EPA-450/3-76-010
November 1975
SOURCE SAMPLING
RESIDENTIAL FIREPLACES
FOR EMISSION FACTOR
DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
-------
EPA-450/3-76-010
SOURCE SAMPLING
RESIDENTIAL FIREPLACES
FOR
EMISSION FACTOR DEVELOPMENT
by
W.D. Snowden, D.A. Alguard,
G.A. Swanson, andW.E. Stolberg
Valentine , Fisher & Tomlinson
520 Lloyd Building
Seattle, Washington 98101
Contract No. 68-02-1992
EPA Project Officer: Thomas Lahre
Prepared for
U . S . ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
November 1975
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are available
free of charge to Federal employees, current contractors and grantees,
and nonprofit organizations - as supplies permit - from the Air Pollution
Technical Information Center, Environmental Protection Agency, Research
Triangle Park, North Carolina 27711; or, for a fee, from the National Technical
Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by Valentine,
Fisher & Tomlinson, Seattle, Washington 98101, in fulfillment of Contract No.
68-02-1992. The contents of this report are reproduced herein as received
from Valentine, Fisher & Tomlinson. The opinions, findings, and conclusions
expressed are those of the author and not necessarily those of the Environmental
Protection Agency. Mention of company or product names is not to be considered
as an endorsement by the Environmental Protection Agency.
Publication No. EPA-450/3-76-010
11
-------
TABLE OF CONTENTS
SECTION TITLE PAGE
I INTRODUCTION j_
II SUMMARY 1
III DISCUSSION OF EMISSION FACTORS 2-12
IV PROCEDURES 12 - 20
PARTICULATE SAMPLING, CLEAN UP AND ANALYSIS,
POM SAMPLING, REFERENCE PITOT, INTEGRATED GRAB
BAG GAS SAMPLING, PARTICLE SIZING, FUEL DENSITY
AND MOISTURE CONTENT, WOOD WEIGHING AND FIRE
STOKING, GAS ANALYSIS
V APPENDIX 21 - 172
A. SELECTION OF THE REPRESENTATIVE FIREPLACE 22 - 23
WITH STATISTICAL CALCULATIONS
B. TABULATION OF THE RATIO OF BACK HALF CATCH 24
TO FRONT HALF CATCH
C. THERMAL CONDUCTIVITY GAS CHROMATOGRAPHY, GRAPH 25
D. INFRARED SPECTROPHOTOMETRY, GRAPH 26
E. POM QUANTIFICATION, TABLE 27
F. ENERGY BALANCE, % EXCESS AIR, CALCULATIONS 28 - 36
G. PARTICLE SIZING, CALCULATIONS AND GRAPHS 37 _ 47
H. VELOCITY CORRECTION COEFFICIENT, CALCULATIONS 43 - 50
I. WOOD BURNING RATES, TABULATION 51
J. AUXILIARY ATMOSPHERIC EMISSION DATA 52
K. COMPUTER PRINT-OUTS OF PARTICULATE EMISSION 53 _ 81
DATA WITH CALCULATIONS AND TERMINOLOGY
L. FIELD DATA SHEETS 82 - 172
-------
LIST OF TABLES
TABLE NO. TITLE PAGE
I SUMMARY OF EMISSIONS AND BURNING CONDITIONS 4-5
II COMPARISON OF O>2 RESULTS 9
III SUMMARY OF GASEOUS EMISSION CONSTITUENTS 10
IV FUEL CHARACTERISTICS 12
V REPRESENTATIVE FIREPLACE MEAN DIMENSIONS AND 22
95% CONFIDENCE INTERVAL
VI AUXILIARY FIREPLACE EMISSION DATA 52
LIST OF FIGURES
1 AVERAGE FIREPLACE PORT LOCATIONS 3
2 VALENTINE, FISHER & TOMLINSON STACK GAS SAMPLING 6
TRAIN WITH BACK-UP FILTER
3 ATMOSPHERIC EMISSION VARIATION WITH BURNING 7
CONDITIONS
4 ADSORBENT SAMPLING SYSTEM 15
5 IMPACTOR PARTICLE SIZING TRAIN 17
-------
VALENTINE, FISHER & TOMLINSQN
CONSULTING ENGINEERS
A.ซ.H.It.A.B..A.A.A.ซ.. C.A.M.B.. I.B.*.
S20 LLOYD BUILDING (20ซ) 623-0717
SEATTLE, WASHINGTON 98101
WM. M. VA^NT.NE. M.E. ASSOCIATES:
ARTHUR K. r,SHER. M.E.
CEORGE D. TOML.NSON, E.E. Dซป""8 *'
HENRY U. ROYCE. IL.UUM.
SH. ASSOCIATE, WHJJAM T. MCOONAUO
WAYNE A. HANSON, M.E. OEAN A. HANNIO
DOUOUASW.*A*eOE.E.E. *OซEI* C. HUNTUEY
F. "CHIC" CICCHETTI WESIJTY O. SNOWDEN, *.E
I. INTRODUCTION INORU J. I-RIMUANI. M.E.
This Atmospheric Emission Evaluation was conducted on an "Average Fireplace"
located in the Seattle area for use in the development of an Emission Factor
for residential fireplaces, EPA Contract No. 68-02-1992. This Project was
funded by the United States Environmental Protection Agency's National Air
Data Branch, Technical Development Section, with Messrs. James A. Southerland
and Tom Lahre serving as advisors during the entire evaluation. Messrs.
David A. Alguard, Gregory A. Swans on and William E. Stolberg, of Valentine,
Fisher & Tomlinson, served as project leader and colleagues respectively.
The field sampling was performed during the period of July 29 through August 20,
1975.
Area wide emissions can be projected from the enclosed point source emissions
factors by establishing the number and use frequency for residential fireplaces.
II. SUMMARY
The average pollutant mass rate was found to be 76.1 grams/hour and the grams
of particulate per kilogram of wood burned was found to be 10.4 grams /kilo gram.
The average particle size was 3.0 microns. 66. 3Z of the particulate was
condensables caught in the back half or impinger section of the Method 5
sampling trains. A back-up filter was used in anticipation of this high back
half catch. All atmospheric emissions reported are calculated using front
half plus back half particulate including the back-up filter. Poor combustion
conditions of considerable excess air was indicated by C02 concentrations of
consistently less than 1.0%.
VALENTINE, FISHER & TOMLINSON
WDS/lae Wesley D. Snowden
Manager, Environmental Services
-------
III. DISCUSSION OF EMISSION FACTORS
The representative fireplace in the Seattle area was prepared for sampling
as shown on Figure 1. The selection of the representative fireplace is
discussed in Appendix A. A total of 24 samples consisting of 18 EPA Method 5
samples, 3 polycyclic organic material (POM) samples and 3 particle sizing
runs were collected from the selected fireplace. Sampling was performed
using alder, pine, douglas fir, locust and coal as fuels. Coal was not
included in computing final average emission parameters because of its current
low frequency of use.
A summary of emissions and burning conditions is presented in Table I.
Sampling was conducted under three burning conditions of start-up, stable,
and smolder. Start-up conditions were present just after building the fire.
The flue gas temperatures were rising during this condition. Stable conditions
were present when the fire had reached a constant combustion rate. The flue
gas temperatures were at a constant level during this burning condition.
Smolder conditions were present when the fire was no longer stoked. Since no
fuel was being added during smoldering, burning rate was decreasing. Flue
gas temperatures dropped throughout the smolder condition.
Emissions reported in Table I are calculated using the EPA Method 5 front
half section plus the back half section which includes a back-up filter. In
addition to the standard EPA-designed particulate sampling train (referred
to generally as Method 5) a back-up filter was added between the dry bubbler
and the bubbler containing silica gel. The sampling train with the back-up
filter is shown in Figure 2. The average back-up filter catch for the
18 particulate runs was found to be 61% as heavy as the front half filter
catch (see Tabulation of the Ratio of Back Half to Front Half Catch,
Appendix B). In four cases the back-up filter catch was more than the front
half filter catch.
Concentrations of C02 reported in Table I were measured by an Orsat analyzer.
Subsequent particulate concentrations corrected to 12% C02 are susceptible
to errors due to the magnitude of correction and the accuracy of the C02
analysis. More accurate determinations of C0ฃ were made by infrared analysis
as shown in Table II.
The data given in Table I shows how three factors affecting atmospheric
emissions were developed during this project. The factors are 7.4 kilograms
per hour wood burning rate (BR), 76.1 grams per hour pollutant mass rate (PMR)
and 11.7 grams emissions per kilogram of wood burned (PMR/BR) . The BR and the
PMR were calculated from the average of fifteen modified EPA Method 5 sampling
runs. From these fifteen runs a 95 percent confidence interval was found for
the BR, PMR, and PMR/BR to be + 1.15, + 11.6 and + 2.3 respectively.
All samples utilized for emission parameters reported in Table I were
collected within 100 + 10% of isokinetic conditions. Stack sampling utilized
3-foot heated glass probes within S type pitobes. A 1/2-inch diameter nozzle
was used to collect all particulate and POM samples. Section IV, Procedures,
describes in more detail the sampling procedure used for this evaluation.
An important emission parameter which allows comparison of the emissions of
various types of wood being burned, is gm particulate/kg wood burned. A plot
of this parameter versus burning condition, Figure 3, reveals that emissions
-------
SXTSUS10U
UQ-SCALS
:^B3ฃPUCฃ. . SAMPLING PORT AOCAT/OA/S
FIGURE 1
ฃ M L
CHECKED:
q 4.5.
Pnpsrtd by:
VALSUTiue. FISHER
Consul ring
57Q LLOYD BlJlLDlUG
SStTTLS,
-------
TABLE I
Summary of Emissions and. Burning Conditions
Fuel 'Type Run
Alder 1
Alder 2
Alder 3
Alder 4
Alder 5b
Alder 6c
Alder Average
Alder Average
Alder Average
Douglas Fir 7
Douglas Fir 8
Douglas Fir 9
Douglas Fir 10
Douglas Fir lie
Douglas Fir
Average
Douglas Fir
Average
Douglas Fir
Average
Locust 14
Locust 15
Locust 16
Locust 17b
Locust 18
Locust Average
Locust Average
Locust Average
*Burning
Conditions
Start Up
Stable
Smolder
Start Up
Stable
Stable
Start Up
Stable e
All
Conditions e
Stable
Stable
Start Up
Stable
Stable
Start Up
Stable
All
Conditions
Start Up
Stable
Start Up
Stable
Stable
Start Up
Stable
All
Conditions
Burning
Rate
Kg/hr (BR)
4.8
7.8
1.9
10.8
9.1
6.2
7.8
7.8e
6.3e
5.7
4.1
8.3
6.7
4.3
8.3
5.5e
6.2e
9.0
6.2
5.2
4.5
5.5
7.1
5.8d
6.5d
Stack
Temp
83
108
67
114
92
9*
m
108e
93e
79
88
83
110
88
83
92e
90e
86
92
82
91
91
84
92d
88d
Stack Gas
Fjlow Rat^e
Std.ซ
11,534
IQ.Sli
8.262
9.242
-*-.-b
12.771
10.39
10,513e
9.889e
12.139
11.715
8.787
11.814
11.737
8. 787
11.889e
11.114*
10.046
11.414
9.918
- -b
12.709
9,982
12.062d
11.022d
pollutant
' Mass Rate
gnu/hr (PMR)
'"" 76.6
46.0
42.2
135 ,4
- .--b
-*,-- c
106
46. Oe
75. Oe
65.7
58.9
72.7
90.2
-. -c
72.7
71. 6e
71. 9e
85.2
78.7
60.4
b
84.2
72.8
81. 4d
77. Id
**Concent-
ration
gm/std.m3
.111
.073
.085
.244
4>
c
.178
.073e
0.128e
.090
.084
.138
.127
-^-c
.138
.104e
.llOe
.141
.115
.102
,-- b
.110
.112
.112d
,117d
C02
0.1
0.6
0.1
0.6
___
0.5
0.4
0.6e
0.4e
0.2
0.4
0.6
0.4
0.5
0.6
0.3e
0.4e
0.4
0.4
0.6
__
0.4
0.5
0.4d
0.4d
**Concent-
ration
gm/std.m3
@12%C02
13.279
1.389
10.211
4.690
b
c
8.984
1.389e
7.392e
5.414
2.322
2.759
3.817
c
2.759
3.851e
3.578e
.430
.397
2.150
b
3.312
1.290
1.854d
1.572d
Pollutant
Mass Rate .
Burning
Rate (PMR/BR)
gm/Kg
16.0
5.9
22.2
12.5
b
c
14.2
5.9e
14.15e
11.5
14.4
8.8
13.5
-c
8.8
13. le
12.05e
9.5
12.7
11.6
b
15.3
10.6
14. Od
12.3d
-------
Table I, Continued
Summary of Emissions and Burning Conditions
Fuel Type
Pine
Pine
Pine
Pine
Pine
Pine
Pine Average
Pine Average
Pine Average
Coal
Coal
Coal Average
All Types h
a) Standard
b) Particle
Run
19
20
21 c
22f
23
24b
12
13
Aver.
- 76 cm
sizing -
Burning
Conditions
Start Up
Stable
Stable
Start Up
Stable
Stable
Start Up
Stable
All
Conditions
Start Up
Stable
All
Conditions
All
Conditions
Mercury 21.1ฐ
see particle
Burning Stack
Rate (BR) Temp
Kg/hr
11.2
14.0
10.0
11.1
9.1
13.6
11. 2e
11. 6e
11. 4e
2.3
2.7
2.5
7.4
C and dry
ฐC
125
109
104
136
105
97
125e
107e
113e
80
74
77
95
Stack Gas
Flow Rate
Std. a
m3/min
11.857
10.986
10.539
8.484
10.727
11.857e
10.856e
11.190e
11.290
11.597
11.444
10.778
Pollutant
Mass Rate
gm/hr (PMR)
80.5
91.4
c
151.5
73.9
80. 5e
82. 6e
81. 9e
69.8
38.8
54.3
76.1
Concent-
ration
gm/std.m3
.113
.139
c
0.298
.115
.113e
.127e
.122e
.103
.056
.080
.119
Concent-
Pollutant
Mass Rate
ration Burning
% gm/std.m3 Rate(PMR/BR)
C02
0.2
0.2
c
l.Of
0.5
0.2e
0.4e
.3e
0.2
0.3
0.2
0.4
<ง12%C02
6.792
8.323
C
3.572
2.755
6.792e
5.539e
5.957e
6.186
2.231
4.208
4.536
gin/Kg
7.2
6.5
13.6
8.1
7.2e
7.3e
7.3e
30.3
14.4
22.4
***!!. 7
sizing results
c) Sampling for polycyclic organic materials (POM) - See Table II
d) Particle sizing runs not included in average
e) POM; particle sizing, smolder and glass front, (if run) are not included in average
f) Glass fireplace screen was used for this run - note higher % C02
g) POM runs are not included in average
h) Coal, POM, particle sizing and glass front runs are not included in average
* Start Up - Initial ignition of fire or fuel addition, increasing combustion rate.
Stable - Constant combustion rate.
Smolder - Tail end of combustion, decreasing combustion rate.
** All values reported from results of modified EPA Method 5; front half, back half
impinger catch, and back-up filter.
***Statistically determined mean from
individual values or PMR/BR. Division
of mean PMR by mean BR is not equal
to the mean of the individual EMR/BR
values due to statistical procedure
for obtaining mean values
-------
HEATED BOX
"S" Type pitot
integral with
TEMPERATURE
UMBILICAL
CORD
FIGURE 2
L
VALENTINE, FISHER & TOMLINSON STACK GAS SAMPLING TRAIN WITH BACK-UP FILTER
-------
30 --
K
25 --
o
UJ
UJ
1
>
20 --
10 --
o
ex.
5: -
1
START-UP
A - ALDER
C - COAL
D - DOUGLAS FIR
L - LOCUST
P - PINE
subscripts identify emission
points from same fire or burn
+
STABLE
SMOLDER
BURNING CONDITION
FIGURE 3
ATMOSPHERIC EMISSION VARIATION
WITH BURNING CONDITIONS
**Emissions were calculated using front half and back half particulate
collected in the EPA Method 5 type sampling train.
-------
are mainly grouped within a range of from 5.9 to 16 grams of particulate
per kg \K>od burned. No general trend of emissions at the various burning
conditions for all species can be observed from this plot. Emissions from
pine wood and alder burning decrease from start up to stable burning while
douglas fir and locust increase. Only one sample was obtained during
smoldering as it was observed during testing that the stack gas opacity was
so low and little fuel was being consumed. In retrospect, more samples
should have been taken during this burning mode. These erratic results
would indicate that emission trends cannot be projected simply from factors
such as wood species and burning conditions. Other factors which might be
included in the final emission factor development might be moisture content
and density of the fuel and temperature of combustion. Also, nebulous factors
such as fire stoking technique and fuel configuration (e.g., split or unsplit)
could cause some variability.
The back half of the EPA Method 5 sampling train (impingers and back-up filter)
caught more particulate than the front half (filter and probe). The back half
particulate catch was an average of twice the front half catch, indicating
that fireplace burning is a partial combustion process releasing a significant
portion of vaporized hydrocarbons (See Appendix B). The back half particulate
catch appeared as a golden coloration of the condenser water and as a similar
color on the back-up filter.
During the field sampling phase of this project, we expected to use
particulate collected in the front half (i.e. probe and filter) of POM
sampling to project a total particulate catch. When analysis was completed, it
became obvious that no general relation between front half and back half
particulate developed as projected (see Appendix B). Consequently, POM
samples are not used in the determination of average particulate parameters.
The flue gas was. analyzed to quantitatively determine various components.
These components are nitrogen (^), oxygen (02), carbon dioxide (C02), carbon
monoxide (CO). Gas analysis and determinations of ^, 02, CO, C02 and dry
molecular weight of the stack gas were performed according to EPA Method 3,
Federal Register. December 23, 1971, Sections 3.2, 3.3 and 4.3 (see Section IV
for procedures).
In addition to in-the-field Orsat determinations of N2, 02, CO and C02,
more accurate determinations were made in the laboratory using gas chroma-
tography (GC) and infrared spectrophotometry (IR). Three runs, 6, 8 and 15,
were selected for the analysis of these parameters. GC methods were used
to quantitatively determine the N2 and 02 values for these runs. CO and
C02 quantities were determined using IR. The values of these emission
constituents can be found in Table III. Non-methane volatile hydrocarbons,
(NMVH), were also quantified (see Table III), using infrared spectophotometry.
Hexane was used as a standard and all results are read as Hexane. The average
NMVH was found to be 4.8 ppm. (See Appendix C for GC graph and Appendix D
for IR graph.)
A good indicator of the accuracy of Orsat analysis is to compare the quantites
of C02 obtained by Infrared (IR) analysis, with those obtained by Orsat
analysis. It can be seen in Table II that the difference in % C02 is significant,
-------
TABLE II
COMPARISON OF C02 RESULTS
Run No.
6
8
15
% C02
Infrared
(IR)
0.63
0.79
0.65
% co2
Orsat
0.5
0.4
0.4
Difference
0.13
0.39
0.25
The lower Orsat measured carbon dioxide concentrations at 0.4% indicates
that combustion of wood in a fireplace is taking place with 4900% excess air
(See Appendix F for % excess air calculation)0 Carbon dioxide was calculated
at 1% theoretically which yields 1900% excess air. In either calculation,
the high excess air quantities indicate that fireplace burning of wood is at
best a partial combustion process.
One sample was taken with a glass front fitted on the fireplace to determine
the effect of reduced air supply to the fireplace. Carbon dioxide was increased
indicating more efficient combustion but atmospheric emissions were not
significantly reduced.
Three POM samples were collected, one each, on alder, douglas fir and pine
fires. POM concentrations in the stack gas averaged 6,946 ng per cubic meter
(76 cmHg and 21.1ฐC dry). The complete results showing each constituent
analyzed is shown in Appendix E. The procedure of POM sampling and analysis
is discussed in Section IV. The total concentration of POM in runs 6, 11
and 21 are shown in Table III.
Three cascade impactor particle sizings were made, (one each), on alder,
locust, and pine wood using a Brinks particle sizer built into the Method 5
type sampling train (see Figure 5 in Section IV). The mean particle sizes are
3.5 microns, 2.2 microns, and 3.4 microns respectively. The average particle
size for the three runs (Nos. 5, 17 and 24) is 3.0 microns. The particle size
samples were collected at 358, 385 and 269% of isokinetic conditions for runs 5,
17 and 24 respectively. These high % of isokinetic values are due to under
sizing of the sampling nozzle. The stack gas velocity was 7.8 feet/sec, at the
point of sampling. The nozzle was sized by previous sampling experience where
approximately 25 feet/sec, is normally encountered. (Procedures of particle
sizing runs are found in Section IV. Calculations and distribution graphs are
found in Appendix G.)
Precautions were taken to maintain uniform burning conditions during sampling.
Stack gas temperatures were revealed during sampling to provide a good indi-
cation of the state of combustion conditions. As stack gas temperatures dropped,
more fuel was added which maintained the stack gas temperature within a
relatively constant range. A "P" type pitot at a single reference point was
utilized to attempt to monitor flue gas flow changes during sampling. The
reference pitot also would have allowed corrections to be made in the flue gas
-------
TABLE III
Summary of Emission Constituents
Concentration
Polycyclic Polycyclic
Organic Organic
Fuel Type
Alder
Douglas Fir
Douglas Fir
Locust
Pine
All Average
R-in
6
8
11
15
21
Burning
Condition
Stable
Stable
Stable
Stable
Materials a
(ng)
166,000
220,000
162,000
183,000
Materials
ng/sitd. m3 b
5,746
7,444
7., 647
6,946
Parameters Obtained by Gas
Chormatography and Mass
Spectopho tome try
%
02
20.2
20.0
20.2
20.1
%
N2
79
79
79
79
PPM
CO
280
405
440
375
PPM
C02
6,300
7,900
6,500
6,900
PPM
NMVHc
4.5
4.7
5.3
4.8
a) See table V for quantification of specific materials
b) Standard - 76 cm. Mercury 21.1ฐC and dry
c) WMVH - Non Methane Volatile Hydrocarbons
-------
flow recorded during traverse sampling if the flow fluctuations would have
been significant. The procedures used in sampling and calculations involving
the reference pitot are found in Section IV. Example calculations of a
velocity correction coefficient (See Appendix H) indicate that three of
the most variable samples required an average air flow adjusted increase of
2.2%. Therefore, the resulting correction in total air flow from the flue
gases for all runs would be less than 2.2%. With this correction so slight,
a correction was not made in reported flows.
A special expanded inclined manometer (24 inches long) was utilized to obtain
precise stack pitot readings. The velocities of the stack gas averaged 2.15
meters per/sec, on 20 runs, with such low velocities the expanded manometer
was most useful.
Wood burning rates, (tabulated in Appendix I), were determined from data collected
during sampling runs. The wood burning rate for all types of wood in the
particulate samples excluding one smolder run and the glass fireplace screen
run was 7.4 kg per hour. Procedures for determining fuel consumption rates are
found in Section IV.
The ultimate heating efficiency of the reference fireplace was determined in
an energy balance found in Appendix F. The efficiency at 70ฐF outside tempera-
tures was determined to be 30%. With lower outside temperatures, this efficiency
will decrease.
The moisture content and density of the fuel consumed during this pro/ject are
found in Table IV. The average moisture content of the wood fuel was 12.5%.
The wood fuel density averaged 0.52 grams per cubic centimeter. The fuel
analysis procedures are found in Section IV.
Two projects separate from this report were previously performed by Valentine,
Fisher & Tomlinson. The atmospheric emission parameters of these projects are
found in Appendix J.
-------
TABLE IV
FUEL CHARACTERISTICS
Dry Density Wet Density
Fuel Type Percent Moisture grams/cc grams/cc
Alder
Fir
Locust
Pine
Coal
12.2
10.6
11.7
15.4
0.43
0.39
0.64
0.36
1.18
0.49
0.44
0.73
0.43
___
12
-------
IV. PROCEDURES
PARTICULATE SAMPLING TRAIN
Stack gas sampling equipment designed by the United States Environmental
Protection Agency, (EPA), Office of Air Quality Planning and Standards was used
on this evaluation. A schematic of the sampling equipment is shown in Figure 2.
Sampling was performed according to the following:
The number of sampling points were determined by considering the number of
duct diameters between obstructions in the duct upstream and downstream of
the sampling ports. The rectangular chimney 8.75 in. x 19.25 inป had an area of
1.17 ft2 and was equivalent in area to a round duct 1.22 ft. in diameter or
by equation 1-1 of Method 1 Standards of Performance for New Stationary
Sources, i.e. 2 (length) (width) or the chimney was equivalent to a round duct
(length + width)
1.0 ft. in diameter. Thus the number of stack diameters downstream from the
damper was 15, and the number of diameters upstream from the chimney top was
1.8. The minimum number of points required would be 10. The actual number of
points selected was 20 to improve air flow measurement and sampling accuracy.
A drawing of the fireplace port locations is shown on Figure 1. The five
ports A, B, C, D and E are spaced 3.85 inches apart and ports A and E are
1.92 inches from the inside wall of the chimney.
Five ports with 4 sampling points each giving 20 points total were required in
order to meet criteria from the Federal Register Method 1 Section 2.2.2. The
ratio of the length to width of each elemental area was 1.76 meeting the 1 to 2
ratio requirements.
Stack pressure, temperature moisture content and maximum velocity head readings
were measured. An EPA designed nomograph was set up using this data and the
correct nozzle diameter was selected using the nomograph.
The sampling train was prepared as follows:
A filter (MSA 1106-BH) was labeled and desiccated for at least 24 hours to a
constant weight and weighed to the nearest 0.5 mg. The filter was placed in a
glass holder and was supported by a glass frit. The outlet side of the filter
holder was connected to the condenser section. 100 miligrams of water was
placed in the first bubbler and second impinger. The third bubbler was left
dry. The fourth bubbler was filled with approximately 500 gram of silica gel.
All four sections of the condenser were then weighed individually to the nearest
0.1 gram and recorded. A back-up filter (MSA 1106-BH) was desiccated for more
than 24 hours to a constant weight and weighed to the nearest 0.5 mg. The back-up
filter was placed between the third and fourth bubblers.
Just prior to sampling, a leak test was performed on the assembled sampling train.
The leak rate did not exceed 0.02 cfm at a vaccum of approximately 24 inches Hg.
The probe was,heated so that the gas temperature at the probe outlet was approx-
imately 2508F. The filter was heated to approximately 250ฐF to avoid condensa-
tion of moisture on the filter. Crushed ice was placed in the condenser section
at the beginning of the test with new ice being added as required to keep the
gases leaving the sampling train below 70ฐF.
-------
The train was operated as follows:
The probe was inserted into the stack to the first traverse point with the
nozzle tip pointing directly into the gas stream. The pump was started and
immediately adjusted to sample at isokinetic velocities. Equal time was spent
at selected points of equal elemental areas of the duct with the pertinent
data being recorded from each time interval. The EPA nomograph was used to
maintain isokinetic sampling throughout the sampling period. At the conclusion
of the run the pump was turned off, the probe was removed, and the final
readings were recorded.
Clean up of the sample train and analysis of the samples were performed according
to the Clean-Up and Analysis procedure found on page 18.
POLYCYCLIC ORGANIC MATERIALS
The Polycyclic Organic Materials (POM) determined by the consulting laboratories
of Batelle Columbus Laboratories, Columbus, Ohio, were sampled as follows:
Sampling was conducted by Valentine, Fisher & Tomlinson's Environmental
Services Team. Sample collection was made at isokinetic conditions at
all preselected traverse points. The sampling system was a modified EPA
Method 5 sampling train using a special POM adsorbent column of Tenax
(see Figure 4). The column was located directly after the heated filter.
Prior to passing through the adsorbent, the gas was cooled to 55ฐC in a
thermostatically controlled circulating water bath. From here the gas
entered the regular EPA condenser section.
Aluminum foil was wrapped around the Tenax column to prevent light exposure.
After sampling, the Tenax column and cooling jacket were removed from the POM
train and sealed with a Solv-Seal cap and a ball-joint stopper. This section
was stored out of light prior to shipment to Batelle Laboratories for analysis.
The tared acid treated glass filter was removed and desiccated until a constant
weight was obtained. The filter was weighed to the nearest 0.1 mg. The
impinger section was weighed and the amount of water collected was determined.
The probe and prefilter connections were cleaned up with brushes and reagent
grade acetone. The washings were transferred to a tared beaker and after
evaporation and desiccation the net weight gain was determined. The filter
and Tenax column section were shipped in padded containers to Batelle for analysis,
Gas chromatographic separation was utilized to quantify the POM constituents.
More detailed sampling and analysis procedures can be found iii "Efficient
Collection of Polycyclic Organic Compounds From Combustion Effluents," by
Peter W. Jones et. al, Paper No. 75-33.3, Batelle Columbus Laboratories,
505 King Avenue, Columbus, Ohio 43201, presented at Annual Meeting of Air
Pollution Control Association in Boston, Mass., June 1975.
llT.ll
P" TYPE REFERENCE PITOT
The "P" type reference pitot was positioned 9" below point C-3 during
each particulate 'and POM sampling runs to correct for total air flow but
sampling revealed the correction to be unnecessary. Reference pitot readings
14
-------
FLOW DIRECTION
RETAINING SPRING
8-MM GLASS
COOLING COIL
GLASS FRITTED
DISC
GLASS WATER
JACKET
FRITTED STAINLESS STEEL DISC-
15-MM SOLV-SEAL JOINT
ADSORBENT SAMPLING SYSTEM
From the Paper: Efficient Collection of Polycyclic
Organic Compounds from Combustion Effluents, by
Peter W. Jones et.al.
FIGURE 4
-------
were made during each sampling point time interval. The method by which the
velocity could have been corrected for a particular run is as follows:
The average square root of all reference pitot readings ratioed over the
square root of each particular reference reading yielded the pitot correction
coefficient for each point on the stack traverse. Each traverse pitot reading
was corrected by calculating the product of the pitot correction coefficient
times the traverse pitot reading. The ratio of the average of all corrected
traverse pitot readings over the average of all traverse pitot readings
yielded the stack velocity correction coefficient. The velocity calculated
from the actual data can then be corrected by this coefficient. (See three
examples in the Appendix).
INTEGRATED GRAB BAG GAS SAMPLING
An integrated sample of stack gas was taken for each run during the evaluation
according to the following method. A probe was inserted into the stack. In
line with the probe was a drying tube which contained glass wool and silica
gel to remove particulate and moisture. This assembly was connected to a
sampling pump inlet. All connections were checked for leaks and the sampling
line was purged. An evacuated flexible aluminized scotchpak (polyvinyl
chloride) bag was then connected to the pump outlet and an integrated sample
was taken at a rate proportional to the stack flow rate.
PARTICLE SIZING
Particle sizing was accomplished using a cascade impactor as set up in the
sampling train'shown in Figure 5.
The Brinks Cascade Impactor consisted of five stages,-each of which
contained a collection cup and a nozzle jet. Particles suspended in the
sample gas passed through the jet and were impacted on the disk. The
amount of particles collected on each disk was a function of the gas
velocity through the jet, the particle characteristics, and the amount
of sample drawn.
