EPA-450/3-75-083
March 1975
COMPREHENSIVE ANALYSIS
OF TIME-CONCENTRATION
RELATIONSHIPS
AND VALIDATION
OF A SINGLE-SOURCE
DISPERSION MODEL
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
-------
EPA-450/3-75-083
COMPREHENSIVE ANALYSIS
OF TIME-CONCENTRATION
RELATIONSHIPS
AND VALIDATION
OF A SINGLE-SOURCE
DISPERSION MODEL
by
Michael T. Mills and Frank A. Record
GCA/Technology Division
Bedford, Massachusetts 01730
Contract No. 68-02-1376, Task Order 5
Program Element No. 2AC 129
EPA Project Officer: Russell F. Lee
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
March 1975
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - as supplies permit - from the
Air Pollution Technical Information Center, Environmental Protection
Agency, Research Triangle Park, North Carolina 27711; or, for a fee,
from the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by
GCA/Technology Division, Bedford, Massachusetts 01730, in fulfillment
of Contract No. 68-02-1376, Task Order 5. The contents of this report
are reproduced herein as received from GCA/Technology Division.
The opinions, findings, and conclusions expressed are those of the
author and not necessarily those of the Environmental Protection Agency.
Mention of company or product names is not to be considered as an endorse-
ment by the Environmental Protection Agency.
Publication No. EPA-450/3-75-083
11
-------
ERRATA
COMPREHENSIVE ANALYSIS OF TIME-CONCENTRATION
RELATIONSHIPS AND THE VALIDATION OF A
SINGLE-SOURCE DISPERSION MODEL
Final Report
Contract No. 68-02-1376
Task Order No. 5
Page 59 - Table 11, column entitled, "95% 1-3 hour"; entry for Paradise should
read *1 rather than 0.99.
Page 60 - Sentence (b) .under Standard Error of Estimate should read:
(b) Canal Validation - The standard error for the four stations
ranged from 3.2 to 4.0 times the mean measured value.
Page 61 - The last sentence under 3(b) should read:
The correlation between the logarithms of concentrations were not
calculated due to the large number of zero concentrations predicted
by the model.
Page 61 - Delete the second sentence in the last paragraph.-
Page 69 - The figure caption should read:
Figure 22(d). Cumulative frequency distribution for 1 hour S02
concentrations at station 4 (plume rise retardation
included)
GCA CORPORATION
GCA/TECHNOLOGY DIVISION
Bedford, Massachusetts
-------
ABSTRACT
This report presents an analysis of SO., time concentration relation-
ships in the vicinity of a power plant and a validation of the EPA
Single Source model using concentration and meteorological data col-
lected in the same area. The concentration relationships studied were
peak 1-hour to average 3-hour and peak 1 hour to average 24 hour con-
centration ratio distributions and the effect upon the statistics of
these distributions of variables such as wind speed, atmospheric sta-
bility, hour of the day, and peak 1 hour concentration itself. The
principal finding of the validation exercise was that the model under
predicted S02 concentrations for all 4 receptor locations in the study
area. The agreement between measured and calculated concentrations
was not noticeably improved by the use of more accurate and detailed
emissions and meteorological data bases. Although the model predictions
were improved somewhat by the inclusion of plume rise retardation ef-
fects due to the plant structure, the model appears to underestimate
the degree of lateral plume spread.
iii
-------
CONTENTS
Page
Disclaimer ii
Abstract iii
List of Figures v
List of Tables viii
Acknowledgments ix
Sections
I INTRODUCTION 1
II THE DATA BASE 10
III DATA PREPARATION AND REDUCTION METHODS 12
IV ANALYSIS OF CONCENTRATION RATIO DISTRIBUTIONS 19
V MODEL VALIDATION PROCEDURE 41
VI COMPARISON WITH OTHER WORK 58
VII SUGGESTIONS FOR MODEL IMPROVEMENT 63
VIII REFERENCES 80
Appendices
A CONCENTRATION RATIO DISTRIBUTIONS FOR 1971 82
B DEVELOPMENT OF SOURCE PARAMETERS FROM FPC FORM 67 141
iv
-------
LIST OF FIGURES
No. Page
1 Map of eastern Massachusetts and Rhode Island Showing
Locations of the Canal Plant. 4
2 Sketch of the Canal Plant Area Showing the Locations
of the Four Automatic SCL Stations by the Symbol 0 6
3 Seasonal Wind Direction Distributions at Canal Plant
in 1971 - Arrows Give Directions When Indicated SCL
Monitor is Downwind 8
4 1-Hour to 3-Hour Ratio Distributions Generated From
Random Interger Concentrations 20
5 Log Probability Plots of Cumulative Ratio Distributions 22
6 Linear Probability Plots of Cumulative Ratio
Distributions 23
7 Log Probability Plot by Cumulative Ratio Distributions
(Downwind Stations Only) 24
8 Linear Probability Plot of Cumulative Ratio
Distributions (Downwind Stations Only) 25
9 Fifty Percentile Values of Ratio Distributions as a
Function of Peak 1-Hour Concentrations 28
10 Fifty Percentile Values of Ratio Distributions for
Different Wind Speeds 29
11 Fifty Percentile Values of Ratio Distributions for
Different Stability Indices 30
12 Fifty Percentile Values of Ratio Distributions for
Each Hour of the Day 32
13 Fifty Percentile Values of Ratio Distributions for
Different Distances From the Plant 33
14 Fifty Percentile Values of Ratio Distributions for
Different Seasons 34
15 Fifty Percentile Values of 1 to 3 Hour Concentration
Ratio Distributions as a Function of Peak 1 Hour
Concentration for Downwind Stations 35
-------
LIST OF FIGURES (Continued)
No. Page
16 Fifty Percentile Values of 1 to 3 Hour and 1 to 24
Hour Concentration Ratio Distributions as a Function
of Windspeed When Stations are Downwind 36
17 Fifty Percentile Values of 1 to 3 Hour and 1 to 24
Hour Concentration Ratio Distributions as a Function
of Hour of the Day. Only Downwind Stations Utilized 37
18 Fifty Percentile Values of 1 to 3 Hour and 1 to 24
Hour Concentration Ratio Distributions as a Function
of Receptor Location for Downwind Stations Only 38
19 Fifty Percentile Values of 1 to 3 Hour and 1 to 24
Hour Concentration Ratio Distributions as a Function
of Season for Downwind Stations Only 39
20(a) Cumulative Frequency Distributions for 1 Hour S09
Concentrations at Station 1 46
20(b) Cumulative Frequency Distributions for 1 Hour S02
Concentrations at Station 2 47
20(c) Cumulative Frequency Distributions for 1 Hour SO-
Concentrations at Station 3 48
20(d) Cumulative Frequency Distributions for 1 Hour S0?
Concentrations at Station 4 49
21(a) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 1 50
21(b) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 2 51
21(c) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 3 52
21(d) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 4 53
22(a) Cumulative Frequency Distributions for 1 Hour S02
Concentrations at Station 1 (Plume Rise Retarda-
tion Included) 66
vi
-------
Distribution of Measured 1 Hour Concentrations
> 50 |ig/m at Receptor 1 as a Function of Wind
LIST OF FIGURES (Continued)
No.
22(b) Cumulative Frequency Distributions for 1 Hour 862
Concentrations at Station 2 (Plume Rise Retardation
Included) 67
22(c) Cumulative Frequency Distributions for 1 Hour S02
Concentrations at Station 3 (Plume Rise Retarda-
tion Included) 68
22(d) Cumulative Frequency Distributions for 1 Hour S02
Concentrations at Station 4 (Plume Rise Retarda-
tion Included) 69
23(a) Cumulative Frequency Distributions for 1 Hour SC>2
Concentrations at Station 4 (Plume Rise Retarda-
tion Included) 70
23(b) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 1 (Plume Rise Retarda-
tion Included) 71
23(c) Cumulative Frequency Distributions for 24 Hour S02
Concentrations at Station 3 (Plume Rise Retarda-
tion Included) 72
23(d) Cumulative Frequency Distributions for 24 Hour SCL
Concentrations at Station 4 (Plume Rise Retarda-
tion Included) 73
24
Flow Vector 77
25 Distribution of Calculated 1 Hour Concentrations
> 50 lag/m^ at Receptor 1 as a Function of Wind
Flow Vector 78
vii
-------
LIST OF TABLES
No. Page
1 Location of S02 Monitoring Stations 5
2 Uncorrected Plant Data 14
3 Corrected Plant Data 15
4 Data Bases for Model Validation Runs 18
5 Statistics for Ratio Distributions 26
6 Percent of Time Flow Vector is Within 20 Degrees of
a Measurement Station (1971 Data) 26
7 1-Hour Concentration Distribution Statistics for
Measurements and Different Model Validation Runs 44
8 24-Hour Concentration Distribution Statistics for
Measurements and Different Model Validation Runs 45
9 Model Validation Results for Hourly Concentration 54
10 Analysis of Concentration Maxima for Different Wind
Speeds and Stabilities with 1971 Canal Plant
Operating Characteristics 56
11 Comparison of Paradise Concentration Ratios (Cor-
rected for Sampling Time) With Downwind Ratios
Obtained at Canal 59
12 Model Validation Results for Hourly Concentration
(With Plume Rise Retardation) 74
13 Comparison of Observed and Calculated Hourly Con-
centrations for Observed Concentrations Greater
Than 200 |ag/m3 75
14 Comparison of Vertical Dispersion Coefficients
(o~ ) of Smith and Turner at a 4 km Distance With
a Surface Roughness of 10 cm 79
viii
-------
ACKNOWLEDGMENTS
The key data used in carrying out this study were made available to
GCA/Technology Division by Mr. Richard G. Velte, Chief Engineer of
the NEGEA Service Company of the New England Gas and Electric System.
We wish to express our appreciation to Mr. Velte for his cooperation
and continuing interest in improving air quality prediction techniques,
Project direction and guidance were given by Mr. Russell Lee of the
Source-Receptor Analysis Branch, Monitoring and Data Analysis
Division, EPA, Durham, North Carolina, who served as Project Officer,
and by Mr. Herschel Slater, Chief of the Source-Receptor Analysis
Branch.
IX
-------
SECTION I
INTRODUCTION
BACKGROUND
Reliable tools for the estimation' of S0_ concentrations downwind from
large power plants are urgently needed to guide environmental and energy
related policy decisions. Most mathematical dispersion models for the
prediction of S0« concentrations provide estimates over unit time periods
which are either very short (up to 1 hour) or very long (seasonal or
annual). For example, the plume parameters given by Turner and devel-
oped principally from earlier work of Pasquill, Cramer, and Gifford are
based on experimental data much of which was collected over 10- and 30-
minute periods. Power law relationships by which concentrations from
point sources are linked to time are generally considered to be valid
only over averaging times which range from a few minutes to perhaps 1
or 2 hours. National ambient standards for S0_, however, include stan-
dards for 3-hour and 24-hour time periods. The method currently favored
for estimating 3-hour and 24-hour concentrations is to average concen-
trations that have been predicted for the component 1-hour periods. A
second method, based on the development of peak-to-mean ratio statistics,
2
has been suggested by Montgomery, Carpenter, and Lindley. To date,
very few sets of field data have been used to test the adequacy of either
estimation technique.
-------
PURPOSE OF STUDY
The purpose of this study was twofold:
1 . to analyze time-concentration relationships of measured
air quality data in the vicinity of a large elevated
point source, paying special attention to the ratios of
1-hour to 3-hour and 1-hour to 24-hour concentrations, and
2 • to conduct validation studies of an EPA concentration model
designed to estimate concentrations due to a single source
for averaging times of 1 hour, 24 hours and 1 year, with
emphasis on the 24-hour value.
The analytical procedures to be followed in this study were, to a
3 9
large extent, to parallel those used by Klug and Montgomery et al^ in
their analysis of TVA data so that comparisons could more easily be
made between the results obtained at two sites having substantially
different plant capacities and effective stack heights.
SUITABILITY OF CANAL PLANT DATA
Plant Description
The Canal Plant is located on the south side of the Cape Cod Canal
about 1.6 kilometers from the east entrance on Cape Cod Bay. The data
used in this study were collected during the 3-year period from 1971
to 1973. During this period, the plant consisted of a single oil-
fired unit with a generating capacity of 560 megawatts. The top of
the stack was approximately 91 meters above grade and 5.59 meters in
diameter. The main power plant structure to the north of the stack
totally enclosed the turbine generator and the boiler. The roofs of
the turbine and boiler rooms were, respectively, about 30 and 59
meters above grade.
In 1974, the 91-meter stack serving Unit 1 was replaced by a 152-
meter stack in preparation for the start up of a second 560 megawatt
-------
unit sometime in 1975. It is expected that continued air quality
monitoring during these second and third phases of plant operating
history will provide additional valuable data for validation studies
Site Characteristics
Figure 1 shows the geographical location of the Canal Plant, near
the northwestern boundary of Cape Cod. The north shore of the Cape
extends eastward from the plant a distance of approximately 50 kilo-
meters before turning sharply to the north. Cape Cod is widest at its
western end where it extends from the canal southward toward Falmouth
and Woods Hole, a distance of some 25 kilometers. The topography of
the central portion of Cape Cod and the adjacent areas of Massachusetts
bordering Buzzards Bay and Cape Cod Bay comprises gently rolling terrain
with elevations generally below 60 meters. Maximum elevations in the
region of interest occur in the western end of the Cape and reach
approximately 90 meters. Much of the area is covered with scrub pine
forests and low vegetation.
Overview of Monitoring Program
The New England Gas and Electric System has operated an air quality
monitoring network in the vicinity of the Canal Plant ever since the
plant was first put in operation in 1970. As part of the network, SO
concentrations are measured at four or more locations on a continuous
basis with Ultragas S0_ Analyzers manufactured in Germany by H.
Wosthoff. These instruments measure sulfur dioxide by the increase
in conductivity of an acidified hydrogen perioxide solution and
have a full scale reading of 0.4 ppm. The instruments do not con-
form to the reference method for sulfur dioxide or to any of the
4
specified equivalent methods. The have, however, been extensively
studied and one comparison showed a correlation coefficient of 0.99
with the West-Gaeke method.
-------
10 20
MASSACHUSETTS
Figure 1. Map of eastern Massachusetts and Rhode Island showing locations
of the Canal Plant. Meteorological observations were used from
Quonset Point Naval Air Station and Nantucket Island
-------
Throughout the program the instruments have been attended on a day-
to-day basis by a chemist from the utility. Major maintenance and
routine calibrations are performed in the GCA/Technology Division
laboratories. The SO- monitors are calibrated dynamically using a
carefully controlled and calibrated permeation tube - dilution sys-
tem capable of creating sulfur dioxide concentrations over most of
the instruments' measurement range.
This instrument operates on the conductimetric principle and pro-
vides a continuous real-time chart trace and a tape printout giving
date, time, and average concentration over consecutive 30 minutes.
The monitoring program is being carried out under the direction and
with the engineering support of the GCA/Technology Division. The
New England Gas and Electric System provides field engineering ser-
vices and takes care of the day-to-day operation of the network. GCA
provides field support as required, instrument calibration and data
analysis and interpretation. The locations of the SO monitors with
respect to the Canal Plant are given in Figure 2 and Table 1. Station
No. 4 was moved as shown in Figure 2 on 30 October 1973.
Table 1. LOCATION OF S02 MONITORING STATIONS
Station number
1
2
3
4 (Before 10-30-73)
(After 10-30-73)
Bearing
from plant
(deg)
119
138
224
312
320
Distance
from plant
(km)
4.72
2.32
1.43
1.96
4.83
Elevation
of terrain
(m)
10
4
40
20
40
-------
\©4 (AFTER
RTE3 O is. 10/30/73)
04( PRIOR TO
10/30/73)
Figure 2. Sketch of the Canal Plant area showing the locations of the four automatic
S02 stations by the symbol ©
-------
Data for the 3-year period from 1 January 1971 to 31 December 1973 were
selected for analysis in the present study. During this period, two
changes in the allowable sulfur content of fuel burned at the Plant were
made by the Massachusetts Department of Public Health. Also, the period
included two extended periods when the Canal Plant was not in operation;
these periods are useful in showing the contributions of other sources
to the air quality in the vicinity of the Plant.
Bendix-Friez Aerovanes were used to provide local wind speed and direc-
tion data. Through July 1971, the principal source of wind data was
the Aerovane mounted on a 12.2 meter mast located on the 58.8 m boiler-
room roof. After July 1971, wind data were obtained from a second
Aerovane installed on a 44 m tower near the top of Telegraph Hill ap-
proximately 3 miles from the Canal Plant in a south-southeasterly
direction.
Climatology
The Canal Plant site experiences the large diurnal and seasonal changes
in wind direction typical of coastal areas in southern New England.
Figure 3, which gives frequency distributions of wind direction for the
winter and summer months of 1971, illustrates the shift from prevail-
ing westerly winds (SW through NW) in winter to predominantly south-
westerly winds in the summer. Westerly winds are predominant during
both seasons at night. Under light gradient winds, a northeasterly
morning Seabreeze frequently develops, particularly in the summer
season. By midafternoon the wind has usually shifted to the south-
west and increased in speed. Strong northeasterly winds may occur
at any time during the passage of coastal storms.
-------
z
UJ
CJ
(T
UJ
Q_
o
z
UJ
ID
0
UJ
(T
U.
30
20
10
SUMMER
(JUNE, JULY, AUGUST)
hrf
tF
#1 #2
ZUJUIUJUI
ZZZ
z uj
UJ UJ
(OCOCO
r
WM^I
••V^H
-
UJ Ul ui LlJ UJ UJ UJ CO S ? 5
ZZZ CO CO CO COCOCO
Z UJ UJ CO CO 5
WIND DIRECTION
Figure 3. Seasonal wind direction distributions at Canal Plant in 1971 -
arrows give directions when indicated SO monitor is downwind
-------
Although no effort has been made in the model calculations presented
later to modify plume expansion rates to account for coastal influence
a qualitative discussion of its effect on a. the standard deviation
r\.
of azimuth wind direction follows. These estimates of 0". were made
from azimuth vane range data. As would be expected, the smallest ob-
served values of aA, about 5 degrees, occur when the wind fetch is
*»
over Cape Cod Bay. With southeasterly winds, the median value of 0".
*»
is about 7 or 8 degrees, except during the period from 1200 to 1600
local time when the effect of solar heating over Cape Cod is greatest.
During this period, the median values of cr. are 11 to 12 degrees.
Somewhat large or. values occur during the daytime when the wind is
A
from the mainland or from the south.
-------
SECTION II
THE DATA BASE
Canal Plant data tapes containing plant parameters, meteorological
data and ambient S0? measurements were made available for this stuc
A brief summary of the data on these tapes follows:
Plant Parameters
The following plant operational data were given on an
hourly basis :
• Ambient air temperature
• Stack gas temperature
• Fuel assay (percent sulfur)
• Fuel consumption
• Gross operating load
Meteorological Data
Meteorological data comprised the following hourly wind
information covering the 10-minute period ending on the
hour:
• Average wind speed
• Average wind direction
» Maximum deflection of the wind direction pen
• Minimum deflection of the wind direction pen
This information was obtained by digitizing the wind chart
records from the plant-operated Bendix Friez instruments.
Hourly ambient dewpoint temperatures observed at Otis Air
Force Base approximately 8 miles to the south of the
Canal Plant were also included on the tape.
Ambient S09 Concentrations
10
-------
The S00 concentration data comprised 30-minute average con-
centrations for each of the four principal monitoring sta-
tions .
In addition to the preceding data supplied by the Canal Plant, EPA
provided the Federal Power Commission Form 67, from which generally
available source data could be abstracted, and the following meteoro-
logical data sets from government operated meteorological stations:
• 1964 surface observations from Quonset Point
Naval Air Station, Rhode Island
• 1964 radiosonde observations from Nantucket
Island, Massachusetts
• 1971 surface and radiosonde observations from
Quonset Point Naval Air Station, Rhode Island
Figure 1 shows the location of Quonset Point and Nantucket Island.
11
-------
SECTION III
DATA PREPARATION AND REDUCTION METHODS
The data processing effort was carried out with two objectives in mind.
The first was the transformation of 30-minute S09 concentration data
into a form useful for the analysis of peak 1 hour to average 3 hour
(1 to 3 hour) and peak 1 hour to average 24 hour (1 to 24 hour) concen-
tration ratio distributions. The second aim was the construction of
source, meteorological, and concentration data bases for use in the
various model validation studies. We shall first examine the procedures
required in the determination of ratio distributions.
DATA ANALYSIS REQUIRED FOR THE DEVELOPMENT OF TIME-CONCENTRATION
RELATIONSHIPS
The measurements from the Canal Plant sampling and meteorological net-
work described in the previous section were punched on cards which were
subsequently read onto a magnetic tape. Two sets of data were employed
in the study of time-concentration relationships. The first set con-
sisted of 1971 S02 concentrations, meteorological data, and plant operat-
ing characteristics. These data were also used in the model validation
study. The remainder of the data which was received later in the study
covered the years 1972 and 1973 plus the last 2 months of 1970. Although
these two data sets were initially analyzed separately, the calculated
distributions were combined for the final presentation of the data. Con-
centration calibration factors, concentration measurements and plant
operating parameters, wind direction data and wind speed data were ar-
ranged in separate tape files for a given month so that data entries
for a particular hour were not in order. If the data were processed
12
-------
in this format a large number of input/output actuations would have
been required. This meant that the plant data had to be sorted so that
all hourly parameters appeared in consecutive records. An example of
this reformatted data is shown in Table 2. In this new data set we in-
cluded only the average wind direction and omitted the maximum and mini-
mum values. In addition, the atmospheric stability index was included
in column 80 of the wind speed record for the 1971 observations only.
These stability indices were determined from 1971 Quonset Point hourly
surface observations by means of an EPA preprocessor program which will
be described in Section V.
The first step in the data reduction process was the application of
calibration factors to 30-minute SO- concentrations for each of the
four measurement sites. After multiplication by the appropriate cali-
bration factors, half-hourly values of SO- background were calculated
using those measurement stations which lay outside a 90-degree downwind
sector. If one of the readings was missing (coded as 999), its contri-
bution to the background determination was ignored. The S0« values for
the stations outside the sector were then averaged and subtracted from
each of the concentration measurements. The resultant calibrated and
background corrected 30-minute SO- concentrations for each of the four
stations were then written on tape along with the corresponding meteoro-
logical and source parameters for the hour. A sample listing of these
corrected concentrations is given in Table 3.
The tape containing the corrected ^concentrations serves as input for
two additional.data analysis programs. The first of these programs
simply averages the two 30-minute concentrations for each hour and
writes hourly and daily concentrations on cards which are later read
by a concentration bin sort routine that develops cumulative frequency
distributions to be used in the model validation study. The second
program computes a running set of peak 1 hour to average 3 hour
13
-------
Table 2. UNCOKRECTED PLANT DATA
CAL.BRATAON FACTORS . »% <™»™ D^PT
r3 01JlJ . ••>;? l '
4 01 31 1.04
Is) AND 2nd
EMO
6 Oj ,j 1>in I/ HOUR CONCENTRATIONS (ppb)
<5 m 31 1 in ^Zf / i t auurui
9 01 51 l.in ^ 7^ ^ X|QO
SULFUR
STACK
TEMP(°F)
I GROSS
TEMP(°F) LOADlMW)
\ AIVV • *•»!'• \ • t 1, |
? <>', ^073^1? ^ f5>CV?^ <£> <^
010171 OUT 5 3' "• 1 ri 'M jx '• 4 yQ24 ''.'-'tA -.L. "r> 1.-, ^ I
010171 01 on >}4 |&i|^Ta AVERAGE WIND DIRECTION(degr«««) STABILITY
01C171 CMC" I'... :|—WIND SPEED XIO(ml/hr) ' 8
01C171 0?r-f: S;j Oil 01'.. ^- OUt Glf> 66 019 Of) 99 014 C 12 22? 23^ 032 299 -j'-l C126
010171 0200 :r; 72 52 '47
010171 020:"' 109 3
010171 COLO 53 013 00<> ^4 016 014 io 016 009 99 00« 005 22f. 2'3'r> 037 303 1-.29 f-17'6
010171 nir.O 3o 74 62 •• ' 47
010171 0300 i:.-2 a
010171 0400 •=>-- -06 006 44 012 012 56 006 1C5 °9 002 00.7 v,?r .':34 0?6 "C1'. >."/ 01-5ft.
010171 -400 ••;•! 79 . ',4 " /•- 7
010171 ri4( '-> i;,f) I-
C10171 Of.CO 53 005 00? ^4 015 C13 66 00'. COb 99 003 C'«X1 22U 2 P.'S^ 139 ?*" ^ 'j'..(.• C? to
010171 '1500 •}•-> 66 57 •• 7'
010171 ^500 Ivl 8
010171 05^0 53 ')0'.? 002 44 010 Oil 66 001 003 99 00] 004 22? 23'/> 0?? :'.c^ •j'.O i',2T,
010171 ov;--. 7S 56 56 47
010171 OP0.0 204 5
010171 07CO r.? 002 C01 44 01? '006 66 001 001 99 001 000 2','t 23S 0?S- 29? :.30 Or;t6
010171 0700 ^.1 ,«>r> 50 «- 7
010171 07CO 27'- »
010171 QPOO 53 002 001 44 005 006 56 002 001 99 COO 001 .: 2 8 IV? 033 299 'o7 C235
010171 030C 30 65 56 " " ... /. 7
010171 0?.00 ;>59 • 3
010171 0900 5? 002 OC1 44 C05 010 66 001 002 99 000 000 22* 222 036 2^5 Mil f,266
010171 0900 6S 57 50 47
010171 0900 :TI a
010171 10CO 53 102 001 44 005 009 66 001 006 *9 OCO 000 22<3 263 03S 311 ?94 C266
010171 lO^r 55 47 3-1 - 47
010171 10 CO 2"5 ' 8
010171 IIOC 53 002 002 -^4 009 006 66 017 020 99 000 000 22F 232 036 3CS 527 r-266
010171 11 Of 50 43 37 '47
010171 11 or 299 b
010171 1200 53 0?1 001 44 004 010 66 10S 194 99 COO OCC 22* 147 035. 295 3;:?. 0266
010171 1200 46 39 3?. ' - - - 47
010171 12CC ?2i P
010171 1300 53 001 001 44 CIO OC4 66 241 307 99 OOC 000 22t 150 036 295 520 O266
010171 1300 <.6 39 29 . 47
010171 1300 359 f
010171. 1400 53 002 001 44 OC5 CO 9 66 169 140 99 001 000 22? 149 037 ,?'?! J. 17 C275
010171 14f. /,/, ?;. ?_f> ' ' 47
010171 I'-OO 3<;-} 3
010171 1500 53 001 002 44 010 008 56 144 111 r'9 Qf>0 000. 2?fi 167 03t? 290 361 C2fr6
010171 I'SOO 45 36 27 * 7
010171 nro -7^' F
010171 16CC' r''> 001 001 44 OC9 012 66 034 001 99 COO COO 22T 193 036 2«/!' 426 0266
010171 !•>'•• 0 2? lo 7 ' 47
010171 1 6f 0 V,4 fi
01C171 1700 5i nn2 010 44 009 009 66 001 000 99 000 000 22P 240 036 301 533 0266
010171 170T 15 o 355 4 7
010171 1700 394 F
14
-------
Table 3. CORRECTED PLANT DATA
*£NOUR CONCENTRATIONS (ppb)
CALIBRATED AND CORRECTED
FOR BACKGROUND
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
171
171
171
171
1.71
171
171
171
171
171
171
171
171
171
171
171
171
"•/ / \
100 /"^>y^!N /75A ^T^?1
SI
69
200 -61 0. 1 24
72' " "~
1 0'?
3CC 10 45 3-1
74
13.*:
400 -1-1 5 5 -1-2
71? "
13-,
500 -3 -3 P 7 -4-1
66
6TT -2 -4 6 ? -4 -3
234
700 -3-1 F 4 -5-1
6.0
2 74
SCO 0-2 33 0-2
" ' 66 "- ' " '
259
900 0-3 37 -1 -?.
57
10CO 0-2 36 -I ' 3
47
2S5
1100 -2-1 63 14 If)
43
399
1200 -1-3 27 109 196
39 " "" " ' """
326
13<">C -3-1 7 2 ? 44 314
39
359
14fC -1-2 3 6 171 141
33
393
l5.C-r -3-1 7 5 144 111
36
374
160C -2 -3 6 6 32 -3
16
3=54
1700 -24 63 -3-7
\
'-4 -<; 2Tr ,:57 032 306 '^76 on*
i.
-2 -2 220 234 032 299 'j;.l 01T6
'4
-4 -4 ;-2T ,''. S 0^,7 3C. "1 ''i."'^ f 17^
.'.
-5 — V l^;"1 2^4 03!> 2^-: •>.: v fl;J6
/,
-6 -4 2 .?•;-. 2?-s c:v ?c r. •.•«.••• r :i ,
.
