EPA-450/3-76-023
February 1974
DEVELOPMENT OF
REPRESENTATIVE
DRIVING PATTERNS AT
VARIOUS AVERAGE
ROUTE SPEEDS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
-------
EPA-450/3-76-023
DEVELOPMENT OF
REPRESENTATIVE
DRIVING PATTERNS AT
VARIOUS AVERAGE
ROUTE SPEEDS
h>
Malcolm Smith
Scott Research Laboratories. Inc.
2600 Cujon Houlevard
San Bernardino. (California 92411
Contract No. 68-02-1301
EPA Project Officer: Charles C. Masser
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
February 1974
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from the
Library Services Office (MD35) , Research Triangle Park, North Carolina
27711; or, for a fee, from the National Technical Information Service,
5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the.Environmental Protection Agency by
Scott Research Laboratories, Inc. , 2600 Cajon Boulevard, San Bernardino,
California 92411, in fulfillment of Contract No. 68-02-1301. The contents
of this report are reproduced herein as received from Scott Research
Laboratories. Inc. The opinions . findings, and conclusions expressed
are those of the author and not necessarily those of the Environmental
Protection Agency. Mention of company or product names is not to be
considered as an endorsement by the Environmental Protection Agency.
Publication No. EPA-450/3-76-023
11
-------
SRL 2148 07 0274
Table of Contents
Page No.
1.0 SUMMARY 1-1
2.0 DRIVING PATTERN DEVELOPMENT 2-1
2.1 DATA PROCESSING 2-1
2.2 MATHEMATICAL MODEL 2-3
2.3 DRIVING PATTERN SELECTION 2-9
3.0 EMISSIONS ESTIMATIONS 3-1
4.0 RESULTS 4-1
111
-------
SRL 2148 07 0274
1.0 SUMMARY
This report presents the results of a study performed for the
purpose of updating the curves used to estimate the changes in emissions
from light-duty vehicles as the average vehicle speed is varied. The
program objective was accomplished by performing four major tasks as
follows:
1. Urban driving pattern data collected during the CAPE-10
Vehicle Operations Survey, conducted in 1971 under the joint sponsorship
of EPA and CRC, were processed by city and time of day into freeway, non-
freeway, and composite speed-mode matrices.
2. Weighted combinations of freeway and non-freeway matrices, re-
presenting average route speeds ranging from about 34 to 76 kilometers per
hour (kph) (21 to 47 miles per hour (mph)), were then used to generate
representative driving patterns at speeds ranging from approximately 24
to 72 kph (15 to 45 mph). Eighty-eight driving patterns were selected
as most representative out of a total sample of about 150,000 computer
generated driving, patterns.
3. Second-by-second schedules of the 88 driving patterns were
then input to an EPA-supplied computer program for the estimation of HC, CO,
and NO emissions over each driving pattern for each of 11 vehicle groups
X
defined by model year and altitude (low altitude vs. high altitude). The
EPA-supplied computer program is based on the results of several emissions
testing programs conducted for the EPA.
4. A regression analysis was then conducted to relate estimated .
emissions to average route speed for each of the 11 vehicle groups.
The major findings of the study were:
1. In the case of the HC and CO emissions, an adequate fit to
the data is obtained by plotting the natural logarithm of each emission
against a quadratic function of average route speed.
2. A simple linear plot of NO against average route speed was
X
deemed to provide an adequate fit to the data.
-------
1-2
SRL 2148 07 0274
It must be noted that the regression relationships are valid only
within the range of 24 to 72 kph (15 to 45 mph). Extrapolations to higher
speeds will yield incorrect values of the emissions for each vehicle group.
Since there is considerable interest in emissions at the higher speeds,
it is recommended that additional driving patterns at speeds up to about
97 kph (60 mph) be generated and a regression analysis be conducted to obtain
improved speed correction factor curves.
-------
2-1
SRL 2148 07 0274
2.0 DRIVING PATTERN DEVELOPMENT
The development of driving patterns at speeds ranging from about
24 to 72 kilometers per hour (15 to 45 miles per hour) will be described in
this section in terms of the following:
1. Data Processing
2. Mathematical Model
3. Driving Pattern Selection.
2.1 DATA PROCESSING
The data used as input to this project were obtained from the
CRC/APRAC-CAPE-10-68 program conducted by Scott and referred to as the
Vehicle Operations Survey (VOS) program. The primary objective of the VOS
program was to collect and evaluate information on urban driving patterns as
characterized by detailed vehicle modal operating characteristics.
Vehicles instrumented with Digital Data Acquisition Systems (DDAS)
were used to obtain the detailed vehicle modal operating parameter information.
Of the extensive data collected during the VOS program, basically two measure-
ments, speed and time, are of direct use for purposes of representative driving
pattern .development. A precision electric speedometer (rotary pulse generator)
was used to monitor the speed of each instrumented vehicle, and an electronic
oscillator provided highly accurate time determinations. Speed, time, and
other data were recorded digitally on magnetic tape to facilitate computer
processing.
All data, including vehicle speed, were recorded at one-second
intervals. Since the rotary pulse generator was calibrated to an accuracy
of 0.1 mph, cruise speeds could be determined to 0.1 mph, and accelerations
and decelerations could be measured to an accuracy of 0.1 mph/second.
The basic matrix used to accumulate the modal data is the 3-D
matrix shown in Figure 2-1. An 8-kph (5-mph) speed increment was found
to be adequate and convenient for use in defining the speed modes. Since
verification of the driving patterns on a chassis dynamometer is an important
consideration, and since most Clayton dynamometers are restricted to a
speed of 97 kph (60 mph), the thirteenth matrix element represents 97 kph
-------
FINAL SPEED, mph
INITIAL
SPEED,
mph
13 x 13 x 34 MATRIX
EACH CELL CONTAINS THE ACCUM -
ULATED WEIGHTED MODE FREQUENCY
FOR TIME IN THAT MODE.
DISTRIBUTION-OF-TIME-IN-MODE MATRIX
FIGURE 2-1
en
00
O
to
NJ
-------
2-3
SRL 2148 07 0274
and over (60+ mph). These modal data were then transformed into two basic
matrices: a total-time-in-mode matrix and a mode-frequency-of-occurrence
matrix, in the format shown in Figure 2-2. The matrices used to describe
and develop driving patterns are defined more specifically as follows:
Distribution-of-Time-in-Mode Matrix; This matrix, shown in Figure 2-1,
is a 3-dimensional matrix, the third dimension reflecting the distribution
of time in mode for each mode. It is the basic matrix from which both the
total-time-in-mode and mode-frequency-of-occurrence matrices are created.
Total-Time-in-Mode Matrix; The time spent in executing each mode was
accumulated to yield the 2-dimensional total-time-in-mode matrix, formatted
as shown schematically in Figure 2-2; each entry is the total observed time,
normalized so that the sum of all entries is 100%.
Mode-Frequency-of-Occurrence Matrix; This 2-dimensional matrix, for-
matted as in Figure 2-2, was derived from the distribution-of-time-in-mode
matrix by simply tallying the number of times each mode occurred and then
normalizing so that the sum of all entries is 100%.
Average-Time-in-Mode Matrix: This matrix is generated by dividing
each element in the total-time-in-mode matrix by the corresponding element
in the mode-frequency-of-occurrence matrix.
Transition-Probability Matrix; This matrix, formatted as in Figure 2-3,
is obtained by row-normalization of the mode-frequency-of-occurrence matrix.
I. e., the non-diagonal elements in each row of the mode-frequency-of-oc-
currence matrix are first summed, and each non-diagonal row element is then
divided by the row total. The off-diagonal entries in any row are therefore
the conditional probabilities of making transitions from the row's cruise
mode (diagonal element) to those acceleration or deceleration modes. The
diagonal elements in the transition probability matrix remain undefined,
of course, since no transition occurs while cruising.
2.2 MATHEMATICAL MODEL
A Monte-Carlo model was chosen since that technique allows the
rapid generation of large numbers of driving patterns from which those most
representative of observed driving patterns may be selected. Patterns are
generated by randomly selecting modes and mode durations by sampling the
-------
0, . 10
FINAL SPEED , mph
.20, ,30! ,40, ,50, ,60+
10
20
INITIAL -
SPEED,
30
40
50
60*
ACCELERATION
MODES
DECELERATION
MODES
NJ
I-1
*
00
o
o
ro
SPEED-MODE MATRIX FORMAT
FIGURE 2-2
-------
LU
CL
TRANSITION-PROBABILTY MATRIX (PERCENT)'
FINAL SPEED
0 5 10 15 20 25 30 35 40 45 50 55 60+
0
5
10
15
- 20
25
30
- -
374
15.6
11.4
17.0
20.1
20.5
13.9
_ _
18.3
6.5
6.0
5.8
^
7.1
14.6
14.9
8.2
6.4
^
5.3
7.1
15.5
15.7
|^J
7.3
6.8
12.9
20.0
Ls
\S
13.1
7.6
13.1
15.0
£P^
18.8
9.2
122
135
j
\^S
19.1
9.7
7.9
\f>^
10.9
5.2
2.8
^
\s
3.6
1.8
^
0.7 O.I O.I
0.4 0^^"
b"
p
NJ
00
O
O
N>
to
FIGURE 2-3
-------
2-6
SRL 2148 07 0274
distribution functions for each with random numbers. Before proceeding
further, however, it is appropriate to note the mode-sequence logic em-
ployed :
a) A cruise mode can be either an idle mode or a
non-zero constant-speed mode.
b) Every other mode in a cycle is a cruise mode;
i.e., every acceleration or deceleration is
followed by a cruise mode; zero-time cruises
are admissible, but were not utilized for this
program.
In order to privide a basis for the mode selection process, the
transition-probability matrix is recast in the form of running sums to the
right on a row-by-row basis. This new matrix, the cumulative transition-
probability matrix, is shown in Figure 2-4. (In all that follows, the
random numbers generated are uniformly distributed on the unit interval.)
Execution of a cruise mode defines the matrixrrow from which to
select the next mode by virtue of the mode-sequence logic. A random number
on the unit interval is then generated to sample the distribution function
for that row and thus select the next mode. Examination of Figure 2-4 shows,
for example, that if an idle had just been executed and a random number of
0.539 generated, the mode selected is an acceleration from zero to 48 kph
(0 to 30 mph).
The VOS data were processed to output the speed-versus-time data
for any specified acceleration or deceleration. A large number of such
acceleration and deceleration data sets were normalized in both speed and
time, plotted, and carefully compared for trends in curve shape differences.
It was found that virtually all decelerations followed the same
normalized curve, independently of initial and final speeds. The accelerations,
however, could not be accurately represented by a single normalized curve,
but rather required classification into three distinct normalized acceleration
curves. These and the deceleration curve are shown in Figure 2-5.
The acceleration characteristics were found to be functions of
both initial speed and net change in speed, as noted in Figure 2-5. The
computer was thus programmed with polynomials fitting the curves shown in
the figure. The transitions made between cruise modes in the test cycles
are therefore representative of those observed in the five cities surveyed.
-------
CUMULATIVE TRANSITION-PROBABILITY
MATRIX (PERCENT):
RNAL SPEED
0 5 10 15 20 25 30 35 40 45 50 55 60*
0
LU
Q.
10
p l5
z 20
25
30
0.0
374
15.6
11.4
170
20.1
>O5
13.9
37.4
33.9
17.9
23.0
25.9
\?S
21.0
520
33.9
32JB
31.2
3Z3
Lx*
263
59.1
49.4
32.8
46.9
$P^
33.6
65.9
623
52.8
469
_/
IX
46.7
73.5
75.4
678
Z^
65.5
82.7
876
81.3
U^
84.6
92.4
95.5
<^A~
95.5
576
983
^.*
\s
99.1
99.4
95^
99.8 99.9 100.
99.8 tt>s
[/
)
5
1
D
1 10 |I5|
1
2
Fir
20
1
vJAL SPEE
25
1
.4
D AFTER Al
30
1 1
.6
M IDLE
35 40 45||
1 1 1 1
.8 1.
RANDOM NUMBER
FIGURE 2-4
.0
I-1
*
oo
o
o
NJ
NJ
I
-------
o-o
TYPE I : 00
TYPE 3 « AS >35
0-2
0'4 0-6
NORMALIZED TIME
0-8
1-0
to
I
co
S3
I-1
e-
co
o
ISJ
UNIVERSAL ACCELERATION AND DECELRATION CHARACTERISTICS
FIGURE 2-5
-------
2-9
SRL 2148 07 0274
The distribution-of-time-In-mode matrix yielded, for each mode,
a frequency distribution such as that illustrated in Figure 2-6. By
creating equal intervals along the abscissa of the time distribution curve,
stepwise integration leads to a histogram as shown. After normalizing the
area under the histogram, the Monte-Carlo technique is applied to time-
in-mode selection. It should be noted that probability is again reflected
along the random number axis, and that the most probable time in mode is
the average time in mode.
The sequence in which the selections are made is shown in the
condensed functional flow diagram of Figure 2-7. The total-time-in-mode
and mode-frequency-of-occurrence matrices are input to the computer and
the cumulative transition-probability matrix is created. The program
then passes through reference point one, which denotes the point at which
mode selections are initiated.
Since patterns must be of finite duration and it is desirable
to end them with an idle mode, the program tests each cruise mode to deter-
mine if it is an idle. If it is not, the program returns to reference point
one. If it is an idle, the program tests the pattern duration to that point
to determine whether the desired duration has been either reached or exceeded.
If the duration is less than desired, the program returns to reference
point one. If the desired duration has been exceeded, the process is terminated,
If the duration is within the established limits, the pattern
is tested to determine whether it is representative of (similar to) the
observed vehicle operation patterns used as inputs. If certain criteria
are met, the pattern is retained in storage. If it is found not to satisfy
the criteria, the pattern is erased from storage after the pattern-evaluation
data are stored for statistical purposes. After each such test, the program
is either terminated or returns to reference point one to generate another
pattern.
2.3 DRIVING PATTERN SELECTION
Three types of pattern evaluation measures were used: correlation
coefficients, G-values (a chi-square equivalent), and summary measures,
as summarized in Table 2-1.
-------
UJ
o
z
UJ
cr
o:
o
u.
o
CD
O
o:
a.
