 135.
WNW. WSW__.l 12 .
W W 90.
W SW WSW ._ 6 7 .
WSW SW 67.
WSW SW 67.
WSW
WSW
wsw
SW
SW
wsw
wsw
SW
wsw
w
w
N
W
W
W
w
67.
._67.
67.
67.
5 1.5.7.3
0 180.
0 157.
5 157.
5 247.
5 157.
5 90.
5 0.
0 292.
0 0.
5 67.
0 90.
5 67.
5 45.
5 45.
0
5
5
5_
5
0
0
5
0
5_
0
.5_
0
0
5 67.5
5 Q0. Q_
5 90.0
5 90.0
45.0 180.
45.0 90.
0
0
Wind Speed
(mph)
2_,_0_ 1.0
1.0
2.0
3
3
2
1
I
2
4
6
5
5
4
3
2
1
.
67.5 90.0 2.
67.5 90.0 1.
45.0 90.0 1.
0
0
0
0
6
0
0
0~
o""
0
b
"o~
o__
b
0
0
_0_
0
1.0
1.0..
1.0
2.0
2.0
2.0
1.0
1.0
i.o
2 ! 0~~
2 . 0~
3.0
4.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
100
-------
Date: September 29, 1969
Station: RB
Exponent Used: 1.00
Wind Direction
HOUR
0
too
200
300
400
500
600
700
800
Wind
Speed
(point) (direction) (degree) (mph)
MFAS CALC MEAS CAtC MEAS CALC MEAS CALC
10
10
10
9
?
10
12
13
11
900 11
1000 10
1100
1200
1300
1400
1500
160J
1700
1800
1900
2000
2100
2200
2300
9
10
10
10
10
9
. 9
9
9
3
8
8
9
1
13
13
12
1
12
12
16
12
12
13
12
12
12
12
12
12
12
12
11
12
11
7
1
sw
sw
SW
ssw
NE
SW
W
WNW
WSW
WSW
SW
SSW
SW
Sw
SW
SW
SSW
ssw
ssw
ssw
s
s
s
ssw
NME
WNW
WNW
W
NNE
W
W
N
W
W
WNW
W
W
W
W
W
W
W
W
wsw
W
wsw
N5
NNE
45.0
45.0
45.0
22.5
225.0
45.0
90.0
112.3
67.5
67.5
45.0
22.5
45.0
45.0
45.0
45.0
22.5
22.5
22.5
22.5
0.0
0.0
0.0
22.5
202.5
103.4
102.7
96. 5
212.4
91.5
101.2
173.4
97.6
95.2
101.9
83.0
86.8
90.2
91.2
90.3
80.3
92.8
84.0
77.5
92.9
68.4
221.8
203.5
2.0
2.0
4.0
5.0
6.0
3.0
2.0
3.0
3.0
4.0
3.0
5.0
8.0
7.0
8.0
8.0
7.0
5.0
6.0
5.0
7.0
6.0
5.0
4.0
1.8
1.1
2.7
2.2
6.1
4.0
3.'.
1.1
1.9
3.5
5.1
5.4
8. 1
9.2
9.6
10.4
9.«
7.4
4.9
3.5
2.1
0.6
1.4
1.2
101
e: September 29, 1969
tion: VEN
oncnt Used: 1.00
Wind Direction
HOUR
0
IOJ
200
300
400
500
600
700
800
900
innn
1100
1200
1300
1400
1500
IbOO
1 700
1800
1900
2000
2100
2200
2300
(point)
MEAS CALC
1
7
I?
10
12
10
13
1 1
12
1 1
10
11
11
11
11
11
10
9
3
6
7
5
5
I
10
11
10
2
11
13
13
10
12
11
11
11
11
11
11
10
10
~~ 10
7
6
9
(dir<
_ME.AS_
NNE
SSF.
W
SW
NE
W
SW
WNW
WSW
Wind
Speed
;ction) (degree) (mph)
TAIC MEAS CALC MEAS CALC
NNE 202.5
SW 337.5
WSW 90.0
SW 45.0
NF 225.0
WSW 90.0
WNW 45.0
WNW 112.5
SW 67.5
W W 90. J
-WSH. WSW, .67.5
SW
HSH
WSW
WSW
WSW
WSW
sw
ssw
s
SF
SSE
ESE
ESE
WSW 45.0
WSW 67.5.
WSW 67.5
WSW 67.5
WSW 67.5
SW 61.5
SW 45.0
SW 22.5
SW 0.0
5 315.0
SSE 337.5
SE 292.5
SSW 292.5
.207..9
46.3
59.3
54.7
227.9
63.6
116.0
105.3
36.4
79.2
70. 3
"58.7
. .63.6. ..
68.9
68. 5
65.9
49.2
52.6
52.7
36.0
10.3
347.1
"' 29. 0~~
1.0
2.0
"4.0"
8.0
7.0
3.0.
1.0
2.0
5.0
6.0
10.0.
10.0
11. 0
11. 0
_3.0_
6.0
. 7.0.
4.0
.5.0.
5.0
_3 ..0.
2.0
...O.l.
l.S
~T.~o~
J..9
2.1
1.1
0.4
1.6
2.4
*Io
.5.. .6
5.2
4.9
5.2
4,7
3.0
2.7
2.3
.2.7
2.2
. O..I_
1.1
102
-------
Date: September 29, 1969
Station: CPK
Exponent Used: 1.00
Wind Direction
(point) (direction) (degree)
HO.U.8 3fAS_CAL.C 1.E.AS.j:4L.C M=_AS_CALC
0_14 R_ NW S. 135.0 . .0.3. _
100 10 3 SW S 45.0 5.0
200 12 11 W WSW 90.0 71.0
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
14
3
11
..1
9
6
8
IS
6
9
7
14
15
15
15
_i*.
12
11
12
14
12
3
2
11
13
5
9
12
14
1?
15
12
14
12
13
11
12
12
_ll
3
3
9
NW
ENE _
WSW
NNE
SSW
SE
S
SE
SE
SSW
SSE
NW
NNW
NNW
NNW
NW
W
WSW
W
NW
W
SNE
. NF
WSW
WNW
ESE
SSW
W
NW
W
NNW
W
NW
W
WNW
WSW
W
W
wsw
fcNE
ENE
SSW
135.
247.
67.
202.
22.
315.
0.
315.
315.
22.
337.
135.
157.
157.
157.
135.
90.
67.
90.
135.
90.
0
5
5
5
5
3
0
0
0
5
5
0
5
5__
5
0
0
5
0
n
o"
258
224
61
104
2S5
r»
80
144
14
153
95
135
97
.1.55
75
90
90
67
238
738
' 12
.6
.2
.6
.9
.5"
.5
. 1
.5
.0
. I
.1
.2
.7
.5
. I
.0
.0
.5
.8
.1
.4
Wind Speed
(mph)
.ME AS. CAIC._
1.0 l.0_
1.0 0.9
1.0 1.4
1
1
2
I
I
I
I
I
1
2
2
4
6
6
4
2
1
2
1
1
I
.0
o_
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
1.1
?.?_
1.7
1.6
1.2
0.6
I. I
0.8
1.3
1-3
1.6
1.2
6.5
7.1
5.5
3.0
2.4
2.4
0.5
0.5
1.4
103
Date: September 29, 1969
Station: RVA
Exponent Used: 1.00
Wind Direction
HOUR
0
100
200
.300
400
(point)
MEAS CUC
16
9
10
500 7
600 10
700 1
800 15
900
1100~
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2300
I
9
10
11
11
11
10
11
10
9
8
9
7
9
16
15
12
14
1
16
14
11
11
11
IZ
12
12
12
1 ?
12
12
11
1 1
12
1 S
13
Wind Speed
(direction) (degree)
MSAS CALC MEAS CALC
NW
N
SSW
sw
NNE
SSE
sw__
NNE
NNW
NNE
S
SSW
Sw
wsw
wsw
wsw
sw
wsw
SW
ssw
S
ssw
SSE
SSW
N
NNW
W
NW
_NNE.
NW
_WNW
N
NW
WSW
HSW
WSW
W
W
W
W
W
W
W
wsw
wsw
135.
180.
22.
45.
202-
337.
45.
202.
157.
202.
0.
22.
45.
67.
67.
67.
_.4.5_.
67.
45.
22.
0.
V 22.
-..NNVLJLJJ..
WNW 22.
0_133
0 150
5 100
0 127
5 205
5 128
0 122
5 182
5 143
?
.4
.8
.6
.5
.9
.9 _
. 6
.4
5 78.7
a_i7..jt_
5 77.6
0 a 1 . 2
5 86
5 89
5 93
5 91
0 80
5 58
0 56
5 87
5_i.56
5 114
.0
. L
.4
.4
.3
.3
.6
.0
. q
.8
(mph)
M£AS CALC
?
5
3
5
4
5
3
3
3
4
5
6
8
9
7
_1
6
4
2
3
2
.n
.0
.0
.0
.0
.0
. 0
.0
.0
2
I
I
2
3
2
3
I
I
.0 1
-0_2
.0 5
.0 6
.0
.0
.0
t 0
.0
.0
.0
o.....