-3 -2 22V 2?S 03? 2V5 r. '•.•:.• r-;:iS
-4 -2 i^r .V2S r;r ^v-J 'vjC i ." 36
4
-2 -2 .':2.r; 199 03 2:>9 4>7 C?:-.5>
4
-2 -4 22t> 222 036 2V5 4^1 r ;Vt,h
4
-2 -3 228 263 036 ?11 59^, C266
4
-4 -3 22;i 232 036 30r. -327 C:.t.t'>
4
-2 -4 2." 321s f.">66
•^
-4 -2 22(5 1?0 036 2V> 320 r^6o
i<
-2 -3 22P 1^9 037 291 317 027',
' 4
-4 -3 220 167 03-3 2-..0 36] f 26.'-
4
-3 -5 2;;n 10? o?o 2'V " 42S 02^^
4
-4 -7 220 240 0?:i 301 ->33 <" .' ^,
39''
15
-------
and daily peak 1 hour to average 24 hour concentration ratios and
writes these values on tape together with the date, time, source, and
meteorological parameters for the peak hour. For the calculation of
the 1 to 3 hour ratios, three hour intervals were allowed to overlap,
giving a new ratio for each hour. In the case of the 1 to 24 hour
ratios, however, only one ratio was evaluated for each calendar day.
If one of the hourly concentrations to be used in a 3 hour or 24 hour
average was missing, then the ratio is flagged as 999 so that it would
be ignored by the ratio bin sort routine. Cases where the 3 hour or
24 hour average concentrations were zero were also flagged, Both 1
to 3 hour and 1 to 24 hour ratios were sorted into 50 bins to generate
a frequency distribution. Separate ratio frequency distributions were
constructed for different stability classes, seasons, wind speeds, wind
directions, receptor locations, peak 1 hour concentrations, and hour of
the day. Bin sorted ratio data for 1971 is presented in Appendix A. A
detailed analysis of cumulative frequency distributions of ratios for
all of the plant data on hand will be presented in Section IV along
with correlation coefficients between peak 1 hour concentrations and
associated 1 to 3 hour and 1 to 24 hour concentration ratios.
PREPARATION OF INPUT TO THE SINGLE SOURCE DIFFUSION MODEL
The discussion of model inputs will be broken down into a treatment
of meteorological and source data base combinations for 4 different
model validation runs. Since 1964 was the last year for which hourly
(rather than 3 hourly) surface meteorological data was tabulated for
many weather stations, an initial model run was carried out using
1964 Quonset Point, Rhode Island (station 14788) surface data (wind
speed, wind direction, and total cloud cover) and 1964 Nantucket,
Massachusetts daily mixing depths (morning and afternoon). For this
run source data including monthly averages of fuel consumption and
percent sulfur, stack gas temperature, gas velocity and stack radius
were taken from FPC Form 67 for the year 1971. The details of the
conversion of FPC data to model input format are given in Appendix B.
16
-------
Since hourly surface data for 1971 was available from the Quonset Point
station, it was decided to undertake a second model run using the same
FPC source data, but using the 1971 meteorological data. The mixing
depths for this case were also taken from Quonset Point.
For a more detailed check of the Single Source Model two more runs
were made incorporating an increasing degree of input data resolution.
The first: run used the 1971 meteorological data employed in the previous
run but utilized the plant data tape by means of a program which
calculates average monthly and diurnal variations of plant S0_
emissions. These monthly, and-diurnal., variations are likely- to..be the
most detailed source information for many facilities for which the
Single Source Model would be applied.
The fourth model run utilized actual S02 hourly source strengths
dumped on cards from the plant data tape. The meteorological input
data for this validation exercise was a combination of 1971 Plant
measurements and 1971 Quonset Point surface and upper air data. The
composite data set contained wind speed, wind direction, and temper-
ature data from the plant and hourly atmospheric stabilities and mix-
ing depths from the Quonset Point station. A summary of the data bases
used in the model validation runs is given in Table 4.
These different model validation cases required several programming
changes in the models themselves. Originally EPA provided us with
both the seasonal and diurnal versions of the Single Source Model.
Since these models were designed for leap year (1964) calculations
a small modification was made so that the program would accept 1971
meteorological data. The model also had the option for input of an
average elevation difference between stack base and surrounding terrain.
In all of our validation runs we provided for a separate source-
receptor elevation difference to be input for each receptor range.
17
-------
For model run 4 the code had to be modified so that it would accept
hourly SO- emission data. Also, for this last run we had to make
provision for a wind speed instrument height greater than 7 meters.
Table 4. DATA BASES FOR MODEL VALIDATION RUNS
Model
run
Meteorological
data base
Source data base
1964 Quonset Point
surface observations
and 1964 Nantucket
mixing depths
1971 Quonset Point
surface and mixing
depth observations
1971 Quonset Point
surface and mixing
depth observations
Combination of plant and
Quonset Point surface
observations with Quonset
Point mixing depth data
Form FPC-67
Form FPC-67
Summary of plant
source data with
monthly and diur-
nal variations
specified
Actual hourly
plant S02
emissions
18
-------
SECTION IV
ANALYSIS OF CONCENTRATION RATIO DISTRIBUTIONS
The first task in our analysis of the concentration ratio distributions
was to determine whether these distributions would conform to standard
\
types such as normal or log-normal. From the outset it was realized
that there would be difficulty in describing the ratio distributions in
terms of standard types since the range of ratios is bounded. For
example, a peak 1 hour to average 3 hour ratio must be equal to or great-
er than 1 and less than or equal to 3. Another complication arises from
the fact that the original concentration values were recorded as integers.
Therefore, for the case o£ rather low concentrations the ratio distrib-
utions are likely to be quite discrete in nature. This may be seen from
the following exercise in which peak 1 hour to average 3 hour concen^ \
tration ratios were generated from random concentrations. For this
calculation, 30 minute concentrations were generated randomly in an
3 33
interval between 0 pg/m and two upper bounds of 10 yg/m to 100 vig/m .
The routine chosen for the random number generation produces a uniform
distribution of floating point numbers between 0.0 and 1.0.. Figure 4
shows how the ratio distribution becomes smoother for the larger upper
bound. Since ground level concentrations due to point source emissions
are more likely to follow a log-normal probability distribution there
will be a large number of low concentrations so that the resultant ratio
distribution will be discrete. This conclusion is borne out by an
examination of the peak 1 hour to average 3 hour ratio distributions given
in Appendix A. The peak 1 hour to average 24 hour ratio distributions
show the same discrete nature but to a lesser degree than for the.peak
1 hour to average 3 hour distributions. If we restrict ourselves to
those ratios for which the peak 1 hour concentrations occur when the
wind was blowing within 20 degrees of the station, thereby insuring
19
-------
200
100
000
900
800
CO
2 700
fe
a:
O
a:
LU
CD
2 500
Z
400
300
200
100
MAXIMUM 30MIN. CONCENTRATION = lOug/m3
MAXIMUM 30 MIN. CONCENTRATION =100 ug/ms
NUMBER OF RATIOS FOR EACH CASE =1000
BIN WIDTH =0.04
1.0
1.4 I.B 2.2 2.6
I-3 HOUR CONCENTRATION RATIO
3.0
Figure 4. 1-hour to 3-hour ratio distributions generated from
random interger concentrations
20
-------
a greater proportion of higher concentrations, we find that the ratio
distributions become smoother. This can be seen if we examine the
appropriate peak 1 hour to average 3 hour distributions shown in
Appendix A.
In spite of the difficulties just mentioned, it was decided to proceed
with our comparison of ratio distributions with the standard types.
Figures 5 and 6 show peak 1 hour to average 3 hour and peak 1 hour
to average 2.4 hour concentration ratio cumulative frequency distributions
on linear probability and log probability scales respectively. Figures
7 and 8 show the same distributions with the data restricted to downwind
stations. An examination of these curves indicates that the log-normal
distribution is a more appropriate description for both 1 to 3 hour
and 1 to 24 hour ratio distributions. Table 5 presents a list of relevant
distribution parameters such as maximum, minimum, mean, standard devia-
tion, 95th and 99th percentiles. Data is also presented for the case in
which the wind was blowing within 20 degrees of the station heading.
An inspection of Table 5 reveals a significant difference between'
distribution parameters for the case in which all data was used as
opposed to the distribution obtained when only data from downwind
stations was utilized. For both 1 to 3 hour and 1 to 24 hour ratio
distributions there is a definite trend toward higher mean, 50, 95, and
99 percentile values for the case in which ratio calculations were
restricted to downwind stations. At the same time the standard devia-
tions for the downwind distributions were definitely smaller. This
feature is the result of having fewer extreme ratio values due to
higher concentrations downwind. The fraction of time a particular sta-
tion is downwind of the plant is given in Table 6.
The second part of our study of concentration ratio distributions was
devoted to an understanding of how the distributions were affected by
factors such as wind speed, season, stability, and hour of the day.
The cumulative frequency distributions of concentration ratios were
constructed from the entire data base used in the study.
21
-------
NJ
100
90
80
70
. 60
50
40
30
20
O
^ 10
* 8
g 7
2 6
8 5
99.99 99.9
; PERCENTAGE OF CONCENTRATION RATIOS
LESS THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 10 5 21 0.5 0.2 0.005 0.01
II T
LOG PROBABILITY PLOT OF
CUMULATIVE RATIO DISTRIBUTIONS
1-24 HR CONCENTRATION RATIO
1-3 HR CONCENTRATION RATIO
0.01 0.05 OS I 2 5 10 20 30 40 5060 70 80 90 95 98 99 99.9
PERCENTAGE OF CONCENTRATION RATIOS
GREATER THAN INDICATED VALUE
^9.99
Figure 5. Log probability plots of cumulative ratio distributions
-------
ro
OJ
99.99 99.9 99.8 99 98
PERCENTAGE OF CONCENTRATION RATIOS
LESS THAN INDICATED VALUE
95 90 80 7O 60 50 40 3O 20 IO 5 2
I 0.5 0.2 0.1 0.05 0.01
Z
UJ
U
o
u
oc
X
CO
3.0
2.6
2.2
i.e
1.4
1.0
I
i r
r
i i i i r
r
i
LINEAR PROBABILITY PLOT OF
CUMULATIVE RATIO DISTRIBUTIONS
1-3 HR CONCENTRATION RATIO
I
I i i
1-24 HR CONCENTRATION RATIO
_L
j_
i i i
J_
24.0
19.4
g
5
10.22
O
U
at
5.6 I
1.0 —
0.01 0.050.1 02 0.5 I
2 5 10 20 30 40 SO 60 70 80 90 95 98 99
PERCENTAGE OF CONCENTRATION RATIOS
GREATER THAN INDICATED VALUE
99.8 99.9 99.99
Figure 6. Linear probability plots of cumulative ratio distributions
-------
ro
100
90
80
70 h
60
50
40
30
99.99 99.9
PERCENTAGE OF CONCENTRATION RATIOS
LESS THAN INDICATED VALUE
99 98 95 90 80 70 «0 50 40 30 20 10 5 2 I 0.5 0.2 0.005 0.01
<
ac.
LJ
O
o
u
20
10
9
8
7
6
5
LOG PROBABILITY PLOT OF
CUMULATIVE RATIO DISTRIBUTIONS
(DOWNWIND STATIONS ONLY)
1-24 HR CONCENTRATION RATIO
1-3 HR CONCENTRATION RATIO
0.01 0.05 O.S I
2 5 10 20 3O 40 5060 70 80 90 95
PERCENTAGE OF CONCENTRATION RATIOS
GREATER THAN INDICATED VALUE
98 99 99.5
99.99
Figure 7. Log probability plot by cumulative ratio distributions (downwind stations only)
-------
PERCENTAGE OF CONCENTRATION RATIOS
LESS THAN INDICATED VALUE
99.99 99.9 99.8 99 98
—m—i—i—r
2
O
on
LU
—
2
LU
,u
o
u
Of.
5.6 I
CM
I
1.0 —
0.01 0.050.1 02 0.5 I
2 5 10 20 30 40 50 60 70 80 90 95 98 99
PERCENTAGE Of CONCENTRATION RATIOS
GREATER THAN INDICATED VALUE
99.8 99.9 99.99
figure 8. Linear probability plot of cumulative ratio distributions (downwind stations only)
-------
Table 5. STATISTICS FOR RATIO DISTRIBUTIONS
Ratios
1 to 3 hour
(all data)
1 to 24 hour
(all data)
1 to 3 hour
(only down-
wind stations)
1 to 24 hour
(only down-
wind stations)
Mean
1.81
7.84
1.90
8.54
Standard
deviation
0.70
6.31
0.65
5.63
50%
1.50
5.37
1.66
6.75
95%
1.02
1.69
1.10
2.15
99%
1.02
1.23
1.02
1.69
Maximum
3
24
3
24
Minimum
1
1
1
1
Given in terms of cumulative percent of ratios greater than given
values
Table 6. PERCENT OF TIME FLOW VECTOR IS WITHIN 20 DEGREES OF A
MEASUREMENT STATION (1971 DATA)
Station Percent
1
2
3
4
14
11
7
5
26
-------
Rather than examining the entire distribution to discover the influence
of these factors, it was decided to study the variation of the 50 percen-
tiie values of the distribution with different values of a given parameter.
In the first: of these studies we set out to find what relationship
exists betweien the concentration ratio distributions and the peak 1 hour
concentrations themselves. Figure 9 shows a plot of 50 percentile values
for 1 to 3 hour and 1 to 24 hour concentration ratios as a function of
peak 1 hour concentration. The peak in 50 percentile values for low con-
centrations is due to the discrete nature of the measured concentrations
discussed earlier. For example, it is not unusual to have a low concen-
3
tration of 1 or 2 yg/m giving a peak 1 hour to average 3 hour ratio of
3. Another interesting feature of this plot is that the 1 to 3 hour and
1 to 24 hour data are quite similar in shape. The correlation coeffi-
cient between peak 1 hour concentration and 1 to 3 hour and 1 to 24 hour
concentration ratio were found to be -0.017 and -0.008 respectively. The
data used for the calculation of these correlation coefficients did not
contain the 1971 concentrations. Besides a general rise in 50 percen-
tile ratios with increasing peak 1 hour concentration, the other dominant
features are two peaks in 52 to 60 yg/m range which occur for both 1 to
3 hour and 1 to 24 hour distributions. While both of the 1 to 3 hour
50 percentile peaks could be significant, the 1 to 24 hour peaks only
represent total bin counts of 8 and 6 respectively.
If the 50 percentile ratio values are plotted as a function of wind-
speed as in Figure 10, we find that there is a slight tendency for
higher ratios during periods of light winds. This is reasonable since
during light winds the wind vector would be more variable, leading to
elevated concentrations for short periods of time. The trend is evi-
dent in both 1 to 3 hour and 1 to 24 hour ratios.
A related phenomenon is evident for the 1 to 3 hour case when the 50
percentile ratios are displayed (Figure 11) as a function of atmo-
spheric stability index. Fifty percentile values of 1 to 3 hour ratios
27
-------
00
m
cc
K
co
o
OC.
O
X
fO
o
Ul
z
UJ
o
cc
UJ
Q.
O
ID
I
I
T
T
T
T
T
1 I
T
T
T
T
T
T
T
T
T
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24 HOUR CONCENTRATION
RATIO DISTRIBUTIONS AS A FUNCTION OF PEAK I HOUR CONCENTRATION
= 1-3 HOUR
—, =|-24 HOUR
-•©T--O'
I
I
I
I
I
I
I
I
I
I
I I
I
I
I
I
m
CO
Q
25 Sc
20
15
CVJ
i
u.
o
UJ
10
UJ
o
cc.
UJ
Q.
o
to
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
PEAK I HOUR CONCENTRATION,/tg/m3
Figure 9o Fifty percentile values of ratio distributions as a function of peak 1-hour concentration
-------
3
O
3
03
cc
CO
0 2
O
H
CC
cc
O
X
ro
i
~~
u.
o
Ul
_J 1
z
UJ
0
UJ
Q.
JC
O
IO
n
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24
HOUR CONCENTRATION RATIO DISTRIBUTIONS AS A
FUNCTION OF WINDSPEED (DATA FOR STATIONS 1-4
COMBINED)
= 1-3 HOUR
=1-24 HOUR
-
®s"— •— .-_.
" ""— -~o o © o
••
®-^_
""• — -o—
1 1 1 1
z
o
OK •
__)
CD
CC
CO
O
O
20 p
cc
ce
o
X
15 «f
CM
1
—
u.
O
UJ
10 ~
z
UJ
o
cc
Ul
a.
5 f
o
IO
6 9
WINDSPEED, m/sec.
12
15
Figure 10. Fifty percentile values of ratio distributions for dif-
ferent wind speeds
29
-------
3
z
o
1-
m
£
(O
a
o
< 2
a: e
K
o '
X
to
u.
o
UJ
p 1
z
UJ
0
l\ '
a.
JC
O
in
1 I l I 1
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24 HOUR
- CONCENTRATION RATIO DISTRIBUTIONS AS A FUNCTION
OF ATMOSPHERIC STABILITY INDEX (DATA FOR STATIONS
1-4 COMBINED)
=1-3 HOUR
=1-24 HOUR
~ V
^^->"/D'"--~^_^
^^\
•^"VsQ O O f
-
— — — — -O— — — — •©. — — — — O— — — — — ©— — — — -©- — — — — <
—
1 1 1 I I
Z
o
tr
250)
CE
5
20—
t
tr
QC
O
1C ^
1 w
CM
1
U.
O
10 uj
p
z
UJ
o
a:
R tL
f.
o
in
2 3 4 5 67
STABILITY INDEX (1-7)
Figure 11. Fifty percentile values of ratio distribution for different
stability indices
30
-------
for stabilities 1 through 3 are some 15 percent higher than the values
for stabilities 4 through 7. These lower stability indicies are
associated with more unstable atmospheric conditions due to light winds,
sparse cloud cover, and maximum solar insolation. Since these condi-
tions rarely persist more than a few hours in any day, it is not
surprising that the stability dependence is- not reflected in the 1 to
24 hour ratio distribution. These 50 percentile corves were construct-
ed with 1971 plant data only. The effect of stability upon concentra-
tion ratios may also be seen indirectly in Figure 12 in which 50
percentile ratios are shown for different hours of the day. The high-
est ratios are seen at midday during the period at which the most un-r
stable conditions would be expected to occur.
While time of day, stability, and wind speed are seen to exert an in-
fluence upon the ratio distributions, Figures 13 and 14 show that
the 50th percentile values are at most only weakly related to receptor
distance from the source and time of year. There is, however, a
slight indication that both 1 to 3 hour and 1 to 24 hour ratios might
be higher close to the source. The explanation for this decrease in con-
centration ratio with distance from the
treatment of a fluctuating plume model.
centration ratio with distance from the source may be found in Gifford's
When the 50 percentile values of the ratio distributions for 1971 were
compared with those for the combined 1972 - 1973 data set the 1971
values were higher for 1 to 3 hour ratios and 1 to 24 hour ratios by
5 percent and 12 percent respectively.
The ratio sensitivity analysis just described was also carried out for the
case in which the concentration ratios were restricted to those for which
the wind flow vector during the peak hour was within 20 degrees of a
measurement station (Figures 15 through 19). Due to the rather limited
amount of data available after this downwind restriction was made, the
following sensitivity plots were not presented: (1) variations with
stability for both 1 to 3 hour and 1 to 24 hour ratios and (2) 1 to 24
hour ratio variations with peak 1 hour concentrations.
31
-------
2
O
1-
CQ
CC
1-
5
o 2
i-
cc
cc
Z)
o
X
fO
1
—
u_
0
UJ '
£
UJ
o
cc
UJ
Q.
o
in
1 1 1 I 1 1 1 1 i 1 1
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24 HOUR
~ CONCENTRATION RATIO DISTRIBUTIONS AS A FUNCTION
OF HOUR OF DAY (DATA FOR STATIONS 1-4 COMBINED)
= 1-3 HOUR
= 1-24 HOUR
- _
vO-^
^^^cr^V^
Jb—43 «* °V
. fS^ ^^. _f
"
^
P\ . 'ft fy^
y J£l -JCJ ^^x-i^ *^^"°&"Qi
1 \ / \ fi^*. <^" ^^^ X ,. -.
)gf V^ x -^ ^_ _— /^^ ^^y»*^* ^^ «.
o ef
1 1 1 1 1 1 1 1 1 1 1
_
>-
CO
25 JE
to
5
g
20 £
cc
or
O
15 *
CO
I
u.
O
10 ^
z
UJ
o
cc
UJ
5 o.
0
in
3 5 7 9 II 13 15 17 19 21 23
Figure 12. Fifty percentile values of ratio distributions for each
hour of the day
32
-------
3
z
o
1-
15
CD
E
i-
(O
o
o
Z. 2
^
cc
cc
3
o
I
1
u.
o
UJ
t—
z ,
UJ
0
cc
UJ
OL
.c
«-
o
in
1 II 1
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24
HOUR CONCENTRATION RATIO DISTRIBUTIONS AS A
FUNCTION OF RECEPTOR LOCATION
=1-3 HOUR
=1-24 HOUR
— —
OL
^^ 0
_
_
\
\ ,/^"""""> - -
\/ "•-—-—.-
1 1 1 1
Z
o
pi
25 m
OC
(O
—
o
o
L_
20 <
OC
OC
o
i
^
15 w
u.
o
UJ
-1
10 z
UJ
y
UJ
a.
^
5 g
I 234
STATION DISTANCE FROM PL ANT, km
Figure 13. Fifty percentile values of ratio distributions for dif-
ferent distances from the plant
33
-------
o
m
tr
co
Q
2 2
i-
cc
tr
o
x
(O
u.
o
UJ
Ul
o
cc
Ul
Q.
O
m
I I
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24
HOUR CONCENTRATION RATIO DISTRIBUTIONS AS
A FUNCTION OF SEASON
1-3 HOUR
1-24 HOUR
25 m
cc,
CO
Q
20
O
X
1
1
CM
15 1
u.
o
Ul
10 uj
o
o:
ui
0.
m
WINTER
SPRING
SUMMER
FALL
Figure 1^. Fifty percentile values of ratio distributions for dif-
ferent seasons.
34
-------
o
I-
50th PERCENTILE VALUES OF 1-3 HOUR CONCENTRATION
RATIO DISTRIBUTIONS AS A FUNCTION OF PEAK I HOUR
CONCENTRATION FOR DOWNWIND STATIONS (FLOW VECTOR
WITHIN 20 DEGREES OF THE STATION HEADING)
co
o
o
X
ro
O
ui
UJ
UJ
0.
o
in
16 24 32 40 48 56
PEAK I HOUR CONCENTRATION, ^g
64
72
80
Figure 15.
Fifty percentile values of 1 to 3 hour concentration
ratio distributions as a function of peak 1 hour
concentration for downwind stations
35
-------
H
03
CO
O
cc
cr
o
x
10
u.
o
UJ
z
UJ
o
UJ
o.
o
m
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24
HOUR CONCENTRATION RATIO DISTRIBUTIONS AS A
FUNCTION OF WINDSPEED WHEN STATIONS ARE
DOWNWIND (DATA FOR STATIONS 1-4 COMBINED)
12
z
o
25 E
OC
CO
O
20 <
o
X
15 I
u.
O
UJ
10 z
UJ
g
UJ
0.
s §
15
WINDSPEED, m/sec.
Figure 16. Fifty percent ile values of 1 to 3 hour and 1 to 24 hour
concentration ratio distributions as a function of wind-
speed when stations are downwind
36
-------
o:
o
X
VI
t-
O m
UJ (C
d f-
z 5
UJ
Ul H
Q- < i
QC '
JC
O
(0
Q
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24 HOUR CONCENTRATION
RATIO DISTRIBUTIONS AS A FUNCTION OF HOUR OF DAY (DATA FOR STATIONS
1-4 COMBINED) ONLY DOWNWIND STATIONS UTILIZED
=1-3 HOUR
=1-24 HOUR
_
>°" ^"Xso^-^v /^\.
^^J®~~~~ ~-—isr w**^ X. / ^- -O» ^^ b- — Q. *^
°" ^©--^^0^-e**°<"->0'^0 *" V-^0""^^-*^ ^o--o--^
1 1 1 1 1 1 II 1 I'l
24 §
o
T.
20 CM z
ll
t—
i ^^ flQ
'5 ^5
-------
^
z
0
CD
OC
t—
V)
0 2
o
OC
OC
o
X
ro
1
u.
o
J 1
z
LU
o
cc
UJ
CL
JZ
O
IO
0
50th PERCENTILE VALUES OF 1-3 HOUR AND 1-24
HOUR CONCENTRATION RATIO DISTRIBUTIONS AS A
FUNCTION OF RECEPTOR LOCATION (DOWNWIND
STATIONS ONLY)
=1-3 HOUR
=1-24 HOUR
_ ' m
°\^ >*• -____
^XT ~ *
•
^^^ ^^ ^im^^i^
^^^
^*— • — — _ _
~~* •— __
— — -o
-
25 o
»-
00
OC
1-
(/>
20°
O
H
K
OC
3
15 i
CVJ
u.
o
10 uj
P
z
111
ft?
Ul
Q.
5 £
o
IO
0 1 2345
STATION DISTANCE FROM PLANT, km
Figure 18. Fifty percentile values of 1 to 3 hour and 1 to 24 hour
concentration ratio distributions as a function of
receptor location for downwind stations only
38
-------
o
z
o
1-
GD
K
(/>
O
O2
^
oc
4
cc
3
0
X
ro
i
u.
o
Ul
_l
i= '
z
Ul
o
Ul i
Q.
JC.
O
m
Q
50th PERCENTILE VALUES OF 1-3 HOUR AND
1-24 HOUR CONCENTRATION RATIO DISTRIBUTIONS
AS A FUNCTION OF SEASON (DOWNWIND
STATIONS ONLY)
= 1-3 HOUR
=1-24 HOUR
™ •
— o— • —
-
. __ __ _ — — —— O— . - __ _ ->
"~ —— - — __ __ — — — ™
_
1 . 1
z
o
"^
25 £
m
a:
»
r™
5
20 1
a:
•
o
•x.
15 ^
CM
1
U.
O
Ul
10 -J
H-
Z
Ul
o
(T
Ul
a.
5 ^
0
WINTER SPRING SUMMER FALL
SEASON
Figure 19. Fifty percentile values of 1 to 3 hour and 1 to 24 hour
concentration ratio distributions as a function of
season for downwind stations only
39
-------
The resultant sensitivity plots show much the same behavior as the pre-
vious curves without the downwind restriction. One new feature is a
rise in both 1 to 3 hour and 1 to 24 hour 50 percentile values for the
highest windspeeds. The increase in 50 percentile values during midday
is still evident but the peak appears to be much broader. The trend
toward lower 50 percentile ratios at greater distances from the plant
is still present. Again there is no obvious effect on the 50 percentile
values from season to season. The correlation between the peak 1 hour
concentration and the 1 to 3 hour ratio was found to be -0.018.
40
-------
SECTION V
MODEL VALIDATION PROCEDURE
MODEL DESCRIPTION
The diffusion model used in this validation study was a gaussian type
model developed by EPA Division of Meteorology. The code was written
to calculate maximum daily concentrations of SO- for a year, meteoro-
logical conditions which can lead to these maxima, and hourly and daily
concentrations for an array of receptor locations. These concentrations
are written on tape for the 180 receptor positions situated at each of 36
directions from the source and five different distance ranges. The model
can handle from 1 to 19 sources but treats all of them as if they were
at the same physical location.
Meteorological input to the model consists of hourly surface observa-
tions of wind speed (knots), wind direction sector (1-36), temperature
(F), total cloud cover (tenths), and twice daily mixing depths (meters).
The format for these data is that used by the National Climatic Center
for WBAN-144 hourly surface observations. These data are input into a
preprocessor program which in turn writes a tape containing hourly
values of stability index, mixing height, temperature, windspeed, flow
o
vector (wind direction plus 180 ), and randomized flow sector. The
randomized flow vector is equal to the flow vector minus 4 degrees plus
a random number between 0 and 9 degrees. The preprocessor output taoe
is then read by the Single Source Model which performs the actual
concentration calculations.
The preprocessor program generates hourly mixing depths from the twice
daily mixing depth measurements according to the interpolation scheme
for rural areas given in the Single Source Model in the Interim
User's Guide. Hourly stabilities are determined according to the
41
-------
system given by Turner employing Pasquill's classification scheme with
the addition of a stability class 1 for which the assumption is made
that the plume does not reach the ground. Wind speeds UQ measured at
instrument height h (7 meters for weather stations) are adjusted by
means of a stability dependent power law (u =u (h/h )• to correspond tp
values one would expect at the stack top h. Plume rise is calculated
' Q
on an hourly basis using the method of Briggs; If the plume rise
calculation indicates that the plume axis will rise above the mixing
- - ^ . > » , •,.,__-_--.. - *, „. . ^
layer then a zero concentration contribution is specified. If the
plume rise is below the top of the mixing layer, the presence pf the
top of the layer is accounted for by the introduction of image plymes
to satisfy the zero flux conditions at ground level and at the top of
the mixing layer.
Source input to the Single Source Model may possess varying degrees pf
temporal resolution. In the seasonal version of the model ap annual
average SQ2 source strength is specified along with monthly variation
factors. In addition to the seasonal factors, the diurnal versipn pf
the mpdel employs hourly emission variation factors for each month of
the year. A modified version of the model used in part of pur validation
study allowed actual hourly source strengths to be" y.tilized.
