-------
Appendix C-12. Quality Control for Chemical Analysis
189
-------
Appendix C-12(a). Concentrations of PAH Compound's in Field Blanks
Filter"' fae/m3}
COMPOUND
Naphthalene
Acenaphthelene
Acenaphthene
Fluorene
Dibenzothiophene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benzo(a)anthracene
Chrysene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Indeno(l ,2 ,3-c,d)pyrene
Dibenzo(a,h)anthracene
Benzo(g,h,i)perylene
% Surrogate Recoveries
d8 Naphthalene
dlO Acenaphthene
d!2 Perylene
1
0.25
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
31
48
95
2
0.33
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
23
31
59
3
0.17
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
24
42
93
PUF fne/m3)
1
1.6
1.6
1.9
2.0
ND
2.0
2.0
2.4
2.2
2.3
2.3
2.1
2.0
2.1
1.8
2.1
2.0
16
62
93
2
1.5
1.6
1.9
2.0
ND
2.1
2.0
2.4
2.2
2.3
2.3
2.1
2.1
2.2
1.8
2.1
2.0
16
44
91
3
1.2
1.4
1.6
1.8
ND
2.0
2.0
2.5
2.3
2.6
2.4
2.3
2.2
2.8
2.1
2.3
2.2
11
53
104
Water Cne/D
1
ND
ND
ND
ND
ND
9.6(b)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
7 3®
15
31
75
2
ND
ND
ND
ND
ND
ND
ND
12o»
350"
ND
ND
ND
ND
9.5
7.7
ND
490.)
20
29
83
3
ND
ND
ND
ND
ND
ND
ND
80°"
10°°
ND
ND
ND
ND
ND
ND
ND
ND
14
21
91
(a) Approximately of 1,000 m3 of air sampled.
(b) Numbers suspect because ion ration not within specified range.
191
-------
Appendix C-12(b). Method Detection Limits for PAH Compounds in Filters, PUFs, and
Water
COMPOUND
Naphthalene
Acenaphthelene
Acenaphthene
Fluorene
Dibenzothiophene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benz(a)anthracene
Chrysene
Benzo(b)fluoranthene
Benzo (k) fluoranthene
Benzo (a)pyrene
Indeno(l ,2,3-c,d)pyrene
Dibenzo(a,h)anthracene
Benzo (g ,h , i)pery lene
Filter
ng/m3
0.20
0.22
0.12
0.11
0.11
0.098
0.16
0.12
0.12
0.18
0.15
0.27
0.15
0.27
0.20
0.26
0.20
PUF
ng/m3
0.086
0.096
0.051
0.048
0.048
0.042
0.069
0.053
0.050
0.077
0.063
0.12
0.065
0.11
0.84
0.11
0.085
Water
ng/L
19
14
17
13
13
8.1
8.3
18
17
28
23
29
40
34
28
18
20
192
-------
Appendix C-12(c). Percent Spike Recoveries for PAH Compounds on Blank Filters, Blank
PUFs and Blank Water
COMPOUND
Naphthalene
Acenaphthelene
Acenaphthene
Fluorene
Dibenzothiophene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benz(a)anthracene
Chrysene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Indeno(l ,2,3-c,d)pyrene
Diben2X)(a,h)anthracene
Benzo(g,h,i)perylene
% Surrogate Recoveries
d8 Naphthalene
dlO Acenaphthene
d!2 Perylene
Filter"'
fl.S ng/nft
1 2
61
39
52
50
NS
51
50
72
65
65
78
78
72
56
65
72
72
40
56
89
51
36
48
48
NS
50
50
72
65
64
72
78
72
57
65
72
65
35
50
88
PUF("
(2.5 ne/m3)
1
64
64
76
80
NS
80
80
96
88
92
92
84
80
84
72
84
80
16
62
93
2
60
64
76
80
NS
84
80
96
88
92
92
84
84
88
72
84
80
16
44
91
3
48
56
64
72
NS
80
80
100
92
104
96
92
88
112
84
92
88
11
53
104
Water
(500 ne/U
1
44
50
58
64
NS
72
72
94
90
118
112
120
112
114
118
130
106
15
31
75
2
38
40
46
44
NS
48
36
58
54
74
84
88
82
66
68
56
70
20
29
83
3
42
44
54
46
NS
54
40
62
62
86
102
106
102
76
84
62
86
14
21
91
(a) Assumed 1,000 m3 air samples.
NS = not spiked
193
-------
Appendix C-12(d). Concentrations of PAH Compounds in NIST SRM 1649
(Urban Dust) (ng/g)
Compound
Naphthalene
Acenaphthelene
Acenaphthene
Fluorene
Dibenzothiophene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benz(a)anthracene
Chrysene
Benzo (b) fluoranthene
Benzo (k) fluoranthene
Benzo (a)pyrene
Indeno(l,2,3-c,d)pyrene
D ibenzo (a ,h) anthracene
Benzo(g ,h , i)pery lene
% Surrogate Recoveries
d8 Naphthalene
dlO Acenaphthene
d!2 Perylene
Certified Value Non-Certified
This Study +. uncertainty Values
140
ND
110
180
180
4,000
480
7,200 7,100 + 500
6,100
2,500 2,600 + 300
4,800
6,800
2,500
2,700 2,900 + 500
2,700 3,300 + 500
560
3,300 4,500 ±1,100
20
50
80
4,500
6,300
3,700
6,200
2,100
410
194
-------
Appendix C-12(e). Method Detection Limits for PCB Congeners in Air and Deposition
Samples
CONGENER
18
33
52
49
101
97
77
149
118
114
153
105
137
138
126
187
157
180
169
195
194
PUF
ng/m3xlO'3
5.94
5.40
5.40
4.60
4.60
1.53
4.06
5.40
5.36
9.40
4.95
5.36
6.54
4.95
4.95
5.36
5.86
6.14
5.36
8.68
6.29
Filter
ng/m3
0.020
0.018
0.018
0.015
0.015
0.005
0.014
0.018
0.018
0.031
0.016
0.018
0.022
0.016
0.016
0.018
0.020
0.020
0.018
0.029
0.021
Water
ng/LxlO4
5.94
5.40
5.40
4.60
4.60
1.53
4.06
5.40
5.36
9.40
4.95
5.36
6.54
4.95
4.95
5.36
5.86
6.14
5.36
8.68
6.29
195
-------
Appendix C-12(f). Method Detection Limits for Aliphatic Hydrocarbons in Air and Deposition
Samples
COMPOUND
C9
CIO
Cll
C12
C13
C14
CIS
C16
C17
Pristane
CIS
Phytane
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C32
C34
C36
PUF
ng/m3
0.508
0.408
0.209
0.240
0.249
0.259
0.264
0.283
0.278
0.285
0.292
0.302
0.313
0.200
0.301
0.318
0.324
0.294
0.232
0.275
0.228
0.340
0.204
0.249
0.302
0.773
1.128
Filter
ng/m3
1.693
1.360
0.697
0.800
0.830
0.863
0.880
0.943
0.927
0.950
0.973
1.007
1.043
0.667
1.003
1.060
1.080
0.980
0.773
0.917
0.760
1.133
0.680
0.830
1.007
2.577
3.760
Water
ng/L
0.051
0.041
0.021
0.024
0.025
0.026
0.026
0.028
0.029
0.028
0.029
0.030
0.031
0.020
0.030
0.032
0.032
0.029
0.023
0.028
0.023
0.034
0.020
0.025
0.030
0.077
0.113
196
-------
Appendix C-12(g). Spike Recovery for Aliphatic Compounds in Blank Filter
COMPOUND ng/mL SPIKE % RECOVERY
n-C09
n-CIO
n-Cll
n-C12
n-C13
n-C14
n-C15
n-C16
n-C17
Pristane
n-C18
Phytane
n-C19
n-C20
n-C21
n-C22
n-C23
n-C24
n-C25
n-C26
n-C27
n-C28
n-C29
n-C30
n-C32
n-C34
n-C36
910
679
969
1022
1595
1191
1368
1844
4759
1863
1748
1671
1030
61
45
65
68
106
79
91
123
159
124
116
111
69
% Surrogate
Recovery 78
197
-------
Appendix C-12(h). Comparison Results for Fe, Ca, and K in Three Filters Analysed by X-
ray Fluorescence (XRF) and Atomic Absorption (AA)
Sample
AS 891115
RS 891211
AS 890907
Element
Fe
Ca
K
Fe
Ca
K
Fe
Ca
K
XRF
fig/cm2
11.34
21.29
5.56
7.25
1.48
3.25
37.50
48.3
13.07
AA
fig/cm2
11.54
21.20
5.66
6.96
1.68
3.84
37.5
49.0
9.8
198
-------
Appendix C-12(i). Quality Control Results for Analyses of Metals in Deposition Samples
itg/L
Sample
SLRS Rep. 1
Rep. 2
Certified Value
±0.08
1643b Rep. 1
Rep. 2
Certified Value
Field BLK 1
Field BLK 2
Field BLK 3
Mean BLK
Urban Dust (0.025
1648 Rep. 1
1648 Rep. 2
1648 Rep. 3
Mean
Certified Value
% Recovered
Matrix Spike
Field BLK 2
Matrix Spike
% Recovery
Matrix Spike
Field BLK 1
Matrix Spike
% Recovery
MDL
As
0.83
0.73
0.55
±0.04
NA
NA
None
±0.4
0.02
0.01
<0.01
0.01
g/100 mL)
118
103
109
110
115
96
0.01
11.58
116
0.02
12.6
124
0.01
Cr
0.31
0.33
0.36
±0.3
18.76
20.55
18.6
±0.4
0.67
<0.27
0.31
0.41
81.1
90.4
90.7
87.4
403
22
<0.27
20.40
102
0.67
21.64
105
0.27
Cu
3.16
3.20
3.58
±0.23
21.8
22.7
21.9
±2
<0.32
<0.61
2.49
<1.14
621
596
647
621
609
102
<0.61
46.6
93
<0.32
46.3
93
0.52
Mn
1.71
1.60
1.77
±0.06
32
28
28
±3
0.15
1.37
<0.04
0.52
773
717
749
746
860
87
1.37
110
109
0.15
125
125
0.05
Ni
1.39
1.13
1.07
±0.01
54
44
49
±0.7
<1.1
<1.0
<1.0
<1.06
139
125
119
128
82
156
<1.0
29.0
112
<1.1
29.5
114
1.04
Pb
0.67
0.47
1.06
±0.20
24.8
27.0
23.7
±2
<0.33
0.59
0.50
0.49
6,676
6,156
6,377
6,403
6,550
98
0.59
62.5
124
<0.33
59.4
118
0.33
Zn
<1.6
<1.6
1.34
63
59
66
<1.6
9.6
<1.6
<4.3
1,128
1,128
1,128
1,128
4,760
24
9.6
109
99
<1.6
112
110
1.6
199
-------
Appendix D. Emission Inventory
D-l. PSAPCA Point Source Metal and PAH Data 203
D-2. Source Profile Information 211
D-3. Kaiser Emission Data 243
D-4. Simpson Tacoma Kraft Source Test 247
D-5. Area Source Emission Calculations 265
201
-------
Appendix D-l. PSAPCA Point Source Metal and PAH Data
203
-------
Appendix D-l. PSAPCA Tbxic Emission Inventory
REG I SOURCE
METALS
TOXICS INCLUDING
LBS/1988 POLVCYCLIC AROMATIC HYDROCARBONS (PAHs)
LBS/1988
13511 Lianga Pacific Inc.
12593 U.S. Oil & Refining
Chromium
Manganese
Nickel
Toluene
29 Ethjibenzene
17 Formaldehyde
588 POM
Trichloroethane
18,810
190
139
1
300
to
g
16321 Auto Warehousing Co.
10068 Sierra Sandblasting and Painting Co.
ND
10911 Girard Custom Coalers
10076 Puget Sound By-Products Company
14071 Lone Star Northwest
ND
ND
ND
Butoxyethyl Acetate
Ethylbenzene
Mineral Spirits
Naphtha VM&P
Acetone
Butyl Acetate[1690]
Butyl Alcohol[210]
Hexane[429]
Isopropyl Alcohol
Methanol (Methyl Alcohol) [36]
Methyl Ethyl Ketone (Butanone)[160J
Methyl Pentanone (Methyl Isobutyl Ketone) [280]
Naphtha VM&P
Toluene[51]
Xylene[59]
ND
ND
16
8
143
3,959
3,388
4,655
12,927
83,871
5,592
3388
13,414
57,042
8,027
124^83
116,750
ND = No Data
-------
REG# SOURCE
METALS
13461 Kaiser Aluminum
10037
Aluminum Oxide
Fluorides
Nickel
to
o
ON
12048 Reichhold Chemicals
11866 Pennwalt Inorganics
12609 U.S.G. Interiors
12429 Tacoma Boatbuilding Company
ND
ND
Chromium
Lead
LBS/1988
862,000
223,600
4
513
855
TOXICS INCLUDING
POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)
Acenaphthalene
Acenaphthene
Anthracene
B enzo [a] Anthracene
Benzo[a]Pyrene[.0006]
Chrysene
Cyanide Compounds
Fluoranthene
Fluorene
Formaldehyde[.77]
Hydrogen Fluoride[3.4]
Naphthalene[14.0]
Phenanthrene
Phenol[52]
Pyrene
Acetone
Ethanol
Methanol
Chlorine
HCI
ND
Butyl Alcohol [210]
Methanol (Methyl Alcohol) [36]
Methyl Amyl Ketone [560]
Methyl Ethyl Ketone (Butanone) [160.0]
Naphtha
Xylene[59]
LBS/1988
9,120
124,280
1,560
7,380
6,180
12,000
72
61,400
36,200
10
51,000
57,800
114,160
43,760
24.65
48,432
34,409
50,860
74
15
4,010
120
2,005
12429
1,441
4,010
ND = No Data
-------
REG# SOURCE
6330 Tacoma Public Works Sewer Utility
10340 Buffelen Woodworking
1 1820 Continental Lime Inc.
21432 General Metals of Tacoma
O 10016 Domtar Gypsum
10073 Simon Joseph & Sons
16043 Woodworth & Co.
13828 Sound Refining
10074 Tacoma Port Facilities
12230 Pacific N.W. Terminals
METALS
ND
Manganese
ND
ND
ND
ND
ND
Chromium
Manganese
Nickel
ND
Changed from I
TOXICS INCLUDING
LBS/1988 POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)
Dichloroethylene
Tetrachloroethane
Tetrachloroethylene
Trichloroethjlene
21,184 Acetaldehyde
Dioxins
Formaldehyde
Phenol
POM
ND
ND
ND
ND
Butraldehyde
Formaldehyde
4 Formaldehyde
2 Ammonia
71
ND
raining No PAHs
LBS/1988
24
237
6
164
5,084
1
10,168
42,368
85
304
2,537
17
569
12315 Commencement Bay Mill (Simpson)
residual oil to natural gas
(1987)—No metals
ND
ND
ND = No Data
-------
to
o
oo
REG# SOURCE
11053 Occidental Chemical
123 17 Simpson Tacoma Kraft Co.
10463 Coastcraft, Inc.
1 1974 Puget Sound Plywood
10995 Brandrud - Harmon Division
TOXICS INCLUDING
METALS LBS/1988 POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)
ND Ammonia
Chlorine
Chloroform
Methylene Chloride
Chromium 60 Acetaldehyde[.45]
Manganese 80,200 Chloroform[.043]
Nickel 540 Dioxins[000]
Total Reduced Sulfur Formaldehyde[.77]
(TRS) Compounds 532,600 Phenol[52]
POM (Polycyclic Organic Matter)
ND ND
Manganese 69,000 Acetaldehyde
Dioxin
Formaldehyde
Phenol
POM
Manganese 600 Acetaldehyde
Acetone
Butyl Alcohol
Formaldehyde
Hexane
Isobutyl Acetate
Isopropji Alcohol
Methanol (Methyl Alcohol)
Methyl Ethyl Ketone (Butanone)
Naphtha VM&P
Phenol
POM (Polycyclic Organic Matter)
Toluene
LBS/1988
21,220
1,464
13
601
19,260
356,000
3
38,780
160,400
320
16,500
26
33,128
138,000
276
144
165
165
288
1,307
462
165
165
1
165
1,200
2
3
ND = No Data
-------
REG#
10099
2424
12424
12716
21085
12444
11583
14242
SOURCE
Yale Industry
(American Manufacturing)
Monitor Inc.
Atlas Foundry & Machine
West Coast Door
Tacoma Public Works
(asphalt production)
TAM Engineering Corp.
NaUey's
American Reinforced Plastics
TOXICS INCLUDING
METALS LBS/1988 POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)
ND Butyl Alcohol
Ethoxyethji Acetate
Methyl Ethyl Ketone
Toluene
Xjiene
Nickel 2 Hexane
Methyl Ethyl Ketone
Toluene
ND ND
Manganese 5,000 Acetaldehyde
Formaldehyde
Phenol
POM
Butraldehyde
Formaldehyde
Isobutyraldehyde
Naphtha
Toluene
Xylene
ND ND
ND Acetone
Methyl Ethyl Ketone
Styrene
LBS/1988
196
1398
921
905
823
3,515
2,589
2,126
1^00
2,400
10,000
20
20
168
11
49,738
943
481
21,780
2,680
54,485
ND = No Data
-------
Appendix D-2. Source Profile Information
211
-------
Dr. Ted Harrison
WYNDSoft, Inc.
6333 77th Avenue SE
Mercer Island, Washington 98040
September 13, 1989 Re: Tacoma Tideflats Source
Profiles
Dear Ted,
Enclosed is the information that you and Naydene requested
1. A listing (Table 1) of the Tacoma Tideflats sources
incorporating notes provided by PSAPCA on the nature of
the emissions from each of the source types. The
column notes the associated source emission profile.
- The PACS profiles were developed during the
Portland Aerosol Characterization Study. The
PACS number (e.g. PACS 3173) refers to Table
3.1.7.3 of J.G Watson^Ph.D. Thesis Chemical
Element Balance Receptor Model Methodology For
Assessing the Sources of Fine and Total
Suspended Particulate Matter in Portland.
Oregon, Oregon Graduate Center, February,
1979.
- The SCAQMD profiles were obtained from the
South Coast Air Quality Management District
Source Profile Project. SCAQMD Profile 51
refers to source number 51 in the project's
listing of PM^o emission profiles as
referenced in the South Coast Air Quality -
Management District Source Library, NBA, Inc.
November, 1987.
- The numbered profiles were obtained from
either the US EPA Receptor Model Source
Composition Library (US EPA 450/4-85-002,
November, 1984) or the soon to be released
Pacific Northwest Source Profile Library.
Oregon Department of Environmental Quality,
September, 1989.
2. Table 2 is a listing of the chemical species included in
the PNW Source Profiles. You will need this listing to decode the
organic compound abbreviations found in the hardcopy and ASCII
profiles. Note that PAH compounds found in the source profiles are
footnoted.
3. Hardcopy listings of each of the profiles found in the
ASCII file. I have included these in the event that you wish to
use them in project reports.
-------
4. A floppy disk (DOS 3.3 format, DD/DS 360Kb) containing the
profiles in ASCII format (PROFILES.ASC). The first field contains
a profile number (1 to 19) followed by the weight percent of the
PM10 faction for the chemical specie found in the third field. The
fourth field is the source profile number from which the data was
taken.
I hope this information is helpful to you. Please advise if
you need further clarification or assistance.
Sincerely,
John Core
11520 SW Clifford Street
Beaverton, Oregon 97005
Enclosures
cc: Naydene Maykut, Puget Sound Water Quality Authority
-------
Table 1
TACOMA TIDEFLATS SOURCE PROFILES
NO. FACILITY SOURCE
N/A = NOT AVAILABLE
COMMENTS
15 LONE STAR NORTHWEST
16
17 WEST COAST DOOR
18
19 CONTINENTAL LIME
20 US OIL & REFINING
21
22 CONTINENTAL GRAIN
CEMENT FUGITIVES
CEMENT KILN
CYCLONES
HOGGED FUEL BOILER
LIME KILN
OIL-FIRED BOILER
ASPHALT HEATERS
GRAIN FUGITIVES
KILN NO LONGER IN USE
RAW WOOD FIBER
NO PLY TRIM IN FUEL
RESIDUAL OIL FIRED
DISTILLATE OIL
23 GENERAL METALS OF TACOMA SCRAP HANDLING FUGITIVES
24 COASTCRAFT INC
25 DOMTAR GYPSUM
26 USG INTERIORS
27
WOOD CYCLONES
GYPSUM FUGITIVES
CURING OVENS
3 CUPOLAS
RAW WOOD FIBER
PROFILE NO.
1 SIMPSON TACOMA KRAFT CO.
2
3
4
5 KAISER ALUMINUM
6
7 WOODWORTH & CO.
8
9 BUFFELEN WOODWORKING
10
11
12 PUGET SOUND PLYWOOD
13
14
KRAFT RECOVERY
LIME KILN
SMELT TANK
HOGGED FUEL BOILER
POTLINES
ALUMINA HANDLING
ASPHALT BATCH PLANT
ROCK CRUSHING
VENEER DRIER
HOGGED FUEL BOILER
CYCLONES
3 VENEER DRIERS
HOGGED FUEL BOILER
CYCLONES
NO PLY TRIM IN FUEL
SOURCE NOT OPERATING
NO PLY TRIM IN FUEL
RAW WOOD FIBER
STEAM HEATED
BURNING PLY TRIM
RAW WOOD FIBER
23104
23202
N/A
12706
29102
PACS 3173
PACS 3112
PACS 3111
12706
22203
22302
12707
22203
28 TACOMA PORT FACILITY ALUMINA FUGITIVES
29 COMMENCEMENT BAY MILL WOOD CYCLONE
30 CANYON SAND & GRAVEL SOIL FUGITIVES
31 SCOFIELD GEORGE CO CEMENT PRODUCT.
CASTI RON CUPOLA PROFILE
RAW WOOD FIBER
CEMENT FUGITIVES
32 SOUND REFINING
33
BOILERS-DISTILATE OIL
BOILERS-RESIDUAL OIL
SCAQMD 51
22203
12706
23202
13502
PACS 3132
21401
PACS 3193
22203
27601
N/A
28202
PACS 3173
22203
41302
SCAQMD 51
PACS 3132
13502
215
-------
TACOMA TIDEFLATS SOURCE PROFILES
NO. FACILITY SOURCE
N/A = NOT AVAILABLE
COMMENTS
PROFILE NO.
34 CANYON READY MIX
35 PACIFIC INTER'L PIPE
36 KAISER ALUMINUM & CHEM.
37 LIANGA PACIFIC
38
39 OCCIDENTAL CHEM.
40 HARMON DIVISION
41 PACIFIC NW TERMINALS
42 TACOMA PUBLIC WORKS
43 NALLEYS FOODS
44 TACOMA BOATBUILDING
CONCRETE BATCH PLANT
CEMENT PRODUCTS BAGGING FUGITIVES
ALUMINA FUGITIVES
HOG FUEL BOILER NOT BURNING PLY TRIM
LUMBER PROCESSING WOOD FIBER
H2 FIRED BOILER
WOOD DUST FUGITIVES
OIL BOILERS SOURCE NOT OPERATING
ASPHALT BATCH PLANT
FUEL COMBUSTION NATURAL GAS
SAND BLASTING FUGITIVES
PAINT SPRAY FUGITIVES
SCAQMD 51
SCAQMD 51
PACS 3173
12706
22203
N/A
22203
PACS 3112
PACS 313
N/A
25403
45 SIERRA SANDBLASTING
SAND BLASTING FUGITIVES
N/A
216
-------
Species
Table 2: Chemical Species Codes
Code Species Name Method *
F -
NA+
MG+
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
OC
EC
S04=
N03-
CO3
NH4+
HPO4-
K+
CL -
9 W/S FLORIDE
11 W/S SODIUM
12 W/S MAGNESIUM
13 ALUMINUM
14 SILICON
15 PHOSPHORUS
16 SULFUR
17 CHLORINE
19 POTASSIUM
20 CALCIUM
22 TITANIUM
23 VANADIUM
24 CHROMIUM
25 MANGANESE
26 IRON
27 COBALT
28 NICKEL
29 COPPER
30 ZINC
31 GALLIUM
33 ARSENIC
34 SELENIUM
35 BROMINE
37 RUBIDIUM
38 STRONTIUM
39 YITTRIUM
40 ZIRCONIUM
42 MOLYBDENUM
46 PALADIUM
47 SILVER
48 CADMIUM
49 INDIUM
50 TIN
51 ANTIMONY
56 BARIUM
57 LANTHANUM
80 MERCURY
82 LEAD
201 ORGANIC CARBON
202 ELEMENTAL CARBON
203 W/S SULFATE
204 W/S NITRATE
205 CARBONATE
206 W/S AMMONIUM
207 W/S PHOSPHATE
208 W/S POTASSIUM
209 W/S CHLORIDE
1C
AAS
AAS
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
XRF
TOR
TOR
1C
1C
TOR
AC
1C
AAS
1C
Pacific Northwest Source Profile Library Appendix
217
Pag
-------
Species
Table 1: Specie Codes, Continued
Code Species Name Method *
FLOR
CARB
PHEN
ANTH
ACRI
DIBE
FLUO
PYRE
BECP
CHRY
RETE
BENB
BEBF
BEEP
BAP
PERY
INDE
BEGP
DIAA
TETR
PENT
HEXA
KEPT
OCTA
NONA
TRIA
1761 FLUORENE **
1671 CARBAZOLE
1781 PHENANTHRENE **
1782 ANTHRACENE **
1791 ACRIDINE
1841 DIBENZOTHIOPHENE
2021 FLUORANTHENE **
2022 PYRENE **
2281 BENZO(C) PHENANTHRENE
2282 CHRYSENE **
2341 RETENE
2342 BENZO(B)NAPTHOL(1,2 D)
2521 BENZO(B+K) FLUORANTHENE **
2522 BENZO(E) PYRENE **
2523 BENZO (A) PYRENE **
2524 PERYLENE
2761 INDENO (1,2, 3 -C,D) PYRENE **
2762 BENZO (GHI) PERYLENE
2781 DIBENZf A, H) ANTHRACENE **
3381 TETRACOSANE
3521 PENTACOSANE
3661 HEXACOSANE
3801 HEPTACOSANE
3941 OCTACOSANE
4081 NONACOSANE
4221 TRIACOSANE
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
CG/MS
* Note: AC = Automated Colorimetry
AAS = Atomic Absorption Spectroscopy
XRF = X-ray fluorescence
1C = Ion Chromatography
GC/MS = Thermal Desorption Gas Chromatography/
Mass Spectroscopy
W/S = Water Soluble
Organics
** = PAH Compounds
Tetracosane = C
24
n-
Pentacosane = C25 n-
Hexacosane = C26 n-
n-
Heptacosane =
Octacosane = C28 n
Nonacosane = C29 n
Triacosane = C30 n
alkanes
alkanes
alkanes
alkanes
alkanes
alkanes
alkanes
Pacific Northwest Source Profile Library Appendix
Page 7
218
-------
SOURCE: Distillate Oil Furnace Profile:PACS 3132
DESCRIPTION: Portland Distillate Oil Furnace profile from PACS.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F -
CL -
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.0000 +-
NM +-
1.0000 +-
NM +-
13.2000 +-
NM +-
0.3200 +-
0.0000 +-
NM +-
18.0000 +-
17.8000 +-
NM +-
0.3100 +-
0.2700 +-
NM +-
6.9300 +-
1.2000 +-
0.0180 +-
0.5000 +-
0.0000 +-
0.0050 «•-
0.0000 +-
0.0140 +-
0.1200 +-
NM +-
0.0090 +-
0.1700 +-
0.0290 +-
NM +-
NM +-
NM +-
0.0260 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +•
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.5400 +-
0.2000
NR
0.5000
NR
8.7000
NR
0.2300
2.0000
NR
5.6600
22.9000
NR
0.2100
0.3200
NR
2.6200
0.9000
0.0130
0.5500
0.4000
0.0810
0.0500
0.0100
0.1100
NR
0.0050
0.0590
0.0190
NR
NR
NR
0.0280
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.5100
NM +-
NM +-
NR +-
NM +-
NR +-
NM +-
NR +-
0.6900 +-
NM +-
9.4000 +-
7.6000 +-
NM +-
0.5900 +-
0.2900 +-
NM +-
NR «•-
1.6000 +-
NR +-
0.5000 +-
NR +-
NR +-
NR +-
0.0130 +-
0.2300 +-
NM +-
NR +-
0.1100 +-
0.0000 +-
NM +-
NM +-
NM +-
0.0100 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM *-
NM +-
NM +-
NM +-
NM +-
0.0500 +-
NR
NR
NR
NR
NR
NR
NR
1.1000
NR
6.7000
5.1000
NR
0.5900
0.3800
NR
NR
0.8300
NR
0.3200
NR
NR
NR
0.0200
0.2100
NR
NR
0.0430
0.0050
NR
NR
NR
0.0100
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0500
0.0000 +-
NM +-
0.6100 +-
NM +-
8.0520 +-
NM +-
0.1952 +-
0.2691 +-
NM +-
14.6460 +-
13.8220 +-
NM +-
0.4192 +-
0.2778 +-
NM +•
4.2273 +-
1.3560 +-
0.0110 +-
0.5000 +-
0.0000 +-
0.0031 +-
0.0000 +-
0.0136 +-
0.1629 +-
NM +-
0.0055 +-
0.1466 +-
0.0177 +-
NM -t-
NM +-
NM +-
0.0198 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.3489 +-
0.1220
NR
0.3050
NR
5.3070
NR
0.1403
1.6490
NR
6.0656
15.9580
NR
0.3582
0.3434
NR
1.5982
0.8727
0.0079
0.4603
0.2440
0.0494
0.0305
0.0139
0.1490
NR
0.0031
0.0528
0.0135
NR
NR
NR
0.0210
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.3306
61 +- 26 % Fine; 41 +- 23 X Coarse fraction
NM = Not Measured; NR = Not Reported
219'
-------
SOURCE: Natural Gas Fired Boiler
Profile: PACS 313
DESCRIPTION: Portland boiler profile measured during PACS.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F
CL
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
s
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.2000 +-
NM +-
2.3000 +-
NM + -
5.2000 +-
NM +-
1.8400 +-
1.0800 +-
NM +-
NM +-
NM +-
NM +-
0.1400 +-
0.1200 +-
NM +-
0.4500 +-
2.3000 +-
0.3300 +-
0.5400 +-
0.0180 +-
0.0460 +-
NR +-
0.0440 +-
0.2100 +-
NM +-
0.0820 +-
0.0220 +-
0.2500 +-
NM +-
NM +-
NM +-
0.0130 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM + -
NM +-
NM + -
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NR +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0100 +-
NM +-
0.5000 +-
NM +-
0.5000 H"
NM +-
0.0500 +-
0.0700 +-
NM +-
NM +-
NM +-
NM +-
0.3000 +-
0.3500 +-
NM +-
NR +-
2.2000 +-
1.5000 +-
0.4500 +-
0.1000 +-
0.0180 +-
NR +-
0.0170 +-
0.0430 +-
NM +-
0.0420 +-
0.1170 +-
NR +-
NM +-
NM +-
NM +-
0.0280 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NR +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.1620 +-
NM +-
1.9400 +-
NM +-
4.2600 +-
NM +-
1.4820 +-
0.8780 +-
NM +-
NM +-
NM +-
NM +-
0.1720 +-
0.1660 +-
NM +-
0.3600 +-
2.2800 +-
0.5640 +-
0.5220 +-
0.0344 +-
0.0404 +-
0.0000 +-
0.0386 +-
0.1766 +-
NM +-
0.0740 +-
0.0410 +-
0.2000 +-
NM +-
NM +-
NM +-
0.0160 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
80 7, Fine; 20 % Coarse fraction
NM = Not Measured; NR Not Reported
220
-------
SOURCE: Rock Crusher Profile: PACS 3111
DESCRIPTION: Portland Rock Crusher profile measured during PACS.
SPECIES FINE +• UNCERT COARSE «•- UNCERT PM-10 +- UNCERT
F -
CL -
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.0100 +-
NM +-
0.4100 +-
NM +-
0.0500 +-
NM +-
1.9500 +-
1.4300 +-
NM +-
NM +-
NM +-
NM + -
8.0700 +-
29.9400 +-
NM +-
0.0660 +-
0.0100 +-
1.4600 +-
3.3700 +-
0.5600 +-
0.0146 +-
0.0164 +-
0.0810 +-
4.5900 +-
NM +-
0.0039 +-
0.0530 +-
0.0102 +-
NM +-
NM +-
NM +-
0.0038 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM + -
NM +-
NM +-
NM +-
NM +-
NM *-
NM +-
0.0061 +-
0.0100
NR
0.2300
NR
0.0500
NR
0.3200
0.1460
NR
NR
NR
NR
0.3500
0.9700
NR
0.0220
0.0100
0.7400
0.4200
0.0450
0.0022
0.0015
0.0047
0.4700
NR
0.0004
0.0790
0.0033
NR
NR
NR
0.0036
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0065
0.0100 +-
NM +-
0.1000 +-
NM +-
0.0500 +-
NM +-
1.1200 +-
0.8000 +-
NM +-
NM +-
NM +-
NM +•-
7.9900 +-
32.7000 +-
NM +-
0.0610 +-
0.0100 +-
0.9400 +-
2.7200 +-
0.4900 +-
0.0120 +-
0.0110 +-
0.2900 +-
3.7900 +-
NM +-
0.0037 +-
0.0065 +-
0.0061 +-
NM +-
NM +-
NM +-
0.0100 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0032 +-
0.0100
NR
0.1000
NR
0.0500
NR
0.4500
0.3000
NR
NR
NR
NR
1 .3000
1.4100
NR
0.0021
0.0100
0.1400
0.2700
0.0760
0.0044
0.0031
0.3600
0.4700
NR
0.0016
0.0022
0.0013
NR
NR
NR
0.0100
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0020
0.0105 +-
NM +-
0.2507 +-
NM +-
0.0525 +-
NM +-
1.5661 +-
1.1361 +-
NM +-
NM +-
NM +-
NM +-
8.4271 +-
33.0378 +-
NM +-
0.0664 +-
0.0105 +-
1.2314 +-
3.1615 +-
0.5474 +-
0.0138 +-
0.0141 +-
0.2063 +-
4.3555 +-
NM +-
0.0040 +-
0.0287 +-
0.0083 +-
NM +-
NM +-
NM +-
0.0076 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0047 +-
0.0105
NR
0.1661
NR
0.0525
NR
0.4114
0.2426
NR
NR
NR
NR
0.9185
1.2737
NR
0.0116
0.0105
0.4290
0.3540
0.0652
0.0036
0.0025
0.2110
0.4935
NR
0.0011
0.0384
0.0023
NR
NR
NR
0.0075
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0042
47 +- 11.2 % Fine; 58.2 *• 5.2 X Coarse fraction
NM = Not Measured; NR = Not Reported
221
-------
SOURCE: Asphalt Batch Plant Profile:PACS 3112
DESCRIPTION: Portland Asphalt Batch Plant profile measured during PACS.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F
CL -
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.0100 +-
NM +-
0.1000 +-
NM +-
0.1000 +-
NM +-
1.4900 +-
1.6800 +-
NM +-
1.9900 + -
0.8400 +-
NM +-
8.6600 +-
27.1300 +-
NM +-
0.2200 +-
0.0100 +-
1.1400 +-
2.8600 +-
0.8600 +-
0.0210 +-
0.0320 +-
0.2000 +-
7.0400 +-
NM +-
0.0069 +-
0.0148 +-
0.0152 +-
NM +-
NM +-
NM +-
0.0080 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0100 +-
0.0100
NR
0.1000
NR
0.1000
NR
0.0870
0.2100
NR
1.0300
0.4500
NR
0.4500
1.0800
NR
0.1700
0.0100
0.0360
0.2500
0.2600
0.0003
0.0032
0.1400
0.3200
NR
0.0007
0.0011
0.0027
NR
NR
NR
0.0008
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0100
0.0100 +-
NM +-
0.1000 +-
NM +-
0.3700 +-
NM +-
1.8000 +-
1.3300 +-
NM +-
5.0000 +-
1.0400 +-
NM +-
6.3900 +-
24.6500 +-
NM •»•-
NM +-
0.0100 +-
0.5700 +-
2.3200 +-
0.8000 +-
0.0350 +-
0.1150 +-
0.1800 +-
3.9500 +-
NM +-
0.0110 +-
0.1700 +-
0.4200 +-
NM +-
NM +-
NM +-
0.0200 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0200 +-
0.0100
NR
0.1000
NR
0.5500
NR
1.5200
0.8900
NR
1.0000
0.2100
NR
1.2300
3.5100
NR
NR
0.0100
0.0970
0.3900
0.8400
0.0330
0.0115
0.1600
0.2800
NR
0.0011
0.1100
0.4400
NR
NR
NR
0.0020
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0200
0.0100 +-
NM +-
0.1000 +-
NM +-
0.1189 +-
NM +-
1.5117 +-
1.6555 +-
NM +-
NM +-
NM +-
NM +-
8.5011 +-
26.9564 +-
NM +-
0.2046 +-
0.0100 +-
1.1001 +-
2.8222 +-
0.8558 +-
0.0220 +-
0.0378 +-
0.1986 +-
6.8237 +-
NM +-
0.0072 +-
0.0257 +-
0.0435 +-
NM +-
NM +-
NM +-
0.0088 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0107 +-
0.0100
NR
0.1000
NR
0.1315
NR
0.1873
0.2576
NR
NR
NR
NR
0.5046
1.2501
NR
0.1581
0.0100
0.0403
0.2598
0.3006
0.0026
0.0038
0.1414
0.3172
NR
0.0007
0.0087
0.0333
NR
NR
NR
0.0009
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0107
93 +- 9 % Fine; 8.4 +- 8.5 % Coarse fraction
NM = Not Measured; NR = Not Reported
222
-------
SOURCE: Alumina Ore Fugitives ProfilerPACS 3173
DESCRIPTION: Portland Alumina Fugitives profile measured during PACS.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F
CL
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.1200 +-
NM +-
0.5900 *•
NM +-
0.4300 +-
NM +-
0.2400 +-
0.1350 +-
NM +-
NM +-
NM +-
NM +-
36.1000 +-
0.2300 +-
NM +-
0.0610 +-
0.3600 +-
0.0680 +-
0.4800 +-
0.0150 +-
0.0025 +-
0.0165 +-
0.0480 +-
0.3100 +-
NM +-
0.0180 +-
0.0200 +-
0.0120 +-
NM +-
NM +-
NM +-
0.0010 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +•
NM +-
NM «•-
NM +-
0.0500 +-
0.0330
NR
0.2100
NR
0.0990
NR
0.1300
0.0210
NR
NR
NR
NR
6.0000
0.0640
NR
0.0061
0.0420
0.0280
0.1800
0.0057
0.0008
0.0210
0.0120
0.1400
NR
0.0140
0.0020
0.0043
NR
NR
NR
0.0010
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0500
0.0000 +-
NM +-
0.0000 +-
NM +-
1.0000 +-
NM +-
1.5000 +-
0.0000 +-
NM +-
NM +-
NM +-
NM +-
2.2900 +-
0.2100 +-
NM +-
0.0000 +-
0.8500 +-
0.0000 +-
0.2800 +-
0.0130 +-
0.0015 +-
NR +-
0.0540 +-
0.0360 +-
NM +-
NR +-
0.0760 +-
NR +-
NM +-
NM +-
NM +-
0.0200 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NR +-
0.5000
NR
2.0000
NR
0.2500
NR
0.7000
1.0000
NR
NR
NR
NR
1.5800
0.0490
NR
0.0100
0.5000
0.0120
0.1200
0.0110
0.0007
NR
0.0590
0.0440
NR
NR
0.0280
NR
NR
NR
NR
0.0140
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0996 +-
NM +-
0.4897 +-
NM +-
0.5269 +-
NM +-
0.4542 +-
0.1121 +-
NM +-
NM +-
NM +-
NM +-
30.3523 +-
0.2266 +-
NM +-
0.0506 +-
0.4433 +-
0.0564 +-
0.4460 +-
0.0147 +-
0.0023 +-
0.0137 +-
0.0490 +-
0.2634 +-
NM +-
0.0149 +-
0.0295 +-
0.0100 +-
NM +-
NM +-
NM +-
0.0042 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0415 +-
0.1124
NR
0.5143
NR
0.1247
NR
0.2269
0.1874
NR
NR
NR
NR
5.2486
0.0615
NR
0.0068
0.1199
0.0253
0.1698
0.0066
0.0008
0.0174
0.0200
0.1237
NR
0.0116
.0.0064
0.0036
NR
NR
NR
0.0032
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0415
83 +- 5 % Fine; 17 +- 4 % Coarse fraction
NM = Not Measured; NR = Not Reported
223
-------
SOURCE: Scrap Metal (Car Shredder) Fugitives Profile:PACS 3193
DESCRIPTION: Portland Car Shredder Fugitives profile from PACS.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F
CL
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
Ni
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.0000 +-
NM +-
0.0000 +-
NM +-
0.2900 +-
NM +-
0.1800 +-
0.0000 +-
NM +-
7.7000 + -
0.6000 +-
NM +-
0.4700 +-
0.8700 +-
NM + -
0.4700 + -
0.6800 +-
0.2700 +-
0.4800 +-
0.0000 +-
0.0000 +-
0.0400 +-
0.0880 +-
5.7600 +-
NM +-
0.0310 +-
0.1000 +-
2.1000 +-
NM +-
NM +-
NM +-
0.4900 +-
NM +-
NM +-.
