-------
3
0
o 2
H
S
H
•*5
U3
o
•^
o 1
',-1
a
e:
0
0
1 1 ! 1 1 ! 1 1 1 1 1 1
V
O Modeled
—
V Observed
V
^
VJ
o
•~
3
o o o o o "
- V V V VG7CS7 $7 <57 G57 07
! 1 ! 1 1 IV I 1 1 1 I 1
q
3
7
£.
-1-
0
1 1 1 1 1 1
- v •
oo
voo
QJ
•v 2
o
v 1
— w V W) ^E)
1 1 I V 1 I !
Ui O Ln O
NJ N3 LO
MAIN STEM
SOUTH FORK
RIVER MILE
FIGURE 22. RIVSCI VERIFICATION FOR CHLORIDE ON RIVER REGION 2 (COEUR D'ALENE) - AUGUST 1969
-------
TABLE 14. RIVSCI VERIFICATION FOR RIVER REGION 2 (COEUR D'ALENE) SEPTEMBER, 1969
o
u>
>
3 -
V
c
(0
3
a
u
3
V
o
0
M
M
0
Pt4
l/l
RM
138
145
148
154
160
166
168
170
177
182
188
194
1
4
6
7
10
12
15
17
18
22
DO
OBS
9.0
9.5
9.3
8.9
9.2
8.8
8.8
9.3
8.9
9.1
8.6
8.7
9.3
10.2
7.9
10.3
10.2
10.0
9.8
9.5
MOD
8.81
9.02
9.02
9.19
9.30
9.53
9.65
9.46
9.50
9.60
9.56
9.53
9.65
10.47
10.67
10.67
10.70
10.71
10.80
10.80
10.83
10.83
BOD
OBS MOD
1.6
1.6
1.4
1.2
1.2
.6
.5
1.7
1.0
1.0
1.1
1.6
1.3
1.8
1.9
1.7
1.5
1.7
1.4
1.3
1.67
1.80
1.80
1.43
1.35
1.08
1.13
.84
.73
.94
.94
.95
1.13
1.99
2.03
2.03
2.09
1.88
2.01
2.01
1.30
1.27
NH3-N
OBS
.09
.07
MOD
.0112
.0194
.0194
.0301
.0434
.0747
.0969
.1226
.0348
.0376
.0479
.0521
.0969
.0592
.0610
.0610
.0613
.0626
.0612
.0612
.0643
.0651
N02-N
OBS
.003
.003
MOD
.0063
.0072
.0072
.0077
.0077
.0071
.0063
.0066
.0045
.0045
.0041
.0039
.0363
.0339
.0038
.0038
.0338
.0337
.0038
.0333
.0035
.0035
N03-N
OBS
0
.24
0
.24
.05
.24
0
0
0
0
.12
.24
.20
0
.24
.12
.24
.65
0
.58
.24
MOD
.1341
.1405
.1405
.1436
.1435
.1463
.1460
.0641
.0803
.1029
.1106
.1195
.1460
.3847
.3949
.3949
.4226
.4250
.5244
.5244
.5296
.2395
po4-p
OBS
.06
.51
.04
.45
.01
.16
.06
.02
0
0
.03
1.14
.76
.56
.12
.04
.08
.17
.12
.03
.12
MOD
.3022
.3066
.3066
.3080
.3062
.3109
.3113
.0381
.0344
.0350
.0334
.0345
.3113
1.065
.7491
.7491
.1227
.0747
.0705
.0705
.0668
.1245
ZINX
OBS
2.6
4.1
3.1
3.0
6.0
4.7
0
0
0
0
0
15
14
2
2
1.2
1.5
1.8
2.8
1.5
.1
MOD
3.25
3.50
3.50
3.84
3.94
4.25
4.32
0
0
0
0
0
4.32
16.92
1.47
1.47
1.43
1.43
1.15
1.15
1.15
.02
CL
OBS
1.5
0
0
0
0
0
0
0
0
0
0
0
1
0
.5
.4
.5
.5
0
0
0
MOD
.20
.21
.21
.21
.22
.22
.22
0
0
0
0
0
.22
.86
.49
.49
.49
.49
.49
.49
.50
0
TEMP
OBS
17.5
16.5
16.2
16.0
16.0
15.0
14.0
14.0
13.5
13.5
13.5
10.0
11.0
£.5
8.5
8.8
8.5
8.7
8.5
8.0
8.0
-------
11
j 10
_-
o
i 9
M i.
° s
O
0
0 o
a °
7
! 1 1 1 1 ! 1 1 1 1 1 1
O Modeled
— V Observed
V 0 - 0 ° 0 0
V7 /^ ^
§ ° ° v v
V v ^
-^
o
ft.
"2
a
o
en
1 1 1 1 1 1 V 1 1 1 1 1
il
10
9
7
I 1 ^Q^ II 1
GO °°
O
—
V
V V
0 V
V V
V
V
~ V
1 1 1 1 1 1
Gi-nOUiOUiOUiOUiOL^OOUiO^O LnQUi
MAIN STEM
SOUTH FORK
RIVER KILE
FIGURE 23. RIVSCI VERIFICATION FOR DO ON RIVER REGION 2 (COEUR D'ALENE) - SEPTEMBER 1969
-------
3
CJ
0 1
o
1 1 I ! I 1 1 1 1 1 I !
O MoJcied
_ V Observed
>-i
0
— j±
O O 3 „
vv 5 v
(37 o
v g
o 0 ° S ®
1 1 1 1 1 1 V 1 1 1 1 1 1
4
3
2
1
0
i
1 1 I 1 1 1
•-{ r-<
r— 1 T— 1
n) to
U-l »4-(
^J 4J
3 3
O 0
— ooo p. o o
^ .
V S G7
ll iWl 1 1 1
MAIN STEM
O V-rt O
SOUTH FORK
RIVER MILE
FIGURE 24. RIVSCI VERIFICATION FOR BOD ON RIVER REGION 2 (COEUR D'ALENE) - SEPTEMBER 1969
-------
.6
.5
.It
.3
.2
.1
.0
1 1 1 1 1 1 1 1 1 1 1 1
O Modeled
_
^7 Observed
-
-
V V V
0000°
,00*
1 0
3
-v v " v v v v
1 1 1 1 1 1 T 1 1 1 I 1 1
!jr^j>!31t^o^o^^d{»CDS^c
.6
.5
.4
.3
.2
.1
.0
3
1 1 1 1 1 1
V
_
OGZ>
-
~ Q
-
V V V g
- v
^ J*
VOI
V
~~ o
c
o
c
id
u
•- v v
1 ! 1 vl 1 !
wiOLnOWOi-no
MAIN STEM
OWOUIOOOIO1-" O
SOUTH FORK
RIVES MILE
FIGURE 25. RIVSCI VERIFICATION FOR NO-N ON RIVER REGION 2 (COEUR D'ALENE)- SEPTEMBER 1969
-------
o
-J
l.S
1.4
1.3
1.2
1.1
1.0
.9
.8
.7
f.
.5
.4
.3
.2
.1
.0
1 1 1 1 1 1 1 1 1 1 1 1
- O -Modeled
V - Observed
-
U
0
— • ^ .n •
v "*
- o o o o o °
V
^7 V
— V ° 9 p: Q O?
1 1 1 1 ! 1 V I 1 1 I 1 !
1.4
1.3
1.2
1.1
1.0
.9
.8
.7
.6
.5
.4
.3
.2
.1
- .0
1 1 1 1 1 1
-
-
I
O
-
V
GO
V
—
— 00
C
g OCo
V V
IT 1 1 I i 1
en O).
KA1N STEM
RIVER MILE
SOUTH FORK
FIGURE 26. RIVSCI VERIFICATION FOR PO^-P ON RIVER REGION 2 (COEUR D'ALENE) - SEPTEMBER 1969
-------
O
00
i. /
16
15
14
13
12
11
10
9
8
7
5
5
4
3
2
1
0
1 1 1 1 1 1 1 1 1 1 1 1
_
O Modeled
_ V Observed
-
- v
V
_ V °
00
00
-° V V
V
^
kJ
O
— &
3
O
~ 0? 67 S' S7 (57
1 1 1 1 1 1 T 1 1 1 1 1 1
i /
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Ol 1 I I 1 I
_
V
- y
-
-
-
~~ 00 JJ
C V
D O
KAIN STEM
RIVER MILE
SOUTH FORK
FIGURE 27. RIVSCI VERIFICATION FOR ZINC ON RIVER REGION 2 (COEUR D'ALENE) - SEPTEMBER 1969
-------
&
•z.
u
u
a
1.6
1.5
1.4
1.3
1.2
1.1
1.0
.9
1 1 1 1 1 1 1 1 I 1 1 !
- v
- O Modeled
V Observed
-
-
-
-
-
-
-
o
*j
a
o
to
O 0 0 0 0
-
— V V V V V V) V)V)\OV>
1 1 1 1 1 1 V 1 1 1 1 1 1
J. - U
1.5
1.4
1.3
1.2
1.1
1.0
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
1 1 1 1 1 i
-
-
-
-
- v
- 0
-
-
-
- 070^)^0
V
V
0 S
2
— a
V V W V)
1 1 I T 1 I 1
en CD
MAIN STEM
SOUTH FORK
RIVER KILE
FIGURE 28. RIVSCI VERIFICATION FOR CHLORIDE ON RIVER REGION 2 (COEUR D'ALENE) - SEPTEMBER 1971
-------
From Table 15 it can be seen that fairly good agreement with observed
values was obtained.
For the September 1969 verification run, the groundwater pollutant
concentrations were slightly reduced and the groundwater DO level was
set at 7 mg/L. All tributary flows were reduced slightly and head-
water flows were increased to match USGS gage readings, which resulted
in a quantity convergence time of 5 days. The quality portion again
reached stability in 4 days.
As can be seen from Table 16, there is generally good agreement with
the observed data. The higher modeled DO values result from the lower
observed temperatures. See the River Region 3 description in Section
VIII for a discussion of the DO levels in the lower reaches of the
Spokane River.
RIVER REGION 4: LITTLE SPOKANE (RIVSCI)
For a description of the region and the observed data which were
available see the DOSCI verification (Section VIII of this report).
For the July 11 - August 10, 1968 verification run for this region
the procedure followed in the DOSCI verification was applied. The
headwater concentrations were set equal to the observed values and
pollutants were introduced by flows representing Deadman Creek and
groundwater infiltration. Benthal oxygen demand was modeled and
benthai BOD and NH -N release rates were set to zero. Both the
quantity portion and the quality portion of RIVSCI reached stability
in 3 days. The results are shown in Table 17. As usual, the
modeled DO values were near saturation at the observed temperatures.
The same procedure used in making the July 11 - August 10 run was
followed in making the August 11 - September 10, 1968 run. Benthal
DO demand was modeled. BOD was not modeled and the NH -N benthal
release rate was set to zero. Each portion of RIVSCI again converged
in 3 days.
The results for the second month, which are similar to the July 11 -
August 10 results, are shown in Table 18. See the River Region A
description in Section VIII for a discussion of the DO levels in the
lower reaches of the Little Spokane River.
RIVER REGION 5: LOWER SPOKANE (RIVSCI)
For a description of the region and the scant observed data which were
available see Section VIII of this report (DOSCI verification).
For the September 1971 verification run all inflow concentrations were
set approximately equal to the observed headwater concentrations with
the exception of the groundwater DO, which was set at 7 mg/L. Benthal
110
-------
TABLE 15. RIVSCI VERIFICATION FOR RIVER REGION 3 (UPPER SPOKANE) AUGUST, 1969
Vj
01
>
2
01
c
to
*
o
0.
CO
1-1
u
c
d
0
bo
c:
3
RM
110.7
106.6
102.1
101.8
98.7
96.4
93.9
88.7
84.8
80.2
77.9
76.2
74.2
72.9
72.4
64.2
58.1
56.7
39.0
32.9
20.2
14.5
.8
DO
DBS
8.2
8.1
8.0
7.4
MOD
8.11
8.11
7.90
7.90
7.90
8.01
8.01
7.83
7.88
7.78
7.78
7.78
7.50
7.69
7.69
7.78
7.99
7.99
8.10
8.14
8.13
8.10
8.10
NH3-N
OBS
.04
.06
.08
MOD
.0312
.0312
.0384
.0384
• 0373
• 0348
.0348
.0457
.0452
.0439
.0439
.0439
.0534
.0517
.0517
.0518
.0477
.0477
.0560
.0540
.0519
.0537
.0505
NOj-N
OBS
.01
.01
.05
MOD
.0096
.0096
.0101
.0101
.0101
.0101
.0101
.0291
.0302
.0306
.0306
.0306
.0370
.0362
.0362
.0390
.0360
.0360
.0368
.0360
.0390
.0383
.0372
NO -N-
OBS
.02
.04
.6
MOD
.0223
.0223
.0418
.0418
.0420
.0425
.0425
.1496
.1624
.2283
.2283
.2283
.3512
.3525
.3525
.4167
.4120
.4120
.5971
.6202
.6373
.6668
.6896
P04-P
OBS
.05
.06
.18
MOD
.0509
.0509
.0606
.0606
.0609
.0616
.0616
.0941
.0995
.1246
.1246
.1246
.1720
.1724
.1724
.1975
.1995
.1995
.1646
.1720
.1779
.1829
.1913
ZINC
OBS
.150
.145
.200
.080
MOD
.140
.140
.126
.126
.126
.123
.123
.110
.107
.100
.100
.100
.092
.091
.091
.083
.080
.080
.097
.095
.095
.093
.092
N
OSS
.2
.5
.8
MOD
.20
.20
.48
.48
.48
.43
.48
.55
.57
.63
.63
.63
.76
.76
.76
.76
.76
.76
.60
.60
.60
.60
.60
CL
OBS
2
1
.4
8
MOD
2.0
2.0
1.64
1.64
1.64
1.63
1.63
1.94
2.06
2.89
2.89
2.S9
4.52
4.52
4.52
4.77
4.81
4.81
4.0
4.27
4.46
4.53
4.69
TEMP
OES
21.5
21.5
23.0
IS. 5
1
-------
TABLE 16. RIVSCI VERIFICATION FOR RIVER REGION 3 (UPPER SPOKANE) SEPTEMBER, 1969
01
^
"
o>
d
rt
o
(X
1/5
^
u
c
a
a
RM
110.7
106.6
102.1
101.8
98.7
96.4
93.9
88.7
84.8
80.2
77.9
76.2
74.2
72.9
72.4
64.2
58.1
56.7
39.0
32.9
20.2
14.5
.8
DO
OBS
8.8
8.8
7.7
MOD
8.75
8.75
8.72
8.72
8.73
8.77
8.77
8.56
8.56
8.53
8.53
8.53
8.47
8.56
8.56
8.62
8.71
8.71
8.73
8.81
8.81
8.79
8.78
3
OBS
.04
.02
.11
MOD
.0361
.0361
.0305
.0305
.0303
.0294
.0294
.0467
.0465
.0446
.0446
.0446
.0475
.0470
.0470
.0504
.0480
.0480
.0969
.0975
.0992
.0976
.0986
NO-N
2
OBS
.001
.001
.016
MOD
.0022
.0022
.0034
.0034
.0034
.0037
.0037
.0067
.0071
.0079
.0079
.0079
.0088
.0089
.0089
.0096
.0099
.0099
.0114
.0134
.0151
.0165
.0182
NO-N
3
OBS
.05
.04
.13
MOD
.0496
.0496
.0494
.0494
.0494
.0493
.0493
.0736
.0751
.0780
.0780
.0780
.0843
.0844
.0844
.0873
.0878
.0878
.1002
.1062
.1104
.1134
.1180
PO -P
4
OBS
.04
.04
.13
MOD
.0406
.0406
.0415
.0415
.0417
.0421
.0421
.0680
.0691
.0731
.0731
.0731
.0797
.0801
.0801
.0836
.0847
.0847
.1047
.1154
.1206
.1244
.1297
ZINC
OBS
.190
.190
.140
MOD
.180
.180
.166
.166
.166
.162
.162
.149
.146
.139
.139
.139
.134
.133
.133
.131
.126
.126
.096
.095
.100
.103
.104
N
OBS
.4
.4
.9
MOD
.40
.40
.40
.40
.40
.40
.40
.58
.59
.61
.61
.61
.65
.65
.65
.67
.67
.67
.80
.83
.85
.84
.84
TEMP
OBS
17.7
17.7
15.6
-------
TABLE 17. RIVSCI VERIFICATION FOR RIVER REGION 4 (LITTLE SPOKANE) JUL. 11 - AUG. 10, 1968
>
a
V
0}
•g
(X
in
01
u
_4
RM
37.6
34.6
32.9
31.0
21.3
13.5
13.1
11.4
10.8
7.9
3.9
.1
DO
OBS
9.7
10.4
9.9
9.4
8.8
8.6
8.7
9.8
MOD
9.64
9.42
9.42
9.19
9.31
9.58
9.58
9.34
9.34
8.85
9.34
9.61
DOD
OBS
0.6
0.7
0.9
0.6
0.6
0.6
0.7
0.4
MOD
.59
.58
.58
.57
.54
.86
.86
.61
.61
.60
.59
.59
N1I3-N
OBS
0
0
0
0
0
0
0
0
MOD
.0002
.0005
.0005
.0009
.0016
.0008
.0008
.0004
.0004
.0004
.0006
.0007
H03-N
OBS
0
.52
.70
1.06
.66
1.40
1.20
0
MOD
.5992
.5975
.5975
.5957
.5916
.7421
.7421
1.269
1.209
1.184
1.182
1.1809
POA-P
OBS
.01
.01
.01
.01
.07
.003
.01
.02
HOD
.0105
.0117
.0117
.0132
.0187
.0138
.0138
.0115
.0115
.0145
.0151
.0157
COL I
OBS
13000
11000
2700
5400
5300
2200
3600
6200
MOD
12936
12810
12810
12678
12358
3328
3328
3783
3783
4145
4127
4109
N
OBS MOD
.3
.2
.1
.1
.2
.1
.1
.2
.30
.30
.30
.30
.30
.15
.15
.12
.12
.14
.14
.14
CL
OBS
1.2
1.2
1.2
3.5
2.5
2.5
2.8
2.5
XOD
1.20
1.20
1.20
1.20
1.20
1.20
1.20
2.80
2.80
2.86
2.86
2.86
TE>0>
OBS
15.2
16.0
14.9
14.9
18.0
12.9
12.5
12.3
TABLE 18. RIVSCI VERIFICATION FOR RIVER REGION 4 (LITTLE SPOKANE) AUG. 11 - SEP. 10, 1968
>
52
a
c
o
a.
ts>
v
•-»
-H
RM
37.6
34.6
32.9
31.0
21.3
13.5
13.1
11.4
10.8
7.9
3.9
.1
DO
OBS
9.8
10.6
9.4
9.6
9.8
8.2
8.6
8.6
MOD
9.65
9.43
9.43
9.16
9.29
9.17
9.17
9.71
9.71
9.11
9.53
9.75
NK3-N
OBS
0
0
0
0
0
0
0
0
MOD
0
0
0
0
0
0
0
0
0
0
0
0
N03-N
OBS
0
.18
0
1.11
.20
.11
.23
.05
MOD
.1798
.1793
.1793
.1788
.1776
.1934
.1934
.1974
.1974
.1980
.1978
.1976
PO -P
4
OBS
.01
.01
.01
.01
.02
.01
.01
.01
MOD
.0104
.0113
.0113
.0125
.0176
.0131
.0131
.0114
.0114
.0113
.0118
.0124
COLI
OBS
450
630
3100
7000
5400
5000
1300
2100
MOD
448
444
444
440
429
3693
3693
7712
7712
6897
6868
6839
N
OBS
.28
.31
.36
.50
.45
.25
.25
.34
MOD
.28
.28
.28
.28
.28
.44
.44
.80
.80
.70
.70
.70
CL
OBS
2.0
0.5
0.5
1.0
1.5
1.0
1.0
1.5
MOD
2.0
2.0
2.0
2.0
2.0
.56
.56
1.48
1.48
1.55
1.55
1.55
TEMP
OBS
15.5
16.5
14.5
15.0
15.0
12.2
12.0
12.0
-------
NH--N and PO.-P releases were modeled, as was benthal DO demand.
Convergence times for the quantity and quality portions of RIVSCI were
2 and 3 days respectively.
The results are shown in Table 19.
Because of the similarity (and scarcity) of the August 1971 data,
RIVSCI was run on this region using only the September data.
114
-------
TABLE 19. RIVSCI VERIFICATION FOR RIVER REGION 5 (LOWER SPOKANE) SEPTEMBER, 1971
RM
33.9
32.5
31.8
29.0
DO
DBS
4.8
HOD
A. 86
5.07
5.07
5.36
KH.-N
DBS
.11
MOD
.1086
.1059
.1059
.1033
NO.-N
OBS
.025
MOD
.0251
.0252
.0252
.0254
NO.-N
3
OBS
.75
MOD
.7493
.7480
.7480
.7454
PO.-P
OBS
.085
MOD
.0850
.0851
.0851
.0851
COLI
OBS
4350
MOD
4329
4276
4276
4204
ZINC
OBS
.040
MOD
.040
.039
.039
.038
N
OBS
.19
MOD
.19
.19
.19
.19
CL
OBS
2.4
MOD
2.40
:.40
2.40
2.40
TLMT
OSS
17.1
-------
SECTION X
APPLICATION AND VERIFICATION OF
STRATIFIED RESERVOIR MODEL
This section presents discussions, with tables and figures where
appropriate, of the simulation results obtained from the verification
of the Stratified Reservoir Model (LAKSCI) on Long Lake and Coeur
d'Alene Lake. In the tables the concentration of each constituent
is given in mg/L except for coliform concentration, which is MPN/100 ml,
Temperature is in degrees Centigrade. The Wasteload Table referred to
is Table 3 of Volume II.
117
-------
LONG LAKE
Extensive observed lake water quality data for DO, NH -N, NO -N,
NO.-N, PO.-P, coliform, and temperature were available for Long Lake
for the simulation period of June 1 to December 1, 1971. These data
were the result of the study described in Reference [29] of Volume II.
The majority of the quality data were for the surface, but a considerable
number of measurements of DO, NO -N, PO.-P, and temperatures were
available at depths of up to 100 ft. Unfortunately, no observed BOD
data were available. Quality data for the Spokane River inflow to Long
Lake were available twice a month (USGS gage 4260) for DO, coliforms,
zinc, and temperature. Some readings for total nitrogen, NH»-N, NO~-N,
NO.,-N, and PO.-P were available for the Little 'Spokane River inflow
to Long Lake (USGS gage 4319). Outflow measurements of DO, NH--N, NO -N,
NO -N, PO.-P, coliforms, temperature, zinc, and total nitrogen were
available twice a month (USGS gage 4330).
For the LAKSCI verification run the inflow into Long Lake was estimated
using measurements from USGS gaging stations 4225, 4260 and 4310.
A groundwater flow of 620 CFS into the lake was estimated (see Table 5
of Volume II). The outflow was obtained from USGS gaging station
4330. Lake parameters were chosen such that, with the given inflow
and outflow rates, the lake surface elevation time history matched
the observed surface elevation history. Based on all available data,
the lake was modeled as an inverted trapezoid 22 miles long, 32 meters
deep, with the bottom width equal to .01 times the top width. This
resulted in a full volume of 3.19 x 10° cubic meters and a maximum
surface area of 1.98 x 10 square meters. Meteorologic data from the
City of Spokane were used. The lake inflow concentrations were
estimated from the available data described above. BOD was modeled
and the benthal BOD release rate was set at its nominal value. The
benthal oxygen demand was set at five times its nominal value to
represent the effects of extensive sludge deposits which the observed
data indicated. In order to start the model, the lake was assumed
to be completely mixed at a temperature of 12 degrees (the surface
temperature) on June 1. This procedure had been used successfully
by developers of the original DRM model.
Partial results of the run are shown in Tables 20 and 21 and Figs.
29 through 34. An examination of these tables and figures and the
complete computer output reveals the following:
(a) The thermal simulation portion of DRM remains intact in LAKSCI
and consequently the simulated LAKSCI temperatures were identical
to the temperatures simulated by DRM in Phase II of this project.
As stated in Volume III, there was generally very good agreement
between the modeled and observed temperature values at all depths.
These results are presented in Figures 13 through 20 of Volume III
of this report.
118
-------
TABLE 20. LAKSCI VERIFICATION FOR LONG LAKE JUN. 1 - NOV. 30, 1971
DEPTH
u
a
:=>
CO
20'
DATE
Jun 1
Jun 13
Jun 22
Jul 8
Jul 11
Jul 25
Aug 1
Aug 15
Aug 24
Sep 6
Sep 19
Oct 5
Oct 19
Oct 27
Nov 3
Nov 9
Nov 16
Nov 22
Nov 29
Jul 21
Aug 10
Aug 18
Aug 23
Sep 1
Sep 15
Sep 22
DO
OBS
11.7
11.5
10.2
13.6
9.3
7.4
7.7
7.4
7.8
8.8
10.0
10.0
9.8
10.8
11.4
10.5
11.0
11.7
11.3
5.0
6.0
6.1
4.8
7.7
7.9
MOD
9.1
10.4
9.2
9.3
9.1
8.1
8.1
7.7
8.1
5.5
5.5
9.0
7.6
8.0
8.5
9.6
9.3
9.0
9.3
7.9
5.8
6.8
6.4
5.8
3.4
4.1
NH.J-N
OBS
.010
.005
.009
.300
.008
.013
.020
.060
.080
.050
MOD
.008
.007
.006
.015
.018
.008
.005
.011
.017
.059
.065
.035
.039
.040
.041
.041
.043
.044
.045
.02
.03
.02
.02
.03
.08
.06
»o2-N
OBS
.000
.001
.032
.315
.006
.020
.008
.008
.000
MOD
.000
.001
.003
.006
.007
.004
.003
.004
.006
.013
.020
.017
.010
.010
.009
.009
.009
.009
.009
.008
.009
.005
.007
.008
.021
.018
No3-»
OBS
.26
.08
.31
.61
.26
.97
.29
.36
.81
.25
.47
.60
.72
.44
MOD
.24
.40
.23
.45
.54
.006
.001
.006
.240
.646
.706
.450
.87
.93
1.00
.98
1.07
1.16
1.23
.74
.77
.25
.47
.50
.78
.84
PO^-P
OBS
.006
.028
.045
.140
.015
.000
.035
.013
.010
.04
.02
.10
.07
MOD
.007
.014
.015
.024
.026
.035
.038
.041
.040
.047
.054
.051
.048
.047
.045
.044
.043
.042
.040
.03
.04
.04
.04
.04
.05
.05
COLIFORMS
OBS
1100
4000
165
3000
2500
800
5500
100
3000
2000
653
2283
710
2282
9500
620
2771
• 1252
MOD
753
2287
2526
1584
1462
1105
5S9
326
879
653
568
530
556
598
646
691
734
775
831
1312
912
662
899
715
607
546
TEMP
OBS
12.0
13.7
17.1
14.8
15.8
20.2
21.0
19.5
20.6
16.8
14.4
14.1
10.0
8.6
7.5
20.9
21.0
20.4
18.8
17.3
14.5
MOD
12.2
14.1
18.9
16.3
16.1
21.2
22.6
21.0
19.3
17.9
16.2
14.1
11.3
9.2
7.4
6.0
5.7
5.4
4.8
19.0
21.6
20.0
19.2
18.9
16. S
15.8
-------
TABLE 20. (Continued)
NO
O
DEPTH
40'
50'
70'
80'
100"
DATE
Jul 21
Jul 27
Aug 10
Aug 18
Aug 23
Sep 1
Sep 15
Sep 21
Jul 21
Jul 27
Aug 23
Sep 1
Sep 15
Sep 21
Jul 27
Aug 23
Sep 1
Sep 15
Jul 21
Aug 10
Aug 18
Aug 23
Sep 1
Sep 15
DO
OBS
4.6
4.8
3.4
1.6
2.8
5.6
8.0
5.5
2.8
5.8
6.8
2.6
3.6
2.0
0.0
1.8
1.7
0.0
0.0
HOD
7.6
6.9
5.5
4.5
6.1
5.8
3.4
4.1
6.0
5.0
.8
.6
3.4
4.0
1.3
0.0
0.0
3.4
0.0
0.0
0.0
0.0
0.0
2.31
NH.-N
3
OBS
MOD
.02
.02
.03
.04
.03
.03
.08
.07
.04
.04
.05
.09
.08
.06
.07
.10
.12
.08
.12
.12
.12
.12
.23
.08
NO.-N
2
OBS
MOD .
