SPOKANE RIVER BASIN MODEL PROJECT
Volume VI - User's Manual for Stratified Reservoir Model
by
John L. Shepherd
E. John Finnemore, Ph.D.
Systems Control, Inc., Palo Alto, California
for the
ENVIRONMENTAL PROTECTION AGENCY
Contract No. 68-01-0756
October 1974
-------
SPOKANE RIVER BASIN MODEL PROJECT
Volume VI - User's Manual for Stratified Reservoir Model
by
John L. Shepherd
E. John Finnemore, Ph.D.
Systems Control, Inc., Palo Alto, California
for the
ENVIRONMENTAL PROTECTION AGENCY
Contract No. 68-01-0756
October 1974
-------
EPA Review Notice
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Environ-
mental Protection Agency, nor does mention of trade names of commercial
products constitute endorsement or recommendation for use.
ii
-------
ABSTRACT
Three existing mathematical models, capable of representing water quality
in rivers and lakes, have been modified and adapted to the Spokane River
Basin in Washington and Idaho. The resulting models were named the Steady-
state Stream Model, the Dynamic Stream Model, and the Stratified Reservoir
Model. They are'capable of predicting water quality levels resulting from
alternative basinwide wastewater management schemes, and are designed to
assist EPA, State, and local planning organizations to evaluate water qual-
ity management strategies and to establish priorities and schedules for
investments in'abatement facilities in the basin.
Physical data and historical hydrologic, water quality and meteorologic
data were collected, assessed and used for the model calibrations and
verifications.
The modified models are all capable of simulating the behavior of various
subsets of up to sixteen different water quality constituents. Sensitivity
analyses were conducted with all three models to determine the relative
importance of a number of individual model parameters.
The models were provided to the EPA as computer source card decks in
FORTRAN IV language, with accompanying data decks. All development work
on, and applications made with, these models were fully documented so as
to permit their easy utilization and duplication of historical simulations
by other potential users. A user's manual with a complete program listing
was prepared for each model.
This report was submitted in fulfillment of Contract No. 68-01-0756 under
the sponsorship of the Environmental Protection Agency.
The titles and identifying numbers of the final report volumes are:
Title EPA Report No.
SPOKANE RIVER BASIN MODEL PROJECT DOC /74
Volume I - Final Report
SPOKANE RIVER BASIN MODEL PROJECT ' DOC /74
Volume II - Data Report
SPOKANE RIVER BASIN MODEL PROJECT DOC /74
Volume III - Verification Report
SPOKANE RIVER BASIN MODEL PROJECT DOC /74
Volume IV - User's Manual for Steady-state Stream Model
SPOKANE RIVER BASIN MODEL PROJECT DOC /74
Volume V - User's Manual for Dynamic Stream Model
SPOKANE RIVER BASIN MODEL PROJECT DOC /74
Volume VI - User's Manual for Stratified Reservoir Model
iii
-------
CONTENTS
SECTION ' PAGE
I. INTRODUCTION ........... ' ........... 1
II. MODE OF OPERATION .................. 3
III. WATER BALANCE PROGRAM ................ 5
Description of Subroutine BAL .......... 5
IV. METEOROLOGIC DATA PROCESSING PROGRAM ......... 9
Introduction .................. 9
Description of Subroutine SUBA ......... 9
Description of Subroutine SUBB2 ......... 9
V. RESERVOIR SIMULATION PROGRAM
Introduction .................. n
Description of Subroutine SUBB ......... 12
Description of Subroutine QPRINT ........ 15
Description of Subroutine NEWIN ......... 15
Description of Subroutine SETOPT ........ 17
Description of Subroutine FILL ......... 17
Description of Subroutine SUBC ......... 21
Description of Subroutine LAKCON ........ 23
Description of Subroutine GETAVI ........ 31
Description of Subroutine SUN .......... 31
Description of Subroutine GETCON ........ 34
Description of Subroutine SUED ......... ' 41
Description of Subroutine SUBE ......... 41
Description of Function BETA .......... 41
Description of Subroutine SUBG ......... 41
Description of Subroutine SUBH ...... . . . 41
VI. INPUT REQUIREMENTS .................. 43
VII. OUTPUT DESCRIPTION ............. • ..... 71
VIII. DEFINITION OF COMMON VARIABLES ............ 73
v
-------
SECTION PAGE
IX. SAMPLE INPUT DECK 79
X. SAMPLE OUTPUT 85
XI. PROGRAM LISTING 127
XII. REFERENCES • 177
XIII. ABBREVIATIONS !79
vi
-------
FIGURES
NO. PAGE
I
1 Flowchart - Subroutine SUBB , _
2 Flowchart - Subroutine NEWIN 16
3 Flowchart - Subroutine FILL 19
4 Flowchart - Subroutine SUBC 22
5 Flowchart - Subroutine LAKCON 24
6 Flowchart - Subroutine GETAVI 31
7 Assumed Daylight Intensity Distribution. ... 32
8 Flowchart - Subroutine SUN 32
9 Flowchart - Subroutine GETCON 35
Vll
-------
TABLES
NO. PAGE
i
1. Local Program Variables of Subroutine BAL .... 7
2. Local Program Variables of Subroutine SUBB. ... 14
3. Local Program Variables of Subroutine NEWIN ... ig
4. Local Program Variables of Subroutine FILL. ... 20
5. Local Program Variables of Subroutine LAKCON. . . 30
6. Local Program Variables of. Subroutine GETAVI. . . 33
7. Local Program Variables of Subroutine SUN .... 34
8. Local Program Variables of Subroutine GETCON. . . 40
9. Surface Elevation and Inflow Temperature
Input Card Data 44
10. Meteorologic Input Card Data 47
11. Parameter Identification Codes for Meteorologic
Input Data 50
12. Lake Input Card Data 52
13. Definition of Constituent Selection Option, ICOMB 69
14. Description of Common Variables 73
15. Example Input Data Deck 80
16. Example Output 86
viii
-------
SECTION I
INTRODUCTION
This document is a supplement to Reference [3]. The Stratefied Model
(LAKSCI), documented herein, is an extensive modification of the Deep
Reservoir Model (DRM) described in References [1-5], and is one of three
water quality simulation programs developed by Systems Control, Inc.
(SCI) for use on the Spokane River Basin in the States of Washington
and Idaho.
The three original separate programs comprising DRM (BAL, CEMIFP, and
CETSIP) have been combined into a single program named LAKSCI and
generalized. Subroutines which are unchanged or only slightly modified
include BETA, CURVE, PINE, PPLOT, SCALE, SUBA, SUBB, SUBB2, (formerly
SUBB of CEMIFP), SUED, SUBE, SUBG, and SUBH. Subroutines BAL, QPRINT
and SUBC have been extensively modified. Seven newly added subroutines
are named FILL, GETAVI, GETCON, LAKCON, NEWIN, SETOPT, and SUN. The
resulting modifications have given LAKSCI the capability of simultaneous-
ly modeling the concentrations of as many as sixteen inter-related water
quality constituents in a stratified reservoir. All capabilities of DRM
have been retained.
The mathematical procedures used in the thermal and hydrodynamic simula-
tion are described in References [1] and [3]. The algorithms used to
model the quality constituents are explained in detail in Volume I (Part
III) of this report. The changes to DRM as described on pages 51-53 of
Reference [5] are included in LAKSCI.
The format of this users manual is generally consistent with the format
of Reference [3], subject to the constraints imposed by EPA documentation
specifications.
LAKSCI has been applied to Coeur d'Alene Lake and Long Lake (and to the
Spokane River Arm of FDR lake in modified form) and has been executed on
both the UNIVAC 1108 and the IBM 370/155 systems.
-------
SECTION II
MODE OF OPERATION
The new Stratified Reservoir Model (LAKSCI) described herein may be
divided into three logical parts. These parts are:
Part I - Water Balance Program (Subroutine BAL)
This subroutine (previously referred to as the BAL program) calculates
a time history of the lake surface elevation as a function of lake in-
flow and outflow. It outputs the surface elevation, lake inflow, lake
outflow, and lake inflow temperature for use by Part III. Input to BAL
is lake inflow, lake inflow temperature, lake outflow, and lake coef-
ficients. It is described in more detail in Section III.
Part II - Meteorologic Data Processing (Subroutines SUBA, SUBB2)
These subroutines (previously referred to as the CEMIF program) accept
up to seven meteorologic parameters as input, convert them to appropriate
units, and output them for use by Part III. They are referenced in
Section IV.
PART III - Reservoir Simulation (Subroutine SUBB, NEWIN, and SUBC)
These subroutines, and the routines which they call, (together previously
referred to as the CETSIP program) read in all required input from cards
and from the data files written by Parts I and II and simulate both the
hydrodynamic and quality behavior of the lake or reservoir over the time
period of interest. Detailed descriptions of the numerous subroutines
are provided in Section V.
An execution of LAKSCI consists of successive calls to BAL, SUBA, SUBB2,
SUBB, NEWIN, and SUBC.
-------
SECTION III
WATER BALANCE PROGRAM
DESCRIPTION OF SUBROUTINE BAL
Subroutine BAL calculates the daily variation in the lake surface
elevation as a function of lake inflow, lake outflow, and the lake
coefficients C, , C_, and C~. Previously this was a separate program,
but in this project is has been combined into the new overall LAKSCI
program. The required input is described in Table 9.
Subroutine BAL is called from the main program and makes a standard
return. It calls subroutine FILL to interpolate input values if
required and is entered only once during program execution. The daily
lake surface elevation is calculated in the following manner.
The lake coefficients C.. , C_, and C_ are defined by
2 3
C d^ C dJ
V(d) = C-jd + -~— + -—-
A(d) = C± + C2d + C3d2
where
V(d) = volume of lake in acre feet (d is depth in feet)
A(d) = surface area of lake in acres
For each day being simulated Q , QnnTs and T are read in where
Q is lake inflow in CFS, Q ^ is lake outflow in CFS, and T is
the inflow temperature in centrigrade degrees. Q is adjusted by
where
f and Q = input
O
The lake volume on day J + 1 is calculated from the volume on day J
by
VJ 4-
-------
where
V = volume on day i (acre feet)
fac = 86400/43560 and changes CFS to daily volume in acre feet
The surface elevation on day J + 1 is calculated from the elevation
on day J by the following iterative technique.
Z. , . = X, + (V, . , -
J + 1 1 j + 1
where
Z = surface elevation on day i (feet)
A = surface area on day i (acres)
If Z.,.. differs from Z. by more than .005 feet, X- is set equal
to Z - and the process is repeated. A maximum of ten iterations is
allowed. When Z _ has been determined the "error" term V - - V(Z "
is calculated and stored for output. The number of iterations required
is also stored for output. When all days in the simulation period have
been considered, BAL writes the surface elevation (referenced to sea
level), QT, QniIT> and T out on tape or disk for use by LAKSCI. A
summary is also output on the printer (see Table 16).
The local program variables in subroutine BAL are defined in Table 1.
They are all undimensioned.
-------
TABLE 1.
LOCAL PROGRAM VARIABLES OF SUBROUTINE BAL
Variable
Name
Description
BOTEL
FACIN
GWFLOW
RSELI
TA
Lake bottom elevation above sea level (feet)
Factor applied to inflow
Bias added to inflow (cfs)
Initial surface elevation above lake bottom (feet)
Conversion factor
-------
SECTION IV
METEOROLOGIC DATA PROCESSING
INTRODUCTION
Previously the subroutines described in this section comprised a
separate program, CEMIFP. In this project they have been combined to-
gether to form Part II of the new overall LAKSCI program.
DESCRIPTION OF SUBROUTINE SUBA
A description of subroutine SUBA may be found on pages 13-14 of
Reference [3], This subroutine reads in the basic meteorologic input
data and makes the required unit conversions. See Tables 10 and 11
for a description of the required input parameters and units,
DESCRIPTION OF SUBROUTINE SUBB2
This subroutine is described on pages 15-21 of Reference [3] under the
title of subroutine SUBB. The subroutine was renamed SUBB2 in LAKSCI
since the reservoir simulation portion of LAKSCI has a different sub-
routine named SUBB. Subroutine SUBB2 calculates the various meteor-
ological parameters needed by the reservoir simulation portion of
LAKSCI and also calculates the equilibrium temperature at the water
surface. A summary of the meteorological parameters employed is output
on the printer (see Table 16).
-------
SECTION V
RESERVOIR SIMULATION PROGRAM
INTRODUCTION
This third part of the new overall LAKSCI program previously comprised
a separate program, CETSIP (Corps of Engineers Thermally Stratified
Impoundment Program). In its new modified form, it simulates the
thermal conditions and the quality constituent conditions in a lake or
reservoir. Hydrologic and meteorologic data, as prepared by subroutines
BAL, SUBA, and SUBB2, is used together with card input to model the
conditions over the required simulation period. The maximum period
which may be simulated is 365 days. The minimum time step allowed is
one hour. A maximum of one lake inflow is allowed, and the lake must
be conceptualized into 100 or less horizontal layers or elements.
This part of LAKSCI simulates the thermal behavior of an impoundment
using a forward stepping integration scheme on a set of differential
equations. Time is the independent variable and the accuracy of the
results is dependent on the length of the time step employed. With all
other parameters held constant, it can be stated that the shorter the
time step the more accurate the results. This statement is always true,
but many factors other than the length of the time step are important
to the overall accuracy of the simulation. Some information on the
selection of the time step and other items of importance are given be-
low. The sensitivity of LAKSCI to time step size and other parameters
is described in Volume I (Part V) of this report.
The following statements concerning the operation of LAKSCI can be made
at the outset. First, LAKSCI should never be run using time steps of
longer than a day's duration. A great deal of trouble will be avoided
if this suggestion is followed, even though technically the model will
work on longer periods. Secondly, LAKSCI cannot be expected to produce
temporal response characteristics which have more detail than the
observation interval for input data. What this means, of course, is
that if one wishes to investigate a particular aspect of a reservoir's
response, the input data pertinent to that investigation will need to
be supplied in at least as much detail as the shortest time period of
interest. Daily values for daily response, hourly values for hourly
response, etc. Finally, LAKSCI should never be run using more than 24
intervals per day. Again, the model is technically capable of doing
this, but such a practice is strongly discouraged.
Within the limits suggested above, the maximum time step allowed is
largely determined by the ratio of the volume of an element to the volume
of flow which is advected into or out of any element during any time step.
This ratio is defined as the advection ratio (R ), and is critical to
the model's operation. In no case should the R exceed unity and
values on the order of 0.5 and less are most satxsfactory. The magnitude
of the error in the model's results will be proportional to the amount
11
-------
and frequency of the violation of this criteria, and no simulation should
be accepted for which violations occur with regularity. Experience has
shown that an occasional violation is often not critical to the model's
output, but one must remain alert to advection's role in the simulation.
The advection ratios for vertical advection (VAR) and horizontal advec-
tion (HAR) are shown on LAKSCl's printed output, and the sum of these
components indicates the total, R .
3.
i
If violations in the R criteria occur, two courses of action are open,
both of which can be accomplished by card input to LAKSCI. First, more
execution intervals per day can be specified. This results in a shorter
time step, but.will increase the program's running time on the computer.
Secondly, the volume of segment elements can be enlarged by an increase
in vertical element size. This will result in larger elements, with a
corresponding decrease in computer time; this also results in a decrease
in vertical detail. The user's experience and requirements will dictate
the optimum selection of time step and element size.
Description of the subroutines which, comprise the reservoir simulation
portion of LAKSCI follow. The group of subroutines which produces the
plots of temperature versus depth is not documented in this report.
This group consists of the following subroutines: CURVE, PINE, PPLOT,
and SCALE.
DESCRIPTION OF SUBROUTINE SUBB
Subroutine SUBB flowcharted in Figure 1 is called by the main program to
initialize variables and to read in the data necessary for the hydro-
logic and thermal simulation of the reservoir. The data files written
by subroutines BAL and SUBB2 are read in and stored and the inputs
described on cards 1-11 of the Lake Data input (see Table 12) are read
and processed. The area and volume profiles of the reservoir are
generated and stored as is the initial temperature profile. When the
input processing is finished, subroutine SUBB prints out a summary and
returns control to the main program which then calls subroutine NEWIN to
read in all relevant quality data. Subroutine SUBB has a second entry
point, namely PRNT. This portion of the code prints out the hydrologic
and thermal summary for a given day and calls QPRINT to print out the
quality conditions and CURVE to plot the temperature profile for that
day.
SUBB is called once from the main program and calls subroutine SUBG if
interpolation is required to generate the initial temperature profile.
PRNT is called as needed by subroutine SUBC and calls QPRINT and CURVE
to assist it in printing out the daily summary. The volume and area
profiles are generated from
V = C±Z + (C2/2)Z2 + (C3/3)Z3
A = Cl+ C2Z + C3Z2
12
-------
ENTRY
• INITIALIZE
SYSTEM CO:iSTAIITS
AND PARAMETERS
READ
TEMPORAL
LIMITS >
READ FROM
INPUT
FILE
STORE
METOROLOGIC
DATA
READ FROM
INPUT
FILE
\READ & URITE/
\ RUN /
PARAMETERS/
EAD & WRITE/
OUTLET /
POSITIONS/
INITIALIZE
SELECTED
ARRAYS
GENERATE
ELEVATION,
AREA. AND
VOLUME PROFILES
fiPUT INITIAL
TEMPERATURE/
POINTS /
\
CALL SUBG
\INPUT DAYS
VOR PRINTED/
\OUTFUT
c
LOG
ATE .
uTFLOHS
IN PROFILE
FIGURE 1. FLOWCHART - SUBROUTINE SUBB
OUTPUT
STATUS
RETURN
("ENTRY PRNT)
CONVERT TO
•F X CCX?UTE
ADVECHO:; RATIOS
WRITE
^SIMULATION
OUTPUT /
CALL QPRINT\
CALL CURVE
A
/
-------
where
3
V. = volume of lake below and including element j (m )
2
A. = lower surface area of element j (m )
C-, C_, C_ are input coefficients
i
The local program variables in subroutine SUBB are defined in Table 2,
They are all undimensioned.
TABLE 2.
LOCAL PROGRAM VARIABLES OF SUBROUTINE SUBB
Variable Description
Name
ELMAX Maximum possible lake surface elevation
(meters above bottom)
IQ Temporary loop limit
i
IB Temporary Loop limit
1C Temporary loop limit
IEND Upper value of print loop limit
IGO Lower value of print loop limit
IYR Meteorologic data year
MAX Temporary loop limit
Other local variables may be found on page 36 of Reference [3]
14
-------
DESCRIPTION OF SUBROUTINE QPRINT
Subroutine QPRINT is called to print out the current concentrations of
the constituents being modeled. The concentrations of all constituents
in each layer of the lake are output. QPRINT is called by PRNT and
calls no subroutines.
DESCRIPTION OF SUBROUTINE NEWIN
I
Subroutine NEWIN flowcharted in Figure 2, reads in the various quality
related parameters defined on cards 12-27 of the Lake Input Data (see
Table 12). SETOPT is called to set various internal logic flags based
on the input values of various options. A summary of the input quality
data is printed out and a check is made to insure that the BOD nitrogen
exceeds the algal nitrogen in each lake element.
Subroutine NEWIN is called once from the main program and calls sub-
routine SETOPT to set internal flags. Subroutine FILL is called to fill
in quantities which are not input by interpolation between values which
are input. The BOD nitrogen and algal nitrogen in a lake layer are
calculated as follows.
BOD weight
BODWT = BODC « 12/BODPC
where
\
BODC = carbon to phosphorus ratio in BOD material
BODPC= dry weight fraction of carbon in BOD material
BOD nitrogen weight ratio
BODNWR = BODN • 14/BODWT
where
BODN = nitrogen to phosphorus ratio in BOD material
BOD phosphorus weight ratio
BODPWR = 32./BODWT
BOD nitrogen
BODNX = C_nr. • BODNWR/BODOQ
B01)
15
-------
/ CALL FILL \
( CALL FILL \
CALL SETOPT
P.t.Ml
MWKIiS.
Ff.ClWS,
^ E1C.
WRIT;;
SUWARY
1
r
CHECK BOU-K
AND ftLf-AE-N
FIGURE 2. FLOWCHART - SUBROUTINE NEWIN
16
-------
where
CL-_. = BOD concentration
BOJJ
BODOQ= BOD oxygen quotient
Algae Nitrogen
ALGN =» c • BODNWR/CAPR • BODPWR)
A
where
C = algae concentration
APR = algae to phosphorus ratio
The local program variables in Subroutine NEWIN are defined in Table 3.
They are all undimensioned.
DESCRIPTION OF SUBROUTINE SETOPT
Subroutine SETOPT is called to set various internal logic flags based on
the input values of various options. A summary of the constituents being
modeled is output. SETOPT is called by subroutine NEWIN and calls no
subroutines.
DESCRIPTION OF SUBROUTINE FILL
i
Subroutine FILL, flowcharted in Figure 3, is called by subroutines BAL
and NEWIN and fills in the values of specified entries in an array by
interpolation between adjacent array values. The parameters passed to
FILL are the array to be filled, the length of the array, and a check
value. Subroutine FILL replaces any array location which contains the
check value in the following manner.
A - (dR - dM)/(K - M)
where
d . = the j entry of the data array and the values between dM
^ and d are to be filled in
d
where
M _< £ _< K - 2
The local program variables in subroutine FILL are defined in Table 4.
They are all undimensioned.
17
-------
TABLE 3.
LOCAL PROGRAM VARIABLES OF SUBROUTINE NEWIN
Variable
Name
Description
ALGN
BODNWR
BODNX
BODPWR
CFSQ
CMSCFS
E1106
E2106
XLATD
Algal nitrogen in a lake layer (rag)
BOD nitrogen weight ratio
BOD nitrogen in a lake layer (mg)
BOD phosphorus weight ratio
Inflow in CFS
o
M /sec to CFS conversion factor
Diffusion coefficient El for printout
Diffusion coefficient E2 for printout
Latitude in degrees for printout
18
-------
HAS
END OF
ARRAY
BEEN
REACHED
FIND NEXT
GROUP OF SPACES
TO BE FILLED
I
CALCULATE A
AND FILL IN
THE VALUES
FIGURE 3. FLOWCHART - SUBROUTINE FILL
19
-------
.TABLE 4.
LOCAL PROGRAM VARIABLES OF SUBROUTINE FILL
Variable
Name
Description
DEL
MM1
N
NLO
WORD
Data increment
Upper loop limit for filling in values
Array length
Lower loop limit for filling in values
Check word
20
-------
DESCRIPTION OF SUBROUTINE SUBC
Subroutine SUBC, flowcharted in Figure 4, is the heart of the thermal
calculation procedures for LAKSCI. It also calls subroutine LAKCON,
which is the driver for the calculations involving the quality
constituents. In the course of execution, SUBC simulates the thermal
behavior of a reservoir by forming and solving a set of simultaneous,
linear equations. These equations provide a forward, stepwise, integra-
tion of the differential equations which have been derived to describe
the thermal processes within the system. The steps associated with the
formulation and solution of these equations are presented in Reference [1]
and will not be covered in detail here. In brief, however, the procedure
forms a set of equations which provide a heat balance for each horizontal
element within the reservoir. A linear rate of change of the rate of
temperature change is assumed, and the temperature of each element is
projected forward to the end of a simulation time step by a solution for
the equations. The forward projection always takes place from some known
condition and the most recently determined temperature automatically be-
comes the starting point for the next projection.
In the simulation scheme employed, all heat transfer is considered to be
some component of one of the five following transfer mechanisms:
(a) eddy diffusion;
(b) horizontally advected flow;
(c) vertically advected flow;
(d) short wave solar radiation;
(e) air-water interface heat transfer >
The contribution of each of these processes is calculated for each
element, and the procedure moved forward in time using constantly updated
values for inflow, outflow and meteorological conditions. In the simula-
tion process one day is considered the basic time unit for hydrologic in-
put. Meteorological data may be input to represent periods as short as
one hour or as long as one day. The number of simulation intervals per
day, which determines the length of the time step, is specified on input
and need not correspond to the interval of meteorologic data observation.
Changes in reservoir water surface are accounted for only once per day,
and data on reservoir inflow and outflow are assumed to be available as
average daily values.
Finally, if the solution to the basic heat equations results in a
temperature (density) profile which is considered to be physically
unstable, the code will commence a reservoir mixing process until a
stable profile is achieved. The value of the temperature (density)
gradient which will be considered as stable is an input variable.
When the stable thermal profile has been achieved for a given time step,
i.e., when the mixed zone of the reservoir has been determined, the
concentrations of the quality constituents being modeled are adjusted
appropriately in the mixed zone and subroutine LAKCON is called to
calculate the concentration changes occuring during the time step. If
21
-------
ENTRY
4 1 V ' V
CALCULATE
CERTAI; MISC.
QUANTITIES
LOCATE THE
THERMOCLINE
CALCULATE
RATE OF
SURFACE
EHERSY 1,-iPUT
INFIAL
CUTPIT TAPE
WRITE
BEGIN DAILY i.e."-.,
CALCULATE
SURFACE
ELE-;O:T
PROPERTIES
BEGIN EXECjTICK IOC?.
CALCULATE
DIFFUSION
COEFFICIENT
FCRM
SOLUTION
MATRICES
/ CALL S'JBH \
CALCULATE
OUTFLOW
CONCENTRATIONS
LOOPS ' r:u;;T siM-y.r.y
0!; O'JTI-'LOVI
CO:;CK:;TILVJ-IOXS
1
SOLVE FOR
FINAL
TEMPERATURE
/CALL SUBD \ / CALL SUBE \
SMOOTH
PROFILE
CALCULATE
DENSITY
PROFILE
CALCULATE
RATE OF SOLAR
ENERGY INPUT
"? V
MIX RESERVOIR
IF UNSTABLE
CALC! LATE
OUTFLO'J
TF.MPLRATURE
/CALL LArCCOlA
/ CALL PR.f-iT \
C RETURN }
FIGURE
FLOWCHART - SUBROUTINE SUBC
-------
the end of the time step corresponds to the end of a day, the concentra-
tions of the constituents in the reservoir outflow are calculated and
stored.
Subroutine SUBC is called from subroutine SUBB once. In the course of
execution, SUBC calls SUED, SUBH, SUBE and LAKCON at least once per
simulation day. More than one call may be made depending on the length
of the time step and the number of meteorologic observations; SUBC calls
ENTRY PRNT in SUBB under the control of program input variables to print
the simulation output at requested intervals. All program variables
employed by SUBC are passed through labeled COMMON.
Important formulae and local variables used by SUBC may be found on
pages 40-43 of Reference [3].
DESCRIPTION OF SUBROUTINE LAKCON
Subroutine LAKCON, flowcharted in Figure 5, with the help of subroutine
GETCON, calculates the changes in constituent concentrations which occur
in the elements of a reservoir during a time interval At. The inputs
to LAKCON include the horizontal flows into and out of each element
during At and the concentrations of the constituents in each element
at the beginning of At. Also input are the temperature profile during
At, diffusion coefficients for both above and below the thermocline,
concentrations of the horizontal inflows (i.e., the reservoir inflow),
reservoir volume and area profiles, and the reservoir extinction
coefficient.
*
LAKCON first calculates the vertical flows into and out of each element
as a function of the horizontal flows into and out of each element. The
thermocline is then located by examination of the temperature profile and
the changes in concentration between the elements due to diffusion are
calculated. LAKCON next calculates the concentration changes due to mass
transfer into and out of each element. These mass transfers are the
result of the vertical and horizontal flows into and out of each element.
The concentrations of all elements are updated with the above changes and
if algae or NO^-N is being modeled, subroutine GETAVI is called to
calculate light intensity at the reservoir surface and the percent of At
during which it is daylight. The following procedure is then followed
for each element, starting with the top element and working down.
The area of the lake bottom for the element is calculated. If algae is
being specifically modeled the light intensity for the element is
calculated from the element depth and the light intensity on the reservoir
surface. If algae is not being modeled specifically and NO -N is being
modeled and also the element being considered is the surface element,
then the extinction depth, i.e., the depth where 99% of the surface light
has been absorbed, is calculated. The average NO«-N concentration, the
average NO.-N reaction rate, and the average temperature are then
determined for this euphotic zone. The light intensity for each euphotic
element is also calculated and saved and the total NO«-N concentration
23
-------
BEGIN LOOP OH ELEMENTS
S
THIS
THE FIRST
HUE I|J
AKCON
IS
THIS THE
SURFACE
ELEMENT
( RETURN )
FIGURE 5. FLOWCHART - SUBROUTINE LAKCON
24
-------
change for the euphotic zone is determined and stored. From these
quantities the change in NO--N concentration for each element in the
euphotic zone may be determined. These changes represent NO_-N
consumption by algae which is why they are calculated only if algae is not
being modeled specifically. Having thus determined the NO_-N concentra-
tion change due to algal consumption, LAKCON then calls subroutine GETCON
to calculate concentration changes due to growth, decay, settling,
reaeration, benthal releases and absorptions, and volitization during
At (reaeration and volitization occur only in the surface element). The
concentrations are then updated with these changes and when all elements
have been processed, control is returned.to subroutine SUBC.
LAKCON is called once per integration step by subroutine SUBC. LAKCON
calls subroutine GETAVI if algae or NO«-N is being modeled. Subroutine
GETCON is always called. The following quantities are calculated by
LAKCON.
Flow Balance For Each Element Except the Surface Element
HT + VT = H + V
II oo
where
H = horizontal flow in (cms)
V = vertical flow in (cms)
H = horizontal flow out (cms) ,
V = vertical flow out (cms)
Thermocline Element
TE = max ((Ti+1) - T±)/Z
where
T. = temperature of element i (°C)
Z = thickness of element (m)
Diffusion Between Element n and Element n+1 for a Constituent
c - c j.i
An. = 2 E A .n . ,n+1 At
JD n d + d ...
n n+1
25
-------
where
3
AHL = mass rising from element n to element n+1 (m mg/L)
E = diffusion coefficient (depends-on location of element n with
respect to the thermocline) (m /sec)
2
A = interface area between elements (m )
I
C. = concentration of constituent in element j (mg/L)
d. = thickness of element 1 (m)
AC = - Am/V
n I) n
AC ., = Am /V j-
n+1 D n+1
where
AC. = concentration change in element j (mg/L)
3
V = volume of element j (m )
Concentration Change Due to Mass Transfer
Amr =
i
where
3
AHL, = mass change in the element during At (m mg/L)
3
M^ = mass brought into the element vertically during At (m mg/L)
3
1VL = mass brought into the element horizontally during At (m mg/L)
3
= mass transported from the element vertically during At(m mg/L)
3
= mass transported from the element horizontally during At(m mg/L)
AC =
where
AC = concentration change of the constituent in the element (mg/L)
3
V = element volume (m )
Bottom Area of Element n
B = A .- - A
n n+1 n
26
-------
where
2
A. = surface area of element i-1 (m )
Light Intensity Relationship
Kd
I, = I e
d s
where
I, = intensity at depth d (Langleys/min)
I = intensity at the surface (Langleys/min)
S
K = extinction coefficient (m )
Average Light Intensity in an Element
KZ
where
I_ = intensity at element top (Langleys/min)
I., = intensity at element bottom (Langleys/min)
D
Z = element thickness (m)
K = extinction coefficient (m )
Extinction Depth
D = 4.6052/K
ex
where
K = extinction coefficient (m )
NO -N Concentration Change in Euphotic Zone During At (if NO_-N is
being modeled by a first order reaction)
AN03-N = (N03-N) (e~KlAt-l)
27
-------
where
NO,-N = average NO_-N concentration in euphotic zone (mg/L)
KI - K20 9<
where '
20
K.. = the average N0--N reaction coefficient in euphotic zone at 20
degrees centigrade (hr~ )
T = average temperature of euphotic zone (°C)
0 = correction constant
If NO -N is being modeled by a second order reaction
- K At (NO -N)2
ANVN • 1. i KlAt (N03-N)
NO -N Concentration Change in Euphotic Element i
(A NO -N). = B I.
j i i ,
where
'^i Kd
I± = I e X(l - e i)/Kd±
I = light intensity at reservoir surface (Langleys/min)
K = extinction coefficient (m )
Z. = depth below surface of top of element i (m)
d. = thickness of element i (m)
and B is determined from
(AN03-N) X V± = B 2 (V. Ii)
euphotic i euphotic i
28
-------
where
3
V. = volume of element i (m )
ANO -N is defined above
The local program variables in subroutine LAKCOM are defined in Table 5,
They are all undimensioned with the exception of IBRSAV.
29
-------
TABLE 5.
LOCAL PROGRAM VARIABLES OF SUBROUTINE LAKCON
Variable
Name
AVINT
AVN03
AVTEM
BFAC
BGDN03
EOT
DELMAS
DEX
DTDDM
E
FLOIN
FLOUT
HMSIN
HMSOUT
IBARI
IBRSAV
JBAC
NDU
NTHERM
THK
VMS IN
VMS OUT
XMADD
XNH3K
ZIT
Description
I
Average surface light intensity (Lang ley s/min)
Average NO«-N concentration in euphotic zone (mg/L)
Average temperature in euphotic zone (°C)
B factor (see formulae)
(ANO--N) , see formulae
2
Bottom area of element (m )
3
Change in mass due to diffusion (m mg/L)
Extinction depth (m)
Thermal gradient
2
Diffusion coefficient (m sec)
Flow into an element (cms)
Flow out of an element (cms)
3
Horizontal mass in (m mg/L)
3
Horizontal mass out (m mg/L)
I. (see formulae)
Saved values of I. (dimensioned)
Loop index
Extinction depth element
Thermocline element
Element thickness (m)
3
Vertical mass in (m mg/L)
3
Vertical mass out (m mg/L)
3
Change in mass due to mass transfer (m mg/L)
Average N0_ reaction rate in euphotic zone (hr )
Z. (see formulae)
30
-------
DESCRIPTION OF SUBROUTINE GETAVI
Subroutine GETAVI, flowcharted in Figure 6, calculates the average light
intensity in Langleys per minute during a time interval [t-, t ] on
Julian day n. Subroutine SUN is called to calculate sunrise and sunset
on day n. The total radiation for day n is an input quantity.
Subroutine GETAVI is called by subroutine LAKCON and calls subroutine SUN.
ENTRY J
CALL SUN
CALCULATE
LIGHT
INTENSITY
RATE DURING
TIME
INTERVAL
RETURN J
FIGURE 6. FLOWCHART - SUBROUTINE GETAVI
The average light intensity over [t-, t?] is calculated from sunrise,
sunset, and the daily total radiation by assuming that the total is
distributed between sunrise and sunset according to the distribution
illustrated in Figure 7.
The local program variables in subroutine GETAVI are defined in Table 6.
They are all undimensioned.
DESCRIPTION OF SUBROUTINE SUN
Subroutine SUN, flowcharted in Figure 8, is called by subroutine GETAVI
to calculate sunrise and sunset on Julian day n. The following equations
are used.
31
-------
Intensity
SR
1
4
1
2
1 S
4
Time
FIGURE 7. ASSUMED DAYLIGHT INTENSITY DISTRIBUTION
ENTRY J
CALCULATE
SUNRISE
& SUNSET
RETURN
FIGURE 8. FLOWCHART - SUBROUTINE SUN
32
-------
TABLE 6.
LOCAL PROGRAM VARIABLES OF SUBROUTINE GETAVI
Variable
Name Description
AREA Area 'under a portion of the curve in Figure 6
DAY ' Hours of daylight
D4 One fourth of daylight hours
PDL Percent of interval [t-, t«] in daylight
T- t1 (see formulae)
T? t? (see formulae)
Sunset Time
SS = 3.81972 COS 1(-tan(d) tan(lat)) + 12. (hours after midnight)
where
lat = latitude of reservoir (radians)
d = .409279 Cos(.0172142 (172 -n))
where
n = Julian day number
Sunrise Time
SR = 24 - SS (hours after midnight)
The local program variables in subroutine SUN are defined in Table 7.
They are all undimensioned.
33
-------
TABLE 7
LOCAL PROGRAM VARIABLES OF SUBROUTINE SUN
Variables
Name Description
D ' d (see formulae)
DAY n, Julian day number
SS ' sunset (hours after midnight)
SR sunrise (hours after midnight)
DESCRIPTION OF SUBROUTINE GETCON
Subroutine GETCON, flowcharted in Figure <9, is called by subroutine
LAKCON to calculate the changes in the constituent concentrations in a
lake or reservoir element over a time interval At, where At is the
integration step size. The algorithms used are explained in detail in
Volume I, Part III. The inputs to GETCON include the average light
intensity in the element, the element location with respect to the
surface and the bottom of the reservoir, the bottom area of the element
(i.e., the area available for benthal releases and demands), the volume
and thickness of the element, the percent of At which is daylight,
appropriate constants and variables, and the concentration of all
constituents at the beginning of At.
All formulae used by GETCON are described in detail in Part III of
Volume I. Equations references as A.NN in the flowchart, of GETCON may
also be found in Part III of Volume I.
The local program variables in subroutine GETCON are defined in Table 8.
They are all undimensioned.
34
-------
IS
THIS THE
FIRST TIME
IN
7
INITIALIZE
ZERO OUT DELTAS
TCOR = (T-20)
A.80.1
ARE
COL IFORMS
BEING
MODELED
COL I FORM DECAY
A. 8
A. 10
A. 7
L
BODJlECAl
A. 15
A.12
A.13
A.14
A.16
A. 17
FIGURE 9. FLOWCHART - SUBROUTINE GETCON
35
-------
FIGURE 9. (cont'd)
36
-------
IS
N02-N
BEING
MODELED
7
N03-N SETTLING
NOj-N SETTLING
IS CALCULATED
IN LAKCOM
BEING
MODELED
BEING
MODELED
NH--N VOLITIZATION
VOLITIZATION
CCURRIN
AR
PKYTO-
PLANKTON
BEING
MODELED.
IS
IT DARK
DURING TIME
STEP
ALGAt. GROWTH
A.4b A.49
A.46 A.50
A.47 A.55
A'48A.60A'56
FIGURE 9. (Cont'd)
37
-------
ALGAL RESPIRATION
A.65
FIGURE 9. (Cont'd)
38
-------
UPDATE LOWER LAYER
A. 4
A. 5
A. 24
A. 70
A. 76
FIGURE 9. (Cont'd)
39
-------
TABLE 8.
LOCAL PROGRAM VARIABLES OF SUBROUTINE GETCON
Variable
Name
Description
AO
ARR
ASLOP
AT
BODMC
BODMTL
BODNWR
BODWT
DALND
DALTOX
DN
DOBEN
DOD
FACHML
FACHM2
FACHM3
FL
FLIM
FN
FNH3
FN03
FP
GRLIM
IBAR
NOUT
OS AT
RAT
TCOR
TT
VO
VSLOP
VT
Reservoir surface area at start of time step (m^)
Algal respiration rate (hr )
2
Rate of change of reservoir surface area (m /hr)
2
Reservoir surface area at end of time step (m )
BOD convertible to inorganic forms
BOD material in BOD decay
BOD nitrogen weight ratio
BOD weight
Algae change due to natural death (mg/L)
Algae change due to toxicity (mg/L)
Nitrogen demand due to algal growth (mg/L)
Benthal DO demand (mg/L)
DO reaeration change (mg/L)
Heavy metal factor on coliforms and algae reactions
Heavy metal factor on coliforms and algae reactions
Heavy metal factor on coliforms and algae reactions
Algal growth limitation function due to light
Minimum of FL, FN, FP
Algal growth limitation function due to nitrogen
Algal growth limitation function due to NH_-N
Algal growth limitation function due to NO_-N
Algal growth limitation function due to PO.-P
Total algal growth limiting function
Maximum light intensity (Langleys/min)
Output unit
DO saturation level (mg/L)
Ratio used in settling calculations
Temperature correction term (°C)
Temperature (°C)
3
Volume of surface element at start of time step (m )
3
Rate of change of volume of surface element (m /hr)
3
Volume of surface element at end of time step (m )
40
-------
DESCRIPTION OF SUBROUTINE SUED
A description of subroutine SUED may be found on pages 45-49 of
Reference [3].
DESCRIPTION OF SUBROUTINE SUBE
A description of subroutine SUBE may be found on pages 50-53 of
Reference [3]. .
DESCRIPTION OF FUNCTION BETA
A description.of function BETA may be found on pages 54-56 of
Reference [3] .
DESCRIPTION OF SUBROUTINE SUBG
A description of subroutine SUBG may be found on pages 57-58 of
Reference [3].
DESCRIPTION OF SUBROUTINE SUBH
A description of subroutine SUBH may be found on pages 59-61 of
Reference [3].
41
-------
SECTION VI
INPUT REQUIREMENTS
The input to LAKSCI falls into three categories. They are:
1. Input to define the hydrodynamic behavior of the lake surface
elevation during the time period being simulated and to define
the lake outflow, lake inflow, and the temperature of the lake
inflow. (This is read and processed by subroutine BAL.)
2. Meteorologic data for the period being simulated. (This is read
and processed by subroutines SUBA and SUBB2.)
3. Input to define lake initial conditions, outflow geometry, inflow
concentrations, and various lake dependent variables such as
diffusion coefficients, extinction depth, etc. (This is read and
processed by SUBB, NEWIN, and SUBC.)
The input required is described in detail in this section. All equations
referenced as (A.NN) may be found in Part III of Volume I. A listing of
a sample input deck is provided in Section IX.
The following constraints govern the use of LAKSCI.
1. No more than 365 days may be simulated.
2. No more than 2920 values may be input for any meteorological para-
meter.
3. The lake may be divided into a maximum of 100 layers.
4. No more than one initial temperature per layer may be input.
5. Special output may be requested on no more than 50 days.
6. A minimum of one and a maximum of three outlets are allowed.
7. Minimum of one and a maximum of twenty-four integration steps per
day are allowed.
43
-------
TABLE 9.
SURFACE ELEVATION AND INFLOW TEMPERATURE INPUT CARD DATA
CARD CARD
// COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
1 1-10 110 ITAPE
11-20 110 IDAY
21-30 110 LDAY
31-40 F10.2 Cl
41-50 F10.2 C2
51-60 F10.2 C3
2 1-10 F10.0 RSELI
11-20 F10.0 BOTEL
21-30 F10.0 GWFLOW
31-40 F10.0 FACIN
(FEET)
(FEET)
(CFS)
0.
1.
