EPA-R4-73-030H




July 1973                     ENVIRONMENTAL MONITORING SERIES



                                                        \
                                                  ^^


-------
                                        EPA-R4-73-030H
 URBAN AIR  SHED  PHOTOCHEMICAL
      SIMULATION  MODEL  STUDY
VOLUME  III  -  AUTOMATION  OF  METEOROLOGICAL
      AND AIR QUALITY  DATA  FOR MODEL
                       by

               Mei-KaoLui, D.C. Whitney,
              S.D. Reynolds, and P.M. Roth

               Systems Applications, Inc.
                9418 Wilshire Boulevard
              Beverly Hills, California 90212
                Contract No. 68-02-0339
               Program Element No. 1A1009
           EPA Project Officer: Herbert Viebrock

                Meteorology Laboratory
           National Environmental Research Center
         Research Triangle Park, North Carolina 27711
                    Prepared for

          OFFICE OF RESEARCH AND DEVELOPMENT
         U.S. ENVIRONMENTAL PROTECTION AGENCY
               WASHINGTON, D.C. 20460

                     July 1973

-------
This report has been reviewer", by the Environmental Protection Agency and




approved for publication. Approval does not signify that the contents




necessarily reflect the views and policies of the Agency, nor does




mention of trade names or commercial products constitute endorsement




or recommendation for use.
                                 11

-------
                       TABLE OF CONTENTS

I.    INTRODUCTION
II.   REVIEW OF LITERATURE
      A.   OBJECTIVE ANALYSIS OF OBSERVATIONAL DATA
      B.   OBJECTIVE ANALYSIS OF INVERSION HEIGHTS
III.  OBJECTIVE ANALYSIS OF WIND FIELD
      A.   STRATEGIES
      B.   DATA ANALYSIS
      C.   RESULTS AND DISCUSSIONS
IV.   OBJECTIVE ANALYSIS OF AIR QUALITY DATA
      A.   STRATEGIES
      B.   DATA ANALYSIS
      C.   RESULTS AND DISCUSSIONS
V.    AUTOMATIC PREPARATION OF MIXING DEPTHS
      A.   THE ALGORITHM
      B.   RESULTS AND DISCUSSIONS
VI.   AUTOMATIC PREPARATION OF BOUNDARY CONDITIONS
      A.   THE ALGORITHM
      B.   RESULTS AND DISCUSSIONS
VII.  CONCLUSIONS AND RECOMMENDATIONS
REFERENCES
APPENDIX 1.
MEASURED AND CALCULATED WIND SPEEDS
AND WIND DIRECTIONS
APPENDIX 2.   CORRELATION COEFFICIENTS AND AVERAGE
              DIFFERENCES BETWEEN MEASURED WIND SPEEDS
              AND WIND DIRECTIONS
                                                4
                                                4
                                               10
                                               21
                                               21
                                               28
                                               37
                                               45
                                               45
                                               46
                                               51
                                               58
                                               59
                                               62
                                               68
                                               69
                                               74
                                               82
                                                             88
                                                            110
                                                                       APPENDIX 3.   MEASURED AND CALCULATED AIR QUALITY
                                                                       APPENDIX 4.   CORRELATION COEFFICIENTS AND AVERAGE
                                                                                     DIFFERENCES BETWEEN MEASURED AIR
                                                                                     QUALITY
                                                                                                                                                114
127

-------
I.
     INTRODUCTION
     In a comprehensive effort undertaken by Systems
Applications, Inc. and sponsored by The Environmental
Protection Agency under contract CAP 70-148, a computer-
based airshed model capable of predicting concentrations
of photochemically generated pollutants in an urban
area was developed.  This model, based essentially upon
the finite difference solution of the equations of
conservation of mass, requires the following data
as inputs:
     1.    Meteorological Data
           a.   Wind speeds and wind directions
           b.   Mixing depths
     2.    Air Quality Data
           a.     Initial concentrations
           b.     Concentrations at boundaries (ground level)
     3.    Emissions Data
     4.    Miscellaneous Data
           a.     Reaction rates
           b.     Radiation intensities
           c.     Concentrations aloft
           d.     Others
The third and the fourth categories, in general, do not
present data handling problems in the routine operation
of the airshed model.  For example, the emissions data
are assumed to be  invariant on a day-to-day basis and
therefore can be  considered as a "built-in" feature of
the model.*   In  contrast, the first two  categories,
 + With the exception that a one-hour shift is needed
 to account for changes between Pacific Standard Time
 and Pacific Daylight Time.
which involve a vast amount of data, require manual
preparation and handling of data on a daily, or  case-
by-case basis.   The present project is intended  to
address the problems of preparing and handling the
meteorological  and air quality input data.
     The manual procedures  that have been used to date
consist of the  following steps:  entering the measure-
ments on a map, performing  manual interpolation,
transferring the information to coding forms, and fin-
ally punching a set of data cards.   This  is an extremely
time-consuming  task.  The preparation of  a  map may take
anywhere from 3 to 6 man-hours.  In addition to  the
tedious procedures, the following disadvantages  will
unavoidably be  associated with the  manual preparation
of the input data:
     (1)   Human subjectiveness
     (2)   Accidental errors
Based upon these arguments, an alternative  approach,
the automatic derivation of the meteorological and air
quality input data, has been adopted.
     In the next section, we present a brief review
on the general  subject of objective analysis of  obser-
vational data and inversion heights.  From  among the
many alternatives, the influence-factor-fit method has
been chosen to  automatically generate the wind field  and
initial concentration distribution.  The  results and
discussion can  be found in  Sections III and IV,  respectively.

-------
In  Section V, the development of a computer-based method
for creating maps of mixing depths is discussed.  In
Section VI, we describe a method capable of  automatically
specifying pollutant concentrations at  the boundaries
of the modeling region.  Finally, we conclude  this report
by drawing general conclusions and making .recommendations
for future work.
II.  REVIEW OF LITERATURE
     The ability to obtain a complete description of the
variation of a field quantity as a function of space or
time or any other parameter from a finite number of obser-
vations has long been a subject of scientific inquiry.   In
particular, meteorologists have for years been interested
in the extrapolation of measurements of temperature, pres-
sure, humidity and wind collected at a small number of un-
equally-spaced monitoring stations.  There have thus been
a large number of publications in this area of study.  We
have not attempted in this section, however, to present a
comprehensive review of all aspects of this subject.
Rather, we discuss only those topics which are pertinent
to the goal of the present project — the automatic deriva-
tion of wind fields, mixing depths, and initial and bound-
ary conditions.
     As a matter of convenience, we have divided this short
review into two parts.  The first part deals with the
methods of interpolation in general; the second part is
directed exclusively toward the determination of inversion
heights.
                                                                                 A.   OBJECTIVE ANALYSIS OF OBSERVATIONAL DATA
                                                                                      Many methods have been proposed in the past to interpo-
                                                                                 late data objectively.  They may be grouped into the follow-
                                                                                 ing five categories:
                                                                                      1.   Influence Factor Fit
                                                                                                The simplest interpolation scheme that can be con-
                                                                                           ceived is to weight the measurements by an influence

-------
factor.  For example, in the spatial interpolation
of wind velocity, the interpolated value at loca-
tion  j  can be written as
                   fi vi
                 £  f,
                                               (i)
where     v. = interpolated wind velocity at
               location j
          v^ = observed wind velocity at location i
          fj • weighting function

Several different weighting functions have been
used in the past.  For instance, in analyzing the
meso-scale wind pattern over the upper Snake River
Plain of southeastern Idaho, Wendell (1970) has
proposed
where r. is the distance between location i and j.
Strand  (1971) and Weisburd et al.   (1972) have adopted
the same interpolation scheme to obtain  the Lagrangian
wind trajectories in Los Angeles.
     On the other hand, Eschenroeder  and Martinez
(1971) have used
 to  interpolate  the wind  trajectories  over Los Angeles.
2.   Application of the  Sampling Theorem
          Lamb  and  Seinfeld  (1973)  have  extended  the
     classic  sampling theorem (Papoulis, 1965)  to the
     analysis of wind station data for the purpose of
     constructing a ground-level wind field.   The per-
     tinent form of the  theorem can be stated as  fol-
     lows.  If the  wind  velocities do not contain fluc-
     tuations with  wave  numbers greater than   n/d^,
     i = 1, 2,  3,  where  d.   denotes the separation
     between two wind monitoring stations in  the   i
     direction, then the true wind field,  uo(x,t),
     can be uniquely determined from the measured winds,
     um(n.d, ,n£d2 ,n,d,,t) , which is assumed to be free
     of experimental error,
                                                                                            £ £ £ Ur(nldl'n2d2'n3d3't)
                                                                                               ~
                                                                                              sin
                                                    (4)
     In other words,  only those fluctuating components
     of the wind having wavelengths greater than the
     separation of wind stations  can be reconstructed.
     exactly from measurements.  For the Los Angeles
     area, there are  about 25 wind monitoring stations
     covering an area of approximately 1600 square miles.

-------
     This theorem implies  that  the detectable wind
     variations  are  those  with  wavelengths greater
     than
                 8 miles
     This resolution is  probably sufficient for meso-
     scale urban airshed models.
3.    Laplace's  Equation  Fit
          A more sophisticated approach to data inter-
     polation  can be achieved via the use of the Lap-
     lace equation.   The interpolated quantity  * , in
     this case,  is generated by solving the Laplace's
     equation
               = 0
     where
            *  = 'observed

     at monitoring stations and boundary points.  The
     advantages of this method are  the  following:
     (1)  It is more general than the  first method be-
          cause sinks, sources, and flow past an obsta-
          cle are all particular solutions to the Lap-
          lace's equation.
     (2)  The solution of Laplace's equation at any
          point is the arithmetic mean  of its value
          about a circle having that point as  its
          center.  This property assures that  the
          interpolated values are as smooth as is
          possible to achieve.
          (3)   Objective smoothing can be accomplished
          by generalizing the method.  For example,
          Anderson (1972) has used the Poisson's equa-
          tion to interpolate a temperature field  in
          his  analysis of the Los Angeles mesoscale
          wind field.  The forcing function in this
          approach is defined to minimize the  sur-
          face curvature in the neighborhood of each
          data point.
4.    Optimal Interpolation
          Since the ultimate goal of interpolation.is
     to obtain a "best" fit of the observational data,
     a straightforward approach, based purely  on sta-
     tistical  theory, is to minimize the deviations
     between the interpolated value and the real value
     at a grid point.
          Assume that observational data of a  scalar
     quantity   u  are available at  N  locations.   The
     best fit,  u(x")  , can be .constructed from a linear
     combination of the observed data, u(x.),  j = l,2	N
     by
                                                    (6)

-------
     The weighting functions, w(x",x.), are determined by
     minimizing the mean square error,

              c2 = [u(x) - u(x)J2
     The mathematical basis for this approach has been
     developed by Gandin in the USSR (Gandin 1965,
     Belousov, Gandin and Mashkovich 1971).  This method
     has found wide use in large scale dynamic modeling
     in meteorology.  A recent example is the applica-
     tion of this method by Dartt (1972) to analyze
     wind patterns in the tropical Pacific.
          The method can be extended to include past
     data, as has been demonstrated by Huss (1971").

S.    Data Assimilation
          The four methods we discussed above have,
     implicitly or explicitly, assumed that the density
     of the measuring stations is appropriate to derive
     the degree of detail one desires.   In other words,
     all necessary information to describe the variation
     of the interpolated quantity is contained in the
     observational data.   This is a condition which is not
     met in the study of air pollution or meteorology.
     Its existence suggests the need for another type
     of analytic scheme.
          This scheme involves the incorporation of some
     dynamical constraints- into the  regular statistical
          treatment of the  measured  data.   In  the  most
          sophisticated case,  the  use  of  a  dynamical  model
          is invoiced.   This statistical-dynamical  analysis
          scheme,  which we  here  call "data  assimilation",
          has recently received  considerable attention
          both in  the  studies  of meteorology  (Sasaki  1970,
          1971)  and air pollution  (Wilkins  1971,  1972).
               As  an example,  Thompson (1961)  applied this
          scheme to analyze observational data.   To minimize
          the intrinsic error  associated  with  the  measure-
          ments, observations  made prior  to the  analysis
          time were used by extrapolating them to  the
          present  time by means  of a predictive  model and
          then blending the extrapolated  results  with the
          current  observations to  provide a more  accurate
          description of the variable. Another  novel appli-
          cation of this scheme  is to  "advect" accurate data
          from "data-rich"  areas to  "data-lean"  areas
          (Richardson 1961, Smith  1962).

B.   OBJECTIVE ANALYSIS OF  INVERSION HEIGHTS
     Approaches  for estimating the height of an  inversion
base that have been adopted in previous studies  differ from
those employed in  the analysis of  wind fields  in  that the
former rely primarily on modeling, whereas  the latter are
more commonly based on interpolation of observed  data.  The
paucity of measurements of  inversion height is the main rea-
son for this difference.  For  example, in Los  Angeles.and
St. Louis, areas having the richest  data  bases in  the U.S.,
radiosonde soundings have been regularly  made  only twice a
day and at a maximum of three  locations  (routine  measurements
                                                                                                       10

-------
are made at only one site;  during occasional special programs,
observations have been made at up to  three locations).   It  is
impossible to describe the  complex behavior of inversions
using straightforward interpolation or extrapolation  based
on such meager data.  The observations must be supplemented
by further information regarding the  behavior of the inver-
sion layer in one form or another.  Although, ideally,  a
dynamical model based on the Navier- Stokes equations is the
most desirable one,  such an approach  requires an amount of
numerical computation far in excess of acceptable levels.
     In the following sections, we will discuss two types of
approaches which have been  reported in the literature.   The
first one enlists the use of some form of phenomenological
modeling (quasi-physical models), while the second one  in-
corporates statistical correlations based on past data  (sta-
tistical models).
     1.   Quasi-Physical Models
          a.   "Eulerian" Models c
               This  simple  model is based on the assumption
               that, under  the strong influence of overlying
               anticyclones, a "subsidence inversion" will
               persist in the lowest  several thousand feet
               of the atmosphere.  The stability of this
               region will  be further reinforced by an in-
               tense surface-based nocturnal temperature in-
               version in the lowest  several hundred feet of
               the atmosphere.  During daytime hours, however,
               solar heating will destroy the lower part of
               this  inversion.  As illustrated in Figure 1,
                            11
Height
            subsidence
            inversion
            nocturnal
            inversion
- early morning    \adiabatic
  sounding          \ lapse
                      \ rate
* surface temp-        \
  erature measured      N
  at a later time
                                       estimated
                                      "mixing depth
                                             -Temperature
   Figure  1.  Sketch Illustrating an "Eulerian" Model
          assuming that the layer is well-mixed up to
          the base of the inversion, the mixing depth
          at that time may be estimated from the inter-
          section of an early morning sounding (solid
          line)  with an adiabatic lapse profile extended
          from the measured surface temperature, Tg , at
          that time (dotted line).
               First proposed by Pack and Hosier (1958),
          this method has been applied using data collec-
          ted in the Los Angeles area and the Eastern
          United States.  The same  model was later used
          to forecast the maximum mixing depth in the
          afternoon by combining the morning sounding
          and the forecast maximum  afternoon surface
          temperature (Holzworth 1964, 1967).
                                                                                                        12

-------
          The deficiency of this simple model is

     illustrated in an interesting recent study.
     Wuerch (1970)  has utilized data collected in

     St.  Louis by the ESSA Weather Bureau's EMSU

     (Environmental Meteorological Support Unit)
     program to evaluate the validity of this type

     of model.  The results of his investigation

     can  be summarized in the following table:
                Correlation
                Coefficient
               for All  Cases
                                 Correlation
                                 Coefficient
                              for Cases Where
                             Average Wind Speed
                            is Less  Than 4.5 m/s
                                                                              of the  adiabatic mixing  layer and successive
                                                                              stages  in  the modification of the vertical
                                                                              temperature profile as the air moves in over
                                                                              the city from left to right.
                                                                 Smooth
                                                                 Laminar
                                                                 Flow
                                                           City
                                                                                 Convective
                                                                                 Overturning
                                                                                    in the
                                                                                  Adiabatic
                                                                                     Layer
b.
     Summer
     1969

     Fall
     1969
              0.36


              0.52
0.52


0.74
     It is obvious from these results that,

under light wind conditions,  the model improves

considerably.  'This is expected because the  con-

cept of a stationary subsidence inversion is

valid only under such conditions.


"Lagrangian" Models

The basic idea of the "Lagrangian" model is

similar to the "Eulerian" model, which we have

just described.  It can be best explained by

the following sketch, which shows the build-up
                                Temperature—*.

                                Figure. 2.  Sketch Illustrating a "Lagrangian" Model

                                              We have termed this formulation a
                                         "Lagrangian" model because it is best visua-

                                         lized by considering a column of air having
                                         a subsidence inversion temperature profile
                                         being advected downwind.  Summers (1965),
                                         based on this idea, has derived the following
                                         formula to account for the heat island effect:
                  13
                                                                                                14

-------
                    h •=
/_2HL_\
\apC U/
                                                        (7)
             where
                  h   mixing depth
                  H   heat input
                  L   distance from the upwind edge
                  o   difference between the country air
                      lapse rate and the dry adiabatic
                      lapse rate
                  p   air density
                  C   constant pressure specific heat
                  U   wind speed (assumed to be constant
                      with height)

                  Leahy  and Friend (1971) later used this
             model to estimate the mixing depths over the
             New  York urban area.   They found that correla-
             tion coefficients between observed and predic-
             ted  mixing  depths for the five non-summer
             mornings were about 0.86.
                  Anderson (1972) ,  based upon essentially
             the  same idea, has recently used the morning
             radiosonde  soundings  offshore  and surface  tem-
             perature measurements  to  estimate the  mixing
             depths over  the Los Angeles  area.   He  reported
Hanna (1969) has also used a similar expression to predict
the strength of an urban heat island.
                          15
          that predicted inversion heights compared
          favorably with inversion heights identified
          directly from temperature profiles.

     C.    "Hybrid" Models

          As part of a study carried out by Stanford
          Research Institute, Johnson et al. (1971)
          have used both models that we have discussed
          above  to predict the inversion behavior in the
          San Francisco Bay area.  The maximum mixing
          depths in the afternoon were calculated from
          the maximum surface temperatures and the
          morning soundings (the "Eulerian" model).  On
          the other hand, the nighttime mixing depths
          over the city were estimated using the
          "Lagrangian" model.  For daylight hours other
          than the time of maximum temperature, the
          mixing depths were calculated by interpolation.

2.    Statistical Models
          Although it is sometimes difficult to make a
     clear distinction between a physical and a statisti-
     cal model,  we have taken the  latter  to be a model
     which is based primarily on past data or past
     experience.
     a.    Temperature Correlations
          In an  interesting study, Mashkova  (1963)  re-
          ported that, when the  atmosphere  is stably
                                                                                                           16

-------
stratified, the strength  and  the  depth of  a
temperature inversion  are strongly  correlated
with the daily air temperature  range  at  the
2-meter level.  For  the particular  settings
where the data were  collected,  she  found that
              " °'25  
(8)
where
     h    depth  of inversion layer (m)
     T    maximum  daily  temperature (°C)
     T  .  minimum  daily  temperature (°C)
This model would be most useful in predicting
the nocturnal temperature inversion.
     MacCracken et al. (1971), on the other
hand, based on extensive aircraft observations
made by Miller and Ahrens (1970) , noted that
the difference in the heights of the tempera-
ture inversions can be correlated with the
difference in surface temperatures at the
corresponding locales. Expressed mathematically
                Ah= oAT
                                           (9)
              17
where
     Ah    inversion height difference between
           the two locales
     AT    surface temperature difference be-
           tween the two locales
     o     constant of proportionality

This model has been used by MacCracken et al.
in their multibox air pollution model for the
San Francisco Bay area (1971).
     In a less well known study, Olsen (1971)
proposed a technique to predict the depth of
the inversion layer by using a remote tempera-
ture sounding and the local minimum temperature.
The following relationship
                                           Z = 2[25 +  4.5  (TL -
- 10
                                          (10)
                                      where
                                           Z   equivalent height above the  surface  in
                                               °C units on an adiabatic chart
                                           T^  temperature obtained by extending the
                                               sounding above the inversion down to
                                               the surface
                                           T,,  observed minimum surface temperature

                                      was derived from some of the aircraft soundings
                                      made during the period from Summer 1970  to
                                      March 1971 at Helena, Montana.
                                                                                               18

-------
b.   Spatial Correlations
     Based on comprehensive studies made by Edinger
     (1959), who found that the contours of cons-
     tant mixing depth in Los Angeles Basin were
     generally parallel to the coastline,  Roth
     et al.  (1971) devised an objective method to
     prepare the inversion maps for a grid model
     for Los Angeles.   This method can be summarized
     as follows:
     (1)  Contours of constant mixing depth roughly
          parallel to the coastline  were first
          drawn.
     (2)  The magnitudes of the mixing depths at
          three approximately co-linear, equally-
          spaced locations , LA International Air-
          port, Commerce and El Monte, were deter-
          mined from radiosonde soundings and
          aircraft flights and assigned to the
          three  corresponding contours.
     (3)  Mixing depths at locations not on the
          three  contours  were obtained by interpo-
          lation.
     (4)  Temporal interpolations were made for
          the hours when  there were no radiosonde
          soundings.
     At present, this  method appears to be fairly
     successful  for the Los Angeles Basin.  Although
     the operations described above were all
                   19
carried out manually, automation of most of
these is obviously possible.  For example,
the spatial interpolation can be achieved by
regression analysis.

Temporal Correlations
The temporal variations of mixing depths over
the Los Angeles Basin were approximated by
sinusoidal functions in a study made by Lamb
(1971).  The form of these sinusoidal functions
was determined by comparison with observed data.
                                                                                                   20

-------
III.  OBJECTIVE ANALYSIS OF WIND FIELD
      The purpose of this section is to describe an approach
we have adopted to generate hourly maps of ground-level wind
speed and wind direction.  These maps serve as part of the
meteorological input to our urban airshed model.  Techniques
we reviewed in Section II.A concerning objective analysis of
observational data are applicable here.  Among the many al-
ternatives, we have decided to choose the Influence Factor Fit
method, a method that is based simply on field measurements
and on an interpolation procedure.   This selection has been made
primarily because:
     (1)  The need for timely development of an accurate and
          reliable procedure.
     (2)  The availability of dense, sophisticated monitoring
          stations in the Los Angeles area.
     (3)  Ease of computational effort.
     In Section III.A, we delineate the basic strategy and
present details of the interpolation procedure.  In Section
III.B, we assess the applicability of the method (1) through
prediction of measured wind parameters and subsequent com-
parison with measured values, and (2) by comparisons of the
full, predicted wind field with manually prepared wind maps.
A.   STRATEGIES
     In interpolating the wind measurements for each grid
point in our Los Angeles airshed model, we have adopted the
following formula:
                             21
                   < R
where
          v.   the interpolated wind vector at grid point j
          v^   the measured wind vector at wind monitoring
               station i
          TJ.  the distance between grid point j and
               monitoring station i
          n    the distance influence factor.

The summation applies to all wind monitoring stations located
within a maximum distance R from any grid point of interest.
This maximum distance, as well as the distance influence fac-
tor, n , is chosen arbitrarily.   The choice of these two
parameters is, however, interrelated insofar as the net effect
on the result of interpolation is concerned.  For example, the
effect of varying the distance  R  will diminish as  the  dist-
ance influence factor, n, increases.
     The selection of the distance influence factor has caused
some controversy among urban airshed modelers.  In calculating
the Lagrangian trajectories of air parcels, Keisburd et al.
(1972) have elected to use  n = 2.  Eschenroeder et al. C1972) ,
on the other hand, proposed the use of  n = 1.  He has argued
that the  -  rule may be preferable, in that it provides a closer
description of planar flow since, in two-dimensional incom-
pressible flow, velocities from singularities  such as sink or
                                                                                                              22

-------
source vary as  — .   This argument is less than compelling,
however, because it  is difficult to imagine the wind monitor-
ing stations physically serving as delivering or receiving
points of air currents.  In the present study, we have taken
a more general approach by allowing the distance influence
factor to vary,  with the eventual determination of this fac-
tor resting upon the results of statistical analysis of the
predictions.  We will postpone the discussion of this topic
until Section III.B.
     The maximum distance, R , that a wind station measure-
ment can be extrapolated should depend on the physical charac-
teristics in the wind measuring procedure, as well as on the
topography of the region of interest.  The nature and the im-
portance of these characteristics, however, are often diffi-
cult to determine.   In the present study, the selection of
the maximum distance that defines the summation signs in
Equation (11) was based on the following arguments.  It is
desirable, on one hand, that the interpolated wind field will
include, i-n as detailed a manner as possible, the spatial
variation of the wind.  This would imply that the range of
influence be minimized.  On the other hand,  the lower limit
of the range of influence is set by the density of the avail-
able wind monitoring stations.  In Los Angeles, as we have
stated before, a minimum distance of 8 miles is required; thus,
there is, on the average, one station in an 8 x 8 mile square
area.  Use of a distance greater than this minimum has the
advantage that the interpolated wind field will become smoother
as measurements from more stations are used.  In the end, of
course, the final choice of the range must be based on a com-
promise, in effect minimizing the disadvantages of selecting
too large or too small a range of influence.
                            23
     For the ocean squares, as defined in Figure 3, the dis-
tance to the nearest wind measuring station is typically much
larger than the eight-mile range that typifies the spacing be-
tween land-based stations.  Therefore, a provision is made
that, for these ocean squares,  the measurements from all of
the following coastal stations will be used in the calcula-
tion:
                    West Los Angeles
                    Venice
                    Redondo Beach
                    Compton
                    Long Beach
                    Anaheim
                    Santa Ana
The locations of these stations have been plotted in Figure 3.
     The presence of the Santa Monica Mountains has created a
special problem in the interpolation scheme.  The sheer height
of the Mountains would, at least intuitively, prohibit in many
instances the direct communication of the ground-level winds
between the two sides of the Mountain Range.  We have, there-
fore, made the following arbitrary rule that squares north of
the Mountains will not use measurements from wind monitoring
stations located south of the Mountains, and vice versa.  To
insure a smooth transition, values for the squares marked  x
in Figure 3 are calculated using linear interpolation.
     In applying Equation (11) , we wish to note that it is
appropriate to employ a vector interpolation; i.e., to inter-
polate the wind vector as a whole.  By contrast, using
Equation (11) in scalar form, both wind speed and wind direc-
tion can be calculated separately and then combined to yield
                                                                                                         24

-------
                           li 13 H  IS 't  "V  '6

Figure 3.     Map of Los Angeles for Wind Analysis
25
                                                     the interpolated wind vector.  The results of these two
                                                     approaches, as can be easily demonstrated, are not neces-
                                                     sarily unique.  The vector form is chosen in the present
                                                     study for the following reasons:
                                                           (1)  Vector interpolation provides a smoother wind
                                                               field.
                                                           (2)  Vector interpolation creates a smaller local
                                                               divergence or convergence.
                                                          As a final topic of interest, we now discuss what
                                                     we have called the "shadowing" effect, which has been imple-
                                                     mented in a similar study made by 'Strand (1971).  The prob-
                                                     lem can be posed as follows.  Given that the angular separa-
                                                     tion, 6 , between two monitoring stations (see Figure 4a) is
                                                     small, should the measurement made at the second station,
                                                     which is farther away from the point of calculation than the
                                                     first, be used at all?  An argument in favor of "shadowing"
                                                     (i.e., excluding the farther station) is that, if the first
                                                     station measurement is lower than that of the second, the
                                                     interpolated value will be even higher than that of the first,
                                                     as illustrated in Figure 4b, and vice versa.  This appears to
                                                     be contrary to what one would expect.  An argument against
                                                     "shadowing" is that, whether the measurement of the second
                                                     station is used in the interpolation, or not, the utility of
                                                     the data should not be influenced by the presence of the
                                                     first station.  We have implemented both versions and found
                                                     that  the "shadowing" will produce high-frequency fluctuations
                                                     in the interpolated wind field.  This is, of course, an un-
                                                     desirable feature.  Despite the fact that we have made the
                                                     transition between "shadowing" and "non-shadowing" smoother

-------
                   Station 1
   Grid Point
                                 Station 2
                                           by applying to the  "shadowed" stations  an additional  weighting
                                           factor:
                                                               fsin  2e       0°
-------
Table 1.  WIND STATIONS AND THEIR LOCATIONS
STATION
NAMF
HESO
BUKK
PASA
A^U
Wtr'ST
ELM
COMM
CAP
LOri-'
WHTR
LAN
ANA
POMt
• SNA
Kb
VEN
CPK
KVA
ENC
BKT
•(NTT
LACA
COMA
HISM
KFI
X-AXIS
COOHOINATE
3.1
9.2
14.7
20.5
I-,. U
17.4
13.3
1 1.3
12.9
17. 7
19.7
20. R
?S.7
?3.0
7.1
4.7
1.2
lb.2
3.9
24.6
22.4
12.?
11.3
5.0
ib.a
Y-AXIS
COOHDINATE
21.8
21.0
19.5
19.6
liS.3
17.8
15.1
16.5
H.ri
1^.3
12.3
8.9
17.2
3. 7
9.9
14.3
22.1
13. fa
21.5
1H. 1
14.8
2?. 2
11.1
24.3
10.5
the wind speed and wind direction using Equation (11),
based on measurements made at nearby stations  (within  a
radius R )  but pretending that the measurement at  the
station in question does not  exist.   The calculated wind
speed and wind direction is then compared with the measured
wind speod and '..ind direction at that station.  This pro-
cedure is then repeated for all  hours of interest.  (See
APPENDIX 1).  Two different statistical criteria are used
for the purpose of comparison.   The  first one  involves the
use of the correlation coefficient,  defined  as:
                                                               where
                                                                              VZ c^  -  ^)2 •  E
                                                                                                                        (12)
                                             - ^2
                                                                         x. .   the calculated wind speed or wind direction
                                                                               at station  i  and at hour  j
                                                                         y. .   the measured wind speed or wind direction at
                                                                               station  i  and at hour  j
                                                                                                                        (13)
                                                                                    'ij
                                                                                                                        (14)
                  29
                                                                                           30

-------
          K    the total number of hours in a validation
               run.

The calculation is performed for each of the 25 stations.  An
average correlation coefficient for all of the stations in
Los Angeles Air Basin is then calculated,
                   N
                                                          (15)
where  N  is the total number of wind measuring stations.