.007
.007
.009
.010
.007
.008
.02]
.019
.010
.010
.010
.012
.021
.019
.015
.015
.016
.021
.021
.021
.02L
.020
.010
.021
NO.-N
3
OBS
.29
.56
.48
.49
.25
.44
.48
.47
.28
.02
.06
MOD
.93
.93
1.06
1.15
.54
.54
.78
.83
1.08
1.09
1.14
1.28
.78
.83
1.08
1.08
1.17
.78
1.03
1.03
1.03
1.03
.96
.78
PO ,-p
4
OBS
.04
.04
.07
.05
.03
.04
.06
.05
.04
.00
.10
MOD
.03
.04
.04
.04
.04
.04
.05
.05
.03
.04
.05
.05
.05
.05
.05
.06
.06
.05
.06
.06
.06
.06
.06
.06
COLIFORMS
OBS
MOD
947
652
906
1488
910
788
607
552
749
478
53
635
607
552
438
54
373
607
616
138
74
49
41
607
TEMP
OBS
17.0
19.8
19.5
19.0
19.3
16.8
13.5
16.7
19.5
17.0
15.4
15.5
15.5
17.2
16.5
16.0
16.0
16.5
16.0
MOD
16.7
17.2
19.1
19.3
19.2
18.9
16.8
15. S
16.5
18.7
16.8
15. S
16.1
17.6
18.1
16.8
15.9
16.7
17.1
17.4
17.9
16.8
-------
TABLE 21. LAKSCI VERIFICATION FOR LONG LAKE OUTFLOW JUNE 1 - NOVEMBER 30, 1971
3
o
lu
u
3
O
DATE
Jun 1
Jim 13
Jul 11
Jul 25
Aug 1
Aug 15
Sep 6
Sep 19
DO
OBS
13.3
12.6
7.9
8.2
6.1
3.1
3.7
5.9
MOD
8.4
10.7
8.6
7:3
6.5
5.4
4.2
4.1
NH3-N
OBS
.020
.020
.160
.010
.060
.050
.210
.010
MOD
.010
.010
.020
.020
.030
.030
.070
.080
NH2-N
OBS
.000
.000
.000
.010
.190
.020
.040
.010
MOD
.000
.000
.010
.010
.010
.010
.010
.020
N03-N
OBS
.05
.16
.16
.26
.49
.77
1.10
.39
MOD
.27
.67
.75
.82
.86
.95
.73
.79
PVP
OBS
.03
.04
.03
.04
.04
.07
.10
.07
MOD
.01
.01
.03
.03
.04
.04
.05
.06
COLIFORMS
OBS
500
250
600
100
800
'500
1200
7500
MOD
754
2300
1500
1000
700
1300
650
560
TEMP
OBS
12.9
14.1
16.4
19.4
20.2
20.0
17.5
16.7
MOD
12.0
13.5
16.0
18.8
19.9
20.3
18.0
16.2
ZINC
OBS
.19
.14
.13
.07
.10
.08
.04
MOD
.05
.13
.07
.06
.05
.04
.02
.02
TOT N
OBS
.02
.04
.18
.06
.07
.07
.25
.13
MOD
.01
.02
.04
.05
.06
.07
.07
.09
-------
H
z
o
14
13
12
11
10
9 6-
8
7
6
5
4
3
2
V
O
O Modeled
V Observed
V
O
V
v
V
v
0
FIGURE 29. LAXSCI VERIFICATION FOR DO ON LONG LAKE (SURFACE) - JUNE - NOVEMBER 1971
-------
1.3
1.2
1.1
1.0
. d -9
i
S-" '8
0
H
H
| — * W
to " .6
CO §
^ .5
§" -A
.3
,;
.1
i i i i i
"" O Modeled C
y Observed
v oo
O
O
V
V
_
0 0
V
- V
> 0 ° X
V
V
1 1 1 1 1
_ c_, > w O Z C
- c. c ro o o rt>
3 f— * OT T3 rf < o
FIGURE 30. LAKSCI VERIFICATION FOR NO^N ON LONG LAKE (SURFACE) - JUNE - NOVEMBER 1971
-------
to
-p-
c.
u
§
0
6000
5500
5QOO
4500
4000
3500
3000
2500
2000
1500
1000
- O Modeled
rr Observed
I
500
9000
V
>
c
OQ
FIGURE 31. LAKSCI VERIFICATION FOR COLIFORMS ON LONG LAKE (SURFACE) - JUNE - NOVEMBER 1971.
-------
2
O
U
CJ
IS
o
u
o
o
14
13
12
11
10
9
8
7
6
O Modeled
— V Observed'
V
_2_
S
l
f
FIGURE 32. LAKSCI VERIFICATION FOR DO ON LONG LAKE (50' DEPTH) - JUNE - NOVEMBER 1971
-------
o
t-t
H
O
O
1.3
1.2
1.1
1.0
.9
.6
.7
.6
.5
.4
.3
.2
.1
O Modeled
— V Observed
O
I
O
2
FIGURE 33. LAKSCI VERIFICATION FOR NO^N ON LONG LAKE (50' DEPTH) - JUNE - NOVEMBER 1971
-------
14
13 V
12
11
10
g
2
H 7
o
o
o
5
4
3
2
V
Modeled
Observed
V
o
0
V
o
0
c
o
n
a
o
<
FIGURE 34. LAKSCI VERIFICATION FOR DO ON LONG LAKE (OUTFLOW) - JUNE - NOVEMBER 1971
-------
(b) The simulated DO profiles matched the observed DO profiles fairly
well, although there appeared to be an inconsistency in the total
amount of DO removed from the lake by the simulation. This was
indicated by the fact that the modeled surface DO level was
approximately 3 mg/L lower than the observed level after the
lake "turned over". (Just prior to turnover, the bottom 43 ft.
representing approximately 15% of the lake volume was devoid of
oxygen.) The measured DO level in the lake outflow, however, was
lower than the simulated value after turnover, which indicated
that not enough oxygen was removed.
(c) The simulated turnover occurred on September 5. The behavior
of observed outflow concentrations indicated that the process
was probably occurring during the two week period prior to this,
i.e., the turnover was apparently modeled successfully-
(d) The modeled surface values for NH--N, N02-N, NO -N, and PO.-P
matched the observed values fairly well with the exception of
observed values taken on August 24. The lake inflow during the
period around August 24 was distributed by LAKSCI into the top
layers of the lake and it is possible that there was an unknown
influx of these pollutants during the time period in question.
No quality inflow data was available for this period. The
August 24 measurements might also have been erroneous.
(e) The modeled NO -N concentration level was generally higher than
the observed value. The relatively high (1.0-2.0 mg/L) inflow
NO -N concentration was based on data from the Little Spokane
River. No NO -N data were available for the Spokane River and
the simulation results indicated that a better overall match
to the observed NO^-N data could have been obtained if the
Spokane River were assumed to be relatively free of NO -N. An
examination of NO -N data for other years for both the Little
Spokane and the Spokane revealed no pattern. A decrease in the
lake NO -N level could also have been accomplished by
increasing the NO--N decay coefficient (to represent more
consumption of NO»-N by algae). Due to the lack of data
neither course was pursued.
(f) The wide fluctuations in the observed surface coliform concentra-
tions were not matched by the simulated values since there were
no data to support wide fluctuations in the inflow coliform
concentrations.
128
-------
COEUR D'ALENE LAKE
Observed surface data Were available from the study described in
Reference [41] of Volume II for DO, NH—N, NO -N, H),-P, chlorides,
and temperature on four days (6/16, 7/14, 8/20, 8/27J for the June 1 -
November 30, 1971 simulation period. No quality data for either lake
inflow or lake outflow was available. No depth profiles were available
for any-constituents. Several industries used Coeur d'Alene Lake as a
receiving water for their effluent but no measured flow or concentration
data were available for the simulation period. The Wasteload Table
indicated that the result would be insignificant because of the large
lake volume even if data were available.
For the LAKSCI verification run the inflow into Coeur d'Alene Lake
was estimated using measurements from USGS gaging stations 4135,
4145, and 4149. Outflow was determined from USGS gaging station 4190.
A groundwater flow from the lake of 500 CFS was estimated (see Table 5
of Volume II). Lake parameters were chosen such that, with the given
inflow and outflow data, the simulated lake surface elevation history
closely matched the observed surface elevation history. The lake
was modeled as being 22 miles long and 62 meters deep with the volume
given by V = ad + bd^, where V is volume and d is depth.
Maximum volume was 3.19 x 10° cubic meters and maximum surface area was
1.18 x 10^ square meters. These values were based on available data,
including EPA depth soundings. Meteorological data from the city of
Spokane was used, both because of its availability from the Long Lake
run and because of its similarity to the meteorological data from the
City of Coeur d'Alene. In the absence of inflow quality data, lake
inflow concentrations were assumed equal to the observed lake surface
concentrations on the four days when observed data were available. Inflow
concentrations for the remainder of the period were interpolated from
the observed values. BOD was modeled and the benthal BOD release
rate was set at its nominal value. The benthal oxygen demand was
also set at its nominal value. Following the procedure used for
Long Lake, the lake was assumed to be completely mixed at its surface
temperature of 14 degrees on June 1.
Partial results of the run are shown in Table 22. From an examination
of the table and the complete computer output it can be seen that:
(a) The lake turned over on September 23.
(b) Just prior to turnover the bottom 26 meters of the lake, represen-
ting approximately 12% of the lake volume, was devoid of DO.
(c) Many of the simulated surface concentrations were lower than the
observed values. This has little significance, however, due to
the shortage of observed data on concentrations in both the lake
and the inflows. For example, on August 27, the simulated NfLj-N
concentrations ranged from 0.0038 mg/L at the surface to 0.2 mg/L
129
-------
TABLE 22. LAKSCI VERIFICATION FOR COEUR D'ALENE LAKE JUN. 1 - NOV. 30, 1971
DEPTH
u
tu
Oi
DATE
Jun 16
Jul 14
Aug 20
Aug 27
DO
OBS
9.7
10.0
9.0
9.0
MOD
9.2
8.8
8.3
8.3
NH3-N
OBS
.10
.10
.10
.10
MOD
.03
.01
.00
.00
NO--N
OBS
.30
.10
.20
.15
MOD
.13
.08
.05
.05
POA-P
OBS
.50
.07
.07
.03
MOD
.36
.25
.20
.21
CHLORIDES
OBS
3.0
8.0
8.0
5.0
MOD
2.9
5.0
5.7
5.4
TEMP
OBS
16.0
19.0
24.0
21.8
MOD
15.7
19.6
20.0
20.6
-------
at the bottom. On the same date the simulated NO -N concentration
ranged from 0.05 mg/L at the surface to 0.37 mg/L in the middle
layers to 0.25 mg/L at the bottom. The observed surface NH--N
and NO -N concentrations on August 27 were 0.1 mg/L and 0.15 mg/L
respectively. Until more observed data are available, little is
to be gained by adjusting parameters in an attempt to match the
available data.
131
-------
PART 5
SENSITIVITY ANALYSIS
XI. General
XII. Steady-state Stream Model
XIII. Dynamic Stream Model
XIV. Stratified reservoir model
133
-------
SECTION XI
GENERAL
The purpose of Part 5 is to summarize the findings of the sensitivity
analysis performed on each of the three modified models applied in this
project. These findings are reported separately for each model in the
following three sections.
The objective of the sensitivity analysis was to determine the relative
importance of the individual model parameters to the accuracy of predic-
tions made with the revised models. The parameters summarized in Table
23 were selected for analysis in cooperation with the Project Officer.
The base values, if appropriate, for the parameters are also presented
in Table 23.
Specifically, the changes in the various constituent concentrations
which result from a given change in one of the model parameters (see
Table 23) were studied. Values of parameters and constituent concen-
trations resulting from previous verification runs with the modified
models were selected as base values for comparison purposes. These base
concentration values should be considered carefully when studying the
analysis results, since percentage changes in trace concentrations may
be very high. Also, since results were printed out to a maximum of four
decimal places, large percentage changes in some trace concentrations
might not appear at all.
It should also be noted that the base value of a given constituent at
a given river mile differs between DOSCI and RIVSCI. This is due to
the fact that the two models are vastly different and also to the fact
that the value in the DOSCI table represents the concentration at that
exact point, while the value in the RIVSCI table is an average value
for a stretch of river (junction) which may be several miles long.
Both river mile 167.8 and river mile 0 occur in the same junction (22)
in RIVSCI.
Generalized results are summarized at the end of each model section.
135
-------
TABLE 23.
PARAMETERS ANALYZED FOR SENSITIVITY
IN EACH REVISED MODEL, AND THEIR BASE VALUES
PARAMETER %
BOD decay coefficient,
Kl
Reaeration coefficient,
K2
NH decay coefficient
NH3 volitization
coefficient
Zn settling coefficient
CHANGE
+15
+15
+15
+15
+15
DOSCI
.008 hr"1
*
.004 hr"1
.01 hr"1
.004 hr"1
RIVSCI
.008 hr"1
*
.004 hr"1
.01 hr"1
.004 hr"1
LAKSCI
.008 hr"1
*
.004 hr"1
.01 hr"1
.004 hr"1
Streamflow, Q +15 YES
Time step, At -50 1 hr
Time step, At +100 1 hr 12 hr
As computed from flow depth and velocity, etc.
136
-------
SECTION XII
STEADY-STATE STREAM MODEL
The sensitivity runs for DOSCI listed in Table 23 were performed
on River Region 2. The locations (river miles) at which sensitivity
results were tabulated are shown in Figure 35. Base concentration
values for the DOSCI sensitivity study are presented in Table 24,
which corresponds to the verification results for August 1969.
Tables 25-30 present the results of varying the specified input
parameters to the Steady-state Stream Model. The results of the six
individual test runs are discussed separately below.
1. BOD decay coefficient (K ) increased by 15% (Table 25, DOSCI).
BOD decayed into NH- and PO,, resulting in the observed in-
creases of these constituents and a decrease in DO. The effect
was cumulative, with higher percentage changes in the downstream
reaches of the system. Concentration changes in an individual
reach were dependent to a large extent on the relative magnitudes
of the concentrations of the different constituents in the reach.
2. DO reaeration coefficient (K ) increased by 15% (Table 26, DOSCI).
K- drove the DO level towards saturation, which was strongly
dependent on temperature. Hence, in a given reach, increasing K
either increased or decreased the DO concentration, depending on
whether the reach was supersaturated or not. Other constituents
were not noticeably affected.
3. NH decay coefficient increased by 15% (Table 27, DOSCI).
NH decayed into NO (and hence into NO ) with a resultant
decrease in DO. The small concentrations or NH_, N02» and N°3
prevalent throughout the system (see Table 24) showed no changes
in the first three decimal places when the NH decay coefficient
was increased by 15% in DOSCI.
4. NH volitization rate increased by 15% (Table 28, DOSCI).
Increasing the volitization rate resulted in the observed direct
loss of NH . An accompanying loss of NO and NO and a gain
in DO should also have occurred, as in RIVSCI. Because of the small
base NH concentration involved, only the major change, i.e., the
NH change, was visible in DOSCI.
137
-------
193.3 -
167.8
164.2 -f
131.A
0.0
Coeur d'Alene Lake
u
o
cd
-• 4.0
S. F. Coeur d'Alene Riv.
il.B
30'. 1
Scale
10
20
FIGURE 35. SCHEMATIC DIAGRAM OF RIVER REGION 2
(COEUR D'ALENE RIVER, MAIN STEM AND SOUTH FORK)
138
-------
TABLE 24.
DOSCI BASE CONCENTRATION VALUES
(River Region 2, August 1969)
00
>£>
Location
End of
Each
Number R.M.
1 193.3
15 167.8
16 30.1
23 4.0
26 17.8
42 0.0
43 164.2
DO
mg/L
8.44
8.56
9.00
8.77
8.89
8.54
8.68
BOD
mg/L
.74
.79
.95
.84
.92
2.3
1.20
NH -N
mg/L
.012
.004
.026
.027
.022
.011
.005
mg/L
.006
.002
.006
.006
.006
.004
.003
mg/L
.021
.021
.020
.020
.020
.021
.021
mg/L
.054
.045
.038
.047
.039
.039
.044
Zn
mg/L
0.0
0.0
0.0
3.74
1.15
6.36
1.85
Cl
mg/L
0.0
0.0
0.0
0.0
0.0
1.35
.40
COLI
MPN
200
297
200
200
196
300
296
52
131.4 8.31 1.31 .003
.002
.021 .055 1.53
.39 251
-------
TABLE 25 .
DOSCI SENSITIVITY RUN 1: 15% INCREASE IN BOD DECAY COEFFICIENT,
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 -.1
30.1 0
4.0 0
17.8 0
0.0 -.1
164.2 -.1
131.4 -.2
BOD NH -N NO -N NO -N PO.-P Zn
3234
-1.4 8.3 0 0 00
-2.5 00 0 2.2 0
0000 00
-1.2 000 00
-1.1 0 0 0 0 0
-1.3 000 00
-2.5 20.0 0 0 2.2 0
-6.1 33.3 00 00
Cl
0
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
0
-------
TABLE 26.
DOSCI SENSITIVITY RUN 2: 15% INCREASE IN REAERATION COEFFICIENT,
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 .1
167.8 0
30.0 .1
4.0 .3
17.8 -.1
0.0 -.1
164.2 .1
131.4 0
BOD NH -N
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
NO -N
0
0
0
0
0
0
0
0
NO -N
0
0
0
0
0
0
0
0
PO.-P
4
0
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
0
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 27.
DOSCI SENSITIVITY RUN 3: 15% INCREASE IN NH DECAY COEFFICIENT
-p-
t-o
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 0
30.1 0
4.0 0
17.8 0
0.0 0
164.2 0
131.4 0
BOD NH -N NO--N NO -N PO.-P Zn
3234
000000
000000
000000
000000
000000
000000
000000
000000
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 28.
DOSCI SENSITIVITY RUN 4: 15% INCREASE IN NH VOLITIZATION COEFFICIENT
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 0
30.1 0
4.0 0
17.8 0
0.0 0
164.2 0
131.4 0
BOD NH -N NO -N
0 -8.3 0
0 -25.0 0
000
0 -3.7 0
0 -4.5 0
0 -9.1 0
000
000
NO -N
0
0
0
0
0
0
0
0
PO.-P
4
0
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
0
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 29.
DOSCI SENSITIVITY RUN 5: 15% INCREASE IN ZINC SETTLING COEFFICIENT
Resulting %
R.M.
193.3
167.8
30.1
4.0
17.8
0.0
164.2
131.4
DO
0
0
0
0
0
0
0
0
BOD
0
0
0
0
0
0
0
0
changes in
NH -N
0
0
.0
0
0
0
0
0
the following constituent concentrations
NO -N NO -N
^ J
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
PO.-P
4
0
0
0
0
0
0
0
0
Zn
0
0
0
-.3
0
-.5
-1.1
-3.9
Cl
0
0
0
0
0
0
• o
0
COLI
0
0
0
0
0
0
0
0
-------
TABLE 30.
DOSCI SENSITIVITY RUN 6: 15% INCREASE IN STREAMFLOW
-p-
Ul
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 -.1
30.1 -.1
4.0 -.2
17.8 0
0.0 .1
164.2 -.1
131.4 0
BOD NH.-N N00-N NO.-N PO.-P Zn
3234
0 8.3 0 0 00
1.3 0 0 0 00
00 0 0 2.6 0
00 0 0 2.1 0
00 0 0 2.6 0
.4000 2.6 .2
.8 20.0 0000
2.3 33.0 0 0 3.6 1.3
Cl COLI
0 0
0 .1
0 0
0 0
0 .5
0 .3
0 .3
0 1.2
-------
5. Zinc settling coefficient increased by 15% (Table 29, DOSCI).
This change increased the rate at which zinc settled to the river
bottom, and hence decreased zinc concentrations in the water. No
other constituents were affected.
6. Streamflow increased by 15% (Table 30, DOSCI).
The velocity and depth, and hence K~ , are all functions of flow
in DOSCI. As explained in Run 2, changing K can cause either
an increase or decrease in DO. That same result was observed here.
The travel time through a given reach is dependent upon the velocity
in the reach. In general, increasing the flow increases the velo-
city and decreases the travel time t. The constituents (with the
exception of PO^ decay according to a first order equation of the
form AC = C (e -1), where C is concentration, K is the
appropriate decay coefficient, and t is the travel time in the reach.
AC is less than or equal to zero. Decreasing t results in a
decrease in the magnitude of AC, i.e., an increase in concentration,
which was observed for most constituents on this run. The second
order decay process for phosphorus led to a similar but more exag-
gerated result, as would be expected.
Based on both the number of constituents affected, and the magnitudes
of the resulting concentration changes, the DOSCI parameters tested
on the base case of Table 24 may be broadly categorized for sensitivity
as follows:
High Sensitivity
Streamflow
BOD decay coefficient, K
Medium Sensitivity
NH. volitization coefficient
Low Sensitivity
Zinc settling coefficient
Reaeration coefficient, K~
NFL decay coefficient.
The low sensitivity to K- was probably due to the fact that DO levels
were near saturation throughout the region.
146
-------
SECTION XIII
DYNAMIC STREAM MODEL
The sensitivity runs for RIVSCI listed in Table 23 were again performed
on River Region 2, using the same simulation period (August 1969) and
the same river mile locations (see Figure 35) as were used for DOSCI
sensitivity study. Table 31 contains the base concentration values
used for the RIVSCI sensitivity study; as previously mentioned these
base values do differ somewhat from those for DOSCI.
Tables 32-38 present the results of varying the specified input para-
meters to the Dynamic Stream Model. The results of the. seven individual
test runs are discussed separately below.
1. BOD decay coefficient (K ) increased by 15% (Table 32, RIVSCI).
As in DOSCI, increasing K resulted in an expected increase in
NH0 and PO. and decrease in DO and BOD.
J 4
2. DO reaeration coefficient (K ) increased by 15% (Table 33, RIVSCI).
An increase in K_ was found to result in both increases and
decreases in DO, depending on water temperature and oxygen satura-
tion levels, as was also observed with DOSCI. Other constituents
were not noticably affected.
3. NH decay coefficient increased by 15%. (Table 34, RIVSCI).
The increased decay of NH into N0~ (and hence into NO-) is
apparent in the results of this test. These increases grow with
distance downstream. Increased consumption of DO is not noticeable.
4. NH volitization coefficient increased by 15% (Table 35, RIVSCI).
As was to be expected, and as was found with DOSCI, this resulted in
a loss of NH , NO , and NO and a slight gain in DO. Since the
NH concentration was small compared to the NO concentration, the
NO gain was not visible. Examples of the other changes were visible
in the RIVSCI results.
5. Settling coefficient increased by 15% (Table 36, RIVSCI).
As for DOSCI, only zinc concentrations were reduced.
6. Quality time step reduced by 50% (Table 37, RIVSCI).
The changes which occur when the quality time step is changed are
147
-------
TABLE 31.
RIVSCI BASE CONCENTRATION VALUES
(River Region 2, August, 1969)
Location:
Junction
Number
15
22
2
6
5
23
28
R.M.
193.3
167.8
'30.1
17.8
4.0
164.2
131.4
DO
mg/L
8.55
8.67
9.31
8.84
9.04
8.68
8.18
BOD
mg/L
.93
1.14
1.28
1.27
1.34
1.10
1.44
NH3N
mg/L
.0332
.0578
.0613
.0469
.0623
.0410
.0044
N02-N
mg/L
.0040
.0061
.0034
.0039
.0033
.0065
.0039
NO -N
mg/L
.119
.146
.240
.523
.799
.146
.134
P04-P
mg/L
.0339
.0984
.122
.0669
.0144
.0999
.117
Zn
mg/L
0
1.48
0
.56
1.13
1.51
1.14
Cl
mg/L
0
.41
0
2.93
0
.41
.37
COLI
MPN
220
232
141
51
0
231
207
-------
TABLE 32.
RIVSCI SENSITIVITY RUN 1: 15% INCREASE IN BOD DECAY COEFFICIENT, K
Resulting % changes in the following constituent concentrations
R.M.
193.3
167.8
30.1
17.8
4.0
164.2
131.4
DO
-.1
-.1
0
0
-.1
-.1
-.4
BOD NH -N NO -N NO -N PO.-P Zn
3234
-1.1 6.0 0 0 0 0
-1.8 .5 0 0 .2 0
-.8 .2 0 0 0 0
0 .40 0 .10
-.800000
-.8 .50 0 .10
-.7 4.5 2.6 0 0 0
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 33.
RIVSCI SENSITIVITY RUN 2: 15% INCREASE IN REAERATION COEFFICIENT ,1
Ul
o
R.M. DO
193.3 -.2
167.8 -.1
30.1 -.1
17.8 -.2
4.0 -.3
164.2 0
131.4 .4
Resulting
BOD
0
0
0
0
0
0
0
% changes in the following constituent concentrations
NH3-N N02~N NO -N
000
000
000
000
000
000
000
PO.-P
4
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
Cl
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
-------
TABLE 34.
RIVSCI SENSITIVITY RUN 3: 15% INCREASE IN NH DECAY COEFFICIENT
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 0
30.1 " 0
17.8 0
4.0 0
164.2 0
131.4 0
BOD NH -N NO -N NO -N POA-p Zn
0 -.3 5.0 000
0 -.5 9.8 0 0 0
0 0 2.9 0 0 0
0 -.2 5.1 0 0 0
0 -.2 3.0 000
0 -1.0 9.2 .700
0 -2.3 12.8 .700
Cl
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
-------
to
TABLE 35.
