SPOKANE RIVER BASIN MODEL PROJECT
Volume V - User's Manual for Dynamic Stream Model
by
John L. Shepherd
E. John Finnemore, Ph.D.
Systems Control, Inc., Palo Alto, California
for the
ENVIRONMENTAL PROTECTION AGENCY
Contract No. 68-01-0756
October 1974
-------
SPOKANE RIVER BASIN MODEL PROJECT
Volume V - User's Manual for Dynamic Stream Model
by
John L. Shepherd
E. John Finnemore, Ph.D.
Systems Control, Inc., Palo Alto, California
for the
ENVIRONMENTAL PROTECTION AGENCY
Contract No. 68-01-0756
October 1974
-------
EPA Review Notice
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names or commercial products
constitute endorsement or recommendation for use.
ii
-------
ABSTRACT
Three existing mathematical models, capable of representing water quality
in rivers and lakes, have been modified and adapted to the Spokane River
Basin in Washington and Idaho. The resulting models were named the Steady-
state Stream Model, the Dynamic Stream Model, and the Stratified Reservoir
Model. They are capable of predicting water quality levels resulting from
alternative basinwide wastewater management schemes, and are designed to
assist EPA, State, and local planning organizations to evaluate water qual-
ity management strategies and to establish priorities and schedules for
investments in abatement facilities in the basin.
Physical data and historical hydrologic, water quality and meteorologic
data were collected, assessed and used for the model calibrations and
verifications.
The modified models are all capable of simulating the behavior of various
subsets of up to sixteen different water quality constituents. Sensitivity
analyses were conducted with all three models to determine the relative
importance of a number of individual model parameters.
The models were provided to the EPA as computer source card decks in
FORTRAN IV language, with accompanying data decks. All development work
on, and applications made with, these models were fully documented so as
to permit their easy utilization and duplication of historical simulations
by other potential users. A user's manual with a complete program listing
was prepared for each model.
This report was submitted in fulfillment of Contract No. 68-01-0756 under
the sponsorship of the Environmental Protection Agency.
The titles and identifying numbers of the final report volumes are:
Title EPA Report No.
SPOKANE RIVER BASIN MODEL PROJECT -DOC /7A
Volume I - Final Report
SPOKANE RIVER BASIN MODEL PROJECT DOC
Volume II - Data Report
SPOKANE RIVER BASIN MODEL PROJECT
Volume III - Verification Report
SPOKANE RIVER BASIN MODEL PROJECT
Volume IV - User's Manual for Steady-state Stream Model
SPOKANE RIVER BASIN MODEL PROJECT
Volume V - User's Manual for Dynamic Stream Model
SPOKANE RIVER BASIN MODEL PROJECT
Volume VI - User's Manual for Stratified Reservoir Model
ill
-------
CONTENTS
SECTION PAGE
I. INTRODUCTION 1
II. MODE OF OPERATION 3
III. HYDRODYNAMIC SUBROUTINES . 5
IV. QUALITY SUBROUTINES ..... 7
Subroutine SWQUAL 7
Subroutine INQUAL ........ 7
Subroutine NEWIN IQ
Subroutine SETOPT IQ
Subroutine LOOPQL ...... .... IQ
Subroutine GETAVI IQ
Subroutine SUN . 15
Subroutine GETCON 15
Subroutine QPRINT 15
V. INSTRUCTIONS FOR DATA PREPARATION ............ 23
VI. PROGRAM VARIABLES 61
VII. SAMPLE INPUT DECK '...'.' 59
VIII. SAMPLE OUTPUT . . . 75
IX. PROGRAM LISTING . 107
X. REFERENCES 169
XI. ABBREVIATIONS 171
-------
FIGURES
NO. PACE
1. Subroutine Linkages 4
2. Flowchart of SWQUAL 8
3. Flowchart of INQUAL 9
4. Flowchart of NEWIN 11
5. Flowchart of SETOPT 12
6. Flowchart of LOOPQL 13
7. Assumed Daylight Intensity Distribution 14
8. Flowchart of GETAVI ......... 16
9. Flowchart of SUN . . . . '. .......... 16
10. Flowchart of GETCON .............. 17
11. Flowchart of QPRINT . 22
12. Data Deck 24
13. Sample Region 70
vi
-------
TABLES
NO. PAGE
1. Quantity Data Decisions 25
2. Quality Data Decisions 27
3. Executive (Driver) Input 29
4. RIVSCI Input 32
5. Definition of Constituent Selection Option, ICOMB 59
6. Quality Related Common Variables . . 62
7. Quality Related Local Variables 66
8. Sample Input 71
9. Sample Output . 76
vii
-------
SECTION I
INTRODUCTION
The Dynamic Stream Model (RIVSCI), documented herein, is an extensive
modification of the Receiving Water Module (RECEIV) of the. Storm Water
Management Model [References 1-4], and is one of three water quality
simulation programs developed by Systems Control, Inc. (SCI) for use on
the Spokane River Basin in the states of Washington and Idaho. This
document is a supplement to References [1] through [4].
RECEIV, which models a maximum of five quality constituents, has been
modified in this project to model as many as 16 constituents simultaneous-
ly. With the exception of the addition of some user options arid the
changing of the units of some input parameters, the hydrologic inputs to
RIVSCI are the same as those for RECEIV. The quality-related input
parameters have been extensively modified and extended and are described
in this Volume. The algorithms employed by RIVSCI to model the quality
constituents are described in detail in Volume I (Part III) of this
report.
Subroutines which are unchanged or only slightly modified include CURVE,
GRAPH, INDATA, OUTPUT, PINE, PPLOT, PRTOUT, RECEIV, RUNOFF, STORAG,
EXECUTIVE(DRIVER), SWFLOW, TIDCF, TRANS, and TRIAN. INQUAL, LOOPQL,
QPRINT, and SWQUAL have been extensively modified. Five newly added sub-
routines are named GETAVI, GETCON, NEWIN, SETOPT, and SUN.
The basic structure of the SWMM remains. The EXECUTIVE(DRIVER) calls
RUNOFF, TRANS, STORAG, GRAPH, and RECEIV as requested. Of these five
routines only RECEIV performs any computations. The others are merely
"dummy" routines which may be replaced with modules of the users choice
if he so desires. The routines which generate plots of junction head
elevations are not documented in this report. They are CURVE, PPLOT and
PINE. They are called by subroutine OUTPUT if plots are requested.
The plotting option was not exercised during the Spokane Basin Project.
The format of this users manual is generally consistent with the format
of Reference [3], subject to the constraints imposed by EPA documentation
specifications. For completeness, portions of this document are taken
directly from Section 6 of Reference [3].
RIVSCI has been successfully applied to a wide variety of steady-state
stream conditions and has been executed on both the UNIVAC 1108 and the
IBM 370/155.
-------
SECTION II
MODE OF OPERATION
The Receiving Water Module of the Storm Water Management Module, as
modified by Systems Control, Inc., is named herein the Dynamic Stream
Model (RIVSCI). It simulates the behavior of estuaries, and streams, but
in this project has only been verified on stream systems. The program
has two distinct phases which may be executed together or separately.
In Phase A, the time history of stage, velocity, and flow is generated
for various points in the system. In Phase B, the hydrodynamics are
utilized to model the behavior of conservative and nonconservative
quality consitutents.
The receiving water is simulated by dividing the continuous system into
a series of discrete one- and two-dimensional elements which connect
node points. For the purpose of this analysis, the velocity of flow is
assumed uniform with depth, one-dimensional elements represent rivers
and specific channels, and two-dimensional elements represent areas of
continuous water surface. For each time-step, the equations of motion
and continuity are applied to all nodal points to derive the hydro-
dynamics of the system. The hydrodynamics are used with equations
for conservation of mass to determine the concentration of quality
constituents.'
Subroutine RECEIV, which is called by the EXECUTIVE (DRIVER) drives the
quantity (Phase A) and quality (Phase B) sections of the model which act
independently, linked only by data transmitted through a peripheral file.
Figure 1 shows the linkages among the subroutines of RIVSCI.
-------
DRIVER
RECEIV
FTGURK !. SUBROUTINE LINKAGES
-------
SECTION III
HYDRODYNAMIC SUBROUTINES
Descriptions of the hydrodynamic (Phase A) subroutines SWFLOW, INDATA,
TIDCF, TRIAN, PRTOUT, and OUTPUT may be found on pages 294-301 of
Reference [3], Descriptions of the quality (Phase B) subroutines
follow in Section IV.
-------
SECTION IV
QUALITY SUBROUTINES
The quality section consists of nine subroutines: SWQUAL, INQUAL, NEWIN,
SETOPT, LOOPQL, GETAVI, SUN, GETCON and QPRINT. These subroutines are
described in this section. Subroutine interlinkages are illustrated in
Figure 1. All equations not described in this manual are described in
Section 14 of Reference [1] and in Part III of Volume I of this report.
Quality related common variables are described in Table 6. Local
variables are presented in Table 7.
Subroutine SWQUAL
Subroutine SWQUAL is the driving quality routine which operates in
three steps:
1. Calls INQUAL to read input data.
2. Calls LOOPQL for each day of simulations.
3. Prints daily average, maximum, and minimum concentrations of water
quality constituents.
A flow chart of subroutine SWQUAL is shown in Figure 2.
Mass lost to the system through outflows is a normal part of the computa-
tions. A special case is the mass lost through tidal exchange. This
calculation is performed at the completion of each day's cycle, and is
based on the volume difference between flood and ebb tides.
Subroutine INQUAL
Subroutine INQUAL, flowcharted in Figure 3, reads control information
from cards and geometric data that was previously used in the quantity
modeling. It calls subroutine NEWIN to read in quality-related condi-
tions and parameters.
The three types and sources of basic information to subroutine INQUAL
are:
1. The basic hydrodynamics from SWFLOW
2. Time-quality information from models preceding SWFLOW and trans-
ferred through it. (If input of this type is required, appropriate
modifications must be made to the models preceding SWFLOW.)
3. Initial quality constituent concentrations and controlling para-
meters, (read by NEWIN)
-------
ENTRY J
COMPUTE
OCEAN
EXCHANGE
I WRITE AVE., MAX..J
MIN. NODAL CON-
CENTRATIONS
FOR LOOP
CYCLE
RESET
VALUES FOR
NEXT LOOP
CYCLE
\READ NEW ./
HYDRAULIC /
INFO. /
LOOP
YES
NO
I'.'RITE
REST/-P.I"
"TAPE
RETURN J
FIGURE 2. SUBROUTINE SWQUAL
8
-------
( ENTRY )
ill
\
READ
CONTROL
INFO.
READ
SYSTEM
HYDRAULIC
INFO.
I
READ & WRITE,
PRINT &'
CONTROL
INFO.
I
iWRITE INITIAL]
HYDRAULIC
INFLOWS &
OUTFLOWS
OF SYSTEM
I
READ & WRITE
QUAL. PARAMJ
OF
SYSTEM
CALL
NEW IN
1.
EVALUATE
CONSTANTS
FIGURE 3. SUBROUTINE INQUAL
-------
Subroutine NEWIN
Subroutine NEWIN, flowcharted in Figure A, reads in the quality-related
parameters needed for the simulation, including initial concentrations
of all constituents in all junctions, constituent concentrations in all
junction inflows, solar radiation time history, options governing which
constituents will be modeled, and values for all appropriate constants
and reaction rates and coefficients. It calls subroutine SETOPT to set
internal logic flags, based on the input options, and to output an
option summary. NEWIN prints out all appropriate input parameters and
calculates the dissolved oxygen saturation level for each junction.
Subroutine SETOPT
Subroutine SETOPT, flowcharted in Figure 5, sets internal logic flags
ba.sed on input options and prints out a summary of the reactions which
are to be simulated.
Subroutine LOOPQL
Subroutine LOOPQL, flowcharted in Figure 6, reads one quality cycle of
hydraulic information right after its entry. It then reads a new set of
values from the appropriate pollutographs or interpolates as necessary.
Boundary conditions are computed for conservative and non-conservative
quality constituents.
Advective flow concentration changes are computed next, and all nodal
quality constituent concentrations are updated, with checks for depletion.
The program next computes nodal quality constituent concentration changes
due to mass input. GETAVI is then called to calculate the average light
intensity and GETCON is called to calculate the effects of growth, decay,
settling, reaeration and benthal releases and demands.
The average, maximum, and minimum concentrations are stored for later
printout by SWQUAL. This program also allows the calling of QPRINT,
to print all concentrations for this quality cycle. Return is made to
SWQUAL.
Subroutine GETAVI
Subroutine GETAVI, flowcharted in Figure 8, calculates the average light
itensity rate in Langleys/min during a time interval [t-,t_] on Julian
day n. Subroutine SUN is called to calculate sunrise and sunset on day
n. The total number of Langleys for day n is an input number. From
these values of sunrise, sunset, and total radiation, the average rate
over [t.,t2] is calculated from the assumption that the total is dis-
tributed between sunrise and sunset according to the distribution shown
in Figure 7.
10
-------
ENTRY
J
READ
BASIN
VARIABLES
READ
INITIAL
JUNCTION
CONCEN-
TRATIONS
READ
JUNCTION.
INFLOW
CONCEN-
TRATIONS
WRITE
INPUT
L PARAMETERS j
READ
MISCELLAN-
EOUS
VARIABLES
I
(CALL \
SETOPT /
READ SOLAR
RADIATION
TIME
HISTORY
CALCULATE
DO SATURATION
LEVEL FOR EACH'
JUNCTION
1
WRITE
SUMMARY
OF PARA-
METERS TO
BE USED
I
RETURN
FIGURE 4. SUBROUTINE NEWIN
11
-------
ENTRY J
SET OPTIONS
BASED ON INPUT
PARAMETERS
WRITE
OPTION
SUMMARY
I
RETURN )
FIGURE 5. SUBROUTINE SETOPT
12
-------
READ ONE
QUALITY
CYCLE
HYDRAULIC
INFO.
IREAD/INTERPOL'N/
\QUAL. CONST'NT/
LOADING
AT INPUT
NODES
CALL
GETAVI
CALL
GETCON
YES
LOOP
F.ETUF.N J
FIGURE 6. SUBROUTINE LOOPQL
13
-------
Intensity
1/6
Sunrise 1/4
2/3
1/2
1/4 Sunset
-•-Time
FIGURE 7. ASSUMED DAYLIGHT INTENSITY DISTRIBUTION
14
-------
Subroutine SUN
Subroutine SUN, flowcharted in Figure 9, calculates sunrise and sunset
in hours from midnight on Julian day n as a function of latitude (in
radians) from
d = .409279 COS(.0172142(172 - n)) radians
sunset = 3.81972 COS'^-tantd) tan(lat)) +12.
sunrise =24. - sunset
Subroutine GETCON
Subroutine GETCON, flowcharted in Figure 10, is called by LOOPQL to
calculate the changes in the constituent concentrations in a junction
over a time At where At is the integration time step used by SWQUAL.
The algorithms used are explained in detail in Volume I (Part III) of
this report. The inputs to GETCON include the depth of the junction,
the velocity of the water through the junction, the average light
intensity rate at the surface during At, and the appropriate system
constants and variables, as well as the concentrations of all constitu-
ents at the beginning of At. Equations referenced as (A.NN) in Figure
10 may also be found in Part III of Volume I.
Subroutine QPRINT
Subroutine QPRINT, flowcharted in Figure 11, prints the instantaneous
concentration levels for the system.
15
-------
( ENTRY "")
/ CALL \
\ SUN /
"
CALCULATE AVERAGE
LIGHT INTENSITY
DURING TIME
TIME INTERVAL
I
RETURN J
FIGURE 8. SUBROUTINE GETAVI
EN'TRY
CALCULATE
SUNRISE AND
SLTISET
I
RETURN
FIGURE 9. SUBROUTINE SUN
16
-------
INITIALIZE
Zero Out Deltas
TCOR=(T-20)
A.82
BOD DECAY
A.15 A.14
A.12 A.16
A.13 A.17
FIGURE 10. SUBROUTINE GETCON (page 1)
17
-------
FIGURE 10. (cont'd) Page 2
18
-------
IS
NO--N
BEING
MODELED
N02-N DECAY
IS
N03-N
BEING
MODELED
N03-N DECAY
A.38 A.37
IS
PO..-P
BEING
MODELED
7
P04-P DECAY
A.76.1 A.75
IS
NHj-N
VOLITIZA7ION
OCCURRIN
ARE
HYTOPLANKTO
BEING
DELE
IS
IT DARK
DURING TIME
STEP
A.45 A.«9 A.5J
A.46 A.50 A.54
A.47 A.51 A.55
A.4B A.52 A.44
A.60
FIGURE 10. (cont'd) (Page 3)
19
-------
IS
NH3-N
BEING
MODELED
7
FIGURE 10. (cont'd) (Page 4)
20
-------
ALGAL DEATH
A. 72
A.73
A. 74
BENTHAL RELEASE
A. 79
BENTHAL RELEASE
A. 77
BENTHAL RELEASE
A.94 A.29 A.34
BENTHAL RELEASE
A. 78
REAERATION & BENTHAL
DEMAND
ARE
HEAVY \YES
METALS BEING.
MODELED
COMPUTE FINAL CONCENTRATION;
A.95 - A.104
i
( RETURN J
FIGURE 10. cont'd (Page 5)
21
-------
CENTRYj
WRITE NODAL
CONCENTRATIONS
FOR QUALITY
CYCLE
CALLED
RETURN
FIGURE 11. SUBROUTINE QPRINT
22
-------
SECTION V
INSTRUCTIONS FOR DATA PREPARATION
Use of RIVSCI involves three basic steps:
Step 1 - Idealization of the physical system
Step 2 - Quantity decisions
Step 3 - Quality decisions.
These steps are described below. The physical arrangement of a typical
RIVSCI input deck is pictured in Figure 12. A brief summary of the
required RIVSCI inputs is presented in Table 1 and Table 2. Detailed
instructions for data card preparation are presented in Table 3 and
Table 4. All equations referenced as (A.NN) in Table 4 occur in Volume
I (Part III) of this report.
The program uses up to 4 scratch files.
Scratch file 1 is used to transmit hydrodynamics from quantity
to quality model.
Scratch file 2 is used by the quantity and quality model
separately.
Scratch file 3 is an input restart file for the quality model.
Scratch file 4 is the output restart file for the quality model.
If the restart facilities of the quality model are not used, scratch
files 3 and 4 need not be defined.
Step 1 - Idealization of the Physical System
The first step in the use of RIVSCI is idealization of the physical
system into one (channel) and two-dimensional (area) discrete elements
of an appropriate size to describe the system in the detail required.
The decision on detail must be based upon the size limitation of the
program, and the desired time interval of integration. The time interval
is restricted by wave celerity conditions. For a stable solution, choose
At = 3L/4/gd for all channels where L is length and d is depth of
channel (consistent units). At will usually lie between 30 seconds and
300 seconds. For junctions of the system, the initial head, and floor
elevations, plus average friction coefficients must be specified, together
with contributions of channels to the surface area of node. For area
elements only, the nodes forming triangles must be specified, but for
channel elements, width, length, depth, and friction coefficients must be
provided
23
-------
QUALITY DATA CARDS
CONTROL PARAMETERS
NJSW, ITCPRT, NQPRT, ETC.
NTC
ISWCH (1), ISWCH (2), ETC.
QUALITY
ENDQUANT
QUANTITY DATA CARDS
I
PRINT/PLOT CARDS
RAIN INPUT CARDS
HYDRAULIC CONTROL CARD
ISWCH (|), ISWCH (2)
STORM TITLE CARDS
RUN TITLE CARDS
QUANTITYQUALITY
RECEIVING
EXECUTIVE BLOCK CARDS (TABLE 3)
FIGURE 12. DATA DECK FOR RIVSCI
24
-------
The following restrictions govern the use of RIVSCI.
1. There may be a; maximum of 100 junctions.
2. There may be a maximum of 225 channels.
3. No more than 8 channels may enter a junction.
4. No more than 20 time varying inflows may be specified.
5. The quality time step must be a multiple of the quantity time step.
6. Flow and velocities may be output for a maximum of 50 channels.
7. Plots and head heights may be output for a maximum of 50 junctions.
Card groups referred to in Tables 1 and 2 correspond to the data prepara-
tion instructions presented in Table 4.
Step 2 - Quantity Decisions
TABLE 1.
QUANTITY DATA DECISIONS
CARD
GROUP DISCUSSION
1 Quantity and/or quality decision. For a quality
run, skip to Card Group 24.
2,3 Title cards for the run and for the storm.
4 Tide or no-tide, print or non-print of input
decisions.
5 General control decisions on: (Values in paren-
theses indicate typical values where relevant.)
a) Number of daily cycles.
b) Number of hours in a daily cycle (24.).
c) Number of hours in a quality cycle (1.).
d) Number of seconds in fundamental time-step
(300.)
e) Zero time (0.).
25
-------
TABLE 1. (Continued)
CARD
GROUP
DISCUSSION
5 (Continued)
6
7,8,9
10,11,12
13,14
15,16
17,18,19
20,21,22
f) Number of junctions and channels to be printed.
g) Number of junctions to be plotted.
h) Evaporation.
i) Wind speed and direction.
j) Day cycle at which printed output will start.
k) Number of rainfall points if needed.
1) Downstream junction number.
Rainfall input if relevant.
Junctions and channels to be printed and plotted.
Downstream condition either tidal or using a weir
type equation where Q = WEIRI'WIDTH'(H-WEIR2)
Junction data, including initial head, area contri-
bution of one dimensional channels, inflows and
outflows, and depths.
Channel data, including connection data for area
elements and connection data for channels plus
length, effective width, average depth, Manning's
coefficient.
Titles to go on plot cards.
Storm water input hydrograph from cards if relevant.
26
-------
Step 3 - Quality Decisions
TABLE 2.
QUALITY DATA DECISIONS
CARD
GROUP DISCUSSION
24 Control switches concerning restart information.
25,26,27 Control information for quality run information on:
a) Number of daily cycles to be run.
b) Print frequency and detail required.
28 Run data, including first day of run, elevation of
river system, average temperature, latitude of river
system
29 Junction number
30 Junction parameters
31,32 Initial junction concentrations
33,34,35 Junction inflow concentrations
Termination of concentration inputs
36-44 Miscellaneous variables
45,46 Storm water input from cards, if relevant.
27
-------
Note that RIVSCI will accept time varying hydrographs and pollutographs
as input. These hydrographs and pollutographs may be input on cards.
The version of the Storm Water Management Model (SWMM) described in
References [1-4] has the capability of transferring these inputs via an
interface tape from the Transport or Storage Modules to the Receiving
Water Module. RIVSCI has the capability to read these hydrographs and
pollutographs from tape, but if utilization of this capability is. desired
the tape must be prepared by a user-supplied program, since the Transport
and Storage Modules of the SWMM have not been modified or included in
RIVSCI.
RIVSCI is called by an Executive Block in the same manner that the
Receiving Water Module is called in References [1-4]. The input cards
needed for the Executive Block are defined in Table 3. This table is a .
portion of the table which may be found on pages 23-24 of Reference [3]
and is reproduced in this document for user convenience. To run RIVSCI
with no storm inflow only cards 4, 5, and 6, as defined in Table 3, are
important although cards 1 and 2 must be input also. A sample RIVSCI
data deck is provided in Section VII.
28
-------
tsJ
VO
TABLE 3.
EXECUTIVE (DRIVER) INPUT
CARD CARD
# COLUMN
1 . 1-40
2
1-5
6-15
16-25
26-30
31-40
41-45
46-55
FORMAT
10A4
15
F10.1
F10.2
15
F10.1
15
F10.1
VARIABLE
NAME UNITS
TITLE!
NSERYS
ACRES
ADDWF (CFS)
NDESYR (YRS)
DESFLO (CFS)
NSTRMS
QTRUNK (CFS)
DEFAULT
. VALUE DESCRIPTION
none Title Card, title of the area
being studied.
General information about the
studied area.
none Demonstration series number.
none Number of acres of the study
area.
none The average daily DWF for the
study area.
none Design flow rate frequency.
none Design flow rate.
none Number of storms being studied.
none Maximum available trunk sewer
capacity.
REPEAT FOR THE NUMBER OF STORMS.
IF NSTRMS = 0, SKIP THIS CARD.
Storm data cards.
-------
TABLE 3. (Continued)
CARDS CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
u>
o
3 1-16
17-32
1-4
5-8
9-12
13-16
4A4 STORM
4A4 RAIN
2014
JIN(l)
JOUT(l)
JIN(2)
JOUT(2)
(IN)
none Date of storm.
none Amount of rainfall for this
storm.
I/O tape/disk assignments.
none Input tape assignment for first
block to be run.(RIVSCI requires
a non-zero value if hydrographs
are input.)
none Output tape assignment for first
block to be run. (RIVSCI requires
a non-zero value if plots are
required.)
none Input tape assignment for second
block to be run (usually the
same as the output tape from
first block).
none Output tape for second block to
be run.
77-80
JOUT(IO)
none Output tape for tenth block to
be run.
-------
TABLE 3. (Continued)
CARD CARD
// COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
1-4
5-8
9-12
13-16
17-20
2014
1-80
20A4
NSCRAT(l)
NSCRAT(2)
NSCRAT(3)
NSCRAT(4)
NSCRAT(5)
CNAME
Scratch tape/disk assignments.
none First scratch tape
assignment. (RIVSCI quantity
output: ^ 0)
none Second scratch tape assignment.
(RIVSCI scratch unit: t 0)
none Third scratch tape assignment.
(RIVSCI quality restart: ^ 0 if
ISWCH(l) on card 24 ± 0)
none Fourth scratch tape assignment.
(RIVSCI quality restart: ^ 0 if
ISWCH(3) on card 24 f 0
none Fifth scratch tape assignment.
REPEAT CARD 6 FOR EACH BLOCK TO
BE CALLED.
Control cards indicating which
blocks in the program are to be
called.
none Name of block to be called.
= WATERSHED for Runoff Block,
= TRANSPORT for Transport Block,
= RECEIVING for RIVSCI
= STORAGE for Storage Block,
= GRAPH for Graph subroutines.
= ENDPROGRAM for ending the
storm water simulation.
(CNAME must start in Column 1)
-------
TABLE 4.
RIVSCI INPUT
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
Control Card.
If both QUANTITY and QUALITY are punched, the program first carries out quantity then quality
analysis.
1-8
9-15
1-60
1-60
1-5
4A4
15A4
15A4
1015
ALPHA
TITLE
ISWCH(l)
none If hydraulic calculations are
to be carried out, write
QUANTITY.
none If quality modeling is to be
accomplished, write QUALITY.
IF QUANTITY ANALYSIS IS NOT
SELECTED SKIP TO CARD GROUP 24.
QUANTITY MODEL DATA.
Run title card, 2 cards.
none Two card title for run
Storm title card, 2 cards.
none Two card title for storm.
Control switches.
0 = 1, System is tidally in-
influenced,
= 0, System is influenced by
downstream head relationship
(dam).
-------
TABLE 4. (continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
6-10
OJ
to
21-25
26-30
31-35
ISWCH(2)
ISWCH(5)
ISWCH(6)
1-5 15
6-10 4F5.0
11-15
16-20
21-25
26-30 315
NTCYC
PERIOD
QINT
DELT
TZERO
NHPRT
(HR)
(SEC)
(HR)
none
none
none
none
none
none
NQPRT
none
=0, Print input channel and
junction data,
=1, Skip printing of input
channel and junction data.
= 0, calculate Manning coef-
ficient.
= 1, input Manning coefficient
(card 15)
= 1, ndntidal steady state
system
= 0, otherwise
Hydraulic control card.
Number of day cycles desired.
Number of hr/day cycle.
Length of quality time-step.
Length of hydraulic time-step.
Initial time for start of
hydrograph input from cards.
Number of junctions for tiine-
history printout.
Number of channels for time-
history printout.
-------
TABLE 4. (Continued)
u>
CARD CARD
# COLUMN
5 36-40
41-45
46-50
51-55
56-60
61-65
66-70
71-75
VARIABLE
FORMAT NAME UNITS
NPLT
3F5.0 EVAP (IN /MO)
WIND (MPH)
WDIR (DEC)
415 NQSWRT
NJSW
INRAIN
JGW
DEFAULT
VALUE
none
none
none
none
none
none
none
none
DESCRIPTION
Number of plots desired.
Evaporation.
Wind velocity.
Wind direction, clockwise,
degrees from North.
Day .cycle where printed output
will start.
Number of junctions of storm
water input from cards .
Number of points of rain
information.
Junction number where a head
1-10 8F10.0 RAIN(l) (IN/HR)
11-20 INTIME(l) (MIN)
none
none
relationship is specified.
IF INRAIN = 0, SKIP RAIN INPUT
CARDS 6 (maximum = 100).
Rain input cards, INRAIN pairs
of values, 8 per card.
Rate of precipitation.
Time from start of storm.
-------
TABLE 4. (Continued)
CARD CARD
f COLUMN
6 21-30
31-40
7
1-10
11-20
VARIABLE
FORMAT NAME UNITS
RAIN (2) (IN/HR)
INTIME(2) . (MIN)
8110 JPRT(l)
JPRT(2)
DEFAULT
VALUE DESCRIPTION
none
Etc., up to INRAIN points.
Junction selected for stage-
history printout, NHPRT values,
8 per card (maximum = 50).
none First junction number.
none Second junction number.
JPRT (NHPRT)
1-7
8-10
8110
CPRT(l)
CPRT(l)
none Last junction number.
Channels selected for flow
print, NQPRT values, 8 per card
(maximum = 50).
none Lower junction number at end of
first desired channel.
none Higher junction number at end
of first desired channel.
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
CO
1-10
11-20
8110
CPRT(NQPRT)
CPRT(NQPRT)
JPLT(l)
JPLT(2)
none Lower junction number at end of
last desired channel.
none Higher junction number at end
of last desired channel.
IF NPLT = 0, SKIP CARDS 9
(maximum = 50). Junctions
selected for head plot, NPLT
values
none First junction to be plotted.
none Second junction to be plotted.
JPLT(NPLT)
none
Last junction to be plotted.
-------
TABLE 4. (Continued)
CARD CARD
// COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
10
11
1-5
6-10
11-15
16-20
415
KO
NI
MAXIT
NCHTID
none
none
none
1-10
11-20
21-30
8F10.0 TT(1)
YY(1)
TT(2)
(HR)
(FT)
(HR)
none
none
none
IF ISWCH(l) = 0 ON CARD 4, SKIP
to 12; OTHERWISE INCLUDE CARDS
10 and 11.
Tide input control card.
If = 1 will expand from tide
points (HHW, LLW, LHW, HLW) for
tidal coefficients
Number of tidal stage data points,
(£50)
Maximum number of iterations for
curve fit, usually 50.
= 0, Skip tidal I/O print,
= 1, Print all parameters used.
Tidal stage card, NI pairs of
values 4 pairs/card.
Time of tidal stage, first point.
tidal stage first point.
Time of tidal stage, second
point.
31-40
YY(2)
(FT)
none
Tidal stage, second point.
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
11
YY(NI)
(FT)
12
13
1-10
11-20
21-30
1-5
6-10
8F10.0 Al
A2
A3
15
F5,0
J
HEAD(J)
(FT)
(FT)
none Tidal stage, last point.
SKIP TO 13 IF CARDS 10 AND 11
ARE REQUIRED.
Downstream head stage card.
none WEIR factor.
none Elevation of top of WEIR
(referenced to datum plane).
none Power law for WEIR. [FLOW=A1-
WIDTH*(HEAD-A2)A3 nominally
A1=3.33,A3=1.5]
REPEAT CARD 13 FOR EACH
JUNCTION (maximum = 100).
Junction cards
none Junction number
none Water surface-elevation
referenced to datum plane.
-------
TABLE 4. (Continued)
CARD CARD
ff COLUMN
VARIABLE
FORMAT NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
13
11-20 F10.0
u>
oo
26-30
41-50
76-80
14 1-5
15
AS(J)
21-25 2F5.0 QIN(J)
QOU(J)
31-40 2F5.0 DEP(J)
COF(J)
51-70 20X
71-75 2F5.0 X(J)
Y(J)
(MILLION FT ) none
(CFS)
(CFS)
(FT)
none
none
none
none
(THOUSAND FT) none
(THOUSAND FT) none
none
Surface area of junction (input
.if ISWCH(6) = 0 and NTEMP(3)
= 0 on card 15)
Junction flow into receiving
waters
Junction flow out of receiving
water
Junction depth (input if ISWCH
(6) = 0)
Junction Manning's coefficient.
(Blank unless NTEMP(3) ^ 0 on
card 15)
Leave columns blank
X-cpordinate (Blank unless
NTEMP(3) / 0 on card 15)
Y-coordinate (Blank unless NTEMP
(3) ^ 0 on card 15)
To terminate Junction Cards,
write 99999.
-------
TABLE 4. (Continued)
OJ
VO
CARD CARD VARIABLE
# COLUMN FORMAT NAME. UNITS
15
1-5 515 N
6-10 NTEMP(l)
11-15 NTEMP(2)
16-20 NTEMP(3)
21-25 NTEMP(4)
26-35 5F10.0 ALEN (MILES)
36-45 WIDTH (FT)
46-55 RAD (FT)
DEFAULT
VALUE DESCRIPTION
REPEAT CARD 15 FOR EACH CHANNEL
OR AREA (maximum = 100) .
Channel or area cards .
none Channel number.
none Junction at lower end of channel
none Junction at upper end of channel
0 Blank unless program is used to
develop geometric data. Junc-
tion which, with first two junc-
tions, forms an acute triangle.
Program will develop channels .
0 Blank unless it is a number of a
fourth junction which lies be-
tween a pair of previous three
junctions. Program will develop
geometric data.
IF NTEMP(3) IS SUPPLIED THEN
LEAVE COLUMNS 26-80 BLANK.
none Length of channel
none Width of channel
none Average depth of channel
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
15
16
17
18
19
55-65
66-75
1-5
1-72
1-80
1-8
9-16
17-24
15
18A4
20A4
6A4
COEF
VEL
TITL
HORIZ
VERT(l)
VERT(2)
VERT(3)
VERT(4)
VERT(5)
VERT(6)
(FPS)
0.018 Manning's coefficient (input if
ISWCH(5)=1)
none Initial velocity
none To terminate Channel Cards,
write 99999.
IF NPLT = 0 (CARD 5), SKIP TO
CARD 20.
Plot title card.
none 72 column title for plot output.
Plot horizontal label card.
none 80 column label below the x axis,
Plot vertical label card.
none Line 1 of the vertical label.
none Line 2 of the vertical label.
none Line 3 of the vertical label.
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
20
1-5
6-10
JSW(l)
JSW(2)
none
none
IF NJSW = 0, SKIP TO CARD GROUP
23 (maximum = 20).
Storm water input control card,
NJSW values.
First junction number.
Second junction number.
JSW(NJSW)
21
1-10
11-20
21-30
8F10.0 TE(1)
(SEC)
(CFS)
QE(1,2) (CFS)
none Last junction number.
REPEAT CARD 21 FOR EACH TIME-STEP
(maximum = 20 junctions).
Input hydrograph.
none Time of day
none Flow volume for first junction.
none Flow volume for second junction.
QE(l.NJSW) (CFS)
none
Flow volume for last junction.
-------
TABLE 4. (Continued)
CARD CARD
// COLUMN
FORMAT
VARIABLE
.NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
N>
22
23
1-10
F10.0 TE(1)
(SEC)
none
24
1-8
1-5
6-10
11-15
16-20
21-25
2A4 none
END OF QUANTITY DATA CARDS
1015
ISWCH(l)
ISWCH(2)
ISWCH(3)
ISWCH(4)
ISWCH(5)
ISWCH(IO)
0
0
Terminate input hydrograph cards
with TE(1) beyond expected time
of analysis.
