• AVY.fiT .?•) lufr AVY.'-I- tf> IFUKKAVY.GT.l) IFUHf.AW.GT,2) CO'ITIMUE IFUCOHB.GT.il) ,|OU7) ' AHM AHM2 AHM'i •»SITE(NJilOJ 1) CHM03C GO TO «05 GO TO 405 «RlTf(NJt IOJB) uHITt(NJt 1019) HHlTt:(NJ,10lS) »KITF(MJ« 1016) tiODOQ .MORKFR HOOC BOON BODPC CONTINUE It UNH3.EU.O) GO TO (110 THKMH3 VOUITK i 101«) ThVOLK CONTINUE IFUM02.EC.O) GO TO *>MTE(NJ,1002) wRITECNJ.lOd?) THN03K GO TO 420 IFUHEAVY.NE.o) ••< ITE (NJ, 1022) CHMOA IFUMEAVY.GT.l) •KITE(.MJ,102J) CMMOA2 IKIMEAVY.GT.2) *RITK(NJ,102«) CHMOA3 IFUhEAVY.NC,0) »»ITE(NJ,1025) HHKA 1FUHEAVY.6T.1) -KITKN.:,1026) HKKA2 UUHEAVY.GT.2) *RITF.tNJ.102/) H^KAS IFUF04,»JE.O) wRITE(NJ«l02fi) IFUPOd.t.E.0 .A.v.0, ««ITE(NJ,1029) M1N03 »RITE(MJ.J03?) *RITE(NJ»10J3) >«RlTE(Njtl03(i) WRITE(NJ,1035) »RITE(K'J»1036) JF(IHKAVY.GT.O) IFUMEAVY.GT.l) IFUKEAVY.GT.2) APR NR ASR AND kWJTE(NJ»1037) »*ITE(SJ«1038) v,RI TE ( NJ , 1039) 1FUCOMB.LT.12) Kf»ITE(KJ»10UO) ATO AT02 AT03 ,-C.l) >SITE(NJ,1050) THPOUK irUNH3i'.f,.C .OK. l!j03.^E.O) t 1 0«2) ORWNH3 1FUHEAVY.GT.1) *RITE(NJilO«b) P1MH2 135
-------
1607.
16«8.
 1650,
 1651,
 1652,
 1653.
 165«,
 1655,
 1656,
 1657,
 1658.
 1659,
 1660,
 1661,
 1662,'
 1663,
 166«,
 1665,
 1666,
 1667,
 1666,
 1669,
 1670,
 1671,
 1672,
 167J,
 167«,
 1675,
 1676,
 1677,
 1678.
 1679,
 1680,
 1661,
 1682,
 1683.
 168fl,
 1685,
 1686.
 1667.
 1688,
 1689.
 1690,
 1691,
 1692.
 1693,
 I69a,
 1695.
 1696.
1697,
 1698,
 1699,
 1700,
 1701,
1702,
1703,
170«,
1705,
1706,
1707,
 IFflHf.AVY.&T,;?) «.-RITE(Nj,iO«6) PIMM3
 CALCULATE HXYGt'. SATURATION IN EACH JUNCTION
 00 iiJO K = | tfiJiiNC
        TsTEMRkAfK)
 CS AT (*) = (!«. >V-<. 3898«T)»(.006''6<>»T*»Z>.(,00005897*T.'M3))
*       *C(l,-(,OPOOnh97«ELEV))»»5,167)
          «3o
          C
460
1002
1001
1003
1004

1005
1006

1007

1008

1009

1010

1011

1012

1013
10l«

1015
1016
1017
1018
1019
1020

1021

1022

1023

io2«

1025

1026

1027
 CONTINUE
'CHECK TO INSURE THAT HOD.N EXCEEDS THE  ALGAL«N  IN IACH JUNCTION
 BOO«iTsBt"5C*12,/HnDPC
                                   BODNX.ALGN.K
                00 libO KcltNJUhC
                BOO>;x = C(>P»iR)
                IF(IJOCNX.LUAI.GN) •>* 1 11 ( N J , 1 Oil )
                CONTINUE
                FCRVATO CONSTITUENT SELECTION OPTION eii6ax,J5)
                FCR''«T(I PHYTOPLANKTON GRO-iTH FLECTION OPTION ='»56X,IS)
                FOR^ATd COLIFOM:-1 OPTION ='i78XiI5)
                FORHATC TtMPF.RAT-USE COKRfcCTION CONSTANT FOR COLIFORM REACTION COE
               *FFICItNT si ,20XiFlO.'i)
                FOKMATCI COEFFICIENT ON BOO IN COLIFORK CALCULATION =i ,51 X «F1 0.5)
                FORMAT (I COEFFICIENT ON HEAVY METAL 1 IN COLIFORM CALCULATION oi,a
               *lXiF10.5)
                FORK»TC COEFFICIENT ON HEAVY METAL 2 IN CCLIFORM CALCULATION *l«q
               »1X,F10,S)
                FORM«TC COfFFICIENT ON HEAVY METAL 3
               *1X,F10.5)
                FORMAT (• HEAVY HETAL 1 CONCENTRATION
               »ULATION  =".29X,F10.5)
                FORMATti HfjvY HETtL 2 CONCtNTRiTION LIMIT (MC/L) IN COLIFORM CALC
               tULATION  =l.2
-------
1706,
1709,
1710.
1711.
1712,
1713.
1714.
1715.
1716.
1717,
171B,
171V,
1720,
1721,
1722.
1723.
1724,
1725.
1726.
1727.
1728.
1729.
1730.
1731.
1732.
1733.
1734.
1735,
1736.
1737,
1736,
174o!
1741.
1742.
1741.
1744.
1745.
1746.
17«7,
1748.
1749,
1750.
J751.
1752.
175J,
1754,
1755.
1756.
1757.
1758,
1759.
1760.
1761.
1762,
1763.
176ft,
1765.
1766,
1767.
1768.
1036

1029

1030

1031

1032

1033
1050
1035
1036
1037

1038

1039

1040

101)1

1042

1043
1044
1045
1046
1047
1048

1049

1050

1051




C
C
C
. C
C
C
C


C
C
C


C
C
C

 FOR''»T(i. KlCHACLIS»MfnTOM CONSTANT (KG P/L) fC« PHOSPHORUS LI"ITAT
»K»l OF fV(YT,1PLA'.*T« CONSTANT (HG */L> FCH PHOSPHORUS L1MITAT
»IO'J OF PHYTOCLA'.KTm:  MO-IH =1, VYfF|0,S)
                     f-Tn^ r.u»>-5TAMr (i-c fo'i-'i/t) FO"» NITROOF.N I.IMIT
                     Of.  f;WO«TH =l./X,F|C,5)
 KOK"AT(i  CICHif-.LlS-"E'.TCjN tC'ixSTA'lT (»-G i.HJ.'j/U FOR NITRPHES LIHIT
»ATION PF  PHYT(1PLAV , VJX . F 1 0 , 5)
 FCRiUTC  PHYTOPL»N<10N  TOXIC DEATH COEFFICItNT  FOR HEAVY «ETAU 1 a
»l,3HX,Fio.5)
 FCR^Aifi  P^YTOPLANKTON  TOXIC DEATH COEFFICIENT  FOR HEAVY METAL 2 »
*«i3SX,F10.5)
 FOHMAT(i  PHYTOPLAMKTON  TOXIC DEATH COEFFICIENT  FOR HEAVY HETAL. 3 a
* I t36X,F10.5>
 FORfAT(l  BOO HEMTHAL  RELEASE RATE (HG/SOUARE  METER.HR) ri.d6X.FlO,
*5)
 FORHATC  PHOSPHORUS BtNThAL «tLEASE RATt (MG/SOUARE MF.TER-HR) =l|4
»1X.F10.5)
 FOR*'A1(l  NITROGEN  BENTHAl HELEASE "ATE (MG/SOu»"E METER.HR) =I|43X
*«F10.5)
 FOMf"«T(l  BENTHAL OXYGfH DEMAND (MG/SQuA»E KFTF.R-HR)  s I ,51X »F 10,5}
 FOHMATP  FRACTION  OF  HEAVY  Mt TAL  1 IN ION FORM  a I , 56X ,F 10-.5)
 FOHMATP  FRACTIO.-J  OF  "FAVY  utTAL  2 I" 10* FOP",  a I i S6X, Fl O.S)
 FOHMATC  FRACTION;  OF  HtAVY  METAL  3 IN ION fOR*  =' .56X .Fl 0,5)
 FORMAt(l  TtwPEKATuRE  CORHKCTION CONSTANT FOR BOD REACTION COEFFICI
*FN7 =I.jxi.ti0,5)
 FORM»H"TEMPERATURE  CORRECTION CONSTANT FOR N02 DECAY COEFFICIENT
* ='.36X.FtO,5)
 fO«KAT(l  TE«PF"ATURe  CORRECTION CONSTANT FOR N03 DECAY COEFFICIENT
» =I.36X.F10.5)
           TEMPERATURE  CORRECTION CONSTANT FOR P0<| DECAY COEFFICIENT
           lO.b)
           »«»BOO NITROCF.N  =i,Fio,fe,'  AND ALGAL NITROGF.M oi«Fto.6«
*l  IN JUNCTION)tIS, I »«*))
 RETURN
 END
 3UHHOUTINE OUTPUT(NTINT)
                                    OUTPUT SUBROUTINE
                                    HYDRODYNAMICS  PROGRAM
                                    SPECIFICATION  STATEMENTS
                                    CONTROL

 COMMON /CONTR/ N5iN6tN20»«21 •   NTCYCiNOCYCiNHCYCi
li  DELTQ.DfLT.TZEWO.   ISWCHC10)
COMMON  ALPHA(30),  NJ,NCt
.   PRf.CP(bO).NEXIT
ICYC«KCYCiNCYCi
                                                      >*DI
                            137

-------
 1769,           1.   NCK»N(100i8).IPOI'.K100iP)«»5nOO) , VOL (100) . X ( I 00) . Y ( 1 00)
 1770,           ?.   ntP(ino) •coF(ifio) .niN(ioo) .oouuoo) • QIKSTUOO)
 1771,           3i   01M4*H(100)t(30uH*W(|06)
 1772,     C
 1773,     C                                        CHANNELS
 177a.     C
 I77t>,            COMMON  U'-'C??*) , nJU'-'C (225. 2) i U(?2S) ,R t2?5) . A (??•>) , AT (??5) |AK(225)
 1776,           1,    Oe^2S).f.i»if»(2«S)K)AVF.(2(22i>) iNUMC'<(^Hb) iNTLf'HIB)
 1778,           JiNCLOS(22b)
 1779,     C
 1760,     C                                        PRINTOUT  AND  PLOTTING
 1781,     C
 1782,            COMMON    NPRTiIPKT,   NHPHT.JPKTCSO).PRT"(30.50)
 1783,.       -   It   ^GPRT.CPRT{50)iPRTV(30,bO)tPKT!3(30.59)i   I DU"( 12) , ICOL (10)
 1780,           H,   LTIMt,  NPLT,NPDKL.JPLT(bO),HPLT(SO)
 1785.
 1786,     C
 1787,     C                                        8UGE«TIME  COEFFICIENTS
 1788,     C
 1789,            COMMON  YY(50)  ,TT(50)  iAA(10).XX(10),SXX(lOt10)|SXY<10)
 1790,           l,At,A2,A3,AA,ASiAb,A7>PtKIOD«JGM
 1791,     C
 1792,     C                                        STORHHATER
 1793,     C
 179fl,            COMMON   TITLE(30)«NJS*tOE(?0»2).JSt'(?0)
 1795,           2i  RAH(IOO)»IMT1"E(100>.INRAIN,JBOUNO(20)»JJBOUN
 1796,     C
 1797,     C                                        TAPES
 1796.            COMMON  /TAPES/  INCNTtIOUTCTiJlN(10)«JOUT(10)>NSCRAT(S)
 t799,     C
 J800,            COMMON  /LAB/ T!T'-(!«)tXUA9(ll)»VLAB(6)»MO»17(20)«VERT(Tfh)«IT
 1801,            COMMON/PLOT/T(5),\ZCb)tAX(51i50),AY(51.50)ii.PT(50)
 1802,            IF(NUK'T.LQ.l) GC  TO 210
 1803,            Rt.AO(5,10?) TITL
 180«.            RfAOCSil02) HOMU
 1605.            1T>1
 1806.            KtAD(5ilC?) (Vfc«T(II.IT),11=1•7)
 »807,       102  FOKMAT(20AU)
 1808,            RETURN
 1809.       210  CONTINUE
 1810.            OUMMYeO,
 ten.            TMAX=IOOOO.
1812,            *!?2 * JO'JTCIOI.ITCT)
 181J.            wHITE(N22) TMAX»(DUyMYiJs
 1814.            N=0
 181S,            HF.wlNO  N22
 1816.       220  NSN«!
 1817.            IK(N,r,T.5l)  GO TO  ?25
1818.            «EAO(N?2) AX('.,n»(AY(N,J)(Jsl,NPLT)
1819.            IF(tXCNih.LT.lOOO,) GO TO 220
1820,       22S  CONTINUE
1621.            NCUKVEsN.l
1822,            NPTNBO
1823.           NaO
|62«,       200 NsN*l
1825,           NOC=N
1826,       250  lF(JPLT(M)C).Ct.O)  GO TO 270
1827,           NOCs^DC+1
182B,           GO TO 250
1829.       270 CONTINUE
                                        138

-------
 H3o,            on z->o
 use,
 1133,            n<)  290  1 = 1 I'-CUHVE
 JiJi,            AY(I.X)sAY{I,J)
 H3f>,        390  CUNTIMJE
 t»37,            Nxni.t;c«*.>l
 1138,            NPTN = f.PT'J»l
 1539,            C*LL  CU»VE(4X. AYiN'PTtNX.NPTN)
 1140,            On  300  J = 'J,NOC
 1141.            KsJ.Nfl
             300  CO'JTIMJF
 l»a«,           .KRITE(6fSO)  (NPT(K) iKaJ .MX)
 114S.        50  f OHM«T(1HO««OX,HOH       PLOT LEGEND  t
 1146,          1                ISiflH s »tIS»«H.a  +tIS't«H = I|JS»4H = X,!5|4H
•l'«7.            KsNOC
 H48,            If (s.LT.NPLT)  GO TO 2UO
 H49,            HETURN
 ISSO.            END
 H51,-            SUDMCUTlNE PlNF(XliY!,X2.Y2.NSYM«NCT)
 1*52,            AX* = X1
 1SSJ..            AXB=X2
 1««,            *YAsYl
 U55.            AYB=Y2
 1156,            N»l
 Hb7.            IF(ABS(»XH'AX*)iLT.*Bs(AY8.AYA))  CO  TO 290
 H58.     C
 1159.     C      SET PARAMETtRS  FOR X OIHECTION
 1360.     C
 Ji61.            IF(AXB«IXA)  2U1«400»2US
 1162,       2«1  COMTIK'UE
 1163.            AXAsX2
 1564.            1XH = XJ
 U65.            AYA=Y2
 H66.            AYBsYl
 1*67.       245  CONTINUE
 »68,
 H69.
 1170.            IYA = »Y*».5
 1171.            IYB = »Yt<«,5
 H72.       250  CP*TIN'UE
 H7J.            IF  (IXA.LT.O.OR.IXA.GT.IOO)  GO TO  260
 1174.            If  (IYA,LT.O.O».tYA,nT.SO) GO TO 260
 1»75.
 U76,       260
1S77,            IXA=1X«»1
 1176.            YA=('.'*{AYB«AYA))/(AXB"AXA)
1179,            IvAa'AYAtYA»0.5
1180.            N=N»1
U81.            IFUXA.LE.IXB)  GO  TO 250
1182,           GO  TO 400
J483.     C
1184.     C     SET PARAMETERS  FOR  Y  DIRECTION
1185.     C
H86,       290 CONTINUE
H87.           IF(AYH,GT,AYA>   GO TO  295
1188,           AYBsYl
1189.           *YAoY2
1190,
                                      139

-------
 1891,            AXA=X2
 1892.        295  CONTINUE
 in?3,            IXA=AXA+,S
 1890,            U6-AXII*,b
 1895.            IYA=AYA».S
 1896,            IYf>=AYB + .!>
 1897,        300  CONTINUE
 1898,            IFdXA.LT.O.OW.IXA.GT.lOO)  GO TO 310
 1899,            IF(IYA,(.T.O.OW,.IYA.GT,SO)  GO TO 310
 1900.            CALL  PPLOT(IXA,IYA.sSYM,NCT)
 1901,        310  CONTINUE
 1902,            IYA=IYA+1
 1903.            XA=(»«*(AX8«AXA))/(AYB»AYA)
 19QO,            IXA=XA+AXA*0,b
 1905,            N=N+1
 1906,            IFUYA-IYB)  300.320.000
 1907,        320  IXA q 1X8
 1908,            GO TO 300
 1909,        000  RETURN
 1910,            END
 1911,            SUBROUTINE PPLOTflX.IY.K.NCT)
 1912,            DIMENSION A(S1,101).SYM(9)
 1913,            COMMON /LAB/ TITLf:(l8).XLAB(ll),YLAB(fr)
 1910,          1.MOK1Z(?0)»VE«T(7.O«IT
 1915,            OATA SYM / uH*»**io*+t++,  awim,  OHXXXX.  OH...,.  OH2222.
 1916,          1 OH    , UHIIIJ.  OH—«  /
 1917,            IF(K-.99) 200.220.230
 1916.        200  A(51«IY|1X+1)=SYM(K)
 1919,            RETURN
 1920.        220  CONTINUE
 1921,            IsO
                 fc»m<6»10i) TITLE.NCT
                 00 22b 11=1.6
 1920,            1=1*1
 1925,            IF(VLAe(l).LE.100000.)MRITE(6il01)YLA8(II).(«(IiJ).j8l,l«|)
 1926,            IF (YLAB(l).GT.l 00000. )lHITf (6,107) YLAB (!!)•( Ad, J),Jal, 101)
 1927.            IF(lI.EQ.fc) GO TO 228
 1928.            DO 220 JJ=1,9
 1929.            1=1+1
 1930.            IFd.fcE.28) GO TO 221
 1931,            KiUTMb.lOB) VEWT(5,IT).VKKT(6.IT)«VERT(7iIT),(Ad,J),j8l,101)
 1932,            GO TO 22«
 1933,       221  1F(I.NE.2U) GO TO 222
 1930,            "Knt(fc.IOh) VERTCl.lTl.Vt.RT (2.IT). (A(I,J),j3|,jOl)
193S.           GO TO 22«
19J6.       222  IFd.KE.26) GO TO 223
1937.            wHITK6.10h) VEKT(3,IT),VEWT(0,IT),(Ad,J),Jsl,101)
1»36.           GO TO 22iOO) (A(I. J),Jsi. 101)
1900,       220 CO'i.TIni'E
1901,       22S CONTINUE
1902,       22b CONTINUE
19«S,           i«RITh((
1900,           *RITC(6.10S) HO^JZ
1905,       100 FO«MAT(18X.101A1>
1906,       101 FOHMAT(l  l.Flb.3ilX.10lA])
1907.       1"2 FPH'iATd  I .FI9.1 .lOFJO.l)
1908.       103 FOKWA1I
1909,       105 FOR"AT(/U'X.20tU)
1950.       J06 FOW.ATl
19bl.       107FCA*AT(I  I.1PC16.2.JX.101A1)
                                        140

-------
1952.
1953,
19SO,
19S5,
1956,
1957,
1950,
1959,
1960,
1961,
1962,
1963.
mo,
l?6b.
1966.
1967,
1968.
1969,
1970,
1971,
1972,
1973,'
197«.
1975,
1976,
1977.
1978,
1979,
1980.
1981.
1982.
1983,
198«,
1985,
1986,
1967,
1988,
1989,
1990.
1991,
1992.
1993.
1994.
1975.
1996,
1997,
1998,
1999,
2000,
2001.
2002.
2003.
2001,
2005,
2006,
2007.
2006,
2009,
2010.
2011.
2012,
















C
C
C
C
C
C
C
C
C


C
C
C


C
C
C




C
C
C




C
C
C



C
C
C


C
C
C

108 FOHM»T(3Xi'Jia,3X.10lAl)
2iO ou ;;so 1 = 1.^0
00 20 J = l 1 1 01
260 4(5) • JjiSYKO)
00 270 1 = 1 >101t 10
?70 « t'Jl  K'2I • NTCYC »NOCYC t NHCYC • NT»KI03«RT
It DELTQiCELT iTZEROi ISftCM(lO)

GENERAL

COMMON ALPH*(30>» NJiNCt jCYCiKCYCiNCYCi VIKDiWD'tRtEVAP
ll PRECPCiO) iNf X JT

JUNCTIONS

CQMKON M(l«o) iH«j(100) t«T(100)tHBAR(loO).HAvE(IOO)
If NCHAMflOOtin t IPO I NT (100. 6) .AS (100) . VOL ( 1 00) . X ( 1 00) , Y ( 100)
2f OEP(IPO) ,COF(100) .OllJ(lOO) t(30U( 100) .OlNST(lOO)
3, OINBAK(IOO) ,UOU8AR( 10-0)

CHANNELS

COMMON LtN (225) t NJUNC (2?S,?).Bt22b)iP{22S)i t(225)i AT (?25).AK(22S)
1. 0(22'>).C.BiW(?2S),r;AVE(22S)t V (225) . VT (22S) , VBA •NjswfaE(2o»2)»j3*'(20)
141

-------
2013,
2014.
2015,
2016.
2017,
2oie.
2019.
2020,
2021.
2022,
2023,
202«,
2025.
2026.
2027.
2020.
2029,
2030.
2031.
2032.
2033.
2030,
2036,
2036.
2037,
2036,
2039,
2010.
2041.
2012,
2043.
2040,
2045,
2046.
2047.
2046.
2049.
2050.
2051.
20S2.
2053.
20b4.
205S.
2056,
20S7.
2058.
2059,
2060,
2061,
2062.
2063,
2064,
2065.
2066,
2067,
2068,
2069,
2070.
2071,
2072,
207),
2, RAIHf inn)iIIJTIIt(IOO) iINRAIN, JHOUNP(?0),JJHOUN
c
c TAPES
c
COHHCM /TAPES/ INCNT.IOUTCT, JlN(lO).JOUTUO) ,NSC»AT(5)
C
C TYPE DESIGNATIONS
C
mf-GEH CPRT
KEAL UN
DIMENSION WAVC2J5) .VAVC22S)
00 2 = 0,
241 VAV(LJ)=0.
100 FOB«*T(1H1,//30X, 15A«/30X,15A(|//J
DO 220 I=liNHPRTi6 ' .
HHiT? (6ilOO) ALPHA .
WRITE (NO. 102) TITLE
102 POH"AT(1»0.30A4)
WRITE CJhilOl) NT
J0« FORMAT (7' HOUR.(PRTH(L«K).K31,LT)
110 fORMATdH .riO. 2.RX.F1.4. 4.5MB. (1)
C
C P«lNT TLOflS AND VELOCITIES
c
00 242 I=1.MOPRT«6 . .
*RITt (b.lOC) ALPHA
*HITE (Kfeil02) TITLE
^.RITE (K6.104) NT
WHITt (6,112)

2* * «)
DO 230 !C=li6
JC»I-1*IC
NX*CPRT(JC>
IF(JC.CT.NOPRT) NXeCPRT(SOPRT)
IDUM(?«IC-n= IABS(NJU^C(».X,l))
IOU»-'(2»IC) = IAPS(MJoNC('U.2))
230 CONTINUE
WR1TE(6,114) (IDUHtIC),IC=l»12)
114 FORHAT(l'«Oil8Xi6(10H CHANNEL. I 3.14) /
2.6X,jj«H HOUR HJW VLL. FLO^ VEL, FLOW
3 VEL, FLOK VEL, FLO* VEL. K0» VEL.«/«24X

H















R













tt .97H (CFS) (FPS) (CKS) (FPS) (CFS) (FPS) (CFS) (FP
142

-------
 2070,
 3075,
 207A.
 2077,
 2076,
 2079,
 2080,
 2081.
 2082,
 2083,
 208«.
 2085.
 2086,
 2067.
 2088,
 2089,'
 2090,
 2091,
 2092.
 2093,
 2090.
 2095,
 2096.
 2097,
 2098,
 2099,
 2100,
 2101,
 2102,
 2103,
 2104.
 2105,
 2106,
 210;,
 2105.
 2109.
 2110.
 2J11,
 2112.
 2113,
 2M«.
 2115,
 2116.
 2117.
 2118,
 2119.
2120.
2121.
2122,
2123,
 2124.
2125,
2126.
2127,
2128,
2129,
2130,
21 SI'.
2132.
2133.
     5S)
              (CFS>  (FP5)
                                (CIS) (FPS),/)
       DO  2  NOUKi (f»KTU1 iNJS")
   118  FOHH»T(33H1HYDROGHAHH  INHgT NODES TO SYSTEM, //(6Xi 10110).)
       KtTURN
       END
       SUBROUTINE OPRINT
       COMMON/PHTCOM/f.'OPRT,lTCPRT,LOCPRT,NSTPR1|NOCTOTiISKIP,MSTP»T
       COMMON/JU'.'COM/S'J
       COMMON  KCON,KCO»JO,C2(132) tC(100t!6)
607
618
      DATA LANK/I  I/
      DATA N6/6/
      IF(lSKlP.EQ.NGPRT)   60  TO  1
      RETURN
1     NCCTOTsMQCTOT*!
      HRITE(N6«908) .
908   FOR«AT(1U1.//.10X. I JUNCTION  CONCEMTHAT IONS AFTER STtPI,I5i"  QUAIIT
     »Y CYCLt'«I5)
      00 2 LJsl.NJ
      IF(L«4STtLJ).MF.LA>JKj  IFLAG=1
      *RITE('J6i81R> L Ji (C (LJiLK) iLKs 1 , 1 2) iLKASTCL J) I
      IF(IFLAC.EQ.l)  ^«I TE(N6. 100)
      ISKIPsl
      RETURN
      FOR«AT(i      JUNCTION       00    BOO    NM3.N
     »   PMYTO   COLIFO.XMS  MM!    MMi»    HK3   TOT N
     »    H"ISI/ I       \U«HfcR      C
-------
2135,
2136,
an?.
21*0,
21.V).
2l«0.
           100
21flJ,
2144.
21(16,
2147,
2146,
21«9,
2150.
2151,
21S2,
215J.
21b4,
2155,
2156."
2157,
?158,
2159,
2160,
2161,
2162,
2164,
2165,
2|66,
2167.
2166,
2169,
2170,
2171.
2172,
217J.
217«,
2175,
2176,
2177.
2178.
2179.
2i80.
2181,
2162.
21*3,
2184,
2185,
2186.
21B7,
2188.
2189,
2190,
2191.
2192,
219S.
2194,
2195.
 FORMAT(i » INDICATES su»   .HAL  OF -
*NG MfJOfLEO EXCEt'OS THK  TOTAL  NITROi..-
*IVE,l)

 SU«ROUTJNF RECF1V
 CO'-MIK /TAPES/ IKCMTtlOUTCTt JIMUO).
                                                         1TROGK»'  1'J C0»STTTUF^TS  BE 1
                                                             "OiVUD  *S A CONSERVAT
                CAT*  KU*M/"HITY /
                HEAD (N'j.lOO)  (A-iAHEU) il = li4)                         .
            100 FHHC.ATCiAUt I«)
                IF (ANAfr.f'}.'3UAN{l).AND.ANAHE(2).F.O.nUAN(21) GO TO 200
            150 IF (AN4nE{3>..EQ.GUALn).AND,ANAME(4> . t Q .CUAL (2)) GO TO 300
                GO TO 400
            200 C*LL SWKLOW
                GO TO 150
            300 CALL S*OUAL
            400 WRITE(N6.500)
            500 FORMAT (31HOKHCP:IVING  SIMULATION COHPLFTEO)
                RETURN
                END
                SUBROUTINE RUNOFF
                RETURN
                EWD
                SUBROUTINE SETOPT
                COMMON/O'TION/ir'iilKaf ICOL»ICOM»,INH3iIN02»IN03iIP04iIALfi»lFIRST
                COM^O>.'/OPT2/lHf-AVY.lTOTN,lCHLOR
                COv"'UN/0!>T3/IPi !"<^.l^i>»IN3
                DATA IFl«,I2ND,;'H^,N02^03»LfO<(,N,LP/llST I.I2NO I * INM3«I, IN02>I i
               • I N03-I « ' P01-' t ''J    11 IP    '/
                DIMENSION LAB(IO)
                DATA LAP/I     i|i    It(MODE'•iLEO -8.tR,l3)
                IF(irnM?.E0.10  .OR.   ICOMB.Etl,ll)   INOJ=0
                IF(ICO«B.EO,4  .OH.  ICOM8.E0.6   .OR.   ICOMH.tO.9  .OR.
               •ICO^b.KR.I1)  IPC«=0
               'IF(KO"H.GE,19 .AND. ICOMB.LE.2l   .OR.   ICOMH,1.0,23)   IP04SO
                JF(JCC"H.EQ.1  .OR,  ICOHH.EO.S   .OR.   ICOMB.F'J.T  .OR.
               «ICO^W,E3.J2  .0".  ICOMH.E0.1«   ,OH,   Icn-<«.> 0.16)   •"
                                       144

-------
 219&,
 2197,
 2198.
 2199,
 2200,
 2201.
 2202,
 2203.
800
2205.
2206.
2207,
2208,
2209,
2210,
2211,
2212,
2213.
22ld.
221S,
2216.
2217,
2216,
2219,
2220.
2221,
2222.
2223.
222%.
2226,
2227,
2228.
2229.
2230,
2231.
2232,
2233.
223«.
223S,
2236,
2237,
2236,
2239.
2240.
22«l,
2212.
22«3,
22fl«,
22«5.
22U6,
2217.
2248.
2209.
2250.
2251.
           10
          20
          30
          «0
2253,
2254,
2255.
2256.
          999
          1000

          1001
          1002
          1003
          1007
          1008
          1009
          1010
          1111
          1112
      IFUr.OM'l."F..l«>  *HITKNOUT»1000)
      IFdCO'fH.C'J.tn) • "ITECJOUTi'W)
      IMICOL.KQ.D KN!HC*OUTil001)
     .IKICOMtj.LE.il) ^ITE<«JOUT.1002)
            S.t'J.O)  00 TO 10
      IFCINH.F0.2) L*FH6>sI2ND
      WRITKNOUTtlOOS) LAH
      CONTINUE
      IMI^Oa.EO.Q)  CO TO 20
      LAH(1):>N02
      L*B(2)=N
      IAD(6)=1F!R
      IF(IN2.EQ.2) LAH((>)3l2NO
      «'RITt (NpiJTil005) LAB
      CONTJKIIE
      IK1"03.EQ.O>  GO TO JO
      LAB(2)aN
              O.-2) LAB(6)aI2NO
      MmtCNO'JTtlOOJ) LAB
      CONTINUE
      IF(IPOa.tO.O)   CO TO 00
      LAB(2)sLP
      LAB(6)slFIR
      1F(IP.E0.2)  LABC6)sI2ND
      W!TE(MOL|T, '.A3
      CONTINUE
      IF(IALC.eo.l) WRITE(NOUT.
      IFUHfcAVY.ER.l)  fc«ITE(NOUT, 1 008)  IHEAVV
      IK1HMVY.CT.1)  "HITKNaUTillll)  IHEAVY
      IF(ITOTN.WE.O)  w«»ITE(NOUT, 1009)
      IFUC"LOR.N£.0>  WUITE(MOUT.IOIO)
      RETURN
      FORwATP  THf  FOLLOWING CONSTITUFNTS ARE BEING HODELEO!)
      FOR«AT(i  T«t  FOLLOWING CONSTITUtNTS ARF. BEING MODELF-0    DISSOLVED
      FORM«T(«8X, t
      f OH«AT(afiX. IBOD")
                 iPHyTOPLANKTONI)
      FORMAT (««X. II, I  HEAVY METAL CASO ITS ASSOCIATED  10N)I)
      FORHATC"HX> "TOTAL NITROGEN!)
      FURMATCUflX.'CwLOHIOESl)
      FORM»T(«8X,I1, I  ME»VY METALS (AND THEIR ASSOCIATED  IONS)")
      SUBROUTINE  STQRAG
      RETURN
      END
                                        STORMwATER
                                                        PROGRAM
      DIMENSION  P«JAME  (fe.2> , TI TLE 1 ( 1 0) t STQRM(u) , PAIM8)
                     INCNT»IOUTcT.JIN(iO),JOUTtlO),NSCRAT<5)
                               145

-------
22S7,
2258,
2259,
2260.
2261,
2262.
2263.
2264.
2265.
2266.
2267,
2266.
2269.
2270.
2271.
2272..
2273.
2270.
2275.
2276.
2277,
227«, •
2279,
2280,
2261,
2262,
2263.
2260.
2265.
2266.
2267,
22ftA«
2269.
2290.
2291.
2292.
2293,
2290,
2295.
2296.
2297.
2296.
2299.
2300.
2301.
2302.
2303.
230«.
2305.
2306,
2307,
2306.
2309,
2310.
2311.
2312.
2313.
2310,
2315.
2316.
2317.
DATA PNA^t / (IHKATF.i <(H T'lAN i OHPf CF i aMENOP
1 i flHSTOHi (IHr.RAPi (JHWSf'E* UHSPORi MHIVIS'i OHROGR
2 • «MAGE . OHH /
NS'5
Nfcsfc
JNTNTsO
ICUTCT=0
R E A C ( 0 S i JS 9 9 ) T I T L E 1
399 FOR"ATf IM'J)
REA[)(Ot>,).2t ICFS'/31XiI?. '-YEAR PESIGM FLO* ='
r>AILY
>FI0.2t
* ICFS'/JIXi 'AVAILABLE ^AX, TKUNK CAPACITY : 1 i F 1 0 ,2 t ' CKS I V/31 X » 1 STOR
*HS STUDIED TOTAL HAlNFALLl INCHES')
JF(NSTRHS.LT.l) GO TO 501
00 5PO Jrli'lSTPi'S
RE AD(05« 'I(1?)STOR^ iRAIN
002 FORMAT ( NAU > flAO)
KBIT K(06>i«03)STnHM, MAIN
003 FOR"AT(30XiaA
Rf *0(N.-5.100) (JIN(J),JOUT(J).J»lilO)
«RITE(Nh,108) JIN, JOUT
RtADtM-j, 100) (MSCRiTt I) .1 = 1.5)
MRlTE(M6i I 06) (KSCRAT( I) • 1 = 1 »5)
220 CONTINUE
"F. AD(N5. 102) CNAI'F.
4RITf (N6« J 0*S) Cf.'AME
00 ?«0 I = 1,6


















IF(CN«nr.(l).Nfc.PNAMF(!,l).OH.CNAME(2).NE.PNAMt(I«2)) T.O TO 200
GO TO (260,280.3001 J5«0« J60i360),I
200 CONTINUE
GO TO 220
260 CALL RUNOFF
GC TO 220
280 CALL TKAtjS
GO TO 220
300 CALL RECUV
GO TO 220
300 *'RITF(N6i 1 0")
STOP 1111
360 CALL STORAG
GO TP 220
360 CONTINUE
CALL GKAPH(l)
GO TO 220
100 F"OH''AT(20IO)
1C? FOR^»T(20AO)
10U FC"»"AT(M STORHhATER SIMULATION ENDED')
106 FOWAT ( 1 HI »?Ail)
J08 POR"AT('0 TAfK ASSIGNMENTS I /( 101 J 0) )
E^'O
SUHROUTI'Jf S'J''('TIAY)
CO«vCM/PASS/TOTLfSH.SS
























146

-------
3316,
2319.
2320.
2321.
3323.
3323.
3334.
3335,
2336,
2327,
3320,
3329.
2330.
2331,
2332,
2333,
2334,
2335,
2336.
3337.
3338.
2339,
3340,
3341,
2343.
2343.
334s!
2346,
3347.
3348.
3349,
2350,
3351,
3353,
2353.
2354.
2355.
3356.
3357,
2356,
3359,
3360,
3361.
2363.
3363,
2364.
2365,
3366,
3367,
3369,
?369,
2370.
3371.
2372,
2373.
2374.
3375.
3376.
3377.
3378.