     Although the correlation coefficient has often been used
as a test to assess the validity of  a  hypothesis or a pro-
cedure (for example, Wyzga (1973) has used  it to evaluate an
iterative  technique for estimating missing air pollution
measurements when the data are available at two or more sam-
pling stations in the same vicinity), a test based on the
correlation coefficient alone is rather weak, in that the cal-
culated statistic is a measure of trend rather than of
"goodness of fit" (Bulmer 1967) .  In a more severe test of the
present interpolation scheme, we have employed the following
estimate  to measure the average deviation  between the predic-
ted and calculated values,
                  K
         si
                                                          (16)
                            31
                                                                          As  before,  an average  value  for  the  whole  air basin  is  computed:
                 1*
              ff  £  si  •
                                                                                                                                   (17)
     Data for one of the validation days used in our earlier
work, 29 September 1969, was chosen for this study.   Wind
measurements for the period, 5 a.m.  to 4 p.m. PST, were used
in the computation;  the results of the calculation  are shown
in Tables 2 and 3.  The first entry in each of these tables
is the distance influence factor utilized in the interpol-
ation formula (Equation 11).  The small differences  in both
the correlation coefficients and the average deviations due
to changes of  n  are expected because differences in the
distances between pairs of stations are relatively small*
( The interstation distances, in grid units, are shown in
Figure 5).  Nevertheless, the present study
+  To assess the interrelationship between station measurements,
   the two criteria have also been calculated for each pair
   of station measurements.  The result are tabulated in
   APPENDIX 2.
*  Consider the Commerce station as an example.   Distances
   between Commerce and the closest two stations are 4.60
   miles (RVA)  and 4.88 miles (CAP).   The ratios between the
   weighting factors of the two stations, for each influence
   factor,  are then
              r
            0.945
                                                                                                  r
                                                                                                0.894
  r
0.844
   Therefore, the change in the weighting factors is only 51 be-
   tween 1/r and 1/r2 , lit between  1/r  and  1/r3.  Assume
   that the measurement of RVA differs from that of CAP by
   504,  the ultimate difference in the Commerce predictions
   only amounts to about 2$ between  1/r  and 1/r-  and 5%
   between  1/r  and  1/r-3.
                                                                                                      32

-------
    TABLE  2.  The  Correlation  Coefficients
    EXPONENT      1.00            2.00             3.00
             SPEED DIRECTION SPEED  DIRECTION SPEED DIRECTION
t-
10
RESD
PASA
AZU
WEST
HIM
COMM
CAP
LONB
WHTR
LAI!
ANA
POMA
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COMA
KFI
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
75
79
96
81
92
96
90
93
85
89
81
96
73
92
91
90
94
66
76
76
95
95
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
-0
0
0
0
0
0
0
. 38
.86
.66
.35
.71
. 57
.37
.69
.70
.16
.00
.74
.44
.83
.19
.42
.41
.69
.78
.59
.79
.47
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0,
0,
0
0
0
0
0
0
0
0,
, 75
,80
,95
,80
,93
.96
.90
,93
.86
,89
.84
.92
.73
.91
.87
. 87
.95
.49
.86
.77
.95
.93
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
-0
0
0
0
0
0
0
.42
.85
.67
.22
.67
.51
.30
.73
.91
.20
.04
.75
.44
.81
.16
.37
.42
.54
.77
.59
.80
.37
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
73
81
94
79
94
96
90
93
86
89
86
91
73
90
83
87
95
55
89
77
95
90
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.
0.
-0.
0.
0.
0.
0.
0.
0.
43
68
71
12
60
48
24
75
76
23
05
75
44
80
13
36
43
47
76
58
81
38
    AVERAGE    0.864   0.452    0.857   0.451
                                               0.857  0.425
                              33 a
                                                                              TABLE 3.  The Average Deviations
                                                                             EXPONENT
    1.00
SPEED DIRECTION
(mph) (degree)
    2.00
SPEED DIRECTION
(mph) (degree)
    3.00
SPEED DIRECTION
(mph) (degree)











z
o
<

'S)






RESD
PASA
AZU
WEST
ELM
COMM
CAP
LONB
WIITR
LAM
ANA
POMA
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COMA
KFI
1.
2.
1.
2.
3.
3.
2.
1.
1.
1.
1.
2.
1.
1.
3.
0.
1.
2.
4.
1.
4.
2.
55
47
58
14
36
21
21
63
62
20
93
52
85
68
68
94
29
51
58
27
75
38
103.
50.
83.
52.
62.
39.
57.
21.
29.
67.
75.
59.
87.
45.
24.
96.
69.
73.
46.
70.
35.
55.
38
85
84
30
00
34
82
96
73
60
37
84
62
76
87
52
90
40
11
91
36
46
1.
2.
1.
2.
3.
3.
1.
1.
1.
1.
2.
3.
1.
2.
4.
1.
1.
2.
4.
1.
4.
2.
54
57
32
86
42
14
74
32
52
09
12
27
85
00
07
17
25
88
13
22
54
61
103.
53.
82.
39.
56.
43.
60.
24.
16.
66.
77.
57.
87.
48.
27.
92.
69.
102.
52.
68.
34.
57.
93
97
36
10
81
97
80
40
44
19
31
65
62
51
73
38
64
29
51
56
87
19
1.
2.
1.
3.
3.
3.
1.
1.
1.
1.
2.
3.
1.
2.
4.
1.
1.
2.
3.
1.
4.
2.
60
68
17
55
47
10
32
69
53
16
41
54
85
32
33
19
32
61
84
29
33
70
104.65
60.62
80.36
38.20
52.48
46.97
62.66
27.91
12.91
67.00
80.59
57.16
87.62
51.11
31.70
87.86
69. 34
104.25
55.44
68.12
34.43
58.06
                                                                              AVnRAGE
                                                                                         2.29  59.54
                   2.35  60.20
                                                                                                                          2.41   60.88
                                                                                                        33h

-------
                                      c
                                      •o
                                        c
                                        01
                                        
-------
         to permit  adequate description of the changes in
         wind  direction.  This is a plausible argument
         because  the wind direction measurements are
         much  more  sensitive to  the topographical settings
         of the monitoring stations than the wind speed
         measurements.
    (2)   The quality of the wind direction measurements is
         poor.  This could be the result of either the poor
         resolution of the measuring apparatus or the inade-
         quacy in the determination of hourly average
         values.  This is particularly important at low
         wind  speeds.

     Close inspection  of the  data shows  that  wind directions
differing by almost 180° have often been reported by two sta-
tions only a few miles  apart.   This fact has  forced us,  in
the manual preparation  of wind fields,  to perform a somewhat
subjective "smoothing"  of the measured wind  directions.   In
the same context, we feel that it may be necessary that  the
wind direction data should also  be smoothed  somewhat before
interpolation is carried out.   We have  not,  however, explored
such a possibility in  the present investigation.   The original
data, as provided by D.  Bruce Turner of F.PA  and supplemented
with raw data collected by the Orange County  APCD and Scott
Research Laboratories,  has  been  used throughout this study.
     Before closing, a  final  remark is  in order.   Calculations
have shown that the magnitudes of the interpolated variables
are relatively insensitive to moderate changes  in the maximum
                            36
distance   R .   We have,  therefore, chosen a value of 14 miles
for  _R  in the  wind  interpolation procedure.

C.    RESULTS AND DISCUSSIONS
      The  interpolation scheme we have just discussed was used
to calculate the wind speeds and wind directions for each
grid point in the SAI airshed model.  Samples of the results
of these  calculations are shown in Figures 6 through 11 for
7 a.m.,  10 a.m., and 1 p.m. PST on 29 September 1969
respectively.
      An  important characteristic of these automated wind
fields lies in  the fact  that variations in both the wind
speed and the wind direction are relatively smooth.  This
quality  insures that unduly large convergences or divergences
will  not  be created.
      Furthermore, we have compared the automated versions
of the wind field with the corresponding version that was
prepared  manually in a previous study.  The following statis-
tical  measure was used to assess the difference between the
two :
                     m=l
                                                         (18)
where
                     the automated wind speed or wind
                     direction at grid point  m
                     the manually prepared wind speed or wind
                     direction at grid point m
                     The total number of grid points.
                                                                                                      37

-------


I

I
1
1

1

!


;
••

!


1
!
1
!

'


(.1
r*"\
£


o

c


1^
•f
!••">
i
0
rj
r\


0


/-\

C
-.


---I*) S««-C«IO-F« "TOO" *U» 	 **•«
	 1 1 " J "•*""-• 6 "" 7 «
"""?* O."7'"0.8~0'."« 0.9 0".9 O.S" O.~7~"0.6 0
—22 	 0.>™ 0-."— f.0- UV-1-.-2— f .-9— oTfl— 0;6 0
21 ol'nT'0.9 Ul 1.5~ 'i.5'" l.0~" 0.8~"O.T 0
f9 67? f~0~Y.O f.~2 OY9~T.~f~C~.~A C."6~"0

"17 1.0 1.0 1.0 1.0 0.6 0.9 0.9 O.S 0
16 1.1 l.l 1.0 1.2 0.9 C.« 0.8 0.8 I
— H l.f~!.l l.l"~1.0 1.1 C. 6 0.9" C.9 1



ll' "1.2 1*2 1.21. 31.* 1.62.1 2.1 I
I 1.2 1.7 l.J 1
f) l.'2"~l.'2 "1.3 " 1.3 "!'.* 1.*"' l.S " 1.9" 1

6 1.2 1.2 1.2 1.2 1.9 1.) 1.) 1.3 1




i 1.1 1.1 i.i 1.1 1.1 i.i i.i 1.1 i




	 Pi cure. 6..._ Computed Wind Spec
« 	 " 	 "

."8" 0.«~ 1.3~'l.'7~~2.0 1.3 "1.2 l.l 1.0 1.0 C.« 0.7 1.7 I.* 1.6 I.

'.7' 3.8 1.0" 1.2 1.3 I.* 1.* 1.3 1.2 1 .0 1.0 C.9 C.8 1.0 1.7 Z.
."8~"i.o""'i.i~~i72"~r."2 — i;*"~~u"s iTs f.'i i.\ i"."2~i"*"o c7i» i7o us s7

.9 Ul 1.2' 1.6 "1.5 l.B 1.6 1.* 1.2 1.2 1.2 I.I 1.1 t.3 1.6 2.
.0 "I.T 1.2 1."* l".7 2".l" llB 1.6 "iVr'l'.J 1.3 1.0 1.0 l.l 1.2 I.
.1" 1.2 ~ l.*~'l.5"l.8 " 2. 0~" 2.0" "2.0 "l.7"~l,* "1^3 1.0" "C.e""0."»"*" T.'C l".



.5" 1.5 l.B" 2.1 t.9"~1.9 I.6""1.7~*l'.7 l.5~"l.l" 0.9 C.7"""0.5 0.6 0.

.8 * 1.7 -i;7— 1.7 "l.7~"1.9 -|.6-"i:V"l. •.-•-. I1" 0.8 0.6""C.3~C." "C.5~ C;
.8~i:r~t;7~l.T~l'.r*1.5"""1.5~r.'*"171~1.0~0.7~C.8~C.5~C'.5~C;*r" •*.

.3 "1.2 I.T 'U7 I'.T l.f l."3 0.9" "1.2 ~l.l" C.o 0.2 C12 C.3 C;*""C.




.1 .1




ds_foi: 7..a.int..C25_September. 1969) 	 _...„' „

5 1.9
7 1.9
7 2.0
8 2.1
2 2.4



5 2.0
I "l.l



6 C.2

2" 0.2 	












                                                                                                                                                          O
               » EC TICN CBtO

                '»"*" "*    y
                                                7    ft   " »    10    11 "  12 "   13 "*"  1*   15  ' 16 " '17    If)    19   2C " 21 "" 2?" '  2J "  2*   '25
  O    23

        ?2
:  o  _
I        21

'  O    10

I        19
  O
        19     73lTl6.l65.167V~lft2~160.~lB*."^5.~199."2lV.~205. 2CO.~197;* l>5.~19 C~2 3f.~260.~2* f.~221.~i I j;""253T~26"C~2"> 1 ~270
               .                                                       _
        16     11!.  101.  101. 100. 1^3.  «9.  100. 1*2." 185. Z09.""217.  223. " 2 13. ~m. ~ 192." 2CJ.~2M.~2ai .  2*7.  228. 2 32." 25*." 272.  273V 272".

        1>~~~~102.~102." 102. "101." 102."  9».  107. 1 * 7."l6fl." 20J."  220.  25S."2?3. 19*.'  192.  20C . ' i l&.~*22e.~225. ' 222 . 23 1." 2**."26lV~275." 2757

        T*     127~l26"."l2*.~107r'lOfl." 1C*~1 28.""l*'»."~l 77.~1 a7.~l 96.~20*." 186." *1 7*."" 189~196.~"2CO.~"i99T 2C5~2 ^*~23&"^~2*3~259~2MT~^7*7
          _
        1»    12^." 126." 12*.

        I*    US.  127.  125.
        13    129" 12 8.' 12I.~ 126."l25.~17l..~"na." I*ft.~lft6."l 73." 1 e8.~"l flB/^1 86. 1 R9.~l 12~ 19C ."l flO." 16i.""t 62"."l 1 7." 1 ei."~230r"23"2.~2*"6".~"2SV.

        j-    i?<>^  (?))^ *l ?(!."* 127. 127." l"26." 132." 1*0."" 15*. "l7ti.  197. "207.  190. 19C.~190." 18fc." 1 76." 169 .~l 66." 160 . 'l*fl." 15*. '227.~ 2*2. "250"

        1*1    130."  l3C."l29." 12? .* 127.' 125."l21.' 122." I*. 5. "lT3
 •                .     ..     .    .     ..     .   . .    .     .     .     .    .     .     .    .    .          .     .    .    .     .     .

 "       TO    13'l~13r".~r3o7~l29"r'l'2"77T2"5'." "l20".~ T20~.~l 37.~1 56.~"l 76".~l>*r 1 **".~l 61 T 1 70~ 1 71.~l 7 l".~ t 71 .""l t nr"l63~l\2'."~l'?*.~1327~l )9.""83T~
'  O  _   _
         9    132.  131.  131.  130. 12'. 127.  126.  13C. 139/15*.  162.  165.  153. 156.  167.  170. 173. 173.  162".  157.   23.  61. 12«.~ t *1. "  92.""

            """132.  132.  132.'  131. 131." 1 3C.  13 1 .' 139. 1*5. 152."  156.  15ft.  163. It2.  173.  172. 1 T3.""l6G/ 1*6. " l*C."l 25." 126. J47.   93."l09."

              i33T"r33r"r31~lV3.~"li:.~l"33.~l3*.~l*3." l*T.~"l 51 ." 15*".~ 1 ?5."~"l 5*.~l 7*1" 161." 170. 1 6*'.~ 1*6." l*5.""l*3".~Y*3.""l*2." l"lzr'l2*"."6lT~

              I3*.*ll*."l3*.  13*. 13*. 135.  136.  13«. 1*0. 1*2.  153.  15*.  155. 175.  18f,.  183. 152. 153.  U5.~ 11 7.  1 22/ 16C. *149.' 159. "l*C.~

              l3S".~l"35.  135.  135. '115.' 1 2A/ 1 37." 139. " 1*C. 1*2.'  1 **."i*5. " 1*5.~ 1*5."  1*5.  1*5. 1 *6. 1 *7. "l 72.  167."l63." 169. "l52"." 153."l*a. ~"
'  O

I
*  Q
I

1  O
.

  o
,

!  O

1
j  O
              136.  136.  136.  137.  137. 13B.  13fl.  139.  1*0. 1M. 1*2.  M3." 1**.  1**. 1**. " 1**.~1*4. " 1**. 121.  132.  1 A2." l*8.~152.~ 1 52.~1 }ll~
                                                       ~l*0.~"l*l."~l*27""l*2."l*3~l"*"3.~'l*3'."iV3™l**7"l**.""
.JJ_—EtgALrf—I.-.	?.2IPpulcd__WiTi,d_Directions  for .  7^a.%.__(29  September  1969)

-------
  o  ___              _  _   _i_   _                                                                              _
        WIMP SPEE3 Caib  rot" "ICOO WTU"     " ~       69 ^29     "                                  .........

  p-.,             ^    ?_,  ^  ... ^    ^     ^    ^ __. ^     ^.  _^ ...^   ^,_13__.^   n~i6 "'IT "~18  ""19"   2C   21   22    23~ "24   Z*"~


        2~5      dVo  67 1  6"J>   '67y~b.4  o7s   or6~~c7>~i7i   i7z  i75~"~T."7   I'.'T  i77~~i77~~~ tYs  o7V  o.'a  C.'T   i.~o  i".">»  iTo   f."3"~'iV*  i7s~
  O  _  __   ___                    _                         __                    _                     _                    __            __
        2*      0.1  0.1  0.1   0. 3~"3 .4  C.6"  0. 7"""C.7"~1.2  " 1.0  1.4 " 1.8'""l.8~'l.6""l.5   1 ,0~" 0.9 " O.d  C.7~"C.4"~1.J * 1.0   1.2  1*6  1. 1

'  O    23      0.'4~~0.5™0.2"0.3~"C.6"~C.7"  0. 7""C.>~- 0.<»"~ 1 . l""~ 1. 6" >. l" 2 .0 ~1.«~" 1.5 " 1 .'O  0-9 ~"o.ll"~0.6""0.7  C . 7  1.3~1.S  U6  l7"s"~

        22      '73  673  c.Y"~c7s   f.c  G.9~o7a"*"c7«~rQ.V"~i".i  iTa  z7s   2.3  zY>~~276   i",9  o7*  o7f~"o7a~~b75  cl7  i7i   i7*""*T77  iTV

'  O  ___   __              _                          _   ___         __         _   _    _    _     _   _    _        __
        21      0.1  (1.2  O.T   1.9   I. 8  1.1   0.9~0.<> '0.9  "l.O  1.8  2.T"  2.5 '2.3  1.9   l.i"l.9  1.4  C.8   C^3 ~C.3" C.7   U4  l". *  2.1

'<  O    20      0.9~ 1 .0'  1.? ~2.0""~2.1 ~\.t> ~ 1.5  1.6 "U9   2.0" 3.1 ' 2.9~"2.7 " ?.*" l.8""l.«"  1.9 ""l .(• "~"l .4"" 0.4" C.8 ' 0.5   1. 5" "2. I  2^5"


I        19      i7'7T.~7  r.a~"">7z   i7>  z. i   27r~2'.6~"z."9~" 2". 9  3'. i~~j72   376  2.7  z~i  "27o~~27o"  i'.~9  i'.YT.'o  c7«  I7c   f."j~2."s  37jT~
:  o  _____   ._   _.    _                                                        _
'        I*      2.5  2.5  2.4   2.4   2.8 ">.6 ~  2.7""3.5 "3.8 "3.9 ~3. ft" " 4.0 "" 3. 7 ""3.3  2. 6""?. 4 "~ 2.1  1.9' 1.8~"l.7  1. 3" 1 .6 ~2.0"" 2. 4 ~~ 3,0


'  C  ~~i'T    "2.5~"2.5" 2.5"?.5""2.7~?.4 'z.6 "'3.6  3.8'~4.0  4.*" 5.2~"4.0~" 3.9~ 3."2~2".7 "~2.J  2.1 '"2.0   l".9~ 1 .~5""l .7 ™2.6  2.'3"2.4"~

        T*      l.~J  37"2  3~. l   ?.*6   2^8  2W~"37l   3.'" 3.9   3.9  4. T~4. 2 "~4.4 ~"*.9  3." 7*' 2.9~ 2.V~'2'. 3™"2Yl   2.~0  l". 8  U8   2".0"~ 2". 1  27Z~


        15      3. l"" 3. 2 ' 3.2   3.1" 2. •»  3.1   3.5"  3.8  4.0 " *.*  4.2  4.1   4.5  4.S "3.5  3.0  2.7  2. 4 " 2. 1 " 2. 1 " "1.9 '" 1 .9*"2 .0 ~2.0  2.1~


  Ti    l"*      '3.3~~3.3 ' 3.2 '  3.2" 3.1 "3.3   3.7  4 .0 " 4. 2 ~ 4. 4" ~4.6~~ 4". 2 '~4 . 1 ~ 3.8  3.2 ~3.0  2."8 " 2.5  2.2 ~2.1~2.0"2.0" '2.o""2"."o  ZiV"


                3.'*  3 ."3  3'.3~V."3"~ 3.3""3".2~3'.6""*T2"~*'.2"~ 4.6  S.'o  5".0~ 4.7*~3.1  3.5~~3.l~ "2. <»'">. 3 "2.4   2.7~z74  27z"~273  2 .'3  z73*~

                3. 4 ""3. 4 "3.4"  3.4 " 3.4'~3.4  '3. 7"  4.1  4.5  "4. 8 ""5. 7  6. « " 5. I "" 4.3 " 3.6~3. 3  2 . B" 2.5 ' 2 . 3 ~ 2. 1 '2.2 ~~2,l   2. 2 "~Z. 3"~2ij~

 .;.?•    II     "3.'5""3.» ~3. 4"  3. 4~ 3. 4." 3.*"   3.3  3.3~4.3   4. 75.9~"6.5"~5.3"4.s" 4."c""3.4  3,0 "  2. /"" 2.C'~ 2.0 ~2.0~ ~2. 1 ~"2.l""2.1  2.1~


. *      10     Tr5~"37»~3i5'"?7s ~3'.5  3.4~~3.2""3."2  4." 3   S/2  575  5.6   5 75  4.O  4~."l ""3.6  372  2.8  2.'l   7.1  ?."f.  ?7"0*~>7l   27"l  27l~"
  £|  __

j         9      3.6~3.*"3.6"3.5'3.5~3.5"3.»  1.9' 4.5   5.6~  6.2  5.6   5.fl"5.4'"4.2  3.7  3.1  2.K ' ~Z.'3 " Z .Z ""Z.O " 2 .0 "2. 1 ~ 2. l"  2.1~

•  O     "      3.6"~3.6"3.6~3.fc"l.6  3.6" "3. 7  4.«  S.l"5.66.l~6.4   5.4'  4.1 "4.*  3.ft"~3.2 '2.5*' 2. 5  '2.4~"2.0~ Z.l"2.l~"z.2 ~2.2~~


         7      j7i  j7ft  3 77   3.7   3'.7  377~"37a~~570~"573   5/6  6.0  67z~ ~6.*  fl".'5  4.9  4 ".5  377"  2.0  2"."fc"~ 2 . 5*~2 . 1  2."l   272  2 ,"2  2."3~
:  o  __     _____                                              _                    _   _
1         6      3. 7  3. 7  3.l~  3. 7   3.8  3".S   3.9   4.0 '"4 . l~ \. 3~  5. 9  6.1    6,2  " 7.?'~ 6.2  5. 6"  3.2 ~ 3. 0" 2. 7" '2. 2  2.2  Z7V~ 2.4""2 Jj"  Z.V

'  O     9      3."7~"j.7"~3.7~  3.8"~3.8  3.->" ~t.t ~4.o" 4. 1 ~ 4. i' ~4. 3~  4.4   4.5~"4.^ ~4. 3~ 4 .2" "l_> ~J. 3  2.Z~ "2.3~2.4  2.5~  2.7~2. B ~~Z.l'~


         4      377  J.'T  s7a   s7a   37a  3", 9   j".~«)   iTo  47i   47z   4Tz  4~."3    4.3   *73  4Z2"~47i  i'.'o  z74~z"."4   2 ."4  2 ".5  z7"T   zTVzT*  z"."?""

         J      377~"3.'a   3.B""3.C~"3'.8  3.9" '3. 9""4.'o""4, l""4.r  4.2"4.z""4.2~ 4.2~'4.1~4.o~ 3.9  3.8~2.~4"~ 2." 5 ~ 2.6'~"2.7   2.7  2.8  370~


  C     Z      37a"~"3."A~3;s"3.8~ 3-9 " 3.»~"3i9   4,'o~470"™4"."l   4. \~ »". I    4.1"" 47 1 ~4.0 ~V.O~~3.9  3.8"~ 3". ?" ">70  3LO""3".0   3.0™37o"~3.0~

  O


  O
                            .Cprap.u£eid_.Wi.rid-jSEeeds  fpT_10  a.jp..   (^29_ September  1969)
  .  o  _  _
                                                                                                     "17    18
                                                                                                                            21  "22
                                                                                                                                            2*   25


                                                                                                                                            9«7   977
  i

  :  o

  i  o
         i  CMO FO"  IOC"  PGUP      "          69 929  "~


    1 "~  2 ~~ 3~" 4" -".—  f,    ,     a  -  9 ' 10'~U ~ 12 "13 ~~l"4"~  15


 ~T8"2TTT*7~TsVr"i"4~77"T3«7T3j7  a'7leol   83.  757"" "M.""27.267  237   11."


 "-9"»."V«0. "194." I 60 .""14 t."lCl." 92".   83."  83."  52-  42."   32." 31 .~ " 36.~"33."27;~" 26."" 25 ^ "  25."354.   SB." 1P3." ICO.  95^   94"."


 "31U""308."227.""l87.~ 13 (."if 7." "9 7. ""86."  "62^" 5l'. ~50'.   50.  4?.~ 52.   51."~"Z3*.  24."""24".   24"." 70".   7ft.   S7.   95^""" 95."~94."


                 *"t64"."lZ4.*"Kl»7~lCo7   l»9'.~"63.  5l~.  52.— 52^  50."~ 49.   46.   467  21". ~25.   57.  72"~"{37   997   96".~""95".   937


~"l25." 13C."~127." MA. llt."lO?.* 101. *.«l."  64." 51.  53. ~ 55. " 52. ""40."" 10.   33."" 40. ~ 33."  60. " 78.*"lC3.~" 91.""9fc.'""93.   93."


  103.~106."t04." 96." 9S."  94.'  *9."  82. "67.  58.""63.   53. "49.  39.'357.  "27.  43. "48."  44.  9C." 245. " «6. ' S5.'  "93.   92."
                                                                                                                       57Y
                                                                                                                                      »7."
                                                                                                                                           "T2.
                  59.   S9.  59.  59.   6«.


                ~94^   82 1  80 .**"*'*•'•   &V.


                  fl4."~ fl2."""Ba.""77.   65.
                                            73.
                                  * 55.""72.~ T3. " 72. "76. ~  14.   66. ""5"."" 56." 57." "51.~  55.   53.  56. "tl~.~  72.'  82'.  95." " 8«."


                                  "681  737~ Tl.   71,  72.~" 74.   "63.  54",   5ft.~ 53.  56.~5C^   507~ 55"."~C67   6"»7   8l7~B4~.   8*.""


                                  * 72."" 74. ~ 72.™ 78,"~ 76.""'72.~ft4.~"57."" "53. "47."~58.   49." 46.  55."~ C3."""66.   7e.""e3.   827
  ;  O
  '  O
 "~H4."H3. "(11.  79.""7(.~"75.  "71,~"T6."  79.   fll. ^61.  77.   73." 66."  51.   36."' 59."" 65.   52."  55.  6U  *4.   76.  77;"  78."


   *57  847   83.  a"l7~"fl"l.   75',   79.  82".   81."" 85.  C3."~ 89.   (J5."~ 76.   69.   65.  "68.  68."~6"2r~49."~~57'.  63Z   ?3;~75';   t1~


   86lT~"85.   84.  83'.  B2." " B2.  " 82." "80.   B6.~ 68. ~ 97.'~1C4."~ 2."  85.   93.  102. "lC6."" 9<>." 105." 103."  94."  88."  91.  88."  81*." " 79.~" 73.~~75.  "78."'80'.   83r


   31.'" 1. ' fl8." "7B."~79.   82'.~~85."  86".""


   tin"  997   R9i  «97  a'S.   (*•».   •)0^~"<»8'."~100."~103r"l05T"rC7r'l03."'ll2i~"lCe.~lC67  99;  94'i"  9?;  9f.  63".  84".   89'.  SC.~10U~


  "907  10.   9'0".""90C  91.~*9i;   92."* 94."~95.~"9?'. ~1C'..~10',."" 10".'~112.~112T 109 .~103.~"102.~ 94;  87;"M;~1CIT~ 103~1C4.' "102"."