A2,T2
A3'T3
A4,T4
TIME REQUIRED TO COMPLETE 0~45 ACCEL
10
t->
*>
CO
O
to
I
1
0.2
0.4
0.6
1
0.8
1.0
FIGURE 2-6
DESCRIPTION OF MONTE-CARLO SELECTION OF TIME IN MODE
-------
FIGURE 2-7
CYCFILTR PROGRAM
( START )
(''INPUT MATRICES [
I
GENERATE ADD'L
REQ'D MATRICES
>OINT R
'
I
STORE INITIAL
IDLE DATA
RANDOM ACCEL/DECEL
MODE SELECTION
RANDOM TIME IN
MODE SELECTION
CO
oo
o
-------
FIGURE 2-7 (CONT'D)
C
C
STORE ACCEL/
DECEL DATA
C
CO
oo
o
o
NJ
RANDOM CRUISE
TIME SELECTION
STORE CRUISE-
MODE DATA
C
HAS
MINIMUM
DURATION BEEN
REACHED
9
NO
-------
FIGURE 2-7 (CONT'D)
HAS
MAXIMUM
DURATION BEEN
EXCEEDED
COMPUTE PATTERN-
EVALUATION MEASURES
DOES
PATTERN SATISFY
STATISTICAL
CRITERIA
9
POINT R I
NO
Cfl
P
to
co
O
ISJ
4 POINT R i
YES
C
STORE PATTERN-
EVALUATION DATA
C
-------
FIGURE 2-7 (CONT'D)
HAS
SPECIFIED NO,
OF PATTERNS BEEN
GENERATED
9
JPOINT R|
PERFORM SORT
ON FOM
OUTPUT
PATTERNS
NEW
INPUT
MATRICES
p
ho
CO
O
I
H1
*>
C START |
-------
TABLE 2-1
PATTERN EVALUATION CRITERIA
0 CORRELATION COEFFICIENTS
- ACCELERATION
- DECELERATION
- CRUISE
- OVERALL
- FIGURE OF MERIT
0 G-VALUES
ro
I
I-1
0 SUMMARY MEASURES
- % ACCELERATIONS
- % DECELERATIONS
- % CRUISES
- % IDLES
-------
2-16
SRL 2148 07 0274
Since the first goal of this project was to generate patterns
which are representative of observed driving habits, the problem of
matrix similarity becomes of prime importance. Although it would be
ideal to generate a pattern which, for example, has a normalized time-
in-mode matrix which was identical to that of the corresponding input
matrix, it is not possible to do so because of the short pattern duration
relative to the large amount of time reflected in the input matrices. I.e.,
the pattern contains relatively few modes (approximately six to seven per
minute of duration). The problem thus becomes one of judging the degree
to which a pattern matrix is similar to (or different from) an input matrix.
Since the problem in one sense is that of comparing two sets of
numbers to determine how close the numbers are in magnitude, it is natural
to consider the set of statistical techniques generally used to make compar-
isons , to do significance testing, or to establish relationships between
variables. An attractive feature of statistical tests is the provision
of criterion levels which permit the acceptance or rejection of hypotheses
at any desired confidence level. For these reasons, it was first decided
to apply the G-test as a matrix-comparison technique. G is a log likeli-
hood ratio test which provides a measure of the deviations of observed num-
bers from expected numbers; i.e., those numbers specified by the hypothesis of
interest. The usual hypothesis to be tested by G is the null hypothesis,
or the hypothesis that some set of observed values does not differ from a
corresponding set of expected values.
Acceptance or rejection of the null hypothesis (i.e., that the
matrices are not significantly different) with the G-test is referenced
to a criterion level depending only on the number of degrees of freedom
and the selected confidence level. However, application-of the G-test
requires that the 169-mode matrix be partitioned into a smaller number of
areas in order to satisfy the empirical criterion that each expected
frequency of occurrence have a value of at least two or three. It was
therefore deemed desirable also to identify measures which would be based
on each individual mode.
-------
2-17
SRL 2148 07 0274
The. correlation coefficient was selected as a measure for
making mode-by-mode comparisons. For pattern development purposes,
correlation coefficients are computed for the acceleration, deceleration,
and cruise modes, and for all modes. Consequently, eight correlation
coefficients are computed for each cycle: four for the normalized time-
in-mode matrix and four for the normalized mode-frequency-of-occurrence
matrix.
Finally, the idle, cruise, acceleration, and deceleration data
are summed by category to yield the percent of time spent in each of the
four mode types and the percent frequency of occurrency of each of the
mode types.
A figure of merit was then defined which consisted of a linear
combination of the eight correlation coefficients, each subtracted from
unity. I.E., the smaller the value of the figure of merit, the more rep-
resentative the pattern. The statistical data for each pattern meeting
the desired criteria were computer-sorted and output in ascending order
of figure of merit. The average speed in mph, correlation coefficients,
and figure of merit for each of the 88 selected patterns are shown in
Table 2-2.
-------
TABLE 2-2
AVERAGE
SPEED
15,38
15,80
15,89
15,97
15,98
19,13
20,66
19,04
19,35
18,89
18,66
18,05
18,61
19,20
Ul\ 1 V
i iiu i n i i I_I\M
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,869 ,844 ,764 ,912
,901 ,756 ,838 ,919
,918
,917
,914
,959
,985
,967
,951
,987
,967
,966
,969
,986
,808
,809
,882
,883
,822
,827
,853
,847
,856
,844
,832
,801
,860
,802
,885
,862
,840
,898
,848
,857
,854
,884
,845
,833
,927
,930
,938
,958
,966
,965
,952
,968
,958
,962
,959
,965
\j i n i i
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS
AVERAGE
SPEED
20,22
18,60
19,67
18,80
19,46
20,50
18,72
19,27
20,29
18,96
19,02
18,63
18,87
20,32
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,961
,963
,984
,943
,989
,975
,975
,981
,986
,979
,968
,989
,968
,981
,826
,857
,841
,869
,821
,823
,889
,892
,846
,881
,886
,863
,877
,871
,849
,859
,863
,829
,841
,823
,910
,879
,887
,884
,916
,883
,853
;,844
,960
,959
,970
,948
,966
,959
,973
,971
,975
,973
,972
,972
,965
,969
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,991
,980
,980
,989
,983
,982
,982
,982
,997
,985
,978
,985
,986
,995
,860
,860
,838
,888
,828
,865
,912
,922
,867
,921
,900
,888
,947
,937
,847
,899
,867
,904
,903
,887
,938
,935
,942
,913
,919
,930
,911
,871
,979
,974
,972
,978
,967
,973
,978
,977
,987
,978
,974
,977
,980
,984
r
FOM o
4,18|
3,87^
3,89
3,97
3,98
4,11
2,67
2,75
2,84
2,85
2,99
2,94
3,08
3,09
NJ
M
VO
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS
CO
AVERAGE
SPEED
20,37
20,84
22,98
22,23
23,47
24,15
24,95
23,56
23,47
22,77
23,83
25/45
22 , 67
20,92
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL '
,982
,986
,977
,976
,981
,974
,983
,989
,963
,965
,972
,984
,963
,963
,878
,845
,899
,875
,885
,854
, 848
,8,45
,886
,870
,859
,859
,861
,895
,849
,880
,882
,888
,876
,857
,863
,838
,890
,859
,852
,824
,876
,897
,968
,975
,969
,973
,974
,967
,976
,972
,970
,969
,973
,973
,966
,965
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,993
,997
,976
,962
,958
,984
,967
,983
,958
,975
,974
,986
,964
,946
,907
,834
,895
,888
,905
,883
,859
,882
,850
,871
,845
,845
,898
,893
,891
,915
,917
,925
,874
,898
,921
,877
,937
,919
,923
,893
,909
,932
,979
,986
,968
,965
,968
,978
,972
,975
,967
,970
,977
,979
,968
,950
i
*«
FOM o
3,15 §
IN
3,18
3,13
3,36
3,48
3,50
3,57
3,60
3,61
3,61
3,64
3,67
3,67
3,67
NJ
O
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS
AVERAGE
SPEED
24,64
28,15
27,70
28,43
30,04
30,62
27,25
29,58
28,40
27,28
26,11
27,52
28,33
27,16
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,993
,976
,967
,968
,961
,963
,940
,964
,954
,965
,966
,955
,950
,958
,826
,851
,853
,838
,835
,850
,846
,832
,870
,853
,842
,865
,818
,864
,850
,834
,863
,823
,856
,848
,843
,816
,851
,843
,851
,844
,869
,825
,976
,970
,973
,959
,971
,973
,957
,960
,964
,973
,964
,964
,970
,966
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,989
,981
,978
,986
,987
,973
,977
,984
,980
,959
,950
,976
,968
,972
,874
,851
,847
,860
,871
,864
,893
,857
,824
,836
,872
,879
,866
,827
,832
,901
,873
,888
,823
,841
,898
,886
,879
,893
,894
,822
,862
,884
,981
,979
,981
,978
,983
,980
,972
,982
,974
,974
,972
,979
,977
,974
FOM
3,71
3,76
3,82
4,05
4,05
4,09
4,14
4,15
4,16
4,16
4,20
4,21
4,28
4,30
K)
t*
CO
o
KJ
IS3
I
NJ
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS
AVERAGE
-SPEED
32,99
30,66
32 , 12
30,80
31,95
33,71
31,00
31,10
31,52
31,00
30,66
29,66
:41,88
43,26
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,942
,962
,929
,968
,905
,915
,965
,:916
,920
,909
,949
,911
,940'
,907
,859
,829
,839
,832
,859
,809
,830
" ,344
,873
,810
,804
,866
,925
,95l'
,845
,893
,848
,845
,846
,804
,831
,820
,821
,833
v802
,824
',940
,898
,967
,969
,967
,968
,959
,963
V966
,958
,965
,958
,961
,962
. ,980
,976
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,992
,,956
,982
,937
,974
,986
,951
,961
,951
,964
,948
,:913
,997
,995
,866
,818
,803
,807
,842
,812
,819
,807
,846
,808
;839
,874
,836
;893
,844
,861
v822
,876
,807
,;864
,;808
,873
,802
,865
,807
,803
,848
,852
,989
,973
,987
,963
,983
,987
,969
,974
.971
,975
,967
,953
,994
,994
FOM
.4,04
4,40
4 ,80
4,84
5,03
5,04
5.-05
5,20
5,22
5 ,36
5,48
5,77
3,15
w
s
K3
P-
to
o
o
N)
I
ro
N>
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS
AVERAGE
SPEED
41,98
44,14
43,20
42,50
42,43
44,61
45,46
44,07
41,63
44,01
42,99
41,76
43,41
43,71
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,934
,934
,952
,920
,938
,936
,904
,921
,923
,973
,944
,919
,947
,939
,916
,887
,856
,869
,882
,883
,891
,855
,938
,913
,922
,934
,907
,914
,926
,923
,898
,893
,889
,863
,890
,865
,958
,893
,909
,933
,909
,884
,972
,969
,957
,970
,963
,944
,941
,949
,979
,965
,977
,975
,973
,964
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,994
. ,998
,986
,998
,990
,995
,998
,994
,999
,998
,998
,998
,997
,999
,806
,823
,839
,814
,811
,819
,804
,823
,861
,861
,840
,880
,811
,866
,883
,836
,832
,823
,801
,814
,841
,803
,930
,848
,861
,838
,869
,811
,992
,996
,987
,996
,990
,993
,994
,993
,997
,996
,997
,995
,996
,997
*-
FOM 5
3,42 §
3,68
4,05
4,17
4,28
4,43
4,51
4,69
2,59
3,11
3 ,18
3,21
3,39
3,65
CO
-------
TABLE 2-2 (CONT'D)
DRIVING PATTERN STATISTICS |
AVERAGE- r
SPEED .
43,50
44,25
42,07
.41,21
FREQUENCY MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,949
,904
,918'
,933
,903
,910
,916
,871
,882
,918
,914
,904
,965
,968
,971
.973.
TIME MATRIX CORRELATIONS
CRUISE ACCEL DECEL TOTAL
,997
,997
,996
,995
,819
',8i(f'
,810
,807:
,829
,862
,812
,847
,996
,996
,994
,990
FOM
3,76
3,86
3,95
3,95
Is)
M
*
00
O
O
10
S3
N3
P-
-------
3-1
SRL 2148 07 0274
3.0 EMISSIONS ESTIMATIONS
After selection of the 88 most representative driving patterns
at the various average route speeds, the EPA-supplied computer program
was utilized to estimate the emissions over each pattern for each vehicle
group. The driving pattern generation computer program was modified by
computing and storing speed data on a second-by-second basis and incor-
porating the EPA-supplied program. The emissions and average speed for
each pattern and vehicle group combination were then output on punched
cards. An overview of the process is shown in the flow diagram of
Figure 3-1. The vehicle groups for which emissions were estimated are
defined in Table 3-1. Tables A-l through A-ll of Appendix A give the
emissions and average speed for each of the 88 patterns by vehicle group.
The emissions are given in units of both grams per kilometer (gpk) and
grams per mile (gpm), while the average speeds are in mph. A multiple
step-wise regression analysis was then conducted with those data. The
results of that analysis are presented in the next section.
-------
CYCCRUD PROGRAM
CO
p
l
INPUT RANDOM NO,
FOR DESIRED PATTERN
1
MONTE-CARLO GENERATION
OF DRIVING PATTERN
C
l
STORE MODE-BY
MODE DATA
C
1
STORE SECOND-
BY-SECOND DATA
^
I
EPA EMISSIONS-
ESTIMATING PROGRAM
I
OUTPUT EMISSIONS
AND AVERAGE SPEED
oo
o
o
NJ
Co
S3
FIGURE 3-1
-------
TABLE 3-1
VEHICLE GROUP DEFINITIONS
GROUP
NUMBER
1
2
3
4
5.
6
7
8
9
10
11
MODEL
YEARS
1957-1967
1957-1967
1966-1967
. . 1968
1969
1970
1971
1968
1969
1970
1971
GEOGRAPHICAL
DESIGNATION
DENVER
LOW ALTITUDE
(EXCL, '66- '67 CALIF,)
CALIFORNIA
LOW ALTITUDE
LOW ALTITUDE
LOW ALTITUDE
LOW ALTITUDE
DENVER
DENVER
DENVER
DENVER
00
o
O
NJ
OJ
I
Co
-------
4-1
SRL 2148 07 0274
4.0 RESULTS
The end product of the procedures described above is a set of
regression equations from which one may compute each of the three emission
types for each vehicle group. The natural logarithms of the HC and CO are
computed from quadratic functions of the average route speed, denoted by
S, and the NO values are computed from linear functions of S. To facilitate
comparison of the curve shapes for each emission and vehicle group combina-
tion, curves of emissions versus average route speed were normalized to
the emissions at S = 31.5 kph (19.6 mph), the average speed over the Federal
driving schedule.
The normalizing values for each emission by vehicle group are
given in Tables 4-1 and 4-2. The normalized speed correction curves of
emissions versus S for each vehicle group are given in Figures 4-1 through
4-11. To determine the value of an emission at any given speed from 24
to 72 kph (15 to 45 mph), first determine from the curve for the vehicle
group of interest the value of the speed correction factor at the desired
speed. Then multiply the corresponding emission value in Table 4-1 (or
Table 4-2, for grams per mile) by the speed correction factor to obtain the
emission value in the desired units.
The regression equations which relate emissions to average route
speed by vehicle group are given in Tables 4-3, 4-4, and 4-5. In addition
to the regression equations, those tables give for each equation the multiple
correlation coefficient, R, its square in units of percent, and the standard
2
error of the estimate. Note that R , the coefficient of determination,
yields the percent of the data variance which is accounted for by the re-
gression relationship. The standard error of the estimate is a measure of
how well the equation estimates the emissions.
In the case of the HC and CO, since the natural logarithms of
those emissions were used as the dependent variables, multiplying the listed
standard errors of the estimate by 100 yields the error estimate as a per-
centage. The standard errors of the estimate for the NO are in units
of grams/mile. Note that the conversion of emissions to units of grams/
kilometer is easily accomplished by multiplying the gms/mile value by 0.62137
(or dividing by 1.6093).