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.4900 +-
0.1000
NR
0.3000
NR
0.0200
NR
0.2400
0.2000
NR
3.3000
0.0600
NR
0.0640
0.1900
NR
0.0850
0.4600
0.1800
0.0570
0.0500
0.0010
0.0007
0.0450
0.9800
NR
0.0070
0.0140
0.1400
NR
NR
NR
0.3500
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0210
NM +-
NM +-
NR +-
NM +-
NR +-
NM +-
NR +-
NR +-
NM +-
31.0000 +-
4.0000 +-
NM +-
1.9000 +-
NR +-
NM +-
NR +-
8.7000 +-
NR +-
5.5000 +-
NR +-
NR +-
NR +-
0.0780 +-
3.7000 +-
NM +-
NR +-
0.9900 +-
0.8700 +-
NM +-
NM +-
NM +-
8.4000 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.0500 +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
2.8000
4.2000
NR
0.3500
NR
NR
NR
0.7900
NR
0.7100
NR
NR
NR
0.1000
1.1000
NR
NR
0.3000
0.1200
NR
NR
NR
1.1000
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0500
0.0000 +-
NM +-
0.0000 +-
NM +-
0.2900 +-
NM +-
0.1800 +-
0.0000 +-
NM +-
7.7000 +-
0.6000 +-
NM +-
0.4700 +-
0.8700 +-
NM +-
0.4700 +-
0.6800 +-
0.2700 +-
0.4800 +-
0.0000 +-
0.0000 +-
0.0400 +-
0.0880 +-
5.7600 +-
NM +-
0.0310 +-
0.1000 +-
2.1000 +-
NM +-
NM +-
NM +-
0.4900 +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
NM +-
0.4900 +-
0.1000
NR
0.3000
NR
0.0200
NR
0.2400
0.2000
NR
3.3000
0.0600
NR
0.0640
0.1900
NR
0.0850
0.4600
0.1800
0.0570
0.0500
0.0010
0.0007
0.0450
0.9800
NR
0.0070
0.0140
0.1400
NR
NR
NR
0.3500
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.0210
94 +- 1 % Fine; 6 +- 1 % Coarse fraction
NM Not Measured; NR = Not Reported
224
-------
Pacific Northwest Source Profile Project
LOCATION:Eugene, OR
SOURCE: Ueyerhauser Recovery Furnace
Profile: 23104
DESCRIPTION: Fine is average of: DTS155/DQS155, DTS157/DQS157, and
DTS/DQS159. Coarse is average of: DTS156/DQS156, DTS158/DOS158. and
DTS160/DQS160.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F -
CL -
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
HN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.000000 +-
3.058800 +-
0.351000 +-
0.000000 +-
54.844800 +-
1.060667 +-
25.832300 +-
0.018400 +-
2.490733 +-
5.233367 +-
1.530067 +-
0.010333 +•
0.092333 +-
0.303300 +-
0.000000 +-
12.977200 +-
3.058800 +-
2.490733 +-
0.620867 +-
0.004200 +-
0.003200 +-
0.003167 +-
0.002767 +-
0.067033 +-
0.001267 +-
0.000600 +-
0.005800 +-
0.014233 +-
0.000000 +-
0.000633 +-
0.000000'+-
0.072167 +-
0.006467 +-
0.003300 +-
0.000600 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.003567 +-
0.000000 +-
0.000000 +-
0.001500 + •
0.000000 +-
0.000000 +-
0.000800 +-
0.000000 +-
0.048464
0.411585
0.063704
0.130730
15.821370
0.828752
7.790816
0.026022
0.362314
2.428806
1.185522
0.044934
0.130579
0.162140
0.432088
2.597360
0.406338
0.362314
0.387315
0.045847
0.018969
0.004994
0.003353
0.034289
0.002315
0.001782
0.006969
0.009165
0.007204
0.005402
0.002902
0.047153
0.001618
0.002540
0.004150
0.005359
0.009429
0.017644
0.020887
0.022970
0.026917
0.036513
0.040224
0.144875
0.162762
0.010403
0.009046
0.000000 +-
6.760267 +-
0.795233 +-
0.000000 +-
38.162633 +-
1.145267 +-
29.314300 +-
0.049267 +-
2.462333 +-
18.440967 +-
8.281600 +-
0.215600 +-
0.313100 +-
0.009267 +-
0.000000 +-
12.494567 +-
2.976033 +-
2.462333 +-
0.000000 +-
0.003333 +-
0.008933 +-
0.000000 +-
0.004233 +-
0.016367 +-
0.001500 +-
0.000000 +-
0.001667 +-
0.001867 +-
0.003367 +-
0.002100 +-
0.000300 +-
0.009433 +-
0.001933 +-
0.001200 +-
0.002567 +-
0.000000 +-
0.011900 +-
0.000000 +-
0.000367 +-
0.003367 +•
0.000000 +-
0.016700 +-
0.025500 +-
0.065900 +-
0.000000 +•
0.003733 +-
0.000833 +-
0.372691
7.355533
0.463202
1.005525
12.806683
1.067551
14.137521
0.134780
0.630056
15.439686
9.143360
0.349680
1.123697
0.460534
2.067237
5.658048
0.479908
0.383176
0.109993
0.344772
0.142583
0.036619
0.026047
0.016570
0.016115
0.013040
0.010957
0.015159
0.054107
0.039510
0.021540
0.013341
0.016315
0.019951
0.030218
0.039469
0.069788
0.131193
0.156354
0.171136
0.201755
0.274567
0.301832
1.091712
1.226630
0.076571
0.066818
0.000000 +-
4.625533 +-
0.420333 +-
0.000000 +-
51.036300 +-
1.071800 +-
25.968300 +-
0.024100 +-
2.484233 +-
7.168667 +-
2.636567 +-
0.036767 +-
0.121833 +-
0.253700 +-
0.000000 +-
12.931933 +-
3.039900 +-
2.484233 +-
0.516433 +-
0.004167 +-
0.004033 +-
0.002700 +-
0.003133 +-
0.058800 +-
0.001367 •»•-
0.000500 +-
0.005267 +-
0.012300 +-
0.000567 +-
0.000933 +-
0.000033 +•
0.060967 +-
0.005667 +-
0.002967 +-
0.000867 +-
0.000000 +-
0.001867 +-
0.000000 +-
0.000067 +-
0.003400 +-
0.000000 +-
0.002333 +-
0.006233 +-
0.013967 +-
0.000000 *-
0.001267 +-
0.000167 +-
0.069884
2.659251
0.088022
0.188518
11.513205
0.876102
3.773371
0.034083
0.353433
3.813594
1.707939
0.064893
0.175410
0.147245
0.502098
3.213574
0.417519
0.353433
0.341021
0.065301
0.026979
0.006960
0.004862
0.031564
0.003091
0.002513
0.006219
0.007874
0.010250
0.007589
0.004097
0.036956
0.002891
0.003909
0.005835
0.007564
0.013342
0.025033
0.029666
0.032553
0.038285
0.051975
0.057262
0.206702
0.232129
0.014669
0.012791
225
-------
SOURCE: Ueyerhauser Recovery Furnace
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +-
FLOR
OIBE
PHEN
ANTH
ACRI
CARS
FLUO
PYRE
RETE
BEMB
BECP
CHRY
BE8F
BEEP
BAP
PERY
INDE
DIAA
BEGP
TETR
PENT
HEXA
HEPT
OCTA
NONA
TRIA
0.000044 +-
0.000124 +-
0.000505 +-
0.000500 +-
0.000402 +-
0.000079 + -
0.000315 +-
0.000465 +-
0.002387 +-
0.000407 +-
0.000079 +-
0.000285 +-
0.000079 +-
0.000084 +-
0.000079 +-
0.000079 +-
0.000079 + -
0.000079 «•-
0.000079 +-
0.003450 +-
0.005300 +•
0.002500 +-
0.002700 +-
0.001650 +-
0.001250 +-
0.001137 +-
0.000015 +-
0.000077 +-
0.000168 +-
0.000178 +-
0.000318 +-
0.000080 +-
0.000123 *-
0.000185 +-
0.002313 +-
0.000333 *-
0.000080 +-
0.000095 +-
0.000080 +-
0.000057 *-
0.000080 +-
0.000080 +-
0.000080 +-
0.000080 +-
0.000080 +-
0.001165 +-
0.001811 +•
0.000871 +-
0.000911 +-
0.000650 +-
0.000423 +-
0.001063 +-
0.000044 +-
0.000124 *-
0.000505 +-
C. 000500 +-
0.000402 +-
0.000079 +-
0.000315 +-
0.000465 *-
0.002387 +-
0.000407 +-
0.000079 +-
0.000285 +-
0.000079 +-
0.000084 «•-
0.000079 +-
0.000079 +-
0.000079 +-
0.000079 +-
0.000079 +-
0.003450 +-
0.005300 +-
0.002500 +-
0.002700 +-
0.001650 +-
0.001250 +-
0.001137 +-
UNCERT
0.000015
0.000077
0.000168
0.000178
0.000318
0.000080
0.000123
0.000185
0.002313
0.000333
0.000080
0.000095
0.000080
0.000057
0.000080
0.000080
0.000080
0.000080
0.000080
0.001165
0.001811
0.000871
0.000911
0.000650
0.000423
0.001063
PM-10 fraction assumed to have same composition as fine fraction.
226
-------
13-Jun-85
SOURCE LIBRARY
SPECIES
NUMBER
4
5
9
11
13
14
15
16
17
19
20
22
23
24
25
26
28
29
30
33
34
35
37
38
39
40
42
46
47
48
50
51
56
57
58
80
82
201
202
203
204
SUM< % >
NOTES:
SOURCE:
SCC:
CONTROLS:
SPECIES
NAME
BE
B
F
NA
AL
SI
P
s
CL
K
CA
TI
V
CR
MN
FE
NI
CU
ZN
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
SN
SB
BA
LA
CE
HG
PB
OC
EC
S04
N03
LIME KILN
3-07-001-06
UET SCRUBBER
*********
X BY UT
NA
NA
0.038
36.210
0.064
0.038
0.105
16.520
2.618
1.299
0.342
0.004
0.068
0.011
0.015
0.041
0.032
0.005
0.006
0.003
0.003
0.024
0.006
0.003
0.003
0.012
0.004
0.006
0.027
0.015
0.047
0.019
0.029
0.099
0.118
0.002
0.018
9.280
0.464
48.830
0.092
100.000
OC = ORGANIC CARBON
FINE
<2.5 UM ******
+ • UNC
f • NR
+ • NR
+ - 0.007
+ • 4.000
+ - 0.074
+ - 0.042
* • 0.227
+ - 1.780
+ • 0.282
+ - 0.140
+ • 0.037
+ - 0.003
+ - 0.007
+ • 0.003
+ - 0.003
+ • 0.009
+ • 0.005
+ - 0.004
+ • 0.002
+ - 0.007
+ • 0.002
+ - 0.004
+ - 0.004
+ • 0.005
+ • 0.003
+ • 0.012
t- • 0.009
* • 0.006
+ • 0.020
+ - 0.015
+ • 0.032
* • 0.019
+ • 0.029
+ • 0.107
* - 0.127
+ - 0.004
+ - 0.011
+ • 1.000
+ - 0.500
1- - 8.000
+ - 0.100
: EC = ELEMENTAL
*********
% BY UT
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.000
CARBON : NA =
COARSE
2.5-10UM ******
+- UNC
+ • NR
* - NR
+ - NR
+ - NR
+ - NR
+ • NR
+ - NR
+ • NR
+ • NR
+ - NR
+ • NR
+ • NR
+ - NR
+ - NR
+ • NR
+ - NR
+ • NR
+ • NR
+ - NR
+ - NR
+ • NR
+ - NR
+ - NR
«• • NR
+ - NR
+ • NR
+ • NR
+ • NR
+ - NR
+ - NR
+ - NR
+ - NR
+ • NR
+ - NR
+ - NR
+ • NR
+ • NR
+ - NR
«• - NR
* - NR
+ - NR
NOT ANALYZED : NR
PROFILE: 23202
RANKING: 3324
RATING : B
TSP
********* <30 UM
% BY UT +•
NA + •
NA •»• -
1.296 + •
34.680 + •
0.303 + -
0.200 + -
0.175 + -
16.040 + -
2.630 + •
1.280 + -
0.390 * -
0.004 * -
0.063 + -
0.015 * -
0.022 + •
0.066 + -
0.047 * •
0.006 * -
0.013 + -
0.005 * -
0.005 + •
0.023 * -
0.011 + -
0.009 + -
0.005 + -
0.020 + -
0.033 + •
0.015 + -
0.068 * •
0.026 + -
0.069 + •
0.032 + -
0.049 + -
0.169 + -
0.201 + •
0.004 * •
0.023 + •
10.120 + •
0.576 + -
47.197 + -
0.150 + -
100.000
= NOT REPORTED
******
UNC
.NR
NR
0.240
3.681
0.094
0.056
0.195
1.703
0.326
0.136
0.042
0.003
0.007
0.004
0.004
0.012
0.006
0.004
0.003
0.007
0.003
0.004
0.005
0.006
0.003
0.014
0.019
0.012
0.025
0.018
0.038
0.023
0.035
0.127
0.151
0.005
0.013
1.724
0.481
6.881
0.113
< = LESS THAN DETECTION LIMIT
OTHER NOTES : DATA NORMALIZED TO 100% WITH A 6X CORRECTION FACTOR.REF. 49.
227
-------
Pacific Northwest Source Profile Project
LOCATION: Eugene OR
SOURCE: University of Oregon Hogged Fuel Boiler
Profile: 12706
DESCRIPTION: Fine data are the average of DTS001/DQS041,
DTS005/DQS045, AND DTS007/DOS047. Coarse data are the average of
DTS002/DQS042 and DTS008/DQS048.
SPECIES FINE +- UMCERT COARSE +- UNCERT PM-10 +-
UNCERT
F
CL -
N03-
HP04-
S04=
NH4+
NA+
HG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
HO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.000000 +-
2.538767 +-
0.135333 +-
1.056767 +-
26.355267 +-
0.017833 +-
1 .447967 +-
0.050867 +-
24.208367 +-
2.482767 +-
1.069367 +-
0.183367 +-
0.000000 +-
0.150533 +-
0.000000 +-
8.994500 +-
3.702900 +-
22.608733 +-
0.440767 +-
0.018867 +-
0.008700 +-
0.025000 +-
0.198900 +-
0.667633 +-
0.001967 +-
0.003767 +-
0.140967 +-
1.490000 +-
0.000000 +-
0.049367 +-
0.003000 +-
0.087367 +-
0.077667 +-
0.009067 +-
0.002067 +•
0.001533 +-
0.020067 +-
0.000800 +-
0.000500 +-
0.000633 +-
0.000200 +-
0.016133 +-
0.005400 +-
0.029333 +-
0.000000 +-
0.000900 +•
0.135233 +-
0.027223
0.190146
0.045213
0.259079
4.394277
0.016370
0.107523
0.010472
4.149752
3.105409
0.666264
0.149096
0.098166
0.112089
0.319692
3.923554
0.529059
6.971770
0.268270
0.025839
0.010828
0.006982
0.035706
0.103339
0.009048
0.000547
0.015853
0.112277
0.005137
0.007493
0.001208
0.006792
0.005666
0.003472
0.003982
0.002890
0.003943
0.009942
0.011672
0.012852
0.015364
0.010134
0.021902
0.078387
0.088952
0.005637
0.015893
22
0.000000 +-
0.804100 +-
0.116450 +-
1.926200 +-
11.302050 +-
0.000000 +-
0.550500 +-
0.704300 +-
9.326750 +-
10.507100 +-
4.402700 +-
0.487100 +-
4.029400 +-
3.867500 +-
. 1.261550 +-
8.725350 +-
1.499850 +-
13.872850 +-
13.953250 +-
0.146250 +-
0.015350 +-
0.018750 +-
0.704600 +-
2.649600 +-
0.004350 +-
0.004900 +-
0.068350 +-
0.480750 +-
0.000250 +-
0.019150 +-
0.003050 +-
0.021150 +-
0.026350 +-
0.132300 +-
0.001400 +-
0.003200 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.006850 +-
0.000000 +-
0.000500 +-
0.003050 +-
0.303050 +-
0.005900 +-
0.006500 +-
0.039050 +-
8
0.112271
0.256351
0.136082
0.336613
0.876144
0.067402
0.134446
0.066603
0.706126
3.666729
2.750695
0.110958
1.379888
1 .323331
1.687158
3.085293
0.474944
2.932814
2.695422
0.080590
0.047507
0.006055
0.054135
0.200284
0.048902
0.001803
0.007003
0.037900
0.019076
0.019476
0.004302
0.004441
0.005179
0.010806
0.013671
0.013450
0.016530
0.041189
0.048487
0.053379
0.062881
0.063781
0.092940
0.301868
0.369179
0.023661
0.012210
0.000000 +-
2.205500 +-
0.120533 +-
1.165900 +-
23.009400 +-
0.013533 +-
1.294433 +-
0.172400 +-
22.272767 +-
3.458267 +-
1.652267 +-
0.256233 +-
0.768600 +-
0.873300 +-
0.243500 +-
8.386500 +-
3.204133 +-
19.924233 +-
3.059033 +-
0.040300 +-
0.009100 +-
0.023000 +-
0.292900 +-
1.037433 +-
0.002500 +-
0.003967 +-
0.125900 +-
1.292933 +-
0.000067 +-
0.043333 +-
0.002933 +-
0.075900 +-
0.068000 +-
0.033100 +-
0.001900 +-
0.001833 +-
0.015833 +-
0.000800 +-
0.000500 +-
0.002167 +-
0.000133 *-
0.013267 +-
0.005900 +-
0.088233 +-
0.000833 +-
0.001967 +-
0.116367 +-
0.032093
0.313904
0.039467
0.315834
2.886183
0.019255
0.216127
0.100469
5.349521
2.656905
0.786294
0.072746
0.630023
0.757811
0.452682
2.870625
0.225059
3.703046
2.526636
0.029137
0.013518
0.004825
0.107148
0.390319
0.013579
0.000547
0.008083
0.116177
0.005771
0.007241
0.001115
0.015166
0.006388
0.024350
0.004251
0.003758
0.004282
0.011738
0.013857
0.015251
0.018047
0.013585
0.026107
0.084264
0.105397
0.006717
0.011483
-------
Pacific Northwest Source Profile Project
SOURCE: University of Oregon Hogged Fuel Boiler
SPECIES FINE + • UNCERT COARSE *- UNCERT
PH-10
UNCERT
FLOR
DIBE
PHEN
ANTH
ACRI
CARB
TLUO
PYRE
RETE
BENB
BECP
CHRY
BEBF
BEEP
BAP
PERY
INOE
DIAA
.BEGP
TETR
PENT
HEXA
HEPT
OCTA
NONA
TRIA
0.0000*3 *•
0.000043 + •
0.000353 +-
0.000328 +-
0.000053 +-
0.000053 *•
0.000224 f-
0.000648 +-
0.003962 +-
0.000482 +•
0.000053 +-
0.000242 +-
0.000025 +-
0.000096 +-
0.000054 +-
0.000053 +-
0.000048 +-
0.000053 *•
0.000053 +-
0.001770 +-
0.002646 +-
0.002085 *-
0.001502 +-
0.000960 *-
0.000516 +-
0.000644 +-
0.000030 +-
0.000018 *-
0.000168 *-
0.000194 +-
0.000062 +•
0.000062 +-
0.000114 +-
0.000282 +-
0.003107 +-
0.000266 +-
0.000062 +-
0.000188 +•
0.000025 +•
0.000082 +-
0.000058 +-
0.000062 +•
0.000061 +-
0.000062 +-
0.000062 +-
0.001512 +-
0.002599 +•
0.002232 +•
0.001500 +-
0.000768 *-
0.000470 +-
0.000674 +-
0.000043 +-
0.000043 *-
0.000353 +-
0.000328 +-
0.000053 +•
0.000053 +-
0.000224 *-
0.000648 +-
0.003962 +-
0.000482 +-
0.000053 +-
0.000242 +-
0.000025 +-
0.000096 +-
0.000054 +-
0.000053 +-
0.000048 +-
0.000053 +-
0.000053 *-
0.001770 +-
0.002646 *-
0.002085 +•
0.001502 +-
0.000960 +-
0.000516 +-
0.000644 +-
0.000030
0.000018
0.000168
0.000194
0.000062
0.000062
0.000114
0.000282
0.003107
0.000266
0.000062
0.000188
0.000025
0.000082
0.000058
0.000062
0.000061
0.000062
0.000062
0.001512
0.002599
0.002232
0.001500
0.000768
0.000470
0.000674
PH-10 fraction assumed to have same composition as fine fraction.
-229
-------
13-Jun-85
SOURCE LIBRARY
SPECIES
NUMBER
4
5
9
11
12
13
14
15
16
17
19
20
22
23
25
26
27
28
29
30
31
33
34
35
37
38
40
42
46
47
43
49
50
51
56
57
80
82
83
200
201
202
203
204
SUM( % )
SOURCE:
SCC:
CONTROLS:
SPECIES
NAME
BE
B
F
NA
MG
AL
SI
P
S
CL
K
CA
TI
V
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
BI
TC
OC
EC
S04
N03
ALUMINUM 1
3-03-001'
NONE
X BY WT
<
0.190
13.500
14.900
0.055
15.200
0.340
0.030
5.000
0.800
0.527
0.100
0.002
0.015
0.008
0.114
0.002
0.014
0.018
0.007
0.028
0.022
0.003
0.022
0.005
<
<
0.006
<
<
0.003
<
<
0.001
0.001
0.004
<
0.072
0.030
NA
28.200
2.680
17.411
0.690
100.000
(EDUCTION POTLINE
•07
FINE
<2.5 UM ******
+ • UNC
+ - NR
+ • 0.020
+ • 5.900
+ • 1.700
+ • 0.006
+ - 1.700
+ - 0.040
+ • 0.030
+ - 3.800
+ - 0.160
+ - 0.470
+ • 0.140
+ - NR
+ - 0.004
+ • 0.011
* - 0.095
+ • 0.002
* - 0.008
+ - 0.008
+ • 0.001
* - 0.018
+ - 0.014
+ • NR
+ - 0.008
+ • 0.001
+ • NR
* - NR
+ • 0.006
+ - NR
+ - NR
+ - 0.001
+ • NR
+ - NR
+ - 0.003
» - NR
+ • 0.004
+ • NR
+ - 0.026
* - 0.030
+ • NR
5.000
+ 0.320
+ - 9.300
+ 0.130
*********
X BY WT
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.000
COARSE
2.5-10UM ******
+ - UNC
+ - NR
+ • Ntf
+ • NR
+ • NR
+ - NR
+ - NR
+ - NR
+ - NR
+ NR
+ • NR
+ - NR
+ NR
+ • NR
+ • NR
+ NR
+ - NR
+ • NR
+ - NR
+ - NR
* - NR
+ • NR
+ - NR
+ • NR
+ • NR
+ • NR
+ - NR
+ • NR
+ • NR
+ • NR
* - NR
+ • NR
+ • NR
+ • NR
+ - NR
+ • NR
+ - NR
+ • NR
+ • NR
+ • NR
+ • NR
+ • NR
+ • NR
+ • NR
+ - NR
PROFILE:
RANKING:
RATING :
*********
X BY WT
NA
NA
15.454
NA
NA
15.926
0.398
0.042
3.908
0.834
0.358
0.414
0.015
0.073
0.004
0.812
NA
0.288
0.078
0.006
0.050
0.018
0.002
0.016
0.004
0.003
<
0.012
<
<
0.002
<
<
0.001
0.002
0.004
<•
0.053
NA
NA
22.180
15.247
12.764
0.593
89.561
29102
3324
B
TSP
<30 UM ******
+• UNC
+ - NR
+ • NR
+ - 3.387
+ • NR
+ • NR
+ - 1.657
+ • 0.047
+ - 0.019
+ - 2.065
+ - 0.338
* - 0.254
+ • 0.083
* - 0.002
+ - 0.013
+ 0.006
+ - 0.281
+ - NR
+ - 0.078
+ • 0.011
+ - 0.003
+ • 0.014
+ • 0.008
+ • NR
+ - 0.004
•»• • NR
+ - NR
+ - NR
+ - 0.005
+ • NR
* - NR
+ - 0.001
•»• - NR
+ - NR
+ - 0.002
+ - 0.001
+ • 0.003
+ • NR
+ • 0.014
+ ' NR
* - NR
+ - 3.032
+ 2.765
+ - 5.043
+ - 0.086
NOTES: OC = ORGANIC CARBON : EC = ELEMENTAL CARBON : NA = NOT ANALYZED
< = LESS THAN DETECTION LIMIT
OTHER NOTES : REF. 49. FINE FRACTION CORRECTED BY 8% TO NORMALIZE TO 100X
NR = NOT REPORTED
230
-------
Pacific Northwest Source Profile Project
LOCATION: Medford.OR
SOURCE: Wood Sander Dust (MedCo)
DESCRIPTI Raw wood dust (NEA49)
Profile: 22203
SPECIES
FINE -i- UNCERT COARSE +- UNCERT PM-10 +- UMCERT
F- +-
CL- +-
N03- +-
HP04- +-
S04= +-
NH4+ +-
NA+ +-
MG+ +-
K+ +-
OC +-
EC +-
C03 +-
AL +•
SI +•
P +-
S +-
CL +-
K +-
CA +-
TI +-
V +-
CR +-
HN +•
FE f-
CO +-
HI +•
CD +-
ZN +-
GA +-
AS +-
SE +-
BR +- '
RB +-
SR *-
Y +-
ZR +-
MO *•
PD +-
AG +-
CD +•
IN +-
SN *-
SB *'
BA +-
LA *-
HG +-
PB +-
+- 0.000000 +-
+- 0.033700 +-
+- 0.000000 +-
+- 0.000000 +-
+- 0.000000 +-
+- 0.163400 +-
+- 0.231500 *-
+- 0.078800 +-
+- 0.107500 +-
+- 36.511900 +-
+- 4.490500 +-
+- 0.000000 *-
+- 0.552500 +-
+- 2.922800 +-
+- 0,016500 +-
+- 0.038500 +-
*- 0.016900 +-
+- 0.188400 +-
+- 0.511700 *-
+- 0.010000 +-
+- 0.000000 +-
*- 0.002600 +-
+- 0.017000 +-
+- 0.312800 +-
+- 0.001700 +-
+- 0.000500 +-
+- 0.018000 +-
+- 0.008400 +-
+- 0.000000 +-
+• 0.000000 +-
+- 0.000700 +-
+- 0.000000 +-
+- 0.001800 +-
*- 0.001500 +-
+- 0.000000 +-
+- 0.000000 +-
+- 0.000000 «•-
+• 0.000000 +-
+- 0.000000 +-
+- 0.000000 +-
+- 0.003400 *•
+• 0.000000 +-
+- 0.016300 +-
*- 0.080400 +-
+- 0.110400 +-
+- 0.000000 +-
+• 0.000000 +-
0.105800
0.070900
0.031100
0.263300
0.064900
0.122900
0.026300
0.012100
0.025500
4.604700
1 .662700
0.171700
0.178000
0.939200
0.026500
0.006100
0.043200
0.016400
0.091200
0.074500
0.030700
0.007400
0.002500
0.023400
0.005900
0.002700
0.002000
0.001600
0.009200
0.008500
0.004600
0.003800
0.004500
0.005400
0.006300
0.008300
0.014200
0.026400
0.032100
0.034500
0.041500
0.055200
0.064100
0.226400
0.259600
0.016100
0.013100
231
-------
Pacific Northwest Source Profile Project
LOCATION: Medford, OR
SOURCE: Boise Cascade Veneer Driers
Profile: 22302
DESCRIPTION: Five steam heated Douglas fir veneer driers
operating at 375 degrees f, with wet scrubber controls.
SPECIES
FINE
UNCERT COARSE +- UNCERT
PM-10
UNCERT
F-
CL-
N03-
HP04-
S04=
NH4+
NA+
HG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.000000 +-
0.005067 +-
0.037100 +-
0.057167 +-
0.017800 +-
0.000000 +-
0.008667 +-
0.002900 + -
0.003533 +-
69.760767 +-
1.832333 +-
0.007567 +-
0.000000 +-
0.015533 +-
0.000000 +-
0.028700 +-
0.017467 +-
0.003200 +-
0.005800 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.001033 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 + -
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000167 +-
0.002967 +-
0.010467 +-
0.000000 +-
0.000000 +-
0.004309 +-
0.009592 +-
0.013471 +-
0.020452 +-
0.007669 +-
0.002593 +-
0.004978 +-
0.001548 +-
0.001702 +-
10.448911 +-
0.405293 +-
0.009389 +-
0.004661 +-
0.003981 +-
0.001619 +-
0.012738 +-
0.006876 +-
0.000572 +-
0.000701 +-
0.004642 +-
0.001941 +-
0.000504 +-
0.000368 «•-
0.000826 +-
0.000199 +-
0.000199 +-
0.000269 +-
0.000298 +-
0.000769 +-
0.000602 +-
0.000335 +-
0.000269 +-
0.000335 +-
0.000368 +-
0.000434 +-
0.000602 +-
0.001065 +-
0.001804 +-
0.002100 +-
0.002276 +-
0.002741 +-
0.003646 +-
0.004080 +-
0.014514 +-
0.016449 +-
0.001134 +-
0.000966 +-
0.000000 +-
0.005067 +-
0.037100 +-
0.057167 +-
0.017800 +-
0.000000 +-
0.008667 +-
0.002900 +-
0.003533 +-
69.760767 +-
1.832333 +-
0.007567 +-
0.000000 +-
0.015533 +-
0.000000 +-
0.028700 +-
0.017467 +-
0.003200 +-
0.005800 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.001033 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +•
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000000 +-
0.000167 +-
0.002967 +-
0.010467 •»•-
0.000000 +-
0.000000 +-
0.004309
0.009592
0.013471
0.020452
0.007669
0.002593
0.004978
0.001548
0.001702
10.448911
0.405293
0.009389
0.004661
0.003981
0.001619
0.012738
0.006876
0.000572
0.000701
0.004642
0.001941
0.000504
0.000368
0.000826
0.000199
0.000199
0.000269
0.000298
0.000769
0.000602
0.000335
0.000269
0.000335
0.000368
0.000434
0.000602
0.001065
0.001804
0.002100
0.002276
0.002741
0.003646
0.004080
0.014514
0.016449
0.001134
0.000966
232
-------
Pacific Northwest Source Profile Project
SOURCE: Boise Cascade Veneer Driers
SPECIES FINE «•- UNCERT COARSE
+- UNCERT PM-10
UNCERT
FLOR
DIBE
PHEN
ANTH
ACRI
CARB
FLAN
PYRE
RETE
BENB
BECP
CHRY
BEBF
BEEP
BAP
PERY
INDE
DIAA
BEGP
TETR
PENT
HEXA
KEPT
OCTA
NONA
TRIA
0.000031 +-
0.000056 +-
0.001022 +-
0.001042 +•
0.000152 +-
0.000152 +-
0.000152 +-
0.001177 +-
0.031075 +-
0.000152 +-
0.000152 +-
0.000448 +-
0.000224 +-
0.000549 +-
0.000602 +•
0.000237 +•
0.000164 +-
0.000152 +-
0.000406 +-
0.000152 +-
0. 007574 .+-
0.000542 +•
0.002572 +-
0.000152 +-
0.000814 +-
0.000152 +-
0.000016 +-
0.000019 +-
0.000339 +-
0.000870 +-
0.000153 +-
0.000153 +-
0.000153 +-
0.000472 +-
0.030943 •*•-
0.000153 +-
0.000153 +-
0.000334 +-
0.000128 +-
0.000416 *-
0.000390 +-
0.000123 +-
0.000128 +-
0.000153 +-
0.000273 +-
0.000153 +-
0.005075 +-
0.000409 +-
0.002440 +-
0.000153 +-
0.000487 +-
0.000153 +•
0.000031 «•-
0.000056 +-
0.001022 +-
0.001042 +-
0.000152 +-
0.000152 +-
0.000152 +-
0.001177 +-
0.031075 +-
0.000152 +-
0.000152 «•-
0.000448 +-
0.000224 +-
0.000549 +-
0.000602 +-
0.000237 +-
0.000164 +-
0.000152 +-
0.000406 +-
0.000152 +-
0.007574 +-
0.000542 +-
0.002572 +-
0.000152 +-
0.000814 +-
0.000152 +-
0.000016
0.000019
0.000339
0.000870
0.000153
0.000153
0.000153
0.000472
0.030943
0.000153
0.000153
0.000334
O.OC0128
0.000416
0.000390
0.000123
0.000128
0.000153
0.000273
0.000153
0.005075
0.000409
0.002440
0.000153
0.000487
0.000153
233
-------
Pacific Northwest Source Profile Project
LOCATION: Hedford, OR
SOURCE: Medco Hogged Fuel Boiler
Profile: 12707
DESCRIPTION: Fine data are the average of DTS041/DOS001,
DTS04F3/DQS003, and DTS045/DQS005. Coarse data are the average of
DTS042/DQS002, DTS044/DQS004, and DTS046/DQS006.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F-
CL-
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
HO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.000000 +-
3.284733 +-
0.624433 +-
0.454733 -I'-
ll. 176567 + -
0.000000 +-
16.437100 +-
0.671933 +-
17.275200 +-
7.180733 +-
0.267200 +-
5.101567 +-
0.126400 +-
0.146033 +-
0.000000 +-
5.126033 +-
3.357933 +-
18.053900 +-
3.322000 +-
0.009933 «•-
0.006267 +-
0.007233 +-
0.695867 +-
0.407833 +•
0.001533 +-
0.002067 +-
0.025733 +-
0.192833 +-
0.000233 +-
0.003933 +-
0.002600 +-
0.015833 +-
0.023400 +-
0.091833 +-
0.000767 +-
0.001100 +-
0.001600 +-
0.001933 +-
0.000000 +-
0.001167 + -
0.000000 +-
0.000000 +-
0.000000 +-
0.189133 +-
0.000000 +-
0.001300 +-
0.140800 +-
0.014961
1.212273
0.351492
0.163050
7.094315
0.009092
2.352067
0.301758
2.047570
3.006824
0.365561
1.577282
0.090500
0.033759
0.167373
0.363292
1.153964
1.509886
0.508107
0.022884
0.009453
0.001135
0.110942
0.029390
0.005484
0.000238
0.001904
0.015080
0.002700
0.022311
0.001417
0.002380
0.001735
0.018433
0.002043
0.003918
0.002863
0.005798
0.006623
0.007288
0.008522
0.011466
0.012432
0.024782
0.049383
0.003231
0.074292
0.000000 +-
1.548700 +-
0.560267 +-
0.956367 +-
20.127767 +-
0.000000 +-
3.333067 +-
0.624367 +-
7.689067 +-
7.180733 +-
3.510567 •*•-
0.345133 +-
0.708633 +-
0.554267 +-
0.001600 +-
4.221433 +-
1.898533 +-
9.786300 +-
3.936567 +-
0.017867 +-
0.005667 +-
0.000000 +-
0.324233 +-
0.199800 +-
0.001000 +-
0.000000 +-
0.007133 +-
0.063333 +-
0.000000 +-
0.004967 +-
0.000000 +-
0.005267 +-
0.006033 +-
0.042433 +-
0.000233 +-
0.000000 +-
0.000000 +-
0.005833 +-
0.010267 +-
0.001433 +-
0.000000 +-
0.013967 +-
0.022233 +-
0.140567 +-
0.076500 +-
0.001100 +-
0.018633 +-
0.162996
0.692214
0.202730
0.446866
10.783830
0.097929
0.995830
0.190620
4.098494
3.006824
3.976357
4.191609
1.130481
0.734880
2.835962
1.519077
0.621496
3.351462
1.442516
0.260608
0.107407
0.016461
0.116274
0.061857
0.065833
0.004770
0.006593
0.038417
0.032608
0.303563
0.007965
0.006856
0.005747
0.009864
0.025076
0.045945
0.032254
0.064717
0.075170
0.081594
0.095730
0.128528
0.141115
0.302087
0.558205
0.037356
0.021652
0.000000 +-
3.162100 +-
0.586433 +-
0.485500 +-
11.342667 +-
0.000000 +-
14.819767 «•-
0.635400 +-
16.564000 +-
7.180733 +-
0.693033 +-
4.468500 +•
0.156233 +-
0.182233 +-
0.000100 ••-
5.024567 +-
3.227600 +-
17.223067 +-
3.335467 +-
0.010267 +-
0.006133 +-
0.006400 +-
0.655167 +-
0.386267 +-
0.001467 +-
0.001867 +-
0.024033 +-
0.180200 +-
0.000200 +-
0.004200 +-
0.002400 +-
0.014867 +-
0.021800 +-
0.086700 +-
0.000700 +-
0.000933 +-
0.001367 +-
0.002000 +-
0.000733 +-
0.001400 +-
0.000000 +-
0.000800 +-
0.001300 +-
0.181567 +-
0.006300 +-
0.001333 •»•-
0.130533 +-
0.021500
1.160275
0.276418
0.138608
5.455979
0.012954
1.162306
0.224300
1.646093
3.006824
0.525866
0.997576
0.086519
0.068054
0.249388
0.375063
1.111290
1.200914
0.430564
0.030416
0.012578
0.001842
0.093578
0.025989
0.006932
0.000565
0.001733
0.011912
0.003773
0.029246
0.001414
0.002089
0.001567
0.016490
0.002744
0.005106
0.004107
0.008231
0.009460
0.010358
0.012176
0.016401
0.017887
0.042704
0.071326
0.004689
0.070031
234
-------
Pacific Northwest Source Profile Project
SOURCE:
SPECIES
FLOR
DIBE
PHEN
ANTH
ACRI
CARB
FLUO
PYRE
RETE
BENB
BECP
CHRY
BEBF
BEEP
BAP
PERY
INDE
DIAA
BEGP
TETR
PENT
HEXA
HEPT
OCTA
NONA
TRIA
Hedco Hogged
FINE +-
0.000034 +-
0.000028 +-
0.000369 +-
0.000108 +•
0.000320 +-
0.000125 +-
0.000111 +-
0.000234 +-
0.000845 +-
0.000244 +-
0.000248 +-
0.000201 +-
0.000083 +-
0.000064 +-
0.000049 +-
0.000023 +-
0.000105 +-
0.000035 +-
0.000262 +-
0.000448 +-
0.000237 +-
0.001088 +-
0.001293 +-
0.000839 +-
0.000763 +-
0.001220 +-
Fuel Boiler
UNCERT COARSE +-
0.000026 +-
0.000029 +-
0.000255 +-
0.000108 +-
0.000231 +•
0.000132 +-
0.000053 +-
0.000160 +-
0.000817 +-
0.000249 +-
0.000238 +-
0.000150 +-
0.000077 +-
0.000035 +-
0.000039 +-
0.000025 +-
0.000109 +-
0.000038 +-
0.000185 +-
0.000480 +-
0.000229 +-
0.000780 +-
0.000759 +-
0.000639 +-
0.000610 +-
0.000857 +-
UNCERT PM-10
0.000034
0.000028
0.000369
0.000108
0.000320
0.000125
0.000111
0.000234
0.000845
0.000244
0.000248
0.000201
0.000083
0.000064
0.000049
0.000023
0.000105
0.000035
0.000262
0.000448
0.000237
0.001088
0:001293
0.000839
0.000763
0.001220
+- UNCERT
+- 0.000026
+- 0.000029
+- 0.000255
+- 0.000108
+- 0.000231
+- 0.000132
+- 0.000053
+- 0.000160
+- 0.000817
+- 0.000249
+- 0.000238
+- 0.000150
+- 0.000077
+- 0.000035
+- 0.000039
+- 0.000025
+- 0.000109
+- 0.000038
+- 0.000185
+- 0.000480
+- 0.000229
+- 0.000780
+- 0.000759
+- 0.000639
+- 0.000610
+- 0.000857
235
-------
Pacific Northwest Source Profile Project
LOCATION:Tacoma, WA
SOURCE: Residual Oil Boiler
Profile:13502
DESCRIPTI Fine data uses filters DTS143/DGS143, DTS145/DOS145,
and DTS147/DQS147. Coarse data uses DTS142/DQS142, DTS144/DQS144,
and DTS146/DQS146.
SPECIES FINE +- UNCERT COARSE +- UNCERT PH-10 +- UNCERT
F
CL
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
HO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
0.000000 +-
0.000000 +-
0.051933 +-
0.783533 +-
55
2
0
0
0
2
13
0
0
0
0
10
0
0
0
0
2
0
0
.041267 +-
.480033 +-
.383633 +-
.008300 +-
.031967 +-
.279133 +-
.557000 +-
.061967 +-
.120267 +-
.392700 +-
.072333 +-
.244800 +-
.052000 +-
.011667 +-
.114667 +-
.007200 +-
.354733 +-
.008633 +-
.002567 +-
0.107167 +-
0.001600 +-
1.043800 +-
0.002167 +-
0.010800 +-
0.000000 +-
0.001700 +-
0.012700 +-
0.000867 +-
0.000067 +-
0.002667 +-
0.000167 +-
6.000000 +-
0.000267 +-
0.000000 +-
0.000400 +-
0.001067 +-
0.000000 +-
0.000000 +-
0.
0.
0.
0.
0.
002567 +-
000300 +-
002933 +-
000433 +-
000000 +-
0.023350
0.051680
0.043562
0.259428
4
1
0
0
0
0
9
0
0
0
0
3
0
0
0
0
0
.679507
.264317
.107893
.008445
.019182
.959630
.347623
.066552
.039666
.123377
.353800
.694985
.015200
.002343
.021831
.023665
.485441
0.063804
0.006552
0.018574
0.002995
0.192297
0.004358
0.002886
0.003417
0.002659
0.004585
0.001208
0.001330
0.000665
0.001919
0.002519
0.004437
0.008455
0.
0.
0.
0.
0.
0.
0.
0.
0.
010007
010964
012924
017329
019146
068844
077062
004905
004424
0.000000 +-
0.141733 +-
0.110233 +-
0.000000 +-
8.358000 +-
0
0
0
0
3
74
0
0
.253833 +-
.085567 +-
.052433 +-
.009167 +-
.148333 +-
.246250 +-
.043333 +-
.423267 +-
0.913733 +-
0
10
0
0
0
0
1
.070867 +-
.577967 +-
.047867 +-
.010233 +-
.026200 +-
.007933 +-
.293800 +-
0.001967 +-
0.001600 +-
0.133100 +-
0.000867 +-
0.595300 «•-
0.001733 +-
0.002367 +-
0.004267 +-
0.000500 +-
0.002833 +-
0.000900 +-
0.000433 +-
0.001333 +-
0.001700 +-
0.
000000 +-
0.002767 +-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000000 +-
000000 +-
002167 +-
000000 +-
000000 +-
000000 +-
000000 +-
000000 +-
000900 +-
000000 +-
0.114050
0.253002
0.155893
0.308555
3
0
0
0
0
4
8
0
0
0
2
3
0
0
0
.676709
.073403
.130143
.073516
.032284
.618151
.780560
.105868
.219707
.339647
.189831
.822916
.032484
.021440
.022214
0.113458
0.252351
0.246400
0.025768
0.035968
0.012437
0.129689
0.017084
0.002840
0.016874
0.012789
0.003946
0.005955
0.006557
0.005986
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
009456
012466
021891
041959
049194
054413
064342
085885
094690
340187
379995
024160
021474
0.000000 +-
0.043000 +-
0.059100 +-
0.604467 +-
44
1
0
0
0
2
29
0
0
0
0
10
0
0
0
.227933 +-
.899800 +-
.306600 +-
.014233 +-
.025733 +-
.463800 +-
.404533 +-
.054167 +-
.176200 +-
.498033 *-
.070167 +-
.017800 •*•-
.049433 +-
.011400 +-
.093233 +-
0.007100 +-
2.073500 +-
0.006833 +-
0.002233 +-
0.110500 *-
0.001467 +-
0.925733 +-
0.001967 +-
0.008700 +-
0.000633 +-
0.001367 +-
0.010000 +-
0.000833 +-
0.000100 +-
0.002267 +-
0.000467 +-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
000000 +-
000600 +-
000000 +-
000267 *-
001300 +-
000000 +-
000000 +-
001900 +-
000200 +-
002233 +-
000433 +-
000000 +-
0.029860
0.066296
0.059197
0.205143
7.192701
0.817358
0.053485
0.011477
0.014369
1.216988
11.256994
0.043693
0.045936
0.078908
0.539684
2.451996
0.008128
0.005221
0.012223
0.029782
0.285342
0.069462
0.007198
0.013092
0.003347
0.127158
0.004801
0.001558
0.004391
0.003358
0.002655
0.001577
0.001717
0.001362
0.002489
0.003250
0.005739
0.010929
0.012852
0.014123
0.016702
0.022381
0.024668
0.088573
0.099128
0.006341
0.005632
236
-------
Pacific Northwest Source Profile Project
SOURCE: Tacoma, UA Residual Oil Boiler
SPECIES FINE •+• UNCERT COARSE +- UNCERT PM-10 +-
FLOR
DIBE
PHEN
ANTH
ACRI
CARB
FLUO
PYRE
RETE
BENB
BECP
CHRY
BEBF
BEEP
BAP
PERY
INDE
DIAA
BEGP
TETR
PENT
HEXA
HEPT
OCTA
NONA
TRIA
0.000043 +-
0.000041 +-
0.000041 +-
0.000041 + -
0.000041 +-
0.000041 +-
0.000838 +-
0.001160 +-
0.006380 +-
0.000041 +-
0.000041 +-
0.000041 +-
0.000499 +-
0.000339 +-
0.000041 +-
0.000041 +-
0.000023 +-
. 0.000126 +-
0.000153 +-
0.037211 +-
0.051011 +-
0.076511 +-
0.129511 +-
0.072511 «•-
0.084511 +-
0.128511 +-
0.000047 +-
0.000045 +-
0.000045 +-
0.000045 +-
.0.000045 +-
0.000045 +-
0.000512 +-
0.000710 +-
0.003920 +-
0.000045 +-
0.000045 +-
0.000045 +-
0.000408 +-
0.000322 +-
0.000045 +-
0.000045 +-
0.000023 +-
0.000163 +-
0.000244 +-
0.054871 +-
0.074953 +-
0.112430 +-
0.190212 +-
0.106773 +-
0.124451 +-
0.188798 +-
0.000043 +-
0.000041 +-
0.000041 +-
0.000041 +-
0.000041 +-
0.000041 +-
0.000838 +-
0.001160 +-
0.006380 +-
0.000041 +-
0.000041 +-
0.000041 +-
0.000499 +-
0.000339 +-
0.000041 +-
0.000041 +-
0.000023 +-
0.000126 +-
0.000153 +-
0.037211 +-
0.051011 +-
0.076511 +-
0.129511 +-
0.072511 +-
0.084511 +-
0.128511 +-
UNCERT
0.000047
0.000045
0.000045
0.000045
0.000045
0.000045
0.000512
0.000710
0.003920
0.000045
0.000045
0.000045
0.000408
0.000322
0.000045
0.000045
0.000023
0.000163
0.000244
0.054871
0.074953
0.112430
0.190212
0.106773
0.124451
0.188798
PM-10 fraction assumed to be similar to fine fraction.
237
-------
Pacific Northwest Source Profile Project
LOCATION: Simplot Co. Pocatello,ID
SOURCE: Gypsum
Profile: 27601
DESCRIPTION: Sairple (NEA04) collected on the north side of
the gypsum pile.