RIVSCI SENSITIVITY RUN 4: 15% INCREASE IN NH VOLITIZATION COEFFICIENT
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 0
167.8 0
30.1 0
17.8 0
4.0 0
164.2 0
131.4 +.1
BOD NH -N N00-N NO -N PO.-P Zn
3234
0 -9.3 0000
0 -11.4 -4.9 0 0 0
0-2.0 0 0 0 0
0-5.8 0 0 0 0
0 -1.9 0 0 0 0
0 -15.3 -6.1 0 0 0
0 -18.2 -10.3 000
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 36.
RIVSCI SENSITIVITY RUN 5: 15% INCREASE IN ZINC SETTLING COEFFICIENT
Ln
U>
Resulting % changes in the following constituent concentrations
R.M.
193.3
167.8
30.1
17.8
4.0
164.2
131.4
DO
0
0
0
0
0
0
0
BOD
0
0
0
0
0
0
0
NHQ-N NO.-N NOQ-N PO.-P Zn
3234
00000
0 0 0 0 -.7
00000
00000
00000
0 0 0 0 -.7
0 0 0 0-4.4
Cl COLI
0 0
0 0
0 0
0 0
0 0
0 0
0 0
-------
TABLE 37.
RIVSCI SENSITIVITY RUN 6: 50% DECREASE IN TIME STEP
Resulting % changes in the following constituent concentrations
R.M. DO
193.3 .1
167.8 .1
30.1 .1
17.8 .3
4.0 .4
164.2 .1
131.4 .1
BOD NH -N N02-N NO -N
0 3.6 0 0
.9 2.4 -1.6 1.4
0 .7 0 0
0 1.9 0 0
-.7 1.0 0 0
0 3.4 -1.5 2.1
.7 2.3 0 1.5
PO.-P Zn
4
-.2 0
-.9 -2.0
0 0
1.3 -10.7
13.9 -11.5
-1.0 -2.0
-.9 -.9
Cl
0
2.4
0
-1.4
0
2.5
2.7
COL I
.5
1.7
7.8
7.8
0
1.7
1.9
-------
TABLE 38.
RIVSCI SENSITIVITY RUN 7: 100% INCREASE IN TIME STEP
Ln
Ul
Resulting % changes in the following constituent concentrations
R.M.
193.3
167.8
30.1
17.8
4.0
164.2
131.4
DO BOD NH3-N
-.3 0 -7.8
-.1 -.9 -6.1
-.2 -.8 -1.5
-.6 .8 -4.7
-.9 1.5 -2.9
-.1 -.9 -8.0
0 0 -4.5
NO--N NO -N PO.-P Zn
234
2.5 0 0 0
4.9 -4.1 11.8 11.5
2.9 -.4 0 0
2.6 0 -3.9 32.0
3.0 -.1 -41.0 35.4
3.1 -4.1 11.1 10.6
2.6 -3.7 8.5 9.6
Cl COL I
0 -.9
-9.8 -4.3
0 -19.1
2.7 -21.6
0 0
-9.8 -4.8
-8.1 -3.9
-------
varied and complicated. The principal effects of such a change
are discussed below.
The hydrologic solution from the quantity portion of RIVSCI is
dependent upon the quality time step to the extent that an average
value of flow and velocity in each channel is calculated by the
quantity portion for each quality time step. These average values,
which are used by the quality portion of RIVSCI, may differ by as
much as several percent, depending on the length of the quality time
step, since the "converged" solution in the quantity portion may have
flow variations in a given channel of as much as 10%. These flow
variations will cause corresponding changes in the concentrations of
all constituents.
Changing the quality time step of RIVSCI also affects the changes
in a junction's concentration due to advection from the upstream
junction(s), due to mass added by the junction's tributary inflow,
and due to decay. The procedure used by RIVSCI to calculate the
effect of these processes on a certain constituent's concentration
in a given junction during a time step is as follows:
Let
C = concentration at start of time step (mg/L)
Then concentration after advection from upstream junction,
C0 = C. + U(C - C.) At/L (mg/L)
2 1 up 1
where
U = velocity in adjoining upstream channel (fps)
C = concentration in upstream junction (mg/L)
up
At = quality time step size (sec)
L = length of adjoining upstream channel (feet)
The concentration after mass addition by tributary inflow is
(1 - QAt/V)C + MAt/V (mg/L)
where
Q = tributary inflow rate (cfs)
3
V = junction volume (ft )
3
M = mass addition rate (mg-ft /sec-L)
156
-------
C3 is lastly modified by a specified decay process option to
concentration C (mg/L) at the end of the time step. For
convergence with steady-state conditions, we have C = C
4 1
Generally, the effect of decay is small compared to that due to
advection and tributary contributions . Neglecting decay there-
fore, and setting C^ = C^ (for convergence) results in the
following relationship between the solution C.. and At:
c , ±3 _ CUP |K.| the second term is decreased which tends to increase
' l\ i /
To summarize for the example given, decreasing At decreases
_
A (tends to decrease C^) and decreases B (tends to increase
Since A (through K^) is associated with tributary inflows, and B
(through Cup) is associated with advection, it is seen that
decreasing At tends to increase the concentration of a constituent
whose primary entrance into the junction is by advection and to
decrease the concentration of a constituent whose primary entrance
is by tributary inflow. (Examples of this are coliforms and zinc;
See Table 37). If should also be noted that C^ depends on C ,
which is itself the result of the same convergent procedure occur-
ring simultaneously in the upstream junction.
157
-------
7. Quality time step increased by 100% (Table 38, RIVSCI).
As explained above for Run 6, the situation is complicated. In
general, increasing the step size and decreasing the step size have
opposite effects. However, the stretch of river between river mile
0 and river mile 17.8 contains several junctions whose channels are
too short for use with a two hour time step, since their volumes are
replaced more than once per time step. The results are questionable
in this case.
Based on both the number of constituents affected, and the magnitudes of
the resulting concentration changes, the RIVSCI parameters tested on the
base case of Table 31 may be broadly categorized for sensitivity as follows:
High Sensitivity
Time step size
BOD decay coefficient, K
Medium Sensitivity
NH,. volitization coefficient
NH- decay coefficient
Low Sensitivity
Zinc settling coefficient
Reaeration coefficient, K?
The low sensitivity to K9 was probably due to the fact that DO levels
were near saturation throughout the region.
158
-------
SECTION XIV
STRATIFIED RESERVOIR MODEL
The sensitivity runs for LAKSCI were performed on Long Lake. Sensitivity
results were tabulated for three depths (strata) namely the surface, an
intermediate depth (15 meters below the surface/above the bottom), and
the bottom, and for the resulting outflow. They were also tabulated for
the following three dates: July 19 which was midway between the start of
the simulation period and lake turnover; August 28 which was just prior
to lake turnover; and November 30 which was the last day of the simulation
period. The upper layers began mixing on August 20 and turnover was
complete on September 5.
Base concentration values for the LAKSCI sensitivity study are presented
in Table 39, which corresponds to the verification results for June
through November 1971.
Tables 40 - 45 present the results of varying the specified input
parameters to the Stratified Reservoir Model. The results of the six
individual test runs are discussed separately below.
1. BOD decay coefficient (Kj) increased by 15% (Table 40, LAKSCI).
Increasing the BOD decay increased NH (and hence NO- and NO )
and PO, in two ways. First, BOD decayed to NH and PO,
directly and second, as BOD reduced the DO below 0.5 mg/L, the
benthal release rates of NH_ and PO, increased. However, when
DO in a layer reached 0, no more BOD was allowed to decay in that
layer. Examples of these changes may be seen in Table 40 (and
39).
2. Reaeration coefficient (K2) increased by 15% (Table 41, LAKSCI).
Reaeration occurred only in the surface layer and drove the DO in
the surface layer toward saturation. As the lake mixed, this
tended to increase the DO level throughout the mixed portion of the
lake. The August 28 outflow was drawn from the upper portion of
the lake (which was mixed). After turnover the entire lake was
mixed daily, thus accounting for the large November 30 changes.
3. NH3 decay coefficient increased by 15% (Table 42, LAKSCI).
NH decayed to N02 (and hence to NO ) with a resultant loss of
DO. Hence this change tended to decrease the NH and DO levels
throughout the lake and to increase the NO- and NO levels (see
Table 42. Since the NH- concentrations were small compared to
the NO concentrations (Table 39), the NO, increase (expressed
as %) were mostly barely visible.
159
-------
TABLE 39.
LAKSCI BASE CONCENTRATION VALUES
(Long Lake, June - November, 1971)
Date
July
19
August
28
November
30
Location
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
DO
mg/L
8.40
6.35
0
7.97
8.32
.25
0
5.56
9.26
8.68
8.18
8.73
BOD
ing/L
.37
.55
119.
.45
.38
.65
268.
.54
.97
1.01
2.14
1.01
NH3-N
mg/L
.0109
.0352
.2276
.0238
.0122
.0686
.2279
.0282
.0449
.0454
.0474
.0454
N02-N
ir.g/L
.0059
.0096
.0099
.0077
.0053
.0098
.0099
.0081
.0091
.0091
.0091
.0091
N03-N
mg/L
.0106
1.0070
.9587
.8191
.0022
1.1569
.9641
.6700
1.2289
1.2715
1.2715
1.2642
P04-P
mg/L
.0309
.0337
.0641
.0309
.0396
.0534
.0641
.0399
.0405
.0406 •
.0429
.0406
Zn
mg/L
.105
.173
.246
.157
.064
.150
.267
.100
.088
.093
.094
.092
TOT N
mg/L
.050
.042
.036
.049
.070
.044
.037
.070
.140
.140
.140
.140
COLI
MFN
1312.
868.
683.
1243.
838.
117.
57.
898.
831.
831.
831.
831.
-------
TABLE 40.
LAKSCI SENSITIVITY RUN 1: 15% INCREASE IN BOD DECAY COEFFICIENT, K.
Resulting % changes in the following constituent concentrations
Date
July
19
August
28
November
30
Location
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
DO
0
-1.3
0
-.5
-.1
-24.0
0
-.7
-.5
-.6
-.6
-.6
BOD
-10.8
-12.7
0
-11.1
-13.1
-4.6
.3
-11.1
-9.3
-8.9
-4.2
-9.9
NH.-N
2.7
2.3
2.1
2.9
1.6
3.1
2.0
1.8
3.3
3.1
2.9
3.1
N02-N
1.7
3.1
-2.0
1.3
1.9
1.0
1.0
2.5
3.3
3.3
3.3
3.3
N03-N P04-P
.9 .6
.1 .9
0 -.3
0 .6
4.5 .5
.1 .9
-.1 -.3
0 .5
0 1.2
0 1.0
0 1.2
0 1.0
Zn
0
0
0
0
0
0
0
0
0
0
0
0
TOT N
0
0
0
0
0
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
0
0
0
0
0
-------
TABLE 41.
LAKSCI SENSITIVITY RUN 2: 15% INCREASE IN REAERATION COEFFICIENT,
M
Resulting % changes in the following constituent concentrations
Date
July
19
August
28
November
30
Location DO
SURFACE . 1
MIDDLE 0
BOTTOM 0
OUTFLOW 0
SURFACE . 5
MIDDLE 0
BOTTOM 0
OUTFLOW 1.1
SURFACE 2 . 7
MIDDLE 2.3
BOTTOM 2.6
OUTFLOW 2 . 4
BOD
0
0
0
0
0
0
0
0
0
0
0
0
NH3-N
0
0
0
0
0
0
0
0
0
0
0
0
N02-N
0
0
0
0
0
0
0
0
0
0
0
0
N03-N
0
0
0
0
0
0
0
0
0
0
0
0
P04-P
0
0
0
0
0
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
0
0
0
0
0
TOT N
0
0
0
0
0
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
0
0
0
0
0
-------
TABLE 42.
LAKSCI SENSITIVITY RUN 3: 15% INCREASE IN NH DECAY COEFFICIENT
Resulting % changes in the following constituent
Date
July
19
August
28
November
30
Location DO
SURFACE 0
MIDDLE - . 3
BOTTOM 0
OUTFLOW 0
SURFACE 0
MIDDLE - . 8
BOTTOM 0
OUTFLOW - . 1
SURFACE -.1
MIDDLE -.1
BOTTOM -.1
OUTFLOW 0
BOD
0
0
0
0
0
6.1
0
0
0
0
0
0
NH3-N
-5.5
-8.5
-.1
-6.7
-7.4
-5.4
-.1
-8.9
-6.2
-6.4
-6.1
-6.4
N02-N
5.1
8.3
2.0
4.9
3.8
1.0
2.9
4.9
7.7
7.7
7.7
7.7
NO -N
.9
0
0
.1
4.5
0
0
.2
0
0
0
0
concentrations
P04-N
0
0
0
0
0
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
0
0
0
0
0
TOT N
0
0
0
0
0
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
0
0
0
0
0
-------
TABLE 43.
LAKSCI SENSITIVITY RUN 4: 15% INCREASE IN NH VOLITIZATION COEFFICIENT
Resulting ;
Date
July
19
August
28
November
30
Location
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
DO
.1
0
0
0
0
0
0
0
0
0
0
0
'', changes
BOD
0
0
0
0
0
0
0
0
0
0
0
0
in the following constituent concentrations
NH -N NO -N
-9.0 -3.4
0 0
0 0
-.4 0
-10.9 -6.0
0 0
0 0
-.7 0
-.7 0
-.6 0
-.6 0
-.7 0
N03-N
0
0
0
0
0
0
0
0
0
0
0
0
P04-P
0
0
0
0
0
0
0
0
0
0
0
0
Zn
0
0
0
0
0
0
0
0
0
0
0
0
TOT N
0
0
0
0
0
0
0
0
0
0
0
0
COLI
0
0
0
0
0
0
0
0
0
0
0
0
-------
TABLE 44.
LACKSCI SENSITIVITY RUN 5: 15% INCREASE IN ZINC SETTLING COEFFICIENT
Resulting
Date
July
19
August
28
November
30
Location
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
SURFACE
MIDDLE
BOTTOM
OUTFLOW
DO
0
0
0
0
0
0
0
0
0
0
0
0
% changes in the following constituent concentrations
BOD
0
0
0
0
0
0
0
0
0
0
0
0
NH3-N
0
0
0
0
0
0
0
0
0
0
0
0
NO -N
0
0
0
0
0
0
0
0
0
0
0
0
NO -N
0
0
0
0
0
0
0
0
0
0
0
0
P04-P
0
0
0
0
0
0
0
0
0
0
0
0
Zn
-6.7
-.6
1.6
.6
-10.9
-2.7
.4
-4.0
-3.4
-3.2
-3.3
-2.2
TOT N
0
0
0
0
0
0
0
0
•0
0
0
0
COLI
0
0
0
0
0
0
0
0
0
0
0
0
-------
TABLE 45.
LAKSCI SENSITIVITY RUN 6: 100% INCREASE IN TIME STEP
Date
July
19
August
28
November
30
Resulting
Location DO
SURFACE 0
MIDDLE . 6
BOTTOM 0
OUTFLOW -.4
SURFACE 0
MIDDLE 8.7
BOTTOM 0
OUTFLOW -3.6
SURFACE 2 . 9
MIDDLE -3.0
BOTTOM -9.3
OUTFLOW -2.4
% changes
BOD
-3.0
3.6
-2.5
0
0
4.6
2.2
0
2.1
1.0
53.7
0
in the following constituent concentrations
NH3-N
-3.7
.8
-5.7
1.7
-5.7
-2.9
6.5
3.2
-.7
.4
5.3
.2
N02-N
45.2
5.2
+2.0
2.6
3.7
5.1
3.0
7.4
2.2
2.2
2.2
2.2
N03-N P04-P Zn
-.3 -.9 0
.9 .6 0
1.0 -4.1 0
1.8 .6 1.9
14.5 0 -1.6
-.2 .9 2.0
.9 -4.0 .1
3.0 0 1.0
-3.2 0 -3.4
.300
.3 5.6 2.1
-.3 0 1.0
TOT N
0
2.4
0
0
1.4
-2.3
-2.7
1.4
0
0
0
0
COL I
-2.4
3.5
-.7
-1.4
-2.1
-68.7
79.2
.2
-.8
-.8
-.8
-.8
-------
4. NH volitization rate increased by 15% (Table 43, LAKSCI).
Volitization occured only from the surface layer and reduced the
NH concentration (and hence the NO,., and NO and concentrations)
in the surface layer. The surface DO increased since less DO was
needed for NH_ decay. As the lake mixed (see introduction to this
section for mixing dates), these NH,., NO , and NO reductions
and the DO increase were distributed throughout the lake. Some of
these changes were visible in the LAKSCI results of Table 43.
5. Zinc settling coefficient increased by 15% (Table 44, LAKSCI).
This change increased the rate at which zinc settled to the bottom
and tended to decrease zinc concentrations throughout the lake with
maximum decreases occurring in the surface layer. The concentration
on a given day in a given layer was sometimes higher, however, since
a mass of zinc introduced into a given layer by the inflow settled to
the bottom through all lower levels at a rate determined by the
settling coefficient.
6. Integration time step increased by 100% (Table 45, LAKSCI).
As with RIVSCI, this change affected all results. Different layers
of the lake are mixed at different times and depending on inflow
position and concentration, almost any situation can arise. The in-
flow zone itself can change, since temperatures will be slightly
different in the various layers of the lake, and this can lead to
large concentration differences in layers bordering the input zone.
Many of these results are visible in Table 45.
An additional source of error was the large ratio of the sum of the
vertically and horizontally advected flows from a layer during a time
step to the volume of the layer. With a one day time step, this ratio
frequently exceeded .5 for many layers. As stated in Volume VI, a
ratio greater than .5 may lead to inaccurate results.
Based on both the number of constituents affected, and the magnitudes of
the resulting concentration changes, the LAKSCI parameters tested on the
base case of Table 39 may be broadly categorized for sensitivity as follows:
High Sensitivity
Time step size
BOD decay coefficient, K
Medium Sensitivity
NH» decay coefficient
Zinc settling coefficient
NH- volitization coefficient
167
-------
Low Sensitivity
Reaeration coefficient, K?
Reaeration and NfL volitization probably have less impact since
they occur only in the surface layer.
168
-------
PART 6
SPECIAL STUDY
XV. Lake Downstream Boundary Study
Study Objectives
Case Studied
Procedure
Results
Discussion and Conclusions
169
-------
SECTION XV
LAKE DOWNSTREAM BOUNDARY STUDY
STUDY OBJECTIVES
The purpose of this study was to assess the capability of the existing
computer code of the Deep Reservoir Model to handle a downstream boun-
dary other than a dam; i.e., the case where the downstream segment
interfaces with another water body (in this case, the main stem of
Lake Roosevelt).
This assessment was to provide the following information:
1. Evaluation of the adequacy and/or weaknesses of the existing code
to handle a boundary other than a dam
2. A definition and discussion of pertinent factors at the boundary;
e.g., history of water surface elevations, temperature profile,
etc., which should be considered or included to more adequately
represent the boundary
3. Recommendations for alternative methods of handling the boundary.
CASE STUDIED
The limits of this project extended as far downstream as the confluence
of the Spokane River with the Columbia River. In this region these
rivers are drowned by the F. D. Roosevelt Lake, formed by the Coulee
Dam. Lake Roosevelt is almost 150 miles long, of which about 40 miles
are downstream of the confluence with the Spokane River. The Spokane
River arm of Roosevelt Lake, which is the subject of this study, is
about 30 miles long.
An earlier study of the available data (see Volume II - Data Report)
had determined that 1970 was the preferable year for the simulation of
the Spokane River arm of Lake Roosevelt with the Deep Reservoir Model.
It is of interest that earlier development work on a segmented version
of the Deep Reservoir Model was done in 1969 [Ref. 6] on the main stem
of Lake Roosevelt, which was modeled as a weakly stratified reservoir.
PROCEDURE
A data check representing the physical description of the Spokane River
arm of Lake Roosevelt was prepared from a Coast and Geodetic Survey Map
[Ref. 7]. Meteorological data for Spokane, 1970 were used. Inflow
quantity and quality data were obtained from USGS streamflow and water
quality records. Lake levels varied between 1248.9 and 1288.6 feet above
MSL, and were set in accordance with data obtained from USGS records for
FDR Lake. A composite data deck for the application of the modified Deep
Reservoir Model (LAKSCI) to the Spokane River Arm was thus completed.
171
-------
Nominal (default) values were used for rate coefficients and other model
coefficients, since there were insufficient data available for verifica-
tion and tuning. Lake water quality data for 16 dates at six stations
along the lake were available [Ref. 8,9] for the surface layer only
(samples taken one foot below the surface.)-
First, the identical LAKSCI code used for Coeur d'Alene and Long Lakes
was executed with the above mentioned Spokane Arm data as a base case.
This code represents the downstream boundary as a dam with a maximum of
three outlets, and solves for the strata from which outflows are with-
drawn depending upon the stability of the lake temperature profile. A
single outlet 30 meters below the water surface, and the full width of
the dam, was chosen for this case.
The results of the simulations with the Lake Roosevelt main stem [Ref.
6, Figures 38A-D, segment 3] had indicated that water movement in the
region of the confluence occurred over a much wider depth range than
that obtained in the above mentioned base case. To study the effects
of a greater range of flow depths, the LAKSCI code was modified by
replacing the dam and outlets capability with a velocity profile
boundary condition; the following three alternative velocity profiles
were selected for study:
a. Uniform velocity.
The flow velocity does not vary with depth, and is equal to the
total outflow divided by the total lake cross sectional area at
the boundary, i.e.,
where Q = total outflow accross boundary
f -th
A = vertical cross sectional area or i
i
strata at the boundary.
b. Parabolic velocity profile.
This profile, similar to velocity distribution occurring in channel
flow, prescribes zero velocity at the bed, and a maximum velocity
(parabola origin) at 15% of the total depth below the surface. Thus
v = ky(1.7Y - y)
where Y = maximum
y = depth above bottom
172
-------
Velocity proportional to width .
This in effect prescribes the velocity to vary as the strata cross
sectional area per unit thickness (in fact only the top strata has
a different thickness from all the others below, which are pre-
scribed equal). This may be written
A
v = K
dy±
where dy. = vertical thickness of i strata
Q
K =
Four computer runs were made for the base case and the three alternative
velocity profiles described above. Each was executed with the realistic
data deck discussed previously, to model the entire six months of the
Lake's history from June 1970 (day 152) through November 1970 (day 334).
RESULTS
The resulting velocity profiles for the three alternative prescriptions
at the boundary are presented in Figure 36, which corresponds to day
310 when Q = 80.1 cms. As the outflow varied, these profiles retained
their relative shapes, changing only in magnitude. For the base case,
outflow generally occurred from only a limited band (about a 10 meter
depth range, near mod-depth) before lake turnover (day 248); after turn-
over the velocity profile was near-uniform, decreasing slightly with
depth.
Lake water quality results from these runs are provided in Figures 37
through 42, for the following six principal constituents: temperature,
BOD, DO, coliforms, NH -N, and chlorides. Constituent profiles were
drawn at six week intervals throughout the six month period, with an
additional profile (drawn chain dotted) for day 250 which just follows
lake turnover. Profile variations between the three alternative boundary
assumptions are indicated where these are significant. The numerical
differences between the extreme values for the three alternatives and six
constituents are also provided in Table 46. Comparisons of several sur-
face concentrations between the prototype and the four simulations are
given in Tables 47 through 50.
173
-------
Proportional
to width (c)
0 0.001 0.002 0.003 0.004 0.005 0.006
Flow velocity, mps
FIGURE 36. VELOCITY PROFILES AT DOWNSTREAM BOUNDARY
COMPARED ON DAY 310
174
-------
60
50
40
0
f
01
A!
3 30
01
>
0
,0
rt
C
o
20
u
H
W
10
V
328
All three alternatives
(negligible differences)
J_
286
_L
10
12 14
Temperature, °C
16
18
20
FIGURE 37. WATER TEMPERATURE PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS- CHAIN DOTTED PKUULL
FOR DAY 250 INDICATES CONDITIONS JUST AFTER LAKE TURNOVER.
175
-------
60
50
40
B
o
30
0)
>
o
fi
n)
C
O
n)
0)
iH
W
20
10
160
286
328
V
Alternative (a),
where different from
alternatives (b)
and (c)
50 100 150
BOD concentration, mg/L
200
FIGURE 38. BOD PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
176
-------
60
50
40
e
o
0)
>
o
U3
n)
C
O
to
0)
rH
w
10
V
160
— Alternative (a),
where different from
— alternatives (b)
and (c)
286
328
50 100 150
BOD concentration, mg/L
200
FIGURE 38. BOD PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
176
-------
Alternative (a),
• ••"Alternative (c) ,
where different from
alternative (b)
0 2 4 6 8 10
DO concentration, mg/L
FIGURE 39. DO PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
177
-------
Alternative (a),
•••••Alternative (c),
where different
from
alternative (b)
w
20 40 60 80 100
Coliform concentration, MPN/100
120
FIGURE 40- COLIFORM PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
178
-------
60
50
en
l-i
01
4J
cu
B 40
e~
o
30
O
.0
C
O
20
CO
(1)
iH
W
10
286
250
V
328
Alternative (a),
Alternative (c),
where different from
. alternative (b)
244
0.05
0.10
0.15
0.20
NH«-N concentration, mg/L
FIGURE 41. NH3-N PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
179
-------
60
B
o
0)
"
01
>
o
c
o
n)
Q)
i-l
W
50
6 40
30
20
10
V
All three
alternatives
(neglible
differences)
_L
60
202
JL
250
286
328
0.5 1.0 1.5
Chloride concentration, mg/L
2.0
FIGURE 42. CL2 PROFILES AT SIX WEEK INTERVALS; PROFILES
ARE LABELED WITH DAY-OF-YEAR NUMBERS
180
-------
TABLE 46. VARIATIONS OF EXTREME PREDICTED
CONCENTRATIONS, WITH THREE
ALTERNATIVE BOUNDARY CONDITIONS,
FOR SIX PRINCIPAL CONSTITUENTS
DAY:
T C max
(a)
(b)
(c)
T C mln
(a)
(b)
(c)
BOD max
(a)
(b)
(c)
BOD mln
(a)
(b)
(c)
DO max
(a)
(b)
(c)
HO pin
(a)
(b)
(c)
COLI max
(a)
(b)
(c)
COLI min
(a)
(b)
(c)
NH3-N max
(a)
(b)
(c)
N113-H min
(a)
(b)
(c)
CL2 max
(a)
(b)
(c)
CL2 mln
(a)
(b)
(c)
160
17.81
17.79
17.78
17.81
17.79
17.78
.87
.88
.88
.15
.16
.16
8.87
8.85
8.R5
8.66
8.63
8.62
79.0
79.1
79.2
78.5
78.6
78.7
.023
.023
.023
.020
.020
.020
.611
.613
.614
.6.09
.631
.612
202
20.60
20.58
20.55
16.64
16.61
16.58
64.49
78.99
79.36
.08
.08
.08
8.44
8.44
8.44
0.00
0.00
0.00
117.6
118.1
118.4
8.9
9.1
9.1
.204
.209
.209
.014
.014
.014
1.090
1.094
1.098
.769
.769
.770
244
18.76
18.72
18.68
17.85
17.72
17.63
130.73
168.92
170.34
.11
.11
.11
8.39
8.40
".'•0 =
<%i
0.00 s-
o.oo Si
0.00 z
o
o!