The sampling train is set up as in the drawing. The nozzle tip diameter
was essentially the only means of providing for isokinetic sampling.
A 0.125 in diameter nozzle was utilized in sampling. The sample flow rate
was fixed by the pressure drop across the impactor (pressure drop is
determined by the 3rd impactor stage, and its requirements for maximum
collection). With the normally small flow rates, a 0.125 inch nozzle tip
was necessary to prevent under isokinetic sampling (unrepresentative large
particle capture).
The sample train was leak tested under 24 inch mercury vacuum. A leak test
of 0.02 cubic feet per minute was obtained. The probe and the sample box
were heated to 250ฐF. The sample probe was inserted in the process stream
and gas flow through the impactor was started and held near constant until
the end of the test. The vacuum was held constant at 5.0 inches of mercury,
Sampling time was 20, 30 and 30 minutes on runs 5, 17 and 24 respectively.
16
-------
FIGURE 5
OATI
VALENTINE, FISHER & TOMUNSON
CCM'i'Ji.IIMG ENGINCtRS
520 IIOYO BlUG., SEATTLE
6wo.ua
-------
After each test, the sample cups were removed from the impactor with tweezers.
The quantity collected on each cup was determined by weighing to the nearest
0.1 mg after desiccation. Similarly, the quantity of material collected on
the filter was determined. The nozzle, probe and pre-filter connections were
rinsed with reagent grade acetone. The nozzle and probe washers were evaporated
to dryness in a 150 ml tared beaker. The prefilter connections wash was also
evaporated to dryness in a tared beaker. The weight of residue in both beakers
were determined. A blank value for the acetone used was also determined.
CLEAN-UP AND ANALYSIS
Clean-up of the EPA train was performed by carefully removing the filter
and placing it in a container marked Sample # A. Reagent grade
acetone and brushes were used to clean the nozzle, glass probe and
pre-filter connections. The acetone wash was placed in a container marked
Sample # B. The impinger and bubblers were weighed in their respective
containers to the nearest 0.1 gram. The original weights which included
approximately 100 ml water in one bubbler and 100 ml water in the impinger
were then subtracted and the differences added with the water weight gain of
the silica gel. This constituted the amount of water collected during the
run. The silica gel was weighed in a bubbler before and after the run. The
water from the glassware and a water rinse of the glassware were placed in a
container marked Sample # C. An acetone rinse of the glassware and all
post-filter glassware (not including the silica gel container) was performed
and placed in a container marked Sample # D. The back-up filter was
carefully removed and placed in a container marked Sample # E.
Analysis of the samples in each container was performed according to the
following:
Sample # A - Transfer the filter and any loose particulate from
the sample container to a tared glass weighing dish and desiccate
for 24 hours in a desiccator containing "drierite." Weigh and redesiccate
repeating until a constant weight is obtained and report the results to
the nearest 0.1 milligram.
Sample # B - Measure the volume to the nearest 0.1 milliliter.
Transfer acetone washings from container into a tared beaker and
evaporate to dryness at ambient temperature and pressure. Desiccate
for 24 hours and weigh, redesiccate and weigh repeating until a constant
weight is obtained. Report the result to the nearest 0.1 milligram.
Sample it C - Measure the volume to the nearest 0.1 milliliter. Extract
organic particulate from the water solution with three 25 milliliter portions
of chloroform and three 25 milliliter portions of ethyl ether. Combine the
ether and chloroform extracts and transfer to a tared beaker. Evaporate
until no solvent remains at about 70ฐF. This can be accomplished by blowing
air that has been filtered through activated charcoal over the sample. Desiccate
for 24 hours and weigh and redesiccate to a constant weight. Report the results
to the nearest 0.1 milligram. After the extraction, evaporate the remaining
water to dryness and report the results to the nearest 0.1 milligram.
-------
Sample # D - Measure the volume to the nearest 0.1 milliliter. Transfer
the acetone washings to a tared beaker and evaporate to dryness at ambient
temperatore and pressure. Desiccate for 24 hours and weigh to a constant
weight. Report the results to the nearest 0.1 milligram.
Sample # E - Transfer the filter and any loose particulate from
the sample container to a tared glass weighing dish and desiccate
for 24 hours in a desiccator. Weigh to a constant weight and report the
results to the nearest 0.1 milligram.
Blanks were taken on the acetone, ether, chloroform, and deionlzed water
and subtracted from the respective sample volumes. The filter paper used
with the EPA train was a Mine Safety Appliance 1106 BH, heat treated glass
fiber filter mat.
FUEL DENSITY AND MOISTURE CONTENT
Samples of each type of wood fuel were determined for moisture by weighing
samples of each and drying these at 105ฐC. for several days. After cooling
in a desiccator the samples were weighed. This process continued until
constant weights were found. The % moisture was calculated by dividing the
weight lost by the original weight times 100.
The densities of all fuels including coal were determined by weighing samples
of each and then measuring the liquid displacement of each sample. Density
was calculated by dividing the weight by the displaced volume.
WOOD WEIGHT AND FIRE STOKING
Prior to sampling, the fire was built with a weighed quantity of fuel. The
wood was weighed with a spring balance. With this data the fire stoker
would estimate the quantity of wood in the fire at the start of sampling
and record the estimate on the data sheet. As wood was required for the fire,
it was weighed and placed on the fire. The time and weights of the wood
added were recorded on the data sheet. At the end of sampling the stoker
would estimate the quantity of wood left in the fire and would record this
data. Each day of sampling was begun with the fireplace swept out. A hearth
of ribbed cast iron was used throughout the evaluation.
GAS ANALYSIS
On runs 6, 8 and 15, nitrogen and oxygen were analyzed utilizing thermal
conductivity gas chromatography techniques. A 20-foot long 1/4-inch
diameter 45/60 molecular sieve column at 100ฐC and an attenuation of 16 X
was used for this determination. The carrier gas was Helium at 50cc/minute.
A 0.25 milliliter sample was injected into the G.C. Three representative
G.C. peaks per parameter for each run analyzed substantiated the reported
values as measured against standard N and 02 peaks.
19
-------
Carbon monoxide, carbon dioxide, and non-methane volatile hydrocarbon were
analyzed by means of an infrared spectrophotometer with a 10 meter cell.
Standard curves for CO, CO2, hexane and methane were run. The value for
methane was determined for each run analyzed, then subtracted from the
total volatile hydrocarbon value measured as hexane, resulting in the reported
quantity of total volatile non-methane hydrocarbons.
All runs except particle size runs and POM run #21, utilized the hand-operated
Orsat for quantifying oxygen, carbon dioxide, carbon monoxide and nitrogen
concentrations in the stack gas. The samples were collected as described
in the preceding procedure in integrated grab bag. In analysis CO 2 was
absorbed in the first column of the analyzer. The gas sample was passed
through the column several times to insure complete collection. The volume
of displaced gas was recorded. Oxygen and then carbon monoxide were
measured similarily. In all cases of quantifying the gas constituents of
the grab bag sample at least three separate samples were pumped into the
Orsat for separate analysis. Nitrogen was quantified by subtracting the
total percent of the measured gases from 100.
20
-------
SECTION IV
APPENDIX
21
-------
APPENDIX A
SELECTION OF THE REPRESENTATIVE FIREPLACE
WITH STATISTICAL CALCULATIONS
The representative fireplace was selected from a sample distribution of 34
fireplaces. The 34 fireplaces were selected from employees, friends and
relatives of Valentine, Fisher & Tomlinson, Inc. Wider and more statistically
random selection of the fireplaces was limited due to U.S. Government, Office
of Management and Budget solicitation form approval procedures and contract
funding limitations. Valentine, Fisher & Tomlinson is confident that the
fireplace selected is of a representative nature.
The fireplace dimension parameters included in the sample were those considered
to have an effect on the quality of burning in a fireplace. The parameters
included were: (a) area of the fire box opening, (b) cross sectional area of
the chimney opening and (c) chimney height. These dimensional parameters are
illustrated in Figure 6.
From the compilation of the 34 sets of parameters, a population mean was compute
for each parameter. A standard deviation was then computed which was used to
determine a 95 percent confidence interval for each mean dimension. No fireplaci
fit within a 99 percent confidence interval.
Fireplaces were picked which had dimensions which were within the 95 percent
confidence intervals. Three fireplaces were examined more closely and a final
selection was made based on accuracy of dimension, accessibility for sampling
and consent of the owner. The fireplace selected has an opening of 6187 sq. cm,
a chimney cross sectional area of 1087 sq. car- and a chimney height of 4.66 m.
Note that the chimney height was selected so that a 0.46 m extension could be
added and still remain within the 95 percent confidence interval of chimney
height.
Table V
Representative Fireplace Mean Dimensions and 95%
Confidence Interval
Parameter Mean Dimension Confidence Interval
Fireplace Opening 6336 cm2 5865 to 6807 cm
Chimney Opening 961 cm2 832 to 1,090 cm
Chimney Height 4.4 meters 3.87 to 4.97 meters
22
-------
MO SCAL5
FIGURE 6
W.&.
G-i5.
OATtt
'
u
Consulrin
FISHER
BUILDING
-------
APPENDIX B
Tabulation of Front Half to Back Half Ratios
This tabulation of the front half to the back half ratios in 18 runs show the
significance of the back half participate. Also, the back-up filter shows to be
important in this type of sampling.
r>~,. &UF,
/Tar/a,: =
&
.5!.
7
/ 32
^LL^JL.
/o
//
i : i : : j . ! ; :
.0
/ 3
Ma
->
,20_
i..02i.8.
/, 0*7
'22
,047
..<
24
-------
APPENDIX C
. O
-------
.9
Ul
*
10 METE
INFRARED
CELL
SPECTROP
BECKMAN IR-4
SAMPLE
lOTOMETEfi
APPENDIX D
jhfrered Speccrephotemet*
-------
Table V
APPENDIX E
Fireplace Atmospheric Emissions
POM Quantification
POM QUANTIFICATION (ng)
POM quantification is reported in nanograms. The samples were collected by th
methods described in the Procedure section, Page 13.
NAS
Component Notation
Anthracene/Phenanthrene
Methyl anthracenes
Fluoranthene
Pyrene
Methyl Pyrene/ Fluoranthene
Benzo(c)phenanthrene ***
Chrysene/Benz (a) anthracene *
Methyl chrysenes *
Benzo fluoranthenes **
Benz(a)pyrene ***
Benz(e)pyrene
Perylene
-Mehtylcholanthrenes ****
Indene(l,2,3-cd)pyrene *
Benzo (ghi) perylene
Dibenxo( a, h) anthracene ***
Diebenzo(c,g)carbazole ***
Dibenz(ai and ah)pyrenes ***
Coronene
SAMPLE
Alder D. Fir Pine
69-5 76-5 8605
52,450 59,600 52,100
21,300 32,900
16,100 27,200 21,400
18,900 24,700 21,750
17,800 13,400 450
4,300 3,800 2,450
11,900 17,800 7,950
5,300 9,200 28,300
5,400 7,300 3,000
"1,200 8,900 12,400
3,300 9,600 5,650
1,300 2,600 3,050
2,800 3,200 3,000
TOTAL 166,000 220,000 162,000
27
-------
APPENDIX F
ENERGY BALANCE, % EXCESS AIR
In order to evaluate the combustion characteristics and heating efficiency of
the fireplace during testing, calculations were done to determine air require-
ments for burning, % C02ป theoretical heat available, and heat losses from the
fireplace. These calculations are contained in this section.
Combustion calculations were based mainly.on stoichiometric equations of combustic
and. the ultimate analysis of- wood. The heat available for combustion was also
calculated with data from ultimate analysis.
Heat losses from the fireplace were divided into four components. These compo-
nents include: heat lost in exhaust gases, heat lost due to air infiltration,
heat lost from the fire box, and heat lost from the chimney. Each of these
components were then calculated using approximate thermodynamic and heat transfer
equations and techniques.
28
-------
D
y * => / s
. I
Vr O
o - ^
5- -O
ti* O
O = 3 ? 7o
i
;JT?
/
/ //A
o
ib C
uป &
-------
O. (S-j-^
/O.
o/)
/-)/,
2.3 -
sc/=
A
h,
"
3.
30
-------
g c/
y
- -, ]/
/ \^' J _ -
j
C ซ /c u /*ป-/ซ. ^ C C -
31
-------
. 3 - x
(J[)
A/
ec?
- /
X/o 0 - /,'
/
*#**-
*ฐ F
(-075-
rj 'c?/o ^a~r
^P
/'^Q
A
air* *
/Or.
32
-------
2) *"
^fc^
i
hN
')
++-W
c/cry
ซ s /
X1
T
L
r />e 6^x-
^Cf'x 2.S-')=++/V
y
y
o.
o. /7
'
/ S T<
'-> ce.
/ 7
a .
73
-------
e
-------
S.I
is'
\
a * r
y
t Ch'm^ey
/ /
6
o.
O.2.
ATA (300 -
V* Q-7S-
35
-------
^ =
/ O
870+0 i-/l/
,,s I
A
O.30
30 7C e-/V7c/e/7CX
x-o
c/
36
-------
APPENDIX G
Particle Sizing
Particle sizing was performed by a Brinks Cascade Impactor. The samples were
collected and determined by the methods found in the Procedure section, Page 15.
This appendix contains Particle Sizing Calculations, Secondary Data and Size
Distribution Graphs. Field Data and Moisture Determination is found in Appendix L.
CASCADE IMPACTOR CALCULATIONS
VQ - (8465.41)0701^) (Pm) / (Tffl) (TIME) + (22.6417) (VOL,,) / (TIME)
a = (234.0) (/I2) / (/>) (P2)
b = (2.05 x 108) (yu.) (P2) / (/p) (V0) (P0)
Dpc= J a + bDc3 -
V0 =ป Gas flow at inlet to Impactor at 25ฐ C. and 14.7 psia,
cc per second.
Dry gas meter volume at meter temperature and pressure, dry acf
Pm ป Dry gas meter pressure, "Hg
Tm ป Dry gas meter temperature, ฐR
TIME* Sampling time, minutes
VOI^ ซ Volume of water collected, ml
r " Viscosity of gas in impact or, gm / (cm) (sec)
y ป Density of gas in impactor, gm per cc
?2 a Average pressure in impactor, atm.
rn Density of aerosal particle, gm per cc
P /
PO = Pressure at inlet to impactor, atm.
D = Characteristic diameter of aerosol particle for impactor
stage, microns
Dc Diameter of impactor jet, cm.
37
-------
VALENTINE, FISHER &TOMUNSON
CONSULTING ENGINEERS
COMPUTER PR!NT-OUT OF ATMOSPHERIC EMISSION DAT)
JOB NAME
APPROVED.
DATE-
PAGE,
SUBJECT.
OF.
RUN NO.
RUN NO.Z.
RUN
VOL,
TIME
VOLW
2
2 -28
9-813
533
L. (j ,
2
25
757
72
535
30
2-416
29-79
548
30
o 6
54-659056
26
63-217313
1 6
33 - 26G256
ซ
P
i
a
b
DC
Dpc
DC
DC
Dpc
DC
Dpc
DC
Dpc
C 6 0 o 7
0-9963
0-000275
0 0008527
0-9146
0-021645
1555-472020
0-245
4-755430
0- 1775
2-805816
0-1356
1-915043
0-0946
1-005413
0-0731
C 6455 1C
0 6087
C 9 9 3 3
C 000275
0-000861
0-9131
0-021623
1346-744274
G-249
4-415042
C- 1775
2 -601155
C 1 396
1 772527
0-0546
C 5~3 0 4 3 5
0 0731
0-592448
C 6037
0-5956
C 00021
0-OGCS471
! 0-9142
0-012911
.1697-022253
0-249
5-006094
0-1775
2-965012
C 1396
2-037841
0-0546
1-069548
C 0731
C 707805
38
-------
Client
. A .
CASCADE IMPACTOR DATA
Sampling Location AVE"ffAC*L
Date *Ju/\/ 3O j >
Run Number 5
Comments
PARTICULATE
FINAL
(gm)
TARE
(gm)
NET PARTICULATE
(gm)
Cyclone
Stage #1
Stage #2
Stage #3
Stage #4
Stage #5
Filter (I/&-S"
ฃ*" AZ*, -^iVM^^^
r ' f'r^ft^ j( . j
'/o /
TOTALS
MOISTURE
Bubbler (#1)
Impinger (#2)
Bubbler (#3)'
Bubbler (#4)
TOTALS
3.
- 3.2.^7?
3- ^ y
3.
3- tr/
- 3.SV29
,0001
.001
79.^720
-ooo
FINAL
(gm)
TARE
(gm)
NET WATER
(ml ซ gm)
-------
CASCADE IMPACTOR RESULTS
Client:
Sampling Location:
Date:
/ซ97-T~
Run No:
Dp (=Dpc) , Particulate
ITEM microns collected, mg
Cyclone 2. . . ^^^ ^-^
/- 9
Filter
Weight % Cumulative %
collected less than Dp
+0.0
8.3 JT/ - 8
6.7 ^^ l
S'.O ^t-o. I
t -r ^^^ ^p
<* 7 3J. 7
3/. 7
40
-------
99.99 99.9 99.8
1 0.5 0.2 0.1 0.05 0.01
60 50 4O 30 20
' 0.01 0.05 0.1 0.2 0.5 1
10
20 30 40 50 60 70 80
90 95 98 99
99.8 99.9 99.99
-------
Client
Sampling Location
Date
CASCADE IMPACTOR DATA
Run Number
Comments
PARTICULATE
Cyclone
Stage #1
Stage #2
Stage #3
Stage #4
Stage #5
Filter (
TOTALS
MOISTURE
Bubbler
Impinger (#2)
Bubbler (#3)
Bubbler (#4)
TOTALS
FINAL
(gm)
TARE
(gm)
3.
. 3
FINAL
(gm)
TARE
(gm)
NET PARTICULATE
(gm)
. QC/
- .0004
,000 !
. Ooo/
, ooo
0003
. oo 06
oo/i
OO
NET WATER
(ml = gm)
42
-------
CASCADE IMPACTOR RESULTS
Client: ฃ PA
Sampling Location: A l/CGft
Date: S3 A
Run No: / 7
Dp (ปDpc), Particulate Weight % Cumulative %
ITEM microns collected, me collected less than Dp
Cyclone
Stage #1 ^
Stage #2 2.
Stage #3 /. -772. ^- 1
Stage #4 O. 93 <2 O. 3
Stage #5 0.3-92. ฐ* ^ x^. 3 -2^,^
Filter ^"^
-------
KEUFFEL a ESSER CO. MADE In USA
10 ...
9 ...
8 .
7 -
6 -
5
.9-
....
.3.
. 2
--
r
-
^ XV
---
v V V
99.9
99
~f
4
.8
^
#
v__
7
i_.
'"i
-
*t
*>r
--
--
99
'/H
: 1 i t 1
98
en
2J
H
9
VH
W~
H!
5
/
L,.
ป
L-
ฃ
LA
90
*=UL*-K
80
:::./ =
70 60 50 40
IT] ffllfiiij BB
/
- t
i
'
i
\
-EEEEE^I ;EEEEEEEEE IEEE
llHHIHHMimiMI!
30 20 10
1 ' - - -
- ? 1 2 . . I . J^i
E - E = - - : : : i \ \ ~- ~- -. -----
'l'i.- . . . . . '-^v
(T
5
f
y t
2
-/ .
t 0.5
IIIIB
EEEE r;~
|
0.
'f
2 0.1 (
: : :
-
'
"
"
-
/ /
).05
FFfP
rr __
J , - J
0.0
-- ,
.!(
9
8
7
6
5
...4
2
-1
.9
_8
.7
.6
_5
4
3
.2
-------
CASCADE IMPACTOR DATA
Client
Sampling Location A VER A&ET f=*ffiEPl- At
Date A O Aes&c* *>T /9"7*T"
Run Number
Comments
PARTICULATE
Cyclone
Stage #1
Stage #2
Stage #3
Stage #4
Stage #5
Filter (
TOTALS
MOISTORE
Bubbler (#1)
Impinger (#2)
Bubbler (,#3)
Bubbler (#4)
TOTALS
FINAL
(gm)
- ^ T / 7
TARE
(gm)
- 2-2-
- / ?/ . 2.
FINAL
(gm)
TARE
(ga)
NET PARTICULATE
(gซn)
. .C3 o i 2.
_ _ O PO "2-
/ O 00 /
, o oo'3
.OOP/
. OOP/
,002*1
NET WATER
(ml ป gm)
45
-------
CASCADE LMPACTOR RESULTS
Client:
Sampling Location:
Date:
Run No: 2.
/*//?ฃ/* 'X >?<: ^r
ITEM
Dp (=Dpc),
microns
Particulate
collected, mg
Weight %
collected
Cumulative %
less than Dp
Cyclone
Stage #1
Stage #2
Stage #3
Stage #4
Stage #5
Filter
2. 9ฃ 9
2.03Q
/. 090
; . 3.
. /
,9
/O.3.
-------
99.9 99.
90 80 70 60 50 40
20 10 5
1 0.5 0.2 0.1 0.05 0.01
,10
9
8
7
Vป
5 '.-
0.01 0.05 0.1 0.2 0.5 1 2
10
20 30 40 50 60 70 80
90 95 98 99
99.8 99.9 99.99
-------
APPENDIX H
Velocity Correction Coefficient
The reference point velocity correction calculation was performed on 3 of the n
variable samples. Findings are discussed on Page 8. The procedures, for weasur
and cal culatiRปApfe--fet*ซA iir-l^-frvw^iire" seption 3 Page 13,
ft
OF
-------
JOB NAME
VALENTINE, FISHER & TOMLINSON CONSULTING ENGINEERS
COMPUTATION & DESIGNING SMCET
' - 2. ฃ"" -
PREPARED BY.
SUBJECT ฃ1
PAGE.
OF
O/T^T VELOCITY
/o
y
y-pjS-FY*
VTrV
Lto_i_
JL2_
,/2VL
/,oz
- //if
/J2.
i/^
/.tfl. i
.01
! ,(43
/iil
i t
t
"1 - r -^
1
o 6 -
A&ovฃi T^'jg
/S
-------
VALENTINE, FISHER &TOML1NSON CONSULTING ENGINEERS
COMPUTATION & DESIGNING SHEET
JOB NAME
PREPARED BY
SUSJECT__
DATE-
PAGE-
- 7sr
-OF_
-------
APPENDIX I
Wood Burning Rates
The wood burning rate data was collected during each POM and particulate emission
evaluation. The data was collected by the methods described in the Procedure
section, Page 16.
- ~3
/ 2L
_.ฃ
4.
', &ฃ.
.
.f- I._JT __
2.2,
/
JjL
J*.
/.sr
r
S.*j
^ฃ [._./^51
$
/a
'2.18
a
6
//.
.7
/.
/I.
/3.3JT
/(*
^ZL
'/<
/ft
2 e
7 "
//. 75T
3L,
ป -*. * I
/ /
'ff
..^_L
- 3 i
11'22-lJ.
//.
2. 2.
"T
. 5*
3O.
WAS
-\
-------
APPENDIX J
Auxiliary Atmospheric Emission Data
Two projects separate to this study were performed by Valentine, Fisher &
Tomlinson wherein atmospheric emissions were measured from combustion of fuels
in residential fireplaces. The first project was evaluating emissions from a
compacted-waste-wood formed into a log and burned under simulated fireplace
conditions. The results of the emissions are shown in Table VI. The
second project was sampling atmospheric emissions from burning alder wood in a
residential fireplace and were reported in a paper by W. D. Snowden .and
I. J. Primlani titled "Atmospheric Emissions from Residential Space Heating,"
presented at the Pacific Northwest International Section of the Air Pollution
Control Association annual meeting in Boise, Idaho, in November, 1974. Emissions
from the second project are also shown in Table VI.
Table VI
Auxiliary Fireplace Atmospheric Emission Data
Project
No.
1
2
3*
Burning Rate
(BR)
8 kg/hr
19.8 kg/hr
7258 kg/hr
Stack
Temp.
54ฐ C
107ฐ C
363ฐ C
Stack Gas
Flow Rate
14.2 m3/min
11.7 m3/min
3881 m3/min
Pollutant
Mass Rate(PMR) %CO
18.8 gm/hr
129 gm/hr
34500 gm/hr
(PMR/BR)
0.2% 2.4 gm/kg
0.25% 6.5 gm/kg
3.5% 4.8 gm/kg
*Air Curtain Wood Waste Combustion System
52
-------
APPENDIX K, COMPUTER PRINT-OUTS OF PARTICULATE EMISSION DATA
WITH CALCULATIONS AND TERMINOLOGY
53
-------
PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY
VOLm = Dry gas meter volume @ meter temperature and pressure, dry - acf
Pm ป Dry gas meter pressure (recorded as inlet deflection accross orifjj
meter) - "Hg
= Dry gas meter temperature (average of inlet and outlet)
PSTD = Standard atmospheric pressure (29.92" Hg)
TSTD * Standard Temperature (520 or 530ฐ R)
VOLW * Volume of water collected (expressed as vapor at standard temperaq
and pressure) - scf
M = % water, calculated from amount the train collected in impinger,
bubblers, and on silica gel
MF ป Mole fraction of dry gas
WD * Molecular weight of dry stack gas - Ib/lb mole
Wy " Molecular weight of wet stack gas - Ib/lb mole
Wa ป Molecular weight of air - Ib/lb mole
Cjj ป Velocity correction coefficient for gas density
PSN * Stack pressure (static + barometric) - "Hg
C g ป Velocity correction coefficient for stack pressure
VH^ ป Pitot tube pressure differential - "H^
V0 ป Stack velocity @ stack conditions - fps
Qo ป Stack flow rate at stack conditions - acfm
Ts ป Average stack temperature - *R
QQS * Stack flow rate at standard conditions - scfm
T - Time over which sample was collected - minutes
Vn - Velocity of gases inside nozzle during sampling - fps
I - % isokinetic (+ 10% desirable)
GO - Particulate concentration - grains/scf
K - % CO 2 by volume in stack (12 indicate a no Z C02 correction is to
be made)
-------
PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY
= Particulate concentration corrected to 12% COj
* Pollutant mass rate - "concentration method" - Ib/hr
PMR.,. = Pollutant mass rate - "area ratio method" - Ib/hr
PMRAVQ ป Average pollutant mass rate - Ib/hr
C = Particulate concentration corrected for non-isokinetic sampling
condition-grains/scf
P-p ป Total Particulate collected by sampling train - mg
AS = Area of Stack -
A a Area of Nozzle -
VH ซ Velocity head readings for pitot tube - inches water
VOLSTD Standardized gas that passed through the sampling train -
cubic feet, 70* F., 1 atmosphere pressure, and dry.
Cp = Velocity correction coefficient for type pitot tube - dimensionless
0,83 to 0.87 for "S" type pitot tube normally and 1.0 for "P"
type pitot tube.
55
-------
PARTICULATE CONCENTRATION & PMR CALCULATIONS
1. VOL
STD
(VOLJ (Pm) (TSTD)
2. M
3. MF
4.
5. CT
(100) (VOLy)
VOLg-jj) + VOLw
100 - M
100
(WD) (MF) + 18 (1-MF)
Wa*
15.
16.
- (C0) (QOS) (0.008571)
-7-7 (0.000132)
t ftn
17. PMRAVG **
18. C
* PSTD
* w_
PMR,
'AVG
(1400)
QOSN
29.92" Hg.
28.95 LB/LB MOLE
SN
7. K
8. Vr
2.9 (Ka) (C) (CD) (Cs)
9.
(V0) (As) (60)
10.
11. V
12. I
13. C,
14. C
(TS)
(VOLSTD) (PSTD)(TS)
(MF) (TSTD) (PSN) (T) (%) (60)
(100) .*
o
PT
,,,ซ (0.0154)
VOLSTD
C0 (12%)
N
56
-------
CALCULATIONS (Continued)
The weight of the dust per volume and weight of dust per time were calculated
using two procedures:
1. The Concentration Method:
The concentration of dust entering the sampling nozzle is calculated and
then multiplied by the volumetric flow rate of the stack gases to
obtain the Pollutant Mass Rate (PMR).
Concentration in Nozzle x Volumetric Flow Rate = Pollutant Mass Rate
On Concentration Basis.
(l'T/VOL(;TD) x QQS = PMRp
Assuming the nozzle velocity is greater than the average stack gas velocity
(V greater than V ), the calculated Pollutant Mass Rate will be less than
the true Pollutant Mass Rate because the heavier dust particles will leave
their streamline and not enter the nozzle. If VR is less than V then the
calculated PMR will be greater than the true PMR.
2. The Area Ratio Method:
The weight of dust collected is divided by the sampling time and
multiplied by the ratio of the Stack Area to the nozzle area to
obtain the calculated Pollutant Mass Rate (PMRAR).
Weight Collected Area of Stack Pollutant Mass Rate
Sample Time X Area of Nozzle = on Area Ratio Basis.
(PT/T) x Ag/An - PMRAR
Assuming the nozzle velocity is greater than the average stack gas velocity
(Vn greater than V0), the calculated Pollutant Mass Rate will be greater
than the true Pollutant Mass Rate because the lighter particles in the dust
laden stream follow their streamlines and enter the sampling nozzle resulting
in P /T being greater than true. If VQ is less than VQ, the calculated
PMRAR wil1 be 8reater than the true PMR.
To obtain a more true Pollutant Mass Rate, the two calculated pollutant mass
rates are averaged. This allows some of the bias introduced because of
non-isokinetic sampling calculated by one method to offset the bias of the
other method.
-------
VALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DA
. ป.i ซ +.*^^ . yป ^i * ^* i X.E- tt^ri^.^.
atet--r ^/&ฃPฃ-J%ฃ-ฃ? ^ A*s<ฃ"StyA/3 A
20-319 VOLm --Oil VH
- r- . T , - 6 4 0 TS
' c .< u Pm . _, _
530 Tstd
541 Tm 0-02 VH
20-156674 VOL std , -P,^ Ts
-*jxl6^6
C-4334S vOLw .
j v <:
64 G
2 3 i 2 1 C 0 M 3-5777 OC
0-976579 MF 0 . 0 2
28-76 Wd ^6^
O G ^/
3-646516
2 S 5 2 7 5 2 1 Ww
C- C15
1 i r ^ "^ "? "7 *7 ^^1
xvui--(rVCI 665
T ซ , -o tr -_
- c -J P-Stl 3-155322
0-^94530 Cs - . r i =
u U 1 ^
665
7.i=;o-zo^
-/ I D u ^ i: t.
0-02
650
"7.ฃ"C! C C 1
^o^jjDi
C 0 2
635
3-563705
G 0 1
660
2-569046
/> ป ^~ ^ CT
C j i .'
