EPA-450/3-76-031
September 1976
REPORT
OF FUEL REQUIREMENTS,
CAPITAL COST
AND OPERATING EXPENSE
FOR CATALYTIC
AFTERBURNERS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
-------
EPA-450/3-76-03I
REPORT OF FUEL REQUIREMENTS,
CAPITAL COST
AND OPERATING EXPENSE
FOR CATALYTIC AFTERBURNERS
by
CE Air Preheater
Industrial Gas Cleaning Institute
Stamford, Connecticut 06904
Contract No. 68-02-1473
Task No. 13
EPA Project Officer: Frank Bunyard
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
September 1976
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from the
Library Services Office (MD35), Research Triangle Park, North Carolina
27711; or, for a fee, from the National Technical Information Service,
5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by
CE Air Preheater, Industrial Gas Cleaning Institute, Stamford, Connecticut,
in fulfillment of Contract No. 68-02-1473, Task No. 13. The contents
of this report are reproduced herein as received from CE Air Preheater.
The opinions, findings, and conclusions expressed are those of the
author and not necessarily those of the Environmental Protection Agency.
Mention of company or product names is not to be considered as an endorse-
ment by the Environmental Protection Agency.
Publication No. EPA-450/3-76-031
11
-------
CONTENTS
Page
SUMMARY. . v
CASE 1, INCINERATION WITH NO HEAT RECOVERY . . 1
CASE 2, INCINERATION WITH PRIMARY HEAT RECOVERY 65
CASE 3, INCINERATION WITH PRIMARY AND SECONDARY HEAT RECOVERY 129
CASE 4, INCINERATION WITH DIRECT REUSE OF EXHAUST GASES 193
APPENDIX: CAPITAL COSTS FOR AFTERBURNERS 203
ill
-------
SUMMARY
This report presents the results and conclusions of an investigation in
accordance with the Environmental Protection Agency's Contract Number 68-02-1473.
The scope of this study is to develop fuel consumption data, capital costs
and annual operating costs for direct flame and catalytic incineration of light
hydrocarbon solvents. The following combinations of operating parameters were
investigated:
a) Catalytic and thermal afterburners for three cases; 1) no heat recovery;
2) 357, primary heat recovery; and 3) 35% primary heat recovery and 55%
secondary heat recovery.
b) Inlet flow rates to the afterburners of 5,000, 15,000, and 30,000 scfm.
c) Inlet stream temperature of 70°F and 300°F for all three cases.
d) Inlet stream LEL's of 0%, 5%, 15% and 25%.
e) A Case 4 situation is investigated in which a thermal afterburner with
-v-
357<> primary heat recovery is used in conjunction with an oven that uses
a portion of the incinerated gases to supply oven heat.
The following assumptions were utilized in developing costs:
a) Afterburners designed for oil operation only (gas only for Case 4).
b) Thermal afterburners capable of 1500°F operation with a 0.5 second
residence time.
c) Catalytic afterburners capable of 800°F operation below 6% LEL; 1200°F
design capability for operation from 6% to 25% LEL.
d) Three-year catalyst life before replacement is necessary - replacement
cost annualized with a 7.570 inflation factor and added to yearly fuel cost,
e) Costs based on outdoor location.
f) Rooftop installation requiring structural steel.
-------
g) Installation costs developed for weight and complexity of unit, rather
than a fixed percentage of capital investment for equipment.
h) Fuel cost of 1.50 $/MM Btu (gross).
i) Electricity at .03 $/KWH.
j) Yearly maintenance 4% of capital investment.
k) Yearly tax 1% of capital investment.
1) Yearly insurance 0.57, of capital investment.
m) Yearly building overhead 2.5% of capital investment.
n) Yearly depreciation 12% of capital investment.
o) Yearly interest 57o of capital investment.
p) Annualized expenditure 2570 of capital investment (summation items j thru o) .
q) Direct labor assessed at .5 hrs/shift x 730 shifts/year x 8.00 $/hr. =
2920 $/year direct labor expense.
r) Operation time: 2 shifts/day x 9 hrs/shift x 365 days/year = 5840 hrs/year.
The direct flame incinerator (thermal afterburner) utilized was based on
standard designs for oil firing incorporating the following features:
a) 0.5 seconds residence time.
b) Nozzle mix burner capable of #2 thru #6 oil firing.
c) Forced mixing of the burner products of combustion using a slotted
cylinder mixing arrangement. This cylinder allows the burner flame
to establish itself before radial entry of the effluent thru slots in
the far end of the cylinder.
d) A portion of the effluent to be incinerated is ducted to the burner to
serve as combustion air - this allows the burner to act as a raw gas
burner - thus, saving fuel over conventional nozzle mix burners - can only
be used however when the 0« content of the oven exhaust is 1770 b.v. or above,
vi
-------
e) The incinerator for Case 4 uses a line burner, such as the Maxon
Combustifume, which is a gas fired secondary air (raw gas) burner.
Minimum 0.3 second retention time at 1500°F operation.
The catalytic afterburner was costed for two design points, 800°F and 1200°F.
The higher temperature design is required for LEL levels exceeding 670 (at 600°F
into the catalyst and a 67, LEL, the outlet temperature of the catalyst is approx-
imately 800°F - at a 25% LEL condition and a minimum initiation temperature of 500°F,
the catalyst reaches an outlet temperature of around 1200°F.)
The catalyst unit requires a burner to preheat the oven effluent to a minimum
initiation temperature of 500°F, with 600°F required for some of the slower oxidizing
hydrocarbons (generally, the acetate family and the C-l, and C-2 hydrocarbons). The
catalyst element will operate successfully in an oil fired environment, however,
only the clean oils (Nos. 1 and 2) can be employed as the heavier oils contain
metallics which will shorten the life of the catalyst.
A catalytic element is poisoned (deactivated) by heavy metals such as mercury,
lead and arsenic. However, if these elements are in heavy enough concentrations to
severely shorten the catalyst life, then the elements themselves would represent an
environmental hazard when discharged to the atmosphere.
The catalytic element may be blinded by any particulate matter in the exhaust
to be incinerated. This blinding reduces effectiveness since the catalyst contact
area has been decreased. Effectiveness can be nearly fully restored by cleaning
via air lancing or possibly washing in a detergent solution.
vn
-------
Temperature wise the catalyst can operate at approximately 1200°F and
still give normal (2-3 years) service life. However, sustained operation at
temperatures higher than 1200°F can severely shorten life. In general, catalyst
manufacturers will limit their applications to streams with concentrations no
higher than 257» LEL.
vm
-------
Case 1
The Case 1 system is a straight afterburner concept using no heat
recovery.
An analysis of our generated cost, fuel rates, and expenses shows that
the catalytic unit is attractive for use in low LEL exhausts with the direct
flame afterburners a better proposition for the higher LEL concentrations.
One thing that must be remembered in comparing fuel rates between the two
principles is that for the same efficiency the direct flame unit will operate
at temperatures lower than the 1400°F used for an incineration temperature in
the study. Assuming 907o reduction on a straight hydrocarbon destruction basis,
the direct flame unit would operate at 1200°F. If CO concentrations are taken
into account (such as LA Rule 66), the. incineration temperature would be in the
1360°F region.
IX
-------
Case 2
The Case 2 system uses a straight afterburner section with either a
catalyst or direct flame incineration, and incorporates a shell and tube
heat exchanger of 3570 nominal efficiency to preheat the effluent before
introduction to the oxidation section.
This size heat exchanger, which is about the smallest efficiency practical
on a commercial basis, reduces the fuel rate significantly at all inlet
temperatures and LEL conditions. However, at the higher LEL condition, it
presents problems for the catalytic unit in terms of burner turndown, operation
within the 1200°F high temperature limit, etc.
As shown, at 21-25% LEL conditions and 70°F inlet process gas temperature
the catalytic unit must use a lower initiation temperature in order to keep
the catalytic outlet temperature at a 1200°F level. And when the inlet
temperature is raised to 300°F, the unit can only handle an LEL of approx-
imately 167o and still maintain a minimum burner condition and not go over a
1200°F catalyst outlet temperature.
The direct flame unit, has the same problem, only at a higher LEL rate.
The problem may be solved by using a bypass around the primary heat exchanger,
in effect creating a heat recovery unit of variable efficiency. This is done
in this study for the 300°F inlet condition and an LEL of 20 to 25%.
-------
Case 3
The Case 3 system consists of a Case 2 unit with the addition of a
secondary heat exchanger to indirectly recover incinerator heat for use in
the process. The secondary heat exchanger is a two-pass shell and tube design
with a nominal efficiency of 55%.
Fuel rates for the incinerators re.main the same as before for Case 2.
Secondary heat recovery represents various levels which correspond to the LEL
concentration for catalytic units - whereas the direct flame incinerator has
a constant secondary recovery. It is interesting to note that with the catalytic
unit the fuel rate remains the same and secondary recovery increases with LEL
concentration - as compared to the direct flame, unit where secondary recovery
remains the same and the fuel rate decreases as the LEL increases.
As in Case 2, the direct flame units are costed with:.a heat exchanger by-
pass for operating conditions of 300°F and 20-25% LEL.
XI
-------
. CASE 4
The Case 4 system is based on an oven design developed by Wagner Litho
Machinery Division, National Standard Company, Secaucus, New Jersey. This oven
uses the exhaust gases of a fume incinerator to supply heat. Approximately 80%
of the incinerated exhaust is used, half to the baking zones and half to preheat
the conveying racks (wickets) before they receive the coated sheet to be transported
through the oven.
The recirculation of incinerated gases causes the 02 level to decrease to
around 177, b.v. This figure tends to decrease the flamability "of the solvent air
mixture yet provide adequate oxygen for stable flame propagation at the raw gas
burner as well as an over sufficiency of Q£ for complete oxidation of the solvents.
The heat recovery oven system using the recirculated exhaust gases of the
incinerator will require less fuel overall than the same oven without recirculation
when the LEL of the oven exhaust is in the 5 to 10 percent range. This is important
if natural gas is in limited supply.
Another consideration is that the addition of the incinerator can be of economic
benefit dependent upon the hours of operation, the size of the system, and the price
of the fuel.
The concept of recirculating incinerator exhaust back to the process would work
equally as well for catalytic incinerators. The temperature of the recirculated gases
should be in the 800-1000°F temperature range, consequently a primary heat exchanger
would probably not be required.