91.1 o
95.2 g
97.2 H
y
3.1 3
.3 J
.3
.190
.208
.209
.010
.010
.010
1.434
1.453
1.446
.775
.769
.770
250
17.80
17.74
17.68
17.35
17.31
17.25
2.48
2.68
2.75
.49
.68
.74
7.18
7.06
7.01
5.45
5.29
5.23
62.2
61.9
61.5
62.1
61.8
59.6
.038
.040
.040
.023
.025
.026
1.302
1.291
1.274
1. 302
1.291
1.269
286
13.27
13.25
13.25
13.27
13.25
13.25
1.02
1.02
1.02
.29
.29
.29
7.21
7.11
7.C7
6.71
6.59
6.54
13.0
13.0
13.0
13.0
13.0
13.0
.039
.040
.040
.036
.037
.037
1.583
1.575
1.563
1.583
1.575
1.563
328
7.02
7.02
7.03
7.02
7.02
7.03
1.12
1.12
1.12
.40
.40
.40
8.97
8.95
C.93
8.61
8.58
8.57
7.7
7.7
7.7
7.7
7.7
7.7
.069
.069
.069
.067
.067
.067
1. 870
1.865
1.858
1.870
1.865
1.858
181
-------
TABLE 47. PROTOTYPE WATER QUALITY IN THE SPOKANE ARM
OF F.D. ROOSEVELT LAKE COMPARED WITH SIMU-
LATIONS FOR THE BASE CASE. DATA AND RESULTS
ARE FOR THE SURFACE LAYER, 1970.
CO
DATE
Jun 23
Jun 29
Jul 7
Jul 15
Jul 21
Jul 23
Aug 4
Aug 'IS
Sop 1
Sep 15
Sep 22
Eep 29
Oct 6
Occ 13
Oct 27
"ov 24
DO
MG/L
OBS
10.9
10.6
9.4
9.7
10.7
9.5
10.0
9.6
9.0
6.1
6.5
7.1
7.8
7.6
8.2
9.0
MOD
9.0
9.1
8.7
8.6
8.4
8.3
8.6
8.1
7.6
6.8
6.7
8.6
6.8
7.1
8.0
8.9
NVN
MG/L
OBS
.09
.00
.08
.09
.01
.00
.00
.00
.00
MOD
.02
.02
.01
.01
.01
.01
.01
.01
.01
.03
.03
.02
.03
.04
.04
.07
TOTAL N
KG/L
OBS
.11
.04
.15
.01
.15
.25
.03
.19
.14
MOD
.10
.10
.10
.10
NO -N
KG/L
OBS
.05
.10 ! . 02
.10
.10
.11
.12
.13
.13
.14
.14
.15
.16
.18
.04
.04
.05
.26
.31
.54
.48
.33
MOD.
.00
.04
.00
.00
.00
.03
.00
.02
.06
.07
.09
.00
.11
.11
.11
.14
PO.-P
'4
MG/L
OBS
.01
.01
.02
.01
.02
.01
.01
.01
.01
.02
MOD
.02
.03
.03
.03
.03
.03
.03
.03
.03
.04
.05
.04
.05
.05
.05
.05
coLi?or::s
MPM/1CO
OBS
47
38
127
16
103
29
33
O /
i.^
4
44
700
820
2233
826
103
27
MOD
64
72
83
86
104
83
87
86
70
47
32
22
16
13
10
8
TUMP
°c
033
23.4
19.6
25.9
25.7
23.5
21.2
23.9
21.4
21.3
IS. 6
17.3
17.2
15. S
15.0
12.4
8.1
MOD
1
19.7
17.9
20.0
20.6
20.7
19.7
20.0
19.0
18.9
16.1 j
15.5
14.9
14.4
13.3
10. S
7.0
-------
TABLE 48. PROTOTYPE WATER QUALITY IN THE SPOKANE ARM
OF F.D. ROOSEVELT LAKE COMPARED WITH SIMU-
LATIONS RESULTING FROM ALTERNATIVE DOWN-
STREAM BOUNDARY CONDITION (a). DATA AND
RESULTS ARE FOR THE SURFACE LAYER, 1970.
oo
LO
DATE
Jun 23
Jun 29
Jul 7
Jul 15
Jul 21
Jul 28
Aug 4
Aug 18
Sep 1
Seo 15
Sep 22
Sep 29
Oct 6
Oct 13
Oct 27
Xov 24
DO
MG/L
OES
10.9
10.6
9.4
9.7
10.7
9.5
10.0
9.6
9.0
6.1
6.5
7.1
7.8
7.6
8.2
9.0
MOD
9.0
9.1
8.8
8.6
8.4
8.4
8.6
8.2
8.4
7.0
6.8
8.3
6.9
7.2
8.0
9.0
NH3-N
MG/L
OES
.09
.00
.08
.09
.01
.00
.00
.00
.00
MOD
.02
.02
.01
.01
.02
.02
.01
.01
.01
.03
.03
.02
.03
.04
.04
.07
TOTAL N
MG/L
OES
.11
.04
.15
.01
.15
.25
.03
.19
.14
MOD
.10
.10
.10
.10
.10
.10
.10
.11
.13
.13
.13
.14
.14
.15
.16
.18
NO -N
KG/L
OSS
.05
. 02
.04
.04
.05
.26
.31
.54
.48
.33
MOD
.00
.03
.00
.00
.01
.01
.00
.01
.00
.08
.10
.01
.11
.11
.11
.14
PO.-P
4
MG/L
OBS
.01
.01
.02
.01
.02
.01
.01
.01
.01
.02
MOD
.02
.03
.03
.03
.03
.03
.03
.03
.03
.04
.04
.04
.05
.05
.05
.05
COLIFORMS
MP-/1CO
OBS
47
38
127
16
103
29
33
24
4
44
700
820
2233
£2o
103
27
MOD
65
. 75
87
92
118
97
111
105
91
48
32
22
16
13
10
8
TEMP
°C
02S
23.4
19.6
25.9
25.7
23.5
21.2
23.9
21.4
21.3
IS. 6
17.3
17.2
15.8
15.0
12.4
8.1
i
MOD
19.6
17.8
20.0
20.6
20.6
19.5
19.9
18.9
18.4
16.0 i
15.4
14.8
14.3
13.3 ,
10.7
7.0
-------
TABLE 49. PROTOTYPE WATER QUALITY IN THE SPOKANE ARM
OF F.D. ROOSEVELT LAKE COMPARED WITH SIMU-
LATIONS RESULTING FROM ALTERNATIVE DOWN-
STREAM BOUNDARY CONDITION (b). DATA AND
RESULTS ARE FOR THE SURFACE LAYER, 1970.
oo
DATE
Jun 23
Jun 29
Jul 7
Jul 15
Jul 21
Jul 28
Aug 4
Aug IS
Se? 1
Sap 15
Sep 22
Scp 29
Oct 6
Oct 13
Oct 27
Kov 24
DO
MG/L
OES
10.9
10.6
9.4
9.7
10.7
9.5
10.0
9.6
9.0
6.1
6.5
7.1
7.S
7.6
8.2
9.0
MOD
9.0
9.1
8.8
8.6
8.4
8.4
8.5
8.1
8.4
6.8
6.6
8.3
6.8
7.1
8.0
9.0
KH -N
MG/L
OBS
.09
.00
.08
.09
.01
.00
.00
.00
.00
MOD
.02
.02
.01
.01
.02
.02
.01
.01
.01
.03
.03
.03
.03
.04
• 04
.07
TOTAL N
MG/L
OBS
.11
.04
.15
.01
.15
.25
.03
.19
.14
MOD
.10
.10
.10
.10
.10
.10
.10
.11
.13
.13
.13
.14
.14
.15
.16
.18
NO -N
MG/L
OBS
.05
.02
.04
.04
.05 .
.26
.31
.54
.48
.33
MOD
.00
.04
.00
.00
.01
.01
.00
.01
.00
.08
.10
.01
.11
.11
.11
.14
PO.-P
4
MG/L
OBS
.01
.01
.02
.01
.02
.01
.01
.01
.01
.02
MOD
.02
.03
.03
.03
.03
.03
.03
.03
.03
.05
.05
.05
.05
.05
.05
.05
COLIFORMS
MP"/100
OBS
47
38
127
16
103
29
33
24
4
44
700
820
2233
326
103
27
MOD
66
76
87
95
118
96
117
1G4
95
48
32
1 1
16
13
10
8
TEMP
°C
OBS
23.4
19.6
25.9
25.7
23.5
21.2
23.9
21.3
IS. 6
17.3
17.2
15 . S
15.0
1 O '.
3.1
MOD
19.5
17.6
20.0
20.6
20.6
19.5
19.9
18.8
18.4
16.0
15.3
14.8
14.3
13.2
10.7
7.0
-------
TABLE 50. PROTOTYPE WATER QUALITY IN THE SPOKANE ARM
OF F.D. ROOSEVELT LAKE COMPARED WITH SIMU-
LATIONS RESULTING FROM ALTERNATIVE DOWN-
STREAM BOUNDARY CONDITION (c). DATA AND
RESULTS ARE FOR THE SURFACE LAYER, 1970.
00
DATE
Jun 23
Jun 29
Jul 7
Jul 15
Jul 21
Jul 28
Aug 4
AuS 18
Scp 1
S^p 15
SCP 22
Sep 29
Oct 6
0;t 13
Oct 27
Kov 24
DO
MG/L
OBS
10.9
10.6
9.4
9.7
10.7
9.5
10.0
9.6
9.0
6.1
6.5
7.1
7.S
7.6
8.2
9.0
MOD
9.0
9.1
8.8
8.6
8. A
8. A
8.6
8.1
8. A
6.7
6.6
8.2
6.7
7.0
8.0
8.9
NH,-N
MG/L
OES
.09
.00
.08
.09
.01
.00
.00
.00'
.00
MOD
.02
.02
.01
.01
.02
.02
.01
.01
.01
.03
.03
.03
.04
.04
.04
.07
TOTAL N
MG/L
OBS
.11
.04
.15
.01
.15
.25
.03
.19
.14
MOD
.10
.10
.10
.1C
.10
.10
.10
.11
.13
.13
.13
.14
.14
.15
.16
.18
NO -N
MG/L
OBS
.05
. 02
.04
.04
.05
.26
.31
.54
.48
.33
MOD
.00
.04
.00
.00
.01
.01
.00
.01
.00
.08
.10
.01
.11
.12
.11
.14
POA-P
MG/L
OES
.01
.01
.02
.01
.02
.01
.01
.01
.01
.02
MOD
.02
.03
.03
.03
.03
.03
.03
.03
.03
.05
.05
.05
.05
.05
.05
.05
COLIFOD1S
MP;;/ICO
OBS
47
38
127
16
103
2S
33
24
4
44
700
820
2233
826
103
27
MOD
66
77
87
98
118
98
119
1CS
97
48
32
22
16
13
10
8
•JTVT)
°c
02S
23.4
19.6
25.9
25.7
23.5
21.2
23.9
21.4
21.3
IE. 6
17.3
17.2
15. S
15.0
12.4
8.1
MOD
19.5
17.8
20.0
20.6
20.6
19.5
19.9
13.8
18.4
15.9
15.3
14.8
14.3
13.2 j
10.7
7.0
-------
The total daily outflows of constituents across the downstream boundary
were essentially the same for all four cases after lake turnover. Before
turnover, alternative (a) gave higher outflows of BOD, and the base case
gave higher BOD and NH_-N and lower coliform outflows than the other
alternatives. All cases produced the turnover within one day of day 248.
This resulted in large increases in the BOD outflow rates and noticeable
increases in the NH -N outflow rates, except for alternative (a) which
experienced a small reduction in BOD outflow and no change in NH -N
outflow rate.
DISCUSSION AND CONCLUSIONS
The results of the base case run, particularly for the period before
lake turnover, indicated that the standard dam and outlet configuration
of the basic lake model is clearly not appropriate for such a down-
stream boundary condition as is under study here.
A comparison of the three alternative velocity profile boundary con-
ditions (Figure 36) shows the greatest difference to be in the high
velocities with alternative (a), near the lake bottom. This greater
"sweeping" effect near the bottom undoubtedly resulted in the reduced
constituent concentrations predicted at those levels, as illustrated
in Figures 38 through 41. Since BOD in particular accumulated mostly
at those lowest levels (Figure 38) before lake turnover, this greater
"sweeping" action with alternative (a) also produced the BOD outflow
behavior very different from the other alternatives. Although there
are no observed BOD data to compare with, the simulated differences
and engineering experience with velocity profiles suggest that the
uniform velocity profile (a) is less appropriate to this application,
particularly before lake turnover, and it is therefore recommended
that alternative (a) not be further used.
The comparisons reported in Tables 47 through 50 of the prototype sur-
face water quality (seven constituents) with the four simulations,
reveal that even without verification the model results generally agree
very well with the prototype. The greatest disagreement occurred in
the coliform results, probably due to the wider fluctuations in the
sparse coliform data for the inflows. Further, these tables again show
little significant difference between the results from the various
s imulat i on run s.
The differences between the results from alternatives (b) and (c) were
so slight as to have little influence on a choice between them. However,
the rapid velocity variation near the surface with alternative (c) (see
Figure 36) did not seem desirable, particularly when it was realized that
this variation could have been further greatly increased by a different
lake cross-section at some other location. Therefore, the parabolic velo-
city profile boundary condition, alternative (b), is recommended as a pre-
ferred method for handling this downstream boundary condition.
186
-------
The replacement of the LAKSCI code representing the dam and outlets by
code for a velocity profile boundary condition was a relatively minor
task. The resulting alternative model, based on alternative velocity
profile (b), appeared adequate and contained no significant weaknesses
that were apparent from the limited analysis possible within the scope
of this project. No additional data at the boundary are needed for
the operation of alternative model (b). The only difference in data
deck preparation is that alternative (b) must be specified, and no
specifications for the dam and its outlets are required.
While this alternative boundary condition provides a reasonable,
realistic working model for the simulation of the Spokane arm of Lake
Roosevelt, it must be remembered that this condition at the same time
disallows any interaction between the main stem of the entire lake and
the Spokane arm. The report of the application of a segmented version
of the original Deep Reservoir Model to the Lake Roosevelt main stem
does mention (Ref. 6, pp. 144-5, 152) two areas of evidence for circula-
tion and interaction between the regions. These could not be simulated
with the alternative models described here, and to properly investigate
them would involve a significantly larger effort beyond the scope of
this study.
When these interaction effects between the main stem and the Spokane
arm are considered to have considerable significance to the purposes
of a study of the Spokane arm, then the alternative model studied here
should only be used to obtain a first approximation to conditions there,
A more accurate simulation could only be obtained from a simulation of
the entire Lake Roosevelt with an appropriate model which could treat
the Spokane arm as one of its segments.
187
-------
PART 7
ACKNOWLEDGEMENTS, REFERENCES,
ABBREVIATIONS, AND APPENDICES
XVI. Acknowledgements
XVII. References
XVIII. Abbreviations
XIX. Appendices
189
-------
SECTION XVI
ACKNOWLED CEMENT S
The SCI project team is indebted to the following persons and their
organizations for the services they rendered in the data collection
and assessment, and the modification, verification, and analysis of
the three water quality models applied in this project:
1. Mr. Kenneth D. Feigner, Project Officer, formerly Chief of the
Data Systems Branch and subsequently Deputy Director of the Air
& Water Programs Division, Environmental Protection Agency Region
X, Seattle, Washington.
2. Mr. Daniel V. Neal, District Engineer, Eastern Washington
Regional Office of the Washington Department of Ecology in
Spokane, Washington, who served as the Washington State project
coordinator.
3. Mr. Michael J. McMasters, of the Environmental Protection Divi-
sion of the Idaho Department of Environmental Protection and
Health in Lewiston, Idaho, who served as the Idaho State project
coordinator.
4. All those persons, too numerous to mention, with various agencies
and institutions and as private individuals, who assisted in the
data gathering and assessment phase of this project.
The overall management of the project work of Systems Control, Inc.,
was under the direction of Mr. H. James Owen, Manager, Natural Resources
Division, and Dr. E. John Finnemore, Principal Analyst. Key programming
support was provided by Mr. John L. Shepherd.
191
-------
SECTION XVII
REFERENCES
1. Water Resources Engineers, Inc. An Assessment of the Temperature
of Releases from Libby Dam by Computer Simulation (for the U.S.
Army Corps of Engineers, Seattle District Office). Water Resources
Engineers, Inc., Walnut Creek, California, March 1970.
2. Water Resources Engineers, Inc. Temperature Prediction in Dworshak
Reservoir by Computer Simulation - Computer Application Supplement
(for the U.S. Army Corps of Engineers, Walla Walla District Office,
Washington). Water Resources Engineers, Inc., Walnut Creek,
California, September 1969.
3. Metcalf & Eddy, Inc. , University of Florida, and Water Resources
Engineers, Inc. Storm Water Management Model, Volume I - Final
Report. EPA Report No. 11024DOC07/71, July 1971.
4. Water Resources Engineers, Inc. Mathematical Models for the
Prediction of Thermal Energy Changes in Impoundments - Computer
Application Supplement (for FWPCA Columbia River Thermal Effects
Project). Water Resources Engineers, Inc., Walnut Creek,
California, undated.
5. Systems Control, Inc. Letter of June 4, 1973 to the EPA, Seattle.
6. Water Resources Engineers, Inc. Mathematical Models for the
Prediction of Thermal Energy Changes in Impoundments. EPA Report
No. 16130EXT12/69, December 1969.
7. Franklin D. Roosevelt Lake, Southern Part. U.S. Coast and Geodetic
Survey Map No. 6168, published at Washington, D.C. by the U.S.
Dept. of Commerce, Environmental Science Services Administration,
C&GS, September 4, 1967.
8. EPA STORET retrieval of Spokane River Data, dated 72/10/25.
9. Bishop, Robert A., and Ronald A. Lee. Spokane River Cooperative
Water Quality Study. Report No. 72-001, State of Washington
Department of Ecology, 1972.
193
-------
SECTION XVIII
ABBREVIATIONS
C&GS Coast and Geodetic Survey
t
EPA Environmental Protection Agency
SCI Systems Control, Incorporated
BOD biochemical oxygen demand (5-day)
CL~ chloride
°C degrees Centigrade
cfs cubic feet per second
cms cubic meters per second
COLI coliforms
deg degrees
DRM Deep Reservoir Model
DO dissolved oxygen
°F degrees Fahrenheit
FPS feet per second
ft feet
g acceleration due to gravity
HM heavy metal
HM1 heavy metal number one
HM2 heavy metal number two
HM3 heavy metal number three
hr hour
JCL job control language
L liter
lb pounds
m meters
mb millibars
mg milligrams
mg/L milligrams per liter
mL, ML milliliter
mo month
195
-------
ABBREVIATIONS (Continued)
mph miles per hour
MPN most probably number
MPN/100 most probable number per 100 milliliters
N nitrogen
NH«-N ammonia nitrogen
NOQ-N nitrite nitrogen
NO.-N nitrate nitrogen
PO.-P phosphate phosphorus
EWM Receiving Water Module of SWMM
sec seconds
SWMM Storm Water Management Model
IDS total dissolved solids
yrs years
196
-------
SECTION XIX
APPENDICES
A. Computer listings of the nineteen verification
data decks described in Part 4.
197
-------
FILE A RIVFR HP! GUI': I
ENOFILE A
FILE B
ENOFILE B
FILE C 1
FILE C 2
FILE C 3
ENOFILE C
FILE 0
ENDFILE 0
FILE E 1
9.5
FILE E 2
10,0
ENOFILE E
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
F 1 1 . K F - t
FILF F-i
FILE F-l
FILE F-l
ENDFILE F-l
ENOFILE F-2
ENOFILE F-3
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE I--4
FILt F-4
FILE p-a
FILE F-a
FILE F-a
FILE Fra
FILE F-4
FILE F-a
EWILE F-4
ENDFILE G
FILE' H
ENOFILE H
FILE I 1
FILE I 2
ENOFILE I
FILE j i
2
0
0
1
2
3
4
5
6
7
8
9
10
11
12
} 3
la
15
16
1
2
3
4
t,
(,
7
8
9
10
11
12
13
14
15
16
1
1 ,'
6 7
11 12
1
.1
.1
7.9
1 ,5
2, '1
6,6
8,8
13,0
2 ,8
2.0
6.1
^ .9
0.3
0,4
s . n
1 !o
8 J3
0.7
2
f
?.
2
2
2
2
2
2
2
2
2
2
2
2
2
AUO Ib-SEPT 16 1971 PHASE
16 3 1
3 4 5
0 9 in
13 14 15 16
1 2 3
2150,
,2
6,0
.3
4,0
42.9
35.0
33.5
31.1
24.5
27.8
14.8
12.0
10.0
3.9
15.7
15.4
1 *> i 0
ioio
9.0
0.7
USC.S - FITZ OAHSITF
FITZ OAM - FALLS CR
FALLS CR - HOMO CR
BONO r.R - ROCHAL CR
ROCHAL CR - JU'iCTirrj
IDAHO ST HtJY-JDHN CR
JOHN CR - 5TORFT
STOHET - UStiS LOTUS
USG3 LOT - THORN CR
THORM CR - JUNCTION
JUNCT i US H*Y 95
US HWy 95 - 15.0
JOE 15.0 - 10.0
JOE 10.0-Hf-Ll.S GULCH
HILLS GULCH - JOE .7
JOE ,7- COUKR LAKE
,02
.01
144.
640,
.096
,096
,096
.096
,096
.292
.292
.292
.292
.292
.199
.199
1 9
.199
,199
,199
,148
.148
,148
,148
.I4R
!l48
,148
,148
.148
, 148
.148
|l48
,148
.148
20,5
677.
HI.
.014
198
-------
FILE J
FILE J
FILE J
FILE J
RLE J
FILE J
FILE J
FILE J
FILP. J
FILt J
FILE J
FILE J
FILE J
FILE J
FILE J
fNOFILE J
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILK K
FILE K
ENOFILE K
FILE L
r i u fc L
FILE L
FILE L
ENOFILE L
?.
3
4
5
h
7
a
9
10
11
if.
1-5
14
15
16
16
1
15
4
0
1
7
d
16
7
,014
,014
.014
.014
,014
,014
.014
.014
.014
.014
.014
,014
,014
,014
,014
.0000001
.00001
10
11
17
21 23 27 57
199
-------
FILF. A
F.MDFILE A
FILE B
f-.MOFILE B
FILE C
FILE C
FILE C
FILE C
FILE C
F^DFILE C
FILE o
FILE 0
ENDFILE D
FILE E
8.2
0,
FILE E
8.2
0.
FILE E
8.2
4.
ENOFILE E
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FTLF. F-1
C T 1 L C — »
i 4 U, »- ' = 4
FILE F-l
FILE F«l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-i
FILE F-l
FILE F-l
FILE F-l
FILE F-l
PILE F-l
FILF F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-i
FILE F-l
FILE F-l
SPOKANE
3
1
2
3
4
S
1 0
.a
2 0
.8
3 0
.8
1
2
3
4
5
6
1
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
REGION NUMBER 2 AUGUST.1969
2 52 5 1
1 2 3 4 5 6 7 0 9 10 11 12 H 14 15
16 17 I a 19 20 21 22
23 24 25
26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42
43 44 45 '46 47 40 49 50 51 52
2250,
,03
.03
,03
.006
.006
.006
1
2
3
4
5
6
T
1
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
6,7
.2
0,0
2,6
0,0
7 .*
n *
U f W
4,0
0.0
2.5
0.0
2,0
0.0
3.5
1.1
4.1
0.0
3,6
0,0
1.9
0.0
5,5
2,4
0,0
4,0
1.3
.7
0,0
?.7
0.0
1.3
0,0
2.0
o-.o
3.4
0.0
.9
200,0
193.3
193,1
193,1
190.5
1 " 0 , S
1 '•• C « 'T
182.9
17». 9
178.9
176,4
176,4
172.4
172.4
163.9
34.2
30,1
30.1
26,5
26,5
24,6
2U.6
6,4
4,0
4.0
19,1
17,8
17,1
17.1
14.4
14.4
13,2
13,2
11.2
11.2
7.8
7,8
.02
0,
.02
0.
.02
.05
.05
.05
.142
.142
.142
.142
.142
, !'I2
, i '« r.
.130
,130
.123
.146
.121
.155
.14
.14
,65
.5
,S
.5
,425
.5
.425
.52
.4
.52
,310
.31
.31
,51
,31
.31
.31
,31
.31
,26
,31
.26
200,
200,
200.
200
-------
FILfc FM
FILE FM
FILF FM
FILF F-l
FILE FM
FILE FM
FILE FM
FILE F-l
FILE FM
FILF. KM
FILF F-l
FILf K-l
FILE F-l
FILE FM
FILE F-l
EMOFILF FM
FILE F-2
8,0
0,0
FILE F-2
0,0
0.0
FILE F-2
8,0
0,0
FILE F-2
8,0
0,0
FILE F-2
ft.n
oio
FILE F-2
8,0
0,0
FILE F-2
8,0
0.0
FILE F-2
8,0
0,0
FILE F-2
8,0
0.0
FILE F-2
8.0
0,0
FILF. F-2
8,0
FILE F-2
8.0
FILE F-?
8,0
FILE F-2
8,0
FILE F-2
8,0
38
39
40
41
42
43
44
45
46
. '47
48
49
50
SI
52
2
1.0
0,0
3
1.0
0,0
5
1.0
0.0
6
1.0
0,0
7
< »0
0,0
8
1.0
0,0
9
1.0
0.0
11
1.0
0.0
12
1.0
0,0
13
1.0
0,0
14
1,0
16
1.0
17
1,0
IB
1.0
19
1,0
0,0
1 .9
2,7
0,0
?,3
3.6
/,9
0,0
3,6
0,0
6,1
0.0
7,2
0,0
0,0
4,
,03
0,0
36.
0.0
18.
0.0
12.
0.0
4.
= 03
0,0
4,
,03
0,0
36.
0,0
ia.
,03
0,0
4.
.03
0.0
60,
0.0
4,
,03
b.
.03
6.
.03
6.
..03
6.
.03
6.9
6 , 9
r>,0
2.3
2.3
1 6 / , 0
1M.2
156,3
1^.3
1'i 2 , 7
152,7
146,6
146,6
139,4
139,4
.006
0,0
0,0
0.0
0,0
,006
0.0
.006
0,0
0,0
,006
0,0
,006
0,0
0,0
,006
,006
,006
,006
.006
,02
0,0
.02
0,0
,02
0,0
,02
0,0
.n?
0,0
.02
0,0
.02
0,0
.02
0,0
,02
0,0
.02
0,0
.02
0,0
.02
0,0
,02
0,0
.02
0,0
,02
,03
0,0
.03
0,0
.03
0,0
.03
0,0
iO«
0.0
,03
0,0
.03
0.0
.03
0,0
,03
0,0
,03
0,0
.03
.03
,03
,03
,03
_
*21
2 i
t <=• i
-j *
t c i
j i
• r- \
\
1 1
i
• i
.071
,067
(17 1
. V / 1
,067
.071
• U f 1
,067
.071
. 067
0,
0,0
o,
0,0
0,
0,0
0.