660
3 1 4 6 ^ 2 6
DftTF ^i t
PArtF
PtJAS A/O. /
"'o-'oT VH
635 Ts
3-563705
:-oi VH
630 Ts
2 5 0 9 9 ฃ 0
G . 0 1
*J \J ฑ
625
2-500000
0-015
/" f\ s\
o C ft
3-049590
0-015
620
3-049590
0-01
640
2 529322
0-01
625
2-500000
0-0015
650
ซ.oci/ii/ป
w > u r ฐt c. Q
" fi ^ S
\.' *J l ^
f A r*
o 4 0
7,-<;c7r<
^U-7-' -'<-'&
r ซ-/ ฃ// y^ / "7 x^
/ ซ. /
64
^O"?7o^-ป
'-1 ^ ' f ./ ^ ^
0-323
7 1 2 G 5 9 5
1-170
499-C65760
530
642
30-25
407-441630
642
5~T _
^ U
7 _ /^ ^
3 0 2 D
4 0
/- r\ r* 4 ~t *
G 0 0 1 3 o
7 577034
1 G 6 4 1 C 1 2 4
63 -3
0-046357
0 1
^ O/A^O/^
J v_i_/ฃ.>J<ป
-------
S/ALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
^"jOjd /&S/3ฃJ&ฃ^Af ' J^
"r" rtED B- ^WAAfZOA/ ^..ov,
,.,. r/xept-Aztz- ฃ/*/SS/GA/S R
27-542 VOLm 0-01 VH
T,.?O 650 Ts
-* v ^ D*ซ*
c T Pm 2-626735
5 > 0 T std
549 ,Tm 0-015 VH
26-517621 ;VOLstd 3 . 2 4 Q !^ Ts
C-63516 VOLw 0.Q15
650
2-3052CO M 3-217141
- 9 7 A T .1 R
u > c b 7 H t> UK > . n 1 ~ ^
wir Q Q 1 c 3
2S>5o;Wd 670
i 2-893959
23- 646733 Iww
l
! 0-015
1M!io?r? Cd
p*n 3-263433
C-994530 r
i ts 0-015
710
1 * v
3-263433
0-0175
710
3 524911
0 02
690
3-714835
0-01
675
2 593076
0-01
675
2 -598076
0-015
667
3 163068
PB PArtF
M* 2
0-015 VH
650 Ts
3 122496
0-01 VH
655 J$
2 6362S5
C -015
677
3-166651
0-015
675
3-181580
0 02
705
3 754956
0 0005
677
0-581807
0-005
67Q
1-830300
0-005
670
1 830300
0-01
720
2-683261
> 2.<9 JULY _. ft
y /
^7S~
ฃ,ฃ--5-
2 S4561 1
o o *
J U H
6-530131
1-170
486-495160
530
x* o X"
006
30-25
371-249205
656
530
30-25
60
C -00136
7-204571
103 96Q09S
55 7
0-031666
0 6 3
C 6>C'*6-9 7 1
0 1C1356
55-7
1-170
6 r
w \^
0-00136
0-105547
C 1 0 3 4 7 1
Ka
C *
v
AS
Qo
Tstd
T-
Psn
Qos
T$
Tstd
T
An
vn
I
Pt
Co
N
C
PMRp
Pf
As
T
An
PMRQ
^Wl iCฃ|1
59
0-63 N
0-619355 C'
-------
VALENTINE, FISHER &TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PR I NT-OUT OF ATMOSPHERIC EMISSION DAI
BOCBADCTt BV *S W^ fV-SG /VX APPPOVFn
14.4?- VOLm C-C05 VH
J. _ v-* ^_
33-27 n 645 Ts
J ฐ L ' Pm . _ _ - .
530 Tstd i''----cc
556 T._
lm 0-005 VH
13-514193 VOLstd , ,,";! Ts
i ' i w J. ^ 0 ฃ.
0-37446 VQJLw ,.,r7=
s.' U U 1 w
645
r-ฃrD60C ซ 3.159431
0-973794 MF 0-OG75
2e S3 Wd 640
2 1 9 0 C 5 G
22-546189 Ww
0*002
1-OC7G47 Cd 630
30-25 ptf| 1 7 7 4 ฃ 2 3
C-9S4530 Cs 0-0075
6n C
t -1
2-165063
0-01
620
2 4C5979
0-01
625
2-500000
0-005
'- C. C
ซ - * ' T C 1 i~
i . C- ^ ^ i ^
" . " ^ 7 =
w u ' J
615
2-147673
0 "I 0 7 5
615
^_" 6
1ซ ~* *^ ฃ ^ C ~)
L O C. O (
C 0075
594
2-110637
C C 0 5
586
1-711724
0 r, r 5
-
535
1 "?" <^ ^ (. -Z
1 ' 1 v. t. ti .?
G - 0 0 7 j
c c t
-' u -^
2 C91052
C 0 0 7 5
j o 0
2-0-2 5 6 6 5
60
rtC /
6ฃ~
? C C 1 3 5 i Ka
4 3 c. 2 7 I 3 V0
1-170 AS
342-77166". QO
r ? f\ 1**
/. ^ < .
,/"; T$
^C ' ? 5 P$n
2 x 1 ' ' 7 C o 7 **0
613 T5
530 Tstl
T' ^
0-00136 *
"
5-007965 Vfl
102-56363,7 1
33-6 Pf
C 0 3 7 1C 7 C,
0-1 N
-ซ * T 6 C T - / (J
, . - c ~ r. -. c PI
^*w>ix/'C
y T .' '1
^ J o '
1-170 A
Y
** . -
,..,,-?,. A
v/ t ปJ 1 -< O *^
o : > -: 3 o 4 pi
C---251 p
0-1 K
. - - c
-------
VALENT!NE, FISHER & TOMLINSON
CONSULTING ENGINEERS
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
)B NAME '' ' ' '+*-' -m-i-m !,,.
rcr^ner QV StomSi'ฃ0S\r *ปปtnvi
15-421 VOLm C'005 VH
29-84 pm 66ฐ T*
530 Tปd 1-816590
532 Tซ
Tm 0-0075 VH
15-321948 YOLstd 6 9 ฐ" Tป
2-274862
='41238 VOlw
0 0075
2-620800 700
IVI
2-291287
0-9.73792
23-50 *. 0-015
710
25-614332 Ww 3-263433
1-005847 c O.QI
?9'81 P,n
i 2-569046
1-C01843 Cj
0 -01
745
2-729468
0 02
754
3 883297
0-02
735
3-834057
C 0075
705
2 '299456
0 0075
700
2 '291287
0-0125
695
2-947456
'n PAGE-
C-015 VH
695 Ts
3 -22S776
0-0075 YH
670
2-24 1651 *
C ' 005
7 1 n
' X U
1-884144
0-012
695
2 887905
0 0075
675
2-250000
0 005
710
1-884144
0 ' 0075
690
2-274862
0 0075
675
2-250000
0 ' 0075
670
W ' \s
2-241651
/ ~ *
t=i
2-567168
C 84
6-301775
1-170
442-384560
530
697
29-81
326-369556
697
530
29 -81
40
0-00136
6 362879
IOC 969631
106-2
0-106740
0-625
2 C4940G
i
i 0-298585
' 106-2
1-17Q
40
0-00136
C 3 0 1 8 6 0
C 3CC222
? 5"
KQ
CP
V0
AS
Qo
Tstd
Ts
Psn
Qos
T$
Tstd
T
An
vn
1
pf
c
C
PMRp
Pf
As
T
An
PMR_
a
DJMD
^^*B ^^d'
61
625 N
2 G 60539
-------
VALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION Di
JOB NAME
PREPARED BY-
SUBJECT^
DATE
Pm
Tstd
Tm
VOLstd
VOLw
z 5 1 ;; \ >
3 C 1 5
ซ i ;; o <-
VH
Ts
c i, o
0-CI3 VH
7 ^
M
MF
Wd
Ww
ซ r ,
Psn
1' 3C1C--3
Cs
-------
/ALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
DB NAME -*ซ*-*=ป ซ TTป^. . ปซ- .-ป
_.ซ. DV ^44/V) /f^S 0/^ Aปป*nv
JT/AEPt-Ater ฃJ*Jgฃs6VS Xi
29.307 VOLm C-015 VH
-.,,,_ 705 Ts
. u 6 6 pm ? _ e - 0
530 Tstd " <"1'c<:
551 TIM
Im 0 Cl 5 VH
2S.Bc7r<3 VOL.td ,.146"ฐ T'
=58776 VOLW 0.01?5
1 -994000 M 665
Wl 3 -411378
C- 98 0060 ...,
28-89 *** ฐ'015
Wd 655
28 -672S53 w 3 ' 1 3 4 4 8 5
1-004820 c. ฐ'01
30 62 667
Psn 2-582634
0-988503 f
\ W$ 0-015
667
3 163068
0 -0125
660
2-872281
0-015
660
3-146426
0-01
64Q
2 529822
0-015
690
3-217141
0 027
695
4-331858
FO PArtF
JA/ A/a. &
o- o: VH
700 TS
3-741657
0- 075 VH
660 Ts
7- 035623
C 012
650
2 792848
0-015
680
3- 193743
0-02
670
3-660601
0 01
690
2-626765
C- 012
667
2-829134
0-015
655
3-134455
0-015
652
3 127299
63
WWW V, ป M m f f ^
f
y ซซ /
3-346460
0 " 5 4
8 G5 7 14C
1-17
568-4 19360
530
670
30 -62
450-939249
670
530
30-62
60
0-00136
7-436470
91-640676
11-71
0 C06242
0-5
G 1 4 9 8 0 8
C 024 1 27
11-71
1-17
6 0
G C 0 1 36
ri,/>'">O'i M '"*
v \j C C \. v 'J
c : : 3 1 5 o
G 5
C 1 4 3773
>L &~^^
Ko
ft
vo
AS
Qฐ
Tstd
Ts
Psn
Qos
T$
Tstd
T
An
vn
1
p.
t
C
PMRp
Pt
As
T
An
Fl
PMRQ
\M
PMRa
%
-------
VALENTINE, FISHERY TQMLIN5ON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DAT!
JOB NAME
SUBJECT.
VOLm
- ' '_ c ฐ Pm
-3C Tstd
-4^ Tm
3166-3 VOLstd
i>6 7C vOLw
Cl5CC M
Wd
25-505437 Ww
-
P*ti
1:0 5 2 2 0
VH
Ts
01 VH
C- Ts
O ' U i <-
c- 2 5
C 0 1 2 5
,' 7 r.
-- * ". 1
2*365740
o C D
C 6 1 7 2 5 C
0 -015
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
COMPUTER PRINT-OUTCF ATMOSPHERIC EMISSION DATA
FrtEfปARED BY 'StlfAA/gG/r APPIOVFO
32-059 vOLm C-012 VH
29-61 635 Ts
c T ซ Pm 2-760434
j30 Tstd
567 _
0-01 VH
29-656479 VOLstd 62ฐ Ts
2-489979
0 ' 5 9 VOLw
0 -01
1-950600 M 62ฐ
2 -489979
C-980494 MF
28-88 Wd C-015
650
28-667774 Ww 3-122496
-, . 0-01
1-004909 Cd 62Q
29*55 .Psn 2.4S9979
r
1-006241^5 o>oi5
670
3- 170173
0 0175
650
3 372684
C 020
650
3-605551
0-012
700
2 898275
C-015
690
3- 217141
0-020
645
3 -591656
**
C-015 VH
630 Ts
3-074085
C-015 VH
695 T$
3 228776
0-0175
670
3 424178
0-0175
670
3-424178
0-022
685
3-882009
0- 01
660
2 569046
0-0125
635
2 -817356
0-0175
620
3 -293933
0-015
610
3 024896
, 5
/ y
3
3-097340
C 623
7-475070
1-170
524 -749360
651
29 -55
413-702407
651
530
29 -55
6 0
C- 00136
7-683198
102-784294
70-5
C 036609
0 433
1 -014568
C 129809
70-5
1-170
60
0-00136
C- 133591
C 13 1 7QO
C 433
1 C292G8
,j ฃ~
K
v"
V0
AS
QO
T$
Psn
Qos
Ts
Tstd
Psn
T
An
vn
1
Pt
^0
c
PMRp
Pf
As
T
An
PMRQ
PMRa
N
,
-------
VALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION D|
'EPARFD BY vj
to/AA/30*
o.cvr F K9E 'P<- ACS' ฃ.
22-657
29 -76
3 1 0
C 7 C
J _< J
22-325224
0 5 3 C C G
2-322700
C ->76773
2 S 9 0
25-646325
1 0 C 5 2 7 7
25.72
1 C 0 3 3 5 e
VOLm
Pm
Tstd
Tm
VOLstd
VOLw
M
MF
Wd
Ww
Cd
Psn
Cs
V APPtrwปn
0 C 0 G 5 VH
645 Ts
C 5 6 7 ฃ 9 0
0-0075 VH
710 Ts
2- 307556
0-012
670
2-835489
0-012
620
2 -727636
C 0075
590
2-103568
C 0 0 5
590
1 -717556
C -012
625
2-73&612
0-016
670
3-274141
C 0075
670
2-241651
" r C: 1 5
665
2 233271
0-01
655
2-559256
PAซP
0-0125 VH
6 4 r. T$
2 -S2C427
0-005 VH
673 Ts
1 -537117
C 0 0 7 5
655
2-216416
0-012
645
2 7 S 2 0 3 5
0-01
635
?' 519920
0-005
630
1*774823
0-005
625
1 767766
C- 005
605
1 -739252
0-0075
615
2-147673
/ /IS /
? 2 * 6 " "" "
/* ~ *
_ * ^ T
J ' J J. ': 6 1 6
1 1 7 <*
367-40650:.
r T /
6-2
^ ^ T n
C. s 1 i
3 1 C ' 3 C 3 1 2 :,
64:
530
29-72
60
^ m O ^ 1 "7 ฃ
V J v.' 1 -/ 0
5-69237;-
103-157730
*n j
t- 7 4.
" . " < " ? c >~
*
-------
VALEN"NE, FISHER & TOMLINSON
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
IEPARED BY ^fa/A**Sฃ&S\S APPIOV!
3?.64l VOLm ฐ'01 VH
29-76 Pm 67ฐ T*
rtn -,--
530 Tstd <-5ฐc,3.
C 1 x
j 4 o _
Tm 0-012 VH
31-515051 vOLstd 665 Ts
vwi3Ta 2.S24889
C-72C4S VQLw
0-015
2-23500 0 M 67ฐ
3- 170173
0-977650 MB
J8.=8 ฃ 0-03
690
2 S 6 3 6 3 3 2 Ww 3-714835
1-005452 Cd 0-0175
29-7 p$n 710
rsn 3-524911
1-003656 Cs
0-0125
695
2-947456
0-0175
670
3-424178
0-0175
650
3-372684
0-01
675
2 -598076
0-015
690
3-217141
0-015
720
3-286335
:n PAfJP
o-o: VH
665 Ts
3-646916
0-01 VH
635 T$
2 -519920
0-012
630
2-749545
C 02
630
3 -687817
0 022
665
3-824918
0-015
800
3-464101
0-022
770
4-115823
0 02
740
3 847076
0 02
705
3 -754596
67
/ ~ /
7 ' 31401 1
r* C s* *"*
j ' ^ i. t.
7-972363
1-17
559-653640
530
690
29 - 7
417-185461
690
530
29 7
60
0-00136
S 6 3 5 1 7 1
108 -313821
113-5
0-055605
0 4
1-666240
0-198837
113-5
1-17
60
3-00136
0-215642
" p r. 7 o -7 q
vj C ซ.' 1 ฃ. J ~
Ti 4
1 7 3 ฃ 6 4 C
3ฃ^.r
Ka
fi
vo*
AS
Qo
Tstd
T$
Psn
QOS
Ts
Tstd
T
An
Vn
fl
1
P,
T
N
C
PMRp
Pt
A,
T
An
PMRq
PMRQ,
N
C'
-------
VALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DA
ฃ:PA F/eppLAt/r
.EP^REr 0v jSl*SAA/ฃ&/L/
IBief.*r ^r/^fjOc.Addr
-i .~l~. VOLm
2 ; ' 7 - Pm
*~ -^ -.
T std
5 f : Tm
25-535751 VQLstd
c ' 5 3 : VOLw
"T x1 . ** f+ f
, ' i c . c ,. M
^ " I > /^ ซy r- ".
* ' ' od " ' u MF
> ~ /*
^o Wd
2 ฃ 4 i 2 : 3 1 Ww
4 _!*<*''* (**/* riM _
i * ., v 7 - v.' 0 (Cj|
^'7 P$n
1 " G G 3 6 5 6 g-
APPvnvc
ฃ f*t/<,S/OA/S J% Ll
G ' C 1 VH
665 Ts ,
~ . i: "7 '.' -? :; r
C _/ ( vJ ( V S
G G12 VH
s s r-
o o G T$
^ _ " ^ * ^ * "
i ii i ซ i -ป P
G -G15
' r -
V, -P >J
: 1 2 2 4 : G
r i 3
^ u - ^
640
-. .- r* ^ 7 '* ^
J ^ s C j C. C
G Gl
675
2-5^8076
C 0125
650
2 S 5 C 4 3 ฃ
C G 1 7 5
640
3-346640
G 02
635
3-563705
G G 1 2 5
650
n m ir^/T"
f, ^.-/J^Jo
3-015
640
-7 , /> r p "^ "> x
V x w ^ '-> O
G G 1 " 5
6 4 0
3-346640
:0 PAGF / <-ปe /
/*"**// -7t>>
: G 175 VH
6:5 Ts 3 ; i : - : > Ka
"* - * *", -^
G-G4 Cp
^^5 v" 7.437.55 Vo
ฐ ^ "' TS 1 . ; 7 AS
: 1S374T
5 P ? G -^ 4 0 o G QO
G -015
6oO : ~ T. .
st*
7 1 ? c 3 2 ,. ,-,Y
o -^ i IK
- / -> n
^. r - , ^ ' ' *ป
>. v. i ^
6 6 0
H-i^.'T*^1'' -^-
- , , , - , 4 1 ^ H r t .. i - Q^
;>i-rO;;*k.o
G - C 1 5 6 5 ] TS
665 5 3 : T$!i
p o , 7 6
7 . i c c - ~ i r^r rta
^ " i -< w _/ i. i. "'
60 f
- r 1 C * ^ C 1 36 A,,
L- - 0 1 **n
665
ฃ573753- 7-604019 y
102-24447.^ j
C' 01
(. =; r. 1 u ' 1 j*
0 ^ .j R
^j"*rCo'~ T
2-549505 ^ , . -^ o , ^
G-G15
635 N
/-v _ C
3 G G 6 2 5 9 J " C
G - 1 2 6 2 o C
G " v 1 t J nl
^ >*--' ^ -7 r fl
' ^ ^ ' . \j C ^ ^
0 L ^ - - i
/ป . i r r /V
1 i 1 "'
/- f
'-' .'
.. v,- u i - - /i
c c i : 1 3 : N
: c i :, s i f PI
68
-------
'ALENTINE, FISHER & TOMLJNSON /
ONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
Jeฐ/GEPL.Ae&~ & Mf^^JAMS,
r- -027 VOLm ฐ'cl VH
- T
7 ^ . " ,ฃ ~ _ 632 Ts
^ '- < ฐ " Pm
530 Tstd 2^13561
536 Tm
lm C-012 VH
26.s::ii8 voi,,d ?.,49ฐ;ฐ T'
'ปป'- voiw
625
1-949900 M ?. 95ฃ03S
C-560501 MF C-013
25-53 Wd 625
2-850438
28- 6 183 25 Ww
0- 01
1-005765 Cd 635
3C'22 Psn 2-519920
0-595023 Cs 0-011
640
2 -653299
0-015
640
3 096366
0-015
637
3 ปGS1 116
0 01
630
2 -5C99SO
0-01
632
2 -513961
0-013
630
2-S61G17
*rn PAfiP
0-014 VH
630 TS
2 565S4C
0-01 VH
644 T
2- 537715
O c O 1
" 6 4 3
2-535744
C -014
642
2 957999
0-016
645
3- 212475
0-013
645
2 695636
0-013
645
2 595686
0-014
642
2 957959
0-015
637
, 3-051116
69
1 ^ f
77-5-
2-522736
G -C4
6-631424
1-170
433-075560
530
636
-r r . -> ~
* \j * t. <.
393-67140C
636
530
30 -22
60
^ A A 1 7 /-
%y v u l ^ o
6-665441
56-861361
78 -6
0 C4 5055
0 -2
2-703430
C 153563
76-8
1-17
6C
C C 0 1 3 6
p . -] 4 0 7 i C
o i ^ ^ -^ i ^
^ t t cr * r t -i
0 ' 2
2 6 6 ? 5 6 C
K
Cp
AS
Qo
std
T$
Psn
Qos
T$
Tstd
T
An
V..
n
i
D
Kt
N
c
PMRp
Pt
AS
T
_
An
PMR_
o
PMRa,
N
C'
-------
VALENTINE, FISHER &TOMUNSON .
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DA
JOB NAME
ฃT.X>A. fr/tpe&LA^E.
DATE
X AV&* /Q-7f
PREPARED BY-
SUBJECT-
App.nvtr.
yP&W *J3
Pm
Tstd
Tm
VOLstd
VO4.W
i r ". '
MF
ซ
v*
v. j ; * -J J
j i -
6 15
716615
C G 1
635
2 S ฃ 1 6 1 C
637
C C i 4
' " r
O H \i
~ .OOTT-C
ฃ * s S J -I C J
VH
Ts
: l i 7 3 3 3
Ts
620
G 1 5
4 9 5 y ^
7-9461C3
O C -J
* 4 o 5 5 7 7
0-014
625
95503?
AS
Qo
5 : "' Tstd
625 T
525775
625
530
6G T
: o o 13 ^ An
7-G37i30 Vn
1 C 1 7 5 3 7 5 ; I
46 R
0-3 N
974960 C
e 7 ซ; :- 5 4 5
*< ' u I -
t:i
; 6 2 7 6 c
1 1 7 Aj
,- T
PM
70
N
-------
IALENTINE, FISHER &TOMLINSON /
INSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
jB NAM6. - i-i ir.
.rp.nEP DV
?5-503 VOLm
L. ' >' * c ? Pm
5 3 c T std
541 Tm
21,- 79 23 9 5 VOL std
0-69673 VQLw
2-733600 M
C-972664 Mp
25-85 Wd
28ซ5ฃ2584 yyw
1 CC6406 Cd
25 '65 Psn
1-004542 Cs
/V APปซnvi
0-005 VH
605 Ts
1-739252
0-005 VH
625 Ts
1-767766
C 003
630
?.?44994
0 " C 0 6
610
1-913112
0 01
645
2 539685
C 012
61 c
J J
2 760434
0-013
2 - ฃ50438
0-016
3-274141
0 0 0 8
675
2-323790
0-014
665
3-051229
0-014
660
3 039736
P^A/ & / 4~
0-015 VH
660 Ts
3 146^26
0-01 VH
630 T$
" f n, 7 c, t- ^
4_ W \J f O O '^'
0_ n 1 1
v 1 1
64Q
2-653299
0-013
645
2 895686
0-011
640
2 -653299
^ ^ 1
vj U 1
645
2 -539685
0-011
655
2-684213
0 0 1 1
65Q
2 -673948
0 0 1
645
2-539685
< -^
/ ^ /
79-
2-594924
C ฃ4
6-390621
1-17
448-621560
646
2S-65
J54 772086
646
530
29 -65
6 f-
0-00136
6-403345
1 C 0 1 9 9 1 0 4
99-5
C 0 6 1 ฃ o 5
0 4
1 -ฃ54150
C 157933
99 5
1-17
60
C 0 G 1 3 6
C 1 c o5 44
~ 1 ; C 2 3 3
C 4
1-557057
5-
KQ
VQ*
AS
Qo
Tstd
Psn
Qos
Ts
Tstd
psn
T
An
vn
I
pt
N
C
PMRp
Pt
As
T
An
PMRQ
PMRa
N
Cr
-------
JOB NAME
Z'&A. ;=/#ฃ pi_
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DA7
^.2 Ats&US.'T 23-K-
PREPARED BY
SUBJECT-
DATE.
OF
5C-331 VOLm
25 ' 7 - Pm
::? Tstd
-55 _
Tm
73c7G4 YOLstd
G 6 7 9 7 VOLw
3 1 G 4 G 0 M
- '- Wd
2ฃ-6c77-4 Ww
1 " G G 4 ? 1 i
Psn
C$
: i VH
7i: TS
670
2 5 ฃ 3 4 3 5
G 0 1 i
655
2 6 E 4 2 1 3
G ' G 1 3
660
2-9P9163
G G 1 4
655
3 G2S2GG
VH
Ts
VH
Ts
<~ r 1 -
v. L i ^
^ / /^
u j. --
6 3 G
C G 1 5
645
3-110466
-, - ^ /ป
- , ; Cp
.'->- 6 1 2 7 VQ
1-17 AS
1 6 4 c G C G G Qfl
D
psn
5 3 0
2 6
fsii
Psn
60 T
An
7 5 2 G 1 2 2 Vn
102*225366 |
53-7 pf
G 5 G 2 1 G f.
-016
635
1 6 7 4 7 5
G C 1 5
655
3 ?372c2
1 5 G 6 3 ,1 G
< t C
u 1 ^
665
- '. " 3 4 ฃ 3 PM
>3-7 Pf
1-17 Aj
60 T
G-GG136 Afl
C ' 1 7 7 5 5 4 pfl
655
c ^ I L ^ i.
72
N
-------
VALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
ฃ?PA ff/&ff>ปAs'JS'
S3 A&&CS4T y^-SLJ'
RCPAREP Bv SiWfAAS^AA/ APป*r
24-535 vOLm 0-OOC VH
2 : 7 4 6 3 4 TS
530 Pm 2-252110
D " J T std
537
0-01 VH
24-072440 VOL std 64ฐ Ts
2 -545554
0-694 YOLw
0-012
2-602100 M 63t>
2-766547
0-971575 MF
25-50 Wd ฐ'011
625
... 2-630355
28-554571 Ww
- . 0 007
1 -006155 Cd 615
25-70 Psn 2-074845
1-CC3696 Cป 0<013
650
2 506886
0-015
64 0
3 098386
0-014
638
2 988645
0-008
638
2 -255203
0-011
636
2-645150
C 01 3
638
2-875530
fto/J **/&ป
0-014 VH
640 Ts
2 593325
0-006 VH
650 Ts
1-574641
0-01
64 9
2-547547
0-012
647
2 786355
0-012
650
V -J \J
2-752843
0-007
645
2 124852
C 0 C 9
640
2 4QOOOO
C 009
630
2-381176
0-012
633
2-756064
73
/ /
a
2-550457
0-823
6-243533
1-170
438-324060
530
640
25-70
350-221615
640
530
29-70
60
0 OC136
6 153615
58-553507
69 -4
C 044357
0-567
0-939619
G 1 3 3 2 6 ฃ
65-4
1-170
60
C 0 0 1 3 6
C 1 3 1 5 07
C 1 32367
G 567
Q 5 3 3 3 5 4
/-A-~
Ka
Vo*
AS
Qo
Tstd
Psn
Qos
Ts
Tstd
Psn
T
An
vn
1
Pt
Co
N
C
PMRp
Pt
T
As
T
A
Mn
r nrl K^M
PMRa.
C'
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DAI
JOB r)AME t /-<ซ /-!&ฃ: /->ฃjarjz-
ocfjrpAp^p gv Appvnv
jf
e.ioiev-T "^^PX-'T-O^, ฃ> fJAS /f
''." \/|J
- . VOLm - VM
:. -, ^5 TS
- ' - Pm - . - - , - u ,
: : T std " "
C: Tm C-01C VH
?-7T : 7ir VOLstd , , 6 ฃ 5 Ts
i^ 1 * /< f ^
~> - i -ป o 's
: : : : votw
i* B r t /^
_' i O
-'.--..- 6 C C;
*^ ' - JUI
- W '.-' IT1 -ป ^ y- - f _
ซ' :-"35 1 MF , r . ,
2--'^ Wd -'^o
' ^} rs
0 r u
ซ r - .-^ซ. 3-^7/751
? C - I 1 i / 3 Ww
C C 1 6
1 ~ -r. r - " i" r ^
Cซ* ฃoO
c' ' - Psn 3 J4J615
* ~. .'. . ~ ฃ c /> . *- 1 c
'v--'' ** ^'GiJ
655
PATB- ซ / <- / Jป
fn PAซP ' r^e '
C-C-15 VH
^ ^ *
" L Ts 3 " : - 3 d - Kซ
? . ^ -x ^ ^ ^ . -<-.^-_ a
- <- i * > ij
- r - -, ; ; - r Cp
v<5^ VH -^:r6c ^
- . - r , ^ !:' TS i 1 7 AS
- - ป - * i
--C15 "5-?355rn Q.
' - -
0" " r^r T
: i c ; : r. t ^- r- Tstd
ฃ r- ฃ
,. . 6 T
^ ^ -7 '-v
^ ซ ;. " 4 ^ -' * ' i. D
* - * ^ psn
.' / r
^ ',
' ' ? ' 3- 3 i 3 o
ซT/:.nc~'-/~~ ^0!
^-'^ ^^vy'-'o^
0-C15 .
635 f-* IS
3-r = ฃ^r 53r, T$ซ
^^i_^> ^^o
Z 9 7 Z Pซn
,.,., 30 T
_ i ^
63? C C C G C 3 5 An
"* . ซ r. i -. i ,
i
C -7 . T - 7 W
- ^ <- -> i j Vfl
N
C
PMI
Pf
As
T
An
PM
n
74
N
C'
-------
COMPUTER PRIMT-OUT OF ATMOSPHERIC EMISSION DATA
JOB NAME ซ -
noirPARED BY ^ ^
-..ซ.^/--r S^ r Kt
: 3 7 3
29-77
530
560
31-762993
C 78684
2-417300
C-975S27
28-87
22-607239
1-005972
29-70
1-003696
54Oปyi/<0/V> A PP.,
STP^xfefi" Jff"/vf/ซiS/^/\/>.$'
VOLm C-G05 VH
6 4 0 Ts
Pmj 1-733854
Tstd
Tm G-014 VH
VOLstd , 650 Ts
3 C 1 6 6 2 0
VOUป S-015
650
M 3-122498
MF 0-015
Wd 660
... 3-146426
Ww
0-013
Cd 630
psn 2' 86 18 17
Cs 0-014
635
2-981610
0-017
660
3 349626
0-019
662
3 546547
0-014
662
3-044339
0-015
660
3-146426
G 0 1 6
660
3-446737
:n PArtF
&tJA/ si/a, /a
C-02C VH
665 Ts
3-646916
G-C2 VH
660 T$
3-633130
0-019
660
3-541156
0 0 2 1
658
3-717257
0-021
645
3 680353
0-015
655
3-134485
C 0 1 7
665
3-362290
0-015
658
3 141655
0-016
660
3-249615
75
r i Ti^yw-T *_ซ-
y ^ /
3 Z27921
G 363
3-156797
1-17
^.~ll^,ฃ.f^~i" n r
^ 1 (. ' C (j i i <, ,.<
530
655
29 7
448-806360
655
530
29-70
60
C 00136
ฃ-277083
101-474671
99-5
C G4o241
0'*
1-447230
C- 1 35569
59-5
1-17
60
~ ^ r * "7 f
^ u \j L ~t O
f.lC'lCAA
\j '1 - O -/ 4 4
v. * i c- i ^ o 6
C -4
i 4 5o 7 4 7
S3-ฃ-
Ka
Cp
1*
V0
A$
0
std
s
Psn
Qos
Ts
Tstd
Psn
T
An
vn
1
Pt
Co
N
C
PMRp
Pt
As
T
An
PMRa
PMRa
N
C'
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
JOB NAME
BY.