SPECIES FINE +- UNCERT COARSE +- UNCERT PH-10 +- UNCERT
F -
CL -
N03-
HP04-
S04=
NH4+
NA+
HG+
K+
OC
EC
C03
AL
SI
P
S
CL
K
CA
TI
V
CR
HN
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
3.340800 +-
0.074100 +-
0.000000 +-
4.654600 +-
3.470700 +-
0.271500 +-
0.327800 +-
0.140500 +-
0.245900 +-
2.138200 +-
1.967200 +-
0.363000 +-
1.426000 +-
11.311900 +-
6.887000 +-
2.323100 +-
0.178400 +-
0.565200 +-
22.533900 +-
0.177400 +-
0.142000 +-
0.123900 +-
0.012400 -f-
0.851300 +-
0.001300 +-
0.020000 +-
0.031400 +-
0.159700 +-
0.000000 +-
0.001500 +-
0.010000 +-
0.002800 +-
0.002100 +-
0.121900 +-
0.042800 +-
0.013900 +-
0.006000 +-
0.000000 +-
0.004000 +-
0.016100 +-
0.000000 +-
0.002100 +-
0.000000 +-
0.001300 +-
0.028300 +-
0.003700 +-
0.005500 +-
0.243600 4.547000 +-
0.035200 0.000000 +-
0.015200 0.106400 +-
0,355900 2.487400 +-
0.249400 25.430400 +-
0.063000 0.089300 +-
0.025300 0.214600 +-
0.011300 0.071700 +-
0.021200 0.170400 +-
1.842800 1.433500 +-
0.811100 1.898800 +-
0.088100 0.016200 +-
0.130300 2.015400 +-
0.822300 9.720000 +-
0.492000 3.655700 +-
0.165900 13.574300 +-
0.016100 0.198900 +-
0.090600 0.456600 +-
1.606300 25.054000 +-
0.017300 0.118600 +-
0.011700 0.054000 +-
0.009300 0.043800 +-
0.002100 0.007600 +-
0.060900 0.469000 +-
0.012600 0.002300 +-
0.001600 0.008700 «•-
0.002400 0.009800 +-
0.011500 0.068600 +-
0.004200 0.000000 +-
0.004300 0.001800 +-
0.001100 0.004600 +-
0.000700 0.001000 +-
0.001600 0.003500 +-
0.008800 0.159500 +-
0.003300 0.028300 +-
0.002400 0.008300 +-
0.006500 0.002200 +-
0.012900 0.006700 +-
0.015800 0.009200 +-
0.017300 0.015200 +-
0.019400 0.002700 +-
0.026600 0.000800 +-
0.029600 0.000700 +-
0.104100 0.059900 +-
0.119300 0.025900 +-
0.007400 0.002100 +-
0.006300 0.002400 +-
0.462800 4.193800
0.028700 0.020000
0.015800 0.075200
0.324400 3.122000
2.355000 19.000200
0.051100 0.142700
0.026200 0.247700
0.009900 0.091800
0.021800 0.192500
1.519800 1.639900
0.687700 1.918900
0.070200 0.117700
0.656600 1.842800
3.292900 10.186100
1.615800 4.601900
4.838100 10.279700
0.062400 0.192900
0.173600 0.488400
4.833100 24.316100
0.017300 0.135800
0.009300 0.079800
0.006900 0.067200
0.001900 0.009000 •
0.057400 0.580900
0.013200 0.002000 •
0.001300 0.012000 •
0.001700 0.016100 •
0.009200 0.095200 •
0.003600 0.000000 •
0.003800 0.001700 •
0.000900 0.006200 -
0.000600 0.001500 •
0.003400 0.003100 ^
0.016300 0.148500 -
0.003400 0.032500 n
0.003400 0.009900 H
0.005600 0.003300 H
0.011400 0.004700 <
0.013800 0.007700 n
0.008600 0.015500 <
0.016900 0.001900 <
0.022800 0.001200 H
0.025700 0.000500 <
0.090200 0.042800 ^
0.102300 0.026600 H
0.006400 0.002600 ^
0.005500 0.003300 ^
+- 0.302900
+- 0.017500
+- 0.009400
+- 0.233800
+- 1.367100
+- 0.031800
+- 0.018500
+- 0.007100
+- 0.015100
+- 0.930700
+- 0.424700
+- 0.043100
+- 0.460400
+- 2.323100
+- 1.146000
+- 3.384600
+- 0.043800
+- 0.120300
+- 3.367100
+- 0.011800
*- 0.006700
+- 0.005100
*•- 0.001300
«•- 0.041900
*- 0.008600
*- 0.000900
••- 0.001300
«•- 0.006900
f- 0.002300
i- 0.002300
<•- 0.000600
i- 0.000300
H- 0.002300
>" 0.010700
H- 0.002400
i- 0.002300
i- 0.003500
>•- 0.007100
I- 0.008600
>•- 0.003300
i- 0.010500
i- 0.014100
>- 0.016000
- 0.056000
- 0.063400
•- 0.004000
•- 0.003400
238
-------
13-Jun-8S
SOURCE LIBRARY
SOURCE: FEED AND GRAIN HANDLING DUST.
SCC: 3-02-005-01
CONTROLS: UNKNOWN
PROFILE: 21401
RANKING: UNKNOWN
RATING : D
SPECIE
NUMBER
4
5
9
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
40
47
48
50
51
55
56
58
80
82
200
202
203
204
SUMC X )
SPECIE
NAME
BE
B
F
NA
MG
AL
SI
P
S
CL
K
CA
SC
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
GE
AS
SE
BR
R8
SR
ZR
AG
CD
SN
SB
CS
BA
CE
HG
PB
TC
EC
S04
N03
*********
X BY UT
NA
NA
NA
NR
NR
NR
15.000
<
<
<
0.550
0.550
<
<
<
<
<
0.050
<
<
0.050
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
30.000
NA
0.550
NA
46.750
FINE
<2.5 UM ******
+ - UNC
* - NR
+ • NR
+ • NR
* • NR
+ • NR
+ • NR
+ - NR
+ - NR
+ - NR
+ • NR
* - NR
* • NR
+ • NR
4- • NR
* - NR
+ • NR
+ • NR
+ • NR
+ • NR
+ • NR
+ • NR
* • NR
* • NR
* - NR
+ • NR
4- • NR
+ • NR
* - NR
+ • NR
+ - NR
+ • NR
+ • NR
+ • NR
+ • NR
4- • NR
4- - NR
•f • NR
+ • NR
4- • NR
+ • NR
+ - NR
+ • NR
+ - NR
*********
X BY UT
NA
NA
NA
NR
NR
NR
15.000
<
<
<
0.550
0.550
<
<
<
<
<
0.050
<
<
0.050
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
30.000
NA
0.550
NA
46.750
COARSE
2.5-10UM ******
4- UNC
+ • NR
+ • NR
+ • NR
+ • NR
+ - NR
+ - NR
4- • NR
+ • NR
4- • NR
+ - NR
+ • NR
4- - NR
+ • NR
+ - NR
4- - NR
+ - NR
* - NR
+ - NR
+ • NR
+ - NR
+ - NR
4- • NR
+ - NR
+ - NR
+ - NR
+ • NR
«• - NR
+ • NR
+ - NR
4- • NR
+ - NR
+ - NR
* • NR
+ • NR
4- • NR
+ • NR
+ • NR
+ - NR
•f - NR
+ - NR
+ - NR
+ - NR
+ - NR
*********
X BY UT
NA
NA
NA
NR
NR
NR
15.000
<"
<
<
0.550
0.550
<
<
<
<
<
0.050
<
<
0.050
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
30.000
NA
0.550
NA
46.750
TSP
<30 UM ******
4- UNC
* • NR
+• • NR
+ - NR
+ - NR
+ - NR
+ •' NR
+ - NR
+ • NR
+ - NR
+ - NR
* - NR
+ - NR
+ • NR
* - NR
* - NR
4- - NR
4- - NR
4- - NR
4. • NR
4- - NR
+ - NR
4- - NR
+ - NR
4- - NR
4- • NR
4- • NR
* • NR
4. - NR
* - NR
+ - NR
4- - NR
4- - NR
+ - NR
+ • NR
4- - NR
4- - NR
+ - NR
* - NR
4- - NR
+ • • NR
4- - NR
4- - NR
+ • NR
NOTES: OC » ORGANIC CARBON : EC = ELEMENTAL CARBON NR: NOT REPORTED
< = LESS THAN DETECTION LIMIT • : NA * NOT ANALYZED
OTHER NOTES : SOURCE TEST, ANALYTICAL METHODS AND REPRESENTATIVENESS
REF: 10 OF THE DATA UNKNOWN BUT LIKELY OF POOR QUALITY.
239
-------
13-Jun-85
SOURCE LIBRARY
SOURCE: CAST IRON CUPOLA
SCC: 3-04-003-01
CONTROLS: UNSPECIFIED
SPECIES
NUMBER
4
5
9
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
37
38
40
47
48
50
51
55
56
53
80
82
201
202
203
204
SUM( X )
FINE COARSE
NAME X BY UT + • UNC X BY WT +• UNC
BE + - + •
B + • + •
F + - + -
NA + - +
MG + +
AL + - + •
SI + - * -
p + - + -
s + - + -
CL * - + -
K + - + -
CA + + -
SC + - + -
TI + - +
V + - + -
CR + - + -
MM + - «• -
FE + - + •
CO + - * -
MI + - + •
CU + - + •
ZM + - + -
GA + • + •
GE + • > -
AS + • + -
SE + • + •
BR + • -f -
RB * • + •
SR + • + •
ZR + • + •
AG + + -
CD + - + -
SN + - + -
SB + - + •
CS + - + -
BA + - + -
CE + - + •
HG + - + •
PB + - + -
OC + - * •
EC + • + •
S04 + - + -
N03 + - * -
0.000 0.000
PROFILE: 28202
RANKING: 1324
RATING : C
TSP
X BY WT +- UNC
NA +
NA +
NA +
1.300 + •
< +
1.100 +
24.000 t •
< +
2.300 + -
0.890 + -
3.000 +
1.000 +
< -f
0.060 +
0.009 + •
0.052 + -
4.500 + -
15.000 * -
0.004 + -
0.035 + -
0.260 + -
0.830 + -
< + -
< + -
0.013 «• •
0.002 + •
0.009 + -
0.022 + -
< + -
< + -
< + •
< + -
< + -
0.370 + -
< +
< + -
< + -
< + •
0.230 + -
NA + •
NA + •
NA •*• •
NA + -
52.686
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NOTES: OC - ORGANIC CARBON : EC = ELEMENTAL CARBON
< = LESS THAN DETECTION LIMIT
OTHER NOTES : REF. 47.
NA - NOT ANALYZED : NR = NOT REPORTED
240
-------
13-Jun-85
SOURCE LIBRARY
SOURCE:
SCC:
CONTROLS:
SPECIES
NUMBER
4
5
9
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
40
47
48
50
51
55
56
58
80
82
201
202
203
204
SUM( X )
SPECIES
NAME
BE
B
F
NA
MG
AL
SI
P
S
CL
K
CA
SC
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
GE
AS
SE
BR
RB
SR
ZR
AG
CD
SN
SB
CS
BA
CE
HG
PB
OC
EC
S04
N03
SOIL OUST •
NONE
NONE
*********
X BY UT
NA
NA
NA
NA
1.280
11.120
27.336
0.336
0.380
0.024
0.719
0.864
<
0.440
0.039
<
0.144
4.989
<
<
0.008
0.042
<
<
<
<
<
<
0.021
<
<
0.039
<
<
<
<
<
<
0.107
NA
NA
NA
NA
47.888
• SEATTLE, WASHINGTON
PROFILE: 41302
RANKING: 3334
RATING : C
FINE COARSE TSP
<2.5 UM ****** ********* 2.5-10UM ****** ********* <3Q JJM ******
+ • UNC X BY UT *• UNC X BY WT +• UNC
+ - NR + •
* - NR + •
+ • NR * •
+ • NR + •
+ • 0.108 + -
+ - 0.743 * -
* - 1.780 * -
+ - 0.031 + •
+ - 0.088 + •
+ - 0.035 * -
+ - 0.066 + -
* • 0.070 * -
+ - NR * •
+ - 0.038 + •
+ - 0.009 * -
+ - NR + -
+ • 0.014 + -
+ - 0.340 + -
* • NR + •
+ • NR + •
+ - 0.006 + -
* • 0.008 + •
+ • NR * •
+ - NR + •
* - NR «• •
+ • NR + •
* - NR + •
+ • NR + •
+ - 0.008 + •
* • NR * •
+ • NR + •
+ • 0.055 * •
+ • NR + -
* • NR * •
* - NR + •
* - NR * •
+ • NR + •
* - NR * -
+ - 0.022 + -
+ • NR + •
+ - NR + •
•f - NR + •
+ - NR + •
0.000
+ .
•f -
+ -
+ -
* -
+ •
+ -
+ -
•f -
•f •
+ -
+ -
* -
+ •
+ -
+ -
+ -
+ -
+ •
» •
* •
* -
+ •
+ -
* -
* -
+ •
* •
+ -
•f •
* •
+ •
+ •
* •
+ •
+ -
+ •
+ -
+ -
+ •
* -
+ •
+ -
0.000
NOTES: OC => ORGANIC CARBON : EC = ELEMENTAL CARBON : NA = NOT ANALYZED : NR <= NOT REPORTED
< = LESS THAN DETECTION LIMIT
OTHER NOTES : RESUSPENDED LOCAL SOIL SAMPLES, FINE FRACTION, ONLY. EACH ANALYZED
SAMPLE IS A COMPOSITE OF THREE SOIL SAMPLES. REF. 27
241
-------
SOURCE: Cement Dust Fugitives Profile: SCAQMD 51
DESCRIPTION: Cement Dust (SRM 633); South Coast AQMD Profiles.
SPECIES FINE +- UNCERT COARSE +- UNCERT PM-10 +- UNCERT
F
CL
N03-
HP04-
S04=
NH4+
NA+
MG+
K+
OC
EC
C03
AL
SI
P
S
CL
K.
CA
TI
V
CR
MM
FE
CO
NI
CU
ZN
GA
AS
SE
BR
RB
SR
Y
ZR
MO
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
2.0000 +-
10.2000 +-
0.1000 + -
0.0001 +-
NR +-
0.0000 +-
46.1000 +-
' 0.1400 +-
NR +-
0.0070 +-
0.0300 +-
2.9400 +-
NR +-
NR +-
NR +-
0.0080 +-
NR +-
NR +-
NR +-
NR +-
NR +-
0.2600 +-
NR +-
NR +-
NR + -
NR +-
NR +-
NR +-
NR +-
NR + -
NR +-
NR +-
NR +-
NR +-
NR +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.4000
2.0000
0.0200
0.0000
NR
0.0000
4.6100
0.0280
NR
0.0010
0.0060
0.5800
NR
NR
NR
0.0033
NR
NR
NR
NR
NR
0.0520
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR +-
NR +-
NR +-
NR +-
NR +r
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
2.0000 +-
10.2000 +-
0.1000 +-
0.0001 +-
NR +-
0.0000 +-
46.1000 +-
0.1400 +-
NR +-
0.0070 +-
0.0300 +-
2.9400 +-
NR +-
NR +-
NR +-
0.0080 +-
NR +-
NR +-
NR +-
NR +-
NR +-
0.2600 +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.4000
2.0000
0.0200
0.0000
NR
0.0000
4.6100
0.0280
NR
0.0010
0.0060
0.5800
NR
NR
NR
0.0033
NR
NR
NR
NR
NR
0.0520
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +•
NR +-
NR +-
NR +-
NR +-
NR +-
2.0000 +-
10.2000 +-
0.1000 +-
0.0001 +-
NR +-
0.0000 +-
46.1000 +-
0.1400 +-
NR +-
0.0070 +-
0.0300 +-
2.9400 +-
NR +-
NR +-
NR +-
0.0080 +-
NR +-
NR +-
NR +-
NR +-
NR +-
0.2600 +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR +-
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.4000
2.0000
0.0200
0.0000
NR
0.0000
4.6100
0.0280
NR
0.0010
0.0060
0.5800
NR
NR
NR
0.0033
NR
NR
NR
NR
NR
0.0520
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR = Not Reported.Data from NBS Standard Reference Material
242
-------
Appendix D-3. Kaiser Emission Data
Three different sets of source tests numbers from Kaiser are presented on Enclosure A. The
first set consists of columns A and A' (Ecology 1985). To get a total emission from Kaiser for
each constituent the value in column A is doubled and added to the value in column A'. The
reason for doubling column A is that only line 4 was tested which accounts for only-half of the
roof monitor emissions.
The second set consists of columns B and B' (Kaiser 1985). To get a total emission for each
constituent again column B is doubled and added to column B'. It should be noted that sets A
and B are two different sets of analyses on the same source test data (A-A' by Ecology and B-
B' by Kaiser). The source test was performed by Ecology.
The third set of numbers consists of columns C, C',C", and D (AMTEST 1988). The total
emissions for each constituent is acquired by adding the four columns.
Table A on Enclosure B contains the results of the manipulations described above. This then
can be considered a range of possible emission numbers for Kaiser. Table B is the sum of the
source test information presented in Table A for Ecology and Kaiser plus the 1988 paste plant
emissions. The reason for considering this sum is that the paste plant was not tested in 1985.
Another iteration of the source test numbers would be to double column C" for the AMTEST
totals as the numbers in column C" are based on 50% of the potential ore feed for the plant.
However, Kaiser assures us that 50% ore feed represents normal operation.
243
-------
ENCLOSURE A
Emissions of PAHs from Kaiser-Tacoma. Grams/Hour
Mol. Potency
COMPONENT
Naphthalene
Acenaphthylene
Acenaphthene
Fluorene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benzo(a)Anthracene
Chrysene
Benzo(b)Fluoranthene
Benzo(k)Fluoranthene
Benzo(a)Pyrene
Indeno(l ,2,3~c,d)Pyrene
Dibenzo(a,h)Anthracene
Benzo(g,h,i) Perylene
Benzo(e)Pyrene
Dibenzo(a,e)Pyrene
Dibenzo(a,i)Pyrene
Dibenzo(a,h)Pyrene
Wt.
128
152
154
166
178
178
202
202
228
228
252
252
252
276
278
276
252
302
302
302
A
[
[
Sep85
B C1 C"
MONITORS ]
Line 4 ] [Lnl&2]
Sep85 M88 M88
Factor WDOE KACC AmTest AmTest
*
*
.320
*
*
0
0
.081
.145
.004
.140
.066
1.000
.232
1.100
.022
.004
*
*
*
258
96
1060
170
1139
80
791
519
131
259
125
201
181
24
113
1585
181
937
945
124
341
89
47
2
22
25
424
19
208
116
22
60
27
14
8
5
2
5
14
0
0
0
36
3
24
24
323
17
187
114
24
70
31
16
6
5
3
5
16
0
0
0
A' B' C"
[ DRY SCRUBBERS
50%
Sep85 Sep85 M88
WDOE KACC AmTest
2286
250
3914
3914
3266
2944
1882
1354
100
64
52
604
94
1726
1726
2510
4814
1040
1052
16
40
2
8381
95
1693
1693
7055
507
897
618
7
13
0
0
0
0
0
0
0
0
0
0
D
]
Paste
Plant
M88
42
0
202
202
111
2
2
1
0
0
0
0
0
0
0
0
0
0
0
0
Total
* Potency Factors not listed
"0" indicates not detected
4628 4721
1020
903
17530 13148 20429 403
Grams of B(a)p Equivalent Potency 144
Totals for PLANT WDOE* KACC*
Total PAHs, Grams/Hr 27189
Total B(a)p Equiv., Gm /Hr 355
* Paste plant added
22993
220
108 18
Amtest88
22754
36
18
66
244
-------
ENCLOSURE B
Table A. PAH Emissions from Kaiser-Tacoma, grams/hour
ECOLOGY KAISER AMTEST
CHEMICAL COMPONENT (1985) (1985) (1988)
Naphthalene 2802 1006 8506
Acenaphthylene 442 456 100
Acenaphthene 6034 1774 1941
Fluorene 1758 1476 1256
Phenanthrene 5544 5680 7913
Anthracene 3104 5176 545
Fluoranthene 3464 2914 1294
Pyrene 2392 2942 849
Benzo(a)anthracene 362 264 53
Chrysene 582 722 143
Benzo(b)fluoranthene 58
Benzo(k)fluoranthene 30
Benzo(a)pyrene 302 180 14
Indeno(l,2,3-c,d)pyrene 10
Dibenzo(a,h)anthracene 5
Benzo(g,h,i)perylene 10
Benzo(e)pyrene 30
Table B. PAH Emissions from Kaiser-Tacoma, grams/hour (sum of 1985 monitor and dry
scrubber emissions in Table A plus 1988 paste plant emissions)
CHEMICAL COMPONENT ECOLOGY KAISER
Naphthalene 2844 1048
Acenaphthene 6236 1976
Fluorene 1801 1519
Phenanthrene 5655 5791
Anthracene 3106 5178
Fluoranthene 3466 2916
Pyrene 2393 2943
Note: The sums in Table B include only those compounds for which paste plant emissions were
available.
245
-------
Appendix D-4. Simpson Tacoma Kraft Source Test
247
-------
Appendix D-4(a). Sampling Protocol
Sampling Equipment
A size-segregating dilution sampler (SSDS) was used to collect paniculate samples from three
emission points at the Simpson plant. The dilution sampler consists of three main components:
a probe, a dilution chamber, and a particle collector. The sampling probe is connected to the
stack wall with port flanges whenever possible. Unlike compliance tests, the sampling probe
is fixed at one position throughput the entire test cycle. A particle preseparator on the front
end of the probe regulates the size of particulates (650=10 pm) entering the dilution chamber.
The dilution chamber is constructed of stainless steel, four-inch-diameter tubing held in place
with quick-connect clamps. Ambient air is filtered through a quartz fiber filter (Whatman
QMA) before entering the dilution chamber to mix with the stack gas sample. Blowers on the
inlet and outlet of the dilution chamber regulate the pressure drop between the stack and
chamber that is required to withdraw the stack sample and regulate the ratio of dilution air to
stack sample.
The diluted stack emissions were collected on two 37-mm Teflon (Gelman R2PJ037) filters and
two 37-mm quartz fiber (Pallflex QAT-UP) filters simultaneously. Two Andersen Model 244
dichotomous samplers with modified inlet tubes were used to collect both fine (less than
2.5 urn) and coarse (2.5 to 10 /xm) samples from the dilution chamber. The excess diluted
emissions were collected on an 8- by 10-inch-outlet quartz fiber filter (Pallflex QAT-UP).
All of the source tests included three replicate runs of the SSDS. A total of 12 filters were
collected for each of the source tests. Each set contained three fine-fraction samples on Teflon
filters and three fine-fraction samples on quartz filters.
Discussion of Sources and Sampling Conditions
All of the sources tested at the Simpson Tacoma Kraft facility were operating under "normal"
conditions. Close communication was maintained throughout the testing cycle with the plant
operators to assure constant operating conditions.
Hogged Fuel Boiler
The north scrubber hogged fuel boiler was tested on January 2 and 3, 1990. The plant operator
reported that sludge was mixed with the hogged fuel and that the hogged fuel was of low grade
(high moisture content, possibly including old bark and/or sea water, sand and dirt) during the
test duration. Samples of the fuel mixture were not collected during this project.
Four separate boilers (Nos. 2, 3, 4, and 5) are ducted to the north scrubber stack. Variability
in steam production from any one of the three boilers may not directly influence the
performance of the scrubber. The scrubber produced a super-saturated plume at temperatures
between 120 and 130°F. The stack flow rate was monitored throughout the test cycle and
remained fairly constant at six meters/second at the test port level.
The dilution sampling at the hogged fuel boiler ran with little or no problems. A target dilution
ratio of 15:1 was chosen at the start of the test because of the high moisture content of the stack
gas. The average dilution for all three runs was approximately 10:1 for runs 1 and 2; a lower
mixing rate was used for run 3 in order to decrease the sample duration. The filters were
checked intermittently during the test to monitor for condensation in the chamber, and none was
observed.
249
-------
Lime Kiln
The No. 1 lime kiln stack was sampled on January 4, 1990. The dilution sampler was set up
on the platform approximately six feet below the level of the compliance test ports and
downstream of the scrubber. This site was selected because of insufficient space and physical
obstructions on the level above. Lime kiln No. 1 is the main production kiln while the No. 2
lime kiln is used less frequently and has a lower capacity. The emissions from the No. 1 lime
kiln are ducted through a scrubber which produces a highly saturated plume with a temperature
range of 160 to 180°F.
Process operation data from the kiln were provided by Simpson. No bulk samples of the fuel
that was used or the scrubber water were collected by the sampling crew.
All three tests were completed in one day with the runs ranging from 40 minutes to 1.5 hours.
Although target dilution ratio of 10:1 was chosen at the start of the test, the actual dilution ratio
varied from 20:1 to 22:1.
Water droplets were observed on the coarse fraction Teflon filter during run No. 2. Corrective
action was taken to remove the moisture from the dilution chamber and to prevent condensation
from recurring. Apparently, the dilution ratio was too low for the present stack and ambient
conditions.
Recovery Furnace
The west scrubber stack of the No. 3 recovery furnace was sampled on January 5, 1990. The
emissions from the recovery furnace are initially controlled by an electrostatic precipitator and
then by scrubbers before being vented out two stacks. The sampling site was downstream of
the scrubbers and the stack diameter at this location was approximately nine feet. The stack
temperatures ranged from 147 to 154°F, and the plume was super-saturated. The field crew
did not collect any bulk samples of the scrubber water or the black liquor from the recovery
furnace operation.
The three replicate runs of the SSDS had sample durations ranging from two to three hours.
The dilution ratio was approximately 10:1 for all three runs.
The percent isokinetic rate is indicative of the extraction efficiency of the sample from the stack
gas. Ideally, a source tester strives for 100 +. 10 percent isokinetics, which results in an
unbiased sample for the distribution of fine and coarse particles. Deviating from this range
results in an enrichment of either fine or coarse particles. However, this is not always a
practical application in wet or saturated stream flows where the water droplets can interfere with
the particle flow. Moreover, the particle preseparator on the front end of the probe requires
a constant flow rate in order to provide the desired cutpoint (Dx = 10 pm). This requirement
will take precedent over the isokinetic rate when fluctuations occur in the stack velocity or when
nozzle sizing is limited. The deviation from isokinetic range becomes less significant in this
project because only the samples containing fine particles were analyzed. The deviations should
not influence the relative chemistry of fine particles.
Dr. Dave Kalman at the University of Washington performed the organic speciation for the
Simpson Tacoma Kraft study. Samples collected by NBA at the Simpson mill were analyzed
for organic and elemental carbon before being sent to Dr. Kalman for further organic analysis.
250
-------
Quality Assurance
Standard operating procedures were followed whenever possible for the handling, preparation,
sampling, and analysis of the samples collected from Simpson Tacoma Kraft.
Source Testing
The dichotomous sampler rotameters were calibrated before the study and then adjusted to the
local ambient conditions in order to maintain the proper flow rates through the virtual
impactors. The SSDS was thoroughly cleaned before the study and sealed to minimize
contamination during transport. The SSDS was also cleaned between each emission source to
prevent cross-contamination.
Analytical
Quality assurance reports signed by NEA's quality assurance manager were submitted with each
analytical report. The quality assurance reports were submitted along with the analytical results
under separate cover to the Puget Sound Water Quality Authority.
Sample Preparation and Handling
Filters received from the lab were loaded into labeled dichotomous cassette rings and stored in
Petri dishes which were also labeled with the sample identification number.
A field transport box was used to carry the filters to and from the sampling platforms from
which they were loaded into the SSDS. The samples were then returned to the laboratory,
logged in, and unloaded from the dichotomous cassette rings into labeled Petri dishes. The
samples were then refrigerated at 4°C until each analysis was performed.
Samples with potential problems were identified. The problem samples, which were all coarse
fraction samples, were not used for any chemical analyses. The samples were identified
through problems noted in the field and by discrepancies in total mass. The variations in mass
between Teflon and quartz filters can be caused by a number of different factors. The
uncertainty associated with weighing quartz filters is several times higher than the uncertainty
associated with Teflon filters. Fiber loss and absorption of water vapor are two factors that will
significantly impact the variability of the quartz mass.
251
-------
Appendix D-4(b). Laboratory Protocols
The laboratory protocols for the Simpson Tacoma Kraft source test are available on request
from Puget Sound Water Quality Authority (PS WQ A), contained in Appendix D. of NBA, Inc.,
Simpson Tacoma Kraft Emission Testing, Size-Segregating Dilution Sampling Report, prepared
for PSWQA, April 10, 1990.
253
-------
Appendix D-4(c). PAH Results-University of Washington
255
-------
Appendix D-4(c). Source Samples: Wt Percent - PAH
K
HOG FUEL HOG FUEL HOG FUEL LIMEKILN LIMEKILN RECOV FURN. RECOV FURN. RECOV FURN.
Fraction Analyzed
Deposit Mass pg/filter
Mass Analyzed(total) pg
Organic Mass Anal, ng
COMPOUND
detection limit
lower quantitation limit
21 FLUORENE
22 DIBENZOTHIOPHENE
23 PHENANTHRENE
24 ANTHRACENE
25 ACRIDINE
26 CARBAZOLE
27 FLUORANTHENE
28 PYRENE
29 1,2-BENZOFLUORENE
30 RETENE
31 BENZO(B)NAPTHO(1,2-D)THIOPHENE
32 BENZO(C)PHENANTHRENE
33 CHRYSENE
35 BENZO(B-f-K)FLUORANTHENE
36 BENZO(E)PYRENE
37 BENZO(A)PYRENE
38 PERYLENE
40 INDENO(1,2,3-C,D)PYRENE
41 DIBENZ(A,H)ANTHRACENE
42 BENZO(GHI)PERYLENE
43 TETRACOSANE
44 PENTACOSANE
45 HEXACOSANE
46 HEPTACOSANE
47 OCTACOSANE
48 NONACOSANE
49 TRIACONTANE
M0491
0.47
291
136.77
2.9
WT %
7.3E-04
1.5E-03
<
<
<
<
<
2.7E-03
1.5E-03
1.1E-03
<
1.8E-03
<
<
<
<
<
<
<
<
<
<
2.7E-03
1.9E-03
1.2E-03
1.3E-03
<
<
<
M0493
0.502
663
333
11.9
WT %
3.0E-04
6.0E-04
<
<
6.2E-04
3.5E-04
3.2E-03
1.7E-03
1.6E-03
<
5.1E-03
<
3.1E-04
5.8E-04
7.0E-04
5.4E-04
5.6E-04
<
<
<
<
<
2.0E-03
l.OE-03
<
<
<
<
M0495 M0499
1 1
450 866
450 866
5.5 0.0
WT % WT %
2.2E-04 1.2E-04
4.4E-04 2.3E-04
< <
2.4E-03 <
8.0E-04 <
< <
2.8E-04 <
2.4E-03 <
2.3E-03 <
2.0E-03 <
3.3E-04 <
9.9E-04 <
< <
< <
4.0E-04 <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
M0501 M0503
1 1
852 853
852 853
8.4 10.2
WT % WT %
1.2E-04 1.2E-04
2.3E-04 3.7E-04
< <
< <
< <
< <
< <
< 5.2E-04
< <
< <
< <
< 5.9E-04
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< 8.0E-04
< 8.9E-04
< 5.4E-04
2.5E-04 5.2E-04
2.0E-04 2.4E-04
< <
< 1.2E-04
M0505
1
535
535
9.7
WT %
1.9E-04
3.7E-04
<
<
<
<
<
3.4E-04
2.3E-04
<
N.A.
N.A.
<
<
<
<
<
<
<
<
2.0E-04
<
2.9E-04
<
1.3E-03
1.5E-03
3.2E-04
<
<
M0507
0.52
508
264.16
6.1
WT %
3.8E-04
7.6E-04
<
<
<
<
6.1E-04
<
<
<
<
3.1E-03
<
<
<
<
<
<
<
<
<
<
1.7E-03
1.7E-03
8.9E-04
8.1E-04
<
<
<
1 < " INDICATES LESS THAN THE STATED DETECTION LIMIT VALUE; VALUES IN BOLD ARE ESTIMATED BELOW THE LOWER QUANTTTATION LIMIT
-------
Appendix D-4(d). Metals Results - NEA
259
-------
Analysis Summary, 298/01, Hog Fuel Boiler, Particle Size: F
Element
F
NA
MG
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
GE
AS
SE
BR
RB
SR
Y
ZR
MO
TC
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
OC
EC
NO3
NH4
PO4
S04
V/NI
BR/PB
Maximum Minimum
Percent Percent
.000
26.632
.078
.391
.435
.104
12.091
36.378
13.104
.468
.024
.404
.007
.047
.276
.005
.320
.052
.735
.004
.000
.049
.000
.135
.021
.004
.004
.000
.021
5.737
.007
.017
.034
.011
.053
.073
.044
.197
.002
.294
2.774
2.963
.377
1.677
.890
32.984
Mean
1.197
.402
.000
26.084
.000
.000
.000
.070
8.343
21.550
12.394
.275
.010
.065
.002
.029
.234
.000
.055
.045
.455
.000
.000
.018
.000
.043
.012
.000
.000
.000
.000
3.296
.000
.000
.000
.000
.000
.000
.000
.022
.000
.202
1.768
1.528
.000
.000
.225
23.382
SD
.059
.231
Mean
Percent
.000
26.404
.052
.241
.237
.087
9.732
26.903
12.741
.366
.018
.182
.004
.037
.258
.002
.148
.049
.607
.002
.000
.032
.000
.099
.017
.002
.001
.000
.013
4.514
.002
.006
.018
.004
.018
.033
.015
.085
.001
.262
2.344
2.169
.241
1.073
.581
26.834
N
3
3
Mean
Unc.
.190
2.744
.081
.044
.037
.027
1.134
2.152
1.019
.064
.003
.012
.003
.003
.017
.003
.010
.004
.035
.002
.001
.015
.001
.006
.003
.003
.003
.006
.011
.896
.009
.011
.015
.016
.020
.035
.148
.120
.003
.018
.815
.540
.124
.210
.061
2.794
SD
.000
.286
.045
.211
.220
.017
2.054
8.229
.355
.097
.007
.192
.002
.009
.021
.002
.149
.003
.142
.002
.000
.016
.000
.050
.005
.002
.003
.000
.011
1.221
.004
.009
.017
.007
.031
.037
.026
.097
.001
.052
.519
.730
.209
.931
.335
5.339
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Mean
ng/m3
.000
94.502
.141
.828
.667
.296
32.193
98.670
46.182
1.400
.071
.395
. .011
.142
.897
.010
.329
.173
2.379
.004
.000
.095
.001
.348
.055
.006
.002
.000
.034
14.964
.003
.009
.048
.020
.022
.149
.079
.175
.003
1.012
8.034
6.930
1.155
5.092
1.645
89.114
Mean
Unc.
.529
13.456
.315
.178
.131
.094
4.884
12.434
5.820
.270
.012
.047
.008
.018
.104
.008
.039
.021
.270
.005
.004
.058
.004
.040
.011
.007
.008
.017
.032
3.056
.025
.031
.044
.045
.056
.099
.411
.338
.009
.118
2.508
1.746
.286
.847
.234
12.690
SD
.000
55.418
.169
1.102
.744
.169
16.136
64.397
28.056
.923
.051
.112
.005
.092
.490
.009
.085
.098
1.697
.003
.000
.048
.001
.320
.032
.007
.003
.000
.039
8.534
.005
.010
.052
.035
.037
.155
.137
.075
.006
.680
4.958
3.577
1.037
4.445
.875
44.838
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
261
-------
Analysis Summary, 298/01, Lime Kiln, Particle Size: F
Maximum Minimum
Element Percent Percent
F
NA
MG
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
GE
AS
SE
BR
RB
SR
Y
ZR
MO
TC
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
OC
EC
NO3
NH4
P04
S04
V/NI
BR/PB
.000
33.626
.308
.267
.081
.242
15.549
2.449
1.154
6.490
.019
.079
.006
.051
.579
.005
.022
.019
.014
.002
.000
.004
.001
.004
.000
.016
.000
.004
.008
1.184
.005
.007
.000
.007
.010
.010
.097
.069
.000
.879
.605
.578
.078
.000
.381
56.468
Mean
3.469
.010
.000
27.215
.178
.167
.034
.173
14.665
1.594
.945
2.034
.017
.055
.005
.035
.368
.003
.018
.009
.003
.000
.000
.000
.000
.000
.000
.008
.000
.000
.000
.451
.000
.000
.000
.000
.001
.000
.000
.000
.000
.192
.028
.318
.000
.000
.163
44.716
SD
.403
.011
Mean
Percent
.000
31.059
.252
.221
.054
.209
15.055
2.003
1.079
3.570
.018
.070
.005
.042
.452
.004
.020
.013
.008
.001
.000
.001
.000
.002
.000
.012
.000
.002
.005
.743
.002
.002
.000
.002
.005
.004
.052
.031
.000
.485
.303
.440
.050
.000
.255
52.012
N
3
3
Mean
Unc.
.070
3.177
.110
.032
.009
.047
1.717
.156
.084
.407
.002
.004
.001
.003
.025
.002
.002
.001
.001
.001
.000
.026
.001
.001
.001
.001
.001
.003
.005
.293
.004
.005
.006
.006
.008
.014
.059
.048
.001
.027
.280
.165
.038
.070
.026
5.320
SD
.000
3.391
.067
.050
.024
.035
.451
.429
.116
2.530
.001
.013
.000
.008
.112
.001
.002
.005
.005
.001
.000
.002
.000
.002
.000
.004
.000
.002
.004
.388
.003
.004
000
.004
.005
.005
.049
.035
.000
.355
.290
.131
.044
.000
.113
6.370
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Mean
Mg/m3
.000
500.204
4.099
3.514
.845
3.396
242.108
32.670
17.399
56.670
.283
1.104
.082
.668
7.147
.063
.319
.207
.125
.009
.002
.023
.007
.038
.000
.187
.000
.032
.072
11.766
.029
.045
.000
.035
.082
.074
.896
.449
.000
7.566
4.651
7.115
.753
.000
4.233
840.296
Mean
Unc.
1.156
71.253
1.827
.611
.172
.834
36.588
4.123
2.194
8.562
.041
.129
.023
.079
.814
.035
.042
.028
.022
.021
.008
.411
.010
.013
.017
.029
.023
.042
.078
5.025
.060
.078
.103
.106
.131
.233
.976
.802
.022
.862
4.661
2.815
.715
1.156
.603
119.700
SD
.000
84.244
1.444
.579
.283
.911
26.346
10.620
3.100
38.779
.030
.094
.003
.148
1.054
.008
.011
.062
.068
.016
.003
.038
.007
.034
.000
.071
.000
.029
.064
5.817
.050
.078
.000
.060
.068
.075
.889
.505
.001
4.861
4.508
2.287
.653
.000
2.390
172.625
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
262
-------
Analysis Summary, 298/01, Recovery Furnace, Particle Size: F
Element
F
NA
MG
AL
SI
P
S
CL
K
CA
TI
V
CR
MN
FE
CO
NI
CU
ZN
GA
GE
AS
SE
BR
RB
SR
Y
ZR
MO
TC
PD
AG
CD
IN
SN
SB
BA
LA
HG
PB
OC
EC
NO3
NH4
PO4
SO4
V/NI
BR/PB
Maximum Minimum
Percent Percent
.000
33.200
.003
.176
.047
.000
21.001
4.091
2.693
.205
.010
.005
.004
.006
.195
.003
.008
.009
.078
.001
.001
.005
.000
.052
.006
.000
.002
.002
.016
2.676
.010
.000
.006
.010
.011
.014
.000
.035
.000
.000
2.520
.156
.000
1.662
.000
60.908
Mean
.881
135.600
.000
31.675
.000
.056
.000
.000
17.310
3.766
2.516
.041
.003
.000
.003
.005
.076
.001
.002
.004
.012
.000
.000
.001
.000
.029
.002
.000
.001
.000
.006
1.152
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
1.076
.000
.000
.000
.000
55.274
SD
1.138
.000
Mean
Percent
.000
32.462
.001
.113
.016
.000
19.653
3.957
2.623
.125
.006
.003
.003
.005
.122
.002
.005
.006
.037
.000
.000
.003
.000
.037
.004
.000
.001
.001
.010
1.919
.006
.000
.002
.003
.005
.005
.000
.020
.000
.000
1.842
.078
.000
.554
.000
58.499
N
3
1
Mean
Unc.
.112
3.326
.057
.020
.012
.014
2.245
.310
.206
.019
.001
.001
.001
.001
.008
.001
.001
.001
.003
.000
.001
.001
.001
.002
.002
.001
.002
.004
.007
.495
.005
.006
.009
.009
.012
.020
.084
.071
.002
.003
.493
.192
.112
.126
.112
5.994
SD
.000
.764
.002
.060
.027
.000
2.037
.170
.094
.082
.004
.002
.000
.001
.065
.001
.003
.002
.036
.000
.001
.002
.000
.013
.002
.000
.001
.001
.005
.762
.005
.000
.003
.006
.005
.008
.000
.018
.000
.000
.726
.078
.000
.960
.000
2.904
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Mean
Mg/m3
.000
135.259
.003
.524
.088
.000
79.657
16.548
10.800
.560
.027
.011
.014
.021
.556
.008
.024
.026
.181
.001
.002
.013
.000
.164
.015
.000
.005
.003
.036
7.528
.018
.000
.005
.013
.024
.013
.000
.082
.000
.001
7.177
.351
.000
1.571
.000
242.016
Mean
Unc.
.433
19.257
.255
.103
.049
.056
12.031
2.086
1.362
.100
.006
.004
.004
.005
.065
.005
.005
.005
.022
.002
.002
.003
.003
.019
.006
.006
.006
.014
.026
2.061
.019
.025
.033
.036
.045
.079
.327
.276
.006
.013
2.037
.773
.433
.535
.433
34.456
SD
.000
48.857
.005
.424
.152
.000
19.070
6.201
3.311
.525
.025
.010
.004
.007
.472
.003
.018
.019
.224
.002
.003
.014
.000
.113
.007
.000
.004
.004
.007
2.730
.016
.000
.009
.022
.032
.022
.000
.075
.000
.001
2.467
.318
.000
2.720
.000
82.972
N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
263
-------
Appendix D-5. Area Source Emission Calculations
An area source emission inventory was performed for the Tideflats industrial area. The spatial
resolution of the grids was defined by the Universal Transverse Mercator (UTM) System at one
km2. The inventory was performed using 1986 emission data.
Residential Heating
Emissions from residential heating are a function of the population density. Therefore, a
detailed, block-by-block analysis was made for the Tacoma Tideflats area using the latest census
data (1980). The UTM grid network was overlaid on census maps and the population residing
on each block within a grid was totaled. Population growth during the succeeding six years was
accounted for using citywide growth factors.
Distillate oil: Data on sales of distillate oil were obtained from major fuel oil distributors on
a countywide basis. Known usage by all point sources was subtracted and the remaining fuel
was apportioned to each grid by population. Variations between city and county in the number
of homes using oil heat and the number of people per home were accounted for using census
data. The correction factor for the Tideflats is as follows:
(5.906 peopleV.021 oilV(2.21 people/home^ = .00144.
(530,800 people/county)(.187 oil)/(2.54 people/home)
PM10 emissions were calculated using these data and an emission factor from Compilation of Air
Pollution Emission Factors (AP-42, 1985 Vol. I, pg. 1.3-2 8/82). Assuming a PM10 fraction
of 50 percent (AP-42, Vol. I, pg. 1.3-6, 10/86) and a population density of 1,000 people per
square kilometer, this would amount to:
(l.OQQ people/kmV82.000 x IP3 gal/yeart(2.2 lb/103 galV.50^.00144^ = .011 ton/year.
(5,906 people) (2,000 Ib/ton)
Even though the emission factor is relatively high, the total emissions are negligible.
Residential wood combustion: Data on sales of wood for residential use are not available.
Therefore, alternate schemes were employed to estimate PM10 emissions from residential wood
combustion. One such scheme, employed by the Oregon State Department of Environmental
Quality, is contained in the 1985 Portland Area Wood Heating Survey. A total of 2,841
questionnaires were randomly mailed to homes in the Portland area. From the 974 valid
responses, 64 percent of the wood burned was determined to be used in wood stoves or
fireplace inserts and 36 percent in fireplaces without inserts. Homes that burned wood for heat
accounted for only 7.5 percent of the total number of homes, and used an average of 2.0 cords
of wood per year. A total of 58 percent of homes used wood either for pleasure or for heat,
using an average of 1.3 cords per year. The average usage for all homes was found to be 0.71
cords per year. Emission factors for wood stoves/fireplace inserts and fireplaces were taken
from AP-42 (Vol. I, pg. 1.9-3, 5/83). A PM10 fraction of 100 percent was assumed. From the
above information the following emission factor can be calculated:
EF = (.64)(42 Ib PM10/ton wood)+(.36)(28 Ib PM10/ton)(5,251/4,635) = 37 Ib PM10/ton
wood.
265
-------
The average number of people per home in the City of Tacoma was taken from the Office of
Financial Management's 1986 Population Trends for Washington State. In Tacoma, a grid with
1,000 residents would contain 427 homes. To adjust for the colder climate in Tacoma than
Portland, the ratio of the climatological average of heating degree days per year (5,251/4,635)
was also factored into the calculation. Assuming a cord of wood weighs 1.75 tons, the
emissions would be:
(.71 cord/home)(427 homes¥1.75 ton/cord^(37 Ib PM10/ton^(5.251/4.635) =11.1 ton/yr.
2,000 Ib/ton
To define a reasonable daily emission rate for residential heating, the ratio of heating degree
days on a typical December day to the total number of annual heating degree days (30/4,539)
was factored into the analysis. For the woodsmoke case mentioned above:
(11.1 ton/year)(30/4,539)(2,0001b/ton)(.454 kg/lb) = 67 kg/day per thousand residents.
Railroads
Data on distillate fuel (diesel) usage by switchyard locomotives were obtained from Burlington
Northern and Union Pacific. PM10 emissions were calculated using these data and an emission
factor from (AP-42, Vol. H, pg. II-2-1, 4/73), assuming a PM10 fraction of 80 percent. In the
Tideflats, all of the emissions were assumed to be located within a single grid. The calculation
used for the Tideflats is as follows:
(600 x 103 gal/yrX2S lb/103 gal)(.8Q Ib PM^/lb TSP) = 6.00 ton/year.
2,000 Ib/ton
5M
Data on ship activity were obtained from the Port of Tacoma. A representative of the Port of
Tacoma reported the total ship activity within the Port and the four terminals which had
received the most use.
Ships in port use an average of 660 gallons of diesel fuel per day in diesel-powered generators
for lighting, heating, refrigeration, pumps, etc. Representatives from the Port of Tacoma
estimated that the average time spent in port by a ship was between one and two days. Using
an approximate emission factor from AP-42 (Vol. II, pg. II-3-2, 1/75) and a PM10 fraction of
50 percent (AP-42, Vol. I, pg. 1.3-6, 10/86) and assuming a 24-hour turnaround time, an
example emission can be calculated to be:
(439 ships/yr)f24 hr/ship)(1.04 lb/hr)(.5Q Ib PM^/lb TSP) = 2.74 ton/year.
2,000 Ib/ton
Motor Vehicles
The calculation of exhaust emissions from motor vehicles is a long and tedious process. The
calculation includes a very slight dependence on the vehicle speed and a strong dependence on
the vehicle mix. The emission factors for light-duty cars and trucks are both around .05 grams
per vehicle mile traveled (g/VMT). Heavy-duty gasoline vehicles emit roughly three times as
much as light-duty vehicles; however, the majority of the total emissions come from heavy-
266
-------
duty diesel trucks. Even though they constitute only about 10 percent of the vehicles on the
road in these areas, they emit nearly 75 percent of the paniculate matter. The emission factor
for these vehicles is 1.85 g/VMT, 37 times higher than for light-duty vehicles.