0,0
n .
0,0
0.
0,0
0,
0.0
0,
0,0
0.
0.0
0,
0,0
0,
0,
0.
0,
0,
200,
0.0
200.
0,0
200,
0,0
200,
0,0
3i>rt
oio
200,
0,0
200,
0,0
200,
0.0
200,
0.0
000,
0.0
200.
200,
200,
200,
200,
201
-------
0,0
KILE F-2 20
8,0 1,0
KILE F-2 21
n.o i.o
FILE F-2 22
8,0 1.0
FILE F-2 23
8,0 1,0
3.
FILE F*2 24
0,0 1.0
,
FILE F-2 25
8,0 1,0
KILE F-2 26
8.0 1,0
1 ,0
KILE F-2 28
8,0 1.0
,8
KILE F-2 30
1, 200.
.65
KILE F-2 32
1 "> A rt
* t e. v v t
,6
FILE F»2 34
8,0 1,0
,3
FILE F-2 3b
8,0 1,0
,3
FILE F-2 36
8,0 1,0
.3
FILE F-2 38
1. 200.
100,
FILE F«2 39
8,0 1,0
100,
FILE F-2 41
8.0 1,5
5.1
FILE F-2 45
8,0 20,
4.7
FILE F-2 47
8.0 20.
1.6
FILE F-2 49
8.0 20,
1.8
FILE F-2 si
8.0 20.
".
.03
4.
.03
6.
.03
4.
.03
4,
.03
4,
.03
4.
.03
6,
.03
.3
.03
.3
,03
38.
3,
.03
1,
.03
.4
,03
7,
.03
6.
.03
4,
.03
4,
.03
4.
-.03
«.
.03
.006
,nofe
,006
.006
,006
,006
.006
,006
,006
„
,006
,006
.006
.006
.006
,006
,006
,006
,006
,006
.02
0,0
.02
0,0
,02
0,0
.02
0,0
.02
0,0
.02
0.0
.02
0,0
,02
30,
.02
0,0
, UC
0,0
,02
.02
,02
0,0
,02
,02
.02
,02
.02
0.0
,02
0,0
,02
.03 0,
.03 0,
.03 0,
.03 0,
,03 0,
,03 0,
.03 0,
,03 0.
,03 0,
, u i o ,
,03 0,
.03 0.
.03 0.
.03 0,
,03 0.
.03 0,
.03 0,
,03 0.
,03 0,
.03 0,
200,
20n,
200,
200,
200.
200.
200.
200,
15000.
1 booo,
200,
200,
200.
15000,
200,
200,
?00,
200,
200.
200,
202
-------
2.6
ENOF lit F-?.
HLE F-J
FILF F~3
FILE F-3
ENDFILE F-3
FILE F»a
FILE F"'4
FILE FnO
FILE Fn<4
FILK F-'l
FILE F»<4
FILE F-<4
FILF- F~a
FILE F-a
FILE F«a
KILE F-a
FILE F«4
FILF F-a
FILE F-a
FILE F-4
FILE F»'l
FILE F-a
FILE F-4
FILE F"4
FILK F-4
FILE Fn4
FILE F-a
FILE F-a
F T 1 C C _ /I
FILE F-a
FILE F«a
FILE F»a
FILE F-a
FILE F-a
FILE F-a
FILE F"4
FILE F«a
FILE Fttt
FILE F-a
FILE F-a
FILF F-a
FILE F-a
FILE F-a
FILE F-a
FILE F«a
FILE F-a
FILE F»4
FILE F-
-------
FILE H
ENDFILE H
FILE I
FILE I
FILE I
E'lfiULE I
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILF. J
FILE J
FILE J
FILE J
FILE J
f- \ i_ (-; j
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
EMOFRE J
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
ENOKILE K
FILE L
FILE L
FILE L
FILE L
ENOFILE L
1
2
3
1
2
4
6
8
10
12
14
15
16
1 ft
20
22
23
25
26
27
29
31
33
35
37
39
'10
42
43
44
46
48
50
52
2 1 2
1 0 1
1112
,01 .00001
22 9
52 50 43 4f> U" 43 15 1«
39 37 35 33 29 27 26 22
7 u 17 19 21 23 27 29
19.
117.
1,
13.
19,7
19.
19.
20.
17. S
16,5
10. 5
19,
19.
16,4
16,4
16, a
15,3
17.
17.
10.3
17,5
16.
16.
18.
16.7
17.
17.5
16,7
19.2
19,2
19.5
20,
,00001
10 8 6 1 42 40
37
204
-------
flit. A SPOKANE HIVF.H REOION
F.WRF. A
FIl.t 0
EMOFRE H
FILF- C
FRE C
FRE C
FRF. C
FRE C
E.NDF RE c
FRfc 0
FRF D
ENDFRE D
FRE E
9,0
0.
FRF E
9,0
0.
FRE E
9.0
4,
ENOFRE E
FRt FM
FRE F-l
FRE F-l
FRE F«t
FRE F-l
FRF: F-I
C T I C C— 4
FRt F-1
FRE F-1
FRE F-l
FRE F-1
FRE F-l
FRfc F-l
FRE F-1
FRE F-1
FRE F-1
FRE F-1
FILE F»l
FRE F.I
FRE F-1
FRE F-1
FRE F-1
FRE F«l
FRE F-1
FRE F-1
FRE F-l
FRt F-l
FRE F-l
FRF F.I
FRF F-l
FRE F-l
FRF F-l
FRE F-l
FRE F.J
FRE F-l
FRE F-l
FRE F«l
3
1
?.
3
U
'j
I 0
.9
?. 0
.8
3 0
.6
1
2
3
a
5
6
"1
t
8
9
10
11
12
13
14
15
16
17
Ifl
19
20
21
?.Z
23
?.H
25
26
?.1
28
29
30
31
32
33
34
35
36
37
2
i 2 :«
16 17 18
25 2 a 25
26 ?7 2R
') 3 14 4'j
2
1
.03
.03
.03
6.7
.2
0,0
2,6
0.0
7,«.
V f \J
4,0
0.0
2,5
0,0
2.0
0.0
3,5
1.1
4.1
0,0
3.6
0.0
1.9
0.0
b,5
2.4
0,0
4,n
1.3
.7
0,0
2,7
0.0
1.3
0.0
2.0
0.0
3,4
0,0
.9
NUMBER 2 StPTEMHf R. 1969
52 5 1
4 5 6 / 8 910111213
19 20 21 22
29 30 11 32 33 34 35 36 37 30
46 4/ 4U 49 50 51 52
1 4 5
234
,003 .1 .05
0,
.003 .3 ,05
0,
,003 .'3 .05
200,0
193.3
193,1
193,1
190.5
1 ') 0 ; S
1 " <- > "
l'J2.9
178,9
178,9
176,4
176.4
172.4
172.4
168,9
34,2
30,1
30,1
26,5
26,5
24.6
24.6
6.4
«,0
4.0
I'M
17,8
17,1
17,1
1 4 , (1
l'J.4
13,2
13.2
11.2
11.2
7.8
7,8
2250.
14 15
39 40 41 U2
.142
,142
.142
.142
,142
; i « 2
, 142
.130
,130
.123
,146
,121
.155
.14
,14
,65
.5
,425
,5
,425
,52
,4
,52
,310
,31
,51
,31
.31
• 31
.31
,31
,31
,26
.31
.26
205
-------
FILE F-l
FILE FM
FILE F-l
FILK f-"l
FILE F"l
FILK FM
FILK f-"l
FILE F«l
FILE FM
FILE F-l
FILL F-l
FILE F-l
FILK (--I
FILE F-l
FILE F-l
KMOflLE F«
Flit F»2
9.
0.0
FILE F»2
9,
0.0
FILE F»2
9,
0,0
FILF f-'.a
9,
0,0
FILE f->2
rv
0,0
FILE F-2
".
0,0
FILK F-2
9.
0,0
FILE F«2
9.
0,0
FILE F-2
9,
0.0
FILE F-2
9.
o.o
FILE F-2
9,
0,0
FILE F-2
9,
0,0
FILE F»2
9,
0.0
FILE F»2
9.
0.0
FILE F*2
"»,
38 0,0
39 1.9
40 2,7
'11 0.0
42 ? , 3
43 3.6
44 7 . 9
45 0.0
'4 b 3 . 6
• 47 0,0
48 6.1
49 0,0
50 7,2
51 0.0
52 6.0
1
2 3,
1,0 .07
3 30,
1,0 ,07
5 14,
1.0 .07
6 9.
1,0 .07
7 4,
* • V | V 1
8 4,
1,0 .07
9 30,
0.0 .07
11 14.
1.5 .07
12 ').
1.5 ,07
13 50,
1 , 5 2,0
14 4,
1.5 .07
16 4,
1.5 ,07
17 4,
1.5 .07
18 0,
l.S ,.07
19 4.
1.5 .07
6.9
u t T
6,9
^ fi
J • U
P 2
C 9 -1
P 1
r~ ft J
1 h 7 fl
1 \> i y r>
1 A /I 3
1 n '•» t i\
156,3
156,3
152.7
lr'2.7
146,6
146,6
139,4
139,4
.004 0,0 0,0
,004 0,0 0.0
.004 0,0 0,0
,004 0.0 0,0
,004 O.C 0.0
.004 0,0 .03
.004 0,0 .03
,004 0,0 ,03
,004 0,0 .03
,004 0,0 ,03
,004 0,0 ,03
,004 ,2 ,07
,004 ,2 ,07
.004 ,2 ,07
,004 ,2 ,07
.31
,21
.?!
,21
,?1
.1
,1
.071
,067
,071
,067
,071
,067
.071
,067
206
-------
0,0
FILE F-2 20
9. 1,5
0.0
FILt F-2 21
9. 1.5
0.0
FILF F-2 . 22
9,5 1.5
0,0
FILt K"2 23
9.5 1.5
4.0
FILF. F"2 24
9.5 1.5
4.0
FILE F*2 25
9.5 1.5
4.0
FILE F-2 26
9.5 1.5
2.0
FILE F-2 28
9,5 1.5
2,0
FILF. F-2 30
9. 3 75.
2,0
FILF F-? V
9.8 75.
2.0
FILE F-2 34
9.5 1.5
2.0
FILF F-2 35
9.5 1.5
2.0
FILE F-2 36
9.5 1.5
2.0
FILE F-2 30
9.5 75.
0,
FILE F«2 39
9.5 1.5
310,
FILE F-2 «1
9.5 1.5
0.0
FILE F-2 «5
9.0 20.
0.0
FILE F-2 «7
9,0 20.
0,0
FILE F.2 49
9.0 20.
0,0
FILE F-2 51
9,0 20,
" ,
.07
4 ,
,07
4 ,
,07
4 ,
.07
4 .
.07
n.
.07
4 ,
.07
4 .
.07
.3
.07
,3
,-7
32,
.07
3.
,07
i\ ,
.07
,4
,07
5.
.07
1.
15.
,07
,07
,•07
4.
.07
,004
,004
,004
,004
.004
,004
.004
.004
,004
,004
,004
.004
,004
,004
,004
.004
.004
,004
,004
,004
.2
,2
.2
1,0
1.0
1.0
,3
,3
10,
,3
, j
,3
,3
,3
.3
,3
,3
,2
,2
,2
,2
,07
,07
.07
.07
.07
.07
.07
.1
,1
• i
• 1
.1
12,
12.
12,
12,
,03
,03
,03
,03
207
-------
0 ,0
ENOFILE F-2
FILE F«3
FILE F~3
HIE F«3
KNOT II. E F*3
FILE. f»H
FILE F>4
FILE F«4
FILE K»4
FILE F«1
FILE Fi»«
FILE F'»«
FILE F»4
FILE F«4
FILE F»4
FILE F--4
FILE F»4
FILE F"4
FILE F«4
FILE Fn4
FILE F»4
FILE F*4
FILE F«4
FILE F'«a
FILE F»4
FILE F«"
FILE F-a
FILE F-'i
F I L C f • M
FILE F"4
FILE F-4
FILE Fi4
FILE F-a
FILE F«4
FILE F«a
FILE F«4
FILE F"U
FILE F-4
FILE F«4
FILE F»4
FILE F-a
FILE F»4
FILE F«a
FILE F»4
FILE F*a
FILE F«4
FILE F««
FILE F»a
FILE F*a
FILE F-
20
21
22
23
CH
25
26
27
26
27
28
29
30
31
32
33
3U
35
36
37
38
39
«0
«1
42
43
44
45
46
47
48
49
50
51
52
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
T
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2,5
2.5
04110 70 r.'lUS
r.'M I'.i TO PRITCHARI) C
PHITCH1RD CHFEK
PMTCHARD C TO I3EAVH
BFAVtH CREEK
HEAVf.R TO r.PAHM CHK
OHftHM C^EfcK
r.RAHM TO STE-AMBOAT
S ft AMH(HT TO ,',-F-C
SMITH- FALL-COUGAR C
S-F»C TO >J KOKK
N KDPK COF.UR D'ALtNE
H FORK TO G4130
G4130 TO S FRK COAL
DF ADMAN GULCH
OEAO TO HUMTtR'S G
GOLD HUNTERS GULCH
GOLD TO SLAUGHTER
SLAUGHTERHOUSE CF(EFK
SLTHOUS TO CANYON c
f',6.') TO GEM OUTFALL
i»K" diiTr ALL
GEM OUTFALL TO S FRK
CANYON C TO G4131.S
GU1M.5 TO LAKE CRK
CANYON C TO G4131,r)
G4131.S TO LAKE CRK
LAKfJ CREEK
LAKf- C TO SH.VKHrON
SILVERTON OUTFALL
OUTFALL TO OSOUHN 0
OSBURN OUTFALL
OUTFALL TO BIG CRBEK
BIG CREEK
BIG CREKK TO MILO C
MILO CREEK
MILO TO KELLOGG OUT
KELLOGG OUTFALL
OUT TO Gai33
R4133 TO PINE CREEK
HIKE CREEK
PINE C TO CDALN RIV
S FRK TO G«135
G'113'5 TO a JULY CRK
4TH OF JULY CREEK
4JULY C TO ROSE CRK
ROSE CREtK
ROSE C TO KILLARNEY
KILLARNEY OUTLET
KILL 0 TO BLACK LAKE
BLACK LAKE OUTLET
OUT TO CDALENE LAKE
,H7
,J37
,1 47
,n7
, 1 J7
,137
,147
,1^7
, 155
,131
,t62
,168
,112
.112
,140
,140
, I'^a
,140
,iya
,140
,140
,21
,191
,191
,191
,191
.191
,191
,191
,191
,191
,191
,191
,194
,200
,200
,200
.215
,222
,270
,236
,'53
,146
,600
.215
,600
.215
,600
,21'5
.600
,215
208
-------
ENDFILE Fi
FMOFILE G
FILE H
ENDFILfc H
FILE I
FRF I
FILE I
EMOFIlt 1
FILfc J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILK J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE J
FILE j
FILE J
Flit J
FILE j
FILE J
ENDFILE J
FILE K
Fiie K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
EMDFILF- K
FILE L
FILE L
FILE L
FILE L
ENDFILF. L
^0
i
2
3
1
?
0
6
8
10
12
10
IS
16
18
20
22
23
25
26
27
29
31
33
35
T7
39
40
02
03
00
06
08
50
52
.01
22
52
39
7
.010
.010
. n t a
ioia
,010
.010
202
1 0 1
1112
,00001
B
50 08 06 00 03 15 10
37 35 35 29 27 26 22
11 17 19 21 23 29 37
17.
100,
1.
13,
13.5
13.5
13.5
13.5
1.5.5
13,5
10.
10,
10.
8.0
8,0
8,0
8,0
8.0
0.0
8.0
8.5
3.7
8,6
8,5
8.8
*i3
8.5
11.
10.
15.
16.
16.
16.2
16.5
17.5
,000001
10 8 6 1 U2 00
209
-------
FILE A R
KNOFILK A
FILE U
ENOFILE Q
FILE C
ENDFILE C
FILE 0
ENOFILfe' D
FILE t
.150
FILE E
7.0
.08
ENOFILE E
FILE FM
FILE rM
FILE KM
FILE FM
FILE FM
FILE FM
FILE FM
FILE FM
FILE FM
FILC FM
FILE KM
FILE FM
p ! L t" F - 1
FILE FM"
FILE FM
FILE FM
FILE FM
FILE F»l
FILE FM
FILE FM
FILE FM
FILE FM
FILE FM
FILE FM
ENDFILE F
FILE F«2
IVl-R
1
2
3
1
2
M
RtGION 3 AUG 1969 PHASE 3
2'4
0
0
1
2
3
u
<3
b
t
8
9
10
11
12
< 2
11
15
16
17
18
19
20
21
22
23
21
1 2 3
17 18 19
22 23 21
t
,01
. 01
".1
o.
1.5
0.3
3.1
2. 25
0,
2,55
5.2
3.9
1 .6
2,3
1 7
2^0
1.3
.5
7.12
12.68
5.7
13.7
.8
8,2
6, 1
1,1
1 5 i
20 21
1
.01
.2
.01
,10
110,7
106,6
106.6
102.1
101.0
98,7
96,15
96,15
93 ,9
88,7
81,8
80.2
7 7 _ 0
76.2
71,2
72.9
39,0
32,88
20,2
11.5
.8
72,1
61,2
58,1
1
9 10 11 12 13 11 15 1ft
1850,
,03
2.
,01
1,0
t05
10
,111
,111
.111
.111
.111
,111
.111
.111
.051
,0'Sl
,051
.(IS I
. V J *
.051
.051
.051
,051
,051
,051
.051
.051
.051
,051
,051
2-50,
FILE F-2
8,0
.110
FILE F-2
619.
,06
7*132.
.01
1.0
.0
FILE F.2
7,8
0.
FILE F.2
7.0
o.
FILE F-2
7,0
o,
10120,
.08
11120,
.2
1260.
.2
.01
1.5
.01
1.5
.01
l.S
.a
15,0
.8
15.0
.8
15.0
.3
.3
.3
210
-------
FILE F-2
7,0
FILE F-2
7,0
fl
u ,
FILE F..2
7,0
FILE F-2
7,0
FILE F-2
7,0
,00
FILE F*2
7,0
.08
FILE F-2
7,0
,08
ENDFILE F-2
ENDFILE F-3
FILE F-4
FILE F-4
FILE F«4
FILE F-4
FILE F-4
FILE F*4
FILE F-'J
FILE F-4
FILE F-4
FILE F-,4
FILE F»4
FILE F-4
FILE Fail
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F»4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
FILE F-4
ENDKILfc" F»4
ENDFILE G
FILE H
ENDFILE H
FILE i i
FILE i 2
ENDFILE i
FILE J 5
FILE j 6
FILE j 9
FILE j 2«
ENDFILE j
FILE K
i
2
3
4
5
A
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1350,
,2
1450,
,2
1540,
,2
1620,
,i>
22170.4
.2
23130.
.2
2430,
.1
2
2
2
2
2
?_
->
2
2
2
2
2
2
2
2
2
2
Z
2
2
2
2
2
2
0. 0.
0, 0.
0, 0,
.01 ,0
l.S 15,
, o 1 , a
1 * S 1 s n
* » 1 •' f V
.01 ,o
1.5 15,
,01 .H
1.5 15,
.01 ,8
1.5 15
* • "' A J §
.01 ,fl
1.5 15
* * "* i J |
,01 ,()
1.5 15.
STORET - HATH CANAL
RATH CAN RT. SOURCE
RATH CAN »POST FA DM
POST FA DM - STOHFT
STOKET - STOR 98,7
STOR 9fl,7 - F\_()HF.
r- 1 1 1 1 1 c n T c i~\i 1 1 1 r c.
FLUME " USGS LTJ DR.
USGS LIB - rtATLRFALL
WATFAL - GS TRENT FJR
GS TR BR - SPOK DAM
SP DM - USGS GKEtNE
GS GRfc - UP FALL3 DM
UPFAL DM « MON ST DM
MO ST DM . USGS SPOK
GS SP n JUNCTION
DEEP CR -RATTLER RUN
RAT RUN •, SPAi-Gl.f- CR
SPGLE CR •> STf-VtN CR
STEV CR «• USGS SPOK
GS SP - JUNCT,
JUCT - USGS 7 MI HR
7 MI BR * 9 Ml 0AM
9 MI DAM - SP.56,7
0, 0, 0. 0, 0
0 , 0 , 0 , 0, 0
0. 0 , 0 . 0 . 0
.3
.3
.3
.3
.3
.3
I ^
.3
,145
,14',
,145
,145
,145
. ?so
t *.- --1
~» r r\
f c- -> f
.259
.259
.315
. M5
| ' i -i
.315
,315
,315
,315
,315
,315
.315
, M5
,315
.315
,315
.315
,315
0.
0,
, 0.
.
n« 0, 21,1 0.
0, 0, 1023,0.
0. 0. 16. 0,
2 1 . 5
C. 1 | J
2 1 5
C. I t 1
23,0
18.5
1 -1 I J
211
-------
FILE K 0 n
FILE K 111
FILE K 1112
FILF- K
FILK K
FILE K
FILE K
FILF. K
FILE K
FILE K
EMPFILE K
FILK L 2U 0
FILF L i 2 3 « s 6 7 « 9 10 11 12 n
FILF- L lr> 16 17 18 19 20 ?1 2? 23 2H
FILF L 7 17 19 21 2.5 29 35 T7
ENOFILE L
212
-------
FILE A RIVER HFGION 3
F.NDFILE A
FILK >3 2
ENOFILE B
SEPT 1969 PHASE
2'4
FILE C 1
2
3
F.MOFILE c
FILE D
ENOF1LE 0
FILE E 1
9,0
,2
FILE E 2
7.0
,2
ENDFILE E
FILE F-l
FILE F«l
FILE FM
FILt F«l
FILE Fi-1
FILE F-l
FILE F»l
FILE F«l
FILE FM
PILE F-l
FILE F-l
FILE F-l
FILE F*l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILE F-l
FILt Fnl
FILE F«l
FILE F-l
FILE F-l
ENOFILE F-l
FILE F-2
0
0
1
2
3
u
5
6
7
8
9
10
11
13
I <
14
15
16
17
18
19
20
21
22
23
24
1 2 3
17 in 19
22 23 24
1
.Ot
,oa
«.l
0,
4, '3
0.3
3,1
2,25
0.
2.55
5.2
3,9
U,6
253
< 'i
* t i
2,0
1.3
.5
7.12
12.60
5.7
13,7
.8
8,2
6.1
1.4
2«50,
4 5 (
20 21
1
,001
.4
^^-
.01
,40
110,7
106,6
106,6
102.1
101.8
98,7
96. U5
96, «5
93,9
88,7
80.0
no,?
-I 't n
tit'
76.2
74,2
72,9
39,0
32,88
20,2
It, 5
.8
72.4
64,2
58.1
1
7 « 9 in 11 12 13 I/I J5 16
1850,
.05
,04
,04
10
,114
,iia
,ua
.114
.lit
,114
.114
,051
,OS1
.051
,0^1
. C j i
.051
,051
,051
,051
.051
.051
,051
,051
,051
.051
,051
FILE F-2
8,8
.14
FILE F«2
619,
.02
7-130.
.001
1.0
.04
,0
FILE F«2
7,0
.10
FILE F.2
7,0
.10
FILE fmZ
7,0
.10
1064.5
,08
1196,
,3
1250,
,3
,01
1,0
.03
1.5
.03
1,5
.1
.3
.3
.1
.3
,3
213
-------
PILE F-2
1330,
7,0
.10
FILE F«-2
7,0
,10
FILE F-2
7,0
.10
FILE F-2
7,0
.10
FILE F«2
7,0
,10
FILE F-2
7.0
,10
FILE F«2
7,0
.10
ENDJ-'ILE F - 2
ENOFILE F-3
FILE F«U
FILE F»4
FILE F«iU
FILF; F-a
FILE F»4
FILE F-a
FILE F«a
FILE F.a
FILE F»a
FILE F-a
FILE F-a
FILE F-a
FILE F»a
FILE F»a
FILE F.a
FILE F<4
FILE F-a
FILE F-0.
FILE F*a
FILE F»a
FILE F»a
FILE F«a
FILE F-a
FILE F.a
ENOFILE F-a
ENDFILE G
FILE H
ENDFILE H
FILE 1 1
FILE i 2
ENDFILE I
FILE J 5
FILE j 6
FILE j 2a
ENOFILE j
FILE K
FILE K
.3
l a nri ,
,3
1530,
.3
1625.
,3
22133,
.3
23100,
,3
2420 ,
,3
1
2
3
a
5
6
7
6
9
10
11
12
13
la
15
16
17
18
19
20
21
22
23
24
0.
0.
0,
2
2
f
2
2
2
?
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0,
0.
0.
,03
1,5
,03
1,5
,03
1,5
,03
1.5
.03
1,5
,03
1.5
.03
1,5
STORET
RATH CA
RATH CA
POST FA
STORET
STOR 9fl
Fl IJMF. P
FLUME "
USGS LI
WATFAL
GS TR B
SP DM *
GS GRE •
UPFAL D
MO ST 0
GS SP *
DEEP CR
RAT RUN
SPGLE Cl
STEV CR
GS SP *
JUCT - l
7 MI BR
9 MI DA1
0. 0,
0, 0.
0, 0,
0
,3
,3
,3
,3
.3
,3
,3
.3
.3
,3
,3
.3
,3
,3
* STORET
TOR 9H,7
F
ou
S
) i WATERFALL
• GS TRtNT BR
< - SPOK 0AM
USGS OREENE
. UP FALLS DM
1 - MQNJ ST DM
1 - USf.S SPOK
JUNCTION
-RATTLER RUN
B SPANGLE CR
i - STEVEN CR
- USGS SPOK
JUNCf,
JSGS 7 MI SR
« 9
0.
.145
-P'iO
.315
.315
.315
,315
,315
,315
.315
.315
,3(5
,315
,315
.315
.315
.315
.315
o, o,
0,
0. 0, 0. 0.
0, 0, 0, 0,
o,
o,
o.
0, 0,
o,
0.
o,
ft.
17,
1560,
16,
17,7
17,7
15,6
13
214
-------
FILE K 1 1
FILE K 1112
FILE K
FILE K
FIU K
FILE K
FILE K
FILE K
FILE K
ENOFILE K
PILE L 2
-------
fill A RIVER REGION U LHTLE
FILE. B i
eNOFILE 8
FILE C 1
F.MOFILE C
PROFILE 0
FILE E 1
9,8 .a
ENDFILE E
FILE FB!