The recirculation concept is applicable to all ovens which use large quantities of
hot gases to perform the drying operation. It is most economical and effective when
the incinerator is an integral part of the oven.
xii
-------
CASE 1, INCINERATION
WITH NO HEAT RECOVERY
-------
NOZZLE MIX BURNER-
FUEL
OIL
40.6 G PH.
5.32 X 10 BTU/HR
INCINERATION
CHAMBER
PROCESS GAS INLET
5000 SCFM 70°F
SOLVENT LOADING 15/6 LEL
PROCE&S GAS FAN
PROCESS
INCINERATED GAS
1400 °F
TYPICAL CASE I
/NO HEAT RECOVERY^
\AND NO CATALYST J
-------
FUEL
22.5 GPH
2 95 X icf BT U
600°F
PROCESS GAS INLET
5000 SCFM-70°F
SOLVENT LOADING 15% LEL
PROCESS GAS FAN
PROCESS
CATALYST
INCINERATED GAS
22664
IOOO°F
TYPICAL CASE I
/NO HEAT RECOVERY^
V^WITH CATALYST )
-------
CASE I
NO HEAT EXCHANGER
NO CATALYST
70°F INLET TEMPERATURE
PROCESS
GAS FLOW
IN
ACFM
5,000
5,000
5,000
5,000
i
15,000
15,000
15,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IN
#/HR.
22,500
. 22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
INCINERATED
GAS FLOW
#/HR.
22,945
22,895
22,796
22,698
68,835
68,685
68,389
68,093
137,670
137,371
136,780
136,187
INLET
TEMPERATURE
°F
70
70
70
70
70
70
70
70
70
70
70
70
OUTLET
TEMPERATURE
op
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1 , 400
iUoo
1,400
1,400
1,400
HEAT
RELEASE HEAT
LEL BTU/CF RELEASE
% (NET) 106 BTU/HR.
00 0
5 2.83 0.85
15 8.47 2.54
25 14.11 4.23
0 00
5 2.83 2.54
15 8.47 7.62
25 14.11 12.71
00 0
5 2.83 5.08
15 8.47 15.23
25 14.11 25.40
BURNER
REQUIREMENTS
106 BTU/HR. 106 BTU/HR.
(NET) (GROSS)
8.00
7.10
5.32
3.56
24.00
21.31
15.98
10.66
48.00
42.63
32.00
21.34
8.50
7.56
5.66
3.79
25.50
22.67
17.00
11.34
51.00
45.36
34.05,
22.71
-------
CASE I
NO HEAT EXCHANGER
NO CATALYST
300°F INLET TEMPERATURE
PROCESS
GAS FLOW
IN
SCFM
5,000
5,000
5,000
5,000
15,000
15,000
15,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IN
ACFM
7,170
7,170 '
7,170
7,170
21,509
21,509
21,509
21,509
43,019
43,019
43,019
43,019
PROCESS
GAS FLOW
IN
#/HR.
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
INCINERATED
GAS FLOW
#/HR. .
22,875
22,824
22,725
22,627
68,120
68,472
68,176
67,880
137,240
136,944
136,352
137,670
INLET
TEMPERATURE
OF
300
300
300
300
300
300
300
300
300
300
300
300
HEAT
OUTLET RELEASE HEAT
TEMPERATURE LEL BTU/CF RELEASE
°F % (NET) 106 BTU/HR.
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
i , 4oo'
1,400
1,400
00 0
5 2.83 0.85
15 8.47 2.54
25 14.11 4.23
00 0
5 2.83 2.54
15 8.47 7.62
25 14.11 12.71
00 0
5 2.83 5.08
15 8.47 15.23
25 14.11 25.40
BURNER
REQUIREMENTS
106 BTU/HR. 106 BTU/H
(NET) (GROSS)
6.71
5.82
4.05
2.28
20.13
17.48
12.16
6.83
40.27
34.95
24.31
13.66
7.13
6.20
4,30
2 . 4.3
21.43
18.59
12.93
7.27
42.85
37.19
25.86
14.54
-------
CASE 1
NO HEAT EXCHANGER
WITH CATALYST
70°F INLET TEMPERATURE
PROCESS
GAS FLOW
IN
SCFM
5,000
5,000
5,000
5,000
-j
15,000
•15,000
15,000
15,000
30,000
30,000
30,000
'I!
30,000
PROCESS
GAS FLOW
IN
ACFM
5,000
5,000
5,000
5,000
15,000
15,000
15,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IN
#/HR.
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
GAS FLOW
THRU
CATALYST
#/HR.
22,664
22,664
22,664
22,632
67,992
67,992
67,992
67,896
136,984
136,984
136,984
136,792
GAS IN
TEMPERATURE
IN
OF
70
70
70
70
70
70
70
70
70
70
70
70
TEMPERATURE
INTO
CATALYST
°F
600
600
600
500
600
600
600
500
600
600
600
500
TEMPERATURE
LEAVE
CATALYST
op
600
740
1,000
1,208
600
740
1,000
1,208
600
740
1 , 000
1,208
LEL
%
0
5
15
25
0
5
15
25
0
5
15
25
RELEASE
FROM
CATALYST
106 BTU/HR.
0
0.815
2.34
4.06
0
2.44
7.31
12.20
0
4.88
14.62
24.39
BURNER
REQUIREMENTS
106 BTU/HR. 10^ BTU/HR.
(NET) (GROSS)
2.95
2.95
2.95
2.53
8.85
8.85
8.85
7.12
17.69
17.69
17.69
14.24
3.14
3.14
3.14
2.53
9.41
9.41 .
9.41
7.56
18.82
18.82
18.82
15.15
*Heat release based on 96% conversion of solvents by catalyst.
-------
CASE 1
NO HEAT EXCHANGER
WITH CATALYST
300°F INLET TEMPERATURE
PROCESS
GAS FLOW
IN
SCFM
5,000
5,000
5,000
5,000
00
15,000
15,000
15,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IN
ACFM
7,170
7,170
7,170
7,170
21,509
21,509
21,509
21,509
43.01.9
43,019
43,019
43,019
PROCESS
GAS FLOW
IN
#/HR.
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
GAS FLOW
THRU
CATALYST
#/HR.
22,594
22,594
22,594
22,562
67,982
67,982
67,982
67,686
135,564
135,564
135,564
135,372
PROCESS
GAS IN
TEMPERATURE
IN
°F
300
300
300
300
300
300
300
300
300
300
300
300
GAS
TEMPERATURE
INTO
CATALYST
op
600
600
600
500
600
600
600
500
600
600
600
500
GAS
TEMPERATURE
LEAVE
CATALYST
oF
600
740
1,000
1,208
600
740
1,000
1,208
600
740
1,000
1,208
LEL
0
5
15
25
0
5
15
25
0
5
15
25
*HEAT
RELEASE
FROM
CATALYST
106 BTU/HR.
0
0.815
2.34
4.06
0
2.44
7.31
12.20
0
4.88
14.62
14.24
BURNER
REQUIREMENTS
10& BTU/HR. lO5" BTU/HR.
(NET) (GROSS)
1.69
1.69
1.69
1.12
5.07
5.07
5.07
3.35
10.14
10.14
10.14
6.69
1.80
1.80
1.80
1.19
5.39
5.39
5.39
3.56
10.79
10.79
10.79
7.12
*Heat release based on 96% conversion of solvent by catalyst.
-------
ENyiRCN.MENTAL
PBQ
NO. 68-02-
NO. 13
XiNTKACT
i TASK
'NO CATAL'
PROCESS GAS TE**1 DTr
TEM^ RATU RE
30
7.2|96#/Gal.
HEATING VALUE 19[l20 Btu/#
HEATING VALUE 139;eo
11E ATING VAL4»'E 4 7 980
HEATING VALUE 131300 Btu/Cal
8 t- 61:5
-------
ENVIRONMENTAL
CONTRACT
' ' TASF
PROTECTION AGENCY
NO. 618-02-H73 !
NO. J13
CJ
NO HEAT
NO CATALYST
GAS
INCINERATION TEJMPERATUFE
iSE I
RECOVERY
PROCESS
iJMI
, IN ->3000 F
- 1400° F
FUELi
| 335. 5
A-Pt-
- 02 OIL
DENSITY ; 7.
HEATING \^ALUE
HEADING "
HEATING tALUE
1960/Qal,
19130 ftu/ill
HHV)j
139680
Btu/Gsl
Btn/Ga
10
-------
c
NO JHEATI
WITH
70°F
,YS1J OUT
. 0
11
-------
12
-------
NVIKCJNMENTAI. PROT
CONTRACT .NO.
: I TASK NO.
CASE [
NO
70° H PROCESS
!NO CATAU
-------
-------
CONTRACT NO. 68-02-
TAS&NO. !I3
CASK I
15
-------
iOO'F PROCESS GAS INLET
WITH CATALYST
16
-------
O %
0/U
SHES/SH/FT X
SUPPLIES:
,
.25
M/
17
2120
Cosrj
-------
' j&t
$000 SCPM • -5" % JL£L Pcocess li^p
- 2
o/u
MRS
8.1
2^20
SUPPLIES :
18
-------
LEL
o/u
•5ro/io<" 67dx 5-7 < \o"/ne. x £5>k> KIRS
* -
HP.
SUPPLIES-.
73odMirrs/«/_: x 8A°/ He.
2120
79,**?
19
-------
LEL
o/u
HP.
s
• \
20
-------
SCPM O
Peocess TEMP ?&*
- 2
o/u
*
D/tSCT
SUPPLIES;
.25
21
HP.
_
-------
- 2
O/U
,
HP.
SUPPLIES;
22
-------
\ ,
L£L
STC/JM
o/u
.^ xio!Xi4e x
SHes/sH/FT x 73osHiPr&/fe x
\
23
_ 4/74
-------
/.EL
Process O/>&e/97-//v<$ T/MC? -
- 3G*s
PU6L OIU
SUPPLIES:
_
«>r
Cosr/
24
-------
i/MT J/**- *3O' OOP SCrM O % UL PCOCIFSS T&MP
.
" wM/<
- 2
STff^M
0/U
SUPPLIES;
But LO f*/
-------
3O, OOP 5CFM
LGL
U
^05 T
C S A)
o/u
* '
SHES/srt/rr x 730 5Hirrs/«fe x 6A°/
SUPPLIES:
.25
>v
26
-------
^x*- 3O,
SCPM
(/7/L/T/&3'.
o/u
uBTcfX 3t>l <
*'03/KWH* SS*owes
URS
2120
SUPPLIES:
.25 x
37,390
w
27
-------
,z* 30, OOP
2/.EL
o/u
67
-------
SCFM O L£L Process
- 2
^^•
rucu o/u
.