-------
4-2
SRL 2148 07 0274
Examination of Tables 4-3 and 4-4 indicates that the regression
relationships for HC and CO provide excellent fits to the input data. The
regression relationships in Table 4-5 indicate that the NO data fits are
X
acceptable, although not as good as those for the HC and CO.
-------
TABLE 4-1
§
EMISSION VALUES AT AN AVERAGE ROUTE SPEED OF 31,5 KPH
VEHICLE
GROUP
1
2
3
4
5
6
7
8
9
10
11
HC
(GMS/KILOM.)
5,44
4,74
3,42
3,18
2,90
2,19
1,87
3,46
2,67
3,28
2,86
CO
(GMS/KILOM,)
83,33
49,02
30,72
40,44
32,17
26,28
27,11
71,28
50,89
64,23
65,57
NOX
(GMS/KILOM,)
1,42
2,44
2,32
2,97
3,96
3,63
3,31
1,60
1,85
2,02
2,08
NJ
l->
*>
00
o
o
NJ
P-
Co
-------
TABLE 4-2
EMISSION VALUES AT AN AVERAGE .ROUTE SPEED OF 19,6 MPH
VEHICLE
GROUP
1
2
3
4
5
6
7
8
9
10
11
HC
(GMS/MILE)
8,76
7,62
5,50
5,12
4,67
3,53
3,01
5,57
4,30
5,28
4,60
CO
(GMS/MILE)
134,11
78,89
49,44
65,08
51,78
.42,30
43,63
114,71
81,90
103,36
105,53
NOX
(GMS/MILE)
2,28
3,93
3,74
4,78
6,38
5,85
5,33
2,57
2,97
3,24
3,34
N>
P-
oo
O
>-J
O
-------
TABLE 4-3
REGRESSION EQUATIONS OF THE FORM LN HC = A + B S + cS
(IN UNITS OF GRAMS PER MILE)
VEH,
GRP,
1
2
3
4
5
6
7
8
9
10
11
3
2
2
2
2
2
2
2
2
2
2
A
,05297
,98338
, 66145
, 70316
,54636
, 16247
, 04527
,43936
, 16433
, 50366
, 31339
-5
-5
-5
-6
-6
-5
-5
-4
-4
-5
-4
B
, 58319
,99767
, 98232
, 63011
,26878
, 69535
,92347
,62533
, 54768
,32822
,98932
x 10" 2
x 10" 2
x 10" 2
x 10"2
x 10"2
x 10" 2
x 10" 2
x 10"2
x 10"2
x 10" 2
x 10"2
5,
5,
5,
5,
5,
5,
5,
4,
4,
5,
4,
c
51585 x
80943 x
63255 x
98211 x
79923 x
58732 x
67343 x
79837 x
84409 x
33325 x
99244 x
10"4
lO"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
MULT,
R
0,9974
0,9980
0,9992
0,9988
0,9985
0,9976
0,9979
0,9948
0,9948
0,9969
0,9952
R'
(%)
99,5
99,6
99,8
99,8
99,7
99,5
99,6
99,0
99,0
99,4
99,0
STD.ERR,
OF EST,
0,0154
0,0147
0 , 0099
0,0137
0,0144
0,0152
0 , 0152
0,0167
0,0156
0,0157
0,0181
o
to
Ui
-------
TABLE 4-4
2
REGRESSION EQUATIONS OF THE FORM LN CO = A + B S + c$
(IN UNITS OF GRAMS PER MILE)
VEH,
GRP,
1
2
3
4
5
6
7
8 .
9
10
11
MULTI, R
5,
5,
4,
5,
5,
5,
5,
5,
5,
5,
5,
A
61991
33475
88181
22263
20578
01179
01669
40456
03307
47334
55310
-4
-6
-6
-6
-7
-7
-7
-4
-4
-5
-5
B
,57276
,06584
, 21854
, 51947
, 71552
, 71946
, 52438
,22728
, 03763
,23697
, 54041
x 10" 2
x 10" 2
x 10" 2
x 10" 2
x 10" 2
x 10" 2
x 10" 2
x 10"2
x 10" 2
x 10" 2
x 10"2
c
4,55637 x
5,78421 x
6,18978 x
6,00899 x
6,59770 x
6,40350 x
6,08591 x
4,33105 x
4,26267 x
4,98092 x
4,99253 x
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
10"4
0
0
0
0
0
0
p
0
0
0
0
R .
,9943
,9980
,9978
,9985
,9989
,9987
,9985
,9877
,9763
,9917
,9922
' (%)
98,9
99,6
99,6
99,7
99,8
99,7
99,7
97,6
95,3
98,3
98,4
STD.ERR,
OF EST,
0,0184
0 , 0152
0,0155
0,0148
0,0161
0,0185
0,0198
0 , 0239
0,0305
0,0270
0,0298
-------
TABLE 4-5
REGRESSION EQUATIONS OF THE FORM NOV = A + B$
VEH,
GRP,
1
2
3
4
5
6
7
8
9
10
11
MULT, R
1,
3,
3,
4,
5,
4,
4,
1,
2,
1,
2,
A
37325
17413
15629
24644
83611
93157
49361
65072
15763
98983
32847
B
4,
3,
2,
2,
2,
4,
4,
4,
4,
6,
5,
62134
85334
98311
71939
75849
66796
28722
71563
16635
40748
18718
X
X
X
X
X
X
X
X
X
X
X
io-2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
0
0
0
0
0
0
0
0
0
0
0
R
,9751
,9547
,9351
,9082
,8616
,9393
,9401
,9755
,9699
,9754
,9721
(%)
95,
91,
87,
82,
74,
88,
88,
95,
94,
95,
94,
1
1
4
5
2
2
4
2
1
1
5
STD.ERR,
OF EST,
0,0992
0,1134
0,1067
0,1183
0,1534
0,1611
0,1468
0 , 1003
0,0987
0,1367
0,1182
en
10
00
(IN UNITS OF GRAMS PER MILE,
o
.p-
-J
-------
SRL 2148 07 0274
4-8
1.5
o
(O
o
CD
i-
O
o
-------
SRL 2148 07 0274
4-9
10
1.5
i-
o
o
to
o
O)
i.
O
O
o
(U
(U
O.
to
1.0
0.5
Average Route Speed, KPH
30 50
I
I
70
I I
15 30
Average Route Speed, MPH
45
Figure 4-2 Speed Correction Factors for Group 2 Vehicles
-------
SRL 2148 07 0274
4-10
10
1.5
s-
I i.o
O
0>
i_
O
O
0)
O)
Q.
00
0.5
Average Route Speed, KPH
30 50
70
T
f
I I
I I
15 30
Average Route Speed, MPH
I I
45
Figure 4-3 Speed Correction Factors for Group 3 Vehicles
-------
SRL 2148 07 0274
4-11
10
1.5
S i.o
o
OJ
i.
o
d)
Q-
co
0.5
Average Route Speed, KPH
30 50
T
T
1
1
70
15 30
Average Route Speed, MPH
45
Figure 4-4 Speed Correction Factors for Group 4 Vehicles
-------
SRL 21A8 07 0274
4-12
10
1.5
o
»->
1.0
U
O)
s-
o
o
TJ
O)
-------
SRL 2148 07 0274
4-13
Average Route Speed, KPH
10 30 50 70
1.5
$-
o
o
-------
SRL 2148 07 0274
4-14
10
1.5
o
(O
o
O)
o
o
-------
SRL 2148 07 0274
4-15
10
1.5
o
10
CJ
OJ
J_
.8
T3
O)
(U
a.
co
1.0
0.5
Average Route Speed, KPH
30 50
\
\
70
\
\
15 30
Average Route Speed, MPH
45
Figure 4-8 Speed Correction Factors for Group 8 Vehicles
-------
SRL 2148 07 0274
4-16
1.5
o
+3
O
(O
O
-------
SRL 2148 07 0274
4-17
o
(O
o
o
O)
t-
o
o
T3
V
0)
O.
OO
10
1.5
1.0
0.5
Average Route Speed, KPH
30 50
70
\
I I
I
15 30
Average Route Speed, MPH
45
Figure 4-10 Speed Correction Factors for Group 10 Vehicles
-------
SRL 2148 07 0274
4-18
10
1.5
o
to
o 1.0
O
cu
i-
o
CJ
-o
d)
0)
Q.
00
0.5
Average Route Speed, KPH
30 50
70
CO
I
I
I
15 30
Average Route Speed, MPH
45
Figure 4-11 Speed Correction Factors for Group 11 Vehicles
-------
A-l
SRL 2148 07 0274
APPENDIX A
Tables A-l through A-ll show the computed emissions over each of
the 88 driving patterns by vehicle group in units of grams per kilometer
(gpk) and grams per mile (gpm). The average speeds are in units of miles
per hour (mph).
-------
TABLE A- 1
ESTIMATED GROUP 1
AVERAGE
SPEED
15.38
15.80
15.89
15.97
15.98
19. 13
20.66
19.04
19.35
18.89
ib.66
18.05
18.61
19.20
20.22
18.60
19.67
18.80
19.46
20.50
18.72
19.27
20.29
13.96
19.02
18.63
18.87
20.32
20.37
20.64
HC
(GPK)
6.62
6.47
6.50
6.25
6.36
5.39
5.22
5.57
5.47
5.45
5.54
5. 78
5.53
5.54
5.31
5.53
5.25
5.62
5.52
5. 18
5.64
5.36
5.33
5.56
5.54
5.66
5.65
5.35
5.28
5. Go
CO
(GPK)
97.95
96.16
96.92
92.59
94.40
81.74
80. 74
85.24
83.34
82.15
84. 39
87.85
83.96
85.53
81.94
83.95
79.97
85.44
85.39
80. 15
86.37
81.34
82.57
85.04
84.26
86.62
86.53
83.40
81.79
77. 10
NOX
(GPK )
1.34
1.35
1.37
1.34
1.35
1.33
1.35
1.35
1.34
1.31
1.35
1.35
1.35
1.36
1.36
1.36
1.30
1.34
1.34
1.38
1.34
1.37
1. 34
1.33
1.36
1.34
1.35
1.36
1.35
1.37
EMISSIONS
HC
(GPM)
10.66
10.42
10.46
10.07
10.24
8.68
8. 41
8.97
8.80
8.77
8.92
9.30
3.91
8.91
8.54
3.90
8.45
9.04
8.88
b.34
9.08
B.62
8.58
8. 9 5
0.91
9..10
9.09
8.61
8.49
8.14
CO
(GPM)
157.63
154.75
155.98
149.01
151.92
131.55
129.94
137.18
134.12
132.20
135. 8.1
141 .38
135. 12
137. o4
131 .86
135.11
128.71
137.51
137.43
129.00
138.99
1 3 0 . 9 1
I 3?. 39
136. Lt7
135.61
139.40
139.26
134.21
1 3 1.63
124. J 7
NOX
(GPM)
2.16
2. 17
, 2. . 2 1
2.15
2.17
2.22
2.17
2. 18
2.16
2.10
2.1-8
2 . t ;.;
2 . 1 e
2.19
2.19
2.19
2 . J 9
2. 10
. 2. 16
2.23
2.1o
2 . 2 0
2 . I 6
2.14
2 . L 9
2.16
2.1o
2 . I 8
2.17
2.21
OO
O
O
NJ
f
to
-------
TABLE A- 1 (CONTINUED)
AVERAGE
SPEED
22.98
22.23
23.47
24. 15
24. V5
23.56
23.47
2 2_. 7 7
23.83
25.45
_.2_2.,67
20.92
24.64
2b,15
27.70
28.43
30.04
30.62
27.25
29.58
"28.40
27.28
26.11
27.52
28.33
27.16
32.99
30.66
32.12
30.80
HC "
(GPKJ
4 . 06
4.94
4.65
4.68
4.75
'4.70
4.74
4.98
4.70
4.60
4.79
5. 18
4.58
4.24
4 . 36
4. 15
4.09
4.02
4.42
4.08
4.30
4.32
4.44
4.30
4.30
4.42
3.8o
3.97
3.67
3.96
ES
~"'ch
TIMATEO GROUP
NGX
(GPK)
75.
76.
72.
73.
76.
73.
74.
7.«L-
73.
74.
J74.
79.
72.
68.
69.
66.
66.
65.
71.
65.
69.
69.
70.
68.
69.
70.
~ 62.
64.
62.
64.
94
53
54
02
59
14
25
28
37
02
38
78
14
11
80
28
13
09
10
84
14
08
28
44
32
80
90 """
03
96
06
(GPK)
I
1
1
1
1
1
1
1
I
1
I
1
I
I
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
.61
.50
.49
.57
.57
.52
.54
.53
.52
.64
.50
.50
.54
.73
.71
.76
.80
.80
.75
.77
.81
.68
.68
771
.75
.74
.90
.81
.85
. 78
i EMISSIONS" "
HC
(GPM)
7
7
7
7
7
7
7
8
7
7
7
8
7
6
7
6
6
6
7
6
6
6
7
6
^
7
6
6
6
&
.83
.96
.48
.53
.64
.5r>
.63
.01
.56
.41
.12
.34
.37
.83
.01
.68
.59
.47
.11
.,5 7 . .
.91
.96
.14
.92
.92
.11
".21
..39
.23
.37
C
0
I GPM)
122
123
116
1 17
123
"f if
119
125
118
119
LL9
128
116
109
112
106
106
104
114
105
LI 1
111
113
110
111
113
101
103
101
103
.22
.16
.75
.51
. 2o
.70 "
.49
.99
.07
.12
,70_._
.39"" ""
.09
62
.33
.67
.4.3
.75
.42
.96
.27"
.17
.10
. 15
.55
.94
.22"
.04
.32
.09
NOX
(OP
2.
2.
2.
2.
2.
2.
2.
2.
2.
2 .
2 ..
2 .
2 .
2.
2.
->
C.
2.
2.
2.
2.
2.
2.
?.
2.
2 .
2.
3.
2.
2 .
2
iM)
J9
41
39
53
5:*
44
48
4 7
45
o 3
41
41
48
78
75
83
90
89
ol
85
91
70
70
7o
HI
8 i)
J6
91
97
86
p
N>
t-1
OO
O
LO
-------
TABLE A- 1 (CONTINUED)
AVERAGE
. SPEED
31 .95
33.71
31*00
31.10
31.52
31.00
30.66
29.6u
VI. 88
43.26
41.98
44.14
43.20
42.50
42.43
44.61
45.46
44.07
41.63
44.01
"" 42. Si 9
41.76
43.41
" "43.71
43.50
44.25
42.07
41.21
H C
(GPK)
3.93
3. 78
4.01
4.03
3.91
3.95
4.04
4.06
3.33
3.32
3.34
. 3.32
3-29
3.31
3.36
3.25
3.24
3.25
3.35
3.25
3.3?
3.31
3.30
3.27
3.29
3.25
3.36
3.36
ESTIMATE
~~ co
(GPK)
64.22
62.18
65.06
65. 57
63.57 .
63. 78
65.55
. 6.5.. 34
55.98
55.71
.56.09
56.47
5^.5 6
o5. 59
" "56.66
.54.90
54.57
54 . 90
55.90
54.91
55^97
55.39
55.69
55 ". 1 7
55.47 .