FILE F-l
FILE Fnl
FILE FM
FILE F-l
FILE F«l
FILE F»l
FILt F»l
FILE F-l
FILE F-l
FILE F-t
FILE K»l
FILE F.J
ENOFILE FM
FILE F-2
9,0 .6
FILE F-2
8.0 .55
FILE F-2
8.0 ,55
ENOFILE F-2
ENDFILE F-S
FILE F*U
flit: F«a
FILE F-a
FILE F»«
FILE F»a
FILE F«4
FILE fmu
FILE F««
FILE f"H
KILE F»a
FILE F«'4
FILE F»a
FILE F-U
ENOFILE F-0
ENOFILE G
FILE H
ENDFILE H
FILE I 1
ENDFILE I
FILE J 1
FILE J 2
FILE J 3
FILE J 0
FILE J 5
0
1 ? 3
0
1 s.o
2 1,7
3 1.9
« 9,7
S 7.8
t, ,a
7 ,0
8 1.7
9 .6
10 2.9
11 A , 0
12 3.8
13 ,1
760,
10125,
0-
11125,
0.
1 2
2 2
3 2
4 £
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
,0 .0
,0 .0
13 1 \
't 5 6 7 0 910111213
.7 ,01
,3 1,2
37,6
30,6
32.9
31,0
21.3
13,5
13,1
13,1
n. a
10,8
7,9
3,9
.1
1.5 .01
,1 3,fl
-hO ;pQ
,2 2,0
1.5 ,03
.1 2,5
LSP 37,6 * DRY CR 115
DRY CR " WB LIT SP 115
WB LIT SP * LSP 31,0 115
LSP 31,0 - HRAGON CR 115
DRAT, CR-LSP13.5 115
LSP13.5.-OEAPMAN CR 115
DEADMAN CR PT SOURCF. 115
DEADPAN CR - STOHET 115
STORET •< LITTLE CH 115
LITTLt CR f WPO3 115
WPC-3 - USGS N DART 115
USGS N DART - LSP .1 11
-------
FILE J
FILE J
FILE J
FILK J
FILE J
FILE J
FILE J
KILE J
F.MPF1LE J
FILK K
FILK K
FILt K
FILE K
FILE K
FILE K
FILE K
FILE K
PILE K
FILE K
FUF. K
KNOFILE K
FILE L
FILE L
FILE L
ENOFILE L
b
7
8
9
10
11
12
13
,000001
13
1
7
0
0
2
11
1-1.9
14.9
l'l,9
l'J.9
Jfl.o
12.9
12.5
12.3
1 ti
1 1
.000001
« 5 6 7 8 9 10 It 12 13
21 23 27 35
217
-------
FILE A RIVER REGION 4 LITTLE
ENDFILE A
Sf-'OKANt All(3 11-GEPT10 PHASE 3 I960
FILF. B 1
E'-'DFTLE 3
FILE C 1
ENOFU.K C
ENDFILE D
FILE E I
9.8
ENDFILE E
FILF F»l
FILE F«l
FILE Fil
FILE F«l
FILE F»l
FILE F-I
FILE F»l
FILF. F«i
FILE FM
FILE F-l
FILE f*l
FILE F*l
FILE F*l
ENOFILE F-l
FILE F-2
9.7
FILE F«2
8.0
FILE F«2
8.0
ENDFILE F»2
ENDFILE F»3
FILE F»4
FILE F-4
FILE F*4
FILE F««
FILE F-4
FILE F»4
FILE F-4
FILE F-4
FILE F-4
FILE F«4
FILE F«4
FILE F-4
FILE F«4
ENDFILE F»4
ENDFILE G
FILE H
ENDFILE H
FILE I 1
ENOFILE I
FILE j i
FILE J 2
FILE j 3
FILE J 0
FILE J 5
0
1 2 3
0
1 3.0
2 1.7
3 1.9
4 9,7
•5 7.8
6 .4
7 .0
8 1.7
9 ,6
10 2,9
11 4,0
12 3.8
13 .1
770,
10125.
11125,
1 2
2 2
3 2
4 2
5 2
6 2
7 2
6 2
9 2
10 2
11 2
12 2
13 2
.0 ,0
.0 ,0
.13 1 1 2000,
4 5 6 7 H 9 10 11 !Z I'l
.1 ,01 400,
,20 2,0
37,6 , A 1 8
34,6 ,410
32,9 .Ulfl
31.0 .418
21.3 ,418
1 .5 . S .418
13,1 .418
13.1 .418
11,4 .418
10,8 ,418
7,9 ,418
3.9 .418
,1 .«18
.12 .01 6000,
,55 1,5
.20 ,02 4000,
.40 1,0
.15 .01
,2S 1.0
I.SP 37.6 - DRY CR ,J47
DRY CR • WB LIT SP ,147
WB LIT SP •» LSP 31,0 .147
LSP 31 .0 " DRAGON CK ,147
DRAG CR-I.SP13.5 ,147
LSf'l3,b*Dfr.AOHAN CR ,147
DEADMAN CR PT SOURCE ,147
Df-ADHAN CR " STORF.T ,147
STURFT - LITTLE-- CR ,147
1 ITTL.i- CR - KHC-5 ,147
WPC-55 » USGS N DART ,147
USGS N DART • LSP ,1 ,147
LSP. I - LONG LAKE .147
.0 .0 ,0 ,0 ,0 ,0 .0 ,0 .0 14,1
,0 ,0 ,0 .0 ,0 ,0 ,0 .0 ,0 50,
, c C
l b • ^
it C
1 O i 3
i /i a
1 4 t J
, f- A
15,0
15.0
218
-------
FILE J ft
FILE J 7 - *'
FILE J 8 *'
FILE J 9 5'
FILE J 10 \l*
FILE J 11 £
FILE J \2 £•
FILf J 13 *'
E'JOFILE J l£!i
FII.F: K
FILE K 1 15
FILE K Oil
FILE K
FILE X
FILE K
FILE K
FIL-F- K ,000001
FILE K .000001
FILE K
FILE K
ENDFILE K
FILE L 13 7
FILE t i 2 3 « 5 6 7 8 9 10 11 13 13
FILE L 7 17 21 ?3 27 i5 .J/
ENDFILE L
219
-------
FILE A
ENDFILE
FILS- 0
E N D 1- 1 L E
FILE C '
ENDFILE
ENDFILE 0
FILE E
-------
FILE K
FILE K
FILE K
FILE K
FILL K
FILK K
ENDFILE
FILF. L 9 10
FILE L 987634321
FILE L a. 7 17 19 21 23 ,\1 ?,9 15 37
ENDKILE
221
-------
FILL A
ENDFILE
FILE B
f." M h !•" T 1 (•*
C 'N L* r JL L, r.
FILE C
ENDFILE
ENDFILE 0
FILE E
4.8
,040
ENPFILE
FILE Fnl
FILE F-l
FILE F-l
FILE PM
FILE F«l
FILE F-l
FILE F-l
FILE F-l
FILE F»l
ENDFILE
FILE F-2
7,0
FILE F-2
7.0
FILE F-2
7.0
FILE F-2
7.0
FILE F-2
7,0
ENOFILE
ENDFILE
FILE F««
FILE F-4
FILE F-4
PILE F-.4
FILE F«4
FILE F-4
FILE F«'4
FILE F-.4
FILE K-4
ENDFILE
ENDFILE
FILE H
ENDFILE
FILE I
ENDFILE
ENOFILE
FILE K
FILE K
FILE K
FILE K
FILE K
FILE K
NIVER REGION 5 3tPTf.MHi.Ri 1971 PHASE 3
1 0911
1 125456789
1 0
.11 ,025 ,75 .085
.19 2.4
1 0,3 33,9
2 1,1 35,6
3 0,0 32,5
4 ,7 32,5
5 0,0 31,0
6 2.5 31,8
7 1.1 29,3
fl 0.0 P.8,2
9 4.2 28,2
3 29,0
S 1.0
7 40,0
0 1,0
9 160,0
1 2 USGS STN LOME LAKE .'46
2 2 LONG LAKE TO CHAM CR .96
3 2 CHAMOKANF. C1* ,46
4 2 CHAM CR •» LL CHAM CR .46
5 2 LIT CMAMOKANE CM .46
6 2 LL CHAM CR* LL FALLS .80
7 2 LL FALLS - SPRING CR ,46
8 2 SPRING CR ,46
9 2 SPRING CR •» FOR LAKE .46
,0 ,0 .0 ,0 ,0 ,0 ,0 .0
1 ,0 ,0 ,0 .0 .0 .0 ,0 ,0
1 13
1 1 1
1112
1325.0
'I .'550,0
.038
.038
,038
.038
.019
.050
.038
,038
.0 ,0 .0 17.1
,0 ,0 ,0 2816
222
-------
FILE K
FILE K
FILE K
PILE K
FILE K
ENDKILE
FILE L 9 10
FILE I. 90765'! 321
FILE L a 7 17 19 21 2J 2.1 29 45 37
ENOFILE
223
-------
STOHM MTUft RECEIVING MODULE
1
0 24
21 22 23
y c r r T w T M
^toC-IV I "J
QUANTITYOUALTTY
RECEIVING XATF-.U MODULE
SYSTEMS CONTROL. INC, SPOKANE FiASIN
KIVf.R REGION 1
A.UG 16 - StPT 16,1971
0 0 1
4 24, 1, 300. 0, 10 9 0
1234
9 10
12 23 38 '15
9 10
732.6 2126,88 1 ,
-------
4
10.
10.
5
9,7
9.7
6
9,5
9,0
7
9.3
9,5
3
9.4
Q . n
9
9,4
9,0
10
9. a
99999
.014
•1 ,3
4.
•1 ,3
/i
" .
.014
,1 ,2
4,
.1 .2
4,
.014
,1 .2
4,
,1 .2
4,
,014
.1 .2
4,
,1 .2
4,
,014
.1 .02
10,
< n
> . . "
10.
,014
.1 ,02
10.
.1 ,0
10,
,014
,1 ,02
10,
2'l,
.02 6dO.
»02 600,
23.
,01 300.
• 01 0.
,01 100,
.005 0 .
.01 50,
,01 0.
.02 50,
A n *
• v "• 0V
.02 50,
.04 .0
,02 50.
1 15 0 0 1 1 1 I 2
.0
,0001
ENDPROGFUM
225
-------
STORM WATF-R RECEIVING MODULE
1
0 24
21 22 23
RECfclVIN
QUANTITYOUALITY
RECK IV IMG dATER MODULE
SYSTEMS COMTKOLf
RIVER
INC, SPOKANE (3A3IN
REGION 2
AUGUST, 1969
0 0
6 24, 1, 300,
1 4
12 23
910 1011
17 18 19 19
25 26 26 27
533,46 212;, 23
1 4 S 0 0 ,
24150,
33400.
43316,
53400.
62766,
72560,
82430.
92540,
102266,
1 t 2?36 ,
i D :> « n '9
iC.^ i •-• < ,
132487.
142462.
152400.
162567.
172279,
182243.
192220,
202190.
212163.
222160,
232141.
242137.
252136,
262133,
272130,
202128,
999999999999999
1 1 2
223
336
445
556
667
778
889
9910
10 10 11
11 11 12
12 12 22
13 13 14
1
0, 6 27 0 0,
6 13
36 45 5
1112 12 22 14
19 HO 20 21 21
27 20
1.4
9,0
17,
7,0
7,0
18,
7.0
2,
29.
,5
12.
7,
-f
1 t
110.
5.
29.
24,
10.
29.
19,
52.
0,0
2.
5,
7.
5.
15,
3,
0.0
4.1 10.
5.5 20,
5.5 22,
2,2 10.
4,0 20,
4.7 34.
3.2 34.
2,3 36.
2,0 34,3
1,8 49,3
2,8 33,5
2.3 36.4
2,0 112.1
0.
22
6
14
22
6
14
22
1
28
7
15
23
7 8
15 16
23 24
.44
,r>7
,66
,40
,53
1,03
1.03
1.25
1.3
1.4
1.8
1.9
0.9
.10
,09
,09
,10
.10
.09
,08
,08
0,07
0.08
0,09
0.08
0,07
28
8 9
16 17
24 25
1.59
1.84
1,86
1,50
1,81
1,56
1,67
1.87
1.97
1.36
1,37
1.41
.93
226
-------
14 14
13 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
?Jl 24
25 25
26 26
27 27
15
16
17
13
19
20
21
22.
23
<>4.
25
26
27
20
999999999999999
ENDQUANT
0 1
10
244
1
9.5
9.5
2
9.5
9,5
3
9,5
1.
9,5
,1
4
9.5
9,5
5
9.5
4.0
9,5
2,0
6
9,8
1,5
9,8
.3
r
10.1
2.3
1
2250,
1.3
1,3
1.3
1.3
1.3
0,0
1.3
1.3
1.3
1.4
0.0
1.4
1,4
0.0
i.a
0,0
1,6
0,0
SO
17.5
.07
.07
.07
0,0
.07
.07
0.0
.07
0.0
.07
0,0
u
?.
7
U
?
a
3
t
3
7
3
6
7
8
,9
,6
,6
,0
,/.!
,1
.1
.5
,6
.9
,6
.1
,2
.1
114
117
123
125
I? 7
1?6
1 56
134
150
l'>7
159
15-7
161
160
,7
,3
.0
.0
.3
.7
,6
,5
,2
.1
.2
.rj
,8
,2
1
1
1
I
1
1
I
?.
2
U
4
4
u
,9
,0
,t
,?.
.3
,1
.6
,6
,«
,7
.0
.0
.1
.1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
,07
,07
,06
,07
,07
.06
,09
,0
-------
9.8 35,
1.0
8
10,3 1.7
1,5 0,0
10,3 1.7
1.0
9
7.9 1.9
1,2 0.0
8,0 3'J,
1.
10
9,fl 1.5
2.0 0.0
9,8 1.5
1.
11
8,7 1.6
1U.O 0,0
a,7 1.6
100,
\2
8,7 1.6
7.0
8,7 1.6
2,
13
9,1 1,0
9.1 1.0
l«
9,1 1.0
9,1 1.0
15
9.1 1.0
9,1 1.0
16
8,9 1.0
8.9 1.0
17
9,3 1.7
,07
.07
0,0
.07
.07
0,0
.07
.07
0,0
.07
.07
0.0
.07
,07
,07
.07
.07
.07
,07
.07
.07
,07
.07
.07
,003 ,33
.003 ,20
0,0 , 'i
,003 ,2«
,003 .12
0,0 ,5
,003 ,12
.003 ,12
0.0 ,50
,003 .12
,003 .20
0.0 1.0
.003 ,20
.003 :12
.003 ,12
,003 ,12
,003 ,12
,003 ,12
,003 ,12
,003 .12
,003 ,12
,003
,003
,003
,1S 0,0 15000,
18.
.OR 0.0 0,0
0.0 0,0 0,0
,08 0,0 0,0
16,7
, n a o.o o.o
0,0 0,0 0,0
1,0 0,0 15000,
17.
,30 0,0 0,0
0,0 0,0 0,0
1.0 0,0 0,0
17.3
,76 0.0 0,0
0,0 0,0 0,0
1,0 0,0 0,0
17,3
.76 0.0 0.0
,76 0,0 0.0
19.7
,03 0,0 0,0
,03 0.0 ' 300,
19,7
,03 0.0 0,0
,03 0,0 0,0
19.7
,03 0,0 0.0
,03 0,0 0,0
20,
17. S
228
-------
9,3
18
8,8
3,3
19
8,8
8,8
20
8,8
8,8
21
a. a
22
3.6
7,0
8,6
7. n
23'
9,2
1.7
9.2
10,
21
8,9
6.0
8.9
25
9.3
3,0
9.3
10,
26
9.3
3.7
9.3
27
9.3
2.6
9.3
1.7
,5
,5
.5
.6
1,3
,6
1.1
0.0
1.1
1.2
1.2
1.2
20,
1.1
20,
1,6
20,
1.6
0.0
20.
.07
,0/
,07
.07
.07
.07
.70
,07
.07
0.0
.07
.07
.07
.07
,07
.09
.09
.09
.09
..09
0.0
.09
,003
,00:5
,003
,003
,003
,oo;s
,003
,003
,003
0,0
.003
,003
.003
,003
,003
,003
,003
.003
,003
,003
0,0
.003
0,0
0,0
0,0
0,0
0,0
0,0
0,0
.12
0,0
.12
.20
,21
.05
,05
,21
,24
,12
,12
0,0
1,5
0,0
,02
,02
.02
,02
,0«
,OU
,06
.7
0.0
,7
,16
.16
,01
.01
.15
,15
,25
,2'j
,06
0,0
.06
18,
in.b
13,5
300,
19,
19.
0,0 0,0
0,0 0,0
0:0 0,0
17.5
16.7
0.0 0.0
19.2
0.0 0.0
19.2
0.0 0.0
19.5
0.0 0.0
0,0 0,0
0.0 0.0
229
-------
9.3
2.6
999
0 0
1,6
0,0
2 1
.09
0,0
0 1
.003
0.0
i 1
0,0
1.5
t ?.
,06
0,0
20.
•01 ,000001
ENDPROGHAM
.1
.000001
230
-------
STORM WATFR RECEIVING MODULE
1
0 24
21 22 23
HECUVIN
UUANT1TYQUAL
R E C F
ITY
I V IN G »' 4
SYSTt-MS CONTWOLt
R I V r R
rpf* MODULE
INC. SPOKA
HKGIOII 2
MK BASIN
S.f- PTIiMIJEKi 1969
0 0
6 24,
1
1 2
9 10
17 10
2ci 26
533,46
14800,
24150,
33400,
43816.
53400.
62766,
72560,
82430,
923(10,
102266,
112236,
1 2 ? 1 « 7 .
132487.
142462,
152400,
162367,
172279,
182243.
192220,
202190,
212163,
222160,
232141.
242137,
252136,
262133,
272130,
282128.
1. 300,
u
2 3
10 11
l« 19
26 27
2127.23
i
0, 6
6
3 6
11 12
19 20
27 28
1,5
7,0
14,0
6,0
6,0
l'j.0
6,0
1,0
24,0
.5
9 ,
6.0
*> ; 0
93JO
4,0
24,0
20,0
0,0
24,0
16,0
44,0
0,0
1,0
4,0
6.0
4,0
12,0
2,0
0,0
27 0
13
4 5
12 22
20 21
999999999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
2
3
6
5
6
7
6
9
10
11
12
22
14
4.1
5.5
5.5
2,2
4.0
4,7
3.2
2,3
2,0
1,8
2.8
2,i
2,0
5
13
21
0,
22
6
14
22
6
14
2?
1
2B
7
15
23
7
15
23
8
16
24
10,
20,
22,
10,
20,
34,
34,
36,
34,3
49,3
38,5
36,4
112,1
,04
,57
,66
.40
,58
1,03
1,03
1.25
1.3
1.4
1,8
I.1*
0,9
.10
,09
.09
.10
.10
.09
.08
,08
0,07
0,08
0.09
0.08
0,07
28
8 9
16 17
24 25
1,59
1.84
1 .86
1.50
1.81
1.56
1,67
1 ,87
K36
1.37
1.41
.93
231
-------
14 14
15 15
16 16
17 17
an j Q
If? 18
19 19
20 20
21 21
22 22
23 23
24 24
25 «
15
16
17
18
19
20
21
22.
23
24
25
26
26 26 27
27 27 28
999999999999999
ENO'JUANT
0 1
8
244
1
•>, -5
9.5
2
9.«5
9.5
3
9.5
1,
9,5
,1
4
9,5
9.5
5
9.5
0,0
9,5
0,0
6
9.8
1.5
9.8
1.5
7
10.1
2,3
12 50
1
2250,
1.3
1.3
1.3
1.3
1.3
0.0
1.3
1.3
1,3
1.4
0.0
1.4
1.4
0,0
1.0
0,0
1.6
0.0
17. g
.07
.07
,07
.07
.07
0,0
.07
.07
,07
,07
0,0
,07
,07
0,0
.07
0,0
.07
0.0
0,9
2,6
l.b
4.0
2.4
4,1
5.1
1,5
3,6
7.9
3,6
6,1
7.2
8,1
48.
.003
,003
,003
,003
.003
0,0
.003
,003
.003
.003
0,0
,003
,003
0.0
.003
0.0
.003
0.0
114, f
117,3
125.0
125,0
127,.?
126,7
136.6
134,5
151.2
157.fi
159,2
159.5
161. a
160.2
,24
,24
.24
.24
,24
0,0
,24
,80
,80
,00
0,0
,80
.58
0.0
.58
5,0
.33
.50
,9
1,0
1,1
1.2
1 ,-<
1.4
1.6
1.6
2.1
2.7
«,0
'1.0
4.1
0.1
1
,12
,12
,!2
.12
.12
0,0
.12
.03
.03
.03
0,0
0,0
,03
0,0
.03
0,0
,15
0,0
0,07
0,07
0,06
0.07
0,07
0.06
0,09
0,04
o.oa
0,04
0,05
0,0 t
0,06
0.05
0.0
0,0
O.ft
0,0
0.0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
,<14
1,03
1.09
1,03
1 .04
1.06
1,07
1 .00
.79
.79
,54
,54
.55
.55
8.0
0,0
0.0
8,0
oto
0,0
8.
0.0
0,0
0,0
8,0
0,0
0.0
fl.O
0,0
0,0
0.0
8.
0 ,0
0,0
0,0
0,0
8,6
0,0
0,0
232
-------
9,8
2.3
a
10,3
1 ,5
10,3
2,0
9
7,9
1,2
8,0
2,0
10
9.8
2,0
9,8
2.0
11
8,7
1U.O
8.7
310.
12
a. 7
7 A
' i v
8,7
7,0
13
9,1
9,1
H
9,1
9,1
15
9,1
9,1
16
8,9
8,9
17
9,3
3S.
1 ,7
n,o
1,7
1.9
0,0
3b.
1.3
0,0
1.5
1.6
0,0
1.6
1.6
1,6
1,0
1,0
1.0
1,0
1.0
1.0
1.0
1,0
1,7
.07
,07
0,0
.07
,07
0,0
,07
.07
0,0
.07
.07
0,0
.07
.07
.07
.07
.07
.07
,07
,07
,07
.07
.07
.07
,003
,003
0.0
,003
.003
0,0
,003
,003
0,0
,003
.003
0.0
,003
,no3
,003
.003
,003
,003
.003
,003
.003
.003
,003
,003
.33
,?.a
,5
,2«
.5
.12
,'j
,12
,12
.50
,12
,5
.20
1,0
.20
8.2
.12
.12
,12
.12
,12
.12
,12
.12
.15
,08
0.0
,08
,0'1
0,0
7,0
.38
0,0
7.0
,76
0,0
7,0
,76
,76
.03
,03
.03
,03
.03
,03
0,0
0,0
0,0
0.0
0,0
0,0
0,0
0.0
0.0
0,0
0,0
0,0
0,0
0 ,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
a .5
0,0
0,0
0,0
a ,fl
0 .0
0 ,0
0.0
8,5
0 ,0
0,0
0,0
11,0
0,0
0,0
0,0
11.0
0,0
0,0
13, 3
0,0
0,0
13.5
0.0
0.0
n.5
0,0
0,0
13.5
13,5
233
-------
<>,3 1,7
18
8,8 ,5
8,8
19
8.8 ,rj
8.8 ,5
20
8,8 ,6
8,8 i.S
21
8,8 .6
22
8,6 1 .1
7,0 0.0
8,6 1,1
7,0
23
9.2 1.2
4,7
9.2 1,2
10.
24
8.9 1.2
6.0
8.9 20,
25
9.3 1.4
3.0
9.3 20.
10,
26
9,3 1.6
3.7
9.3 20.
27
9.3 1.6
2.6 0.0
9,3 20,
.07
.07
.07
,07
.07
.07
.70
.07
.07
0.0
,07
.07
,07
.07
,07
.09
.09
.09
.09
,09
0,0
.09
,003
,OOJ
,003
,003
,003
.003
,003
,003
.003
0,0
.003
,003
,003
,003
,003
.003
.003
,003
,003
.003
0.0
.003
0,0
0,0
0,0
0,0
0,0
0,0
0,0
.12
0,0
.12
,24
.24
,05
,05
,24
,24
,12
.12
0,0
1.5
0,0
,02
.02
,02
,02
.04
,04
.06
.7
0.0
-r
• f
,16
,16
.01
,01
.45
.45
,25
.25
.06
0.0
.06
13,7
14.0
14,0
14,0
14,
0.0 0,0
0,0 0.0
0 , C 0.0
15,
16,
0.0 0,0
16.0
0,0 0.0
16.4
0.0 0,0
17.5
0,0 0,0
0,0 0,0
0,0 0,0
234
-------
28
1 7 'J
9.3 l.fa ,09 ,003 0,0 ,06
2»<> 0,0 0,0 0,0 1,5 0,0
999
0021011113
.1
, 0 0~0 0 0 1
.01 ,000001
ENDPROGRAM
235
-------
STORM WATER RFCFIVING MUOULF
1
0 24
21 22 23
RFCEIVIN
QUANTITYRHALITY
R k. C 1- I V I N f, WA
SYSTKMS
0 0
6 24,
1
9
1 2
9 10
!4 i 3 0 .
12128,
22127,
32122,
42071.
52019,
61975.
7 1 96« ,
81966,
92587,
102387,
112187,
:2?067,
1 .5 i 9 6 6 ,
141904,
151060,
161837,
9999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 3
9 9
10 10
11 11
12 12
13 13
14 14
15 15
9999999999
ENOOUANT
0 0
0 1
10 2
CONTROL,
RIVER
•AUGUS
1. 300.
2
10
2 3
10 11
1836.296
2
3
4
5
6
7
8
14
10
11
12
13
14
15
16
0 1
12 50
1 0.
TFR HODULF
INC, SROKANf BASIN
^ E r, i o N "i
T 1969
1
0, 16 15 0
3 4
11 12
34 45
11 12 12 13
1.5
053,
120,
84,
220,
80,
60 ,
120.
s,
2,
3,
3.
i,
2.
185,
0,
9,0
1 ,4
6,8
4 .^
4.2
6.9
3.7
1,3
8,
8,
8,
8,
7,
8,2
6,1
0
3, 0,
5
13
5 6
13 14
300,
250.
220.
250,
220,
200,
200,
220,
to.
10,
10,
15,
15,
250.
500,
1
0.
6
14
9,20
3,81
3,30
4,52
4,75
9,77
9,86
6.5
,72
,72
1,06
1,09
1.20
2,62
4,20
1
6
14
7
15
7
15
0
7
15
8
16
16
1850,
1
8.2
.150
8,3
21.1
,04
,04
,01
,2
.01
,02
2,
,02
.05
.05
,06
,06
.06
,12
.12
,12
.08
.12
.12
,12
!l2
,12
,12
.12
8
16
14
."30
1.57
2.07
1.0
1,56
.85
,86
1.2
.69
,69
,61
.61
2!'i2
.06
236
-------
, ISO
8.1
.145
7,0
,140
9,0
,180
8,0
.170
8,0
,100
7.0
.080
7,8
.090
7,0
,060
7,6
.080
6,0
.050
a
7,4
.080
5.0
,050
8.0
.100
3,0
,100
10
8.2
.110
8,2
.110
11
8.2
.110
8,2
.110
12
8,1
,06
,15
.06
,06
,07
.10
,07
.12
.08
,16
,08
.16
,06
.06
.07
.07
.07
,07
,2
,01
,'j
,01
1,5
,01
,5
,01
.5
,OJ
,6
.10
.8
.04
,6
,10
1,0
.05
,8
.10
1,6
,05
,8
,10
1.6
,04
.6
,oa
,6
.06
.6
,06
.6
,06
.6
.06
,6
2,
,04
1.