C
C
C
C
C
C
C
C


C
C
C

C
C
C




C
C
C




C
C
C



C
C
C


C
C
C


C
C
C
 DAT*  F l.F2,FJ,M/.'lO<>r>7(>i,017«>l«;>,7,639«U, J,IJir/2/
 REU'HN
 ESO
 SUflROUTINF  3WFLO*
                                    HYDROOYNAMICS PROGRAM
                                    TIDAL OPTION

                                                H STATEMENTS
                                    CONTROL
                ^5»N6in30«M31i   NTCYC»NOCYC«NMCYCi
If  OELTOiOELTiTZFMO.    ISWCH(IO)
 COMMON  A|_PHA(JO).   NJiNCt    ICYC • KCYC tNCYCi
1.  PRtCP(50).NFXlT

                                    JUNCTIONS

 COMMON  H( 10CM ,HNC IflO) .HT( 100) |HHAH( 100) ,MAVF( 100)
li  MCHANtlOO»6)«lPO'lNT(l00.6)«AS(lOO)»VOL(lOO)iX(.lOO),r(100)

3.  01N»AR(100).OOUBAR(100)

                                    CHANNELS

 COMMON LEM32S),NJUKC<225,2)»BC225).RC325).A(32'.O,ATC225)tAKt235)
1,   C(22S),OBAR(?25),QAyt(22b),  V (225) , YT (235), VBAH(2i>5)

J.NCL05(325>

                                    PRINTOUT AND.PLOTTING
 COMMON   NPRT.1PRT,   NHpRTi JPRT(SO) ,P«TM( 30,50)
It  NOPKTiCPRT(iO)l('RTV(J!),SO) .PRTO ( 30, 50) ,   IDUM ( 12) , KOL( 1 0)
3,  LTIME,  NPLT,NPOELiJPUT(!iO),HPLT(50>

                                   STACt»TIME COEFFICIENTS

 COMMON YY(50) .TT(SO) t AA ( I 0) t XX 1 10) *SXX( lOi 10) t SXY(iO)
    ,A2, A3, AU,iS.A6iA7. PERIOD. JGK
 COMMON  TITLE (30)»NJS«,«F.(?Oi2),JS>.(20)
                                   0lJNCC3

                                    TAPES
                         147

-------
 2379,
 2380.
          V  /T/.ITS/ I»:C"T i lOUTCTiJIN(iO) tJOUTUO) |U!>CRAT(5)
    COMMQN/ST2/  TITKL2HO)
 23152.
 2J03.
 2S8«.
 2385,
 2366.
 2J87.
 2SHfl.
 2369,
 2390.
 2391.
 2392,
 2393,
 239JI.
 2395.
 2396,
 2397.
 2398.
 2399.
 2400.'
 2401.
 2002.
 2403.
 2404.
 2405.
 2006,
 2007,
 2a08,
 2409.
 2410.
 2411.
 2412.
 241).
                 DIMENSION FM5FR(2)
                        (VCI"<(2?5)
DI»E'>SIOM
COMMON
DATA
                  GT(20i?) . IS*CZO)
                /  «HE>'D(). UMU*NT /
     INTEGER  CPRT
     REAL  LE
    N20 e  NSf:«»T(J>
    NEXIT=O
    00 2C!i  1 = 1.100
    OEP(I)=0,0
                                        TYPE  DESIGNATIONS
                                        INITIALIZATION
    0011(1)81,
    DO 204 J=liP
    IPOINT(I.J)aO
204 C
205 CONTINUE
    00 210  1=1.225
2415.
2416.
2417.
2418.
2419,
2420.
2421.
2422.
2423.
2424,
2425.
2426.
2427.
242B.
2429.
2430.
2431.
2432.
2433.
2430.
2435,
2436.
2437,
2436.
2439.
    OCHK(I)=1.E10
          )=1 ,K10
               0.0
    00 209 J=1.2
    NJUNC(I«J)=0
209 CONTINUE
210 CONTINUE
    CALL INOATA
    IOUTCT s IUUTCT +  I
                                       sue»oi'TiNt IND»TA CALLED  TO
                                       Rt»0 INPUT DATA
                                       FURTHER INITIALIZATION
    *?.?. * JO,lT( JOUTCT)
    RfwjND »??.
    VTIr.T B
    TT(1) s
    TT(2)
        0
        0,0
      *  0.0
       s 0
       = 0
      8  0
      e  0
    ^•H»3 « 43
    IF (NPLT.r.T.O) CALL OUTPUT(NTINT)
    00 220 1=1.10
    MJIUI.
    TOF.LT
                                       148

-------
2440.
2441,
2442,
244J,
2444,
2445,
244f,.
2447,
244B.
2449,
3 /i c n
C *OU t
2451,
2/m?
r.** jc i
2453,
2454,
24SS,
2456,
2457,
2456,
2459,
2460,
2461.
2462.
2463.
2464,
2465.
2466,
2467,
2468,
2469.
2470.
2471.
2472.
2473.
2474.
2475.
p II m i
c**/6»
2477.
2478,
2479.
2460.
24R1,
2482.
2483.
2484.
2485.
2496.
2467.
2466.
2469,
2490.
2491.
2492,
2493,
2494,
2495,
2496.
2497.
2494,
2499.
2SOO.
























C
C
C
C






•



•



















 220
 222
      icoun = i
      on  ??.?. Jsiiao
      IS»U) a 0
      OTdi 1)  a  0.0
        =  0,0
      GE(lt I)  a  0,0
      OMI,2>  =  0,0
     TOLO=0,
     PREC = 0.0
     TSTZKRO
 223 On  224 I s 1,NHPRT
     MJPHT = JPRT(I)
     PRTH (1,1) s H(MJPRT)
 224 CONTI'-'UE
     00  225 I = liNQPRT
     MCPRT a CPRHI)
     PRTO(l.l) = 0(«CPRT)
     PRTVCLI) = V(MCPRT)
 225 CONTINUE
                                                OF  INITIAL  HVPHOGRAPH
                                        INFORMATION FROM  INTERFACING
     IF(fc21.f:o.O> GO TO 230
     R!>!f.'!> «J?i
     BEAD (W?l)        TITEI.2
     WRITE (N6.7097)   TITEL2
7097 FORMAT (20A«)
     READ (»21)      NSTEPS|MJS/<,NOUAL,TOFLT,TZEWO«TA«EA
     WRITE (KM709l> MSTEPS»»'JS'liNOUAL«TDELTiTZtROiTAREA
7091 FOHM«T (3IIO.SK10.2)
                          tL= J .MJSw)
     IS*U> = 18
     KRITEfft^OO?) (]
7092 FORI'AT(5I1S)
     READ(NJ21) TT(1),(QT(L«1)«L = I i
     TT(1) = TT(l) * TZERO
                   TT(1)•CUT(L«I)iL=l,HjSW)
     TT(2)  s TT(2) * TZIRO
     WRITE(6,7093) Tt(2),(OT(L»2)«LBliMJSW)
     I2>2
     TTP=0.
 230
 100
 102 FOHkAT('IMVOKOGRAPM
 235 CONTINUE
                 I  CD TO 235
                  (JS.(L),L=1.'JJSN)
                  Tf,(CE(U«2>,U=l»"JSi«)
                         INPUTS 10 SYSTEM I //( 6X 1 1 Ol 1 0) )
                            149

-------
2-501.
2502.
250.1.
2504.
2S05.
2506.
2507.
2508.
2509.
2510,
2511.
2512.
2513.
251".
2515.
2516,
2517.
2518,
2519.
2520.
2521.
2522,
2523,
2520.
2525.
2526.
2527.
2528,
2529.
2530.
2531,
2532.
2533,
2530,
2535.
2536.
2537.
253B.
2539,
2540.
25(11,
25d£,
2513.
250(1,
25(15.
2516,
2S«7.
25JUf»c6S(*CIR/S7,»Al
1 »8,6«F.«6
CONTINUE
AT(N)sA(N)
GAVEUO = 0.
CONTINUE







DO j3oi NT=I.NTCYC
00 302 LJ=1.NC
OHRPAY(LJ)»0,
VHHDAYCLJ}SO.
OVMAXsfl.
DCHAXsO.
IFCNT.LT.MOSuRT) GO TO 350
IF(\PLT.r(5,0) GO TO 359
hf Ki'^o *;«>«•
DO 3









00
























INITIALIZATION OF APRAVS USED
FO» HYDRAULIC OUTPUT TO BE USED


IF (NT.t.T.NOS*RT) CO TO 3BO
00 360 N=1»MC
VHAR(N)e9,
QHAR(N)»0,
BY THE S«I!J'JAL SUBROUTINE











150

-------
2562,
2S6J,
2564,
2565,
25h6,
2 i 6 7 1
2568,
2569,
2570,
2571,
2S72,
2573,
2574,
2575,
2576,
2577,
2578,
Z579,
2SOO.
2581,
2582,
25B3,
2581,
2565,
2586.
2587.
2588.
2589.
2590.
259J.
2592.
2593.
2594.
2595.
2596.
2597.
2596,
2599,
2600.
2601.
2602.
2*03.

260S.
2606.
2607.
2606,
2609.
2610,
2611.
2612.
2613,
26i«.
2615,
2616.
2617,
2616.
2619.
2620,
2621,
2622,
no 37p j=i,nj
M M A K ( J ) s 0 ,
0 1 M U A t( ( J ) = 0 ,
OMUlUH(J)sO,
370 COS'TI-JUE
380 CONTINUE
C
C
C
C
C







START
INNIIR'1
DO LOOl

DO 1010 >JHM=1 .MHCYC
IFO.'T.Lf .NGShHT)
T IMfal IME + OELT
C
C,
C
C
PREC=0.
390 IF (K"A IKi-IMHAIM)
395 IK ( T IMt- INT IMh (*
400 PSF.CsPKEC + HAl.NtK
KRAI\'=KH4 1N»1
TOLn=INTI"ECKRAI
CO TO 390
«0b P"ECe(PBtC + RAINi(
TOLO=TI"E
010 CONTINUE
IF(N21.EO.O) GO
DO 018 L3l,MJS*
J=ISW(L)
fllB OTNCJ)=nTNST(J5*
U20 IF(TIMK.tT(I2))

NIN»EC = NlK:RfcC»l
7093 FORMAT CF10, 1 .fcFl
wWITE(fe.709U) TT
7091 FOH»AT(F10.1.F 10
CO TO 120
«32 TT(I2)=1000000.
DO U33 LS1,MJS»
«33 OT(L.I2)»0.
60 TO 120
«35 DC 1UO L=liHJSw
JsIP-*(L5




) 431.432.432
• (OT(L»I2)iL=liMJS»)
* TZERO

5,2)
(I?).C5T(LiI2) »L=1 iHJSw)
.1.110)







1(10 eiN(J) = (01H(J) + BT(U,tl)*(TIME"TTP))/OELT
TTP=T If E
115 CONTIMJE
1F(UJ5^.EO.O} GO
C
C
C


TO 520

RfAO H\
OR J'JTf
              START rif HYDRAULIC DO LOOP.
                        DO LOOP OF 3 NESTED
              PRECIPITATION COMPUTATIONS FOH
                              IMPUT OR AVERAGE
              OR INTERPOLATE FOH TI«F STEP
151

-------
26?3.
2624,
26?.'j,
?6?(-,
2627,
2628,
2629,
2630.
2631,
2632.
2633,
2634,
2635.
2636,
2637.
2630.
2639,
2640.
2641,
264?,
2643.
2644.
2645.
2646,
2647,
2646.
2649.
2650.
2651.
2652,
2653.
2654.
2655,
26S6.
2657,
2656,
2659.
2660.
2661.
266?.
2663.
266fl.
2665.
2666.
2667.
2666.
2669,
2670,
2671,
2672.
2673.
2674,
2675,
2676.
2677,
2676.
2679.
2660.
2661.
2662.
2663.
C
IFHfE.LE.TE) GO TO 4RO
TEOsTE
f>0 "60 L- 1 1 t.JS'i
.460 OMLil)=1tCLi<;)
C
C READ HYOHOGKAPH3
C
RFAO (M5ilQ4) Tf i (OE ( JJ»2) t JJ~ 1 »NJS*)
104 FORMAT (AFIO.O)
«VO CONTINUE
Tf PsTE/3600.
KHJTE(N6tlflM TfcPt(f)F(Li?)?L = ltNJSi»)
106 FOHMAT(lX,F7.2'10F10,l/{8X.10F10,n>
C
C INTERPOLATE HYOROGRAPM
C
460 00 500 LstiNJSK
J= JSW(L)
SLOPES (OECL.2)-r,E(L,l))/(TE-TEO)
500 CIN(J)=OISST(J)»OE(L,l)*SLOPfc*(TIHE-TEO)
520 CONTINUE
C
C INITIALIZATION
C
T2=T»OELT?
TsTtOELT
( 00 525 Nal.KC
MCLOS(N)aO
00 525 Hal,?
525 kIJU>'C(N|H ) = IAHS(NJUNCC"»M))
00 530 Jai.NJ
AS(J)sABS(AS(J))
DO 530 K=1»P
530 NCHAM(J,K)sJAHS(NCHAN(JtK)}
NTJ^SaO
C
C COMPUTATIONS OF VELOCI'
C HALF TIME SUP, AND FU
C QUARTER TIME STEP
C
540 CONTINUE
M5RYSO
KTIfSsNTIxS*!
00 b?n ii=l,',C
IF(NJUNC(N,t),LE,0)GOT05BO
C
C DRY CHANNEL CHECK (UNO!
C
IF(RlN).GT.O.l) GO TO 560
VT(N)so.O
OC'JJsO.O
CO TO 590
560 CONTINUE
NLcNjUVC fNt 1 )
NHSfJ JUNC ( N , 2)
DlLV?sV("4)»(l,«AT(M)/A(N))
1 *DELT?*((V(")»»2*H(N)/A(K!))"32,1739)*(H(NH)1.M(NL))/LEN(>
2+h*'INO(lJ)/R(N)*t)£LT2
Vf*sV(N)#DELv2
TEMP = CELT?»AK(*j)/R(N)»»l, 3333333
152

-------
2680,
2685,
2686.
2687.
2688.
26E9.
2690.
2691,
2692.
2693.
2690.
2695.
2696,
2697.
2698,
2699,
2700,
2701,
2702.
2703,
2704.
2705,'
2706.
2707,
2708.
2709,
^710,
2711,
2712.
2713,
2714.
2715,
2716.
2TJ7.
27J8.
2719.
2720.
2721.
2722.
2723.
2724.
272S,
2726.
2727,
2726,
2729.
2730.
2731.
2732.
2733.
2730.
?73S,
2736,
2737.
2736.
2739,
27«0,
2701.
2702,
2703.
27SO,
0 F.LV 1 = 0 , 5 • ( ( 1 . / T fc ' i P « 2 . * A » 5 { V 2 ) ) -
!SC'*T((l>/1E"f'*4>iS(?,*v;?))<»2>>1.*V-(n ,'JE.l) GO TO 650
HT(J) = H(J)-OtLT2»SliHO/AS(J)
IF(ISpCH( t ) ,NE.l ) GO TO 660
JF(HT(J)+OEP(J).GT,0.) CO TO 660
HT(J)=«OtP(J)
V'OL(J)cO.
AS(J)e-ASCJ)
DO 60S K=l f 8
NyaNCWIN( J, K)
IF(Nx.Lt.O) CO TO 6«5
NCLOS(«JX)sl
645 CONTINUE
NDBYa(-DpY» J
BO TO 660
650 CONT Ilii.it
DELHHsO.
00 655 ICTsl.S
OELH" = [)F.LT2/AS(J)*("SUMU"i''fI"l*(H(JG *>')•»•£
655 CONTINUE
HT(J)shtJ)*OtLHH
660 CONTINUE
IF (NDRr.fG.O) GO TO 675
1F(NTIMS.GT.2) GO TO 675
DO 670 MciiNC
IF(NJUNC('Jtl).LE,0> CO TO 670
IF tNCLOS(K') ,NE. 1) CO TO 670
Q(N)=0,
V ( N ) - 0 .
DO 668 Ial,2
I IsNJuNC (Nil)
DO 660 J=li8
IF(NCHAh(IJ,J),EO.M) GO TO 666
660 CONT1KUK
GP TO 668
666 'JCHA'J(II,J)a»M
hdB WJU^'C (*•• I )s»I !
670 CONTINUE
GO TO 5
-------
Z7as,
2716,
3787.
27«e,
27«9.
2750,
2751.
2752.
2753,
2750,
2755,
2756,
2757,
2758,
2759,
2760,
2761.
2762.
2763.
2764.
2765.
2766.
2767.
2766.
2769.
2770,
2771.
2772.
2773.
277«.
2775.
?77*.
2777.
2776,
2779.
2780,
2761.
2782.
2763.
2764.
2785.
2786.
2787.
2788.
2789.
2790,
2791.
2792.
2793,
279fl,
2795.
2796.
2797,
2796.
2799,
2800,
2801.
2802.
280J.
2600,
2805,

C
C
C
C




C
C
C
C
C
C







C
C
C
















C
C
C




C
C
C







C
C
C
 675  CONTINUE
     IF  USKC><( n i^E. li  r.o TO 676
                                       BOUNDARY STAGE CONDITION AT
                                       HALF TIME STEP
   I
676 CONTINUE
               *4S»COSf«*T«)*A6*COS(2.**,*T?)*»7*COS{J.««.'*T2)
     DO  7«0  N=i,NC
     IF(NJUNCCMl) ,Lf.O)GO TO 7
-------
2806,
2807,
2806.
2809.
2810.
2811,
2812,
2813.
2810,
2815.
2616.
2817,
2818,
2H19.
2820.
2821.
2822,
2823.
282(1.
2625.
2626.
2627.
2626.
2629.
2630.
2831.
2632.
2833.
2831.
2835.
2836.
28J7.
2838,
2639,
26UO.
26(11.
28(12,
2843.
26«a.
28«5.
26«6.
280T.
260A.
28«9.
2850.
2851,
2652,
2653.
2854.
2855.
2856.
2857.
2858,
2859,
2660,
2661,
2662,
2663.
266(1.
2865,
2666.
C
760 DO 900 Ja| iNJ
SUMO=0,
MN(J)5,.Ot:i>(J)
IF(*S(J) ,Lf ,0.) CO TO 900
DO 800 K=l ifl
IF(NCMAN(J,K).LE.O) CO TO 800
NsNCHiN(JlK)
IF(J,NE.NJU*.C(N,l))GO TO 760
SUMfJ = SU^fJ»H(N)
GO TO 800
780 S'JMOsSUM'J*0(N)
600 CONTINUE
.IF(J.k.-E.JGvO GO TO 820
IF (lS*CH(n.'.E.l> C,0 TO «02
H\(JGW) = Al*A2*51N(**T) + A:l*5I><(2.
1 *A5»COS(»*T)+A6»COSC£.
GO TO em
802 CONTINUE
DELKH=OEIHM»2.
00 SOP ICTsl.3
DELMH=OtLT/AS(j)*(»SUM(3«wfcIRl*(H
606 CONTINUE
MN{J)eH(J)*DELHH
81« CONTINUE
DVOL=(ww(Jf.r<)«H(JG«))«AS(JGW)
COUt JGi") = 0,
OIN(JGK)=(OVOL/OELT)*SUMQ
IF (OItJ(JG») ,(iT.O.) GO TO 813
OOU(JGW):»QtM(JGw)
OIN(JGw)>0.
615 VOl (JG-')sVC'LtJC-Ul)*nvOU
CO TO 825
C
C
C
C
820 SUHrjs[iOUCJ)"|3IN{J)»(EVlP«tPRtC}*A
HM(J> = u(,n-nCLT»S'JMO/tS(J)
VOL( J) =VOL( J)"Dt"LT*SUM0 •
C
625 CONTINUE
900 CONTINUE
C
C
C
IF (NT,t_T.NnS«iRT> GO TO 9<4fl
00 920 J=1»NJ
HBAR{ J) = «fi*P( J) +HN( J)
9INBAR(J)=0]NK»S(J)+GtN(J)
OOUt'ARtJjsOOuBARCJJtOOUtJ)
920 CONTINUE
9«0 CONTINUE
C
C
C
C
C
960 00 980 N:l,NC
IF(NJUNC(Ntl),tO.O) GO TO 960
NL»1*HS(NJUMC(N,1))















»«i»T)*A(i*SIN(3,*W*T)
»W»T)+A7*COS(3.*W*T)




(JGW)-»EIR2»DtLMH/2,)»*niF. IR3)












COMPUTATION OF (ORDINARY* NOPE3
VOLUME AND STAGE

5(J)«SUMQ






NODAL VOLUMES AND FLOP'S SUMMED









FULL Tl^f STFl» COMPUTATION OF
HYORAILIC RADIUS ANO CHANNEL
CROSS-SICTIONAL AREAS




155

-------
 7868,
 2170.
 2871,
 2872,
 2173,
267S.
2976.
2877.
2878.
2879.
2980.
2881.

2R83|
2885.
2886.
288S.
2889.
2890,
?H9l.
2993.
^896,
2900,
2901.
2905.
2906,
2907.
2908.
2911,
291U,
291S,
2916.
2917,
2918.
2919.
2920.
2921,
2922,
2921,
2923.
29?6.
2927.
                 Ofc'LH?0.r)«
             980 CONTINUE
                                                    NOOAL STAGE ARIUYS SHIFTED
           1000
           1020
            1025  hPLT(J)=H(I)
            1030
                 00 1020 J=1»NJ
                 H(J)SMN(J)
                 IF-'C-'T.LT.'.'HSURT) GO TO  10«0
                 IF (^PTOT.^t,SI>Of L) C,0 TO  1030
                 IF(MPUT.E'J.O)  TO TO 10«0
                 PO 1025 Js
                 WRITt(N?2)  HOURi(MPl.T(J) iJs
                 NPTOTsfl
                 NPTOTsNPTOT*!
            1040  CONTINUE
                                                    END OK HYDRAULIC OR INNER 00
                                                    LOOP
                                                    AVERAGING OF FLOWS AMD
                                                    VELOCITIES
                 IF  (NT.LT.NQSWRT) GO TO  1100
                 DO  1060  'J=1.NC
                 IKNJu\'C(N«l).Lf..O) GO TO  1060
                 OAvK<*>=<3AVK(N)+Oi}AH(»o/FLOAT (N(JCYC)
           1060  CONTINUE
                 DO  1080  jsl«NJ
                 IF(riINW«Hf JJ.KJ.O.) r.OTO 1080
                 IF(0()U'U^(J),f !).0.) GOTO
                                     GO TO 1080
                OOU«AR( J)=-(;INRAR( J)

           1060 CONTINUE
                                                          HYDRAULIC
                                                   USE  IN QUALITY  PROGRAM
                                                                                FOR
                FIX UP VOLUMES  IF  STREAM SYSTEM
                It USWCK 1} ,EO. 1)   CO  TO 1088
                IK15WCH(6).NE.n   GO  TO 1088
                DO 1065 LJ = 1«>'J
                XXVsO,
                DO 1076 IK*1.8
                I» (NiCMAii(LJ«LKJ .E0.05   UO TO 1076

                RhAReriBiH(L")/CVB/iR(LM)»B(l.t'»
                                   156

-------
2928.
2929,
2930,
2931,
2932.
2933,
2930,
2935,
2936,
2937,
2938,
2939,
2940.
29«l,
2902,
2943,
291(1,
29U5,
2946,
2947,
2948,
2949.
2950,
2951.
2952,
2953,
29S4,
2955,
2956,
H9S7,
2958.
?959,
2960.
2961.
2962.
2963.
8964,
2965.
?966.
2967.
2968.
2969,
Z970.
2971.
2972.
297S,
2974.
297S.
2976,
297T.
2978,
2979,
2980.
2981,
298?,
29«3.
2964,
2985,
2986,
2987,
2968,
XXV = XXV»(RI)AR*lt. ML '')*IKl. "))/£,
1076 CONTINUE
VCU(LJ)=XXV
10BS Cpt'TlMIK
1086 COMTI'JIJK
"RITf. (N20) MOi(RBAR(M)«V8AR(M}il.altNC),
1 (VOI.CJ) • TI'IPAI'U) i(!OU«Ai»(J) »Jsli»jJ)
DO 1090 LJsii'-'C
&y"P4Y(LJ) = 'H'uC)AY(l.J)+')(5Al*(LJ)
VBI'l.)AY(LJ)BvB:"i/.v(LJ)»V?AR{|.J)
XVOsABS (VBAR(LJJ-VCHK(UJ))/VCMK(LJ)
XOn=AljS (OfiAH(LJ)-<(«CK<(LJ))/OCHK(UJ>
IF(XOO.LT.OfJMAX) GO TO 1006
DQi'AXsXOO
NQHAXslJ
1086 IK(XVD.LT.DVMAX) CO TO 1090 '
OVIAX = XVQ
KiVKAXsLJ
1090 CONTINUE
C
C STORE OUTPUT FOR
C PRINTOUT
C
1100 IF (KiT,EO.(NQSkRT«n.AND.NO.EO.NQCYC) GO TO 1120
CO TO 1180
1120 DO 1140 I a l.NHPRT
HJPHT a JPRTCI)
PRTM (lil) 8 H(MJPRT)
1140 CONTINUE
00 1160 I a l.NfJPRT
MCPRT a CPRT(I)
PUlq(tfi> e O(nrPRT)
PRTvtl.I) B V(«CPRT)
1160 CONTINUE
GO TO 12«0
1160 IFCNT.LT.NQSNRT)' GO TO 1240
LTI«E = LTlME » 1
IF(LTI«E,GT,30) LTIMESJO
C




















SUBSEOUF.NT


















C STORE STAGE INFORMATION
C
00 1200 Isl,NMPRT
MJPRT=JPRT(I)
1200 PRTH(LTIMK« I)aH(HjPRT)
C





C STORE FLOXS AND VfLOCITIES
C
00 1220 Isl.NQPRT
MCPRT=CPKT (I)
PRTO{LT I"Ei I )=0 (MCPRT)
1220 FRTv(LTl'!Ei I)BV(^CPRT)
C
C END OF QUALITY DO
C
1240 CONTINUE
1KIS»CH(1),NE,1) GO TO 1280
IF (*t ,^E.'.'fiS*HT) CO TO 1280
1260 CONTINUE
1280 CONTINUE
C
C SUPROUTINf. PHTOUT






LOOP







CAllFn FOF
157

-------
29B9,
2990.
2991,
2992,
2993,
2994,
2995,
2996,
2997,
299D.
2999,
3000. .
3001,
3002.
3003.
1009,
3005.
3006.
3007.
3006.
3009.
3010. '
3011.
3012.
3013.
3014.
301S.
3016,
3017,
3018,
3019.
3020,
3021.
3022.
3023.
302*.
3025.
3026.
3027.
3028,
3029.
3030.
3031.
3032.
3033.
3034.
3035.
3036.
3037.
3038.
3039.
3040.
3041,
3002.
3013.
sous!
3046.
30«e!
3049,
C
C
C


C
C
C


C










11
1(
it

1<





1(
12
1!


1<




e

i


i

i





i




      IF  (NT.LT.NQSXRT)  CO TO 1300
      CALL PH-TOUT
 1300 CONTINUE
                                         HYPHAUI.IC I'-'FORMATinN PRINTOUT
                                         K)R A O'rt. OAY CYCLE
                                         EtiD Of  SUUHOUTINE
                 ) .Nt.l)   GO  TO 1301
            FOR  CONVERGENCE
      JCONVxO
      XCHK=,1
      IPCOUT=1
      IFtDUMAX.LT.XCHK   .A'lO.   OVHAX ,LT . XCHK)
      IF(1PCOUT,EO.O)  GO  Tf)  109h
      IF(ICONV.eO.O)  URITt(Nbi 1091)
      IF(!CO'JV,FC!.1>
            M6.1093) DvM*Xi'-'
1091  FORMAT!//' CONVtRGf^Cf!  HAS  NOT  OCCURKKO, I}
1092  FORUAT(//I CO'-vtPGE'.'CK  HAS  OCCURRFO.I)
1093  FOHMAT( i  Pf.RCt'NT VELOCITY  LHWOR  si,F8,J.l  IN CH»NNtl I. ISA
     *l PERCENT   FLOW   ERROR  si.F8.J,i  JN CHANNEL'• I5//)
      CONTINUE
      IFUCONV.EQ.l  .OR,  NT.F.G.NTCYC)   CO TO  1302
      IKISWCHC6) ,tO,l)  RfwlNQ N?0

      00 1094 LJ=ltNC
      CONTINUE
      CONTINUE
      ISTEP=OELT*KHCYC»,01
1249  FnRi'AT(///20X, iTUjVEL TIME CHECK  FOR  OUAl.ITY  RUN —DUALITY STEP SIZ
     *£ IS'ilb>
      00 12SO N:
6001 FORMATC" CHANNEL ' ilii '  VELOCITY I ,riO,2. 1  LtNGTHI ,HO,2,
     "  Vfcl.»Pf-.LT/LEM .FB.2)
12SO CONTINUE
     END FILt N20
     RfciJKD ^20
1320 CONTINUE
     MCOUNT a 0
13«0 PfAD (NS.110) FINAL. CARD
 110 FOH«AT (2»U)
     IF (FINAL. FT. ENOFRM))  GO  TO  1360
     MCOUNT s MCOUNT +1                        .            .
     IF {MCOUNT.GT.JO) GO  TO 1380
     GO TO ljuo
1360 IF (CA»0.tB.ENr>E'»(2)) GO TO 1«00
     MCOUNT = MCOUMT * I
     IF (HCOU-JT.GT, jo) GO  TO 1380
     GO TO liUft
1380 fc"m (u«,,112>
 112 FORMAT (>,?HnOUALITY PROGRAM HAS READ
    1PLETION)
                                                 THAN  J9 CARDS  AFTER  COVP
                                   158

-------
3050.
3051.
3052,
3053,
3051,
3055.
3056.
3057,
3058,
3059,
3060.,
3061.
3062,
3063.
3064,
3065,
3066,
3067,
3068,
3069,
3070. .
3071,
3072.
3073.
307*1.
3075.
3076.
3077,
3078.
3079.
3060.
3061.
3082.
3063.
3084.
3085.
3066,
3067.
3086,
3089,
3090.
3091.
3092,
3093,
3094.
J09S.
3096.
3097.
3098,
3099,
3100.
3101.
3102.
3103.
3100.
3105.
3106.
3107.
3108,
1109,
3110,
STOP U'l««
1 « 0 0 •< & IT E ( >• f> , 1 1 0 )
11»TC»NOCYC>&
* tIS*CH( 10) iXH(16) tXHEUb) i
*N5,NbfN10iN20|N;SO>N
»TEO(16)
C
C
C
COMMON/PR T COM /NBPRT, I TCPRT
*NPRTtKPRT
C
C
C
c
C"lN(lOOi 16) •"AODClOOi 16) iOCOT(100ilfc)»
•SLOPL(20).CSPIN(100il6)iTITLt (6il6)i


PRINTING

•LOCPKT.USTPRT.NQCTOT.lSKlPiMSTpRTi



TAPf.S

COMMON /TAP(S/ IMCUT, lOUTCTi JINUO) i JOUTUO) |HSCRAT(5)
DIMfNSIONi CHK(100tl6)
C
c
c
c
REAL KAODiLEN
N?0 e NSCRAT(l)
iK'STHaO
KCONS16
KCOKOSJ6


START PROGRAM
INPUT ROUTINE






159

-------
3111.
3112,
3113.
3114,
3115,
3116.
3117.
3118.
3119.
3120.
3121.
3122,
3123,
3124,
3125,
3126.
3127,
3126,
3U9,
3130,
3131.
3132,
3133.
3131.
3135,
3136,
3137.
3138.
3139,
3140,
3141.
3142.
3143.
3144.
3145.
3146.
3147.
3148.
3149,
3150.
3151.
3152.
3153.
315u.
3155.
3156.
3157.
3158.
3159.
3160.
3161.
3162.
3163,
3164,
3165.
3166,
3167.
3168.
3169.
3170.
3171.


204
C
C
C

C
C
C



C
C
C
C


C
C
C


DO 204 LJslitOO
DO 201 |.Ksl,6
CHK(LJ»L".) = 1,E10

CALL TO SUBROUTINE IMOUAL

CALL .INO'JAL

MAIN QUALITY LOOP

DO 751 NTAGsHSTARTiNTC
REWIND '.'10
NSTHHT c NTAG

















CALL TO DUALITY CYCLE SUOROUT1NE

CALL LOOPOL •
INSTMsINSTM+1





PRINT DAY AVERAGE CONCENTRATIONS

00 359 J s 1,NJ
00 359 KC=t,KCON



359 SUHC ( JiKC)s (SU^C ( JtKC)"0,5*C C J»KC) )/NOCYC
C




CHECK TO SEE IF CONVERGENCE HAS OCCURRED
00 200 LJ=1,NJ
00 200 LKol.KCOM
1F(AHS(CHK(LJ.L'<)).LT. ,00001 .AND,
» ABS(C"«LJtLK>»SUMC(LJtL>O).LT. ,000001) GO TO 200





IFCABSCCHK(t.J,L(<)»SUMC(LJiLK»'CHKCLJ»L'<> -I-T. .1) GO TO 200


200

201




202
203



1600
3030

U300

752

908



no
607



ICONVaO
GO TO 201
CONTINUE
ICONV=1
CONTINUE
If (IStaCH(lO).NE.l) ICONVoO
IF (ICONV.FQ.l) GO TO 203
DO 202 l.J=l,NJ
DD 20? L"=l iKcnN
CwK. (LJ«LK)=5UMC(LJ«LK)
CONTIMIK
IF (NTAG.LT.KPRT) GO TO 3220
IF CNTAG.GT.KPRT.AS'O.KPRT.EU.l) GO TO 1600
GO TO UJOO
xpjTEtNfeiJO^O)
>OR«AT(«2H KCRT IS ALWAYS GOING TO BF. LF.SS THAN NTAG.)
STOP 5555
CPNTI'-iSJK
KPRT=KPKT*NPRT
CONTlNUf
^RITt fNh«908) NTAG





















FORMATdH) ,//25x, IAVERAGE JUNCTION CONCENTRATIONS OURI-JG QUALITY c
*YCLE NuvHtc i i is,//)
K R I T t ( N 61 b 0 7 )
00 110 LJ=l.NJ
»'R I TEC ^6. RIB) LvNCSU^CtLJ.LKJiLKal.KCON)
FORMAT(l JUNCTION PO BOO NM3-N N02-N N03»N
« PHYTO COLIFORMS HVl MK2 H«J TOT N C^LfR HMJI
» H^IJi/ i NUMBER (MG/L) C'R/L) ("G/D (^G/L) (*"G<
»G/L) (MG/L) («P^-/100) (HG/L) (MC/L) f"'G/L) («G/L) t«r./L) (MG/




P04.P
HHI2
'D CM
'D («
160

-------
3172,
3173,
317«.
317S.
3176,
3177,
3176,
3179,
3180,
3181,
31B2.
3183,
3184,
31B5.
3166..
3167,
3188.
3189.
3190,
3191 ,
3192,
3193,
319U,
3195,
3196,
3197,
3198,
31V9.
3200.
3?01.
3202.
J20J,
3200.
3205.
3206.
320T.
3208,
3209,
3210.
3211,
3212.
3213.
3211.
3215.
3216.
3217,
3216.
3219.
3220.
3221.
3222,
3223.
3225J
3226,
3227,
3228.
3229,
3230,
3231.
3232.
•G/l) (MG/U) I /)
IK(ISKCM(?) .to, 1)
* f< IT E ( N fe i 9 1 0 ) '< T, * G
910 FOR«.AT(1HJ •//2V<. It-
*YCLfe NUMBERI i ISi//)
h&ITfc (N6I607)
on us LJ=lt*J
115 n«ITE(Nf>i91i}) IJiCC
wwiTt(N'!>tlJ09) NT AC
909 FOR'iATClHt «//2'iXi I"
*YCLF. MUM^ERI i ibi//)
XM lit (N8» 607)
DC 113 LJ=1(NJ
? q r 0 l PF7
GO TO J22

UNIMUM JUNCTION CONCENTRATIONS CURING QUALITY C



•"INlLJ'LKJiLK'ltKCON)

IAXIHUM JUNCTION CONCFNTRATIONS DURING QUALITY C



113 fc'HlTF. (N<>,6la) LJ» CCMAX(LJ>LK) iLK=l tKCON)
322 CONTINUE
C
C
C
3220 CONTINUE
00 323 J=liNJ
VOLOCJ)=VOLCJ)
DO 323 KCs] iKCON
CM»XCJiKC)aO,
C"IN(JiKC).aC(J|KC)
323 SUl'C(JiKC)=0, S*CCJt
IF(ICONV.EQ.l) hWIT


RESET SUMS FOR NEXT DAY CYCLE







KC)
E ( 6 » 2 0 6 )
206 FORMATC//I CONVtRGMCE HAS OCCURRtOI)
IFCNTAG.EO.NTC .OR
REMIND N10
C
C
C
IF" ( IS^CHC 1 0) ,FO, 1 )
DO «120 Iel,NQCYC
HCAD(N20) Nn,(R(N),
'•"ITf. (N10)NOt(Q(N)>
«120 CONTINUE
REMIND N10
U\UQ CONTINUE
C
C
C
C
751 CONTINUE
119 CONTINUE
IF (ISXCH(3).EO,l)
RETURN
C
C
C
tt!60 CONTINUE
, ICONV.EO.l) GO TO U9


ISH'CH JO SET BY N30 WEAO»J>J

GO TO 1140

U(iw),N=J,NC),(VOL(J),l3IN(J).UOU(J),J=l«NJ}
U(N)iNBl,NC), (VOLCj)iOIN(J),OOU(J).JsliNJ)





fHO OF M»IN DO-LOOP



GO TO 11160


KRITE A RtSTART TAPE


«XH,Xt'E,XMF.XMtF.(VOLOCJ) t (C C J . K) , Sl'-C ( J . K> ,
2 HADI){J,K),C»
-------
3233,
323«.
S2.<5,
3236.
323/,
3238,
3239.
32'tO.
3211.
32"2.
32«3.
3244,
3215,
3216.
3247,
3218,
3209.
3250.
3251.
3252.
32S3.
325U,'
3255.
3256.
3257.
3258,
3259.
3260.
3261.
3262.
3263.
32*4,
3265,
3266.
3267.
3268.
3269.
3270.
3271.
3272.
3273.
327«.
3275.
3276.
3277,
3278.
3279.
3280.
3281.
3282.
3293.
3284.
3285.
S2P6.
3287.
3288,
3209,
3290.
3291.
3292.
3293,




C
C
C
c
c
c
c
c


c
c
c


c
c
c




c
c
e




c
c
c



c
c
c


c
c
c


c
c
c

c
c
c
c
c
c
c

  RLnINO  Nod
  RETURN
  E>.'D
  SUBROUTINE  TiocF(KO,M,MtxiTtNCHTiO)
                                    S7AGF
                                               Com'ICTENTS
                                                 S PHOG1AM
                                                  ST«TF''E>'T3
                                    CONTHOL

         /CPNTR/ 'K>SiM6f>J20iN21 i   NTCYC i NI5CYC I K'HCYC t  NT.nOSiRT
 1,  OELTG.DEUTiTZEHO,    I
WOIR I EVAP
          »LPH»t30)i   NjiNC.   ICYC.KCYC.K'CYCi
li  PRECP(50)iNEXIT

                                    JUNCTIONS

 COMMON   W(100),HKj(lon).HT(100),KBAR(JOO).H*vftIOO)
1,  NCHAH(100i«)i IP01NT(100,»)i*S(100)iVCL(100>tX(100),V(inO)
2l  OtP(lOP) ,COF(100),()IVJ(100) ttiOUtlOO) tOJMST(lOO)
3,  OIMBAR( 100) ,CjnilHAR(lCO)

                                    CHANNELS

 COMMON LE^(22S),wjiJ»-'C(22S,2)>B(225),Rf225).A(22S),AT(2?5)«»K(??5)
1,   0(225). OB4R(2i"i) i!)»VK22S),  V( 22'i) • VT (2?S) . VQAR (???)
P., Fi«!N-!>O2S)i'njMCHC2;>S)lNTEMPCB)
J.NCLOS(22S)

                                    PRINTOUT AND PLOTTING

 COMMON   WPHT.IPRT.    NMpBTiJPRT(SO>,pPTH(30.50)
1,  NOPRT,CPRT(50).PHTV(30,bO).PBTO(30,50>,  IOUM ( 12) , ICOLC 10J
2.  tTlKt.   NPLTi».'PDKL«J>'LT(50),HPLT(50)

                                    STACt-TIHK COEFFICIENTS

 COMMON YY(Sfl)  .TT(SO)  »AA(10).XX(10).SXX(10.10)«SXY(10)
1 (Al>A2|Ai, AU, AS.A6, A7
-------
329(1.
3295.
3296.
3297,
3296,
3299.
3300.
3301,
3302,
3303,
330(1.
3305.
3306.
3307.
3306,
3309,
3310.
3311,
3312.
1313,
3314,
331S,
3316.
3317.
3318.
3319.
3320,
3321,
3322,
3321.
332s!
3326,
3327.
3320.
3329,
3330.
3331.
3332,
3331,
3334,
333S.
3336,
3337,
3338.
1339.
3340,
334}.
1342,
3141.
3305!
3346.
3347,
3346.
1349.
3350.
33SI,
3352.
1351.
1354.