VALIDATION RESULTS
After the completion pf mpdel runs using £he four different source —
meteorological data base combinations, hourly concentrations for those
model stations closest to the actual measurement locations were compared
with observed concentrations. Although in the model calculations an ex-
act match cpuld be made for receptor distances frpm the source, the
specification of t;he appropriate angular displacements presented some-
what of a problem. In the first three model runs it was decided to retain
the practice of adding a random displacement to the flow vector since the
wind direction data was given only to the nearest 10 degrees. Hourly
concentration data was then obtained from the model output tape for those
model receptor locations which fell within the same 10 degree sector as
the actual station. For the last validation case, no random
42
-------
wind flow vector displacement was introduced so that model concentra-
tions represent either plume centerline values or concentrations at mul-
tiples of 10 degrees from the centerline. It was felt that this pro-
cedure might improve the agreement between measured and calculated
distributions especially for the higher concentrations.
For each model run the hourly and daily SO- concentrations for the
appropriate model receptors were written on a second file for later
construction of hourly and daily concentration frequency distributions
which could then be compared with the measured distributions. The 5
percentile, 1 percentile, second highest, and highest concentrations
are presented for measured and calculated values for 1 hour and 24 hour
concentrations in Tables 7 and 8, respectively. Although the calculated
5 and 1 percentile values for all four model runs fall considerably
below the measured values, the situation for the second highest and
highest concentrations is not quite so extreme. Nevertheless the cal-
culated concentrations for these last two categories.are still consist-
ently below the corresponding measured values. This situation is also
illustrated by Figures 20(a)-(d) and Figures 21(a)-(d) which present
cumulative frequency distributions of observed and calculated 1 hour
and 24 hour concentrations. Even after background subtraction the
measured and calculated 1 hour and 24 hour distributions do not agree
even for the highest concentrations.
In order to improve the agreement between model calculations and obser-
vations, we examined for each hour the concentration prediction for
direction displacements of -30°, -20°, -10°, 0°, 10°, 20°, 30°, and
compared these to the measured values. For each of the four stations,
we determined average calculated hourly concentrations, the standard
error normalized by the average measured concentration, and correla-
tion coefficients for each of the direction displacements. In addition,
each of these parameters were also calculated for the direction dis-
placement corresponding the best agreement between calculated and meas-
ured concentrations on an hour by hour basis. The results of this
43
-------
Table 7. 1-HOUR CONCENTRATION DISTRIBUTION STATISTICS FOR MEASUREMENTS AND DIFFERENT MODEL
VALIDATION RUNS8
Data base
Measured concentration
corrected for
background
1964 nearest station
met. data and 1971
FPC data
1971 nearest station
met. data and 1971
FPC daj.-i
1971 nearest station
met. data and 1971
plant summary
emissions
1971 plant met. and
emissions data
57,
station number
1
25
<1
<1
<1
-------
Table 8 . 24-HOUR CONCENTRATION DISTRIBUTION STATISTICS FOR MEASUREMENTS AND DIFFERENT MODEL
VALIDATION RUNSa
Data base
Measured concentration
corrected for
background
1964 nearest station
met. data ar.d 1971
FPC data
1971 nearest station
met. data and 1971
FPC data
1971 nearest station
met. data and 1971
plant summary
emissions
1971 plant met.
and emissions data
5%
station number
1
32
9
9
9
4
2
15
6
4
4
-------
IX) 0
,?0
80
70
60
50
40
1
30
99.99 993 99.8
PERCENTAGE OF I HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 iO 6 2
I 0.5 0.2 0.1 0.05 0.01
_ III
Z
o
•f-'
< 9
DC -8
'
8
I I T
I
I
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
S02 CONCENTRATIONS AT STATION I
="MEASURED
:_ -'MEASURED 'MINUS
" 'BACKGROUND
='CA-LCU L ATED
I I I
I I I
I
0.01 005 OJ 0.2 0.5 I
I
I
l_
I I
2 5 10 20 30 40 SO 60 TO 80 -90 95 '98 '99
PERCENTAGE 'OF I HOUR -CONCENTRATfONS
HESS 'THAN INDICATED VALUE
99.8 99.9 99.99
Figure 20(a). Cumulative frequency distributions for 1 hour S02 concentrations at station 1
-------
99.99 99.9 99.8
100
90|-
60 -
TO -
60 -
50
40
50
PERCENTAGE OF I HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 10 5 2
0.5 0.20.10.05 0.01
"E20
=CALCULATEO
1!
UJ 6
Z 6
O
0 4
I I I I T F
I I I I I I I
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
S02 CONCENTRATIONS AT STATION 2
=MEASURED
_ MEASURED MINUS
" BACKGROUND
I
I I I
I I I
I
0.01 0.050.10.2 05 I
I
I
II III
I
I
I I I
I I I
2 5 10 20 30 40 50 60 70 80 90 95 98 99
PERCENTAGE OF I HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8 99.9 99.99
Figure 20(b). Cumulative frequency distributions for 1 hour S02 concentrations at station 2
-------
99.99 99.9 998
06
100
90
80
70
60
50
40
30 -
«p 20 -
•a
O
<
o: e
UJ 6
O
O 4
PERC€NTAGE OF 1 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98
95 90
80 70 60 50 40 30 20
10
I 0.5 0.2 O.I 0.05 0.01
I I I I I I I I I [ I I I I I
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
SO2 CONCENTRATIONS AT STATION 3
= MEASURED
MEASURED MINUS
- BACKGROUND
=CALCULATED
III III
I
I
I
I I I I / I I
I I .' I I I I
I
|J
I I I I I
0.01 0.050.10.2 0.5 I
2 5 10 20 30 40 50 60 70 80 90 95 98 99
PERCENTAGE OF I HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8 99.9 99.99
Figure 20(c). Cumulative frequency distributions for 1 hour SO concentrations at station 3
-------
-o
vO
100
90
80
70
60
SO
40
30
<•> 20
2
O 10
*^ 9
8
99 99 919 99.8
PERCENTAGE OF 1 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 SO 40 3O 20 10 3 2
I 0.5 0.2 Ql 0.05 0.01
Of.
\-
UJ
U
O
O
I
I
i i I i i r
7-
6 -
9 -
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 1 HOUR
SOz CONCENTRATIONS AT STATION A
* MEASURED
MEASURED MINUS
* BACKGROUND
„ CALCULATED
III III
I
0.01 0.050.1 02 OA I
I
J I
I
I
I
I
I I I
J _
I. I I
2 5 10 20 30 40 SO 6O 70 80 90 95 98 99
PERCENTAGE OF 1 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.899.9
99.99
Figure 20(d). Cumulative frequency distributions for 1 hour SCL concentrations at station 4
-------
100
90
60
70
60
SO
40
30
•O 20
.E
99.99 99.9
PERCENTAGE OF 24 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 93 90 80 70 60 SO 40 3O 20 10 S 2
I 0.5 0.2 O.I 0.05 0.01
I I I I I I 1
1
oc
O
O
O
10
'9
8
-7
•6
:5
I I I I I I I I 1 I ;l I I I _
CUMULATIVE FREQUENCY
DISTRIBUTIONS FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 1
• MEASURED
^_ MEASURED MINUS
BACKGROUND
CALCULATED
III I I I ' I
I
I I I I I I
OOI OO9 0.2 OS I 2 5 10 20 30 40 SO SO TO 60 90 95 98 99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED 'VALUE
,99.8 993 99.99
Figure 21(a). Cumulative frequency distributions for 24 hour S02 concentrations at station 1
-------
10
o
UJ
o
z
o
o
100
901-
80-
70-
60-
50-
40
30
20
99.99 99.999.8
PERCENTAGE OF 24 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 60 30 20 10 5 2
1 0.5 0.2 QI 0.050.01
10
9
8
7
6
5
I I I I I I
I I
I I I I I I T
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 2
MEASURED
MEASURED MINUS
s BACKGROUND
= CALCULATED
ll I I I I I 1 I I 11/11
0.01 0.05 05 Q5 1
2 5 10 20 30 40 50 60 70 80 90 95 98 99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8
99.99
Figure 21(b). Cumulative frequency distribution for 24 hour SCL concentrations at station 2
-------
99.99 99.9 99.8
100
901—
80 -
70 -
60 -
50 -
40 -
30 -
20 -
PERCENTAGE OF 24 HOUR CONCENTRATION
GREATER THAN INDICATED VALUE
99 98 95 90 8O 70 60 50 40 30 20 10 5
NJ
E
^»
o>
O
-5
o
u
0.5 0.2 O.I 0.05 0.01
I T
I I 1 I I I
I
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 24 HOUR
S02 CONCENTRATIONS AT STATION 3
= MEASURED
a MEASURED MINUS
BACKGROUND
- » CALCULATED
I I I III
I
0.01 0.090.102 0.3
_l
I
I 17 I I I I
I
III I I I
2 5 10 2O 30 40 50 60 70 60 90 95 98 99
PERCENTAGE OF $4 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8
99.99
Figure 21(c). Cumulative frequency distribution for 24 hour S'02 concentrations at station 3
-------
99.99 99.9 99-6
100
90 \—
80 -
70 -
60 -
50 -
40 -
30 -
P 20 -
PERCENTAGE OF 24 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 £0 SO 40 30 20 10 5
I 0.5 0.20.10.05 0.01
o
Cn
CO
u
O
I I I T I
I T I I I I I I I I I I I I I _
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 4
= MEASURED
MEASURED MINUS
' BACKGROUND
= CALCULATED
III I
I I I III
I
I
I 'I I I I I
OjOl 009 0.1 0.2 0.5 I
2 5 10 20 30 40 SO 60 70 80 9O 95 98 99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8
99.99
Figure 21(d). Cumulative frequency distribution for 24 hour SO- concentrations at station 4
-------
Table 9. MODEL VALIDATION RESULTS FOR HOURLY CONCENTRATION
Station
no.
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
Validation parameter
Average measured hourly
concentration
Average calculated
hourly concentrations
Standard error
normalized by
average measured
concentration
Correlation coefficients
Direction displacement
-30°
-
-
-
-
0.57
0.38
0.077
0.26
3.36
5.29
4.28
3.87
0.11
0.037
-0.004
0.15
-20°
-
-
-
-
0.77
0.26
0.026
0.20
3.36
5.10
4.19
3.87
0.17
0.051
-0.006
0.16
-10°
-
-
-
-
0.72
0.12
0.036
0.25
3.17
5.01
4.19
3.78
0.24
0.036
-0.002
0.27
0°
7.0
3.6
4.4
5.0
0.51
0.14
0.078
0.28
3.17
5.01
4.19
4.05
0.22
0.005
^0.002
0.012
10°
-
-
-
-
0.23
0.36
0.096
0.23
3.26
5.38
4.28
3,96
0.093
-0.003
rO.002
0.019
20°
-
-
-
-
0.29
0.68
0.054
0,40
-
2.42
5.66
4.28
4.05
0.002
0.001
^0.002
0.021
30°
-
-
-
-
0.48
1.3
0.077
0.55
3.45
6.59
4.28
4.32
-0.006
-0.001
-0.002
0.0
Best
-
-
-
-
0.74
0.09
0.015
0.34
2.89
4.82
4.19
3.33
0.50
0.11
0.035
0.68
Ul
-------
study are given in Table 9. The first point to be noticed from this cal-
culation is the drastic improvement in the correlation coefficient which
occurs if the predicted concentration for the "best" direction displace-
ment is chosen for the calculated concentration. The standard error also
decreases for the best displacement but the effect is not as significant
as was the case for the correlation coefficient. Another interesting
feature is the consistent improvement in the correlation coefficient for
negative direction displacements.
The lack of agreement between measured and calculated concentrations
may be traced to several factors. The most important reason for the
disagreement may well be an overestimation of plume height by
the model for the most commonly observed atmospheric stabilities and a
consequent overriding of the monitoring stations by the plume. Under
these conditions the model predicts that the maximum concentration will
be found beyond any of the actual receptor locations. Table 10
contains the output of the EPA UNAMAP program PTMAX which finds the
maximum concentrations and distance to the maxima for a range of
stabilities and wind speeds. The actual stack height for this calcula-
tion was corrected for the difference in elevation between the stack
base and the receptor locations. The PTMAX results show that no
appreciable concentration can be expected for stability indices greater
than 3. Even for stability 3 the wind speed must be greater than
5m/sec for the maximum to fall within the range of the station farthest
from the source. Since a stability of 3 or below occurred only 17 per-
cent of the time for the 1971 meteorological data, few opportunities are
presented for calculated elevated concentrations within the area covered
by the monitoring network.
Another difficulty arises from the fact that even when stability and
wind conditions are favorable for the observations of high concentra- •
tions the calculated plume spread is not sufficiently large to affect
more than one model receptor location. The use of this rather sharply
55
-------
Table 10 • ANALYSIS OF CONCENTRATION MAXIMA FOR DIFFERENT WIND SPEEDS
AND STABILITIES WITH 1971 CANAL PLANT OPERATING
CHARACTERISTICS
CANAL PL* N'T 1971
ANALYSIS OF CONCENTRATION AS A FUNCTION OF STABILITY AKO HIUU SPEED.
1971 VERSION, D. ». TUKNEK.
fMIWIflN RAT? (G/5FC) ' 843.71
PHYSICAL STACK Hri&rtT I." I » 72.33
STACK r,AS TEMP |[ 04.3(2)
196.6
135.1
177.1
IS SO r.RFAT
LO«r. Eiinurx
HIM SHiwtn a
usto IN iMTS«i>*-"T;Nr. rnit; CIIMPUTATION AS THIS STABILITY TYPE ><
Nni E<1ST TH THIS HEI'.'IT. ALSO HI"O SPEtO VAMIATKINS WITH
HCI.'.HT MAY c-x'^r A :tinrNATi'«:: iNLiii-icr.
(31 MO CII«PUTATI.1N WAS ATIIMI»Itl» F'IK THIS HS1 GMT AS THE PUIWT U<=
HAXIHlIM CONC£NT
-------
peaked lateral concentration distribution effectively excludes a large
number of low and medium size concentrations which would have otherwise
been predicted. This point will be discussed in much greater detail in
Section VII.
57
-------
SECTION VI
COMPARISON WITH OTHER WORK
CONCENTRATION RATIO DISTRIBUTIONS
Most studies of concentration ratio distributions have involved peak
values averaged over periods of only a few minutes. One Such
evaluation of S09 concentration ratio distributions was carried out by
2
the Tennessee Valley Authority (TVA) in the vicinity of the Paradise
Power Plant with data taken over a 2-1/2 year period from January 1968
through June 1970. During this time period, 14 SO. monitors located
in the 22-1/2 degree prevailing downwind sector were operated on a
continuous basis. All but one of the stations were located within a
distance of from 3 to 10 km from the plant. From the concentration
data peak-to-1-hour average and peak-to-24-hour average concentration
ratios were obtained for each measuring instrument. The highest 5-
minute average concentration that occurred during a particular hour was
considered to be the peak concentration for that hour. To avoid inter-
ference from background contributions, those hours with average
concentrations less than 0.10 ppm were excluded from the analysis. The
resulting ratio distributions were analyzed according to stability type
and receptor distance from the source. Stability assignments (unstable
neutral, stable) were made according to the potential temperature
gradient which was obtained from hourly temperature measurements at 13m
and 110m meteorological tower levels.
Although the procedure for background subtraction and determination of
peak concentrations was different from those used in our study, their
results correlate quite well with our findings. In particular, they
58
-------
found a general decrease in concentration ratios for increasing stability
and increasing distance from the source.
Although the ratio distributions obtained from the Paradise and Canal
studies cannot be exactly compared due to different averaging times, a
rough comparison, shown in Table 11, can be made if the Paradise values
are corrected for averaging time by the method outlined in Table 5.1 of
Turner's Workbook. While the agreement between the 1 to 3 hour ratios
appears to be quite good, the Paradise 1 to 24 hour ratios are about a
factor of 2 greater than those for Canal.
Table 11. COMPARISON OF PARADISE CONCENTRATION RATIOS (CORRECTED FOR
SAMPLING TIME) WITH DOWNWIND RATIOS OBTAINED AT CANAL
Canal
Paradise
Mean
1-3 hour
1.90
1.80
Mean
1-24 hour
8.54
15.9
50%
1-3 hour
1.66
1.63
50%
l-24/.hour
6.75
12.4
95%
1-3 hour
1.10
0.99
95%
1-24 hour
2.15
4.00
MODEL VALIDATION
Concentration data from the same TVA Paradise Steam Plant was also
3
used by Klug in a model validation study similar to our Canal Plant
work. The Paradise Plant has three units, the first two of which are
rated at 704 MW and the third has a capacity of 1150 MW. The correspond-
ing stack heights associated with each unit are 183m, 183m and 244m.
In addition to hourly S09 concentration data for 6 stations in the pre-
vailing downwind direction from the plant, S0_ emissions, source
operating characteristics and meteorological data were available on an
hourly basis. Windspeed and direction measurements were made at a height
of 110m above the ground. Atmospheric stabilities were calculated for
each hour based upon the temperature difference between the 110m and
1m levels and wind speed observations at 13m. Although the effect of
59
-------
SCL background was accounted for in the concentration ratio study de-
scribed in Part A, no correction was made for background in the model
validation exercise.
Model calculations were carried out using both the dispersion curves
given by Turner as well as the more recent curves obtained from Smith's
K-Theory computations. Once the receptor concentration was calculated
for a measured wind directiqn at 110m height, the wind vector was
arbitrarily shifted by increments of + 10°, + 20°, and + 30 to inyes*
tigate the effects of plume centerline shift due to windshear. The
results by this model validation study along with the correspondiftg
findings of the Canal Plant modeling effort are giv.en below.
1. Mean Value
(a) Paradise Validation - The ratio of observed to
calculated mean annual values for the 6 .receptor
locations ranged from 0.55 to 1.94 for the
Turner o values and 0.44 to 1.31 for the Smith oi.y.alues.
z .z •
(b) Canal Validation - Ratios of observed to .calculated
annual concentrations for the 4 receptor .locations
ranged from 13.7 to 56.4 for the Turner o .values.
z
2. Standard Error of Estimate
(a) Paradise Validation - The standard error of --esXima-te
between observed and calculated concentrations JL-s
approximately 3 to 4 times the mean mea:s.ur.e:d-values.
(b) Canal Validation - The standard error ;for rJthe 4 rstattpns
ranged from 3.2 to 4.0.
3. Correlation Coefficients
(a) Paradise Validation - The correlation coefficient
between the logarithm of concentations varies
60
-------
between 0.18 and 0.28. By arbitrarily shifting the
wind vector to find the "best" predicted concentra-
tion the correlation coefficient is found to vary
between 0.47 and 0.65.
(b) Canal Validation - The correlation coefficient be-
tween measured and calculated concentrations (not
logarithms of concentrations) was in the range of
0.01 to 0.22. If the "best" direction displace-
ment was chosen the range was 0.035 to 0.68. The
correlation between the logarithms of concentrations
were not calculated due large number of zero
concentrations predicted by the model.
4. Effect of Wind Shear upon Concentration \
(a) Paradise Validation - The wind direction displacement
which, on the average, gave the best agreement with
measured concentration corresponded to a wind direc-
tion shift of + 20°.
(b) Canal Validation - The best wind direction dis-
placement represented a shift of between -10 and -20°.
One reason for the disagreement between the two validation studies for
ratios of average measured and calculated concentrations was due to
the fact that the Paradise stations were located within a 45° sector
from the stack. This would decrease the likelihood of an elevated
concentration being observed at a particular station without its having
been influenced in some way by the plume. In the case of the Canal
Plant, the nature of the background subtraction process will result in
non zero concentrations for stations upwind from the plume. There
still remains the difficulty that the model is under predicting even
61
-------
for the highest concentrations, a situation which may result in a
large part from the choice of stability assignment and dispersion curves,
or from an overestimation of plume height.
62
-------
SECTION VII
SUGGESTIONS FOR MODEL IMPROVEMENT
In the course of our model validation activities we have found it
necessary to make several changes in the Single Source Model. These
changes were carried out to achieve a greater degree of flexibility in
the input emissions and meteorological data. These minor modifications
have included the following:
1. Input of actual S0~ hourly emissions data.
2. Provision for a variable wind instrument height.
3. Elimination of the random angular displacement for the
last validation run.
4. Specification of different elevations for each receptor
distance from the source.
In addition to these minor improvements we have also noted the need for
more substantial changes within the basic structure of the model itself.
Based upon the model validation results presented in Section V, we offer
the following two suggestions for model modifications which might lead
to improved estimates within the Canal Plant network.
MODIFIED TREATMENT OF LATERAL PLUME SPREAD
As pointed out in Section V, the narrowness of the model plume appears
to be responsible for many of the calculated zero concentrations at
times when significant concentrations are observed. Some techniques for
increasing the cr values (at short travel distances now based largely on
10-minute average values) or of averaging plume concentrations over an
angular sector whose magnitude depends upon an estimate of wind direc-
tion variation during a given hour, might lead to better agreement
63
-------
between measured and calculated, frequency distributions; for. alii, but
the highest, concentration* valves^. The introduction' of a. randoms diiis;-
placement does not appear to- successfully alleviate1, the. problem1.
MODIFIED, TECHNIQUES FOR THE PREDICTI0F OF' EEUME RISE,' AND)
DISPERSION COEFFICIENT'S:
The fact that calculated; concentrations- fall. eonsis.tentt;l!.y/ below/ meas;~
ured- values indicates that either: the-, degree; odr p>lume> rl'sie: has; beem owe-r-
estimated or that: the stability assignments! are; in? needs osE rewiisiiion:..
The. plume rise formulation; used in-, the. Single- Slourcev Mfad'eJl iis; baaedl
upom many sets of observations with* eaehi set weighted! aecordii'ng; to> the
amount and; quality of the; data... There- is; no> guarantee! that tthfiset fiber—
mulas; will be accurate when applied, to* a. new site? such, as; a, s'eacoast:
facility. More observations of; plume: ris:e; for' different locations;
would; be: useful in. the development, of more; refined; prediction; methods;.,
9)
One such plume- rise correction has recently been. sugges,ted1 by/ EEi'ggs;
and involves a plume rise' retardation! due; to> the. presence? of: nearb-y-
structures. This, consideration can. be of: conslder.able importaTice; at;
the Canal Plant due- to the fact that the* stack: site; upom a. buildiiing!;
59 meters in height.
The first correction in stack height is due to; the. s:tack. aerodynamic
effect..
h' = h + 2. (yr /u- - U.5,p» (.1.)
where: h = actual stack height:
s
v = stack gas. exit velocity
S
u =- wind speed
D = stack diameter
64
-------
The next stack height correction will depend upon building height (h, )
and is given by one of the following three expressions:
Case 1.
h" = h/ if h > 2.5
Case 2.
h" =0 if h' < 1.5 hb
Case 3.
h" = 2h' - 2.5 hb if 1.5 h^ < h' < 2.5 h^
o
The standard plume rise correction due to buoyancy effects is then
applied to cases 1 and 3. For case 2 no buoyancy term is added, but
2
an initial dilution volume of cross-sectional area h, is assumed.
b
After incorporation of these plume rise retardation corrections the
Single Source Model was run once again with the random number option
again utilized to locate the plume centerline within a 10 degree sector.
As shown in Figures 22 (a)-(d) and Figures 23 (a)-(d) the model distrib-
utions obtained using the plume rise correction are somewhat closer to
the observations but indicate that the model is still under predicting
to a considerable degree. The correlation coefficients given in
Table 12 show only negligible improvement with respect to the previous
validation, run.
The discrepancy between model predictions and measured values is also
illustrated in Table 13 which gives an hourly comparison between ob-
served and calculated concentrations for observations over 200 |ag/m .
Many high observed concentrations are actually associated with zero
65
-------
100
90
80
ro
60
50
40
30
99.99 993 99.8
PERCENTAGE OF I HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 SO 40 30 20 10 S 2
I 0.5 0.2 0.1 0.05 0.01
I I I I I I
Z
o
I0
9
cc
Ul 6
O
2 6
O
O 4
1 I
I I I I F T I
I 7"
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
SOz CONCENTRATIONS AT STATION I
=MEASURED
MEASURED MINUS
" BACKGROUND '
=CALCULATED
A A A = CALCULATED WITH
PLUME RISE :
RETARDATION
\ 1 1
I
I
0.01 OC50J0.2 6.5
I
I
I
I I / I I I 1
I
All I I III
Z S 10 20 30 40 SO 60 70 60 90 99 98 99
PERCENTAGE OF I HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8 99.9 99.M
Figure 22(a). Cumulative frequency distribution for 1 hour S0_ concentrations at
station 1 (plume rise retardation included)
-------
99.99 99.9 99.8
100
90|-
80
70
60
60
40
30
z
o
& I0
< 9
i;
tU 6
O
•Z 6
O
O 4
•- =MEASURED
MEASURED MINUS
" BACKGROUND
=CALCULATED '
A A A=CALCULATED WITH
PLUME RISE
• RETARDATION
PERCENTAGE OF I HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 99 90 80 70 60 SO 40 30 20 10 9 2
i as 0.20.1 o.os o.oi
THIIIIIIIIIIIIIII
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
S02 CONCENTRATIONS AT STATION 2
III II I
I
0.01 0.09 ai 0.2 OS I
I I I I I
I
l_
I
T
A ' -]
A
A
A
A /
"I
i
IL
A
A
A)
i
i
A I
i
I
I
2 0 10 20 30 40 90 60 70 80 90 99 98 99
PERCENTAGE OF I HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
i i Ai i i i i
99.8 99.9 99.99
Figure 22(b). Cumulative frequency distributions for 1 hour S02 concentrations at
station 2 (plume retardation included)
-------
99 99 99.9 998
00
100
90
80
70
60
SO
30
20 -
Z
o
^ 'o
< 9
OC 8
II I I I I I I I I I I I I I I I/1!I
UJ
6
5 *
O
O 4
PERCENTAGE OF 1 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 10 5 2
I O.5 Q2 O.I 0.03 0.01
CUMULATIVE FREQUENCY
DISTRIBUTION FOR I HOUR
S02 CONCENTRATIONS AT STATION 3
= MEASURED
MEASURED MINUS
"BACKGROUND
—=CALCULATED
A A A =CALCULATED WITH
PLUME RISE
RETARDATION
'II I- I I --'I
I
II I I / I
I 'I I
0.01 0.05 OJ 6^ 0.5 I
2 5 10 20 30 40 50 £0 70 80 90 95 93 99
PERCENTAGE OF 'l HOUR CONCENTRATIONS
L-ESS THAN INDICATED VALUE
93.8993 99.99
Figure 22(c).
Cumulative frequency distributions for I hour S02 concentrations at
station 3 (plume rise retardation included)
-------
9999 99.999.8
too
90
60 -
70 -
60 -
30 -
40 [-
30
PERCENTAGE OF 1 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 9O 80 70 60 50 40 30 20 IO 3 2
0.5 0.2 0.1 0.05 0.01
vo
<"> 20
v.
01
Z
Q 10
5 9
< 8
£ 7
5 6
8 4
I 1 I I
I
I I I I I I
T
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 1 HOUR
SOz CONCENTRATIONS AT STATION 4
= MEASURED
MEASURED MINUS
" BACKGROUND
» CALCULATED
A A A = CALCULATED WITH
PLUME RISE
RETARDATION
III 111
I
I
I I
I I I
I
I
I _L 1
A
A
)-
A
A
A
A
A
A
A
A i
A |
Al
vl 1 I
O.CI 0.030.10.2 04 I
2 5 10 20 30 40 30 60 70 80 90 95 98 99
PERCENTAGE OF 1 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8 99.9 99.99
figure 22(d). Cumulative frequency distributions for 24 hour SO^ concentrations at
station A (plume rise retardation included)
-------
100
99.99
PERCENTAGE OF 24 !HOUR CONCENTRATIONS
•GREATER THAN INDICATED VALUE
99.9 99 98 95 90 80 70 60 50 4O 30 20 10 '5 21 0.5 0.2 O.I 0.05 0.01
CUMULATIVE FREQUENCY
DISTRIBUTIONS FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 1
=MEASURED
-•MEASURED MINUS
BACKGROUND
-=CALCULATED
A A A= CALCULATED WITH
PLUME RISE
RETARDATION
III
I
0X51 OOS 0.2'0.5 12 5 10 20 30 4O 90 60 70 "80 90 95 98*99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.99
Figure 23(a). Cumulative frequency distributions for 24 hour S02 concentrations at
station 1 (plume rise retardation included)
-------
100
901-
80 -
70-
60
50
40-
30
99.99 99999.8
PERCENTAGE OF 24 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 10 5 2
1 0.5 0.20.1 0.05 0.01
IQ
E
liJ
O
z
O
O
20
10
9
8
7
6
5
4
3
IT I I I I
I
I
I
I
I
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 2
» MEASURED
MEASURED MINUS
* BACKGROUND
„ CALCULATED
A A A = CALCULATED WITH
PLUME RISE
RETARDATION
I I I I 1
J I
J I
0.01 0.05 0.2 Q5 1
2 5 10 20 30 40 50 60 70 80 90 95 98 99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8
99.99
Figure 23(b). Cumulative frequency distributions for 24 hour S02 concentrations at
station 2 (plume rise retardation included)
-------
99.99 99.9 99.8
100
90 \-
60 -
70 -
60 -
50 |-
40
30
20
PERCENTAGE OF 24 HOUR CONCENTRATION
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 SO 4O 30 20 10 9
0.5 0.2 O.I 0.05 0.01
K)
10
o
-------
to
100
90
ao
70
60
SO
40
30
et 20
O
£ .0
Z 9
O 6
U .