   91*. "'11'."" 91."91.  02." "97.   93. ' '«4. "96.  ' 97. ~*98." 100. " 100. '1C I . ' 101. " ICO.""! 0 7." 1C6.  ICO." 101." 1C2." 10S."1C7." K8.""l 05.~


   
-------
         c S»fFO C»IO T«  1)00 *CUt               ft1* -9/9
 r*»  — •  • •  •   i " " 2 '   J    4  ' 5 "~ 6 "  7    «    1    10  ~ IT "  12    13    14    15    10   17   13   H ' "2C   21   ?.' "23   24 " 25"
     —;,	1~o—o.'i—f>—lTl~T.Z—l.Vzn—2.3—!.'   3.1~~3.'8—4.4™4".5 —4'."4—4."3 ~5.'7 ' 6.0~6.l~ ».'j~»:c~7.c~7.0~t.<  6.«"»".»—
 O                             .              _.                          ,       ,  ,      .     i   6 ,  ,, .,  i ,.  6 » "(. 9  5 5  5 8
     "~24     1.0  0."  0.1  1.1  1.2  l.!>  2.1  2.3  2.!   3.1   3.1   4.7   4.8   5.2   5.1  5.4  6.1,   6.1   6.3  6.5  7.*  6.»  C.I  1.5  ».f
 O  ~23~~   l.l  I.J'I.O  C.I  1.3  'l.S  2.0' 2.3  2.7   3.0   4.0   4.9   5.5   5.1   5.2  5.J  5.1   6.2   6.1  6.5  f.5  6.6  o.5  5.B  5.8
       22U r~l".l~ 0.1C.l""2.12.o"~2.l"2.3  2.7~2.14.0~'5.0'5.2   5.1 ~5.2"* 5."j~" 5.9  '6.2   6.1  6.6  6.1  6.6  6.5  5.9  5.9
 "  —?1 —   1.0'  l.l"l.6  4.1  3.1  2.3  J.l" 2.3  2.7   2.9' 3.9   4.5   5.0   5.0   4.a  5.2'  6.2   6.4' 6.5  6.11  6.4  6.2  6.5  6.3  6.0
 O  —20	3.0"3.1 "SO- 4.1  ..7  3.5  3.4  3.0 '4.2'  4.5  '4.4   5.2   5.)   '.1   3.4"4.1  6.4   7.0   7.0  6.5  6.1  6.3"6.4'  »-»J*-^
     	pi	Co~~5.0~57l "5.8 ~S.»  V.7~C6~"5.3  5. 7"  6.0~"5.5'~5.7- 5 . 7' " 5. 5"' 5.2~ 5.'7~(,.'> '" I. 1~ 7. 1 -6.5"~6V)~"6. I"""'6.3" 4 . 5~ 7iO~
 O       _                                                   .                               ,,.'T<»7-»,  A,-«l'-» >"6 4"
       13    ~7.0  6.1'  6.8  ft.6  ft.*  <.9  5.3  6.0  7.2   7.6   6.7   6.8   6.6   6.5   6.2  6.6  7.3   9.6   7.5  6.7  6.2  6. .1  6.J  6.^  6.-.
 J5  	!7	7.1' "7.1  7.1'  6.9  6.5  5.3  5.4  7.0  7.1   7.0  '7.3   «.3   7.1   7.4   7.C  7 . I " 7 . 1 " 7 . 2  ' 7. 0  6. 5 " 6. l" 6 .4 ~6. 1  6.0  5.5"
     	,"6	77i~7.3—7".Y"7.4 —7.4-'6.4~6'.5-~7.3""7.9—7.7"-/:3-'7.S'-».l- 8 . « "" . 1~ '7 .'5 ~ 7 . J~ 7 .0" 6 . «~6 . 1 ~ 6 .0'~5 .1'" 5 . 7 ~5 .'l" 5 .'*-
 "  "I,-	7.3-7.»-7.6' 7.9- 9.2"8.1  7.6  7.7 '».!   S.6'7.»   7.9  '» .a ' 8 .1 '  B. 2 " 7.8 ' 7. *   6.»"6.2  6.0  5.9-'5.8'5.6  i.»-5.l~
 n  —14	7.3"7.»"7.6'  7.1  I.]' ».l "1.0  '.0  8.4   8.7   9.0 " 8.5 " 8.7 " (.4   P.O  7.8'  7.1  .6.7   6.1  6.2~ 5.7" ' 5.7 " S.4  5.l"5.1'
'•      |,     7. J—7.4'~7.5" 7.7 ' 7.7  7,rt~7.7  8.2  8.5"8.->   <).4'9.5  ' t. 5 " H. 7 ~ H. 5 ~ 7. 7  7.3   6. ••   6.2  5.8  5.7  5.5  «.0  5.0  5.0
.    --12	  7.1  7.t  7.4  7.5  7.5  7.4  7.7  B.O  0.4   1.0  10.2  11.5   1.1   fl.1   8.1  7.7  7.1   6./   6.3  5.ft '5.2  5.0  4.a  4.»  4.9
JQ	U	7. 3'" 7.3 '7.4'" 7. 4"" 7 .3  7.2' 7.2  7.»  B.2   1.0"lC.5'Il.O'9.9'1.0'8.l"7.7-7.2'6.8   '6.1* 5.9"~4.1~ 4. 5 "4. 5 "4.0  4.3
<    	fo	1~f~l"')~1.f~l.'i—?;j~~7.1  7. 2" 7.1" a.2~9.Vlo:o~'!.9' '9.7'  •>'. l~"8.3  7 . t ~K 3~6.9" 5.' 9' ' 5. 3""4 ;i~ 3; 3  4'.2~4'.5~4.4—
 °  -,--,.,  ,.,',.,  ,.,  7.2',.2  7.,  8.0  ,.5   ,.,',.,   1.1   9.6   ,.,-..,  ,..",..   6.5  5.6  ..,  '..C  3.4 "4. , "4.5 "4.5 '
 O  "' a"  '7.1  7.3  7.)  7.)  7.3  7.)  7.3  8.2  8.6   9.1   9.5'  9.1   1.4   5.0   8.3  7.4  7.0   5.9   5.5  4.1  4.0' '4.3 " 4.3 ' 4.4  4.6'
     	7	T."2	7'.'3~7.'l	7TJ	7.T—7;)"7/3	8 . 5" 8 . 8~'l.'l	9.'4~9.7~ 1 . 1' 11 .'4	« . 3~7. 9~ 6 . 9 ~ 5 . 7  ~ 5 .'4	5 . 1~ 4 . 5 ~4 . 5~ 475  4.5—4.6—
 °  —»	7.2""7.2 -7.3"7.)"7.3-- 7.)"7.4"7.4 ' 7.5 " 7.6  " 9. 4~ i; 5~'9.7  11.2' 1C .3 ~". 2 " 6.2  '5.1  " 5.5"*. 4~ 4.6  4.6~ 4".8~4-.9- '4.7~
 fj  	5	7.2"J.-  7.2  7.J" 7.J" 7.)"7.)  7.4"7.5   7.5   7.4"'  7.4 "7.6 '  7.5 ''7. J" 7.1" 6.2   S.1)   4.7 "4.7 " 4. «~ S.O "5.>~ ».«" 5.0"
     	J,	7;'?""7.'2""7.'2—7.3—7'.3—7.'3—7.'3	'-4  7.4" 7.4—7"5~—7.4—7.4—7.3—7.2 "'7.C~ 6. 3*'4.1   4;2~4-;t  4V7  5'.I  V.6  r;7  5.'2-
 "	3	7 2 " 7.2 —7.2 '7.2''7.3~7.3"7.3  7.3  7.3~7.4   7.4"~7.3""7.3~'7.2"-7.1"6.9"6.8~6.6   4".3~'4.5~"4.7~ 5".0"5.?  5.3''6.C~
 rj  	2	7.2" 7.2 '7.2 '7.2  7.2  '7.2'7.3—7.3  7.3   7.)   7.3~  7.2  "7.2 " 7 .1'  7.0  6.9 ~6.8   6.6 ' 6.5''i.C~I.C ' 6.: " 4.: ' 6.0' 6.C '
     	1	1~f-~1~f~r.f~';i—7;2~7.2 ~7.'2 -7.2-7.2-  7.2 — 7.2	1.2   7. I—T.I   7;c'~6.9— 6.a~6.'6"-675  6.4  6.C'~ 4'.0-~470~4V3 ~4VC-
        Figurp   10.   Computed  Wind  _Speeds   for  1  p.m.   (29 ^September  1969)
                                                         69 «29
                                                        "9—10"
                                                                                 ~lV"  15 ""16   IT   18    19   2C"   2~1    22    23    2*"   2>
        25     42.  4*.   53.   45.   51.   HZ.  37.  3*.  3
  O	        _____
        2*     2*.  ?«.   39.   44.   5*.   45.  43.  3*.  3
I        22     1*.  10.  26.
j  O	„.  ._
J        71     -----
I  O    23      4. 35*. "l*.~"3?".  Af.""<*.   *4.   33. "25." 22.  2*^  26.  27."  32.   3/-.  "29^  33."3)
                                  ~92~.   b'fT.   *•»".   3"l.  197  !»;  ib".  )fl.' "36.~""«1.   *"*".   *67~"33.   36~
                7.~ 65.  8.1."~107.~105.~"77.~"S*.". " 35. " 19. "lJ.~ 30. " *6."  "t^.  "*?." *t." " 46. * 51.   45
                                                                                                            * I  SC."  ? I .'  6?'.  65.
                                                                                                            5.  *fl"I   55^  6U  t'S'J
                                                                                                            5 .""*«."" 52.' "it .  A5/
I  O    zo "
              ~55.  6*:~75."
                                     I. "~ 7 2. " " 5T.*  "*7.
                                                                       5 5. ""55.   50 .
:  O _ .	
                              60.
                             "61."
                                        "56.   60."  76. "79.  6-1.~ 82.
                                                                                  74. "7?.  "71."  65.""&«T.  63.""66.
                    7?.
                   "72.
                   '72'."
                              70.  **.
                             ~70".  7C."
                                              75.   7?. "62.
                                                                           " 87. " 85."  80."  76."  80.""79.' " 73.  70".
                                                                                                                         ~7|.'—7J.   tl".   88.~
                                                   62".
                                                                                                                               76.
                    75.
                   -75."
                   •"767
                   ~7&7
"7*7">3.   71.
"75.   7«. ~74.
" 75.   75.*~7A."
~76.   7(.   77.
~77.   77.   7«.
 70."" 7.3. ""BO.  "89."~"93.'
 7*.~"8t.~'85.  ~89."" " «
*7fc.">*'.   a7."~~89.   91. "
                                                                           "92. ~" 92 ^ " 92.  91 ,~ 91 .'
                                                                           "«.»."" "l)2."~95. " 91.   91 .
                                                                            *> J .~~l 0 1 .  99."" 99'.   <»*'."
                                                                                                          " 85".  «2.~ 69.  72.  75."~'76.  73. ~
                                                                                                           B*. ~ «2'.~"7A.""75. ~75."~73." 73. ~
                                                                                                           83'.~~8l";  77.  7&'.'  73. "ff.  797~
                                                        80.'
                                                                  91 7
                              77.
                                   7«7
                                                                                                           6"37
                                                                                                                64.
                                                                                                                     44.
                                                                                                                          66.
                                                                                                                              -677
                                                                                                                                    67.
                                                                                                                                         66.
                              78.  7t.  78.   71.   80.   80.   11.   81. "B2.' 82. "82."   82'.'  81.'~alV
                             ~ll',  78.  79." ""79.   PO.'"eO. '"80'.""*8l.  8l'.""81. " M ',   81 .   Bl.' ' 80."
.  O


  °
                                                        at.   ao.   80.   At.  ni.  at.  at.
                                                                                                           63.   64.  65.  65.  66.  66.  67.
                                                                                                           71.""67.  67.~67.  47.""67.  »T.~
                                                                                                          ~Vf,
                                                                                                      79.   79.  78.  (7.  67.  67.  67.  67.
:.:.-.-F±p,\ir.e.ll.   .Computed  Wind.Directions  .for ,l..p.m,..X29  September  1969)
                                                                                                                                                     O

-------
To provide a more meaningful comparison, squares over the
ocean and the San Gabriel Mountains are not included in this
calculation because extrapolated values over these areas are
relatively unreliable.  The results are tabluated in Table 4.
In surveying these results, we have concluded that, for all
hours during the period of validation, the interpolated wind
speed is completely satisfactory.  Also, the interpolated
wind direction is acceptably accurate between 11 a.m. and
4 p.m. PST. However, during the morning hours, from 5 a.m. to
10 a.m., the deviations appear to be large.  This is not
surprising in view of the fact that the prevailing wind speed
       those hours is low.
          Table 4.
Average Deviation between Computed and
Manually Prepared Wind
me (PST)
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
Wind Speed (mph)
1
1
1
0
0
0
0
1
1
1
1
1
.5
.1
.1
.9
.9
.9
.8
.1
.3
.4
.4
.3
Wind Direction
(degrees)
39.
32.
55.
69.
60.
47.
14.
17.
22.
18.
21.
15.
0
8
0
5
6
0
8
3
2
6
0
6
                             44
                                                          IV.  OBJECTIVE ANALYSIS OF AIR QUALITY DATA
                                                              An effort very similar to that undertaken in the auto-
                                                          matic preparation of wind maps, as discussed in Section III,
                                                          has been carried out for measured air quality data.  The ob-
                                                          jective is to provide a set of automated initial concentration
                                                          maps for each species of air pollutants included in our air-
                                                          shed model.  In order to avoid repetition, we point out only
                                                          the differences in the treatment of wind data and air quality-
                                                          datn.
                                                         A.
                                                              STRATEGIES
     As with the wind analysis,  we  have  adopted  the  Influence
Factor Fit approach  in analysis  of  the air  quality.   A formu-
la, identical in form to  Equation  (11),  is  used  to  interpolate
air quality data,
                                                                                                     < R
                                                                                                    rij
                                                                                                        < R
                                                                                                                                      (19)
                                                                             where   k.  is the measured concentration of species  k  at
                                                                                                 C
                                                                                         i , and  k. is the corresponding interpolated
                                                                                     Definitions of the rest of the parameters are the
                                                         grid point
                                                         value.
                                                         same as those defined in Equation (11).
                                                         are listed below:
                                                                                 Reactive Hydrocarbons
                                                                                 NO
                                                                                 Total Oxidant
                                                                                                                      The species considered
                                                                                                     CO
                                                                                                     Unreactive Hydrocarbons
                                                                                                         45

-------
     A notable difference between Equation  (11) and Equation
(19) lies in the fact that the latter is a  scalar interpola-
tion while the former involves vector interpolation, as we
have discussed in Section III.
     In the air quality interpolation, data from the follow-
ing stations will be used to estimate concentrations for the
ocean squares :
                    West Los Angeles
                    Lennox
                    Long Beach
                    Anaheim
                    Santa Ana
(see Figure 12.)
B.
     DATA ANALYSIS
     During fall 1969, the period chosen  for  the  validation of
the airshed model, fifteen air-quality monitoring stations were
operative in the Los Angeles area.  The names and locations of
these stations are listed in Table 5.  Measurements  made  at
these sites constitute the data base for  the  present analysis.
     Among the six species of air contaminants, only total
oxidant concentrations were reported by all  fifteen  stations
listed in Table 5.  N02 and NO (or its equivalent NO +  N'07)
were measured at all stations except Santa Ana, and  carbon
monoxide at  all stations except Santa Ana and La Habra.  How-
ever, data required to derive concentrations  of both reactive
and unreactive hydrocarbons were reported only at the following
                                                                                          3  t  f  6 1  S 1  le li  il 13 i<> if 16
Figure 12.   Map of Los  Angeles  for Air Quality Analysis
                                                                                                                  47

-------
three stations:  Downtown Los Angeles, Pasadena and Azusa.
The paucity of measurements of these two species has rendered
impractical the use of the maximum range of influence R, for
monitoring stations.  We have, therefore, relaxed the rule
.by allowing measurements made at all three stations to be
used in the calculations for every grid point.
     Table 5.  Air Quality Stations and their Locations
              STATION
               NAME

               NESD
               BURK
               PAS*
               AZU
               hEST
               L E i-i X
               ELM
               CO MM
               CAP
               LON«
               WHIP,
               LAH
               ANA
               POMA
               SNA
  X-AXIS
COORDINATE

    3.1
    9.2
   14.7
   ?0.5
    6.0
    7.7
   17.*
   13.3
   11.3
   12.9
      7
      7
17
19
?0.8
25.7
?3.0
  Y-AXIS
COORDINATE

   21.8
   21.0
   19.5
   19.6
   16.3
   12.5
   17.8
   15.1
   16.5
    B.8
   12.3
   12.3
    fl.8
   17.2
    3.7
    Measured air quality data has been analyzed using the
same statistical techniques that were applied in the analysis
of the wind data.(the measured and calculated air quality
data for NO, 0_, N02 and CO are tabulated in APPENDIX 3).
The correlation coefficients and the average deviations have
been calculated for every species of air pollutants except
                             48
the hydrocarbons.*  This exception has been made, again,
because of the lack of data.  In addition, because
the number of air quality stations is smaller, the maximum
range of influence  R  has been increased in the calculation  to
20 miles, as compared to 14 miles in the wind analysis. This
length will be sufficient to cover all grid points in the model-
ing region with every monitoring station operating normally.  If
no station can be found within this maximum distance  R because
some stations failed to report data, this distance is automati-
cally increased.   The results  of  these statistical analyses
are  tabulated in Tables 6 and 7.
     Although the calculated correlation coefficients are con-
sistently high, falling within the range, 0.7 to 0.9, they
differ quite markedly from each other.  However, differences
in the magnitude of the coefficient arising from the use of
different distance influence factors are quite small. .Judg-
ing from the magnitude of the calculated average deviations
for each species, we may tentatively conclude that the inter-
polation is probably satisfactory for carbon monoxide in view
of its having a background value of about 2 to 3 ppm.  For
the remaining three species, NO, 0,, and NO,, the average
deviations appear to be so high that the interpolations are
only marginally satisfactory.  It is interesting to note that
these three species are the principal participants in the
photochemical reactions, with a half life of the order of an
hour.  Therefore, thj large calculated average deviations may
well be a reflection of the fact that, due to the chemical
transformations that are occuring, concentrations of these
species must be viewed as local, rather than global, quanti-
ties.  When considered in this light, straightforward inter-
polation techniques may not be appropriate for use.
                                                    Again, correlation coefficients and average differences
                                                    between each pair of station measurements  have been
                                                    computed.  They are listed in APPF.N'DIX 4.
                                                                              49

-------
 TABLE  6.   The  Correlation  Coefficients
 EXPONENT        1.00                	2.00	               3.00
NO







S5
o

H
H





KESD
BURK
Pt\SA
AZU
WEST
LENX
ELM
COMM
CAP
LO.NB
hllTR
LAH
ANA
POMA
SNA
MEAN
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
-
0.
85
90
75
83
86
84

97
70
55
89
85
97
92

84
°3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
84
89
96
85
97
82
97
81
87
69
98
94
97
73
90
88
N0_2
0.57
0.96
0.10
0.44
0.92
0.81

0.94
0.80
0.75
0.95
0.85
0.86
0.45
-
0.72
CO
0.
0.
.
0.
0.
0.
0.
0.
0.
0.
0.
-
.
0.
-
0.
84
86

70
91
40
66
92
81
91
88


73

79
NO
0.
0.
0.
0.
0.
0.
_
0.
0.
0.
0.
0.
0.
0.
-
0.
87
89
72
84
86
82

92
72
56
83
82
98
92

83
°3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
83
88
96
85
97
82
97
84
92
70
97
94
98
76
90
89
N02
0.59
0.96
0.06
0.51
0.92
0.81
-
0.91
0.80
0.75
0.94
0.85
0.86
0.55
-
0.73
CO NO
0.85
0.84
-
0.67
0.89
0. 39
0.64
0.89
0.83
0.90
0.89
-
-
0.73
-
0.78
0.
0.
0.
0.
0.
0.
-
0.
0.
0.
0.
0.
0.
0.
-
0.
89
88
69
84
86
80

86
73
58
75
81
98
93

81
°3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.83
.88
.97
.84
.98
.82
.97
.86
.94
.71
.95
.94
.98
.79
.91
.89
N0_2
0
0
0
0
0
0

0
0
0
0
0
0
0

0
.60
.97
.03
.59
.92
.81
-
.87
.80
.74
.90
.85
.86
.66
-
.74
CO
0.86
0.83
-
0.62
0.86
0.38
0.61
0.86
0.84
0.90
0.90
-
-
0.73
"
0.76
TABLE 7.  The Average Deviations
EXPONENT        1.00                     2.00                     3.00
NO
RESD
BURK
PASA
AZU
WEST
LENX
ELM
COMM
CAP
LONB
KHTR
LAH
ANA
POMA
SNA
13.
9.
8.
7.
7.
8.
-
5.
9.
10.
8.
6.
3.
4.
-
60
34
90
47
97
63

74
76
29
18
49
31
58

°3
3.
2.
9.
8.
1.
2.
4.
11.
4.
8.
4.
5.
5.
6.
7.
08
84
37
40
86
88
83
54
20
71
55
33
91
80
78
N02
6.44
8.70
7.40
5.12
1.97
5.30
-
S.64
5.56
S.23
11.37
6.95
3.26
4.94
-
CO
2.77
4.09
-
2.68
2.11
4.64
3.35
2.46
3.23
1.96
2.92
-
-
2.19
-
NO
13.
9.
9.
6.
7.
9.
-
5.
8.
10.
8.
8.
2.
3.
-
S3
23
76
40
94
15

29
92
23
91
27
37
64

°3
3.13
2.89
9.53
8.43
1.30
2.41
5.85
9.60
3.04
8.61
3.82
4.19
4.49
6.56
7.81
N(
6.
8.
7.
4.
2.
5'.
-
6.
6.
5.
12.
9.
3.
4.
-
12
68
85
60
53
03
23

20
14
16
05
50
19
45

CO
2.77
4.12
-
2.70
2.29
4.67
3.33
2.59
3.10
2.00
2.81
_
-
2.02
-
NO
13.
9.
10.
5.
8.
9.
-
5.
8.
10.
9.
9.
1.
2.
-
49
12
54
46
02
53

73
40
19
78
64
89
77

°3
3.17
2.92
9.61
8.70
1.02
2.19
6.88
7.38
2.05
8.54
3.61
4.02
3.41
6.38
7.83
NJ
6.
9,
7.
3.
2.
S.
.
6.
6.
5.
12.
11.
3.
4.
-
lz
91
01
72
98
16
07

88
90
12
82
38
21
11

CO
2.78
4.18
.
2.81
2.54
4.71
3.33
2.85
3.00
2.04
2.71
-
-
1.94
-
MEAN    8.02  5.87  5.99  2.95   7.97  5.44  6.28  2.94   8.04  5.18  6.56  2.99

-------
C.   RESULTS AND DISCUSSIONS
     The interpolation scheme we have discussed above has been
used to calculate the initial concentrations of the six species
for each grid point at 5 a.m. PST on 29 September 1969.  The
computed results have been compared with the manually prepared
concentrations by calculating the square root of the average
squared differences according to Equation (18).  The results
of these statistical calculations are shown in Table 8.  They
confirm qualitatively our previous observations that the inter-
polation is probably more satisfactory for inert species than
for reactive ones.
     The computed initial concentration maps for each of the
six pollutant species are reproduced in Figures 13 through
18.
     Table 8.
               Average Deviation between Computed and
               Manually Prepared Initial Conditions.
           Species
Average Deviation
     Reactive Hydrocarbons
             NO
       Total Oxidant
            N02
             CO
     Unreactive Hydrocarbons
      0.5 ppm
      6.6 pphm
             *
      2. 7 pphm
      2.2 ppm
      1.1 ppm
*  In the SAI airshed model, the initial conditions for the
oxidant are calculated from the chemical equilibrium relationship,
therefore, no initial concentration map has been prepared
manually.
                             51
       o  •* -
H
                                                                                            —  C
                                                                              o * « —
                                                                                * * * ;~ !-  o ,»    •  I  ;  i
                                                                                i? S ° " S  ;S ,'S   ' '  |  i  i
                                                                                •2 2 j :• ;  :• o:  .    '  !
                                                                              o '— -
                                                   C  «  WN

                                           I  I  I  I
                                                                          i   i
                                                    r
                                                                                "**[*•'••     i
                                                                               5  2  3  3 3 5 S :  '  |
                                                                               S  5  2  S -5 2 E '  !  i
                                                                               '  "."."".•> r '  i  i
                                                                   U
                                                                   O
                                                                   t.
                                                                   TJ
                                                                   X
                                                                                                       i ra:
                                                                                                        ^
                                                                                                       i«
                                                                                                       ! *
                                                                                                       I O
                                                                 ! a
                                                                 • .*
                                                                  •o
                                                                  o
                                                                  D
                                                                  O.
tu
 i
                                                                                                            52

-------
                                                  8   ' V ' 10 "  II    12    13 '   14  "  18  "16   17 " 18 "  19  "20	21   22   23   24   25
                                                 6.7"  17."3~17.3~Y».6 l"».9  14.7"t4.6""il.9"l3.2~l2^7~  9.3"~a.~9~~3 .~637Y~~3'.'7~ Y. 84".V *..)
       22
      "2l"
             r)".Vi~2'.5~io.Vid.Vis.(."i4.9"i7.3"2o.z 23.8 z*.Y~zo.o"i*.«
            ~'O~10.0""9.B '9.9 11,6 11.2'l?.l" 13.5~15.4' l(,.a' 15.5 "14.V 12.9  II.6  "9.8   9.7"l0.5 1C.4  O.B  7.7  7.1
            "6.0 "8.4" 8.V 8.4 "ic.l " 9.2 "9.4  1C. l' 11.3 12.7 15.1  14.2  13.9  13.1  12.2  11.7  11.5 11.2 10.3  8.5 "8.1
            "6.0  8.3"'8.3 10. l" 9.7" p.6  8.8  in.2 11.2 12.8 15.1  15.4  14.9  14.7  13.6  12.6  11.8 11.7 10.0~" 9.1 'a. 7"
            ""7.9	779  7~.S~l'o7e""9'.'6"~"9.6" "V. 3 ' I 0 . 0~1 I .V 1 2.V14 .2" 14 . 8  1O.2  17.'9"l4.8  13.4  12/3 I 2 . 1 "1C . 5 "9.'3  8.9
                        7.7 "7.5" 7.2 '9.7' 9.6 '7.9  9.5 It.4 13.3'l4.3  14.8  14.6  14.I  13.6  12.5' 12.4 11.2"'9.0'8.4  ft.'.  8.1  7 . J  '.;
                       ~7.7~7.4~~7.1 ~9";5""8.'2""~4.'5""B.'t"lC.«~12.9"ll.B  14.o"l3.7  12.8  ll."o~l3.V~U.""lI.»"~S.O~"v~"~ ~>"3"™»'.6 "l. 3'  ''.}'
                       "7.7"~"7.5 "7.2 ~ 6. a" 8.8' 7.O  9.B 11.1 12.8'l3.3  12.8  13.0 "13.0  12.8  13.1  13.4 11.5" '8.2  7.*""9.o" 9.3  7.5  7.5
                       "aj0~"7^9  f.fl  "7.7  10. 8' 10.9  12.3  U.O  12.'9  li.4  I*.2  14.5" 13.9 '13.'5 I ). I  1J.2 12.0 10.6  S.9

                        1.1 "8.1 "P.I  1.1' 8."  11.6  12.1  IJ.J  U.O  13.5  14.1  14.7 U." 13.4'U.?  ll.t 12.0 11.1  1.1
              8.5  8.5  8.5  8.5  8.
                                                              "l4.9"l4.5  13.3  13.3"(3.P
                                                                                                       " ll.l 10.7 1C".4
      B.'8 — e."8~879~9.C
                                                          . 3 10"-4 1C.5""10.'5

                                                          .1 11.2 1C. 3 1C. 3
                                                                                                '. 3"Yl . (.' 1 1 . 4 ll.'2'U.O  9'.V" 6.0 "'579  9."C

                                                                                                . 1 IC.O 11.4 U.3"8.7~ 5.9 "9.0 '9.0"'"9.0'
"•".'«""!.»  "9.0 "9.0  9.1"9.2~ 9.
~»79 - 9~.'o"'~970~9Vf~V.'2~'9'. 3 -- 9."
                                                      9.6'~9.7  9.9  10.0  U.I  10.1  10. 1  10.1  10. S 10. i  9.9 IZ.0'9.0  9.5  9.5"9.C  9.C
                                                      9.'6  9'."7  9.8" ~9. 9 '"'9 .9 "l P7fl~10 10 " 107c"~9. V " V. 9 " 9'. a "978 ~V. 0" '9.0'  9'.'C  9'7b~"*7C~
	_Fi^ur.e  14Jt....Cpmpute.d .Initial. Conditions  for  Nitric  Oxide
         L'T«Nr 02   cn*
         	,  -  ,-
              l77""'j77"
 O
 O
 1.8   1.8
"l'.'7   1.8
~l.5"l,5
"T.v "r.i"
"l.O  'i.o'
"i.o"  i.o
~f.i~i.T
 1.1   1.1
 1.9  1.9
 i.a ' ue"
'1.8  1.5"
~f.3~f.3~
't.o""uo~
'l.O "l.O"
                     C"IO fo»   800 H0u«               19 929                     '       	           		  ~ -
                      •    »" " '7    B   ~9~10   II    17   I3"l«  "15   16"   17    If    19    20    21   22"""23"   24 ' 25"
                    ~f.7  i'.«~~i~» ~i.'»~~iV»~~i7»  r.4'" 1.4" i.»—i.'>~~ir»  iVi"' 1.6  "1.8   i.i ~'z".'o"~"zri~~z75—2"."o—2".;"' i.o"
                     1.7  1.6  1.6  1.5  1.4"*l.4"l.4  1.4  1.5  1 .5 ""l. 6  1.6   1.6   1.6   1.8   2.0   2.0 ~" ?. j" 2.0 " 2.3'  ""2.3 '
                     1.8 "1.7"  1.6  1.4" 1.4  1.3 ' 1.4  1.4  1.4  1.5 " 1.6 ' 1.6   1. 7   1. 7 " 1. 7 " 2.0 '  2.0  2 .o""'2.0 ""2.0  2 .0
                     1.8  1.7  1.5  l.4"l.2  I'.'z  l'.3""l.4 " 1.5  l.5~Y.5  1.6   i.6'~'l.7   l".7   l.s" "l'.9  l"."9  2~."o"'>'.'3"  ~2.'u"
                     1.7 "1.6  1.8 "1.4 "l.2~ 1.2" 1.3  1.4  1.4  1.5' 1.7' 1.7'  '1.7   1.7"l.7   1.8   1.9 " I.9 ""l.9'  2.o'"2.fi"
 l.l
 l.l
                            I.O
                                 1.5
                                 T.2~
                                       1.3
                                       1.1
                                       I.O
                                      1.0
                                      1.0
                                         1.2   1.1   1.2   1.3 "l.4~"l.4  I'.'h  1.6  1.6  'l.6"~1.7' I'.B" 1.8"  1.9  1.9~"l."9  .l."»"
                                         l.l'~l.l "1.2   1.2  1.2  1.3"l.4 " 1.4 ' 1.6" 1.6" 1.7" l.T~l.»"~l.1~~f.V  1.9   1.9
                                         l.l"l.l"l.l   l.l   1.2  1.3'""l.4  1.4"l.5 "1.5  1.6 " 1.7 " I.7~ l.8~"'l.8"" 1.9   l.<
                                         I.T~~I.I   i.r~i.i   1.2  1/3  i.3~ 1.3'" 1.4""1.5  i.5~i.~'.~i.7~"i;'8~r.'8 "»r«"v.»"
             1.1  1.1  1.1
                             . 1
                                  .1  1.0  1.0  1.1  1.1  I.I  "1.1  'l.l
                             .t  '•'  1-0  1.0  1-0  1-1  l.l"~l.l""l.l   1.2   1.2"l.3"l.J   1.3' l.l"""l.3  l".4"  1.6"  l76~i.7  i."8  I'.f"
                             .l~I.l"l.l~1.0  1.0  1.0  1.1 'f.t~"l.2   1.2   1.2"l.2""l.3 "1.3   1.3"  1.3 " 1.5 ' 1.6 ~l .6" r.7'"l.V" lil "
                             .l" l.l'"l."l  l.O  'l.O" 1.0  1.0 "l.l" 1.2'  1.2   1.2" 1.2"  1.2""l.J   1.4  ' 1.5" 1.6~' 1.7~l.7 ""l". l'""l. i~ j'.j"
                             •l  !•!  '"•'»  l~«  I-"  l'.0"~i.0~"l.0~l."l~  l.l"  1.1~1.1~1.2   1.2   l."j~"i.'«' "1.6  l."9   1.8	f.7	l7l—lV'~
                             .l" l.l" 1.1~ l.l'  l.O 'l.o' 1.0" 1.0 ' 1.1   1.0   l.l"  l.l "  1.2"  1.2   1.4   1.5' 1.7  1.9   l.a "1.7  !.«" 1.7
                             .I  1.1  l.l  I.I  l.O  l.O  1.0
      .1  1.1
      .1  l.l
                                                                    I.
O
O
                                                                                           v.s"'i.6~r."»—t."6~~i:»""t.>~'iVf""
                                                                                           1.5  1.5'  1.5 "l.6"  1.7 Y.T" U7~
   2  l.l  I.I   l.l  l.l  l.'f  l.l" 1.0~"|.'0  i.o"" I.O  r.l"l.l   |"2~I."Z"~I.Z'~|".J	1'.'
   2'  1.2  l.Z   1.2  l.2~l.2  1.2'1.2  1.2  1.2  1.0" 1.2  1.2   1.2" 1.2 'l.s"l.l   1.
   7"l.Z  1.2"l.2  l.2"t.?~1.2  1.2  1.2  1.2  1.2  1.2  1.2   1.2  1.3  1.3	1.4   1.4   1.4   1.5   1.3'  1.5 " 1.7"  1.7""z.O "
   2  1.2  1.2   T72  lT2  iVz  i".V~i72~"i72  1.2  T.'2  lVz~~"l."z"   f.Z  r.3'"~f;3""t.i""l.'*~~l.'*"~"l.*   l".5"~l76—l7o—2"."o~Z."o—
   2""l.2'"l.Z""i.2"~I.Z" l.2~" V.'Z' 1.2  1.2" 1.2 ' 1.2' 1.2  1.2   1.3  1.3 " 1.3 "~1.3 " 1.4 '  1.4   1.4   1.6   2.0~"2":o""2."6~Z.o"
   2~"l.2  l.2'~l'.2~"r.2"i:?~ "l.2'"l'.'2"l'.2' 1.2 ""1.2 "1.2  1,2   l.l~"l.3" 1.3 " l".3 " i.3""l .4   1.6   2.0 "2.0"~2.0"~2.<,   2.C
   2  l.Z  l.Z   f.~2  1.2  i".'2  irj"~i;2  lT2  T72""l.2~ 1.2'  I'.Z   l7r"l.3  1.3  f.'3~"l.3~"l7*~ T.V "z."o~~»7o   zTo~~"*76   Z.'c'"
 	figure  IS.  .  .Cfimputed  Initial  Conditions  for  Oxidant