Interface unit
First day of run (1 is January
1)
Last day of run (365 is December
31) LDAY must be <_ 365
For depth d in feet „
V(d) = Cl'd + (l/2);C2-d
+ (l/3)-C3*d
A(d) = Cl + C2 • d + C3 • d2
where V is volume in acre feet
and A is area in acres
Initial surface elevation
referenced to lake bottom
Elevation of lake bottom above
sea level
Flow added to inflow (may be
positive or negative)
Factor by which inflow is
multiplied
-------
TABLE 9. (Continued)
CARD CARD
# COLUMN
3 1-6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
49-54
55-60
FORMAT
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
VARIABLE
NAME UNITS
FLOW (CFS)
(IDAY.l)
FLOW (CFS)
(IDAY, 2)
FLOW (°C)
(IDAY, 3)
FLOW (CFS)
(IDAY + 1,1)
FLOW (CFS)
(IDAY + 1,2)
FLOW (°C)
(IDAY +1,3)
FLOW (°C)
(IDAY + 2,1)
FLOW (CFS)
(IDAY +2,2)
FLOW (°C)
(IDAY + 2,3)
FLOW (CFS)
DEFAULT
VALUE DESCRIPTION
Inflow rate for day IDAY
Outflow rate for day IDAY
Temperature of .inflow for day
Inflow rate for day IDAY + 1
Outflow rate for day IDAY + 1
Temperature of inflow for day
Inflow rate for day IDAY + 2
Outflow rate for day IDAY + 2
Temperature of inflow for day
IDAY + 2
Inflow rate for day IDAY + 3
(IDAY + 3,1)
-------
TABLE 9. (Continued)
CARD CARD VARIABLE DEFAULT
# COLUMN FORMAT NAME UNITS VALUE DESCRIPTION
3 61-66 F6.0 FLOW (CFS) Outflow rate for day IDAY + 3
(IDAY +3,2)
67-72 F6.0 FLOW (CFS) Temperature of inflow for day
(IDAY +3,3) IDAY + 3
There are as many cards as necessary to define FLOW for days IDAY through LDAY. Any value read
in as zero will be replaced x^ith a value interpolated linearly from other data. The inflow,
outflow, and inflow temperature MUST be defined for IDAY and LDAY, i.e., no interpolation is
done for IDAY and LDAY.
-------
TABLE 10.
METEOROLOGIC DATA INPUT CARD
CARD CARD VARIABLE DEFAULT
# COLUMN FORMAT NAME UNITS VALUE DESCRIPTION
1 1-80 20A4 ALPHA
2 1-10 110 IYR
11-20 110 IDAY
21-30 110 LDAY
31-40 110 NOBS
41-50 110 ITAPE
3 1-10- E10.0 A (M SEC"1 MB"1)
11-20 E10.0 B (MB"1)
21-30 E10.0 LAT (DEC)
31-40 E10.0 LOG (DEC)
Output heading
Year of observations
First Julian
(1 is January
day of observation
1)
Last Julian day of observation
(365 is December 31) LDAY must
be <_ 365
Number of observations per day
(Total number of observations
of a parameter must be < 2920)
Interface uni
ITAPE on card
Evaporation
coefficient
Evaporation
coefficient
Lake latitude
t (must be same as
#1 of Table 9)
used in
calculation
of
equilibrium
temperature
Lake longitude
-------
TABLE 10. (Continued)
CARD
#
CARD
COLUEN
41-50
FORMAT
E10.0
VARIABLE
NAME
RESEL
UNITS
(M)
DEFAULT
VALUE
DESCRIPTION
Lake elevation above sea
level
The following reules govern the input of the meteorologic parameters. Sky cover, dry bulb air
temperature, wind speed and either wet bulb air temperature or dew point MUST be input (dew
point is preferable). Atmospheric pressure will be calculated from the lake elevation if it is
not input. Solar radiation input is also optional but should be input if algae is being modeled.
Each of the seven meteorologic parameters which is being input (see Parameter Identification
Codes in Table 11, and previous note) requires the following group of cards:
00
1-10 110
ID
11-20 E10.0 CV
21-30' E10.0 CVA
31-40 E10.0 CVB
Parameter identification code
(see Table 11) ID = 100 means
there is no more meteorologic
input
Data conversion factor A
(see below)
Data conversion factor B
(see below)
Data conversion factor C
(see below)
-------
TABLE 10. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
DESCRIPTION
1-80 (5X, F5.0, 7F10.0)
1-80 (5X, F5.0, 7F10.0)
1-80 (5X, F5.0, 7F10.0)
1-80 (5X, F5.0, 7F10.0)
1-80 (5X, F5.0, 7F10.0)
(DATA(J,ID),J=IDAY,
IDAY + 7)
(DATA(J,ID),J=IDAY
+ 8.IDAY + 15)
(DATA(J,ID),J=IDAY
+ 16,IDAY + 23)
(DATA(J,ID),J=IDAY
+ 24, end of first
month of run)
Parameter values for first 8
days
Parameter values for 2nd 8 days
Parameter values for 3rd 8 days
Parameter values for remainder
of first month
(DATA(J,ID), J=first Parameter values for first 8
day of second month, days of second month
8th day of second
month)
As many cards are input (blocked by month) as are required to define the parameter for the
entire simulation period IDAY through LDAY. After the last of the seven parameters has been
input, an ID = 100 card MUST be input to signify that there is no more data.
-------
TABLE 11.
PARAMETER IDENTIFICATION CODES FOR METEOROLOGIC INPUT DATA
PARAMETER CODE METEOROLOGIC PARAMETER UNITS
Use the following parameter identification codes and prescribe suitable conversion factors to
enable input data conversion to the specified units.
(ID on card 4)
1 atmospheric pressure MB
2 sky cover DECIMAL FRACTION
° 3 wind speed M SEC"1
4 dry bulb air temperature °C
5 wet bulb air temperature °C
& dew point temperature °C
—2 —1
7 short wave solar radiation KCAL M SEC
-------
TABLE 11. (Continued)
DATA CONVERSION
Conversion of the input data is done in accordance with the following expression:
Xc = A(XR + B) + C
where
X = converted data value, having the specified
units
X = input data value;
K
A = first input conversion factor;
B = second input conversion factor;
C = third input conversion factor.
-------
Ul
NJ
TABLE 12.
LAKE INPUT CARD DATA
CAED CARD
# COLUMN
1 1-10
2 1-5
6-10
3 1-80
4 1-80
5 1-10
11-20
21-30
31-40
41-50
51-60
FORMAT
110
15
15
20A4
20A4
E10.0
E10.0
E10.0
E10.0
E10.0
E10.0
VARIABLE
NAME
INT
IDAY
LDAY
(GHENT (I),
1=1,20)
(GHENT (I) ,
1=21,40)
SDZ
ELMAX
EDMAX
A
BB
GMIN
DEFAULT
UNITS VALUE DESCRIPTION
Interface unit (same as ITAPE
on card #1 of Table 9)
First day of run (January 1 is
day 1)
Last day of run (December 31 is
day 365 (LDAY must be < 365)
Run title
Run title
(M) Vertical element thickness
(M) Maximum allowable surface
elevation referenced to lake
bottom (ELMAX/SDZ < 100)
(M) Short wave extinction depth
(M SEC~Hffi~ ) Evaporation coefficient
(MB ) Evaporation coefficient
(°CM ) Minimum vertical thermal
gradient considered stable
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
VARIABLE
FORMAT NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
1-5
15
NSEG
Ln
6-10
11-15
16-20
21-25
26-30
31-35
36-40
15
15
15
15
15
15
15
NTP
NSD
IPRT
INTP
ITAPE
NOUTS
NXEQ
1 means all outflow is through
lowest outlet
2 means outflow will be adjusted
to meet downstream temperature
ojective (use only if two or
more outlets)
Number of points in the
reservoir's initial temperature
profile (maximum of one point
per layer)
Number of special days for which
output is desired (<_ 50)
Daily frequency of output
Vertical output frequency (every
INTP'th vertical element is out-
put)
Output tape (not equal to INT)
0 means no output tape desired
Number of outlets (minimum of
one, maximum of three)
Number of integration steps per
day
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
6 41-45
7 1-10
11-20
21-30
31-40
41-50
8 1-10
11-20
21-30
9 1-10
11-20
21-30
FORMAT
15
E10.0
E10.0
E10.0
E10.0
E10.0
E10.0
E10.0
E10.0
110
E10.0
E10.0
VARIABLE
NAME UNITS
IVAL
GSWH (M"1)
Al
A2
A3
RLEN (M)
Cl
C2
C3
N
ELOUT(N) (M)
WOT(N) (M)
DEFAULT
VALUE DESCRIPTION
Output after the IVAL'th time
step each day
Critical diffusion stability
Diffusion parameters for
temperature calculations
Length of lake
For depth d in meters „
V(d) = Cl • d + 1/2 C2 • d
+ 1/3 C3 • d 2
A(d) = Cl + C2 • d + C3 • d
where V is volume in cubic
meters and A is area in square
meters
Outlet (turbine intake) numbers
(1, 2 or 3)
Outlet elevation (referenced to
lake bottom)
Dam width at outlet elevation
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
VARIABLE
FORMAT NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
Ui
10
11
12
13
31-40 110
1-80 1615
1-5
1-10
11-20
15
F10.4
F10.4
ISRNOU(N)
1-10 E10.0 TA
11-20 E10.0 TB
(IDOUT(I),
I=1,NSD)
NDAY
CINFLO
(NDAY,1)
(NDAY,2)
(NDAY,2)
(M)
(M)
(MG/L)
(MG/L)
1 means outlet is always at lake
surface (spillway)
NOTE: Repeat card 9 for each
outlet
Elevation of initial temperature
point TB (referenced to lake
bottom)
Initial temperature at elevation
TA
NOTE; Repeat card 10 NTP times
Special days for which output is
desired
NOTE; Repeat card 11 until NSD
days have been input
Day for which inflow concentra-
tions are specified (NDAY > 400
means no more inflow data)
Concentration of DO in inflow on
day NDAY
Concentration of BOD in inflow
on day NDAY
-------
TABLE 12. (Continued)
Ln
CARD CARD
# COLUMN
13 21-30
31-40
41-50
51-60
61-70
71-80
14 1-10
11-20
21-30
31-40
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
GIN FLO
(NDAY, 3)
CINFLO
(NDAY, 4)
CINFLO
(NDAY, 5)
CINFLO
(NDAY,6)
CINFLO
(NDAY, 7)
CINFLO
(NDAY,8)
CINFLO
(NDAY,9)
CINFLO
(NDAY,10)
CINFLO
(NDAY, 11)
CINFLO
(NDAY, 12)
UNITS
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MPN/100)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
Concentration of NH»-N
on day NDAY
Concentration of NO_-N
on day NDAY
Concentration of NO--N
on day NDAY
Concentration of PO.-P
on day NDAY
Concentration of algae
on day NDAY
in inflow
in inflow
in inflow
in inflow
in inflow
Concentration of coliforms in
inflow on day NDAY
Concentration of HMl in
on day NDAY
Concentration of HM2 in
on day NDAY
Concentration of HM3 in
on day NDAY
inflow
inflow
inflow
Concentration of N in inflow on
day NDAY
-------
TABLE 12 (Continued)
Ul
•vj
CARD CARD
# COLUMN FORMAT
14 41-50 F10. 4
51-60 F10.4
61-70 F10.4
71-80 F10.4
Repeat cards 12, 13,
tions MUST be defined
specifically input ar
greater than 400 must
15 1-10 F10.4
11-20 F10.4
21-30 F10.4
31-40 E10.0
VARIABLE
NAME UNITS
CINFLO (MG/L)
(NDAY, 13)
CINFLO (MG/L)
(NDAY, 14)
CINFLO (MG/L)
(NDAY,15)
CINFLO (MG/L)
(NDAY,16)
DEFAULT
VALUE DESCRIPTION
Concentration of CL~ in inflow
on day-NDAY
Concentration of HM1 ions in in-
flow on day NDAY
Concentration of HM2 ions in in-
flow on day NDAY
Concentration of HM3 ions in in-
flow on day NDAY
and 14 until all inflow concentrations have been defined. Inflow concentra-
tor IDAY and LDAY. The 'inflow concentrations for any day which is not
e linearly interpolated from input concentrations . Card 12 with NDAY
be input to signal the end of the
ELEV (FEET)
TEMPAV (°C)
XLAT (DEGREES)
El (M2/SEC)
inflow concentration input.
Lake elevation above sea level
Average lake temperature on
IDAY
Lake latitude
Diffusion coefficient above
thermocline
-------
TABLE 12. (Continued)
Oi
00
CARD CARD
# COLUMN
15 41-50
16 1-5
17 1-6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
FORMAT
E10.0
15
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
VARIABLE
NAME
E2
I
BOOK (I)
BOOKS (I)
COLK(I)
NH3K(I)
N02K(I)
N03K(I)
P04K(I)
UNITS
(M2/SEC)
(HOUR'1)
(HOUR"1)
(HOUR"1)
(HOUR"1)
(HOUR"1)
(HOUR"1)
(HOUR"1)
DEFAULT
VALUE DESCRIPTION
Diffusion cpefficient below
thermocline
Lake element number
(I > 200 means no more element
data)
.008 BOD decay coefficient for
element I (A. 13)
.0009 BOD settling coefficient for
element I (A. 12)
.004 Coliform decay coefficient for
element I (A. 7)
.004 NH3 decay coefficient for
element I (A. 26)
.015 N0£ decay coefficient for
element I (A. 31)
.004 N0~ settling coefficient for
element I (A. 3 7)
.0009 POA settling coefficient for
element I (A.75)
-------
TABLE 12. (Continued)
Ul
vo
CARD CARD
# COLUMN
17 49-54
55-60
61-66
67-72
18 1-10
11-20
21-30
31-40
41-50
51-60
VARIABLE
FORMAT NAME
Blank
F6.0 HM1K(I)
F6.0 HM2K(I)
F6.0 HM3K(I)
F10.4 C(I,1)
F10.4 C(I,2)
F10.4 C(I,3)
F10.4 C(I,4)
F10.4 C(I,5)
F10.4 C(I,6)
UNITS
(HOUR'1)
(HOUR'1)
(HOUR'1)
(MG/L)
(MG/L) '
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
.004 HM1 settling coefficient for
element I (A. 2)
0 HM2 settling co.efficient for
element I (A. 2)
0 HM3 settling coefficient for
element 1 (A. 2)
Initial DO concentration in
element I
Initial BOD concentration in
element I
Initial NH_-N concentration in
element I
Initial NO--N concentration in
element I
Initial NO--N concentration in
element I
Initial PO.-P concentration in
element I
-------
TABLE 12. (Continued)
CARD CARD
// COLUMN
18 61-70
71-80
19 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
VARIABLE
FORMAT NAME
F10.4 C(I,7)
F10.4 C(I,8)
F10.4 C(I,9)
F10.4 C(I,10)
F10.4 C(I,11)
F10.4 C(I,12)
F10.4 C(I,13)
F10.4 C(I,14)
F10.4 C(I,15)
F10.4 C(I,16)
UNITS
(MG/L)
(MPN/100M1)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
(MG/L)
DEFAULT
VALUE DESCRIPTION
Initial algae concentration in
element I
Initial coliform concentration
in element I
Initial HM1 concentration in
element I
Initial HM2 concentration in
element I
Initial HM3 concentration in
element I
Initial N concentration in
element I
Initial CL« concentration in
element I
Initial HM1 ions concentration
in element I
Initial HM2 ions concentration
in element I
Initial HM3 ions concentration
in element I
-------
TABLE 12. (Continued)
CARD CARD
// COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
Cards 16-19 are repeated until all initial conditions have been input. Card 16 with I > 200
signals the end of the initial condition input. Card 17 must be input even if the default values
are satisfactory (i.e., include a blank card 17 if the default values are desired). Cards 16-19
MUST be input for both the bottom and top elements of the lake. The bottom element is 1=1, the
top element is I = ELMAX/SDZ. The initial concentrations for an element which is not specifically
input are linearly interpolated from input concentrations. The card 17 variables assume their
default values for an element which is not input.
20
1-5
15
IFN
6-10
15
ICOL
PHYTOPLANKTON growth function
option
0 = growth limited by NO -N
concentration
1 = growth limited by NH -N
concentration
2 = growth limited by maximum of
NH -N and NO -N
COLIFORM option
0 = don't model COLIFORMS
1 = model COLIFORMS
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
ON
20 11-15
16-20
21-25
26-30
31-35
36-40
41-45
15
15
15
15
15
15
15
ICOMB
IHEAVY
ITOTN
ICHLOR
INH
IN2
IN3
Constituent selection option
(see Table 13 below)
Heavy metal option
0 = model no heavy metals or
ions
N = model N heavy metals and
their associated ions
(N=l,2,3)
TOTAL NITROGEN option
0 = don't model TOTAL NITROGEN
1 = model TOTAL NITROGEN
CHLORIDE option
0 = don't model CHLORIDES
1 = model CHLORIDES
NH, reaction order
1 = 1st order
2 = 2nd order
N0£ reaction order
1 = 1st order
2 = 2nd order
N03 reaction order
1 = 1st order
2 = 2nd order
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
20
46-50 15
IP
u>
21 1-10 blank
11-20 F10.4 THKCOL
21-30 F10.4 ABOD
31-40 F10.4 AHM
41-50 F10.4 CHMOC
51-60 F10.4 THKNH3
61-70 F10.4 VOLITK
71-80 F10.4 THVOLK
(MG/L)
1.07
0.
0.
20.
1.10
.01
PO, reaction order
1 = 1st order
2 = 2nd order
Temperature correction constant
for coliform (COL) reaction
coefficient (A. 8)
Coefficient on BOD in COL
calculation (A. 10)
Coefficient on HEAVY METAL 1
(HM1) in COL calculation (A. 10)
HM1 concentration limit in COL
calculation (A. 10)
Temperature correction constant
for NH.-N decay coefficient
Exponent for NH--N volitization
(A.35)
.17 Temperature correction constant
for NH -N volitization (A.35)
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
22 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
23 1-10
11-20
FORMAT
blank
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
blank
F10.4
VARIABLE
NAME UNITS
BODC
BODN
BODPC
BODOQ (MG 02/MG BOD)
NOREFR
GRMAX (HOUR"1)
THGRMX
CHMOA (MG/L)
DEFAULT
VALUE DESCRIPTION
106. Carbon to phosphorus ratio in
BOD (A. 18)
16. Nitrogen to phosphorus ratio in
BOD (A. 19)
.5 Dry weight fraction of carbon
in BOD (A. 18)
1.5 BOD - oxygen quotient (A. 16)
.5 Non-refractory part of BOD (A. 17)
.1 Maximum fractional growth rate
for phytoplankton at 20° centi-
grade (A. 45)
1.07 Temperature correction constant
GRMAX (A. 45)
20. HM1 limit for phytoplankton
growth (A.46)
-------
TABLE 12. (Continued)
Ul
CARD CARD
# COLUMN
23 21-30
31-40
41-50
51-60
61-70
71-80
24 1-10
11-20
21-30
31-40
41-50
FORMAT
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
blank
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME
HMKA
MP04
' MIN03
M2N03
MNH3
ML
APR
NR
ASR
AND
UNITS
(MG P04-P/L)
(MG N/L)
(MG NO -N/L)
(MG NH -N/L)
(LANGLEYS/MIN)
(HOUR"1 DEG.C"1)
(FT /HOUR)
(HOUR"1)
DEFAULT
VALUE
.01
.03
.028
.045
.045
.03
.6
.0001
.05
.001
DESCRIPTION
HMl coefficient for phyto-
plankton growth calculation
(A.46)
Michaelis-Menton constant (A. 47)
Michaelis-Mentbn constant (A. 47)
Michaelis-Menton constant (A. 48)
Michaelis-Menton constant (A. 49)
Light intensity calculation
factor (A. 50)
Chlorophyll-A to phosphorus
ratio in phytoplankton (A. 57)
Phytoplankton respiration
factor (A. 63)
Phytoplankton sinking rate (A.68]
Fractional death for phyto-
plankton (A.72)
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
24 51-60
61-70
71-80
25 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
FORMAT
F10.4
F10.4
F10.4
blank
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
ATD
BRRBOD (MG/M2-HR)
BRRP04 (MG/M2-HR)
BRRNH3 (MG/M2-HR)
BENOD (MG/M2-HR)
AHM2
AHM3
ATD2
ATD3
PIHM1
DEFAULT
VALUE DESCRIPTION
.001 Phytoplankton toxic death
coefficient- for HM1 (A. 73)
61. BOD benthal release rate (A. 79)
.125 POA~P benthal release rate
(A.78)
.108 Nitrogen benthal release rate
(A.77)
15. Benthal oxygen demand (A. 81)
0. Coefficient on HEAVY METAL 2
(HM2) in COL calculation (A. 10)
0. Coefficient on HEAVY METAL 3
(HM3) in COL calculation (A. 10)
0. Phytoplankton toxic death
coefficient for HM2 (A. 73)
0. Phytoplankton toxic death
coefficient for HM3 (A. 7 3)
0. Fraction of HMl in ion form
(A.3)
-------
TABLE 12. (Continued)
CARD CARD
# COLUMN
26 1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
FORMAT
blank
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
F10.4
VARIABLE
NAME UNITS
PIHM2
PIHM3
CHM02C (MG/L)
CHM03C (MG/L)
CHMOA2 (MG/L)-
CHMOA3 (MG/L)
HMKA2
DEFAULT
VALUE DESCRIPTION
0. Fraction of HM2 in ion form
(A. 3)
0. Fraction of HM3 in ion form
(A.3)
0. HM2 concentration limit in COL
calculation (A.10)
0. . HM3 concentration limit in COL
calculation (A. 10)
0. HM2 limit for phytoplankton
growth (A. 46)
0. HM3 limit for phytoplankton
growth (A.46)
0. HM2 coefficient for phytoplanktoi
growth calculation (A.46)
-------
TABLE 12. (Continued)
CABD CARD
# COLUMN
FORMAT
VARIABLE
NAME
UNITS
DEFAULT
VALUE
DESCRIPTION
er>
oo
27 1-10 blank
11-20 F10.4 HMKA3
21-30 F10.4 THN03K
31-40 F10.4
THP04K
0. HM3 coefficient for phytoplank-
ton growth calculation (A.46)
1.12 Temperature correction constant
for NO--N decay coefficient
(A.38r
1.084 Temperature correction constant
for PO -P settling coefficient
(A.76.I)
Although no values need be specified (in which case the default values apply), cards 21-27 must
be included.
-------
TABLE 13.
DEFINITION OF CONSTITUENT SELECTION OPTION, ICOMB (FOR CARD 20 OF TABLE 12)
ICOMB
DO
EOD
»,-.
N02-N
N03-N
PO ,-P
4
PHYTO-
PLANKTON
1 2 3 4.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 " 21 22 23
XXXXXXXXX XXX XXXXX XXXXX
XXXXXXXXX XX
XXXXXX XXX X X.X
XXX XX X
XXXXXXXXX XXXXX. X XXX
XXX X XX X XXXXXX X
XX X XXX
X indicates that: the constituent will be modeled under the indicated ICOMB option.
-------
SECTION VII
OUTPUT DESCRIPTION
Magnetic Tape Output
If tape output is requested, the format of the tape is as follows:
1. First logical record
(a) first Julian day simulated
(b) last Julian day simulated
(c) standard element thickness
(d) number of outlets
2. Second logical record
The inflow temperature for each day simulated.
3. Third logical record
Outflows for each outlet for each day simulated.
4. Fourth logical record
Outflow temperature for each outlet for each day simulated.
5. Fifth logical record
Concentrations of lake outflow for each day simulated.
Printed Output '
The printed output from LAKSCI consists of a summary of the hydrologic
conditions of the reservoir over the simulation period, which is written
by BAL, a summary of the meteorologic conditions, which is written by
SUBB2, and output from the reservoir simulation portion of LAKSCI. This
latter printout consists of a summary of initial conditions written by
SUBB and NEWIN and a summary of lake conditions written by PENT, CURVE,
and QPRINT when requested. The summary consists of the following
quantities and describes the lake conditions valid at the time of the
summary.
(a) reservoir elevation, m;
(b) thickness of the surface element, m;
(c) total flowrate entering lake, m sec ;
3 -1
(d) total flowrate leaving lake m sec ;
(e) elevation of the thermodine, m;
(f) average downstream temperature, °C;
(g) average retention time under existing conditions, days;
(h) dry bulb air temperature, °C;
(i) reservoir surface temperature, °C;
71
-------
3 -1
(j) total evaporation rate, m sec ;
(k) cumulative evaporation to date, m;
(1) inflow temperature, °C;
(m) the lowest depth of convective mixing, m;
(n) downstream objective temperature °C; (same as inflow temperature)
-2 -1
(o) the net rate of short wave solar radition, kcal m sec ;
-2 -1
(p) the net rate of long wave atmospheric radiation, kcal m sec ;
—2 —1
(q) the net rate of long wave back radiation, kcal m sec ;
-2 -1
(r) net rate,of long wave evaporative heat loss, kcal m sec ;
2 -1
(s) net rate of long wave sensible heat loss, kcal m sec ;
3 -1
(t) flow for each system outlet, m sec ;
(u) temperature for each system outlet, °C;
Under suitable headings, for each element the following information is
also printed:
(a) the element number, j;
(b) the elevation of element j;
(c) the temperature of element j, °C;
(d) the temperature of element j, °F;
O I
(e) the horizontal inflow to element j,'m sec ;
3 -1
(f) the horizontal outflow from element j, m sec ;
(g) the time rate of change of temperature in element j, °C sec ;
(h) the diffusion coefficient at element j, kcal m sec °C ;
(i) the ratio of vertical advection in the time step to the volume of
element j;
(j) the ratio of horizontal advection in the time step to the volume of
element j;
(k) the concentrations in element j of all quality constituents being
modeled
A plot of water temperature versus depth is also output. At the conclu-
sion of the simulation period the daily temperature, flow, and con-
stituent concentrations of the outlet are printed out. An example of
LAKSCI output is probided in Section X.
72
-------
SECTION VIII
DEFINITION OF COMMON VARIABLES
Common variables employed in the Stratified Reservoir Model are des-
cribed in Table 14 under their respective common blocks.
TABLE 14.
DESCRIPTION OF COMMON VARIABLES
FORTRAN
Name
COMMON/ CONBEG/
DO
BOD
NH3
NO 2
N03
P04
ALG
COL
HM1
HM2
HM3
HM
TOTN
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Description
DO concentration for GETCON
BOD concentration for GETCON
NH -N concentration for GETCON
NO -N concentration for GETCON
NO -N concentration for GETCON
PO.-P concentration for GETCON
algae concentration for GETCON
coliform concentration for GETCON
HMl concentration for GETCON
HM2 concentration for GETCON
HM3 concentration for GETCON
HM concentration for GETCON
N concentration for GETCON
73
-------
TABLE 14. (Continued)
FORTRAN
Name
COMMON/CONEND/
DOE
BODE
NH3E
N02E
N03E
P04E
ALGE
COLE
HM1E
HM2E
HM3E
HME
TOTNE
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Final
Description
DO concentration from GETCON
BOD concentration from GETCON
NH--N concentration from GETCON
N02-N concentration from GETCON
NO_-N concentration from GETCON
PO.-P concentration from GETCON
algae concentration from GETCON
coliform concentration from GETCON
HML concentration from GETCON
HM2 concentration from GETCON
HM3 concentration from GETCON
HM concentration from GETCON
N concentration from GETCON
COMMON/CONST/
The variables in common CONST are defined on cards 21-27 of LAKSCI
input (see Table 12)
All concentrations have units of mg/L except coliform concentrations which
have units of MPN/00 ml.
74
-------
TABLE 14. (Continued)
FORTRAN
Name
Description
COMMON/LAK/
KCON
DU
El
E2
NOWDAY
SDZ
DZTOP
ATOP
VTOP
NHOUR
PDL
DN03DS
COMMON/LAK2/
DZTOP2
ATOP2
VTOP 2
ELEV
Maximum number of constituents
Euphotic depth (m)
2
Diffusion coefficient above thermocline (m /sec)
2
Diffusion coefficient below thermocline (m /sec)
Current Julian date
Standard element thickness (m)
Surface element thickness at start of time step
(m)
2
Surface area at start of time step (m )
3
Surface element volume at start of time step (m )
i
Hour of day of time step
Percent of time step during which sun shines
Change in NO -N concentration due to algae (mg/L)
Surface element thickness at end of time step (m)
2
Surface area at end of time step (m )
3
Surface element volume at end of time step (m )
Reservoir elevation above sea level (m)
75
-------
TABLE 14. (Continued)
FORTRAN
Name
Description
COMMON/OPTION/
IFN
IK2
ICOL
ICOMB
INH3
IPO.
4
IALG
IFIRST
Algae (phytoplankton) growth function option
0 = growth limited by NO -N concentration
1 = growth limited by NH«-N concentration
2 = growth limited by maximum of NH«-N and NO -N
(not used)
0 = don't model coliforms; 1 = model coliforms
Constituent selection option (see Table 13)
0
= don't model NH -N; 1 = model NH_-N
0
0
0
0
= don't model NO -N; 1
model N09-N
= don't model NO -N; 1 = model NO -N
= don't model PO.-P; 1 = model PO.-P
= don't model algae; 1 = model algae
Logic flag for GETCON
COMMON/OPT2/
IHEAVY
ITOTN
ICHLOR
Number of heavy metals to be modeled
0 = don't model total nitrogen; 1 = model N
0 = don't model CL ; 1 = model C12
COMMON/OPTS/
IP Order of PO.-N reaction (IP = 1 or 2)
INK
Order of NH -N reaction (INK = 1 or 2)
76
-------
TABLE 14. (Continued)
FORTRAN
Name
Description
IN2
IN3
COMMON/PASS/
TOTL
DAWN
DUSK
COMMON/RCHVAR/
Order of NO -N reaction (IN2 = 1 or 2)
Order of NO--N reaction (IN3 = 1 or 2)
Total Langleys for the day being considered
Sunrise for the day being considered
Sunset for the day being considered
Variables in RCHVAR are defined on card 16 of LAKSCI inputs (see
Table 12).
COMMON/TEMPER/
!
TEMPAV Average water temperature for reservoir (°C)
TEMREA(J) Temperature for element J (°C)
SATREA(J) DO saturation level for element J (mg/L)
BLANK COMMON
ZF(J)
V(J)
FLOW(J,K)
Reservoir surface elevation for day j (feet above
sea level)
Reservoir volume for day j (acre feet)
K = 1 flow into reservoir on day j (cfs)
K = 2 flow out of reservoir on day j (cfs)
K = 3 inflow temperature on day j (°F)
77
-------
TABLE 14. (Continued)
FORTRAN
Name
Description
ERR(J) BAL error on day j
OUT(J,K) Same as flow but different units (cms)
IF(J) BAL iteration counter for day j
ZM(J) Reservoir surface elevation for day j (meters
above bottom)
DATA Meteorologic data
ALPHA Heading for meteorologic data
INDEX Meteorologic parameters
CINFLO Inflow concentrations
CLAK Lake element concentrations
COTFLO Outflow concentrations
QVI Vertical inflows for elements (cms)
QVO Vertical outflows for elements (cms)
DCON Concentration changes
Variables in common blocks ABLK, BBLK, CBLK, DBLK, and NDV are
defined on pages 62-66 of Reference [3].
78
-------
SECTION IX
SAMPLE INPUT DECK
A listing of a sample input deck for LAKSCI is provided in Table 15. The
deck is for a simulation of Long Lake from June 1 (day 152) to November
30 (day 334), 1971. The missing inflow temperatures are filled in by
the program. Daily values of barometric pressure, cloud cover, wind
speed, dry bulb temperature, dew point temperature, and solar radiation
are input. Inflow concentrations are specified on days 152, 164, 192,
206, 213, 227, 249, 262 and 334. Output is requested every 20 days and
on 28 special days (when observed data was available). Two integration
steps per day are taken. The initial concentrations in layer 32, i.e.,
the top layer, are input. Nominal values for reaction rates are used
except for the benthal oxygen demand rate, which is set to 75 mg/m^-hr.
The constituent selection option is set equal to 2 (see Table 13). Total
nitrogen is modeled as a conservative. There is one turbine outlet at an
elevation of 21 meters.
79
-------
TABLE 15. SAMPLE INPUT
103.
25100
25700
21200
moo
17800
15200
15100
11900
11800
1600
5000
S200
5700
5600
2900
2500
2300
2«00
1900
2000
teoo
1100
1800
2000
2500
2300
2100
2200
2300
2300
2100
2000
2100
2100
2700
2400
2100
2100
2000
25.00
2600
2600
2900
. 2BOO
290(>
3000
18
1032
25000
20600
21000
20000
18600
16300
13900
I2SOO
5360
5700
6220
5230
Soio
0310
3800
2050
2680
3310
2700
26BO
1990
1500
1920
2680
2030
32UO
3870
£720
3500
2970
2950
2850
2550
2730
2790
2900
2700
3260
2650
3130
3330
3600
3060
3310
3070
3860
12
13
15
20
10
8
152
. 620,
.0 2U800
23000
20700
,7 18800
17200
1U600
12800
11600
0800
UBOO
.8 0800
5000
3700
3800
2900
2500
2300
1900
2100
1600
1000
,6 1500
1800
1800
2300
2300
2500
tCu C
2300
2300
2000
2000
2300
2000
2000
.0 2000
2500
.6 2000
2600
2600
2700
2600
2900
2900
3000
3600
350
25100
21000
22000
l')600
1BUOO
15000
13700
l?100
il?00
5700
6090
5770
11880
3920
3600
2730
2690
3110
2700
2680
830
2330
2130
2670
2750
3810
3370
C3CC
2720
3000
2920
2630
3060
2670
2860
2810
2/50
32flO
2900
3300
3260
3190
3?80
3380
3070
0610
•2752.95 109,969
1.
17.
in.
21.
16.
LONG LUKE METEOROLOSIC OAT4 JUNE
1971
JUNE 27
27
27
27
JULY 27
27
2T
2T
1
.03
.30
.00
.38
.50
.51
.60
.52
25.
27.
27.
27.
27.
27.
27.
2T.
27.
152
06
0 0
05 27
30 27
39 27
00 2T
55 27
59 27
61 27
50 27
330
•
.0
.50
.53
.55
.01
.61
.60
.53
.50
lie
0
27
27
27
27
27
27
27
27
20000
22300
20300
1B700
1660ft
1 10100
12500
9000
OPOO
8 0800
0000
0600
3800
3000
2800
0 2500
2300
2200
2000
1000
1200
1700
1800
2200
8 2300
2300
2000
2UCH
2300
2300
2000
1800
2000
1800
2000
2000
2500
2300
2600
2500
2500
2600
3000
2900
3200
0000
25000
22500
20800
19200
1BOOO
10SOO
13800
10000
5USO
5620
5200
6160
0000
osno
3200'
2180
2700
2620
2700
2810
1100
2620
2600
2850
3170
2000
3360
! IbC
2970
3320
3020
2960
2820
2/So
2760
29SO
2990
3000
2960
2710
3300
2810
3610
3510
"190
5090
-.7252
20,2
!1.
-------
AUG
SEPT
OCT
NOV
JUNE
JULY
AUO
SEPT
OCT
NOV
JUNE
JULY
AUG
SEPT
OCT
27,46
27,59
27.58
27.54
27, ?9
27,51
27.95
27,22
27.56
27,72
27.33
27.50
27.39
27.35
27,60
27,58
2
9
a
e
T
6
9
0
t
2
0
3
0
10
5.
1
e
3
0
2
to
2
9
8
10
3
8,9
7.9
6.0
12.8
10,2
7,5
4,8
5.9
5.4
7.9
6,1
0. 8
10.2
6.8
6.8
10.6
6.S
4.6
27.41
27.58
27.54
27.50
27.32
27. K3
27.80
27.30
27.70
27.67
27.34
27.19
27.78
27.54
27.81
27.39
.1
10
10
10
6
1
9
0
0
5
0
0
a
10
1
8
9
2
a
9
' a
9
10
10
10
.447
6.2
6.5
5.2
6.5
T.I
12.2
7.8
6.0
6.8
3.7
8,9
5.8
13.5
9.9
a. e
5.3
7.2
4.0
27.35
27.16
27. HO
27.0")
27,58
27.59
'27.5(1
27.39
27.68
27.61
27.26
27.09
27.57
27.13
27.72
27.11
0.0
10
7
3
10
1
5
Z
2
4
0
0
9
9
1
5
10
10
5
10
6
10
10
8
10
0.0
6.0
9.2
8.8
8,8
6.2
9.5
6.3
6.5
9.5
8.6
a. 6
6,8
7.2
13.5
5.6
10.9
6.9
9.2
27. «5
27.37
27.37
27.5'
-------
5,8
15,0
NOV |8.4
9,6
6.2
JO, 6
4
JUNE 53
57
58
57
JULY 65
64
76
71
AUG «4
sa
66
70
SEPT HI
66
51
55
OCT «7
57
34
«1
NOV 37
4)
31
JS
6
JUNE 45
39
36
40
JULY 37
51
«0
45
AUG 51
33
33
»l
SEPT 44
45
26
37
OCT 32
43
17
30
NOV 27
32
27
30
7
JUNE 476
706
669
8,8
16,0
11.1
6.9
7.1
0.1
.5555
49
54
60
56
60
56
78
74
83
81
71
74
53
69
52
51
49
56
43
37
36
43
31
35
.5555
43
46
48
32
32
43
46
46
44
37
36
42
48
46
29
• 43
35
42
25
25
26
41
27
31
.000115
115
130
293
17.3
11.1
15.2
6,2
12.1
8.6
•32,
52
56
64
56
60
57
80
BO
79
83
76
74
58
62
55
50
53
54
44
28
43
42
-0
36
• 32.
45
45
45
34
31
40
48
47
41
33
40
41
49
39
29
39
38
36
39
12
27
3A
35
32
0.0
219
589
693
12.8
6.0
19,4
6.0
5.5
7.1
0.0
56
63
65
51
66
60
82
78
77
80
75
76
61
61
52
50
62
51
42
24
34
41
«0
35
0.0
46
47
50
39
35
41
53
50
45
29
40
47
45
37
33
36
44
35
32
3
22
38
38
31
0.0
286
547
412
6.9
7,2
8,2
6,3
6.9
5,2
58
57
7?
58
56
65
82
75
80
79
70
74
69
56
50
43
63
46
41
23
27
39
40
33
42
46
53
38
38
40
50
43
50
31
41
49
47
33
32
36
49
31
29
9
10
35
34
33
684
463
677
8.1
5.0 ;
7.1
5.6
9,4
3,3
61
54
75
64
53
67
80
78
76
70
58
74
56
54
54
43
61
38
48
29
27
35
3S
28
'
44
38
53
41
34
39
46
48
55
36
42
54
48
29
34
32
46
26
37
18
14
30
23
27
694
695
660
5.9
8.5
5,0
3.7
6.3
58
56
63
55
72
78
81
80
70
58
60
54
51
62
54
40
44
27
30
37
11
45
36
44
33
44
41
51
52
33
42
"6
41
26
34
40
21
3A
?1
20
32
25
359
737
538
9,4
5,1
7,9
6,9
53
56
60
67
75
74
83
70
67
64
54
57
57
40
41
33
37
37
36
34
39
41
43
42
47
33
39
41
26
36
42
14
33
28
31
33
585
744
587
82
-------
627 • 734 447 204 721 644
JUIY 568 748 737 627 2«7 525
500 ' 463 663 66,5 750 726 •
T12 706 678 . 570 653 674
617 678 652 619 676 616
AUG 626 642 , 633 640 584 302
639 623 629 641 617 617
614 599 591 059 570 124
575 565 475 501 523 480
SEPT 137 127 333 535 526 233
«28 485 501 497 489 503
475 438 399 057 454 415
294 211 178 244 278 360
OCT 402 388 256 361 362 266
341 318 248 260 187 173
' 319 256 74 241 283 156
105 239 194 290 228 99
NOV 255 213 .96 15-T 248 178
146 67 116 24 48 ' 116
145 35 128 72 95 167
45 37 56 52 18 36
999
18 INPUT UNIT CONTAINING BAL AND MIFP OUTPUT
152 334
ORM SIMULATION OF LONC LAKE--ONE TURBINE INTAKE-'JUNE THRU MOV
SYSTEMS CONTROL INC
1.0
1 1
9.0F.-7
.195361E6
1
32.
152 164
258 262
152
11.7
,27
164
11.5
.16
192
9.3
.17
206
7.4
.14
213
T.7
,11
227
7.4
,11
289
8.8
,13
262
10,0
.11
334
10.0
32.
28 20
2.SE-1
.611446E6
21.
12.
173 189
264 265
.2
.274
.9
1.S5
1.74
3.
3.
1.6
1,16
15.
1 0
1.4E-5
O.OE6
552.
192 202
278 292
.01
.00
.02
.02
.02
.03
.02
.01
,01
0,
1 2
•7,E«1
206 208
300 307
,00
,02
.00
.02
.02
.06
.01
.06
.03
.07
.01
,06
.02
.13
,00
.15
.00
1.5E-9
2
3.65E4
213 222
313 320
.72
.66
1.2
1.3
1.?
1,S
2,1
2,0
2,0
•7.E-2
1
227 230 235
326 333
,02
.01
.03
.04
,0«
.02
.02
.02
.02
715 535
696 695
693 685
645
623 610
6?9 611
604 586
333
5?8 521
U9S 4R9
433 336
321 346
287 332
56 177
122
70 147
39 119
45 62
1971
236 244 249
1100.
4000.
3000.
2500,
600,
5500,
3000,
2000.
2000.
83
-------
.It
500
|S
I
12.
.IS
J2
11.7
200
0
.01
1 t
.00
-.02
.26
1 1 2
.006
1100.
75,
84
-------
SECTION X
SAMPLE OUTPUT
A listing of a sample LAKSCI output is provided in Table 16. The output
is the result of the input deck listed in Table 15 except that output is
requested on only 4 days. The output is self explanatory for the most
part. The first five pages are output by the water balance part of
LAKSCI and show the history of lake surface elevation, lake volume and
depth, lake inflow and outflow, and lake inflow temperature for the
simulation period. The next section lists the meteorologic parameters
for the 183 day simulation period. Summaries of the lake volume and
area profiles, reaction rates for each lake layer, initial concentra-
tions for each lake layer, and inflow concentrations follow. A summary
of the constituents being modeled is output and lake conditions on days
152, 200, 240 and 333 are listed. Histories of the calculated outflow
temperatures and concentrations are also output.