29
WES x. .
HP.
x «A°/ He.
2120
92,13 J
-------
Peoc«-
ss
&?/&t ysr
- 2
o/u
SUPPLIES*.
or
.2S X
30
6.2. xjo/ne x
x, sa+o wes x .746 KW/,., x »6.6 up.
• t • •
COSTS
-------
A/o Atexr
rucu o/u
s e/ss
' \ .ZS
oF
31
37,44*
.°-°/ HE.
2120
COSTS
-------
SCFM
LEL
Peoc
ess
P06L OIU
O/^ffCT /.*&>£:
X 5d*k> M*S
HP.
3120
32
-------
SCFM
/.CL Peocess
A/0
o/u
D/ZSCT
SUPPLIES:
? 28,373
33
-------
scrM
Lt=L Process
/£*/*=• - 2
-3&S
o/u
73o SHIFTS /«je x
SUPPLIES;
Ov€*Mc*
s use ^s%> or
- \ .as x, ^,
»J
34
-------
SCPM
ru'cu.oiu
SHES/sH/rr x
SUPPLIES:
.25
w
35
x «A°/
9/3
-------
U
SCPM
Pe
oc«?ss
STCXJM
oiu
SUPPLIES:
7.3 « lo
or
.as x
36
-------
3&,Q0£> SCFM & LGL Pcocess TEMP
- 2
0/U
6TOX
X SSM-o MRS
l£HP.
D/tffCT /.*&>£;
SHes/sH/rrx 73osHirrs/«fe
SUPPLIES'.
Costs
37390
37
-------
/%//r-
/* JLEL
- 2
0/U
<03
/KWH
^ xio/MB x
^* • ^
X.
SHES/sM/rrx 73o SHIFTS /fe
.2S X
38
2120
37390
-------
/.EL Peocess
- 2
rucu 01 u
SUPPLIES*.
730 SHIFTS /«^e X
37390
39
-------
Peoc«?ss TEMP
- 2
It/Are^.,
oiu
*
D/4ffCT
w
'.
40
HP.
21 to
37390
-------
SCPM O LGL Peoc«?ss IJMp 70
K/tTM CATALYST — /(/O
- 2
- 36sS
0/U
67
-------
LEL
o/u
X 730 SHIFTS /«jg X
SUPPLIES;
42
_n
-------
SOOO SCFM IS L£L Pcocess Tii^p ?0
- 2
rueu oiu
6TUX 3-1
< i
f
D/ZGCT
SUPPLIES:
,
43
-------
i/MT
SCFM
JL£L
- 2
0/U
2.s> xio/ae, x
i^ _ i ^
x
o.^/V/
SUPPLIES '.
s (Xrtf 2».s2S «>r
• \ .2S x ^
44
ai^^o
6.°-°/ HE.
2120
-------
W/iT(4
rueu o/u
SUPPLIES*.
<%,4 <'io!Xne, x SSM-O MR
HP.
73o .SWIFTS /«f.e
2120
Cosr/
.25
45
-------
W/ITI4
- 2
Cos T
o/u
x 73o SHIFTS /fe x
SUPPLIES;
. 2 S X.
46
21ZOI—
3^020
-------
?O
Utf
o/u
X S8*k> URS
HP.
ftytooe
x 73osHiFr5»/^s x e.'i0/ rte.
e^zo —
SUPPLIES'.
.25
-------
" 2
- 3&S
COST
41
2120
or
.2S
48
-------
30.000
- 2
o/u
H P.
SHE5/5H/Pr X 750 SHIFTS /f£ X SA°/
SUPPLIES'.
,
VJf
49
34*27
£1*
-------
3O,0OO
L£L Peoc
-------
30.000 SCFM
L£L Peaces* TEMP ?O
~ 2
SUPPLIES;
x
.25
X 53M-0
g/
x 8.°-°/ HE.
51
-------
LEL
Utf
- 2
o/u
15.2.
2120
SUPPLIES*.
.as
52
-------
o/u
'°3/KWH
WES X
(3
HP.
279? -n
D/Z6CT
SUPPLIES'
SHRS/srtirrx 730 SHIFTS /fe x 5A°/He
2120
,
x
53
-------
SCFM
POGL o/u
ST^x . » -9 x io
SUPPLIES;
54
_.27iZ.
x 8.°-°/ He.
2120
-------
LEL Peocess
- A/*
- 2
-3&S
POGL o/u
S8»k>
27
Costs
55
-------
LGL
- 2
o/u
i.so/io*ertfx »'*z. xIO^B x
D/QSCT
SUPPLIES;
56
MRS
_?_?iz
2120
COSTS
-------
Peoc«=ss TEMP $00°?
Peoc
ess
- 2
- 3 £5"
O/L
SUPPLIES*.
S,4
730 SHI
.25- x
57
X SSM-o
8.°-°/HE.
Costs
-------
Cos
erux ..s.4xto
r
-------
SCFM
o* 7/5.0 1.
~ 2
O/U
X SSM-o
x
SUPPLIES:
• \ .ZS X,
C^/'/7-x?4 Cos TV
59
-------
S/ze-
SCFM 2S- o l£L Peocess
3°° .
- 2
o/u
* '03/KWH X.
a*/-//
SUPPLIES'.
or
60
3I.S-60 —
Costs
-------
S.CFM
e>
/?
WITH
Process
o/u
SUPPLIES'.
as
08
u- P.
61
-------
3o,aoo
- 2
FUGL Oil.
67tfX
c i
S
36* oil
SUPPLIES:
COST/
.25 x.
£014,410
62
-------
00 o
U«
WITH
- 2
o/u
X 730 SHIFTS /«f 6 X
SUPPLIES'.
n p.
*27l —
2120
COST/
.25
63
-------
//A/, T
3o. 00 o
'» LGL
- 2
o/u
194
/ zg.ru P.
Cttttysr,
D/tffCT
SUPPLIES;
.25 X
64
-------
CASE 2, INCINERATION
WITH PRIMARY HEAT RECOVERY
65
-------
PREHEATED PROCESS CAS
FUEL
2 OIL
18.4 GPH
2 A X I06BTU/HR
o
-j
580 F
ZLE
NER
»
MIX
-
1
r
INCINERATION
CHAMBER
I400°F
1
PRIMARY
HEAT
EXCHANGER
INCINERATED !CAS
PROCESS GAS 0
5000 SCFM-70F
SOLVENT LOADING—15/LEL
•PROCESS GAS
FAN
PROCESS
TYPICAL CASE 2
/PRIMARY HEAT RECOVER^
V AND NO CATALYST )
-------
PREHEATED PROCESS CAS
oo
404°F
INU (.L LC
BURN El?
FUEL ^
2 GIL
£.5 GPH
1.1 1 X !0*BTU/HR
\
>
WIA
1
1
f INCINERATION
. CHAMBER
/-CATALYS1
' n
600°F i 1000° F
i
i i
LJ
' 4
PRIMAPY
HEAT
EXCHANGER
J
i PROCESS
5000 SCf
SOLVENT
^\
INCINERATED GAS
22560 "
TYPICAL CASE 2
/PRIMARY HEAT RECOVERY\
V WITH CATALYST )
PROCESS GAS
FAN
PROCESS
-------
CASE 2
WITH HEAT EXCHANGER
NO CATALYST
70°F INLET TEMPERATURE
1400T INCINERATION TEMPERATURE
BURNER
HEAT
1
1 1
i
0"
vD
3
. ^
PF.OCESS
GAS FLOW
IK
SCFM
5,000
5,000
5,000
5,000
15,000
15,000
15,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IS
ACFM
5,000
5,000
5,003
5,000
15,000
15 , 000
>5,000
15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IN
Jt/HR. .
22 , 500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
PROCESS
GAS FLOW
INCINERATED
GAS FLOW
#/HR.
22,782
22,733
22,635
22,538
68,356
68,207
67,908
67,609
136,691
136,398
135,808
135,218
PROCESS
GAS FLOW
INLET
TEMPERATURE
•F
70
70
70
70
70
70
70
•
70
70
70
70
70
PREHEAT
TEMPERATURE
"T
582
581
580
579
582
581
580
579
582
581
580
579
INCINERATION
TEMPERATURE
°F
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
HEAT
nirrl™ RELEASE HEAT
<™ - sr
942 0 0 0
941 5 2.83 0.85
940 15 8.47 2.54
939 25 14.11 4'23
_ n
942 0 0
r •> fl* 2.S4
941 5 2.83
ic R 47 7.62
940 15 8.«<
939 25 14.11 "-71
_ o
942 0 0 0
941 • .5 2.83 ' 5.08
940 15 8.47 15-23
939 25 14-11 25'40
REpUIREMENTS
106 BTU/HR. 10° BrU/HR.
NET GROSS .
5.07
4.19
2.42
0.68
15.40
12.71
7.34
1.96
30.41
25.13
14.54
3.92
5.39
4.46
2.58
" 0.73
16.38
13.52
7.81
2.09
32.35
26.74
15.46
4.17
EXCllrv^ -jEF
EFFICII;:;CV
%
3S.5 .
38.4
38.4
3«.4
3B.S
38.4
38.4
3B.3
38.5
38.4
38.4
38.3
-------
CASE 2
WITH HEAT EXCHANGER
NO CATALYST
300°F INLET TEMPERATURE
1400T INCINERATION TEMPERATURE
j PROCESS
\ GAS FLOW
.' IN
1 SCFM
! 5,000
1
5 5 , 000
J . 5-, 000
! 5 , 000
' 15,000
-J 15,000
O
{ " IS.OtlO
1 15,000
30,000
30,000
30,000
30,000
PROCESS
GAS FLOW
IM
_ACFM
7,170
7,170
7,170
7,170
21,509
21,509
21,509
21,509
43,019
43,019
43,019
43,019
PROCESS
GAS FLOW
IN
t/HR. .
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
INCINERATED
GAS FLOW
ft/HR.
22,734
22,685
22,587
22,500
68,210
68,061
67,763
67,464
136,406
136,111
135,521
135,000
PROCESS
GAS FLOW
INLET
TEMPERATURE
300
300
300
300
300
300
300
300
300
300
300
300
bvoassed arou
PROCESS
GAS FLOW
PREHEAT INCINERATION
TEMPERATURE TEMPERATURE '
.F «F
725 1.40°
725 L400
724 1,400
723 1.400
725 L400
725 1,400
724 1,400
723 1.400
725 ' 1,400
725 L400
724 1,400
723 1.400
nd primary heat exchanger.