-------
»Ol.l.UM\r N2  CO.NCPNTIATICN

     - .  (    }     3 '   4 "'
                                 F01~  *00 MCU1  "  '"    "  '."6*  929

                                  8 "  7 "  » '   9 '  10    ii "  u   i)   14

                                 3.» I2.7'|2.7 12.'7"l'273"ll.4"l";>.'2 10.5 " «.'
                                                                                                                   u" 22   :i    24    25
H    f37V~l3~.3~l~>.2~l"3V2~~U.5 "l'2.9"u.o 'l3.4 ~
   _
21  ~ 13.5  13.4~13.4~ 13.4  13 .6 12-fl 13.0 13 .3


20    Il.l"ll..»~ll.2  11.2  ll.e'll.l 11.2 11.3

19     «1.6~~9.0   9.3~~9.l   9.'6 " 9.3" 9.3~ 9.3 "

Id"   "7.6" 6.8   6.9   7.0   7.6  7.6  7.5  7,3
                                                                    l0.2 "~9"."8" 9.2" 9.1   9.'2 ""9.2     9.*  9.8 1C. 2 10. 4 11.3 11.2  11.2  11.5 11. 9

                                                                     9.4  9.1  '.4   7.5   8.3   9.3  9. a 10.2 10.6 II. « 11.3  11.3  11.5 11.9

                                                                    " fl . 6  8.5  8.2~8.1   B.5   9.1  9.7 10.1 1C. 3 IC.'7 11. 1  11.2  11.7 12. J
       7.J
                       6.9' 7.5  7.6 " 7.7" 7.7  7.1   6.9  6.8 ' 7.0 '"5.*  7.8   -.5   B.A   1.6~ 9.1  9.3  9-2 " 9.7  *.*  1C. ft  U.3  11.5 12.7


                       >73  7V*  T.ft"~"77*  7.V""7.'l   7."l~6.9   7.~S  7.'*.  8.~5~9.~5   fl>~*T."7  9^1  9~./"V."f" 9.~2  S.7  1C.*  1C. 7  U.I 12.0


     |i ---- T.2   7.Z"7.3~"7.3 "7.5"7.7""7.l"7.0   7. l" " 7.o""7. 7 " 7.«  3.7   9.3~P.fl~9.7"9.0  B.9  fl.9^9.0~9.1  in.llC.*  11.1 11.5

     14   ""7.2" 7.2~ 7.2" 7.Z" "7.2~'7.0" 7.0 ""7.0 ~7.l  7.1~~7. 7"  7.9 " fl .2~  8 .i'~ S.6" 9.6 ~ 8/8 '8.9 "8.9  8.7" 6.9  ».V  10. 1  IS. 7 1 1.0


    ~~|"j -- 1,2   i,f ~1.2~~7.2~~ 7~.l  7.0 '~7.0~ 7.0~~7 '. I  7.l"~7."7  7. 7 ~ 8 ,o"" ». "* ~ «.T~ 8.2~" 8-t '•).*  8.9~7^q~"fl.6  9.2~lC.i  isV*~loV7


     "ll""* " 7.1   7.1  7.1  7.1  7.1  7.0  fc.9" 6.9   7.0" ~7.0~ 7.5~'7. 7 * 7 .3 '  7.* " 7.6   0.1"' 6.*  9.0 " B.8~ ft.* " fl.^8  ~9.j' 9.6  10. 3 io.S


     "ll      7. l" 7.1 " 7.1 " 7".o"~7.0 ' 7.0"  "fc.8  *.S "7.0" "fc.9"" 6. 8  (..-*  o.n   6.«  "7.?   7."b" "8.~2  8.*" fl.3**^9.l ~ S.3  9.4  9.5  13.2 10.*

     To      7. I   7.6  7.1  7.0~~(<".*  6.9 ~~6*. 7~ 6.7   &.'»"""6.a^6.6"  *.S  S.i   4.0   6. 9 "7.4*" 7, a  e. I  ti.tt  «.2  9.5  «.5  9.3  IO.C 10. 1

      ^ ----- 7.0 "7.0 "7.1 "6.9  6.9~ A.9  C..1  6.6"  6. 9  6./"6.5  ft.*.  5.3   5- 6~ 6. 7   7.3 "7.7  B.*. " 8. 6" 9.0~ ?.5™9.5  ~9.*"lO.O IC.'l"


      « ----- 7.0  "7.0' 7.0" 6. 9  6 .<»' f.. 8~ 6."7* 6. S"6.*"t.F  "&.*"*.<  6.2   A.3"6.8"7.2"t>.C  8.i'B.69.8'8.9~8.9~fl.71C.C 10.1


      T - 7."d"~7.0~"Y.9 — 6".«~"ftV»~>.'lT"fc."T~V."r"6.6  6 .V" 6." 8" 7. 3"" i.9~7.'C~7;3 ~7".V~»*0  8. 2"" B". ?' ~8*.*  e/fc^B .~6"B75~ 9.2'  9 .2
                                                                                                         7.3   7.» IC.O  IC.O  lO.C'IC


                                                                                                         773""7 ."«" 1 C7C~'lO'.'5  IC7tf "IS'
       Figure TeT ^Computed" initial  Conditions   for  Nitrogen  Dioxide.
      frouiur*'*' co
 c

 o
                           f;  f.BID  f 5«"" 500 HOU* " ...... "'69  929     "'"

                              .,     ^ ...  ^ .  _    »"'lo'~ll'  "12  "13    I*


                           ~i"r.C""ll.'2~'ir."5"ll."7'llV9'|27o""lO."»~ 8/9 9.5  "9.J


                            1C. 9 II.? 11.5 11.3 I2.T 12.2~IC.6  9.1 "e.9   9.2
                                                                                                                23~  21 ~22

                                                                                                                9.0 - J.9 - 879
                                                                 C.8   8.9   ..9  f.t,  872  0.6  B.~6  6.5   B. 6 .8~I)   9.0   6.9"  97c"~~377  8.»
                  10. 6 '15. S "10.6  1C. 9" 1 I. J' 11.7 12. I 12. 6 12. 8 10."7'"
                   6.8  6.7  6.f   7.2   7.3  7 . >"  7.6~7.8" 7. «~ 7. 3 " 7. 3   7 ."l " 7". )  7. J~7. »~ "i . 2"" B . 3   8/5   «. V t. 7™ 9 .0  »~.6~«7l  7.8


                   *.l""*.1 ~"*'.S "  5.3 "  ?.3 " 1.3""5.3 ' 5.*"" 5.**" 6.*" 6.3   6.7   T.2  7.*"'7.6"8.6  8. l' "« . 3  " 8. 1 " t. 2™ B .6  8.4 ")i.'0~/.6
                                                                            7.2   8.0  7.6  7.5 " >.T  7.V"7."4   T.~S "7.6 ~ *.Z~
                                             5.9
                                                                                                7.T
              5.9  5.9  S.9
o

o
                                                  6.0   A.I   6.7  6.8  7.C  7.3  ~6."4


                        5.*  5."  5.«  5.9  6.0   6.1   6.1   6.7~ 6.8  6.5  6.6  6.6   7.Q   7*1~ ~7. l" " 7.1~~'~7,"2  7.7 ~ 7.s'~ 7.8™ ~7. 8V/B

                        *•' '  s-°~"5.9  A.O  f.O"  6.1" 6.2 '~6. 3  6.4 "6.6  6.6 ""6.7"  6.8 ~ 7.0"  7.2  7.2  7.7 "7.7  7.8~ "7.6 ~ 7. S~ 7.»"


             *•*5«l)   5.9  5".9  f'.O  6.0~6'.0"~6"."2   6". 3   6".* " 6".5  6". 7  6".8  A."8~6.7 ~6.7   ^6.6  7."*  7^*  7^4 ~~7."*—7.0~"77o"~~77c~

            "5.9 "5.9 "A.O"  A.r" 6.0" 6.1 ""6.1" 6. 2   6.3^  6.*"~6.6 " 6.«  6.8" 6.fl  "6.7 "ft. 7" 7."* " 7.* ">.4 " 7.5~ 7.0 "7.0 " "7.V 7.0

             A.n   A.O  'A.O  6.9 "6.0'~~6.1 "ft.l   6.2   6.3   6.* "6.7  6.7  6.fl  6.7"" 6'. 7 "'7.*~  7.* " 7.*"" 7.5 " 7.C  7^0  7.0 ~T.<.   7.C


             6~.0   t>.~ri   6.0  6.0  6.1  A.I  6". 2   7. l"" 7. 1~ 7.'l~"7 . f " 7.l"~ 7. I~"7r2~ 7.2   7.'* ""7. 4"" 7.'C  7,"0~77fl  7"."o~~7.'6~~7."0  '~7.c"


            "X.C~"fc.O~6.0 "6.l" 6.1~6.r "6.2 "6.2  "6.1   7.1   7.r~7.l  7.2^ 7.2   7.4" 7.0"  7.C " 7..0~" 7.0 "7.'o"~7.i " 7.C

             6.0   6.?   6".0'*  6.1  fr.l  6.1 ~6.2'   6.2 " 6.3"  6.5~6.4  6.4  6.*  6.4 " 6.*   7.0'~7.. "7.0" "t.o""" 7.~0  7.0~ ">."C  V.O~~7.C"'"

             6.0   A.O   6.1~"ft.l  67l"~ 6."l  6."2   6.2   6".2   ft."j  *Vl ' 6.3"*6.3  6.3  6.3   ^67"-*   7.0~7.~0  7"."0  7.C"~7lc	77*  >7o	770~


             6.0~~A.O "6.1   A.I™ A. t~ A. 1 " 6.2 "6.2 ' 6.2 "6. S  6.3  6.3  6.3  6.3  6.3   6.3  6.3 " 7.0 "7.0  7."0~7.0" 7".0" "770—T.r,—

             6.0  "A.I   6.1~A.l  6. l" "6.1*" A. 2   6.2   t>.2 ~b'.Z~ 6.3  ft. 3  6. 3~~6. 3 " 6.3~ 6. 3*~6.3  6.3  7.0  7.C ~7.0"~7Vo " "7.0	7.0


             6.0   A.I   6~. 1   6".l  6 . I  ft."l  672   672   6~.2   67 2   6~.2~ 6~.2" V.2  A7V""67 J~ V.V "6.2 " 67>  T."2 " "7.0" "7.0	776"" >7c	776—
      ^Figure  17.    Computed  Initial  Conditions  for  Carbon  Monoxide

-------



                         .    .
 f i  i  i  i   i  i  i  i  i  i  i  i  i   r i  i  i  i  i   i  i  i  i  M
(   L;  c  (•;•'.•<   oil    i   i   i   (   (.•  t.  i    o  c  c;  c>
                                                                   c
                                                                  , o
                                                                  i!
                                                                  1 o
                                                                  , o
                                                                  . V-
                                                                  •"O
 •O'
 a
 4-i ,
, 3'
!|
                                                                 i  h
                                                                 !  I
 V.   AUTOMATIC  PREPARATION OF MIXING DEPTHS
      As  described  in Section II,  an objective analysis of
 the  inversion  height (or  mixing  depth)  can be very complicated.
 After much  deliberation we decided  that a model based on
 spatial  correlations.,  as  developed  by Roth et al.  (1971),
 is the preferred approach for the present project  because
      (1)  It is relatively simple.   It  does  not involve
          excessive  computation;  thus  the burden  of
          developing an automatic program is considerably
          eased.   Furthermore, it does  not require an
          extensive  data  base, such as  the basin-wide
          temperature  distributions,  which are  needed for
          some of  the  more sophisticated  models we discussed
          in Section II.
      (2)  It is relatively reliable.  Since  the model is
          primarily  based  on measurements  of the vertical
          profile  of temperature, it  should,  within some
          degree of  uncertainty, approximate reality.
          Therefore  no extensive effort is required to
          validate the model.
      (3)  It closely resembles the  model  we  used in the
          manual preparation of the mixing depths  (see
          Roth et  al.  (1971J, so that comparison between  the
          two can  be made.
However, it should be noted  that this approach,  due  to many
special built-in features, is only  applicable to the  Los  Angeles
Air Basin.
     In the first subsection, we describe the algorithm upon
which  the model is  based.   The results of computations based
on its use are discussed in  the second subsection.
                                   57
                                                                                                                 58

-------
A.  THE ALGORITHM
     Measured vertical temperature profiles, in conjunction
with the guide-lines derived from numerous observations made
by Edinger, which we discussed earlier in Section II B,
form the strategic basis of the method we selected for the
automatic preparation of mixing depth maps.  This approach
is feasible because, on one hand, vertical temperature
measurements are available during the validation period
for two to four times a day at three locations which fall
on a line that is approximately perpendicular to the coast-
line.  On the other hand, based on one of the findings of
Edinger, contours of the constant inversion height over the
Los Angeles basin have been found to be  roughly parallel
to the coastline.  The procedure can be  described, step
by step, as follows

      (1)  Based on soundings made two to four times a  day,
          temporal interpolation or extrapolation is carried
          out to provide estimates of average hourly mixing
          depths for each hour of interest  at each of  the
          three measurement sites.  A simple linear inter-
          polation or extrapolation rule is used for this
          purpose.
      (2)  The calculated hourly mixing depths are then
          assigned to squares  lying on the  corresponding
          contours plotted in  Figure 19  as  heavy dotted
          lines, with all grid points on the same contour
          having the same value of mixing depth.
«
2«
23
31
'li
.J<
11
IS
17
U
li
i*
13
12
II
it.
1
S
7
(,
$
^
z
i
i
i




^



' —
















1

bA


•— -
£A
\


7




**•.
•II.
w
--—
— ^_- 	


—






2.A
Of


(.

I:K
+-K.


~4
_M
TA


N










1L
"A!













1C






,'A>
1
15
5XJ
[\'f
_-^
N

N















DO
U

—
CA.
^— •
\

S







— '









^~







•— •.
/



N

\
\
\

/
\
\










1
1^-






-{*





1 	 Ix,
^



















?

x




11







-N






\




\



V'T

X











r x




v


101


»


&?
n















x.





X


ir















XJ




^





^x

— ^^








) c
S





i^v,











X



)MN
X



S
|
4N
MOU

1
1

s,



I:.R(

X

ft
^"^

S.

X








S



^


11:


X




>,

\l




N




-AF
v'T.-




1 '





X




X,


X



RT
IN




T.






^





X


X

\ I J * 5 fc 1 81 10 II li '3 H U' " 'V '6 11 10
Figure 19. Map of Los Angeles for Mixing Depth /

•I.





ION








TP

'x





\





x^


^T











S


^^
il 12
inalys
1

1
fr.

I'
i












(v~~

1

~



"N1
•fr




x





\

>.^




^





S

i3 2»
is





^
—





;y
i?
w
2J
21
11
10
11
IS
n
t
if
f
5
1
1
fo
1
3
7
&
S
t,
3
Z
1
                             59
                                                                                                              60

-------
(3)
(4)
(5)
For areas over the ocean (Region B in Figure 19)
a constant mixing depth has  been used for all
grid points and for all hours.  The value to be
used has been determined from the morning (first)
soundings made at Commerce and Hawthorne using
linear interpolation,
ZB =
       Hawthorne
7
                             Hawthorne  "z  Commerce)
where z°Hawthorne=the mornin8 sounding at Hawthorne
      Z°-       = the morning sounding at Commerce
        Commerce           °
For areas in the San Gabriel Mountains  (Region C
in Figure 19), a constant value has been used
for all grid points, but this constant mixing
depth may vary from hour to hour.  The value used
has, again, been computed through  linear inter-
polation.

ZC = ZE1 Monte * ? ^ZE1  Monte  "  Commerce)
where Z£. ,.   =hourly average mixing depths at El Monte
      ZH  th   =hourly average mixing depths at
Hawthorne
For areas in San Fernando Valley  (Region D  in
Figure 19) , mixing depths have been assumed to
be the same for all grid points,  and the assigned
value is equal to  that over El Monte at the same
time.
                                                       (21)
                   61
(6)   For  areas  in the  Santa  Monica  Mountains  (Region
     E in Figure  19) ,  the  mixing  depths  have  been
     obtained through  linear interpolations between
     values  at  Region  D and  Region  E.
(7)   For  the rest of  the squares  in Region A  of
     Figure  19,  the mixing depths are  calculated
     based upon  known  values at  the nearest two
     contours,  according to  the  following formula,
                                                                                       A
                                                                                       A
                                                                    dlZ2
                                                                                                   2 Zl
                                                                            B.
                                                               where Z^ and 1^ are tne hourly average mixing
                                                               depths at the nearest two contours and d. and
                                                               d, the distance from the grid point to the
                                                               corresponding contours.

                                                               In addition to the above specific rules, we have
                                                              . imposed a minimum, as well as a maximum, for the
                                                               calculated mixing depths.
                                                                    100 (ft) < Z < 2500 (ft)
                                                               That is, whenever the calculated values fall
                                                               below or above this limit, they will be replaced
                                                               by the corresponding extremal values.
                                                          RESULTS AND DISCUSSION
                                                                                 Vertical temperature measurements regularly taken over
                                                                            the Los Angeles Basin prior to May 1971 were restricted to
                                                                            the radiosonde  soundings made twice daily at Los Angeles
                                                                            International Airport at 6 a.m. and 10 a.m. PST. (Routine
                                                                            measurements have since been made at El Monte) .  During
                                                                                                    62

-------
the summer of 1969, however, the Scott Research Laboratories,

as part of a comprehensive air-quality and meteorological

data gathering program, made 26 aircraft flights over the

Los Angeles Basin.  Two flights were made on 29 September,

commencing at about 7:30 a.m. and 12:00 noon PST, with a
duration of about one and a half hours each.  Vertical
temperature profiles were among those acrometric parameters
that were measured.  These temperature measurements con-

stitute the input data for the present program  (Table 9,

without asterisks).  We have found, however, that these
real measurements must be supplemented by additional esti-
mates.  This is necessary because straightforward temporal

extrapolation (Step 1)  on occasion produces results which
appear to contradict the findings of Edinger, such as the

unreasonable times at which peak heights occur  and excessively

large rate of change in mixing depths with  time.  For 29

September 1969 estimated data for thchours  at 5 a.m. and

4 p.m. (based upon best judgment) were added at each of the

three measurement sites (Table 9, with asterisks).

     Table 9.  INPUT DATA FOR INVERSION HEIGHTS

                                   HEIGHT

                                    435*
                                    650
                                    700
                                    630*

                                    385*
                                    600
                                    850
                                   1300
                                   1000
                                    960*

                                    500*
                                    500
                                    825
                                   1700
                                   2800
                                   2800*
STATION
HAW
HAW
HAW
HAW
COM
COM
COM
COM
COM
COM
ELM
ELM
ELM
ELM
ELM
ELM
TIME
500
826
1228
1600
500
815
910
1206
1257
1600
500
756
924
1156
1312
1600
                             63
    Based on the data discussed above and the strategies

outlined in Section A, mixing depths have been calculated.

Comparisons between the computed mixing depths and the

manually prepared mixing depths have been made by evaluating
the average deviations.  The results are summarized in

Table 10.  Prior to 11 a.m., the average deviations range

from 60 feet to 100 feet.   This is  probably acceptable con-
sidering the uncertainties  of the input data.   In the

afternoon,  during which the  mixing  depths were generally

higher, the magnitude of the average deviations increase

to about 200 feet,  but in  terms of percentages based on

average mixing depths for  the respective hour, the differ-
ences amount to about 5 to  10%.   This should also be  satis-

factory for the present application.   Samples  of maps for

the computed mixing depths  are  shown for 7 a.m.,  10 a.m.,

and 1 p.m.  PST for 29 September 1969 in Figures 20, 21 and
22 respectively.
    Table 10.   Average  Deviation between  Computed  and
               Manually Prepared Mixing Depths
         TIME, PST

              5
              6
              7
              8
              9
             10
             11
             12
             13
             14
             IS
             16
AVERAGE DEVIATION, FEET


       61.5
       64.9
       76.0
      107.6
       75.7
       80.9
       98.3
      197.0
      240.4
      208.7
      224.5
      192.4
                                                                                                         64

-------
                                    0961
                                                               'me  oi  iol  si[jd3 _ ill _ Sif_Sit _ Sit _ Sit _ Si£ _ Si! _ Sii _ Sit __ SiC_Sit __ Sit _ Sit _ Sit _ Slt_liI_SU_iil _ S.4i __ J _
         _ts«_st»_»tiS __ ies_its_ie» _ in — Sit — Sit_Sit — sit — Sit_sit__si' — sit_sit_Sit _ sit — Sit._su_sit — sit __ s/t._sit_>ii -- t _
          H9  789  a*  ?ai  6«t  u«  wi.»  6r*  t/c   c/c  c/t  mt  •./ c  tit  tir  i»     »
      ti_liS_ii.! _ Jt.< _ 6&S_i«_01S _ •».» — Sit __ iit — Sit — Sii _ S
      Ii _ boy _ 2B.9 _ I.Y.V _ I.rSL__ldS _ B«S _ S2S _ SSI _ tCT—il.i
S91   frl  IZL  Ht'l  t.o1  Iff  fKV  Iff,  ff"?   !'/<.  b-js  SUV
                                                                            SiC_Sit — Sii _ Sii — Sit _ Sit _ S'.t_Sii _ Sit _ Sit _ lit
                                                                        Jt _ b6t _ Si£ _ SiE __ Sit __ Sii _ Sii __ Si.£ _ Sii __ Sti __ sit _ Hi
                                                                            ';r-^  tit*  j?DE  mg  Slf  sit  'itC   «.It  Sit  Sit   sit
          t6i _ Sii _ 2SI
          ooa   i?«
                             it _ bfc.9 _ t,L? _ DS2 _ fctV—JPtfi __ J.bl __ MS _ t£S _ »3S _ Ijti _ IS1! __ tl> _ SiC __ Sit__Sil _ SiE __ SiL _ Sit _ Sit _ Sit
                                           2P2 __ p9.« _ *ry _ Ui^ _ V-vv_j.is _ t^s ___ tts _ ft«*_.^s* _ so?_iit _ sit_..si t _ stj; _ Sit __ its_>t(
                                      /rz  an  Hto  «iv  /<;•/  jf)  H4   111.  t»<  s?<  im  L",»  1*1  *LC  sil   sir  t/I  m  sit
O 	$91	*s>i_EW	LU	Lie	M4	i?i_A2i	??i_90i__tdV	ii.%	ii_S	b«i	,*C?	j«»	••«__*


                   ILL  Z9L  \5L	1?*?  lib  /It	?qf  891  Mfrf  K^J   iJi  f't;9  'jg'j  »***  *it __ 41 1 _ Sit ___ I.I _
                                                                                               VI*.  •>!•>   01^  WE  Sf t  Sit
           Ji_> \^> ftit ff ;*v ft* , ^c ^^t sit ^ii sn s/c «.it ^i t nc ^:i sic **c -iif sn kit ut



OSf 99 r B/T Itf *-»* *•'» 1C* <•>* «1* 2'41 €•*-!>&•» Ib^-.K"1* «S* Vf* SI* lot S/f Sit itt iit Stl Sit kit


. i 411 411 I
1 t •« «n 1 ^ •> •, IV. I/ '-t SI, 4 1 41. 4-1
li|_f.J._.|i£_^, ,-,7 f^ ^7f ,cf i«, 7.1 ^t, H, SJ< M, »« M» 61» if, Si, ,1.' Sit >ll 4l> .11
r.71 «r, » Jl. 411 41t tit 411
1 tl s< 1 It It
00l_331 "JI_t'l_f-| I«l__9»' "-1 1" »-• <» ?H -f( PM 41C ttl ,M 114 il> i.» I.- ., jt 1?( Uvt ,il


r>ni Pill O'j' aoi '"''' ^»i "ai i^' Qi'lt <*'jl 2llt 	 lii :-a^ tc,? t1'? ?/? *>bi. ,. *J2 .Mi iic *;? c-£2 &i-2 it? vt2
POI out L,M (,fj|_;?i '"Ci c^i **t!t P-JI 33i itji «Ji ti^i 9SI -*HI / u tii cbi iti ui iii boi IL? ej^ uz




«? »,? C^ ?/ 12 Ji* c»I PI Jl -M SI •»! *1 ^1 It 01 * tr i •' » v I i \






\
Z
C

s
„



C-l
11
?1
t.1
•>t
st
•Jl
J I
*1
61
C?
t^
?2
CJ
^^
qe




" O
_ O

• o
o

• o
. 0

• o
o

' O
°!

O!
1
0

' O
o

o •


o
o

0
E3

u

-------
OO'JOOOOOOUOOOOOOOOOOOO















•>
•c



a
£
a
C
0
T
c
X.



"

r







**













3
1
J
.,'
*•
:
^









--

•
~j
o
-

-
'.
"•
*"
.
I
*
:~
-
•^
L
£
F
n

-
:
•'
.<•
M
'
-»
-
•C
J"

-,

~
"
~
*"
.


4

C
-'
7
~
^

C
h-
>f-
'


~

-
-

-

n.

-

,
C
:
:
P
n

»j
>•
"


-
-
-
-
~
•C
~
ft*

~

~
<



-
j
^
^



0
,_,
~


~
~
*J
-
«
5-
;
^

-



-

.
«
P
~
LI

-
M
F
C
,

r-

•,
~
-

-
*~
F


-

-

-


V
"



_,
r

r



"
-

-
^
-
-

-

-

-

L
c c
C L
L C
^ c
~ ,~

i
" r
^ r-
" r
•
-, >,
- r
~ r
-

' \
~ r
" f


= *
- 1
1



y
"
1


~
r
I
-
-

-





"*

~









"
k
r.
-
^
-
c
-



r



r

•*
-






o
"
16
t



r
-
j:










*
i






.
"

"
:
-

£
1





-
«



'
*






.
-
-
-
^
-

r-

^




'
'



*
r






r
Z
n
r
-

L
,
.










•
•"


1








r
,.
^











^




..

-
I
L
I
.
1
~
I
„
L

-
,

'





i^
"•







C
.
.
r
r
,
_,
L



c





.
"
"






.1
.L
" C
; L
• r


, L
^ u,

L i'
' r


jr

• 1"



- Is.







.
^
r
p
r
C
"
,
r
7
'

'
.
'




-

*"




.

.1
. L
• r
•s tr-
I
• r
I [

„ L
L C
i

n i*

h p
1 f

|

|
f -
*•• ^







t

L
"

:

"
"
V
„
r
,
r
L
"
:


i-.
"•






                ooooooooo
                                                  o   o  o  o  o  o
                                                                                  VI.   AUTOMATIC  PREPARATION OF BOUNDARY CONDITIONS
                                                                                       The  objective of  the present section  is  to  formulate  a
                                                                                  method which  is capable of prescribing boundary  conditions
                                                                                  automatically.   These  boundary  conditions,which  consist  of
                                                                                  an  array  of 4 x 25 values of concentration per hour  for  each
                                                                                  species,  will be used  as input  to our airshed model.  There
                                                                                  are  two major difficulties that must be  faced in constructing
                                                                                  an  appropriate  algorithm:
                                                                                       (1)   The lack of  any real  measurements which  can be
                                                                                            truly described as boundary conditions.  The only
                                                                                            exception  to this is  the  measurements  made at  the
                                                                                            Pomona station, which is  located at the  eastern
                                                                                            boundary of  the modeling  region.
                                                                                       (2)   The inadequacy of simple  extrapolation techniques
                                                                                            for developing a predicted concentration field using
                                                                                            measurements made by  stations  close to the boundary.
                                                                                            In  many cases the distance between  the boundary  and
                                                                                            the nearest  station is  large,  so that  a  time  lag
                                                                                            of  hours may exist.   The  difficulty is compounded
                                                                                            in  many cases by the  fact that  large emissions sour-
                                                                                            ces may be present between the  boundary  and the  sta-
                                                                                            tion.  An  accurate determination from  the  station mea-
                                                                                            surements  of the value  at the  boundary would,  thus,
                                                                                            necessitate  the use of  a  predictive model!
                                                                                       In the following, we will  describe  the details  of a
                                                                                  method which  closely resembles  the  procedure  followed in pre-
                                                                                  paring the boundary  conditions  manually.   We  also  present
                                                                                  results generated using the method.
                                   67
                                                                                                                68

-------
A.   THE ALGORITHM
     As we have noted earlier, the prescription of the boun-
dary conditions is by no means trivial.  The process is
plagued on one hand by the absence of real measurements at
the boundary and, on the other hand, by the need to incorpo-
rate information concerning the dynamics of the transport and
dispersion of pollutants when extrapolation of interior mea-
surements is contemplated.   This  algorithm has ns  its  basis
the experience we gained in preparing manually the boundary
conditions for the six validation days.  These difficulties
notwithstanding, we have formulated an algorithm which we
believe embraces the essential features of the manual proce-
dure, yet is simple enough to be of general use.
     In accordance with a qualitative criterion based on  the
overall meteorological or air pollution characteristics per-
taining to the region, we have divided the boundary of the
airshed into the following three categories as illustrated
in  Fig. 23.
     (1)  CATEGORY A
          Boundaries falling  into this category are generally
          characterized by a  influx of air earlier  in the
          morning, followed by an outward  flow at a later
          time as  the  sea breeze  is established over  the
          basin.   Fortunately, the boundary conditions speci-
          fied during  the later  period of  outflow are imma-
          terial;  they will not  be used by  the airshed model.
          Specification  of-the boundary  conditions  during
           the  period of  inflow can be simplified  if we view
           the  situation  as  the return flow of polluatcd
           air  fr^m the basin.   In this case,  assuming that
                               69

15
l><
23
11
V
.2'
11
IS
17
u
IS
l<>
IJ
12
II
10
1
E
7
t
S
4
J
2
1

1
A
A
A
A
A
A
A
A
A
















1
1
A







B
















I
j
A







B
















J
«.
A








V















^
s
A









'fc.














5
6
A










sB
\
B











t
7
A












v
H
\
B
x^
\B
B^





1
S
A


















~r





8
1
A


















^





1
10
A


















B
~^




10
If
A
A
















r£






II
ii


A
















B





a
<3


A
















B





'3
/<•



A














•^^
B





'^
if



A














^
B





iy
it.



A















X





"
17




A















^




''
iS




A
















X



Ib
/•?