SUBJECT-
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
(-. r
VOLm
Pm
Tstd
Tm
VOL std
VOLw
VH
Ts
VH
VH
Ts
T$
" 9 4 I 1 2
i 1
Cp
V0
AS
MF
Wd
G 017
6C5
412477
c .
Cd
Psn
1 " r 1 r 7 ^
j. W W 1 -' ' -^
5
; c- 1
675
3 286335
'std
3sn
n
N
PMRp
Pf
A$
T
7 .
PMKt
PMR,i
N
-------
COMPUTER PRIMT-OUTOFATMOSPHERIC EIUSS.ON DATA
)B NAME. -ป==-J -> .ซ!. i
5,r.nEnDv ^AX/W5o/>
JDJE~ &XEPLACE-
1S-337 VOLm
2 5 ' S Pm
~ ^ .
D-- Tstd
54^ Tm
17 -915 395 VOLstd
0-555 VOLw
3-014300 M
0-969857 MF
?8 33 Wd
?S-G1S622 Ww
1-016484 Cd
2^ o c
?
oo,. Ts
3 C&5449
0-015
685
3-205464
C 016
680
3-298484
G C 1 1
667
2-708689
0-015
630
3- 193743
0 -023
695
3-998124
0-021
710
3-861346
0 01
677
2-601922
0-011
677
2 7289 19
0-015
680
3-153743
0 PAซP
A/^ 2O
0-015 VH
672 Ts
3 1 7 4 3 C 1
0-01 VH
705 Ts
2 -655183
0-013
720
3-055411
0-016
720
3-354112
0-016
7 1 0
3-37Q455
0-009
635
2-482541
0-011
670
2-714774
0-013
695
3-005627
G 0 1 1
x / ^*
C O >
2-712747
/ _ '
3 0 5 2 '6 5 5
C 823
' 7-414636
1-17
52C-5C7440
530
6C8
?9 35
387-975966
633
530
29 -35
f n
** ซj
^ . o rป ^ 7 /*
v 0 0 i J O
7-392500
95-701455
70 -8
G C60622
0 2
3 -63732C
*-_O^1C~^
wC^IDCG
7 0 * 8
1-17
4 0
" " r 1 7 J w u i -^ O
^-1^1 <~ / p
V ' ( ^ 1 C ^ \_'
^.^^' 11 '
J <- / 1 -t 1 ป
8S--S
KQ
vp
V0
AS
Qo
Tstd
Ts
Psn
Qos
Ts
Tstd
Psn
T
An
vn
1
Pt
1
C0
N
C
PMRp
f
F
A*
T
An
PMRQ
PMRQ
77
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
JOB NAME
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
P RY ฃto/^R(&OA/ APPROVED
?1 J VOLm : ' C: VH
? " ' : T Pm , . - r - 7 ' - *
r -* - -J ' i ' i < <_ 0
- T std
Tm ;-oi VH
3;i: VO L std 6 ? ฐ Ts
:-;: VOL^
PACiP
v*+ 2. 1
' : " VH
: TS
: v- i VH
= - Ts
. ^::3 Ka
3:5 Cp
:: i : V0
!:: AS
- r i ? s c :, : " QO
^ 1 i
o o C-
Wd
r t ^ c ^ 7
sn
OS
1 ' C , 1 6
'
o ^ ^i
^ ^ T r c
i 0 I o 3
0 O
- 1
5 3 C Tstd
2; c i pซ
c -
sn
C 0 1 36 An
C, .: C. , '- L
c ? . -! " -1 - .;
,"l t ''. I
V * w 1 -'
6 7 C
PMR
As
T
An
PMR
PMR
N
-------
ALENTINE, FISHER & TOMLINSON
ONSULTING ENGINEERS COMPUTER PRINT-OUT Of ATMOSPHERIC EMISSION DATA
rJJLfj1E iC:,/^-!^* . r-sfc
[Cp.REP gv *S M/rt.A/^? ฃ*
^^^^/^f-^^A^E:
20-301 VOLm
3 C C 3 pm
530 T std
"36 Tm
2C-?ฃ1733 VOL std
0-692 VOLw
3-295300 M
0-967007 Mp
2ฃ-95 Wd
2S-588726 Ww
1-OC6293 Cd
30-2 psn
0-995353 Cs
'K. J*^.fiC/Z
) /V *ppปnvfn
0 0 0 5 VH
640 Ts
A * i C o o D T
0-006 VH
665 Ts
2-306512
o-oi
645
2 539635
G 0 0 ฃ
770
2-481934
r, n i 8
U U '*> U
760
2-465765
C 008
755
2-457641
0-009
745
2-539401
0-011
735
2-843413
0-006
730
2-416609
0-009
707
2 52249C
C 01
745
2-729468
OATF jฃ.CJ
PAGE /
v * u A i v H
74G Ts
2-553066
0-002 VH
772 Ts
2-465155
0-011
750
2 ฃ72261
0-01
745
2-729463
0-009
7 c "
1 -J \J
2-593076
0 006
730
2-092844
0-006
710
2-063976
0-007
ฃ20
2- 395629
0-009
325
2 724ฃ85
f4C*C9Lf'ST fl
<~>p /
O <* C" *7 ^ ^" ^
1 - * / o 6 c
0 - 5 3 o
6-060160
1-17
426-327220
530
737
30-20
2 9 : 5 9 5 6 1 9
737
C 7 n
30-2
6 0
0-00136
5 9 0 1 7 4 o
97 - 065537
171-3
r .1 "S^.n^r
u i^jvyOt/
1 C
1-560616
C -333993
171-3
1-17
6 o
0-00136
G 3 2 4 5 5 9
- .~?ฐ<";~Cฃ
vJi>'
-------
VALENTINE, FISHER & TOMLINSON
CONSULTING ENGINEERS
/="'#ฃ*.
COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
>ป,REP tปv .<" IsLt^AS^O.
72-27: VOLm
' ' .! ; - Pm
-' ; T std
c *
* O _
Tm
1-5: 175: VOLstd
3 ' ' 6 l 6 VOLw
c ..:.'. I . M
ซ " *1 "i *"ซ *~ -r
V * ' 1 2 C 3 .
tฃ-Iv"' Wd
c.:rc-!r--
^ ------ Ww
,,..- Cd
?5'": Psn
1-C01343 c$
/I/ APPtOVI
j*" /*J/^&/G//S &L
j " i VH
v '- - v n
ฃ"r. Ts
C G 1 2 wu
w n
^ Ts
^ m ^ " < <~ ', ~
<_ -
^ / ~
C C -.
2 5 2 S 1 6 3
/ป rป " /"
657
3 : 3 2 C 2 0
G ' G 0 >'
645
2-439356
C 0 1 1
63C
:. G _, t -r o >'
695
3 33-666
/- . ^ i *7
u 0 1 (
c c c
O u j
3-412477
0 G 1 1
680
2-734553
: G 1 1
665
/~ p - , ^ ,- q
C 0 1 6
6 6 :
PASP / rtt /
/A/ ** 23
C 0 i " VH
, , n
& ^4 Ts 2 ; 1 4 i 4 5
.> . r i
-'--'
C-Oil VH ^.,,7=~~
: j. ^ f v o *.ป
710 Ts 1'17
2-7546:7
- " , ' f " ฃ ^ A
o^)-_ v^cOts,'
u " ซ' - -
7 7 "
3-4176 C 1 <~i
O o 1
^
- . ". - 6 ^ 3 c 1
735
3 429255 37:.Sc 077G
G 0 1 5 f : !
720 Z '' J
T.^.VTC 29-Gl
^C'-'O^-.^
D '
r- , - n 1 T ฃ
G -CC9 , ...1^
o . * - - I l~ 7 : i 6 4 5 5
"- >""C1^'?
' ป> (. C ; 1C..
6 J 5 7 G 3
* . - r - i - ?
2-636215 -., x o 3
T> ^ 'i
o ^ ^
*"***
^ f & 1 7 2 5 0 , . ซ , o , I
i . _ ^ x i i.
_ '"*."<. Co**
, , I ' 1 7 0 3
r '/ ' i > ^
1-17
r /-
' i " ' 1 T -'.
ป t ป .
- " " ^ - '
<55-
-------
/ALENTINE, FISHER & TOMLINSON /
CONSULTING ENGINEERS / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA
....ne- t. K ft l-ffc'J- HT^&fe
r .416 VOLm c ' C ^ VH
00,70- 695 Ts
^ \ Pm 3-119254
-^- f std
C / -
" G-C15VH
2-326646 VOLstd 6 5 7 Ts
3-233415
G C 7 5 G VOLw
G 0 1 5
3-1551GC M /^f
3 - 2 1 2 4 i j
G-96ฃ445MF ^
26-95 vVd '^ * vj i
6SS
2S-6C4516WW 3-103546
1 CC602G Cd G 014
29-59 675
PS" 3-G74085
1-002179 Cj
0-014
670
3 C62678
nATf
PAGP
'-2,4,
G -014 VH
665 Ts
3 G 5 1 2 2 9
0 C 1 4 VH
657 T
-> u ^ ^ 0 C j
G 013
2-913047
G G 1 2
647
2-766335
G 012
O *T C.
2-775600
C 01 1
635
2-642915
3 G G 1 G 4 2 Ka
G 6 3 e Cp
7 3 5 3 0 2 1 V0
1 1 7 A,
5 1 6 1 ฃ 2 0 4 0 QO
530 Tstd
667 Ts
2 9 7 9 PSn
3 9 5 4 9 2 S 1 0 Q0$
667 T
530 T
stcf
\ o P*n
30-
^ ^ _ * T
u * '. \_ o 0 o D 2 _
An
IO.Cn^r^cr
'*<->>j'j6cO
9 ^ ? . 9 c < i ซ ^. "n
N
C
PMRp
81
As
T
An
PMR
ar
PMR
N
C'
avg
-------
APPENDIX L
Data Sheets
This appendix contains Field Data Sheets with corresponding Moisture Determination
Sheet, Laboratory Analysis and Total Particulate Sheet, and Oreat Data and
Calculation Sheet for all particulate and POM samples. Field Data and Moisture
Determination Sheets for the particle sizing runs are included also.
Pages are ordered by run number.
PARTICULATE SAMPLES RUN NO. PAGE NO.
Alder 1, 2, 3, 4 83-98
Douglas Fir 7, 8, 9, 10 106-121
Coal 12, 13 126-133
Locust 14, 15, 16, 18 134-145, 148-151
Pine 19, 20, 22 (Glass Front), 23 152-159, 163-170
IMPACTOR SAMPLES RUN NO. PAGE NO.
Alder 5 99-100
Locust 17 146-147
Pine 24 171-172
POM SAMPLES RUN NO. PAGE NO.
Alder 6 101-105
Douglas Fir 11 122-125
Pine 21 160-162
-------
00
Co
sic
/' .1^
PORT
DATE
OPERATOR/5
RUN NO.
METER BOX AH
FILTER NO. 2-"? -5 g TARF */^
VALENTINE FISHCt A TOMLINSON
SEATTLE. WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
<-a. (>
64-
BAROMETRIC PRESSURE (PB).
AMBIENT rmmiTMiKr \,s,-<.t.
PORT PRESSURE (Ps)_:2ili."H20
_"Hg
'Hg
"Hg
ASSUMED MOISTURE
C
REF.AR
SAMPLE t METER BOX NUMBERSXS^Iป
& ? 7
STACK DIMENSIONS
PROBE NOZZLEIA.
PROBE
CLEAN-UP NO.
BOX A PROBE HEATER SETTING_2lฃii
SCHEMATIC OF TRAV
SE POINT LAYOUT
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
64-5
CLIENT A
ฃ-/ฃฃ
*>'_ M
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ"Pซq /Zrฃjฃs^4<-ฃ. DATE OF ANALYSIS 7 -2.f- ~l
EVALUATION LOCATION Ai-'??A<=.ซ' /^/eS ฃ*.r\Cf. RUN NO. /
EVALUATION DATE 1 -~L <=) . -> &T CLEAN-UP SET NO. (=>
I. EVAPORATION OF Q (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 77^06-/(me) - TARE 77 3JS, g (mg)
-BLANK (( >:COS? mg/ml) ( 9 O ml) = .5" mg) 'j,
II. FILTER CATCH /V?jT/4 //O6 2, (mg)
-BLANK ( //^ mg)
IV. PARTICULATE FROM EVAPORATION OF 2 / Q _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL ~?g2 H'n (mg) - TARE ^6 ; 32 V. 8 (mg)
-BLANK (( , 'H mg/ml) ( 2./O _ ml initial
- / Q."L ml CONDENSED - 1 ^^ >B ml) = ^4 mg) = JJ -3
V. PARTICULATE FROM /^C" (ml) OF fce. /r-r* +, r- RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 77^0 /. / (mg) - TARE 7? 3 Q 4T . 7 _ (mg)
-BLANK ft.OQg? mg/ml) ( / TsT ml) = ? mg) - /^ ^ .
VI. TOTAL PARTICULATE - I 4- II + III + IV + V - /g> 3 .^3^
BLANKS
- FINAL 73 *T2 'o-i
ACETONE = . B mg/_/4O__ml - .OO^I mg/ml TARE r?^ ซ "2 a"- j.
ETHER-CHLOROFORM = // ^ mg. (FINAL 7 ^ 2. 8Ot7m% - TARE 7^ "-TjP,?_
WATER = / ^ _ mg/ /-/ -ฐ ml = / 0^3. mg/ml. FINAL
TARE
85
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT
DATE 7/ZB//
/
TIME OF SAMPLE
CUliULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100-Above)
LOCATION d^/^/s*
'ฃ"" RUN NO. ฃ//&
COLLECTION 2-'3Q~33
ANALYSIS ANALYSIS
#1 #2
C- / ' <ฃ> O
ซT- /,0 \ -2', 0
*/.o *'.<*
\
\
#1 #2
, 1 0
70,*? 2. /,o
O O
1
i
^n ^) 1 O ^^ *ซ*~ป
v-^v ^l/rzAT- ^^x^ ^^j>c/rr
HOW COLLECTED &ฃ*?-'$ J^i*
/ , f' /
'O^/r^IME OF ANALYSIS ^'^ ^/^^/^"
ANALYSIS ANALYSIS
#3 #4
.2 /.O !
-2/. c?
i ~" j
RATIO \WT./MOLE
#3 #4 AVG. j MOLE WT\ (DRY)
! i
,| , 0 l-Tt 44/100 ,0!*}
) '
7^.9 3Qt7 32/100 (Ql(0\<\
'O 2S/100 O
! i I
i
!
'^' ' 7?'0fe7 28/100 2?J2?
AVG. MOLECULAR 2.3-78
WT. DRY STACK GAS
-------
..j^.
X>7, f-)
65-5
CLIENT/" /v/' /""//'/- /^/.xy<-/"
PORT LOCATI
DATE 2 -'
OPERATOR/S
RUN NO.
SAMPLE & ME
METER BOX I
FILTER NO.^
CLEAN-UP NO
BOX & PROBE
/
ON <-'(', -\//'*t S X/S'~At^>'/') /\J ::>;; \_-' /} ^f< '']/< /J
TER BOX NUK
iH // /(
IBFBS<^^i
*') 7
l~* ~ ^ 9 TARE ฃ/_/ mq A J 1
. / 7 ; Bl
HEATER SE
LANKS ป ^ 7i
fTINK ^"^^ ป ^c.3
VALENTINE FISHfR A TOMLINSON
SEATTLE. WASHW6VON BAROMETRIC PRESSURE {
TRAVERSE SAMPLING faMft SHEET AMBIENT CONDITIONS
/V
ป.2ซy ' ">
d />'
IMPORTANT: FJU IซjซLl BUWKS PORT PRESSI
x x w."*^ PCU " PH "^
^i> -rfr/ / / / j y/ ' jn
4 v " X ^ (" T*-^- ASSUMED MO
(^ ^/A- "V/^ '^ ' j t C FACTOR
PO)'-'^" "H9
/v >'/ x/--, /
IBF (P3) - 7 / , "H20 - "Hg
PS .-'>&.? ^T~ "He
I1TI1RF -^ ' I
a 5^"
.'^"y^' , y.' REF.AP >)? - ?', '~.'.'-i>T? u-y?
jป- " C> 1*Jj'*'i>">* STACK DIMENSION^!^
V ' l/ฃ :~ / R ' ,vy PROBE NOZZLE DIA.^L-!
SCHEMATIC OF TRAVERSE *ป01NT IIIYOUT^ * PROBE LENGTH '^
INSTANTANEOUS READINGS: RECORDED 0 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
/ *;- -f,_j
/ *>" 5 "-5
' 1>~ 3(s>
/ -/.: X/-y
'77^
y 'i -S ?/
'd-^2.
/',,,;> s"
>
/tC^ ^ i_
,63*-
TOTAL /
AVERAGE
ELAP.
TIME
(MIN)
O
,-}
(.
/ -3 '
.9 7.....
- > -
-^L
~~'-j^~
'-,,
% v -
-
&0
V-//S
DRY GAS METER
(CUBIC FEET)
. Jv. :V/ 1>
6~ J-t -*f~ ^
c!TZ! vVy
/"vi'i/
&'/jbT'->7y
-27 .3"^^
7//////
DRY GAS TEMP.
INLET
7rt
(9<- )
3 (.,<->
j?y\>
.? /.ปo>
^5~J
s
^r
S|
/ / /
///,
1MP1NGER
TEMP.
t'F)
-3f.y
*& 1
y. -^
& -f-
"f 4-
-}(.,
y ^
^5-,.^
s ^
S f .>
'j '(. >
b /
i/fc
lฃ.
^''AREA /J ?<> fi
'/IN; AN./..)fA/.? - ;
' - 2
/> -^
i.
i
/
^
> "^ .
'^1 /
- .... ^
i_^d
-7T-S.,
J2^?
'///
PITOT VH
, ^ /
- r9/ K-"
' J / ^ S"
x/*5"
4.jy .
^.^ 7^
-. <>x?
, .y /
ซ >/
nซJ/.\
- J/S
.. y /
. y/ ซ, -
- -> / -^
.. *'2..
*J.t j~"
- - - -
. /" -4.' - >^ > . .
V///,
ORIFICE AH
("H20)
DESIRED
. ^-.f-
*<> d
s c-^.
w ^//',
../,ฃ,
-v <;- ^
.. 7f>
. ^ j
.ป -/?
.(..y
.j f" ./
"i^ir
..-/'>
-^ ^
T^5 "
--- --
' j-r . ,r
Y//;
ACTUAL
//"//
* ~^'~*ii
-c-'
.
. f'r. C-
:. '/O
. X 'h
T0~"
^ c. /
- f/ >
i/i/*
- C-:/
- 1 .y
- -^"H2ฐ .Ui 5'"9
Prt - PB *AH * .3V.X .1'. ,) "Hg
PUMP
VACUUM
("HgGA)
-> O
-?. /
/, -
,-', ,)
-V. 't
?,>:j
j?^ j
/, V
/, 'j.
X*. ^
' ' t
/. ,
:> *')
j )
j S"
/ u
^tr-
f S f j
// /
'///..
STACK
TEMP.
(F)
.2,*,,
~J-f <*>
-y 1' >
?/,>-
-i' r> .O
-' "> O
- J ^> -J
..-' -< /
.V/ ^
^ / %
t
> /'.y
J* <1 v
^S2L
Z^6
6tf6'ft
OPACITY
OR
ZC02
,^ AY
/, j_j .
ปi.
-^*-
ป-ป'^ '
'
,.</.--' y
,. X
ป ' . /
x /
}
fi
r.
// /
, J/i)
<.*'.>
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
-
/-
LOCATION
OPERATOR
O /V
> <-
RUN NO.
DATE
NO.J
25 /
SAMPLE BOX
CONTAINER WEIGHTS (gm)
FINAL
3? 7.
6
INITIAL
447.0"
o.
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 708F. AND 1 ATM.
0.0474 x TOTAL H2Q
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
I MOISTURE IN STACK GAS - 100 x VOL. H2Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - l.QO-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS X MOLE FRACTION 't-
is X (1-MOLE FRACTION)
NET
3.5
/. -7-
7.7
VFT/AP3C
88
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
'Pi.ฃCE- DATE OF ANALYSIS ~7-2.<=* -'
EVALUATION LOCATION A I/El/?/6, ฃ~ /^/^/T,ฐ4-/^C .f RUN NO. Z-
EVALUATION DATE "7- 2. *9 -75 ' CLEAN-UP SET NO.
I. EVAPORATION OF /^*5" (ml) OF /) C ฃ" 7"C? /*/ ฃ-
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 78g^3.Z(mg) - TARE 7<5> ~ TARE -7^^-4~S~^ (mg)
-BLANK ( / 8 _ mg) = 7.
IV. PARTICULATE FROM EVAPORATION OF 2L 9 0 (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL ~?~)^J 83 (mg) - TARE 775*^0.6 (mg)
-BLANK ((.Q02gฃ mg/ml) ( 2. ^Q _ ml initial
ml CONDENSED - ^?^ป Co ml) - 0.
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT _
SAMPLING POINT LOCATION
OATH 7-29-7S" RUN NO. 7^/o
HOW COLLECTED
TIME OF SAMPLE COLLECTION
TIME OF ANALYSIS
CUMULATIVE
% 3Y VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100 -Above)
ANALYSIS
//I
o,l
20,8
to. 3
#1
o 7
2.0. ^
O
' ' ฃ-
ANALYSIS
#2
0,<ฃ
?o,7
20,8
n
2o//
. I
7^2,
ANALYSIS ANALYSIS
#3 #4
^ ^ '
.
I
?o,7
i
i
| RATIO \WT./MOLE
#3 #4 I AVG. MOLE WT\ (DRY)
! l
<9, 6 ' -^^ 44/100 ,2/7?
i 1
2O, / 2-<2- 1 32/100 ฃ,4? 2
o :. z>33 2a/ioo -^o^
, j i
i
' ^ I
"^ '^ 7f.2?^| 28/100 2-ป ASS"
AVG. MOLECULAR 2
-------
/ w A'
66-5
ri IFMT
PORT
OPFRATQH/S.
ftUN NO. .
' i- - /v/ / / l/
VAIENTINI FISHIR ซ TOMUNSOM
SEATTll. WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
b'/^. /v // .0 / 7 "
SAMPLE I METER BOX
METER BOX AH / -/ ,'V ") 1
FILTER MQ.go-^ ^TARE */ R 3.O
BAROMETRIC PRESSURE (PB)
AMBIENT CONOITIONS.fjL
PORT PRESSURE (PS)- / ) "H20
PSN " PB + PS .
ASSUMED MOISTURE.
C FACTOR >>".
REF.AP u_
->-:> ' S
_"Hg
."Hq
-Hq
_Jt
; BLANKS.
CLEAN-UP NO.
BOX & PROBE HEATER SETTING JLฑiฃ_ &.
>'-0
SCHEMATIC OF TRAVERSE POINT LAYOUT
STACK DIMtMS IOMs3 -y* H^ AREA /*/ / ?& f2
PROBE NOZZLE DIA.fijฃlN; AN -g^/36 p2
PROBE LENGTH FT IN.
INSTANTANEOUS READINGS: RECORDED BEGINNING OF TIME INTERVAL
AVERAGE VALUES READ WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 HRS)
ELAP.
TIME
(MIN)
DRY GAS METER
(CUBIC FEET)
DRY
TEMP.
INLET
OUTLET
BOX
TEMP.
CF)
IMPINGER
TEMP.
CF)
POINT PITOT VH
ORIFICE
E AH
HzOJ
DESIRED
f f ' s
ACTUAL
> / / ,
PUMP
VACUUM
("Hq 6A)
/ / / /
STACK
TEMP.
CF)
J / J .'
OPACITY
OR
ZC02
~m
u 4
/ 7
J..7^LZ.
I'^y'}
/ 7//
/^Z-
/_7_^
7xf^
7-> /
/ 77-1
ซ;
' >
~7 .
ฃ=
. //
^ <_.>.> >
/7V
V* ^*? "7
'JL^lAS.
,">.-> 7
_9-i
^/^~
^.9
-^ ,9
6'
7
-/
/> -
00 /
..-)*!/
iii^C^iLlL'.
/.. s'^. >?/s^
D - J
o*l ~)
/ /
-A
y
K--S"
>-. ซ.-
-*2-
1-- ^
f. o
OO /
. 'J
/, O
2
-< .-?.
/ ft
s.o
- 3
Zi_i2_
'/. o
/ s / /
TOTAL'
777,
3/'M20 -,<
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND'CALCULATIONS
CLIENT
RUN NO.
LOCATION
OPERATOR
NO.
DATE 7/7 S /7s
SAMPLE BOX
CONTAINER WEIGHTS (gm)
FINAL
', S
INITIAL
H2u CONDENSED, ml (1 ml = 1 gm)
BUBBLER (//I W/APPROX. 100 ml WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL H->O
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
1 MOISTURE IN STACK GAS = 100 x VOL. H20 VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
NET
-3,
iJ. /
VFT7AP3C
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ1 r*A Ft/???ฃ>ฃ-A Cฃ. DATE OF ANALYSIS 7- 2^-7 ^~
EVALUATION LOCATION A >S-T/*3 /i(^ฃ~ ฃ=//-?ฃ PL. + ; -jT RUN NO. 3
EVALUATION DATE ~7~2. ฐ) - 7J> CLEAN-UP SET NO.
I. EVAPORATION OF 3<3 (ml) OF A
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7743/- -+ (mg) - TARE 7 7 ^ 2. &> . 2 (mg)
-BLANK ((.Q05-ฐ7 ma/ml) ( 8 O ml) s ^^ mg)
II. FILTER CATCH //Ob /V S A (Media Type)
FINAL <3-4-8~ 2. (mg) - TARE ^J5^. O (mg) = /5". "Z.
III. HYDROCARBON OBTAINED BY AETHER-CHLOROFORM EXTRACTION ON " ^
WATER IN IMPINGER AND BUBBLERS.
FINAL 77 * 9 7.^ (mg) - TARE 7 7 ^ 7 ^- 3 (mg)
-BLANK ( /. g ^Qg) = /ซ 3
IV. PARTICULATE FROM EVAPORATION OF 2. ? O (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL ?"??;?*.ฃ (mg) - TARE 77*2. mg/ml) ( ^- ^ ml) - C. 7 mg)
V. PARTICULATE FROM ^ O (ml) OF Acฃro*/ฃ: RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL #ฃZ79. 7 (mg) - TARE ffg Z 73. ฃ (mg)
-BLANK ((- ฐฐ5- 7 ing/ml) ( 7 ^ ml) - Q 5^ mg) - (a, 0
VI. TOTAL PARTICULATE - I + II + III + IV + V - 33 . (=>
BLAI^KS _ ,
FINAL 7^5"3^. fa.
ACETONE = ซ ^ mg/ /^^ ml ป . ^0,5" 7 mg/ml TARE 7 ^S~ 3 fT. g.
ETHER-CHLOROFORM = /- 8 mg.(FINAL 7^2
-------
VALENTIN!-:, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION /*'
/V-SC/rVf/^;
DATE 2s) Jt/Sy /9-7JTRUN NO.
TIME OF SA2-IPLE COLLECTION / 7o3 -
_ HOW COLLECTED
^ Til-IE OF ANALYSIS
CUiPJLATIVE I ANALYSIS : ANALYSIS ! ANALYSIS j ANALYSIS
7, BY VOL. (DRY) //I #2 \ -V/3 : /M
i O,/
0,0
o,/
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100-Above)
2O,'J ' ZO. 7
23, 7 ^o. 7
!
1
l
1
#1 : #2
i / 0,0
i
7to.fe 2o,7
0,0 0,0
19 -3 ! 7^-3
^,^ : j
7 : ^/100 ^62ฐl
1
20, s" i2o,4 32/100 ^,^?
1
fi.o ! O.o 2a/ioo ! o
\ '
! i i
, j
1 1
; ! ;
; i
9^'f ; 1^.333 28/100 \-27.1\i
AVG. MOLECULAR
WT. DRY STACK GAS
ฃ8-83
VT1/APA3
-------
xrwr <->/> <-v f"ซ:
CLIENT ฃ
PORT
DATE
/9 7b"
OPERATOR/ S .'
RUN NO. -
A A? is
Ji _/
VALENTINE FISHER A TOMLINSON
SEATTLE. WASHINOTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
68-5
BAROMETRIC PRESSURE
AMBIENT CONOITIONSC
PORT PRESSURE (PS)_
"Hg
"M -
_ฃ_"Hg
"Hg
SAMPLE* METER BOX NUMBERSฃฃV& _ /
METER BOX AH A ^B^ 7
FILTER ซ.*?<
ASSUMED MOISTURE.
C FACTOR
'j - /- " < }, V
,-;?
CLEAN-UP NO -- i BLANKS _ ป
BOX & PROBE HEATER SETTING _ &
// ^-
*'
SCHEMATIC 'OF TRAVERSE POINT LAYOUT
STACK DIMฃNSIONS#MlM AREA
PROBE NOZZLE niA V^2 IN: AN
PROBE LENGTH _-5__ FT
f2
. p2
IN.
. 2-
INSTANTANEOUS READINGS: RECORDED % BEGINNING OF TIME INTERVAL
AVERAGE VALUES READ WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 HRS)
ELAP.
TIME
(MIN)
DRY GAS METER
(CUBIC FEET)
DRY GAS TEMP.
INLET OUTLET
BOX
TEMP.
CF)
IMPINGER
TEMP.
CF)
POINT
PITOT VH
("HjO)
ORIFICE AH
DESIRED
ACTUAL
PUMP
VACUUM
y y y
STACK
TEMP.
(*F)
y y / y
OPACITY
OR
XC02
y y y
/ ' / 7
7-y'yj/i-.
7~7
y y y
C,')
s-
/ / ") >J2 O
k (j^ - L* Q
4^2
Lil
- -U'
/x
A
o
<" v,
.. <
._z_^_.
^i^-3--L-
^7^-
^.V.:
ZJ>
/^
^o
A^_
IUL
-.9
77s
*>
y s
-7/v
)
7..(2__
.&/
->/ s
0
x 2.-
5'J
_T_S_:
. Z.Z.
-? ^ <>
s ' o
- -> > 7S-
0
7
/_2_
/. 2
/
TOTAL' /
'
Z.&
,
/AVERAGE
237
Pm - PB
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NO.
LOCATION
OPERATOR
NO.
/
DATE "? / jj / ?
SAMPLE BOX
H20 CONDENSED, ml (1 ml - 1 gra)
BUBULER (//I W/APPROX. 100 ml WATER)
IMPINGER (02 W/APPROX. 100 ml WATER)
BUBBLER ($1 DRY)
CONTAINER WEIGHTS (gm)
FINAL
. 2-
INITIAL
S6. (
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70 *F. AND 1 ATM.
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, X
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
% MOISTURE IN STACK GAS - 100 x VOL. H2Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - 100-Z MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
NET
L..7
. o
. /
VFT/AP3C
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃL^A <-~/S~=*L^:ฃ _ DATE OF ANALYSIS 7~3 G-~7
EVALUATION LOCATION A >/ฃT/ /3 <^> t=~ /^/Pl^PL. /? -I ^ RUN NO.