C
C
C
C



C
C
C
C
C
C
C
C
C
C
C
C
C
C





































     HtAL  (.IN

                                       TIDAL CURVK FITi 7 TFRM
                                       SIKU$OIO«L EQUATION

     HKIU'  (r.'6tliE« t'^nr.'JAH KILL
                                       »EAP fPUf POl'JTS OF ]k,rORM»T!ON
                                       AND EXP/.NO THEM FOR t. FULL TIDE

                                       NT IS THE NUMBER OF INFORMATION
                                       POINTS
                                       MAXIT IS THE MAXIMUM MJMOFR OF
                                       ITERATIONS
                                       IF KCHTIO EOU»US GNKi TIOAL
                                       INPUT^OiMPuT «ILL BE PRINTED

                                       DELTA IS THE ACCURACY
                                       LIMIT IN FEET

    DELTA s 0.005
    NTT»7
    w • 2,*3,1«159  /PERIOD
    IF(KO.ED.O) GO  TO  225
    TTCSO) =TT(l)tPERIOO
    VY(50)aYY(l)
    DO 220 1=1.0
    J=I»1
    IF (J.GT.U) J«50
    TT(t,I)B(j,.»TT(I)»TT{J))/fl.
    YY(Nl)sO,6535*YY(I)»0.1.'(., l«e>  (I.TT(I),  vv(l).  1:1. NI)
|«A FORMAT (I'U 2F12.3  )
2«o CONTINUE
    DO 280 J=l.>vTT
    PO 260 KBJ.NTT
260 SXX(KiJ) B 0.
    »A(J) a 0.
280 SXY(J). o 0,
    NJ2 » NTT/2 * 1
    DO J60 I c l«Nt
    DO 320 J s l.MTT
    FJl B FLO»T(J-1)
    FJJ a Fl.O»T ( J.NJ2  )
    IF ( J.LE.UJ2 ) GO  TO  300
    XX(J> B COS(FJ3»««tT(I))
    CO TO 320
                               163

-------
 3355,
 3357.
 3353.
 3SS9,
 3360.
 3361.
 3362.
 3363.
 3364,
 336S,
 3366.
 3367.
 336S,
 3369.
 J376.
 3371,
 3372,
 3373,
 337a,
 3375,
 3376,
 3377,
 3378.
 3379,
 3380,
 3381.
 3382,
 3383,
 336a,
 3385,
 3386,
,3367.
 338ft,
 3389,
 3390.
 339J,
 3392.
 3393,
 3390,
 339b,
 3396,
 3397,
 3398.
 3399,
 3
ISO FO'^AT {6<;HCA«JNOT  »EACH DESIHtD DELTA,  INCREASE- EITHER  Ml  OR  DELTA
   1  ANd TRT AGAIN)                    '                            .
    STOP 6666
tRIOD
                                             164

-------
3416,
3117.
3418,
342o|
3421.
3432,
3U24|
3425.
3426,
3427,
3428.
3429,
3430.
3451.
3432,
3433.
3434.
3435.
3436.
3437,
3438,
34J9.
3440,
344|.
3442,
3443,
3444,
3445.
3446.
3447.
3446.
3449.
3450,
3451.
3452,
3453.
3454.
3455,
3456,
3457,
3458,
3459.
3460,
3461.
3462.
3463.
346B.
3465.
3466,
3467,
3468.
3469,
3470,
3171.
3472.
3473.
3474.
3475,
3476.









C
C
C
C
C
C
C


C
C
C


C
C
C




C
C
C




C
C
C



C
C
C


C
C
C


C
C
C

C
C
I5H f ORKAT(///U6H COEFFICIENTS ^ OH TIDAL  JVf'UT *AVE AT Jtl'fCT 1 ONI6//B5H
   I       Al         «2        A3        M        A5         Aft
   2A7      PKRIOOC'.<«S)//7F|0.:itH2.2///MH M-KRE T*E KAVt^O^^  IS GIVE
   3»J  BY//<)PH M(J) = Al * A?,M.M{"T) * A3,5IN(2*T) » A4, S1 H< J»'T) +  A5,
   HCOS(uT)  + Ah,COS(2wT) * A/.COSCJ.TJ)
    RETURN

    SUewQUTINE TRANS
    RETURN

    SUBROUTINE TKIAN(IIiJJ,KK,LL)
                                      SUBROUTINE

                                      SPtCIUCATION


                                      CONTROL

    COMMON /CONTR/ u5.N6iKi2o«M2i»  NTCYCINQCYC*NHCYC,  NT.NRSWRT
   ll   OELTO,nELT,TZE«0,   IS»iCM(10)

                                      GENERAL

    COMMON  ALPHA(lO)i   NJ^NCt   ICYC iKCYC • NCYCt    WIND,WOIRtEVAP
   It   PRECP(50)»NEXIT

                                      JUNCTIONS

    COMMON  H(100)tHN(100)«MTC100),HBAR(100),HAVEC100)
   1,   MCHAN(lOOiH) . lPOIK'T(100t«)tAS(100)fVOL(100),X(100),Y(100)

   3,   OINBAR(100),QOUF).AR) t  V(22b) t VT (225) i VBARC225)

   3tNCLOS(22S)

                                      PRINTOUT AND PLOTTING

   COMMON   NPRTtlPRTt    NMpRTtJPRT(50),PRTH(30t50)
   1,   N!)PRTtCP«T(!iO),PRTV(30tbCO tPHTO t JO.bO) t  IDUM( 12) t ICOLf JO)
   2t
                                      STAGE-TIME COEFFICIENTS

   COMMON YY(50)  ,TT(50)  .AA(10)|XX(J0),SXX(lOi10).SXYC10)
  !iAli*2,A3,AA5>A6tA7>PER!ODtJGw


                                      STORKkATER

   COMMON  TITLf:(30).NJSn,OE(20,a),JS«((?0)
  2t RAIN(100),lNTIKt(100)iIMOAINtJBOUM>(20)»JJ80UN

                                      TAPES

   COMMON /TAPES/  INCNT»IOUTCT«JlN(10)»JOUT(10)iMSCRAT(5)
                             165

-------
3477,
3478,
3479,
3480.
3481,
3482.
3483,
3484,
3485,
3486,
3487,
3486,
3489,
3490,
3491,
3492.
3493,
349(1,
3495.
3496.
3497,
3496.-
3499.
3500,
3501.
3502,
3503.
3504.
3505,
3506.
3507,
3S08.
3509,
3510,
3S11,
3512.
3513.
3510.
3515.
3516.
3517.
3518.
3519.
3520.
3521.
3522,
3523,
3520.
3525.
3526,
3527.
3528.
3529.
3530,
3531.
3532.
3533.
3530.
3535.
3536.
3537,

C
C
c
c



c
c






c
c
c











c
c
c



c
c
c










c
c
c
c





COM«Ot>./TRI/T(5)(NX(5)




INTIG(R CPHT
REAL LEW
IHH.NE.O) GO TO 300


00 250 1 = 1. NJ
00 250J=1,8
IPOIMdi J)sO
NCHA*U,J)sO
250 CONTINUE
RETURN



300 CONTINUE
NX(1)=II
' NX(2)aJJ
NX(3)=KK
NX(4)aII
NXCS)=JJ
T(l) = (X(JJ) • X(KK»»»2 '
T(2) = CXCKK) - XCII))*«2 «
T(3) = (X(II) • X(JJJ)»*2 <
Tf4)3Ttl)
TCS)=T<2)



NBs2
IF(LL.EC.O) NBsl
DO 600 M=l»3iNH


•
ISKl*iC(NX(N+l),NX(N + 2))
JcHAXO(^X(M4l),NX(N«2))
DO 3SO nsj,8
IKIPPINT(I,K),hO.J) GO TO
IF(JPOINT(I,K).EO,C) GO TO
35fl CONTlNUf
360 IPOI'^T ( I ,K)Bj
NC = ''C»1
NCHANf t »K JsK'C
370 HeNCMAN{I.K)




NJUNC(M,t)sI
NJIJNC(H« 2) =J
SuBsT(>J+l )»T('Jf2)"T(N)
CaSt!RTtT(N))/2.
Lf!N(^)s2t*G



TYPE OESIONA





ZERO POINTER







SET UP TRIANi







> (Y(JJ) • Y(KK))**2
> (Y(KK) « Y(II»*»2
h (YUI) - Y(JJ))**2



00 ALL THREE





LOCATt CHANM




370
360






h IS CHANNEL
ASSIGNED






CeG/SR«T(4.«TCN+2>»TCN«l>"SUB«*2)»SUB


G«G/2,»C
AS(I)aAS(I)»G


166

-------
 3530,
 3S39,
 S'JIO,
 3S11,
3'jUb,
3'J50,
3cjbl ,
3S52.
3553.
35'j«,
3555,
3556,
3557,
3556,
3560,
3561.
3562,
3563,
3560,
3565,
3566.
3567,
3560,
3570,
3571,
357?,
3573.
3S7«,
3575,
3576,
     IPCC.l.t.0.)  w»tTE(6, 10?) MiC
 102  FORMATf!  NEGATIVE WIDTH CHASNf.L NO.l.IS.I    wIOTH
     A(M)--H(n)«K(M)
     V(M)=0.
600  CONTINUK
    00  7?>0  M\s3iOIf!T(I,K).EO.O)  CO TO 630
     CONTINUE
630  IPOINT(IiK)=J
610 «s.MC'HAN(I,K)
    C = r./SORT(U,»TC3)*T(«)-SUH**2)*SliR
    GsC/S.^C
    AS(I)=AS(I)+G/2.
    AS(J)=AS(J)*G/2.
    IKC.LE.O.)  WITt(6il02)  M,C
    R(M)s(DEP(I)«nifP(J))/2,
         ri(n)*«(t4)
        ) = CCOKI)+COF(J))/2,
750 COK'TISUE
    RETURN-
                            167

-------
                             SECTION X

                            REFERENCES
1.   STORM WATER MANAGEMENT MODEL, Volume I - Final Report, EPA Report
     No. 11024 DOC07/71, Metcalf & Eddy et al, July 1971.

2.   STORM WATER MANAGEMENT MODEL, Volume II - Verification and Testing,
     EPA Report No. 11024DOC08/71, Metcalf & Eddy et al, July 1971.

3.   STORM WATER MANAGEMENT MODEL, Volume III - User's Manual, EPA
     Report No. 11024DOC09/71, Metcalf & Eddy et al, July 1971.

4.   STORM WATER MANAGEMENT MODEL, Volume IV - Program Listing, EPA
     Report No. 11024DOC09/71, Metcalf & Eddy et al, July 1971.
                               169

-------
                            SECTION XI

                           ABBREVIATIONS

EPA              Environmental Protection Agency
SCI              Systems Control,  Incorporated
SWMM             Storm Water Management Model
BOD              biochemical oxygen demand  (5-day)
CL               chloride
°C               centigrade degrees
cfs              cubic feet per second
cms              cubic meters per  second
deg              degrees
DO               dissolved oxygen
°F               Farenheit degrees
ft               feet
g                acceleration due  to gravity
HM               heavy metal
HM1              heavy metal one
HM2              heavy metal two
HM3              heavy metal three
hr               hour
JCL              job control language
Ibs              pounds
m                meters
mb               millibars
mg               milligrams
mo               month
mph              miles per hour
mL               milliliter
MPN              most probable number
N                nitrogen
NH»-N            ammonia nitrogen
NO -N            nitrite nitrogen
NO_-N            nitrate nitrogen
PO.-P            phosphate phosporus
sec              seconds
yrs              years
                                 171

-------

    SPOKANE RIVER BASIN MODEL PROJECT

Volume V - User's Manual for Dynamic Stream Model

                      by

               John L. Shepherd
            E. John Finnemore, Ph.D.
  Systems Control, Inc., Palo Alto, California
                 for the
        ENVIRONMENTAL PROTECTION AGENCY
           Contract No. 68-01-0756
                October 1974

-------
    SPOKANE RIVER BASIN  MODEL  PROJECT






Volume V - User's Manual for Dynamic  Stream Model





                      by





               John L. Shepherd



            E. John Finnemore, Ph.D.
  Systems  Control, Inc., Palo Alto, California
                 for the
        ENVIRONMENTAL PROTECTION AGENCY
          Contract No. 68-01-0756
                October 1974

-------
                         EPA Review Notice

This report has been reviewed by the Environmental Protection Agency
and approved for publication.  Approval does not signify that the
contents necessarily reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names or commercial products
constitute endorsement or recommendation for use.
                              ii

-------
                             ABSTRACT
Three existing mathematical models, capable of representing water quality
in rivers and lakes, have been modified and adapted to the Spokane River
Basin in Washington and Idaho.  The resulting models were named the Steady-
state Stream Model, the Dynamic Stream Model, and the Stratified Reservoir
Model.  They are capable of predicting water quality levels resulting from
alternative basinwide wastewater management schemes, and are designed to
assist EPA, State, and local planning organizations to evaluate water qual-
ity management strategies and to establish priorities and schedules for
investments in abatement facilities in the basin.

Physical data and historical hydrologic, water quality and meteorologic
data were collected, assessed and used for the model calibrations and
verifications.

The modified models are all capable of simulating the behavior of various
subsets of up to sixteen different water quality constituents.  Sensitivity
analyses were conducted with all three models to determine the relative
importance of a number of individual model parameters.

The models were provided to the EPA as computer source card decks in
FORTRAN IV language, with accompanying data decks.  All development work
on, and applications made with, these models were fully documented so as
to permit their easy utilization and duplication of historical simulations
by other potential users.  A user's manual with a complete program listing
was prepared for each model.

This report was submitted in fulfillment of Contract No. 68-01-0756 under
the sponsorship of the Environmental Protection Agency.

The titles and identifying numbers of the final report volumes are:


                     Title                                EPA Report No.

SPOKANE RIVER BASIN MODEL PROJECT                         	-DOC 	/7A
  Volume I - Final Report
SPOKANE RIVER BASIN MODEL PROJECT                               DOC
  Volume II - Data Report
SPOKANE RIVER BASIN MODEL PROJECT
  Volume III - Verification Report
SPOKANE RIVER BASIN MODEL PROJECT
  Volume IV - User's Manual for Steady-state Stream Model
SPOKANE RIVER BASIN MODEL PROJECT
  Volume V - User's  Manual for Dynamic Stream Model

SPOKANE RIVER BASIN MODEL PROJECT
  Volume VI - User's Manual for Stratified Reservoir Model

                                ill

-------
                               CONTENTS


 SECTION                                                             PAGE

 I.     INTRODUCTION	    1

 II.    MODE OF OPERATION	    3

 III.   HYDRODYNAMIC  SUBROUTINES	 .    5

 IV.    QUALITY SUBROUTINES   	  .....    7

            Subroutine  SWQUAL  	  	    7
            Subroutine  INQUAL  ........  	    7
            Subroutine  NEWIN  	   IQ
            Subroutine  SETOPT	   IQ
            Subroutine  LOOPQL  ......  	  ....   IQ
            Subroutine  GETAVI	   IQ
            Subroutine  SUN	 .   15
            Subroutine  GETCON	   15
            Subroutine  QPRINT	   15

V.     INSTRUCTIONS  FOR DATA PREPARATION   ............   23

VI.    PROGRAM VARIABLES		   61

VII.   SAMPLE INPUT  DECK '...'.'	   59

VIII.  SAMPLE OUTPUT  .  . .	   75

IX.    PROGRAM LISTING   .	107

X.     REFERENCES	169

XI.    ABBREVIATIONS	171

-------
                                FIGURES






NO.                                                                PACE




1.     Subroutine Linkages 	    4




2.     Flowchart of SWQUAL	    8




3.     Flowchart of INQUAL	    9




4.     Flowchart of NEWIN	   11




5.     Flowchart of SETOPT	12




6.     Flowchart of LOOPQL	   13




7.     Assumed Daylight Intensity Distribution 	   14




8.     Flowchart of GETAVI 	 .........   16




9.     Flowchart of SUN  .  .  .	 . '. ..........   16




10.    Flowchart of GETCON 	 ..............   17




11.    Flowchart of QPRINT .	22




12.    Data Deck	   24




13.    Sample Region	70
                                 vi

-------
                                TABLES






NO.                                                                PAGE




1.     Quantity Data Decisions	   25




2.     Quality Data Decisions	   27




3.     Executive (Driver) Input  	   29




4.     RIVSCI Input	   32




5.     Definition of Constituent Selection Option, ICOMB  	   59




6.     Quality Related Common Variables  	.  .   62




7.     Quality Related Local Variables	   66




8.     Sample Input	   71




9.     Sample Output	  .   76
                                 vii

-------
                               SECTION I

                              INTRODUCTION
The Dynamic  Stream Model  (RIVSCI),  documented herein,  is an extensive
modification of  the Receiving  Water Module  (RECEIV)  of the. Storm Water
Management Model [References 1-4],  and  is  one of  three water quality
simulation programs developed  by  Systems  Control, Inc.  (SCI)  for use on
the Spokane  River  Basin in  the states of  Washington and Idaho.  This
document is  a supplement  to References [1] through  [4].

RECEIV, which models a maximum of five quality constituents,  has been
modified in  this project  to model as  many as 16 constituents  simultaneous-
ly.  With the exception of  the addition of some user options  arid the
changing of  the  units of  some  input parameters,  the hydrologic  inputs to
RIVSCI are the same as those for RECEIV.  The quality-related input
parameters have  been extensively modified and extended and are  described
in this Volume.  The algorithms employed  by  RIVSCI  to  model the quality
constituents  are described  in  detail  in Volume I (Part III)  of  this
report.

Subroutines which  are unchanged or  only slightly modified include CURVE,
GRAPH, INDATA, OUTPUT, PINE, PPLOT, PRTOUT,  RECEIV,  RUNOFF,  STORAG,
EXECUTIVE(DRIVER),  SWFLOW,  TIDCF, TRANS,  and TRIAN.  INQUAL,  LOOPQL,
QPRINT, and  SWQUAL  have been extensively  modified.   Five newly  added sub-
routines are  named  GETAVI,  GETCON,  NEWIN, SETOPT, and  SUN.

The basic structure of the  SWMM remains.  The EXECUTIVE(DRIVER)  calls
RUNOFF, TRANS, STORAG, GRAPH,  and RECEIV  as  requested.   Of these five
routines only RECEIV performs  any computations.  The others are merely
"dummy" routines which may  be  replaced with  modules  of  the users choice
if he so desires.   The routines which  generate  plots of  junction head
elevations are not  documented  in this  report.   They  are  CURVE,  PPLOT and
PINE.   They are  called by subroutine OUTPUT  if  plots are requested.
The plotting  option was not exercised  during the Spokane Basin  Project.

The format of  this  users manual is  generally consistent  with  the format
of Reference  [3], subject to the constraints  imposed by  EPA documentation
specifications.  For completeness,  portions  of  this  document  are taken
directly from Section 6 of Reference  [3].

RIVSCI has been  successfully applied to a wide variety of  steady-state
stream conditions and has been executed on both  the  UNIVAC 1108  and the
IBM 370/155.

-------
                               SECTION  II

                          MODE OF OPERATION
The Receiving Water Module of the  Storm Water Management Module,  as
modified by Systems Control, Inc.,  is named herein  the Dynamic Stream
Model  (RIVSCI).  It simulates the  behavior of estuaries, and  streams, but
in this project has only been verified on stream  systems.  The program
has two distinct phases which may  be executed together or  separately.
In Phase A, the time history of stage, velocity,  and  flow  is generated
for various points in the system.   In Phase B,  the  hydrodynamics are
utilized to model the behavior of  conservative  and  nonconservative
quality consitutents.

The receiving water is simulated by dividing the  continuous  system  into
a series of discrete one- and two-dimensional elements which connect
node points.  For the purpose of this analysis, the velocity of  flow is
assumed uniform with depth, one-dimensional elements  represent rivers
and specific channels, and two-dimensional elements represent areas of
continuous water surface.  For each time-step,  the  equations of  motion
and continuity are applied to all nodal points  to derive the hydro-
dynamics of the system.  The hydrodynamics are  used with equations
for conservation of mass to determine the concentration of quality
constituents.'

Subroutine RECEIV, which is called  by the EXECUTIVE (DRIVER) drives the
quantity (Phase A) and quality (Phase B) sections of  the model which act
independently, linked only by data  transmitted  through a peripheral file.
Figure 1 shows the linkages among the subroutines of  RIVSCI.

-------
DRIVER
RECEIV
                             FTGURK !.   SUBROUTINE LINKAGES

-------
                              SECTION III

                       HYDRODYNAMIC SUBROUTINES
Descriptions of the hydrodynamic (Phase A) subroutines SWFLOW, INDATA,
TIDCF, TRIAN, PRTOUT, and OUTPUT may be found on pages 294-301 of
Reference [3],  Descriptions of the quality  (Phase B) subroutines
follow in Section IV.

-------
                               SECTION  IV

                          QUALITY  SUBROUTINES
The quality  section consists of nine  subroutines:   SWQUAL,  INQUAL,  NEWIN,
SETOPT, LOOPQL, GETAVI,  SUN, GETCON and QPRINT.  These  subroutines  are
described in this section.  Subroutine interlinkages  are  illustrated  in
Figure 1.  All equations not described in this manual are described in
Section 14 of Reference  [1] and in Part III of Volume I of  this  report.
Quality related common variables are  described in Table 6.  Local
variables are presented  in Table 7.

Subroutine SWQUAL

Subroutine SWQUAL  is the driving quality routine which operates in
three steps:

1.   Calls INQUAL to read input data.
2.   Calls LOOPQL for each day of simulations.
3.   Prints  daily average, maximum, and minimum concentrations of water
     quality constituents.

A flow chart of subroutine SWQUAL is  shown in Figure  2.

Mass lost to the system through outflows is a normal  part of the computa-
tions.  A special case is the mass lost through tidal exchange.  This
calculation is performed at the completion of each  day's cycle,  and is
based on the volume difference between flood and ebb  tides.

Subroutine INQUAL

Subroutine INQUAL, flowcharted in Figure 3, reads control information
from cards and geometric data that was previously used  in the quantity
modeling.   It calls subroutine NEWIN  to read in quality-related  condi-
tions and parameters.

The three types and sources of basic  information to subroutine INQUAL
are:

1.   The basic hydrodynamics from SWFLOW
2.   Time-quality information from models preceding SWFLOW and trans-
     ferred through it.   (If input of this type is  required, appropriate
     modifications must be made to the models preceding SWFLOW.)
3.   Initial quality constituent concentrations and controlling  para-
     meters,   (read by NEWIN)

-------
     ENTRY   J
    COMPUTE
     OCEAN
   EXCHANGE

I WRITE AVE., MAX..J
 MIN. NODAL CON-
   CENTRATIONS
     FOR LOOP
      CYCLE

     RESET
  VALUES FOR
   NEXT  LOOP
     CYCLE
    \READ NEW  ./
   HYDRAULIC  /
     INFO.   /
     LOOP

               YES
        NO
                                                  I'.'RITE
                                                 REST/-P.I"
                                                 "TAPE
                                                 RETURN J
        FIGURE 2.  SUBROUTINE SWQUAL

                       8

-------
     (   ENTRY   )
          ill
    \
  READ
CONTROL
 INFO.
         READ
        SYSTEM
       HYDRAULIC
         INFO.
          I
     READ & WRITE,
       PRINT &'
       CONTROL
         INFO.
          I
    iWRITE  INITIAL]
       HYDRAULIC
       INFLOWS &
       OUTFLOWS
       OF SYSTEM
          I
     READ & WRITE
     QUAL. PARAMJ
          OF
        SYSTEM
         CALL
        NEW IN
         1.
       EVALUATE
      CONSTANTS
FIGURE 3.   SUBROUTINE INQUAL

-------
 Subroutine NEWIN

 Subroutine NEWIN,  flowcharted  in  Figure  A,  reads  in  the  quality-related
 parameters needed  for  the  simulation,  including initial  concentrations
 of all constituents  in all junctions,  constituent concentrations  in  all
 junction  inflows,  solar  radiation time history, options  governing which
 constituents will  be modeled,  and values for  all  appropriate  constants
 and reaction rates and coefficients.   It calls subroutine  SETOPT  to  set
 internal  logic  flags,  based on the input options,  and  to output an
 option summary.  NEWIN prints  out all  appropriate input  parameters and
 calculates the  dissolved oxygen saturation  level  for each  junction.

 Subroutine SETOPT

 Subroutine SETOPT, flowcharted in Figure 5, sets  internal  logic flags
 ba.sed on  input  options and prints out  a  summary of the reactions  which
 are to be simulated.

 Subroutine LOOPQL

 Subroutine LOOPQL, flowcharted in Figure 6, reads  one  quality cycle  of
 hydraulic information  right after its  entry.  It  then  reads a new set of
 values from the appropriate pollutographs or  interpolates  as  necessary.
 Boundary  conditions  are  computed  for conservative  and  non-conservative
 quality constituents.

 Advective flow concentration changes are computed  next,  and all nodal
 quality constituent  concentrations  are updated, with checks for depletion.
 The program next computes  nodal quality  constituent concentration changes
 due to mass input.   GETAVI  is  then  called to  calculate the average light
 intensity and GETCON is  called to calculate the effects  of growth, decay,
 settling, reaeration and benthal  releases and demands.

The average,  maximum, and minimum concentrations are stored for later
printout  by SWQUAL.  This program also allows the  calling of  QPRINT,
 to print  all concentrations for this quality  cycle.  Return is made  to
 SWQUAL.

 Subroutine GETAVI

Subroutine GETAVI, flowcharted in Figure 8, calculates the average light
itensity rate in Langleys/min during a time interval   [t-,t_] on  Julian
day  n.    Subroutine  SUN  is called to calculate sunrise and sunset on day
n.  The total number of Langleys  for day  n   is an input number.  From
these values of sunrise,  sunset, and total radiation, the average rate
over  [t.,t2]  is calculated from the assumption that the total is dis-
tributed between sunrise and sunset according to the distribution shown
in Figure 7.
                                  10

-------
ENTRY
                J
         READ
        BASIN
      VARIABLES
         READ
       INITIAL
       JUNCTION
       CONCEN-
       TRATIONS
         READ
       JUNCTION.
        INFLOW
       CONCEN-
       TRATIONS
        WRITE
        INPUT
     L PARAMETERS j
        READ
     MISCELLAN-
        EOUS
      VARIABLES
         I
         (CALL   \
        SETOPT   /
      READ SOLAR
      RADIATION
         TIME
       HISTORY
      CALCULATE
    DO SATURATION
    LEVEL  FOR EACH'
      JUNCTION
                                                   1
                                          WRITE
                                         SUMMARY
                                        OF PARA-
                                        METERS TO
                                         BE  USED
                                          I
                                                 RETURN
FIGURE 4.   SUBROUTINE  NEWIN

                               11

-------
          ENTRY  J
        SET OPTIONS
      BASED  ON  INPUT
        PARAMETERS
          WRITE
          OPTION
          SUMMARY
           I
          RETURN )
FIGURE  5.   SUBROUTINE SETOPT
                12

-------
               READ ONE
                QUALITY
                 CYCLE
               HYDRAULIC
                 INFO.
           IREAD/INTERPOL'N/
           \QUAL.  CONST'NT/
                LOADING
               AT  INPUT
                NODES
                 CALL
                GETAVI
                 CALL
                GETCON
        YES

                 LOOP
                F.ETUF.N  J
FIGURE  6.   SUBROUTINE LOOPQL

             13

-------
Intensity
                      1/6
             Sunrise  1/4
2/3
1/2
1/4 Sunset
             -•-Time
              FIGURE 7.   ASSUMED DAYLIGHT INTENSITY DISTRIBUTION
                                  14

-------
Subroutine SUN

Subroutine SUN,  flowcharted in Figure  9,  calculates  sunrise  and  sunset
in hours from midnight on Julian day   n   as a  function  of  latitude  (in
radians) from

          d = .409279 COS(.0172142(172 -  n))                 radians

          sunset = 3.81972 COS'^-tantd)  tan(lat)) +12.

          sunrise =24. - sunset

Subroutine GETCON

Subroutine GETCON, flowcharted in Figure  10, is called  by  LOOPQL to
calculate the changes in the constituent  concentrations in a junction
over a time  At  where  At  is the integration time  step used by SWQUAL.
The algorithms used are explained in detail in Volume I (Part III) of
this report.  The inputs to GETCON include the depth of the  junction,
the velocity of the water through the  junction, the  average  light
intensity rate at the surface during   At,  and the appropriate system
constants and variables, as well as the concentrations of  all constitu-
ents at the beginning of  At.   Equations  referenced as  (A.NN) in Figure
10 may also be found in Part III of Volume I.

Subroutine QPRINT

Subroutine QPRINT, flowcharted in Figure  11, prints the instantaneous
concentration levels for the system.
                                 15

-------
       (   ENTRY "")


     /   CALL    \
     \     SUN     /

             "
     CALCULATE AVERAGE
      LIGHT INTENSITY
        DURING TIME
       TIME INTERVAL
            I
          RETURN  J
FIGURE 8.  SUBROUTINE GETAVI
          EN'TRY
        CALCULATE
       SUNRISE AND
          SLTISET
           I
         RETURN
  FIGURE 9.   SUBROUTINE SUN
           16

-------
                  INITIALIZE
                Zero Out Deltas
                  TCOR=(T-20)
                     A.82
                  BOD DECAY
                  A.15 A.14
                  A.12 A.16
                  A.13 A.17
FIGURE  10.   SUBROUTINE GETCON (page 1)
                     17

-------
FIGURE 10.  (cont'd) Page 2
              18

-------
               IS
             NO--N
             BEING
            MODELED
 N02-N DECAY
               IS
             N03-N
             BEING
            MODELED
 N03-N  DECAY
 A.38   A.37
               IS
             PO..-P
             BEING
            MODELED
               7
 P04-P DECAY
A.76.1  A.75
              IS
             NHj-N
         VOLITIZA7ION
           OCCURRIN
              ARE
          HYTOPLANKTO
             BEING
              DELE
              IS
           IT DARK
         DURING TIME
             STEP
          A.45 A.«9 A.5J
          A.46 A.50 A.54
          A.47 A.51 A.55
          A.4B A.52 A.44
                 A.60
FIGURE 10.   (cont'd)  (Page 3)

              19

-------
                IS
              NH3-N
              BEING
             MODELED
                7
FIGURE  10.   (cont'd)  (Page 4)

               20

-------
        ALGAL DEATH

           A. 72
           A.73
           A. 74
                             BENTHAL  RELEASE
                                  A. 79
                             BENTHAL RELEASE
                                  A. 77
                             BENTHAL RELEASE
                             A.94  A.29  A.34
                             BENTHAL RELEASE

                                  A. 78
   REAERATION & BENTHAL
          DEMAND
            ARE
           HEAVY   \YES
       METALS BEING.
          MODELED
COMPUTE FINAL CONCENTRATION;
       A.95 - A.104
           i
       (  RETURN  J
   FIGURE  10.   cont'd (Page  5)
            21

-------
      CENTRYj
       WRITE NODAL
     CONCENTRATIONS
       FOR QUALITY
          CYCLE
         CALLED
          RETURN
FIGURE 11.  SUBROUTINE QPRINT
        22

-------
                               SECTION  V

                    INSTRUCTIONS  FOR DATA PREPARATION


Use  of  RIVSCI  involves  three  basic  steps:

      Step  1 -  Idealization  of the physical  system
      Step  2 -  Quantity  decisions
      Step  3 -  Quality decisions.

These steps are described below.  The  physical  arrangement  of  a typical
RIVSCI  input deck  is pictured in Figure  12.  A  brief summary of the
required RIVSCI inputs  is presented in Table 1  and Table  2.  Detailed
instructions for data card  preparation are  presented in Table  3 and
Table 4.  All  equations referenced  as  (A.NN) in Table 4 occur  in Volume
I  (Part III) of this report.

The  program uses up to  4 scratch files.

      Scratch file  1   is used to transmit hydrodynamics from quantity
                      to quality model.
      Scratch file  2   is used by the quantity and quality model
                      separately.
      Scratch file  3   is an input restart file  for the quality model.
      Scratch file  4   is the  output  restart file  for the  quality model.

If the restart facilities of  the quality model  are not used, scratch
files 3 and 4 need not  be defined.

Step  1 - Idealization of the  Physical  System

The  first step in  the use of  RIVSCI  is idealization  of the physical
system into one (channel) and  two-dimensional (area)  discrete  elements
of an appropriate  size  to describe  the system in the detail required.

The  decision on detail  must be based upon the size limitation  of the
program, and the desired time  interval of integration.  The time interval
is restricted by wave celerity conditions.  For a stable  solution, choose
At =  3L/4/gd  for all channels where L is length and  d   is depth of
channel (consistent units).   At  will usually lie between 30 seconds and
300  seconds.  For junctions of the  system, the  initial head, and floor
elevations, plus average friction coefficients must  be specified, together
with contributions of channels to the surface area of  node.  For area
elements only,  the nodes forming triangles must be specified, but for
channel elements, width, length, depth, and friction  coefficients must be
provided
                            23

-------
                                               QUALITY DATA CARDS
                                            CONTROL PARAMETERS
                                         NJSW,  ITCPRT, NQPRT,  ETC.
                                       NTC
                                     ISWCH (1),  ISWCH (2),  ETC.




                                  QUALITY




                                ENDQUANT
                           QUANTITY  DATA CARDS
I
                        PRINT/PLOT  CARDS




                     RAIN  INPUT  CARDS




                  HYDRAULIC  CONTROL CARD
                ISWCH  (|),  ISWCH  (2)
            STORM TITLE CARDS
         RUN TITLE CARDS
      QUANTITYQUALITY
    RECEIVING
 EXECUTIVE BLOCK CARDS  (TABLE 3)
               FIGURE 12.  DATA DECK FOR RIVSCI
                            24

-------
The following restrictions govern the use of RIVSCI.

1.   There may be a; maximum of 100 junctions.
2.   There may be a maximum of 225 channels.
3.   No more than 8 channels may enter a junction.
4.   No more than 20 time varying inflows may be specified.
5.   The quality time step must be a multiple of the quantity time step.
6.   Flow and velocities may be output for a maximum of 50 channels.
7.   Plots and head heights may be output for a maximum of 50 junctions.

Card groups referred to in Tables 1 and 2 correspond to the data prepara-
tion instructions presented in Table 4.

Step 2 - Quantity Decisions

                               TABLE 1.

                       QUANTITY DATA DECISIONS


     CARD
     GROUP                              DISCUSSION


     1              Quantity and/or quality decision.  For a quality
                    run, skip to Card Group 24.

     2,3            Title cards for the run and for the storm.

     4              Tide or no-tide,  print or non-print of input
                    decisions.

     5              General control decisions on:   (Values in paren-
                    theses indicate typical values where relevant.)

                    a)    Number of daily cycles.

                    b)    Number of hours in a daily cycle (24.).

                    c)    Number of hours in a quality cycle (1.).

                    d)    Number of seconds in fundamental time-step
                         (300.)

                    e)    Zero time (0.).
                                 25

-------
                        TABLE  1.  (Continued)
CARD
GROUP
                    DISCUSSION
5  (Continued)
6

7,8,9

10,11,12



13,14



15,16
17,18,19

20,21,22
f)   Number of junctions and channels to be printed.

g)   Number of junctions to be plotted.

h)   Evaporation.

i)   Wind speed and direction.

j)   Day cycle at which printed output will start.

k)   Number of rainfall points if needed.

1)   Downstream junction number.

Rainfall input if relevant.

Junctions and channels to be printed and plotted.

Downstream condition either tidal or using a weir

type equation where Q = WEIRI'WIDTH'(H-WEIR2)

Junction data, including initial head, area contri-
bution of one dimensional channels, inflows and
outflows, and depths.

Channel data, including connection data for area
elements and connection data for channels plus
length, effective width, average depth, Manning's
coefficient.

Titles to go on plot cards.

Storm water input hydrograph from cards if relevant.
                         26

-------
Step 3 - Quality Decisions
                              TABLE  2.

                         QUALITY DATA DECISIONS
     CARD
     GROUP                              DISCUSSION
     24             Control switches concerning restart information.

     25,26,27       Control information for quality run information on:

                    a)   Number of daily cycles to be run.

                    b)   Print frequency and detail required.

     28             Run data,  including first day of run,  elevation of
                    river system,  average temperature, latitude of river
                    system

     29             Junction number

     30             Junction parameters

     31,32          Initial junction concentrations

     33,34,35       Junction inflow concentrations
                    Termination of concentration inputs

     36-44          Miscellaneous  variables

     45,46          Storm water input from cards,  if relevant.
                            27

-------
Note that RIVSCI will accept time varying hydrographs and pollutographs
as input.  These hydrographs and pollutographs may be input on cards.
The version of the Storm Water Management Model  (SWMM) described  in
References [1-4] has the capability of transferring these inputs  via an
interface tape from the Transport or Storage Modules to the Receiving
Water Module.  RIVSCI has the capability to read these hydrographs and
pollutographs from tape, but if utilization of this capability is. desired
the tape must be prepared by a user-supplied program, since the Transport
and Storage Modules of the SWMM have not been modified or included in
RIVSCI.

RIVSCI is called by an Executive Block in the same manner that the
Receiving Water Module is called in References [1-4].  The input  cards
needed for the Executive Block are defined in Table 3.  This table is a  .
portion of the table which may be found on pages 23-24 of Reference [3]
and is reproduced in this document for user convenience.  To run  RIVSCI
with no storm inflow only cards 4, 5, and 6, as defined in Table  3, are
important although cards 1 and 2 must be input also.  A sample RIVSCI
data deck is provided in Section VII.
                             28

-------
tsJ
VO
                                                       TABLE 3.