A

















X


IH
J«




A


















gS

2«
i;




A



















B
il
• J




A



















>
22
J J




A



















vB
a
it




A



















B
u
e.f




A
C
C
C
C
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
is
 Figure  23.   Map  of Los Angeles
for Boundary  Conditions Analysis
                                                                                                                70

-------
                                                                                                                CATEGORY A
there are no major sources beyond the boundary points,
the concentrations of the influx should decay from the
initial values at S am because of the dilution along
the way.  Thus we may write for boundary points of cate-
gory A,
                            - TQ)
                iB
                                   'B  < t <
 B

FE
                                                       (23)
where
     c.    the pollutant concentration of species  i
          at the boundary at time  t
     Ci    the initial pollutant concentration of species  i
          at the boundary
     o.    the rate of decay for species  i
     Bi    the discount factor from initial concentration
          of species  i
     c^    the background concentration of species  i
     Tg    the time at which the concentration of the
          return flow approaches background value
     TQ    the starting time
     Tg    the ending time


The concentration history is illustrated in Figure 24(a).
                                                                    (a)
                                                                             t-B  —
                                                                   (b)
                                                                               T
                                                                               o
                                                                              5 am
                                                                                     From Initial Conditions
                                                                          'E
                                                                         4 pm

                                                                    CATEGORY B
                                                                                              From Nearby Station Measurements
                                                                              To
                                                                             5 am
                                                                                            K  TA  TB
                                                                                                                     4  pm
                                                                                       Figure 24  Concentration  Histories  for
                                                                                         Boundary Conditions  Preparations
                         71
                                                                                                        72

-------
(2)   CATEGORY B
    .The  boundary  region falling into this category is
     characterized by an outflow in the morning, followed
     by an inflow  at a later time, conditions just the
     opposite of those of CATEGORY A.  Before the rever-
     sal  of the wind, the values chosen for the boundary
     conditions are of no consequence.  Immediately after
     the  wind reversal, information concerning the pollu-
     tant concentrations of the return flow should be
     contained in  the measurements made by the nearby
     stations.  These measured data will be used with
     modifications to allow for  1) the lag between the
     time of departure of air from the vicinity of the
     monitoring station and the time to re-entry at the
     boundary,and  2) the dispersion that will have taken
     place over the time interval.  After a period of
     time, one would expect that the nearby station mea-
     surements will no longer be related to the concen-
     trations of inflow.  To deal with this situation,
     a cut-off time has been specified, a constant decay
     is allowed from this onset of the cut-off until the
     background values are reached.  To summarize,
   CjCt)
                     l (t -  Tc)
-  TA)
< t
< t  < T

-------
square root of the average squares of the differences between
the two.
     The results of the comparison calculations for tho cri-
   tical period between 5 a.m. and 10 a.m. arc listed in Table
   11.  Again, it can be demonstrated that the differences for  •
   carbon monoxide and unreactive hydrocarbons are sufficiently
   small.  For nitric oxide, nitrogen dioxide and reactive hy-
   drocarbons, the magnitudes of the differences are larger,
   but seem acceptable.

Samples of the computed boundary conditions at 7 am, 10 am,
and 1  pm are shown in Figures 25 through 27.
 Table 11.  Differences Between Computed  and  Manually Pre-
            pared Boundary Conditions
Time
(PST)
5
6
7
8
9
10
am
am
am
am
am
am
RHC
(Pjpra)
0
0
0
0
0
0
.67
.63
.53
.58
.57
.63
NO Ox*
(pphm) (pphm)
3
1
2
1
2
1
.5
.7
.3
.6
.1
.0
N02
(pphm)
1
1
2
2
2
2
.8
.6
.1
.0
.4
.4
CO
(PPM)
1
1
1
1
1
0
.1
.0
.3
.3
.3
.9
URIIC
(p_p_m)
1.
1.
1.
1.
1.
0.
2
2
2
3
3
87
 * The boundary conditions for the oxidant, again, are calcu-
  lated  from the chemical equilibrium relationship in the SAI
  airshed model, therefore, no boundary condition map has been
  prepared manually.
                               75
                                                                                 O  O
                                                                                o  o
o o o o o o o
| i
1 :

i . • ? ' : "
' t * '
: "1 -. i



O' *! • °
O M

1 "

0 - i
•- ~\ * f.
-, -


•» ri ;
*• ~ *: ' ^
: *' -
£, « 1 "

? 3 "\ ? 3

< ' — ^ ^ 5 ^-
i - n

; ^ «
0-' * ". €?
1 ""' "
• «,• f-
•»; cJ *
i - 32 S •
i "I n

J *- "
t ^ J
.rt ^; ".
"*i W
f*' h-

J „
^j « ' o ^


& a 1 a
o o o o o o o
o o o o o o o
"1 1" I • : i
if : •

~; "\". J • : 1 II J
i ! ! ; ' i
-*.*»*,' • -.0
~l - - *i . ~ -. -


J -' oj =j - _ ~ o
_• J j ,1 • J ,• ,


•• 1

i :
-" M « 0 O 0
' - 1 -J ' -• - -
o -* «j hj on

i
« O oj ^ O O
-• o *f-; in o o

— o M r- . o o
• : ?3'
IA o •:<>•: ! o 0
« 

•o
c
o
X
^1
ed
•O
C
3
0
•O
O
3
C.
E
O

l/>
V
3
CO
u.
O 0 O O
                                                                                                                 76

-------
o •"                                                               SOMSE
   	BC11J.CS,.I	2.  _> .    *  .._  5  .  6    7 „  ft.   °   10  ..11   12   13 ._14   15 _ 16   I?   I8._l° ._ 20  ..71 _22	23	74	75
c
o r
                                                                                                                         5.0   5.3   3.T
                                                                                                                        _3.6_5.5	6.7_
                                                                                                                         4.3   4.3   4.)
                                                                                                                                             O ;
                                                                                                                                             o
                                                                                                                                             o
                                                                                                                                             ~ i
                                                                     fr«  929    "                            ""
                                                                                                -           ..... _______ ......
                                                                      SOUtCf
     _ 80H^£H _ I.. __ 3 ___ 3 _____ * __ ,5 _ *>  ____ 7 _____ 8 _____ 9 _____ 10. __ 11. ...  l?_  ..1-1,. I* „ 15 __16.._17 _._18 __ 19 ____ 20 _ 2,1 __ 2.2 _ 23 _ 2* _ Z5
       POLLUTANT  CO  CO.'JCff.TRATlON Mlf) FQ*   700
O '                                           '
       -----
O  - .   i_   J
o       E~  J
O :
               l.»   1.6  3.5  3.)  1.1   2.9  7..T   2.1  2.7  2.9  J.I   J.T   3.4  4.0  4.5  5.1  2.7  2.5  J.I   3.5   3.8  1.4  ).»  }.*  l.J ._.



               NT UHC CONCENTRATION Can  Fu:«'  700 MOUK               69 929            '     '          '     "'     "  •    "
                                                                    SOl'Aof
   	BOPILR	L	2	3_._4	5.	.6	_7	 e	.9. _10..... 11	12 _.13.	14_  15...  16	17	1.6	19	70	21    22   23	24   25
         $   30  6  33  6  >0 6 30.6 30 6 30 6 3d 6 ,0 6 ,0  .  30. ^ ,0 6 -0.6 30.6 30.6 30.6  30.6  30.6 30.6 30.6,0.6,, ,  26.0  25.1 23.321
Q 	£	!>...>—1J«.*_U.3.J1..1.-I.U.I_U.I. 11.1 IL.lll.l  13.1 15.1 17.1 lo.l 21.0 23.1  27.*  31.7 36.0 29.9 23,8 17.a  13.**  13.6 13.* 16
O   Figure  25  b.    Computed  Boundary Conditions   for  7  am,  29  September  1969
      O
      o
      o

      o
      o

      o
      o
      o
      o
  o
i  o
    I
  o
  o
  o
  o
  o •
  o '•
  o
  o
  o
  o:
  o'
  o
  o
  o
  o
  o '
  o
  o
  o
        PUllUTA.'iT RHC f.nnCCNTBAT nn Cdftt FOR  1000 hOi;A
                                                                    69 929
                                                                                                                              ..... ---- ---- =
                  	*_.—3.	_>	5	6	7	8	t	IQ_.	11	12.._1>_ 1* _ 15	16 __ l.T	 1 *	19	?0	21    22    23   2*	2j
          N...  2.0  2.0  2.0.7.0  2.*  2.9  3.>  J.H   *.T   *.*  5.1  «.5  5.8  6.3  ft."   ft.3  10.0  11.8 13.6. 15.* 17.1  15. 7  14.3 1 2.7_11. 2
         .5	21.3 2».3 2*1.1 2*.3 25.3 »B.3 2*.> 2P.3  29.3  2ft.3 ?*.3 2f.! ?f.3 2?.3 28.3  2«.3  2!>.3 26.3 2C.3 2fl.3 27.0  25.6  2*.3 22.9 zi.A
        	f	i-J.	*•.?	!•_!	I-.O	>..3__3.3,	?--L._T*3._._5.*	7.0_ 10.8_1*.7 L I*, g__23.0_27.AL  >^ .2 j.Q.9_*7. 7^_3_7. 1 26.6^16. Ij .3   7.>  6.5 jjj.2
          «,,,2d,3  2«.3  21.3 29.3 2*. 3 28.3 2d.3 2fl.3  28.3 ?fl.3 2«.3 28.3 25.3 2«.1  2*>.3 2B.3  !*.3 11.8 _9. *  6.9  *. <  I .?^.. l-9_ Z.O _2.0.	
        POLLUT»NT HQ  CONC EN7i) A T 1 ON CP.IO ^OR  1000  HOUR
                                                                    69 929
       _B_CKQ£J<   1	2	3	*	 5	6.	7	g  _ _ «	10	U._. 12  . 13	1*  .15  _1617 ___1B	19	20	21	22 J	23   2*	?S
       .   N...  l.J   1.0   1.0  1.0  1.0  1.3  1.1  1.6  1.9  2.1  2.1   2.1   2.0  2.1   2.1  2.*  2.6  2.2  ?..*  1.0 1.2_l.l .1.0  t.l._1.0,
          S	J.I   2.9   2.7  2.5  2.4  ?.l  2.3  2.6  2. ft  3.1  3.3   3.6   3. t.  3.7   3.6  3.*  3.3  3.1  3.0  2.9 2.7  2.6  2.5_2.3 _2.2
       «	E	1..0	l.0_. l.0_ I .0. , l.O.._I.O ,. ,l.0_ .1..0._.1.0___l.2_1.7	2.3  , ?.P	3.2._3. 6, .2. 8 _ l.^_I.Q_1.0	l-.O	I.I	1.0  1.0  l.Q	1.0
        _H   ...J.I   3.2   3.3. 3.4  3.5  3.6  3.7  3.8  !.>,..3.1  2.8   2.*   2.1  2.2.2.3  2.4  2.3  1,9  ?.2_Z.I 1.6  1.0 ...1.0.  l.0__l.fl
        POLLUTAfJT Ui  CONCFNTB4T10N OTO FOR  1000  HOUR               L9 ^29
                                                                     SQUARE                                "                  -     .
       _BnnDi.R ..1. ._.2	3 _ '.. .„... * _ .. 6 ...  T ..«.. 9_IO.H  .12   13    14    15  _16   17   IP.  t"» _  2I>. —21	22	23	24	25;„
       . .N	l.J   1.0  1.0  1.0  1.0  1.0  1.0   1.0  1.0  1.0 . 1.0  1.0  1.0  1.0   UO  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0 .1.0  _1.0
        _.S __  ».*   ^.1  4.7  "..<.  4.0  1.6  1.5   1.4  1.3  1.1  1.0  1.0  1.0  1.6   2.5  3.3  «-.l  5.0  5.fl  6.6  6.6  6.6  6.5  6.»   6.9
       	E	1.0...t.O ..I.O.. .1.0  1.0_1.0  l.0._1.0. 1.0 .1.0  1.0  1.0  1.0  1.0   1.0  _7.0 13.0.19.0 17.9	A.7	l,o	l.O^J.O	l.JJ	1,0.
         . J....  5.4  6.0  6.6.3.5. 4.3  1.1  2.0   1.0  1.0  1.1  1.3  1.4  1.6  2.4   3.2  4.0  1.0  1.0  1.0  I .0  1.0  1.0  1.0  1.0   1.0
      °l
      O i
      o
   ;  °l
   -  o
      o
   -  o
—J  °
 —   o
~   o
	   O
~   o
 —   o
   i   o
 —   O
      o
 —.   °
      o
     Figure  26  a.    Computed  Boundary  Conditions  for 10am,  29.  September  1969
  -'  O  !
         j
     o
     o
     o

-------
         PiUUIl ANI  N2  CflNCENTRAT ION  G*ll> "-"fls  1000 HOUR
;  Q
               ._l._  .!._ 3_4    !*  .. •   .7 ____ a.



                L.O  1.0  1.0  1.0  1.0   1.0  1.1   1.2
                2.0  1. 1  i.o  i.
!  O.
                                                                                                     7.8   5.6  3.4  2.0  l.«  1.6.. 2.8




                                                                                                     2.4   2.1  1.6  1.0  1.0  1.0  1.0
                                                      .   .

                                        rnn  toOi) KWR




                                        <•. _ 7 __ 8 __ 9 __ 10
     o-

~J I     —
o   o
           ^ _ 1 ,,   i.o  1.0 _ 1.0_ 1.0 _ l.O_l.(J __ 1..0 __ 1.0 ___ 1.0_._1. 7_2.3 . 2 . *._ 3 .S._*..l .. 4 ,7_ 4.4 ___ 6.0_ 4.^ _ J.6 __ 2.4 ___ 1.3 _ 1..2___1_;_0_ J..J
         POLLUTASf UHf,
  01
    !
           _BO«4tJ  1  -.2  .. 3.... 4     5  _  n.   '...»_.. 1 _  1"   I' ..12  ."   .'4  .15  .'6  .I'_H   H._.2°	21	22	23	_24 _ 25	



   i  U!	   N    i.I   |.7  1.7  1.7  2.0  2.4  2.n  1.1   3.5  l.fl  4.0   4.1  4.2  4.4  4.5   5.4  6.3  7.3  >.l  °.3 10.1  1.5. «.6  7.7  6.1.




   I  O        S_.li.2  I".2 11.2 11.? 11.2 H.2 11.? H.2  H.2 H.2 1".2  11.2 H.2 11.2 K.2  11.2 H.2 11.2 11.2  H.2 1".0 16.S  15.5 |4.3_13.l



   I     	^	ft,5	1..7	i.Q	t'.0_.?,4._ 2.4 _ 2.4__2..4_._2.*_ 4.1 .7.4__1.o_l?.5 .15.C .1 7. «  2 0. 7 .23. B_27 . 0_2.l ..2...lAr>	2.r5	5.0	4.4  3.1  6.1



   i           k.   11  1  11 I 11.2 IV 2 n 2 11.2 11.2 11.2  11.2 11.2 IV.?  11.2 11.2 11.2 11.2  11.2 13.1 10.ft  S.5  6.2  3.1._ 1.'_..!. 7 . 1.7  1.7
'  O   Figure  26 b.   Computed  Boundary  Conditions  for  10  am,  29  September  1969
r\
i ~
o
! o '.-.
O SOUAriE
	 BOa'ji? — 1 	 2. _..*„_ * _ * 	 h _ 7_. 8 9 10._ U 12 I)
.. , S,.. H'* It. 9 11.9 11. t 11.9 U.9 1 1.0 U.9 U.? U.9 U.9 U.*> 11.9
O
	 	 	 ^-'_*-.?_.UI_l.Q_1.3_.].J_.3.1_3.J_3.A., T.O_l'>._Vl*.T_l''.8.
O t
PDLLur*Nr NO coNreNiaiTios r.^io FCI* noo nnu^ 59 92?
O
	 BOBOEH... 1 ..2.3 * •> . (, 7 . ct 9 10 U 12 13


o
o
O • PlRLJTANT 01 CONCENT**! ION MIO FOB l?00 M30R 69 -329
O 	 B.CW5iS...l 	 2.__i._.4 	 5.6. 7 ..8 	 1 10 11 12 .13
. • N 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 I.O
O •--••--


Q . ». .6.6 ».« 7.2 5.0 4.6 3.2 1.1 1.0 1.4 2.3 1.1 4.0 4.,
O
O
O
O Figure 27 a. Computed Boundary Conditions for
^
c
(~
1* „!* _ 16 	 17 _U 	 l<» 	 20 	 21 	 22 	 ?3___2*_ 	 25 	 i
U.9 U.9 U.9 U.9 U.9 11.9 U.9 l|.9 U.9 U.9 U.9_U.9 __
21, C 27.* 2^.9 22.3 1«.B 15.5 11.2 A, 8 1.0 2.1 1.3 6.0
1
.' 0
~~ .
. ..... : o
1* IS 16 , 17 ..IB . I'._ZO._ 21 ._22 _23._24 	 25 	
1 0 .!•» ._


- - 	 ,o
	 ' o
1* 15 16 17 IB . 19 _20 .21. 	 22 _23 „ 2*. 	 25 	 Q
1.0 1.0 1.0 1.0 t.O 1.0 1.0 1.0 1.0 1.0 1.0. 1.0


iO
o
o
o
1 pm, 29 September 1969 . O

-------
o
ooooooo. ooooooo   ooooo
                      I  i  I  I  I
                           e o  o
                                                                oo

                :• :i:
            o  •  •  •
            i::  :i
            :  o ~ o'

                _  o- -•
                                '  t
                               000
                                             '
                           f  £'
                         g   I
                                      i
J •;' ° °! "j1
                                          s- '  - - «.
                                       '  1 ;   •  !  •
O  ('  O  O '  O  O  -O  OOOOOOOO  OOOOO
                                                                   c
                                                                   o
                                                                  CJ
                                                                   t-c
                                                                   ra
                                                                  •a
                                                                   c
                                                                   O
                                                                  (J
                                                                o  o
                                                                                  VII. CONCLUSIONS AND RECOMMENDATIONS
                                                                                       In the preceding four sections, we have discussed
                                                                                  the development of methods for the automatic generation
                                                                                  of the wind field, the initial conditions, the mixing
                                                                                  depths, and the boundary conditions.  As we have stated
                                                                                  before, the methods adopted for each of these' four cases
                                                                                  arc considered, in general, to be "acceptably good".
                                                                                  By this we mean that, given the level of accuracy of the
                                                                                  available meteorological and air quality data (which
                                                                                  generally ranges from fair to adequate, although in
                                                                                  some cases it is good) , the predicted results compare
                                                                                  favorably with the measured.  We note, however, that
                                                                                  critical testing of the methods must await the avail-
                                                                                  ability of more re^able test data,  such as those to
                                                                                  be collected during the LARl'P program.
                                                                                       Improvements, of course, can be made through minor
                                                                                  modifications of the basic schemes we have described in
                                                                                  the present report.  In the case of wind direction inter-
                                                                                  polation, an a priori "smoothing" of the wind direction
                                                                                  measurements would be highly desirable, especially during
                                                                                  the hours of the chaotic transition between the land and sea
                                                                                  breeze.  This procedure can be justified by the fact
                                                                                  that during this period, typically characterized by  low
                                                                                  winds, uncertainties in the wind direction measurements
                                                                                  can be quite large.  With  regard to air quality inter-
                                                                                  polation, the distance that measurements of a concentration
                                                                                  of a photochemical pollutant can be extrapolated is  quite
                                                                                  limited.  This implies that a larger number of monitor-
                                                                                  ing stations may well be needed to yield a complete  des-
                                                                                  cription of the distributions of photochemical species.
                                  81
                                                                                                                   82

-------
     On the other hand, we feel that improvement in the

prediction of mixing depths can be brought about only

through more field measurements.  This is particularly
true during the afternoon hours and in the San Fernando

Valley.

     The automatic boundary condition program appears to

be the most complicated as far as the structure of the

strategy is concerned.  Therefore, many modifications
can conceivably be made to give a closer description of

reality.  We will not enumerate all the possibilities

here.  Instead we will only point out an apparent one

that the present program is unable to cope with, the fact
that nitrogen dioxide concentrations increase in the

return flow during the period of late morning or early

afternoon.
                             83
                   REFERENCES
Anderson, G. E., "A Mesoscale Windfield Analysis of
the Los Angeles Basin", The Center for the Environment
and Man, Inc., December 1972.

Belousov, S. L., L. S. Gandin and S. A. Mashkovich,
I'oaputer Processing of Meteorological Data Gidrometeor-
ologicheskoc Izdatel 'stvo, Leningrad  (1968). Trans-
lated from Russian by Israel Program for Scientific
Translations, Jerusalem, 210 p (1971).

Bulmer, M. G., Principles of Statistics The M.I.T.
Press, Cambridge, Mass.  (1967).

Dartt, D. G., " Automated Streamline Analysis Utilizing
Optimum Interpolation", J.  Appl. Meteorol.  11, pp. 901-
908 (1972).

Edinger, J.  G., " Changes in the  Depth of the Marine
Layer Over the Los Angeles  Basin", J. of Meteorol.
\b_, pp. 219-226 (1959).

Eschcnroeder, A. and J. R.  Martinez, "Evaluation of
a Photochemical Pollution Simulation Model", General
Research Corporation,  Santa Barbara, Calif.  (1972).

Gandin, L. S., Objective Analysis of Meteorological
Fields  Gidrometeorologicheskoe Izdatel'stvo, Lenin-
grad  (1963).  Translated from Russian by Israel Program
for Scientific Translations, Jerusalem, 242 p (1965)

Hanna, S. R.."Urban Meteorology"   ATDL Contribution
No. 35, Air Resources Laboratory, Oakridge, Tennessee
(1969)

Holzworth, G. C., "Estimates of Mean Maximum Mixing
Depths in the Contiguous United States", Mon.
Wea. Rev. 92,pp. 235-242 (1964).

Holzworth, G. C. , "Mixing Depths, Wind Speed and Air
Pollution Potential for Selected Locations in the
United States", J. Appl. Meteorol. 6, pp. 1039-1044
(1967).
                                                                                                             84

-------
REFERENCES, (Contd.)

Huss, A., "On the Introduction of  Space-Time Correlation
Functions in Optimum Objective Analysis Methods",
J. Appl. Meteorol. 1£, pp. 152-155 (1971).

Johnson, W. B., F. L. Ludwig and A.  E. Mood, "Develop-
ment of a Practical, Multi-purpose Urban Diffusion
Model for Carbon Monoxide", Proc.  Symp. on Multiple-
Source Urban Diffusion Model, Research Triangle Park,
N. C. (1971).

Lamb, R. G., "Numerical Modeling of Urban Air Pollution",
Ph. D. Dissertation, Department of Meteorology, University
of California, Los Angeles (1971).

Lamb, R. G. and J. H. Seinfeld, "Mathematical Modeling of
Urban Air Pollution - General Theory", Environ. Sci. Technol.
I, pp. 253-261 (1973).

Leahey, D.M. and J.P. Friend, "A Model for Predicting
the Depth of the Mixing Layer Over an Urban Heat  Island
with Applications to New York City", J. Appl. Meteorol.
10_, pp. 1162-1173 (1971).

MacCracken, M.C., T. V. Crawford,  K. R. Peterson  and
J. B. Knox, "Development of Multi-Box Air Pollution
Model and Initial Verification for the San Francisco
Bay Area",  Lawrence  Radiation Laboratory Report,
UCRL-73348  (1971).

Mashkova, G.B., "Atmospheric Stratification Character-
istics  in Inversions",  Investigation of tke Bottom
ZOO-I'leter Layer of the Atmosphere, pp. 43-47,  Izv.
Akad.Nauk.  S.S.S.R., Moskva  (1963).

Miller, A.  and C.D.  Ahrens, "Ozone Within and  Below
the West Coast Temperature Inversion", Tellus  22,
pp. 328-340 (1970).

Olsen,  D.E., "Predicting Inversion Depths and  Tempera-
ture  Influences in the Helena Valley", NOAA Technical
Memorandum, NWS-KR 70 (1971).

Pack, D.H.  and C.R.  Hosier, " Meteorological Study  of
Potential Atmospheric Contamination from Multiple
Nuclear Sites", Second U.N. Conf.  on Peaceful  Uses
of Atomic Energy, p.  265, Geneva  (1958).
                         85
REFERENCES, (Contd.)

Papoulis, A., Probability, Random Variables and Stochastic
Processes, McGraw-Hill, New York, N.Y. (1965).

Richardson, N.N., "Numerical Tests of a Method for
Dynamic Analysis in Regions of Poor Data Coverage",
Tellus 1_3_, pp. 353-362 (1961).

Roth, P.M., S.D. Reynolds and P.J.W. Roberts, "The
Treatment of Meteorological Variables", Systems
Applications, Inc., Report 71-SAI-17 (1971).

Sasaki, Y., "A Theoretical Interpretation of Anisot-
ropically Weighted Smoothing on the Basis of Numer-
ical Variational Analysis", Mon. Wea. Rev. 99, pp.
698-707  (1971).

Sasaki, Y. , "Numerical Variational Analysis Formulated
under the Constraints as determined by Long-wave
Equations and a Low-pass Filter", Mon. Kea. Rev. 98,
pp. 884-898 (1970).

Smith, F.B., "Objective Analysis of the Vorticity Field
with a Region of No Data", Tellus 14, pp. 281-289
(1962).

Strand, J.N., "Airpol-Wind Trajectory.Tracing for Air
Pollution Studies", Jet Propulsion Lab, California Inst.  of
Tech., Pasadena, Calif.,  June 1971.

Thompson, P.D., "A Dynamical Method of Analyzing Meteoro-
logical Data", Tellus 1_3_, pp. 334-349  (1961).

Summers, P.W., "An Urban Heat Island Model, Its Role
in Air Pollution Problems with Application to Montreal",
Peter Presented at the First Canadian Conference on
Micrometeorology, Toronto, pp. 12-14  (1965).

Wcisburd, M.I., L.G. Wayne and A. Kokin, "Evaluation
of the Reactive Environmental Simulation Model",
Pacific Environmental Services, Inc., Santa Monica, Cal.  (1972).

Wendell, L. L., "A Preliminary Examination of Mesoscale
Wind Fields and Transport Determined from a Network of
Kind Towers", NOAA Tech.  Memo. ERLTM-ARL 25 (1970).
                                                                                                        86

-------
                                                                          APPENDIX 1.   MEASURED AND CALCULATED
                                                                                       WIND  SPEEDS AND WIND DIRECTIONS
REFERENCES, (Contd.)

Wilkins, E.M., "Variations! Principle Applied to
Numerical Objective Analysis of Urban Air Pollution
Distributions", J. Appl.Meteorol. 1£, pp. 974-981 (1971).

Kilkins, E.M., "Variationally Optimized Numerical
Analysis Equations for Urban Air Pollution Monitoring
Networks", J.  Appl.Meteorol. 1^, pp. 1334-1341 (1972).

Wuerch, D.E.,  "A Comparison of Observed and Calculated
Urban Mixing Depths", ESSA Tech. Memo. WBTM CR-36
(1970).