The plan used to compute motor vehicle emissions per grid in the Tacoma Tideflats area
involved defining three speed zones (10, 35, and 55 mph), each with its own vehicle mix. The
20-mph zone was chosen to represent downtown and residential traffic (collector streets), and
the average vehicle mix that was used was provided by the Washington State Department of
Transportation (DOT). The 35-mph zone was chosen to represent the major arterial streets,
which, in these areas, have roughly four times as many heavy-duty diesel trucks and twice as
many heavy-duty gasoline trucks. The 55-mph zone was chosen to represent highways and
freeways, and contained the standard DOT mix. The mix of vehicles in each of these zones
is shown in Table 1:
Table 1. Vehicle Type Mix
Type
Description
55 mph
20 mph
35 mph
LDGV Light-Duty Gasoline Vehicle
LDGT1 Light-Duty Gasoline Truck (GVW < 6,000 Ib)
LDGT2 Light-Duty Gasoline Truck (GVW 6,001-8,500 Ib)
HDGV Heavy-Duty Gasoline Vehicle (GVW > 8,500 Ib)
LDDV Light-Duty Diesel Vehicle (GVW < 8,500 Ib)
LDDT Light-Duty Diesel Truck (GVW < 8,500 Ib)
HDDV Heavy-Duty Diesel Vehicle (GVW > 8,500 Ib)
MC Motorcycle
Total
1.000
.588
.077
.046
.084
.057
.007
.132
.009
1.000
A stop-and-go driving pattern was used to model emissions in the 20-mph and 35-mph zones,
while a steady cruise was used for the 55-mph zones. Tampering was accounted for assuming
1.7 percent catalyst removal and 9 percent misfueling (AP-42, Vol. II, pp. L 2-44 and L 2-
50).
The procedure used to calculate emission factors is contained in AP-42 (Vol. H, Appendix L,
9/85). It considers emissions of lead, sulfate, and carbon from vehicles of one to 20 years in
age for each of six vehicle classes. The vehicle mix is weighted by the annual mileage
accumulation rate for each model year. The registration mix is shown in Table 2:
267
-------
Table 2. Vehicle Registration Age Mix
LDDV LDDT HDGV
Year LDGV LDGT1 LDGT2 HDDV MC
1 .045 .062 .037 .078 .167
2 .072 .096 .070 .136 .159
3 .090 .095 .078 .135 .134
4 .089 .104 .086 .132 .142
5 .087 .084 .075 .100 .131
6 .084 .077 .075 .091 .080
7 .080 .077 .075 .083 .051
8 .076 .064 .068 .063 .028
9 .070 .054 .059 .045 .010
10 .062 .043 .053 .033 .098
11 .053 .036 .044 .025 .000
12 .046 .024 .032 .015 .000
13 .039 .030 .038 .013 .000
14 .032 .028 .036 .011 .000
15 .025 .026 .034 .010 .000
16 .018 .024 .032 .008 .000
17 .012 .022 .030 .007 .000
18 .008 .020 .028 .006 .000
19 .006 .018 .026 .005 .000
20 .006 .016 .024 .004 .000
Total 1.000 1.000 1.000 1.000 1.000
The resultant emission factors (including brake and tire wear) for the 20-, 35-, and 55-mph
zones, were .12, .31, and .12 g/VMT, respectively.
The next step was to calculate the VMT within each grid for each speed category. Traffic
count data were acquired from the Traffic Engineering Divisions of the city of Tacoma. These
numbers, when multiplied by the appropriate length of roadway, give the VMT. The product
of the VMT per grid and the appropriate emission factors gives the total emissions per grid.
Resuspended Road Dust
The emission factor for road dust is a function of the vehicle speed. High-speed roadways are
swept clean by the turbulence induced by the flow of traffic. For principal and minor arterials
(35 and 25-mph zones), the factor used was 2.8 g/VMT. For limited-access highways (55-
mph zones), the factor used was 0.3 g/VMT (AP-42, Vol. I, pg. 11.2.5-5, 9/85). For a grid
having arterial streets with 10,000 VMT per day, the resulting emissions would be:
(10.000 VMT/dayK2.8 g/VMW365 day/yearl =11.3 ton/year PM10.
(454 g/lb)(2,000 Ib/ton)
268
-------
Conclusions
The results of the inventories clearly show the importance of resuspended road dust and motor
vehicle exhaust. Ambient impacts from woodsmoke are also important. The emissions from
the use of natural gas and distillate oil for residential heating are negligible. Table 3
summarizes the results of the PM10 area source inventory for the base year 1986:
Table 3. PM1B Area Source Inventory-1986
Source Tideflats
Tons/year kg/day
Exhaust 58 143
Road Dust 357 887
Ships 9 22
Railroads 6 15
Airplanes — —(a)
Woodstoves 18. 109
Total 448 1,176
(a) Insignificant
For the 1991 baseline inventory the following growth factors were assumed:
Growth Factors 1986-1991
Source Tideflats
Exhaust + 3% per year
Road Dust + 3% per year
Ships no change
Railroads no change
Airplanes N/A
Woodstoves no change
Growth factors for vehicular sources (i.e., exhaust and road dust) were determined by the
Tacoma traffic engineering division based on the rate of growth in traffic volumes over the
years 1984-1986. Growth factors for residential heating (i.e., wood stoves) were based on the
rate of population growth over the years 1980-1986 (see Residential Heating).
269
-------
APPENDIX E. LABORATORY RESULTS--
18-DAY RECEPTOR MODELING FIELD STUDY
E-l. Ambient Monitoring for Receptor Modeling Study 273
E-2. Fine-Particle Results 279
E-3. Coarse-Particle Results 291
E-4. VOC Results 301
E-5. Meteorological Data 313
E-6. Linear Correlations Between Sites 315
E-7. PAH Results 323
271
-------
Appendix E-l. Ambient Monitoring for Receptor Modeling Study
FIELD SAMPLING
Dichotomous PM10 Filter Samples and Sampling Devices
AREAL arranged for its on-site contractor, NSI Environmental Services, to make all particle
sampling media available to NBA [gravimetric determinations were made on 75 pairs (coarse
and fine) of 37-mm-diameter ringed Teflon filters; 72 pairs of filters for field sampling, and
three pairs for field blanks]. Additionally, 80 pairs of 37-mm-diameter quartz filters were
obtained by the on-site contractor from Sunset Laboratories; the quartz filters were certified as
clean, pre-fired, and placed in aluminum-foil-lined plastic Petri dishes. For field sampling
purposes, 80 pairs of quartz filters were used, with eight pairs set aside as field blanks. For
both sets of quartz and Teflon filters, field data sheets with information on filter number, flow
rate, sampling time and dates, and sample location were also supplied. AREAL specified that
for the receptor modeling work, sampling periods would consist of 12-hour intervals;
specifically, 7:00 a.m. to 7:00 p.m. and 7:00 p.m. to 7:00 a.m. cycles. AREAL also provided
the standard operating procedures for the dichotomous samplers.
At each site, two dichotomous samplers were used for the quartz and Teflon filters. The
following Sierra-Andersen equipment was used: Series 240 virtual impactors; Model 246B PM10
inlets (flat top design); and virtual impactor filter holders. The samplers and inlets were
obtained from EPA Region 10, Oregon Department of Ecology, and NEA; obtaining equipment
that met current reference method specifications necessitated using these multiple sources.
Prior to field operations, NEA was responsible for training monitoring personnel and calibrating
the sampling devices. During the sampling program, NEA conducted flow checks, performed
sampler maintenance, completed field data forms, made filter changes, and refrigerated exposed
filters. NEA sent the filters back to AREAL in two shipments, corresponding to the two
sampling phases.
The dichotomous pump units were calibrated by NEA technicians at the home office in
Beaverton, Oregon. Flows were then converted to the seasonal average temperature and
pressure in Tacoma. Also, the NEA inlets were carefully cleaned and inspected for damage
before being sent to the field. Dichotomous tubing was examined for cracks and bends, and
technicians installed new fittings on the tubing.
The PM10 samplers ran concurrently with the VOC canister samplers (VOCCS) during the 12-
hour intervals described earlier. Technicians changed filters and canisters every 12 hours and
recorded data on field sheets. Information on the field data sheets included sampling data,
sampler and canister identification, site location, sampling time, flow checks, and gauge
pressure. Particulate samples were removed immediately and placed in the Petri dishes with
the corresponding identification numbers. Canisters were shut off and sealed with a swage-lock
cap fitting to prevent leakage, returned to their respective shipping boxes, and shipped to
Battelle-Columbus for laboratory analysis. The original field data sheets, which included field
data such as barometric pressure, temperature, and sky conditions, were included in the
shipping box. The dichotomous filters were placed in Petri dishes and these were wrapped in
aluminum foil to preserve the sample.
VOC Canisters and Sampling
A single VOCCS was located at each site. At the Morse Industrial site, an EPA-modified
Wedding VOCCS sampler was installed. The modification was made by removing the critical
273
-------
orifice and replacing it with a mass-flow controller; this enabled the sampler to operate at a
variable flow rate and collect a larger volume of air. An Andersen VOCCS system was used
at the Alexander Avenue site; like the modified Wedding unit, the Andersen system also
operates by way of a mass flow controller. Certified-clean, evacuated, stainless steel VOC
canisters were provided by Battelle-Columbus under a separate contract. In addition to the 72
canisters used for the field sampling, two field blank canisters were also submitted for analysis.
ANALYTICAL MEASUREMENTS
Gravimetric Measurements
Polyolefin-ringed Teflon filters were used for coarse and fine particle mass determinations.
Individual filters were placed in plastic Petri dishes with covers that were prelabeled with
identification numbers (199101C to 199175C for coarse filters and 299101F to 299175F for fine
filters). Gravimetric measurements were performed on a Metier ME22 microbalance with a
Metier BA25 digital display and Metier BE22 balance control unit. The microbalance was kept
in a temperature- and relative-humidity-controlled room (nominally 50 percent relative humidity
and 72 °F). For both tare and final gravimetric measurements, the filters were allowed to sit
overnight in the balance room to equilibrate.
Each weighing session began and ended with a calibration check using Class S weights. Repeat
measurements were performed on every sixth filter. The mass loadings were calculated as the
difference between the final mass and the tare mass. In cases where replicate measurements
were made, the average value of the two readings was used for subsequent calculations.
Quartz Filter Procedures
Prepared quartz filters were purchased directly from Sunset Laboratories. These filters arrived
individually wrapped in plastic Petri dishes lined with aluminum foil. Unique identification
numbers were affixed to the dishes (identification numbers 199201 - 199280 for coarse particle
sampling and 299201 to 299280 for fine particle sampling). After the filters were numbered
they were given to EPA to be sent to NEA Laboratories for sampling. Data forms to be
completed in the field were also sent to NEA. The samples were returned in two lots together
with the Teflon filters (December sampling and January sampling) and stored temporarily in a
laboratory refrigerator.
The quartz filters from the fine-particle sampling were apportioned for three separate analyses:
elemental/organic carbon analysis, ion chromatography analysis, and PAH analysis. One-half
of a filter was to be supplied for the first analysis and one-quarter of a filter for each of the
other two analyses. Filters were first cut into halves by carefully visually bisecting the filter
deposit area and then cutting with a clean razor blade. One of the filter halves was then
further cut into two parts, again being careful to split the deposit area. As a check, each filter
fraction was weighed; however, it was found that the nonuniformity of the quartz filters and
the asymmetrical deposits made these measurements unusable.
The filter halves were returned to the labeled Petri dishes and sent to Sunset Laboratories for
elemental/organic carbon analysis. One of the filter quarters was placed in a pre-cleaned 30
mL polyethylene bottle for ion chromatography analysis. The second filter quarter was placed
in a new Petri dish that was labeled with the same identification number as the original whole
filter.
No analysis was planned for the quartz filters containing the coarse-particle fraction so these
filters were stored in a freezer until completion of the project.
274
-------
Ion Chromatography Analysis
Ion chromatography analysis was performed on the 80 quartz filter quarters that resulted from
the filter cutting operations described earlier. Seventy-two of the fractions were cut from field-
sampled filters and eight of the fractions were cut from the field blanks.
Filter extraction bottles (30-mL polypropylene bottles) were carefully cleaned prior to use.
Each bottle was rinsed first with deionized water and then filled with ion chromatography eluent
and sonicated for 30 minutes. The bottles were then emptied, dried in a vacuum oven, and
capped. Bottles were labeled with filter identification numbers. These were loaded with the
filter quarters during the filter quartering operations described earlier. After loading, the
sample bottles were delivered to the analytical laboratory and refrigerated until extraction.
Ion chromatography analysis was performed with a Dionex Model 10 instrument. A Dionex
AG3 guard column and an AS3 separatory column were used in conjunction with a fiber
suppressor column and a conductivity detector. The ion chromatography eluent composition
was 0.0024M sodium carbonate and 0.0018M sodium bicarbonate. Data were recorded with
a SpectraPhysics Winners system for data storage.
Sets of sample bottles were grouped together to make up a sufficient group for one day of
analysis. For the filter extraction, 15.0 mL of the ion chromatography eluent were added to
each bottle. The bottles were sonicated for 30 minutes in an ultrasonic bath and then stored
overnight in a refrigerator for analysis the next day. An extracting solution blank sample was
included with each set of filters for analysis. The extracting solution blank was prepared by
placing ion chromatography eluent in a cleaned empty bottle and then sending this sample
through the same sonication and storage procedures as the regular filter samples. Each sample
was filtered with an iso-filter prior to loading it in an ion chromatography sample cup. This
prevented problems that arise from quartz fibers that remain suspended in the eluent after the
filters break up after sonication.
A quality control solution containing nitrate and sulfate of known concentrations was prepared.
A sample of this solution was run during the ion chromatography analysis as the second sample
of a run sequence and approximately every sixth sample position after that. The results from
these repeat measurements were used to calculate the daily relative standard deviation for each
component.
Organic Carbon and Elemental Carbon Analysis
Quartz fine-fraction filter halves were mailed to Sunset Laboratories for organic
carbon/elemental carbon analysis by a thermal-optical method similar to that of Johnson et al.
(1981). These filters were mailed in their original foil-lined Petri dishes and labeled with the
unique identification numbers for the study.
Results were supplied from Sunset Laboratories both as hard copy and as LOTUS and ASCII
floppy disk files. Data were presented as jig carbon per cm2 for both the organic carbon
determination and the elemental carbon determination. Error bars were reported for each
sample for each of the determinations.
X-ray Fluorescence Analysis
Energy-dispersive XRF was used to determine elemental composition of the Teflon filter aerosol
deposits (Dzubay et al., 1982). In this method, the sample is irradiated with x-rays, which
ionize the constituent atoms by removing the inner electrons. The resulting excited state atom
relaxes back to the ground state by emission of photons whose energies are characteristic of the
atom. The emitted photons are detected by a solid state detector which registers each detection
275
-------
event as a voltage pulse proportional to photon energy. Thus, by measuring the voltage pulses
and amplitudes, the species that are present can be quantified. The spectrometer used in this
study is located at EPA in Research Triangle Park, North Carolina. It was constructed by
Lawrence Berkeley Laboratory in Berkeley, California.
The spectrometer is calibrated using commercially available metal foils and salts (Micro-Matter
Co., Eastsound, Washington), which have been evaporated onto thin membranes and
gravimetrically assayed to determine concentration. Polymer films containing organo-metallic
compounds are also used for calibration. A sensitivity curve for all of the elements associated
with each fluorescer is determined by least squares fitting. This provides an accurate sensitivity
for elements for which accurate calibration standards may not be available.
Background spectra from blank filters are measured for all types of filters and their lot numbers
currently in use. Approximately 36 blanks are measured for background determination. If any
contamination is found on a blank, its spectra is not used in background determination. The
spectra from the acceptable blanks are stored on file for use in spectral processing of samples
on filters of the same type and lot number. Elemental shape spectra are also used in spectral
processing. These spectra are measured from clean standards which may be calibration
standards and are stored for least squares fitting of sample spectra. Data analysis is performed
by least squares fitting. The elemental shapes and the background spectra are fitted to the
unknown spectra. The data are then corrected for x-ray attenuation and spectral overlap.
In total, 72 pairs of filters and three pairs of unsampled field blanks were analyzed. Filters
were loaded in sample trays and automatically processed through the system in a series of three
analysis runs. Before and after each run, six quality control standards were automatically
analyzed as a part of the run. to validate the data. The results of two standard reference
material samples were reported with every run. Reported uncertainties represent one standard
deviation.
Due to a computer programming error discovered in early 1991, the attentuation
corrections for dichot coarse Mn, Fe, Co, Ni, Cu, and Zn were not calculated into the
coarse-particle data as reported from the laboratory. The reported values are low by
approximately 5% for Fe, 7% for Co, Ni, Cu, and Zn, and less than 6% for Mn. Because
the corrections would be approximate and less that one standard deviation, the data have
not been corrected for this error.
PAH Analysis
The quartz filter quarters designated for PAH analysis were grouped into seven sets. The
samples were grouped as listed below:
Set 1 Morse Supply site, December, boiler running;
Set 2 Morse Supply site, December, boiler not running;
Set 3 - Morse Supply site, January, boiler running;
Set 4 Alexander Avenue site, December, boiler running;
Set 5 - Alexander Avenue site, December, boiler not running;
Set 6 - Alexander Avenue site, January, boiler running; and
Set 7 Eight unsampled filters (field blanks).
The "boiler" referred to above was the Simpson Tacoma Kraft facility recovery boilers and
hogged fuel boilers.
The filters for each set were added to 250-mL round-bottom flasks and connected to reflux
condensers for extraction. Approximately 175 mL of methylene chloride was used during the
20-hour extraction period. After extraction, each flask was reduced to several mL on a rotary
276
-------
evaporator. The contents were carefully transferred to volumetric centrifuge tubes with
additional washings of the round bottom flasks with methylene chloride. The samples were
reduced in volume to less than one mL and transferred to 1-mL volumetric flasks. The samples
were then diluted up to 1-mL.
It would have been desirable to perform gravimetric analyses on aliquots of the fractions.
However, the total mass was insufficient to make these measurements and still ensure that there
would be adequate sample remaining for the organic analyses. The seven samples were
delivered to the GC/MS laboratory and FTIR for analysis.
Preliminary analysis of the 1-mL extracts showed that they were too dilute, so they were
concentrated down to 100 /xmL under streams of nitrogen. Five samples (sets 1, 2, 4, 5, and
7) were analyzed by full scan GC/MS using an Hewlett Packard 5970 MSD. All seven samples
were analyzed by selected ion monitoring (SIM) for detection of PAHs and retene.
VOC Analysis
A cryogenic gas chromatographic system was used to analyze the VOC canister samples. This
system was composed of two components; a collection apparatus and an analysis apparatus.
Sample collection was accomplished with a modified Nutech Model 320-01 cryogenic unit. The
Nutech instrument contained two subsystems. An electronics console was employed for setting
and controlling various temperature zones, while the sample handling unit contained the six-
port valve and cryogenic trapping components. Three temperature zones were controlled by
the console. The valve and transfer lines were maintained at 120°C. During sample collection,
the trap temperature was regulated by the electronics console, which controls the release of
liquid nitrogen via a solenoid valve. During the current study, the temperature setpoint of the
trap during sample collection was -160 +. 5°C. A cylindrically coiled 250-watt heater was used
to heat the trap during the sample desorption cycle. The trap was wrapped around the heater
to promote heat transfer during the desorption cycle (-160 to 120°C in 60 seconds). Rapid
heating of the trap provided efficient transfer of sample components onto the gas
chromatographic column. The sample trap was constructed of 20- x 0.2-cm-ID stainless steel
tubing packed with silanized glass beads (60/80 mesh). A Carle six-port air-actuated valve
(Hach Company) was used to facilitate sample collection and injection.
A Perma Pure dryer (Model MD-125-48F) with a tubular hygroscopic ion-exchange membrane
(Nafion) was used to remove water vapor selectively from the sampled gas stream. The dryer
was purchased in a shell and tube configuration. The tube size had a 30- x 0.1-cm ID and was
imbedded within a shell of Teflon tubing of 0.25-cm ID. Sample flow through the tube was
maintained at 35 mL/min with a mass flow controller (Tylan FC-260). A countercurrent flow
of dry zero air (200 mL/min) was used to purge the shell. Use of the dryer permitted collection
of larger volumes of sample air (350 mL), thereby lowering the limit of detection.
Sample analysis was achieved with a Hewlett Packard Model 5880A gas chromatograph
equipped with a flame ionization and mass selective detection system (HP 5970). A 50- x 0.32-
mm-ID, OV-1 fused silica column (Hewlett Packard) was used to resolve the target compounds.
The column flow was maintained at 3 mL/min with a mass flow controller. Zero grade helium
(Matheson) served as the carrier gas. Optimum analytical results were achieved by temperature
programming the gas chromatographic column from -50° to 150°C at 8°C/min. The column
exit flow was split using a low dead-volume tee (Alltech, Inc.). One-third of the flow was
directed to the mass selective detector; the remaining flow passed through the flame ionization
detector.
The mass selective detector was operated in the SIM mode of operation for VOC canister
analyses. In this mode, the mass spectrometer monitored only preselected ions, rather than
277
-------
scanning all masses continuously between two mass limits. As a result, increased sensitivity
and improved quantitative analysis were achieved. For the canister samples, two characteristic
ions were monitored for each target compound, and quantification was based on peak areas.
Details of these analyses can be found in Pollack and Smith (1990).
278
-------
Appendix E-2. Fine-Particle Results
279
-------
Site
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
PSAPCA
Date
05-Dec-89
05 -Dec -89
06-Dec-89
06-Dec-89
07-Dec-89
07-Dec-89
08-Dec-89
08-Dec-89
09-Dec-89
09-Dec-89
10-Dec-89
10-Dec-89
11-Dec-89
11-Dec-89
12-Dec-89
12-Dec-89
13-Dec-89
13-Dec-89
H-Oec-89
H-Dec-89
15-Dec-89
15-Dec-89
02-Jan-90
02-Jan-90
03-Jan-90
03-Jan-90
04-Jan-90
04-Jan-90
05-Jan-90
05-Jan-90
06-Jan-90
06-Jan-90
07-Jan-90
07-Jan-90
08-Jan-90
08-Jan-90
Teflon
Start- Duration
Time
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
1845
645
1830
640
1845
(min)
685.0
705.3
725.0
707.0
724.2
705.8
716.9
710.5
733.4
713.7
705.4
727.5
705.3
740.0
682.4
711.1
723.9
710.3
709.8
719.9
711.8
722.5
716.7
709.9
719.5
712.8
724.4
701.5
696.9
758.2
690.0
704.6
724.4
702.4
730.8
703.0
Fine Organic Elemental
Mass Carbon Carbon
1C
N03-
1C
S04--
ug/m**3 ug/m**3 ug/m**3 ug/m**3 ug/m**3
20.79
19.90
12.11
22.87
37.12
9.90
7.15
5.06
8.98
42.98
21.13
52.31
64.43
60.15
48.85
24.79
29.41
38.97
36.93
41.87
27.67
15.65
15.88
14.15
7.31
7.65
7.25
14.99
10.92
4.35
2.17
6.15
4.26
10.29
10.51
13.70
6.88
2.26
10.26
13.14
3.43
2.62
1.65
3.27
19.97
8.46
14.96
21.06
29.81
18.79
9.27
11.72
13.32
14.32
18.04
9.74
2.41
7.48
5.66
3.55
4.11
3.21
6.20
5.15
1.97
4.93
1.25
1.70
2.22
4.54
4.98
5.02
1.61
0.48
1.18
3.05
0.61
1.14
0.27
0.59
1.76
0.75
1.22
3.54
2.71
3.10
1.60
3.49
2.88
3.02
2.97
2.44
0.47
2.70
0.82
1.73
0.87
1.53
0.89
2.94
0.53
1.18
-0.01
0.46
0.32
2.99
1.29
1.26
0.71
0.42
1.28
1.55
0.14
0.10
0.21
0.41
0.98
1.22
1.82
3.11
2.25
3.31
2.61
2.34
1.18
1.72
1.74
2.01
0.95
0.84
0.47
0.37
0.47
0.24
0.83
0.41
0.23
0.48
0.06
0.18
0.23
0.34
0.50
2.41
1.69
0.61
1.93
5.18
2.07
1.97
0.85
0.51
1.11
2.40
1.89
6.22
4.19
4.37
2.30
2.89
2.37
4.32
4.41
3.78
1.51
1.92
1.38
1.67
1.13
1.71
1.70
1.84
1.22
0.86
1.03
1.23
0.60
0.86
0.70
281
-------
PSAPCA
FINE FILTER
ERROR ERROR ERROR
SDATE STIHE GHAS GMAS AL AL SI SI S
S
ERROR ERROR
CL CL
NG/H3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
20790
19910
12110
22870
37130
9895
7145
5053
8986
42960
21140
52280
64460
60150
48880
24800
29410
38980
36920
41860
27660
15640
15870
14150
7300
7652
7168
14970
10920
4353
-4532
2171
6157
4265
10280
10510
1845
1793
1744
1788
1746
1791
1763
1778
1725
1771
1793
1736
1793
1708
1854
1778
1746
1780
1780
1756
1775
1748
1784
1780
1756
1773
1746
1801
1836
1688
1832
1793
1746
1801
1729
1798
53.43
8.04
17.52
5.98
125.6
107.1
-85.42
244.5
683.3
53.07
200.8
7868
242.5
107
386.9
652
282.1
1167
154.1
24.61
389.6
3.78
1.71
3651
-16.71
69.7
-28.51
188.7
38.27
335.6
37.16
113.9
103.6
35.37
29.71
33.11
39.39
39.74
34.17
38.15
46.72
39.22
38.04
50.54
109
39.51
48.41
1180
62.11
47.03
76.57
108.5
63.12
183.4
48.59
41.38
72.25
33.33
37.44
536.3
32.22
33.91
30.05
47.26
33.78
60
35.76
38.74
37.44
33.84
33.51
36.87
106.8
21.57
16.25
45.07
101.7
13.75
-9.407
5.033
51.27
23.27
3.869
92.79
92.45
51.54
126.8
71.93
98.95
80.92
123.8
59.24
156.8
44.79
69.21
79.7
4.016
-0.058
60.42
19.75
15.99
30.47
66.05
18.13
6.899
22.85
31.39
13.35
21.16
14.8
12.67
15.62
21.8
12.94
13.58
11.45
15.05
13.6
12.83
20.68
22.82
17.57
25.68
18.48
22.28
20.08
24.05
18.04
27.11
14.58
17.33
17.88
11.8
11.04
14.89
13.08
12.2
11.93
16.07
12.49
11.83
12.48
12.98
12.86
678.2
761.8
687.7
873.1
1730
864.8
704.4
295.7
165.1
525.9
996.1
850.9
2554
1692
1868
876.8
1125
1116
1766
1526
1484
1029
512.1
403.8
500.8
337.5
608.9
544.9
447.1
238.4
241.7
363.1
463.1
211.8
328.3
253.1
52.57
57.89
52.25
66.54
130.3
65.39
53.83
23.4
14.52
41.63
75.37
64.71
192.8
128.1
140.9
66.79
86.36
85.16
132.8
115.2
111.6
77.47
39.8
31.43
38.24
26.17
46.87
41.7
34.62
19.2
19.71
28.05
35.56
17.23
26.4
20.64
239.1
248.7
97.12
194.8
308.2
45.16
79.9
208
208.1
327.9
77.71
272.4
533.2
538.1
373.2
179.8
150.1
302.3
146.6
169.1
128.2
42.3
66.28
124.9
35.47
10.47
19.13
57.88
21.13
109.8
79.93
259.8
393.3
100.4
150.5
91.22
18.78
19.36
8.446
15.51
23.89
5.262
7.492
16.2
16.35
25.22
7.212
21.1
40.63
40.81
28.71
14.55
12.62
23.42
12.25
13.83
10.78
4.886
6.587
10.37
4.48
3.229
4.258
5.89
3.855
9.13
7.287
19.96
29.73
8.648
12.19
8.193
282
-------
PSAPCA
FINE FILTER
SDATE STIME K
ERROR ERROR
K CA CA
NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
113.7
133
86.02
128.4
223
54.9
23.71
24.15
59.96
289.5
112.2
186
237
380
223.1
148.3
139.1
208.7
145.6
170.8
120.3
153.8
64.1
62.23
25.16
33.87
29.11
126.9
50.59
20.93
121.3
21.26
33.73
70.08
82.95
85.81
9.003
10.39
6.972
10.05
16.89
4.912
3.288
3.005
5.279
21.74
8.833
14.18
17.94
28.41
16.93
11.47
10.85
15.84
11.28
13.1
9.419
11.8
5.627
5.391
3.191
3.598
3.266
9.881
4.655
2.853
9.529
2.985
3.588
5.936
6.771
7.026
81.34
22.1
41.23
30.48
65.47
45.3
23.72
13.08
21.11
17.44
23.57
43.1
79.21
30.42
89.62
47.12
102.7
40.42
63.47
29.77
75.6
17.53
42.32
29.32
22.74
12.32
28.79
74.46
26.09
11.48
38.54
12.85
21.06
17.45
35.06
17.64
6.841
3.801
4.222
3.929
5.853
4.54
3.734
2.952
3.814
3.188
3.444
4.486
6.803
3.856
7.606
4.781
8.376
4.421
5.743
3.882
6.449
3.055
4.491
3.751
3.361
2.975
3.526
6.337
3.533
2.764
4.25
3.104
3.584
3.34
3.928
3.331
ERROR
TI TI V
ERROR
V
NG/M3 NG/M3 NG/M3 NG/M3
5.869
-9.703
3.08
5.478
8.402
3.374
0.9957
0.436
8.546
3.801
-3.246
7.219
-4.232
5.031
9.649
8.016
-4.285
7.359
9.997
6.574
1.331
4.057
2.158
6.349
3.614
2.636
2.298
0.756
3.468
3.144
5.248
0.5937
•0.6227
-0.4937
5.969
0.787
9.932
4.676
3.919
4.162
4.677
4.01
5.118
4.115
5.17
3.79
4.616
3.891
5.645
5.34
4.523
5.512
5.728
4.178
5.195
5.098
4.417
3.849
4.309
4.39
4.123
5.289
3.739
4.027
4.215
4.386
4.235
4.748
5.178
4.132
3.799
5.986
5.432
1.379
6.091
9.196
25.35
8.704
5.253
5.852
3.24
4.364
8.746
9.459
11.98
8.105
14.62
7.067
1.98
6.872
20.06
9.232
7.613
7.665
5.39
4.846
10.84
16.75
11.67
6.743
8.839
3.351
3.433
7.606
8.554
3.943
4.823
3.485
3.369
2.145
1.582
2.003
4.274
1.763
4.161
3.097
4.417
1.945
1.9
1.905
5.736
5.342
2.817
2.028
4.905
2.249
2.714
4.736
2.066
1.612
1.686
3.182
1.878
2.484
2.446
1.736
1.78
1.573
1.569
1.843
5.657
2.478
1.49
2.073
ERROR
CR CR
NG/M3 NG/M3
1.104
3.05
3.91
0.7272
6.45
0.9116
0.6384
0.7314
1.339
1.093
1.255
9.194
7.139
2.908
3.709
3.735
3.942
1.44
4.025
1.637
3.443
0.487
1.463
3.526
0.58
0.388
3.192
1.566
1.196
0.7285
0.747
1.403
-0.3558
0.4011
1.065
0.1956
0.7008
0.8233
0.7762
0.6899
1.205
0.6454
1.064
0.8206
1.107
0.6762
0.6228
1.175
1.54
1.302
0.9226
0.7963
1.29
0.7596
0.8521
1.173
0.7866
0.5791
0.7056
0.9563
0.6276
0.6185
0.7953
0.6688
0.6303
0.5601
0.6228
0.6314
1.279
0.7526
0.6401
0.6236
283
-------
PSAPCA
FINE FILTER
ERROR ERROR ERROR ERROR ERROR
SDATE STIME MN HN FE FE NI NI CU CU ZN ZN
NG/M3 NG/H3 NG/H3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
34.16
16.04
15.22
19.88
31.84
6.654
8.947
2.25
10.66
26.93
7.817
13.31
56.06
37.46
46.25
27.55
38.96
35.76
58.5
38.42
31.37
11.97
23.51
4.942
5.11
1.508
8.271
8.495
14.48
1.568
10.62
1.344
2.323
3.358
23.04
9.534
2.825
1.659
1.527
1.825
2.708
0.9546
1.23
0.7027
1.261
2.298
0.9951
1.379
4.37
3.09
3.7
2.384
3.209
2.966
4.557
3.171
2.641
1.248
2.139
0.8728
0.8709
0.6956
1.031
1.047
1.451
0.6519
1.226
0.6787
0.7944
0.8128
2.028
1.173
194.7
69.56
158.5
104.2
343.8
31.32
60.39
15.76
40.56
50.65
21.99
86.75
420.1
130.6
267.1
142.8
248.5
138
377.2
125.9
231.9
47.03
217.7
58.16
37.94
12.75
66.41
57.61
111.9
12.62
122.7
6.715
5.242
13.22
337.5
47.19
18.93
7.451
15.51
10.55
32.75
3.976
6.622
2.573
4.811
5.642
3.173
8.914
39.87
12.95
25.67
14.12
23.91
13.68
35.87
12.56
22.35
5.263
21.08
6.334
4.515
2.42
7.029
6.289
11.27
2.301
12.25
2.09
1.871
2.542
32.14
5.38
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
0.6223
3.028
6.676
5.196
19.51
5.802
3.94
3.117
2.962
0.6771
6.633
30.75
14.89
4.501
8.645
6.155
7.559
7.02
14.11
6.306
7.386
4.388
2.263
1.709
1.55
7.741
7.116
4.488
0.9557
0.9987
0.0644
3.722
3.425
0.7153
4.233
-0.4277
0.9622
1.209
1.327
1.248
2.426
1.292
1.24
1.016
1.153
0.8913
1.305
3.421
2.04
1.175
1.563
1.385
1.483
1.408
1.989
1.383
1.385
1.086
1.121
1.055
0.9517
1.414
1.31
1.173
0.9445
0.8422
0.9537
1.134
1.046
0.9893
1.153
0.9136
107.7
79.65
134.4
22.74
20.5
9.678
6.947
5.059
10.13
4.842
6.526
56.58
20.23
18.38
23.09
15.97
12.22
10.77
14.84
8.159
11.11
3.165
5.649
35.13
28.66
71.24
39.41
44.42
43.83
59.1
66.17
12.93
4.785
2.049
8.772
1.397
10.47
7.87
12.91
2.653
2.457
1.546
1.43
1.138
1.615
1.135
1.276
5.717
2.45
2.25
2.72
2.098
1.795
1.666
1.989
1.488
1.637
0.9653
1.317
3.751
3.149
7.057
4.112
4.591
4.559
5.913
6.61
1.818
1.128
1.02
1.46
1.011
139.7
78.26
40.83
38.83
64.84
57.54
15.3
2.654
13.37
30.28
15.11
36.88
132.8
74.53
95.45
57.99
66.71
61.91
73.36
54.66
66.13
23.26
28.79
10.96
9.833
9.403
10.43
13.29
20.53
2.818
22.27
1.738
3.678
23.42
95.32
9.657
13.39
7.693
4.211
4.027
6.423
5.748
1.927
0.8102
1.739
3.23
1.876
3.842
12.74
7.31
9.278
5.798
6.601
6.152
7.211
5.48
6.53
2.564
3.125
1.524
1.41
1.393
1.455
1.734
2.373
0.8537
2.562
0.8128
0.885
2.618
9.236
1.426
284
-------
PSAPCA
FINE FILTER
SDATE
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
STIME
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
BR
NG/H3
10.31
5.41
2.709
6.922
12.96
3.27
1.133
1.024
1.975
17.69
5.046
6.423
17.93
21.73
14.46
12.13
11.98
19.66
14.35
23.21
12.09
3.946
5.379
2.217
2.481
0.5203
3.118
3.876
2.482
0.7023
3.289
-0.4565
2.126
1.644
2.808
2.331
ERROR
BR
NG/M3
1.327
1.031
0.7535
1.066
1.539
0.7743
0.7668
0.6238
0.8291
1.938
0.91
1.05
2.019
2.312
1.697
1.524
1.514
2.141
1.697
2.461
1.441
0.8195
0.9934
0.7521
0.7668
0.6611
0.7261
0.7921
0.7748
0.6179
0.8352
0.6449
0.6914
0.7632
0.786
0.8418
SR
NG/M3
0.9866
1.578
0.9374
2.572
0.4876
0.991
1.263
1.565
0.3144
0.3576
0.2424
-0.867
1.24
1.344
4.434
2.633
7.652
7.045
1.996
1.494
2.074
1.147
-0.6129
1.279
0.0232
0.4404
0.6978
2.282
0.9337
0.9636
0.31
0.9045
0.0845
1.042
1.931
1.401
ERROR
SR
NG/M3
0.8025
0.9351
0.7289
0.8678
0.7851
0.7823
0.9012
0.7418
0.8368
0.7417
0.7278
0.7299
0.8202
0.8327
0.9935
0.9154
1.198
1.182
0.8633
0.8777
0.797
0.7159
0.8412
0.796
0.7178
0.7344
0.6966
0.8017
0.7691
0.7019
0.7952
0.7855
0.7016
0.8009
0.8089
0.8187
BA
NG/M3
51.12
34.95
22.61
18.5
20.33
13.62
27.3
1.504
24.57
0.9743
15.09
14.97
32.75
23.45
20.89
20.7
43.78
7.66
18.32
12.98
34.41
7.944
23.14
19.03
9.736
21.17
-2.272
25.65
11.3
14.19
25.43
16.17
5.514
10.13
2.369
26.02
ERROR
BA
NG/M3
11
10.89
9.414
9.792
9.812
9.681
10.6
8.969
10.14
8.857
9.219
9.11
10.04
9.624
10.22
10.02
11.02
9.627
9.868
9.812
9.913
8.729
10.33
9.403
9.123
9.474
8.52
9.582
9.076
8.628
10.11
9.4
8.846
9.54
8.987
10.06
PB
NG/M3
40.03
17.78
15.11
30.52
48.25
16.21
24.24
7.19
15.17
47.47
26.93
24.37
92.19
65.74
55.77
31.3
69.19
51.16
45.25
48.19
32.11
19.1
20.11
10.01
5.94
4.527
28.47
10.21
11.29
7.095
11.21
1.817
5.538
3.837
25.21
14.38
ERROR
PB
NG/M3
4.5
2.806
2.359
3.672
5.197
2.534
3.276
1.804
2.531
5.098
3.325
3.13
9.193
6.756
5.902
3.793
7.115
5.495
4.967
5.246
3.79
2.617
2.933
2.093
1.794
1.733
3.377
2.075
2.162
1.785
2.2
1.717
1.715
1.799
3.172
2.432
285
-------
Site
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
Date
05-Dec-89
05-Dec-89
06-Dec-89
06-Dec-89
07-Dec-89
07-Dec-89
08-Dec-89
08-Dec-89
09-Dec-89
09-Dec-89
10-Dec-89
IO-Dec-89
11-Dec-89
11-Dec-89
12-Dec-89
12-Dec-89
13-Dec-89
13-Dec-89
H-Dec-89
U-Dec-89
15-Dec-89
15-Dec-89
02-Jan-90
02-Jan-90
03-Jan-90
03-Jan-90
04-Jan-90
04-Jan-90
05-Jan-90
05-Jan-90
06-Jan-90
06-Jan-90
07-Jan-90
07-Jan-90
08-Jan-90
08-Jan-90
Teflon
Start- Duration
Time
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1915
706
1858
708
1902
737
1944
738
1958
737
1945
725
1945
745
720
1915
705
1900
(min)
665.1
706.5
726.2
719.4
708.2
721.0
722.7
694.2
732.8
720.8
702.7
726.7
715.2
739.7
694.1
708.4
730.7
706.3
709.6
727.7
711.7
712.9
713.6
710.9
731.3
695.2
730.7
698.1
715.0
736.0
693.2
717.1
710.5
705.2
721.9
718.0
Fine Organic Elemental
Mass Carbon Carbon
1C
N03-
1C
S04--
ug/m**3 ug/m**3 ug/m**3 ug/m**3 ug/m**3
23.71
17.89
14.43
28.76
37.77
7.61
4.60
4.31
9.94
43.48
26.32
43.40
56.84
65.39
69.64
22.73
34.05
40.98
45.57
42.79
29.78
16.24
21.95
11.98
6.82
5.55
7.00
18.23
12.26
17.04
3.15
6.09
7.93
13.82
16.36
10.40
7.98
4.54
11.76
11.94
3.54
3.09
1.88
5.47
22.08
12.88
19.63
25.33
36.51
29.54
8.97
15.70
19.90
20.34
19.75
13.08
3.88
10.70
5.54
3.29
2.92
3.07
6.53
4.13
2.66
5.14
1.36
1.63
2.07
5.83
5.94
3.30
1.97
2.25
1.60
2.68
0.76
1.12
0.58
1.24
2.13
1.26
1.55
3.38
3.58
4.42
1.54
3.79
3.96
4.49
2.91
2.50
0.74
3.39
0.78
0.89
0.54
1.03
0.87
1.81
0.61
1.32
0.10
0.44
0.38
3.36
1.75
1.14
0.88
1.17
1.62
1.35
0.39
0.26
0.21
0.51
1.19
1.76
2.61
3.20
2.53
4.08
2.38
3.01
1.80
2.60
2.08
2.26
1.63
0.83
0.58
0.32
0.40
0.26
1.01
0.44
0.25
0.64
0.22
0.24
0.31
0.46
0.81
1.11
1.33
2.05
3.25
3.04
0.74
0.50
0.32
0.68
1.51
2.48
2.65
5.68
5.22
6.36
1.92
3.59
3.14
4.53
3.79
4.01
2.25
1.45
1.13
0.81
0.63
0.60
0.93
0.94
0.34
0.90
0.10
0.28
1.51
0.94
0.81
286
-------
MORSE
FINE FILTER
ERROR ERROR ERROR
SDATE STIME GMAS GMAS AL AL SI SI S
ERROR ERROR
S CL CL
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3 NG/M3 NG/H3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
23710
17880
14480
28780
37780
7613
4601
4314
9985
43460
26310
43380
56860
65360
69700
22740
34040
40990
45540
42770
29810
16240
21940
11980
6826
5552
6917
18020
12260
17090
5953
3155
6083
7927
13820
16400
1901
1788
1741
1758
1786
1753
1748
1822
1725
1753
1798
1739
1768
1708
1822
1786
1729
1791
1780
1736
1775
1773
1781
1778
1729
1819
1729
1811
1779
1718
1824
1763
1778
1793
1751
1761
176
6.682
77.14
-8.246
142.1
21.44
-8.614
-5.65
-31.76
220.5
50.08
34.59
73.38
94.36
215.7
35.45
211.2
132.1
88.11
67.77
118.2
19.36
34.12
45.67
-29.66
•19.15
46.17
841.7
465.8
894.1
587.8
206.1
181.9
25.37
59.48
50.79
49.31
39.85
37.28
38.59
46.22
35.65
35.6
32.88
33.52
55.8
38.34
39.57
45.16
46.51
62.21
38.28
57.29
45.58
44.48
41.56
41.53
35.39
36.59
35.12
31.63
33.08
31.96
132.2
80.77
138.5
96.59
48.31
46.01
38.12
38.02
38.49
70.92
13.55
57.26
39.33
111
26.84
43.09
19.52
6.297
58.16
48.79
74.62
120.1
101.7
399.1
106.6
135
119.8
204.7
75.66
104.4
65.66
116.2
28.08
55.5
32.45
76.75
52.83
51.19
60.07
14.39
2.404
18.34
5.809
58.9
22.01
17.91
14.2
15.31
15.86
22.4
13.27
14.9
12.14
12.16
17.45
15.74
18.28
24.75
22.68
61.01
21.11
26.27
23.71
33.95
18.96
21.07
16.77
21.88
12.98
14.6
13.3
16.19
15.32
15.35
15.21
13.35
11.99
12.61
13.28
16.01
13.77
603.7
605.6
659.5
1227
1520
273.2
173.4
148.8
222.9
575.9
1065
1055
2106
1671
2542
928
1152
1298
1712
1635
1621
1105
635.4
413.7
329.6
204.3
257.8
451.9
375.9
172.9
314
91.23
168
534.7
359.4
350
46.89
46.75
50.42
92.32
114.9
21.97
22.46
13.41
18.8
46.17
80.64
80.01
159.6
126.8
191.4
70.3
88.3
98.74
130.3
123.8
121.9
83.09
49.28
32.12
26
16.88
21.28
34.9
29.67
14.64
25.28
9.192
14.32
41.62
28.9
27.66
251.9
556.5
140
317.9
284.3
133.6
249.4
287.4
183.7
336.2
148.2
330
386
479.9
550.9
154.9
226.4
174.7
208.8
205.6
94.54
24.3
74.66
112.4
122.3
13.56
97.48
97.47
88.85
295.6
129.4
511.5
659.4
331.6
168.4
159.8
19.67
41.88
11.46
24.41
22.12
10.96
23.26
22.05
14.54
25.97
12.16
25.35
29.77
36.58
41.92
12.63
18.06
14.23
16.79
16.42
8.77
4.29
7.653
9.521
10.09
3.507
8.418
8.484
7.959
22.58
10.8
38.38
49.27
25.48
13.58
12.89
287
-------
MORSE
FINE FILTER
SDATE STIME K
ERROR ERROR ERROR ERROR
K CA CA TI TI V V
NG/M3 NG/M3 NG/M3 NG/H3 NG/M3 NG/M3 NG/M3 NG/H3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
163.2
347.8
137.1
173
225.6
164.8
136.2
71.23
95.51
277.1
171.6
231.3
233.9
376.6
310.4
180.8
175.9
212.6
185.4
210.9
129.6
96.15
98.33
83.84
45.55
90
119.1
168.6
69.26
31.03
82.96
29.08
38.82
283.7
214
127.7
12.55
26.02
10.62
13.24
17.07
12.63
10.59
6.029
7.668
20.86
13.14
17.48
17.7
28.17
23.35
13.8
13.53
16.11
14.17
15.99
10.09
7.774
7.884
6.872
4.257
7.282
9.278
12.91
5.905
3.38
6.856
3.389
3.916
21.3
16.21
9.982
62
20.25
40.11
30.43
69.96
13.55
31.13
17.87
23.6
30.08
72.39
44.46
110.3
43.34
94.6
43.96
108.3
48.84
91.77
33.64
84.1
22.08
41
21.85
27.66
13.96
22.07
23.88
23.79
17.69
23.03
15.79
25.71
22.9
38.96
34.34
5.667
3.531
4.266
3.903
6.067
3.245
3.937
3.206
3.444
3.891
6.223
4.484
8.848
4.515
7.908
4.565
8.817
4.714
7.588
3.887
7.044
3.508
it. 297
3.424
3.533
3.141
3.182
3.538
3.718
3.258
3.557
3.229
3.537
3.558
4.299
4.035
2.534
4.272
6.694
6.253
8.093
-13.62
4.017
3.392
0.982
3.361
6.239
10.08
7.252
8.361
10.56
13.62
-5.223
12.53
12.42
6.955
6.584
3.426
5.199
1.789
11.76
3.638
7.091
2.734
-7.619
2.273
2.184
0.117
1.12
1.346
8.86
1.863
4.531
4.779
3.929
5.096
3.857
5.119
4.877
4.133
4.972
4.312
4.216
4.22
6.86
4.149
6.06
4.337
4.9
5.161
4.356
5.144
3.892
4.42
4.406
4.915
3.994
5.134
3.711
4.493
6.152
5.16
4.094
4.002
4.129
4.08
5.014
4.117
0.974
1.549
6.832
14.84
11.62
-3.123
0.949
2.26
0.649
3.257
8.644
8.787
12.35
8.446
18.66
7.784
2.356
5.96
12.54
9.996
15.08
5.094
2.248
0.414
2.65
1.546
3.818
0.959
-10.65
0.674
3.362
1.52
1.578
16.25
3.703
4.804
1.656
3.987
2.039
4.758
1.994
3.96
1.707
2.467
4.413
2.749
2.963
2.976
2.748
2.266
6.494
1.8
2.553
4.745
2.455
5.06
2.406
1.678
3.008
4.474
1.659
1.763
1.436
2.924
6.81
1.749
1.781
1.59
2.246
2.273
4.572
1.592
ERROR
CR CR
NG/H3 NG/M3
9.03
6.921
6.482
4.239
21.73
3.597
12.94
1.27
0.5638
0.8743
5.072
0.4251
8.463
3.833
16.13
3.162
6.78
1.085
67.48
11.91
8.727
-0.3261
24.77
-0.8951
0.8157
0.8782
6.468
3.435
1.72
1.362
2.106
0.4439
0.4827
1.618
4.292
2.064
1.175
1.276
1.006
1.229
2.266
1.083
1.487
0.7461
1.078
0.8244
0.9958
0.8176
1.147
0.8541
2.207
0.7622
1.118
1.155
6.47
1.716
1.169
0.6139
2.582
1.062
0.6188
0.624
0.9226
0.9172
1.625
0.5927
0.7142
0.6187
0.6921
0.6969
1.216
0.7026
288
-------
HORSE
FINE FILTER
ERROR ERROR ERROR ERROR ERROR
SDATE STIME MN MN FE FE NI NI CU CU ZN ZN
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
52.42
21.61
64.25
31.75
55.11
14.34
38.63
5.935
16.13
30.04
26.8
13.31
64.02
42.48
66.02
21.17
51.71
42.8
84.4
41.2
29.15
8.593
39.99
6.902
28.92
4.325
42.02
9.175
22.34
6.106
11.63
1.06
4.774
3.293
45.66
14.16
4.115
1.959
4.954
2.735
4.272
1.471
3.13
0.8963
1.603
2.572
2.305
1.392
4.904
3.401
5.128
1.902
4.095
3.438
6.348
3.331
2.464
1.082
3.236
1.002
2.432
0.8357
3.328
1.135
2.165
0.882
1.267
0.6901
0.847
0.8136
3.636
1.492
399
139.7
474
178.4
467.7
98.69
210.2
24.39
52.11
105.4
181.9
69.14
366.9
212.3
423.7
96.87
349.8
175.7
867.6
235
183.6
45.81
383.9
29.89
129.6
28.09
257.9
63.04
165.4
14.28
37.73
5.314
7.403
20.59
237.9
67.82
37.95
13.83
44.87
17.4
44.29
10.02
20.35
3.351
5.796
10.68
17.72
7.308
34.9
20.52
40.23
9.854
33.32
17.13
81.55
22.62
17.86
5.255
36.51
3.873
12.83
3.715
24.73
6.78
16.21
2.563
4.547
2.04
2.153
3.085
22.91
7.228
11.22
7.362
7.81
9.386
30.61
1.003
4.349
1.832
0.1333
2.756
6.959
1.968
17.83
5.848
26.41
2.686
8.976
3.507
95.2
27.73
19.47
0.7242
30.45
-0.7984
0.4403
0.7559
5.523
4.356
7.789
1.086
1.589
-1.605
-0.6665
8.841
5.703
0.6013
1.759
1.422
1.467
1.608
3.391
0.9802
1.23
0.9368
0.9207
1.145
1.363
1.017
2.275
1.309
3.099
1.074
1.656
1.085
9.369
3.145
2.398
0.9301
3.407
0.8467
0.8888
0.9295
1.185
1.154
1.485
0.9165
1.003
0.8196
0.884
1.532
1.26
1.02
13.03
10.11
13.2
6.146
14.3
4.447
5.577
2.11
4.082
8.546
7.789
5.961
17.12
10.83
17.23
5.735
15.31
7.109
26.31
7.713
8.618
3.861
13.56
2.171
4.598
1.494
7.683
7.291
6.376
1.535
3.486
2.088
0.1469
2.829
7
1.231
1.86
.593
.824
.317
.894
.182
1.278
0.9487
1.119
1.51
1.403
1.24
2.155
1.643
2.261
1.241
2.086
1.31
3.012
1.395
1.434
1.12
1.876
1.022
1.092
0.9711
1.317
1.357
1.349
0.9345
1.095
1.012
0.9086
1.076
1.326
1.013
79.82
32.98
67.55
56.92
73.96
47.73
34.55
4.341
17.56
31.14
34.38
33
97.99
80.07
106.7
30.44
81
80.37
82.53
69.6
54.25
25.94
33.62
8.905
27.02
5.888
52.11
10.36
14.33
5.34
14.45
0.808
5.432
10.65
43.1
12.31
7.841
3.497
6.661
-5.693
7.265
4.837
3.636
0.9352
2.079
3.329
3.621
3.476
9.496
7.825
10.32
3.248
7.925
7.852
8.073
6.854
5.435
2.837
3.54
1.345
2.918
1.092
5.217
1.469
1.839
1.034
1.816
0.7496
1.048
1.501
4.402
1.652
289
-------
MORSE
FINE FILTER
ERROR ERROR ERROR ERROR
SDATE STIME BR BR SR SR BA BA PB PB
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
8912H
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
8.531
5.782
3.528
8.292
14.59
3.051
3.07
0.9398
4.746
15.02
9.821
9.748
18.83
22.21
20.35
8.958
12.18
17.34
18.73
20.88
9.386
3.435
8.687
5.402
4.837
1.598
2.667
4.216
4.982
2.625
3.857
1.237
1.973
0.7313
6.129
4.304
1.213
1.036
0.8165
1.187
1.68
0.7929
0.8066
0.6511
0.9217
1.743
1.247
1.258
2.066
2.358
2.229
1.198
1.569
1.918
2.051
2.227
1.247
0.8844
1.199
0.9684
0.8748
0.7153
0.7299
0.866
0.9488
0.7594
0.9094
0.7405
0.777
0.7364
1.004
0.9291
-2.815
-1.131
1.413
6.941
2.907
1.28
0.9265
0.4293
0.067
2.138
-0.0314
-0.363
1.901
8.128
1.59
1.418
3.516
6.552
1.205
1.634
1.563
1.056
0.9044
1.647
0.8221
4.554
1.826
2.414
1.649
1.553
0.4669
1.087
1.051
3.305
4.185
1.975
0.7646
0.7721
0.7907
1.133
0.7923
0.8169
0.8448
0.7135
0.7658
0.887
0.7518
0.7463
0.8255
1.167
0.9275
0.7828
1.028
1.032
0.8066
0.8121
0.7727
0.8027
0.7944
0.8096
0.7285
0.9349
0.7211
0.8193
0.8678
0.7781
0.7777
0.8066
0.7921
0.8911
0.9013
0.8696
31.53
18.97
7.506
18.89
12.55
41.96
15.88
17.12
26.09
1.191
8.844
3.627
29.32
13.49
18.2
27.97
37.91
26.21
21.67
23.19
19.13
11.66
24.65
22.38
15.77
17.98
17.34
29.17
19.72
20.22
10.49
15
14.94
23.69
18.44
18.27
10.3
9.745
9.135
9.917
9.01
10.51
9.83
9.385
9.77
9.577
9.276
9.024
9.791
9.496
10.42
9.771
11.11
9.466
9.696
9.402
8.985
9.613
9.574
9.565
8.933
9.682
8.686
9.904
10.07
9.333
9.73
9.654
9.475
9.824
9.513
9.972
34.24
24.29
18.6
22.75
53.25
9.593
159.9
19.33
22.24
70.24
31.35
32.05
91.53
72.19
75.39
24.35
65.45
59.14
68.95
51.28
39.39
17.82
38.48
12.18
13.33
6.551
28.06
8.284
15.28
6.645
20.73
1.594
5.147
30.79
32.13
13.53
4.028
3.175
2.718
3.109
5.595
2.117
15.4
2.714
3.001
7.184
3.741
3.756
9.101
7.346
7.699
3.142
6.811
6.149
7.051
5.457
4.386
2.639
4.332
2.272
2.223
1.888
3.337
2.007
2.56
1.873
2.866
1.657
1.824
3.69
3.774
2.416
290
-------
Appendix E-3. Coarse-Particle Results
NOTE: Due to a computer programming error discovered in early 1991, the attentuation
corrections for dichot coarse Mn, Fe, Co, Ni, Cu, and Zn were not calculated into the
coarse-particle data as reported from the laboratory. The reported values are low by
approximately 5% for Fe, 7% for Co, Ni, Cu, and Zn, and less than 6% for Mn. Because the
corrections would be approximate and less that one standard deviation, the data have not been
corrected for this error.