54.93
56. o 3
56.33
D GROUP 1
NQX '
(GPK)
: 1.86
1.67
. 1.83
. 1.85
1.80
1.31
.1.80
..!. 7 5
2.01
2.09
. 2.02
2.09
2.03
2.04
2.03
2.09
2.12
2.04
2.04
2.06
. 2.06
2.01
2.06
"2.07"
2.06
2.09
2.04
2.00
r.MI SSIONS
HC
(GPM)
6.32
/><-> 9
6.46
6.48
.' JJ?3U
6.35
' 0.51
6.53
5.36
5.34
5.37
5.34
5.29
'5.32
5.41
5.23
5.21
5.23
5.39
5.23
5.34
5 . 33
5.30
"5.26
5.29
5.23
5.41
5.41
co"
(GPM)
103,35
100.07
104. 70
105.53
102.31
102.64
105.50
.1 0_5 . L 6
90.10
89.66
90.. 27
90 . 8 9
89.41
89.46
91.19
33.36
37_,.33
88.35
d9.97
88.36
90.08
' 89.14
89.62
38.78
89.20
88.41
91.14
90.65
ts»
H»
*>
00
o
NGX
(GPM)
3 U u
3.01
2.95
2.98
2.89
2 .9 2
2 . c, -i
2. .31
3 .2.3
3 . 3 o
.3.25
3.36
3.26
3 .2 ft
3 .2 7
3.36
3.42
3.,? 8
3.2.S.
3.32
3. jl
3.23
3. 3 I
3.3' :>
3 . 3 1
3.36
3 . ?_ 3
-------
AVERAGE
SPEED
"i"5". 38'
15.80
15.89
15.97
15.98
19.13
20.66
19.04
19.35
18.89
18.66
18.05
18.61
19.20
20.22
18.60
19.67
18.80
19.46
20.50
18.72
19.27
20.29
18.96
19.02
18.63
18.87
20.32
20.37
20.. 84.
... . ,.
HC
iGPK)
5.83
5.69
5.70
3.53
5.61
4.71
4.52
4. 85
4.76
4.74
4.84
5.04
4.83
4.8.3
4.60
4.83
4.57
4.89
4.80
4.51
4.91
4.68
4,61
4.85
4.83
4.93
4.92
4.63
4. 58
4.4.P
.EST I.MAT!
CO
(GPK 5
60.42
58.91
59.17
57.30
58. 11
48.87
46. 74
50.18
49.17
49.14
50.41
52.44
50.22
50.14
47.66
50.29
47.28
50.52
49.66
46.75
51.00
48.42
47.80
50.10
49.91
51.12
51.00
48.13
47.33
45.23
TABLE A- 2
Ep.. GROUP.. . 2..EMI
NQX
(GPK)
2.46
2.46
2.51
2.40
2.44
2.37
2.36
2.40
..2.36 _.
2.28
2.37
2.41
2.36
2.43
2.39
2.36
^.27
2.38
2.42
2.39
2.40
2.35
2.38
2.37
2.39
2.40
2.42
2.41
2.3tt
2.33
SSIONS
HC
(GPtfl
"9.39
9. 16
9. 18
S.90
9.02
7.59
7.27
7.80
.. -J.....66 _
7.63
7.79
8.12
7.78
7.77
7.41
7.77
7.36
7.87
7.73
7.25
7.90
7.53
7.43
7.8J
7.77
7.93
7.91
7.45
7.37
. 7.O.R.
--
CO
(GPM)
97.24
94. SI
95.22
92.21
93.52
78.65
75.23
80.75
. 79^1.3 ... .
79.08
81.12
34.40
80.82
80.69
76.70
80.93
76.08
8.1.30
79.93
75.23
82.07
77.92
76.93
80.62
80.32
82.27
82.07
77.46
76.17
-2.Lt.12
NO.X
(GPM)
3". 9 7
3.97
4.03
3.86
3.92
3.31'
3.80
3.36
3.80
3 . o 6
3.81
3. a 3
3.80
3.90
3. 84
3.30
3. j5
3.34
3 . o S»
3.84
3.85
3.79
.3 . 83
3.S2
3.84
.3.87
3.89
3.30
3. rf "j
.3.74
oo
o
-------
TABLE A- 2 (CONTINUED)
"AVERAGE
SPEED
22.98
22.23
23.47
24.15
24.95
23.56
23.47
22.77
23.83
25.45
22.67
20.92
24.64
28.15
27.70
28.43
30.04
30.62
27.25
29.58
28.40
27.28
2b. 11
27.52
23.33
27. 16
3?. 99
30.66
32.12
30.80
"" HC
(GPK)
4.. 19
4.27
4.0U
4.01
4.04
4.04
4.00
4.27
4.03
3.94
4. 14
4.50
3.92
3.61
3.70
3.53
3.46
3.39
3. 76
3.46
3.64
3.69
3. 79
3.65
3.65
3. 76
3.24
3 . 3d
3.26
3.35
ESTIMAT
.._. .. ^
IGPK)
43.24
43.85
41.37
41 .21
42.08
41.52
42.17
44. 14
41.44
40. 75
42.71
46.40
40.47
37.06
37.92
36.18
35.46
34.33
38. 79
35.46
37.52
37.82
38.98
37.55
37.50
38.71
33. 14
34.40
3.3.45
34.33
Ei) GROUP 2 E
Vox
IGPK)
2.62
2.50
2.43
2 . 54
2.63
2.48
2.52
2.58
2.49
2.67
2.46
2.52
2.51
2.70
2.71
2.71
2.77
2.76
2.76
2.73
2.01
2.o5
2.65
2.68
2.75
2. 74
2.85
2.75
2.79
2.71
EMISSIONS
HC
(GPM)
6.74
6.37
6.44
6.45
6.50
6,51
6.56
6 . 8 a
6.49
6.33
6.66
7.24
6.32
5.30
'5.95
5 .68
5.57
5.46
6.05
5.56
5.36
5.93
6. 10
5.88
5.37
6 . 05
5.22
5.41
5.25
5.38
CO
1 GPM)
69.59
70.56
60. 58
66. 33
67.72
66.83
67.87
71.03
66.68
65.59
68.74
74.67
65. 1 3
59.64
61.03
58.23
57.07
56.06
62.42
37.07
60.38
60.37
62.73
60.42
60. 3o
62.30
53.33
55.36
53.83
55.25
NGX
(GPM)
4.21
4.02
3.91
4.09
4.24
3 .9"^
H. 05
4.15
4. Jl
4. 3 0
3.._96
4.05
4.03
4.35
4.35
4.36
.^.f^.
4. 4 3
4 . 4 'J
4.40
4. 3 ?
4.27
4.27
4. 31
4.42
4.4?
4.59
4.43
4.49
4. 37
KJ
C-
00
O
ro
-------
TABLE A- 2 (CONTINUED)
ESTIMATED"GROUP 2 EMISSIONS
to
P-
oo
AVERAGE
SPEED
31.95
33.71
31.00
31.13
31.52
3i7oo
30.66
29.66
41.88
43.26
4JU98
44.14
43.20
42.50
42.43
4-4.61
45.46
44.07
41.63
44.01
42.99
41.76
43.41
43.71
43.50
44.25
42.07
41.21
HC
(GPK)
3.31
3«V«
3.30
3 . 40
3.30
3.34
3.42
3.44
2.75
2.73
2.76
2.73
2. 71
2. 73
2.77
2.67
2.65
2.67
2. 77
2.67
2.73
2.73
2.-_7i
2.69
2.71
2.67
2.78
2.78
CO
(GPK)
34.12
32.53
34.65
34.92
33.82
"'""34.14
34.98
_35.28
27.96
27.66
28.03
27.78
27.51
27.71
28. 11
27.02
26. 76
27.04
28.03
27. 15
27. H
27.76
27.59
27. 30
27.46
27.16
28.24
28.22
NOX
( GPK )
2.82
2.82
2.80
2.83
2.74
2.76
2.77
2 ,J>9
2.92
3.02
.2.94
3.04
2.95
2.96
2.97
3.02
3.05
2.95
2.9o
Z . 1 3
2.99
2.91
2. 98
2.99
2.98
3.01
2. "9 7
2.92
HC
(GPM)
5.32
5 ._l. *-.
5.45
5.47
D . 3 1 .
b.38
5.50
.!>.. 54
4.43
4.39
4.43
4.39
4.46
4.30
.4 ..'2 7.
4.30
4.^5
4. 30
4.40
4.40
4.37
4.34
4.35
4.30.
4 .47
4.47
CO
(GPM1
NOX
(GPM)
o
NJ
-J
54.91
52.36
55.76
56.21
54.43
~54~. 95 "
56.30
5_6.7.8
44.99
44 . 5 1
_.45. 11 _
44.71
44 . 2 7
44.59
45.24
43.49
43.07
43.52
45. 12
43.70
44,70
44.67
44.40
43.93
44.19
43.70
45.44
45.42
4.^4
4.54
4.51
4.55
4.41
4 . 4 3
4.45
4.33
4,70
4 . 8 5
4... 73.
4.69
4, 74
4.76
4.77
4.85
4 . 9 1
4.75
4.76
*. T9
4.81
4.69
4.80
4.81
4. BO
4.8M
4.78
4-. 70
r
-------
AVERAGE
SPEED
~15.38
15.80
15.89
15.97
15.98
.19.13
20.66
19.04
19.35
18.89
18.66
15.05
" T8.61
19.20
20 . 2 2
18.60
1 9 . b 7
18.80
' 19Y46
20.50
18,72
19.27
20.29
13.96
19.02
18.63
18.87 '
" 20.32
20.37
20.84
HC
(GPK)
4. 14
'+.05
4.05
3.99
4.03
3.44
3.28
3.50
3.43
3.44
3.54
3.64
3.53
3.49
3.34
3 . 53
3.35
3.52
3.46
3.28
3. 54
3.40
3.34
3.51
3.48
3.57
3.55
3. 35 "
3.32
3.21
ES
CO
.T.L.MATE
(GPK)
38.
37.
37.
36.
36.
30.
28.
31.
30.
30.
31.
32.
31.
31.
29.
31 .
29.
31.
30.
29.
31.
30~.
29.
31.
31 .
31.
31.
29.
29.
28.
15
19
26
48
77
.37
99
31
66
83
73
d7
68
27
o3
73
60
54
85
24
?8
56
61
29
24
95
75
76
42
41
TABLE A- 3
i) GROUP 3 EMISSIONS
NOX
(GPK 1
2 . 36
2.3o
2.42
2.27
2.33
2 . 23
2.27
2.30
2.26
2.16
2.26
2.31
2.25
2.32
2.28
2.25
2. io
2.2V
2.33
2.27
2.30
2.22
2.29
2.27
2.27
2.31
2.32
2.33
2.28
2. 19
HC
(GPM)
6.66
6.52
6.52
6.43
6 . 49
5.53
5.23
5.63
5.53
5.54
5.69
5.85
5.6o
5.62
5-3.7
5.68
5 . 3 9
''.> .66
5.57
5.29
5.69
" '5.47
5.38
5.65
5. 60
5. 74
5.71
5.40
5.35
5.16
CO
(GPM)
61.39
59.84
59.96
58.72
59. 18
49.69
46.66
50.40
49.. 34
49.62
51.07
52.90
50.98
50. 32
47.69
51.06
47.77
_ 50.76
" 49.65
47.05
51 . 15
49.18
47.65
50. 36
50.28
51.42
51.10
47.90
47.35
45.71
NUX
(GPM)
3.80
3. 8 0
3.dv
3 . 6 5
3.76
3.59
3.65
3. 70
L» ^ 3
1.43
3.64
3. 72
3.62
3. 74
3.68
.3.6 2
3.47
3 . 6 H
3. /4
3. &:>
3.70
3.57
"3 .6 9
3.o6
3.66
3.72
3. 74
3. 75
3.67
3.53
30
o
oo
-------
TABLE A- 3 (CONTINUED)
fciTIMATfcO GROUP 3 EMISblUNS
AVERAGE
SPEED
22.98
22.23
23.47
24.15
24.95
23.56
23.47
22.77
23.83
25.45
22_._67_
20.92
24.64
28.15
27.70
28.43
30.04
30.62
27.25
29.58
28.40
27.28
26.11
27.52
28.33
27. 16
32.99
30.66
32.12
"30.80
HC
iGPK)
3.00
3.07
2.91
2.88
2.91
2.92
2.95
3.05
2.90
2.83
3.01
3.24
2.83
I 59
2.64
2.54
2.47
2.43
2.68
2.49
2.59
2.64
2.72
2.62
2.60
2.67
2.30
2.40
2.34
2.41
CO
(GPK)
27.27
27.50
25.97
25.83
25.89
26.06
26.42
27.45
25.89
25.40
26.89
29.18
25.26
23.34
23.71
23.05
22.39
21.99
24.32
22.48
23 . 6 5
23. 73
24.59
23.68
2 3 . 49
24.29
2l". 08 "
21.85
21.25
21.69
NC1X
(GPK)
2.46
2.35
2.28
2.39
2.53
2.33
2.37
2.46
2. 35
2.53
2.31
2.38
2.36
2.53
2.55
2.52
2.59
2.57
2.60
2.55
2.63
2.48
2.48
2.51
2.58
2.58
"" 2/65
2.55
2.59
2. 52
HC
(GPM)
4.83
4,94
4.69
4.63
4.68
4.70
4.74
4.9.2
4.67
4.55
4.84
5.21
4.56
4.16
4.24
4.09
3.98
3.91
4.31
4 . 0-1
4.17
4.25
4.38
4.22
4.18
' 4.30
3.70
3.37
3.76
3.87
CO
(GPM)
43.88
44.25
41.79
41.57
41.66
41.94
42.52
44... 1 7
41.67
40.87
43.28
46.96
40.66
37.56
38.16-
37.10
36.04
35.39
39.14
36. 18
38.06
38.19
39.57
38. 10
37.81
39.09
33".~9~3
35.17
34. 20
34.91
MOX
(GPM)
3.96
3. 79
3.67
3.85
4.07
3.75
3 . a 2
3. .96 .. . .
3 . 78
4 . U 7
3.72
3.83
3.79
4.07.
4. 10
4.06
4. 17
4. 13
4. IB
'+11..
4 . 1 3
3.S9
4.00
4.04
4. 15
4.15
4.26
4 . 1 0
4. 16
4.06
p
to
03
O
O
N>
-J
-------
AVERAGE
SPEED
31. Si 3
_33« .7.1.
31.00
31.10
31.52
31.00
30.66
29.66
41.88
43.26
41 .98
44.14
43.20
42.50
42.43
44.61
45.46
44.07
41 .63
44.01
42 ."99
41.76
43.41
43.71
43.50
44.25
42.07
41.21
HC
(GPK)
2.36
2.28
2.41
2.42
2.37
2. 39
2.43
2.47
1.95
1.92
T.9i>
1.91
1.92
1.93
1.95
1.88
1.86
1.89
1.95
1.89
1 .9 3
1.94
1.92
" " Y.'9G
1.91
1.89
1.96
1.97
ESTII"
co
(GPK)
21.58
20.63
21.92
22.07
21.38
"21.68
. 22.02
22.28
17.86
17.81
17.92
17.74
17.57
17. 79
17.91
17.42
17.31
' 17.33
18.03
17.46
17/80
17.82
17.67
17.57
17.62
17.52
18.02
13.03
TABLE A- 3 (CONTINUED)
ESTIMATE D ~G R OUP "" 3 " E-Vl S'S f 0N sf
00
O
NDX
(GPK)
.2.62
2.62
2.61
2.64
.2-54
2.55
2.58
2.51
2.69
2.77
.2.71
2.00
2. 71
2. 72
2.74
2.77
2.80
2". 72
2.72
2.74
2. 75
2.68
2.75
2.75
2.74
2.76
2.74
2.69
HC
(GPM)
3.80
3.66
3.88
3.89
3.81
3/85
91
98
14
3.08
3.14
3.08
3,
3,
3,
3,
09
11
14
03
2.9?