5
99.99 99.9 99-8
PERCENTAGE OF 24 HOUR CONCENTRATIONS
GREATER THAN INDICATED VALUE
99 98 95 90 80 70 60 50 40 30 20 10 5 2
I 0.5 0.20.IO.05 0.01
_ I I I I I I I I I I I I I I I IT III
CUMULATIVE FREQUENCY
DISTRIBUTION FOR 24 HOUR
SO2 CONCENTRATIONS AT STATION 4
MEASURED
. MEASURED MINUS
"BACKGROUND
* CALCULATED
A A A =CALCULATED
WITH PLUME
RISE
RETARDATION '
I I
1
I
0.01 oos 0.1 0.2 as i
I I I
2 5 IO 20 30 40 SO 60 70 80 90 95 98 99
PERCENTAGE OF 24 HOUR CONCENTRATIONS
LESS THAN INDICATED VALUE
99.8
99.99
Figure 23(d),
Cumulative frequency distribution for 24 hour SCL concentrations at
station 4 (plume rise retardation included)
-------
Table 12. MODEL VALIDATION RESULTS FOR HOURLY CONCENTRATION (WITH PLUME RISE CORRECTION)
Station
no.
1
2
3
4
1
2
3
4
1
2
3
4
i
2
3
4
Validation parameter
Average measured hourly
concentration
Average calculated
hourly concentrations
Standard error
normalized by
average measured
concentration
Correlation coefficients
Direction displacement
-30°
—
—
—
—
0.84
1.7
0.69
0.43
3.36
18.55
10.03
3.87
0.12
0,<002
-0.004
0.27
-20°
—
.—
—
—
1.3
0.60
0.16
0.37
3.82
8.35
4.56
3.69
0.13
0.009
-0.005
0.32
-10°
—
—
—
—
1.4
0.18
0.10
0.51
4.38
5.19
4.28
3.78
0.12
-0.011
-0.005
0.32
0°
7.0
3.6
4.4
5.0
0.84
0.22
0.28
0.64
3.36
5.10
5.20
4.50
0.19
0.002
-0.005
0.016
10°
—
—
—
—
0.36
0.63
0.56
0.72
3.26
5.84
7.02
5.12
0.13
0,002
-0.005
0.004
20°
—
—
—
—
0.43
1.80
0.69
0.93
3.36
13.91
10.03
4.68.
0.004
0.006
-0.004
0.010
30°
—
—
—
—
0.81
3.60
0.74
1.10
3.64
20.41
4.47
4.68
-0.009
-0.003
-0.004
-0.004
Best
—
—
—
—
1.1
0.094
0.022
0.58
2.79
4.82
4.19
2.97
0.54
0.11
0.045
0.68
-------
Table 13.
COMPARISON OF OBSERVED AND CALCULATED HOURLY
CONCENTRATIONS FOR OBSERVED CONCENTRATIONS
GREATER THAN 200
tar
1
1
1
1
11
13
13
13
16
16
16
16
16
16
16
19
20
20
20
26
26
26
26
26
34
34
36
36
44
70
78
78
84
85
85
86
86
86
86
97
98
104
104
104
104
105
134
134
155
155
196
219
219
229
233
233
233
264
268
283
290
298
298
Hour
12
13
14
13
12
9
11
13
19
20
5
6
7
10
11
13
3
5
6
8
9
11
12
13
10
11
14
15
14
21
22
23
7
11
12
9
11
12
13
13
18
18
20
21
22
13
10
17
9
10
4
10
11
10
9
10
11
13
14
15
8
13
14
Station
3
2
2
1
1
2
2
2
2
2
1
1
1
1
4
4
4
4
4
1
1
4
4
4
2
4
'4
1
3
3
3
3
3
3
1
1
1
1
1
1
:2
1
1
1
1
1
1
1
1
1
1
1
2
3
4
3
400
731
409
334
330
234
325
229
242
224
371
616
304
552
206
255
276
326
310
207
379
304
449
210
210
350
312
600
493
213
637
574
296
279
443
219
310
389
286
228
228
206
215
216
293
210
279
233
414
417
216
316
288
283
248
231
215
240
207
318
207
211
276
Calculated
concentration
43
40
458
3
0
0
0
2
0
0
0
0
0
0
0
0
0
0
.0
1
0
0
78
1
12
1
110
33
0
0
0
0
0
0
0
293
2632
4353
4496
0
19
0
0
2
0
0
0
311
3
0
172
0
243
1
0
0
0
1
177
75
0
0
0
Stability index was determined at Quonset Point.
75
-------
model predictions. The three extremely high model predictions greater
3
than 3000 t-ig/tn are due to a. model assumption of total plume downwa.sh
under high wind conditions.
A further illustration of the problems involved with an hour by hour
model validation procedure is given in Figures 24 and 25 where the
3
number of concentrations over 50 ug/m f°r receptor 1 have been plotted
as a function of flow vector for measured and calculated concentrations,
respectively. The relatively broad angular range associated with the
measured concentrations as compared to the predicted values could be
due to errors in wind direction measurement or an unrealistic angular
plume width as predicted by the model. In addition to the different
distribution widths there is also the difficulty that the total number
of counts is much less for the calculated distributions, indicating
that even with the plume rise retardation, the vertical dispersion
coefficients may still be in need of revision.
Some improvement in model predictions might be gained by incorporation
of vertical dispersion coefficients developed by F. B. Smith. These
values were generated from a scheme which utilized numerical solutions
of the diffusion equation up to 100 km downwind based upon actual
measurements of wind and diffusivity profiles. The selection of sf.ab.ili?
ty criteria is similar to that used by Turner except that the .stability
index is considered to be a continuous variable with a range from 0 tp
7. According to this system stability "A" would .correspond to 0,5^, "B"
to 1.5, etc. The adoption of this continuous range of stabilities
would eliminate the rather quantized pattern of concentration predic^
tions and might lead to a better agreement with measurements.
In addition to the option of continuously varying stability indices this
calculation scheme allows for the variation .of vertical Dispersion ff
~~ '.?
with surface roughness, which could conceivably change the yalue @f ff
' * ' 'Z
by as much as 50 percent. Another factor which must be weighted in
76
-------
m
O>
4.
8
A
OT
O
<
K
H
Z
U
O
8g
0:5-
gfl-
w
1{u
— o:
a
u
3
z
u.
O
a:
Ul
OB
s
z
13
12
» •
10
9
8
7
c
*
5
A
3
2
„
DISTRIBUTION OF MEASURED I HOUR CONCENTRATIONS >50|t8/m3 AT RECEPTOR I AS A FUNCTION
OF WIND FLOW VECTOR
89
97
101
105 109 113 117 121 125
MEASURED WIND FLOW VECTOR, degrees
129
133
137
141
Figure 24. Distribution of measured 1 hour concentrations > 50 u.g/m at
receptor 1 as a function of wind flow vector
-------
oo
I I
t-
Ul
z -
gs
•*• ui
— o:
a -
o
oc
3 •
2 -
I
0
9
8
7
6
5
4
3
2
I
85
DISTRIBUTION OF CALCULATED I HOUR CONCENTRATIONS >50/* g /m* AT RECEPTOR I AS A FUNCTION
OF WIND FLOW VECTOR
89
Figure 25.
. /\
—i ^ 1 1 1 1 1 u£j—V
97 101 105 109 113
105 109 113 117 121 125
MEASURED WIND FLOW VECTOR,degree.
129
ISS
Distribution of calculated 1 hour concentrations > 50
receptor 1 as a function of wind flow vector
137
at
141
-------
favor of testing these curves with concentration data is the considerable
variation between the cr predictions of Smith and Turner. This dis-
Z
crepancy is shown in Table 14 where the values of 0" based on both
z
methods are compared at 4 km distance for each stability. For the Smith
curves a roughness of 10 cm has been used. These differences in ver-
tical dispersion coefficients could be important in the case of the
Canal Plant due to the rather small source receptor distances.
Table 14. COMPARISON OF VERTICAL DISPERSION COEFFICIENTS (a ) OF
SMITH AND TURNER AT A 4 KM DISTANCE WITH A SURFAcf
ROUGHNESS OF 10 CM
0" (meters)
z
Smith
Turner
Stability index
A
506
—
B
255
500
C
170
220
D
110
76
E
63
50
F
32
20
79
-------
SECTION VIII
REFERENCES
1. Turner, D. B. Workbook of Atmospheric Dispersion Estimates.
Environmental Protection Agency, Office of Air Pr,pgram§ Publication
No. AP-26, p. 84.
2. Montgomery, T. L., S. B. Carpenter and H. E.. "Lindley,. The Rela.?-
tionship Between Peak and Mean 803 Cpncentrajions,. iGpnferenc,e xon
Air Pollution Meteorology of the American MeJ-eprplpgipal Society
in Cooperation With the Air Pollution' Control Association.
Raleigh, North Carolina. April 5-9, 1971,
3. Klug, W. Dispersion From Tall Stacks,. Repprt on Activities During
Visit with EPA, Division of Meteorology. August 6 thrpugh October
5, 1973.
4. Federal Register. Vol. 36. No. 158. August 14, 197.1.
5. Preining 0. et al. Staab-Reinhalt .Lu.ft. Vpl,. 29,. :Np, 11.
November 1969,.
6. Gifford, F. Peak to Average Concentration Ratios .Accp.rding to ;a
Fluctuating Plume Dispersion Model,. ;Int«. J,. .Air,- iPpJJu.. Pergampn
Press Vol. 3. .No. 4. 253 -.2:6.0. 1960.
7. Hrenko, J., D. B. Turner, and J. Zimmerman. Inter-im U.ser's Guide
for the Single Source Model. In-Hpuse 'Pub lic.at ion p_f EPA,, .piyision
.of Meteorology. October 24, 197,2.
8. Briggs, G. A. Some Recent Analys.es p.f JP.lume Ris;e
Proc. 2nd International Clean Air VC ongr.es s,. Hs. ;M.. :Englu;nd and
W. T. Beerg (.eds..), Academic Pres.s, ^New York. -pp.. 1:02:9 ^103 2,.
9. Briggs, G. A. Diffusion Estimation ,-fpr :S.mall jEntissipns.. ;U..S,.
Department of Commerce.. NOAA-ERL-ARATD.L ^p.ntrribut'ipn Np,. 779 ^ra'ft:
Oak Ridge, Tennessee. May, 1973,.
80
-------
10. Smith, F. B. A Scheme for Estimating the Vertical Dispersion of a
Plume From a Source Near Ground Level. Proc. 3rd Meeting of the
Expert Panel on Air Pollution Modeling. A Report of the Air Pollu-
tion Pilot Study, NATO Committee on the Challenges of Modern
Society. Paris, France. XVII, 1-14, October 2-3, 1972.
81
-------
APPENDIX A
CONCENTRATION RATIO DISTRIBUTIONS FOR 1971
82
-------
I TO 3HR RATIOS COMBINED
Y-SCALE= 0.3i= 03
0.102E
0.1CSE
0.110=
0.114=
0.113?
0.122E
0.126=
Cl -1 fi —
• 1 J U C
0. 134=
0.133=
0.142=
0.145E
0.150=
0.1545
0.159E
0.1S2E
0.166=
0.170=
0.174=
03 0.1735
OJ 0.1325
0.106=
0.1STE
0.194=
0.195=
0.202=
0.206H
0.2105
0.214=
0.215E
0.222c
0.226=
0.230=
0.234=
0.233=
0.242=
0.24S5
0.250=
0.254=
0.2535
0.2i2=
C.256E
0.270=
0.274=
0.275=
0.232=
0.256=
0.290=
0.294=
0.2935
01
01
01
01
01
01
01
O 1
\J 1
01
01
01
01
01
01
01
01
01
01
01
A 1
t i
01
Cl
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
.*»•*»***«*»*«*****«. . . .
.***«****««*«* . . s ,
.*»**•*»»**********»* ...
.*»»«4****»«***********»****»*. . .
.***«**
. . . • •
. «•»*« Jii >«*** ....
.***««**««** . . . .
.***«***«**** .....
.*»***
.**
. . . .• .
. . . • *
.«««»*»•* tr* *A******»*«***«****************«*** ,
.«*
.*****
.»«*»(*
.*«*»*»
.»***«***
.***
.«
.«***
.**
.*
*
.....
. . . . .
.....
.....
. . . . .
.....
**** . . • •
•. " ' . . ...... ^ ...-_- ^
.....
. • ... .
. • . . . .
.*«*«******»***»****. . . .
.**
.**
.«'*
.*
*
.»*»«*»*
.*
.*
.*••
*
.*
.*•
*
.«
.*
*
•
*
*
•
•
*
•
• • . • • •
. «• ... ..
.....
... . . .
.....
.....
.....
.....
. . . • •
. • . • •
.....
. . . . •
. . . . .
.....
. . . . .
.....
.....
.....
.....
.....
.....
.....
.....
.»»••*»» •»»»**»««***»»**«»***»*»»**«****4»**«*»» **»!>****
701
469
520
73»
1064
224
432
670
• 396
*67
189
104
1639
ItO
185
227
2U
319
115
453
49
171
74
68
26
699
81
9P
139
66
27
283
44
43 '
122
17
48
80
24
4*
53
18
29
32
13
21
20
14
15
3579
-------
1 TO 24H% RATIOS COMBINED
*-SCALS» 0.10E 02
0.123E 01 .******«**.
0.169E 01 .*************************
0.2155 01 .**»**********************
0.353= 01 .**«**«**»******»***«*****
0.39?£ 01 .****»««*****»*******•»****
0.4A5E 01 .»**«*»***«***»******»**»*
0.532E 01 .***»«**•«******»*********
************
*************
*************
*************
**«***«**«***!
*************
«****«*«*»***
******
** .
***********
*
0.7S7E 01 .*****«*«»*•»«**
0.813E 01 .*»***********«*****•**»******»***
Oo 0.859E 01 .**»****»****»»»****** .
•> 0.935E 01 .•«*••«•*«**«•*«**•• . .
0.951E 01 .*««*»»**«******** . .
0.10<>E 02 .»*«******•»*«***** .
.
*****
**********
**********
**********
**********
****
'
...
. . - .
**********************
******** . .
:*** . .
*
•
* •
* » *
* •
0.1C.9E 02 .*••*«* .......
0.113E 02 .***»**** .......
0.11"= 02 .»*• .......
0.1235 02 .«»**«•»«**»»****»***»»*****»*****»*** . . . .
0.127E 02 .«•«• .......
0.132= 02 .*•**«***** . . .
•
•
•
•
O.U4E 02 .*««**««**. ......
0.150= 02 .«*****»* . . .
0.105E 02 .** .
0.159E 02 .«»««*•«***»**** ......
0.164E 02 * . . . .."''. . .
0.149= 02 .** . . . . .
0'. 172E 02 .*•• .......
0.17TE 02 .*•** . . . . . .
0.1?2= 02 .****»* .......
0.137E 02 .**•••* .......
0.192E 02 .***«*****. . . ' ' . ' . .
0»l9f>E 02 *......«
0.20IE 02 .*****« .......
0.205= 02 .*•• . . . . . .
0.210= 02 .«*•• .......
0.215= 02 • . . . . .
0.219E 02 .»•*' . . . . . . .
0.374E 02 .* . . . . . . •
0.22?=. 02 .** .......
0.233= 02 .*** .......
0.233= 02 .***«•**«««***•*******»«**********»********************************»* .
9
37
70
56
51
. . 35 •
31
27
36
26
17
33
21
18
17
16
... 6
8
. 3
. 37 .
! '. '. 10
. 11
. 7
8
2
- . ' """ ' o ~"
2
3
. .6
. . 6
. . .9
. 0
6
. 3
4
0
3
1
2
... 3
68
-------
JOINT WINDSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
WINOSPEEO CLASS 1
Y-SCALE= 0.70E 02
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
P° c.
01 o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
102E
106 =
1105
114 =
113?
122E
126 =
130=
134E
133 =
142c
146S
15CS
154 =
159 =
162 =
166 =
170 =
174 =
17F =
132 =
13SE
190 =
194E
193 =
2?2E
206 =
21CE
214 =
219 =
222 =
226 =
23C:
234E
223 =
242 =
246E
25fE
254 =
253 =
262E
266;
27J =
274 =
273 =
292 =
2?6 =
290 =
294E
29° E
01
01
01
01
0 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.*******•*
.****«***
.******»
.**»******
.****
.«*«*«**
.*********
.*****
.**
.*««*»****
.**
.****
.»*«*
.****«
.****«*
. ****
.*«»*«*»«»
.*
.»«*«*
.*•
.*
.*
.***«*»***
.*
.«*
,****
.»*
*
.**»«•»
.*
.*
.*•*
•
.*
.«*
*
.*
.»
*
*
.»,
*
*
*
*
»
• • ... . . . » .
.........
.........
*** . . . . . . ' .
************ ^ 0 — ^ ^ — ^
• ••••••*•
***** ........
... * . . ...
* .. . ._. . . *
*••*•••••
*************************** ......
. . .. . . . * .
• ••••**••
• •*••••••
• " • • . . . • . .
. • . • .
. . -
• *.*»....
• *••••**•
• •**•• * 9 j
..•*..••.
• *..*•*».
• • * * • . • .*.
****** « . . % . .. .
. . .'• . . • • .
• • . ... . . *.
• • . • .. . . •.
• *..*••..
. • . . . . . . .
• • * ... . . * *
. ".""•.""," m 9 . . " .
• *••••••*
• • . . • .. • *
• . . . • . • . .'
• . . . • . . . ••
. . . • . * . . ..
. ••• • . . • .
• . » . ••• . . .
...*•*..*
• ••••'••••
...*»»••»
• .••••*..
• •*•*••••
.........
. . .. . • . • . .
• . . * . . • • • .
• • * • • .-* • .
r ************************************************************************ *************
67
59
" 50
88
148
32
55
98
65
74
37
16
254
19
29
31
38
48
28
66
7
35
16
9
7
110
11
15
28
15
3
48
"" 9
8
24
3
a
_14
F
8
3
3
10
5
0
5
4
1
66C
-------
O.HE
O.KE
0.15E
0.15E
0.15E
0.1SE
0.16E
0.17E
0.17E
0.18E
O.'lSE
0.19E
0.19 =
0.20E
0.2CE
0.21E
0.21E
0.21E
0.22E
0.22E
0.23E
0.23E
0.24E
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
0
0
2
0
0
11
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
20
1
0
0
0
0
3
0
0
0.
0
0
0
5
0
0
0
0
0
0
0
0
0
3
0
0
1
3
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
7
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
2
0
0
0
0
0
2
3
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
2
0
0
0
0
0
0
1
3
0
0
0
0
1
0
0
0
1
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
2
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
o
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0_
1
0
0
0
•o
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
. 0
0
0
.0 .
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
0
0
o_.
0
1
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.o_.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0.
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
..0.
0
0
0
. 0
0
0
1
0
0
0
0
0
0
0
0
0 0
C 0
0 0
0 0
o_.o_
0 0
0 0
_G 0
0 0
0 0
o o.
0 0
0 0
..0 0
0 0
1 0
0 0
0 0
0 0
0. 0
0 0
0 0
0 0
CORR3- 0.12E-01 CORR2*= 0.46E-O1
-------
JOINT CONCENTRATION-RATIO FREQUENCY DISTRIBUTION
A8SCISSA=CO*JCENTRATION, ORDINATE = R1T024
COVC. BIN SIZE= 2.00
0.12E 01
0.17E 01
0.26E 01
0.31E 01
0.35E 01
0.40E 01
0.44E 01
00
~~J 0.49E 01
0.54E 01
O.S8E 01
0.&3E 01
0.67E 01
0.72E 01
0.77E 01
0.31= 01
0.90E 01
0.95E 01
0.10E 02
0.10= 02
0.115 02
0.11E 02
0.12E 02
0.12= 02
0.13E 02
0.13E 02
0
0
0
0
0
0
3
0
0
1
0
0
0
5
0
0
0
0
0
0
0
12
0
0
1
1
6
3
it
2
0
3
2
5
6
3
0
7
5
4
0
5
0
0
0
12
0
0
0
4
3
3
4
4
4
3
1
5
2
0
1
1
0
3
0
0
1
0
0
3
0
0
3
9
6
10
6
4
P
2
1
5
2
2
2
3
2
1
3
2
0
1
0
2
0
3
2
3
2
2
6
1
0
0
3
1
1
2
1
1
I
0
0
0
1
0
>
0
2
0
2
1
6
15
3
4
9
3
2
4
2
1
1
1
0
0
3
1
0
0
1
0
0
0
0
0
0
p
3
2
0
0
1
1
0
3
0
0
0
4
0
0
1
2
0
0
0
1
0
0
2
3
9
6
4
5
0
0
0
2
1
1
0
2
0
0
1
0
0
1
0
1
c
0
0
2
1
1
1
2
2
3
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
7
1
2
1
3
1
4
2
1
2
0
2
0
0
0
1
0
0
0
0
0
0
0
0
3
1
0
0
0
0
2
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
4
1
1
4
0
0
2
0
0
0
1
2
1
0
1
1
1
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
3
3
1
2
0
0
1
0
0
0
•0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2
0
1
0
1
0
I
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
3
1
2
0
1
0
2
1
0
1
0
0
0
2
0
0
0
0
0
0
1
0
0
0
0
0
2
0
0
0
0
1
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
1
0
0
2
1
0
2
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
o
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
1
0
3
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
• 0
0
0
0
0
0
0
0
0
0
0
0
1
0
o
1
0
0
0
0
0
0
0
0
0
0
0
0
0
p
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
o
0
0
0
I
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
c
o
0
0
o
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
1
0
0
0
0
0
0 "
0
0
2
0
1
0
0
0
0
0
0
c
0
0
0
0
c
0
0
b"~"
0
0
0
0
0
0
1
o ~
0
0
0
0
0
o
0
0 ."~"~
0
0
0
I
0
o
0
0
-------
0.21E 01
0.21E 01
0.22E 01
0.22E 01
0.23E 01
0.23= 01
0.23= 01
0.24= 01
0.24E 01
0.25E 01
0.25= 01
0.25E 01
00
00 0.2&E 01
0.26= 01
0.27E 01
0.27E 01
0.27E 01
0.23E 01
0.29E 01
0.29E 01
0.29E 01
0.298 01
0
0
0
0
0
0
0
0
0182
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0 39 0
0 75 0 0
0 0 0 20
0000
0 42 0 18
0000
0 0 13 0
71 0 0 19
0000
0 0 0 17
0 52 0 0
0000
0 23 0 0
0 0 20 0
0003
0 0 0 12
0000
0000
0000
0 0 .0 0
0000
0000
0.30= 01»*«»»*2J3247102116
0
15
0
0
0
12
0
0
0
0
8
0
0
0
0
0
5
0
0
0
0
0
25
8
0
7
0
12
0
6
3
0
0
0
10
6
0
0
0
7
2
0
0
0
0
72
0
0
4
0
0
5
0
0
4
0
0
0
5
0
0
0
0
1
0
0
0
0
13
10
5
0
2
6
0
6
5
0
3
4
0
0
7
1
0
0
3
1
0
0
0
40
4
0
3
0
0
2
0
2
0
0
0
3
0
0
0
0
0
0
2
0
0
0
19
0
10
0
3
2
2
1
0
1
2
0
2
.1
0
0
2
0
0
0
2
0
0
24
1
0
5
0
1
0
0
2
0
2
0
0
2
0
0
0
0
0
0
1
0
0
9
0
7
0
0
3
2
0
0
0
0
2
0
0
1
0
0
2
0
0
4
0
0
19
0
3
0
0
2
0
0
0
0
0
0
1
0
0
0
0
4
0
0
3
0
0
7
1
0
1
1
1
4
1
3
0
3
1
0
1
0
3
0
0
0
0
1
0
0
14
0
1
0
0
0
0
1
0
0
0
0
0
1
0
3
0
0
1
0
0
1
0
b
1
1
2
0
0
1
0
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
13
3
3
1
0
2
0
1
0
1
0
2
0
0
3
0
3
0
1
0
0
1
0
13
0
0
2
0
1
0
0
0
0
0
0
0
0
0
1
0
2
0
0
0
0
0
2
2
0
1
0
0
0
1
1
0
1
0
1
0
0
1
0
3
0
1
0
0
0
9
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
2
0
0
0
9
4
0
1
4
0
2
1
2
0
3
0
0
1
2
0
1
0
0
1
0
1
0
7
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
2
0
1
0
0
0
0
1
2
0
0
0
0
0
0
0
0
1
0
1
0
1
1C
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
o
1
0
0
0
0
0
3
0
1
0
0
0
2
2
0
1
3
2
0
o
1
0
0
1
0
0
0
0
0
4
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
6
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
1
0
0
0
0
0
2
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
z
0
0
0
2
0
1
0
0
0
1
2
0
1
0
0
0
0
2
0
0
0
0
1
0
0
2
4
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0.
0
1
0
1
0
0
0
0
0
1
0
3
0
0
0
0
0.
2
0
0
0
0
0
0
0
I
0
0
1
1
1
0
0
2
1
1
0
0
2
0.
0
0
0
0
0
0
0
0
2
0
0
1
0
1
0
1
0
3
0
0
0
0
0
0
2
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0..
1
1
0
0
0
0.
0
1
0
0
2
0
0
0
0
0
0
0
0
0
4
0
1
c
0
. P ...
0
0
1
0
0
. 0
1
0
2
0
1
0
0
0
0
0
0
5
0 2
2 1
1 2
0 0
2 ...0..
0 0
1 1
0 . 0
0 0
0 0
0 0
0 0
0 0
2 _ 0
0 0
0 2
0 0
0 0
1 0
0 0
0 1
2 0
i i
-------
JOINT CONCENTRATION-RATIO FREQUENCY DISTRIBUTION
ABSCISSA=CONCENTRATION, ORDINATE« R1T03
CONC. BIN SIZE = 2.00
0.10E
0.11E
0.11 =
O.HE
01 •» C
• *«_ ~
0.12E
0.13 =
0.13E
0.13E
0.14 =
0.'14E
0.15E
0.15 =
0.15E
C.16E
0.16E
0.17E
0.17E
0.17E
0.1" =
0.18 =
0.19E
0.19E
0.19E
0.20E
0.20E
0.21E
01 92270 96 97 16 53 30 29 4 3
01
01
01
01
01
01
01
01
01
01
0 0 0206 63 92 27 26 8 26
0 0162 0125 79 35 35 27 1"
0136 0314 0131 36 41 4 29
0 0 0 0 91 42 C 21 12 15
0 0 0212 0 53 24 43 12 19
0278 0104 84 46 29 44 10 19
0 0197 0 0 91 0 14 13 13
0 0 0244 62 0 33 43 11 1«
0 0 0 0 0 77 18 22 0 11
0 0 00 0 0 0 01117
01390634104198 56 68 27 20 6 7
01
01
01
01
01
01
01
01
01
01
01
01
01
01
00000000 10 IS
0 0 0 0 0 58 18 38 0 0
0 0 0 93 43 0 0 18 12 12
0 0 0117 0 0 26 13 0 7
0 0159 0 0 75 0 8 7 0
0 0 0 0 42 0 0 20 0 13
0262 0 70 0 31 16 5 12 9
0000000304
0 0 0 39 0 24 15 0 6 6
0000 24 00707
00000 17 0945
OOOOOCOOOO
0434130 44 0 13 20 10 5
00000 21 0 16 55
2
5
6
8
f C
1 7
7
4
2
2
5
7
4
4
6
6
0
6
10
0
6
0
6
5
0
0
3
0
0
0
4
9
3
17
10
10
4
9
12
7
6
12
5
5
10
8
1
3
2
1
2
2
2
5
0
1
5
1
6
1
5
7
2
1
7
3
1
2
3
0
0
2
0
3
0
3
0
3
0
0
1
6
0
4
1
11
3
3
6
3
4
2
4
0
1
0
7
1
6
2
3
0
2
1
_ 5
0
5
1
0
2
3
2
2
2
1
5
1
1
2
4
1
3
2
1
4
2
0
2
0
0
2
2
1
2
4
2
1
2
3
8
1
5
6
2
3
7
3
0
5
1
2
1
3
4
2
3
3
3
0
0
2
1
0
1
2
0
z
1
5
0
1
3
1
1
1
1
1
0
1
0
0
2
0
0
0
0
2
0
2
2
1
1
5
0
2
0
7
1
0
4
2
0
1
1
1
1
2
0
1
0
1
1
2
2
4
4
3
2
4
4
3
2
3
1
2
4
2
0
2
3
0
4
1
1
1
2
0
0
0
1
2
1
1
2
1
0
1
0
0
0
0
0
0
2
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
2
1
0
0
0
0
0
1
0
2
0
0
1
0
0
0
2
3
0
0
0
0
1
0
^
0
2
0
0
1
0
1
0
1
0
1
1
0
0
0
2
0
0
1
0
1
0
1
1
4
0
3
0
2
2
0
4
1
1
3
0
2
0
0
1
0
0
2
1
0
0
0
0
0
1
2
1
0
0
3
3
1
0
0
1
3
0
0
0
0
0
0
2
1
0
0
0
1
1
1
0
2.