Final data card.
Write ENDQUANT.
QUALITY MODEL DATA.
Control switches (1 is yes, 0 is
no)
Restart from scratch file 3.
Skip print of maximum and mini-
mum concentrations.
Write restart data on scratch
file 4.
Not used.
Tidally influenced receiving
water.
Use only first daily cycle on
input file. (set = 1 if ISWCH(6)
on card 4 is = 1)
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
25
26
1-5
1-5
6-10
11-15
16-20
15
1015
NTC
NJSW
ITCPRT
NQPRT
LQCPRT
IF NOT RESTARTING FROM SCRATCH
FILE 3 (i.e., ISWCH(l) = 0),
SKIP TO CARD GROUP 26.
Daily cycle card.
none Number of daily cycles desired.
THIS WOULD BE LAST CARD OF DATA
DECK IF ISWCH(l) =1.
Storm water and print card.
none Number of junctions with storm
water input from cards
(maximum = 20).
none Daily cycle at which detailed
quality information will print.
none Number of quality time steps
between printing out quality
results.
none Total number of quality cycles
printed (maximum—50).
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
27
28
1-5
6-10
11-15
16-20
1-10
11-20
21-30
31-40
15
blank
15
F5.0
110
NTC
NPRT
XRQD
NDAY1
F10.4 ELEV
F10.4 TEMPAV
F10.4 XLAT
(DAYS)
(FT)
(DEC)
Control parameters.
none Number of daily cycles desired.
none Print interval
0 Ocean exchange ratio at tidal
point.
0 First day of run (Jan. 1=1,
Dec. 31 .= 365) (needed only if
modeling phytoplankton)
0 Average elevation of system
referenced to sea level.
0 Average water temperature in
system.
0 Latitude of system (needed only
if modeling phytoplankton)
-------
TABLE. 4. (Continued)
Ul
CARD CARD
ff COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
29 FOR EACH JUNCTION READ A SET OF
29, 30, 31, 32, 33, 34 CARDS.
If card 29 is included for a junction, then cards 30, 31, and 32 must be included for that
junction, even if no values are specified on the cards (in which case the default values will
apply). In addition, if Card 29 is included and if the junction has a nonzero inflow, then
cards 33 and 34 must be included in addition to cards 30, 31, and 32, even if no values are
specified on the cards. If cards 29-34 are not included for a junction, all concentrations
for that junction are zero, and all parameters defined on card 30 assume their default values
for that junction.
Cards 38-44 must be included, even if the default values are satisfactory.
All equations referenced as (A.NN) may be found in Part III of Volume I.
30
1-5
1-6
7-12
13-18
19-24
15
F6.0
F6.0
F6.0
F6.0
I
BOOK (I)
BOOKS (I)
DOK2(I)
COLK(I)
(HR"1)
(HR"1)
(HR"1)
none
.008
0.
1.
.004
Junction number
BOD reaction coefficient (A.13)
BOD settling coefficient (A.12)
K2 coefficient(A.83)
Coliform reaction coefficient
(A. 7)
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
30 25-30
31-36
37-42
43-48
49-54
55-60
61-66
67-72
73-78
31 1-10
11-20
21-30
FORMAT
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F10.4
F10.4
F10.4
VARIABLE
NAME
NH3K(I)
N02K(I)
N03K(I)
P04K(I)
EXTK(I)
HM1K(I)
HM2K(I)
HM3K(I)
TEMREA(I)
C(I,1)
C(I,2)
C(I,3)
UNITS
(HR"1)
(HR"1)
(HR'1)
(HR"1)
(HR'1)
(HR"1)
(HR"1)
(HR"1)
(CENT0)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
.004 NH reaction coefficient (A. 26)
.015 N0? reaction coefficient (A. 31)
.0014 NO reaction coefficient (A. 37)
.0009 PO, settling coefficient (A. 75)
.04 Extinction coefficient (A. 51)
.004 Settling coefficient for HEAVY
METAL 1 (A. 2)
0. Settling coefficient for HEAVY
. METAL 2 (A. 2)
0. Settling coefficient for HEAVY
METAL 3 (A. 2)
TEMPAV Temperature
0. Initial DO concentration in
junction
0. Initial BOD concentration in
junction
0. Initial NH -N concentration in
junction
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
31 31-40
41-50
51-60
61-70
71-80
32 1-10
11-20
21-30
31-40
' VARIABLE
FORMAT NAME
F10.4 C(I,4)
F10.4 C(I,5)
F10.4 C(I,6)
F10.4 C(I,7)
F10.4 C(I,8)
F10.4 C(I,9)
F10.4 C(I,10)
F10.4 C(I,11)
F10.4 C(I,12)
UNITS
(MG/L)
(MG/L)
(MG/L)
i
(MG/L)
(MPN/100ML)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
0. Initial NO^-N concentration in
junction
0. Initial NO _-N concentration in
junction
0. Initial PO.-P concentration in
junction
0. ' Initial PHYTOPLANKTON concentra-
tion in junction
0. Initial COLIFORM concentration
in junction
0. Initial HEAVY METAL 1 concentra-
tion in junction
0. Initial HEAVY METAL 2 concentra-
tion in junction
0. Initial HEAVY METAL 3 concentra-
tion in junction
0. Initial TOTAL NITROGEN concentra-
tion in junction
-------
TABLE 4. (Continued)
oo
CARD CARD
// COLUMN
32 41-50
51-60
61-70
71-80
33
1-10
11-20
21-30
31-40
41-50
51-60
VARIABLE
FORMAT NAME
F10.4 C(I,13)
F10.4 C(I,14)
F10.4 C(I,15)
F10.4 C(I,16)
F10.4 MADD(I.l)
F10.4 MADD(I,2)
F10.4 MADD(I,3)
F10.4 MADD(I,4)
F10.4 MADD(IS5)
F10.4 MADD(I,6)
UNITS
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
DESCRIPTION
Initial CHLORIDES concentration
in junction
Initial HEAVY METAL 1 ION*
concentration in junction
Initial HEAVY METAL 2 ION*
concentration in junction
Initial HEAVY METAL 3 ION*
concentration in junction
IF JUNCTION I HAS NO INFLOW,
SKIP TO CARD 35
DO concentration in junction
inflow
BOD concentration in junction
inflow
NHi-N concentration in
junction inflow
NO--N concentration in
junction inflow
N00-N concentration in
junction inflow
PO.-P concentration in
junction inflow
-------
TABLE 4. (Continued)
vO
CARD CARD
# COLUMN
33 61-70
71-80
34 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
MADD(I,7)
MADD(I,8)
MADD(I,9)
MADD(I.IO)
MADD(I,11)
MADD(I,12)
MADD(I,13)
MADD(I,14)
MADD(I,15)
MADD(I,16)
UNITS
(MG/L)
(MPN/100 ML)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
DESCRIPTION
PHYTOPLANKTON concentration in
junction inflow
COLIFORM concentration in
.junction inflow
HEAVY METAL 1 concentration
junction inflow
HEAVY METAL 2 concentration
junction inflow
HEAVY METAL 3 concentration
junction inflow
TOTAL NITROGEN concentration
junction inflow
CHLORIDES concentration in
junction inflow
in
in
in
in
HEAVY METAL 1 ION* concentration
in junction inflow
HEAVY METAL 2 ION* concentration
in junction inflow
HEAVY METAL 3 ION* concentration
• ._ • . _ . i_._ • ^1 _
in junction inflow
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
. NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
36
16-20
15
IHEAVY
Heavy metal option
0 = model no heavy metals or
ions
N = model N heavy metals and
their associated ions
(N-1,2,3)
21-25
15
ITOTN
TOTAL NITROGEN option
0 = don't model TOTAL NITROGEN
1 = model TOTAL NITROGEN
26-30
15
ICHLOR
CHLORIDE option
0 = don't model CHLORIDES
1 = model CHLORIDES
31-35
15
INH
NH« reaction order
1 = 1st order
2 = 2nd order
36-40
15
IN2
N0_ reaction order
1 = 1st order
2 = 2nd order
41-45
15
IN3
NO- reaction order
1 = 1st order
2 = 2nd order
46-50
15
PO. reaction order
1 = 1st order
2 = 2nd order
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
37
Ol
to
1-78
1-78
13F6.0 (XLANGS(L), (LANGLEYS)
L = 1,13)
none
13F6.0 (XLANGS(L), (LANGLEYS) none
L = 14,26)
IF PHYTOPLANKTON IS NOT BEING
MODELED, SKIP TO CARD GROUP
38.
For each day being simulated,
the total number of Langleys
is input. Thirteen values per
card are input.
Langleys per day for the first
13 days of the run.
Langleys per day for the second
13 days of the run.
38
11-20
F10.4
THKCOL
1.07
21-30
31-40
41-50
51-60
F10.4
F10.4
F10.4
F10.4
ABOD
ARM
CHMOC
THKNH3
0.
0.
(MG/L) 20.
1.10
Temperature correction constant
for coliform (COL) reaction
coefficient (A.8)
Coefficient on BOD in COL
calculation (A.10)
Coefficient on HEAVY METAL 1
(HM1) in COL calculation (A.10)
HM1 concentration limit in COL
calculation (A.10)
Temperature correction constant
for NH.-N decay coefficient
(A.27)J
-------
TABLE 4. (C on t inued)
UJ
CARD CARD
// COLUMN
38 61-70
71-80
39 11-20
21-30
31-40
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
VOLITK
THVOLK
BODC
BOON
BODPC
DEFAULT
VALUE DESCRIPTION
.01 Exponent for NH.-N volitization
(A. 35) J
.17 Temperature correction constant
for NH.-N volitization (A. 35)
106. Carbon to phosphorus ratio in
BOD (A. 18)
16. Nitrogen to phosphorus ratio in
BOD (A. 19)
.5 Dry weight fraction of carbon in
BOD (A.18)
41-50 F10.4 BODOQ (MG 02/MG BOD) 1.5
51-60 F10.4 NOREFR
61-70 F10.4 GRMAX
(HOUR"1)
.5
.1
BOD - oxygen quotient (A.16)
Non-refractory fraction of BOD
(A.17)
Maximum fractional growth rate for
phytoplankton at 20° centigrade
(A.45)
71-80 F10.4 THGRMX
1.07 Temperature correction constant
for GRMAX (A.45)
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
40 11-20
21-30
31-40
41-50
51-60
61-70
71-80
41 11-20
21-30
31-40
41-50
51-60
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
CHMOA
HMKA
MP04
MIN03
M2N03
MNH3
ML
APR
NR
ASR
AND .
ATD
UNITS
(MG/L)
(MG PO.P/L)
(MG N/L)
(MG NH--N/L)
(MG NH3-N/L)
(LANGLEYS/MIN)
(HR'1 DEG.C"1)
(FT/HR)
(HR"1)
DEFAULT
VALUE
20.
.01
.03
.028
.045
.045
.03
.6
.0001
.05
.001
.001
DESCRIPTION
HM1 limit for phytoplankton
growth (A. 46)
HM1 coefficient for phytoplank-
ton growth calculation (A. 46)
Michaelis-Menton constant (A. 47)
Michaelis-Menton constant (A. 47)
Michaelis-Menton constant (A. 48)
Michaelis-Menton constant (A. 49)
Light intensity calculation
factor (A. 50)
Chlorophyll-A to phosphorus
ratio in phytoplankton (A. 57)
Phytoplankton respiration
factor (A. 63)
Phytoplankton sinking rate
(A. 68)
Fractional death for phytoplank-
ton (A. 72)
Phytoplankton toxic death coef-
ficient for HM1 (A.73)
-------
TABLE 4. (Continued)
Ul
CARD CARD
# COLUMN
41 61-70
71-80
42 11-20
21-30
31-40
41-50
51-60
61-70
71-80
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
BRRBOD (MG/M2-HR)
BRRP04 (MG/M2-HR)
BRRNH3 (MG/M2-HR)
BENOD (MG/M2-HR)
AHM2
AHM3
ATD2
ATD3
PIHM1
DEFAULT
VALUE DESCRIPTION
61. BOD benthal release rate (A. 79)
.125 P^A~^ benthal release rate
(A.78)
. 108 Nitrogen benthal release rate
(A.77)
15. Benthal oxygen demand (A. 81)
0. Coefficient on HEAVY METAL 2
(HM2) in COL calculation
(A. 10)
0. Coefficient on HEAVY METAL 3
(HM3) in COL calculation (A. 10)
0. Phytoplankton toxic death coef-
ficient for HM2 (A. 73)
0. Phytoplankton toxic death coef-
ficient for HM3 (A. 73)
0. Fraction of HMl in ion form
(A. 3)
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
43 11-20
21-30
31-40
41-50
51-60
61-70
71-80
44 11-20
21-30
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
PIHM2
PIHM3
CHM02C (MG/L)
CHM03C (MG/L)
v
CHMOA2 (MG/L)
CHMOA3 (MG/L)
HMKA2
HMKA3
THN03K
DEFAULT
VALUE
0.
o.
0.
0.
0.
0.
0.
0.
1.12
DESCRIPTION
Fraction of HM2 in ion form
(A.3)
Fraction of HM3 in ion form
(A.3)
HM2 concentration limit in COL
calculation (A. 10)
HM3 concentration limit in COL
calculation (A. 10)
HM2 limit for phytoplankton
growth (A. 46)
HM3 limit for phytoplankton
growth (A. 46)
HM2 coefficient for phytoplank-
ton growth calculation (A. 46)
HM3 coefficient for phytoplank-
ton growth calculation (A. 46)
Temperature correction constant
31-40 F10.4 THP04K
for NO_-N decay coefficient
(A.38)J
1.084 Temperature correction constant
for POA-P settling coefficient
(A.76.1)
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
45
1-5
6-10
1615
JSW(l)'
JSW(2)
none
none
IF NJSW i 0 ON CARD 26 INCLUDE
CARD GROUPS 45 AND 46.
Storm water input, NJSW VALUES
(maximum = 20).
First junction for storm water
input.
Second junction for storm water
input.
46
1-10 8F10.0 TE
11-20 CE (1,1,D
21-30
JSW(NJSW) none Last junction for storm water
input.
THE LOAD RATE OF EACH CONSTITUENT
INTO EACH OF THE NJSW JUNCTIONS
IS INPUT FOR EACH TIME.
(SEC) none . Time of day
(LBS/DAY) none DO load rate into storm water
junction 1
CE(1,2,1) (LBS/DAY) none DO load rate into storm water
junction 2
-------
TABLE 4. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
1-10
CE(1,NJSW,1) (LBS/DAY)
CE(2,1,D (LBS/DAY)
none
DO load rate into storm water
junction NJSW
BOD load rate into storm water
junction 1
1-10
CE(3,1,1) (LBS/DAY) none
NH,-N load rate into storm
water junction 1
Ui
oo
Repeat for N02~N, N03~N, PO^-P
phytoplankton, coliforms, HM1,
HM2, HM3, N, chlorides, HMll,
HM12, HM13.
-------
TABLE 5.
DEFINITION OF CONSTITUENT SELECTION OPTION, ICOMB (FOR CARD 36 OF TABLE 4)
ICOMB
DO
BOD
NH3-N
K02-N
N03-K
PO^-P
PHYTO-
PLANKTON
1 2 3 4 5 67 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23
XXXXXXXXX XXX XXXXX XXXXX
XXXXX XXXX XX
XXXXXX XXXX XX
XXX XX X
XXXXXXXXX XXXXXX XXX
XXX X XXX XXXXXX X
XX X XXX
X indicates that the constituent will be modeled under the indicated ICOMB option.
-------
SECTION VI
PROGRAM VARIABLES
A listing of Receiving Water Program variables may be found in Table 6-2
on pages 319-325 of Reference [3]. The following variables in that table
are now dimensioned in RIVSCI as follows:
C(J,16), CE(16,20,2), CMAX(J,16), CMIN(J,16), CS(16),
CSPIN(J,16), CT(16,20,2), DCDT(J,16), MADD(J,16), SUMC(J,16)
The following variables in that table are no longer used:
CPP, CPPOX, CSAT, CTT, CTTOX, C2, DECAY, ICON, REAER
With these exceptions, Table 6-2 on pages 319-325 of Reference [3]
remains valid for RIVSCI.
The additional quality-related common variables used by RIVSCI are
defined in Table 6. The additional quality-related local variables are
defined in Table 7.
61
-------
TABLE 6.
QUALITY-RELATED COMMON VARIABLES
VARIABLE
COMMON/CONBEG/
DO
BOD
NH3
N02
NO 3
P04
ALG
COL
HM1
HM2
HM3
HM
TOTN
COMMON/CONEND/
DOE
BODE
NH3E
N02E
N03E
P04E
DESCRIPTION
Initial DO concentration for GETCON
Initial BOD concentration for GETCON
Initial NH»-N concentration for GETCON
Initial NO -N concentration for GETCON
Initial NO -N concentration for GETCON
Initial PO.-P concentration for GETCON
4
Initial algae concentration for GETCON
Initial coliform concentration for
GETCON
Initial HM1 concentration for GETCON
Initial HM2 concentration for GETCON
Initial HM3 concentration for GETCON
Initial HM concentration for GETCON
Initial N concentration for GETCON
Final DO concentration from GETCON
Final BOD concentration from GETCON
Final NH_-N concentration from GETCON
Final NO--N concentration from GETCON
Final NO_-N concentration from GETCON
Final PO.-P concentration from GETCON
UNITS
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MPN/100ML
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L,
MG/L
MG/L
MG/L
MG/L
62
-------
TABLE 6. (Continued)
VARIABLE
DESCRIPTION
UNITS
ALGE
COLE
HM1E
HM2E
HM3E
HME
TOTNE .
COMMON/CONST/
Final algae concentration from GETCON MG/L
Final coliform concentration from MPN/100ML
GETCON
Final HMl concentration from GETCON MG/L
Final HM2 concentration from GETCON MG/L
Final HM3 concentration from GETCON MG/L
Final HM concentration from GETCON MG/L
Final N concentration from GETCON MG/L
Variables in CONST are defined in Table 4, card groups 38 through
44.
COMMON/LANG/
XLANGS(325)
COMMON/MISC/
XLAT
NDAY1
COMMON/OPTION/
IFN
IK2
ICOL
Total Langleys per day LANGLEYS
Latitude of region being modeled RAD IMS
Julian date of first day of quality
run
Algae (phytoplankton) growth function
option
0 = growth limited by NO_-N concentration
1 = growth limited by NH,-N concentration
2 = growth limited by maximum of NH--N
and NO -N
Not used
0 = don't model coliforms;
1 = model coliforms
63
-------
TABLE 6. (Continued)
VARIABLE
DESCRIPTION
UNITS
ICOMB
INH3
IN03
IP04
IALG
IFIRST
COMMON/OPT2/
IHEAVY
ITOTN
ICHLOR
COMMON/OPTS/
IP
INK
IN2
IN3
constituent selection option (see
Table 3)
0 = don't model NH -N;
1 = model NH -N
0 = don't model NO--N;
1 = model N02-N
0 = don't model NO.-N;
1 = model NO -N J
0 = don't model PO.-P;
1 = model P04-P
0 = don't model algae;
1 = model algae
Logic flag for GETCON
= I means model I heavy metals
0 = don't model total nitrogen;
1 = model N
0 = don't model Cl~;
1 = model C12
= I means model PO.-P with I'th
order reaction
(I = 1 or 2)
= I means model NH.-N with I'th
order reaction
(I = 1 or 2)
= I means model NO -N with I'th
order reaction
(I = 1 or 2)
= I means model NO--N with I'th
order reaction
(I = 1 or 2)
64
-------
TABLE g. (Continued)
VARIABLE
DESCRIPTION
UNITS
COMMON/PASS/
TOTL
Total Langleys for the day being
considered
LANGLEYS
DAWN Sunrise for the day being considered HOURS FROM
MIDNIGHT
DUSK Sunset for the day being considered HOURS FROM
MIDNIGHT
COMMON/RCHVAR/
Variables in RCHVAR are. defined in Table 4, card group 30.
COMMON/TEMPER/
TEMPAV Average water temperature for system °C
TEMREA(J) Temperature for junction J °C
SATREA(J) DO saturation level for junction J MG/L
65
-------
TABLE 7.
QUALITY-RELATED LOCAL VARIABLES
VARIABLE
DESCRIPTION
UNITS
SUBROUTINE GETAVI
AREA
Area under a portion of the curve in
Figure 7
DAY Hours of daylight
D4 One fourth of daylight hours
Tl t{ (see GETAVI description)
T2 t. (see GETAVI description)
SUBROUTINE GETCON
ARR Algal respiration rate
BODMC BOD convertible to inorganic forms
BODMTL BOD material in BOD decay
BODNWR BOD nitrogen weight ratio
BODWT BOD weight
DALND Algae change due to natural death
DALTOX Algae change due to toxicity
DN Nitrogen demand due to algal growth
DOBEN Benthal DO demand
DOD DO reaeration change
FACHMl Heavy metal factor on coliforms and
algae reactions
FACHM2 Heavy metal factor on coliforms and
algae reactions
HOURS FROM
MIDNIGHT
HOURS; FROM
MIDNIGHT
HOUR
MG
MG/L
MG/L
MG/L
MG/L
MG/L
66
-------
TABLE 7. (Continued)
VARIABLE
DESCRIPTION
UNITS
FACHM3
FL
FLIM
FN
FNH3
Heavy metal factor on collforms and
algae reactions
Algal growth limitation function due
to light
Minimum of FL, FN, FP
Algal growth limitation function
due to nitrogen
Algal growth limitation function due
FN03
FP
GRLIM
IBAR
NOUT
OSAT
TCOR
IT
SUBROUTINE
AVINT
NCNO
SUMFLO
SUMVEL
VEL JUN
to NH.-N
Algal growth limitation function due
to N03-N
Algal growth limitation function due
to PO^-P
Total algal growth limiting function
Maximum light intensity
Output unit number
DO saturation level
Temperature correction term
Temperature
LOOPQL
Average light intensity during time
step
Channel number
Sum of channel "flows"
Sum of channel velocities
Average velocity for junction
LANGLEYS/MIN
MG/L
°C
°C
LANGLEYS/MIN
L. ")
FT /SEC
FPS
FPS
67
-------
TABLE 7. (Continued)
VARIABLE
SUBROUTINE
ELEV
TEMPAV
XCK
XDOK
XEX
XNH
XN2
XN3
XNP
SUBROUTINE
I)
DAY
SS
SR
RESCRIPT TON
NEWIN
System elevation
Default temperature value
Default coliform reaction coefficient
Default reaeration factor
Default extinction coefficient
Default NH«-N reaction coefficient
Default NO -N reaction coefficient
Default NO_-N reaction coefficient
Default PO.-P reaction coefficient
SUN
d (see SUN description
Julian day number
Sunset
Sunrise
IFNTTS
FEET ABOVE
SEA LEVEL
°C
HOUR"1
FEET"1
HOUR"1
HOUR"1
HOUR"1
HOUR"1
HOURS; FROM
MIDNIGHT
HOURS FROM
MIDNIGHT
SUBROUTINE SWQUAL
CHK
ICONV
Array of previous concentrations used
for convergence check
0 = quality convergence has not occurred
1 = quality convergence has occurred
68
-------
SECTION VII
SAMPLE INPUT DECK
Figure 13 shows an example discretized system prepared for RIVSCI. The
system depicted is River Region 2 (Main Stem and South Fork of Coeur
d'Alene River and Hangman Creek) of the Spokane River Basin. A sample in-
put deck for River Region 2 to simulate conditions during September, 1969
is presented in Table 8. Numerous point source and infiltration flows
are modeled. Three municipal outfalls are modeled (two of them flow in-
to junction 9). There is no storm inflow and all junction tributary in-
flows are steady-state. Nominal values of all reaction coefficients are
used with the exception of NEL-N volitization, benthal oxygen demand,
and benthal BOD release. DO, BOD, NH--N, NO--N, PO.-P, zinc, and
chlorides are modeled. Portions of the resulting output are presented
in Table 9.
69
-------
T
s-
Ll.
I—IT
I I I I I I I I I I I I I
n::
MM
_1JJ
*•
FLOW
L_J_
WEIR
Chennel
| j Junction (all adjacent half-channels)
I J
FIGURE 13. SAMPLE RIVSCI NETWORK
70
-------
TABLE 8. SAMPLE INPUT
STORM WATER RECEIVING MODULE
1
0 24
21 22 23
RECEIVIN
GUANT1TYQUALITY
RECEIVING »»TER MODULE
SYSTEMS COMTHOL. INC, SPOK4ME BASIN
RIVER REGION 2
0 0
6 24.
1
1 2
9 10
17 18
25 26
533.46
tOBOO,
24150,
33400.
43816.
53400.
62766.
72560.
82430.
92340.
102266,
112236.
122187,
132487,
142462.
152400.
162367,
172279,
182243.
192220.
202190,
212163.
222160.
232141,
242137.
252136.
262133.
272130.
282128.
\
1. 300.
a
2 3
10 11
18 19
26 27
2127.23
. ._ .
0.
7.0
14.0
6.0
6.0
15.0
6.0
t.O
24.0
.5
*.
6.0
6,0
93,0
4,0
24.0
20.0
8.0
24.0
16.0
44.0
0.0
1.0
4.0
6.0
4.0
12.0
2.0
0.0
1
6
6
3 6
11 12
19 20
27 28
1.5
-.
999999999999999
1 1
2 2
3 3
4 4
5 5
6 6
7 T
8 8
9 9
10 10
11 11
12 12
13 13
2
3
6
5
6
7
8 .
9
10
It
12
22
14
27
0
13
4 5
12 22
20 21
0,
0,
22
5 6
13 14
21 22
. 1
28
6 7
14 15
22 2?
28
7 8
15 16
23 20
8 9
16 17
24 25
4.1
5.5
5.5
2.2
4.0
4.7
3.2
2.3
2.0
1.8
2.8
2.3
2.0
10,
20.
22.
10.
20.
34.
34.
36.
34.8
«9,3
38,5
36,4
112,1
.44
.57
.66
.40
.58
1.03
1.03
1.25
1.3
1.4
1.8
1.9
0.9
.10
.09
.09
.10
.10
.09
.08
.08
0,07
0.08
0.09
0.08
0.07
.59
.84
.86
.50
.81
.56
.67
.87
.97
.36
l.ST
It4l
.93
71
-------
0 1 12 50
a i
244 22SO,
1
9,5
9.5
2
9.5
9,5
3
9,5
1,
9.5
,1
4
9,5
9,5
5
9.5
«,o
9,5
4.0
6
9, a
1.5
9,8
1.5
10.1
2.5
1.3
1.3
1.3
1.1
1.3
0,0
1.3
UJ
1.3
1,4
0.0
1.4
1.4
0,0
1.4
0.0
1.6
0,0
17.5
.07
.07
.07
.07
.07
0.0
.07
.07
.07
.07
0.0
.07
.07
0.0
.07
0,0
.07
0,0
46,
,003
,003
.003
,003
.003
0.0
.003
.003
.003
.003
0,0
.003
.003
. 0.0
.003
0.0
.003
0,0
1
.24
,24
. ,24
.24
.24
0,0
,24
.80
,80
.80
0,0
.80
,58
0,0
.58
5,0
.13
.50
t
.12
.12
.12
.12
.12
0.0
.12
.03
.03
.03
0.0
0.0
.03
0.0
.03
0.0
.13
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0,0
0,0
0.0
0.0
0,0
0,0
0,0
0,0
0,0
e.o
0.0
0.0
8.0
0,0
0,0
8.
0.0
R.O
o.o
8,0
0,0
0,0
6.0
0,0
0,0
0,0
a.
0,0
0.0
0.0
0.0
8,6
0.0
0,0
72
-------
9,8
2,3
8
10,3
1.5
10.3
2.0
9
7,9
1.2
8,0
2.0
10
9.8
2.0
9.8
2.0
11
e.7
la.o
8,7
310.
U
8.7
7,0
e.7
7,0
13
9,1
9,1
14
9,1
9,1
IS
9,1
9,1
16
8,9
8.9
17
9,J
35,
1.7
0.0
1.7
1.9
0.0
}b.
1.5
0.0
1.5
1.6
0,0
1.6
1.6
1.6
1,0
1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.7
.07
.07
0,0
.07
.07
0.0
.07
.07
0.0
.07
.07
0.0
.07
.07
.07
.07
.07
,07
,07
.07
,07
.07
.07
.07
.003
.003
0.0
.003
.003
0.0
.003
.003
0,0
.003
.003
0.0
,003
.003
,003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.3)
.2
-------
9.5
18
8,8
6,8
19
8,8
8.8
20
8,8
8.8
21
8.8
22
8.6
7.0
8,6
7,0
21
9.2
4.7
9.2
10.
8.9
6.0
8.9
25
9.3
3.0
9.5
10,
26
9,5
5.7
9.X
27
9.J
2.6
9.J
28
9,3
2,6
999
0 0
1.7
.5
.5
.5
• 6
1.5
.6
1.1
0.0
1.1
1 .2
1.2
1.2
20.
1.4
20.
1.6
20.
1.6
0.0
20.
1,6
0,0
2 t
.07
.07
.07
.07
.07
.07
,70
.07
.07
s.o
,07
.07
.07
.07
.0?
.09
.09
.09
,09
,09
0.0
.09
.09
0.0
0 1
.003
.003
.003
.003
,003
,003
.003
.003
.003
G.G ..
.003
,003
,003
,003
.003
,003
.003
.003
,003
,003
0.0
.003
.003
0.0
1 1
0,0 •
0,0
0.0
0.0
0.0
0.0
0,0
.12
0.0
.12
.24
.24
,05
.05
,24
,24
.12
.12
0,0
l.S
0.0
0,0
l.S
1 3
.02
.02
.02
.02
.03
.04
.06
.7
0.0
.7
,16
,16
,01
' ,01
.45
,45
.25
.25
.06
0.0
,06
.Oh
0,0
13,7
14.0
Ifl.o
11.0
14.
0.0 0.0
0.0 0,0
0.0 0.0
15.
16.
0.0 0,0
16. (I
0.0 0.0
16.
-------
SECTTON VIIT
SAMPLE OUTPUT
Portions of a sample RIVSCI output are presented in Table 9. The output
results from the input deck listed in Table 8 and is generally self
explanatory. No storm runoff is modeled. The quantity integration time
step size is five minutes. The integration time step for the quality
portion is one hour. Hydrodynamic convergence is reached after two days.
The channel lengths are such that in no channel does a particle of water
move completely through the channel in one quality time step. Quality
convergence is reached in six days.
75
-------
TABLE 9. SAMPLE OUTPUT
RtetiviNS
Oh
MTEK MANAGEMENT
"UOlFlED (•OR USt ON SPOKANE RIVE1* BASIN BY SCI
SERttS NO. t
$TO»h a»tFH RFCFIVINC MODULE
fcVE" »-! FLO* a -.OOCfS
AVAILABLE MAX. TRUNK CAPAClTT • -.OOCFS
STORMS SlUDltOl TOTAL RAINFALL' INCHES
O\
-------
HfF IS$IGN>
-------
SYSTt«S cnr 0. OtCHFtS rHOM NOHTH
•.RITE tvcu STASIS AT m i U*E CTCLE
NO PKFCTPITAIION INCUT
AT T«t K>ULO>U»S
1 4 6 13 71 ?»
»»!U fflK IHt h"LLO*IH(» £1 C"«'>tlS
1002 ia*} 30"'' 100% 5006 *007 7008
»OtO l«ull 110t/! 1?0?2 U01" l"01b 150)6 16017
1701B l^Ol' I'O^O
-------
(FT)
KIOTM
(FT)
3
a
5
*>
7
R
4
10
11
1?
13
1"
15
1*
17
1"
1°
20
21
27
?!•"<*. lit.
Zw.iufl. 20.
?«)fl.1. 22.
11M*>. 10.
?112C. 2«.
1 JTKO.
11?.
US.
117.
l<>3.
125.
19.
101 .
117.
115.
i n.
121.
."77
.**?.
.«•/*
.n/3
.0/2
.171
.«uP
."77
."17
.11"
."1*
.OSO
.'•us
.!>«!
.(147
VtLOClTY
1.5°
l.na
, <*u
.03
.03
, v«,
,07
.7">
.7"
.!>•>
MYU H>UlUS
(FT)
.7
.4
.0
1.0
1.0
1.1
1.1
1.4
l.B
.1
.0
.1
.2
.1
. 4
• O
.n
2.B
2.7
U.O
1.0
u.l
JUNCTIONS
i
?
*
^
a
S
A
7
*
9
10
11
12
13
1«
15
1»
17
It
19
20
21
22
23
20
2?
2*
27
»T
Z
3
5
6
7
A
9
10
11
1?
2?
ia
15
!«•
17
1*
19
2<>
21
2?
23
21
25
2*
27
20
h«X INT
991.
1738.
8«0.
7*8.
t>Bi.
612.
B?g.
?OP6.
10«6.
3012.
15*0.
9?2.
1552.
1 1"0.
5S2.
111/.
ma.
."03*.
22«9.
-------
INITIAL MfcAB SUHF»et A"t» IlfUT OUTPUT
CFT) i!0*«t fta 1-TJ COM (CFS)
0 .11 7. -0.
2 aiio.no .«« la. -o.
3 30on.no .61 6. -0.
a jBiA.no .06 6. -u.
5 juon.no .27 15. -0.
7 iS6f.no ./I 1. -0.
P iiU iO * 00 • ^ 1 2u •• "0 •
» i3un.no ,«0 . 1. -0.
10 i?bfc.no .u? 9. -0.
11 i^Jfc.no .5' 6. >o.
1? ilt>7.no .bl 6. -0.
H ias7.no .5<> 9J. -0.
Ifl £062.00 i.CO U.. *0.
15 iUOt.no 2-?9 2a. —0.
Ifc 2367.no J.i7 ?o. -0.
17 i?y>.no J.7» 8. -0.
1" i2iO.no 2.10 16. -0.
in itvn.no 2.U9 aq. .0.
il iloj.no 1.61! 0. -0.
i? i!6n.OO 2.10 1. -0.
21 iiut.no u.7? a. -0.
£U ilJ7.no u.t>n (,. -u.
-------
InC. SPOMNF H»SIN
00
l)»v is t
UQ|IH
.00
1.00
2.OP
i.O"
U.tn
7.0"
a. co
V.O"
10. 0«
ii.cn
12. fin
l.J.(,n
1«.00
Ib.OO
.In.uO
l/.cn
1B.U"
19.00
20-Ofl
21. Of
HtVFH HEUTO" 2
-I-"*? C*- 1* 1 1
uH.no.
o M n 0 . o n i ft
TJHt HISTORY OF S T » G E
JUNCTION tt JUNCTION 6
JS16.017'
MJI6.0175
'Jul b.
T -SI 0.0(16^
JCI'j. '|
5" I
in
?l>-0. tilt
. 173C
2 7*10.
JUNCTION ' U
nE»0(FtE1J
2«A7.0000
2«H7.003»«
2(FtET)
21*10.0000
2159.90^5
2159. V»S$
JUNCTION 2«
HEACC^EFT)
812B.OOOO .
7128.0020
2120.0C32
?a«7.o077
2197. Olo9
2o.aion
2lt<0.023?
2l2t.OObS
2l?o.00')5
21'c.OOSS
?!?<:. 00-j?
2120.00^0
21?6.00iJ
-------
SY.STt«S
uO"Ul.t
INC, SfOKtNF BASl'l
NIVfH
DAY IS I
00
N3
KOU"
.00
1.00
2.on
3.00
0.00
5.on
A.uO
7.on
d.OO
9. t ft
10.cn
11.00
12.00
13.00
lo.oo
17.0 n
18.on
19.00
2u.on
2i.on
CHAKNtl
7,
7.