85
-------
TABLE 16. SAMPLE OUTPUT
INITIAL SURFACE ELEVATION. REFERENCED TO LAKE BOTTOM
ELEVATION OF LAKE BOTTOM. KtFeBENCED TO SfcA Lf-.vtL
TOTAL INFLOW FOR SIMULATION PERIOD
TOTAL.-DUTr LOW FOR SlHUL*TION PtKlOO
OIFFtKtNCE
DIFFERENCE
INFLO* fACTOR
FLO*
i.oooo
6ZO.OOOO(CFS)
tOI.(FT)
IIJZ.tFT)
03110550000. tfT**J)
"E218B5.CACRE FEET)
•620.CCFS)
00
O\
VOLUME • Cl*0 * CC2/2>*0»»2 t (C3/3)*D**3
AREA a Cl * C2«0 t C3«0«*2
WITH VOLUME IN ACKfc FttT AND 0 IN'fEET ABOVE LAKt BOTTOM
C2 « .14996900*03
C3 « p.725aoOOO.OO
-------
oo
' DAY
152
153
154
155
156
157
158
159
1M-,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
163
184
185
186
187
IBS
ie9
190
191
192
193
l°a
195
196
197
19B
199
200
201
202
203
204
205
206
207
20B
209
ELEV(FT)
1535.13
1535.25
1535.26
1535.31
1535.20
1535.05
153S.21
15 35. Zf
isy..3''
1515.12
1535.17
1535.17
1535.06
153". 99
1535,01
1534. 8b
1531^70
1534.47
1534.16
1554, 17
l!i 3 3. 98
1531.06
1534, IS
1533.88
1533.85
1533.74
1533.47
1533.414
1533.44
1533.49
1533.18
1533.08
1553.11
1533.31
1533.30
1533.20
1533.09
1532. 9B
1532.90
1533.14
1533.06
1532.79
. 1552.72
1532. 7u
1552.97
1532.91
1S32.54
1532.58
1552.51
1552.09
1S52.25
1532.40
1552. 4«
1532.64
1S32.51
1S52. 59
1S52.28
1052.23
V(4CFT3
2.484* OS
2.49l»05
2.49l»05
2.tl9u«o5
2.486*05
2.480*05
2.48Vto5
«•.'.!•"< .|S
2. -i '»o».. 5
2.'.ag»o5
2.4tt>»o5
2.4«7»05
2.48|»o5
2.47<>»U5
2.4H0*05
2.471*05
2.463+05
2.u52»05
2.43btoS
2.4ih*OS
2."2/»05
2.45it05
2-.436+05
2.422+05
2.421+05
2.415+05
2.40?t05
2.400+05
2.400+05
2.403+05
2. i?/»05
2. 5R2+05
2.38.(tn5
2.39utg5
2.395+05
2.38S+05
2.3»*+05
2.37/+Q5
2.375+05
2.3*5*05
2.3»l»o5
2.560*05
2.364+05
2. Vjb + 05
2. (7/toS
2. t7u«o5
2.3S'., + 05
2.55/+05
2.34u*o5
2.532+05
2.5"1»05
2.34B+05
2.350*05
2.360+05
2.35U+05
2.34fc»oS
2..\4,!+i;S
2.540+OS
tRR
•1.9S3-OS
3.9ti6-OS
3.906-03
-3.906.03
-0.000
3.906-03
-9,766-03
1 .f')3-c> J
-3.SL6-05
-9. /66-03
9.766-03
1,953-03
-1.9b3-03
5.0-i9-03
•"•l,9'ji-03
-3.906-03
-7,813-03
S,8!,9-03
-0,000
-3.906-03
-1 .367-02
5.f)'j9-03
9.766.05
.-3.906-03
7.813-03
3.906-03
-1.9;, 3- 03
.5.859-03
-1.953-03
1.9>5i-AJ
-1.1/2-02
-1.172-02
3.9(16-03
-1.953-03
1.9b3-03
-1.172-02
-0.000
-3.906-03
9.7t,6-03
-3.906-03
-l.9bJ.03
-1.1/2-02
-0.000
1.953-03
1.9-33-03
-5,H'39-03
-9,766-03
3.906-03
-1.172-02
.0.000
1.9S3-03
3.906-03
-9.766-03
-1.9bS-03
-3.906-03
3.906-.03
3.906-03
.0.000
-I TEH
2
Z
2
Z
2
2
2
2
2
2 '
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
:N(CFS>
£5720.0
25X20. 0
25020,0 '
24720.0
24320.0
23620.0
22920.0
22320.0
2182U..O
21520.0
20920.0
20120.0
19720.0
1-9U20.0
i952o.o
19120.0
18420.0
17820.0
17220.0
.16620.0
15020.0
15220.0
11720. C
11120.0
. 13720.0
13420.0
13120.0
12920.0
12520.0
12220,0
9620.0
6020.0
5420.0
5420. "o
5120.0
5420.0
5120.0
5420.0
5420.0
5020.0
6020.0
5420.0
5020.0
5220.0
5820.0
5o20.0
5220.0
4720.0
4320.0
4320.0
4420.0
4420.0
4420.0
4420.0
4020.0
36*0.0
3520.0
3520.0
OUT(CFS)
25400.0
25100.0
25000,0
24600,0
24600.0
24000,0
22500,0
22300,0
21400,0
22000,0
20800.0
20100.0
2(iOOO,0
19600,0
19200,0
14600,0
IsSuO.O
18400,0
18000.0
16600,0
163UO.O
15000,0
14500.0
14800,0
13800,0
13/00,0
13800.0
130UO.O
12500.0
12100.0
10400.0
62/0,0
5360.0
4900.0 .
5450.0
5680.0
5700.0
5700.0
5620.0
5*10.0
6220,0
609Q.O
5200.0
5180.0
5230.0
5770.0
6160,0
4610.0
5010.0
4600,0
uOOO.O
11060,0
4310.0
3920.0
4340.0
3930.0
38uO,0
3*40.0
TEHPtf )
S3. 60
53.86
54.11
54, J7
54,62
54.88
55.13
.55.39
55.64
55.90
56,15
56.41
56.66
57.34
5H.02
58.70
59.38
60.06
60.74
61 .42
6B.10
62.78
62.52
62.26
62.00
61.75
61.4V
61,23
60,9.?
60.71
60.45
60.19
59.93
59.60
59.42
59.16
58.90
58.64
59.24
59. 8«
60.44
61 .01
6 1 . •> I
6<>.14
62.70
63.27
63.83
64,40
64. 97
6S.53
66.10
66.66
67.23
67.79
68, 46
6B.S7
68. 7 / .
68,90
IN(CMS)
728,3
719.8
708.5
700.0
688.7
668.6
649.0
632.0
617.9
603.7
592.4
569.7
558. U
549.9
547.1
541.4
521.6
504.6
487.6
470.6
4 u 8 . 0
431.0
416.8
399.8
388.5
380.0
3/1.5
365.9
354.5
346.0
2/2.4
170.5
153,5
153.5
153.5
153.5
153,5
153.5
153.5
164.. 8
170,5
153.5
142.2
147.8
164.8
159.1
147,8
133.7
122.3
122.3
125.2
125.2
125.2
125.2
113.8
102.5
99.7
99,7
OUT(CHS)
719. J
710,8
707,9
696.6
696.6
679.6
637,1
631.5
. 606.0
623.0
se^.o
569.2
566.3
555.0
545.7
555.0
532.4
521.0
509.7 .
470. 1
461,6
424.8
410.6
419,1
390.8
387.9
390.8
360.1
354.0
342.6
29q,5
177.5
151.8
130,8
154ii
160,6
161.4
161 .4
159.1
147.5
176.1
172,5
1«7.2
146.7
146.1
163,4
174.4
130.5
141,9
130.2
113.3
115,0
122,0
111,0
122.9
111.3
1 0 7 . 6
103,1
TtMP(C)
12.00
12.14
12.28
12.42
12.57
12.71
12.85
12.99
13.13
13.27
13.42
13.56
13.70
14.08
14.46
14.83
15.21
15.59
15.97
16.34
16.72
17.10
16.96
16,81
16.67
16.53
16.30
16,24
16.09
15. 9b
15.8]
15.66
: 15.52
15.30
15.23
15.09
14, 9 II
14.80
15,13
15.47
15.80
16.11
16.43
16.74
17.06
17.37
17.69
IB. 00
18.31
18.63
18.94
19.26
19,57
19.89
20.20
20. U
20.4.}
20,54
DEPTH(M)
31.41
31.45
31.47
31.46
31.47
31 .43
31.43
31.46
31 .49
31.47
31.44
31,45
31.43
31.40
31,40
31.38
31.33
31.27
31.19
31 . 14
31,11
31,10
31.12
31.09
31.05
31.03
30.97 -
30.92
30.92
30.93
30.89
30. «3
30.81
30.65
30,88
30, B6
30.83
30.79
30.77
30,79
30.82
30.76
30.71
30.70
30.74
30.77
30,70
30.65
30.62
30.54
30.53
30.56
30,61
30.64
30.66
30.62
30.58
30.56
-------
00
oo
219
211
212
213
214
215
216
217
218
•219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
211
212
213
214
215
216
217
218
219
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
206
i!»7
^hft
>»»
1532,30
1532.25
1532.52
1532.67
1533.01
IS33.13
1533.22
1533.31
1533.10
1533.61
1553.50
1533.26
1533.34
1533.30
1533.2.3
1533.24
1533.21
1533.72
1533.69
1533.51
1533.20
1S35.22
1553.39
1533.87
1534.11
1534.0*
1534.25
1554.17
1554,05
1534.05
1531.25
1531. .57
I'i31.28
1551.08
1551,06
1533.96
1533.95
1531.09
1531.11
1531.51
IS34.11
1534,50
1554.38
1534.02
1554.37
1534.«1
1554.4/
1534.37
1534.23
1531.10
1531.11
1534.64
1555.27
1535.07
1531. flu
1534. 9j
I51u.«»o
IS^U.IH
.1 S S <• . * h
V*> V • * •* \
2.303+05
2.341+05
2.354+05
2.562+05
2. -38 0 + 05-
2.381+05
2,389+05
2,391+05
2,598+05
2.109+05
2.403+05
2.391+05
2.395+05
2. 395+05
2.390+05
2.390+05
2. 388+05
2.111+05
2,113+05
2.104+05
2.368+05
2.389+oS
2.598+05
2,421+05
2.435+05
2.431+05
2.1'U + 05
2.4 (6+05
2, 1(0 + 05
2.431+05
2.441+05
2.446+05
2.442+05
2.432*05
2.131+05
2.426+05
2.426*05
2.433+05
2. 450+05
2.154+05
2.4'|9+ i)5
2.453+05
2.447+05
2. 429+05
2. 447 + 05
2.468+ 1)5
2. 452+ OS
2.447+05
2,440+05
2.418+05
2.450+05
2.460+05
2.491+05
2.482+05
2.470+05
2.471+05
2.473+05
2.4;<^«05
2.<71«i,S
/ . . » n • •} S
.0,000
.1.955-03
.0.000
.5.859-03
-.9,766.03
.1.953-03
1,367-02
.0.000
3.906-03
3.906-05
.5.MS9-01
-5.859-05
3.906-04
1.953-03
-S.8S9.03
1 .953-03
5.859-04
1.954-03
.1.953-03
.0.000
7.813-03
.3.906-03
.0.000
.1.31,7.02
7.815-03
.7,8_i3-03
.9,/t,6-03
-1.953-05
.7.813-04
-1.955-03
-9.766-03
7.813-03
-7.813-03
-1. 567-02
-1.9S3-03
1.953-03
1.9S3-03
•0.000
7.813-03
.1.9',3-OS
-1. 943-05
.0.000
5.859-03
.9.766-03
1 ,3h/-02
-1.1 72-02
-3.906-05
-1.1/2-02
.7.813-05
.0.000
-1.953-03
>1.3b7-02
-7,815-03
9.766-03
-1.172-02
1.9S3-03
-I. 954.. 01
-S.1'i9.03
• \.-i-i S-J15
-*> . 1 i.*i." \
Z
2
2
?.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
f
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
f
2
2
2
2
2
2
2
2
2
2
2
2
f
f
3120.0
3120.0
3120.0
3120.0
3120 0
• 2520.0
2920.0
2920.0
2920,0
3020.0
3020.0
2520.0
2820.0 '
• 2320.0
2520.0
2/20.0
2020.0
. £720.0
2620-.0
2220.0
2020.0
2i?0.0
2120.0
2020.0
1820.0
1820.0
2020.0
2120.0
?S20.0
2520.0
2120.0
2120.0
2120.0
25^0.0
2i>?0.0
2VO. 0
2»;:o.o -
?920.0
2920.0
2920.0
2920.0
2920.0
2920.0
29^0.0
2920.0
29,-Q.O
4020.0
3120.0
5020.0
2920.0
2820.0
2820.0
3U20.0
2U20.0
2920.0
2920.0
29^0.0
2"->U.O
."VO.O
^"'n-fl
J210.0
3250.0
2«50.0
2730,0
. 2 1-B-0-. 0
2310.0
2680,0
2690.0
2700.0
2190,0
3310.0
3110,0
2620.0
2120.0
2700.0
2700.0
2700.0
1130.0
2680,0
2680,0
2810.0
2360.0
1990.0
830,0
1110,0
2010.0
1510,0
2330.0
2620.0
2310.0
1920.0
2150.0
2610.0
3010.0
2680.0
2670.0
2850.0
2560.0
2030.0
2/50.0
3170.0
2690.0
3210.0
3810.0
2010,0
1830.0
38/0.0
3370,0
3360,0
2190,0
2720,0
2320.0
1150.0
5310.0
3500.0
2720.0
2970.0
29/0.0
29/0.0
3010.0
69.18 •
69.39
69.59
69.80
69*61
69,11
69.22
69.03
68.81
68.61
68,15
68.26
68.06
67.87
67.68
67.19
67.29
67,10
67.32
. 67,51
67.76
67. 9B
68.20
68.12
68.61
68,66
69.08
68,55
68.04
67.50
66.98
66.45
65.92 '
65,10
61.67
61.31
65.82
63.29
62.77
62.24
61.91
61.58
61'. 21
60.91
60,58
60.25
59.91
59.58
59.25
58,92
58,58
58.25
57.92
57.89
57.85
57.82
5/.79
57. /5
S/./2
57.66
96.8
88.3
88.3
88.3
68 , 3
71,1
82.7
62.7
82.7
85.5
85,5
71.1
79.9
65.7
71.1
77.0
71.2
77.0
71.2
62.9
57.2
68.5
68.5
57.2
51.5
51.5
57.2
60.0
65.7
65.7
66.5
68.5
68.5
71.1
70.2
66.5
/9.9
82.7
62.7
82.7
82.7
82.7
82.7
82.7
82.7
82.7
Bb.S
88.3
85,5
82.7
79.9
79.9
85.5
79,9
82.7
82.7
82.7
82.7
82.7
82.7
91. T
92.0
69.1
77.3
61.7
65.1
75.9
76.2
76,5
70.5
93.7
88.1
71.2
6B.S
76.5
76.5
76.5
10.5
75,9
75.9
79.6
66.8
56.1
23.5
32.3
• 56.9
13.6
66.0
71.2
65.1
51.1
60.3
71.8
65.2
75.9
75.6
80.7
72.5
57.5
7/.9
89.8
76.2
91.7
107.9
57.8
51.6
109.6
95.1
95.1
70.5
7/.0
65.7
11.1
95.7
99.1
77.0
81.]
61.1
61.1
80. 1
20,66
20.77
20.89
21.00
20,89
20,79
20.68
20.57
2U.16
20.46
20.25
20.11
20.01
19.93
19.62
(9.71
19.61
- 19.50
19.62
19.71
19.87
19.99
-20.11
20.23
20.36
20.18
20.60
20.31
20.02
19,72
19, UJ
19.11
13. ?5
18.55
18.26
17.97
17.68
17.38
17.09
16.80
16.62
16.13
16.25
16.06
15. PS
15.69
1'>.51
15.32
15. 1U
14.95
14.77
11.56
14.40
11.58
14.36
14.31
11.33
14. <1
14.29
14.27
30.56
30.56
30.60
30.66
30.74
30.81
30.84
30.87
30.89
50.94
30.95
30.90
30.38
30.68-
30.87
30.86
30,65
30.95
31.00
30.97
30.89
30.85
30.68
30.98
31.09
31.12
31 .14
.31.15
31.12
31.10
31.14
31.lb
31.19
31.14
31.11
31.09
31 .08
31.10
31.17
31.24
31.23
31,23
31.22
31.15
31.15
31.27
31.23
31.22
31.16
31.19
31.22
31.26
31.38
31.45
51.38
31.36
31.37
31.36
31.36
31. 3J
-------
oo
vo
270
271
272
273
274
275
276
277
278
279
280
281
282
2h3
264
285
286
387
268
2R9
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
3C6
307
3C8
309
310
Ml
312
313
Sl<"
315
316
317
318
319
320
321
322
325
324
325
32*
327
38
329
1534.65
1S31.70
1530.73
1531.77
1530.77
1531.83
1530.90
1530. 97
1531.76
1531.62
1550.80
1530.75
1531.83
1531.88
1535.00
1535.06
1530.93
155-4.65
1531.87
1530.93
1535.03
1554. 9i|
1530.97
1535.05
1535.08
1531.95
1535.08
1535.23
1535.28
1535.10
1535.00
1530. 9a
1530.89
1535.02
1535.17
1535.28
1535.58
1535.50
1535.50
1535,16
1535. t>3
1535.59
1535.55
1545.58
' 1535.50
1535.58
1535, 41
1535.02
1535.58
1535.51
1535.53
1535.62.
1535.65
1535.55
1535.59
1535.65
1535,65
1535.61
1535.63
1535.69
2,161+OS
2.063*05
2.160+05
2.166*05
2. 066+05
2.070+05
2.173+05
2.47/+OS
2.1hh+05
2.059+05
2.16H+05
2.165+05
2.169+05
2.072+05
2.478+05
2..0S1 + 05
2.075+05
2.161+05
2.171+05
2.175+05
2. CHO+C5
2. «/'j+ 05
2.u76tOS
2.001+05
2.082+05
2.176+05
2. 082+05
2,089+05
2.092+05
2.UK5+05
2.180+05
2.175+05
2.173+05
2,179*1)5
2,087+05
2.192+05
2.097+05
2,503+05
2.503*05
2,501+05
2.509+05
2,508*05
2.506+05
2,507+05
2. 503*35
2.507*05'
2.099*05
2.099+05
2.50/+05
2.501*05
R.50o«05
2,509+05
2.509+05
2.505*05
2.500+05
2.510+05
.2.511*05
2.508*05
2,509*05
2.512+05
1.367-02
•0.000
5.859-OS
'O.ooo
-0.000
-1.953-03
7.813-03
-3.906-03
.3.906-03
•1,953-03
1.955-01
7.813-01
•1,951-03
1.953-03
-3.906-03
1.906-03
1.953-01
5.8',9-OS
1.953-03
-3.906-01
-1,367-02
1.9')3-0i
• 9,7r>&-01
1.953-01
-3.906-03
1.953-01
-3.9u6.03
-0.000
1.9',3-OS
1.953-03
-1.953-03
-0.000
-o.ooo
-5.059-03
-1.95S-03
1.9-..3-03
3,906-03
•9. 766-03
3.906-03
-0.000
3.906-03
•3,906-03
9.766-03
-1.953-03
1.953-03
1.9'il-OJ
3.906-03
3.906-03
-0,000
7.813-03
1.9',3-03
-1 . 953-03
3.906-03
-1,953-0}
-3,906-01
1,953-03
-o.ooo
-1,953-03
1,953-03
1,953-03
2
2
2
2 •
1
2
2
2
2
2
2
2 .
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Z
1
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
1
2
2
2
.2920.0
3020.0
3020.0
.3020.0
3020.0
3020,0
3020.0
3020.0
2«20.0
3020.0
3020.0
2920.0
3020.0
3U20.0
3020.0
3020.0
2020.0
3120.0
3320.0
3020.0
3020.0
3020.0
3020.0
3020.0
3020.0
302-0.0
3020.0
3120.0
3120.0
3020.0
3020.0
3020.0
2920.0
3020.0
3020.0-
3220.0
3220.0
3320.0
3120.0
3220.0
3120.0
3220.0
3220.0
3320.0
3120.0
3220.0
3220.0
3220.0
3220.0
3320.0
3520.0
3520.0
3620.0
3520.0
5020.0
3520,0
3520.0
3520.0
3520,0
3620.0
3320.0
2910.0
2950.0
2920.0
5020,0
2860.0
2850.0
2830,0 .
2960.0
53HO.O
2550.0
3060,0
2820.0
28/0.0
2MO.O
2»70.0
2'iO.O
3810.0
2/90.0
2860.0
2700.0
52oO.O
2900.0
2810.0
2950.0
3300.0
2700.0
2/50.0
2990,0
33/0,0
3260.0
3200.0
3000.0
2690.0
2650.0
;>900.0
2960.0
3030.0
3130.0
5300,0
2710,0
3300,0
3330,0
3260.0
3300.0
• 3000,0
3600,0
3190.0
2810.0
4500.0
30KO.O
32BO.O
5610.0
3720.0
3310.0
3380.0
3blO.O
5640.0
3070.0
3170.0
b7.6i
57.62
57.58
57. Sb
57.52
57. OB
5'/.OS
57.01
57.38
56,85
56,53
55.80
55.27
50.70
50.22
53.69
5 t.lo
52.60
52.11
51. S«
51 .05
50.'>5
5 0 . 0 U
09,69
«9,5/
09,06
0».7<4
OH.03
08,11
07.80
07.00
07.20
06.91
06.63
06.45
06. O/
05.78
05,50
05, OB
05. Ob
o5.oo
U5.02
05.00
05, 3b
05.56
05.30
«5,.(2
15,10
U5.2B
u5.Pt>
05.20
05.22
U5.20
05. IB
45,16
45,10
45,12
4'>,1U
tl'i.On
45, Ob
92.7
85.5
85.5
85.5
as, 5
85,5
85.5
85.5
68. 5
85.5
85.5
82.7
85.5
85.5
85.5
85.5
68.5
B8.3
90.0
85.5
85.5
85,5
or).5
HS.5
85.5
85,5
85.5
88.3
BH.l
85.5
85.5
85.5
82.7
US. 5
US. 5
91.2
91.2
90.0
88.3
91.2
ee.3
91.2
91.2
90.0
88.3
91.2
91.2
91.2
91.2
90.0
99.7
99,7
102.5
99,7
96.8
99. r
99.7
99,7
99,7
102,5
91.0
62.4
83.5
82.7
85,5
81,0
80.7
60,1
65,8
95.7
72.2
86,7
79,9
81.3
77.3
81.3
7/.»
107. 9
79.0
81.0
7H.2
92.3
85.3
79.6
83.5
91.6
76.5
77.9
60.7
95.1
92.3
92.9
86,1
76.2
75.0
83.3
83.8
85.8
68.6
93.4
76,7
93.4
90.3
92.1
93.4
86.1
103,1
90.3
79.6
99.1
98.5
92. 9
102.2
105.3
91.7
95.7
99.4
102.8
98,3
98.3
14.25
10.23
14.21
14.19
10.18
14.16
14.14
14.12
14.10
13.81
13.51
13.22
12.93
12.64
12.34
12.05
11.76
11.46
11.17
10.66
- 10.59
10.29
10.00
9.dS
9,65
9.48
9.30
9.13
8.95
6.78
8, BO
8,00
8,29
6.13
-. 7.97
7.61
7.66
7.50
7,1V
7,08
7. 1/
7.06
7,44
7,03
7.02
7.41
7.40
7,39
7.38
7.37
7.56
7.34
7.33
7.32
7,31
7.30
7.29
7.28
7.2/
7.26
31.31
31.30
31.31
31.32
31.32
31.33
11.35
31.37
31.35
31.30
31.11
51.53
31,33
11.15
31.38
11. 40
31.39
31.33
31.32
31.36
31.39
31. S9
31.38
31.40
31.41
31.40
51.40
31.44
31.07
31.86
11.42
31.39
31.37
31.38
31,42
31.06
31,50
31.53
31.55
31.50
31.56
31.56
31.57
31.57
31.56
31.56
31.54
31.52
31.55
31,56
31.55
11.57
31.58
31.57
31.57
31,56
31.59
31.59
31.58
31,59
-------
JJO 15J5.SU 2.505*05 -l.9bJ.OJ 2 J820.0 8190.0 85.08 08.2 18.6 7.28 J .58
SJ1 1535,31 2.898*05 -7.813-03 Z «020.0 «600.0 85.02 111.8 JJO.J 7.2J JJ.«
JJ2 15J5.J7 2.897+05 -5.8S9-OJ 2 8020.0 J860.0 85.00 H3.8 109.J 7.22 J .50
JJJ 15J5.22 2.869*05 -7.8U-OJ 2 «2.>0.0 8610.0 88.98 119.5 1^0.5 7.21 J .88
Jja 5J5 OJ 2.880*05 -J.906-OJ 2 . 8620.0 5090.0 88.96 130.8 1*8,1 7.20 31.83
VO
O
-------
LONG LAKE HETEOHOLOGIC DATA---JUNE THRU NOVti971—DEEP RES MODEL-PHASE 3
YEAR
DAY
LAST DAY
DBS
TAPt OUT
152
334
1
la
A
B
LATITUDE.
L'ONGITuDE
ELEVATION
•0*00
• 0,00
48.0
118.0
UbO.O
ATMOSPHERIC PRESSURE INPUT
CLOUDINESS INPUT
WIND SPEED INPUT
DRY BULB TEMPERATURE INPUT
DEW POINT TEMPERATURE INPUT
.SHORT WAVE SOLAR RADIATION INPUT
CONVENTIONS -
CONVERSIONS
CONVERSIONS
CONVEKUIONS
CONVERSIONS
CONVERSIONS
2.500+01
1.000-01
1,170-01
S.55b-01
S,55b-01
i.iso»ou
0.000
0.000 .
0,000
-3.200*01
-3,200+01
0,000
0.000
0.000
0.000
0,000
0.000
OtOOO
END DATA INPUT
-------
vO
to
NO
NET SOLAR
METEOROLOCIC DATA
NET ATMOS AT PRESS
BtUB
WIND
EO
I
2
J
a
5
6 '
7
8
9
10
11
1Z
13
14
15
1*
17
18
f
ZO
21
ZZ
Z3
Z1
25
26
27 '
£8
2'
JO '
51
32
33
31
JS
36
37
38
39
"0
41
42
113
an
as
06
87
U6
49
50
.05156
.01237
,02356
.03099
.07391
.07-100
.03863
,06340
.07605
.01398
.U6371
,05881
.05009
.1)7190
.07942
.1)8018
.07238
.03151
.07470
.04458
.07326
.07103
.05821
.063S1
.0678H
.079(11
.04806
.02193
.07/69
.06966
•0614H
.08058
.07937
.06794
.02676
.05688
.07725
.05796
.05416
.05015
.07159
.07180
.08042
.077.84
.07511
,071U1
.07650
.07565
.07311
.06166
, 07«69'>, /0599
69V. 7699')
702.05599
700.53199
696,46799
697.73/98
696.06/99
695.45199
695.95999
696..M399
698. 75399
702.05599
701.'j3999
698.09999
699.76999
701.29J99
699.26199
698.49999
69rt.^u->99
701.^0199
69ri,^q'.)Q9
698.75399
700.78599
702.05599
702.56J99
703.07199
702.81798
699.^6199
697.99199
701.03999
701.29399
699.26199
697.99199
11.66550
9.4U.450 '
11.11000
13.33200
14.44JOO
16, 109'jO
14.UU300
11.66550
13.H0750
12.22100'
1*. 33200
1 /. 22050
13.H8750
12.221UO
13.33200
13.31200
14.4USOO
15.55400
1 7.77600
I 8. 33 150
22.22000
25.H8650
17.22050
15..551-CO
13.88750
13.33200
1 S. 33200
10.55450
14.44300
1 7.7/MlO
1«. 33150
15,55400
15.55400
IP. 88700
15,33200
1 1 .66550
12.77h50
J9.uu250
.17.7/600
13.33200
13.H*750
15,55400
1«.3S150
I9,aq250
22.22000
23.HU650
24.41200
25.55500
26.60400
27. 7/500
10.16788
9.41933
10.16788
10.56145
9.C6362
9.78735
10.16/88
7.16764
B.C665i
10.5614'i
10.16783
10. 96033
1 1.3H90i
7.75615
7.16764
6.61869
7.16/64
11. 3890s
10.1678.-J
12.<>7328
13.71288
13.71288
9.78730
8.06656
8.3fl75,'i
6.10/20
6.6186')
8.C665K
7.7564'j
b.719h^
7.45691
6. 10726
S. 86492
6.fcH633
7.75645
6.61C69
6.35843
S./l'B,!
12.73/60
9.41933
8.311758
8,71982
R.3P75U
8.06650
9.78/30
9.U1933
B.38/5H
10.5614'j
11,38906
13.71280
J. 97830
3.66540
2.66200
4,96170
3,97830
2,63730
4.82760
5.00640
3.53130
2.90550
4.11240
4,067/0
5.09580
6,71970
4.51070
4,87230
Z. 68200
2. 32400
3.91360
Z. 63730
3.79950
2.95020
1.82760
3.620/0
5.72160
2.90550
3.93360
2.63730
3.93360
2.90550
1.S59UO
3,173/0
2.77140
3,97850
5.98980
5.67690
2.63730
2. 90550 .
3.35250
5.45340
4,24650
Z, 05620
2,14560
2,05620
2,19030
1.92Z10
2,14560
3.48660
Z, 81610
2..45B50
27,33251
6.03548
14.02301
19.05766
36.05499
38.03676
26.451914
30.35486
36.44860
10.64367
32.68097
40.93120
26.43028
34.65023
36.29547
37.86840
40._12001
21.42592
40.07328
33.25973
48.69803
51.89267
36.76859
38.87286
35.53155
39.44662
29.69020
12.43117
36.78180
40.41599
36.97634
39.35405
36.73557
42.53892
16.89^36
27.01311
35.67237
41.81368
37.H001
28.88139
.35.06021
35.6/682
02.76950
12.93219
45.49592
47.46008
49.20146
50.51714
51,11401
51.51185
-------
vo
NO
NET SOLAR
METEOROLOG1C DAT*
NET ATHOS AT PRF.SS DRY BLUB
«IND
EQ TEMP
51
52
5S
50
55
56
57
58
59
60
61
62
63
60
65
66
67
68
69
70
71
72
71
70
75
76
77
78
79
80
81
63
83
84
85
86
87
BA
89
90
«1
92
93
94
95
96
97
98
99
100
.07038
.07217
.07118
.07331
,06966
.07253
.07016
.06659
,07226
.06622
.06892
,06725
,06891
.06795
.06630
.06261
.03255
.0667/
.06501 '
,06b07
.06631
.06695
.06820
.06562
.06591
.06713
.06531
.06576
.06376 •
.06288
.01908
.06091
.01329
.06175
,06262
.QM21
.06017
.05107
,05356
.05587
.05155
.03570
.0(161
.01357
.03569
.05660
.05566
.02194
.05601
.05525
,09191
.08928
.06732
,08319
,08269
.08319
.OS989
.08791
,08113
.08716
,09028
,09396
,09372
,09070
,06635
.08989
,09250
,01)911
.09230
,09129
,09028
.09230
,09928 .
.OB829
.07991
.07900
.07991
.07920
,OHOM
.OH53B
.08802
.OflOSU
.OB137
.07061
.07713
.07980
•OBS76
,09198
,08669
.08177
.09011
.08098
.07321
.07676
.0/912
.07200
.07H90
.07531
.06683
.07503
697,99199
699.00799
697.22999
696.97599
699.00799
699,51599
69B. 19999
697,71798
700.27799
699.26199
699.51599
697.1BS99
696,97'.>99
691,68999
697.2299V
697,99199
698,^0599
697.22999
698.75S99
700. 7859V
700,54199
697.MR399
695.19799
695.19799
69/,UBi99
697,99 199
699,26199
700.53199
69V. 5 1599
695. 95999
695,19799
697. 22999
697.99199
701,31199
701.51799
699.51599
6VH.U9999
698,21599
699.51599
697,18399
693.67399
69u.« 3599
693, 16600
693,92800
700.53199
699,00799
693.92800
697. (•2999
701.08799
698.75S99
27,77500
26,66100
25.55300
23.33100
22.77550
23.33100
26.6MOO
25.55300
23,88650
25.55300
27,21950
2R.8B600
28.33050
26.10850
20.99750
26.66100
21.11200
26.66100
26. 53050
27.77500
27.21950
26.33050
26,66100
26. 10850
21.10900
21,10900
21.10900
19,99800
21.66150
21.11200
2.1.S8650
21.IU900
11.11300
11.11300
19,111250
21 .10900
23.33100
21.33100
. ("1.H200
23.33100
2 3 . J 3 1 0 0
15.55100
9.iu350
11.66550
11.11300
16,10950
20.SS350
13.33200
12.22100
17.77600
12.27326
10.56115
9.11933
9, 06362
10,lh7E-8
10.51-115
10.91,838
.12.27326
9.11953
11.3B906
12, 73V60
12.73760
9.7«7iO
8.71902
10.16768
12.-,i7326
11. 75322
13.21 733
10.96836
6,35813
7,15691
6.3581J
5,40562
5.BM92
7. \6761
6. 158 '13
6..15B13
6.35813
7. 16761
6.3h7'ia
8.38758
8.71932
9,06362
9.04362
8.06656
8,71912
9.0M32
8.719-J2
10.96038
11.02338
11.221'>9
10. '.16115
9./P/30
11.X890C
11. (12 3 98
10. 16736 '
10.96838
11.58906
8.719B2
8.71932
3.35250
3.18660
0.29120
2.81610
2,63730
2.6B200
2.9Q5SO
1.67230
3,79950
2.32110
3.35250
2,50*20
3.93360
1,?1650
2.90550
• 2.6B200
3.35250
3,06130
3.66510
3,53130
1.65390
3.81120
1,51170
1.20180
1.51170
2.77HO
5,7h630
3,62070
3.97830
2.05620
5.90010
3.97830
0,12530
2,50320
2.32HO
2.11560
2,59260
3.03960
2,63730
2.B1610
3,66510
6,13680
1.S59UO
6.03150
3.21610
3,397iO
0.69350
0,55910
2.63730
3,71010
51.71064
50.11260
09.76510
16.00662
13.19182
15.61668
19,90159
16.37766
16.31510
05.80903
09.59853
51.09102
52.51658
19.15797
15.91830
16.01806
32.8119U
17.7/152
19.32505
50.02630
18.27837
50.31989
18,37897
16.21305
39,23067
39.72769
38.92651
38.51063
38.77583
H2. 31997
37.19327
37.00179
13.15511
30.65189
35.12787
36.hil926
11.10207
11,16971
38.65318
38.19620
10.83063
21.6i39o
7.20088
9,66121
23.02161
27.68103
33.07316
11.27670
22.95378
29.55805
-------
NO
NET SOLAR
METEOROIOGIC DATA
NET ATMOS AT PRtSS DRY BLUB
HIND
EO
101
102
101
loo
105
106
107
108
109
110
111
113
113
118
115
11*
117
118
119
120
121
122
185
124
125
126
127
128
129
130
111
132
133
130
135
136
137
138
139
110
111
1«2
143
141
115
116
117
118
119
ISO
.01535
.05151
.05299
.05251
.05162
.052*9
.05219
• .05132
.05000
•04650
.01206
.01H05
.04/81
•04365
.01550
.0.3587
.03129
.02211
.01891
,0?591
.02950
,03776
.01212
.01060
.02712
,03816
.03771
.02B07
.03137
.03589
.03531
.Oi29i
.0?563
.02729
.01961
•01«23
. 02917
•03412
.05266
.02670
.00778
.02506
.02BH2
.01636
,00598
.01859
.01102
.02129
.02013
.02919
.07949
,07901
,07296
.07249
>0b806
,00658
,06420
.06658
,06120
.07190
.07002
.06584
, Oh377
.06819
,07296
.07821
,07447
'.0/291
.07411
,0/411
,06464
.05988
,06207
,06302
.0/676
,08076
,07380
.08192
,06740
,OhB74
.06B74
.069BO
,06930
.07291
• ,06411
,06423
,05710
.05624
. 0^266
.06632
,06902
,06553
.05B46
.07238
.0*902
.06511
.06659
,05571
,05158
.01626
698. 75399
696.72199
700.78599
702.81 /98
702.56399
704. 51199
703.H3S98
708.91398
709.92998
706.11998
699. '> 1599
704. 54199
704.b9b9()
703.07199
69B.75.J99
69<4.')4bO
11.11000
12.7/hbO
1 1 .11000
9,99')00
12.22100
Ih.h6b00
13.HH7SO
J2.7/150
in.SblbO
9.9'*900
9.99900
6. 1 1050
6.H050
8.35250
9.41 (50
11 .6hSbO
16.66bOO
17.^2050
16. 10950
12.2^100
l3.««/bO
1 3. t'H 750
15.35200
12.22100
10.5'j4'jO
/. 7/700
«. ii.iOO
4 . 4 u 4 0 0
4.44100
. 1.11100
6.11050
6.6'>600
5.SbSOO
4,999bO
B. 81600
6,ho600
4.99')bO
4.999bO
2. 77750
-2.22200
»1. 44100
lo.urna
10.56145
8,06656
7.15691
6. 35D13
b. 401,62
4.77634
4.77o34
4.77634
5.405f>2
5.4051.;;
6.350-13
6. 10726
6.618(,9
6.618(,9
7.167M
7.1S691
9.419-<3
8.06fa'j6
7. 16/(>4
7.16764
6. 10726
6. 10/26
6.85855
7.750'IS
9.737.10
11.823H8
10.5M'I5
' B. 5*758
9.0*.3i>2
9 . 4 I1' 3 3
9.06362
7. 16764
6.8-Bh 15
5.HS4')?
1.77n.S4
3."/U^2
2.BS9S9
3.2b976
1.5fll',2
8. 066S6
6, 10/26
5.10562
7.45691
7.75D4S
6.35H43
5.63U3
1,5«l52
2.61740
1,73907
3.03960
4.42530
6,03450
5.45340
2.81610
3.39720
3.35250
5.14050
3,03960
2.14560
2,50520
5.85570
1.20690
1.56450
4.201BO
5,72160
4.73020
2.36910
1.8/230
5.09580
3.97R30
3.17570
2.90550
3.21010
3.08430
3,62070
3.66540
2.66200
1 . 16?j?0
2.2(500
2.14560
1.7BBOO
4.11240
3,39/ZO
7.15200
2,63730
5.72160
5.27460
2.59260
3.93560
7.75510
5. 72160
3,03450
3.62070
2.63/30
1,20180
6.70500
7.15200
4,96170
2.6B200
26.39226
30.97579
26.62424
25.98106
21.7H90
20.95303
18.726So
20.15122
17.60597
22.39158
18.50/90
18,00643
16.11483
17.76107
22.76414
22.33573
16.76926
10.92193
10.1 3081
13.72081
7.46744
7.63669
11.74228
11.77987
16.61392
25.66702
19.52126
21 .50144
11.H1201
'14.^55/5
13.9/001
13.63075
9.38/48
13.40667
1.94164
1.34118
1 . 0 0 8 b 8
2.654/4
•1.15103
7.47123
.0/509
5.96388
1 .B395<)
7,34448
-.84647
.46355
-.34088
•2.82991
-6,50191
•8. 21530
-------
VO
Ln
NO
NET SOLAR
MCTEOROLOGIC OAT*
NET ATMQS AT PRtSS DRY BLUB
XlND
EQ TEMP
151
152
153
151
155
150
157
158
159
160
161
162
163
164
165
166
167
165
169
170
171
172
171
171
1/5
17*
177
178
179
180
181
182
18i
,02360
.01018
.01279
.02SH8
.02207
.0)005
.01623
.02512
.01BS9 .
.00721
.015)4
.01501
.00698
.01229
.00250
.00499
.011H6
.00105
.01210
.01477
.00363
.01301
.00746
.00984
.01628
.00466
.00627
.00465
.00382
,00578
.00537
,00495
•00371
,05066
.05757
.05617
,05461
,06077
,06120
, 05550
,01801
.05617
,05667
.06045
.Oh632
.061)20
.06739
.060^9
.06501
.058/0
,06546
.06014
.05591
,05900
.06235
.06580
.065HO
.053/3
,05757
.06171
,06194
,06194
.06270
,06194
,06045
.05686
706.3739*
698.24599
699,00/99
695.70599
705.61199
700.27/99
697.48399
707. S8999
704.84999
69/. 99199
699.00/99
b94.6fl')99
699,'3lb99
696.46799
693.673V9
692.91200
700.02399
704.B4999
705.61199
706. 11998
706.37399
704.Q8/99
703.57998
6P9. 00/99
702,30999
A1", 51 549
697,22999
700.53199
69-j. 70599
690,21399
6H9. 10199
693. 16600
702.56399
-a. 99950
•1.66650
-2.77750
2.77750
2.22200
6.11050
1.11100
.2.77/50
.2.77750
-1.11100
.'15550
6,1 1050
. 6.1.1050
5.55500
4.99950
S.tlHUbO
1 ,66650
2.77/50
2.77/50
-.S5550
-.55550
4. '14400
4.44400
4.44400
1.1 1100
-1.66650
2.77750
1 .66650
1,66».50
2.222UO
1 ,h66'>0
.55550
•2,22200
2,28853
3.4038F
3.67062
4,9784(1
4.77o34
4.97848
4.03864
2.39381
2.85939
3.70922
5.1H816
6.10/2h
8.71V82
7.75645
7./5045
6.8SIJ33
5.63113
6.1072h
S.h6492
4.9 ?BUH
4.9784U
6.88833
7. /564S
6.61H69
4.212H1!