.0
.0
.0
7
8
9
R
6
4
3
I
0
1
.5
.5
.H
.5
.?_
.4
.8
.5
.0
.6
.a_
.4
.6
.9
.4
. 1
.6
.5
.2
.8
.9
.0
.04
-------
Date: September 29, 1969
Station: ENC
Exponent Used: 1.00
Wind Direction
Wind Speed
(
HOUR !1E_A
0 9
100
200
300
500
600
700
800
900
i.u.oa_
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2300"
9
4~
3
9
9
5
7
13
13
13
1 3
13
1 3
13
17
12
12
12
11
5
5_
9
point)
5 CAUL
5
12
2
2
12
14
6
10
10
3
9
10
9
12
12
13
11
11
11
10
10
g
(direction) (degr
MEAS CMC ME.M_CALC
SSW ESE 22. S 296.
SSW
SW
E
F_NF..
SSW
SSW
ESP
SSE
WNW
WNW
WNW
WNW
WNW
WNW
WNW
W
W
W
W
wsw
ESE
SSW
S
W
NE
W
NW
SE
SW
SW
S..
SSW
sw
SSW
W
W
WNW
wsw
wsw
wsw
sw
sw
NNW
S
22
45
270
22
22
292
33^
112
112
112
I 12
112
112
1 12
90
90
9O
90
hi
292
292
22
.5
.0
.0
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.0
.0
.0
.0
.5
.5
.5
.5
6.
98.
219.
219.
82.
133.
317.
49.
349.
31.
15.
34.
97.
111.
78.
75.
" 67.
42.
54.
152.
I.
ee) (mph)
MEAS CALC
6_
4
3
q
5
8
4 _
4
6
2
4_
7
0.
4
7
2
7
4
9
9
7
0
7
0
2
2
3
3
3
3
3
2
2
"3
_3
3
5
7
6
6
6
5
3
3
3
"" 2
2
2
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0.
.0
.0
.0
.0
.0
0.
.0
.0
.0
.0
.0
.0
.0
0.1
0.7
l.l
0.2
2.5
2.1
1.6
0.3
0.5
l.l
0.3
1.8
1.4
2.2
1.6
5.3
...5, .3
3.4
2.1
1.1
1.2
0. 3
0.2
0.5
105
Date: September 29, 1969
Station: BKT
Exponent Used: 1.00
Wind Direction
Wind Speed
HdtlR
0
100
200
300
400
500
600
700
800
(point)
MEAS CALC
12
15
2 15
4 5
6
6
6
4
4
900 4
LOOO_JL2
1100 12
1?00 12
1300
1400
1500
1.6 00_
1700
1800
1900
2000
2100
7?00
2300
12
12
12
12
12
12
d
4
4
4
10
I
4
8
5
6
10
_JL2
13
1.2
12
13
12
12
11
12
13
3
3
2
15
(direction) (
_MEAS_:CAL£ M.EA
H NNW OQ.
NE
E
SE
W
SE
SE
E
E
E
W
W
W
W
W
W
W
H
W
W
S
E
E
E
NNW
SW
_N.NE_
E
S
ESE
SW
K
WNW
H
W
WNW
W
W
WSW
W
WNW
EN5
ENg
NNW
225.
270.
315.
?0.
315.
315.
270.
270.
270.
90.
90.
90.
90.
90.
'di
S.
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
agree)
CALC ME
154.9 3
152.5
29". 0
52.3
193.4
270.0
353.0
282.4
304.4
50.9
_94.2,
111.0
101.1
89. 1
4
5
4
3
2
9
5
3
4
6
7
8
10
90.0 34.0 11
__90.a 8.8. .9 12
90.0 73.3 9
90.0 78.9 7
90.
0.
270.
_21.CU
270.
0
0
0
.)
0
103.4
249.2
241.6
-2.34,9
lbl.3
5
2
1
3
(m
AS.
.0
.0
.0
.0
".V
.0
.0
.0
.0
..0
.0
.0
.0
.0
ph)
-C.A.UL-
2.0
2.
2.
2.
I.
I.
1.
1.
1.
2.
4.
4.
.0 5.
..Q i.
.0 4.
. 0 3.
.0 0.
.0 0.
.0 1.
. o o".
3
0
2
4
5
4
I
o
2
8
3
0
2_
I
4
5
3
I
7
a
106
-------
Date: September 29, 1969
Station: LACA
Exponent Used: 1.00
Wind Direction
Wind Speed
(point) (direction) (degree) (mph
HOUR HEAS' CALC ME 4 S_C A L£ M M S_£ A L£ ME. A S_C
0 15 16 NNW N 157.5 190.5 2.0
100
200
300
400
500
600
700
800
900
L000_
1100
1300
1400
1500
1600.
1700
1800
1900
2000
2100
7?no
2300
15
15
15
_1&
15
15
15
-------
M
O
O
2
E
2
£
Ul
0
UJ
*"
QD
O
O
f\)rxjfVJ^-h-*-W.~f-»-U»~W
ISJ * 'C vO'2u-4O>Ui'-C-Wf\J> O >O
ooooco'ooooooco
OOGO'OOGOCOOOGCJ
| |
2 v/> a£ z: i XT 1 si i
22t/ir 2 222Z2222l/>
K c c :*:*:, =cs;*:;c;i;s:,5:ac
i J
J* iTt/Jt/it/iSC'^t/l-^l/lt/lCOv^l/l
£ £ *; £ £ !£££££££
: i
oJUlNJO" ''w.JWOJ^W' «^«-t*
ui-j^o^j^uiuijiiNJuifvroui
O Ul Ul O Ul Ul |O O O U". O Ul \j\ O
o- i\j t\j o* ooi-j -^'e* o* 'O1 o* O1
Ui'OWO'OJ3|>O'
CDO-uaw-j^^Ouiru^^i^ro
f »-!H-
OOOOOOOOOO^OOO
' ' [
ii i i
a) -j a* ui
O O 0 O
0 O 0 O
2 2
Z 2 2 '-"
m s. ac
s: 2 a:
;* z z: 2
£ £ £
0 0 Ul -f*
o r^> -J ui
O U". Ul O
o * ^
--4 ^O O" sO
i hJ OO O
o o o o
O r\» N)
i
^ UJ f\J »-»
O 0 O 0
00,000
j
1
^12' 2 3C
22222
in ac tn a:
2 '2
Z £ '(/> Z ^
Tl ,£ £
-f^ Ul CD O ^*
Ul Ul O Ul *U1
O -O-f* -J O*
-^ 4> UJ ^» U»
CT1 O1 \Q V/l <^
0 O(0 O 0
1
o o o »-
X
D
73
2
m
o
>3
r- r+
< f\i
m M'
So
o-
OH-
r~O
O^
*^
i'
my-s
^M
i>O
r~o
n
3C
m
5^
03
o
H'
3
O.
D
O
O
*"+
0
3
^
3
O.
rn
a
a.
m in a
x rt a
X) 0) rt
O rf t>
3 H-
O O
3 3
r+ C/)
O "71 O
a. 1-1 g
o*
Oi
to
APPENDIX 2.
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS (WIND SPEED)
RESO PASA AZU WEST ELH COW CAP LONB WKTR UH ANA POKA SNA
VEN CPK OVA ENC BKT IACA COM KFI
KSD
PASA
AZU
WEST
ELK
COW
CAP
IONS
WHTR
LAH
ANA
POHA
SNA
RB
VEN
CPK
RVA
ENC
BCT
LACA
COMA
KFI
.
0.66
0.79
0.44
0.70
0.60
0.38
0.62
0.54
0.49
0.73
0.70
0.49
0.51
0.50
0.92
0.47
0.53
0.69
0.06
0.67
0.68
0.66
-
0.80
0.63
0.86
0.83
0.62
0.84
0.75
0.70
0.91
0.82
0.70
0.77
0.76
0.81
0.76
0.76
0.74
0.53
0.78
0.86
0.79
o.eo
.
0.76
0.96
0.89
0.76
0.82
0.89
0.83
0.85
0.96
0.83
0.87
0.84
0.89
0.87
0.88
0.87
0.57
0.90
0.95
0.44
0.63
0.76
-
0.76
0.82
0.90
0.79
0.83
0.8S
0.61
0.76
0.89
0.87
0.77
0.53
0.72
0.76
0.62
0.77
0.81
0.72
0.70
0.86
0.96
6.76
-
0.92
0.73
0.83
0.94
0.87
0.84
0.92
0.87
0.88
0.89
0.85
0.91
0.91
0.80
0.69
0.89
0.9S
0.60
0.83
0.89
0.82
0.92
-
0.90
0.91
0.84
0.94
0.88
0.90
0.94
0.85
0.87
0.76
0.95
0.92
0.79
0.72
0.97
0.95
0.38
0.62
0.76
0.90
0.78
0.90
'-
0.83
0.77
0.97
0.67
0.77
0.97
0.88
0.90
0.54
0.84
0.85
0.59
0.79
0.87
0.79
0.62
0.84
0.82
0.79
0.83
0.91
0.83
-
0.71
0.86
0.82
0.85
0.86
0.88
0.81
0.79
0.84
0.91
0.76
0.58
0.93
0.87
0.54
0.75
0.89
0.83
0.94
0.84
0.77
0.71
.