Wyzga, R.E., "Method to Estimate Missing Air Pollution
Data", J. Air Poll. Cont. Asso. 23, pp. 207-208 (1973).
Date:  September 29,  1969
Station:   RESD
Exponent  Used:  1.00
                      Wind  Direction
                                             Wind Speed
HOUR
0
100
200
300
40J
503
600
700
800
900
	 1000,
1103
1200
1300
I43j
1503
1£>00
170J
1803
(point)
MEAS CALC
a
8
13
3
I
9
__15
5
11
8
9
	 3
6
4
12
13
11
12
1900 12
	 2 000 ._ 1 1
210J 15
220U 15
2300
8
10
Q
11
3
3
12
11
6
7
12
1'
12
12
12
13
14
13
13
13
12
._!!.._.
6
5
10
(dir<
-SEAS
S
s
WNH
ENE
NNF
ssw
NNW
RSE
WSW
S
CNE_
SSW
ENf
SE
E
W
WNW
WSW
W
W
MSW
NNW
NNW
S
jction)
, CAI.C
SW
ssw
WSW
ENE
ENE
W
WSW
SE
SSE
W
W
w
W
WNW
NW
WNW
WNW
WNW
(degree) (mph)
MEAS CALC MEAS CALC
0.0
0.0
112.5
247.5
202.5
22.5
157.5
292.5
67.5
o". 6~
'47,5
22.5
?47.5
315.0
270.0
90.0
112.5
67.5
90.0
W 90.0
WSW 67.5
SE~157.5
	 £.$g_117.5_
SW 0.0
35.
29.
59.
253.
240.
86.
68.
306.
327.
93.
Q5.
37.
86.
aa.
113.
127.
115.
ll-V.
101.
90.
67.
314.
301.
40.
2
3
8
2
6
8
3
9
0
5
4
9
0
0
4
4
2
0
3
0
5
3
3
I
1.
1.
1.
1.
2.
3.
2.
I.
I.
1.
1 .
1.
2.
2.
2.
7.
8.
6.
3.
2.
2.
1.
1.
1.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
0
0
0
0
I
1
1
2
1
1
0
1
"l
1
1
3
2
4
4
4
3
2
1
2
0
0
1
.5
.0
.7
.3"
.1
.7
.2
.9
.0
.4
.3
.4
.0
.9
.4
.9
.3
.2
.0
.7
.0
.6"
.6
.1
                          87
                                                                                                        88

-------
Date:  September 29, 1969
Station:  PASA
Exponent Used:  1.00
Wind Direction
HDUR
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
(poi
_MEAS_
14
15
16
15
14
2
11
15
2
10
7
8
9
8
10
10
10
10
2
2
16
2
15
14
nt)
..CALC
16
16
12
13
1
1
13
2
1
14
11
10
10
11
11
11
IL_
11
11
10
9
10
n
12
(direction)
NW
NNW
N
NNW
NW
NE
WSW
NNW
NE
SW
S
SSW
S
SW
SW
SW
Sw
NE
NF
N
NE
NNW
NW
N
N
W
WNW
NNE
NNE
WNW
NE
NNE
NW
WSW
SW
SW
wsw
WSW
wsw
_wsw.
WSW
WSW
SW
ssw
Wind Speed
(degree)
MEAS CALC ME
135.
157.
1 BO.
157.
135.
225.
67,
157.
225.
45.
.337.
0.
22.
0.
45.
45.
45.
45.
225.
225.
180.
SW 225.
WNW 157.
W
135.
0
5
0
5
0
0
5
5
0
0
5
0
5.
0
0
0
0
0
0
0
0
0
5
0
190.
176.
96.
113.
202.
201.
121.
219.
211.
137.
57.
51.
51.
58.
60.
76.
67.
56.
53.
33.
55.
120.
91 .
3
1
5
1
0
1
3
I
1
3
2
5
5
9
9
7
fl
5
8
4
7
8
9
7
2
3
2
2
3
2
2
2
I
1
2
2
3
3
4
6
3
2
1
1
1
I
1
2
(mph)
AJ CALC
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
2.5
2.2
1.5
2.6
3.6
1.6
-3.1
1.3
0.9
0.4
2.8.
5.4
6.9
7.1
7.6
7.2
6.5
4,7
3.9
2.7
i.a
1.2
0.5
1.0
                       89
Date:  September 29, 1969
Station:  AZU
Exponent Used:   1.00
Wind Direction Wind Speed
HOUR
0
100
200
300
	 4oa
500
600
700
800
900
	 1000
ILOJ
	 1200
1300
1400
1500
	 1600.
1700
1800
1900
2000
2100
	 2200
2300
(point)
MEAS CMC
8
16
6
11
12
4
14
14
4
5
9
10
9
9
9
9
8
9
9

-------
Date:  September 29, 1969
Station:  WEST
Exponent Used:  1.00
Wind Direction
(point) (direction) (degree)
HOUR MEAS CALC 	 ME A S_. _C_A_t.C 	 MEj*S_£AUL_
01 4 NNE E 202.5 265.2
100
200
300
400
500
600
700
BOO
900
100O
11
12
12
?
12
14
12
9
10
10
1100 10
	 1200 10
1300 10
1400 10
1500
1 600
1700
1800
1900
2000
2100
2200
2300
10
9
9
9
8
H
7
1
I
9
12
10
2
11
It
2
10
12
12
11
11
11
11
12
12
11
10
9
a
7
6
fl
WSW
w
w
NE
W
NW
W
SSW
SW
sw
SW
sw
sw
sw
sw
ssw
ssw
SSW
s
s
SSE
NNE
NNE
SSW
w
sw
NE
HSW
WSW
NE
SW
K
	 	 W_
wsw
wsw
WSW
wsw
w
w
WSW
sw
ssw
s
SSE
SF
S
67.
90.
90.
.225.
90.
135.
90.
22.
45.
45.
45.
45.
45.
45.
45.
22.
22.
22.
' " 0.
0.
337.
202.
202.
5
0
0
0
6
0
0
5
0
.o_
b
0
0
0
0
5
5
5
0
0
5
5
5
15.
79.
43.
226.
73.
74.
223.
49.
87.
80.
60.
74.
"71.
75.
80.
BO.
63.
47.
r 33.
349.
343.
316.
358.
9
4
3"
I
6
7
0
6
9
7
5
7
2
6
1
fl
6
6
1
H
0
S
7"
Wind Speed
(mph)
HE A S CALC
1.0 0.2
1



	 2
4
5
4
3
4
4
2
1
1
I
1
1
1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.9
2.0
1.6
5.4
4.3
1.4
0.1
1.8
3.7
2.7
4.3
6.5
6.0
6.6
7.3
>-2_
4.3
4.0
2.5 "
2.6
2.5
1.4
1.4
                         91
Date:  September 29,  1969
Station:  ELM
Exponent Used:   1.00
                                                                                                      Wind Direction
                                                                                                                             Wind Speed
(point;
HOUR MEAS CALC
0 1
100 4
200 9
300 12
400 16
500 3
	 603 	 13 	
700 S
800 I
900 5
1100 U
1200 10
_1J>
15
13
13
15
15
13_
15
1
11
LQ 	
10
10
1300 10 11
1400 10 11
1500 12
	 1600 	 11 	
1700 U
Id 00 9
1900 10
2000 1J
2100 10
P70i) 14
2300 11
11
.11 	
11
.1P_
9
8
9
1
14
1 (direction) (degree) (mph)
	 HEAS CALC MgAS CALC ME_AS_CALC_
NNE NNW 202.5 165.7 S.n 1.5
E
SSW
W
ENE
_.WNH 	
ESE
NE
ESE
W
SW
... SW
SW
SW
w
	 wsw 	
sw
ssw
sw
sw
SW
NW
wsw
NNW 270.0 161.4 4.0 2.7
WNW 22.5 106.0 3.0 0.8
MNW ->0.0 111.6 3.0 2.0
N 1 10.0 190. 7 5.0 1.9
NNW 247.5 162.5 6.0 1.1
.WNW 112.5 110.6 	 4.0 2.6
NNW 292.5 164.4 4.0 1.9
NNE 225.0 196.0 2.0 0.6
WSW 292.5 63.9 2.0 0.4
SW 45.0 49.1 6.0 4.3
SW 45.0 51.6 8.0 5.5
WSW 45.0 62.9 10.0 5.9
WSW 45.0 61.2 11.0 6.5
WSW 90.0 59.2 12.0 6.6
_H S W 	 6 1. .5 	 5 8 .i__Ll ..0 	 6.. J2_
WSW 45.0 66.3 B. 0 4.7
SSW 45.0 19.0 6.0 1.7
S 45.0 3.3 4.0 1.1
SSW 45.0 31.5 2.0 0.3
NW 67.5 127.6 1.0 0.9
                                                                                                      92

-------
Date:   September 29, 1969
Station:  COMM
Exponent Used:  1.00
                      Wind Direction
                                              Wind Speed
HOUR
0
100
200
300
400
500
600
700
	 800
900
1000
i too
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
	 2200.
2300
(point)
MEAS CALC
16
15
12
14
2
15
13 	
15
1
13
	 10_
11
_.ll 	
12
12
12
12
12
. 11
10
9
10
9
11
16
15
12
13
1
11
13 	
1
13 	
13
11
11
1.1 	
12
12
12
11
12
11
10
11
10
12
(direction) (degree)
MEA5 CftLC MEAS CALC
-N
NNW"
w
NW
NS
NNW
WNW
NNW
NNF
WNW
S W
WSW
wsw 	
w
w
w
w
w
wsw
SW
ssw
SW
SSW
wsw
N
NNW
W
WNW
NNE
WSW
WNW
NNE
WNW
WNW
wsw
WSrf
.wsw.
w
w
w
wsw
w
wsw
sw
wsw
SW
N
w
130
157
90
"135
.225
157
1 12
157
202
1 12
45
67
67
QO
<50
90
on
90
67
45
22
45
??
67
.0
.5
.0
.0
.0
.5
.5
.5
.5
.5
,0
.5
.5
.0
.0
.0
.0
.0
.5
.0
.5
.0
.5
.5
1«7.
148.
37.
108.
198.
74.
105.
213.
120.
102.
77.
71.
75.
79.
79.
85.
76.
84.
76.
53.
57.
51.
176.
88.
6
8
4
2
9
0
3
2
2
4
A
0
4
0
6
4
1
7
2
7
2
2
3
6
(mph)
MEAS CALC
4
5
4
4
6
6
6
3
3
"" 3
7
8
9
11
12
12
_H
9
7
5
4
2
1
2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
2.1
1.4
1.5
2.2
3,8
1.2
2.8
1.6
1.3
1.4
3.2
4.8
_6.3
7.5
8. 1
3.2"
7.9
5.9
4.2
3.2
1.6
1.0
0.8
0.8
                          93
Date:  September 29, 1969
Station:  CAP
Exponent Used:  1.00
                                                                                                    Wind Direction
                                              Wind Speed
(point) (direction) (degree) (mph)
HmiR MEAS CALC MEAS CALC MEAS CALC MEAS CALC
0 2
100 10
200 14
300 14
400 2
500 12
600 16
70J 4
800 10
900 12
1000 1?
uoo 12
	 1200 	 12__
1300 12
1 4 0 J 12
1503 12
16OO 12
1700 12
1800 12
1900 10
2000 8
2100 8
??OU 16
2300 10
16
15
12
13
14
12
16
16
13
_ 10
11
11
11
11
12
1 1
12
11
10
10
10
12
13
NE
SW
NW
. N 225.0 178.7
NNH 45.0 165.3
W 135.0 96.3
NW WNW 135.0 111.6
.NE .....NNE 225.0 206.7 ..
W
N
E
SW
W
w
w
w
w
w
w
w
w
w
SW
s
s
N
SW
NW 90.0 144.0
W IflO.O 99.0
N 270.0 132.9
N 45.0 1B1.4
WNW 90.0 113.6
SW 90.0 54. 4_
WSW 90.0 57.5
.WSW 50.0.. .61..8.
WSW 90.0 70.9
WSW 90.0 76.7
W 90.0 83.5
WSW 90.0 76.3
W 90.0 85.2
WSW 90.0 69.2
SW 45.0 55.3
SH 0.0 45. 8_
SW 0.0 55.7
W 1SO.O 86.9
WNW 45.0 114.2
J>..0_2..4_
4.0 2.6
3.0 2.2
4.0 2.5
5.0 4.5
5.0 1.7
4.0 3.5
2.0 1.6
3.0 1.3
"5.0" 1.4
_6..Q 	 3..4_
8.0 4.9
_9...0_.6.5._
9.0 6.6
_9.0 ...7.JL
8.0 7.7
_B..O._A,..8_
5.0 5.2
6.0 3.7
4.0 2.5
3.0 1.4
2.0 0.9
_2,J3 	 O..L.
2.0 0.8
                                                                                                         94

-------
Date:  September 29, 1969
Station:  LONB
Exponent Used:  1.00
                        Wind Direction
                                               Wind Speed
HOUR
0
100
200
300
400
500
600
703
800
900
1000
1100
1200
1300
1403
1500
1600
1700
ieoo
1400
2000
2100
2200
2300
(point)
MEAS CALC
1
13
12
1
1
12
13
14
12
12
13
12
12
12
12
12
12.
12
12
13
13
14
1
15
15
15
12
12
1
11
... M
16
14
13
12
12
12
12
12
12
12
12
12
11
11
11
12
13
(direction) (degree)
MEAS CALC MEAS CALC
NNC
WNW
W
NNE
NNE
W
WNW
NW
W
W
WNW
w
w
w
w
w
w
w
w
WNW
WNW
NW
NNF
NNW
NNW
NNW
W
W
M'JE
WSW
WNW
N
NW
WNW
W
W
w
w
w
w
w
w
w
wsw
_wsw
wsw
w
WNW
202
112
90
202
70?
90
11?
135
90
90
11?
90
90
90
90
90
90
90
90
"112
1 12
135
?n?
157
.5
.5
i.O
. 5
.5
.0
.5
.0
.0
.0
.5
.0
.1
.0
.0
.0
.0
.0
.0
.5
.5
.3
.5
. 5
162.7
147.6
90.6
96.9
209.2
73.2
110. 3
1«2.6
133.4
102.8
82.2
31.
89.
95.
98.
99.
85.
9B.
88.
58.
60.
?0.
97.
106.
3
4
4
0
o"
I
3
0
3
2
8
0
5
(mph)
MEAS CALC
_ 2
2
2
2
6
2
3
2
3
"" 4
7
5
8
"10
10
~13
10
7
3
6
5
2
1
1
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
...Q.
.0
. o.
.0
.0
.0
.0
.0
. o
.0
.0
.0
.0
.0
1 .8
~2.4
2.5
2.7
4.5
2.7
4.3
2.2
2.0
2.0
4.0
5.2
7. 0
~~9.0
9. 7
9.4
9.4
8.2
6.0
3.9
2.5
1.5
.0.1.
0.9
                          95
Date:  September 29,  1969
Station:  WHTR
Exponent Used:  1.00
Wind Direction
HOUR
0
100
200
300
500
600
700
800
900
i onn
1100
1?(M
1303
1400
1503
1 6 DO
1700
1800
1900
2000
(1
MEA'
14
13
IS
13
J.2_
13
It
15
M
3
1 1
11
| ->
12
1 ?
12
1 ?
12
| 1
9
8
2100 12
2200 15
2300
15
joint)
>_CAL.C_
16
I
11
13
2
12
13
I
15
11
1 1
11
_11
12
12
12
12
12
1 1
10
10
12
15
13
(direction) (degree)
MEAS CALC MEAS CALC
NW
WNW
N
WNW
W
WNW
NW
NNW
WNW
S
wsw
wsw
w
w
w
w
w
w
wsw
ssw
S
N
1.3.5.. .0..
NNE 112.5
WSW 180.0
WNW 112.5
_tJE -90, P
W 112.5
WNW 135.0
NME 157.5
NNW 112.5
wsw o.o
WSW 67.5
WSW 67
-HSH 90
W
w
w
w
w
wsw
SW
SW
90
90
90
90
90
ft?
.5
.0
.3
.0
.3
.0
.0
.5
22.5
0.0
H W 90.0
_-NNW.._. NNH...157.5.
NNW
WNW
157.5
174.
193.
59.
108.
.2.2.1...
99.
10S.
199.
151.
78.
69.
74.
77.
30.
87.
94.
..86.
89.
74.
43.
49.
6
/
2
8
S_
6
8
o
3
3
3.
7
9.
9
9
1
8
6
4
0
3
101. I
..158.4
116.5
Wind Speed
(mph)
MEAS CALC
27
1.
2.
	 i_».
4.
	 3.
4.
2.
2.
	 fc.«.
5.
6.
6.
6.
6.
	 6.
4.
3.
o_
.1....SL
0 1.7
0 1.3
0 1.4
0 3.2
0
0 .
0
0
0
0_.
1 1
o p o o'
1.0
3.2
0.9
o.a
0.5
.2...2_
4.2
_5._1_
7.1
7.2_
0 7.6
.0 	 7,.2_
0 6. 1
0 3.7
3.0
__.UQ..
1.0
	 I.. 0_
1.0
2.0
1.2.
0.5
_0.
-------
Date:  September 29, 1969
Station:  LAH
Exponent Used:  1.00
                        Wind Direction
                                               Wind Speed
(point) (direction) (degree) (roph)
HOUR M EA5_C Ali—kE A S _CAiC_JlEAsJb.lC 	 ttEA.S_CAL 
-------
Date:  September 29, 1969
Station:  POMA
Exponent Used:  1.00
                         Wind Direction
                                                 Wind Speed
HOUR
0
100
200
300
400
500
600
700
800
900
	 1000 	
1 100
1200
1300
1400
1500
1600
1700
1800
1900
20JO
2100
2200
2300
(point)
MEAS CALC
15
14
5
10
1
4
7
5
S
11
12
14
14
13
14
13
14
13
13
14
1
3
2
13
12
2
4
6
12
5
f>
4
4
4
12
12
11
12
12
12
11
11
11
11
8
4
4
3
(direction") (
MEAS CALC P.EA
NNW
NW"
ESE
SW
MN =
E
SSE
ESE
SE
WSW
W
NW
NW
WNW
NW
WNW
NW
WNW
WNW
NW
NNE
ENE
ME
WNW
W
. NE
E
SE
W
KSE
SE
E
E
f.
W
W
...WSW
w
w
w
wsw
wsw
wsw
wsw
S
E
	 f__
6NE
157.
135.
2"2.
45.
202.
270.
337.
292.
315.
67.
_90.
135.
135.
112.
135.
112.
135.
112.
112.
135.
202.
247.
_?25.
112.
d(
i
5
0
5
0
5_
3~
5
5
T
5
0
0
T
5
0
5
0
5
5
0
5
5
0
S
;gree)
CALC
85.
216.
273.
325.
90.
300.
315.
265.
270.
272.
31 •
ao.
78.
82.
79.
79.
77.
""76.
71.
65.
350.
259.
262.
256.
3
5
8
5
0
4
0
7
0
4
4
0
2
4
2
I
1
1
2
4
3
1
0
5
(mph)
MEAS CALC
3.
2.
2.
2.
2.
2.
3.
2.
2.
2.
2.
4.
4.
4.
6.
6.
6.
4.
5.
3.
2.
1.
	 2.
1.
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
2.4
3.8
4.3
3.0"
Z.6
2.2
6.4
3. 7
2.8
3.6
_3.0
5.3
6.3
7.5
8.9
9.7
10. 0
7.8
4.9
2.6
2.0
1.7"
1.2
2.2
                              99
Date:  September 29,  1969
Station:  SNA
Exponent Used:   1.00
Wind Direction
HOUR
0
100
200
300
400
500
600
700
800
900
	 i.ooa_
1 100
	 1200_
1300
1400
1500
	 1600_
170J
IbOO
1900
2000
2103
	 220J.
2300
(point)
_ttEAS_C-AL£.
_7._
8
_12
15
3
7
11
15
16
_^3_
12
._!!_
11
.-U
11
_.ll_
11
1 1
10
10
11
_11_
10
15
16
15
15
3
15
12
8
5
8
12
._U 	
10
10
11
12
12
16
12
12
12
(direction) (degree)
ym r.Ai r. MFAS CALC
SSE
S
w
NNW
ENE
SSE
WSW
NNW
N
.NNW
N
NNW
NNW
FNE
NNW
W
S
ESE
337.
0.
90.
157.
247.
337.
67.
157.
180.
NW S 135.
	 WNW. 	 WSW__.l 12 .
W W 90.
	 W SW 	 WSW ._ 6 7 .
WSW SW 67.
WSW SW 67.
WSW
WSW
wsw
SW
SW
wsw
wsw
SW
wsw
w
w
N
W
W
W
w
67.
._67.
67.
67.
5 1.5.7.3
0 180.
0 157.
5 157.
5 247.
5 157.
5 90.
5 0.
0 292.
0 0.
5 	 67.
0 90.
5 67.
5 45.
5 45.
0
5
5
5_
5
0
0
5
0
5_
0
.5_
0
0
5 67.5
5 Q0. Q_
5 90.0
5 90.0
45.0 180.
45.0 90.
0
0
Wind Speed
(mph)
2_,_0_ 1.0
1.0
2.0
3
3
2
1
I
2
4
6
5
5
4
3
2
1
•
•.
•
•
•
•
•
67.5 90.0 2.
67.5 90.0 1.
45.0 90.0 1.
0
0
0
0
6
0
0
0~
o""
0 	
b
"o~
o__
b
0
0
_0_
0
1.0
1.0..
1.0
2.0
2.0
2.0
1.0
1.0
i.o
2 ! 0~~
2 . 0~
3.0
4.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
                                                                                                             100

-------
Date:  September 29,  1969
Station:  RB
Exponent Used:   1.00
Wind Direction
HOUR
0
too
200
300
400
500
600
700
800
Wind
Speed
(point) (direction) (degree) (mph)
MFAS CALC MEAS CAtC MEAS CALC MEAS CALC
10
10
10
9
?
10
12
13
11
900 11
1000 10
1100
1200
1300
1400
1500
160J
1700
1800
1900
2000
2100
2200
2300
9
10
10
10
10
9
. 9
9
9
3
8
8
9
1
13
13
12
1
12
12
16
12
12
13
12
12
12
12
12
12
12
12
11
12
11
7
1
sw
sw
SW
ssw
NE
SW
W
WNW
WSW
WSW
SW
SSW
SW
Sw
SW
SW
SSW
ssw
ssw
ssw
s
s
s
ssw
NME
WNW
WNW
W
NNE
W
W
N
W
W
WNW
W
W
W
W
W
W
W
W
wsw
W
wsw
N5
NNE
45.0
45.0
45.0
22.5
225.0
45.0
90.0
112.3
67.5
67.5
45.0
22.5
45.0
45.0
45.0
45.0
22.5
22.5
22.5
22.5
0.0
0.0
0.0
22.5
202.5
103.4
102.7
96. 5
212.4
91.5
101.2
173.4
97.6
95.2
101.9
83.0
86.8
90.2
91.2
90.3
80.3
92.8
84.0
77.5
92.9
68.4
221.8
203.5
2.0
2.0
4.0
5.0
6.0
3.0
2.0
3.0
3.0
4.0
3.0
5.0
8.0
7.0
8.0
8.0
7.0
5.0
6.0
5.0
7.0
6.0
5.0
4.0
1.8
1.1
2.7
2.2
6.1
4.0
3.'.
1.1
1.9
3.5
5.1
5.4
8. 1
9.2
9.6
10.4
9.«
7.4
4.9
3.5
2.1
0.6
1.4
1.2
                             101
e:  September 29,  1969
tion:  VEN
oncnt Used:   1.00
Wind Direction
HOUR
0
IOJ
200
300
400
500
600
700
800
900
innn
1100
1200
1300
1400
1500
IbOO
1 700
1800
1900
2000
2100
2200
2300
(point)
MEAS CALC
1
7
I?
10
12
10
13
1 1
12
1 1
10
11
11
11
11
11
10
9
3
6
7
5
5
I
10
11
10
2
11
13
13
10
12
11
11
11
11
11
11
10
10
~~ 10
7
6
9
(dir<
_ME.AS_
NNE
SSF.
W
SW
NE
W
SW
WNW
WSW
Wind
Speed
;ction) (degree) (mph)
TAIC MEAS CALC MEAS CALC
NNE 202.5
SW 337.5
WSW 90.0
SW 45.0
NF 225.0
WSW 90.0
WNW 45.0
WNW 112.5
SW 67.5
W W 90. J
-WSH. WSW, .67.5
SW
HSH
WSW
WSW
WSW
WSW
sw
ssw
s
SF
SSE
ESE
ESE
WSW 45.0
WSW 67.5.
WSW 67.5
WSW 67.5
WSW 67.5
SW 61.5
SW 45.0
SW 22.5
SW 0.0
5 315.0
SSE 337.5
SE 292.5
SSW 292.5
.207..9
46.3
59.3
54.7
227.9
63.6
116.0
105.3
36.4
79.2
70. 3 	
"58.7
. .63.6. ..
68.9
68. 5
65.9
49.2
52.6
52.7
36.0
10.3
347.1
"' 29. 0~~
1.0
2.0
"4.0"
8.0
7.0
3.0.
1.0
2.0
5.0
6.0
10.0.
10.0
11. 0
11. 0
_3.0_
6.0
. 7.0.
4.0
.5.0.
5.0
_3 ..0.
2.0
...O.l.
l.S
~T.~o~
J..9
2.1
1.1
0.4
1.6
2.4
™*Io
.5.. .6
5.2
4.9
5.2
4,7
3.0
2.7
2.3
.2.7
2.2
. O..I_
1.1
                                                                                              102

-------
Date:  September 29, 1969
Station:  CPK
Exponent Used:  1.00
Wind Direction
(point) (direction) (degree)
	 HO.U.8 	 3fAS_CAL.C 	 1.E.AS.j:4L.C 	 M=_AS_CALC 	
0_14 R_ NW 	 S. 135.0 . .0.3. _
100 10 3 SW S 45.0 5.0
200 12 11 W WSW 90.0 71.0
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
14
3
11
..1
9
6
8
IS
6
9
7
14
15
15
15
_i*.
12
11
12
14
12
3
2
11
13
5
9
12
14
1?
15
12
14
12
13
11
	 12
12
_ll
3
3
9
NW
ENE _
WSW
NNE
SSW
SE
S
SE
SE
SSW
SSE
NW
NNW
NNW
NNW
NW 	
W
WSW 	
W
NW
W
SNE
. NF
WSW
WNW
ESE
SSW
W
NW
W
NNW
W
NW
W
WNW
WSW
W
W
wsw
fcNE
ENE
SSW
135.
247.
67.
202.
22.
315.
0.
315.
315.
22.
337.
135.
157.
157.
157.
135.
90.
67.
90.
135.
90.
0
5
5
5
5
3
0
0
0
5
5
0
5
5__
5
0
0
5
0
n
o"
258
224
61
104
2S5
r»
80
144
14
153
95
135
97
.1.55
75
90
90
67
238
738
' 12
.6
.2
.6
.9
.5"
.5
. 1
.5
.0
. I
.1
.2
.7
.5
. I
.0
.0
.5
.8
.1
.4
Wind Speed
(mph)
.ME AS. CAIC._
1.0 l.0_
1.0 0.9
1.0 1.4
1
1
2
I
I
I
I
I
1
2
2
	 4
6
6
4
2
1
2
1
1
I
.0
• o_
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 0
1.1
?.•?_
1.7
1.6
1.2
0.6
I. I
0.8
1.3
1-3
1.6
1.2
6.5
7.1
5.5
3.0
2.4
2.4
0.5
0.5
1.4
                              103
Date:  September 29,  1969
Station:   RVA
Exponent  Used:   1.00
Wind Direction
HOUR
0
100
200
.300
400
(point)
MEAS CUC

16
9
10
500 7
	 600 	 10 	
700 1
800 15
900
1100~
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2300
I
9
10
11
11
11
10
11
10
9
8
9
7
9
16 	
15
12 	
14
1
16
14
11
11
11
IZ 	
12
12
12
1 ?
12
12
11
1 1
12
1 S
13
Wind Speed
(direction) (degree)
MSAS CALC MEAS CALC
NW
N
SSW
sw
NNE
SSE
	 sw__
NNE
NNW
NNE
S
SSW
Sw
wsw
wsw
wsw
sw
wsw
SW
ssw
S
ssw
SSE
SSW
N
NNW
W
NW
_NNE.
NW
_WNW
N
NW
WSW
HSW
WSW
W
W
W
W
W
W
W
wsw
wsw
135.
180.
22.
45.
202-
337.
45.
202.
157.
202.
0.
22.
45.
67.
67.
67.
_.4.5_.
67.
45.
22.
0.
V 22.
-..NNVLJLJJ..
WNW 22.
0_133
0 150
5 100
0 127
5 205
5 128
0 122
5 182
5 143
?
.4
.8
.6
.5
.9
.9 _
. 6
.4
5 78.7
a_i7..jt_
5 77.6
0 a 1 . 2
5 86
5 89
5 93
5 91
0 80
5 58
0 56
5 87
5_i.56
5 114
.0
. L
.4
.4
.3
.3
.6
.0
. q
.8
(mph)
M£AS CALC
?
5
3
5
4
5
3
3
3
4
5
6
8
9
7
_1
6
4
2
3
2
.n
.0
.0
.0
.0
.0
. 0 	
.0
.0
2
I
I
2
3
2
3
I
I
.0 1
•-0_2
.0 5
.0 6
.0
.0
.0
t 0 	
.0
.0
.0
• o.....
.0
.0
.0
7
8
9
R
6
4
3
I
0
1
.5
.5
.H
.5
.?_
.4
.8
.5
.0
.6
.a_
.4
.6
.9
.4
. 1
.6
.5
.2
.8
.9
.0
                                                                                                              .04

-------
Date:  September 29,  1969
Station:   ENC
Exponent  Used:   1.00
                            Wind Direction
Wind Speed
(
HOUR 	 !1E_A
0 9
100
200
300
500
600
700
800
900
	 i.u.oa_
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2300"
9
4~
3
9
9
5
7
13
13
13
1 3
13
1 3
13
17
12
12
12
11
5
	 5_
9
point)
5 CAUL
5
12
2
2
12
14
6
10
10
3
9
10
9
12
12
13
11
11
11
10
10
g —
(direction) (degr
MEAS CMC— ME.M_CALC
SSW ESE 22. S 296.
SSW
SW
E
F_NF..
SSW
SSW
ESP
SSE
WNW
WNW
WNW
WNW
WNW
WNW
WNW
W
W
W
W
wsw
ESE
SSW
S
W
NE
W
NW
SE
SW
SW
S..
SSW
sw
SSW
W
W
WNW
wsw
wsw
wsw
sw
sw
NNW
S
22
•45
270
22
22
292
33^
112
112
112
I 12
112
112
1 12
90
90
9O
90
hi
292
292
22
.5
.0
.0
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.0
.0
.0
.0
.5
.5
.5
.5
6.
98.
219.
219.
82.
133.
317.
49.
349.
31.
15.
34.
97.
111.
78.
75.
" 67.
42.
54.
152.
I.
ee) (mph)
MEAS CALC
6_
4
3
q
5
8
4 _
4
6
2
4_
7
0.
4
7
2
7
4
9
9
7
0
7
0
2
2
3
3
3
3
3
2
2
"3
_3
3
5
7
6
6
6
5
3
3
3
"" 2
2
2
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0.
.0
.0
.0
.0
.0
•0.
.0
.0
.0
.0
.0
.0
.0
0.1
0.7
l.l
0.2
2.5
2.1
1.6
0.3
0.5
l.l
0.3
1.8
1.4
2.2
1.6
5.3
...5, .3
3.4
2.1
1.1
1.2
0. 3
0.2
0.5
                             105
                                 Date:   September 29, 1969
                                 Station:   BKT
                                 Exponent Used:   1.00
                                                                                                              Wind Direction
                                                                                   Wind Speed
HdtlR
0
100
200
300
400
500
600
700
800
(point)
MEAS CALC
12
15
2 15
4 5
6
6
6
4
4
900 4
	 LOOO_JL2 	
1100 12
1?00 12
1300
1400
1500
	 1.6 00_
1700
1800
1900
2000
2100
7?00
2300
12
12
12
12
12
12
d
4
4
4
10
I
4
8
5
6
10
_JL2 	
13
1.2
12
13
12
12
11
12
13
3
3
2
15
(direction) (
_MEAS_:CAL£ 	 M.EA
H NNW OQ.
NE
E
SE
W
SE
SE
E
E
E
W
W
W
W
W
W
W
H
W
W
S
E
E
E
NNW
SW
_N.NE_
E
S
ESE
SW
K
WNW
H
W
WNW
W
W
WSW
W
WNW
EN5
ENg
NNW
225.
270.
315.
?0.
315.
315.
270.
270.
270.
90.
90.
90.
90.
90.
'di
S.
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
agree)
CALC ME
154.9 3
152.5
29". 0
52.3
193.4
270.0
353.0
282.4
304.4
50.9
_94.2,
111.0
101.1
89. 1
4
•5
4
3
2
9
5
3
4
6
7
8
10
90.0 34.0 11
__90.a 	 8.8. .9 	 12
90.0 73.3 9
90.0 78.9 7
90.
0.
270.
_21.CU
270.
0
0
0
.•)
0
103.4
249.2
241.6
-2.34,9
lbl.3
5
2
	 1
3
(m
AS.
.0
.0
.0
.0
".V
.0
.0
.0
.0
..0
.0
.0
.0
.0
ph)
-C.A.UL-
2.0
2.
2.
2.
I.
I.
1.
1.
1.
2.
4.
4.
.0 5.
..Q 	 i.
.0 4.
. 0 3.
.0 0.
.0 0.
.0 1.
. o o".
3
0
2
4
5
4
I
o
2
8
3
0
2_
I
4
5
3
I
7
a
                                                                                                               106

-------
Date:  September 29, 1969
Station:  LACA
Exponent Used:  1.00
                           Wind Direction
Wind Speed
(point) (direction) (degree) (mph
HOUR HEAS' CALC 	 ME 4 S_C A L£ 	 M M S_£ A L£ 	 ME. A S_C
0 15 16 NNW N 157.5 190.5 2.0
100
200
300
400
500
600
700
800
900
	 L000_
1100
1300
1400
1500
	 1600.
1700
1800
1900
2000
2100
7?no
2300
15
15
15
_1& 	
15
15
15

-------


























M

O
O



2
E



2
£


Ul
0
UJ
*•"•
QD

O

O

f\)rxjfVJ^-h-*-W.~f-»-U»~W
ISJ *— 'C vO'2u-4O>Ui'-C-Wf\J>— O >O
ooooco'ooooooco
OOGO'OOGOCOOOGCJ

| |
2 v/> a£ z: i XT 1 si i
22t/ir 2 222Z2222l/>
K c c :*:*:, =cs;*:;c;i;s:,5:ac
i J



J* iTt/Jt/it/iSC'^t/l-^l/lt/lCOv^l/l
£ £ *; £ £ !£££££££
: i
oJUlNJO"— •'—'w.JWOJ^W'— «^«-t*
ui-j^o^j^uiuijiiNJuifvroui
O Ul Ul O Ul Ul |O O O U". O Ul \j\ O
o- •— i\j t\j o* ooi-j -^'e* o* 'O1 o* O1
Ui'OWO'OJ3|>O'—
CDO-uaw-j^^Ouiru^^i^ro
f »-!H-
OOOOOOOOOO^OOO
' ' [

ii i i

a) -j a* ui
O O 0 O
0 O 0 O


2 2
Z 2 2 '-"
m s. ac


s: 2 a:
;* z z: 2
£ £ £

0 0 Ul -f*
o r^> -J ui
O U". Ul O
o •*• ^ •—
--4 ^O O" sO
i— hJ OO O

o o o o

O •— r\» N)

i
^ UJ f\J »-»
O 0 O 0
00,000
j
1
^12' 2 3C
22222
in ac tn a:


2 '2
Z £ '(/> Z ^
Tl ,£ £
•
-f^ Ul CD O ^*

Ul Ul O Ul *U1
O -O-f* -J O*
-^ 4> UJ ^» U»
CT1 O1 \Q V/l <^

0 O(0 O 0
1
o o o »- —

X
D

73
2
m
o
>3
r- r+
< f\i
m M'
•So
o-
OH-

r~O
O^
*^
i'
my-s
^M
i>O
r~o
n

3C
m
5^
03

o






H'
3
O.
D


O
O
*"+
0
3




^
3
O.
rn
•a
a.
                                                                                   m in a
                                                                                   x  rt a
                                                                                   X)  0) rt
                                                                                   O  rf t>
                                                                                   3  H- ••
                                                                                   O  O
                                                                                   3  3
                                                                                   r+  •• C/)
                                                                                   O  "71 O
                                                                                   a. 1-1 g
                                                                                   • •     o*
                                                                                         Oi
                                                                                         to
APPENDIX  2.