4.58152
6.35843
5.6J113
5.86492
6.10726
5.B6492
6.35843
4.9/B4f)
5.21840
2.23500
J.799-JO
6. 22400
«. 96170
6,79440
8.67180
3,66540
3.1/370
2.23500
2.3&910
4.29120
3,084 iO
2.77140
2.68200
2.81610
2.50320
1.65390
3,53130
2.7/140
3.173/0
5.40870
2.45S50
3.08430
4.20180
2.81610
3.08430
4.82760
4.20180
3.84420
3.17370
2.32440
1.17510
-7.506)3
-8,37904
-8.34217
-2.96159
.52135
.53916
•7.11230
•8,99514
-5.36496
-10,77222
•3.37065
1 .47&J9
-1.05157
.99790
•4.70969
-4.78109
-6.65217
-6.btf796
-5.27906
•7.S4U35
-10.62017
-2.93887
-2.84318
•1 .62343
-8,639/0
-11.31593
-6.94955
-7,57878
-8.00583
-6.35279
-/.2U60
•8.69643
•12.40111
-------
DEEP RESERVOIR MOOKL.
DRM SIMULATION OK LONG LAKL--ONE TUR91NE INTAKE'-JUNt THRU NOV 1971
SYSHMS CONTROL INC
FIRST DAY
FINAL DAY
NORMAL OZ
MAXIMUM EL
152
ii«
1.000
EX DEPTH
EV'AP COEFF A
EyAP CUF.FF 8
MIN STAB
Sh EX COEF
l.SOO»01
0.000
1.-300-09
-.070
,1461-00
VO
o\
SES NUMHtR
TtMP PTS
DAYS OUT
OUTPUT FREQ
VERT f-flT F«F-Q
TAft OUT
NUrt OUTLF.TS
REPtAT XEu
X£0 OUTPUT IMT
OBS PE-< OAY
1
1
3
500
1
0
1
2
2
1
CRITICAL STAB
LOK GrtiO COEF
ISTIRCEPT
EXPONENT
REACH
9.000=07
Z.bOO-01
U^OO-OS
•7.000-01
i.650+01
AREA COEFF Cl
ARtA COEFF ca
AREA COtFF Ci
0.000
OUTLET
1
ELtVATION
-------
VO
NO
t
a
5
6
7
6
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
DEEP RESERVOIR MODEL
ORM SIMULATION OF LONG LAKE — ONE TURBINE INTAKES-JUNE THRU NOV 1971
SYSTEMS CONTROL INC
ELEVATION
SEC AREA
CULM VOL
DtLTA VOL
TEMPCCJ
.0
1.0
2.0
3.0
4.0
5,0
6.0
7.0
8.0
9,0
10.0
11.0
12.0
13.0 (
14.0
15.0 <
16.0 '
17.0
18,0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28,0
29.0
30.0
'31.0
32.0
1.954+05
J.06B+05
1.418+06
2.030+06
2.641+06
1.253+06
5.H64+06
J. 475+06
j, 087 + 06
3 . t>9Ht 06
J. 410*06
>. 921+06
r. 533+06
J. 144+06
>.7'i6*06
> • 5fc 7 + 06
.978+06
.059+07
.120+07
.'181 + 07
.242+07
.304+07
.365+07
.126+07
.487+07
.548+07
.609+07
.670+07
.732+07
.793+07
.1134 + 07
.915+07
.976+07
0.000
5.011+OS
1 ,61-1 + 06
3.338+06
5.6/3+06
8.620+06
1.218+07
1.655+07
2.113+07
• 2.652+07
3,253+07
3.914+07
4.637+07
5.421+07
6.266+07
7.172+07
8,139+07
9,168+07
1,026+08
.1.141 + 08
1.262+08
.•189+08
.523+08
.662+08
.80B+08
,960+08
2.H/ + 08
2.281+08
2.452+08
2.628+08
2.B10+08
2.999t08
3.193+08
5.011+05
1.113+06
1,721+06
2,335+06
- 2.947+06
3.558+06
u. 170 + 06
U.7H1+06
'J.393 + U6
l>, 004 + 06
6,616+06
7.227+0*
7.838+06
«. 450+06
9.061+06
9,(,73+06
1.028+07
1.090+07
1.151+07
. 1.212*07
1.273+07
1.334+07
1.395+07
1.456+07
1.518+07
1,579+07
1.640+07
L/ni + 07
_ 1.762+07
1.825+07
1.884+07
1.946+07
0.000
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1,200+01
1.200+01
1.200+01
1.200*01
1.21)0 + 01
1.200+01
1.200+01
1,200+01
1.200+01
1.200+01
1.200+01
1.200+01
1.200+01
1 .200+01
1.2uO-*01
1.200+01
l,2oo»ni
1 .200+01
1,21)0 + 01
1.200+01
1 .200+01
1,200+01
1.200+01
-------
LAKE ELEMENT VARIABLES
00
ELEM
NUN
1
2
3
4
5
6
7
&
9
10
11
12
13
11
15
16
17
18
19
20
21
22
23
2U
25
26
27
28
29
30
31
32
SOU
REACTION
CUKH
.008
.008
.008
.008
,008
,006
.006
.oca
,008
,008
,00»
.008
.001)
.Oil*
.000
. .008
.008
,008
.001
,00-i
,onn
.008
.008
.oos
.008
.006
.006
,OUH
,008
,006
,000
,008
800
SETTLING
COEK
, 000<>00
.000900
,000900
.000900
,000900
,000900
.000900
.OOo'JOO
.000900
.000900
.000900
.000900
.OOO'OO
,001)900
.010900
.000^00
.000900
.000900
,000900
.000*00
,000900
.000900
•ouo'oo
.000900
.OOO^OO
.000900
•OOO'OO
.000900
.ooo'oo
.000900
.000900
.ooo'oo
COLIFORM
REACTION
COEf
.0040
.0010
.0010
• .00-40
.0040
.0040
. 0 0 '1 0
.0010
.0040
,0040
.0010
.0040
,0040
.0040
.0040
.0040
.0040
.0040
.0040
.0040
.0010
• 004U
.0040
.0040
.0040
.0040
.on"o
.0040
.0040
,0040
.0040
.0040
NMJ
REACTION
COhf-
.0040
.0040
,0010
• .U040
.0040
.0010
.0040
.UOUO
.0040
.omo
..0040
.(JOUO
.0040
.0010
.0040
.0040
.0040
.0040
.0040
.0040
.0040
.0040
.0040
.0040
• 00"
-------
INITIAt, CONCENTRATIONS
ELEMENT
NUMBER
1
2
3
4 .
b
6
7
8
9
to
11
12
13
10
ib
16
17
IB
1<»
20
21
22
23
24
25
26
27
28
29
JO
31
32
DO
BOO
(M5/L) (MG/L)
-.00
.38
.75
1.13
1.51
1.89
2.26
2.64
3.02
3.40
3.77
4.15
1.53
4.91
5.28
5.66
6,04
6.42
6./9
7.17
7.55
7.93
8,30
8.68
9.06
9.44
9.81
10.19
10.57
10.95
11.32
11. /O
-.00
.03
.06
.10
.13
.16
.19
.23
.26
.29
.32
.35
.39
.12
.45
.48
.52
.55
.58
.61
,65
,b8
.71
.71
.77
,«l
.84
.87
.90
.94
.97
1.00
NH3-N
(Mfi/L)
-.0000
.0003
.0006
.0010
.0013
.0016
.0019
.0023
,0020
.0029
.0032
.0035
.0039
,0042
. .0(115
. 0 0 4 tl
.0052
.0055
.0058
.0061
.OOhb
.0068
.00/1
.0071
.00/7
.0081
.OC«4
,oufl/
.0090
.0091
.0097
,0100
NU2-N MJ3-N
(MG/L)
-.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.onoo
.0000
.0000
.0000
.0000
.onoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
..0000
.onoo
.0000
.0000
.0000
{MG/L)
-.0000
. 0084
,0168
,0252
,0335
.0419
,0504
,058/
.Oh/1
.0/55
.0819
.0923
.looo
,1000
.1174
.1258
.1342
.1426
.1510
.1594
,lh77
.1/61
.1815
.1929
.2013
.209/
.21^1
.2265
.2318
.24-42
.2516
.2600
H04-P
(MG/L)
-.0000
.0002
.0004
.0006
.0006
.('010
.0012
.0014
.0015
.0017
.0019
.0021
.0023
.0025
.0027
.0029
.0031
.0033
.0035
.0037
.0049
.ooul
. 0 0 4 3
.0015
,U046
.0048
.0050
.1)052
,005«
.0056
.0058
.0060
PhYTO COLlFORMS
MM1
HM2
HM3 TOT N
CHLOR
(MG/L) (MfN/100) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L)
-.0000
.0000
.0000
.0000
.0000
.oono
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.oooc
.0000
.nuoo
.0000
.nuoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000"
.0000
..0000
-.0
35. b
71.0
106, b
141.9
177.4
212.9
218.4
283.9
319.4
3b4,fl
390.3
125,8
461.3
49t>,8
532.3
567.7
603.2
638,7
67-4.2
709.7
745.2
/8U.O
816.1
851.6
88/.1
922.6
956.1
993.5
1029.0
1064.5
1100,0
-.00
.CO
.00
,00
,00
,00
,00
.00
.00
.00
.00
.00
,00
.00
,00
.00
.00
,00
.00
.{10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
-.00
.00
,00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
• .00
-.00
.00
.00
.00
.00
.00
. .00
,00
.00
,00
,00
.00
.00
.00
.CO
.00
.00
.00
.1)0
.00
.00
.00
,00
.00
.00
,00
.00
,00
.00
.00
.00
-.00
-.00
.00
.00
,00
.00
.00
.00
.00
.01
.01 .
• 01
.01
.01
.01
.01
.01
.01
.01
.01
..01
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.02
.02
-.00
.00
.00
.00
.00
.00
.'00
,00
.00
.00
,00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
MMI1
(M5/L) 1
o.OO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
" .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
,00
.00
'.00
.00
-.CO
HMI2
MKJJ
CMG/L) (MG/L)
-.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
-.00
..00
,00
,00
.CO
' .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
• .00
-------
LAKE INFLOW CONCENTRATIONS
O
o
DAT
NUMBER
1S2
153
154
155
156
15?
158
159
160
161
162
161
164
165
166
167
168
169
170
171
172
173
174
175
176
f?
178
179
l8()
1*1
182
1*3
JH4
1R5
1 8 6
187
JflB
199
190
191
192
193
194
195
196
197
198
199
200
201
202
203
FLOW
(CF8)
35720.
£5420,
25020.
24/20.
24520.
23620.
22920.
22420.
21«20.
21320.
20920.
20120.
19/20.
19420.
19320.
19120.
18420.
17H20.
17220.
16020.
j ', rt 2 0 .
15220.
14/20.
14)20.
13/20.
13420.
13120.
12920.
12520.
12220.
9..20.
lii>.»0.
5
-------
201
205
206
207
JOB
209
210
211
212
2U
211
215
216
217
21S
219
220
221
222
223
224
225
226
227
228
229
230
231
2J2
233
231
235
23t>
237
2.J*
23"*
240
211
2"2
213
?U<4
215
216
217
2«8
<;49
250
2M
252
253
251
255
256
257
258
250
240
261
262
263
9120.
1120.
1020.
3620.
3-320.
3520.
3120.
3120.
3120.
3120.
3120.
2520.
2920.
2920.
2920.
3020.
3020.
2520.
2820.
2320.
2520.
2720.
2«20.
2720.
2t)20.
2220.
2020.
2x20.
2"20.
2020.
1P20,
1»20.
2020.
2120.
2i?0.
2i20.
2120.
2120.
2120.
252tl.
2t--21.
2120.
2820.
2«20.
2-720 .
292Q.
2420.
2929.
2920.
2920.
2920.
2'>2'J.
3020.
3120.
3020.
2920.
2b20.
2820.
3020.
2B20.
7.6T
7.54
7.40
7.11
7.19
7.53
7.57
7.61
7.66
7.70
7.6B
7.66
7.61
7.61
7.59
7.57
7.55
7.53
7.51
7.19
7.16
7'. 11
7.12
7.10
7.16
7.53
7.59
7.65
7./2
7.78
7.83
7.'>1
7.97
A. 01
8.10
H.16
e.23
8,29
8.35
fl.'<2
8.1M
8.55
8.61
6.67
8.71
8. do
8.H9
8.98
9.08
"».!?
9.2t>
9.35
9.1-5
9 ,") 14
9.63
9.72
9.3,!
9.91
10,00
10.00
1.2"
1.32
1.35
I'll
1.16
1.52
1.57
1.63
1.68
1.71
1.63
1.92
2.01
2.10
2.19
2.28
2.37
2.16
2.55
2. 61
2.73
?.62
2.91
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
(.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
2.91
2.82
2.72
2.63
2.51
2.«5
2. 45
2.26
2.17
2. OH
1.98
1.H9
1.80
1.79
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.020'
.0211
.0221
.0229
.0256
.0213
.0250
.0257
.0261
.0271
.0279
.02*0
,0293
.0300
.0295
.0291
,0286
.0282
.0277
.0273
.0268
.026U
.0259
.0255
.02Su
.0215
.0211
.0236
.0232
.022X
.0. 1
.0132
• Oli<>
.0111
.0115
.0150
.OI5'>
.0159
.Olnl
.01*8
.0173
,01 /'
,01')2
.oia*
.3000
.2857
.2/11
.2571
.2129
.22Hh
.2113
.2000
.2071
.2113
.2211
.22H6
.2357
.2129
.2500
,2->M
.2613
.2714
.27»b
.2(157
.2929
.3000
.3361
...3727
."O'l
,4'i55
.UHJH
.5l»2
.5V15
.5909
.(>?7J
. (>oib
. /fiOO
.7 4M
.7/2?
,8091
.NU55
. h H 1 A
.'M»2
.9515
.9909
.019] 2.0273
,01''5 2.0h36
.02(iO f. 10DO
,(>1*S 2.092J
.0169 ^.OB16
.0151 2.0769
.0138 2.0t><>2
.01^3 /-'.OhlS
.OtOH 2.0'jjU
.OOV,> 2.0162
.007? 2, 038-1
.00h2 2.0308
.OOlh 2.0231
,0031 2.015U
.0015 2.00/7
.0000 2.0000
.0000 2.0000
.0386
.0393
.0100
.0000
.0100
.0100
.0100
.0100
.0100
.0100
,0386
.0371
.0357
.0313
.032'
.Dili
,i;(00
.0286
.0271
.0257
.0213
.0^29
.0211
.0200
.0200
.0200
.0200
.0200
• 0?00
.0200
.0200
.0200
.0200
.U200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.U200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0000
.0000
•-.0000
.0000
.0000
.0000
.0000
.0000
.0000
-.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
-.0000
.0000
.0000
.oono
.0000
.0000
.0000
.0000
• 0000
.0000
.0000
.0000
.OUOO
.0000
.0000
• 0000
.0000
.0000
.0000
• 0000
• 0000
.0000
-.0000
• oooo
• 0000
.0000
.0000
.oono
. 0 0 00
.nono
.0000
.0000
.0000
.0000
.0030
-.0000
.0000
2571. «
2535.7
2500.0
2257.1
20H.3
17/1.1
1528,6
1285.7
1012.9
BOO. 0
1135.7
1171.1
1807.1
2112.9
2178.6
2811.3
3150.0
3185.7
3821. U
1157.1
1192,9
4H28.6
516-4.3
5500.0
53B6.il
5272.7
5159.J
5015.5
1931.8
1818. 2
1701.5
U590.9
1177.3
13h3.6
1250.0
4136.1
1022.7
3909.1
3795.5
3681.8
3568.2
3U51.5
3310.9
322'. 3
3111.6
3oOO.O
2923.1
2H16.2
2769.2
2ft92,S
2615. .oo
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
.00
.00
.00
..00
.00
.00
.00
.00
.00
.00
..00
.00
,00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
,00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.,00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
• .00
.00
.00
.00
'.00
.00
.00
,00
.00
.00
.00
-.00
,00
.00
.00
.00
.00
.00
,00
,00
,00
.00
.00
.00
.00
>.oo
,00
.00
.CO
,00
.00
.00
.00
.00
.00
,00
.00
,00
.00
.00
,00
.00
.00
.00
.00
.00
,00
..CO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
.00
-------
o
N>
26«
26b
266
267
2h«
26V
270
271
272
273
271
27*
276
277
278
27<»
260
281
282
283
281
28b
286
267
2H8 '
289
290
211
292
293
£9<4
295
296
297
ass
a99
300
301
302
303
3o<*
305
306
307
308
309
310
311
312
313
31«
Mb
316
317
31D
319
320
321
322
323
2920.
2920.
2920.
2920.
2920.
2920.
2920.
3020.
3020.
3020.
3020.
3020.
3020.
3020.
2<420.
3020.
3020.
2920..
3020.
3020.
3020.
3020.
2120,
3120.
3320.
'1020.
Sn^o.
3020.
3020.
3020.
3020.
3020.
3020.
3120.
3120.
3020.
3020.
3020,
2920.
3n20.
3020.
3220.
3220.
3320.
3120.
322J).
3120.
3220.
3220.
3320.
3120.
3220.
3220.
3220.
3220.
3320.
3b20.
Jb20,
3620.
3520.
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
in. oo
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10,00
10.00
10.00
10-, oo
10.00
10.00
10.00
10. '00
10.00
10,00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10,00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
.78
.77
.77
.76
.75
.71
,73
.72
.71
.71
.70
.69
.68
.67
.66
.65
.*>'i
.60
.63
.62
.61
.hO
.59
.bB
.58
.57
.b6
.55
.bu
.53
.52
.52
• bl
• bO
.09
.OB
.07
.06
.06
.US
.11
.13
.02
."1
."0
.10
.39
.38
.3?
.36
,3S
. i«
. tu
.33
.32
,31
.30
.29
,28
.27
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.01-00
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
,0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
,0100
,0100
.0100
.0100
.0100
.0100
,0100
.0100
.0100
.0100
.0100
.0100
.0100
.0100
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
,0000
.0000
.onoo
.0000
.0000
.0000
.0000
.oouo
,0000
, uooo
.0000
.0000
.0000
.0000
.uooo
.0000
.0000
.0000
.0000
.0000
.onoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.oono
.0000
.oono
.OnOO
.001)0
.0000
. (1 0 0 1)
.0000
.0000
.UOOO
.0000
.onoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
2.0000
2,0000
2 . 0 000
2.0000
2.0000
2.0000
2.0000
2.0000
2.00ilO
?.nnno
2.1000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2,. 0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.nooo
2.0000
2.0000
2,0000
2.0000
2.0000
2.0000
2.0000
2.0000
2,0000
2.0POO
2.0000
2.0000
?.oooo
2.0UOO
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
.2.0000
2,0000 •
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
,0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.i>200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.U200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
.0200
,0200
.0200
.0200
,0200
.0200
;o2oo
.0200
.0200
.n2.)0
.0200
.0200
.0200
.0200
.0200
.0200
,0200
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 .
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
..0000
.0000
.0000
.0000
.0000
.0000
• oooo
.0000
.0000
.0000
.0000
.0000
.0000
•0000_
.0000
.0000
.0000
.0000
.0000
.0000
,0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.ooou
,0000
,0000
,0000
2000.0
2000.0
2000.0
2000,0
2000.0
2000.0
2000.0
2000.0
2000.0
2000,0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000,0
2000.0
2000.0
2ooo.o
2000.0
2000.0
2000.0
2ooo,o
2000.0
2000,0
2000,0
2000,0
2000.0
2000,0
2000,0
2000,0
20»0.0
2000.0
2000.0
2000.0
2()00.0
2000.0
2oOO.O
2000,0
2oOO,0
2000.0
200U.O
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000.0
2000,0
2000.0
2000.0
2000.0
2000.0
2000.0
,n
.11
.1-1
.11
.11
.11
,11
.11
.11
.11
.11
.11
.11
.11
,11
.11
,11
.11
.11
.11
.11
.11
,11
.11
.11
.11
.11
.11
.11
.11
.11
,11
.11
.11
,11
,11
,11
.11
.11
.11
,11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
,11
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
,00
.00
.00
.00
.00
.00
• no
.00
.00
.00
.00
,00
.00
.00
.00
.00
,00
.00
.00
.00
,00
-.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
,00
,00
.00
.00
.00
.00
.00
.00
..00
,00
.00
,00
,00
,00
.CO
.00
.00
.00
.00
.00
,00
,00
.00
,00
.00
,00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.15
.15
.lb
.15
.15
.15
.15
.15
.15
,lb
.15
.15
.15
.lb
.15
.15
.lb
. .lb
.15
.lb
.15
.15
.15
.lb
.15
.15
.lb
.15
.lb
.15
.15
.15
.15
.15
.lb
.lb
.15
.lb
.lb
.15
.15
.15
.15
.15
.15
.lb
. lb
.15
.lb
.IS
.lb
,15
.lb
.lb
.lb
.lb
.15
.15
.15
.IS
.00
.00
,00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
,00
,00
.00
.00
.00
.00
.00
..-00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.30
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
' .00
,00
.00
.00
.00
- .00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
,00
-.00
.00
.00
,00
.00
,00
.00
.00
,00
,00
.00
.CO
,00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. .00 •
.00
.00
.00
.00
.CO
.00
.00
.00
.CO
.00
.00
.09
.00
.00
.00
.00
.00
-.00
.00
.00
.00
.CO
.CO
.00
.00
.00
.00
.00
,00
.CO
.00
.00
.00
.00
..00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.03
,00
.00
too
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
,00
.00
.00
,00
.00
• .00
.00
.00
.00
.00
.00
.00
.00
,00
.00
,00
.00
,00
,00
.00
.00
,00
.00
.00
.00
,00
.00
-------
321 . 3«ao.
325 3S20.
326 3S20.
327 3520.
328 3520.
329 .4620.
330 3B20.
331 1020.
332 «020.
333 1220.
331 1620.
10.00 1,27
10.00 1.26
10.00 .25
10.00 .21
10.00 .23
10.00 .22
10.00 .21
10.00 .21
10.00 .20
10.00 .19
10.00 ,18
.0100
,0100
.0100
.0100
,0100
.0100
.0100
.0100
.0100
.0100
,0100
.0000 2.0000
.0000 2.0000
.0000 2.0000
.0000 2.0000
.0000 2.0000
.0000 2,0000
.0000 2.0000
.0000 2.0000
.0000 2.0000
.0000 2.00110
,0000 2.0000
.0200
.0200
.0200
.0200
.0200
.0200
,0200
,0200
,0200
,0200
.0200
.0000
.0000
.0000
.0000
.0000
.000*
.0000
.0000
.0000
• OOOU
-.0000
2000.0
2000.0
2000.0
2000.0
2000.0
2000,0
2000.0
2000.0
2000.0
2000.0
2000,0
.11- .00
.11 .00
.11 .00
.11 ,00
.11 .00
.11 .00
.11 .00
,11 .00
.11 .00
.11 ,00
,11 >,00
.00
,00
.00
.00
.00
.00
,00
.00
.00
,00
-.00
is ,00
IS .00
15 .00
IS .00
IS .00
is .00
15 .00
15 .00
IS' .00
IS .00
15 -.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
-.00
.00 ,00
,00 .00
,00 ,00
,00 ,00
.00 ,00
,00 .00
.00 .00
,00 ,00
,00 ,00
•oo ,00
•«00 «,00
o
CO
-------
MISCELLANEOUS VARIABLES
THE FOLLOWING CONSTITUENTS ARE BEING MODELED DISSOLVED OXYGEN
COLIFOHMS
BOO
NH3-N MODELED BY 1ST ORDER REACTION
N02-N MODULO BY IST ORDER REACTION
NOi-N MODELED BY 1ST ORDER REACTION
P04-P MOfJtLEO BY 2ND ORDER REACTION
I HEAVY METAL (AND ITS ASSOCIATED ION)
TOTAL NITROGEN
TEMPERATURE CORRECTION CONSTANT FOR C«LIFOR« REACTION COEFFICIENT « 1.07000
COEFFICIENT ON BUD IN COLIFORM -CALCUI.AT[ON = .00000
"COEFFICIENT ON HEAVY METAL 1 IN COLIFORM CALCULATION z . • ,00000
HEAVY MKTAL 1 CONCENTRATION LI«IT («G/L) IN COLUOWw CALCULATION x 20.00000
TEMPE^ATURt COWHtCTION CONSTANT FOR BOO RFACTION COEFFICIENT 5 l.O'/OOO
BOO Uxft'.M KUOTICNT a l.bOOOU
NON-Kt.FWACTOHY FMACTION OF OHGANIC MATERIAL = .iOOOO
CAHBON TO PHOSPHORUS RATIO IN BOrj = 106.00000
NIIKOCfcN TU PHOSPHORUS RATIO IN BOD = 16.00000
DRY wFIGHT FRACTION OF CAHBON IN HOD = .50000
TE*Pt«aTURfc ir>'<«tt,TION CONSTANT F-OK NHJ DFCAy COtFFICIfcNT = 1.10000
CQcFFICHNT FU« \HS VOLIIIZITIOM = ,01000
T£-P£.^AT'JKt C"-
-------
DEEP RESERVOIR MODEL
DRM SIMULATION Of LONG LAKE--ONE TUHBlNE INTAKE—JUNE THRU MOV 1971
SYSIfcMS CONTROL INC
SUMMARY OF OUTPUT KOH SIMULATION DAY 152
EXECUTION INTERVAL
GENERAL SYSTEM INFORMATION
PESF.RV01H ELEVATION Jl.11 M
SUMMCE ELEMENT 1.11 M
TOTAL SYSTEM INKU* 7?e.i CMS
TOTAL SYSTEM OUTFLOW ' 719.3 CMS
FLEV THERMOCLINE
UOhNSTKEAM nMP 12.00
RETENTION Tint U.9 DAYS
M
i; C
.SURFACE AIR TEMP
SUR^CE HATER TEMP
EVAPORIZATION SATE
CULM EVAPORIZATION
INFLn'i TEMPERATURE
LOWEST MIXED ELEV
OBJECTIVE TEMP
11.67 OE6 C
12,22 DEC C
4.16*01 CMS
.002 M
• 12.00 DEG C
30.0 «
12.00 OtG C
SURFACE HEAT EXCHANGES
QMS
Un
Ot
OC
SYSTEM OUTFLOWS
NO '
1
5.156-02 KL/M2/S
7, 160-02 KC/M2/S
8.76H-02 KC/H2/S
1,156-02 KC/«2/S
5.00«-0t Kt/M2/S
ELEM ELfcV FLOW
i«2 21.0 719.25
TEMP
12.00
OhN GRAD
0.000
-------
DEEP RESERVOIR MODEL
O
Ox
NO
1
z
3
4
5
6
7
6
9
10
11
12
13
11
IS
16
U
18
19
20
21
22
23
21
'25
26
27
28
29
30
31
DRM SIMULATION OF- LONG LAKt--ONE TURUINL INTAKE—JUNE THRU NOV 1971
SYSTEMS CUNTRUL INC
SUMMARY OK OUTPUT FOR SIMULATION DAY 152 EXECUTION INTERVAL 2
ELEVATION TEMP OEG C TE«P DEt; F HO«Z OUT MORZ IN RATE OF
.0
1.0
2.0
3.0
1.0
5,0
6.0
7.0
B.O
9.0
10.0
11.0
12.0
13.0
11.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
21.0
25.0
26.0
27.0
28,0
29.0
30.0
12.0000
12.0000
12.0000
12.0000
12.0000
12.0001
12.0001
12.0001
12.000.2
12.0002
12.0003
12.00 OS
12.000*
12.0011
12.001 I
12.fl02'j
12.0037
1P..OOS4
12.007S
12 . 0 1 0 /
12.015,!
12.0215
12.0302
12.0121
1,>.C579
12.0/B'i
12.101")
12.1351
12.1681
12.19/2
12.2190
53.6000
S3. 6000
S3. 6000
S3. 6001
S3. 6001
S3.60P1
S \ , t> II 0 1
S3. 6002
S3. 6003
53.6001
S3. 6006
53. 6009
S3.ti(MiJl-OB
3.3U6-08
5.04J-OB
7.530-OB
1.127-07
1.227-07
2.101-07
2.V«b-.07
1.126-07
5.7b6-07
7.^67-07
1.090-C6
1.170-06
1.9(10-06
2.1HB-06
'3. OSS-Ob
3.197-00
3.501-06
2.1U6-06
1.1S7-06
0.000
2,500-01
2. 500-01
2.500-01
2i500-01
2.500-01
2.500-01
2.500-01
- 2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2.500-U~1
2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2.500-01
2,500-01
2.500-01
2.SOO-01
2.500-01.
2.'500-01
2.500-01
2.500-01
2.500-01
.00
.00
.00
.00
.00
.00
.00
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.02
.02
.01
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
,10
.10
-------
ELEMENT CONCENTRATIONS FOR DAY Ib2
EXECUTION INTERVAL
M
O
-vl
ELEMENT
NUMBER
1
2
3
(1
b
6
7
U
9
10
11
12
13
14
lb
16
17
18
19
20
21
22
23
24
2b
26
2/
28
29
30
31
* INDICATES SUM
DO
BOD
CMG/L) CMG/L)
6.74
7,83
8.04
8.13
8.19
8.23
8.2b
8.27
8.29
8.30
8.31
8.32
8.32
H.33
8.33
8.34
8.34
8.35
8.3b
8.35
8.35
8.36
8.36
8.36
8.36
8.36
8.36
' 8.37
8.37
8.39
9.13
TOTAL OF
2.66
1.23
.97
.84
.77
,72
.68
.66
,64
.62
.61
.60
.59
.58
,58
.57
.57
.56
,b6
ibb
.bb
.bb
,b4
.54
.54
.54
.53
.53
,53
,b3
,b2
NH3-N
CMG/L)
,01«3
.0106
.0099
,0096
.0094
.0093
.0092
.0091
.0090
.0090
,0090
.0089
.0089
,0089
.00*9
.0089
.0089
.0088
.0068
,0088
.00*8
.0088
.0088
.OOH8
.0088
, noGrt
.OOHH
.0088
.0008
,0088
.OOHi
THE NITROGEN
N02-N
CMG/L)
.0003
.0003
.-0003
.0003
.0003
.0003
.0003
.0003
.0003
,0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.000*
.0003
.0003
.0003
.0003
N03-N P04-P PHYTO CCLlFORNS
CMG/L) c
.2770
.2770
.2770
,2770
.2770
.2/70
.2770
.2/70
.27/0
,27/0
,2770
.2770
.27/0
.2770
.•2770
.2/70
.2770
.2770
.2770
.2//0
.27/0
.2765
.2762
.2758
.2751
.2740
.2/22
.2694
.2647
.2b76
.2405
IN CONSTITUENTS
MG/L) CMG/L) cc.PN/ioo)
.0121
.0089
.0083
.0080
.0079
.00/8
.0077
.00/6
.0076
.00/6
.0075
.0075
.0075
.00/5
.0075
,0074
.00/4
.0074
.0074
.0074
.0074
.0074
.0074
,0074
.0074
.00/4
.0074
.00/4
.00/4
.0074
.0073
BEING
,0000
,0000
.0000
.0000
.0000 •
,0000
,0000
.0000
.0000
.0000
;oooo
,0000
,0000
.0000
..0000
,0000
,0000
,0000
.0000
.,.0000
,0000
,0000
,0000
.0000
.0000
.0000
.0000
,0000
,0000-
,0000
.0000
nODtLED
751.2
754.2
754.2
754.2
754.2
754.2
754,2
754.2
754.2
754.2
754,2
754.2
754.2
754.2
754.2
754,2
754,2
754.2
754.2
754,2
754,2
754,2
754.2
754.2
754.2
754.1
754.1
754.0
754.0
753.9
752.9
EXCEEDS
HMt MM2
HM3 TOT N
CMLOR
HMI1
HMI2 HHIJ
CMG/L) CMG/L) CMG/L) CMG/L) CMG/L) CMG/L) CMG/L) CMG/L)
.053
.053
,053
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
.052
,052
.052
.052
• OS2
.052
.052
.052
.052
.052
.052
.054
.048
THE TOTAL
.000
.000
,000
,000
.000
,000
,000
,000
,000
,000
.000
.000
.000
,000
,000
.000
.000
,000
.000
.000
,000
.000
.000
,000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
,00'0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.014*
,014*
,014*
.014*
.014*
.014*
.014*
,014*
.014*
. .014*
.014*
.014*
.014*
.014*
.014*
,014*
.014*
.014*
.014*
.014*
• .014*
.014*
.014*
.014*
.ill 4*
.014*
,014*
.014*
.014*
.014*
.014*
.000
.000
.000
.000
.000
.0.00
.000
.000
,000
,000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
NITROGEN BEING MODELED AS
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
•»ooo
.000
.000
.000
.000
' .000
.000
.000
.000
.000
.000
,000
.000
.000
,t)00
,000
.000
.000 .000
.000 ,000
.000 .000
.000 -.000
.000 .000
,000 .000
,000 ,000
.000 ,000
,000 ,000
.000. ,000
,000 ,000
,000 .000
.000 .000
.000 ,000
,000 ,000
,000 ,000
,000 ,000
,000 .000
.000 .000
.000 ,000
,000 .COO
,000 ,000
.COO .000
.000 ,000
i 0 0 0 .000
.000 .000
.000 ,000
.000 ,000
,000 ,000
.000 ,000
,000 ,000
A CONSERVATIVE,
-------
TLHCf.RATURE VERSUS DEPTH FOR JULIAN DAY 152
METFRS
ABOVE
BOTTOM
O
00
40.000 I
I
I
I
I
I
I
I
I
I
32.000 -
I
I
I
I
I
I
I
I •
I
20.000 -
I
I
I
I
I «
I »
I *
I *
I*
16.000 -»
I*
»
*
*
ttttttt
*«»»»
8.000 *
.000
...I
12.0
I
... I —
12.2
... J —
12.2
..-I —
12.1
— I
12.4
12.2
WATER TEMPERATURE » DEGREES CENTIGRADE
12.3
12.3
-------
DEEP RESERVOIR KOBEL
DRM SIMULATION OF LONG LAKE—ONE TURBINE INTAKE—JUNE THRU NOV 1971
STSIEMS CONTROL INC
SUMMARY OF OUTPUT KOR SIMULATION BAY 200
EXECUTION INTERVAL
GENERAL SYSTEM INFORMATION
RESERVOIR F.LEVATION ' J0,h2 M
SURFACE ELEMENT 1.62 M
TOTAL SYSTEM INFLOW 122.3 CMS
TOTAL SYSTEM UUTFLOW 101.9 CMS
ELEV THtKMOCLIHC 25.0 M
[)0*NSTKt*M UHC 17,"1 DFG C
RETENTION U«E 23,9 DAYS
SURFACE AIR TEMP
SURFACE NATE8 TtMP
EVAPORIZATION HATE
CULM EVAPORIZATION
INHLOW TEMPERATURE
LOWEST MIXED ELtv
OBJECTIVE TF.MP
26.66 OEG C
20.71 OEG C
9,87-01 CMS
,206 M
18.31 DEG C
29.0 M
18,31 DIG C
SURFACE HEAT EXCHANGES
(JNA
OE
OC
7.S11-0/1 KC/M2/S
6,r/U'(-0«! KC/M2/S
9.730-02 KC/M2/S
3.051-0? «t/l«2/S
-6.7U/-OS KC/M2/S
SYSTEM OUTFLOWS
NO
i
ELEM
22
CLbV
21.0
F'LOW
111.B7
TEMP
17. "I
DEN GRAD
-------
DEEP RESERVOIR MODEL
ORM SIMULATION OF LONG LAKE--ONE TURBINE INTAKE—JUNE THRU NOV 1971
SYSTEMS CONTROL INC
NO
1
2
3
II
5
6
7
8
9
10
11
1Z
13
11
15
16
1?
18
19
20
21
22
23
21
25
26
27
26
29
10
SUMMARY OF OUTPUT (-OR SIMULATION DAY 200
ELEVATION
.0
1.0
2.0
3.0
1.0
5.0
6.0
7.0
a.o
9,0
10.0
11.0
12.0
13.0
11.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
. 22.0
25. 0
25!o
26.0
27.0
28,0
29.0
TEMP
15.8257
15.826?
15.8283
15,8306
15.K337
15.83/1
15.8U19
IS.80/0
15,8552
15.8661
15.8813
15.9023
15.9310
15.9701
16,0233
16,0953
16.1910
•6.31/6
16.0785
16.67'18
16.9070
17.8U56
.18.266,!
l8.7b01
19 . '( 0 3 /
19.8U05
20.3111
20.7107
UMP PEG F
60.0H62
60.0910
60.09')2
60.5006
60.5073
60.515'J
60.5393
60.5509
60.5B6U
60.6212
60.6759
60.7165
60.8020
60.9715
61. lau'b
61.3717
61 .0609
62.01U7
62.0326
62.9191)
63.87911
60.1221
hll.8792
65. 76H2
6&.7U67
67.7129
68.5600
69.27'M
HORZ OUT
.0000
.0000
.0000
.0000
.oooc
.ococ
.1)000
.nooc
.nooc
. o c o o
. (I C 0 0
.0000
.0000
.0000
,0000
.0000
9,<>U17
10.S32B
11.1239
11.7119
12.3060
12.^971
EXECUTION INTERVAL
HORZ IN
10.0/93
10, (,703
15.261U
RATE OF CH5
DIFF COEF
ViR HAR
.0000
.0000
• 0000
.0000
.0000
,0000
.0000
.0000
.0000
,0000
,0000
.0000
.0000
,0000
,0000
.0000
.0000
.0000
,0000
.0000
.00-00
.0000
.0000
.0000
.0000
12.1675
12.7007
13, 2339
13.7671
10.3003
10.8335
15.3667
25.9597
3.SH6-07
3.538-07
3.19U-07
3,551-07
3.533-07
3.509-0/
3.571-07
3. n 92- 07
3.511-07
3.557-07
3.62i|-07
3.7/1-07
3.910-07
0.1VB-07
0,566-07
5.286-07
6.006.07
6. Ob6-07
1.000-06
1.301-06
1 .820-06
2.010-06
3.122-06
3.662-06
0,177-06
IS. /36-06
5. 265-06
5,919-06
6,959-06
7,398-06
0.000
2.500-01
2,500-01
2.500-01
2.500-01
2.500-01
2.50U-01
2.500-01
1.V50-01
1.503-01
1.219-01
9. 760.02
7.857-02
6.323-02"
5.103-02
0.132-02
3. 3V/- 02
2.7*5-02
2.329-02
1. 996-02
1.77/-02
1 .616-02
1 .062-02
1.238-02
1.107-02
9.506-03
8.603-03 '
B.OUb-03
9.065-03
1.109.02
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
,00
.00
,00
,00
,00
,00
.00
.08
.12
,15
.19
.22
.22
.21
.21
.20
.20
.19
.15
,07
,00
,00
.00
.00
.00
.o'o
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.0
-------
.ELEMENT CONCENTRATIONS FOR UAY 200
EXECUTION INTERVAL
ELEMENT
NUMBER
1
2
J.
.2276
.2225
.2185
.2091
.1811
.1170
.11"2
.OK6B
.0621
.0515
.0195
.0151
,0"16
.0383
,0552
,0311
,02/7
.0258
.025'!
. Oeu6
,0213
.0238
.0231
.0230
.0227
.0223
.0215
.0204
.0177
.0109
TMt NITHOIiEN
N02-N
(MK/L)
.0099
.0135
.0151
.0159
.01H1
.0207
.0206
.0101
.OlhS
.U115
.0132
.0121
.0114
. (i 10 1
.0096
.OOU6
.0076
.0073
.0074
.,0075'
.0078
• 007/
.OOHO
.0079
.0078
.0077
.00/5
.0072
,0067
.0059
N03-N
(MG/L)
.9587
.9616
.964 1
,9/01
.9818
.0029
.0295
.0163
.0580
.0671
.0673
.0/19
,0726
.0738
.07/0
,0312
.9195
.91 /8
.9255
.9329
.9353
.8918
.8690
.8111
.7522
,6t-Sl
.5330
.39/6
.2292
.0106
P01-P
(MG/L)
.0611
.0631
.063/
.0637
.0603
.05/S
.0559
.0505
.0163
.0127
.0101
.0383
,0367
.0351
.0337
.0320
.0306
.0301
.0302
.0305
.0309
.0310
.0313
.0313
.0313
.0313
.0312
.0312
.0311
.0309
IN CUNSIITUtNTS bEING
PH1TTO
(MG/L)
.0000
.0000
.0000
.0000
.0000
.0000
.0000
• 0000
.0000
.0000
.0000
.0000
.0000
. 0 0 0 II
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.000(1
.0000
.0000
. o'o o o
.0000
.0000
.0000
.0000
.0000
COLIFORMS
(MPN/100)
682.7
682.7
682.6
688.9
695.1
703.8
713.0
722.5
752.1
78B. 3
796,2
826.8
B.42.1
838.1
667,7
879,8
919,0
988.5
1068,9
1150.2
1262,6
1283. B
1368.3
1366,1
1358.8
1315.9
1331.1
1321.0
1313.6
1311.8
MODELED EXCEEDS
MM!
(MG/L)
.216
.206
. 191
.ICB
.185
.183
.181
,180
.179
.178
.1/7
.1/7
.1/6
.1/5
.173
.169
.166
.161
' .161
.162
.160
.1S9
.157
.156
.156
.156
.154
.119
.111
.105
MM2
(MG/L)
• 000
.000
.000
.000
.000
.000
,000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
'.000
.000
.000
,000
,000
.000
HM3 TOT N CMLOR
(MU/L) (MG/L) (MO/L)
.000 .036* .000
.000 .036* .000
.000 .036* .000
,000 .036* .0.00
,000 .036* ,000
.000 .037* .000
.000 .037* .000
.000 .037* ,000
.000 .038* .000
.000 . .010* .000
.000 .010* .000
.000 .011* .000
.000 .011* .000
..000 ,OH» .000
.000 .012* .000
.000 .013* .000
,000 ,011* ,000
,000 .015* .000
.000 .01/* .000
.'000 .018* .000
.000 .019* .000
.000 .019* .000
.000 .050* .000
,000 .050* .000
,000 .050* ,000
,000 .US'O* .000
.000 .050* .000
.000 ,050* .000
.000 .050* .000
.000 .050 .000
THE TOTAL NITROGEN BEING HODfcLED AS
HMI1
(MG/L)
.000
.000
.000
.000
.000
.000
.000
,000
.000
,000
.000
.000
.000
.000
- ,000
.000
.000
.000
.000
.000
.000
.000
,000
,000
.000
.000
..000
.000
-.000
,000
HMI2
KMIJ
(MCi/L) (MG/L)
.000
.000
,000
.000
.000
.000
,000
,000
.000
.000
.000
.000
.000
.OJfl
.000
.000
.000
.000
.000
-.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
• 000
.000
,000
• 000
• 000
.000
• 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
• ooo
,000
.000
.000
.000
.000
.000
,000
.000
.000
.000
A CONSERVATIVE.