291
-------
MORSE
COARSE FILTER
ERROR ERROR ERROR
SDATE STIME GMAS GMAS AL AL SI SI S
S
ERROR ERROR
CL CL
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
11320
5496
8285
6616
17790
2312
5172
1294
4597
4457
1883
5052
15920
13130
24180
5845
19700
10740
30450
9459
14930
4927
14430
4866
2512
134
3609
24960
20430
5776
20140
12880
10420
3624
8238
2029
1711
1609
1567
1582
1607
1578
1574
1639
1552
1578
1618
1565
1591
1537
1639
1607
1556
1612
1602
1563
1598
1596
1603
1600
1556
1637
1556
1630
1601
1546
1642
1587
1600
1614
1576
1585
281.7
13.6
843.9
739.2
723.6
272.9
188.9
57
222.5
82.3
572.9
690.1
1294
451.4
1926
343.8
1191
771.2
1925
579.8
824.2
395
446.8
140.1
50.9
-43.2
142.6
10440
5337
4661
7811
4389
2944
92.8
416.7
145.9
114.3
58.36
252.8
219.3
225.8
99.09
83.96
61.51
88.49
68.17
179.4
208.5
381
150.8
567
120
360.3
238.4
560.4
181.9
252.9
130.1
151.4
77.5
60.25
55.7
71.42
3008
1542
1371
2249
1260
850.3
70.55
139.6
70.55
710.5
137.1
392.9
272.7
1470
92.95
264.8
31.67
425.3
584.8
346.8
457.1
2475
1282
3939
736
3398
2249
4943
1614
2440
830
2016
404
341.4
132
493.7
457.7
295.9
84.5
219
47.07
47.95
-23.08
498.1
119.5
181.1
41.22
102.5
72.77
370
31.64
71.68
22.3
108.3
149.3
91.36
119
618
323.3
990.9
188.8
846.6
562.3
1231
403.5
608.5
209.6
505.1
104.6
89.98
39.92
127.5
119
79.1
31.42
60.4
24.23
24.84
21.82
128.8
36.5
138.4
125.8
131.1
241
174.6
57.19
91.25
74.9
87.55
96.38
130.8
169.7
233.3
351.7
257.2
90.74
222.2
168.8
296.6
237.6
179.1
124.9
143.2
88.87
65.5
27.76
40.49
265.9
166.9
95.09
167.8
138.4
138.3
115.4
100.1
57.98
27.91
25.81
27.35
48.38
45.98
12.94
15.95
13.62
16.53
22.4
33.13
37.43
61.94
69.5
71.3
26.47
46.31
42.49
64.28
55.19
47.77
32.45
29.51
19.01
14.91
9.097
11.02
40.78
27.3
17.16
26.9
19.81
21.13
23.99
19.84
14.31
405.1
227.8
135.9
22.83
51.17
318.4
831.2
1146
1107
150.3
49.6
25.15
63.27
41.32
89.69
33.57
122.8
28.93
130
11.08
65.27
16.92
790
1054
441.1
103.7
174.4
742
297.7
492.1
595.1
1229
1436
966.4
306.3
49.91
47.71
32.62
17.36
8.173
10.75
36.64
93.33
127.7
122.1
21.56
8.771
8.374
13.35
12.18
18.39
7.237
17.41
7.743
18.15
6.364
9.866
4.501
86.76
115.5
49.68
12.33
20.8
81.8
33.98
57.6
66.39
139.6
163.8
109
36
8.671
293
-------
MORSE
COARSE FILTER
SDATE STIME K
ERROR ERROR ERROR ERROR ERROR
K CA CA TI TI V V CR CR
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
68.01
144.6
35
48.4
89.25
74.82
48.16
44.19
56.62
52.73
29.14
43.93
118.5
92.03
200.4
39.08
148.2
101.4
230.6
84.95
109.9
48.8
126.1
47.79
25.74
38.22
39.65
51.04
36.92
23.12
36.3
36.26
33.7
52.73
48.34
27.54
9.539
19.31
6.459
7.609
12.3
10.1
7.231
6.066
7.504
9.24
5.804
7.838
15.34
14.35
24.55
6.828
17.63
13.37
26.09
11.68
13.24
6.787
14.51
6.549
4.072
5.718
6.144
7.851
5.37
3.641
5.527
4.799
4.678
9.385
8.168
5.073
224.4
49.69
168.6
129.9
370.9
29.5
163.2
46.86
118
99.67
250.6
121.7
576.7
236
774.3
235.7
910.6
343
867.4
210
538.5
149.6
324.1
145.4
170.9
74.01
136
73.55
112.7
39.96
73.95
37.7
52.13
162.4
209.8
54.88
19.02
5.145
14.68
11.24
30.72
3.801
13.85
4.943
10.2
8.848
21.15
10.66
47.56
19.69
63.24
19.69
74.27
28.32
70.67
17.57
44.26
12.69
26.74
12.36
14.37
6.831
11.6
6.937
9.837
4.335
6.981
4.261
5.295
13.69
17.59
5.575
13.38
11.64
8.105
11.31
34.44
6.085
1.395
3.45
8.718
4.435
-7.285
6.143
51.33
23.99
82.19
21.19
99.96
34.75
112.8
39.06
49.42
7.329
67.4
28.21
26.86
-7.089
14.62
9.627
15.46
3.293
2.698
1.228
3.094
0.46
30.02
6.712
6.246
4.054
5.472
3.949
10.19
3.599
5.135
3.807
it. 292
4.802
5.884
4.621
9.778
6.208
15.96
5.808
14.22
8.062
17.93
6.745
9.257
5.436
10.65
6.646
5.551
4.999
4.256
3.953
4.407
3.445
5.027
3.486
3.51
3.739
5.778
3.93
-1.587
1.125
-1.226
5.26
-1.942
0.192
-1.907
2.224
-0.614
-0.269
-13.72
-0.189
2.065
-0.082
2.245
1.981
10.22
0.052
4.722
4.846
4.563
-1.961
2.511
1.518
0.509
-3.037
0.113
1.63
3.974
-0.513
-2.563
-0.222
-0.282
4.327
1.689
1.897
4.34
1.41
4.671
1.732
2.646
1.4
3.043
1.458
2.277
3.271
5.781
2.558
2.439
1.614
3.144
4.69
3.316
1.84
2.276
2.107
2.313
1.659
1.903
1.874
2.961
4.455
2.4
1.515
2.55
1.363
3.061
1.282
1.393
2.044
1.514
1.439
5.566
15.75
4.07
2.703
16.44
6.278
16.54
2.307
0.498
1.313
-1.2
2.077
7.86
3.625
6.702
2.498
6.61
2.264
41.34
5.31
4.765
2.001
14.12
1.846
3.118
-0.2758
11.33
8.593
8.219
2.869
4.41
2.6
2.123
0.2604
4.542
0.7522
1.476
2.358
1.34
0.8072
2.675
1.149
2.6
0.758
0.7381
0.9111
1.386
0.8171
1.492
0.9108
1.463
1.227
1.383
0.8266
6.576
1.213
1.149
0.7315
2.433
0.7061
0.9632
1.074
1.836
1.453
1.426
0.7658
1.128
0.7404
0.7166
0.7123
1.005
0.6194
294
-------
MORSE
COARSE FILTER
ERROR ERROR ERROR ERROR ERROR
SDATE STIME MN MN FE FE NI NI CU CU ZN ZN
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
8912U
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718*
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
14.48
8.273
11.59
5.574
20.02
2.636
13.11
1.408
5.478
8.496
6.089
6.488
26.19
21.82
27.44
8.414
25.59
20.8
41.43
17.18
14.32
5.348
20.7
5.645
8.467
3.117
7.459
5.105
6.272
1.936
6.17
1.857
2.639
1.616
11.12
4.13
2.299
1.415
2.116
1.323
2.697
0.8963
1.953
0.8118
1.126
1.588
1.393
1.153
3.282
2.665
3.438
1.449
3.099
2.645
4.674
2.299
2.062
1.137
2.627
1.044
1.487
0.8873
1.524
1.038
1.283
0.7581
1.207
0.7345
0.7926
0.7786
1.905
0.953
748.9
249.6
602.3
235.4
1033
88.18
325.3
63.57
154.5
264.8
262.1
221
999.6
572.2
1219
262
1024
702.7
1644
533.1
632.5
197.6
840.7
169.1
270.5
96.35
334.5
148.9
186.7
51.68
112
21.55
39.84
32.51
438
83.43
74.36
25.28
61.39
24.32
101.5
9.903
33
6.972
15.56
26.34
26.86
21.91
97.37
56.01
118.4
26
99.45
67.83
162.4
52.59
61.36
19.52
82.81
16.72
27.1
9.984
34.31
15.19
19.69
5.724
11.55
3.047
4.614
4.149
43.78
9.16
3.03
8.571
2.136
3.362
10.83
1.576
6.945
-0.0221
0.7281
0.4435
2.013
2.001
6.22
4.145
6.896
1.442
5.124
2.486
24.27
2.481
4.335
-0.6198
8.056
-0.5066
0.8915
0.7756
7.002
10.19
4.287
0.632
1.031
1.26
2.428
0.5338
0.4212
-0.4305
1.161
1.483
1.015
1.087
1.904
0.9161
1.342
0.8438
0.807
0.8348
1.01
0.8844
1.444
1.113
1.623
0.8984
1.222
1.042
3.744
1.179
1.301
0.78
1.707
0.8128
0.8395
0.8606
1.314
1.611
1.14
0.7804
0.9926
0.8304
0.9001
0.8942
0.8998
0.7667
10.3
3.249
6.173
2.198
10.69
1.878
3.805
-0.877
4.032
3.507
2.731
2.119
10.68
4.1
19.29
0.4344
15.49
8.114
45.4
4.618
13.69
1.676
7.642
2.35
4.578
2.158
4.181
27.5
14.6
9.814
18.43
11.18
6.372
0.9841
11.38
1.263
1.672
1.078
1.284
0.953
1.666
0.936
1.086
0.8165
1.033
1.043
1.01
0.9027
1.714
1.113
2.487
0.8895
2.069
1.427
4.913
1.128
1.904
0.9172
1.463
0.9342
1.102
0.9201
1.085
3.092
1.916
1.444
2.269
1.582
1.166
0.8746
1.674
0.8594
19.23
12.88
35.68
21.57
27.24
8.262
12.39
2.547
7.706
10.44
15.42
10.27
55.38
47.11
51.27
11.38
44.58
35.76
60.75
58.05
29.24
10.96
23.53
3.348
11.37
17.01
26.26
10.52
12.12
2.975
6.679
2.941
3.21
2.559
35.57
3.892
3.001
1.925
4.344
2.945
3.636
1.667
1.911
0.8307
1.328
1.682
2.166
1.679
6.48
5.518
6.202
1.775
5.291
4.495
6.836
6.433
3.64
1.709
2.913
0.9319
1.732
2.046
3.315
1.54
1.678
0.8241
1.265
0.8238
0.8158
0.8735
4.104
0.9556
295
-------
MORSE
COARSE FILTER
ERROR ERROR ERROR ERROR
SDATE STIME BR BR SR SR BA BA PB PB
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
8912H
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
822
1912
700
1922
724
1915
718
1924
702
1917
718
1910
716
1915
728
1900
707
1920
710
1901
711
1905
737
1944
738
1958
737
1945
725
1945
745
0
720
1915
705
1900
0.8922
1.163
1.155
0.4274
1.219
0.4472
1.405
3.83
2.744
1.181
1.235
1.118
0.0784
3.018
0.8155
0.9932
1.465
0.3967
2.119
1.88
-0.1664
0.266
0.5331
0.583
1.259
-0.1355
0.4542
0.826
-0.2417
1.306
1.598
2.369
3.95
1.547
1.777
0.4628
0.7254
0.6229
0.6134
0.6354
0.6857
0.6138
0.6735
0.7734
0.7172
0.697
0.7024
0.6443
0.732
0.8762
0.8208
0.6793
0.7001
0.7294
0.8291
0.785
0.6658
0.6312
0.7367
0.6612
0.5988
0.6205
0.579
0.6893
0.6026
0.6137
0.7233
0.7146
0.7424
0.6882
0.7229
0.6034
2.611
2.682
0.4194
1.113
5.725
-0.2127
0.5921
0.0965
1.83
1.671
1.384
2.298
7.415
4.107
8.61
2.273
12.5
6.924
18.3
4.526
7.708
1.835
8.724
2.768
1.638
1.106
0.3547
1.725
1.181
0.4463
1.689
0.9297
1.475
1.935
1.097
0.8156
0.7724
0.6796
0.7232
0.9734
0.7039
0.7381
0.7125
0.715
0.7264
0.7208
0.7065
1.109
0.8758
1.198
0.7723
1.404
1.066
1.877
0.8736
1.122
0.756
1.2
0.792
0.7095
0.7326
0.6722
0.7684
0.6973
0.6458
0.7538
0.7118
0.6592
0.75
0.782
0.711
33.16
10.09
27.2
15.35
37.72
7.293
40.57
19.74
8.591
30.57
33.88
28.62
31.88
28.55
45.88
22.97
16.22
36.35
36.49
22.96
27.94
36.41
16.54
20.15
7.668
35.16
-2.812
8.298
19.26
11.12
32.86
2.706
9.093
11.88
18.12
6.908
9.877
8.638
8.541
8.387
9.514
8.422
9.679
8.879
8.15
8.789
9.326
8.513
9.41
8.875
10.32
8.799
8.513
9.723
9.509
8.728
9.198
9.385
9.189
8.762
8.173
9.291
8.007
8.704
8.548
8.026
9.836
8.25
8.198
8.632
8.825
8.342
11.26
4.775
6.593
6.811
20.54
1.601
-8.563
0.8499
9.378
9.787
5.857
6.58
18.4
23.88
23.85
6.154
19.15
22.2
30.55
21.47
13.52
3.139
17.89
4.456
4.163
3.844
0.936
14.39
4.964
24.95
5.704
2.477
4.291
5.73
11.57
4.335
2.381
1.81
1.804
1.854
3.142
1.574
1.801
1.598
2.013
2.403
1.89
1.85
3.343
3.559
3.708
1.851
3.119
3.387
4.184
3.183
2.544
1.695
2.889
1.707
1.634
1.58
1.553
2.371
1.704
3.089
1.928
1.499
1.556
1.886
2.323
1.652
296
-------
PSAPCA
COARSE FILTER
ERROR ERROR ERROR
SDATE STIME GMAS GMAS AL AL SI SI S
S
ERROR ERROR
CL CL
NG/M3 NG/H3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
8848
5313
6965
5421
13660
1216
2710
1516
1470
6020
3662
694.6
19290
9360
18820
7037
17240
9596
20010
16270
12790
3322
9739
2296
2929
-93.3
3419
4388
2299
1963
5226
3605
1948
2047
2248
2697
1661
1614
1569
1609
1571
1612
1587
1600
1552
1593
1614
1563
1614
1537
1668
1600
1571
1602
1602
1580
1598
1574
1606
1602
1580
1596
1571
1621
1652
1519
1649
1614
1571
1621
1556
1618
123.2
219.9
241.2
874.9
998.5
335.4
36.6
19.4
-73
79.4
302.9
-1275
1284
170.5
1153
386.2
949.4
362.9
1572
608.7
883.5
151.5
403.5
-558
16.4
-1.8
14.8
-13.8
196
183.8
22.4
85.9
-45.5
103.2
71.1
74.5
79.68
87.19
94.36
258.7
300.5
119.8
62.19
61.39
62
64.01
114.9
66.02
387.2
81.46
359.3
158.9
296.6
177.6
463.2
190.5
282.8
73.82
135.8
66.41
57.14
52.54
57.68
62.8
83.54
90.87
61.57
66.94
55.21
64.1
58.21
61.32
687.2
259.3
462.1
334.1
1315
100.9
111.9
-15.37
229.9
501.2
192.2
205.7
2547
694.2
2821
1036
3201
1785
3234
1787
2302
487.5
1401
179.7
207.1
29.92
416.7
230.8
236.7
13.7
104.3
22.36
25.55
13.29
163.9
39.84
177.3
68.94
118.3
88.57
331.3
33.69
35.28
19.98
63.74
127.5
52.73
58.88
634.6
175.9
704
261
796.2
446.1
804.9
445.8
576.7
124.9
350.9
53.06
56.08
19.8
108.4
63.15
63.57
19.53
36.48
21.23
20.4
19.41
46.75
22.34
178.2
106.3
151.7
163.5
318.2
120.1
69.3
77.15
83.14
71.06
181.9
101.2
420.4
372.3
365.9
117.2
272.5
191.9
413.9
400.6
287.5
119.8
160.5
88.52
101.2
61.08
86.66
179.8
125.3
50.75
96.9
81.49
112.6
97.38
59.79
62.18
33.57
25.94
30.05
34.15
65.55
28.59
20.79
15.87
14.78
18.96
37.65
26.31
90.66
71.77
73.84
29.05
51.27
41.77
77.74
73.39
58.26
31.1
29.09
18.39
21.53
14.34
20.91
30.96
23.37
11.97
17.1
17.26
22.1
16.59
14.19
13.53
476.9
107.5
124.9
46.23
71.08
215.5
732.7
1142
1108
145.5
51.63
4.89
65.92
44.65
75.5
54.46
80.56
22.01
65.72
57.55
70.43
9.25
734.6
751.2
459.3
60.29
111.1
445.3
182.1
473.1
402
1231
1347
543.8
278.7
74.99
55.21
15.88
15.73
8.92
13.17
24.55
80.44
126.1
122.5
20.93
8.008
5.802
15.52
13.14
14.59
9.65
12.03
8.232
10.54
10.21
10.74
4.29
80.68
83.03
50.48
7.945
13.2
49.28
20.78
52.98
44.94
136.4
150.7
60.39
32.64
10.51
297
-------
PSAPCA
COARSE FILTER
SDATE STIME K
ERROR ERROR ERROR ERROR
K CA CA TI TI V V
NG/M3 NG/H3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
53.15
42.38
43.22
37.35
81.58
24.05
29.03
33.32
43.42
44.09
21.82
26.92
119.1
62.71
131.1
57.07
139
83.72
146.9
99.64
103
30.34
83.36
32.99
25.99
8.788
25.82
38.15
29.1
19.44
25.48
34.59
40.6
27.09
20.6
31.92
7.509
6.62
6.175
6.072
11.54
4.192
4.236
4.546
5.859
8.555
4.492
5.687
15.45
11.43
16.52
8.194
16.27
11.55
17.14
12.68
12.44
5.712
9.792
4.925
3.936
2.827
4.005
6.137
4.546
3.329
4.975
4.616
5.215
4.438
3.952
5.15
241.5
100.7
297.1
168.5
457.2
154.3
120.5
52.78
105
85.94
145
31.91
658.1
103.4
752.8
296.9
772.7
330.3
641
303.6
579.4
92.83
273.6
66.93
105.8
29.35
177.8
217.7
88.64
25.66
83.05
48.56
47.38
85.74
82.91
50.11
20.55
8.883
24.54
14.25
37.57
13.31
10.45
5.304
9.209
7.715
12.34
4.131
53.78
9.159
61.49
24.59
63.18
27.18
52.26
24.97
47.43
8.231
22.74
6.44
9.249
3.749
14.94
18.57
8.093
3.543
7.739
4.988
4.866
7.664
7.574
5.198
46.65
22.66
10.63
16.88
41.25
8.84
9.245
2.785
7.19
10.83
8.208
5.405
55.89
20.27
63.58
28.42
74.73
44.88
81.91
34.87
58.9
1.181
30.97
6.095
8.784
0.892
14.47
7.579
9.901
4.243
3.56
0.3575
1.282
3.731
23.78
2.397
10.45
4.784
5.292
4.426
8.427
4.455
3.982
4.18
3.932
3.945
4.638
4.787
11.5
5.354
11.33
6.007
16.17
8.053
13.44
7.766
10.16
4.702
6.972
3.721
3.741
3.587
4.968
4.02
4.519
3.835
4.154
4.86
3.497
3.486
4.824
3.737
NG/H3 NG/H3
-1.522
-0.0146
-0.963
4.363
4.42
2.958
1.977
-0.3981
1.427
2.945
1.958
1.979
3.198
1.848
4.516
3.235
1.014
4.309
8.049
3.677
5.841
-2.091
-0.5412
0.7852
2.787
5.094
4.97
4.744
3.576
0.8934
0.5524
3.369
2.26
0.6286
2.219
1.545
2.318
1.703
2.835
1.613
2.546
3.328
1.62
3.428
1.901
1.69
4.116
4.469
2.631
1.661
2.803
3.992
3.504
1.946
3.108
2.833
2.175
2.378
1.606
1.367
2.121
1.894
3.972
1.864
3.175
2.434
2.762
1.813
2.371
1.725
1.507
1.45
ERROR
CR CR
NG/H3 NG/M3
3.547
3.284
3.615
2.065
8.704
1.011
2.2
-0.5218
0.0879
0.9415
1.06
0.4953
10.38
0.4465
5.547
1.2
3.443
3.116
4.778
2.944
3.65
0.502
2.154
0.2294
1.329
0.4959
2.475
2.651
2.059
-0.0416
1.074
-0.1901
0.04
-0.1371
1.248
0.3538
0.9284
0.877
1.035
0.7568
1.544
0.9351
0.7801
0.9068
0.6784
0.6988
1.067
1.12
1.721
0.6477
1.228
l'.063
0.9299
0.8574
1.143
0.9519
0.9414
0.7594
0.7606
0.6424
0.7363
0.6849
1.102
0.8137
0.9509
0.7479
0.8473
0.605
0.7146
0.6194
0.6546
0.6699
298
-------
PSAPCA
COARSE FILTER
ERROR ERROR ERROR ERROR ERROR
SDATE STIME MN MN FE FE NI NI CU CU ZN ZN
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/H3 HG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
891214
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
8.268
3.773
7.454
6.002
15.44
2.655
5.129
0.5308
3.09
7.381
2.989
2.642
26.63
10.89
22.3
12.35
21.17
13.74
21.98
24.74
21.76
5.45
11.28
2.188
2.859
0.7644
4.117
3.869
4.873
-0.0297
2.451
1.572
-0.0639
2.922
5.151
0.8206
1.595
1.03
1.29
1.256
2.142
0.8844
1.065
0.753
0.9266
1.378
0.9328
0.954
3.227
1.797
2.866
1.854
2.679
2.066
2.939
2.891
2.614
1.095
1.665
0.7937
0.8227
0.7186
0.9912
0.9304
1.149
0.6955
0.9295
0.7174
0.6522
0.8091
1.173
0.7911
397.8
155.2
389.2
199.8
693.7
52.43
160.9
28.74
89.18
171.6
67.7
58.35
913.4
206.9
915.6
306.4
850.3
497.2
982.6
483.7
737.9
122.7
548.1
124
149.7
36.75
177.9
107.3
210.1
28.49
86.44
13.74
21.44
18.06
314.5
57.03
39.64
15.82
38.44
20.31
68.63
6.032
16.28
3.74
9.414
17.15
7.308
7.056
89.86
21.19
88.6
30.6
82.29
48.31
95.9
46.93
71.66
12.59
53.93
12.83
14.98
4.436
17.88
11.29
21.39
3.678
10.01
2.434
2.965
2.805
33.22
6.606
0.5743
2.08
0.6006
1.987
7.909
1.299
0.4298
0.7391
0.8887
-0.1938
2.531
-1.23
5.769
1.875
5.773
-0.1285
3.646
2.54
6.748
3.201
4.491
0.412
0.4603
2.431
0.7523
2.955
2.776
1.8
0.8266
1.611
1.799
-0.4379
1.451
0.6466
-0.5718
1.295
0.9358
0.9704
0.9131
0.9903
1.573
0.993
0.9237
0.8827
0.8821
0.7885
1.013
0.943
1.351
0.9397
1.391
0.8967
1.151
1.05
1.443
1.114
1.195
0.8765
0.8441
0.9583
0.8419
1.08
1.057
0.9686
0.9206
0.912
0.9507
0.7912
0.8385
0.7965
0.7442
0.9628
39.57
32.27
68.22
9.991
16.39
6.567
7.595
1.221
3.221
1.454
2.155
-4.42
12.49
4.008
13.48
6.177
10.15
4.655
16.7
8.585
11.46
-0.3964
9.294
24.6
16.35
43.12
25.81
23.39
20.67
21.13
33.91
7.023
4.474
2.133
1.769
2.757
5.185
4.223
8.069
1.706
2.245
1.329
1.386
0.9007
1.039
0.9052
0.9654
0.9097
1.887
1.154
2.066
1.347
1.629
1.184
2.207
1.471
1.726
0.8177
1.456
3.081
2.263
5.126
3.234
3.071
2.836
2.995
4.25
1.357
1.041
0.8868
0.8944
1.038
34.47
20.03
16.63
21.02
37.1
5.958
2.607
2.36
3.147
6.408
6.444
3.722
54.76
41.56
74.6
13.9
56.96
37.41
56.81
107.9
40.22
9.711
20.39
1.308
6.589
2.118
8.625
4.358
9.43
1.013
3.579
0.75
0.466
5.064
15.69
2.915
4.981
3.03
2.361
2.736
4.461
1.583
0.9461
0.7916
0.9396
1.329
1.221
1.187
6.772
4.946
8.258
2.264
6.311
4.455
6.371
10.92
4.759
1.569
2.578
0.8304
1.173
0.8687
1.37
1.063
1.549
0.7355
1.102
0.6702
0.6183
1.158
2.77
0.9268
299
-------
PSAPCA
COARSE FILTER
ERROR ERROR ERROR ERROR
SDATE STIME BR BR SR SR BA BA PB PB
NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3 NG/M3
891205
891205
891206
891206
891207
891207
891208
891208
891209
891209
891210
891210
891211
891211
891212
891212
891213
891213
8912U
891214
891215
891215
900102
900102
900103
900103
900104
900104
900105
900105
900106
900106
900107
900107
900108
900108
725
1800
630
1851
643
1847
641
1842
636
1855
650
1840
652
1845
710
1840
641
1845
646
1838
645
1840
705
1919
714
1915
711
1912
700
1845
0
1845
645
1830
640
1845
2.801
0.7364
0.9914
0.4372
0.7095
-0.2318
2.681
4.219
1.246
1.1
0.0592
1.178
0.657
3.084
1.882
-0.0394
1.562
-0.0865
1.156
2.794
1.422
0.6723
2.8
-0.1176
-0.9835
0.4031
-0.6771
1.386
1.276
1.408
1.861
2.772
1.552
1.333
0.8378
0.7166
0.7975
0.6316
0.6225
0.6263
0.7465
0.6466
0.7484
0.7755
0.6584
0.7187
0.6578
0.6529
0.7514
0.8603
0.8045
0.6568
0.7279
0.7003
0.7431
0.8889
0.6851
0.6174
0.738
0.6654
0.561
0.6096
0.6176
0.6559
0.6654
0.6489
0.7244
0.7411
0.6582
0.612
0.5855
0.6549
3.359
0.8928
4.357
3.875
5.872
1.816
1.223
1.972
2.269
1.856
1.01
1.396
6.542
0.618
9.968
2.673
11.27
6.013
6.109
5.471
5.094
1.39
3.491
1.905
0.8626
0.336
0.5129
2.545
1.792
1.161
2.508
1.146
1.318
1.385
0.0975
-0.467
0.8786
0.7031
0.8703
0.8563
1.014
0.7892
0.7697
0.7476
0.7691
0.7353
0.733
0.7252
1.008
0.6746
1.37
0.8058
1.426
1
1.004
0.9571
0.922
0.7547
0.7876
0.7791
0.6871
0.6967
0.7182
0.8241
0.7714
0.7286
0.7906
0.7093
0.6684
0.6895
0.6432
0.7269
29.5
11.95
30.8
12.09
29.53
7.794
10.32
8.424
14.5
16.22
13.86
20.54
33.62
13.71
30.06
5.677
47.34
21.77
27.53
32.17
23.47
36.24
29.68
-3.385
0.4556
3.378
24.84
20.54
17.69
11.03
15.3
17.68
1.226
1.531
13
1.579
9.69
8.624
9.181
8.641
9.401
8.943
8.821
8.495
8.673
8.375
8.679
8.683
9.352
8.167
9.969
8.448
10.01
8.764
9.161
9.221
8.954
9.362
8.778
8.583
7.927
8.362
8.91
8.972
9.022
8.35
8.947
8.767
7.758
8.051
7.853
8.796
8.612
6.77
3.881
4.894
11.63
3.371
0.9798
1.311
1.642
10. 84
1.655
2.967
20.8
18.03
19.19
9.603
8.837
14.96
17.56
28.96
12.66
5.191
12.6
1^881
4.609
1.588
1.821
3.803
4.729
1.248
3.592
0.5236
-1.208
2.546
4.158
4.3
2.19
1.857
1.673
1.837
2.481
1.727
1.66
1.517
1.587
2.32
1.66
1.677
3.516
3.01
3.187
2.201
2.394
2.702
2.866
3.854
2.394
1.799
2.227
1.572
1.641
1.546
1.686
1.666
1.784
1.535
1.698
1.428
1.301
1.503
1.651
1.808
300
-------
Appendix E-4. VOC Results
301
-------
ORGflNICS LIST
S
COMPOUND
BHI-037 Bni-030 BHI-039 BHI-22 BMI-035 BHI-4 BMI-13 BHI-16 BUI-038 02194 BHI-23 02155
HORSE MORSE PSflPCfl PSflPCfl HORSE MORSE PPSPCfl PSflPCfl MORSE MORSE PSflPCfl PSflPCfl
flM MR 1920 MR 0705 MR 1842 HR 0715 HR 1917 HR 0630 HR 1842 HR 0721 HR 1919 HR 0634 HR 1830 HR
12/05/89 12/05/89 12/05/89 12/05/89 12/06/89 12/06/89 12/06/89 12/06/89 12/07/89 12/07/89 12/07/89 12/07/89
1) dichlorodifluoromethane
2) methyl chloride *
3) l,2-dichloro-l,l,2,2-tetrafluoroethane
4) vinyl chloride
5) methyl bromide
6) ethyl chloride
7) trichlorofluoromt thane
8) 1,1-dichloroethene
9) dichloromethane
10) 3-ch 1 or opropene
11) l,l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloromethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane
20) trichloroethene
21) 2,2,4-trimethylpentane
it.) cis— 1,0— oicnior opropene
£.3> trans— 1,0,— aicnior opropene
24) 1,1,2-trichloroethane
25) toluene
26) 1,2-dibromoethane
27) tetrachloroethene
J)A\ i 1 t
£ot cn lorooenzene
29) ethylbenzene
30) m+p-xylene
31) styrene
32) 1,1,2,2-Uirachloromthane
33) o-xylene
34) 4-ethyltolu*nt
35) l,3,5-trimethylb*nrene
36) 1,2,4-trimethylbenzene
37) benzyl chloride
*^«*V 1 • 1 1 1_
38) m— a icn lorooenzene
__K j • _i_ i ^
jy^ p— a i cn i orooenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
0.59
<0.10
<0.10
<0.10
<0.10
<0.10
1.08
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.61
3.71
0.11
<0.10
<0.10
0.58
<0.10
<0.10
<0.10
7.22
<0.10
0.20
<0.10
1.17
4.30
0.22
<0.10
1.55
0.43
0.45
1.31
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.61
0.38
<0.10
<0.10
<0.10
<0.10
0.96
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.45
3.02
0.12
<0.10
<0.10
0.24
<0.10
<0.10
<0.10
5.34
<0.10
0.16
<0.10
0.71
2.68
0.26
<0.10
0.97
0.28
0.28
0.85
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.16
<0.10
<0.10
<0.10
<0.10
<0.10
0.90
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.61
2.61
0.17
<0.10
<0.10
0.40
<0.10
<0.10
<0.10
5.76
<0.10
0.36
<0.10
1.62
6.35
0.25
<0.10
2.14
0.50
0.42
1.26
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.73
2.00
<0.10
<0.10
<0.10
<0.10
1.06
<0.10
0.56
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.45
2.03
0.10
<0.10
<0.10
0.17
<0.10
<0.10
<0.10
4.07
<0.10
0.17
<0.10
0.63
2.35
0.59
<0.10
0.90
0.28
0.23
0.73
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.56
<0.10
<0.10
<0.10
<0.10
<0.10
0.82
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.45
2.00
0.12
<0.10
<0.10
0.30
<0.10
<0.10
<0.10
3.96
<0.10
0.16
<0.10
0.70
2.68
<0.10
<0.10
0.96
0.23
0.26
0.75
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.75
<0.10
<0.10
<0.10
<0.10
<0.10
0.89
<0.10
<0.10
<0.10
0.21
<0.10
<0.10
<0.10
<0.10
0.75
2.75
0.12
<0.10
<0.10
0.50
<0.10
0.26
<0.10
6.01
<0.10
0.16
<0.10
1.41
4.17
0.52
<0.10
1.51
0.49
0.45
1.41
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.87
<0.10
<0.10
<0.10
<0.10
<0.10
0.87
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.50
1.16
0.14
<0.10
<0.10
0.17
<0.10
<0.10
<0.10
2.87
<0.10
<0.10
<0.10
0.52
2.03
4.61
<0.10
0.75
0.17
0.16
0.45
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
0.85
<0.10
<0.10
<0.10
<0.10
<0.10
0.94
<0.10
0.18
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.79
1.82
0.13
<0.10
<0.10
0.18
<0.10
<0.10
<0.10
4.27
<0.10
0.22
<0.10
0.86
2.74
2.61
<0.10
0.99
0.16
0.27
0.86
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
25.17
<0.10
<0.10
<0.10
<0.10
<0.10
1.15
<0.10
0.57
<0.10
0.19
<0.10
<0.10
<0.10
<0.10
1.10
4.73
<0.10
<0.10
<0.10
0.68
<0.10
0.26
<0.10
12.10
<0.10
0.31
<0.10
1.58
5.75
0.47
<0.10
2.12
0.52
0.47
1.72
<0.10 ,
<0.10
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
<0.10
<0.10
0.70
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.40
1.08
0.12
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
1.95
<0.10
<0.10
<0.10
0.24
0.94
<0.10
<0.10
0.28
<0.10
0.26
0.16
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.95
<0.10
<0.10
<0.10
<0.10
<0.10
1.01
<0.10
0.43
<0.10
0.36
<0.10
<0.10
<0.10
<0.10
0.95
3.76
0.14
<0.10
<0.10
0.52
<0.10
0.34
<0.10
8.14
<0.10
0.27
<0.10
1.82
6.88
0.38
<0.10
2.38
0.52
0.47
1.42
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.59
<0.10
<0.10
<0.10
<0.10
<0.10
0.81
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.27
0.92
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.57
<0.10
<0.10
<0.10
0.22
0.79
<0.10
<0.10
0.34
<0.10
<0.10
0.23
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
* Instrument Difficulties in Resolving this Compound.