HEAT
OUTLET RELEASE HEAT
PEMPERATURE LEL BTU/CF REiEASE/HB
oF % (NET) 106 BTU/HR.
1,013 00 0
, ., _ c 2 83 0.85
1,012 3 *.oj
1,011 15 8.47 2.54
1,010 25 14.11 4.23
1,013 0 0 0
1,012 5 2.83 2.54
1,011 15 8.47 7.62
1,010 25 14.11 12.71
1,013 0 0.0
1,012 5 2.83 5.08
1,011 15 8.47 15.23
1,010 25 14-11 25.40
_
BURNER
REQUIREMENTS
106 BTU/HR. 10° BTU/HR
NET GROSS
4.21
3.32
1.56
* .42
12.77
10.09
4.73
•1.31
25.28
19.97
9.38
•2.53
4.48
3.54
1.66
* .45 "
13.58
10.73
5.03
•1.40
26.90
21.25
9.97
•2.7
HFAT
EXCHANGER
EFFICIENCY
t
33.7
38.6
_ 38.5
33.4
33.7
38.6
38.5
33.4
35.7
33.6
38.5
38.4
"Burner at mininuni
-------
'1
CASE 2
WITH PRIMARY HEAT EXCHANGER
WITH CATALYST
70°F INLET TEMPERATURE
j PROCESS
| GAS FLOW
j SCFM
• 5 , 000
5,000
i 5,000
5,000
, 15,000
•! 15,000
i
i 15,000
15,000
]
j
j 30,000
j 30,000
30.0CO
30,000
PROCESS
GAS FLOW
#/HR.
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
135,000
135,000
135,000
135,000
PROCESS
GAS FLOW
THRU
CATALYST
#/HR.
22,606
22,590
22,560
22,507
67,820
67,772
67,685
67,520
135,638
135,545
'135,370
135,040
PROCESS
GAS
TEMPERATURE
IN
°F
70
70
70
70
70
70
70
70
70
70
70
70
PROCESS
GAS
PREHEAT
TEMPERATURE
°F
260
310
404
479
260
310
404
479
260
310
404
479
GAS
TEMPERATURE
INTO
CATALYST
°F
600
600
600
515
600
600
600
515
600
600
600
515
GAS
TEMPERATURE
LEAVE
CATALYST
°F
600
' 740
1,000
•1,210
600
740
1,000
•1,210
600
740
1,000
•1,210
GAS
TEMPERATURE
LEAVE
HEAT
EXCHANGER
Op
416
506
675
806
416
506
675
806
416
506
675
806
HEAT
EXCHANGER
EFFICIENCY
35.9
35.9
36.0
36.2
35.9
35.9
36.0
36.2
35.9
35.9
36.0
36.2
LEL
0
5
15
25
0
5
15
25
0
5
15
25
HEAT
RELEASE
FROM
CATALYST
106 BTU/HR.
0
0.815
2.34
4.06
0
2.44
7.31
12.20
0
4.88
14.62
24.39
BURNER
REQUIREMENTS
10b BTU/HR.
NET
1.91
1.G3
1.11
* .19
5.73
4.89
3.32
* .57
11.46
9.80
6.65
•1.15
106 BTU/HR.
GROSS
2.03
1.72
1.19
• .2
6.10
5.02
3.54
* .61
12.20
10.43 •
7.08
*1.22
• Bui'ner is at minimum fire.
Gas temp, into catalyst is lower than tfhat is generally recommended.
Gas ter.p. leaving catalyst is higher than what is generally recomnended.
-------
CASE 2
WITH PRIMARY HEAT EXCHANGER
WITH CATALYST
300°F INLET TEMPERATURE
1
PROCESS
GAS FLOW
SCFM
f 5,000
5,000
•i
! 5 , 000
1
': 5,000
i
! 15,000
15,000
| 15,000
' 15,000
30,000
j 30,000
i
J
1 '3U,000
' 30,000
•Preheat
PROCESS
GAS FK)W
#/HR.
22,500
22,500
22,500
22,500
67,500
67,500
67,500
67,500
• 135,000
135,000
135,000
135,000
Temperature
**No burner required
'
i
PROCESS
"GAS FLOW
THRU
••CATALYST
#/HR.
22,563
22,590
22,540
22,500
67,690
67,632
67,543
67,500
135,377
135,265
135,086
135,000
higher than
due to high
PROCESS PROCESS
GAS
GAS
TEMPERATURE PREHEAT
IN
op
300
300
300
300
300
300
300
300
300
300
300
300
minimum
preheat
TEMPERATURE
Op
400
460
555
*635
400
460
555
•635
400
460
555
•635
required temperature
temperature.
GAS
TEMPERATURE
INTO
CATALYST
°F
600
600
600
635
600'
600
600
635
600
600
600
635
into catalyst.
GAS
GAS
TEMPERATURE
TEMPERATURE LEAVE
LEAVE
CATALYST
Op
600
1
740
*
1,000
1,315
600
740
1,000
1,315
600
740
liOOO
1,315
gas temp.
HEAT
EXCHANGER
°F
493
583
750
910
493
- 583
750
910
493
583
750
910
leaving catalyst
HEAT
EXCHANGER
EFFICIENCY
%
36.5
36.6
36.8
36.9
36.5
36.6
36.8
36.9
36.5
36.6
36.8
36.9
is higher than
LEL
*
0
5
15
25
0
5
15
25
0
5
15
25
good
HEAT
RELEASE
FROM'
CATALYST
106 BTU/HR.
0
0.815
2.34
4.06
0
2.44
7.31
12.20
0
4.88
14.62
24.39
design.
BURNER
REQUIREMENTS
106 BTU/HR.
NET
1.13
0.79
0.26
**
3.39
2.38
.77
**
6.78
4.76
•1.54
**
10b BTU/HR.
GROSS
1.21
0.84
0.27
**
3.62
2.53
.82
• *
7.21
5.07
1.65
**
-------
ENVIRONMENTAL
.rtTA
:RAC
•ROT
CTIC 'N. AG:
:NCY
CONTRACT
'TASK
tNO.
NO.
68
-os-
is: -
47;8
32
-244-.-6
HEAT BECOVERY
:HANGER
GAS
HEAT EX
PROCESS
-JNCQUE
NOICATAJLYST
TEMPERA
Bji.TIQ5l
SE 2
VEI
TrFFTCJI
FERATtt
FF1C41EIS1C
URE:
TEMJPERAlrUBE
38%~
N-| 70°F
1400°F
73
-------
HEAT RECOVERY ;
HEAT EXdHANGER
INCINER/TION
NO CATA1YST
' 12/7?
-------
EWIROlttENTAL
CONTRACT Np. 68-02-1478
TASK! NQ. IB
HEAT EXCHANGER E
WITH CATALYST
7.296 ffl/GAL
19130 BTU/#(HHV>
139660 BTU/GAL(HHV)
17980 BTU/#(LHV)
131300 BTU/GAL(LHV)
HEATING
HEATING I
75
-------
ENVIRC NM^NTAL PR01 ECtlCBf AGElfl^V
CCNtftACI NO. (8-02-1478
TASK MO.
ta-
-itetr
CASE 2
3VERY
•HBAT
mow ss
EXCHAIfGER EFFICIEIfCY _
TBMPHRA2U8B IH
36 J
300
CATALXST
1FUHL
-«-
30
-DBMS-
nr 1
VMiUE__
NG VALUE
'7.296
1913fr
»/GAL
HfiATG
TffiW
HBAjiHd VAllUS
B^U/CAL
NC VAI1UE
•VSKl
VAlJll
tmf)-
^u/dfiL^ffih
: 122.0
S>r
H ,
eo: 1^
91.5
ei.o
IT
E 4
i
30.5
___J.
% LEL (BASE!
2(^
FLOWr/ 10J $CFM^
HIM - foffifc-& ?E^
3i >
!;«-
76
-------
ENVIRONMENTAL pR<|)TECTi
-------
78
-------
EN
IROI^MKNTfAL PROTE CrriOtf AGE
"T NO. 68
ASK NO. 1 3
on: RATING COST
340,008-
PHtMATO
70'F
Wl
CA$E 2
HEAT
'ROCESS G|\S IN
H CATAL'
EXCHANOETl
,VST,
; 'A
Z
oee-
L
140,000
/ I^^r-r
.P
o
130.000
80,000
00,000
"20.
10
scfmj
79'
-------
ENVIRONMENTAL
CONTRACT "NO".
IT ASK
HO.
UBERAH1'
AGINCV
COST
PRIMABJY HEA1
EXCHANGER
300 °
'rtH..C/TALYSTl
220.000
200.000
Z
7
Z
180.000
Z
1.60.000
z
Z
140.000
120.000
100.000
s
w
a.
80, OOP
NO!rE:j _Ther|e: Ls. m 257.
as .
otperacton at
iirpcpmnond
60.00C
40.00C
20,001
103 SCFM
80
i 121
-------
-3&s
cos r
o/u
X SS»k> MRS
WES K .7^6KV%px //.? HP.
81
-------
//A/,r-
u
SOOO SCPM
LCL Process
/?
-------
- 2
Cos T
o/u
4H-SO/,0<
83
X S8M-0
||.7 HP.
-------
0/U
.7
WES
11.7 HP.
O/ZGCT
84
-------
Peocsss
STlJX I6>«4 x 10/MB X S8«k> MRS
&L&CT&C/T/J
HP.
3^20
SUPPLIES '.
3?^f_
85
-------
°7°
"TgMP
- ^
COST
o/u
HP.
SHES/SH/FT X 730 SHIFTS /fC X 6A°/«e
SUPPLIES'.
s
or
86
-------
/5" L£L
U
T/MP - 2
rocu o/u
. i xio
X 58*0
WBSX .
D/ZGCT
73o5Hirrs/«fe x e.i0/ He
SUPPLIES;
.25 X
37/6*
87
-------
LEL
- 2
o/u
*»'5>0/iofc6TOx ..."Z.
X SSM-o MRS
HP.
163*?*
5-^47
SUPPLIES;
SHKS/5H/rrx 73o SHIFTS /«^e x 6A0/ He
2120
BV/LO///Q
C05TJ
37,260
f i
\
[ i
r.