3.05
3.14
3.05
3.11
3.13
3.08
3/06
3 . 0 /
3.04
3/15
3.13
CO
(GPM)
34.73
33.20
35.28
35.52
34.. 41
"34/88
35.44
35.36
28. 74
23.67
28.84
28.56
28.27
28.62
28.82
28.03
27.86,
27.39
29.02
23.10
23 /65
28.68
23_.44
28.27"
23.36
28. 19
29/01
29.02
MQX
GPr-1)
4.22
4.21
4.2U
4.24
4- 10
4.10
4. 15
4.03
4.33
4.47
4.36
4. 5 1
4.36
4.37
4.4 1
4. 46
4.51
4. 3 7
4.38
4 ..40
4.42
4.31
4 »_4 2
"4.42
4.41
4.45
4.40
-------
AVERAGF
SPEl-D
llf.38
15.80
15. 89
15.97
15.98
...JLi-J.3
20.66
19.04
_19_,_35,_.
18.89
18.66
18.05
18.61
19.20
20.22
~Ta.60
19.67
18.80
19.46
20.50
18.72
19.27
20.29
18.96
19.02
18.63
18.87
20 . 3 2
20.37
.20,84
-
HC
(GPK)
3.99
3.09
3.89
" "3.77
3.82
._..3..18_
3 . 03
3.27
3. 20
3.21
3.27
3.42
3.27
3.26
3.09
3.27
3.08
3.30
3.24
3.02
3.32
3. 15
3. 10
3.27
3.25
3.34
3.32
3.12
3.06
^9.3
1
_ _ ESTIMATED
..cu
(GPK)
50.62
49. 10
49. 34
48'."U
48.66
40.60
38.33
41.39
40.59
40.72
41.89
43.52
4l".67
41.49
39.19
41.77
38.99
41.66
40.86
38.50
42.16
40. 14
39.24
41.32
41. ?9
42.22
42.18
39.53
38.85
;37..2.3
"ABLE A-
GROUP
. NUX
(GPK )
3.05
3.05
3.10
2.95
3.0G
2.87
2.90
2.95
2.89
2.78
2.90
2.97
2.89
2.99
2.92
2.89
2.76
2.93
2.99
2.91
2.95
2.86
2.93
2.93
2. 92
2.97
2.98
2.97
2.93
2 ...81.
- 4
4 EMISSIONS.
HC
(GPM)
6.42
6.26
6.26
6.07
6.15
5. 11
4.88
5.27
5.. 16 .... .
5.17
5.27
5.51
5.27
5.24
4,97
5.26
4.96
5.31
5.21
4.86
5.35
5.07
4 .99
5.27
5.23
5.37
3.34
5.02
4.95
4.72
Cfl
p
ts?
00
O
--J
CO
iGPMJ
31.47
79.15
79.41
77.45
78.32
65_.J_4.
61.69
66.61
6 5.* 3 2
65.53
67.41
70.04
67.06
66,77
63.06
67". 22
62. 74
67.05
"65.75 '
62.08
67. 85
"64^59~
63. 15
66.50
66.45
67.94
67.89
63.62
62.52
. 59_.9J
NC]X_.
{ 0PM i
4.90
4.91
4.98
4 ."7 4'
4. S3
+ . 6 2
4.66
4.75
4.65
4.48
4.07
4. 73
4.65
4 . 6 I
4.71
4~.' 6 5
4.48
4. 72
4 . 82
4.o3
_ 4. 75
4.60
4. 72
4.7?
4.70
4.79
4.79
4.7(3
4.71
4., 5 2
-------
TABLE A- 4 ( CONTINUED)
"AVERAGE
SPEED
22.98
22.23
23.47
24.15
24.95
23 . 56
23.47
22.77
"23.83
25.45
22.67
20.92
24.64
28.15
2~7.70
28.43
1Q.04
30.62
27.25
29.58
29.40
27.28
26.11
" "27". 5 2
28.33
27.16
32.99
30. 06
32.12
30.80
HC
(GPK)
2.76
2.82
2 . 64
2.62
2.66
2.66
2.69
2.83
2.65
2.57
2. 74
2.99
2.57
2.31
2". 30
2.25
2. 19
2. 15
2.42
2.20
2.33
2.37
2.45
'2/35
2.34
2.42
2.02
2. 12
2.04
2.11
ESTIMATE
CO
(GPK)
35.25
35. 74
33.BO
33.42
33.97
33.77
34.42
35.83
33.62
32.89
34.92
38. 11
32.87
29.67
3~0.28
28.90
.28. 17
27.70
31. 16
28. 17
30.03
30.38
31.41
"30. 10
29.96
31.11
26. 11
27. 39
2o. 50
27.32
;D GROUP 4 E
NGX
I GPK)
3.11
2.99
2.90
3.02
3. 17
2.95
3.00
3.11
2.97
3.18
2.94
3.03
2.9R
3.16
3." 1 8
3.15
3.2?
3.19
3.24
3.18 .
3.26
3. 11
3 i 1 I
3.13
3.21
3.21
3.27
3. 17
3.20
3/14
MISSIONS ".
HC
(GPM)
4.43
4.54
4.25
4.22
4.27
4.28
4. 32
4 . 55
4.26
4.13
4.40
4.ol
4. 14
3.72
3.82
3.63
3.53
3.45
3.89
3.54
3.74
3.82
3.95
. _... 7-a-
3.76
3.89
3/25
3.41
3.29
""~3.40"
-
CO
(GPM )
56.73
57.51
34.39
53.79
54.67
"54/34
55.40
57.66
54. 11
52.93
_56_..2_1
6 1 . 33
52.89
47. 75
48.73
46.51
..-.45.34
44. 5 8
50. 14
45.33
48. 33
48.89
50.55
48 . 44
48.25
50.07
42.02
44.08
42.65
43.96
NUX
(GPM)
5.00
4.o2
4 . o o
4.85
5 . 1 0
4.76
4.82
'5 . Q 0
4.78
5.12
-V..73
4.67
4.7S
5.08
5.11
5.06
5. Id
5 . 1 3
5.21
5. 11
3.25
5.01
5 .01
5.04
5.17
5.17
5.26
5 . 1 0
5.15
5 . 0 5
$
to
h->
4>
CO
O
8
7
to
-------
TABLE A- 4 (CQNTtNUtiD)
AVfcRAGt
SPEED
31.95
33.71
31.00
31.10
31.52
31.00
30.66
29.66
41.88
43.26
41.98
44. 14
43.20
42.50
42.43
44.61
45.46
44.07
41.63
44.01
42.99
41.76
43.41
43. 71
43.50
44.25
42.07
41.21
HC
IGPKI
2.08
L.98
2.13
2. 14
2.08
2. 10
2. lo
.2. 19
1.65
1.61
1.65
1.62
1.61
1.63
1.65
1.57
1.55
1.58
1.65
1.56
1.63
1.63
1.61
1.59
1.60 -
1.58
1.66
1.67
ESTIMATE!1
CU
(GPK)
27. 16
25.62
27.42
27. 75
26.82
27. 14
27.79
28.16
21.51
21.17
2 1 . 59
21.27
21.09
21.30
21.56
20.59
20.28
20.62
21.53
20.81
21.31
21. 3b
21.16
20.39
21.03
20.81
21.74
21.71
) GROUP 4 Ei
IGPK )
3.24
3.24
3.24
3.26
3.16
3.17
3.20
3.12
3.30
3.39
- 3.31..
3.42
3.32
3.33
3.35
3.39
3.42
3.33
3.33
3. 35
3. 36
3.26
3.36
3.36
3.35
3.38
3.35
3.30
MI SS IONS
HC
(GPM)
3.34
3.18
3.43
3.44
3.35
3.39
3.48
3.52
2.65
2.60
2.65
2.60
2.60
2.62
2.66
2.53
2.50
2.55
2.66
2.55
2.62
2.63
2.59
2.57
2.56
?.54
2.67
2.68
CO
(GPM)
43.70
41.23
44. 12
44.56
43.15
43.0 7
44.73
45.33
34.62
34.07
34. 74
J4. 2 3
33.94
34.27
34.69
33. 13
32.63
33. 19
34.66
33.49
34.30
34.41
34.06
33.62
33.85
33.49
34.99
34.93
(G
5
5
5
'5
5
5
5
5
5
5
5
j
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
PM)
.22
.21
.21
.25
.09
. 1 1
. 15
.03
.31
.45
.33
.50
.34
. 3 5
.39
.45
.50
.35
. 36
. 38
.41
.28
.40
.41
.40
. 4 3
.39
.31
p
NJ
00
O
o
N3
Co
-------
AVERAGE
"SP'ECD
"15.38
15.80
15.89
"15.97
15.98
19.13
20.66
19.04
19.35
18.89
18.66
18.05
18.61
IS. 20
20.22
~ 18.60
19.67
18.80
19.46
20.50
18.72
1 9 .27
20.29
18.96
19.02
18.63
ia.87
'20.32
20.37
20. S<*
HC
(GPK)
3.61 "
3.52
3.52
3.39
3.43
2.88
2.76
2.96
2.92
2.93
2.96
3.11
"2.96
2.96
2.82
2.96
2.81
3.01
2.95
2.75
3.03
2.87
2.83
2.97
2.96 "
3.03
3.01
"2.84
2.80
2.68
_ESJIM/
CO
~IGPK)
42.41
41.05
_ 41.00
40.01
40. 31
32.54
29.92
33.07
. 32.33
32.73
33.51
35.20
''.'"' 33.46
32.92
30.80
33.56
.30.94
33.44
32.38
30.2.8
33.78
" " 32. 18
30.74
32.98
33.07
33.80
33.62
....... 30" gq"
30.43
29.24
TABLE A- 5
\J\10 _G.RQUP 5
NOX
" '(GPK)
4. 10
4. 10
4.15
. --3--»-6
4.03
3 . 8 3
3.87
3.95
3.86
"3.72
3.80
3.97
"3.86
4.00
3.91
3.. 8 6
3.72
3.92
4.01
3.88
3.95
' 3". 8 2
3.92
3.93
"" 3.91
3.99
3.99
3 . 98
3.92
3.74
EMISSIONS
HC
(GPM)
5.81
5.67
5.67
""5.46
5.52
4 .64
4.45
4.79
4.70
4.71
4.77
5.00
4.77
4.76
4.54
""4.76
4.51
4.84
4.75
4.43
4.87
"4.62
4.55
4.79
4.77
4.87
4.85
4.5 f
4.51
4.31
CO
(GPM)
68.25
60 .07
66.09
:" "64 73 9~
o4.87
5.2.36
48. lo
53.21
52.02
52.67
53.93
56. 65
53.85
52.99
_.. 49._58 .
""54.06 "
49.79
53.62
52.10
48.73
54.36
5 1 . >9 '
49.47
53.07
53~/22
54.39
54.10
49. 71
48.97
47.06
" "is
S3
oo
o
NOX ^
(GPM) g
6 . 5 9
6.59
b . 6 9
f.'. 3 7
o . 4 9
o . 1. 6
6.2?
6 . 3 o
0-22
5 . 9 9
6.25
o . 3 9
6.2.1
6.44
6.29
o". 2 1
5.99
0.31
6.^6
0.25
6 . 3 6
'6.15
6 . .3 ?
6 . 3 3
6.29
6.42
6.42
o . 4 0
6.31
''s/3
-------
TABLE A- 4> (CONTINUED)
ESTIMATL-0 GK11UP 5 EMISSIONS
AVERAGE
SPEED
22.98
2
-------
TABLE A- 5 (CONTINUED) .
"AVERAGE
SPEED
31.
33.
31.
31.
31.
31.
30.
29.
41.
43.
4i.
44.
43.
42.
42.
44'.
45.
44.
41.
44.
42.
41.
43.
43.
43.
44.
42.
41.
95
71
00
10
52
00
66
66
88
26
98
14
20
50
43
61
46
07
63
01
99
76
41
71
50
25
07
21
HC - "
IGPK)
1.
1.
2.'
L.
1.
1.
2.
2.
1.
1.
1.
1.
r.
A. tt
i:
i.
i.
i.
i;
l.
l.
l.
l.
l.
l.
l.
i.
i.
96
87
00
01
96
98
03
05
59
56
59
57
56
57
59
52
51
53
59
53
57
57
56
54
55
53
60
60
. ESTIMA
"CO "
(GPK)
.
19.
17.
19.
19.
19.
19.
20.
20.
14.
13.
14.
13.
. 13.
14.
14.
13.
13..
13.
14.
13.
13.
14.
,13.
13.
13.
13.
14.
14.
! 1 ;-
40
98
79
94
19
58
07
46
19
90
23
84
75
01
16
35
11
33
32
52
97
10
82
63
72
53
3.7
38
TED GROUP 5 EMISSIONS
.NOX " HC".
(GPK) tGP^l)
4.
4.
4.
4.
4.
4.
4.
4.
.4.
4.
4.
4.
4.
4.
4.
. 4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
24
24
24
20
14
16
20
10
28
40
30
44
31
32
36
39
^3
32
32
34
37
26
36
36
36
38
35
28
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
c.
I
2
2
2
2
. 2
2
. 15
.00
.22
.23
. 15
.18
.27
.30
.56
.51
.56
.52
.51
.52
.57
.45
.42
.46
.5o
.40
.52
.53
.51
.48
.50
.46
.58
.58
co"
(GPM)
31.
23.
31.
32.
30.
31.
32.
32.
22.
22.
22.
22.
22.
22.
22.
21.
21.
21.
23.
21.
22.
22.
22.
21.
2.2.
21.
23.
23.
23
94
84
10
38
51
30
92
83
37
91
27
13
55
79
49
10
46
04
76
48
70
24
93
oa
73
12
15
MOX
GPM)
6.S3
6.32
6.83
6.89
6.67
6.69
6. 76
o . (j 'o
o. 89
7.07
o.93
7.15
6. 9 H
b . *) 5
7..3 I
7.J7
7.13
6 .9 5
6.96
6 . 9 9
7.03
6 . rf 6
7.01
7.'J2
7..H
7. J 3
7.00
6.89
c/j
P
£
oo
o
to
-J
ON
-------
««AO
SPEED
15.38
15.80
15.89
15.97
15.98
19.13
20.66
19.04
...__! 9.. 35
18.89
13.66
18.05
13.61
19.20
20.22
18.60
19.67
18.80
19.46
20.50
18.72
19.27
20.29
18.96
19.02
18.63
18.87
"20.32
20.37
.__ 2G..84
E .. . . _ ....HC.