                                               EXECUTIVE (DRIVER) INPUT
CARD CARD
# COLUMN
1 . 1-40
2
1-5
6-15
16-25
26-30
31-40
41-45
46-55
FORMAT
10A4

15
F10.1
F10.2
15
F10.1
15
F10.1
VARIABLE
NAME UNITS
TITLE!

NSERYS
ACRES
ADDWF (CFS)
NDESYR (YRS)
DESFLO (CFS)
NSTRMS
QTRUNK (CFS)
DEFAULT
. VALUE DESCRIPTION
none Title Card, title of the area
being studied.
General information about the
studied area.
none Demonstration series number.
none Number of acres of the study
area.
none The average daily DWF for the
study area.
none Design flow rate frequency.
none Design flow rate.
none Number of storms being studied.
none Maximum available trunk sewer
                                                                                capacity.

                                                                                REPEAT FOR THE NUMBER OF STORMS.
                                                                                IF NSTRMS  = 0, SKIP THIS CARD.

                                                                                Storm data cards.

-------
                                               TABLE  3.  (Continued)
           CARDS  CARD
             #   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
u>
o
           3      1-16

                 17-32
                  1-4
                  5-8
                  9-12
                 13-16
4A4       STORM

4A4       RAIN
2014
JIN(l)
          JOUT(l)
          JIN(2)
          JOUT(2)
               (IN)
               none      Date of storm.

               none      Amount of rainfall for this
                         storm.

                         I/O tape/disk assignments.

               none      Input tape assignment for  first
                         block to be run.(RIVSCI  requires
                         a non-zero value  if hydrographs
                         are input.)

               none      Output tape assignment for first
                         block to be run.   (RIVSCI  requires
                         a non-zero value  if plots  are
                         required.)

               none      Input tape assignment for  second
                         block to be run  (usually the
                         same as the output tape  from
                         first block).

               none      Output tape for  second block  to
                         be run.
                 77-80
          JOUT(IO)
                               none       Output  tape for tenth block to
                                         be run.

-------
                                     TABLE  3.  (Continued)
CARD   CARD
  //   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
        1-4


        5-8

        9-12



       13-16


       17-20
2014
        1-80
20A4
NSCRAT(l)


NSCRAT(2)

NSCRAT(3)



NSCRAT(4)


NSCRAT(5)
CNAME
                         Scratch tape/disk assignments.

               none      First scratch tape
                         assignment.  (RIVSCI quantity
                         output: ^ 0)
               none      Second scratch tape assignment.
                         (RIVSCI scratch unit: t 0)
               none      Third scratch tape assignment.
                         (RIVSCI quality restart: ^ 0 if
                         ISWCH(l) on card 24 ± 0)

               none      Fourth scratch tape assignment.
                         (RIVSCI quality restart: ^ 0 if
                         ISWCH(3) on card 24 f 0
               none      Fifth scratch tape assignment.
                         REPEAT CARD 6 FOR EACH BLOCK TO
                         BE CALLED.
                         Control cards indicating which
                         blocks in the program are  to be
                         called.
               none      Name of block to be called.
                         = WATERSHED for Runoff Block,
                         = TRANSPORT for Transport  Block,

                         = RECEIVING for RIVSCI

                         = STORAGE for Storage Block,

                         = GRAPH for Graph subroutines.

                         = ENDPROGRAM for ending  the

                           storm water simulation.

                          (CNAME must start in Column  1)

-------
                                   TABLE  4.

                                  RIVSCI INPUT
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
                                                                 Control Card.

If both QUANTITY and QUALITY are punched, the program first carries out quantity then quality

analysis.
      1-8
      9-15
      1-60
      1-60
      1-5
4A4
15A4


15A4



1015
ALPHA
TITLE
ISWCH(l)
none      If hydraulic calculations are
          to be carried out, write
          QUANTITY.

none      If quality modeling is to be
          accomplished, write QUALITY.

          IF QUANTITY ANALYSIS IS NOT
          SELECTED SKIP TO CARD GROUP 24.

          QUANTITY MODEL DATA.

          Run title card, 2 cards.

none      Two card title for run
          Storm title card, 2 cards.

none      Two card title for storm.

          Control switches.

0         = 1, System is tidally in-
            influenced,
          = 0, System is influenced by
            downstream head relationship
            (dam).

-------
                                                TABLE 4.   (continued)
           CARD   CARD
             #   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
                   6-10
OJ
to
                  21-25
                  26-30
                  31-35
          ISWCH(2)
          ISWCH(5)
          ISWCH(6)
1-5 15
6-10 4F5.0
11-15
16-20
21-25
26-30 315
NTCYC
PERIOD
QINT
DELT
TZERO
NHPRT


(HR)
(SEC)
(HR)

none
none
none
none
none
none
          NQPRT
                               none
                         =0, Print input channel and
                           junction data,
                         =1, Skip printing of input
                           channel and junction data.

                         = 0, calculate Manning coef-
                           ficient.
                         = 1, input Manning coefficient
                           (card 15)

                         = 1, ndntidal steady state
                           system
                         = 0, otherwise

                         Hydraulic control card.

                         Number of day cycles desired.

                         Number of hr/day cycle.

                         Length of quality time-step.

                         Length of hydraulic time-step.

                         Initial time  for start  of
                         hydrograph input from cards.
                         Number of junctions for  tiine-
                         history printout.

                         Number of channels  for  time-
                         history printout.

-------
                                                TABLE 4.   (Continued)
u>
CARD CARD
# COLUMN
5 36-40
41-45
46-50
51-55
56-60
61-65
66-70
71-75
VARIABLE
FORMAT NAME UNITS
NPLT
3F5.0 EVAP (IN /MO)
WIND (MPH)
WDIR (DEC)
415 NQSWRT
NJSW
INRAIN
JGW
DEFAULT
VALUE
none
none
none
none
none
none
none
none
DESCRIPTION
Number of plots desired.
Evaporation.
Wind velocity.
Wind direction, clockwise,
degrees from North.
Day .cycle where printed output
will start.
Number of junctions of storm
water input from cards .
Number of points of rain
information.
Junction number where a head
                   1-10     8F10.0    RAIN(l)         (IN/HR)

                  11-20               INTIME(l)       (MIN)
none

none
relationship is specified.

IF INRAIN = 0, SKIP RAIN INPUT
CARDS 6 (maximum = 100).

Rain input cards, INRAIN pairs
of values, 8 per card.

Rate of precipitation.

Time from start of storm.

-------
         TABLE  4.   (Continued)
CARD CARD
f COLUMN
6 21-30
31-40
7
1-10
11-20
VARIABLE
FORMAT NAME UNITS
RAIN (2) (IN/HR)
INTIME(2) . (MIN)
8110 JPRT(l)
JPRT(2)
DEFAULT
VALUE DESCRIPTION
none
Etc., up to INRAIN points.
Junction selected for stage-
history printout, NHPRT values,
8 per card (maximum = 50).
none First junction number.
none Second junction number.
JPRT (NHPRT)
1-7
8-10
         8110
CPRT(l)
CPRT(l)
none      Last junction number.

          Channels selected for flow
          print, NQPRT values, 8 per card
          (maximum = 50).

none      Lower junction number at end of
          first desired channel.

none      Higher junction number at end
          of first desired channel.

-------
                                             TABLE   4.  (Continued)
CARD   CARD
  #   COLUMN
                           FORMAT
          VARIABLE
            NAME
               UNITS
DEFAULT
 VALUE
DESCRIPTION
CO
                  1-10

                 11-20
8110
                                     CPRT(NQPRT)


                                     CPRT(NQPRT)
JPLT(l)

JPLT(2)
none      Lower junction number at end of
          last desired channel.

none      Higher junction number at end
          of last desired channel.

          IF NPLT = 0, SKIP CARDS 9
          (maximum = 50).  Junctions
          selected for head plot, NPLT
          values

none      First junction to be plotted.

none      Second junction to be plotted.
                                     JPLT(NPLT)
                                        none
                                        Last junction to be plotted.

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   //   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
10
11
         1-5
         6-10
        11-15
        16-20
415
KO
          NI
          MAXIT
          NCHTID
                                                          none
                                                          none
                                                          none
1-10
11-20
21-30
8F10.0 TT(1)
YY(1)
TT(2)
(HR)
(FT)
(HR)
none
none
none
                         IF ISWCH(l) = 0 ON CARD 4, SKIP
                         to 12; OTHERWISE INCLUDE CARDS
                         10 and 11.

                         Tide input control card.

                         If = 1 will expand from tide
                         points (HHW, LLW, LHW, HLW) for
                         tidal coefficients

                         Number of tidal stage data points,
                         (£50)

                         Maximum number of iterations  for
                         curve fit, usually 50.

                         = 0, Skip tidal I/O print,
                         = 1, Print all parameters used.

                         Tidal stage card, NI pairs of
                         values 4 pairs/card.

                         Time of tidal stage, first point.

                         tidal stage first point.

                         Time of tidal stage, second
                         point.
         31-40
          YY(2)
                (FT)
                                                           none
                          Tidal  stage,  second point.

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   #   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
11
                            YY(NI)
                          (FT)
12
13
         1-10

        11-20


        21-30
         1-5

         6-10
8F10.0    Al

          A2


          A3
 15

F5,0
J

HEAD(J)
                (FT)
 (FT)
none      Tidal stage, last point.

          SKIP TO 13 IF CARDS 10 AND  11
          ARE REQUIRED.

          Downstream head stage card.

none      WEIR factor.

none      Elevation of top of WEIR
          (referenced to datum plane).

none      Power law for WEIR.   [FLOW=A1-
          WIDTH*(HEAD-A2)A3 nominally
          A1=3.33,A3=1.5]

          REPEAT CARD 13 FOR EACH
          JUNCTION  (maximum = 100).

          Junction  cards

none      Junction  number

none      Water surface-elevation
          referenced  to datum plane.

-------
                                               TABLE  4.   (Continued)
           CARD   CARD
             ff   COLUMN
                    VARIABLE
          FORMAT      NAME
               UNITS
               DEFAULT
                VALUE
          DESCRIPTION
          13
11-20     F10.0
u>
oo
                  26-30
                  41-50
                  76-80
           14     1-5
          15
AS(J)
                  21-25     2F5.0     QIN(J)
                    QOU(J)
                  31-40     2F5.0     DEP(J)
                    COF(J)
                  51-70     20X

                  71-75     2F5.0     X(J)
                    Y(J)
(MILLION FT )  none
                (CFS)


                (CFS)


                (FT)
                                                  none
                                                                     none
                                                  none
                                                                     none
                                    (THOUSAND  FT)   none
                (THOUSAND FT)   none
                               none
Surface area of junction  (input
.if ISWCH(6) =  0 and  NTEMP(3)
= 0 on card 15)

Junction flow  into receiving
waters

Junction flow  out of receiving
water

Junction depth (input if  ISWCH
 (6) = 0)

Junction Manning's coefficient.
 (Blank unless  NTEMP(3)  ^  0 on
card 15)

Leave columns  blank

X-cpordinate  (Blank  unless
NTEMP(3) / 0  on card 15)

Y-coordinate  (Blank  unless NTEMP
 (3) ^ 0 on card 15)

To  terminate  Junction Cards,
write 99999.

-------
                                          TABLE   4.  (Continued)
OJ
VO
CARD CARD VARIABLE
# COLUMN FORMAT NAME. UNITS
15


1-5 515 N
6-10 NTEMP(l)
11-15 NTEMP(2)
16-20 NTEMP(3)




21-25 NTEMP(4)






26-35 5F10.0 ALEN (MILES)
36-45 WIDTH (FT)
46-55 RAD (FT)
DEFAULT
VALUE DESCRIPTION
REPEAT CARD 15 FOR EACH CHANNEL
OR AREA (maximum = 100) .
Channel or area cards .
none Channel number.
none Junction at lower end of channel
none Junction at upper end of channel
0 Blank unless program is used to
develop geometric data. Junc-
tion which, with first two junc-
tions, forms an acute triangle.
Program will develop channels .
0 Blank unless it is a number of a
fourth junction which lies be-
tween a pair of previous three
junctions. Program will develop
geometric data.
IF NTEMP(3) IS SUPPLIED THEN
LEAVE COLUMNS 26-80 BLANK.
none Length of channel
none Width of channel
none Average depth of channel

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   #   COLUMN
          FORMAT
          VARIABLE
            NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
15
16
17
18
19
55-65


66-75

 1-5
 1-72



 1-80



 1-8


 9-16


17-24
15
                  18A4
                  20A4
                  6A4
          COEF
                            VEL
          TITL
          HORIZ
          VERT(l)
          VERT(2)

          VERT(3)
          VERT(4)

          VERT(5)
          VERT(6)
                         (FPS)
               0.018     Manning's coefficient  (input  if
                         ISWCH(5)=1)

               none      Initial velocity

               none      To terminate Channel Cards,
                         write 99999.

                         IF NPLT = 0 (CARD 5),  SKIP TO
                         CARD 20.

                         Plot title card.

               none      72 column title for plot  output.

                         Plot horizontal label  card.

               none      80 column label below  the x  axis,

                         Plot vertical  label card.

               none      Line 1 of the  vertical label.


               none      Line 2 of the  vertical label.


               none      Line 3 of the  vertical label.

-------
                                    TABLE   4.  (Continued)
 CARD   CARD
  #    COLUMN
          FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
20
         1-5

         6-10
                    JSW(l)

                    JSW(2)
                              none

                              none
                         IF NJSW = 0, SKIP TO CARD GROUP
                         23 (maximum = 20).

                         Storm water input control card,
                         NJSW values.

                         First junction number.

                         Second junction number.
                            JSW(NJSW)
21
 1-10

11-20

21-30
                  8F10.0    TE(1)
                (SEC)

                (CFS)

QE(1,2)         (CFS)
               none      Last junction number.

                         REPEAT CARD 21 FOR EACH TIME-STEP
                         (maximum = 20 junctions).

                         Input hydrograph.

               none      Time of day

               none      Flow volume for  first  junction.

               none      Flow volume for  second junction.
QE(l.NJSW)      (CFS)
                                                          none
                                                            Flow volume for last junction.

-------
                                                 TABLE  4.   (Continued)
             CARD   CARD
               //   COLUMN
         FORMAT
          VARIABLE
           .NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
N>
            22
            23
1-10
F10.0     TE(1)
(SEC)
                                                                      none
            24
                     1-8
                     1-5

                     6-10


                    11-15


                    16-20

                    21-25
         2A4                                     none

                   END OF QUANTITY DATA CARDS
         1015
          ISWCH(l)

          ISWCH(2)


          ISWCH(3)


          ISWCH(4)

          ISWCH(5)


          ISWCH(IO)
               0

               0
          Terminate input hydrograph  cards
          with TE(1) beyond expected  time
          of analysis.

          Final data card.

          Write ENDQUANT.
          QUALITY MODEL DATA.

          Control switches  (1  is  yes,  0 is
          no)

          Restart from scratch file 3.

          Skip print of maximum and mini-
          mum concentrations.

          Write  restart data on scratch
          file 4.

          Not used.

          Tidally influenced receiving
          water.

          Use only  first  daily cycle on
          input  file.   (set =  1 if ISWCH(6)
          on card 4 is =  1)

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   #   COLUMN
FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
25
26
         1-5
         1-5
         6-10
        11-15
        16-20
15
1015
NTC
NJSW
          ITCPRT
          NQPRT
          LQCPRT
                         IF NOT RESTARTING FROM SCRATCH
                         FILE 3 (i.e., ISWCH(l) = 0),
                         SKIP TO CARD GROUP 26.

                         Daily cycle card.

               none      Number of daily cycles desired.

                         THIS WOULD BE LAST CARD OF  DATA
                         DECK IF ISWCH(l) =1.

                         Storm water and print card.

               none      Number of junctions with storm
                         water input from cards
                         (maximum = 20).

               none      Daily cycle at which detailed
                         quality information will print.

               none      Number of quality time steps
                         between printing out quality
                         results.

               none      Total number of quality  cycles
                         printed  (maximum—50).

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   #   COLUMN
FORMAT
VARIABLE
  NAME
                                   UNITS
DEFAULT
 VALUE
DESCRIPTION
27
28
         1-5
         6-10
        11-15

        16-20
 1-10



11-20


21-30


31-40
15
blank
15

F5.0
110
NTC

NPRT

XRQD


NDAY1
F10.4     ELEV


F10.4     TEMPAV


F10.4     XLAT
                                   (DAYS)
                                            (FT)
                                            (DEC)
          Control parameters.

none      Number of daily cycles desired.

none      Print interval

0         Ocean exchange ratio at tidal
          point.

0         First day of run  (Jan. 1=1,
          Dec. 31 .= 365) (needed only  if
          modeling phytoplankton)

0         Average elevation of system
          referenced to sea level.

0         Average water temperature  in
          system.

0         Latitude of system  (needed only
          if modeling phytoplankton)

-------
                                                  TABLE. 4.  (Continued)
Ul
             CARD   CARD
              ff    COLUMN
                  FORMAT
VARIABLE
  NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
29                                                                  FOR EACH JUNCTION READ A  SET OF
                                                                    29, 30, 31,  32,  33,  34 CARDS.
   If card 29 is included for a junction, then cards 30, 31, and  32 must be included for that
   junction, even if no values are specified on the cards  (in which case the default values will
   apply).  In addition, if Card 29 is included and if the junction has a nonzero inflow, then
   cards 33 and 34 must be included in addition to cards 30, 31,  and  32, even  if no  values are
   specified on the cards.  If cards 29-34 are not included  for a junction, all  concentrations
   for that junction are zero, and all parameters defined on card 30  assume their default values
   for that junction.

   Cards 38-44 must be included, even if the default values  are satisfactory.
               All equations referenced as  (A.NN) may be  found  in Part  III  of Volume  I.
            30
1-5
1-6
7-12
13-18
19-24
15
F6.0
F6.0
F6.0
F6.0
I
BOOK (I)
BOOKS (I)
DOK2(I)
COLK(I)

(HR"1)
(HR"1)

(HR"1)
none
.008
0.
1.
.004
                                                                     Junction number
                                                                     BOD reaction coefficient (A.13)
                                                                     BOD settling coefficient (A.12)
                                                                     K2 coefficient(A.83)
                                                                     Coliform reaction coefficient
                                                                     (A. 7)

-------
TABLE  4.   (Continued)
CARD CARD
# COLUMN
30 25-30
31-36
37-42
43-48
49-54
55-60

61-66

67-72

73-78
31 1-10

11-20

21-30
FORMAT
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0

F6.0

F6.0

F6.0
F10.4

F10.4

F10.4
VARIABLE
NAME
NH3K(I)
N02K(I)
N03K(I)
P04K(I)
EXTK(I)
HM1K(I)

HM2K(I)

HM3K(I)

TEMREA(I)
C(I,1)

C(I,2)

C(I,3)
UNITS
(HR"1)
(HR"1)
(HR'1)
(HR"1)
(HR'1)
(HR"1)

(HR"1)

(HR"1)

(CENT0)
(MG/L)

(MG/L)

(MG/L)
DEFAULT
VALUE DESCRIPTION
.004 NH reaction coefficient (A. 26)
.015 N0? reaction coefficient (A. 31)
.0014 NO reaction coefficient (A. 37)
.0009 PO, settling coefficient (A. 75)
.04 Extinction coefficient (A. 51)
.004 Settling coefficient for HEAVY
METAL 1 (A. 2)
0. Settling coefficient for HEAVY
. METAL 2 (A. 2)
0. Settling coefficient for HEAVY
METAL 3 (A. 2)
TEMPAV Temperature
0. Initial DO concentration in
junction
0. Initial BOD concentration in
junction
0. Initial NH -N concentration in
                               junction

-------
TABLE  4.   (Continued)
CARD CARD
# COLUMN
31 31-40
41-50
51-60
61-70
71-80
32 1-10
11-20
21-30
31-40
' VARIABLE
FORMAT NAME
F10.4 C(I,4)
F10.4 C(I,5)
F10.4 C(I,6)
F10.4 C(I,7)
F10.4 C(I,8)
F10.4 C(I,9)
F10.4 C(I,10)
F10.4 C(I,11)
F10.4 C(I,12)
UNITS
(MG/L)
(MG/L)
(MG/L)
i
(MG/L)
(MPN/100ML)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
0. Initial NO^-N concentration in
junction
0. Initial NO _-N concentration in
junction
0. Initial PO.-P concentration in
junction
0. ' Initial PHYTOPLANKTON concentra-
tion in junction
0. Initial COLIFORM concentration
in junction
0. Initial HEAVY METAL 1 concentra-
tion in junction
0. Initial HEAVY METAL 2 concentra-
tion in junction
0. Initial HEAVY METAL 3 concentra-
tion in junction
0. Initial TOTAL NITROGEN concentra-
                               tion in junction

-------
                                                TABLE  4.   (Continued)
oo
CARD CARD
// COLUMN
32 41-50
51-60
61-70
71-80
33
1-10
11-20
21-30
31-40
41-50
51-60
VARIABLE
FORMAT NAME
F10.4 C(I,13)
F10.4 C(I,14)
F10.4 C(I,15)
F10.4 C(I,16)

F10.4 MADD(I.l)
F10.4 MADD(I,2)
F10.4 MADD(I,3)
F10.4 MADD(I,4)
F10.4 MADD(IS5)
F10.4 MADD(I,6)
UNITS
(MG/L)
(MG/L)
(MG/L)
(MG/L)

(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
DESCRIPTION
Initial CHLORIDES concentration
in junction
Initial HEAVY METAL 1 ION*
concentration in junction
Initial HEAVY METAL 2 ION*
concentration in junction
Initial HEAVY METAL 3 ION*
concentration in junction
IF JUNCTION I HAS NO INFLOW,
SKIP TO CARD 35
DO concentration in junction
inflow
BOD concentration in junction
inflow
NHi-N concentration in
junction inflow
NO--N concentration in
junction inflow
N00-N concentration in
junction inflow
PO.-P concentration in
                                                                               junction inflow

-------
                                                TABLE  4.   (Continued)
vO
CARD CARD
# COLUMN
33 61-70
71-80
34 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
MADD(I,7)
MADD(I,8)
MADD(I,9)
MADD(I.IO)
MADD(I,11)
MADD(I,12)
MADD(I,13)
MADD(I,14)
MADD(I,15)
MADD(I,16)
UNITS
(MG/L)
(MPN/100 ML)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
DESCRIPTION

PHYTOPLANKTON concentration in
junction inflow
COLIFORM concentration in
.junction inflow
HEAVY METAL 1 concentration
junction inflow
HEAVY METAL 2 concentration
junction inflow
HEAVY METAL 3 concentration
junction inflow
TOTAL NITROGEN concentration
junction inflow
CHLORIDES concentration in
junction inflow

in
in
in
in

HEAVY METAL 1 ION* concentration
in junction inflow
HEAVY METAL 2 ION* concentration
in junction inflow
HEAVY METAL 3 ION* concentration
• ._ • . 	 _ . 	 i_._ • 	 ^1 _ 	
                                                                                in junction inflow

-------
                                     TABLE  4.   (Continued)
 CARD   CARD
   #   COLUMN
          FORMAT
          VARIABLE
          .  NAME
               UNITS
DEFAULT
 VALUE
DESCRIPTION
36
16-20
15
IHEAVY
          Heavy metal option
          0 = model no heavy metals or
              ions
          N = model N heavy metals and
              their associated ions
              (N-1,2,3)
        21-25
          15
          ITOTN
                                        TOTAL NITROGEN option
                                        0 = don't model TOTAL NITROGEN
                                        1 = model TOTAL NITROGEN
        26-30
          15
          ICHLOR
                                        CHLORIDE option
                                        0 = don't model CHLORIDES
                                        1 = model CHLORIDES
        31-35
          15
          INH
                                        NH« reaction order
                                        1 = 1st order
                                        2 = 2nd order
        36-40
          15
          IN2
                                        N0_  reaction order
                                        1 = 1st order
                                        2 = 2nd order
        41-45
          15
          IN3
                                        NO- reaction order
                                        1 = 1st order
                                        2 = 2nd order
        46-50
          15
                                                  PO. reaction order
                                                  1 = 1st order
                                                  2 = 2nd order

-------
                                                 TABLE 4.  (Continued)
            CARD   CARD
              #   COLUMN
          FORMAT
          VARIABLE
            NAME
               UNITS
 DEFAULT
  VALUE
          DESCRIPTION
           37
Ol
to
                    1-78
                    1-78
          13F6.0    (XLANGS(L),    (LANGLEYS)
                    L = 1,13)
                                                                     none
          13F6.0    (XLANGS(L),    (LANGLEYS)     none
                    L = 14,26)
                                                  IF PHYTOPLANKTON IS NOT BEING
                                                  MODELED, SKIP TO CARD GROUP
                                                  38.

                                                  For each day being simulated,
                                                  the total number of Langleys
                                                  is input.  Thirteen values per
                                                  card are input.

                                                  Langleys per day for the  first
                                                  13 days of the run.

                                                  Langleys per day for the  second
                                                  13 days of the run.
           38
11-20
F10.4
THKCOL
1.07
21-30
31-40
41-50
51-60
F10.4
F10.4
F10.4
F10.4
ABOD
ARM
CHMOC
THKNH3
0.
0.
(MG/L) 20.
1.10
Temperature correction constant
for coliform (COL) reaction
coefficient (A.8)

Coefficient on BOD in COL
calculation (A.10)

Coefficient on HEAVY METAL 1
(HM1) in COL calculation  (A.10)

HM1 concentration limit in COL
calculation (A.10)

Temperature correction constant
for NH.-N decay coefficient
(A.27)J

-------
                                                 TABLE  4.   (C on t inued)
UJ
CARD CARD
// COLUMN
38 61-70
71-80
39 11-20
21-30
31-40
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
VOLITK
THVOLK
BODC
BOON
BODPC
DEFAULT
VALUE DESCRIPTION
.01 Exponent for NH.-N volitization
(A. 35) J
.17 Temperature correction constant
for NH.-N volitization (A. 35)
106. Carbon to phosphorus ratio in
BOD (A. 18)
16. Nitrogen to phosphorus ratio in
BOD (A. 19)
.5 Dry weight fraction of carbon in
                                                                                 BOD  (A.18)
                    41-50     F10.4     BODOQ     (MG 02/MG BOD)     1.5
                    51-60     F10.4     NOREFR
                    61-70     F10.4     GRMAX
(HOUR"1)
               .5
.1
BOD - oxygen quotient  (A.16)

Non-refractory fraction of  BOD
(A.17)

Maximum fractional growth rate  for
phytoplankton at 20° centigrade
(A.45)
                    71-80     F10.4     THGRMX
              1.07       Temperature correction constant
                         for GRMAX (A.45)

-------
TABLE  4.   (Continued)
CARD CARD
# COLUMN
40 11-20
21-30
31-40
41-50
51-60
61-70
71-80
41 11-20
21-30
31-40
41-50
51-60
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
CHMOA
HMKA
MP04
MIN03
M2N03
MNH3
ML
APR
NR
ASR
AND .
ATD
UNITS
(MG/L)

(MG PO.P/L)
(MG N/L)
(MG NH--N/L)
(MG NH3-N/L)
(LANGLEYS/MIN)

(HR'1 DEG.C"1)
(FT/HR)
(HR"1)

DEFAULT
VALUE
20.
.01
.03
.028
.045
.045
.03
.6
.0001
.05
.001
.001
DESCRIPTION
HM1 limit for phytoplankton
growth (A. 46)
HM1 coefficient for phytoplank-
ton growth calculation (A. 46)
Michaelis-Menton constant (A. 47)
Michaelis-Menton constant (A. 47)
Michaelis-Menton constant (A. 48)
Michaelis-Menton constant (A. 49)
Light intensity calculation
factor (A. 50)
Chlorophyll-A to phosphorus
ratio in phytoplankton (A. 57)
Phytoplankton respiration
factor (A. 63)
Phytoplankton sinking rate
(A. 68)
Fractional death for phytoplank-
ton (A. 72)
Phytoplankton toxic death coef-
                                ficient for HM1  (A.73)

-------
                                                TABLE  4.   (Continued)
Ul
CARD CARD
# COLUMN
41 61-70
71-80
42 11-20
21-30
31-40

41-50
51-60
61-70
71-80
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4

F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
BRRBOD (MG/M2-HR)
BRRP04 (MG/M2-HR)
BRRNH3 (MG/M2-HR)
BENOD (MG/M2-HR)
AHM2

AHM3
ATD2
ATD3
PIHM1
DEFAULT
VALUE DESCRIPTION
61. BOD benthal release rate (A. 79)
.125 P^A~^ benthal release rate
(A.78)
. 108 Nitrogen benthal release rate
(A.77)
15. Benthal oxygen demand (A. 81)
0. Coefficient on HEAVY METAL 2
(HM2) in COL calculation
(A. 10)
0. Coefficient on HEAVY METAL 3
(HM3) in COL calculation (A. 10)
0. Phytoplankton toxic death coef-
ficient for HM2 (A. 73)
0. Phytoplankton toxic death coef-
ficient for HM3 (A. 73)
0. Fraction of HMl in ion form
                                                                                 (A. 3)

-------
                             TABLE  4.   (Continued)
CARD CARD
# COLUMN
43 11-20

21-30

31-40

41-50

51-60

61-70

71-80

44 11-20

21-30
FORMAT
F10.4

F10.4

F10.4

F10.4

F10.4

F10.4

F10.4

F10.4

F10.4
VARIABLE
NAME UNITS
PIHM2

PIHM3

CHM02C (MG/L)

CHM03C (MG/L)
v
CHMOA2 (MG/L)

CHMOA3 (MG/L)

HMKA2

HMKA3

THN03K
DEFAULT
VALUE
0.

o.

0.

0.

0.

0.

0.

0.

1.12
DESCRIPTION
Fraction of HM2 in ion form
(A.3)
Fraction of HM3 in ion form
(A.3)
HM2 concentration limit in COL
calculation (A. 10)
HM3 concentration limit in COL
calculation (A. 10)
HM2 limit for phytoplankton
growth (A. 46)
HM3 limit for phytoplankton
growth (A. 46)
HM2 coefficient for phytoplank-
ton growth calculation (A. 46)
HM3 coefficient for phytoplank-
ton growth calculation (A. 46)
Temperature correction constant
31-40     F10.4     THP04K
           for NO_-N decay coefficient
           (A.38)J

1.084      Temperature correction constant
           for POA-P settling coefficient
           (A.76.1)

-------
                                     TABLE  4.  (Continued)
 CARD   CARD
   #   COLUMN
FORMAT
          VARIABLE
            NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
45
         1-5
         6-10
1615
          JSW(l)'
          JSW(2)
                                                          none
                                                          none
                         IF NJSW i 0 ON CARD 26 INCLUDE
                         CARD GROUPS 45 AND 46.

                         Storm water input, NJSW VALUES
                         (maximum = 20).

                         First junction for storm water
                         input.

                         Second junction for storm water
                         input.
46
         1-10     8F10.0    TE

        11-20               CE (1,1,D


        21-30
          JSW(NJSW)                     none      Last junction for storm water
                                                  input.

                                                  THE LOAD RATE OF EACH CONSTITUENT
                                                  INTO EACH OF THE NJSW JUNCTIONS
                                                  IS INPUT FOR EACH TIME.

                         (SEC)          none     . Time of day

                         (LBS/DAY)      none      DO load rate into storm water
                                                  junction 1

          CE(1,2,1)      (LBS/DAY)      none      DO load rate into storm water
                                                  junction 2

-------
                                               TABLE   4.  (Continued)
         CARD    CARD
           #    COLUMN
FORMAT
VARIABLE
   NAME
UNITS
DEFAULT
 VALUE
DESCRIPTION
                 1-10
          CE(1,NJSW,1)   (LBS/DAY)


          CE(2,1,D      (LBS/DAY)
                                                                   none
                                        DO load rate into storm water
                                        junction NJSW

                                        BOD load rate into  storm water
                                        junction 1
                 1-10
CE(3,1,1)      (LBS/DAY)      none
                                                  NH,-N load rate into  storm
                                                  water junction 1
Ui
oo
                                                  Repeat for N02~N, N03~N,  PO^-P

                                                  phytoplankton, coliforms,  HM1,
                                                  HM2, HM3, N, chlorides, HMll,
                                                  HM12, HM13.

-------
                                       TABLE  5.




  DEFINITION OF CONSTITUENT SELECTION OPTION, ICOMB (FOR CARD 36 OF TABLE 4)
ICOMB
DO
BOD
NH3-N
K02-N
N03-K
PO^-P
PHYTO-
PLANKTON
1 2 3 4 5 67 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23
XXXXXXXXX XXX XXXXX XXXXX
XXXXX XXXX XX
XXXXXX XXXX XX
XXX XX X
XXXXXXXXX XXXXXX XXX
XXX X XXX XXXXXX X
XX X XXX
X indicates that the constituent will be modeled under the indicated ICOMB option.

-------
                            SECTION VI

                         PROGRAM VARIABLES
A listing of Receiving Water Program variables may be found in Table  6-2
on pages 319-325 of Reference  [3].  The following variables in that table
are now dimensioned in RIVSCI as follows:

        C(J,16), CE(16,20,2), CMAX(J,16), CMIN(J,16), CS(16),
        CSPIN(J,16), CT(16,20,2), DCDT(J,16), MADD(J,16), SUMC(J,16)

The following variables in that table are no longer used:

        CPP, CPPOX, CSAT, CTT, CTTOX, C2, DECAY, ICON, REAER

With these exceptions, Table 6-2 on pages 319-325 of Reference [3]
remains valid for RIVSCI.

The additional quality-related common variables used by RIVSCI are
defined in Table 6.  The additional quality-related local variables are
defined in Table 7.
                               61

-------
              TABLE  6.




QUALITY-RELATED COMMON VARIABLES
VARIABLE
COMMON/CONBEG/
DO
BOD
NH3
N02
NO 3
P04
ALG
COL
HM1
HM2
HM3
HM
TOTN
COMMON/CONEND/
DOE
BODE
NH3E
N02E
N03E
P04E
DESCRIPTION

Initial DO concentration for GETCON
Initial BOD concentration for GETCON
Initial NH»-N concentration for GETCON
Initial NO -N concentration for GETCON
Initial NO -N concentration for GETCON
Initial PO.-P concentration for GETCON
4
Initial algae concentration for GETCON
Initial coliform concentration for
GETCON
Initial HM1 concentration for GETCON
Initial HM2 concentration for GETCON
Initial HM3 concentration for GETCON
Initial HM concentration for GETCON
Initial N concentration for GETCON

Final DO concentration from GETCON
Final BOD concentration from GETCON
Final NH_-N concentration from GETCON
Final NO--N concentration from GETCON
Final NO_-N concentration from GETCON
Final PO.-P concentration from GETCON
UNITS

MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MPN/100ML
MG/L
MG/L
MG/L
MG/L
MG/L

MG/L
MG/L,
MG/L
MG/L
MG/L
MG/L
              62

-------
                    TABLE   6.   (Continued)
VARIABLE
          DESCRIPTION
UNITS
ALGE

COLE


HM1E

HM2E

HM3E

HME

TOTNE .

COMMON/CONST/
 Final algae  concentration  from  GETCON    MG/L

 Final coliform  concentration  from       MPN/100ML
 GETCON

 Final HMl concentration  from  GETCON      MG/L

 Final HM2 concentration  from  GETCON      MG/L

 Final HM3 concentration  from  GETCON      MG/L

 Final HM concentration from GETCON       MG/L

 Final N concentration from GETCON       MG/L
Variables in CONST are defined in Table 4, card groups 38 through
44.
COMMON/LANG/

XLANGS(325)

COMMON/MISC/

XLAT

NDAY1


COMMON/OPTION/

IFN
IK2

ICOL
Total Langleys per day                  LANGLEYS
Latitude of region being modeled        RAD IMS

Julian date of first day of quality
run
Algae (phytoplankton) growth function
option
0 = growth limited by NO_-N concentration
1 = growth limited by NH,-N concentration
2 = growth limited by maximum of NH--N
    and NO -N

Not used

0 = don't model coliforms;
1 = model coliforms
                            63

-------
                    TABLE  6.   (Continued)
VARIABLE
          DESCRIPTION
UNITS
ICOMB
INH3
IN03


IP04


IALG


IFIRST

COMMON/OPT2/

IHEAVY

ITOTN


ICHLOR


COMMON/OPTS/

IP



INK



IN2



IN3
 constituent  selection  option  (see
 Table  3)

 0 = don't model NH  -N;
 1 = model NH -N

 0 = don't model NO--N;
 1 = model N02-N

 0 = don't model NO.-N;
 1 = model NO -N   J

 0 = don't model PO.-P;
 1 = model P04-P

 0 = don't model algae;
 1 = model algae

 Logic  flag for GETCON
= I means model I heavy metals

0 = don't model total nitrogen;
1 = model N
0 = don't model Cl~;
1 = model C12
= I means model PO.-P with I'th
  order reaction
  (I = 1 or 2)
= I means model NH.-N with I'th
  order reaction
  (I = 1 or 2)

= I means model NO -N with I'th
  order reaction
  (I = 1 or 2)

= I means model NO--N with I'th
  order reaction
  (I = 1 or 2)
                           64

-------
                    TABLE  g.   (Continued)
VARIABLE
          DESCRIPTION
UNITS
COMMON/PASS/

TOTL
Total Langleys for the day being
considered
LANGLEYS
DAWN            Sunrise for the day being considered    HOURS FROM
                                                        MIDNIGHT

DUSK            Sunset for the day being considered     HOURS FROM
                                                        MIDNIGHT

COMMON/RCHVAR/

Variables in RCHVAR are. defined in Table 4, card group 30.

COMMON/TEMPER/

TEMPAV          Average water temperature for system    °C

TEMREA(J)       Temperature for junction J              °C

SATREA(J)       DO saturation level for junction J      MG/L
                             65

-------
                           TABLE  7.