0.85
0.68
0.84
0.85
0.87
0.83
0.68
0.84
0.82
0.71
0.80
0.80
0.85
0.49
0.70
0.83
0.89
0.87
0.94
0.97
0.86
0.85
-
0.73
0.80
1.00
0.88
0.92
0.63
0.89
0.93
0.65
0.82
0.91
0.86
0.78
0.91
0.85
0.61
0.84
C.88
0.67
0.82
0.68
0.73
0'.87
0.73
0.68
0.74
0.88
0.77
0.73
0.78
0.44
0.85
0.88
0.70
0.82
0.96
0.76
0.92
0.90
0.77
0.85
0.84
0.80
0.87
-
0.80
0.86
0.79
0.86
0.89
0.83
0.91
0.54
0.92
0.95
0.49
0.70
0.83
O.B9
0.87
0.94
0.97
0.86
0.85
1.00
0.73
o.'eo
-
0.88
0.92
0.63
0.89
0.93
0.65
0.82
0.91
0.86
0.51
0.77
0.87
0.87
0.83
0.85
0.83
0.88
0.87
0.83
0.6B
0.86
0.83
-
0.91
0.72
0.84
0.89
0.69
0.75
0.85
0.84
0.50
0.76
0.84
0.77
0.89
0.87
0.90
0.81
0.33
0.92
0.74
0.79
0.92
0.91
-
0.68
0.86
0.89
0.59
0.80
0.81
0.86
C.92
C.81
C.89
C.53
;.es
C.76
0.54
0.79
0.63
0.63
O.BB
0.86
0.63
0.72
0.63
-
0.63
0.73
0.78
0.25
0.80
0.83
0.47 0.58
0.76 0.76
0.87 0.83
0.72 0.76
0.91 0.91
0.95 0.92
0.84 0.85
0.84 0.91
0.84 0.82
0.89 0.93
0.77 0.73
0.89 0.83
0.89 0.93
0.84 0.89
0.86 0.89
0.68 0.73
- 0.93
0.93 -
0.81 0.77
0.74 0.70
0.92 0.93
0.96 0.92
0.69
0.74
0.87
0.62
0.80
0.79
0.59
0.76
0.71
0.65
0.78
0.91
0.65
0.69
0.59
0.78
0.81
0.77
-
0.33
0.85
0.89
0.06
0.58
0.57
0.77
0.69
0.72
0.79
0.53
0.80
0.82
0.44
0.54
0.82
0.75
0.80
0.25
0.74
0.70
0.33
-
0.60
0.64
0.67
0.78
0.90
0.81
0.89
0.97
0.87
0.93
0.80
0.91
0.85
0.92
0.91
0.85
0.81
0.80
0.92
0.93
0.85
0.60
.
0.94
0.68
0.86
0.95
0.72
0.9S
0.95
0.79
0.87
0.85
0.86
0.83
0.95
0.86
0.84
0.86
0.83
0.96
0.92
0.89
0.64
0.94
.
-------
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS (WIND DIRECTION)
R£SD PASA A2U WEST ELM CC*W CAP LON3 WHTR LAN ASA POMA SNA PS VEN CPK. RVA ENC BKT Ua COMA KFI
PESO
PASA
AZU
WEST
ELH
OWN
CAP
LONB
WHTR
LAN
ANA
P0.1A
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COKA
KFI
-0.
-0.
0,
-0.
-0.
0.
0.
0.
0.
-0.
-0.
0.
0.
0.
0.
0.
0.
-0.
-0,
,29
,37
.09
,35
28
,39
,45
.39
,04
.11
,05
,07
24
,11
,07
,00
45
36
.39
0.43
0.
64
-0.
0.
0.
0.
0.
0.
' 0.
0.
0.
29
.
49
24
67
89
14
12
48
35
0.00
0.
0.
0.
0.
-0.
0.
73
24
41
45
23
38
-0.09
0.
0.
0.
-0.
71
69
18
17
-0.
0.
0.
0.
0.
-0.
0.
-0.
.37
.49
-
,17
,77
52
05
.18
.16
-M3
-.23
0.
0.
0.
0.
-0.
0.
-0.
0.
0.
0.
-0.
.30
24
38
,40
08
24
28
71
79
00
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0,
0.
0.
-0.
-0.
0.
0.
0.
0.
58 -0.
.09
.24
.17
-
.27
,20
.70
.58
,53
.34
,31
,63
.24
.62
.08
.25
.09
04
.63
.26
.17
27
-0.35-0.28 0.39 0.45 0.39 0.04-0.11-0.05 0.07 0.24 0.11 0.07 0.000.46-0.36-0.39
0.67 0.89 0.14 0.12 0.48 0.35 0.00 0.73 0.24 0.41 0.45 -0.23 0.38-0.09 0.71 0;69
0.77 0.52-0.05 0.18-0.16-0.13-0.23 0.30 0.24 0.38 0.40-0.08 0.24-0.28 0.71 0.79
0.27 0.20 '0.70 0.58 0.53 0.34 0.31 0.63 -0.24 0.62 0.08 -0.25 -0.09 0.04 0.63 0.26
- 0.76 0.35 0.35 0.07-0.09-0.33 0.44 0.31 0.65 0.76-0.47 0.580.10 0.83 0.83
0.76 - 0.18 0.14 0.45-0.06-0.39. 0.76 0.24 0.55 0.46-0.16 0.47-0.21 0.78 0.73
0.35 0.18 - 0.89 0.58 0.20-0.03 0.46 0.16 0.77 0.43-0.37 0.320.62 0.39 0.13
0.35 0.14 0.89 - 0.54 0.12-0.13 0.44 0.32 0.76 0.39-0.13 0.260.54 0.35 0.18
0.07 0.45 0.58 0.54 - 0.29 0.05 0.80 -0.06 0.48 0.12 0.02 -0.05 0.09 0.30 -0.01
-0.09 -0.06 0.20 0.12 0.29 - 0.82 0.18 0.05 -0.05 -0.02 -0.06 -0.03 0.33 0.05 0.04
-0.33 -.39 -0.03 -0.13 0.05 0.82 - -0.09 -0.44 -0.41 -0.22 -0.07 -0.50 0.07 -0.14 -0.30
0.44 0.76 0.46 0.44 0.80 0.18 -0.09 - 0.08 0.63 0.11 -0.02 0.13-0.22 0.75 0.49
0.31 0.24 0.16 0.32-0.06 0.05-0.44 0.08 - 0.41 0.17 0.12 0.820.41 0.11 0.53
0.65 0.55 0.77 0.76 0.48 -0.05 -0.41 0.63 0.41 - 0.48 -0.33 0.60 0.29 0.71 0.62
0.76 0.46 0.43 0.39 0.12-0.02-0.22 0.11 0.17 0.48 - -0.64 0.500.51 0.40 0.33
-0.47-0.16-0.37-0.13 0.02-0.06-0.07-0.02 0.12-0.33 -0.64 '- -0.30-0.34-0.33-0.22
0.58 0.47 0.32 0.26 -0.05 -0.03 -0.50 0.13 0.82 0.60 0.50 -0.30 - 0.47 0.35 0.66
0.10 -0.21 0.62 0.54 0.09 0.33 0.07 -0.22 0.41 0.29 0.51 -0.34 0.47 - -0.21 -0.10
0.83 0.78 0.39 0.35 0.30 0.05-0.14 0.75 0.11 0.71 0.40-0.33 0.35-0.21 - 0.84
0.83 0.73 0.13 0.13-0.01 0.04-0.30 0.49 0.53 0.62 0.38-0.22 0.66-0.10 0.84
0.39 0.32 0.74 0.76 0.44-0.13-0.53 0.32 0.61 0.74 0.49-0.16 0.650.66 0.20 0.24
-0.28-0.14 0.70 0.64 0.64.0.11-0.08 0.24 0.19 0.39 -0.03-0.02 0.120.54-0.21-0.37
0.43
0.18
0.00
0.17
0.39
0.32
0.74
0.76
0.44
-0.13
-0.53
0.32
0.61
0.74
0.49
-0.16
0.6S
0.66
0.20
0.24
-
0.6S
0.64
-0.17
-O.S8
0.27
-0.28
-0.14
0.70
0.64
0.64
-0.11
-0.08
0.24
0.19
0.39
-0.03
-0.02
0.12
0.54
-0.21
-0.37
0.65
-
AVERAGE DIFFERENCES BETWEEN' STATION MEASUREMENTS (KIND SPEED)
KSD
PASA
AZU
WEST
ELM
COM(
CAP
Lcaa
WHTR
LAH
ANA
POMA
SNA
R8
VEN
CPK
RVA
ENC
BKT.
LACA
COKA
KFI
.RESD
0.0
1.7
3.4
2.1
4.7
5.7
4.6
4.8
2.6
2.3
1.8
1.9
2.3
3.4
4.9
1.0
3.5
2.4
4.7
2.8
7.7
3.5
PASA
1.7
0.0
3.6
1.2
4.7
5.5
4.2
4.6
2.1
1.5
0.8
1.4
1.5
2.9
4.6
1.1
3.0
1.9
4.8
1.6
7.8
1.4
AZU
3.4
3.6
0.0
3.6
1.5
2.7
2.3
2.4
2.2
2.8
4.2
2.5
2.8
1.8
2.2
3.5
1.8
2.3
2.2
3.5
4.6
1.1
WEST an
2.1 4.7
1.2 4.7
3.6 1.6
0.0 4.8
4.8 0.0
5.5 1.8
3.9 2.3
4.6 2.1
2.0 3.1
1.2 3.8
1.3 5.3
1.5 3.7 .