(GPK)
2.67
2.ol
2.62
2.54
2.57
2,18
2.09
2.24
2.20
2.19
2.25
2.33
2.24
2.24
2.13
2.24
2.11
2.25
2.23
2. 10
2.27
2. 17
2.14
2.24
2.23
2.28
2.28
2/15
2. 13
2.03.
...._. ESTIMATE
CO
IGPKj
34.80
33.66
33.71
32.71
32.95
. 26.50
24.40
27.05
26_.36_
26.60
27.37
28.86
27.28
27.09
25. 17
27.37
25.10
27. 30
26.60
24.77
27.70
26.23
25. 16
26.94
27.01
27.69
27.57
25.3> "
24.89
_2.3..6_5
TABLE A-
D. GROUP
NOX
(GPK)
3.68
3.68
3. 75
3.54
3.62
3,49
3.54
3.60
3.. 5,2
3.39
3.53
3.61
3.51
3.63
3.57
3.51
3.39
3.57
3.64
.3.5.5
3.60
3.48
3.58
3.56
3.55
3.62
3.62
3.63
3.57
3.4.3
p
ISS
00
o
HC
(GPM)
4.30
4.20
..'±21
4.09
4. 14
3.51
3.37
3.61
._.3... 5_3.
3.52
3.61
3.75.
'3.60
3.61
3.43
3 .60
3.40
_3.62
3.58
3.37
3.65
3.49
3.44
3.60
3.59
3.67
3.b6
" 3'. 4 7
3.42
3.27
. CO
(GPM)
56. JO
54.17
54.25
52.64
53.02
_4_2... 65
39.26
43.54
j42,43..
42.CO
44 . 05
46.44
43.91
43.59
.40.!?!
"44.05
40 .40
43.93
42 . B 1
39.36
44..-58
42.21
40.49
43.36
43.47
44.56
44.36
"40.3Y
40.06
38.07
_i\ u X
(~G P M)
5.92
5.93
5. 70
5 . S 3
5.62
5 . o 9
5.79
5,66.
5.45
5.63
5.31.
5.65
5.85
5.74
~l>. 6 5
5.45
3. 75
5.37
5 . 7 1
5.79
5.60
5.76
5 . 1 3
5.72
3.S2
5 . B 2
5.52
-------
TABLE A- 6 (CONTINUED)
ESriMATED~"GRC)lJP 6 EMl'sSIUNS
AVERAGE
SPEED
22 .98
22.23
23.47
24.15
24.95
"23.56
23.47
22.7 {
23.83
25.45
22.67
""20.92
24.64
28. 15
27.70
28.43
30.04
30.62
27.25
29.58
28.40
27.28
26.11
27.52
28.33
27.16
32.99
30.66
32.12
30.80
HC
(GPK)
1.95
1 9 6
1.87
1.87
1.90
1.88
1.91
1.99
1.88
1.85
I -93
2.08
I. 84
i . 70
' 1.73
1.66
1.63
1.61
1.77
1.63
1.72
1.73
1.76
1. 72
1. 72
1.77
1.54
1..59
1.55
1.58
CO
(GPK)
22.26
22.60
21.02
20.68
20.85
20.98
21.48
22.60
20.86
20.22
21.89
24.44
20.27
.11 .12
18.14
17.12
16.53
16. 13
18.90
16.47
18.01
18. 30
19.09
17.98
17.93
18.83
14/90
15.97
15.2.2
15. 51
NOX
(GPK)
3.85
3.o9
3.58
3 . 74
3.94
3.65
3. 71
3.84
3.68
3.95
3.62
3. 72
3.69
3.96
3.98
3.95
4.05
4.01
4.05
3 . 9 9
4. 10
3.88
3.88
'3.92
4.03
4.02
4.14
3.99
4.04
3.94
HC
(GPM)
3.15
3. 19
3.01
3.00
3.06
3.03
3.07
3.21
3.02
2. 98
3.10
3.36
2.95
2.74
2. 79
2.67
2.63
2.58
2.85
2.63
2.77
2.79
2.66
?.. 76
2.77
2.84
2.47
2.55
2.49
2.54
CO
(GPM)
35.83
36.37
33. 3 3
33.2 8
33.55
33.76
34. 5f
36. 3b
33.56
32.55
_.._.35.23._ ....
39.33
32.o2
23.52
29.19
27.55
26.61
25.96
30.41
26.50
28.99
29.46
30.72
28.94
28.«o
30.3 1
2.3.99
25.71
24.49
25.45
oo
NOX " 3
(GPM) o
N>
6.20
3 . '? 4
5 . 76
6 . 0 2
o . 3 3
5.88
:> . 9 7
0..1S
5 . ) 2
o . 3 6
5.83
5.9H
5.94.
o . 3 7
6.40
o . 'j 6
<"< 5 1
ti . ' t 6
6. 52
o.43
0 . 5 0
6.25
O..Z5
0.31
.-i /x ^
6 . 4 H
6.66
6.42
6.51
6. 35
OO
-------
TABLE A- 6 (CONTINUED)
AVERAGE
SPEED
31.95
33,71
31.00
31.10
31.52
31.00
30.66
29.66
41.38
43.26
41.98
44. 14
43.20
42. 5U
42.43
44.61
45.46
44.07
41.63
44.01
42.99
41.76
43.41
43.71
43.50
44.25
42.07
41.21
HC
(GPK)
1.57
1.51
1.60
1.61
1.56
1.58
1.61
1.62
1.32
1.31
. 1.32
1.32
1.30
1.31
1.33
1.28
1.27
1.28
1.32
1.29
1.32
1.31
1.31
1.30
I.JO
1.29
1.33
1.33
ESTIMATED GROUP 6
CO NOX
(GPK)
15
14
15
16
15
15
16
16
11
11
11
11
10
11
11
10
10
10
11
10
11
11
10
10
10
LO
11
11
.75
.48
.9b
.15
.47
.76
.25
.51
.28
.00
.31
.07
.93
. 12
.27
.54
.29
.53
.31
.72
.11
. 16
.98
.79
.88
.73
.47
.40
(GPK)
4
4
4
4
3
3
4
3
4
4
4
4
4
4
4
4
4
4
t
4
4
4
4
4
4
4
4
4
.09
-.09
.08
.11
.98
.99
.03
.92
.21
.33
.23
.37
.24
.25
.28
.33
. 3 8
.25
.25
.28
.29
.18
.29
.29
.29
.32
.27
.20
EMISSIONS"
HC
(GPM)
2
2
2
2
2
2
2
2
2
2
.2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.53
.43
.57
.59
.52
.54
.60
ul
.13
. 11
-.1 3
.12
.10
.11
.14
.07
.05
.07
.13
.08
.12
.11
.10
.09
.09
.08
.15
.14
co
(GPM)
25.
23.
25.
25.
24.
25.
26.
26.
18.
17.
18.
17.
17.
17.
18.
16.
16.
16.
18.
17.
17.
17.
17.
17.
17.
17.
18.
18.
34
30
68
99
89
36
15
57
IS
70
21
82
59
90
1 4
96
56
95
20
,?5
87
96
67
37
51
21
46
35
N
OX
(GPM)
o
6
6
6
O
6
6
6
6
6
6
7
6
6
6
6
7
6
0
:j
6
6
6
6
6
6
6
6
.59
.59
.5 7
. 6 2
.41
. 4 2 " ~
.<+9
.31
.77
.97
.81
.04
.82
33
. bG
. 9 7
.05
. 8-i
.84
. -j'S
.91
. 73
.90
.91
.90
.95
.88
.76
p
NJ
£
03
o
-------
TABLlr A- 7
ESTIMATED GROUP 7 EMISSIONS
AVERAGE
SPEED
15.38
15.80
15.89
15.97
15.98
_ .19.13
20.06
19.04
19.35
18.8V
18.66
18.05
18.61
19.20
20.22
18.60
19.67
16.80
19. 4 6
20.50
18.72
" 19.27
20.29
18.96
IS. 02
18.63
18.87
20.32
20.37
20.04
HC
1GPKJ
: " 2 . 29
2.24
2.24
2.18
2.21
1. 86
1.79
1.91
1.88
1.87
1.92
2.00
1.92.
1.92
1.82
1.91
1.80
1.92
1.90
1.79
1.94
"1.85
1. 83
1.91
1.90
1.95
1.95,
1.84
1.81
1.73
CO
(GPK)
35.47
34.27
34.49
33.37
33.84
'27.27
25.38
27.91
27.21
27.31
'28.40
29. 75
2.8.20
28.09
26.11
28.31
25.87
28.09
27.51
25.66
28.61
26/36 '
26. 17
27.77
27.78
28.64
28.59
26.52
25.83
24.35
NOX
(GPK)
"3.36
3.36
3.43
3.22
3.30
3.18
3.23
3.28
3.22
3.09
3.21
3.29
3.20
3,31
3.26
3.20
3.09
3.26 .
3.33
3.23
3.28
3.18
3.27
3.25
3.24
3.30
3.30
3.32
3.26
3.13
HC
(GPM)
3.69
3.60
3.61
3.51
3.55
3.00
2.88
3.08
3.02
3,01
3.09
3.21
3.08
3.09
2.93
3.08
2.90
3.10
'3.06
2.88
?. 13
2.97
2.94
3. oa
'3.06
? . 1 4
> 1 3
2.96
2.92
2.78
en
p
1-0
03
CO
I GPM)
57.08
55.15
55.51
33.71
54.<*6
4.3.88
40.85
44.92
43.80
43.95
43.70
47.88
45.39
45.21
42.02
45.56 '
41.6 3
45.21
""" 44.27
41.30
-------
TABLE 4- 7 (CONTINUED)
ESTIMATED GROUP 7 EMISSIONS
W
P
ts>
00
AVERAGE
SPEED
_
22.90
.. . 22.23
23.47
24.15
24.95
"23.56
23.47
22.77
23.83
25.45
22.6?
20.92
24.64
28. 15
27.70
20.43
30.04
30.62
27.25
29.58 .
28.40
27.28
26.11
27.52
28.33
27.16
32.99
30.66
32.12
30.80
HC
(GPK)
.
1
1
1
1
1
' " 1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
I
1
1
I
i
1
1
1
I
I
.65
.68
.58
.58
.62
. 59
.61
.69
.59
.57
.63
.77
.55
. 43
.46
.39
.37
.34
.49
37
.44
.46
.50
.44
.44
.49
.28
.32
.29
.32
CO
(GPK)
22.
23.
21.
21.
22.
"" 21.
22.
23.
21.
21.
22.
25.
20.
18.
18.
17.
17.
16.
19.
17.
18.
18.
19.
18.
18.
19.
15.
16.
15.
" ' "16.
88
19
68
32
06
54
23
42
47
10
55
16
95
3.4
80
60
09.
71
64
07
67
89
69 _..
62
61
50
34
41
72
36
NOX
(GPK)
3.
3.
3.
3.
3.
" " 3 .
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3 .
3.
3.
3.
.3.
3.
3.
3.
3.
3.
3.
3.
.
51
37
26
4?
59
34
38
51
36
61
.3.0
39
37
61
63
60
69
66
70
64
74
55
54
58
63
67
78
64
69
60
HC
(GPM)
2
2
2
2
2
2
?
2
2
2
2
2
2
2
2
2
2
2
2.
2
2
2
2
2
2
2
2
2
2
2
.66
.70
.55
.54
.60
. 56" '
.oO
.72
.56
.52
.63
.65
.50
.30
.35
.24
.20
. 16
.40
.20
.32
.34
.41
.32
.32
.39
.05
.13
.07
'. 13
CO
(GPM)
-
36.
3.7.
34.
34.
35.
~34".
35.
37.
34.
33.
__3_6...
40.
33.
29.
30.
28.
27.
26.
31.
27.
30.
30.
31.
29.
29.
31.
24.
26.
2'5.
26.
83
32
89
32
51
66
7o
69
56
96
2.9.
53
71
52
26
33
51
S1*
61
47
057
39
68
97
95
38
70
41
2,9
.32"
NLiX . <4
(GPM) o
N5
-J
3 . 6 O
'j . 4 3
3.25
5.50
5.7«
3.37
5.45
5.65
5.41
5.81
. 5.3 1.
5 . '* ~>
3.43
.5.81
5.85
5.75
5.95
3.89
5.^5 .
3.36
6.02
5.71
5-70
5. fo
3.92
5 . *'H
6.08
3.86
5.94
3.79
-------
TABLE A- 7 (CONTINUED)
AVERAGE
SPEED
31 .95
33.71
31 .00
31.10
31.52
31.00
30. 06
29.66
41.88
43.26
41.93
4*. 14
43.20
42.50
42.43
44.61
45.46
44.07
41.63
44.01
42.99
41.76
43.41
43.71
43.50
44.25
42\07
41.21
HC
(GPK)
1.31
1.26
1.34
1.35
1.30
1.32
1.35
1. 3o
1.09
1.07
1.09
~ 1.08
1.07
1.C8
"" 1.09
1.05
1.04
r. 05
1.09
1.06
1.06
1.08
1.07
" l". 06
1.07
1.06
1.10 "
1.09
ESTIMATED
CO
(GPK)
16.34
..15.00
16.47
16.75
16.00
16.19
16.77
17.06
11.64
11.29
11.69
11.48
11.29
11.45
"" 11.66
10.82
10.53
To/87
11.59
__.11.06 v
11.46
11.48
11.35
11.10
11.22
11.05
11.85
11.77
GROUP 7
'"Nti'x
(GPK)
3.73
3. 74
3.73
3.75
3.64
T. 65
3.68
3.58
3.84
3.96
3.86
3.99
3.87
3.88
.""3.91
3.96
4.00
3.88
3.89
3.90
"3.92
3.82
3.92
"3.92
3.91
_3.94
~3 .90
3.84
EMISSIONS
"" HC
(GPM)
2.11
2.02
2.15
2. 16
2.10
2.12
2.1 7
2. 19
1.75
1.72
1.75
1.74
1. 72
1.73
1.76
1.69
1.67
1.69
1.75
1.70
1.74
1.73
1.72
1.71
1.72
1. 70
1.76
1.76
CO
(GPM;
NGX
I GPM)
26.30
.24.14
26.50
26.96
2 5... 7 4
26.05
26.99
27.46
18.74
18. 18
.13. .8.1.
18.48
18.18
13.43
13.77
17.41
16.95
17.49
1 8 . 6 a
17.80
18.^5
18.48
18.26
17". 86
18.05
17. 79
19.07
6.01
6.01
6.00
C.O'i
5.85
5. 07
5 . ') 3
5. 76
6 . 1 8
6.37
6.22
~6 . > 3
6.23
6 . 2 H
6 . 2 '-)
6.37
6.43
6.25
6.25
-------
AVERAGE
SPEED
(GPK)
TABLE A- 8
ESTIMATED GROUP 3 EMISSIONS
. CO
{GPK)
(GPK)
(GPM)
__CAl
(GPM)
NUX
(GPM)
en
ro
-e-
oo
o
to
15.38
15.80
15.89
15.97
15.98
19.13
20.66
19.04
19.35
18.89
18.66
18.05
18.61
19.20
20.22
18.60
19.67
19.46
20.50
18.72
1 9 . 2 7
20.29
18.96
19.02
13.63
18.87
20.32
20.37
20.84
4.09
4.01
4.04
3.87
3.95
3.41
3.34
3.53
3.46
3.43
3.51
3.64
3.50
3.51
3.38
3.50
3.33
3.55
3.51
3.31
3.57
3.39
3.40
3.51
3.49
3.58
3.57
3.43
3.3 I
3.22
83.68
82.04
83.34
78.04
80.33
69.29
69. 10
72.89
71.13
69.67
71.92
75.28
71.41
73.23
70. 13
71. 54
67.46
7 3 ..01
73.08
68.37
74.08
68.82
70.83
72.24
71 .73
74.07
74.18
71.95
69.81
65.09.