1
2
0
1
2
0
2
3
4
3
2
1
0
2
1
0
C
0
3
1
0
0
0
0
0
0
1
0
1
0
1
1
0
2
0
0
0
0
1
2
1
0
0
0
\
1
0
0
0
2
0
1
0
1
2
i
0
1
2
1
1
1
2
0
0
0
0
0
1
0
3
2
0
0
0
0
0
0
0
0
0
0
1
0
1
2
O
0
0
0
0
0
0
0
0
0
1
0
0
1
3
2
0
0
1
2
1
0
1
1
1
1
1
0
0
2
0
0
2
C
C
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
o
0
1
0
0
1
0
1
0
0
0
2
0
0
0
0
0
0
0
1
0
0
0
0
2
I
2
3
0
1
2
2
3
0
0
1
0
0
1
0
0
1
0
0
2
0
1
0
0
0
0
1
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
2
0
1
0
1
0
1
1
0
0
0
0
3
1
0
2
c
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
0
1
2
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
1
G
0
0
0
0
0
0
0
3
0
0
0
0
1
2
3
1
0
0
2
1
0
o
I*
0
1
0"
2
1
0
2
1
0
2
1
0
0
0
1
1
0
0
0
0
1
0
0
1
0
0
0
0
"o
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
1
1
0
2
0
1
3
0
2
C
1
c
0
0
0
0
0
u
0
0
1
0
0 ".
1
0
0
1
0
"o'
1
1
1
1
0
0
1
o
0
1
1
-------
O.I'VE 02
0.1SE 02
0.15E 02
0.15= 02
0.1SE 02
0.15= 02
0.17E 02
0.17= 02
0.13E 02
O.IPE 02
0.19E 02
0.19E 02
0.20E 02
0.20E 02
0.21E 02
0.21E 02
0.21E 02
0.22E 02
0.22E 02
0.23= 02
0.23E 02
0.24= 02
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
0
0
1
0
1
t.
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
3
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
1
0
I
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
o
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
1
0
1
0
2
0
0
1
0
0
0
0
0
1
0
0
1
0
4
0
0
1
0
I
I
1
0
0
0
0
0
I
0
1
1
2
2
0
0
1
1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
5
2
1
0
0
0
0
1
0
1
0
1
0
0
0
0
1
0
1
0
0
0
3
1
0
2
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
c
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
. . o
0
0
0
1
0
1
0
0 '
0
0
0
0
0
3
0
0
0
0
1
0
0
0
0
0
2
0
0
1
0
1
0
0
0
0
0
1
0
. ... 0 .
0
0
o
0
0
0
I
0
0
1
0
0
0
0
0
0
c
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0..
0
0
.0
0
1
.0"
0
0
0 _
0
0
1
0
0
0
0
0
0
0
5
0
1
1
0
._!
0
0
.0... .
0
0
_o
0
0
1
1
0
0
0
c
0
0
2
-------
JOINT HOUR-*ATIO FREQUENCY DISTRIBUTION
ABSCISSA* HOUR, OROINATE" RIT024
0.12= 01
0.17E 01
0.21E 01
0.266 01
0.35E 01
0.40= 01
0.44E 01
0.49E 01
0.54E 01
0.536 01
0.63E 01
0.67E 01
0.72E 01
0.77E 01
0.81E 01
0.9SE 01
0.90= 01
0.95E 01
0.10= 02
0.10E .02
0.11= 02
0.11= 02
0.12= 02
0.12= 02
0.13= 02
0.13= 02
0.14= 02
0
3
0
2
i
5
0
1
2
1
1
2
0
0
0
1
3
1
0
1
0
0
0
1
0
0
0
0
2
1
3
1
0
3
0
I
2
0
1
0
0
2
2
0
2
0
1
0
0
1
3
0
1
0
0
1
3
0
3
2
0
1
2
0
1
1
0
1
0
0
1
1
0
1
0
0
0
1
o
1
0
0
1
0
0
1
1
1
2
2
0
1
2
0
0
2
1
2
0
1
1
0
0
1
1
0
I
0
1
1
1
3
3
3
4
0
1
1
0
0
0
0
1
2
0
1
1
1
0
0
0
0
1
0
0
0
1
3
3
0
6
3
0
1
2
0
0
0
0
0
2
0
0
0
0
0
0
0
1
0
1
0
0
1
3
3
2
0
0
1
0
0
2
3
2
2
1
0
1
1
0
1
1
1
0
2
0
0
0
1
0
4
5
3
2
5
3
1
2
3
1
5
1
1
1
0
0
2
0
2
0
0
5
0
1
0
0
1
3
6
2
6
0
1
3
2
1
0
2
2
2
2
0
1
0
1
0
1
0
1
0
1
1
1
1 •
3
4
3
5
4
2
3
1
5
1
0
2
4
0
1
1
1
2
1
0
1
0
0
0
I
1
2
2
1
1
1
0
0
1
0
3
1
1
1
5
1
2
1
1
C
0
0
0
2
0
0
0
0
2
1
4
0
1
1
2
1
1
4
1
0
0
0
0
1
1
1
0
0
2
0
1
0
0
0
0
2
5
3
5
2
2
2
2
1
1
1
1
0
1
1
1
0
0
2
0
0
0
3
0
1
0
0
2
0
4
3
2
5
3
0
3
1
3
1
0
1
0
0
0
0
2
1
1
0
1
o
1
2
0
3
0
1
3
2
2
0
1
2
1
1
0
0
2
2
1
0
1
0
0
1
0
0
0
0
2
0
2
1
3
1
0 .
1
0
1
1
0
1
1
0.
1
1
1
2
0
1
1
2
0
2
0
0
0
I
1
1
2
1
2
2
0
0
2
3
3
1
0
1
1
0
0
2
• 0
0
0
0
2
0
0
0
0
0
3
5
2
1
0
3
0
0
1
1
0
0
3
0
1
1
0
1
0
0
0
1
0
0
3
0
2
0
3
2
1
4
3
0
1
0
0
0
2
1
0
0
0
2
0
0
0
0
0
0
0
. 0
2
0
1
4
1
2
0
1
0
0
3
1
0
1
1
1
0
0
0
1
0
0
0
2
0
1
0
0
1
0
4 '
2
0
1
2
1
" 1
1
1
0
2
3
1
1
1
1
C
0
0
0
2
0
0
1
1
2
2
2
2
1
2
1
2
1
1
0
1
0
0
0
0
2
0
1
0
0
0
0
0
1
0
0
3 ~
4
2
2
5
4
4
... .^
2
0
2
0
0
" 1
1
0
c
0
0
0
0
1
2
0
0
1
3~~
2
3
' 4
1
0
3
2
" 1
1
1
.. o
0
1
"l"
1
1
1
i
0
o
0
&
1
0
1
-------
0.21E 01
0.22E 01
0.22E 01
0.23E 01
0.235 01
0.23E 01
0.24E 01
0.24E 01
0.25E 01
0.255 01
0.25= 01
0.26E 01
0.26E 01
0.27E 01
0.27E 01
0.27E 01
0.2BE 01
0.23E 01
0.295 01
0.295 01
0.29= 01
0.306 01
7
2
1
14
2
1
5
0
2
4
0
0
1
1
0
1
0
0
1
0
1
194
5
1
1
10
2
3
7
1
1
2
1
2
3
2
0
3
0
0
0
0
1
166
3
1
0
11
2
0
3
0
1
4
0
0
3
1
0
1
0
2
0
0
0
118
7
1
3
16
1
2
5
0
0
5
1
1
0
1
0
1
1
0
0
0
1
139
6
5
1
15
1
2
6
2
0
3
i
0
l
i
0
1
0
1
1
1
0
190
4
0
1
R
0
4
2
1
0
4
2
2
2
1
2
1
0
0
0
0
0
130
9
3
0
14
2
0
7
0
2
1
0
2
4
1
0
0
1
1
0
0
0
161
6
3
1
9
4
4
10
1
2
10
2
1
4
0
2
1
0
0
2
0
0
169
10
5
1
13
1
1
3
2
2
5
0
5
4
1
2
2
0
0
2
1
0
176
2
6
2
16
5
3
4
3
2
2
2
5
2
0
0
3
1
1
2
3
3
213
7
3
1
17
4
3
9
0
4
0
3
4
4
0
3
5
2
2
3
0
3
172
9
3
3
9
0
3
6
1
2
6
1
6
1
1
5
0
1
1
1
1
1
166
7
9
2
13
1
3
9
2
8
2
1
1
3
4
2
3
2
4
4
2
1
197
9
1
2
11
2
0
2
1
5
5
1
1
3
0
2
0
1
4
2
1
2
192
12
1
1
12
3
2
3
0
3
2
2
2
1
0
0
2
0
I
1
1
1
118
4
2
1
18
3
3
5
1
Z
6
1
2
3
0
2
0
0
2
0
3
0
137
4
2
1
9
3
0
6
1
2
0
1
0
1
0
0
2
0
1
0
1
0
122
3
3
0
10
1
0
4
0
2
3
...0 .
3
0
0
1
0
3
0
1
0
0
194
4
3
3
13
0
4
4
0
2
2
o
2
3
o
1
0
0
0
0
0
1
H»
1
.. 1,
1
11
3
1
5
0
2
7
_ . 2
0
1
0
1
1
o
0
p
0
0
131
3
5
0
11
4
0
5
0
3
0
._!_
3
2
... 1 .
0
0
1
0
0
c
0
191
5
1
1
6
0
1
1
0
1
2
__ o.
0
3
0
1
2
0
0
0
0
0
108
6
4
0
11
0
3
11
1-
0
2
_ 2
2
4
2
1
1
0
1
0
0
0
191
6
1
0
6
....0
0
4
0
0
3
0
4
0
. . . 1
4
2
0
0
0
0
c
149
-------
JOINT HOUR-RATIO FREQUENCY DISTRIBUTION
ABSCISSA= HOURt ORDINATE- R1T03
0.10E 01
0.11E 01
0.11E 01
0.11E 01
0.12E 01
0.12= 01
0.13E 01
0.13 = 01
0.13E 01
10 0.14 = 01
OJ
01 A C rt 1
• l*» z Ul
Oi c c n i
• Is £ U 1
0.15E 01
alee At
• I JC OI
0.16E 01
0.16= 01
0.17S 01
0.17E 01
0.17E 01
0.13E 01
0.1SE 01
0.19= 01
0.19: 01
01 OC ft 1
• i"= U 1
0.20= 01
0.20H 01
0.21E 01
0.21= 01
33
IS
14
33
52
6
13
28
11
22
60
3
9
4
10
6
22
0
6
5
1
25
2
5
38
27
23
32
42
7
27
26
13
21
_
53
9
10
8
10
4
16
0
4
2
0
22
4
4
39
22
31
42
44
14
22
29
12
21
61
8
5
6
12
6
13
1
5
3
I
29
3
1
44
20
26
25
53
9
17
21
23
18
76
7
14
1
6
5
12
1
4
1
1
24
0
7
32
23
21
37
54
9
21
26
14
20
61
10
12
6
10
5
15
0
9
0
2
31
5
2
35
24
25
30
33
P
13
19
22
16
70
7
7
3
14
5
12
1
6
2
1
33
4
4
32
23
15
24
48
6
17
33
11
22
60
4
11
10
16
2
21
2
6
8
0.
30
3
1
29
16
16
29
40
10
6
24
11
27
7P
7
16
9
16
5
17
1
10
4
2
~ 33
2
6
21
20
16
23
41
10
17
32
24
21
72
15
7
4
9
11
19
2
17
3
0
30
2
11
20
11
13
28
40
9
18
24
17
19
63
7
9
15
13
11
1"
6
6
9
3
30
4
3
16
5
16
19
28
4
14
18
17
17
66
8
7
10
14
2
J7
1
3
3
3
24
5
6
17
9
16
19
35
7
16
23
14
20
8"
50
7
15
11
12
7
2»>
5
7
2
3
35
3
6
25
15
15
21
29
13
18
24
27
13
1 9
1 £.
77
7
12
16
15
9
20
0
5
3
0
30
4
6
15
17
I«
32
36
12
18
26
18
IP
69
11
9
14
13
9
20
2
11
4
2
26
4
7
26
17
1"
28
. 41
4
22
24
19
24
59
7
15
12
11
4
23
4
10
4
I
39
4
3
28
15
22
40
52
7
23
22
13
20
6'
^
68
2'
6
13
13
17
2
19
2
8
0
0
29
8
2
36
19
25
31
54
6
17
35
23
15
69
8
10
12
17
1
20
3
9
2
5
27
3
2
27
15
24
36
47
10
10
30
10
22
• •»
13
4 •
79
4 '
10
4
12
4
16
2
3
4
0
27
4
5
28
22
33
. 43
53
14
16
46
9
25
6
71
6
8
7
11
17
. 2
28
2
9
1
0
30
4
0
33
31
29
41
41
12
19
38
23
27
8'
76
1
6
5
11
8
2
22
1
1
3
0
27
4
1
25
15
24
36
48
8
28
26
13
13
8'
55
2
10
6
4
21
2
33
6
4
3
0
31
2
3
£5
3i
29
27
55
13
16
33
15
16
i^
•*
79
2
12
10
9
15
3
16
0
7
2
0
37
2
4
49
17
34
30
51
14
18
31
18
17
5_ _
77
6
4
6
16
15
6
10
4
10
2
0
21
5
8
23
28
n
32
42
12
21
32
19
13
1 5
!<•
c
D
83
1
10
2
9"
16
2
14
3
11
4
1
29
C
1
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
1 TO 24MR RATIOS
DIRECTION 3—112 TO 152 OEGRf-eS
•
Y-SCALE= 0.10E 02
0.123E
0.169E
0.215E
0.2ME
0.3C7E
0.353E
0.3.99E
O.A45E
0.491E
0.537=
0.533E
C.%2°E
0^675=
0.721=
0.757=
C.313E
0.259=
0.905E
0.951=
0.997=
0.104=
0.109=
0.113E
0.113E
0.123E
0.127E
0.1325
0. 13f>E
0.14.1:
0.146E
0 • 1 5 0 E
0 • 1 ^^S
o. is?i
0.144E
0'. 1S9 =
6.175S
0.17'E
0.192?
C.197E
0.19JE
0.19iE
0.201E
0.205E
0 • ' I *5^
0 • 2 1 5 ~
0.219=
Oi22*E
0.223=
o . ? ? IE
0.233E
01 •
01 .
01 *
01 .
01 .
01 .
01 .
01 .
01 .
01 .
01 «
01 •
01 .
01 *
01 •
01 .
01 .
01 .
01 »
01 .
02 «
02 •
02 .
02 «
02 •
02 .
02 .
02 .
02 .
02 «
02 .
02
02
02
O2
02
02
02
02
C2
C2
02
02
02
02
02
02
02
02
02
«
***
*
*»«
*
*
**
*
*
«»
*
•*
**
•
•
«
*
•
•
*
0
~0~
3
1
3
1
1
2
1
C
0
1
0
2
1
2
0
2
0
0
1
0
0
1
1
1
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
1 TO Z^HR RATIOS
DIRECTION 3—024 TO 064 DEGREES
Y-SCALE= 0.10= 02
0.123r 01* . . . . . . . . . . 0
0.169= 01* . . . . . . . . . . 0
0.215= 01 * . . . . . . . . ..'"". . 0
C.2ME 01 .** . . . . . . . . . 2
6.2C7E 01 .** ..........2
0.353= 01*'. . . . . . . . . . 0
0.399E 01* . . . . . . . . . . 0
0.445E 01 .** . . . . . . . . •____•_ 2
0.491=01* . . . .' '." . .. • " . "'"'.' ~ 0
0.537= 01* . . . . . . . . . . 0
0.5C3= 01.*. . . . . . . . . . 1
0.429= 01* . . . . . . . . .- . o
0.675€ 01 .**** . . . . . . . . . . <,
0.721E 01 .* . . . . . . . . .1
0.767E 01 * • . . . . " . ' . . . . " " 0
0.313= 01 .«**** . . . . ' . . . . . . 5
0.*59£ 01* . . . . . . . . . . o
l_n 0.9?5= 01 .** ......... .2
0.951= 01* . . . . . . .. . . 0
0.997= 01 * . . . . . . . . .• C
0.104= 02 .*«* . . . . . . . . '- . '" • ~— f • — 3
0.109= 02* . . . . . . . . . . 0
0.113E 02.* . . . .. . . . . . 1
0.113= 02 * . . . . . . . . . . o
0.123E 02 * . . . . . . . . . o
0.127E 02 * . . . . . . . . . . 0
0.132= 02 .* . . . . . . . . . . 1
0.136= 02 .* . . . . . . ..... 1
O.Kle 02.*. . . . . . . .'. . 1
0.1465 02* . . . . . . . '... . 0
0.1SOE O2.«. . . . . . . . . . i
0.155= 02 * . . . . . . . . . o
0.1S?E 02.*. . • • • . . . . . l
0.164= 02* . . . . . . . . . . O
0-. 1*>7=02* . . . . .. . . . . . 0
0.173E 02 .* . . . . . . ... . 1
0.179= 02 .* . . . . . . . . . . 1
0.192E 02 * . . . . . . . . . .0
0.137E 02 * . . . . . . . . . . . 0
0»iTt_02»* • • • • • * • • • * 1
0. 195E 02* . . . . . . . . .... 0
05riCO?» fN
• /.' • I _ J £ ^ • • • • • • • • » * \j
0.2"53 02.*. . . . . , . . . . 1
0.210E 02* . . .. . . . . . . 0
0.215= 02 * . . . . . . . . . .0
0.219= 02 * . . . . . . . . 0
0.2C4E 02* . . . . . . . . . . 0
0.223= 02 * . . . . . . . . . . 0
0.233= 02* . . . . . , . . . . 0
0.2335 02 .*••* . . . . . . . . . . 4
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
. 1 TO 24HP. RATIOS
DIRECTION 2—29» TO 338 DEGREES
»
.Y-SC*LE= 0.10E 02
0.123E 01* .. . . . . . . . .-0
0.16«E 01* . . . . . . . ._._ . 0 _
0.2I5E 01* . . . .... ... . 0
0.261= 01.*. . . . . . . . . . 1
0.307E 01 .** . . . . . . . . 2
0.353= 01 .* . ' . . . . . . . . . 1
0.3595 01 .*** . . . ' . • . . . . . . 3
C.>"-5E 01 .*** . . . . . . . . . . _ 3
0.491E 01 **** . ^ . . " . . . " " . " " 3
0.537= 01 .*** . .. . . . . . . . 3
0.533E 01 .** . . w . . . . . . 2
0.429? 01 .**•** ..........5
0.675E 01.* . . . . . . . . . . 1
0.721E 01.** • i . i . . . . . . 2
0.767E 01 .** . . . '. '. . . "." " . ' . 2
0.313E 01 * . . . . . . . . . . 0
,_ C.959E Ot .*** . .' . . .. . . . . 3
ON 0.905E 01.** . . . . . . - . . .2
0.951E 01.*. . . ' . . . . . . . 1
0.997E 01.*. . . . . . . . . . I
O.IO^E 02 .* . . . . . . . . " . "" 1
0.109= 02 .* . . . . . . . . . . 1
O.M3E 02 .»* . . . . . . . . . 2
0.113E 02 .* . . . . . . . . . .• • .. 1
0.123E 02 .** . . . . . . . . . 2
0.127E 02 .*•• . . . . . . . . . . 3
0.132E 02* . . . . . . . .'. . 0
0.136= 02* . . i . . • . . . .. 0
C.l«-iE 02* • . . . . 4 . . . . 0
O.USE 02 .* i . . . . . . . . . 1
0.150= 02 * . . . . . . . . . . o
Oil55= 02 * . i . < . . . . . . . 0
0*159: 02 * . . . . . . . . . . 0
0.16«.c 02* . i * ^ . . . . . . 0
Oii6->5 02 .* . . . . . . . . . . 1
0.1735 02 * . . . . . . . . . . 0
0.1795 02 * . • . . . . . . . . 0
0.132E 02 * . . . . . . . . . . O
Oil"7E 02 .* . : . . . . . . . . 1
0.192= 02 i* . . . . . . . . . . 1
C.196E 02 * i. . . . . . . . . . 0
0.201E 02.*. . * . . . . • . . 1
0.2055 02* . . i . . . . . . . 0
0.210= 02* . ^ ^ . . . . . . . 0
C.215E 02* . . . . . . . . . . 0
0.219E 02 .** . . . . . . . . . . 2
0.2245 02 * i . . . . . . . . . 0
0.22BE 02 .* . . . . . . . . . .1
0.2335 02 * ^ i . . . . . . . . 0
0.233= 02 .«««*** i * ....... 6
-------
JOINT DIRECTION RATIO FRE3UENCY DISTRIBUTION
I TO 24H1 RATIOS
DIRECTION 1—279 TO 319 DEGREES
Y-SCALE= O.IOE 02
0.123E
0.169E
0.215=
0.2ME
0.307=
0.353=
0.399E
0.445=
0.491=
0.537E
0.533=
o. ?>•??=
0.675E
0.721E
0.767E
0.?13E
0.?59E
0.91SE
0.951E
0.997=
0.1C4E
0.109E
0.113E
0.113E
0.123E
0.127=
0.132=
0.136E
0.141E
0.146E
0.150=
0.155=
0.1-39 =
C.1S4E
0-. !%«=.
0.173=
0.17BE
0.1325
0.197E
0.192E
0.196=
0.201=
0.235E
0.210E
0.215=
0.219E
0.224=
0.223E
0.233=
0.233?
01
01
01
01
PI
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
*
.*
.**
.***»****
.«*
.***
.«»»***«*
.»«**
.**
.»*
.*
.««*
.«*
.«•*
.****
*
.*«*
.«
.«**
.**
.***
.*•
.*
.**
.»
*
.**
.•*
*
.*
.«
.*
•
•
*
*
.**
.*
.*
.»
*
.»
.»
.*
*
»
*
.«
.*
.*
0
1
2
8
2
3
9
t,
Z
2
1
3
2
3
4
0
3
1
3
2
3
2
1
2
1
0
2
2
0
1
1
1
0
0
0
0
2
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
I TO 3HR RATIOS
DIRECTION 3—112 TO 152 DEGREES
Y-SCiLE= 0.10E 02
0.102E
0.106E
0.110E
0.114=
C.119E
0.122=
0.126E
O'l 1 f\ C
• I ju i:
0.13") =
0.142=
0.146E
0.150E
0.154=
C.158E
0.162=
0.166=
0.170E
0.174E
0.173E
0.192E
0.186E
0.1?CE
0.194=
0. 19SE
0.202E
0.206E
0.210=
0.214=
0.2!«=
0.2??=
0.224=
6.23CE
0.334E
0.?33E
0.243=
0.244=
0.250E
0.254=
0.253E
6.242=
6.266=
C.27CE
0.274=
0.275:
0. 25TE
0.2C6E
0.290=
0'. 2~~';
0.293S
01
01
01
01
01
oi
01
0 1
01
oi
01
01
01
01
01
oi
oi
01
01
01
01
01
01
01
01
01
01
0!
01
oi
01
'oi
01
01
Cl
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
.***
.«*****
.****«*
,»«»*»»«**
.*********
.»««*
.*«
j«, ****,*
.****
.**
. •***»«***
.*****
. »«»*
.«»«*•*
;*«**
.»!>«*»
.»«*
. *********
. ****<
.****
.*
.*•»«•*
*
.*««******
.«*•
..«*•
.**
.*
.»*'»««
.'»«»*««»**
•;«»'*•
.'***
...»
*
.««*»**
•
.'«'•
• **
.«*
.''*
:..•'*
*
'*
.*
.»•*
.'*
.*
.««**»***«
•
.
.
»**
**«»»****
•
•
*
•
•
*
*********
•
•
.
•
^
*
******
.
•
•
~
*
*********
m
•
*
*
•
•
•
•
•
•
•
•
•
»
•
.
•
•
•
»
•
•
i********4
9
.
,
»
********
.
•
*
*
.
.
*****
.
,
i
.
.
.
.
•
•9
•m
^
-.
******
*
•^
.
•^
i
.
*
'.
-.
.
•^
.
'.
'i
*
.
,
.
.
*
'.
",.
'.
i********
•
•
*
•
•
•
•
•
. •
•
•
»
•
*
•
•
•
•
•
•
•
•
•
.
•
•
•
•
•
•
•
»
••
•
•
*
•
•
•
'•
'•
•'•
••
;.
'•
%
*
'•
*
•
»
•
•
•
•
*
•
•
•
»
•
•
•
•
•
•
•
.
•
*
•
»
•
•
•
•
•
•
•
..
•
•
-.
•
•
'•
•
••
••
••
•'•
••
••
'*
'•
••
'•
•
•
, »
•
.
•
•
•
*
*
•
•
•
•
•
•
*
•
•
•
•
•
•
•
^
*
*
•
*
•
•
•
•
••
•
•
••
•
•
,.
•*
,»
:.
<*
'•
•
,.
<•
3
6
6
12
26
L,
2
18
7
8
it
Z
23
5
4.
6
t
5
3
15
5
1
6
0
24
3
Z
I
5
9
3
3
0
6
0
2
2
2
1
2
0
0
3
1
1
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
DIRECTION 3—024 TO 064 DEGREES
Y-SCALE- 0.20E 02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
.0.
0.
0.
0.
0.
0.
c.
' 0.
0.
0.
0.
0.
0.
0.
0.
0.
102 E
1C6E
11CE
114 =
115E
122 =
124;
130E
mn
I:M =
142 =
14iE
150E
154E
153E
Ii2 =
166E
170?
174 =
17»E
1325
196 =
190E
194 =
199 =
20?E
2C6 =
21C =
214E
219E
222 =
22iE
230 =
J34E
233E
242 =
24* =
2SOE
354 =
253 =
262;
265?
270E
274E
273E
292 =
2? £ =
2?'..=
294 =
293 =
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
.**« . . . .
.*.....
.* . . .'""..'".
.»*»»* .....
.#«*«* . . , . . .
.* . • . .
******* .....
.*«* .....
.** . . . . .
.**** . . . . .
.«*•* .....
.*** .....
.**«*•«»»•• ....
.* . . . ' .
.** . '»"'"•'"'. .
.** .....
.*** .....
.«**** .....
.»** . . . .
.***** . . . . .
. • . . . .
• •••••
......
• ..«••
*.....
. ****** .....
.*•* . .'-...
.* . . . . .
*.....
*.....
.** .....
.*•* .....
.*.....
.»•.....
.*.....
*.....
* . • . . . .
*.....
.*•• .....
*.....
.»*
*.....
.*• . . .
.* .
.*.....
.*.....
.*.....
*.....
.* . . . . .
.**«**«««••«»«»* »*»**»• »*»**«»»»««*«**»»******»»»***»**
6
_ 2
3
11
10
2
13
7
t,
.8
9
6
21
3
4
5
6
10
7
10
2
2
3
2
3
14
6
3
1
I
4
7
2
4
2
1
0
1
7
1
5
1
4
2
3
2
2
1
3
106
-------
JOIST DIRECTION RATIO FREQUENCY DISTRIBUTION
I TO 3HR RATIOS
DIRECTION 2—293 TO 333 DEGREES
' Y-SCV..E* 0.20E 02
0.102=
0.106=
0.110=
0.114=
0.115=
0.122=
0.125=
o.ncs
0.134=
0.133=
0.142=
0.146E
0.15CS
0.154=
0.153=
0.162=
0.165=
0.170E
0.174=
0 . l?3S
0.1=2=
0.136=
0.190=.
0. 194E
0.193=
0.202=
0.205=
0.210=
0.214=
C.2' pe
0.222=
0.225=
0.230*
0.2345
0.23°=
0.?42E
0.246=
0.250=
0.254=
0 . 2 5 * =
0.262=
0.266=
0.27C:
0.274?
0.27?=
0.232=
0.235=
0.29CE
C.294=
0.29»E
Cl
01
01
01
01
01
Cl
01
01
01
Cl
oi
01
01
01
01
01
01
01
0 1
01
01
01
01
PI
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
.*
.*
.**
.»«»**
.»«*»«***
.******
.«**«***
.«**»>*
.**•*«*
.*««*«*»
.**
.««*«»*
,«J.««t««*l
.**•«
.»***»*«*
.*•«»«*
.«««»»««
.•«*«»**
.4****
.»**
.**
.**
.«»•••
.**
.«•*«•««
.***
.*«*
.*****
.**
.****
.**
.**
.««•
.*•
.»**
.*«**
.«
.**
.»*
*
.«*
.**
*
.*
.*»
.*
.«
.*«»**«**
.«««t««***o*****************************************************
2
^
5
10
16
12
14
13 .
12
15
5
12
£2
9
17
12
14
16
10
15
7
<3
•>
10
7
7
10
4
3
8
4
4
t>
5
6
9
3
4
5
. X
4
5
1
•3
4
3
3
127
-------
JOINT DIRECTION RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
DIRECTION 1—279 TO 319 DEGREES
Y-SCALE= 0.20E 02
0.1025 01 .******
0.1C5E 01 .*****»** .