1.2 3.8
2.8 2.4
4.6 1.7
1.7 4.8-
3.1 2.3
1.9 3.3
4^9 2.2
1.3 4.3
7.7 3.7
3.5 1.9
COW
5.7
5.5
2.7
5.5
1.8
0.0
2.0
1.9
3.9
4.5
6.1
4.5
4.5
3.1
2.1
5.7
2.8
4.0
2.3
5.0
2.5
2.8
CAP
4.6
4.2
2.3
3.9
2.3
2.0
0.0
2.1
2.S
3.0
4.7
3.1
3.0
1.7
1.7
4.5
1.6
2.6
2.6
3.5
4.2
2.5
LOria
4.8
4.6
2.4
4.6
2.1
1.9
2.1
0.0
3.4
3.7
5.2
3.7
3.7
2.3
2.2
4.8
2.5
3.2
2.4
4.4
3.5
2.3
WHT*
2.6
2.1
2.2
2.0
3.1
3.9
2.5
3.4
0.0
1.2
2.6
1.2
1.2
1.4
3.1
2.4
1.5
1.0
3.3
1.6
6.2
2.3
LAN
2.3
1.5
2.8
1.2
3.8
4.5
3.0
3.7
1.2
0.0
1.8
1.0
0.0
1.9
3.6
1.9
2.0
0.9
4.1
1.1
6.7
2.6
ANA
V-8
0.8
4.2
1.3
5.3
6.1
4.7
5.2
2.6
1.8
0.0
1.8
1.8
3.5
5.2
1.2
3.5
2.3
5.3
'1.9
8.3
3.9
POM SNA
1.9 2.3
1.4 1.5
2.5 2.8
1.5 1.2
3.7 3.8
4.5- 4.5
3.1 3.0
3.7 3.7
1.2 1.2
1.0 0.0
1.8 1.8
0.0 1.0
1.0 0.0
1.9 1.9
3.7 3.6
1.6 1.9
2.0 2.0
1.1 0.9
3.7 4.1
1.7 1.1
6.7 6/7
2.4 2.6
RB
3.4
2.9
1.8
2.8
2.4
3.1
1.7
2.3
1.4
1.9
3.5
1.9
1.9
0.0
2.2
3.2
1.3
1.5
2.8
2.4
5.3
1.9
VEN
4.9
4.6
2.2
4.6
1.7
2.1
1.7
2.2
3.1
3.6
5.2
3.7
3.6
2.2
0.0
4.8
2.3
3.1
3.0
4.0
4.1
2.3
CPK
1.0
1.1
3.5
1.7
4.8
5.7
4.5
4.8
2.4
1.9
1.2
1.6
1.9
3.2
4.8
0.0
3.4
2.2
4.9
2.3
7.8
3.4
RVA
3.5
3.0
1.8
3.1
2.3
2.8
1.6
2.5
1.5
2.0
3.5
2.0
2.0
1.3
2.3
3.4
0.0
1.4
2.4
2.5
5.1
1.6
ENC
2.4
1.9
2.3
1.9
3.3
4.0
2.6
3.2
1.0
0.9
2.3
1.1
0.9
1.5
3.1
2.2
1.4
0.0
3.4
1.6
6.2
2.1
BKT
4.7
4.8
2.2
4.9
2.2
2.3
2.6
2.4
3.3
4.1
5.3
3.7
4.1
2.8
3.0
4.9
2.4
3.4
0.0
4.6
3.8
2.3
LACA
2.8
1.6
3.S
1.3
4.3
5.0
3.5
4.4
1.6
1.1
1.9
1.7
1.1
2.4
4.0
2.3
2.S
1.6
4.6
0.0
7.4
3.2
COMA
7.7
7.8
4.6
7.7
3.7
2.5
4.2
3.5
6.2
6.7
8.3
6.7
6.7
5.3
4.1
7.8
S.I
6.2
3.8.
7.4
0.0
4. a
KFI
3.5
3.4
1.1
3.5
1.9
2.8
2.5
2.3
2.3
2.6
3.9
2.4
2.6
1.9
2.3
3.4
1.6
2.1
2.3
3.2
4.8
0/0
-------
APPENDIX 3. MEASURED AND CALCULATED AIR QUALITY
£ £ S
CO O W
Ot Ot to
So
en
O r- CO CO
z;
O
H
GO c~> co CM
ot^-^-*»'CM^**»'O
tocor--.r-.oiotoi*j- to
r-coiocooiocnto
Ot Ot «*
C3 n er.
to co in cn o CM CM
f «» o* «t in **»
tc t*» ^- » to ot u>
oo o f*» <*>
co * f>
O O> cn *
z
o
U
CO
U
z
UJ
U,
U,
Q
g
3
§
t
*
§
°
i
UJ
t-
*
<
0.
"
CM
;i
Ol
CO
0
in
o
"-
In
o
oo
s
f>
o
o
cn
ot
O
o
o
o
fl
o
to
to
^
cn
Cn
in
to
o
r-
O
in
2-
f-
CO
F:
in
m
O
s
cn
CO
o
in
IO
cn
CO
r-.
°
*
CO
o
m
to
S
s
0
CO
f*
f;
CM
O
O
to m -*
co co r?
CO *0 to
-r «o to
0 CM to
in to CM
t*» O O
r- m cn
r in Ot
S 3 5
to
f 0 -»
r»» 10
ass
^ s d
r«. co
10 in cn
to in cn
*> *f m
O CM ot
CM
o»
to
CM
o
s
l/>
CM
o
Sr
5
Ol
o
in
o
5
in
o
o
to
Ot
to
to
s
o
o
in
8
SS
o
0>
K
r^
o
o
o
CO
o
0
o
to
0
to
K
s
in
to
CO
^
to
in
o
to
CO
K
0
O
CM
to
to
K
to
10
5
CO
o
01
CO
o
in
CO
0
0
s
g
in
cn
0
cn
S
CO
CO
*
Ot
CM
2
o
o
*a
CO
o
Q
vo
-
ffi
o
CO
CO
Ot
to
^
<*>
Ot
s
CD
o
o
s
f>
in
CO
to
s'
Ot
3
s
«»>
0
CM
«*>
Ot
o
to
Ol
in
CO
CO
n
10
si
fv.
Ot
Ot
o
s
to
to
tn
r-^
O
01
Ot
ot
Ot
Ot
r-
-
CO
s
s
a
CO
tn
«
o
^
CO
vo
5;
n
Ol
to
CO
in
'^
s
to
f:
CO
GO
d
CM
o
r-. '
o
m
to
S
CO
c
s
0
Ot
g
s
3
oo
o
Ot
s
01
a
n
2
CM
K
S
r.
r^
to
Cn
Ol
£
3
to
CO
in
S
^
^
3
CO
to
CO
o
Ot
CO
^
5
O
Ol
K
Ot
o
Ot
v
s
in
to
CO
^,
s
CO
^_
"*
s
tn
to
0
to
IE
CO
o
«->
3
Date: September 29, 1969
Station: RESD
Exponent Used: 1.00
HOUR
NO
MRAS
"T276~~
IB.O
19.
11.
9.
9.
"8.
11.
7.
1.
I.
1.
0.
C.
0.
1.
1.
I.
1.
2.
4.
7.
5.
8.
0
0
0
0
o"
0
o"
f)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALC
10.7
12.4
11.9
11.7
14.6
17.9
21.3
32.9
33.3
6.5
3.8
o.o'
0.0
0.0
1.9
3.1
4.5
6.9
14.8
16.6
1H.O
21.3
25.3
01
N2
MEAS CALC
2
1
1
1
C
4
4
12
14
1C
17
t
7
4
-t
2
1
1
1
i
.0
.0
.0
.0
.0
.0
.0
.0
".c
.0
.c
.0
.0
.0
.c
.0
.c
.0
.c
.n
.c
C
.0
.0
1.0
1.0
1.0
1.4
0.0
1.0
"1.6"
1 .6
6.5
1C. 9
12.0
13.7
10.8
7.7
4.1
2.4
1.4
2 . ~f
1.0
1.0
l.C
1.0
1.0
MEAS
17.0
14.0
12.0
12.0
11.0
13.0
1 2". 0
13.0
21.0"
17.0
10. 0
4.0
o.o
o.o
0.0
2.0
3.0
3.0
1 4.0
6.0
"7.6
7.0
7.0
7.0
CALC
8.
8.
8.
9.
9.
9.
9.
11.
20".
22.
20.
15.
0.
0.
0.
8.
8.
9.
11.
11.
9.
8.
9.
9.
a
7
7
0
9
7
2
1
1
a
3
5
n
0
0
7
9
7
I
6
3
2
1
6
CO
MEAS
15.0
13.0
9.0"
10.0
9.0
10.0
12.0
16.0
11.0
8.0
b.O
4.0
5.6
3.0
3.0
5.0
5.0
5.0
6.0
7.0
8.0
_s.q
8.0
11. 0
CALC
5.
5.
5.
5.
7.
7.
io.
17.
17.
8.
11.
7.
6.
4.
4.
4.
5.
5.
7.
9.
B.
9.
JO.
2
2
2
6
3
6
8
4
2
5
0
4
9
7
9
2
0
1
3
2
0
4
5
5 * a
5 5 S
113
114
-------
Date: September 29, 1969
Station: BURK
Exponent Used: 1.00
HOUR
NO
MEAS
~19^0
20.0
21.0'
24.0
?7~.'b
29.0
'31.0
34.0
"27.0
14.0
"7.0
3.0
" "b.o
0.0
b.o
1.0
2~.C
3.0
12.0
27.0
27.0
31.0
36". 0
36.0
CALC
~~8~T
9.6
8.
6.
8~.
1C.
14.
23.
20.
_1C.
4.
3.
0.
0.
0.
2.
2."
3.
4.
7.
R.
9.
" 10.
13.