1.52
1.53
1 . 54
1.53
1.53
1.57
1.52
1.53
1.52
1.48
1.54
..1.53
1.54
1.55
1.54
1.54
1.49
1.52
1.53
1.57
1.52
1. 56
1.52
1.52
1.54
1.53
1.53
. 1.53
1.53
1. 56
6.58
6.45
6.50
6.24
6.35
5.49
5.37
5.63
. .. . 3.5.7 .
5.53
5' C"
. oi)
5.86.
5.o4
5.66
5.44
5.63
5.36
5.71
5.o4
5.33
5.74
5.45
5.^7
5.66
5.62
5.76
5.75
5.51
5.4?
5, 18
134.67
132.04
134. 12
125.60
129.28
111.51
111.20
117. 30
114.48
112.13
115.74
121. 15
114.93
117.85
112.86
115. 13
103.57
~ 117761"
110.04
119.23
110.75
114.00
116.26
115.44
119.20
119.38
115.79
112.34
104. 75
2 . 44
2.46
2. 48
2.47
2.46
2.53
2.45
2.47
2.44
2.39
2.47
2.48
2.49
2.48
2.49
2.^0
2.45.
2.46
2. 53
2.44
2.52
?.45
2 . 44
2.48
2.46
2.46
2.4o
?.47
2.52
N3
U>
-------
TABLE- A- 8 (CONTINUED)
CO
" AVERAGE
SPEED
22.90
22.23
23.47
24.15
24.95
23.56
23.47
22.77
23.83
25.45
22.67
20.92
24.64
28.15
" 27.70
28.43
30.04
30.62
27.25
29.56
"" 2V.40
27. 28
26.1 1
27.5?
28.33
27.16
32.99
30.60
32.12
"30.30
HC
(GPK)
3.L7
3. 19
3.02
3.05
3.14
.3.05
3.09
3.24
3.05
3.05
, 3. 10
3.32
2.99
2.8<*
2.91
2.80
2.77
2. 73
2.95
2.77
2.89
2.07
2.94
2. 87
2.88
2.95
2.65
2.69
2.65
2.o9
ESTIMATED
CO
(GPK)
65.64
65_..57
02.02
63.05
67.55
62.52
64.06
68.08
63.06
64.82
03.52
68.44
o2.25
59.54
61. 18
57.53
58.14
57. 19
62.64
57.57
61.03
' o0.07
60.95
""59.67
60.96
62.09
55.55
55.99
55.39
56.02
GROUP* 8
NOX
(GPK)
i.ao
1.69
1.68
1.75
1.74
1.71
1.72
1.71
1.70
1.82
1.69
1.69
1.73
1.92
1.89
L.96
1.99
1.99
1.93
1.97
1.99
1.87
1.87
"1.90
1.93
1.92
"2.09
2.01
2.04
"1.97
EMISSIONS
HC
(GPM)
5.09
5.13
4. 36
4.91
5.05
4.91
4. '97
. . . . 5 , 21
4.91
4.91
5.00
5.35
4.82
4.53
4.68
4.50
4.46
4.39
4.75
4.45
4.65
4.63
4.73
4.62
4.64
4.74
4.27
4.33
4.27
4.32
"CD
(GPM)
105.64
105.5.2
99.01
101 .48
108. 72
100.61
1 03 . 1 0
109.57
101.48
104.3?
102.22
110.15
100. 19
95.82
98.46
92.59
_ ..93. 5.6
92.04
100.30
92.65
93.2?
96.67
98.09
96.02
93. 10
99.93
sV.'Vo"
90. 10
89. 14
"90~. 16
N 0 X
(GPM)
i. . --< U
2.72
2.70
2 . f. 2
2.80
2.75
?.7b
2.76
2.74
2.93
.2.72
?./1
2. 78
3 . 0 <5.
3.04
3 . 1 6
3.20
3.11
3.17
3.20
3.01
3 .0 I
3.06
3.11
3.10
3.37
3.23
3.29
3. 17
N>
M
*>
OO
o
to
J
-------
AVERAGE
SPEED
HC
(GPK)
TABLE A- 8 (CONTINUED)
ESTIMATED GROUP 8 EMISSIONS
CO
(GPK)
NOX
(GPK)
HC
(GPM)
CO
(GPM)
CO
ts
to
(-1
oo
o
o
N>
31 ,95
33. 71
31.00
31. 10
31.52
31. GO
30.66
29.^6
41 .88
43.26
/»i.98
44. 14
43.20
42.50
42.43
44.61
45.46
44.07
41.63
44.01
42.99
41. 7b
43.41
43.71
43.50
44 . 2 D
42.07
41.21
2.69
2.61
2.73
2. 74
2.67
2.6-8
2. 74
2.74
2.37
2.38
2.38
2.39
2.3b
2. 36
2.40
2.34
2.34
2.33
2. 3S
2.33
2. 37
2.36
2.36
2.35
2.3o
34
2.40
2.39
56.39
54.84
57. 31
57.89
55.7V
35.71
57.t>i
57.00
50.09
50.07
50.26
51. 10
49.81
49.77
50.37
49.31
!*** 13
49. 16
49. 9 'y .
49.28
50.26
49. 32
_50.p5
49.48
49. 76
49. 36
50.91
50.31
2.05
2.07
2.03
2.04
1.99
2.G1
1.99
1.94
2.20
2.28
2.22
2.26
2.22
2.24
2.22
2.29
2.32
2.23
2.2.4
2.26
2.25
2.21
2.25
2.27
2.25
2.29
2.23
2.19
4.33
4.20
4.40
4.42
4.29
4.41
4.41
3.82
3.83
3.83
3. 84
3'. 79
3 .30
3.77
3.76
3. 75
3.84
3. 76
3.82
3. 79
3.80
3. 78
3.79
3. 76
3.86
3.84
91. 56
68.25
92.23
93. 17
89.73
8 9 . b 5
92.72
..51.73
80.61
80.53
80.88
82.23
80. 16
80.09
"31.87
79.30
79.07
79. 12.
80.45
79.30
o 0 .88
79.38
8Q..5.5
79. 62
80.03
79.44
81.92
80.96
3
3
3
3
3
_2
3
3
3
3
3
3
3
3
3
3
3
3
-J
-^
3
3
3
3
3
3
3
3
3
. 3 0
. 32
. 2 fc
. 2 8
.20
.2 j>
.20
.12
.54
.08
..57
. o 7
.57
. uO
t) O
.09
.7H
.oO
.61
. O4
. 6 3
.53
.62
. 0 _^
. 6 3
.68
. :>9
.53
Ul
-------
AV.cR.AGE
" "SPEFD
15.38
15.80
J5_. fa9
1~5.97
15.98
19-1.3
20.66
19.04
J.9.35
fa. 89
18.66
18.05
18.61
19.20
20.22
"18.60
Id. 80
19.46
20.50
18.72
"l 9 . 2 7
20.29
18.96
"19.02
18.o3
18.87
"20.32
20.37
20.84
-HC
('GPKJ
3 . 1 o
3.09
3.11
3.00
3.06
2.65
" 2.57
2.71
2. 67
2.67
2. 72
2.81
2.71
2.70
2.61
2.72
2. 58
2. 73
2.68
2.56
2. 75
2.63
2.01
2. 70
2.70
2.75
2.75
2 . 6 J
2. 58
2. 50
ESTIMATE
CO
. -j-gp- j-
"59.90
58.47
59.91
55.63
57.80
49.22
49.22
51.92
50.50
48.95
51.65
53.86
50.99
52.63
49.98
" 51. 14
47.30
51.80
"52. 13
43. /4
52.89
48.50
50.61
51.26
50.92
52.98
53.31
"51.81
49. 70
45. 75
TABLE A-
D GROUP
NOX
TGPK)
1 . 8 1
1.62
1.85
"1 . 76
1.78
1.78
1. 78
1.80
1.77
1.72
1.76
1.80
~"l". 76
1.81
1.80
1.76
I. 72
1. 79
~ I . 8 2
. 1.81
1.79
7 1.79
1. 79
1.78
1.80
1.80
1.80
~~i.sc>
1.79
1.77
H.c
; GP'M )
5.08
4.97
,0.1
,'33"
,92
.27
5,
4,
4,
4.37
4.30
4.29
4.38
4.52
4.37
4. 34
4.19
4.38
4. 15
4.40
4.31
4.12
4.42
4.23
4.20
4.35
4.34
4.43
4.42
4.23
4.16
4.0 3
_CG__. __
- fspTMV -
96740
94. 10
96.41
"89.52
93.03
79 . 2 I
79.21
83.57
81.28
78.78
83.1 3
86.68
82.06
84 . 6 9
... 80 ...4.3
82.30
76. 13
8 3 . 3 7
83.89
78.43
85.12
'"78.05"
a i . 4 5
82.50
81.95
85.27
85.30
83". 33"
79.98
73.63
NUX
("GPM>
2.91
2.94
2.97
2.84
?.. . 3b
2.87
2.36
2.90
2. 86
? . 7 6
2.83
2 . 6 9
2 .84
2.91
2.39
2. -i4
2.76
2.89
2.93
2.91
2 . 8 8
? . 88
2.33
2. JJ
2 . 8 9
2 . a 9
2. 3 ')
' 2.90
2.89
2 . 66
Crt
P
NJ
I-1
00
O
O
ro
T
-------
TABLE A- 9 (CONTINUED)
ESTIMATErD GHUUP 9 EMISSIONS
AVF-KAGb
SPEED
22.98
22.23
23.47
24.15
24.95
23.56
23.47
22.77
2.3.03
25.45
22.67
2 0 . S 2
24.t>4
28.15
27.70
28.43
30.04
30.62
27.25
29.58
"28.40
27.28
26.11
27.52
28.33
27.15
32.99
30.66
32.12
30.80
HC
(GPK)
2.4c
2.47
2.35
2.37
, 2.41
2.37
2.40
2.49
2.37
2.35
2.42
2.58
2.32
2.22
2.26
2. 19
2. 16
2. 13
2.2-5
2. 16
2.25
2.23
2.29
2.24
2. 24
.87
.83
.82
. 19
.97
.26
.45
. 34
.67"
.51
. 37
.55
NGX
(GPK)
2.
L.
I.
1.
2.
' ' " 1.
1.
1.
I.
2.
1.
1.
L.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
" 2.
2.
2.
2.
03
93
89
98
01
93
95
99
94
07
90
92
95
13
13
15
20
19
16
17
21
09
08
11
16
15
29
20
23
16
HC
(G
3
3
3
3
3
3
3
4
"3
3
3
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PM)
.95
.97
.79
.82
.83
.01
. 86
.01
.81
.78
..89.
.15
.74
.56
.63
.52
.48
.43
.69
.48
..63
.59
.69
.61
.60
.69
.36
.40
.35
.39
CO
{ G P M )
76
74
70
72
79
71
74
73
71
75
.... . . 7-2
79
71
69
71
66
68
6 7
73
67
72
69
70
" '"69
71
72
65
65
64
65
.09
.81
. 73
.57
.90
.23 '
.00
.96
.98
.93
,65
.01
.45
.47
."33
. 9 3
.08
.01
.82
. 32
.13
J 1
. 76
".62
.54
.97 '
74 5
.20
.93
.26"
N
-------
TABLE A- 9 ( CUNT I NUhl) )
ESTIMATED GRUUP" 9 EMISSIONS
AVERAGE
S.PEED
31.95
33.71
31.00
31.10
__3_1_. 52
31.00
30.66
29.66
41 .88
43.26
41.98
44. 14
43.20
42.50
42.43
44.61
45.46
44.07
,41.63
44.01
~ 42.99
41 . 76
43.41
43.71
43.50
44.25
42.07
4L.21
HC
(GPK)
2
2
2
2
2
2
2
2
I
1
1
1
I
L
1
1
1
1
1
1
1
. I
1
1
1
1
1
1
. 11
.04
. 13
. 15
.09
. 10
. 14
14
. 88
.89
. 88
. 88
.86
.87
.89
. 86
. 86
.84
.89
.35
. 86
.87
.87
. 86
.67
.86
.89
.69
CD
(GP
41.
40.
41.
42.
40.
40.
41.
41.
36.
37.
37.
38.
36.
36.
37.
36.
36.
36.
36.
36.
.37.
36.
37.
36.
36.
36.
37.
36.
MDX
K)
84
09
71
55
44
25
84
23
79
14
06
1 1
66
67
53
43
45
17
75
45
19
18
05
55
79
65
62
08
(GP
2.
2.
2.
2.
2.
2.
2.
2..
2.
2.
2.
->
£_ .
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
K)
24
26
23
24
19
20
20
14
38
45
39
47
40
41
41
46
49
41
4.1
43
43
3 7 .
43
44
43
H5
41
37
HC
(GPM)
3
..3
3
3
3
3
3
Jj
3
3
3
3
2
3
3
2
2
2
3
<1
3
3
3
2
3
2
3
3
.*0
.29
.43
.46
.3o
.38
.44
.45
.02
.04
.03
.03
.99
.01
.04
.99
.99
.97
.05
.98
.02
.01
.01
.99
.00
.99
.05
.04
CO
(GP
67.
o4.
o7.
60.
t>5 .
"64.
67.
66 .
5 9 .
59.
59.
61.
59.
59.
60.
58.
53 .
53.
59.
58.
59.
58.
59.
53.
5 9 .
58.
60".
59.
M)
33
52
12
48
09
77
33
35
21
77
64
33
Ju
01
40
70
65
21
15
66
06
/: 3
63
83'
21
98
54
35
NUX
(GPM)
3.61
3 . fj 3
3 . o 0
3.61
3.52
3 . 5 4
? . 54
3 . t4
3.83
3.95
3.84
3 . 9 J
3 . o 6
3 . ^ 7
3.38
3 . 9 6
t . 0 L
i . o 7
3 . e y
3.90
i . 9 I
3.62
3.90
3 . v 2
3 . 9 0
3 . "' '>
3.BP
3 . a 2
p
to
o
o
N3
N3
00
-------
TABLE A-10
iSTIMATCD GROUP 10 EMISSIONS
AVLRAGfc"
SP'bbU
15.38
15.80
15.89
"15.97
15.98
19.13
20. t>6
19.04
. 19.35
18.89
18.66
18.05
18.61
19.20
20.22
16.60
19.67
18.80
19.46
20.50
18.72
19.27
20.29
Id. 96
19.02
18.63
18.87
20.32
20.3 7
20.84
HC
IGPK)
3 . 96
3.83
3.90
3.74
3.80
3.25
3. 15
3.35
.3.29
3.28
3.33
3.48
3.33
3.33
3.20 . .