                QUALITY-RELATED LOCAL  VARIABLES
VARIABLE
          DESCRIPTION
UNITS
SUBROUTINE GETAVI


AREA
Area under a portion of the curve in
Figure 7
DAY             Hours of daylight


D4              One fourth of daylight hours


Tl              t{ (see GETAVI description)



T2              t. (see GETAVI description)



SUBROUTINE GETCON


ARR             Algal respiration rate


BODMC           BOD convertible to inorganic forms


BODMTL          BOD material in BOD decay


BODNWR          BOD nitrogen weight ratio


BODWT           BOD weight


DALND           Algae change due to natural death


DALTOX          Algae change due to toxicity


DN              Nitrogen demand due to algal growth


DOBEN           Benthal DO demand


DOD             DO reaeration change


FACHMl          Heavy metal factor on coliforms and
                algae reactions


FACHM2          Heavy metal factor on coliforms and
                algae reactions
                                        HOURS FROM
                                        MIDNIGHT

                                        HOURS; FROM
                                        MIDNIGHT
                                        HOUR
                                        MG


                                        MG/L


                                        MG/L


                                        MG/L


                                        MG/L


                                        MG/L
                               66

-------
                    TABLE 7.  (Continued)
VARIABLE
          DESCRIPTION
UNITS
FACHM3


FL


FLIM

FN


FNH3
Heavy metal factor on collforms and
algae reactions

Algal growth limitation function due
to light

Minimum of FL, FN, FP

Algal growth limitation function
due to nitrogen

Algal growth limitation function due

FN03
FP
GRLIM
IBAR
NOUT
OSAT
TCOR
IT
SUBROUTINE
AVINT
NCNO
SUMFLO
SUMVEL
VEL JUN
to NH.-N
Algal growth limitation function due
to N03-N
Algal growth limitation function due
to PO^-P
Total algal growth limiting function
Maximum light intensity
Output unit number
DO saturation level
Temperature correction term
Temperature
LOOPQL
Average light intensity during time
step
Channel number
Sum of channel "flows"
Sum of channel velocities
Average velocity for junction




LANGLEYS/MIN

MG/L
°C
°C

LANGLEYS/MIN

L. ")
FT /SEC
FPS
FPS
                            67

-------
                    TABLE   7.   (Continued)
VARIABLE
SUBROUTINE
ELEV

TEMPAV
XCK
XDOK
XEX
XNH
XN2
XN3
XNP
SUBROUTINE
I)
DAY
SS

SR

RESCRIPT TON
NEWIN
System elevation

Default temperature value
Default coliform reaction coefficient
Default reaeration factor
Default extinction coefficient
Default NH«-N reaction coefficient
Default NO -N reaction coefficient
Default NO_-N reaction coefficient
Default PO.-P reaction coefficient
SUN
d (see SUN description
Julian day number
Sunset

Sunrise

IFNTTS

FEET ABOVE
SEA LEVEL
°C
HOUR"1

FEET"1
HOUR"1
HOUR"1
HOUR"1
HOUR"1



HOURS; FROM
MIDNIGHT
HOURS FROM
MIDNIGHT
SUBROUTINE SWQUAL

CHK
ICONV
Array of previous concentrations used
for convergence check

0 = quality convergence has not occurred
1 = quality convergence has occurred
                             68

-------
                           SECTION VII

                        SAMPLE INPUT DECK
Figure 13 shows an example discretized system prepared for RIVSCI.  The
system depicted is River Region 2 (Main Stem and South Fork of Coeur
d'Alene River and Hangman Creek) of the Spokane River Basin.  A sample in-
put deck for River Region 2 to simulate conditions during September, 1969
is presented in Table 8.  Numerous point source and infiltration flows
are modeled.  Three municipal outfalls are modeled (two of them flow in-
to junction 9).  There is no storm inflow and all junction tributary in-
flows are steady-state.  Nominal values of all reaction coefficients are
used with the exception of NEL-N volitization, benthal oxygen demand,
and benthal BOD release.  DO, BOD, NH--N, NO--N, PO.-P, zinc, and
chlorides are modeled.  Portions of the resulting output are presented
in Table 9.
                                 69

-------
      T
  s-
  Ll.
       I—IT
             I  I  I   I  I  I  I  I  I   I  I   I  I
            n::
                      MM
                       _1JJ
*•
       FLOW
      L_J_
                   WEIR
       Chennel
|     j  Junction (all adjacent half-channels)

I	J
            FIGURE 13.  SAMPLE RIVSCI NETWORK


                        70

-------
                        TABLE 8.   SAMPLE  INPUT
   STORM WATER  RECEIVING  MODULE
    1
   0  24
  21  22  23
RECEIVIN
GUANT1TYQUALITY
        RECEIVING  »»TER MODULE
   SYSTEMS COMTHOL.  INC,   SPOK4ME BASIN
             RIVER  REGION 2
0 0
6 24.
1
1 2
9 10
17 18
25 26
533.46
tOBOO,
24150,
33400.
43816.
53400.
62766.
72560.
82430.
92340.
102266,
112236.
122187,
132487,
142462.
152400.
162367,
172279,
182243.
192220.
202190,
212163.
222160.
232141,
242137.
252136.
262133.
272130.
282128.
\
1. 300.
a
2 3
10 11
18 19
26 27
2127.23























. ._ .





0.






7.0
14.0
6.0
6.0
15.0
6.0
t.O
24.0
.5
*.
6.0
6,0
93,0
4,0
24.0
20.0
8.0
24.0
16.0
44.0
0.0
1.0
4.0
6.0
4.0
12.0
2.0
0.0
1
6
6
3 6
11 12
19 20
27 28
1.5











-.
















999999999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 T
8 8
9 9
10 10
11 11
12 12
13 13
2
3
6
5
6
7
8 .
9
10
It
12
22
14


























                                27
    0
   13
 4  5
12 22
20 21
                                          0,
   0,
   22
 5  6
13 14
21 22
.     1
    28
  6  7
 14 15
 22 2?
                                                                       28
                                                                 7   8
                                                                15  16
                                                                23  20
                                           8  9
                                           16 17
                                           24 25
4.1
5.5
5.5
2.2
4.0
4.7
3.2
2.3
2.0
1.8
2.8
2.3
2.0
       10,
       20.
       22.
       10.
       20.
       34.
       34.
       36.
      34.8
      «9,3
      38,5
      36,4
     112,1
                                                   .44
                                                   .57
                                                   .66
                                                   .40
                                                   .58
                                                  1.03
                                                  1.03
                                                  1.25
                                                   1.3
                                                   1.4
                                                   1.8
                                                   1.9
                                                   0.9
                 .10
                 .09
                 .09
                 .10
                 .10
                 .09
                 .08
                 .08
               0,07
               0.08
               0.09
               0.08
               0.07
                 .59
                 .84
                 .86
                 .50
                 .81
                 .56
                 .67
                 .87
                 .97
                 .36
                l.ST
                It4l
                 .93
                                  71

-------
0 1 12 50
a i
244 22SO,
1
9,5
9.5
2
9.5
9,5
3
9,5
1,
9.5
,1
4
9,5
9,5
5
9.5
«,o
9,5
4.0
6
9, a
1.5
9,8
1.5
10.1
2.5

1.3
1.3

1.3
1.1

1.3
0,0
1.3
UJ
1.3

1,4
0.0
1.4

1.4
0,0
1.4
0.0
1.6
0,0
17.5

.07
.07

.07
.07

.07
0.0
.07
.07
.07

.07
0.0
.07

.07
0.0
.07
0,0
.07
0,0
46,

,003
,003

.003
,003

.003
0.0
.003
.003
.003

.003
0,0
.003

.003
. 0.0
.003
0.0
.003
0,0
1

.24
,24

. ,24
.24

.24
0,0
,24
.80
,80

.80
0,0
.80

,58
0,0
.58
5,0
.13
.50
t

.12
.12

.12
.12

.12
0.0
.12
.03
.03

.03
0.0
0.0

.03
0.0
.03
0.0
.13
0.0


0.0
0,0

0.0
0.0

0.0
0.0
0.0
0.0
0,0

0,0
0,0
0.0

0.0
0,0
0,0
0,0
0,0
0,0


e.o
0.0
0.0

8.0
0,0
0,0

8.
0.0
R.O
o.o
8,0
0,0
0,0

6.0
0,0
0,0
0,0

a.
0,0
0.0
0.0
0.0
8,6
0.0
0,0
72

-------
9,8
2,3
8
10,3
1.5
10.3
2.0
9

7,9
1.2
8,0
2.0
10

9.8
2.0
9.8
2.0
11

e.7
la.o
8,7
310.
U

8.7
7,0
e.7
7,0
13

9,1
9,1
14

9,1
9,1
IS

9,1
9,1
16

8,9
8.9
17

9,J
35,


1.7
0.0
1.7



1.9
0.0
}b.



1.5
0.0
1.5



1.6
0,0
1.6



1.6

1.6



1,0
1.0


1.0
1.0


1,0
1.0


1.0
1.0


1.7
.07


.07
0,0
.07



.07
0.0
.07



.07
0.0
.07



.07
0.0
.07



.07

.07



.07
.07


,07
,07


.07
,07


.07
.07


.07
.003


.003
0.0
.003



.003
0.0
.003



.003
0,0
.003



.003
0.0
,003



.003

,003



.003
.003


.003
.003


.003
.003


.003
.003


.003
.3)


.2
-------
9.5
18

8,8
6,8
19

8,8
8.8
20

8,8
8.8
21

8.8
22

8.6
7.0
8,6
7,0
21

9.2
4.7
9.2
10.

8.9
6.0
8.9
25

9.3
3.0
9.5
10,
26

9,5
5.7
9.X
27

9.J
2.6
9.J
28
9,3
2,6
999
0 0
1.7

.5



.5
.5


• 6
1.5


.6


1.1
0.0
1.1



1 .2

1.2


1.2

20.


1.4

20.



1.6

20.


1.6
0.0
20.

1,6
0,0
2 t
.07

.07
.07


.07
.07


.07
,70


.07


.07
s.o
,07



.07

.07


.07

.0?


.09

.09



.09

,09


,09
0.0
.09

.09
0.0
0 1
.003

.003
.003


.003
,003


,003
.003


.003


.003
G.G ..
.003



,003

,003


,003

.003


,003

.003



.003

,003


,003
0.0
.003

.003
0.0
1 1


0,0 •
0,0


0.0
0.0


0.0
0.0


0,0


.12
0.0
.12



.24

.24


,05

.05


,24

,24



.12

.12


0,0
l.S
0.0

0,0
l.S
1 3


.02
.02


.02
.02


.03
.04


.06


.7
0.0
.7



,16

,16


,01

' ,01


.45

,45



.25

.25


.06
0.0
,06

.Oh
0,0


13,7



14.0



Ifl.o



11.0


14.
0.0 0.0
0.0 0,0
0.0 0.0


15.




16.
0.0 0,0



16. (I
0.0 0.0




16. 
-------
                           SECTTON VIIT

                          SAMPLE OUTPUT
Portions of a sample RIVSCI output are presented in Table  9.  The output
results from the input deck listed in Table 8 and is generally  self
explanatory.  No storm runoff is modeled.  The quantity integration  time
step size is five minutes.  The integration time step for  the quality
portion is one hour.  Hydrodynamic convergence is reached  after two  days.
The channel lengths are such that in no channel does a particle of water
move completely through the channel in one quality time step.   Quality
convergence is reached in six days.
                              75

-------
                                                          TABLE  9.   SAMPLE  OUTPUT

                                                               RtetiviNS
                                                                         Oh
                                                                  MTEK MANAGEMENT
                                                     "UOlFlED (•OR USt ON SPOKANE  RIVE1* BASIN BY SCI
                                                          SERttS NO.  t
                                               $TO»h  a»tFH RFCFIVINC MODULE
                                                      fcVE" »-! FLO* a      -.OOCfS
                                             AVAILABLE MAX. TRUNK CAPAClTT •      -.OOCFS

                                             STORMS SlUDltOl          TOTAL RAINFALL'  INCHES
O\

-------
HfF IS$IGN>
-------
                                 SYSTt«S cnr   0. OtCHFtS  rHOM NOHTH
•.RITE tvcu  STASIS  AT  m   i U*E CTCLE



NO PKFCTPITAIION  INCUT

                AT  T«t  K>ULO>U»S

               1     4      6    13    71    ?»


               »»!U  fflK  IHt h"LLO*IH(» £1 C"«'>tlS
                1002      ia*}      30"''       100%       5006      *007      7008
                »OtO     l«ull     110t/!      1?0?2      U01"     l"01b      150)6      16017
               1701B     l^Ol'     I'O^O

-------
          (FT)
                 KIOTM
                   (FT)
 3
 a
 5
 *>
 7
 R
 4
10
11
1?
13
1"
15
1*
17
1"
1°
20
21
27
?!•"<*.     lit.
Zw.iufl.     20.
?«)fl.1.     22.
11M*>.     10.
?112C.     2«.
       1 JTKO.
11?.
US.
117.
l<>3.
125.
19.
                            101 .
                            117.
                            115.
                            i n.
                            121.
."77
.**?.
.«•/*
.n/3
.0/2
.171
.«uP
                    ."77
                    ."17
                    .11"
                    ."1*
                    .OSO
                    .'•us
                    .!>«!
                    .(147
                                              VtLOClTY
                                               1.5°
                                               l.na
                                                , <*u
                                                .03
                                                .03
                                                 , v«,
                                                 ,07
                                                .7">
                                                .7"
                                                .!>•>
                                                  MYU H>UlUS
                                                      (FT)
 .7
 .4
 .0
1.0
1.0
1.1
1.1
1.4
l.B
 .1
 .0
 .1
 .2
 .1
 . 4
 • O
 .n
2.B
2.7
U.O
1.0
u.l
JUNCTIONS
i
?
*
^
a
S
A
7
*
9
10
11
12
13
1«
15
1»
17
It
19
20
21
22
23
20
2?
2*
27
»T
Z
3
5
6
7
A
9
10
11
1?
2?
ia
15
!«•
17
1*
19
2<>
21
2?
23
21
25
2*
27
20
                                                                                                    h«X  INT
                                                                                                       991.
                                                                                                      1738.
                                                                                                       8«0.
                                                                                                       7*8.
                                                                                                       t>Bi.
                                                                                                612.
                                                                                                B?g.
                                                                                               ?OP6.
                                                                                               10«6.
                                                                                               3012.
                                                                                               15*0.
                                                                                                9?2.
                                                                                               1552.
                                                                                               1 1"0.
                                                                                                5S2.
                                                                                               111/.
                                                                                                      ma.
                                                                                                      ."03*.
                                                                                                      22«9.

-------
           INITIAL MfcAB   SUHF»et A"t»    IlfUT    OUTPUT
               CFT)       i!0*«t fta 1-TJ   COM     (CFS)
                  0            .11         7.       -0.
     2       aiio.no            .««        la.       -o.
     3       30on.no            .61         6.       -0.
     a       jBiA.no            .06         6.       -u.
     5       juon.no            .27        15.       -0.

     7       iS6f.no            ./I         1.       -0.
     P       iiU iO * 00            • ^ 1        2u ••     "0 •
     »       i3un.no            ,«0       .  1.       -0.
    10       i?bfc.no            .u?         9.       -0.
    11       i^Jfc.no            .5'         6.       >o.
    1?       ilt>7.no            .bl         6.       -0.
    H       ias7.no            .5<>        9J.       -0.
    Ifl       £062.00           i.CO         U..      *0.
    15       iUOt.no           2-?9       2a.      —0.
    Ifc       2367.no           J.i7        ?o.       -0.
    17       i?y>.no           J.7»         8.       -0.

    1"       i2iO.no           2.10       16.       -0.
    in       itvn.no           2.U9       aq.       .0.
    il       iloj.no           1.61!         0.       -0.
    i?       i!6n.OO           2.10         1.       -0.
    21       iiut.no           u.7?        a.       -0.
    £U       ilJ7.no           u.t>n         (,.       -u.
    
-------
                                                                InC.  SPOMNF H»SIN
00
             l)»v  is   t
  UQ|IH

  .00
 1.00
 2.OP
 i.O"
 U.tn
 7.0"
 a. co
 V.O"
10. 0«
ii.cn
12. fin
l.J.(,n
1«.00
Ib.OO
.In.uO
l/.cn
1B.U"
19.00
20-Ofl
21. Of
                            HtVFH HEUTO" 2
                                         -I-"*? C*- 1* 1 1
                                      uH.no.
                                      o M n 0 . o n i ft
                                                           TJHt   HISTORY  OF   S  T  »  G E

                                                         JUNCTION     tt     JUNCTION     6
                                                        JS16.017'
                                                        MJI6.0175
                                                        'Jul b.
                                                         T -SI 0.0(16^
                                                         JCI'j. '|
                                                         5" I
                                                         in
                                                                            ?l>-0. tilt
                                                                                . 173C
                                                                            2 7*10.
JUNCTION ' U
nE»0(FtE1J
2«A7.0000
2«H7.003»«
2(FtET)
21*10.0000
2159.90^5
2159. V»S$
JUNCTION 2«
HEACC^EFT)
812B.OOOO .
7128.0020
2120.0C32
                                                                                              ?a«7.o077
                                                                                              2197. Olo9
                                                                                              2o.aion
2lt<0.023?
                                                                                                                                    2l2t.OObS
                                     2l?o.00')5
                                     21'c.OOSS
                                     ?!?<:. 00-j?
2120.00^0
21?6.00iJ

-------
                                               SY.STt«S
                                                                    uO"Ul.t
                                                                 INC,  SfOKtNF BASl'l
                              NIVfH
                DAY  IS    I
00
N3
                      KOU"
  .00
 1.00
 2.on
 3.00
 0.00
 5.on
 A.uO
 7.on
 d.OO
 9. t ft
10.cn
11.00
12.00
13.00
                     lo.oo
                     17.0 n
                     18.on
                     19.00
                     2u.on
                     2i.on
                                     CHAKNtl
7,
7.
7.
7.
7.
7.
7.
7.
7.
7.
I,
I.
7.
7.
7.
7.
7.

7.

7.
                         1
                         VEu.
       T I  M f  t. 1 s T  0 H Y


               tr>s?
t.ab
l.SO

'!M
l.Sl
l.Sl
t.si
l.Sl

l'.Si
l.Sl
1.S2
l.S?

USj
1.S4

r.s3
1.S3
I.Si
                                               l.Sl
                                               1.S2
                                               1.52
                                                           n.
21.

21.


21.
                                     2".
                                     2n.
                                     21.

                                    . 20.
1.60
1.69
 .71
 .72
 .73
 .70
 .70
 ,/a

 .70
 .73

 '.72

 .71
 .71
 .71
 ./I
 .71
 .71
 .71
 .7?
 .73

l!70

1.V3

CHANt'tl 3 A
HOW VKL.
CChS) IH«S)
0.
25.
25.
25.
25.
26.
27.
27.
2a.
2P.
2«.
2U.
2o .
i>&.
2t>.
2c*.
2o.
?h.
?o.
28.
.HA
.71
.71
.72
.73
.75
.76
.77
. '9
.•'0
.10
.•'0
. •* 1
."I
• "1
. * I
• *0
.J0
.79
.'a
2 / , 1.7^
27. 1 . '6
2o. 1 . 7b
2e. 1.70
26. |.?0

CHANNEL 1 5
Fi^fv VLL.
(IFS1 CfPSl
0 .50
6
6
A
6
6
6
6
A
A
6
A
6
A
A
A
A
A
6
A
A
A
i.
A
A





















.01
.03
.00
.00
.03
.02
.02
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.02
1 .02
1 .43
1 .03

CHANNtl 5 6
FLOW vn..
(CKS) (FfS)
0. 1.31
20. J.A7
20. 1.66
20. !.7o
21.
21.
21.
22.
22.
22.
22.
22.
22.
22.
'2.
?2.
22.
• 71
.72
.73
.711
.70
.7i
.75
.7U
.74
.70
.7li
.74
,7u
22. 1.7u
21. 1.73
21. 1.72
21, 1.72
21. 1.71
21. 1.7o
20. 1.70
20. 1.6V

CHANNEL
FLO"
(CFS)
0.
52.
51.
5"..
50.
50.
50.
50.
51.
52.
52.
S3.
53.
S3.
53.
53.
S3.
SO.
5S.
56.
5A.
SA.
S*>.
56.
5A.

6 7
VtL.
((•PS)
1.56
1 .09
1.08
l.oft
l.oT
1.07
1.07
1.0S
1.0*
1.49
1.50
1.50
l.Sl
l.SO
1.50
1.51
1.51
1.52
1.53
1.50
1.5«
1.50
1.50
1.50
1.50
                                                                           26.   1.78
                                                                                                  1.4?
                                                                                                             20.
                                                                                                                   1.73
                                                                                                                              51.   1.51

-------
                                                              "ATK9

                                               SYSTt"S  CONTHnU  iNf..   SPOKANE BASJ"
oo
co
                             RIVfR KEGION f
0«T IS t
MPU9
.00
1.00
2.00
3.00
o. 00
5. CO
6.01
7. OP
ft. 0"
9.0"
10.00
11.00
12.00
13. CO
14.00
,.15.00
lo.oo
17.0"
16.00
19.60
20.00
?1 .on
22. v"
23. uo
24.00

CMiNUtl
H (I*
iri-s)
0.
*(>.
VS.
S5.
5u.
Si.
Si.
52.
SH.
Si.
Sa.
S,.
57.
S7.
s...
ss.
53.
S2.
S*.
S3.
54.
55.
So.
S6.
S5.


* TIM* HIS
7 6 CHANNEL
vF[_. FLP*
IK'S) (<>'!>>
.*7
.«!9
.S<»
.5"
.S(,
.s/
.56
.55
.55
.So
.57
.S9
.M
.M
.'•a
,s«
.s/
.Si>
.56
.57
.s*
.S9
.59
1.59
1.SV
e.
7°.
7B.
7".
7".
7°.
79.
77.
75.
73.
If.
73.
7*.
79.
82.
83.
6?.
80.
7«.
77.
77.
7*.
80.
81.
81.


** .^ A
M fl U &
i n p T




TOHY u* r u u <• « ?« v ...*«««.,,
B « CHiMNtL 9 10 CHANNEL 10 11 Cti»NNtL 11 12 CHANNFL 12 22
Vtl . KlO" VFL- F^0; Vtt. KLO'-i vEL. F\.C* VtL.
(I-PS) (C^S) (fPS) Ct^SI (F<"5) (CKS) CPt'S) (C^S) (FPS)
J.e7
. 7B
. 7»> *
.^7
.77
.76
.77
.7*
.7«
.72
. 72
.73
.75
./«
.81
.81
.BO
.7°
.77
.7*
.7*
.77
1.7"
1.00
1.79
0.
• *
nrf»
** i •
7b.
77.
7*.
79.
PI.
"1.
1*.
« /
'I.
74.
73.
74.
77.
eo.
P2.
*3.
81.
7B.
76.
76.
77.
79.
82.
.*>7
RT
• ~ i
M'
."2
.*!
.«2
."3
.*4
.Da
.«3
• n
• "0
.78
.77
.78
.?!
.AD
,»6
,«6
.««
."2
.CO
.BO
.fi .
.»3
.86
0.
91.
93.
91.
8ft.
85.
84.
B5.
86.
87.
8A .
87.
8*.
65.
85.
8«.
89.
91.
93.
92.
90.
87.
85.
BO,
86.
1.3fc
.31
.34
.33
.31
.29
.29
.29
.30
.31
.31
.30
.30
.29
.29
.30
.31
.33
.31
.33
1.32
1.30
1.29
1.29
1.30
0.
96.
98.
too.
100.
99.
97.
95.
93.
92.
91.
91.
91.
91.
90.
00.
91.
92.
94.
96.
97.
97.
9e.
9u.
93.
.37
.36
.33
/!•»
.39
.38
.37
.35
.Mt
.34
.31
.34
.33
.33
.33
.33
.33
.34
.15
.3e
.37
.37
.3e
1.35
1.35
9.
97.
»9.
loo.
102.
tu3.
100.
103.
102.
101.
UO.
100.
99. .
. . It.
98.
•/1 7..
97.
. 97.
' If.
99.
too.
101.
102.
102.
101.
1.41
.40
.41
.4?
.43
.43
.43
.43
.41
.42
.4)
.41
.41
.CO
.40
.40
.39
.40
.40
.41
.41
.42
1.4?
1.42
1.42
                                         52.
                                                          75.
                                                                1.77
                                                                            76.
                                                                                  1.83
                                                                                             80.
                                                                                                   1.31
                                                                                                              91.
                                                                                                                    1.35
                                                                                                                               96.
                                                                                                                                     1.41

-------
                                                       PtftlVlNS «*TS;R MODULI
                                                  SVSTfS CONTHfli.,  INC.  SPOKtNE  B»SIM
                               RTYFK HEllIO'!  2
                                                                                              SEPTt"t»ER.19&9
                U»Y  IS    1
00


H"uR

.00
1,00
2.00
3.00
0.00
5.00
o.OO
7.00
0.00
4.00
.to.oo
u.oo
12 . uft
13.00
IO.G"
15.00
16.00
I/. 00
1 6. 0^
19.09
20-00
21.0«
22-00
2J.GO
24. CO


CH»HMhl 1J |a CMA
H.'JW yFL.
(OS) (FHS)
0. .93
Q3. .92
9 *« .9?
9j. ,92
"3. ."2
°J. .92
93. ."2
13. .92
°3. .'2
°4. .°2
°i. .''2
95. .9^
°3. .92
93. .02
"3. .'2
9i. .9;;
0 *• .'2
0 j. ,O^
'3- .92
"3. .9^
O j. .Qj
0 1 • . ° i1
«j. .«,»
9j. ."i
93. ."2
89. .92
H 1
NNFL
FL"C

0.
96.
96.
96.
97.
97.
9?.
98.
98.
98.
98.
9W .
98.
98.
98.
98.
97.
97.
97.
97.
96.
96.
96.
9h.
96.
•93.
S T 0 K
1" 15
Vtl .
CF"51
.90
.92
.93
.93 •
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
• 93
.93
.93
.93
• 93
.93
• 93
.93
' .93
.93
Y OF f L 0 «
CMAN'ILL 15 !6
PLUw vJ-'L.
(CFS) (FPJi)
0.
lit).
its.
lib.
lib.
lib.
lie.
119.
119.
120.
120.
121.

122.
122.
123.
123.
123.
123.
123.
122.
122.
122.
122.
121.
.03
.01
.01
.01
."I
.01
.01
.01
.01
.02
."2
."2
.02
.02
.02
.02
.03
.03
.03
.02
.02
.02
.02
.-12
.•12
116. 1.02
AND VEIOC
CHANNEL 16 17
FtOH VtL.
(CFS^ CFPS)
0. 1.09
100.
103.
102.
101.
100.
100.
139.
138.
138.
138.
137.
138.
138.
138.
139.
139.
too.
1«1 .
.101.
102.
1«2.
102.
103.
.07
.07
.06
.0*
.06
.05
.05
• 05
.05
.OS
.05
.05
.05
.05
.05
.05
.06
.06
.06
.06
.06
.06
.06
1«3. 1.06
135. 1.06

CHANNEL t7 is
FLO" vl-l.
CCKS) (FrS)
0. 1.03
153. 1.02
150. 1.12
15S. 1.02
iSi. 1.02
15S.
151.
153.
152.
151.
150.
109.
lOtt.
1"7.
106.
I0b.
lOb.
1 oi .
105.
106.
106.
107.
107.
l"t).
109.
.02
.02
.02
.01
.01
.01
.00
.00
.CO
.no
.00
.00
.99
.00
.00
.00
.00
..00 .
.00
.01
103. 1.01

CHAVN^L 18 19
r\.o* vti..
fCFS) CKPS)
0.
171.
172.
170.
176.
1 /7 .
178.
179.
179.
179.
1/9.
178.
177.
1/6.
173.
173.
1 M.
170.
169.
1 69 .
.00
.03
.03
.QO
.00
.00
.05
.05
.05
.OS
.05
.00
.00
.00
.00
.03
.03
.03
.02
.0?
168. 1.02
lo». 1.0?
1b9. 1.C2
169. J.c?
170. 1.03
167. 1.01

-------
                WATER
SYsTt«S CDNTKOL«  INC.
                                                                        Sr>OKANE BASIN
                             HTVF-K  NFGTON ?
                                                                                            SFPTtMBEI<«1969
               [JAY is   t
oo
in

Hn°"
.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
S.OO
10. OC
11.00
12.00
13.00
14.00
15.00
lu.CO
17.0"
16.00
19.00
?o.oo
21.00
?t . 00
23. CO
?U.OO
tPAf.ES
CHAN'IM 19
M ij--1 v?
0.
!««•.
1»6.
I'l.
1«7.
1B'J •
1«9.
19fl.
1Q1*
lnli
194.
Iq4 .
1««.
1° J .
1Q3.
1",!.
'M •
"0.
«ii.
M7.
«•,.
1 **•>.
1^5.
1««.
1*2.
T 1
?0

."o
.05
.OS
.05
.05
."5
.05
.00
.06
!o"
Io?
.07
.07
.07
.00
.06
,A6
.nc
.05
.05
.05
l.OS
1 .04
1.04
1.06
TORY
0 2!
VI' .

.07
.u*
.0*
• 0*
.'I*
• 0*
.0*
.0*
.04
1.0*
1.0*

1.07
.07
.1)7
.07
.07
.07
.07
.07
.07
1-0*
1 .0*
l.v*

1.0*
OF F L 0 N AND VELOCITY **
[•HiKNtL ?1 ?2 CHANNEL 2Z 23 CHANNEL ?
FLO*1 VfL. FLPn VtL. FLO*
(CfS) (FPS)
0. .06
230.
230.
230.
231.
231.
232.
232.

233.
233.
233.
233.
234.
235.
235.
236.
237.
2^7.
237.
237.
237.
236 .
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.OB
.Oh
.06
.06
.06
.06
.06
.06
.06
.06
235. 1.06
234. 1.07
22". 1.06
(CFS)
0.

33l!
331.
331 •
33? .
33?.
3J3.

334J
334.
334 .
33".
334.
^34 .
334.
334 .
33".
334.
335.
335.
33*.
337.
3i7i
337.
321.
(fPS)
.79
.79
.79
.79
.79
.79
. /g
. 79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
. '79
.'80
.60
.79
CCKS)
0.
337.
336.
336.
336.
336 .
336.
336.
336.
356.
336.
337.
337.
337.
337.
337.
337.
}37.
357.
337.
336.
339.
336 .
33d.
339.
3*3.
3 24 CHANNEL 2« 25
VFL. FLO« VtL.
(FPS)
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
(CFS)
0.
S4S.
345.
344.
344.
343.
343.
343.
343.
343.
343.
343.
3<-3.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
329.
C^S)
,5«
.54
.54
.54
.54
.54
.54
.54
• 54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54

-------
                                                      HhCtlvISR
                                                                      "OPULr
                               HIVFH KEGIOM
oo
DAY IS 1

MPU"

.00
i.oo
47. .Sb
307. .Si
3uf. .Si
3i f. .Si
i c ; . . K 5
317. .Si
3'J7. .Sb
3"(>. .Sb
340. .Sb
3S
36?. .iS
36?. .iS
362. .bS
3o?. .bS
^61. .bS
^bl. .bS
3ol. .bS
361. .5S
361. .bS
360. .is
360. .bS
3fcO. .ss
•^on. .is
360. .'jS
3cO. ' .bS

CnANNtt 27 ?» CHANNEL 2? an CHANNEL 27 2»
KUiw VFL. FLO* VEL. FLOW VF.I..
ICFS) CFFS) (CFS) (FPS1 (Cf-S) (FPS)
0. .'Jb
3«-b.. .Sb
3*-. .55
3^«. .Sb
3""4. .55
36".. .5b
364. .Si
3*1. .Sb
3f*i. .S*j
3>"«. .Si
3*4. .Si
3*3. .Sb

CHA*
-------
                                                                       HOOULE
                                                                   I.SC.   SHOK'ME BASI'J
oo
                               HIVFK
                IMY IS
                        "CI.'H

                        .0?
                       1.00
 5.01
 6.00
 7.00
 s.uo
 V.'Jft
1 0 . 0 «
11. on
u-co
ti.OO
1u.cn
Ib.ofl
lo.dO
17. Oft
16.00
IV.on
                                        070V.
                                                             lint   HISTORY  OF  STAGE   »»*»»»**»»

                                                           jlit.rTTO"     «      JUNrT'ON    6     JUNCTION    13      JUNCTION
                                                          Jnlh.C'il
                                                                                  07<;a
                                                                             ^7^o. 1
                                                          V.Mt>.0"ia
                                                               . 1)10
                                                          '(bib.
                                                                          21B7.0235
                                                                          2u?7.02£0
                                                                                               2UP7.0173
                                                                                               2a«7.0li3
                                                                                               2«87.013?
                                                                                               2««/.ulbO
                                                                                               2uP7.0lbfl
                                                                                               2U8/.017S
                                                                                                                  21.60.020?
                                                                                                                  2l*o.01lS
                                                                                                                  ?159.9781'
                                                                                                                  21*0.0101
2160.u?02
2l>>0.0!9a
2160.0175
                                                                                                                  2l»>O.Cl-i7
                                                                                                                                     JUNCTION    26
                                                                                                                                    2126. Q0«6
                  2l?6.0fu<
                      i.OOi"
                                                                                                                                    2120. OOJ7
                                                                                                                                    2128.0P31
                                                                                                               2l?6.00<;<>

-------
                                                 SYSTEMS COwTiiOlt  INC.   SPOrfANE BASIN
                u«r  13
                               HtVfTK
                                                                                            SEPTE«BEK.106<)
                                      CHANNtL
                                         H.O"
00
00
                        .00
                       1.00
                       2.00
                       i.on
                       a.o«
                       b.OO
                       6.0"
                       7.00
                       8. on
11.00
12.00
11.00
la.oo
15.Of
16.01
17.00
IB.on
1V. &n
?O.U"
                      ?i.OO
                      21.00
7.
7.
7.
7.
7.
7.
7.
7.
7.
V.
7.
7.
7.
1.S2
1.52
1.M
I.Sl
i.'-o
1 .'1^
1 .<">
1 .89
1.aa
1 ."o
l.a<*
t.av
1 . 8.
26.
2o.
26.
2o.
>6.
27.
27.
2B.
26.
?a.
28.
?a.
?0.'
28.
26.
2/.
2/.
2/.
?'.
27.
?'.
77.
27.
27.
1. 0 * AND VELOCITY » »
i 6 CHANNEL a 5 CHANNEL
*FL. FLO* VtL. FLU'"
(I-PS)
l.Tu
t.Ti
l.Ti
l.Ti
l.Ta
\ .7u
1.7b
1.77
1.78
.79
.f<0
.00
.«0
.80
.7S
,T)
.7"*
,7»
,7a
.78
.77
.77
.77
.77
.77
1.77
(CFS1 ^PS>
6. 1.43
6. 1
6. 1
6. 1
*. 1
*.
6.
6.
6.
6.
6.
t.
6.
6.
6.
h.
h.
*.
6.
.ua
.au
.««
,aa
.«a
.U3
.<43
.82
.142
."41
.81
.ul
.HI
.81
l.ul
.81
I. at
L.82
h. I.a2
h. 1.U2
e. l.ii2
h. l.a?
* o '1 . « 2
6. 1.42
6. lo«3
(CFS)
20.
20.
?0.
20.
20.
21.
21.
21.
21.
21.
P2.
?2. .
22.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
b b C
VFL.
(FfS)
I.M
!.*>»
t.*9
l.h1*
!.TO
1.70
1.71
1.72
1.7J
l.Ti.
1.78 .
1.714
1.78
l.Ti
1.73
1 .71
1,72
1.72
1.72
1.72
1.72
1 .72
1.72
1.72
1.72
1.72
HANNF1.
FLO*
CCFS)
56.
b5.
55.
ba.
58.
53.
52.
S2.
51.
52.
53.
b3.
58.
5S.
55.
58.
sa.
ba.
58.
58.
58.
S«.
5".
58.
58.
58.
* T
VEL.
(FPS)
.ba
.53
.53
.52
.5!
1.51
1.5"
I.a9
1.8"?
1.89
1.50
1.51
1.52
1.52
1.52
1.55
1.58
1.52
1.52
1.52
1.52
1.52
1.52
1.52
1.52
1.52

-------
                                                                 WATLU HOPULL
                                                                 . I*r.  SpOMNfi 9ASU-'
oo
VO
                      JS
                                KIVFR REUTO'J f.
h%"
.00
1.00
2.0"
i.wP
a.o"
5.00
6.00
7.00
8.0"
9.00
10. 0«
11. uO
u.oi
1 3 . 0 P
lu.OP
15.00
lo.OP
1 /.OO
16.00
1V. 00
Plj.OO
?1.0«
?<>.u.
Si.
5u.
Sb.
56.
s/.
S/.
So.
Sb.
55.
Sb.
S5.
Sb.
Sb.
bu.
7 (l C
vfL.
(FHS)
.S9
,S9
.*U
,/,u
.*l
.*2
.*>!
.60
.SB
.So
.Sb
.56
.57.
.S9
.fro
.M
.M
.!-&
1.S9
1 ,SV
1.S9
1.S4
1 .SU
I.S'V
1.5*
F MlSTOKY 0 F F
MA*lNeL " ' CMAt4'JtL
H_(*4 VEl . FLOW
(QFS) Ct-»;i) CCFS)
81. 1.7« «2.
HP. 1.70
If, 1.77
77. l./o
77. 1
79. I
81 . 1
A3.
H2.
00. 1
n. 1
vs.
7«.
75.
77.
79.
*1 .
B^.
K1.
1*0.
70.
70.
79.
81.
.77
./O
.00
.K|
.1)1
./9
.V-
.7«
. n
.7'!
.7h
. /«
.^"
.1"
,«fi
!./«
I. /7
I. '7
l./o
1.79
8?. l.tJO
B3.
03.
61.
78.
71,
7a.
Ou.
«i.
03.
03.
• «1.
78.
75.
75.
7o.
• 7<*.
"1.
03.
S3.
"1.
7B.
•>/.
7,'.
70.
v '0 CHANNEL 10 11 CHANNEL 11 li! CHANNEL l? 22
VFL. fLO« VLL. FUO« VEL. FLOn VtL.
IFHS) (CFS) (FPS) (CFS) (Fr'S) (C^S) (FPS3
l.f.6 86. 1.30 "»3. 1.35 101. 1.H2
1 . ' -1
!.f.6
\.r-n
\.?i
1..01
1.01
1.03
1.05
t.r.?
1 .S*n
t.fu
l.f 1
1 .T9
1 .79
i.f-o
1.nd
1.P5
! .K6
l.hb
l.f'U
l.«2
I.M
I . ''• 1
!."2
«a.
90.
.92.
91.
90.
80.
87.
87.
BR.
90.
91.
90.
BO.
Bb.
8".
80.
36.
B9.
92.
93.
«3.
«1 .
B9.
87.
1.31
1.33
1.33
1.33
1.32
1.31
1.30
1.30
1.31
1.32 .
1.33
1.32
1.31
1.30
1.2*
w
1.30
1.32
1.33
1.3«
1.31
1.32
1.31
1.30
9i.
93.
9!l.
95.
96.
97.
9o.
96.
95.
95.
9o.
96.
9o.
95.
93.
• 93.
90.
"0.
. 92,
9a.
96.
97.
97.
97.
1.31
!.35
1.35
1.3e
1.3o
1.37
1.36
1.3* -
1.16
1 .?o
1.36
1.36
1.36
1.35
1.35
1 .30
1.33
1.33
l.rse
1.3b
1 .3 =
1.37
1.37
1.37
100.
100.
99.
99.
100.
100.
101.
101.
101.
101.
lot.
102.
102.
102.
102.
101.
100.
99.
93.
9°.
99.
100.
101 .
101.
l.
-------
                                       »tCr.l¥lN5 KtT[
                                                    INC.   SHOK1NE BASIN
               KlVEK HF.tilUI 7
U4Y IS