-------
TEMPERATURE VERSUS DEPTH fOR JULIAN DAY 200
METEKS
ABOVE
BOTTOM
110.000 I
I
I
I
I
I
I
I
I
1
32.000 -
I
I
I
I
I
I
I
I
I
21.000 -
I
I
I
I
I
I
I
I
I
16.000 -
I
I
I
I
I
I
I
I
I
8.000
.000
******
*****
»*
***
**
I I..- .1 !--
I6.o 16.a 17.6 16, a
-I— I— I i—
1.2 30,0 20.8 21.6
1
21.2
HATER TEMPERATURE » DEGRfctS CENTIGRADE
-------
DEEP RESERVOIR MODEL
OHM SIMULATION OF LONG LAKf.--ONE TURBINK INTAKE—JUNE THRU NOV 1971
SYSTEMS CONTROL INC
SUMMARY OF OUTPUT FOB SIMULATION DAY 2«0
EXECUTION INTERVAL
GENERAL SYSTEM INFORMATION
RESERVUIR EUYATION Jl.11 M
SURFACE ELEMENT 1.11 M
TOTAL SYSTEM INFLOt, 68.5 CMS
TOTAL SYSTEM OUTFLO* si.i CMS
ELtV TNERMOCLINE 11.0 M
00*NSTRtAM 1t«H 19.bO IHG C
RETENTION TIME 51.1 DAYS
SURFACE AIR TEMP
SURFACE WATER Tt'MP
E'/APORIZATION RATE
CULM EVAPORIZATION
INFLOW TEMPERATURE
LOWEST MlXEU bLtV
OBJECTIVE TfMP
214.41 DtG C
20.17 DtG C
9.1S-01 CMS
,185 M
19,13 OEG C
30.0 M
19,13 DtG C
SURFACE HEAT .EXCHANGES
UNS
UNA
Uw
WE
QC
b.Jbb-02 KC/M.2/S
B.bbt-OZ KC/M2/S
9.701-02 KC/M2/S
2.872-07 KC/M2/S
SYSTEM OUTFLOWS
NO'
1
ELEM
22
ELEV
21.0
FLO'1
TEMP
DEN GRAO
a.210'02
-------
DEEP RESERVOIR MODEL
NO
1
2
3
4
b
6
7
8
9
10
11
12
13
i"
lb
16
17
IB
IV
20
21
22
23
24
25
26
27
28
29
30
31
DRM SIMULATION OK LONG LAKE.—ONE TURBINE INTAK£--JUNt THRU NOV 1971
SYSTEMS CONTROL INC
SUMMARY Oh OUTPUT FOR SIMULATION DAY 210 EXECUTION INTERVAL 2
ELEVATION TEMP DEG C TEMP DEG ^ HOHZ OUT HORZ IN RATE OF CHG
• 0
1.0
2.0
3.0
4,0
5.0
6.0
7.0
H.O
9.0
10.0
11,0
12.0
13.0
14,0
lb.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26,0
27.0
28.0
2«.0
30.0
17.6822
17.684(1
17.6917
17.7007
I7.716b
17./420
17.7B01
17.B337
17.90-ib
17.9973
18. 10'fh
18.2413
16.369,!
18.B/6U
19.023S
}9.1V1,>
19.2/11
19.3779
19,4800
19,6947
19.H14B
19.9UOO
20.1427
20.1U32
20.1859
20.16H7
63.8279
63.8312
61.84bO
63.8612
64.0041
64.1007
64.2300
64.39S2
64.59/3
64.8(45
6b.10P6
65.3878
65.9768
66.47/6
66.6880
66.8802
67.0639
67.2508
67.6667
67.B920
68.1022
68.2569
68.3298
6B.334S
68.3036
.OOCO
.OUCO
.0000
.OOCO
.0000
.0000
.ooco
.0000
.OOCO
..OOCO
.0000
,0000
.ooro
.0000
,0(1 CO
.0000
.0000
4.9335
5.21P4
5,4672
5.7641
6.0410
6.317B
6.59H7
6,a7i5
7.1«»4
,0000
,0000
."0000
.0000
,0000
DIFF COEF
VAR
HAR
.0000
.0000
.0000
.0000
.0000
.0000
• 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
4.8022
5. OS/7
5,3732
5.6b87
5.9442
6.2297
6.b|i3
6.8008
7.U863
7.3718
7,6573
.0000
.0000
.0000
.0000
6.271-07
6.196-07
6.192-07
6.018-07
5.866-07
b. 698-07
b ,4bS-07
5,261-07 .
4,991-07
4.672-07
4..317-07'
3.860-07
3. 412-07
2.6<>7-07
2.522-07
2. '537-07
2.7lb-07
2.1bo-07
.1.907-07
1.9/7-07
2.007-07
3.260-07
4.164-07
5 .H^J-07
8,330-07
1.226-06
1.832-06
2,208-06
2.5BC-06
2.878-06
1.929-06
0.000
2,500-01
2.500-01
2.500-01
1.573-01
11056-01
7. 564-02
5.686-02
4.461-02
3.619-02
. 3.030-02
2.613-02
2.321-02
2.12b-02
2.00i-02
1.9bl-02
1.973-02
2.CS7-02
2,26b-02
2,474-02
2.6o5-02
2.770-02
2.760-02
2.64-J-02
2,501-02
2.4bi!-02
2.6bo-02
3.519-02
6.706-02
2.500-01
2.500-01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.CO
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.04
.04
.03
,03
.03
.00
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.00
.00
.00
.00
-------
EL.EMt.NT CONCENTKATIONS FOR DAY J»«0
EXECUTION INTERVAL
ELEMENT DO BOD
NUMBER CMG/L) CMG/L)
1 .00 268.71
Z .00 103.39
i .00 61,38
4 .00 11.61
S .00 32. b3
6 .00 21.56
7 .00 18.91
6 .00 11.62
9 .00 11,23
10 .00 8.15
11 .00 6.31
12 .00 1.10
13 ,00 2.97
11 .00 1.65
Ib .2b .65
16 1.52 ,17
17 2.19 ,51
IB 3.61 .51
19 1.91 .52
20 5.56 .bl
21 b.76 ,52
22 b,66 ,b6
23 5,90 ,56
21 ' 5,92 .55
2b 5,91 .51
'26 5.95 ,b3
27 b.97 .52
28 5.9b .13
29 6. J3 .12
30 6.72 .11
31 8.32 .38
NH3-N
CMG/D
.22/9
.2229
.2189
.2097
.182S
.1187
.1200
.1092
.1021
,0980
.0930
.0891
.0851
.0821
, 068b
.0181
.0367
,0331
.,0298
.0278
,Or'/3
,02//
,02/6
.0271
.02/2
.0271
.0269
,0261
.0257
.0230
.0122
INDICATES SUM TOTAL OF THF NITKOGKN
N02-N NOS-N POI-P PHYTO CCLIFORMS
CMG/L)
.0099
.01 3b
• Olbl
.Olb9
.0181
.0206
, {j^QS
.Olhl
,0166
.01S3
.0112
.01 41
.0120
.0110
, I) 0 9 f
.OOVM
.0101
.0097
.0086
.IIO'lO
.UO/8
.0079
,0079
.00/9
.00/9
.00/9
.0079
.0076
.00/1
.0068
.0053
CMR/L) CMG/L) CMG/D CKPN/IOOJ
.9611
.9670
.969b
.9/57
.9869
1.00/6
1 .0348
1.0b06
1 .0618
1.0878
1.0999
1.1203
1.1301
1.1153
1.1569
1.1131
1.1311
.9951
.7616
,6'470
.6200
.61bl
.6121
.6296
,608/
.5762
. 5265'
,10"9
.2886
.1220
.0022
IN COMSUTUtNTS
.0611
.0631
.0636
.0636
.0603
.0573
.0559
.0551
.0552
.0555
.0555
.0555
,0bb5
•.0556
.0531
.0169
.0136
.0117
.0109
.0101
.0102
.0395
.0391
.0393
.0393
,0392
.0392
.0399
.0398
.0398
,0396
bFING
.0000
.0000
.0000
.0000
.0000'
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.01100
.0000
.0000
..0003
.0000
.0000
.0000
.0000
.0000"
.0000
.0000
MODELED E
56,9
56,9
56.8
57,1
57. «
57.7
bB.O
SB. 2
5B.1
60.1
60.3
86.7
87.2
117.5
1 16.9
3bf ,7
631.2
756.6
801.3
B2b.3
050.1
913. b
9b8.6
95B.O
956.1
951.6
950.6
810,5
835,7
836.2
837.6
•.XcEtDS
HM1 HM2
HM3 TOT N
CHLOR
HMII
HMI2 HMIJ
CMG/L) CMG/L) CMG/L) CKG/L) CMG/L) CMG/L) CMG/L) CMG/L)
.267
.213
,198
.190
.186
.183
,131
.1/9
.178
.176
.173
.170
.166
.160
.IbO
.136
.126
.113
.103
.099
.098
.099
.099
.099
,099
,099
, C99
,097
.091
.087
.061
THt TOTAL
.000
.000
.000
.000
,1)00
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
..000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.037*
.037*
,037*
.037*
.037*
.037*
.03d*
.058*
.030*
.010*
.010*
.012*
.012*
.013*
< 0 1 " *
.Obi*
.056*
.061*
.068*
.070*
.070*
.072*
.072*
.072*
.072*
.072*
.072*
.071*
.070*
.070*
.070
.000
.000
.000
,000
.000
.600
.000
.000
.000 •
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.!>00
.000
.000
.000
.000
NlTROGlN BtlMG MOOfcLLC AS
.000
.000
.coo
,oco
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
-.coo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
A C
-------
TEMPERATURE Vt«SUS DEPTH FOR JULIAN DAY 2
-------
DEEP RESERVOIR MODEL
DRM SIMULATION OF LONG LAKE--ONE TURBW INTAKE —JUNE THRU NOV 1971
SYSTEMS CONTROL INC
SUMMARY OF OUTPUT FOR SIMULATION DAY 333
EXECUTION INTERVAL
GENERAL SYSTEM INFORMATION
RESERVOIR HE'VATIdN 31,18 M
SURFACE ELEMtNT 1.18 M
TOTAL SYSTEM INFLOi, - 119.b CMS
TOTAL SYSTEM OUTFLUh IJO.b CMS
ELEV THCRMOCLINt 30.0 M
OO'-NSmAM H «>' (J.ftb Of'G C
RETENTION tint 27,« DAYS
SURFACE AIR TEMP
•SURFACE WATER TEMP
EVAPORIZATION RATE
CULM EVAPOH1ZATION
TEMPERATUF-E
WEST MIXED ELtV
OBJECTIVE TtMP
.56 DEC C
H.8J DEC C
1,53-01 CMS
.ena M
'/.ill DEC C
.0 M .
7,21 BEG C
SURFACE MFAT F.XCHAN«S
UNS
UNA
On
Ofc
QC
«.<)53-OJ KC/M2/S
b.OIS-OS KC/M2/S
1.6H1-03 KC/M2/S
3./16-03 KC/M2/S
SYSTEM OUTFLOWS
NO
i
ELtV
21.0
FLOW
130,5«
TEMP
«.85
OEN GRAD
-1.119-oa
-------
00
NO
1
z
3
4
5
6
7
8
9
10
11
12
13
11
15
16
17
18
19
20
31
22
23
. 21
25
26
27
28
29
30
31
DEEP RESERVOIR MODEL
DRH SIMULATION OF LONG LAKE--ONE TURBINE INTAKES-JUNE THRU NOV 1971
SYSTEMS CONTKOL INC
SUMMARY OF OUTPUT FOX SIMULATION DAY 333 EXECUTION INTERVAL 2
ELEVATION TEMP UEG C TtMP Df.G F HOK't OUT HORZ IN RATE OF CHG
.0
1.0
2.0
3.0
fl.O
5.0
6,0
7.0
e.o
9.0
10.0
11,0
12.0
13.0
11.0
15.0
16.0
17.0
!«.0
19.0
20.0
21.0
22.0
23.0
21.0
25.0
26.0
2/.0
28.0
29.0
30.0
1.8293
0.8293
1.8293
1.8293.
1.B293
1.B29J
1.CV93
1.B291
1.»293
1.B293
1.8,593
1.«293
1.P293
1.829.5
1.S293
1.8293
1.8293
10.6928
10.6928
10.6928
10.6928
10.692B
10.h9,!8
10.6928
in.6928
10.6928
10.6928
10.6928
'40.6928
1U.69^H
10.0938
10.09^8
10.6928
10.6928
10.69
-------
ELEMENT CONCENTRATIONS FOR DAY 3J1
EXECUTION INTERVAL
VD
SLtMENT
NUMBER
' 1
2
3
a
b
6
7
e
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
? /
26
29
30
31
INDICATES
00 BOD
IMG/L) (MG/L)
8.18 2.11
8.S2 1.37
8.59 1.22
8.62 .15
6.63 .11
8.64 .09
8.65 .07
8.66 ,05
B.66 .04
6.67 .03
8.67 .03
8.67 .02
8,68 .02
8.68 .01
8,68 .01
6,68 ,01
8.68 ,00
8,68 ,00
8,68 .00
8.68 I. 00
8,69 1,00
6,69 ,99
8.69 ,99
8,69 .99
6.69 .99
8,69 ,99
8.69 ,99
8,69 ,99
B.69 ,99
8,69 ,99
9.26 ,97
NH3-N
(MG/L)
,0474
.0460
.0458
.0457
.0456
.0455
.0455
.0455
.0455
., OU5«
,0454
.0454
.0454
,045J
, 0 u 5 4
.0454
.0454
.0454
.nasi
.0454
.04511
.0454
.0454
, 045<4
.0454
.0454
.0454
• 0454
,0454
.0454
.0449
SUM TOTAL OF TMh NITKOMN
N02-N K03-N H04-P PHYTO COLIFONMS
(MG/L) (MG/U (MU/L) (HG/L) (MPN/IOO;
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.009)
.0091
.0091
.11091
.0091
.0(191
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.0091
.U091
.0091
.0091
.0091
.0091
1.2/15
U2715
1.2715
1.2715
1,2/15
1.2715
1.2715
1.2715
1.2715
1.2715
1.2715
1.2715
1.2/15
1.2715
1.2715
1.2/15
1.2715
1.2715
1.2715
1.2/15
1 .2715
1.2/09
1 .2/06
1.2/01
1 .'V2
1 . 2o79
1 . 2f>'>8
1 .2025
1.25/2
1 ,2488
1 . 2/^9
IN CO^ST JT.ILNTS
,0429
.0413
.0410
.0409
,04(18
,0408
.0407
.0407
.0407
.0407
.0407
.0406
, 0 4 0 6
,0406
,0406
.0406
.0106
.0106
.0406
.0406
,0406
.0406
.0406
.0406
.0406
.0406
.0406
.0406
.0406
.0406
.0405
BE INC,
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.OOOU
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
• 0000
• oooo
.0000
.0000
.0000
.0003
.0000
.0000
MODELED
830.7
830.7
830.7
830.7
630.7
830.7
630.7
830. 7
B30.7
630. /
830.7
830.7
8S0.7
830.7
H30.7
630.7
830.7
S30.7
8^0.7
830.7
830.7
830.7
830.7
830.7
630.7
H30.7
630.7
630.7
630.7
830.7
831.1
EXCttOS
HM1 MM2 Mh3 TOT N ChLOR HMI1 HM12 MMI3
(MG/L) (MG/L) (MG/L) (MG/L) (MU/L) (MG/L) (MG/L) (MG/L)
.094
.093
.093
.093
.093
.093
.093
.093
.093
.093
.093
.093
.093
.093
,OV3
.093
.093
.093
.093
.093
.094
.093
.093
.093
.093
,09?
,093
,093
,093
,095
.068
THE IOTAL
,000
,000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
,000
,000
.000
.000
.000
.000
,000
,000
.000
.000
,000
,000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
,000
,000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
,000
.000
.000
.000
.000
.000
.000
.000
.000
NITROGEN BL
.140*
.140*
.140*
.140*
.140*
.140*
.140*
.140*
,140*
.140*
, 140*
.140*
.140*
.140*
, 1«0*
'.140*
.140*
.140*
.140*
.1«0»
.140*
,140*
.140*
.140*
. 140*
.140*
,140*
,140*
,140*
,nc*
.140*
.000
.000
.000
.000
.000
.900
.000
.000
,000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
NU MODtLLO AS
.000
.000
.000
.000
• 000
.000
.000
.000
.000
.000
.000
.000
.000
.000
".000
,000
,000
.000
,000
.000
.000
.000
.000
,000
.000
.000
.000
.000
,'000
.000
.000
.000 .000
.000 ,000
.000 .000
.000 ,000
.000 • .000
,000 .000
.000 .000
.000 ,000
,000 ,000
,000 .000
.000 .000
.000 .000
.000 .000
.000 ,000
,000 ,000
,000 ,000
,000 .000
,000 ,000
.000 .000
,090 .000
,000 ,000
.000 .000
.000 .000
,000 .000
.000 .000
.000 .000
.000 .000
.COO .000
.000 ,000
.000 .000
•cuo ,000
A CONSERVATIVE.
-------
TEMPERATURE VERSUS DEPTH FOR JULIAN DAY. S31
Ni
o
ao.ooo i
i
12.000
21.000
METERS
ABOVE
BOTTOM
16.000
e.ooo
.000
.1.
.1 ....!.
• i.
1.0 2.0 4.0 1.0 b.O
• WATER TEMPERATURE » DEGREES CENTIGRAOt
6.0
..I..
7.0
— I..
8.0
.-I-.
9.0
— -.I •
10.0
-------
OUTFLOW TtMPtKATURtS (CtNTJCRAOt)
DAY
152
159
166
173
180
187
1911
201
20»
215
2i-2
229
236
213
250
257
261
271
278 -
265
2«2
299
306
313
320
327
331
TtMC
12.00
12,77
13.65
15.95
16.07
16.00
16.20
17.67
19.21
20.11
20. 09
19.90
19. 20
19. i9
17.87
17.13
1S.«0
11. /7
11.02
13.75
11.52
9.B1
7.66
6.25
5.90
5.36
ft. BO
DAY
153
160
167
17«
181
188
195
202
209
216
223
230
237
211
251
2r>B
265
272
279
286
293
300
307
311
321
328
TENC
12.07
12.87
13.87
16.33
16.19
15.78
16.36
17.80
19.10
20.23
20.50
19. P6
19.29
19.11
17.81
16. VS
15.78
11.53
11.08
43. 5'1
11. 1U
9.10
7.17
6.22
5.B2
5.25
DAY
15«
161
168
175
1B2
169
196
203
210
217
21
231
238
215
252
259
266
275
2bO
287
?91
301
JOB
315
322
329
Tt>'H
12.00
13.03
11.11
16,31
16.32
15.91
10.56
18.05
19, S6
20.10
20.51
1 9 . IH
19. J7
18.61
17. 7«
16.72
15. /3
11.31
11.10
15.09
10.91
9.02
/.21
6.21
5.70
5.17
DAY
155
162
169
176
183
190
• 197
200
21 1
218
225
252
239
216
253
260
267
271
281
288
2<'5
302
309
316
323
330
TEMP
12.07
13.05
10.12
16.38
16,33
16.01
16,77
18,31
19.69
20.35
20,19
19,87
19,01
18.22
17.76
16.11
' l'i.59
11.16
11.08
12.79
10.70
8,75
6.85
6.19
5.59
5,06
DAY
156
163
170
177
131
I'M
198
205
212
219
2,!6
233
2'IO
2.47
250
2ol
2ttfl
2/5
21)2
21(9
2'»6
303
310
317
321
3.11
.
TEMH
12.22
13,28
11.69
16.3?
16.39
16.06
17.03
18.57
19.81
20.38
20,12
19.71
19.50
16,17
17.67
16.31
15.37
11.06
10.05
12.36
10.61
8.18
6.61
6.13
5.56
1.97
DAY
157
160
171
178
185
192
199
206
213
220
227
231
211
218
255
262
269
276
2H3
290
29/
301
31 1
31B
325
332
TEMP
12.09
13.09
15.06
16.38
16.05
15.96
17,16
18.79
19,93
20.01
20.30
19. b9
19.53
16.10
17.10
16.23
15.20
13.97
10.02
12.01
.10. Ob
8.20
6,16
6.05
5.55
1,91
DAY
158
165
172
179
186
193
200
207
210
221
22U
235
212
219
256
263
270
zn
280
291
2-)8
30b
312
319
326
333
TtKP
12.73
13.55
15.02
16.22
16.36
16.03
17,11
19,01
20.05
RU.15
20.16
1 9.21
19.56
18.07
17.26
1/>,06
15.00
13.91
13.90
1 1.78
10.18
7.90
6.32
5.97
5.50
1.85
-------
L»KE OUTHUH CONCENTHATIONS
NJ
to
DAY
NUMBER
152
153
154
155
156
157
158
159
IhO
161
162
163
161
IbS
160
167
IhB
169
170
171
1?2
173
17a
17b
176
177
178
17'
180
1«1
1*2
1«3
IH4
185
JB6
187
IBB
ItW
15
|96
1"
196
199
200
201
202
203
FLOV,
(CFS)
71-J.ab
710. /6
70/.92
69h.6Q
696.60
679.61
637. 13
6 .4 1 . 4 /
60'" 90
6?2.9/
S8P.99
569.17
56h.3l
55r>.0l
54 4. <>9
bSb.Ol
532.36
VI. 03
5o9.7l
0 7 0 . 0 6
0 6 1 . 5 7
1124.75
010.60
419,09
J90.77
3l)/.9a
39(1.77
Jt-H.12
353.96
342.64
291.50
1/7.55
151.78
13-1.75
154.33
IhO. Hi
161. "1
161 .m
159.14
14/.53
176.13
17?. «5
14/.25
14h.68
IUH.IO
163.39
171.13
130.54
141.87
13«.19
113.27
114.97
DO
CMG/U
8.11
8.97
9.39
9.71
9.96
10. Ib
10.31
10. 42
10. "50
10.57
10.61
10.64
10.67
10.6*
10. 64
10.60
10. 58
10. 54
10. SI
10.17
10. "0
10.31
10.27
10.19
10.0'
9.98
9.88
9, 71
9.56
9.55
9.52
9.48
9. '40
9.30
9.19
9.18
8.19
8. HI
H.79
H.74
8.61
8.53
R.51
8.45
8,36
8,26
8.16
8.08
7.97
7.86
7,76
7.6U
BUD
CMG/U
• 57
.bl
.47
.11
.12
.40
.37
.37
.36
.36
.37
.36
.35
«3h
.36
.37
.37
..38
.37
.37
.38
.37
.37
. SB
.39
.10
• 11
.13
.16
»1U
.13
.11
.11
.11
.10
.37
.SO
.13
.11
.12
. .13
.13
.113
.13
.11
.Ib
.IS
.15
.15
.11
.44
.14
NH3-N
CMG/U
.0088
.0102
.0110
.0113
.0111
.0112
.0108
.0)05
.0102
.009/
.0091
.0089
.0081
.0081
.0061
.0083
,00«b
...Oli88
.0090
.0093
.0098
.0101
.OlOb
.0111
.0118
• 01?»
.ons
.01 ''6
.0162
.01*2
.016,;
.01*'
.0171
• OlHl
.01(13
.out
.0240
.n2ow
,0?OH
.0209
.0219
,0222
,mi>.i
,C12
.0214
N02-N
(MG/L)
.0003
.0006
.OOOB
.0
-------
NJ
ZOO
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
220
225
22*
227
2?8
229
230
231
232
23J
231
215
236
237
233
239
240
2«1
212
213
£44
245
206
217
218
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
122.05
111.00
122,90
111.29
107.60
103.07
91.75
92.03
69,38
77.31
61.73
65.41
75.89
76.17
76. U6
70.51
9.4.73
8H.07
71. 11*
68. S3
76. U6
76, 16
76.16
U0.1V
75.89
75.. 89
79. 57
6h.S3
56.35
2 .(.50
32.20
56.9J
45.61
65. 9U
7". 19
65. «1
51.37
60.32
71. 'Id
8'i.23
7H.H9
75.61
80.70
72. U9
5V. 18
77, B7
8''. 76
76.17
91.75
107. B<)
57.77
51. 82
109.59
95. 03
95.15
71.51
77.02
6'). 70
11.06
93.73
7. Si
7.38
7.25
7.13
7.01
6,89
6,78
6.68
6.57
6.117
6.37
6,27
6.18
6.09
6.00
5.91
5.«2
5.71
5.61
5.54
5.46
5.38
5.51
5.37
5.80
5.78
5.78
5.68
5,82
5.87
6.J9
6. Si
5.96
5.66
5.56
5.64
5.56
5.13
5.27
5.29
5.28
5.23
4,94
5.01
- 5.17
1.21
3.86
3.63
3.5B
3.23
3.19
5.26
5. 53
3.43
3.55
3.69
5.84
3.97
1.11
1.26
.13
.11
.43
.43
.44
.44
.45
.45
,46
.47
.18
.49
.51
.53
.56
.58
.5b
.64
.65
,66
.67
.69
.66
.69
.58
.SB
.57
.60
.55
.52
.17
.47
.48
.49
.49
.4'
.54
.56
.56
.51
• ufl
.54
.74
.73
,6B
3.47
2.9B
2.57
2.23
' .92
.74
.55
.40
.27
.17
.08
.01
.95
.90
.85
.0245
,02«6
.0246
,02«7
.0247
.0248
.0249
.0250
.0254
.0255
,0258
.0261
.0265
.0269
.0275
.0202
,0,'BJ
.0298
.0306
.0314
.0321
.0328
,.0315
.0329
.0277
.0279
.0281
.0290
.0270
.0278
.0242
.0241
.02hS
.11275
.02/8
.0277
.0282
.0289
,02«6
.Or1"/
.OJ03
.0342
.0399
.0»01
.0391
.0615
. 0 V 3 0
.0792
.0829
,0t)15
.01153
,0b4b
.0130
.0«ll
,0/fl1'
.0765
.0741
.0717
.0692
.0667
.0074
.0073
.0073
.0073
.00/5
.0077
.00/9
.0081
.0085
.0088
.0091
.0091
.0093
.0094
.0094
,009r.
.1)092
. 1)096
.-009S
.0095
.0095
.009S
.OOH9
.0091
.0077
.0077
.00/H
.0080
.00/7
.0078
.0069
.0070
.00/5
.007«
.0079
.00/9
.OOH1
.0084
.00«5
.00»3
• OOH2
.OCd/
.0098
.0104
.01-07
.0127
• 01«2
.0160
.0176
.0189
.0200
.0207
.0211
.0212
.0212
.0210
.0206
.0202
.0197
.0192
.B378
.8315
.8215
.817S
.8189
.8203
.8216
.8198
.8604
.8611
,8744
.8823
.8922
.9049
.9173
.9324
.9092
,960b
.9 MO
,9B«6
.9921
1 . OPOS
.9] <2
.9499
.7014
.6939
.Mi 7 2
.71 /2
.hlHi
.6.5'S
.4718
.4519
.5615
.Ml9o
..6^59
.6229
.6700
./ISO
.7519
.6b(3
,6^60
.hi 13
,6'.,59
.6603
.6S57
,7,'IS
.7331
.7464
.7405
.712/
.7S10
.7534
.7b7o
• 7h<42
.7/03
.7752
,7/Bh
.7B1B
.7844
.7844.
,0335
.0342
.0349
.0356
.0362
.0369
.0375
.0381
.0389
.0394
.0399
,0402
.0405
.0407
.0409
.0409
.0405
.0407
.0405
.0104
.0401
.0398
,0.494
.0391
.0392
.0392
.0392
.0390
.0395
.0395
.0398
.0398
.0400
.0402
.0403
.0401
.0399
• 039H
.0399
.0406
.0414
.0423
.0434
.0435
.0435
.0470
,01»H
.0502
.0514
-.0521
.0529
• 053S
.0538
.0540
.0541
.0542
.0542
.0542
.0541
.0541
.0000
.0000
.0000
.0000
.0000
.0000
,0000
.0000
.0000
.0000
.0000
.0000
•oooo-
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.'oooo
.0000
.0000
.0000
.0000
• 0000
.0000
.0000
.0000
.0(700
.0000
.0000
• 0000
.0000-
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.•noon
.0000
.0000
.0000
.0000
.0000
.0000
.nooo
.0000
.0000
1096,0
1070.9
1031.1
990.6
949.4
901.5
846.3
787.0
749.8
683.8
643.4
618,4
618,5
610.6
676,8
729.0
756.7
883.4
949.0
1011.8
1094.1
1183.0
1175.3
1284.8
1059.7
1067.3
.10/0.4
1131,5
1039.3
1008.8
895.7
900.2
881.9
861,3
«54,9
857.4
897.7
911.1
896. 3
806, j
/34.6
700,6
691,8
691.1
689,0
653.5
651.5
648.2
.b43.8
638.5
632.2
625.2
619.4
614.3
607.4
598.7
588.7
578.2
569.0
559. it
.155
,151
.153
.151
. 149
.117
.115
.143
.112
.119
.137
.135
.133
.131
.129
.128
.12/
.125
.123
.122
.121
.120
.116
.116
.108
.107
.106
.106
.103
.101
,095
.095
,098
,101
.101
.099
.100
.102
.102
.099
.099
.101
.105
.105
.101
.113
.113
.112
.112
.112
.111
.111
.110
.110
.110
.109
.109
.108
.107
.107
.000
.000
.000
.000
.000
.000
.000
tOOO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-.000
.000
.000
.000
... 0 0 0
.000
.000
.000
.000
.000
.000
.coo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.003
.000
.000
.000
,000
' ,000
,000
.000
.000
.000
-.000
.000
.000
,000
.000
.000
.000
.000
.'000
• .000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
,000
.000
.000
.000
.000
.000
.051
.051
.052
.052
.053
.053
.054
.054
.056
.056
.057
.058
.058
.059
.060
.061
.061
,063
.063
.064
.065
.065
,l'6S
.065
.063
.C63
.064
.065
.065
.066
.066
.067
.067
.067
,067
.069
.070
.072
,i)73
.072
.071
.071
.071
,072
.074
.0/2
.J/3
.075
.076
.078
.079
.oso
,0«2
.OH3
.085
.086
,088
.089
.091
.092
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
,000
.000
,000
...000
.000
.000
.noo
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.coo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,oco
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-.000
.000
.000
.000
.000
.00.0
.000
.000
.000
.000
.000
.000
.000
.'000
.'ooo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.oco
.000
.000
.000
• ooo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
,000.
.000
..000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.'000
.000
.oco
,000
.000
,003
.000
.000
.000
.000
.000
.030
.000
.000
.000
.000
.000
,000
.000
.000
.030
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
• 000
• ooo
• 000
-.000
.000
.000
.000
• 000
.000
• 000
.000
.000
.000
.000
.000
.000
• 000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
• ooo
• 000
• 000
.000
.000
• 000
• 000
.000
.000
.000
.000
• 000
.000
.000
.000
.000
.030
• 000
.000
.000
.000
.000
• 000
.030
.030
-------
260
265
266
367
268
369
270
271
Hi
273
274
275
276
2'/V
27H
27V
?HO
281
282
283
284
2«5
2 fib
267
2«B
289
290
291
292
2"3
291
295
29-,
297
298
299
300
301
302
303
301
305
306
307
30U
309
310
311
312
313
311
315
316
317
31»
319
320
321
322
323
99.11
77.02
84.10
81.10
61.10
66.08
91.01
82.10
83. Si
82.69
85.52
80.99
60.70
BO. 11
B3.H2
95.71
72.21
86.65
79.85
81.27
77.31
01. 2/
77.87
107. B9
79.00
80,99
73.15
92.31
83.25
79.57
63. bl
91. 5B
76.16
77.87
84.67
95.13
92.31
92.88
86.0«
76.|7
75.01
63.25
83.82
85.80
SH.hS
95.15
76.74
93,15
Vi. 30
92.31
93.15
86.08
10S.07
90.33
79.57
99.11
98.51
92.6S
102.22
105.31
a. 35
4.37
4.53
4,68
«.83
1.95
5.09
5.23
5.37
5.50
5.63
5.75
5.81
5.82
5.92
5. '<4
5.63
5.96
5.91
5,85
5.79
5.. 90
5.9B
6.09
6.21
6.32
6.1H
6,52
6.62
6.71
6.80
6.66
6.9S
7.01
7.12
7.20
7.27
7.31
7.1?
7.50
7.5B
7,66
7.71
7.82
7.BB
7.95
8.02
8.09
8.11
8.17
8. 18
8.16
8.15
6.12
8.17
8.20
8.25
8.30
6.35
8,10
.82
.79
.77
.75
.71
.72
.72
.71
.71
.71
.71
.71
.71
.70
.61
.62
.61
.59
.6U
.61
.71
.71
.73
.73
.73
.71
.71
.71
.75
.76
.76
.77
.77
.76
.79
.80
.80
.01
.62
.83
.HI
.85
.66
.87
.US
.119
.90
.91
.V2
.9?
.93
.91
,91
.95
.95
.95
.96
.96
.97
.97
.0611
.0623
.0601
.0582
.0563
.0517
.0531
.0517
.0501
,0192
.0182
.0172
.0161
.0156
.0111
.0131
,0"36
.0115
.0111
.0108
.0121
.0118
.0116
.0113
.0110
.0108
.0107
,0106
,0105
.0105
.0105
.0105
,0105
.0105
.0105
.0106
,0'iOf
,0«09
,0110
.0112
,OlM
.OH5
.0116
.OH/
,0119
.0121
.Oi^S
.0125
,042/
.0129
.0131
.0131
.0146
.0138
.0110
.0112
.0113
,0111
.0115
,0117
,0146
.0180
.0175
.0169
,0164
.0158
.0153
,0119
.0111
.0110
,0136
.0132
.0129
.0126
.0123
.U120
.0118
.0115
.0112
.0111
.0111
.01(19
.0108
,0107
.OlOb
.0101
.0103
.0102
.0101
.0100
.0099
.0099
.0096
.0097
.0097
.0096
.0096
.0096
,0095
.0095
.0095
.0091
.0091
,0093
.0091
.0093
.0093
.0093
.0092
.0092
.0092
.0092
.0092
.0092
.0093
.0093
.0093
.0093
.0092
.0092
.7876
.7925
.7906
.7973
.8001
.8040
.8082
.H138
.8191
.8219
.8304
.8357
.8112
.8166
.H3/6
.6394
.«967
.8111
.H5'M
.8673
,8S01
.8623
,6b02
,8H62
,8912
,8996
.9052
.9111
.9176
,9211
,9306
.9375
,9441
.9515
.9586
,9h5B
,9738
.9B23
,9'J04
,9992
,00/6
.0171
.02/0
.0369
. 0 " S 4
,05'>0
,0635
.0725
.061 /
.0911
,0995
,IO«5
.1 160
.1262
.1331
.1H5
.1509
.1597
• 16B9
.1771
.0539
.0538
.0536
.0531
.0533
.0531
.0528
.0526
.0524
.0521
.0519
.0516
.0514
.0512
.0508
.0505
.0502
,0499
.0497
.0495
.0199
.0"97
.0197
.0194
.0492
.0490
.0486
.0186
.0484
.04H2
.0480
.0476
.0476
.01/1
.01/2
.0170
.0168
,0466
,0"65
.0463
.0401
.0459
.0157
.0151
.0453
.0451
,0419
, U 4 4 7
,0115
,0443
.0442
.0410
.0436
,0137
.0135
,0133
,0431
.0429
.0427
• .0426
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 .
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
i 0 0 0 0
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
• 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.oo'io
.0000
552.3
545.7
540.1
535.3
531.6
526.5
526.1
526.1
526.3
527.0
527.9
529.0
530.1
531.0
52/.S
528.9
530.4
529.7
530.0
530.5
530.5
531.9
527.3
531.8
538.8
512.7
546.8
551.2
555.8
560.6
565.5
570.3
575.1
580,9
5«6.»
592,0
597.7
603.7
608,8
615.0
621.1
629.1
63/.6
646.5
653.3
661.3
66U.O
675.7
683.1
691.1
696.7
703.0
709,0
714.8
720,2
726,5
731,5
742.0
750.3
757.3
.106
.106
.105
.105
.104
.104
.104
.103
.103
.102
.102
.102
.101
.101
.100
.100
.102
,099
.099
.098
.098
.098
.098
.098
.097
.097
.097
.097
.096
.096
.096
,096
.096
.095
.095
.095
.095
.095
.095
.094
.094
.094
.094
.094
.094
.094
.093
.093
.093
.09S
.093
.093
.093
.093
.093
.092
.092
.092
.092
.092
,000
.000
.000
.000
,000
.000
,000
.000
,000
.000
,000
.000
.000
,000
,000
,uoo
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,00-0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.coo
.000
.000
.000
,000
,000
,000
.000
,000
,000
,000
,000
,000
.000
,000
,000
.000
.000
.000
.000
.000
.000
.000
.oco
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
,000
,000
.000
.000
,000
,000
,000
.000
.000
.000
,000
,000
,000
,000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.093
.094
.096
.097
.098
.099
.101
.102
.103
, 101
.105
.106
.107
.108
. 109
.110
.111
.112
.113
.114
.115
.115
.116
.IT'.
.118
.119
.119
,120
.1?!
.122
.122
.123
.124
.121
.125
.125
.126
.127
.12/
.128
.12U
.129
.129
.ISO
.1 SO
.131
.131
.1 12
.132
.133
.133
.134
.1 14
,131
.135
.1 i5
,136
.136
.156
.1 J7
.000
.000
.000
.000
.000
,000
.000
.000
.000
,000
,000
.000
,0.00
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
,000
.000
.000
,000
.000
,000
,000
,000
,000
,000
.oco
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
• .000
.000
.000
.000
.000
-.000
.000
.000
.000
.000
.000
• .000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.coo
.000
.000
.coo
.000
.000
,000
.000
.000
.oco
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.coo
.000 .
.000
.000
.000
.000
.000
.000
.000
.000
.000
• OuO
.000
.oco
.000
.000
.000
.000
.000
.000
.000
• COO
.000
.000
.000
.000
.000
.000
.con
.000
.000
.000
.000
.000
.coo
.000
- .000
.OuO
.000
.000
.000
.000
.coo
.000
.000
.000
.000
.000
.000
tOOO
.000
.000
.000
.000
.000
.000
.000
.000
.000
-.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.COO
.000
.000
.oco
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
,000
.000
. 0 P 0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.oco
.000
,000
.000
-------
324
325
336
327
328
329
330
331
332
333
334
95.73
95.71
99.39
102.79
9H.26
98.26
118.65
130.2t>
109.30
130.51
144,13
8.ai
B.iil
a. at,
8.51
8.55
8.59
6.62
8.66
8.70
8.73
8.77
.98
.98
.98
.99
.99
.99
.99
1.00
1.00
1.01
1.01
.0118
.04SO
.0151
.0452
.0«53
.015"
.0155
.0154
.0454
.0454
,0452
.0092 1.1853
.0092
.0093
.0093
.0093
.0093
.0092
.0092
.0092
.0091
,0090
.1935
.2008
.2083
.R157
,?2S5
.2324
.24?9
.25M
.2642
.2/77
.0424
.0422
.0420
.0419
.0417
.0415
.0413
.0411
.0409
.0406
,0403
.0000
.0000
.0000
.0000
.0000 '
.0000
.0000
.0000
.0000
.0000
.0000
762.9
769.1
775.1
781.0
786.7
793.1
801.2
811.0
820. 2
830.8
844,5
.092
.092
.092
.092
.092
.092
.092
.092
.092
.092
,092
.000
.000
.000
,000
.000
.000
.000 '
.uoo
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.137
.13?
.138
.13B
.13B
.139
.139
.139
.140
.140
,140
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
,000
.000
.000
,000
,000
,000
,000
• 000
NJ
Ui
-------
SECTION XI
PROGRAM LISTING
Program Page
Typical JCL 128
Subroutine BAL . ., 129
Function BETA . 130
BLOCK DATA 131
Subroutine CURVE 131
Subroutine GETCON 132
Subroutine FILL ..... 132
Subroutine GETAVI 133
Subroutine LAKCON 141
Subroutine NEWIN 143
Subroutine PINE 148
Subroutine PPLOT 149
Subroutine QPRINT , 150
Subroutine SCALE 150
Subroutine SETOPT 152
Subroutine SUBA 153
Subroutine SUBB 155
Subroutine SUBB2 160
Subroutine SUBC 163
Subroutine SUED 170
Subroutine SUBE 170
Subroutine SUBG 174
Subroutine SUBH 174
Subroutine SUN 176
Main Driver Program 176
127
-------
TYPICAL JCL
A typical JCL deck for executing a LAKSCI run is listed here. (JCL
variations may occur according to machine or installation.)
//EXEC FORTGCL,REGION=280K
//FORT.SYSIN DD *
LAKSCI FORTRAN SOURCE DECK
//*
//LKED.SYSLMOD DD DSN=B.YRHB10.ZAS.LK2(LKH2).
// UNIT=3330.VOL=SER=PR3002.SPACE=(1024,(140,10,1),RLSE),DISP=(,KEEP)
// EXEC PGM=LKH2.REGION=280K
//STEPLIB DD DSN=B.YRHB10.ZAS.LK2(LKH2),UNIT=3330,
// VOL=SER=PR3002,DSIP=SHR
//FT06F001 DD SYSOUT=A
//GO.FT18001 DD DSN=CN1752.ZAS.ITP,DISP=NEW,
// UNIT=SYSDA,SPACE=(TRK,(15,15)),
// DCB=(RECFM=VBS,LRECL=1000,BLKSIZE=1004)
//FT05F001 DD *
LAKSCI DATA DECK
/*
//
128
-------
1, SunKfllJTIK'E HAL
2, INTEGER M(WH(l?)
3. COMMON ZF(365)» V(365)i FlOw (365» 3) . ERR(365)i OHT(365i3)i 11(365)
a, A . ZMCJ65)
5. OATA MONTH/31 ,28.11 »30i31 »30»M .31 'J0>31 t 50»M/
6, A(X) '= Cl + C2*X t Ci * X +* f.