-------
ORGflNICS LIST
COMPOUND
02136 BHI-036 02138 BHI-15 BM1-6 BHI-027 BHI-24 BMI-14 BMI-B48 BMI-033 BMI-19 BMI-B12
HORSE MORSE PSRPCfl PSflPCfl MORSE MORSE PSflPCfl PSflPCfl MORSE MORSE PSflPCH PSflPCfi
0715 HR 1919 HR 0635 HR 1836 HR 0658 HR 1913 HR 0642 HR 1850 HR 0722 HR 1925 HR 0650 HR 1835 HR
12/08/89 12/08/89 12/08/89 12/08/89 12/09/89 12/09/89 12/09/89 12/09/89 12/10/89 12/10/89 12/10/89 12/10/89
1) dichlorodifluoroAethane
2) methyl chloride *
3) l,2-dichloro-l,l,2,2-tetr*fluoroeth*ne
4) vinyl chloride
5) methyl bromide
6) ethyl chloride
7) trichlorofluoromethane
8) 1,1-dichloroethene
9) dichloromethane
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloromethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
(jj 19) 1,2-dichloropropaoe
g 20) trichloroethene
21) 2,2,4-trimethylpentane
22) cis-l,3-dichloropropene
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) l,2-dibro*oeth«ne
27) tetrachloroethene
28) chlorobenzene
29) ethylbenzene
30) m+p-xylene
31) styrene
32) 1,1,2,2-tetrachloroethane
33) o-xylen*
34) 4-ethyltoluww
35) 1,3,5-triMthyllMnzOTW
36) l,2,4-tri«ethylb*nzene
37) benzyl chloride
38) iti-di chlorobenzene
39) p-dichlorobenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
0.47
<0.10
<0.10
<0.10
<0.10
<0.10
0.94
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.20
1.50
0.12
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
3.42
<0.10
<0.10
<0.10
0.45
1.77
<0.10
<0.10
0.68
0.28
0.24
0.70
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.33
<0.10
<0.10
<0.10
<0.10
<0.10
0.64
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.26
0.66
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.29
<0.10
<0.10
<0.10
0.28
0.89
<0.10
<0.10
0.37
<0.10
0.19
0.21
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.43
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.42
1.36
0.14
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
2.35
<0.10
<0.10
<0.10
0.28
1.04
<0.10
<0.10
0.28
0.16
<0.10
0.30
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
9.90
0.36
<0.10
<0.10
<0.10
<0.10
0.99
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.18
0.32
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.59
<0.10
<0.10
<0.10
<0.10
0.31
<0.10
<0.10
0.11
<0.10
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.66
<0.10
<0.10
<0.10
<0.10
<0.10
0.85
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.78
2.28
0.10
<0.10
<0.10
0.38
<0.10
<0.10
<0.10
3.86
<0.10
<0.10
<0.10
0.54
1.91
<0.10
<0.10
0.75
0.21
0.23
0.70
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.10
0.63
<0.10
<0.10
<0.10
<0.10
<0.10
0.92
<0.10
0.42
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.50
4.29
0.12
<0.10
<0.10
0.66
<0.10
0.33
<0.10
7.40
<0.10
<0.10
<0.10
1.03
3.69
0.35
<0.10
1.48
0.45
0.40
1.29
<0. 10
<0.10
<0.10
<0.10
<0.10
<0.10
0.31
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.28
0.82
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.32
<0.10
<0.10
<0.10
0.23
0.66
0.23
<0.10
0.30
0.10
0.16
0.28
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.63
<0.10
<0.10
<0.10
<0.10
<0.10
1.25
<0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
0.57
4.10
0.12
<0.10
<0.10
0.54
<0.10
0.28
<0.10
6.99
<0.10
<0.10
<0.10
1.01
3.69
0.31
<0.10
1.34
0.42
0.38
1.15
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.67
<0.10
<0.10
<0.10
<0.10
<0.10
0.83
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.83
2.34
0.11
<0.10
<0.10
0.31
<0.10
<0.10
<0.10
3.44
<0.10
<0.10
<0.10
0.54
1.82
<0.10
<0.10
0.72
0.11
0.18
0.58
<0.10
<0.10
<0.10
<0.10
<0. 10
<0. 10
1.51
<0.10
<0.10
<0.10
<0.10
<0.10
0.79
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.38
2.43
0.11
<0.10
<0.10
0.29
<0.10
<0.10
<0.10
3.57
<0.10
<0.10
<0.10
0.52
1.75
<0.10
<0.10
0.65
0.16
0.16
0.54
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
<0.10
<0.10
<0.10
<0.10
0.76
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.31
1.60
<0.10
<0.10
<0.10
0.20
<0.10
<0.10
<0.10
2.38
<0.10
<0.10
<0.10
0.29
1.26
2.56
<0.10
0.49
0.13
0.11
0.34
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
2.47
0.49
<0.10
<0.10
<0.10
<0.10
0.95
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.36
2.12
0.11
<0.10
<0.10
0.23
<0.10
<0.10
<0.10
2.90
<0.10
<0.10
-------
ORGRNICS LIST
8
COMPOUND
BMI-26 BMI-029 BMI-ll BMI-18 8HI-7 LC0016 BMI-045 LC0055 LC0023 LCOOSO LC0035 LC0008
MORSE MORSE PSflPCfl PSRPCfl MORSE MORSE PSRPCfl PSRPCfl MORSE MORSE PRSPCfl PSRPCfl
0716 HR 1916 HR 0730 HR 1930 HR 0725 HR 1915 HR 0720 HR 1835 HR 0708 HR 1915 HR 0634 HR 1841 HR
12X11X89 12/11/89 12X11X89 12/12/09 12/12/89 12/12/89 12X12X89 12X13X89 12X13X89 12x13x89 12X13x89
1) dichlorodifluoroMethane
2) Methyl chloride *
3) l,2-dichloro-l,l,2,2-tetr*fluoroeth«ne
4) vinyl chloride
5) Methyl broMide
6) ethyl chloride
7) trichlorof luoroMethane
8) 1,1-dichloroethene
9) dichloroMethane
i n\ ^ L i
i iw o~cn i Or opr opcnc
11) l,l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloroMethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane \
20) trichloroethene
21) 2,2,4-triMethylpentane
*^*>\ * t "i j * 1 1
£.£.) cis-i jo— oicnioropropene
23) tr«ns-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) 1,2-dibroMoethane
27) tetrachloroethene
OO\ l_ 1 L.
£ot cnioroDenzene
29) ethylbenzene
30) M+p-xylene
31) styrene
32) l,l,2,2-tetr*chloroethane
33) o-xylene
34) 4-ethyltoluent
35) 1,3,5-triMethylbenzene
36) 1,2,4-triMethylbenzene
37) benzyl chloride
38) ffl-dichlorobenzene
39) p-dichlorobenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
0.87
<0.10
<0.10
<0.10
<0.10
<0.10
0.85
<0.10
<0.10
<0.10
0.23
<0.10
<0.10
<0.10
<0.10
0.90
5.79
0.10
<0.10
<0.10
0.40
<0.10
0.42
<0.10
11.30
<0.10
0.23
<0.10
1.70
6.41
0.54
<0.10
2.23
0.56
0.50
1.69
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.83
<0.10
<0.10
<0.10
<0.10
<0.10
0.99
<0.10
0.82
<0.10
0.31
<0.10
<0.10
<0.10
<0.10
1.11
7.98
0.12
<0.10
<0.10
1.13
<0.10
0.38
<0.10
14.67
<0.10
0.37
<0.10
1.86
7.11
0.90
<0.10
2.62
0.66
0.66
2.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.16
<0.10
<0.10
<0.10
<0.10
<0.10
0.99
<0.10
0.57
<0.10
0.26
<0.10
<0.10
<0.10
<0.10
1.20
6.40
0.12
<0.10
<0.10
0.96
<0.10
0.50
<0.10
13.00
<0.10
0.52
<0.10
1.72
6.55
1.74
<0.10
2.38
0.63
0.56
1.86
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.46
<0.10
<0.10
<0.10
<0.10
<0.10
1.10
<0.10
1.04
<0.10
0.35
<0.10
<0.10
<0.10
<0.10
1.22
6.59
0.10
<0.10
<0.10
0.87
<0.10
0.47
<0.10
11.96
<0.10
0.33
<0.10
1.56
5.89
1.36
<0.10
2.19
0.57
0.52
1.70
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.03
<0.10
<0.10
<0.10
<0.10
<0.10
0.95
<0.10
0.54
<0.10
0.27
<0.10
<0.10
<0.10
<0.10
1.08
7.04
0.11
<0.10
<0.10
0.99
<0.10
<0.10
<0.10
13.32
<0.10
0.34
<0.10
1.96
7.35
0.79
<0.10
2.65
0.68
0.59
2.03
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
0.69
<0.10
<0.10
<0.10
<0.10
0.79
<0.10
0.15
<0.10
0.32
<0.10
<0.10
<0.10
<0.10
0.59
2.72
0.13
<0.10
<0.10
0.40
<0.10
<0.10
<0.10
5.63
<0.10
0.24
<0.10
0.86
3.09
0.35
<0.10
1.09
0.30
0.29
0.84
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.01
<0.10
<0.10
<0.10
<0.10
<0.10
0.90
<0.10
0.73
<0.10
0.24
<0.10
<0.10
<0.10
<0.10
1.55
4.46
0.11
<0.10
<0.10
0.63
<0.10
<0.10
<0.10
9.49
-------
ORGflNICS LIST
COMPOUND
1) dichlorodifluoromethane
2) methyl chloride *
3) l,2-dichloro-l,l,2,2-tetrafluoroethane
4) vinyl chloride
5) «eihyl bromide
6) ethyl chloride
7) trichlorofluoromethane
8) 1,1-dichloroethene
9) dichloromethane
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloromethane
15) l,2-dichloroeth*n«
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane
20) trichloroethene
21) 2,2,4-trimethylpentan*
22) cis-l,3-dichloropropen*
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) l,2-dibro*oethane
27) tetrachloroethene
28) chlorobenzene
29) ethylbenzene
30) m+p-xylene
31) styrene
32) l,l,2,2-t*tr*chloro*than*
33) o-xylen«
34) 4-ethyltolucrw
35) l,3,5-tri«*thu,lb«nz«n»
36) 1,2,4-trimethylbenzene
37) benzyl chloride
38) m-dichlorob*nz«n*
39) p-dichlorobenzen«
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
LC0053 LC0067 LC0002
MORSE MORSE PSflPCfl
0706 HR 1858 HR 0640
LC0004 LC0061 LC0058 LC0015 LC0011 LC0062 LC0051 LC0014 LC0060
PSflPCfl HORSE MORSE PSflPCfl PSflPCfl MORSE MORSE PSflPCfl PSflPCfl
1833 HR 0708 HR 1900 HR 0638 HR 1837 HR 0735 HR 1940 HR 0717 HR 1918 HR
12X14X89 12X14X89 21x14X89 12X14x89 12X15X89 12X15x89 12X15x89 12X15x89
1.01
<0.10
<0.10
<0.10
<0.10
<0.10
0.83
<0.10
0.73
<0.10
0.23
<0.10
<0.10
<0.10
<0.10
0.83
6.43
0.14
<0.10
<0.10
0.89
<0.10
<0.10
<0.10
15.26
<0.10
0.28
<0.10
2.54
9.70
0.82
<0.10
3.34
0.80
0.80
2.42
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
<0.10
<0.10
<0.10
<0.10
<0.10
0.82
<0.10
1.62
<0.10
0.10
<0.10
<0.10
<0.10
<0.10
1.36
5.72
0.10
<0.10
<0.10
0.80
<0.10
<0.10
<0.10
11.46
<0.10
0.21
<0.10
1.70
6.59
0.82
<0. 10
2.26
0.70
0.63
1.95
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.22
<0.10
<0.10
<0.10
<0.10
<0.10
0.87
<0.10
0.64
<0.10
0.24
<0.10
<0.10
<0.10
<0.10
1.22
4.05
0.12
<0.10
<0.10
0.64
<0.10
<0.10
<0.10
8.41
<0.10
0.14
<0.10
1.39
5.27
2.29
<0.10
1.98
0.56
0.57
1.86
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.92
<0.10
<0.10
<0.10
<0.10
<0.10
0.92
<0.10
2.24
<0.10
0.43
<0.10
<0.10
<0.10
<0.10
1.81
5.79
0.14
<0.10
<0.10
0.83
<0.10
<0.10
<0.10
12.60
<0.10
0.35
<0.10
1.79
7.02
2.68
<0.10
2.45
0.66
0.68
1.96
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.70
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
<0.10
0.57
<0.10
0.23
<0.10
<0.10
<0.10
<0.10
0.76
2.69
0.10
<0.10
<0.10
0.37
<0.10
<0.10
<0.10
5.72
<0.10
0.17
<0.10
0.92
3.51
0.38
<0.10
1.23
0.33
0.30
1.01
<0. 10
<0.10
<0.10
<0.10
<0.10
<0.10
0.49
0.28
<0.10
<0.10
<0.10
<0.10
0.61
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.42
1.15
0.12
<0.10
<0.10
0.10
<0.10
<0.10
<0.10
2.05
<0.10
<0.10
<0.10
0.31
1.27
<0.10
<0.10
0.42
0.12
0.16
0.35
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.85
<0.10
<0.10
<0.10
<0.10
<0.10
0.78
<0.10
0.52
<0.10
0.28
<0.10
<0.10
<0.10
<0.10
0.87
2.46
0.10
<0.10
<0.10
0.35
<0.10
<0.10
<0.10
5.62
<0.10
0.23
<0.10
0.90
3.57
0.78
<0.10
1.25
0.31
0.33
1.08
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.42
<0.10
<0.10
<0.10
<0.10
<0.10
0.63
<0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
0.28
0.75
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.25
<0.10
<0.10
<0.10
0.21
0.76
<0.10
<0.10
0.26
<0.10
<0.10
0.26
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1X02X90
0.34
0.34
<0.10
<0.10
<0.10
<0.10
0.58
<0.10
0.28
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
0.89
3.16
0.12
<0.10
<0.10
0.43
<0.10
<0.10
<0.10
6.35
<0.10
0.12
<0.10
1.02
3.65
0.27
<0.10
1.30
0.35
0.32
0.99
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1X02X90
0.52
0.31
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.15
1.02
0.12
<0.10
<0.10
0.10
<0.10
<0.10
<0.10
1.73
<0.10
<0.10
<0.10
0.25
0.%
<0.10
<0.10
0.37
0.12
0.12
0.32
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1X02X90
0.52
0.23
<0.10
<0.10
<0.10
<0.10
0.53
<0.10
<0.10
<0.10
0.18
<0.10
<0.10
<0.10
<0.10
0.27
2.05
<0.10
<0.10
<0.10
0.26
<0.10
<0.10
<0.10
3.79
<0.10
0.11
<0.10
0.63
2.26
0.52
<0.10
0.78
0.21
0.21
0.72
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1X02X90
0.55
0.40
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
0.16
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.21
0.80
0.13
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.97
<0.10
<0.10
<0.10
0.15
0.28.
0.10
<0.10
0.19
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
* Instrument Difficulties in Resolving this Compound.
-------
ORGflNICS LIST
COMPOUND
LC0029 LC0032 LC0038 LCOCH6 LC0068 LC0045 LC0022 LC0071 LCOCK8 LC0019 LC0065 LC0075
MORSE MORSE PflSPCfl PSRPCfl MORSE MORSE PSflPCfl PSRPC9 MORSE MORSE PSflPCfl PSflPCfl
0739 HR 1953 HR 0710 HR 1927 HR 0733 HR 1947 HR 0710 HR 1915 HR 0732 HR 1920 HR 0650 HR 1855 HR
1/03/90 1/03/90 1/03/90 1/03X90 1/04/90 1/04/90 1/04x90 1/04/90 1/05/90 1/05/90 1/05/90 1/05/90
1) dichlorodifluoroaethane
2) methyl chloride *
3) l,2-dichloro-l,l,2,2-tetrafluoroeth»ne
4) vinyl chloride
5) methyl bronide
6) ethyl chloride
7) trichlorofluoroaethane
8) 1,1-dichloroethene
9) dichlorooiethane
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoroeth»ne
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloromethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane
20) trichloroethene
21) 2,2,4-triaethylpenUne
22) cis-l,3-dichloropropene
23) tr*ns-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) 1,2-dibroMefchane
27) tetrachloroethene
28) chlorobenzene
29) ethylbenzene
30) m+p-xylene
31) styrene
32) 1,1,2,2-Utraehlorotfcfwne
33) o-xylene
34) 4-ethylfcolucnt
35) l,3,5-tri«ethtjlb«nwne
36) l,2,4-tri«ethylbenzene
37) benzyl chloride
38) a-dichlorobenzene
39) p-dichlorobenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
0.47
<0.10
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
0.15
<0.10
<0.10
<0.10
<0.10
0.61
1.45
0.12
<0.10
<0.10
0.15
<0.10
<0.10
<0.10
3.40
<0.10
<0.10
<0.10
0.40
1.45
0.15
<0.10
0.47
0.15
0.12
0.38
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.44
0.58
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
0.19
0.86
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.20
<0.10
<0.10
<0.10
0.18
0.63
<0.10
<0.10
0.24
<0.10
<0.10
0.21
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.55
0.65
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.18
0.68
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.99
<0.10
<0.10
<0.10
0.15
0.56
<0.10
<0.10
0.19
<0.10
<0.10
0.19
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.31
0.46
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.16
0.50
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.61
<0.10
<0.10
<0.10
<0.10
0.30
<0.10
<0.10
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.58
0.47
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
0.10
<0.10
<0.10
<0.10
<0.10
0.77
1.23
0.12
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
2.98
<0.10
0.12
<0.10
0.43
1.49
<0.10
<0.10
0.52
0.13
0.13
0.41
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.49
0.43
<0.10
<0.10
<0.10
<0.10
0.49
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.32
1.17
0.12
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
1.83
<0.10
<0.10
<0.10
0.24
0.93
0.25
<0.10
0.34
<0.10
<0.10
0.27
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.44
0.47
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
0.30
0.93
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
2.80
<0.10
<0.10
<0.10
0.43
1.46
<0.10
<0.10
0.43
<0.10
<0.10
0.25
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.10
0.55
0.32
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
0.38
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
0.37
1.06
0.13
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
1.98
<0.10
<0.10
<0.10
0.24
0.83
0.53
<0.10
0.32
0.10
0.10
0.25
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.52
0.40
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.53
1.61
0.12
<0.10
<0.10
0.18
<0.10
<0.10
<0.10
3.47
<0.10
0.12
<0.10
0.43
1.76
0.16
<0.10
0.62
0.18
0.18
0.52
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.44
0.28
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.24
1.00
0.13
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.43
<0.10
<0.10
<0.10
0.19
0.78
<0.10
<0.10
0.28
<0.10
<0.10
0.24
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.52
0.21
<0.10
<0.10
<0.10
<0.10
0.52
<0.10
0.24
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.53
1.48
0.12
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
3.29
<0.10
<0.10
<0.10
0.50
1.82
0.50
<0.10
0.61
0.16
0.16
0.47
<0.10
<0.10
<0.10
<0. 10
<0.10
<0.10
0.52
0.40
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
0.19
0.46
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.53
<0.10
<0.10
<0.10
<0.10
0.28
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
* Instrument Difficulties in Resolving this Compound.
-------
ORGflNICS LIST
COMPOUND
LC0044 LC0018 LC0017 LC0074 LC0079 LC0064 LC0010 LC0073 LC0043 LC0057 LC0036 LC0028
MORSE MORSE PSflPCfl PSRPCfl MORSE MORSE PSflPCfl PSflPCfi MORSE MORSE PSflPCR PSRPCfl
0748 HR 1920 HR 0730 HR 1845 HR 0720 HR 1920 0650 HR 1830 HR 0700 HR 1900 HR 0630 HR 1835 H
1/06/90 1/06/90 1/06/90 1/06/90 1/07/90 1/07/90 1/07/90 1/07/90 1/08/90 1/08/90 1/08/90 1/08/9
o
CO
1) dichlorodifluoromethane
2) methyl chloride *
3) l,2-dichloro-l,l,2,2-tetrafluoroethan*
4) vinyl chloride
5) nethyl bromide
6) ethyl chloride
7) trichlorofluoro*ethane
8) 1,1-dichloroethene
9) dichlorowethane
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoro*than*
12) 1,1-dichloroethan*
13) cis-l,2-dichloroethene
14) trichloro«ethan*
15) l,2-dichloroeth*ne
16) 1,1,1-trichloroethan*
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropan*
20) trichloro*thene
21) 2,2,4-tri»ethylp*ntan*
22) cis-1,3-dichloropropen*
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethan*
25) toluene
26) l,2-dibro«o*thar>*
27) tetrachloroethene
28) chlorobenzen*
29) ethylbenzene
30) «+p-xylene
31) styrene
32) l,l,2,2-t*trachloro*th«n*
33) o-xylen*
34) 4-*thyltolu*m
35) l,3,5-tri«*lhylb*rtt*m
36) l,2,4-tri*«thylb*nz*n*
37) benzyl chloride
38) «-dichlorobenzen*
39) p-dichlorobenzen*
40) o-dichlorobenzen*
41) 1,2,4-trichlorobenzen*
42) hexachlorobutadiene
0.53
0.38
<0.10
<0.10
<0.10
<0.10
0.50
<0.10
0.21
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.10
0.31
2.06
0.11
<0.10
<0.10
0.21
<0.10
<0.10
<0.10
4.83
<0.10
<0.10
<0.10
0.86
3.12
<0.10
<0.10
1.04
0.20
0.20
0.58
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.43
0.25
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.16
0.30
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
<0.10
0.18
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.53
0.89
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0. 10
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
0.44
0.96
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.58
<0.10
<0.10
<0.10
0.25
0.87
0.18
<0.10
0.32
0.10
0.10
0.25
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
0.41
0.35
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.12
0.44
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.53
<0.10
<0.10
<0.10
<0.10
0.30
<0.10
<0.10
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.61
0.44
<0.10
<0.10
<0.10
<0.10
0.43
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.18
0.84
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.02
<0.10
<0.10
<0.10
0.13
0.55
<0.10
<0.10
0.19
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.44
1.10
<0.10
<0.10
<0.10
<0.10
0.45
<0.10
<0.10
<0.10
0.12
<0.10
<0.10
0.11
<0.10
0.20
0.47
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.62
<0.10
<0.10
<0.10
<0.10
0.30
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.43
0.18
<0.10
<0.10
<0.10
<0.10
0.44
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.19
0.87
0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.52
<0.10
<0.10
<0.10
<0.10
0.29
<0.10
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.50
0.23
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.21
0.48
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.21
<0.10
<0.10
<0.10
<0.10
0.30
0.99
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.99
0.72
<0.10
<0.10
<0.10
<0.10
0.45
<0.10
0.27
<0.10
0.11
<0.10
<0.10
<0.10
<0.10
0.74
2.61
0.12
<0.10
<0.10
0.32
<0.10
0.18
<0.10
6.32
<0.10
0.11
<0.10
0.99
3.60
0.50
<0.10
1.20
0.33
0.30
1.01
<0. 10 • ,
<0.10
<0.10
<0.10
<0.10
<0.10
0.59
0.38
<0.10
<0.10
<0.10
<0.10
0.49
<0.10
0.18
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.44
1.92
0.10
<0.10
<0.10
0.22
<0.10
<0.10
<0.10
3.50
<0.10
<0.10
<0.10
0.55
1.96
0.41
<0.10
0.65
0.16
0.19
0.56
<0.10
0.31
<0.10
0.21
0.21
<0.10
0.59
0.41
<0.10
<0.10
<0.10
<0.10
1.06
<0.10
0.22
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.43
1.28
0.12
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
2.42
<0.10
<0.10
<0.10
0.35
1.27
0.61
<0. 10
0.44
0.13
0.12
0.35
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.5
<0.1
<0.1
<0.1
<0.1
<0.1
0.5
<0.1
0.3
<0.1
0.1
<0.1
<0.1'
<0.1
<0.1
0.3
1.3
0.1
<0.
<0.
0.
<0.
<0.
<0.
2.7
<0.l
<0.1
<0.1
0.1
1.5
O.i
<0. 1
0.5
0.1
0.
0.
<0. I
<0.1
<0.
-------
ORGflNICS LIST
COMPOUND
u>
-8
1) dichlorodiflooro**th»ne
2) Mthyl chloride *
3) l,2-dichloro-l,l,2,2-tetr«fluoroeth«ne
4) vinyl chloride
5) .ethyl broaide
6) ethyl chloride
7) trichlorofluoroaethane
8) 1,1-dichloroethene
9) dichloro«eth«ne
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoroeth«ne
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloroaethane
15) 1,2-dichloroefchane
16) l,l,l-trichloroeth«
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane
20) trichloroethene
21) 2,2,4-tri«ethylpent«ne
22) cis-l,3-dichloropropene
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) l,2-dibro«oeth«ne
27) tetrachloroethene
28) chlorobenzene
29) ethylbenzene
30) «+p-xylene
31) styrene
32) 1,1,2,2-tetrachloroethane
33) o-xylene
34) 4-ethyltoluene
35) 1,3,5-trinethylbenzene
36) 1,2,4-triaethylbenzene
37) benzyl chloride
38) o-dichlorobenzene
39) p-dichlorobenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
OUP. DUP. DUP.
02154 BMI-14 LC0053
MORSE PSPPCfl HORSE
1919 HR 1850 HR 0706 HR
12/07/09 12/09/89 12/14/89
0.28
<0.10
<0.10
<0.10
<0.10
<0.10
0.71
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.42
0.97
0.14
<0.10
<0.10
0.14
<0.10
<0.10
<0.10
1.74
<0.10
<0.10
<0.10
0.28
0.99
<0.10
<0.10
0.37
<0.10
<0.10
0.28
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.73
<0.10
<0.10
<0.10
<0.10
<0.10
1.04
<0.10
0.40
<0.10
0.21
<0.10
<0.10
<0.10
<0.10
0.57
3.72
0.14
<0.10
<0.10
0.50
<0.10
<0.10
<0.10
6.21
<0.10
<0.10
<0.10
0.96
3.60
0.14
<0.10
1.27
0.35
0.33
0.97
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.08
<0.10
<0.10
<0.10
<0.10
<0.10
0.70
<0.10
0.64
<0.10
0.12
<0.10
<0.10
<0.10
<0.10
0.83
5.98
0.16
<0.10
<0.10
0.83
<0.10
<0.10
<0.10
14.38
<0.10
0.24
<0.10
2.50
9.56
0.76
<0.10
3.25
0.85
0.76
2.31
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
DUP.
LC0062
MORSE
0735 HR
1/02/90
0.43
0.59
<0.10
<0.10
<0.10
<0.10
0.59
<0.10
0.35
<0.10
0.19
<0.10
<0.10
<0.10
<0.10
0.87
3.42
0.12
<0.10
<0.10
0.46
<0.10
<0.10
<0.10
6.88
<0.10
0.10
<0.10
1.08
3.85
0.30
<0.10
1.31
0.35
0.34
1.02
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
DUP.
LC0036
PSflPCfl
0630 HR
1/08/90
0.66
0.52
<0.10
<0.10
<0.10
<0.10
1.33
<0.10
0.21
<0. 10
0.13
<0.10
<0.10
<0.10
<0.10
0.46
1.40
0.15
<0.10
<0.10
0.15
<0.10
<0.10
<0.10
2.72
<0.10
<0.10
<0.10
0.41
1.43
0.71
<0.10
0.50
0.12
0.13
0.40
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
* Instrument Difficulties in Resolving this Compound.
-------
U>
ORGflNICS LI5T
COMPOUND
1) dichlorodif luorooethane
2) *ethyl chloride *
3) l,2-dichloro-l,l,2,2-tetrafluoroethane
4) vinyl chloride
5) methyl bromide
6) ethyl chloride
7) trichlorof luoromethane
8) 1,1-dichloroethene
9) dichloromethane
10) 3-chloropropen*
11) 1, l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroethane
13) cis-l,2-dichloroethene
14) trichloromethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tetrachloride
19) 1,2-dichloropropane
20) trichloroethen*
21) 2,2,4-trimethylpentane
22) cis-l,3-dichloropropen«
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) l,2-dibromo«thane
27) tetrachloroethene
28) chlorobenzene
29) ethulbenzene
30) «+p-xylene
31) styrene
32) l,l,2,2-t«tr«chlarxwih«w
33) o-xylene
34) 4-ethyltoliMrw
35) 1,3,5-triMthtjlbanzww
36) l,2,4-tri«*tnylb«nz«m
37) benzyl chloride
38) m-dichlorobenzen*
39) p-di chlorobenzene
40) o-dichlorobenzen*
41) 1, 2,4-trichlorob*nzene
42) hexachlorobutadiene
RGX-003
PSflPCR
0727 HR
1/02/90
0.65
0.32
<0.10
<0.10
<0.10
<0.10
0.54
<0.10
<0.10
<0.10
0.25
<0.10
<0.10
<0.10
<0.10
0.24
1.95
<0.10
<0.10
<0.10
0.25
<0.10
<0.10
<0.10
3.67
<0.10
0.11
<0.10
0.57
1.20
0.40
<0.10
0.71
0.21
0.19
0.66
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
RXG-015
psflpcn
1959 HR
1/02/90
0.52
0.70
<0.10
<0.10
<0.10
<0.10
0.49
<0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
0.17
0.65
0.11
<0.10
0.21
<0.10
<0.10
<0.10
<0.10
0,82
<0.10
<0.10
<0.10
0.11
0.38
<0.10
<0.10
0.13
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.10
<0.10
<0.10
RGX-010
PSflPCfl
0740 HR
1/03/90
0.53
0.55
<0.10
<0.10
<0.10
<0.10
0.97
<0.10
<0.10
<0.10
0.14
<0.10
<0.10
<0.10
<0.10
0.18
0.64
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.00
<0.10
<0.10
<0.10
0.16
0.52
0.10
<0.10
0.18
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
RGX-014 I
PSflPCfl
0750
1/05/90
0.63
0.42
<0.10
<0.10
<0.10
<0.10
0.52
<0.10
0.21
<0.10
0.18
<0. 10
<0.10
<0.10
<0.10
0.52
1.39
0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
2.87
<0.10
<0.10
<0.10
0.39
1.53
0.10
<0.10
0.50
0.14
0.11
0.42
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
RGX-R258
PSflPCfl
0700 HR
1/07/90
0.51
0.24
<0.10
<0.10
<0.10
<0.10
0.47
<0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
0.21
0.60
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.76
<0.10
<0.10
<0.10
0.11
0.36
<0.10
<0.10
0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
RGX-004
PSflPCfl
1854 HR
1/08/90
0.62
0.37
<0.10
<0.10
<0.10
<0.10
0.59
<0.10
0.39
<0.10
0.25
<0.10
<0.10
<0.10
<0.10
0.46
1.39
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
2.65
<0.10
<0.10
<0.10
0.50
1.64
0.41
<0.10
0.59
<0.10
<0.10
0.34
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
DUP.
RGX-003
PSflPCfl
0727 HR
1/02/90
0.62
0.40
<0.10
<0.10
<0.10
<0.10
0.57
<0.10
0.11
<0.10
0.33
<0.10
<0.10
<0.10
<0.10
0.27
2.07
0.13
<0.10
<0.10
0.30
<0.10
<0.10
<0.10
3.89
<0.10
0.11
<0.10
0.62
2.14
0.46
<0.10
0.79
0.21
0.21
0.76
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
DUP.
RGX-015
PSflPCfl
1959 HR
1/02/90
0.54
0.46
<0.10
<0.10
<0.10
<0.10
0.52
<0.10
<0.10
<0.10
0.16
<0.10
<0.10
<0.10
<0.10
<0.10
0.68
0.11
<0.10
0.19
<0.10
<0.10
<0.10
<0.10
0.84
<0.10
<0.10
<0.10
0.13
0.40
<0.10
<0.10
0.14
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
OUP.
R6X-010
PSflPCfl
0740 HR
1/03/90
0.58
0.45
<0.10
<0.10
<0.10
<0.10
1.08
<0. 10
<0.10
<0.10
0.10
<0.10
<0.10
<0.10
<0.10
0.19
0.71
0.14
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
0.98
<0.10
<0.10
<0.10
0.16
0.52
<0.10
<0.10
0.19
<0.10
<0.10
0.18
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
OUP.
RGX-004
PSflPCfl
1854 HR
1/08/90
0.69
0.55
<0.10
<0.10
<0.10
<0.10
0.66
<0.10
0.43
<0.10
0.23
<0.10
<0.10
<0.10
<0.10
0.46
1.35
<0.10
<0.10
<0.10
0.14
<0.10
<0.10
<0.10
2.60
<0.10
<0.10
<0.10
0.41
1.64
0.34
<0.10
0.55
0.11
0.11
0.34
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
* Instrument Difficulties in Resolving this Compound.
-------
ORGANICS LIST
COMPOUND
DUP DUP OUP
RUDIT AUDIT flUOIT RUOIT RUOIT AUDIT AUDIT AUDIT AUDIT
CAN CAN CAN CAN CAN CAN CAN CAN CAN
BHI-031 BHI-041 BMI-026 BMI-032 BCL-043 BCL-034 BMI-041 BMI-026 Ba-043
1) dichlorodifluoroitethane
2) methyl chloride
3) l,2-dichloro-l,l,2,2-tetrafluoroethane
4) vinyl chloride
5) methyl bromide
6) ethyl chloride
?) trichlorofluoromethane
8) 1,1-dichloroethene
9) dichloroaethane
10) 3-chloropropene
11) l,l,2-trichloro-l,2,2-trifluoroethane
12) 1,1-dichloroeihane
13) cis-l,2-dichloroethene
14) trichloronethane
15) 1,2-dichloroethane
16) 1,1,1-trichloroethane
17) benzene
18) carbon tefcrachloride
19) 1,2-dichloropropane
20) trichloroethene
21) 2,2,4-trinethylpentane
22) cis-l,3-dichloropropene
23) trans-l,3,-dichloropropene
24) 1,1,2-trichloroethane
25) toluene
26) l,2-dibro*oethane
27) tetrachloroethene
28) chlorobenzene
29) ethylbenzene
30) m+p-xylene
31) styrene
32) 1,1,2,2-tetrachloroelhane
33) o-xylene
34) 4-ethyltoluen*
35) 1,3,5-triMthyllMnttrw
36) l,2,4-tri«ethylb»nzene
37) benzyl chloride
38) m-dichlorobenzene
39) p-dichlorobenzene
40) o-dichlorobenzene
41) 1,2,4-trichlorobenzene
42) hexachlorobutadiene
<0.10
<0.10
<0.10
1.26
5.82
<0.10
11.00
<0.10
1.80
<0.10
0.44
<0.10
<0.10
2.01
1.81
3.60
1.78
2.26
3.32
1.85
<0.10
<0.10
<0.10
<0.10
3.94
4.40
1.93
4.09
3.78
<0.10
<0.10
<0.10
4.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
3.70
12.06
<0.10
23.16
<0.10
3.54
<0.10
23.09
<0.10
<0.10
4.18
3.84
7.54
3.77
4.63
7.15
3.99
<0.10
<0.10
<0.10
<0.10
8.27
8.46
4.12
8.40
7.67
<0.10
<0.10
<0.10
8.38
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.79
5.61
<0.10
11.23
<0.10
1.72
<0.10
0.87
<0.10
<0.10
2.08
1.98
3.80
1.83
2.32
3.65
1.98
<0.10
<0.10
<0.10
<0.10
4.33
4.83
2.03
4.29
4.10
<0.10
<0.10
<0.10
4.49
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
4.69
11.44
<0.10
21.97
<0.10
3.37
<0.10
0.63
<0.10
<0.10
4.17
3.82
7.54
3.86
4.60
7.18
3.96
<0.10
<0.10
<0.10
<0.10
8.62
9.21
4.22
8.57
8.01
<0.10
<0.10
<0.10
8.87
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
4.17
12.94
<0.10
23.05
<0.10
4.17
<0.10
23.92
<0.10
<0.10
4.38
4.03
7.54
4.11
4.63
7.81
4.07
<0.10
<0.10
<0.10
<0.10
8.96
8.79
4.10
8.82
8.05
<0.10
<0.10
<0.10
8.65
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
1.76
5.93
<0.10
11.03
<0.10
1.81
<0.10
0.87
<0.10
<0.10
2.15
1.99
3.83
2.12
2.28
3.62
2.02
<0.10
<0.10
<0.10
<0.10
4.81
4.98
2.09
4.66
4.33
<0.10
<0.10
<0.10
4.66
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
-------
Appendix E-S. Meteorological Data Measured at the Alexander Avenue Site
Start
Date
12/5
12/5
12/6
12/6
12/7
12/7
12/8
12/8
12/9
12/9
12/10
12/10
12/11
12/11
12/12
12/12
12/13
12/13
12/14
12/14
12/15
12/15
1/2
1/2
1/3
1/3
1/4
1/4
1/5
1/5
1/6
1/6
1/7
1/7
1/8
1/8
U Theta So
m/s deg w/m2
1.14
1.07
0.13
0.16
1.2
1.9
3.56
2.75
1.52
1.02
1.24
0.92
1.03
1.27
0.77
0.41
0.41
1.31
0.95
1.26
1.33
1.56
1.34
1.54
3.67
2.24
2.99
0.65
3.39
2.68
1.21
4.32
3.92
1
1.58
1.01
156 81.1
164 0
235 43.7
73 -0.1
135 37.8
200 -0.1
216 42.7
177 -0.1
151 105.8
145 0
26 93.3
107 0
141 82.7
139 0
141 106.3
65 0
53 116.8
137 0
121 40.1
138 0
76 41.3
109 0
159 128.7
134 0
182 18.1
162 0
217 40.4
174 -0.1
191 19.9
172 -0.1
142 66.1
204 0
193 53.2
290 0
167 29.6
127 0
ppt
in
0.01
0
0.01
0
0.13
0.42
0.1
0
0
0
0
0
0
0
0
0.01
0
0
0
0
0
0
0
0
0.06
0.26
0.02
0.08
0.47
0.11
0.21
0.9
0.16
0.52
0.55
1.97
n
%
0
0
17
10
0
1
0
0
0
0
31
2
0
0
3
17
33
1
3
0
3
0
0
0
0
0
0
1
0
0
0
0
0
30
2
1
ne
%
0
4
13
4
1
0
0
0
1
0
23
27
2
0
9
20
10
1
11
0
44
2
1
1
0
0
0
1
0
0
3
0
0
12
5
4
e
%
3
6
8
20
16
1
0
1
8
6
11
8
10
7
12
15
6
13
12
13
17
59
7
13
0
0
1
12
3
0
8
0
0
5
13
24
se
%
57
35
17
17
60
15
3
34
51
65
22
47
65
76
42
29
19
70
68
72
24
34
50
72
25
38
3
38
22
42
53
26
13
12
33
51
s
%
23
44
17
4
15
39
33
53
32
28
3
14
16
15
26
5
23
15
6
15
13
4
40
13
61
60
28
6
56
56
15
22
58
6
39
7
sw
%
5
3
10
4
8
35
48
13
6
1
2
1
6
2
4
1
6
0
0
0
0
1
3
1
14
0
47
8
14
3
11
41
29
24
8
4
w
%
6
4
8
18
1
3
16
0
2
0
6
1
1
0
1
3
1
0
1
0
0
0
0
0
0
1
19
26
6
0
3
11
0
3
0
5
nw <
%
7
2
10
22
0
6
0
0
0
0
2
1
0
0
3
9
3
0
0
0
0
0
0
1
0
0
1
7
0
0
6
0
0
8
0
3
Im/s
%
26
32
23
48
38
6
0
3
13
44
21
24
31
28
38
61
24
22
32
20
15
13
24
13
0
2
3
17
9
1
29
0
1
2
14
37
Average: 1.62 151 31.9 0.17 4
39 25 10
20
U = wind speed; Theta = wind direction (degrees from north); So = solar insolation; ppt =
precipitation.
313
-------
Appendix E-6. Linear Correlations Between Sites
315
-------
Appendix E-6(a). Concentration of Fine-Particle Mass at the Morse Supply Site Versus
the Alexander Avenue Site. The 1;1 line is drawn on the graph.
1
I
0)
iZ
-------
Appendix E-6(b). Concentration of Fine-Particle Organic Carbon at the Morse Supply Site
versus the Alexander Avenue Site. The 1:1 line is drawn on the graph.
I
S
CO
O
o
CO
D)
O
(D
CD
(0
15
10
0
0
10
20
30
40
Alexander Avenue Site Organic Carbon, Mg/m3
318
-------
Appendix E-6(c). Concentration of Fine-Particle Sulfur (measured by x-ray fluorescence)
at the Morse Supply Site versus the Alexander Avenue Site. The 1:1 line is drawn on the
graph.
3000
0
500
1000
1500
2000
2500
3000
Alexander Avenue Site Sulfur,
319
-------
Appendix E-6(d). Concentration of Fine-Particle Lead (Pb) at the Morse Supply Sites
versus the Alexander Avenue Site. The 1;1 line is drawn on the graph.
f>
I
73
CTJ
CO
0)
CO
40
20
0
0
20
40
60
80
100
Alexander Avenue Site Lead,
320
-------
Appendix E-6(e). Sulfate (measured by ion chromatography) versus Sulfur (measured by
x-ray fluorescence). The 3:1 line is drawn on the graph.
fi
S=
a
CO
o
0
0.0
0.5
1.0
1.5
2.0
a
ALEXANDER
SITE
*
MORSE
SITE
XRF Sulfur,
Slope = 2.47
Intercept = 0.06
r = 0.97
2.5
3.0
321
-------
Appendix E-7. PAH Results
323
-------
technology |
NSI Technology Services Corporation
A Subsidiary of
MenTech International Corporation
Environmental Sciences
P.O. Box 12313,2 Triangle Drive
RMearch Triangle Park, NC 27709
Telephone (919) 549-0611
NEMO
Date: 27-March-90
To: W. Ellenson
From: R. S. Whiton/
Subject: Puget Sound Samples
My GC/MS analysis of the Puget Sound filter extracts is complete.
Preliminary analysis of the ImL extracts showed that they were
too dilute and the samples were therefore transferred to conical-
bottomed vials and concentrated to approximately lOOuL under
streams of nitrogen. Five samples (sets 1, 2, 4, 5, and 7) were
analyzed by full scan GC/MS using a HP 5970 MSD with the
following conditions:
column: HP Ultra2, 25m x 0.20mm, O.llum film, + 1m retention
gap, 35cm/s He carrier
injection: IfiL cool on-column
column temp: 40*C(lmin), 15°C/min to 200°C(Omin), 3°C/min to
310°C(10min)
MS: scanned 50-400 arou, 1.2 scans/s
The total ion chromatograms are attached as figures 1-5 and the
peak identifications are contained in tables 1-5. All
identifications are based on automated searches of mass spectral
libraries and should be considered tentative identifications.
All seven samples were analyzed by selected ion monitoring (SIM)
GC/MS for detection of PAH and retene. The chromatographic
conditions were the same as given above, and the SIM parameters
were:
5-11 min- m/z 128, 152, 154, 166; 75ms each
11-19 min- m/z 178, 202, 219, 234; 75ms each
19-40 min- m/z 228, 252, 276, 278; 75ms each
40-50 min- m/z 300 for 200ms
The results are contained in table 6. The quantities determined
should be taken as not better than +/- 50%, and the qualitative
identifications are somewhat uncertain due the constant loss of
chromatographic performance caused by the high levels of non-
volatile material in the extracts. The results for sets 4 and 5
were particularely poor, and most of the PAHs may have been
missed due to interferences or shifting retention times.
-------
The difficulty of the analysis was compounded by the fact that
the levels of PAH were near the detection limits of the
instrument. If five to ten times more air were to be sampled, it
could be possible to clean up the samples and get more accurate
data.
-------
1848700-1
M 1°
H ?
-P £i
0 —J
ci
. CD
*~ m
-------
c
£
£
O
CN
0)
0)
CL
0)
C ,
•H "
C «
O 6
O /*
31 32
| I ] I [ I
SS 34 35
I I ' I I I ' I ' I I I I I I I I I I I I I > I I I I 1" I I I
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|l T
56 57
58
c
LU
-------
1111700-1
836025-
557350-
278675-
c\i
o
CO
bO
LJ
17 18 19 20 21
I > I I I I I I I I I I I I I
22 23 21 25 26 27 28 23
-------
£
N
£
o
-o
ID
-------
l?56000-i
'142000-
628000-
o
o
00
CO
i I i I i I i I i I i I i I i I i I i I i I I I i I i I
10 11 12 13 It 15 16 17 18 19 20 21 22 23 21
25 26
M I I I
27 28 29
30
-------
£
X
£
O
0>
0)
CL
ID
_c
e ro
•3
c
£
CD
CO
O
a-*
f^
•o'
0)
3
~~VU^-J1*»^^
bO
•H
!>•* •.-Aw^*.^^,-^. J—^» J| ^. ,. _ .„ i j, _
T~n I I I ' I I I TT" I I ' ' I I I I I I I I I I I I I ' I ' I ' I I I ' I M ' I ' I"' I I i I I ' 1
33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 43 50 51 52 53 54 55 56 57 58 u
c
-------
1026100-1
789575-
513050-
256525-
. Cfl
So
i i i i i i i
10 11 12 13 11 15 16 17 18 19 20 21 22 23 24 25 2S 2? 28 29 3
en
-------
£
e
o
T3
0)
-------
831200-1
668100-1
115600-
M UJ
CM
. co
0)
222800-
«n
en
en
I I I I I I I I I
8 9 10 11 12
I I I i T
13 11 15
'I I I I I I I I I I I I I I i I I I I I I I I I I I I I
16 1? 18 19 20 21 22 23 21 25 26 27 28 23 3
-------
e
x
e
o
0)
Q-
UJ
_c
u
to
o
c
CM
CD
CD
IT-
•o
-------
Table 1. Peak identifications for Set 7.