7
9
3
3
9
9
1
5
7"
2
o"
0
0
9
7
5
1
1
3
0
2
0
nz
MEAS
KIT
1.0
1.0
1.0
C.O
1.0
1.0
2.0
4.0
7.0
I 1.0
14.0
2 1.0
14.0
" 1 1 . 0
5.0
?.o"
2.0
2.0
1.0
1.0
1.0
1.0"
1.0
N2
CALC MEAS
~T.6"~
1.4
1
1
o"
I
1
2
5
R
13
16
14
10
6
5
~3
2
1
I
1
1
"l
1
.5
.7
.0
.4
.8
.2
.2
.9
.7
.3
.6"
. 1
.3 ""
.4
.3
.1
.9 "
.2
.4 ~
.2
.2
.2
13.0
12.0
12.0
13.0
14.0"
15.0
15.0
17.0
?5.0
29.0
28~.b~
19.0
0.0
0.0
" 0.0
11.0
io.o
11.0
17.0
19.0
13.0
11.0
14.0
15.0
CALC
"0". T~
8.6
7.8
7.7
7.6
8.1
7.9
10.3
16.5
17.1
13.9"
0.9
O.n
0.0
0.0
5.8
5.9
6.2
6.8
7.3
7.0
6.8
6.6
7.1
CO
MEAS
-g
9
10
11
"12"
13
15
18
17
9
11
10
11
7
7
5
"5
6
12
16
14
16
15
14
.0
.0
.0
.0
".0
.0
.0
.0
.0
.0
'.0
.0
.0
.0
.0
.0
.0"
.0
P
.0
.0
.}
.0
.0
CALC
~6~.
5.
4.
4.
6.
6.
10.
15.
13.
__8.
6.
5.
4.
3.
3.
4.
5.
4.
4.
2
5
4
6
0
4
5
6
2 "
6
8
8
0
2
C
6
0
4
2
4.9
' 5.
5.
1
4
6.C
8.0
115
Date: September 29, 1969
Station: PASA
Exponent Used: 1.00
HOUR
0~
100_
200
300
400
500
600~
700
800""
200_
1000
1200
-.
1400
_LL°o
1600
_1700
1ROO
_1900
2000
2200
2300
NO
MEAS
11
6
3
5
3
2
9
16
2
1
1
0
1
2
1
1
2
5
11
18
17
I'
__13
1
O O O 0
« .
.0
.0
.0
.C
.0
r.C...
1 ' I
o o o o'o c.
.0
.0
.0"
.0
.0"
.0
.0
.0
CALC
8.2
9.9
9.7
9.5
12.1
14.7
19.4
25.4
20.3
12.6
5.5
3.4
c.o'
4.8
2.5
3.0
2.7
3.3
?>. I
10.1
9.6
11.6
14.2
15.3
OZ
ME/IS
3.
2.
2.
2.
C.
2.
2.
2.
9.
17.
2t.
41.
§;.
2C.
" 12.
c.
6.
2.
2.
2.
2.
2.
2.
0
0
0
0
0
0
0
c
0
c
0
0
0
c
b
c
0
0
0
0
c
0
0
0
N2
CALC
1.2
1.3
1.4
1.5
0.0
1.2
1.2
2.1
3.9
8.0
13.7
17.6
is. 2
14.6
"9.0
6.0
3.3
2.C
1.8
1.1
1.1
1.0
1.0
1.0
MEAS
15.0
11.0
9.0
10.0
6.
7.
9.
10.
9.
6.
6.
12.
b.
5.
"8.
6.
5.
6.
9.
13.
13.
13.
13.
11.
o o§o o'o ojo o o o o o
0
0
0
0
o'
0
0
0
CALC
8.6
8.8
8.5
8.1
9.1
0.4
"9.0
12.3
19.7
21.9
20.3
13.0
0.0
7.8
6'." 4"
7.1
7.4
7.1
8. -9
9.1
7.8"
7.1
7.1
8.4
en
MEAS CALC
0
0
0
0
0
0
6
0
"o"
0
0
0
. 0
0
0
0
0
0
0
0
0
0
0
0
.0
.0
.0
.0
.0
.0
.0~
. 0
.0
.0
.0
.0
.0
.0
.0
.0
1 ' !
O O'O O O O
.0
.0
O.C
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.c
0.0
o o|o o o o
o o o o o o
0.0
0.0
b.o"
0.0
0.0
0.0
0.0
0.0
116
-------
Date: September 29, 1969
Station: AZU
Exponent Used: 1.00
HOUR
o"
_ 100_
"200
300
400
500
600
__700
800
goo
lOOO"
1200
__
143C
1500_
"iVoo
_1700
iaoo"
__
2000
2200
2300
NO C7
MEAS
4.0
5.0
5.0
5.0
5'.0
4.0
6.0
4.0
"3.0
1.0
1.0
1.0
0.0
0.0
"b.o"
1.0
i.o"
1.0
" 1.0
3.0
2.0
3.0
4.0"
'..0
CALC
~₯I2
7.4
6.7
7. 1
~S'.'2~
9.9
14. H
19.9
11.5
8.0
3.7
2.4
'" 0 . 0
0.0
0.0
2.5
" 2.2
2.6
4.0
8.4
"l 1 . 5
14.7
17.7
17.1
HE*S CALC
2.
t .
2.
2.
C.
2.
2.
2.
<;.
1 1.
^^'.
24.
"26.
3e.
25.
14.
7.
2.
1.
1.
1.
J.
1 .
1.
0
0
0
0
0
Q
0
C
0
C
b
0
f\
C
0
0
b
C
0
0
C
0
o"
0
"" 2
1
"" 1
1
0
1
1
2
S
1C
~~17
23
" 22
16
10
a
3
3
2
1
1
1
1
1
.2
.9
.9
.6
.0
.6
.6
.3
.0
.7
".4
.2
.1
.0
.3
.0
.9
.2
.2
.8
.6
.6
.6
.6
N2
MEAS
l"3To
15.0
" 14.0
13.0
13.0
12.0
12.0
13. C
16.0
11.0
"' fl'Io
5.0
0.0
0.0
"'"0.0
5.0
">.o
7.0
"11. 0
13.0
"11. 0
11.0
'io.o
10.0
CALC
"~11
10
10
9
9
9
q
13
18
13
""17
12
0
0
" 0
6
"i
7
8
9
9
9
9
9
".8
.7
.3 "
.9
.2
.3
.6
.0
.4
.6
.7
.8
.0
.0
.0
.7
.9"
.3
.8
.1
.3
.2
.2"
.6
CO
MEAS
""976
10.0
9.0
9.0
9.0
10.0
10.0
10.0
11.3
10.0
" 8.0
6.0
7.0
9.0
6.0
6.0
4.0
5.0
7.0
7.0
7.0
8.0
9.0
11.3
CALC
~5
5
5
5
6
6
9
13
11
9
7
7
' 3
3
2
')
<,
3
4
3
" 5
7
"7
8
."7
.3
.3
.1
.4
.7
.4
.6
.0
.2
."8
.0
.9 "
. 1
.9
.5
. i"
.7
.2
.9
.2
.0
.1
.1
117
Date: September 29, 1969
Station: WEST
Exponent Used: 1.00
HOUR
0
100
200
30Q
400
500_
600
700 _
800""
900
1000
_UQP_
1200
_1300_
1400
_L50q
1600
__1730_
1800
_1930__
2000
_2 100
2200
2300
NO
MET ~
AS
6.0
7.0
4,
1,
5^
8,
.0
,0
ro
.0
"15.0
35.0
38.0
6.0.
3.0
0.0
6.
i.
i.
2.
3.
5.
i.
f>.
9.
I.O.
13.
_iir
0
0
0
0
0
0
0
0
0
0
b
0
CALC
10.0
11.3
11.0
10. 1
11.
,6
13.5
lfi.2
23.
17.
J.L,
5.
0.
0.
5.
2.
2.
2.
3.
6.
10.
9.
11.
12.
14.
7
0
8
4
0
0
4
4"
7
6
2
3"
9
9
1
9
1
OZ
MPAS
1-0
1.0
1.0
2.0
ri76
1.0
1.0
l.C
3.0"
5.0
1C.C
12.0
i"c.o "
1C.C
6.0
4.C
2.0
l.C
' 3.0" "
1.0
"1.6
l.C
1.0
1.0
CALC
1.4
1.4
1.7
1.7
0.0
1.3
"1.7
2.4
5.2
8.3
11.7
13.7
13.6
9.5
6.6
5.2
"3 ".6
2.4
""1.5
1.1
1.4
1.1
\~. i
1.1
N2
MPAS CALC
7.0 10.1
7.0 9.0
7-0
7.0
9.0
8.0
"8.0
12.0
21.0
19.0
"T4."0
0.0
o.'o"
8.0
8.0
8.0
"9.0
10.0
9.0"
9.0
~ 9.0"
8.C
a.'o"
7.0
8.l"
e.o
8.
9.
' 9.
11.
17.
18.
16."
0.
o".
7.
5.
6.
67
6.
8.
8.
7.
_J>.
7.
8.
3
3
1
2_
6
5
0
b"~
2
9
4
3
7
3 ~
9
l"
8
1
1
CO
MEAS
4.0
4.0
~3~i _
. n"
3.0
6.0
5. -
r.
9.0
17.
17.
8.
0.
_5.
4 .
4.
4 .
4.
5.
4.
4.
4.
" "5.
5.
6.
8.