3.33
3.17
3.38
3. 33
3. 13
3.40
3.23
3.21
3.34
3.33
3.40
3.39
3.23
3.16
3. 05
CD
(GPK)
77. o7
75.97
77. 16
71.81
74.02
62.28
62.07
66. 16
64.27.
o2.86
65.08
66. 70 ....
64.59
66. 56
.63.17.
64.67
60.61
.66.2?
66.49
bl. 31
67.46
t> I . t>9
63.95
65.39
64.93
67.48
67.48
65.09
62.95
57.77
NOX
(GPK )
1.91
1.92
1.95
1.89
1.90
1.96
1 .93
1.93
.1...92
1.87
1.92
1.93
1.92
1.94
1.94
1.92
1.86
1.92
1.93
1.9 7
1.91
1.95
1.92
1.90
' 1.94
1.91
1.93
1.94
1.93
1.96
HC
IGPM)
6.38
6.24
6 . 2 7
6.02
6 . 1 2
5.23
5.07
5.40
5.3CL
5.28
5.37
5.60
5 . 3 0
5.37
5.15
5.36
5.09
5 .44
5.35
5.04
5.47
5.20
5 . 1 7
5 . 3 8
5.36
5.48
5.46
5.20
5.12
4.90
CD
( G M >J! )
125.00
122.26
124.17
115.56
119.12
100.22
99.39
106.48
J 0.3 ,.44
101.17
104.74
110.57
103.96
107.12
.101. t>7.
104.08
97.35
. _ 1.06,.. 6 8
107.00
98.66
108.57
' " '99.'t>0
102.93
105. 5o
104.49
108.59
108.60
104. 74
101.31
92,97 _
i\IL)A
( o P ("! )
3. J 7
3 . u 9
3. 14
3.04
3.06
5.15
3 . 1 u
3.11
3.09
3 . 0 0
3. 08
3. 10
3 . 0 8
3. 12
3.13
3. J9
2 . y 9
3.09
3.10
3.17
3 . 0 fci
3 . 1 4
3. lu
3 . :') 6
3.12
3 . 0 H
3.10
3.12
3. 10
3.16
en
ho
-IS
oo
-------
AVERAGt
22.98
22.23
23.47
24.15
24.95
" 23.56
23.4 7
22.7 7
23.83
25.45
22.67
20.92
24.64
28.15
27.70
20.43
30.04
30.62
27.25
29.58
28.40
27.2o
26.11
27.52
28.33
2 7 . 1 6
32.99
30.66
32.12
30.80
"HC
(GPK)
2.95
2.99
2. 82
2.84
2.39
2. 85
2.88
3.02
2.85
2.81
2.90
3.13
2. 76
2.60
2.66
2.54
2.51
2.47
2.70
2. 50
2.63
2.64
2. 70
2.62
2.63
2.7u
2.38
2.44
2.38
2.43
FAbLl
C-STIMAI b
CO
(GPK)
57.52
57.35
54. 12
54.81
59.53
54.52
56.05
60.34
55.07
56.55
55.65
60. 86
54. 16
50. 55
52.32
48.27
48.77
47.76
53. 76
48.25
51.79
51.35
52.21
50.64
5 1 . 94
53. 16
45.59
46.48
45.65
46 . 5 9
A- 10 (CCN
0 GK.nilP 10
NOX.
(GPK)
2.28
?. 14
2.12
2 .24
2.23
2. 1 7
2.19
2 . 1 9
2.1 7
2.32
2. 13
2.13
2.20
2.45
2.43
2.49
2.55
2.55
2.47
2.51
2.55
2.30
2.38
2.43
2.48
2.47
2.69
2.56
2.61
2.52
TINUt'D)
EMI SSIUNS
HC
(GPi-1)
4 . 7 5
4. .82
4.54
4.57
4.65
v . 3 8
4 . b 3
4.86
t . 5 9
4.52
4.67
5.04
4.48
4.18
4.22
91.01
39.56
97.94
87. L 7
01.3 5
84.20
77.69
78. 4 B
7o . $.'.>
80 .31
77. 06
83.34
82 .64
84.02
81.49
8 3 . o 0
85.55
73.37
74. 79
73.47
74 . 9 9
NO
(OP
3 .
3'.
_t
3.
-. )
5 .
3 .
3 .
3.
3 .
3.
5.
j
3 .
3 .
4.
"^
V .
.3 .
'r
4.
J
...'
3.
j .
3.
3.
4.
4 .
4.
4 .
P
N>
oo
o
X
M) .8
J5 7
;i :'i
41
;j J
39
49
52
0 3
50
7n
4 3
4 3
j 4
9 '.)
91
Jl
1 1
10
Jo
04
11
84
h 3
9 L
v- 9
9?
2 ^
13
20
05
-------
TABLE A- 10 (CONTINUE!))
ESTIMATED GKOUP 10 EMISSIONS
AVERAGE
SPEED
31.95
33.71
31.00
31. 10
31.52
31 .00
30.66
29.60
41.83
43.26
41.98
44 . 1 4
43.20
42.50
42.43
44.61
45.46
44.07
. 41.63
44.01
42.99
41. 76
43 . 4 1
43.71
43.50
44.25
42.07
41.21
HC
(GP
2.
2.
2.
2.
2 .
2.
2 .
2
~)
£_
2.
2.
2.
2.
2.
2.
2.
2.
2.
?.
2.
2.
2.
2.
2 .
2.
2.
2.
2 .
K)
42
33
46
47
41
42
48
49
07
07
08
07
05
Oo
0*
03
02
03
06
03
07
Ob
0-5
04
05
03
09
09
CO
(GPK)
47.
45.
47.
48.
46.
46.
48.
47.
39.
39.
39.
40.
39.
38.
40.
38.
37.
33.
39.
38.
39.
38.
39.
38.
33.
38.
' 40.
39.
19
0 1
76
28
30
20
24
77
43
J3
52
18
08
98
16
2o
91
32
15
36
41
60
17
55
37
34
18
68
NOX
(GPK J
2.63
2.64
2. 60
2.62
2.55
2.57
2.55
2.48
2.83
2.95
2 . 8 6
2.94
2.06
2.88
2.87
2.95
3.00
2.8o
2.3S
2.91
2.90
2.84
2.^0
2.92
2.90
2.94
2.88
2.63
HC
(GPM)
3 .
3.
3.
3.
3.
?.' .
3.
4 .
3.
3.
j
^i .
3.
3.
3.
3.
>
_*
3.
3.
3.
3.
3 .
3.
3.
3.
j .
-i
^
3.
3.
89
75
97
93
87
>0
99
00
34
32
35
33
30
31
3o
2o
25
26
35
26
32
31
31
28
30
26
37
37
£
75
72
7o
77
74
74
77
76
d3
62
63
64
62
62
64
61
61
61
63
61
63
62
63
o2
62
61
64
63
ij
.94
.44
.87
.09
.52
. 35
.^4
.87
.46
.82
.59
O 0~
. 8 9
.72
.63
.57
.01
.67
.00
. 73
.43
. 12
.04
.04
.55
.71
.66
.85
oo
NO A o
(C.PM) ^
'r
4
4-
-t
'-f
't
A
.-)
't
-V
H-
>
4
'1
4
4
s
4
'*
4
4
-t
4
4
A
-V
4
4
o
. 2 :
) ,:
.:'. -
. 13
.21
. 1. 0
. 13
. 10
''''
^ 1.3
. 74
JO
. 74
. 6 0
.:.. i
.u2
.75
> 2
.:-.3
. ji>
. O O
. -o 7
. 5 7
. 6 7
.70
':> i
. 7'*
. o 3
. 55
-------
AVtRAGt
SPEIO
HC
IGPiO
TAiH. t A-ll
ESTIMATED GKOUP 11 EMISSIONS
CD
(GPK)
Ni)X
IGI'K )
HC
15.38
15.80
15.89
1 5 . '.' /
'15.98
19 . 1 3
2 0 . 6 b
19.04
19.35
18.69
18.66
18.0 5
18.61
19.20
20.22
18.60
19. o7
18.80
19.46
20 .50
18.72
19.27
20.29
16.96
19.02
18.63
1 8 . o 7
20.32
20.3 7
20.64
3.41
i. 3<-»
3.37
3 . 23
3.30
2.83
2. 75
2.92
2.87
2.83
2.92
3.03
2.90
2.93
2. 80
2.90
2.7t
2.93
2.91
2.75
2.9 1
2. 80
2.82
2.91
2.90
2.97
2.97
2.84
2.79
2.85
79. 74
77.37
79.36
73.39
76.05
63.52
63.59
67. 78
65.8 5
o4. 18
66.70
70.50
66. 12
68. 37
64. 74
66.22
61 . Ju
67. 36
68.25
62. 71
69.30
62.99
65.63
57.08
66. 39
69.2?
69.36
66.98
64.46
> 6 . J> 2
2.02
2.02
2.06
2.00
2 . 0 3
2.02
2.00
2.01
1.99
1 . 9 2
2.01
2.01
2.00
2.03
2.01
2. Jl
1.93
2.00
2.01
2.03
1.99
2.00
2.00
1.99
2.01
2.01
2.02
2.02
2.00
2.01
5 . 4 9
5.37
5.42
5.20
5.31
4 . -) 5
4.43
4.70
1 . 0 I
<+ . 5 6
4 . 6 9
4 . 3 8
4.67
4.7?
I
103.28
107.34
113.56
106 .40
110. 0 3
1 OH . 1 9
106.57
99 . 4 5
109.21
109.84
100.92
111.53
101.37
105. o 3
1 0 7 . ''; 5
106.34
1 11 .40
111.62
107.30
103 . 74
94.3 4
3 . fi 'j
3 . -: o
J. >1
3 . 2 ?
'5 . :i 7
3 . ..: -j
3.21
3.23
3 . 20
3 . 1 0
'* . 2 3
3 . 2 -4
3.22
3 . 2 6
j . 2-t
3 . 2 3
3.11
j> . ? I
3 . 2 4
3.27
3.31
3.2 3
3 . ? 2
3 . 2 0
J. . 2 4
*. . .' 3
3 . t. 5
3 . 2 '>
.> . ,: 2
3 . f. '>
M
h-1
js
OO
O
to
-------
AVE-
SP
22
22
23
24
24
23
23
22
2J
25
22
20
2-+
28
27
20
30
30
27
29
28
27
26
27
26
27
32
30
32
30
kAGE
tin
.V8
. 2 J
,47
.15
.95
.56
.V7
.77
.33
.45
.67
.92
.^4
. 1 5
.70
.43
.04
.62
. L. 5
.5b
.40
.*'«
.1 1
.52
.3 'i
. 16
.99
.60
. 12
.80
HC
(GPK)
2.
2.
2.
T
£.
2.
2.
2.
z
2.
2.
2.
2.
2.
2.
2.
2 .
?
<_ .
2.
2.
2.
2.
2.
2.
2.
2.
2 .
2.
2.
2.
£1
59
61
47
46
59
48
53
c-5
49
50
53
74
45
30
35
23
23
19
41
?1
34
34
36
31
34
39
10
lo
12
lo
ES
cn
(GP
57.
56.
54 .
55.
oO .
54.
5o.
61.
55.
57.
56.
61 .
54.
50.
52.
47.
48.
47.
53.
4 7.
51.
3l.
32.
50.
51.
52.
44.
45.
44.
45.
FABLE A- 11 ( CONF fNlia) )
T 1 MAT CD GKOUP 11 EMISSION
K)
83
46
55
10
89
71
63
27
52
2B
04
75
64
32
32
39
25
17
92
62
49
33
00
2fi
87
96
35
61
72
92
NiUX
(GPK)
2.30
2.17
2. 13
2.24
2.27
2. 16
2.20
2.22
? . 18
2 . 3 4
2.15
2. Ib
2.20
2.43
2.41
2.47
2.51
2.50
2 . 4 6
2.49
2.53
2.36
2.37
2 . 4 2
2.46
?.45
2.63
2.51
2 . 5 6
2.4 if
HC
(GP
4.
4 .
j> .
3.
4 .
3 .
4 .
'"^
4.
4 .
4.
4 .
3 .
3.
3 .
3 .
i
_> .
3.
3 .
3 .
1.
j .
3.
.3 .
. 3 .
3.
3 .
j
J*
3.
3.
S
M)
16
19
98
99
17
99
Oo
27
01
03
06
40
9 5
70
76
58
5 8
53
67
56
76
76
8 2
72
76
84
39
47
41
47
C'l
( G P
9 3 .
94.
87.
ti'J.
93.
8 8 .
91 .
98.
89.
92.
90.
99.
H7.
80.
34.
7o.
77.
75.
8 6 .
76.
o2 .
32.
63.
tiO.
63.
ci5.
71 .
73.
71.
73.
,'-'. )
Ob
08.
79
o 7
00
05
14
60
36
U
19
37
O "-j
ly d
20
27
64
91
77
o4
36
6 1
'.i 6
.) , >
'« o
23
3b
41
96
'.; 0
w
P
N3
V-J
*-
00
0
MC,< ^
i.;p-') ho
^j
*-
3. 70
3 . Vb
3 . <* 3
3 . u I
3 . .:> 6
. . j J
i . :> -3
j . :. i
*r*
.3 . 3 I f
CO
3 . 7 t co
3 . 4 <-.
H . !> J
> . 3 <
3 . V 1
3. 58
3.-*7
i . 0 5
-f . 0 ;:
3 . l^ C:
4 . J J
4.,; 7
. 3 . .:i I
i : ' »
.J
4.-.) 4
4 . i 2
3 . ',<;
-------
TABLF A- 11 (CUMTINUtO)
f-STIMATHU GRUUP 11 EMISSIONS
AVEPAGf:
SPHFD
3 1 .95
33.71
31.00
31.10
31 .52
31.00
30.66
2 9 .60
41. 8 8
43.26
41 .98
4 't . 1 4
43.20
42.50
42.43
*t 4 . o 1
45.46
44. U 7
4 1 . c. 3
44.0 1
4 2.99
41 . 76
43.41
43.71
^3.50
4 I
'" "i
t . ..> i.
t . * 0
) . ': 0
r . ') 3
T '-' i
i .97
4. »7
** J '"'
00
p
oo
o
-------
A-35
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-450/3-76-023
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Development of Representative Driving Patterns At
Various Average Route Speeds
5. REPORT DATE
February 1974
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Mai com Smith
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Scott Research Laboratories, Inc.
2600 Cajon Boulevard
San Bernardino, California 92411
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-02-1301
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Monitoring and Data Analysis Division
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report presents the results of a study performed for the purpose of up-
dating the curves used to estimate the changes in emissions from light-duty vehicles
as the average vehicle speed is varied. Four major tasks were performed to accom-
plish this objective.
The major findings of the study were:
1. In the case of the HC and CO emissions, an adequate fit to the data is
obtained by plotting the natural logarithm of each emission against a quadratic
function of average route speed.
2. A simple linear plot of NOX against average route speed was deemed to
provide an adequate fit to the data.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Emissions
Hydrocarbons (HC)
Carbon Monoxide (CO)
Vehicle Operations Survey (VOS)
Nitrogen Oxides (NOx)
18. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
85
20. SECURITY.CLASS (This page I
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
------- |