Peak # Identification
1 2-Chlorocyclohexane
2 Dichlorocyclohexane
3 Dichloromethylbenzene
4 Benzoic acid
5 Chloro(2-chloroethyl)benzene
6 Cyclododecane
7 Hexadecanoic acid
8 Octadecanoic acid
9 Phthalate ester
Many of the unidentified peaks in the range of 5-10 minutes
appear to be chlorine containing compounds, many with apparent
benzyl structures.
337
-------
Table 2. Peak identifications for Set 1.
Peak # Identification
1
2
3
Dibutyl phthalate
Butylbenzyl phthalate
possible match to di-lauryl-thio-di-propionate?
Table 3. Peak identifications for Set 2.
Peak # Identification
1
2
3
4
Dibutyl phthalate
Substituted alkane- alcohol or alkene?
Phthalate ester
possibly Octahydro-phenanthrenecarboxylic acid?
Table 4. Peak identifications for Set 4.
Peak # Identification
1
2
3
4
5
Dibutyl phthalate
Butyl,benzyl phthalate
Chrysene/benz(a)anthracene
Bis(2-ethylhexyl) phthalate
possibly Di-lauryl-thio-di-propionate?
Table 5. Peak identifications for Set 5.
Peak # Identification
1
2
3
4
5
6
Dibutyl phthalate
Butyl,benzyl phthalate
Chrysene/benz(a)anthracene
Bis(2-ethylhexyl) phthalate
PAH of molecular weight 252
possibly Di-lauryl-thio-di-propionate?
A = alkanes
* = peak contained in blank (set 7)
338
-------
Table 6. Results of Selected Ion Monitoring (SIM) Analysis for Fine-Particle PAH Compounds
ng per Sample Set***
Compound
Naphthalene
Acenaphthylene
Acenaphthene
Fluorene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benzo(a)anthracene
Chrysene
Total Benzofluoranthenes
*Benzo(e)pyrene
Benzo(a)pyrene
Indeno(l,2,3-c,d)pyrene
Dibenzo(a,h)anthracence
Benzo(g , h , i)perylene
**Coronene
Set
1
1.8
-
-
-
5.2
2.7
23
34
28
59
56
50
51?
50
+
85
+
Set
2
1.6
-
-
-
nq-I
nq-I
68
83
nq-I
nq-I
160
140?
140?
130?
26?
210?
+
Set
3
1.9
-
4.3
-
4.6
-
18
25
18
51
50
48
35
50
?
82
+
Set
4
+
-
-
-
4.8
2.7
25
34
23
82
47
38?
23?
25?
+
+
+
Set
5
5.5
-
7
-
21
?
160
130
-
-
-
-
+
-
-
-
+
Set
6
+
-
-
-
14
14
95
88
-
-
-
?
7
-
-
-
+
Set
7
+
-
-
-
3.5
3.7
-
-
-
-
-
-
-
-
-
-
-
#Retene 60,482 198,660 72,774 56,774 135,568 57,192
+ Identified but below quantitation limits.
? Uncertain ID due to retention time shifts.
nq-I Not quantitated due to interfering peak(s).
* B(e)P estimated from B(a)P calibration.
** Coronene not quantitated.
# Retene numbers are peak areas-quantitation standard not available.
*** Set 1 = Morse Supply site, December, Hogged fuel up
Set 2 = Morse Supply site, December, Hogged fuel down
Set 3 = Morse Supply site, January, Hogged fuel up
Set 4 = Alexander Avenue site, December, Hogged fuel up
Set 5 = Alexander Avenue site, December, Hogged fuel down
Set 6 = Alexander Avenue site, January, Hogged fuel up
Set 7 = Eight field blanks.
339
-------
Appendix F. Diffusion/Transport Modeling
F-l. WV3 Eulerian Grid Dispersion Model 343
F-2 Model Input - Source Emissions 345
F-3. Model Input - Meteorological Vertical Eddy Diffusivities 351
F-4. Model Input - Sampling Intervals 355
F-5. Model Output - Simulations 357
F-6. Development of the Mobilization Coefficient Model and
Results for the Tacoma Tideflats 369
341
-------
Appendix F-l. WV3 Eulerian Grid Dispersion Model
A mathematical model was developed to simulate the emission, dispersion, and deposition of
toxic contaminants, through the atmosphere and into the watershed of Commencement Bay.
The governing equation expresses conservation of mass:
dC/dt = - Grad [U-C] + Sources - Sinks. [1]
In [1], the first term to the right of the equality accounts for transport, the second for
emissions, and the third for depositions or chemical degradation. C is the local concentration
of a specified tracer, and U is the local wind velocity, both specified as functions of time and
space. In Cartesian coordinates, the Grad operator is d/dx + d/dy + d/dz.
It is not straightforward to solve equation [1], because the U«C term displays complex structure
over a wide span of scales, both in space and time. A common approach is to approximate the
transport term as:
- Grad [U.C] = - [U dC/dx + V dC/dy + W dC/dz] + [Kx Cxx + Ky Cyy + Kz Czz].[2]
In [2], U, V, and W are three components of the winds, averaged over a specified time, T0.
Cxx, Cyy, and Cxx are the second spatial derivatives [the curvatures] in the three Cartesian
coordinates (x,y,z), also averaged over T0. Kx, Ky, and Kz are semi-empirical "diffusivity"
coefficients that can be obtained from measurements of the variability of U, V, and W over
times that are shorter than T0. The averaging time, T0, is usually taken as the interval between
reported measurements of U and V, typically an hour. The vertical velocities, W, are
approximately zero close to the ground.
The Source terms in [1] must be externally specified. For mathematical convenience the Sink
term is usually approximated as linearly proportional to C:
Sink = Vs • C. [3]
The coefficient Vs, is called a "deposition velocity". The deposition velocity is defined as
follows:
Vs = Kz . V1 • 0. [4]
In equation [4], Kz represents eddy diffusivity. X"1 is the roughness length and 0 is the
"sticking" fraction. Thus, the velocity of deposition depends on transport (eddy diffusivity),
the character of the surface (roughness length), and the tendency of the particle to remain
(sticking fraction).
Equations [1] to [3] can be solved analytically only for point sources in the steady state, with
constant Kx, Ky, Kz, and Vs, and with uniform boundary conditions. This approach yields
"Gaussian Plumes", a common approximation that is widely and sensibly used for reasonably
steady winds in simple terrain.
When winds are light and variable, however, and when the terrain is complexly bounded,
Gaussian Plumes become progressively unrealistic. With the advent of microprocessing, both
with increasingly powerful table-top computers and with instrumentation to record and store
wind information sampled at shorter intervals [T0 = minutes or seconds, instead of tens of
minutes], it is now practical to attempt explicit numerical integration of equations [1] to [3].
One model to do this is "WYNDvalley".
343
-------
WYNDvalley, version 3.01 (hereafter WV3), is a time-dependent Eulerian grid simulation that
integrates equations [1] to [3] in three dimensions with arbitrarily varying emissions, both in
time and space. The model permits flexible boundary conditions and the separation of the
deposition velocity, Vs, into steady and time-varying components, as with rain-modulated
removal of soluble contaminants.
WV3 (and earlier versions) have been compared with observations and with predictions from
RAM, a standard Gaussian Plume model, for PMW at six sites in the Pacific Northwest,
including data from 1985 and 1986 at Fire Station No. 12 in the Tacoma Tidefiats. The earlier
version of WV3 proved superior to RAM in five out of six scoring criteria which depend on
matching observations with simulations, both in time and space. For the sixth, neither model
was superior to the other (Harrison et al., 1990).
One of these scoring criteria, the mean relative error (MRE) is defined as:
MRE = sqr {< (2-[ O P ] / [O + P])2 >}. [5]
In equation [5] the < brackets > denote averages over the sets observations, O and predictions,
P. WV3 displayed MRE scores of about 30 percent at Fire Station No. 12 with data from more
than 400 days, including a week of severe stagnation weather during December of 1985.
344
-------
Appendix F-2. Model Input - Source Emissions
PMIO and TSP
Appendix F-2(a) summarizes the point sources of PM10 in the Tacoma Tideflats that emit one
or more kilograms per day, as compiled by the Puget Sound Air Pollution Control Agency
(PSAPCA) for 1988. The first two columns in this table give X and Y coordinates of each
source in UTM (kilometers). The third column lists the estimated PM10 emissions (kg/day).
The 4th and 5th columns code the emission heights (1 denotes 0-66 meters; 2 denotes > 66
meters). Numbers preceded by a forward slash (/) are PSAPCA registries. Numbers preceded
by a back slash (\) refer to source-profiles that will be discussed below.
The numbers in Appendices F-2(a) and F-2(b) refer to particles of diameters equal to 10
microns or less. The PS-1 instrument used in the present study to collect the "total" suspended
particles (PM^^) admit particles of larger diameters than 10 microns: hence all the numbers
above do not strictly correspond to what was collected in the aerosol samples.
The present study is not primarily concerned with either PM10 or PM^j,, except as a route to
estimate the emissions of specific toxic contaminants, with especial attention given to Cu, Zn,
As, Pb, and a variety of polyaromatic hydrocarbons (PAH). To estimate the emissions of these
contaminants, we have sought source "profiles" with measurements of the weight fractions of
various contaminants contained in filter samples collected for a variety of source types, and
assigned a source-type profile to each point source of Appendix F-2(a) and area source of
Appendix F-2(b).
Appendix F-2(c) contains profiles for the Cu, Zn, As, and Pb, and Appendix F-2(d) for several
PAHs.
Entries in Appendix F-2(c) are given as percent by mass in the TSP mode, where available.
PM10 or Coarse-Particle if not. Profile numbers not beginning with 0000# derive from Core
(1989). Others derive from Larson and Kalman, Hopke, the STAGS study, or the Simpson
source profile study performed for this project.
345
-------
Appendix F-2(a). Diffusion/Transport Model Input - Point Sources
TACOMA PM10 (1988)
xutm yutm kg/day
546.
546.
546.
55
55
50
546.50
542.
545.
545.
546.
546.
20
60
60
00
00
547.80
547.85
547.60
542.90
542.95
542.
543.
543.
543.
543.
543.
543.
543.
543.
543.
543.
547.
547.
547.
545.
545.
545.
545.
545.
545.
545.
547.
546.
542.
545.
544.
546.
547.
542.
547.
547.
90
50
50
50
50
50
50
50
40
40
40
10
10
10
90
90
90
90
90
90
90
70
55
25
65
42
10
10
90
65
85
5235
5235
5235
5235
5234
5235
5235
5235
5235
5234
5234
5233
5234
5234
5234
5234
5234
5234
5234
5234
5234
5234
5234
5234
5234
5235
5235
5235
5233
5233
5233
5233
5233
5233
5233
5235
5235
5234
5235
5235
5235
5235
5232
5234
5234
.45
.50
.65
.60
.65
.30
.25
.00
.05
.20
.05
.90
.25
.25
.20
.70
.70
.70
.60
.60
.60
.60
.80
.80
.80
.20
.20
.20
.50
.50
.50
.50
.50
.50
.50
.50
.45
.65
.20
.13
.00
.60
.70
.15
.15
4.2
72.0
14.0
7.0
32.9
35.5
9.9
11.5
3.5
3.9
3.9
5.2
26.3
12.0
46.6
14.0
1054.0
140.0
228.0
84.0
524.0
28.0
195.0
30.0
30.0
1.7
18.9
8.9
18.2
7.9
7.9
3.7
11.7
3.7
16.3
3.1
7.4
30.4
24.2
22.2
31.0
49.3
28.0
209.1
313.6
Source
levl sked
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
2
2
1 , Buffelen
1 , Buffelen
1 , Buffelen
1 , Buffelen
1 , Cont. Grain
1 , Cont. Lime
1 , Cont. Lime
1 , Domtar Gyp.
1 , Domtar Gyp.
1 , Kaiser
1 , Kaiser
1 , Kaiser
1 , Puget S. Ply.
1 Puget S. Ply.
1 Puget S. Ply.
1 Simpson
1 Simpson
1 Simpson
1 Simpson
1 , Simpson
1 , Simpson
1 , Simpson
1 , Simpson
1 Simpson
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
4
1
1
Simpson
USG Interiors
USG Interiors
USG Interiors
US Oil
US Oil
US Oil
US Oil
US Oil
US Oil
US Oil
Woodworth
Buffelen
Cont. Grain
Cont. Lime
Tacoma Port
Dombar Gyp.
Gen. Metals
Scofield
1 , Kaiser
1 , Kaiser
Reg.#
/ 10340
/10340
/ 10340
/ 10340
/21430
/11820
/I 1820
/10016
/10016
/13461
/13461
/13461
/ 11974
/I 1974
/I 1974
/12317
/12317
/12317
/12317
/12317
/12317
/12317
/12317
/12317
/12317
/12609
/12609
/ 12609
/12593
/12593
/12593
/12593
/12593
/12593
/12593
/16043
/ 10340
/21430
/I 1820
/ 10074
/10016
/21432
/10895
/13461
/13461
Code
\22302
\12706
\22203
\22203
\21401
\23202
\22203
\12707
\27601
\3122
\3122
\3122
\12706
\22302
\22203
\00009
\00007
\00009
\00008
\00008
\00009
\00009
\00009
\00009
\00009
\12707
\28202
\22203
\13502
\13502
\13502
\13502
\13502
\3132
\13502
\3112
\22302
\21401
\23202
\00012
\27601
\3193
\51
\3111
\3173
\29102
\3173
\29102
Comments
dryer
boiler-wood
baghouse
cyclones
baghouse
kiln and hydrator
baghouse
plywood drier kiln
baghouse
dry scrubbers
dry scrubbers
dry scrubbers
boiler-wood
dryer
baghouse
boiler#l oil
boilers#2-5 wood
boiler#6 oil
kiln#l oil
kiln#2 oil
rcvryboiler#3resOil
smelt. tank#3
rcvryboiler#4resOil
smelt. tank#4east
smelt. tank#4west
plywood oven
cupolas
filters
h8-ll resOil
h201 + nat gas
h3 + process
h901 gas
hi 102-4 801a-c "
asphalt heaters "
boilers 4&5
scrubber
dryers
J
marine cargo handling
roof monitor
roof monitor
346
-------
Appendix F-2(a). Point Sources (cont'd)
TACOMA PM10 (1988)
xutm yutm kg/day
547.
547.
548.
542.
547.
543.
546.
537.
546.
542.
540.
546.
548.
65
85
20
95
70
22
55
55
55
98
00
80
00
5233
5233
5234
5234
5235
5233
5235
5229
5233
5232
.90
.90
.20
.25
.50
.60
.95
.65
.10
.38
5230.95
5232
.50
5234.70
137
209
.2
.1
71.0
23.9
127
.4
44.3
9.
3.
3.
2.
195
5.
5
5
2
5
.0
0
22.0
Source
levl sked
2
2
1
1
1
1
1
1
1
1
1
1
1
1 ,
1 ,
1 ,
1 ,
4 ,
4 ,
1 ,
1 ,
4 ,
4 ,
4 ,
4 ,
4 ,
Kaiser
Kaiser
Lone Star
Puget S. Ply.
Woodworth
Coastcraft
Sound Refng.
Pac. Intnl.
Lianga
Harmon
W. Coast Door
Sierra Sandbl.
Tacoma Boat
Reg.#
/13461
/13461
/14071
/I 1974
/16043
/10463
/13828
/ 12050
/13511
/10995
/12716
/10068
/12429
Code
\3173
\29102
\3173
\39102
\51
\22302
\3112
\3111
\22203
\3132
\13502
\51
\12706
\22203
\22203
\22203
\12706
\51
\00013
Comments
roof monitor
roof monitor
dryers
Total =
4,286 kg/day
Appendix F-2(b). Diffusion /Transport Model Input - Area Sources
Type
Annual Average
Emissions (kg/day)
Woodsmoke
Gas/Diesel:
Vehicle exhaust
Resuspended soil and road dust
Ships
Railroads
109
211
1049
19
18
1,406
347
-------
Appendix F-2(c). Source Apportionment Data Cu, Zn. As. Pb
Entries are weight percent.
Profile ID Cu Zn
As
Pb
Comment
12706
12707
13502
21401
22203
23104
23202
25403
27601
28202
3324
314
3111
3112
3132
3173
3193
51
22302
00001
00002
00003
00004
00005
00006
00007
00008
00009
00011
00012
00013
.068
.007
.002
.05
.018
.002
.006
.005
.002
.260
.078
.117
.006
.026
.110
.076
.990
.000
.000
.098
.018
.002
.024
.739
.418
.049
.013
.006
.051
.060
.005
.481
.063
.002
.000
.008
.002
.013
.000
.009
.830
.006
.200
.006
.043
.018
.010
.870
.003
.000
.193
.030
.010
.020
.230
.212
.607
.008
.037
.260
.120
.000
.019
.005
.001
.000
.000
.002
.005
.000
.004
.013
.018
.000
.000
.000
.000
.000
.000
.000
.000
.020
.000
.000
.000
.000
.010
.032
.001
.003
.005
.030
.000
.039
.019
.000
.000
.000
.001
.023
.000
.006
.230
.053
.000
.003
.020
.349
.042
.050
.000
.000
.465
.021
.005
11.6
.035
.250
.262
.485
.000
.150
.130
1.2
hogged fuel boiler
hogged fuel boiler
residual oil boiler
grain elevator
wood sander dust
recovery furnace
lime kiln
paint spray booth
gypsum
cast iron cupola
aluminum potline
natural gas boiler
rock crusher
asphalt batch plant
distillate oil furnace
alumina fugitives
car shredder
cement dust fugitives
veneer dryer
freeway air (Larson)
generic soil (Hopke)
woodstove (Larson)
autoexhaust (Hopke 1985)
diesel (Hopke 1985)
50:50 diesel: freeway air
hog fuel Simpson (NEA)
lime kiln Simpson (NEA)
recovery boil Simpson (NEA)
STAGS Tideflats soil
STAGS road dust
Tacoma Boat
348
-------
Appendix F-2(d). Source Apportionment Data/Polyaromatic Hydrocarbons
Entries are PPM by mass in the PM^ mode.
ID FLOR PHEN ANTH FLUO PYRE CHRY BAP RETE COMMENT
12317
12317
12706
13502
23104
00001
00003
00005
00006
0.
0.
0.43
0.43
0.44
-999.
550.
0.26
0.26
7.
0.
3.53
0.41
5.05
231.
1148.
5.2
118.
3.5
0.
3.28
0.41
5.00
60.
710.
0.50
30.
18.
23.
2.24
8.38
3.15
1453.
432.
• 9.4
220.
16
0
6
11
4
2560
308
10
1485
.48
.60
.65
.
.
.2
.
4.9
0.
2.42
0.41
2.85
659.
196.
2.00
330.
5.6
0.
0.54
0.41
0.79
274.
74.
0.80
137.
26.
18.
39.
63.
23.
-999.
-999.
-999.
-999.
6
8
9
hogged fuel
recvry fur
hogged fuel
resid oil
recvry fur
autos
woodstove
diesel
"vehicles"
Lines 1 - 2 are from PSAPCA report for Simpson.
Lines 3 - 5 are from John Core.
Lines 6 - 8 are from Larson.
Line 9 is a 50:50 composite of autos -Hdiesels.
Abbreviations are:
FLOR fluorene
PHEN phenanthrene
ANTH anthracene
FLUO fluoranthene
Missing entries are flagged by -999.
PYRE pyrene
CHRY chrysene
BAP benzo(a)pyrene
RETE retene
349
-------
Appendix F-3. Model Input - Meteorology, Eddy Diffusivities
A portable meteorological station collected data at the Alexander Avenue (PSAPCA) site in the
Tacoma Tideflats between July 6th, 1989 and January 9th, 1990.
These data were recorded in 27 files containing 2.2 Mbytes when stored in simple ASCII and about
0.95 MBytes in compressed binary.
These data may be unpacked and presented in various ways. In one of these the first few lines are:
day
PST
hrs
U
m/s
theta
deg
SigU
m/s
U(SigT)
m/s
dT/dz
deg/m
S
w/m2
PPT
in
P G T W
187 1700 3.84 339.9 0.947 0.896 -.2498 409.6 0.00 2
187 1705 4.60 346.1 1.049 1.188 -.2498 409.6 0.00 2
Here U and theta are the wind velocity and direction, averaged over five-minute intervals. SigU
is the standard deviation in the velocity, measured at one second intervals and averaged over
five-minutes. U(SigT) is the product of the five-minute averaged U times the five-min averaged
one-second standard deviations of theta. (Comparisons of SigU with U(SigT) reveal that the
horizontal eddies in wind velocity and direction are essentially isotropic.) dT/dZ is the temperature
gradient between two and 10 meters; S is the solar insolation, PPT the increment of rain during
the preceding five minutes, and PGTW is a Pasquill-Gifford-Turner-Wilson stability classes, derived
from the insolation and the temperature gradients.
351
-------
Appendix F-3(a). Vertical Eddy-Diffusivities through Monin-Obukhov Similarities
Z = 50 meters
Zm = 4.47 meters
Zo = 0.25 meters
T = 283 degK
-U(m/s)--> 0.50
dT/dZ + 0.01
-0.0250
-0.0225
-0.0200
-0.0175
4.59*
4.49*
4.38*
4.26*
-0.0150 4.13*
-0.0125 3.99*
-0.0100 3.82*
-0.0075 3.64*
-0.0050 2.98
-0.0025 1.88
-0.0000 0.83
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225
0.0250
0.39
0.22
0.13
0.07
0.05*
0.03*
0.03*
0.03*
0.03*
0.03*
1.00
entries below
7.00
6.48
5.95
5.42
4.87
4.32
3.76
3.20
2.66
2.15
1.66
1.33
1.09
0.91
0.78
0.67
0.58
0.51
0.45
0.39
0.34
1.50
are Kz (n
6.01
5.64
5.27
4.89
4.53
4.16
3.81
3.47
3.14
2.84
2.49
2.28
2.05
1.86
1.70
1.57
1.45
1.35
1.25
1.17
1.09
2.00
2/ x
1 /SJ .
5.85
5.58
5.31
5.05
4.79
4.54
4.29
4.06
3.84
3.63
3.32
3.20
3.00
2.82
2.67
2.53
2.40
2.28
2.18
2.08
1.99
2.50
>
6.12
5.91
5.71
5.51
5.32
5.13
4.95
4.77
4.60
4.44
4.15
4.09
3.92
3.76
3.62
3.49
3.36
3.25
3.14
3.04
2.94
3.00
6.60
6.44
6.28
6.13
5.98
5.83
5.68
5.54
5.40
5.27
4.98
4.98
4.83
4.69
4.56
4.43
4.31
4.20
4.10
4.00
3.90
3.50
7.21
7.08
6.95
6.82
6.70
6.58
6.45
6.34
6.22
6.11
5.82
5.86
5.73
5.60
5.48
5.37
5.26
5.15
5.05
4.95
4.86
For entries marked with (*) Z > j Lm |, which is not physically possible.
352
-------
Appendix F-3(b). Horizontal Eddy Diffusivities, Kxy, Plotted as a Scattergram Against
Horizontal Wind Speeds
2.0
<—U Sipia(Theta) (n/s)
1.5
1.0-
-v '^ ••Vi.tU ->v* £\t$ZM\**\'m\' v\"J'"j./v*''-"."'/
0.5
« :-_
nrailMk/VJ /^vr!f *y ' vk*. ."-j
r!r'. r> •'.*••
' *• •
0.0
0
2 — U (n/s) —> 5
8
353
-------
Appendix F-3(c). Scattergram of the Transverse and Longitudinal Components of Horizontal
Eddy Variances
2.8
1.5
1.0
8.5
8.8
<— U Signa(Theta) (n/s)
8
8.5
— Signa (U) (n/s)
1.8
1.5
2.8
354
-------
Appendix F-4. Model Input - Sampling Intervals
Code
AS0724,
AS0727,
AS0803,
AS0814,
AS0821,
AS0824,
AS0828,
AS0907,
AS0911,
AS0914,
AS0918,
AS 1102,
AS 1109,
AS1113,
AS 1127,
AS 1130,
AS 1204,
AS 1207,
AS1211,
AS1214,
AS1218,
AS0102,
MS0727,
MS0814,
MS0821,
MS1116,
MS1211,
MS1214,
SL0727,
SLOSH,
SL0821,
SL1116,
SL1211,
TM0727,
TM0814,
TM0821,
TM1211,
TM1214,
RS0727,
RS0814
RS0821,
RSI 116,
RSI 127,
RS1211,
RS1214,
Start
Mo Da Hr
7
7
8
8
8
8
8
9
9
9
9
11
11
11
11
11
12
12
12
12
12
1
7
8
8
11
12
12
7
8
8
11
12
7
8
8
12
12
7
8
8
11
11
12
12
24
27
3
14
21
24
28
7
11
14
18
2
9
13
27
30
4
7
11
14
18
2
27
14
21
16
11
14
27
14
21
16
11
27
14
21
11
14
27
14
21
16
27
11
14
16
19
17
14
14
10
12
14
9
8
14
21
8
19
14
00
22
8
20
21
18
18
15
12
13
15
15
14
14
12
13
17
15
18
13
14
16
16
12
11
12
16
13
14
8
Stop
Mo Da
7
7
8
8
8
8
9
9
9
9
9
11
11
11
11
12
12
12
12
12
12
15
7
8
8
11
12
12
7
8
8
11
12
7
8
8
12
12
7
8
8
11
11
12
12
27
31
10
17
24
28
1
11
14
18
21
6
13
16
30
4
7
11
12
15
21
16
31
17
24
20
12
15
31
17
24
20
12
31
17
24
12
15
31
17
24
20
30
12
15
Hr
19
16
17
13
10
12
10
9
8
14
21
19
19
20
00
21
7
20
20
15
17
12
12
11
9
12
16
16
13
12
10
12
15
15
17
11
16
16
12
11
9
12
8
16
16
355
-------
Appendix F-S. Model Output - Simulations
357
-------
Appendix F-5(a-l). Simulated Peak (five-minute) Episode for Arsenic (As) Aerosols
Highest brief episode, lower level
Appendix F-5(a-2). Second-Highest 24-hour Averages for Arsenic (As) Aerosols
2nd-highest 24-hour average
359
-------
Appendix F-5(a-3). Simulated Dry Deposition Fluxes for Arsenic (As) Aerosols, 186-day
Averages
Dry-Deposition Rate: Hilligrrans/hectare/day
Appendix F-5(a-4). Simulated Wet Deposition Fluxes for Arsenic (As) Aerosols, 186-day
Averages
Average Wet-Deposition Rate: Hilligrams/hectare/day
360
-------
Appendix F-5(b-l). Simulated Peak (five-minute) Episode for Copper (Cu) Aerosols
Highest brief episode, lower level
Appendix F-5(b-2). Second Highest 24-hour Averages for Copper (Cu) Aerosols
381 <•< 434
224 <=< 276
171 <1< 224
119
-------
Appendix F-5(b-3).
Averages
Simulated Dry Deposition Fluxes for Copper (Cu) Aerosols, 186-day
'- - - -XXX
• - - -XXXXXXXXXX
yxxxxxxwxxxAxx
XXXXHXXXXXXXXXX
xxxxxxxxxxxxxxxxxx:
XXX XXXXXXXX J& K X
xxxx
xxxxxxxxxxx
XXXXXXXXXXXXXXX
' x^x x
XMXXXXXXXXXX
XHXXXKXI-iXXKXKK
MXX
XMXXXXXXXXXXXXXX-•-
x xx'XK-^XXX^X'
XKHXKXXK'XXXXKXXXX- • -
XKHXKXKXXMXXXKKXK
'
XXXXXXKXXXXXXXXXXXKXXKXXXXXKXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXxWXXWXWXXXXXXXXXXX
KMX*
XXXXXXXXXXXXWXXXXXKXXKXXXHXXXXXXXXKXXXX
XXXXXXXXXXXXXHXXMXXXXXXXXXXXXXXXXMWXXXX
XXXXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX'X'XMXXHXXXXXXX'XXX
XXXXWXXKXXXXXXKXXXXXXXXXXXXX
XKXXXXXXXXXXX
xxxxxxxxxwxxxxxxxxx--••
XXXWXKXXXWXXHXKHXXX-- - -
- - - -XXXKXXXXHXXXX
Ayerage Dry-Deposition Rate: HilligraMS/hectare/day
Appendix F-5(b-4).
Averages
Simulated Wet Deposition Fluxes for Copper (Cu) Aerosols, 186-day
Average Net-Deposition Rate: nilligpans/hectare/day
362
-------
Appendix F-5(c-l.) Simulated Peak (five-minute) Episode for Lead (Pb) Aerosols
Highest brief episode, lower level
Appendix F-5(c-2). Second Highest 24-faour Averages for Lead (Pb) Aerosols
2nd-highest 24-hour average
363
-------
Appendix F-5(c-3).
Averages
Simulated Dry Deposition Fluxes for Lead (Pb) Aerosols, 186-day
XXXXXXXXXXXXXXX-
xxxx"x x xW x xViixx Xs-
KXXXHXXHXXXXXXX-
KKXKHXXHKKKXHXK-
XXXKXXHXXXXXXXXXXXXXXXJXXXXXXXXXXX-
XXXXXXXXXXXXHXXXXXXXXXXXXXXXXXXXX-
XXXKXXXXXMXXRXXXXXKXXXXXKXXXXXXX
(XXXXXXXMXXXXXXXXXXXXXXXXXXXXXX
Average Dry-Deposition Rate: nil 1igraws/hectare/day
Appendix F-5(c-4).
Averages
Simulated Wet Deposition Fluxes for Lead (Pb) Aerosols, 186-day
xxxxxxxx
_xxxxxxxx
y xxx^xxx^x x'Wx xx rfxxx xW xxWW XK
XKXXXXXXXXXXXKXXXXXXWXXXXXXXX
Average Wet-Deposition Rate: Mi Migrate/hectare/day
364
-------
Appendix F-S(d-l). Simulated Peak (five-minute) Episode for Zinc (Zn) Aerosols
<6573
<5774
<4974
= <4175
Highest brief episode* lower level
Appendix F-5(d-2). Second Highest 24-hour Averages for Zinc (Zn) Aerosols
2nd-highest 24-hour average
365
-------
Appendix F-5(d-3).
Averages
Simulated Dry-Deposition Fluxes for Zinc (Zn) Aerosols, 186-day
300 ft<
KXKXXXXXXXXXHXXXX
KXX^XXXXXXXXXXXWXXXX
H'XXx1*Kx xVx x xW xxHH xxxVx x
KXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HXXXXXXXXXXXXXXXX
'.' V '.".^KX Wx'x x J&x xx^x1 Kx'Wx'x x x^xxyx' xxx^
- - - -XKMXXXXKXXXXXKXXXXXXHXXXXXXXXKXXX
- • - -XXXXXMXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
' xx xVx x k^ x x'x^ ' '
XWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
- - ..... XXXXXXXXXKXXXXXXXXXXXXXX
XXXKXXXXXKKXXXXXXXXHXXHX
(XXXXXXXXXXXXXX
(xx^cxx iAcx x xS< x x
XWXXXXXXXXXXXWXXXXXX I - - ......
XXXXXXXXXXKXXXXXKXXXXXX
XXXXXXXXXXXXXXXXXXXXXX
KXXXXXXXXXXXXXXXXX
XXXXXXKXXXXXXXXXXX
KWXKMXHKXXWXX-
|priiiiXX_XXXXXXXXXXX>[XXXXXHXXXXXXXX
xx xWxx x'xx'xi'&'xx' x^otxxx' x'x'yk' x'xMx'x x
XXXWXXXWXXXXXXXXWXXXXHXXXXXXXXyXXX-
XXXXWXXXXXXXXXXXXXXXXKXXXXXXXXX-
...... '''''^
XXXXXXXMXXXXXXXXXXMXXXXXXXXX -
XKXXXW
' V VJx' xHxSixxx^x X'H^XX Wx' xx
...... -XXXXXXXXXXXXXXXXX
....... XXXXXHXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX
MX'X^X'K^
XXXXKXXXXXXXXXlwnMXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXRKXXXKXXXXXXX
'.".".' '.v: '.".' V.'V V '.^ xitxHixxxVxxxx' x
. ' - ..... - - - -XXXXXKXXXXXKXX
XXXXXXXXXXXXXXXXXXi
Average Dry-Deposition Rate:
Appendix F-5(d«4).
Averages
Simulated Wet deposition Fluxes for Zinc (Zn) Aerosols, 186-day
300
106 << 300
30 <•< 100
KXXX^XXXXXXXWXKKXKXJf SXXXXXWXMXXXXXXX 1
XXXXXXXXXXXKXXXXXXXX^i*_*XXXXXXXXXXXXHXXX
XXXXXHHXXXXXXMXXHXXX «^>i*XJiit*4^XXXXXXXXK I
ix x1x'xx'x1xxxxxxxx'
XXMXXXXXXXXXXXXXXXXXKKXXXXXHXXHXXHXXxHcxXXXXXKXXXXXK
XXXXXXXXXXXmXXXXXXXXKXXXXXXXXXXXXXXXXnXXXXXXXXXXXXX
''N'''*'''" *""
XXXMXXXKXXXXXXXXXXXXXXXXXX-•
XXXXXXMXXXXXXXXMXXXXXXMXX
xx Hx'x x'JJx'x xs^y KX'WX'K x'
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
Wet-Deposition Rate: Milligraws/hectare/day
366
-------
Appendix F-S(e-l). Simulated Peak (five-minute) Episodes for Vapor + Particulate PAH
Highest brief episode, lower level
Appendix F-5(e-2). Second Highest 24-hour Averages for Vapor + Particulate PAHs
2nd-highest 24-hour average
367
-------
Appendix F-5(e-3). Simulated Dry-Deposition Fluxes for Vapor + Particulate PAH, 186-day
Average
XXXXXXXXXXXXXXXXKXXXWXWMXXXX
X**************™****™****
Average Dry-Deposition Rate: nilligpans/hectare/day
Appendix F-5(e-4). Simulated Wet-Deposition Fluxes for Vapor + Particulate PAH, 186-day
Averages
Average Wet-Deposition Rate: Hilligpans/hectare/day
368
-------
Appendix F-6. Development of the Mobilization Coefficient Model
Introduction
The following description summarizes a six-month study conducted to develop and implement a
model to provide estimates of the fractions of heavy metals and PAHs that enter Commencement
Bay in stormwater runoff following deposition on the watershed. These fractions, mobilization
coefficients, provided estimates of pollutant loadings from the air to the Bay via stormwater runoff
when combined with atmospheric loading values and pollutant accumulation period data.
Two groups of pollutants were investigated: heavy metals1 and polycyclic aromatic hydrocarbons
(PAHs). Individual mobilization coefficients were to be obtained for seven metals (Pb, Cu, Zn,
As, Cr, Ni, and Mn). Insufficient data were available, however, to allow the calculation of
mobilization coefficients for individual metals and PAHs. Both metals and PAHs were assumed
to be completely associated with fine sediments, and were considered as a single sediment-bound
species, often referred to as "the pollutant". Average annual mobilization coefficients were
computed for metals and PAHs for a total of 8.75 square kilometers (2,162 acres) of the
Commencement Bay watershed.
Chemical and physical processes occur where fresh water enters saltwater that can significantly
affect the fate of waterborne contaminants. Although consideration of these processes was beyond
the scope of this study, these processes must be considered in extrapolating from contaminant
loadings in stormwater runoff to environmental impacts in Commencement Bay.
Overview of the Mobilization Coefficient Model
No one model or approach was identified in the literature search as being capable of providing the
desired mobilization coefficients for the Tacoma Tideflats study area within the study's budgetary
and time constraints. As a result, the following approach was developed. This model may be
described as distributed, steady state, deterministic, and empirical. The Mobilization Coefficient
Model incorporates elements of the Seattle Metro Desk-Top Model (Buffo, 1979), the Storm Water
Management Model (SWMM) (Metcalf and Eddy, 1971), the Soil Conservation Service (SCS)
Curve Number method (SCS, 1986), and the method of Horner et al. (1986).
From the Metro Desk-Top Model are borrowed the concepts of a "typical year", a "typical dry
(accumulation) period", and, indirectly, the pollutant washoff function from the SWMM model.
The SCS Curve Number method is used for hydrology. The techniques of superimposing a
hypothetical grid over the study area, of relating cells in this conceptual grid to cells in SMART
software computer spreadsheets, and of using the SMART software system to model
interrelationships between individual cells of the watershed grid, come from the work of Horner
et al. (1986).
Stormwater Transport Model
Unit Drainage Area Concept
The basic unit of the study area to which the Mobilization Coefficient Model is applied is the "unit
drainage area". A unit drainage area is a contiguous area of the watershed, lying within a cell,
which can be assumed to have uniform soil type and ground surface cover, and through which the
path of runoff can be assumed to be unidirectional. The unit drainage area is therefore the basic
watershed unit for which data must be obtained. The next largest watershed unit in this approach
1 The terms "heavy metal", "metal", and "toxic metal" are used interchangeably.
369
-------
is the sub-basin. A drainage sub-basin is, in turn, a subunit of a larger, natural drainage basin
having a single major outflow. Drainage sub-basins can be either "built", having boundaries
determined by an engineered drainage system, or natural.
Drainage Pathway Concept
A conceptual stormwater transport model was developed to serve as the basis of the pollutant
transport model. A flowchart illustrating this model is given in Figure 1. The arrows in Figure 1
correspond to what may be thought of as "unit transport pathways" (or simply, "unit pathways"),
which describe the movement of stormwater between fundamental compartments in the model. The
same term, unit transport pathway, is used in both the stormwater and pollutant transport models.
This use is based on an understanding that the overall pathways for stormwater and pollutants in
stormwater diverge to some extent as a percentage of the total pollutant load is removed from the
bulk solution/suspension by a number of processes including settling, flocculation, filtration,
volatilization, biodegradation, hydrolysis and photolysis.
A significant portion of the rain which falls onto pervious land in the Tacoma Tideflats area
probably reaches Commencement Bay via shallow subsurface flow. A high water table has been
noted in many pre-construction soil studies throughout the area, forming an effective barrier to the
downward migration of stormwater through the soil. Aside from ponding at the surface, the only
path of travel for stormwater is downhill towards the Bay.
Tidal effects on the groundwater elevation in the Tacoma Tideflats area can be observed at sites
several blocks inland from Commencement Bay and its waterways. In the pollutant transport
model, all metals and PAHs in stormwater that infiltrate the soil are assumed to be bound to
sediment particles, and are assumed to be completely removed via filtration. Tidal effects on
groundwater are not considered in this model.
The conceptual stormwater model presented above represents an attempt to describe all of the major
routes of stormwater transport observed in the study area. The dominant unit pathways vary from
area to area, and from cell to cell within the conceptual study area grid. For instance, pipe flow
is more important in the developed, industrial Tideflats area north of 1-5 than it is in the semi-rural
area south of the freeway.
Surface runoff doesn't travel far in the Tacoma Tideflats area before it either enters a drainage pipe
or ditch, or infiltrates down into the soil. The flatness of this area provides little driving force for
overland flow, thereby enhancing stormwater infiltration into the soil.
The unit drainage area concept serves to link the stormwater transport model described above to
the pollutant transport model described below. The size of unit drainage areas depends on the level
of accuracy sought. In general, the smaller the unit drainage areas, the greater the accuracy of the
overall Mobilization Coefficient Model, up to the point at which the errors associated with other
parts of the overall model (i.e., the SWMM washoff function, the typical year approach of the
Metro Desk Top Model, etc.) eclipse any further increase in accuracy achieved by a unit decrease
in the size of the unit drainage areas.
370
-------
Figure 1. Conceptual Stormwater Transport Model
Rain
Impervious P«rvlou«
1. Rain falls directly onto the bay.
2. Rain falls onto the land surface.
3 Runoff from an impervious surface enters a drainage pipe.
4. Runoff from an impervious surface flows to an adjacent impervious surface.
5. Runoff from an impervious surface enters a ditch.
6. Runoff from an impervious surface enters a drainage pipe.
7. Runoff from a pervious surface enters a drainage pipe.
8. Runoff from a pervious surface flows to an adjacent impervious surface.
9. Runoff from a pervious surface flows to an adjacent pervious surface.
10. Runoff from a pervious surface enters a ditch.
11. Runoff from a pervious surface enters the groundwater.
12. Runoff enters the bay via flow over an impervious surface.
13. Runoff enters the bay via flow over a pervious surface.
14. Stormwater in ditch enters a drainage pipe.
15. Stormwater in ditch enters the bay.
16. Seepage from ditch enters the groundwater.
17. Stormwater enters the bay via a drainage pipe.
18. Stormwater in the pipe enters a ditch.
371
-------
Pollutant Transport Model
Atmospheric contaminants are deposited onto the watershed both during the dry period preceding
the storm (dryfall) and throughout the course of the storm (wetfall). Pollutants deposited directly
onto the water surface of Commencement Bay enter the Bay without the transport losses associated
with pollutants deposited onto land areas that are transported to the Bay in stormwater. All
waterways and the Puyallup River are considered part of Commencement Bay for the purposes of
this model.
During a rain storm, as a result of the kinetic energy of the falling raindrops and of the solubilities
of the pollutants present, a mixture of water and dissolved, solid, liquid and sorbed pollutants exists
upon the land surface. If the rainfall volume exceeds the initial abstraction, surface runoff occurs,
carrying with it its pollutant load. The following model was developed to estimate the fractions
of metals and polycyclic aromatic hydrocarbons (PAHs) in this washed off load which reach
Commencement Bay in surface runoff. These fractions are referred to as pollutant delivery ratios,
or simply as delivery ratios.
The basic units of land within the study area to which pollutant delivery ratios (C,) apply are the
unit drainage areas. Cj) denotes the composite pollutant delivery ratio for a unit drainage area.
C{p represents the fraction of pollutant which is transported from the unit drainage area to the
receiving water. To calculate C j) for a unit drainage area, the path of stormwater runoff from that
unit drainage area is traced to the ultimate fate of the pollutant, either in another unit drainage area
or in the Bay. Then both the pollutant loss factor for each unit drainage area in the drainage path
and the Q for ditch flow are obtained. Cj> is the combined product of each C, for all the unit areas
in the path, including factors for ditch and pipe flow. C, for flow in drainage pipes is assumed to
be 1.0 which means 100 percent of the pollutants will be transferred. No transport losses are
assumed for bare, impervious ditches, corresponding again to a C, value of 1.0. No pollutant
transport (C, = 0) is assumed for ditches that are dry throughout most of the year and which have
pervious linings. In this case, all sorbed metals and PAHs are assumed to be trapped in the soil
matrix as stormwater in the ditch and infiltrated into the soil. No pollutant transport losses are
assumed for bare, pervious ditches that contain water throughout most of the year, again
corresponding to a C, factor of 1.0. In this case, seepage from the ditch into the soil is assumed
to be insignificant. No pollutant transport is assumed for ditches with pervious linings and which
contain substantial vegetation, corresponding to a C, factor of 0. In this case, all sorbed metals and
PAHs are assumed to be removed by filtration for ditches that usually contain water, and by a
combination of filtration and settling for ditches that are usually dry.
The pollutant washoff coefficient for an entire cell, adjusted for transport losses, is represented by
the symbol Cw*.
* _
where:
Cw = area- weighted pollutant washoff coefficient for an entire cell, and
C, = area-weighted Q for an entire cell.
A pollutant mobilization coefficient (C^nnual) represents that fraction of pollutant (metals and
PAHs) which is washed off the land within a particular 0.25 square kilometer cell of the conceptual
grid, and which enters Commencement Bay in the runoff from a "typical storm". (A "typical
storm" is a storm which delivers a volume of rain equal to the frequency-weighted average of the
volumes selected to represent the four precipitation ranges for a "typical year".) In other words,
a pollutant mobilization coefficient is the average annual Cw* coefficient for a particular grid cell'
and is computed using typical year storm frequencies.
372
-------
4
£ (Fi * CJ)
(^annual =
4
E(Fi)
where:
CJ = area-weighted pollutant washoff coefficient for an entire cell, adjusted for
transport losses, corresponding to a storm of volume selected to represent
the j'th precipitation range of the 4 representative precipitation volumes
for a "typical year".
Fi = typical year storm frequencies
Modeling Assumptions
As indicated above, the phase in which a given pollutant exists largely determines its environmental
fate. One of the first tasks in modeling the transport of a pollutant in stormwater is to determine
the phase or phases in which the pollutants exist under the particular environmental conditions
found in the study area. This alone can be a major task. There are complex models to determine
the form in which even metals, which are conservative in the sense that they are not degraded by
bacteria, sunlight, or hydrolytic reactions, and do not evaporate, exist under given sets of
environmental conditions. For nonconservative pollutants such as organics the situation is far more
complex. But this is only scratching the surface if one considers the real world situation in which
chemical equilibrium may not exist, in which pollutants are sorbed to particles of an array of sizes
which are differentially transported in surface runoff, and in which dramatic pH changes occur from
block to block in industrial areas. Given the lack of available data for the Commencement Bay
watershed, several simplifying assumptions were made which greatly reduced the data requirements
for modeling at the expense of introducing additional uncertainties in the estimates.
The following assumptions were made to reduce the input data requirements needed to develop and
implement the Mobilization Coefficient Model in order to match available resources.
1. 100 percent of all metals and PAHs which accumulate during a dry accumulation period
of typical duration, are assumed to be sorbed to fine paniculate matter at the beginning of
the next rainfall capable of producing significant washoff (volume .>_0.3 inches).
2. A "typical" year of rainfall for the City of Tacoma, based on results from the GORAIN
rainfall analysis program, is assumed to represent a typical year of precipitation for the
Commencement Bay watershed. Input for the GORAIN program consisted of 20 years
(1960-1980) of 24-hour rainfall data for a gauge formerly located atop the County-City
Building in Tacoma' s city center.
3. Assignment of washoff function coefficients and SCS runoff curve numbers is based on
surface cover/land use.