0
0
0
o
0
6 ~
0
u
0
0
0
0
0
o'
3__
6
0
CALC
7.0
6. 1
5.6
6.0
6.9
7.9
12.3
14. S
12 . 6"
8.6
~0. 0
6.6
5.1
3. 8
3.8
5. 3
5^2
4.9
5.5~
7.4
6.6
7.4
7. 3
8.4
118
-------
Date: September 29, 1969
Station: LENX
Exponent Used: 1.00
HOUR
b
100
200
300
400
500
600
700
800
1000
_HOO
1200
_1300
~1400
_i5oc
1600
_1700
ieoo
_1900
2000
_2iog
2200
2300
NO
MEAS
~5~7o
3.0
1.0
1.0
2.0
3.0
17.0
20.0
9.0
6.0
4.0
0.0
0.0
0.0
1.0
2.0
3.0
3.0
5.0
5.0
1.0
l.C
3.0
3.0
CALC
""
-------
Date: September 29, 1969
Station: CAP
Exponent Used: 1.00
0~
_t_00_
200
_ 300_
4ob
_ 500_
600
700
800"
_ 90 0_
1000
_
1200
_1300
_l50p_
1600 '
_17C10_
iso a
1900
"2000"
_21PO_
2200
2300
NO
MEAS
s.n
9.0
10.0
9.C
10.0
16. C
16.0
28.0
36.0
30. C
11.0
..5.0
C.O
0.0
2.0
3.0
5.0
6.0
fl.O
1 1.0
12.0
10.0
11.0
15.0
nz
CALC MEAS
9.
<;.
9.
8.
11.
13.
19.
25.
16.
8.
4.
3.
0.
0.
4.
4.
3.
4.
5.
9.
H.
11.
14.
14.
2
8
0
5
n
A
f>
o
A
0
A 1
5
0
0
2
5
7
3
8
0
8
5
I
H
1.0
1.0
1.0
1.0
C.O
i.r.
1.0
2.0
5.0
e.r<
2.C
s.c
f .0
7.0
5.0
2.C
2.0
.0
.0
.0
.0
.0
.C
.r
N2
CALC
1.5
I. A
1.6
l.fi
0.0
1.3
1.5
2.0
4.5
P. 5
13.7
18.0
16.9
12.3
7.7
6.1
3.7
2.2
1.9
1.4
1.4
1.2
1.2
1.2
MEAS
5.
6.
6.
6.
5.
4.
2.
3.
1 1.
19.
18.
10.
0.
0.
5.
6.
7.
7.
5.
4.
4.
4.
3.
5.
0
0
0
n
n
0
0
0
0
0
C
0
0
n
0
0
n
0
0
0
0
p
0
0
CALC
9.
a.
8.
a.
8.
9.
9.
13.
20.
21.
18.
14.
0.
0.
7.
7.
6.
6.
8.
9.
P.
7.
7.
8.
7
g
4
0
7
6
8
3
0
4
7
2
0
0
0
3
9
7
7
2
I
6
R
8
CO
MEAS
i
i
i
i
2
J
7
17
18
0
0
6
3
3
2
6
6
5
4
7
4
4
6
9
.0
.0
.0
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
« 0
.0
.0
.0
.0
CALC
6.7
6.5
6.C
6.2
7.9
8.4
11.9
14.9
12.5
O.C
0.0
6.7
5.1
4.0
3.8
4.2
4.1
4.1
4.8
5.4
6.2
7.1
7. 1
8.0
121
Date: September 29, 1969
Station: LONB
Exponent Used: 1.00
HOUR
NO
MEAS
3.0
3.0
2.0
1.0
1.0
16.0
27.0
26.0
18.0
10.0
9.0
8.0
"b'.o
16.0
i a . o"
21.0
21.0
21.0
"20.6"
4.0
"'"5 . 0"
12.0
16.0
15.3
CALC
7.2
7.9
7.9
7.1
9.9
12.4
20.4
25.2
' 14 . 9
11.0
4.7
3.4
o.o
3.8
2.1
3.2
2.6
2.9
4.6
6.4
" 7.2
9.8
11.8
12.0
OZ
MEAS
1.
1.
1.
2.
C.
1.
1.
1.
1.
2.
2.
t.
2
1.
1.
1.
1.
1.
1.
2.
2.
1.
1.
1.
0
0
0
0
Q
0
0
0
0
0
0
C
6
C
'o
C
0
0
0
C
0
0
0
0
CALC
1
I
1
I
0
1
' "l
2
3
7
13
20
~i
b"
c
0
0
0"
c
0
0
0
3
o""
0
0
0
7.1
7.4
6.8
5.7
7.2
8.3
7.8
11.7
19.1
22.0
22.5
14.9
~0.0
8.2
"7.0
6.5
7.1
6.8
7.9
7.4
6.9
6.2
5.9
6.5
MEAS
2.0
3.0
2.0
2.0
3.0
7.0
9.0
13.0
"11.0
9.0
6.0
6.0
" 6.0
5.0
5.0
5.0
5.0
5.0
4.3
4.0
4~.0
5.0
6.0
5.0
CALC
4
4
4
3
5
6
11
14
12
10
9
6
3
2
2
4
3
3
4
~ 4
4
5
6
.7
.2
.2
.9
.7
.4
.5
.1
.C
.4
.4
.0
".C
.4
.5"
.1
.8
.4
.7
. 1
.0"
.8
.C
.4
122
-------
Date: September 29, 1969
Station: WHTR
Exponent Used: 1.00
HOUR
NO
ME 4$
"loTo
11.0
11.0
10.0
12.0
20.0
30.0
34.0
9.0
3.0
2.0
1.0
0.0
1.0
1.0
1.0
2".0~
1.0
1.0
5.0
"13.0
16.0
15.0
19.0
OZ
CALC MEAS
5
5
5
5
6
8
14
18
"ll
q
4
3
0
ft
"3
4
4
5
"ft
ft
8
12
15
13
. a " i
.7 1
.6" 1
.4 1
.3 C
.2 1
.9 1
.1 J
.8 t
.1 11
.4 "21
. 3 34
.0 3C
.3 1 1
.8 12
.7 7
. 3" 4
.0 ;
.4" 3
.9 2
.3 1
.5 1
.9 1
.9 1
.0'
.0
.C
.0
.0"
.0
.0
.c
.0
.<-.
.'c
.0
.0
.0
. 0
.0
.'o"
.0
.0
.0
.c
.c
~.n
.0
CALC
17s
1.5
1.5
1.8
o.d
1.7
1.5
2.1
3.8
(.ft
14.5
21.9
23.2
17.7
10.6
7.4
""4.1
2.2
1.5
1.5
1.5
1.3
1.4
1.4
N2
MEAS
"9.
9.
" fl.
7.
9.
10.
1 1.
19.
30.
37.
41.
21.
0.
1C.
9.
10.
12.
9.
11.
1 1.
1.3.
10.
" 9.
9.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALC
'~~9.~0
8.8
8.6
7.6
7.5
s.3
7.8
10.7
16.4
16.8
1 6 . C
12.8
0.0
7.7
6.4
6.0
6.7
6.5
7.9
7.9
7.6
7.7
7/5
7.5
CO
ME AS
5
5
5
4
6
7
11
14
11
11
13
0
'2
1
"~1
1
1
I
i
3
4
5
~5
7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
^o'
.0
.0
.0
.0
.0
.0
.0
CALC 1
_"5~.
5.
~ 5.
5.
6^
7.
9.
13.
12.
10.
7.
0.
4.
4.
3.
4.
~~4.
4.
4.
4.
5 .
6.
7.
7.
3
5
1
I
3
3 -
5
7
0
1
I
C
9
5
8
6
6
4
6
6
2
5
1
9
123
Date: September 29, 1969
Station: LAH
Exponent Used: 1.00
100_
_ 3_00_
soc
600 "
700
800
900
1100
1200
1300
1400'
. 1500 _
1700
1800
1900
2000
_J1"0__
_2300_
Ml
2.0
3.0
2.0
3.0
3.0
1-0
"10. 0
13.0
" 8.0
Q.0_
2.0
1.0
0.0
I'.O'
2.0
2.0
3.0
4.0 "
8.0
1C . 0
16.0
22.0
_1 6 . 0
3
CALC
8.4
8.1
8.4
7.5
9.4
13.7
20.8
24.0
11. 0
0.0
3.3
?-6
1.7
0.0
3."3
3.8
3. ft
3. A
4.8"
5.7
9 . 4
12. 9
13.9
15.0
n
MEAS
c.c
0.0
c.c
c.o
c.c
c.c
c.o
c.o
2.0
7.C
14.0
2f.O
""35.0"
2?..r
1 1.0
7.0
4.0
2.C
C.O"
c.o
c.o"
c.c
c.o
c.o
7.
CALC
O.C
0.0
0.0
0.0
O.C
0.0
0.0
c.o
" "4.9
9.9
17.1
24.2
22.9"
1ft. 9
11.9
7.9
4.4
3.3
o.o"
0.0
' 0.0
0.0
0.0
0.0
N2
MEAS
8.0
7.0
7.0
6.0
6.0
7.0
6.0 "
10.0
'""15.0
10. 0
14.0
I 1.0
5.C
3.0
5.6
3.0
5.0
4.0 .