7.
7.
7.
7.
7.
7.
7.
7.
I,
I.
7.
7.
7.
7.
7.
7.
7.
1
VEu.
T I M f t. 1 s T 0 H Y
tr>s?
t.ab
l.SO
'!M
l.Sl
l.Sl
t.si
l.Sl
l'.Si
l.Sl
1.S2
l.S?
USj
1.S4
r.s3
1.S3
I.Si
l.Sl
1.S2
1.52
n.
21.
21.
21.
2".
2n.
21.
. 20.
1.60
1.69
.71
.72
.73
.70
.70
,/a
.70
.73
'.72
.71
.71
.71
./I
.71
.71
.71
.7?
.73
l!70
1.V3
CHANt'tl 3 A
HOW VKL.
CChS) IH«S)
0.
25.
25.
25.
25.
26.
27.
27.
2a.
2P.
2«.
2U.
2o .
i>&.
2t>.
2c*.
2o.
?h.
?o.
28.
.HA
.71
.71
.72
.73
.75
.76
.77
. '9
.•'0
.10
.•'0
. •* 1
."I
• "1
. * I
• *0
.J0
.79
.'a
2 / , 1.7^
27. 1 . '6
2o. 1 . 7b
2e. 1.70
26. |.?0
CHANNEL 1 5
Fi^fv VLL.
(IFS1 CfPSl
0 .50
6
6
A
6
6
6
6
A
A
6
A
6
A
A
A
A
A
6
A
A
A
i.
A
A
.01
.03
.00
.00
.03
.02
.02
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.01
.02
1 .02
1 .43
1 .03
CHANNtl 5 6
FLOW vn..
(CKS) (FfS)
0. 1.31
20. J.A7
20. 1.66
20. !.7o
21.
21.
21.
22.
22.
22.
22.
22.
22.
22.
'2.
?2.
22.
• 71
.72
.73
.711
.70
.7i
.75
.7U
.74
.70
.7li
.74
,7u
22. 1.7u
21. 1.73
21. 1.72
21, 1.72
21. 1.71
21. 1.7o
20. 1.70
20. 1.6V
CHANNEL
FLO"
(CFS)
0.
52.
51.
5"..
50.
50.
50.
50.
51.
52.
52.
S3.
53.
S3.
53.
53.
S3.
SO.
5S.
56.
5A.
SA.
S*>.
56.
5A.
6 7
VtL.
((•PS)
1.56
1 .09
1.08
l.oft
l.oT
1.07
1.07
1.0S
1.0*
1.49
1.50
1.50
l.Sl
l.SO
1.50
1.51
1.51
1.52
1.53
1.50
1.5«
1.50
1.50
1.50
1.50
26. 1.78
1.4?
20.
1.73
51. 1.51
-------
"ATK9
SYSTt"S CONTHnU iNf.. SPOKANE BASJ"
oo
co
RIVfR KEGION f
0«T IS t
MPU9
.00
1.00
2.00
3.00
o. 00
5. CO
6.01
7. OP
ft. 0"
9.0"
10.00
11.00
12.00
13. CO
14.00
,.15.00
lo.oo
17.0"
16.00
19.60
20.00
?1 .on
22. v"
23. uo
24.00
CMiNUtl
H (I*
iri-s)
0.
*(>.
VS.
S5.
5u.
Si.
Si.
52.
SH.
Si.
Sa.
S,.
57.
S7.
s...
ss.
53.
S2.
S*.
S3.
54.
55.
So.
S6.
S5.
* TIM* HIS
7 6 CHANNEL
vF[_. FLP*
IK'S) (<>'!>>
.*7
.«!9
.S<»
.5"
.S(,
.s/
.56
.55
.55
.So
.57
.S9
.M
.M
.'•a
,s«
.s/
.Si>
.56
.57
.s*
.S9
.59
1.59
1.SV
e.
7°.
7B.
7".
7".
7°.
79.
77.
75.
73.
If.
73.
7*.
79.
82.
83.
6?.
80.
7«.
77.
77.
7*.
80.
81.
81.
** .^ A
M fl U &
i n p T
TOHY u* r u u <• « ?« v ...*«««.,,
B « CHiMNtL 9 10 CHANNEL 10 11 Cti»NNtL 11 12 CHANNFL 12 22
Vtl . KlO" VFL- F^0; Vtt. KLO'-i vEL. F\.C* VtL.
(I-PS) (C^S) (fPS) Ct^SI (F<"5) (CKS) CPt'S) (C^S) (FPS)
J.e7
. 7B
. 7»> *
.^7
.77
.76
.77
.7*
.7«
.72
. 72
.73
.75
./«
.81
.81
.BO
.7°
.77
.7*
.7*
.77
1.7"
1.00
1.79
0.
• *
nrf»
** i •
7b.
77.
7*.
79.
PI.
"1.
1*.
« /
'I.
74.
73.
74.
77.
eo.
P2.
*3.
81.
7B.
76.
76.
77.
79.
82.
.*>7
RT
• ~ i
M'
."2
.*!
.«2
."3
.*4
.Da
.«3
• n
• "0
.78
.77
.78
.?!
.AD
,»6
,«6
.««
."2
.CO
.BO
.fi .
.»3
.86
0.
91.
93.
91.
8ft.
85.
84.
B5.
86.
87.
8A .
87.
8*.
65.
85.
8«.
89.
91.
93.
92.
90.
87.
85.
BO,
86.
1.3fc
.31
.34
.33
.31
.29
.29
.29
.30
.31
.31
.30
.30
.29
.29
.30
.31
.33
.31
.33
1.32
1.30
1.29
1.29
1.30
0.
96.
98.
too.
100.
99.
97.
95.
93.
92.
91.
91.
91.
91.
90.
00.
91.
92.
94.
96.
97.
97.
9e.
9u.
93.
.37
.36
.33
/!•»
.39
.38
.37
.35
.Mt
.34
.31
.34
.33
.33
.33
.33
.33
.34
.15
.3e
.37
.37
.3e
1.35
1.35
9.
97.
»9.
loo.
102.
tu3.
100.
103.
102.
101.
UO.
100.
99. .
. . It.
98.
•/1 7..
97.
. 97.
' If.
99.
too.
101.
102.
102.
101.
1.41
.40
.41
.4?
.43
.43
.43
.43
.41
.42
.4)
.41
.41
.CO
.40
.40
.39
.40
.40
.41
.41
.42
1.4?
1.42
1.42
52.
75.
1.77
76.
1.83
80.
1.31
91.
1.35
96.
1.41
-------
PtftlVlNS «*TS;R MODULI
SVSTfS CONTHfli., INC. SPOKtNE B»SIM
RTYFK HEllIO'! 2
SEPTt"t»ER.19&9
U»Y IS 1
00
H"uR
.00
1,00
2.00
3.00
0.00
5.00
o.OO
7.00
0.00
4.00
.to.oo
u.oo
12 . uft
13.00
IO.G"
15.00
16.00
I/. 00
1 6. 0^
19.09
20-00
21.0«
22-00
2J.GO
24. CO
CH»HMhl 1J |a CMA
H.'JW yFL.
(OS) (FHS)
0. .93
Q3. .92
9 *« .9?
9j. ,92
"3. ."2
°J. .92
93. ."2
13. .92
°3. .'2
°4. .°2
°i. .''2
95. .9^
°3. .92
93. .02
"3. .'2
9i. .9;;
0 *• .'2
0 j. ,O^
'3- .92
"3. .9^
O j. .Qj
0 1 • . ° i1
«j. .«,»
9j. ."i
93. ."2
89. .92
H 1
NNFL
FL"C
0.
96.
96.
96.
97.
97.
9?.
98.
98.
98.
98.
9W .
98.
98.
98.
98.
97.
97.
97.
97.
96.
96.
96.
9h.
96.
•93.
S T 0 K
1" 15
Vtl .
CF"51
.90
.92
.93
.93 •
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
.93
• 93
.93
.93
.93
• 93
.93
• 93
.93
' .93
.93
Y OF f L 0 «
CMAN'ILL 15 !6
PLUw vJ-'L.
(CFS) (FPJi)
0.
lit).
its.
lib.
lib.
lib.
lie.
119.
119.
120.
120.
121.
122.
122.
123.
123.
123.
123.
123.
122.
122.
122.
122.
121.
.03
.01
.01
.01
."I
.01
.01
.01
.01
.02
."2
."2
.02
.02
.02
.02
.03
.03
.03
.02
.02
.02
.02
.-12
.•12
116. 1.02
AND VEIOC
CHANNEL 16 17
FtOH VtL.
(CFS^ CFPS)
0. 1.09
100.
103.
102.
101.
100.
100.
139.
138.
138.
138.
137.
138.
138.
138.
139.
139.
too.
1«1 .
.101.
102.
1«2.
102.
103.
.07
.07
.06
.0*
.06
.05
.05
• 05
.05
.OS
.05
.05
.05
.05
.05
.05
.06
.06
.06
.06
.06
.06
.06
1«3. 1.06
135. 1.06
CHANNEL t7 is
FLO" vl-l.
CCKS) (FrS)
0. 1.03
153. 1.02
150. 1.12
15S. 1.02
iSi. 1.02
15S.
151.
153.
152.
151.
150.
109.
lOtt.
1"7.
106.
I0b.
lOb.
1 oi .
105.
106.
106.
107.
107.
l"t).
109.
.02
.02
.02
.01
.01
.01
.00
.00
.CO
.no
.00
.00
.99
.00
.00
.00
.00
..00 .
.00
.01
103. 1.01
CHAVN^L 18 19
r\.o* vti..
fCFS) CKPS)
0.
171.
172.
170.
176.
1 /7 .
178.
179.
179.
179.
1/9.
178.
177.
1/6.
173.
173.
1 M.
170.
169.
1 69 .
.00
.03
.03
.QO
.00
.00
.05
.05
.05
.OS
.05
.00
.00
.00
.00
.03
.03
.03
.02
.0?
168. 1.02
lo». 1.0?
1b9. 1.C2
169. J.c?
170. 1.03
167. 1.01
-------
WATER
SYsTt«S CDNTKOL« INC.
Sr>OKANE BASIN
HTVF-K NFGTON ?
SFPTtMBEI<«1969
[JAY is t
oo
in
Hn°"
.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
S.OO
10. OC
11.00
12.00
13.00
14.00
15.00
lu.CO
17.0"
16.00
19.00
?o.oo
21.00
?t . 00
23. CO
?U.OO
tPAf.ES
CHAN'IM 19
M ij--1 v?
0.
!««•.
1»6.
I'l.
1«7.
1B'J •
1«9.
19fl.
1Q1*
lnli
194.
Iq4 .
1««.
1° J .
1Q3.
1",!.
'M •
"0.
«ii.
M7.
«•,.
1 **•>.
1^5.
1««.
1*2.
T 1
?0
."o
.05
.OS
.05
.05
."5
.05
.00
.06
!o"
Io?
.07
.07
.07
.00
.06
,A6
.nc
.05
.05
.05
l.OS
1 .04
1.04
1.06
TORY
0 2!
VI' .
.07
.u*
.0*
• 0*
.'I*
• 0*
.0*
.0*
.04
1.0*
1.0*
1.07
.07
.1)7
.07
.07
.07
.07
.07
.07
1-0*
1 .0*
l.v*
1.0*
OF F L 0 N AND VELOCITY **
[•HiKNtL ?1 ?2 CHANNEL 2Z 23 CHANNEL ?
FLO*1 VfL. FLPn VtL. FLO*
(CfS) (FPS)
0. .06
230.
230.
230.
231.
231.
232.
232.
233.
233.
233.
233.
234.
235.
235.
236.
237.
2^7.
237.
237.
237.
236 .
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.07
.OB
.Oh
.06
.06
.06
.06
.06
.06
.06
.06
235. 1.06
234. 1.07
22". 1.06
(CFS)
0.
33l!
331.
331 •
33? .
33?.
3J3.
334J
334.
334 .
33".
334.
^34 .
334.
334 .
33".
334.
335.
335.
33*.
337.
3i7i
337.
321.
(fPS)
.79
.79
.79
.79
.79
.79
. /g
. 79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
. '79
.'80
.60
.79
CCKS)
0.
337.
336.
336.
336.
336 .
336.
336.
336.
356.
336.
337.
337.
337.
337.
337.
337.
}37.
357.
337.
336.
339.
336 .
33d.
339.
3*3.
3 24 CHANNEL 2« 25
VFL. FLO« VtL.
(FPS)
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
(CFS)
0.
S4S.
345.
344.
344.
343.
343.
343.
343.
343.
343.
343.
3<-3.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
343.
329.
C^S)
,5«
.54
.54
.54
.54
.54
.54
.54
• 54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
.54
-------
HhCtlvISR
"OPULr
HIVFH KEGIOM
oo
DAY IS 1
MPU"
.00
i.oo
47. .Sb
307. .Si
3uf. .Si
3i f. .Si
i c ; . . K 5
317. .Si
3'J7. .Sb
3"(>. .Sb
340. .Sb
3S
36?. .iS
36?. .iS
362. .bS
3o?. .bS
^61. .bS
^bl. .bS
3ol. .bS
361. .5S
361. .bS
360. .is
360. .bS
3fcO. .ss
•^on. .is
360. .'jS
3cO. ' .bS
CnANNtt 27 ?» CHANNEL 2? an CHANNEL 27 2»
KUiw VFL. FLO* VEL. FLOW VF.I..
ICFS) CFFS) (CFS) (FPS1 (Cf-S) (FPS)
0. .'Jb
3«-b.. .Sb
3*-. .55
3^«. .Sb
3""4. .55
36".. .5b
364. .Si
3*1. .Sb
3f*i. .S*j
3>"«. .Si
3*4. .Si
3*3. .Sb
CHA*
-------
HOOULE
I.SC. SHOK'ME BASI'J
oo
HIVFK
IMY IS
"CI.'H
.0?
1.00
5.01
6.00
7.00
s.uo
V.'Jft
1 0 . 0 «
11. on
u-co
ti.OO
1u.cn
Ib.ofl
lo.dO
17. Oft
16.00
IV.on
070V.
lint HISTORY OF STAGE »»*»»»**»»
jlit.rTTO" « JUNrT'ON 6 JUNCTION 13 JUNCTION
Jnlh.C'il
07<;a
^7^o. 1
V.Mt>.0"ia
. 1)10
'(bib.
21B7.0235
2u?7.02£0
2UP7.0173
2a«7.0li3
2«87.013?
2««/.ulbO
2uP7.0lbfl
2U8/.017S
21.60.020?
2l*o.01lS
?159.9781'
21*0.0101
2160.u?02
2l>>0.0!9a
2160.0175
2l»>O.Cl-i7
JUNCTION 26
2126. Q0«6
2l?6.0fu<
i.OOi"
2120. OOJ7
2128.0P31
2l?6.00<;<>
-------
SYSTEMS COwTiiOlt INC. SPOrfANE BASIN
u«r 13
HtVfTK
SEPTE«BEK.106<)
CHANNtL
H.O"
00
00
.00
1.00
2.00
i.on
a.o«
b.OO
6.0"
7.00
8. on
11.00
12.00
11.00
la.oo
15.Of
16.01
17.00
IB.on
1V. &n
?O.U"
?i.OO
21.00
7.
7.
7.
7.
7.
7.
7.
7.
7.
V.
7.
7.
7.
1.S2
1.52
1.M
I.Sl
i.'-o
1 .'1^
1 .<">
1 .89
1.aa
1 ."o
l.a<*
t.av
1 . 8.
26.
2o.
26.
2o.
>6.
27.
27.
2B.
26.
?a.
28.
?a.
?0.'
28.
26.
2/.
2/.
2/.
?'.
27.
?'.
77.
27.
27.
1. 0 * AND VELOCITY » »
i 6 CHANNEL a 5 CHANNEL
*FL. FLO* VtL. FLU'"
(I-PS)
l.Tu
t.Ti
l.Ti
l.Ti
l.Ta
\ .7u
1.7b
1.77
1.78
.79
.f<0
.00
.«0
.80
.7S
,T)
.7"*
,7»
,7a
.78
.77
.77
.77
.77
.77
1.77
(CFS1 ^PS>
6. 1.43
6. 1
6. 1
6. 1
*. 1
*.
6.
6.
6.
6.
6.
t.
6.
6.
6.
h.
h.
*.
6.
.ua
.au
.««
,aa
.«a
.U3
.<43
.82
.142
."41
.81
.ul
.HI
.81
l.ul
.81
I. at
L.82
h. I.a2
h. 1.U2
e. l.ii2
h. l.a?
* o '1 . « 2
6. 1.42
6. lo«3
(CFS)
20.
20.
?0.
20.
20.
21.
21.
21.
21.
21.
P2.
?2. .
22.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
b b C
VFL.
(FfS)
I.M
!.*>»
t.*9
l.h1*
!.TO
1.70
1.71
1.72
1.7J
l.Ti.
1.78 .
1.714
1.78
l.Ti
1.73
1 .71
1,72
1.72
1.72
1.72
1.72
1 .72
1.72
1.72
1.72
1.72
HANNF1.
FLO*
CCFS)
56.
b5.
55.
ba.
58.
53.
52.
S2.
51.
52.
53.
b3.
58.
5S.
55.
58.
sa.
ba.
58.
58.
58.
S«.
5".
58.
58.
58.
* T
VEL.
(FPS)
.ba
.53
.53
.52
.5!
1.51
1.5"
I.a9
1.8"?
1.89
1.50
1.51
1.52
1.52
1.52
1.55
1.58
1.52
1.52
1.52
1.52
1.52
1.52
1.52
1.52
1.52
-------
WATLU HOPULL
. I*r. SpOMNfi 9ASU-'
oo
VO
JS
KIVFR REUTO'J f.
h%"
.00
1.00
2.0"
i.wP
a.o"
5.00
6.00
7.00
8.0"
9.00
10. 0«
11. uO
u.oi
1 3 . 0 P
lu.OP
15.00
lo.OP
1 /.OO
16.00
1V. 00
Plj.OO
?1.0«
?<>.u.
Si.
5u.
Sb.
56.
s/.
S/.
So.
Sb.
55.
Sb.
S5.
Sb.
Sb.
bu.
7 (l C
vfL.
(FHS)
.S9
,S9
.*U
,/,u
.*l
.*2
.*>!
.60
.SB
.So
.Sb
.56
.57.
.S9
.fro
.M
.M
.!-&
1.S9
1 ,SV
1.S9
1.S4
1 .SU
I.S'V
1.5*
F MlSTOKY 0 F F
MA*lNeL " ' CMAt4'JtL
H_(*4 VEl . FLOW
(QFS) Ct-»;i) CCFS)
81. 1.7« «2.
HP. 1.70
If, 1.77
77. l./o
77. 1
79. I
81 . 1
A3.
H2.
00. 1
n. 1
vs.
7«.
75.
77.
79.
*1 .
B^.
K1.
1*0.
70.
70.
79.
81.
.77
./O
.00
.K|
.1)1
./9
.V-
.7«
. n
.7'!
.7h
. /«
.^"
.1"
,«fi
!./«
I. /7
I. '7
l./o
1.79
8?. l.tJO
B3.
03.
61.
78.
71,
7a.
Ou.
«i.
03.
03.
• «1.
78.
75.
75.
7o.
• 7<*.
"1.
03.
S3.
"1.
7B.
•>/.
7,'.
70.
v '0 CHANNEL 10 11 CHANNEL 11 li! CHANNEL l? 22
VFL. fLO« VLL. FUO« VEL. FLOn VtL.
IFHS) (CFS) (FPS) (CFS) (Fr'S) (C^S) (FPS3
l.f.6 86. 1.30 "»3. 1.35 101. 1.H2
1 . ' -1
!.f.6
\.r-n
\.?i
1..01
1.01
1.03
1.05
t.r.?
1 .S*n
t.fu
l.f 1
1 .T9
1 .79
i.f-o
1.nd
1.P5
! .K6
l.hb
l.f'U
l.«2
I.M
I . ''• 1
!."2
«a.
90.
.92.
91.
90.
80.
87.
87.
BR.
90.
91.
90.
BO.
Bb.
8".
80.
36.
B9.
92.
93.
«3.
«1 .
B9.
87.
1.31
1.33
1.33
1.33
1.32
1.31
1.30
1.30
1.31
1.32 .
1.33
1.32
1.31
1.30
1.2*
w
1.30
1.32
1.33
1.3«
1.31
1.32
1.31
1.30
9i.
93.
9!l.
95.
96.
97.
9o.
96.
95.
95.
9o.
96.
9o.
95.
93.
• 93.
90.
"0.
. 92,
9a.
96.
97.
97.
97.
1.31
!.35
1.35
1.3e
1.3o
1.37
1.36
1.3* -
1.16
1 .?o
1.36
1.36
1.36
1.35
1.35
1 .30
1.33
1.33
l.rse
1.3b
1 .3 =
1.37
1.37
1.37
100.
100.
99.
99.
100.
100.
101.
101.
101.
101.
lot.
102.
102.
102.
102.
101.
100.
99.
93.
9°.
99.
100.
101 .
101.
l.
-------
»tCr.l¥lN5 KtT[
INC. SHOK1NE BASIN
KlVEK HF.tilUI 7
U4Y IS
K
1
. 2
3
b
b
a
7
a
9
10
•11
12
15
't-
is
10
17
IB
19
?0
71
72
73
2«
Ou»
.0.0
.00
.0"
.00
.00
;oo
.00
.00
.u"
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.V
.00
.00
• v o
CM«N»lj.L. 13 14 CMA"NfL
H.HH VFL. ^^.nlt
COS) ^PS) Ct^'al
"3. .02 96.
°3. .92 96.
. 93. .02 9*.
9». .0,; <)»,.
Q4. . ° r r' * •
9J. .92 9S.
93. ,92 97.
93. .°2 97.
95. .«2 97.
9J. .0? 07.
"3. .9,; 97.
"3. .°2 97.
9}. .0,; 97.
95. .0;> 97.
9j. .«i!' 9".
U3. .°c! '»».
Q3« .°2 9*,
°3. .°2 97.
9S. .92 97,
93. .9^ 97.
93. .02 97.
93. ."<• "7.
9.*. ,9C 9'.
O.U .°2 97.
91. ,92 97.
S T 0 K »
1" 1= C
Vtl.
((•"SI
.93
.93
.93
' .93 .
.93
.9}
.93
.93
.91
.93
.93
.91
.93
.93
.9 I
.91
.9?
.93
.93
.V3
.93
.93
.93
.9<
' .9J
0 F . K
HAN^tL
H(ja
(CKS)
121.-
1?1.
1?1.
1?0.
120.
120.
120.
1?0.
1?0.
120.
17U.
170.
170.
121.
l?l.
121.
121.
171.
121.
1?1.
171.
171.
121.
171.
121.
LOW
15 1ft
VfL.
(FPS)
1.C2
.C2
.f-Z
.T2
.'2
.C2
.02
.02
.C2
.02
.f2
.f'2
.PZ
.02
.02
.0^
.02
.02
.02
.02
.02
.02
.02
.02
."2
& N 0 V
CHANNEL
FLO»
CCFSI
143.
143.
143.
14?.
142.
142.
142.
141.
• 141.
141.
1U1.
141.
140.
140.
140.
140.
140.
UO.
140,
!«!<.
•141.
141.
141.
141 .
141.
t L 0 C
16 17
VEU
(KPS)
1.06
1.06
1.0*
1.06
1 .06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
l.C*
1.06
1.06
1 .u6
1.06
1.06
1.06
CHANNEL 17 Its
flQV VFL.
CCKS) (FFSJ
149. 1.01
149. .01
150. .01
ISO. .01
I'M. .01
I'M.
151.
151.
150.
1^0.
150.
150.
150.
. 149.
149.
149.
• 149.
1«B.
JCB.
,01
."1
.01
.01
.01
.01
.01
.01
.01
.01
1.01
! .00
1 .00
1 .00
14il. 1,00
148. 1.00
14». I.OQ
148. 1.00
143. 1 .00
146. 1.00
CHANNEL
FLO*
tCFS)
170.
171.
172.
173.
173.
174.
174.
175.
175.
175.
175.
175.
175.
174.
1 7".
174.
174.
173.
1 /3.
173.
173.
172.
172.
172.
172.
19 19
*EL.
CfPS)
1.03
1.03
1.03
1.03
1.03
1,04
1,04
1.04
1.04
1.04
l.ou
1.04
1.04
1 .04
1.04
1.04
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03
."2
•jr.
.9-?
121.
1.02
1.06
119.
1.01
173. 1.03
-------
"trttvtwr. «»'t"»
flNTfinL.. I,.•,.
I"!.i.
I "if.
l"u.
1"1.
|9fl.
t'O.
fo.
l->n.
l«f..
1"C..
i"o.
I'M.
l*'i.
l«-v.
1«<».
1*9.
19 ?0
vK.
IK'S)
l.na
l.oo
l.ni
1.15
i .«•>
l.iS
1.05
l.ni
l.in
l.n*
t.06
1.06
l.ne
l.nb
1.06
l.nc
1."0
1 .IP
t.nh
1.16
l.n*
1.10
.I.""
l.ns
t.OS
I M £
2}0
2JO
1 S 1 0 H Y
"L 2n ^i (
to vt'..
tS^ (fCSI
(1. .Oh
». .05
R . .0**
1 . . u*>
". .OS
9. . 0*>
9. .Oh
0 . .Oh
1 . .Oh
\. .Oh
). .Oh
a . . 0 h
S. .Oh
S. .07
S. .07
5. .Oh
S. .Oh
a . .Oh
a. .Oh
a. .Oh
11 f.t.
*• . . un
^. .Oh
.). lOh
3. .Oh
3. ' .06
OFF
:HiN*>tL
Flu"
(CM)
23«.
2)2.
2)1.
2?9.
tto.
iff.
c2B.
220.
2?''.
r'lu.
till.
2)2.
231.
2"«.
235.'
2)5.
2)6.
2*o.
235.
235.
?34 .
2)«.
2)4.
2)«.
2)4.
CO* »
21 ?2 I
VFL.
CPHS)
1.07
1.07
1.07
1 .07
1.06
.06
.06
.07
.07
.07
.07
.08
.0«
.n»
.on
.on
.08
.OB
• OH
.06
. na
.16
.OH
.IB
.06
N n v
;M»NNFL
FL,O«
tC^si
337.
317.
)lh.
31h.
Si".
3D.
31).
31?.
311.
311.
311.
311.
312.
312.
313.
310.
315.
315.
31S.
315.
)15.
31S.
335.
31S.
31S.
t L 0 C I
27 23 (
VtL.
(F»S)
.80
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
:'H«NNti t:
HO" \
(CKS)
1)9.
119.
1)9.
1)9.
)')*.
1)9.
1)9.
1)9.
1)9.
1»0.
13d.
}1H.
117.
1)7.
))7.
i)7.
157.
1«7.
1)0.
l)a.
13d.
136.
lid.
116.
138.
?«
rL.
FfJ)
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.79
.7«
.79
.79
.79
.79
.79
.79
.79
.79
:M*MNEI.
F(.C*
Ct^S)
343.
34).
344.
)aa.
)ua.
)au.
344.
Soo.
344.
3t>a.
)«o.
Jao.
3b4.
3no.
344.
344.
340.
S4U.
340.
)U4.
340.
344.
344.
3au.
344.
2« 25
VtL.
CFPS1
.50
.Sa
.Sa
.50
.Sa
.54
.sa
.54
.sa
.so
• Sc
.54
.Sa
.So
.sa
.54
.sa
.50
.54
.50
.Sa
• sa
.5°
.So
.sa
•212.
1.0*.
2)2.
1.07
.7*
J5B.
.79
3au.
-------
S»STi««S CONTKni.. INC. SPOMNF:
ISJ
HIVCH KEttTON 2
UAt IS 2
CHANEL 2*
»0u° MOW y
(CKS) 1
,0« 3«7.
1.09 JIT/..
2.09 3<*7.
3.09 j07.
i.OO ' 3''7.
i.OO 3«/«
6.09 3«7.
7.09 I'll.
8.09 ji»7.
l.gl ju;.
10. Oft 3"7.
Il.0(> 36'.
12. CO 317.
13.09 . 3*7.
la. 09 311 1 *
li.GO >U7.
1o.09 j«7.
17.09 . 3"/.
1».0" 3"7.
IV. 00 307.
20.09 3<>7.
? 1 • 0 " ' 3 1 ' •
fe.'Jl )"l.
?3.0f 3<".
?«.U9 i<17.
'EPABt.S 317.
..vfGFNCt n»S OCCUR«tn.
>Ct"1 VttOctt* E^^U" » J.O
«r£NT FLO" EHHC* « T.o
' T I
> 26
'^L •
'.FcS)
.Si
.5i
.SS
.Si
.Si
.Si
,5i
.SS
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
.Si
• S*j
.Si
.Si
.Si
.Si
.Si
.Si
.SS
2? I"
H F Hi
FL"H
'CFS5
360.
360.
360.
360.
360.
360.
360.
360.
360.
360.
3(jO.
3t>0.
360.
360.
360.
360.
369.
3i9.
3iQ •
3i'.
35".
3i9.
3i'.
3i».
35'.
360.
CHAWNFL
CHANNEL
8 T 0 H Y
26 27 C
VtL.
i CfPS)
.iS
.i5
• S5
.iS
.iS
.iS
• iS
.iS
.iS
.iS
.iS
• SS
• iS
• iS
• 55
• iS
• i5
.iS
.iS
.iS
• 55
• is
.is
.iS
• .iS
.55
2
2
OFF
HANNtl.
FLOW
ICfS)
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
363.
362.
362.
362.
3h2.
3*2.
362.
362.
362.
362.
362.
362.
362.
362.
363.
27 2a CHANNEL 27 28 .CHANNEL fi 28 CWA"*£L 27 24
VfL. FLO* VfcL. FLO* VEL. PLO^ VEL.
(FPS) (CFS1 (FP4) (CKS) CFPS) (CF5) (FP5)
.55
.ss
.Si
.ss
.55
.Si
.SS
.55
.55
.55
.SS
.SS
.Si
.SS
«iS
. *i
«'5
• ei
.*i
.'i
.'i
.' 5
.'5
.^i
•-s
.'•5
T-i'it CHECK FO" outLiTY RUN»-UU«LITT STLP SIZE, is J*oo SECONDS
I VElOriTY 1.S2 LFNKTH 2l60().0n VtL")tLT/LEN ,?S
2 VELOCITY I.TU tft.r^M 2«flU|).on Vtl.«ntLl/LFN ,IM
J VtLUClTr \.7l tSNlfH 2*OaO.OO VtL»ntLT/LEN .^2
a VELOCITY 1.«2 L^NfiTH 11616.00 Vhu»PtLT/LfN .^1
-------
vei.oriTY
C"»'"-fl.
T vtiori'Y
» VELOCITY
<» VtlOCITy
10 VELOCITY
11 VELOCITY
I? VtlOf.iTY
11
10
IS ... .
i* vttoriTY
IT
1° Vtl
2! VtLOClTY
2? Vtl.tTlYY
2S v
23 Vt|.(
Vtl.OCl'Y
2tl>6.0»
.sa
.10
.^7
."2
.02
• fto
.00
.«i
."1
l.Ao
.S'j
tr..r.jH
VtL»!>tU7/LE<»
Vtt.»ntlT/tE««
Vtl»n£LT/LEM
VtL»ntLT/uEN
vEl»ntl.r/i.Fi
vtl»r>f.Ll/Lf'»
Vtl»RtlT/LEl«
VLI »ni.Lt/tf N
Vtl»r>tLr/LEN
v|-.I. «f>E' T/LEN
2lb«b.(>o
Vt-.i .i«tl
Vti.'»OkLT/l.En
vti »ntLT/i.En
Vti.»0tl T/LEN
VtL'ftLT/LEN
VLl«OtLT/LtN
.?2
.la
.1}
.17
.?»
.18
.23
.89
.IS
.11
.10
.06
.OS
.OS
BFCFIV11B OU»»ltlTY
u>
-------
SITTINGS ...»
1 Z } a i 0 T 8 » 10
.« .g -0 »v =C -0 -9 "0 «0 1
-------
3EHTE"BrK>l«69
vO
Ul
."LCtlVlNH w»TtR
SVSTt»"S CONTKOL* INC. SPOKAt.r
M«»I«UH JUNCTION »HJM»EK ?.*
Mil^EL M'MRfcH ?.7
OF 004LITY CYCt-tS Pt» PAY ?a
"f D»»S 8
"f CONST ITI.'tNTS it,
Of J
IFf.T «T OCtA« -.00
lMj.Pt A»t 0 STOK«M>TFK INCUT JUNCTIONS
CYCLE cfNrtiJT«ATin\Sf fBjNTnuT srAms i»t Ti«t C^CLE » « POINTED EVFRY ii HOUK(S). FOR A TPT*L 0^*00 HOURS
-------
JUNCTION VARIAbltS
VO
Jl'NC B0» BOD
NUH REACTION SETTLING
tuff \.1kf
1 .006 .000000
i .000 . .000000
3 .0.08 .OOoOOO
U .008 . o 0 0 0 \) 0
S .008 .000001
to .008 .000000
7 .008 .ciOH'l
8 .COB .000000
9 .008 .000100
10 .008 .000000
11 .018 .000000
12 .008 .000000
13 .008 .000000
1U .008 .000000
IS .008 .0100^1
16 .008 .000000
17 .018 .000100
19 .008 .000000
19 .009 .0 1 1' 01,0
? 0 .OOH • o 1 u 1 0 0
'£ 1 .008 . ii 0 y 1 0 0
t.i .008 .UOOOOO
?> .008 .000001
?u .GOB ,onOOOO
2S .008 .I>AOOQI
?t> .00* ,000000
77 .(118 .Qftoopl
78 .008 .QOOOOO
COUFURK
RtAcTIO*
COEt'
.0010
.OQOO
.Oooo
.oooo
.0000
.0000
. 0 o « o
.0000
.1000
,0ouo
.0000
.OGOQ
.1010
.1000
.B0"0
.1000
.OQOO
.OQUO
. o »j u tj
.ooao
. o o 't 0
.oc"o
.Ooao
. 1 0 U 0
. 0 (j a Q
• 1 fj 0 0
. C 1) 0 y
.OQOO
NH3 NU? N03 POO EXTINCT KEAEH- HEAVY HEAVY HtAVY TEKP
REACTION BtACTlOix REACTION SETTLING COFF ATION f£T 1 "ET 2 K£T I (Ct5« /.-
C"tF CL'FK tPt^ COEf COtF CUEF COEF COEF CEN)
.00140 .0150 .0010 .0009 .OHIO .000 .0000 -.0000 -.0000 6.0C"."1
.0001 .01 So .0010 .0009 .0400 .000 .0000 -.0000 -.0000 6.00:(.3
.oouo .ojs.) .cfli" .0009 .o»oo .000 .oooo -.0000 -.0000 e. oo is. 3
.OOui .use .C018 .0009 .0000 .000 .0000 -.OOCO -.0000 J'.UOii-?
.OOuo .0150 .0010 .0009 .OUOO .000 .0000 -.0000 -.OCOO 8.000.>
.OOui .11^0 .('010 .0009 .OUOO . .000 .00"0 -.0000 -.0000 • 6.00-''-"
.OOui .OlSo .0010 .0009 .OUOO .000 .0000 -.OCOO -.0000 6.oO >'•!