CORRELATION COEFFICIENTS  BETWEEN STATION  MEASUREMENTS  (WIND SPEED)
RESO  PASA AZU   WEST ELH   COW  CAP  LONB  WKTR UH   ANA  POKA  SNA
                                                               VEN   CPK  OVA  ENC  BKT   IACA COM  KFI
KSD
PASA
AZU
WEST
ELK
COW
CAP
IONS
WHTR
LAH
ANA
POHA
SNA
RB
VEN
CPK
RVA
ENC
BCT
LACA
COMA
KFI
.
0.66
0.79
0.44
0.70
0.60
0.38
0.62
0.54
0.49
0.73
0.70
0.49
0.51
0.50
0.92
0.47
0.53
0.69
0.06
0.67
0.68
0.66
-
0.80
0.63
0.86
0.83
0.62
0.84
0.75
0.70
0.91
0.82
0.70
0.77
0.76
0.81
0.76
0.76
0.74
0.53
0.78
0.86
0.79
o.eo
.
0.76
0.96
0.89
0.76
0.82
0.89
0.83
0.85
0.96
0.83
0.87
0.84
0.89
0.87
0.88
0.87
0.57
0.90
0.95
0.44
0.63
0.76
-
0.76
0.82
0.90
0.79
0.83
0.8S
0.61
0.76
0.89
0.87
0.77
0.53
0.72
0.76
0.62
0.77
0.81
0.72
0.70
0.86
0.96
6.76
-
0.92
0.73
0.83
0.94
0.87
0.84
0.92
0.87
0.88
0.89
0.85
0.91
0.91
0.80
0.69
0.89
0.9S
0.60
0.83
0.89
0.82
0.92
-
0.90
0.91
0.84
0.94
0.88
0.90
0.94
0.85
0.87
0.76
0.95
0.92
0.79
0.72
0.97
0.95
0.38
0.62
0.76
0.90
0.78
0.90
'-
0.83
0.77
0.97
0.67
0.77
0.97
0.88
0.90
0.54
0.84
0.85
0.59
0.79
0.87
0.79
0.62
0.84
0.82
0.79
0.83
0.91
0.83
-
0.71
0.86
0.82
0.85
0.86
0.88
0.81
0.79
0.84
0.91
0.76
0.58
0.93
0.87
0.54
0.75
0.89
0.83
0.94
0.84
0.77
0.71
.
0.85
0.68
0.84
0.85
0.87
0.83
0.68
0.84
0.82
0.71
0.80
0.80
0.85
0.49
0.70
0.83
0.89
0.87
0.94
0.97
0.86
0.85
-
0.73
0.80
1.00
0.88
0.92
0.63
0.89
0.93
0.65
0.82
0.91
0.86
0.78
0.91
0.85
0.61
0.84
C.88
0.67
0.82
0.68
0.73

0'.87
0.73
0.68
0.74
0.88
0.77
0.73
0.78
0.44
0.85
0.88
0.70
0.82
0.96
0.76
0.92
0.90
0.77
0.85
0.84
0.80
0.87
-
0.80
0.86
0.79
0.86
0.89
0.83
0.91
0.54
0.92
0.95
0.49
0.70
0.83
O.B9
0.87
0.94
0.97
0.86
0.85
1.00
0.73
o.'eo
-
0.88
0.92
0.63
0.89
0.93
0.65
0.82
0.91
0.86
0.51
0.77
0.87
0.87
0.83
0.85
0.83
0.88
0.87
0.83
0.6B
0.86
0.83
-
0.91
0.72
0.84
0.89
0.69
0.75
0.85
0.84
0.50
0.76
0.84
0.77
0.89
0.87
0.90
0.81
0.33
0.92
0.74
0.79
0.92
0.91
-
0.68
0.86
0.89
0.59
0.80
0.81
0.86
C.92
C.81
C.89
C.53
;.es
C.76
0.54
0.79
0.63
0.63
O.BB
0.86
0.63
0.72
0.63
-
0.63
0.73
0.78
0.25
0.80
0.83
0.47 0.58
0.76 0.76
0.87 0.83
0.72 0.76
0.91 0.91
0.95 0.92
0.84 0.85
0.84 0.91
0.84 0.82
0.89 0.93
0.77 0.73
0.89 0.83
0.89 0.93
0.84 0.89
0.86 0.89
0.68 0.73
- 0.93
0.93 -
0.81 0.77
0.74 0.70
0.92 0.93
0.96 0.92
0.69
0.74
0.87
0.62
0.80
0.79
0.59
0.76
0.71
0.65
0.78
0.91
0.65
0.69
0.59
0.78
0.81
0.77
-
0.33
0.85
0.89
0.06
0.58
0.57
0.77
0.69
0.72
0.79
0.53
0.80
0.82
0.44
0.54
0.82
0.75
0.80
0.25
0.74
0.70
0.33
-
0.60
0.64
0.67
0.78
0.90
0.81
0.89
0.97
0.87
0.93
0.80
0.91
0.85
0.92
0.91
0.85
0.81
0.80
0.92
0.93
0.85
0.60
.
0.94
0.68
0.86
0.95
0.72
0.9S
0.95
0.79
0.87
0.85
0.86
0.83
0.95
0.86
0.84
0.86
0.83
0.96
0.92
0.89
0.64
0.94
.

-------
    CORRELATION COEFFICIENTS BETWEEN  STATION MEASUREMENTS (WIND  DIRECTION)


    R£SD PASA  A2U  WEST  ELM  CC*W CAP   LON3  WHTR LAN   ASA  POMA SNA  PS    VEN  CPK.  RVA ENC   BKT  Ua COMA  KFI
PESO
PASA
AZU
WEST
ELH
OWN
CAP
LONB
WHTR
LAN
ANA
P0.1A
SNA
RB
VEN
CPK
RVA
ENC
BKT
LACA
COKA
KFI

-0.
-0.
0,
-0.
-0.
0.
0.
0.
0.
-0.
-0.
0.
0.
0.
0.
0.
0.
-0.
-0,

,29
,37
.09
,35
28
,39
,45
.39
,04
.11
,05
,07
24
,11
,07
,00
45
36
.39
0.43
0.
64
-0.

0.
0.
0.
0.
0.
' 0.
0.
0.
29
.
49
24
67
89
14
12
48
35
0.00
0.
0.
0.
0.
-0.
0.
73
24
41
45
23
38
-0.09
0.
0.
0.
-0.
71
69
18
17
-0.
0.

0.
0.
0.
-0.
0.
-0.
.37
.49
-
,17
,77
52
05
.18
.16
-M3
-.23
0.
0.
0.
0.
-0.
0.
-0.
0.
0.
0.
-0.
.30
24
38
,40
08
24
28
71
79
00
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
-0,
0.
0.
-0.
-0.
0.
0.
0.
0.
58 -0.
.09
.24
.17
-
.27
,20
.70
.58
,53
.34
,31
,63
.24
.62
.08
.25
.09
04
.63
.26
.17
27
-0.35-0.28 0.39 0.45 0.39 0.04-0.11-0.05 0.07 0.24 0.11 0.07 0.000.46-0.36-0.39
0.67 0.89 0.14 0.12 0.48 0.35 0.00 0.73 0.24 0.41 0.45 -0.23 0.38-0.09 0.71 0;69
0.77 0.52-0.05 0.18-0.16-0.13-0.23 0.30 0.24 0.38 0.40-0.08 0.24-0.28 0.71 0.79
0.27 0.20 '0.70 0.58 0.53 0.34 0.31 0.63 -0.24 0.62 0.08 -0.25 -0.09 0.04 0.63 0.26
- 0.76 0.35 0.35 0.07-0.09-0.33 0.44 0.31 0.65 0.76-0.47 0.580.10 0.83 0.83
0.76 - 0.18 0.14 0.45-0.06-0.39. 0.76 0.24 0.55 0.46-0.16 0.47-0.21 0.78 0.73
0.35 0.18 - 0.89 0.58 0.20-0.03 0.46 0.16 0.77 0.43-0.37 0.320.62 0.39 0.13
0.35 0.14 0.89 - 0.54 0.12-0.13 0.44 0.32 0.76 0.39-0.13 0.260.54 0.35 0.18
0.07 0.45 0.58 0.54 - 0.29 0.05 0.80 -0.06 0.48 0.12 0.02 -0.05 0.09 0.30 -0.01
-0.09 -0.06 0.20 0.12 0.29 - 0.82 0.18 0.05 -0.05 -0.02 -0.06 -0.03 0.33 0.05 0.04
-0.33 -.39 -0.03 -0.13 0.05 0.82 - -0.09 -0.44 -0.41 -0.22 -0.07 -0.50 0.07 -0.14 -0.30
0.44 0.76 0.46 0.44 0.80 0.18 -0.09 - 0.08 0.63 0.11 -0.02 0.13-0.22 0.75 0.49
0.31 0.24 0.16 0.32-0.06 0.05-0.44 0.08 - 0.41 0.17 0.12 0.820.41 0.11 0.53
0.65 0.55 0.77 0.76 0.48 -0.05 -0.41 0.63 0.41 - 0.48 -0.33 0.60 0.29 0.71 0.62
0.76 0.46 0.43 0.39 0.12-0.02-0.22 0.11 0.17 0.48 - -0.64 0.500.51 0.40 0.33
-0.47-0.16-0.37-0.13 0.02-0.06-0.07-0.02 0.12-0.33 -0.64 •'- -0.30-0.34-0.33-0.22
0.58 0.47 0.32 0.26 -0.05 -0.03 -0.50 0.13 0.82 0.60 0.50 -0.30 - 0.47 0.35 0.66
0.10 -0.21 0.62 0.54 0.09 0.33 0.07 -0.22 0.41 0.29 0.51 -0.34 0.47 - -0.21 -0.10
0.83 0.78 0.39 0.35 0.30 0.05-0.14 0.75 0.11 0.71 0.40-0.33 0.35-0.21 - 0.84
0.83 0.73 0.13 0.13-0.01 0.04-0.30 0.49 0.53 0.62 0.38-0.22 0.66-0.10 0.84
0.39 0.32 0.74 0.76 0.44-0.13-0.53 0.32 0.61 0.74 0.49-0.16 0.650.66 0.20 0.24
-0.28-0.14 0.70 0.64 0.64.0.11-0.08 0.24 0.19 0.39 -0.03-0.02 0.120.54-0.21-0.37
0.43
0.18
0.00
0.17
0.39
0.32
0.74
0.76
0.44
-0.13
-0.53
0.32
0.61
0.74
0.49
-0.16
0.6S
0.66
0.20
0.24
-
0.6S
0.64
-0.17
-O.S8
0.27
-0.28
-0.14
0.70
0.64
0.64
-0.11
-0.08
0.24
0.19
0.39
-0.03
-0.02
0.12
0.54
-0.21
-0.37
0.65
-
      AVERAGE DIFFERENCES BETWEEN' STATION MEASUREMENTS  (KIND  SPEED)
KSD
PASA
AZU
WEST
ELM
COM(
CAP
Lcaa
WHTR
LAH
ANA
POMA
SNA
R8
VEN
CPK
RVA
ENC
BKT.
LACA
COKA
KFI
.RESD
0.0
1.7
3.4
2.1
4.7
5.7
4.6
4.8
2.6
2.3
1.8
1.9
2.3
3.4
4.9
1.0
3.5
2.4
4.7
2.8
7.7
3.5
PASA
1.7
0.0
3.6
1.2
4.7
5.5
4.2
4.6
2.1
1.5
0.8
1.4
1.5
2.9
4.6
1.1
3.0
1.9
4.8
1.6
7.8
1.4
AZU
3.4
3.6
0.0
3.6
1.5
2.7
2.3
2.4
2.2
2.8
4.2
2.5
2.8
1.8
2.2
3.5
1.8
2.3
2.2
3.5
4.6
1.1
WEST an
2.1 4.7
1.2 4.7
3.6 1.6
0.0 4.8
4.8 0.0
5.5 1.8
3.9 2.3
4.6 2.1
2.0 3.1
1.2 3.8
1.3 5.3
1.5 3.7 .
1.2 3.8
2.8 2.4
4.6 1.7
1.7 4.8-
3.1 2.3
1.9 3.3
4^9 2.2
1.3 4.3
7.7 3.7
3.5 1.9
COW
5.7
5.5
2.7
5.5
1.8
0.0
2.0
1.9
3.9
4.5
6.1
4.5
4.5
3.1
2.1
5.7
2.8
4.0
2.3
5.0
2.5
2.8
CAP
4.6
4.2
2.3
3.9
2.3
2.0
0.0
2.1
2.S
3.0
4.7
3.1
3.0
1.7
1.7
4.5
1.6
2.6
2.6
3.5
4.2
2.5
LOria
4.8
4.6
2.4
4.6
2.1
1.9
2.1
0.0
3.4
3.7
5.2
3.7
3.7
2.3
2.2
4.8
2.5
3.2
2.4
4.4
3.5
2.3
WHT*
2.6
2.1
2.2
2.0
3.1
3.9
2.5
3.4
0.0
1.2
2.6
1.2
1.2
1.4
3.1
2.4
1.5
1.0
3.3
1.6
6.2
2.3
LAN
2.3
1.5
2.8
1.2
3.8
4.5
3.0
3.7
1.2
0.0
1.8
1.0
0.0
1.9
3.6
1.9
2.0
0.9
4.1
1.1
6.7
2.6
ANA
V-8
0.8
4.2
1.3
5.3
6.1
4.7
5.2
2.6
1.8
0.0
1.8
1.8
3.5
5.2
1.2
3.5
2.3
5.3
'1.9
8.3
3.9
POM SNA
1.9 2.3
1.4 1.5
2.5 2.8
1.5 1.2
3.7 3.8
4.5- 4.5
3.1 3.0
3.7 3.7
1.2 1.2
1.0 0.0
1.8 1.8
0.0 1.0
1.0 0.0
1.9 1.9
3.7 3.6
1.6 1.9
2.0 2.0
1.1 0.9
3.7 4.1
1.7 1.1
6.7 6/7
2.4 2.6
RB
3.4
2.9
1.8
2.8
2.4
3.1
1.7
2.3
1.4
1.9
3.5
1.9
1.9
0.0
2.2
3.2
1.3
1.5
2.8
2.4
5.3
1.9
VEN
4.9
4.6
2.2
4.6
1.7
2.1
1.7
2.2
3.1
3.6
5.2
3.7
3.6
2.2
0.0
4.8
2.3
3.1
3.0
4.0
4.1
2.3
CPK
1.0
1.1
3.5
1.7
4.8
5.7
4.5
4.8
2.4
1.9
1.2
1.6
1.9
3.2
4.8
0.0
3.4
2.2
4.9
2.3
7.8
3.4
RVA
3.5
3.0
1.8
3.1
2.3
2.8
1.6
2.5
1.5
2.0
3.5
2.0
2.0
1.3
2.3
3.4
0.0
1.4
2.4
2.5
5.1
1.6
ENC
2.4
1.9
2.3
1.9
3.3
4.0
2.6
3.2
1.0
0.9
2.3
1.1
0.9
1.5
3.1
2.2
1.4
0.0
3.4
1.6
6.2
2.1
BKT
4.7
4.8
2.2
4.9
2.2
2.3
2.6
2.4
3.3
4.1
5.3
3.7
4.1
2.8
3.0
4.9
2.4
3.4
0.0
4.6
3.8
2.3
LACA
2.8
1.6
3.S
1.3
4.3
5.0
3.5
4.4
1.6
1.1
1.9
1.7
1.1
2.4
4.0
2.3
2.S
1.6
4.6
0.0
7.4
3.2
COMA
7.7
7.8
4.6
7.7
3.7
2.5
4.2
3.5
6.2
6.7
8.3
6.7
6.7
5.3
4.1
7.8
S.I
6.2
3.8.
7.4
0.0
4. a
KFI
3.5
3.4
1.1
3.5
1.9
2.8
2.5
2.3
2.3
2.6
3.9
2.4
2.6
1.9
2.3
3.4
1.6
2.1
2.3
3.2
4.8
0/0

-------
                                                                                              APPENDIX  3.  MEASURED AND CALCULATED AIR QUALITY
                                            £ £ S
                                                   CO •— O W •—
                                             Ot Ot to
                                                             So
                                                             en
              O r-  CO CO
z;
O

H
 GO c~>  co CM
                       ot^-^-*»'CM^**»'O •—
                       tocor--.r-.oiotoi*j- to

                       r-coiocooiocnto •—
                Ot  Ot «*


                C3  n er.
to co  in cn o  CM CM

f •—  «» o* «t  in **»
tc t*»  ^- •»• to  ot u>
                                          oo o f*» <*> •—
                          co * f>
                                          O O> cn *—
z
o
U
CO
U
z
UJ
U,
U,

Q


g

3
§

t—
*
§
°
i
UJ
t-
*

<
0.


"
CM
;i
Ol
CO
0
in
o
"-

In
o
oo
s
f>
o
o
cn
ot
O
o
o
o


fl
o
to
to

^
cn
Cn
in
to

o

r-
O
in

2-
f-
CO
F:
in

m
O

s
cn
CO
o
in
IO
cn
CO
r-.
°
•*
CO

o
m
to

S
s
0

CO
f*
f;
CM
O
O
to m -*

co co r?
CO *0 to
-r «o to
0 CM to
in to CM
t*» O O
r- m cn
r— in Ot
S 3 5
to
f 0 -»
r»» 10

ass
^ s d
r«. co •—
10 in cn
to in cn
*•> *f m
O CM ot
CM

o»
to
CM
o
s
l/>
CM
o

Sr
5
Ol
•o

in
o
5
in
o
o
to
Ot
to
to
s
o
o
in
8

SS
o

0>
K
r^
o
o
o
CO
o
0
o
to

0
to
K
s
in
to
CO

^
to
in
o
to
CO
K
0
O
CM
to

to
K
to
10
5

CO
o
01
CO
o
in
CO
0
0
s
g
in

cn
0
cn
S
CO
CO

*
Ot
CM
2
o
o

*a
CO
o
Q

vo

-
ffi
o
CO

CO
Ot
to
^
<*>
Ot
s
CD
o
o
s
f>

in
CO
to
s'
Ot

3
s
«»>
0
CM
«*>
Ot
o
to
Ol
in

CO
CO
n
10
si
fv.
Ot
Ot

o
s
to
to
tn
r-^
O

01
Ot
ot
Ot
Ot

r-
-
CO
s
s
a
CO
tn
«
o
^
CO
vo
5;
n
Ol
to
CO
in

'^
s
to
f:
CO
GO
d
CM
o
r-. '
o
m
to
S
CO
c
s
0

Ot
g
s
3
oo
o
Ot
s
01
a

n
2
CM
K
S
r.

r^
to
Cn
Ol
£
3
to
CO
in
S
^
^

3
CO
to
CO
o
Ot
CO

^


5
O
Ol
K
Ot
o
Ot
v
s

in
to
CO
^,
s
CO
^_

"*
s

tn
to
0
to
IE
CO
o
«->
3
                                                                                                          Date:   September 29,  1969

                                                                                                          Station:   RESD

                                                                                                          Exponent Used:   1.00
                                                                                                           HOUR

NO
MRAS
"T276~~
IB.O
19.
11.
9.
9.
"8.
11.
7.
1.
I.
1.
0.
C.
0.
1.
1.
I.
1.
2.
4.
7.
5.
8.

0
0
0
0
o"
0
o"
f)
0
0
0
0
0
0
0
0
0
0
0
0
0
0


CALC
10.7
12.4
11.9
11.7
14.6
17.9
21.3
32.9
33.3
6.5
3.8
o.o'
0.0
0.0
1.9
3.1
4.5
6.9
14.8
16.6
1H.O
21.3
25.3


01
N2
MEAS CALC
2
1
1
1
C
4
4
12
14
1C
17
t
7
4
-t
2
1
1
1
i

.0
.0
.0
.0
.0
.0
.0
.0
".c
.0
.c
.0
.0
.0
.c
.0
.c
.0
.c
.n
.c
• C
.0
.0

1.0
1.0
1.0
1.4
0.0
1.0
"1.6"
1 .6
6.5
1C. 9
12.0
13.7
10.8
7.7
4.1
2.4
1.4
2 . ~f
1.0
1.0
l.C
1.0
1.0

MEAS
17.0
14.0
12.0
12.0
11.0
13.0
1 2". 0
13.0
21.0"
17.0
10. 0
4.0
o.o
o.o
0.0
2.0
3.0
3.0
1 4.0
6.0
"7.6
7.0
7.0
7.0

CALC
8.
8.
8.
9.
9.
9.
9.
11.
20".
22.
20.
15.
0.
0.
0.
8.
8.
9.
11.
11.
9.
8.
9.
9.
a
7
7
0
9
7
2
1
1
a
3
5 	
n
0
0
7
9
7
I
6
3
2
1
6

CO
MEAS
15.0
13.0
9.0"
10.0
9.0
10.0
12.0
16.0
11.0
8.0
b.O
4.0
5.6
3.0
3.0
5.0
5.0
5.0
6.0
7.0
8.0
_s.q
8.0
11. 0
CALC
5.
5.
5.
5.
7.
7.
io.
17.
17.
8.
11.
7.
6.
4.
4.
4.
5.
5.
7.
9.
B.
	 9.
JO.
2
2
2
6
3
6
8
4
2
5
0
4
9
7
9
2
0
1
3
2
0
4
5

                                5  * a
                                5  5 S
                                 113
                                                                                                                                     114

-------
Date:  September 29, 1969
Station:  BURK
Exponent Used:  1.00
 HOUR
NO
MEAS
~19^0
20.0
21.0'
24.0
?7~.'b
29.0
'31.0
34.0
"27.0
14.0
"7.0
3.0
" "b.o
0.0
b.o
1.0
2~.C
3.0
12.0
27.0
27.0
31.0
36". 0
36.0
CALC
~~8~T
9.6
8.
6.
8~.
1C.
14.
23.
20.
_1C.
4.
3.
0.
0.
0.
2.
2."
3.
4.
7.
R.
9.
" 10.
13.
7
9
3
3
9
9
1
5
7"
2
o"
0
0
9
7
5
1
1
3
0
2
0
nz
MEAS
KIT
1.0
1.0
1.0
C.O
1.0
1.0
2.0
4.0
7.0
I 1.0
14.0
2 1.0
14.0
" 1 1 . 0
5.0
?.o"
2.0
2.0
1.0
1.0
1.0
1.0"
1.0

N2
CALC MEAS
~T.6"~
1.4
1
1
o"
I
1
2
5
R
13
16
14
10
6
5
~3
2
1
I
1
1
"l
1
.5
.7
.0
.4
.8
.2
.2
.9
.7
.3
.6"
. 1
.3 ""
.4
.3
.1
.9 "
.2
.4 ~
.2
.2
.2
13.0
12.0
12.0
13.0
14.0"
15.0
15.0
17.0
?5.0
29.0
28~.b~
19.0
0.0
0.0
" 0.0
11.0
io.o
11.0
17.0
19.0
13.0
11.0
14.0
15.0
CALC
"0". T~
8.6
7.8
7.7
7.6
8.1
7.9
10.3
16.5
17.1
13.9"
0.9
O.n
0.0
0.0
5.8
5.9
6.2
6.8
7.3
7.0
6.8
6.6
7.1
CO
MEAS
-g
9
10
11
"12"
13
15
18
17
9
11
10
11
7
7
5
"5
6
12
16
14
16
15
14
.0
.0
.0
.0
".0
.0
.0
.0
.0
.0
'.0
.0
.0
.0
.0
.0
.0"
.0
• P
.0
.0
.}
.0
.0

CALC
~6~.
5.
4.
4.
6.
6.
10.
15.
13.
__8.
6.
5.
4.
3.
3.
4.
5.
4.
4.
2
5
4
6
0
4
5
6
2 "
6
8
8
0
2
C
6
0
4
2
4.9
' 5.
5.
1
4
6.C
8.0
                        115
Date:  September 29, 1969
Station:  PASA
Exponent Used:  1.00
HOUR

   0~
 100_
 200
 300
 400
 500
 600~
 700
 800""
 200_
1000
                                                                               1200
                                                                             -.
                                                                               1400
                                                                             _LL°o
                                                                               1600
                                                                             _1700
                                                                               1ROO
                                                                             _1900
                                                                               2000
                                                                              2200
                                                                              2300
NO
MEAS
11
6
3
5
3
2
9
16
2
1
	 1
0
1
2
1
1
2
5
11
18
17
I'
__13
1
O O O 0
• « • .
.0
.0
.0
.C
.0
r.C...
1 ' I
o o o o'o c.
.0
.0
.0"
.0
.0"
.0
.0
.0
CALC
8.2
9.9
9.7
9.5
12.1
14.7
19.4
25.4
20.3
12.6
5.5
3.4
c.o'
4.8
2.5
3.0
2.7
3.3
?>. I
10.1
9.6
11.6
14.2
15.3
OZ
ME/IS
3.
2.
2.
2.
C.
2.
2.
2.
9.
17.
2t.
41.
§;.
2C.
" 12.
c.
6.
2.
	 2.
2.
2.
2.
2.
0
0
0
0
0
0
0
c
0
c
0
0
0
c
b
c
0
0
0
0
c
0
0
0
N2
CALC
1.2
1.3
1.4
1.5
0.0
1.2
1.2
2.1
3.9
8.0
13.7
17.6
is. 2
14.6
"9.0
6.0
3.3
2.C
1.8
1.1
1.1
1.0
1.0
1.0
MEAS
15.0
11.0
9.0
10.0
6.
7.
9.
10.
9.
6.
6.
12.
b.
5.
"8.
6.
5.
6.
9.
13.
13.
13.
13.
11.
o o§o o'o ojo o o o o o
0
0
0
0
o'
0
0
0
CALC
8.6
8.8
8.5
8.1
9.1
0.4
"9.0
12.3
19.7
21.9
20.3
13.0
0.0
7.8
6'." 4"
7.1
7.4
7.1
8. -9
9.1
7.8"
7.1
7.1
8.4
en

MEAS CALC
0
0
0
0
0
0
6
0
"o"
0
0
0
. 0
0
0
0
0
0
0
0
0
0
0
0
.0
.0
.0
.0
.0
.0
.0~
. 0
.0
.0
.0
.0
.0
.0
.0
.0
1 ' !
O O'O O O O
.0
.0
O.C
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.c
0.0
o o|o o o o
o o o o o o
0.0
0.0
b.o"
0.0
0.0
0.0
0.0
0.0
                                                                                                      116

-------
  Date:   September 29,  1969
  Station:   AZU
  Exponent  Used:   1.00
 HOUR

    o"
_ 100_
 "200
  300
  400
  500
  600
__700
  800
  goo
 lOOO"
 1200
__
 143C
 1500_
"iVoo
_1700
 iaoo"
__
 2000
 2200
 2300
NO C7
MEAS
4.0
5.0
5.0
5.0
5'.0
4.0
6.0
4.0
"3.0
1.0
1.0
1.0
0.0
0.0
"b.o"
1.0
i.o"
1.0
" 1.0
3.0
2.0
3.0
4.0"
'..0
CALC
~₯I2
7.4
6.7
7. 1
~S'.'2~
9.9
14. H
19.9
11.5
8.0
3.7
2.4
'" 0 . 0
0.0
0.0
2.5
" 2.2
2.6
4.0
8.4
"l 1 . 5
14.7
17.7
17.1
HE*S CALC
2.
t .
2.
2.
C.
2.
2.
2.
<;.
1 1.
^^'.
24.
"26.
3e.
25.
14.
7.
2.
1.
1.
1.
	 J.
1 .
1.
0
0
0
0
0
Q
0
C
0
C
b
0
f\
C
0
0
b
C
0
0
C
0
o"
0
"" 2
1
"" 1
1
0
1
1
2
S
1C
~~17
23
" 22
16
10
a
3
3
2
1
1
1
1
1
.2
.9
.9
.6
.0
.6
.6
.3
.0
.7
".4
.2
.1
.0
.3
.0
.9
.2
.2
.8
.6
.6
.6
.6
N2
MEAS
l"3To
15.0
" 14.0
13.0
13.0
12.0
12.0
13. C
16.0
11.0
"' fl'Io
5.0
0.0
0.0
"'"0.0
5.0
">.o
7.0
"11. 0
13.0
"11. 0
11.0
'io.o
10.0
CALC
"~11
10
10
9
9
9
q
13
18
13
""17
12
0
0
" 0
6
"i
7
8
9
9
9
9
9
".8
.7
.3 "
.9
.2
.3
.6
.0
.4
.6
.7
.8
.0
.0
.0
.7
.9"
.3
.8
.1
.3
.2
.2"
.6
CO
MEAS
""976
10.0
9.0
9.0
9.0
10.0
10.0
10.0
11.3
10.0
" 8.0
6.0
7.0
9.0
6.0
6.0
4.0
5.0
7.0
7.0
7.0
8.0
9.0
11.3
CALC
~5
5
5
5
6
6
9
13
11
9
7
7
' 3
3
2
')
<,
3
4
3
" 5
7
"7
8
."7
.3
.3
.1
.4
.7
.4
.6
.0
.2
."8
.0
.9 "
. 1
.9
.5
. i"
.7
.2
.9
.2
.0
.1
.1
                         117
   Date:  September 29, 1969
   Station:  WEST
   Exponent Used:  1.00
  HOUR