6.0
7.0
"7.0
7.0
7.0
6.0
I
CALC
9.6
9.9
9.2
8.1
9.0
9.5
" 9. "7
13.7
21.T
25.0
24.6
15.9
11.3"
10.4
8.1
8.1
9.0
8.4
"9. 9
9.6
"9.9"
9.0
8.5
8.7
C
MEAS
0.0
0 .0
o.'o
0.0
0.0
0.0
b.6~
0.0
"o.d"
0.0
0.0
c.o
"c.6"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o
CALC
oTo
0 0
~~0.0~~
0.0
0.0 "~
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.c
o.c
o.c
o.c
0.0
o.c
"0.0
o.c
o.c"
0.0
o.c
o.c
124
-------
Date: September 29, 1969
Station: ANA
Exponent Used: 1.00
HOUR
NO
OZ
MEAS CALC
g
6
9
6
0
q
20
21
7
4
1
0
1
1
1
2
1
2
6
4
7
12
12
12
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
n
.0
.0
.0
.0
.0
.0
.0
.0
6.2
6.6
6.1
6.0
0.0
11.5
19.2
22.0
11. 1
6.5
4.2
0.0
1.5
7.1
4.3
5.4
5.4
5.4
5.8
6.3
9.1
14.5
13.2
16.5
ME AS
~oTo
1.0
1.0
c.o
c.o
2.0
c.o
c.c
5.0
7.0
i;.o
31.0
34.0
22.0
17.0
<=.Q
6.0
3.0
1.0
1.0
1.3
1.0
C.C
c.o
CALC
d
i
i
0
0
i
0
0
3
R
14
?1
21
15
Q
7
3
3
2
2
1
1
0
0
.c
.3
.3
.0
.0
.2
.0
.0
.2
.0
.7
.2
.8
.4
.8
.1
.8
.0
.3
.0
.7
.2
.0
.0
N2
MFAS
67
9.
8.
5.
n.
1C.
8.
9.
16.
20.
22.
17.
12.
10.
u.
ft.
7.
10.
11.
10.
9.
9.
8.
7.
0
Q
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
c
0
0
0
0
CALC
"9.1
8.8
8.7
7.7
0.0
8.8
9.1
14.0
21.4
23.2
22.9
15.6
6.4
8.8
6.5
7.5
8.6
7.1
8.5
a.o
8.5
8.2
7.9
8.0
CO
MEAS CALC
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
b.b"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
o.c
0.0
125
Date: September 29, 1969
Station: POMA
Exponent Used: 1.00
HOUR
" b~
100
200
_ 3J50_
400
_ 50C_
600
700
800
_ 900_
10CO
1200
130d
1400
l$qo
1600
J7oo
isoo
1900
2000
2200
2300
NO
MEAS
9.
4.
4.
5.
5.
5.
5.
6.
4.
1.
1.
I.
0.
0.
1.
1.
2.
2.
3.
7.
12.
20.
27.
23.
0
n
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALC
5.
5.
6.
5.
6.
7.
14.
15.
6.
2.
2.
1.
0.
0.
1.
1.
1.
1.
2.
4.
7.
10.
12.
11.
7
9
3
7
2
6
8
9
3
4
0
3
0
0
0
5
5
7
8
9
3
fl
4
7
07
MEAS
3.0
3.0
3.C
2.0
C.O
2.0
2.0
3.0
S.O
16. C
i<;.o
1.4.0
15.0
21.0
21.0
lf.0
t.O
6.0
3.0
2.0
2.0
2.0
2.0
2.0
CALC
1.6
1.5
1.5
1.6
0.0
1.7
1.6
2.6
4.6
10.0
17.4
27.3
2.S
25. C
15.2
8.9
4.8
2.8
1.7
1.3
1.0
1.0
1.0
1.0
N2
MEAS
21.
20.
20.
19.
17.
15.
16.
18.
21.
15.
10.
10.
0.
0.
5.
8.
13.
13.
14.
12.
12.
14.
15.
14.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
0
CALC
9.5
10.5
9.8
8.4
9.8
9.9
9.5
12.7
18.7
13.0
19.2
12.2
0.0
0.0
8.1
S.7
7.5
7.3
9.7
10.5
10.0
9.2
8.6
8.2
CO
MEAS
8
7
7
7
7
7
8
9
9
0
6
5
4
5
6
6
6
5
6
5
7
11
10
9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
CALC
7.5
8.1
7.5
7. I
7.9
a. 9
10.4
11.5
10. 1
0.0
8.?
7.2
5. I
5.1
3.5
3.5
2.9
3.6
4.8
4.7
5.9
6.9
7.5
9.5
126,
-------
APPENDIX 4.
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS (NO)
STATION USD BURK PASA AZU KF.ST LENX COMM CAP LONB X1ITR LAI! ANA POMA
RESD
BURX
PASA
AZU
KEST
LENX
COMM
CAP
LONB
WHTR
LAH .
ANA
POKA
-
0.95
0.75
0.19
0'. 73
0.72
0.95
0.54
0.61
0.92
0.69
0.17.
0.99
0.95
-
0.70
0.19
0.75
0.97
0.71
O.SO
0.19
0.72
0.36
0.93
0.75
0.70
-
0.61
0.92
0.71
0.37
0.61
0.19
0.17
0.91
0.75
0.19
0.19
0.61
-
0.73
0.16
O.J7
0.67
0.92
0.66
0.90
0.91
0.73
0.74
0.64
0.51
0.74
0.79
0.79
0.42
0.63
0.12
0.67
0.73
0.72
0.75
0.92
0.73
.
0.14
0.57
0.61
0.17
0.97
0.94
0.76
0.95
0.97
0.71
0.16
0.14
0.70
0.67
0.93
0.11
0.92
0.95
0.54
0.71
0.37
0.37
0.57
0.70
-
0.01
0.45
0.75
0.16
0.54
0.61
O.SO
0.61
0.67
0.61
0.67
0.01
0.69
0.59
0.61
0.65
0.92
0.19
0.19
0.92
0.17
0.93
0.45
0.69
-
0.71
0.91
0.94
0.69
0.72
0.17
0.66
0.97
0.11
0.75
0.59
0.71
0.16
0.73
0.17
0.16
0.91
0.90
0.94
0.92
0.46
0.61
0.91
0.86
0.19
0.99
0.93
0.75
0.91
0 73
0.76
0.95
0.54
0.65
0.94
0.73
0.19
.
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS (N02)
STATION RBSD BUItIC PA5A AZU VEST LEKX COKM CAP LONB VHTR LAH
PJKA
USD
BURI
PASA
A:U
KEST
LENX
COKM
CAP
LONB
KHTR
LAJI
ANA
POMA
-
0.65
0.15
0.92
0.75
0.7!
0.73
0.24
0.12
0.41
0.61
0.40
0.14
0.6S
O.OS
0.34
0.85
0.12
0.91
0.84
0.74
0.98
O.S4
0.94
0.22
0.11
O.OS
-
0.1S
0.19
,0.29
0.09
O.SO
-0.10
0.02
0.4]
0.12
0.20
0.92
0.34
O.lt
--
O.S2
0.65
0.44
0.12
-0.2J
0.17
0.42
0.06
' 0.9S
0.7S
0.15
0.19
0.52
0.17
0.92
0.73
0.61
0.8S
0.14
0.76
O.SS
0.71
0.82
0.29
0.6S
0.8?
0.<4
O.S6
O.S9
0.12
0.94
0.67
0.71
0.73
0.91
0.09
0.44
0.92
0.14
0.10
0.67
0.93
0.12
0.14
0.44
0.2<
0.14
-0.30
-0.12
0.73
0.56
0.10
-
0.90
0.91
0.62
0.19
-0.03
0.12
0.74
0.10
-0.2J
0.61
O.S9
0.67
0.90
-
0.72
0.43
0.74
0.03
0.41
0.9>
0.02
0.17
0.15
0.12
0.93.
0.91
0.72
-
0.85
0.91
0.25
0.61
0.14
0.43
0.42
0.14
0.94
0.12
0.62
0.43
0.15
-
0.71
0.47
0.40
0.94
0.12
0.06
0.76
0.67
0.14
0.19
0.74
0.91
0.71
-
0.04
0.14
0.22
0.20
0.95
0.55
0.71
0.44
-0.03
0.03
0.23
0.47
0.04
.
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS
STATION RESD BUR* PASA AZU KEST LENX ELM COKM CAP LONB TOTR LAH ANA POKA SNA
CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS
RESD
BUM
PASA
A2U
»EST
LENX
ELH
COKM
CAP
LONB
KHTR
LAH
ANA
POMA
SNA
-
o.ei
0.80
0.66
0.77
0.51
0.66
0.35
0.11
0.39
0.71
0.60
0.62
0.64
0.63
0.11
.
0.17
0.90
0.91
0.14
0.93
0.26
0.76
0.46
0.92
0.96
0.95
0.73
0.19
0.80
0.87
0.75
0.9!
0.85
0.94
0.94
0.16
0.80
0.99
0.85
0.18
0.62
0.86
0.66
0.90
0.75
.
0.90
0.84
0.72
-0.56
0.73
0.32
0.10
0.10
0.10
0.19
0.72
0.77
0.91
0.95
0.90
0.18
0.93
0.76
0.88
0.64
0.96
0.88
O.IJ
0.77
0.91
0.51
0.14
0.15
0.14
O.lt
.
0.14
0.77
0.60
0.67
0.89
0.87
0.90
0.64
0.74
0.66
0.93
0.94
0.72
0.93
0.84
.
0.78
0.65
0.66
0.98
0.97
0.97
0.37
0.94
0.35
0.26
0.94
-0.56
0.76
0.77
0.71
.
0.15
0.97
0.90
0.53
0.75
-0.92
0.74
0.81
0.76
0.16
0.73
0.88
0.60
0.65
0.15
.
0.55
0.13
0.52
0.59
0.75
0.61
0.39
0.46
0.10
0.32
0.64
0.67
0.66
0.97
O.SS
.