4. Assumptions were made regarding the assignment of pollutant delivery ratios to individual
segments (unit transport pathways) of overall transport pathways through which stormwater
(and pollutants) are transported from the "point" of deposition on the watershed (i.e., unit
drainage area) to the point at which the runoff enters the Bay.
373
-------
Integrated Mobilization Coefficient Model
A flow chart illustrating how the Desk Top model, the SCS—CN method for hydrology, the
SWMM pollutant washoff model and other methodologies and concepts are integrated to form the
Pollutant Mobilization model is given in Figure 2.
Both "typical year" data from the GORAIN rainfall analysis program and watershed data from both
aerial photos and site inspections comprise the input data for the SCS Curve Number hydrological
model. Typical year data includes storm volume, frequency, and antecedent runoff condition data
for a typical water year. The GORAIN program also provides accumulation period data needed
to convert pollutant accumulation rates, to be estimated using the WYNDvalley air quality software,
to pollutant loading rates using the mobilization coefficients computed by the integrated
Mobilization Coefficient model. Watershed data, including land use, SCS hydrological soil group,
surface cover type, and drainage pathways are obtained from aerial photos and site inspections.
The output of the SCS Runoff Curve Number Method are values of the stormwater runoff volume
for each cell of the conceptual grid.
The stormwater runoff volume values from the SCS Runoff Curve Number method comprise the
input data set for the SWMM washoff model. The output from the washoff model are pollutant
washoff coefficient values, which represent the fractions of particular pollutants, that are washed
off land surfaces within particular grid cells in the study area. Both the values from the washoff
model and area-weighted pollutant delivery ratio factors from the pollutant transport model are used
to compute values of pollutant mobilization coefficients (Cwannuals), which are the ultimate outputs
of the integrated Mobilization Coefficient Model.
Limitations
Since pollutant mobilization coefficients have never been experimentally determined for the study
area, there are no such values with which to compare the calculated mobilization coefficient values
from the Mobilization Coefficient Model presented here. Therefore, the error associated with the
values of C^annual computed using the model cannot be precisely determined.
A lower bound on the error associated with Genual values is provided by the standard error of
the mean for the total average area measured for each cell. This standard error was less than 3.0%
over all cells, and is insignificant compared to the following sources of error which cannot be
quantified in this study:
*• Error associated with the "typical year" approach to representing rainfall,
* Error associated with the unit drainage area concept,
* Error associated with application of the SCS Runoff Curve Number Method for hydrology,
*• Error associated with assuming that all metals and PAHs are bound to particles during sediment
transport,
* Error associated with pollutant washoff model,
+ Error associated with the estimation of pollutant delivery ratios, and
> Error associated with assuming that pollutant not washed off the watershed by one storm event
is unavailable for washoff by the next storm event.
Data are not available to quantify the above errors.
374
-------
Figure 2. Integrated Mobilization Coefficient Model
Rainfall Analysis Program
Typical Year Rainfall Data
SCS Curve Number Method
Surface Water Flow Rates
SWMM Washoff Model
Fractional Washoff Coefficient
Pollutant Transport Model
Mobilization Coefficients
375
-------
A limitation of the Mobilization Coefficient Model which deserves attention is that only the fraction
of metals and PAHs deposited onto a given cell that reaches Commencement Bay is estimated;
important natural processes occur which can affect the fate of contaminants in stormwater runoff
when this runoff is discharged to a marine environment. Many of the parameters identified as
important in influencing the partitioning of metals and PAHs, and the biological and photolytic
decomposition of PAHs, are different in stormwater runoff and saltwater, including sediment size
and concentration, pH, temperature, specific gravity, and depth. These factors must be taken into
account in assessing environmental and human health impacts of mass loadings of metals and PAHs
in stormwater runoff that enters Commencement Bay.
MOBILIZATION COEFFICIENT MODEL RESULTS
Mobilization Coefficients were calculated for seven cells within the Sitcum Test Sub-basin and for
28 cells outside this area following the procedures described above. When possible, these 35 cells
that had Cwannual calculated through the use of the Mobilization Coefficient Model (presented in
Table F-6) were ranked in terms of percentage ground cover, area use, surface water, soil
characteristics, the area of the cell assessed as impervious, etc. The other cells in the study area
had "best guess" estimates made of Cwannual using the principles of the Mobilization Coefficient
Model (these figures are included in the Appendix).
Values of the average annual pollutant mobilization coefficients (C^nuals) for metals and PAHs
ranged from 0 to 0.1 for portions of seven cells (rlOcl2, rlOclS, rllc!2, rllclS, rllcl4, r!2c!2,
and r!2c!3) lying within the Sitcum Test Sub-basin. Thus, the fractions of metals and PAHs
deposited from the air onto those portions of cells lying within the Sitcum Test sub-basin, and
which enter Commencement Bay in stormwater runoff from a "typical" storm, are relatively small
compared to the loadings of metals and PAHs to these areas from the air during the accumulation
period preceding the storm.
Other Areas
Results for 28 cells located outside the Sitcum Test Sub-basin are also listed in Table F-6. Values
of Cwannual for two cells, r!2c9 and rllcll, were 0.3 and 0.2, respectively, to one significant
figure, indicating that a significant portion of metals and PAHs, deposited onto these ceils in the
accumulation period preceding a "typical" storm, may be transported to Commencement Bay by
stormwater runoff. Values of Cwannual for the remaining 26 cells indicate that the quantities of
metals and PAHs which enter the Bay in stormwater runoff from these cells following a "typical'
storm probably represent small fractions of the total masses of these pollutants deposited onto these
cells from the air.
Recommendations
Experimentally determined values of mobilization coefficients are presently unavailable for any
pollutants within the Commencement Bay study area. More studies are needed to obtain these
measured values of pollutant mobilization coefficients. These measured values are needed to verify
this study's model and to compute the error associated with values of pollutant mobilization
coefficients obtained from it. Without verification and error analysis, this model can only provide
rough, semi-quantitative estimates of pollutant mobilization coefficients.
376
-------
Table 1. Results of Mobilization Coefficient Model
Study Cell:
Row
8
9
9
9
9
10
10
10
11
11
11
11
11
12
12
12
12
12
12
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
Column
15
14
15
16
17
12
13
15
11
12
13
14
15
9
10
11
12
13
15
9
10
11
9
10
11
12
13
14
15
9
10
11
12
13
14
Cwannual
0.07
0.03
0.06
0
0
0.10
0.01
0.06
0.20
0.01
0
0
0
0.30
0.10
0.05
0.01
0.01
0.01
0.10
0.06
0.02
0.10
0.03
0.04
0
0.01
0
0
0.05
0.02
0.02
0.02
0.02
0.01
% Water
39
20
0
3
38
4
5
38
26
0
0
48
36
25
0
29
0
0
0
22
0
26
23
0
10
20
0
0
0
39
0
0
14
14
0
Cell Loading Factor %
40
20
6
3
40
10
6
40
40
1
0
50
40
50
10
30
1
0
1
30
6
30
30
3
10
20
1
0
0
40
2
2
20
20
1
377
-------
Further Applications
The amount of pollutants washed off the land into the bay is related not only to the percent
mobilized (mobilization coefficient) but also to the percent of the area or cell under consideration
that contains open water (direct access to the bay). The cell loading factors presented in Table
L2 are a combination of the Genual and the percent of the cell that is open water.
Results from the Mobilization Coefficient Model indicate that, overall, only small fractions of the
metals and PAHs which are deposited onto the Tacoma Tideflats area of the Commencement Bay
watershed during the accumulation period preceding a "typical" storm event, reach the Bay in
stormwater runoff. Factors which contribute to the relatively low C^^nnual values for metals and
PAHs in the Tacoma Tideflats area include the existence of significant areas of vegetated open
space, unlined, vegetated drainage ditches, and the flatness of the land. Significant fractions of
metals and PAHs of atmospheric origin may be transported to receiving waters from sub-basins of
urban watersheds having, separated sewer systems, no vegetated open spaces, and steep slopes.
In such watersheds, there is little filtration capacity to remove sorbed contaminants from stormwater
and more erosive energy associated with the stormwater resulting from higher flow velocities. In
the Puget Sound area, the city centers of Seattle, Tacoma, and Everett are examples of areas where
substantial fractions of metals and PAHs of atmospheric origin may enter Puget Sound in
stormwater runoff.
Another factor which contributed to the low predicted values of Genual for metals and PAHs is
the annual rainfall pattern associated with the Pacific Northwest. The Mobilization Coefficient
Model predicts little contaminant washoff by the small storms which dominate the annual rainfall
pattern here. Greater values of Genual would be predicted for areas having more storms of
larger volume, even if the average total annual rainfall is less than it is here (34-35 inches per
year). Based on this consideration, larger values of Cwannual for metals and PAHs would, in
general, be expected for urban areas of cities in the Southeastern United States.
378
-------
Appendix G. Comparison of Results
G-l. Plots of Metal Particulate Concentrations, Metal Deposition Rate,
PAH Particulate Concentrations, and PAH Deposition Rate
for Sea-Land, Riverside, and Tyee Marina 381
G-2. One-Dimensional "Contour" Plots of Measured TSP and
Simulated PM10 389
G-3. Contractor Reports and Publications Assessing Performance
of WV3 Model 401
G-4. Covariance Analysis 403
G-5. Tracer-Rose 409
379
-------
Appendix G-l. Plots of Metal Particulate Concentration, Metal Deposition Rate, PAH
Particulate Concentrations, and PAH Deposition Rate for Sea-Land, Riverside, and Tyee
Marina.
381
-------
Appendix G-l(a). Metal Particulate Concentration (ng/m3) at the Sea-Land Site.
200
150
100
50
12/11/89
*
7
8/14/89 /
*> 1 1/16/89 /
"-" \ .-"•
i v1
\ / /
i • •
A " " ^" ^
Arsenic
Chromium
Manganese
Nickel
Lead
Zinc
A
Dates
Appendix G-l(b). Metal Deposition Rate Oig/mVday) at the Sea-Land Site.
3,500
3.000
2,500
2,000
1,500
1,000
500
n
9/7/89
r
T/OT/QQ 1
A. /
• \
7 \ /
' 7 \ /
1 \ !/
^ ,-••!
Arsenic
Chromium
Manganese
Nickel
Lead
Zinc
A
Dates
383
-------
Appendix G-l(c). Metal Particulate Concentration (ng/m3) at the Riverside Site.
200
150 -
100 -
Dates
Appendix G-l(d). Metal Deposition Rate (/tg/mVday) at the Riverside Site.
80
60
40
20
7/27/89
9/07/89
.
A. A
™.../^S ,....:..
I I
r i y-r
Dates
Arsenic
Q
Chromium
_ — Q— _
Manganese
... A ...
Nickel
Lead
Zinc
Arsenic
Q
Chromium
— — D- —
Manganese
. . . A . . .
Nickel
Lead
Zinc
384
-------
Appendix G-l(e). Metal Particulate Concentration (ng/m3) at the Tyee Marina Site.
300
250
200
150
100
50
12/11/89
9/1VS9
Arsenic
o
Chromium
Manganese
Lead
Zinc
Dates
Appendix G-l(i). Metal Deposition Rate Qtg/mVday) at the Tyee Marina Site.
150 -
100 -
50 -
7/27/89
" n : :::::::
/ \
. \ 11/30/89
A.... A -a.
, ~^^ ^r^
Arsenic
Chromium
_ — D— _
Manganese
Nickel
Lead
Zinc
A
Dates
385
-------
Appendix G-l(g). PAH Participate Concentration (ng/m3) at the Riverside Site.
25
20
15
10
12/11/89
i
fr:
If
it
•V
6? I
Naphthalene
^^^•^^^M^^^^
Phenanthrene
D- -
Fluoranthene
. . . A . . .
Pyrene
Chrysene
Dates
Appendix G-l(h). PAH Deposition Rate (ng/mVday) at the Riverside Site.
q nnn
o enn
£,3UU
9 nnn
i *^nn
i nnn
*^nn
0
12/14/89
8/24/89 •
A, /
/ \ /
•' A'.. / •'
_ / (f.:.:,.-A '$. !/
M* • JP KB^^H ^ ^_ • ^f
i i fc~l JT~ r £^rt^t^I_^_i.. i i i i i i i T i i i i
Naphthalene
Phenanthrene
Fluoranthene
Pyrene
Chrysene
Dates
386
-------
Appendix G-l(i). PAH Participate Concentration (ng/m3) at the Tyee Marina Site.
80
60
40
20
12/11/89
/ !
I j.
// !
•
Naphthalene
Q
Phenanthrene
Fluoranthene
Pyrene
Chrysene
Dates
Appendix G-1Q'). PAH Deposition Rate (ng/m2/day) at the Tyee Marina Site.
10,000
8,000
6,000
4,000
2,000
12/11/89
/r*-. ./
8/24/89
I I
i
fetfcg'Jrfa^t f-r-*
Naphthalene
Q
Phenanthrene
Fluoranthene
Pyrene
Chrysene
Dates
387
-------
Appendix G-l(k). PAH Particulate Concentration (ng/m3) at the Sea-Land Site.
25
20
15
10
12/11/89
11
I/
it
it
V
Si i -
Naphthalene
Q
Phenanthrene
_ _o
Fluoranthene
... A ...
Pyrene
Chrysene
Dates
Appendix 6-1(1). PAH Deposition Rate (ng/mVday) at the Sea-Land Site.
8,000
6,000
4,000
2,000
12/14/89
I
9/07/89
I
7/13/89
\
/'
//'
- J3- -
,V7 , L
. i i i i i 4 i
Naphthalene
Q -
Phenanthrene
Fluoranthene
... .A ...
Pyrene
Chrysene
Dates
388
-------
Appendix G-2. One-Dimensional "Contour" Plots of Measured TSP and Simulated PM1(I.
Solid lines connect the observations. The points with the larger circles are simulations by
WV3.
389
-------
188
B
188
6-29
B
188
7-B3
7-86
Brown Tyee Horse
FSI12
SeaLn
Alex
River
188
B
188
7-18
7-13
188
8 E
7-17
Brown Tyee Horse
FSI12
SeaLn
Alex
River
391
-------
188
ug/BA3
8
188
ug/BA3
7-28
8
188
o O
7-24
7-27
Broun Tyee
Horse
FSI12
SeaLn
Alex
River
188
8
188
7-31
8
188
8-83
8-87
Broun lyee
Norse
FSI12
SeaLn
Alex
River
392
-------
188
8
188
8-18
ug/n*3
e
188
8-M
Broun
8-17
Norse
FSI12
SeaLn
Alex
River
188
8
188
8-21
8
188
8-24
Brown
8-28
Tyee
Horse
FSS12
SeaLn
Alex
River
393
-------
188
B
188
ug/nA3
6
188
9-81
9-85
9-87
Broun
Tyee
Norse
FSI12
SeaLn
Alex
River
188
8
188
9-11
8
188
9-14
9-18
Broun Tyee Horse
FSI12
SeaLn
Alex
Riwer
394
-------
180
ug/*A3
B
188
B
188
ug/n*3
6
9-21
9-25
9-28
Brown Tyee Horse
FSI12
SeaLn
Alex
River
188
18-82
B
188
o
18 Bu
168
Brown
Tyee Norse
FSS12
SeaLn
Alex
18-89
395
-------
188
8
188
18-12
ug/«A3
8
188
18-16
18-19
Brown Tyee Norse
FS112
SeaLn
Alex
River
188
8
188
18-23
8
188
18-26
18-38
Brown Tyee
FS112
SeaLn
Alex
River
396
-------
188
11-82
188
8
188
11-86
Brant
Horse
FS112
SeaLn
11-89
Alex
River
188
8
188
11-13
8
188
11-16
11-28
Broun
lyee
Horse
FSI12
SeaLn
Alex
River
397
-------
188
ug
-------
188
188
119/11*3
8
188
119/11*3
8
12-13
12-14
Brown Tyee Norse
FSI12
SeaLn
Alex
River
188
ug/n*3
8
188
ug/n*3
12-15
8
188
12-16
119/11*3
12-18
o
Brown
lyec
Norse
FSI12
SeaLn
Alex
River
399
-------
188
12-21
8
188
e
188
12-23
12-25
Brown Tyee Horse Alex River
FSI12
SeaLn
400
-------
Appendix G-3. Contractor Reports and Publications Assessing Performance of the WV3
Model.
Harrison, H. 1990. On the sensitivity of an air-quality dispersion model to the quality of wind
and source data. Presented at the Pacific Northwest International Section of the Air and Waste
Management Association meeting, Portland, Oregon, November 1990.
Harrison, H. 1990. Modeling wet and dry depositions of toxic tracers into the watershed of
Commencement Bay. Presented at the Pacific Northwest International Section of the Air and
Waste Management Association meeting, Portland, Oregon, November 1990.
Harrison, H. (in press). Where does it come from? Polar "fluxgrams" for air-quality
management. Journal of the Air and Waste Management Association.
Harrison, H. 1991. Further studies of aerosol observations and simulations at Commencement
Bay: July 1983-Jan 1990. Report to the Puget Sound Water Quality Authority. May 26, 1991.
Harrison, H. 1991. letter report to the Puget Sound Water Quality Authority. June 9, 1991.
401
-------
Appendix G-4. Covariance Analysis
Concentrations of a suite of metals, anions, and PAH compounds at six sites have been
measured during half-weekly intervals in the summer, fall, and winter of 1989. These data
have been analyzed for their spatial and temporal patterns and compared with computer
simulations that attempt to estimate similar spatial and temporal patterns from assumptions about
the sources, dispersion, and deposition.
Another way of looking at the same data is to analyze the covariances between the
measurements. That is, one may "factor" correlations among the observables into linear
combinations that behave similarly in time or space. Often, examination of these factors reveals
sensible patterns that relate to the physics of the emissions and transport.
Covariance analyses may be attempted in several ways. In the present case we might consider
hunting for spatial patterns by averaging the observations over time, or for temporal patterns
by averaging over space. This latter choice, however, is discouraged in the present case owing
to the requirement that spatial correlations among samples collected at the same times would
have to be averaged over six or fewer sites. Because sampling errors in correlation coefficients
vary approximately as l/sqr(N-4), where N is the number of independent observations,
uncertainties in temporal correlations from averaging over the six sites must equal or exceed
l/sqr[6-4] =71 percent. For this reason, we have instead examined the data to seek co-varying
linear combinations of the tracers, averaged over time at all sites.
In the first section below we describe this process for metals and certain anions. The next we
discuss correlations and factors for the PAH compounds. The third section describes factor
analyses of both tracer types simultaneously, and the fourth describes some attempts to extract
temporal and spatial information for the factors. We conclude with some general remarks.
Metals and Anions
In Table G-4(a) and the similar tables that follow, the analysands (S, Cl, ...) were normalized
to relative fractions of unity before the correlations. The rows in Table G-4(a) are labeled in
the same sequence as the columns; thus the correlation between S and itself is unity (in the
upper left corner of the table entries), that of S with Ca is -0.6 (row 1, col 4), that of Cl with
K is -0.4 (row 2, col 3), and so on. Sampling errors for the correlations were ±.0.14. To
present this table on one page, only one digit is shown for each entry; three digits were
retained, however, for the calculations that follow.
Various numerical techniques may be used to "diagonalize" correlation matrices, such as Table
G-4(a). A complete eigenvalue/eigenvector "rotation" seeks in turn those linear combinations
of the observable tracers (S, Cl, ...) that are mutually orthogonal and minimize the residual
variance, vector by vector. Owing to the large internal errors for each coefficient, however,
we have chosen instead an iterative Jacobi rotation and to truncate the diagpnalization process
when the largest off-diagonal term was less than 0.24, twice the mean sampling errors of single
coefficients in Table G-4(a). The result of this exercise is Table G-4(a).
403
-------
Table G-4(a). Correlation Matrix for 15 Tracers Averaged Over All Sites and Times
S Cl K
1.0 0.0 -0.1
0.0 1.0 -0.4
-0.1 -0.4 1.0
-0.6 -0.5 -0.1
-0.5 -0.5 0.6
0.2 -0.0 0.2
-0.3 -0.1 0.5
0.0 -0.4 0.7
-0.6 -0.6 0.3
0.2 -0.1 0.3
0.3 -0.1 0.1
0.0 -0.0 0.1
0.4 -0.2 0.3
0.1 -0.2 0.1
0.4 0.2 0.3
Ca
-0.6
-0.5
-0.1
1.0
0.4
-0.2
0.0
-0.3
0.3
-0.3
-0.5
-0.1
-0.5
0.0
-0.6
Ti
-0.5
-0.5
0.6
0.4
1.0
-0.2
0.4
0.4
0.6
-0.0
0.0
0.0
-0.1
0.0
-0.3
V
0.2
-0.0
0.2
-0.2
-0.2
1.0
0.0
0.1
-0.1
0.5
0.1
0.0
0.3
0.1
0.5
Cr
-0.3
-0.1
0.5
0.0
0.4
0.0
1.0
0.5
0.3
0.4
0.2
0.1
0.2
0.2
0.0
Table G-4(b). Eigenvalues, Fractional
Sites and Times
Eigenvalues
Fractional Variances
Eigenvectors
4
0
0
0
0
-0
-0
0
0
0
-0
0
0
0
0
0
0
.079
.272
.267
.017
.093
.338
.133
.231
.128
.374
.018
.332
.411
.000
.411
.168
.319
Mn
0.0
-0.4
0.7
-0.3
0.4
0.1
0.5
1.0
0.4
0.5
0.6
0.1
0.7
0.3
0.4
Fe
-0.6
-0.6
0.3
0.3
0.6
-0.1
0.3
0.4
1.0
0.0
0.1
0.1
0.1
0.1
-0.2
Ni Zn
0.2 0.3
-0.1 -0.1
0.3 0.1
-0.3 -0.5
-0.0 0.0
0.5 0.1
0.4 0.2
0.5 0.6
0.0 0.1
1.0 0.4
0.4 1.0
-0.0 0.0
0.5 0.7
0.2 0.4
0.4 0.3
Se
0.0
-0.0
0.1
-0.1
0.0
0.0
0.1
0.1
0.1
-0.0
0.0
1.0
0.0
-0.2
0.2
Pb
0.4
-0.2
0.3
-0.5
-0.1
0.3
0.2
0.7
0.1
0.5
0.7
0.0
1.0
0.4
0.6
Variances, and Eigenvectors, for 15
3.539
0.236
-0.263
-0.372
0.427
0.231
0.427
0.000
0.311
0.319
0.389
0.101
0.027
0.000
0.027
0.000
-0.113
1.077
0.072
-0.053
0.000
0.000
0.068
0.000
0.786
0.000
-0.222
0.000
0.460
-0.235
0.000
-0.235
0.000
-0.067
S
Cl
K
Ca
Ti
V
Cr
As
0.1
-0.2
0.1
0.0
0.0
0.1
0.2
0.3
0.1
0.2
0.4
-0.2
0.4
1.0
0.1
Tracers
Br
0.4
0.2
0.3
-0.6
-0.3
0.5
0.0
0.4
-0.2
0.4
0.3
0.2
0.6
0.1
1.0
, All
Mn
Fe
Ni
Zn
Se
Pb
As
Br
Only the first three columns (of 15) have been retained in Table G-4(b), for those columns with
eigenvalues exceeding unity. The other columns are no more significant that would be expected
by chance from an assembly of random numbers. Table G-4(b) suggests that for the principal
eigenvector (the left column) positive analysands with "loadings" greater than 0.28 (twice the
sampling error) vary coherently with one another, and anti-coherently with analysands that
display loadings less than 0.28. Thus, approximately in decreasing order of loading:
Vector 1
Vector 2
Vector 3
Pb + Zn + Mn + Ni + Br + [S] - Ca
Ti + Fe + Mn + Cr + K - Cl - [S]
V + Ni
404
-------
Note that the bracketed entries for [S], above, are included as interesting, but marginally below
the selection threshold.
The first vector contains lead, zinc, manganese, and bromine, tracers that are strongly (but not
uniquely) identified with automotive sources. Approximately 27 percent of the total variance
is associated with this vector.
The second contains titanium, iron, and manganese, tracers associated with soils.
Approximately 24 percent of the total variance is associated with this second vector.
The third contains vanadium, a tracer associated with petroleum combustion. Approximately
7 percent of the total variance is associated with this vector. This fraction is only marginally
greater than would be anticipated from a vector of random numbers.
The grouping of metal and anion tracers revealed by this analysis is sustained (within
uncertainties set by relatively larger sampling errors) by similar analysis at the Alexander
Avenue site, only:
In which:
vector 1 : Mn + Ni + Pb + Zn + Br - Ca - [S]
vector 2 : Fe + K + Ti - Cl
This agreement is not surprising, however, as the data at Alexander Avenue comprise much of
the same data subsumed into the correlations at all sites. Strictly speaking, the loadings for
none of the vectors at Alexander Avenue exceed the two-sigma criterion imposed for the
decomposition of all the data together. Sampling errors among the correlations at Riverside,
Tyee, and Morris Industrial exceed 0.7, and equal unity at Browns Point and Sea-Land. Thus
it is not possible from these data to use time-averaging factor analyses of the metal and anion
measurements to distinguish differing types of emissions at the individual sites of our study.
Table G-4(c). Eigenvalues, Fractional Variances, and Eigenvectors for 15 Tracers,
Alexander Avenue Site Only
Eigenvalues
5.335 3.304
Fractional Variances
0.356 0.220
Eigenvectors
0.317 -0.172 S
0.000 -0.405 Cl
0.083 0.453 K
-0.325 0.181 Ca
-0.193 0.388 Ti
0.241 0.201 V
0.000 0.249 Cr
0.380 0.177 Mn
-0.083 0.453 Fe
0.380 0.177 Ni
0.345 -0.031 Zn
0.161 0.000 Se
0.366 0.170 Pb
0.000 0.000 As
0.342 -0.134 Br
405
-------
Correlations and Co-factors for PAH Compounds
Table G-4(d) presents the crossed-correlation matrix, averaged over all sites and times, for 17
PAH compounds, with vapor and aerosol measurements combined at each site. As with Table
G-4(a) only one significant digit is shown here, but three digits were preserved for the
eigenvector analysis that follows.
Table G-4(d). Correlation Matrix for PAH Compounds (Vapor + Aerosols) at All Sites
Minimum standard error = .144
1.0 0.9
0.9 1.0
0.4 0.6
0.7 0.9
0.7 0.8
0.6 0.7
0.7 0.8
0.5 0.6
0.5 0.6
0.6 0.8
0.5 0.7
0.3 0.6
0.7 0.8
0.8 0.8
0.8 0.9
0.3 0.6
0.8 0.9
0.4
0.6
1.0
0.5
0.8
0.8
0.8
0.8
0.8
0.7
0.8
0.7
0.6
0.6
0.6
0.6
0.6
0.7
0.9
0.5
1.0
0.6
0.6
0.6
0.5
0.6
0.7
0.6
0.6
0.7
0.7
0.7
0.6
0.7
0.7
0.8
0.8
0.6
1.0
1.0
0.9
0.9
0.9
0.9
0.9
0.7
0.8
0.8
0.8
0.6
0.8
0.6
0.7
0.8
0.6
1.0
1.0
1.0
1.0
1.0
0.9
0.9
0.7
0.8
0.8
0.8
0.7
0.8
0.7
0.8
0.8
0.6
0.9
1.0
1.0
0.9
0.9
0.9
0.9
0.7
0.8
0.8
0.8
0.6
0.8
0.5
0.6
0.8
0.5
0.9
1.0
0.9
1.0
1.0
0.9
0.9
0.8
0.7
0.7
0.7
0.7
0.7
0.5
0.6
0.8
0.6
0.9
1.0
0.9
1.0
1.0
0.9
0.9
0.8
0.8
0.7
0.7
0.7
0.7
0.6
0.8
0.7
0.7
0.9
0.9
0.9
0.9
0.9
1.0
1.0
0.9
1.0
0.9
0.9
0.8
0.9
0.5
0.7
0.8
0.6
0.9
0.9
0.9
0.9
0.9
1.0
1.0
0.9
0.9
0.8
0.8
0.9
0.8
0.3
0.6
0.7
0.6
0.7
0.7
0.7
0.8
0.8
0.9
0.9
1.0
0.8
0.7
0.7
1.0
0.7
0.7
0.8
0.6
0.7
0.8
0.8
0.8
0.7
0.8
1.0
0.9
0.8
1.0
1.0
1.0
0.8
1.0
0.8
0.8
0.6
0.7
0.8
0.8
0.8
0.7
0.7
0.9
0.8
0.7
1.0
1.0
1.0
0.7
1.0
0.8
0.9
0.6
0.7
0.8
0.8
0.8
0.7
0.7
0.9
0.8
0.7
1.0
1.0
1.0
0.7
1.0
0.3
0.6
0.6
0.6
0.6
0.7
0.6
0.7
0.7
0.8
0.9
1.0
0.8
0.7
0.7
1.0
0.7
0.8
0.9
0.6
0.7
0.8
0.8
0.8
0.7
0.7
0.9
0.8
0.7
1.0
1.0
1.0
0.7
1.0
naph
acny
acne
flor
phen
anth
fluo
pyre
baa
chry
bbf
bkf
bap
indp
dba
bzpe
bep
Note that all the correlations are positive and that most of them exceed 0.5. This is not
surprising, because most of the PAH compounds are emitted nearly synchronously by a single
source. The effect of this in factor analyses is that all the 17 PAH compounds collectively
behave as if they were a single, generic PAH tracer.
406
-------
Table G-4(e). Eigenvector Decomposition of Table G-4(d)
Eigenvalues
13.188 1.210
Fractional Variances
0.766 0.070
Eigenvectors
0.191 0.674 naph
0.232 0.034 acny
0.217 -0.029 acen
0.203 -0.027 flor
0.253 0.038 phen
0.260 0.039 anth
0.258 0.039 fluo
0.262 0.039 pyre
0.262 0.039 baa
0.274 0.037 chry
0.251 0.037 bbf
0.230 -0.419 bkf
0.265 0.035 bap
0.241 0.035 indp
0.236 0.034 dba
0.225 -0.593 bzp
0.245 0.036 bep
Note that the first vector, which accounts for 77 percent of the variance, contains nearly equal
loading coefficients for each of the 17 PAH tracers. This vector represents the bland average
of all these tracers, the generic PAH factor.
The second vector, which is only marginally more significant than would be expected from
arrays of random numbers (if even that) accounts for 7 percent of the variance, with high
loading factors for
vector 4 : all the PAH compounds
vector "X" : naphthalene - benzo(k) fluoranthene
- benzo(g,h,i) perylene
The first of the tracers in the "X" vector, naphthalene, is poorly measured by our analytical
technique: it is likely that the inclusion of this tracer in vector "X" results from measurement
variance rather than from real physics in the emission and transport.
The possibility remains open, however, that benzo(k) fluoranthene and benzo(g,h,i) perylene
may behave sufficiently differently from the generic PAH to permit their use as a discriminator
of different sources, as for example between the Kaiser plume and woodstove or hogged fuel
emissions.
Co-factor Analyses of All the Tracers
The grand correlation matrix for the 15 metals and anions plus the 17 PAH compounds results
in a bulky 32 x 32 table that is substantially block-diagonal, with relatively little mixing between
the metal/anion and PAH components. Factor decomposition of this correlation matrix reveals
407
-------
the same tracer groupings as those displayed when each block is factored independently, with
the exception that second PAH vector now mixes with selenium.
eigenvalue = 1.618
fractional variance = 0.050
vector:"X" 0.51 * selenium
+ 0.58 * naphthalene
- 0.46 * benzo(k) fluoranthene
- 0.43 * benzo(e) pyrene
Again, this vector is only marginally significant: ensembles of random numbers could be
expected to generate equal or higher fractional variances with odds near 1:3.
Spatial and Temporal Patterns
While constraints of signal-to-noise with the present data require that the primary factorization
must be made by averaging over all sites and all times, the factors so determined may
nevertheless still be evaluated at each site and each time. The inherent noise remains, but
simple spatial and temporal patterns may perhaps still be discerned.
In the present case, however, supportable conclusions from this exercise are fairly limited:
a. The relative contributions of vector [1], associated with automotive transport, is higher at
Browns's Point and Riverside, the most northerly and most southerly of the sites, and lower at
Morse Supply and at Alexander Avenue.
b. Conversely, the relative contributions of vector [2], associated with soil minerals, was
lowest at Brown's Point and Riverside, and highest at Morse and Alexander.
c. The relative contributions of both marginal vectors [3] and "X" were highest at Brown's
Point. The former was lowest at Morse, the latter at Alexander.
With these tentative observations and the discussion that follows, it should be noted that the
absolute vectors are linear combinations of measured concentrations, with each tracer weighted
inversely by the standard deviation of the measurements for that tracer, determined over all the
samples and all the sites. The relative vectors, however, are normalized to unit sums. Thus
if, for example, the absolute vector for the soils component [2] at Brown's Point decreases with
greater distance from the Tideflats, the relative vector for cars [1] increases as a consequence
of its definition.
The behavior of vector "X", however, is a little more interesting and seems to indicate that (if
real) it is NOT a tracer of the industrial core.
Not very convincing temporal patterns could be discerned among the vectors at the several sites,
with the tentative exception that relatively LOW values of the "X" vector (in comparison to the
generic PAH) were present at Riverside during the severe stagnation episode of December 11,
and relatively high values at Brown's Point for a sample ending on September 11 that included
several days of light and meandering westerly winds. It is of possible interest that September
10th marked the rather abrupt transition between westerly summer winds and the southerly fall
and winter Winds that characterized the second half of our sampling period (see Figure 9-5??).
The low value for "X" at Riverside during a stagnation event argues that this vector is not a
tracer of woodstove combustion.
408
-------
Appendix G-5. Tracer-Rose
A novel hybrid source-receptor model is described, and used to explore the sensitivities of WV3
to the meteorology and to the source distributions. The new model may be generally useful.
TRACER-ROSE
Source models start with stacks and winds and follow the puffs in time and space. Receptor
models compare "fingerprints" to match suspected sources. As with source models, the present
hybrid starts with wind Velocities and directions; as with receptor models, it optimizes a mix
of upwind sources that best reproduce measured tracer concentrations. The output is a "tracer-
rose": a polar plot with amplitudes proportional t the velocity corrected sensitivities of the local
tracer measurements to wind directions. Instead of "fingerprints" it "finger points".
Specifically, the new model (tracer-rose) searches for a minimum of the function:
V = <{[Yobs(i) - Ymod(i)]/[Yobs(i) + Ymod(i)]}2> [1]
4- [a Bias term, discussed below]
In equation [1], i indexes daily measurements, the < brackets > denote averages over i, Yobs(i)
are observations of tracer concentrations at receptor sites, and
Ymod(i) = < W(i j) . D(i,j). A(k,j) > [2]
In equation [2], the denote averages over j, the hourly measurements of the wind
directions and velocities. The W(i,j) term corrects for effects of wind velocities, the D(i,j) term
accounts for a daily cycle of ventilations and diffusivities, and the A(k,j) term contains the
azimuthal pattern. Equation [2] is not arbitrary, but results as a special case of a two-box
Eulerian-grid dispersion model, in a steady state, in which the horizontal and vertical diffusivity
coefficients are proportional to the wind velocities and box dimensions.
For wind-velocity correction, tracer-rose assumes:
W(i,j) = l/(U(i,j) + Co) [3]
where the U(j) are measured hourly wind velocities, and Co is a "meander velocity" to be
determined through the regression.
For the daily modulation, tracer-rose assumes:
D(i,j) = 1 + CLCos(theta) + C2«Sin(theta) [4]
In equation [4], theta = (j/24.360) degrees, and Cl and C2 are two more variables for the
regression. The D(i,j) account both for variations in the daily emission patterns and for
variations in the vertical diffusivities. A similar term appears in WV3, as P(0).
Various ways have been explored to parameterize the azimuthal term A(k,j). It seems intuitive
that expansion in sines and cosines would be appropriate. Tracer-rose started this way and may
return to it, but some aliasing difficulties that result when the expansion is truncated at low
order (as it may be) and ambiguities in assigning uncertainties to the resulting patterns have led
instead to:
409
-------
A(kj) = C3 + C(3+k) . F (ij,k) [5]
where C3 = a constant isotropic component;
C(4) = a component when the winds are northerly, [k=l];
C(3+k) = are components when the winds are from other sectors, respectively
displaced from north in a clockwise (compass) convention, usually
with 16 bins for the full 360 compass degrees;
and F(i,j,k) = 1 if the wind direction, Dir(iJ), is in the k-th azimuthal sector;
and F(i,j,k) = 0 if not.
Three added options complete a specification of Ymod(i): weights, bias, and shuffle.
Weights
The hourly averages of j in equation [2] may be uniformly weighted, so that the resulting
azimuthal pattern will reflect those tracer fluxes actually measured at the receptor, that result
from the real distribution of the wind directions. Let me call this choice the "natural weights".
These are appropriate when you wish to identify those upwind sources that actually contributed
most of the tracer perceived at the receptor.
Alternatively, the weights may be renormalized to simulate the distribution of fluxes through
the receptor that would have been perceived if the winds were equally probable in each sector.
Let me call this choice "isotropic weights." These are appropriate when you wish to map all
the surrounding sources, scaled to their intensities but roughly independent of any particular
sample of the wind-direction distribution.
Bias
Regressions extract information from measurements (in this case from winds and tracer
concentrations) and attribute information to derived coefficients (in this case C's). For
regressions to make physical sense, you must have more information on the input side than you
attribute at the output. In the present case, for example, 73 daily concentration measurements
at Fire Station No. 12 in the fall and winter of 1985 display a serial correlation lag of 3.4 days.
The total input "degrees of freedom" (think of this as "information content", or the number of
truly independent measurements) are therefore approximately:
df(input) = 73/3.4 = 23.5 [6a]
If one wishes to extract a meander velocity (Co), two daily modulation coefficients (Cl and C2)
(spectator coefficients), and sixteen coefficients to describe the angular pattern of A(k,j) in
sectors of 22.5 degrees, then one must expend 20 degrees of freedom and have left only:
df(net) = 23.5 - 20 = 3.5 [7a]
But it is not enough in any regression simply to find a set of output coefficients. One must also
estimate their precisions. To do this we need at least one additional degree of freedom for each
derived coefficient. But the cruel accounting of equation [7] shows that we are bankrupt. What
to do? Obviously, either increase or reduce expenditures.
For the first choice, we can do the accounting again with 1986 data, for which we have 355
nondefault days that display a serial correlation lag of 2.1 days, for which
410
-------
df(input) = 355/2.1 = 169 [6b]
With 20 coefficients, each with 20 more standard errors,
df(net) = 169 - 2(20) = 129 [7b]
Alternatively, if we must, we can spend less. If we restrict ourselves to eight azimuthal
coefficients, plus the four spectators, then with the data from the fall of 1985,
df(net) = 73/3.5 - 2(8 + 4) = -0.5 [7c]
Actually, the accounting is a little bit worse than we have made it out to be, because the
distribution of wind directions may undersample some of the azimuthal bins. So we are still
in trouble. What to do now?
One approach is to reduce our angular resolution still further say to four bins, or we can
use the following alternative:
Equation [1] lists a "bias" term The idea here is to put the derived azimuthal coefficients
through a smoothing filter that effectively reduces their angular resolution and thus the
expenditure of degrees of freedom. For example, we can leave the number of bins at 8 (or at
16 for that matter) and instead impose:
Bias = [Eps2] . <{C(k-l) - 2C(k) + C(K+1)}2> [8]
The righthand side of [8] is the average over the 8 (or 16) sectors of the squared curvature of
the angular distribution, with circular boundary conditions. In the limit as Eps is large,
minimizing equation [1] forces the angular distribution function A(k,j) into a circle (
but no azimuthal degrees of freedom have been spent on it). In the limit as EPs is small
minimizing [1] may induce interesting garbage by information bankruptcy. At some
intermediate Eps may lie an optimum tradeoff for maximum resolution consistent with the
information budget.
Shuffle
Finally, every regression should be tested with nonsense. Tracer-rose permits users to shuffle
the input tracer file and to generate nonsense inversions whose bumps and wiggles help to
inoculate the user from premature and misplaced enthusiasm.
Summary
To summarize the use of tracer-rose:
a. Data are files of daily concentration measurements and of hourly winds and
directions.
b. Select a number of azimuthal fins (usually 8 or 16).
c. Choose either "natural" or "isotropic" weights.
d. Elect to bias or not, through a choice of Eps.
411
-------
Tracer-rose then turns the crank and generates:
a. A polar diagram of source attributions, as a function of wind directions, with
superimposed standard deviations, corrected for degrees of freedom.
b. A daily modulation function and a meander velocity.
c. The constant C3, which can be related to spatial and mixing coefficients.
d. A set of Ymod(i) that can be compared with observations. The V of equation
[1] is a score for this comparison.
e. A set of regression coefficients that can be used with new winds and directions
to estimate new Ymod(i). In particular, they may be used to estimate the effect
of new winds on the statistics of Ymod. For example, what would be the
exceedances to be expected with data from longer wind records, for which the
concentration measurements are missing?
Then
f. Shuffle the tracer observations, to test significance.
Results
First, tracer-rose has been used with WV3 and 77 days of real winds (Fire Station No. 12, fall
and winter of 1985) and a synthetic pattern of three stacks, S, and one receptor, X, as follows:
s o o o s
o o o o o
O O X O O
00000
S O O O O < - note missing stack
With these winds and sources WV3 generated a sequence of modeled 24-hour averaged tracer
concentrations, at X. Tracer-rose then turned this process around with the synthetic tracers and
the real winds to try to reproduce the input stack pattern.
Figure 1 shows a tracer-rose resulting from 16 azimuthal bins, with isotropic weights, and no
bias. The three lobes in the central dark curve are clear, but note the large standard errors
shown in the inner and outer lighter curves, which are displaced by minus and plus one standard
deviation. Reasons for this are discussed in the preceding section.
Figure 2 shows the same inversion, slightly biased to minimize the average curvature. The
three-lobe pattern barely survives, and the outer curve has shrunk a bit.
Figure 3 shows a scattergram of tracer concentrations from WV3, labeled "observations",
plotted against those from tracer-rose, labeled "model". The robust MRE of this comparison
is less than 10 percent.
Tracer-rose also recovered a meander velocity (0.70 ±0.11 m/s) and daily modulation
coefficients (Cl = C2 = -0.50 ± 0.11) that compare reasonably with those of WV3 (0.50 m/s,
-0.69, and -0.36).
412
-------
These results encourage that tracer-rose works, but emphasize the cruel economics of
information demand. To ease the crunch, more data are needed.
Figure 4 shows results from tracer-rose with 355 nondefault PM10 measurements, and 8520
hourly wind directions and velocities, at Fire Station No. 12, in 1986. The presentation of the
error curves has been changed here, and some extra target circles eliminated to minimize an
otherwise an otherwise too busy display. The inner thin circle now shows the isotropic part of
the azimuthal distribution, and the outer thin curve shows the "plus one sigma" standard
deviations. These are not concentric with the isotropic circle, owing to the differing numbers
of hours with the winds in the various sectors.
Examination of the dense curve in Figure 4 reveals a 3-sigma projection towards the southeast,
(Kaiser?), and two 1-sigma bumps towards the northwest, (Simpson?), and southwest
(unknown). WV3 also shows a maximum in surface PM10 concentrations to the southeast of
Fire Station No. 12, largely from fugitive emissions attributed to Kaiser. WV# perhaps
exaggerates these from too-severe local boundary conditions that have been assigned to the
terrain north of Kaiser. On the other hand, tracer-rose's finger-point towards Kaiser (rather
than nearer Simpson plant) is consistent with what WV3 has been trying tell us.
Figure 5 displays the scattergram of Ymod (ordinate) vs Yobs (abscissa) for this regression.
Note that, as with WV3, tracer-rose underpredicts the higher observations. The MRE scores
for tracer-rose and WV3 nearly identical.
As remarked above, regressions should be tested with nonsense. Figures 6 and 7 display a
polar diagram and scattergram after a random shuffle of the sequence of PM10 observations.
One lobe in Figure 6 touches the 1-sigma curve at the southwest. With 16 independent angular
bins the odds would be about 16:6 that one bin would exceed 1-sigma. Owing to the bias term,
the bins are not independent, however, and the odds that any single bin would exceed 1-sigma
are reduced approximately to 1:1. Thus, the observed single lobe at 1-sigma is consistent with
random chance. The flat scattergram of Figure 7 shows no greater skill than would a Farmers'
Almanac.
Finally, for this brief report, angular distribution plots of the PSAPCA's source inventory have
been examined and displayed with Fire Station No. 12 at the center and weighted with various
inverse powers of the radial distances. With r^ weights (plausible if vertical mixing is
suppressed) these plots tend to emphasize the Simpson plant, rather than Kaiser. With i*~5
weights (plausible if vertical diffusion operates efficiently) they emphasize the very near
sources.
Questions
Its early, yet, and tracer-rose needs more testing. A very long data set would be informative.
The model can handle two years without modification, and with tricks could perhaps do four.
Chemically segregated data (a metal tracer, for example, and not just PM10) should enhance
signal-to-noise. Data near to a single strong stack (Centralia) would help verify the variance
calculations.
413
-------
APPENDIX H. SUPPORTING DOCUMENTS
1) Ellenson, W.D. Data Report for the Puget Sound Air Toxics
Deposition Study. NSI Environmental Services, Research Triangle
Park, NC.
2) NBA, Inc. Tacoma Simpson Kraft Source Testing Analytical
Report, submitted to Puget Sound Water Quality Authority,
March 1990.
3) NBA, Inc. Simpson Tacoma Kraft Emission Testing, Size-
Segregating Dilution Sampling Report, submitted to Puget
Sound Water Quality Authority, April 1990.
415
-------