0.110= 01 .**********
O.ll^E 01 .****************
0*1 13E 01 .***********#*»**
•
«
•
•
•
0 . 150E 01 »****>» ***************
0.15^E 01 .****•»** ****
0.153E 01 ,*.***»****.
C.166r Cl .»***»«****«*
0.1745 01 .***»»»«» .
0.182E PI .****»
0.1?f>E 01 .*»**»*** .
0.1<5C= Cl .****»**
0.19<.E 01 .«•*»»
O.l93i 01 .«•*
0.^025 01 .»**•«»»«»»«
0.2055 01 .****
C.214E 01 .»•**•**•***
0.213E 01 .****«
o.a;f. 01 .••
0.22S5 01 .»•**••
0.230E 01 .««*
0.23*5 01 .»*
0.23-55 01 .«««•»
0.242E 01 .«
O.J44E 01 .«•*
0.25C? 01 .«*• .
0.254E 01 *
0.25BE 01 .«» .
0.2S25 01 .«•«•••* .
0.246E 01 .«* .
.0.2705 01 .«
0.27^5 01 .«• .
0.273H 01 .*
0.2725 01 .«*
C.2CS5 Cl .«
0.27TE 01 .«•*
0.2945 01 .»
.
•
•
.
^
.
.
.
.
,
•
%
,
.
.
.
.
.
•
.
.
•«
.
.
.
.
.
.
.
.
.
,
0.2935 01 .•****•***************
15
17
"" . " " ' " "" ' . 20
33
33
22
32
. . .29
. " . " '"" 24
25
24
13
« • « 43
23
. 18
• • . 21
. 25
31
17
23
. 11
17
14
11
• • • 6
. _ . . 22
» . • * 8
. . 18
23
11
4
12
. . " 7
&
11
. - . . 3
' . 7
. 7
. . . 0
. 4
15
. 4
2
. 4
2
5
3
• • • 6
3
•»»**a**» . . J72
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 2'H3 RATIOS
Y-SCALE= O.IOE 02
0.123E 01
0.169E 01
0.215= 01
0.261= 01
0.307E 01
0.3535 01
0.399E 01
0.4455 01
0.401= Cl
0.537= 01
0.5??= 01
0.6295 01
0.6755 01
0.721E 01
0.7675 01
0.3135 01
0.?595 01
0.9I5E 01
0.951= 01
0.9=7= 01
0.1C-.E 02
0.109= 02
0.113E 02
0.1135 02
0.123= 02
0.127E 02
0.1325 0?
0.1365 02
O.KIE 02
O.K5E 02
0.1505 02
0.155E 02
0.159= 02
0.16'E 02
C.169E 02
0.1715 02
0.1785 02
0.1»2E 02
0.1375 02
0.172= 02
0.196= 02
0.2015 02
0.205= 02
0.210E 02
C.215E 02
0.219E 02
0.2245 02
C.223E 02
0.233= 02
.****
,***«*«*»
.****«***
.**«*****
.****«»**
.«*»•»*»»
. ** e*«*
.«»«««**
. 94 #«**
*****
*****
.**
*********
*»»«*
.«***
.***
*
.* ******
.*
.**
*
.«••«»*«»
.*
.**
.«**
.*
.*
.**
*
.*
*
»
.*
*
.»*
.«*
.**
«
**
*
*
*
.*
•*
.*
.*
•
*********
***»
*9*4*4****4
*******
***«*
**
.
*
•
•
.
»
**
.
•
•
*
•
•
.
•
****
•
•
*
•
»
*
•
•
•
.
•
.
•
*
•
.
.
•
•
.
•
•
•
.
.
.
,
**
*
*
.
.
.
,
.
.
.
.
*
.
-.
.
.
.
.
*
*
.
*
.
.
,
»
*
.
.
.
.
.
.
*
•
.
.
*
.
„
.
^
^
,
^
1 '
12,
2 1
1 2
13
1 j
13
10
&
?
o
2
1 0
^t
*»
3
^
*
!
2
0
1 2
1
2
3
1
1
2
V
1
0
0
0
v
-1
U
!
1
0.23?H 02 .««***«****»
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
SEASON=SUHMER
•
Y-SCALE= 0.10E 02
0.123E 01 *
0.169E 01 .***»*
.
•
0.261? 01 ,*44**** *********
0.491= 01 .******
0.537= 01 .**«*****
0.721E 01 .*»«
0.767= 01 .•»»
0.813E 01 .*******«
0.559= 01 .****
0.905E 01 .***»*
0.951E 01 .***
0.997H 01 .****
0.104= 02 .***
0.1C7E 02 .*»
0.113E 02 .*«
0.113E 02 .»
*
*
*
m
.
.
.
.
.
.
.
»
.
»
0.123E 02 .»***«*****»*»
0.127E 02 .*
0.132E 02 .**
0.13*E 02 .*
O.l'lE 02 •
0.146E 02 .*
0.15CE 02 »
0.1S5E 02 *
0.159E 02 .****«
0.1i<.E 92 *
0.-169E 02 *
0.171=. 02 .•
0.173E C2 *
0.1?2E 02 .«*
0.187= 02 .*
0.192E 02 *
0.196E 02 *
.0.201E 02 .*
0^205: 02 .*
0.210E 02 .*
0.215E 02 *
0.21"f 02 »
0.234= 02 *
0.223E 02 *
0.233E 02 .•*
*
*
»
*
,
,
.
*
.
.
.
,
.
.
*
.
.
.
.
.
m
,
^
.
0.2135 02 .»«•«*«**•«»*»*»»
0
5
10
16
17
13
13
9
6
3
9
6
9
3
^
8
4
5
3
A
3
2
2
1
13
1
2
1
0
1
0
0
5
0
0
1
0
2
1
0
0
.1
1
1
0
0
O
0
2
16
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
Y-SCALE= 0.10E 02
0.123E 01 .*** . . • . . . . . • . . . 3
0.1i9H 01 .»*******«*» . . . . . . . . __ 11
0.215= 01 .************* . . ........ . . . . " . " . ..... - -^ — ^ - 13
C.2il= Cl .******«»*«****«* . . . .. . . . .16
0.?.r,7E 01 .*«***««**. . .. . . . . . .9
0.353= 01 .*«**««**** . . . . . . . .10
0.395= 01 .*»«****««**** ......... 13
C.&<.5 = 01 .**«*»«** . . . _ . . . __ __ . _ i _ __ 8
0.491= 01 .»*«•*»*» . . ........ . ..... " . " " "" " _---- ^ f f g
0.537= 01 .«»**»»* . . . . . . . . ... 7
0.5»3= 01 .****«« ... . .-. . .. . . . 6
0.&29E 01 .««***•»*•«*****» .........16
0.6759 01 .»**»«*»* . . . . . . . . . . *>
0.721= 01 .**«*»» . . .. . . ._. _ . ______ . ___ 6
0.747E 01 .**«* . . ..... . ...... ."'."'. . . . . 4
0.513= 01 .**«»««***«* . .'. . . . . . .11
O..c?9e 01 .*»*»* .......... 5
O C.9C5E 01 .«•»«• .......... 5
*- 0.951E 01 .*«*»«**» ........ ..»>
0.997E 01 .»**«* . . . ._. •. .... ___ . __ . ___ 5
0.1C4E 02 .«•*» . . . . ....... . ....... . . .- i A
0.109= 02 .»• . . . . . . . . . . 2
0.113= C2 .*« . . . . . . . 2
0.118E 02 .• . . . . . . . . . '. . I
0.123E 02 .»****«* . . . . . . . . . 7
6.127E 02 .*« . . . . . . . . •_•___ 2
0.132E 02 .**»* . . ... . . .'."'. 4
0.136= C2 .*»* . . . . .. .. .. 3
0.141: 02 .**•* . . . . . .. .'. .4
0.1-V4S 02 .**« .......... 3
0.15CE 02 .»»« . . . . . . . . i . . . 3
0.155= 02.* .. . . . . . . •_•_!
0.159E 02 .****** . . . . . . . ..'".'"" 6
0.16AE 02* . . . ... . ; . . • G
O. 167= 02.*, . . . . . . . . . 1
0.173= 02 .* . . . . . . : . . i I
0.178? 02 .«*'.. . . . . . . . . . 2
0.1?;= 02 « . » . . . . . . . '. 0
0.1575 02 .«*« . . . . .. . . . : : 3
C.192: 02 .»•• ..........3
0.174= C2» . . . . . . . . . . 0
0.2C1E 02 .»** ..........3
0.205= 02* . . . . . . . . . . 0
0.21Cr 02 ..« . . . . . . . -. . -1
0.215E 02 * . . . . . . . . . . 0
0.219E 02.* . . .. . . .'. . . : 1
0.224? C2 * . . . . . . . . . . 0
0.2Zlz 02 .* . . . . . . . . . . 1
0.233= 02 * . . . . . . . . . . 0
0.233; 02 .*****•«»««««************* . . . . . . . . ...... 25
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUTION
.1 TO 24H3 RATIOS
SEASON=WINTER
V-SCALE= 0.10E 02
0.123= 01
0.169E 01
0.215E 01
0.2^>1E 01
0.307E 01
0^ c; -a c ("l 1
• 3 J J ~ v I
0.399= 01
Ct / s e A i
. *»!• }t U 1
0.491E 01
0.53'E 01
O.S33E 01
0.625E 01
0.675E 01
C.721E 01
0.7i7= 01
0.313E 01
0.859= 01
0.975= 01
0.931E 01
0.997E 01
O.IC^: 02
0.109E 02
0.113E 02
0.113= 02
0.123E 02
0.127= 02
0.132E 02
0.13SE 02
0.141E C2
O.U5E 02
0.150= 02
0.155E 02
0.159E 02
0.1S4= 02
0. 1S9= 02
0^173= 02
0.179= 02
0.192E 02
0.1"7= 02
0.192= 02
C.l?i= 02
0.201E 02
0.2C5; 02
0.210= 02
0.215E 02
0.219= 02
0.224= 02
0.22SE 02
0.233= 02
C.231H 02
.**
.*«»* .
.******** .
.«*««* «««*****»***
.*********«*«******
.«**»«*****
.**** .,****
.**«* »«**«
.**** .
^ *4*«r * ^
. ••*• .
***** •
.***** .
.**** .
.»**«**»• .
.****
.*»*
.*«-»«« ,
.****
.*
.**
.*
.*«*** .
* .
.** .
.****
.**
.*•«* .
.***
.* .
.***
* ,
.* .
* m
.**
.**
* .
.**** .
* .
.*
.** .
.**
* .
.* .
.*
* .
* .
. ****************
2
4
8
17
1*
12
10
12
11
10
4
3
5
4
1
2
1
5
0
2
-4
2
4
3
1
3
0
1
0
2
2
0
4
0
1
2
2
0
1
1
0
0
16
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUT ION
1 TO 3HR RATIOS
SEASONo MJTJMN
Y-SCALE* O.SOE 02
Ov
0.102E
0.1C6E
0.
0.
•
0.
•
0.
0.
•
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
110E
114 =
I 1 Q C
113::
12 2E
1") (L C
IL Dt
1305
!3-E
i -a Q £
1 J T C
142E
146E
150E
154£
159;
162E
ISiE
170F
174E
173E
132E
1?5E
190E
194 =
19° E
202E
205E
210E
214E
213E
222E
22SE
230E
234E
233E
2'2E
245E
250 =
254E
2535
0.2S2E
0.
0.
0.
0.
0.
Q
2S5E
270E
274=
278E
T 3 2 -
*> * A -
0.29CE
0.29AE
0.293=
01
01
01
01
A 1
U 1
01
n t
U 1
01
01
n i
v 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.**************************** . . . . . . ' . .
I********************************** . . ' . . . . .
«««•<«
• •*•••••••
• ••••»•* •
*************** ........
.***«?«**«**#** . s ^ m m ^ . m % 9
.***** ..........
.
«»*
..........
.*«**********«*****«********************#+******««**« *****
.
.
•
.
.
*
**
*****
*******
******
********
***
• . * * * . * *_• *
• «••»•*•• .
• . • . ... . * . *
*•••»•*•* .
.....***..
..........
,************* m 9 9 m 9 , m m 9
«
•
.
•
*
*
****
*
«*
• . '" ,' . . . * . . .
• ••*»?....
**••••••••
• ••••••**•
• ••*..*•••
228
156
172
273
33 1
55
1 1 1
132
192 •
112
1 ^rt
I3O
40
25
417
23
40
58
50
68
25
105
9
34
9
19
7
,«****«************ . . ( 9 9 , f 9 .1^7
•
•
•
•
*
.
•
•
•
**
**
****
*
********
*
**
***
• •••••• • .*
*.... •••* .
• • • . • . •-• . •
• • • • . •• • ' . . . * *
• • . • * • • •• *
. . * * * • * ».* •
• . • • . . . *". .
* • . • • ... * . .
*•••••••••
* • • • • *'• . * • •
•
•
*
*
...... •*••
• • • • .'.-. * * .
* . . . . . . . . ..
a
*
..........
....... .. .. .
. •;* . *. . . * *
..........
* • *•• . . * . •• .
«•*••••*••
. . . . • • .*• ..
• ••••*«•
*e. *•'.•*•*
• oo*******
.«***««
-------
JOIMT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
SEASON=SUMM=R
Y-SCALE= 0.90E 02
0.102E Oi .****************** . . . 6 = . . . . 167
0.1C5E 01 .****»****. . ...... ........ ____________ •„ • • .. • _._ ... _________ « ________ .. 88
• ••• • ••• • • — 80
•••*•••• 132
*« . . . . 9 m 9 . 250
• • • • • • •• 50
* • • • * • ••• 93
* •_•_ * * •__ __ • _ __ _ • ___ 167
• • • » • • • • 9 B
•••••»•• 103
* •*• • • • * • *» 8
• • • • • • • • 1 0
************************* . m ^ m f ^50
• • • • • • _ __ • ___ _ • _ 20
•••••••• 37
• • * • • * • • 5 5
*••••••• 50
••••••*• 60
• • • • • • • • 2 1
• • •_• •_• _ _ * _ __ • ___ _ 1 1 1
• ••• • • • • • 11
• • • • • * • • ^t 1
• • • • •'• » • 17
0.110E
0.114E
0.122E
0.126=
0 * 1 3 0 E
O 1 T £^
0.142=
0.14«.r
0.'. 50E
0.154=
0.153=
0.1S2E
0.1SSE
0.170=
0.174=
0.179;
0 * •* ' -
0.13SE
0.190E
0. 174?
0. 19=1?
0.2026
0.206=
0.210=
0.214=
0.2195
0.222=
0.22*=
0.230E
0.234=
•0.23° =
0.2425
0.244H
0.250=
0.254E
0.253E
0.262=
0.2S4E
0.270=
0.274=
0.273=
C.232E
0.2°4=.
0.29C5
01
01
01
01
0 1
f\ 1
U 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.********
B ********
.*****
.«*******
.********
.*****
.*»
.»*******
.*»
.*«**
.«**«*»
.*«•*»
.*«**«**
.•*
.*»«**«**
.*
.****
.«
*
*
.******•*
.*
.*
.*«*
.*
*
.*******
.*
»
.»•
*
*
.»
*
*
.«.
*
*
•
•
*
»
•
******
*
**
***
•
,
*****«**+**
*
»
•
•
•
•
#***
•
•
•
•
»»*»**»***.
•
•
•
*
•
•
•
.
•
•
•
•
•
.
*
*
•
•
•
•
•
•
•
•
•
*
•
•
•
.
>**.
•
•
•
•
.
•
•
•
•
•
•
»**
•
•
•
•
.
•
•
.
•
•
•
.
•
.
•
.
.
*
»
•
*
.
... ......... ______ .... ... ...........
* '*• * * . • » • 16
• • • » • • . . • 14
* • • *• • • •- 27
• . * * • • • • * 12
*••**•••$
* * • ' • • • _ • _ _ * _ __ 71
• *.* • • . . • 9
• • * *~« • • *6
• • • • • • • * 2 1
• * • • • • . * • 2
• • • • • • •'• 7
* •• . • • •_ __ •_ __ _ l^
.• • • » • • » • . 3
••••••••o
• • • • • • • • 1 1
••••••••4
••••••••7
•*•••••• __ 7
••••••••4
• • • * •*• *.• 2
• • • • • *.• • 4
•••••*••$
0.2-?*.? 01 « . . . . . . . . . . 3
0.29?S 01 .**•***»**•*******««***********«************************************»»************•*»****»**** . 839
-------
JOIMT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
SEASON=SPRING
Y-SCAUE= 0.11E 03
P"1
o
00
C.
0.
0.
0 •
0.
0.
•
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
0.
102 =
106 =
HOE
1 1 / C
1 1*»5
113 =
122E
1 •? *iC
1 — D —
13TE
134 =
139E
142E
146E
150E
154 =
15" =
162E
145E
170 =
174 =
179E
1"2 =
ns=
190 =
194E
193 =
202E
206E
21DE
214 =
213 =
222 =
225 =
230E
234E
21» =
242E
246 =
250E
254E
253 =
242?
24SE
270E
274 =
27* =
232 =
0.234=
0;290E
0.291=
0.293=
01
01
01
01
01
01
f\ 1
V 1
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.**************» . . • . . . . . . •
.*********** .........
.«***«***»**** . . ...
**************** . . . . . •' • • - .
.*«**>****************** ........
.***** . . . ..
.«*«*«*«»
>*****« ... . . . . .
. . . . . . . . . .
.«***«***«* ... . . . . . . .
.*«**
.**
. . . . . . . »,-. «
..........
..»*«««*«««******»*************««*******. . . . . . .
.**
.***«
.**»*
.****«*
. *******
. *
• "
. ***
.**
.*
*
..........
..........
. . . . . . . .. .
..........
..........
..........
..........
..........
. . . . . . .*. . .
. . . . . • . .'. •
..........
.••**«***»»•****** .........
.*
.«*•
.*«
.*«
*
.******•
.*
*
.*•*•
*
.*
• **
•
.*
.*
*
*
.*
*
*
*
*
•
. . .'... . . . . .
. . . . .'. . . . .
. . . . . . • .'. .
. . . . . . . . .'.
..........
..........
. . . . . . • • . •
. . . . • . . . . .
..........
. . . . . . . . .' .
..........
. . . .... . . . . .
»•••••••••
..........
..........
..........
..........
..........
. . . . . . . . ...
. • . . . . .'. . .
..........
..........
..........
.••»««»«••«*•****»•***•**•**»**»******»***»**»**»***»*»***»»»****««•»»»*«*****»*»*•»•*»•*»•**»»» .
173
122
143
170
257
56
160
91
112
51
27
432
25
50
46
68
94
29
115
13
54
25
20
9
195
19
35
32
22
6
77
11
7
47
5
13
22
8
12
15
8
8
14
4
9
6
4
4
1043
-------
JOINT SEASON-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
SEASON=WINTER
Y-SCALE= O.IOE 03
0.102E
0.1CSE
01 1 f* C
» 1 1 Ut
0.114E
C • 1 1 9E
0.122E
0.126E
0 • 130E
0» •} i c
• 1 3 ** ^
O.IASE
0.15DE
0.154 =
0.1S9E
C.1S25
0.1S6E
0. 170E
0. 174E
0.173=
0.152E
0.l?iE
0.1905
0.194E
0.19"E
0.202E
0.20SE
0.210E
0.214=
0.213E
0.222=
0.22iE
0.2*CE
0.224E
0.233E
0.2i2E
0.24SE
0.250E
0.254=
C.253E
0.2425
0.2SSE
0.270E
0.274?
0.273?
0.2?2E
0.236E
01290E
O.J9i=
0.293?
01
01
A 1
u 1
01
ft i
0 1
01
01
A f
C 1
n i
U 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.************* .
.********** .
.**«***»**»*»«*** .
.****** . •
.«.«»»»*.**
.*«*«*
.*** . .
.*«*«««4**********«*******«**«
.***
.***•* . .
.*»**** , .
.**»** . .
.«*>»««** m ^
.*«** . .
.*»*««******* .
.* . .
.****
.*»
.**
*
.««**»*«***»»»«»« .
.*•
.***
.»*»*
.»*
* . .
.««•*»• . .
• • . .
.* . .
.*•
* . •
• * . .
.** . .
* • . .
.*
.* . .
* . .
* .
* a 9 •
*
*
* . -.
*
* . .
.*•«**•****«****»*»**« ***»«» *l
.
•
•
•
•
-
*
*
*
*
I*****
,
^
*
*
•
.
•
.
,
.
.
.
•
*
.
.
.
.
.
.
.
.
.
.
.
»
.
*
.
*
^ .
*
*
.
.
»
******
133
103
12 &
163
226
63
1G2
1**3
95
34
340
32
5 o
6
50
69
40
122
1 6
42
23
23
5
160
23
30
41
20
9
64
14
12
24
/
1 5
28
o
1 o
1 6
• 4
o
f
3
*
3
926
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
STABILITY 7
Y-SCALE= O.ICE 02
H1
M
O
0.123E 01
0.159= 01
0.215= 01
0.261E 01
0.337= 01
0.353= 01
.*«
.*'»
.«»»»»****.
.*** .
.»**
.»»'**
0.3.19E 01 .* .
0.445= 01 .****»** .
0.49IE 01 .*«
0.537E 01 .*»*
0.5"3E 01 .*
O.S29E 01 *
0.675E 01 .«*****«»*****
0.721= 01 *
0.757E 01 .*'
* .
.*»
.*
.«**
.«
.»**•**
0.313= 01
0.059= 01
O.?^; 01
0.951E 01
O.997= 01
0.1C4E 02
0.1095 02
0.113E 02 *
0.1135 02 *
0.123= 02 »
0.127E 02
0.132E 02 *
0.135E 02 *
0.141E 02 '«
0.146E 02 *
0.150= 02 *
0'. 155E 02 *
0. 157E 02 '*
0.1S4E 02
0". 16?= 02 •
0.173* 02 '•
0.1755 02 *
0.132= 02 .'*'**
0-.197E 02 *
p.'19'2E 02
0.195= 02
0.20 IE 02
0.2C5E 02
0.210E 02 *
0.215= 02 *
0.219E 02 »
0.22i= 02 •
0.22"*= 02 »
C.233E 02 *
C'.2?3E 02
.*'•
*
.««*
.****
.***«•**«»*****»•*»
2
2
9
3
3
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
STABILITY &
*Y-SCALS= O.IOE 02
0.123E 01.*. . . . . . . . . - i
0.159= 01 .*** . . . . . . . . . .3
0.215= 01 .»** . . . .. . . . . . . .3
0.261E 01 .** . . . . . . . . . . 2
0.307= 01 .** . . . . . . . . . 2
0.353E 01.*. . . . . . . . . . 1
0.399= 01 .***** .......... 5
C.445'E 01 .* . . . . . . . . 1
0.491E 01 .* . . . . . . . . . .1
0.537= 01.*. . . . . . . . . . 1
0.553E 01 * . . .... . . . . . 0
0.629E 01* . . . . . . . . . . 0
0.575E 01 .********** . . ... . . . . .10
0.721 = 01 * . . . . . . . . . . 0
0.757= 01.* . .'. . . . . . . . 1
0.513= 01 .*** .......... 3
0.359? 01 .** . . . . .-. . . . . 2
0.975= 01* . . . . . . . . . .'0
0.951= 01*. . . . . . . . . . 0
0.997E 01* . . . .. . . . . . 0
0.104= 02 * . . . . . . . . " . . " 0
0.10?= 02.*. . . . . . . . . . 1
0.1135 02 * . . . . . . . . . . 0
0.113H 02* . . .'. . . . . '. .0
0.123: 02* . . . . . . . . . . 0
0.1275 02.*. . . . . . . . . . 1
0.132E 02* . . . •. . . . ..""'.' 0
0.135= 02* . . . . .. . . . . 0
0.111= 02 * . . . . . . . . . 0
0.145E 02* . . . . . . . . .. 0
0.150= 02* . . . . . .. . . . 0
C.155E 02 * . . . . . . . . . .0
0.159= 02* . ... . . . . • . . 0
0.154? 02* . . . . . . . . . . 0
0.159= 02 * . . . . . . . . . .0
0.173; 02* . . . . . . . . . . 0
0.173= 02 .* . . . . . . . . . 1
0.132E 02*.. . . . . . . . . .0
0.1°7= 02* . . . ... . . . . .0
0.172: 02* . . . . . . . . . . 0
0.195= 02* . .. . . . . . . . 0
0.201; 02 * . . . . . . . . . 0
0.205E 02* . . . . . . . . . . 0
0.210= 02 * . . . . . . . . . 0
0.215E 02* . . . . . . . . . .0
0.219= 02 * . . . . . . . . . . 0
0.224=. 02 * . . . . . . . . . . 0
0.223= 02 * . . . . . . . . ' . . 0
0.233= 02 * . . . . . . . . . 0
0.233= 02 .**«»***•** ......... 10
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
STABILITY 5
Y-SCAU== 0.10E 02
0.123E 01 .**»*»****»* .
0.169= 01 .«*« . .
0.215= 01 .***« . .
0.261= 01 .**
0.307E 01 .»*«*
0.353= 01 .***»*
0.399= 01 .««**«
0.445= 01 .***«
0.491= 01 .**
0.537= 01 .** .
0.533= 01 »
.**** . .
.«**»*»***«*»»»*»***.
* . .
* . .
.*
* . .
.**** . (
0.629= 01
0.675E 01
0.721= 01
0.757= 01
0.913E 01
0.359= 01
0.905= 01
0.951= 01 *
0.997E 01 .*
0.104= 02
0.109E 02
0.113= 02
0.113= 02 *
0.123E 02 «
0.127E 02
C.1325 02
C.135: 02
0.141; 02
0.144E 02 *
0.150E 02 *
0.155= 02 *
0.157= 02 *
0.144= 02 *
0.149E
0.173E 02
0.17°= 02
0.192= 02
*
.*«••»
.*
.*******
*
*
.**
02 *
.»
.*
0.137= 02 »
0.192= 02 .«
C2 *
02 •
02 »
E 02
0.195E
P.201=
0.235=
0.210H
0.215= 02 *
0.219= 02 *
0.224= 02 *
0.223= 02 «
0.233= 02 *
0.223E 02
.»»**•*«**»***
11
.3.
4
2
4
_
2
2
0
i,
19
0
0
1
0
4
0
1
0
5
1
0
0
7
0
0
2
0
0
0
0
0
0
(I
1
1
0
1
0
0
0
c
0
0
0
0
0
13
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
STABILITY <.
Y-SCALE= 0.10E 02
0.123E
0.169E
0.215=
0.261E
C.307E
0^ C-J C
. 3 ? J i
0.399=
0.ii5E
0.491E
Ce TI i c
• J 5 f t
0.5f2H
0.62"=
C . S 7 T =
0.721E
0.7S7E
C.513E
0.C59E
0.90SE
0.951E
0.997E
O.lOtE
0.109E
C.113S
0.113E
0.123E
0. 12"7?
0.1326
0.136E
0. !ME
0. I'^iE
0.15CF
0.155=
C.159E
0. !6t =
0. 1^>9E
0.17IE
0.173E
0.192=
0.137=
0.192E
0.196=
0.201E
C.IOSr
0.210E
C.I1 5"
0.219=
0.22^?
0.22^?
0.23TE
0.23BE
01
01
01
01
01
A 1
J 1
01
01
01
n i
U 1
01
01
Cl
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
C2
02
02
02
C2
02
02
02
02
02
.**************************« ...
.»**»«**»****»* ....
.*«******** . . "•••"•
.**»****9*»*********«**»********** . .
,e* t «>«n«a**««t»*4****************** . .
.a*********** ....
.o************************* ...
.****»«*»*«*****:** . . ."' '" ' ,
.«»»** . . . . • .
*.....
.ft******************* ***************** *****************
.«*.....
.*«**** . . . ' , ' ,
.*».....
.*********** ....
•*•****** .....
.****** .....
.«*********** ....
* . ...
.******** .....
* . . . • .
*.....
* . .
.*«**«*»******»»***»»»» ...
* . .•'•••.•••.
.« .
.«**» .....
*•.*»#
*.....
.»•**» .....
*.....
.**.....
.**** .....
* . . . » ' .
.* . . . « .
•*«
• • • • •
• • • » •
• • * • •
• * • • •
• • • * *
• . . . . . .
• * . • •
* • • • •
* * • * *
• » • • •
. * . • *
.*«•****»****•************** ****4*********«**4**44*****i
•
9
.
•
•
•
•
•
*
.
*************
.
*
^
.
.
m
m
^
.
^
.
,
m
.
.
.
^
m
9
.
. .
.
.
.
^
*
.
.
m
%
^
m
.
,
.
»****««***
10
33
36
11
12
26
17
12
5
0
6P
2
6
2
11
8
6
12
0
8
0
0
0
22
0
1
4
0
0
5
0
2
<,
0
1
3
0
0
0
C
0
1
0
0
0
0
0
64
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24H* RATIOS
STABILITY 3
' Y-SCALE= 0.10= 02
0.123E 01
0.169= 01
0.215= 01
0.2515 01
0.307= 01
.»*»*»** .