0.75
0.51
0.59
0.21
0.54
0.71
0.92
0.99
0.80
0.96
0.19
0.98
0.90
0.13
0.75
.
0.92
0.94
0.64
0.91
0.60
0.96
0.15
0.10
0.18
0.17
0.97
0.53
0.52
0.51
0.92
.
0.98
0.31
0.81
0.62
0.95
0.18
0.80
0.89
0.90
0.97
0.75
0.59
0.39
0.94
0.98
0.52
0.91
0.64
0.73
0.62
0.89
0.77
0.64
0.37
-0.92
0.75
0.21
0.64
0.38
0.32
0.52
0.63
0.89
0.86
0.72
0.91
0.74
0.94
0.74
0.68
0.54
0.91
0.81
0.91
0.52
-
STATION
RESD
BURK
AZU
»EST
IENX
ELM
COMM
CAP
LONB
»KTR
POMA
RESD
0.16
. 0.71
'. 0.14
fl.66
0.54
0.11
0.74
0.92
0.10
0.81
BURK
0.16
-
0.76
0.12
0.47
0.76
0.81
0.71
0.87
0.79
0.73
AZU
0.71
0.76
-
0.64
0.30
0.36
0.80
0.51
0.74
0.73
0.66
WEST
0.84
0.82
0.64
-
o'.36
0.57
0.86
0.97
0.95
0.84
0.87
LENX
0.66
0.47
0.30
0.36
0.21
0.46
0.29
0.45
0.51
0.60
ELM
0.54
0.76
0.36
0.57
0.21
-
0.62
0.60
.0.62
0.85
0.26
COKM
0.88
0.81
0.80
0.16
0.46
0.62
-
0.15
0.94
0.92
0.11
CAP
0.74
0.71
O.SI
0.97
0.29
0.60
0.15
0.81
0.71
0.11
LONB
0.92
0.17
0.74
0.95
0.45
0.62
0.94
0.11
-.
0.11
0.16
KHTR
0.10
0.79
0.73
0.14
0.51
0.85
0.92
0.78
0.81
0.75
POMA
0.88
0.73
0.66
0.87
0.60
0.26
0.88
0.81
0.86
0.75
127
128
-------
AVERAGE DIFFERENCES BETWEEN STATION MEASUREMENTS (NO)
AVERAGE DIFFERENCES BETWEEN STATION MEASUREMENTS (N02)
STATION RESD BURK PASA AZU KEST LtNX COKM CAP LO.VB WITH LAII ANA POMA
STATION USD BURK PASA AZU VEST LENX COMM CAP LONB KHTR LAK
RBSD
BURK
PASA
AZU
»EST
LENX
COMM
CAP
LONB
KHTR
LAH
ANA
POHA
0.0
IS. 2
3.3
3.2
14.2
S. S
13.7
15.7
13.9
11.3
3.3
5.6
2.6
0.0
11.1
10.6
4.5
9.4
11.2
7.9
16,0
12.4
17.6
16.2
4.2
13.3
13.4
15.9
14.6
10.2
2.6
4.8
3.6
19.1
0.0
17.0
16.7
17.9
15.9
14.0
4.2
.8.2
0.9
10.6
17.0
0.0
9.7
9.2
13.9
11.1
13.$
10.9
15.4
13. S
7.5
11.0
10.9
13.3
12.5
1.6
3.6
2.7
6.7
4.S
16.7
9.7
0.0
B.S
6.9
7.4
12. S
9.4.
15.3
9.4
17.9
9.2
8.S
0.0
13.0
13. S
12.2
13.9
16. S
11.2
15.9
13.9
6.9
13.0
0.0
12.0
14.4
12.7
15.6
7.9
14.0
11.1
7.4
13.5
12.0
0.0
11.6
6.3
12.9
16.0
4.2
13.5
12.5
12.2
14.4
11.6
0.0
5.2
3.6
12.4
B.2
10.9
9.4
13.9
12.7
6.3
S.2
0.0
7.3
2.6
17.6
0.9
13.4
6. 7
15.3
16.5
15. «
12.9
3.6
7.3
0.0
RESD
BURK
PASA
AZU
KEST
LENX
COMM
CAP
LONB
KIITR
LAH
ANA
POMA
0.0
9.S
6.1
3.2
4.1
5.1
7.6
9.9
14.6
5.1
6.8
S.O
9.1
0.0
11.0
11.0
7.5
11.1
6.7
3.9
10.6
6.4
1.4
6.8
13.0
0.0
4.4
6.4
2.8
'10.2
16.2
3.7
7.2
7.1
3.2
11.0
4.4
0.0
4.6
3.0
10.1
16.0
4.1
7.1
4.3
4.1
7.3
6.4
4.6
0.0
4.4
5.6
11.0
4.5
3.5
4.8
5.1
11.1
2.8
3.0
4.4
0.0
7.5
15.2
1.8
3.5
6.0
1.3 7.6
3.9 10.5
11.3 6.6
10.2 7.3
6.1 5.4
10.1 S.O
6.6 6.2
6.3 13.3
8.6 4.5
5.4 4.8
1.3 8.7
9.9
6.7
10.2
10.1
5.6
7.5
0.0
9.3
9.0
S.3
8.7
14.6
5.9
16.2
16.0
11.0
IS. 2
9.3
0.0
13.7
.9.6
13.1
S.I
10.6
3.7
4.1
4.5
1.8
9.0
13.7
0.0
5.5
6.3
6.8
6.4
7.2
7.1
3.S
s.s
5.3
9.6
5.5
0.0
7.0
S.O
8.4
7.1
4.3
4.8
6.0
8.7
13.1
6.3
7.0
0.0
AVERAGE DIFFERENCES BETWEEN STATION MEASUREMENTS
STATION RESD BURK PASA AZU KEST LENX ELM COMH CAP LONB KHTR UH ANA POMA SNA
RESD
EUHK
PASA
AZU
«EST
LEHX
ELM
COKM
CAP
LONB
KHT«
LAH
ANA
POKA
SNA
0.0
3.7
11.3
11.8
3.9
5.4
5.9
7.2
3.6
7.6
8.9
10.6
10.4
6.6
4.5
3.7
0.0
10.3
10.2
3.8
3.4
3.3
11.2
4.9
8.3
7.3
7.7
7.8
6.4
2.7
11.3
10.3
0.0
8.4
12.7
14.5
9.9
23.3
13.4
17.2
3.3
7.5
(.2
10.0
10.9
11.8
10.2
8.4
0.0
13.1
14.7
11.9
25.4
13.9
17.8
7.8
8.7
7.7
7.0
11.7
3.9
3.8
12.7
13.1
0.0
2.3
5.8
5.3
1.9
4.9
9.9
11.4
11.3
8.1
4.8
5.4
5.4
14.5
14.7
2.3
0.0
7.7
3.5
3.0
3.3
11.7
13.2
13.0
9.6
6.9
5.9
3.3
9.9
11.9
5.8
7.7
0.0
12.9
7.2
10.8
6.4
6.0
6.7
8.9
3.1
7.2
11.2
23. S
2S.4
S.3
3.S
12.9
0.0
3.3
2.2
20.2
21. 6
22.1
14.6
10. S
3.6
4.9
13.4
13.9
1.9
3.0
7.2
3.3
0.0
4.6
10.9
12.8
12.6
«:<
S.9
7.6
8.3
17.2
17.8
4.9
3.3
10.8
2.2
4.6
0.0
14.5
16.5
16.2
12.4
10.1
8.9
7.3
3.3
7.8
9.9
11.7
6.4
20.2
10.9
14.5
0.0
4.5
3.6
8.3
7.7
10.6
7.7
7.S
8.7
11.4
13.2
6.0
21.6
12.8
16.5
4.5
0.0
2.7
10.3
7.8
10.4
7.8
6.2
7.7
11.3
13.0
6.7
22.1
12.6
16.2
3.6
2.7
0.0
9.2
7.9
6.6
6.4
10.0
7.0
1.1
9.6
8.9
14.6
8.4
12.4
8.3
10.3
9.2
0.0
6.9
4.S
2.7
10.9
11.7
4.8
6.9
3.1
10.3
3.9
10.1
7.7
7.8
7.9
6.9
0.0
AVERAGE DIFFERENCES BETWEEN STATION MEASUREMENTS
STATION RESD BUR* AZU KEST LENX ELM COMM CAP . LONB KHTR POMA
RESD
BURK
AZU
KEST
LENX
ELM
COMM
CAP
LONB
KKTR
rcMA
0.0 4.0
2.9 3.9
3.4 6.1
2.4 5.0
2.7 3.8
3.7 3.4
1.8 4.2
3.3 5.2
2.9 5.5
2.9
0.0 .
3.9
3.7
3.6
4.8
1.9
4.3
2.2
2.6 3.4 2.4
3.8 3.9 3.7
3.1 0.0 2.2
4.0 2.2 0.0
2.1 5.3 4.4
1.4 S.9 4.6
2.4 3.3 2.S
3.3 4.3 3.7
3.8 2.7 2.8
2.7 3.7
3.6 4.8
3.3 S.9
4.4 4.6
0.0 2.9
2.9 0.0
3.0 3.3
2.8 4.0
3.8 4.3
1.8
1.9
3.3
2.S
3.0
3.3
0.0
3.5
1.6
3.3 2.9
4.3 2.2
4.3 2.7
3.7 2.1
2.8 3.8
4.0 4.3
3.S 1.6
0.0 4.3
4.3 0.0
129
130
------- |