EVALUATION DATE "7-30 7_5' CLEAN-UP SET NO. 6 g-
I. EVAPORATION OF ^S^ (ml) OF /?
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 72^2jฃ>fl(mg) - TARE 7 ~? // "7.6? _ (mg)
-BLANK ((_-ฃฃjTj7_mg /ml) ( ^-S"" ml) = . .ฃ mg ) ^ . ฃ mg.
II. FILTER CATCH /*) '<, A //&& ฃ // (Media Type)
FINAL ^3?. ฃ (mg) - TARE ^2.^. C, _ (mg) = /3. 2. mg.
s> /c?3> 8 *^>3 - /3&- "2. ~>3 -
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL ^ ฃ"?&/. '0 (mg) - TARE ^^<*-4-OJ (mg)
-BLANK ( /. 8 _ mg) = / 9. "7
IV. PARTICULATE FROM EVAPORATION OF ^ / g2 _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL -7 ', ^^.-.Zdng) - TARE 7k 7ฃ ^-.^ (mg)
-BLANK C(_Lฃฃ2^^ mg/ml) ( <2,/ ^ ml initial
- <^. 7 ml CONDENSED = ^QA ^ ml) ซ - da mg) = //. 2. mg.
V. PARTICULATE FROM BO (ml) OF ACฃ~T<2/Vฃ" RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL ~?8 28(*3- (mg) - TARE 7 S 2. 4-3 .^ (mg)
-BLANK (( . a o.g- 7 mg/ml) ( g^ ml) - > 4 mg)
VI. TOTAL PARTICULATE =ป I + II + III + IV + V - / & 6 .
BLANKS
_ FINAL
ACETONE - . g _ mg/ /^^> ml = _1_^Jฃ_7__mg/ml TARE 7? r 3 ,T S
ETHER-CHLOROFORM = /.
g mg. (FINAL 792gq7 mg - TARE 7927^, 9 mg)
WATER = - ^ mg/ / ^ ml = -OoZZv mg/ml. FINAL "7v 9 7 3. -f
TARE 7.0--' " ': . c:
VFT/AP9 A
97
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
DATE^A/A/ J<^' /^73'^RUN NO.
HOW COLLECTED
n
TIME OF SAMPLE COLLECTION /6>'- 7/^-- TIME OF ANALYSIS ^J L///. j / /ฐl
' 7
CUMULATIVE
% BY VOL. (DRY)
C02
C02 ป 02
C02 ป Q2 + co
COMPOKENT
TL BT VOL. (DRY)
C02
02
CO
N7 (100-Abovc)
ANALYSIS
#1
<^7
-2o. <*
3o.^
#l
,7
\1.<\
OiO
79,^
ANALYSIS
#2
0~-5^
Z<3* ฃ
-?C?. ^
#2
x^'
ZOJ
o.o
7T-V
ANALYSIS
#3
ฃ.&
3&. L
20. (c
#3
, ^
20, O
oปo
75'V
ANALYSIS
M
a 7
40^
^C7,^
#4
/7
1^^
O, O
?T^
AVG.
,feZ*'
1?.??^
O,O
?T^
RATIO W./MOLE
MOLE WT\ (DRY)
44/100
32/100
24/100
28/100
AVG. MOLECULAR
,174T
6,^5^
O.Q
2?. ??2
2^>?0
WT. DRY STACK GAS
VFT/AP4B
-------
CLIENT
PORT LOCATION
DATE _
VALINTINI FISHKR & TOMLINSON
' WASMINOTOM
DATA SHEET
IMPORTANT; FILL IN ALL BLANKS
OPERATOR/S
RUN NO,
67-5
BAROMETRIC PRESSURE
AMBIENT CONDITIOHS^
PORT PRESSURE (Ps)_
PcM - PB * PS
f? /
"Kg
"H-d
SAMPLE ft METER BOX
METER BOX AH
FILTER nn.-/?-5-
ASSUMED MOISTURE.
C MTUM
REF. A P
-"Hg
."Hg
CLEAN-UP NO/- ' ; BLANKS.
BOX & PROBE HEATER SETTING.
SCHEMATIC OF TRAVERSE POINT LAYOUT
STACK DIMENSIOIS&JB; ARE*
PROBE NOZZLE OIA.J&-IN; AM '
PROBE LENGTH ___J__ FT
/, /
.F2
JOiogSg. f2
IN.
INSTANTANEOUS READINGS: RECORDED BEGINNING OF TIME INTERVAL
AVERAGE VALUES READ WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 MRS)
ELAP.
TIME
(MIN)
DRV GAS METER
(CUBIC FEET)
DRY
TEMP.
INLET OUTLET
BOX
TEMP.
CF)
IMPINGER
TEMP.
CF)
POINT
PITOT VH
("H20)
ORIFICE AH
("H20)
DESIRED
ACTUAL
PUMP
VACUUM
<-HgGA)
STACK
TEMP.
CF)
OPACITY
OR
XC02
7 7
M.-*-?
/7o
^Z,
0/5'
-ฃฃ-
A 5-9,
7 a
01
? 7
/a
M
XT'
G 7
"? *
f
.__Zฑ
j*f
. OJfl
ro
To
c i -$"..
312-
So/
//////
f -
7
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
OPERATOR
RUN NO.
DATE
NO.
SAMPLE BOX
H20 CONDENSED, ml (1 ml = 1 gin)
BUBBLER (//I W/APPROX. 100 ml WATER)
IMPINGER (//2 W/APPROX. 100 tul WATER)
BUBBLER (ff3
U20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL
CONTAINER WEIGHTS
FINAL
INITIAL
.3
: 3
NET
~" -
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
% MOISTURE IN STACK GAS = 100 x VOL. HpQ VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS =* lOG-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION 't-
is X (1-MOLE FRACTION)
VFT/AP3C
100
-------
H
O
u
3 ^ t l< / iv /
CLIENTS
PORT LOCATION^
DATE -^V/i/ .1^
/ CI -7
//-<
"Hg
. I
..
.mg
CLEAN-UP N0.<
BOX ft PROBE HEATER SETTING.
SCHEMATIC OF TRAVERSE POINT LAYOUT
BAROMETRIC PRESSURE (PB)_JL2^-LJi "Hg
AMBIENT CONDITIONS i'ff>f/y < /,',/./,-
PORT PRESSURE (Ps) t2 "H20 -
PSN - PB + PS -^'^
ASSUMED MOISTURE___ฃ_1_
C FACTOR .63 ,
Z STACK DIMENSIONS?^!/;
PROBE NOZZLE DIA;7 V IN; AN
PROBE LENGTH FT
.IN.
. t\il
INSTANTANEOUS READINGS: RECORDED ป BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
X
TOTAL,
AVERAGE.
ELAP.
TIME
(MIN)
11
ij.-
DRY GAS METER
(CUBIC FEET)
2
-<*3-
tป * V.
31*. <-)?
f ^ O 1 . \
c.-1) xit__i_^/__
7
.-: ^
?.JfJ.- .'J V
DRY
GAS
TEMP.
INLET
79
^1
J7_
OUTLET
79
>?
-g.tr
-B-fc.
BOX
TEMP.
CF)
3/0
"' -
XXX
IMPINGER
TEMP.
CF)
C
6 :>
&> 0
<:, z. .
-A'.
AVERAGE VALUES READ WITHIN THE TIME INTERVAL
POINT
AT- 2-
o
- '
-2.
n~
-L
n - L
A.'JL
A-~1
"X/X
MTOT VH
("H
{&
/ s / / /
.'-ป/
.o/ S"
/
)/
- -P 7 S
ORIFICE AH
("H20)
DESIRED
/ / / /
_i_a.
-7 )' J
ACTUAL
V
^_Cf^-_-
~/~~
o,
PUMP
VACUUM
("Hg GA)
-9, t-
.?, o
-Z^L
.9..
//,
,L-v_
7^ O
STACK
TEMP.
/ / /
-3 o ...
OPACITY
OR
XC02
/ / / /
. J /
:;/:>
. J /
-J f
u,
'-/
J /
0 /
V
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
OPERATOR
-7
RUN NO.
DATE
NO. v '
~ - ->-'. /"?
SAMPLE BOX
CONTAINER WEIGHTS (gm)
FINAL
INITIAL
H20 CONDENSED, ml (1 ml - 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IHPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR ฎ 70ฐF. AND 1 ATM. -
0.0474 * TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT, OF STACK GAS
MOISTURE IN STACK GAS - 100 x VOL. H20 VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - lQQ-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS yi MOLE FRACTION +
18 y. (1-MOLE FRACTION)
NET
A 7
JO* /
VFT/AP3C
102
-------
^, FISHER & TJMLINSON
ORSAT JATA AND CALCULATION SHEET
CLIENT ฃ-PA F/tfZ- T^^t-^'Z.
SAMPLING POINT
DATE j'uly 3O . .
TIME OF SAMPLE
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100-Above)
LOCATION //T- S+^.*r F^y~
'-/-^^/
/7:T"~'RUN NO. />.-ซx. HOW COLLECTED ฃ>*A 3 3*O /=:^/^-
COLLECTIO^
ANALYSIS
#1
.^
-20. ft
2.&* 8
#1
/*/
10,4
O ป O
1 TIME OF ANALYSIS ^/u/\ 3/. /ซ^7i '
ANALYSIS
^
-20* 8
.20. 8
#2
/ S
l.o3
0,0
ANALYSIS
#3
ANALYSIS
#4
^ . ^'
^o.<3 ! 10. e
20. 8
0 \
WT. DRY STACK GAS
VFT/APAB
103
-------
CLIENT
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
-c, r* t- +>
SAMPLING POINT LOCATION /rf err ฃT#. &
DATZ 7/3<->/75"^ RUN NO.
TIME OF SAMPLE COLLECTION
HOW COLLECTED ev^/_j
TIME OF ANALYSIS
7/3 ; /
7 IT
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + p2 + CO
COMPONENT
Z BY VOL. (DRY)
C02
02
CO
N? (100-Above)
ANALYSIS
#1
(2.0
*2-t.o
^/.<-
#1
O
^-LO
O, O
??.o
ANALYSIS
n
0. 0
Jt/.O
l/.o
n
o
ZiiO
0,0
?5,o
ANALYSIS
#3
*.&
3&- <8
lo.S-
#3
0
7o.g
0.0
79,?
ANALYSIS
M
#4
AVG.
20.53?
0,O
TSotf
RATIO \WT./MOLE
MOLE WT\ (DRY)
4A/100
52/100
28/100
28/100
AVG. MOLECULAR
0,O
L.tifi
OiD
a2,/3e?
ae.ซ^/
WT. DRY STACK GAS
VFT/AP4B
.04
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ^ p/Z is fPjf ^/_ ^ Cฃ~ DATE OF ANALYSIS ~7~ 3Q-7
EVALUATION LOCATION >? '/ฃr*ฃS~-/f~ -^/^' ^-:./ Cฃ~ RUN NO. &
EVALUATION DATE *7 3>O 75 CLEAN-UP SET NO. ^ *?- ,:T^
I. EVAPORATION OF -?& _ (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7:7^7 -2- /(mg) - TARE 77 ? ^ *% ฃ? (mg)
-BLANK ((.JOS 7 ing/ml) ( "7^ ml) =_L_^=__ mg ) = "7. 7 mg.
II. FILTER CATCH _ # _ (Media Type & #)
/ (mg) - TARE .3^jr. "T (mg) = <*?.Q / mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL
-BLANK
IV . PARTICULATE
IN IMPINGER
FINAL
-BLANK
V . PARTICULATE
(mg) - TARE
( mg)
FROM EVAPORATION OF
AND BUBBLERS FOLLOWING EXTRACTION
(mg) - TARE
(( mg/ml) (
ml CONDENSED = ml)
FROM (ml) OF
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL (ma) - TARE
-BLANK
VI. TOTAL PARTII
BLANKS
ACETONE =
(( mg/ml) ( ml) =
3ULATE = I + II + III + IV + V
mg/ ml =
ETHER-CHLOROFORM = mg. (FINAL
WATER- =
VFT/AP9 A
mg/ ml =
(mg)
" mg.
(ml) WATER
(mg)
ml initial
mg) = mg.
RINSE OF IMPINGER,
(mg)
mg) = . mg.
= // ?/ mg.
FINAL rag-
me /ml TARE mg.
mg - TARE mg)
mg/ml. FINAL mg.
TARE mg.
JN
105 Z^-
-------
CLIENT
PL AC
PORT I OCATIQN
DATE Auf,
U T S ID c7
V
OPFRATOft/S.
RUN NO. x
Z.
SAMPLE & METER BOX
METER BOX AH //
FILTER NO. ^"8-5~
CLEAN-UP NO.72-5^ -t
BOX & PROBE HEATER SETTING
VALENTINE FISHER & TOMLINSON
SEATTLE. WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
t '
BARJ)METRIC PRESSURE
AMBIENT CONDITIONS
"Hg
PORT PRESSURE (Ps) O "HoO -_
PSN Pfl * PS y '>' <>-' /
TARE.
27..
->3*c^ff ^7-^"
>/jO
ASSUMED MOISTURE.
C FACTOR _/L^Z-
REF.AP_^_
"Hg
"Hg
I
SCHEMATIC OF TRAtfFRSF POINT 1 AVOIR
STACK DIHENSIONSiii^i; AREA /./?> ft
PROBE NOZZLE DIA.^JjZlN; AH -> >' U F*
PROBE IFNGTH ? FT. ? IN.
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
AVERAGE VALUES READ WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 HRS)
ELAP.
TIME
(MIN)
DRY GAS METEK
(CUBIC FEET)
DRY GAS TEMP.
INLET
OUTLET
BOX
TEMP.
CF)
IMPINGER
TEMP.
CF)
POINT
PITOT VH
(MH20)
ORIFICE AH
DESIRED
ACTUAL
PUMP
VACUUM
("Hg 6A)
STACK
TEMP.
CF)
OPACITY
OR
XC02
C - i
LJL
ILL
s s s s s
V
A- 1
/ s /
/ / 7
/ s /
A 2.
A.
^S
-?A
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
f\ P
LOCATION
OPERATOR
$ 10
RUN NO
DATE
. 7
NO.
SAMPLE BOX .&ฃ/<
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (02 W/APPROX. 100 ml WATER)
BUBBLER (03 DRY)
H20 ABSORBED BY SILICA GEL, ml
CONTAINER WEIGHTS (gm)
FINAL
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR
0,0474 x TOTAk H20
*F^ AND l ATMf
MOISTURE IH STACK GAS, %
MDLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
INITIAL
5-
b
NET
..t
/
% MOISTURE IN STACK GAS ป 1QO x VOL. H^Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS ป AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
VFT/AP3C
107
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ^T^S- /=/ ~zr -.-.'- /-"" DATE OF ANALYSIS /? -- <$ 7_ET
EVALUATION LOCATION A y/.-^ ^ /> ฑ /er- //:? ~~; ^/. /;.- ^ RUN NO. ~7
EVALUATION DATE eg? ~3 ~7 Jb ' CLEAN-UP SET NO. "7.? - 5"'
I. EVAPORATION OF ^Q _ (ml) OF / ~/T ""ฃ // =T~
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7ฃ'^ T -~ '. (mg) - TARE 7^a --ฃ. j _ (mg)
-BLANK ((. G<~>5"7 mg/ml) ( ^ ^ ml) - q ^~ mg ) ^> 5 mg
II. FILTER CATCH WSA /JO-^B/; _ (Media Type)
FINAL 5*-43> 7 (mg) - TARE 4v2, 7. ^ _ (mg) = S-^.3 mg
/>ป y SB, 3 *>j - /71?. ^ j
WATER IN IMPINGER AND BUBBLERS.
FINAL 7? ฃ&*).<} (mg) - TARE "7Vr"-5 7,3 (mg)
-BLANK ( A ฃ _ mg) = /Q . 5 mg
IV. PARTICULATE FROM EVAPORATION OF 2. / O _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 77<>)o8,4- (mg) - TARE 7 7 g ? 7, Z _ (mg)
-BLANK C(.<^2g^ mg/ml) ( 2./ ^ _ ml initial
- 7. 0 ml CONDENSED - .2 ฃ / ml) = ^. ฃ mg) = /<9. 4 mg.
V. PARTICULATE FROM Pfl (ml) OF .4ฃET3f/ฑ' RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 7g7<96.^ (mg) - TARE 7 <=> 7 ^ ฃ./ (mg)
-BLANK ((.ry-^ 7 mg/ml) ( g mg.
ETHER-CHLOROFORM - _ mg.( FINAL 7^2 ;fr. "^ mg - TARE 7-2."*- 7 mg)
WATER = . -^ _ mg/ /*-V ml - . _ ^ ? -- .:. mg/ml . FINAL? 6^73 - <^ mg.
TARE 7iy?7 . g mg .
VFT/AP9 A
10*
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
72.-
SAMPLING POINT LOCATION
RUN NO.
TIME OF SAMPLE COLLECTION S2 ** - J3 TIME OF ANALYSIS Aa& ฃ".
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + P2 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N7 (100-Above)
ANALYSIS
#1
0.2.
ฃ0.6,
2o.(o
#1
Oi*L
^O.cj
v.o
~)^<4
ANALYSIS
#2
0-2
2.0.6
^0.6
n
o,*L
Z0> +
o.o
7?^
ANALYSIS
#3
tf.Z
/ฃc?.7
20,7
#3
0^
ZLo*^
O.o
79,3
ANALYSIS
#4
H
AVG.
'?
20.V15
0/0
"Tf.^e
RATIO W./MOLE
MOLE WT\ (DRY)
4A/100
32/100
28/100
' 28/100
AVG. MOLECULAR
OSft
4,^31
O.o
22-2^2
ze.s*
WT. DRY STACK GAS
VFT/AP4B
109
-------
I-1
o
PORT LOG AT I ON
DATE "
V 7"/av Sy O V
VALENTINE FISHER & TOMLINSON
SEATTLE. WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
RUN NO.
SAMPLE & METER BOX NUMBERS_ฃ^.
METER BOX AH /,&*{2.
FILTER NO/" ^q-b" 9 TARE
-~rs\
BAROMETRIC PRESSURE (PB)
AMBIENT CONDITIONS ^ A- 'i '^
PORT PRESSURE (Ps)_l2 "H20 -
PSN " PB + P$ '' ^ "> s~
ASSUMED MOISTURE ~l<> $
C FACTOR _i
REF.AP.^,
J'Hg
"Hg
"Hg
mo
CLEAN-UP NO .
BLANKS
BOX ft PROBE HEATER SETTING
SCHEMATIC OF TRAVERSE POINT LAYOUT
STACK DIMENSIONS?^L^-{ AREA /-/ 7.'
PROBE NOZZLE DIA.^^LeiN; AN . ป< ?,(,
PROBE LENGTH.
1 r
VFT/APIE
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
OPERATOR
X/
RUN NO.
DATE
.75-5
NO.
70
SAMPLE BOX A
H20 CONDENSED, ml (1 ml = 1 gra)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (#.2 W/APPROX. 100 ml WATER)
BUBBLER (03 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL H20
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
CONTAINER WEIGHTS (gra)
FINAL
+3C.7
4*!,. *
~? ^ 7 ฐ>
^ >_/ ' /
i/g.6
INITIAL
+17. /
44ฃ.%
-337. 7
&;o.&
NET
3.6.
o, a
0,2
-7,2
/^^
aj-?
/.*
% MOISTURE IN STACK GAS = 100 x VOL. H2Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
VFT/AP3C
111
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT x^:^/? F= / # ฃ RJ- AC ET _ DATE OF ANALYSIS (g-f -- ~7-S~
EVALUATION LOCATION X? VSA^^^T f=-/A ^ PL.fi ^ฃT _ RUN NO. *% _
EVALUATION DATE lg- 3 -7S~ CLEAN-UP SET NO. ~?3 -
I. EVAPORATION OF 9Q (ml) OF X).
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL "77 J264ป.7(mg) - TARE 9 7 .2- ฃ. O*ฐ) (mg)
-BLANK ((. 003 ~7 mg/ml) ( =) Q ml) ^-5__mg) = 3~. $? mg.
II. FILTER CATCH /^)SA MO& & M _ (Media Type)
FINAL <3ฃ. ^ (mg) - TARE "^-2 Z. ^ _ (mg) = /c3. -^ mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON ~ - !- -
WATER IN IMPINGER AND BUBBLERS .
FINAL -?&ฐ) ) 2.,} (mg) - TARE 7 6 ^ CPQ.7 (mg)
-BLANK ( /. g _ mg) = 9- ^ mg
IV. PARTICULATE FROM EVAPORATION OF -2 _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 7? 20 1, -2. (mg) - TARE "7 9 / 9 <3.-2- (mg)
-BLANK (( . c3 g^ 9 ฃ mg/ml) ( ^-^^ _ ml initial
- / 2. *j- ml CONDENSED - .2^,1 ^ ml) - Q. 7 mg) = /"Q. 3 mg.
V. PARTICULATE FROM "? Q (ml) OF ACETO'/ZT RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
(mg) - TARE 7^6 ^^.g (mg)
-BLANK <(.dg.r7 ag/ml) ( 7^ ml) ปga. ^g. mg) ซ2
-------
VALENTINE, FISHER S, TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
DATE AUb 4. /97J"~ RUN NO.
y_
TIME OF SAMPLE COLLECTION /ซg -
STAC A-
HOW
TIME OF ANALYSIS
S,
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
ฐ2 .
CO
N? (100-Above)
ANALYSIS
//I
0,4
20.3
2o.$
//i
O'l
-20,
-------
CLIENT .^T
PORT LOCATION
^.AMBIENT
VALENTINE FISl- ER & TOMLINSON
SEATTLE, V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
'BAROMETRIC PRESSURE (PB):
LEAK RATF tO CFM (3_
OPFRATOR/S "W. J
RUN NO. '?
SAMPLE & METER BOX NUMBERS^ i
METER BOX AH /> H '/-2.
... ~ ._ -/Jt/-
FILTER NQ..."> ~;y
/
A 0
- 2.
> /
6iJ
?/
// -
r^2^_
-t
-. /,5 9
77
3J- ~
?^-__3
^.. ?..
.'j
:> -
/ o
ซ
V7
^^J 7
'? 1 7
t .r
/.r 7 -J
34-
.-V. S~
^^/
7/7P
. 7 ^
77/77
. 7 :J
/wj,r
7*.
V-/
7/c, .^^~
Z> - ซ7
/i - 2
JL_
- 7
<, '-/
9
/ 7 ^
- TOTAL'
7-
AVERAGE
/ 7.? ?
. 'j
/ ;.MH20
75- 'F
Pm Pfl *AH "^ -J> -7 / "Hg
-*- / * f (/ '
X //;(/. I'f' /{.,,. I// I ,, /' ^ />>!,.I- '-/"' >/>./* I
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
OPERATOR
RUN NO.
DATE
NO/ * "* O
SAMPLE BOX &
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (//I W/APPROX. 100 mi WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H00 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF HnO VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
CONTAINER WEIGHTS (gm)
FINAL
INITIAL
NET
a ;?
' -.
% MOISTURE IN STACK GAS = 100 x VOL. H^Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION
18 X (1-MOLE FRACTION)
115
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ:p>A F"Sฃ> ~-=>^ /" ~ DATE OF ANALYSIS 3 - ~7 - 7*.
EVALUATION LOCATION ^ i/f^^ /-.^ !- /Pg^/. /^ C. T RUN NO. ~;
EVALUATION DATE c$>-^-7_T' CLEAN-UP SET NO. "7 <=ฃ __^
I. EVAPORATION OF ^<2 O _ (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL ~7S 7.-? fZ.3 (mg) - TARE 7 P 770- j? _ (mg)
-BLANK ((j_ฃฃ5J7_mg /ml) ( / o g ml) = . ^ mg) = /?ป 9- _ mg
II. FILTER CATCH /V ฃ/y //O.'g ^2 /V (Media Type)
FINAL ^73. C (mg) - TARE 3 5~CT. ฃ _ (mg) = / 3 mg
~> 7
- / r ?
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON -
WATER IN IMPINGER AND BUBBLERS.
FINAL 79j-^7..~ (mg) - TARE 7?5~5" 7. 5^ (mg)
-BLANK ( /. a _ mg) = 8. 2. mg
IV. PARTICULATE FROM EVAPORATION OF ^2 S~ / (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 77065.3 (mg) - TARE 7 7(? S~ O .^ (mg)
-BLANK (( .OQ2.S ^ mg/ml) ( ^ ^ ./ _ ml initial
- /A 2. ml CONDENSED = 23^.^ ml) - . 7 mg) = / 7. Z mg.
V. PARTICULATE FROM XO^^ (ml) OF ฃC<ฃ73'/ ' ฃ" RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 7g/,; f.7 (mg) - TARE 7i?C? j - (mg)
-BLANK ((.C05T7 mg/ml) ( / ' & ^ ml) - O. 6 mg) - 2.2-- 3 mg.
VI. TOTAL PARTICULATE - I + II + III + IV + V - 6^7. "7^ mg.
BLANKS -
FINAL 7 g n ^.^mg.
ACETONE - ^.g _ mg/ / 4^> ml = 0. ฃ0>S* / mg/ml TARE 7gr^ f. ^ mg.
ETHER-CHLOROFORM = / > _ mg.(FINAL7 ^ 2g<3. 7 mg - TARE 7 9 2 75- f mg)
WATER = . 4 _ mg/ /40 ml = 0 Q Z56 mg/ml . FINAL 1 c ^73. ^ mg .
TARE 1 1. 6, -7 -? ~Q mg .
~
VFT/AP9 A
16
-------
VALENTINE, FISHER 5. TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
A .
74 -
SAMPLING POINT LOCATION
DATE 4u&. t/nX* RUN NO
HOW
09
TIME OF SAMPLE COLLECTION 9J - // TIME OF ANALYSIS At/69. ~?.
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
ANALYSIS
#1
0..
CO ' 1
:
N? (100-Above)
75,o
#2
O, 4
2,
7*7,0
#3
0,t
20,2.
;^
#4
)
AVG.
0,$"67
22,2ฃ7
, /47
75,0 | 7f,o
RATIO \WT./MOLE
MOLE WT\ (DRY)
44/100
32/100
28/100
28/100
AVG. MOLECULAR
.2.^
/ ^l jjt
,o*/7
,,,P,
ZS-^o.
WT. DRY STACK GAS
VFT/APA2
117
-------
CLIENT
PORT LOCATION^
DATE^
/- /AV
XK ฃ.
7Sn AMBIENT CONDITIONS /Iv/xf
VALENTINE FISH ER & TOMLINSON
SEATTLE. V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT; FILL IN ALL BLANKS
'SAROMfTfilC PRESSURE
A 7
OPERATOR/S
RUN NO.
SAMPLE i METER BOX MiMRFRJV fiErl
METER BOX AH /-
FILTER NO. 3V-~T
CLEAN-UP NO. ^-^
BOX & PROBE HEATER SETTING
iJ j ซv i
*
LEAK RATE - <> -2- CFM A
PORT PRF5-JIIRF (Pj) ^
PCM-PB + PS .-? V, '/^
^5""
"Hofl -
'J
"HG
"Hg
"Hg
,n
k.'
SCHEMATIC OF TW VERSE POINT LAYOUT
ASSUMED KOISTURE_aL_2_X MAX VH.
C FACTOR X^r>
REF. A P--*
STACK DIMENSIONS^
PROBE NOZZLE
PROBE LENGTH
"H,0
JAREA / -' 7.-' F2
JiilN; Kn^'J >- >V
SIOE^Z,
INSTANTANEOUS READINGS: RECORDED ป BEGINNING OF TIME INTERVAL
AVERAGE VALUES iREAD WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 HRS)
ELAP.
TIME
.(MIN)
DRY GAS METER
(CUBIC FEET)
DRY GAS TEMP.
INLET
OUTLET
BOX
TEMP.
IMPINGE!)
TEMP.
CO
POINT
PITOT VH
("H20)
ORIFICE AH
("H20)
DESIRED
ACTUAL
PUMP
VACUUM
("Hg GA)
STACK
TEMP.
OPACITY
OR
XC02
c; - 3
7/.V
7-54
3
7/ -9.
^ 7
/ 7
/ 2
. /
^7. i- 3
/
7 /
3'c)
^-- /
_0.
- sy'
-2/0
-J /
7-2 ? ,
7^/. .).!
J2L
!, ^ 7
5-(;
<^_?
^ ^/j?^,
/. -
irf"
, o
-y-
/^
75-
<:: - /
c- 2
<.' - -3
- ,? -y
/, -5
y }
J^J
-/,
c ' -
Ac^
-3o >~
^ d'.-
-C 6
^
A /
/.
/7s~
-V
^d-
/^ /AJJ
.Jt: T
"S-77.7
-275"
7.9
ป ~> 2 2
V +.0
.. 94
O
^V
. V
TOTAL'
AVERAGE
v;-/ k;-
z:
Pin PB +AH " 79^7 ^ "Hg
..^//>~
-------
VALENTINE, FISHER & TOIJLXNSON
STACK MOISTURE CONTENT DATA 400 CALCULATIONS
CLIENT 6 P /h
RUN NO. /O
LOCATION _ฃXT5/t/5Vg>^/
OPERATOR
NO.
A/5 a */
DATE
SAMPLE BOX
H20 CONDENSED, ml (1 ml - 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (13 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
CONTAINER WEIGHTS (gm)
FINAL
34^, ง>
INITIAL
NET
. 2.
% MOISTURE IN STACK GAS - 100 x VOL. H20 VAPOR
VOL. DRY GAS + VOL, WET GAS
MOLE FRACTION OF DRY GAS - 100-X MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
VFT/AP3C
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃT/ฐ/4 F/PฃZLfit.~ DATE OF ANALYSIS g - 7- ~7 ^
EVALUATION LOCATION A >/ฃ-.-ป/> <<, ~ f= //ปg"J>'../-: .-" RUN NO. / &
EVALUATION DATE 8 - ^ - 7 JT~ CLEAN-UP SET NO. 7JT-.S""'
I. EVAPORATION OF /O "7 (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7'38'fr,..*. (mg) - TARE 7 ^ & 3 2^ g (mg)
-BLANK (( . DOS'7 mg/ml) ( / c 7 ml) - . ฃ> mg) = ~Z ฃ mg.
II. FILTER CATCH /V<^xJ .//0g; /g >/ (Media Type)
FINAL 382. 6 (mg) - TARE 3^7. / (mg) * /ฃ". S~~ mg.
III. HYDROCARBON OBTAINED'BY-'ETHER-CHLOROFORM EXTRACTION Oil" " *-' / />^.
WATER IN IMPINGER AND BUBBLERS.
FINAL 7-7S33,J (mg) - TARE 77.T 2. 3 ^ (mg)
-BLANK ( / - 3 mg) = / ^. ^ mg.