7, S(X) = Cl * X * ( C2 / 2.0 ) .* X ** 2 + ( C3 / 3.0 ) * X ** 3
8,
9, DO 1 I=l»4015
10, i . zF»OTELfG-'iKLOri,FACIN
16. IF(FACIK'.F.H.O.) MCIN=1,
17. 502 FO«MAT<3I10.3Fl0.a)
18. 'J03
20, C **** READ INPUT OATA
21.
22, READCSfSOl) (FLOW( J» 1 ) • FLOW t Jt2) i FLOW( J, 3) . J=IDAY iLOAY)
23, DO 5 J=1.3
2'l. 5 CALL FIl.L(FLOrt(IpAY»J)iLDAY"IDAY»l»0,)
25, TOTINaO,
26, TOTOUT50,
27. DO 20 JsIOAYiLDAY
26, TOTIN=TOTIN+FLO«JJ| 1)*86«00.
29, 20 TOTOUT=TOTOUT+FUOW(j,2)*86aOO,
30, 01FPO=(TOTOUT-TOTIN)/(UDAY"IOAY+1.)
31, • DIFPDciDIFPn )
32, OIFCFS = OHPO/86«00.
33, DlFAF-=(TOTIN-TnTOUT)/a3560.
30, DO 10 JsI
35.' 10 FLOW(Ji
36, WRITE (6. 500) HStUI » HOTEL , TOT IN t TO TOUT i OIFAF . D IFCFS .F AC IN.GWFUQ«
37. 500 FORMAT(//I INITIAL SUHFACE ELtVATlON! REFERENCED TO LAKK BOTTOM =1
38, *.Fl5.0ti(FT)i/
39, *3Xil ELEVATION OF LAKE BOTTOM. REFERENCED TO SEA LEVEL ='»F15.0i
-------
61,
62.
63,
6(1,
65,
66.
67,
68,
69,
70,
71,
72,
73,
7«.
75,
76,
77,
79.
79.
BO.
01,
82,
83,
80,
85,
86.
87.
88,
89.
90,
91,
92,
93.
91,
95,
96,
97,
96,
99,
100,
101.
102.
103.
104,
105,
106,
107,
108,
109,
110.
Ill,
112,
113.
114,
115.
116.
117.
118.
119,
120,
121.
IF( ABSCX2 "XI ) ,LT, O.OOS ) GO TO 123
XI o X2
121 CONTINUE
123 ZFCJ) s X2
ERR(J) = V(J) » SCZF(J) )
125 CONTINUE
DO 131 J = IDAYf LDAY
OUTCJ.l) = 0.020H17* FLOw(J,U-
OUTCJ.2) = 0.028317 * FLO.<(J»iJ)
OUT(J,3)=FLOV.(J,3)
•FLO".1 (J i 3) = FLOw (J i 3) /. u.S'3'5'j+12.
ZM(J) = 0,30«8 * ( (ZK(Jfl) + ZF (J) ) / 2,0
131 CONTINUE
DO 135 J = IDAYt I.DAY
135
C **** WRITE OUTPUT
WRITE(6»601)
WRITEt6»603) C JiZF(J) .V(J) (t«R(J) tITCJ) . (FLOW(JfK) iK=I (3) i
A (OUT(J,K)»K=lf3)iZM(J)iJ=IDAYiUOAY)
IFCITAPE.LK.O) RtTUHN
REMIND ITAPt
WRITE(ITAPti) IDAYi LDAY
wRITE(ITAPE) ( ZM(J)> ( DUT(J»K), K B 1, 3 )i J = lOAYi LOAY )
RETURN
FORMAT (1 HI /T9, iDAYl.Tl6,'iELEV(FT)i(T27.'V(ACFT)i,TUO,if:RRi«T5«f
• UTERI, T60«iIK1(CFS)i,T71t'OUT(CFS5'iTB3,iTEMP(F)i,T9S»ilN (C«S )ii
601
603 FORMAT( Ill.FH ,2i 1PE11.3.E1 1.3, 111 ,OP2I- '11 ,1 ,F11.2, 2Fll.l«F10.2i
A PSsS )
SOI FORMAT£12F6.0)
50« FORHAT(//' VOLUME = C1*D + (C2/?)*D**2 * (C3X3) *D**3 ' /
•I AREA = Cl + C2*D + C3*D**2'/
*l WITH VOLUME IN ACRE FEET A NO D IN FF.ET ABOVE LAKE BOTTOM!//
*10X.'C1 sl,E16.8/10Xt'C2 = ' |E16, 8/10X • ' C3 =i,E16.8)
END
FUNCTION BETA( MIN, MAXiOATAi N )
COMMON/ABLK/ ABARC200), A^EA(200). DCC200), D£NSf200)i DHI(200)i
A DVOL(200)» DZC200)i OZK200), f5Hl(200). QH(U200)i T(200)»
B TOOTC200), TFX(200)» TMIC200), VOL(200)i Z(200),
REAL DATA(N)
IF( MIN ,LT, 1 ) MIN a 1
XBAR a 0.0
YBAR a 0.0
TA B 0,0
TB B 0,0
C ** CALCULATE MEANS
00 117 J a ".IN, MAX
XBAR B XOAR + 7MIOCJ)
YBAR 3 YHAR + DATA(J>
117 CONTINUE
XBAR a XBAR / FLOATC MAX •» MlN * 1 )
YBAR B YRAR / FLOAT( MAX « HIN * 1 )
130
-------
122, • c ** CALCULAT SLOPE OF LEAST SQUARES HT
133,
124, 00 121 J n MIN, MAX
125, TC ••> ZHIO(J) « XRAR
186, TA s TA + TC * ( fATA(J) » YUAR )
127, TH c TB + TC * TC
120, 121 CONTINUE
129, BETA c TA / TB
J30, RETURN
131, END
132, ' BLOCK DATA
133, COMMON/LAB/. TITLni«)iXLAB(ll>iYLAI}{6)
134, lfHOR12(20)iVKRT(6>
135, DATA VERT/.4HMETE »!IHR3 »4HAHOV,4HK , (IMHOTT •
136, DATA TITLE/R*«H ,4H TEM»UNPKRA,flHTURfc•OH VER,
-------
244.
245,
246,
247.
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262.
263.
26«,
265,
266,
267,
268,
269,
270,
271,
272,
273.
274.
275.
276,
277,
278,
279,
280,
281,
282,
283,
284,
28S,
286,
287,
288.
289.
290.
291,
292,
293,
294,
295,
296,
297,
298,
299,
300,
301.
302.
303.
304,
10
25 .
30
C
C
C
C
C
C
C
C
C
C
C
C
C
C
RETURN
END
SUBROUTINE C;ETAVI(NDAV,NHR,DELT.AVI»POL)
REAL NHR
COtnOH/P ASS/ TOTLtDAflN, DUSK
M(x> = Am+ni
F:HX)GAJ*X + H3
CALL SUN(NDAY)
DAY = OUSK-t)Ai'iN
6i> = 4.*TOTL/C3.*DAY)
D/J = DAY/«,
' A1RP2/04
B1=»A1*DAWN
A3=-A1
B'< = *A3*DUSK
TlaNHRfOELr
TRsNHH
U'CTl.LT.O.) Tl=0.
TOT=0.
POL=0.
IF (Tl.GT.DArtN+D« .OR, T2.1.T.OAWN) GO TO 10
START = A.'!AX1 (QAWN,T1)
STOP=AMIN| tDAWN+D4»T2)
APEA={STnP*DA«N)*Fl(STOP)/2.-( START-DA* N)*Fl(START)/2.
TOT=TOT+AREA
CONTINUE
IF(T1.GT.DUSK-.D« .OR. T2 ,LT .DAWNf 04) GO TO 20
START=AMAX1 (OAWN+04 t Tl ) •
STOP = AMIN1 (OUSK-Oi|,T2)
AREA=(STOP-'3TART)*fl2
TOT=TOT+AREA
CONTINUE
IFCTl.GT.DUSK .OR, T2.LT ,DUSK«04) GO TO 30
START=AMAX1(OUSK-04,TU
STOP=AMINi (DUSK.T2)
AREA= (DUSK-ST ART )*F3(ST ART )/2.-CDUSK-STOP)*F3C STOP) /2,
TOT=TOT+AREA
CONTINUE
AVI=TOT/(DELT+60.) '
AVI IS THE AVERAGE INTENSITY IN I.ANG1,EYS/HIN OVER DELT
PDL IS TH PERCENT OF DELT DURING WHICH THE SAUU SHINES
IF(T2.LT.DA"IN .OR. Tl.GT.CUSK) RETURN
DLSBAhAXKTl lOAwN)
OLSTOP=AMINl (T2.0USK)
PDL=(nLSTOP"DLS)/OELT
RETURN
END
SUBROUTINE GETCON(IO,DELT.I:jD»DEPTHiBOT)
PHYTOPLANKTON IS THE ONLY TYPE OF ALGAE MODELED BY THIS ROUTINE
10 IS THE AVERAGE LIGHT ITENSITY IN LANGLEYS/MIN DURING THE TIME
STEP
DELT IS THE TIHE STEP LENGTH IN HOURS
DEPTH IS LAKE ELEMENT ELEVATION ABOVE BOTTOM IN METERS
IND is THE LAKE ELEMENT NUM»E«
BOT IS LAKE BOTTOM AREA OF LEVEL IN SQUARE *FTKRS
RESEL IS SURFACE ELEVATION AHUVE BOTTOM IN METERS
NUKE is IND FOR SUWFACE
VOL IS VOLUME IN CUBIC METERS
COMMON/NOV/A1 (3b)iNUMt»NUMP«>), RESEL
132
-------
183.
161.
105,
166.
187.
188.
189.
190,
i9i,
192.
193.
194,
195,
196,
197,
198,
199,
200,
201,
202.
203.
204,
205,
206,
207.
208.
209,
210,
211.
212.
213.
21".
215.
216.
217,
216,
219,
220,
221,
222,
223.
221,
225,
226,
227,
228,
229.
230,
231,
232.
233,
234,
235,
236.
237.
236.
239,
210,
211 ,
212,
213.
C
C
270
C
C
C
C
C
C
C
C
C
'(00
120
110
150
C
C
C
101
102
103
101
YMIN=Y(NPTS+1 i 1)
DELTY = Y(NPTS + i.'i 1 )
YLA»(M = Y'1IM
00 770 1=1 »5
YLAl'(h»I)=YLAH(7»J)+DELTY
YSCAL=50,/(YLAB(1)"YMIN)
NCDslOO
CALL PPLOTCOiOtNCDiNPLOT)
K a 1
00 150 1 =1 iNCV
IF(NPT(L),EQ,0) GO TO 440
X03XSCAL*(Xtl (L)'XMIN)
YO=YSCAL*fY(l,L)"YMIN)
KPOINT ? NPT(L)
DO «oo N = PINPOINT
XT = XSCAL*(X(N,L) - XMI-N)
YT s YSCAL*(Y(NiL) - YMlN)
CALL PINE(XO,YO,XT,YT,K,NPLOT)
XO " XT
YO a YT
CONTINUE
CONTINUE
K = K + 1
CONTINUE
,•
NC = 99
CALL PPLOT(0,0,NCiNPLOT)
RETURN
END
SUBROUTINE FILL(OATA|N|VORD>
DIMENSION OATA(l)
DEL=0,
MSI
00 104 Ja2,N
NLOsM+1
DO 101 K=NLO,N
JF(OATA(K).EQ.UORI» GO TO 101
DF.LS(UATA(K)»OATA(M))/(K«M)
MoK
IF(K.EO.NLO) CO TO 101
GO TO 102
CONTINUE
MSNI+1
MMlsMwl
00 103 K=MLO»MM1
OATA(K)=OATA(K»n+OFL
IF(H^1 .GE.N-1) RETURN
CONTINUE
Y LAHtLS AND FACTHRS
INITIALIZE PLOT OUTLINE
DRAW IN fcACH CURVE
JOINING XO YO AND XT YT
OUTPUT FINAL PLOT
133
-------
305,
306.
307,
300.
309.
310.
311.
3l2.
•J 1 u f
313.
3ia,
315,
316.
317,
316,
319,
320,
321.
322.
323,
32fl,
325,
326,
327,
328,
329.
330,
331.
332.
333,
334,
335.
336,
337,
338.
339.
340,
341,
342,
343,
341.
345,
316.
347,
346,
349,
350,
351,
352.
353,
354.
355,
356,
357,
358,
359.
360.
361,
362.
363.
364,
36b,
•
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
COMMON CINFLOCi(,r>i 1 hi ,CL4K(100» 16) ,SPAC(- (76«0) ,DCOM(100, Ih)
COMHON/pnilG/IHnG
COMMON/ AOL* /AB/.K( 200) , AREA (« Oil ), DVQL ( 1 POO ) i VOL { 200)
COMMON/I. AK?/On OP 2, iTi.lf'2, VTCP2if-LKV
COMKOM/'UJi.K/OBLK ( in) , \lwn
COKMON/L4K/LAKC5) ,5n2 , OZTOIJ , ATOP , VTOP , NMOUR , POL , S030NO
COM*' ON/C ONBFG/DO • BOD NH^ NO^INO^ POO AI r rni H'-M MM'* HH< H'* TOTN
COMMON/CONEMD/DOE. •HnDt'iNH1JE,NO?E i NlMt • PO'JE i ALGK.CULt i MM IK ,HM2E i
*HM3L«HMEt TOTNE
-HEAL NH3,ii02«Mn'J..>gM3f-.iH02Ef N03E
COM!' UN/CONST /THKCOL .A HOD, A MM, CH«OC < TMKNH3 , vOLITX i TMVU|.K , HOOC ,
*ROON ,BODPC i nOOOU »NORFKW , GRN^X » THGR-''-X tCHKOJ »HMK A ,rtPOq , M) NO'S, ^2NO J»
*MNH3,Ml.iAPH»NH,ASR»/.NO,ATOiftH*»OD»BfWn« , ijRR>:H3 , OKNOO
*, AH«2, AH^J, AT02,AT6i,PIM"l , P I »'*M2 , PIHMJ , CHsQ^C , CM.«03C , Ch'^OA? i CMM043
*,HMKA2,HMK43, THNOJK , THPQiJK
COMMON /RCf«VAR/COLK( 100) , BOO* C 1 00) , BOOKS ( 1 00 ) , NHJK ( 1 00 ) , N.OZK ( 1 00) , • .
*EXTK(100) ,UOK2(100) ,HK1K( 100) ,HM2K(100) iH«.5K(lOO)
*«P04K(100)»N05K(100)
COMMON/ TE "PER/ TEMPAViTEMRE A (100), SAT RE A( 100)
REAL NH'iK»N02K,MPO(4,MiNn3.M2N03,ui,HP, i BAR, ML
REAL N03K
REAL NOREKR
COKMON/nPTION/IFN,IK2,ICOL»ICOMBiINH3,UJ02,IN03,IP04»IAL''»IFIRST
COMMON/OPT 3/IP, IMH, INS, IN J
COMMON/DELTAS/DELCOt. , OLSOOO , DLBODS , DBODAG, DBOOAH . DBODAS , OHOO AD,
*0[)ODBH»DNH3BDnlBD,OPO'4AG,l)PO<
-------
366,
367.
368,
369,
370,
371,
372,
373.
374.
37S,
376,
377,
370,
379,
380,
381,
382,
383,
304,
385,
386,
387.
388,
389.
390,
391.
392.
393.
390,
39*.
396,
297,
398,
399.
400,
401.
402.
403.
404.
405.
406,
407.
400.
409,
410.
411.
412,
«t3.
414.
415.
416,
417,
418,
419,
420.
421.
422.
423.
424.
425.
426.
C
C
C
C
C
C
C
C
C
C
6
9
C
C
C
C
C
C
10
C
C
C
OP04MR IS CHAMf.E IN Pf)4"P CONC. PUF. Til F'FsTHA|_ HELLASEC + )
PKLA is CHANGE IN PHYTO"L.A'JKTO\I CONC, n<>¥ TO r.')
DALSNK IS CHANG!' IN PHY TQPL ANKTQN CU-^C , DUE, TO SlNKl^r.C-)
OADTH IS CHANGE IN PHY1 npl. ANKTON COKf.. OUE TO DEATH ('.'A TIIR AL* TOX 1C
nfLO IS CHANGE. IN DO CON'C. DUE TO ALL «E ACT in'IS ( t OH
ONEtO' IS CHANGE IN DO COK'C. HUE TO ALL OX-nr." AN'OS (-)
** )
OGIVE IS CHANGE IN DO CONC, DUE TO ALL OXnGENt HAT IOHC+
IFCIFIRST.NE.l) GO TO a
, NOUT=6
IFIRST=0
1? 0 1) 'i 1 - B 0 0 C * 1 2 1 / f ' 0 D P C
F}f)D'iWHsBOt)N* 14, /!100"T
H 0 0 P w K s .< 2 • / B 0 1) w T
FAC1 = I10DOH*MOHEFR/CAPR*BODPKR)
CONTINUE
IFCIBUG.FO.l) WR1TF.CNOUT i!023) jMDt 10 , DFLT , DEPTH , COL 1 1100 • NH3 ,
*NOa,N03.PO«, ALG^OOiHMl t HMi» i HM3 , TOTN
00 9 1=1,33
DELTS(I)=0,
ONO:12*FACHM2
IF(FACH^^,GTiO.) DELl< = ''fL'< + AHfv4*FACHH3
IFCABS(OELK).GT.ABSCXTEMP)) UELK=SIGM ( XTE^P » Dt LK)
XKsXTFHP+DELK
PELCf)L = COL*(EXP(»XK*DELT)"l ,)
IF(IMUG,EQ,1) WRITE (NOUT, 1008) XTEMP , FACHH 1 , FACHM2 i F ACH*3, nf.LK t
*XK,DELCOL
CONTINUE
IFdCOMB.EQ.18) GO TO 110
IFCICOMB.GT.U) GO TO 20
CALCULATE BOD CHANGE DUE TO DECAY AND SETTLING
XTEMPs BOOK (INO)*THK COL* *T COR
DLBODO=BOD*CEXPC«XTEMP*f)FLT)"l.)
OBOTOTsBOD*CEXPC(-XTE"P-BOOKSClNO))*PELT)»l,)
135
-------
427, .
420. IFUI'UG.rO.U «RITF(NOUT»1009) XTF.^PiDLOODO.riLUODS
429, ONEF.O=ONEF.n + [>LBODD
430. C
431, C CALCULATE CHANGES IN PO«»NH3i AND N03 OUF TO BOD OF.CAY
132, C
033, HODMTlcA»S(DLHOOD)/UODOO
435. 1F(IPO«,E.n302iONEED
476, 35 CONTINUE
477. IFCIN03.E0.0) GO TO 33
478, C
479, C DECAY (SETTLING) OF N03
460, C
481, C ON03DS IS CALCULATED IN L*KCON
482, DN03DS=S030ND
463, IF(AHS(DN03DS) ,GT, -,9*N03) DNO 10S=- ,9»NQ3
484, 33 CONTINUE
4(55, IF(IPOU.EO.O) GO TO 34
486, C
487, C DECAY (SETTLING) OF P04
136
-------
flee.
469,
090.
091,
092.
093,
U94,
095,
196,
097.
098.
099.
500,
501.
'J02,
503,
500,
505,
506,
507,
508.
509.
510.
511,
512,
513,
510.
515,
S16,
517,
518,
519,
520,
521.
522,
523.
520,
525,
526.
527.
528.
529,
530,
5M,
• 532,
533,
530.
535.
536,
537.
53B,
539,
500.
501,
502.
503,
500.
505.
5«6,
507.
508,
c'
30
C
C
C
00
c
c
c
50
C
C
C
55
C
60
XTFKP:JP().'lKUf;'»«THPO
-------
519,
550,
551,
5S2,
553.
55«,
555,
556,
557,
558,
559,
560,
561.
562.
563.
565,
566,
567,
568.
569,
570,
571,
572,
573.
S7«.
575,
576,
577,
578,
579,
580.
581,
582,
583,
58«,
585.
586,
587,
588,
589,
590,
591,
592.
593,
591,
595.
596,
597,
598.
599,
600,
601,
602.
603,
601,
605,
606,
607.
608.
609,
65
70
C
C
C
75
80
C
C
C
90
C
C
C
91
92
95
C
C
C
GO TO 50
CONTINUE
U''0:SAG = ",9*N03
ONHJAGsi (DN+ON0.5AG)
CONTINUE
OGI VE = OfiI VE-. tPELA+HOOOQ/ ( APM* W)OP*H)
IF(I9ilG,Erj, 1) '"[<1TK(NOUT» 1 '1 \ f) ON03AC. ,iV.;KJAG,OGI V(-
CALCULATE ALGAL RESPIRATION O'UANTITIKS
ARR=NR*TEMREA t IMD)
D A R t. 3 = " A t. G * A K R f 0 1 1. T
OHOt)AHsDAKES*iiOIH!i)/(APR»p(1ljPwH)
IF(ICOHb,GT, 1 i) Of! Oil A We 0.
ONFa*)-o"FAf^OPn«AR*- IPO'J ->n)P
-------
610, ' IFCIND.NE.Nin'E) On TO 96
611, DM = 2.05*1,03V**ICON/I ,P3
612,
613,
610,
615, OSAT=<10,ft?-(,3
616, ** C (1 ,««( ,OnOOO<>"7*Kl.[-:v ))**'.i, 167)
617, ASU)P=(AU'P2~ATOP)/2«.
618,
619,
620,
621, AT = AOtl>fCLT*4SlOP
6?2, VT = VO + DEI.T*VSl.OP
6?3, xx=Ao/vofAT/VT
62Ot)-(OSAr,.DO)*(l ,«(VO/VT)*I-XI>(-',5*XK*XX*OH.T))
62Y,
628, 96
629, 00»ENsOENOt)*l,07**TCOK*(l,-EXP(«l,2?*00))*FACa
630,
631,
632,
633, 97 COMTINUE
634, OKLO=ONEfn+OGIVE
635, IF(It«UG,e0.1) WRITE(NOUTil021) XK , DOD » rOHf-.K'. OGIVK .ONEED i DELO
636, IF(OELO,GE.O, .OR, AUS(DtUO),LE.00) CO TO HO
637, C
638, C OXYGEN DEMAND EXCEEDS SUPPLY. REDUCE ALL REACTIONS,
659, C
600, OF-ACSDO/AUSCDEI.O)
4/11 Tf/Tnil^* f (* t \ ..itl»Yr'
W*t » ^ ' A'XAOC'Vfl.Wii/ "'>J.I
6a2, DLRnOO=DLDODD*OPAC
6«3,
604,
6«5,
606, ONH3SDMH3+OFAC
607,
608,
609,
650, DN0302=DN03C?*OFAC
651, DARES=DARES*OFAC
652,
653,
658,
655,
656,
657,
658,
659. DELO=»DO
660, 110 CONTINUE
661, C
662, C HEAVY METAL.S
663, C
660,
665,
666,
.667, IFUSUG.F.n.l) WRI Tt (NQUT , 1 00 1 ) DF.LM'M , Dll>K2 . DELHM3
668, 1001 FORMATtl OELhM i , OFLHH2 • DELH''.i= ' i 3E 1 6 , 6)
669, C
670, C UPDATE CONSTITUENT CONCENTRATIONS
139
-------
671,
672,
673,
674,
675.
676,
677,
678,
679,
680,
68J,
602,
683,
684,
685,
686,
607,
680,
689,
690,
691,
692,
693,
69<1,
695.
696.
697,
698,
699,
700,
701,
702.
703,
704.
705,
706.
707,
708,
709,
710,
711,
712,
713.
714,
715.
716,
717,
718,
719,
720,
721.
722.
723,
721.
725,
726.
727.
728,
729,
730.
731,
• C
COLE-COLXUJLCOL
UOOK=HQt
NM3E=NH'
N02E =NO;
KI o j f. = *J c ;
P 0 ' >J '.
HMf sHC 1 1
TOTNE = M-
i + PL'IOOO^r'LllODStDriOOAfi + OrJOOAR + OliODAS + DHDpAIUOBOnHR
Un-'JH'.MMunNH3 + 0''IH3V»ONM3AG + DNHiAMtDNH30R
> + (H:fl2h'S + ON02
i + CJ'iOSMO + ONOjHjf f)M0302+ l)l>n *f)ELAt['ARfcS-H)ALSNK + [)Al)TH
JKLO''
I + OEXHM2
IXvELHM.S
*MM?K+HM3E
^'.UI + ^Oi'F-t NO'iF. X^OOE*nf'DMKLH^1*RAT
)«1 »10)="OELHM2*RAT
i"\ • 1 1 )=-OELWH3*RAT
. NE .0.1 OCOMC P-'D-l , l«.)nflCON.f INO-1 ,9l*PIHM1
IFCPIHM2.ME.O.) nCQNCIND"! » 15) =DCON ( INn«- 1 i 10)*PIHM2
IF(PIHM3.HE.O.) OCONCIN1D.1,16)=OCONCIN0.1,U)*(>IHM3
C
C
C
C
.C
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
10?0
1021
1022
1023
RETURN
THE FOLLOWING ARE DEBUG FORMAT STATEMENTS
FORMATC
*3E16,8)
FORMAT (
FORMATC
FORMAT C
FORMATC
FORMAT C
FORMATC
FORMATC
FORMATC
FORMAT C
FORMATC
*l ONEFD:
FORMATC
FORMATC
FORXATC
FORMATC
*
XTE HP, FACHMl,FACHMa,FACHH.3=l, Of. 16.8/< DELK , XK,PELCOL= 1 •
XTEMP,OLOOnO.I)LBODS=l .3M6.8)
ONM39niOl»03«O.OP04fbE16,B)
XTf"MP,t)rjC'2«Oi''i030?if.)NEEO=li4F-l6.8)
XTEMP ,DMh3V= ' »2h 1 6 »8)
FHM,FP,FN03>FMH3,F^=l»5El6,8)
IRAR,FLtCRLlM,OELA=ii«E16,B)
LiBnQAr, iDPO«AG=l i2E16.8)
OMOiAGiD'JH'?AG>OGIVi-.= li3F16,8)
OASES. ObODARiOPO«AK«UNH3ARtl3U03AR=' ibE16,8/
. 1 , El 6,8)
IJALSNK,DHOOAS«DALNPiOALTOX»09npAO=l »5E16.8)
|)BnD6W»DPO«HR,nM03hKiONH3BR,nNEFO=l i5F16,8)
XK,OODtDObE'N.OGIVEtO^EEP.r/EUO=li6E16.8)
FACTOR =I|E16.B.I O'i RF.ACHI.I6)
FORMATC//I INITIAL COKOITIUNS FOR REACHI.15/I 10, DELT • DEPTHn 1 , 3F 1 2
* »"/
*l COL«ROD.NH3rNO?»N03=l ,5fcl6,8/
*l P04|ALG,DOai ,3E16,P/
140
-------
732,
733.
73U.
735,
736,
737.
730,
739.
710,
711.
7«3|
711,
715,
716,
717,
718,
• 719,
750,
751,
752.
753,
754,
755.
756,
757.
758,
759,
760.
761.
762.
765.
761,
765,
766,
767,
768.
769,
770,
771,
772,
773,
771,
775,
' 776,
777.
778.
779,
780,
781,
782,
783,
781,
785,
786.
787,
788,
789,
790,
791,
792,
* 1 HM J ,HM2» UK 3 i TOTX= 1 , i|h Ih.fl//)
1021 FORyAT(/l F'lMAL CONDITIONS fOii Rf-'ACH I » I5/ I COL •bODiNH3,*iO?i h03= ' i b
•F16.8/I PCKI » ALf.t D0» I i 3t"l 6,fl/
* I hM 1 , Hh? i H'"7j t TOT'' a I i uE 1 6 .(!//)
1025 FOKMSTd nN(V5(;S»DPr.'10S= 1 t?.t Ifa.H)
1026 FOR*ATd OH,XK,M'-:0»TT»OSAT, ASLOP= I ,hf:i6,fi/' VSl OP, AO, VO , AT i VT ,
*XX= > i(,E16.H)
1027 F()RMAT( ! RAT si ,F.16,8)
END :
5UUWOUTINF UAKCON
'CnMMO^oPriON/IFN(r)!lN03^IPO«?IALGOTPn
COMKON/COMST/THKOLtSD ,PI"v'l i PI Hi-'2 t V I H"3 , CHM02K ( 6) , THN03K
CPM'ION/RCHVAR/COLK(1100)|HOiK(100)
RF. AL NO;?X
COMMON ClNFLO(36b,lh),CLAK(100,16),SPArEC7010)i'JVmOO)i')VO(100),
*OCt)N{ 100,16)
COMMON /OP Ta/IHEAVY»J TOT N
CPM.«ON/LAK/KCON»DU,EI iE2»NOwuAY,soz,ozTOPi ATOPI VTOP»NHOUR,PDL«
*ON03I5S
COMMON/MOV/ A 1 (5) ,OELT,t)niNC7) ,EXCO,r,MAX(23) , NUM,NIJMf- ,NUMP(6) ,RESEL
EQUIVALENCE (f.MAX(7) iIUlX)
C 0 M >' Q t-i / D P. U G / 1 i! IJ G
COMMON/ A!*L*/A BAR (200) iAHEA(200),OrC600),DVOL(200),OZ(100),OHI{200)
*i'!HO(1000) • VOL (200) tZ(200) »ZMI 0(200)
COMMON/FORGO! /1.KA5T (10ft)
COMc,ON/TEMPEI
-------
793.
790.
795,
796,
797. IKd.tO.NUM) XVOL=VTOP
796,
799, IfdBUG.KO.l) WRITEC6,1006) I • IMIXtFi ARFAd>»DZZ,FAClOVCH. (!)
800, 00 3 J=liKCON
801, OKLMAS=FAC*(CLAKdiJ)wCLAKCI+l»J))*DtLT
802, OCO:-.'diJ)--OcCiNdi.l)»OKLMAS/DVOLd)
BOS, 3 OCONd+1 ( J) = DCO'.-(I + 1 i J) + l)El.MAS/XVOL
80", tt CONTINUE
805, IFdBUG.NE.l) GO TO 5
806, WRITEChilOOl) ( (DCONd i-J) »J= 1 t KCON) i 1= 1 »NUM)
807, 5 CONTINUE
808, C CALCULATE CONCtNTKATICN CHANGE DUE TO MASS ADDITION
809, 00 ?0 I=liNUME
.610, FLOINsOHld)
811. IF(t)vId},r.T,0.)
612, IF(i.'VOd).UT,0,)
813, FLOUTsQHOd)
81fl, IF(«VI(I),l.T,0.)
815, IKQVOd) .GT.O.)
816, XVOL=OVOL(I)
817, ird.tO.MU
818, XVOL1=XVOL
819, IF(I,EO.M,jMF.) xvOLl=vTOP+(KLOIN-FLOuT)*DELT
820, FAC1=XVOL/XVOL1
821, IFdHuG.EO.l) HKITEC6.1007) ItFLOIN,FLOUTtXVOl»FAC1
822, DO 10 J=1,KCON
823, •
«R'I, HMSOuTs'JHO; IJ*CLAK. {»»J)*OEUT
825, VMSINsO,
826, IF(rjVld).r,T,0.)
827, IF(QVO(I) .LT.0,3 V«SIN=VMSIN'OVO(I)*CLAK(I*1,J)*DELT
628, VMSOUT=0.
829, IF(OVUI).LT.O.) vHSOuT=-OVl(I)*CLAK(I,J)*DELT
830, IFCOVOdJ.GT.O.) VMSOUT=VHSOUT+OVO(I)*CLAKd,J)*OELT
851, XMADO=HHSIN+VMSIN»HMSOUT»VHSOUT
832, P»TMAS(J)=XMAOO/XVOL1
833, FIXEHR=OCOM(I,J)+XMADD/XVOLl+FACl*CUAKdiJ)
83«, 10 DCOM(J«J5cFIXERR
835, IFdBUG.EO.l) kHITE(6,1008) PRTMAS
836, 20 CONTINUE
837, 00 50 IsliNilME
838. DO 50 J=1»KCON
839, CLAKd»J)=DCONd,J>
800, IF(CLAK(I,J),LT,0.) CLAK(IiJ)=0.
8«1. 50 DCONdiJ)so,
ea2, c SET up INTERFACE FOR KETCON
8«3, c CALCULATE AVERAGE LIGHT ITENSITY AT SURFACE IF MODELING ALGAE OR
8««, C IF SIMULATING ALGAE WITH NO3 HEPQVAL, EXCO INCLUDES ALGAL
8U5, C EFFECTS IF NOT MODELING ALGAE, EXCO DOES'JIT IF MODELING ALGAE.
6Hb, AVINTso.
B«7, XHOUR=NHOUR
Bad, IF(IALG+lN03.Nf,0) CALL GETAVl(KiOKl>AY,XKOUR|OtLT/360nl, AVINTiPDL)
819. iFdBUG.En.l) WRITEC6. 1002) NO'nOAY « NHOUR i AV IMT i POL
650, AVSAV=AVINT
851, IBOTSAVINT
852, DO 30 JBAC=l»NgME
853, JcNUMf-..JBAC*l
142
-------
915,
916.
917.
918,
919,
920,
921,
922,
923.
921 ,
925,
926,
927,
928,
929,
930,
931,
932,
933,
93U,
935,
936,
937,
938,
939.
940,
9/11 ,
9fl2,
9«3,
9flU,
945,
946.
v«7.
948,
9/19,
950,
951,
952,
953,
954,
955.
956,
957,
950,
959,
960,
961,
962,
963,
96(1,
965,
966,
967.
968,
969,
970,
971.
972.
973.
970,
975,
1000
1001
1002
1003
1001
1005
1006
1007
1000
100')
66
70
37
30
55
IFCVI.Nfc',0,) flFACa VOl.M I X*BGON03/.VI
IFdtWG.EQ.l) *«ITP(6, 1005) AV.V!03,XViP3iAVTfcM,TMIX,VOUKIX.XTf..MPi
*HGONP3i f-F 1C i VI i ( IBRSA V ( JL) • JU~ 1 i NOME )
F 0 R * A T ( fj V I ( 0 V 3 - 1 / ( 1 0 H 1 2 . /I ) )
FORMAT ( OCONs i/C7Ffi,'j»F0.1 iOF8.5))
FORMATC NUKOAY.NriOUWi Av tNTiPOl.= ' ».;?l5,2t 16,8)
Ff)RMAT( XK, ITOP, ItiOT i THK= ' ./IE l6.fi)
FORM AT ( Of'XipEP«'.niihmi,NLAY = .' »3F_lb,Si?HO)
FORMATC AVf!n3, XS03. AV IK", TMX , VOLMIX= I t'ifc 16.fi/ 1 XTEMP ,f;ROM03i OF AC
*iVI=' t «{.!«).(>/ 1 IHRSAVs I/CHE16.8))
FORMAT ( I, JM] X.F.i ARE A,OZZiFAC,DVOL=' • 213 i5E 15,8)
F'OHMAT{ I,FLCIfJ|FLOUT,XVf)LiFACl = l ,I5»/ltl6,rt)
FOR^ATt MASS AI.'JRRNH3iUENOD
*,AH"2»AHM3,AT02iAT03,PIHMl,PIHM2,PIHM3,CHM02CiCHM'J3C,CHMOA2iCHMOA3
*,HMKA?,HMKA3,THM03K,THPn'IK
COMMON/NO V/FIUl (17).IPAY,FIL2(7),LOAY,MAXE
COMMON C!WFLOC36Si 16) iCdOOi 16)
OIMEMSIOM ZEROC1)
EOUlVAUfcNCK CZFJROfCINFUO)
COMMON/LAK/KCONiOU»El»E2
COHMON/LAK2/OZTCIP2C3) tt.LEViIFIR
DIMENSION ARCOK'(l)
fOUIVALENCE (ARCOfJ.THKCOt.)
CGMPQN/MISC/XLA1 iNDAYl
• DATA M .NJ/^,, fc/
COMMOM/RCHVAH/COLKdOO) . «0[1K tl 00) , BOOKS ( 1 00 ) . NM3K C 1 00) , NP2K ( 1 00) i
*EXTKdOO).QPK2dOO).HMlK(lOO)»HM2KdOO)»HM}KdOO)
*.PO«K.C100) .N03KC 100)
CO''hON/TE*lPrR/TEMPAVi TF.MREAC 100) . SAT ht'kt 100)
COMMON/OPT I CM /UN. IK2.ICOL..1COMB, I fH3iML«NR,NH3KtN02K
DIMENSION nE^ALTfJO)
143
-------
976.
977,
978,
979,
980,
981,
9fl2.
983,
98«,
985,
986,
987,
938,
989.
990,
991,
.992,
993,
99u.
995,
996,
997,
998,
999,
1000.
1001,
1002.
1003,
1004.
1005.
1006.
100',',
1008,
1009,
1010,
1011,
1012.
1013,
1011,
1015.
1016,
1017,
1018.
1019,
1020,
1021,
1022,
1023.
1 02t,0'li
*!./
DO 1 I = lilAY.GT.«00) GO TO '530
HEAtiCNl.auo) (CIr-!f'"LO(NDAY,JL) iJL=l iKCON)
520 CONTINUE
530 CONTINUE
oo 5«o I=I.KCON
5«0 CALL FILLCClNFl.O(lDAY.I) .l,OAY-IDAYtl i 1 ,E20)
HfAD(Mi3i3) EI.KV,TEMPAV,XUAT,EI ,t2
NDAYJ = IDAY
313 FORMAT(3FlO,af2E10,0)
XLATD=XLAT
E1106 = F.1*1,E6
E2106=E2*1.E10
XLAT=XLAT/57.2958
WRITE(NJ.lli)
WPITECNJ.112)
112 FORM AT ( 1 ELF.HI ,SX, IBOOI ,OX, 'BODI |6X| ICOLIFORHI ,5X, IMH3' 18X1 'K'021 i
*HXi IN03' »flXi IPO«' »6Xi IHC4VY1 f<;Xf 1 HEAVY1 »6X. 'HKAVY1 |6X» 1 TE^P ' /
*l NUN REACTION SETTLING ' i «( 1 KEACTIONIJi' SCT TLU'G 1 I 3X .
f'MET lli6XilMET 2'.6Xi'HET 3 ' i 6X . I (UEG» i /
*IOX.6('COEF'.7X).!COEF',6X. i COEH , 7X , I COF.F ' 1 7X . 1 COEF I , 6X . ' CEN) 1)
DO 113 K=l t 101
READ(NIt305) I
IF(I.GT.IOO) GO TO 200
HE AD (wl. 21 3) PODK(I) • HOOKS C I) » 00*2 ( I) i COUK f I) » NH3K ( I ) , N02K ( I ) »
*N03K(I)iPOaK(I).f-:XTK(I)i
*H« 1 K ( I ) f HM2K ( I ) • HM3* ( I )
C READ IN INITIAL CONCENTRATIONS IN MG/L EXCEPT FOR COLIFORMS
c IN MPN/IOO ML
READ(NJ ,uqo) (C(l» JL) »JL=1 «KCUN)
113 CONTINUE
200 CONTINUE
DO 204 Ksl.KCON
2oa CALL HLLCC(1.K),MAXE,1,E20)
auo FORMAT C8F1 0, a)
2l3FCiRMAT(13F6,0)
305 FORWAT(IS)
00 300 IKcl.HAXE
IF(BODK( IK) .t'Q.O, ) BOOK C lK) = .2/2a,
IF(i}UUKS(IK),erj,0.)'HOD
-------
1037.
1038.
103V.
lO'lO,
.FT.O.)
.E'J.O.)
10'ia,
1043.
1045,
1046.
1048,
10«9,
1050,
1051,
1052,
1053.
1054.
1055.
1056,
1057.
1058,
1059.
1060.
1061.
1062.
1063.
1060,
1065,
1066.
1067.
i * t O
i V <-> " i
1069,
1070.
1071,
1072,
1073.
107U,
1075,
1076,
1077,
1078.
1079,
1080.
1081.
1082,
1083,
1080,
1085,
1066.
1087.
1088,
1089,
1090.
1091.
1092.
•1093.
I09a.
1095.
1096.
1097.
IF(HMJK(IK).EO.O.) H'MK(IK)=XCK
KP1TECJJI217) IK. HOOK ( IK) tBOOKS(IK) iCOI.K(IK) , KH3K (IK) ,f,'('^K( IX) i
*N03KdK)iPf)«KdK) «MMlKdX) i HM2K (I K ) »>"'3* ( IK ) , Tl>f
-------
1098.
1099,
1100,
1101,
1102.
1103.
1104,
1105,
1106.
1107,
1106.
110'),
1110.
1111.
1112.
1113.
• 1114.
1115,
1116,
1117.
1118,
1119,
1120.
1121.
1122.
1123,
112)
IFCIHEAVY.GT.2) "RITE(MJ,lOj!7)
IF(IPOfl.NE.O) KRITE(NJ»1020)
. ANO. IN03.NF.O)
CHMOA3
hiHKA
H H K A 2
HMKA3
I; . n)
1030)
WRITECMJ.1032)
*RITE(NJ,1033)
WRITECNJ.1034)
WRITE(NJ,1035)
^RITE(NJ(103ft)
IFdMf.AVY.GT.O)
IFdHEAVY.GT.l)
IFCIHEAVY.GT.2)
*WITE(NJ,1029)
M2^03
MNH3
ML
APR
NR
ASP
ANO
HRITE(NJ,1037)
M1N03
KRITE(NJ. !
ATO
AT02
AT03
IFCICOMH.LT.12) KR1TE(NJ,1040) BRRBOO
IFdPOfl.Nt.O) fRITf CU, 1001) flHRPot
IFdP04.EQ, 1) wfilTECNJt 1 050) THPo^K
IFCIMH3.NF.O .OR, I'.OS,NE.O) "RITECNJ,10«2) BRRNH3
IFCICOM8.Nt.lB) *RITf(NJ, 1043) (JE^OO
IFCIHEAVY.NE.05 WRITECNJ, ioau) PIMMJ
IFCIHEAVY.G.T. 1 ) !*RITE {NJ, J Oa5) Pt'^a
1KCIHEAVY.GT ,2) '•'RITE C^J» 1006) PIHM3
K'RITECNJ, 1052) ELEV,TEMPAV,xUATn,M106,f.2106
TO INSURE THAT BOD«N EXCEEDS THE ALGAL-N IN EACH JUNCTION
00 460 K=liMAKE
IF CtlODNX.LT.ALGN) WHITECNJt 1 051) fOOKX.ALGN.K
U60 CONTINUE
1002 FORMATtl CONSTITUENT SELECTION OPTION =I.6«X,I5)
146
-------
1202,
-1201,
1204,
1205.