     0
 	100	
   200
 	30Q	
   400
 	500_
   600
 	700 _
   800""
   900	
  1000
 _UQP_
  1200
 _1300_
  1400
 _L50q	
  1600
 __1730_
  1800
 _1930__
  2000
_2 100	
  2200
  2300
NO
MET ~
AS
6.0
	 7.0
4,
	 1,
5^
8,
.0
,0
ro
.0
"15.0
35.0
38.0
	 6.0.
3.0
0.0
6.
i.
i.
2.
3.
5.
i.
f>.
9.
I.O.
13.
_iir
0
0
0
0
0
0
0
0
0
0
b
0
CALC
10.0
11.3
11.0
10. 1
11.
,6
13.5
lfi.2
23.
17.
J.L,
5.
0.
0.
5.
2.
2.
2.
3.
6.
10.
9.
11.
12.
14.
7
0
8
4
0
0
4
4"
7
6
2
3"
9
9
1
9
1
OZ
MPAS
1-0
1.0
1.0
2.0
ri76
1.0
1.0
l.C
3.0"
5.0
1C.C
12.0
i"c.o "
1C.C
6.0
4.C
2.0
l.C
' 3.0" "
1.0
"1.6
l.C
1.0
1.0
CALC
1.4
1.4
1.7
1.7
0.0
1.3
"1.7
2.4
5.2
8.3
11.7
13.7
13.6
9.5
6.6
5.2
"3 ".6
2.4
""1.5
1.1
1.4
1.1
\~. i
1.1
N2
MPAS CALC
7.0 10.1
7.0 9.0
7-0
7.0
9.0
8.0
"8.0
12.0
21.0
19.0
"T4."0
0.0
o.'o"
8.0
8.0
8.0
"9.0
10.0
9.0"
9.0
~ 9.0"
8.C
a.'o"
7.0
8.l"
e.o
8.
9.
' 9.
11.
17.
18.
16."
0.
o".
7.
5.
6.
67
6.
8.
8.
7.
_J>.
7.
8.
3
3
1
2_

6
5
0
b"~
2
9
4
3
7
3 ~
9
l"
8
1
1
CO
MEAS
4.0
4.0
~3~i _
. n"
3.0
6.0
5. -
r.
9.0
17.
17.
8.
0.
_5.
4 .
4.
4 .
4.
5.
4.
4.
4.
" "5.
5.
6.
8.
0
0
0
o
0
6 ~
0
u
0
0
0
0
0
o'
3__
6
0
CALC
7.0
6. 1
5.6
6.0
6.9
7.9
12.3
14. S
12 . 6"
8.6
~0. 0
6.6
5.1
3. 8
3.8
5. 3
5^2
4.9
5.5~
7.4
6.6
7.4
7. 3
8.4
                                                                                                        118

-------
  Date:   September 29, 1969
  Station:   LENX
  Exponent  Used:  1.00
 HOUR

    b
  100
  200
  300
  400
  500
  600
  700
  800
 1000
_HOO
 1200
 _1300
~1400
_i5oc
 1600
_1700
 ieoo
_1900
 2000
_2iog
 2200
 2300
NO
MEAS
~5~7o
3.0
1.0
1.0
2.0
3.0
17.0
20.0
9.0
6.0
4.0
0.0
0.0
0.0
1.0
2.0
3.0
3.0
5.0
5.0
1.0
l.C
3.0
3.0
CALC
"" 
-------
 Date:  September  29,  1969
 Station:   CAP
 Exponent  Used:   1.00
    0~
_t_00_
  200
_ 300_
  4ob
_ 500_
  600
  700
  800"
_ 90 0_
 1000
_
 1200
_1300
_l50p_
 1600 '
_17C10_
 iso a
 1900
"2000"
_21PO_
 2200
 2300
NO
MEAS
s.n
9.0
10.0
9.C
10.0
16. C
16.0
28.0
36.0
30. C
11.0
..5.0
C.O
0.0
2.0
3.0
5.0
6.0
fl.O
1 1.0
12.0
10.0
11.0
15.0
nz
CALC MEAS
9.
<;.
9.
8.
11.
13.
19.
25.
16.
8.
4.
3.
0.
0.
4.
4.
3.
4.
5.
9.
H.
11.
14.
14.
2
8
0
5
n
A
f>
o
A
0
A 1
5
0
0
2
5
7
3
8
0
8
5
I
H
1.0
1.0
1.0
1.0
C.O
i.r.
1.0
2.0
5.0
e.r<
2.C
s.c
f .0
7.0
5.0
2.C
2.0
.0
.0
.0
.0
.0
.C
.r
N2
CALC
1.5
I. A
1.6
l.fi
0.0
1.3
1.5
2.0
4.5
P. 5
13.7
18.0
16.9
12.3
7.7
6.1
3.7
2.2
1.9
1.4
1.4
1.2
1.2
1.2
MEAS
5.
6.
6.
6.
5.
4.
2.
3.
1 1.
19.
18.
10.
0.
0.
5.
6.
7.
7.
5.
4.
4.
4.
3.
5.
0
0
0
n
n
0
0
0
0
0
C
0
0
n
0
0
n
0
0
0
0
p
0
0
CALC
9.
a.
8.
a.
8.
9.
9.
13.
20.
21.
18.
14.
0.
0.
7.
7.
6.
6.
8.
9.
P.
7.
7.
8.
7
g
4
0
7
6
8
3
0
4
7
2
0
0
0
3
9
7
7
2
I
6
R
8
CO
MEAS
i
i
i
i
2
J
7
17
18
0
0
6
3
3
2
6
6
5
4
7
4
4
6
9
.0
.0
.0
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
« 0
.0
.0
.0
.0
CALC
6.7
6.5
6.C
6.2
7.9
8.4
11.9
14.9
12.5
O.C
0.0
6.7
5.1
4.0
3.8
4.2
4.1
4.1
4.8
5.4
6.2
7.1
7. 1
8.0
                          121
Date:  September 29, 1969
Station:  LONB
Exponent Used:  1.00
                                                                            HOUR
NO
MEAS
3.0
3.0
2.0
1.0
1.0
16.0
27.0
26.0
18.0
10.0
9.0
8.0
"b'.o
16.0
i a . o"
21.0
21.0
21.0
"20.6"
4.0
"'"5 . 0"
12.0
16.0
15.3
CALC
7.2
7.9
7.9
7.1
9.9
12.4
20.4
25.2
' 14 . 9
11.0
4.7
3.4
o.o
3.8
2.1
3.2
2.6
2.9
4.6
6.4
" 7.2
9.8
11.8
12.0
OZ
MEAS
1.
1.
1.
2.
C.
1.
1.
1.
1.
2.
2.
	 t.
2 •
1.
1.
1.
1.
1.
1.
	 2.
2.
1.
1.
1.
0
0
0
0
Q
0
0
0
0
0
0
C
6
C
'o
C
0
0
0
C
0
0
0
0
CALC
1
I
1
I
0
1
' "l
2
3
7
13
20
~i
b"
c
0
0
0"
c
0
0
0
3
o""
0
0
0
7.1
7.4
6.8
5.7
7.2
8.3
7.8
11.7
19.1
22.0
22.5
14.9
~0.0
8.2
"7.0
6.5
7.1
6.8
7.9
7.4
6.9
6.2
5.9
6.5
MEAS
2.0
3.0
2.0
2.0
3.0
7.0
9.0
13.0
"11.0
9.0
6.0
6.0
" 6.0
5.0
5.0
5.0
5.0
5.0
4.3
4.0
4~.0
5.0
6.0
5.0
CALC
4
4
4
3
5
6
11
14
12
10
9
6
3
2
2
4
3
	 3
4
~ 4
4
5
6
.7
.2
.2
.9
.7
.4
.5
.1
.C
.4
.4
.0
".C
.4
.5"
.1
.8
.4
.7
. 1
.0"
.8
.C
.4
                                                                                                   122

-------
 Date:   September 29,  1969
 Station:   WHTR
 Exponent  Used:  1.00
HOUR
NO
ME 4$
"loTo
11.0
11.0
10.0
12.0
20.0
30.0
34.0
9.0
3.0
2.0
1.0
0.0
1.0
1.0
1.0
2".0~
1.0
1.0
5.0
"13.0
16.0
15.0
19.0
OZ
CALC MEAS
5
5
5
5
6
8
14
18
"ll
q
4
3
0
ft
"3
4
4
5
"ft
ft
8
12
15
13
. a " i
.7 1
.6" 1
.4 1
.3 C
.2 1
.9 1
.1 J
.8 t
.1 11
.4 "21
. 3 34
.0 3C
.3 1 1
.8 12
.7 7
. 3" 4
.0 ;
.4" 3
.9 2
.3 1
.5 1
.9 1
.9 1
.0'
.0
.C
.0
.0"
.0
.0
.c
.0
.<-.
.'c
.0
.0
.0
. 0
.0
.'o"
.0
.0
.0
.c
.c
~.n
.0
CALC
17s
1.5
1.5
1.8
o.d
1.7
1.5
2.1
3.8
(•.ft
14.5
21.9
23.2
17.7
10.6
7.4
""4.1
2.2
1.5
1.5
1.5
1.3
1.4
1.4
N2
MEAS
"9.
9.
" fl.
7.
9.
10.
1 1.
19.
30.
37.
41.
21.
0.
1C.
9.
10.
12.
9.
11.
1 1.
1.3.
10.
" 9.
9.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALC
'~~9.~0
8.8
8.6
7.6
7.5
s.3
7.8
10.7
16.4
16.8
1 6 . C
12.8
0.0
7.7
6.4
6.0
6.7
6.5
7.9
7.9
7.6
7.7
7/5
7.5
CO
ME AS
5
5
5
4
6
7
11
14
11
11
13
0
'2
1
"~1
1
1
I
i
3
4
5
~5
7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
^o'
.0
.0
.0
.0
.0
.0
.0
CALC 1
_"5~.
5.
~ 5.
5.
6^
7.
9.
13.
12.
10.
7.
0.
4.
4.
3.
4.
~~4.
4.
4.
4.
5 .
6.
7.
7.
3
5
1
I
3
3 -
5
7
0
1
I
C
9
5
8
6
6
4
6
6
2
5
1
9
                        123
Date:  September 29,  1969
Station:   LAH
Exponent  Used:   1.00


	 100_
_ 3_00_
soc
600 "
700
800
	 900 	
1100
1200
1300
1400'
. 1500 _
1700
1800
1900
2000
_J1"0__
_2300_
Ml

2.0
3.0
2.0
3.0
3.0
1-0
"10. 0
13.0
" 8.0
	 Q.0_
2.0
1.0
0.0
I'.O'
2.0
2.0
3.0
4.0 "
8.0
1C . 0
16.0
22.0
_1 6 . 0
3
CALC
8.4
8.1
8.4
7.5
9.4
13.7
20.8
24.0
11. 0
0.0
3.3
?-6
1.7
0.0
3."3
3.8
3. ft
3. A
4.8"
5.7
9 . 4
12. 9
13.9
15.0
n
MEAS
c.c
0.0
c.c
c.o
c.c
c.c
c.o
c.o
2.0
7.C
14.0
2f.O
""35.0"
2?..r
1 1.0
7.0
4.0
2.C
C.O"
c.o
c.o"
c.c
c.o
c.o
7.
CALC
O.C
0.0
0.0
0.0
O.C
0.0
0.0
c.o
" "4.9
9.9
17.1
24.2
22.9"
1ft. 9
11.9
7.9
4.4
3.3
o.o"
0.0
' 0.0
0.0
0.0
0.0
N2
MEAS
8.0
7.0
7.0
6.0
6.0
7.0
6.0 "
10.0
'""15.0
10. 0
14.0
I 1.0
5.C
3.0
5.6
3.0
5.0
4.0 .
6.0
7.0
"7.0
7.0
7.0
6.0
I
CALC
9.6
9.9
9.2
8.1
9.0
9.5
" 9. "7
13.7
21.T
25.0
24.6
15.9
11.3"
10.4
8.1
8.1
9.0
8.4
"9. 9
9.6
"9.9"
9.0
8.5
8.7
C
MEAS
0.0
0 .0
o.'o
0.0
0.0
0.0
b.6~
0.0
"o.d"
0.0
0.0
c.o
"c.6"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o
CALC
oTo
0 0
~~0.0~~
0.0
0.0 "~
0.0
0.0
0.0
0.0
0.0
o.c
0.0
o.c
o.c
o.c
o.c
0.0
o.c
"0.0
o.c
o.c"
0.0
o.c
o.c
                                                                                                    124

-------
  Date:   September  29,  1969
  Station:   ANA
  Exponent  Used:  1.00
HOUR

NO
OZ
MEAS CALC
— g
6
9
6
0
q
20
21
7
4
1
0
1
1
1
2
1
2
6
4
7
12
12
12
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
n
.0
.0
.0
.0
.0
.0
.0
.0
6.2
6.6
6.1
6.0
0.0
11.5
19.2
22.0
11. 1
6.5
4.2
0.0
1.5
7.1
4.3
5.4
5.4
5.4
5.8
6.3
9.1
14.5
13.2
16.5
ME AS
~oTo
1.0
1.0
c.o
c.o
2.0
c.o
c.c
5.0
7.0
i;.o
31.0
34.0
22.0
17.0
<=.Q
6.0
3.0
1.0
1.0
1.3
1.0
C.C
c.o
CALC
d
i
i
0
0
i
0
0
3
R
14
?1
21
15
Q
7
3
3
2
2
1
1
0
0
.c
.3
.3
.0
.0
.2
.0
.0
.2
.0
.7
.2
.8
.4
.8
.1
.8
.0
.3
.0
.7
.2
.0
.0
N2
MFAS
67
9.
8.
5.
n.
1C.
8.
9.
16.
20.
22.
17.
12.
10.
u.
ft.
7.
10.
11.
10.
9.
9.
8.
7.
0
Q
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
c
0
0
0
0

CALC
"9.1
8.8
8.7
7.7
0.0
8.8
9.1
14.0
21.4
23.2
22.9
15.6
6.4
8.8
6.5
7.5
8.6
7.1
8.5
a.o
8.5
8.2
7.9
8.0

CO

MEAS CALC
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
b.b"
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
o.c
0.0
                        125
Date:  September 29, 1969
Station:  POMA
Exponent Used:  1.00
                                                                                   HOUR

                                                                                 "    b~
                                                                                    100
                                                                                    200
                                                                                 _ 3J50_
                                                                                    400
                                                                                 _ 50C_
                                                                                    600
                                                                                    700
                                                                                    800
                                                                                 _ 900_
                                                                                   10CO
                                                                                   1200
                                                                                   130d
                                                                                   1400
                                                                                  l$qo
                                                                                   1600
                                                                                  J7oo
                                                                                   isoo
                                                                                   1900
                                                                                  2000
                                                                                  2200
                                                                                  2300
NO
MEAS
9.
4.
4.
5.
5.
5.
5.
6.
4.
1.
1.
I.
0.
0.
1.
1.
2.
2.
3.
7.
12.
20.
27.
23.
0
n
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALC
5.
•5.
6.
5.
6.
7.
14.
15.
6.
2.
2.
1.
0.
0.
1.
1.
1.
1.
2.
4.
7.
10.
12.
11.
7
9
3
7
2
6
8
9
3
4
0
3
0
0
0
5
5
7
8
9
3
fl
4
7
07
MEAS
3.0
3.0
3.C
2.0
C.O
2.0
2.0
3.0
S.O
16. C
i<;.o
1.4.0
15.0
21.0
21.0
lf.0
t.O
6.0
3.0
2.0
2.0
2.0
2.0
2.0
CALC
1.6
1.5
1.5
1.6
0.0
1.7
1.6
2.6
4.6
10.0
17.4
27.3
2
-------
    APPENDIX 4.
    CORRELATION  COEFFICIENTS BETWEEN STATION MEASUREMENTS  (NO)

    STATION  USD  BURK  PASA   AZU  KF.ST  LENX  COMM   CAP  LONB  X1ITR   LAI!   ANA  POMA
RESD
BURX
PASA
AZU
KEST
LENX
COMM
CAP
LONB
WHTR
LAH .
ANA
POKA
- •
0.95
0.75
0.19
0'. 73
0.72
0.95
0.54
0.61
0.92
0.69
0.17.
0.99
0.95
-
0.70
0.19
0.75
0.97
0.71
O.SO
0.19
0.72
0.36
0.93
0.75
0.70
- •
0.61
0.92
0.71
0.37
0.61
0.19
0.17
0.91
0.75
0.19
0.19
0.61
-
0.73
0.16
O.J7
0.67
0.92
0.66
0.90
0.91
0.73
0.74
0.64
0.51
0.74
0.79
0.79
0.42
0.63
0.12
0.67
0.73
0.72
0.75
0.92
0.73
.
0.14
0.57
0.61
0.17
0.97
0.94
0.76
0.95
0.97
0.71
0.16
0.14
•
0.70
0.67
0.93
0.11
0.92
0.95
0.54
0.71
0.37
0.37
0.57
0.70
-
0.01
0.45
0.75
0.16
0.54
0.61
O.SO
0.61
0.67
0.61
0.67
0.01

0.69
0.59
0.61
0.65
0.92
0.19
0.19
0.92
0.17
0.93
0.45
0.69
-
0.71
0.91
0.94
0.69
0.72
0.17
0.66
0.97
0.11
0.75
0.59
0.71

0.16
0.73
0.17
0.16
0.91
0.90
0.94
0.92
0.46
0.61
0.91
0.86

0.19
0.99
0.93
0.75
0.91
0 73
0.76
0.95
0.54
0.65
0.94
0.73
0.19
.
CORRELATION COEFFICIENTS  BETWEEN  STATION  MEASUREMENTS  (N02)
STATION  RBSD  BUItIC   PA5A   AZU   VEST  LEKX  COKM  CAP   LONB  VHTR  LAH
                                                                    PJKA
USD
BURI
PASA
A:U
KEST
LENX
COKM
CAP
LONB
KHTR
LAJI
ANA
POMA
-
0.65
0.15
0.92
0.75
0.7!
0.73
0.24
0.12
0.41
0.61
0.40
0.14
0.6S

O.OS
0.34
0.85
0.12
0.91
0.84
0.74
0.98
O.S4
0.94
0.22
0.11
O.OS
-
0.1S
0.19
,0.29
0.09
•O.SO
-0.10
0.02
0.4]
0.12
0.20
0.92
0.34
O.lt
--
O.S2
0.65
0.44
•0.12
-0.2J
0.17
0.42
0.06
' 0.9S
0.7S
0.15
0.19
0.52

0.17
0.92
0.73
0.61
0.8S
0.14
0.76
O.SS
0.71
0.82
0.29
0.6S
0.8?

0.<4
O.S6
O.S9
0.12
0.94
0.67
0.71
0.73
0.91
0.09
0.44
0.92
0.14
•
0.10
0.67
0.93
0.12
0.14
0.44
0.2<
0.14
-0.30
-0.12
0.73
0.56
0.10
-
0.90
0.91
0.62
0.19
-0.03
0.12
0.74
•0.10
-0.2J
0.61
O.S9
0.67
0.90
-
0.72
0.43
0.74
0.03
0.41
0.9>
0.02
0.17
0.15
0.12
0.93.
0.91
0.72
-
0.85
0.91
0.25
0.61
0.14
0.43
0.42
0.14
0.94
0.12
0.62
0.43
0.15
-
0.71
0.47
0.40
0.94
0.12
0.06
0.76
0.67
0.14
0.19
0.74
0.91
0.71
-
0.04
0.14
0.22
0.20
0.95
0.55
0.71
0.44
-0.03
0.03
0.23
0.47
0.04
.
    CORRELATION COEFFICIENTS BETWEEN STATION MEASUREMENTS
STATION RESD  BUR*  PASA  AZU  KEST   LENX   ELM  COKM   CAP  LONB  TOTR   LAH  ANA   POKA  SNA
                                                                                                CORRELATION COEFFICIENTS  BETWEEN  STATION MEASUREMENTS
RESD
BUM
PASA
A2U
»EST
LENX
ELH
COKM
CAP
LONB
KHTR
LAH
ANA
POMA
SNA
-
o.ei
0.80
0.66
0.77
0.51
0.66
0.35
0.11
0.39
0.71
0.60
0.62
0.64
0.63
0.11
.
0.17
0.90
0.91
0.14
0.93
0.26
0.76
0.46
0.92
0.96
0.95
0.73
0.19
0.80
0.87

0.75
0.9!
0.85
0.94
0.94
0.16
0.80
0.99
0.85
0.18
0.62
0.86
0.66
0.90
0.75
.
0.90
0.84
0.72
-0.56
0.73
0.32
0.10
0.10
0.10
0.19
0.72
0.77
0.91
0.95
0.90

0.18
0.93
0.76
0.88
0.64
0.96
0.88
O.IJ
0.77
0.91
0.51
0.14
0.15
0.14
O.lt
.
0.14
0.77
0.60
0.67
0.89
0.87
0.90
0.64
0.74
0.66
0.93
0.94
0.72
0.93
0.84
.
0.78
0.65
0.66
0.98
0.97
0.97
0.37
0.94
0.35
0.26
0.94
-0.56
0.76
0.77
0.71
.
0.15
0.97
0.90
0.53
0.75
-0.92
0.74
0.81
0.76
0.16
0.73
0.88
0.60
0.65
0.15
.
0.55
0.13
0.52
0.59
0.75
0.61
0.39
0.46
0.10
0.32
0.64
0.67
0.66
0.97
O.SS
.
0.75
0.51
0.59
0.21
0.54
0.71
0.92
0.99
0.80
0.96
0.19
0.98
0.90
0.13
0.75
.
0.92
•0.94
0.64
0.91
0.60
0.96
0.15
0.10
0.18
0.17
0.97
0.53
0.52
0.51
0.92
.
0.98
0.31
0.81
0.62
0.95
0.18
0.80
0.89
0.90
0.97
0.75
0.59
0.39
0.94
0.98

0.52
0.91
0.64
0.73
0.62
0.89
0.77
0.64
0.37
-0.92
0.75
0.21
0.64
0.38
0.32

0.52
0.63
0.89
0.86
0.72
0.91
0.74
0.94
0.74
0.68
0.54
0.91
0.81
0.91
0.52
-
STATION

RESD
BURK
AZU
»EST
IENX
ELM
COMM
CAP
LONB
»KTR
POMA


RESD

•
0.16
. 0.71
'. 0.14
fl.66
0.54
0.11
0.74
0.92
0.10
0.81


BURK

0.16
-
0.76
0.12
0.47
0.76
0.81
0.71
0.87
0.79
0.73


AZU

0.71
0.76
-
0.64
0.30
0.36
0.80
0.51
0.74
0.73
0.66


WEST

0.84
0.82
0.64
-
o'.36
0.57
0.86
0.97
0.95
0.84
0.87


LENX

0.66
0.47
0.30
0.36
•
0.21
0.46
0.29
0.45
0.51
0.60


ELM

0.54
0.76
0.36
0.57
0.21
-
0.62
0.60
.0.62
0.85
0.26


COKM

0.88
0.81
0.80
0.16
0.46
0.62
-
0.15
0.94
0.92
0.11


CAP

0.74
0.71
O.SI
0.97
0.29
0.60
0.15

0.81
0.71
0.11


LONB

0.92
0.17
0.74
0.95
0.45
0.62
0.94
0.11
-.
0.11
0.16


KHTR

0.10
0.79
0.73
0.14
0.51
0.85
0.92
0.78
0.81
•
0.75


POMA

0.88
0.73
0.66
0.87
0.60
0.26
0.88
0.81
0.86
0.75



                                   127
                                                                                                                              128

-------
   AVERAGE DIFFERENCES  BETWEEN STATION  MEASUREMENTS  (NO)
AVERAGE DIFFERENCES BETWEEN STATION  MEASUREMENTS  (N02)
   STATION RESD  BURK   PASA   AZU  KEST   LtNX  COKM  CAP   LO.VB  WITH   LAII   ANA   POMA
                                                                                                STATION   USD   BURK   PASA  AZU   VEST  LENX  COMM  CAP   LONB  KHTR  LAK
RBSD
BURK
PASA
AZU
»EST
LENX
COMM
CAP
LONB
KHTR
LAH
ANA
POHA
0.0
IS. 2
3.3
3.2
14.2
S. S
13.7
15.7
13.9
11.3
3.3
5.6
2.6
0.0
11.1
10.6
4.5
9.4
11.2
7.9
16,0
12.4
17.6
16.2
4.2
13.3
13.4
15.9
14.6
10.2
2.6
4.8
3.6
19.1
0.0
17.0
16.7
17.9
15.9
14.0
4.2
.8.2
0.9
10.6
17.0
0.0
9.7
9.2
13.9
11.1
13.$
10.9
15.4
13. S
7.5
11.0
10.9
13.3
12.5
1.6
3.6
2.7
6.7
4.S
16.7
9.7
0.0
B.S
6.9
7.4
12. S
9.4.
15.3
9.4
17.9
9.2
8.S
0.0
13.0
13. S
12.2
13.9
16. S
11.2
15.9
13.9
6.9
13.0
0.0
12.0
14.4
12.7
15.6
7.9
14.0
11.1
7.4
13.5
12.0
0.0
11.6
6.3
12.9
16.0
4.2
13.5
12.5
12.2
14.4
11.6
0.0
5.2
3.6
12.4
B.2
10.9
9.4
13.9
12.7
6.3
S.2
0.0
7.3
2.6
17.6
0.9
13.4
6. 7
15.3
16.5
15. «
12.9
3.6
7.3
0.0
RESD
BURK
PASA
AZU
KEST
LENX
COMM
CAP
LONB
KIITR
LAH
ANA
POMA
0.0
9.S
6.1
3.2
4.1
5.1

7.6
9.9
14.6
5.1
6.8
S.O
9.1
0.0
11.0
11.0
7.5
11.1

6.7
3.9
10.6
• 6.4
1.4
6.8
13.0
0.0
4.4
6.4
2.8

'10.2
16.2
3.7
7.2
7.1
3.2
11.0
4.4
0.0
4.6
3.0

10.1
16.0
4.1
7.1
4.3
4.1
7.3
6.4
4.6
0.0
4.4

5.6
11.0
4.5
3.5
4.8
5.1
11.1
2.8
3.0
4.4
0.0

7.5
15.2
1.8
3.5
6.0
1.3 7.6
3.9 10.5
11.3 6.6
10.2 7.3
6.1 5.4
10.1 S.O

6.6 6.2
6.3 13.3
8.6 4.5
5.4 4.8
1.3 8.7
9.9
6.7
10.2
10.1
5.6
7.5

0.0
9.3
9.0
S.3
8.7
14.6
5.9
16.2
16.0
11.0
IS. 2

9.3
0.0
13.7
.9.6
13.1
S.I
10.6
3.7
4.1
4.5
1.8

9.0
13.7
0.0
5.5
6.3
6.8
6.4
7.2
7.1
3.S
s.s

5.3
9.6
5.5
0.0
7.0
S.O
8.4
7.1
4.3
4.8
6.0

8.7
13.1
6.3
7.0
0.0
AVERAGE DIFFERENCES BETWEEN  STATION  MEASUREMENTS
STATION RESD BURK  PASA   AZU   KEST  LENX  ELM   COMH   CAP  LONB  KHTR  UH   ANA   POMA   SNA
RESD
EUHK
PASA
AZU
«EST
LEHX
ELM
COKM
CAP
LONB
KHT«
LAH
ANA
POKA
SNA
0.0
3.7
11.3
11.8
3.9
5.4
5.9
7.2
3.6
7.6
8.9
10.6
10.4
6.6
4.5
3.7
0.0
10.3
10.2
3.8
3.4
3.3
11.2
4.9
8.3
7.3
7.7
7.8
6.4
2.7
11.3
10.3
0.0
8.4
12.7
14.5
9.9
23.3
13.4
17.2
3.3
7.5
(.2
10.0
10.9
11.8
10.2
8.4
0.0
13.1
14.7
11.9
25.4
13.9
17.8
7.8
8.7
7.7
7.0
11.7
3.9
3.8
12.7
13.1
0.0
2.3
5.8
5.3
1.9
4.9
9.9
11.4
11.3
8.1
4.8
5.4
5.4
14.5
14.7
2.3
0.0
7.7
3.5
3.0
3.3
11.7
13.2
13.0
9.6
6.9
5.9
3.3
9.9
11.9
5.8
7.7
0.0
12.9
7.2
10.8
6.4
6.0
6.7
8.9
3.1
7.2
11.2
23. S
2S.4
S.3
3.S
12.9
0.0
3.3
2.2
20.2
21. 6
22.1
14.6
10. S
3.6
4.9
13.4
13.9
1.9
3.0
7.2
3.3
0.0
4.6
10.9
12.8
12.6
«:<
S.9
7.6
8.3
17.2
17.8
4.9
3.3
10.8
2.2
4.6
0.0
14.5
16.5
16.2
12.4
10.1
8.9
7.3
3.3
7.8
9.9
11.7
6.4
20.2
10.9
14.5
0.0
4.5
3.6
8.3
7.7
10.6
7.7
7.S
8.7
11.4
13.2
6.0
21.6
12.8
16.5
4.5
0.0
2.7
10.3
7.8
10.4
7.8
6.2
7.7
11.3
13.0
6.7
22.1
12.6
16.2
3.6
2.7
0.0
9.2
7.9
6.6
6.4
10.0
7.0
1.1
9.6
8.9
14.6
8.4
12.4
8.3
10.3
9.2
0.0
6.9
4.S
2.7
10.9
11.7
4.8
6.9
3.1
10.3
3.9
10.1
7.7
7.8
7.9
6.9
0.0
                                                                                                  AVERAGE DIFFERENCES BETWEEN STATION MEASUREMENTS
                                                                                                 STATION  RESD  BUR*   AZU  KEST   LENX   ELM   COMM  CAP .  LONB  KHTR  POMA
RESD
BURK
AZU
KEST
LENX
ELM
COMM
CAP
LONB
KKTR
rcMA
0.0 4.0
2.9 3.9
3.4 6.1
2.4 5.0
2.7 3.8
3.7 3.4
1.8 4.2
3.3 5.2
2.9 5.5
2.9
0.0 .
3.9
3.7
3.6
4.8
1.9
4.3
2.2
2.6 3.4 2.4
3.8 3.9 3.7
3.1 0.0 2.2
4.0 2.2 0.0
2.1 5.3 4.4
1.4 S.9 4.6
2.4 3.3 2.S
3.3 4.3 3.7
3.8 2.7 2.8
2.7 3.7
3.6 4.8
3.3 S.9
4.4 4.6
0.0 2.9
2.9 0.0
3.0 3.3
2.8 4.0
3.8 4.3
1.8
1.9
3.3
2.S
3.0
3.3
0.0
3.5
1.6
3.3 2.9
4.3 2.2
4.3 2.7
3.7 2.1
2.8 3.8
4.0 4.3
3.S 1.6
0.0 4.3
4.3 0.0
                                   129
                                                                                                                                130

-------