K


1
. 2
3
b
b
a
7
a
9
10
•11
12
15
't-
is
10
17
IB
19
?0
71
72
73
2«

Ou»

.0.0
.00
.0"
.00
.00
;oo
.00
.00
.u"
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.V
.00
.00
• v o
CM«N»lj.L. 13 14 CMA"NfL
H.HH VFL. ^^.nlt
COS) ^PS) Ct^'al
"3. .02 96.
°3. .92 96.
. 93. .02 9*.
9». .0,; <)»,.
Q4. . ° r r' * •
9J. .92 9S.
93. ,92 97.
93. .°2 97.
95. .«2 97.
9J. .0? 07.
"3. .9,; 97.
"3. .°2 97.
9}. .0,; 97.
95. .0;> 97.
9j. .«i!' 9".
U3. .°c! '»».
Q3« .°2 9*,
°3. .°2 97.
9S. .92 97,
93. .9^ 97.
93. .02 97.
93. ."<• "7.
9.*. ,9C 9'.
O.U .°2 97.
91. ,92 97.
S T 0 K »
1" 1= C
Vtl.
((•"SI
.93
.93
.93
' .93 .
.93
.9}
.93
.93
.91
.93
.93
.91
.93
.93
.9 I
.91
.9?
.93
.93
.V3
.93
.93
.93
.9<
' .9J
0 F . K
HAN^tL
H(ja
(CKS)
121.-
1?1.
1?1.
1?0.
120.
120.
120.
1?0.
1?0.
120.
17U.
170.
170.
121.
l?l.
121.
121.
171.
121.
1?1.
171.
171.
121.
171.
121.
LOW
15 1ft
VfL.
(FPS)
1.C2
.C2
.f-Z
.T2
.'2
.C2
.02
.02
.C2
.02
.f2
.f'2
.PZ
.02
.02
.0^
.02
.02
.02
.02
.02
.02
.02
.02
."2
& N 0 V
CHANNEL
FLO»
CCFSI
143.
143.
143.
14?.
142.
142.
142.
141.
• 141.
141.
1U1.
141.
140.
140.
140.
140.
140.
UO.
140,
!«!<.
•141.
141.
141.
141 .
141.
t L 0 C
16 17
VEU
(KPS)
1.06
1.06
1.0*
1.06
1 .06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
l.C*
1.06
1.06
1 .u6
1.06
1.06
1.06
CHANNEL 17 Its
flQV VFL.
CCKS) (FFSJ
149. 1.01
149. .01
150. .01
ISO. .01
I'M. .01
I'M.
151.
151.
150.
1^0.
150.
150.
150.
. 149.
149.
149.
• 149.
1«B.
JCB.
,01
."1
.01
.01
.01
.01
.01
.01
.01
.01
1.01
! .00
1 .00
1 .00
14il. 1,00
148. 1.00
14». I.OQ
148. 1.00
143. 1 .00
146. 1.00
CHANNEL
FLO*
tCFS)
170.
171.
172.
173.
173.
174.
174.
175.
175.
175.
175.
175.
175.
174.
1 7".
174.
174.
173.
1 /3.
173.
173.
172.
172.
172.
172.
19 19
*EL.
CfPS)
1.03
1.03
1.03
1.03
1.03
1,04
1,04
1.04
1.04
1.04
l.ou
1.04
1.04
1 .04
1.04
1.04
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
                                  ."2
                                             •jr.
                                                    .9-?
                                                              121.
                                                                     1.02
                                                                                       1.06
                                                                                                 119.
                                                                                                         1.01
                                                                                                                   173.    1.03

-------
"trttvtwr.  «»'t"»
    flNTfinL..  I,.•,.
I"!.i.
I "if.
l"u.
1"1.
|9fl.
t'O.
fo.
l->n.
l«f..
1"C..
i"o.
I'M.
l*'i.
l«-v.
1«<».
1*9.
19 ?0
vK.
IK'S)
l.na
l.oo
l.ni
1.15
i .«•>
l.iS
1.05
l.ni
l.in
l.n*
t.06
1.06
l.ne
l.nb
1.06
l.nc
1."0
1 .IP
t.nh
1.16
l.n*
1.10
.I.""
l.ns
t.OS
                                     I M £
                                            2}0
                                            2JO
1 S 1 0 H Y
"L 2n ^i (
to vt'..
tS^ (fCSI
(1. .Oh
». .05
R . .0**
1 . . u*>
". .OS
9. . 0*>
9. .Oh
0 . .Oh
1 . .Oh
\. .Oh
). .Oh
a . . 0 h
S. .Oh
S. .07
S. .07
5. .Oh
S. .Oh
a . .Oh
a. .Oh
a. .Oh
11 f.t.
*• . . un
^. .Oh
.). lOh
3. .Oh
3. ' .06
OFF
:HiN*>tL
Flu"
(CM)
23«.
2)2.
2)1.
2?9.
tto.
iff.
c2B.
220.
2?''.
r'lu.
till.
2)2.
231.
2"«.
235.'
2)5.
2)6.
2*o.
235.
235.
?34 .
2)«.
2)4.
2)«.
2)4.
CO* »
21 ?2 I
VFL.
CPHS)
1.07
1.07
1.07
1 .07
1.06
.06
.06
.07
.07
.07
.07
.08
.0«
.n»
.on
.on
.08
.OB
• OH
.06
. na
.16
.OH
.IB
.06
N n v
;M»NNFL
FL,O«
tC^si
337.
317.
)lh.
31h.
Si".
3D.
31).
31?.
311.
311.
311.
311.
312.
312.
313.
310.
315.
315.
31S.
315.
)15.
31S.
335.
31S.
31S.
t L 0 C I
27 23 (
VtL.
(F»S)
.80
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79

:'H«NNti t:
HO" \
(CKS)
1)9.
119.
1)9.
1)9.
)')*.
1)9.
1)9.
1)9.
1)9.
1»0.
13d.
}1H.
117.
1)7.
))7.
i)7.
157.
1«7.
1)0.
l)a.
13d.
136.
lid.
116.
138.

?«
rL.
FfJ)
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.7«
.79
.79
.79
.79
.79
.79
.79
.79

:M*MNEI.
F(.C*
Ct^S)
343.
34).
344.
)aa.
)ua.
)au.
344.
Soo.
344.
3t>a.
)«o.
Jao.
3b4.
3no.
344.
344.
340.
S4U.
340.
)U4.
340.
344.
344.
3au.
344.

2« 25
VtL.
CFPS1
.50
.Sa
.Sa
.50
.Sa
.54
.sa
.54
.sa
.so
• Sc
.54
.Sa
.So
.sa
.54
.sa
.50
.54
.50
.Sa
• sa
.5°
.So
.sa
                                            •212.
                                                    1.0*.
                                                               2)2.
                                                                      1.07
                                                                                         .7*
                                                                                                  J5B.
                                                                                                           .79
                                                                                                                     3au.

-------
                                             S»STi««S CONTKni..  INC.   SPOMNF:
ISJ
                           HIVCH  KEttTON 2

            UAt IS    2
CHANEL 2*
»0u° MOW y
(CKS) 1
,0« 3«7.
1.09 JIT/..
2.09 3<*7.
3.09 j07.
i.OO ' 3''7.
i.OO 3«/«
6.09 3«7.
7.09 I'll.
8.09 ji»7.
l.gl ju;.
10. Oft 3"7.
Il.0(> 36'.
12. CO 317.
13.09 . 3*7.
la. 09 311 1 *
li.GO >U7.
1o.09 j«7.
17.09 . 3"/.
1».0" 3"7.
IV. 00 307.
20.09 3<>7.
? 1 • 0 " ' 3 1 ' •
fe.'Jl )"l.
?3.0f 3<".
?«.U9 i<17.
'EPABt.S 317.
..vfGFNCt n»S OCCUR«tn.
>Ct"1 VttOctt* E^^U" » J.O
«r£NT FLO" EHHC* « T.o
' T I
> 26
'^L •
'.FcS)
.Si
.5i
.SS
.Si
.Si
.Si
,5i
.SS
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
• S*j
.Si
.Si
.Si
.Si
.Si
.Si
.SS

2? I"

H F Hi
FL"H
'CFS5
360.
360.
360.
360.
360.
360.
360.
360.
360.
360.
3(jO.
3t>0.
360.
360.
360.
360.
369.
3i9.
3iQ •
3i'.
35".
3i9.
3i'.
3i».
35'.
360.

CHAWNFL
CHANNEL
8 T 0 H Y
26 27 C
VtL.
i CfPS)
.iS
.i5
• S5
.iS
.iS
.iS
• iS
.iS
.iS
.iS
.iS
• SS
• iS
• iS
• 55
• iS
• i5
.iS
.iS
.iS
• 55
• is
.is
.iS
• .iS
.55

2
2
OFF
HANNtl.
FLOW
ICfS)
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
362.
362.
362.
3h2.
3*2.
362.
362.
362.
362.
362.
362.
362.
362.
363.



27 2a CHANNEL 27 28 .CHANNEL fi 28 CWA"*£L 27 24
VfL. FLO* VfcL. FLO* VEL. PLO^ VEL.
(FPS) (CFS1 (FP4) (CKS) CFPS) (CF5) (FP5)
.55
.ss
.Si
.ss
.55
.Si
.SS
.55
.55
.55
.SS
.SS
.Si
.SS
«iS
. *i
«'5
• ei
.*i
.'i
.'i
.' 5
.'5
.^i
•-s
.'•5



                                        T-i'it  CHECK FO" outLiTY RUN»-UU«LITT  STLP SIZE, is  J*oo SECONDS
                        I VElOriTY       1.S2 LFNKTH  2l60().0n VtL")tLT/LEN      ,?S
                        2 VELOCITY       I.TU tft.r^M  2«flU|).on Vtl.«ntLl/LFN      ,IM
                        J VtLUClTr       \.7l tSNlfH  2*OaO.OO VtL»ntLT/LEN      .^2
                        a VELOCITY       1.«2 L^NfiTH  11616.00 Vhu»PtLT/LfN      .^1

-------
                           vei.oriTY
              C"»'"-fl.
 T vtiori'Y
 » VELOCITY
 <» VtlOCITy
10 VELOCITY
11 VELOCITY
I? VtlOf.iTY
11
10
IS  ...  .
i* vttoriTY
IT
                         1°  Vtl
                         2!  VtLOClTY
                         2?  Vtl.tTlYY
                         2S  v
                         23  Vt|.(
                            Vtl.OCl'Y
                                                        2tl>6.0»
                                            .sa
                                            .10
                                            .^7
                                            ."2
 .02
 • fto
 .00
 .«i
 ."1
l.Ao
                                            .S'j
                                                tr..r.jH
VtL»!>tU7/LE<»
Vtt.»ntlT/tE««
Vtl»n£LT/LEM
VtL»ntLT/uEN
vEl»ntl.r/i.Fi
vtl»r>f.Ll/Lf'»
Vtl»RtlT/LEl«
VLI »ni.Lt/tf N
Vtl»r>tLr/LEN
v|-.I. «f>E' T/LEN
                                                        2lb«b.(>o
                                                                  Vt-.i .i«tl
                                         Vti.'»OkLT/l.En
                                         vti »ntLT/i.En
                                         Vti.»0tl T/LEN
                                         VtL'ftLT/LEN
                                         VLl«OtLT/LtN
                                                                                    .?2
                                                                                    .la
                                                                                    .1}
.17
.?»
.18
.23
.89
.IS
.11
.10
.06
.OS
.OS
                             BFCFIV11B  OU»»ltlTY
u>

-------
SITTINGS                                                              ...»
 1         Z         }         a         i         0         T         8         »        10

.«        .g        -0        »v        =C        -0        -9        "0        «0         1

-------
                                                                                         3EHTE"BrK>l«69
vO
Ul
                                                  ."LCtlVlNH w»TtR
                                              SVSTt»"S CONTKOL* INC.  SPOKAt.r
             M«»I«UH JUNCTION »HJM»EK    ?.*
                      Mil^EL M'MRfcH    ?.7
                    OF 004LITY CYCt-tS  Pt»  PAY   ?a
                    "f D»»S    8
                    "f CONST ITI.'tNTS   it,
                    Of J
                              IFf.T  «T  OCtA«   -.00
             lMj.Pt A»t   0  STOK«M>TFK  INCUT JUNCTIONS
                     CYCLE cfNrtiJT«ATin\Sf fBjNTnuT srAms i»t Ti«t  C^CLE   »  «  POINTED EVFRY ii  HOUK(S). FOR A TPT*L  0^*00 HOURS

-------
                                                          JUNCTION VARIAbltS
VO
Jl'NC B0» BOD
NUH REACTION SETTLING
tuff \.1kf
1 .006 .000000
i .000 . .000000
3 .0.08 .OOoOOO
U .008 . o 0 0 0 \) 0
S .008 .000001
to .008 .000000
7 .008 .ciOH'l
8 .COB .000000
9 .008 .000100
10 .008 .000000
11 .018 .000000
12 .008 .000000
13 .008 .000000
1U .008 .000000
IS .008 .0100^1
16 .008 .000000
17 .018 .000100
19 .008 .000000
19 .009 .0 1 1' 01,0
? 0 .OOH • o 1 u 1 0 0
'£ 1 .008 . ii 0 y 1 0 0
t.i .008 .UOOOOO
?> .008 .000001
?u .GOB ,onOOOO
2S .008 .I>AOOQI
?t> .00* ,000000
77 .(118 .Qftoopl
78 .008 .QOOOOO
COUFURK
RtAcTIO*
COEt'
.0010
.OQOO
.Oooo
.oooo
.0000
.0000
. 0 o « o
.0000
.1000
,0ouo
.0000
.OGOQ
.1010
.1000
.B0"0
.1000
.OQOO
.OQUO
. o »j u tj
.ooao
. o o 't 0
.oc"o
.Ooao
. 1 0 U 0
. 0 (j a Q
• 1 fj 0 0
. C 1) 0 y
.OQOO
NH3 NU? N03 POO EXTINCT KEAEH- HEAVY HEAVY HtAVY TEKP
REACTION BtACTlOix REACTION SETTLING COFF ATION f£T 1 "ET 2 K£T I (Ct5« /.-
C"tF CL'FK tPt^ COEf COtF CUEF COEF COEF CEN)
.00140 .0150 .0010 .0009 .OHIO .000 .0000 -.0000 -.0000 6.0C"."1
.0001 .01 So .0010 .0009 .0400 .000 .0000 -.0000 -.0000 6.00:(.3
.oouo .ojs.) .cfli" .0009 .o»oo .000 .oooo -.0000 -.0000 e. oo is. 3
.OOui .use .C018 .0009 .0000 .000 .0000 -.OOCO -.0000 J'.UOii-?
.OOuo .0150 .0010 .0009 .OUOO .000 .0000 -.0000 -.OCOO 8.000.>
.OOui .11^0 .('010 .0009 .OUOO . .000 .00"0 -.0000 -.0000 • 6.00-''-"
.OOui .OlSo .0010 .0009 .OUOO .000 .0000 -.OCOO -.0000 6.oO >'•!
.ooao ..n^o .0010 .oco.9 .ouoo .000 .oo»i) -.1000 -.oogo b.soi-r-
.OOaO .1150 .0010 .0009 .OUOO .000 .0000 -.0000 -.0000 a. 80:1-1
.OOuo .OI5C .0010 .0009 ,0«00 .000 .0000 -.0000 -.0000 8.50-1
.OOUO .oiso .CfllO .0009 .0
-------
                                        1»ITJ«L
JUNCTION
 NO«MEH

    \
    2
    j .
    i|
    5
    6
    7
    6
    9
   10
   11
   12
   13
   t<4
   1b
   Id
   17
   18
   19
   ?u
   »b
   ?6
   ?7
   78
00
By"

M3-N

N02-N
hC/L) (Hi;/L) fiR/U («u/t)
9.
9.
9.
<».
9.
<».
10.
10.
7 .
9.
s.
«,
V.
9.
•>,
«.
9.
c.
K.
«.
R ,
K.
9.
* .
o.
9.
9.
9,
50
So
So
so
50
"0
10
30
QO
BO
70
70
10
1 0
10
90
30
.30
.30
.30
.30
.00
.00
.on
./o
.90
• bO
.60
.«0
.00
.00
.00
.00
.11
*0 »bO
PO «b"
^0 . oO
?U .00
*>0 1.10
?0 •?."
90 .^0
30 .«o
A 0 . n 0
30 ««>o
30 .bO
t
.
.
,
.
.
.
.
.
.
•
,
.
.
.
.
o/«o
o y o o
OTOO
0700
0700
0700
0 ?f
CMR/U (Hb/L)
I
.
.
.
.
.
.
.
.
.
.
.
,
.
.
— .
— .
.
,
.
.
.
.
.
,
2000
2«00
7UOQ
cooo
8000
S600
3300
2000
1200
1200
?000
1200
1200
1200
1200
0000
noOO
*ooo
no"o
OOOQ
0000
1200
2000
0590
2000
•
*
•
•
•
.
,
•
.
•
•
,
•
•
•
• •
• •
•
•
.
•
•
•
*
•
.1200 .
1700
1?00
1200
0300
0300
03oO
(Son
u"oo
oooo
3«00
7*00
7*00
0300
0300
0309
0000
0000
0?00
0200
QOOO
0*00
7000
1600
0100
uSflO
2SOO
.0000 .0*00
.0000
•
0600
PMVTO
(MC-/L)
.0000
.OuOO
.oooc
.OQOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OoOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
-.0000
.0(00
.0000
.0000
.0000
-.0000
MS
HH1
H*2 MH1 TOT N
o) ("s/o (ne/L) R/L) <"G/L) (HR/U (
-.00
-.00
.00
-.00
.00
.00
.00
.Oil
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.09
-.00
.00
-.00
.00
.00
.bO
.bO
.bC
.bO
1.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
l.bO
l.bO
-.00
-.00
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
HnI2
MHIJ
^G/Ul (MG/t)
-.00
-.00 .
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.30
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.CO
.00
-.00
-.00
-.00
.00
•-.oo
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00

-------
             JUNCTION
H.O*   00    ("00    NM3-N    unj-n Mnj-N t>na-c
     (Hfi/L)  HU/1)  (MR/U  1M(./L)  (HR/l)
                                                                         PHYTO   cOLlFOkxj.  HHI    ti*i    M«3   TOT N   CMLOS   HMII
                                                                         CflG/U  ("PN/100)  ("U/D tMG/L) C«6/tJ (r.fi/L)  C*G/L)  CMG/l)  (HC/L)
oo
               1
               2
               3
               a
               b
               6
               7
               d
               9
              10
              11
              12
              13
              Id
              IS
              16
              17
              20
              fa
              26
              27
7.0
Itt.o
6.0
6.0
lb.0
6.0
1.0
?<4.0
.b
9.0
h.O
h.O
"3.0
'.0
?u.O
?0 .0
9.0
?<*• 0
lh.0
4c. o
1.0
1.0
b.O
n.O
12.0
2.0
.SO
.so
.SO
.50
.SO
."0
<>.«0 3
10.30
8.00 J
9.«0
».TO
".70
".10
*>. 1 0
9.1U
fl ,90
'.TO
.30
.30
.30
.30
.HO
« 0!>
.(10
.70
.00
.bO
.b^
.0"
.00
. uO
.00
.00
.70
P. *0 - • uA
f.fiO .bn
*• °0 l.b'o
fl.*0 1 . 10
"•'& 1.20
fl.'O ?0« 00
".»o
.?UOO
..?U«0
.'000
."000
.5000
. <3fti/
,2<"10
. liJOfl
.1200
,'000
.1200
.1200
.1200
.1200
-.0000
-.0000
.0000
.00*0
.0000
.1200
.210Q
.PbOo
.2400
.1200
.0000
. 1?00
. 1 f V 3
. 1?OP
.0300
.0000
.0300
.1^00
.u«co
7.0000
7.0000
7.0000
,7*on
'. v 3 0 0
.0300
.0300
• « 0 0 u 0
-.0000
.0200
,o?on
.0000
.7000
.1600
.0100
.oSOO
.2500
.0*00
.0000
.0000
.OOP..J
.0000
.0000
.OOOQ
.->ooo
.0000
.ACOO
.0000
.0000
.0000
.0000
.ooOg
.OOOu
-.0000
-.AQOO
-.0000
-."OOil
-.0000
.OOA()
-.0000
-.0000
-.0000
-.0000
.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'.0
'.0
'.0
'.0
.0
'.0
'.0
'.0
>.o
.0
-.08
-.00
.10
-.00
o.oa
I. SO
2.30
2.00
2.00
2.00
310.00-
7.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
7.00
10.04
-.00
10.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-iOO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
i.OO
-.00
,bfl
-.00
.bO
8.20
-.00
-.00
-.00
-•.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.01)
-.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00.
-.00
-.00
-.00
-.00
.00
-.00
-..00
-.00
-.00
-.00
-.on
-.00
-.on
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
. -.00
-.00
-.00
.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00

-------
             TMt FOU.O*1NG  CONSIITUtNTS AHE
                                                                         0»YSFN
                                                 SOt)
                                                 MhJ-N
                                                 N|i?-w
                                                 POkf TIU'1
bOD
               hWon  TO  pxo5H"o"OS
                                          IN
                        r.ii'-.iT»«'T  (.on NMJ
                        ru':>U"!  pnw 1,0,;
                        ru>-sT4>n  ^"^t >«nj
             HfLfASt fATK  (rf./S jU»»t r.
                                                   COF KF1C IFM «
                                                        PROCESS *
       t"  "r.1""*!. "MtASF "ATt  (ut/.SrUAKt MtTt»-HH)  9
                                                                                                                    l.OTOtfl
                                                                                                                    l.bOO«0
                                                                                                                     .50000
                                                                                                                     .1TO"0
                                                                                                                    l.inono
                                                                                                                    i.i?o"o
                                                                                                                     .&l>0"0
                                                                                                                     .01000
                                                                                                                     .000^0
                                                                                                                    -,000"0

-------
                                         'e .J"NCTtO'i C
                                                                            (JU'LUT
o
o
               JUNCTION
 1
 2
 I
 u
 5
 6
 7
 a
 9
10
11
12
13
la
15
16
17
II*
19
73
            DO    HO"
                 {•T.
                              10. «
10.5!)
10.as
10.73
in.7o
10.64
10."53
10.18
10.23
 9.99

 ".41
 <».Ud
 9.U7
 '.S3
  .30
  .40

  .03
  .00
  .10
  .08
 9.08
1.35
1.3?
1.91,
1.83
2.03
                                      1.79
 • •">
 .9*,
1-22


 .b"

 !o4
 .02
 .2*
 .35
 .(,7

I.SO
                                                    Nfli-N N03-N
                                                  ("U/L) fMf./l.)

                                                   .0131
                                                   .0031
                                                   .0031
.0077

!oo91

!ot>ss

.Otad  .gnjS

       .OOif-
                                                          . Vl
                                                           .11°"
                                                           . I I '< !.'
                                                           .09*7
                                          PHYTO
                                          (nr./u
                                                                                          HMt
                            .0311
                            .OlbR
                                                           .S3'"'
        .0000
        .0000
        .0000
        .0000
                                            .Hi'i  .i.nu7   .no"/

                                            .ni'Hb  .no;,"   ,074/ .
                                                    . ij A U T
         .0000
         lOOOO
 .732* -.noOC
l.C'?33 -.0090
 .9720 -.0000
 .0507 -.0000
        ..0000
        ..0000
        ,.0000
        '.OOno
        ..oooo
                      .f:J32
                      .0279
                      .0174
                      .0178
                                                .0531
                                                .3145
                                        ,n9i9

                          .nsoo  .onj5  .131&

                          .nus9  .oOu*.  .0183
                                                                  .1UVS -
                             .0000
                             .OOOC
                             .flOOO
                             .nono
                             .0000
                                                            HH*    Hh3   TOT H   CMLO"  .HMJJ    MMI2
                                                           (MC/L)  (HC/L-) ("5/U  IMG/LI  (ne/L)  C'C/Ll («6/L)
                                                                  .1S07
                                                                  .0988
                             ..0000
                             ..0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.00
-.00
.IS
-.00
2.27
.31
.iO
.69
.66
.69
16.97
15.17
-.00
-.00
.,00
-.00
-.00
-.00
-.00
-.on
-.00
4.21
4.30
4.94
4.31
1.75
2.97
2.62
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
>.oo
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.1)0
-..00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.04
-.00
.no
.00
.00
..TO
.00
.no
.00

-loo
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.^0
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.08
-.UO
-.00
-.00
-.00
.44
.42
• *ib.
.45
.45
.85
.72
-.00
-.UO
-.go
-.00
-.00
-.00
-.go
-.00
-.00
.1"
.12
.04
.02
.00
.85
1.30
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.eg
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.Oil
-.00
-.00
-.cc
-.00
-.00
-.00
-.00
-.00
-.00
-.oc
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.go
-.uO
-.90
-.00
-.90
-.00
-.00.
-.00
-.00
- . u ft
-.00
-.00
-.00
-.00
-.00
-.00
*.oo
-.00
.00
.00
.00
.00
.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00

-------
                          J'.lNCTIU'l f-UNCtNTH*! JU'IS  uUKtNR OU»t,lTY CYCLE  WU"BITR
JUNCTION
 N'WBEK

    1
    i

    4
    b
    6
    7
    (1
    V
   10
   11
   12
17
1b
IV
?0
?a
f.'i
            BO    «0"     NMJ-N   NOZ-N nr<3-N  Pnn-p  PHYTO  CO.IKOKMS   H«l     H*2    HMl    TOT  N    CMUOR  H*I1   HMI2    HHI3
          (MG/U  (Hli/L)  Cnr,/l;> (-S/L) (MC./U  ("1./U  (nG/L> CM7N/100)  (M6/L>  (H6/U (M6/U)  (hG/L)  C«ti/L5 (M6/U  ("5/LJ  tKG/t)
             .So
             .SO
             .SO
             .so
             .so
ic. 'o
is.to

 9.06
 ft . 70

 9.10
 '.10
 9.10
 «.90
 9.30

 •!io
                H.<>0
               • 9.flu


                9.00
                          .nt, a 4
                          .OS0*
                          ,0'Jci
1.00  .0*10*4
 .bo  .nun i,
 .bn  .03":>
 .on  ."/no
 • tin  . 0 <• 7 a
 .HP  .nftUV
 .VII
        1.2ft   .n"l3

        l.tiO   . f«:~V

        l.i'J   .0207
         .29   ,ftt7tl   .003^
         .27   .nnSl   .0130
         .29   .9691   .1.030
 .oO
 • ft*-

 ,bO

U57

 .v»
                                 .003"
                                 .0030
                                 ,on3n
                                 .u030
                                 .0030

                                 .OMO

                                 .Oft3ft
.0030
.l.-n30

.u03ft
.Oft3ft
. U « 1 ft
.0030
.Oft3ft
                                  .0030
                             .7v»7
                             ,799u
                                   .nooo
                            .1200  .nolO
                            • I ?0 f  • ^ 0 *) 0
                            .0300  .0000
                            .0151  . ">000
                      .0000
                      • oofto
                      .ftOftO
                      .0000
                      .0000
.U"7

.noftu
.0000
.0000
.0000
.0000
.0000
.nitu
.0799
                                                   .11.100

                                                   .0^00
                                                   .1.1000
                                                   .C'OOO
                                                   .0113
                                                   .0139

                                                   Io?"S
                                                .0100
                                         .1200
 .ftOftO


 .ftOOO

 .OOftO

 .0000
 .noOO
 ."000

-.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
•.0
'.o
>.o
>.o
'.0
>.o
.0
>.o
.0
.0
.0
.0
-.0
-.00
-.00
.03
-.00
2.1^
1.15
i.ir
\ . as
1.20
1.11
11.00
7.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
3.34
1.04
1.27
3.00
i.ifc
2.60
2.57
-.00
-.00
.00
-.00
.00
.00
.00
.00
.no
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
.00
-.00
-.00
- ."0
-.00
.00
.00
-.00
-.00
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
..00
-.oft
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.00
-.00
.00
-.00
.00
.00
.00
.00
."0
.00
.00
-.00
..no
-.no
-.no
-.00
-.00
-.00
-.no
..no
-.00
.00
-.00
-.no
-.00
-.no
.00
.00
-.00
-.00
.00
-.00
.00
,00
.31
.39
.39
.10
.60
-.00
-.00
-.00
-.00
-.00
..00
-.00
-.00
-.00
-.uo
.00
..00
. -.00
-.00
-.00
.12
1.00
-.00
-.00
.00
-.00
.00
.00
. .00
.00
.00
.00
.00
-.00
..00
..no
..00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.uo
-.OP
.09
-.00
.00 •
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
--.00
..on
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
.00
'-.CO
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00

-------
                                      HSXtMiJM JUNCTION ro«CFNTK»TIOW3 Ol.'HlNf! 004LITY  CYCLE  NU
o
ro
 1
 2
 3
 II
 5
 6
 7
 8
 9
10
11
12
13
to
IS
16
17
16
19
20
21
22
23
•?a
?5
                     ?B
n0
CMG/L) (
10.53
10.66
10. »3
10. 3f
10.52
10. «3
1 o . f c
10.71
10.70
lo,*.;
10.18
10. 10
9. '7
9.UII
".S3
9.56
9.6(1










.53
.'19
.02
.US
.*>«
.50
. 19
.2S
• ?B
.?(:
9.2*

1.30
1.30
1 .30
1.37
1.3P
2*0?
1 . 1*9
2.10
2.03
1.99
1.93
.*•"
,
.121* .0000 .0
. 1726
• 1 216
.0311
.0200
.0670
. 1 23*
. 1 C**5
. 1<"4?
.7607
1.099S
1 .061°
'.0^0"
.0322
.0310
.0332
.030?
.0271
.0253
.0370
. 0556
.i°00
.2981
.2379
.10S1
.2Al8
.2016
.1306
.0000
.0000
.0000 '
.0000
.OOnO :
.0000
."000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.000(1
.000(1
.0000
.0000
.000(1
* rooo
."000
.0000
.nooo
.0000
.0000
• oooo
.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HM1 H"2
(MS/L) (us/I) (
.00 .00
.00
.70
.00
2.85
1.75
2.11
1.95
1.91
1.1)9
17.67
16.60
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.60
5.03
5.8ft
1.60
3.96
3.28
2.73
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
HnJ TUT N CMtO" Hill Hnl'2
MS/LI (HG/L) tMG/LJ («G/L) C'G/L) (
.00 .00 .00 .00 . .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.•00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 •
.10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.51
.IB
.so
.50
.50
.95
.79
.UO
.00
.00
.01
.00
.00
.00
.00
.00
.21
.20
.12
.06
.02
1.12
l.SO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.03
.00
.00
.00
.00
.00
.00
."0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.oO
.on
.00
.00
.00
.00
.00
.00
.00
.00
.UO
.00
.00
.00
.00
.00
HHIJ
.00
. .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

-------
                                       »vi-»»r.E  ju».rTro
                                                                                         CYCLE
o
CO
                  JUNCTION
                      1
                      2.
                      3
                      it
                      S
                      *
                      /
                      B
                      9
                      10
                      11
                      12
                      li
                      «4
                      IS
                      16
                      17
                      IB
                     ?2
                      ?7
                      ?B
  9o    BoO     NM3-N   fc>V-N >j"i-u fPn-P  PMVTO
t«G/U l^G/L>  (Ml/I.) (>IWL>  (MR/I) C"S/L) CMr,/l.)
 10,
 in,
 in,
 10,
 10,

 in,
 10,
 10
 10,
 10,
 in
 • 9
  9
  <)
  9
,Si
,»>6

^37
,S2

,flo
,71
,70
,*7
,a/
,30
.7,1
, ;'u
.53
.56

!si

,'•12
,"h

!si
                                    11
1.2»
1.2*
1.27
1.29
l.ia
1.31
c.ol
l.X«

i!o3
I.1*'
I."a
 ,«o
 .**

 .VII
           ./i
           .0*1
           .If"
           .13
           .0"
                                           .07
                                                 i(,B«
»,! i  , u n .1 ••>


o 1 0  .0 n j •


(•*«  .ijnj?
                                                                            -.0610
.7VO/   .0311
,799u   .01S1

        .07o5
        .07^7
• nono

.nof'O

.nono
,3t,M

Itf'/
.H9S
.1106
.1029   .03SO
.OBS7   .03u?
.ObOi   ,c-3iu
.no"i   ,o3"9
.oono
.n(,r o
.nofO
                           -.0000
                 n 1 "> .3  .0073

                 0071
                                                       . •> n t> 3   .1460  >3M3
                                                       .On71   .luf-3  .3109
                                                       .0077   .liMS  .iOo2
                                                                  *:>  ,3non
                                    .0000
                                    .nono
                                    ."000
                                    • nooo
                                    .nono
                                    . noOo
                                    .0000
                                    .("000
                                          .0000
                                          .1000
MS
OJ
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0.
.0
.0
.0
HH|
C^G/L)
-.00
-.00
.0?
-.on
2.19
1.15
1.15
1.4?
1 ."3
l.«7
16.92
16.08
-.00
-.00
-.00
-.00
-;00
-.on
-.00
-.00
-.on
a. 32
a .25
3 • 9a
i.H'l
i.SO
i.25
i.O?
HM2
HO/U
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.06
-.00
-.00
-.no
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
HMS 1
HG/L)
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
roT H
MS/L)
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.no
-.00
-.00
-.no
-.00
- . no
-.no
-.n0
-.no
-.no
-.00
CKLO"
Htt/L>
-.00
-.00
-.00
-.00
-.00
.so
• ^9
.u9
."9
.19
.6*
.82
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
.22
.22
.22
.21
.21
.20
.19
MMJ J
MG/L)
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.10
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
"nl2
HG/LI
-.00
-.00
-.00
-.CO
-.CO
-.00
-.On
-.on
-.CO
-.00
-.00
-.00
-.01
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-,on-
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
HKI1
HG/L)
-.00
-.00
-.00
-.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.50
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.05
-.00

-------
                                     V CO"CF«|TMnO'JS D'JHIM? OU»LItr CYCLE NU*l>CH
ji.mrTtu'1
    1
    2
    3
    u
    b
    6
    7
    6
    q
   1U
   11
   1"
   lb
   16
   \l
   ia
   19
   ?0
                f>0
 r:n,>.N NIJ-N- Hna-p  PMVin
»i»/ll  fM^./L)  l«t,/L>  tMr,/L)  ("HN/100)  t>
10. «3
1 o . \ 7
10. S2
10. »3
19. RO
10.70
1 n . 7C
10.67
10. «/
1" .?9
9.?7
° . il*4
9. Si
9.S6
0.60
9 , S3
9. SO
1 . tl J
9,^0
9.6b
9. S3
9. JO
O, 1 9
g. 02
B.HJ
"5.46
1.29
1 "2"
1 • 2''
1.20
1-31
1.30
2.»0
I .e*
2 • 0R
2.0?
1 .91
1.9?
.90

.91
.90
.74*
. 7 *
.ii*
.3"
1.1?
1 .Cp
1 '3s
I. a?
I .*? o
I.b7
1.4S
.no"*! .0031
.Ofc7u .('03?
. ft h S 1 • u 0 3 '1
. «°1 .i)««l
. P«U .j03?
. c- u 3 . 0 0 J S
. .,!<; .IKM"
. * ? h . .) 0 i 7
. ol *? .yO>H
.OcOi) .oOif
,OV»92 .0049
. n b ** 0 . 0 P u 1
• 0 11 ** *• • u 0 ^ ?
.0^1 .OPj9
,P«l79 .iK'Ul
,037b ,uP


. 1 I °t>
. \(l? .POPO
.1?>*S .0000
.0311 .PoOO
.01 b 0 .PUPO
•0^«2 .OuOO
,w7ti? .OyPO
• 07-*S ."OftO
•1?11 .OyCy
,/.«lO .0000
1.0U&U .0000
1.0?**q ,POCO
..C.HW .0000
.O^-b .0000
•0^3" .OQOO
.O^bO .0000
.11 'a 2 .0000
. o ; } u '; .0000
.Oib9 .PoOO
•05ol .0000
.3000 .0000
.309U .0000
•iflb7 .0000
.3170 ,?ooo
•3PbS ."000
.2967 .0000
,
-------
                                                                             BU«LIT¥  CYCLE
O
0)
                     e.
                     3
                     1
                     S
                     b
                     7
                     6
                     9
                    10
                    11
                    12
                    13
                    lu
                    IS
                    16
                    H
                    1H
                     ?7
00
(MG/L) C
10. S3
10. 'fh
10.^3
10.37
10. S2
10. «3
11.«0
10. 71
10.70
10. M
10.10
10.10
''.?/
9. S3
9.Sfc
9.»>o
«!se
9.16
. **6
.S3
.10
.19
.12
1 »" 1
.6b
S()0
"G/L1
1-29
»2R
• clT
.29
.3S
.30
2.02
1 .1)9
7
1.15
NH3-N M02-M
(i"VL) t«G/L)
.Oof's .0131
.0*71 .ilOJ?
.OeSi .oois
.Oh1'! .0031
..Oheu ,00»?
. Ofr"3 .003^
, i o 1 3 • S 1 j R
. " ti ;• / . >• 1 3 7
.Ofr!3 ,JO,H
.0610 .003"
.ib^3 .003"
.";>*» .OOut
.Orf... .0*3?
'."^21 .0!>3«
,0u79 .gOul
.137b • '.1 1 *• b


!n97i .udhS
.07 Oh .(..0/1
.1u.4S .0.1/7
•03A2 .0^/7
.01^3 ,u^'/3
.0112 . *.'"•? r'
.0071 .OOSS
M03-N POU-H "MVTO COLlfOHHS
(Hr./L) C"G/L1
.?3'<"» .!?!»
.239o . 1?26
,23°b il?«*>
,79'>7 .(,311
,79«u .Olif
.^37,; ,o»i71
• kef^l »C-70fl
.U27c; .o7u9
.'J2"'J .l?u*
.1o7i ./796
.Ili>>6 1.09S1
,'fr"l 1.0*33

.1 !••••> .01«S
.1116 .0331
. IC.?1* .v/1SO
.r^oq .g?»*1
.^frU3 .ylt'1
•lu7J .31SO
. 1 (.7 l .312°
.li'o .30t>7
,iu59 ,iOn3
.lulb .3'>71
. M^o .30t7
.1291 .29B1
 (MP
.0000
• OuOO
.0000
.0000
.flfloo
.0000
.0000
.flood
.0000
.0000
.0000
.0000
.0000
. 00 1 0
.0000
.1000
.0000
.0000
.lO^O
.0000
.0000
.OOOQ
.1000
.0000
.1000
.0000
.0000
MM1
«M2 HMS TOT N
•J/100) (MG/L) CHG/U) (
.0
.0
.0
.0
.0
.0
.0 .
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
• 0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.00
.00
.02
.00
2.21
.16
.16
."S
.11
.It
17.17
16.10
.00
.00
.00
.00
.00
• 00
• on
n n
• u u
.00
1.3B
1.2*
3.94
3.«0
3.51
3.26
3.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
• 00
.00
.00
.00
.00
.00
.00
.00
.00
.00
IG/L) (MG/L)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
f. A
.00
.00
.00
.00
f. A
• 00
.00
A A
• U U
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
'.00
.00.
.00
.00
.no
on
• ' U
.00
.00
.00
.00
.00
.00
.10
.00
                                                                                                                        CHIOS
                                                                                                                                       MNI2
                                                                                                                                             (MG/L)
.00
.00
.00
.00
.00
.41
.19
.19
.90

'.00
.00
.00
.00
.00
.00
.00
.00
.00
.23
.22

'.21*
.21
.20
.20
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.co
.00
.00
.00
.00
.00
.r.o
.00
.00
.00
.00
.00
.00
.00
.00
. .00
.00
.00
.00
.00 .
..00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.CO
.00
.00
.00
.00
.00
.00
.00
• .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
                          HAS  OCCl!K«>c.r>

-------
                         SECTION IX

                       PROGRAM LISTING

     Program                                      Page

Typical JCL	.....'.'	108
Subroutine CURVE 	 109
Subroutine GETAVI-  	Ill
Subroutine GETCON  	 	 117
Subroutine GRAPH ........ 	 117
Subroutine INDATA  	 	 117
Subroutine INQUAL	123
Subroutine LOOPQL.  .	 127
Subroutine NEWIN ................. 132
Subroutine OUTPUT	 137
Subroutine PINE	.139
Subroutine PPLOT	140
Subroutine PRTOUT  .  .	 141
Subroutine QPRINT  	 	 143
Subroutine RECEIV	144
Subroutine RUNOFF  	 ... 144
Subroutine SETOPT	144
Subroutine STORAG	 145
EXECUTIVE (MAIN) Program 	.145
Subroutine SUN	146
Subroutine SWFLOW  	 147
Subroutine SWQUAL  .  .	159
Subroutine TIDCF 	 162
Subroutine TRANS 	  ..... 165
Subroutine TRIAN	 165
                             107

-------
                            TYPICAL JCL


A typical JCL deck for executing a RIVSCI run is listed here.  (JCL
variations may occur according to machine or installation.)