88
-------
L£L
- 2
01 u
D/QGCT
SUPPLIES *.
H>
x .s ^ p.
X ^ /93.0SO.
89
-------
SCFM
'*
Cos r
r
V/ATGZ.,
FOCL OIU
87
-------
30,000
/5" Z ]L£L Peocgss TeMp
- ^
o/u
SUPPLIES:
*> S6+° WKS
^<;%>
S x
91
J2.3SI
~
.°.°/ He.
-------
25
0/U
6TOX V^ < icf/ne. X S8M-0
H P.
SHRS/SH/FT X 730 SHIFTS /*f£ X
SUPPLIES;
^s%> or
X. -^
Cosrj
92
-------
O L£L Peocess Temp.
~ 2
HP.
93
-------
£"000 SCFM
LEL Process
- 2
PUGL 0/U
HP.
SUPPLIES:
.25 X ^ 7^/30
-------
LEL Peaces* leMp 3OO ^
PU6L 0/U
.7
24.1
SMes/sH/rr x 73d> SHIFTS /«je x
SUPPLIES:
,
95
-------
rucu o/u
SUPPLIES:
S CVS
• \ .as x.
»J
OF
H/
96
S8M-0
zl/7 HP.
COSTS
f
-------
SCFM O LEL Process liiotp 300 °P
Peere
ss
- 2
Oil.,
'03/KWH
Oe*tfs*
V
• \ .as x.
97
-------
r <*
L£L
- 2
TJMp 3OQ
OH.
SUPPLIES:
BUILD /*/$
10.
2S x
M/
, 98 ;'
HP.
I
J
I
k-
-------
Li
Peocess
T/
/*/** -
Cos r
0/U
D/zecr
SUPPLIES;
,
99
"I1 'I
-------
LGL
I£-MP BOO
- 2
o/u
'03
/KWH
D/3GCT /.*&>£.'.
r
r
100
-------
T&Mp 3OO
Near
- 2
O/U
SUPPLIES;
wes x .
up.
2120
COSTS
101
-------
Tsui? - 2
Cos r
POGL. O/U
6T«/X
X SSM-o
/e^S»
73o3Hirrs/*/£ x fi.ep/
SUPPLIES:
S C/S6
h .,
»J
or
Cosrj
102
-------
Mev?r
Process
Cos T
o/u
SUPPLIES :
103
-------
r
o/u
wes x .
x 73o5«iFrs/«fe x
SUPPLIES;
BwLO/t/Q
V
~)
zs x
w
104
r.
-------
POCL 0/U
D/ZGCT
SUPPLIES
*
X SSM-o
( ay us.
COSTS
105
23,2*7
-------
%
_____________ ___ _..._„ LGL
C A? '
7O
- 2
o/u,
&.GCT/Q/C/T/.
D/ZGCT
r
X '-s
S MS.
' \ . 25 X.
106
X SSM-o
2^20
-------
- 2
o/u
,2.
wes x
SHES/sM/rr x 73osHirrs/«fe x
2120
SUPPLIES'.
^5'%> or
COSTS
107
-------
ooa
/.EL
- 3C*s
O/L
SHRS/^H/rrx 73o5Hirrs/«^e x
Z1ZO
SUPPLIES'.
:
or
COSTS
x
108
-------
SCfM
L£L
li*>tp 70
- 2
L/T/L/T/&3'.
o/u
SUPPLIES :
,
wes K .
109
2120
Cosrs
39,3*0
-------
Ssze- /S,oo0 scrM
Lt=L
76
- 2
o/u,
SUPPLIES'.
SSM-o
*
.25 X ^ .'^7,230
no
39,310
-------
/S,oo& SCFM
L£L
Cos T
rucu o/u
D/ZGCT
SUPPLIES •.
6T
-------
scrM
°7° L£L
- 36.5"
Cos r
STffXJMy
o/u
SUPPLIES:
X SSM-0 H£S
x 730 SHIFTS /«je
2^20
.2S x
112
-------
scrM
^^^9
% /.EL
- 2
o/u
SUPPLIES;
>\
73osHiPrs/«je -x s.e.0/ He
Z/9,/0?
113
-------
scrM '
L£L
- 2
Cos 7
O/U,
&.GST&/C/T/
D/zecr /./*&>£;.
SUPPLIES :
MRS
_9l ie>q
HP.
7303HiFrs/tje x
2120
x
^V. *^ fL—^— -
114
-------
30000 SCFM '
- 2
o/u
SUPPLIES'.
7.1
.25 x
115
X S8'k>
HP.
-------
30000
- 2
Cos T
o/u
SUPPLIES;
.2S x
116
2120
/&, 2/7 {
-------
L£L
o/u
SHES/^^rr x 79o5Hirrs/«fe x "fi-^/HC,
SUPPLIES:
515%
x
COSTS
117
-------
S,ooa scrM
0 />*-*> A rsA/<5
o/u,
sa 40 wes x .7^c.Kv%px
X 730 SHIFTS /IK. X 8.??
118
2120
23227
-------
- 2
o/u,
S-
. 3 x io
x 730 SHIFTS/»je
.2s
iS
6005"
119
-------
- 2
ST6V7M
o/u
1) -
120
rc<
373S
-------
scrM & 7* /.EL Pe
ocess
D/ZGCT
SHES/sw/rr X
121
31^3
HP.
COST/
-------
SCFM
L£L
l&Mp
" 2
Cos T
OJL
X 4/3S-00. ( 3
x 730 SHI
of
x.
122
HP.
3120
-------
- 2
FOGL 0/U
£v/LO/t/<$
o.9
* '03/Kvvn * sa«K> wes x
4?
X
KV%px gS-7 MP.
MZl
2120
o r cwr^*. Cos rs
• as x ^ /2?370
123
-------
I/A/IT
/.£L
cos r
SUPPLIES:
,
. x ^ /3Z370
124
2120
-------
3QOOQ
O /.EL
- 2
o/u
«>r
x
125
.°-°/ He.
2120
-------
3oooo scrM '
/.EL
.
- ^
Process
-3&S
o/u,
D/zecr
SUPPLIES'.
S.I
730 SHIFTS/fC X
x
126
HP.
ag«nz.
2120
-------
30000
/£_% /.EL
W
o*u
SUPPLIES;
.J
.o HP.
730 SHIFTS /fe x 8.°-°/ HE.
2120
127
-------
o/u,
l'5°/IOfa 6TUX 0 X
wes x .
SUPPLIED'.
^ "" j
.i HP.
COSTS
/
128
-------
CASE 3, INCINERATION
WITH PRIMARY AND SECONDARY
HEAT RECOVERY
129
-------
NCZZLE MIX
2.4 X I06BT
U/HR
u>
INCULPATION
CHAMBER
PREHEATED PROCESS GAS
560°F
!400°F
PRIMARY
HEAT
EXCHANGER
SECONDARY AIR
I5000*/ HR
O '
70 F
INCINERATED GAS
940°F
SECONDARY
HEAT
"EXCHANGER
PROCESS GAS.
5000 SCFM TCf
SOLVENT LOADING I5
\\J FAN
-<-
GAS
ISOOO^HR
548' F
.. 1.74 XICTBT U/HR
" Drrr>\/corr>
RECOVERED
PROCESS
TYPICAL CASE 3
/PRIMARY AND SECONDARY\
( HEAT EXCHANGER AND )
\ NO CATALYST /
-------
PREHEATED PROCESS GAS
^m
-• JcL
m
\
I.'ICINER/
CHAMBE
r
AT ION
bQClF
J t r
_.._
Mirftf
CATAL
,
1000*1
1
YST fl*
PRIMARY
I" ^^ HEAT
EXCHANGER
675°F
i.l /
uo
t\j
PROCESS CAS
FAN
PROCESS GAS
5000 SCFM—70 F
SOLVENT LOADING % 15- LEL
SECONDARY AIR
15000^/HR
70°F
SECONDARY
„ HEAT
EXCHANGER
INCINERATED C-AS
2Z56C^HR
463°F X
ISOOO^HR
392CF
I.2XIOBTU/HR RECOVERED
PROCESS
TYPICAL CASE 3
/PRIMARY AND SECONDARYX
(HEAT EXCHANGER WITH )
\ CATALYST J
-------
CA3E 3
«TM ?MHARY HEAT EXCHANGER
NXTV 8ECONDAP.Y HEAT EXCHANGE*
no CATALYST
7o*r inn
t— '
00
U)
PROCESS
GAS PLOW
1.1
SCTK
5*&CO
5.000
5.000
5.OOO
15.000
15,000
15.900
15,750
10,000
10,000
10. COO
JO. CCO
PJOXXSS
GAS PLOW
19
t/HR.
32,500
32.500
22.5OO
22.500
67,500
67,500
67,500
47. SCO
135.000
115.000
115. COO
1)5,000
InClftEftATBD
GAS FLOW
22.762
22,71)
22.O5
».5M
68.156
68.307
67,908
67,609
116.691
116,198
1)6.808
115,218
PROCESS
GAS IN
TEMPERATURE
•p
70
70
70
70
70
70
70
70
70
70
70
70
PROCESS
GAS
INCINERATED
PREHEAT GAS in
TEMPERATURE TEMPERATURE
•p
5S2
581
580
579
582
581
580
579
592
581
580
579
•p
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
1,400
* 1,400
1,400
1,400
GAS
TEHPCRATOaZ
OUT
•P
942
941
940
9)9
943
941
940
919
942
941
940
919
PRIMARY
HEAT
EXCHANGER
ErriciENci
%
18.5
18.4
18.4
18.4
18.3
18.4
18.4
18.1
18.5
18.4
38.4
M.I
CECOKDASY SECONDARY
IN TEMPERATURE
t/HR.
15.000
15,000
15.OOO
15,000
1 45,000
45.000
45.000
• 45,000
90,000
90,000
90,000
90,000
•p
70
70
70
70
70
70
70
70
70
70
70
70
SECONDARY
TCMPCRATURI
•P
549
546
548
548
549
S48
548
548
S44
544
541
Ml
! TCMPERATum
•p
943
941
940
919
941
941
940
919
941
941
940
939
SECONDARY
HEAT
BURMER
GAS OUT BXCttANbCIl
TEMPERATURE EFFICIENCY IB.
•P
640
6)9
6)9
6)8
640
619
6)9
618
643
641
641
«40
•p
55.0
55.0
55.0
55.0
55.0
35.0
55.0
55.0
M.4
54.4
54.4
M.4
t
0
5
15
'25
0
1
IS
23
0
5
IS
15
HEAT
RELEASE
10" BTU/MR.