.ooao ..n^o .0010 .oco.9 .ouoo .000 .oo»i) -.1000 -.oogo b.soi-r-
.OOaO .1150 .0010 .0009 .OUOO .000 .0000 -.0000 -.0000 a. 80:1-1
.OOuo .OI5C .0010 .0009 ,0«00 .000 .0000 -.0000 -.0000 8.50-1
.OOUO .oiso .CfllO .0009 .0
-------
1»ITJ«L
JUNCTION
NO«MEH
\
2
j .
i|
5
6
7
6
9
10
11
12
13
t<4
1b
Id
17
18
19
?u
»b
?6
?7
78
00
By"
M3-N
N02-N
hC/L) (Hi;/L) fiR/U («u/t)
9.
9.
9.
<».
9.
<».
10.
10.
7 .
9.
s.
«,
V.
9.
•>,
«.
9.
c.
K.
«.
R ,
K.
9.
* .
o.
9.
9.
9,
50
So
So
so
50
"0
10
30
QO
BO
70
70
10
1 0
10
90
30
.30
.30
.30
.30
.00
.00
.on
./o
.90
• bO
.60
.«0
.00
.00
.00
.00
.11
*0 »bO
PO «b"
^0 . oO
?U .00
*>0 1.10
?0 •?."
90 .^0
30 .«o
A 0 . n 0
30 ««>o
30 .bO
t
.
.
,
.
.
.
.
.
.
•
,
.
.
.
.
o/«o
o y o o
OTOO
0700
0700
0700
0 ?f
CMR/U (Hb/L)
I
.
.
.
.
.
.
.
.
.
.
.
,
.
.
— .
— .
.
,
.
.
.
.
.
,
2000
2«00
7UOQ
cooo
8000
S600
3300
2000
1200
1200
?000
1200
1200
1200
1200
0000
noOO
*ooo
no"o
OOOQ
0000
1200
2000
0590
2000
•
*
•
•
•
.
,
•
.
•
•
,
•
•
•
• •
• •
•
•
.
•
•
•
*
•
.1200 .
1700
1?00
1200
0300
0300
03oO
(Son
u"oo
oooo
3«00
7*00
7*00
0300
0300
0309
0000
0000
0?00
0200
QOOO
0*00
7000
1600
0100
uSflO
2SOO
.0000 .0*00
.0000
•
0600
PMVTO
(MC-/L)
.0000
.OuOO
.oooc
.OQOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OoOO
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
-.0000
.0(00
.0000
.0000
.0000
-.0000
MS
HH1
H*2 MH1 TOT N
o) ("s/o (ne/L) R/L) <"G/L) (HR/U (
-.00
-.00
.00
-.00
.00
.00
.00
.Oil
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.09
-.00
.00
-.00
.00
.00
.bO
.bO
.bC
.bO
1.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
l.bO
l.bO
-.00
-.00
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
HnI2
MHIJ
^G/Ul (MG/t)
-.00
-.00 .
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.30
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.CO
.00
-.00
-.00
-.00
.00
•-.oo
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00
-------
JUNCTION
H.O* 00 ("00 NM3-N unj-n Mnj-N t>na-c
(Hfi/L) HU/1) (MR/U 1M(./L) (HR/l)
PHYTO cOLlFOkxj. HHI ti*i M«3 TOT N CMLOS HMII
CflG/U ("PN/100) ("U/D tMG/L) C«6/tJ (r.fi/L) C*G/L) CMG/l) (HC/L)
oo
1
2
3
a
b
6
7
d
9
10
11
12
13
Id
IS
16
17
20
fa
26
27
7.0
Itt.o
6.0
6.0
lb.0
6.0
1.0
?<4.0
.b
9.0
h.O
h.O
"3.0
'.0
?u.O
?0 .0
9.0
?<*• 0
lh.0
4c. o
1.0
1.0
b.O
n.O
12.0
2.0
.SO
.so
.SO
.50
.SO
."0
<>.«0 3
10.30
8.00 J
9.«0
».TO
".70
".10
*>. 1 0
9.1U
fl ,90
'.TO
.30
.30
.30
.30
.HO
« 0!>
.(10
.70
.00
.bO
.b^
.0"
.00
. uO
.00
.00
.70
P. *0 - • uA
f.fiO .bn
*• °0 l.b'o
fl.*0 1 . 10
"•'& 1.20
fl.'O ?0« 00
".»o
.?UOO
..?U«0
.'000
."000
.5000
. <3fti/
,2<"10
. liJOfl
.1200
,'000
.1200
.1200
.1200
.1200
-.0000
-.0000
.0000
.00*0
.0000
.1200
.210Q
.PbOo
.2400
.1200
.0000
. 1?00
. 1 f V 3
. 1?OP
.0300
.0000
.0300
.1^00
.u«co
7.0000
7.0000
7.0000
,7*on
'. v 3 0 0
.0300
.0300
• « 0 0 u 0
-.0000
.0200
,o?on
.0000
.7000
.1600
.0100
.oSOO
.2500
.0*00
.0000
.0000
.OOP..J
.0000
.0000
.OOOQ
.->ooo
.0000
.ACOO
.0000
.0000
.0000
.0000
.ooOg
.OOOu
-.0000
-.AQOO
-.0000
-."OOil
-.0000
.OOA()
-.0000
-.0000
-.0000
-.0000
.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'.0
'.0
'.0
'.0
.0
'.0
'.0
'.0
>.o
.0
-.08
-.00
.10
-.00
o.oa
I. SO
2.30
2.00
2.00
2.00
310.00-
7.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
7.00
10.04
-.00
10.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-iOO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
i.OO
-.00
,bfl
-.00
.bO
8.20
-.00
-.00
-.00
-•.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.01)
-.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00.
-.00
-.00
-.00
-.00
.00
-.00
-..00
-.00
-.00
-.00
-.on
-.00
-.on
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
. -.00
-.00
-.00
.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-------
TMt FOU.O*1NG CONSIITUtNTS AHE
0»YSFN
SOt)
MhJ-N
N|i?-w
POkf TIU'1
bOD
hWon TO pxo5H"o"OS
IN
r.ii'-.iT»«'T (.on NMJ
ru':>U"! pnw 1,0,;
ru>-sT4>n ^"^t >«nj
HfLfASt fATK (rf./S jU»»t r.
COF KF1C IFM «
PROCESS *
t" "r.1""*!. "MtASF "ATt (ut/.SrUAKt MtTt»-HH) 9
l.OTOtfl
l.bOO«0
.50000
.1TO"0
l.inono
i.i?o"o
.&l>0"0
.01000
.000^0
-,000"0
-------
'e .J"NCTtO'i C
(JU'LUT
o
o
JUNCTION
1
2
I
u
5
6
7
a
9
10
11
12
13
la
15
16
17
II*
19
73
DO HO"
{•T.
10. «
10.5!)
10.as
10.73
in.7o
10.64
10."53
10.18
10.23
9.99
".41
<».Ud
9.U7
'.S3
.30
.40
.03
.00
.10
.08
9.08
1.35
1.3?
1.91,
1.83
2.03
1.79
• •">
.9*,
1-22
.b"
!o4
.02
.2*
.35
.(,7
I.SO
Nfli-N N03-N
("U/L) fMf./l.)
.0131
.0031
.0031
.0077
!oo91
!ot>ss
.Otad .gnjS
.OOif-
. Vl
.11°"
. I I '< !.'
.09*7
PHYTO
(nr./u
HMt
.0311
.OlbR
.S3'"'
.0000
.0000
.0000
.0000
.Hi'i .i.nu7 .no"/
.ni'Hb .no;," ,074/ .
. ij A U T
.0000
lOOOO
.732* -.noOC
l.C'?33 -.0090
.9720 -.0000
.0507 -.0000
..0000
..0000
,.0000
'.OOno
..oooo
.f:J32
.0279
.0174
.0178
.0531
.3145
,n9i9
.nsoo .onj5 .131&
.nus9 .oOu*. .0183
.1UVS -
.0000
.OOOC
.flOOO
.nono
.0000
HH* Hh3 TOT H CMLO" .HMJJ MMI2
(MC/L) (HC/L-) ("5/U IMG/LI (ne/L) C'C/Ll («6/L)
.1S07
.0988
..0000
..0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.00
-.00
.IS
-.00
2.27
.31
.iO
.69
.66
.69
16.97
15.17
-.00
-.00
.,00
-.00
-.00
-.00
-.00
-.on
-.00
4.21
4.30
4.94
4.31
1.75
2.97
2.62
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
>.oo
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.1)0
-..00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.04
-.00
.no
.00
.00
..TO
.00
.no
.00
-loo
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.^0
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.08
-.UO
-.00
-.00
-.00
.44
.42
• *ib.
.45
.45
.85
.72
-.00
-.UO
-.go
-.00
-.00
-.00
-.go
-.00
-.00
.1"
.12
.04
.02
.00
.85
1.30
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.eg
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.Oil
-.00
-.00
-.cc
-.00
-.00
-.00
-.00
-.00
-.00
-.oc
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.go
-.uO
-.90
-.00
-.90
-.00
-.00.
-.00
-.00
- . u ft
-.00
-.00
-.00
-.00
-.00
-.00
*.oo
-.00
.00
.00
.00
.00
.CO
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
-.00
-.00
-------
J'.lNCTIU'l f-UNCtNTH*! JU'IS uUKtNR OU»t,lTY CYCLE WU"BITR
JUNCTION
N'WBEK
1
i
4
b
6
7
(1
V
10
11
12
17
1b
IV
?0
?a
f.'i
BO «0" NMJ-N NOZ-N nr<3-N Pnn-p PHYTO CO.IKOKMS H«l H*2 HMl TOT N CMUOR H*I1 HMI2 HHI3
(MG/U (Hli/L) Cnr,/l;> (-S/L) (MC./U ("1./U (nG/L> CM7N/100) (M6/L> (H6/U (M6/U) (hG/L) C«ti/L5 (M6/U ("5/LJ tKG/t)
.So
.SO
.SO
.so
.so
ic. 'o
is.to
9.06
ft . 70
9.10
'.10
9.10
«.90
9.30
•!io
H.<>0
• 9.flu
9.00
.nt, a 4
.OS0*
,0'Jci
1.00 .0*10*4
.bo .nun i,
.bn .03":>
.on ."/no
• tin . 0 <• 7 a
.HP .nftUV
.VII
1.2ft .n"l3
l.tiO . f«:~V
l.i'J .0207
.29 ,ftt7tl .003^
.27 .nnSl .0130
.29 .9691 .1.030
.oO
• ft*-
,bO
U57
.v»
.003"
.0030
,on3n
.u030
.0030
.OMO
.Oft3ft
.0030
.l.-n30
.u03ft
.Oft3ft
. U « 1 ft
.0030
.Oft3ft
.0030
.7v»7
,799u
.nooo
.1200 .nolO
• I ?0 f • ^ 0 *) 0
.0300 .0000
.0151 . ">000
.0000
• oofto
.ftOftO
.0000
.0000
.U"7
.noftu
.0000
.0000
.0000
.0000
.0000
.nitu
.0799
.11.100
.0^00
.1.1000
.C'OOO
.0113
.0139
Io?"S
.0100
.1200
.ftOftO
.ftOOO
.OOftO
.0000
.noOO
."000
-.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
•.0
'.o
>.o
>.o
'.0
>.o
.0
>.o
.0
.0
.0
.0
-.0
-.00
-.00
.03
-.00
2.1^
1.15
i.ir
\ . as
1.20
1.11
11.00
7.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
3.34
1.04
1.27
3.00
i.ifc
2.60
2.57
-.00
-.00
.00
-.00
.00
.00
.00
.00
.no
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
.00
-.00
-.00
- ."0
-.00
.00
.00
-.00
-.00
.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
..00
-.oft
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.00
-.00
.00
-.00
.00
.00
.00
.00
."0
.00
.00
-.00
..no
-.no
-.no
-.00
-.00
-.00
-.no
..no
-.00
.00
-.00
-.no
-.00
-.no
.00
.00
-.00
-.00
.00
-.00
.00
,00
.31
.39
.39
.10
.60
-.00
-.00
-.00
-.00
-.00
..00
-.00
-.00
-.00
-.uo
.00
..00
. -.00
-.00
-.00
.12
1.00
-.00
-.00
.00
-.00
.00
.00
. .00
.00
.00
.00
.00
-.00
..00
..no
..00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
.00
-.uo
-.OP
.09
-.00
.00 •
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
--.00
..on
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
.00
'-.CO
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
.00
-.00
-.00
-.00
-.00
.00
-.00
-------
HSXtMiJM JUNCTION ro«CFNTK»TIOW3 Ol.'HlNf! 004LITY CYCLE NU
o
ro
1
2
3
II
5
6
7
8
9
10
11
12
13
to
IS
16
17
16
19
20
21
22
23
•?a
?5
?B
n0
CMG/L) (
10.53
10.66
10. »3
10. 3f
10.52
10. «3
1 o . f c
10.71
10.70
lo,*.;
10.18
10. 10
9. '7
9.UII
".S3
9.56
9.6(1
.53
.'19
.02
.US
.*>«
.50
. 19
.2S
• ?B
.?(:
9.2*
1.30
1.30
1 .30
1.37
1.3P
2*0?
1 . 1*9
2.10
2.03
1.99
1.93
.*•"
,
.121* .0000 .0
. 1726
• 1 216
.0311
.0200
.0670
. 1 23*
. 1 C**5
. 1<"4?
.7607
1.099S
1 .061°
'.0^0"
.0322
.0310
.0332
.030?
.0271
.0253
.0370
. 0556
.i°00
.2981
.2379
.10S1
.2Al8
.2016
.1306
.0000
.0000
.0000 '
.0000
.OOnO :
.0000
."000
.0000
.0000
.0000
.0000
. 0 0 0 0
.0000
.0000
.000(1
.000(1
.0000
.0000
.000(1
* rooo
."000
.0000
.nooo
.0000
.0000
• oooo
.0000
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HM1 H"2
(MS/L) (us/I) (
.00 .00
.00
.70
.00
2.85
1.75
2.11
1.95
1.91
1.1)9
17.67
16.60
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.60
5.03
5.8ft
1.60
3.96
3.28
2.73
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
HnJ TUT N CMtO" Hill Hnl'2
MS/LI (HG/L) tMG/LJ («G/L) C'G/L) (
.00 .00 .00 .00 . .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.•00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 •
.10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.51
.IB
.so
.50
.50
.95
.79
.UO
.00
.00
.01
.00
.00
.00
.00
.00
.21
.20
.12
.06
.02
1.12
l.SO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.03
.00
.00
.00
.00
.00
.00
."0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.oO
.on
.00
.00
.00
.00
.00
.00
.00
.00
.UO
.00
.00
.00
.00
.00
HHIJ
.00
. .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-------
»vi-»»r.E ju».rTro
CYCLE
o
CO
JUNCTION
1
2.
3
it
S
*
/
B
9
10
11
12
li
«4
IS
16
17
IB
?2
?7
?B
9o BoO NM3-N fc>V-N >j"i-u fPn-P PMVTO
t«G/U l^G/L> (Ml/I.) (>IWL> (MR/I) C"S/L) CMr,/l.)
10,
in,
in,
10,
10,
in,
10,
10
10,
10,
in
• 9
9
<)
9
,Si
,»>6
^37
,S2
,flo
,71
,70
,*7
,a/
,30
.7,1
, ;'u
.53
.56
!si
,'•12
,"h
!si
11
1.2»
1.2*
1.27
1.29
l.ia
1.31
c.ol
l.X«
i!o3
I.1*'
I."a
,«o
.**
.VII
./i
.0*1
.If"
.13
.0"
.07
i(,B«
»,! i , u n .1 ••>
o 1 0 .0 n j •
(•*« .ijnj?
-.0610
.7VO/ .0311
,799u .01S1
.07o5
.07^7
• nono
.nof'O
.nono
,3t,M
Itf'/
.H9S
.1106
.1029 .03SO
.OBS7 .03u?
.ObOi ,c-3iu
.no"i ,o3"9
.oono
.n(,r o
.nofO
-.0000
n 1 "> .3 .0073
0071
. •> n t> 3 .1460 >3M3
.On71 .luf-3 .3109
.0077 .liMS .iOo2
*:> ,3non
.0000
.nono
."000
• nooo
.nono
. noOo
.0000
.("000
.0000
.1000
MS
OJ
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0.
.0
.0
.0
HH|
C^G/L)
-.00
-.00
.0?
-.on
2.19
1.15
1.15
1.4?
1 ."3
l.«7
16.92
16.08
-.00
-.00
-.00
-.00
-;00
-.on
-.00
-.00
-.on
a. 32
a .25
3 • 9a
i.H'l
i.SO
i.25
i.O?
HM2
HO/U
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.06
-.00
-.00
-.no
-.no
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
HMS 1
HG/L)
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
-.00
-.00
-.00
-.00
-.00
-.00
roT H
MS/L)
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.no
-.00
-.00
-.no
-.00
- . no
-.no
-.n0
-.no
-.no
-.00
CKLO"
Htt/L>
-.00
-.00
-.00
-.00
-.00
.so
• ^9
.u9
."9
.19
.6*
.82
-.on
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.on
.22
.22
.22
.21
.21
.20
.19
MMJ J
MG/L)
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.10
-.00
-.00
-.00
-.00
-.no
-.00
-.00
-.00
-.00
-.00
-.00
-.00
"nl2
HG/LI
-.00
-.00
-.00
-.CO
-.CO
-.00
-.On
-.on
-.CO
-.00
-.00
-.00
-.01
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-,on-
-.00
-.00
-.00
-.00
-.CO
-.00
-.00
HKI1
HG/L)
-.00
-.00
-.00
-.00
-.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
-.50
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.00
-.CO
-.00
-.05
-.00
-------
V CO"CF«|TMnO'JS D'JHIM? OU»LItr CYCLE NU*l>CH
ji.mrTtu'1
1
2
3
u
b
6
7
6
q
1U
11
1"
lb
16
\l
ia
19
?0
f>0
r:n,>.N NIJ-N- Hna-p PMVin
»i»/ll fM^./L) l«t,/L> tMr,/L) ("HN/100) t>
10. «3
1 o . \ 7
10. S2
10. »3
19. RO
10.70
1 n . 7C
10.67
10. «/
1" .?9
9.?7
° . il*4
9. Si
9.S6
0.60
9 , S3
9. SO
1 . tl J
9,^0
9.6b
9. S3
9. JO
O, 1 9
g. 02
B.HJ
"5.46
1.29
1 "2"
1 • 2''
1.20
1-31
1.30
2.»0
I .e*
2 • 0R
2.0?
1 .91
1.9?
.90
.91
.90
.74*
. 7 *
.ii*
.3"
1.1?
1 .Cp
1 '3s
I. a?
I .*? o
I.b7
1.4S
.no"*! .0031
.Ofc7u .('03?
. ft h S 1 • u 0 3 '1
. «°1 .i)««l
. P«U .j03?
. c- u 3 . 0 0 J S
. .,!<; .IKM"
. * ? h . .) 0 i 7
. ol *? .yO>H
.OcOi) .oOif
,OV»92 .0049
. n b ** 0 . 0 P u 1
• 0 11 ** *• • u 0 ^ ?
.0^1 .OPj9
,P«l79 .iK'Ul
,037b ,uP
. 1 I °t>
. \(l? .POPO
.1?>*S .0000
.0311 .PoOO
.01 b 0 .PUPO
•0^«2 .OuOO
,w7ti? .OyPO
• 07-*S ."OftO
•1?11 .OyCy
,/.«lO .0000
1.0U&U .0000
1.0?**q ,POCO
..C.HW .0000
.O^-b .0000
•0^3" .OQOO
.O^bO .0000
.11 'a 2 .0000
. o ; } u '; .0000
.Oib9 .PoOO
•05ol .0000
.3000 .0000
.309U .0000
•iflb7 .0000
.3170 ,?ooo
•3PbS ."000
.2967 .0000
,
-------
BU«LIT¥ CYCLE
O
0)
e.
3
1
S
b
7
6
9
10
11
12
13
lu
IS
16
H
1H
?7
00
(MG/L) C
10. S3
10. 'fh
10.^3
10.37
10. S2
10. «3
11.«0
10. 71
10.70
10. M
10.10
10.10
''.?/
9. S3
9.Sfc
9.»>o
«!se
9.16
. **6
.S3
.10
.19
.12
1 »" 1
.6b
S()0
"G/L1
1-29
»2R
• clT
.29
.3S
.30
2.02
1 .1)9
7
1.15
NH3-N M02-M
(i"VL) t«G/L)
.Oof's .0131
.0*71 .ilOJ?
.OeSi .oois
.Oh1'! .0031
..Oheu ,00»?
. Ofr"3 .003^
, i o 1 3 • S 1 j R
. " ti ;• / . >• 1 3 7
.Ofr!3 ,JO,H
.0610 .003"
.ib^3 .003"
.";>*» .OOut
.Orf... .0*3?
'."^21 .0!>3«
,0u79 .gOul
.137b • '.1 1 *• b
!n97i .udhS
.07 Oh .(..0/1
.1u.4S .0.1/7
•03A2 .0^/7
.01^3 ,u^'/3
.0112 . *.'"•? r'
.0071 .OOSS
M03-N POU-H "MVTO COLlfOHHS
(Hr./L) C"G/L1
.?3'<"» .!?!»
.239o . 1?26
,23°b il?«*>
,79'>7 .(,311
,79«u .Olif
.^37,; ,o»i71
• kef^l »C-70fl
.U27c; .o7u9
.'J2"'J .l?u*
.1o7i ./796
.Ili>>6 1.09S1
,'fr"l 1.0*33
.1 !••••> .01«S
.1116 .0331
. IC.?1* .v/1SO
.r^oq .g?»*1
.^frU3 .ylt'1
•lu7J .31SO
. 1 (.7 l .312°
.li'o .30t>7
,iu59 ,iOn3
.lulb .3'>71
. M^o .30t7
.1291 .29B1
(MP
.0000
• OuOO
.0000
.0000
.flfloo
.0000
.0000
.flood
.0000
.0000
.0000
.0000
.0000
. 00 1 0
.0000
.1000
.0000
.0000
.lO^O
.0000
.0000
.OOOQ
.1000
.0000
.1000
.0000
.0000
MM1
«M2 HMS TOT N
•J/100) (MG/L) CHG/U) (
.0
.0
.0
.0
.0
.0
.0 .
.0
.0
.0
.0
.0
.0
. 0
.0
.0
.0
• 0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.00
.00
.02
.00
2.21
.16
.16
."S
.11
.It
17.17
16.10
.00
.00
.00
.00
.00
• 00
• on
n n
• u u
.00
1.3B
1.2*
3.94
3.«0
3.51
3.26
3.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
• 00
.00
.00
.00
.00
.00
.00
.00
.00
.00
IG/L) (MG/L)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
f. A
.00
.00
.00
.00
f. A
• 00
.00
A A
• U U
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
'.00
.00.
.00
.00
.no
on
• ' U
.00
.00
.00
.00
.00
.00
.10
.00
CHIOS
MNI2
(MG/L)
.00
.00
.00
.00
.00
.41
.19
.19
.90
'.00
.00
.00
.00
.00
.00
.00
.00
.00
.23
.22
'.21*
.21
.20
.20
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.co
.00
.00
.00
.00
.00
.r.o
.00
.00
.00
.00
.00
.00
.00
.00
. .00
.00
.00
.00
.00 .
..00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.CO
.00
.00
.00
.00
.00
.00
.00
• .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
HAS OCCl!K«>c.r>
-------
SECTION IX
PROGRAM LISTING
Program Page
Typical JCL .....'.' 108
Subroutine CURVE 109
Subroutine GETAVI- Ill
Subroutine GETCON 117
Subroutine GRAPH ........ 117
Subroutine INDATA 117
Subroutine INQUAL 123
Subroutine LOOPQL. . 127
Subroutine NEWIN ................. 132
Subroutine OUTPUT 137
Subroutine PINE .139
Subroutine PPLOT 140
Subroutine PRTOUT . . 141
Subroutine QPRINT 143
Subroutine RECEIV 144
Subroutine RUNOFF ... 144
Subroutine SETOPT 144
Subroutine STORAG 145
EXECUTIVE (MAIN) Program .145
Subroutine SUN 146
Subroutine SWFLOW 147
Subroutine SWQUAL . . 159
Subroutine TIDCF 162
Subroutine TRANS ..... 165
Subroutine TRIAN 165
107
-------
TYPICAL JCL
A typical JCL deck for executing a RIVSCI run is listed here. (JCL
variations may occur according to machine or installation.)
// EXEC FORTGCL.REGION=260K
//FORT.SYSIN DD *
RIVSCI "FORTRAN SOURCE DECK INSERTED HERE
/*
//LKED.SYSLMOD DD DSN=B.YRHB10.ZAS.RCP2(RCPH2),
// UNIT=3330,VOL=SER=PR3002,SPACE=(1024,(140,10,1),RLSE),DISP=(,KEEP)
// EXEC PGM=RCPH2,REGION=280K
//STEPLIB DD DSN=B.YRHB10.ZAS.RCP2(RCPH2).UNIT=3330,
// VOL=SER=PR3002,DISP=SHR
//FT06F001 DD SYSOUT=A
//GO,FT21F001 DD DSN=CN1752.ZAS,N20.DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
// DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO,FT22F001 DD DSN=CN1752.ZAS.N10,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
// DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO.FT23F001 DD DSN=CN1752.ZAS.N30,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
// DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//GO.FT24F001 DD DSN=CN1752.ZAS.N22,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
// DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//FT05F001 DD *
RIVSCI DATA DECK INSERTED HERE
/*
//
108
-------
I, SlMHOUUf.'E Cimf (X.Y.NCTff'CViNHLOT)
2, DIMENSION X(2Q1 tlD) iY(20l t 10) iNP'T(lO)
3, COMMON/LA!;/ TnUUrO.XUUd I) iYL*U(6)
It, l,MOl«IZ(20)»VKKT<7i6)iIT
5. XMAx=X(li|)
6, XMlNnXMAX
7, YMINaYdil)
6. »MAX=YM1N
V. DO 205 LoUNCV
10. NPTi'sMPTU)
II, JF(NPTM,EO,0) HO TO 205
12, DO 20a N=l ,NPTM
U, 1F(X(N,L) .LT.XMJN) XxtNsX(NiL)
14, IF(X(N,L) ,m,x''AX) X^Axsx(NtL)
IS, JK(Y(NiL3,LT,YMlN) YHINsY(Nit)
16, IKY(N.L) .GT.YHAX) YMAX = Y(NfL)
17, 20« CONTINUE
IB, 205 CGNTIMJi
19, H*MGEs(YMAX«YMIN)/5,
20, IF("ANGE.ST,0.) GO TO 2059
21, ' IFtYHAX.GT.O.) YMINsO,
22, IF(YHAX.LT,0.) YMAXsO,
23, RANGt=(YHAX«YMlM)/5,
20, 20S9 CONTINUE
25, AsAtUGiO(RtMGE)
26, IKA.LT.O.) GO TO 220
27, NsA
28, RANGEsP.ANGE/(10,**N)
29, L=RANCE+l.C01
JO. 206 CONTINUE
51, !FC'_.£
-------
61, 250 YHJN1BK»FRANG
62, YMAX=(K« S)*FRAriG
61, XSCAL=IOO./(X*AX«XMIN)
65, XIMT=(X'IAX-XM1N)/10.
66,
67,
66, DO 260
6->,
70, 260 CONTIMJE
71, YLA8(6)=YHIN
72, DO 270 N=l«5
73, 270
74, CALL PPLOT(OtO.lOO.NPLOT)
75, K 3 1
76, DO 450 L=l«NCV
77, IF(NPT(L).K3,0) GO TO 440
78, XO*XSCAL*(X(ltL)"XriIN)
79, YOsYSCAL*(Y(liL)-Y«lN)
60, WP01NT - KPT(L)
61, 00 «00 N s 2>NPOINT
82, ' XT s XSCAL»(X(N,L) " XMIN)
83, YT e YSCAt»(Y(h.iL) « YMJN)
64, CALL PlNE(XO,YOiXliYT,K,NPLOT)
85, XO « XT
86, YO « YT
87, 400 CONTINUE
88, 420 CONTINUE
89. 440 K t K * 1
90. 450 CONTINUE
91, CALL PPLOT(Ot0.99,NPLOT)
92, RETURN
93, END
•)(>', CO»MON/PASS/TOTLiOA*N,OUSK
97, F1(X)=A1*X»H1
96, F3(X)BAJ»X*83
99, CALL SUN(NDAY)
100, ^AY^DOSK-OAkN
101, 62=«.»TOtL/(3.*OAY)
102. D
-------
122.
123.
12«.
12!,,
126,
127.
120,
12V.
130,
131.
132.
133.
13s!
136,
137,
136.
139,
HO,
HI.
146.
119,
ISO.
151,
153'.
150.
155.
156,
157.
158,
159.
160.
161,
162.
163.
165?
166,
167.
166,
169,
170,
171,
172,
173,
170.
I",
176.
177.
178.
179.
180.
181.
182.
20
30
C
CONTINUE
U'Ul.CT.OUSK .OK. T2,LT.OUSK«DI|) GO TO 30
STA«T = A"iXI (OU3k-»0«,Tl)
iTOP = AKl;il (15USK|T2)
Ar'KA=CllUSK-ST*r;T)«F3(START>/2.«CDUSK«STOP)*F3(STOP)/2.
COMItUL
AVlsTOT/(OEI.T«fcO,)
AVI IS THE AVKHAGt INTENSITY IN LANCIEYS/MIN OVER DELT
KtTURU
END
SUBROUTINE GETCON(IOtDELTilNO(DFPTH,VEL)
pnYTor>LAMao>j is THE ONLY TYft OF ALGAE MODELED BY THIS ROUTINE
10 IS THE AVERAGE LIGHT ITENSITY IN LANGLEYS/MIN DURING THE TIME
STEP
CELT IS THE TIME STEP LENGTH IN HOURS
I MO IS JUNCTION NUMBER
DEPTH IS JUNCTION DEPTH IN Ff-.ET
VEL IS JUNCTION VELOCITY IN fEET/SEC
COMCUN/CONES'D/DOE i BOOK »(-'H3EiN02E,N03E.,POuE.AI.GEi COLE iHMiFiHM2E ,
REAL NH3»N02»!J03.rvM3E«N02EiN03F.
COH*ON/CONST/ThKCULiAHOU.AHM.CHwOC,THKNH3,VOLITK,THVOLK.BOOC•
CO«HOK:/«CMV«K/COLi(100),HUDK(100).BOOKS(100).NH3K(100),NOiK(100) t
• EXT<(lOO)iDOKaMOO).MMlK(lOO) »MM2K( I 00) ,MM3K< 100)
*.PO«K(10D).N01K()00)
REAL NH3K,N02KIMP04|H1NQ3IH2N03.IO.NR,IBAR,HL
REAL N03K
REAL NOKEKR
>IK2iICOL>lCOMB,INH3iIN02iIM03iIPOa.lALG.IFIRST
D»onAGiO:)Ol>AQ>OBOOA.S>nF. 0380.
COhP OS/DEL T AS/DEl. COL •'1L"OI>D.
.*DHOOP»
DIMENSION UtLTS(l)
EQUIVALENCE (DELTS.DELCOL)
DATA BLAN,ASTER/' I,'*'/
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CELCOL
DL«OOD
DLHODS
DBODAG
DBOOAR
OH01-AS
OBODAD
OHOORH
DN^lbO
CNiH3
O'-^iV
DNH1AG
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
CHA'JGf
C*A'JGK
CwA\Gt
CHANGE
CHA'-Gfc
cnt^Gt
CHANCE
C"A'JGF
c H A N r. t
C-AVGt
C^ANiGE
CHAMQE
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
I"
IN
COLIFORM
BOO
800
BOO
BOO
BOO
BOD
BOR
Nhl«Ki
NH3.N
NH3-N
NH3»N
CONC.
co^x.
CONC.
COKC.
CONC.
CONC.
CONC.
co^c.
co».c.
co*.c.
COkC.
CONC,
OUF.
DUE
O'Jt
out
OUE
CUK
OJE
PUE
DOE
m.'E
rut
PUE
TO
TO
TO
TO
TO
TO
TO
10
TO
TO
TO
TO
DECAY(r,ROkTH)(.0»»)
OECAY(.)
SfTTLlNRf-J
ALGAL r,i?OWTM(»)
ALGAL RESPJRATION(»
ALGAL SFTTLING(-)
Sl.r.AL OFATH(»)
HE'JTHAL KF.LFASE(*)
bill) OtCAY(*)
•iHl DFCAY(-)
'.Ml VOLITIZATION(")
ALGAL GRn'«iTH(»)
111
-------
183,
18'l,
18b,
18*.
187,
188.
189,
190,
191,
192.
193.
194.
19b,
196,
197,.
198,
199,
200.
201.
202,
203.
204.
20S.
206,
207,
208.
209.
210.
211.
212.
213.
214,
215.
216.
217.
210.
219.
220.
221.
222,
223.
224,
225,
226,
227.
228.
229,
230.
211.
232,
233.
234.
235,
236.
237.
238.
219.
240,
241.
242.
241.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
.C
C
C
C
e
ONH7.AH IS CHANGE IN N'tON
0*><3hM IS CHANGE IN NH3-N
DN02HJ IS .CHANGE IV! N'OZ'.N
O'.'OH IS CHANGE IN NOa-N
DN'OSHD IS C-AN'GE IN NOi-N
0^0. IS CHANGE 1>| N03->N
ON03C2 IS CHANGE IN NO.i»N
DNOJAG IS CHANGE IN N()S«N
DN03»P IS CHANGE IN NUJ»N
0»LY 30 CONSECUTIVE COMMENTS AKE
FAKITM.
DN03BH is CHANGE IN NOJ»N
CPOUHO IS CHANGE IN PO««P
DPOUAG IS CHANGE IN POtt-P
OPOUAK IS CHANGE IN PO«-P
OPOUHR IS CHANGE IN POtt-P
DELA IS CHANGE IN PHYTOI'LANKTON
DARES IS CHANGE IN PHYTOPLANKTON
DALSNK is CHANGE IN PHYTOPLANKTON
DADTH JS CHANGE IN PHYTOPLANKTON
OELO IS CHANGE IN DO
ONEED IS CHANGE IN DO
OGIVE IS CHANGE IN DO
IFCIFIRST.NE.l) GO TO 8
NOUT=6
IBUG=0
If IRSTofl
BOD**T580PC*12,/BODPC
BODNKR=BODN*to,/flODuT
SCOP^R^IJ./SCC^T
FACl=BOOOO*NGREFR/CAPR*noDP^K)
CONTIKUE
COKC, ouf TO AIGAL R^sPIHATIo^•(*
CO\C. nUE TO PtNP'AL hf:UEASh(»)
r.oNc, HUE TO NKJ nccAY(«)
CONC. RIJE TO Noa I;FCAY(->
CONC. HUE TO ROD Df.CAY(»)
CONC. DUE TO NHS LIECAY( + J
CONC, DUE TO NOH OfCAY(+)
CONC, ouc TO ALGAL GROWTHC-)
COI.'C, OUf TO ALGAL RESPIRAT ION(*
ALLOxED
CO^:C, DUF TO RENT^A|. PELF.ASE( + )
CONC. OUE U' 300 t)ECAY( + )
CONC, OUE TO ALGAL GROWTH^)
CONC. D'JE TO 4LGAL Sf. SI' IR A T ION ( t
CONC, RUE TO HENTH4L RELEASEO)
CO^-C, PUE TO GROWTM{«)
CONC. OUE TO RESPIRATION^)
CONC, DUE TO SINKIMGC-)
CONC. DUE TO DEATH(K*TURAL»TOXIC
CONC. OUE TO ALL KEArTIONSC+0«->
CONC. OUE TO ALL OX-OFMANDS (-)
cose. DUE TO ALL OX-GENEKAUONC*
•
IFUBUG.EO.l) K'RITE(NOUT,102J) I"D, 10, DELT. DEPTH, COL , BOD, NH3i
9
C
C
C
*N02iN03.PO«i ALG.OO.HMl iHM^)) DEL*=SIGN ( XTE*P«OELK)
10
XKaXTEHPtpfcLK
Cf LCCteCOL*(txP(.X'(*RELT)-l,>
IF(IfiUG.ES.l) •KITECNOUTilOOB) XTf
»XK,r>ELCOL
CONTINUE
IF(ICOMB,EO.I8) GO TO 110
.KP,FACMKl,fACHM2,FACHKJ,DElK»
112
-------
2 GO TO ?0
CALCULATE BOO CHANGE DUE TO DECAY AND SETTLING
XTE^P=nC)DK(lNO)»THKCOL**TCOW
OLBCfJU = iJOl)»(EXP("XTf. *P»"ELT)»I,)
OHOTOT = HC'i)*(FXP((»XTK *''*•• r>QDK5(lNO))*OFLT)»l,)
D L fl 0 U 3 " 0 >* 0 T U T * 0 L B 0 0 0
IFdiVJG.fC.l) *«ITK"OUTil009) XTEMP ,Dl.f>ODD, DLHODS
ONEEC = OJvEfM)*DLBOOO
CALCULATE CHANGES IN PO<1,'K'OiOHs-ON02
ONEED=0^'EF. 0+) , 1 1 »ONQ2
IFdHUG, F.O.I) fcRIThCNUUT.1012) XTEMP, DNO?»ONn302«ONF.ED
CONTINUE
IFdNOJ.EO.O) GO TO 33
DECAY (SETTLING) OF N03
113
-------
505,
306.