.«***«*** .
.****»*** .
.*«*
.*****«*«***
0.353E 01 »
0.3995 01
0.4455 01
0.491= 01
0.5775 01
0.">33= 01
0.629= 01
0.675= 01
0.721= 01
0.767= 01
0.3135 01
.0.=59= 01
0.905= 01
0.9515 01
0.997=
.«*** .
.*«*********
.***
.***********
* .
.**
.***
.******
*
.*»«*«
0.100=
0.113=
0.1135
.»*
*
01
02
02
02
02 »
0.123= 02 «
0.127= 02 .«**
0.132= C2 *
0.1345
0.141=
0.1465
02
02
02
0.1505 02
0.155= 02
0.159= 02
0.1645 02
0.1695 02
6.173= 02
0.1785 02
0.1925 02
0.1*75 02 *
O.l°25 02 .'
C.19i= 02 .
0.2315 02 *
0.2055 02 «
0.210= 02 «
0.215= 02 «
0.219= 02 *
0.224= 02 »
0.2235 02 «
0.2335 02 «
0.2335 02
*
*
*
.**
*
*
*
*
*
*
.«•**********•**•*#*****«****»***«***
/
8
3
1 1
0
**
1 1
3
6
I
0
1 1
o
3
£>
0
5
0
2
0
0.
0
3
0
1
0
0
0
2
0
0
0
0
0
0
0
0
o
C
0
0
0
36
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO Z4HR RATIOS
STABILITY 2
Y-SCALE= 0.10E 02
0.123E 01 .**
0.169? 01 .**
0.215? 01 .»
0.2&1E 01 .***
0.307E 01 .*«***
C.353E 01 *
0.399? 01 .*
.
.
.
.
.
•
.
0.4<-5? 01 .***********
0.491? 01 .**
0.537E 01 .*«
0.533? 01 .*
0.629? 01 *
«
.
•
.
0.675= 01 .«»*»»*****
0.721? 01 *
0.7i7? 01 .****
O.S13E 01 »
0.359? 01 *
0.905? 01 *
0.95:= 01 .*
0.937? 01 .*«»
0.104= 02 *
C.109E 02 .**•
0.113= 02 .*
0.119= 02 •
0.123= 02 *
0.127? 02 .»**•
C.132? 02 *
0.134= 02 .*
O.U1? 02 *
0.14SE 02 *
0.150= 02 *
0.155= 02 *
0.159? 02 *
0.1&4E 02 *
P.169? 02 .*
0.173= C2 *
0.17«? 02 .*
0.1<52E 02 *
0.1?7E 02 *
0.192E 02 .«»*•
0.196? 02 «
0.201= 02 «
0.2?5? 02 *
0.21C? 32 *
0.215? 02 *
0.210= 02 •
0.224? 02 «
.
.
.
w
.
.
.
.
m
.
.
.
9
,
.
•
.
..
.
.
.
•
.
.
.
.
.
.
.
.
•
.
.
.
O.H2°E 02 *
0.23-J? 02 *
0.233? 02 .*»*««•««»***
...2
1
3
5
0
1
11
2
2
1
0
10
c
4
0
0
0
1
3
~"o"
3
1
0
0
1
0
G
0
0
0
0
1
0
1
0
0"
A
0
.0
0
0
0
0
'o
0
0
12
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR' RATIOS
STABILITY 1
Y-SCALE* C.10E 02
0.123E
0.159=
0.215=
0.261=
0.307=
0.353?
0.<>9IE
0.537E
0.5"3=
0.629=
0.675=
0.721E
0.767C
O.?13=
0.905E
0.951=
0.997=
0.104=
0.10?=
0.1135
0.119=,
0.123:
0.127=
0.132=
0.135=
C.15CE
0.155 =
0.159E
0.164=
°-16.?s
0.173=
0.17?=
O.t«2?
0.137;
6.201=
0.205=
0.211E
0.215E
0.223=
C.233=
0.23?=
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
0?
02
02
02
02
02
02
02
02
02
02
02
02
T2
02
C2
02
02
02
0
0
1
0
0
o
0
1
0
0
0
0
2
0
0
0
0
0
0
0
0
o
0
0
0
0
0
o
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 7
Y-SCALE= 0.40E 02
0.102E 01
0.10SE 01
o.noE 01
0.114= 01
0.115= 01
0.122= 01
o.m= 01
0-.130E 01
0.134E 01
0.133= 01
0.142= 01
0.146E 01
0.150= 01
0.154=
0.15«E
0.162E
0.146E
0.17CE
0.174E
0.173E
0.1"2E
O.lSiE
0.1?0= 01
0.194= 01
0.1?3E 01
0.202E 01
0.204=
0.210:
0.214=
0.213=
C.222E
0.224=
0.230E
0.734E 01
.0.235= 01
0.242E 01
0.24!>E 01
0.25CE 01
0.254E 01
0.2S3E 01
C.2S2E 01
0.266= 01
C.270E
0.274E
0.27PE
0.2?2=
0.236E
0.2?OE
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.»*********»*«»* . . .
.***********»* . . .
.*t»****»*«****** . . • .
.a***-***************. . .'
.ft******************************** .
.***»«** . . . .
.**»«*****«*****« ...
.*****«***«********** . .
.»***««***«**» . ."""..
.****«*«*«*** ...
.***««** .....
.»*** . • . . .
.*»«««*****«**«***«»**»*************»«***•
.** . . . .
.******* . . .
.*«*** ....
.***«** . . . .
.«********* . . • .
.«** . . ..
.»**»*******«*« . . .
.« . . . .
.***» . . . .
.** . . .
.* . . ..
* . . . .
.»*»*********•****• . . .
.** . . . .
.*** . . . .
.•** . . . .
.** . . . .
* . . . .
.**«•*****. ...
.« . . . .
* . . .
.«•* . . . .
* . . . .
* . . . .
.* . . • . .
* . . . .
.*. . . .
.* . . . .
01
01
01
01
01
01
0.294E 01* . • . . .
0.2939. 01 .a******************** *»o«*
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 6
•
Y-SCALE" 0.30E 02
0.1025
0.1065
0.110=
0.1145
01 1 Q C
» 1 1 ' w
0.122=
0.1265
C.134E
0.1335
0.1425
0.146=
0.15C5
0.154=
0.155=
0.1625
0.166=
0.1705
0.1745
0.171=
0.1025
0.1965
0.190=
0.194E
0.202E
0.206E
0.210=
0.214E
0.2135
0.2225
0.226=
0.230=
0.234=
0.2395
0.242?
0.2465
0.25C5
0.2545
0.2535
0.2625
0.2665
0.27C5
0.274=
0.2735
0.2325
0.2965
0.2905
0.2945
0.293=
01
01
01
01
n i
U 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
0!
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
.******«**
.*********
.*«•«««»»«
.»***«»***
.»***
.****»****
.****»**
.*•»*«•**«
.*«*
.••
. *********
.«
.**
.*•*
.«**
.*»«*«
.*
.«•*****»*
*
.**•»«
.*•
*
.*»*»*****
.*
»
.*»*
*
»
.»*»*«*«
.«
*
.••
*
•
.*•
•
.»
.•
*
»
*
*
*
*
*
*
**** .
** .
* .
******* .
u 9
•
• •
*** •
* *
• *
«»***«**•***•»»«
• •
• •
• *
• •
• *
* »
** .
• •
• •
• •
•
** ' *
• •
• ' *
• *
* •
• •
• •
* •
• •
• *
0 •
• .-
• •
• *
• •
* •
. .
* •
• *
• •
• *
* •
• •
. .
»***«««»«$O«**
33
0
16
6
1
0
35
4
1
9
1
1
21
3
1
7
0
1
6
G
4
3
.0
1
1
1
0
c
0
0
221
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
I TO 3HR RATIOS
STABILITY 5
Y-SCALE= 0.50E 02
0.102= 01
0.10SE 01
0.110E. 01
01 i f. c ' n i
* i i ** - \j i
01 1 D C f\ 1
• lit U I
0.122E 01
C.126E 01
0.130E 01
C.134E 01
0.133E 01
0.142E 01
0.14S: 01
0.150= 01
0.154E 01
0.153E 01
0.162E 01
O.lSiE 01
0.170E 01
0. 174E 01
0.173E 01
0.192E 01
0.135E 01
0.190E 01
0.194E 01
0.1'3= 01
0.2C2E 01
C.20%3 01
0.213E 01
0.214E 01
0.213E 01
0.2225 01
I5.226E 01
0.23CE 01
0.214= 01
•0.23°: 01
0.242= 01
0.24i= 01
0.250E 01
0.254E oi
0.253E 01
0.2S25 01
O.?4t= 01
0.270E 01
0.274J 01
0.27?E 01
0.232E 01
0.2E6E 01
0.2905 01
0.294= 01
0.29^3 01
.****»«****»«»*«»»» ...
.**«»******* ...
.*»«*»<««»»»*» . ' . ,
.»««««* . . . .
.*********** ...
.**«****.-»******* ...
.*********. . . m
.«** ....
.** ....
.««*«*»»*»**»»*******»»**»»***•**«*»»** .
.«* . .
.***« ....
.******* . . . .
.**** .
.**«»«*** . '. . .
.*** ....
.««****»»»* . . .
* . . .
.«*» . . .
.*....
.*....
* ....
.**•**«****«•»• ...
.*....
.* .
.»*
*•....
* ....
.**•• ....
• ....
.* .
.•*• ....
* ....
.*....
.• .
• ....
.* . .
.*....
* ....
• • • •
• o * •
• * • •
• • • *
• • •
• • • •
• • • *
.******«**********«4«* ***********************
• • •
• • •
• • •
* • •
• • •
• • •
* • •
* • #
. ' . . •
• * •
• • *
• • •
• • *
• • •
* • *
• • •
• • m
• * •
* . .
• • •
• * •
• * •
• • • •
• * •
• * •
• • •
» * •
• « •
• • •
• • •
• • •
• • •
• • •
• • »
• • *
• . .
• • .•
• • •
• • •
. . .
. . .
* • *
• • .
* • *
• . .
• * •
• • •
• • •
********************* ****4 ?*****
««**«***
91
57
69
71
59
30
55
76
45
71
Ib
10
190
11
24
35
21
43
16
51
4
18
7
5
2
72
9
e
12
3
2
23
1
7
17
0
6
_ 9
'3
5
5
5
3
3
0
2
0
1
1
42 C
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 4
Y-SCALE* 0.18E 03
0.102=
0.1C45
0.110=
0.1 145
o.ue=
0.122=
0.13C5
0.133=
0. 1^2=
0. !<•*,=
0.150S
0.1545
0.15*5
0.142=
0.15SE
0.170=
0.174=
C.179E
0.1*25
0.194-
C.19C5
0.194=
0.193=
0.2P2E
C.206E
0.2!CE
C.2145
0.2155
0.222=
0.225E
0.23TE
0.234=
0.23"=
0.2^2=
0.245=
0.2505
0.254=
0.2S35
0.202=
O.?44r
0.270?
0.274=
0.27<> =
0.232=
0.234=
0.290=
0.29~S
0.193=
01
01
01
0 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.*************** ....
.************»*** . . ''.'.' .
.*»«*»***»****»»»*»*********»**»***» . .
.*««** .....
.«**««***»»**«****«*, ...
,*«**»*«**** ....
.***** .....
.** .....
.**«»»««»*»***»»**»*****»***»****»**»****«*«*******
.«» . . . . .
.**** . . . . .
.*•**»* . . . . .
.****** .....
.«•«•**** .....
.**
.•««•»**•»*«» ....
.*.....
.*•*• . . . . .
.......
.** . . . . .
*.....
I******************** . . .
.*• . . .
.** . . . . .
.*•* . . . . .
.*.....
*.....
.«»****»» . . . . .
.* .
.*.....
.*».....
*.....
.*.....
.** . . . . .
* . . . . .
.*.....
.* . . . . . .
* . . . . .
*.....
*......
*.....
*.....
*.....
*.....
*-.....
.**•*«•*******»**************»*********************
444
ZT> .
296
435
643
106
229
354
199
212
90
52
916
•* 1 .
o 2
10S
113
153
41
232
31
ft
34
36
9
374
44
47
67
32
14
146
22
23
52
6
27
36
11
19
25
*
14
11
6
6
14
8
6
1774-
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 3
Y-SCAL== 0.50E 02
0.102E 01 .********** . . . . . . .. yc.
0.106E 01 .******* . . . . . . . . . . _ 38
0.110E 01 .****«*** . . ... . . ."'"." . " 43
0.114E 01 .***«******* ......... 59
0.113= 01 .***»»********»«****. . . . . . . . .95
0.122= 01 .***** . . . . . . . . . .28
0.124E 01 .******»* . . . . ... . . . .'41
0.130= 01 .»**«»******** . . . . . . . •___«__<><>
0.134= 01 .****««**** . " . . . . " " "" ."" " 53
0.139= 01 .**»*»******* . . . . . • . . . .64
0.142= 01 .**** . . . . . . . . . .24
0.145r 01 .** ..........12
0.150= 01 .**«****»**»**»******»*************** . . . . . . . 183
0.154E 01 .** . . . . . . . - , . .12
0.158= 01 .**«** . . . . . . , ""• 28
0.162= 01 .****** .......... 31
0.16SE 01 .****« .......... 29
,3 C.17CE 01 .******** ...... .... 41
H- 0.174E 01 .**** . . . . . . . ... .23
0.173= 01 .****•*« . . . . . .. . . • . _ _ 39
0.132E 01 .* . . . . . . . . " . ."" ' 7
O.niE 01 .**«»* ........... 28
0.19CE 01 .** . . . . . . . . . 11
C.194E 01 .** . . . . . . . . .14
O.^'E 01.* . . . . . . . .'•. . 6
0.202= 01 .»**»********»*«***** ... . . . . . .101
0.20SE 01 .* . . . . . . . ."" ~" 7
0.210= 01 .*«* .......... 18
0.214E 01 .**«* . . . . . ... . . 21
0.213E 01 .»• . . . . . . . . .12
0.222E 01 * . . . . . . . . . . 3
0.224= 01 .***** . . ' . . . . . . . . . 28
0.230= 01 .* . . . . . . ' . . . -". • —" ;_ Q
0.234= 01.*.. . . . . . . . . 6
0.233E 01 .**• . . . . . . . .. .19
0.242= 01* . . . . . ' . . . ... 4
0.244= 01 .** . . . . ... . . .' . 10
0.250E 01 .***• .......... 21
0.254= 01 * . . . . . . . . . ' ' . 3
O.T53E 01.* . . . . ... . . . b
0.2S2E 01 .*• . . . . . . . . . .12
0.2S4E 01 « . . . . . . . . . . .2
0.270= 01.*. . . . . . . . . . 7
0.274= 01 .* . . . . . . . . . 8
0.27SE 01* . . . . . . . . . . 2
0.2?7= 01.*. . . . . . . . . . 6
0.226= 01* . . . . . . . . . . 4
0.29CE 01* . . . . . . . . . . 2
0.294= 01* . . . - . . . . . . 3
0.293= 01 .«•»»»•*»» *«***»»»»*o» ****** »»»*4***»»»*****»»»»»*****«»»»'»**»«'» *•»«»*»*»*»»*****»•**•»»**»*»»*»**»*•. 497
-------
JOTJT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 2
Y-SCALE= 0.30E 02
.N3
0.102=
0.10SE
0.110E
0.114E
O.M»E
0.122=
0.126=
0.130=
0.134E
0.13°=
0.142=
0.146E
0.150=
0.154=
0.155=
0.162=
0.166E
0.170=
0.174=
0.173E
0.1? 2 =
0. 136 =
0.,19'i
0.194=
0.193=
0.202=
0.2P6E
O.'2'l-QE
0.214E
0.213=
0..2225
0.226E
0.230E
0.234E
b.23<=E
0.242=
0.246=
0.250=
0.254?
0.253E
0.-242E
0.266H
0.270=
0.274;
0. 27.35
0.2?25
0 .' 2 ° 6 r
0.290=
0.29i=
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
0,1
01
01
01
01
01
01
01
01
01
;01
01
V
01
01
01
01
01
'01
01
01
'01
01
01
01
01
01
.**
.***«
.«»»*
.***««**
.*******
.»*•***
.»***
.*******
.*******
.******
.**
.»******
.***
.«*«
.*«»****
.***«**
.*«»»*«
******
.******«
*
.»*****
.'**
.**
.*»
.***«***
.*•*
.**
.****
.**
•.*
.'******•
•.,*
.*
'.***•
.'•
.'•
'.*
.**
,.***
**
'*
.*
;.*
'*
t*
'»
*
.*
• • • • •
• • • • •
• • • • •
• • • • •
*** . . . .
* • • • *
* • * • •
****** ....
• * • • *
*** ....
• • • • ' •
* • • • •
**************** * • *
• • • . » •
• • * • *
* • • • *
* • • • *
* * • • »
• • * '• •
***** ....
• • • • •
• • • • • •
• • * • *
• • * '• •
* * *• ' • •
******** . . . .
• • * '» •
• • 1» '• •
* '• • • *
• • ' • • •
• • • • '•
'* '. * *•. . . .
• • -• . •
• '• • *• *
• * • '» •
• '• • • . •
• • * ' • •
• •'•••
• • * • *
. * . . -.
• * • • *
*>*•••
* • » • *
* * • • •
• •>••*
•»"••»
• * • • •
• « • • •
• • * • •
8
12
13
22
31
16
14
40
22
32
18
6
71
.11 .
11
21
19
20
16
36
1 "
119
7
6
P
45
6
8
.14
3
4
Z*
4.
3
5
A
3
.5
.9
;1
.1
3
3
2
,1
1
.2
3
0.293: 01 .*«**««*«»*»***»*«
>************
-------
JOINT STABILITY-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
STABILITY 1
Y-SCALE= 0.10E 02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
t-l °*
to1 0.
U> 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
102E
106 =
110 =
114 =
115E
122 =
125E
130 =
134E
133E
142 =
146E
150E
154E
15" =
162 =
166;
17QE
1745
173E
1°2E
136E
HOE
194 =
198 =
202E
2D6E
210E
214E
213E
22^ =
226 =
230E
23*-:
236 =
242 =
246E
250;
2545
253E
262E
26t =
ijnc
274 =
27"5
2S2E
2B6E
0.29CE
0.
2?4;
0.2935
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.**
.*
.*»*
.*«»*
.4*****
*
.*
.******
.*
.***
.*
.*
.»**»«*»
»
.**
.*
.**
.**»*
«
.*«****
*
.«
*
*
*
*
*
.*
.**
.«*
*
.***
*
«
.*
*
*
*
*
*
*
.*
*
*
.*•
.*'
.*
.«
*
•
•
•
•
•
•
.
•
•
•
,
•
,
•
•
•
.
•
•
•
•
•
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
,
^
•
•
•
•
»
•
•
•
•
•
•
•
•
•
"•
•
•
•
•
•
•
•
•
»
•
«
•
•
«
•
»
•
•
•
•
•
•
•
•
•
•
•
a
•
•
•
•
•
•
•
•
•
•
.
.
.«***«»«*«»*» *»*****«*
2
1
3
4
6
0
1
6
1
3
1
1
7
0
2
1
2
6
6
0 "
1
0
0
0
0
" 0
1
2
2
0
3
" 0
0
1
0
0
0
" 0
0
0
I
0
0
z
2
1
1
0
21
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR; RATIOS
RECEPTOR' 4
Y-SCALE= 0.10E 02
0.123= 01 .****« . . . . . . ., . 5
0.159= 01 .****«***»****** . . . . . . . . . 15
0.215E 01 .***«***************. . . . . . . . . " 19
0.251E 01 .a****************************'**** . . . . . . ..33:
0.307E 01; .*«»«««*********** . ... . . . . . 17
0.353E 01 .******«*********»« .......... 18
0.393= 01 .««***********«•** . . . . . . . . .16
0.445= 01 .*********. .- . . . . . . . __ _ . 9
0.49'lE 01 .***'*«***•»'»«• . " ' ' .- """ . . . . . ^ - --- ^ - ^
0.537E 01 .*•«**«****; ; . . . . . . . . 9
0.593E 01 .«***»****. ..........9
6.629E 01 .«*** . . .• i . ... . . . 4
0.675= 01 .****«»* .-. . . . . . . . ..7
0.721= 0! .*«**»* . . . . . . . . . •__&
0.7S7E 01 ;* . . 4 i ' . . . " . 1
0.912= 01 .«**«* . . i . . . .. . . 5
!_, 0.859= 01 .**'* ..........3
N> 0.905E 01 .«*** . . . ^ . .. . . . *
*- 0.951E 01 .««»* ; . . . . . . . . . . . <•
O.-997'E 01 .****» . . . . . . . _ . 5
OvlCftE 02 .*** i . . '. . . . . r "~ .' " •~>- — 3
OilO?E 02 i«* . .- . . . . . ... . 2
0.113E 02 i* i . . * . . . . . . I
o.iie'E 62 ».i........o
Oil23E 02 .»«** . i . . . . . .••. . 4
0.127: 02 .* . ' i . . . . . . . . 1
0.132=02;** i i . .' . . . '". . "" . 2
Oil36E 02 i«»* .......... 3
0.1-ilS 02 >*«' . ' i . . . . ... . . 3
6.li6E 02 * . t . . . . . . . . 0
0.150E 02 ;*. .• . ^ . . . . . . 1
0.155E 02;* . . . i .. . . . . .1
0.159E 02 i*** • . . . . . . " . """ . " 3
O.Ui= 02* . . i • i . . . ... 0
C.159E 021 • i . • « * . . . . . 0
0.173= 02 * . i < . .'. . . . . 0
6.-17f= 02 .* . . . . . . . . .' . 1
0.132= 02 i* i « . . . . . . . . 1
Oil97E 02 i* . i . i . . . . . " " 1
0;192= 02* i ; . . .. . . . . 0
0;19%= 02* i i . . . . . . . • G
C.2->!E 02 .« . . . . . . . . . . 1
0.205= 02 * . t . . . . . . . . 0
0;21?-; 02* i i i. . . . . . . 0
C.215E 02* . i . i . . . . . . 0
0.219= 02* i . . * . . . . . . 0
0.2'2tE 02* . i i . . . . .. . 6
0.223= 02* . . i ^ . . . . . . 0
6i.23Ic 02* . . . . . . . . . . 0
0.233? 02 .*********** . . . . . . . . .11
-------
JOINT SITE-RATIO FREOUENCY DISTRIBUTION
1 TO 24HR RATIOS
RECEPTOR 3
Y-SCALE= 0.10E 02
0.1235 01
0.1695 01
0.2155 01
0.261E 01
0.307E 01
0.3535 01
0.399? 01
0 ^— ^E 01
0.537; 01
0.5=3= 01
0.629E 01
0.675E 01
0.7215 01
C.7675. Cl
p. 01 3= 01
I-4 0.'59H 01
^ 0.9055 01
0.951E 01
0.997E 01
0.104= 02
0.1CPE 02
0.1135 02
o.ms 02
0.123E 02
C.127E 02
0.132E 02
0.136E 02
0.1ME 02
0.1*65 02
0.150E 02
0.1555 C2
0.1595 02
O.U^E 02
0.169E 02
0.177.E 02
0.173E 02
0.192E 02
0.127E 02
C.192E 02
C. 1965 C2
0.271E 02
0.2055 02
0.2105 02
0.2155 02
C.219E 02
0.22*5 02
0.2295 02
C.2^-3E 02
0.223E C2
* ^
.******* .
.***** .
.*****
.«***********
.********»*******
* *
.** ** •
.****«*** .
.**««*******»
.******* .
»** .
.** •
,*««*«*«****
.«***
.**«**** .
.* .
.*** i
.****** .
* A
.*** .
* .
.**************
* ,
.*«*** .
.** ,
• ** •
.*** .
.** .
* ^
.»**** .
• .
* .
.* .
.* .
.** .
.** .
.*** .
* .
.« .
.**
^*
* .
.* .
.* .
* .
* .
.************•***
G
7
5
5
12
16
11
12
10
4
8
12
7
2
11
4
7
I
3
" 6
0
3
0
1*.
0
2
2
3
2
0
.
0
0
1
1
2
3
0
1
2
1
.0
1
1
0
0
22
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
RECEPTOR 2
Y-SCALE= O.IOE 02
C.123E 01 .*
0.159E 01 .*«**
0.215E 01
0.251= 01
0.307E 01
.****
.****«****,
.****»****.
0.353E 01 .****•«•>*
0.399= 01
O.A45E
01
01
.A*********
.******** .
********* ,
0.537E 01 .******»*»**
o.'ms 01
O.S29E 0!
C.675E 01
0.7?1= 01
0.757E 01
O.S13E 01
O.S59E 01
0.905E 01
0.951E 01
0.997= 01
0.104E 02
0.109= 02
0.113= 02
.**»**
»*.
.«**
.»«**
.«*** ' . " . "
.*«**
.***«*
.*****
.****** . . .
.**
.***•'
.»« .
.**
0.119E 02 .* .
0.123E 02 .***«**•***** .
0.1276 02 .***
0.132E 02 *
0.136E 02 .*
CililE 02 .• .
O.'lAiE 02 .** . i
0.150E 02 * . .
0.155E 02 *
0.159= 02 .«***
O.liiE 02 *
O.IS'E 02 .** .
0.173= 02 .»
0.175E 02 » . .
C.132E 02 .**
6.1-7= 02 .»»
0.192E 02 .***«
0.195= 02 »
0.201E 02 .**
0.2C5E 02 *
0.210= 02 .*
0.215E 02 *
0.219E 02 .»*
0.22AE 02 *
0.2J3E 02 .*
0.233E 02 .*«
0.23?E 02 .»•****•*»»***»**»******»****
9
9
7
10
6
8
11
5
9
3
t,
5
5
6
2
4
2
2
1
12
3
0
1
1
2
0
0
•f
V
2
I
0
2
2
0
2
0
1
0
2
0
1
2
2fc
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
RECEPTOR I
Y-SCAUE" O.IOE 02
0.123E
0.169=
0.215:
0.251E
0.307=
0.353E
0.399=
01^1 =
0.537E
0.5935
0.627E
0.?13E
C.9C5E
O.S51E
0.997E
0. 104E
0.10?E
0.113E
C.113E
0.1235
0.127E
0.132E
0.126E
0.1ME
0.146E
0.15CE
0.155=
0.151E
0. 16^-E
0.1«>9E
0.173E
0.17»E
0.132=
0.137E
0.192E
0. 1955
0.2C IE
0.235E
0.21CE
0.2135
0.219E
0.22*=
0.223E
0.223E
0.233=
01
01
01
01
01
01
01
0 1
01
01
01
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
C2
02
02
02
.***
.*******»***
.***** **********
.******************«
.******4**»***.*****
.****«** .
.***»*:»** ******
.**«*»* .
.*«**«** .
.*****
.***********
.****«****.
.«*«**
.***«*** .
.**•>»«»*»«***
.**
.«*****
.****
.***** .
.**
.**
.**
.«*«**»* ,
* •
.»«*
.*****
.*
.**** .
.***** .
.*
.*»*
*
* •
.*
.*«
.*
.*
.*»
«
.**
.*
.»* .
*
*
*
• " •
.*
.******* .
•
.
.
• ****
.
.
•
*
.
.
*
*
.
.
*
*
.
.
.
.
m
,
e
m
.
.
•
.
.
.
•
.
.
.
.
•
.
.
.
.
.
.
•
.
.
.
,
.
3
11
15
23
13
7
13
6
7
5
11
9
5
7
13
9
i
6
A
5
2
2
Z
7
0
3
5
1
t,
•
•
»
•
•
*
•
•
•
•
»
•
*
•
•
•
•
•
.
1
3
0
0
1
2
1
1
2
0
. Z
1
2
0
0
0
1
1
7
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
RECEPTOR 4
Y-SCALE= 0.9CE 02
228
. . . 182
181
• » • • 286
• • • • 363
• • • • 63
135
. . . 247
138
159
41
19
. 547
. ._._ . . . 23
.... 49
• . . . 67
59
-, - - — .._. . _ v „ - • • • • 103
00 n_i7i.c ni ... . . . . . . .29
. _ . . '_ . 148.
.... 10
. 61
17
• • • • 1
. __ . . 204
... 24
24
0.214E 01 .*** . . . . . . . . .32
0.21SE 01.*. . ... . . . . . .13
0.222E 01 * . . . . . . . . . . 7
0.22SE 01 .******* . . . . ..'. . . . _._6S
0.23CE 01 .* . ... . . . . .""''." 12
C.234E 01 •*..«•••...« 14
0.23'E 01 .**** ..........41
0.242E 01* . . . . . . . .. . 1
0.246E 01 .* . . . . . . . . . . 11
0.250E 01 .** . . . . . . . . . 21
0.254= 01* . . . . . . . . . . 7
0.253= 01 .* . . . . . . . . . .15
0.252= 01 .* . . . . . . . . .12
O.?b6r. 01* . . . . . . . . . . 4
0.27CEGI* . . . . . • . . . . 5
0.274E 01* . . . . . . . . . ....8
0.2735 01* . . . . . . . . . . 1
0.2B2E 01* . . .'. . . . . . . 4
P.2C6E 01* . . . . . . .-. . . 3
C.29CE 01* . . .. > . . . . . 1
0.294= 01* . . . . . • • . . . 1
C.273E 01 .•***»****«*****»**************»*************••***>»*********»************************************» . 879
0.102E
0. 106E
0.110E
0.114E
0.11°=
0.122=
0.12SE
0.130E
0.134E
0.133=
0.142=
0.146=
0.150=
0.154=
0.153=
0.162=
0.156E
0.170=
0.174=
0.173E
0.162=
C.135E
0.190=
0.194E
0.19SE
0.202E
0.20iE
0.210E
01
0 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
.****«««************•**»** . . .