1206,
1207,
120«,
1209,
1210,
1211,
1212,
121S.
1159, 1001 FOR"ATC PHYT Of1'. AS-K70N C.RtiATM F'l'.'CTION f-PTIO.J = 1 ,'>«>'• I'i)
1160. lOOi FOH'iiKi COLIFOPM (IJTIO'i = '.7o<.Ir,)
1161. 100« FUR'V.TC TE"iPF.-KATijRF nU'WCTU'N CONSTANT F-O.'-i C'UJFMki' REACTION COK
1162, *FFKIFNT = 'i?HX,Flfl.5)
1163, 1005 FUR.1'AT (I CQFFFtC.tt.NT V-> »''(> I1' CW.IFOP." CALCULATION = i , S 1 X f F t 0 .':)
H6U, lOOh KOR'MTC cr'F, F'F 1C IF.MT ON HEAVY "l-TAL 1 IN COL IF IV^.M CALCULATION = i i'1
1165, MXiFin.'j)
1166, 1007 F'OR."ATC COEFFICIENT ON HEAVY METAL 2 IN CO'.UPRM CALC"IATION s I ,/I
1167, * IX. HO, 5)
1166, ' 1008 FORMAT (I dOEKFICIKNT ON HEAVY METAL 3 I1-' COL I FORM CALCULATION = 'i«
1169, *lXiH0.5)
1170, 1009 FORMATC I HEAVY METAL 1 CONCKNIRATION L I " I T (MO/1.5 IN COL IKl'l-M CAt.C
'1171,' *Ul.ATION =1 . SOXiFMO,1-,)
1172, 10JO FUR"ATC HEAVY "KTAl.. 2 CONCENTRATION L U' I F (-"G/D IN Cf'LIFORH CAl.C
1173, tULATIGN = i »2C)X >F 10.S)
U7«, 1011 F()MHAT(I HEAVY ME IAL 3 CONCENTRATION I.IMIT (MG/l.) IN COlIFOint CAl.C
1175, *ULATION = I .;>qx rF 10.-3)
1176. 1012 FORMATC TEMPERATURE CORRECTION CONSTANT FOR NH3 PF.CAY COtFFICU'NT
1177, * =ii3hX,FlO,5)
117B, 1013 FORHATC COEFFICIENT FOR MM.i VOLITIZATIOH " I • 6 I X , F 1 0 . 5 )
1179, ioi« FORMATC TEMPERATURF: COHRECTIUN CONSTANT KOR '-HJ VOLITI/ATION PROC
1180, *ESS B I i33XiF)0,5)
liar, toi5 FORMATC CARBON TO PHOSPHORUS RATIO IN BOO -1» 6nx,F'io,5)
1182. 1016 KORp'ATCi filTKnr.fNI To PHpSPHoXUS RATIO IN -300 = i , rjSX . K 1 n , 5)
1183, 1017 FOHMATC nfiY "EIGHT FRACTION OF, C4RHON IN MOO -i•57XiF\0.5)
lieu, loia FORMATC BOO OXYGEN QUOTIENT =i',74XiF"io,5)
lie'), 1019 FO«MATC NO'.;-REF«ACTORY FRACTION OF ORGANIC -ATCRIAL =i ,5ox.Fio.5)
118h, 1020 FOR:iAT(l MAylMyM GROWTH RATE (PER HOUR) AT 20 DEC KOR PhYT DPI. AVKTO
1187. *N =l(35X.F10.5)
1188, 1021 FORMATCI TEMPERATURE CORRECTION CONSTANT FOR PHYTOPLAMKTON GROWTH
1189, *RATE =i »32X.K10,5)
1190, 1022 FORMiTC HEAVY METAL 1 COWCE^THATID" LI^IT C"G/L) FOfj pHYTOPLANKTO
1191, *N GROWTH s'i2BXiF10,5) )
1192, to23 FOR^ATC HEAVY MF:TAL 2 CONCENTRATION LIMIT (MG/D FOR PHYTOHLANKTO'
1193, *N GMO»TH s I , 2t'Xf F 1 0 .5)
119«, 102U FORMATC' HEAVY MFT*L 3 CONCENTRATION LIMIT (k'G/L) FOR PHYTOPI.ANKTO
1195, *N GROWTH =l .2nXiF10,'3)
1196, 1025 FORMATC1 HEAVY METAL 1 COEFFICIENT FOR PHYTOPLAlgXTON GROWTH CALCUL
1197. *ATION =1 ,.ilX«F10,5y
1196. 1026 FORMATC HEAVY METAL 2 COEFFICIENT FOR PHYTOPLANKTQN GROWTH CALCUL
1199, *ATION si ,31XiFl'p.S)
1200, 1027 FO'RMATCI HF.AVY METAL 3 COEFFICIENT FOR PHYTOPLANKTON GROWTH CALCUL
*ATION ei,31X,F10.5)
102« FORMAT(I HlChAFLISf^MENTON CONSTANT CMC P/L) FOR PHOSPHORUS LIMITAT
*ION OF PHYTUPLANKTON GROWTH =1, VXfFlO.S)
1029 FORMATC I MlCHAF.LIS-nEN.TON CONSTANT (KG N/L) FOR PHOSPHORUS LI^ITAT
*ION UF PHYTOPLANKTON r,RO«TH =i, px.F'in,5)
1030 FORMATC I "ICHAE.LI5.P--IENTON CONSTANT (MG H03-N/L) FOR NTTROGEN LI'UT
*ATIUN OF PHYTOPLANKTON GROWTH = I , 7 X f F 1 0 .'5)
1031 FORf-'ATC MICHAELIS-"EMON CONSTANT CM.G NH3«H/L) FOR NITROGEN LIMT
*ATION OF' PHYTOPLANKTON GROWTH = I , 7 X i F i 0 . 5 )
1032 FORMATC' LIGHT INTENSITY CALCULATION FACTOR (LANGLEYS/>« IN) cl,UUX,
1033 FORMATC PHYTOPLANKTON TO PHOSPHORUS RATIO ='«6CXiF10 .5)
103« FORMATC PHYTQPLANKTOf.' RESPIRATION FACTO" = > , hi X , F'K ,S)
1035 FCRVATC' PMVTOPLANKTQN SINKING RATE CFT/Hrt) =l»59XiF10,5)
1215, IC36 FORMATC' PHYTOPLANKTON NATURAL CF.ATH RATE ( /r
-------
1220,
1221.
1222,
1220.
1225.
1226,
1227,
1226.
1229,
1231,
1232.
1233.
1231.
1235.
1236,
123V.
1238,
1239,
12'40.
1241,
1202.
1203.
1201,
1205.
1206.
12U7,
1216.
1209.
1250,
1231.
1252.
1253.
12'JO.
1255,
1256,
1257,
1258.
1259.
1260,
1261,
1262,
1263,
1260,
1265,
1266.
1267,
1268,
1269.
1270.
1271,
1272.
1273.
1270,
1275.
1276,
1277,
127P.
1279.
1280.
1039 FORMATd PHYTOf'LANKTON TOXIC DEATH COEFFICIENT FOR HEAVY ^EfAL 3 »
* I i38XiFin,5)
10UO FORTATd MOD BEMTHAL RELEASE RATE C^G/SQUARf. METER-HR) sl,- I(.'M FORf = i , SftX , F I rt ,S)
lOOh -FOW'-'ATC' FRACTION OF HEAVY CETAL 3 11 ION FORM = I i 56X , F 1 0 ,'.>}
10«7 FORMAT(I TEMPERATURE CORRECTION CONSTANT FOP BOO REACTION COEFFKI
KE CORRECTION CONSTANT FOR N02 OECAY COEFFICIENT
1009 FOHMATd TtHF'ERATURF CORRECTION CONSTANT FOR N03 OECiY COEFMCIEN'T
* =i *3/>X,F10,5)
1050 F(jR.''AT(l TEMPERATURE CORRECTION CO^STA^T FOR PQO OECAY COEFFICIENT
» s I ilfaX.Fin,5)
1051 FnRMATd ***BOO NITROGEN a I i F 10 ,6» ' AND AuGAt, NlTROGEM =I,F10,6,
*" IN ELEMENT" ,15,i ***' ) '
1052 FORMATCi LAKE ELEVATION (FEET) =i,6?X.F15,5/
*l AVERAGE TEMPERATURE (CE^TIGHAf)E ) = I i 61 X r F I 0 ,5/
*' LAKE L*TITUOK (DEGREES) cIt70X,FlO.b/
*l DIFFUSION COEFFICIENT J (10»*-6) =I,61X,F10 ,5X
*l DIFFUSION COEFFICIENT 2 (10***10) BI,60XiF10,5)
RETURN
END
SUBROUTINE PlNE(XliYl»X2iY2.NSYMiNCT)
AXA=Xl
AYAaYl '
AY8sY2
Nal
IFCAHS(AXB«AXA),UT.ABS(AYB«AYA)) GO TO 290
SET PARAMETERS FOR x DIRECTION
IF(AXB.GT.AXA) GO TO 205
AXA=X2
AXOsXl
AYAaY2
AY8=Y1
205 CONTINUE
IXAsAXA+.S
lYA=AYA+,5
IYB=AYB+,5
250 CONTINUE
IF (IXA.UT.O.OR.IXA.GT.IOO) CO TO ?6Q
IF (IYA.LT .O.OR.IYA.GT ,so) GO TO 260
CALL PPLOT(IXA»IYA,-MSYH,NCT)
260 CONTINUE
IXA=IX/U1
YA=CN*(AYn-AYA))/(AXH"AXA)
IYA=AYA+Y**0,5
KsN+1
IFUXA.LE.IXB) GO TO 250
GO TO 000
148
-------
1283.
1281.
1285,
1286.
1287,
1288,
128V,
1290,
1291,
1292,
12915,
129«,
129'J,
1296,
1297.
1296,
1299,
1300,
1301,
1302,
1303,
130««
1305,
1306,
1307.
1308,
1309,
1310,
1311,
1312.
1313,
1314,
1315,
1316,
1317,
1318,
1319,
1320,
1321,
1322,
1323,
1324,
1325,
1326,
1327.
1328,
1329.
1330,
1331,
1332.
1333,
133fl,
1335,
1336.
1337,
1338,
133>RITE(6. 100) (A(I.J)»J=1
22« CONTINUE
225 CONTINUE
228 CONTINUE
K«iu:(6iio2) XLAB
WRITt(6.105) HORIZ
«H222?l
149
-------
1302.
1303*.
13HO,
1305.
1 306,
13U7.
1306.
13'I9,
1359.
1351.
1J52,
1353.
135'!,
1355,
1356.
13'57,
135B,
1359.
1360.
1361,
1362,
1363.
136«.
1365,
1366,
1367,
1368.
1369,
1370,
1371,
1372,
1 J7 3,
137«.
1375,
1376,
1377,
1376,
1379,
1380.
1381,
1382.
1383.
1380,
1385.
1386,
1387,
1388,
1389,
1390.
1391.
1392,
1393.
139U,
1395,
1396.
1397.
1398.
1399.
1000.
100 FORMAT UflX, 101 Al)
101 FORMAT (F 17.3i t X, 101 Al)
102 FClR^AT(f-20. 1 » 10MO. t )
103 F()f>KAT( \H\ ,;> OX, Ill A i|. Ih/)
105 FORl|AT(/'40Xi2oA'4)
106 FO"?MAT(3X»2AO,7X, 101A1)
230 00 250 1=1 ,50
00 2«0 J=l i 1 01
200 A(IiJ)=SYMf7)
A(I,I)=SYf'.(8)
250. CONTINUE
DO 2(.n j=i 1 101
2hO AC51 »J)=SYM(9)
no ?vo 1=1,101.10
270 A(51«I) = 5YM((J)
DO 290 1 = 1 S .'11 t 10
A(I,1)=SYM(9)
290 CONTINUE
RETURN
FNO
SUBROUTINE OPRINT(NOAY«N,XK()»NJ)
COMMON/l. AK/KCON
COMMON CTNF|.0(365, 16) .C( 100. 16)
COM"ON/FORGUT/I,KAST( 100)
DATA LANK/I I/
DATA N6/6/
WRITf. (Nfc»90(S) NOAY.'IXKO
908 FORMAT(lril,//,lOX, if-LEMfMT CONCENTRATIONS FOR DAY'»I5,10X,
*I£XECUTION INTERVALI fI5//)
i*RlTt (N6»607)
JFLAf,= p
DGc'uJ2i,»vJ i
IFUKAST(LJ) .N'E.LANK) IFLAG=1
2 WRlTE(M6t8l8) LJ.(C(LJ»LK) ,LK=l»12) .LKAST(LJ) »
*(C(LJ.LK) .LK=13,KCON)
IF (IFLAG.tO. 1) WRITE(N6, 100)
RETURN
607 FORMATC ELEMENT 00 BOD NH3-N N02^N N'03-N POO«P
* PHYTO COI.IFOHMS' HMI HMS MMJ TOT N CHLOR HMH HMI2
* HHI3I/ 1 - NUMBER (MG/L) (MG/L) ("G/L) (MG/L) ("G/D (M
*G/L) (MG/L) (f'PN/100) (KG/L) (MG/L) (MG/L) ("G/L) (MG/L) (MG/L) (M
*G/L) (MG/L) '/)
816 FORHAT(I10»6Xtffi,2tf:7,2ir5F7,<4ifr10,l»UF7,5iAl.F6,3i3F7,3)
100 FORMAT(I * INDICATES SUM TU1AL OF ThE NITROGEN IN CONSTITUENTS BEI
*NG MODELED EXCEEDS THE TOTAL NITROGEN BEING MODELED AS A CONSERVAT
*IVE.I)
f NO
SUBROUTINE SCALE C ARRA Y , A XI.EN , NPTS , I NC)
DIMENSION ARRAY(NPTS) , INTC5)
OATA 1NT/2»U(5,0, 10/
INCT=IAHS(INC)
C
C SCAN FOR MAX AND MIN
C
A*AX=ARRAY(1)
AMINsARWAYf 1)
00 250 '•'=! .NPTSi INCT
1F(AMAX.LT.ARR*Y(N)) AMAX=ARRAY(N)
!F(A»--IN.GT,AR;'AY(^))AMIN = AKHAY(N)
250
AHAX
275,2SS.?75|
150
-------
1403.
HOI,
1U05,
1 '1 0 6 i
1407.
1400,
1409.
mo.
1411.
1412,
1413,
1 4 1 H ,
1415,
1116.
1417,
H19,
1420,
1422,
1423,
1424.
1 4 ?. 'j ,
1426,
1427.
1428.
1429.
1430,
1131,
1132.
>433,
1 S 7. " ,
1435,
1136,
1137,
1138,
11S9,
1110.
1141,
1442,
1443,
1444,
14H5,
1416,
14U7.
14(48,
1449.
1450,
1451,
1452.
1453,
145«.
1455.
1456.
1457,
1458,
1459,
1460,
1461,
1462,
1463,
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
RESET MAX AM> HIN FOP ztRO RANGE
255 IF( AKIN ) 265. 100. 260
260 AMIM = o.O
AHAX = 2.0 * A'
-------
1464,
146'j,
1466.
1167.
1460,
1169,
1170.
1471.
1172,
1473.
1474,
1475,
1076,
1177,
1078,
1079,
. 1180,
1481,
1482,
1485.
lisa.
1085.
I486,
1487,
1488,
1489,
1490.
1491,
1492,
1493,
1494,
!/
IHHST=l
NOUT = (j
1NH3=0
IN02--0
INOJ=0
IP04=0
lALG'-O
IF(ICOM8,EQ,18) GO TO BOO
INHJsl
IFCICOHB.GE.y .AND, ICOMB.IE.U ,OR, ICOHB.GE.16) INM3=0
lFtICOhB.CO,19 ,OH. ICOMB.EG.20) INH3=1
1^02=0 ' i
1FUCPMH.LE.2 ,0«, ICOMB.EO.O .OR, ICOMB.EQ.ia ,OR,
*ICOMH.E0.13J IN02=1
IF(!COMB,t.Q,19) IN02=1
IN03=1
IFC1COMB.EO.10 ,OR. ICOMB.EQ.ll) IN03=0
IF(JCOMB,GT,2l) IN03=0
IP04=1
IF(ICOMB.EO,4 ,DH, ICO»1B,EQ,6 .OR, ICOMn,EO,9 ,OR, ' .
*ICOMB,EB,11) IPQfl=0
I.F(ICOHB,t;t,19 ,ANO. ICOMB,LE.2l ,OR, ICO'IB ,EQ , 23) IP003Q
IALG=0
IFriCOhB.EQ.l .OR, JCOMB.E0.3 ,OR, ICOMf),EQ,7 ,OR,
*ICOMB.f:0,12 .OH, ICOMH.fcU.U .OK.' JCOMQ.E0.16) lALGsl
800 CONTINUE
IFdCUMB.NF.18) hRITE(NOUTilOOO)
IKdCO^rf.EQ.lB) w«lTE(NOUTi999)
IFdCOL.EQ.l) wHJTt (NUUT.1001)
IFdCOMll.LE.il) WHITE(NOUT«1002)
lF(INh3,f:a,0) GO TO 10
LAB(1)=NH3
LAB(2)=\
LAH(p)=lFIR
IFdN'H.EQ.a) I.A(U6) = I2ND
VN«ITE(HOUTil003) LAU
10 CONTIHUE
IFCINOS.F.IJ.O) GO TO 20
LAB.(l)=HOa
LAB(?)SN
LAH(6)=IFIR
152
-------
1525.
1526.
1527,
152U,
1529,
1530,
1551,
1532,
1533,
153H,
1535.
• t: 1 1
1 J ->W 9
1537,
15J8.
1539,
1510,
15*)1,
1512,
1513.
ISa'l.
15«'J,
15«6,
15U7,
IS'iO,
1S'I9.
1550,
1551 ,
1552,
1553.
IS5«,
1555.
t -* •>•& 9
1557,
1558,
1559,
1560,
1561,
1562.
1563.
156/1.
1565.
1566,
1567,
1568,
1569,
1570.
1571,
1572,
1573,
157«,
1575,
1576,
1577.
1578,
1579.
1580,
1561,
1582,
1583,
IS8«,
1565,
20
30
ND
wniTECNOiir <100 5) LAll
CONTINUE
IFdPOI.EO.O) GO TO UO
1 ti l\ I 1 \ *• 1 D i'l h
L ^'1 1 ] ) -Lr 0 1*
LAB(2) = L.f
LAR(6)='IFIR
IFdP.tH.i1) I AH(6)--Ir:\[)
«»ITE(\'OUT i 1003) LA3
CONflNOE
If (lALG.EO, 1) '*RITt- (NOUr. 1007)
IF( IHE AVY.EO. i ) WRTTE (LOUT • IOOBJ IHEAVY
IFCIHeAv/Y.rjT.l) wRITECNOUTi 111 1) IHgAVY
IKdTOTM.NE.O) AKlTEC^.CJTi 1009)
IF t ICuLOH.MK.O) *RITE (N'O'iJT, 10 10)
"SITE (NQUTi 1 112)
RETURN
FORHATO THE FOLLOWING CO'-ST ITUM.TS ARE HE ING MOOF-LEDI)
FORMAT! i THf. FOLLOWING CONSTITUENTS ARE htI*G "OOKLtD OISSOLVEO
*OXYGEM1 )
KOHMAT(«flXi 'COUIF'ORMS')
FORMAT (flllXi 11300' )
FORMATdlBXt lOAfl)
FORhAT(«HX, IPhYTOPLAN^TON')
FORMAT (iiiX, T i , ! iiEAVY l'.c.TAL (Af-'O ITS AGGuCIiTCD IC(v)')
KOHMATfOHXi ITOTAU NITROGEN')
FORKAT(UflX» "CHLORIDES 1 )
FORMAT U»X, U i I HEAVY MtTALS (AND THEIR ASSOCIATED IONS)')
FORHAH/X)
END
SUBROUTINE SUBA
COMMON OATA(2<)20.7).ALPHAC20) .P-DEX (7)
-
COMI'ONVMJV/ A, B. IDAY. ITAPEt lYH. LAT. LOAY. LOG, NQHSi PTFMP,
A RESEL. SRO, SSO. NGOi NINT
INTEGER MONTHCIS)
DATA MONT H/:M. 28> 31. 30.31 .30.31, 31 i30i3t) 30, 31/
REAL LAT, LOG
INITIALIZE NECESSARY VARIABLES
00 1 1=1,7
DO 1 J=1.H920
OATA(JtI)cO,
SPO e 0,0
SSO o 0.0
HTE^P a o.O
DO 7 J c it 7
IK'OEX(J) no
CONTINUE
HEAD AND -(RITE RUN DATA
153
-------
15R6,
1587, RF.AD(5,'501) ALPHA
1500, *!UTE(fa.601) ALPHA
1589, rttAO('J,50.$) Irs, IOAY, t.DAY, NOBS, ITAPF
1590, wf'ITE(6ibO?) IvRi IDAYi LDAY, NOGS, ITAPF
1591. NGO = )
1592, MNT = MOPS * ( LDAY » IDAY + 1 )
1593, POSKniOAY/3.0+1
1595. REAO(St'.;09) A, B, LAT, LOf,, RESEL
1596, , "RIU(b»603) A, B, LAT, LOG,
1598, C ** READ A METQROLOr.IC DATA SET
1599,
1600. 9 RFAO(5tb07»fr--JD = '45J ID t CV , C V A , CVH
1601, IFUO.GT. 100) GO TO ) ID = ID " 1
1600. NUP e 0
1609, 00 55 L=MONF,MONL
1610, NLO = NUP * 1
1611. MUP = NLlP + MOMH(L)
161H, REAO(5,511) ( DATA(J»IO), J = NLOi NUP )
1613. 55 CONTINUE
1614.
1615, C ** MAKE UNITS CONVERSIONS
1616,
1617. 00 113 J = MGu, MNT
1610, DATA(J,ID) = CV * C DATA(JiID) * CVA ) + CVB
1619, 113 CONTINUE
1620,
1621. C ** WRITE OUT COMMENT FOR EACH INPUT
162?,
1623, 19 GO TO ( ai,2a.33,2a,2Si26.27 ) . 18
16251 GO TO 35
1626, 22 ftR-ITE £6,622)
1627. GO TO 35
1628, 23 «RITE(6,623)
1629. GO TO 35
1630, 2(1 HfUTE«
1631, GO TO 35
1632, 25 ••'RITt'Cl
1633. . GO TO 35
163(1, ?.t. *RITEO
1635. GO TO 35
1636, 27 hP!U(<
1637, 35 i*RITE(6ifa20) CV, CVA, CVB
1638. GO TO 9
1639.
16(10. C ** END OF RAW PATA INPUT
nai,
16(12, (15 «RITE(6,635)
16U3.
160(1, RETURN
16(15,
16«6. C ** INPUT FORMAT STATEMENTS
154
-------
1607,
1600. 501 F(JRMAT(
161V, 503 FOfMATt 8110 )
1650. 505 FOH«AT( IhHj.O )
1651, 507 FORMATC 110, 3UO.O )
1652, 509 KOHMATC 8E 10.0 )
1653, 511 FOR«ATC5X,F'j,0,7F10.0)
1650,
1655, C ** OUTPUT FORMAJ STATEMENTS • .
1656,
1657, 601 FORMTUH1 ,//,10X|20A.-XE8i 01 •
1705, 0 QOUTi REStL« HI.EN, SOZi S»-EATi STMJLE, \IQ:<£, VSUM, VTOP, INT,
1706. E Cli C2« C3
1707,
155
-------
1708, • DIMENSION CHENT('IO), TF(2CO)» Vt'(?00)i V7C200)
1709,
1710, c ** INITIALIZE SYSTK* CONSTANTS AND PARAMETEHS
1711.
1712. NPAGE 3 1
1713. NSEG so
1710, KEAD(SiS20) INT
1715. 5?0 FfJR«AT(IlO)
1716. GMAX = 3,5
1717. '
1718, C **** KEAO UPSTREAM Ft.0w FILE
1719,
1720, REWIND INT
1721. READ(INT) IDAY, LOAY •
1722. REAO(INT) ( POOL(L)« OIN(L)» GOTU'Di TIN(L)i L = IDAY.
172.4,
1720, C ** READ HtTOROLOdC INpuT FILE
1-725,
1726, READ(5i'505) IOAY» LDAY
1727, REAO(INT) IYR. IA, IB, NOBS
1728, IF( IA ,LE. IDAY ,ANIV. IB ,GE, LDAY ) GO TO 33
1729, tNrtIT?:'(6i'>'j9) MAXi lAi IB.
1730, STOP
1731, 33 IK IA ,EQ, IDAY ) GO TO 99
1732, 1C = NOUS * ( IDAY i IA )
1733, DO 35 J = 1, 1C
1730, REAOtINT) TA
1735, 35 CONTINUE
1736,
1737, C ** READ AND WRITE SEGMENT CARD INPUT
1738,
1739, 99 READ(S.50l) CwENT
1700, wRITF(6»601) GHENT i
1701, REAOC5.50U) SOZ» EL^AX, EDMAX» A, BBi GMIN
1702, «JRITE(h.603) IOAY. LDAY» SOZi EL^'AX
1703, EXCO a 6,908 / EDHAX
1700, 103 'iRITEC6»60«) EOMAX, A, BB, GMlN, EXCO
1705,
1706, C ** READ AND WRITE SEGMENT RUN PARAMETERS
17«7.
1708, REAO(5»505) NSEG, NTP, NSD. IPRT, INTP, ITAPE, NOUTS,
1709, A NXF'Ji IVAL
1750, HRITEC6.605) NSEG, NTP, NSOi IPHT» INTP, ITAPE,
1751, A NXEQi IVALt NOBS
1752, READ(b»'JO«) USxH, Al» A2i Aii KLEN
1753, «RITE(6,f>63) GSfH, Al, Ai>, A3, RLt-N
1755, C **** READ AND WRITE AREA COEFFICENTS
1756,
1757, READ(5i50U) Cli C2i C3
1758, wRIU(6,609) Cli C2, C3
1759.
1760, C ** READ AND WRITE OUTLET POSITIONS
1761,
1762, 00 100 J c 1, NOUTS
1763, R£AD(5,1J09) N,ELOUT(N) ,«!OT(N) iISRSOU(N)
1760, 100 CONTINUE
1765, WRITM6.606) ( J. ELOUT(J)i ^OT(J)t J = li.NOUTS )
1766.
1767, c ** INITIALIZE SELECTED ARRAYS
1768,
156
-------
1769,
1770.
1771.
1772,
1773,
1771.
1775,
1776.
1777,
1778,
1779,
1700.
1701.
1782,
1781.
17(55.
1786.
1787.
1788.
1789.
1790,
1791.
1792,
1793.
1794,
1V95,
1796,
1797.
1798.
1799,
IflOO,
1801.
taoa,
1803,
1800,
1805.
1806,
1807.
1808.
1809,
1810.
1811.
1812,
1813.
1814.
1815.
1816.
1817,
1618.
1619.
1820.
1821,
1822,
1823.
1824.
1825.
1826.
1827.
1828,
1829,
00 105 J = li 200
AKEACJ) = 0,0
DVOL(J) = 0.0
T(J) c 0.0
TDOT(J)= 0,0
VOU(J) = 0.0
*(J) B 0.0
105 CONTINUE
C ** GENERATE KLEVATION PROFILE
Tt = 0,5 * vSOZ
00 107 J - ?.• 200
ZCJ) = Z(J-'l) + SDZ
ZMID(J«i) = Z(Jwl) + TC
DZCJ-1) = 8DZ
107 CONTINUE
MAXE = ( E.LMAX + TC ) / S07.
MAXP - MAXE + 1
C **** GENERATE AREA ANO VOLUME PROFILES
113 00 115 J c l, MAXP
AREA(J) = Cl + C2 * Z(J) + C3 * Z(J) ** 2
VOL(J) c Cl * ZCJ) + C C2 / 2.0 ) * ZCJ) ** 2 +CC3 / 3.0 ) *
A ZCJ) ** 3
115 CONTINUE
00 117 J = It MAXE
DVOLCJJ = VOLCJ+1) " VOLCJ)
117 CONTINUE
c ** JNPUT TL?MHFHATUHE TNITIAUTZATION RATA pniwrs
131 IFC NTP ,GT. 1 ) GO TO 139
REAOC5i504) TAi TB
00 135 J c li MAXP
TCJ) a TB
135 CONTINUE
GO TO 1U7
139 00 105 J = li NTP
REAt>(5i504) TA, TB
00 1«3 K = It MAXP
IFC TA ,GT. ZMIDCK) ) GO TO 1«3
T(K) = TB
GO TO 145
103 CONTINUE
145 CONTINUE
CALL SU8G( NTPi Ti 200 )
c ** INPUT DAYS FOR SPECIAL PRINUD OUTPUT
107 IF( NSO ,GT. 0 ) RfcADCSiSll) C IDOUTCJJt J = li
C *» LOCATE OUTLETS IN THIS SEGMENT
DO 159 J s 1, NOUTS
00 157 K = li MAXP
IFC ELOUTCJ) ,GT. Z1IOCK) ) GO TO 157
NOUCJ) s K
GO TO 159
157
-------
1830,
1031.
1832.
18S4.
183U.
1835,
1836.
1837.
1838,
183V.
1800,
1841,
1842,
1813,
16««,
1045,
•1846,
18/J7.
1649.
1851,
1852.
1853,
1650,
1855.
1856,
1657,
1858,
1859,
1860.
1861,
1662,
1663,
186«.
1865,
1866,
1867.
1868,
1869,
1870,
1871,
1872,
1873,
1674,
1875.
1876,
1877,
1878,
1879,
i860,
1881.
1682,
1883.
1864.
1865.
1686.
1687,
1668,
1669,
1890,
l'>7 CONTINUE
159 CONTINUE
c ** WRITE OUT SYSTEM INFORMATION NOW AVAILABLE
lf>3 MAX = INTP * 48
00 165 J = 1, MAXP, MAX
ICO c J
IENO = IGO 4 MAX -1
IF( IF.NO ,GT. MAXP ) IEND = MAXP
• NPAGf. = NPAC.E i t
'*RlTt((.ih01) CMFNT
*KITF(6rfc07) (KiZ CK5 »AREA(K) i VOL (K) •DvfL(K
A K = IGO. IENO. INTP )
165 CONTINUE
T(K)
RETURN
ENTRY PRNTCM.MM)
C ** CONVERT TO DEC F AND CALCULATE AOVECTION RATIOS
GVIN = 0,0
DO 213 J = I i MIME
TF(J> = 1,8 * TFX(J) + 32.0
TA = 1.0 / DVOLCJ)
IFC J .EO. NuME ) TA B 1,0 / VTOP
QVOT s GHI(J) + QVIN « QHCKJ)
VH(J) a OtLT * AMAX1 (tlHI(J) |QHO(J) ) * TA
VZ(J) s OELT * AMAXKAUS(OVIH) lABS(OVOT) ) * TA
OVIN = QVOT
pit-tr'>fcl***l'ir '
f.1 J tui- I iiidC
C ** WRITE SIMULATION OUTPUT
NPAGE .a NPACE + 1
WRITE(6i60t) CHtNT
X«ITE(6i653) M.MM
WRITE(6t643) HESELt ATi OZT. TFX(N'UMf), 01, EVA, OOUT, EVAP.
A ELTC, TIH(M), DSTCMJ. Z(IMIX), RFSTMtn). TSPEC(M)
WRITE(6i645) QNSi «MA« OW, QE, OC
l*RITE(6.h'l<») (J« NOU(J). ELOUT(J)t OOT(M,J)» TOUT(MiJ)i DKOO'ZtJJt
A J s 1, NOUTS )
214 MAX a INTP * «8
DO 21S J = li NUMEf MAX
IGO a J
1ENO = IGO + MAX « 1
IH IENO ,r,T, NUME ) IENO = NUME
NPAGE = NPAGE + 1
WRITEC6.601) CMENT
OKI(K) ,
WRIH(6,655) ( K, ZOO, TFX(K), TFCK).
A OCCK), VZ(K), VH(K), K = IGO, lE'-'D.
215 CONTINUE
CALL qPRlNT(M,MM,NUME)
CALL Cll«VE(TFX(l) ,ZCD ,NUMEi liM)
00 219 J = (JUMP, MAXP
TFXfJ) = TFX(NUME)
Z(J) = Z£J-1) * SOZ
219 CONTINUE
158
-------
1891,
RETURN
1893.
189«,
1895,
1696,
1897,
1890,
1899.
1900,
1901,
1902,
190«I
1905,
1906,
1907.
1908,
1909.
1910.
1911.
1912.
1913,
19H,
191&I
1917,
1910.
1919,
1920.
1921,
1922.
1923,
192U,
1925,
1926.
1927,
1928.
1929.
1930.
1931.
1932,
1933.
1930,
1935,
1936,
1937,
1938,
1939.
19«0,
1911.
1942.
1943.
1944,
1945,
19/46,
1947.
1916.
1919.
1950.
1951,
C **
501
5f)3
501
505
507
509
511
C **
601
603
60U
605
606
607
609
643
645
INPUT FORMAT STATEMENTS
FORMATC 20AU )
FORMATC 2110t 6E10.0 )
FORMATC BK10.0 )
FOKftATC 1615 )
FORMATC «c no. EIO.O ) )
FORMATCI10»2Elu,OiI10)
FORMATC 1615 )
OUTf'ljT FORMAT STATEMENTS
FORMATCIH) ,:55Xt 'DEEP RESERVOIR MODEL 1 //( 25X t ?0 A«) )
FORMAT C /// 2IX. 9HFIRST DAY 110 / 2 1 X , 9HFIMAL DAY IlO //
A 21X» 9HNORMAL 02 F10.3 / 20X, 10HMAXIMUM EL HO, I )
FORMATC // ?2X, HHEX 9EPJH 1PE15.3 /
A 1MX, 12HEVAP COEFF A E 1 5 , 3 /
B IPX, JRHF.VAP COEFF B E15.3 /
C 22X, 8HMIN STAH OPF15.3 // 20X, 10HSW EX COEF F-15,3 )
FORMATC // 20X»lOHStG NUhllER 110 /
A 22Xi HHTF.MP PTS I 10 / 2?Xt BMDAvS Ol.iT 110 /
B 19X» HHOUTPUT FREQ 110 / lyx, 13HVERT PRT FREO 110 /
C 22X, OHtAFE OUT 110 / 19X. UMNUn OUTLETS IlO /
0 SOX, JOHREPEAT XEQ IjO / 1&X, j^lHXEH O'JTPUT INT IlO /
E 19X, HHOHS PER DAY 110 )
i
FORMATC // ?«X, 36HOUTLET ELEVATION fFF WIDTH /
A C 130, 1P2E15.3 ) )
FORMATC / i3x» 62HNO ELEVATION SEC AREA CULM vo
*L DELTA VOL »6X,iTEMP(C)i//(Ii5«OPFl5.1,lf«El5.3))
FORMATC // 17x. 13HAREA COtFF Cl 1PE15.3 / t7x, 13HAREA COEFF C2
A El5.3 / 17X, 13MAREA COtFF C3 EJ5.3 )
FORMATC // lax. 26Hr,E^ERAL SYSTEM INFORMATION //
A 2lX» i9HRESt.RVOIR ELEVATION FiO,2» aH M 17X»
B 16HSURFACE AIR TErtP F12.2. bH OEG C /
C 25X, 15HSURFACE ELEMENT K10,2, 2H M isx,
D 18HSURFACE WATER TtMP H2.2, 6H DEG C /
E 21X, 19HTOTAL SYSTEM INFLOW f- 1 0 . 1 • H» CMS liX,
F 1UHEVAPORIZATION RATE 1PE12.2, «h CMS /
G 20X, 20MTOTAL SYSTEM UUULC* OPFJO.1, <4H C.MS 15X»
H 16MCULM EVAPORIZAT10N F12.3, 2H M /
K 2«X. IMItLFv IHERMOCLINF. H0.1, 2H M ,
L 15X« iHMlfiFLOh TkMPtRATUi'f (• 1 ? . 2 1 6H DEri C /
M 2SX, ISMRO^JJSTRE AH TE^P OPF10.?» 6H n£G C, 12Xi
N ITHLOi-EST MJXEO ELEV F12.1, 2H M /
0 2hX, l«HRtTENTION TIME FlO.li 5H DAYS i
p 16X, UHOBJECTIVE TEMP na.a, 6h otc c )
FORMATC /// I8xt aansuRFACE HEAT EXCHANGES '//
A 37Xi 3HUNS lPE13,3ii}H KC/M2/S /
B 37X, 'irifJNA, H3.'i> PM KC/MtVS /3flXt 2HQK, p 1 J . 3 « BH KC/M?/S /
C 38X, ?HQE, E13.3, 6H KC/M2/S / 38x, J?NTCi E13.it 6H KC/M2/S )
159
-------
1952,
1953.
H55,
1956.
1957,
1950.
1959.
19&0.
1961.
1962,
1963.
1964,
1965.
1966,
1967,
1960.
1969,
1970,
1971,
1972.
1973.
1971,
1975,
1976,
1977.
1978,
1979.
I960,
1981,
1982,
1963,
1984,
1985.
1986,
1987,
1988,
1989,
1990,
1991,
1992,
1993,
1994,
1995.
1996.
1997.
1998.
1999.
2000.
2001,
'2002,
2003.
2004.
2005,
2006.
2007,
2008.
2009,
2010,
2011,
2012.
649 FORMAT( /// 2'iX, 15
AELEV FLO* TfcM
B ( P5X. 2110, OPF10.1.
653 FORMATC / 25X, 36HSU"MARY OF OUTPUT FOR SIMULATION DAY
A 5X,. IBHfXECUTION INTERVAL 15 }
OUTFLOWS // 33X. 57HNO
OtM f.RAD /
it 1PU5,? ) )
ELEM
15
651 FORMAT ( / fix, 120HNO ELEVATION TEMP DEC C TE'-'P
IF HORZ OUT HOMZ IN "ATE OF CHG OIFK COtK
2AR ' HAK / ) -
655 FORMATC HO, OPM5.li
lP2Elb.3i OPF7,2i .F6.2 )
THE FILE «AMGf is
&r>9 FORMATC /// lox. ISHERROR IN FILE i (0*TA( 1 ,2) .CLO( 1 ) ,KT( 1 ) )t
A (OATA(1,3) np.5BT(in • f 0» T A ( 1 , SI , wRT f 1) i OPT ( I ) •
B EAC1)>« (DATA(l»b) tQSCU tQNSCl) ) ,(DATAtli7) tOATCn .i'JC(l) )
REAL A.P(2920)i CLDC2920), WSC29SO), OBTC2920), '.iHT(?9?0).
A OPT(2920). QS(29aO), QATC2920), QNS(2920). WCC2920), l-A(2920)i
B ETC2920)
REAL CAT, LOG, MU» LAMBDA
REAL ALPH(6)t BETAC6), AT»'0(1), BT^OCDi DUST(«»2)
DATA ALPH / 5, 70. 1.00. 0.757, -5, «1, -J5, 29, -30. «3/(
A BETA/ 0.620,0.8'l2,l.in7,l.«59,l.8')8,2.4«9/,
8 ATKO/ 1.18.2,20,0. 95iO. 3'j / »
C HTWQ /-0.77,-0,97,-0.75,-0,45/,
D DUST /O. Oh, 0,06,0. 05,0, 07,0, 06. 0.10.0. 07.0, Ofl /
VPS(THA) B 2.171BE8 * EXP( -4157,0 / ( THA + 239,09 ) )
IOUIT a 0
C ** CHECK ON ATMOSPHERIC PRESSURE
IF( INDFX(l) ,GT. 0 ) GO TO 103
TE.MP = 1013.0 » 10,0 ** ( -S.25E-5 * RF.SFL )
DO 101 J a NGOi MINT
»PCJ) = TkMP
101 CONTINUE
C »* GENERAL INPUT DATA CHECKS
160
-------
2013,
2014,
2015.
2016,
2017,
2018,
2019,
2020,
2021,
2022,
2023,
2024,
2025.
2026,
2027,
202B,
2029,
2030,
2031,
203R,
2033.
203
-------
2070,
2075,
2076,
2077,
2078.
2070.
2000,
2001.
2062,
2003,
2080,
2085.
2086,
2087,
206B,
2089,
2090,
209J,
2092,
2093,
209«,
2095.
2096,
2097.
2090,
2099,
2100.
2101.
2102,
2103,
2100.
2105.
2106.
2107,
2100,
2109,
2110.
2111.
2112,
2113,
2110.
2115.
2116.
2117.
2118,
2119.
2120.
2121,
2122.
2123.
2120,
2125,
2126.
2127.
2128.
2129,
2130.
2131.
2132.
2133.
2134.
DO 133 K = 1, NOBS
SlJMfJ = 0,0
RSUM = 0,0
N s NN + K
M B 1
IF( CLD(N') .IT. 0.1 ) GO TO 127
M a g + INT( ( CI.O(N) » 0.101 ) / 0,«0 )
127 CS = 1,0 • 0,/>5*CLIHN) ** 2
C ** ENTEH HOUR LOOP
HSS ) GO TO
*• cos(cn\[;) *
» ( H7.3
AL
3.9.15 ) »*
00 131 J = li Nh'KS
TJMt = TIME + 1,0
IF I TlMfc .L.E., H5H .OH. TIN
AL = ARSlu< SII.(CONt) * S!