,10
.5
.04
,'.>
.04
,'J
,10
2.
,50
3,
,2
4.
,')0
6.
.6
8,
1.2
16,
.6
8.
1.2
16.
.6
4,
,6
4,
.7
5.
,7
5.
.7
5.
.7
5,
.06
,09
,06
.06
,10
.20
.14
,25
. ia
.5
.18
.50
.16
.16
,17
,17
.18
,18
21,5
23,0
.08
,06
.8
,8
237
-------
,110
8,0
,110
H
0,1
.110
a.i
.110
H
7, a
,090
7, a
.090
15
7, U
,000
6,0
16
7,4
99999
.10
.08
,08
.07
.06
,08
.10
.08
.6
.06
.6
,06
.6
,06
.6
.07
.5
,oa
.«
.05
,8
.10
.8
.05
.8
5,
.8
5,
.8
•i.
.8
5,
,«
5,
,8
5.
,6
8.
1.2
8.
.6
8.
13
ENOPROGRAM
,10
,18
.8
18.5
.18
238
-------
STORM
1
0 • ?4
1 ?2
WATTf* RFCh IVING MODULE
25
UUAN r ITYOUALITY
RECEIVIM; WATER MODULF.
SYSTEMS COMTPOL. IK'C, SPOKANE BASIN
RiVKR HtGION 3
S.FPTfcMBEH 1969
0 0
6 24.
1
9
1 2
9 10
3330,
12120 ,
22127,
32122,
42071,
52019,
61975,
71968,
01966,
92507,
1023(37,
112U7,
122067,
1 5 1 0 M « ,
141904,
151860,
161837,
9999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 ia
15 15
9999999999
ENOOUANT
0 0
0 1
10 2
1. 300,
2
10
2 3
10 11
1836,296
2
3
a
5
6
7
8
14
10
11
12
13
14
15
16
0 1
12 50
1 0.
1850.
1
0, 16
3
11
3 4
11 12
1.5
1380,
120.
84,
220,
40,
30.
60.
5.
2,
3,
3.
3 j
2,
185,
0.
0
17,0
15 0 3.
4
12
45 5
12 13 13
9,0 300,
1,4 250,
6,8 220,
4,9 250,
4.2 220,
6,9 200,
3,7 200,
1.8 220.
fl, 10,
8, 10,
8. 10.
8 , 15,
7. 15,
8.2 250.
6.1 500,
0. 0. 1
5 6
13 14
6 67
14 14 15
9.20
3,fll
3,30
5,0
4,75
9,77
9,86
6,5
.72
,72
1.06
1,09
1.20
2.82
4.20
1
0
7
15
.06
.06
.06
.12
.12
,12
.03
,12
.12
.12
.12
,12
,12
.12
.12
0 16
7
15
8 8
16
,50
1.57
• 2.07
1,0
1,56
.as
,86
1.2
.69
,69
.61
,61
,60
2.52
,86
8
16
14
i s.a
t 4 °
i 3,8
,04
.04
,001
.4
.001
,05
.05
,04
,04
239
-------
.190
3,8
,190
8.8
.190
3
8,8
,190
a
8,0
,170
5
7,7
,iao
7,0
.100
6
7.7
.110
7,0
.100
7
7.7
1 il 0
t 1 M U
7.0
.100
3
7.7
.I'lO
7.0
., ,100
9
: 8.5
.100
8.5
.100
10
8.7
.110
8.7
.110
i ll
• 8.8
.130
8.8
.130
12
,0«
,00
,02
.05
.11
.15
.11
.15
.11
,15
,11
.15
.10
.1
.12
.12
.13
.13
.001
,u
.0(51
.4
,001
,'t
.010
,6
,015
.9
.02
1,5
.015
,9
.02
1,5
.n \h
.
.02
1.5
.016
.9
.02
1.5
.01
.8
.01
.8
.012
.9
.012
.9
,014
.9
,oia
.9
.05
,05
,0'J
,10
.13
,2
,13
.2
,r*
,2
,13
.2
,10
,1
.12
,12
,12
• 12
, O'l
,oa
,0*1
.10
.13
.2
,13
,2
. 1 1
•* * •*
.2
,13
.2
,10
,1
.12
,12
,12
.12
17.7
17.7
3,8
.13
,015
.12
.12
240
-------
.140
11,8
.140
13
8,9
,140
8,9
,140
14
7. a
.140
7,8
,140
15
7,8
,140
7.8
.140
Ifc
7,7
.140
99999
0 13
,«
.13 ,015
.8
, 1'J .018
.85
.15 .018
.85
.13 ,016
.no
.13 .016
,60
,13 .016
.9
,13 ,016
.9
,11 .016
.9
I I 0
.12
.13
,13
.13
.13
.13
.13
.13
.12
,13
.13
.13
,13
.13
,13
.13
ENOPROGRAM
I'). 6
241
-------
STORM WATER RECEIVING MODULE
1
0 24
21 22 23
R t' r E IV I N
QUAMTITYOUALITY
HECL'IVING WATER MrjOULE
SYSTEMS CONTROL, INC, SPOKANE BASIN
RIVER PEGIOM 4
JULY 11 * AUG 10, 1960
0 0
4 24, 1, 300. 0.
1 2
9 10
12 23
9 10
300. 1533.84
11B75, 40,
21800,
31765,
41721.
51680.
61612.
71509.
1
10
3
1.5
3,
0,
81565,
91554.
101535,
999999999999999
1 1 2
60,
125,
125.
U
5
b
7
S
9
10
999999999999999
ENDOUANT
000
0
10
12
1 0,
2000
0
50
14,6
10
e
8 9
3.0
3 A
: "
5.0
4,7
7,8
2,7
2,9
4.0
3,0
20,
P U
Z^ a
30,
36.
36,
38,
40 .
60,
85,
.78
O 11
A-.
.95
.95
.96
1.01
1.00
1,15
1.28
.050
A /I n
» .
,034
,029
,020
,018
.016
.016
.016
-03
< c <
* • -* "
1.72
2.01
2.R3
3.12
3.10
3.30
. 3.39
9.7 ,6 0,
9,8 .6 ,0
2
9,7 ,6 ,0
3
10, ,7
.3
.3
.3
.2
.6
1,2
,6
1.2
.6
1.2
.52
1.2
.01
.01
.01
.01
15.2
13000,
13000,
15.2
13000,
16,
11000,
.8
,7
.01
2000,
242
-------
,1
1.2
5
9,9 .8
6
9,9 .9
11. 1,0
7
9,4 .6
9, a ,5
9
8,3 .6
8,0 ,6
9
8.6 .6
10
8.7 ,7
99999
1501
,1
.1
.1
.1
.1
.2
,2
.1
,1
1
.7 .01
1.2
.7 ,01
1.2
.8 ,01
1,2
1,0ft ,01
2.5
1.5 .01
3,5
1,0 ,02
2.5
1.0 ,02
3,0
1.4 .01
2.5
i . ? . n i
2.7
14,9
POOO,
la, 9
2700,
0,
14.9
5000,
4000,
1R.
5000,
5000.
12,9
2500,
1 ? ^
I r % J
3 k A 0 i
.0001
.0001
EMDPROGRAM
243
-------
STORM i-ATER RECEIVING MODULE
1
o 24
21 22 23
RFCtTIVTN
'3UANTITYCUIALITY
RECEIVING WATE.H MODULE
SYSTEMS CONFKOLi INC, SPOKANE
RIVER Rt'GION U
BASIN
0 0
4 24.
1
9
1 2
9 10
300,
11875,
21000.
31765.
41721,
51660.
61612,
71589,
8156'J,
91554,
101535,
A.UG 11 » SKPT 10.
I
1, 300. 0, 10
2 3
10
23 34
1533, 8U 1,5
SO,
70.
125,
125,
1968
9 0 3. 0, 0, 1 0
456
45 56 67 7
0 10
7 8
8 89
999999999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
2
%
U
5
6
7
8
9
10
3.0 20. .78 ,OSO
7 _ ^ ?^ • n '] 0 '-\ 0
5*,0 3oi J95 ,034
4,7 36, .95 .029
7.8 36. .96 ,020
2,7 38, 1.01 .018
2.9 40, 1.00 .016
«,0 80, 1,15 ,016
3,8 8b, 1.28 ,016
jM
• r- -r
l • J J
1.72
2.01
2.63
3,12
3.10
3.30
• 3.39
999999999999999
ENOOUANT
000
0 1 12
10 1 1
2000,
1
9, a
9.8
10,6
•5,7
0
50
H.I
.28
.28
.28
.31
,18
2.0
,16
2,0
.18
2,0
.18
0,5
,01
,01
.01
.01
.18
.01
15.5
«50,
«50,
15.5
«50,
16,5
630.
15,
2000,
244
-------
9.7
0.5
,2
,01
15,
3000.
3,0
1
9,6
10,5
9,8
7,0
a
8,2
10
99999
.36
.5
.5
1.0
.15
t«5
.25
.25
,2
0.5
,2
,0
1.0
,?.
2.0
1,5
.2
1,7
.15
1.0
,0
.01
,01
,01
,01
.01
,01
,01
1'4,5
3100,
5000,
15.
7000.
10000,
15.0
5UOO,
5000,
12.2
5000,
12,0
4 T A A
I 15 0 1 1
.0001
,0001
ENDPROGRAH
245
-------
STORM WATER HKCHVING MODULE
1
0 24
21 22 23
HECEIVIM
QUANTITYOUALTTY
RECEIVING WATER MODULE
SYSTEMS CUNTPOl., INC, SPOKANE BASIN
RIVfR RfcC.lOM 5
MOER 1971
0 0
4 24,
1
1 2
999,
11363.
21362,
31361,
41360,
M 359 ,
9999999999
1 1
2 2
3 3
4 4
9999999999
ENDOUANT
0 0
0 1
1 A
» V
r
4,8
,040
4,8
.040
2
6,0
.040
6.0
.040
3
7,0
.040
7.0
.040
4
8,0
.040
7,0
.040
5
8.0
.040
99999
1. 300. 0.
2
2 3
1356.918
2750,
100,
68,
82.
55,
2
3
u
5
0 1 0
12 50
10,
1325, 17,1
.11
,11
,11
,11
,10
,10
,10
.10
.10
1
5 4
3
3 4
1,5
2,1
2.S
1.8
3 ,5
,025
.19
.025
.19
.025
,19
,025
,19
.03
.19
,03
,19
.03
.19
,03
,19
,03
,19
3,
212,
250,
300,
300.
.75
2,4
.75
2.4
.75
2,4
.75
2,4
,70
2.4
.70
2,4
.70
2,4
,70
2.4
.70
o,
5
0.
12.50
8,47
6,98
8.56
.07
.04
.04
,04
,0fl5
,065
,085
,085
,08
,08
.08
,08
,08
1.03
1.34
1.39
1.15
4350,
4350,
4000,
4000,
3000,
3000,
3000,
.3000,
2500.
246
-------
ENDPROGRAM
247
-------
103.
25100
23700
21200
19100
17800
15200
13100
1 1 ') 0 0
4800
4800
5400
5200
3700
3600
29QO
2500
2300
2400
1900
2000
1800
1400
1800
2000
2300
2300
2400
3 "5 A f\
2300
2300
2400
2400
2400
2«00
2700
2400
2400
2400
2400
2500
2600
2600
2900
2800
2900
3400
10
152
1/432. 620.
25400
2 4 6 0 0
21400
2 0 0 0 0
18HOO
16300
13800
12500
r>360
5/00
62?0
5230
5010
'1310
3800
2450
2680
3310
?70Q
2680
1990
1540
1920
268Q
2030
3240
38/0
2/20
3500
2970
2950
2850
2550
2/30
2790
2940
2700
3260
2650
3130
3330
3640
34RO
3510
3470
3860
12.0 24800
2 4000
20700
13,7 18800
17200
14600
1 ? 8 0 0
1 1600
4300
4/100
15,8 4800
5000
3700
3800
2900
2500
2300
1900
2100
1600
1400
20,6 1500
1800
1800
2300
2300
«00
"» T f\ n
2500
2300
2400
2400
2300
2400
2400
10,0 2400
2500
8.6 2400
2600
2600
2700
2600
2900
2900
3000
3600
334 -2752,95 149.969 *.7?SP
1.
25100
24000
22000
19600
1 8 '400
15000 17,
13700
12100
4900
5700 14,
6090
5/70
4880
3920
464Q
2730 21,
2690
3110
2/00
2680
830
2330
2130
2670
2750 16,
3810
3570
2320
2720
3040
2920
2830
3060
2870
2860
2810
2750
3280
2940
3300
3260
3190
3280
3380
3470
4610
LONG LAKE METEOROLOGIC DATA--iJUNE
1
JUNE 27
27
27
27
JULY 27
27
27
27
9/1
i
!34
.44
.38
.50
.51
.60
.52
152
48
25.4 0
27. U5 27
27.34 27
27.39 27
27.40 27
27.55 27
27.59 ?7
27,61 27
27.54 27
334
, 118
,0 0
.50 27
,53 27
,55 27
,41 27
.61 27
,64 27
.53 27
,50 27
? 4 4 0 0
22500
^0401
18700
16601
1 14100
12500
9000
4800
8 4800
440U
4600
3600
3400
2000
0 2500
2300
2200
2000
1400
1200
1700
1800
2200
8 2300
2300
*? '* 0 0
r, •-» u \j
2300
2300
2400
1800
2400
1800
2400
2400
2500
2300
2600
2500
2500
2600
3000
2900
3200
4000
a 5 o o o
22500
£ 0 >J 0 0
19200
18000
1 4 cj 0 0
1 3800
10400
5450
5620
5200
6160
4000
«3'IO 20,2
3 i! '4 0
2180
2700
2620
2700
28lo
1 140
2620
264Q
2850
3170
2040
3 4^9
1 "» -1 u 4 H . M
2970
3320
3020
2960 14,1
20? 0
750
2/60
2950
2990
3040
2960
2710
3300
2810
3610
3510
419Q
5090 7.2
THRU NOVi 1971--OE.EP
1
t
,0
.56
.47
,64
.51
.53
.66
.40
,47
18
468,
27,55 27
27,43 27
27,58 27
27,64 27
27,50 27
27,68 27
27.48 27
27,57 27
24100
? 1 7 0 0
19')00
18500
1 f , 0 0 0
13500
12400
5400
4000
5200
4600
4100
3ROO
3000
2500
1 900
2400
1700
2100
1800
1200
1700
1900
2500
2300
2300
,5400
c f. 0 0
2500
2400
2'100
2400
2000
2500
2400
2400
240(1
2400
2700
2600
2600
2700
2900
2900
3400
RES
.52
.62
.42
,60
,49
.67
.52
.53
24600
22500
20100
19600
1 6600
1 '4 800
13000
6270
5680
5210
5180
4610
4060
3950
3250
2310
2490
2420
1430 19.
2360
2010
2310
3010
2560
2690
1830
2 '190
5510
2970
2910
2P60
3380
2870
3810
3260
3340
3370
2690
3030 7,5
3300
3040
3500
3720
3650
4600
MODEL-PHASE
27.47
27.57
27.47
27.63
27.53
27,45
27.54
JUNE 1
JUNE 29
JULY 31
5
SEPT I
SEPT 29
OCT 31
MOV 23
3
27,49
27.50
27.42
27.49
27.48
27,44
248
-------
AUG
SEPT
OCT
NOV
JUNK
JULY
AUG
C C O T
OCT
NOV
JUNE
JULY
i
. AUG
1
I
I
OCT
27.46
27,59
27.58
27.54
27,29
27.51
27.95
27,22
27.56
27.72
27,33
27.30
27.39
27,35
27.80
27.50
2
9
4
8
7
6
9
0
1
2
0
3
0
i n
* V
5
1
8
3
0
2
10
2
9
8
10
3
8.9
7.9
6.0
12.8
10.2
7.5
4.6
5,9
5.6
7.9
8,1
4.8
6.6
10.6
6,5
4.8
5.8
27.44
27.58
27,54
27,50
27.32
27,43
?7,00
27,30
27.70
27., 67
27.34
27.19
27, 7«
27,50
27,81
27,39
,1
10
10
10
6
1
9
0
0
3
0
0
4
1 A
* V
1
8
9
2
4
9
4
9
10
10
10
.447
8.2
6.5
5,2
6.5
7,1
12.2
7.8
6,0
8,8
3,7
' 8.9
5.8
4,8
5,3
7.2
4.0
a. 8
27,35
27,46
27,40
27.49
27. sa
27.59
27.5 4
27,39
27.60
27, hi
27.26
27,49
27,57
27,42
27,72
27,41
0,0
in
7
3
10
1
5
2
2
4
0
0
9
r>
/
1
5
10
10
5
10
6
10
10
8
10
0.0
6.0
9.2
8.8
8,8
6.2
9.5
6.3
6.5
9.5
8.6
a. 6
6,8
3
5.6
10.9
6.9
9.2
17.3
27,45
27.37
27.37
27,54
27.52
27.67
27.73
27,27
27.72
27,65
27,60
27.90
2 7 , « 6
27,31
27.70
27.13
0.0
9
10
9
10
7
3
6
2
0
0
5
3
V
2
3
10
8
9
9
0
6
10
10
10
0.0
11.1
9,1
5.9
5,9
8,9
4.6
5.5
10.9
6.5
10.1
H.2
5.9
13.1
11. t
8.1
7.6
12.8
27.40
27.37
?7,45
r'7,46
^7.32
2 7,66
27,74
27.21
27,76
27.37
27.74
c?7,8l
27.85
27.28
27,52
27,29
8.9
11.4
8,5
8,8
13,4
4.8
7,5
8,5
6,0
9,4
8,9
6,3
2,7
8,9
8.2
16.0
6,9
4
7
6
2
9
0
2
0
2
0
2
i
V
1
2
8
1
6
4
8
0
10
10
10
2 7 , '1 9
i?7,46
27,45
27,31
27, Ti
27.73
27.68
27,40
27.66
27,46
27.52
27.09
27.75
27.56
27,65
27,66
3
5
7
6
7
0
0
I
7
1
10
7
o
0
4
4
9
10
10
10
10
8
4
10
5.9
15.1
6,6
6,5
12,7
1.6
7,8
5,2
7,5
10.1
9.9
e.2
3,5
7,1
6,0
5,9
6.1
27,45
27,46
27,73
2 7 , .4 'J
27.72
27,71
27.51
27.77
27,45
27,30
27.52
27.48
27,75
27,54
10.8
10.1
10,8
5,9
4,9
9.6
7.5
6,9
6.2
5.6
14,4
9.1
2.6
12,8
5,9
10
2
a
4
1
0
0
I
'0
3
n
e.
1
1
3
3
10
10-
9
10
10
?7.51
27.53
27.62
27,51
27.91
27,36
27,76
2 7 , 4 5
27.42
27,52
27.73
27.45
11,2
10,9
8.1
6,5
1,3
6.3
*,2
12,9
5,2
3
12.8
5.0
11,8
9,4
f
4
9
9
0
0
0
1
0
I.
0
9
0
0
a
10
8
V
249
-------
NOV
JUNE
JUUY
AUG
SEPT
OCT
NOV
JUNE
JULY
SEPT
OCT
NOV
JUNE
15.0
IB. 4
9.6
6.2
10.0
4
53
57
58
5 f
65
64
76
73
84
82
68
70
49
66
51
55
47
57
34
41
37
43
31
35
6
45
39
36
40
37
51
40
45
51
33
33
4 1
44
45
26
37
32
43
17
30
27
32
27
30
7
476
706
669
627
16,0
11.1
6.9
7,1
') , 4
.55S5
49
54
60
56
60
56
78
74
83
81
71
74
53
69
52
51
49
56
43
37
36
43
31
t c
,5555
43
46
48
32
32
43
46
46
44
37
36
42
48
46
29
43
35
42
25
25
26
41
27
31
,000115
115
130
293
734
11.1
lr>.2
6.2
12.1
8,6
"32,
52
56
64
56
60
57
80
80
79
83
76
74
58
62
55
50
53
54
44
28
43
42
40
36
"32,
45
45
45
34
31
40
48
47
41
33
40
41
49
39
29
39
38
36
39
12
27
38
35
32
0,0
219
589
693
447
6.0
19.4
6.0
5,5
7.1
0,0
56
63
65
51
66
60
82
78
77
80
75
76
61
61
52
50
62
51
42
24
34
4 1
40
35
0,0
46
47
50
39
35
41
53
50
45
29
40
47
45
37
33
36
44
35
32
3
22
38
38
31
0,0
286
547
412
204
7,2
8.2
6.3
6.9
5.2
58
57
72
58
56
65
82
75
80
79
70
74
69
56
50
43
63
46
41
23
27
39
40
1 f
J J
42
48
53
38
38
40
50
43
50
31
41
"9
47
33
32
36
49
31
29
9
10
35
34
33
684
463
677
721
5,0
M
5.6
9.4
3.3
61
54
75
64
53
67
80
78
76
70
58
74
56
54
54
43
61
30
48
29
27
35
34
£0
44
38
53
4 1
34
39
46
48
55
36
42
54
48
29
34
32
46
26
37
18
14
30
P3
27
694
695
660
644
H.5
5.0
3.7
6,3
58
56
63
55
72
78
81
80
70
58
60
54
51
62
54
40
44
27
30
37
29
45
36
44
33
44-
43
51
52
33
42
46
41
26
34
40
21
38
21
20
32
25
359
737
53S
5,3
7.9
6,9
53
56
60
67
75
74
83
70
67
64
54
57
57
40
41
33
37
37
36
34
39
41
43
42
47
33
39
41
26
36
42
14
33
28
31
33
585
744
587
250
-------
JULY 568
500
712
647
AUK 626
iS39
614
575
SEPT 137
U 20
4/5
29U
OCT U02
341
319
105
NOV 255
1U6
145
45
999
18
152 334
7'Jfl
'163
706
67H
M2
6.V3
599
565
127
405
a 38
211
388
318
256
239
213
67
35
37
INPUT UNIT
DRM SIMULATION op
737
663
678
652
653
629
591
U75
333
501
399
178
256
243
74
1 9a
96
118
128
56
CONTAINING BAL
LONG LAKE-
ft?/
665
5/0
619
640
6'l 1
U59
501
5 3 '.>
497
457
2U4
361
260
2 '11
290
157
24
72
52
AND MIFP
2U7
750
653
676
50 a
617
570
523
526
'189
fl5'l
278
362
IB/
2P3
22fl
208
4fl
95
48
OUTPUT
• "ONE: TUHQINF INT AKE-- JUNE
525
726
674
616
302
617
124
'4PO
235
503
415
360
266
173
156
99
178
116
167
36
THRU NOV
715
696
69.5
645
6?3
6,.' 9
604
333
523
U95
"33
321
2(57
56
122
70
39
4S
1971
535
695
685
610
611
538
521
'189
338
VI 6
332
177
147
119
62
SYSTEMS CONTROL INC
1.0
1 1
9.0E-7
•195361E6
4
32.
152 164
258 262
152
11.7
.27
164
11.5
.18
192
9.3
.17
206
7,4
. 1 4
213
7.7
.11
227
7,4
.11
249
8.8
.13
262
10.0
.11
334
10,0
,11
32,
26 20
2.5E-1
,61ia06F6
2 1
12.
171 189
264 265
,2
.274
,9
1.35
1.74
3.
3.
1.8
1,18
15,
1 0
1 , 4E»-5
O.OE6
5 '12 .
192 202
278 292
,01
.00
.02
.02
.02
.03
,02
.01
.01
0,
1
•7.
?06
300
.00
.02
,00
.02
.02
.06
.01
.06
.03
.07
.01
.08
,02
,13
.00
.15
.00
.15
1.
2 2
E*l 3,
208 213
307 313
,72
.86
1.2
1.3
1,2
1.3
2.1
2.0
2,0
5E-9 «7,
65E4
222 227
320 326
.02
.01
,03
.04
,04
.02
,02
.02
,02
E-2
230 235
333
236
.
244 249
1100,
4000.
3000,
2500,
000,
5500,
3000.
?ooo.
2000,
251
-------
500
1534.
1
12.
32
11,7 1,
200
0 1 2
.01 .00
,02
»ioii
,26
1
,006
1100,
75,
252
-------
203,
16714
1 '1 7 5 0
13934
12416
13230
9265
8762
9 4 '14
7514
6058
5'156
4312
3670
3153
2646
2228
2039
1720
1517
1402
1335
1627
1224
1531
1385
1157
1066
102"
996
1048
1290
10H3
970
907
1082
1018
1107
1363
1130
1172
1162
1193
1246
1115
1175
1314
18
. Z '1 5 0 0 .
.22900.
,20300,
, 1 il .5 0 0 .
,17200,
.14600.
,12000,
.11200.
, .5730.
, 4060.
. 4680.
. 4720.
. 2930.
, 3280.
. 2290.
, 1850.
. 1550.
. 1050,
. 1550,
, 1260,
o 1080,
. 945.
. 1320.
, 1540.
, 1800,
. 1030,
. 1640.
. 1820.
, 1830,
. 1030.
, 1040,
, 1830.
, 1840,
. 18/40,
, 2020,
. 1860.
, 1850,
, 1850,
, I860,
, 2070,
, 2080,
, 2080,
. 2390,
. 2370,
, 2300,
. 3010.
C DlALtNE. Mt
JUNE
JULY
1971
1
27.43
27,34
27,44
27.38
27.50
27,51
27.60
27,52
152
1928.
I 4.1
0.1
0.1
0,!
0,
0,
0.
0.
0.
0.
0,
0.
0,
0.
0.
0.
0.
0.
0.
o,
24,
0.
o,
0.
o.
0,
0 .
n
>• *
0.
0,
0.
0.
0.
0,
0.
0.
o.
0,
0.
o,
0.
o.
0,
0.
o.
0,
334
"500,
79SO ,','
-'1000,
'(070 ,22200.
3084,1
326'!, 1
''fOO,
moo ,
9820, 16500 ,
9516,1
P 4 3 4 . 1
8 7 4 H , 1
7070.
5593.
5 063,
4166.
.5536,
2990.
?552.
2100,
1677.
1650,
1404,
1 577.
1325,
I'MS,
1106,
1916.
1279.
1123.
1052,
4 A T «
* - t- « t
908,
1240.
1263.
1052.
934.
094,
978,
1018,
1143,
1276.
1128,
1331,
1099.
1318.
1219,
1150,
1 509.
1.508.
4200.
2 'J 0 0 .
0800.
3850.
4110,
3920,
4440,
2950.
3110.
2270,
1050,
1550,
1750,
1540.
996,
589,
915,
1300,
1660,
1820,
1350,
1850,
1930.
1020.
1830,
1840,
1830.
1840 ,
1850.
1850.
1860,
1860,
1660,
1980,
1920,
2080,
2070,
2"590,
2370,
2550,
3450.