0
0.85
2.54
4.23
0
' 1.54
7.61
11.71
0
S.08
15.13
15.40
W...1 ^KKJ
BY
SE.V:;-!\KT
RCSUIRSMEyrS Ki'^T
10* BTU/HR. 10* BTU/HR. KuriA-c^fS
NET
5.07
4.19
1.42
0.68
15.40
11.71
7.34
1.96
30.41
25.11
14.54
l.U
GROSS
5.)9
4.46
3.56-
0.73
16. Jl
11.53
7.81
1.09
, 12.35
26.74
15.46
4.1T
10" B: — HR
1.74
1.74
1.74
1.74
5.20
5.2B
5.20
5.20
10.48
10.41
10.48
10.41
KTT
PVTL
RATT
l?b yr.'.TtR.
).))
1.45
O.t*
••-!.:«
(0..-)
'•»»
2.14
"-1.24
19.91
14.15
4.06
•*-*.S4
**!«*i
od by Mccadary hMt -rffftrfmrr l» gtmMtr tlun h*M inpat hjr
-------
CMS I
WITH PRIMARY HUT EUCHMOCT
WITH SECONDARY HOT EXCHANGE*
NO CATALYST
100'P IMLST
PROCESS
GAS FLOW
IX
sen
5. '.y>
5.033
5.»:0
S.'XO
15.000
li.V.O
•1'-. •.-.-.
•15.V.O
lo.c*x>
3>3,COO
3-,-.:3
31. = ,o
process
GAS PLOW
IN
>/a».
22,500
22,500
22.500
22.500
67.503--
67.5V)
67.V/0
47. '.'.0
115. COO
135.000
:35,C70
115. "3
I9C2NEPATED
GAS PLOW
22,714
22,685
22.587
22,500
68,210
r,3.0<.l
67,711
67,444
116. 4C6
136,111
135.521
115, COO
PROCESS
GAS IN
TEMPERATURE
•P
300
300
300
300
300
300
300
100
100
100
100
100
PROCESS
GAS
PREHEAT
TEHPERATt
•P
725
7J5
724
•690
725
725
724
•690
725
725
724
•690
bn»>»d
IBCIKE RATED
CAS IN
]R> TEMPERATURE
•P
1,400
1.400
1 1,400
1,400
1,400
1,400
1.400
1.400
1.400
1.400
1.400
1.400
•round prlMfy Iw
GAS
TEMPERATURE
OUT
•P
1,011
1.012
1,011
1,010
1,013
1,012
1,011
1,010
1,011
1,013
1,011
1,010
Hit •XChWHT*''
PRIMARY
HEAT
EXCHANGER
EFFICIENCY
%
18.7
18.6
18.5
18.4
38.7
18.6
38.5
38.4
38.7
18.6
38.5
38.4
SECONDARY
AIR PLOW
IN
15.000
15.000
15,000
15,000
45,000
45,000
45,000
45.000
90,000
90,000
•0,000
•0,000
SECONDARY
AIR IN
TEMPERATURE
•F
70
70
70
70
70
70
70
70
70
70
70
70
SECONDARY
AIR OUT
TEMPERATURE
•P
590
589
589
588
590
589
589
588
585
585
504
583
GAS IN
TEHPEftATUn
•P
1,013
1,012
1,011
1.010
1.011
1.012
1.011
1.010
1.011
1.012
1,011
1.010
OAS OUT
TEMPERATURE
•P
687
666
6»6
687
687
686
686
687
690
690
689
686
SECONDARY
HEAT
EXCHAHGBR
EFFICIENCY
55.2
SI. 2 .
55.2
55.1
55.3
55.2
55.2
55.3
54.7
54. 7
54. <
54. S
LEI,
»
0
S
IS
35
0
5
15
25
0
5
IS
35
BEAT
RELEASE
1Q6 B7U/HK.
0
0.85
2.54
4.21
. o
2.54
7.62
12.71
0
5.08
15.23
25.40
SDR]
10* BTU/HR.
KET
4.31
1.13
1.56
• .42
12.77
10.09
' 4.73
• 1.11
25. 2S
19.97
•.IS
' 2.51
«E»
PECS
10° BTU/NR.
CROSS
4.49
1.S4
1.66
• .45
11.58
10.7]
5.01
• 1.40
26.90
21.25
9.97
• 2.70
BT*J
RECOVERED
9T
SECONDARY
HEAT
EXCHANGER
1.9}
1.93
1.90
1.90
5.69
5.69
5.69
S.H
11.10
11.10
11.10
11.10
KET
TO
HATT
;. j;
1.43
••-;.!!
••-1.48
7.CS
4.4.s
• • - ? . 6«
••- 4.]?
n.99
e.»7
• •-i.s.-
••-6.t7
r«99**r4>4 mr
-------
on i
WTO rttimiR Bar ~~"*™~
•IIH •CCONDAIW «r»T
HIIH CATALTtT
> 70"P IHUW
PROCESS
PF.-OCI3S
CAS rjow
CI
STt
5. COO
5.000
5. GOO
5. =00
15.000
15.000
15.0VO
IS. -.00
1 — 1
OJ
Ul 10.000
lO.ViO
30-. 0»
30.053
•fturr^r 1
-.WWCESS
GAS riOH
III
4/HR.
22. SCO
22.500
22.500
.22*500
67.500
67.SCX)
67.500
67,100 ,
135. OOO
1 15. (XX)
US, 000
135.000
4 >c •lnl»u
•*7M«t r»cov«r*4 by •
PROCESS GAS IHCINERATEO GAS
IKIBERATED GAS f» PREHEAT GA» III TBtPEMTUM
GAS rua« TEMJ-ERATUSZ TEW-CRATURB TEHP8RATUR1 OUT
./PP •' *' •* ''
22.606
22,590
22,560
22,507
67,820
67,772
67,685
, 67.520
135,638
135,545
135,370
135. 040
• Sir*, g«« t«ap
•oondkry h«*t •»
70
70
70
70
70
70
70
70
70
70
70
70
. into
elvMkgw
260
310
4O4
479
260
310
404
479
260
310
404
479
c*t«lytt !•
r !• gffMUr
600
740
' 1.000
•1,210
• 600
740
1.000
•1,210
600
740
1.000
•1,210
lower tlun what
thu h*«t input
416
506
675
806
416
506
675
806
416
506
675
•06
!• g«n«rally v«c
by buriMY.
PRIHHT
HEAT
EXCHANGE*
DTICIDKT
»
15.9
15.9
14.0
16.2
15.9
15.9
16.0
16.2
15.9
35.9
36.0
36.1
iimniHII. c
MX rUM MR III
IN TEHPERATtritl
«/HR. T
15.000
15.000
15,000
15,000
45,000
45,000
45,000
45,000
90.000
90,000
90,000
9O.OOO
!•• Mp. luring
70
70
70
70
70
70
70
70
70
70
70
70
Ofltalytt
•ecoHMn
AIR OOT
TENPBMfim
254
102
192
442
254
102
192
442
254
102
191
442
IP hldMr <
CM ni
TtKPEKATOW
414
504
475
•06
416
506
675
•06
416
504
4TI
•06
tatt dwt U f«
OMODT
mmuTon
•r
2*5
151
441
54*
295
151
441
541
295
151
441
54*
•Mnlly- noai
•BCOMDMiy
MAT (OK
""""g" ant • RteuiK
anciac* to, UUASI io4 «TO/H».
•f % Io4 nm At* MN>
51.1
51.1
Sl.l
51.1
51.1
51.1
51.1
51.1
51.1
51.1
11.1
U.I
••lilt,
« 0 1.91
5 O.U5
• 15 2.34
15 4.04 •
0 I 0
5 2.44
15 7.11
15 11. 20
0 0
1 4.4*
15 14.41
U 24.19
1.41
1.11
• .19
5.71
4.m
1.11
• .57
11.44
>.to
• .45
•1.15
m
SJ2J2S
106 BTu/aru
2.01
1.72
r. u
• .2
4.10
5.02
1.54
• .41
12.20
10.41
7.04
•l.U
«TU
nconno
•T
•tcosowr
KU-
CXCHA»a;R
KIT
KO.
MTE
0.6T 1.J4
O.M
• 1.17
~ 1.42
2.00
2.52
3.51
4.26
4.00
5.04
7.02
4.U
0.79
••-0.76
••-1.2
3.73
J. 17
~-0.19
••-3.7C
7.44
4.74
••-0.17
"-i.n
-------
iKamunr HE»T naumn
•1TH CATAITST
300T MUT
5.000 22.500
S.CSO 22,500
5.000 22.500
15.000 47.500
15.000 • -tiAoa
15.000 67,400
10.0CO 115.000
10,000 115,000
h-'
UJ 10,000 115.000
•nut nco»r«4 kir MoonUcr *•**
rmCKiS PRXMIUW
™««o STS" n££« "STS™ „£;„«« OCH^B. S°£S? "001*>«f ««*»« «COHM«,
-jL — — — ^^ ,s— ssp, -g- ^^ ^ ^^ ^^ j^
„ „. • * -J^St 2 t """"TO- nmwro trriciBKt «, R^,,
""" 10° 40° •» «' M.5 x.,000 70 -— ^ ^ 2 _,_ ^^
"•"° l°° « • '« »« *.. ,5.00, ,. M. '" "l »•' • «
100 ,„ • .1<000 7M ,.. isooo ^ ^ '» 1» „.. , „.„
'»»-«-* »-^ «*««-.»*.«. M^.^.^^^....^^. "° *» «-. 1. ,.,.
V*"* * **» rirninMiim
100 40° "° « »•• «•«» ~
100 «« '« "' »-. 45.000 7, m Ml »•' « ' 0
M.. ...o^ 70 ,,. M> m " « • 1-44
15» IB. . M. M,U Aton "" 50t ,,., .-
** T. 11
300 4°° >- ,1.. , 4 „
25% 10. - M. KM •» ~7ii
"•'• . 0-»4 1.00
«•" »•» 1.1,
'•'» >•« . 2.47
*•» '•" i.oo
••" o.u ,.„
••" »•" 4.M
•<-.w »•» t.oo
l-M- »•" ..oo
.-».,,
t> tnatn Uua hMt UpM tv I
-------
1 28
24
FIIMAfl?