IV. PARTICULATE FROM EVAPORATION OF -^ป Q (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 78 bG b. *) (mg) - TARE 7 S^~ -3~3.6 (mg)
-BLANK ((^CPQZg^ mg/ml) ( ^6.^? _ ml initial
~ -"7" ^ ^ CONDENSED - -S'S'P. ^ml) - > 7 mg) * 2 2 . -f- mg
V. PARTICULATE FROM /^ 9 (ml) OF 4CE7Bsjฃ~ RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 77 g ^7,^ (mg) - TARE 7 7c?3 g .9 (mg)
-BLANK (( . oo .T 7 mg/ml) ( / 2 7 ml) - . "7 mg) ซ ^ ^ mg
VI. TOTAL PARTICULATE - I + II + III + IV + V - // .5, ,? mg
BLANKS
FINAL -7Q-1t.ฃ mg.
ACETONE - dOg _ mg/_/ฃฃ__ml ป a.ggS? mg/ml TARE TST^T.^ mg.
ETHER-CHLOROFORM = /. ฃ _ mg. (FINAL 79Z&O mg - TARE "? Z^B . ^ mg)
WATER = <3. i mg .
TARE 769 73 .g~ mg .
VFT/AP9 A
120
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT <ฃ"./ป A .
SAMPLING POINT LOCATION
DATE/[*iฃ &./47S~ RUN NO.
TIME OF SAMPLE COLLECTION/i
'* -
HOW
TIME OF ANALYSIS
. 7
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
ANALYSIS
#1
0.+
20. ff
-2X
-------
r 7ซ* * *>/ >
CLIENT
PORT lOCATl QNvg~X7-ฃA/jr
5 AMBIENT CONDITIONS..
OP E RATOR/ '^zL^dA^Z.
RUN NO. "ฃ& //
SAMPLE & METER BOX NUMBERS ^ c (..
METER BOX AH / rt-4-S
FILTER NO. fx> ~~ 9 'TARE
CLEAN-UP NO.
BLANKS.
& PROBE HEATER SETTING
VALENTINE FISt- ER & TOMLINSON
SEATTLE, V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
-ft*
SCHEMATIC OF TR/VERSE POINT LAYOUT
'BAROMETRIC PRESSURE (P0).
LEAK RATE ป.'?' t>" CFM 0_
PORT
PSN"
PB
MAX VH
ASSUMED KfllSTURE --'y
C FACTOR/_/
REF.AP ซ -"> 5 ,
STACK DlMFNS10Nsffฃ*/9J'AREA />
PROBE NOZZLE DIA.i^ V IN; AN
PROOE IFMKTH-'^ Nll.-iBFR / SIDE
_"HG
_"Hg
."Hg
MH,0
INSTANTANEOUS READINGS: RECORDED ป BEGINNING OF TIME INTERVAL
AVERAGE VALUESiREAO WITHIN THE TIME INTERVAL
POINT
PITOT VH
("M)
ORIFICE A H
("H 0)
DESIRED
ACTUAL
PUMP
VACUUM
("Hg GA)
STACK
TEMP .
OPACITY
CR
XC02
/*/.
f. c-3
A - I
A-*
A_=_ฑ
*/2.
jt-^_ii_
2^ฐฑL
^OSL
..97
L/o
-3~
. $0
"7.
+$3
.37
-97
-2
~ 6V
~7.2
/_2i-_
-2^.42.
.105
7, s-
7, :>
/9c9
. V / ^
. 7/
/7s
-/ /--
/
r
.7') "H20 -0(5 "H
-;>' 0
Pm - PB
2 V7&" "H9
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLiฃNT
RUN NO. //
LOCATION
OPERATOR
f o
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT /ฃ/=>/! /=/*?FP? ,f .^ (mg) - TARE 7 g> 7 / 3* / (mg)
-BLANK ((eg. gg :T 7 mg/ml) (_/_&J0_ ml) = O. k mg) = 5". J mg.
II. FILTER CATCH /^_g x9 / /V3 ^, & 4 % _ (Media Type & tf)
FINAL 375". 3 (mg) - TARE 37 O. .5" _ (mg) = ^ ^ mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL _ (mg) - TARE _ (mg)
-BLANK ( _ mg) = ~ mg .
IV. PARTICULATE FROM EVAPORATION OF _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL _ (mg) - TARE _ (mg)
-BLANK (( _ mg/ml) ( _ ml initial
- _ ml CONDENSED = _ ml) = _ mg) = _ mg.
V. PARTICULATE FROM _ (ml) OF _ RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL
-BLANK ((
VI. TOTAL PARTICULATE =
BLANKS
ACETONE = 8
ETHER-CHLOROFORM =
WATER =
(mg) - TARE
ing/ml) ( ml) =
I + II + III + IV + V
mg/ / 4- Q ml = lOO S~~?
mg.( FINAL
mg/ ml =
V
(mg)
mg)
mg/ml
mg -
mg/ml .
_____
= SO. /
FI1JAL Jg-^lC'li.
TARE ~7 ฃJ -- -*, :~". ;
TARE
FINAL
TARE
mg
mg
X
%R.
mg
nip;
VFT/AP9 A
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
RUN NO.
HOW COLLECTED,
TIME OF SAMPLE COLLECTIONX^**7- /to'-ฃ TIME OF ANALYSIS ALfdป. 7
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
ANALYSIS
#1
0.6
20. 6*
*j<*.8
ANALYSIS
#2
0.&
2^0. ฃ.
Z0.9
ANALYSIS
#3
O.^T'
2.O. 6ป
2.0. 7
ANALYSIS
#4
COMPONENT
% BY VOL. (DRY)
C02
#1 i #2
<9. (a 0. S
ฐ2 : 2CL<0
co \ 0. 2.
\
N? (100-Above)
78.2
30. /
0. Z
7S.Z
#3
^?, 5~
10. /
0. 1
#4
~7ง.3 \
AVG.
0. ^
20. /
O. 7
78*2.
RATIO \WT./MOLE
MOLE WT\ (DRY)
44/100
32/100
2a/ioo
28/100
AVG. MOLECULAR
.zz.
6,^32
,os~^
2/.8*ฑ
~? G ' n
<3,0V
WT. DRY STACK GAS
VFT/AP45
125
-------
CLIENT *VW 7-7-dV. /*>4f-ฃ.
PORT IOCATION & ^T^T/l/SV^ *./
DATE <^-/;
OPERATOR/S
RUN NO /-
?", AMBIFNT CONDITION^,
X?^-^^/^ /2-Tb /5*J/}AJ<0*/
?
VALENTINE FtSh ER & TOMLINSON
SEATTLE, V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
J.'7/ZrT- ^^ Cc>*4.
SAMP( F t MFTFR fifl* NIJMRFRS ^^7^ ^^ / ^ .-,.
MFTFR ROX AH / ' ^*
FILTER NO.-'
1^.
. _-- J?A-i ''<'-> - -,
< ' - ^> ป TARE 5:5<ฃ 7 nw
CLEAN-HP NO. 'V ; RIANKS ป
BOX 4 PROBE HEATER SFTTING -2*k''l .'>Cป1
2-* ^ /ฃ?.' 2.0
S7Z>P Q ^ ^^>T <*"x^ :sr0
SCHEMATIC OF TR/VERSE POINT LAYOUT
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
9 ' 1^
/**\
Y; V-]
x ^^/
/^. /"
-y^f frt
-r&* &
7f^> jr
TV 7 ^ s"
/^7-<*'9
7^>. -. /^
7v y ^ >'
P. vr
fr^iU'xO
F^'if. ,^'
60 s ",r
P^<< x'f
c^O/. c/
^^V.^6^
. . .
^^,007
VX///X
DRY GAS TEMP.
INLET
f >
^V
ฃฃ_
_2.?
ป/?/
"3t *?
ฃ'/<;$-
C- 7
/F
'70
7//-7X.
/?
?D~
74/^r
7 7/T)
79
f^C">
/72v
7ft 'F - ^,?8*R
BOX
TEMP.
CF)
2. s-C
2i"^"
J246_
2.<^2
2^
j2'
27^ "
t-jc
it 7
^2f>-
d s-c
'///
///
IMPINGEIl
TEMP.
CF)
4o
*^ ฐ
^o
Vs"
^--
_^o_.
"^
-li"
>"!
ฃ-0 '
5~-2
*i?>
///
V/,
'B
L
P
P
A
C
R
S
P
P
AROMETftIC PRESSURE (P
EAK RATE <ฐ / CFM
ORT PRESSU
SN ' RB +
SSUMED KOI
FACTOR /
) 39 IV S "Hg
a <> ^~ "HG
RE (Pc) <~ "HoO - C"> "Ha
P? '-; -' ^ >ฃ "Ha
STURE /^ t MAX Vl| "HnO
^/
EF.AP .ฃ>-iC
TACK DIMENSIONS'^/-/^'/ AREA V /. - F2
ROBE NOZZLE DIA.-Ji
ROBE I FNGTH 3 ' NU
IN: AH ป . f2
'iCFR /_ SIDE 4
AVERAGE VALUES:READ WITHIN THE TIME INTERVAL
POINT
At
2.
3
'}
.&JL-
3.
f3
-4
C /
3.
3
V
>'
i
^->
~^~
y//
'/
PITOT VH
CH20)
o/
t-i+
<0/2.
.0/
O-CV-^
J'.t'V
<;v-.<:.'y
c>, tv-f
^, &<<
ฃ>. C>i 3
&.C/ 2
&.0/1
O.Oi'*
;;___,.
x/7//
'////,
ORIFICE AH
("H 0)
DESIRED
<^~
O. ฃ,
0> /
o. s'
p. z*~
e.fi
o, B
c\ <
<-> <
ฃ>. /
o. 74
V-^
0-*
4>. 7-f
XT. f ' i>'
^7
^ซ /
t;. /i
-S'
c* *'*>'
O' B
f\ &
.s-
C' i
tf Z... .
ซ?-7-?
^..s'
tf', ซi-
^. -7-r
c , ^i
7 /
AV,#j*H2o
7V "H20 -.oiT-Hg
Pm " Pfl +AH - Jf) -i XiT "Hg
PUMP
VACUUM
("Hg GA)
'ฃ ,>u
ฑ,0
7.e
-2.S"
^^o
2^0
'l.D
? c'
^
U?^
3.o
3-0
2,z
^/i"
?./
^ *
7-^
ซi
3-^
^. o
' - r- r
//>' -
'//.-'
STACK
TEMP.
CF)
/ 75
77^
/<5 i"
f f~i~
/ 7S'
/A-JO
/^o
/??
/ ?c
nz
217C>
rtc
/M
/&'~i
/ฃฑ
'?<."
/p ;
/FA:
/ 77
?S~;^
I7&
6 _?4 'ซ
OPACITY
OR
SCO?
*
1
0 t
C//
sc'/3_
.ฃ>//
01
VFT/APl
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
P &
RUN NO. /
LOCATION
OPERATOR
DATE
NQ.7 "" O
~ B -
SAMPLE BOX
CONTAINER WEIGHTS (<&&)
FINAL
A
. o
INITIAL
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (#1 W/APPROX. 100 mi WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
O.OA74 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
% MOISTURE IN STACK GAS 100 x VOL. H30 VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS ป 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION
18 X (1-MOLE FRACTION)
NET
-2. O
3.
O,
jr. 3
//. 3
VFT/A3P3C
127
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ1ฃ>A /=/>?- J^/tf r.ฃ" DATE OF ANALYSIS #- r- 7
EVALUATION LOCATION AXฃ>ฐ^ S* ^r /= /. ^'T&t.S-Z^ RUN NO. /
EVALUATION DATE 3~8~ 75~" _ CLEAN-UP SET NO. "77
I. EVAPORATION OF ^3 _ (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7 -)<} ^3 . 6(mg) - TARE ~7 7 O 3 8. & _ (mg)
-BLANK (( , co S" ~7 mg/ml) ( ? c ml) - . 6 mg) ^. Z. mg
II. FILTER CATCH /K?^x? //g?ฃ /? // (Media Type)
FINAL ^c?^. 7 (mg) - TARE 3^"^>"7 _ (mg) = 4- 8 mg.
/8J. *f ^r,*) '-7*9.3 (*ป& * 3 J m
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON - '-^~^ -
WATER IN IMPINGER AND BUBBLERS,
FINAL 7 ^ *9 < "7./ (mg) - TARE 7 "7 ^ ^ <5 (mg)
-BLANK ( _ /, g _ mg) = g?. g mg .
IV. PARTICULATE FROM EVAPORATION OF X/^-~~ _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 7 7-2.5^.7 (mg) - TARE "77-2^ ซ3.ฃ (mg)
-BLANK ((.002.86 mg/ml) ( 2 ' J> _ ml initial
~ //. J ml CONDENSED - 3> 7 ml) - . ฃ> mg) - / C* ฑ~ mg.
V. PARTICULATE FROM/ 3^ (ml) OF /? g^~7Tr A/^T RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL? 7(3 ffc.2. (mg) - TARE 7 7^~73.3 (mg)
-BLANK (( . 00 5" 7 mg/ml) ( / 3 C> ml) - . 7 mg) - '^2. mg.
VI. TOTAL PARTICULATE - I + II + III + IV + V = 7 g mg.
BLANKS
FINAL 7g:T56.6 mg.
ACETONE = . _ mg/ / O ml - Q.O^T'? mg/ml TARE ") 5r3sT 9 mg.
ETHER-CHLOROFORM ป _ mg. (FINAL _ mg - TARE _ mg)
WATER = _ mg/ _ ml - _ mg/ml. FINAL _ mg.
TARE _ rag.
VFT/AP9 A
128
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT _
SAMPLING POINT LOCATION
DATE tf/^/sS' RUN NO. /' &-
T^ฃr
TIME OF SAMPLE COLLECTION
HOW COLLECTED
/ss
TIME OF ANALYSIS
#//
CUMULATIVE .
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
Z BY VOL. (DRY)
C02
02
CO
Nj (100-Above)
ANALYSIS
#1
6-3
-zo^
?&,
#1
a. 3
2o.7
a
"??./
ANALYSIS
#2
6, 7
?o,e
Zo.3
#2
a 2~
20- t*
&
79.2
ANALYSIS
#3
a. -*
Z6,8
2o.
#3
0. 2-
2.0^
o. /
7J.I
ANALYSIS
#4
#4
AVG.
0*2-
2^.6
O
?%/
RATIO XWT./MOLE
MOLE WT\ (DRY)
44/100
32/100
28/100
28/100
AVG. MOLECULAR
.088
^,S92
O
22. #8
28.81
WT. DRY STACK GAS
VFT/AP^B
129
-------
CLIENT
PORT LOCATION^
DATE &/S1/ 7^AMBIENT CONDITIONS,
OPERATOR/S.
RUN NO
0*/
VALENTINE FISK ER & TOMLINSON
SEATTLE, V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
SAMPLE & METLR BOX NUMBERS
METER BOX AH_ฃ
FILTER NO.
3
A
TARE.
BLANKS .
B
'BAROMETRIC PRESSURE (PR).
LEAK RATF O2 CFM Q_
PORT PRESSURE
PSN " PB * PS '-
ASSUMED MOISTURE.
C FACTOR.
REF.AP_
- -> y S
MAX VH.
"HG
"Hg
-MHg
_"K,0
12 :
CLEAN-UP NO. 7">
BOX 4 PROBE HEATER SETTING
SCHEMATIC OF TR> VERSE POINT LAYOUT
STACK DIMENSIONS^.
PROBE NOZZLE DIA.
PROBE LENGTH '3_
.AREA.
' / '
IN; AN
.NUMBFR
SIDF /
C i
o/
VFT/AP1ฃ
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NOi /3
LOCATION /^x
OPERATOR
NO
. Q " o
DATE
SAMPLE BOX
H20 CONDENSED, ml (1 ml = 1 gin)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (02 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OP H20 VAPOR @ 70ฐF. AND 1 ATM. -
0.0474 * TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
MOISTURE IN STACK GAS ป 100 x VOL. H^Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - lQQ-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
CONTAINER WEIGHTS (gm)
FINAL
^JtT-/
^i7 .e
3 2. 7, o
ฃcr-7. /
INITIAL
-V 57
f
^$,<\
."? 2 t - 1
G c 2, . o
NET
/. 7
-?.*
. 3
3-- /
9.5-
^. 1^^
VFT/AP.3C
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ~..^>. x- . /-TV /^Jf>-... /?.: /-DATE OF ANALYSIS ?'- g -
EVALI
EVAL1
I.
JATION LOCATION ^ / ~_; /= / & -~ ff / ^ ' -
RUN NO. / 3
JATION DATE ฃ - o _ -^jp CLEAN-UP SET NO. ~7r?- <
EVAPORATION OF / / "7 (ml) OF AcETZ,
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL ,5ปc?/-^^.7 (mg) - TARE # 3/J & ^ (mg)
II.
QA
III.
IV.
V.
VI.
-BLANK ((.cjฃ>jr 7 mg/ml) ( // 7 ml) =
FILTER CATCH /V-S/4 //ob Z3 .V $ (Media
FINAL 37 ,. ,2. (mg) - TARE 3 <^. 2 , ?
-7 mg) = "7- / mg.
Type & #)
(mg) = '-S""- 3 mg.
HYDROCARBON OBTAINED BY "ETHER-CHLOROFORM EXTRACTION ON ^ " J- 2. "> 3 -
WATER IN IMPINGER AND BUBBLERS.
FINAL7<^573.^ (mg) - TARE ~7b S~ 7/.O
-BLANK ( ^ <^ mg)
PARTICULATE FROM EVAPORATION OF <2/^>
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION
FINAL 77g^S".2 (mg) - TARE 7 7 g 2 ^
-BLANK ((.J<^2tfa mg/ml) ( 2./-S
_ ?. 5" mi CONDENSED - ^^5t^*ml)
PARTICULATE FROM / 2 O (ml) OF ^Cฃ~Tcy^ฃ'
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 7?3*)2?) (mg) - TARE "P7J 8 ซ . *7
-BLANK (( .ฃ>o 5" 7 mg/ml) ( / 2.O ml) -
TOTAL PARTICULATE = I + II + III + IV + V
BLANKS /f2/X-/ /^ X
ACETONE = mg/ ml =
ETHER-CHLOROFORM = mg. (FINAL
WATER = mg/ ml =
(mg)
= ^ . ^e> mg .
(ml) WATER
? (mg)
ml initial
= Co mg) = / S~ mg.
RINSE OF IMPi:iGER,
1 (mg)
7 mg ) = ,S"~. ? ing .
"T & mg .
FI:;AL mg .
mg/ml TARE mg.
mg - TARE mg)
mg/ml. FINAL mg .
TARE me .
VFT/AP9 A
132
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
DATE &
RUN NO . / 3-
HOW COLLECTED
TIME OF SAMPLE COLLECTION
TIME OF ANALYSIS 37 // r?~
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + co
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100-Above)
ANALYSIS
#1
0,3
10, tf
2o,
-------
VALENTINE FISHER & TOMLINSON
CLIENT ฃ" &A f, g-r f>{W S~
PORT LOCATION rf*-"?r<-/"'<-<- ft A><~^' TV'VQ- ^
DATE K/' ' 7
""AMBIENT CONDITION*:. "V. ''i/.' 7"
OPFRATOR/S /V;. - /\/Ji-> ;' S//W7,-/x>
RUN NO. /'/
SAMPLE i ME1
METER BOX -fi
FILTFR NO.-
FER BOX HUM
H / v-
BERS ,1 & Qt-'K-f^
?6-lT 0 TARF .'>V-S~ '/ ma 5~-~
CLEAN-UP NO. 7 '/-*>'; Bl
BOX J PROBE HEATER SET
ANKS - & '
FTING 2 iV 4
SEATTLE, V/ASHINGTON
r^/^>->r
/ -,.'./-/
'/ '.
/TOTAL*/7/
x AVERAGE-'
ELAP.
TIME
(MIN)
c^>
'$
X
Cj
1?
/v
/ฃ4
-2/
M
,? 7
'><-
.> ~>
' V
.>;
-/ ?
A /
V/
^ /
, f
c- /->
'////
DRY GAS METER
(CUBIC FEET)
"
r "ff-1' ("' *} -~i
f V /. 'T'V'
fr\7 o , /
^f ? c>
^c|^ ^
t^6.x:i *>'
f-t 7 . 7
Fr/ .2
t:'^.\'-' -^
t^'//. ^
r' ' ; \ q
r''H . l| '".
b'V'o . -.'
^"- ?. *-;
>.* > i- . l|V
ซ^'c r ^
(^/ /. 7
Z~ ' i* ' ฃ V C*'
.'- .'-/.-?
^_ *. *"> i j i
,//. ..^.^
'//////
DRY GAS TEMP.
INLET
7<^>
7/
-7 /
1 '>
v /'A
TS
fei /
P ^'
^'7//
5r'-/r
<7/
*T ^
C/'J ฐ '
V 1
*"/ฃ"
-v. . y.
vV -- ' '
V ,"
7^j V-.
^ /
/ c^ ' '
-'/^;
OUTLET
<ฃ>:'
^^
//!
'73
'?>
7C,
V 7 "* "
o'"
f-'c>
ฃ>' /
t'-/ /.- i
^>r
j"1' *-~
$ :
t~ (.-
/A X,
Z'O
il-j O
-^f
^70
l>^Jo
2 ->' . ~
.^^C)
i?-Vซl
'.S" c-
:> /<
:'-V^>-
.^ />
.,' S'-s,
,.ปc -r
i!v*" C1
^-;^
/ /~ / /
f / /
IMPINGED
TEMP.
(F)
A?
41::
^
c6.
to
<^t:
,^- :
-^ 7
< /
"=S:
.
'///
y//;
. .,- * ~
j'f
'BAROMETRIC PRESSURE (P
LEAK RATF -C 1 rFM
P
P
A
C
R
n) ' ' "H9
U' T
a "' ^ "Mf.
DRT PRF5SIIRF ^Pc^ ซ'' "HoO - f- "Ha
SN " PB +
SSUMED MOI
FACTOR /,
5S ' / . "Ha
STURE / ' - "i MAX VI
/
1 JUป0
EF.AP. Cl'l
STACK DIMENSION^ :''V^ AREA ' F2
/- '
:RSE POINT LAYOUT
PROBE NOZZL
PROBE LEN3T
F niA, '/.? IN; AN . F2
H '">' ' NUMBER .._./. SIDE -^ .
AVERAGE VALUES '.READ WITHIN THE TIME INTERVAL
POINT
A \
^
"^
'-7ฑ-_
->
-I
c /
i
"1
'r.1
.>
7
7
^
^
dL-
'~r-7~.
'(>
'///
PITOT VH
("H20)
^ / / / /
. c - -^r
./ซ'<ฃ'.
iV.'.t''.
f^/
. r/.:'
c V '-?
f /o
^d'1 ฃป'
. r.vH
C'/f
. o/->
- .-.' /
,(."//
C'l "3
.<:>//
'" /
f/ /
f /
x / ./ /
////,
/////
ORIFICE A H
("H 0)
DESIRED
/ / / /
:}#
2 r'
,-^c"
v>|
. - -
^ /
7 s, -
.S :>
-7 s ~
?'
.#-."
. -' /
C- '-'
7 .!
. ^.c
( '"
f. >
. -^
7-r-r-
////
ACTUAL
./ / f /
. ' *
2 t't
&' .
- M
(- cry
. /r
. V 'i
--1 <; ~
c ป
f>
.$-
V.' ,'
c ^
f-t
^ c
. " c
^ '>
c .>
. - <
r-7r-,
/7,'/TH2o
0,/^-"H20 Vr -/"Hg
Pm PB *^H , ' > "Hg
PUMP
VACUUM
("Hg GA)
/ / s /
1 <.>
1 . c.'
/. v
/ '.'
2 . o
.^ . i
~' C -'
0 J
0 c
^.'1
'1 ^'
1. -..
-.' . c '
'i . >
> ^
>.. <
> ^
,7. t-
"' . f '
f f f r
V// '
// /
STACK
TEMP.
(*F)
"^ **ซ/ป>
/( '>
/ /c-
7-.) y
/ 'r* >"
/'/ r
/ 1- - '
.
/ ^~
.'j , ^-
u ,
"> i, <.
.:3 c- <
.v J ;-
//' <'
1 f ~^~
/H i'
,/y.,
/ ' '-
/ '/<'
' J-'\.
-
' / r
:' A"/'
/.Vc,
. /. gft
OPACITY
OR
**'/'
f f. r
X
c
_. .t /
c /
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NO. .^
79-5
LOCATION _^f'/-r ?.*._-~ * X?>f~--'.
OPERATOR
CLEAN-UP NO.
DATE ^ ~ / 2
SAMPLE BOX
"r-f
CONTAINER WEIGHTS (gm)
FINAL
INITIAL
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL lUO COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM. -
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
% MOISTURE IN STACK GAS = 100 x VOL. H2Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
NET
VFT/AP3C
135
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT
EVALUATION LOCATION X?
EVALUATION DATE
DATE OF ANALYSIS f //Z-"7S"
/~. r* --!_/- : ~ RUN NO.
3 - / ,3. 75"
CLEAN-UP SET NO. / 7
I. EVAPORATION OF
(ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7 7/03.7 (mg) - TARE
-BLANK (( . &QS-7 mg/ml) ( /
II. FILTER CATCH /M cf?<ฃ>
-BLANK ( /; ,9 mg)
IV. PARTICULATE FROM EVAPORATION OF ^ ^ 3
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION
FINAL^fi^B.-? (mg) - TARE 7 576s 3. C
-BLANK ((.0^25 a mg/ml) ( 2 5~ 3
/ *ฃ 7 ml CONDENSED = 238.3 ml)
V. PARTICULATE FROM /; 7 (ml) OF ^<^ฃ 7cJ//ฃ"
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL7773<ฃ (mg) -TARE 777ซ/,~7r
-BLANK ((.c?0S 7 mg/ml) ( // 7 ml) =
VI. TOTAL PARTICULATE = I + II + III + IV + V
ACETONE = mg/ ml =
ETHER-CHLOROFORM = mg.( FINAL
WATER = mg/ ml =
(mg)
/ 3 , J5 mg .
(ml) WATER
(mg)
ml initial
= . ~7 mg) = c?. "7 mg.
RINSE OF IMPINGER,
(mg)
. -7 mg) = J2./. J, mg.
= 7^, _T~ mg.
FII^AL mg .
mg/ml TARE mg.
mg - TARE mg)
mg/ml. FINAL mg .
TARE me .
VFT/AP9 A
136
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT ..ซr .
SAMPLING POINT LOCATION
DATE 8// 1 /~> ^~~ RUN NO.
TIME OF SAMPLE COLLECTION
#o'<'*
HOW COLLECTED St.* -*'.
TIME OF ANALYSIS
CUMULATIVE .
% BY VOL.(DRY)
C02
C02 + 02
C02
+ CO
ANALYSIS
#1
ANALYSIS
#2
2*.
ANALYSIS
#3
ANALYSIS
#4
Z/,0
COMPONENT
% BY VOL. (DRY)
#1
#2
#3
#4
AVG.
RATIO wT./MOLE
MOLE WT\ (DRY)
C02
a.
o,
44/100
02
20.5-
32/100
CO
o
23/100
(100-Above)
"79- 2.
~7
7?. / 28/100
22.
AVG. MOLECULAR
WT. DRY STACK GAS
2g.
VFT/AP4B
137
-------
CL I ENT /*'- / ^ ^ / ~' <*''" ;*'* *
PORT 10CATION / /<-"vv- Y ( ,/Yvc c ,/ A.\~ฑ.
DATE** A* ?v AMBIENT CONDITIONS / f S^f fฑ'"
OPFRATOR/S r1 V S'- /**"* W
RUN NO. /-;
SAMPLE & ME
METER BOX C.
FILTER NO.
CLEAN-UP NO
BOX & PROBE
FER BOX NUM
>M A a
8ERS^/U< fc '>
, ... H K- 2-i-y- /
^ S - S ป TARE 3 '' *
VALENTINE FISH ER & TOMLINSON
SEATTLE. V/ASHINGTON
TRAVERSE SAMPLING DATA SHEET
ฃ j IMPORTANT: FILL IN ALL BLANKS
SCHEMATIC OF TR/ VERSE POINT LAYOUT
INSTANTANEOUS READINGS: RECORDED ป BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
'3- 2&/
- 1 ;
1 -7
/ ><7
' /* > ,
/ -i / .'
( /
H. /. -' ,. >
^
, I
/ ' ' '
- v
/ .'';
' A -'ซ' ' J '->
, )
-TOTAL'/
AVERAGE
ELAP.
TIME
(MIN)
t>
(>>
C>
fj_
tฃ
/->
/' &
12 /
'M
:17
j <-
*? '>
, _-7<; .
'>*->
T-'
>"/
S 7
( .O
_ ..
(*:
'///'
DRY GAS METER
(CUBIC FEET)
ฃ*e-sT7:.?7
0O V. /
^/^ ฃ? , s.~
^'i'.', . 7:,'
^v / 7 'i
irV^.H
fr / > r'""
C? / i " , =.Vc. 'i / V
P/^.xv
f^^.c> , t
fy t4/ S"
Hf-1 * :.i
o / . / ,
or- < ^
(r'^i C. (i
. .^
^r'5 cy
o', 6 .06 b
..
-;, . .-; /
'//////
DRY GAS TEMP.
INLET
*?<->
9^
~~V-s"
c~fL> /^S
9B
/ซ1>C''
A> /
/o *i '!<
x^ > >'
/o<-^
/'<9 V
/&f /faj
/(> f
1 1 ')//(;ฅ
I/O
St 1
ft 2.
1 1^
?',.v
OUTLET
&f~
& 1T
fc
&^'
a t'
& i>
& ฃ''','
ฃ&
&'/
6"~\
7 V>o
c//
!i-2 /'I ?
'S >
/H
*/^
*7 S
s
% 'F-s-W, 'R
BOX
TEMP.
oc>7
^7^
,2 '?*"
.?.&'
.1 '>'>
.5'1M7
J?c/?
.^i::.'
/ // /
///,
IMPINGEIl
TEMP.
(F)
^'C
~Vr-
*> >
s:i_
^ r o
.'i'C
TC
:Vtป
t"->0
*tfl
sr/
$"*/
""^y?"
^>o
*>"1
3 >
_VL_
///x
^/X
3
L
p
A
C
R
S
P
P
ARCMETRIC PRESSURE (P
FAK RATF ^x0 / CFM
ORT PRESSU
SN * PB *
SSUMEO KOI
FACTORS
EF.AP ,t
n) ' ' ' ' "H9
U' a
a -?''T "HG
HE (Ps) ^ "HoO - "Hg
PS ^ ^. - ^ ._ "H9
STURE / ' '-' t MAX VH "H,O
n
y*> . o-^*./
TACK DIMENSIONSO'-l>/Oi/ AREA '^^ / O F2
ROBE NOZZLE niA ^--
ROBE LENGTH '?"' Nli
IN: AN - ฐ^'/ '^o f2
1BFRA/ SIDE /
AVERAGE VALUES! READ WITHIN THE TIME INTERVAL
POINT
^ /
2.
9
-c/
2>_/
X,
-?
^
o
J
^
^t
i-
.
'///
PITOT VH
("H20)
.c;' /
.x./
*) /
<^J
, o/ '?
,<:J / f;
. r ^ / ?