107, 1F(I(-3.EO,2) Of-03DS = (-XTF.MP«N01»*2)/< 1 ,*XTt.MP»(,Q3
30B, 3S COMIHUt
309, IF(IP«il.EO,0) GO TO 3«
310, C
311, C OF.rAY (SETTLING) OF P0«
312. C
313, •XTE»tPsPOaK(IhD)*TwPO«K»*TCOR*OtLT
31«, IF(JP.F.O.I) 01'0<;D5 = POU»U:xP(-XTei'P)'t ,)
315, IFUP.EO.a) CPO«05sC-xTfcc.p«POU»*R)/(l,fXTEHP*Poaj
316, 3ll = F.XP(-HMKA *(HM1»CHHOA
333, FHMZsl,
331, !F(HH2,CT.ChMOA2) FHM2=Ex
33b, FHMJaJ,
336, JF(hM%RT,CHMf1»]l) FHH^Sf K
33T, FHMsAMlMJ tFMKi,FH«2,FH»iJ)
338,
339,
300,
3«1, IF(1FN.E0.2)
3B2, lfllfn.il.a .OR. IF'J.fO.l) FM=IFN*FNW3»(1-IFW>*FN03
3«3, iFtlBuG.ER.l) *^ME(NOuf,lOJ«) FHM.KPi F N03tFNM3iFN
3««, XK = tXTK{.I'.D)».Onu'37»»LG
JUS, IbAH=(U!»(l,-EXP(-XK«UfPTH))/(XK*DEPTH))*(2a,/9,)
306, DU=tlOG(100.)/XK
3«7. IF(DU.LT.ttPTH) IBAH»,?15*10*2«./9,
3«8, FL=IH*"/("L+IH»H)
3fl9, FL1^=AMIM (FP.FM.FL)
J50,
351,
352, IF (IBliG.t.0,1) h«ITt(NOUTil015)
353, 50 COUTlNUf
J5«, C
355. c CALCULATE CHANGES IN uoD,Po«tN03» AND HW out TO ALGAL GROWTH
356, C
357. IF
-------
366.
367.
368.
369.
370,
JM,
372.
373,
374.
375.
376,
377,
376,
379.
Jl\0.
381.
342.
383.
384.
365.
366,
387.
366, ,
369.
390.
Ml.
392.
593.
394.
395.
396.
397.
390.
399,
400.
401,
402,
403,
404,
405.
406,
407.
408.
409.
410.
411,
*12,
• 13.
414.
415.
416,
«17.
418.
419.
420.
421.
422.
423.
424.
425.
«26.
C
60
65
70
C
C
C
75
80
C
C
C
90
C
C
C
91
92
ON, THE NiTi'Of.pN DEMAND, is POSITIVE
(v.s-DpnaAr, •tioo';«K/BODP«R
IFCON.GT.. .9*^03) GO TO 60
OWOJAG=-DM
OMHSAGaO,
GO TO 70
CONTINUE
IF(I'Jh3.KE,0 ,ANO, ON.LE, ,9*n03*,B«f'H3) GO TO 65
DELAB,9»OELA
GO TO 50
CONTINUE
UM03Ar.=» ,9*N03
DNH3AG = -(nu + DNf)3AG)
CONTINUE
OGIVfc = OGIVE»nf-LA»BOOOO/(APR«BODPWR)
If ( IBUG.tC. 1) wf(ITE(NOUT« 101 7} DM03AG, ONH3AG, OGIVE
CALCULATE ALGAL HESPIRATIOW QUANTITIES
ARRsNR*TEKKf A( TN'O)
DARESsi»ALG*AKW»r£LT
OPOOARcDARES*BOOOG/(APR*BOOPWH)
IF(lCn«8,GT,ll) OBOOAH80,
OPOUARs»nAKES/APR
ONtEO=Of-'EF,0"DPO'<'R*BODOQ/BOOPWR
1F(INKJ.EO,0) GO TO 75
ONH3AR=DP04AR*BOONWR/UOOPWR
GO TO 80
CONTINUE
ON03AR = nP04AR*fORN>1'R/BOOPKR
ONEEO=Or:F.EO"0'«03AR*a,33
CONTlMlfc
IF(IUUG.EO.l) wRITE(KlOUTti016) DARES < DBOOAR, DPO<4 AR >DNH3AR iD"03ARt
• OMEL'D
CALCULATE ALGAL SINKING A»0 DEATH TEfl*3
OALS»-tiK»FACl
DALN{)s»i'JO*AL<;*OELT
F»CMlsH'()»CH»'(H
FACW2sHv?i.CHMCA2
FAC''>3=hy'3"CriMOAi
FACX=0.
IF(FACH1,GT.O.) FACx=ATD*FACMl
IF(KAC^2,GT,0,) FAC"=FACX+AT02*FACM2
IFCFACC3.GT.O.) f ACX=F ACX» ATDi»FACM3
OALTOXS-KACX»ALG«DELT
OADTHsDAL^O+DALTOX
IF ( I BuG. t 0.1) ^MITE(NOUT>1019) DALSNK,CBODAS.DALNDiDALTnX>OBODAD
CONTINUE
CALCULATE 8ENTHAL RELEASE TERMS
IF(ICOHB.LT.ll) DHODBR=BRRBOD*FAC2
IFflPOU.EO.O) GO TO 91
DPOUhHshRMPOU'FtCS
If 11NH3.EO.O) GO TO 92
C'.H3BR = l!«RNH3«F«C2
GO TO 95
IK1N03.EQ.OJ GO TO 95
115
-------
827,
420.
Hit, 95 COM IIHIE
430, If CIllljG.MM) w«ITt(NOuTi!020) DBOOBRiDPOUHW,DN03BRiDMM3n«lONfcED
431, C
432, C CALCULATE OXYGEN REAFRAT10N URM AND BEMfHAL DEMAND TERM
433. C
43fl,. XK=i.J«VtL/(OFPTH»»|,33)
435,
436, XK=XK*1,OU7*»TCOR
«3T,
438,
439,
440,
441.
44E, IFdOUG.Efl.l) l«HITE(NOUT,loan XK,ROO.DOOKMtOGIVE.ONEEO»Df LO
443, IHDELO.GE.O, .OR. ABS(OELO) ,LE ,00) GO 10 110
444, C
44S, C OXYGE.K DEMAND EXCEEDS SUPPLY. REDUCE ALL REACTIONS.
446, C
447, OFAC=DO/ABS(DELO)
448, IFUUUG.EG.l) "RITE(NOUT, 1022) OFAC.tNO
«49, OLBPDI'=PL»000»OFAC
450. OPO«MO=OPO«BD*OFAC
451, DNh36D = ONh.i&D»OFAC
452, ON030l)=OM038t)*OFAC
453, '
45«.
455,
456,
457, DN0302SO'J0302»OFAC
458, DARESaDARFStOFAC
459,
460.
461,
462,
461,
464,
465.
466,
467, 110 CONTINUE
46H. C
469, C HEAVY METALS
470, C
471,
«72.
473,
474. IHIHUG.f.'J.l) hRITt.(NOUT.10Cl}
475, 1001' FORMATC DtLH"liDELHM2.CELMn3=i,3tl6,e>
476, C
477, C UPDATE CONSTITUENT CONCENTRATIONS
478, C
479, COLF=COL+DElCOL
480, BODt =f-00+PL('05D*DLROD5«nyCO»r,»OPCDAH«l)pOriAS*rpODAD»DBnOHR
«81,
482,
483,
464,
465,
486,
867,
116
-------
408,
489.
490,
491,
492,
493,
494.
495.
496.
497,
498,
499,
500,
501.
502.
503.
504.
505.
506,
507,
508.
509.
510.
511,
512.
513,
514,
515.
516.
517.
518.
519,
520.
521.
522.
523.
524,
525.
526,
527.
528,
529.
530.
5M,
532,
533.
534.
53b.
536.
537,
538,
539,
540.
541,
542,
543.
544,
545,
546,
547.
548,
C
C
C
C
C
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
101B
1019
1020
1021
1022
1023
1024
102;
C
C
C
C
C
C
C
C
C
C
C
C
C
MMJfsl'f CHMJK + I
I0?a)
KETUHN
THE FOLLOWING ARE DEBUG FORMAT STATEMfK'TS
FORM AT ( I XTEMP.FACHMl,FACHM2iFACHM3sl,4H6.8/l OELK, XK ,PELCOL» I •
*3E16.6)
FORMATP XlEKP,DLHOf>D,niHOOS=' ,
FORMAT (I DNH.{:BODAO=I.SE16,8>
FORM AT (I nHOOnWtl)('0'iBM»lJN'ri3BR>OSH3nR,Of;rEOs'«5E16,8)
FORMAT!1 XK,COO,OoRES'iOGIVEiO^E(D,PELC:'t6El6.8)
FORPATO FACTOR 3i>El6,B«i ON KCAC^'il6)
PORMATC//' INITIAL CONOlTIOKS FOR KEACH'«I5/I lOiOELT.OtPTHaI,3F12
*l P04fALG,00=l,3El6,8/
FOR*AT(/i FINAL CONDITIONS FOR HEACHI,IS/l COL.BOD.NH3,M02»N03=l.5
P04,ALGfDO='.3EI6.6/
••i.Tt'TNsl ,4EJ6.8//)
FORK AT (I DNOiDS«Df'Oi»DSai«<;£16,8>
END
SlIflRDUTIME G«*P^(N)
RETURN
END
SUBROUTINE INOATA
JMPUT DATA
HYOKCOYNAMlCS PROGRAM
SPECIFICATION STATEMENTS
CONTROL
COMHON/GtN/JGWOAL
COM"Ok /CONTR/ ^5,*.'6,M20,'>21i ^'TCYC, WUCYC, NHCYC, NT,«JOSKRT
li OELTO.OELT.TZfRO, IS«CH(10)
NJ,NC«
GENERAL
ICYC,KCYC»«.CYCi
P«ECP{50).MXIT
117
-------
549,
550,
551,
552.
553,
554,
555,
556,
557.
550,
559,
560.
561,
562,
563.
56(1,
565,
566,
567,
560,
569.
570,'
571,
572.
573.
574.
575.
576.
577.
576,
579,
560.
561,
562,
563.
584.
565,
566,
567.
568.
569,
590,
591,
592.
593,
.594,
595.
596.
597,
596,
599.
600.
601.
602.
603.
604.
605.
606.
607,
606,
609,
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
JUNCTIONS
COMMON H(|.00) |HN(100) .HT(100),HRAR(IOO),HAVK<100)
li NCMAt.(IOO«*)«IPOINT(100.H)fAS(|OC) .VCL(IOO) iX(lOO) iV(lOO)
2. rHP(ioo).coiruoo).i;i>.uoo)it)cunc>o).oiNSTUOo)
3. CI^HAKt 100) .OOUBAR(IOO)
CHANNELS
COMMON LEu(22S>.MJUNC(2?r>,2)iB(225).P(225)iA(225).AT<225)|AK<225)
1. H(2?5)inB««(?2S),()AVE{2i;5). V (225) . VT (22b) , V8AR (225)
2. F'Kli.D(R25).NliMCM(2«!5)|NTE^P(8)
3»».CLOSC225)
PRINTOUT AND PLOTTING
COMMON NPRT.IPRT. NHPRT.JPRT(50),PRTH(30.50)
1, NOPRT,CPRTt50).PRTV(J0.50).PWTO(30.50)» IDII^ 12) . ICOL(IO)
2t LTJMEi NPLT.NPDELt JKLT (50) .HPLT(SO)
STAGE»TIME COEFFICIENTS
COMMON YY(SO) .TT(50) tAA(|0)tXX(lO).SXX(10tlO)tSXY(!0)
I.AltA2.A3,A4«A5«A6tA7.PERIOD.JGW
STORMKATER
COMMON TITLE(30) »NJSW,OE(20.2) , JSW{20)
2l RAlN(100)*INTIHE(100)'I^^AlNiJBOUND(20) » JJHOUN
TAPKS
COMMON /TAPES/ INCNT.IOUTCT.JlN(10)»JOUT(10)fNSCRAT(5)
TYPE DESIGNATIONS
DATA ASTtHK. BLANK /«H««»»»OM /
INTEGER CPRT
RfcAL LEN.INTIME
OPTION SWITCH. 1S»'CH(I)
1S«CM(1)
IF 1, WILL CALL TIDAL
COFKICIENTS PROGRAM
ISfCH(2)
If |. SUPPRfSSES CHANKFL AND
NODAL INFORMATION PRT»!T
STEP ONE
INITIALIZATION
N5«5
N6»6
N20 ASSIGNED IN RECEIV
REWIND N20
STEP TWO
TITLtS. GhNtRAL CONTROL DATA.
AND JUNCTION AND CHANNEL INFOR«
HATION
118
-------
610.
Ml.
612.
613,
61«.
615,
616,
617.
616,
619.
620,
621.
622.
623.
624.
625,
626,
627,
628.
629.
630,
631,
632,
633.
634,
635.
636,
637,
636.
639,
640,
641,
642,
643.
644.
645.
646,
64T,
646.
649.
6SO.
65J.
652,
653.
654,
655.
656.
657.
656.
659.
660.
661.
662.
663.
664.
665.
666.
66T,
666,
669.
670.
C
C
C
C
C
C
C
C
C
too
102
C
C
C
C
104
C
C
C
C
1
106
-
C
C
C
C
C
C
C
210
110
215
112
114
116
118
120
Re*0 TYPE A CAHOS
(FIRST i«o CAROS CONTAIN HEAD*
INGS K5R xYfUORYNAftlcS. SECOND
T*0 CAROS CONTAIN MftntNGS
FOR HUM IFIC'TJON OF STOftMkiATEK
INFOHKATIO-O
READ(NS,JOO> ALPHA
READO'5.100) TITLE
*RITE(N<,,102) ALPHA
FOK»'Ar{lHl»//30X.15A«/30XtlSA4/'/)
RFAO (N
FORMAT (1015)
(isv«CM(i)»i«i»io)
READ TYPF 8 CARDS
SIJTCH INFORMATION
READ TYPE C CAROS
CONTROL INFORMATION
READ (N5.106) NTCYC,PEKlOD.(nNT,OELT,TZtRO.NHPRT,NOPRT,NPLT»EVAP
JGW
IPEHIO = PERIOD * 0,1
IDELT = OELT
NHCYC
NINT *
0.1
* J600)/IQIN.T
IOINT/IOELT
(IPERID*3600)/IDELT
(NlNT*50)/100
READ TYPE o CARDS
PRECIPITATION is READ AT THIS
poiNT» RATE is INCHES PER HOUR?
TIME IS READ IN K1NUTFS FROM
START OF STORM
00 210 Nsl.100
RAIN(N)30.0
IKTIMf(N)sO,0
CONTINUE
IF (1UPAJN.EO.O) CO TO 215
110 FORMAT (6F10.0)
CONTINUE
DtLT»=OKLT*FLOAT(NHCYC)
*RITE(N6»112> NTCYC
FOH"AT (1SHOOAYS SIMULATED,14)
MHITE(N6ill4) NUCYC
114 FORMAT <2VMO*ATLH QUALITY CYCLES PER DAY,la)
"RITE (N6tli6) NHCrC
FORMAT t^S^OlNTt&SATION CYCLES PER KATfR QUALITY CYCLE,14)
kHITt (6.116) CELT
JJ8 FORMtT (inMOLENGTH OF INTEGRATION STEP IS.F6.0.SH SECONDS)
l-RITE (h.120) TZERO
120 FORMAT U3HOIMTIAL T I^E .F6.2.6H HOURS)
119
-------
671, '
67?. 122 FOW"»T(18HOEVAI>0«ATION RATE IF5.1,17H IKCHES PfcK MONTH)
673. •.fim(l.6,12«)xINO»»-DIR
67«, 121 FOK''«T(I V'0*I>-0 Vt'.LOCITY.Fr>.0.2;>H HpH *INU DIRECTIONF">.Oil9M OE
675, JG«FfS FROM NORTH)
676, IF
678, 126 FORMAT'(16HOESTUWIAL SYSTEM)
67<>, GO TO 21S
600, 216 COMI'iUE
68), hf»MK ("6,127) '
662, 127 FOR'iAT (l^HOSTREAM/LAKE SYSTEM)
683, 218 CONTINUE
681, *RIU CJ6.12B) NOS*«T
685, 126 FORMAT (2bMO«;tJP»T(I),lsi,NHPRT)
712, 130 FOKMAT(fiHO)
713,
71«. 136 FORMAT (S2MOCRINTEL' OUTPUT AT THE FOUOh P'G113,1 OH JUNCTIONS,//
71b, 1 (10X.16I6))
716, C
717. C «E«C TYPE F C»M)S
718. C CHANNiL NUvBtKS FOR RETAlLEO
719. C PKIMTOUT
720. C
721. REAp(N5,lJtt)(CP«T(I),Iai,SUPHT)
722, KRITE(N6.156)KOPPT.(CPRT (I).1 = 11N1PRT)
723. 138 FOK«AT(//15X,21HAND FOR THE FOLLO»lNCI3,9H CHANNELS//(tOX.8I10))
72h, C
725. C READ TYPE G CARDS
726, C RfAfi THE JUNCTION NUMBERS IF
727. C PLOTS AHE RfcQUESH.fl, OTHERWISE
7H6. C SKIP THIS READ
729, C
730, IF (NPLT.NE.O) REAO(N5,13U) (JPLT (N) ,Nr j ,NP(.T)
731, C
120
-------
732,
733,
73U.
735,
736,
737,
738,
739,
7«0,
7fll.
7«2,
.713,
7«4,
JO'S.
716,.
747,
748,
749,
750,
751,
752.
753,
754,
755.
756,
757,
758,
759,
760,
761,
762,
763.
760.
765,
766,
767,
768,
769.
770,
771.
772.
773,
774,
775,
776,
777,
778,
779,
780.
781.
782,
783.
784,
785,
786,
787,
786.
769,
790,
791,
792.
C . TIDAL OPT10M AT TK
C
IF (IShCM(|),NF.l) CO TO S60
KtAt) (MJillO) K'JiNI iMAXITiNCHTID
1«2«A3
Kl-'ITE C'hilUU) AliA^liJ
|<|.C(K1i2»CO TO 6«8
lF(I?OINT{K»J).tO.O)- SO TO 6«6
643 CONTINUE
6«6 IPOINT(K,J)eNJUSC(N,2)
KCMAK(K, J)3kiC
POINT
121
-------
79}, GO TO 660
794. 6«8 N.Cs'iC-1
795.
796,
797.
79B, R(M)zRAO
799. A(M)sR(M)»B(M)
600, AK(M)rCOEF
801, V(M)=VEL
802, GO TO 660
603. 655 CALL TRIANfNTKNPC1).NTEMP(2)iNTEMRCJ),NTEHP{4))
804. 660 CONTINUE
605. 670 CONTINUE
606, If (IStiCH(2),tO,l) GO TO 671
607, KRITF.(.-J6,170)
608. 170 *OKMAT(108H1CMA.NNEL LENGTH *IDTH AREA MAKING VELOCIT
809, 1Y HYD RADIUS JUNCTIONS AT ENDS MAX INT / . 67H
6JO. 2 NUMBER (FT) (FT) (SO FT) COEF, (FPS) (FT)
ett, 3 /)
612, 67« CONTINUE
611, 00 695 Nsj.NC
811,' IF (AK(N).LE.O.O) AK(N)BO.OiB
615. IKfi(N).GT.O.) GO TO 663
616.
617,
616, I0tl=0
619, DO 682 J=1.8
820, IF(IPOINT(K,J),CO,0) GO TO 682
621, lF(IPOlNT(K,J).fct.NJUNCC»l,2)> 60 TO 681
822. «RITE(N6,166) N,K»NJUNC(N.2)
823. 168 FORMAT («H CHA^NtL.C(N,2)
633, DO 664 Jsl.fl
634. 1F(IPOIMT(K,J),EO,N-JUNC(N,1)) GO TO 687
635. IF(IPCINT(K,J),fc(3.0) GO TO 685
636. 684 CONTINUE
837. 665 'CONT-XMIE
•836, IPOINT(K,J)SNJUNC(N,1)
839, NCHAN(K,J)='J
640, 687 CONTINUE
641, NuMCH(N)sK'JUNC(K1i2)*NJU>JC(N,l)*1000
842, DO 686 Jri,».QPRT
843, IF(CPP.T(J).SE,NUMCH(N)) CO TO 688
644, CPRT(J)=N
845, GO TO 690
646. 686 CONTINUE
647, 690 CONTINUE
646. TFsiOOO.
649, NL=NJUNC(K',1)
650, NHsNJlFNCfMZ)
851, SLOP! = (MC.L)->-t''H))/LFN
-------
8'il, IFC«U:).GT.«2)TFs0.73»Lf'Nf^
8b5. XuKsHt*O i"(N) i (NJUNC(N,K) iK3| , 2) i
659, *TF»XMK
860. J71 FPKMAT(I5,FU.CiF8.0iFtO.OiF9,3iF10.2,Fl3,l,I19fI6,F16.0tlXit.iLt
861. *F15,7)
662. 695 CONTII.UK
663. If (IS*CM(?).EO.l) GO TO 698
86(1, wRm:('J6i 1«2)
865, 182 FOHMATUZdHUUNCTIOM INITIAL HF.AD SlIRFiCF. AREA INPUT OUT
666, 1PUT CHANNELS E"TE*lNG JU'JCTIO'I COOR01NA
867. 2TES/122H NUMBER (FT) (10*»6 SO FT) CCFS) (CFS)
868, 3 XT/)
869, C
870. C NODAL SUHFACE AREASi DEPTHS AND VOLUMES COHPUTfO
871, C
872. ATOTBO.
873. DO 696 J=liNJ
671, IF(IS-*CH(6),E0.1) CO TO 70J
875,- VOL(J) = DFH(J)*AS(J)
876, DtP(J)sCEP(J)«H(J)
677, CO TO 702
878. 701 CONTINUE
67V, VOKJJeO.
680. AS(J)=0,
881, OtP(J)=0.
882, 00 697 K3t,8
863, 1F(NCHAM(J,K).EQ,0) GO TO 697
664. NsNCHAN(J,K)
865,. XTEM=LEH(^)»8(N)/2.
666. AS(J)=AS(J)*XT£M
887, VOL(J)=VOL(J)»XTEM*R(N)
686, 697 CONTINUE
889, DEP(J)=VOL(J)/AS(J)-H(J)
890. 702 CONTINUF.
891. ATOTaAtOT*A8(J)
692. kKITE(N6imi)
693, *X(J)iV(J)
69*1, 18U FORHAT(I7iF13,2,<|6PFtS.2,OP2F10.0»I10,7I6,!>3PMO.I«F7.!)
895, 696 CONTINUE
696. HRITE(6,190) ATOT
697, 190 FORMATd TOTAL SURFACE AREA BltKlZ.Oil SQUARE FEET")
898, 698 CONTINUE
899. v-PITE (N6.192J TITLE
900, 192 FORMAT (1H015A1,15A4)
901. C
902. C STORE SVSTEM DATA ON QUALITY
903, C OUTPUT TAPE
90«. C
90S, WRITE (N20) TITLE.ALPHA^J.NCiNaCYCtDELTO.dNCHANe
906. 1 AS(J)»J=liNJ),(LEN(N)i(NJUNC(N,K)iKel,2),Nsl,NC)
90T, RETURN
908, END
909, SUBROUTINE INQUAL
910. C
911. C INPUT DATA SUBROUTINE
912. C
913, C
914. C SPECIFICATION STATEMENTS
123
-------
915.
lib.
917.
9J8.
919,
920.
921.
922.
923.
9314.
925.
926,
927,
928.
929.
930.
931.
932.
933.
930,
935,
936.
937.
936.
939,
940,
941.
9112,
9«3.
944,
90S.
94fc,
947.
946,
949,
950,
951.
952.
953.
954.
955.
956.
957,
958.
959.
960.
961.
962.
963,
964,
965,
966,
967,
968,
969,
970,
971,
972,
973.
974.
975,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
GENERAL AND CONTROL
COMMON /TAPES/ JMCNTi IOUTCT t JlN( 10) . JOUT < 10) .NSCRATCS)
COMHON/GF 'VJG« i WTC • HOC YC i OELTO.rF.nF. ALPHA ( JO). TITLSWC 30)i ICOLUO)
*. JSWCH(IO) ,XR(16) .X!'li(U).X>:F{ th),XMf 0(16).
*N5«N6iN10iN20SUMC(lOO«|6)fCMAX(iOOilA)iC^I"(iOOil6)i.HADO(lOOM6)>OCOT(100ti6)<
*CC(16,20i2)>TEC16)«TEP(16)iSLUPE(20)rCSPlN(100il6)iTlTL( (6.16)i
*TEO(16)
PRIMING
COMMON/PRTCOH/NOPRT,ITCPRT,COCPRT,NSTPRT,NOCTOT,ISKIP,MSTPRT.
•NPRTiKPRT
DATA DISOXY /UH(DO) /
HtAU MAOOtUEN
NSsS
N6*6
READ ^io.N^o«''J4n WIB SMOUI.O BE
OHUH CR DlSC-STORAK^i K30 AND
N40 SHOULD BE KtCNETIC TAPE
IF USED.
MO B NSCHAT(J)
•J30 • KiSCRAT(J)
ItUV a USCKAT(4)
Kf>JND t<10
REMIND N20
READ " - 1SKCH VALUKS
IF THF SWITCH VALUE IS li THEN
im STATEMENT OK ACTION
CO^TROLLIO BY ThE SWITCH KILL
OCCUR.
5»'ITCH 1 « INPUT INITIAL CONCEM*
124
-------
976,
977,
978,
979,
980,
981,
982,
9P3,
98(1.
985,
986,
987,
968,
989,
990,.
991,
992.
993,
994,
995,
996,
997.
998,
999,
1000,
1001,
1002,
1003.
1004,
1005.
1006.
1007.
1006.
1009.
1010,
ton.
1012.
1013.
1014.
101S.
1016.
1017,
loia,
1019.
1020.
1021,
1022,
1021,
1024.
1025.
1026,
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036,
C
C
c
c
c
c
c
c
c
c
c
c
c
•c
c
c
c
555
11
6
C
c
c
5090
5100
51«0
5150
C
C
C
c
1
c
c
c
c
c
90
C
c
REAP(5»5S5) ISNCH
FORMAT HOI'S)
IF(IS*Cti(i).EO.l) REHI'J
IF(ISWCh(3)-.EQ,l) REKIN
DO 11 1=1,10
ICOL(I)=I
**RITh(6f6) ICHL,ISwCH
THATIONS FROM TAPE f;jo.
S*ITCW 2 - SKIP PIMNTIST. MAXIMUM
AND HIM"U" CQSCENT'AT IOVJS
SklTCh 3 - >-RITE CO'.'CI NTWATIONS
ON TAPf. MUD FOR A RfSTART.
(ALSO WRITES hYORAULIC IKFOHMA'
TION)
SKJTCM u . pno/oo is AT LEAST
ONE OF THt CONSTITUENTS.
SWITCH b - Hl.CEIVI^G HATER IS
TIOALLY INFLUENCED,
SftMCH 10 • THIS SKJTCM IS SET
BY N30 IF A RESTART TAPE IS USED
OH IT CAN RE HEAD IN IF THK
FIPST TIDAL CYCLE ONLY IS
REPEATED
0 NSO
D N40
FORM AT (11 SWITCH SETTINGS 1 /( 10110) )
00 StOO Ul,16
CS(I)=0.0
CSAT(I)=0.0
nn 5£Oft J2 1 i 1 00
C(J,I)sO,0
MADOU.I) 30.0
CONTINUE
CONTINUE
00 5150 1:1,16
Tf(I) =0.0
Tf PU) = 0.0
00 5140 L=l,20
CECI«L»1)=0.0
CEU,L,?>=0.0
CONTINUE
CONTINUE
HEAD (N20) TITLS«,Ai.PHA
AS(J)»J=1,NJ>«CLEN(N},
00 90 let .NOCYC
REAn(K'20) N9< (4(N) >U(N)
fcRITE(Njo> M3,(0('«),U(N
RExINO N10
INITIALIZATION
SYSTEM DATA IS READ FROM
RECEIVING HATER QUANTITY PROGRAM
, WJ.NC, (JOCYC ,DF.LTO, ( (NCHAN(J i J=1,NJ)
)tN=i
-------
1037.
1030,
1039.
1010,
tout.
JO/I?,
10<.3.
1044,
1 015,
1046,
1047,
10«6.
10«9.
1050.
tost.
1052.
1053.
1054.
1055,
1056,
1057,
1058.
1059,
1060.
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1066.
1069.
1070.
1071.
1072.
1073.
1074.
1075.
1076.
1077.
1076.
1079.
1060,
1061.
1062.
1083.
1080,
1065.
1066.
10B7.
106S.
1069. .
1090.
109|,
1092,
109J,
1094.
1095.
1096.
1097.
C
C
!F( ISi^CHf 1 ) ,NE, 1) CO TO 95
IS-.-CXdO) = J
fROU TAPE N30,
Rt ADK301 JGW,KCO\'i'«m(MO) NOi (G("O iU(N) ,N=li
RF.W1NO N'SO
REWIND N10
KPRTsHTC
NSTART=NTC*1
READ (5.556) NTC
I^PITE (h.tlOS) NTC
GO TO 39
CONTINUE
•K),SUMC(J,K) .
^)tCyl^(J'K)«KsliKCON)iJsliNJ)
C) , (VOL(J) inIN(J)iQOU(J)»J:| iNJ)
NO t(VOL(J) *OIN(J)iQOU(J),J=l.NJ)
THIS IS A READ ONLY ON RESTART
NJS* • NUMBER OF STORP WATER
INPUT JUNCTIONS,
1TCPRT - DAY CYCLE FOR START
OF DETAILED QUALITY CYCLE
PRINTED INFORMATION,
NOPRT » QUALITY CYCLE INCREMENT
BETKEFV PRINTED CYCLES,
LOCPRT • TOTAL NUKBFR OF QUALITY
CYCLES PRInTF.'fi (PRESENTLY
lINITtD TO 50)
READ PRINT INFORMATION FOR
DETAILED QUALITY PRINTING,
READ (NS.'ir>5) MJSK-, ITCPRT.NOPRT.LOCPRT
1100
101
c
c
c
»»I1E ('.*>. UJOO) TITLSui
FO"i'AT(lH115At,l5»U)
• RITE (6*101) »LPiiA
FtiH"AT(//110Xil5>"l/30Xil5A4//)
READ GENERAL CONTROL PARAMETERS
AND DATA.
PtAD (M5»556) '•nc.KCON.NPRTfXRQD
556
1100
1102
1104
1105
^ 1 1 !>4) V'JCYC
FO«"-'AT (S?"ONuvPtw c:F QUALITY
*BITt (6illCi5) ^'TC
FORMAT ( 15MCSUMHE R OP DAYSiIS)
*RITE (A. 1101) •'CON
'UMHERtIS)
CYCLfS Pt.R DAY, IS)
126
-------
1090,
1099.
1100.
1101.
HOP.
1103.
1104,
1105.
1106.
1107.
1106.
1109.
1110.
1111.
1112.
1113.
1114.
1115.
1116.
1117.
1116.
1119.
1120.
1121.
1122.
1123.
1124.
1125.
1126.
1127,
1128.
1129.
1130,
1131,
1132,
1133,
1134.
1135.
1136.
1137.
1138.
1139.
1140,
1141.
1142.
1143.
1144.
1145,
1146.
1147.
1148.
1149.
1150.
1151.
1152.
1153,
1154.
1155.
1156.
1157.
1156.
1101
1106
1110
1112
4200
C
C
C
C
c
c
c
4280
C
c
c
4320
4300
4380
1
4340
4360
4370
C
C
C
C
C
2301
210
39
1101 FORMAT (2JHO';U"KEi> OF CONSTITUENTS,14)
TE (6,1106) OELTQ
1106 FOrtyAT(«b"ou'.c;TH of UUALITY INTEGRATION STEP (sEcoMosi»F7,o)
-WITE (6,1110) NP*T
FORMAT (ibiicpwiKT INTERVAL, iI4iSH OAVS)
"•KIU (6,til?) X«QD
1112 FORMAT(30»fttXCHAnr.l: REQUIREMENT AT OCEAN,F7,2)
FORMATClflHOTt'f l!f ARt,I3,27H STORMwATER INPUT JUNCTIONS)
HTOTAL = LQCPRT»''GP«T
Rt*0 IN EVERYTHING
CALL HE* IN
IF(NJSW.EO.O) r.c TO 4370
RtAD (N'5i42(IO]
FOKHAT (1615)
DO 4300 KaliKCONO
READ AND INITIALIZE STORMWATER
INPUT CONCENTRATIONS.
REAP STORMWATER JUNCTION NUMBERS
READ TIME AND LOADING RATE
READ (N5«4320) TE(K),(CE(K,L>2), LEliNJ3W)
FORMAT (BF10.0)
TEP(K) a. TE(K)/3600.
CONTINUE
TIMt B 0.0
DO 4360 K sl.KCOK'O
•RITE (N6.03HO) *• TEP(K)
00 «360 L »1,'JJS1
•RITE (N6.4340) JS*(L)«CF(K»L»2)
FORMATClH010Xi|9H CONSTITUENT NUMBER,15,5M AT ,FS.2,I7H HOURS F«0
IM START/)
FORMATtlH 10X,I5>10E10.4)
CONTINUE
CONTINUE
NSTART " 1
KPRT B 1
NOCTOT AND ISKIP ARE COUNTERS
FOR RUALITY CYCLE, JUNCTION
CONCENTRATION PRINTOUT.
NOCTOT • I
ISKIP a 1
OR 230 J»1«NJ
VOLO(J)sVOL(J)
no ?:soi KC » I.KCONO
K4PD(.1«l'Ar>D(J«KC)»0.ie57
DO 2JO
-------
IIS9.
1160.
1161,
116?,
1163.
1164.
1165.
1166.