.ft***************:****. '. " ~~'~ t " ~'f
.******»*********»************** . .
.*»»** ****«**« *************************** .
,»««**»* .....
.*************** ....
.********************«****** ...
.»*** . . . .
.** .
.it*******************************************************
.** . .
.*»*** .....
.«****** .....
.****** .....
.**«******** ....
.*** .....
.4*************** ....
.* . . ' ~ " •• . . .
.****** .....
.* . . . ...
.* . . . . .
* . . . . .
.*«*****»**»*********** ...
.** . . . .
.** .
.
*
.
.
*
^
*
•
.
'***
.
.
.
,
»
.
*
.
" »
,
»
.
—
.
.
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
RECEPTOR 3
Y-SCALE' 0.90E 02
0.
0.
0.
0.
.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
102E
105 =
11CE
114 =
122E
126S
134 =
133 =
142E
146 E
150 =
154?
15CE
152 =
155E
170E
174E
173E
1C2 =
135 =
190 =
194;
193 =
202E
2065
210E
214 =
21 3E
222 =
225E
0.220E
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
234E
233 =
242E
245 =
25TE
254 =
253 =
252 =
255E
27CE
274E
27'E
0.2?2E
C.235E
0.290;
0.294?
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.******«******* . .
.«******
• • •
*
.
.*********** . . .-....._.. ^
.*****»********* • • •
.***«*
.*»***»***
.»**«*****
,*** ******
.*****
.***
.
* •• •
• • ' •
• • •
* • •
•
*
•
.
.
.
. *«***4»******»*************«*t**********
.*
.****
.******
.****«
.***«****
.***
.*««««****
.*
.****
.**
.*
.*.
• * *
• • •
• * •
• • •
• • •
• • •
* • •
* » ' »
• • •
• • •
• * •
• • •
.
.
.
.
.
*
.
*
.
,
.
.
.***»«*«********** . . .
.*»
.«*
.*«»
.»»
*
.*****»**
.*
.*
.***
*
.*
.*
*
.*
.«
*
.•
*
• * •
• • •
• • * *
• • •
• • •
• • *
• * *
• • *
• • •
• » *
• • *
• • •
• » •
* * •
• • •
• * •
• * *
• * *
• •
• * *
• * •
• • *
. . •
.
9
m
.
.
.
.
,
.
*
.
.
.
»
.
.
*
m
•
.
.
*
•
«4 #*«*«*««****** a
**«* «****** ******
132
70
102
137
209
52
101
135
86
80
52
28
350
17
44
57
47
73
29
95
14
41
19
16
12
155
20
20
34
IS
6
70
11
12
33
3
9
12
8
13
11
4
13
7
7
5
2
3
4
823
-------
JOINT SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
RECEPTOR 2
Y-SCALE= 0.90E 02
• • • • • • • V fl
• • • • * _• • 2 T
• **••*• 50
• ••••• • Of
• • * * • • • • . 1*»8
• • • • • • • 31
* • • • • * • ? 6
• • • » •_* • 96
• *•*••• 69
• • * * . * • 5 5
....... 26
*. * • • • * • 18
. . 295
_.. • • .,__ • * ,_ • ,' .. . * ... • , 20
• • • • • * • 3 ft
• • * • • » .33
U3 0.170E 01 .******» . . • ." '. \ * " * ! 67
• » • • • • • 1 5
• • • • * • • 88
•••••••10
• • - • • • .• « 18
• • • • • •.• 9
•. '• • • • * • IS
*••*• • • 5
• • • • • • _ • 139
• • * • • . • • 17
• ••••• • 19
• • • • • • • • 20
*•••••• 12
• • • • * • * . 3
• •,• • • * • 39
• ••••*•&
• *••»• • 5
• * • • * • • 16
• •••***0
• • • • * • • • o
• • • • * • * 25
• •••*••*»,
• •••••»9
• ••••••o
* •"» * • • • -2
• ••••••6
• ••• • • • • T
*•••*•• 1
*»*»»#»A
.......9
».•*••••!
• ••••••^»
i***»****o ************* *•?*** ***************»******+***»****» . gt,o
0.102E
0.105E
0.11CE
0.114E
0.119E
0.122=
0.125=
0.130E
0.134E
0.133=
O.K2E
O.liSE
0.150S
0.154=
0.1565
0.142=
0. 14^E
0.170=
0.174E
0.17ȣ
0.132E
0.196=
0.190E
0. 194E
0.19P;
0.202E
0.20SE
0.21CE.
0.214E
0.213E
0.222E
0.224E
0.210=
0.224E
0.23?=
Oi2'2E
0.246=
0.250=
0.254E
0.25SE
0 . 2 5 2 E
0.265E
0.270=
0.274=
0.278=
0.2?2=
0.2Si=.
C.29CE
0.294=
0.293E
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
oi
01
01
01
01
01
oi
bi
01
01
01
01
01
01
oi
01
01
01
01
01
01
01
01
01
01
01
.********** . t
.***
.»***» . . .
.*****«* .
.»*************** . .
.*** ...
.*«**** . .
.**«***»*** , .
.******* . •""'."
.«»»««*»**. f ^
.***
.*• ...
.*»**»*«**********************«**
.** ...
.**** . .
.»«*
.**** . . .
.*«***** ...
.*
.****«****. . .
.* . .'"".'"
.**
.*
.* . . .
*
.a************** • ( .
i* . i i
.**
.** . .
.*
* .
.»»»*«* ...
* • * *
«...
.»* . .
* ...
«...
.** i
* ...
.* » . .
* ...
* ...
* ...
• . . .
* ...
* . . .
.*
«...
*
.**«*« **««**£****************«**.*:
-------
JOI1T SITE-RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
RECEPTOR 1
Y-SCALE' 0.11E 03
0.102E 01 .********************»* . • . . . . . . . 2A3
0.105E 01 .*»«**»*********** ... . . . • . . . 190
O.llOE 01 .****************» . . . . . . . . 187
0.114E 01 .****»***************** ........ 2*8
0.11?= 01 .*******»***«»«********»******** . . . . . . . 344
0.122E 01 .**•»«*«* . . . . . . . . . 7F
0.126= 01 .****»****«** ......... 140
0.1305 01 .****«************ . . . . . . . . ._192
0.134E 01 .«**»»**»*. . . . .'"''.. . . . . 103
0.133= 01 .«*«********* ......... 137
0.142: 01 .****** . . . ... . . . . .68
0.1465 01 .*** ......... ~. 39
0.15CE 01 .****«*«******»*****************•*******. ...... 437
0.154= 01 .*** . . . . . . . . . __•_!. 4°
0.159E 01 .**** . . . ' . " . " ' . " .' ' . " 54"
0.162E 01 .****** . . . . . . . . . '. 68
0.146= 01 .****** . . „ . . . . . . . 68
0.170= 01 .*«**»* . . . . . . . . ... 76.
0.174= 01 .*«* . . . . . . . ... '.V2
0.173E 01 .*********** . . . . . . . '• _ _ 122
0.1?2E 01 .* . . . . . . . "" . "" ~ ". " ". ' 15
0.1»6E 01 .*«** . . . . . . . .. .51
0.190= 01 .** . . . . . . . . . 29
0.194= 01 .** . . . . . . . . .23
0.19?= 01 * . . . . . . . . . 8
0.202= 01 .«***********»***** . . . . . . . . . 201
0.206= 01 .*........ ."" . " 20
C.21CE 01 .*** . . . . . . .'. . .35
0.2145 01 .**** .. . . . . . . . .53
C.21SE 01 .** . . . . . . . . . .23
0.222= 01 .* . . . . . . . . . ' 11
0.226E 01 .*«***** . . . . . . . . . .78
0.23CE 01 .* . . . . . ' . . . . .' ' . " " 15"
0.:34= 01 .« . . . . . . . . .12
0.239= 01 .** . . . . . . . . .30
0.2425 01* . . . . . . . .-. . 5
0.246= 01 .* . . . . . . . .20
0.250E 01 .*• . . . . . . . . . . 22
0.254= 01* .-. . . . . . ... " "." " 5
0.2535 01.*. . . . . . . . . .11
0.262= 01 .** .. .. . . . . . . 22
0.266= 01* . . . . . . . . . ,'f
0.270= 01* . . . . . . . . . . 5
0.274E 01* . . . . . . . . . .10
0.2735 01 * . . . . . . . . . <,
0.2325 01* . . .. . . . . . . 8
C.2365 01* . . . . . .. . . . 6
C.29QE 01* . . ... . . . . . . 6
0.294= Ql * . . .... . . . - . 6
0.2735 01 .*******»******************4******»***********************************»»****«*********»***4** . 1017
-------
JOINT WINDSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 2
-------
JOINT VINDSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 2VHR RATIOS
WISDSPEEO CLASS 4
Y-SCALE= 0.10E 02
u>
0.123E 01 .
0.1b?E 01 .
0.215= 01 .
0.2S1E 01 .
0.307E 01 .
C.353E 01 .
0.399= 01 .
0.44 5= 01 .
0.4=1= 01 .
0.537= 01 .
0.5?3E 01' .
C.S29E 01 .
0.675= 01 .
0.721E 01 .
0.7S-7- 01 .
O.M2E 01 .
C.?55£ 01 .
e.9C5= 01 .
0.951= 01
0.997= 01
0.104E 02
0.109= 02
0.113E 02
0.11?= C2
0.123= 02
0.127= 02
C.132E 02
0.13SE 02
0.141E 02
0.145E 02
0.150E 02
0.1-55= C2
0.15?= C2
0.154= 02
C.169E 02
C.173E 02
0.173E 02
0.132E 02
0.1?7E 02
0.192= 02
0.195E 02
0.2CIE 02
0.205= 02
0.210= 02
0.215= 02
0.219E 02
0.22i£ 02
0.223= C2
0.233= 02
0.2J5E 02
*
*******
*****
*******
**
****
***
**
**
*•*
*
*
*
*
**
*
*
***
*
**
*
,«****•
I
7
5
6
2
1
5
1
it
3
3
1
3
1
1
1
1
2
1
0
1
0
0
0
3
0
0
1
2
0
0
0
"o
0
0
0
0
0
1
0
0
0
'0
0
0
0
0
0
0
6
-------
JOINT WINDSPSEO RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
WINOSPEED CLASS 3
Y-SCALE= 0.10E 02
0.123E
0.169E
0.215E
0 • 26 IT
C» 337H
0 • 3 ^^ —
0 • t*t* 5^
C • **? 1 E
Oc-a 7 c
• ~ j f -
0.^33=
0. VT9E
0.675?
0.721=
0.7i7E
0.3135
0.359=
0.9C-5E
0.951E
0.9975
0.1P4E
0.109=
0.1135
0.1135
0.1235
0.127=
0.122=
0.136=
0.141=
0.1465
0.15C5
0.155=
C.159E
0.15.4 =
O.li?5
0.173=
0.179=
0.1325
0.137=
0.1925
0.194=
C.2715
0.2055
0.2K.5
0.215E
0.21°E
0.224=
0.22?=
0.233=
C.2?35
01
01
01
Cl
01
01
01
A 1
0 i
f* 1
V I
01
01
01
01
01
01
01
01
01
01
02
02
02
C2
02
C2
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
0?
02
02
02
C2
02
.*»*** .
.****««****
.»**«******
. * ***
.**«**********
.»«*»*«* .
<*«i»-<*4*******4***
..H.,0 ,
.* .
.*»
.***
.»«***** .
.«***»* .
.****
.**** .
.» .
.** .
.**
* .
.***********
* .
.«**
.***
.*
.«**
.* .
» ^
.»**« .
* .
.* .
.* •
* .
.*••
.***
.* •
* .
.*
.« .
.* .
* ^
* .
* .
.«*
* .
.4«**4#*t **6«*
•
l!>
•
•
I
•
m
.
,
.
.
.
.
.
*
*
.
.
*
.
.
*
.
.
.
*
*
.
.
.
.
»
*
.
.
.
*
*
.
.
m
.
«
A
«
,
5
10
10 "
20
18
IP
10
13
12
9
7
IP
5
1
2
3
7
6
4
4
1
2
2
0
11
0
3
3
1
3
1
0
tt
0
I
I
0
3
1
G
1
1
1
0
0
0
2
0
13
-------
JOINT HINDSPESO RATIO FREQUENCY DISTRIBUTION
1 TO 24HR RATIOS
WINDSPEEO CLASS 2
Y-SCALE= 0.10E 02
u>
0.123E
0.150=
0.215=
0.251E
0.337E
C.399E
0.445E
0 .49 1 E
0.537E
C.5?3E
0.629E
C.&75E
f> 7 7 1 C
0.?13E
0.959H
0.905E
0 • 95 1 E
C • 9975
01 '"li.t
• i j ** _
C.109E
0.113E
0.113E
0.123E
0.127=
0.132=
C.13i=
0.141=
0.146=
0.15CE
0.155=
0.15)=
0.164E
0.169=
0.1775
0.173E
C.1?2E
0.137=
0.192E
O.lrfE
0.201=
0.205E
0.21CE
0.215=
0.21°=
0.224=
0.228=
0.233=
0.23°,?
01
Cl
01
01
01
01
01
01
01
01
01
01
p 1
V 1
01
01
01
01
01
0 1
D ">
v £.
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
C2
02
02
02
02
02
02
02
02
02
02
02
02
* . . .
.************ . f
.*«******************»* .
.********«»**»********** .
.**i**»*<,«*0 *«**»»»****»«*****»**
,«*«**********«**»***«***«* m
.*««***»***«*****«***** .
.*********** . »
.******** . . .
.************** . .
.**»****«***«* . .
.**** . . .
4***#*«*«****«#*4t***ft #
,9**«L**
-------
JOINT HINDSPEEO RATIO FREQUENCY DISTRIBUTION
1 TO 2*HR RATIOS
CLASS i
Y-SCALE= O.IOE 02
OJ
ON
0.123E 01
0.169= Cl
0.215= 01
0.261E 01
0.3075 01
0.353? 01
0.399E 01
0.<-iSf 01
C.*91E 01
0.537E 01
0.5B3E 01
0.429= 01
C.475E 01
C.721S 01
0.757= Cl
0.513= 01
O.S59E 01
0.905= 01
0.951E 01
0.997E 01
0.104E 02
O-l^TE C2
C.H3E 02
.* .
.»»«*«* .
.***** .
.**»«********«*»
.****
.**«*«*«**.
.***«*»***.
.«**«
.***» .
.*«**«** .
.***««»** .
.*** .
.*»
.**********
.***** " .
.«*«*
*
.«**
.***
.*
.««*
0.123= 02
0.127E 02
0.132= 02
.******»
*
.***
0.135E 02 .**«
0.1*15 02 *
0.1*4= 02 .**«»
O'.ISOS 02 .***
0.155= 02 .*
0.159= 02 .***
0.144= 02 *
0.169= C2 *
0.173E 02 *
0.170= 02
C.l«2= 02
02
0.197E
0.192= 02
O.l'iE 02
0.201? 02
0.205= 02
0.210=
0.215=
0.219=
0.224E
0.223E
0.233=
*
.'*
.**
.«**
*
.*
.*
C2 *
0.233E 02 .******«**********
.. -
5
15
*
9
9
*..
*
7
8
3
2
5
7
10
5
<»
0
3
3
1
3
O
7
0
3
3
Q
3
1
3
0
0
0
0
1
2
3
C
. 1
C
0
0
1
1
0
1
17
-------
JOINT WINOSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 3HR SATIOS
WINDSPEED CLASS 5
Y-SCALE' 0.10E 02
0.102=
0.106=
01 1 f\ —
• i iur
0.114=
0.122=
0.126=
C • 1 3 OH
0.134E
0.123?
0.142=
0.146E
0.15CE
0.154=
0.15<»e
C.1625
0.166E
0.170=
0.174=
0.175=
0.192E
0.136=
0.100=
0.1949
0.193=
0.202=
0.206E
0.21CE
0.214?
0.219=
0.222=
0.226=
C.23:'E
C.234E
0.239E
0.242-
0.246=
0.250=
0.254=
0.2535
0.262E
0.266=
0.27C:
0.274?
0.279=
C.2°2=
0-236=
0.290=
0.2?4=
0.2'25
01
01
f\ 1
'J I
01
01
01
0 1
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
.»********
.*******»*
.*«*******
*
.*»»**(.*
.****
.*«•*»*
.**
.**
.«**»*****
.*
.*«»**
.***
.»«**
.»»
*
.«**««
*
.*
*
.*
*
.**«**«***
.**
.*«
.«****
.*
.*
*
*
*
.*
*
*
.*
*
*
.»
*
.«
*
*
.•
.*
.**
«
.«**»***a<
»**«** *»«****<
**»**«*** .
***«***• .
. •
. .
• •
• .
******»•**«» »l
, ^
• •
• •
. «
. .
• .
• ' •
• •
• .
, ^
» «
. •
******»***«**:
• •
• •
• .
• .
• .
. .
. .
* .
• «
• •
. .
. . •
• .
. *
• .
, • .
. .
. .
. •
• •
.
. •
. .
i«**e*«e*»**«*
>*******<
•
.
•
.
*
. .. . •
«
.
.
k* ******!
.
•
.
.
.
.
.
" .
.
.
.
.
»**»»***
.
.
.
.
.
.
.
.
.
.
.
.
•
*
.
•
.
.
.
.
.
.
.
**•«*«*»
47
18
17
17
20
0
7
. 18
4
6
2
2
55
1
5
3
A
2
0
5
0
1
0
1
0
30
2
2
5
I
1
0
0
0
1
c
0
1
0
0
1
0
1
0
0
1
1
2
0
60
-------
JOINT WINDSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
HINOSPEED CLASS A
Y-SCALE = 0.30E 02
0*102E
C.176S
0 • 1 1 0 E
0» 1 14;
0.113=
0.
C.
•
C.
C.
0.
0.
0.
"" 0.
0.
0.
ft
M. ?•
UJ C-.
oo c .
' 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
122E
124E
i ^ ri c
1 j 1. 1
133?
i 4">c
1445
150 =
154?
153E
14-??
H6C
1 7 ^C
I / Ji
174 =
132 =
134?
190 =
194 =
193E
2^2=
204 =
210?
214:
219E
22!>E
225 =
2305
234 =
233?
242E
244 =
25C?
254?
0.25<3?
C .
242?
0.264=
0.270=
0.274=
0.279=
0.2?2=
0.234=
0.290=
0.294?
0.293=
01
01
0 1
ft 1
O I
01
01
0 1
ft 1
V 1
01
01
01
01
01
01
01
01
01
f\ 1
J 1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
Cl
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.•I****************************** , . .
.****>*************«*«*« ....
.tteta** 3««»/>**3:»e4«*** ******************** > .
.*****«*
•
,*»**»«***
_»»««»«»»»
.**»
.*•
.
....
**»* . . . .
**** • • . .
.....
.....
•
*
\
.
.
.
.»»**«»»*****«*«*»***«»***««*»»*»*******»**»**»****»**»**•**.
.**
.***»»
.**«*»
.*»»*«
.44*
.**
.**
.*
.«•
*
. . . . .
. . . . .
.....
.....
.....
.....
.....
• ....
.....
.....
.....
.....
.
.
.
•
.
*
.
.
.
.
.**»*•***»«****»** . . . . .
.*
.*
.»
*
*
. . * ' « .
.....
... . . .
.....
.....
.
.
.
.
.
.**«*«***** . . . . .
.*
*
.*
*
.•
.«
*
.*
.*
*
.*
*
*
*
*
*
*
. • . . .
.....
. . ... .
.....
.....
.....
.....
* . . . . •
.....
.....
.....
.....
.....
.....
.....
.....
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.««*••«»»***»»«**«»•«»»»*»**«*?«****»«**»**»**»***»**«*****»*
97
71
53
P9
127
21
45
55
39
41
10
7
176
7
15
17
15
24
10
29
6
6
4
6
1
51
»t
5
A
I
C
32
3
0
i,
O
J.
3
I
C
3
0
0
1
2
0
C
Z93
-------
JOINT WINDSPEED RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
PEEO CLASS 3
Y-SCALE* 0.10E 03
224
142
187'
257
331
7*
131
209
132
143
60
33
487
21
51
71
67
89
21
VO _
" ' ' ' " "" ' 13
i.9
17
18
e
213
20
33
37
16
9
70
10"
13
35
5
17
23
5
13
19
.6
7
9
5
8
3
5
2
972
0.102E 01 .******«*****»********* .
0.1C6E 01 .**»*«*********
0.110= 01 .«****«***»**»***** . .
•
•
•
C.119E 01 .****»******»*»******»**«***»****» .
0.122= 01 .**«***« .
0.126? 01 .«************
•
.
•
•
•
•
0.130? 01 .*»****************** . .
0.134E 01 .**«********»*
0.133? 01 .*********»»***
C.142? 01 .******
•
»
*
•
•
.
•
*
.
0.145r 01 .**« . . . .
0.154= 01 .** ....
0.153= Oi .*****
0.162= 01 .******* ,
0.166= 01 *******
0.170= 01 .******** .
0.174= 01 .**
0.173= 01 **************
0.1?2E 01 .*
0.186£ 01 .****
0.190= 01 .*
0.194= 01 .*
0.19?= 01 *
*
.
*
.
•
.
•
•
•
•
m
•
•
^
.
•
•
•
•
»
•
•
.
•
.
•
•
. *
•
•
•
•
•
0.2C2E 01 .********************* . %
0.206= 01 .**
0.210= 01 .***
0.214= 01 .***
0.21*E 01 .*
0.222E 01 *
0.226= 01 ******** .
0.23CE 01 .* . ^
0.22-= 01 .*
0.235= 01 .***
0.242E 01 * •
0.2A6E 01 .*
0.250= 01 .**
0.25^E 01 *
C.253E 01 .*
0.2*2= 01 .*
0.2*6= 01 *
0.27Cr 01 *
0.274= 01 *
0.275= 01 *
0.292= 01 *
0.2?6E 01 *
0.29CE 01 *
0.29i? 01 *
0.2? 5? Cl .***** ******* ******
•
•
*
•
•
*
•
•
•
•
•
•
•
•
•
.
,
•
•
.
.
•
.
********
•
•
.
•
*
•
•
•
•
•
•
•
•
•
•
•
.
•
.
•
.
•
*
»*******i
»
•
»
*
•
*
•
*
•
•
•
•
•
•
•
•
•
•
•
m
•
.
.
****************
-------
JOINT WINDSPEEO RATIO FREQUENCY DISTRIBUTION
1 TO 3HR RATIOS
WINOSPEED CLASS 2
Y-SCALE= O.liE 03
0.
0.
0.
0.
0.
0.
0 .
0.
c •
.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
r .
6.
0.
0.
0.
c.
c.
0.
0.
0.
102E
105 =
HOE
H4E
USE
122E
126E
130E
134E
1 1 P C
1 J y ~
142E
144E
150E
154E
153E
1S2E
155?
17CE
174 =
17SE
152E
1P4E
190E
194E
199E
2C2E
204E
210E
214 =
219E
222E
225E
230E
234 =
22?E
242E
246E
250E
254E
25EE
2S2 =
2S4E
270E
274E
273E
0.2-2?
0.2?St
0.290E
0.294E
0.295E
01
01
01
01
01
01
01
01
01
f\ 1
U I
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
.»***»»*«***»»«*
.**»***«****
.«***********
.*******»***** ****
• . . • . • • . .
• ••••••••
• . • . . .'• . .
• •«••••••
.«? tt3f»*4*****«*«********* ,. m e p ^ f m
.*»»*** .
.**»«*************
.**«*
.**
.
• ••*«»»««
• ••*.•.»•
• ••••••.•
. . .'. • » . . •
.........
.**]**«*««***«*******«******************«• ......
.** .
.«*«»*
.»*****
.**»**
.*********.
.**«
.t**«* A*******
.«
.**«* .
.*•
.**
•
.*»****************
.**
.«*
.»*** .
.**
*
.»***«»»* .
.« .
.*
.««* .
* .
.•
.*•
* .
.*
.» .
* .
»
* .
*
»
*
*
• .
• ••••••••
• ••••»«••
« . . . . . . . .
. . . . .. . . .
.........
« • . . . . .. .
• •«««••••
.........
• »•*•••«•
• • ••• • • • • •'
• • • ••• * - . . • . ' •
• ••••••••
• » • . . • . . .
. • • • . . ... •
• • • . * • •,.*•
• • . « • «. • • •'
• ••••*•»•
• ••»•*•«•
• . . ... . . . .
• ••••• •••
• • • « ••• . • •
*•••«••••
• • • . • • ••• •
• •• • • * • . •'•
.........
• •••«••••
• • • .'* • . • •
• . • . .*. • . •
• ••»«»»••
• •••*«••«
.....«••«
• ••••••••
..••••»••
. . . • . •• . . .
.»••*••••
.........
.»««**»**** ****************************** ********** ******** *««**** ««*«****»« ft******************** .
254
176
203
265
427
S6
19 1
152
195
75
45
657
45
64
105
90
152
75
217
23
79
37
33
10
294
42
39
64
33
14
133
22
22
57
9
18
39
12
IB
19
9
13
13
3
11
B
3
11
1556
-------
APPENDIX B
DEVELOPMENT OF SOURCE PARAMETERS FROM FPC FORM 67
Source data for the first two model validation runs was taken from FPC
Form 67. The average monthly source strengths for SO. in 1971 were
determined from the plant fuel consumption data given below:.
Month
January
February
March
April
May
June
July
August
September
October
November
December
Oil consumption (1000 Bbls)
558
240
429
487
462
185
504
513
466
484
380
432
Avg.% sulfur
2.02
1.87
2.07
1.89
2.05
2 10
2 09
2 02
1.91
0.90
0.99
0.89
141
-------
Fuel consumption figures were converted from units of 1000 bbls to g/sec
as shown in this example for the month of January.
558000 bbls 42 gallons 7.88 Ib 454g 3.7336 x 10"7 month
month x bbls x gallon x Ib x sec
= 31303
sec
SO- emissions were then found by multiplying the sulfur content percentage
by 1.998 (the ratio of S02 to S molecular weight) and then applying this
percentage to the fuel consumption rate.
31303 -S- x 2.02 x 1.988 x 10"2 = 1263.4 -&- (S00)
sec sec 2
The following plant operating characteristics were also obtained from
FPC 67 data.
Stack height 298 ft = 90.83 meters
Stack diameter 216 in = 5.49 meters
Exit gas velocity /at 100% load \ = 87.7 -&• =26.7 -2-
J ' sec sec
at 75% load I = 64.5 — - 19.7 J£L-
sec sec
at 50% load = 40.3 — = 12.3 -2-
sec sec
Since it was indicated on the form that the average boiler capacity
factor for the year was 75 percent the second of the three exit
velocities was chosen for the model runs.
142
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO
EPA-45Q/3-75-083
2.
3. RECIPIENT'S ACCESSIOI*NO.
4. TITLE AND SUBTITLE
Comprehensive Analysis of Time-Concentration
Relationships and the Validation of a Single-Source
Dispersion Model ; •
5. REPORT DATE
March 1975
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Michael T. Mills, Frank A. Record
8. PERFORMING ORGANIZATION REPORT'NO.
GCA-TR-75-4-G
9. PERFORMING ORGANIZATION NAME AND ADDRESS
GCA/Technology Division
Bedford, Massachusetts 01730
10. PROGRAM ELEMENT NO.
2AC 129
11. CONTRACT/GRANT NO.
68-02-1376, Task Order No..5
12. SPONSORING AGENCY NAME AND ADDRESS
OAQPSj Environmental Protection Agency
Research Triangle Park
North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report presents an analysis of SO? time concentration relationships in
the vicinity of a power plant and a validation of the EPA Single Source model
using concentration and meteorological data collected in the same area. The
concentration relationships studied were peak 1-hour to average 3-hour and peak
1 hour to average 24-hour concentration ratio distributions and the effect upon
the statistics of'these distributions of variables such as wind speed, atmospheric
stability, hour of the day, and peak 1-hour concentration itself. The principal
finding of the validation exercise was that the model underpredicted S02 concen-
^trations for all 4 receptor locations in the study area. The agreement between
'measured and calculated concentrations was not noticeably improved by the use
of more accurate and detailed emissions and meteorological data bases. Although
the model predictions were improved somewhat by the inclusion of plume rise
retardation effects due to the plant structuret, the model appears to under-
estimate the degree of lateral plume spread.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
18. DISTRIBUTION STATEMENT
Release unlimited
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
20. SECURITY CLASS (Thispage)
Unclassified
152
22. PRICE
EPA Form 2220-1 (9-73)
------- |