A COS( 0.?62 * T\"-t ) )
IKC AL .I.E. 0.0 .OR, AL . Gf.. 1,57 ) 00 in 131
TEMP = AP(N) / 1013,0
CM = TEMP / ( SIN(AL) *
A ( -1.253 ) )
TEMP a 0,17 * EXP( -fl.fHS * CM ) + 0.129
AI = EXP( » C O.'lb1! + O.li'l * »C(N) ) * TEMP * CM )
TEMP = 0.021 * EXPC "0.721 * CM ) + p.179
All = EXP( - ( 0,0h!i * 0.1JO + KC(N) ) * TEMP * CM )
00 a 0.33 * SIN(AL) / K ** 2
RSO = ATWn(l) ? ( 57.3 * AL ) ** BTWO(l)
RFO = AT^O(M) * ( 57.3 « AL ) ** BT-OOO
IFf «FO ,GT. 1.0 ) HFO = 1.00
MM = i
IF( CM ,GT. 1.5 ) MM c 2
TEMP a All * 0.5 * ( 1.0 "AI - OUST(KK.HM) )
' TEMP = TEMP / ( 1.0 - O.'i * RSO'* ( 1.0 - AI * DUST(KKiHH)
GTWO = 00 * TEMP * CS
SUMO a SUMO + 0,5 * ( DONE + UTWO )
RTv.0 = QT^O » ( 1.0 «, RFO )
RSUM = RSUM + 0,5*( HONE + RTwO )
GONE = QTwO
RONE = RTWO
131 CONTINUE
RTE'"P = 0,0
IFC SUMO ,r,T. o.o j KTEHP = KSU»
IF( INDEXC7) ,LE. 0 ) US(N) = Sij1
ONS(M) = RTEMP * QS(N)
133 CONTINUE
135 CONTINUE
C ** NET ATMOSPHERIC
DO 1U9 J = KGO, MINT
OAT(J) = 1.233t-t6 * ( 1.0 * 0.17 * CLD(J) ** 2 >
A * ( PBT(J) + 273.0 ) ** 6
109 CONTINUE
C** CALCULATE EQULI8RIUM TEMPERATURES
00 169 J a SCO, NINT
N a IFIXC PTEMH 5/5+1
TA B 5.95E5 * ( A * B » ws(J) )
LAMdDA = 1.17E-3 + TA * ( OtTA(N) + 6,lf-0 * AP(J) )
SUMO
/ MRS
162
-------
2135,
2136.
2137.
3130.
2139,
2100.
2141.
21«2.
21«3,
2146.
21«7.
21«9.
2150,
2151.
21'J2.
2153.
2156,
2157,
2158,
2159,
2160.
2161,
2162.
2163,
2161,
216S.
2167,
2168.
2169,
2170,
2171,
2172,
2173,
2170.
2175,
2176.
2177.
2178.
2179,
2180,
2181.
2182,
2183,
218«,
2185,
2186,
21fl7,
21B8,
2189,
2190,
2191,
2192,
2193,
219U,
2195,
HU = 0.6 * fJMS(J) f (VAT(J) » V,M>E-2 - TA *
A ( ALPH(N) " EA(.J) - 6.1E-4 » At'(J) * DOT(J) )
ET(J) = MU / LAMBDA
PTKMP = ET(.I)
If I PTPMP ,LT, 0.0 ) PTf-.MP s 0.0
IF( PTEMP ,GT, 29,9 ) PTEUP = 29.9
169 CONTINUE
c ** M
A «S(J)i ETfJJi J = K, MAX )
171 CONTINUE
IF( ITAPE ,LE. 0 ) RKTUHN
00 175 J s NGll, MINT
AP(J) = 6.1E-« * AP(J) •
175 COUTINUK
wRITECITAPt:) lYMflDAY.tOAYrNOBS
00 177 J = NGO» MINT
««ITE(ITAPE) ONS(j),OAT(J),AP(J)iDQT(J),E.4(J)|WS(J)
177 CONTINUE
FILE. ITAPE
ITAPf
RETURN
60!
Hl ,30Xs IM£TEQ»OLOGIC DATA1/)
651 FORMAT(3X» 93HNO NET SOLAR NET ATf'OS
1UB tA HIND EQ TEMP
* //(I5,7F13.5))
AT PRESS
PRY BL
67! FORMATt // 20X, 37HSOME NECESSARY PARAMETERS ARE MISSING //
A 22X. 17H** PROGRAM HALTED )
END
SUBROUTINE SUBC
COMMON/ABLK/ ABAR(200)t AHtA(200), DCUOO)» DtNSC200), OHK200),
A OVOL(200)t OZ(ZOC). 07.1(200), OHI(200), OHO(2ftO), T(200),
B TOOTC200), TFX(200), THK200), vOL(200). Z(200), ZMIDC200)
COMMON/BBLK/ A, AT» BB, Ev, NAVGi QC» QE, ON, ONA» CMS, O1*'
COMMON/CHLK/.DST(36b), ROOLC365), QIN(365)» RESTH(365), TJN(36S)
COHHON/DBLK/ ORODZ(S), ELOuT(5), NiOu(S)i QOT(365,3)i TOUT(36S,3)i
A TSPfC(.US), KOT(5)
COMMON/FBLK/ EuPCS), .OllP(S), TuP (b) , wu!J(5) , 100'uT C50) , QORO(i6b)
COMMON/NDv/ Al, A?, A3, DfLT, OuIN, OTPY?, D7.T, fO"Ax, El.TC, EVA,
A EVAP, EXCO, Gf-AX, G^IN, C.S«n, JAT, IGT, lOAYt I--.JX, IK'TP, IC'-ti
B IPRT, ITAPE. lino. IVAL, I.DAY, MAXK. «AXP. N-LfTs, sous, ^c>ns,
C NTCi NREP, NSt), NSEO, NUM. I.UKE, NUMP, SUSIt 'iT^IBS, N.XEQ, 'JI,
163
-------
2196.
2197,
2199.
2200.
3201,
2202.
2203,
H204,
2205,
2206,
2207,
2200,
2209.
2210,
2211,
.2212.
2213,
2211,
2215,
2216,
2217,
2210,
2219,
2220,
2221.
2222.
2223,
2224,
2226,
2227,
2228,
2229.
2230.
2231,
2232,
2233,
2234,
2235.
2236.
2237,
2238,
2239,
2240,
2211 ,
2242.
2213.
2244,
2245.
2246,
2247,
2246,
2249,
2250,
2251.
2252,
2253,
2254,
2255.
2256,
D ROUT. Rf:S(-L« RLFN« SDZ. SHfcAT, -STAIiLt, VfJNf ( VSU't, VTOI'i INT,
fc Cli C2. T3
CnMM[ir4/nBUO/IHUG
CUMHON/TKMf'KH/Tf MP A V . Tf>U V ( 100}
COMHC"! CINr-l.fUJ65.lt.) ,CL A". (100 • 16) ,COTF'Ln(36bi 16J ,AV<200) t'H200) »
*Fr.E(20<» iP(200) »S(c?oni5) iS'<(200)
COMMON/LAK/KCON»DU,F 1 »E2 i NO*IJAY « XSOZ i XOZ TOP i X ATOP i XVTOPiNHOUR
2*( TA + 2fl3.0 ) ) /
( C3 / 3.0 ) * X ** 3
DIMKNSION XTfMP(16)
'RO(TA) B 1000,0 - (UlA « 3.9H )
A ( 503.57 * ( TA + 67,26 ) ) )
AF(X) = Cl + C2 * X + C.4 » X ** ?
Vr(X) = Cl * X +( C2 / 2.0 ) * X ** ?
C ** CALCULATE SOME H1SCKLLANEOUS OUAHTITUS
1BU6 = 0
TA s 1,0 / SOZ
on 105 j = i i MAXE
OZI(J) = TA
TKX(J) = T(J)
ABARCJ) s 0.5 * ( AREA(J) + AKEA(J+1) )
105 CONTINUE
OELT B 3600.0 * FLOATC 24 /
PTBY2 B 0.5 * OELT
EVAP =0,0
IMIX = 1
IF(TCMAXt:)-T(n.CT. .1)
NHOR = 24 / NOHS
NHXfJ = H4 / NXE3 I
NAVG e ( NHXO i, 1 ) t NHOB + 1
C ** INITIAL OUTPUT TAPE WRITE
IFC ITAPE ,LE. 0 ) GO TO 119
WRITEUTAPE) IOAY» -LDAY. SDZi NOUTS
c ***** ENTER DAILY INTERVAL LOOP *****
119 00 279 L = IDAYi LOAY
IFCL.KQ.174) STOP
IF(IBUG.EO.l) *HITE(6. 1002) L
1002 FORMATC/i ******OAy NUMBER ' 1 15. i ******!/)
RESEL = POOL(L)
TSPECCL) = TIN(L)
QI = QIN(L)
NOWDAY=L
c ** SURFACE ELEMENT PROPERTIES
NUME a POOLCL) / SOZ + 1.0
IFC POOLCL) - ZCNUfiE) ,LT, 0.75 * SDZ )
NUKP = NUME * 1
NUM s NUME « l
NULL = NUM •• i
ATOP = AFt POOL(L) )
VSilM = VF( POOL(L) )
VTOP a VSUM » VOLCNUME)
DZT = POOL(L) " ZCNUMt)
• 1
164
-------
22S7.
2338.
2259,
2260,
2261,
2262,
2263.
22641.
226'j,
2266,
2267,
2268,
2269,
2270.
2271,
OZTOP a 0.5 * ( SDZ + !'/T )
PASS VARIABLES T0 S'.JWO'JTl'If. LAKCON
XSD£=SOZ
2273,
2274.
2275.
2276,
2277,
2278.
2279,
2260,
2281,
2282,
2283,
2284.
2285,
2266,
22S7,
2268,
2289,
2290,
2291,
2292,
2293,
2294.
2295,
2296,
2297,
2298,
2299,
2300,
2301,
2302.
2303,
2304.
2305,
2306,
2307,
2308,
2309,
2310,
2311,
2312.
2313.
231U,
2315.
2316,
2317,
XATOP=A1UP
XVTOPsVTOP
lf"l = Ul
IF(L.Et).LOAY)
)»VOI.(NUME)
***** ENTEH EXECUTION INTERVAL LOOP *****.
DO 271 Msi, NXEQ
DO 163 Jell HAXE
AV(J) ~ 0,0
GHI(J) = 0.0
QHO(J) n 0.0
FEE(J) = 0.0
S>"(J) = 0,0
163 CONTINUE
MH = ( M i 1 ) * NHXQ
IF( MOD(NHifjHoU) ,EO. 0 ) CALL SUf>0( TFXCNUME) +-DELT *TDOT{NUME))
164 EVAP = F.VAP + EV * OELT
EVA a EV * ATOP
C ** CALCULATE THE DENSITY PROFILE
• DO 165 J = 1i
DENSCJ) = «0( TFXCJ) )
165 CONTINUE
OENS(NUMP) = OENS(NUME)
c »* LOCATE THF.RMOCLINE
NTC s NUME
TA = 0,0 •
00-169 J a 1 , HUM
TB = DZI(J) * ( TFXCJ+1) • TFX(J) )
IF( TB ,LT, TA ) GO TO 169
NTC o J
TA = TO
169 CONTINUE .
ELTC = Z(NTC)
C ** CALCULATE THE DIFFUSION COEFFICIENT
00 175 J a 1, NUM
DCU+1) .= *1
TA =(2.0 * DZI(J) * C OtNS(J) « OENS(J+1) ))/ C DENS(J)
A + OENSCJ+1) )
IF( TA ,LE, GS-iH ) GO TO 175
DCCJ+1) = A2 * U ** A3
175 CO'JIItJUE
OC(l) a 0,0
DC(NUMP) a 0,0
C ** CALCULATE RATE OF HORIZONTAL ENERGY INPUT
165
-------
3318,
3319,
3320,
2321,
2322,
2323,
2324,
2325,
2326,
2327,
2326,
2329,
2330,
233t,
2332,
2333,
2334,
2335,
2330,
2337,
2338,
2339,
2310,
2311,
2342,-
2343,
2340,
2345,
2306,
2347,
2348.
2359,
2350,
2351,
2352,
2353,
2354.
2355,
2356,
2357,
2358,
2359,
2360.
3361,
2362,
2363,
2364,
2365.
2366,
2367,
2368.
2369,
2370,
2371.
2372.
2373,
2374,
2375,
2376,
2377.
2378.
CALL SUBHC Li FEE. 200 )
CALL SUbECM.L)
C ** CALCULATE RATE OF SOLAR ENERGY INPUT
211 TA a RESEL " 0,3
TB = RESEL. " EOHAX
DO 213 J = 1, NU'1E
K a-MJMP « J
' IFC ZCK) ,LT. T3 ) CO TO 215
SK(K) = KXP( EXCO' * ( FEtCJ) " QHO(J) * OENS(J) * TCJ) + S*(J)
TA c TB
K a J » 1
IFC VERT ) J91, 193, 192
191 K a J
192 TC = TC + VERT * TCK) * DENS(K)
193 K = J
VERT a VERT + OHICJ) - QHO(J)
IFC VERT ) 190, 196. 195
19U K = J + 1
195 TC = TC •» VERT « TCK) * DENSCK)
196 TO = DVOL(J)
IFC J ,EO. 'NU"E) TD a VTOP
TDOTCJ) = TC / C DEMSCJ) * TO )
197 CONTINUE
GO TO 301
c ** FORH SOLUTION MATRICES
220 DO 221 J a I. NUHE
PCJ) = FEECJ) + S^CJ)
221 CONTIMUE
PCNUHE3 = P(NUME) + SHEAT * ATOP
00 2?5 J s 1. NU"
-------
2379.
23BO,
2301.
2382.
2383,
23(14.
2385,
23H6,
2387.
2380,
23S9.
2390,
2392,
2393.
239t>,
2396,
2397,
2390,
2399,
2000.
2401.
2102,
2403,
2404.
2405.
2406.
2107,
2408,
2109,
24JO,
2411,
2112,
2413,
2415,
2416,
2417,
2410.
2419,
2420,
2421,
2422,
2423,
2424,
2425,
2426,
2427,
2428,
2429,
2430,
2431,
2432.
2433.
243(1,
2435.
2436,
2437,
2438,
2439,
* 0£N3(J»1) )
TA = 0,0
QV1 = 0.0
00 229 J = 1» MUM
QV2 = QV1 + OHI(J) - QHO(J)
TO a DZKJ)
IFC J .CO, MUM } TD - 1.0 / DZTOP
T8 s ARKA(J+1) * DC(J+1) * TO
S ( J i 1) = » T A
IP( fiVl .C-T, 0.0 ) 3(J«1) a « ( TA + OVJ * OENS(J»l) )
SCJ.3) B » TO
IFC -GV2 ,i.T, 0,0 > SMi.i) = " ( TB -
'TC = RHO(J)
IFC Ovl ,l.T, 0.0 ) TC = TC " QV1
IF( QVH ,(JT, 0.0 ) TC = TC + OV2
S(Ji?) = TA + TH + TC * OtKSCJ)
OV1 = QV2
TA = TH
229 CONTlNUf
StNUMEil) = » TA
If I QVi'.OT, 0,0 ) S(NUME,1) - o ( TA + OV1 * OENS(NUM) )
OV2 = «V1 + QHI(NUME) " QMOCNUME)
TC = QHOCNUME.) + ()V?.
IF( QVi ,LT. 0.0 ) TC = TC •> QV1
SdJUMf.2) = TA + TC * OENS(NUHE)
S(NUME.3) = 0.0
PCI) a P(l) » C 8(1,2) * BCD + 5(1.3) * 8(2) )
00 235 J a 2, K'UMK
P(J) = PCO) « ( S(JiJ) *. B(Jtl) + S(J,2) * B(J) + S(J,3) *
A B(J*1) )
235 CONTINUE
00 239 J = It NUME
sr.i. ) ) = fiTRy? * Of Ji 1}
TA B OVOL(J)
IFC J ,EO. NUME- ) TA = VTOP
SCJ.2) = OTI1Y2 * S(.J,a) + OENS(J) * TA
S(J.3) = OTBY2 * SCJ.3)
239 CONTINUE
C ** 50LV8. FOR FINAL TEMPERATURES
PCI) B PCI) / 5(1.2)
S(1.3) = 5(1.3) / S(U2)
00 245 J = 2. NUME
TA = S(J»2) - SCJ.l) *
P(J) = ( P(J) " S(J,1)
S(J,3) = S(J,3) / TA
245 CONTINUE
TDOT(NUHE) = P(NUME)
T(NUME) = H(NUMK) + OTHY2
DO 251 J s 2i NU^E
N s NUHP • J
TOOT(N) = PCN) . SCN.3) * TDOTCN+1)
T(N) n H(N) «• DTBY2 * TDOT(N)
?.51 CONTINUE
T(NUMP) a
SCJ-1.3)
* P(J-l)
) / TA
C »*** SMOOTH THE
TFXC1) B TCI )
TFX(NUME) = TCNUMF.)
167
-------
2440,
2441.
2442,
2443,
2444,
244b,
2446,
2447,
244fl,
2449,
2450,
24M,
2452,
2453,
2455,
2456,
2457,
2458,
2459,
2460,
2461.
2462.
2463,
2464,
2465,
2466,
2467,
246B,
2469,
2470,
2471.
2472,
2473,
2474,
2475,
2476.
2477,
2478,
2479,
2480,
2461,
2482,
2483,
2484,
2485,
2486,
2487,
2488,
2489,
2490,
2491,
2492,
2493,
2494,
2495,
2496.
2497,
2498,
2499,
2500,
DO 25 J J = 2 1 NUM
T'FXM) = 0,25 * ( T(J-l) » 2,0 * t(J)
253 CONTINUE
DO ?.'.'> U J a 1, NUME
I(J) = TFX(J)
254 CONTINUE
C ** MIX THE RESERVOIR AS REQUIRED
TCJ+1) )
*WRITE(htlOOri) NIIMf; , (T(LJ) tLJ=l tMJMP)
1000 FORMAT (I SUQC--NUMK =1 tr;/(20K6,2)>
I MIX s NU«F.
GTEM a GM1N
IF( L .LT, 75 ) GTEM = -1.0E>3
256 DO ?S7 J = It MULL
KN = J
GRAO •- ( T(J*1) -. T(J) } * DZKJ)
IF( CRAO ,BT. GTfcH .AND. UHAD ,LT. GMAX ) GO TO 257
GO TO 258
257 CONTINUE
NN = NUM
GRAD a ( T(MUMf) - T(NllM) ) / DZTOP
IF( GRAD ,GT, GTEM .AND, GRAD ,LT, GMAX ) GO TO 301
258 IMIX = NN
GTEH B -l.OE-3
TA s VTOf * T(nUHE)
DO 2'59 J = IMIX t NUM
TA = TA + OVOU(J) * T(J)
259 CONTINUE
TA = TA / ( VSUM - VOLCIMIX) )
00 2hO J = iMlXt NUMfc
TfJ) = TA '
TFX(J) s TA
260 CONTINUE
IF(IOUG.EO.l) WRITE(6»1003) IMIX tNUHE t (T ( JL) t JLsiMIX tNU^E)
1003 FOHMATCt TE"P HAS BEEN CHANGtO FROMt,iG,i TO i , I5/(20F'b.2) )
GO TO 2b6
C ** UPDATE FOH ELEMENT INCREASE
501 DO 302 J = NUMEt MAXE
TCJ) = T(NUME)
TOOT(J) s TDOT(NUMK)
TKX(J) = T(NUME)
302 CONTINUE
IFClHi.lG.E'J.l) wPITE(6tl001) Lt M, i
1001 FORHAT(I SUHC--OAYiSThPiIMIXi'-lAXE= '
C ** CALCULATE DOWNSTREAM TEMPERATURE
TA a 0.0
DO 265 J o It NOUTS
TA = TA + QOTCL»J) * TOUT(LtJ)
265 CONTINUE
OST(L) s TA / QOUT
RESTM(L) - VSUM /(AKAXKQItOOUT) * 8.64E4 )
00 «00 JLel.MAXE
400 TEMLEV(JL)=TFX(JU)
C HIX ALL LEVfcLS FROM IMIX TO NUME
168
-------
2501,
2502.
2503.
fl?0
2505.
250<>,
2507.
2508,
2509.
2510,
2511,
2512.
2513.
251 it,
2515,
2516,
2517.
2510,
2519.
2520.
2521,
2S22,
2523,
2524.
2525,
2526,
2527,
2528.
2529,
2530.
2531,
2532.
2533.
2534.
2535,
2536,
2537,
2538,
253V,
2540.
2543,
2544.
2545.
2547.
2548.
2549,
2550.
2551.
2552.
2553.
2554.
2555.
2556.
2557,
2558,
2559.
2560,
2561,
DO 420 Jl.= l , KCO.N
XTEMi'(JL)MO.
00 430 JL = IMIX t'UlME
XXsl)VOL(JL)
IF(.JL.EO.NIME) XXsVTOP
DO 400 JrfsliKCON
XTF.MPCJK)=XTf."P(JK)tCUAK(Jl. i JK)*XX
CONTINUE
DO 450 JLsl.KCON
DO "60 JKsIHIXililJME
00 460 JL-l.KCOM
430
450
iFdHUG.LG. 1) .M X TE'-lP
1004 FORM AT ( I SuSCr-JMIXtNuMf. iXTt:nP=' , 21 1 0/7* 0 .4 , K8.1 i BFH.il)
CALL LAKCON
C ** CHECK FOR OuTPijT INTERVAL
IA = 0
IF( M ,NE, IVAL ) GO TO 271
IFC >'OD(L»IPRT) ,EO. 0 .OR. L ,EO. IDAY ) IA = 1
DO 263 J s 1. NSO
IF( IDOUT(J) .EG, L ) IA = 1
263 CONTINUE
267 IFC IA ,GT, 0 ) CALL PRNT(L»M)
IF( ITAHE ,r,T. 0 ) rfRITKCIUPE) Li NUMEl ( TFX(J), J = 1, NIJMK
271 CONTINUE
C CALCULATE OUTFLOW CONCENTRATIONS FOR DAY U
FLOOUT=O,
• 00 520 JL=1»KCON i
52° XTEHP(JL)=0.
DO 530 JL=liNUnE
IF(OHO(JL).EQ.O.) GO TO 530
530
550
909 FORMAl(lHl,//3bX»lLAKE OUTFLOW COHCEMKA'TI ONS I i //)
303
819
608
DO 540 JK=1,KCON
XTEMP(JK)=XTEHP(JK)+OHO(JL)*CLAK(JLiJK)
CONTINUE
00 550 JL=liKCON
COT>LO(L(JL)=XTEMP(JL)/FLOOUT
279 CONTINUE
KKITE(6.621)fJ. nsT(J)» J = IDAY, LPAY )
621 FORMATflHl ,//30X, "OUTFLOW TM'HERATURES C CKS'TIGRAOE ) I //
*7C DAY TEMP t)/(7d7,f 0,2)))
DO 303 I=IDAY,LOAY
nRnh(h,Bl<») I.aOTd t 1) • (C.OTFl.O(I ,LJ) »L J=l tKCON)
DO
FLOW
H M1 uf£ H
(CFG) (MG/L)
(MG/L)
bOO
S'H3»M NO?TV' KOJ-N P04-P
TOT M C^LOP H^H HMI2
(f-G/L) (^.G/L) (MG/L) (M
(f'G/L) C-'G/L) (^G/L) (M
FORMATc »*Y
* PHYTO COLIFOHMS
* HHI3'/ I NUMBER
»G/L) (MG/L) ("f
*G/L) (MG/L)'/)
IF( ITAPE ,LE. 0 ) RETURN
wRITE(ITAPf) ( TSPEC(J), J = IOAY, LT-AY )
KRITtUTAPE) ( ( i'JOT(J,K),K = 1, tiOuTS ), J = IDAY, L04Y )
wRITt(ITlPE) ( ( TOUTCJ,«)•* = 1,.'-OUTS), J = IOAY, LOAY )
[TAPE) ((CllTf-LO(J»K)il<=l,KCO*.),J=IOAY,LOAY)
169
-------
256?,
2563,
256'!.
2565.
2566,
2'j67,
2568,
2569,
2570,
?S7J,
2572,
2573,
2-570,
2575.
2576,
2577,
2570,
2579.
2500,
2581,
2582,
2583,
2531,
2585,
2586,
25B7,
2588,
2589,
2590,
2591,
2592,
•MT f\~t
C. J f J •
259a,
2595.
2596,
2597,
2598,
2599,
2600,
2601,
2602,
2603.
260«,
2605,
'2606,
2607,
2608,
2609,
2610,
2611,
2612,
2613.
2614,
2615,
2616.
2617.
2616,
2619,
2620,
2621,
2622,
END FILt ITAPK
RETURN
t.W)
SUBROUTINE SIJHO( TA )
COM*.ON/H»LK/ A, AT. H»i KV. NAVG. UC. OE« RN, GK>», QMS, 0*
COKMON/NOV/ 41, Ai?. Ai, OtLTt DOT- » DTHY2» OZT» FO'UXt (LTCf EVA,
A EVAP, EXCO, CMAX, r,M!N, GSKM, 1AT, JRT, l.'IAY. P'lX, IMPi IONF»
B IPRTi ITM-'f. IT.-0, IVAUi t.OAY, MAXE» HAXf'i NLMS, f-'Onli. MOUTS»
C NTC» KifJKPt r.'SO, HSE(J« KUMi MlrC, Mil1*1, Nl'Sti fiTHIhSi f.'XHOi OT<
D oouTi REStL. RLEN, so/, SHKAT. STAHU^ VOM- . VSUM, VTOP..IMT,
-E Cli C2» C3
RfAL OATA(8,6)
C ** CALCULATE HV, KOSi ES
HV s 597,0 - 0,57 * TA
ROS = 1000.0 - (((TA • 3,98 ) ** 2*( TA + 283,0 ). ) /
A ( 503,57 * ( TA + 67,26 ) ) )
ES = a.mse.o* EXPC -4157,0 / ( TA + 239,09 ) )
C *» READ hiEATHER RECORD FROM UNIT V
DO 103 J = li MAVG
READ(INT) ( DATA(J,K)t K a li 6 )
103 CONTINUE
C ** AVERAGE INPUT DATA AS REQUIRED
IF( NAVG .If.. 1 ) GO TO 115
TC B 1,0 / FLOAT ( NAVG ) ,
DO 109 K B 1, 6
T8 o 0,0
DO 10? J = If NAVG
TB B TB + DATA(J.K)
107 CONTINUE
DATAC1»K) = TC * TB
109 CONTINUE
115 QNS s DATA(1,1)
ObA «= DATACI .2)
AT = OATA(litt)
EA = OATAd.5)
ttS s DATAd .6)
C ** CALCULATE OEt OCi AND QW
EV B ( KS » BR + A ) * ( ES " EA )
IF( FV ,LT, 0.0 ) EV = 0.0
OE = ROS * HV * EV
RB s DATAd, 1) * ( TA K AT ) / ( ES » EA )
OC B OE * RD
QW = 7,S6E«2 + 1.17E.3 * TA
ON = QNS + QNA - QW
RETURN
END
SUBROUTINE SUBE( M, L )
COMHON/ABL^X A8AR(200). AKF.A(?OC). DC(?00)t l:ENS(200), CHT(200)»
A DVOL(200). t)Z(?On), DZI(200)t «HI{?00), OHn(^on), T(?(!OJ,
B TDOT(200), TKX(?00). THI (200) , • VdU( 200) i /(200)i Znin(200)
170
-------
2623,
2620.
3625,
2626,
2627,
262».
2629,
2630,
2631,
2632.
2633.
2630,
263S,
2636,
2637,
2636,
2630.
2600,
2601,
2602,
26U3,
2600,
260b.
2606,
2607,
2606,
2609,
2650.
2651,
26b2,
2653,
?650.
" S/ - f
26U5,
2656,
2657,
2656,
265<>,
2660,
2661,
2662,
2663,
2660,
2665,
2666,
2667,
2666,
2669,
2670.
2671,
2672,
2673,
2670,
267b,
2676,
2677.
2678,
2679,
2660,
2681,
2662.
2633.
COMMOM/CULK/ D3K36S). POOL ( 36'il i QIN(365)« RESTH(365), TIN(365)
COMMON/OHLK/ OHODZ('J)» F-LOUT(S), NOU(5)i OOT(365»3)» TOl'TO&H.3) •
A TSPtCObSJi WOKS)
*i!SKNOU(3)
COMMON/FBLK/ EUP(5)» <3UP('.i)i TUP (5) i HJP ( S) • IDOUT(SO)i GOHOO6S)
COHMON/NOV/ 'A!, 4?, A3, DKUTi DOIM, 07RY2. DZT, ft)M*x, HTC» EVA,
A tVARi txcn. f.HAXt GfJNf r,b*H, uTi IHT, nuYt i"ix, IMP* lONt,
» IPKTi ITAPfci It'ftOt IVALi U'-'AY, "••AXTt MAXPi 'JLKTUi MOOSi NOUTSt
C NTC, S"EP« MSOt NHt.r. » NUM» f^UI'f:, MUVPi K-USIi MKI3S, MX£(J» Qli
0 OOUTi RESFLt KLCNi SOZ? ShEAT, SUhLt« VOMti VSUMi VTOf'i INT.
E Clt C2t C:f
COMMON/OUUG/IDUR
RKAL TOHDC200)
C **** SUM TOTAL. OUTFLOW
QOUT = 0.0
QSPU=0.
Do 101 J a li NOUTS
QOUT B ROUT + QOT(LiJ)
OOT(UiJ) = 0,0
101 CONTINUE.
IF- (IBUG.EQ.D »RITF.(6i 1000) U.OOUT
1000 FOUMATC ENTERING SUBE. ON CAY I»I6»I OOUT sltE20,8)
00 10 Jnl, NOUTS
tc I TRoMnii( j j £0,!)) CO TO 2
NOU< J)^4UMfi '
ELOUT(J)sZ(NUME>
GO TO 10
2 CONTINUE
00 b ,Jl=lfNUME
IF(i:UOUT(J),GT,Z(JL)) GO TO 5
NOU( J)=JL
GO TO 10 ,
5 CONTINUE
NOU( J)=NUME
10 CONTINUE
*
C **** ESTIMATE TEMP AND FIND HIGHEST OUTLET
MAX = NOUTS
00 100 J = It MAX
TGUKLiJ) s 0.0
K c NOU(J)
TOUTCLiJ) = TFXCK)
IFC L.EO. lOAY ) GO TO 100
If 1 OOT(L-liJ) .GT. 0,0 ) TOUKLiJ) = TOUTtL-lO)
100 CONTINUE
IFC "OD^SEG.2> ,tQ. 0 ) GO TO 107
C IF NOT OPERATING TO MEET OBJECTIVE. DISTRIBUTE 'EVENLY ,
DO 11 JL=1. NOUTS
11 QOKL« JL)=OOUT/NOUTS
GO TO 121
C **»» OPERATE TO MKET OBjECTIVt.
171
-------
36ns,
2666.
2687.
3600,
3689,
2690.
3603.
3693.
269S.
3696,
3697.
3690,
3699,
2700,
3701.
3702.
2703,
270rt,
270S,
3706,
2707,
3700.
3709,
3710,
3711,
3713,
3713,
271U.
271S.
3716,
2717,
3718,
2719,
3730,
3731.
3723.
2723.
3724,
2725,
3726,
2737.
3736,
2739,
2730,
3731,
2732,
2733,
273«,
273b,
3736.
3737.
273P.
3739.
3700.
37«1.
2702,
3713.
27U«.
107 TORJ = ( CHUT * TSPF.CCL) " QSPL * TOUT (1.1NOUTS J ) /
A ( GOUT - QSPL )
MAX = NOUTS » 1
1F( TOBJ ,GT. T
-------
3715,
,EO. 0 } IKJIT1! c
3717.
27«8.
27*19.
2750,
2751,
2752,
2753,
2750,
27S5,
2756,
2757,
2758,
2759,
2760,
2761,
2762,
2763,
276".
2765,
2766,
2767,
2768,
2769,
2770,
2771.
2772.
2773,
277«,
277b.
2776.
2777,
2778,
2779,
2780,
2781.
2782,
2783.
278«,
2785,
2786,
2787,
2788,
-2789,
2790,
2791,
2792,
2793,
2794,
2795,
2796,
2797,
2798,
2799.
2800,
2801,
2802.
2803,
260U,
2805,
131 IFC N ,NC, 1 ,AN[), N ,Nt.. NljMt ,ANO.
A O.S * UNITO
IFUBUG.fc'G.l) miTEC6i 1005) TA
100S FORMATS TA f'OH OT sliE20.fl)
DT = S'JHTC ua.O * UNIT" / TA ** 0,5 )
IFC ICRAY ,r;T, o ) GO ro 139
TA = -7MIDW + OT
IK TA ,GT, ZCMihK) ) GO TO 139
00 135 K a 'i , NUKE
JHAX = NUhE •• K
, IK Z(JMAX) ,LT. TA } GO TO 139
135 CONTINUE
139 TA = ZMIDCN) i OT
IK TA ,LT. Z(2) ) GO TO 1«7
DO J'J3 K a 'I, NU'iP
1PC Z(K) ,UT. TA ) GO TO l')3
JMIN a K « I
GO TO 1&7
1<|3 CONTINUE
JHIN a NUHE
C ** DISTRIBUTE OUTFLOWS
1«7 CONTINUE
TA s VOLCJMAX+1) • VOUtJMIN)
IF( JMAX ,GE. NUHE ) TA = V3UM P VOL(JMIN)
TA = ODEB / TA
157 00 163 K = JMIMi JMAX
TQHO(K) a TA * DVOt(K)
IFC K ,EO, K'UME ) TOHO(K) s TA * VTOP
OHQ(K) = QHO(K) + TQHO(K)
163 COMllNUt '
IKIBUG.EQ.n WRITE(6ilOOa) JMIN, JMAXi ICRAYiOT tUNITQ
1002 FORMATC JHINiJhAXilCRAy.OTiUNITO =lt3j5i2E20,8)
GO TO 225
C ** CONVECTIVE MIXED OUTFLOW
> GO TO 107
**********
205 IFC IMIX ,LE,
TA = DENSC1 ) •
IK TA ,LE. 0,0 ) GO TO 107
HOES s 0,0
TC c 0.1S05
IFC N ,EO. NUHE ) TC = 0,07«2
209 DT = RESEL - Z(IfMX)
OCRIT = TC * DT * SORTC DT * TA )
ail QCRAY = COTCUtJ)
IFCIHUG.EO.l) *'«ITEC6i!006> OCRIT,CCRAY
1006 FORMATC1 OCRlTiOCRAY *T ST'TE-iEuT 2ll =i|2El6,8)
IFC OCRIT ,Gfc, UNITO ) GO TO 215
QCRAY = OOT(LiJ) * QCRIT / UNITO
ODtR s UOTCUJ) « UCRAY
ICRAY s I
UNITO = QOEH / >sOTCJ)
IFCIBijG.EO.l) hRITt'C6»1007) OCRAY . C30f 0. u^ITO
1007 FORHATO ICRAY=1 » QCH AY > DDEH i o.U TG= I i Jtlf.,8)
215 TA s OCRAY / ( VSUM « VOf
DO iM9 K = I^IX» N'UM
TtJHO(K) - TA * DVOL(K)
OMO(K) s OhO(K) + TOHD(K)
219 CONTINUE
173
-------
2806,
2007,
2808,
2809,
2810,
2811.
2812,
2813.
2814,
2815,
2816,
2817,
2818.
281-).
2821,
2822,
2823,
2824.
2825.
2826,
2827.
2828.
2829,
2830,
2831,
2832,
2833,
283«.
2835.
2836,
2S37,
2838,
2839,
2840.
2841,
2812.
2643.
2844.
2845,
2846,
28U7,
2848,
2849.
2850,
28S1,
2852,
2853,
2854.
2855.
2656,
2857,
2856,
2859.
2860,
2861,
2662,
2663.
2664,
2665,
2866,
TQHO(NU'-if) = TA * VTOP
OHO(NUf-t) = OHCUNl.'Hi;) + TOHtHNUMK)
IF( ICRAY ,11, 0 ) GO TO 225
JMAX = mix «• i
N = I MIX i. 1
MAX = JMAX
GO TO 124
C ** CALCULATE OUTFLO* TF.nPtRATURE
?25,TA = 0.0
TB = 0.0
00 229 K = it MUMh
TA s TA + TUHIHK) * TfX(K)
TB = TP t TOHCUK)
229 CONTINUE
TOUT(LiJ) = TA / TO
299 CONTlNUt
RKTURN
END
SUBROUTINE SUBGCNPi DATA< N )
COHMON/ABLK/ AF1ARC200), AHtA(200)i UC(2nO)i 0^
A nVOLC200)i 07(200). 0X1(200)) HKl(POO), OhO(200)» T(?00)t
B TOOT(200), TFX(200)i THI(2000t VULC200)i Z(200)» Z«IO(200)
REAU OATA(N)
C ** DEFINE END POINTS
DH = 0.0
• Mai i
00 104 J a 2, NP
NLO = M + 1
DO 101 K = NLOi N
IF( DATAfK) ,EQ. 0.0 ) GO TO 101
DH a ( DATA(K) - UATA(M) ) / ( Z(K) » Z(H) )
M a K
GO TO 102
101 CONTINUE
c ** INTERPOLATE BETWEEN POINTS
102 DO 103 K a MO. M
DATA(K) = DATA(K«1) + DH * DZCKM)
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE SUHHC Li FEEi M )
CO"MON/A(HK/ 48AR(HOO). ARF4(
COt'MON/ORUK/ ORODZJS). tLOUT(5), N0lj(5), QOT(3h5.3)e TOUT(J65.3),
A TSPfcC(i65). KOT(S)
COMHON/FI'l.K/ KUP(b), QUP(S), TUP'(b) .KljP(b) i !!>OUT(50), CORO(36S)
174
-------
2867,
286fi,
3869,
2070.
2871.
2872.
2873.
2870,
2875,
2876,
2877,
287P,
2879,
2880.
2881.
28«2.
2883,
2364,
2085,
2886.
2887,
2888.
2889,
2890,
2891.
2892.
289J.
289«,
2895,
2896.
2897,
2899,
2900,
2901,
2902,
2903,
290«,
2905,
2906.
2907,
2908.
2909,
2910,
29J1,
2912,
2913,
291«,
2915.
29J6,
2917,
2918.
2919,
2920,
2921.
2922.
2923.
292u,
2925,
2926.
2927.
COMI',ON/NOV/ Al, A2« A.Si OKLTi Oi)IH» OTHY;>, D/T, EIVUX, F.l.TCi KVA»
A KVAPi EXCOi GMAX, GM1M, GSWH, lAT. IBTi TOAYi \ *' I X . 1'iTP. lOMEi
B IPRTt ITAPt, IThOi tVALi Ll'AY, MAXtt ."AXPt M.l.'ry, t:pqr«« '-'OUISi
C MTCi S'HEt't NSt). NSI-.r, i NUM. Nl.lMt, MH'P, NILS I » STHIUS. >;Xf.'!i Oil
D OOUTf Rf-Sfl.t RUf.Nt S02) SnEATi STAIil.F, VO'-t t VSUMi VTl>P» IMTi
t Cli C2. C:4
COMhON/OHUG'/IHUG
REAL FEK(M)
RO(TA) s 1000. 0 - (((TA » 3.90 ) ** ?*( TA t 20:5,0 ). ) /
A ( '503.57 * ( TA + 67.?^ ) ) )
,|M1M a i
JMAX = NIJME
C ** FIND ENTRY UKVEl.
RUP a ROC TIN(L) )
00 J09 J = It NIJME
N s J
IFC RUP ,GE, DtNSCJ) ) GO TO 113
109 CONTINUE
C ** CHECK REGIONS
113 IFC N ,L,T. IMIX .OR, IMIX + « «GT. NUfE ) Go TO 119
JMIN s IMJX
TA c 01 * DKLT
IFC VSUM m VOL(JHIX) ,GT. TA ) GO TO J29
DO 115 J = •; (."JME
JMIN s NuHP «J
IFC VSUM « VOU(JMIN) ,r,T, TA ) GO TO 129
115 CONTINUE
GO TO 129
C ** ESTABLISH THE DENSITY GRADIENT
119 MA> B N 4- 7
IFC MAX ,GT. MIME ) MAX = NUME
TA = . BETA(N-7»«AX,OtNS,200)
IFC TA ,GT. 0.0 ) GO TO 127
NLO = N
NUP a N
123 IFC NLO ,GT, 1 ) NLO = NLO • 1
IFC NUP ,LT. NUM ) NUP = NUP * 1
TA - ( DENS(NUO) » OENS(MIJP) ) / ( ZMIO(NUP) «
IFC TA ,GT. 0.0 ) r,o TO 127
IFC NLO ,LK, 1 ,AND, NUP ,GE, NyM ) GO TO 129
GO TO 121
C ** CALCULATE WITHDRAWALS
127 TA = SQRTC TA )
DfcNOM=AREA(N)
OT = SQ'^TC 12.0 * U\ITl3 / TA )
IFLO a OT / SnZ
IFC 2 * IFLO .OF, NUM ) GO 10 129
175
-------
2928,
2929,
2930,
2931,
2932.
2933,
293«,
2935.
2936.
2937.
2938.
2939,
29UQ,
29«2l
29«3.
2940,
29«b,
2906,
29-'<
aid
Environmental Protection Agency
Set of six volumes: Volume I - Final Report, Volume II - Data
Report, Volume III - Verification Report, Volume IV - User's Manual for Steady-
state Stream Model, Volume V - User's Manual for Dynamic Stream Model, Volume VI -
User's Manual for Stratified Reservoir Model.
Three existing mathematical models, capable of representing water quality in rivers
and lakes, have been modified and adapted to the Spokane River Basin in Washington
and Idaho. The resulting models were named the Steady-state Stream Model, the
Dynamic Stream Model, and the Stratified Reservoir Model. They are capable of
predicting water quality levels resulting from alternative basinwide wastewater
management schemes, and are designed to assist EPA, State, and local planning
organizations to evaluate water quality management strategies and to establish
priorities and schedules for investments in abatement facilities in the basin.
Physical data and historical hydrologic, water quality and meteorologic data were
collected, assessed and used for the model calibrations and verifications. The
modified models are all capable of simulating the behavior of various subsets of up
to sixteen different water quality constituents. Sensitivity analyses were con-
ducted with all three models to determine the relative importance of a number of
individual model parameters. The models were provided to the EPA as computer source
card decks in FORTRAN IV language, with accompanying data decks. All development
work on, and applications made with, these models were fully documented so as to
permit their easy utilization and duplication of historical simulations by other
potential users. A user's manual with a complete program listing was prepared for
each model.'
i'l. N1 -jtily ' 'r,s.
?.r. :•'<••• at .• C'.-'v..
Send To:
WATER RESOURCES SCIENTIFIC INFORMATION CENTER
U.S. DEPARTMENT OF THE INTERIOR
WASHINGTON, D. C. 2O24O
E. John Finnemore
Systems Control, Inc.
-------
|