1167,
1168,
1160,
1170.
1171,
1172,
1173,
1171,
1175,
1176,
1177,
1178.
1179,
1180.
1181.
1162.
1183.
l|8tt.
1185,
1186.
1187.
1188,
1169,
1199,
1191.
1192.
119}.
119tt.
1195.
1196.
1197.
1198.
1199,
1200.
1201.
1202.
1203,
120«.
1205,
12C6.
1207,
1208.
1209.
1210,
1211,
1212.
1213.
1210.
1215,
1216,
1217.
1218.
1219,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
7
DUALITY CYCLE LOOP
SPfCIFICATIO* STATEMENTS
GENfRAL AND CONTROL
COMMON /TAPKS/ I«ICNT,IOUTCT,JIN(10),JOUT<10)
C(.lMMCt;/Cl)>,t'''1''/r.i.l'-S'P( 1 3)
CO".".G'i/CPT ins/UN (fl) i I»LC
C(w<(;K/r,f.»/jG*,NTc(NGCYC.[>f-.LTiJ,nK,QF , ALPHA (3o).TiTLSM30)ilcOL( 10)
VE( 16) . XKHtb) (XHtOtl6)i
JUNCTIONS
COMMOi*/JUNCPM/HJiNCtUN(100ie>»Oln(100),GOUC100).VOL(lon)»VOLO(100)
*««S(100)
CHANNELS
COMMON/CHS'COM/NC.NJUNC(225.2)fO(2Rb)iLENC225),U(225)
STOKHMAtER
) ,TT(2>.CT(16,20.?> »JNSTM
DUALITY
.C(10n»S6)'.
*SUMC( JOOi 16) <
«CE(16t20i2),Tt:(l(>)>TE»>(i6)>SLOPK(20),CSPIN(100il6),TirLt (6,16),
•TtO(lb)
PK1NTIN6
COMMON/PRTCOM/K.'OPHT«JTCPI»T«L'5CPRT|NSTPRT»NOCTOT,1SK1P,MSTPRT,
*MPRTiKPMT
COMMCf. /ST1/ TITFL(«0)
COMIiON/CO'iST/THKOLt »«>
COMMON/OP t2/Iht A VY«
COMMO^/F•0»G^JT/l.KtST(100)
OATA LANK,JSTEf»/l I , '*'/
RtAL PAOO.LEN
IFC1NSTM.LT.1) IFLGaO
GO TO 190
GO TO 190
»PIHM2,PIHMJ
RfUM) N21
KfAt) (1421) TITEL
(6,7093) TITEL
7093
RKAD(*21) KSTEPSiMJSh.NCON ,TDELT«
TZsTZtRO/3600.
, T ARK*
128
-------
1220.
1221.
1222,
1223,
1224.
1225,
1226,
1227,
1228,
1229,
1230.
1231,
1232,
1233,
123<1,
1235,
1236,
1237.
1238.
1239,
1240.
1241.
1242,
1243.
1244.
1245.
1246,
1247,
1248,
1249.
1250.
125!,
1252,
1253.
1254,
1255,
1256,
1257,
1258^
1259,
1260.
1261.
1262,
1263,
1264.
1265.
1266.
1267,
1266.
1269.
1270.
1271.
1272.
1273.
1274,
1275,
1276.
1277.
1278.
1279.
1260.
wHITF:(6«7091) >;STFP5 i M JSX i f'CON i T
ni.'LTiTi!f TAPEA
70''! FO»"*T Cl*0i i DMA TRAMSMHUO F"C!" INPUT FILM/
» 1 NUM'U'R OF STf.PS a ' >
«i NUVHFH IJF ISPUT POINTS **t
»l NiJViit:R OF CONSTITUENTS =li
*i TIKE INCREMENT = '.
*i INITIAL TIME ='.
•1 TOTAL AREA ='t
READ(421) (ISw(L) iL=l*MJSvO
IS-tl) = 18
»R!TE (6ih501) US»(L> tl-=l iMJSN)
IS/
IS/
Ib/
FP.Oil SECSI/
MO, 2.1 HRSl/
F10.2.I ACKtS')
6501 Ft.mKATUHO. I INPUT POINTS AHi- LISTED BFLO* ' • /( 1 OX i I 01 1 0) )
HEAP(M21 ) Tf(l ) i (CliL=l ,MJSm) i ( (CT(K,L. J)|K=1 .liCUN) iLsj.MJSM)
TT(1) = TT(1> * UE*0
TH=TT(1)/3600.
^RITECbibSOS)
6503 FO«"AT( 1"0. « LOADINGS FROW DATA
»P.ITE (h.650*) THi ((CTCK.Lil) tKal
6502 FORnAT(F'l2.?ilOFll,3)
KEADCM21) TT{2)»{DtL=l»HJSW)»((C
TT(2) a TT(2) * TZERO
THsTT (2) /'{600.
MMITE(6t6502) TMi((CT(K,Li2)t'<::l
NINREC=2
11 = 1
12=2
TIMEaTZERO
TTPcTIME
190 CONTINUE
C
C
(jo uqA j r Y^o * , ^°CVC
MSTPRT=ICYC
C
C
c
c
READ(NIO) NO, (0(N).U(N),NiliNC),
DO 200 Jal tMJ
IFCCvIN( J) .LT.O.) QlN(J)BO,
200 CONTINUE
C
c
c
c
c
IF(INSTM.EQ.O) GO TO 4470
TIHErTIME»OE'LTG
1F(N'21,EO.O) GO TO 2050
DO 2010 LaliMJS*
J=IS«(L)
DO 2010 KsltNCON
2010 iAOD(J.K)=CSPI'w(J.K)»DELTB/,1857
nRITE(6« 6^03)
2012 IF(TI"E»TT(I2)) 2040 i2015i2015
2015 DO ?020 L=liHJS*
JalSw (L)
DO J>0j>0 Ksl.NCO't
FILfO
»^CON) «L=1 IMJSW)
T (K.L.2) »Ksi ,NCON) »LS1 »MJSi«()
.
t NCON)iL81|MJSW)
MAIN LOOP
READ HYDRAULIC INFORMATION FROM
FAST DRUM(OISC)
(VOL(J)>QIN(J).QO'J(jr,jBllNJ)
VARIABLE FLOW INTKKPOL AT ION
OR AVERAGING
2020 MAnr)(J,K)=MtDD(JiK) + CT(K,LtIl)*(TT(12)»TTP)
TTP=TT(12)
JTEf P»I2
129
-------
1281,
1283,
12-33,
1264.
1285,
1266,
1207.
1388,
12B9.
12-JO,
1291,
1292,
1213,
1294,
1295,
1296,
1297,
1296.
1299,
1300,
1301,
12=11
1303,
1304,
1305.
1306,
1307.
1308.
1309.
1310.
1311.
1312,
1313.
1314.
1315.
1316.
1317.
1318.
1319.
1320.
1321,
1322.
1323.
1324.
1325.
1326.
1327.
1326.
1329.
1330,
1331.
1332,
1333,
1334,
1335.
1336,
1337.
1336,
1339,
1340,
1341.
2025 KF:A[)(*,?I i TTCI?) i (D,L=I»MJS«) tC(CT(K,L.i2) IKS
TT(I2) = TT(I<"M + TZmi)
V(r.TT(I2)/3f>00.
T", (CCT(K,L,!2)iK = l,NCO«O,L=li*JSK)
267,408
»Lai «KJSW)
GO TO -iO!2
2030 TT(I2)=TT(1
DO 2035 L=1«MJS*
00 20.'TTP))/OtLTQ
TTP=TI»H
2050 IF(NJS'<>.£Q|0) GO TO 4470
DO 4400 K:t,KCONO
IF (TlKt.LE.TE(K)) CO TO 4400
TEO(K) s Tt(K)
DO 4440 I 3},NJS*
CE(K.L.l) B CE(KiLi2)
4440 CONTINUt
C
C KEAD TIME AND LOADING R-ATE
C
READ (N5>4320) TE(K) i (CE(K«L*2)» {. s 1,UJS«)
«I320 FORMAT (8HO.O)
TfP(K) c TE(K)/JM)fi,
WRITK (>J6,«3»0) K,TEP(K)
a380 FORMAT CIMOIOX.UJM INPUT, POUMOS PER DAY, CONSTITUENT NUHHKR»1S,5H
1 AT .Fft,2«17H HOURS FROM START/)
00 4420 L =1,NJS»
"RITE (N6.4340) JSW(L)»
4340 FORMATOH 10XtI5tlOE10.tt)
4420 CONTINUE
4400 COK'TlNUf
00 4460 Ksl^KCO^O
DO 4460 L <
J a JS*(L)
= CSPIM(J»K)*(CtCK»Lll)f SLOPE (L)*{Tlllf«TEU(K)))»0. 1657
4460
4470 CONTINUE
SET HOIINDAHY
COKDITIONS
DC 230 KCel.KCONO
IFCIFLG-1) ?P«,i!l0.220
208 DO 209 KCC=1.KCQN
X".E(KCC) = 1.
209 X«EO(KCC)30,
210 1F(OIN'(JC*)) 211«211i215
211
215 IFLGsl
218
130
-------
n«2,
U13.
1311,
1315,
1346.
1307.
1316.
1319.
1350,
135),
13'.>2«
1353,
1354,
1355,
1356.
1357,
1358.
1359.
1360,
1361.
1362.
1363.'
1364.
1365.
1366.
1367,
1363.
1369.
1370,
1371.
1372.
!?73.
1374.
1375.
1376.
1377.
1378.
1379.
1360.
1381.
1362.
1363.
1384.
1385.
1366.
1387.
1388.
13R9.
1390.
139J.
1392.
1393.
139(1.
1395.
1396,
1397.
1396.
1399.
1100.
1401.
1402.
(JO TO 2:i3 .
220 JF(inn(jr.iO-) 21Si2r>t22b
221 IFLGr-a
DO i?2.V *CC'l t KCON
Xft(KCC)=l,
223 X.'i|:Ci{KCC)30.
226 CONTINUE
227 X >' f. ( K c ) - X " £ ( K C ) * P- 0 ') ( J ft w )
• XvE 0(KC) = XMEO t KO + CUUC JG«) * (C ( JGh i
230 CONTINUE
C
C
c
c
00 280 J=l iNJ
IFO.'CHir,'(J,l),EC,0) GO TO 260
SU'1G = 0.
00 2«5 KC=1,KCON
245 OCDT(JiKC)=0,
C
C
c
c . . .
DO 260 KcliS
N3NCHAN{J,K)
IF(N,eU.O) GO TO 260
JLsN JLINC C ^ 1 1 )
JHsN'JUNC(Ni2)
I F ( ( J . EC . JL ) . * *'P . ( 0 ( H ) . Gt . 0 . ) ) GO
IF«J.En;JH),»*o.(0(M),LE.O,)) GO
IF( AHS(U('O»DKLTU)tGf.l-Eki(N)) WH
8246 FOR"»T(' **VEL.: ' t c!t.3t ' In CHASNE1.
IF"((A8S(u(N)»OtLT'3)),GT,CEN(N)) y(
SUKl) = SUMU + 4fcS(Q(N))
00 250 KCs| ,KCON
iKC)»CS(KC) )
COMPUTE CONCENTRATION CHANGES
AOVECTIVE MOVEMENT IN CHANNELS
TO ?60
TO 260
I TF (Nh«824fc) Uf N) i N,|_f N(M)
•illi" "'!TH LENSTHsi,Flo,2)
N) = SIGN(l.tN(N)/OELtO,u(N))
250 OCDT(JiKC)=DCOT(J.KC)»AHS(Q(N))*(U(N)»(CCJLiKC)-CfJH,KC))/LEN(N))
260 CONTINUE
265 CONTINUE
DO 270 KC=l«KCON
IF (SUM.MJ.O.) GO TO 270
DCUT(J.KC)s(OCDT(J»KC)/SUMQ)»DEtTO
2TO CONTlNUt
280 CONTINUE
C
C
c
c
c
00 285 J=1.HJ
IF(NCHAN(J,1),EQ.O) GO TO 285
00 284 KC=| iKCON
C(J»KC)eC(J«KC)»OCDT(JfKC)
IF (C(JiKC).UT.O,) C(JiKC)«0,
284 CONTINUE
285 CONTINUE
C
'C
c
c
DO 289 jBliNJ
IF (VOL(J) .LE, 0,0) GO TO 289
UPDATE CONCENTRATION AND CHECK
DtPUTION
SOUHCt CONTRIBUTION
131
-------
1403,
1404.
1405.
1406.
1407,
1406.
1409.
1411,
1412,
1413,
1414.
1415.
1416.
1417.
1418,
1419,
1420,
1421,
1422.
DO 2flH KC=
C?B8 C(Ji«C)=C(.
28B C(JfKC) = (l.-OIN(J)«bELT(;/VOL(J))*C(J.KC)»(MADD(JiKC)/VOL(J))*OFLTO
2B9 CONTINUE
C
C
c stT UP INTERFACE FOH C.ETCON
DO 'iOO JsliNj
00 «00 J«ali 11
400 CONSTKfJ»)=C(JtJA)
415
c
IFtlALG.tn.O) GP TO Mb
ICYC,QLLTU/J600.(AVIUT)
CALL GtTAVl
CONTINUE
CALCULATE. JUNCTION VELOCITY
SUMVELnO.
SUMFLOr.0,
DO 408 JL=! 18
If(NCH»N(JiJL) .EO.O) GO TO 408
1424,
1425,
1426.
1427,
1426.
1430,
1431,
1432,
1433,
1434,
1435.
1436.
1437.
1438.
1439,
1440.
1441,
1442,
1443.
1444,
1445.
1446.
144T,
1448,
1449,
1450.
1451.
1452.
1453.
1454.
1455.
1456.
1457.
1458.
1459,
1460,
1461.
1462.
1463,
408
410
500
C
C
c
c
c
CONTINUE
VELJUNsSlMVEL/SUMFLO
CALL GETCO'J/AS(J)»VELJUN)
DO 410 JAzl.M
''t..O.) C«T.t<:,0) GO TO USOO
IF (NSTP^T.LT.ITCI'^T) C.P TO "SOO
IF (LOCPHT.LT.NOCTPT) GO TO 4500
CALL CP*1','T
4500 CONTINUE
END QUALITY CYCLf LOOP
548 CONTINUE
RETURN
END
SUflHOUTINF i:£i»lN
CniKON/C'V-ST/TtMCPLfAfiOD) AHMiC
• Tf K».nl,
. THVOL* « 90RC»
132
-------
1464,
1467.
1466.
1469,
1470,
1471,
1472,
1473.
1474,
1476.
1477,
1478,.
1479.
1480.
1461.
1462,
1463,
14*4,
1465.
1466.
1467.
1466.
1469.
1490.
1491.
1492.
1493.
149«.
1495,
1496.
1497.
1498.
1499,
1500.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1506.
1509.
1510.
1511,
1512,
1513.
1514,
1515.
1516,
1517.
1516,
1519.
1520.
1521.
1522.
1523.
1524.
513
111
112
114
115
113
200
* , HMKAKiHIK A Ji THNP3K, T HP 0(1*
CO*M(JI\/ J'J'.COn/vlJlJ'vC iN'C'<»'l( 100. P) ,OIN( 100)
COMMON KCONtFIL(t7),CS(16>iCS-AT(100),C(!OOil6)iFIU(4BCO)«MAOD(100
*i!6)
HEAL K*00
UIKE'-'SION ARCON(l)
EQUIVAUNCE (AKCO'
., NTC
DATA M»NJ/5i6/
DATA KHOF/'ENOKl/
CO«KQN/HCHVAR/CniK{100) . HOOK (100) . BOOKS (1 flO ) .Nn:SKC100),NO;>K(109)t
*EXTK(lOO)«nO*2(100)«Hnl><(lOO) t HM2K(100) f
• iPOIK(lOO) t'.0'3K( 100)
COMKON/OPTION/JFN, IK2.1COLI JCUMB, INH3tI»02iI'J03iIPOaiIALCiIFIRST
COMMON/OPT?/' IMC A VY i ITOTN.IChLOH
COMMON/OPT 3/ I P, I NHil N2i I N3
COMMON/HLOCK5/JJ(8) iNREA
DATA LAbltUBZ/IFILE'i' J '/
REAL NOREFR
REAL N03K
REAL KPOfliMlNOJ
fit AL MaN03if'NH3,MLiNRiNH3K»N02K
DIMENSION DEFALU30)
DATA DEF4LT/1.07 , 0,0 , 0,0 . 20.0 . 1.1 i .01 i ,17 , 106, i 16,
*0 i .5 i l.S , .5 , .1 . 1.07 • 20. • .0) i .03 , .026 i .OUS • .0
*«b , .03 , .6 , .0001 i .05 , ,001 . .001 i M. , .125 , .108.1S./
DATA xP.xl.l.xCK.x^^.XMSiXEXiXUCIK/.OOOVi ,OOI«. ,00a..00«i.01'5> .OU,
«EAD(Mi313) NOAYl»ELEViTEMPAVfXL»T
rORH»T(lHl.//«5X« I JUNCTION VAR I ABUES I , //}
MKfTf (NJill^)
FOKMATCi JIACliSX, inODI ,8X,IQODI,6X, ICOLIFORMI ,
• flX, IM03N6X, IPQI'ifcX. IEXTINCT REAtRw HtAVY
HEAVY
IN02' i
HKAVY TE
• I Ml" PMCTIOU SETTLING" .0( I
*!COtF'»SX, UTIPI, HET 1 MET 2
• 10X.7C 'CC]f-Kt,7X).BX, (I}iDOK2(n>COLK(I)iNH3K(I)«N02H(I)»
*NOJHtI),POUK('I) ,EXTK(I) i
*HMlK(I),HM2«I),ri>-i3K(I),TEMREA{I)
READ IN INITIAL CONCf-THATIONS fOR JUNCTION AM> CONCENTRATIONS OF
DIN IN MG/L FXCEPT fOK COLIFOHMS IN MPN/100 ML
Ud.KE.JGx) GO TO 115
DO 11« JL=liKCON
CS(JL)3CCIiJL>
CONTINUE
RE*n(NIi««0) (MAODtlf JL) • JL= 1 «KCON)
CONTINUE
CONTINUE
FOHMAT18F10.U)
133
-------
1525,
15?6,
1527,
1528.
1S29,
1530.
1531.
1532,
1534!
1535.
1536.
1537.
1536.
1539,
1540.
1541 .
1542.
1543,
1544.
1545.
1546.-
1547.
1548.
1549.
1550.
1551.
1552.
1553.
1554.
1555.
1556.
1557.
1558.
1559.
1560.
1561.
1562.
1563.
1564.
156S.
1566.
1567.
1568.
1569.
1570.
1571.
1572.
1573.
1574.
1575.
1576,
1577.
1576,
1579,
1580.
1581.
1582,
1583.
1584.
1585.
213
305
217
300
908
607
fORV»T(13F6,0)
FORMATU5)
00 300 l*-\ i *JJU*-'C
IF O'Orjx ( IK) .f n,o, ) BonK(iK)s,;>/po.
IF ( TE "RC A ( I K ) , f r. , 0 . ) TEXRK A ( I X ) r t f.MpA V
IFd'ijiKCKJ.EfJ.O.) P04<(In)3Xf*
IF(*03<(IO ,KS,0,) N03X(IiOsX.iS
IFfCCI. KdO.tiJ.O.) COL<(IO = XCK
IF(N02<( IK) ,fc 0,0.) N02n( I*) = XN2
IF(EXTK(K).ER,0.) EXlK(IK)=XEX
IF(OOK2(IK).E<5.0.) DOK2(IK)=XDOK
IF(Mr.lK(IX),E3,0.) HMlK(IO = XCK
wRITK(i>.Ji217) !K,30r)X(lK),BUCAS(IK)tCOLK(IK)iNH3K(Ii<)iN02K(IK)i
*N03K(IK),PO(|K(IO ,f XTMllOt
*OOK?(IK) !'•*!<( IK) .HM2K(IK) tHM3K( JK) ,TEHREA( IK)
FORMAT (I4.F10-.J|F11.6»5F1 1.4, HO.«iFll.3,F9.4,F8,fliF7.aiF6, 2)
CONTINUE
«RITE (MJt908)
FORMAT (i HI ,//45x, i INITIAL CONCENTRATIONS",//)
«RITE(HJ»607).
FORMAT(I JUNCTION DO BOO NH3"N N02i-N N03"N P04«P
• PHYTO COLIFORMS MHI HM2 HM3 TOT N CHLOR hMH MM12
302
818
909
606
450
303
619
116
1211
121
122
123
10
* HHI3'/ " NUMBER (MG/L) (MG/l.) (nG/L) (MG/L) (»G/L)
«G/L) (MG/L) (MPN/100) (MG/L) (MG/L) (*G/L) (MG/L) (MG/L) (^G/L)
*G/L) (MG/L) "'/)
DO 302 IKsl.NJUNC
KRITE(NJ,alu) IKi (C(K«LJ) 2) IFN.ICOL, I COMB, IMEAVY, 1TOTN, I CHLOR, I"JH, In2, IH3i IP
Ifd^H.f.'E .2) INHSJ
IF (I'''2«^F .2) I^2sl
IF(IN3,NE ,
DO 10 I :|>30
If'(A9CnMI),EQ,0.) ARCON(I)30EFALT(I)
CONTINUE
(M
(M
-P
12
(M
(H
134
-------
1*86.
1587.
1S8B,
1569,
1590.
1591.
1592,
1593,
1594,
1595.
1596.
159T,
1598,
1599,
1600.
1601,
1602.
1603.
1601.
1605.
1606,
1607.
1606.
1609,
1610,
1611,
1612.
1613.
16ia,
I61S,
1616.
1617.
1618,
1619,
1620.
(100
«05
410
ais
1622,
1623.
1624.
1625,
1626.
1627,
1626,
1629.
1630,
1631,
1632.
1631,
1630,
1635.
1636.
1637.
1636.
1639.
16«0.
mi,
16A2.
1603.
16(10,
16as.
16«6.
420
IMTHKOSK.F'l.n.) T UNO JKs 1.12
IF(THrO«K.E.1.0.) THPO«*=1,08«
IF(ICOL.K').O) CO TO ttOO
wniTf (NJ.lOoa) T"
• AVY.fiT .?•)
lufr AVY.'-I- tf>
IFUKKAVY.GT.l)
IFUHf.AW.GT,2)
CO'ITIMUE
IFUCOHB.GT.il)
,|OU7) '
AHM
AHM2
AHM'i
•»SITE(NJilOJ 1) CHM03C
GO TO «05
GO TO 405
«RlTf(NJt IOJB)
uHITt(NJt 1019)
HHlTt:(NJ,10lS)
»KITF(MJ« 1016)
tiODOQ
.MORKFR
HOOC
BOON
BODPC
CONTINUE
It UNH3.EU.O)
GO TO (110
THKMH3
VOUITK
i 101«) ThVOLK
CONTINUE
IFUM02.EC.O) GO TO
*>MTE(NJ,1002)
wRITECNJ.lOd?) THN03K
GO TO 420
IFUHEAVY.NE.o) ••< ITE (NJ, 1022) CHMOA
IFUMEAVY.GT.l) •KITE(.MJ,102J) CMMOA2
IKIMEAVY.GT.2) *RITK(NJ,102«) CHMOA3
IFUhEAVY.NC,0) »»ITE(NJ,1025) HHKA
1FUHEAVY.6T.1) -KITKN.:,1026) HKKA2
UUHEAVY.GT.2) *RITF.tNJ.102/) H^KAS
IFUF04,»JE.O) wRITE(NJ«l02fi)
IFUPOd.t.E.0 .A.v.0,
««ITE(NJ,1029) M1N03
»RITE(MJ.J03?)
*RITE(NJ»10J3)
>«RlTE(Njtl03(i)
WRITE(NJ,1035)
»RITE(K'J»1036)
JF(IHKAVY.GT.O)
IFUMEAVY.GT.l)
IFUKEAVY.GT.2)
APR
NR
ASR
AND
kWJTE(NJ»1037)
»*ITE(SJ«1038)
v,RI TE ( NJ , 1039)
1FUCOMB.LT.12) Kf»ITE(KJ»10UO)
ATO
AT02
AT03
,-C.l) >SITE(NJ,1050) THPOUK
irUNH3i'.f,.C .OK. l!j03.^E.O)
t 1 0«2) ORWNH3
1FUHEAVY.GT.1) *RITE(NJilO«b) P1MH2
135
-------
1607.
16«8.
1650,
1651,
1652,
1653.
165«,
1655,
1656,
1657,
1658.
1659,
1660,
1661,
1662,'
1663,
166«,
1665,
1666,
1667,
1666,
1669,
1670,
1671,
1672,
167J,
167«,
1675,
1676,
1677,
1678.
1679,
1680,
1661,
1682,
1683.
168fl,
1685,
1686.
1667.
1688,
1689.
1690,
1691,
1692.
1693,
I69a,
1695.
1696.
1697,
1698,
1699,
1700,
1701,
1702,
1703,
170«,
1705,
1706,
1707,
IFflHf.AVY.&T,;?) «.-RITE(Nj,iO«6) PIMM3
CALCULATE HXYGt'. SATURATION IN EACH JUNCTION
00 iiJO K = | tfiJiiNC
TsTEMRkAfK)
CS AT (*) = (!«. >V-<. 3898«T)»(.006''6<>»T*»Z>.(,00005897*T.'M3))
* *C(l,-(,OPOOnh97«ELEV))»»5,167)
«3o
C
460
1002
1001
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
10l«
1015
1016
1017
1018
1019
1020
1021
1022
1023
io2«
1025
1026
1027
CONTINUE
'CHECK TO INSURE THAT HOD.N EXCEEDS THE ALGAL«N IN IACH JUNCTION
BOO«iTsBt"5C*12,/HnDPC
BODNX.ALGN.K
00 libO KcltNJUhC
BOO>;x = C(>P»iR)
IF(IJOCNX.LUAI.GN) •>* 1 11 ( N J , 1 Oil )
CONTINUE
FCRVATO CONSTITUENT SELECTION OPTION eii6ax,J5)
FCR''«T(I PHYTOPLANKTON GRO-iTH FLECTION OPTION ='»56X,IS)
FOR^ATd COLIFOM:-1 OPTION ='i78XiI5)
FORHATC TtMPF.RAT-USE COKRfcCTION CONSTANT FOR COLIFORM REACTION COE
*FFICItNT si ,20XiFlO.'i)
FOKMATCI COEFFICIENT ON BOO IN COLIFORK CALCULATION =i ,51 X «F1 0.5)
FORMAT (I COEFFICIENT ON HEAVY METAL 1 IN COLIFORM CALCULATION oi,a
*lXiF10.5)
FORK»TC COEFFICIENT ON HEAVY METAL 2 IN CCLIFORM CALCULATION *l«q
»1X,F10,S)
FORM«TC COfFFICIENT ON HEAVY METAL 3
*1X,F10.5)
FORMAT (• HEAVY HETAL 1 CONCENTRATION
»ULATION =".29X,F10.5)
FORMATti HfjvY HETtL 2 CONCtNTRiTION LIMIT (MC/L) IN COLIFORM CALC
tULATION =l.2
-------
1706,
1709,
1710.
1711.
1712,
1713.
1714.
1715.
1716.
1717,
171B,
171V,
1720,
1721,
1722.
1723.
1724,
1725.
1726.
1727.
1728.
1729.
1730.
1731.
1732.
1733.
1734.
1735,
1736.
1737,
1736,
174o!
1741.
1742.
1741.
1744.
1745.
1746.
17«7,
1748.
1749,
1750.
J751.
1752.
175J,
1754,
1755.
1756.
1757.
1758,
1759.
1760.
1761.
1762,
1763.
176ft,
1765.
1766,
1767.
1768.
1036
1029
1030
1031
1032
1033
1050
1035
1036
1037
1038
1039
1040
101)1
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
C
C
C
. C
C
C
C
C
C
C
C
C
C
FOR''»T(i. KlCHACLIS»MfnTOM CONSTANT (KG P/L) fC« PHOSPHORUS LI"ITAT
»K»l OF fV(YT,1PLA'.*T« CONSTANT (HG */L> FCH PHOSPHORUS L1MITAT
»IO'J OF PHYTOCLA'.KTm: MO-IH =1, VYfF|0,S)
f-Tn^ r.u»>-5TAMr (i-c fo'i-'i/t) FO"» NITROOF.N I.IMIT
Of. f;WO«TH =l./X,F|C,5)
KOK"AT(i CICHif-.LlS-"E'.TCjN tC'ixSTA'lT (»-G i.HJ.'j/U FOR NITRPHES LIHIT
»ATION PF PHYT(1PLAV , VJX . F 1 0 , 5)
FCRiUTC PHYTOPL»N<10N TOXIC DEATH COEFFICItNT FOR HEAVY «ETAU 1 a
»l,3HX,Fio.5)
FCR^Aifi P^YTOPLANKTON TOXIC DEATH COEFFICIENT FOR HEAVY METAL 2 »
*«i3SX,F10.5)
FOHMAT(i PHYTOPLAMKTON TOXIC DEATH COEFFICIENT FOR HEAVY HETAL. 3 a
* I t36X,F10.5>
FORfAT(l BOO HEMTHAL RELEASE RATE (HG/SOUARE METER.HR) ri.d6X.FlO,
*5)
FORHATC PHOSPHORUS BtNThAL «tLEASE RATt (MG/SOUARE MF.TER-HR) =l|4
»1X.F10.5)
FOR*'A1(l NITROGEN BENTHAl HELEASE "ATE (MG/SOu»"E METER.HR) =I|43X
*«F10.5)
FOMf"«T(l BENTHAL OXYGfH DEMAND (MG/SQuA»E KFTF.R-HR) s I ,51X »F 10,5}
FOHMATP FRACTION OF HEAVY Mt TAL 1 IN ION FORM a I , 56X ,F 10-.5)
FOHMATP FRACTIO.-J OF "FAVY utTAL 2 I" 10* FOP", a I i S6X, Fl O.S)
FOHMATC FRACTION; OF HtAVY METAL 3 IN ION fOR* =' .56X .Fl 0,5)
FORMAt(l TtwPEKATuRE CORHKCTION CONSTANT FOR BOD REACTION COEFFICI
*FN7 =I.jxi.ti0,5)
FORM»H"TEMPERATURE CORRECTION CONSTANT FOR N02 DECAY COEFFICIENT
* ='.36X.FtO,5)
fO«KAT(l TE«PF"ATURe CORRECTION CONSTANT FOR N03 DECAY COEFFICIENT
» =I.36X.F10.5)
TEMPERATURE CORRECTION CONSTANT FOR P0<| DECAY COEFFICIENT
lO.b)
»«»BOO NITROCF.N =i,Fio,fe,' AND ALGAL NITROGF.M oi«Fto.6«
*l IN JUNCTION)tIS, I »«*))
RETURN
END
3UHHOUTINE OUTPUT(NTINT)
OUTPUT SUBROUTINE
HYDRODYNAMICS PROGRAM
SPECIFICATION STATEMENTS
CONTROL
COMMON /CONTR/ N5iN6tN20»«21 • NTCYCiNOCYCiNHCYCi
li DELTQ.DfLT.TZEWO. ISWCHC10)
COMMON ALPHA(30), NJ,NCt
. PRf.CP(bO).NEXIT
ICYC«KCYCiNCYCi
>*DI»eVAP
JUNCTIONS
COMMON H( JOO)|-fN(lOO)ihT(100J»HBAR(lOO)iHAVE(lOO>
137
-------
1769, 1. NCK»N(100i8).IPOI'.K100iP)«»5nOO) , VOL (100) . X ( I 00) . Y ( 1 00)
1770, ?. ntP(ino) •coF(ifio) .niN(ioo) .oouuoo) • QIKSTUOO)
1771, 3i 01M4*H(100)t(30uH*W(|06)
1772, C
1773, C CHANNELS
177a. C
I77t>, COMMON U'-'C??*) , nJU'-'C (225. 2) i U(?2S) ,R t2?5) . A (??•>) , AT (??5) |AK(225)
1776, 1, Oe^2S).f.i»if»(2«S)K)AVF.(2(22i>) iNUMC'<(^Hb) iNTLf'HIB)
1778, JiNCLOS(22b)
1779, C
1760, C PRINTOUT AND PLOTTING
1781, C
1782, COMMON NPRTiIPKT, NHPHT.JPKTCSO).PRT"(30.50)
1783,. - It ^GPRT.CPRT{50)iPRTV(30,bO)tPKT!3(30.59)i I DU"( 12) , ICOL (10)
1780, H, LTIMt, NPLT,NPDKL.JPLT(bO),HPLT(SO)
1785.
1786, C
1787, C 8UGE«TIME COEFFICIENTS
1788, C
1789, COMMON YY(50) ,TT(50) iAA(10).XX(10),SXX(lOt10)|SXY<10)
1790, l,At,A2,A3,AA,ASiAb,A7>PtKIOD«JGM
1791, C
1792, C STORHHATER
1793, C
179fl, COMMON TITLE(30)«NJS*tOE(?0»2).JSt'(?0)
1795, 2i RAH(IOO)»IMT1"E(100>.INRAIN,JBOUNO(20)»JJBOUN
1796, C
1797, C TAPES
1796. COMMON /TAPES/ INCNTtIOUTCTiJlN(10)«JOUT(10)>NSCRAT(S)
t799, C
J800, COMMON /LAB/ T!T'-(!«)tXUA9(ll)»VLAB(6)»MO»17(20)«VERT(Tfh)«IT
1801, COMMON/PLOT/T(5),\ZCb)tAX(51i50),AY(51.50)ii.PT(50)
1802, IF(NUK'T.LQ.l) GC TO 210
1803, Rt.AO(5,10?) TITL
180«. RfAOCSil02) HOMU
1605. 1T>1
1806. KtAD(5ilC?) (Vfc«T(II.IT),11=1•7)
»807, 102 FOKMAT(20AU)
1808, RETURN
1809. 210 CONTINUE
1810. OUMMYeO,
ten. TMAX=IOOOO.
1812, *!?2 * JO'JTCIOI.ITCT)
181J. wHITE(N22) TMAX»(DUyMYiJs
1814. N=0
181S, HF.wlNO N22
1816. 220 NSN«!
1817. IK(N,r,T.5l) GO TO ?25
1818. «EAO(N?2) AX('.,n»(AY(N,J)(Jsl,NPLT)
1819. IF(tXCNih.LT.lOOO,) GO TO 220
1820, 22S CONTINUE
1621. NCUKVEsN.l
1822, NPTNBO
1823. NaO
|62«, 200 NsN*l
1825, NOC=N
1826, 250 lF(JPLT(M)C).Ct.O) GO TO 270
1827, NOCs^DC+1
182B, GO TO 250
1829. 270 CONTINUE
138
-------
H3o, on z->o
use,
1133, n<) 290 1 = 1 I'-CUHVE
JiJi, AY(I.X)sAY{I,J)
H3f>, 390 CUNTIMJE
t»37, Nxni.t;c«*.>l
1138, NPTN = f.PT'J»l
1539, C*LL CU»VE(4X. AYiN'PTtNX.NPTN)
1140, On 300 J = 'J,NOC
1141. KsJ.Nfl
300 CO'JTIMJF
l»a«, .KRITE(6fSO) (NPT(K) iKaJ .MX)
114S. 50 f OHM«T(1HO««OX,HOH PLOT LEGEND t
1146, 1 ISiflH s »tIS»«H.a +tIS't«H = I|JS»4H = X,!5|4H
•l'«7. KsNOC
H48, If (s.LT.NPLT) GO TO 2UO
H49, HETURN
ISSO. END
H51,- SUDMCUTlNE PlNF(XliY!,X2.Y2.NSYM«NCT)
1*52, AX* = X1
1SSJ.. AXB=X2
1««, *YAsYl
U55. AYB=Y2
1156, N»l
Hb7. IF(ABS(»XH'AX*)iLT.*Bs(AY8.AYA)) CO TO 290
H58. C
1159. C SET PARAMETtRS FOR X OIHECTION
1360. C
Ji61. IF(AXB«IXA) 2U1«400»2US
1162, 2«1 COMTIK'UE
1163. AXAsX2
1564. 1XH = XJ
U65. AYA=Y2
H66. AYBsYl
1*67. 245 CONTINUE
»68,
H69.