•SJicom
PROCESS
-I
« lJEAr
GAS
PR
-------
.. PROVE
...6
TASK NO.
ACKNCY
3-02-1A73
13
. CASE 3
EXCHANGER EF
EXCHANGER
-1CIKNCY Q8'i
EFFTCTKNCY 54-1/2
_3QQ°1;
,1400°F
-GAS
INCINERATION
N.I CATALYST
-------
-------
~T~
BWHONNENfTAL PROTECTION AGENCY
CONTRACT NO
TASK NO
PRIMARJV HJJAT
SECONDARY HB}\T
(PROCESS GAS
JITH CJATAtYSr
EXCHANGER
EXCJHANGER
INIJET !
dUT OF.
68-02
13
-1473
EFFICIENCY
36. (&.
53.8%
300 °F
16
12
cm.'.'
-------
-------
HEAT EX
£SS GAB IN -
MO.CATALYS
142
-------
ENVBRO.'WEIJTAL PROTECTtON
SECONDARY HKAI EXCHANGER
143
-------
ENVIRONMENTAL PROT
rnfrrpAC-.T MO
144
-------
5000
- 2
OIU
" 6TOx 5
MRS
WES
D/^ffCT
SUPPLIES'.
.25 x
145
-------
/%/,r~ .
SCFM
%l£L
TCMP 70°?
P
rocess
.6 HP.
SHES/sri/Fr x 73osHirrs/«fe x s.^0/ He
2^20
SUPPLIES;
.25
//?
146
-------
5000
/5" % /.EL
- 2
-3&S
oiu
S8M-0
D/ZGCT /.*&>£:•
147
-------
5000
Peoc
ess
STC4M
rucu o/u
'03/KWH
',
M/
HZ.
148
-------
/ 51 OOP SCFM
L£L Peocess
- 2
01 U
WES x .
s
/53 3 /
149
-------
- 2
- 3&s
0/U
SUPPLIES'.
*/
He.
s*.
SB VOH&
150
-------
<£
- 2
5T6VQM
o/u
D/ZGCT /.*&>£.'.
SUPPLIES;
x 7305Hirrs/ije x 6.e-°/ He
*
s-
151
-------
- 2
COST
o/u
^.
SUPPLIES:
HZ.
or
.2s
SECOND^/?/ Recevstty
152
-------
3O, OOP
O
o*u
(U 67^X 3Z.V * lo^B X SSM-o Hgs
x,
V
.25 x ^ 230^40
153
-------
A/I T '; S/Z& 3O, OOP S CfN/t
JL£L
- 2
o/u
D/ZGCT
.2S
a 33
154
-------
COST
/A/, T ; S/z& 3O, OOP scrvl /$ 7* L£L Psaoce^ TEMP ?O ^
Proc
ess
- ^
COST
(ft/ye)
o/u
D/ZecT
SUPPLIES'.
x s.°.°/ HE.
2S
155
-------
- 2
*t'^ PUCL o/u
O/tecr
SMES/SH/PT x
SUPPLIES;
x e."-0/ He
.25
or c^y^r^f. Cos
230,
156
-------
PK.IM/JKV
s/cfrr
OIL
39420
_ H.3 «
D/ZGCT
SKKS/sH/rr x 73o SHIFTS /fe x s.i°/He
SUPPLIES:
V
157
-------
SOOO scfM
l£L
u
SUPPLIES;
s
.7*J6KV%px
x 73o SHIFTS /«^e x s.'i0/ ne
.2S
21.20
158
-------
- 2
D/ZGCT
SUPPLIES*.
s
.2S
•
H3P.P.
2^.20
'53
159
-------
SOOO
7* JLEL
- 2
cos r
o/u
D/Z6CT /./>&>£:.
SUPPLIES ;
Or&Me*
s
4300
73o SHIFTS /^e x 8.°-°/ HE.
Cosrj
.25 X.
xic?yuex5ay0H&
160
-------
- 2
oil.
SUPPLIES'.
s
I3HLQ
x 73osHirr6/*fe x 6.°-°/ He.
«>r
Costs
161
-------
LEL
Process
- 2
STCrtM
oil.
SUPPLIES;
WES X .
<~°sr
162
-------
UL
- 2
0/U
SUPPLIES:
5Hes/^H/prx 73o SHIFTS /ye. x
V W£ ?£%> of
.22 x. >*
QTO *
163
-------
- 2
o/u
SUPPLIES;
5"HES/.sH/rr x 73o SHIFTS /*/e x
.as
*/
S6CCN04/?/
164
-------
°7° L£L
- 2
OIU
'03
/KWN
SUPPLIES'.
Ov&Jtec
s tee
"\ "
»J
x/
of
474'°
- -9%90B
165
-------
3o. OOP
- 2
o/u
of
.2S
x>
166
/S2.896
-------
3O.OOP
oiu
73osHiFT<,/^e
SUPPLIES:
. 2S X
SECOND*/?/ KfCOVGKf
167
-------
3o,OOO
/. G L
Proc
ess
o/u
SHES/^H/rr X 73osHirrs/tfe x S-'i0/
or CO/V/-X74 COST/
.25 x,
ff/f
22&&T
168
-------
- 2
Cos T
o/u
, 0. W/ X /^
SUPPLIED:
I
S C/SS ?5%> of
• \ .zs x. *__
15*. 8 14 P.
.°-°/ HE.
2120
ZT533
QTOXO.-1
-------
SOOO
JL£L
- 2
-s&s
COST
*£ FOGL 0/U,
* l-S°/lofa 6TOX I.'
* '
°3/KWH
WCS x .74
-------
SOOO sCFM /^ %UL
Ti^p
Cos r
ft/ 4 «$)
o/u
X SSM-0 MRS
HP-
. o. /*/ X
SUES/SHIFT X 730 SHIFTS /fS X
&OOS
2^20
SUPPLIES'.
or c
-------
rucu o/u,
.o.y/¥/
(Sties.
SUPPLIES :
x
s i^tf 2-^5% e>r
.2S X ^
x/o/'ne)eS6ito//e's
-------
&
- 2
o/u
SUPPLIES'.
.1 XIO!XME x
x #3,
COSTS
.25 X 1 fil SCO
-- n 5*20
173
-------
,S/Z£- /S'.OOO SCFK/t
% LEI, Pr
ocess
PU6L OIU
6r^x s. o * IO/ME, x ss^o MRS
SUPPLIES:
.25 X
174
-------
U«5
7/w? - 2
-s&s pa/ye, f
o;u
S
-{• 3.5* xio%e. X
MRS
.2^ x
He.
.: 3,5- xio
175
-------
M T ,
SCFM
Pe
oc«rss
T/s
/sw? -
-3&s
FOGL 0/U
X S8M-0
wes x .7**c> Kv%p x 55.^ n p.
x ^
5"Hes/sH/rr x 73o SHIFTS /«fe x e.i0/ ne
/Bo/'/ —
«>r
5-6
-•3764,8
176
-------
AJ, T- •
o O
o/u
D/tecr
SUPPLIES;
x 73o SHIFTS /^e x 8.°-°/ HE.
fj
.2
110Z.6
177
-------
-------
o/u
* i'S%o* 67t;x ~;.i
*'03/KWH* .^Ba*0
1" , ^>. y/y/ X ^ 37, ooo. (j> y/?s
SUPPLIES:
X SSM-o
He,
f
*
3£/>27\
179
-------
&
7/s
/swr -
-s&s
o/u
SSM-o
X 37,000.
x 730 SHIFTS /«j£ x
SUPPLIES;
.25 X 3230WS"
36027
2^20
ero x s. 5- x /^iye xsew //#s
180
-------
UO
L C L
rueu o/u
SUPPLIES:
s
I-Z
- \ . ZZ X. * JIOJ3O
&OOS , —
0,6 Xlo
--*70C &
181
-------
SUPPLIES;
HP.
Costs
.25 X. - .110130
>»/
x | . o X
182
-------
SOQQ
Process
0/U
O.3
SUPPLIES;
• \ .zs x.
HP.
HE.
35(13
1 ..
o x i . 3
183
-------
A/,-r".-,
TUffL 0/U
- x
, 0. W X
x 7'
0
* &>°-0/ He
35 1 73
184
-------
£057-
SUPPLIES;
3.6. xio
73o5HiPrs/«^e x
.25 X
3153^.
I3.PV8
/&£>/<*
2^20
185
-------
186
-------
C c os r
'so*?gFk/l
JL£L
^'P 77o*/
|iS°/ioto er^x w o. a xio7tie. x SSM-O
rueu o/u
wes ^ .7^c>KW/Hpx
-------
Cos T
STC/JM
o/u
O
.......
•v
. .fa i ./
. 0.
D/ZGCT /.*&>€:.
guppngs;
HP.
2^20
A :
"»* *
"
•<
-------
ui r* :
op o
O % JL£L Peocess TeMp
uc
- ~2
0/U
.2S
35* 15.8
36,027
189
-------
30,000
o/u
x
.es x,
COSTS
190
-------
>£
01 u
I.SO/,0"
*
X SSM-o
x e.e-°/
Costs
3&.0ZJ
2120
60741
8.O
191
-------
ooo
Z5"
- 2
o/u
D/ZGCT
SUPPLIES;
4J
2S X.
K ^
192
-------
CASE 4, INCINERATION
WITH DIRECT REUSE OF EXHAUST OF GASES
193
-------
CASE 4 GRAPHS
Fuel Requirement for Incinerator - This is the fuel required in terms of
Btu's per hour for 5 through 15 thousand SCFM flows with LEL's of 0-25%. Almost
identical to the Case 2 graph with process temperature of 300°.
Fuel Required for Oven and Incinerator Combined - Adds in the fuel required
by the oven for normal operation with recirculation, e.g. for an oven exhausting
6,000 SCFM @ 300°F, approximately 8.8 MM Btu's per hour are required without re-
circulation. With recirculation approximately 3.8 MM Btu's per hour are inputed
to the oven, consequently the oven fuel requirement is about 5 .MM Btu per hour.
Annualized Operating Cost of Incinerator - Total fuel cost, electricity, direct
labor and 257° of capital costs for a yearly operating expense. "Graph is very similar
to Operating Cost - Case 2 - 300°F - no catalyst.
Annualized Operating Cost of Incinerator Including Cost of Oven Fuel - Adds in
oven fuel cost to above graph - e.g. at 6,000 SCFM exhaust at 300°F with recirculation
of incinerator exhaust gases the fuel required by the oven is approximately 5.0 MM Btu
per hour. At 1.50 dollars per MM Btu and 5,840 hours per year operation the cost is
about 44,000 dollars per year. Added to the incinerator operating cost of 88,000
dollars per year the total is 132,000 dollars per year.