// EXEC FORTGCL.REGION=260K
//FORT.SYSIN DD *

        RIVSCI "FORTRAN SOURCE DECK INSERTED HERE

/*
//LKED.SYSLMOD  DD  DSN=B.YRHB10.ZAS.RCP2(RCPH2),
//   UNIT=3330,VOL=SER=PR3002,SPACE=(1024,(140,10,1),RLSE),DISP=(,KEEP)
// EXEC PGM=RCPH2,REGION=280K
//STEPLIB  DD  DSN=B.YRHB10.ZAS.RCP2(RCPH2).UNIT=3330,
//   VOL=SER=PR3002,DISP=SHR
//FT06F001  DD  SYSOUT=A
//GO,FT21F001  DD  DSN=CN1752.ZAS,N20.DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
//   DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO,FT22F001  DD  DSN=CN1752.ZAS.N10,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
//   DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO.FT23F001  DD  DSN=CN1752.ZAS.N30,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
//   DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO.FT24F001  DD  DSN=CN1752.ZAS.N22,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
//   DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//FT05F001  DD  *
        RIVSCI DATA DECK INSERTED HERE
/*
//
                                108

-------
  I,            SlMHOUUf.'E  Cimf  (X.Y.NCTff'CViNHLOT)
  2,            DIMENSION X(2Q1 tlD) iY(20l t 10) iNP'T(lO)
  3,            COMMON/LA!;/ TnUUrO.XUUd I) iYL*U(6)
  It,           l,MOl«IZ(20)»VKKT<7i6)iIT
  5.            XMAx=X(li|)
  6,            XMlNnXMAX
  7,            YMINaYdil)
  6.            »MAX=YM1N
  V.            DO  205  LoUNCV
 10.            NPTi'sMPTU)
 II,            JF(NPTM,EO,0)  HO  TO  205
 12,            DO  20a  N=l ,NPTM
 U,            1F(X(N,L) .LT.XMJN)  XxtNsX(NiL)
 14,            IF(X(N,L) ,m,x''AX)  X^Axsx(NtL)
 IS,            JK(Y(NiL3,LT,YMlN)  YHINsY(Nit)
 16,            IKY(N.L) .GT.YHAX)  YMAX = Y(NfL)
 17,        20«  CONTINUE
 IB,        205  CGNTIMJi
 19,            H*MGEs(YMAX«YMIN)/5,
 20,            IF("ANGE.ST,0.) GO  TO  2059
 21,         '   IFtYHAX.GT.O.) YMINsO,
 22,            IF(YHAX.LT,0.) YMAXsO,
 23,            RANGt=(YHAX«YMlM)/5,
 20,      20S9  CONTINUE
 25,            AsAtUGiO(RtMGE)
 26,            IKA.LT.O.)  GO TO 220
 27,            NsA
 28,            RANGEsP.ANGE/(10,**N)
 29,            L=RANCE+l.C01
 JO.        206  CONTINUE
 51,            !FC'_.£
-------
  61,        250  YHJN1BK»FRANG
  62,            YMAX=(K« S)*FRAriG
  61,            XSCAL=IOO./(X*AX«XMIN)

  65,            XIMT=(X'IAX-XM1N)/10.
  66,
  67,
  66,            DO  260
  6->,
  70,        260  CONTIMJE
  71,            YLA8(6)=YHIN
  72,            DO  270  N=l«5
  73,        270
  74,            CALL  PPLOT(OtO.lOO.NPLOT)
  75,            K 3  1
  76,            DO  450  L=l«NCV
  77,             IF(NPT(L).K3,0)  GO TO  440
  78,            XO*XSCAL*(X(ltL)"XriIN)
  79,            YOsYSCAL*(Y(liL)-Y«lN)
  60,            WP01NT  -  KPT(L)
  61,            00  «00  N  s  2>NPOINT
  82, '           XT  s  XSCAL»(X(N,L)  "  XMIN)
  83,            YT  e  YSCAt»(Y(h.iL)  «  YMJN)
  64,            CALL  PlNE(XO,YOiXliYT,K,NPLOT)
  85,            XO  «  XT
  86,            YO  «  YT
  87,        400  CONTINUE
  88,        420  CONTINUE
  89.        440  K t K * 1
  90.        450  CONTINUE
  91,            CALL  PPLOT(Ot0.99,NPLOT)
  92,            RETURN
  93,            END


  •)(>',            CO»MON/PASS/TOTLiOA*N,OUSK
  97,            F1(X)=A1*X»H1
  96,            F3(X)BAJ»X*83
  99,            CALL  SUN(NDAY)
100,            ^AY^DOSK-OAkN
101,            62=«.»TOtL/(3.*OAY)
102.            D
-------
122.
123.
12«.
12!,,
126,
127.
120,
12V.
130,
131.
132.
133.

13s!
136,
137,
136.
139,
HO,
HI.
146.
119,
ISO.
151,

153'.
150.
155.
156,
157.
158,
159.
160.
161,
162.
163.

165?
166,
167.
166,
169,
170,
171,
172,
173,
170.
I",
176.
177.
178.
179.
180.
181.
182.
          20
          30

          C
                CONTINUE
                U'Ul.CT.OUSK  .OK.  T2,LT.OUSK«DI|)  GO TO 30
                STA«T = A"iXI (OU3k-»0«,Tl)
                iTOP = AKl;il (15USK|T2)
                Ar'KA=CllUSK-ST*r;T)«F3(START>/2.«CDUSK«STOP)*F3(STOP)/2.
  COMItUL
  AVlsTOT/(OEI.T«fcO,)
  AVI IS THE AVKHAGt  INTENSITY  IN  LANCIEYS/MIN OVER DELT
  KtTURU
  END
  SUBROUTINE GETCON(IOtDELTilNO(DFPTH,VEL)

  pnYTor>LAMao>j  is THE  ONLY  TYft OF  ALGAE MODELED BY THIS ROUTINE

  10 IS THE AVERAGE LIGHT  ITENSITY IN LANGLEYS/MIN DURING THE TIME
  STEP
  CELT IS THE TIME STEP LENGTH  IN  HOURS
  I MO IS JUNCTION NUMBER
  DEPTH IS JUNCTION DEPTH  IN  Ff-.ET
  VEL IS JUNCTION VELOCITY IN fEET/SEC
               COMCUN/CONES'D/DOE i BOOK »(-'H3EiN02E,N03E.,POuE.AI.GEi COLE iHMiFiHM2E ,
               REAL NH3»N02»!J03.rvM3E«N02EiN03F.
               COH*ON/CONST/ThKCULiAHOU.AHM.CHwOC,THKNH3,VOLITK,THVOLK.BOOC•
               CO«HOK:/«CMV«K/COLi(100),HUDK(100).BOOKS(100).NH3K(100),NOiK(100) t
              • EXT<(lOO)iDOKaMOO).MMlK(lOO) »MM2K( I 00) ,MM3K< 100)
              *.PO«K(10D).N01K()00)
               REAL NH3K,N02KIMP04|H1NQ3IH2N03.IO.NR,IBAR,HL
               REAL N03K
               REAL NOKEKR
                                >IK2iICOL>lCOMB,INH3iIN02iIM03iIPOa.lALG.IFIRST

                                                  D»onAGiO:)Ol>AQ>OBOOA.S>nF. 0380.
  COhP OS/DEL T AS/DEl. COL •'1L"OI>D.
.*DHOOP»
               DIMENSION UtLTS(l)
               EQUIVALENCE (DELTS.DELCOL)
               DATA BLAN,ASTER/' I,'*'/
C
C
C
C
C
C
C
C
C
C
C
C
C
C


CELCOL
DL«OOD
DLHODS
DBODAG
DBOOAR
OH01-AS
OBODAD
OHOORH
DN^lbO
CNiH3
O'-^iV
DNH1AG


IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS


CHA'JGf
C*A'JGK
CwA\Gt
CHANGE
CHA'-Gfc
cnt^Gt
CHANCE
C"A'JGF
c H A N r. t
C-AVGt
C^ANiGE
CHAMQE


IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
I"
IN


COLIFORM
BOO
800
BOO
BOO
BOO
BOD
BOR
Nhl«Ki
NH3.N
NH3-N
NH3»N
CONC.
co^x.
CONC.
COKC.
CONC.
CONC.
CONC.
co^c.
co».c.
co*.c.
COkC.
CONC,
OUF.
DUE
O'Jt
out
OUE
CUK
OJE
PUE
DOE
m.'E
rut
PUE
TO
TO
TO
TO
TO
TO
TO
10
TO
TO
TO
TO
                                                               DECAY(r,ROkTH)(.0»»)
                                                               OECAY(.)
                                                               SfTTLlNRf-J
                                                               ALGAL  r,i?OWTM(»)
                                                               ALGAL  RESPJRATION(»
                                                               ALGAL  SFTTLING(-)
                                                               Sl.r.AL  OFATH(»)
                                                               HE'JTHAL  KF.LFASE(*)
                                                               bill)  OtCAY(*)
                                                               •iHl  DFCAY(-)
                                                               '.Ml  VOLITIZATION(")
                                                               ALGAL  GRn'«iTH(»)
                                           111

-------
183,
18'l,
18b,
18*.
187,
188.
189,
190,
191,
192.
193.
194.
19b,
196,
197,.
198,
199,
200.
201.
202,
203.
204.
20S.
206,
207,
208.
209.
210.
211.
212.
213.
214,
215.
216.
217.
210.
219.
220.
221.
222,
223.
224,
225,
226,
227.
228.
229,
230.
211.
232,
233.
234.
235,
236.
237.
238.
219.
240,
241.
242.
241.
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
.C
C
C
C








e
ONH7.AH IS CHANGE IN N'tON
0*><3hM IS CHANGE IN NH3-N
DN02HJ IS .CHANGE IV! N'OZ'.N
O'.'OH IS CHANGE IN NOa-N
DN'OSHD IS C-AN'GE IN NOi-N
0^0. IS CHANGE 1>| N03->N
ON03C2 IS CHANGE IN NO.i»N
DNOJAG IS CHANGE IN N()S«N
DN03»P IS CHANGE IN NUJ»N
0»LY 30 CONSECUTIVE COMMENTS AKE
FAKITM.
DN03BH is CHANGE IN NOJ»N
CPOUHO IS CHANGE IN PO««P
DPOUAG IS CHANGE IN POtt-P
OPOUAK IS CHANGE IN PO«-P
OPOUHR IS CHANGE IN POtt-P
DELA IS CHANGE IN PHYTOI'LANKTON
DARES IS CHANGE IN PHYTOPLANKTON
DALSNK is CHANGE IN PHYTOPLANKTON
DADTH JS CHANGE IN PHYTOPLANKTON
OELO IS CHANGE IN DO
ONEED IS CHANGE IN DO
OGIVE IS CHANGE IN DO


IFCIFIRST.NE.l) GO TO 8
NOUT=6
IBUG=0
If IRSTofl
BOD**T580PC*12,/BODPC
BODNKR=BODN*to,/flODuT
SCOP^R^IJ./SCC^T
FACl=BOOOO*NGREFR/CAPR*noDP^K)
CONTIKUE
COKC, ouf TO AIGAL R^sPIHATIo^•(*
CO\C. nUE TO PtNP'AL hf:UEASh(»)
r.oNc, HUE TO NKJ nccAY(«)
CONC. RIJE TO Noa I;FCAY(->
CONC. HUE TO ROD Df.CAY(»)
CONC. DUE TO NHS LIECAY( + J
CONC, DUE TO NOH OfCAY(+)
CONC, ouc TO ALGAL GROWTHC-)
COI.'C, OUf TO ALGAL RESPIRAT ION(*
ALLOxED

CO^:C, DUF TO RENT^A|. PELF.ASE( + )
CONC. OUE U' 300 t)ECAY( + )
CONC, OUE TO ALGAL GROWTH^)
CONC. D'JE TO 4LGAL Sf. SI' IR A T ION ( t
CONC, RUE TO HENTH4L RELEASEO)
CO^-C, PUE TO GROWTM{«)
CONC. OUE TO RESPIRATION^)
CONC, DUE TO SINKIMGC-)
CONC. DUE TO DEATH(K*TURAL»TOXIC
CONC. OUE TO ALL KEArTIONSC+0«->
CONC. OUE TO ALL OX-OFMANDS (-)
cose. DUE TO ALL OX-GENEKAUONC*









•

IFUBUG.EO.l) K'RITE(NOUT,102J) I"D, 10, DELT. DEPTH, COL , BOD, NH3i


9





C
C
C





*N02iN03.PO«i ALG.OO.HMl iHM^)) DEL*=SIGN ( XTE*P«OELK)




10

XKaXTEHPtpfcLK
Cf LCCteCOL*(txP(.X'(*RELT)-l,>
IF(IfiUG.ES.l) •KITECNOUTilOOB) XTf
»XK,r>ELCOL
CONTINUE
IF(ICOMB,EO.I8) GO TO 110


.KP,FACMKl,fACHM2,FACHKJ,DElK»



112

-------
2 GO TO ?0

CALCULATE BOO CHANGE DUE TO DECAY AND SETTLING

XTE^P=nC)DK(lNO)»THKCOL**TCOW
OLBCfJU = iJOl)»(EXP("XTf. *P»"ELT)»I,)
OHOTOT = HC'i)*(FXP((»XTK *''*•• r>QDK5(lNO))*OFLT)»l,)
D L fl 0 U 3 " 0 >* 0 T U T * 0 L B 0 0 0
IFdiVJG.fC.l) *«ITK"OUTil009) XTEMP ,Dl.f>ODD, DLHODS
ONEEC = OJvEfM)*DLBOOO

CALCULATE CHANGES IN PO<1,'K'OiOHs-ON02
ONEED=0^'EF. 0+) , 1 1 »ONQ2
IFdHUG, F.O.I) fcRIThCNUUT.1012) XTEMP, DNO?»ONn302«ONF.ED
CONTINUE
IFdNOJ.EO.O) GO TO 33

DECAY (SETTLING) OF N03

113

-------
 505,
 306.
 107,            1F(I(-3.EO,2) Of-03DS = (-XTF.MP«N01»*2)/< 1 ,*XTt.MP»(,Q3
 30B,      3S    COMIHUt
 309,            IF(IP«il.EO,0)  GO TO 3«
 310,      C
 311,      C     OF.rAY (SETTLING) OF P0«
 312.      C
 313,            •XTE»tPsPOaK(IhD)*TwPO«K»*TCOR*OtLT
 31«,            IF(JP.F.O.I) 01'0<;D5 = POU»U:xP(-XTei'P)'t ,)
 315,            IFUP.EO.a) CPO«05sC-xTfcc.p«POU»*R)/(l,fXTEHP*Poaj
 316,      3ll = F.XP(-HMKA *(HM1»CHHOA
 333,            FHMZsl,
 331,            !F(HH2,CT.ChMOA2)  FHM2=Ex
 33b,            FHMJaJ,
 336,            JF(hM%RT,CHMf1»]l)  FHH^Sf K
 33T,            FHMsAMlMJ tFMKi,FH«2,FH»iJ)
 338,
 339,
 300,
 3«1,            IF(1FN.E0.2)
 3B2,            lfllfn.il.a  .OR.   IF'J.fO.l) FM=IFN*FNW3»(1-IFW>*FN03
 3«3,            iFtlBuG.ER.l)  *^ME(NOuf,lOJ«) FHM.KPi F N03tFNM3iFN
 3««,            XK = tXTK{.I'.D)».Onu'37»»LG
 JUS,            IbAH=(U!»(l,-EXP(-XK«UfPTH))/(XK*DEPTH))*(2a,/9,)
 306,            DU=tlOG(100.)/XK
 3«7.            IF(DU.LT.ttPTH)   IBAH»,?15*10*2«./9,
 3«8,            FL=IH*"/("L+IH»H)
 3fl9,            FL1^=AMIM (FP.FM.FL)
 J50,
 351,
 352,            IF (IBliG.t.0,1)  h«ITt(NOUTil015)
 353,      50     COUTlNUf
 J5«,      C
 355.      c      CALCULATE CHANGES  IN  uoD,Po«tN03» AND HW out TO ALGAL GROWTH
356,      C
357.            IF
-------
366.
367.
368.
369.
370,
JM,
372.
373,
374.
375.
376,
377,
376,
379.
Jl\0.
381.
342.
383.
384.
365.
366,
387.
366, ,
369.
390.
Ml.
392.
593.
394.
395.
396.
397.
390.
399,
400.
401,
402,
403,
404,
405.
406,
407.
408.
409.
410.
411,
*12,
• 13.
414.
415.
416,
«17.
418.
419.
420.
421.
422.
423.
424.
425.
«26.
C





60



65


70


C
C
C









75


80


C
C
C













90
C
C
C



91


92
ON, THE NiTi'Of.pN DEMAND, is POSITIVE
(v.s-DpnaAr, •tioo';«K/BODP«R
IFCON.GT.. .9*^03) GO TO 60
OWOJAG=-DM
OMHSAGaO,
GO TO 70
CONTINUE
IF(I'Jh3.KE,0 ,ANO, ON.LE, ,9*n03*,B«f'H3) GO TO 65
DELAB,9»OELA
GO TO 50
CONTINUE
UM03Ar.=» ,9*N03
DNH3AG = -(nu + DNf)3AG)
CONTINUE
OGIVfc = OGIVE»nf-LA»BOOOO/(APR«BODPWR)
If ( IBUG.tC. 1) wf(ITE(NOUT« 101 7} DM03AG, ONH3AG, OGIVE

CALCULATE ALGAL HESPIRATIOW QUANTITIES

ARRsNR*TEKKf A( TN'O)
DARESsi»ALG*AKW»r£LT
OPOOARcDARES*BOOOG/(APR*BOOPWH)
IF(lCn«8,GT,ll) OBOOAH80,
OPOUARs»nAKES/APR
ONtEO=Of-'EF,0"DPO'<'R*BODOQ/BOOPWR
1F(INKJ.EO,0) GO TO 75
ONH3AR=DP04AR*BOONWR/UOOPWR
GO TO 80
CONTINUE
ON03AR = nP04AR*fORN>1'R/BOOPKR
ONEEO=Or:F.EO"0'«03AR*a,33
CONTlMlfc
IF(IUUG.EO.l) wRITE(KlOUTti016) DARES < DBOOAR, DPO<4 AR >DNH3AR iD"03ARt
• OMEL'D

CALCULATE ALGAL SINKING A»0 DEATH TEfl*3

OALS»-tiK»FACl
DALN{)s»i'JO*AL<;*OELT
F»CMlsH'()»CH»'(H
FACW2sHv?i.CHMCA2
FAC''>3=hy'3"CriMOAi
FACX=0.
IF(FACH1,GT.O.) FACx=ATD*FACMl
IF(KAC^2,GT,0,) FAC"=FACX+AT02*FACM2
IFCFACC3.GT.O.) f ACX=F ACX» ATDi»FACM3
OALTOXS-KACX»ALG«DELT
OADTHsDAL^O+DALTOX
IF ( I BuG. t 0.1) ^MITE(NOUT>1019) DALSNK,CBODAS.DALNDiDALTnX>OBODAD
CONTINUE

CALCULATE 8ENTHAL RELEASE TERMS

IF(ICOHB.LT.ll) DHODBR=BRRBOD*FAC2
IFflPOU.EO.O) GO TO 91
DPOUhHshRMPOU'FtCS
If 11NH3.EO.O) GO TO 92
C'.H3BR = l!«RNH3«F«C2
GO TO 95
IK1N03.EQ.OJ GO TO 95
115

-------
 827,
 420.
 Hit,      95    COM IIHIE
 430,            If CIllljG.MM)  w«ITt(NOuTi!020) DBOOBRiDPOUHW,DN03BRiDMM3n«lONfcED
 431,      C
 432,      C     CALCULATE OXYGEN REAFRAT10N URM AND BEMfHAL DEMAND TERM
 433.      C
 43fl,.           XK=i.J«VtL/(OFPTH»»|,33)
 435,
 436,            XK=XK*1,OU7*»TCOR
 «3T,
 438,
 439,
 440,
 441.
 44E,            IFdOUG.Efl.l)  l«HITE(NOUT,loan XK,ROO.DOOKMtOGIVE.ONEEO»Df LO
 443,            IHDELO.GE.O,   .OR.   ABS(OELO) ,LE ,00)  GO 10 110
 444,      C
 44S,      C     OXYGE.K DEMAND  EXCEEDS SUPPLY.   REDUCE ALL REACTIONS.
 446,      C
 447,            OFAC=DO/ABS(DELO)
 448,            IFUUUG.EG.l)  "RITE(NOUT, 1022) OFAC.tNO
 «49,            OLBPDI'=PL»000»OFAC
 450.            OPO«MO=OPO«BD*OFAC
 451,            DNh36D = ONh.i&D»OFAC
 452,            ON030l)=OM038t)*OFAC
 453,   '
 45«.
 455,
 456,
 457,            DN0302SO'J0302»OFAC
 458,            DARESaDARFStOFAC
 459,
 460.
 461,
 462,
 461,
 464,
 465.
 466,
 467,      110    CONTINUE
 46H.      C
 469,      C      HEAVY  METALS
 470,      C
 471,
 «72.
 473,
 474.            IHIHUG.f.'J.l)  hRITt.(NOUT.10Cl}
 475,      1001'  FORMATC  DtLH"liDELHM2.CELMn3=i,3tl6,e>
 476,      C
 477,      C      UPDATE  CONSTITUENT CONCENTRATIONS
 478,      C
 479,            COLF=COL+DElCOL
 480,            BODt =f-00+PL('05D*DLROD5«nyCO»r,»OPCDAH«l)pOriAS*rpODAD»DBnOHR
 «81,
482,
 483,
 464,
465,
486,
867,
                                      116

-------
408,
489.
490,
491,
492,
493,
494.
495.
496.
497,
498,
499,
500,
501.
502.
503.
504.
505.
506,
507,
508.
509.
510.
511,
512.
513,
514,
515.
516.
517.
518.
519,
520.
521.
522.
523.
524,
525.
526,
527.
528,
529.
530.
5M,
532,
533.
534.
53b.
536.
537,
538,
539,
540.
541,
542,
543.
544,
545,
546,
547.
548,







C
C
C
C
C
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
101B

1019
1020
1021
1022
1023




1024


102;





C
C
C
C
C
C
C
C
C



C
C
C


C
 MMJfsl'f CHMJK + I
                           I0?a)
 KETUHN


 THE FOLLOWING  ARE  DEBUG FORMAT STATEMfK'TS
 FORM AT ( I  XTEMP.FACHMl,FACHM2iFACHM3sl,4H6.8/l OELK, XK ,PELCOL» I •
*3E16.6)
 FORMATP  XlEKP,DLHOf>D,niHOOS=' ,
 FORMAT (I  DNH.{:BODAO=I.SE16,8>
 FORM AT (I nHOOnWtl)('0'iBM»lJN'ri3BR>OSH3nR,Of;rEOs'«5E16,8)
 FORMAT!1 XK,COO,OoRES'iOGIVEiO^E(D,PELC:'t6El6.8)
 FORPATO FACTOR 3i>El6,B«i  ON  KCAC^'il6)
 PORMATC//' INITIAL CONOlTIOKS  FOR KEACH'«I5/I lOiOELT.OtPTHaI,3F12


*l P04fALG,00=l,3El6,8/

 FOR*AT(/i FINAL CONDITIONS  FOR HEACHI,IS/l  COL.BOD.NH3,M02»N03=l.5
         P04,ALGfDO='.3EI6.6/
             ••i.Tt'TNsl ,4EJ6.8//)
 FORK AT (I DNOiDS«Df'Oi»DSai«<;£16,8>
 END
 SlIflRDUTIME G«*P^(N)
 RETURN
 END
 SUBROUTINE INOATA
                                    JMPUT  DATA
                                    HYOKCOYNAMlCS PROGRAM
                                    SPECIFICATION STATEMENTS
                                   CONTROL

 COMHON/GtN/JGWOAL
 COM"Ok /CONTR/ ^5,*.'6,M20,'>21i   ^'TCYC, WUCYC, NHCYC,  NT,«JOSKRT
li   OELTO.OELT.TZfRO,   IS«CH(10)
                     NJ,NC«
                                   GENERAL

                              ICYC,KCYC»«.CYCi
    P«ECP{50).MXIT
                      117

-------
549,
550,
551,
552.
553,
554,
555,
556,
557.
550,
559,
560.
561,
562,
563.
56(1,
565,
566,
567,
560,
569.
570,'
571,
572.
573.
574.
575.
576.
577.
576,
579,
560.
561,
562,
563.
584.
565,
566,
567.
568.
569,
590,
591,
592.
593,
.594,
595.
596.
597,
596,
599.
600.
601.
602.
603.
604.
605.
606.
607,
606,
609,
C
C




C
C
C




C
C
C




C
C
C


C
C
c


c
c

c
c
c



c
c
c
c
c
c
c
c
c
c
c
c
c


c

c
c
c
c
c
JUNCTIONS

COMMON H(|.00) |HN(100) .HT(100),HRAR(IOO),HAVK<100)
li NCMAt.(IOO«*)«IPOINT(100.H)fAS(|OC) .VCL(IOO) iX(lOO) iV(lOO)
2. rHP(ioo).coiruoo).i;i>.uoo)it)cunc>o).oiNSTUOo)
3. CI^HAKt 100) .OOUBAR(IOO)

CHANNELS

COMMON LEu(22S>.MJUNC(2?r>,2)iB(225).P(225)iA(225).AT<225)|AK<225)
1. H(2?5)inB««(?2S),()AVE{2i;5). V (225) . VT (22b) , V8AR (225)
2. F'Kli.D(R25).NliMCM(2«!5)|NTE^P(8)
3»».CLOSC225)

PRINTOUT AND PLOTTING

COMMON NPRT.IPRT. NHPRT.JPRT(50),PRTH(30.50)
1, NOPRT,CPRTt50).PRTV(J0.50).PWTO(30.50)» IDII^ 12) . ICOL(IO)
2t LTJMEi NPLT.NPDELt JKLT (50) .HPLT(SO)


STAGE»TIME COEFFICIENTS

COMMON YY(SO) .TT(50) tAA(|0)tXX(lO).SXX(10tlO)tSXY(!0)
I.AltA2.A3,A4«A5«A6tA7.PERIOD.JGW

STORMKATER

COMMON TITLE(30) »NJSW,OE(20.2) , JSW{20)
2l RAlN(100)*INTIHE(100)'I^^AlNiJBOUND(20) » JJHOUN

TAPKS
COMMON /TAPES/ INCNT.IOUTCT.JlN(10)»JOUT(10)fNSCRAT(5)

TYPE DESIGNATIONS

DATA ASTtHK. BLANK /«H««»»»OM /
INTEGER CPRT
RfcAL LEN.INTIME

OPTION SWITCH. 1S»'CH(I)

1S«CM(1)
IF 1, WILL CALL TIDAL
COFKICIENTS PROGRAM
ISfCH(2)
If |. SUPPRfSSES CHANKFL AND
NODAL INFORMATION PRT»!T

STEP ONE
INITIALIZATION

N5«5
N6»6
N20 ASSIGNED IN RECEIV
REWIND N20

STEP TWO
TITLtS. GhNtRAL CONTROL DATA.
AND JUNCTION AND CHANNEL INFOR«
HATION
118

-------
610.
Ml.
612.
613,
61«.
615,
616,
617.
616,
619.
620,
621.
622.
623.
624.
625,
626,
627,
628.
629.
630,
631,
632,
633.
634,
635.
636,
637,
636.
639,
640,
641,
642,
643.
644.
645.
646,
64T,
646.
649.
6SO.
65J.
652,
653.
654,
655.
656.
657.
656.
659.
660.
661.
662.
663.
664.
665.
666.
66T,
666,
669.
670.
C
C
C
C
C
C
C
C
C


too

102
C
C
C
C

104
C
C
C
C

1
106



-




C
C
C
C
C
C
C



210


110
215


112

114

116

118

120
                                       Re*0  TYPE  A  CAHOS
                                       (FIRST  i«o CAROS CONTAIN HEAD*
                                       INGS  K5R xYfUORYNAftlcS.  SECOND
                                       T*0 CAROS  CONTAIN  MftntNGS
                                       FOR HUM IFIC'TJON OF STOftMkiATEK
                                       INFOHKATIO-O
    READ(NS,JOO> ALPHA
    READO'5.100) TITLE
    *RITE(N<,,102) ALPHA
    FOK»'Ar{lHl»//30X.15A«/30XtlSA4/'/)
RFAO (N
FORMAT (1015)
                   (isv«CM(i)»i«i»io)
                                      READ  TYPF 8 CARDS
                                      SIJTCH  INFORMATION
                                      READ TYPE C CAROS
                                      CONTROL  INFORMATION
    READ (N5.106) NTCYC,PEKlOD.(nNT,OELT,TZtRO.NHPRT,NOPRT,NPLT»EVAP
                                  JGW
    IPEHIO = PERIOD * 0,1
    IDELT = OELT
NHCYC
NINT *
                   0.1
                  * J600)/IQIN.T
            IOINT/IOELT
           (IPERID*3600)/IDELT
            (NlNT*50)/100
                                      READ TYPE o CARDS
                                      PRECIPITATION is READ  AT  THIS
                                      poiNT» RATE is INCHES  PER  HOUR?
                                      TIME IS READ IN K1NUTFS FROM
                                      START OF STORM
    00 210 Nsl.100
    RAIN(N)30.0
    IKTIMf(N)sO,0
    CONTINUE
    IF (1UPAJN.EO.O) CO TO 215
110 FORMAT (6F10.0)
    CONTINUE
    DtLT»=OKLT*FLOAT(NHCYC)
    *RITE(N6»112>  NTCYC
    FOH"AT (1SHOOAYS SIMULATED,14)
    MHITE(N6ill4)  NUCYC
114 FORMAT <2VMO*ATLH QUALITY CYCLES PER DAY,la)
    "RITE (N6tli6)  NHCrC
    FORMAT t^S^OlNTt&SATION CYCLES PER KATfR QUALITY CYCLE,14)
    kHITt (6.116)  CELT
JJ8 FORMtT (inMOLENGTH OF INTEGRATION STEP IS.F6.0.SH SECONDS)
    l-RITE (h.120)  TZERO
120 FORMAT U3HOIMTIAL T I^E .F6.2.6H HOURS)
                            119

-------
 671,        '
 67?.        122  FOW"»T(18HOEVAI>0«ATION RATE IF5.1,17H IKCHES PfcK MONTH)
 673.            •.fim(l.6,12«)xINO»»-DIR
 67«,        121  FOK''«T(I V'0*I>-0 Vt'.LOCITY.Fr>.0.2;>H HpH   *INU DIRECTIONF">.Oil9M  OE
 675,           JG«FfS  FROM  NORTH)
 676,            IF  
 678,        126  FORMAT'(16HOESTUWIAL SYSTEM)
 67<>,            GO  TO  21S
 600,        216  COMI'iUE
 68),            hf»MK  ("6,127)  '
 662,        127  FOR'iAT (l^HOSTREAM/LAKE SYSTEM)
 683,        218  CONTINUE
 681,            *RIU  CJ6.12B)  NOS*«T
 685,        126  FORMAT (2bMO«;tJP»T(I),lsi,NHPRT)
 712,        130  FOKMAT(fiHO)
 713,
 71«.        136  FORMAT  (S2MOCRINTEL'  OUTPUT  AT THE  FOUOh P'G113,1 OH JUNCTIONS,//
 71b,          1 (10X.16I6))
 716,     C
 717.     C                                        «E«C  TYPE  F C»M)S
 718.     C                                        CHANNiL  NUvBtKS  FOR RETAlLEO
 719.     C                                        PKIMTOUT
 720.     C
721.            REAp(N5,lJtt)(CP«T(I),Iai,SUPHT)
 722,            KRITE(N6.156)KOPPT.(CPRT (I).1 = 11N1PRT)
723.        138  FOK«AT(//15X,21HAND FOR THE FOLLO»lNCI3,9H CHANNELS//(tOX.8I10))
72h,     C
 725.     C                                        READ  TYPE  G CARDS
726,     C                                        RfAfi  THE JUNCTION NUMBERS IF
727.     C                                        PLOTS AHE  RfcQUESH.fl,  OTHERWISE
7H6.     C                                        SKIP  THIS  READ
729,     C
730,            IF (NPLT.NE.O)  REAO(N5,13U) (JPLT (N) ,Nr j ,NP(.T)
731,     C
                                            120

-------
732,
733,
73U.
735,
736,
737,
738,
739,
7«0,
7fll.
7«2,
.713,
7«4,
JO'S.
716,.
747,
748,
749,
750,
751,
752.
753,
754,
755.
756,
757,
758,
759,
760,
761,
762,
763.
760.
765,
766,
767,
768,
769.
770,
771.
772.
773,
774,
775,
776,
777,
778,
779,
780.
781.
782,
783.
784,
785,
786,
787,
786.
769,
790,
791,
792.
C . TIDAL OPT10M AT TK
C
IF (IShCM(|),NF.l) CO TO S60
KtAt) (MJillO) K'JiNI iMAXITiNCHTID
1«2«A3
Kl-'ITE C'hilUU) AliA^liJ
|<|.C(K1i2»CO TO 6«8
lF(I?OINT{K»J).tO.O)- SO TO 6«6
643 CONTINUE
6«6 IPOINT(K,J)eNJUSC(N,2)
KCMAK(K, J)3kiC
                           POINT
121