1170. IYA = »Y*».5
1171. IYB = »Yt<«,5
H72. 250 CP*TIN'UE
H7J. IF (IXA.LT.O.OR.IXA.GT.IOO) GO TO 260
1174. If (IYA,LT.O.O».tYA,nT.SO) GO TO 260
1»75.
U76, 260
1S77, IXA=1X«»1
1176. YA=('.'*{AYB«AYA))/(AXB"AXA)
1179, IvAa'AYAtYA»0.5
1180. N=N»1
U81. IFUXA.LE.IXB) GO TO 250
1182, GO TO 400
J483. C
1184. C SET PARAMETERS FOR Y DIRECTION
1185. C
H86, 290 CONTINUE
H87. IF(AYH,GT,AYA> GO TO 295
1188, AYBsYl
1189. *YAoY2
1190,
139
-------
1891, AXA=X2
1892. 295 CONTINUE
in?3, IXA=AXA+,S
1890, U6-AXII*,b
1895. IYA=AYA».S
1896, IYf>=AYB + .!>
1897, 300 CONTINUE
1898, IFdXA.LT.O.OW.IXA.GT.lOO) GO TO 310
1899, IF(IYA,(.T.O.OW,.IYA.GT,SO) GO TO 310
1900. CALL PPLOT(IXA,IYA.sSYM,NCT)
1901, 310 CONTINUE
1902, IYA=IYA+1
1903. XA=(»«*(AX8«AXA))/(AYB»AYA)
19QO, IXA=XA+AXA*0,b
1905, N=N+1
1906, IFUYA-IYB) 300.320.000
1907, 320 IXA q 1X8
1908, GO TO 300
1909, 000 RETURN
1910, END
1911, SUBROUTINE PPLOTflX.IY.K.NCT)
1912, DIMENSION A(S1,101).SYM(9)
1913, COMMON /LAB/ TITLf:(l8).XLAB(ll),YLAB(fr)
1910, 1.MOK1Z(?0)»VE«T(7.O«IT
1915, OATA SYM / uH*»**io*+t++, awim, OHXXXX. OH...,. OH2222.
1916, 1 OH , UHIIIJ. OH—« /
1917, IF(K-.99) 200.220.230
1916. 200 A(51«IY|1X+1)=SYM(K)
1919, RETURN
1920. 220 CONTINUE
1921, IsO
fc»m<6»10i) TITLE.NCT
00 22b 11=1.6
1920, 1=1*1
1925, IF(VLAe(l).LE.100000.)MRITE(6il01)YLA8(II).(«(IiJ).j8l,l«|)
1926, IF (YLAB(l).GT.l 00000. )lHITf (6,107) YLAB (!!)•( Ad, J),Jal, 101)
1927. IF(lI.EQ.fc) GO TO 228
1928. DO 220 JJ=1,9
1929. 1=1+1
1930. IFd.fcE.28) GO TO 221
1931, KiUTMb.lOB) VEWT(5,IT).VKKT(6.IT)«VERT(7iIT),(Ad,J),j8l,101)
1932, GO TO 22«
1933, 221 1F(I.NE.2U) GO TO 222
1930, "Knt(fc.IOh) VERTCl.lTl.Vt.RT (2.IT). (A(I,J),j3|,jOl)
193S. GO TO 22«
19J6. 222 IFd.KE.26) GO TO 223
1937. wHITK6.10h) VEKT(3,IT),VEWT(0,IT),(Ad,J),Jsl,101)
1»36. GO TO 22iOO) (A(I. J),Jsi. 101)
1900, 220 CO'i.TIni'E
1901, 22S CONTINUE
1902, 22b CONTINUE
19«S, i«RITh((
1900, *RITC(6.10S) HO^JZ
1905, 100 FO«MAT(18X.101A1>
1906, 101 FOHMAT(l l.Flb.3ilX.10lA])
1907. 1"2 FPH'iATd I .FI9.1 .lOFJO.l)
1908. 103 FOKWA1I
1909, 105 FOR"AT(/U'X.20tU)
1950. J06 FOW.ATl
19bl. 107FCA*AT(I I.1PC16.2.JX.101A1)
140
-------
1952.
1953,
19SO,
19S5,
1956,
1957,
1950,
1959,
1960,
1961,
1962,
1963.
mo,
l?6b.
1966.
1967,
1968.
1969,
1970,
1971,
1972,
1973,'
197«.
1975,
1976,
1977.
1978,
1979,
1980.
1981.
1982.
1983,
198«,
1985,
1986,
1967,
1988,
1989,
1990.
1991,
1992.
1993.
1994.
1975.
1996,
1997,
1998,
1999,
2000,
2001.
2002.
2003.
2001,
2005,
2006,
2007.
2006,
2009,
2010.
2011.
2012,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
108 FOHM»T(3Xi'Jia,3X.10lAl)
2iO ou ;;so 1 = 1.^0
00 20 J = l 1 1 01
260 4(5) • JjiSYKO)
00 270 1 = 1 >101t 10
?70 « t'Jl K'2I • NTCYC »NOCYC t NHCYC • NT»KI03«RT
It DELTQiCELT iTZEROi ISftCM(lO)
GENERAL
COMMON ALPH*(30>» NJiNCt jCYCiKCYCiNCYCi VIKDiWD'tRtEVAP
ll PRECPCiO) iNf X JT
JUNCTIONS
CQMKON M(l«o) iH«j(100) t«T(100)tHBAR(loO).HAvE(IOO)
If NCHAMflOOtin t IPO I NT (100. 6) .AS (100) . VOL ( 1 00) . X ( 1 00) , Y ( 100)
2f OEP(IPO) ,COF(100) .OllJ(lOO) t(30U( 100) .OlNST(lOO)
3, OINBAK(IOO) ,UOU8AR( 10-0)
CHANNELS
COMMON LtN (225) t NJUNC (2?S,?).Bt22b)iP{22S)i t(225)i AT (?25).AK(22S)
1. 0(22'>).C.BiW(?2S),r;AVE(22S)t V (225) . VT (22S) , VBA •NjswfaE(2o»2)»j3*'(20)
141
-------
2013,
2014.
2015,
2016.
2017,
2oie.
2019.
2020,
2021.
2022,
2023,
202«,
2025.
2026.
2027.
2020.
2029,
2030.
2031.
2032.
2033.
2030,
2036,
2036.
2037,
2036,
2039,
2010.
2041.
2012,
2043.
2040,
2045,
2046.
2047.
2046.
2049.
2050.
2051.
20S2.
2053.
20b4.
205S.
2056,
20S7.
2058.
2059,
2060,
2061,
2062.
2063,
2064,
2065.
2066,
2067,
2068,
2069,
2070.
2071,
2072,
207),
2, RAIHf inn)iIIJTIIt(IOO) iINRAIN, JHOUNP(?0),JJHOUN
c
c TAPES
c
COHHCM /TAPES/ INCNT.IOUTCT, JlN(lO).JOUTUO) ,NSC»AT(5)
C
C TYPE DESIGNATIONS
C
mf-GEH CPRT
KEAL UN
DIMENSION WAVC2J5) .VAVC22S)
00 2 = 0,
241 VAV(LJ)=0.
100 FOB«*T(1H1,//30X, 15A«/30X,15A(|//J
DO 220 I=liNHPRTi6 ' .
HHiT? (6ilOO) ALPHA .
WRITE (NO. 102) TITLE
102 POH"AT(1»0.30A4)
WRITE CJhilOl) NT
J0« FORMAT (7' HOUR.(PRTH(L«K).K31,LT)
110 fORMATdH .riO. 2.RX.F1.4. 4.5MB. (1)
C
C P«lNT TLOflS AND VELOCITIES
c
00 242 I=1.MOPRT«6 . .
*RITt (b.lOC) ALPHA
*HITE (Kfeil02) TITLE
^.RITE (K6.104) NT
WHITt (6,112)
2* * «)
DO 230 !C=li6
JC»I-1*IC
NX*CPRT(JC>
IF(JC.CT.NOPRT) NXeCPRT(SOPRT)
IDUM(?«IC-n= IABS(NJU^C(».X,l))
IOU»-'(2»IC) = IAPS(MJoNC('U.2))
230 CONTINUE
WR1TE(6,114) (IDUHtIC),IC=l»12)
114 FORHAT(l'«Oil8Xi6(10H CHANNEL. I 3.14) /
2.6X,jj«H HOUR HJW VLL. FLO^ VEL, FLOW
3 VEL, FLOK VEL, FLO* VEL. K0» VEL.«/«24X
H
R
tt .97H (CFS) (FPS) (CKS) (FPS) (CFS) (FPS) (CFS) (FP
142
-------
2070,
3075,
207A.
2077,
2076,
2079,
2080,
2081.
2082,
2083,
208«.
2085.
2086,
2067.
2088,
2089,'
2090,
2091,
2092.
2093,
2090.
2095,
2096.
2097,
2098,
2099,
2100,
2101,
2102,
2103,
2104.
2105,
2106,
210;,
2105.
2109.
2110.
2J11,
2112.
2113,
2M«.
2115,
2116.
2117.
2118,
2119.
2120.
2121.
2122,
2123,
2124.
2125,
2126.
2127,
2128,
2129,
2130,
21 SI'.
2132.
2133.
5S)
(CFS> (FP5)
(CIS) (FPS),/)
DO 2 NOUKi (f»KTU1 iNJS")
118 FOHH»T(33H1HYDROGHAHH INHgT NODES TO SYSTEM, //(6Xi 10110).)
KtTURN
END
SUBROUTINE OPRINT
COMMON/PHTCOM/f.'OPRT,lTCPRT,LOCPRT,NSTPR1|NOCTOTiISKIP,MSTP»T
COMMON/JU'.'COM/S'J
COMMON KCON,KCO»JO,C2(132) tC(100t!6)
607
618
DATA LANK/I I/
DATA N6/6/
IF(lSKlP.EQ.NGPRT) 60 TO 1
RETURN
1 NCCTOTsMQCTOT*!
HRITE(N6«908) .
908 FOR«AT(1U1.//.10X. I JUNCTION CONCEMTHAT IONS AFTER STtPI,I5i" QUAIIT
»Y CYCLt'«I5)
00 2 LJsl.NJ
IF(L«4STtLJ).MF.LA>JKj IFLAG=1
*RITE('J6i81R> L Ji (C (LJiLK) iLKs 1 , 1 2) iLKASTCL J) I
IF(IFLAC.EQ.l) ^«I TE(N6. 100)
ISKIPsl
RETURN
FOR«AT(i JUNCTION 00 BOO NM3.N
» PMYTO COLIFO.XMS MM! MMi» HK3 TOT N
» H"ISI/ I \U«HfcR C
-------
2135,
2136,
an?.
21*0,
21.V).
2l«0.
100
21flJ,
2144.
21(16,
2147,
2146,
21«9,
2150.
2151,
21S2,
215J.
21b4,
2155,
2156."
2157,
?158,
2159,
2160,
2161,
2162,
2164,
2165,
2|66,
2167.
2166,
2169,
2170,
2171.
2172,
217J.
217«,
2175,
2176,
2177.
2178.
2179.
2i80.
2181,
2162.
21*3,
2184,
2185,
2186.
21B7,
2188.
2189,
2190,
2191.
2192,
219S.
2194,
2195.
FORMAT(i » INDICATES su» .HAL OF -
*NG MfJOfLEO EXCEt'OS THK TOTAL NITROi..-
*IVE,l)
SU«ROUTJNF RECF1V
CO'-MIK /TAPES/ IKCMTtlOUTCTt JIMUO).
1TROGK»' 1'J C0»STTTUF^TS BE 1
"OiVUD *S A CONSERVAT
CAT* KU*M/"HITY /
HEAD (N'j.lOO) (A-iAHEU) il = li4) .
100 FHHC.ATCiAUt I«)
IF (ANAfr.f'}.'3UAN{l).AND.ANAHE(2).F.O.nUAN(21) GO TO 200
150 IF (AN4nE{3>..EQ.GUALn).AND,ANAME(4> . t Q .CUAL (2)) GO TO 300
GO TO 400
200 C*LL SWKLOW
GO TO 150
300 CALL S*OUAL
400 WRITE(N6.500)
500 FORMAT (31HOKHCP:IVING SIMULATION COHPLFTEO)
RETURN
END
SUBROUTINE RUNOFF
RETURN
EWD
SUBROUTINE SETOPT
COMMON/O'TION/ir'iilKaf ICOL»ICOM»,INH3iIN02»IN03iIP04iIALfi»lFIRST
COM^O>.'/OPT2/lHf-AVY.lTOTN,lCHLOR
COv"'UN/0!>T3/IPi !"<^.l^i>»IN3
DATA IFl«,I2ND,;'H^,N02^03»LfO<(,N,LP/llST I.I2NO I * INM3«I, IN02>I i
• I N03-I « ' P01-' t ''J 11 IP '/
DIMENSION LAB(IO)
DATA LAP/I i|i It(MODE'•iLEO -8.tR,l3)
IF(irnM?.E0.10 .OR. ICOMB.Etl,ll) INOJ=0
IF(ICO«B.EO,4 .OH. ICOM8.E0.6 .OR. ICOMH.tO.9 .OR.
•ICO^b.KR.I1) IPC«=0
'IF(KO"H.GE,19 .AND. ICOMB.LE.2l .OR. ICOMH,1.0,23) IP04SO
JF(JCC"H.EQ.1 .OR, ICOHH.EO.S .OR. ICOMB.F'J.T .OR.
«ICO^W,E3.J2 .0". ICOMH.E0.1« ,OH, Icn-<«.> 0.16) •"
144
-------
219&,
2197,
2198.
2199,
2200,
2201.
2202,
2203.
800
2205.
2206.
2207,
2208,
2209,
2210,
2211,
2212,
2213.
22ld.
221S,
2216.
2217,
2216,
2219,
2220.
2221,
2222.
2223.
222%.
2226,
2227,
2228.
2229.
2230,
2231.
2232,
2233.
223«.
223S,
2236,
2237,
2236,
2239.
2240.
22«l,
2212.
22«3,
22fl«,
22«5.
22U6,
2217.
2248.
2209.
2250.
2251.
10
20
30
«0
2253,
2254,
2255.
2256.
999
1000
1001
1002
1003
1007
1008
1009
1010
1111
1112
IFUr.OM'l."F..l«> *HITKNOUT»1000)
IFdCO'fH.C'J.tn) • "ITECJOUTi'W)
IMICOL.KQ.D KN!HC*OUTil001)
.IKICOMtj.LE.il) ^ITE<«JOUT.1002)
S.t'J.O) 00 TO 10
IFCINH.F0.2) L*FH6>sI2ND
WRITKNOUTtlOOS) LAH
CONTINUE
IMI^Oa.EO.Q) CO TO 20
LAH(1):>N02
L*B(2)=N
IAD(6)=1F!R
IF(IN2.EQ.2) LAH((>)3l2NO
«'RITt (NpiJTil005) LAB
CONTJKIIE
IK1"03.EQ.O> GO TO JO
LAB(2)aN
O.-2) LAB(6)aI2NO
MmtCNO'JTtlOOJ) LAB
CONTINUE
IF(IPOa.tO.O) CO TO 00
LAB(2)sLP
LAB(6)slFIR
1F(IP.E0.2) LABC6)sI2ND
W!TE(MOL|T, '.A3
CONTINUE
IF(IALC.eo.l) WRITE(NOUT.
IFUHfcAVY.ER.l) fc«ITE(NOUT, 1 008) IHEAVV
IK1HMVY.CT.1) "HITKNaUTillll) IHEAVY
IF(ITOTN.WE.O) w«»ITE(NOUT, 1009)
IFUC"LOR.N£.0> WUITE(MOUT.IOIO)
RETURN
FORwATP THf FOLLOWING CONSTITUFNTS ARE BEING HODELEO!)
FOR«AT(i T«t FOLLOWING CONSTITUtNTS ARF. BEING MODELF-0 DISSOLVED
FORM«T(«8X, t
f OH«AT(afiX. IBOD")
iPHyTOPLANKTONI)
FORMAT (««X. II, I HEAVY METAL CASO ITS ASSOCIATED 10N)I)
FORHATC"HX> "TOTAL NITROGEN!)
FURMATCUflX.'CwLOHIOESl)
FORM»T(«8X,I1, I ME»VY METALS (AND THEIR ASSOCIATED IONS)")
SUBROUTINE STQRAG
RETURN
END
STORMwATER
PROGRAM
DIMENSION P«JAME (fe.2> , TI TLE 1 ( 1 0) t STQRM(u) , PAIM8)
INCNT»IOUTcT.JIN(iO),JOUTtlO),NSCRAT<5)
145
-------
22S7,
2258,
2259,
2260.
2261,
2262.
2263.
2264.
2265.
2266.
2267,
2266.
2269.
2270.
2271.
2272..
2273.
2270.
2275.
2276.
2277,
227«, •
2279,
2280,
2261,
2262,
2263.
2260.
2265.
2266.
2267,
22ftA«
2269.
2290.
2291.
2292.
2293,
2290,
2295.
2296.
2297.
2296.
2299.
2300.
2301.
2302.
2303.
230«.
2305.
2306,
2307,
2306.
2309,
2310.
2311.
2312.
2313.
2310,
2315.
2316.
2317.
DATA PNA^t / (IHKATF.i <(H T'lAN i OHPf CF i aMENOP
1 i flHSTOHi (IHr.RAPi (JHWSf'E* UHSPORi MHIVIS'i OHROGR
2 • «MAGE . OHH /
NS'5
Nfcsfc
JNTNTsO
ICUTCT=0
R E A C ( 0 S i JS 9 9 ) T I T L E 1
399 FOR"ATf IM'J)
REA[)(Ot>,).2t ICFS'/31XiI?. '-YEAR PESIGM FLO* ='
r>AILY
>FI0.2t
* ICFS'/JIXi 'AVAILABLE ^AX, TKUNK CAPACITY : 1 i F 1 0 ,2 t ' CKS I V/31 X » 1 STOR
*HS STUDIED TOTAL HAlNFALLl INCHES')
JF(NSTRHS.LT.l) GO TO 501
00 5PO Jrli'lSTPi'S
RE AD(05« 'I(1?)STOR^ iRAIN
002 FORMAT ( NAU > flAO)
KBIT K(06>i«03)STnHM, MAIN
003 FOR"AT(30XiaA
Rf *0(N.-5.100) (JIN(J),JOUT(J).J»lilO)
«RITE(Nh,108) JIN, JOUT
RtADtM-j, 100) (MSCRiTt I) .1 = 1.5)
MRlTE(M6i I 06) (KSCRAT( I) • 1 = 1 »5)
220 CONTINUE
"F. AD(N5. 102) CNAI'F.
4RITf (N6« J 0*S) Cf.'AME
00 ?«0 I = 1,6
IF(CN«nr.(l).Nfc.PNAMF(!,l).OH.CNAME(2).NE.PNAMt(I«2)) T.O TO 200
GO TO (260,280.3001 J5«0« J60i360),I
200 CONTINUE
GO TO 220
260 CALL RUNOFF
GC TO 220
280 CALL TKAtjS
GO TO 220
300 CALL RECUV
GO TO 220
300 *'RITF(N6i 1 0")
STOP 1111
360 CALL STORAG
GO TP 220
360 CONTINUE
CALL GKAPH(l)
GO TO 220
100 F"OH''AT(20IO)
1C? FOR^»T(20AO)
10U FC"»"AT(M STORHhATER SIMULATION ENDED')
106 FOWAT ( 1 HI »?Ail)
J08 POR"AT('0 TAfK ASSIGNMENTS I /( 101 J 0) )
E^'O
SUHROUTI'Jf S'J''('TIAY)
CO«vCM/PASS/TOTLfSH.SS
146
-------
3316,
2319.
2320.
2321.
3323.
3323.
3334.
3335,
2336,
2327,
3320,
3329.
2330.
2331,
2332,
2333,
2334,
2335,
2336.
3337.
3338.
2339,
3340,
3341,
2343.
2343.
334s!
2346,
3347.
3348.
3349,
2350,
3351,
3353,
2353.
2354.
2355.
3356.
3357,
2356,
3359,
3360,
3361.
2363.
3363,
2364.
2365,
3366,
3367,
3369,
?369,
2370.
3371.
2372,
2373.
2374.
3375.
3376.
3377.
3378.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DAT* F l.F2,FJ,M/.'lO<>r>7(>i,017«>l«;>,7,639«U, J,IJir/2/
REU'HN
ESO
SUflROUTINF 3WFLO*
HYDROOYNAMICS PROGRAM
TIDAL OPTION
H STATEMENTS
CONTROL
^5»N6in30«M31i NTCYC»NOCYC«NMCYCi
If OELTOiOELTiTZFMO. ISWCH(IO)
COMMON A|_PHA(JO). NJiNCt ICYC • KCYC tNCYCi
1. PRtCP(50).NFXlT
JUNCTIONS
COMMON H( 10CM ,HNC IflO) .HT( 100) |HHAH( 100) ,MAVF( 100)
li MCHANtlOO»6)«lPO'lNT(l00.6)«AS(lOO)»VOL(lOO)iX(.lOO),r(100)
3. 01N»AR(100).OOUBAR(100)
CHANNELS
COMMON LEM32S),NJUKC<225,2)»BC225).RC325).A(32'.O,ATC225)tAKt235)
1, C(22S),OBAR(?25),QAyt(22b), V (225) , YT (235), VBAH(2i>5)
J.NCL05(325>
PRINTOUT AND.PLOTTING
COMMON NPRT.1PRT, NHpRTi JPRT(SO) ,P«TM( 30,50)
It NOPKTiCPRT(iO)l('RTV(J!),SO) .PRTO ( 30, 50) , IDUM ( 12) , KOL( 1 0)
3, LTIME, NPLT,NPOELiJPUT(!iO),HPLT(50>
STACt»TIME COEFFICIENTS
COMMON YY(50) .TT(SO) t AA ( I 0) t XX 1 10) *SXX( lOi 10) t SXY(iO)
,A2, A3, AU,iS.A6iA7. PERIOD. JGK
COMMON TITLE (30)»NJS«,«F.(?Oi2),JS>.(20)
0lJNCC3
TAPES
147
-------
2379,
2380.
V /T/.ITS/ I»:C"T i lOUTCTiJIN(iO) tJOUTUO) |U!>CRAT(5)
COMMQN/ST2/ TITKL2HO)
23152.
2J03.
2S8«.
2385,
2366.
2J87.
2SHfl.
2369,
2390.
2391.
2392,
2393,
239JI.
2395.
2396,
2397.
2398.
2399.
2400.'
2401.
2002.
2403.
2404.
2405.
2006,
2007,
2a08,
2409.
2410.
2411.
2412.
241).
DIMENSION FM5FR(2)
(VCI"<(2?5)
DI»E'>SIOM
COMMON
DATA
GT(20i?) . IS*CZO)
/ «HE>'D(). UMU*NT /
INTEGER CPRT
REAL LE
N20 e NSf:«»T(J>
NEXIT=O
00 2C!i 1 = 1.100
OEP(I)=0,0
TYPE DESIGNATIONS
INITIALIZATION
0011(1)81,
DO 204 J=liP
IPOINT(I.J)aO
204 C
205 CONTINUE
00 210 1=1.225
2415.
2416.
2417.
2418.
2419,
2420.
2421.
2422.
2423.
2424,
2425.
2426.
2427.
242B.
2429.
2430.
2431.
2432.
2433.
2430.
2435,
2436.
2437,
2436.
2439.
OCHK(I)=1.E10
)=1 ,K10
0.0
00 209 J=1.2
NJUNC(I«J)=0
209 CONTINUE
210 CONTINUE
CALL INOATA
IOUTCT s IUUTCT + I
sue»oi'TiNt IND»TA CALLED TO
Rt»0 INPUT DATA
FURTHER INITIALIZATION
*?.?. * JO,lT( JOUTCT)
RfwjND »??.
VTIr.T B
TT(1) s
TT(2)
0
0,0
* 0.0
s 0
= 0
8 0
e 0
^•H»3 « 43
IF (NPLT.r.T.O) CALL OUTPUT(NTINT)
00 220 1=1.10
MJIUI.
TOF.LT
148
-------
2440.
2441,
2442,
244J,
2444,
2445,
244f,.
2447,
244B.
2449,
3 /i c n
C *OU t
2451,
2/m?
r.** jc i
2453,
2454,
24SS,
2456,
2457,
2456,
2459,
2460,
2461.
2462.
2463.
2464,
2465.
2466,
2467,
2468,
2469.
2470.
2471.
2472.
2473.
2474.
2475.
p II m i
c**/6»
2477.
2478,
2479.
2460.
24R1,
2482.
2483.
2484.
2485.
2496.
2467.
2466.
2469,
2490.
2491.
2492,
2493,
2494,
2495,
2496.
2497.
2494,
2499.
2SOO.
C
C
C
C
•
•
220
222
icoun = i
on ??.?. Jsiiao
IS»U) a 0
OTdi 1) a 0.0
= 0,0
GE(lt I) a 0,0
OMI,2> = 0,0
TOLO=0,
PREC = 0.0
TSTZKRO
223 On 224 I s 1,NHPRT
MJPHT = JPRT(I)
PRTH (1,1) s H(MJPRT)
224 CONTI'-'UE
00 225 I = liNQPRT
MCPRT a CPRHI)
PRTO(l.l) = 0(«CPRT)
PRTVCLI) = V(MCPRT)
225 CONTINUE
OF INITIAL HVPHOGRAPH
INFORMATION FROM INTERFACING
IF(fc21.f:o.O> GO TO 230
R!>!f.'!> «J?i
BEAD (W?l) TITEI.2
WRITE (N6.7097) TITEL2
7097 FORMAT (20A«)
READ (»21) NSTEPS|MJS/<,NOUAL,TOFLT,TZEWO«TA«EA
WRITE (KM709l> MSTEPS»»'JS'liNOUAL«TDELTiTZtROiTAREA
7091 FOHM«T (3IIO.SK10.2)
tL= J .MJSw)
IS*U> = 18
KRITEfft^OO?) (]
7092 FORI'AT(5I1S)
READ(NJ21) TT(1),(QT(L«1)«L = I i
TT(1) = TT(l) * TZERO
TT(1)•CUT(L«I)iL=l,HjSW)
TT(2) s TT(2) * TZIRO
WRITE(6,7093) Tt(2),(OT(L»2)«LBliMJSW)
I2>2
TTP=0.
230
100
102 FOHkAT('IMVOKOGRAPM
235 CONTINUE
I CD TO 235
(JS.(L),L=1.'JJSN)
Tf,(CE(U«2>,U=l»"JSi«)
INPUTS 10 SYSTEM I //( 6X 1 1 Ol 1 0) )
149
-------
2-501.
2502.
250.1.
2504.
2S05.
2506.
2507.
2508.
2509.
2510,
2511.
2512.
2513.
251".
2515.
2516,
2517.
2518,
2519.
2520.
2521.
2522,
2523,
2520.
2525.
2526.
2527.
2528,
2529.
2530.
2531,
2532.
2533,
2530,
2535.
2536.
2537.
253B.
2539,
2540.
25(11,
25d£,
2513.
250(1,
25(15.
2516,
2S«7.
25JUf»c6S(*CIR/S7,»Al
1 »8,6«F.«6
CONTINUE
AT(N)sA(N)
GAVEUO = 0.
CONTINUE
DO j3oi NT=I.NTCYC
00 302 LJ=1.NC
OHRPAY(LJ)»0,
VHHDAYCLJ}SO.
OVMAXsfl.
DCHAXsO.
IFCNT.LT.MOSuRT) GO TO 350
IF(\PLT.r(5,0) GO TO 359
hf Ki'^o *;«>«•
DO 3
00
INITIALIZATION OF APRAVS USED
FO» HYDRAULIC OUTPUT TO BE USED
IF (NT.t.T.NOS*RT) CO TO 3BO
00 360 N=1»MC
VHAR(N)e9,
QHAR(N)»0,
BY THE S«I!J'JAL SUBROUTINE
150
-------
2562,
2S6J,
2564,
2565,
25h6,
2 i 6 7 1
2568,
2569,
2570,
2571,
2S72,
2573,
2574,
2575,
2576,
2577,
2578,
Z579,
2SOO.
2581,
2582,
25B3,
2581,
2565,
2586.
2587.
2588.
2589.
2590.
259J.
2592.
2593.
2594.
2595.
2596.
2597.
2596,
2599,
2600.
2601.
2602.
2*03.
260S.
2606.
2607.
2606,
2609.
2610,
2611.
2612.
2613,
26i«.
2615,
2616.
2617,
2616.
2619.
2620,
2621,
2622,
no 37p j=i,nj
M M A K ( J ) s 0 ,
0 1 M U A t( ( J ) = 0 ,
OMUlUH(J)sO,
370 COS'TI-JUE
380 CONTINUE
C
C
C
C
C
START
INNIIR'1
DO LOOl
DO 1010 >JHM=1 .MHCYC
IFO.'T.Lf .NGShHT)
T IMfal IME + OELT
C
C,
C
C
PREC=0.
390 IF (K"A IKi-IMHAIM)
395 IK ( T IMt- INT IMh (*
400 PSF.CsPKEC + HAl.NtK
KRAI\'=KH4 1N»1
TOLn=INTI"ECKRAI
CO TO 390
«0b P"ECe(PBtC + RAINi(
TOLO=TI"E
010 CONTINUE
IF(N21.EO.O) GO
DO 018 L3l,MJS*
J=ISW(L)
fllB OTNCJ)=nTNST(J5*
U20 IF(TIMK.tT(I2))
NIN»EC = NlK:RfcC»l
7093 FORMAT CF10, 1 .fcFl
wWITE(fe.709U) TT
7091 FOH»AT(F10.1.F 10
CO TO 120
«32 TT(I2)=1000000.
DO U33 LS1,MJS»
«33 OT(L.I2)»0.
60 TO 120
«35 DC 1UO L=liHJSw
JsIP-*(L5
) 431.432.432
• (OT(L»I2)iL=liMJS»)
* TZERO
5,2)
(I?).C5T(LiI2) »L=1 iHJSw)
.1.110)
1(10 eiN(J) = (01H(J) + BT(U,tl)*(TIME"TTP))/OELT
TTP=T If E
115 CONTIMJE
1F(UJ5^.EO.O} GO
C
C
C
TO 520
RfAO H\
OR J'JTf
START rif HYDRAULIC DO LOOP.
DO LOOP OF 3 NESTED
PRECIPITATION COMPUTATIONS FOH
IMPUT OR AVERAGE
OR INTERPOLATE FOH TI«F STEP
151
-------
26?3.
2624,
26?.'j,
?6?(-,
2627,
2628,
2629,
2630.
2631,
2632.
2633,
2634,
2635.
2636,
2637.
2630.
2639,
2640.
2641,
264?,
2643.
2644.
2645.
2646,
2647,
2646.
2649.
2650.
2651.
2652,
2653.
2654.
2655,
26S6.
2657,
2656,
2659.
2660.
2661.
266?.
2663.
266fl.
2665.
2666.
2667.
2666.
2669,
2670,
2671,
2672.
2673.
2674,
2675,
2676.
2677,
2676.
2679.
2660.
2661.
2662.
2663.
C
IFHfE.LE.TE) GO TO 4RO
TEOsTE
f>0 "60 L- 1 1 t.JS'i
.460 OMLil)=1tCLi<;)
C
C READ HYOHOGKAPH3
C
RFAO (M5ilQ4) Tf i (OE ( JJ»2) t JJ~ 1 »NJS*)
104 FORMAT (AFIO.O)
«VO CONTINUE
Tf PsTE/3600.
KHJTE(N6tlflM TfcPt(f)F(Li?)?L = ltNJSi»)
106 FOHMAT(lX,F7.2'10F10,l/{8X.10F10,n>
C
C INTERPOLATE HYOROGRAPM
C
460 00 500 LstiNJSK
J= JSW(L)
SLOPES (OECL.2)-r,E(L,l))/(TE-TEO)
500 CIN(J)=OISST(J)»OE(L,l)*SLOPfc*(TIHE-TEO)
520 CONTINUE
C
C INITIALIZATION
C
T2=T»OELT?
TsTtOELT
( 00 525 Nal.KC
MCLOS(N)aO
00 525 Hal,?
525 kIJU>'C(N|H ) = IAHS(NJUNCC"»M))
00 530 Jai.NJ
AS(J)sABS(AS(J))
DO 530 K=1»P
530 NCHAM(J,K)sJAHS(NCHAN(JtK)}
NTJ^SaO
C
C COMPUTATIONS OF VELOCI'
C HALF TIME SUP, AND FU
C QUARTER TIME STEP
C
540 CONTINUE
M5RYSO
KTIfSsNTIxS*!
00 b?n ii=l,',C
IF(NJUNC(N,t),LE,0)GOT05BO
C
C DRY CHANNEL CHECK (UNO!
C
IF(RlN).GT.O.l) GO TO 560
VT(N)so.O
OC'JJsO.O
CO TO 590
560 CONTINUE
NLcNjUVC fNt 1 )
NHSfJ JUNC ( N , 2)
DlLV?sV("4)»(l,«AT(M)/A(N))
1 *DELT?*((V(")»»2*H(N)/A(K!))"32,1739)*(H(NH)1.M(NL))/LEN(>
2+h*'INO(lJ)/R(N)*t)£LT2
Vf*sV(N)#DELv2
TEMP = CELT?»AK(*j)/R(N)»»l, 3333333
152
-------
2680,
2685,
2686.
2687.
2688.
26E9.
2690.
2691,
2692.
2693.
2690.
2695.
2696,
2697.
2698,
2699,
2700,
2701,
2702.
2703,
2704.
2705,'
2706.
2707,
2708.
2709,
^710,
2711,
2712.
2713,
2714.
2715,
2716.
2TJ7.
27J8.
2719.
2720.
2721.
2722.
2723.
2724.
272S,
2726.
2727,
2726,
2729.
2730.
2731.
2732.
2733.
2730.
?73S,
2736,
2737.
2736.
2739,
27«0,
2701.
2702,
2703.
27SO,
0 F.LV 1 = 0 , 5 • ( ( 1 . / T fc ' i P « 2 . * A » 5 { V 2 ) ) -
!SC'*T((l>/1E"f'*4>iS(?,*v;?))<»2>>1.*V««2))
OElVl = -SI(»'«(CELvltV2)
VT (v)e-v < 'O «!'.£LVl *DEU V2
(3(N)=VT(N)*ACN)
S80 CONTINUE
C
C CO^PUTA
C HALF TI
C
DO 660 0=1 t-'iJ
SUM0=0 ,
DO 620 Kz) .3
IF(>-(n ,'JE.l) GO TO 650
HT(J) = H(J)-OtLT2»SliHO/AS(J)
IF(ISpCH( t ) ,NE.l ) GO TO 660
JF(HT(J)+OEP(J).GT,0.) CO TO 660
HT(J)=«OtP(J)
V'OL(J)cO.
AS(J)e-ASCJ)
DO 60S K=l f 8
NyaNCWIN( J, K)
IF(Nx.Lt.O) CO TO 6«5
NCLOS(«JX)sl
645 CONTINUE
NDBYa(-DpY» J
BO TO 660
650 CONT Ilii.it
DELHHsO.