195
-------
FUEL REQUIREMENT FOR INCINERATOR
ENVIRONMENTAL PROTECTION AGENCY
CONTRACT #68-02-1473
TASK #13
CASE 4
Recirculating Incinerator
With Primary Heat Exchanger
Process Gas In Temperature 300 °F
Incineration Temperature 1400°F
Natural Gas Fuel
Density .0458 #/CF.
Heating Value 1002 Btu/CF (HHV)
Heating Value 904 Btu/CF (LHV)
12.0
8.0
PQ
vD
O
•i-l
g-
4.0
10
Flow - 103 SCFM
- 196
15
-------
22
20
18
16
14
vO
O
@ 12
06
10
FUEL REQUIRED FOR OVEN AND INCINERATOR COMBINED
ENVIRONMENTAL PROTECTION AGENCY
.CONTRACT #68-02-1473
TASK #13
CASE 4
Recirculating Incinerator
With Primary Heat Exchanger
Fuel required for
an oven without
benefit of recircu-
lation
10
FLOW - 103 SCFM
197
15
-------
180
160
140
0)
H
CO
8
100
80
60
AHNUALIZED OPERATING COST OF INCINERATOR
ENVIRONMENTAL PROTECTION AGENCY
CONTRACT #68-02-1473
TASK #13
CASE 4
Recirculating Incinerator
With Primary Heat Exchanger
Process Gas In Temperature 300°F
Incineration Temperature 1400°F/
40
10
FLOW - 103 SCFM
198 .
15
-------
260
240
220
200
i-i
03
0)
m
o
H
CO
160
140
120
100
80
ANNUALIZED OPERATING COST OF INCINERATOR
INCLUDING COST OF OVEN FUEL
ENVIRONMENTAL PROTECTION AGENCY
CONTRACT #68-02-1473
TASK #13
CASE 4
Recirculating Incinerator
With Primary Heat Exchanger
Cost of fuel required for an oven
without benefit of recirculation
10
FLOW - 103 SCFM
199
15
-------
TO ATM&SPU&JSE
-------
GAS)
: V.7- /.
'
738'
TQ
6OOO
, 000 (MOO -
7D
Cwi-
-------
OPERATING COST ESTIMATE
DESCRIPTION: CASE 4 FUME INCINERATOR
PRIMARY HEAT RECOVERY - NO CATALYST
UNIT SIZE 6000 SCFM 7 to 21% LEL
PROCESS TEMPERATURE = 300°F
PROCESS OPERATING TIME - 2 Shifts/Day - 365 Days/Yr. = 5,840 Hrs.
ITEM
DESCRIPTION
COST ($/YR.)
Utilities:
Water,
Steam,
#2 Fuel Oil, $1.50/10° $/Btu x (3.45 +0.95) x 10° Btu x
2
5840 Hrs. 19,300
Electricity $ .03/KWH x 5840 Hrs. x .746 KW/HP..x"37 HP 4,840
Direct Labor: .5 Hrs./Shift x 730 Shifts/Yrs. x:$8.00/Hr.
Supplies:
Maintenance
Building Overhead
Taxes & Insurance \
Interest & Depreciation^
I
Use 25% of Capital Costs
.25 x $151,900
2,920
38,000
TOTAL OPERATING COST $65,060
202
-------
APPENDIX: CAPITAL COSTS
FOR AFTERBURNERS
203
-------
^ENVlEWSMBNTAL-
^SNTRACTNO
T'RACT
'EASE !*O. 13
;Tif5
--}—
CAPITA
CA$
E I
j. ___
HO HEAT ESCHANOER
70 - 2
OQtE.lPHOCESSlG&SJS LET.
210,000
H
220^ 000
'J-'f
100, 000
HO, 000
J 120.000
-^—
: !
•
-.—*ee
-8^
-Mfl-
60.000
40tOOO
—29rO99-
ip
is
"$ : S 3^~
,.c_A§.E.!.;:
FLOW -
10 scfm
12/75
205
-------
ENVilRONl/LENT'Vl
:TIQN
*aorW
CdNTRAJCT,
TASK
NO
HO
B8-
. i;
:CAPITAL COST
~IGAS^: 2 ,
WITH PRIMARY HEAT EXCI
70 - 300°I' PRO
AS
ANGKR:
T
if
-24erWe
X
-t
-fc-
300, OOC
X
-iOO. 00(
i20. OOC
8t), 000
40 ope
CASE II
10
20
25:
scfm
206
-------
207
-------
• •*""'' —
C C'j;:r £:^?-s:'~f,j?~£'
£:
COSTS
35,000—
208
-------
7;'i?/..-v-"//£'A/ t.o^:f~' £:^?y.^s'J s'&
/sooc>
?. 70
O7b. zs
/ /'j£vV^ \?. / ,'*;•«••.;£.'?/.;•:> •••v.-r?/\/
•-•• '•—'•• / ^.,^> -•' x /.•-*.
COSTS
7 /
7*00
209
-------
/7
JT
"' 30,000
/ i So.ooo
X
.71
!
I
J
210
COSTS
1
£0,000
-------
:, .
C Q'\
.-o V
7
&'S T
///r
211
-------
•& &£
~
COSTS
7
r T
212 ,
35, ooo
-------
X'
213
-------
'o.'\/ <- e>^
7°
JZ ^/^rjfC
' ••.. •-• <
214
-------
JT"
*Z £>£-*
30,000
jz
C) £ &t'C/~ t\/0.<*
&3rj0 V
COSTS
7
215
-------
_rL^^
3Oj OOP
-------
i
( (T <5 5 7"..
7
217
-------
C <•_'•'I/-,' £2 */£/"/orJ '-- O^'s" ,^r^"s",'S~,fs;•?'•£'
£-' Sooo
Let
WO
(r-
COSTS
^^r A^.
-------
WO
2.v7:;.'
.
COSTS
219
-------
/s,ooo
0 -
-"•
WO
220
-------
30,000
.
(&:
ZS
/
3O.OOQ
/
221;
COSTS
<•- 'I
-------
30,000
222i
COSTS
V
-------
/
'W y^'c>,\; j£
COSTS
? 7"
223
-------
/£tM£&J
224
SS/fW^dr/e.
I COSTS
•~7~
22 /^ —
-------
/
"§
70
COSTS
225
-------
i
*
j£ ~'*-
226
COSTS
^; 7*
-------
/
•3O, ooo
221
COSTS
7"
-------
COSTS
£$000
228
-------
/'
229
-------
/'
/
C. i-'""- •'J s~C -:•'." /'•;•<---'.••!../ (
230
-------
S""" S,—r,> , —
/-
M
x, ;••'-»' i'
-Sf/V-'f
r J2Z
231
I
s
76
.
.>.
-•• - / t
"/•".' V3 .....— f ••••'• ,—,,r ,<~^. O 'V
-------
/•
<•/
•
L y
COSTS
^
232
/ — f f V.- ,. -^,
*
i • • • i
j — -, ;
"/•zTrtt Cl^-fj^//"!'?'. <^~&z~ /"" /^•Zw^'li ~~*
-------
30.000
7k
76
•'
I
C
233
-------
/
234
-------
.XttVT
To
AMP c#z*(*y$r 8*0
^X^ //<2-/y
COSTS
235 :
2630 —
-------
£> esc/2/ t>r/o*/ —
.* .. .
:._ fc/.ev> r
To
.<.f
/
__ /
i e/7.0/0/
74
V
236 ;
-------
C ojr
j£ J^i
COSTS
237
-------
To
j£ ^tsAS&A
COSTS
Ct>*JSr£i,Kr/e>*J
7%
#0000
238
-------
ft i« ....
-- 30,000
A/
0zz£L
i >*"
'
! /,-.,. _ / .
( COSTS
\
239
-------
.JEtej.M/jftAi ....£/ ..seco»o.DAR«... tJ'<
COSTS
240
-------
CONSTRUCTION COST ESTIMATE
DESCRIPTION: CASE 4 FUME INCINERATOR
PRIMARY HEAT RECOVERY - NO CATALYST
UNIT SIZE 6000 SCFM 7 to 21% LEL
PROCESS TEMPERATURE = 300 °F
QUANTITY ITEM & DESCRIPTION EST . COST
1 6000 SCFM Fume Incinerator 60,500
Skid mounted, In-Line Burner
for Natural Gas Fuel
Including Unit Mounted Controls,
Piping, Stub (10') Stack, and
Primary Heat Exchanger of 357<,
Efficiency. Unit to be completely
Shop Insulated
Auxiliary Equipment - Fan & Motor 3,600
Excavation & Foundations
Piping & Ductwork
Insulation ^ 85,000
Electrical
Painting
Interest on Investment During
Construction (Three Months @ 7-1/2% 2,800
Prime Rate)
TOTAL CAPITAL COST $151,900
241
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-450/3-76-031
2.
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Report of Fuel Requirements, Capital Cost and Operating
Expense for Catalytic and Thermal Afterburners
5. REPORT DATE
September 1976
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
C-E Air Preheater
9. PERFORMING ORGANIZATION NAME AND ADDRESS
C-E Air Preheater
Wellsville, New York
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
EPA 68-02-1473
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
Environmental Protection Agency
Office of Air Quality Planning and Standards
Emission Standards & Engineering Div. (MD/13)
R,ark North Carolina 27711
14. SPONSORING AGENCY CODE
*
15. SUPPLEMENTARY NO
16. ABSTRACT
The purpose of this manual is to provide capital and operating costs and fael
consumption of direct flame and catalytic incinerators for volatile organics.
Three flow rates (5,000, 15,000 and 30,000 scfm), two inlet temperatures
(7Q°F and 300°F), four concentration levels of organics (0%:, 5%, 15% and 25% of
the lower explosive limit) and four heat recovery options (no recovery, primary
heat recovery, primary and secondary heat recovery, and direct reuse of
incinerator exhaust) are evaluated. Cost estimates are detailed to enable easy
updating or estimation using any set of assumptions.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Industrial Emission Sources
Costs
M anual
Incinerators
Cost Estimation
fechniques
Capital Costs
(\nnualized Costs
<\ir Pollution Control
Systems
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS {ThisReport)
Unclassified
21. NO. OF PAGES
258
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
242
------- |