, c v -^
f/7
Aซ /S'
^ <: / S~
,^/^r
i ^3/ c*"
t'-'/V
> ,' >"
<:>/ 6
<9/S"
'////,
///'
ORIFICE AH
("H 0)
DESIRED
'~^tฃ "
*."{.'.
,'^-i
<-e.l
. (
7
PC'
. /
. /
.ฃ?'/
J^ '
&t
P (
^/
fV
H /
/ / /
ACTUAL
(-.
ฃ. c'
. "7
. t, -.
^
&'/
/ _>
. i"'/
,6V
iH/
- V.
-' :ฃ.
2 . **"
J f ;.
'>' c>
*? o
3 c
> 0
-<' P'
?,
*} (^
V c
J f-'
/// '
/ / * s
STACK
TEMP.
'""ฃ*>~^
n_ ปc _
^-|ฐ
''x f
/v'-;'
^V-t"
/)'x"l
y 7**
X*-- C-
///,"
/ *y <'
/^ <.'.(ป
/ ^t>
/-/ s"
/ &<
/ y'vj
/,'i"
/ Vt ^
/"" K "
-><: V
-J-7'- J,
., ^',
^ v6"R
OPACITY
OR
XC02
, 2 i
i"
.-
c :-?
.c/ V
' o r
c ป
v /
. <-' / J.
VFT/APlt
-------
VALENTINE, FISHER & TOMLINSON
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCAT ION
OPERATOR
>/ r
//ฃ c'*/s?-/_'. ^7 .-J x
RUN NO.
DATE
NO.
-5
SAMPLE BOX
.'
H20 CONDENSED, ml (1 ml - 1 gm)
BUBBLER (#1 W/APPROX. 100 ml WATER)
IMPINGER (.#2 W/APPROX. 100 ml WATER)
BUBBLER (#3 DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM.
0.0474 x TOTAL H20
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
CONTAINER WEIGHTS (gm)
FINAL
- /
INITIAL
632.2.
NET
i* 7
% MOISTURE IN STACK GAS = 100 x VOL. H20 VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT, OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
VFT/AP3C
139
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ^ฃ-/P^) /=/^ฃ?^SC :~ DATE OF ANALYSIS & -/,2- ~7 ~
EVALUATION LOCATION X ^TV^x- ^ ~ /="/.>>- ^-. X- c." -l" RUN NO. / ^~
EVALUATION DATE ฃ - / J: ~ x'.S"" CLEAN-UP SET NO. ^ ^? - ^
I. EVAPORATION OF // 6? (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 772 ^ ~? P.. O' (ing)
-BLANK (( .OPS' 7 mg/ml) ( // $? ml) = ,-7 mg) = yj . c- mg
II. FILTER CATCH /^^5^ //c'j S -'/ // _ (Media Type & #)
FINAL >3?6.fe (mg) - TARE 3.5-^. / _ (mg) - "2.0 . 5~~ mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON " - " '
WATER IN IMPINGER AND BUBBLERS.
FINAL 792.3 2.3 (mg) - TARE ~7ฐ)O / ^-. 8 (mg)
-BLANK ( _ A g _ mg) = /g . 3 7, mg.
IV. PARTICULATE FROM EVAPORATION OF -^ 5~& _ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL ~?\a%&'-.7 (mg) - TARE 7^ 7^ Q .7 (mg)
-BLANK ((^o_2_8^_ mg/ml) ( _ .Z g"g _ ml initial
- y^.J^ ml CONDENSED = Z3J". ^o ml) = c,.~7 mg) = / 9 . 3 mg.
V. PARTICULATE FROM / / ฃ~ (ml) OF >9 C^TO / '/<ฃ"" RINS E OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 7g7^y.2. (mg) - TARE 7 ff7 <^. / (mg)
-BLANK ((> gcJr? mg/ml) ( //^" ml) = g> ^ mg) = / ^, f mg.
VI. TOTAL PARTICULATE = I + II + III + IV + V = ? % .7 mg .
BLANKS >S K''- ''
FINAL _ mg.
ACETONE = _ mg/ _ ml = _ mg/ml TARE _ mg.
ETHER-CHLOROFORM = mg.(FINAL mg - TARE
mg)
WATER = mg/ ml = mg/ml. FINAL mg ,
TARE ng
VFT/AP9 A
-------
VALENTIN:, FISKER & T^MLINSON
ORSAT DATA AND CALCULAT r.ON SHEET
CLIENT
~. ' >
SAMPLING POINT LOCATION _
DATE 9//Z /7 i^ RUN NO ._
TIME OF SAMPLE COLLECTION
* v/>V:',* '
HOW COLLECTED
TIME OF ANALYS IS
/V
.? . '
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + Q2 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
CO
N? (100-Above)
ANALYSIS
//I
o.i/
>
^y^
zฃa
W
-7
#1
ANALYSIS ANALYSIS
n #3
^'5 r:5^-
r^.f i J7/ o
J-A * \ Z/ o
t
ANALYSIS
#4
^ -^'
-'J "-'
r^. rr
#2
<2-3
2&.(*
O
"79. /
#3
^, <
2c>. ฃ
C2
79
#4
a ^
2c?.r
O
79. /
AVG.
*f
zo.(?
o>
79. /
RATIO XwT./MOLE
MOLE WT\ (DRY)
44/100
32/100
t 23/100
28/100
AVG. MOLECULAR
./76
ฃ,ฃ92
2 ?./ฃ!
5$ ->-
*->./<-
WT. DRY STACK GAS
VFT/AP4B
141
-------
- - ^_r
CLIENT E :PA
PORT LOCATI
DATFf>' / 2
3N /?L'V/r rCri*S7>Wr ซ-
CLEAN-UP NO. ฃ/">.i Bl
BOX & PROBE HEATER SE^
ANKS A
VALENTINE FISHER & TOMLINSON
SEATTLE, WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
5 7ACt
;^: ^ป*
BAROMETRIC PRESSURE (P
LEAK RATF OJi c.FH
) 2V 7^ -Hq
a . ^ S
"HG
PORT PRFSSURF (Pr) ' "H-,0 "Hg
PSN " Pfl + 3
ASSUMED KOI
C f ACTOR _A
REF.AP..^
?s ' ' ' ' "Hg
STUflF / t MAX VII "H.O
*
^1 .^W
J ^-26- o~ STACK DIMENSIONS' /' 'it AREA ' ' i. F2
SCHEMATIC OF TW VERSE POINT LAYOUT
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
/- : .'.7
//6 H<
/' ,}<
2^ALฑ>
i
,
? ;>-"/
/ /
.AVERAGE
ELAP.
TIME
(MIN)
^
^
<.-
4'7
SV
^1
-73
**>
4-B
v/
*'*y
^ -T
4 f
.
,
'///>
DRY GAS METER
(CUBIC FEET)
^"
v- "y,^ ?
^i^ J .
^f O / I
ซ/ o/ 67-
*/ ^ > ^ *>
9^4. v~s"
<7o< . c//
^!<~>''TifL
Vc'<7. 7
V// -1
cl/3 1
1' ? ">
ff."/> M
r^/ 6 J S"'
?'7 5
'/ x^ ^
y/ v - c
.'LlL .ฃ_..V.O
. . ..._..
-? /. i. ' h
'/////,
DRY GAS TEMP.
INLET
ฃ^
^i-
-^
'7 '3-
~J?"
f^^/f*1
r 2
V 5
ฃ/7
9 6
.__'4_rf__
_
^^>.'{
OUTLET
ฃ>%
<: ^
< ฃ
> '*
ฃ-3 / fc/J
c-'v
frif'
e/
^'-i
.Jr_I^
/: , "_/._
7 / *F -*TV/'R
BOX
TEMP.
/92
?/<*
iSL
jC.4o
~^T
.2s~o
IS
~^r
~i^~
I'fcO
-i^r-
////
'///,
IMPINGED
TEMP.
CF)
<:: <
S'l
^>"o
^;
*>&
j"8
^.a
"7^-
-%'
*/ ^?
s 'I
^^f
i i-<
-v^'
'///
////
PROBE NOZZL
F niA / 2. IN: AM ' < / fl
PROBE LENGTH ^' NUMnFR^ SIDE ~
AVERAGE VALUES; READ WITHIN THE TIME INTERVAL
POINT
^ /
t$
^
A? /
2.
1
2
^
J> 1
ฃ
.'^ 1
1-
' / /~
;;. .>
////
PI TOT VH
CH20)
^"fe^R~J"
. f
0/2
<)//
. i-X' ป 7
O / ^
. 0/5"
o / *V
iป //
o / ^
,c/4
ro<-
c^ /
c^ i 2
C1/ 1-
LX"i'/
^,0
is
^
tf%
7&
. /iJ*
- 6 /
'ฃ*
P >
$/"
<;6
6
-t^V
7^
-'/'C
' />?
t^
^ j
^-v>-
^^
66
S'
6-7
, , , ,
//.v-;H2o
.,M-H20-.u./"Hg
Pro - PR +AH - " J. /-/- "Hg
PUMP
VACUUM
("HgGA)
' i S /
2..C
^ -O
/ ^>"
*Z ' O
'J . >
/. <(
-3 C
/-'J
/S"
3..C
2 . Q
i ~?T~
/ , 7
o o
7 /- /
'/// '
'///
STACK
TEKP.
CF)
_/7^
l?&
/ (~ V
/ -iT
/C/O
/ -7-^
/7?>
/^?*TET-
y '7*^'
/^io
/'! o
/fic
/ C1/
/9 O
/P>'i~
/A-c-
/7o
' S
, l
/ #
-------
VALENTINE, FISHER & TOMLiu.
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT ฃ. ฃ A .
RUN NO. /o
LOCATION Mr/, -r- vC ^ U tS.^ ฃ-ฃ.
NO.
OPERATOR ^ ( C-!. 'XT f^ /
DATE
SAMPLE BOX .-?
H20 CONDENSED, ml (1 ml = 1 gin)
BUBBLER (tfl W/APPROX. 100 ml WATER)
IMPINGER (n W/APPROX. 100 ml WATER)
BUBBLER (#3
H20 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM. -
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
CONTAINER WEIGHTS (gin)
FINAL
INITIAL
r 7 /
NE:
/.
/ 3. "7
MOISTURE IN STACK GAS ป 100 x VOL. H-^Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS ป lQO-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION)
III
VFT/AP3C
143
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ: /& Xj /=/?ฃ: ^L.A -^ _ DATE OF ANALYSIS 7- /
EVALUATION LOCATION /-./--- . -.. /-"//- -:..- -. RUN NO. /
EVALUATION DATE g - / f - -7 ^s- _ CLEAN-UP SET NO. 3 /- S
I. EVAPORATION OF // 2- (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL -J77CZL.3 (tag) - TARE "77^^.^. ^ (mg)
-BLANK (( . c?gf 7 mg/ml) ( / / 2 ml) = . & mg) ฃ . 3 mg
II. FILTER CATCH SJ 6>A / / (ml) OF ACETgtJt RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL 7"7//ฃ/.
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT /T, P, A.
SAMPLING POINT LOCATION
DATE ^X/? ^ RUN NO. /6
HOW COLLECTED 6*34^3
TIME OF SAMPLE COLLECTION /
-------
VALENTINE FISHER & TOML1NSON
CLIENT ฃ /ฐ /-I /:~'J.'ef).'\ce
PORT LOCATION J-ht^e YC-H"L'<- /V AV^S <"i ~V/0_T A-
nATEr* / ? -^"AMBIENT CONDITIONS < ^ ->'^ 7^"
OPfRATOR/S X^d-^^/Cb -^ S/"/ป/V7t/V
BUN NO. ' 7
SAMPLE & ME1
METER BOX ฃ
FILTER NO.
CLEAN-UP NO
BOX & PROBE
FER BOX HUM
,H / Rl
RFRS^X'i.- i
0.
.i?> ^"TARE /fcr, / M
f pi ANKS &
HFATfR SPTTINC, -^-TO^i .?(D%
SEATTLE, WASHINGTON
xTy/VW/V TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
S"-W /^^
'BAROMETRIC PRESSURE (P
LEAK RATE _^-Q2__CFM
P
A
C
R
ORT PRESSU
SN - PB *
SSUMED KOI
FACTOR *
:r . A P
RE (PSU-L
ps ;.' '
n)^V 7^.i "Hg
a .2'-i'**~ "Hf.
"HoO - "Hq
;, /-' "Ha
STURE / -i MAX VII ~Hnn
2
STACK DIMENSIONS ^^-r'!. AREA /-/7^ f2
SCHEMATIC OF TR/ VERSE POINT LAYOUT
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
($ 4 ^
' i
/TOT/U//,
, AVERAGE
ELAP.
TIME
(MIN)
0
J2/t
>"
7Xz.
1 ^
/ 2Yt
. <
-^-
j-21/i
3~>~
;nYt
Vc
'^>
//7//
DRY GAS METER
(CUBIC FEET)
9--?/ V-2 ^
^7 i'2 (.^5
^2^-.2l.
5'?^ ^'C/
'/?? 70
f/^ i. /*^
^ ^ ^ -y 2 s'
/ Z 5 4 ฃ
72 5 ^^;
C Z-H /OS"
V ^ */ ^ -1 ^
.'../)/
'//////
DRY GAS TEMP.
INLET
7ฃ>.
7H.
'7 V-
'7ct
fr"t >
P c>
f /
^ /
^ <:
G'S
&*!
&
7^,
T>*
76i
/ 6.
/'fe
-77
*j&
~7 V
^4 c^
-#s-
f? i^
A ./ .:.
/-; 'F-,;.j'rR
BOX
TEMP.
^2.->iT
i<^/
~fes~S"
j2-io
3 oc
Al^T
-^^i"
(2^"^
J?fiO
5-t-O "
^f
'///
'//,
IMPINGED
TEMP.
CF)
'72
i'o
Y/
srfej
i;
-*&?'
*a fi
///
'///
PROBE NOZZLE niA />>
PROBE LENGTH ri" NU
IN: AN -'., -P2
AVERAGE VALUES! READ WITHIN THE TIME INTERVAL
POINT
C- 5
;>
,
.<
'.
//
,
,
/
'~/~s~.
/
'///
PI TOT VH
("H20)
'e~~7tt~*'
o / 0
,OC6
__, ซW ฃL
o/A
o / s~"
o / ^T"
.c;/ 9
O}S
O/^
( V ^
^ ^ fa
-ry-jr-/".
'////.
/////
ORIFICE AH
("H 0)
DESIRED
y / /
//X/
ACTUAL
, , ป ,
/"sT
.OS"
.tX^s""
ซ:><:/<,"
%.
~^M
rfrf'i
c^/
, , y /
- V.^"20
t ) * J fl?^ xL Ort '
Pm - PB *AM - ;' ). 7 ? if "Hg
PUMP
VACUUM
("Hg GA)
*5~
fi~' O
JS". 0
S"/C3
"a" 0
6" - O
'i". O
'J , C>
5"-f
i.'" &
5"~/ o
-
///
'///.
STACK
TEMP.
CF)
OPACITY
OR
XC02
^ . .r .
i? 2x"
J?ic
i.xo
^(1Cj
/ ?r~
/^'o
/8o
/ ^^ /
x *L^ i
/&c-
-~/Z.z~
y 77
,
-
i . )
/ ;ti
.;' o ^ "R
X"
-------
VALENTINfcl, t'lbHER * T
STACK MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NO. /7
LOCATION
OPERATOR
NO.
DATE
SAMPLE BOX
H20 CONDENSED, ml (1 ml - 1 gm)
BUBBLER (II W/APPROX. "100 mi WATER)
CONTAINER WEIGHTS (gm)
FINAL
INITIAL
2 i-
-=//./
IMPINGER (tf2 W/APPROX. 100 ml WATER)
BUBBLER (W DRY)
H00 ABSORBED BY SILICA GEL, ml
TOTAL H20 COLLECTED, ml
VOL. OF H,0 VAPOR @ 708F. AND 1 ATM. -
0.0474 x TOTAL H20
MOISTURE IN STACK GAS, 2
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
X MOISTURE IN STACK GAS - 100 x VOL. H^Q VAfrOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - IQO-* MOISTURE IN STACK CAS
100
MOLECULAR WT. OF STACK GAS - AVG, DRY MOL, WT. OF GAS X MOLE FRACTION t
18 X (1-MOLE FRACTION)
NET
O.
/. 2.37
VFT/AP3C
147
-------
CLIENT
X- / /eฃ=
PORT I OCATION
DATE ^-/-S/X
'/
coNomoNs
RUN NO. __/_ฃ__
SAMPLE & METER BOX
METER BOX AH /.'.
FILTER NO. '> V--' 0 TARE
VALENTINE FISHER & TOMLINSON
SEATTLE, WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT; FILL IN ALL BLANKS
*ฃ.
_mg
.; BLANKS.
CLEAN-UP NO.
BOX & PROBE HEATER SFTTING 3L~
//
Q O O O O
'BAROMETRIC PRESSURE
LEAK RATF. :'j*~- TFM
-------
VALENTINE, FISHER & TOMLINSON
STACK. MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NO. /
LOCATION
OPERATOR
83- 5
DATE
SAMPLE BOX
CONTAINER WEIGHTS (gin)
FINAL
INITIAL
3 *#.
H20 CONDENSED, ml (1 ml = 1 gm)
BUBBLER (#1 W/APPROX. "100 mi WATER)
IMPINGER (^2 W/APPROX. 100 ml WATER)
BUBBLER (*3. DRY)
H20 ABSORBED BY SILICA GEL, ml
TOTAL U20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM. -
0.047A x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
35 MOISTURE IN STACK GAS - 100 x VOL. H^O VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS - 1QO-X MOISTURE IN STACK CAS
100
MOLECULAR WT. OF STACK GAS - AVG. DRY MOL. WT. OF GAS X MOLE FRACTION
18 X (1-MOLE FRACTION)
NET
6
VFT/AP3C
149
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃj /a X= /- /.**:-7 s z, /-' -. ~T DATE OF ANALYSIS >P-y ? -"7.5"
EVALUATION LOCATION A / ^.- - T.-1" /=>.-=ป" ^ -;- -.7 RUN NO. /Q
EVALUATION DATE ฃ*-/.?- 7i CLEAN-UP SET NO. ฃ ? --
I. EVAPORATION OF "? 7 _ (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 7^7jf //' (mg) - TARE 1^ 7 7 5~. g _ (mg)
-BLANK (( .caoS" 7 mg/ml) ( "77 ml) = <*f- mg) ^ ^L mg
II. FILTER CATCH X'-/<^-' //^y ^5 .-?' // _ (Media Type & #)
FINAL 3 3 7. ฃ> (mg) - TARE 35~/. 4 _ (mg) = 3 S~* -^ mg.
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
FINAL 9J5g.^ (mg) - TARE ^3 7 S, 2- _ (mg)
-BLANK ( "^ & _ mg) = /3> ^ mg
IV. PARTICULATE FROM EVAPORATION OF 3 J? .5 (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL k73^J"~(nig) - TARE "7^ "7 //.V _ (mg)
-BLANK (( .CQ2.5*. mg/ml) ( 32. 5^ ml initial
^ ml CONDENSED = ^?^ 8.*^ ml) = . ^ mg) = mg
V. PARTICULATE FROM / ^-O (al) OF ACฃ~7&f/E~ RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
VI.
FINAL '7Z2.U
-BLANK ((.0057
TOTAL PARTICULATE =
BLANKS. y^n ^-/
ACETONE =
ETHER-CHLOROFORM =
WATER =
2 (mg) - TARE 7 ^2.^-2.. 3
mg/ml) ( /ซฃ<2 ml) = ป ,
I + II + III 4- IV + V
mg/ ml =
mg.( FINAL
mg/ ml =
(mg)
3 mg)
mg/ml
mg -
mg/ml .
VFT/AP9 A
_
FINAL
TARE
TARE
FINAL
TARE
2^O, / mg.
^/ " . r~ mg .
rag.
mg.
mg)
mg .
me.
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT ฃ" P. A .
SAMPLING POINT LOCATION
DATE 0 Xi /~>C RUN NO. /
HOW COLLECTED
TIME OF SAMPLE COLLECTION
TIME OF ANALYSIS
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C0ฃ
02
ANALYSIS
#1
JL -i
20. f
ANALYSIS
#2
<
ANALYSIS
#3
^o. fc J2^), 6
i
lo.c, 20.7 ฃo.7
fi
'0.
"20, 2-
CO Q
i
N9 (100-Above)
-77.4-
ANALYSIS
#4
:
#2
o. -7
^a 2.
0. 1
79.3
#3
#4
O " ~3
J2c\ 3
a/
7^,3
AVG.
O.f
23. Z.
0. /
79, 3
RATIO W./MOLE
MOLE WT\ (DRY)
44/100
32/100
2a/ioo
28/100
AVG. MOLECULAR
^,^2S
2.2.204
22.27
WT. DRY STACK GAS
VFT/AP4B
-------
CLIENT ฃ(JA t I'.'fiX/i t-
PORT LOCATI
DATE <*' 1 '-'' "'
ON H1-''iE->'ti-V..'k^.rl k'rs-
V AMBIENT CONDITIONS. ^^ O-0*.'-^
iDCOATAD/C ^-\( ( % M*^( li / > ^*"~ '-V f^* .> C. i -J
RUN NO. H
SAMPLE & ME
METER BOX ฃ
FILTER NO."
CLEAN-UP NO
BOX ft PROBE
FER BOX NW
iH /,-ฃ
BERs^t-K 4 'S
; HIANK<: A
HFATFR SFTTINP, ft
'.'d-i"
VALENTINE FISHER & TOMLINSON
SEATTLE, WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: F!LL IN ALL BLANKS
- ,
/vt> o ^|V>* / 1 ; 5J
. f'
' /,/
' !<, ฃ&
j ' -> ><.
' -' ! 1
.' '
'' -< //,'
/ .
-l^'l.'
'
/.' > i
/TOTAL' /
AVERAGE
ELAP.
TIME
(MIN)
O
\'
_ฃ.
9
/ -T
/f-
5 /
."> /
."7
!ซ.
'>' ">
, ,\>
-; /
/ 2
'/*
vf
A i
:. y
.;"-?
^ ,_"
S' 7
'////
DRY GAS METER
(CUBIC FEET)
y c,K 72 2.
c/\ V- ^"-i
J?' 6 _'.(.-
^ C- f> i.- /
9 L- > * '-
'//' '.' , / 7 ,;
c< p ^1 , ? Y
(i<-;- -yjf-;
:.-.. . /'>'
'/////s
DRY GAS TEMP.
CF)
INLET
^'c/
*'-<:-
^' */
72
7-3_/v
~~$*r~
h^/tf
ฃ7 /ft
ฃ
-7s
'/fc
TT
'&/ '/S
1 1
s
"^x-
'7/u
._iZL.
/ / / \
/ / /
IMPINGE <
TEMP.
'7<.
-/"2
7 i
^y o
f^"
'/C
=^:
~~$Z~
^
~it^
^(0
-/o
-^t:-
///
x//;
'BAROMETRIC PRESSURE (P
LEAK RATF / ^ CFM
Q) ^ A >'- ' "Hg
a '> '> " "HG
PORT PRFSSURF (Pr\ > "HoO - "Ha
PSN ' P8 *
ASSUMED KOI
C FACTOR _/_
REF.AP > '
PS ' V. .' ' "Hq
STURE '1 ซ MAX VII "M.O
A.
Q 1
'>C- ,-// 'ปc> . ^< -
5TACK DIMENSIONS ''///', *AREA / . ' ' f2
PROBE NOZZLE niA Y>
PROBE LENGTH "'' ' Ml)
IN: AN ;< p2
1QFR / SIOE.^^
AVERAGE VALUES'.READ WITHIN THE TIME INTERVAL
POINT
A !
/I
1
-^T
~t
7
r /
4
. /
^/
7~) /
2.
i
f s
~ฑo
////
PITOT VH
CH20)
^ i ' ;' / fr
C'ซ-"'<-
- v. (
\ I
. <->'*-(
< ; S -\
.(-'i ~\
^ ( '>
. '^ 1 S
. C f .'
. r \ t-
iC
^ IV
. r ( o
ซ ^
i; ' '
. <- 1
-(-r-r-r
//////
'/////
ORIFICE A H
DESIRED
' / /
?ฃ"'>
> .^-
Ji^?
'/ <^-
S.-?
I.I
I / i
/. ^
. < "7
/
/.ซ.'/
/ ฐ
, ?6
. /C
_ ^:
r'
^'f
, ^ >
. '/ f-
T-r-T
////
ACTUAL
~""v^~
;'>
/' /
/ '>
/ ^
.C'j
. 7
/ - 1
/'(.'
'76
V c-
. ^,-
^
- '-'- /
- ^' ?
V '
r-r-,-,
/-/o"H20
.')L "M20".(%-Hg
Pm Pa *AH - /' 'X-'j .'.' "H9
PUMP
VACUUM
("Hg GA)
' '/ /'', ' '
/ "7
--/-.-'
'"/. '-'
;> . /
^' C'
j". c-'
'i -''
_> :
? ..
'/ -^
/ ." (
^ ^-.
:; /'
'/ป ('
*'' 1
S **
/s.
/7.c
.''.- .^'
.-_ ....
S f ,r
/// '
// /.
STACK
TEMP.
CF)
-
^' ^'/ S.
o / -/
? / vi"
.'' ' 'ป
:'>&('
j K ->
/ *
T> -. 7
v U-
'-i V >
,'.''c-
-'.:;: T-
^ * 1 S
'' '>
:'/s
* * > v^
0 - /^I
4> ,; -^
.
' '
-1M )
^ /
V/ 7 ฐR
OPACITY
OR
S
( >/r--
f J
c- V
C'.i'
C V
Oe:
, O^i
. C- '. '
,0lฃ
^( C-
'^ i '-V
c-iซ
<.-
. o ^
-t'i-7
err
. 0 ' fc
.IJIC
, (.- > '2
-------
VALENTINE, FISH I-,,-' & '1OMI.1NSON
STACK MOibTURE CONTENT DATA AND CALCULATIONS
CLIENT
RUN NO. /
LOCATION
OPERATOR
SAMPLE BOX
H20 CONDENSED, mi (1 n\l = 1 gin)
BUBBLEH (.vi W/APPROX. 100 ml WATER)
IMPINGER u'2 W/APPROX. Kh> ml WATER)
BUBBLER (i:3 DRY)
H ,0 ABSORBED BY SILICA GEL, in I
TOTAL H20 COLLECTED, ml
Vl-L. OF H.,0 VAPOK @ 70ฐF. AND 1 ATM. -
0.0474 x tOTAL H20
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
NO
DATE
CONTAINER WEIGHTS (gin)
i-'INAL
r9,3
4?*. S
INITIAL
ฃT
NET
4,
% MOISTURE IN STACK GAS - 100 x VOL. 11-jO VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. Or STACK <.Atป - AVG. DRY M-/- . WV. >"' CAS X SOLE t'KACTlON
'. 8 X (i-Mo-:-. cRA ^-jtt)
L7AP3C
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ZT /ฐ /4 /- /** ฃ.- P<^~ /" //-^T-V../-,. .=" RUN NO. / ^
EVALUATION DATE S - / ฐ)- ?~CLEAN-UP SET NO.
I. EVAPORATION OF / 6 g? (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL 79^-g? ml) = . ^ mg) = / & mg.
II. FILTER CATCH A?,5X? //ฃ?Jj /.j//' // _ (Media Type & #)
FINAL 40 7* G (mg) - TARE Jog. / (mg) = 33
/77, 5- ^. /76,^
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM 'EXTRACTION ON
WATER IN LMPINGER AND BUBBLERS.
FINAL ?(*ฃ* Q~*& (mg) - TARE ~?L ฃ, 0 A / (mg)
-BLANK ( / 8 _ mg) = 2- ml CONDENSED = ^ / >?. g ml) = .
APFTONF - mp/ ml -
ETHER-CHLOROFORM = mg.( FINAL
WATER = mg/ ml =
VFT/AP9 A
3.*? (mg)
= ง mg) = x <^. P
= d^.-^
FINAL
mg/ml TARE
rng - TARE
mg/ml . FINAL
TARE
mg.
mg,
mg.
mg.
mg .
rag.
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
DATE AU&. / /fjf RUN NO._/2.
HOW COLLECTED
TIME OF SAMPLE COLLECTION
TIME OF ANALYSIS At/&.
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COMPONENT
% BY VOL. (DRY)
C02
02
ANALYSIS
#1
-
ANALYSIS
#2
<^. 2^
2.Q.4
2.0. <4
ANALYSIS
#3
C7. 3
^af
2or<3
ANALYSIS
#4
K
o > "^
7.0. 2.
O
7,(o
#3
#4
o,3 '
Zt> ,\
1
o
1
1
1
77' ฃ
AVG.
0,235
Zo,/67
O
77'4
RATIO \WT./MOLE
MOLE WT\ (DRY)
44/100
- /o3
32/100 '}ฃ,ฃ&
2a/ioo
28/100
AVG. MOLECULAR
o
22-2^
2asi
WT. DRY STACK GAS
VFT/AP4B
cr;
-------
CLIENT A'/?-I X.
PORT LOCATION
DATE- f'-
OPERATOR/S
RUN NO.
!
PORT PRESSURE (Ps)
"CM " PB + ps
bN ฐ J
ASSUMED MOISTURE
C FACTOR /,ฃS
F (pn) ;",.*-.
1 U'
TFM ra 7--'
' "Hod -
~ t MAX VH
"Hg
"HG
"Hg
"Hg
"H20
REF.AP . 0'-(-
F1ITFR NO. -7-2- T ** TARE' ' "V7/. > AREA / > /. / pZ
CLEAN-UP NO.A/-^ -t BLANKS A PROBE N077I E DIA.X^ IN; AN ' > F2
BOX 4 PROBE HEATER SETTING '<"ป-' & ;' /" SCHEMATIC OF TRAVERSE POINT LAYOUT PROBE LENGTH >" Ni!MBER_ฃ7_ SIDE 7
INSTANTANEOUS READINGS: RECORDED 8 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
/4-/<>
/_/_/ z.
/ / -/ )
> t -, /
!.: ~''H -"V
' / L, t-
/ ''/'_, J
/ '. ', y
. -/>' l'-'
-, /
' '.
' '. ; "'
' ' i~ ti.
i\
i e
| L?
->--', 2t
.- ::. -' ->
vrii
TOTAL
/- ' /
AVERAGE
ELAP.
TIME
(MIN)
O
.v _ .
-7
.6-
^
/o
/^
/Y . .
/6
/f
^ C "*
rt i'^
'/
-C
v^r
>(
^
"^'l
n
V
%
7 ^
X/ .' ' /
DRY GAS METER
(CUBIC FEET)
c -^ ฃC s
ฃ <* x T <" i
/*"
V,AO".
""/""/ 2 . <^. "^
c/lr> ^;V
5" '/ v x 2
.t/'/^-'-/.^. .
r/V>' c' 7
c^ /c '^<ป
-/'/ 7 7o
c<-;t- tซ
'"' '/ i t. (
r ^ vc . (. <: ^
f, '>'/
,.cl
/r>< .3 /
/ / / / / /
DRY GAS TEMP.
(ฐF)
INLET
72
' *t
?(..