00 655 ICTsl.S
OELH" = [)F.LT2/AS(J)*("SUMU"i''fI"l*(H(JG *>')•»•£
655 CONTINUE
HT(J)shtJ)*OtLHH
660 CONTINUE
IF (NDRr.fG.O) GO TO 675
1F(NTIMS.GT.2) GO TO 675
DO 670 MciiNC
IF(NJUNC('Jtl).LE,0> CO TO 670
IF tNCLOS(K') ,NE. 1) CO TO 670
Q(N)=0,
V ( N ) - 0 .
DO 668 Ial,2
I IsNJuNC (Nil)
DO 660 J=li8
IF(NCHAh(IJ,J),EO.M) GO TO 666
660 CONT1KUK
GP TO 668
666 'JCHA'J(II,J)a»M
hdB WJU^'C (*•• I )s»I !
670 CONTINUE
GO TO 5
-------
Z7as,
2716,
3787.
27«e,
27«9.
2750,
2751.
2752.
2753,
2750,
2755,
2756,
2757,
2758,
2759,
2760,
2761.
2762.
2763.
2764.
2765.
2766.
2767.
2766.
2769.
2770,
2771.
2772.
2773.
277«.
2775.
?77*.
2777.
2776,
2779.
2780,
2761.
2782.
2763.
2764.
2785.
2786.
2787.
2788.
2789.
2790,
2791.
2792.
2793,
279fl,
2795.
2796.
2797,
2796.
2799,
2800,
2801.
2802.
280J.
2600,
2805,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
675 CONTINUE
IF USKC><( n i^E. li r.o TO 676
BOUNDARY STAGE CONDITION AT
HALF TIME STEP
I
676 CONTINUE
*4S»COSf«*T«)*A6*COS(2.**,*T?)*»7*COS{J.««.'*T2)
DO 7«0 N=i,NC
IF(NJUNCCMl) ,Lf.O)GO TO 7
-------
2806,
2807,
2806.
2809.
2810.
2811,
2812,
2813.
2810,
2815.
2616.
2817,
2818,
2H19.
2820.
2821.
2822,
2823.
282(1.
2625.
2626.
2627.
2626.
2629.
2630.
2831.
2632.
2833.
2831.
2835.
2836.
28J7.
2838,
2639,
26UO.
26(11.
28(12,
2843.
26«a.
28«5.
26«6.
280T.
260A.
28«9.
2850.
2851,
2652,
2653.
2854.
2855.
2856.
2857.
2858,
2859,
2660,
2661,
2662,
2663.
266(1.
2865,
2666.
C
760 DO 900 Ja| iNJ
SUMO=0,
MN(J)5,.Ot:i>(J)
IF(*S(J) ,Lf ,0.) CO TO 900
DO 800 K=l ifl
IF(NCMAN(J,K).LE.O) CO TO 800
NsNCHiN(JlK)
IF(J,NE.NJU*.C(N,l))GO TO 760
SUMfJ = SU^fJ»H(N)
GO TO 800
780 S'JMOsSUM'J*0(N)
600 CONTINUE
.IF(J.k.-E.JGvO GO TO 820
IF (lS*CH(n.'.E.l> C,0 TO «02
H\(JGW) = Al*A2*51N(**T) + A:l*5I><(2.
1 *A5»COS(»*T)+A6»COSC£.
GO TO em
802 CONTINUE
DELKH=OEIHM»2.
00 SOP ICTsl.3
DELMH=OtLT/AS(j)*(»SUM(3«wfcIRl*(H
606 CONTINUE
MN{J)eH(J)*DELHH
81« CONTINUE
DVOL=(ww(Jf.r<)«H(JG«))«AS(JGW)
COUt JGi") = 0,
OIN(JGK)=(OVOL/OELT)*SUMQ
IF (OItJ(JG») ,(iT.O.) GO TO 813
OOU(JGW):»QtM(JGw)
OIN(JGw)>0.
615 VOl (JG-')sVC'LtJC-Ul)*nvOU
CO TO 825
C
C
C
C
820 SUHrjs[iOUCJ)"|3IN{J)»(EVlP«tPRtC}*A
HM(J> = u(,n-nCLT»S'JMO/tS(J)
VOL( J) =VOL( J)"Dt"LT*SUM0 •
C
625 CONTINUE
900 CONTINUE
C
C
C
IF (NT,t_T.NnS«iRT> GO TO 9<4fl
00 920 J=1»NJ
HBAR{ J) = «fi*P( J) +HN( J)
9INBAR(J)=0]NK»S(J)+GtN(J)
OOUt'ARtJjsOOuBARCJJtOOUtJ)
920 CONTINUE
9«0 CONTINUE
C
C
C
C
C
960 00 980 N:l,NC
IF(NJUNC(Ntl),tO.O) GO TO 960
NL»1*HS(NJUMC(N,1))
»«i»T)*A(i*SIN(3,*W*T)
»W»T)+A7*COS(3.*W*T)
(JGW)-»EIR2»DtLMH/2,)»*niF. IR3)
COMPUTATION OF (ORDINARY* NOPE3
VOLUME AND STAGE
5(J)«SUMQ
NODAL VOLUMES AND FLOP'S SUMMED
FULL Tl^f STFl» COMPUTATION OF
HYORAILIC RADIUS ANO CHANNEL
CROSS-SICTIONAL AREAS
155
-------
7868,
2170.
2871,
2872,
2173,
267S.
2976.
2877.
2878.
2879.
2980.
2881.
2R83|
2885.
2886.
288S.
2889.
2890,
?H9l.
2993.
^896,
2900,
2901.
2905.
2906,
2907.
2908.
2911,
291U,
291S,
2916.
2917,
2918.
2919.
2920.
2921,
2922,
2921,
2923.
29?6.
2927.
Ofc'LH?0.r)«
980 CONTINUE
NOOAL STAGE ARIUYS SHIFTED
1000
1020
1025 hPLT(J)=H(I)
1030
00 1020 J=1»NJ
H(J)SMN(J)
IF-'C-'T.LT.'.'HSURT) GO TO 10«0
IF (^PTOT.^t,SI>Of L) C,0 TO 1030
IF(MPUT.E'J.O) TO TO 10«0
PO 1025 Js
WRITt(N?2) HOURi(MPl.T(J) iJs
NPTOTsfl
NPTOTsNPTOT*!
1040 CONTINUE
END OK HYDRAULIC OR INNER 00
LOOP
AVERAGING OF FLOWS AMD
VELOCITIES
IF (NT.LT.NQSWRT) GO TO 1100
DO 1060 'J=1.NC
IKNJu\'C(N«l).Lf..O) GO TO 1060
OAvK<*>=<3AVK(N)+Oi}AH(»o/FLOAT (N(JCYC)
1060 CONTINUE
DO 1080 jsl«NJ
IF(riINW«Hf JJ.KJ.O.) r.OTO 1080
IF(0()U'U^(J),f !).0.) GOTO
GO TO 1080
OOU«AR( J)=-(;INRAR( J)
1060 CONTINUE
HYDRAULIC
USE IN QUALITY PROGRAM
FOR
FIX UP VOLUMES IF STREAM SYSTEM
It USWCK 1} ,EO. 1) CO TO 1088
IK15WCH(6).NE.n GO TO 1088
DO 1065 LJ = 1«>'J
XXVsO,
DO 1076 IK*1.8
I» (NiCMAii(LJ«LKJ .E0.05 UO TO 1076
RhAReriBiH(L")/CVB/iR(LM)»B(l.t'»
156
-------
2928.
2929,
2930,
2931,
2932.
2933,
2930,
2935,
2936,
2937,
2938,
2939,
2940.
29«l,
2902,
2943,
291(1,
29U5,
2946,
2947,
2948,
2949.
2950,
2951.
2952,
2953,
29S4,
2955,
2956,
H9S7,
2958.
?959,
2960.
2961.
2962.
2963.
8964,
2965.
?966.
2967.
2968.
2969,
Z970.
2971.
2972.
297S,
2974.
297S.
2976,
297T.
2978,
2979,
2980.
2981,
298?,
29«3.
2964,
2985,
2986,
2987,
2968,
XXV = XXV»(RI)AR*lt. ML '')*IKl. "))/£,
1076 CONTINUE
VCU(LJ)=XXV
10BS Cpt'TlMIK
1086 COMTI'JIJK
"RITf. (N20) MOi(RBAR(M)«V8AR(M}il.altNC),
1 (VOI.CJ) • TI'IPAI'U) i(!OU«Ai»(J) »Jsli»jJ)
DO 1090 LJsii'-'C
&y"P4Y(LJ) = 'H'uC)AY(l.J)+')(5Al*(LJ)
VBI'l.)AY(LJ)BvB:"i/.v(LJ)»V?AR{|.J)
XVOsABS (VBAR(LJJ-VCHK(UJ))/VCMK(LJ)
XOn=AljS (OfiAH(LJ)-<(«CK<(LJ))/OCHK(UJ>
IF(XOO.LT.OfJMAX) GO TO 1006
DQi'AXsXOO
NQHAXslJ
1086 IK(XVD.LT.DVMAX) CO TO 1090 '
OVIAX = XVQ
KiVKAXsLJ
1090 CONTINUE
C
C STORE OUTPUT FOR
C PRINTOUT
C
1100 IF (KiT,EO.(NQSkRT«n.AND.NO.EO.NQCYC) GO TO 1120
CO TO 1180
1120 DO 1140 I a l.NHPRT
HJPHT a JPRTCI)
PRTM (lil) 8 H(MJPRT)
1140 CONTINUE
00 1160 I a l.NfJPRT
MCPRT a CPRT(I)
PUlq(tfi> e O(nrPRT)
PRTvtl.I) B V(«CPRT)
1160 CONTINUE
GO TO 12«0
1160 IFCNT.LT.NQSNRT)' GO TO 1240
LTI«E = LTlME » 1
IF(LTI«E,GT,30) LTIMESJO
C
SUBSEOUF.NT
C STORE STAGE INFORMATION
C
00 1200 Isl,NMPRT
MJPRT=JPRT(I)
1200 PRTH(LTIMK« I)aH(HjPRT)
C
C STORE FLOXS AND VfLOCITIES
C
00 1220 Isl.NQPRT
MCPRT=CPKT (I)
PRTO{LT I"Ei I )=0 (MCPRT)
1220 FRTv(LTl'!Ei I)BV(^CPRT)
C
C END OF QUALITY DO
C
1240 CONTINUE
1KIS»CH(1),NE,1) GO TO 1280
IF (*t ,^E.'.'fiS*HT) CO TO 1280
1260 CONTINUE
1280 CONTINUE
C
C SUPROUTINf. PHTOUT
LOOP
CAllFn FOF
157
-------
29B9,
2990.
2991,
2992,
2993,
2994,
2995,
2996,
2997,
299D.
2999,
3000. .
3001,
3002.
3003.
1009,
3005.
3006.
3007.
3006.
3009.
3010. '
3011.
3012.
3013.
3014.
301S.
3016,
3017,
3018,
3019.
3020,
3021.
3022.
3023.
302*.
3025.
3026.
3027.
3028,
3029.
3030.
3031.
3032.
3033.
3034.
3035.
3036.
3037.
3038.
3039.
3040.
3041,
3002.
3013.
sous!
3046.
30«e!
3049,
C
C
C
C
C
C
C
11
1(
it
1<
1(
12
1!
1<
e
i
i
i
i
IF (NT.LT.NQSXRT) CO TO 1300
CALL PH-TOUT
1300 CONTINUE
HYPHAUI.IC I'-'FORMATinN PRINTOUT
K)R A O'rt. OAY CYCLE
EtiD Of SUUHOUTINE
) .Nt.l) GO TO 1301
FOR CONVERGENCE
JCONVxO
XCHK=,1
IPCOUT=1
IFtDUMAX.LT.XCHK .A'lO. OVHAX ,LT . XCHK)
IF(1PCOUT,EO.O) GO Tf) 109h
IF(ICONV.eO.O) URITt(Nbi 1091)
IF(!CO'JV,FC!.1>
M6.1093) DvM*Xi'-'
1091 FORMAT!//' CONVtRGf^Cf! HAS NOT OCCURKKO, I}
1092 FORUAT(//I CO'-vtPGE'.'CK HAS OCCURRFO.I)
1093 FOHMAT( i Pf.RCt'NT VELOCITY LHWOR si,F8,J.l IN CH»NNtl I. ISA
*l PERCENT FLOW ERROR si.F8.J,i JN CHANNEL'• I5//)
CONTINUE
IFUCONV.EQ.l .OR, NT.F.G.NTCYC) CO TO 1302
IKISWCHC6) ,tO,l) RfwlNQ N?0
00 1094 LJ=ltNC
CONTINUE
CONTINUE
ISTEP=OELT*KHCYC»,01
1249 FnRi'AT(///20X, iTUjVEL TIME CHECK FOR OUAl.ITY RUN —DUALITY STEP SIZ
*£ IS'ilb>
00 12SO N:
6001 FORMATC" CHANNEL ' ilii ' VELOCITY I ,riO,2. 1 LtNGTHI ,HO,2,
" Vfcl.»Pf-.LT/LEM .FB.2)
12SO CONTINUE
END FILt N20
RfciJKD ^20
1320 CONTINUE
MCOUNT a 0
13«0 PfAD (NS.110) FINAL. CARD
110 FOH«AT (2»U)
IF (FINAL. FT. ENOFRM)) GO TO 1360
MCOUNT s MCOUNT +1 . .
IF {MCOUNT.GT.JO) GO TO 1380
GO TO ljuo
1360 IF (CA»0.tB.ENr>E'»(2)) GO TO 1«00
MCOUNT = MCOUMT * I
IF (HCOU-JT.GT, jo) GO TO 1380
GO TO liUft
1380 fc"m (u«,,112>
112 FORMAT (>,?HnOUALITY PROGRAM HAS READ
1PLETION)
THAN J9 CARDS AFTER COVP
158
-------
3050.
3051.
3052,
3053,
3051,
3055.
3056.
3057,
3058,
3059,
3060.,
3061.
3062,
3063.
3064,
3065,
3066,
3067,
3068,
3069,
3070. .
3071,
3072.
3073.
307*1.
3075.
3076.
3077,
3078.
3079.
3060.
3061.
3082.
3063.
3084.
3085.
3066,
3067.
3086,
3089,
3090.
3091.
3092,
3093,
3094.
J09S.
3096.
3097.
3098,
3099,
3100.
3101.
3102.
3103.
3100.
3105.
3106.
3107.
3108,
1109,
3110,
STOP U'l««
1 « 0 0 •< & IT E ( >• f> , 1 1 0 )
11»TC»NOCYC>&
* tIS*CH( 10) iXH(16) tXHEUb) i
*N5,NbfN10iN20|N;SO>N
»TEO(16)
C
C
C
COMMON/PR T COM /NBPRT, I TCPRT
*NPRTtKPRT
C
C
C
c
C"lN(lOOi 16) •"AODClOOi 16) iOCOT(100ilfc)»
•SLOPL(20).CSPIN(100il6)iTITLt (6il6)i
PRINTING
•LOCPKT.USTPRT.NQCTOT.lSKlPiMSTpRTi
TAPf.S
COMMON /TAP(S/ IMCUT, lOUTCTi JINUO) i JOUTUO) |HSCRAT(5)
DIMfNSIONi CHK(100tl6)
C
c
c
c
REAL KAODiLEN
N?0 e NSCRAT(l)
iK'STHaO
KCONS16
KCOKOSJ6
START PROGRAM
INPUT ROUTINE
159
-------
3111.
3112,
3113.
3114,
3115,
3116.
3117.
3118.
3119.
3120.
3121.
3122,
3123,
3124,
3125,
3126.
3127,
3126,
3U9,
3130,
3131.
3132,
3133.
3131.
3135,
3136,
3137.
3138.
3139,
3140,
3141.
3142.
3143.
3144.
3145.
3146.
3147.
3148.
3149,
3150.
3151.
3152.
3153.
315u.
3155.
3156.
3157.
3158.
3159.
3160.
3161.
3162.
3163,
3164,
3165.
3166,
3167.
3168.
3169.
3170.
3171.
204
C
C
C
C
C
C
C
C
C
C
C
C
C
DO 204 LJslitOO
DO 201 |.Ksl,6
CHK(LJ»L".) = 1,E10
CALL TO SUBROUTINE IMOUAL
CALL .INO'JAL
MAIN QUALITY LOOP
DO 751 NTAGsHSTARTiNTC
REWIND '.'10
NSTHHT c NTAG
CALL TO DUALITY CYCLE SUOROUT1NE
CALL LOOPOL •
INSTMsINSTM+1
PRINT DAY AVERAGE CONCENTRATIONS
00 359 J s 1,NJ
00 359 KC=t,KCON
359 SUHC ( JiKC)s (SU^C ( JtKC)"0,5*C C J»KC) )/NOCYC
C
CHECK TO SEE IF CONVERGENCE HAS OCCURRED
00 200 LJ=1,NJ
00 200 LKol.KCOM
1F(AHS(CHK(LJ.L'<)).LT. ,00001 .AND,
» ABS(C"«LJtLK>»SUMC(LJtL>O).LT. ,000001) GO TO 200
IFCABSCCHK(t.J,L(<)»SUMC(LJiLK»'CHKCLJ»L'<> -I-T. .1) GO TO 200
200
201
202
203
1600
3030
U300
752
908
no
607
ICONVaO
GO TO 201
CONTINUE
ICONV=1
CONTINUE
If (IStaCH(lO).NE.l) ICONVoO
IF (ICONV.FQ.l) GO TO 203
DO 202 l.J=l,NJ
DD 20? L"=l iKcnN
CwK. (LJ«LK)=5UMC(LJ«LK)
CONTIMIK
IF (NTAG.LT.KPRT) GO TO 3220
IF CNTAG.GT.KPRT.AS'O.KPRT.EU.l) GO TO 1600
GO TO UJOO
xpjTEtNfeiJO^O)
>OR«AT(«2H KCRT IS ALWAYS GOING TO BF. LF.SS THAN NTAG.)
STOP 5555
CPNTI'-iSJK
KPRT=KPKT*NPRT
CONTlNUf
^RITt fNh«908) NTAG
FORMATdH) ,//25x, IAVERAGE JUNCTION CONCENTRATIONS OURI-JG QUALITY c
*YCLE NuvHtc i i is,//)
K R I T t ( N 61 b 0 7 )
00 110 LJ=l.NJ
»'R I TEC ^6. RIB) LvNCSU^CtLJ.LKJiLKal.KCON)
FORMAT(l JUNCTION PO BOO NM3-N N02-N N03»N
« PHYTO COLIFORMS HVl MK2 H«J TOT N C^LfR HMJI
» H^IJi/ i NUMBER (MG/L) C'R/L) ("G/D (^G/L) (*"G<
»G/L) (MG/L) («P^-/100) (HG/L) (MC/L) f"'G/L) («G/L) t«r./L) (MG/
P04.P
HHI2
'D CM
'D («
160
-------
3172,
3173,
317«.
317S.
3176,
3177,
3176,
3179,
3180,
3181,
31B2.
3183,
3184,
31B5.
3166..
3167,
3188.
3189.
3190,
3191 ,
3192,
3193,
319U,
3195,
3196,
3197,
3198,
31V9.
3200.
3?01.
3202.
J20J,
3200.
3205.
3206.
320T.
3208,
3209,
3210.
3211,
3212.
3213.
3211.
3215.
3216.
3217,
3216.
3219.
3220.
3221.
3222,
3223.
3225J
3226,
3227,
3228.
3229,
3230,
3231.
3232.
•G/l) (MG/U) I /)
IK(ISKCM(?) .to, 1)
* f< IT E ( N fe i 9 1 0 ) '< T, * G
910 FOR«.AT(1HJ •//2V<. It-
*YCLfe NUMBERI i ISi//)
h&ITfc (N6I607)
on us LJ=lt*J
115 n«ITE(Nf>i91i}) IJiCC
wwiTt(N'!>tlJ09) NT AC
909 FOR'iATClHt «//2'iXi I"
*YCLF. MUM^ERI i ibi//)
XM lit (N8» 607)
DC 113 LJ=1(NJ
? q r 0 l PF7
GO TO J22
UNIMUM JUNCTION CONCENTRATIONS CURING QUALITY C
•"INlLJ'LKJiLK'ltKCON)
IAXIHUM JUNCTION CONCFNTRATIONS DURING QUALITY C
113 fc'HlTF. (N<>,6la) LJ» CCMAX(LJ>LK) iLK=l tKCON)
322 CONTINUE
C
C
C
3220 CONTINUE
00 323 J=liNJ
VOLOCJ)=VOLCJ)
DO 323 KCs] iKCON
CM»XCJiKC)aO,
C"IN(JiKC).aC(J|KC)
323 SUl'C(JiKC)=0, S*CCJt
IF(ICONV.EQ.l) hWIT
RESET SUMS FOR NEXT DAY CYCLE
KC)
E ( 6 » 2 0 6 )
206 FORMATC//I CONVtRGMCE HAS OCCURRtOI)
IFCNTAG.EO.NTC .OR
REMIND N10
C
C
C
IF" ( IS^CHC 1 0) ,FO, 1 )
DO «120 Iel,NQCYC
HCAD(N20) Nn,(R(N),
'•"ITf. (N10)NOt(Q(N)>
«120 CONTINUE
REMIND N10
U\UQ CONTINUE
C
C
C
C
751 CONTINUE
119 CONTINUE
IF (ISXCH(3).EO,l)
RETURN
C
C
C
tt!60 CONTINUE
, ICONV.EO.l) GO TO U9
ISH'CH JO SET BY N30 WEAO»J>J
GO TO 1140
U(iw),N=J,NC),(VOL(J),l3IN(J).UOU(J),J=l«NJ}
U(N)iNBl,NC), (VOLCj)iOIN(J),OOU(J).JsliNJ)
fHO OF M»IN DO-LOOP
GO TO 11160
KRITE A RtSTART TAPE
«XH,Xt'E,XMF.XMtF.(VOLOCJ) t (C C J . K) , Sl'-C ( J . K> ,
2 HADI){J,K),C»
-------
3233,
323«.
S2.<5,
3236.
323/,
3238,
3239.
32'tO.
3211.
32"2.
32«3.
3244,
3215,
3216.
3247,
3218,
3209.
3250.
3251.
3252.
32S3.
325U,'
3255.
3256.
3257.
3258,
3259.
3260.
3261.
3262.
3263.
32*4,
3265,
3266.
3267.
3268.
3269.
3270.
3271.
3272.
3273.
327«.
3275.
3276.
3277,
3278.
3279.
3280.
3281.
3282.
3293.
3284.
3285.
S2P6.
3287.
3288,
3209,
3290.
3291.
3292.
3293,
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
e
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RLnINO Nod
RETURN
E>.'D
SUBROUTINE TiocF(KO,M,MtxiTtNCHTiO)
S7AGF
Com'ICTENTS
S PHOG1AM
ST«TF''E>'T3
CONTHOL
/CPNTR/ 'K>SiM6f>J20iN21 i NTCYC i NI5CYC I K'HCYC t NT.nOSiRT
1, OELTG.DEUTiTZEHO, I
WOIR I EVAP
»LPH»t30)i NjiNC. ICYC.KCYC.K'CYCi
li PRECP(50)iNEXIT
JUNCTIONS
COMMON W(100),HKj(lon).HT(100),KBAR(JOO).H*vftIOO)
1, NCHAH(100i«)i IP01NT(100,»)i*S(100)iVCL(100>tX(100),V(inO)
2l OtP(lOP) ,COF(100),()IVJ(100) ttiOUtlOO) tOJMST(lOO)
3, OIMBAR( 100) ,CjnilHAR(lCO)
CHANNELS
COMMON LE^(22S),wjiJ»-'C(22S,2)>B(225),Rf225).A(22S),AT(2?5)«»K(??5)
1, 0(225). OB4R(2i"i) i!)»VK22S), V( 22'i) • VT (2?S) . VQAR (???)
P., Fi«!N-!>O2S)i'njMCHC2;>S)lNTEMPCB)
J.NCLOS(22S)
PRINTOUT AND PLOTTING
COMMON WPHT.IPRT. NMpBTiJPRT(SO>,pPTH(30.50)
1, NOPRT,CPRT(50).PHTV(30,bO).PBTO(30,50>, IOUM ( 12) , ICOLC 10J
2. tTlKt. NPLTi».'PDKL«J>'LT(50),HPLT(50)
STACt-TIHK COEFFICIENTS
COMMON YY(Sfl) .TT(SO) »AA(10).XX(10).SXX(10.10)«SXY(10)
1 (Al>A2|Ai, AU, AS.A6, A7
-------
329(1.
3295.
3296.
3297,
3296,
3299.
3300.
3301,
3302,
3303,
330(1.
3305.
3306.
3307.
3306,
3309,
3310.
3311,
3312.
1313,
3314,
331S,
3316.
3317.
3318.
3319.
3320,
3321,
3322,
3321.
332s!
3326,
3327.
3320.
3329,
3330.
3331.
3332,
3331,
3334,
333S.
3336,
3337,
3338.
1339.
3340,
334}.
1342,
3141.
3305!
3346.
3347,
3346.
1349.
3350.
33SI,
3352.
1351.
1354.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
HtAL (.IN
TIDAL CURVK FITi 7 TFRM
SIKU$OIO«L EQUATION
HKIU' (r.'6tliE« t'^nr.'JAH KILL
»EAP fPUf POl'JTS OF ]k,rORM»T!ON
AND EXP/.NO THEM FOR t. FULL TIDE
NT IS THE NUMBER OF INFORMATION
POINTS
MAXIT IS THE MAXIMUM MJMOFR OF
ITERATIONS
IF KCHTIO EOU»US GNKi TIOAL
INPUT^OiMPuT «ILL BE PRINTED
DELTA IS THE ACCURACY
LIMIT IN FEET
DELTA s 0.005
NTT»7
w • 2,*3,1«159 /PERIOD
IF(KO.ED.O) GO TO 225
TTCSO) =TT(l)tPERIOO
VY(50)aYY(l)
DO 220 1=1.0
J=I»1
IF (J.GT.U) J«50
TT(t,I)B(j,.»TT(I)»TT{J))/fl.
YY(Nl)sO,6535*YY(I)»0.1.'(., l«e> (I.TT(I), vv(l). 1:1. NI)
|«A FORMAT (I'U 2F12.3 )
2«o CONTINUE
DO 280 J=l.>vTT
PO 260 KBJ.NTT
260 SXX(KiJ) B 0.
»A(J) a 0.
280 SXY(J). o 0,
NJ2 » NTT/2 * 1
DO J60 I c l«Nt
DO 320 J s l.MTT
FJl B FLO»T(J-1)
FJJ a Fl.O»T ( J.NJ2 )
IF ( J.LE.UJ2 ) GO TO 300
XX(J> B COS(FJ3»««tT(I))
CO TO 320
163
-------
3355,
3357.
3353.
3SS9,
3360.
3361.
3362.
3363.
3364,
336S,
3366.
3367.
336S,
3369.
J376.
3371,
3372,
3373,
337a,
3375,
3376,
3377,
3378.
3379,
3380,
3381.
3382,
3383,
336a,
3385,
3386,
,3367.
338ft,
3389,
3390.
339J,
3392.
3393,
3390,
339b,
3396,
3397,
3398.
3399,
3
ISO FO'^AT {6<;HCA«JNOT »EACH DESIHtD DELTA, INCREASE- EITHER Ml OR DELTA
1 ANd TRT AGAIN) ' .
STOP 6666
tRIOD
164
-------
3416,
3117.
3418,
342o|
3421.
3432,
3U24|
3425.
3426,
3427,
3428.
3429,
3430.
3451.
3432,
3433.
3434.
3435.
3436.
3437,
3438,
34J9.
3440,
344|.
3442,
3443,
3444,
3445.
3446.
3447.
3446.
3449.
3450,
3451.
3452,
3453.
3454.
3455,
3456,
3457,
3458,
3459.
3460,
3461.
3462.
3463.
346B.
3465.
3466,
3467,
3468.
3469,
3470,
3171.
3472.
3473.
3474.
3475,
3476.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
I5H f ORKAT(///U6H COEFFICIENTS ^ OH TIDAL JVf'UT *AVE AT Jtl'fCT 1 ONI6//B5H
I Al «2 A3 M A5 Aft
2A7 PKRIOOC'.<«S)//7F|0.:itH2.2///MH M-KRE T*E KAVt^O^^ IS GIVE
3»J BY//<)PH M(J) = Al * A?,M.M{"T) * A3,5IN(2*T) » A4, S1 H< J»'T) + A5,
HCOS(uT) + Ah,COS(2wT) * A/.COSCJ.TJ)
RETURN
SUewQUTINE TRANS
RETURN
SUBROUTINE TKIAN(IIiJJ,KK,LL)
SUBROUTINE
SPtCIUCATION
CONTROL
COMMON /CONTR/ u5.N6iKi2o«M2i» NTCYCINQCYC*NHCYC, NT.NRSWRT
ll OELTO,nELT,TZE«0, IS»iCM(10)
GENERAL
COMMON ALPHA(lO)i NJ^NCt ICYC iKCYC • NCYCt WIND,WOIRtEVAP
It PRECP(50)»NEXIT
JUNCTIONS
COMMON H(100)tHN(100)«MTC100),HBAR(100),HAVEC100)
1, MCHAN(lOOiH) . lPOIK'T(100t«)tAS(100)fVOL(100),X(100),Y(100)
3, OINBAR(100),QOUF).AR) t V(22b) t VT (225) i VBARC225)
3tNCLOS(22S)
PRINTOUT AND PLOTTING
COMMON NPRTtlPRTt NMpRTtJPRT(50),PRTH(30t50)
1, N!)PRTtCP«T(!iO),PRTV(30tbCO tPHTO t JO.bO) t IDUM( 12) t ICOLf JO)
2t
STAGE-TIME COEFFICIENTS
COMMON YY(50) ,TT(50) .AA(10)|XX(J0),SXX(lOi10).SXYC10)
!iAli*2,A3,AA5>A6tA7>PER!ODtJGw
STORKkATER
COMMON TITLf:(30).NJSn,OE(20,a),JS«((?0)
2t RAIN(100),lNTIKt(100)iIMOAINtJBOUM>(20)»JJ80UN
TAPES
COMMON /TAPES/ INCNT»IOUTCT«JlN(10)»JOUT(10)iMSCRAT(5)
165
-------
3477,
3478,
3479,
3480.
3481,
3482.
3483,
3484,
3485,
3486,
3487,
3486,
3489,
3490,
3491,
3492.
3493,
349(1,
3495.
3496.
3497,
3496.-
3499.
3500,
3501.
3502,
3503.
3504.
3505,
3506.
3507,
3S08.
3509,
3510,
3S11,
3512.
3513.
3510.
3515.
3516.
3517.
3518.
3519.
3520.
3521.
3522,
3523,
3520.
3525.
3526,
3527.
3528.
3529.
3530,
3531.
3532.
3533.
3530.
3535.
3536.
3537,
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
COM«Ot>./TRI/T(5)(NX(5)
INTIG(R CPHT
REAL LEW
IHH.NE.O) GO TO 300
00 250 1 = 1. NJ
00 250J=1,8
IPOIMdi J)sO
NCHA*U,J)sO
250 CONTINUE
RETURN
300 CONTINUE
NX(1)=II
' NX(2)aJJ
NX(3)=KK
NX(4)aII
NXCS)=JJ
T(l) = (X(JJ) • X(KK»»»2 '
T(2) = CXCKK) - XCII))*«2 «
T(3) = (X(II) • X(JJJ)»*2 <
Tf4)3Ttl)
TCS)=T<2)
NBs2
IF(LL.EC.O) NBsl
DO 600 M=l»3iNH
•
ISKl*iC(NX(N+l),NX(N + 2))
JcHAXO(^X(M4l),NX(N«2))
DO 3SO nsj,8
IKIPPINT(I,K),hO.J) GO TO
IF(JPOINT(I,K).EO,C) GO TO
35fl CONTlNUf
360 IPOI'^T ( I ,K)Bj
NC = ''C»1
NCHANf t »K JsK'C
370 HeNCMAN{I.K)
NJUNC(M,t)sI
NJIJNC(H« 2) =J
SuBsT(>J+l )»T('Jf2)"T(N)
CaSt!RTtT(N))/2.
Lf!N(^)s2t*G
TYPE OESIONA
ZERO POINTER
SET UP TRIANi
> (Y(JJ) • Y(KK))**2
> (Y(KK) « Y(II»*»2
h (YUI) - Y(JJ))**2
00 ALL THREE
LOCATt CHANM
370
360
h IS CHANNEL
ASSIGNED
CeG/SR«T(4.«TCN+2>»TCN«l>"SUB«*2)»SUB
G«G/2,»C
AS(I)aAS(I)»G
166
-------
3530,
3S39,
S'JIO,
3S11,
3'jUb,
3'J50,
3cjbl ,
3S52.
3553.
35'j«,
3555,
3556,
3557,
3556,
3560,
3561.
3562,
3563,
3560,
3565,
3566.
3567,
3560,
3570,
3571,
357?,
3573.
3S7«,
3575,
3576,
IPCC.l.t.0.) w»tTE(6, 10?) MiC
102 FORMATf! NEGATIVE WIDTH CHASNf.L NO.l.IS.I wIOTH
A(M)--H(n)«K(M)
V(M)=0.
600 CONTINUK
00 7?>0 M\s3iOIf!T(I,K).EO.O) CO TO 630
CONTINUE
630 IPOINT(IiK)=J
610 «s.MC'HAN(I,K)
C = r./SORT(U,»TC3)*T(«)-SUH**2)*SliR
GsC/S.^C
AS(I)=AS(I)+G/2.
AS(J)=AS(J)*G/2.
IKC.LE.O.) WITt(6il02) M,C
R(M)s(DEP(I)«nifP(J))/2,
ri(n)*«(t4)
) = CCOKI)+COF(J))/2,
750 COK'TISUE
RETURN-
167
-------
SECTION X
REFERENCES
1. STORM WATER MANAGEMENT MODEL, Volume I - Final Report, EPA Report
No. 11024 DOC07/71, Metcalf & Eddy et al, July 1971.
2. STORM WATER MANAGEMENT MODEL, Volume II - Verification and Testing,
EPA Report No. 11024DOC08/71, Metcalf & Eddy et al, July 1971.
3. STORM WATER MANAGEMENT MODEL, Volume III - User's Manual, EPA
Report No. 11024DOC09/71, Metcalf & Eddy et al, July 1971.
4. STORM WATER MANAGEMENT MODEL, Volume IV - Program Listing, EPA
Report No. 11024DOC09/71, Metcalf & Eddy et al, July 1971.
169
-------
SECTION XI
ABBREVIATIONS
EPA Environmental Protection Agency
SCI Systems Control, Incorporated
SWMM Storm Water Management Model
BOD biochemical oxygen demand (5-day)
CL chloride
°C centigrade degrees
cfs cubic feet per second
cms cubic meters per second
deg degrees
DO dissolved oxygen
°F Farenheit degrees
ft feet
g acceleration due to gravity
HM heavy metal
HM1 heavy metal one
HM2 heavy metal two
HM3 heavy metal three
hr hour
JCL job control language
Ibs pounds
m meters
mb millibars
mg milligrams
mo month
mph miles per hour
mL milliliter
MPN most probable number
N nitrogen
NH»-N ammonia nitrogen
NO -N nitrite nitrogen
NO_-N nitrate nitrogen
PO.-P phosphate phosporus
sec seconds
yrs years
171
-------
|