-------
 79},           GO TO 660
 794.       6«8 N.Cs'iC-1
 795.
 796,
 797.
 79B,           R(M)zRAO
 799.           A(M)sR(M)»B(M)
 600,           AK(M)rCOEF
 801,           V(M)=VEL
 802,           GO TO 660
 603.       655 CALL TRIANfNTKNPC1).NTEMP(2)iNTEMRCJ),NTEHP{4))
 804.       660 CONTINUE
 605.       670 CONTINUE
 606,           If (IStiCH(2),tO,l)  GO  TO  671
 607,           KRITF.(.-J6,170)
 608.       170 *OKMAT(108H1CMA.NNEL    LENGTH    *IDTH      AREA     MAKING   VELOCIT
 809,          1Y   HYD RADIUS            JUNCTIONS  AT  ENDS     MAX INT /  .     67H
 6JO.          2 NUMBER     (FT)     (FT)     (SO  FT)    COEF,       (FPS)       (FT)
 ett,          3 /)
 612,       67« CONTINUE
 611,           00 695 Nsj.NC
 811,'           IF (AK(N).LE.O.O) AK(N)BO.OiB
 615.           IKfi(N).GT.O.) GO TO 663
 616.
 617,
 616,           I0tl=0
 619,           DO 682 J=1.8
 820,           IF(IPOINT(K,J),CO,0) GO TO 682
 621,           lF(IPOlNT(K,J).fct.NJUNCC»l,2)> 60  TO 681
 822.           «RITE(N6,166)  N,K»NJUNC(N.2)
 823.       168 FORMAT («H CHA^NtL.C(N,2)
 633,           DO 664 Jsl.fl
 634.           1F(IPOIMT(K,J),EO,N-JUNC(N,1)) GO  TO 687
 635.           IF(IPCINT(K,J),fc(3.0) GO TO 685
 636.       684 CONTINUE
 837.       665 'CONT-XMIE
•836,           IPOINT(K,J)SNJUNC(N,1)
 839,           NCHAN(K,J)='J
 640,       687 CONTINUE
 641,           NuMCH(N)sK'JUNC(K1i2)*NJU>JC(N,l)*1000
 842,           DO 686 Jri,».QPRT
 843,           IF(CPP.T(J).SE,NUMCH(N)) CO TO 688
 644,           CPRT(J)=N
 845,           GO TO 690
 646.       686 CONTINUE
 647,       690 CONTINUE
 646.           TFsiOOO.
 649,           NL=NJUNC(K',1)
 650,           NHsNJlFNCfMZ)
 851,           SLOP! = (MC.L)->-t''H))/LFN
-------
 8'il,            IFC«U:).GT.«2)TFs0.73»Lf'Nf^
 8b5.            XuKsHt*O i"(N) i (NJUNC(N,K) iK3| , 2) i
 659,           *TF»XMK
 860.        J71 FPKMAT(I5,FU.CiF8.0iFtO.OiF9,3iF10.2,Fl3,l,I19fI6,F16.0tlXit.iLt
 861.           *F15,7)
 662.        695 CONTII.UK
 663.            If  (IS*CM(?).EO.l) GO TO  698
 86(1,            wRm:('J6i 1«2)
 865,        182 FOHMATUZdHUUNCTIOM   INITIAL  HF.AD   SlIRFiCF. AREA    INPUT    OUT
 666,           1PUT              CHANNELS  E"TE*lNG JU'JCTIO'I                COOR01NA
 867.           2TES/122H   NUMBER        (FT)       (10*»6  SO FT)    CCFS)     (CFS)
 868,           3                                                        XT/)
 869,      C
 870.      C               NODAL  SUHFACE AREASi  DEPTHS AND VOLUMES  COHPUTfO
 871,      C
 872.            ATOTBO.
 873.            DO  696  J=liNJ
 671,            IF(IS-*CH(6),E0.1)   CO TO  70J
 875,-            VOL(J) = DFH(J)*AS(J)
 876,            DtP(J)sCEP(J)«H(J)
 677,            CO  TO 702
 878.      701    CONTINUE
 67V,            VOKJJeO.
 680.            AS(J)=0,
 881,            OtP(J)=0.
 882,            00  697  K3t,8
 863,            1F(NCHAM(J,K).EQ,0) GO TO 697
 664.            NsNCHAN(J,K)
 865,.            XTEM=LEH(^)»8(N)/2.
 666.            AS(J)=AS(J)*XT£M
 887,            VOL(J)=VOL(J)»XTEM*R(N)
 686,      697    CONTINUE
 889,            DEP(J)=VOL(J)/AS(J)-H(J)
 890.      702    CONTINUF.
 891.            ATOTaAtOT*A8(J)
 692.            kKITE(N6imi)
 693,           *X(J)iV(J)
 69*1,        18U  FORHAT(I7iF13,2,<|6PFtS.2,OP2F10.0»I10,7I6,!>3PMO.I«F7.!)
 895,        696  CONTINUE
 696.            HRITE(6,190) ATOT
 697,      190    FORMATd  TOTAL  SURFACE AREA  BltKlZ.Oil  SQUARE FEET")
 898,        698  CONTINUE
 899.            v-PITE (N6.192J  TITLE
 900,        192  FORMAT  (1H015A1,15A4)
901.      C
902.      C                                        STORE  SVSTEM DATA ON  QUALITY
903,      C                                        OUTPUT TAPE
90«.      C
90S,            WRITE (N20) TITLE.ALPHA^J.NCiNaCYCtDELTO.dNCHANe
906.           1 AS(J)»J=liNJ),(LEN(N)i(NJUNC(N,K)iKel,2),Nsl,NC)
90T,            RETURN
908,            END
909,            SUBROUTINE INQUAL
910.      C
911.      C                                        INPUT  DATA  SUBROUTINE
912.      C
913,      C
914.      C                                        SPECIFICATION STATEMENTS
                                       123

-------
915.
lib.
917.
9J8.
919,
920.
921.
922.
923.
9314.
925.
926,
927,
928.
929.
930.
931.
932.
933.
930,
935,
936.
937.
936.
939,
940,
941.
9112,
9«3.
944,
90S.
94fc,
947.
946,
949,
950,
951.
952.
953.
954.
955.
956.
957,
958.
959.
960.
961.
962.
963,
964,
965,
966,
967,
968,
969,
970,
971,
972,
973.
974.
975,
C
C
C

C
C



C
C
C


C
C
C

C
C
C

C
C
C




C
C
C


C

C

C


C
C
C
C
C
C





C
C
C
C
C
C
C
C
C

GENERAL AND CONTROL

COMMON /TAPES/ JMCNTi IOUTCT t JlN( 10) . JOUT < 10) .NSCRATCS)


COMHON/GF 'VJG« i WTC • HOC YC i OELTO.rF.nF. ALPHA ( JO). TITLSWC 30)i ICOLUO)
*. JSWCH(IO) ,XR(16) .X!'li(U).X>:F{ th),XMf 0(16).
*N5«N6iN10iN20SUMC(lOO«|6)fCMAX(iOOilA)iC^I"(iOOil6)i.HADO(lOOM6)>OCOT(100ti6)<
*CC(16,20i2)>TEC16)«TEP(16)iSLUPE(20)rCSPlN(100il6)iTlTL( (6.16)i
*TEO(16)

PRIMING

COMMON/PRTCOH/NOPRT,ITCPRT,COCPRT,NSTPRT,NOCTOT,ISKIP,MSTPRT.
•NPRTiKPRT

DATA DISOXY /UH(DO) /

HtAU MAOOtUEN

NSsS
N6*6

READ ^io.N^o«''J4n WIB SMOUI.O BE
OHUH CR DlSC-STORAK^i K30 AND
N40 SHOULD BE KtCNETIC TAPE
IF USED.

MO B NSCHAT(J)
•J30 • KiSCRAT(J)
ItUV a USCKAT(4)
Kf>JND t<10
REMIND N20

READ " - 1SKCH VALUKS

IF THF SWITCH VALUE IS li THEN
im STATEMENT OK ACTION
CO^TROLLIO BY ThE SWITCH KILL
OCCUR.

5»'ITCH 1 « INPUT INITIAL CONCEM*
124

-------
976,
977,
978,
979,
980,
981,
982,
9P3,
98(1.
985,
986,
987,
968,
989,
990,.
991,
992.
993,
994,
995,
996,
997.
998,
999,
1000,
1001,
1002,
1003.
1004,
1005.
1006.
1007.
1006.
1009.
1010,
ton.
1012.
1013.
1014.
101S.
1016.
1017,
loia,
1019.
1020.
1021,
1022,
1021,
1024.
1025.
1026,
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036,
C
C
c
c
c
c
c
c
c
c
c
c
c
•c
c
c
c

555



11

6
C
c
c






5090
5100






51«0
5150
C
C
C
c

1
c
c
c
c
c


90

C
c

















REAP(5»5S5) ISNCH
FORMAT HOI'S)
IF(IS*Cti(i).EO.l) REHI'J
IF(ISWCh(3)-.EQ,l) REKIN
DO 11 1=1,10
ICOL(I)=I
**RITh(6f6) ICHL,ISwCH
THATIONS FROM TAPE f;jo.
S*ITCW 2 - SKIP PIMNTIST. MAXIMUM
AND HIM"U" CQSCENT'AT IOVJS
SklTCh 3 - >-RITE CO'.'CI NTWATIONS
ON TAPf. MUD FOR A RfSTART.
(ALSO WRITES hYORAULIC IKFOHMA'
TION)
SKJTCM u . pno/oo is AT LEAST
ONE OF THt CONSTITUENTS.
SWITCH b - Hl.CEIVI^G HATER IS
TIOALLY INFLUENCED,
SftMCH 10 • THIS SKJTCM IS SET
BY N30 IF A RESTART TAPE IS USED
OH IT CAN RE HEAD IN IF THK
FIPST TIDAL CYCLE ONLY IS
REPEATED



0 NSO
D N40



FORM AT (11 SWITCH SETTINGS 1 /( 10110) )



00 StOO Ul,16
CS(I)=0.0
CSAT(I)=0.0
nn 5£Oft J2 1 i 1 00
C(J,I)sO,0
MADOU.I) 30.0
CONTINUE
CONTINUE
00 5150 1:1,16
Tf(I) =0.0
Tf PU) = 0.0
00 5140 L=l,20
CECI«L»1)=0.0
CEU,L,?>=0.0
CONTINUE
CONTINUE




HEAD (N20) TITLS«,Ai.PHA
AS(J)»J=1,NJ>«CLEN(N},





00 90 let .NOCYC
REAn(K'20) N9< (4(N) >U(N)
fcRITE(Njo> M3,(0('«),U(N
RExINO N10



INITIALIZATION


















SYSTEM DATA IS READ FROM
RECEIVING HATER QUANTITY PROGRAM

, WJ.NC, (JOCYC ,DF.LTO, ( (NCHAN(J i J=1,NJ)
)tN=i
-------
1037.
1030,
1039.
1010,
tout.
JO/I?,
10<.3.
1044,
1 015,
1046,
1047,
10«6.
10«9.
1050.
tost.
1052.
1053.
1054.
1055,
1056,
1057,
1058.
1059,
1060.
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1066.
1069.
1070.
1071.
1072.
1073.
1074.
1075.
1076.
1077.
1076.
1079.
1060,
1061.
1062.
1083.
1080,
1065.
1066.
10B7.
106S.
1069. .
1090.
109|,
1092,
109J,
1094.
1095.
1096.
1097.
C
C




!F( ISi^CHf 1 ) ,NE, 1) CO TO 95
IS-.-CXdO) = J
fROU TAPE N30,



Rt ADK301 JGW,KCO\'i'«m(MO) NOi (G("O iU(N) ,N=li
RF.W1NO N'SO
REWIND N10
KPRTsHTC
NSTART=NTC*1



READ (5.556) NTC
I^PITE (h.tlOS) NTC
GO TO 39
CONTINUE



















•K),SUMC(J,K) .
^)tCyl^(J'K)«KsliKCON)iJsliNJ)

C) , (VOL(J) inIN(J)iQOU(J)»J:| iNJ)
NO t(VOL(J) *OIN(J)iQOU(J),J=l.NJ)





THIS IS A READ ONLY ON RESTART






NJS* • NUMBER OF STORP WATER
INPUT JUNCTIONS,

1TCPRT - DAY CYCLE FOR START
OF DETAILED QUALITY CYCLE
PRINTED INFORMATION,

NOPRT » QUALITY CYCLE INCREMENT
BETKEFV PRINTED CYCLES,

LOCPRT • TOTAL NUKBFR OF QUALITY
CYCLES PRInTF.'fi (PRESENTLY
lINITtD TO 50)


READ PRINT INFORMATION FOR
DETAILED QUALITY PRINTING,

READ (NS.'ir>5) MJSK-, ITCPRT.NOPRT.LOCPRT

1100

101
c
c
c
»»I1E ('.*>. UJOO) TITLSui
FO"i'AT(lH115At,l5»U)
• RITE (6*101) »LPiiA
FtiH"AT(//110Xil5>"l/30Xil5A4//)







READ GENERAL CONTROL PARAMETERS
AND DATA.

PtAD (M5»556) '•nc.KCON.NPRTfXRQD


556

1100

1102

1104

1105

^ 1 1 !>4) V'JCYC
FO«"-'AT (S?"ONuvPtw c:F QUALITY
*BITt (6illCi5) ^'TC
FORMAT ( 15MCSUMHE R OP DAYSiIS)
*RITE (A. 1101) •'CON




'UMHERtIS)



CYCLfS Pt.R DAY, IS)



126

-------
1090,
1099.
1100.
1101.
HOP.
1103.
1104,
1105.
1106.
1107.
1106.
1109.
1110.
1111.
1112.
1113.
1114.
1115.
1116.
1117.
1116.
1119.
1120.
1121.
1122.
1123.
1124.
1125.
1126.
1127,
1128.
1129.
1130,
1131,
1132,
1133,
1134.
1135.
1136.
1137.
1138.
1139.
1140,
1141.
1142.
1143.
1144.
1145,
1146.
1147.
1148.
1149.
1150.
1151.
1152.
1153,
1154.
1155.
1156.
1157.
1156.
1101

1106

1110

1112

4200

C
C

C
C
c
c
c


4280

C
c
c

4320

4300





4380
1
4340
4360
4370


C
C
C
C
C





2301




210
39



1101  FORMAT (2JHO';U"KEi> OF CONSTITUENTS,14)
        TE (6,1106) OELTQ
1106  FOrtyAT(«b"ou'.c;TH of UUALITY INTEGRATION STEP (sEcoMosi»F7,o)
     -WITE (6,1110) NP*T
     FORMAT (ibiicpwiKT INTERVAL, iI4iSH OAVS)
     "•KIU (6,til?) X«QD
1112  FORMAT(30»fttXCHAnr.l: REQUIREMENT AT OCEAN,F7,2)
     FORMATClflHOTt'f l!f ARt,I3,27H STORMwATER INPUT JUNCTIONS)
     HTOTAL = LQCPRT»''GP«T
     Rt*0 IN EVERYTHING
     CALL HE* IN
     IF(NJSW.EO.O)  r.c TO 4370
     RtAD (N'5i42(IO]
     FOKHAT  (1615)
     DO 4300 KaliKCONO
                                       READ AND INITIALIZE STORMWATER
                                       INPUT CONCENTRATIONS.

                                       REAP STORMWATER JUNCTION NUMBERS
                                       READ TIME AND LOADING RATE
     READ (N5«4320)  TE(K),(CE(K,L>2), LEliNJ3W)
     FORMAT (BF10.0)
     TEP(K) a. TE(K)/3600.
     CONTINUE
     TIMt B 0.0
     DO 4360 K sl.KCOK'O
     •RITE (N6.03HO) *• TEP(K)
     00 «360 L »1,'JJS1
     •RITE (N6.4340) JS*(L)«CF(K»L»2)
     FORMATClH010Xi|9H CONSTITUENT NUMBER,15,5M AT  ,FS.2,I7H HOURS F«0
    IM  START/)
     FORMATtlH 10X,I5>10E10.4)
     CONTINUE
     CONTINUE
     NSTART " 1
     KPRT B 1

                                       NOCTOT AND ISKIP ARE COUNTERS
                                       FOR RUALITY CYCLE, JUNCTION
                                       CONCENTRATION PRINTOUT.

     NOCTOT • I
     ISKIP a 1
     OR 230 J»1«NJ
     VOLO(J)sVOL(J)
     no ?:soi KC »  I.KCONO
     K4PD(.1«l'Ar>D(J«KC)»0.ie57
     DO 2JO 
-------
IIS9.
1160.
1161,
116?,
1163.
1164.
1165.
1166.
1167,
1168,
1160,
1170.
1171,
1172,
1173,
1171,
1175,
1176,
1177,
1178.
1179,
1180.
1181.
1162.
1183.
l|8tt.
1185,
1186.
1187.
1188,
1169,
1199,
1191.
1192.
119}.
119tt.
1195.
1196.
1197.
1198.
1199,
1200.
1201.
1202.
1203,
120«.
1205,
12C6.
1207,
1208.
1209.
1210,
1211,
1212.
1213.
1210.
1215,
1216,
1217.
1218.
1219,
C
C
C
C
C
C
C
C







C
C
C


C
C
C

C
C
C

C
C
C




C
C
C







C
C

C
C








7


                                         DUALITY CYCLE LOOP


                                         SPfCIFICATIO* STATEMENTS

                                         GENfRAL AND CONTROL

      COMMON /TAPKS/ I«ICNT,IOUTCT,JIN(10),JOUT<10)
      C(.lMMCt;/Cl)>,t'''1''/r.i.l'-S'P( 1 3)
      CO".".G'i/CPT ins/UN (fl) i I»LC
      C(w<(;K/r,f.»/jG*,NTc(NGCYC.[>f-.LTiJ,nK,QF , ALPHA (3o).TiTLSM30)ilcOL( 10)
                         VE( 16) . XKHtb) (XHtOtl6)i
                                         JUNCTIONS

      COMMOi*/JUNCPM/HJiNCtUN(100ie>»Oln(100),GOUC100).VOL(lon)»VOLO(100)
     *««S(100)

                                         CHANNELS

      COMMON/CHS'COM/NC.NJUNC(225.2)fO(2Rb)iLENC225),U(225)

                                         STOKHMAtER

                                            ) ,TT(2>.CT(16,20.?> »JNSTM

                                         DUALITY

                                                .C(10n»S6)'.
    *SUMC( JOOi 16) <
    «CE(16t20i2),Tt:(l(>)>TE»>(i6)>SLOPK(20),CSPIN(100il6),TirLt (6,16),
    •TtO(lb)

                                        PK1NTIN6

     COMMON/PRTCOM/K.'OPHT«JTCPI»T«L'5CPRT|NSTPRT»NOCTOT,1SK1P,MSTPRT,
    *MPRTiKPMT
     COMMCf. /ST1/  TITFL(«0)
     COMIiON/CO'iST/THKOLt »«>
     COMMON/OP t2/Iht A VY«
     COMMO^/F•0»G^JT/l.KtST(100)
     OATA LANK,JSTEf»/l  I , '*'/
     RtAL PAOO.LEN


     IFC1NSTM.LT.1)  IFLGaO

                     GO TO 190

                  GO TO 190
                                  »PIHM2,PIHMJ
     RfUM) N21
     KfAt) (1421)  TITEL
           (6,7093)  TITEL
7093
RKAD(*21) KSTEPSiMJSh.NCON ,TDELT«
TZsTZtRO/3600.
                                             , T ARK*
                                128

-------
1220.
1221.
1222,
1223,
1224.
1225,
1226,
1227,
1228,
1229,
1230.
1231,
1232,
1233,
123<1,
1235,
1236,
1237.
1238.
1239,
1240.
1241.
1242,
1243.
1244.
1245.
1246,
1247,
1248,
1249.
1250.
125!,
1252,
1253.
1254,
1255,
1256,
1257,
1258^
1259,
1260.
1261.
1262,
1263,
1264.
1265.
1266.
1267,
1266.
1269.
1270.
1271.
1272.
1273.
1274,
1275,
1276.
1277.
1278.
1279.
1260.
wHITF:(6«7091) >;STFP5 i M JSX i f'CON i T
ni.'LTiTi!f TAPEA
70''! FO»"*T Cl*0i i DMA TRAMSMHUO F"C!" INPUT FILM/
» 1 NUM'U'R OF STf.PS a ' >
«i NUVHFH IJF ISPUT POINTS **t
»l NiJViit:R OF CONSTITUENTS =li
*i TIKE INCREMENT = '.
*i INITIAL TIME ='.
•1 TOTAL AREA ='t
READ(421) (ISw(L) iL=l*MJSvO
IS-tl) = 18
»R!TE (6ih501) US»(L> tl-=l iMJSN)
IS/
IS/
Ib/
FP.Oil SECSI/
MO, 2.1 HRSl/
F10.2.I ACKtS')



6501 Ft.mKATUHO. I INPUT POINTS AHi- LISTED BFLO* ' • /( 1 OX i I 01 1 0) )
HEAP(M21 ) Tf(l ) i (CliL=l ,MJSm) i ( (CT(K,L. J)|K=1 .liCUN) iLsj.MJSM)
TT(1) = TT(1> * UE*0
TH=TT(1)/3600.
^RITECbibSOS)
6503 FO«"AT( 1"0. « LOADINGS FROW DATA
»P.ITE (h.650*) THi ((CTCK.Lil) tKal
6502 FORnAT(F'l2.?ilOFll,3)
KEADCM21) TT{2)»{DtL=l»HJSW)»((C
TT(2) a TT(2) * TZERO
THsTT (2) /'{600.
MMITE(6t6502) TMi((CT(K,Li2)t'<::l
NINREC=2
11 = 1
12=2
TIMEaTZERO
TTPcTIME
190 CONTINUE
C
C
(jo uqA j r Y^o * , ^°CVC
MSTPRT=ICYC
C
C
c
c
READ(NIO) NO, (0(N).U(N),NiliNC),
DO 200 Jal tMJ
IFCCvIN( J) .LT.O.) QlN(J)BO,
200 CONTINUE
C
c
c
c
c
IF(INSTM.EQ.O) GO TO 4470
TIHErTIME»OE'LTG
1F(N'21,EO.O) GO TO 2050
DO 2010 LaliMJS*
J=IS«(L)
DO 2010 KsltNCON
2010 iAOD(J.K)=CSPI'w(J.K)»DELTB/,1857
nRITE(6« 6^03)
2012 IF(TI"E»TT(I2)) 2040 i2015i2015
2015 DO ?020 L=liHJS*
JalSw (L)
DO J>0j>0 Ksl.NCO't



FILfO
»^CON) «L=1 IMJSW)

T (K.L.2) »Ksi ,NCON) »LS1 »MJSi«()
.

t NCON)iL81|MJSW)






MAIN LOOP




READ HYDRAULIC INFORMATION FROM
FAST DRUM(OISC)

(VOL(J)>QIN(J).QO'J(jr,jBllNJ)





VARIABLE FLOW INTKKPOL AT ION
OR AVERAGING













2020 MAnr)(J,K)=MtDD(JiK) + CT(K,LtIl)*(TT(12)»TTP)
TTP=TT(12)
JTEf P»I2


129

-------
 1281,
 1283,
 12-33,
 1264.
 1285,
 1266,
 1207.
 1388,
 12B9.
 12-JO,
 1291,
 1292,
 1213,
 1294,
 1295,
 1296,
 1297,
 1296.
 1299,
 1300,
 1301,
      12=11
1303,
1304,
1305.
1306,
1307.
1308.
1309.
1310.
1311.
1312,
1313.
1314.
1315.
1316.
1317.
1318.
1319.
1320.
1321,
1322.
1323.
1324.
1325.
1326.
1327.
1326.
1329.
1330,
1331.
1332,
1333,
1334,
1335.
1336,
1337.
1336,
1339,
1340,
1341.
 2025 KF:A[)(*,?I i  TTCI?) i (D,L=I»MJS«) tC(CT(K,L.i2) IKS
      TT(I2)  =  TT(I<"M  +  TZmi)
      V(r.TT(I2)/3f>00.
                     T", (CCT(K,L,!2)iK = l,NCO«O,L=li*JSK)
                                                           267,408
                                                           »Lai «KJSW)
      GO  TO  -iO!2
 2030 TT(I2)=TT(1
      DO  2035  L=1«MJS*
      00  20.'TTP))/OtLTQ
      TTP=TI»H
 2050 IF(NJS'<>.£Q|0)  GO  TO  4470
      DO  4400  K:t,KCONO
      IF  (TlKt.LE.TE(K)) CO  TO 4400
      TEO(K) s Tt(K)
      DO  4440  I 3},NJS*
      CE(K.L.l) B CE(KiLi2)
 4440 CONTINUt
C
C                                        KEAD TIME AND LOADING R-ATE
C
      READ (N5>4320)  TE(K) i (CE(K«L*2)»  {. s 1,UJS«)
 «I320 FORMAT (8HO.O)
      TfP(K) c TE(K)/JM)fi,
      WRITK  (>J6,«3»0) K,TEP(K)
 a380 FORMAT CIMOIOX.UJM INPUT,  POUMOS  PER DAY, CONSTITUENT NUHHKR»1S,5H
     1 AT  .Fft,2«17H  HOURS FROM  START/)
      00  4420 L =1,NJS»
      "RITE  (N6.4340) JSW(L)»
 4340 FORMATOH 10XtI5tlOE10.tt)
 4420 CONTINUE
 4400 COK'TlNUf
      00  4460 Ksl^KCO^O
      DO  4460 L <
      J a JS*(L)
              = CSPIM(J»K)*(CtCK»Lll)f SLOPE (L)*{Tlllf«TEU(K)))»0. 1657
4460
4470 CONTINUE
                                        SET HOIINDAHY
                                        COKDITIONS
     DC 230 KCel.KCONO
     IFCIFLG-1) ?P«,i!l0.220
 208 DO 209 KCC=1.KCQN
     X".E(KCC) = 1.
 209 X«EO(KCC)30,
 210 1F(OIN'(JC*)) 211«211i215
 211
 215 IFLGsl
 218
                                   130

-------
n«2,
U13.
1311,
1315,
1346.
1307.
1316.
1319.
1350,
135),
13'.>2«
1353,
1354,
1355,
1356.
1357,
1358.
1359.
1360,
1361.
1362.
1363.'
1364.
1365.
1366.
1367,
1363.
1369.
1370,
1371.
1372.
!?73.
1374.
1375.
1376.
1377.
1378.
1379.
1360.
1381.
1362.
1363.
1384.
1385.
1366.
1387.
1388.
13R9.
1390.
139J.
1392.
1393.
139(1.
1395.
1396,
1397.
1396.
1399.
1100.
1401.
1402.
(JO TO 2:i3 .
220 JF(inn(jr.iO-) 21Si2r>t22b
221 IFLGr-a
DO i?2.V *CC'l t KCON
Xft(KCC)=l,
223 X.'i|:Ci{KCC)30.
226 CONTINUE
227 X >' f. ( K c ) - X " £ ( K C ) * P- 0 ') ( J ft w )
• XvE 0(KC) = XMEO t KO + CUUC JG«) * (C ( JGh i
230 CONTINUE
C
C
c
c
00 280 J=l iNJ
IFO.'CHir,'(J,l),EC,0) GO TO 260
SU'1G = 0.
00 2«5 KC=1,KCON
245 OCDT(JiKC)=0,
C
C
c
c . . .
DO 260 KcliS
N3NCHAN{J,K)
IF(N,eU.O) GO TO 260
JLsN JLINC C ^ 1 1 )
JHsN'JUNC(Ni2)
I F ( ( J . EC . JL ) . * *'P . ( 0 ( H ) . Gt . 0 . ) ) GO
IF«J.En;JH),»*o.(0(M),LE.O,)) GO
IF( AHS(U('O»DKLTU)tGf.l-Eki(N)) WH
8246 FOR"»T(' **VEL.: ' t c!t.3t ' In CHASNE1.
IF"((A8S(u(N)»OtLT'3)),GT,CEN(N)) y(
SUKl) = SUMU + 4fcS(Q(N))
00 250 KCs| ,KCON








iKC)»CS(KC) )



COMPUTE CONCENTRATION CHANGES








AOVECTIVE MOVEMENT IN CHANNELS






TO ?60
TO 260
I TF (Nh«824fc) Uf N) i N,|_f N(M)
•illi" "'!TH LENSTHsi,Flo,2)
N) = SIGN(l.tN(N)/OELtO,u(N))


250 OCDT(JiKC)=DCOT(J.KC)»AHS(Q(N))*(U(N)»(CCJLiKC)-CfJH,KC))/LEN(N))
260 CONTINUE
265 CONTINUE
DO 270 KC=l«KCON
IF (SUM.MJ.O.) GO TO 270
DCUT(J.KC)s(OCDT(J»KC)/SUMQ)»DEtTO
2TO CONTlNUt
280 CONTINUE
C
C
c
c
c
00 285 J=1.HJ
IF(NCHAN(J,1),EQ.O) GO TO 285
00 284 KC=| iKCON
C(J»KC)eC(J«KC)»OCDT(JfKC)
IF (C(JiKC).UT.O,) C(JiKC)«0,
284 CONTINUE
285 CONTINUE
C
'C
c
c
DO 289 jBliNJ
IF (VOL(J) .LE, 0,0) GO TO 289









UPDATE CONCENTRATION AND CHECK
DtPUTION










SOUHCt CONTRIBUTION



131

-------
1403,
1404.
1405.
1406.
1407,
1406.
1409.
1411,
1412,
1413,
1414.
1415.
1416.
1417.
1418,
1419,
1420,
1421,
1422.
      DO 2flH KC=
C?B8  C(Ji«C)=C(.
28B   C(JfKC) = (l.-OIN(J)«bELT(;/VOL(J))*C(J.KC)»(MADD(JiKC)/VOL(J))*OFLTO
  2B9 CONTINUE
C
C
c     stT UP INTERFACE  FOH C.ETCON
      DO 'iOO JsliNj
      00 «00 J«ali 11
400   CONSTKfJ»)=C(JtJA)
          415
          c
                IFtlALG.tn.O)  GP TO  Mb
                                    ICYC,QLLTU/J600.(AVIUT)
      CALL GtTAVl
      CONTINUE
      CALCULATE. JUNCTION  VELOCITY
      SUMVELnO.
      SUMFLOr.0,
      DO 408 JL=! 18
      If(NCH»N(JiJL) .EO.O)   GO TO 408
1424,
1425,
1426.
1427,
1426.
1430,
1431,
1432,
1433,
1434,
1435.
1436.
1437.
1438.
1439,
1440.
1441,
1442,
1443.
1444,
1445.
1446.
144T,
1448,
1449,
1450.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459,
1460,
1461.
1462.
1463,
          408
         410
         500
         C
         C
         c
         c
         c
      CONTINUE
      VELJUNsSlMVEL/SUMFLO
      CALL GETCO'J/AS(J)»VELJUN)
      DO 410 JAzl.M

               ''t..O.)   C«T.t<:,0)  GO TO USOO
                IF  (NSTP^T.LT.ITCI'^T) C.P TO "SOO
                IF  (LOCPHT.LT.NOCTPT) GO TO 4500
                CALL  CP*1','T
          4500  CONTINUE
                                                   END  QUALITY  CYCLf  LOOP
  548 CONTINUE
      RETURN
      END
      SUflHOUTINF i:£i»lN
      CniKON/C'V-ST/TtMCPLfAfiOD) AHMiC
                                                   • Tf K».nl,
                                                                 . THVOL* « 90RC»
                                       132

-------
1464,
1467.
1466.
1469,
1470,
1471,
1472,
1473.
1474,
 1476.
 1477,
 1478,.
 1479.
 1480.
 1461.
 1462,
 1463,
 14*4,
 1465.
 1466.
 1467.
 1466.
 1469.
 1490.
 1491.
 1492.
 1493.
 149«.
 1495,
 1496.
 1497.
 1498.
 1499,
 1500.
 1501.
 1502.
 1503.
 1504.
 1505.
 1506.
 1507.
 1506.
 1509.
 1510.
 1511,
1512,
 1513.
1514,
 1515.
 1516,
1517.
 1516,
1519.
1520.
 1521.
1522.
1523.
1524.
          513
111

112
          114
          115

          113
          200
               * , HMKAKiHIK A Ji THNP3K, T HP 0(1*
                CO*M(JI\/ J'J'.COn/vlJlJ'vC iN'C'<»'l( 100. P) ,OIN( 100)
                COMMON KCONtFIL(t7),CS(16>iCS-AT(100),C(!OOil6)iFIU(4BCO)«MAOD(100
               *i!6)
                HEAL K*00
                UIKE'-'SION ARCON(l)
                EQUIVAUNCE (AKCO'
                              ., NTC
                DATA M»NJ/5i6/
                DATA KHOF/'ENOKl/
                CO«KQN/HCHVAR/CniK{100) . HOOK (100) . BOOKS (1 flO ) .Nn:SKC100),NO;>K(109)t
               *EXTK(lOO)«nO*2(100)«Hnl><(lOO) t HM2K(100) f
               • iPOIK(lOO) t'.0'3K( 100)
                COMKON/OPTION/JFN, IK2.1COLI JCUMB, INH3tI»02iI'J03iIPOaiIALCiIFIRST
                COMMON/OPT?/' IMC A VY i ITOTN.IChLOH
                COMMON/OPT 3/ I P, I NHil N2i I N3
                COMMON/HLOCK5/JJ(8) iNREA
                DATA LAbltUBZ/IFILE'i' J  '/
                REAL NOREFR
                REAL N03K
                REAL KPOfliMlNOJ
                fit AL MaN03if'NH3,MLiNRiNH3K»N02K
                DIMENSION DEFALU30)
                DATA DEF4LT/1.07 , 0,0 , 0,0 . 20.0 .  1.1  i  .01  i  ,17  ,  106,  i  16,
               *0  i  .5 i  l.S ,  .5 , .1 . 1.07 • 20. •  .0)  i  .03  ,  .026  i  .OUS • .0
               *«b  , .03  , .6  , .0001 i .05 , ,001 .  .001  i  M.  ,  .125  ,  .108.1S./
                DATA xP.xl.l.xCK.x^^.XMSiXEXiXUCIK/.OOOVi ,OOI«. ,00a..00«i.01'5> .OU,
                «EAD(Mi313)  NOAYl»ELEViTEMPAVfXL»T
                rORH»T(lHl.//«5X« I JUNCTION VAR I ABUES I , //}
                MKfTf (NJill^)
                FOKMATCi  JIACliSX, inODI ,8X,IQODI,6X, ICOLIFORMI ,
               • flX, IM03N6X, IPQI'ifcX. IEXTINCT   REAtRw   HtAVY
                                                                 HEAVY
                                                                            IN02' i
                                                                         HKAVY   TE
     • I   Ml"   PMCTIOU   SETTLING" .0( I
     *!COtF'»SX, UTIPI,    HET  1    MET  2
     • 10X.7C 'CC]f-Kt,7X).BX, (I}iDOK2(n>COLK(I)iNH3K(I)«N02H(I)»
              *NOJHtI),POUK('I) ,EXTK(I) i
              *HMlK(I),HM2«I),ri>-i3K(I),TEMREA{I)
                READ  IN  INITIAL  CONCf-THATIONS fOR JUNCTION AM> CONCENTRATIONS OF
                DIN  IN MG/L  FXCEPT  fOK COLIFOHMS IN MPN/100 ML
                Ud.KE.JGx)   GO TO 115
                DO  11«  JL=liKCON
                CS(JL)3CCIiJL>
                CONTINUE
                                  RE*n(NIi««0) (MAODtlf JL) • JL= 1 «KCON)
               CONTINUE
               CONTINUE
               FOHMAT18F10.U)
                                           133

-------
1525,
15?6,
1527,
1528.
1S29,
1530.
1531.
1532,
1534!
1535.
1536.
1537.
1536.
1539,
1540.
1541 .
1542.
1543,
1544.
1545.
1546.-
1547.
1548.
1549.
1550.
1551.
1552.
1553.
1554.
1555.
1556.
1557.
1558.
1559.
1560.
1561.
1562.
1563.
1564.
156S.
1566.
1567.
1568.
1569.
1570.
1571.
1572.
1573.
1574.
1575.
1576,
1577.
1576,
1579,
1580.
1581.
1582,
1583.
1584.
1585.
213
305













217
300

908

607
fORV»T(13F6,0)
FORMATU5)
00 300 l*-\ i *JJU*-'C
IF O'Orjx ( IK) .f n,o, ) BonK(iK)s,;>/po.
IF ( TE "RC A ( I K ) , f r. , 0 . ) TEXRK A ( I X ) r t f.MpA V
IFd'ijiKCKJ.EfJ.O.) P04<(In)3Xf*
IF(*03<(IO ,KS,0,) N03X(IiOsX.iS
IFfCCI. KdO.tiJ.O.) COL<(IO = XCK
IF(N02<( IK) ,fc 0,0.) N02n( I*) = XN2
IF(EXTK(K).ER,0.) EXlK(IK)=XEX
IF(OOK2(IK).E<5.0.) DOK2(IK)=XDOK
IF(Mr.lK(IX),E3,0.) HMlK(IO = XCK
wRITK(i>.Ji217) !K,30r)X(lK),BUCAS(IK)tCOLK(IK)iNH3K(Ii<)iN02K(IK)i
*N03K(IK),PO(|K(IO ,f XTMllOt
*OOK?(IK) !'•*!<( IK) .HM2K(IK) tHM3K( JK) ,TEHREA( IK)
FORMAT (I4.F10-.J|F11.6»5F1 1.4, HO.«iFll.3,F9.4,F8,fliF7.aiF6, 2)
CONTINUE
«RITE (MJt908)
FORMAT (i HI ,//45x, i INITIAL CONCENTRATIONS",//)
«RITE(HJ»607).




















FORMAT(I JUNCTION DO BOO NH3"N N02i-N N03"N P04«P
• PHYTO COLIFORMS MHI HM2 HM3 TOT N CHLOR hMH MM12




302
818

909

606







450
303
619
116

1211

121







122

123


10
* HHI3'/ " NUMBER (MG/L) (MG/l.) (nG/L) (MG/L) (»G/L)
«G/L) (MG/L) (MPN/100) (MG/L) (MG/L) (*G/L) (MG/L) (MG/L) (^G/L)
*G/L) (MG/L) "'/)
DO 302 IKsl.NJUNC
KRITE(NJ,alu) IKi (C(K«LJ) 2) IFN.ICOL, I COMB, IMEAVY, 1TOTN, I CHLOR, I"JH, In2, IH3i IP
Ifd^H.f.'E .2) INHSJ
IF (I'''2«^F .2) I^2sl
IF(IN3,NE ,
DO 10 I :|>30
If'(A9CnMI),EQ,0.) ARCON(I)30EFALT(I)
CONTINUE
(M
(M







-P
12
(M
(H

























134

-------
1*86.
1587.
1S8B,
1569,
1590.
1591.
1592,
1593,
1594,
1595.
1596.
159T,
1598,
1599,
1600.
1601,
1602.
1603.
1601.
1605.
1606,
1607.
1606.
1609,
1610,
1611,
1612.
1613.
16ia,
I61S,
1616.
1617.
1618,
1619,
1620.
(100
«05
410
ais
1622,
1623.
1624.
1625,
1626.
1627,
1626,
1629.
1630,
1631,
1632.
1631,
1630,
1635.
1636.
1637.
1636.
1639.
16«0.
mi,
16A2.
1603.
16(10,
16as.
16«6.
420
      IMTHKOSK.F'l.n.)   T UNO JKs 1.12
      IF(THrO«K.E.1.0.)   THPO«*=1,08«
      IF(ICOL.K').O) CO  TO  ttOO
      wniTf (NJ.lOoa)  T"