TEOROLOr.IC OAT*
152
25.4
27.45
27.34
27,39
27,40
27.55
27,59
27.61
27,54
48
0
27
27
27
27
27
27
27
27
334
t
.0
.50
.53
.55
.41
.61
,64
.•>3
,50
1,
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
JUNE
110
0
27
27
27
27
27
27
27
27
28
.16650
, 1 3 / 0 '1
.12250
,11930
. 9675
, 9682
, 7 5 '4d
, 8519
. 66o9
, 53/4
, 4725
. 4006
, 3 '13 6
, 2074
, 2420
, 1986
. 1824
. 1593
, 1455
. 1562
, 1372
. 1540
, 1171
, 1924
. 1239
, 1109
, 1053
1 A « A
. I V 1 »
. 984
. 1257
. 1 168
, 1035
, 929
, 972
. 949
, 1"52
. 1135
. 1100
, 1138
. 1220
. 1092
, 1302
. 1174
, 1134
. 1259
, 1307
THRU
1
,
.0
,56
.17
,64
,51
.53
,66
,48
.47
89,6
,23600.
, 2 ! 5 0 0 ,
,19300,
, 1 H 1 0 0 ,
.15900.
,13000.
,11800.
. 5000,
, 39.50,
. 41/0.
. 35/0,
. 3010,
. 3130.
, 2500.
. 20/0,
, 1250,
. 1550.
, 1150,
. 1560,
, 080,
, 492,
. 1300.
. 1300,
. 1 '! 9 0 ,
. 1 0 '1 0 ,
. 1030,
, 18.'10:
4 U /I A
• 1 •-• * v f
. 1030,
, 1940,
. 1850.
, 940.
. 10.50.
. 925.
. 1850,
, 1050,
, 1060,
, 1050,
, 2080,
, 2060,
, 2070,
, 20 BO,
. 2390,
, 2300,
. 23.50.
, 3800,
Nnv»1971
1
468,
27,55
2/,43
27.58
27,6/1
27,50
27,68
27,48
27,57
.261
0,15690
0 , 1 4 3 2 /
0 . 1 T5 5 0
0.10910
0 , 9530
0 , ti a /l 4
0, 7736
0 . 0038
0, 6522
0, 59J9
0 , 0511
0, 3«20
0, 3500
0 , 2740
0. 2326
0, 2126
0, 1797
0, 1559
0, 1425
0, i:549
0 , 1706
0, 12HO
0 , 1206
0 , 1503
0, 1200
0. 1098
0 ; 1 ft 5 H
U , i 0 \' --»
0, 991
0, 1291
0. 1100
0. 1001
0, 915
0. 1274
0, 917
0 , 1191
0, 1415
0, 1057
0, 1062
0, 1163
0, 1156
0. 1209
0, 1147
0, 1079
0. 1232
7,
--DEEP RES
8
27,52
27,62
27,42
27,60
27,49
27,67
27.52
27.53
,23200,
,20900,
.10700,
,17800.
.15200,
.13400,
,1 1400,
, 3940,
, 4020,
, 4020,
, 4240,
, 3240,
, 3110.
, 2300,
. 1850.
. 1550,
, 1850,
. 1450,
. 1560,
, 1330,
. 657,
. 1300,
, 1450,
. 1800,
, 1830.
, 1040,
a !«10,
, 1 u J C ,
. 1340,
. 1840,
, 1840,
, 2160,
, 10/10,
. 2550,
. 1050,
, 1040,
, 1060,
, I860,
, 2070,
, 2000,
, 2070,
, 2260,
. 2380,
. 2300,
. 3020,
0,
o,
0.
16.
0,
o.
0,
0.
0,
0.
19,
0.
0,
0.
0.
0.
0.
0.
0.
0,
0.
22,
0.
0,
0,
0.
A .
0 i
0,
0.
0,
0,
0.
0,
•o,
0.
o,
o,
0,
0,
0,
0.
o.
0,
0,
MODEL»PHASE 3
27,47
27,57
27,47
27,63
27,53
27,45
27,54
27,i)9
27,50
27,42
27,49
27,48
27.44
253
-------
AUG
3F.PT
OCT
NOV
JUNE
JULY
AUG
SEPT
OCT
NOV
JUNE
JULY
AUG
SEPT
OCT
27.46
27,59
27,53
27,54
27,29
27,51
27,95
27.22
27.56
27,72
27,33
27,38
27,39
27,35
27,80
27,58
2
9
4
8
7
6
9
0
1
2
0
3
0
10
5
1
8
3
0
2
10
2
9
a
10
3
8,9
7.9
6,0
12,8
10,2
7,5
4.8
5,9
5,6
7,9
8,1
a. a
10,2
6. a
6.8
10.6
6.5
27,44
27,58
27,54
27.50
27.32
27.43
27.80
27,30
27,70
27.67
2 7', 3 4
27,19
27,78
27.54
27.81
27.39
,1
.447
6.2
6.5
5,2
6,5
7.1
12,2
7.8
6,0
8,8
3,7
8.9
5.8
13.5
9.9
4,8
5.3
7.2
4.0
10
10
10
6
1
9
0
0
3
0
0
4
10
1
8
9
2
4
9
4
9
10
10
10
27,35
27,46
27.40
27.49
27,58
27.59
27.54
27,39
27,63
27,61
27,26
27.49
27.57
27.42
27.72
27.41
0,0
0,0
6,0
9,2
8,8
8,8
6,2
9,5
6,3
6,5
",5
8,6
4.6
6.8
7.2
13.5
5.6
10,9
6,9
9.2
10
7
3
10
1
5
2
2
4
0
0
9
9
1
5
10
10
5
10
6
10
10
8
10
27.45
27,3;
27.37
27,54
27.52
•27.67
27.73
27.27
27.72
27.65
27,60
27.90
27,46
27,31
27.70
27,13
0,0
9
10
9
10
7
3
6
2
0
0
5
3
0
2
3
10
8
9
9
0
6
10
10
10
0,0
11.1
9.1
5.9
5.9
8,9
4.6
5.5
10,9
6,5
10,1
13.2
5,9
7,6
12.2
13.1
11.4
8.1
7.6
2f ,ya
27,37
27,45
27,46
27. 52
? /,66
27,74
2/.21
27. Jb
2 7 . 3 7
zr.ru
? / . 8 1
27.85
27.28
27.52
2/,29
fl,9
11,4
8,5
8,8
13,4
4,8
7,5
8,5
6,0
9,4
8,9
6,3
10,5
6,3
2,7
8,9
8,2
16.0
4
7
6
2
9
0
2
0
2
0
2
3
0
1
2
8
1
6
4
8
0
10
10
10
27.49
?.r.n 6
2 7 , 'i a
27,31
27,45
27,73
27.60
2 7 . 4 0
27.66
2/.U6
27,52
27,49
27.75
27,56
27.65
27.66
3
5
7
6
7
0
0
1
7
1
10
7
0
0
4
4
9
10
10
10
10
8
4
10
5,9
15,1
6.6
6,5
12,7
4.6
7,8
5,2
7.5
10.1
9.9
8.2
10,2
7,6
3,5
7,1
6,0
5.9
27.45
27.40
27.73
27, VI
27.72
27,71
27,51
27,77
27,45
27.50
27.52
27.40
27,75
27,54
10,8
10,1
10,8
5.9
4.9
9,6
7.5
6.9
6.2
5.6
14.4
5.9
7.5
9,4
2,6
12.8
10
2
a
4
1
0
0
1
.0
3
9
2
1
1
3
3
10
10.
9
10
10
27,51
27,53
27.62
27.51
27.91
27,36
27,76
27,43
27.42
27,52
27,78
27.45
7
4
9
9
0
0
0
1
0
2
0
9
0
0
a
10
a
9
11.2
10,9
8,1
6,5
'1.3
6,3
8.2
12.9
5.2
8.3
11.5
12.3
5.0
11.8
254
-------
NOV
JUNE
JULY
AUG
SEPT
net
NIOV
JUNE
JULY
AUG
SEPT
OCT
NJOV
JUNE
5.8
15,0
10, 4
9,6
6,2
10, 8
<\
53
57
50
57
65
64
76
73
84
02
60
70
49
66
51
55
a/
57
3 a
41
37
43
?!
35
b
45
39
36
40
37
51
40
45
51
33
33
41
44
45
26
37
32
43
17
30
27
32
27
30
7
476
706
669
fl.fl
16,0
11.1
6.9
7.1
9,4
.r>555
49
54
60
56
60
56
78
74
H3
61
71
74
53
69
52
51
49
56
43
37
36
45
T. 1
35
.5555
43
46
48
32
32
43
46
46
44
37
36
42
48
46
29
43
35
42
25
25
26
41
27
31
,000115
115
130
293
17.3
11.1
15.2
6,2
12.1
n,6
n32.
52
56
64
56
60
57
80
80
79
83
76
74
58
62
55
50
53
54
44
28
43
42
40
36
• 32.
«5
45
45
34
31
40
48
47
41
33
40
41
49
39
29
39
38
36
39
12
27
38
35
32
.0.0
219
569
693
12, fl
6,0
19,4
6,0
S,5
7,1
0.0
56
6'J
65
51
66
60
02
78
77
80
75
76
61
61
52
50
62
51
42
24
34
41
tin
35
0.0
46
47
50
39
35
41
53
50
45
29
40
47
45
37
33
36
44
35
32
3
22
38
38
31
0.0
286
547
412
6, 'J
7.2
8.2
6,3
6.9
5,2
58
57
72
58
56
6S
82
75
eo
79
70
7 '4
69
56
50
43
63
'16
'U
23
27
39
it n
33
42
40
53
38
38
40
50
43
50
31
41
49
47
33
32
36
49
31
29
9
10
35
34
33
684
463
677
".I
5.0
7.1
5,6
9.4
3.3
61
54
75
64
53
67
00
70
76
70
50
74
56
54
54
43
61
38
48
29
27
35
3'l
28
44
38
53
41
34
39
46
48
55
36
42
54
48
29
34
32
46
26
37
18
14
30
23
27
694
695
660
5,9
0.5
5.0
3,7
6.3 -
58
56
63
55
72
78
81
80
70
58
60
54
51
62
54
40
44
27
30
37
in
45
36
44
33
44
43
51
52
33
42
46
41
26
34
40
21
38
21
20
32
25
359
737
53fl
9.4
5.3
7.9
6,9
53
56
60
67
75
74
83
70
67
64
54
57
57
40
41
33
37
37
36
34
39
«1
43
42
47
33
39
41
26
36
42
14
33
28
31
33
585
744
587
255
-------
627 734 4* MO
«: jy sii tj{ s: -
«" ^ "7 ?37! UJ ^ ;;; ;»
-- '<-" r j i T L(1 521
'J20 485 '501 497 489 503 495 489
475 U33 399 45/ «',« /) 15 433 338
294 211 178 244 2/8 ^60
°CT 402 308 256 361 362 266 321 346
3«1 318 248 260 107 173 287 332
-519 256 in 22
1 1 6 10 1 0 1 2 2
9.0E-7 2.5f-l 1.4E-5 "7.E-1 3.65F4
0,^5 1 1 .''f-S , ! I HE'S
1 62, 552. t
62. 14,
152 167 195 232 239 33«
152
9,7 ,1 ,3 ,5 425,
3,
195
10. ,1 ,1 ,07
.2 a,
232
9,0 ,1 ,2 ,07 12,
a.
239
9,0 ,1 ,15 .03
5,
334
9,0 .1 ,15 ,03
5.
500
2130, 14, 49. 1
1
31
9.7 ..1 .3 ,5 425.
3,
200
015101J112
256
-------
16
152
334
22,
,0654
139. 11
12000,17000,
,9800.
10300,
17501,
15700,
;5000,
12100. 9600.
327?,
2640,
4910,
23/0,
3350, 3350,
3750, 3750.
2810, 2810,
2730, 2730,
2980, 2900,
3230. 3230,
2070, 2070,
2540. 2540.
1730. 1730.
2000. 2000.
2200. 220^,
2000. 2000.
2170. 2170,
2370, 2370,
2290. 2290.
2270. 2270.
2300. 2300,
2380. 2380,
2910. 2910.
2740, 2740,
2280. 2280,
3160, 3180.
1730. 1730,
3290, 3290,
2830, 2030,
2940, 2940,
3280, 3280,
?49Q, 2490,
3320, 3320,
3290, 3290,
3460. 3460,
3670, 3670.
3990, 3990,
3350, 3350.
4920. 4920,
L08,
14. 21100,
15. 19HQO,
17. 1
17. 1
16, 1
15, 1
17.
2.0.
19,
20,
20,
21.
22.
21.
21,
21.
21.
20.
20.
21.
19,
19,
19,
19.
16.
17,
20.
it.
16.
16,
15.
11.
V900.
7100,
6100,
4300,
9490,
3950.
3 160.
3700,
2960,
3540,
3320,
3040,
2640.
2500,
2610.
1530.
2280,
2320,
2140.
2270.
2170.
2480,
2340,
2290.
2310.
26"?,
2200.
2200,
2590,
2310.
3260.
2820,
2410.
2920,
2630.
3330.
2660.
3180.
3330.
?S20,
3820.
4020.
4120,
4750,
7200,
3540.
3320.
3040,
2640,
2500.
2610.
1530.
2200.
P.320,
2140,
2270,
2170,
2180,
2540,
2290,
2510,
?MC.
2200.
2200.
2580,
2310,
3260.
2"20,
2410,
2920,
2630,
3350.
2h80.
3180.
3330,
2820,
3820,
4020,
4120,
4750,
1.
14.
15.
17,
17,
16,
16.
19
19.
21.
?-\.
20.
23,
22.
22,
21,
21.
22,
19,
20.
21.
19,
19,
18.
19,
18.
18.
17.
\ i,
* v f
16,
15.
16,
FDR LAKE-SPOKANE ARM MBTEOKOIOGIC
1970
1
JUNE 27.70
27.26
27.59
27.55
JULY 27.63
27.38
27,51
27,48
152
25.4
27,67
27.43
27.65
27.38
27,74
27.4?
27.53
27.43
U8.
27
?.7
27
27
27
27
27
27
334
20200,
19900,
19500.
17800,
15500.
13900.
. 4960.
3740.
3220,
3U'IO,
3460,
36'JO.
3310.
2460.
?650,
1460.
2580.
25^0.
2470.
2540,
2140.
25SO,
2180,
2770.
1 4 9 0 ,
2330,
2? 70.
o to 5
217oi
2150.
2420,
2780,
?MO,
2720,
2660.
3310,
3060,
3140.
?.790,
2850,
3460.
3160,
3060,
4010,
4310,
4390,
3940.
3650.
3310.
2«60.
2630,
1460.
2580.
2590.
2470.
2540,
2140,
2350,
2180,
2770.
1190,
2330,
2270.
o i~. n n
2l7o!
2130,
2420.
2780,
2810.
2720,
2660.
3310,
3060,
3140,
2790,
2830,
3460.
3160.
3060,
4010,
4310,
4390.
OATA^-JUNE THRU
1
118,
.52
.49
.60
.25
,70
.53
.49
.34
27
27
27
27
27
27
27
27
,52
.57
.56
,36
.57
,56
.40
.«!
18
390,
27,49
27.43
27,46
27,37
27.49
27,62
27,37
27,49
14,
1 6,
17,
16.
15,
16.
20,
19.
?l->
21.
20.
22.
21.
21,
21.
21.
21,
20.
19.
20.
19.
18.
19.
20.
18,
19,
1 /.
1 J.
* *' I
16,
15,
7.
20200.
20000.
1,'»900,
16^00,
15400,
13600,
3 ;i 2 0 .
3580,
'41/0.
2920,
3410,
2810,
2*20,
?.190,
2670.
?490.
2730,
2580.
1970,
2730.
2140.
1900,
2200,
2650.
2070,
2320.
^?80 ,
^ r- ^ n
t- ~> c. w »
2480.
2530.
2620.
2790,
2750,
3060.
2710,
3120,
3330,
2840,
2970,
2960,
2840,
3040,
3270.
4340,
3980,
3000,
2810,
2820,
2190,
26/0,
2'J90,
2730,
2580,
1970,
2730,
2140.
1900,
2200,
2650,
20/0,
2320,
? ? 8 A .
2':.ZZ\
2«BO,
2530,
2620,
2790,
2750.
3060,
2710,
3120,
3330.
2840,
?970,
2960,
2840,
3040,
3270,
4340,
3980,
14.
16,
17.
16,
15,
18,
20,
19.
20,
21,
20,
21,
21,
21,
21 ,
21.
21.
20,
21,
20.
19,
19,
19,
20,
•18.
20.
16.
i 6 ,
16,
IS.
NOVt 1970--ORM STUDY
27.39
27,40
2 1 . '1 2
27,55
27,50
27,69
27,48
27.54
27, ?9
27,58
27,43
27.56
27.5?
27.48
27.54
27,20
27.46
27,51
27,44
2.7,38
27.39
257
-------
AUG
3EPT
OCT
MOV
JUNE
JULY
AUG
SCPT
OCT
NOV
JUNE.
JULY
AUG
'
SEPT
OCT
2 7 . a /
27.60
2 7 . 0 '1
27. $9
27, 03
27.78
27.52
27.95
27.72
27.10
27, 5b
2 7 , a '4
?7,fl9
27.05
27.6b
27,08
2
0
9
8
2
7
2
0
10
5
0
3
0
3
3
10
a
0
8
2
9
a
10
10
9
3
7.6
16.1
7,1
9.2
8.9
8.9
9,9
9.9
12.5
8.9
13.2
11.1
11.5
6.0
7.8
5.3
4.5
8.6
27,56
27,60
27.50
27. HI
2 7 , 15 H
27.59
27,00
27.66
27.58
2 7. 50
2 7 . '1 3
27.7?
27.06
27.63
2 7 . a '4
27.15
.1
.007
5,9
15.8
7.3
10,2
7,5
11.1
7.2
u. a
9.1
7.8
6,6
8,9
9,1
13.1
i«. a
6,9
6,6
10.8
0
7
6
8
a
9
1
9
8
0
0
0
-»
c.
0
10
0
2
9
10
1
0
8
9
10
27,51
27.53
27,52
27.07
2 7 , 2 H
27.69
27,37
27.70
27. /U
27.37
27.01
27.93
27.72
27,00
27.36
27.00
0
6
6
10
0
6
0
7
0
2
0
0
10
3
7
0
0
9
8
0
0
10
fl
10
7.2
10.5
8.3
15.0
7.6
11.7
7,8
10.8
8.8
6.6
6.3
8.6
11.8
12,9
lo-, a
9,9
7.9
12.7
27.30
27.06
? 7 . 0 h
2 7 . 'l 2
.'7. 20
27,69
27.07
27.61
27.30
27.59
27,23
27.92
27.55
27,59
27.20
27.35
8,9
12.5
5,0
16.1
8.5
9,8
11,2
9,2
9,1
10,8
7,8
1«.7
10,5
16,5
8,9
7,5
10.8
11."
3
9
1
6
3
10
2
8
2
0
0
5
10
0
9
0
2
1
10
6
7
10
6
3
2 7 . '1 0
27,00
27.53
27,51
27.35
27,55
27,60
27,65
27.29
27,76
27,27
27,79
27,02
27.99
27.59
27,19
0
9
6
9
0
6
6
3
0
3
0
0
o
0
7
5
10
2
9
0
10
10
2
10
5.8
11.5
5,3
11.7
10.8
12.1
14,2
13,1
7,5
10.0
7,6
5.2
13.2
11.2
7.3
6.5
9.1
4,5
27,04
27,59
27,50
27.00
27,30
27.59
27.02
27 .70
27.08
27,86
27,30
27, ft/4
27. M
2 7 . H 9
27,95
26,97
9.5
7.8
8.9
14.7
11.5
6.6
9,8
6,6
7.3
5.6
5,6
5.2
16,5
7.1
18,6
9.9
9.1
7.9
}
10
2
0
a
0
5
3
2
0
0
6
5
7
8
6
10
0
9
0
8
9
9
10
27,08
27,50
27,06
27.00
27.37
27.60
27.06
27.71
27.80
27,10
27,76
27,50
27,57
27.52
7
10
4
1
2
4
0
1
0
0
't
J
JO
0
6
10
0
6
0"
10
9
10
13,0
18.8
8.5
8.1
7,8
8,8
5,8
10,9
7.2
6,0
8.5
11.8
6,8
9.8
6,8
7,3
27.
27.
27,
27.
27,
27,
27.
27,
27,
27.
27,
26.
9.4
10,4
10.1
7,5
13,8
13.1
13,2
12,7
8,6
12,8
6.0
6,8
6.6
7,2
56
39
38
53
60
73
66
67
31
52
56
98
9
10
6
2
8
9
4
0
4
6
8
0
10
0
5
10
10
8
258
-------
NOV
JUNE
JULY
AUG
SEPT
OCT
NOV
JUNE
JULY
AUG
StPT
OCT
NOV
JUNE
9.1
7.9
6,9
13.4
15.0
10, H
4
65
55
61
76
64
03
70
62
71
65
66
72
67
53
59
47
60
47
50
35
36
40
40
32
6
42
42
49
35
42
44
46
48
43
33
27
34
41
32
38
21
30
41
33
30
31
37
33
27
7
716
448
685
10,1
10,2
9.8
a. 6
10,5
9.2
,5555
69
54
70
83
71
80
76
71
67
71
65
68
63
57
59
51
60
44
50
33
45
40
3°'
29
.5555
45
35
48
51
47
41
48
52
51
36
30
37
37
32
44
3n
37
37
37
22
28
32
32
25
,000115
702
557
670
0,5
6.5
10. rj
7.5
14,4
11.2
-32.
75
55
T?.
68
7 a
77
79
72
69
74
67
69
57
48
52
61
65
52
47
35
46
40
37
30
-32.
49
34
41
52
47
38
46
52
49
37
33
33
45
23
36
39
39
40
40
23
24
37
32
29
702
707
707
13,4
5.3
0.5
8,9
13, a
7,3
73
St
74
60
83
72
80
61
77
78
70
68
52
45
49
64
64
46
44
39
49
38
7C
22
50
38
48
34
49
43
43
46
48
35
35
35
44
14
39
40
32
29
41
26
24
37
24
21
667
530
717
14,2 13.4 16,1 17.7
7.2 8,2 5,3
10.8 6.2 6,8 11,5
7,9 7,» 9,6 15.7
11.8 9,8 7.8- 18,0
5,0 12.2
72 76 67 61
61 5.1 57 54
75 11 78 78
55 56
79 75 77 81
67 71 78 82
71 66 69 70
64 62 64
76 75 68 63
70 65 72 73
73 74 78 7V
62 67 73
55 62 61 54
43 45 49 52
50 57 48 42
65 64
47 39 37 44
43 42 43 46
44 42 46 40
37 39 41
45 44 37 43
•"1H ?6 « 3 45
1C 14 25 41
30 31
50 50 44 42
46 51 48 44
53 44 45 41
34 32
38 35 42- 43
51 46 48 52
37 39 38 37
39 37 37
38 43 41 34
36 30 35 30
35 37 37 40
36 37 42
41 43 46 34
12 16 20 26
40 42 24 22
40 31
43 37 29 34
29 26 30 32
34 33 38 30
27 28 30
39 40 38 39
32 31 33 40
4 2 20 33
28 27
685 653 530 440
i>2! 142 260 256
552 722 694 660
259
-------
72-5 555 378 662 354 701
JULY 550 692 710 714 757 733 696
6N7 650 625 272 500 713 7d9
678 674 67S dOl 661 594 673 623
254 415 ',44 3<4« 677 651 6«3 662 655 5fl4 630 638 648
65H 647 629 h33 617 641 633
631 k'f.'j 616 594 Ij80 582 S6S
560 565 '326 495 556' 46'} 487
S23 53a H3 203 «2'i 485 326
^•<9 500 500 500 527 381 406 300
?7'i 251 347 276 286 1P2 36^ t36
422 417 410 403 373 330
350 321 329 316 92 94 132 U9
165 247 162 409 273 296 240 272
289 138 200 61 165 195 206 225
190 296 279 , 239 267 261 242
NiOV 189 250 244 175 78 166 40 '15
96 194 26 23 170 146 132 105
83 123 89 169 204 US 30 137
91 60 71 172 71 69
999
18 INPUT UNIT COMTAINING BAL AND HIFP DATA
152 334
SPOKANE ARM OF-' FDR LAKE--JUNE THRU NOV. 1970--OOWNSTRF AM BOUNDARY STUDY"ORM
SYSTtMS CONTROL INC
2,0 56, 15, 0, 1.5t»9 -7,E»2
1 1 15 10 1 0 1 2 2
9.0t*7 2,Sf--t 1,405 -7,F-1 3,?1E4
C,Et ,29L'!:fc .CC234E6
1 25. 730,
25, 23.0
152 174 188 196 202 209 216 244 258 265 272 279 286 328 33'4
152
9,6 .01 ,158 ,03 150,
,1 .9
172
9,6 ,05 ,158 ,03 I50t
.1 .9
207
8,1 ,1 .27 .03 430,
.1 1,5
235
4.6 .12 ,54 ,03 930,
.2 2,3
263
5,5 .15 ,54 .03 70,
,2 2.2
334
11.1 .21 .27 .03 20,
.25 2.3
500
1288, 23,4 49. l.E-6 I.E.10
1
22
10,9 «09 «05
260
-------
500
0
,08
1
261
-------
SELECTED WATER
RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
w
Spokane River Basin Model Project
October, 1974
Finnemore, E. John; and Shepherd, John L.
Systems Control, Inc.
Palo Alto, California
Environmental Protection Agency
68-01-0756
Perion ,'o
Set of six volumes: Volume I - Final Report, Volume II - Data
Report, Volume III - Verification Report, Volume IV - User's Manual for Steady-
state Stream Model, Volume V - User's Manual for Dynamic Stream Model, Volume VI -
User's Manual for Stratified Reservoir Model.
Three existing mathematical models, capable of representing water quality in rivers
and lakes, have been modified and adapted to the Spokane River Basin in Washington
and Idaho. The resulting models were named the Steady-state Stream Model, the
Dynamic Stream Model, and the Stratified Reservoir Model. They are capable of
predicting water quality levels resulting from alternative basinwide wastewater
management schemes, and are designed to assist EPA, State, and local planning
organizations to evaluate water quality management strategies and to establish
priorities and schedules for investments in abatement facilities in the basin.
Physical data and historical hydrologic, water quality and meteorologic data were
collected, assessed and used for the model calibrations and verifications. The
modified models are all capable of simulating the behavior of various subsets of up
to sixteen different water quality constituents. Sensitivity analyses were con-
ducted with all three models to determine the relative importance of a number of
individual model parameters. The models were provided to the EPA as computer source
card decks in FORTRAN IV language, with accompanying data decks. All development
work on, and applications made with, these models were fully documented so as to
permit their easy utilization and duplication of historical simulations by other
potential users. A user's manual with a complete program listing was prepared for
each model.
Send To:
WATER RESOURCES SCIENTIFIC INFORMATION CENTFR
U S DEPARTMENT OF THE INTERIOR
WASHINGTON.D C 2O24O
E. John Finnemore
Systems Control, Inc.
-------