~7*~-
"/ V ^? '/
??<'
'/
<- -/
^ //f . /
O i
fr'ei
.c/t'.,
/ // <+
^.i 2
((. '<
'{ "^
S't/'-J-V
ฐi S"
<->
1
9f
- -
2 ASM
OUTLET
r r
C: ป t
* f
r
^' '
(:C(
4V./6'/
7c-
,YC
I*/
'7 //?/
72
.!7.^
/ i
'*f.L.~f1
7**
''-'ป
7?
7?/V"
.
?.'.? '
A-:'.
/ *J ,_
) *F -57^ "R
BOX
TEMP.
(ฐF)
y '2 C'
*> " > <^r
^ L-r_Z.
Z" ป^
-^ >^.
'?*-&.
2 '( S
2 rt
2-'f^
'?<>.2
2 SC'
2<>o
- sl>
>'> ป
7-V.V
7. VV
^ ) 7
~^~~
c'G^1
___
_..^t?ฃl..
J *j O
.
y//
XXX-
IMPINGER
TEMP.
(ฐF)
'i'-j
Lf -
4i
..j .?.
.^(.?. .
/:l;'?--
\^.
flT._
^s
.rvfJ
^il 7
"t'^
*( /
^ .c'_
...$.ซ...
. .:Vt-.__
*D'O
..___
* ป**-'
.
-.
-( ""ป
///
/ / /
AVERAGE VALUES. READ WITHIN THE TIME INTERVAL
POINT
A"
t.
*->
_
/? /
T
7
'/
^
3""
i
4
o /
-
xi"
"~r i
1 '
_j
-
7
__d_.
v *
XXX
XXX
PITOT VH
(MH20)
^^-'-^
. t;- W
0 1^,
. f i(_-
.> / /
' o / >
.. j
" ' /
S"
. 77
. //"
i- ('
^
...-kl.
.--tllS
f *
t-t:
^i'.i:
-s-r-r-
////
0)
ACTUAL
x.v y y
1
n
-t:
T ป
-- 7 7-
, <
'-
\-^-
- 77
,11
,t'
- 6 ^i
"y.- "~
- --.-._
, . Vi_ _
L.Zi..
i 'i
.(c-
. !Ji_:L_
..
/./;HH20
.~)p "H20 "^ i, ; ^ "Hg
PUMP
VACUUM
("Hg GA)
2 '. ^
~> t
'.> 2.
> i
"? ^
^ '-
S'. c
*><>
> ^- '
d .c-
E . L
t S'
/ C?
2 : C'
-'J*.
' ' S
?.c-
LL_."
/
'XX- x^
STACK
TEMP.
(ฐF )
' /, ( ^
..'I """
'" J ->
'S ~>^
7 '-' '/
> ;
'7..--
? / 7
-. ^. ._. '"
;'/^
/> . /<;
'(.C1 ~~
J* ซ- (.
i'. -, c-
ssc
,oV _
. .^ -7 7 7
-/v, /
'^ '> < '
,-<,': i.'**
OPACITY
OR
%C02
^ / ../. .^.
-
.....
--
^.^_-7_7
.c/7
. 0/6
CM!."
-------
VALENTINE, i-'JSHEiv & TOMJJNSON
STACK. MOISTURE CONTENT !)ATA AND '' VLCULATIONS
CLIENT
LOCATION
OPERATOR
,#ฃ&
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT <ฃ/^/Z /Os*rr,*=>^_/- .::. .^ DATE OF ANALYSIS &-2&- 75
EVALUATION LOCATION X? l/g/^ X9 ^ ฃ~ /="//* - 7 3 CLEAN-UP SET NO. (ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL Xfrgtf-y.T (mg) - TARE ~ฃ S^ **>.(& (mg)
-BLANK (( PCS 7 mg/ml) ( /5"JT" ml) = ^ mg) /o * *7 mg,
II. FILTER CATCH A: ^ ^ /.-c.^; /g. >/ // (Media Type & //)
FINAL 2'~/. 3 (mg) - TARE 3 S~C. ฃ, (mg) = ' /. 2- mg,
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON *~ -
WATER IN IMPINGER AND BUBBLERS.
FINAL777,225~(ing) - TARE 777/c5f gf (mg)
-BLANK ( A B mg) = 6. ^ mg,
IV. PARTICULATE FROM EVAPORATION OF .2 2 O (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 7^2ffg.6 (mg) - TARE ~7*) Z-7 ^jj (mg)
-BLANK ((. 002. 8 ^ mg/ml) ( ZJ5 & ml initial
- //' B ml CONDENSED = .2/ff1. <^ ml) = ซ ฃ mg) = cf. <=ป mg,
V. PARTICULATE FROM /_^ ^ C^1) OF ^ Cฃ- T&sJiT RINSE OF IMPINGER,
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL *7ฃฃQ7.2.(mg) - TARE 7Cf^^3Qt~T' (mg)
-BLANK ((- QQS ? mg/ml) ( /3s? ml) = . Q mg) = ^7. ^ mg
VI. TOTAL PARTICULATE = I + II + III + IV + V =
.ฃ mg,
BLANKS' f/z ^^
FI^'AL mg.
ACETONE = mg/ ml = mg/ml TARE mg.
ETHER-CHLOROFORM = mg.(FINAL mg - TARE mg)
WATER = mg/ ml = mg/ml. FINAL mg
TARE mg
VFT/AP9 A
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
DATE/teg. / 1415' RUN NO . Z.O
HOW COLLECTED
/
TIME OF SAMPLE
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
COLLECTI01
ANALYSIS
#1
0.2-
2jfi.?>
2.0.$
* TIME OF ANALYSIS
ANALYSIS ANALYSIS
#2 #3
0.2-
0.2.
Ztf.3 2.aj
20.3 2c?,3
'
ANALYSIS
#4 _,
1
I
COMPONENT
% BY VOL. (DRY)
C02
#1
#2
#3
#4
.2_ . > . ^_
i
02 -2,0 ซ /
<~T\ ' S*l fl
UU ^J t ^-J
\
N? (100-Above)
77-9
2.0, i
**i 1
c.
-------
CLIENT t~ /'si ^
PORT LOCATION //.*'*/-
DATE/-'- /ri VyAMBIENT CONDITION$rJXi_U
OPERATOR/S A' . -. ^<'Q /'>'
TRAVERSE SAMPLING DATA SHEET
IMPORTANT; FILL IN ALL BLANKS
lew no/
BAKUnt|KlC PRESSURE IPB) -- -1
LEAK RATE -c * CFM il
PORT PRESSURE (Ps) L
'H20
- PB + PS
--"9
."Hg
"Hg
RUN NO. -V
SAMPLE & ME
METER BOX i
FILTER NO/
CLEAN-UP NC
BOX 4 PROBE
TER BOX NUI"
\H / f7'
1BERS^6 & ~*
7/ - i~ g TARE 3 >^' 4 mg
I. ; BLANKS A
HFATFR SFTTING A
S"iAปn ic^ 1';^'= ASSUMED MOISTURE ^ % MAX VH MH,O
i" tf'/6 "^ R
FACTOR /
EF. AP <; H ,cl ^M '-^'1-
i *# n '. o'i STACK DIMEN
/O* LC^T e> &,<>* PROBE NOZZL
SCHEMATIC OF TRAVERSE POINT LAYOUT PROBE LENGT
INSTANTANEOUS READINGS: RECORDED 0 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 MRS)
/(- >CI
' / ' V
TOTAL
AVERAGE
ELAP.
TIME
(MIN)
d
:>\-
/c-
: -'C '
.i -- >;-
i V/a
<: / / Vi
v J / 1.
'.()
/ / / '''
DRY GAS METER
(CUBIC FEET)
,-, c-^.o 7o
/"/ Vr
/"I 2 i
?-' 0
-v /, ";
'//////
DRY GAS TEMP.
INLET
ฃ>'$
^Jfj^i
^t^
. *
ฃl '^
^i 7
/cc-
/c ^^^
/Cl
10 ^
:^ i-/^
OUTLET
ฃ.<>
rf
77
* ^^1
X*
VM
C^ C*
(Pt * '
;^>/^)
<3 ~7 ฐF -ซr^ 7 *R
i.J / j / / "
BOX
TEMP.
27o
2 os
"v.!< T/
7 'V >
- -7*i
/ / /
///,
IMPINGER
TEMP.
4z
^O
.-do
-'/tp
^/ O
^ / o
'79
:)c'
////
SIONS^l^
E DIA.^
1 / AREA ' ' V ' F^
IN: Aw '
"Ff"
7
7
-7
,-s-s-.
^.o
'///
PITOT VH
(BH20)
/'/?//
.cr-.-y
..5' ซ >
.",.c> j'^
' 0 I
- < ^
. "."^oj 1
-~"r "
^072.
^_>i '-i
,C 1 ^
- ^.y.
'////,
'/////
ORIFICE A H
("H 0)
DESIRED
/ / S J-
^ -^v
"_"~7.3."
7?
6 '
.(=<^
- Ci ฃ3
.
-r-r-s-
////
ACTUAL
/ / y /
x.-
:*
S /
7 4
. :_ฃ;< i
- ~ -v
c^-
- -
/^.ซv"H20
J,, !"H20 -,;; "Hg
PM PB +AH - .7 ; // "Hg
PUMP
VACUUM
("Hg GA)
/ / / /
S . c
< y\
/o . *-
///
'// , ',
STACK
TEMP.
V ' /
' ' > j
2 /">
?:,/
vj '">."*'
v-b
_^_ T.._7 ,,
y -^ rf^
./ / e;
y?cR
OPACITY
OR
ZC02
_
-
_y_ ^__,
o J V'
ciV
/.rfit
o/c
c.r
c-/7
o(t
.017
VFT/AP1E
-------
VALENTINE, FISHER & T0MJ-INSON
STACK. MOISTURE CONTENT DATA AND CALCULATIONS
CLIENT
LOCATION
OPERATOR
-VV
RUN NO.
DATE
NO.
SAMPLE ZQY.
CONTAINER WEIGHTS (gin)
FINAL
INITIAL
CONDENSED, ml (1 ml = 1 gm)
BUBBLER (//I W/APPROX. 100 ml WATER)
IMPINGER (1t2 W/APPROX. 100 ml WATER)
BUBBLER (03 DRY)
H00 ABSORBED BY SILICA GEL, ml
^
TOTAL H20 COLLECTED, ml
VOL. OF H20 VAPOR @ 70ฐF. AND 1 ATM. ป
0.0474 x TOTAL H2o
MOISTURE IN STACK GAS, %
MOLE FRACTION OF DRY GAS
MOLECULAR WT. OF STACK GAS
% MOISTURE IN STACK GAS ซ 100 x VOL. H^Q VAPOR
VOL. DRY GAS + VOL. WET GAS
MOLE FRACTION OF DRY GAS = 100-% MOISTURE IN STACK GAS
100
MOLECULAR WT. OF STACK GAS = AVG. DRY MOL. WT. OF GAS X MOLE FRACTION +
18 X (1-MOLE FRACTION.)
NET
VFT/APJC
161
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT
/ฃ
EVALUATION LOCATION _
EVALUATION DATE g - / -^ - 7 ~
DATE OF ANALYSIS 2 - 2 -j,
/~ /f* ~ .^.L ฃ .; ^ RUN NO. 2. /
CLEAN-UP SET NO.
I. EVAPORATION OF
(ml) OF
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL
-BLANK ((
II. FILTER CATCH
SiC
FINAL
. ((
(mg) - TARE
mg/ml) (
~/2s jS~ / ฃ ^ &
ml) =
fog)
mg)
$ _ (Media Type & //)
/;t''"<-rs.'j ?*-'-< ฃ>'*" &. -^--^
(mg) - TARE 3 <~J. *ฃ _ (mg)
,*
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON
WATER IN IMPINGER AND BUBBLERS.
mg.
mg.
IV.
FINAL
-BLANK (
PARTICULATE FROM
(mg) - TARE
mg)
EVAPORATION OF
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION
FINAL (mg) - TARE
V.
-BLANK ((
_
PARTICULATE FROM
mg/ml) (
ml CONDENSED = ml)
(ml) OF
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL (mg) - TARE
VI.
VFT
-BLANK ((
TOTAL PARTICULATE
BLANKS <ฃ<,/7 &/
ACETONE -
ETHER-CHLOROFORM
WATER =
/AP9 A
mg/ml) ( ml) =
= I + II + III + IV + V
mg/ ml =
mg.( FINAL
mg/ ml =
(mg)
- mg.
(ml) WATER
(mg)
ml initial
= mg) = mg.
RINSE OF IMPINGER,
(mg)
mg) = mg.
^fc.:/ /" mg.
FINAL mg .
mg/ml TARE mg.
mg - TARE mg)
mg/ml. FINAL mg .
TARE ;.iz .
16,
-------
CLIENT
PORT LOCATION
DATE i
VALENTINE FISHER * TOMLINSON
Sf ATTLE, WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
OPERATOR/S^J
RUN NQ. ?. 7.
SAMPLE & METER BOX
Wffft BOX AH
FILTER NO..
O ^ C
87-5
/,
. mg
I
BAROMETRIC PRESSURE (PB).
LFJIK RATF ;O / CFM 0_
PORT PRESSURED VS) C
PSN " PB * PS _-:
ASSUMED MOISTURE.
C FACTOR ป9S
REF.AR.
."H20
':"'
_"Hg
_MKG
_"Hg
oc
<" t MAX VH.
'>?<' 7 '=-''" LK3"* I 71?
DTMFN5IONS
M
F*
CLEAN-UP NO.'
BOX & PROBE HEATER
SCHEMATIC OF TRAVERSE POINT LAYOUT
PROBE NOZZLE DIA. .K2 IN; AN- i^/j
PROBE LENGTH 1 ' NUMBER /? SIDE
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
AVERAGE VALUES. READ WITHIN THE TIME INTERVAL
CLOCK
TIME
(24 MRS)
//.'/fl
/ / y -7
ELAP.
TIME
(MIN)
JZ
/r
'&
DRY GAS METER
(CUBIC FEET)
_
3/-Z o
,
^/
-a
39.70
6 fc
DRY GAS TEMP.
INLET OUTLET
vo
x
.7.7
Bo
BOX
TEMP.
Sir
2-^X0
2.7V
,2
IMPINGER
TEMP.
CF)
POINT
PITOT VH
S'2.
ORIFICE AH
("H20)
DESIRED
.^ -
.i*/
,9$:
~7~
ACTUAL
PUMP
VACUUM
("Hg GA)
L> ?-
/'^'
S.,-0
...Lt.^.
STACK
TEMP.
270
2*7.7.
290
2 S'O
OPACITY
OR
XC02
c- 3
-CJtJl.
TOTAL
. 30
AVERAGE
277
"He
-------
V \i.; rii lill-:, I-' iSML,; *, TUM.INSON
STAGK. f iH'.i I liKI-: CmM'liNT DATA MID CALi > s.
/ //C
Li" AYIuN
u '.' .. -UTO K
:,.V!!M.E Dux
RUN NU.
DATE
No
.87-5
CuNTA iM-.K WliM.UTS (^1:1
I Hi! - i
i WA'i'LH)
ii j ABSORBKD tV SLLll'A Gi-L, mi
TUiAL 1100 LULL :.'.,: Li), mJ
VuL. OF H.,0 V:-PM,< ,d 70ฐ F. AND I ATM.
O.OA74 x TOIAL hO
MolSTURli IN S'sACK GAS, %
MLiLE FRjXOTioN ur DRY GAS
MOLECULAR wr. DC S'IACK GAS
INITIAL i ,NliT
.
3
% MOISTURE IN i.AGK GAS =
_^i x VOL. 11^0 vAL'ni<
VOL. DRY GAS + VOL. WcT GAS
MOLE FRAG'i 10,\
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT
EVALUATION LOCATION ^, / ฃ#
EVALUATION DATE & - 2 <3
DATE OF ANALYSIS
RUN NO.
CLEAN-UP SET NO.
EVAPORATION OF
(ml) OF A C
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE
FILTER.
FINAL ~?(0bS'8.* (mg) - TARE "? ฃ jo 2. O..Z.
-BLANK ((ซCcfT7 ing/ml) ( /ฃ"O ml) = .
II. FILTER CATCH
(mg)
mg)
. 7
, 3 H # (Media Type & #)
,9 36 ST. S"
FINAL ซฃc?g,' 9 (mg) - TARE J5*5". 9 (mg)
, Q
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION Ol
WATER IN IMPINGER AND BUBBLERS.
mg.
mg,
IV.
FINAL 6 7.2 6 2 .7
-BLANK ( />
(mg) - TARE (o ~) 2. 5~t> . /
5 mg)
PARTICULATE FROM EVAPORATION OF ;?<2_S (ml)
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL *? ~?/O 3. 9 (me) - TARE ~)~)d ff#.*l
V.
-BLANK (( ซ <2c/2ฃป
/^l ^ ml
PARTICULATE FROM /O
mg/ml) ( 2 ..
VI.
-BLANK ((. 00^7
TOTAL PARTICULATE = I
BLANKS ฃc^> */
ACETONE
ETHER-CHLOROFORM =
WATER =
VFT/AP9 A
me/ml) ( /OO ml) = - ฃ>
4- II + III + IV + V
mg/ ml = rr
mg.( FINAL
mg/ ml =
(mg)
= /ฃ>. 8 mg.
WATER
(mg)
initial
S~ tag) = /9,J~~ mg.
5E OF IMPINGER,
(mg)
mg) = -2 5s. 9 mg.
/?/,_? mg .
FINAL mg.
ig/ml TARE mg.
mg - TARE mg)
mg/ml. FINAL mg .
TARE rug .
165
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
RUN NO .
TIME OF SAMPLE COLLECTION
HOW COLLECTED
TIME OF ANALYSI
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
ANALYSIS
#1
ANALYSIS
#2
/. /<*
ANALYSIS
#3
/. C7
ANALYSIS
#4
2.O.* Z0.8 2,<9.8
2./. 0 i ^/. <7 Z,A ^
1
COMPONENT
% BY VOL. (DRY)
#1 #2
C02 : J 'ฐ
02 : 19, ft
CO '.0,1.
:
N? (100-Above).
7-o
1 ,O
#3
/ -0
j RATIO \WT./MOLE
#4 AVG. LMOLE WT\ (DRY)
i '
| O Q i I ^T OL
0,-L 0 ,2.
9 "f.O
1,0
1^.8
fl,?.
7f,o 9f, o
44/100
32/100
2S/100
28/100
AVG. MOLECULAR
m
/,^4
.05-6
2S.?r
WT. DRY STACK GAS
VFT/APAB
166
-------
CLIENT
/-/'/.v>V\
PORT LQCATI ON /Aw/- K c xY<- /1 //
DATE
/'T'AMBIENT
OPERATOR/S / V d^ ' ^ r> / ^ y- - W S.
RUN NO. ? :> RJ8-
SAMPLE & METER BOX NUMBERS 4 t>(& s
BOX AH
FILTER NO. 2L
CLEAN-UP NO. _
VALENTINE FISHER * TOMLINSON
SEATTLE, WASHINGTON
TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
'/5-
BAROMETRIC PRESSURE (PB)jฃlLฃ
LEAK RATF . -> .: C.FM ffl ^ S
PORT PRESSURE (Ps) /> "H;0 -.
PcH - PB * PS - V. -I"'/
HHg
S
TARE .^6- // '>'
mg
rSN
ASSUMED MOISTURE^
C FACTOR !.&*> _
REF.AP.
'-(i.
"Hg
"Hg
.X MAX VH.
OO
00
I
.
AREA /.y J.J
.; BLANKS
BOX A PROBE HEATER SETTING
SCHEMATIC OF TRAVERSE POINT LAYOUT
STACK DIMENSIONSij^*l:
PROBE NOZZLE DIA. /4 IN; AN ;.ป/.3<-
PROBE LENGTH__JL_Nl!MBER_l?r SIDE_ป2
INSTANTANEOUS READINGS: RECORDED P BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
/'Y : ^6
"^
TOTAL
AVERAGE
ELAP.
TIME
(MIN)
0
-S
/ s
J'C
_-, 7 ..v -
> V
'/ 7-,
> . >
/V. x'
DRY GAS METER
(CUBIC FEET)
*7C-.7B '^
") 7. q
^V-'/.^o
.<1:^' ฃV
/" * ' * 'if*
(_* > / **-
c *> ' ^
-^2. -/7,^
'X '// /
DRY GAS TEMP.
INLET
. 76
CV '/
sv
'"// ซ.' V
/C'-l
/rs
/ ^.H
,Z.ofa o
OUTLET
"/'>
' 7 ?
r f ->
^ ->
*? z
76
77
/-T36,
tjC& ^>"$-(a
BOX
TEMP.
2.C50
1
.<*'.ซ
-2.70
2 -Jc.
2C-C-
'y//
///,
IMPINGER
TEMP.
70
$-4 "'
///,
AVERAGE VALUES. READ WITHIN THE TIME INTERVAL
POINT
/ / 2
A I
.2...
3.
3
~<^l "
2
""-!..
tS'T"
>
f/.
-
2.0
////
PI TOT VH
(HH20)
2. /. S.../..J
.0 I
PL/
<_ฃ/<:
i^rr"
/ PAS
-o/
.ol
'/ f S f .
^/////
/////
ORIFICE AH
("H20)
DESIRED
/ ^^ y~
G
,<,t
7s"
".^ ~
/^^"
-. 0^77
TT"-T
^"
'".\"i
-r-r-r-
////
ACTUAL
x../ x.x
/ G"1
' fi'V
...V;VB.
- r^ .
'^/S
~S-
...
-
/2.%"H20
,^f6"H20-.(75'"Hg
Pm- P8 +AH - ^e, 54 "Hfl
PUMP
VACUUM
("Hg GA)
V-x^x /
.7,0
2. , /
~k. 1
e.o
-i , o
'2,/
2/0
/'^"
7/1
--
///
/ / / /
STACK
TEMP.
I TO __
ป? \ ''*
2? S,"
L-'Z C>
^ '">"_.
r / / f
'=f~''1 ^ 1
?.? 1
<^
OPACITY
OR
%C02
....
-
/ / .' '
fff
( 5
,01
,00?
.O/
,012
.Ol^
Oil
,0\l
-------
' \; ., i ;;;, r !:;in-:( i. TUN; N.SOM
S'iACK M<>i:: iiJi{i-: C'vfn'ENT IM I'A ANiJ CA; .uULAT 11 l
C L ' liN
X*
'.:. .KA10K X/^ ^> .-
HUN NO.
-88-5
DATE . ฃ'
II .o CONHKNbKb, ii. (i ui! = i >;ป
iJUUBLhl-l ป.'.'i. -^'/An-'KDA. i')ii n,i WAiUK)
LMPLNU'.K (;/
! WATER)
ii ,0 AliLiOK!*!-'.!) .:V .^il.Ul
TL-L'AL H.,0 .iOLLU.L'L.U, ml
VI..L. OF U..f ''n-'i-K (d 70ฐF. AM- 1 ATM.
0.0474 x Tol'A.- ii >U
M(,ISTURE HI MACK CAS, /,
'H;i,E FEIACT10N or DKY
/3
loo
WT. ;'i- STACK
. vG. ii.Cl Ml):
o ,\ V L-rlOL
.;':', u!-' HAS X :Jl,E I'KALllDN i-
168
-------
VALENTINE, FISHER & TOMLINSON
LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET
CLIENT ฃ1 P A /^ //?ฃV7_ x-: C _ฃ" DATE OF ANALYSIS
EVALI
JATION LOCATION J, /ฃ/*;.ฃ* r- ft/P^-p, ^ - ฃ-
RUN NO. ^3
EVALUATION DATE ฃ/"&/
/Vc~
BEFORE
(mg)
/
= o- ^ mg.
PARTICULATE FROM EVAPORATION OF 2O S~ (ml) WATER
IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -
FINAL 7c5'9 79.2 (mg) - TARE 7g^ ^ <ฃ5"~
-BLANK ((.00 2a& mg/ml) ( -2O-5^
- / 3 ml CONDENSED = / 9 Z ml)
PARTTr.TIT.ATE FROM /-25~~" (ml) OF ^CTrOf/ฃ~
BUBBLERS, AND CONNECTORS AFTER FILTER:
FINAL ~77<24.ฃ:O(mg) - TARE 7 PS ^7 Z
-BLANK (( , ฃCS~ 7 mg/ml) ( /2 ^ ml) = .
TOTAL PARTICULATE = I + II + III + IV + V
BLANKS ฃ
-------
VALENTINE, FISHER & TOMLINSON
ORSAT DATA AND CALCULATION SHEET
CLIENT
SAMPLING POINT LOCATION
Jto &1S* RUN NO . 23
TIME OF SAMPLE COLLECTION
HOW COLLECTED
TIME OF ANALYSIS
CUMULATIVE
% BY VOL. (DRY)
C02
C02 + 02
C02 + 02 + CO
ANALYSIS
#1
o.S~
20. I
20.1
\ ANALYSIS
' #2
| & +
1
,20.7
_ ; %_&t 8
\ ANALYSIS j
j #3 !
0.3-
24.8
2.0. 9
ANALYSIS
#4
1
i
COMPONENT
% BY VOL. (DRY)
C02
02
CO
1
//I #2 ' #3
#4
,-r ^ ,^
~LO,?>
o . )
N2 (100-Above),
7,i
To, 3 i 2o,3
I
O.I 0,|
7f.Z
-71-)
AVG.
,^47
2o,3
O.J
i
i 1
!. 75! &
RATIO \WT./MDLE
MOLE WT\ (DRY)
44/100
, 10^
1
32/100 j&.tfff.
2a/ioo
, 28/100
AVG. MOLECULAR
,02S
ZZ./^T7
23,3?
WT. DRY STACK GAS
VFT/AP42
170
-------
VALENTINE FISHER * TOMLINSON
89-5
CLIENT jL'^yi / .'/;->}/k r
PORT LOCATION _J/c^_^
DATE^A^^ AMBIENT
OPERATOR/S
RUN NO.
SM^LE & ME
METER BOX t
FILTER NO. '
CLEAN-UP NO
BOX & PROBE
> < /'t'-tX /' t*** .'i "^i7>/7>
CONDITIONS CAjf'~
AL o < .< i f^>/ s * ซ- ซ * A >ซr>i'
j /
fER BOX NUN
iM A 8
BERSOC6. & ^3
?>-"; $rnV*TARE /?/,- mq
y .'?.:';> : RIANKS A
HEATER SETTING ''><* <^ปO
SEATTLE, WASHINGTON
: FWTfltSc* TRAVERSE SAMPLING DATA SHEET
IMPORTANT: FILL IN ALL BLANKS
/- *7*
A /V, > // / L f/^
SCHEMATIC OF TRAVERSE POINT LAYOUT
INSTANTANEOUS READINGS: RECORDED 9 BEGINNING OF TIME INTERVAL
CLOCK
TIME
(24 HRS)
./2L^:-.>
.
TOTAL
AVERAGE
ELAP.
TIME
(MIN)
_;
' "5
- -
/, . /
DRY GAS METER
(CUBIC FEET)
<- '< C- > . .
70. z .-,-
7o,<:{
'7 A *=ป.! *
'7 1 . G I a
" V/ ฃ00
..^ . // (.-
'//////
DRY GAS TEMP.
INLET
. ... So
//6^
OUTLET
I
/1 00)
OO *F m^dSi *D
DO ' ' /O "
BOX
TEMP.
'ฃ
? ซ( o
'///
///
IMPINGER
TEMP.
To
///,
1
I
1
1
/
(
1
'
F
F
IAROMITRIC PRESSURE (
FAK RATP >0'J. r.Tt
Pn) /', - 77 "Ha
V
40 ^' /' V "HG
>OPT PRF^IIBF (Pc) 0 "H?QmC? "Hq
*SN " PB +
ASSUMED MO
: FACTOR
PS ^^.79 "Ha
ISTIIRF t MAX VH "MO
*
IEF.AP -"
;TACK DIMENSIONS^-'/'V^/'AREA s./72
>ROBE NOZZLE OIK,J^B
>HORF IFNGTH T li\
!MP.FR / '/
STACK
TEMP.
^-> "7 -^
'? '*~7_
.j ป ^ "
:> <:
-'ฐI
^ ~'L
7 / / *
;>v;j.~
*.>?
(-/ ; ป
OPACITY
OR
XC02
.f / / /
-
-
-------
V'-i.. iiTiNIi, l-'iSiiC. '. N ':'/.'!). 1 NSON
bTACK NO'.Ii'iliitii CuNltiiT .-Ai'A AHiJ CALCULATIONS
CLIENT _
L> ..ATloN
u.' -.RATOK
;..-.;!'LE BOX
Si , ) CONntiJSi'ib, : U n- i I ,MMI
UUIUlLi-.K (..I -;/Ai'l'!'.; mi WA'i'lCK)
WATIiK)
RUN NO.
DATE
liO ABSOKiJiilj L,' -.LL1CA GIL,
".,1'AL H.,0 v;o;.;.t< 'iiU, mi
'.;,L. OF U.-' VA.'. '< i3 70ฐi'. Aflli 1 ATM.
.,.0474 x 'V iA^ .0
JlSTURL iN STA N. GAiJ, %
.ULE FRACi :i.';-- : IH
If* Si'ACK GAS
INITIAL !
ij''" x. .Vol.. )UO .^'^jj
VOL. DRY GAS T "VoL. WLT
10LE FRACTION of DRY t.AI
i-'.2 M'ilh'i'ilK i N S ;
WT. --! STAi.K
.VG. i;.\V ?',<
o X (L-MOi-.
i,AS X '-lOLE I-'KACTION -t-
'. ./'Ai'JC
17;
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1.
4.
7.
9.
12
15
16
17
a.
=lฃ = CRT NO.
2.
7:TL = AND SUBTITLE
Source Sampling Residential Fireplaces For
Emission Factor Development
AUTHOR(S)
W.D. Snowden, D.A. Alguard
W.E. Stolberg
, G.A. Swanson,
PERFORMING ORGANIZATION NAME AND ADDRESS
Valentine, Fisher & Tomlinson
520 Lloyd Building
Seattle, Washington 98101
. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning & Standards
Monitoring & Data Analysis Division
Research Triangle Park, N.C. 27711
. SUPPLEMENTARY NOTES
3. RECIPIENT'S ACCESSIONปNO.
5. REPORT DATE
November 1975
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-02-1992
13. TYPE OF REPORT AND PERIOD COVERED
Final July-August 1975
14. SPONSORING AGENCY CODE
. ABSTRACT
One typical residential fireplace was source sampled for particulate (both
filterable and condensible) , polycyclic organic materials (POM), volatile hydro-
carbons, and carbon monoxide emissions. Testing was conducted using alder,
Douglas Fir, Locust, pine, and coal. Particulate was sampled and analyzed utiliz-
ing EPA Method 5. POM was collected on a TENAX adsorbent and analyzed by GC-MS
methods. A rough energy balance on wood combustion in fireplaces was performed.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
TEN AX
Emissions
Parti culates
POM
Fireplace
19. DISTRIBUTION STATEMENT
Release Unlimited
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
19. SECURITY CLASS (This Report) 21 . NO. OF PAGES
Unclassified 173
2O. SECURITY CLASS (This page) 22. PRICE
Unclassified
EPA Form 222O-1 (9-73)
------- |